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Introduction

The objective of this thesis work concerns the study, design and numerical implementa-
tion of finite volume approximations belonging to a particular class of methods known
as Godunov-type methods [65, 74], which are based on the reconstruct-evolve-average
(REA) algorithm (see, for instance, [90]), for hyperbolic conservation laws. In the con-
text of the standard finite volume approach, the conservative form of the governing equa-
tions is especially important when dealing with problems admitting discontinuities, e.g.,
shocks and contact discontinuities, in the solution. Non-conservative formulations lead
not only to incorrect estimates of wave speeds, but also to inconsistency of the numerical
approximation with the weak form [76], whereas convergent conservative approximations
are known to be always consistent with the weak formulation [88] as Rankine-Hugoniot
relations are satisfied.

It has been pointed out, since the early fifties [116, 144], that artificial viscosity is un-
avoidable when designing stable and convergent approximations for hyperbolic systems,
and in this setting, we mention the pioneering work of Godunov [65], who formulated a
conservative scheme that employs the solutions of classic initial-value problems known
as Riemann problems [37] at cell interfaces to approximate the local numerical flux. In-
deed, numerical dissipation is the effect of fine unresolved scales on the coarse resolved
ones (refer to the variational multiscale framework, e.g., [77]), and interface Riemann
problems are ways to describe the evolution of these fine scales for given coarse scale
data. It was Godunov who proposed the general approach of the REA algorithm as a
means to solve the Euler equations of gas dynamics [65, 90] and thus show that even for
nonlinear systems, the Riemann problem solution for general piecewise constant initial
data consists of a finite set of waves propagating with finite velocities. His contribution
then became the bedrock upon which many authors based their work, addressing the
method’s weaknesses, e.g., the cost related to computing exact solutions for nonlinear
Riemann problems, and arguing that it might be sufficient and computationally less
expensive to construct approximations of these problems, as suggested by Roe [117] and
Harten et. al. [74], among others; the latter are credited with defining and coining
the term Godunov-type for a certain class of projection-evolution schemes that use an
approximation to the Riemann problem, in the finite volume context.

Given that these schemes have wide applicability as they are able to accurately
reproduce much of the relevant physics, combined with the fact that numerical simulation
is becoming increasingly important and employed in numerous fields for research and
development, it is not surprising to find that an enormous amount of Godunov-type
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schemes have been constructed over the recent years. Despite their inherent weaknesses
noted by several authors such as Quirk (who duly cataloged, diagnosed and proposed how
to overcome some of the perceived shortcomings in [114, 115]) and the subtle flaws that
sometimes might become apparent whilst performing a simulation, Godunov-type solvers
are known to be nonetheless robust and produce high fidelity simulations; generally
speaking, their advantages tend to overshadow the potential disadvantages. Moreover,
given the vast amount of approximate Riemann solvers available in the literature (which
some consider has evolved into a growing industry [115]) and their underlying simplicity,
Godunov-type finite volume methods are likely to be chosen as tools to simulate real
problems in various contexts, e.g., fluid dynamics, see [2, 3, 15, 23, 26, 50, 51, 54, 60,
64, 65, 89, 90, 92, 117, 129, 131, 145], and magnetohydrodynamics, see [9, 10, 12, 45, 58,
61, 66, 72, 80, 97, 101, 107, 112, 124, 142, 141], naming a few.

Our objective is then to contribute to the undoubted success of numerically simu-
lating real-world problems by means of Godunov-type solvers. Prominently interesting
physical events occur during everyday life in a wide range of scenarios, and after manag-
ing to describe the associated phenomena in the language of mathematical equations as
theoretical models, numerical simulation becomes a major tool in their study. In point
of fact, scientific computing is not meant to replace theory nor experimentation, but
rather work alongside them; however, there are several fundamental problems that can
only be addressed with code since laboratory experimentation is not always possible, as
is usual in astrophysics. This branch of astronomy is fairly broad and its research on the
nature of heavenly bodies, such as stars or planets, is constantly verified by numerical
simulation. Surprisingly, some of the theoretical properties or aspects that are simple
enough to comprehend are in fact quite difficult to adapt to numerical systems, e.g.,
stationary solutions. In stellar physics, among others, many gravitational flows reach
steady or quasi-steady states characterized by a balance between gravitational forces
and distinct forces, such as pressure gradients, and in view of numerical simulations,
the proper treatment of source terms that allows to preserve discrete equilibrium states
presents a challenge (see, for instance, [55, 71, 82, 91]).

Typically, diverse observations of the extraordinary heavenly objects and their emis-
sions facilitate a better understanding of the universe. An interesting line of research is
that of nuclear fusion reactions occurring naturally and powering active stars, e.g., the
Sun, which is a main-sequence star [34] and therefore generates thermal energy in its
dense core region by nuclear fusion of hydrogen nuclei into helium. In general terms,
nuclear fusion is the process in which two or more atomic nuclei collide at considerable
high speed and fuse or join together to form a new type of atomic nucleus, releasing or
absorbing energy, as matter is not conserved during the process. With this knowledge,
the ambition to develop controlled thermonuclear fusion on Earth for the production
of energy led to the development of the tokamak and other interesting confinement de-
vices. In particular, the tokamak is a type of machine that uses magnetic fields to confine
plasma in the shape of a doughnut-shaped torus and is the basis of the current, inter-
national ITER project [1]. Indeed, to induce large-scale thermonuclear fusion reactions,
extremely high temperatures and densities are needed: since plasma consists of freely
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moving electrons and ions, it can be shaped into the form of a torus by employing a
combination of different types of magnetic fields (given the plasma’s inherent property
of electrical conductivity) and thus heat it to high temperatures so that numerous re-
actions (the most promising seeming to be of deuterium-tritium type) can take place
and ideally, be sustained. Due to the growing need of alternative energy sources and the
potential found in fusion to produce power in the nearby future, tokamak research is
being extensively performed, with numerical modeling and simulation playing key roles.

In the field of plasma physics, the magnetohydrodynamic (MHD) model is used to
treat plasma as a single conducting fluid and describe different phenomena at the macro-
scopic level, i.e., we do not consider what the electrons and ions are doing separately,
but as a whole. The need of obtaining physical and stable solutions to these equations,
which can be written in hyperbolic conservation form, has led to the development of sev-
eral schemes that attempt to closely approximate aspects of real plasma behavior, such
as Alfvén waves, MHD equilibria, and field line freezing [42]. Actually, the conserva-
tive formulation of the magnetohydrodynamic equations allows the use of Godunov-type
schemes for their solution, all requiring to satisfy and preserve the divergence constraint
of the magnetic field numerically. In consequence, a suite of strategies in Godunov-
type MHD codes and a number algorithms that can be combined with shock-capturing
Godunov-type base schemes have been developed, see [12, 45, 61, 97, 107, 112, 130],
some of which require the use of multidimensional solvers for the adequate estimation
of staggered electric fields [52].

Many plasma physics problems, not only in the context of magnetic confinement
fusion, but also in the field of astrophysics (for instance, problems characterized by a
central gravitational field, e.g., thin accretion disks [93, 94] or the evolution of protoplan-
etary nebula leading to the formation of planets around a young star [78]), occur in a
spatial domain that can be represented by a torus. From a mathematical point of view,
even if space and time scales are not exactly the same, these problems can be described
by systems of equations having a common structure such that similar (to some extent)
numerical methods can be applied to obtain their approximate solutions. In particular,
the choice of an adequate approximation strategy depends heavily on the geometry and
on the existence of an intense force field governing the physics of the problem, e.g., grav-
itational force for astrophysical problems and Lorentz force in tokamak devices. In this
context, the numerical methods need to take into account all geometrical effects aris-
ing from the presence of the magnetic or gravitational fields and any strong anisotropy
existing in the flows.

Contribution and Organization of this Manuscript
After briefly introducing all necessary background theory on hyperbolic systems of con-
servation laws, including the Euler and ideal magnetohydrodynamic equations, the focus
of Chapter 1 shifts towards the main theoretical and numerical aspects frequently found
in the Godunov-type scheme framework, such as the Riemann problem and MUSCL re-
construction, which are fundamental concepts to this thesis and thus, worth mentioning.
The rest of the thesis is organized as follows.
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In Chapter 2, we report on our study aimed at deriving a simple method to numeri-
cally approximate the solution of the two-dimensional Riemann problem for hyperbolic
systems of conservation laws, using the literal extension of the well-known HLL formal-
ism as its basis. Essentially, any strategy attempting to extend the three-state HLL
Riemann solver to multiple space dimensions will by some means involve a piecewise
constant approximation of the complex 2D interaction of waves, and the derived numer-
ical scheme is not the exception. In order to determine closed form expressions for the
involved fluxes, we rely on the equivalence between the consistency condition and the
use of Rankine-Hugoniot conditions that hold across the outermost planar waves emerg-
ing from the Riemann problem’s initial discontinuities. The proposed scheme is then
carefully designed to simplify its eventual numerical implementation and its advantages
are attested. We also present several numerical results that display its robustness and
stability.

Next, in Chapter 3, we aim to show the importance of maintaining the divergence
constraint of the magnetic field numerically when performing numerical simulations of
the MHD equations. We investigate in particular the hyperbolic divergence cleaning
technique applied to the ideal MHD equations on a collocated grid and compare it to
the constrained transport technique that uses a staggered grid to maintain the property.
Additionally, for the latter, we demonstrate the applicability of the two-dimensional
HLL Riemann solver to obtain the electric fields at corners and zone edges in two and
three dimensions, respectively. The methods are implemented in the same software and
several numerical tests are presented, where the robustness and accuracy of the different
schemes can be directly compared.

Chapter 4 deals with the derivation of a relaxation scheme for astrophysical flows
governed by the Euler equations with gravity source terms derived from a potential, the
evolution of which is described by a Poisson equation. The corresponding scheme, in
which the pressure is a supplementary variable and the Poisson equation is transformed
into a hyperbolic equation with a penalty parameter, is obtained in the limit as the
introduced parameter tends to zero. The proposed Riemann solver provides better ro-
bustness compared to other approaches available in the same software and is capable
of preserving gravitational equilibria when required. Several numerical tests and results
are presented, as well.

Finally, Chapter 5 reviews the design of a finite volume approximation for hyper-
bolic systems of conservation laws in curvilinear coordinates, as numerous problems
posses obvious geometric symmetries in coordinate systems for Euclidean space in which
the associated coordinate are not all straight lines. As a matter of fact, several of these
problems are related to plasma physics and are encountered not only in the astrophysical
but also in the magnetic confinement fusion setting, a research area of growing impor-
tance. The approach relies on constructing the approximation without utilizing any
preliminary projection when dealing with vector equations, such as those that describe
the momentum of an element in multidimensions, and is later illustrated in cylindri-
cal coordinates for toroidal geometries. Numerical experiments in a three-dimensional
rectangular torus are then carefully examined.
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Introduction

L’objectif de ce travail de thèse est l’étude, la construction et la mise en œuvre numérique
d’approximations volumes finis appartenant à une classe particulière de méthodes dites
de type Godunov [65, 74], fondées sur l’algorithme REA («reconstruct-evolve-average»,
voir par exemple [90]), pour les lois de conservation hyperboliques. Dans le contexte de
l’approche des volumes finis, la forme conservative des équations est particulièrement im-
portante lorsqu’il s’agit de problèmes présentant des discontinuités, comme par exemple
des ondes de choc ou des discontinuités de contact, dans la solution. Les formulations non
conservatives conduisent non seulement à des estimations erronées des vitesses d’onde,
mais aussi à l’inconsistance de l’approximation numérique de la formulation faible [76],
alors que les approximations conservatives convergentes sont connues pour être toujours
en accord avec la formulation faible [88] puisque des relations de Rankine-Hugoniot sont
satisfaites.

