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côtoyer quotidiennement pour être pleinement appréciées. D’abord, Fabrice perd rarement
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rapidité à adopter les habitudes de ses prédécesseurs. Je lui souhaite bonne chance pour
la suite de sa thèse.
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Introduction

The progress of trapping and cooling techniques of atomic clouds1 in the last thirty years
have paved the way for major developments in atomic physics. At the extremely low
temperatures that are now achievable, quantum properties of gaseous matter are dramat-
ically enhanced. One of the important predictions of quantum statistical mechanics states
that in a gas at temperature T , particles behave as wave packets with a typical exten-
sion given by the thermal de Broglie wavelength λT ∝ 1/

√
T . When the temperature

is low enough, this size becomes on the order of the inter-particle spacing and the wave
packets overlap. In the case of non or weakly interacting bosonic particles (particles with
an integer spin) the interference of their wave packets lead to the emergence of a giant
matter wave corresponding to the accumulation of a significant fraction of the atoms in
the single-particle state of minimal energy. The macroscopic quantum object thus created
is called a Bose-Einstein condensate (BEC), after Einstein who theoretically predicted it
in 1925, extending to non-interacting massive particles the work of Bose on photons [1].

Bose-Einstein condensation was experimentally observed in dilute gases for the first
time in 1995 [2, 3]. These pioneering realizations2 triggered a rapid and continuous devel-
opment of both experimental and theoretical research in this field. BECs indeed represent
a remarkable tool to study the quantum world, for they combine simplicity (the underlying
theory is well understood and they are almost perfectly isolated from their environment)
and versatility (a large numbers of various physical problems can be addressed). In an
ultra-cold trapped atomic gas, particles do interact with each other. But due to the low-
densities at stake, these interactions are weak, and BECs are very well described by a
simple mean-field theory where all the atoms occupy the same quantum state. On the
contrary, in superfluid 4He that provided the first experimental evidence of Bose-Einstein
condensation (at the temperature considered 4He is a liquid, not a gas) the strong inter-
particle interactions led to only 10% of the atoms occupying the same state [4, 5]. Soon
after the first realizations of atomic BECs, experiments performed in this mean-field frame-
work explored the coherence properties of ultra-cold gases. Matter wave interference has
been observed between two overlapping condensates [6] and in a continuous beam of atoms
escaping from a condensate (which represents the atomic analog of a laser) [7]. Evidence
for the superfluid behavior of these gases has been provided by the formation of quantized
vortices in rotating gases [8]. Note that fermions have also been cooled down to the quan-
tum degenerate regime using similar techniques as for bosons [9, 10].

The consistent interest in ultra-cold gases also originates from the fine control of ex-
perimental parameters accessible to experimentalists. Thus, numerous different physical

1The importance of these advances has been recognized by the Nobel prize awarded in 1997 to S.Chu,
C.Cohen-Tannoudji and W.D.Philips.

2W.Ketterle, E.Cornell and C.Wieman have been awarded the 2001 Nobel prize for these first experi-
mental realizations of BEC in dilute gases.
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situations can be engineered and investigated. In particular, interactions between parti-
cles can be tuned both in sign (attractive or repulsive) and in strength through the use of
Feschbach resonances. The geometry of the potential landscape confining the atoms can
also be adjusted by the application of chosen optical or magnetic fields. These tools allow
one to study many-body quantum phenomena where inter-particles interactions play a key
role. Feschbach resonances made it possible for instance to study gases of fermions both
in the regime of strong attractive interactions [11] (where weakly bound molecules are
formed that undergo a Bose-Einstein condensation) and of weak attractive interactions
[12] (where they form a superfluid phase well described by the BCS theory).
The controllability of the trapping potential allowed to realize the textbook example of a
box potential [13] or to design systems of lower dimensionality (1D and 2D) by strongly
confining them in the remaining dimensions. The Tonks-Girardeau gas has been produced
in a one-dimensional gas [14] while in two-dimensional gases a transition from a normal to
a superfluid state has been observed (the Berezinski-Kosterlitz-Thouless transition) [15].
Using the interference pattern created by the superimposition of several laser beams, it is
also possible to generate a regular lattice potential in which the atoms arrange themselves
periodically like in a crystal. Changing the depth of the potential wells it is possible to
tune the strength of the interactions, which led to the observation of the phase transition
between a superfluid phase and an insulating Mott phase [16, 17]. On the opposite, a dis-
ordered potential is obtained by shining a laser beam through a diffusive plate. Imposing
the resulting speckle pattern on a BEC allows one to investigate the localization of matter
waves predicted in a general framework by Anderson3 [20, 21].

Another direction that arised in the field of ultra-cold gases is the study of multi-
components gases. Mixtures of superfluids have actually been a long-time appealing goal.
First experiments involved mixtures of 4He and 6He [22] in 1953, but the superfluid be-
havior of 6He could not be observed due to its low concentration. The realization of BEC
in dilute gases has revived the interest in multi-component superfluids. In the following
years, mixtures of BECs in different hyperfine states have been produced [23, 24, 25], fol-
lowed by the mixture of a BEC mixed with a degenerate Fermi gas [26, 27]. A particular
class of multi-component superfluids is composed of superfluids with an internal degree of
freedom. Such systems are rare. The first studies considered liquid 3He, where spin 1/2
atoms form weakly bound pairs in the triplet spin manifold [28, 29]. The development of
ultra-cold gases physics gave access to a new family of such fluids: spinor Bose-Einstein
condensates. In a spinor BEC, the simultaneous trapping of all Zeeman sublevels of an
hyperfine state allows atoms in different spin states to coexist in the condensate. This
coexistence leads to a spin-dependent interaction that manifests itself for instance in co-
herent spin oscillations [30, 31, 32] or in parametric spin amplification [33]. Additionally
the spin degree of freedom couples to the external magnetic fields. The combination of the
spin interaction and the magnetic coupling gives rise to a wealth of phenomena. In the
presence of a static magnetic field, spinor condensates become magnetically ordered. Spin
textures [34] and metastable spin domains [35] have been observed in spinor condensates
immersed in a gradient of magnetic field. Besides, depending on the nature (ferromagnetic
or antiferromagnetic) of the spin interaction and on the total spin of the atomic species,
Bose-Einstein condensation is expected to result in different possible magnetic phases
[36, 37], which places spinor condensates at the interface between atomic and condensed
matter physics.

3The Anderson localisation has also been observed in systems equivalent to disordered potentials, in
particular in a quasi-periodic optical lattice [18] and in the quasi-periodic kicked-rotor system [19].
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Spinor condensates have also emerged as a candidates for the realization of non clas-
sical states which are particularly interesting for atomic interferometry, metrology and
quantum information. The spin-exchange interaction indeed induces strong correlations
in the spin degree of freedom of the condensate [38, 39]. Using these spin correlations,
squeezed spin states have been observed [40, 41]. These states are characterized by a re-
duction of the noise in one component of their total spin below the standard quantum limit.

The project of our team at laboratoire Kastler Brossel is to use spinor condensates to
produce different kinds of strongly correlated quantum states. One of the long term goal is
the realization of Schrödinger cat states, which correspond to the coherent superposition
of a condensate in two different spin state [42]. These maximally correlated states have
already been realized with a few photons [43] or trapped ions [44], but not yet in a
mesoscopic ensemble of particles. Another kind of strongly correlated states that we
want to achieve are twin states: Fock states in which half of the atoms occupy one spin
state and the other half occupy another spin state. To produce these states we chose
to work with Sodium atoms. The spin interaction in spinor condensates of Sodium is
indeed advantageous for its nature (it is antiferromagnetic) and for its strength (it is
significantly more intense than in Rubidium for instance, which is commonly used in the
field of spinor condensates). The project has been initiated in 2006 by Fabrice Gerbier and
Jean Dalibard. The construction of the experimental set-up for the production of Sodium
BECs has been carried out by E. Mimoun and L. de Sarlo, who designed in particular
an all-solid state laser for the cooling of Sodium [45][46]. Then joined D. Jacob and L.
Shao, who completed the construction step and contributed to the obtention of the first
BECs [47]. This work presents the consecutive studies of spinor condensates of Sodium at
thermodynamic equilibrium. We investigate in particular the properties of this equilibrium
state under various conditions of magnetic field and of spin distribution.

Outline

- In chapter 1 we give the first elements of the theory of spinor condensates, focus-
ing on the case of spin-1 condensates (which is the case of Sodium). We derive
the expression of the spin interaction between two spin-1 particles and explicit the
coupling of these particles to an external magnetic field. From these ingredients we
deduce the many-body Hamiltonian describing spin-1 BECs, and in particular its
component acting in the spin space. We then introduce the important single-mode
approximation that decouples the spin and orbital degrees of freedom of the sys-
tem. We use this approximation to investigate the ground-state within a mean-field
approach. We find that spin-1 condensates in their ground-state can exist in two
different magnetic phases. In order to check the relevance of this result for our ex-
perimental system, the validity of the single-mode approximation is confirmed by a
numerical calculation. We finally study the effect of the spin degree of freedom on
the elementary excitations of the condensate.

- Chapter 2 details the experimental methods to produce, prepare and probe our
spinor condensates. We describe our experimental set-up and the sequence that
we perform to bring a cloud of Sodium atoms initially at high temperature to the
regime of quantum degeneracy. We explain how we load a magneto-optical trap
from a background pressure in our vacuum chamber, and how the atomic cloud is
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then successively transferred in two optical dipole traps, where it is cooled down
by evaporative cooling. We characterize the evolution of the temperature, of the
number of trapped atoms and of the frequencies of our trap during this evaporation.
The second part of the chapter is devoted to our imaging procedure. We resort
to absorption imaging combined with a Stern-Gerlach experiment to first spatially
separate the different spin components. A calibration of the scattering cross-sections
of the different spin states is presented, as well as a noise analysis. The last part
deals with the control of the internal degree of freedom. The magnetization of a
spin-1 condensate (the difference between the populations in the two extremal spin
state) is conserved during a Hamiltonian evolution and it is a crucial parameter
in the thermodynamic properties of the system. We explain how we can prepare
a cloud of chosen magnetization using two different techniques that we denote as
spin-mixing and spin distillation.

- Chapter 3 focuses on the properties of the mean-field ground-state of an antiferro-
magnetic spin-1 condensate. We highlight in particular the existence in such states
of a spin nematic order. This spin nematic order characterizes the symmetry of the
ground-state and provides a geometrical understanding of the mean-field magnetic
phase diagram. We then present an experimental investigation of the phase diagram
in terms of the spin populations at equilibrium. In a third part we show a method to
probe the nematic order. This method is based on the measurement of the fluctua-
tions of the magnetization after a rotation of the total spin of the state, and provides
evidence for such a magnetic order.

- In the measurement of the phase diagram presented in chapter 3, we observed huge
spin fluctuations in the region of low magnetization and low magnetic field. Al-
though these fluctuations are not expected in the simple mean-field theory, they
reflect the tendency of the system to restore the spin rotational symmetry (which
is broken in the simple mean-field approximation). In this situation Bose-Einstein
condensation occurs simultaneously in several spin states. The condensate is said
to be fragmented. In chapter 4 we introduce the phenomenon of fragmentation and
show by a diagonalization of the Hamiltonian that, in antiferromagnetic spinor con-
densates, it manifests itself in the two first moments of the population with zero
spin projection along the quantization axis. We then develop an approximative but
very efficient approach to describe a spin-1 Bose gas at low temperature. The spin
state of the condensate is here described by a statistical mixture of mean-field states
analogous to spin coherent states. We introduce here the notion of spin temperature.
This approach allows to recover the manifestation of fragmentation, but without the
numerical complexity of an exact diagonalization. We are able to study the contin-
uous evolution of the spin state of the condensate from a fragmented state at low
magnetic field to a mean-field state at larger magnetic field. In a last part we point
out the similarity between this transition and the concept of spontaneous symmetry
breaking.

- Finally, in chapter 5 we report on the experimental investigation of spin fragmen-
tation in our spinor condensates. We prepare clouds with vanishing magnetization
and measure the spin populations and their fluctuations at equilibrium. We perform
these experiments at different “kinetic” temperatures (temperature of the thermal
cloud) by changing the duration of the evaporative cooling. We then analyze the
distributions of the spin populations using the theory presented in chapter 4, and are
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able to deduce a spin temperature for the different values of our experimental pa-
rameters. We compare the spin and kinetic temperatures and find that they do not
coincide. We interpret this as an evidence for the lack of thermalization between the
spin degrees of freedom of the condensate and the spatial thermal component, which
each arrive independently at a pseudo-thermal equilibrium by different relaxations
mechanisms.





Chapter 1

Spin-1 Bose-Einstein condensates

1.1 Bose-Einstein condensates with an internal degree of
freedom

Bose-Einstein condensation in an atomic gas is a phase transition defined by the macro-
scopic accumulation of atoms in the same single-particle state: if the gas is confined by an
external potential, the atoms condense in the ground-state of the trap due to their bosonic
statistics. They are then described by a giant wavefunction. The first experimental real-
izations of Bose-Einstein condensates in laser-cooled gases has been achieved in 1995 with
alkali atoms [2, 3]. Even though these atomic species have an hyperfine structure with
non-zero total spin in their electronic ground state, the use of magnetic traps imposed that
all the atoms remain in low-field seeking states. For atoms with a nuclear spin I = 3/2
such as 87Rb and 23Na, only the |F = 1,mF = −1〉 state of the lower hyperfine manifold
and the |F = 2,mF = 1, 2〉 states of the upper one can be trapped. The condensate was
actually polarized in a single magnetic state: the spin degree of freedom was frozen 1. The
condensation is characterized in this case by a scalar wavefunction, describing the external
degrees of freedom .

However the development of optical trapping techniques since 1997 allows to equally
trap all the sublevels of an hyperfine manifold [48, 49], releasing the constraint on the
internal degree of freedom and thus opening the possibility of creating Bose-Einstein con-
densates with several distinguishable components. Such condensates where the atoms are
allowed to occupy any of the magnetic sublevels of a single hyperfine manifold F are called
spinor condensates and are represented by a (2F + 1)-component wavefunction. Multi-
component condensates are realized in other systems. The mixture of condensates from
different bosonic species is also described by a multi-component wavefunction, as well as
the mixture of condensates occupying N different hyperfine states of the same isotope, for
instance the |F = 1,mF = −1〉 and |F = 2,mF = +1〉 states of 87Rb, which realizes a
pseudo-spin (N − 1)/2 system. Yet spinor condensates differ in major ways from other
kinds of multi-component condensate. The key feature of spinor condensates is the vec-
torial nature of their wavefunction which expresses the possibility of population transfers
between their different components. Mixtures of condensates do not possess this property.
Associated with the internal rotational symmetry of the system, the vectorial transforma-

1A notable exception is the case of the |F = 1,MF = −1〉 and |F = 2,mF = +1〉 states of 87Rb, whose
mixture survives due to the fortunate near-equality of the singlet and triplet scattering lengths that almost
suppresses spin-changing collisions. The mixture of condensates of these two hyperfine states realizes a
pseudo-spin 1/2 system.
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tion of the wavefunction dramatically affects the inter-atomic interactions. In particular, a
characteristic of spinors that is not shared by other multi-component systems is the coher-
ent internal-state dynamics driven by spin-exchange collisions. This coherent spin-mixing
makes spinor condensates different from an uncoherent overlap of 2F + 1 condensates and
gives access to a rich variety of phenomena. For instance, spin-1 condensates constitute a
suitable non-linear medium to create non-classical state of matter, similarly to the creation
of non-classical states of light in quantum optics. Using this similarity, parametric spin
amplification [33] and spin squeezing [50] have been experimentally demonstrated. The
coherence of the spin collisions also appears in the Josephson junction dynamics of spin
oscillations [32, 51].

Bose-Einstein condensation is a purely quantum phase transition in the sense that it
is a consequence of the quantum statistics of the atoms and not of their interactions. Still
in spinor gases interactions between different spin states lead the atoms to condense in
several possible phases. This is possible in spite of the weakness of the spin-dependent
interaction (which contributes roughly to 1nK of energy per atom, much less than the typ-
ical 100nK temperature of the condensate) because of the bosonic enhancement provided
by the Bose-Einstein condensate. Because of these enhanced interactions, spinor Bose
gases become magnetically ordered below the condensation threshold. The interplay be-
tween spin-interactions and magnetic fields in the condensate give rise to magnetic phase
transitions. We demonstrate in the following the existence of such a phase transition in
spin-1 condensates with antiferromagnetic interactions.

In this chapter, we give first elements of theory of the spinor Bose gas that consti-
tute the basis of the experimental and theoretical developments presented in the rest of
this work. We first recall some basic properties of the Bose-Einstein condensation in a
scalar gas confined in an harmonic trap. In particular we discuss the ground-state and the
low-lying excited states of a weakly interacting gas. In a second part we turn to spinor
condensates. We derive the interaction Hamiltonian and introduce two important approx-
imations to simplify its treatment: the single-mode and the mean-field approximations.
We then combine them to discuss the ground-state of the antiferromagnetic spin-1 Bose
gas, which we experimentally studied in 23Na condensates. The validity of the single-mode
approximation is investigated. Finally we show that new modes of excitations associated
to the internal degree of freedom, analogous to spin waves in magnetic materials, arise.

1.2 Bose-Einstein condensation in scalar gases

1.2.1 Bose-Einstein transition in an ideal gas

We consider a gas of N non-interacting atoms confined in an harmonic potential:

Vext(r) =
1

2
m(ω2

xx
2 + ω2

yy
2 + ω2

zz
2) (1.1)

where m is the mass of one atom and ωi=x,y,z are the trapping frequencies along the three
directions of space. The ground state wavefunction is obtained from the time-independent
Schrődinger equation:

φ(r) =
(mω̄
π~

)3/4
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]

(1.2)
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where we defined the averaged frequency ω̄ = (ωxωyωz)
1/3. The wavefunction φ satisfies

the normalization condition
∫
d3r|φ(r)|2 = 1. The size of the condensate is independent

of N and is set by the harmonic oscillator length

aho =

(
~
mω̄

)1/2

(1.3)

The standard procedure to introduce the Bose-Einstein condensation is to consider the
bosonic occupation numbers of all the excited states, sum them and show that this sum
has an upper bound independent of N [52]. The maximum number of atoms that can
populate the excited states decreases with the temperature T of the gas, so that below a
critical temperature Tc that depends on the atom number N , the atoms have no choice but
to occupy the ground-state. This point marks the onset of the Bose-Einstein condensation.
As the temperature is further lowered the atoms accumulate in the ground-state whose
population N0 becomes a macroscopic fraction of N . The fraction of atom in the ground-
state N0/N is denoted as the condensed fraction. A semi-classical approximation valid
when the thermal energy is large compared to the level spacings set by the harmonic
oscillator (kBT � ~ωx,y,z) gives a critical temperature

kBTc = ~ω̄
(

N

g3(1)

)1/3

' 0.94~ω̄N1/3 , (1.4)

where we introduced the family of Bose functions gα(z) =
∑∞

k=0
zk

kα . When we let
N → +∞, the proper thermodynamic limit is to let at the same time ω̄ → 0, while
keeping the product Nω̄3 constant, so that the critical temperature (1.4) stays well de-
fined.

The semi-classical approximation also allows one to calculated the spatial density of
the thermal atoms populating the excited states. One finds:

nT (r) = λ−3
T g3/2(eβ(µ−Vext(r))) (1.5)

where λT = h/
√

2πmkBT is the De Broglie wavelength and µ is the chemical potential.

1.2.2 Effect of the interactions: ground-state

Even though we consider dilute gases of typical densities ranging from 1013 to 1015cm−3,
the interactions between atoms can not be neglected. We recall in this section how they
modify the ground-state of the condensate [52].

Two-body interactions

Because of the low density, the atoms interact almost exclusively through binary collisions.
Furthermore, the temperature of the gas is low enough to allow for the ”cold collisions”
approximation: collisions are well described by s-wave scattering only. In this conditions,
the interactions are characterized by a single parameter, the s-wave scattering length a. As
the details of the two-body scattering potential are irrelevant, instead of the real (generally
unknown) potential, one typically uses a simple model potential with the same scattering
length. A popular choice for short range interactions is the so-called Fermi potential:

V̂ (r, r′) =
4π~2a

m
δ(r− r′) (1.6)
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where δ is the Dirac distribution. In the following we note g = 4π~2a/m. Using such a
contact potential to build a many-body theory is valid as long as the s-wave scattering
length is much smaller than the mean inter-particle distance, which gives the condition
n|a|3 � 1 where n is the total density. In this dilute limit, two-boy scattering is essentially
unaffected by the presence of other atoms and proceeds as if the two colliding atoms were
alone. Positive and negative values of a correspond respectively to an effective repulsion
and attraction between the atoms. From now on we only consider positive values of a.

Gross-Pitaevskii equation

In an ideal gas the many-body ground state is simply obtained by putting all the particles
in the single-particle ground-state. This is not true any more for interacting particles, and
the exact many-body particles ground-state is usually hard to calculate exactly. A very
successful approach to describe the interacting Bose gas is the Hartree-Fock approxima-
tion which assumes that all the atoms share the same single-particle wavefunction. In this
case we can derive an equation for the ground-state wavefunction φ by minimizing the free
energy 〈H〉 − µN . We obtain the Gross-Pitaevskii equation:

(
− ~2

2m
∇2 + Vext(r) + gN |φ(r)|2

)
φ(r) = µφ(r) (1.7)

The chemical potential µ corresponds mathematically to the Lagrange multiplier associ-
ated with the conservation of the total atom number N . In equation (1.7) φ is normalized
to unity:

∫
dr|φ(r)|2 = 1.

Thomas-Fermi approximation

To estimate the importance of the effect of the interactions on the ground state wavefunc-
tion we compare the interaction energy Eint to the kinetic energy Ekin of the system. One
finds that the ratio of the two energies is given by:

Eint

Ekin
≈ N a

aho
(1.8)

If this number is large, the ground state is essentially determined by the interaction and
the kinetic term can be neglected compared to the interaction one in the Gross-Pitaevskii
equation. This is the Thomas-Fermi approximation. From (1.7) we find the density of the
condensate:

n(r) = |φ(r)|2 = g−1 max [µ− Vext(r), 0] (1.9)

Due to the shape of the trapping potential, the density of the condensate is parabolic. (For
non-interacting atoms it was gaussian). The chemical potential is calculated by integrating
(1.9) over space and equaling it to N :

µ =
~ω̄
2

(
15N

a

aho

)2/5

(1.10)

We then obtain the radius of the condensate Ri =
√

2µ/mω2
i :

Ri = aho
ω̄

ωi
(15N

a

aho
)1/5 (1.11)
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for i = (x, y, z). Since we assume Na/aho � 1, the size of the condensate is much larger
than the size of the non-interacting ground state aho. This is an effect of the repulsive
interaction between the atoms.

1.2.3 Effect of the interactions: excited states

We now consider the effect of the interactions on the excited states. In a non-interacting
condensate, elementary excitations consist in the promotion of atoms of the condensate
to single-particle excited states of the trap. Their spectrum is then the one of an har-
monic oscillator. Interactions modify this spectrum. Low-lying excitations can be derived
following a procedure introduced by Bogoliubov [53]. For simplicity we here consider the
case of an homogeneous gas of N atoms in a volume V .

In second quantization a generic many-body Hamiltonian reads:

Ĥ =

∫
drΨ̂†(r)

(
− ~2

2m
∇2

)
Ψ̂(r) +

1

2

∫
drdr′Ψ̂†(r)Ψ̂†(r′)V̂ (r− r′)Ψ̂(r′)Ψ̂(r) (1.12)

In the following we replace the two-body interaction operator V̂ by expression (1.6).

For uniform systems it is convenient to expand the atomic-field operator in the basis
of plane-waves. We assume that a macroscopic fraction of the atoms are in the conden-
sate, which is defined by the k = 0. We note N0 the number of atoms in this mode.The
commutator of the associated creation and annihilation operators is much smaller than
their action on the state of the condensate (on order

√
N0), so that these operators can

be approximated by c-numbers:

â†0 ' â0 '
√
N0 (1.13)

Separating the k = 0 mode from the others, and retaining only terms which are at
least quadratic in â†0 and â0, the Hamiltonian becomes:

Ĥ ≈ gN2

2V
+
∑

k 6=0

(εk +
gN

V
)â†kâk +

gN

2V

∑

k 6=0

(â†kâ
†
−k + âkâ−k) (1.14)

where εk = ~2k2/2M . The first term is the energy of the condensate (due to interaction

since the kinetic energy is zero). The factor in front of â†kâk has two terms: the kinetic
energy and the interaction with the condensate. The last term comes from processes where
two atoms of the condensate are scattered into states of momenta +k and −k, and the
inverse process where two atoms with momenta +k and −k are scattered into the con-
densate.

The Hamiltonian (1.14) can be diagonalized by a Bogoliubov transformation. We in-
troduce new operators α̂k defined by:

α̂†k = ukâ
†
k + vkâ−k (1.15)

where uk and vk are amplitudes to determine. We impose that these new operators obey
the bosonic commutation relations:

[α̂k, α̂
†
k′ ] = δk,k′ , [α̂k, α̂k′ ] = [α̂†k, α̂

†
k′ ] = 0 (1.16)
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Figure 1.1: Spectrum of Bogoliubov excitations. The solid line shows the energy εk, the
dashed line shows εk + gn.

Inserting (1.15) into the Hamiltonian (1.14), we determine uk and vk such that the Hamil-
tonian becomes diagonal. We obtain:

Ĥ = E0(N/V ) +
∑

k 6=0

εkα̂
†
kα̂k (1.17)

where E0(N/V ) is the energy of the ground-state. We note n = N/V the density. The
excited states correspond to creations of quasiparticles with an energy εk given by:

εk =
√
εk(εk + 2gn) (1.18)

For long wavelength excitations (k � mgn/~2) we find the phonon dispersion law
ε ≈ cs~k, where cs =

√
gn/m is the sound velocity, whereas in the opposite limit the

short wavelength excitations (k � mgn/~2) are free particles excitations with energy
εk ≈ εk+gn. The spectrum at high energies resemble the one of a non-interacting system,
and excitations are there single-particle excitations (the amplitude vk goes to zero for large
k). On the other hand, the lowest modes are collective modes involving more than one
particle.

In a box with periodic boundary conditions, the possible values of the components of
k are discrete: ki = 2π/Li, where i = x, y, z and Li is the size of the box in direction i.
In an harmonic potential, the complete calculation of elementary excitations is tedious,
but we can still estimate the energy of the phonon modes, approximating the harmonic
trap by a box. We take for the size of the box twice the radius of the condensate in the
Thomas-Fermi regime RTF =

√
2µ/mω2 =

√
2gn/mω2, where ω is here the frequency of

the harmonic potential that we assume isotropic for simplicity. If we calculate the energy
of the first phonon mode we get:

ε1 ∼
~cs
RTF

∼ ~ω (1.19)
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We find that the first phonon mode has an energy on the order of ~ω, the quantum of
energy associated to the harmonic potential. This is confirmed by a more rigorous analysis
[52, 54].

1.3 Spin-1 Bose-Einstein condensates: spin Hamiltonian

We now consider a Bose-Einstein condensate with an internal degree of freedom, and in
particular the case of a condensate of particles of spin 1. We first look at the single particle
level, and describe the internal structure and how it couples to external fields. We then
move to the level of two particles and discuss how they interact before finally deriving the
many-body Hamiltonian.

1.3.1 Single spin-1 particle

Internal structure

We describe here the electronic structure of 23Na. The fine structure results from the
coupling of the electron spin S to its orbital angular momentum L. We note the total
electron angular momentum J = S + L. The ground state 32S1/2 corresponds to L = 0
so that J = 1/2. The two first excited states 32P1/2 and 32P3/2 correspond to L = 1
and have J = 1/2 and J = 3/2 respectively. The two transitions 32S1/2 → 32P1/2 and
32S1/2 → 32P1/2 form a fine structure doublet noted D1 and D2. Each of these three
levels have an hyperfine structure resulting from the coupling of the total electron angular
momentum J to the nuclear angular momentum I. We note the total angular momentum
F = J+I. In 23Na the nucleus has an angular momentum I = 3/2 so that the ground state
J = 1/2 splits into two levels of total spin F = 1 and F = 2. The hyperfine splitting in the
ground state is ∆Ehfs ≈ 1.77 GHz [55]. The 32P1/2 and 32P3/2 states split respectively
in two (F = 1, 2) and four levels (F = 0, 1, 2, 3). Each of these hyperfine level contains
2F + 1 Zeeman sublevels labeled my the projection of the total angular momentum on the
quantization axis, mF = −2F,−2F + 1, ..., 2F . In absence of external magnetic field these
levels are degenerate.

Zeeman effect

We now consider the effect of an external magnetic field oriented along the quantization
axis and of amplitude B. The angular momentum of a particle couples to the magnetic
field and the degeneracy of the Zeeman sublevels is then broken. In the electronic ground
state the shifts of the Zeeman sub levels are given by the Breit-Rabi formula [55]:

EmF = −mF gIµIB −
1

2

√
1 +mFα+ α2 (1.20)

where α = (gJ − gI)µBB/∆Ehfs, µI is the nuclear magneton, µB is the Bohr magneton,
gI and gJ are respectively the nuclear and electronic Landé g-factors.

Typical magnetic fields used experimentally are on the order of a few G, so that the
Zeeman shifts are small compared to ∆Ehfs. One can expand the Breit-Rabi formula up
to order 2 in α, and neglecting gI compared to gJ we get:

EmF = mF p+m2
F q (1.21)
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Figure 1.2: Fine structure and hyperfine structure of the electronic ground state of Sodium.

with

p = gFµBB , q =
(gFµBB)2

∆Ehfs
(1.22)

where gF = −1/2 for the F = 1 hyperfine manifold is calculated from gJ and gI . Numer-
ically one has µB/2 ≈ h× 700 kHz/G, and µ2

B/4∆hf ≈ h× 277 Hz/G2.

Optical trapping

We now discuss the interaction between spin-1 particles and the electric field of a laser
beam. The motivation is that the production of a spinor condensate requires that the
different spin states of an hyperfine manifold see the same trapping potential. Such a
spin-independent potential is provided by an optical dipole trap. The electric field of
a red-detuned focused laser beam induces in polarizable atoms a dipole moment whose
interaction with the same electrical field creates the trapping potential. For a laser which
is far-off resonant to the atomic transition of interest, this interaction is described by the
Hamiltonian

Ĥdip = −Ê(−).α.Ê(+) (1.23)

where Ê(±) are the electric field operators creating and annihilating photons in the laser
mode, and α is the atomic polarizability tensor given by

α = −
∑

F,F ′

P̂F d̂P̂F ′d̂
†P̂F

~∆FF ′
(1.24)

F (F ′) labels the angular momentum of the ground (excited) states manifold. P̂F is the
projector on the manifold F , d̂ is the electric dipole operator,and ∆FF ′ = ωL − ωFF ′ is
the detuning of the laser frequency to the atomic transition F − F ′. The polarizability
tensor α can be understood in terms of a scattering interaction: an atom from the ground
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state manifold F is virtually promoted to the manifold F ′ by the raising dipole operator
d̂† and at the same time a photon is annihilated by Ê(+). The atom then decays back to
the manifold F (possibly in an other state) and a photon is created. The polarizability
α is built as the dyadic product of two vector operator, and so is a rank-2 tensor that
can decomposed in the sum of irreducible operators of rank 0,1 and 2. It follows that the
Hamiltonian Ĥ can as well be written:

Ĥdip = Ĥ
(0)
dip + Ĥ

(1)
dip + Ĥ

(2)
dip (1.25)

where Ĥ(i) is the component of rank i. If we restrict the ground states of the atoms to
one manifold F we have [56]

Ĥ
(0)
dip ∝ E(−).E(+).1F (1.26)

Ĥ
(1)
dip ∝ (E(−) ×E(+)).F̂ (1.27)

Ĥ
(2)
dip ∝ E

(−)
i E

(+)
j

(
1

2
(FiFj + FjFi)−

F (F + 1)

3
1F

)
(1.28)

where F is the total angular momentum of the atoms. The weight of these different
contributions are respectively given by 1/∆FF ′ , ∆fs/∆

2
FF ′ and ∆hfs/∆

2
FF ′ , where ∆fs is

the fine structure splitting of the excited states and ∆hfs the hyperfine structure splitting.
If the detuning of the laser to the atomic transition is large compared to hyperfine splitting,
the rank-2 contribution of the polarizability becomes negligible. Besides, if the laser light
is linearly polarized the vector term vanishes. In these conditions, only the scalar part
of the Hamiltonian remains, that acts as a state-independent light shift. The three spin
states then see the same trapping potential. Conversely, reducing the detuning or using
circularly polarized light allows to manipulate the atoms in a spin-dependent way. In the
following we consider the trapping potential is independent of the spin state and note it
Vext(r).

1.3.2 Two-body scattering of two spin-1 particles

We derive here the Hamiltonian describing the interaction of two atoms of spin 1. For
atoms with an internal degree of freedom, collisions connect asymptotic incoming and
outgoing states that are a product of an orbital and an internal state. Internal and orbital
states are labeled by quantum numbers, in particular by their total angular momentum. As
we explained in the previous section, in dilute gases at very low temperature, binary s-wave
collisions prevail, and we can make the cold-collisions approximation: the wavefunction of
the relative motion of the two atoms has then zero total angular momentum.
We assume the interaction is rotationally invariant in real and in spin space2 . This is
exact in the absence of symmetry breaking due in particular to applied magnetic fields.
Nonetheless, this approximation remains valid at low magnetic fields. As a consequence
the total angular momentum is conserved. We additionally make the approximation that
orbital and internal degrees of freedom do not couple during the collision. Then orbital
and spin angular momentum are independently conserved.
The wave-function of bosons has to be symmetric under the exchange of any two particles.
Because of the s-wave approximation, the orbital part of the wavefunction is symmetric
under such exchange. Its internal part then also has to be symmetric. The parity of

2Making this assumption we neglect non-rotationally symmetric interactions, in particular the magnetic
dipole-dipole interaction. See footnote 3 next page for a justification of this approximation in the case of
a gas of Sodium atoms.
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the wave-function is (−1)F , so that for two colliding spin-1 particles there only exists
two scattering channels: F = 0 and F = 2. Because of the rotational symmetry of the
interaction, the two atoms stay in the same channel during the collision.
As in the scattering of two polarized particle we already discussed, the interaction potential
is characterized by the s-wave scattering length alone. We decide to model its spatial part
by a Fermi contact potential of same scattering length. Since the scattering channel is
conserved during the collision we can write the interaction operator as:

V̂ = δ(r1 − r2)⊗
∑

F=0,2

4π~2aF
m

P̂F (1.29)

where P̂F is the projector on the total spin F state, and aF is the scattering length associ-
ated with the scattering channel of total spin F . This generic form respects the symmetry
under exchange of two particles and is rotationally symmetric.

This operator may be expressed in terms of one-particle spin operators. First we write
the total spin of the atom pair:

(Ŝ1 + Ŝ2)2 = Ŝ2
1 + Ŝ2

2 + 2Ŝ1.Ŝ2 =
∑

F

F (F + 1)P̂F = 6P̂2 (1.30)

We note Î1,2 the identity operator in the internal Hilbert space of the particule 1,2. Con-
sidering that Î1 ⊗ Î2 = P̂0 + P̂2 we get:

P̂0 =
Î1 ⊗ Î2 − Ŝ1.Ŝ2

3
, P̂2 =

2Î1 ⊗ Î2 + Ŝ1.Ŝ2

3
(1.31)

We then obtain for the spin part of the two-particle interaction operator (1.29):

V̂s = c0Î1 ⊗ Î2 + c2Ŝ1.Ŝ2 (1.32)

with

c0 =
4π~2

m

a0 + 2a2

3
, c2 =

4π~2

m

a2 − a0

3
(1.33)

We note ā = (a0 + 2a2)/3 and as = (a2 − a0)/3. These two lengths determine the
nature and the strength of the interactions. In particular the sign of as determines the
ferromagnetic or antiferromagnetic behavior of the spinor gas, as it energetically favors
either the alignment or the anti-alignment of the spins. In the following, when dealing with
Sodium we will use the most accurate known values of these scattering lengths, determined
in [57] using a combination of Feschbach spectroscopy and coupled-channel calculations.
They found ā = 52.66(40)aB and ā−as = 50.78(40)aB, where aB is the Bohr radius. This
gives ā ≈ 2.79(2) nm and as ≈ 0.10(2) nm. Spin-dependent interactions in Sodium are thus
antiferromagnetic. From this we also deduce the relative strength of the spin-dependent
and spin-independent terms in the interaction operator (1.32) for Sodium3:

as
ā
≈ 0.036 (1.35)

3We can now also estimate the relative strength of the spin-dependent interaction and of the dipole-
dipole interaction. The order of magnitude of the strength of the long-range dipole-dipole interaction
between two particles of magnetic moment µ1 and µ2 is given by

Vdd ∼
µ0

4π

µ1µ2

r3

In many atomic species, the atomic magnetic moment is relatively small, on the order of the Bohr magneton
µB . The ratio of the dipole-dipole energy per atom to the spin-dependent contact interaction is independent
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1.3.3 Many-body Hamiltonian

Spin-dependent interaction

From the two-body interaction operator V̂s we derive the many-body interaction Hamil-
tonian Ĥint. The operator V̂s is a sum of two terms, so is Ĥint. The first term in V̂s gives
a spin-independent part:

H̄ =
c0

2

∑

ij

∫
drΨ̂†i (r)Ψ̂†j(r)Ψ̂i(r)Ψ̂j(r) (1.36)

and the second one a spin-dependent part:

Ĥs =
c2

2

∑

ijkl

∫
drSik.SjlΨ̂

†
i (r)Ψ̂†j(r)Ψ̂k(r)Ψ̂l(r) (1.37)

where the atomic field operator Ψ̂†i (r) creates a particle at position r in the |F = 1,mF = i〉
Zeeman state, and where Sij are the (i, j) components of the spin-1 operator Ŝ in the stan-
dard basis |mF = i〉: Sij = ((Sx)ij , (Sy)ij , (Sz)ij)

T , with:

Sx =
1√
2




0 1 0
1 0 1
0 1 0


 , Sy =

i√
2




0 −1 0
1 0 −1
0 1 0


 , Sz =




1 0 0
0 0 0
0 0 −1


 (1.38)

Calculating explicitly the spin-dependent Hamiltonian (1.37) and gathering identical
terms from (1.36) we find the expression for the full interaction Hamiltonian:

Ĥint =
1

2

∫
dr(c0 + c2)Ψ̂†+1Ψ̂†+1Ψ̂+1Ψ̂+1 + c0Ψ̂†0Ψ̂†0Ψ̂0Ψ̂0 + (c0 + c2)Ψ̂†−1Ψ̂†−1Ψ̂−1Ψ̂−1

+2(c0 + c2)Ψ̂†+1Ψ̂†0Ψ̂+1Ψ̂0 + 2(c0 + c2)Ψ̂†−1Ψ̂†0Ψ̂−1Ψ̂0 + 2(c0 − c2)Ψ̂†+1Ψ̂†−1Ψ̂+1Ψ̂+1

+2c2(Ψ̂†+1Ψ̂†−1Ψ̂0Ψ̂0 + Ψ̂†0Ψ̂†0Ψ̂+1Ψ̂−1) (1.39)

where the terms proportional to c0 come from the spin-independent part, whereas the
terms proportional to c2 come from the spin-dependent part.

Introducing the two operators ρ̂(r) =
∑

i Ψ̂†i (r)Ψ̂i(r) for the total number density and

Ŝ(r) =
∑

i,j SijΨ̂
†
i (r)Ψ̂j(r) for the spin density, and commuting the field operators in

(1.36) and (1.37) we get:

H̄ =
c0

2

∫
dr(ρ̂2(r)− ρ̂(r)) (1.40)

and

Ĥs =
c2

2

∫
dr(Ŝ2(r)− 2ρ̂(r)) (1.41)

Terms appear that only depend on the total atom number N =
∫

drρ̂(r). This number
is supposed fixed, and these terms merely account for a shift of the energy reference. We
will drop them from now on. By construction, this Hamiltonian is rotationally symmetric.

of the density:

ε =
µ0µ

2
Bm

(4π)2~2as
(1.34)

For 23Na we calculate ε ≈ 2× 10−2, and we can neglect the dipole-dipole interactions. This is not true in
atomic species with large magnetic moment, such as Chromium [58].
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Therefore the projection of the angular momentum on the quantization axis is conserved
by the spin-dependent interaction. This quantity is referred to as the longitudinal mag-
netization of the system and reads

Mz =

∫
dr
(

Ψ̂†+1(r)Ψ̂+1(r)− Ψ̂†−1(r)Ψ̂−1(r)
)

(1.42)

The longitudinal magnetization corresponds to the difference in the populations of the
|mF = +1〉 and |mF = −1〉 states. Its conservation also appears in (1.39), where the
terms of the two first lines correspond to the energy shift due to elastic collisions, whereas
the terms of the third line describe inelastic collisions that produce a pair of atoms in
|mF = +1〉 and |mF = −1〉 from two atoms in |mF = 0〉, or the opposite process. These
inelastic collisions are the only allowed spin-changing collisions. They represent a major
feature of spinor gases, as they express the coherence between the three spin components
and are at the origin of a rich variety of phenomena.

+ +

Figure 1.3: The only spin-changing processes are the collision where two atoms in the
|mF = 0〉 state give one atom in |mF = +1〉 and one in |mF = −1〉, and the opposite
process. These collisions conserve the projection of the total spin on the quantization axis.

Another property originating from the spin-dependent interaction in antiferromagnetic
spinor condensates is the immiscibility of the |mF = 0〉 state with the |mF = +1〉 and
|mF = −1〉 states. Let’s consider a two-component condensate mixture. We label these
components A and B. Its interaction energy is given by [59]:

E =
1

2

∫
dr
(
n2
AgA + n2

BgB + 2nAnBgAB
)

(1.43)

nA and nB are the densities of the two component, the g coefficients are defined by
gi = 4π~2ai/m, (i = A,B,AB), where aA and aB are the same-species scattering lengths
and aAB is the cross-scattering length. Recalling the expression of c0 and c2 (1.33) we can
identify the different scattering lengths from (1.39):

mF = +1 mF = 0 mF = −1

mF=+1 a2 a2 (a2 + 2a0)/3
mF=0 a2 (2a2 + a0)/3 a2

mF=−1 (a2 + 2a0)/3 a2 a2

Table 1.1: Scattering lengths describing collisions in the F = 1 spinor gas.

We assume that each of the two component A and B has a population N and fills a
volume V . The interaction energy if the two components are mixed is:

E =
N2

2V
(gA + gB + 2gAB) (1.44)
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If they separate in two distinct phases, the interaction energy becomes:

E =
N2

2
(
gA
VA

+
gB
VB

) (1.45)

the two volumes VA and VB being determined by the condition of equal pressure:

gA(
N

VA
)2 = gB(

N

VB
)2 (1.46)

Comparing these two results, we find that the two component will mix if gAB <
√
gAgB,

or equivalently if aAB <
√
aAaB, and that they will phase separate if aAB >

√
aAaB. In

the case of sodium, a2 > a0, so that a+1,0 >
√
a0,0a+1,+1, and so the Zeeman components

mF = ±1 and mF = 0 are immiscible. Conversely the states mF = −1 and mF = +1 are
miscible.

1.3.4 Effect of applied magnetic fields

We introduced previously the effect of an external magnetic field on a single spin-1 parti-
cle. We now consider its effect on the many-body Hamiltonian.

Let us first compare the importance of the Zeeman energy of one atom (1.21) with
the spin interaction discussed above. The spin-dependent interaction in trapped spinor
gases is associated with typical energies on the order of h × 100Hz, which correspond to
a magnetic field of 140µG for the linear Zeeman energy, so that even for small fields this
effect largely dominates the spin-dependent interaction. If the longitudinal magnetization
was free, the ground-state would consist in accumulating all the atoms in the magnetic
state of lowest linear Zeeman energy. But the magnetization is fixed, and consequently so
is the linear Zeeman energy. The linear Zeeman effect only acts as an offset in the energy,
and so has no effect on the ground-state properties of the spinor gas: it is irrelevant and
can be ignored. This is a crucial point: without longitudinal spin conservation, all the
interesting phenomena associated with the spin-dependent interaction would be screened.

The Zeeman effect enters the Hamiltonian through its much smaller quadratic part.
Since q is positive, this effect shifts the states |mF = +1〉 and |mF = −1〉 up compared
to |mF = 0〉, and so favors the latter. Taking the |mF = ±1〉 states as a reference for the
energy shifts of the quadratic Zeeman effect, we can write the magnetic Hamiltonian:

Ĥzee = −qN̂0 (1.47)

where N̂0 is the population operator of the |mF = 0〉 state. Obviously, this quadratic shift
breaks the rotational symmetry of the spin Hamiltonian by favoring a particular axis of
the space (the quantization axis, defined by the direction of the applied field).

So far we have considered homogeneous fields. If the linear Zeeman effect is effectively
canceled by the longitudinal spin conservation in the case of an homogeneous magnetic
field, this is not true for a non-uniform field. The application of a gradient of magnetic
field, by making the spin Hamiltonian space-dependent, may create spin domains in the
condensate [59].

Finally, we point out that the magnetic field defines a local quantization axis for the
spin state of the atoms. To be able to define the spin state of our atoms and study their
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mF=0

mF=0

mF=+1

mF=-1

mF=+1mF=-1

Figure 1.4: Effect of an homogeneous external magnetic field on the structure of the F = 1
manifold. Linear and quadratic Zeeman shifts (respectively left and right) are represented
on a different energy scale, p being much larger than q for a given field.

magnetic properties, we need that the spin state of the atoms follows adiabatically in time
and in space the evolution of the magnetic field. If the field varies too rapidly the atoms
may undergo spin-flip transitions [60]. The condition for adiabaticity is discussed more
quantitatively in chapter 2.

1.4 Mean-field theory of spin-1 condensates

In the previous section we derived the Hamiltonian of the spin-1 Bose gas in the presence
of an external magnetic field. We now want to determine its ground state. The exact
treatment is in general complex. A first simplification is to use a mean-field approach. To
further simplify the problem we also introduce the so-called single-mode approximation.
We are then able to find the ground state of the system under these two approximations.
Finally, to evaluate if these results apply in our experimental conditions we quantitatively
check the validity of the single-mode approximation.

1.4.1 Single-mode approximation

In the presence of a magnetic field, the spin Hamiltonian reads

Ĥs =
c2

2

∫
d3rŜ2(r)− qN̂0 (1.48)

Due to the coupling of the orbital and internal degrees of freedom, the exact ground state
can generally not be calculated analytically. The problem is however much simplified by
the widely used single-mode approximation (SMA) [61]. This approximation assumes that
the different Zeeman states in the Bose-Einstein condensate share the same spatial mode:

φ+1(r) = φ0(r) = φ−1(r) = ψ(r) (1.49)

The single-mode wavefunction ψ is the solution of the Gross-Pitaevskii equation
(
−~2∇2

2m
+ Vext(r) + c0N |ψ(r)|2

)
ψ(r) = µψ(r) (1.50)

The spin and external degrees of freedom are now decoupled. As the three spin states
contribute the same way to the spin-independent part of the energy (1.54) it is fixed by ψ
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and all the properties of the condensate now come from the minimization of its energy in
spin space.