Il a été souligné, depuis le début des années cinquante [116, 144], que la viscosité
artificielle est inévitable lors de la construction d’approximations stables et convergentes
pour les systèmes hyperboliques, et dans ce cadre, nous parlons ici du travail pionnier de
Godunov [65], qui a formulé un schéma conservatif qui utilise les solutions du problème
de Riemann (un problème de Cauchy classique [37]) aux interfaces pour rapprocher le
flux numérique local. En effet, la dissipation numérique prend en compte l’effet des
échelles fines non résolues sur les grandes échelles résolues (voir les méthodes varia-
tionnelles multi-échelles, par exemple [77]). Les problèmes de Riemann aux interfaces
permettent de décrire l’évolution de ces fines échelles pour les données grossières. Go-
dunov a proposé l’approche générale de l’algorithme REA comme un moyen de résoudre
les équations d’Euler de la dynamique des gaz [65, 90] et a ainsi montré que, même pour
les systèmes non linéaires, la solution du problème de Riemann se compose d’un ensemble
fini d’ondes qui se propagent à vitesse finie. Sa contribution est devenu la référence sur
laquelle de nombreux auteurs ont développé des recherches répondant aux points faibles
de la méthode initiales, par exemple les coûts liés au calcul numérique des solutions
exactes pour des problèmes de Riemann non linéaires. Certains affirment qu’il pourrait
être suffisant et moins coûteux de construire des approximations «consistantes»du prob-
lème de Riemann, comme suggéré par Roe [117] et Harten et. al. [74], entre autres.
Ces derniers sont connus pour avoir défini le terme«schémas de type Godunov»pour
une certaine classe de schémas projection/évolution qui utilisent une approximation du
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problème de Riemann.
Étant donné que ces schémas ont une large applicabilité parce qu’ils reproduisent

avec précision une grande partie de la physique, combiné avec le fait que la simulation
numérique est de plus en plus importante et utilisé dans de nombreux domaines de
recherche et de développement, il n’est donc pas surprenant que plusieurs versions des
schémas de type Godunov aient été construits au cours des dernières années. Malgré leurs
faiblesses inhérentes mentionnées par plusieurs auteurs comme Quirk (qui a énuméré et
proposé comment surmonter certaines des lacunes constatées en [114, 115]) et malgré
les défauts numériques qui parfois devient apparent en temps très long, les solveurs de
type Godunov sont néanmoins connus pour être robustes et produisent des simulations
de haute fidélité ; de manière générale, leurs avantages ont tendance à éclipser les incon-
vénients potentiels. En outre, étant donné la grande quantité de solveurs de Riemann
approchés disponibles dans la littérature (en forte croissance dans l’industrie [115]) et
leur simplicité sous-jacente, les méthodes volume finis de type Godunov sont très souvent
utilisés pour les simulations de problèmes réels, dans des contextes variés comme la dy-
namique des fluides, [2, 3, 15, 23, 26, 50, 51, 54, 60, 64, 65, 89, 90, 92, 117, 129, 131, 145],
la magnétohydrodynamique, [9, 10, 12, 45, 58, 61, 66, 72, 80, 97, 101, 107, 112, 124, 142,
141], parmi tant d’autres.

Notre objectif est donc de contribuer à la promotion des simulations numériques de
problèmes du monde réel avec des solveurs de type Godunov. Des phénomènes physiques
intéressants se produisent pendant la vie quotidienne avec une large gamme de scénar-
ios, après avoir décrit les phénomènes comme des modèles mathématiques, la simulation
numérique devient un outil essentiel. En effet, le calcul scientifique n’a pas pour objectif
de remplacer la modélisation ni l’expérimentation, mais plutôt de travailler en synergie.
Cependant, il y a plusieurs problèmes fondamentaux qui ne peuvent pas être considérés
que par les outils de simulation numérique, en effet puisque l’expérimentation en lab-
oratoire n’est pas toujours possible, voire impossible, comme en astrophysique. Cette
branche de l’astronomie est assez large et sa recherche sur la nature des corps célestes,
comme les étoiles ou les planètes, est constamment vérifiée par la simulation numérique.
De manière surprenante, certaines des propriétés théoriques et des comportements intu-
itivement simples sont en fait très difficiles à reproduire par des outils numériques, par
exemple, des solutions stationnaires. En physique stellaire, parmi d’autres, de nombreux
écoulements gravitationnels atteignent états stables ou quasi-stables caractérisés par un
équilibre entre les forces gravitationnelles et d’autres forces (comme des gradients de
pression). Dans le contexte de simulations numériques, le traitement adéquat des ter-
mes sources qui permet de préserver des états discrets d’équilibre reste un défi (voir par
exemple [55, 71, 82, 91]).

En règle générale, diverses observations des objets célestes et leurs émissions con-
tribuent à une meilleure compréhension de l’univers. Un domaine de recherche intéres-
sant est celui des réactions de fusion nucléaire qui se produisent naturellement dans les
étoiles actives (comme par exemple le Soleil [34]) et qui génèrent de l’énergie thermique
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par fusion nucléaire des noyaux d’hydrogène en hélium. Plus généralement, la fusion
nucléaire est le processus par lequel deux ou plusieurs noyaux atomiques entrent en col-
lision à grande vitesse et fusionnent pour former un nouveau type de noyau atomique,
libérant ou absorbant de l’énergie (la matière n’est pas conservée au cours du processus).
Fort de cette connaissance, l’ambition de développer la fusion thermonucléaire contrôlée
sur Terre pour la production d’énergie a conduit à l’élaboration du tokamak tout comme
d’autres dispositifs de confinement intéressants. Le tokamak est un type de machine qui
utilise des champs magnétiques pour confiner un plasma en forme de tore et qui est à
base du projet international ITER [1] en cours. En effet, pour induire des réactions
de fusion thermonucléaire à grande échelle, il est nécessaire d’avoir des températures
et des densités extrêmement élevées. Comme les plasmas sont constitués d’électrons et
d’ions qui se déplacent librement, ils peuvent être confinés en utilisant une combinai-
son de différents types de champs magnétiques (étant donné la propriété inhérente de
la conductivité électrique des plasmas). Le confinement porte le plasma à températures
suffisamment élevées qui rendent possible des réactions persistantes de fusion en cascade.
En raison de la nécessité croissante de sources d’énergie alternatives et le potentiel en
production d’énergie que représente la fusion par confinement magnétique, la recherche
sur les tokamaks est en plein essor. Dans ce contexte la modélisation numérique et la
simulation jouent un rôle de premier plan.

Dans le domaine de la physique des plasmas, le modèle magnétohydrodynamique
(MHD) est utilisé pour traiter le plasma comme un seul fluide conducteur et décrit
les phénomènes à l’échelle macroscopique, c’est à dire, que nous ne considérons pas les
électrons et les ions séparément, mais comme un ensemble. Le besoin d’obtenir des
solutions physiques et stables à ces équations hyperboliques, qui peuvent être écrites
sous forme conservative, a conduit à l’élaboration de plusieurs schémas qui reproduisent
avec une certaine fiabilité la dynamique de plasmas réels (ondes d’Alfvén, équilibres
MHD, et lignes de champ magnétique «gelées»[42]). La formulation conservative des
équations MHD permet l’utilisation de schémas de type Godunov pour leur résolution,
tout en préservant la contrainte de divergence nulle sur le champ magnétique numérique.
En conséquence, une série de stratégies pour assurer la contrainte de divergence nulle,
combinées avec des schémas de type Godunov, ont été développées, [12, 45, 61, 97,
107, 112, 130]. Certains nécessitent des solveurs multidimensionnelles pour l’estimation
adéquate de champs électriques décalés [52].

De nombreux problèmes de la physique des plasmas, non seulement dans le contexte
de la fusion par confinement magnétique, mais aussi dans le domaine de l’astrophysique
(comme les problèmes caractérisés par un champ de gravitation central, par exemple, les
disques d’accrétion [93, 94], ou l’évolution de la nébuleuse protoplanétaire conduisant à
la formation de planètes autour d’une jeune étoile [78]), se produisent dans un domaine
spatial qui peut être représenté par un tore. D’un point de vue mathématique, même
si les échelles spatiales et temporelles ne sont pas exactement les mêmes, ces problèmes
peuvent être décrits par des systèmes d’équations ayant une structure commune et des
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méthodes numériques similaires peuvent souvent être appliquées pour obtenir leurs so-
lutions approchées. En particulier, le choix d’une stratégie d’approximation adéquate
dépend fortement de la géométrie et de l’existence d’un champ de force intense régissant
la physique du problème. Dans ce contexte, les méthodes numériques doivent prendre
en compte tous les effets géométriques résultants de la présence de champs magnétiques
ou gravitationnelles mais aussi une forte anisotropie existant dans les écoulements.



Résumé

L’étude des phénomènes physiques divers a fait l’objet de nombreux travaux de recherche
qui ont pour objectif de les reproduire numériquement. Après avoir décrit ces phénomènes
comme des modèles mathématiques, la simulation numérique devient un outil essentiel et
notre but est de contribuer à l’avancement des simulations de problèmes du monde réel
avec des solveurs de type Godunov. Après une brève présentation de la théorie de base
nécessaire des systèmes de lois de conservation, y compris les équations d’Euler et de la
magnétohydrodynamique idéale, le chapitre se consacre au rappel des principaux aspects
théoriques et numériques trouvés dans le cadre des schémas de type Godunov, comme le
problème de Riemann et la reconstruction MUSCL qui sont des concepts fondamentaux
de cette thèse.

Nous considérons dans un premier temps, un système hyperbolique de lois de con-
servation en deux dimensions, de la forme

∂tw + ∂xf(w) + ∂yg(w) = 0,

et nous nous intéressons à l’approximation numérique de la solution du problème de Rie-
mann bidimensionnel pour ce système à travers l’extension du formalisme HLL éprouvé
en monodimensionnel. Le solveur numérique est alors constitué d’ondes planes séparant
des états constants. Essentiellement, la généralisation multidimensionnelle des trois états
1D du solveur HLL conduit, inévitablement, à la construction d’un profil approché de
propagation constitué d’états constants et représentatif de la complexité des interactions
d’ondes associées au problème de Riemann multidimensionnel où la condition initiale est

w(x,y,0) =
∑

i=1,...,Nx
j=1,...,Ny

wn
i,j χi,j(x,y) with χi,j(x,y) =

{
1 si (x,y) ∈ Ci,j ,
0 si (x,y) 6∈ Ci,j .

Nous montrons d’abord comment l’état intermédiaire peut être obtenu par une inté-
gration spatio-temporelle sur un modèle d’ondes spécifique. Ensuite, nous proposons
d’utiliser la consistance avec la formulation intégrale à travers les relations de Rankine-
Hugoniot afin d’obtenir des expressions du flux numérique assez simples à mettre en



12 Introduction

œuvre. Ces relations de sauts s’écrivent sous la forme

Jnxf
[θ] +nyg

[θ]K = σJw[θ]K, θ = 1, . . . ,ϑ,

et conduisent à formuler les flux comme solution d’un système linéaire, en général sur-
déterminé, dont le rang est égal au nombre d’inconnus. La méthode des moindres carrés
permet de construire une solution qui défini la formulation approchée du problème de
Riemann et des différents flux numériques

φ̃
hll2D

x,i+ 1
2 ,j+

1
2

= φ̃
hll2D

x (wn
i+1,j+1 ,w

n
i,j+1 ,w

n
i,j ,w

n
i+1,j) =

∑

(µν)∈L
i+ 1

2 ,j+ 1
2

βy,µν fµν .

Les schémas numériques obtenus s’avèrent assez simples à mettre en œuvre, même pour
des maillages non structurées. Nous présentons également quelques résultats numériques
qui exposent la robustesse, l’isotropie et la stabilité des solveurs multidimensionnels sur
des cas d’école de la littérature.

Ensuite, dans le chapitre 3, nous montrons l’importance de préserver numériquement
la contrainte de divergence nulle du champ magnétique lors de l’exécution des simulations
numériques de la MHD idéale. Au fil des ans, la simulation numérique de ces équations
a joué un rôle important dans la recherche en physique des plasmas et la nécessité de
trouver des solutions physiques et stables a conduit à l’élaboration de plusieurs sché-
mas numériques, tout en préservant la contrainte de divergence nulle ∇ ·B = 0. Pour
des solutions lisses, cette contrainte est garantie par l’équation d’évolution du champ
magnétique de manière que

∂t(∇ ·B) = 0.

Idéalement, lors de la réalisation de simulations numériques, nous voulons que cette
équation particulière reste nulle à tout moment. Tel est le cas en une dimension, où la
contrainte devient ∂xBx = 0 et l’équation d’évolution pour Bx est réduite à ∂tBx(·, t) = 0
pour tout temps t > 0. Cependant, pour les écoulements multidimensionnels, Brackbill
and Barnes [24] ont montré que des erreurs de discrétisation numériques ont un impact
sur l’évolution dans le temps de la façon suivante:

∂t(∇ ·B) = 0 +O ((∆x)m,(∆t)n) .

En conséquence, une série de stratégies pour assurer∇·B = 0 numériquement, combinées
avec des schémas de type Godunov, ont été développées, [12, 45, 61, 97, 107, 112, 130].
Nous étudions la technique de «hyperbolic divergence cleaning» appliquée aux équations
discrétisées sur une grille colocalisée et nous la comparons à la technique du transport
contraint qui utilise une grille décalée pour maintenir cette propriété. En particulier,
pour le premier, nous considérons la formulation GLM-MHD suggérée par Dedner et al.
[45] où la contrainte de divergence et l’équation d’évolution du champ magnétique sont
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remplacées par

∂tB +∇ · (B⊗u−u⊗B) +∇ψ = 0, (0.2)

D(ψ) +∇ ·B = 0. (0.3)

Pour la technique du transport contraint, le solveur Riemann 2D peut facilement être
utilisé pour estimer le champ électrique aux coins du maillage :

Ez,i+ 1
2 ,j+

1
2

= Ehll2Dz (wi+1,j+1 ,wi,j+1 ,wi,j ,wi+1,j). (0.4)

Les méthodes sont implémentées et des tests numériques sont présentés. Il est ainsi
possible de comparer directement la robustesse et la précision des méthodes.

Le chapitre 4 concerne un problème important en astrophysique numérique. Certains
écoulements gravitationnels en astrophysique sont modélisés par équations d’Euler avec
des termes sources de gravité dérivant d’un potentiel dont l’évolution est décrite par
une équation de Poisson (Euler-Poisson). Le modèle associé est décrit par le système
d’équations aux dérivées partielles (EDP) suivant :





∂t (ρ) + ∇ · (ρu) = 0,
∂t (ρu) + ∇ · (ρu⊗u) +∇p = −ρ∇Φ,
∂t (ρe) + ∇ · ((ρe+ p)u) = −ρu · ∇Φ,
∆Φ = 4πGρ,

où ρ > 0 est la densité, u ∈R
d la vitesse, e la l’énergie totale spécifique et φ le potentiel

gravitationnel. La pression p est reliée aux variables précédentes par une équation d’état
de la forme p = p(ρ,ǫ) avec ǫ = e − |u|2/2 l’énergie interne spécifique. La constante
gravitationnelle G est égale à G= 6.67× 10−11m3kg−1s−2.