We can factor out the spatial part of the wavefunction in the spin Hamiltonian Ĥs and
get:

Ĥs =
Us
2N

Ŝ2 − qN̂0 (1.51)

where Us = Nc2

∫
d3r|ψ(r)|4 is the spin interaction energy per atom, and Ŝ is the total

spin operator.

In the case of sodium, we have a2 > a0 and so the parameter c2 is positive. The spin-
dependent interactions therefore favor the state of minimum total spin and is denoted as
antiferromagnetic. Other species such as 87Rb have a2 < a0: the spin interactions are
then ferromagnetic and favor the parallel alignment of the spins. The magnetic field on
the other hand favors the |mF = 0〉 state through the quadratic Zeeman effect. The inter-
play between these two effects under the constraint that the magnetization is conserved
determines the ground-state of the spinor condensate. In the following we focus on the
antiferromagnetic case only which is realized for Sodium atoms that we study experimen-
tally.

1.4.2 Mean-field approximation

We here present the mean-field approximation, independently of the SMA. We will com-
bine the two in section 1.4.3.

In the presence of a magnetic field, the total Hamiltonian is the sum of the spin-
dependent Hamiltonian Ĥs (1.48) and of the spin-independent Hamiltonian

Ĥ0 =
∑

i

∫
d3rΨ̂†i (r)

[
− ~2

2m
∇2 + Vext(r)

]
Ψ̂i(r) + H̄ (1.52)

where H̄ is defined in expression (1.40). The mean-field approximation assumes that all
the atoms share the same single-particle state φ = (φ+1, φ0, φ−1)T . Each component φi
plays the role of the wavefunction of the atoms in the spin state |mF = i〉. We can
generally write the N -body state of the condensate as

|Ψ〉N =
1√
N !

(
â†φ

)N
|0〉 (1.53)

where â†φ creates one atom in the single-particle state φ. This state is normalized:∫
φ(r)∗.φ(r)dr = 1. By inserting this N -body state in the total Hamiltonian Ĥ0 + Ĥs

we obtain the energy functional

Etot[φ+1, φ0, φ−1] =
∑

i=±1,0

[
~2

2m

∫
|∇φi|2 +

∫
Vext|φi|2 +

c0

2

∫
|φi|4

]

+
c2

2

∫ (
|φ+1|2 − |φ−1|2

)2
+ 2|φ0|2

(
|φ+1|2 + |φ−1|2

)
+ 2

(
φ2

0φ
∗
+1φ

∗
−1 + c.c

)

+
∑

i=±1,0

Ei

∫
|φi|2 (1.54)
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The first line corresponds to the spin-independent part of the energy: the kinetic energy,
the potential energy and the spin-independent interaction energy. The second line corre-
sponds to the spin-dependent interaction energy and the third line to the Zeeman energy.
From the variational minimization of the free energy Etot − µ〈N〉 − η〈Sz〉 with respect to
the φi one obtains a set of coupled Gross-Pitaevskii (GP) equations for the wavefunction
of the ground state:

(µ+ η)φ+1 = (H+ E+1 + c2(n+1 + n0 − n−1))φ+1 + c2φ
2
0φ
∗
−1 (1.55)

µφ0 = (H+ E0 + c2(n+1 + n−1))φ0 + 2c2φ
∗
0φ+1φ−1 (1.56)

(µ− η)φ−1 = (H+ E−1 + c2(n−1 + n0 − n+1))φ−1 + c2φ
2
0φ
∗
+1 (1.57)

where:

H = −~2∇2

2m
+ Vext(r) + c0ntot (1.58)

We have noted ni = |φi|2, ntot = n+1 +n0 +n−1, and Ei is the energy shift of the state
|mF = i〉 due to the quadratic Zeeman effect and is given by Ei = qi2. η is the Lagrange
factor associated to the conservation of the magnetization, exactly in the same way that
the chemical potential µ is associated to the conservation of total atom number. In these
equations the last term corresponds to the spin-exchange part of the interactions and is
responsible for the redistribution of the atoms between the three spin states when out of
equilibrium.

1.4.3 Ground-state in the Single-mode approximation

We now consider the mean-field and the single-mode approximations together. As we
already mentioned, a key characteristic of the spinor gas is the conservation of its magne-
tization. This constraint has dramatic consequences on the thermodynamic properties of
the system and has to be considered in the search for its ground-state. In particular the
mean-field solution we derive here is not an absolute ground state where the magnetiza-
tion is let free but describes the states effectively accessible to the system in experimental
conditions. After having obtained an expression for the mean-field solution we highlight
the existence of a phase transition.

In the SMA the spatial part of the spinor wavefunction is factorized out and we can
then focus on the spin part of the single particle state |φ〉. We write

|φ(r)〉 = ψ(r)⊗ |ζ〉 (1.59)

The spin state |ζ〉 can be parametrized in the standard basis by

|ζ〉 =



√
n+1e

iθ+1

√
n0e

iθ0
√
n−1e

iθ−1


 (1.60)

We have here 6 real parameters: three relative populations n±1,0, and three phases θ±1,0.
The state |ζ〉 verifies 〈N̂i〉 = niN . One population can be dropped because of the nor-
malization condition n+1 + n−1 + n0 = 1. One phase also disappears if we consider it as
an irrelevant global phase. We are left with 4 truly free parameters: 2 amplitudes and 2
phases. We choose the parametrization:

x = n+1 + n−1 mz = n+1 − n−1

Θ = θ+1 + θ−1 − 2θ0 α = θ+1 − θ−1
(1.61)
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to make the average reduced magnetization mz = 〈N+1 − N−1〉/N clearly appear. The
normalization of the state imposes the relations 0 ≤ x ≤ 1 and |mz| ≤ x. The spinor
wavefunction becomes (up to a global phase):

|ζ〉 =



√

(x+mz)/2e
i(Θ+α)/2

√
1− x√

(x−mz)/2e
i(Θ−α)/2


 (1.62)

We insert this expression in the SMA Hamiltonian (1.51) and get the spin-energy func-
tional:

Espin

NUs
=

1

2

(
m2
z + 2x(1− x) + 2 cos Θ(1− x)

√
x2 −m2

z

)
+ q̃x (1.63)

where we defined q̃ = q/Us. We now minimize this quantity with the only free parame-
ters x and Θ, as the phase α does not appear, and the magnetization mz is fixed. q̃ is
an external parameter imposed to the system. We immediately see that in the case of
antiferromagnetic interactions (Us > 0) the energy is always minimized by Θ = π, inde-
pendently of the value of mz and x. On the contrary the solution for x depends on the
magnetization and on the quadratic Zeeman effect.

• If mz = 0 the energy functional reduces to Espin = Nqx, so that x = 0 as soon as
q > 0. In this case all the atoms are in the spin state |mF = 0〉.
At zero magnetization and zero field, the Hamiltonian is rotationally invariant and
x can take any value from 0 to 1. This defines a whole family of degenerate ground
states characterized by n+1 = n−1. Due to the rotational symmetry these states are
all the states with eigenvalue mF = 0 relatively to one arbitrary direction of space.
We note θ and φ the polar angles defining this direction. The degenerate ground
states correspond to all the rotations R(θ, φ) of the |mF = 0〉⊗N spin state. They
are referred to as polar states and are represented in the standard basis by the vector

|~ζθ,φ〉 = R(θ, φ)




0
1
0


 =



− 1√

2
sin θe−iφ

cos θ
1√
2

sin θeiφ


 . (1.64)

• If mz > 0, the result of the minimization depends on the value of q. We define the
critical value qc:

qc = Us

(
1−

√
1−m2

z

)
(1.65)

The form of the mean-field ground state depends on how q compares to qc:

– if q ≤ qc, then Espin is minimum for x = 1. The ground-state reads:

|~ζ〉 =




√
(1 +mz)/2e

iφ

0√
(1−mz)/2e

−iφ


 (1.66)

The quadratic Zeeman effect is not strong enough to overcome the immiscibility
of |mF = 0〉 with |mF = ±1〉. The ground state is determined by the mini-
mization of the spin-dependent interaction energy which is obtained by mixing
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only |mF = +1〉 and |mF = −1〉. The state |mF = 0〉 is not populated and the
population of the two others |mF = +1〉 and |mF = −1〉 is determined by the
value of the magnetization m: n±1 = (1±mz)/2.

– if q > qc, then x is the solution of the equation ∂Espin/∂x = 0 which reads:

(1− 2x)(
√
x2 −m2

z − x) +
q

Us

√
x2 −m2

z = m2
z (1.67)

A fraction of the atoms now populates the m = 0 state, due to the stronger
quadratic Zeeman effect: adding some atoms in |mF = 0〉 now removes more
Zeeman energy than it adds interaction energy. Asymptotically, for very large
q the ground state is found by minimizing the quadratic Zeeman energy, so that
x→ mz or equivalently n0 → 1−mz when q → +∞.
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Figure 1.5: Magnetic phase diagram of an antiferromagnetic spin-1 Bose-Einstein conden-
sate in the single mode approximation. The relative population of the |mF = 0〉 state in
the mean-field ground state is represented as a function of the magnetization mz and the
reduced quadratic Zeeman energy q/Us. We clearly see two phases: one where n0 = 0 and
the second where n0 > 0.

Two different phases are thus possible: in the first one, at low magnetic field, the spin-
dependent interactions dominate over the quadratic Zeeman effect and prevents the accu-
mulation of atoms in the |mF = 0〉. The atoms distribute between the states
|mF = ±1〉 in order to fulfill the condition n+1 − n−1 = mz. We call this phase anti-
ferromagnetic. On the contrary in the second phase, when the quadratic Zeeman effect
gets larger than the critical value qc the gain in Zeeman energy brought by some occupa-
tion of the |mF = 0〉 state prevails over its cost in interaction energy. When q reaches the
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value qc the population of |mF = 0〉 in the ground state starts to rise. Then as q gets larger
this population increases and finally reaches an asymptotic value defined by the constraint
of fixed magnetization that imposes a minimum occupation of the state |mF = +1〉 equal
to mz. We call this phase the broken-axisymmetry phase. Thus we here identified a phase
transition described by the order parameter n0: n0 is zero in the antiferromagnetic phase,
and continuously increases with q to 1−mz in the broken-axisymmetry phase. The phase
transition is of second order.

1.4.4 Validity of the single-mode approximation

As we have seen previously, due to the spin-dependent interactions atoms in the spin
states |mF = ±1〉 and atoms in the state |mF = 0〉 are not miscible in a flat potential.
When in a trap, atoms in different spin states may then also prefer to spatially separate
to minimize their spin-dependent energy. The formation of such spin domains of course
violates the single-mode approximation. Indeed, the assumption of a common mode has
been shown not to be rigorously verified in an harmonic trap in the presence of an external
magnetic field [62], and the resort to this approximation needs to be carefully justified.
In this section we want to check that the deviation to the SMA are negligible in our
experimental conditions, so that we can compare our experimental results to the SMA
predictions derived in the previous section, in particular for the magnetic phase diagram
whose experimental measurement is presented in chapter 3.

We can give a first qualitative argument to estimate the validity of the single-mode
approximation. The three spin states will share the same spatial mode if the spatial
deformation of the different wavefunctions cost more kinetic energy than it reduces the
interaction energy. The minimum size of a spin domain can be evaluated by the spin
healing length, which corresponds to the scale on which the spin wavefunctions recover
from a perturbation. It is given by

ξs =

√
~2

2mc2n
(1.68)

where n is the atomic density. If the size of the condensate is smaller than or of the
same order as the spin healing length, the three spin components can not phase separate
and we expect the single-mode approximation to be verified. For a given trap geometry,
increasing the atom number brings the condensate in the Thomas-Fermi regime where its
size is given by RTF =

√
2µ/mω2, with the chemical potential µ ' c0n. The condition

RTF . ξ then becomes
µ

~ω
.

√
c0

c2
(1.69)

This condition defines an upper bound for the chemical potential and so for the atom
number, for the SMA to be valid. Besides, in an anisotropic trap the relation (1.69) may
hold in some directions and fail in the others. For a typical density of n = 4× 1014 cm−3,
the spin healing length in a sodium condensate is on the order of 1µm, comparable to the
size of our experimental atomic sample.

To justify more precisely the validity of the single-mode approximation in our experi-
ment, we calculate numerically the spatial mode of the three spin states in a Bose-Einstein
condensate of Sodium under the constraint of conserved total atom number and of con-
served magnetization, and in the presence of an external magnetic field. If we do not make
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the single-mode approximation, the spinor condensate at zero temperature is represented
in a mean-field description by a vector (φ+1(r), φ0(r), φ−1( r))T , whose components are
the wavefunctions of the three spin states and obey the set of coupled Gross-Pitaevskii
equations (1.55) to (1.57). For simplicity we consider here an isotropic trapping potential:
Vext(r) = 1

2mω
2r2, so that the problem is rotationally symmetric in real space and the

wavefunctions of the ground state are functions of the only radial variable r. We note ψ
the SMA wavefunction, solution of equation (1.50).

The wavefunctions in the ground state minimize the energy functional (1.54). From
this expression we can already examine the validity of the SMA in two situations: when
the magnetization is zero, and when the gas is polarized.

• In the first case, one has η = 0. The symmetric role of φ+1 and φ−1 in the GP
equations then imposes φ+1 = φ−1. We can show that under this condition the
spin-dependent part of Etot reduces to the Zeeman energy. If a magnetic field is
applied, one has q > 0 and the minimization of Etot imposes φ+1 = φ−1 = 0. The
wavefunction φ0 is then found from the minimization of the spin-independent terms,
which corresponds to the definition (1.50) of the SMA wavefunction. In the case
q = 0 the Zeeman energy vanishes and the three wavefunctions verify (1.50). At
zero magnetization the SMA is thus exact.

• In the case of a polarized cloud, one finds that the wavefunction φ+1 verifies an
equation similar to (1.50), but with an interaction parameter c0 + c2 = 4π~2a2/m
instead of c0 = 4π~2ā/m. The deviation to the SMA is due to the term c2 which is
very small compared to c0, so that the deviation to the wavefunction ψ is also small.
(Strictly speaking the notion of a common mode has little meaning in this case, since
two of the three spin components are absent. We here consider the deviation of this
mode to ψ.). In all the other situations, the validity of the SMA has to be tested
numerically.

Similarly to the scalar case, a set of time-dependent GP equations can be derived that
describe the evolution in time of the wavefunctions of the condensate. They are given in
Appendix A. To calculate numerically the ground-state wavefunctions we propagate these
coupled GP equations in imaginary time using a Backward Euler Finite Difference scheme
[63]. One of the major difference in the numerical resolution compared to the scalar GP
equation is the necessity to ensure the conservation of the magnetization throughout the
propagation in imaginary time. This can be done by introducing a Lagrange multiplier,
which has to be continuously re-adjusted to maintain a steady magnetization. We rather
follow the method developped in [64], where the wavefunctions are properly projected
after each propagation step on the subspace of adequate magnetization. The numerical
methods are described in Appendix A.

We use this algorithm to calculate the solution of the coupled GP equations for a con-
densate in a spherical trap of frequency ω = 2π × 600 Hz (which is close to the geometry
of the trap we use in our experiments). To investigate the validity of the single mode
approximation in our experimental conditions we compute the wavefunction of the three
spin components for an atom number N = 5000, for positive magnetizations and varying
magnetic fields. The figure (1.6) shows an example of numerical solution of the GP equa-
tion (calculated for a magnetic field of 200 mG and a magnetization of 0.3). The three
spatial modes are similar, and are also close to the SMA solution ψ (that we did not plot
for clarity). To quantify the deviation of the three wavefunctions to the SMA solution ψ
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Figure 1.6: a): Original (top figure) and normalized (bottom figure) density profiles of the
three spin components in a spherical trap of frequency ω = 2π × 600 Hz. The red curve
corresponds to the mF = +1 spin state, the black one to mF = 0 and the blue one to
mF = −1. The radius r is given in units of the oscillator length aho. The parameters are
N = 103, q/Us = 0.2 and mz = 0.3. b): magnetization and magnetic field dependence of
the overlap integral 〈ΨSMA|Ψ−1〉, for N = 103 and ω = 2π × 600 Hz.

we calculate the overlap integrals 〈ψ|φ̃i〉 =
∫

drψ∗(r)φ̃i(r), where φ̃i = φi/
√
Ni are the

normalized wavefunctions. The figure (1.6) shows the results for the state |mF = −1〉 as
a function of the magnetic field B and the magnetization mz. One sees that the overlap
integral goes down with B, but stays above 0.99 for field lower than 1 G. For the states
|mF = +1〉 and |mF = 0〉, the overlap integral is equal to unity within 1.10−3. We check
that the SMA is exactly verified for mz = 0.

The effect of the deviation of the actual wavefunctions to the SMA prediction is eval-
uated by the change it causes in the total energy of the system. We note ESMA =
Etot(ψ,ψ, ψ) the total energy of the system in the SMA, which we calculate using the re-
sults we derived previously for the ground-state in this approximation. We then consider
the difference ∆Etot = Etot − ESMA, normalized to ESMA. We find that this relative
difference stays very small in the whole diagram, on the order of 10−4, which actually
corresponds to the energy resolution of our algorithm. Thus, up to the precision of our
calculation we do not measure any difference with the SMA solution from the energetic
point of view. We additionally check that the variation of the spin-independent part of
the energy (corresponding to the terms of the first line of (1.54) ) is negligible compared to
the spin-dependent energy (the two other lines). This condition is required to state that
the ground-state is determined by the minimization of the spin-dependent energy only, as
done in the previous section. From the results of our numerical simulation we find that
the spin-independent energy varies over the whole phase diagram by less than 5×10−4~ω,
while the spin energy is everywhere much larger but in a very narrow region arrow the
point B = 0,mz = 0 where it vanishes. The two parts of the energy are shown in figure
(1.7).

We now look at the phase and population of the three spin components. First we check
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Figure 1.7: a): Variation of the spin-independent energy (kinetic+potential+interaction)
∆Ē = Ē − Ē0, where Ē0 is the energy at mz = 0 and q = 0. b): Spin-dependent energy
(Zeeman+spin interaction) Es. The spin energy Es is everywhere much larger than the
variation of Ē, which allows to decouple the spin and spatial degrees of freedom and to
determine the ground state from the minimization of the spin energy. Note the different
colorscales. The blue line each time represents the SMA prediction of the critical q. The
parameters are ω = 2π × 600 Hz and N = 5000 atoms.

that the three wavefunctions have uniform phases and that the relation Θ = π holds for
all fields and magnetizations. Considering the energy functional (1.54) it appears that
space-dependent phases would only add energy (kinetic and spin energy due to the spin
exchange term). The minimization of the spin energy then fixes Θ = π as in the SMA.
But our main interest in calculating the GP solution was the difference in n0 between the
SMA prediction and this solution, as the measurement of the magnetic phase diagram is
a direct way of experimentally checking the mean-field theory of spinor gases (see chapter
3). This difference in the phase diagram is shown in figure (1.8), as well as the population
n0 obtained from the GP equations. The deviation to the SMA prediction essentially
lies around the phase transition, but remains on the percent level with our choice of pa-
rameters. Close to the transition we expect that the derivative ∂Etot/∂n0 is very small.
Because of this, the precision of the algorithm in n0 is decreased at these points and here
again we conclude that, up to our numerical precision, we can not find a difference in the
value of the critical magnetic field.

Finally, we also use our numerical simulation to consider the effect of the atom number
N on the validity of the SMA in our trap. If we increase N and keep the frequency ω
constant the chemical potential increases as well, and according to the condition (1.69)
we expect the precision of the SMA to decay with N . We consider a given point in the
phase diagram where we can expect the three spin states to be populated, and solve the
GP equations for an increasing atom number while keeping the trap frequency constant.
We choose B = 0.3 G (q = 25 Hz) and mz = 0.5. The results are presented in figure (1.9)
for N = 103, 104 and 105. We can calculate the chemical potential µ from the solution of
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Figure 1.8: a): Relative population n0 obtained from the numerical resolution of the Gross-
Pitaevskii equations, as a function of the magnetic field B and the magnetization mz. The
blue solid line corresponds to the SMA prediction of the critical field. b): Difference of the
relative population n0 calculated from the Gross-Pitaevskii equations to the one calculated
in the SMA. The blue line is the same as in a). The deviation is localized close to the
phase transition. The parameters are ω = 2π × 600 Hz and N = 5000 atoms.

the GP equation (1.56):

N0µ =

∫
φ∗0Hφ0 + c2(n+1 + n−1)n0 + 2c2(φ∗0)2φ+1φ−1 (1.70)

where H is defined in (1.58). For Sodium we have
√
c0/c2 ≈ 5.28. As it appears in figure

(1.9), the normalized radial wave functions differ more and more as N increases, and be-
come significantly different already for N = 104. Yet, they mainly differ in the region of
small r, so that once multiplied by an elementary volume and integrated, the difference
becomes very small, as shown in table (1.2). For this reason the substantial difference of
the radial wave functions does not make a substantial difference for energetics.

From all this we conclude that the SMA describes well our experimental system.

N 1.103 1.104 1.105

Us/~ω 0.037 0.113 0.297

µ/~ω 2.24 3.98 6.86

1− 〈ψ|φ−1〉 8× 10−4 3.6× 10−3 7.8× 10−3

∆Etot/ESMA ' 1× 10−4 3× 10−4 9× 10−4

Table 1.2: Spin energy Us, chemical potential µ, overlap integral 〈ψ|φ−1〉 and difference
∆Etot of the total energy to the SMA energy for N = 103, 104 and 105.
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Figure 1.9: Original (upper line) and renormalized (lower line) density profiles of the three
spin components in a spherical harmonic trap of frequency ω = 2π × 600 Hz, for atom
number N = 103, 104 and 105 (from left to right). The color code is the same as in figure
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axis of the third column. The density are expressed in unit of a−3
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in unit of aho.

1.4.5 Excitations in a spinor condensate

We now want to derive the collective excitations in a spinor condensate. We follow the
same procedure as for the scalar Bose gas explained in section 1.2.3. For simplicity reasons,
we consider a box potential with periodic boundary conditions, and will then decompose
the atomic field operator in the basis of plane waves. We additionally assume that the
condensate is in the polar state directed along the z axis, meaning all the condensed atoms
are in the |mF = 0〉 state. (For a complete treatment of the Bogoliubov theory of spinor
condensates see for instance [65] and [36]). We can write the field operator as:

Ψ̂(r) =




0
φ0(r)

0


+




δΨ̂+1(r)

δΨ̂0(r)

δΨ̂−1(r)


 (1.71)

where φ0 is the wavefunction of the condensate and corresponds to the mode k = 0. δΨ̂α

represents the non-condensed atoms in the spin state |mF = α〉 and can be developed on
the plane wave basis:

δΨ̂α =
1√
V

∑

k 6=0

eik.râα,k (1.72)
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where V is the volume of the box. We insert this expression in the total Hamiltonian

Ĥ =

∫
drΨ̂†(r)(− ~2

2m
∇2)Ψ̂(r) +

c0

2
ρ̂2(r) +

c2

2
Ŝ2(r) (1.73)

As for the scalar gas, we retain only terms that are at least quadratic in â0,k=0 and â†0,k=0

(there are no condensed atoms in the |mF = ±1〉 states). We then make the Bogoliubov
approximation and take φ0(r) =

√
N0c/V , where N0c denotes the number of condensed

atoms. Finally, we do the replacement N0c = N −∑α,k 6=0 â
†
α,kâα,k. After some algebra

we find:

Ĥ =
c0N

2

2V
+
∑

k 6=0

(εk +
c0N

V
)â†0,kâ0,k +

c0N

V

∑

k 6=0

(â†0,kâ
†
0,−k + â0,kâ0,−k)

+
∑

k 6=0
α=±1

(εk +
c2N

V
)â†α,kâα,k +

c2N

V

∑

k 6=0

(â†+1,kâ
†
−1,−k + â+1,kâ−1,−k)

(1.74)

where εk = ~2k2/2m. The excitations in the state |mF = 0〉 are decoupled from the
excitations of the two other states, and the restriction of the Hamiltonian to this state
has a structure similar to the Hamiltonian we derived in the case of the scalar condensate.
We can then perform an equivalent Bogoliubov transformation. To diagonalize the part of
the Hamiltonian involving the |mF = ±1〉 states the Bogoliubov transformation is slightly
more complicated as it requires to define two additional operators:

â0,k = hkd̂k − gkd̂†−k (1.75)

â+1,k = ukŝ+,k − vkŝ†−,−k (1.76)

â−1,k = ukŝ−,k − vkŝ†+,−k (1.77)

hk, gk, uk and vk are amplitudes that can be chosen real. The operators d̂k, ŝ+,k and ŝ−,k
obey bosonic commutation relations similar to (1.16), which implies h2

k − g2
k = 1 and

u2
k − v2

k = 1. We insert these expressions in the Hamiltonian and choose the amplitudes
so that the non-diagonal terms vanish. We end up with:

Ĥ = E0 +
∑

k 6=0

εd,kd̂
†
kd̂k +

∑

±,k 6=0

εs,kŝ
†
±,kŝ±,k (1.78)

where E0 the energy of the ground state and with the spectrum of excitations:

εd,k =
√
εk(εk + 2c0n) (1.79)

εs,k =
√
εk(εk + 2c2n) (1.80)

where n = N/V . There are three Bogoliubov modes. The mode associated with the
mF = 0 state corresponds to density excitations of the condensate. It has the same
properties than the Bogoliubov mode of the scalar gas: short wavelength excitations are
free particle excitations, whereas long wavelength excitations are phonons, associated with
the sound speed cd =

√
c0n/m. The two other modes, associated with the particles in the

states mF = ±1 are spin-wave modes. They have a dispersion law similar to density waves,
but a lower energy, as c2 � c0. The associated speed cs =

√
c2n/m is then also lower. For

a typical density n ∼ 1014 cm−3 one finds in Sodium cd ∼ 0.5 cm.s−1 and cs ∼ 0.1 cm.s−1.
As we did for the scalar gas in the first section we can estimate the energy of the first
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spin-wave mode in a spherical trap of frequency ω by taking for the size of the box twice
the Thomas-Fermi radius. We obtain :

εs,1 ∼
~cs
RTF

∼
√
c2

c0
~ω (1.81)

These three Bogoliubov modes are gapless modes. The existence of a gapless mode
expresses the spontaneous breaking of a continuous symmetry of the Hamiltonian of the
system. Here the density excitations are associated to the breaking of the U(1) gauge
symmetry, similarly to the scalar condensate. The two spin-wave modes are associated
to the spontaneous breaking of two symmetry generators of the spin Hamiltonian. In
the absence of external magnetic field, the spin Hamiltonian obeys the SO(3) symmetry
corresponding to the invariance under spin rotations. The SO(3) group admits three gen-
erators: the three spin operators Ŝx, Ŝy, Ŝz, that generate the rotations around the three
axis x, y, z. We considered here a condensate in the nematic state oriented along the z
axis (all the atoms in the |mF = 0〉 spin state). This state is symmetric by rotation about
the z axis but breaks the symmetry by rotation about the x and y axis, thus leading to
the existence of two gapless modes.

k

ε
k

q > 0

k

ε
k

q = 0

Figure 1.10: Spectrum of Bogoliubov excitations in a spinor Bose gas, calculated for a
zero magnetic field (left) and for a strictly positive magnetic field (right). The blue line
represents the density excitations, the red line represents the two spin-wave modes. In the
presence of a magnetic field, these modes develop a gap.

In the presence of a magnetic field, the quadratic Zeeman effect simply adds a term
+q
∑

α=±,k â
†
α,kâα,k. It is easy to see that the density mode is not affected, and that the

spin wave modes now have an energy

εs,k =
√

(εk + q)(εk + q + 2c2n) (1.82)

At zero momentum the spin wave modes thus develop a gap
√
q(q + 2c2n). In this case

the magnetic field explicitly breaks the SO(3) symmetry of the Hamiltonian. There is no
spontaneous symmetry breaking, so no gapless mode (apart from the density excitations
associated to the broken U(1) symmetry.)
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1.5 Conclusion

In this chapter we presented the first ingredients of the theory of spinor condensates. We
established the expression of the spin-dependent interaction and found that it conserves the
magnetization of the system. This conservation is a key feature of spinor condensates, and
has important consequences on the thermodynamic properties of these condensates. We
derived the many-body Hamiltonian of this system in the presence of an external magnetic
field. We then introduced the single-mode approximation that decouples the internal and
spatial degrees of freedom and thus greatly simplifies the theory. We developed a mean-
field approach to determine the ground state of the antiferromagnetic spin-1 Bose gas
under the constraint of conserved magnetization. We numerically checked that the SMA
was valid in our experimental conditions, which allows us to compare our experimental
results to the SMA predictions. This will be the aim of chapter 3. In the rest of this
work we always consider that the SMA applies in the condensate. Finally we also studied
the spectrum of the collective modes of a spinor condensate. We found that, in addition
to the density mode present in scalar condensates, two spin-wave modes arise due to the
existence of the spin-degree of freedom. We will use these results in chapter 4 and chapter
5 where we consider the effect of the finite temperature of our gases.





Chapter 2

Production, manipulation and
detection of a spin-1 Bose-Einstein
condensate of Sodium

In chapter 1 we derived the mean-field ground state of a spin-1 Bose gas under the con-
straint of conserved magnetization, and we now want to experimentally check these pre-
dictions. But before presenting our results on the measurement of the ground state we
discuss in this chapter how we produce spinor Bose-Einstein condensates, how we manip-
ulate them and finally how we detect them. In the first part we describe the experimental
set-up we use to trap and cool the atomic gas. The first step of the experiment takes place
in a magneto-optical trap. The atomic cloud is then transferred in a conservative optical
trap and further cooled to the degenerate regime by evaporative cooling. In the first part
of this chapter we present this experimental sequence. We then detail the techniques to
manipulate the internal degree of freedom of the gas. In particular we explain how we
control its magnetization, which is then a conserved quantity and plays a crucial role in
its equilibrium properties. We finally explain how we probe the condensate and how we
analyse the information we can extract from it.

2.1 Experimental methods

In the long term, the objective of our experiment is to work with spinor condensates of
very small atom number (on the order of one hundred atoms) in order to create and study
strongly correlated states [42]. These states are extremely sensitive to decoherence and the
control of the experimental environment, and in particular of the external magnetic field,
is crucial. For this reason it was planned from the beginning that at some point the whole
experimental set-up should be embedded in a magnetic shield (not installed yet). The
set-up we use is consequently very compact: we do not use a Zeeman slower for instance
(which besides would have been hardly compatible with our magnetic fields requirements).
All the experiment takes place in a single vacuum chamber. Our experimental set-up was
thoroughly described in the thesis of Emmanuel Mimoun [42] and David Jacob [66]. Here
we recall its main characteristics and send the reader to these two references for a detailed
description. In all the following we define three directions x, y, z in the frame of the
laboratory as indicated further in the figure (2.2).
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condensate of Sodium

2.1.1 The experimental chamber and the atomic source

We use a custom-made UHV chamber made of titanium. Titanium has a very low mag-
netic susceptibility, so that no magnetization develops in the core of the chamber when
external magnetic fields are applied. The optical access to the center of the chamber is
possible through several windows with an anti-reflection coating at 589 nm and 1064 nm.
Two opposite flanges entering the chamber at its top and bottom allow an high numerical
aperture access to the center of the chamber. All the pieces (windows, seals, screws) are
made of amagnetic materials.
The quality of the vacuum inside the chamber is of major importance, as collisions with
particles from the background pressure can heavily degrade the lifetime of the condensate.
Two pumps are connected to the chamber: a “getter” pump close to the experiment, and
an ionic pump which is placed at the end of a 40 cm pipe, for it contains a permanent
magnet. The residual pressure in the chamber is on the order of 10−11 mbar.

The constraint of a single-chamber experiment imposes that the source of Sodium
atoms is placed inside the chamber. We resort to dispensers, which are metallic enveloppe
containing oxyde of Sodium (in our experiment). At room temperature they are chemically
inert, but high temperatures activate an oxydo-reduction reaction that releases Sodium
atoms. The increase of the temperature is done by sending an electric current of a few
amperes (typically 3.5 A in our case) through the metallic enveloppe. Activating the
dispensers causes a large increase in the Sodium pressure inside the chamber, on a time
scale of a few seconds. Then, as they are disabled the pressure decays, corresponding to
the binding of the Sodium atoms to the walls of the chamber and mostly to its windows.
This decay happens on the minute timescale. Because the background pressure remains
too high during this time and would hinder the cooling of the atoms we do not use the
dispensers before every experimental run. Instead we control the pressure of sodium in
the chamber using light-induced atomic desorption. Using power LEDs we shine UV light
through several windows inside the chamber. Similarly to the photo-electric effect, atoms
are released from the surface they are stuck to by absorbing a UV photon. This technique
allows one to increase the pressure of Sodium by a factor 40 with respect to the background
pressure. After the extinction of the desorbing light a low background pressure is restored
in less than 100 ms [67].

2.1.2 Magneto-Optical Trap

A Magneto-Optical Trap (MOT) is an apparatus that traps atoms from a background gas
at room temperature and cool them down to temperatures on the order of a few tens of
microKelvin [68]. Its working principle is based on the viscous friction and on the spring
force produced on the atoms by three pairs of contra-propagating laser beams, red-detuned
and non-saturating compared to a closed atomic transition on the one hand. The fric-
tion force relies on the combination of Doppler effect and of the average effect of many
photon absorption-emission processes. The spring force is created by the association of
the radiation pressure and of a gradient of magnetic field. The stochastic nature of these
processes sets a minimum temperature that can be achieved in a MOT, much larger than
the critical temperature defining the threshold for Bose-Einstein condensation.

The atomic transition we consider in our experiment is the D2 line of 23Na, which has
a wavelength of 589.158 nm and a natural linewidth Γ = 2π × 9.795 MHz. The hyperfine
structure of this line is represented in figure (2.1). We denote by |F 〉 the states belonging
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Figure 2.1: Hyperfine structure of the D2 transition in Sodium. The cooling beam is
detuned to the red of the transition |F = 2〉 → |F ′ = 3〉 by 20 MHz. The repumper beam
is resonant with the transition |F = 1〉 → |F ′ = 2〉.

to the S1/2 manifold and by |F ′〉 the ones belonging to the P3/2 manifold. We use as
cooling transition the transition |F = 2〉 → |F ′ = 3〉. The MOT laser beams are detuned
to the red of this transition by 20 MHz. To bring in the cooling cycle atoms initially in
the state |F = 1〉 and those that decayed to this state after a non-resonant transition
|F = 2〉 → |F ′ = 2〉 we need a repumper beam, which is resonant with the transition
|F = 1〉 → |F ′ = 2〉.

Experimentally the six MOT beams are collimated with a radius of 11 mm and a power
of 1.2 mW, corresponding to an intensity of 0.1 Isat per beam. The repumper beams are
superimposed with the MOT ones and have a power of 300µW. The magnetic field gra-
dient is created by a pair of water-cooled coils in anti-Helmoltz configuration placed on
both side of the chamber on the y axis. When a current of 120 A passes through, the
gradient of magnetic field on the strong y axis is equal to 15 G.cm−1. With an optimized
alignment of the six beams and an illumination of the chamber with UV light as homo-
geneous as practically possible1, we are able to load around 2.107 atoms in the MOT in 6 s.

1We observed that when the LEDs were placed on the upper windows of the chamber, the loading rate
of the MOT was progressively and slowly decreasing. We suppose that in this configuration, the UV light
mainly desorb atoms from the top part of the chamber (the divergence of the LEDs is very large). As the
atoms then redistribute in average isotropically on the walls and windows of the chamber, after some time
they accumulate in its bottom part. The partial pressure of Sodium when the UV LEDs are switched on
is then decreased, which results in a lower loading rate of the MOT. We solved this issue by adding LEDs
in front of all the accessible viewports.
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2.1.3 Resonant laser

The source of resonant light we use was described in detail in the thesis of E.Mimoun [42].
We briefly give here its main characteristics.

We developed a solid-state laser at 589 nm based on the sum of two lasers at 1064 nm
and 1319 nm in a non-linear crystal. The infrared lasers are two YAGs lasers outputing
respectively 1.2 W and 0.5 W. The crystal is a periodically-poled KTP crystal placed in
a cavity resonant with the two infrared wavelength. This configuration produces 650 mW
of yellow light in a gaussian mode, which allows one to couple it efficiently in optical
fibers. The frequency of this laser is locked to a line of iodine located 467 MHz above the
D2 line of Sodium through a saturated absorption scheme. The beam coming out of the
cavity is split in two parts. One is shifted in frequency to the cooling transition using an
acousto-optic modulator. The second forms the repumper beam and has to be shifted in
frequency by 1.7 GHz, corresponding to the hyperfine splitting between the |F = 1〉 and
|F = 2〉 states. For this we use a high frequency acousto-optic modulator, which has a
low diffraction efficiency (about 20%), but which contrary to an electro-optic modulator
spatially separates the shifted beam from the main beam. This allows us to switch on
and off the repumper very fast, on the microsecond timescale. The yellow light leeking
through one mirror of the cavity is used to form two probe beams for the imaging. All
these beams are coupled into optical fibers and brought to the chamber.

2.1.4 Loading in a Crossed Dipole Trap and two-step evaporation

It is not possible to reach the degeneracy threshold using the MOT alone. The phase space
density at the end of this step is typically on the order of 10−5−10−6, while the degenerate
regime occurs at phase space densities of order unity. The standard technique developed
in ultra-cold atoms experiments to get to the degenerate regime uses evaporative cooling
in a conservative trap. We then need to transfer the atomic cloud from the MOT into
such a trap. Since we want to confine the three Zeeman sublevels of the F = 1 manifold of
the electronic ground state, a magnetic trap is forbidden. It would only trap the low-field
seeking states (|F = 1,mF = −1〉 for Sodium). We then use the dipolar confinement
created by a far-off red-detuned laser beam. As we have seen in chapter 1, if the laser is
linearly polarized the trapping potential is independent of the spin state of the atom [69].

The Crossed Dipole Trap

We use a 1070 nm fiber laser whose output power can be controlled from 1 to 40 W. Its
polarization is linear and well-defined by a Glan-Taylor polarizer. The laser beam goes
through the chamber in an horizontal plane. It is focused at the center of the chamber by
a 125 mm lens on a waist w0 = 40µm, recollimated, folded back on itself with an angle
θ = 45◦ and focused again at the same position with the same waist, thus crossing the
first arm of the beam, as depicted in the figure (2.2.a). A waveplate is placed between the
two arms that rotates the polarization by 90◦ to avoid interference effects. This crossed
dipole trap (CDT) creates a trapping potential VCDT which is the sum of the potentials
created by its two arms:

VCDT (x, y, z) =
V 0
CDT

2

[(
w0

w(x)

)2

e
− 2(y2+z2)

w2(x) +

(
w0

w(u)

)2

e
− 2(v2+z2)

w2(u)

]
(2.1)

where we introduced the rotated coordinates (u, v) = (−x sin θ + y cos θ, x cos θ + y sin θ)
and the waists along the two propagation axis w(x) and w(u). Each arm creates a potential
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Figure 2.2: a): Path of the crossed dipole trap in the experiment chamber seen from above.
The arrows next to each arm of the laser beam before it enters the chamber indicates the
light polarization.b): Potential created by the crossed dipole trap in the horizontal plane
z = 0, calculated for a waist w0 = 40µm and a power P = 36 W. The arms and crossing
region of the trap are clearly visible.

of maximal depth V 0
CDT /2 proportionnal to the light intensity in its center I0 = 2P0/πw

2
0,

where P0 is the power laser beam. The potential VCDT is calculated in the figure (2.2.b)
for P0 = 40 W. The depth of the CDT is then approximately V0 = 2 mK. In the central
region the potential can be approximated by a 3D harmonic potential. Further away from
the center, the two arms are strongly confining in their respective transverse direction,
and very weakly confining along their respective axis.

Stabilization of the alignment

The precise crossing of the two arms of the CDT is capital: a misalignement perturbs the
trapping potential which degrades the number of atoms loaded and then jeopardizes the
evaporation. Yet the alignement of the laser does drift on a day time, mainly because of
thermal drifts in its fiber (when we switch it on two hours are usually necessary before it
stabilizes) or in the laboratory itself2, that can cause changes of several tens of µm in the
position the beams. To correct for it we installed a commercial active pointing stabiliza-
tion system3. This system consists of two position sensitive detectors and of two actuators.
The position sensitive detectors are two quadrant photodiodes placed after the chamber
on the path of the transmission of the laser through a mirror. One is positioned at the
focus of a lens and is sensitive mainly to drifts of the laser in angle, while the second is
off focus and is sensitive mainly to drifts in position. They are integrated in a servo loop:
the system compares the measured signals on the two detectors to pre-registered reference
values (corresponding to the correct alignment of the beam) and reacts on the pointing of
the beam with two motorized mirrors in the beam path before the chamber. This system
can be run in principle continuously as long as the intensity of the laser stays above some
threshold. Because in our case the intensity is varied to very low values we only use it

2We note that these drifts significantly decreased after moving the experiment to Collège de France.
3Aligna 4D by TEM Messtechnik GmbH, Hannover, Germany
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during the MOT when the intensity of the CDT is kept constant. This is sufficient to
prevent long terms (presumably thermal) drifts that are the main concern for us.

Control of the power

To precisely control the depth of the trapping potential we also need to control the power
of the laser beam through a servo loop [70]. The error signal is easily constructed by
substracting the power of a fraction of the beam (practically the power transmitted through
a mirror) measured on a photodiode to the setpoint. To react on the power of the laser
we have the possibility to use two different actuators. We can directly control the current
of the pump diodes of the laser as long as it stays above the lasing threshold. We can also
change the angle of a motorized rotating half-wave plate which, associated with a fixed
quarter-wave plate in the path of the laser beam allows us to vary the power transmitted
through the Glan-Taylor polarizer. These two actuators have very different bandwidths:
50 kHz for the current control, 10 Hz for the rotating waveplate. To benefit from the
higher bandwitdh of the current control and still be able to get low powers (below the
lasing threshold) we associate the two actuators in the following way. We consider the
general situation where we want the power of the laser to be described by some function
f of the time t. The motorized waveplate is placed outside the servo loop and receives
through a programmable microcontroller the appropriate command such that, for some
given value of the diode current, the laser power would in principle evolve in time as
wanted. The command sent to the microcontroller determines the angular position θ of
the wave-plate, where θ is defined with respect to the p-polarization axis of the polarizer.
Given the configuration of the polarizer the transmitted power P writes

P (t) = P0 cos2[θ(t)] = P0 cos2[αV (t) + β] (2.2)

= P0f(t)

where P0 is the maximal transmitted power, obtained when θ = 0. The calibration factor
α characterizes the response of the waveplate to the command voltage V , β is a constant
voltage. Knowing the parameters α and β the command function V (t) is easily deduced
from the desired power function f(t). The servo-loop then uses the current of the pump
diode to correct for the remaining fluctuations of the laser power around this theoretical
evolution (due to mechanical noise in the waveplate or to thermal fluctuations in the fiber
that change the polarization of the laser, for example). In this configuration, most of the
work is done by the waveplate in the sense that the current of the diodes only experiences
small amplitude variations around some fixed value, but the servo loop still inherits from
the high bandwidth of the current control. For a fixed value of the current of the diodes,
the rotating waveplate alone allows us to reach an extinction of the transmitted power of
0.5%.

Optimization of the loading

The temperature of the atomic cloud in the MOT (∼ 200µK) is too high compared to
the depth of the CDT to efficiently load it. To optimize the transfer of the atoms into the
CDT we modify the experimental parameters of the MOT in two steps. First we lower
the power of the repumper beams to depump the atoms in the F = 1 hyperfine state.
This suppresses light-induced collisions and multiple photon scattering, which results in
an increase of the atomic density in the trap. This step lasts 100 ms. Then, to further
cool the cloud the frequency of the MOT beams is changed to a detuning of 38 MHz. At
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the end of these two steps the temperature of the cloud is approximately 50 µK.

The confining potential created by the dipole trap can be interpreted as an AC-Stark
effect that shifts the energy levels of the atom proportionally to the intensity of the trap-
ping laser. Since the ground and excited states have different polarizabilities, the light
shifts they experience are also different. This implies that the atomic transitions, which
are defined by the difference between two hyperfine levels, are modified by the presence
of the dipole trap, in particular the cooling and repumping transitions. The dipole trap
obviously has to be superimposed to the MOT at some point. The effect we described
may then degrade the efficiency of the cooling in the MOT, especially for high powers of
the CDT. We can compensate for this effect by shifting the frequency of the cooling and
repumping beams, but only partially because of the spatial dependence of the light shifts
[47]. We can make the cooling mechanisms work for example in the central region of the
CDT, but they are then much less efficient in the outer region. This phenomenon explains
that the loading of the CDT is not optimal when we set it to its maximal power. There
is an optimal loading power which we experimentally determine to be 13.5 W by counting
the atoms loaded in the central region of the CDT 100 ms after the cooling beams are
switched off.

Evaporation in the CDT

When we switch off the MOT (i.e. the cooling and repumping beams and the magnetic
field gradient), the CDT is at its loading power of 13.5 W (corresponding to a depth of
0.7 mK approximately). At this power, the trapping potential is such that a significant
fraction of the atoms are trapped in the arms of the CDT. As the CDT is formed by
two gaussian laser beams, ramping up its power results in an increase of the trapping
frequencies. We observe that if we compress the trap this way the atoms accumulate in
the central region of the CDT, thus increasing the density and consequently the collision
rate. We therefore ramp the power of the laser from 13.5 W to its maximum power, which
corresponds to 36 W on the atoms, in a linear ramp of two seconds. After this compression,
around 105 atoms are trapped in the CDT which is well described by a spherical harmonic
trap of frequency ω = 2π × 6.2 kHz and of depth 1.9 mK. The temperature of the cloud
is approximately 100µK. This is a good starting point for the evaporative cooling.

Still, the compression has a detrimental side effect. The increase of the laser power
indeed causes some heating of the optics it passes through, even though these are specially
coated. This heating deforms the surface of the optics and is responsible for a thermal
lensing effect. We identified this effect in particular in the lens we use to focus the first
arm of the laser. The observable consequences of this thermal lensing are a modification
of the focal length of the lens and, to a lesser extent, a misalignment of the laser beam.
These two effects happen on a time scale shorter than that of the compression, meaning
that the beam and its focus moves during the compression. We account partially for this
displacement by optimizing the position of the focalizing lens in order to maximize the
number of atoms after the compression.

The evaporative cooling is driven by lowering the depth of the trapping potential such
that the most energetic atoms escape the trap. Inter-particle collisions then allow the
remaining atoms to thermalize to a lower temperature, as the average thermal energy per
particle is now smaller. This technique implies a loss of atoms but the gain in temperature
is such that the phase space density can be increased by several orders of magnitude,
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provided the collision rate stays high enough to maintain an effective rethermalization.
However, due to the optical nature of the trap the lowering of the trap depth U goes
with a lowering of the trapping frequencies: in a gaussian beam one has ω ∝

√
U (this

is not the case in a magnetic trap where the depth and the frequencies are independent).
This decompression of the trap decreases the collision rate and limits the efficiency of the
evaporative cooling. By optimizing the final phase space density we found that the best
way to lower the trap potential was a decreasing exponential ramp which brings the power
of the laser from 30 W to 100 mW in 2 s, with a time constant of 500 ms. However the
phase space density stays below unity: the evaporative cooling in the CDT does not allow
to reach the degeneracy threshold. The solution we implemented to bypass this limitation
and get to the degenerate regime is to add a second dipolar trap of smaller volume where
a stronger confinement makes the evaporative cooling more efficient.