Ces écoulements développent des états d’équilibre autogravitationnels qu’il est néces-
saire de préserver dans la formulation numérique. Dans le contexte de l’approche volumes
finis, nous présentons ici un solveur de Riemann construit à partir d’un modèle de re-
laxation dans lequel la pression est une variable complémentaire [23, 83] et l’équation de
Poisson est transformée en une équation hyperbolique avec un paramètre de pénalisation
ch. Le schéma est obtenu à la limite quand ce paramètre de pénalisation tend vers zéro
[140] et devient

wn+1
i = wn

i −
∆t
∆x

(
φl
x,i+ 1

2
−φr

x,i− 1
2

)
,

où

φl
x,i+ 1

2
= φl

x,i+ 1
2
(ρni , u

n
i , (ρe)ni , Φn

i , ρ
n
i+1, u

n
i+1, (ρe)ni+1, Φn

i+1)

= f l
(
w

δ
(wn

i ),w
δ
(wn

i+1)
)
,
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φr
x,i+ 1

2
= φr

x,i+ 1
2
(ρni , u

n
i , (ρe)ni , Φn

i , ρ
n
i+1, u

n
i+1, (ρe)ni+1, Φn

i+1)

= f r
(
w

δ
(wn

i ),w
δ
(wn

i+1)
)
,

avec w
δ
(wn

i ) = (w
δ
)ni défini selon l’équilibre de relaxation. Cette stratégie, mise en œuvre

dans la plate-forme de calcul HERACLES [66], permet de préserver certains équilibres
autogravitationnels et offre plus de robustesse numérique par rapport aux précédentes
approches disponibles dans la plate-forme, comme celui des pas fractionnaires

∂tw +∇ ·F(w) = 0,

∂tw =−B(w)∇Φ.

Enfin, le dernier chapitre s’attaque à la dérivation des méthodes volumes finis en
coordonnées cylindriques pour les lois de conservation hyperboliques. De nombreux
problèmes de physique des plasmas se produisent dans un domaine spatial pouvant être
représenté par un tore

Ω̂T
3d =

2π⋃

φ=0

Ω̂2d(φ).

On pense aux problèmes d’astrophysique caractérisés par un champ de gravitation cen-
tral : évolution de la nébuleuse protoplanétaire conduisant à la formation des planètes
autour d’une jeune étoile [78]. Un autre exemple, d’une grande actualité concerne l’étude
des plasmas magnétisés dans les futurs réacteurs de fusion.

Sur le plan mathématique, bien que les échelles d’espace et de temps soient évidem-
ment très différentes, ces deux types de problèmes peuvent être décrits par des systèmes
d’équation ayant une structure commune. De ce fait les problèmes d’approximation
numériques sont largement communs à ces deux ensembles d’applications. En partic-
ulier la géométrie toroïdale et l’existence d’un champ de force intense pilotant l’essentiel
de la physique va gouverner le choix des stratégies d’approximation. Celles-ci devront
tenir compte des effets géométriques dus à ces champs de forces (magnétique ou grav-
itationnel) et des très fortes anisotropies des écoulements qui en découlent. En fait,
nous avons étudié la bonne approximation de ces termes géométriques afin que toutes
les propriétés de conservation du système soient conservées :

ri

|Ω̂i,j,k|

∫

Ω̂i,j,k

T̃ φφ(ξ) dξ =1
2(T̃ φφi,j+1/2,k + T̃ φφi,j−1/2,k) + c(∆φ)(T̃ φri,j+1/2,k + T̃ φri,j−1/2,k)

ri

|Ω̂i,j,k|

∫

Ω̂i,j,k

T̃ φr(ξ) dξ =1
2(T̃ φri,j+1/2,k + T̃ φri,j−1/2,k)− c(∆φ)(T̃ φφi,j+1/2,k + T̃ φφi,j−1/2,k),

où c(x) = 1/x− sinx/(2− 2 cosx). La méthode a été appliquée pour simuler un écoule-
ment hydrodynamique stable dans un tore rectangulaire tridimensionnel.



CHAPTER1
Riemann Problems and Godunov-Type Schemes

The purpose of this chapter is twofold: first, it aims to present the background and
theoretical framework for numerical approximation techniques of the Euler and magne-
tohydrodynamic (MHD) equations in the context of Godunov-type methods, and sec-
ond, it helps to standardize the notation and terminology that will be used consistently
throughout this manuscript.

We begin our study by introducing the subject of systems of conservation laws, which
is widely known and included here for completeness. Consider a system of ϑ conservation
laws in d spatial dimensions

∂tw +∇ ·F(w) = 0, in Ωd× (0,T ), (1.1a)

with w = (w[1], . . . ,w[ϑ])T the state vector of conservative variables and F = (f1, . . . ,fd)
the flux tensor. The unknown w : Ωd ⊂ R

d× [0,T )→V is a function from space x ∈ Ωd

and time t to the system’s state space V, and each flux in the ith spatial dimension
is defined as f i : V → R

ϑ, for i = 1, . . . ,d. The numerical solution of such system,
complemented with initial conditions of the form

w = w0, on Ωd×{t= 0}, (1.1b)

is of considerable interest for modeling diverse physical phenomena, such as in gas dy-
namics and plasma physics. For simplicity of presentation, we momentarily restrict
ourselves to the case where d= 1 and denote the flux f1 by f such that

{
∂tw + ∂xf(w) = 0, in Ω1× (0,T ),

w = w0, on Ω1×{t= 0}.
(1.2a)

(1.2b)

Generally speaking, conservation laws are a class of homogenous hyperbolic equa-
tions, which in turn are a class of evolution equations (since partial differential equations
can be viewed as evolution equations on an infinite-dimensional state space). System
(1.2a) is said to be hyperbolic if the Jacobian matrix ∇wf has real eigenvalues λθ and
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each corresponding eigenvector rθ is linearly independent, for θ ∈ {1, . . . ,ϑ}, and it is
strictly hyperbolic if these eigenvalues are also distinct, i.e.,

λ1(w)< .. . < λϑ(w). (1.3)

Physically, eigenvalues represent speeds of wave propagation and also define characteris-
tic fields, which are either linearly degenerate or genuinely nonlinear (see [23, 90, 129]).
The former implies that

∇λθ(w) · rθ = 0 for all w, (1.4)

where ∇λθ is the gradient vector of λθ, namely, ∇λθ = (∂w[1]λθ, . . . ,∂w[ϑ]λθ)T . In addi-
tion, a λθ-characteristic field is genuinely nonlinear if the following relation holds:

∇λθ(w) · rθ 6= 0 for all w. (1.5)

1.1 Scalar Conservation Laws
System (1.2a) describes the conservation of the ϑ components associated with the state
vector w. Setting ϑ= 1, we recover

∂tw+ ∂xf(w) = 0, (1.6)

i.e., a first-order partial differential equation where w is the conserved quantity and
f(w) the flux. The term conservation law, which has hitherto been employed, can now
be justified by integrating (1.6) over an interval [xa,xb] that is fixed in time, to get

d

dt

∫ xb

xa

w(x,t) dx= f(w(xa, t))− f(w(xb, t)), (1.7)

or, in other words, the quantity
∫ xb
xa
w(x,t) dx changes only due to fluxes at points xa and

xb. It is then clear that this integral conservation law arises from physical principles,
whereas the differential form (1.6) is derived from (1.7) under smoothness assumptions.

However, the method of characteristics shows that we cannot always expect a smooth
solution of (1.6) for all times t > 0, even if the initial data (see [64, 90]) is smooth. For
instance, let us consider Burgers’ equation equipped with initial data

{
∂tw+ ∂x(1

2w
2) = 0,

w(x,0) = w0(x),
(1.8)

and the curves x(t), w(x(t), t) that solve




dx

dt
= w(x,t), x(y,0) = x0,

dw

dt
= 0, w(y,0) = w0(y),

(1.9a)

(1.9b)

where x0 ∈ R is a base point. The integral curves t→ x(x0, t) = x0 +w0(x0) t satisfying
equation (1.9a) are called characteristics, along which the PDE becomes an ordinary
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differential equation (ODE). It is well-known that for times t > 0, problem (1.9) may
not have a unique solution as characteristics cross (see [53]). We note that this solution
is implicit since x0 depends on (x,t) and we write

w(x,t) = w0(x−w0(x0) t). (1.10)

1.1.1 Breakdown of Smooth Solutions

Focusing on the intersection of characteristics, we have mentioned that a smooth solution
of (1.6) can break down at a finite time regardless of the initial data’s nature, and thus,
it is necessary to introduce (with the help of the theory of distributions) the concept of
weak solutions that account for possible discontinuities.

Definition 1.1.1. A function w : R×R
+→R is a weak solution to the Cauchy Problem

{
∂tw+ ∂xf(w) = 0,
w(x,0) = w0(x),

(1.11)

if it holds ∫

R+

∫

R

(w∂tϕ+ f(w)∂xϕ) dx dt+
∫

R

w0(x)ϕ(x,0) dx= 0. (1.12)

for every C1(R×R
+) function ϕ with compact support.

The solutions of (1.11) are not necessarily unique, since it is possible to construct
infinitely many weak solutions from particular initial data. It is therefore necessary to
introduce some admissibility conditions and we start with the entropy condition that is
motivated by the second principle of thermodynamics, hence its name. This principle
basically tells us that non-smooth flows of gas dynamics are irreversible.

Definition 1.1.2. A C1 function η : R→ R is an entropy for (1.6) if it is convex and
there exists a C1 function q : R→ R such that

η′(w)f ′(w) = q′(w), (1.13)

for every w ∈R. The function q is called an entropy flux for η and the pair (η,q) is said
to be an entropy-entropy flux pair for (1.6).

Definition 1.1.3. A weak solution w is called entropy satisfying if
∫

R+

∫

R

(η(w)∂tϕ+ q(w)∂xϕ) dx dt≤−
∫

R

η(w0(x))ϕ(x,0) dx (1.14)

for every C1 function ϕ≥ 0 with compact support in R×R+ and for every entropy-entropy
flux pair (η,q).

Therefore, the weak entropy inequality helps us choose the physically relevant one
among all of the weak solutions. Now, we consider a function w with a jump of the form

w(x,t) =

{
wl if x < st,

wr if x > st,
(1.15)
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being s the slope of a discontinuity in the (t,x) plane. The function w in (1.15) is then
a solution of (1.6) if and only if

s(wr −wl) = f(wr)− f(wl). (1.16)

This condition is known as the Rankine-Hugoniot condition and characterizes the dis-
continuities that may appear in the weak solutions to (1.6).

1.1.2 Scalar Riemann Problem in One Dimension

A one-dimensional Riemann problem for scalar conservation laws is a Cauchy problem
(1.11) with initial data

w0(x) = wlH(x) +wrH(−x), (1.17)

where H(x) is the classical Heavisde function; we then seek for unique, admissible solu-
tions of (1.11,1.17). For a uniformly convex flux function f , these solutions may be of
two kinds: rarefaction waves and shock waves (see Figure 1.1).

• If wl <wr, the solution has a rarefaction wave and w(x,t) is defined as

w(x,t) =





wl if x < f ′(wl) t,

(f ′)−1(xt ) if f ′(wl) t < x < f ′(wr) t,

wr if x > f ′(wr) t.

(1.18)

• If wr < wl, the solution contains a shock curve of speed s, which can be found by
means of the Rankine-Hugoniot condition (1.16), and w(x,t) is given by (1.15).

1.1.3 Vanishing Viscosity

Before proceeding with the governing equations that are considered in this manuscript,
we wish to present a way to justify the conditions discussed in Section 1.1.1. In reality,
the conservation law (1.6) describes an idealized process obtained in the limit ε = 0 of
the viscous equation

∂tw+ ∂xf(w) = ε∂2
xw, (1.19)

which is parabolic according to the standard PDE classification. The term in the right-
hand side of the above equation corresponds to viscosity or diffusion and ε is normally a
small parameter. Thus, having ε > 0, it can be proved that (1.19) has a unique solution
for any initial data and for all times t > 0: away from a shock, the second derivative
term is bounded and the viscosity is negligible; near a shock, the derivatives of w start
to blow up and the right-hand side term of equation (1.19) becomes important (see, for
instance, [92]). It is clear that by modeling shock waves as sharp discontinuities and by
setting ε= 0, we are then in need of additional conditions, i.e., those of Section 1.1.1.