Transfer and evaporation in a small volume dipole trap

In a dipolar potential created by a gaussian beam, the trapping frequencies evolves as the
square root of the light intensity. Thus, with a given power, by focusing a laser beam on
a smaller waist we can obtain a stronger confinement. The idea to reach the degenerate
regime is to transfer the atoms from the CDT to a second dipolar trap of smaller volume
called the dimple trap where we then continue the evaporative cooling [47]. This second
dipolar trap consists of two laser beams created by two different infrared power lasers at
1064 nm. They are transmitted through acousto-optic modulators and optical fibers to the
chamber. The first beam propagates through the chamber vertically and is focused on the
atomic cloud by an objective of large numerical aperture placed in the lower entring flange.
Its waist is 9µm. We denote this beam as vertical dimple. The second beam propagates
in the horizontal plane perpendicularly to the second beam of the CDT (see figure (2.2)
and (2.3)) and is focused at the same position by a 200 mm lens on a waist of 11µm. We
denote it as horizontal dimple. Here again the precise crossing of the two beams and the
superposition of the two waists is crucial. The vertical dimple is kept fixed at all time,
and we adjust the pointing of the horizontal dimple with a motorized mirror and a lens
mounted on a translation stage. The dimple trap is actually the spatially most stable of
all our traps, and its position is used as the reference position on which the alignment of
the CDT and of the MOT is optimized.
At its maximum level the dimple trap has a depth of 54µK. It is then negligible compared
to the confinement induced by the MOT and does not perturb neither the potential created
by CDT before its evaporation. The dimple trap is switched on from the beginning of the
experimental sequence but is of little effect until the CDT is evaporated. Then, during
this step as the depth of the CDT decreases the presence of the dimple is progressively
revealed and forms a narrow peaked potential at the center of the softer CDT potential,
as shown in figure (2.3). In the same time it is filled by the least energetic atoms that
fall in it. At the end of the evaporation of the CDT the atoms are mainly held by the
dimple potential. Once the CDT is switched off the evaporative cooling can now start in
the dimple trap.

As the dimple trap is created by two different laser beams, the powers of these two
lasers have to be lowered simultaneously. In order to keep the ratio of the trapping
frequencies constant and to preserve the shape of the trap the ratio of the powers of the
two lasers is also kept constant during the evaporation. In the experimental results we
will describe in this work two different sequences have been used to lower the trap depth.
For the experiments presented in the chapter 3 an exponential ramp has been used, while
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Tevap ωx/2π [kHz] ωx/2π [kHz] ωx/2π [kHz] ω̄/2π [kHz] V [µK]

Tevap = 0 4.86 6.38 8.02 6.30 1.9× 103

Tevap = 2 s 4.06 4.68 2.33 3.54 54

Table 2.1: Trapping frequencies and trap depth V before the evaporation of the CDT
(Tevap = 0) and after the evaporation, once the CDT is switched off and the atoms fill the
dimple trap at its maximum power (Tevap = 2 s). The trap deth is lowered by a factor 35
while the trap frequencies stay high (ω̄ is only divided by 2).
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Figure 2.3: a):Path of the two laser beams forming the dimple trap. The plane of the
figure contains the z axis and the A-A axis defined in the figure (2.2). The two entring
flanges appear, in particular the bottom one that contains the microscope objective of
large numerical aperture. b):Trapping potential during the evaporation of the CDT. The
solid line shows the potential created by the superposition of the CDT and the dimple
trap. The dashed line shows the potential created by the CDT only. The power of the
CDT is 1 W, while the dimple trap is at its maximum power.

in the experiments described in chapter 5 the ramp is linear. Both ramps have the same
initial and final powers, and have been optimized in terms of the final phase space density.
The exponential ramp brings the depth of the dimple from 54µK to 1.4µK in 3.5 s with
a time constant of 1.5 s. In the linear ramp the trap depth varies between the two same
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point in 1 s. Because in the exponential ramp the opening of the trap is much faster at
the beginning of the evaporation, smaller three-body losses are expected. Both sequences
produce quasi-pure Bose-Einstein condensates of about 6.103 atoms. For experiments like
the ones described in chapter 5 where we need to accumulate a lot of data in a short
time, we prefer to use this linear ramp which is faster. In the following we characterize
the evolution of the atomic cloud during the evaporative cooling. We concentrate on the
linear ramp.

2.1.5 Condensation in the dimple trap

Characterization of the trap

To study the behavior of our atomic system during the evaporative cooling we need to
characterize how the trapping potential evolves. In particular we want to determine its
frequencies and its depth as functions of the evaporation time.

Since in an optical trap formed by a gaussian beam the intensity of the laser and the
trapping frequencies are related, the knowledge of the frequencies and of the laser power
allows to determine precisely the waist of the two beams. The depth of the trap is then
easily calculated from the power. The power of the two beams forming the dimple trap
is directly measurable. To access the trap frequencies we use the following technique. We
prepare a cloud polarized in |mF = +1〉 (see next section) and apply a strong magnetic
gradient and a bias magnetic field directed along one of the main axes of the trap. This
creates a force in this direction on the cloud which is displaced in the trapping potential.
The force is then suddenly switched off and we measure the oscillation of the center of
mass of the cloud in the harmonic potential of the trap. We directly extract the frequency
along the direction of the force by a Fourier analysis of this motion. We do this experiment
for the two horizontal axis of the trap, and for different evaporation time. Knowing the
corresponding powers of the beams that we suppose gaussian and perfectly overlapped at
their waist, we can fit the value of these waists. We find a waist of 9.0 ± 0.5µm for the
vertical dimple and a waist of 11.0± 0.5µm for the horizontal dimple. The measurement
are summarized in figure (2.4).

Temperature and condensed fraction

Above the degeneracy threshold the atomic density in the trap is described by a Bose
function (1.5). When the degeneracy threshold is reached the condensate forms on top
of the thermal distribution. The density of the thermal fraction is then modified by the
interaction with the condensed atoms. At zero temperature in the Thomas-Fermi approx-
imation the condensate density has the parabolic shape (1.9).

In a time-of-flight experiment the trapping potential is switched off and the atoms are
released. The thermal fraction expands mostly ballistically due to its high kinetic energy,
and the condensate expands mainly due to the release of interaction energy that converts
in kinetic energy on a timescale on the order of the trap period. In the two limits of a
purely thermal gas and of a condensate in the Thomas-Fermi regime, the atomic density
during the expansion is deduced from the density in the trap by a scaling law [71]. For
a partially condensed gas, the interactions between the thermal and condensed fractions
make it hard to compute the evolution of their respective distribution. The standard
procedure is then to take advantage of the bimodality of the total atomic density and to
describe its two components by the two limiting cases described above. We note σi,th (resp
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Figure 2.4: Characterization of the evaporative cooling with the 1 s linear ramp. The trap
depth is the depth of the horizontal dimple trap. a): Atom number during the evaporation
as a function of the trap depth. b): Condensed fraction during the evaporation, deduced
by fitting measured ToF profiles (see text). The method has a large systematicc error
(see text) that makes it unreliable for fc & 0.3.c):Frequencies of the dimple as a function
of the trap depth during evaporative cooling. Blue squares and circles correspond to
the measured frequency in the two horizontal axis of the dimple. The red lines are fits
supposing the dimple is made of two gaussian beams crossing at their waists. The trap
depth is calculated from the results of these fits. d): Temperature during the evaporation,
measured with the plateau method. We find a parameter η = U/kBT ≈ 7 (where U is the
trap depth).

σi,c) the size of the thermal (resp condensed) distribution on the axis i after a time of flight
t, and ωi the trap frequency on this axis. Using absorption imaging (see next section of
this chapter) we can access the column density of the atomic cloud, corresponding to its
density integrated along the z axis. We fit this column density in the x − y plane by a
bimodal distribution which is the sum of two terms:

ñth(x, y) =
ñth(0, 0)

g2(1)
g2

(
− x2

2σ2
x,th

− y2

2σ2
y,th

)
(2.3)

ñc(x, y) = ñc(0, 0) max

(
1− x

2σ2
x,c

− y

2σ2
y,c

)
(2.4)

where g2 is a Bose function as defined in chapter 1. This choice correctly describes our
atomic samples as long as the thermal and condensed components have significantly dif-
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Figure 2.5: Cut along the x axis of the atomic column density ñ after a time-of-flight of
2.5 ms for the solution of the Gross-Pitaevskii equation (blue) and for the Thomas-Fermi
solution (red). The parameters are N = 5000 and (ωx, ωy, ωz) = 2π × (560, 700, 385) Hz.

ferent sizes. However, when the two size become comparable it fails, as we explain now.
Because of our relatively small atom number, the condensate in the trap is in our case not
well in the Thomas-Fermi regime. The resolution of the Gross-Pitaevskii equation with
our experimental parameters shows in particular that it exhibits wings, while the Thomas-
Fermi parabola has sharp edges. These wings are small in the trap but are revealed in the
time-of-flight expansion, and may be associated to the thermal Bose distribution by the
fitting algorithm. In this case the fitting procedure fails to distinguish the two component
of the gas. Figure (2.5) compares the solution of the Gross-Pitaevskii equation and the
Thomas-Fermi solution for N = 5000 atoms and for the trap frequencies measured at the
end of the evaporation in our experimental system.

In the condition where our fit model works, the size σi,th is given by σi,th = σ0
i,th

√
1 + ω2

i t
2

[72], where σ0
i,th =

√
kBT/mω2

i , even with the Bose fonction. In the limit ωit � 1 the

thermal cloud expands isotropically with a velocity σ0
i,thωi. To extract the temperature

of the cloud we thus vary the time of flight t and fit the size of the thermal distribution

by a function σi,th(t) =
√
σ0
i,th

2
+ v2t2, with the two fit parameters σ0

i,th and v. We then

obtain the temperature by T = mv2/kB.

Practically, for a given absorption image of the atomic cloud, we specify a region
around the center of the atomic distribution (a disc that we call the mask) outside which
the analysis algorithm fits a thermal distribution of the form (2.3). The difference between
the whole image and the result of this first fit is then fitted by a Thomas-Fermi distribution
(2.4). The robustness of this method lies in the clear bimodality of the actual atomic dis-
tribution. But as we just explained, after a time-of-flight expansion this bimodality may
not appear, for the condensate density in the trap differs from the Thomas-Fermi solution.
If the mask is too small and does not include all the condensate distribution, the fitting al-
gorithm is not able to recognize its wings and may attribute them to the thermal fraction,
inducing a bias in the fitted thermal fraction and underestimating the condensed fraction.
To circumvent this issue we fit the same image several time, systematically increasing the
size of the mask at each fit round. First the mask is too small and does not contain the
whole condensate. The fitted size of the thermal fraction then changes from round to
round. Once the condensate is completely included in the mask, the algorithm fits with a
Bose function the true thermal distribution. Further increasing the size of the mask then
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does not change the result of this fit, and we observe a plateau in the value of the size of
the fitted thermal distribution as a function of the size of the mask, as illustrated by the
figure (2.6). For very large masks however the atomic signal outside the mask gets on the
order of the imaging noise and the fit algorithm fails. The fitted sizes of the distribution
above a certain mask size are then meaningless. To extract the value of the plateau we
decide to consider the fits up to to the point where the integrated optical density inside
the mask reaches 95% of the total integrated optical density. We then fit the relevant
sizes of the thermal distribution with a law of the form σ(s) = −a exp(−s3/2b3) + d, with
fit parameters a, b and d, which reproduces well the behavior of the size of the distribu-
tion σ when we increase the size of the mask s. This method allows to reliably determine
the size of the thermal distribution and then to deduce the temperature as explained above.
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Figure 2.6: On the left: Cut along the x axis of a bimodal fit of the atomic density in
an absorption image. The blue points show the measured optical density of the atomic
cloud, the red and green curves correspond respectively to the fitted Bose function and
Thomas-Fermi function. The evaporation point is 700 ms. On the right: Size (along the
x axis) of the Bose function fitted outside the mask as a function of the mask size for an
evaporation time of 600 ms. The three sets of points - red, blue and black - correspond
to three different absorption images taken at different times of flight: from bottom to top
0.6 ms, 0.8 ms and 1 ms. The solid curves fit each set of points by a function of the form
d− a exp(−x3/2b3), from which we extract the value of the plateau.

The condensed fraction is easily deduced from a bimodal fit, as the ratio of the in-
tegrated condensed distribution to the integrated total distribution. Yet, for highly con-
densed clouds the thermal and condensed fractions have comparable sizes and our algo-
rithm is not able to reliably distinguish them. This results in a systematic underestimation
of the condensed fraction. The results of the bimodal fit are trustworthy only as long as
the size of the condensed distribution is significantly smaller than the size of the thermal
one, which corresponds to condensed fraction fc . 0.3. The evolution of the temperature
and of the condensed fraction during the evaporation of the dimple trap is shown in figure
(2.4).
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Experimental check of the single-mode approximation

We have introduced the single-mode approximation in chapter 1, and numerically checked
its validity in conditions similar to ours (in term of atom number and trap frequencies).
Here we confirm experimentally the validity of the approximation. For this we prepare a
cloud at very low temperature where the three spin states are populated (see last section
of this chapter) and image them separately using a Stern-Gerlach separation (see next
section). We can this way access the spatial distribution of the three spin states. We fit
these distributions by three gaussians fi, i = +1, 0,−1. We then compare the mode of
the three spin states by calculating the overlap integrals of the recentered and normalized
gaussians

∫
f̃if̃j , where f̃i = fi/

∫
fi. We find that these three integrals are on the order

of 0.9, which supports the validity of the single-mode approximation in our system.

2.2 Diagnostic of the spinor gas

To study the magnetic properties of a spinor condensate we need to be able to probe its
spin state. Two main techniques are used in spinor experiments.

A first technique uses dispersive imaging and takes advantage of the dependence of the
dielectric tensor of the atomic sample in its local spin state. By sending a far off-resonant
linearly polarized laser beam through the atomic gas, and by measuring the rotation of its
polarization we can retrieve the local magnetization of the cloud. This technique allows
one to acquire several images from the same experimental run. It was demonstrated in
[73] where the authors relied on its principle to characterize the three components of the
local spin of the gas.

A second technique consists in performing a Stern-Gerlach experiment followed by
absorption imaging. The application of a gradient of magnetic field associated with an
homogeneous bias field realises a spin-dependent force on the atoms that allows to spa-
tially separate the three Zeeman states during a time-of-flight experiment. Absorption
imaging then gives access to the populations of the three spin states and to their spatial
distribution. This technique is destructive.

These two techniques give different informations on the spin state of the atomic sample.
The Stern-Gerlach method being easier to implement, we choose to use this technique,
before additionally implementing the dispersive imaging in the future.

2.2.1 Application of magnetic fields

The Stern-Gerlach experiment requires the application of external magnetic fields. We
here briefly describe our coil system which we use to create these fields. The calibration
of the field created by these coils is presented in section 2.3.1.

We are able to apply an homogeneous static magnetic field at the center of the chamber
using three pairs of coils in Helmoltz configuration placed around the chamber along the
three axis x, y, z and that create the three components of a controllable field (Bx, By, Bz).

We are also able to create a quadrupolar magnetic field using the pair of coils already
used for the MOT. The strong axis of this quadrupolar field is along the y direction.
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Figure 2.7: Geometry of the coil system. Along each of the x, y, z axes, a pair of rectangular
coils in Helmoltz configuration creates at the atoms position an homogeneous static field
in the corresponding direction. An additional single smaller coil on the z axis allows us
to control more quickly the z component of the magnetic field. Two circular coils placed
along the yaxis in anti-Helmoltz configuration creates the quadrupolar field needed for the
MOT.

Additionally, a single coil is placed on top of the chamber on the z axis.This coil creates
a magnetic field which is not strictly homogeneous at the center of the chamber, but can
be considered as homogeneous on the spatial scale of our clouds after the evaporative
cooling, when the clouds are small (some tens of µm). The advantage of this single coil
is that, due to its lower inductance compared to a pair of coils, the current establishes
faster, and it then allows a faster control of the magnetic field.

2.2.2 Stern Gerlach separation

We first recall the principle of a Stern-Gerlach experiment, and then describe how we
implement it in our case.

Principle of the Stern-Gerlach separation

An atom with a total spin F in the presence of a magnetic field B sees a potential

Vmag =
µB
~
gFF.B (2.5)

where gF is the Landé factor and µB is the Bohr magneton. If we look at times long
compared to the Larmor frequency the total spin F stays aligned with the magnetic field
which defines a local quantization axis, and the potential now reads

Vmag =
µB
~
gFmF ||B|| (2.6)

If the field B is not homogeneous a particle experiences (in a semi-classical picture) a
spin-dependent force

Fmag = −µB
~
mF∇||B|| (2.7)

The gradient of magnetic field created by the MOT coils can thus be used to apply such a
force on our atomic cloud and spatially separate the different spin components. Since the
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Landé factor gF is negative for the F = 1 hyperfine manifold of Sodium, the atoms in the
|mF = −1〉 spin state feel a force directed toward the region of weak magnetic field, while
the atoms in the |mF = +1〉 state feel a force of same amplitude but opposite direction.
This effect is the basis of the Stern-Gerlach experiment [74].
The magnetic field created by the two anti-Helmoltz MOT coils writes in the cartesian
frame of the laboratory:

B(x, y, z) =




bx/2
−by
bz/2


 (2.8)

As the atomic cloud stands around the zero of the quadrupolar field (or close to it), the
direction of the gradient of magnetic field, and therefore the direction of the force varies
with the position of the atoms. To obtain a force approximately linear with coordinate,
we need to add a large bias magnetic field that sends the zero of the quadrupolar field
far away from the cloud, so that the gradient appears homogeneous on the spatial scale
of the atomic cloud. We consider the situation where we add a homogeneous magnetic
field B0ey directed along the strong axis of the gradient. The modulus of the total field is
given by:

||B(x, y, z)|| = |B0|
√
b2

B2
0

(x2 + z2) + (1− 2b

B0
y)2 (2.9)

We note L the characteristic spatial extension of the atomic cloud, which at the end of the
evaporation is on the order of 10µm. If we take B0 large enough such that bL/|B0| � 1,
then to first order in this quantity we have

∇||B(x, y, z)|| = −sign(B0)2bey (2.10)

where sign(B0) = B0/|B0|, and atoms in the state |mF 〉 experience a force

Fmag = −µB
~
mF sign(B0)bey (2.11)

where we used gF = −1/2 for the F = 1 hyperfine manifold of 23Na. The amplitude
of the force is determined by the gradient of magnetic field, and not by the bias field,
which only sets the direction of the force. If the bias field is directed along one of the axes
of the gradient, then the force has the same direction. To maximize the force it is then
advantageous to apply the force along the strong axis of the quadrupolar field as we did
here, to benefit from the stronger gradient on this axis.

Slow opening of the trap

In a time-of-flight experiment the optical confinement is switched off and the atoms of the
three Zeeman states separate under the action of the magnetic force. On the spatial scale
of the separation that can be achieved, this force is homogeneous, so that the atoms in the
|mF = ±1〉 states are uniformly accelerated in opposite directions. The magnetic force
does not act on the atoms in |mF = 0〉. Additionally to its global movement, each cloud
expands ballistically due to its kinetic and interaction energy. This expansion is linear
in time in the limit where the time of flight is large compared to the inverse of all the
trap frequencies. To correctly count the three spin populations and analyse their spatial
modes, the three clouds have to be clearly spatially separated. As the distance between
the clouds grows quadratically in time, while the size of each cloud only grows linearly, the
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condition that the clouds do not overlap can in principle be met by increasing the time
of flight. However, technical issues limit the recourse to this solution. When switched
on at the beginning of the time of flight with a set point 2b = 15 G.cm−1, the gradient
of magnetic field does not reach this value instantaneously but has a characteristic rising
time of 5 ms. If we integrate the effect of the time-dependent magnetic force during this
time we find that the separation of the three clouds is on the order of their size. If we
further increase the time of flight, then the absorption signal becomes too weak. An other
solution would be to use a larger magnetic field gradient to increase the magnetic force,
but we are here limited by the electronic set-up. To avoid this difficulty we do not switch
off suddenly the trapping potential at the beginning of the time of flight, but instead we
lower it by ramping down the laser power exponentially in 5.5 ms. At this point we switch
off the dipole trap and start a “true” time of flight experiment. During this attenuation
of the laser power the gradient of magnetic field and the separation field are turned on.

The attenuation has two main effects. First it gives the magnetic force the time to build
up while the atoms are still held in the optical trap. This way, the force experienced by
the atoms once they are released is increased and they separate faster. On the other hand,
the attenuation of the power of the lasers also induces a relaxation of the trapping fre-
quencies, which results in a slower expansion of the atomic clouds during the time of flight.

The experimental sequence is the following. The time t = 0 refers to the beginning of
the attenuation. Before we start the attenuation, the homogeneous bias field that defines
the direction of the magnetic force (we call it the separation field) is ramped up. In order
to maximize the magnetic force, this field is set on the strong axis of the quadrupolar field,
which is the y axis. The rise up time of the magnetic field created by the pair of coils on
this axis is quite low, presumably because of eddy currents: the field needs around 7 ms
to settle when the command is brought from zero to 2.5 G in a step. We start to ramp the
separation field at t = −7 ms. At t = −1 ms we ramp up the gradient of magnetic field,
from 0 to its maximum value 2b = 15 G.cm−1. At t = 0 we start to lower the power of the
dimple trap, using an exponential ramp of time constant 3 ms that brings the power to
5% of its initial value in a time T = 5.5 ms. At this time the trap is switched off, releasing
the atoms. The bias magnetic field applied in the x direction since the evaporation, whose
value depends on the experiment, is brought to zero during the attenuation. As the atoms
are still held in the trap at that time, the separation axis of the Stern-Gerlach experiment
is not affected by this field, and is purely in the y direction.

The position of the dimple trap in the chamber does not coincide exactly with the
zero of the quadrupolar field. This results in a tilt of the direction of the magnetic force
in the Stern-Gerlach experiment with respect to the desired y axis. We calibrated this
bias field using a spectroscopic method described in section 2.3.1 and found that its main
component is in the z direction. To compensate for it we ramp up the current in the single
coil on the z axis (for it has a much faster response than the pair of coils on this axis) to the
adequate value. We check that the three clouds actually lie in the same horizontal plane
at the time of the imaging. The current in this coil is then set to a higher value for the
imaging, as will be explained in the following. This experimental sequence is summarized
in the figure (2.8).
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Figure 2.8: Experimental sequence during the Stern-Gerlach separation of the three spin
states. The top plot shows the qualitative evolution of the laser power of the dimple
trap. The middle one shows the gradient of magnetic field, represented by the parameter
b defined in the expression (2.8). The bottom plot shows the three component of the
applied magnetic field. The component Bx of the magnetic field is typically used to
apply an arbitrary static homogeneous field during the experiment. Its value is changed
depending on the purpose of the experiment. The component By defines the axis of
the Stern-Gerlach separation. The component Bz compensates the offset field due to the
quadrupolar field during the attenuation, and is then ramped up to define the quantization
axis during the imaging.

Effect of the attenuation

Each experiment that we perform aims at measuring one or several thermodynamical
variables of the atomic cloud: atom number, condensed fraction, temperature, etc. The
experimental conditions under which we want to probe these variables are defined by the
values of the experimental variables before the Stern-Gerlach separation of the three spin
species. To be able to reliably perform such measurements, the corresponding variables
have to stay unchanged during the attenuation.

We checked experimentally that the total atom number was the same with or without
the Stern-Gerlach separation. At low temperatures we also checked with polarized clouds
that the condensed fraction measured after the Stern-Gerlach experiment was compati-
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ble within the errorbars with the one measured without attenuation and Stern-Gerlach
experiment.

On the contrary the temperature cannot be measured by a time of flight experiment
after a Stern-Gerlach separation, as the attenuation slows down the expansion of the
atomic cloud, which is directly related to its temperature.

2.2.3 Imaging set-up

In the experiments that we describe in the next chapters, we are interested in the popu-
lations of the three spin states, and in their spatial modes (to check the single-mode
approximation). A suitable technique to probe our atomic samples is then absorption
imaging. For this purpose we implemented an imaging system using two CCD cameras:
one placed along the x axis (to image the y − z plane of the atoms), one along the z
axis (to image the x − y plane). The plane of the CCD chip of each camera is optically
conjugated to the plane of the atomic cloud by a pair of lens (x axis) or by an achromatic
doublet associated to the microscope objective of large numerical aperture that we also use
to focus the vertical dimple (z axis). The magnifications on the two axes were calibrated
against gravity and measured respectively at 1.6 and 7.6. The area of one pixel in the
object plane is respectively (4.0µm)2 and (1.7µm)2.

The resonant light required for the two imaging probes is derived from the yellow laser
described in section 2.1.3 and brought to the experimental chamber on the two imag-
ing axes through optical fibers. Before the fiber they are coupled to AOMs that allow us
to switch on and off the probe light on a microsecond timescale and to control its intensity.

Absorption imaging relies on the scattering of photons by the atoms when illuminated
by resonant light. To image our system we need to take successively two pictures: one
with the atoms and probe light, one without the atoms and with probe light. In the
presence of the atomic sample, part of the light is scattered and the first picture shows the
projected shadow of the sample on the CCD chip. The second image shows the complete
probe pattern and is needed to normalize the intensity of the first image. The pixel by
pixel division of the two pictures allows to retrieve the optical density of the cloud (see
next section)4.

The microscope objective of large numerical aperture (NA ≈ 0.33) confers to the verti-
cal imaging a spatial resolution of at least 2µm, calibrated by imaging the smallest atomic
cloud that we can produce. Besides, the camera5 on this axis can be used in frame transfer
mode. In this mode, only part of the CCD chip is exposed (in our case 1/6 of its total
area), the rest being physically hidden by a razor blade. Once the first image is acquired,
the corresponding rows on the chip are not read out but shifted to the neighbouring un-
exposed part. A new picture can then be taken and this operation can be repeated until
all the chip is used. The transfer time being much shorter than the read-out time, this
mode allows us to shorten the time between the two absorption images from 300 ms to
4 ms. The noise due to spatial variations of the probe beam is then vastly reduced. For

4A third image taken without atoms and without probe may be used to substract to the two first an
offset intensity due to stray light. In our set-up the CCD chip is protected from stray light by a tube of
10 cm approximately, and the intensity background in the absence of probe is negligible.

5Pixis1024, Princeton Instruments, USA
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these reasons we use preferentially the vertical imaging to probe cold and small clouds.

The atomic transition we use for the imaging is the same as the cooling transition:
|F = 2〉 → |F ′ = 3〉. Before imaging the atoms we then have to repump them from
|F = 1〉 to |F = 2〉. The imaging sequence is the following. We want to image the atoms
at the end of the time of flight experiment noted t = 0. At t = −30µs a pulse of repumping
light of 20µs is shined on the atoms, followed at t = 0 by a pulse of probe light of 10µs.
At this moment we take the first image by exposing the chip of the CCD camera. A time
of 4 ms is then needed to perform the frame transfer on the CCD chip. The same sequence
is repeated to take the second image without atoms. The chip is then read-out.
To obtain a higher signal, the probe is polarized σ+ (the Clebsh-Gordan coefficients are
more favorable for this polarization). As the probe propagates along the z axis, the
quantization axis has to be set to this axis before the imaging. We ramp up the magnetic
field in this direction during the time of flight, using the faster single coil. As the large
gradient of magnetic field is still on, and the separation field is not yet down to zero
when we ramp the imaging field, the Larmor frequency is large and allows a fast but still
adiabatic rotation of the magnetic field.

2.2.4 Calibration of the scattering cross-sections

We describe in this section how the atomic density is extracted from the two absorption
images. We note I1(x, y) the intensity measured on the first image (with atoms) and
I2(x, y) the intensity on the second image (without atoms). The atomic density is noted
n(x, y, z). We suppose that the probe beam propagates along the z axis.

Atom-light interaction model

We consider first the simple model of a two-level atom, with a transition of wavelength
λ0 and linewidth Γ. In the presence of quasi-resonant light of intensity I, the scattering
cross-section reads

σ(I) =
σ0

1 + 4(δ/Γ)2 + I/Isat
(2.12)

where δ is the detuning of the incident light to the atomic transition and Isat is the satura-
tion intensity of the transition. The resonant cross section σ0 is given by
σ0 = 3λ2

0/2π. The Beer-Lambert law dI/dz = −nσ(I)I then gives the optical density
as

OD(x, y) = σ0

∫
n(x, y, z)dz = − ln

(
I1(x, y)

I2(x, y)

)
+
I2(x, y)− I1(x, y)

Isat
(2.13)

which shows how the column density ñ(x, y) =
∫
n(x, y, z)dz is extracted from the two

pictures. In the low-intensity regime, where I/Isat � 1, this expression reduces to the
logarithmic term.

Experimentally, this simple model does not describe rigorously the interaction of our
atoms with the probe light. The atoms are not two-level atoms but rather have a more
complex electronic structure with several excited states. The expression (2.12) is then not
exact. The probe-atom interaction could in principle be treated exactly, but this would
require the precise knowledge of the probe polarization (on which depends Isat) and of the
atomic state after repumping, which are both hard to determine6. We follow the empirical

6We use the same configuration of repumper as in the MOT, so that the polarization at the atom
position is unknown. The repumping mechanisms may lead to a different distribution of the atoms in the
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method of [75], and model the light-atom interaction by the expression (2.12) but we
account for all the effects we mentioned by defining for each Zeeman state |mF = i〉 a
different effective saturation intensity Ieff

sat,i and a coefficient αi such that

σi(I) =
σ0/αi

1 + 4(δ/Γ)2 + I/Ieff
sat,i

(2.14)

One finds then that the optical density for the Zeeman state |mF = i〉 is given by:

ODi(x, y) = σ0

∫
ni(x, y, z)dz = −αi ln

(
I1(x, y)

I2(x, y)

)
+
I2(x, y)− I1(x, y)

Ieff
sat,i

(2.15)

To correctly image our atomic samples we need to know these six coefficients, the three
αi and the three saturation intensities Ieff

sat,i. As this model is an empirical description of
our system, these coefficients have to be determined experimentally.

Determination of the parameters

The method we use to determine the six parameters is based on the two simple remarks
that the real atom number does not depend neither on the intensity of the incident light
nor on its distribution among the three spin states. We denote by (α∗i , I

eff∗
sat,i) the true

values of the two parameters (which of course assumes that our system is well describe by
this model), and we note OD∗i (x, y) the corresponding optical density.

In a first step we repeat the same experimental sequence a large number of times in
conditions where the populations of the three states are expected to be stable. Each time
we image the three clouds of the three Zeeman states but vary the intensity of the probe
from shot to shot. Integrating the optical density (2.15) locally around each cloud we
obtain the populations Ni of the three clouds as a function of the probe intensity I2 and
of the parameters αi and Ieff

sat,i. According to our previous remark, the three curves Ni(I2)
should be flat. Let’s consider the effect of the two parameters on the behavior of these
curves in the limits of very low and very strong saturation.
If the incoming probe light is very low compared to the saturation intensity (I1, I2 � Ieff

sat),
the optical density is given by the logarithmic term only and the value we calculate for
two given parameters αi and Ieff

sat,i is related to the true optical density by

OD(x, y, αi, I
eff
sat,i) ≈

αi
α∗i
OD∗i (x, y) (2.16)

In the regime of high intensity (I1, I2 � Ieff
sat), the scattering rate saturates and the number

of photons scattered by the atoms becomes independent of the probe intensity. We can
write I1(x, y) = I2(x, y)− C(x, y), where C(x, y) is proportional the local atomic density.
In this case the optical density we calculate is

OD(x, y, αi, I
eff
sat,i) ≈

αiC(x, y)

I2(x, y)
+
C(x, y)

Ieff
sat,i

≈ C(x, y)

Ieff
sat,i

(2.17)

as the ratio C/I2 → 0 when I2 → +∞. We see that the atom number we measure in the
state |mF = i〉 is determined at low intensity by the parameter αi and at high intensity by
Ieft

sat,i. As the true atom number does not depend on the intensity, these two values should

Zeeman states of the F = 2 manifold depending on their initial Zeeman state in the F = 1 manifold.
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be matched. We adjust the parameters Ieff
sat,i to cancel the average slope of the curves

Ni(I2). If the model (2.15) describes correctly our system, the measured atom numbers
should now be a constant function of the intensity.

We now need to determine the three αi. From expression (2.16) we see that these
parameters will now determine the absolute value of the atom number. To determine the
value of the αi we use the fact that the total atom number we measure should not depend
on its distribution in the three spin states. A suitable experiment to test this are Rabi os-
cillations. (We describe in the next chapter how we realize these experiments.) In the Rabi
oscillations, the real total atom number stays constant, but the three relative populations
oscillate. Demanding that the total atom number we measure stays constant throughout
the oscillation imposes relations on the way we count the three states relatively to one
another (at a given probe intensity), and so imposes relations between the different αi.
For example making the measured total atom number a constant function of the measured
atom number in |mF = 0〉 during the Rabi oscillation fixes the ratios α0/(α+1 + α−1).
The same reasoning7 for the three species allows to determine all the ratio αi/αj . If we
fix one of the α parameters, for instance α−1, we can then derive from this procedure the
values of α0/α−1 and α+1/α−1. Note that, to preserve the independence of the measured
atom number on the intensity as we change the parameters αi we also have to readjust
the Ieff

sat,i.

At this stage the two conditions we required previously on the measured atom number
are met: it is independent of the probe intensity and of its distribution in the three spin
states. The relative values of the three populations are known, only the absolute atom
number is left to fix. This will be done by the determination of the last α−1 parameter
using an independent method.

Calibration of the total atom number

We want to determine the absolute atom number N of an atomic cloud polarized in
|mF = +1〉. The natural method consists in calibrating it against some quantity which
depends on it in a known way and that we can measure absolutely, for example the critical
temperature [66]. For condensates in the Thomas-Fermi regime one possibility is to cali-
brate N against the size of the cloud: the Thomas-Fermi radius RTF depends on N with a
power law, with an exponent 1/5 (see expression (1.11)) and the time-of-flight expansion
that only multiplies it by a scaling factor that we can calculate [71]. As we said earlier
and illustrate in figure (2.5), our condensates are not well described by the Thomas-Fermi
approximation and we can not use this law. Still the size of the condensate depends on
its atom number. To calculate this dependance we numerically solve the Gross-Pitaevskii
equation for a polarized (scalar) gas using our experimental trap frequencies, and varying
the atom number. We then calculate how the atomic distribution evolves in a time of
flight experiment, following the method developed in [71]. The behavior of the size of the
atomic distribution with N is close to the power law of the Thomas -Fermi regime. So, to

7We actually resort to two different Rabi oscillations that differ in their initial state: one starts from a
state fully polarized in |0〉 and the other from a state fully polarized in | + 1〉. The first one shows large
oscillations of the three spin states but the populations in the |+ 1〉 and | − 1〉 states oscillate in parallel,
which makes impossible the determination of the ration α+1/α−1. For this we use the second oscillation
where they oscillate in phase opposition. The second oscillation could not be used alone because there the
population in |0〉 oscillates with a small amplitude that does not allow a precise determination of the ration
α0/α±1. In principle an oscillation where the three states are initially populated could be used alone, but
experimentally this kind of oscillation is subject to more noise as explained in chapter 3.
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be consistent with the analysis of the experimental data we fit the atomic distribution cor-
responding to each value of N with a Thomas-Fermi distribution, extract a radius R(N),
an fit these sizes with a power law of the form RGP (N) = (a2 + b2N2c)1/2. We obtain
from this fit for the x direction a = 12.4± 0.3µm, b = 1.01± 0.20µm and c = 0.31± 0.02.
(The Thomas-Fermi solution corresponds to a = 0µm, b ≈ 3.6µm for these parameters
and c = 0.2. The parameter b is calculated from expression (1.11) and from the solution
of the scaling law describing the evolution of the atomic density in time of flight.)

In parallel with this numerical calculation we experimentally produce and image cold
clouds, varying their atom number by changing the MOT loading time. We fit the atomic
distributions thus obtained by a Thomas-Fermi distribution and extract from it a size
Rexp and an atom number N calculated with α−1. We then fit the correction factor α−1

that best adjust the experimental points Rexp(α−1N) to the calculated law RGP (N). We
find

α−1 = 2.09± 0.33 (2.18)

meaning that the actual atom number of our clouds (polarized in | − 1〉) is around 2
times larger than the number calculated using the two-level model. We are now able to
determine all the αi and Ieff

sat,i. The results are summarized in table (2.2).

mF +1 0 −1

α 2.80 2.37 2.09

Ieff
sat [counts] 1370 1375 1540

Table 2.2: Imaging parameters αi and Ieft
sat,i determined by the methods described above.

The effective saturation intensity is left in counts because we did not calibrate the at-
tenuation of the probe intensity between the plane of the atoms and the CCD chip of
the camera, and so we can not reliably infer the intensity on the atoms from the counts
measured on the chip. Several effects could cause a loss of photons from the probe beam,
in particular the optics and the razor blade.

2.2.5 Imaging noise

The atomic density is deduced from the mathematical operations on the two absorption
images defined by the expression (2.15). Any source of noise on these two images is
transformed in a noise in the density, and so after integration in a noise in the atom
number. We can identify several sources of noise.

Sources of noise and fringe removal

The first source of noise stems from the quantum nature of the photons of the imaging
probe and is called shot noise. The number of photons from the probe that hit each pixel
of the CCD chip has a Poissonian distribution around its mean value Nph, meaning that
this number fluctuates with a standard deviation

√
Nph. The other major source of noise

is the fluctuation of the pattern of the probe. In the plane of the atomic sample the
profile of the probe is not uniform, but instead exhibits some particular geometrical pat-
tern with fringes where high intensity regions alternate with lower intensity ones. These
fringes originate from interference effects and from diffraction of the probe on the defects
of the optics it goes through or on the dust accumulated on the windows of the chamber.
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Figure 2.9: On the left: Measured sizes of the atomic cloud obtained from a Thomas-
Fermi fit after a time of flight of 2.5 ms plotted against the measured atom number deduced
from the ideal cross section. The red and blue squares correspond to the sizes measured
experimentally in the two horizontal directions. The red and blue solid lines correspond
to the sizes obtained in the same two directions from a Thomas-fermi fit of the exact
solution of the Gross-Pitaevskii equation. On the right: The same measured sizes plotted
against the measured atom number corrected by the factor deduced from the fit procedure
explained previously. The red and blue solid lines are the same as on the left plot.

Because of various mechanical noises, this pattern fluctuates in time, and in particular it
may be globally shifted by some pixels between the two absorption images, leading to an
imperfect normalization of the intensity of the first image. These fluctuations of the probe
pattern are stochastic, as they come from high frequency mechanical noise (typically tens
of kHz) that do not stay coherent over the 4 ms separating the two images. This induces a
noise of the measured optical density when we repeat the experiment. This noise is more
pronounced in the region of the probe pattern with a larger gradient of intensity, where
fringes in the optical density appear and form reproducible structures.

To reduce this noise we use during the analysis of the two raw pictures a fringe-removal
algorithm. This algorithm builds for each first absorption image I1 (i.e. with atoms) the
best second image I2,opt (i.e. without atoms) by linearly combining a large set of second
pictures I2,k:

I2,opt =
∑

k

ckI2,k (2.19)

The coefficients ck are determined by the minimization of the least square difference∑
x∈S (I1(x)− ckI2,k(x))2, where x labels the pixels of the images and S is a subset of

pixels excluding the atom region. This minimization is equivalent to the resolution of
a large linear system, which can be performed efficiently using the LU decomposition.
The algorithm is fast and needs approximately ten seconds to determine hundreds of best
reference images out of a set of the same size. This technique allows one to account for
the vibrations of the second image compared to the first one, and thus vastly reduces the
fringe amplitude [76].
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Figure 2.10: a): Absorption image without atoms analyzed without using the fringe-
removal algorithm. b): The same image analyzed with the fringe-removal algorithm,
using a set of 200 reference pictures.

Dependence on the imaging intensity

We now look how these sources of noise impact the measured optical density. We write
the intensity of the absorption images as

Iγi (r) = Īi(r) + δIγi (r) (2.20)

where i = 1 or 2, r = (x, y) and γ labels one experimental realization. Īi(r) corresponds to
the average over the experimental realization 〈Iγi (r)〉, and δIγi (r) denotes the fluctuations
around this average and contains the shot noise and the spatial noise described above. To
make these two contributions appear we write to first order:

Iγi (r) = Īifi(r) + δIγi fi(r) + Īiδf
γ
i (r) (2.21)

where Īi represents the average intensity in picture i and δIγi the difference to this average
of the experiment γ, and fi(r) represents the average spatial mode of the probe intensity
in picture i and δfγi the difference of the spatial mode in experiment γ to this average
mode. We insert this expression in the definition of the optical density (2.15) and develop
it to first order in δIγi /Īi and δfγi (r)/fi(r). We obtain:

OD(r) ≈ −α
[
ln

(
Ī1f1(r)

Ī2f2(r)

)
+
δIγ1
Ī1
− δIγ2

Ī2
+
δfγ1 (r)

f1(r)
− δfγ2 (r)

f2(r)

]

+
Ī2f2(r) + δIγ2 f2(r) + Ī2δf

γ
2 (r)− Ī1f1(r)− δIγ1 f1(r) + Ī1δf

γ
1 (r)

Ieff
sat

(2.22)

The terms δIγi /Īi correspond to the shot noise and have a variance 1/Īi. The terms
δfγi (r)/fi(r) correspond to all the fluctuations of the spatial mode of the probe intensity,
and have a variance that depends on the mode fi. Considering that the two mean inten-
sities of the two pictures on one side, and the two average spatial modes on the other are
close, we note Ī1 ≈ Ī2 = I0 and f1(r) ≈ f2(r) = f(r). Taking the variance of the optical
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density over γ and supposing that the noise between different realizations is not correlated
we obtain after some calculations:

∆ (OD(r))2 = 2α

(
1 +

f(r)

α

I0

Ieff
sat

)2( 1

Nph
+

(δf(r))2

f(r)2

)
(2.23)

where Nph = I0σ∆t/~ω = Ncounts/ηg is the average number of photons of energy ~ω
hitting the pixel r of area σ during the exposure time ∆t. Ncount is the number of
counts on the pixel of the CCD chip, η = 0.95 and g = 1e−/count are the quantum
efficiency and the gain of the camera. The noise in atom number on the pixel r is given
by ∆N = (σ/σ0)∆OD(r) (σ0 is the resonant scattering cross-section). Two regimes can
be identified. For low intensities of the probe (I0 � Isat) the noise on the measured atom
number is dominated by the shot noise that scales as 1/

√
I0. For large intensities on the

other hand, it is dominated by the term δf(r)I0/I
eff
sat and so increases like I0. This increase

of the noise at high intensities is due to the fluctuations of the spatial mode. Consider the
intensity at one particular position of the spatial mode of the probe, and then the intensity
at this same position but after the spatial mode was shifted. The difference between the
two is proportional to the global intensity of the probe, and this noise enters directly in
the second term of the optical density. The boundary between the two regimes depends
on the value of α and of (δf)2/f2, which is a characteristic of the experimental set-up.
To determine the probe intensity I0 that minimizes the noise in our case, we take a serie
of pictures where we make sure that no atoms are present (by disabling the UV LEDs
for example) and where we vary the probe intensity. We then count the number of atoms
and look at its fluctuation when we scan I0. The results are presented in the figure (2.11)
where the standard deviation of the atom number counted in the three clouds is plotted
against the local intensity of the probe expressed in counts on the CCD chip. We observe
that the noise first decreases at very low intensities, due to the gain in shot noise. Then
the additionnal noise due to fluctuations of the probe overtakes this gain and the total
noise increases again with the incoming intensity, in an approximately linear way. An
intensity is then identified that gives the minimum noise on the atom number, in this case
I ≈ 3000 counts. This optimal intensity depends critically on the term δf/f , which is
characteristic of the probe pattern, and so should be re-evaluated each time this pattern
changes (for instance when we realign the probe beam).

We can estimate the noise we expect from the shot noise only at the intensity I = 3000
counts by setting δf = 0 in expression (2.23). The signal is integrated over a region of
40× 40 pixels, so the noise in atom number reads

∆N =
√
Npixel

√
2α

(
1 +

I0

Ieff
sat

)
1√
Nph

σ

σ0
(2.24)

with
√
Nph =

√
Ncount/ηg ≈ 56 and σ the size of one pixel in the plane of the atoms.

From the determination of the imaging parameters we found that the three α are close
to 2, and the Ieff

sat on the order of 1500 counts. With these numbers we obtain ∆N ≈ 52
atoms. On figure (2.11) we measure a noise between 60 and 80 atoms. As the sources
of noise add quadratically we deduce that the noise due to the fluctuations of the probe
pattern and the shot noise are of the same order at this intensity.

2.3 Preparation of a controlled magnetization

As explained in the first chapter, the magnetization of a spinor gas of Sodium is to a very
good approximation a conserved quantity in an Hamiltonian evolution. As it determines



2.3. Preparation of a controlled magnetization 71

0 0.5  1 1.5 2
40

60

80

100

120

140

mF = −1

counts /104

∆
N

0 0.5 1 1.5 2
60

80

100

120

140

160

180

mF = 0

counts /104
0 0.5 1 1.5 2

60

80

100

120

140

160

mF = +1

counts /104

Figure 2.11: Standard deviation of the measured atom number in the three spin states
as a function of the number of counts on the CCD chip. The UV LEDs were disabled
during the experiment so that no atom was actually present in the pictures. The number
of counts is averaged over a region of 40×40 pixels around each of the three clouds (when
they are present). This number is proportional to the local intensity. We see that the
noise first decreases at low intensities (shot noise), has a minimum around 3000 counts
and then increases again (spatial noise).

important properties of the system (in particular the mean-field ground state, as will be
evidenced in chapter 3), the investigation of its behavior at equilibrium requires to be able
to control the magnetization of the atomic cloud.

Important remark: The states |mF = +1〉 and |mF = −1〉 play exactly symmetric
roles in the thermodynamic properties of the spin-1 Bose gas. It turned out that the
naturally most populated state in our samples (meaning the most populated state if we
do not act on the internal degree of freedom) is the |mF = −1〉 state, as evidenced by
our polarization process presented in this section. Yet for simplicity reason we prefer
to consider positive magnetizations. In the following we will then mostly consider the
absolute value of the magnetization.

If we run an experimental sequence as described in the first section, the magnetization
of the cloud turns to be always close to -0.7, a value presumably determined by the
combined effects of the optical pumping and of the magnetic field at stake during the
MOT phase. Due to the symmetry of the problem in spin space, we can restrict our
experimental studies to negative magnetizations. We then need to be able to increase the
absolute magnetization of the cloud from its “natural” value 0.7 to unity, and to decrease
it to zero. We use for each case a different technique that we describe here. As both
techniques impose a precise control of the magnetic field we first describe how we achieve
it.

2.3.1 Magnetic fields control

The external magnetic field is a key parameter in the physics of spinor condensate. To
manipulate and to probe our system we need to vary it, both in amplitude and in direction.
The single particle spin Hamiltonian is parametrized by the magnetic field through the
Zeeman effect Ĥ = −µ̂.B (where µ is the magnetic moment of one particle), and the
time dependence of the field automatically makes the single particle spin eigenstates also
time-dependent, as well as their energy. Let us suppose that at t = 0 the magnetic
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field B points in the z direction. The spin eigenstates are the states | + 1〉z, |0〉z and
| − 1〉z. If at t > 0, the field B turns, the eigenstates also continuously rotate in spin
space. We want that the spin state of our atomic cloud stays at every time the same
compared to the time-dependent quantization axis defined by B. This imposes that our
system adiabatically follows the variations of the magnetic field. In our case the condition
of adiabatic following is expressed by the fact that the Larmor frequency ωL is much
larger than the typical angular frequency ωB at which the magnetic field rotates in space.
In other words, the magnetic moment precesses rapidly about the direction of the field
compared to its angular speed. This condition for adiabaticity writes

ωL = |gF |
µB
~
||B(t)|| � ωB (2.25)

In the F = 1 hyperfine manifold of Sodium one has |gF | = 1/2, so that |gF |µB/~ ≈
2π × 700 kHz.G−1.

We illustrate this condition with a simple example. We consider the situation where
the magnetic field lies in the x− z plane and varies in time according to

B(t) =




B0

0
bt


 . (2.26)

Here B0 is expressed in G and b in G.s−1. As t goes from −∞ to +∞ the direction
of the magnetic field turns from −ez to +ez, as illustrated in the figure (2.12). We define
θ the angle between B(t) and ez. The rotation speed of the field is given by the time
derivative of θ,

θ̇ =
b

B0
cos2 θ. (2.27)

It is maximum for θ = 0, which corresponds to the time t = 0. On the other side,
the Larmor frequency is minimum at the same time and is equal to ωL = µ0B0/2. The
adiabaticity condition then writes

ωL

θ̇max
=
µ0B

2
0

2b
� 1. (2.28)

Experimentally the coefficient b can reach values on the order of G.ms−1. In this case and
for fields B0 up to tens of mG the condition (2.28) is not verified. The adiabatic following
of the spins is not guaranteed and we have to take a special care of the way we vary the
magnetic fields, especially when we work with small applied felds, on the level of a few
mG. Besides, the adiabatic following obviously fails if at some point the magnetic field
vanishes. The atoms then experience spin-flip (or Majorana) transitions that project the
initial spin state onto some random final state [60]. In particular the magnetization is
not conserved during this process. For this reason we have to take care not to cross the
point of zero magnetic field during the experimental sequence. A precise calibration of the
ambient magnetic field is then necessary to ensure this is the case.

We calibrate the field created by each pair of coils and the components of the stray field
by performing radio-frequency (rf) spectroscopy on the atoms. During the experimental
sequence, on top of the evaporation of the CDT we send a known current I in one pair of
coils, thus lifting the degeneracy of the Zeeman states through the linear Zeeman effect.
At the same time we apply a pulse of oscillating magnetic field of chosen frequency ω,
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Figure 2.12: Time evolution of the magnetic field described by the expression (2.26). We
define θ the angle between B(t) and ex.

using an antenna placed close to the chamber. If the frequency ω is close to the Larmor
frequency ωL, the atoms experience Rabi oscillations. We cannot resolve the oscillations,
but if we apply a long pulse compared to their coherence time, the oscillations dephase
and we observe a mixing of the three spin states. This mixing depends on the detuning
δ = ω−ωL, and is maximum at resonance. We apply a pulse of 500 ms, much longer than
the coherence time. To broaden the resonance we also sweep the frequency ω between
ω − ∆/2 and ω + ∆/2 during the pulse, where ∆ = 2π × 10 kHz. At the end of the
sequence we measure the three spin populations. We repeat this experiment, scanning the
frequency ω, and observe the resonance in terms of the magnetization which varies from a
positive value when the detuning δ is large to zero at resonance. We can then determine
the field created at the atoms position by the current I. We repeat this procedure for
several values of the current, positive and negative. We fit the measured magnetic fields
by a law

B(I) =
√
B2
⊥ + (B0,i + αiI)2 (2.29)

with the fit parameters B⊥ that describe the offset field in the plane orthogonal to the
axis i, the component of the stray field on the i axis B0,i, and the calibration factor αi in
G/A that describes the response of the pair of coils. This method is illustrated by figure
(2.13)

axis x y z

α [G.A−1] 1.434± 0.008 0.496± 0.008 1.796± 0.015

Table 2.3: Calibration factors of the three pairs of coils deduced from the RF spectroscopy.

The field created at the position of the atoms by the single coil on the vertical axis is
calibrated with the same spectroscopic method.

2.3.2 Spin-mixing

We have seen in the previous section that dephased rf transitions between the three spin
states induces a mixing of the spin populations. To lower the magnetization from the
“natural” magnetization down to zero we use the same principle. At the beginning of
the evaporation, we apply a static bias magnetic field B = Bex to lift the degeneracy of
the Zeeman sublevels. We then apply a pulse of magnetic field oscillating at the Larmor
frequency ωL = µBB/2~ using the same antenna as mentionned earlier for the atomic
spectroscopy. The atoms then undergo Rabi oscillations between the Zeeman sublevels.
The amplitude of the bias field B is chosen small enough to neglect the quadratic Zeeman
effect compared to the Rabi frequency. As before we apply a rf pulse long compared to the
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Figure 2.13: a): Magnetization of the atomic cloud when we scan the RF frequency around
the Larmor Frequency. A current I = −90 mA is sent through the y-pair of coils. We
determine the position of the resonance by the gaussian fit (solid red line). b): Fitted
Larmor frequency (blue points) as a function of the current in the y pair of coils. The
current in all other coils is kept unchanged. Each point is determined by a resonance
similar to the one shown in a).The red line is a fit with the law (2.29) and allows one to
extract the value of the offset field in the y direction and the calibration factor αy. In this
case we find an offset B0y = 17 ± 2 mG. The calibration factors are summarized in table
2.3.

coherence time of the Rabi oscillations, so that the Rabi oscillations dephase. The duration
of the pulse is fixed to 200 ms. In this case we do not want to control the mixing of the
populations with the frequency of the oscillating magnetic field: this method would be too
sensitive to magnetic field fluctuations. A more robust and reproducible technique uses
the power of the rf pulse as control parameter. To decrease the sensitivity to magnetic
field fluctuations we add a gradient of magnetic field to inhomogeneously broaden the
transitions, and sweep the frequency of the rf pulse as we explained in the previous section,
with the same value of ∆ = 10 kHz. The inhomogeneity of the Larmor frequency induces
a faster dephasing of the oscillations. Here we benefit from the large size of the atomic
cloud at this time of the experiment to speed up the dephasing (the cloud is still held by
the CDT). We can then vary the power of the rf pulse by varying the command voltage
sent to the rf amplifier. We observe the magnetization decrease as a function of the
command voltage, as illustrated in figure (2.14). With this technique we can control the
magnetization of the atomic cloud from -0.7 to 0 with a typical precision of 5%. In the
particular case where we want to prepare a cloud of zero magnetization the precision is as
good as to 3%, as we can use a very large rf power to reach the asymptotic behavior of
the magnetization.

2.3.3 Spin distillation

The natural magnetization of the cloud once the resonant light is switched off is about
0.7. To increase it we take advantage of the effect of a gradient of magnetic field on the
trapping potential seen by atoms in different Zeeman sublevels.

As we have seen in the section on the Stern-Gerlach separation, the superposition of a
gradient of magnetic field and of an homogeneous bias field creates a spin-dependent force
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Figure 2.14: Evolution of the magnetization m of the atomic cloud as a function of the
command controling the power of the RF pulse. The Larmor frequency is 190 kHz.

on the atoms. Previously we added the bias field along the strong axis of the gradient. We
now add a bias magnetic field B0ez directed along the z axis. As we did before, we note L
the characteristic spatial extension of the atomic cloud. The calculations are similar and
we find to first order in bL/B0:

∇||B(x, y, z)|| = sign(B0)bez (2.30)

The three spin states thus see a magnetic potential

Vmag(r) = sign(B0)mF
µBb

~
gF z (2.31)

This potential adds up to two other terms: first to the confining potential created by the
optical trap which is identical for the three spin states and is gaussian along the z axis:

Vtrap(r) = U0(x, y)e−2z2/w2
z (2.32)

where wz is the waist of the laser beam in the z direction, and second the gravitational
potential Vgr(r) = mgz, where m is the mass of one atom of Sodium, and g the acceleration
of gravity. The leading term is the trapping potential which is symmetric along the z axis
about the point z = 0. The effect of the gravitation is to lower one edge of the potential
in the z direction, and to raise the other one. Now we add the magnetic potential (2.31).
By choosing the proper value of b and sign of B0 we can make this potential such that it
cancels the effect of the gravitation for one of the two spin states |mF = ±1〉, and increases
it for the other state. The |mF = 0〉 state stays unaffected. We can evaluate the gradient
of magnetic field required by

µBb

2~
= mg (2.33)

We find that we need to apply a gradient b ≈ 8 G.cm−1 to compensate the gravity. If
we choose B0 > 0 (resp. < 0) and note ∆U the shift in the trapping potential due to
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the gravity, the total potential is equal to the confining optical potential for atoms in the
low-field seeking state |mF = −1〉 (resp. |mF = +1〉), it is lowered by ∆U for atoms in
|mF = 0〉 and lowered by 2∆U for atoms in |mF = +1〉 (resp. |mF = −1〉), as shown in
figure (2.15). If we apply the gradient of magnetic field and the bias field in z during the
evaporation of the optical trap, the two spin states seeing a lowered potential leave the
trap at a faster rate than the third one, resulting in a polarization of the atomic cloud in
the state |mF = −1〉 or |mF = +1〉. We call this technique spin distillation, as we polarize
our cloud by preferentially trapping one state and discarding the others.
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Figure 2.15: On the left: Potential seen by the three spin states along the z axis in the
lower part of the evaporation of the CDT (the power of the CDT is 550 mW here), when
the bias magnetic field B0 < 0. The red, black and blue curves correspond respectively to
the state mF = +1, 0,−1. On the right: relative populations of the three spin states after
the spin distillation as a function of the bias magnetic field B0. Red squares represent the
population in |mF = +1〉, black losanges in |mF = 0〉 and blue circles in |mF = −1〉. The
distillation is here realized after the full evaporation, when the atomic cloud is small (some
tens of µm).The magnetic trapping has no effect at this length scale and the symmetric
role of the states mF = ±1 clearly appears.

The symmetry of the two states |mF = ±1〉 with respect to this technique is actually
not exact, but only approximate in the limit bL/|B0| � 1. Indeed the quadrupolar mag-
netic field created by the anti-Helmoltz coils induces in the two other directions x and y
a potential which is confining for the atoms in |mF = −1〉 but anti-confining for the ones
in |mF = +1〉 at the beginning of this section. This effect is negligible in our case when
the atomic cloud is loaded in the dimple trap, as L is then small enough, on the order of
10µm. The two states |mF = ±1〉 play there symmetric roles and we are able to polarize
the cloud in either of them by choosing the sign of B0, as shown in figure (2.15). On the
contrary, when the cloud is still in the CDT and in particular when the arms of the CDT
are still filled, the size L is then much larger and this effect is clearly observable. If at this
point we try to polarize in the |mF = +1〉 state, the distillation process and the quadrupo-
lar magnetic anti-trapping compete. The result is a global loss of atoms, and an imperfect
polarization. On the contrary if we try to polarize in the |mF = −1〉 state the two effects
add up and we can obtain almost fully polarized samples (with an absolute magnetization
|mz| = 0.99± 0.01). For simplicity reasons we perform the polarization step at the same
time of the experimental sequence as the depolarization one (and exchange one for the
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other depending on the magnetization we aim at). We do it at high temperatures, in the
CDT. The polarization mechanism is then not symmetric, and this technique only allows
us to realize magnetizations with a given sign.

The spin distillation can also be used to produce atomic cloud almost purely in the
|mF = 0〉 spin state. We may want to realize this spin state for example as the initial
state for Rabi oscillations as we detail in chapter 3. We first depolarize the cloud using
the spin mixing technique described previously. The magnetization of the cloud is then
zero within 3 %, the spin populations being distributed between the three spin states.
To have all the atoms accumulate in the |mF = 0〉 state we apply during the two-step
evaporation a large magnetic field, typically 1 G, and then hold the cloud for one second
in the dimple trap. As will be discussed in the next chapter, due to the large quadratic
Zeeman effect the mean-field ground state in spin space for N atoms in these conditions
is |mF = 0〉⊗N . But the fluctuations of the magnetization around zero and the existence
of a thermal fraction lead to the presence of a small fraction of atoms in the |mF = ±1〉
states. To discard these atoms we perform two successive distillation8 steps with the bias
magnetic field B0 in turns positive and negative. This technique allows to produce clouds
with less than 1% of atoms in the |mF = ±1〉 states.

2.4 Conclusion

In this chapter we described how we produce quasi-pure Bose-Einstein condensates of
Sodium. Starting from a MOT we load the atoms in a large volume crossed dipole trap
where we start the evaporative cooling. To conserve high trapping frequencies necessary to
maintain an efficient thermalization during the evaporation we add a second small-volume
optical dipole trap. The atoms fill this dimple trap where we pursue the evaporative
cooling. We presented the methods to measure the temperature and the condensed fraction
of the cloud during the evaporation. In the end we obtain a cloud of approximately 6000
atoms with a condensed fraction larger than 0.9. We then explained how we detect the
three spin components of the condensate, using a combination of Stern-Gerlach separation
and absorption imaging. We studied our imaging noise and showed how we can reduce
it, by choosing the optimal probe light intensity and by using a fringe-removal algorithm.
Finally we described the techniques to control the magnetization of our samples. The
spin-mixing technique based on the dephasing of Rabi oscillations allows one to decrease
the absolute magnetization down to zero. We are also able to polarize our clouds using a
spin distillation, based on the spin-dependent potential created by a gradient of magnetic
field. We now have all the tools to investigate the mean-field theory of spinors that we
exposed in the first chapter, and in particular to explore the magnetic phase diagram.
This investigation is the subject of chapter 3.

8In this case it rather corresponds to a spin “filtering” as we do not use a differential evaporation rate
but really spill away the atoms.





Chapter 3

Mean-field study of an
antiferromagnetic spinor
condensate

In chapter 1 we developed a mean-field description of the spinor Bose-Einstein condensate.
In particular we introduced the important single mode approximation (SMA) and checked
its validity in our system. This reduced the problem of the spinor condensate to a pure
spin problem, the spatial mode entering only to determine the interaction energy Us. In
this context we derived the mean-field ground state of an antiferromagnetic condensate in
the presence of an external magnetic field, and we identified a phase transition resulting
from the competition between the spin interactions and the quadratic Zeeman effect. In
this chapter we experimentally investigate these predictions. The mean-field ground state
can be represented by a single-particle spin state of the form

|ζ〉 =




√
1−n0+mz

2 ei(Θ+α)/2

√
n0√

1−n0−mz
2 ei(Θ−α)/2


 (3.1)

where ni is the average relative population in the |mF = i〉 state, mz = n+1 − n−1 is the
average magnetization and Θ and α are two phases. We give here the expectation values of
some spin operators in this state (to leading order in the atom number N). These results
will be used in this chapter.

〈Ŝx〉 =
√

2n0n+1 cos

(
Θ + α

2

)
+
√

2n0n−1 cos

(
Θ− α

2

)
(3.2)

〈Ŝy〉 = −
√

2n0n+1 sin

(
Θ + α

2

)
+
√

2n0n−1 sin

(
Θ− α

2

)
(3.3)

〈Ŝ2
x + Ŝ2

y〉 = 2n0(1− n0) + 2 cos(Θ)
√

(1− n0)2 −m2
z (3.4)

〈Ŝz〉 = mz (3.5)

〈Ŝ2
z 〉 = m2

z (3.6)

where we used n±1 =
√

(1− n0 ±mz)/2 for shortness. We note that in the mean-field

approximation, to order 1/N we have 〈Ŝ2
i 〉 ≈ 〈Ŝi〉2 (i = x, y, z). Experimentally the dif-

ferent spin populations are directly measurable using absorption imaging. The mean-field
theory predicts the existence of two magnetic phases characterized by the occupancy of the
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|mF = 0〉 state. We show in this chapter a measurement of the magnetic phase diagram
in terms of the population n0.
The mean-field approximation also implies that in the ground state the phase Θ takes a
fixed value (equal to π), while the phase α does not enter the energy functional and is then
expected to be random. Contrary to the populations, the phases are not directly accessi-
ble. However the phase Θ can be revealed by a noise analysis of the magnetization that
we present in the last section of this chapter. The locking of Θ to π is actually a signature
of the existence of a spin nematic order in the system. By confirming this locking of Θ we
thus provide direct evidence for this spin nematic ordering. This order suggests a more
geometrical understanding of the ground-state in the phase diagram, and we introduce it
in the first part of this chapter.

3.1 Nematic order in spinor condensates

The magnetic phase transition between the antiferromagnetic and the broken-axisymmetry
phases is revealed by the presence or the absence of the mF = 0 component. We under-
stood these two phases as the consequence of the predominance of the spin interactions
(which favors the coexistence of |mF = +1〉 and |mF = −1〉) in the first one and of the
predominance of the quadratic Zeeman effect (which favors |mF = 0〉) in the second one
(see chapter 1). The phase diagram actually hides a more profound order. The study
of spin correlations allows to describe the transition in terms of an orientational order
of the total spin of the system. The two competing effects indeed favor different kinds
of spin anisotropy: the spin interactions favor a nematic ordering of the spin while the
quadratic Zeeman effect favors transverse ferromagnetism. In this section we first define
the nematic order parameter for a mean-field spin state and then calculate it in the case
of an antiferromagnetic spin-1 condensate.

3.1.1 Definition of the nematic order parameter

In this section we first derive the expression of the nematic tensor for a single spin 1 and
then extend it to many-particles mean-field states.

Cartesian basis

We first introduce the convenient cartesian basis {|x〉, |y〉, |z〉} defined in the standard one
by:

|x〉 =
1√
2

(| − 1〉 − |+ 1〉) (3.7)

|y〉 =
i√
2

(| − 1〉+ |+ 1〉) (3.8)

|z〉 = |0〉 (3.9)

We consider the single-particle spin-1 operators ŝ = (ŝx, ŝy, ŝz). The cartesian basis verifies
the relation

ŝa|b〉 = iεabc|c〉 (3.10)

where a, b, c ∈ {x, y, z} and εabc is the fully antisymmetric tensor. In particular |a〉 is the
eigenvector with eigenvalue zero of the operator ŝa.
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We now consider a generic single-particle spin-1 state |ζ〉 = ζx|x〉+ ζy|y〉+ ζz|z〉 (ζ is a
unit vector with complex components). One then easily obtains for the expectation value
of the spin in this state:

〈ŝ〉 =



〈ŝx〉
〈ŝy〉
〈ŝz〉


 = −iζ∗ × ζ (3.11)

We separate the real and imaginary parts of ζ:

ζ = u + iv (3.12)

where u and v are real vectors. Since ζ is normalized, one has:

|u|2 + |v|2 = 1 (3.13)

Besides, the gauge symmetry allows one to take u and v orthogonal and such that |u| ≥ |v|.
Using the relation (3.11) one finds the mean spin vector in terms of these two vectors:

〈ŝ〉 = 2u× v (3.14)

Single-particle quadrupolar spin tensor

We wish to characterize the spin correlations in a spin-1 state. The first natural idea would
be to consider the average spin 〈ŝ〉. However, our aim is to extend this characterization to
mean-field states, and in a spinor condensate this quantity is constraint by the condition
of fixed magnetization. To study how the spins organize themselves in their remaining
degrees of freedom we have to look at higher order moments. Still considering a single
spin 1 we then introduce the spin fluctuation tensor 〈ŝiŝj〉 . As ŝ is a spin-1 object, this
dyadic tensor can be decomposed as the sum of irreducible tensors of rank 0,1 and 2:

T̂ij = T̂
(0)
ij + T̂

(1)
ij + T̂

(2)
ij (3.15)

The scalar part is T̂
(0)
ij = 2δij . The rank-1 part is the antisymmetric tensor

T̂
(1)
ij =

1

2
〈ŝiŝj − ŝj ŝi〉 = iεijk〈sk〉 (3.16)

and the rank-2 part is the symmetric tensor

T̂
(2)
ij =

1

2
〈ŝiŝj + ŝj ŝi〉 − 2δij (3.17)

The information on the anisotropy of the spin state is carried by the first term in T (2).
We finally define the spin quadrupole (or covariance) tensor

Qij =
1

2
〈ŝiŝj + ŝj ŝi〉 − 〈ŝi〉〈ŝj〉 (3.18)

In atomic physics a non-zero average spin 〈ŝ〉 is known as “orientation” while a non-zero
Q is referred to as “alignment”. The quadrupolar tensor Q is symmetric and so can be
diagonalized. After some calculations we find:

Qij = δij − (uiuj + vivj)− 〈ŝi〉〈ŝj〉 (3.19)
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This expression immediately reveals one basis which diagonalizes Q. Indeed, if we define
the vectors

u =
u

|u| , v =
v

|v| , w =
〈ŝ〉
|〈ŝ〉| (3.20)

it is clear from (3.14) that w = u × v, so that {u,v,w} form an orthonormal basis, and
that we can express Q as:

Q = 1− |u|2u⊗ u− |v|2v ⊗ v − |〈ŝ〉|2w ⊗w (3.21)

The vectors u,v,w are eigenstates1 of Q with the respective eigenvalues 1− |u|2, 1− |v|2
and 1− |〈ŝ〉|2. These eigenvalues take their values between 0 and 1. They are related by
the relations (3.13) and (3.14), so that the anisotropy of the spin is characterized by one
of them only.

Mean-field quadrupolar spin tensor

We now consider N spin 1 particles. We can define the total spin operators

Ŝi =

N∑

α=1

ŝ
(α)
i (3.22)

where i = x, y, z and where the operator ŝ
(α)
i acts as ŝi on the particle α and as identity

on the others. If the N particles form a mean-field condensate, they are all described by
the same single-particle state |ζ〉 and one obtains

〈Ŝi〉 = N〈ŝi〉 (3.23)

where 〈ŝi〉 = 〈ζ|ŝi|ζ〉. The treatment of product operators demands a bit more care, since
for instance we have

ŜiŜj =
N∑

α=1

N∑

β=1

ŝ
(α)
i ŝ

(β)
j 6=

N∑

α=1

ŝ
(α)
i ŝ

(α)
j (3.24)

However, because we consider spin states of the form |ζ〉⊗N we have

〈ŜiŜj〉 =
∑

α 6=β
〈ŝ(α)
i ŝ

(β)
j 〉+

∑

α

〈ŝ(α)
i ŝ

(α)
j 〉 (3.25)

= N(N − 1)〈ŝi〉〈ŝj〉+N〈ŝiŝj〉 (3.26)

We now define the N -particles spin quadrupolar tensor

Q
(N)
ij =

1

2
〈ŜiŜj + ŜjŜi〉 − 〈Ŝi〉〈Ŝj〉. (3.27)

Using (3.23) and (3.26) we obtain for a mean-field state:

Q
(N)
ij = N

(
1

2
〈ŝiŝj + ŝj ŝi〉 − 〈ŝi〉〈ŝj〉

)
(3.28)

The anisotropy of a mean-field spin state is then expressed by the corresponding single-
particle quadrupolar tensor. This tensor is then called the nematic tensor. It plays the
role of an order parameter that characterizes the amount of alignment of a mean-field spin
state, as we illustrate in the following.

1If u = 0 ( resp. v = 0), then w = 0. Zero is then a double eigenvalue of Q and the eigenvectors can
be chosen as any orthonormal basis of the plane orthogonal to the non-zero vector v (resp. u ).
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3.1.2 Application to mean-field states

In the following we only consider single-particle spin operators, which we denote by Ŝi,
i = x, y, z.

Nematic states (“rotations of |mF = 0〉”)

We now use the quadrupolar spin tensor to get a better understanding of the nature of
the mean-field ground states we identified in the chapter 1. We first focus on the ground
state at zero magnetization and zero field, where we found that the mean-field energy was
minimized by a family of degenerate polar states. Transforming their expression (1.64)
from the standard basis to the cartesian spin basis, the polar states are defined by the
spin-1 state

|Ω〉 =




sin θ cosφ
sin θ sinφ

cos θ


 (3.29)

This corresponds to the expression of a real unit vector Ω defined in real space by the
polar angles θ and φ (respectively the colatitude and the azimuthal angle). As these angles
describe respectively the intervals [0;π]× [0; 2π], the vector Ω describes the entire sphere
of radius unity. We note |N : Ω〉 ≡ |Ω〉⊗N . Since the cartesian basis verifies the property
Ŝa|a〉 = 0, with a = x, y, z, the state |Ω〉 is the eigenstate with eigenvalue 0 of the operator
Ω.Ŝ.

We now compute the associated quadrupolar tensor Q. From (3.29) we obtain u = Ω
and v = 0. The vector u is in this case unitary and u = u. Using the relation (3.14) we
find that these states have no net orientation: 〈Ŝ〉 = 0. The tensor Q is then only defined
by the vector u:

Q = 1− u⊗ u (3.30)

This result shows that in a polar state |N : Ω〉 the spin fluctuates isotropically in the
plane perpendicular to the vector Ω. The polar states are completely characterized by
one direction of space along which their spin projection is exactly zero. These states
spontaneously break the rotational symmetry of the spinor gas at zero magnetization and
zero magnetic field. They are called nematic states. The vector Ω is called the nematic
director.

Polarized states (“rotations of |mF = +1〉”)

We now consider a polarized (or oriented) state, which is defined by its maximal average
spin: |〈S〉| = 1. Using the two relations (3.14) and (3.13) this implies |u| = |v| = 1/

√
2.

Its quadrupolar tensor reads:

Q = 1− 1

2
u⊗ u− 1

2
v ⊗ v −w ⊗w =

1

2




1 0 0
0 1 0
0 0 0


 (3.31)

The macroscopic spin fluctuates in the plane perpendicular to its polarization. The state
exhibits some spin anisotropy associated to its polarization.

The anisotropy of a spin state has two origins: the orientation of the spin (a net
magnetization) and its alignment. The first kind of anisotropy breaks the time reversal
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symmetry while the second does not. The nematic states correspond to maximally aligned
states, while polarized states represent maximally oriented states. For a generic state,
alignment and orientation of the spin both contribute to the anisotropy of the spin state.

Generic states

The three eigenvalues of the tensor Q are related by (3.13) and (3.14), so that only one
parameter is needed to define the anisotropy of a generic mean-field spin state. We consider
the general form of the tensor Q and note |u|2 = χ. We then also have |v|2 = 1 − χ and
|〈S〉|2 = 4χ(1− χ). We introduce the parameter N defined by

N = 2χ− 1 (3.32)

The tensor Q can then be written

Q = 1− N + 1

2
u⊗ u− 1−N

2
v ⊗ v − (1−N 2)w ⊗w (3.33)

The anisotropy of a generic state is characterized by the quantity |N | which takes
values between 0 and 1. The case N = 0 describes a polarized state, whereas the case
|N | = 1 corresponds to a nematic state. We call N the nematic parameter.

In a mean-field state we have ∆S2
i � 〈S2

i 〉 and so

〈Ŝ〉2 = 〈Ŝz〉2 + 〈Ŝ⊥〉2 = 1−N 2 (3.34)

where we introduced the transverse component of the average spin 〈S⊥〉2 = 〈Sx〉2 + 〈Sy〉2.

Other nematic states

The concept of nematicity originates from the physics of liquid crystals where it charac-
terizes the tendency of rod-shaped molecules to align along a preferred axis which results
in a long-range orientational order [77]. This orientation is non-polar, meaning that the
molecules do not distinguish between the orientation along the directions u and −u, where
u is a unit vector in real space. This implies that, if we note u(α) the orientation of the
molecule α, one has 〈u〉 =

∑
α u(α) = 0 by inversion symmetry but 〈uiuj〉 6= 0, where

i, j = x, y, z. Thus, the system is aligned but has no net orientation. The direction of
the preferred axis - called the nematic director - is determined by weak forces induced
by external magnetic or electric fields. At high temperatures thermal fluctuations would
prevail on these forces and prevent the formation of a nematic order. But below a certain
temperature the system does experience a transition from an isotropic phase to a nematic
phase. Since there is no average orientation, the order parameter associated to this phase
transition has to be a second-rank tensor. A nematic tensor similar to Q is then defined
to characterize the anisotropy of the ensemble of molecules, that plays the role of an order
parameter.

The notion of nematic states has then be extended to spin systems [78] and applied
to various magnetic models and to correlated electron systems [79]. It refers to a state
that breaks the spin SU(2) symmetry but preserves the translational and time-reversal
symmetry. Since this last invariance implies that the local spin density vanishes, the spin
order appears in two-spins correlation functions. In the context of strongly correlated
electron systems for instance, nematic states originate from charge fluctuation in a spin
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stripe phase. A spin stripe consists of antiferromagnetically ordered domains separated
by walls at which the staggered magnetization flips sign but keeps a fixed direction. In a
nematic state the position of the domain walls fluctuates on a large enough length scale so
that for times long compared to these fluctuations, the average spin at each point vanishes
and the translation symmetry is restored. Yet, there is a preferred axis of space in which
the staggered magnetization points, and the SU(2) symmetry is broken [80].

3.1.3 Nematic order of a mean-field ground-state

We consider now the general mean-field ground state (3.1) parametrized by the magne-
tization mz, by x = 1 − n0 and by the angles α and Θ. We take α = 0 without loss of
generality (the liberty in the choice of α derives from the invariance by rotation around
the z axis). Additionally in the antiferromagnetic case one has Θ = π. The expression
(3.1) shows the expression of the ground-state in the standard basis. Transforming it into
the cartesian basis, we find:

|ζ〉 =



−iA−
A+

B



c

=




0
A+

B



c

− i




A−
0
0



c

(3.35)

with A± = 1
2(
√
x+mz ±

√
x−mz) and B =

√
1− x (where x = 1 − n0). The vectors u

and v appear immediately and we can calculate the nematic parameters:

N = 1− x+
√
x2 −m2

z (3.36)

The value of x in the ground-state was given in section 1.4.3 as a function of the mag-
netization mz and of the quadratic Zeeman effect q. We are then able to compute the
nematic parameter N in the ground-state. The figure (3.2) shows its evolution when q
increases at a fixed magnetization, for several values of the magnetization. If we first

Figure 3.1: a): Rod-like molecules in a nematic phase, and the nematic director. b): A
spin stripe: the staggered magnetization is well defined in each domain and flips sign at
the domain walls. The fluctuations of the walls restore the translational symmetry, but
there is still a preferred axis.
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Figure 3.2: Nematic parameter N calculated as a function of q/Us for magnetizations
from 0 to 1 by 0.1 step. The top curve correspond to mz = 0, the lower one to mz = 0.1,
etc... the lowest one to mz = 1. For each magnetization mz the parameter N is constant
for q ≤ qc and then decreases for q > qc. The dashed line shows this transition for all
magnetizations. One can identify the same two phases than in the first section.

look at the different curves at q = 0, we see that the nematic parameter decreases with
the magnetization: N is equal to unity at mz = 0 where the ground-state is a nematic
state, and then goes down to zero at mz = 1, where the the spin-state is fully polarized.
This reflects the fact that when the magnetization rises the system exchanges alignment
against orientation. Now for a given magnetization, N first stays constant as q increases
until the critical value q = qc defined in (1.65), and then decreases for q > qc. We here
again identify the two same phases as in the first section when we looked at the population
n0.

We now consider the average spin 〈Ŝ〉. From (3.35) and using expression (3.14) we
obtain :

〈S〉 =




0
−2A−B
2A−A+


 (3.37)

The x component of the spin is zero because we chose α = 0. The vector 〈S〉 for an
other choice of α is deduced from this one by a rotation around the z axis, leading to the
cancellation of the spin in an other direction of the xy plane. We can check that we find
the norm of the mean spin as in (1.63):

〈S〉2 = 4A2
−(A2

+ +B2)

= m2
z + 2x(1− x)(x−

√
x2 −m2

z) (3.38)
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This norm is the sum of the longitudinal spin 〈Sz〉2 = m2
z and of the transverse spin

〈S⊥〉2 = 2x(1 − x)(x −
√
x2 −m2

z). The longitudinal part is fixed by the conservation of
the magnetization, so that the system can only change its transverse spin to minimize its
energy. The figure (3.3) shows the phase diagram of the transverse spin calculated in the
mean-field ground state. The two phases appear clearly: at a given magnetization mz, the
transverse spin vanishes below the critical QZE qc, and then rises with q.
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Figure 3.3: Transverse spin 〈Ŝ⊥〉2 as a function of the magnetization m and QZE q.The
same two phases emerge: the first one for q ≤ qc where the spin has no transverse compo-
nent, and the second one for q > qc where the transverse spin increases with q.

By considering the nematic order parameter and the transverse spin, we identified the
same two phases as in chapter 1 with the population n0, but we can now interpret the
phase diagram in terms of symmetry of the spin state. The two phases originate from the
competition between the spin-dependent interactions and the quadratic Zeeman effect.
This competition is expressed by the equation (3.34) that we reshape in

〈S⊥〉2 +N 2 = 1−m2
z (3.39)

The right hand side of this equation is fixed due to conservation of magnetization. The
anisotropy of a spin state is then distributed between the nematic alignment of the spin
(quantified by N ) and the transverse component of the total spin.The balance between ne-
matic order and transverse spin is determined by the relative strength of interactions and
Zeeman effect. Antiferromagnetic interactions favor the alignment of the spins (whereas
ferromagnetic interactions would favor their orientation) and so tend to increase the ne-
matic parameter N . At q = 0 the ground-state is set by the interactions only, and so
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consists of the maximally aligned state compatible with the magnetization. The effect of
the magnetic field on the other hand is to favor the |mF = 0〉 spin state. The transverse
spin is created by spin coherences between the |mF = 0〉 state and the two others, which
are automatically non-zero in a condensate. Adding atoms in |mF = 0〉 thus increases
the transverse spin. The apparition of a transverse spin destroys the rotational symmetry
around the z axis, and so lowers the nematic order. In the first phase that we denoted
”antiferromagnetic” in the first section, the effect of the interactions is strong enough to
overcome that of the magnetic field and to maintain the rotational symmetry around z.
The spin state remains maximally aligned and the nematic parameter N stays constant
at the maximum value allowed by the magnetization. Then, as q reaches the critical value
qc, the quadratic Zeeman effect starts to dominate over the interactions, and forces the
accumulation of atoms in the |mF = 0〉 state. A transverse spin appears that breaks
the rotational symmetry and causes a loss of alignment (hence the denomination ”broken
axisymmetry”). As q increases, the population n0 and the transverse spin increase, and
the nematic order of the state decreases. The antiferromagnetic phase thus corresponds
to a phase of maximal nematic ordering of the spins, while in the ”broken axisymmetry”
phase the quadratic Zeeman effect reduces this order by “forcing” the development of a
transverse component of the average spin.

3.2 Experimental study of the phase diagram

The mean-field ground state of a spinor condensate of Sodium was studied experimentally
in [51, 30] where the authors measured the magnetic phase diagram in terms of the popu-
lation n0. However these works did not reliably measure the region of low magnetic fields,
presumably because of the long equilibration time required in this domain. We present in
this section our experimental results on the mean-field phase diagram which include this
low field region. We make sure equilibrium is reached by waiting several seconds before
counting the three Zeeman populations.

3.2.1 Experimental sequence

The experiment consists in measuring the population in the |mF = 0〉 spin state in the
ground state as a function of the magnetization and of the quadratic Zeeman effect q.
For this we prepare a cloud of desired magnetization using the rf-mixing or distillation
process, as explained in chapter 2. We then perform the two-step evaporation. In the
second step we use the exponential ramp described in chapter 2 to decrease the power
of the dimple trap. At the beginning of this evaporation we ramp the magnetic field to
a chosen value. The direction of the field does not matter but only its amplitude which
determines the quadratic Zeeman effect. We decide to always apply this magnetic field
in the x direction. At the end of the evaporation the condensed fraction is on the order
0.9. We now have to hold the cloud in the dimple trap while keeping the magnetic field
at the same value, and wait long enough to allow the system to reach its equilibrium. We
explain in the next paragraph how we choose this hold time. At the end of this waiting
step we perform a Stern-Gerlach experiment to separate the three Zeeman states. We fi-
nally image the clouds, count the three populations and deduce the relative population n0.

As suggested in [51] and [66], the long equilibration time could be an obstacle to the
observation of the true ground-state at equilibrium. To evaluate this time we prepare
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clouds of different magnetization with different values of the applied magnetic field, and
starting from the end of the evaporation stromboscopically measure the three spin popu-
lations after a Stern-Gerlach separation. We can this way follow the equilibration of the
spin populations as we hold the cloud. We find indeed that the equilibration is the slowest
for low magnetic field and low magnetization. We observed equilibration on a typical time
scale up to 1 s. Hopefully, the lifetime of our condensate in the dimple trap is much longer,
on the order of 10 s. We finally decide to wait for 6 s before measuring the populations.
This way, we make sure the equilibrium is reached while the total atom number is still
sufficient to obtain a good signal.

3.2.2 Results

We repeat this experiment scanning the magnetization of the cloud and the amplitude of
the magnetic field. For a given magnetization we measure the population n0 as a function
of the magnetic field. An example of these measurements is shown in figure (3.4) where
the cloud was prepared with a magnetization close to 0.4. We observe the transition
from a region where n0 is constant and small at low magnetic field to a region where
it progressively increases toward an asymptotic value. The transition between these two
regions occurs at the critical field Bc.

0 0.4 0.8
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Figure 3.4: Measured population n0 for a fixed magnetization mz ∼ 0.4 and for several
values of the applied magnetic field B. We observe the transition from a region of constant
and low n0 at low B to a region of large n0. The black solid line is a fit using the function
(3.40) from which we extract the critical field Bc and the asymptotic value of n0 at large
B. The error bars correspond to the statistical uncertainties of one standard deviation.

The summary of these results for various magnetizations is shown in the phase diagram
(3.5). To extract the critical magnetic field Bc from these measurements we fit them with
the hyperbolic function:

f(B) = α+ βmax

(
B2 −B2

c

B2 −B2
c + ∆B2

, 0

)
(3.40)

which reproduces well our data. In addition to the critical field, the parameters of this
function give access to the offset of n0 in the antiferromagnetic phase (α), to its asymptotic
value at large field (β) and to the slope of n0 at the transition (∆B). The theoretical value
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of the critical field is given by equation (1.65). It depends on the interaction energy Us.
To compare it with our fit results we evaluate Us from the solution of the Gross-Pitaevskii
equation using our trap frequencies. We obtain Us ≈ h × 40 Hz. The measured values of
the critical field are shown in figure (3.6) and compared to the theoretical prediction for
this value of Us. We find a very good quantitative agreement.

Effect of the thermal fraction

At non-zero temperature we expect that the presence of thermal atoms causes some devi-
ation to the SMA prediction. Indeed, the thermal fraction is not captured by the single-
mode mean-field theory, and its distribution among the three spin states may differ from
that of the condensate. A first level of description of the thermal fraction is to suppose an
isotropic distribution of the populations. This assumption is supported by a Hartree-Fock
model of the partly condensed spin-1 Bose gas [81]. We denote by superscripts c and th
the contributions of the condensed and thermal components respectively, and note fc the
condensed fraction. We have

ntot0 = fcn
c
0 + (1− fc)nth0 (3.41)

mtot
z = fcm

c
z + (1− fc)mth

z (3.42)

where nc0 and mc
z are normalized to the number of condensed atoms and nth0 and mth

z

are normalized to the number of thermal atoms. The supposed isotropy of the thermal
fraction gives

ntot0 = fcn
c
0 +

1− fc
3

(3.43)

mtot
z = fcm

c
z (3.44)

This modifies in particular the asymptotic value of n0 at large field, which is predicted to
be 1−mz in the SMA and becomes (1+2fc)/3−mz. The value of n0 in the antiferromag-
netic phase is also modified (it becomes (1−fc)/3 ) as well as the value of the critical field
Bc. In the figure (3.7) we show the effect of the thermal fraction on the asymptotic value
of n0. The left figure represents data from a first measurement of the phase diagram. We
observe that the values of n0 at high fields actually deviate from the T = 0 prediction. On
the right figure we show data from a second measurement of the phase diagram, where
we were able to further cool our clouds. The non-condensed fraction is only of a few per-
cent and its effects are small: the asymptotic values of n0 are compatible with the SMA
prediction at T = 0. The presence of the thermal atoms also explains the measurement
of a non-zero population n0 in the antiferromagnetic phase, as appears in figure (3.4). In
figure (3.6) we show the value of the critical field measured with our coldest clouds.

Our experimental data quantitatively reproduce the mean-field prediction of the phase
boundary and the behavior of the population n0 above the transition. We find a quanti-
tative agreement between our measurement of the phase diagram and the theory over the
whole range of parameter we explored (mz varying from zero to 0.8 and the field B from
zero to 1 G corresponding to q/Us ∼ 6). This confirms that the SMA holds in this regime
of parameters.
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Figure 3.5: Measured phase diagram (left) and theoretical mean-field prediction in the
SMA (right). We represent the population n0 as a function of the magnetization mz and
of the applied magnetic field B. On each figure the white line shows the theoretical critical
magnetic field.
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Figure 3.6: Critical field Bc fitted for different magnetizations. The error bars correspond
to the one standard deviation confidence intervals. The solid black line gives the mean-field
prediction in the SMA.

3.3 Detection of spin-nematic order

We have seen in the first section of this chapter that in an antiferromagnetic spin-1 Bose
gas the spin-dependent interactions favor nematic ordering. A fully nematic state is how-
ever incompatible with a non-zero average magnetization. In this situation interactions
tend to maximize the nematic order and consequently to minimize the transverse spin
component. This results in particular in the locking of the relative phase Θ to π, inde-
pendently of any other parameter. The measurement of Θ then represents a way to probe
the nematic order. We report here on the method we used to measure this phase.
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Figure 3.7: Asymptotic value for n0. The dashed line corresponds to the mean-field
prediction at T = 0, while the solid dashed line represents the expected asymptotic value
in the presence of an isotropic thermal component. The two figures correspond to different
temperatures, the right figure corresponding to colder clouds.

Imaging the three spin states at the end of our experimental sequence only give us
access to their density, not to their relative phases. Measuring Θ then requires some more
elaborate technique than merely preparing the system in its ground-state and probing it
as we did for the phase diagram. When the Hilbert space is of dimension 2, the natural
tool to measure the relative phase of a superposition of two internal eigenstates is Rabi
oscillations. Indeed, by looking at how the relative populations of the two states oscillate
during a spin rotation we can infer their relative phase before the rotation. Our idea is
to extend this technique to our three level system to extract the relative phase Θ and
compare it to π.

3.3.1 Rotation of the spinor wavefunction

We consider a spin-1 Bose-Einstein condensate described by the general mean-field state
(3.1). For readability we keep the notation n+1, n0, n−1 for the three densities, so that we
have

|Ψ〉 =



√
n+1e

i(Θ+α)/2

√
n0√

n−1e
i(Θ−α)/2


 (3.45)

where the angles Θ and α are defined in (1.61). Since the angle α does not appear in
the energy functional (1.63) it is in principle free to take any value at equilibrium. As
this angle characterizes the direction of the average spin in the plane perpendicular to the
direction of the magnetic field, it precesses at the Larmor frequency. Due to fluctuations of
the ambient magnetic field, experimentally it is then very likely that α is actually random
from shot to shot.
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Figure 3.8: Initial and rotated basis.

We suppose that the degeneracy of the three spin states is lifted by an external static
magnetic field B = B0ez, so that the splitting between the states |mF = +1〉 and |mF = 0〉
(equal to the splitting between the states |mF = 0〉 and |mF = −1〉) is equal to the Larmor
frequency ωL = µBB0/2~. We neglect the quadratic Zeeman effect. We now couple the
spin states by adding at t = 0 a radio-frequency (rf) magnetic field polarized along the
y axis Brf = ey(Be

iωrf t + c.c) and quasi-resonant at the Larmor frequency. We note
δ = ωL − ωrf the detuning of the rf-field to the Larmor frequency. The rf-field couples to
the Ŝy spin operator so that the total interaction Hamiltonian reads in the rotating-wave
approximation

Ĥ =
~ΩR

2
Ŝy +

~δ
2
Ŝz (3.46)

where we defined the Rabi frequency ΩR. We note Ω =
√

Ω2
R + δ2 the generalized Rabi

frequency and rewrite the Hamiltonian as

Ĥ =
~Ω

2

(
cos(θ)Ŝy + sin(θ)Ŝz

)
=

~Ω

2
Ŝ.v (3.47)

where we introduced cos(θ) = ΩR/Ω and sin(θ) = δ/Ω and the rotated basis

u = ex (3.48)

v = cos(θ)ey + sin(θ)ez (3.49)

w = cos(θ)ez − sin(θ)ey (3.50)

In the presence of a non-zero detuning δ the state does not rotate around the y axis but
around the tilted axis defined by the vector v. We are now interested in the calculation
of the spin state after a Rabi oscillation of duration t as a function of the initial state.
We note the angle of the rotation β = Ωt. We can in principle fully calculate the rotated
state from the relation

|Ψ(t)〉 = e−iĤt/~|Ψ0〉 (3.51)

where |Ψ0〉 = |Ψ(t = 0)〉. However in the case of a non-zero detuning δ this calculation
becomes quite cumbersome. We show in appendix D the results in the simple case δ = 0,
as it qualitatively describes our experimental measurement. A more easily accessible
quantity is the magnetization of the rotated state. For this we have to rotate the total
spin operator Ŝz, which transforms as the single-particle spin operator ŝz. We define the

rotation operator R̂v(β) = e−iβŜ.v. We note Ŝ′z the rotated spin operator and Ŝz the
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unrotated operator.. We have:

Ŝ′z = R̂†v(β)ŜzR̂v(β) (3.52)

= R̂†v(β)
(

cos(θ)Ŝw + sin(θ)Ŝv

)
R̂v(β) (3.53)

= sin(θ)Ŝv + cos(θ)R̂†v(β)ŜwR̂v(β) (3.54)

Transforming this last expression back into the (x, y, z) basis we obtain

Ŝ′z = AŜz +BŜy − CŜx (3.55)

where

A = 1− cos2(θ) (1− cos(β)) (3.56)

B = sin(θ) cos(θ) (1− cos(β)) (3.57)

C = cos(θ) sin(β) (3.58)

Experimentally we can prepare an initial state of well controlled spin populations.
However we have no control on the phases, and in particular if we repeat several times
the same preparation of the initial state, the phase α will be random from one realization
to the next. If we experimentally perform several Rabi oscillations starting from initial
states of identical populations, the measured mean magnetization after the rotation is
averaged over the uniform distribution of the phase α, which leads to 〈Ŝx〉α = 〈Ŝy〉α = 0
(see expressions (3.2) and (3.3)). We then have

〈Ŝ′z〉α = A〈Ŝz〉α = Amz (3.59)

The average magnetization oscillates during the rotation independently of the phases Θ
or α. We now consider the operator (Ŝ′z)

2. We can calculate its expression from the result
(3.55). Crossed terms of the form ŜiŜj , i 6= j appear. When averaged over the uniform
distribution of α, their mean value actually vanishes for all of them, and we are left with:

〈(Ŝ′z)2〉α = A2〈Ŝ2
z 〉α +B2〈Ŝ2

y〉α + C2〈Ŝ2
x〉α (3.60)

As α is random, we have 〈Ŝ2
x〉α = 〈Ŝ2

y〉α = 〈Ŝ2
⊥〉α/2, where we noted Ŝ⊥ the transverse

component in the x− y plane of the total spin. The previous expression reduces to

〈(Ŝ′z)2〉α = A2〈Ŝ2
z 〉α +

B2 + C2

2
〈Ŝ2
⊥〉α (3.61)

and so we have for the variance of the magnetization in the rotated state:

(∆Ŝ′z)
2 =

B2 + C2

2
〈Ŝ⊥〉2α +

B2 + C2

2
∆S2
⊥ +A2∆Ŝ2

z (3.62)

In a mean-field state, the quantum fluctuations ∆S2
i are on the order of N . When it is not

zero, the average transverse spin 〈S2
⊥〉 is on the order on N2. Only in the phase where 〈S2

⊥〉
vanishes the quantum noise is important, but it is not within our experimental sensibility.
We then neglect these quantum fluctuations. After averaging over α, the magnetization
noise is actually dominated by classical fluctuations of Sz and S⊥ due to preparation noise.