1.2 Systems of Conservation Laws: Governing Equations
In the context of systems of conservation laws (1.1), we are particularly interested in
relations that govern the motions of compressible, inviscid fluids and in those that model
the dynamics of perfectly conducting, inviscid plasma, i.e., our main interest lies on the
Euler and ideal magnetohydrodynamic (MHD) equations, respectively.
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1.2.1 Euler Equations

Due to their known importance in applications, we first consider the Euler equations for
inviscid compressible gas flows, given by the following system of nonlinear hyperbolic
partial differential equations:





∂t (ρ) + ∇ · (ρu) = 0,
∂t (ρu) + ∇ · (ρu⊗u) +∇p = 0,
∂t (ρe) + ∇ · ((ρe+ p)u) = 0,

(1.20)

where ρ > 0 is the density, u ∈ R
d the velocity, and e = ǫ + |u|2/2 the specific total

energy. In order to close system (1.20), we introduce an equation of state of the form

p= p(ρ,ǫ), (1.21)

to relate the thermodynamic pressure p with both density ρ and specific internal energy
(denoted ǫ). Unless stated otherwise, the ideal equation of state

p= (γ− 1)ρǫ, (1.22)

is assumed. The adiabatic index γ = cp/cv is the ratio of heat capacity at constant
pressure and volume, respectively, and its common value of 1.4 corresponds to the heat
capacity ratio of terrestrial air.

Let us note that system (1.20) can be easily be put in compact form (1.1a), by casting
the pressure gradient as a divergence, i.e., ∇p=∇· (pI) with I the identity matrix. For
the moment, let ui denote the components of the velocity u and xi those of the space
vector x. Employing Einstein notation where a repeated index i appearing in a term
implies summation of that term over i= 1, . . . ,3 (d= 3), we are able to rewrite the Euler
equations (1.20) as 




∂t (ρ) + ∂xj (ρuj) = 0,
∂t (ρui) + ∂xj (ρuiuj) + ∂xip = 0,
∂t (ρe) + ∂xj ((ρe+ p)uj) = 0,

(1.23)

which in compact form becomes

∂t(w) + ∂xif i(w) = 0, (1.24)

with

w =




ρ
ρu1

ρu2

ρu3

ρe



, f i(w) =




ρui
ρuiu1 + pδi1
ρuiu2 + pδi2
ρuiu3 + pδi3
(ρe+ p)ui



, i= 1,2,3, (1.25)

where δij is the Kronecker delta. In quasilinear form, system (1.24) is

∂t(w) + Ai(w)∂xiw = 0, (1.26)

being Ai(w) = ∂wf i(w) the Jacobian matrix of the ith flux vector, from which we expect
to analyze its eigenstructure to determine the hyperbolic property of system (1.24).
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Definition 1.2.1. System (1.24) is called hyperbolic if any combination of the form
A =

∑d
i αiAi, where Ai(w) = ∂wf i(w) and α = (α1, . . . ,αd) ∈Rd \{0}, is diagonalizable

with ϑ real eigenvalues. Additionally, if these ϑ eigenvalues are distinct, system (1.24)
is called strictly hyperbolic.

1.2.1.1 Properties and Characteristic Structure

Here, we study a few basic properties of the three-dimensional, time-dependent Euler
equations and we begin by looking at the matrix A1(w), its eigenvalues and the associ-
ated right eigenvectors. Thus, the Jacobian matrix of the flux f1(w) is given by

A1(w) =




0 1 0 0 0

γ̂H −u2
1− c2 (3− γ)u1 −γ̂u2 −γ̂u3 γ̂

−u1u2 u2 u1 0 0

−u1u3 u3 0 u1 0
1
2u1[(γ− 3)H − c2] H − γ̂u2

1 −γ̂u1u2 −γ̂u1u3 γu1




, (1.27)

with γ̂ = γ− 1, and expressed in terms of the total specific enthalpy

H = 1
ρ(ρe+ p) = 1

2 |u|2 + 1
γ−1 c

2, (1.28)

and the speed of sound c satisfying c2 = ∂ρp(ρ,ǫ) + 1
ρ2 p(ρ,ǫ)∂ǫp(ρ,ǫ)> 0. A direct com-

pulation yields the eigenvalues of the above matrix (1.27), i.e.,

λ− = u1− c, λ1
u = λ2

u = λ3
u = u1, λ+ = u1 + c, (1.29)

with the matrix of corresponding right eigenvectors defined as

K1(w) =




1 1 0 0 1

u1− c u1 0 0 u1 + c

u2 u2 1 0 u2

u3 u3 0 1 u3

H −u1c
1
2 |u|2 u2 u3 H +u1c




. (1.30)

Similar expressions can be found for A2(w) and A3(w) noting that the Euler equations
are symmetric to cyclic permutation of the indices. Moreover, they satisfy the important
property of rotational invariance stated in the following proposition:

Proposition 1.2.2. The three-dimensional Euler equations are rotationally invariant,
i.e., they satisfy the property

cosφy cosφzf1(w) + cosφy sinφzf2(w) + sinφyf3(w) = O−1f1(O w) (1.31)
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for all angles φy and φz and state vectors w; O ≡O(φy,φz) is the rotation matrix

O =




1 0 0 0 0

0 cosφy cosφz cosφy sinφz sinφy 0

0 −sinφz cosφz 0 0

0 −sinφy cosφz −sinφy sinφz cosφy 0

0 0 0 0 1




, (1.32)

which is the product of two rotation matrices, namely O(φy,φz) = Oy(φy)Oz(φz), where

Oy =




1 0 0 0 0

0 cosφy 0 sinφy 0

0 0 1 0 0

0 −sinφy 0 cosφy 0

0 0 0 0 1




, Oz =




1 0 0 0 0

0 cosφz sinφz 0 0

0 −sinφz cosφz 0 0

0 0 0 1 0

0 0 0 0 1




.

Additional details about this property and related ones can be found in [21]. Now, we
wish to briefly comment on the structure of the Riemann problem solution for system
(1.20), which can be described as a set (with cardinality ϑ) of the three elementary
waves depicted in Figure 1.1, i.e., rarefactions, shock waves and contact discontinuities.
The latter, sometimes called entropy waves since they carry a jump in the entropy, are
linearly degenerate characteristics (1.4). The exact solution of the Riemann problem
for the Euler equations typically consists of one contact discontinuity and d− 1 shear
waves (associated to the multiplicity of the eigenvalue λu), and two nonlinear waves
corresponding to the first and ϑth characteristic fields. The type of these genuinely
nonlinear waves, also referred to as acoustic waves, is determined given the nature of the
initial left and right states (for which we refer, for instance, to Section 1.1.2).

x

t

0

s

wr

wl

(a) Shock wave

x

t

0

wr

wl

(b) Rarefaction wave

x

t

0

s

wr

wl

(c) Contact discontinuity

Figure 1.1. Elementary wave solutions of the Riemann problem for the (nonlinear hyperbolic)
system of Euler equations.
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The structure of the similarity solution (a term introduced later in Section 1.3.1) is
roughly the same in three dimensions as in the one- or two-dimensional cases. The pres-
sure p and normal velocity component ui are both constant across the middle wave; from
inspection of (1.30), one is able to deduce the following: across the contact discontinuity,
the density has a jump, and across each shear wave, the respective tangential particle
velocity changes discontinuously. With regard to the genuinely nonlinear characteristics,
both tangential velocity components remain constant across the corresponding waves,
irrespective of their type.

Basically, finding the solution of the Riemann problem for the three-dimensional
Euler equations is straightforward if one knows that of the one-dimensional case and
properly models the behavior of the “additional” velocity variables. Godunov is credited
with developing the first exact Riemann solver in [65], for which several improvements
were later proposed by Chorin [35] and Van Leer [137], among others; another interesting
and efficient Riemann solver for perfect gases is that of Gottlieb and Groth [67]. More
recent solvers include those of Schleicher [121] and Saurel et al. [120], for example.
Approximate Riemann solvers (see Section 1.3.1) have also been proposed and several
interesting works include those of Harten et al. [74], Roe [117, 118], Einfeldt [50], Chalons
and Coulombel [29], Xing and Shu [149] naming few since the list is vast. Regardless of
whether an exact solution or an approximated one is proposed, the associated scheme
should be constructed with the purpose of numerically solving or simulating real-world
phenomena, such as the shock-tube problem [37] or Sedov explosion [123].

1.2.2 Magnetohydrodynamics (MHD) Equations

The governing equations of magnetohydrodynamics are used to model electrically con-
ducting fluid flows in the presence of magnetic fields. Given that numerical simulations
of these equations have played a significant role in plasma research over the years, we
must understand what these equations are like in a general sense and why they are useful
to describe the evolution of plasmas (among other fluids) at a macroscropic level.

1.2.2.1 Derivation of the Ideal MHD Equations

The general field of MHD was initiated by H. Alfvén and consists of the study of elec-
trically conducting fluid dynamics, as the analysis of the word magnetohydrodynamics
(magneto→magnetic field, hydro→ liquid, and dynamics→movement) suggests. The
simplest form of MHD, i.e., ideal MHD, models the plasma as an inviscid perfect con-
ductor and its equations are a set of nonlinear hyperbolic equations in conservation form,
given by





∂t (ρ) +∇ · (ρu) = 0,

∂t (ρu) +∇ · (ρu⊗u) +∇(p+ 1
2B ·B)−∇ · (B⊗B) = 0,

∂t (ρe) +∇ · ((ρe+ p+ 1
2B ·B) u− (u ·B) B ) = 0,

∂t (B) +∇ · (B⊗u−u⊗B) = 0,

(1.33a)

(1.33b)

(1.33c)

(1.33d)

where ρ and u are the fluid density and velocity as in the Euler equations (Section 1.2.1),
and B = (Bx,By,Bz) is a new variable representing the magnetic field. Moreover, this
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magnetic field satisfies the constraint

∇ ·B = 0, (1.34)

a property that will be thoroughly discussed in Chapter 3. The total energy density ρe
and the thermal pressure p are related through the ideal gas law

p= (γ− 1)
(
ρe− 1

2ρu ·u− 1
2B ·B

)
, (1.35)

completing the set of equations. Note that the evolution equation for the magnetic field
(1.33d) is conveniently written in divergence form and it comes from Faraday’s law:

∂tB +∇×E = 0, (1.36)

with the electric field E given by the ideal Ohm’s law

E =−u×B. (1.37)

Following this line of thought and for the sake of completeness, let us briefly specify all
equations of system (1.33) in a point-by-point manner:

� Conservation of mass
The continuity equation (1.33a) simply states that mass of a plasma is conserved.

� Conservation of momentum
The full momentum equation in differential form is

∂t(ρu) +∇ · (ρu⊗u + pI) = J ×B− ρgen, (1.38)

being J the current density and ρgen a source term, where g is a constant gravity
acceleration in the direction en. The Lorentz force J ×B exerted by the magnetic
field can be expanded by substituting the current density with

J =∇×B, (1.39)

i.e., Ampere’s Law under the assumption of ideal magnetohydrodynamics, to ob-
tain the semi-conservative relation

∂t (ρu) +∇ · (ρu⊗u + (p+ 1
2B ·B)I−B⊗B ) =−B(∇ ·B)− ρgen. (1.40)

The above relation without the gravity source term yields (1.33b), having consid-
ered the divergence constraint (1.34).

� Conservation of energy density
Temporarily denoting by (ρe)hd the hydrodynamic energy density of an ideal gas
so that (ρe)hd = p/(γ− 1) + 1

2ρ|u|2, one writes its conservation in the form

∂t(ρe)hd +∇ · (((ρe)hd + p)u) = J · (B×u). (1.41)
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For the right-hand side of the above expression, which represents a change in
energy due to the presence of B, one can utilize once more Ampere’s law (1.39)
and standard vector identities to obtain

J · (B×u) = (B · ∂tB− (u ·B)(∇ ·B)−∇ · ((B ·B)u)− (u ·B)B ). (1.42)

Now, defining the total energy density of the plasma by E = ρe = (ρe)hd + 1
2 |B|2,

the conservation of this term can be written as

∂t (ρe) + ∇ · ((ρe+ p+ 1
2B ·B) u− (u ·B) B ) =−(u ·B)(∇ ·B), (1.43)

and with gravity source terms as

∂t (ρe) +∇·((ρe+p+ 1
2B ·B)u−(u ·B)B ) =−(u ·B)(∇·B)−ρg(u ·en). (1.44)

� Evolution equation for the magnetic field vector
Faraday’s law (1.36) in integral form is

d

dt

∫

S
B · dS =−

∮

∂S
E · dl, (1.45)

where S is a surface bounded by the closed contour ∂S. By using Stokes’ theorem
and the fact that E in the comoving frame is zero at infinite conductivity, one gets

∂tB +∇× (B×u) =−u(∇ ·B), (1.46)

and by employing equalities ∇× (B×u) =∇· (B⊗u−u⊗B) and ∇·B = 0, one
recovers (1.33d).

Summarizing the results found in the previous list, one is able to determine the ideal
magnetohydrodynamic equations in semi-conservative form, namely,




∂t (ρ) +∇ · (ρu) = 0,

∂t (ρu) +∇ · (ρu⊗u + (p+ 1
2B ·B)I−B⊗B ) = −B(∇ ·B)− ρgen,

∂t (ρe) +∇ · ((ρe+ p+ 1
2B ·B) u− (u ·B) B ) = − (u ·B)(∇ ·B)− ρg(u · en),

∂t (B) +∇ · (B⊗u−u⊗B) = −u(∇ ·B).