It appears that the variance of the magnetization oscillates during the rotation, with
an amplitude fixed by 〈Ŝ⊥〉2 and so which depends on the value of the phase Θ. Note that
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even if the phase α is random from shot to shot, the transverse spin 〈Ŝ⊥〉 is not zero in a
condensate, for in one given realisation all the atoms of the condensate are described by the
same α and the “individual” transverse spins of all the atoms add constructively. This is in
contrast with the situation in the thermal component of the gas where we can expect that
the phase α takes random values from atom to atom, so that the transverse component of
the total spin vanishes. The principle of our method to confirm the mean-field prediction
is to measure the fluctuations of the magnetization during a Rabi oscillation and to check
that the amplitude of these fluctuations is described by the relation Θ = π.

3.3.2 Experimental implementation of three-level Rabi oscillations

Experimental configuration

To drive Rabi oscillations between the three Zeeman sublevels of the F = 1 hyperfine
manifold we first split the degeneracy by applying a bias magnetic field. This field should
be small enough to allow us to neglect the quadratic Zeeman effect compared to our Rabi
coupling, but this is easily achievable within the range of magnetic field where we have
a good control, as we will see in the following. The Rabi experiment then consists in
applying a pulse of radio-frequency magnetic field of precise duration and immediately
after, perform a Stern-Gerlach separation to measure the three spin populations. As we
already mentioned for the measurement of the phase diagram, the Stern-Gerlach experi-
ment requires before the actual separation a step of 10 ms where the bias magnetic field
and the gradient are ramped up. The Rabi pulse obviously has to stop before this step,
but 10 ms is then too short of a time for the three populations to redistribute because of
the spin interaction, so that what we measure is to a good approximation the outcome of
the Rabi rotation. Our experimental sequence is depicted in figure (3.9).

To produce the radio-frequency magnetic field we use a function generator and a radio-
frequency power amplifier to send a current in an antenna placed close to the chamber
and tilted by 45◦ with respect to the three axis x, y, z. Only the component of the rf field
which is perpendicular to the bias magnetic field is able to couple the different Zeeman
state. Given the configuration of the antenna we can then apply the bias field in any of the
three directions (but with a loss in effective rf power). The amount of rf power radiated
depends on the frequency of the signal. As we want the rf coupling to be resonant with
the Larmor frequency, this implies that the effective rf power, and consequently the Rabi
frequency, changes with the amplitude of the bias field. Yet these variations do not change
the order of magnitude of the Rabi frequency which stays on the kHz level.

Optimization of the coherence time

We want to optimize the coherence time of the Rabi oscillations. First the magnetic bias
field has to be controlled precisely, as fluctuations of the Larmor frequency would result
in fluctuations of the detuning and then in a dephasing of the oscillations. At our level of
control, the main source of noise in the Larmor frequency is the 50 Hz of the line which
causes a modulation of the magnetic field at this frequency on the order of several mG. To
cancel the dephasing effect due to the 50 Hz, we synchronize the experimental sequence
to the line. Practically, when we activate the synchronization the card controlling the
outputs of all the analog and digital channels hold them at their current values until
it receives a trigger signal. At this moment the experimental sequence goes on. The
trigger signal is generated by a Schmitt trigger that detects the rising flank of the voltage
delivered by a 50 Hz power supply connected to the line. Thus, when the sequence starts
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Figure 3.9: Time sequence of the Rabi pulse. The time between the synchronization to
the line and the begining of the RF pulse is kept constant, and the time after the end of
the pulse is made as short as possible to avoid any effect of the interactions.

again after the synchronization, the phase of the line is fixed while it was unknown and
random before. The synchronization does not suppress 50 Hz field fluctuations, but as
their phase is controlled they have the same effect from shot to shot and do not blur the
oscillations.The time when the sequence is ”frozen” waiting for the trigger can vary from
zero to 20 ms. To minimize desynchronizing effects of drifts in the line or in the timing of
the experimental sequence the synchronization should be realized shortly before the Rabi
pulse. We do it 2 ms before the beginning of the Rabi pulse. The synchronization is of
crucial importance: it increases the coherence time by almost two orders of magnitude.
Without it we could only observe half an oscillation in approximately 0.2 ms, whereas as
soon as we used it we were still able to measure clear oscillations after a Rabi pulse of
10 ms.

Preparation of the initial state

Another key factor to observe Rabi oscillations is the reproducibility of the initial spin
state. This does not influence the coherence time but it can still cause some dephasing
in the oscillations as the preparation noise of the initial state will be transferred to the
rotated state. As seen before we can control to typically a few percents the relative pop-
ulations in the three Zeeman states.

Preparing a spin state with all the atoms in the same Zeeman state is the best con-
trolled situation. Indeed we can create polarized clouds with magnetizations very close to
one using the spin distillation technique before. The conservation of the magnetization
then ensures that the spin state remains the same till the beginning of the Rabi pulse
(see figure 3.10). Similarly we can prepare all the atoms in the mF = 0 state within
one percent. To do this, we first depolarize the cloud using the rf spin-mixing technique
to obtain a magnetization of zero (within three percent), and then add a large magnetic
field during the evaporation to favor the |mF = 0〉 state. After the evaporation we hold
the atoms in the dimple to let them accumulate in the |mF = 0〉 state (the equilibration
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Figure 3.10: Rabi oscillations starting from a fully polarized state: |Ψ〉 = (1, 0, 0)T . The
lower graph shows the three relative Zeeman populations as a function of the pulse dura-
tion. Blue circles correspond to the population in mF = +1, red losanges to the population
in mF = −1 and green squares to the population in mF = 0. The upper picture shows the
corresponding absorption images of the three clouds at the same times t. At each time t
the image shown is an averaged image over the few (typically three) that were taken at
that time. The Larmor frequency in these data is 190 kHz. The population in the state
mF = 0 oscillates at twice the frequency of the two others, as we expect from expressions
(C.8). We measure a Rabi frequency approximately equal to 2.2 kHz. We only show here
one full oscillation, but we still observe clear oscillations after 10 ms.

time at large magnetic fields is quite short, shorter than 100 ms). We finally get rid of
the remaining thermal atoms in the |mF = ±1〉 states by performing two successive spin
distillation steps in the condensate as described in chapter 2 (see figure (3.11)).

In the general case where the atoms are distributed among the three Zeeman states, we
prepare the initial state in equilibrium. We set the magnetization using the rf spin-mixing
or the spin distillation at high temperatures, evaporate and then hold the atoms in the
trap to reach the mean-field ground-state. Due to fluctuations in the preparation of the
magnetization, the Rabi oscillations in these situations look much more noisy as shown
in figure (3.12). However the contrast stays good, and we can still observe population
oscillations after averaging.

3.3.3 Evidence for phase-locking

We prepare the system in a given point of the phase diagram (by preparing a chosen mag-
netization and applying a given magnetic field) and from this point start to rotate the spin
using a radio-frequency pulse. To sample the rotation we stop the pulse after different
times and then image the atoms. For each rotation time we repeat the experiment several
times. From the measured oscillation of the averaged magnetization which evolves as a
cosine of the Rabi angle (expression (3.59)) we fit the angle θ and the generalized Rabi
frequency Ω. Knowing this we deduce the Rabi frequency ΩR, the detuning δ and the
angle β of the rotation at each time t.
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Figure 3.11: Rabi oscillations starting from the state |Ψ〉 = (0, 1, 0)T . As in figure (3.10)
the lower graph shows the evolution of the three relative spin populations and the upper
picture shows the corresponding (averaged) absorption images. The color code is the same
as in figure (3.10). The Larmor frequency is also 190 kHz. According to expression (C.10),
the three populations oscillate at twice the Rabi frequency, which we therefore evaluate
at approximately 2.2 kHz, consistently with what we measure in figure (3.10).

Considering the data where no rotation was performed we determine the quantities 〈mz〉α(t =
0) and 〈n0〉α(t = 0). We deduce the value 〈S⊥〉2α(t = 0) of the average transverse spin
in the initial state. We are now able to calculate the variance of the magnetization at
any time in the rotation and for different values of the relative phase Θ. In particular
we consider the values Θ = π,Θ = 0 (expected for ferromagnetic interactions) and the
case where Θ is random. We finally compare these different situations to the measured
evolution of the variance. We repeat this procedure for three different preparations of
the initial state, which are displayed in the magnetic phase diagram in figure (3.14).The
results are shown in figure (3.13).

The first observation is that the average magnetization is very well described by the
function (3.59). The fitted detunings are on the order of a few hundreds of Hz (correspond-
ing to a few tens of mG). The fitted generalized Rabi frequency are close to 3 kHz for the
two lower Larmor frequency (82.5 kHz and 103 kHz) and close to 2 kHz for the largest
one (244 kHz). This difference can be explained by the frequency-dependent impedance
matching of our antenna.

If we now look at the variance of the magnetization, it appears that the experimental
points are much better described by Θ = π than by Θ = 0 or a uniform distribution of Θ,
which tends to confirm the mean-field prediction. This shows that, for a given population
n0 and magnetization mz, the transverse spin in the condensate takes the minimal value
allowed, and consequently that the nematic order is maximal for this n0 and mz. However,
we point out two important effects.

First, the measured variance of the magnetization is consistently smaller than the cal-
culated one for Θ = π (up to 40% smaller). In our analysis we calculated 〈S⊥〉 using a
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Figure 3.12: Rabi oscillations starting from the mean-field ground state prepared with a
magnetic field of 150 mG and a magnetization of 0.35 ± 0.0.4. The lower three graphs
show the evolution of the spin populations during the spin rotation, averaged at each time
t over ten experimental realizations. The errorbars correspond to one standard deviation.
The upper picture shows the corresponding averaged absorption images. The Larmor
frequency is 103 kHz. We infer the Rabi frequency ΩR/2π = 2.94± 0.09 kHz.

T = 0 theory, i.e. all the atoms are assumed to be in the condensate. However in reality
a thermal component is always present, as already discussed in the section 3.2. Let us
consider the effect of a finite temperature. In a spin-1 Bose gas we expect the three spin
components (if they are present) to condense at three different critical temperatures (two
in the non-interacting case) [82]. At high enough temperatures, only one spin species
will be condensed. In this case, the transverse spin component of the condensate is zero,
for it is created by the coexistence of mF = 0 with one of the two others species in the
condensate. The total transverse spin is then zero. At T = 0 the transverse spin takes
in the broken-axisymmetry phase a positive value. Between these two regimes we then
expect that the presence of a thermal fraction reduces the transverse spin compared to
the case T = 0. Still, we know from another analysis that the condensed fraction in these
data is quite high, much higher than what would be required to explain that the variance
∆m2

z we observe corresponds to the reduction of the signal calculated with Θ = 0 or Θ
uniformly distributed.
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Figure 3.13: Measured average magnetization mz (left) and variance of the magnetization
∆m2

z (right) during three Rabi oscillations performed at three different points of the
magnetic phase diagram. These points are characterized by the magnetization m0

z of the
initial state and by the applied magnetic field (or equivalently by the associated Larmor
frequency). a): m0

z ≈ 0.75, ωL = 244 kHz, b):m0
z ≈ 0.35, ωL = 103 kHz, c): m0

z ≈
0.75, ωL = 82.5 kHz. The red curve on the left plots is a fit of the average magnetization
using a function of the form (3.59). The detuning δ and the generalized Rabi frequency
are extracted from this fit. These parameters are then used to calculate the variance of
the magnetization during the rotation for different values of Θ. The blue points on the
right plots correspond to the measured variance ∆m2

z and the three solid lines correspond
to: black: Θ = 0, blue: Θ uniformly distributed and red: Θ = π.

As a second remark, we note in figure (3.14) that two of the initial states we prepare
(a and b) are located in the broken-axisymmetry phase while the last one (c) sits in the
antiferromagnetic phase. According to our previous discussion of the phase diagram, a
condensate prepared in conditions c has a vanishing population n0 and a vanishing trans-
verse spin S⊥. Still we observe an oscillation of small amplitude (∼ 0.01). We also do
measure an average non-zero population n0 in the initial state, which is explained by the
presence of thermal atoms. The measurement of the variance ∆m2

z during the rotation
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Figure 3.14: Position in the magnetic phase diagram of the three initial states considered
in figure (3.13). We use Us = 45 Hz which we calculated from the measured atom number
and a numerical solution of the Gross-Pitaevskii equation. The blue line represents the
critical field.

is actually a measurement of the transverse spin in the initial state. The observation of
an oscillation of ∆m2

z thus suggests that the thermal fraction does possess a non-zero
average transverse spin component. This implies the existence of some amount of co-
herence between thermal atoms. In the presence of a condensate, the spin coherence of
thermal atoms is actually expected to arise due to the coherent collisions between con-
densed and uncondensed atoms [83][65]. The coherence of the thermal fraction has been
demonstrated experimentally in a two component pseudo-spin system [84].

3.4 Conclusion

In this chapter we revisited the magnetic phase diagram using a nematic order parameter
that provides a more geometrical understanding of the mean-field ground-state. The
two different phases are described here in terms of the possible existence of a transverse
component of the total spin of the system, rather than the population of the |mF = 0〉
state. We then presented an experimental measurement of the phase diagram. We found
a very good agreement with the mean-field theory in the single-mode approximation in
the whole range of magnetic field and magnetization. Finally we experimentally confirmed
the locking of the relative phase Θ of the spinor wavefunction by measuring the variance
of the magnetization during a Rabi oscillation. This experiment is actually a method to
measure the transverse component of the total spin. We showed that a spin coherence
exists between thermal atoms, due to the coupling with the condensate. This experiment
was realized with clouds at low temperature, with a high condensed fraction. It would be
interesting to perform the same kind of experiment at higher temperatures. This would
allow one to study the evolution of the total transverse spin with temperature, and explore
how the thermal atoms acquire their spin coherence. We plan to explore this direction in
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future experiments.



Chapter 4

Spin fragmentation in a spin-1
Bose gas

In chapter 3 we investigated how well the mean-field theory of the spin-1 Bose gas compares
to experiments. We found a good agreement between the theoretical predictions and
our experimental observations in terms of the spin populations. However, as will be
presented in chapter 5, while measuring the magnetic phase diagram in the region of
zero magnetization and low magnetic fields we noted anomalously large spin fluctuations.
These huge fluctuations are not explainable in a simple mean-field picture where all atoms
condense in the same single-particle state and only poissonian fluctuations are expected.
They are in fact a manifestation of the symmetry of the system at zero-magnetic field where
the spinor condensate becomes fragmented. As this intrinsically quantum phenomenon is
out of reach of our previous treatment, we need to develop a beyond mean-field theory
of the spin-1 Bose gas. In a first part we will introduce the notion of fragmentation and
show by a direct diagonalization of the Hamiltonian that it implies super-Poissonian spin
fluctuations. We then construct an approximate but very efficient approach to describe
this phenomenon at finite temperatures: the so-called broken-symmetry approach. In
a last part we show how this theory is closely related to the more general concept of
spontaneous symmetry-breaking.

4.1 Fragmentation of a spinor condensate at zero field

Fragmentation describes the situation where an assembly of particles Bose-condenses in
several single particle states. We here give some general elements about fragmented con-
densates, before detailing the case of the spin-1 Bose gas.

4.1.1 Fragmented Bose-Einstein condensates

Definition of condensation and fragmentation

We consider a confined atomic gas of weakly interacting bosons at low temperature, with
an internal degree of freedom. As recalled in chapter 1, Bose-Einstein condensation reveals
itself by the macroscopic accumulation of atoms in the single-particle ground state of the
system due to their bosonic statistics. This concept implicitly assumes that this ground-
state is non-degenerate, as it is the case in a polarized gas trapped in a harmonic potential.
However, this assumption may not be verified. Degenerate single-particle ground states
are realized in several actual systems [85]. This degeneracy can be of orbital nature, for
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example bosons in an optical lattice in the limit of zero tunneling. In other systems it
follows from the existence of an internal degree of freedom. These systems include pseudo-
spin systems and spinor gases. The degeneracy of the ground state is typically of order
of unity in the case of internal degeneracies, but it can also be on the order of the size
of the system (bosons in a lattice). In all these cases, the picture of the accumulation of
the atoms in the single-particle state of lowest energy becomes inadequate: what happens
to the atoms once the excited states have saturated? Do they accumulate in one of the
degenerate states or do they distribute in several, or in all of them? What is the role of
interactions?

To answer these questions we need to define more precisely the concept of Bose-Einstein
condensation, following Penrose and Onsager [86]. Let us consider a system of N parti-
cles. The single-particle density matrix is defined by its components in position space
ρ̂(1)(r, r′) = 〈Ψ̂†(r′)Ψ̂(r)〉 where Ψ̂†(r) creates a particle at position r. This operator is
hermitian and can be diagonalized. There exists an orthonormal basis of single-particle
states (ψi) such that:

ρ̂(1) =
∑

i

ni|ψi〉〈ψi| (4.1)

where ni is the eigenvalue associated to the eigenvector |ψi〉. In a non-interacting sys-
tem the states |ψi〉 coincide with the eigenstates of the single-particle Hamiltonian, but in
the interacting case this is generally not true. ρ̂(1) verifies Tr(ρ̂(1)) = N so that one has∑

i ni = N . We choose to reorder the eigenstates such that n0 ≥ n1 ≥ n2 ≥ ... Ordinary
Bose-Einstein condensation corresponds to the situation where the largest eigenvalue n0

is on the order of N while all the others are on the order of unity:

n0 ∼ O(N) (4.2)

ni ∼ O(1) for i = 1, ..., N − 1 (4.3)

The function ψ0(r) is then the mode of the condensate, or, as we called it in the first
chapter, the macroscopic wavefunction.

In the situations where the single-particle ground-state is degenerate the number of
macroscopic eigenvalues may not be exactly one. Two situations can then arise: either
none of the eigenvalues is macroscopic, or several are. The latter situation is referred to
as a fragmented condensate: the atoms condense in several single-particle states. This
phenomenon typically arises when the degeneracy of the ground-state is of order of unity.

A simple example of fragmentation

The effect of the interactions in the process of fragmentation has to be considered carefully,
as they will dramatically influence the way it manifests itself. Indeed, if the single-particle
states are degenerate, the many-particle states will only differ by their interaction energy.
Besides, in experimental situations, exact degeneracy is not achieved, because of small
single particle terms that split the ground states. Only the interactions, if they dominate
over the induced energy splittings, allows to actually observe the effect of degeneracy. We
illustrate this idea with a simple example.

The Nozières model [87] considers N bosons that have two degenerate internal states
|1〉 and |2〉. Particles in a different state interact with a coupling constant g. The interac-
tion energy is then E = (g/2)N1N2. We first consider the case g < 0. The ground state
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|GS〉 is a Fock state:

|GS〉 =
1

N !
â
†N/2
1 â

†N/2
2 |0〉 (4.4)

where â†i creates a particle in state |i〉 (i = 1, 2). Its single particle density matrix is

ρ̂(1) =
N

2

(
1 0
0 1

)
(4.5)

The two eigenvalues are equal to N/2: the condensate is fragmented.

If we have g > 0, the energy is minimized by having all the atoms in the same internal
state. There are two degenerate many-particles ground-states: |N1 = N,N2 = 0〉 and
|N1 = 0, N2 = N〉. The two associated single-particle density matrices have eigenvalues
0 and N . If we write the ground state as a statistical mixture with equal weights of
these two states, we find that its density matrix also has N/2 as a double eigenvalue:
it has the exact same expression as in the case g < 0. Here again the condensate is
fragmented. This trivial example shows that the way fragmentation occurs is very sensitive
to interaction parameters and that, in a given system, the ground state can take very
different forms. It here appears that the Penrose-Onsager definition may be insufficient to
fully characterize how fragmentation takes place, as the two fragmented condensates can
not be distinguished by their single-particle density matrix only. Higher order correlation
functions are then needed to characterize these fragmented states. For instance in our
example, the difference between the two types of condensates is revealed by the number
fluctuations: both verify 〈Ni〉 = N/2 (i=1,2), but the Fock state has zero fluctuations
when the mixture has ∆N2

i = N2/4.

4.1.2 Spin fragmentation in an antiferromagnetic spinor BEC at T = 0

Spin fragmentation at q = 0

We now consider a Bose-Einstein condensate of Sodium atoms in the F = 1 hyperfine man-
ifold. We assume the single-mode approximation. As established in Chapter 1 in (1.51),
at zero magnetic field the spin Hamiltonian reads Ĥs = (Us/2N)Ŝ2 where Ŝ is the total
spin of the condensate and Us is the spin interaction energy per particle and is positive for
sodium. To investigate the fragmentation in this system we have to go beyond the simple
mean-field solution developed in Chapter 3. The mean-field states |ψ〉 = (â†φ)N |vac〉 (where

â†φ creates a particle in the single-particle |φ〉) are by definition singly condensed states:
all the atoms occupy the same single-particle state, the single-particle density matrix has
one eigenvalue equal to N and all the others equal to zero. We need to study the exact
ground state, which is feasible for the simple case of spin-1 bosons in the single mode
approximation. The eigenstates of the spin Hamiltonian are the total spin eigenstates
|N,S,M〉, where N is the total atom number, S is the total spin and M its projection
on the z axis, and where the bosonic symmetry imposes that N − S is even. They have
an energy (Us/2N)S(S+1). These states can actually be constructed in the Fock space as:

|N,S,M〉 =
1√

N (N,S,M)
(Ŝ−)P (Â†)Q(â†+1)S |0〉 (4.6)

with

P = S −M (4.7)

2Q = N − S (4.8)
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......

0

Figure 4.1: Spectrum of the spin Hamiltonian Ĥs at q = 0. The ground state is the unique
|N,S = 0,M = 0〉 singlet state, the excited states have an energy E(S) = UsS(S+1)/2N .

and where we introduced the operators:

Â† = (â†0)2 − 2â†+1â
†
−1 (4.9)

Ŝ− =
√

2(â†−1â0 + â†0â+1) (4.10)

Â† creates a pair of atom with total spin 0, and Ŝ removes one quantum of angular
momentum. N (N,S,M) is a normalization constant.

Since Us is positive, the ground-state at zero magnetic field is the singlet state with
zero total spin |S = 0〉. We consider even values of N for simplicity (odd values of N can
be treated in a similar way without modifying the results to order 1/N). As can be seen
from expression (4.6), the singlet state consists of a product of singlet pairs:

|N,S = 0,M = 0〉 ∝ (Â†)N/2|0〉 (4.11)

In the SMA this state is unique, and retains the rotational symmetry of the Hamiltonian.
(On the contrary, the mean-field ground state is degenerate, and composed of the whole
family of nematic states. Each of these states obviously break the rotational symmetry
as they are defined by a direction of space along which they have exactly zero spin pro-
jection). Law, Pu and Bigelow demonstrated that the singlet state can be written in the
Fock basis as a coherent superposition of all Fock states |N+1 = k,N0 = N−2k,N−1 = k〉,
k = 0, 1, ..., N/2, with almost uniformly distributed coefficients [61]. This quasi-uniform
superposition results in super-Poissonian fluctuations of the different spin states popula-
tions. Furthermore, due to its rotational symmetry, the singlet state has isotropic spin
populations in average. Its single-particle density matrix in the standard basis reads:

ρ̂(1) =
N

3




1 0 0
0 1 0
0 0 1


 (4.12)

It has three equal macroscopic eigenvalues: the condensate is fragmented.

Comparing the singlet state to any nematic single condensate, super-poissonian spin
fluctuations appear as a signature of fragmentation. To quantify the degree of fragmen-
tation of our system we chose as figures of merit the two first moments (mean value and
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variance) of the population N̂0 = â†0â0 in the |mF = 0〉 spin state. For the singlet state it
can be calculated from the expression (4.11). We find:

〈N̂0〉 =
N

3
(4.13)

∆N2
0 =

4N2 + 12N

45
(4.14)

The fluctuations of N0 are indeed super-poissonian (to leading order in N , ∆N2
0 ∝ N2).

Numerically ∆N0/N ≈
√

4/45 ' 0.298.

Spin fragmentation for q > 0

For non-zero values of q, the ground state is no longer the singlet state. Considering the
high q limit we expect the system to condense in the |mF = 0〉 spin state with negligible
fluctuations, a situation much different from the q = 0 case. Continuously increasing
the field the ground state of the system evolves from a fragmented singlet condensate
to a mean-field nematic one. We can track this evolution by looking at the behavior of
〈N0〉 and ∆N0 as q is increased. This problem was treated extensively in [88], which we
reproduce in Appendix E. However to describe our experiments we have to consider finite
temperature effects and we will not treat here the case T = 0.

4.1.3 Spin fragmentation at finite temperatures

At zero magnetic field, the energy splitting between the lowest eigenstates of the spin
Hamiltonian (1.51) is on the order of Us/N . A typical value for Us in an harmonic trap
is around 5 nK, which gives for atom numbers of a few thousands an energy scale on
the order of a few pK, much lower than the temperature that can be achieved in an
experiment (which at the lowest is on the order of a few tens of nK, see chapter 5). Hence,
an experimental realization of a spinor condensate will not be found in the singlet ground
state, but instead several excited states will be populated. Can we still observe spin
fragmentation?

Spin fragmentation at q = 0

As we said before, fragmentation in a spinor gas is revealed by the mean value and fluctu-
ations of the N0 population. We will then focus on calculating these quantities. Using the
expression (4.6) we can calculate the action of N̂0 on the |N,S,M〉 states. We consider a
regime of temperature where the highest populated excited states verify 1� S � N (we
will discuss these conditions later). For these states we find to leading order in N and S:

〈N̂0〉S,M ' N(S2 −M2)

2S2
(4.15)

(∆N0)2
S,M ' (N2 − S2)(S2 −M2)2

8S4
(4.16)

It appears that all low-energy eigenstates with M � S � N display super-Poissonian
fluctuations ( (∆N0)2

S,M ∝ N2).
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To calculate the mean value of N0 in a thermal state we work in the canonical ensem-
ble. We define a temperature Ts that we call spin temperature and write:

〈N0〉T =
1

Z
∑

S,M

e−βUsS(S+1)/2N 〈N0〉S,M (4.17)

where β = 1/kBTs and Z is the partition function. We replace the sum by an integral
over S and M , which is justified in the limit βUs/N � 1 where many excited states are
occupied. In this case the sum (4.17) is dominated by states with S � 1. For intermediate
temperatures the contributing states also verify S � N and one can set the upper bound
of the integral over S to +∞,

〈N0〉T '
1

Z

∫ +∞

0
dS

∫ S

−S
dMe−βS(S+1)〈N0〉S,M (4.18)

The fluctuations are calculated in a similar way and one finds:

〈N0〉T ' N

3
(4.19)

(∆N0)2
T = 〈N2

0 〉T − 〈N0〉2T '
4N2

45
(4.20)

To leading order in N the mean value and variance of N0 are the same as at T = 0.
Low-lying |N,S,M〉 states share with the singlet state the same property of (quasi)
isotropic populations and super-poissonian fluctuations. Estimating the temperature by
UsS

2/2N ' kBT/2, the condition 1� S � N gives a regime of temperature:

Us
N
� kBT � NUs (4.21)

In the regime kBT � NUs all spin states are equally occupied and the upper bound of
the integral over S cannot be sent to +∞. Setting the Boltzmann weights to 1, the sums
can still be estimated analytically. One obtains:

(∆N2
0 )T�NUs '

N2

18
(4.22)

Thus we find that at zero magnetic field, irrespective of the temperature the variance of
N0 is always Super-Poissonian (∆N2

0 ∝ N2), and that the depletion of the population N0

is large. We conclude that at q = 0, fragmentation should be observable experimentally.

Spin fragmentation for q > 0

As in the previous section for T = 0 we do not develop the case q > 0, as a complete
analysis can be found in [88]. Rather, for completeness we just give here the main result.

We have seen that the fragmentation survives at finite temperatures. Thus, similarly
to the case T = 0, while q is increased the system evolves from a fragmented condensate to
a mean-field state, and this evolution can be seen from the behavior of the moments of the
population N0 with q. We present in figure (4.2) the results of an exact numerical diag-
onalization of the spin Hamiltonian where no constraint was imposed on the distribution
of the magnetization. At zero magnetic field we observe a large depletion of the mF = 0
spin state and super-Poissonian spin fluctuations. As the field increases, the Zeeman effect
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favors more and more the mF = 0. The atoms progressively accumulate in this state and
the fluctuations are suppressed. The system evolves from a fragmented state at zero field
to a mean-field state at large field. For a magnetization of zero average the asymptotic
mean-field state corresponds to the nematic state with all the atoms in mF = 0. Both
〈N0〉 and ∆N0 appear to be almost universal functions of the only variable Nq/kBTs. The
typical width of the transition is then given by q ∼ kBT/N .
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Figure 4.2: Mean value and variance of n0 = N0/N calculated by an exact diagonalization
in the canonical ensemble, for N = 1000 and for different spin temperatures. The red curve
corresponds to T = 10Us, the green one to T = 100Us and the blue one to T = 1000Us.
The value of the fluctuations at q = 0 evolves from approximately

√
4/45 ≈ 0.3 for

low values of NUs/kBT (red curve) to approximately
√

1/18 ≈ 0.24 for large values of
NUs/kBT (blue curve). The left figure corresponds to the line mz = 0 of the magnetic
phase diagram presented in chapter 3 (note that here we represent 1− 〈n0〉)

4.2 The broken-symmetry picture

In the previous section we calculated the moments of N0 by the most natural method,
by looking at the exact eigenstates of the Hamiltonian. However, for an atom number
N = 5000 as we have in our experiments, the Hilbert space becomes too large to allow
for an efficient numerical treatment of the problem with this method. In this section
we introduce a powerful approach to describe a spinor gas at low temperatures, based
on the concept of symmetry breaking states [89]. The principle of this general method
is to construct states that obey a particular symmetry by properly mixing states that
individually break this symmetry.

4.2.1 Broken-symmetry picture at T = 0

In the case of a spinor gas of zero magnetization and in the absence of magnetic field,
the true ground state is the rotationally invariant singlet state. The broken-symmetry
approach consists in approximating this state by an isotropic mixture of all the nematic



110 Ch. 4. Spin fragmentation in a spin-1 Bose gas

states |N : Ω〉 ∝ (Ω.â†)N |vac〉 where â† = (â†+1, â
†
0, â
†
−1)T and the vector Ω is defined by

Ω =



− 1√

2
sin(θ)e−iφ

cos θ
1√
2

sin(θ)eiφ


 (4.23)

in the standard basis. This mixture is described by the density operator

ρ̂BS ∝
∫

dΩ|N : Ω〉〈N : Ω| (4.24)

The validity of this description follows from the remarkable properties of nematic states
in the limit N → +∞. These states form an overcomplete basis of the spin space, meaning
that the family of nematic states has more states than needed to span the Hilbert space.
They verify the resolution of unity

4π

2N + 1

∫
dΩ|N : Ω〉〈N : Ω| = 1 (4.25)

Because of its over completeness the family of nematic states is not orthogonal. The
overlap of two nematic states is given by

〈N : Ω|N : Ω′〉 =
(
Ω.Ω′

)N
(4.26)

When the atom number becomes large, this scalar product becomes very peaked around
Ω = Ω′ and can be approximated by1

〈N : Ω|N : Ω′〉 = N δ(Ω−Ω′) +O(
1

N2
) (4.27)

where N is a normalization factor. Thus, in the limit of large atom number, the nematic
states become quasi-orthogonal.

Another important property of nematic states is given by the action of annihilation
operators âi on these states:

âi|N : Ω〉 =
√
N Ωi|N − 1 : Ω〉 (4.28)

where i = 0,±1. The operator âi removes one particle but does not change the state
of the N − 1 others. The precision of the broken-symmetry approach results from the
combination of these two properties as we explain now.

The singlet state actually accepts the decomposition in the basis of nematic states2

[89]:

|S = 0〉 ∝ 1√
4π

∫
dΩ|N : Ω〉 (4.30)

1Since we consider even values of N the scalar product is also peaked around Ω = −Ω′. However, the
states Ω and −Ω actually represent the same physical state. To avoid this ambiguity we can chose to only
consider nematic states with Ωz ≥ 0 for instance, taking care of correctly normalizing the integrals.

2 More generally such a decomposition exists for all the total spin eigenstates:

|S,M〉 ∝
∫

dΩYS,M (Ω)|N : Ω〉 (4.29)

where YS,M are the usual spherical harmonics.
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Let us now consider a k-body operator Ô(k) acting in the Fock space of N spin-1
bosons, with k � N . We suppose this operator is in normal order. The expectation value
of this operator in the singlet state is:

〈Ôk〉singlet =
1

4π

∫
dΩ

∫
dΩ′〈N : Ω|Ôk|N : Ω′〉 (4.31)

We need to evaluate the matrix elements of Ô(k) in the nematic basis. Using expressions
(4.28) and (4.26) we find that actually only the diagonal elements of Ô(k) matter and one
has to leading order in N :

〈Ôk〉singlet ≈
N
4π

∫
dΩ〈N : Ω|Ôk|N : Ω〉 (4.32)

The right-hand term is equal to the expectation value calculated in the broken-symmetry

description3 〈Ô(k)〉BS = Tr
(
ρ̂BSÔ

(k)
)

, so that one has

〈Ôk〉BS = 〈Ôk〉singlet

(
1 +O

(
1

N

))
(4.34)

The two descriptions coincide in the thermodynamic limit where measurements of few-
body observables cannot distinguish between the singlet state and the broken-symmetry
one. As explained in [89], the description of the state of the condensate by the broken-
symmetry mixture allows to imagine that all the atoms condense in the same nematic state
for one particular experimental realization, thus breaking the rotational symmetry, but
that the realized nematic state fluctuates from one shot to the next. This decomposition
provides an intuitive understanding of the spin fluctuations: to conserve the rotational
symmetry, the system equally spreads within the whole family of degenerate nematic
states, thus uniformly mapping all directions of the spin space. This ’delocalization’ in
spin space directly implies the huge spin fluctuations and the equality of the averaged spin
populations. The effect of this delocalization is to reduce the energy from Us for a nematic
state to zero for the singlet state.

Due to the relation (4.28), the description of the condensate by ρ̂BS allows one to
conveniently compute expectation values of few-body operators, for instance of N̂0, and
the signatures of fragmentation we found previously are easily recovered. However, if
this approach is well adapted to the case T = 0, it is not easily extended to the case of
finite temperatures. At finite temperature we indeed expect to populate |N,S,M〉 states
with S,M > 0, and experimentally this distribution is constrained by the conservation of
the magnetization. Yet nematic states verify 〈Ŝ〉 = 0, and it is not possible to describe
for instance a condensate with a non-zero magnetization by a mixture of nematic states.
As the distribution of the magnetization does affect the expectation value of N̂0, the
set of nematic states is not adapted to study the occurrence of spin fragmentation in
our experimental system. The properties of the nematic states actually originates from
their similarity with coherent states. To benefit from these properties while being able

3If the few-body operator Ô(k) is not normally ordered, one can always write

Ô(k) =: Ô(k) : +R̂(k) (4.33)

where : : stands for normal ordering. The residual operator R̂(k) results from the commutation of the â†i
and âi operators. As a consequence, the expectation value of : Ô(k) : is of order Nk while the one of R̂(k)

is of order Nk−1. It can usually be neglected in the limit N → +∞ that we consider here.
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to completely describe the Hilbert space of our problem we develop a broken-symmetry
approach based on another family of mean-field spin states, the so-called SU(3) coherent
states.

4.2.2 Broken-symmetry approach at finite temperatures

The notion of coherent state, originally introduced in the context of quantum optics, can
indeed be extended to atomic systems [90, 91]. Each set of generalized coherent states is
closely related to one particular symmetry group. All these sets of states share important
properties that make them well-suited to describe large ensembles of particles that possess
this particular symmetry [92]. We use SU(3) coherent states to accurately describe our
atomic samples at finite temperature.

The notion of generalized coherent states and the construction of SU(3) coherent states
are the object of Appendix D. We here present their major properties that will be used
to simplify calculations. Finally we derive expressions for the two first moments and the
distribution of the population n0 at finite temperatures. These results will be used in
chapter 5 to analyze our experimental observations of spin fragmentation.

4.2.3 SU(3) coherent states

A SU(3) coherent state is a mean-field many-body spin state defined by

|N : ζ〉 =
1√
N !

(
ζ.â†

)N
|vac〉 (4.35)

where ζ is a normalized complex vector. The operator ζ.â† creates one particle in the
spin-1 state

|ζ〉 = eiφ0




sin(θ) cos(ν)eiφ+1

cos(θ)
sin(θ) sin(ν)eiφ−1


 (4.36)

As well as nematic states, the SU(3) coherent states form an overcomplete basis of the
Hilbert spin space. They verify the resolution of unity

∫
dζ|N : ζ〉〈N : ζ| = 1 (4.37)

where the measure is given by

dζ =
(N + 2)(N + 1)

π2
sin3(θ) cos(θ) cos(ν) sin(ν)dθdνdφ+1dφ−1 (4.38)

with θ, ν ∈ [0, π/2] and φ±1 ∈ [0, 2π]. Any state of the Fock space of N spin-1 can be
represented in the basis of SU(3) coherent states:

|Ψ〉 =

∫
dζΨ̃(ζ)|N : ζ〉 (4.39)

but the decomposition Ψ̃(ζ) is not unique.

The coherent states are also not orthogonal and we have:

〈N : ζ|N : ζ′〉 =
(
ζ.ζ′

)N
(4.40)
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Again, because of the large power N , the scalar product is very peaked around ζ = ζ′. In
the limit N → +∞ it can be approximated by a Dirac distribution:

〈N : ζ|N : ζ′〉 = Aδ
(
ζ − ζ′

)
+O

(
1

N2

)
(4.41)

where A is a normalization factor and the coherent states become quasi-orthogonal in this
limit.

An other major property is that zero is the only operator for which the expectation
value vanishes for all coherent states. This property is actually required to ensure that
any operator Ô acting in the Fock space can be represented as a diagonal operator in the
coherent state basis:

Ô =

∫
dζÕ(ζ)|N : ζ〉〈N : ζ| (4.42)

As for the decomposition of states, the decomposition Õ(ζ) is not unique. In particular
we note that Õ(ζ) 6= 〈N : ζ|Ô|N : ζ〉. These two quantities are called upper and lower
symbols respectively.

We point out that the existence of such a diagonal representation of operators in the
nematic basis is not guaranteed, and that this is the reason why the nematic states are
not adapted to describe our experiments. In particular, the expectation value of the spin
operator Ŝ vanishes for all nematic states. In this case, off-diagonal elements are needed
to determine these operators, which makes calculations much more difficult.

The use of coherent states allows for simple calculations in the classical limit N →∞.
First we note that the annihilation operators â+1, â0, â−1 act on these states in the same
way as on the nematic states:

âi|N : ζ〉 =
√
Nζi|N − 1 : ζ〉 (4.43)

where i = ±1, 0.

As previously we consider a k-body operator Ô(k) (in normal order) acting in the Fock
space of N spin-1 bosons, with k � N . Using expressions (4.37), (4.43) and (4.40) one
finds (see Appendix D) that the operator Ô(k) accepts the decomposition

Ô(k) ≈
∫

dζ〈N : ζ|Ô(k)|N : ζ〉|N : ζ〉〈N : ζ| (4.44)

In this limit N → +∞ the distinction between lower and upper symbols vanishes

We also easily find that the expectation value of a product of two operators in a
coherent state obey the simple rule:

〈ÔP̂ 〉 ≈ 〈Ô〉〈P̂ 〉 (4.45)

Using this property we can calculate the density operator ρ̂ describing a thermal state in
the canonical ensemble. According to (4.44) only the diagonal elements matter and one
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finds:

〈N : ζ|ρ̂|N : ζ〉 =
1

Z

∫
dζ〈N : ζ|

(
+∞∑

n=0

βnĤn

n!

)
|N : ζ〉 (4.46)

≈ 1

Z

∫
dζ

(
+∞∑

n=0

βn〈N : ζ|Ĥ|N : ζ〉n
n!

)
(4.47)

=
1

Z e
−β〈N :ζ|Ĥ|N :ζ〉 (4.48)

where Z is the partition function and β = 1/kBT . We can now compute thermodynamic
averages:

〈Ô〉 = Tr
(
Ôρ̂
)

(4.49)

≈
∫

dζ〈N : ζ|Ô|N : ζ〉〈N : ζ|ρ̂|N : ζ〉 (4.50)

≈ 1

Z

∫
dζ〈N : ζ|Ô|N : ζ〉e−β〈N :ζ|Ĥ|N :ζ〉 (4.51)

This expression corresponds to the expectation value calculated in a statistical mixture of

coherent states, weighted by the factor 1
Z e
−β〈N :ζ|Ĥ|N :ζ〉.

4.2.4 Broken symmetry description of a spin-1 gas with constrained
magnetization

We now apply the results we just derived to calculate the thermodynamic averages of
observables that express the spin fragmentation of our system, namely the population
n̂0 = N̂0/N and its square. First, for physical clarity we prefer to perform a change of
variable in the definition (4.36) of SU(3) coherent states. We introduce the new variables:

n0 = cos2(θ) (4.52)

mz = sin2(θ) cos(2ν) (4.53)

Θ = φ+1 + φ−1 − 2φ0 (4.54)

α = φ+1 − φ−1 (4.55)

which gives the familiar form of mean-field states introduced in chapter 1:

|ζ〉 =




√
1−n0+mz

2 ei(Θ+α)/2

√
n0√

1−n0−mz
2 ei(Θ−α)/2


 (4.56)

The new measure is dζ = (N+1)(N+2)
(2π)2

dn0dmzdΘdα, where Θ ∈ [0, 2π], α ∈ [0, 4π],mz ∈
[−1, 1] and 0 < n0 < 1− |mz|.

Density operator

Before calculating thermodynamic averages, we need to determine which ensemble we have
to consider, since our system is constrained. We first point out that [Ĥs, Ŝz] = 0, where
Ĥs is the spin Hamiltonian. The azimuthal quantum number M remains a good quantum
number even in the presence of an external magnetic field. This also implies [P̂M , Ĥs] = 0,
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where P̂M is the projector on the subspace characterized by the spin projection M , so that
the decomposition of a state in all these subspaces is conserved. The most general ensemble
we can consider is then a canonical ensemble where the population in each subspace of
well-defined M (eigenvalue of Ŝz) is fixed in average. This leads to the density matrix

ρ̂ =
1

Z e
−βĤ−

∑N=N
M=−N λM P̂M (4.57)

where λM is the Lagrange factor associated to the conservation of its population. Using
the relations [Ĥ, P̂M ] = 0 and [P̂M , P̂M ′ ] = 0 we can disentangle the different parts of
the exponential. Considering the part that involves the P̂M ’s only we decompose the
exponentials in sums and using P̂ kM = P̂M for k > 0 and P̂M P̂M ′ = 0 for M 6= M ′ we
finally obtain the expression

ρ̂ =
1

Z
M=N∑

M=−N
e−λM P̂Me

−βĤ P̂M . (4.58)

To calculate the diagonal elements of this density operator in the coherent state basis
one has to decompose these states in the basis of total angular momentum eigenstates.
This decomposition exists and is known. It involves a generalization of spherical har-
monics (called hyper spherical harmonics), whose mathematical manipulation would be
very cumbersome in this context, and would remove the advantage of working with these
coherent states.

Constraining the whole distribution of the magnetization is equivalent to constraining
all the moments of Ŝz. Rather we decide to only constrain the two first moments. In the
case of a gaussian distribution of the magnetization this is enough to fully characterize
it. As the experimental distributions we measure seem roughly gaussian, we expect that
this choice allows us to correctly describe our observations. We then consider the density
matrix

ρ̂BS =
1

Z e
−βĤ−λ1Ŝz−λ2Ŝ2

z =
1

Z e
−βK̂ (4.59)

We now calculate thermodynamic averages. We suppose the validity of the single mode
approximation. We first calculate the expectation value of the Hamiltonian in a SU(3)
coherent state. To leading order in N we find:

Es(ζ) =
NUs

2

(
m2
z + 2n0(1− n0) + 2n0

√
(1− n0)2 −m2

z cos(Θ)
)
− qNn0 (4.60)

where q is the quadratic Zeeman energy. We introduce the two dimensionless parameters

η =
Nq

kBT
(4.61)

β′ =
NUs
kBT

(4.62)

and define two new factors γ1 = λ1/β and γ2 = λ2/β. We then have

βK = β〈N : ζ|K̂|N : ζ〉 (4.63)

=
β′

2

(
(1 + 2γ2)m2

z + 2γ1mz + 2n0

(
1− n0 +

√
(1− n0)2 −m2

z cos(Θ)
))
− ηn0

(4.64)
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The values of the two multipliers are fixed by the conditions

〈mz〉 =
1

Z

∫
dζmze

−βK (4.65)

〈m2
z〉 =

1

Z

∫
dζm2

ze
−βK (4.66)

The partition function is found by integration over the four variables:

Z =
N2

2π

∫ 1

0
dn0

∫ 1−n0

n0−1
dmzI0

(
β′n0

√
(1− n0)2 −m2

z

)
e−

β′
2 ((1+2γ2)m2

z+2n0(1−n0))+ηn0−β′γ1mz

(4.67)
where I0 is the modified Bessel function of the first kind. The average values 〈n0〉 and 〈n2

0〉
are calculated similarly to (4.65) and (4.66). They only depend on the two dimension-
less parameters η and β′, and not on the three energy scales Us, q. and kBT independently.

Quasi spin-nematic states

From expression (4.64) we see that in equilibrium the fluctuations of the phase Θ around
the value Θ = π that minimizes the energy have a typical width 1/

√
β′. In practice we

are interested in the regime of low temperatures, defined by the condition [88]

kBT � NUs, or β′ � 1 (4.68)

In this regime, we thus expect the fluctuations of Θ to be very small. The theory can be
simplified by expanding Θ around π and mz around zero, which is the situation realized
in our experiments. We write Θ = π + δΘ and assume mz � 1− n0. We obtain

|N : ζ〉 ≈




√
1−n0

2

(
1 + mz

2(1−n0)

)
ei(π+δΘ+α)/2

√
n0√

1−n0
2

(
1− mz

2(1−n0)

)
ei(π+δΘ−α)/2


 =




i sin θ√
2

(
1 + mz

2 sin2 θ

)
ei(δΘ+α)/2

cos θ

i sin θ√
2

(
1− mz

2 sin2 θ

)
ei(δΘ−α)/2




(4.69)
where we defined cos θ =

√
n0. These states approach nematic states. In this case the

integrals over these variables become gaussian and can be easily calculated. The moments
of n0 can then be expressed as integrals of the variable n0 alone, that can be efficiently
calculated numerically. We show in figure (4.3) a comparison of the exact and approxi-
mate theories for different average magnetizations. We find that the approximate theory
works well even for quite large magnetizations (〈mz〉 = 0.2). We find the same qualitative
behavior as evidenced in the first section by an exact diagonalization. At large η the limit
〈n0〉 = 1− 〈mz〉 is reached.

It is interesting to calculate the effect of the constraint on m2
z on the average value

and standard deviation of n0. This constraint is carried by the Lagrange multiplier γ2.
We can define a pseudo inverse temperature βz = NUs/kBTz to describe the distribution
of mz:

βz = β′(1 + 2γ2) (4.70)

A purely thermal distribution of mz corresponds to γ2 = 0 and so to βz = β′. A narrow
distribution is characterized by γ2 � 1 (βz � β′) and a broad one is characterized by
2γ2 → −1 (βz � β′). The dependence of 〈n0〉,∆n0 and ∆mz on the ratio βz/β

′, calculated
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Figure 4.3: Average depletion and standard deviation of the population n0 as functions
of η calculated with the exact theory (solid lines) and with the approximate one (dashed
lines), for various average magnetization. The parameters are β′ = 100, ∆mz = 0.04.
Black: 〈mz〉 = 0.2, red: 〈mz〉 = 0.1, blue: 〈mz〉 = 0.05, green: 〈mz〉 = 0.02. The
deviation at high η are explained by the approximation mz � 1 − n0 that fails in this
region.

within the approximate theory for η = 0 and 〈mz〉 = 0, is shown in figure (4.4). We recover
the results (4.19) and (4.20) of the first section of this chapter: if the magnetization is
only fixed in average, we obtain at q = 0 〈n0〉 ≈ 1/3 and ∆n0 ≈ 0.3. As the distribution
then gets narrower the average value of n0 goes from 1/3 to 1/2.
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Figure 4.4: Average value and standard deviation of n0 and standard deviation of mz as
functions of βz/β

′ = 1 + 2γ2, for 〈mz〉 = 0 and η = 0, calculated using the approximate
theory obtained by the development of Θ around π.

The distribution of the variable n0 for a given value of η can be obtained by inte-
grating the phase-space distribution e−βK/Z over the other variables. For 〈mz〉 = 0 the
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approximate development of K gives

P (n0) ≈ 1

Z
eηn0

√
n0 (1 + 2γ2(1− n0))

(4.71)

In the case of a very narrow distribution of magnetization (corresponding to γ2 � 1)
the distribution at η = 0 is symmetric around n0 = 1/2. As the distribution of mz gets
broader the distribution of n0 at η = 0 becomes peaked at n0 = 0. Figure (4.5) shows the
distribution for various values of η calculated for γ1 = γ2 = 0. For η = 0 the distribution
varies as 1/

√
n0. For large values of η the distribution goes as eηn0/

√
n0 and is peaked at

n0 = 1.
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Figure 4.5: Distribution of the population n0 for β′ = 100 and γ1 = γ2 = 0. For η = 0 one
observes the 1/

√
n0 distribution predicted by the expression (4.71). For large a values of

η the distribution becomes very peaked close to n0 = 1, with a width of order 1/η.

Similarly one can calculate the distribution of mz. Figure (4.6) shows numerical cal-
culations for γ1 = γ2 = 0 for different values of η and β′. As one expects, increasing these
parameters results in a narrower distribution of mz.

Limiting case of nematic states

If γ1 = γ2 = 0 the magnetization is unconstrained and vanishes in average. The description
in terms of SU(3) coherent states is then equivalent to that using nematic states |N : Ω〉
defined in (4.23). To leading order in N , nematic states have no spin interaction energy
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and the density operator then reduces to

ρ̂BS =
1

Z

∫
dΩ|N : Ω〉〈N : Ω|eNβq cos2 θ (4.72)

with

Z =

∫ 2π

0
dφ

∫ π

0
sin θdθeNβq cos2 θ (4.73)

In the absence of magnetic field, all the Boltzmann weights are equal to 1 and the mixture
is isotropic. In the other limit of very large q, only the nematic state directed along the z
axis contributes to the density matrix. We can visualize the evolution of this distribution
by calculating the diagonal elements of the density matrix, similarly to what is commonly
done with coherent states with the Q function. For each nematic state |N : Ω〉 we compute
the quantity 〈N : Ω|ρ̂BS |N : Ω〉, and then plot it as a function of Ω on a sphere. Figure
(4.7) shows the progressive localization of the trace around the north pole. In the limit
of large magnetic field only the nematic state |N : ez〉 remains in the mixture, but the
distribution on the sphere still has some width for the nematic states are not orthogonal
and the atom number is finite (1000 in the figure).
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Figure 4.6: Distribution of the magnetization mz for β′ = 10, 100 and η = 0, 10. For all
curves γ1 = γ2 = 0).
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Figure 4.7: Q function associated to the matrix ρ̂BS for different values of the quadratic
Zeeman effect q. In the point of the sphere defined by the vector Ω the function Q takes the
value Q(Ω) = 〈N : Ω|ρ̂BS |N : Ω〉. Calculations are done with N = 1000 and Ts = 50nK.
The color scale is the same for the different plots. We clearly observe the progressive
localization of the mixture of nematic states around the north pole corresponding to the
|mF = 0〉⊗N many-body spin state. Even for very high q the Q function keeps a finite width
around this point, due to the finite atom number and the consequent non-orthogonality
of the nematic states.

We confirm the precision of the broken symmetry approach in this limiting case of
unconstrained magnetization by comparing its prediction to the results of an exact diago-
nalization. Figure (4.8) shows the two first moments of n0. We find a very good agreement.

We can also compute the probability distribution of N0. We define P̂ (N0) the projector
on the subspace of states with exactly N0 atoms in the mF = 0 spin state:

P̂ (N0) =
∑

M

|N+1, N0, N−1〉〈N+1, N0, N−1| (4.74)

N±1 =
N −N0 ±M

2
(4.75)

The probability to have N0 atoms is given by:

P (N0) =
1

Z

∫
dΩ|〈N : Ω|P̂ (N0)|N : Ω〉|2eNβq cos2 θ (4.76)

The average value of P̂ (N0) is calculated using the explicit decomposition of nematic states
in the Fock basis. The calculation of the integral for q > 0 is quite involved but can be
efficiently approximated. We obtain

P (N0) =
1

NF−1/2(η)

eηN0/N

√
N0/N + 1/2N

(4.77)

where we defined the function F−1/2(x) =
∫ 1

0 t
−1/2extdt. We finally convert the distribu-

tion of N0 in a distribution of n0 = N0/N :

p(n0) =
1

F−1/2(η)

en0η

√
n0

(4.78)
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Figure 4.8: Average depletion of the population 〈n0〉 (left) and its standard deviation
(right) as functions of η calculated via an exact diagonalization (blue curve) and using the
broken symmetry description (red points). Calculations are done with N = 1000, β′ = 100
and γ1 = γ2 = 0. The average of the magnetization is then zero and its distribution is
purely thermal (unconstrained).

When η → ∞, F−1/2(η) ∼ eη/η. The distribution for large values of η becomes quasi
exponential, centered at n0 = 1 with a width 1/η:

p(n0|η) ∼
η→∞

ηe(n0−1)η

√
n0

(4.79)

One recovers the result (4.71) for γ2 = 0. However, the treatment using SU(3) coherent
states is much more powerful, as it accounts for the complete Hilbert space and for instance
allows to compute the distribution of mz, which is out of reach of the treatment with
nematic states only.

4.3 Connection to spontaneous symmetry breaking

The spin Hamiltonian at zero magnetic field is rotationally symmetric. Its exact ground
state then has to share this symmetry, which implies huge spin fluctuations. As the
magnetic field increases, the system continuously evolves to a symmetry-breaking nematic
state. As we have seen, this transition is illustrated by the collapse of the spin fluctuations.
We calculated the variance of the population in the mF = 0 spin state in the broken
symmetry picture and found that it depended only on the variable Nq/kBT . At fixed
temperature, the collapse of the spin fluctuations then happens on a typical scale qc ∼ 1/N
of quadratic Zeeman effect, or equivalently on a scale Bc ∼ 1/

√
N of magnetic field. In the

thermodynamic limit Bc goes to 0, and an infinitesimally small magnetic field is enough
to destroy the spin fluctuations and to project the system in a mean-field state. This
behavior has a close connection to the phenomenon of spontaneous symmetry breaking.
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4.3.1 Spontaneous symmetry breaking in the thermodynamic limit

Introduction to spontaneous symmetry breaking

Symmetry plays a crucial role in quantum mechanics. For instance translational symmetry
of a system imposes that its eigenstates are fully delocalized over space. This is obviously
not observed in classical mechanics where, even in the presence of translational invariance,
objects are very well localized. In a classical phase transition, for instance when a crystal
is formed out of a fluid, translational symmetry of laws of physics is broken. The same
observation holds for rotational symmetry. In quantum mechanics, states that can be
deduced one from the other by a transformation keeping the system invariant should have
the same status. On the contrary, in the classical limit one of these states is singled out.
The system chooses ’arbitrarily’ one particular solution out of a set of equivalent ones.
The symmetry is said to be spontaneously broken.

One of the major achievements of condensed matter physics was to understand the
mechanism of spontaneous symmetry breaking and to develop the underlying mathemati-
cal formalism. We will here only briefly recall simple elements of this formalism. Still this
will be enough to then apply it to the case of the spin-1 Bose gas.

We consider a system of N particles described by a Hamiltonian Ĥ which is invariant
under some transformation. The ground state then retains the symmetry of Ĥ. Now we
add to Ĥ some external field which breaks the original symmetry of the system. The table
shows some examples taken from condensed matter physics [93, 94]. The new ground state
of the system also loses its symmetry. For finite values of N , if we send the amplitude of
this symmetry-breaking field to zero, the ground state evolves back to the symmetric state.
Afterwards taking the thermodynamic limit does not affect this property. If we now first
take the thermodynamic limit and send N to infinity while keeping some finite symmetry-
breaking part in the Hamiltonian, the system converges to some non-symmetric state. At
this point the symmetry is explicitly broken by the presence of the perturbation. We finally
reduce the amplitude of this perturbation to zero. It turns out that the symmetry breaking
survives this limit: the system picks up one non-symmetric ground-state whereas it should
be isotropic. The phenomenon of spontaneous symmetry breaking originates from this non
commutation of the two limits.

physical system broken symmetry symmetry breaking field

crystal translation of the center of mass pinning potential

nematic liquid crystal rotation in real space electric or magnetic field

antiferromagnet rotation in spin space staggered magnetic field

Table 4.1: Examples of systems experiencing spontaneous symmetry breaking, with the
associated symmetry breaking field.

Case of a spin-1 Bose gas

We now describe this mechanism in a more formal way. We consider a system of N spin-1
particles, and for simplicity assume a uniform trapping potential. We first suppose that
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no external magnetic field is present. In chapter 1 we developed a simplified Bogoliubov
theory of this system. We decomposed the state of the condensate in plane waves of
momentum k and obtained the Hamiltonian

Ĥ =
Us
2N

Ŝ2
tot +

∑

k 6=0

Eα(k)α̂†kα̂k + E0 (4.80)

where E0 is constant and α̂†k creates an elementary excitations of energy Eα(k). In this
expression we do not distinguish between the different elementary excitations (density and
spin waves) for it is not necessary here. The k = 0 part of the Hamiltonian corresponds to
the SMA Hamiltonian Ĥ0 = (Us/2N)Ŝ2. It describes the “center of mass” of the system
in spin space and so is the part we should consider to track the symmetry breaking. We
isolate it from the k 6= 0 part. Ĥ0 is rotationally symmetric and its eigenstates are the
total angular momentum eigenstates |N,S,M〉 with an even value of the total spin S.
They have an energy E(S) = (Us/2N)S(S + 1).

The profound cause of spontaneous symmetry breaking lies in the structure of the
spectrum of the collective Hamiltonian. In systems exhibiting symmetry breaking, this
spectrum is made of a family of states whose energy scales down with the particle num-
ber, and eventually collapses onto that of the ground state in the thermodynamic limit.
Such a spectrum is denoted as an Anderson tower of states, as P.W. Anderson was the
first to identify its key role [95]. Does the spectrum of Ĥ0 have the shape of an Ander-
son tower of states? We here have to check the behavior of Us in the thermodynamic limit.

Figure 4.9: Energy spectrum with the mode of the condensate and the first spatial ex-
citation which is a spin-wave mode. Above each mode are the collective spin excitations
forming the thin spectrum. A typical value for Us is 100 Hz, which gives an energy scale
for the thin spectrum of 0.1 Hz. The first spin wave excitation has an energy of order√
c2/c0~ω where ω is the trapping frequency (see chapter 1). The ratio c2/c0 = 0.035

gives for a frequency of 2π × 600Hz an energy
√
c0/c2~ω ∼ 100 Hz.

The energy Us was defined in the first chapter by Us = c2N
∫
|φ|4, where φ is the
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spatial mode of the condensate in the SMA and is normalized to unity. We note V the
volume of the system. |φ|4 is then of order 1/V 2, so that Us is of order N/V . Yet, in the
thermodynamic limit, N goes to infinity but the ratio N/V is kept constant, so that Us
keeps the same order of magnitude while taking this limit. The energies E(S) effectively
collapse to zero in the thermodynamic limit like 1/N . Let us now look at the partition
function

Zthin =
∑

S,M

e−βUsS(S+1)/2N ' 2N

βUs
(4.81)

from which we deduce the contribution of the spectrum of Ĥ0 to the free energy:

Fthin = −kBT ln(Zthin) ∝ ln(N) (4.82)

The total free energy of the system is an extensive quantity: it scales like N , and so the
relative contribution of the spectrum of Ĥ0 scales like ln(N)/N : it is negligible in the
thermodynamic limit. For this reason this spectrum is also often referred to as the ’thin
spectrum’. However its existence has far-reaching consequences.

We now consider the situation where a symmetry breaking field is added to the col-
lective Hamiltonian Ĥ0. In our case this role is played by the magnetic field through
the quadratic Zeeman effect and adds a term −qN̂0 to the Hamiltonian Ĥ0. If q = 0, the
ground state is the rotationally symmetric singlet state. If now q > 0, its effect is to admix
the low-lying |S〉 states of the thin spectrum to the symmetric ground-state to form the
new non-symmetric ground state. If we increase q while keeping N fixed, this superposi-
tion involves states of larger total spin S. When the number of contributing states gets on
the order of

√
N , the system has evolved to a nematic state (which can be constructed as

a superposition of |S〉 states with non-negligible contribution up to S ∼ O(
√
N), as shown

in [88] and [96] and in figure (4.10)). We now adopt the opposite approach: we apply some
fixed magnetic field and increase the number of atoms. The energies of the thin spectrum
decrease and the levels get closer to each other, so that at fixed q more and more |S〉 states
are admixed to the ground state. In the thermodynamic limit all the |S〉 states collapse
on the singlet state, and any infinitesimally small q is enough to form a nematic state as a
combination of these degenerate states. The symmetry is spontaneously broken. The first
picture (increase q at fixed N) describes our experimental approach that we will develop
in the next chapter, while the second one (increase N at fixed q) is closer to the spirit of
spontaneous symmetry breaking.

In the thermodynamic limit, the spinor condensate spontaneously collapses to a ne-
matic state which breaks the rotational symmetry of the Hamiltonian. However in our
system, because of the finite atom number, there exists a range of values of q where the
number of states from the thin spectrum contributing to the ground state is smaller than√
N . Equivalently, the system has not yet collapsed to the nematic state. This means

that, starting from a high magnetic field and then progressively decreasing it, we can ob-
serve in this region of q the transition from a nematic symmetry-breaking state back to
a fragmented, rotationally symmetric state, and observe the rise of the spin fluctuations
that progressively restore the symmetry broken by the magnetic field. We showed in the
previous section that the spin fluctuations are a quasi-universal function of the single vari-
able Nq/kBT . This is consistent with the fact that the amplitude of q necessary for the
symmetry to be broken scales as 1/N .
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Figure 4.10: Decomposition of the ground state |GS〉 of the spin-1 Bose gas in the total spin
basis (here M = 0) for different values of the QZE q, calculated by exact diagonalization
of the total Hamiltonian. We noted cS = 〈N,S, 0|GS〉. The color code is the following:
black: q = Us/N , blue: q = 10Us/N , green: q = 100Us/N . The red points correspond
to the decomposition of the nematic state |0, N, 0〉 in Fock basis. In all cases N = 1000.
At maximum the number of contributing states is on the order of

√
N , then forming the

nematic state.

At T = 0, the range of q where the quantum fluctuations beat the symmetry-breaking
effect and restore the symmetry is very small, of order Us/N . At finite temperature, the
symmetry breaking effect competes with the thermal fluctuations, which gives a range of q
of order kBT/N where the symmetry is restored. In previous experimental realizations of
spin-1 Bose-Einstein condensates, the atom number was on the order of 106. For typical
temperatures of a few tens of nK, the collapse to a nematic state happens for a field of
a few mG, which makes the spin fluctuations very hard to observe just because of the
ambient magnetic field noise. In this case, the symmetry is effectively spontaneously bro-
ken. In our experiment we take advantage of our quite small atom number (around 5.103)
which shifts the transition between 30 and 100 mG (depending on the temperature). This
level of magnetic field can be achieved experimentally with a reasonable control (of a few
mG) without any active stabilization. The experimental observation of the transition is
presented in the next chapter.

4.4 Conclusion

In this chapter we introduced the notion of fragmentation in Bose-Einstein condensates
and studied its occurrence in a single-mode spin-1 Bose gas. We showed that the spin
fragmentation of a spinor condensates is a direct consequence of the rotational symmetry
of the Hamiltonian that manifests itself in anomalously large fluctuations of the spin pop-
ulations. The fragmentation actually survives at finite temperatures and in the presence
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of a small enough magnetic field, although the rotational symmetry is in this case broken.
We demonstrated these results using first a diagonalization of the spin Hamiltonian. We
then introduced the numerically much more convenient broken-symmetry approach that
describes the spinor gas at low temperature by a thermal mixture of mean-field states: the
SU(3) coherent states. These generalized coherent states have remarkable properties in
the limit of large particle number, which makes the method very efficient. It also provides
an intuitive picture for the survival of the spin fluctuations at finite magnetic field in terms
of a finite size effect in a symmetry breaking phenomenon.

In the next chapter we will present the observation of spin fragmentation in our exper-
imental system. We will then use the results that we derived here for the moments and
the distribution of the population n0 within the broken-symmetry theory to analyze these
observations.



Chapter 5

Observation of spin fragmentation
and spin thermometry

In chapter 3 we presented a measurement of the equilibrium spin state of spin-1 conden-
sates of Sodium as a function of the applied magnetic field and of the magnetization of
the atomic sample. We concluded that our experimental data were reproducing well the
mean-field prediction. Actually, in the region of low magnetic field and zero magneti-
zation we observed anomalous spin fluctuations: when we prepared clouds under these
conditions, the spin distribution seemed to take all possible configurations between having
all the atoms in the |mF = 0〉 state (and none in the |mF = ±1〉 states) and having all
the atoms in the |mF = +1〉 and |mF = −1〉 states, as illustrated by figure (5.1). These
fluctuations were associated with a significant depletion of the average spin population
n0. On the contrary, for larger values of the magnetic field we consistently measured that
almost all the atoms accumulated in the |mF = 0〉 state (see figure (5.2)), as expected
from the mean-field theory.

mF=+1

mF=0

mF=-1

Figure 5.1: A serie of 10 experimental images after a Stern-Gerlach separation of the three
spin states and absorption imaging when the applied magnetic field during the hold time
is zero (q = 0 Hz). In each case the experimental sequence is exactly the same. The
magnetization is zero (within 2%) in each realization (as many atoms in the |mF = +1〉
and|mF = −1〉 states) but the distribution of the population within the three spin states
fluctuates strongly.

As we explained in chapter 4, the fluctuations at low magnetic field and zero magne-
tization express the spin fragmentation of the condensate. As the naive mean-field theory
is not able to describe them, we developed a theory based on SU(3) coherent states to
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mF=+1

mF=0

mF=-1

Figure 5.2: A serie of 10 experimental images after a Stern-Gerlach separation of the
three spin states and absorption imaging when the applied magnetic field is 850 mG
(q = 200 Hz). Almost all the atoms are in the |mF = 0〉 spin state, the fluctuations are
extremely reduced.

describe the spin state of the condensate at low temperature (low meaning here that the
effect of the non-condensed atoms is negligible). The temperature we introduced in this
theory characterises the distribution of the spin state of the condensate in the spectrum
of collective spin excitations. We call it the spin temperature. However, experimentally
a sizeable fraction of the atoms occupy uncondensed modes, and their effect cannot be
neglected. The distribution of these atoms in the spectrum of spatial excitations is charac-
terised by temperature that we denote as kinetic temperature. We expect that in complete
thermal equilibrium, the spin and kinetic temperatures equalize. Yet we have found that
our observations could not be described by a single temperature characterising both the
condensate and the thermal fraction. Rather, we have to consider two different tempera-
tures.

We present in this chapter a detailed experimental investigation of the phenomenon of
fragmentation in a spin-1 Bose gas in this framework. We observe the transition from a
fragmented condensate to a mean-field state as the magnetic field is increased and analyze
these experimental results using the broken-symmetry theory presented in chapter 4. From
the study of the measured distributions of n0 and mz we are able to extract the spin
temperature. In the last part of this chapter we compare it to the kinetic temperature
obtained from another method and discuss the observed differences.

5.1 Observation of spin fluctuations

5.1.1 Experimental sequence

The anomalous spin fluctuations are a consequence of the rotational symmetry of the
system, which implies that they arise for very low magnetizations. The first step of our
experimental sequence is to prepare a zero-magnetized atomic cloud using the spin mixing
technique at high temperature described in chapter 2. This way we produce clouds with
an average magnetization equal to zero within 2% (the average value of the magnetization
varies between different sets of data due to fluctuations in the preparation step). The
typical width of the magnetization distribution is 2 to 3%. This width is determined by
the experimental preparation (in particular the evaporation could be responsible for some
broadening of the magnetization distribution, as atoms are almost equally removed from
the three spin states)1.

1We cannot use the two-step spin filtering described in section 2.3.3 to purify the magnetization of the
cloud: it would bring the system far from its equilibrium, whereas this it what we aim at. This is not
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After the depolarization we perform the two-step evaporation. We stop the evapora-
tion at a chosen point in the second ramp, thus varying the kinetic temperature of the
cloud. We explore the regime from a trap depth where the condensed fraction is around
0.4 until full evaporation, where the condensed fraction is around 0.9. At the beginning
of the evaporation the magnetic field is ramped to some chosen value that determines
the quadratic Zeeman effect q. The field enters the Hamiltonian through its amplitude
only. We experimentally confirmed after a full evaporation that the observed fluctuations
and depletion were independent on the direction of the field. For each axis we applied
the field in the two directions and checked the symmetry of the fluctuations relatively to
the point of zero field. We then chose to always set the magnetic field on the x axis in
one direction. All the results presented in the following were obtained in this configura-
tion. To explore entirely the transition from a fragmented state to a mean-field state, we
need to scan the parameter η = Ncq/kBTs (Nc being the number of condensed atoms)
from 0 to approximately 100 (where for small average magnetizations the fluctuations are
expected to vanish and the atoms to accumulate in the spin state mF = 0, as shown
in figure (4.3)). For our atom number N ∼ 7000 and a spin temperature Ts ∼ 100 nK
(order of magnitude of the kinetic temperature Tk) the transition is expected to happen
for a magnetic field of a few mG, a regime where we have a good control of the applied field.

At the end of the evaporation we hold the atoms in the trap for 6 s, to make sure the
equilibrium state is reached. This equilibration time was determined in the same way as
explained in section 3.2.1 for the measurement of the phase diagram. During the hold
time, the depth of the trap is kept constant and equal to its value when the evaporation
was stopped. At the end of this period, we perform the Stern-Gerlach separation2 and
image the three clouds. By repeating the experiment we can measure the mean value of
the population in the mF = 0 state and its variance, which illustrate the fragmentation of
the system. The results are presented in the next section.

5.1.2 Data acquisition

To study the evolution of our spinor condensates from a fragmented condensate to a singly
condensed mean-field state we measure the mean value and variance of the population n0

for different values of the applied magnetic field. To correctly estimate these quantities,
we have to accumulate large sets of data. However the measured values may change if
we accumulate data over a long time, because of drifts of experimental conditions (of
ambient magnetic field in particular). We thus have to determine how many realizations
are required for the estimation of the moments of n0 to converge, and restrict to these
numbers to avoid drift issues. For large magnetic fields we expect that the estimators
converge fast, for the system is close to a mean-field state: almost all the atoms are in the
|mF = 0〉 state and the fluctuations are small. For values of the field closer to zero the
number of needed observations is much larger. To determine the number of observation
we need, when taking the data we monitor the evolution of the mean and variance of n0

a very serious concern: as we have seen previously, the non-zero average of the magnetization and the
finite-size of its distribution are taken into account by the broken-symmetry analysis with SU(3) coherent
states and the spin fragmentation survives at the small average magnetization we consider.

2During this step, the magnetic field (and so the quadratic Zeeman effect) at the position of the atoms
is changed while the three clouds still overlap (gradient and bias field needed to perform the Stern-Gerlach
separation). However this happens on a much to short time scale (7 ms) for the atoms to respond to this
change.
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as a function of the number of points. We decide to stop the acquisition when they do not
vary by more than 5% in the 10 last realizations. This procedure is shown in figure (5.3).
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Figure 5.3: Evolution of the estimated mean value (blue) and standard deviation (red) of
n0 for two different values of the QZE q as we accumulate data. The x axis is the number
of experimental realizations considered to compute the two moments. The moments of n0

reach a steady regime faster for larger values of q. In the case q = 200 Hz, about 20 runs
are enough to reach a steady-state, whereas for q = 0.2 Hz about 50 are required.

5.1.3 Measured moments of n0

We measure the evolution of the moments of the population n0 at various kinetic tem-
peratures by stopping the evaporation at different points. The results at two evaporation
times (975 ms and 700 ms) are shown in figures (5.4) and (5.5). At both times we observe
when q increases the drop of the depletion and of the fluctuations of n0 which reveal the
transition from a fragmented to a mean-field spin state. We show in figures (5.4) and (5.5)
the complete measured distributions of n0 for a low value of q (“before” the transition)
and for a large value of q (“after” the transition). The qualitative behavior we describe
here is observed at all evaporation times.

Using the broken-symmetry approach we calculated in chapter 4 the behavior of the
moments of n0 for a vanishing average magnetization (which is the situation we try to
reproduce) and for an unconstrained distribution of the magnetization (see figure (4.8)).
We found in particular the values at zero field: 1 − 〈n0〉 = 0.66, ∆n0 ≈ 0.3 and at large
field: 1− 〈n0〉 = ∆n0 = 0.

However, two main additional effects result in a deviation of our data from these
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Figure 5.4: Measured average depletion (figure (a)) and standard deviation (figure (b)) of
the population n0 as a function of the QZE q, after 975 ms of evaporation. The complete
distributions of the population n0 measured at q = 6 mHz and q = 200 Hz are shown in
histograms (c) and (d) respectively. We use 20 bins.

predictions. First, not all the atoms are condensed (which is the situation described by
the broken symmetry theory). The thermal component is expected to display a “standard”
statistical behaviour with small fluctuations. Second, our preparation of the magnetization
is not perfect, meaning that the average magnetization of our samples is not zero but a
few percent (up to 3%). Finally, the distribution of the magnetization is constrained: its
conservation by the spin exchange collisions indeed prevents the magnetization to relax
to a thermal equilibrium. We now identify the effects of these experimental conditions on
the moments of n0.

Measured depletion of n0

We first focus on the depletion of n0. As q increases it drops from a high value, always
close to 0.60, to a lower finite value which depends on the evaporation time. We discuss
the case q = 0 and the asymptotic regime.

We consider the effect of the thermal atoms. We note nc0 and nth0 the relative popula-
tions of the |mF = 0〉 state in the condensate and in the thermal fraction. nc0 is normalized
to the number of condensed atoms and nth0 to the number of thermal atoms. We note fc
the condensed fraction. We have

n0 = fcn
c
0 + (1− fc)nth0 (5.1)
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Figure 5.5: Measured average depletion (figure (a)) and standard deviation (figure (b)) of
the population n0 as a function of the QZE q after 750 ms of evaporation. As in figure (5.4),
the complete distributions of the population n0 measured at q = 6 mHz and q = 200 Hz
are shown in histograms (c) and (d) respectively. The presence of the thermal fraction is
revealed by the reduced number of values the population n0 can actually take.

In the following we make the simplifying assumption that the distribution of the non-
condensed atoms is independent of q and isotropic: we then have nth0 = 1/3. This as-
sumption is supported by an Hartree-Fock model that shows that in the range of q we
consider, the thermal fraction is to a good approximation isotropic. Only at large q does
the quadratic Zeeman effect force the thermal atoms in the |mF = ±1〉 states to condense
in the |mF = 0〉 state.

At q = 0, in the case where the magnetization is unconstrained and vanishes in average,
the condensed fraction is also isotropic and even in the presence of the thermal fraction we
expect 1− 〈n0〉 = 0.66. The lower value we observed is actually mainly explained by the
distribution of the magnetization. Indeed, the reduction of 1− 〈n0〉 at q = 0 is consistent
with an average magnetization of 2 to 3% (see figure (4.3)).

At large q the condensed atoms accumulate in |mF = 0〉 and nc0 → 1. Due to the
presence of the thermal atoms, a plateau then appears in the depletion of n0 at large q,
at a value:

1− n0 −→
q→+∞

2

3
(1− fc) (5.2)
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The non-zero average of the magnetization also results in a finite asymptotic value of
the depletion (see figure (4.3)) but given the magnetizations we measure we expect this
effect to be negligible compared to the offset due to the thermal fraction. The non-zero
value of the depletion of n0 at large q and its dependence on the evaporation time is then
mainly explained by the presence of thermal atoms. In the case of the two evaporation
times presented in figures (5.4) and (5.5) we observe a plateau at 1 − 〈n0〉 ' 0.1 and 0.2
respectively, corresponding to condensed fractions fc = 0.85 and fc = 0.7.

After the first plateau we just mentioned, we observe in figure (5.4) that the measured
depletion decreases again. This is explained by the fact that at very high q (∼ 103 Hz) the
quadratic Zeeman effect forces thermal atoms in the |mF = ±1〉 states to condense in the
|mF = 0〉 state [81]. The thermal fraction is then not isotropic any more.

Measured fluctuations of n0

We now turn to the standard deviation of n0. As a function of q, the observed behavior
of the standard deviation is the following: first a region at low q where it stays almost
constant, then it drops to a lower value and stay constant there for higher values of q (see
figures (5.4) and (5.5)). This evolution is qualitatively expected in the SMA theory.

Let us consider the effect of the thermal fraction. The fluctuations of the thermal
atoms are Poissonian. Their contribution is then on the order of

√
(1− fc)/3N < 1%,

and is negligible compared to the fluctuations of the condensate (and anyway below our
sensitivity). From expression (5.1) we then obtain

∆n0 ≈ fc∆nc0 (5.3)

The presence of the thermal fraction thus reduces the observed fluctuations at q = 0.

Looking at figure (4.3) we note that the distribution of the magnetization also has
a significant effect on the value of the fluctuations at q = 0. For the two evaporation
times presented in figures (5.4) and (5.5) we measure ∆n0 = 0.26 (evaporation time of
975 ms) and ∆n0 = 0.17 (evaporation time of 750 ms). Assuming that the deviation of the
measured value of ∆n0 at q = 0 to the SMA prediction is due to the presence of thermal
atoms only, and using the condensed fractions deduced previously from the analysis of the
depletion of n0, we calculate from the relation (5.3) ∆n0 ≈ 0.25 and ∆n0 ≈ 0.21. The
first value seems to be compatible with the measurement, but not the second one. The
data at 975 ms can then be explained by the presence of the thermal atoms only, but for
the data at 750 ms we need to take the distribution of the magnetization into account.

At large q, the fluctuations of n0 are expected to collapse to zero. This is not what
we observe. The measured values of a few percent can be explained by our imaging noise
(see section 2.2.5).

5.2 Statistical analysis of the distributions of n0 and mz

At each evaporation time and each value of the magnetic field we accumulated a large
enough set of observations to obtain a reasonable estimation of the probability distribution
of the population n0 and of the magnetization mz. The broken-symmetry theory gives
us an expression of the joint distribution of these two variables that depends on the spin



134 Ch. 5. Observation of spin fragmentation and spin thermometry

temperature Ts, the interaction energy Us and the quadratic Zeeman energy q. We present
here a model based on this theory that accounts for the thermal fraction. By fitting our
experimental data with this model we are able to extract values for the spin temperature
and the condensed fraction.

5.2.1 Model and method

Joint distribution in the broken-symmetry theory

We recall some results of chapter 4. The SU(3) coherent states we use to describe the spin
state of the condensate are parametrized by their average population n0 and magnetization
mz and by two phases Θ and α:

|ζ〉 =




√
1−n0+mz

2 ei(Θ+α)/2

√
n0√

1−n0−mz
2 ei(Θ−α)/2


 (5.4)

We consider the statistical ensemble of coherent states whose two first moments of mz are
fixed. The “phase-space” density is given by

P (ζ) =
1

Z e
−β(〈ζ|Ĥs|ζ〉−γ1mz+γ2m2

z) (5.5)

where Z is the partition function and β = 1/kBTs. We recall the definitions

η =
Ncq

kBTs

β′ =
NcUs
kBTs

(5.6)

where Nc is the number of atom in the condensate. The joint probability density distri-
bution of n0 and mz in the condensate is found by integrating over the variables Θ and
α. We obtain

P c(n0,mz) =
1

Z I0

(
β′n0

√
(1− n0)2 −m2

z

)
e−

β′
2 ((1+γ2)m2

z+2n0(1−n0))+ηn0+β′γ1mz (5.7)

This distribution has four dimensionless parameters: η, β′ and the Lagrange factors γ1

and γ2. The Lagrange factors are used to correctly account for the distribution of the
magnetization. The parameters we are interested in are η and β′. In each run we know
the quadratic Zeeman effect q and the total atom number N . Provided we can infer the
condensed fraction, the knowledge of η and β allows one to deduce the physical quantities
Ts and Us.

Joint distribution at finite kinetic temperatures

We now consider the presence of thermal atoms, and we make as before the assumption
that they are equally distributed among the three spin states. As discussed already, the
spin fluctuations of the thermal atoms (scaling as

√
N for an ideal gas) are expected to

be much smaller than the ones in the condensate. The joint distribution of n0 and mz in
the thermal fraction can then be approximated by a Dirac distribution:

P th(n0,mz) = δ(n0 − 1/3)δ(mz) (5.8)
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This implies that the magnetization of the atomic cloud entirely come from the condensate.
We know the joint distributions in the condensate and in the thermal fraction. We have
the relations:

ntot0 = fcn
c
0 + (1− fc)nth0

mtot
z = fcm

c
z + (1− fc)mth

z

The distribution in the total cloud is obtained by convoluting the two distributions of the
condensate and of the thermal fraction. One obtains

P tot(ntot0 ,mtot
z ) = P c

(
1

fc
(ntot0 − (1− fc)/3),

1

fc
mtot
z

)
(5.9)

Because we make the simple assumption of an isotropic thermal fraction, its inclusion
in the model only adds one parameter: the condensed fraction fc. In our experimental
data we know the quadratic Zeeman energy q and the total atom number N . We then
parametrize the joint distribution by the five independent parameters Ts, β

′, γ1, γ2 and fc.
We can thus fit the measured distribution at a given evaporation time and extract a spin
temperature Ts and a condensed fraction fc.

We use the maximum likelihood method to determine the temperature that best de-
scribes our data in the model we detail in the following. From this method we are also
able to get confidence intervals for the fitted temperature.

Sources of noise

Because the thermal distribution P th is a Dirac distribution, the convolution with the
SMA distribution gives a “contracted” SMA distribution: similar to the SMA distribution
but defined on a support [(1 − fc)/3; (1 + 2fc)/3] × [−fc; fc]. The resulting distribution
P (n0) of n0 alone (deduced by integrating over mz) vanishes for n0 close to 0 or 1, and is
supposed to rise with sharp edges (see 5.6). This prediction is not verified for our measured
distributions of n0, which exhibit smooth wings. This smoothening of the distribution can
be explained by various effects.

First the condensed fraction is not fixed but fluctuates from shot to shot due to fluctu-
ations of the temperature and of the atom number. For an ideal gas at temperature T one
has fc = 1−(T/Tc)

3 with T 3
c ∼ N . Second, we know that the imaging has some noise: the

atom numbers we count in each of the three spin states are not the ’true’ atom numbers
but are distributed around it with some variance, which modifies the distribution of the
relative populations we measure. Third, the thermal fraction is not perfectly isotropic:
the populations of the three spin states in the thermal fraction fluctuates around isotropic
mean values (even if we expect these fluctuations to be small), and its true joint distribu-
tion is not a Dirac distribution.

Considering these three different effects altogether would add many parameters and
would lead to a very complex fitting procedure. To evaluate their relative significance we
look how they individually affect the distribution of n0. We suppose successively gaussian
fluctuations of the condensed fraction, a gaussian noise of the imaging and a thermal
fraction which follows a multinomial law of mean (1/3,1/3,1/3). We consider the effect
on the distribution of n0 in the case q = 0 and 〈mz〉 = 0. The results are shown in figure
(5.6). The three effects cause a broadening and a smoothening of the distribution of n0.
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For realistic experimental conditions (typical fluctuations of fc of 5% and imaging noise of
50 atoms per component), the strongest effect is due to the fluctuations of the condensed
fraction. Practically, the measured distributions of n0 are displayed in histograms. For
a typical number of bins of 20, the other effects will no be visible, because the resulting
broadening is smaller than the bin size. Therefore we restrict our model to gaussian
fluctuations of the condensed fraction
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Figure 5.6: Probability densities of n0 calculated for η = 1 in the following cases: in
blue: fixed condensed fraction of 0.9, isotropic thermal fraction and no imaging noise;
in red: fixed condensed fraction of 0.9 and a gaussian-distributed thermal fraction with
central value 1/3 and variance σ2 = 2/9Nth (limit of the multinomial law for large number
of variables); in green: fixed condensed fraction of 0.9, isotropic thermal fraction and
gaussian imaging noise of standard deviation 50 atoms; in black: isotropic thermal fraction
but gaussian-distributed condensed fraction, centered at 0.9 with σ = 0.05. In all cases,
the total atom number is N = 5000.

The maximum likelihood method

In our model, the joint probability density of n0 and mz now depends on six parameters:

- the average condensed fraction f̄c

- the standard deviation of the condensed fraction σfc

- the spin temperature Ts

- the dimensionless parameter β′

- the two Lagrange factors γ1 and γ2

We define θ = (Ts, β
′, γ1, γ2, f̄c, σfc) the parameters vector. We note the joint probabil-

ity density P (n0,mz|θ). To infer the values of the parameters that best describe our
data within our model and their confidence intervals we resort to the maximum likelihood
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Figure 5.7: Distribution of n0 (left) and mz (right) for q = 0. The blue histograms are
experimental observations, the red curves are the result of the fit using the maximum
likelihood method. The fit is done on the joint distribution of n0 and mz. The fitted joint
distribution is integrated over one variable to get the marginal distribution of the second
one. For the particular value q = 0, since then η = 0 independent of Ts, the fit procedure
does not allow us to extract the spin temperature (the log-likelihood is independent of the
value of Ts). That is the reason why in the results we present in the following we only
consider q > 0. Still in this case we can extract the other parameters. The result of the
fit are: β′ = 27.7, γ1 = 0.07, γ2 = 7.7, f̄c = 0.75 and σfc = 0.17. The quantity E indicates
the number of experimental realizations represented in the two histograms.

method.

At a given value of the evaporation time and of the quadratic Zeeman effect q the
experiment provide us a set of NE independent realizations (n0,i,mz,i) of the random
variable (n0,mz). All these observation obey the parametrized probability distribution
P (n0,mz|θ). To each value of the vector θ we can associate a quantity called the
likelihood L(θ) [97] that is defined by the conditional probability for observing the set
(n0,i,mz,i)1<i<NE if the random variables (n0,mz) follows the probability density P (n0,mz|θ).
In the case of independents events, this probability is the product of all the probabilities
to observe each of these events:

L(θ) =

NE∏

i=1

P (n0,i,mz,i|θ) (5.10)

Given a set of observations, the likelihood measures the validity of the hypothesis that
these data follow the probability distribution defined by some parameters θ. If the ob-
served data are probable within this hypothesis, the likelihood will be large, whereas if
the hypothesis is doubtful, it will be small. It should be stressed that, unlike a probability
density that supposes fixed parameters to describe the chances to observe a set of particu-
lar realizations, the likelihood takes the observations as fixed and associate a “probability
score” to the various distributions that could have led to them. The likelihood is a mean
to compare different hypotheses: only the difference in likelihoods between two events is
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meaningful, the absolute value is not. The likelihood is not a probability density of the
parameters: in particular it is not normalized.

In the case of independent variables it is actually more convenient to work with the
logarithm of the likelihood, which we denote as log-likelihood.

ln[L(θ)] =

NE∑

i=1

ln[P (n0,i,mz,i|θ)] (5.11)

The logarithm is monotonically increasing so that the same ordering of log-likelihoods
holds that exists for likelihoods.
To speed up the analysis, the experimental data are binned in 2D histograms such that
all the events in the same bin have approximately the same likelihood. For the bin (j, k)
we note dj,k the number of observed entries in the bin, tj,k the number of expected entries
and n̄0j and m̄zk the central values of n0 and mz. The bins all have the same size ∆. We
have:

tj,k(θ) = NEP (n̄0j , m̄zk|θ)∆ (5.12)

If the number of bins is large enough, then the number of entries in each bin is small
compared to the total number of entries, and the distribution of entries in one bin can be
described by a Poisson law. The probability of observing dj,k events where the mean is
tj,k is given by:

Lj,k =
t
dj,k
j,k

dj,k!
e−tj,k (5.13)

so that the log-likelihood reads:

ln[L(θ)] =
∑

j,k

lnLj,k (5.14)

=
∑

j,k

(−tj,k + dj,k ln tj,k − ln(dj,k!)) (5.15)

The dependence in θ is carried by tj,k, and we can drop the terms ln(dj,k!) that only
act as on offset. In our case, the vector θ is allowed to vary continuously in a three-
dimensional space, meaning we have to consider an infinite number of possible probability
densities of n0. The log-likelihood is a continuous function of θ and in almost all cases it
admits a single maximum. It is then possible, using numerical methods, to find the point
in parameters space θmax where the likelihood reaches this maximum.

Confidence intervals

When the number of observations is large, the likelihood function approaches a gaussian
and becomes proportional to the probability density function of the parameters (with an
unknown normalization factor). The boundaries of the one-standard deviation confidence
interval are then defined by a reduction of the likelihood function by a factor e1/2 compared
to its maximum value, corresponding to one sigma of the gaussian (and by factors e2 and
e9/2 for two and three standard deviations respectively). This is equivalent to a drop of one
half of the log-likelihood compared to its maximum value. In the case of a n-dimensional
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parameter θ the confidence interval is a n-dimensional volume defined by the points θ
such that

ln[L(θ)] ≤ ln[L(θmax)]− 1

2
(5.16)

The error interval for one single fit parameter corresponds to the projection of the n-
dimensional volume on the relevant dimension. We keep this definition of the error interval
for finite number of observations, when the likelihood function is not necessarily Gaussian.
This leads to asymmetric error limits.

In the following we present the results of our fit procedure. We checked that these
results do not depend on the number of bins we use. We fitted the data using 40, 20 and
10 bins and concluded that the results are compatible within the fit confidence interval.

5.3 Spin temperature and condensed fraction during the
evaporation

We fit the measured joint distribution of n0 and mz at various evaporation times and
various quadratic Zeeman energies q. We are actually limited in the evaporation times we
can use by the requirement that the three spin states are spatially well separated after the
Stern-Gerlach experiment. For evaporation times shorter than 700 ms, the ballistic expan-
sion of the clouds due to their kinetic temperature is too fast and leads to an overlap of
the three clouds. The figures (5.8) and (5.9) show the fitted distributions P (n0,mz) for
975 ms and 700 ms of evaporation respectively. The joint distribution is integrated over
one of the two variables to obtain the marginal distribution of the other one. We find that
our experimental data are well described by our model, which generally supports the idea
that the spin of the condensate has reached an equilibrium. In both figures we observe the
progressive accumulation of the atoms in |mF = 0〉 as q is increased. The fact that at large
q the distribution of n0 becomes peaked at a value lower than n0 = 1 reveals the presence
of the thermal fraction. This effect is clearly visible after 750 ms of evaporation where
n0 takes its values in a reduced interval. These figures also confirm that it is important
to account for the distributions of mz, as they vary both in average value and in width
between different sets of data (due to uncontrolled fluctuations in the preparation). The
figure (5.10) summarizes the results for the spin temperature Ts for all the evaporation
times we considered and for various values of q.

We point out that in figure (5.10) we did not represent all the values of q we used.
Large values (& 50 Hz) actually lead to large fitted temperatures (several µK) with huge
error bars. The same phenomenon is also sometimes observed for very small values of q
(. 0.1 Hz). To justify the choice of discarding these points we note that for large values
of η = Nq/kBTs the distribution of n0 becomes very peaked close to n0 = 1 (see figure
(4.5)), with a typical width in n0 given by 1/η. At some point this width becomes on the
order of the broadening due to the fluctuations of the condensed fraction, which are of a
few percents, and the dependence of the distribution in the temperature Ts is blurred. On
the other hand the large error bars at low q can be explained by the weak dependence of
the distribution of P (n0,mz) in η for small values of this parameter. This can be seen for
instance in figure (4.3): the two first moments of n0 vary very slowly in the region η � 1
and are independent of Ts in the limit q → 0 (this is true as long as Ts � NUs, which is
always the case for us [88]). Small values of q bring the system in this region, where large
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changes in Ts then have little effect on the distribution.
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Figure 5.8: Distributions of n0 (left) and of mz (right) for an evaporation time of 975 ms
and different applied magnetic fields indicated by the value of q. The blue histograms show
the experimental data, the red curves show the fitted distribution integrated over mz to
obtain the marginal distribution of n0 (left) and the fitted distribution integrated over n0

to obtain the marginal distribution of mz (right). Two figures on the same line describe
the same set of observations. The number of observations E in each set is indicated in the
histogram of n0. We observe the progressive accumulation of the atoms in the mF = 0
state and the narrowing of the distribution of n0 when q increases. To each value of q
corresponds a fitted spin temperature Ts that appears in figure (5.10).