In addition, by neglecting gravity in the above system, the resulting set of equations can
be written in the following form:

∂t




ρ
ρu

ρe
B


+∇ ·




ρu

ρu⊗u +
(
p+ 1

2B ·B
)

I−B⊗B

(ρe+ p+ 1
2B ·B) u− (u ·B) B

B⊗u−u⊗B


=−




0
B

u ·B
u


∇ ·B, (1.47)

which is commonly known as the Godunov-Powell form of the ideal MHD equations
[112, Eq.(14)]. Strictly speaking, since B satisfies the divergence-free property (1.34),
the Godunov-Powell source terms disappear and one recovers (1.33); in practice, however,
this is not always the case (a topic that will be further discussed in Chapter 3).
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1.2.2.2 Characteristic Structure of Ideal MHD

The ideal MHD system (1.33) can be written in compact form (1.24) with

w =




ρ
ρu1

ρu2

ρu3

B1

B2

B3

ρe




, f i(w) =




ρui
ρuiu1 +P δi1−BiB1

ρuiu2 +P δi2−BiB2

ρuiu3 +P δi3−BiB3

uiB1−Biu1

uiB2−Biu2

uiB3−Biu3

(ρe+P )ui− (ujBj)Bi




, i= 1,2,3, (1.48)

having employed once more Einstein notation and having defined P = p+ 1
2

∑
iB

2
i . In

addition, given the vector of primitive variables v = (ρ,u1,u2,u3,B1,B2,B3,p)T , system
(1.33) may be rewritten in quasilinear form

∂t(v) + Ai(v)∂xiv = 0, (1.49)

with Ai(v) = ∂vf i(v), e.g.,

A1(v) =




u1 ρ 0 0 0 0 0 0

0 u1 0 0 −B1
ρ

B2
ρ

B3
ρ

1
ρ

0 0 u1 0 −B2
ρ −B1

ρ 0 0

0 0 0 u1 −B3
ρ 0 −B1

ρ 0

0 0 0 0 0 0 0 0

0 B2 −B1 0 −u2 u1 0 0

0 B3 0 −B1 −u3 0 u1 0

0 γp 0 0 (γ− 1)u ·B 0 0 u1




, (1.50)

which is clearly singular since the fifth row is zero. This leads to a zero eigenvalue that
is non-physical and does not bode well numerically [112].

Given that in one-dimension (d= 1) the evolution equation for B1 is simply ∂tB1 = 0,
it is common to define another matrix A′

1(v) by removing the fifth row and column of
Ai(v) and thus assuming B1 constant. The resulting matrix is diagonalizable with seven
eigenvalues (see Figure 1.2) corresponding to one entropy wave, two Alfvén waves and
four magneto-acoustic (two slow and two fast) waves traveling with speeds

λ4 = u1, λ2,6 = u1∓ ca, λ3,5 = u1∓ cs, λ1,7 = u1∓ cf , (1.51)

respectively, where

ca =
|B1|√
ρ

and c2
f,s =

1
2


γp+ B ·B

ρ
±
√(

γp+ B ·B
ρ

)2

− 4
γpB2

1

ρ2


 . (1.52)
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All eigenvalues (1.51) are real, making the system of magnetohydrodynamic equations
a hyperbolic one, and it is evident that

λ1 ≤ λ2 ≤ λ3 ≤ λ4 ≤ λ5 ≤ λ6 ≤ λ7, (1.53)

are satisfied. Note that these inequalities reveal that some eigenvalues may coincide,
i.e., system (1.33) is not strictly hyperbolic, and consequently, the computation of the
complete set of eigenvectors is not straightforward (see, for instance, the contribution of
Brio and Wu [25] or that of Balsara [8]).

λ5λ3

λ6λ2

λ7λ1

λ4
SLOWSLOW

ALFVÉNALFVÉN

FASTFAST

CONTACT

Figure 1.2. Structure of the solution of the Riemann problem for the MHD equations with the
state variable defined as w = (ρ,ρu1,ρu2,ρu3,B2,B3,ρe)T and B1 a constant.

Moreover, as the flux f1 is not convex in w, compound waves and overcompressible
shocks may be part of the solution to the Riemann problem for the MHD equations
[25, 107]; we wish to mention that in Chapter 3, more references and details on nu-
merical schemes for these equations are given. Now, given the complexity that this
model presents, the concept of an approximation to the Riemann problem needs to be
introduced.

1.3 Finite Volume Approximation
Here, we are interested in the numerical approximation of weak solutions to system
(1.1). However, for simplicity of presentation, we once again restrict ourselves to the
one-dimensional case and consider system (1.2) instead.

We start by discretizing the spatial domain into cells; thus, let us set a uniform
numerical mesh with Nx cells Ci = (xi−1/2,xi+1/2) of a determined width ∆x, where
xi±1/2 = xi±∆x/2 (as depicted in Figure 1.3a). Henceforth, subscripts refer to spa-
tial location, with cell centers denoted by integer subscripts i= 1, . . . ,Nx and interfaces
denoted by half integers. In a similar way, we discretize the time such that the temporal
increment is given by ∆t and tn+1 = tn + ∆t, for n ∈ N.

Regardless of the initial data’s nature in w0, a smooth solution to system (1.2)
can break down at a finite time t > 0, such that it no longer satisfies the differential
equations in the classical sense (recall Section 1.1.1). Hence, it is necessary to introduce
the associated integral form to account for possible discontinuities. For any rectangle
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xixi−1 xi+1
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xi− 1
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(a) Vertex-centered FVM

wi+1
wi−1

xi− 1
2

wi

Ci
xi+1xi−1

xi+ 1
2

(b) Cell-centered FVM

Figure 1.3. Difference between vertex-centered and cell-centered discretizations in the finite
volume context.

Ci× (tn, tn+1), the integral of (1.2) over it becomes

∫

Ci

w(x,tn+1) dx=
∫

Ci

w(x,tn) dx+
∫ tn+1

tn
f(w(xi− 1

2
, t)) dt−

∫ tn+1

tn
f(w(xi+ 1

2
, t)) dt,

(1.54)
which in the context of finite volume (FV) approximations, can then be expressed as

wn+1
i = wn

i −
∆t
∆x

(
φx,i+ 1

2
−φx,i− 1

2

)
, (1.55)

where wn
i is a cell-averaged value of w at time level tn and φx,i±1/2 are time-averaged

numerical fluxes at x= xi±1/2, specifically

wn
i =

1
∆x

∫ x
i+ 1

2

x
i− 1

2

w(x,tn) dx, (1.56)

φx,i± 1
2

=
1

∆t

∫ tn+1

tn
f(w(xi± 1

2
, t)) dt. (1.57)

Thus, the finite volume method is based on the integral form of the conservation laws
rather than the differential one and relies on the fact that volume integrals containing
a divergence term can be converted to surface integrals by applying the divergence
theorem. Essentially, one finds average values of a solution w over each cell or control
volume Ci and updates them to the next time step by employing the fluxes at the faces
of the grid cells as in (1.55). The difficulty lies in finding adequate approximations to
the terms φx,i±1/2, since the exact evaluation of (1.57) is not always possible (or simple)
to carry out.

We note that the mathematical formulation (1.55) cannot be considered a numerical
scheme unless one specifies how to compute φx,i±1/2. Since information for hyperbolic
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problems propagates with finite speed, a reasonable approximation for φx,i+1/2 may, for
example, depend only on cell averages of w in the close neighborhood of the interface
xi+1/2, i.e., on wn

i and wn
i+1 such that

φx,i+1/2 = φ(wn
i ,w

n
i+1), (1.58)

where φ is called a numerical flux. This leads to the three-point finite volume numerical
method of the form

wn+1
i = wn

i −
∆t
∆x

(
φx,i+ 1

2
(wn

i ,w
n
i+1)−φx,i− 1

2
(wn

i−1,w
n
i )
)
, (1.59)

which is conservative. Indeed, if we sum wn+1
i (1.55) over any set of cells, we get

J∑

i=I

wn+1
i =

J∑

i=I

wn
i −

∆t
∆x

(
φx,J+ 1

2
−φx,I− 1

2

)
, (1.60)

and the total mass of w over (xI ,xJ) is conserved by the scheme.
Before proceeding with interesting ways to define the numerical flux function φ,

let us briefly comment on another essential requirement that the FV numerical methods
should satisfy: convergence. The numerical solution should converge to the true solution
of the differential equation as one refines the grid [90], specifically, as ∆t and ∆x go to
zero. Generally, this requires the method to be consistent with the differential form
(approximating it well locally) and stable against small errors (meaning that errors stay
bounded). Indeed, the numerical flux (1.58) is consistent if

∀w̄ ∈ V, φ(w̄,w̄) = f(w̄); (1.61)

typically, some requirement of Lipschitz continuity is also made, namely

∃L ∈ R, s.t. |φ(wn
i ,w

n
i+1)−f(w̄)| ≤ Lmax(|wn

i − w̄|, |wn
i+1− w̄|). (1.62)

Furthermore, a necessary condition that must be satisfied by any FV method if one
expects it to be stable and convergent is the CFL condition [38], named after Courant,
Friedrichs and Lewy.

Definition 1.3.1 (CFL Condition). A numerical method can be convergent only if its
numerical domain of dependence contains the true domain of dependence of the PDE,
at least in the limit as ∆x,∆t→ 0.

Moreover, we write down the Lax-Wendroff theorem, named after Peter Lax and
Burton Wendroff, which states that if a conservative numerical scheme converges to
some solution as the grid is refined, then that solution will be a weak solution of the
associated hyperbolic system of conservation laws, see [90] for a detailed proof.

Theorem 1.3.2 (Lax and Wendroff [88]). Consider a sequence of grids indexed by
j = 1,2, ... with mesh parameters ∆t(j), ∆x(j) → 0 as j →∞. Let w(j)(x,t) denote the
numerical approximation computed with a consistent and conservative method on the jth
grid. Suppose that w(j) converges to a function w as j→∞, i.e.,

‖w(j)−w‖p→ 0, as j→∞, (1.63)

with ‖(·)‖p the usual Lp norm. Then w(x,t) is a weak solution of the conservation law.
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1.3.1 Godunov and Godunov-Type Schemes

In his seminal paper [65], Godunov introduced a novel numerical approach (1.55) that
forms the basis of numerous interesting schemes. He aimed to express the numerical flux
φx,i+1/2 in terms of neighboring values wi and wi+1 by means of the associated Riemann
problem (RP). Formally speaking, a Riemann problem for a system of conservation laws
centered at x= x0 is simply an initial-value problem

∂tw + ∂xf(w) = 0, w(x,t0) =

{
wl if x < x0,

wr if x > x0,
(1.64)

which has a solution that depends only on the initial left and right states, respectively
given by wl and wr, and on the value ξ = (x−x0)/(t− t0), 0≤ t0 < t. Thus, we denote
an exact solution of (1.64) by w(ξ;wl,wr).

xi−1 xi+1xi

xi+ 1
2

wi+ 1
2

xi− 1
2

wi− 1
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wi

wi−1
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∆x

(a) Piecewise constant approximation

xi−1 xi+1xi

xi+ 1
2

w+
i |w−

i+1

xi− 1
2

wi

wi−1

wi+1

∆x

(b) Piecewise linear approximation

Figure 1.4. Piecewise constant and piecewise linear distributions of the conserved quantities
over each cell Ci.

Within the finite volume framework, Godunov’s first-order method [65] assumes a
piecewise constant distribution of the conserved quantities over each cell, see Figure 1.4a,
and evolves it in time by solving a one-dimensional Riemann problem in the normal
direction at each cell interface. Consequently, the value wn+1

i is calculated in terms of
the exact solutions of local Riemann problems in the following way:

wn+1
i =

1
∆x

∫ xi

x
i− 1

2

wi− 1
2

(ξ) dx+
1

∆x

∫ x
i+ 1

2

xi

wi+ 1
2

(ξ) dx, (1.65)

where
wi+ 1

2
(ξ)≡w

(
ξ;wn

i ,w
n
i+1

)
with ξ =

x−xi+1/2

∆t
, (1.66)

which can also be written in conservative form (1.55) by defining the intercell numerical
fluxes as

φx,i− 1
2

= f(w(0;wn
i−1,w

n
i )) and φx,i+ 1

2
= f(w(0;wn

i ,w
n
i+1)). (1.67)
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As was mentioned before, information for hyperbolic problems propagates with finite
speed; therefore, we denote by λ−,0(wl,wr) and λ+,0(wl,wr) the smallest and largest
signal speeds of the waves arising from the Riemann problem (1.64) centered at x= x0.
Thus, a necessary condition to prevent the interaction of solutions from local Riemann
problems in (1.65) is the CFL condition

∆t max
i

(
|λ−,i+ 1

2
(wn

i ,w
n
i+1)|, |λ+,i+ 1

2
(wn

i ,w
n
i+1)|

)
≤ 1

2∆x. (1.68)

The main drawback of Godunov’s scheme results from computing the exact solution
of each nonlinear Riemann problem, which has a direct impact on calculation cost. It is
therefore necessary to consider an approximation W(ξ;wl,wr) to the Riemann problem
centered at x= x0, which satisfies the consistency with the conservation law

∫ xr

xl

W(ξ;wl,wr) dx= (xr −x0)wr + (x0−xl)wl + (t− tn)(f l−f r), (1.69)

as long as the complicated structure of the exact solution w(ξ;wl,wr) is contained in
the control volume (xl,xr)×(tn, tn+∆t), xl ≤ x0 ≤ xr and 0≤ tn. For convenience, from
this point on, we assume tn = 0; also note that f l = f(wl) and f r = f(wr). Then, using
the approximations W(ξ;wl,wr), Harten et. al (refer to [74]) define a Godunov-type
scheme as

wn+1
i =

1
∆x

∫ xi

x
i− 1

2

W i− 1
2

(ξ) dx+
1

∆x

∫ x
i+ 1

2

xi

W i+ 1
2

(ξ) dx. (1.70)

By applying the integral conservation law (1.54) over Rl = (xl,x0) × (0,∆t) and
Rr = (x0,xr)× (0,∆t), two fluxes along the t-axis are obtained

φl(wl,wr) = f l −
1

∆t

∫ x0

xl

(W (ξ;wl,wr)−wl) dx, (1.71a)

φr(wl,wr) = f r +
1

∆t

∫ xr

x0

(W (ξ;wl,wr)−wr) dx, (1.71b)

respectively. Consistency with the conservation law (1.69) ensures that φl = φr, so that
the Godunov-type scheme can be written in the form (1.55) with

φx,i+ 1
2

= φi(w
n
i ,w

n
i+1) = φi+1(wn

i ,w
n
i+1). (1.72)

The following theorem, due to Harten and Lax [Thm. 2.1][73] (see also, [74]), confirms
that this type of approximation is consistent (the theorem’s proof is in the same paper).
Here, it also has the additional purpose of summarizing and completing the previous
statements in a formal manner.