Considering all the evaporation times, we can identify two regimes for the different
values of q. First for q less than a few Hz we consistently find spin temperatures ranging
from 30 to 100 nK. Then at larger q (& 10 Hz) the fitted temperatures increase. This
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Figure 5.9: Distributions of n0 (left) and of mz (right) for an evaporation time of 700 ms
and different applied magnetic fields indicated by the value of q. As in figure (5.8) blue
histograms are experimental data and red curves are fitted marginal distributions. Two
figures on the same line describe the same set of observations. The number of observations
E in each set is indicated in the histogram of n0. The effect of the finite temperature clearly
appears in the smaller domain where the distribution of n0 is not zero. To each value of
q corresponds a fitted spin temperature Ts that appears in figure (5.10).

behavior is highlighted in figure (5.11) where the spin temperature is represented as a
function of the evaporation time for four values of q (0.2 Hz, 1 Hz, 6 Hz and 22 Hz). For
low q (0.2 Hz and 1 Hz) the spin temperature does not change with the evaporation time
(in the part of the evaporation ramp we investigate) and is already as low as 50 nK after
700 ms of evaporation. For larger values of q we find larger spin temperatures, which now
do decrease during the evaporation. This different behaviour of Ts for different values of q
is revealed by figure (5.12) (which shows the same data as figure (5.11)). We note that the
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Figure 5.10: Results of the fit for the temperature, at different evaporation time and dif-
ferent quadratic Zeeman energies q. The error bars correspond to one standard deviation.

temperatures fitted at q = 22 Hz should be considered carefully for the parameter η fitted
at long evaporation times is on the order of the fluctuations of the condensed fraction and
our analysis may interpret as fluctuations of the spin of the condensate what is actually
preparation noise.

From our fit we also extract a condensed fraction. The figure (5.11 b) shows the fitted
condensed fraction f̄c for the different evaporation times and different values of q. The
error bar shows the fitted width σfc of the distribution of condensed fraction. (It is not the
error bar on the fit parameter f̄c of the fit function). We find values of f̄c on the order of 0.9
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or even more for the longest evaporation times (950, 975 and 1000 ms), and then lower and
lower condensed fractions as we reduce the evaporation time, until f̄c ≈ 0.45 for 700 ms of
evaporation. Thus, the analysis of the distributions of n0 and mz gives us access to con-
densed fractions that we cannot measure with standard techniques (see chapter 2). For a
given evaporation time and q . 20 Hz the condensed fraction does not seem to depend on q.

The increase of the condensed fraction with the evaporation time is associated to the
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Figure 5.11: Spin temperature Ts (right) and condensed fraction fc (left) during the
evaporation ramp for four values of q. For q = 0.2 Hz and q = 1 Hz we observe that the
spin temperature does not vary during the evaporation and is on the order of 50 nK. For
q = 6 Hz and q = 22 Hz the spin temperature decreases during the evaporation. The
condensed fraction always increases during the evaporation, independently of q.
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Figure 5.12: a): Spin temperature Ts during the evaporation ramp for three values of
q: blue: q = 1 Hz, red: q = 6 Hz, green: q = 22 Hz. The different behavior during
the evaporation of the spin temperature for different q appears: at low q it is constant
and quite low (∼ 50 nK), while at higher q it decreases and is significantly larger. b):
Condensed fraction fc during the evaporation ramp for the same values of q and with the
same colour code. The condensed fraction always increases during the evaporation and
seems independent of q. The results at different q have been shifted along the time axis
for clarity. The evaporation times used were the same for all values of q.

(expected) decrease of the kinetic temperature during the evaporation. However, the
spin temperature - at least at low q - behaves differently: it remains constant and takes
significantly lower values than the kinetic temperature.

5.3.1 Temperatures at fixed trap depth

To confirm these different behaviors we performed a different experiment. We now con-
sider different runs where the evaporation time is fixed to 1000 ms (corresponding to full
evaporation) and where we vary the time during which we hold the atoms in the trap
before imaging, and the amplitude of the applied magnetic field. We recall that in the
first series of experiments that we described previously, the hold time was set to 6 s to
make sure that equilibrium was reached. In this serie of experiments we change it from 1 s
to 15 s 3. For each value of the hold time and of the applied magnetic field, we repeat the
experiment a large number of times to obtain estimations of the distributions of n0 and
mz. We then perform the same analysis of the distribution P (n0,mz) as before. The fitted
spin temperatures and condensed fractions are shown in figure (5.13) for three values of q
(0.2 Hz, 1 Hz and 6 Hz).

We observe that, within error bars, the spin temperatures remain the same during the
hold time, while the condensed fraction increases. This suggests:

- that the evaporative cooling goes on during the hold time, and that the kinetic
temperature still decreases.

3The lifetime of our clouds is long enough to still keep around 5000 atoms after 15 s
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- that the spin temperature on the other hand settles very quickly to the value it
assumes after many seconds of hold.

From this we conclude that the spin and kinetic temperatures are set independently, or in
other words that the two systems that they describe are not coupled.
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Figure 5.13: a): Fitted temperature Ts as a function of the hold time for three values of
q: blue: q = 0.2 Hz, red: q = 1 Hz, green: q = 6 Hz. b): Fitted condensed fraction as a
function of the hold time with the same color code. The set of evaporation times is the
same for the different values of q, the points are shifted along the x axis for clarity.

To confirm the independence of these two systems we would like to compare directly
the spin and the kinetic temperatures. This is the object of the next section.

5.4 Two spinor fluids isolated from each other

5.4.1 Comparison of spin and kinetic temperatures

As explained in chapter 2 we can deduce the kinetic temperature of our clouds by time-of-
flight experiments. However, this method, based on the fit of the density distribution of
the thermal atoms, fails at very low temperature, when thermal and condensed atoms be-
come hardly distinguishable even after a time-of-flight expansion. It can provide a reliable
measurement of the kinetic temperature only for evaporation times shorter than 800 ms.
The determination of the kinetic temperature for longer evaporation times requires an
other method.

For large values of q, all the atoms of the condensate accumulate in the |mF = 0〉
state and the fluctuations are negligible. The total population n0 takes the asymptotic
value n0 = fc + (1− fc)nth0 . Using a Hartree-Fock model it is possible to fit the condensed
fraction from the observed n0, and then from this value find the kinetic temperature. This
analysis is detailed in the thesis of L.Shao [81]. The results are shown in figure (5.14)
where we also represented the temperature obtained from time-of-flight experiment after
700 ms and 800 ms of evaporation.
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Figure 5.14: a): Kinetic temperatures during the evaporation ramp. The blue circles show
the temperatures obtained from the analysis of the moments of n0. The two red squares
represent the kinetic temperatures deduced from a time-of-flight experiment. The time-
of-flight method does not allow us to reliably determine the temperature for evaporation
time longer than 800 ms. b): Spin temperature Ts as a function of the kinetic temperature
Tk for two values of q: blue: q = 1 Hz, red: q = 22 Hz. The dashed line has slope unity.

If we compare these kinetic temperatures to the spin temperatures represented in figure
(5.11) we identify two regimes. At low q we find that the spin temperature is significantly
lower (∼ 50 nK), and that the behavior of the two temperatures during the evaporation
also is different, the spin temperature staying constant. On the contrary, for larger values
of q, the spin temperature is comparable to the kinetic temperature during the whole
evaporation.

5.4.2 Large q: the condensate and the thermal gas are coupled

From the analysis of the joint distribution of n0 and mz, we concluded that in our ex-
perimental system the condensate has reached a quasi-equilibrium characterized by a spin
temperature Ts. In addition to the condensate, thermal atoms are present which are char-
acterized by a kinetic temperature Tk. These two temperatures describe two different
systems: the collective spin of the condensate on one side, and the non-condensed modes
on the other one. These two systems reach their equilibrium via different mechanisms.
The thermal gas thermalizes through elastic collisions and evaporative cooling. The spin
of the condensate on the other side thermalizes through spin-exchange collisions where
two atoms in |mF = 0〉 give a pair |mF = +1〉+ |mF = −1〉.

For large values of q, only the |mF = 0〉 state is condensed, and the redistribution of
the spin energy via spin exchange collisions implies the coupling of the condensed mF = 0
atoms to the thermal fraction in |mF = ±1〉. In this case, the condensate and the thermal
gas couple, and they are described by a single temperature. We then measure that the
spin and kinetic temperatures coincide. Consistently, we note that the value of q for which
we observe these similar two temperatures (q = 22 Hz) corresponds to the region of low
spin fluctuations in the figures (5.4) and (5.5).
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5.4.3 Low q: condensate at equilibrium but decoupled from the thermal
gas

For low values of q (and given our low magnetization), the three spin species are con-
densed. In this case, spin exchange collisions can take place inside the condensate, and
do not involve thermal atoms. The condensate is able to thermalize on its own. The
two systems then equilibrate independently (on the time scale of one experiment) which
results in the large difference between Ts and Tk. We note that the values of q for which
we observe a decoupling of the two temperatures correspond to the region of strong spin
fluctuations in the figures (5.4) and (5.5). The transition from a fragmented to a mean-
field state typically occurs in our data for values of q of a few Hz. Indeed we see that
at q = 6 Hz, the spin temperature is closer to the kinetic temperature than for lower
values of q. Still, even at low q one could expect that at infinite time, due to a residual
coupling of the two systems, the spin and kinetic temperatures converge to the same value.

The weakness of this coupling can also be understood by the large difference between
the energy scales of the orbital and spin systems. At low magnetic field, the collective spin
excitations of the condensate form a thin spectrum that we already discussed in chapter
4. The typical energy scale for these excitations is Us/N , which in our experiment is
on the order of 1 pK. On the other hand the spatial excitations are spaced by energies
on the order of the trapping frequency. In our case (ω ≈ 2π × 600 Hz) the first spatial
excitation is a spin-wave mode with an energy ε ≈

√
c2/c0~ω ≈ 6 nK (see chapter 1).

Let us consider a process where energy is transferred from one system to the other, by
example by adding one quantum of spatial excitation and consequently changing the col-
lective spin state to conserve the total energy. This corresponds to a transition of the type
|k0 : 1, k1 : 0〉 ⊗ |φ〉 → |k0 : 0, k1 : 1〉 ⊗ |φ′〉, where |φ〉 and |φ′〉 denote collective spin states
of the condensate, and k0 and k1 label two spatial excitations. To happen, this transition
has to be resonant. As illustrated by the figure (5.15), the difference in energy scales
implies that |φ〉 and |φ〉′ are very distant in the collective spin spectrum. The transition
from one to the other is then a very high order process, which is very unlikely. It follows
that the whole transition probability is very small.

The spin of the condensate is thus a quasi-isolated system which equilibrates on its
own. The equilibration process involves the dephasing of spin oscillations triggered by
spin exchange collisions, which results in the thermal distribution of some few-body ob-
servables, in particular the spin populations. This mechanism is suggested by [98], where
the authors study the long time dynamics of a spin-1 condensate initially in the |mF = 0〉
spin state only, in the absence of magnetic field. They demonstrate that, even starting
from this very ordered and out-of-equilibrium state, after a time t ∼

√
N ~/Us, the indi-

vidual spin populations present thermal-like distributions. In our system we find t ∼ 0.4 s.

The spin of the condensate reaches its own equilibrium. What then sets the temper-
ature characterizing this equilibrium? To answer this question we should estimate the
amount of energy in the spin degree of freedom. This quantity is easier to determine at
zero field, where the spin Hamiltonian restricts to the spin-dependent interaction. The
spin energy is then given by 〈S2〉 = 〈S2

⊥〉 + 〈S2
z 〉. The fluctuations of the transverse spin

in the condensate (and consequently the spin energy) are determined by the way the con-
densate builds up from the thermal fraction (the energy Us depends very smoothly on the
atom number). If we imagine an experiment where we quench the temperature of thermal
gas through the critical temperature, the condensate would inherit the spin fluctuations
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Figure 5.15: Detail of the spectrum. The vast difference in the energy scales of the
collective spin excitations and of the spatial ones results in a weak coupling of the two
systems.

of the thermal gas. Since the spin distribution of the thermal gas is isotropic, it is reason-
able to assume that one has 〈S2

⊥〉 ∼ 〈S2
z 〉. Under these conditions and assuming that the

magnetization averages to zero we obtain for the spin energy:

Es =
Us
2N
〈Ŝ2〉 ∼ Us

N
∆S2

z (5.17)

The fluctuations of the magnetization ∆S2
z are directly accessible experimentally. From

our data at q = 0 we can then estimate the spin energy. We find (Us/Nc)〈S2
z 〉 ≈ 35 nK for

all evaporation times, which is on the same order as the spin temperatures we measure
for very low values of q, as shown in figure (5.16), supporting the idea that at low q the
spin temperature is correlated with the fluctuations of the magnetization.

5.5 Conclusion

In this chapter we presented an experimental investigation of the phenomenon of spin
fragmentation in an antiferromagnetic spin-1 Bose gas. We measured the anomalous spin
fluctuations and the depletion of the mF = 0 spin state at low magnetic field and low
magnetization for different trap depths. We analyzed these observations using the broken
symmetry theory that we developed in chapter 4. We found that the distributions of
the population n0 and of the magnetization mz are well described by a condensate in a
broken symmetry state characterized by a spin temperature Ts and in equilibrium with a
thermal fraction. Using a maximum likelihood method we extracted the spin temperature
at different values of the quadratic Zeeman effect and for different evaporation times. We
compared these results to the kinetic temperatures obtained from an analysis of the two
first moments of n0. We find that at low q (a few Hz) the kinetic and spin temperatures
exhibit different behaviors during the evaporative cooling. The first one decreases dur-
ing the evaporation while the second one stays constant. Additionally, we find that the
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Figure 5.16: Comparison of the estimated energy in the spin degree of freedom Es/kB =
(Us/2NkB)∆S2

z (blue squares) and of the spin temperature for q = 0.06 Hz (red circles)
and q = 0.12 Hz (green circle). We cannot use our analysis to deduce the spin temperature
at q = 0 since then η = 0 and our algorithm becomes insensitive to Ts. The energy Es is
calculated from the measured fluctuations of the magnetization at q = 0.

spin temperature is lower than the kinetic one. We concluded that the two temperatures
describe two systems - the collective spin excitations of the condensate on one side and
all the non-condensed modes on the other side - that are quasi decoupled. We gave an
estimate of the energy available in the spin degree of freedom at low q and found that it
gives the correct order of magnitude for the spin temperature.

We were not able to repeat the experiments we presented in this chapter at shorter
evaporation times, due to technical limitations in the Stern-Gerlach separation. It would
be interesting to measure a spin temperature earlier in the evaporation ramp and explore
further the link between the spin and kinetic temperatures. However, our model might
then be questioned, as it supposes that the condensate is isolated from the thermal frac-
tion, which is itself taken isotropic. These two assumptions are expected to fail for large
enough kinetic temperatures.

An other interesting direction would be to study the dynamics of the thermalization
of the spin degree of freedom. We plan to do this by quenching the magnetic field from a
large value (where the condensate is in the |mF = 0〉 state only) to a low value (where it
is fragmented) and by measuring how the distribution of the population n0 evolves after
the quench.





Conclusion and perspectives

In this thesis we studied experimentally the magnetic properties of a spin-1 BEC of Sodium
at equilibrium. We measured the mean-field magnetic phase diagram. We then focused on
the behavior of the system at low magnetization and low magnetic field, where we revealed
the fragmentation of the equilibrium spin state. We showed that this equilibrium state is
characterized by a temperature that can be different from that of the orbital degrees of
freedom, and interpret this situation in terms of a general formalism initially proposed by
P.W. Anderson.

Summary

In chapter 1 we introduced the basic ingredients of the theory of spinor condensates. We
obtained the expression of the spin dependent interactions in these gases and found that
they conserve the magnetization. This quantity plays a major role in the thermodynamic
properties of the system as we show by studying its ground-state. For this we developed
a mean-field description of spinor condensates and made the important assumption that
all the spin states share the same spatial mode. In this context we derived an expression
for the ground-state of a spinor condensate with antiferromagnetic interactions (which is
the case of Sodium) as a function of its magnetization and of the external magnetic field.
We identified two phases. For a given magnetization, under a critical magnetic field only
the spin states |mF = ±1〉 are present. We called this phase antiferromagnetic. When
the magnetic field is increased above this critical value, the atoms start to populate the
|mF = 0〉 state until an asymptotic value fixed by the magnetization. We called this phase
broken-axisymmetry. We then checked the underlying single mode approximation by nu-
merically solving the set of coupled Gross-Pitaevskii equations that the spinor wavefunc-
tion obeys. We found that under our experimental conditions (an atom number N ≈ 5000
and an almost spherical trap of frequency ω = 2π × 600 Hz) this approximation gives a
very good agreement with the exact solution. Finally we discussed elementary excitations
of a condensate with internal degree of freedom. We made a Bogoliubov approximation
and found, additionally to the density mode present in scalar gases, two spin-wave modes.

In chapter 2 we first described our experimental set-up and our sequence to produce
spinor condensates of Sodium. We first create a background pressure of Sodium in the
vacuum chamber using light-induced desorption and from it we load a magneto-optical
trap. The atomic cloud is then transferred into a large volume crossed dipole trap where
we start the evaporative cooling. The reduction of the trap frequencies associated to the
lowering of the laser power does not allow to reach the degeneracy threshold in this trap.
We consequently load the atoms in a second dipole trap of smaller volume where we pursue
and complete the evaporative cooling. We obtain quasi-pure Bose-Einstein condensates
of a few thousand atoms. In a second part of the chapter we detailed the techniques



152 Conclusion and perspectives

we use to probe our spinor gases. To be able to measure the spin distribution of the
atomic cloud we perform a Stern-Gerlach experiment to spatially separate the three spin
states. We then image them using absorption imaging. We presented an empirical model
of the atom-light interaction and calibrated the scattering cross sections of the three spin
states. The sources of imaging noise were then analyzed and a noise-reduction algorithm
was described. In the last part we explained how we can control the internal degree of
freedom of our clouds, more precisely to prepare a cloud of chosen magnetization. We
described two techniques to either increase or decrease the magnetization. Applying a
resonant rf magnetic field, we can take advantage of the dephasing of Rabi oscillations to
depolarize the cloud. On the opposite, by applying a gradient of magnetic field, we use the
different couplings of the spin states to the field to purify the spin distribution of the cloud.

Chapter 3 presents a mean-field study of the ground state of an antiferromagnetic spin
1 condensate. We showed that the antiferromagnetic spin interactions favor the alignment
of individual spins and lead to the existence in the many-body states of a spin nematic or-
der. We defined a nematic order parameter and interpreted the magnetic phase diagram
identified in chapter 1 in terms of this parameter. We then presented an experimental
measurement of this phase diagram. We prepared the system at equilibrium in different
conditions of magnetization and magnetic field and we measured the spin populations. We
identified a critical magnetic field where the phase transition between the antiferromag-
netic and broken-axisymmetry phases occurs. We found a very good agreement with the
prediction of the single-mode approximation. In the last part we described a method to
probe directly the spin nematic order of the system. This order is actually associated to
the minimization of the transverse component of the total spin, which can be measured by
analyzing the fluctuations of the magnetization during a rotation of the spin state. This
rotation is performed by applying a resonant rf magnetic field. Using this technique we
provided a direct evidence of the spin nematic order in condensates. We also showed with
this technique the existence of a non-zero average of the transverse component of the spin
in the antiferromagnetic phase. In this phase the transverse spin is expected to vanish in
the condensate. We then attributed this transverse spin to the thermal atoms surrounding
the condensate. As the transverse spin is directly linked to the existence of coherences
between the component mF = 0 and mF = ±1 of the spin state, we deduced the existence
of such spin coherences in the thermal fraction.

Chapter 4 focuses on the properties of the antiferromagnetic spin-1 Bose gas at low
magnetization and low magnetic fields. This study was motivated by the observation of
large spin fluctuations under these conditions. Such fluctuations are actually present even
in the ground state which, due to the symmetry of the system, becomes fragmented. We
introduced the notion of fragmentation and showed by an exact diagonalization that it
manifests itself in the distribution of the population of the |mF = 0〉 spin state. An exact
resolution for a number of atoms of a few thousands is feasible, but computationally very
long and is not suitable for an analysis of experimental data. We then developed an ap-
proximative theory in which the spin state of the condensate is described by a statistical
mixture of mean-field states characterized by a spin temperature Ts. In this description,
the symmetry of the spin state (that is broken in the naive mean-field treatment) is re-
covered. This approach also has the advantage to allow an efficient calculation of the spin
distributions. We were then able to compute how the spin state of condensate evolves from
a fragmented state at low magnetic field, to a mean-field state at larger fields. The use of
the SU(3) coherent states as a basis of mean-field states also made it possible to account
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for experimental realities such as the distribution of the magnetization which is imposed
by our preparation and then frozen. Finally we connected this transition from a symmetric
fragmented state to a symmetry-breaking mean-field state to the phenomenon of sponta-
neous symmetry breaking. We identified the spectrum of collective spin excitations to an
Anderson tower of states and showed that the existence of this “thin spectrum” involves
that the width of the transition decreases with the number of particles. The rather small
atom number of the samples we produce (smaller than in other experiments) allows us to
observe these spin fluctuations.

Finally, chapter 5 presents an experimental investigation of the phenomenon of spin
fragmentation. We prepared spinor gases with vanishing magnetization at equilibrium and
under low magnetic fields. As suggested by the theoretical study of chapter 4 we measured
the average value and fluctuations of the population n0 in the |mF = 0〉 spin state. We
repeated this experiment at different kinetic temperatures by stopping the evaporative
cooling at different times. For each evaporation time we observed the drop of the spin
fluctuations with magnetic field and the progressive accumulation of the atoms in the
|mF = 0〉 state. We analyzed the measured distributions of the population n0 and of the
magnetization using the broken-symmetry theory developed in chapter 4. From this anal-
ysis we were able to extract the spin temperature of the system. We then compared these
temperatures with the kinetic temperatures obtained from an analysis of the moments of
n0 only. We found that for low magnetic fields, the spin temperatures are lower than the
kinetic ones and that their qualitative behavior during the evaporative cooling also differ.
The kinetic temperature decreases (as expected) during the evaporation while the spin
temperatures stay constant. We interpreted this differences as a signature of the weak
coupling of the systems described by these two temperatures. We estimated the energy
available in the spin degree of freedom and found it gives the correct order of magnitude
for the spin temperature.

Perspectives

The evidence of the decoupling of the collective spin excitations of the condensate from
the thermal excitations suggests several further experiments to investigate the behavior
of isolated quantum systems, which is still a very debated topic [98][99][100][101]. In
particular it would be interesting to study how the spin degree of freedom thermalizes
by looking at the evolution of the spin distribution starting from a well defined out-of-
equilibrium situation. One can for instance consider an experiment where the condensate
would be prepared at a large magnetic field (the distribution of n0 at equilibrium is then
peaked at n0 = 1) and where we would then quench the field to a very low value thus
placing the spin of the condensate in a very excited state. The measurement of the
distribution of n0 in the time following the quench would provide information about the
dynamics and the time scale of the equilibration of the spin degree of freedom.
One related direction we want to explore is to study the coupling of the spin state of the
condensate to the thermal fraction. As we already pointed out in the thesis, the results of
chapter 3 indeed suggests that the thermal fraction acquires some spin coherence through
collisions with condensed atoms. This coherence was revealed by the measurement of a
non-zero average transverse spin component in the antiferromagnetic phase. We plan to
repeat the same kind of spin rotation experiment at shorter evaporation times to track
the evolution of the transverse spin component with temperature.
Another on-going project is to measure the different critical temperatures of the three spin
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species. Indeed, in the presence of a non-zero magnetic field or at non-zero magnetization,
the three spin states are expected to condense at different temperatures [102][82]. In an
ideal gas, two critical temperatures are predicted, the condensation occurring at the same
time for two of the three species. This coincidence of the condensation is expected to be
lifted by the interactions, and we should then measure three different critical temperatures.
So far we have been able to observe that, depending on the conditions of magnetic field and
magnetization, the first species that condenses changes. These first results are promising in
order to quantitatively measure the effect of the interactions on the critical temperatures.
In the long term, we will install an additional dipole trap of even smaller volume (∼ 2µm3)
to be able to create condensates with a small and controlled atom number (on the order
of hundred atoms). These systems are suited to produce strongly correlated states such
as Schrödinger cats or twin states [42], one of the long term goal of our team.



Appendix A

Numerical methods for the spinor
Gross-Pitaevskii equations

A.1 Gross-Pitaevskii equations in imaginary time

The imaginary time propagation method is a widely used method to compute the ground
state of a quantum mechanical system. We first describe its principle and then apply it
to our system of coupled Gross-Pitaevskii equations.

A.1.1 The imaginary time propagation method

We consider a quantum mechanical system described by a wavefunction |φ(t, r)〉 whose
time evolution obeys the Schrődinger equation

i~
∂|φ(t, r)〉

∂t
= Ĥ|φ(t, r)〉 (A.1)

where Ĥ is the Hamiltonian of the system. We note |φn(r)〉 its eigenstates, En the corre-
sponding energies and cn the coefficients of the decomposition in this basis of the wave-
function at time t = 0. We choose E0 as the energy reference. The wavefunction |φ(t, r)〉
at any time t > 0 is then expressed by

|φ(t, r)〉 =
∑

n

cne
−iEnt/~|φn(r)〉 (A.2)

Although the explicit determination of all eigenstates |φn(r)〉 can be quite complicated,
there exists a mathematical method to compute the wavefunction of the ground state.
The wavefunctions |φ(t, r)〉 are formally extended to imaginary values of time t and one
then make the change of variable

t→ −iτ (A.3)

where τ > 0. The equation (A.2) becomes

|φ(−iτ, r)〉 =
∑

n

cne
−Enτ/~|φn(r)〉 (A.4)

We see that when we propagate this expression along the imaginary axis, all the terms
of the sum but the first one are exponentially suppressed. Independent of the initial
wavefunction, as τ increases the wavefunction |φ(−iτ, r)〉 thus converges to |φ0(r)〉, the
ground-state of the system. The imaginary time propagation algorithm consists in choos-
ing some initial wavefunction |φ0〉 and in discretely propagating the differential equation
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governing the time evolution of |φ〉. This propagation does not conserve the norm of |φ〉,
which has to be renormalized after each time step.. The initial choice of |φ0〉 does not
influence the final result (but can influence the time needed to reach it).

A.1.2 Dimensionless coupled Gross-Pitaevskii equations

We now consider a spinor Bose-Einstein condensate of N atoms and of normalized mag-
netization mz, trapped in a spherical potential V (r). In the mean-field approximation the
many-body wavefunction of the system is characterized by a single-particle wavefunction
φ(t, r), which has three components: φ(t, r) = (φ+1(t, r), φ0(t, r), φ−1( t, r))T . Similarly to
the Gross-Pitaevskii theory of the scalar Bose gas [52], the time evolution of these three
components obey the set of coupled Gross-Pitaevskii equations [62]

i~
∂

∂t
φ+1 = (H+ E+1 − η + c2(n+1 + n0 − n−1))φ+1 + c2φ

2
0φ
∗
−1 (A.5)

i~
∂

∂t
φ0 = (H+ E0 + c2(n+1 + n−1))φ0 + 2c2φ

∗
0φ+1φ−1 (A.6)

i~
∂

∂t
φ−1 = (H+ E−1 + η + c2(n−1 + n0 − n+1))φ−1 + c2φ

2
0φ
∗
+1 (A.7)

To compute the wavefunctions of the three spin components in the condensate we
choose some initial wavefunctions φ0

+1(r), φ0
0(r)and φ0

−1(r) and propagate them in imagi-
nary time.

Practically we first rewrite the Gross-Pitaevskii equations in dimensionless variables.
We define as distance unit the characteristic length of the harmonic oscillator aho =√
~/mω, and as time unit the inverse of the trap frequency ω. These two definitions give

an energy unit ~ω and a wavefunction unit a
−3/2
ho . Considering the change to imaginary

times we finally do the changes of variables

r̃ → r/aho

t̃ → iωt

Ẽ → E/~ω

φ̃ → a
3/2
ho φ

and we obtain the dimensionless Gross-Pitaevskii equations in imaginary time:

∂

∂t̃
φ̃+1 = −

(
H̃+ Ẽ+1 − η̃ + c̃2(ñ+1 + ñ0 − ñ−1)

)
φ̃+1 − c̃2φ̃

2
0φ̃
∗
−1 (A.8)

∂

∂t̃
φ̃0 = −

(
H̃+ Ẽ0 + c̃2(ñ+1 + ñ−1)

)
φ̃+1 − 2c̃2φ̃

∗
0φ̃+1φ̃−1 (A.9)

∂

∂t̃
φ̃−1 = −

(
H̃+ Ẽ−1 + η̃ + c̃2(ñ−1 + ñ0 − ñ+1)

)
φ̃+1 − c̃2φ̃

2
0φ̃
∗
+1 (A.10)

with:

H̃ =
1

2
∇2 +

1

2
r̃2 + c̃0ñtot − µ̃ (A.11)

Ẽi = Ei/~ω , µ̃ = µ/~ω , η̃ = η/~ω (A.12)

c̃0 = 4πN(a0 + 2a2)/3aho (A.13)

c̃2 = 4πN(a2 − a0)/3aho (A.14)

ñi = |φ̃∗i φ̃i|2 (A.15)

In the following the drop all the tildes for clarity.
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A.2 Propagation of the finite differences scheme

To propagate the initial wavefunctions according to the Gross-Pitaevskii equations we dis-
cretize the equations in time and linearize the time derivative. For the spatial coordinate
on the other side the main issue is the treatment of the differential operators, here the
Laplacian. Two main families of method exist: spectral methods, that propagate the wave-
function partly in the direct coordinate space and partly in the conjugated space (where
the Laplacian is diagonal) after a Fourier transform, and the finite differences methods
that stay in the direct space and discretize the spatial coordinate. We choose to use a
finite difference method, namely the Backward Euler Finite Differences method [64].

We propagate in time the three wavefunctions φi(t, r), i = ±1, 0, starting from three
arbitrary initial wavefunctions φ0

i (r). As we consider a spherical potential the equations
are rotationally symetric in space and the value of the wavefunctions of the ground state
at position r only depends on the radius r = r: φi(t, r) = φi(t, r). We then only have to
consider a one dimensional problem in space. We discretize the time t by defining a time
step ∆t and a series of time tn = t0 + n∆t. To discretize the radial coordinate r we fix a
maximum radius R and a number M . We then define a spatial step ∆r = 2R/(2M + 1)
and two series of points:

rj = j∆r , rj+ 1
2

= (j +
1

2
)∆r , j = 0, 1, 2, ...,M (A.16)

We denote by φn
i,j+ 1

2

the numerical approximation of φi(tn, rj+ 1
2
). The wavefunctions at

each time tn are then represented by a vector of size M +1. Actually we add a component
φn
i,− 1

2

whose meaning is explained in the following. The vector representing each wave-

function at a given time is thus of size M + 2. We denote the vector (φn
i,j+ 1

2

)j=−1,0,1,...M

by φni . The vectors φn=0
i are obtained by the direct evaluation of the wavefunctions φ0

i (r)
at the points rj+ 1

2
. We also define the norm of the vectors by

||φni ||2 = 4π∆r
∑

j

|φn
i,j+ 1

2

|2r2
j+ 1

2

(A.17)

The Backward Euler Finite Differences scheme is then given by (we give it for φ+1

only, the extension to φ0 and φ−1 is straightforward)

φ
(1)

+1,j+ 1
2

− φn
+1,j+ 1

2

∆t
=

[1

2
δ2
r −

1

2
r2
j+ 1

2

− c0

(
|φn

+1,j+ 1
2

|2 + |φn
0,j+ 1

2

|2 + |φn−1,j+ 1
2

|2
)
− E+

−c2

(
|φn

+1,j+ 1
2

|2 + |φn
0,j+ 1

2

|2 − |φn−1,j+ 1
2

|2
)]
φ

(1)

+1,j+ 1
2

−c2(φn
0,j+ 1

2

)2(φn−1,j+ 1
2

)∗ (A.18)

for j = 0, 1, ...,M − 1. The operator δ2
r corresponds to the discretization of the Laplacian

and is defined by

δ2
rφ

(1)

i,j+ 1
2

=
1

(∆r)2r2
j+ 1

2

[
r2
j+ 1

2

φ
(1)

i,j+ 3
2

− (r2
j+1 + r2

j )φ
(1)

i,j+ 1
2

+ r2
jφ

(1)

i,j− 1
2

]
(A.19)

We force the wavefunction to vanish at large radius by setting:

φ
(1)
+1,M = 0 (A.20)



158 Ch. A. Numerical methods for the spinor Gross-Pitaevskii equations

Besides we ensure that the derivative of the wavefunction vanishes at r = 0 by imposing

φ
(1)

+1,− 1
2

= φ
(1)

+1, 1
2

(A.21)

The points φn
i,− 1

2

do not represent the value of the wavefunction at a given point, but are

numerical tricks to force the derivative to cancel at r = 0, which is physically required.

The vector φ
(1)
i is not equal to the approximation of the wavefunction φi at time tn+1

because the total atom number and the magnetization are not conserved by the scheme

(A.18). Once the three vectors φ
(1)
i , i = ±1, 0 are calculated, the vectors φn+1

i are obtained
by a projection step:

φn+1
i = σni φ

(1)
i (A.22)

where the σni are factors chosen such that
∑

i=±1,0

||φni ||2 = 1 , ||φn+1||2 − ||φn−1||2 = mz (A.23)

The derivation of the factors σni is done in [63]. We note n−i = ||φ(1)
i ||2 the norm of the

vectors before renormalization. The expressions of the σni are:

σn0 =

√
1−m2

z[
n−0 +

√
4(1−m2

z)n
−
−1n

−
+1 + (mzn

−
0 )2
]1/2

(A.24)

σn+1 =

√
1 +mz − (σn0 )2n−0

2n−+1

(A.25)

σn−1 =

√
1−mz − (σn0 )2n−0

2n−−1

(A.26)

Practically, the main operation in the propagation is to solve at each step n + 1 the

equation (A.18) of unknown φ
(1)
+1 knowing the three previously calculated vectors φni (and

then do the same for φ
(1)
0 and φ

(1)
−1). For this we rewrite the equation (A.18) in the form

ajφ
(1)

+1,j− 1
2

+ bjφ
(1)

+1,j+ 1
2

+ cjφ
(1)

+1,j+ 3
2

= dj (A.27)

for j = 0, 1, ...M − 1. The relations (A.20) and (A.21) give the value of the four vectors
a, b, c and d for j = M and j = −1 respectively. We now have to solve the M+2 dimension
linear system

Lφ
(1)
i = d (A.28)

where d = (d−1, d0, ..., dM )T and the matrix L is defined by

L =




b−1 c−1 0 · · · 0

a0 b0 c0 0 · · · ...

0
. . .

. . .
. . .

...
. . . 0

. . .
. . . cM−1

0 ... 0 aM bM




(A.29)

This kind of tridiagonal linear system is efficiently solve by the so-called Thomas’ algo-
rithm, whose complexity is O(M) (whereas the complexity of the Gaussian elimination
algorithm is O(M3))
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A.3 Numerical implementation

Using the scheme we just described we are able to propagate the initial wavefunctions in
imaginary time. An important issue that will determine the numerical precision of the
calculated solution is the choice of a termination criterion. Indeed, in the mean-field ap-
proximation the spin energy is a continuous function of the three wavefunctions, and the
propagation algorithm would need an infinite time to separate the ground state mode from
all the others. When we stop our algorithm, the resulting spinor wavefunction will always
be a packet of low-lying states, whose width in energy goes down with the propagation
time. We have to find the propagation time we need such that the error we make in the
determination of the ground state does not affect (at our level of approximation) the spin
energy we infer from it.

An intuitive idea would be to consider the speed of the evolution of the wavefunctions
by looking at the quantities ||φn+1

i − φni ||. The termination criterion would then be that
these three quantities are smaller than a defined (small number), meaning that the wave-
functions almost do not evolve any more and that they have converged to the ground state.
But this criterion can actually fail to catch the correct solution. The reason is that the
effect of one step of propagation is not necessary visible in the shape of the wavefunctions,
but can also consist of a change of their phase.

We actually choose as figure of merit to evaluate the convergence of the algorithm the
average value of the in-time evolution operator U defined by

φn+1
i = U(tn, tn+1)φni (A.30)

As the algorithm converges, the normalized average value 〈U〉 =
∫

(φni )∗Uφni /
∫
|φni |2

should approach unity. We then decide to stop the propagation when the distance |1−〈U〉|
becomes smaller than a fixed number. We now have to choose this number. When we do
the mean-fied approximation, we make an error in the spin energy we calculate of order
Us/N . To be consistent with this approximation we choose as termination criterion the
verification of the condition:

∣∣∣∣∣1−
∫

(φni )∗φn+1
i∫

|φni |2

∣∣∣∣∣�
Us∆t

N~
(A.31)

With the parameters N = 103 and ω = 2π × 600 Hz, we have Us/~ω ≈ 0.1. If we take
∆t = 103ω−1 we then obtain Us∆t/N~ ≈ 10−7.

We have checked our algorithm in various limiting cases. If we set c2 to zero we
recover the SMA solution for the three component, in particular we recover the Thomas-
Fermi and the gaussian distribution in the two limits of strong and weak spin-independent
interactions. We also check that the final result of the algorithm does not depend on the
initial wavefunctions we input. We are then allowed to optimize the convergence time
by choosing a set of initial wavefunctions as close as possible to the final solution. In
particular when we want to explore the whole magnetic phase diagram, this reduces by a
lot the calculation time. With the parameters N and ω we use, we expect the final solution
to be close to the SMA. A good starting point of the propagation would then be the SMA
solution, with three random phases and weighted by the adequate factor for each spin
component in order to respect the magnetization condition. But an even better choice
when calculating the phase diagram is to define as starting wavefunctions for one point
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(mz, B) the solution previously calculated at a neighbouring point. So, we first compute
the solution of the Gross-Pitaevskii equations in one corner of the phase diagram with
the SMA solution as guess wavefunction, and then explore the whole phase diagram in a
systematic way each time using the previously calculated solution as guess for the next
point.



Appendix B

Geometrical representation of a
spin-1 state

B.1 Bloch-Rabi representation

As we showed in chapter 3 by considering the nematic order, mean-field state of the spin-1
Bose gas are characterized by their symmetry. To better visualize and understand the
nature of these states we would like to draw a geometrical representation where symmetry
considerations would be highlighted. Such a representation is well known for spin 1/2
particles which can be pictured are unit vectors in the Bloch sphere. Apart from an
overall phase, a spin 1/2 state |ψ〉 can be written as:

|ψ〉 = cos

(
θ

2

)
eiφ/2|+〉+ sin

(
θ

2

)
e−iφ/2|−〉 (B.1)

The state |ψ〉 is obtained by rotating the state |+〉 so that it is the +1 eigenstate of the
projected spin operator S.n where n is the unit vector

n =




sin(θ) cos(φ)
sin(θ) sin(φ)

cos(θ)


 (B.2)

and can be unambiguously represented by the vector n on the Bloch sphere.

We now want to extend this representation to higher spins. The idea of the method,
inspired by Bloch and Rabi, is to consider a spin F particle as a combination of 2F spin
1/2 sub-particles. Indeed, the subspace of total spin F obtained from the sum of 2F spin
1/2 is equivalent to the Hilbert space of a true spin F (the sum also generates subspaces
of total spin 0, 1, ..., F − 1). The wavefunction of a spin F particle can then be written as
the symmetrized tensor product of the 2F wavefunctions of its constituents. Each of the
constituting spin 1/2 is represented by a vector on the Bloch sphere. A representation of
a spin F particle is then a set of 2F vectors on the Bloch sphere. We now consider the
particular case F = 1. The composition of two spin 1/2 gives a subspace of total spin 0
and a subspace of total spin 1 generated by the triplet states:

|+ 1〉 = |+〉|+〉 (B.3)

|0〉 =
1√
2

(|+〉|−〉+ |−〉|+〉) (B.4)

| − 1〉 = |−〉|−〉 (B.5)
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Figure B.1: Bloch-Rabi representation of three spin 1-states, given in the standard basis
by: a): (1,0,0), b): (0,1,1), and c): (1/2, 1/

√
2, 1/2).

The association of two vectors n1 and n2 defined by the angles θ1, φ1, θ2, φ2 describes the
spin-1 states |Ψ〉 given in the standard basis by

Ψ+1 =
1√
M

cos

(
θ1

2

)
cos

(
θ2

2

)
ei(φ1+φ2)/2 (B.6)

Ψ0 =
1√
2M

[
cos

(
θ1

2

)
sin

(
θ2

2

)
ei(φ1−φ2)/2 + sin

(
θ1

2

)
cos

(
θ2

2

)
ei(φ2−φ1)/2

]
(B.7)

Ψ−1 =
1√
M

sin

(
θ1

2

)
sin

(
θ2

2

)
e−i(φ1+φ2)/2 (B.8)

where the normalization constant isM = (3 + n1.n2)/4. One then easily verifies that the
average spin is given by

〈Ŝ〉 =
1

2
(n1 + n2). (B.9)

From expression (3.34) we have

〈S〉2 = 1−N 2 (B.10)

=
1 + n1.n2

2
(B.11)

where N is the nematic parameter and where we used |n1,2|2 = 1. We then find

N 2 =
|n1 − n2|2

4
(B.12)

Thus, an oriented state (N = 0) corresponds to n1 = n2, and an aligned state (|N | = 1)
corresponds to n1 = −n2.

The treatment of the generic spin-1 state leads to quite cumbersome calculations and
we directly turn to the case of the mean-field ground state with antiferromagnetic inter-
actions that we discussed in chapter 1.

B.2 Application to the mean-field ground state

We consider a mean-field state described by the expression (1.62). Applying a global phase
shift of Θ/2 this state takes the form

|Ψ〉 =




√
(x+mz)/2e

iα/2
√

1− xe−iΘ/2√
(x−mz)/2e

−iα/2


 (B.13)
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Comparing this expression to the previous ones we identify α = φ1 + φ2. Besides, in the
antiferromagnetic case one has Θ = π, so that the 0 component is purely imaginary. This
is realized in (B.8) by φ1−φ2 = π. To simplify the calculations, the phase α can be set to
zero without loss of generality. We then finally obtains φ1 = π/2 = −φ2. We now move
to the cartesian basis. The state |Ψ〉 writes:

|Ψ〉 =
1√
2N




i cos(θ+)
− cos(θ−)
sin(θ−)



c

(B.14)

where we defined the angles θ± = (θ1 ± θ2)/2. We immediately identify the two directors
u1 and u2 defined in chapter 3:

u1 =
1√
2N




0
− cos(θ−)
sin(θ−)


 , u2 =

1√
2N




cos(θ+)
0
0


 (B.15)

We note that the vector n1 − n2 writes

n1 − n2 = 2 sin(θ+)




0
− cos(θ−)
sin(θ−)


 (B.16)

so that the nematic director characterizing the spin quadrupole is parallel to n1 − n2. As
we have seen above, the nematic parameter is determined by the modulus of this vector.

Let’s consider precisely the different mean-field ground states. We start with the polar
states. We easily find that the polar state along the z direction (0,1,0) is represented by
two vectors pointing in opposite directions along the z axis. The family of polar states
is deduced from this one by the application of any rotation, so that the polar state along
a direction n is represented by two vectors pointing in opposite directions along the axis
defined by n.

We now consider the ground state at a given magnetization m and for a magnetic field
below the critical value (i.e in the antiferromagnetic phase). This state verifies n0 = 0
so that we have sin(θ−) = 0, which implies θ1 = θ2. Since the relation (B.9) gives
cos(θ1) + cos(θ2) = 2m the state is represented by two vectors defined by cos(θ1,2) = m.
Besides, as we already said, the relation θ = π imposes that φ1 = φ2 + π, which means
that the plane defined by the two vectors contains the z axis. Such a state is represented
in the figure (B.2) for α = 0. The angle α can take any value as a consequence of the
commutation of the Hamiltonian with the spin operator Ŝz. The representation of a state
for a different α is obtained by a rotation about the z axis. Using the relation (B.9) we
here clearly see that the condition n0 = 0 is equivalent to 〈S⊥ = 0〉, as the components of
the two vectors n1 and n2 in the x− y plane exactly cancel.

The quadratic Zeeman effect favors the accumulation in the mF = 0 state, and so
wants to maximize θ−. This is done by bringing the two vectors as close to the z axis as
is allowed by the constraint of fixed magnetization, one vector pointing up and the other
one down. This rotation of the two vectors would create some average transverse spin But
as the field stays below the critical value, the spin interactions dominate, they favor the
minimization of the transverse spin, and block this evolution to the z axis. At the phase
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Figure B.2: Evolution of the mean-field ground state at a given magnetization m when the
magnetic field increases. As long as the field is lower than the critical value, the system
stays in the state represented on the left, with a vanishing transverse spin. Then, when the
field increases above the critical value, the two vectors rotate in the x− z plane such that
the condition cos(θ1) + cos(θ2) = 2m stays true. Asymptotically one of the two vectors
align along the direction +z as represented on the right.

transition the field starts to dominate over the interactions, and the two vectors rotate
a little in the x − z plane, still verifying the condition cos(θ1) + cos(θ2) = 2m. As the
field increases the vectors get closer and closer to the z axis. Asymptotically, one vector
is pinned along the z axis and the other is constrained by the condition on m.

For completeness we note that an other geometrical representation of high spin objects
exists, which is yet very close to the one we described [103] [37]. The spin F state |Ψ〉
is here represented by the 2F unit vectors defining the maximally polarized spin-F state
|Ψ′〉 which is orthogonal to |Ψ〉. This representation actually corresponds to inverting the
orientation of the 2F vectors defining |Ψ〉.