Theorem 1.3.3 (Harten and Lax). Let W(ξ;wl,wr) be an approximation to the solution
of the Riemann problem that satisfies the following conditions:

1. consistency with the integral form of the conservation law in the sense that
∫ ∆x/2

−∆x/2
W(ξ;wl,wr) dx= 1

2∆x(wr + wl) + ∆t(f l−f r), (1.73)

for ∆x/2>∆tmax |λ±,0(wl,wr)|, where f l = f(wl) and f r = f(wr);
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2. consistency with the integral form of the entropy condition in the sense that

∫ ∆x/2

−∆x/2
η(W(ξ;wl,wr)) dx≤ 1

2∆x(ηr + ηl) + ∆t(ql− qr), (1.74)

for ∆x/2>∆tmax |λ±,0(wl,wr)|, where ql = q(wl) and qr = q(wr).

Using the approximation to the Riemann problem, one can define a Godunov-type scheme
as follows:

wn+1
i =

1
∆x

∫ ∆x/2

0
W
(
ξ;wn

i−1,w
n
i

)
dx+

1
∆x

∫ 0

−∆x/2
W
(
ξ;wn

i ,w
n
i+1

)
dx. (1.75)

Assertion. If the conditions (1.73) and (1.74) are satisfied, the scheme (1.75) is in
conservation form consistent with (1.64), and satisfies the entropy inequality

ηn+1
i ≤ ηni −

∆t
∆x

(
qx,i+ 1

2
− qx,i− 1

2

)
. (1.76)

Finally, we add that Godunov proposed the general approach of the reconstruct-
evolve-average (REA) algorithm as a means to solve the Euler equations of gas dynamics
[65, 90]. In point of fact, all Godunov-type schemes (note that Godunov’s scheme is
technically of Godunov type) are based on this algorithm:

Algorithm 1.3.4 (REA). Given the cell averages (1.56) at a time level tn,

1. reconstruct a piecewise polynomial function from all cell averages,

2. evolve the hyperbolic equation (exactly or approximately) with the initial data de-
fined in the previous step,

3. average the evolved solution over the grid cells to obtain new cell averages.

Repeat the process in the next time step.

1.3.2 MUSCL Reconstruction

The MUSCL (Monotonic Upstream-centered Scheme for Conservation Laws) approach
was introduced by van Leer through a series of contributions [133, 134, 135, 136, 137]
with the objective of constructing highly accurate numerical solutions for nonlinear con-
servation laws. Actually, the term comes from the fourth paper of the series, where he
succeeded in constructing the first high-order, total variation diminishing (TVD) scheme
having second-order spatial accuracy. Total variation in a discrete sense is essentially
TV (w∗) =

∑
i |w∗

i+1−w∗
i | and a numerical method is said to be TVD if

TV (wn+1)≤ TV (wn). (1.77)

Actually, the MUSCL methodology follows the REA algorithm described above,
knowing that in order to achieve more than first-order accuracy, a “better” reconstruc-
tion than the piecewise constant one must be used for the first step. By constructing
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piecewise linear functions from cell averages, the reconstruction of the unknown variables
at the interfaces for a structured mesh is

wn,±
i = wn

i ± 1
2σ

n
i ∆x, (1.78)

as depicted in Figure 1.4b, such that

wn+1
i = wn

i −
∆t
∆x

(
φx,i+ 1

2
(wn,+

i ,wn,−
i+1)−φx,i− 1

2
(wn,+

i−1,w
n,−
i )

)
. (1.79)

For second-order MUSCL approximations, it is necessary to limit the slopes σni of
the reconstruction, which can be done using slope limiters. Indeed, a slope limiter is
nothing more than a continuous function L : Rd×R

d→ R
d that is bounded, i.e.,

∃M ∈ R, M > 0, s.t. ‖L(σl,σr)‖ ≤M max(‖σl‖,‖σr‖), (1.80)

and satisfies the consistency condition in the sense that L(σ̄, σ̄) = σ̄, for every σ̄ ∈ R
d.

Once this limiter has been chosen, we redefine the slope as

σni = L

(
wn
i −wn

i−1

∆x
,
wn
i+1−wn

i

∆x

)
. (1.81)

In this thesis, we employ different limiters such as such as the MC limiter [136], min-
mod limiter [118] or the positive preserving limiter [127]; other interesting ones are the
Superbee [118] and the van Leer [134] limiters, among others.



CHAPTER2
A Simple 2D Extension of the HLL Riemann

Solver for Gas Dynamics

Introduction

In the context of Godunov-type methods [65, 74], the one-dimensional (1D) theory has
had many years to evolve and give rise to interesting and powerful approximate Riemann
solvers that are applied at cell interfaces. For the one-dimensional case, these interfaces
are simply vertices connecting two coarse cells and the corresponding Riemann problem
can be solved exactly for the Euler equations with the ideal gas equation of state, even
though approximate solutions are more commonly used in practice. Thanks to strict hy-
perbolicity and entropy dissipation in shocks, a key concept used in the one-dimensional
analysis is the fact that weak solutions evolve in time toward a non-interacting scattering
state (decay of Glimm’s interaction potential, see [62, 63, 99]).

Now, consider that in two dimensions the interfaces are defined as collections of
vertices connected by edges. The Riemann problems at the vertices are genuinely multi-
dimensional (MultiD), involving interactions of more than two coarse data, whereas the
Riemann problems associated with the cell edges are locally one-dimensional. In prin-
ciple, a proper multidimensional approximation should take into account interactions of
both 1D and MultiD Riemann problems. Unfortunately, even for the Euler equations
with the ideal gas equation of state, an adequate approximation of multidimensional
Riemann problems is a challenging problem [2, 3], especially given the complexity of
the nonlinear interaction of wave patterns [87, 95, 151]. As a matter of fact, the cor-
responding MultiD solutions do not systematically provide a non-interacting scattering
state because of these complicated effects.

Put in the simplified context of the Euler equations with the ideal equation of state,
for the two-dimensional Riemann problem, even under the premise that each jump be-
tween neighboring initial states projects one planar wave consisting of a single shock,
rarefaction or contact discontinuity, the number of allowable distinct self-similar config-
urations can be up to 77 [122]. It is then unrealistic to expect that an exact MultiD
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Riemann solver can be used as a building block for numerical schemes. Yet, we can
still view the numerical flux as the one-dimensional flux across cell boundaries plus
multidimensional corrections emanating from the corners (in the 2D case). In the La-
grangian context, the approximation of corner interactions has already been combined
with one-dimensional fluxes to obtain robust approximations satisfying a discrete entropy
inequality [49, 103, 104]. However, it is known that for most of the current flux based
numerical strategies, approximations often neglect the corner corrections and only use
one-dimensional wave characteristics, even when an operator splitting technique is not
employed. We mention that several alternative strategies consisting of Riemann solver-
free formulations are available, such as residual distribution schemes [44, 43], variational
multiscale methods applied to finite element solutions [77], and Riemann-solvers-free
central schemes [85, 86], among others, but are not within the scope of our work.

Our focus in this chapter is on Riemann based unsplit formulations taking into ac-
count the interactions associated to the “corner” boundaries. A nine state Riemann
solver was formulated in [145] to obtain numerical approximations that include these
interactions as constant states, extending the one-dimensional HLL theory [74] with
Einfeldt’s wave speed estimates [50] to two dimensions. Although his approach includes
a valuable interpretation of the approximate structure of 2D solutions at a given time,
it regrettably lacks explicit expressions that would enable a direct implementation. One
year later, in another line of development, Brio et al. [26] proposed a multistate Riemann
solver (defined at the corner) as a linear hyperbolic propagation of acoustic waves, which
can be regarded as a partial correction to the 1D solver applied at the interfaces such
that the final numerical flux results from a convex combination of purely one-dimensional
and corner fluxes. However, the solver was solely developed for the Euler equations of
gas dynamics and, given its linear nature, requires considerable reformulation for appli-
cation to other systems of conservation laws. Recently, Balsara re-examined Wendroff’s
contribution and formulated a multidimensional solver in [9] and a more robust version
in [10], which include, among other things, calculating the states and fluxes at a cor-
ner by means of the integral form of the conservation laws over a space-time volume
that is essentially different from Wendroff’s to facilitate the computation of the resulting
equations in the subsonic case; to handle supersonic cases, slight modifications must be
performed to the fluxes and/or signal speeds, nonetheless.

With all this in mind, we were motivated to combine ideas from existing methods
with the enforcing of jump conditions, to design a strategy for the construction of simple
MultiD Riemann solvers. In the subsequent section, we present all necessary background
information about HLL Riemann solvers (both one- and two-dimensional) that serves
to assist the understanding of the subject and introduce important concepts such as
the advantageous space-time structure suggested by Wendroff [145]. In Section 2.2,
we present our solver, which is suitably built as an extension of the HLL formalism
to multidimensions and inevitably leads to the construction of an approximate profile
of propagation consisting of constant states and representative of the complexity of
the waves associated with the multidimensional Riemann problem. We make use of
the consistency with the integral formulation through the Rankine-Hugoniot relations,
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which hold across planar waves separating these constant states, to derive general closed-
form expressions (in the sense of [9, 10]) for the fluxes. All expressions are, in fact, the
solution of an overdetermined linear system resolved by the method of ordinary least
squares and provide a straightforward implementation of our robust and stable scheme.
Although we will restrict our attention to the case of the Euler equations for inviscid
compressible gas flows in two space variables, all formalisms developed in this chapter
can be extended to higher dimensions and applied to any system of conservation laws,
e.g., the MHD equations (see Chapter 3). Next, the developed strategy is validated
through applications to test problems in Section 2.3 and finally, concluding remarks are
given in the last section.

2.1 HLL Riemann Solvers
One of the simplest Godunov-type schemes is the so-called HLL Riemann solver proposed
by Harten et. al [74], where the exact Riemann fan is approximated by two waves
containing a single constant state in between (see Figure 2.1). These waves propagate
with speeds sl and sr denoting the smallest and largest signal speeds, the estimation of
which will be detailed later in this section. As pointed out in [74], any scheme (1.55)
remains consistent with (1.70) as long as the waves from one cell interface do not arrive
at an adjacent interface during one time step, which translates to

∆t/∆x max(|sl|, |sr|)≤ 1. (2.1)
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Figure 2.1. One-dimensional HLL Riemann problems.

Thus, considering the previously mentioned configuration, the HLL approximate
Riemann solver is defined as

W
hll, φhll

x =





wl , f l if ξ < sl,

w∗ , f∗ if sl < ξ < sr,

wr , f r if ξ > sr,

(2.2)



36 A Simple 2D Extension of the HLL Riemann Solver for Gas Dynamics

with the self-similar variable ξ = x/t. The term w∗ represents the average intermediate
state between the two waves and can be derived from the conservation laws (1.69), i.e.,

w∗ =
srwr − slwl + f l−f r

sr − sl
. (2.3)

Moreover, we are interested in the determination of the associated numerical flux. For
this purpose, by applying the integral conservation laws (1.54) over two distinct rectan-
gles (xl,0)× (0,∆t), (0,xr)× (0,∆t), two fluxes along the t-axis are obtained

φl = f l −
xl
∆t

wl −
1

∆t

∫ 0

xl

W
hll
(
x

∆t
;wl,wr

)
dx, (2.4a)

φr = f r −
xr
∆t

wr +
1

∆t

∫ xr

0
W

hll
(
x

∆t
;wl,wr

)
dx. (2.4b)

Consistency with the conservation law (1.69) ensures that φl = φr. Let us now introduce
some useful notation: for any constant h ∈ R, we define

h+ = max(0,h) and h− = min(0,h), (2.5)

recalling that h= h+ +h−. Employing this notation, we are able to rewrite (2.4) as

φl = f l + sl
−(w∗−wl), φr = f r + sr

+(w∗−wr), (2.6)

which are both useful to obtain an approximation to the numerical flux along the t-axis.
Hence, we substitute the state (2.3), with both signal speeds replaced by sl

− and
sr

+, into any of the previous equations (2.6) to get

φhll
x (wl,wr) =

sr
+f l− sl−f r + sl

−sr
+(wr −wl)

sr+− sl−
, (2.7)

so the scheme can be written in the conservative form (1.55) simply by defining

φx,i− 1
2

= φhll
x (wn

i−1,w
n
i ) and φx,i+ 1

2
= φhll

x (wn
i ,w

n
i+1). (2.8)

Yet another equivalent and simpler way to construct the HLL intermediate state
vector and flux relies on applying the Rankine-Hugoniot jump conditions across each of
the waves. Specifically, we may think of these intermediate quantities as solutions of the
linear system

f∗ = f l + sl(w∗−wl), (2.9a)

f∗ = f r + sr(w∗−wr), (2.9b)

i.e., the Rankine-Hugoniot conditions across the left and right waves, respectively. These
conditions hold across curves of discontinuities and are mentioned here briefly for later
reference in Section 2.2. Solving system (2.9) yields the state w∗ (2.3) and the flux

f∗ =
srf l− slf r + slsr(wr −wl)

sr − sl
. (2.10)
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Under the assumption of a subsonic solution where sl< 0<sr, it is evident that φhll
x = f∗.