Appendix C

Three-level Rabi oscillation

We consider a spin-1 system where the degeneracy of the three spin states is lifted by an
external static magnetic field B = B0ez, so that the splitting between the states | + 1〉
and |0〉 is equal to the splitting between the states |0〉 and | − 1〉 and is equal to the
Larmor frequency µBB0/2. We neglect the quadratic Zeeman effect. We now couple the
spin states by adding at t = 0 a radio-frequency magnetic field polarized along the y axis
Brf = ey(Be

iωrf t + c.c) and resonant at the Larmor frequency. This field couples to the Ŝy
spin operator and if we make the rotating-wave approximation its effect after a time t is
to rotate the spinor wavefunction about the y axis:

|Ψ′〉 = e−iβŜy |Ψ〉 (C.1)

Here Θ is the angle of the rotation and is given by β = tΩ, where we defined the Rabi
frequency Θ = µBBrf/2~. The rotation operator writes in the standard basis:

e−iΘŜy =




1−cos Θ
2

sin Θ√
2

1−cos Θ
2

− sin Θ√
2

cos Θ sin Θ√
2

1−cos Θ
2 − sin Θ√

2
1−cos Θ

2


 (C.2)

With this expression and using the definition (3.45) we can calculate the populations of
the rotated state |Ψ′〉 . Noting with primes the quantities at time t and without primes
the quantities at time t = 0 we find:

n′+1 =
1 + cos2 Θ

4
(1− n0) +

sin2 Θ

2
n0 +

cos Θ

2
mz +

sin2 Θ

2

√
n+1n−1 cosα

+
sin Θ(1 + cos Θ)√

2

√
n0n+1 cos(

θ + α

2
) +

sin Θ(1− cos Θ)√
2

√
n0n−1 cos(

θ − α
2

)(C.3)

n′−1 =
1 + cos2 Θ

4
(1− n0) +

sin2 Θ

2
n0 −

cos Θ

2
mz +

sin2 Θ

2

√
n+1n−1 cosα

−sin Θ(1− cos Θ)√
2

√
n0n+1 cos(

θ + α

2
)− sin Θ(1− cos Θ)√

2

√
n0n−1 cos(

θ − α
2

)(C.4)

n′0 =
sin2 Θ

2
(1− n0) + cos2 Θn0 − sin2√n+1n−1 cosα

−
√

2 sin Θ cos Θ
√
n+1n0 cos(

θ + α

2
) +
√

2 sin Θ cos Θ
√
n−1n0 cos(

θ − α
2

) (C.5)
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where we noted mz = n+1 − n−1 the magnetization. These expressions become much
simpler if the initial state is fully polarized (n+1 = 1, n0 = n−1 = 0):

n′+1 = cos4(
Θ

2
) (C.6)

n′−1 = sin4(
Θ

2
) (C.7)

n′0 = 2 sin2(
Θ

2
) cos2(

Θ

2
) (C.8)

or if it is a nematic state along the z axis (n0 = 1, n+1 = n−1 = 0):

n′+1 = n′−1 =
1

2
sin2 Θ (C.9)

n′0 = cos2 Θ (C.10)

In particular we note that when the initial state is fully polarized the population in the
state mF = 0 oscillates at twice the frequency of the two others: n′0 oscillates at the fre-
quency 2Ω′ whereas the two others oscillate at Ω′. This is not the case if the initial state
is the nematic state along z: the three populations then all oscillate at the frequency 2Ω′.



Appendix D

Generalized coherent states

Here we recall how the canonical coherent states of quantum optics are constructed, and
then explain how the method can be generalized.

D.1 Construction of generalized coherent states

The concept of coherent states was first introduced by Glauber to describe states of the
quantum electromagnetic radiation in a laser beam [104] [105]. We recall here their con-
struction. We consider a quantum harmonic oscillator, and note â† and â the associated
ladder operators. Due to their commutation relation [â, â†] = 1, these two operators to-
gether with the identity operator 1 generate a Lie algebra. The attached Lie group is
obtained by exponentiation of these generators and is called the Heisenberg-Weyl group.
Elements of this group are unitary and are labeled by a continuous complex parameter α.
They are denoted as displacement operators D̂(α)1. A coherent state is generated by the
action of a displacement operator on the vacuum state:

|α〉 = D̂(α)|0〉 = eαâ
†−α∗â|0〉 (D.1)

where α ∈ C.

The coherent states are particularly adapted to study harmonic oscillators. In such
systems, a coherent state remains coherent in time and the evolution of the α parameter
is given by classical equations. But quantum systems frequently obey other symmetry
groups. This led to the generalization of the notion of coherent states [91].

Let us consider an arbitrary Lie group G, and let T be an irreducible unitary rep-
resentation of G on the Hilbert space H. To each element g of G the representation T
associates a unitary operator T (g) acting in H. A set of generalized coherent states is
then generated by the action of all these operators on some chosen reference state |ψ0〉:

{|ψg〉 = T (g)|ψ0〉, g ∈ G} . (D.2)

Sets of generalized coherent states have common properties that follow from their con-
struction.

1Using the Campbell-Hausdorff-Baker formula, the group operation is easily found: D̂(α)D̂(β) =

e
1
2
(α∗β+αβ∗)D̂(α+ β).
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First, the irreducibility of the representation T of the group G implies the completeness
of a set of coherent states in the representation Hilbert space H. Indeed, any operator
T (g), g ∈ G, transforms a coherent state in an other coherent state (by direct application
of the group action). The set of coherent states is then stable under the group action and
the subspace of H it generates is a subrepresentation of G. Since T is irreducible, this
subspace is equal to H and the set of coherent states form a basis of H. It also follows
from the irreducibility of T that the integration of the projectors on coherent states over
the whole family gives the identity operator, providing a so-called expansion of unity.

The basis of coherent states is actually overcomplete. This implies that the decompo-
sition of a state of the Hilbert space in this basis is not unique. This also implies that
coherent states are not orthogonal.

D.2 Spin coherent states

The best known application of this construction is the set of so-called spin coherent states
[106]. Let us consider the Hilbert space HJ of a particle of total spin J (J > 0). The
operators Ĵ± = Ĵx± iĴy and Ĵ0 = Ĵz verify the commutation relations [Ĵ0, Ĵ±] = ±Ĵ± and
[Ĵ+, Ĵ−] = 2Ĵ0 and so generate a Lie algebra. The associated Lie group is the group of
three-dimensional rotations SO(3), and the set of operators obtained by exponentiation of
the three generators Ĵ±,0 form an irreducible unitary representation T J of this group on
the Hilbert spaceHJ . The spin coherent states are generated by the action of the operators
T J(g) on one fixed state which is conventionally chosen to be the state of maximal spin
projection |J, J〉:

|α〉 = D̂J(α)|J, J〉 = eαĴ+−α
†Ĵ− |J, J〉 (D.3)

where α ∈ C. The operator D̂J(α) represents one three-dimensional rotation. Only two
real parameters are needed because the third one would only account for a global phase
and we can forget it. Writing α = θ

2e
iφ we obtain

D̂J(α) = eiφĴzeiθĴy . (D.4)

The spin coherent state |α〉 thus corresponds to the rotation of Euler angles (θ, φ) of the
state |J, J〉, and so is the eigenstate with maximal eigenvalue of the projected spin opera-
tor Ĵ.n, where n is the unit vector defined by θ and φ.

This construction can be extended to a system of N particles. The Hilbert space is
then the Fock space of total particule number N , that is a JN -dimensional irreducible
representation space for the SO(3) group.

Another family of coherent states is formed of the nematic (or polar) states that we
introduced in chapter 1 and 3 for a spin J = 1. These states are indeed generated by
the action of all the three-dimensional rotation operators to a fixed state, here the state
of zero spin projection |J, 0〉. This similar construction explains that these two sets of
states share important properties. However, the difference in the reference state alone has
important consequences that led us not to use the nematic states, as we will explain in
the following.
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D.3 SU(3) coherent states

We now apply the previous method to the SU(3) group. The Lie group SU(3) is formed of
the set of 3×3 unitary matrices in C with determinant equal to one, and so corresponds to
all the basis transformations of a three-level system, which makes it the natural symmetry
group to study spin-1 particles. From now on we restrict to the case of spin 1 and identify
the standard basis of C3 with the single-particle basis {|+ 1〉, |0〉, | − 1〉}. The Lie algebra
associated to SU(3) is spanned by six generators sij = |i〉〈j| with i 6= j and two diagonal
ones sii (it is of dimension 8 because of the requirement that the determinant is one). The
elements of SU(3) are then obtained by exponentiation of these generators. Actually each
element g of SU(3) accepts a decomposition of the form [107]:

g = b− × d× b+ (D.5)

where d is a diagonal matrix and b− and b+ are respectively lower and upper triangular
matrices with unit diagonal elements:

b−(γ) = exp

(
γ1s0,−1 + γ2s+1,0 + (γ3 −

1

2
γ1γ2)s+1,−1

)
=




1 0 0
γ1 1 0
γ3 γ2 1


 (D.6)

where we note γ = (γ1, γ2, γ3) ∈ C3. The matrix b+ is defined similarly (with three other
complex parameters). The three matrices d, b− and b+ are generally not unitary. If we
consider the Hilbert space describing the spin state of one spin-1 particle, then a trivial
representation of SU(3) acting on this space is given by SU(3) itself and one generate a
sets of coherent states by the action of all the elements g of this group on a chosen single-
particle state. As for spin coherent states we take as reference state the state of maximal
spin projection |+ 1〉. We note that because s−1,0|+ 1〉 = s0,+1|+ 1〉 = s−1,+1|+ 1〉 = 0,
the operator of the form b+ only acts as identity on | + 1〉. Since besides the diagonal
operator only amounts for a global phase, SU(3) coherent states are defined by

|ψ(γ)〉 =
1√
N
b−(γ)|+ 1〉 (D.7)

where N is a normalization constant. The parameter γ2 only enters in the phase and can
be ignored. We obtain the generic form

|ψ(γ)〉 =
1√
N




1
γ1

γ3


 (D.8)

with N = 1 + |γ1|2 + |γ3|2.

We now consider a system of N spin-1 particles and take as Hilbert space the corre-
sponding Fock space H(N). Then N -particles coherent states are obtained by the same
procedure, replacing the generators sij by their representation

Sij =
N∑

n=1

snij (D.9)

where snij acts as sij on particle number n and as identity on all the other particles. The
reference state now becomes

|ψ0〉 =
1√
N !

(â†+1)N |vac〉 (D.10)
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and coherent states take the form

|ψ(γ)〉N =
1√
N !

(
1√
N

(â†+1 + γ1â
†
0 + γ3â

†
−1)

)N
|vac〉 (D.11)

Since SU(3) coherent states are generated by rotations of the mean-field state ψ0, they
are mean-field states. By performing a change of variables that we do not detail here, the
previous expression can be recast in the more amenable form

|ψ(γ)〉N = |N : ζ〉 =
1√
N !

(
ζ.â†

)N
|vac〉 (D.12)

where â† = (â†+1, â
†
0, â
†
−1)T and ζ is a normalized complex vector. The operator ζ.â†

creates one particle in the spin-1 state

|ζ〉 = eiφ0




sin(θ) cos(ν)eiφ+1

cos(θ)
sin(θ) sin(ν)eiφ−1


 (D.13)

D.4 Diagonal representation of few-body operators in the
SU(3) coherent states basis

We here detail the derivation of the formula (D.17). We consider a k-body operator Ô(k)

in normal order acting in the Fock space of N spin-1 bosons:

Ô(k) = â†i1 â
†
i2
...â†ik âik ...âi1 (D.14)

where i1, i2, ..., ik can take the value +1, 0 or −1. Using twice the expansion of unity (4.37)
one find that this operator can be written in the coherent state basis:

Ô(k) =

∫
(dζ

∫
dζ′〈N : ζ|Ô(k)|N : ζ′〉|N : ζ〉〈N : ζ′| (D.15)

Using the relation (4.28) we calculate the matrix element

〈N : ζ|Ô(k)|N : ζ′〉 = N(N − 1)...(N − k + 1)

k∏

λ=1

ζ∗iλζ
′
iλ
〈N − k : ζ|N − k : ζ′〉 (D.16)

Because coherent states become quasi-orthogonal in the limit of large particle number and
k � N , the scalar product 〈N − k : ζ|N − k : ζ′〉 reduces to a delta distribution and one
obtains

Ô(k) ≈
∫

dζ〈N : ζ|Ô(k)|N : ζ〉|N : ζ〉〈N : ζ| (D.17)
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Abstract. We study spin fragmentation of an antiferromagnetic spin 1
condensate in the presence of a quadratic Zeeman (QZ) effect breaking spin
rotational symmetry. We describe how the QZ effect turns a fragmented spin
state, with large fluctuations of the Zeeman populations, into a regular polar
condensate, where the atoms all condense in the m = 0 state along the field
direction. We calculate the average value and variance of the population of the
Zeeman state m = 0 to illustrate clearly the crossover from a fragmented to an
unfragmented state. The typical width of this crossover is q ⇠ kBT/N , where q
is the QZ energy, T the spin temperature and N the atom number. This shows
that the spin fluctuations are a mesoscopic effect that will not survive in the
thermodynamic limit N ! 1, but are observable for a sufficiently small atom
number.
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1. Introduction

The natural behavior of bosons at low enough temperatures is to form a Bose–Einstein
condensate (BEC), i.e. a many-body state where one single-particle state becomes
macroscopically occupied [1]. There are, however, situations where bosons can condense
simultaneously in several single-particle states, forming a so-called fragmented condensate.
Several examples are known, where fragmentation occurs due to orbital (Bose gases in optical
lattices or in fast rotation) or to internal degeneracies (pseudo-spin-1/2 or spin-1 Bose gases).
These examples have been reviewed in [2, 3].

The spin-1 Bose gas, first studied by Nozières and Saint James [4], is a striking example
where fragmentation occurs due to rotational symmetry in spin space. For antiferromagnetic
interactions of the form V12 = gss1 · s2 between two atoms with spins s1 and s2 (gs > 0), the
many-body ground state is expected to be a spin singlet state [2, 5]. In such a state, the three
Zeeman sublevels are occupied, leading to three macroscopic eigenvalues of the single-particle
density matrix (instead of just one for a regular condensate). As pointed out in [2, 5, 6],
the signature of fragmentation is then the occurrence of anomalously large fluctuations of
the populations Nm in the Zeeman states m = 0, ±1 (see also [7, 8], where similar behavior
is predicted in a pseudo-spin-1/2 system). In the singlet state, for instance, the expectation
value and variance of N0 are hN0i = N/3 and 1N 2

0 ⇡ 4N 2/45, respectively (N is the total
number of particles). Such super-Poissonian fluctuations (1N 2

0 / hN0i2) deviate strongly from
the value expected for a single condensate or any ensemble without correlations where
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1N 2
0 / hN0i.3 It was pointed out by Ho and Yip [6] that such a state was probably not realized

in typical experiments, due to its fragility toward any perturbation breaking spin rotational
symmetry (see also [9–14]). In the thermodynamic limit N ! 1, an arbitrary small symmetry-
breaking perturbation is enough to favor a regular condensed state, where almost all the atoms
occupy the same (spinor) condensate wave function and 1N0 ⌧ N .

In this paper, we give a detailed analysis of the phenomenon of spin fragmentation for
spin-1 bosons. Our analysis assumes the conservation of total magnetization mz. The fact that
magnetization is an (almost) conserved quantity follows from the rotational invariance of the
microscopic spin exchange interaction, and from the isolation of atomic quantum gases from
their environment. A key consequence is that in an external magnetic field B, the linear Zeeman
effect only acts as an energy offset and does not play a role in determining the equilibrium
state. The dominant effect of an applied magnetic field is a second-order (or quadratic) Zeeman
energy, of the form q(m2 � 1) for a single atom in the Zeeman state with magnetic quantum
number m.4 The quadratic Zeeman (QZ) energy breaks the spin rotational symmetry, and favors
a condensed state with m = 0 along the field direction. In [10–13], the evolution of the ground
state with the QZ energy q was studied theoretically. Since experiments are likely to operate far
from the ground state, it is important to understand quantitatively how the system behaves at
finite temperatures. This is the main topic we address in this paper.

Our focus in this paper will be to calculate the first two moments (average value and
variance) of N0. These moments illustrate clearly the evolution of the system from fragmented
to unfragmented and thus constitute the main experimental signature of fragmentation. The
main findings are summarized in figure 1, where we plot the standard deviation of n0 = N0/N
in a q–T plane. Large fluctuations of the m = 0 state are observed for small q. We can
distinguish three different regimes. For low q ⌧ Us/N 2 and low temperatures kBT ⌧ Us/N
(Us / gs is the spin interaction energy per atom), the system is close to the ground state in a
regime we call ‘quantum spin fragmented’ [2, 5, 6, 12]. We also observe a thermal regime for
kBT � Nq, Us/N dominated by thermally populated excited states. We call this second regime
‘thermal spin fragmented’. Finally, for q large enough and temperature low enough, the bosons
condense into the single-particle state m = 0, forming a so-called ‘polar’ condensate [16, 17]. In
this limit, hN0i ⇡ N and 1N0 ⌧ N . We indicate this third regime as ‘BEC m = 0’ in figure 1.

The evolution from the fragmented, singlet condensate to an unfragmented condensate
with increasing QZ energy q is similar to a well-known example in the literature on quantum
magnetism, the Lieb–Matthis model of lattice Heisenberg antiferromagnets [18]. This model
describes collective spin fluctuations of an Heisenberg antiferromagnet on a bipartite lattice. It
constitutes a popular toy model for demonstrating the appearance of broken symmetry ground
states in condensed matter [19–24]. The ground state of such system (in principle also a spin
singlet) was found theoretically to evolve to a Néel state in the thermodynamic limit in the
presence of an arbitrarily small staggered magnetic field (whose sign alternates from one site
to the next). The underlying theory is close to the one presented here. An essential difference

3 Note that the problem we discuss here is unrelated to the anomalous fluctuations of the total condensate number
found for ideal gases in the grand canonical ensemble [1]. In this work, we assume implicitly the canonical
ensemble, and study the fluctuations of the populations of individual Zeeman states discarding quantum and thermal
depletion of the condensate.
4 This second-order shift originates from the hyperfine coupling between electronic and nuclear spins, and
corresponds to the second-order term in an expansion of the well-known Breit–Rabi formula for alkalis (see
e.g. [15]).
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Figure 1. Standard deviation1n0 =1N0/N of the population N0 of the Zeeman
state m = 0, normalized to the total atom number N . We mark three different
regimes in the q–T plane. ‘Spin fragmentation’ refers to a fragmented spin
state with large population fluctuations, where 1n0 ⇠ 1. In the quantum regime
(Nq/Us ⌧ 1/N and kBT/Us ⌧ 1/N ), this is due to quantum fluctuations: the
system is then close to the singlet ground state. In the thermal regime (kBT �
Nq, Us/N ), on the other hand, thermal fluctuations dominate over the quantum
one and over the effect of the QZ energy. Conversely, ‘BEC m = 0’ refers to the
atoms forming a regular polar condensate with almost all the atoms in m = 0, and
1n0 ⌧ 1. The plot was drawn by numerically diagonalizing the Hamiltonian (1)
and computing thermodynamic averages from the spectrum and eigenstates,
using N = 300 particles. Note the logarithmic scales on both the horizontal and
the vertical axis.

is that the present model of antiferromagnetic spin-1 BECs is expected to accurately describe
actual experimental systems [25, 26]. In the antiferromagnet case, the staggered magnetic field
is a theoretical object that cannot be produced in the laboratory for real solids. In contrast, the
QZ energy is easily controllable in spin-1 BEC experiments. Another important difference is
that experiments with ultracold quantum gases are typically conducted with relatively small
atom numbers, from N ⇠ 102 to 106, so that the conclusions that hold in the thermodynamic
limit do not necessarily apply and spin fragmentation can be observed experimentally.

The paper is organized as follows. In section 2, we present the basic model that describes
an ensemble of spin-1 bosons with antiferromagnetic interactions condensing in the same
orbital wave function irrespective of the internal state (single-mode approximation (SMA)). In
section 3, we use the basis of total spin eigenstates (exact in the absence of an applied magnetic
field, q = 0). We derive approximate solutions for the spectrum and eigenstates for q > 0 in
section 3.1, and discuss how they evolve with increasing QZ energy. By using these results, we
compute in section 4 the average value and variance of N0 at finite temperatures, and compare
the approximate solution to numerical diagonalization of the Hamiltonian. We finally present in
section 5 an alternative approach, where the fragmented condensate is described as a statistical
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mixture of mean-field (symmetry broken) states. We find excellent agreement with the exact
diagonalization of the Hamiltonian.

2. Single-mode description of spin-1 condensates

We consider a gas of ultracold spin-1 bosons in a trap with Zeeman components m = �1, 0
or +1. We discuss the case of antiferromagnetic interactions and assume the validity of the SMA,
i.e. that all bosons condense in the same spatial orbital irrespective of their internal state [27].
The Hamiltonian is [28]

Ĥ = Us

2N
Ŝ

2 � q N̂ 0, (1)

where Us > 0 is the spin interaction energy per atom5, q > 0 is the QZ energy, Ŝ is the total spin
operator and N̂↵ is the number operator in Zeeman state ↵. We assume that the number of atoms
N is even for simplicity. Odd values of N could be treated in a similar way, without modifying
the final results to order 1/N . Typical experimental values for the parameters of the SMA model
are N = 103–105, Us/kB ⇠ 2–5 nK, while q can be varied from zero to values much larger than
Us by changing the magnetic field [25, 26].

In the absence of an external magnetic field (q = 0), the Hamiltonian reduces to a quantum
rotor with moment of inertia N/Us [5, 11]. The energy eigenstates are thus simply the total spin
eigenstates |N , S, Mi, with S the spin quantum number and M its projection on the z-axis. The
corresponding eigenvalues are E(S) = (Us/2N )S(S + 1), with a degeneracy 2S + 1. The wave
functions for these states are known explicitly in the Fock basis [2, 5, 6] (see also appendix A).

When q 6= 0, since [Ŝz, N̂0] = 0, the magnetic quantum number M (eigenvalue of Ŝz)
remains a good quantum number. One can diagonalize Ĥ by block in each M sector. For each
M , the energy eigenstates can be expressed in the angular momentum basis

|�Mi =
NX

S=|M |
cS,M |N , S, Mi. (2)

To express the Hamiltonian in (1) in the |N , S, Mi basis, we need to compute the action
of N̂0. The non-vanishing matrix elements of N̂0 are hN , S, M | N̂0|N , S, Mi, hN , S ± 2, M |
N̂0|N , S, Mi (see appendix A). The Schrödinger equation then takes the form of a tridiagonal
matrix equation

hM
S,S+2cS+2,M + hM

S,S�2cS�2,M + hM
S,ScS,M = EcS,M (3)

with E the energy eigenvalue and where the coefficients hM
S,S0 are easily obtained from the

expressions given in appendix A.

3. Spectrum and eigenstates for M = 0

A first approach for finding the spectrum and eigenstates is to diagonalize numerically the matrix
hM in (3). Our goal in this section is to propose an analytical approximation to better understand
the structure of the spectrum and the eigenstates. The discussion allows one to describe how the

5 The spin interaction energy Us can be calculated from Us = gs
R

dx| (x)|4, where  (x) is the spatial orbital of
the condensate.
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ground state evolves with q, and will also be useful to understand qualitatively the behavior of
the systems at finite temperatures later in this paper. For simplicity, we focus in this section on
the M = 0 sector. The conclusions we obtain remain qualitatively correct for M 6= 0 provided
its value is not too large (|M | ⌧ N ).

3.1. Continuum approximation for large q

We make the assumption that the thermodynamic behavior is dominated by states, such that the
dominant coefficients in the |N , S, Mi basis obey 1 ⌧ S ⌧ N . As we will see later in this paper,
this assumption is justified for large enough q at T = 0, and for any q at finite temperatures
kBT � Us/N . In this limit, the matrix elements hS,S, hS,S±2 can be simplified. We obtain to
lowest order in 1/S, S/N (see appendix B)

�J (x + ✏)c(x + ✏) � J (x � ✏)c(x � ✏) +
NUs

2
x2c(x) =

✓
E +

Nq
2

◆
c(x), (4)

where we have set x = S/N , ✏ = 2/N , c(x) = cS,0. This equation maps the spin problem
to a tight-binding model for a particle hopping on a lattice, with an additional harmonic
potential keeping the particle near x = 0. The model is characterized by an inhomogeneous
tunneling parameter J (x) = Nq (1 � x2/2)/4 and a harmonic potential strength NUs. Boundary
conditions confine the particle to 06 x 6 1.

If c(x) changes smoothly as a function of x , the tight-binding model can be further
simplified in a continuum approximation. We show in appendix B that the tight-binding equation
reduces to the one for a fictitious one-dimensional harmonic oscillator

� q
N

c00(x) +
N
4

(q + 2Us) x2c(x) = (E + Nq) c(x). (5)

The boundary condition c(0) = 0 selects the eigenstates of the standard harmonic oscillator with
odd parity. The mass m and oscillation frequency ! of the fictitious oscillator are found from
h̄2/2m ⌘ q/N and m!2 ⌘ N (q + 2Us)/2. The oscillator frequency is thus

h̄! =
p

q(q + 2Us). (6)

This collective spectrum was also obtained by the Bogoliubov approach of [10, 12].

3.2. Ground state

In this section, we use the results established previously to examine the evolution of the
ground state with increasing q. Our results reproduce the ones from [12] obtained by using a
different method. The ground state of the truncated fictitious harmonic oscillator (with boundary
condition c0(0) = 0) is given by

c0(x) = 1
⇡ 1/4� 1/2

x
�

exp
✓

� x2

2� 2

◆
(7)

with the quantum harmonic oscillator size

� =
r

h̄
m!

=
r

2
N

✓
q

q + 2Us

◆1/4

. (8)
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The continuum approximation is valid only if c(x) varies smoothly on the scale of the
discretization step ✏, or equivalently when � � 1/N . This gives the validity criterion for this
approximation

q � Us

N 2
. (9)

For q < Us/N 2, the ground state is very close to the singlet state, with a width � ⌧ 1/N . Here,
spin fragmentation occurs purely due to quantum spin fluctuations (related to antiferromagnetic
interactions) of a polar BEC. We indicate this state in figure 1 as ‘quantum spin fragmented’.

For q � Us/N 2, the continuum approximation is valid. We see from (8) that as q increases,
the QZ energy mixes an increasing number of S states. Asymptotically, for q � Us, the true
ground state is a superposition of ⇠N� ⇡ p

2N total spin eigenstates. In this regime, we can
compute the moments of N0 by expressing the depletion operator N � N̂0 in terms of the ladder
operators b̂ and b̂† associated with the fictitious harmonic oscillator. We find

N � hN0i = Us + q
2
p

q(q + 2Us)
, (10)

1N 2
0 = U 2

s

2q(q + 2Us)
. (11)

For Us/N 2 ⌧ q ⌧ Us, the depletion N � hN0i and variance1N 2
0 are larger than unity but small

compared to N , N 2, respectively, while for q � Us, they become less than one particle: in the
latter case, the ground state approaches the Fock state (â†

0)
N |vaci expected from the mean field

theory. We indicate both regimes as ‘BEC m = 0’ in figure 1, without marking the distinction.

3.3. Excited states for M = 0

We now turn to the description of the excited states, still limiting ourselves to the case
M = 0 for simplicity. The tight-binding model (4) is characterized by a tunneling parameter
J = Nq(1 � x2/2)/4 and a harmonic potential strength  = NUs. Let us examine two limiting
cases. For q = 0 (no hopping), the energy eigenstates coincide with the ‘position’ eigenstates
with energy E(S) ⇡ (Us/2N )S2 for S � 1. Conversely, when Us = 0 the energy eigenstates
are delocalized states, which form an allowed energy band of width ⇠4J ⇠ Nq . The weak
inhomogeneity of the tunneling parameter does not play a large role since these states are
confined near x = 0 by the harmonic potential.

For the general case where J ,  6= 0, the eigenstates can be divided into two groups
[29, 30]:

• low-energy states with energy E < 4J , which are extended ‘Bloch-like’ states modified
by the harmonic potential; the continuum approximation introduced earlier corresponds
to an effective mass approximation, valid for low-energy states with E ⌧ 4J = Nq (the
requirement q � Us/N 2 found before still holds); and

• high-energy states with E � 4J , that would be in the band gap in the absence of the
potential energy term (and thus forbidden). They are better viewed as localized states,
peaked around x(E) ⇡ p

2E/NUs with a width ⇠ 1/N . As a result, they are very similar
to the angular momentum eigenstates |N , S, 0i for the corresponding value of S. For these
states, the continuum approximation does not hold.

New Journal of Physics 15 (2013) 113039 (http://www.njp.org/)
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Figure 2. Probability densities (amplitude shown as gray scale) of the eigenstates
of the spin-1 Hamiltonian (1) as a function of ‘position’ x = S/N and energy
E/Us. The plot corresponds to N = 2000 and Nq/Us = 10. At low energy, the
eigenstates explore the whole available region, from the turning point down to
x = 0. Conversely, at high energies, the eigenstates are more and more localized
around the diagonal, as expected for potential energy eigenstates. We show as
insets the probability densities for the 10th (b) and 500th (c) excited states for
illustration.

We illustrate this classification in figure 2, where we show the probability densities |c(S)|2
as a function of energy. One can see the change from a ‘delocalized’ regime at small energies
to a ‘localized’ regime at large energies. The wave functions were calculated exactly by
diagonalizing the Hamiltonian for N = 1000. We also show the corresponding energy spectrum
in figure 3, showing the same crossover from delocalized states at low energies to localized
states at high energies. For low energies, the spectrum is given by the harmonic oscillator model,
✏n ⇡ h̄!(2n + 3/2) with n integer. For high energies, the energy eigenstates are localized around
xn = n/N , with a spectrum given by ✏n ⇡ Usn2/2N with n integer. Both expressions agree well
with the numerical result in their respective domains of validity.

4. Spin fragmentation at finite temperatures

We have seen in section 3.2 that for a system in its ground state, the depletion and fluctuations
of the M = 0 state were rapidly collapsing as q was increased above Us/N 2, and the system
turned from a fragmented to a single condensate with all the atoms in the Zeeman state m = 0.
The energy gap to the first excited state is 3Us/N near q = 0. For typical experimental values
[25, 26], this corresponds to a few pK, vastly smaller than realistic temperatures for a typical
experiment (a few tens of nK) due to the 1/N scaling. Therefore, it is natural to ask how
the crossover from a fragmented to a single condensate is modified at finite temperatures.
In the remainder of the paper, we thus consider the high temperature case kBT � Us/N .
We will compute the first two moments of N0 at finite temperatures, hN0iT and (1N 2

0 )T =
hN 2

0 iT � hN0i2
T , and use these quantities to study the fragmented to single condensate crossover.

New Journal of Physics 15 (2013) 113039 (http://www.njp.org/)



9

0 100 200 300 400 500 600
0

20

40

60

80

100

State index

E
ne

rg
y 

[U
s]

Figure 3. Energy spectrum for N = 2000 and Nq/Us = 10. The black solid line
is the spectrum calculated by numerical diagonalization of the Hamiltonian (1),
shifted up by q N . The red dashed line corresponds to E(S) = (Us/2N )S2 +
q N/2, the blue dotted line to the harmonic oscillator approximation.

4.1. Spin fragmentation for q = 0

Let us first consider the case q = 0. An important remark is that super-Poissonian fluctuations
are not unique to the ground state, but also occur for low-energy eigenstates with S ⌧ N . This
is best seen by considering values of S such that 1 ⌧ S ⌧ N . In this limit, we find

hN̂ 0iSM ⇡ (N 2 � S2)(S2 � M2)/8, (12)

hN̂ 2
0iSM ⇡ (3N 2 � S2)(S2 � M2)2/8, (13)

(1N 2
0 )SM ⇡ (N 2 � S2)(S2 � M2)2/8, (14)

where hN̂ p
0 iSM = hN , S, M | N p

0 | N , S, Mi. Hence, we find super-Poissonian fluctuations for
M ⌧ S ⌧ N , which eventually vanish as S (resp. M) increases to its maximum value N
(resp. S).

We calculate now the thermally averaged hn0iT and (1n2
0)T in the canonical ensemble. The

average population in m = 0 is given by

hN0iT = 1
Z

X

S,M

e�� 0S(S+1)hN0iSM . (15)

The second moment hN 2
0 iT and the variance (1N 2

0 )T are given by similar expressions. Here, Z
is the partition function and � 0 = Us/2NkBT . Assuming that the temperature is large compared
to the level spacing (kBT � Us/N ), the thermodynamic sums over energy levels is dominated
by states with large S � 1. There are two regimes to consider.

At intermediate temperatures, states with 1 ⌧ S ⌧ N dominate the thermodynamics. To
calculate the thermal average over all S in this regime, we replace the discrete sums by integrals
and send the upper bound N of the integral to infinity. A simple estimate of the mean value of
S, hSi ⇠ (NkBT/Us)

1/2, shows that the condition 1 ⌧ S ⌧ N corresponds to the boundaries

Us

N
⌧ kBT ⌧ NUs. (16)

New Journal of Physics 15 (2013) 113039 (http://www.njp.org/)
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In this regime, we find

hN0iT ⇡ N
3

, (17)

(1N 2
0 )T = hN 2

0 iT � hN0i2
T ⇡ 4N 2

45
, kBT ⌧ NUs. (18)

We note that to the leading order in 1/N , the moments of N0 are identical for those found in the
singlet state.

The second regime arises when the temperature becomes very large (kBT/NUs > 1), where
one expects the sum to saturate due to the finite number of states. In this limit, the upper bound
of the integral cannot be taken to infinity, and one must take the restriction S 6 N into account.
On the other hand, the Boltzmann factor can be replaced by unity, and the sums can then be
calculated analytically. One finds

(1N 2
0 )T �NUs ⇡ N 2/18. (19)

To summarize (see figure 1), for q = 0 we always find large depletion and super-Poissonian
fluctuations (1N 2

0 ⇠ hN0i2). The average population is always N/3 as expected from the
isotropy of the Hamiltonian. The relative standard deviation remains approximately constant
(to order N ) at the value 1N0/N ⇡ 2/3

p
5 ⇡ 0.298 for kBT ⌧ NUs, and changes to 1/3

p
2 ⇡

0.236 for very large temperatures kBT > NUs where all the states are occupied with equal
probability.

4.2. Bogoliubov approximation for q 6= 0

For large q > 0 (and hSzi constrained to vanish only in average), we expect that the system
will form a condensate in the m = 0 Zeeman state, with small fluctuations. Such a system can
be described in the Bogoliubov approximation (as described in the appendix of [12]), which
extends to any M the harmonic oscillator approximation made earlier for the M = 0 sector. One
sets â0 ⇡ p

N 0, and expresses the fluctuations â±1 in terms of new operators ↵̂±,

↵̂± = uâ±1 � vâ†
⌥1. (20)

Here, the Bogoliubov amplitudes u, v defined by

u ± v =
✓

q
2Us + q

◆±1/4

(21)

are chosen to put the Hamiltonian in diagonal form

HBogo =
X

µ=±
h̄!

✓
↵̂†

µ↵̂µ +
1
2

◆
� (g + q). (22)

The energy h̄! of the Bogoliubov mode is identical to the one previously found in the harmonic
oscillator approximation for M = 0 (equation (6)). Note that we have now two such modes
(instead of only one in the case M = 0).6

6 We expect, in general, three modes of excitations for a spin-1 system. When the constraint of constant particle
number is taken into account, this reduces the number of modes to two. The suppressed mode would correspond to
the density fluctuations in an extended system, and is explicitly ruled out by the SMA. When a further constraint
M = 0 is imposed, another mode is canceled—corresponding to magnetization fluctuations which are explicitly
forbidden, thus leaving only one excitation mode.
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Figure 4. Depletion (left) and standard deviation (right) of N0. The solid line
shows the exact numerical result for N = 1000 and T = 10Us, the blue dash-
dotted line is the result calculated for q = 0 by using equations (17), (18) and the
red dashed line shows the Bogoliubov approximation. Deviations are observed
for q/T ⇠ N (not visible at the scale of the figure), which is expected from our
approximation: this regime corresponds to a depletion of one atom or less, and
corrections /1/N that we neglect become important.

In the Bogoliubov approximation, the moments of N0 can be obtained analytically. The
quantum (T = 0) depletion of N0 is smaller than one atom. The thermal part of the depletion
and variance of n0 = N0/N read for kBT � h̄!:

1 � hn0i = 2(Us + q)

q + 2Us

kBT
Nq

, (23)

1n2
0 = 2

⇥
(Us + q)2 + U 2

s

⇤

(q + 2Us)2

✓
kBT
Nq

◆2

. (24)

The prefactors take values of order unity, and both the depletion 1 � hn0i and standard deviation
1n0 scale as kBT/Nq. The above expressions are valid provided they describe small corrections
to a regular polar condensate where almost all the atoms accumulate in m = 0 (hn0i = 1), or in
other words for temperatures

kBT ⌧ Nq. (25)

4.3. Comparison between the different approximations

We compare in figure 4 the predictions for the moments of N0 obtained from the various
approximations discussed in the paper, Bogoliubov approximation and q = 0 limit. These
approximations are compared to the results obtained by diagonalization of the original
Hamiltonian (1) and computing thermodynamic averages by using the exact spectrum and
eigenstates.

When Nq/kBT ⌧ 1, the localized states of section 3.3, which are dominated by their
potential energy, will be populated. Since these localized states are close to the angular
momentum eigenstates found in the q = 0 limit, to a good approximation the formula derived
in section 4.1 (see (17), (18) and the continuous blue line in figure 4). On the other hand,
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for Nq/kBT � 1, thermal states mostly populate states with E ⇠ q N , i.e. ‘delocalized’ states
within the low-energy ‘Bloch band’ of width ⇠ Nq. Those states correspond to small depletion
and fluctuations, and they are well described by the Bogoliubov approximation presented in
section 4.2 (see (23), (24) and the red dashed line in figure 4). The numerical solution of
the original model (3) interpolates between the two well-defined asymptotic limits, either a
thermal mixture of total spin eigenstates for q ⌧ kBT/N or a thermal state of Bogoliubov-like
excitations for q � kBT/N .

We note to conclude this section that in the regime Us/N ⌧ kBT ⌧ NUs, the tight-binding
model defined in equation (3) has a quasi-universal form at finite temperatures, in the sense
that the model is entirely specified by two dimensionless parameters, for instance kBT/Us and
Nq/Us. We found that the physical quantities hN0i, (1N0) depend only on their ratio Nq/kBT ,
to a very good approximation. This quasi-universality, which can be explored by experiments,
will be easily justified in the broken symmetry approach presented in the next section.

5. Comparison with the broken-symmetry picture

So far, we have treated the problem by the most natural method, by looking for the
eigenspectrum of the Hamiltonian. Another approach [2, 3] to the problem of spin 1 bosons
with antiferromagnetic interactions relies on the set of so-called polar or spin-nematic states,
defined as

|N : �i = 1p
N !

�
� · â

�N |vaci, (26)

where the vector � reads in the standard basis

� = ei�

0

B@

1p
2

sin(✓)ei�

cos(✓)

� 1p
2

sin(✓)e�i�

1

CA . (27)

For a single particle, the states |�i = P
i=0,±1�i |m = ii form a continuous family of spin 1

wave functions with vanishing average spin. In fact, |�i is the eigenvector with zero eigenvalue
of the operator � · ŝ, with ŝ the spin 1 operator. The states |N : �i correspond to a many-body
wave function where all the particles occupy the single-particle state |�i. As a result, one has
hN : �|Ŝ|N : �i = 0.

5.1. Zero temperature

It is interesting to connect the spin nematic states to the angular momentum eigenstates. The
spin nematic states form an overcomplete basis of the bosonic Hilbert space. On writing the
states |N , S, Mi in this basis, one finds [2, 3, 12]

|N , S, Mi /
Z

d� YS,M(�)|N : �i, (28)

where YSM denotes the usual spherical harmonics and where d� = sin(✓)d✓ d�. In particular,
the singlet ground state |N , 0, 0i appears to be a coherent superposition with equal weights
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The variance in the ensemble is thus super-Poissonian, and differs from the result in the
exact ground state only by the sub-leading term /N . This is in agreement with the general
statement made above.

5.2. Moments of N0 at finite temperatures

We now extend the broken symmetry approach summarized above to finite temperatures. The
density matrix should include a weight factor proportional to the energy of the states |N :�i.
To the leading order in 1/N , these states have zero interaction energy7 and a mean QZ energy
given by �Nq cos2(✓). In the spirit of the mean-field approximation, we replace the Boltzmann
factor by its mean value and write the density matrix as

⇢̂BS ⇡ 1
Z

Z
d�|N : �ihN : �|eN�q�2

z (33)

with � = 1/kBT . The partition function can then be expressed as

Z =
Z 2⇡

0
d�

Z ⇡

0
sin(✓)d✓ eN�q cos2(✓) = 2⇡F�1/2 (N�q) . (34)

Here, we introduced the family of functions

F↵(y) =
Z 1

0
x↵ eyx dx, (35)

which are related to the lower incomplete gamma functions. In a similar way, we can compute
the moments of n0 = N0/N to the leading order in N as

hnm
0 i = Fm�1/2 (N�q)

F�1/2 (N�q)
. (36)

From this result, one can easily deduce the average and variance of n0. This calculation provides
an explicit proof of the numerical evidence that, to the leading order in N , the moments of N0

obey a universal curve depending only on Nq/kBT and not on q/Us or T/Us separately.
From the properties of the functions F↵, we recover the results established in the previous

section. When x ! 0, one finds F↵(x) ⇠ 1/(↵ + 1) and hnm
0 i ⇠ 1/(2m + 1). By using this

result we recover for q = 0 the previous results, i.e. hn0i = 1/3 and 1n2
0 = 4/45. When

x ! 1, F↵(x) ⇠ ex/x ⇥ [1 �↵/x +↵(↵� 1)/x2]. This leads to the asymptotic behavior
hnm

0 i ⇠ 1 � m/(N�q) + m(m � 3/2)/(N�q)2 + · · · when N�q � 1, which reproduces the
Bogoliubov results (23), (24) for q ⌧ Us.8

We finally compare, in figure 5, the results from the broken symmetry approach to the
results obtained by diagonalizing the Hamiltonian (1). We find excellent agreement between
the two in the regime of thermal fragmentation, supporting the picture of mean-field states with
random orientation fluctuating from one realization to the next. We note that the ansatz (33)
for the density matrix is by no means obvious, and the good agreement with the numerical
results is obtained only because the set of polar states is a good description for sufficiently

7 Explicitly, one has hN : �|Ŝ2|N : �i = N (1 + cos2(✓)), so that the interaction energy of the state |N : �i is given
by Us cos2(✓) ⇠O(1) compared to the QZ energy ⇠O(N ). The same argument applies to the off-diagonal matrix

elements hN : �0|Ŝ2|N : �i.
8 For q � Us, the depletion and standard deviation of n̂0 are of the order 1/N , of the same order as the error made
by using the broken symmetry approach.
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Figure 5. Exact diagonalization (red solid line) versus broken symmetry
approach (black dots) for N = 1000, kBT/Us = 10.

low temperatures: although these states are not true eigenstates of the Hamiltonian (1), the
action of Ĥ yields off-diagonal matrix elements scaling as 1/N [31], and thus vanishing in the
thermodynamic limit. At high temperatures (kBT ⇠ NUs), where all the high-energy states are
populated the broken-symmetry ansatz is no longer adequate.

6. Conclusion

We have studied the properties of an ensemble of antiferromagnetic spin-1 bosons with QZ
energy breaking the spin rotational symmetry. The system evolves with increasing QZ energy
from a super-fragmented condensate with large fluctuations to a regular polar condensate
where the atoms condense in m = 0. We focused, in particular, on the behavior of a thermal
mixture of excited states, and discussed the evolution of the moments of N0 with increasing
q. Two approaches were explored, one relying on the diagonalization of the Hamiltonian
(either exactly or approximately in certain parameter regimes), and the other relying on a
broken symmetry picture where the system is described as a statistical mixture of degenerate
polar condensates. Both approaches were found in remarkable agreement. In this paper, we
focused on the equilibrium properties and assumed thermal equilibrium from the start. An
interesting question is how the physical system (i.e. also including the dynamics of non-
condensed modes not described in the SMA) can reach such an equilibrium state, e.g. following
a quench in q [32]. This problem, which can be linked to the more general question of
thermalization of closed quantum systems [33], provides an interesting direction for future
work.
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Appendix A. Total spin eigenstates

The general expression of the states |N , S, Mi in the Fock basis is

|N , S, Mi = 1pN (Ŝ(�))P( Â†)Q(â†
+1)

S|vaci. (A.1)

Here, P = S � M , 2Q = N � S, Ŝ� is the spin lowering operator and Â† = â†
0 � 2â†

�1â†
+1

is the singlet creation operator. The two operators commute. The normalization constant
reads

N = S!(N � S)!!(N + S + 1)!!(S � M)!(2S)!
(2S + 1)!!(S + M)!

, (A.2)

where !! indicates a double factorial.
The action of â0 on the angular momentum eigenstates is

â0|N , S, Mi =
p

A�(N , S, M)|N � 1, S � 1, Mi +
p

A+(N , S, M)|N � 1, S + 1, Mi, (A.3)

where â0 is the annihilation operator of a boson in the Zeeman state m = 0, and where the
coefficients A± are given by

A�(N , S, M) = (S2 � M2)(N + S + 1)

(2S � 1)(2S + 1)
, (A.4)

A+(N , S, M) = ((S + 1)2 � M2)(N � S)

(2S + 1)(2S + 3)
. (A.5)

The non-zero matrix elements of N̂0 are

hS|N̂ 0|Si = (A+(N , S, M) + A�(N , S, M)) , (A.6)

hS + 2|N̂ 0|Si =
p

A�(N , S + 2, M)A+(N , S, M), (A.7)

hS � 2|N̂ 0|Si =
p

A+(N , S � 2, M)A�(N , S, M), (A.8)

where we abbreviated the notation for the state |N , S, Mi as |Si to simplify the notation. We
then obtain the matrix elements of Ĥ0 in the |N , S, Mi basis as

hM
S,S = Us

2N
S(S + 1) � qhS|N̂ 0|Si, (A.9)

hM
S,S+2 = �qhS + 2|N̂ 0|Si, (A.10)

hM
S,S�2 = �qhS � 2|N̂ 0|Si. (A.11)
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Appendix B. Continuum approximation

We expand the matrix elements hS,S, hS,S±2 to the first order in 1/S, S/N , M2/S2, and obtain

hM
S,S±2 ⇡ N

4


1 � M2

(S ± 1)2

�
� 1

8N

⇥
(S ± 1)2 � M2⇤ , (B.1)

hM 6=0
S,S ⇡ N

2

✓
1 � M2

S2

◆
, hM=0

S,S ⇡ N
2

. (B.2)

For M = 0, we obtain

� Nq
4

✓
1 � (x + ✏)2

2

◆
cS+2 +

✓
1 � (x � ✏)2

2

◆
cS�2

�
+

NUs

2
x2cS =

✓
E +

Nq
2

◆
cS, (B.3)

where we have set x = S/N and ✏ = 2/N . We now take the continuum limit, where ✏ ⌧ 1 is
taken as a discretization step and cs becomes a continuous function c(S). We write

N 2

4
(cS+2 + cS�2) ⇡1c(s) +

N 2

2
c(s). (B.4)

By substituting in (B.4) and neglecting a term / (qx2/N )1c, we arrive at (5).
This derivation is valid as long as the relevant states are well localized around x = 0.

This is always the case in the ground state, which has a width at most ⇠1/
p

N for q � Us.
For the thermal states, the width is ⇠ p

kBT/ [N (2Us + q)], which gives the condition kBT ⌧
N (Us + q). Finally, the cross-term / (qx2/N )1c is of the order 2Ep Ecc/ [N (2Us + q)] in terms
of the kinetic and potential energies Ec, Ep of the harmonic oscillator. In the thermal regime,
a typical order of magnitude for this term is thus (kBT )2/[N (2Us + q)], small compared to the
energy kBT typical for the other terms we kept in the equation provided the condition above is
fulfilled.
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