With a slight modification to the speeds, we then obtain the intercell flux (2.7).
Now, in order to completely determine the numerical fluxes previously described,

an adequate choice of the wave speeds sl and sr is needed. In [50], Einfeldt derived
approximations for the minimum and maximum physical signal velocities of the exact
Riemann problem, generalized to

sl = min
1≤θ≤ϑ

(
min

(
λθ(wl), λ̂θ(wl,wr)

))
and sr = max

1≤θ≤ϑ

(
max

(
λθ(wr), λ̂θ(wl,wr)

))
,

(2.11)
where λθ is the θ-th eigenvalue of the Jacobian matrix ∇wf associated with system
(1.2a) and λ̂θ is the θ-th eigenvalue of the Roe matrix (see [50, 117, 129]).

The HLL approach [74] together with Einfeldt’s wave speed estimates (2.11) is not
only effective and robust but also rather easy to implement. Several details regarding the
scheme’s ability to preserve the positivity of the internal energy and density throughout
the computational process are given in [51, 74].

2.1.1 Two-Dimensional Systems

Due to our specific interest in two-dimensional gas dynamics, henceforth in this chapter
we only consider system (1.20) in d= 2 dimensions with x = (x,y), u = (u,v) and denote
f and g the fluxes f1 and f2, respectively. We then write

∂tw + ∂xf(w) + ∂yg(w) = 0, (2.12)

with

w =




ρ
ρu
ρv
ρe


 , f(w) =




ρu
ρu2 + p
ρuv

(ρe+ p)u


 , g(w) =




ρv
ρvu

ρv2 + p
(ρe+ p)v


 . (2.13)

After Harten et al.’s contribution in [74], several extensions of their HLL scheme have
been proposed to find approximate solutions to the above system and in this section we
will carefully review two of them. However, following the developments in the one-
dimensional case, we first establish the integral form of the conservation laws (2.12).
Thus, for all control volumes (xa,xb) × (yc,yd) × (t1, t2), the following integral form
should hold:
∫ xb

xa

∫ yd

yc

w(x,y, t2) dy dx=
∫ xb

xa

∫ yd

yc

w(x,y, t1) dy dx

+
∫ t2

t1

∫ yd

yc

f(w(xa,y, t)) dy dt−
∫ t2

t1

∫ yd

yc

f(w(xb,y, t)) dy dt

+
∫ t2

t1

∫ xb

xa

g(w(x,yc, t)) dx dt−
∫ t2

t1

∫ xb

xa

g(w(x,yd, t)) dx dt.

(2.14)
To find a numerical approximation, we break the spatial domain into rectangular

grid cells with centers indexed as i, j, where i refers to the x-coordinate direction and
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j to the y-coordinate direction. Here, ∆x = 1/Nx and ∆y = 1/Ny are the grid spacing
such that xi = (i−1)∆x and yj = (j−1)∆y, with i= 1, . . . ,Nx and j = 1, . . . ,Ny, and as
before, the corresponding cell interfaces are denoted by half integers. Once such a grid
has been constructed, the average value of the gas dynamic state at time level tn over a
particular cell Ci,j = (xi−1/2,xi+1/2)× (yj−1/2,yj+1/2) can be defined as

wn
i,j =

1
|Ci,j |

∫

Ci,j

w(x,y, tn) dx, (2.15)

where |Ci,j |= ∆x∆y, and applying the integral form (1.54) over Ci,j × (tn, tn+1) yields

wn+1
i,j = wn

i,j −
∆t
∆x

(
φx,i+ 1

2 ,j
−φx,i− 1

2 ,j

)
− ∆t

∆y

(
φy,i,j+ 1

2
−φy,i,j− 1

2

)
, (2.16)

with

φx,i± 1
2 ,j

=
1

∆t

∫ tn+1

tn

∫ y
j+ 1

2

y
j− 1

2

f(w(xi± 1
2
,y, t)) dy dt, (2.17a)

φy,i,j± 1
2

=
1

∆t

∫ tn+1

tn

∫ x
i+ 1

2

x
i− 1

2

g(w(x,yi± 1
2
, t)) dx dt. (2.17b)

As noted before, any finite volume method based on a Godunov-type approach
strongly depends on the exact or approximate solution of the Riemann problem. Con-
ventional approaches based on one-dimensional Riemann solvers by direction consider
an approximation for (2.16) of the form

φx,i+ 1
2 ,j

= φx(wi,j ,wi+1,j) and φy,i,j+ 1
2

= φy(wi,j ,wi,j+1), (2.18)

but tend to completely ignore the genuinely two-dimensional Riemann problems formed
at the vertices (as depicted in Figure 2.2a). Since the one-dimensional theory was already
introduced in the first chapter, we now focus on approximately solving the local 2D
Riemann problem formed at the vertex xi+1/2,j+1/2 = (xi+1/2,yj+1/2), i.e.,

∂tw + ∂xf(w) + ∂yg(w) = 0, w0(x,y) = wi+1/2,j+1/2(x,y, t
n), (2.19)

having piecewise constant initial data

wi+1/2,j+1/2(x,y, t
n) =





wsw = wi,j if x < xi+ 1
2
, y < yj+ 1

2
,

wse = wi+1,j if x > xi+ 1
2
, y < yj+ 1

2
,

wnw = wi,j+1 if x < xi+ 1
2
, y > yj+ 1

2
,

wne = wi+1,j+1 if x > xi+ 1
2
, y > yj+ 1

2
.

(2.20)

It is known that system (2.12) is invariant under scaling of the form (x,y, t) 7→
(κx,κy,κt), for any constant κ > 0, and (2.19) has a similarity solution of the form
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w(ξ,η;wne,wnw,wsw,wse), hereafter w(ξ,η), i.e., a function constant along ξ and η,
with ξ = (x − xi+1/2)/(t − tn) and η = (y − yj+1/2)/(t − tn), and which is self-similar.
Despite the reduction in the number of dimensions (from three to two in this case), the
solution is expected to be fairly complex nonetheless, as demonstrated by Schulz-Rinne
et al. [122]. Before proceeding with the wave model, some remarks are in order.
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Figure 2.2. Example of a solution’s structure at time t = ∆t, resulting from a series of one-
and two-dimensional HLL Riemann problems on a rectangular mesh.

As previously mentioned, the solution of the initial value problem (2.19) is assumed
to have a rather complex structure and one of the reasons for this stems from wave
interactions taking place. A proper study requires considering the numerous combina-
tions of initial data that are possible for this two-dimensional problem, and even under
the premise that each jump between neighboring initial states projects one planar wave
consisting of a single shock, rarefaction or contact discontinuity, the number of possi-
ble combinations for a polytropic gas reduces to nineteen [30, 87] (ignoring the sign of
the slip lines, to fifteen [122]), and for each combination, the solution’s complexity is
evident in the conjectures of Zhang and Zheng [151] and in the numerical experiments
[87, 122]. In both predicted and numerical results, we are able to perceive that the two-
dimensional Riemann problem gives rise to a region of strong interaction consisting of a
complex similarity solution. This interaction region can then be approximated in a way
conceptually similar to that of the one-dimensional intermediate state in the context of
the HLL method.

Thus, considering the definition of the local Riemann problem (2.19), it is appar-
ent that the jump discontinuities at the cell’s edges lead to two one-dimensional Rie-
mann problems in the x-direction and two one-dimensional Riemann problems in the y-
direction, and their effects on one another at the vertex give rise to the region of strong
interaction. Since waves propagate with finite velocities, one can then approximately
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delimit this interaction region by means of the wave model detailed in the subsequent
paragraphs of this section.

Computing the one-dimensional HLL smallest and largest wave speed estimates with
(2.11) for each of the previously discussed one-dimensional problems yields eight approx-
imate signal velocities that determine the following vectors:

ssw = (ssw,s
w
s ), sse = (sse,s

e
s), snw = (snw,s

w
n ), sne = (sne ,s

e
n), (2.21)

where snw and sne (respectively, ssw and sse) are the left and right speeds for the 1D
Riemann problem above (respectively, below) the x-axis, with equivalent definitions for
the y-direction. Additionally, one can specify the minimal and maximal wave speeds

sn = max(sen,s
w
n ), ss = min(ses,s

w
s ), se = max(sne ,s

s
e), sw = min(snw,s

s
w). (2.22)

Solving the one-dimensional Riemann problems at the edges not only allows us to
deduce the speeds (2.21) but also lets us derive expressions for the constant state w∗

(2.3) and HLL fluxes (2.10) associated with each problem. We denote by wµ∗, µ=n or s,
the state in the intermediate constant region of the one-dimensional Riemann problem
with initial data set to wl = wµw and wr = wµe. Analogous notations are used for w∗ν ,
ν = e or w, with initial states given by wl = wsν and wr = wnν . One then has

wµ∗ =
sµewµe− sµwwµw + fµw−fµe

sµe − sµw
, µ= n or s, (2.23a)

w∗ν =
sνnwnν − sνswsν + gsν − gnν

sνn− sνs
, ν = e or w, (2.23b)

with corresponding HLL fluxes

fµ∗ =
sµefµw− sµwfµe + sµws

µ
e (wµe−wµw)

sµe − sµw
, µ= n or s, (2.24a)

g∗ν =
sνngsν − sνsgnν + sνss

ν
n(wnν −wsν)

sνn− sνs
, ν = e or w. (2.24b)

Denote now by O = (x0, t0) a local origin in the space-time domain (x,y, t). For a 2D
Riemann problem centered at this origin, the extent of its strong interaction region on the
xy-plane at a time t > t0 lies by construction within a quadrilateral with time-dependent
vertices

Xsw(t) = x0 + sswt, Xse(t) = x0 + sset, Xnw(t) = x0 + snwt, Xne(t) = x0 + snet,
(2.25)

having assumed that t0 = 0. For later convenience, at this stage we define the four points
at some fixed small time ∆t > 0

Qsw=(Xsw(∆t), ∆t), Qse=(Xse(∆t), ∆t), Qnw=(Xnw(∆t), ∆t), Qne=(Xne(∆t), ∆t),
(2.26)

and specify a rectangular space-time control volume Q=R× (0,∆t) that contains these
points (2.26), as well as the local origin O. We define the rectangleR= (xw,xe)×(ys,yn),
with xw ≤ x0 ≤ xe and ys ≤ y0 ≤ yn, and identify its four corners as

xsw = (xw,ys), xse = (xe,ys), xnw = (xw,yn), xne = (xe,yn). (2.27)
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2.1.2 Wendroff’s Nine-State Solver

Wendroff formulated in [145] a nine-state two-dimensional version of the three-state
HLL Riemann solver, using the literal extension of Godunov’s formulation (1.65) to two
dimensions as its basis. However, given the absence of an exact solution to the initial
value problem (2.19), he employed an approximation W(ξ,η;wne,wnw,wsw,wse), or
W(ξ,η) for short, to obtain the two-dimensional analogue of (1.70) given by
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(2.28)
under the assumption that the approximate solutions at the vertices do not interact with
each other during the time interval ∆t provided the condition

∆t max
R=Di,j

(
max
µ=s,n
ν=e,w

(
|sµν |, |sνµ|

) )
≤min

(
∆x
2
,
∆y
2

)
, (2.29)

interpreting Di,j = (xi,xi+1)× (yj ,yj+1) as a staggered cell centered in xi+1/2,j+1/2, (see
Figure 2.2b). Equation (2.28) can be regarded as
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With our attention directed towards Wendroff’s derivation of W(ξ,η), we begin by
analyzing the structure of a solution to the 2D Riemann problem (2.12, 2.20) at the
planar faces of the space-time control volume Q, illustrated in Figure 2.3a. The top
surface of Q constitutes nine regions resulting from the finite propagation of waves,
in accordance with the wave model introduced in the previous section, up to a small
time ∆t. For reference, we show this flat surface in Figure 2.3b and acknowledge the
following: the central extent corresponds to the strong interaction region; the four corner
zones are simply rectangles containing the undisturbed initial data wne,wnw,wsw, and
wse, written in a counterclockwise order starting from the top right quadrant in the
xy-plane; and each of the remaining regions represents the total area covered at time
∆t by the intermediate state (2.23) obtained from the application of a three-state HLL
solver at the underlying edge. Let us here summarize the technique used by Wendroff
to obtain an approximation for the former region. The central idea is to lump together
all of the region’s complicated structure into a constant state w∗∗, in agreement with
the one-dimensional approach presented in Section 2.1, and make use of the integral
conservation laws (2.14) over Q to obtain its specific value and deduce the numerical
fluxes, as well.
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Figure 2.3. Structures formed by the outward propagation of waves from the staggered cell’s
origin O and edges, as suggested by Wendroff in [145].

Performing a simple geometric analysis of the top surface described in the previous
paragraph, hereafter defined as S =R×{t= ∆t}, we note that the two-dimensional in-
teractions are contained in the quadrilateral with vertices Xsw(∆t),Xse(∆t),Xnw(∆t),
and Xne(∆t), which can be located anywhere on S. For this reason, to simplify the
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developments and reduce coding difficulties, Wendroff adopts the notation (2.5) and
proposes to reformulate (2.21) as

ssw = (ss−

w ,s
w−

s ), sse = (ss+
e ,s

e−

s ), snw = (sn−

w ,sw+
n ), sne = (sn+

e ,se+
n ), (2.31)

and as a result, relaxes every solution to the subsonic case in two-dimensions, which
accounts for the introduction of additional numerical dissipation.

We are now in the position to formulate his explicit approximation of the solution
for (2.19). At the small fixed time ∆t, let Rµν (µ= n,∗,s, ν = e,∗,w) be the nine regions
with corresponding areas aµν , and then define

W

(
x−x0

∆t
,
y− y0

∆t

)
= wµν for all (x,y) ∈Rµν , (2.32)

with the state w∗∗ determined by solving the equation that results from applying the
integral form of the conservation laws (2.14) on the control volume Q, i.e.,
∑

µ=s,∗,n
ν=e,∗,w

aµνwµν = δxe−0 δyn−0 wne + δx0−w δyn−0 wnw

+ δx0−w δy0−s wsw + δxe−0 δy0−s wse− (f e−fw)− (gn− gs) ,
(2.33)

as long as R∗∗ 6= 0. Each flux on the right-hand side of the previous equation is obtained
from a time-surface integral at the control volume’s outer face α, see Figure 2.3a, e.g.,

f e = ∆t
2 ((2yu− y0− sen∆t) fne + (sen− ses)∆tf∗e + (ses∆t+ y0− 2yd) f se) . (2.34)

We note that the author in [145] does not explicitly mention the procedure to define
the transverse fluxes f∗e, f∗w, gn∗ and gs∗, but instead writes that f∗e = f(w∗e) and
gn∗ = g(wn∗), assuming analogous expressions for the other fluxes. Moreover, in (2.33),
we used the abbreviations δxα−β and δyα−β to indicate the differences

δxα−β = xα−xβ and δyα−β = yα− yβ, α,β ∈ {n,s,e,w,0}. (2.35)

Once the intermediate constant state is found from solving equation (2.33), the ap-
proximation (2.32) is properly defined in the subdomain R = Di,j . If we repeat the
process for each vertex of Ci,j , we obtain the four approximations needed to calculate
the value wn+1

i,j (2.28).
However, despite the valuable wave model and the consistency with the integral form

introduced by Wendroff, the resulting scheme is mainly first-order in both space and time
and a higher-order version is not straightforward considering its general formulation. For
some details regarding the difficulty in proving the positivity and stability of the method,
as well as the behavior of entropy, we refer the reader to [145].

2.1.3 Balsara’s Multidimensional HLL Solver

In 2010, eleven years after Wendroff’s contribution to the recently growing collection
of multidimensional solvers, Balsara [9] formulated a two-dimensional HLL solver that
included closed-form, approximate expressions for the fluxes, thus providing a relatively
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simple implementation of the resulting scheme. Two years later, the same author suc-
ceeded in constructing a more robust version of his own solver and presented it in the
first pages of [10], and recently, extended it to unstructured meshes [11]. Here, we con-
cisely detail the fundamental ideas behind the second paper [10], in a way that will be
useful for future comparisons with the method proposed in this chapter.
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Figure 2.4. Specific choice for the rectangle proposed by Balsara [9, 10], which bounds the
strong interaction region arising from the two-dimensional interaction of waves at the origin O.

Once again, the interest lies in finding an approximate solution to the 2D Riemann
problem (2.12, 2.20), now conveniently centered at the origin O = (x0, t0) with x0 =
(0,0) and t0 = 0. Balsara’s proposal [10] involves a constant approximation of the two-
dimensional interaction region’s composite structure and under a subsonic condition, he
assumes this region to be bounded at time ∆t > 0 by the rectangle

R′ = (sw∆t,se∆t)× (ss∆t,sn∆t), sw,ss < 0 and sn,se > 0, (2.36)

with its vertices X ′
ne, X ′

nw, X ′
sw, and X ′

se respectively located in the four known quad-
rants of the xy-plane. He then chooses the control volume Q′ to be the rectangular
prism formed with R′ (2.36) as its base to make the forthcoming integral evaluations
easier. Figure 2.4b aims to show this three-dimensional element graphically and Figure
2.4a might assist in visualizing how the interaction region is chosen.

Considering the control volume Q′ =R′× (0,∆t) with |R′|= ∆t2 (se− sw)(sn− ss),
an algebraic expression for the constant state w∗∗ can be found based on the integral
form (2.14), namely

|R′|w∗∗ = sssw∆t2wsw− ssse∆t2wse− snsw∆t2wnw + snse∆t2wne

+σxswf sw +σxnwfnw−σxnefne−σxsef se +σyswgsw +σysegse−σynwgnw−σynegne
+σx∗wf∗w−σx∗ef∗e +σys∗gs∗−σyn∗gn∗,

(2.37)
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denoting by σxµe and σxµw, µ = n,∗,s, the areas of the trapezoidal or triangular sections
generated by the slowest and fastest waves arising from each of the one-dimensional
Riemann problems at the corresponding planar faces x= se∆t and x= sw∆t, as can be
appreciated in Figure 2.4b. In an analogous manner, the areas of the zones formed at
the outer surfaces y = sn∆t and y = ss∆t are respectively represented by σynν and σysν ,
with ν = e,∗,w.

To solve for the state w∗∗, we note that all variables in the right-hand side of equation
(2.37) are known, with the exception of the fluxes appearing in the last line, i.e., the
transverse fluxes introduced briefly in the prior section. Momentarily focusing on the
one-dimensional Riemann problem above the x-axis with initial states wl = wnw and
wr = wne, we realize that its solution provided by the HLL approximate Riemann solver
yields the intermediate constant state wn∗ (2.24) and normal flux fn∗ (2.23), but not
the transverse flux gn∗. A similar scenario holds for each of the other one-dimensional
Riemann problems. However, Balsara offers a solution in [10], which will be carefully
summarized in the following paragraph.

Roughly, each transverse flux can be constructed using values extracted from the
associated intermediate state and normal flux. Using the notation introduced in the first
paragraphs of Chapter 1, where vector elements are designated by superscripts placed
in brackets to avoid confusion with exponents, one constructs the transverse fluxes as

f∗ν =
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∗ν


 , gµ∗ =
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µ∗
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µ∗w
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µ∗/w

[1]
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f [2]
µ∗ + ((w[3]

µ∗)2− (w[2]
µ∗)2)/w[1]

µ∗

w[3]
µ∗f

[4]
µ∗/w

[2]
µ∗


 , (2.38)

where ν = e or w and µ= n or s.
Now, the only unknown in equation (2.37) is w∗∗, which can be expanded by substi-

tuting particular values for each of the zone areas at the four faces normal to the main
directions x and y such that

|R′|
∆t2

w∗∗ = sssw wsw− ssse wse− snsw wnw + snse wne

+ ss(f se−f sw)− sn(fne−fnw) + se(gse− gne)− sw(gsw− gnw)

+ 1
2 [sws (f sw−f∗w)− ses(f se−f∗e)− swn (fnw−f∗w) + sen(fne−f∗e)]

+ 1
2 [ssw(gsw− gs∗)− sse(gse− gs∗)− snw(gnw− gn∗) + sne (gne− gn∗)] = d1.

(2.39)
The focus now shifts from obtaining the interaction state to determining the associ-

ated fluxes f∗∗ and g∗∗. Balsara’s approach to derive them is based on the arguments
used to define the one-dimensional HLL flux along the t-axis by means of any of the two
equations (2.4). In two dimensions, equivalent formulations can be found by employing
the integral form (2.14) over sub-rectangular prisms obtained by partitioning the prin-
cipal space-time control volume so that the time axis is positioned at a face. Among
other choices, it can for instance be divided along the x- or y-axis to get four possible
volumes Q′

w = (sw∆t,0)× (ss∆t,sn∆t)× (0,∆t), Q′
s = (sw∆t,se∆t)× (ss∆t,0)× (0,∆t),

Q′
e = (0,se∆t)×(ss∆t,sn∆t)×(0,∆t) and lastly, Q′

n = (sw∆t,se∆t)×(0,sn∆t)×(0,∆t).
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Before proceeding, we remark that the assumed subsonic case (sw,ss < 0 and sn,se >
0) guarantees that the inverted pyramidal structure, a consequence for the evolution of
the rectangular interaction region from time 0 to ∆t, contains the vertical time axis.
One can therefore determine the two unknowns f∗∗ and g∗∗ by performing space-time
integrations over any two of the above-mentioned volumes.
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∗∗
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associated with the strong interaction region.

Choosing first Q′
e, Balsara [9, 10] applies the integral conservation law (2.14) over

this space-time volume to obtain the equality

se (sn− ss)w∗∗− 1
2 (sn− ss)f∗∗

= −ssse wse + snse wne + 1
2 [ss+

w gsw− sn+
w gnw + snφhll

n − ssφhll
s ]

+ 1
2 [(2se− ss+

e )gse− (2se− sn+
e )gne− (sn+

e − sn+
w )gn∗+ (ss+

e − ss+
w )gs∗]

− 1
2 [(−2ss + ses)f se + (2sn− sen)fne + (sen− ses)f∗e] = d2,

(2.40)

having grouped the unknown quantities associated with the strong interaction region on
the left-hand side. The flux φhll

µ , µ= n or s, is to (2.24a) what the numerical flux along
the t-axis (2.7) is to (2.10). In order to obtain the numerical y-flux g∗∗, the integration
of the conservation law (2.14) is performed over the volume Q′

n shown in Figure 2.5a,
yielding the expression

sn (se− sw)w∗∗− 1
2 (se− sw)g∗∗

= −snsw wnw + snse wne + 1
2 [sw+

s f sw− se+
s f se + seφ

hll
e − swφhll

w ]
+ 1

2 [(2sn−sw+
n )fnw−(2sn−se+

n )fne−(se+
n −se+

s )f∗e+(sw+
n −sw+

s )f∗w]

− 1
2 [(−2sw+ snw)gnw + (2se− sne )gne + (sne− snw)gn∗] = d3,

(2.41)

written in terminology analogous to that described above.
Using Figure 2.5 as reference, we are able to understand why the wave speeds involv-

ing a plus sign, following the notation established in (2.5), are needed in the previous
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equations. Basically, their introduction allows to handle supersonic cases provided they
appear. For example, consider the situation where the x-directional Riemann problem
with initial states wnw and wne admits speed estimates snw < 0 and sne > 0, so that part
of the required subsonic condition (2.36) is satisfied. Now, let us suppose that only the
flow below the x-axis is supersonic with strictly positive wave speeds ssw,s

s
e. Note then

that the terms ss+
w gsw and (ss+

e −ss+
w )gs∗ in equation (2.40) are non-zero, as they should

be, providing the needed contributions to the appropriate estimation of f∗∗.
The system of linear equations (2.39, 2.40, 2.41) can be easily expressed in matrix

form Cy = d, specifically



1
∆t2
|R′| 0 0

se (sn− ss) −1
2 (sn− ss) 0

sn (se− sw) 0 −1
2 (se− sw)







w∗∗

f∗∗

g∗∗


=



d1

d2

d3


 , (2.42)

such that one is readily able to retrieve detC = 1
4∆t4
|R′|2, which without any doubt is

strictly positive as long as |R′| 6= 0 (recall that ∆t 6= 0). From standard linear algebra,
one thus finds the inverse matrix

C−1 =
∆t2

|R′|




1 0 0
2 se −2(se− sw) 0
2 sn 0 −2(sn− ss)


 , (2.43)

and compute the unique solution y = C−1d for the subsonic case.
In the event that the underlying flow is supersonic in both x and y directions, Balsara

solves for the intermediate state directly from equation (2.39) and explicitly defines f∗∗

and g∗∗ at point (x0,∆t) as the properly upwinded fluxes

F∗∗ = (f∗∗,g∗∗) =





( f sw , gsw ) if ss ≥ 0 and sw ≥ 0,

( f se , gse ) if ss ≥ 0 and se ≤ 0,

( fnw , gnw ) if sn ≤ 0 and sw ≥ 0,

( fne , gne ) if sn ≤ 0 and se ≤ 0,

(2.44)

as given in [10, p. 7483]. On the same page, one also finds the expressions for the
fluxes that are meant to be used in the remaining situations where the flow is fully
supersonic in one of the two spatial directions, but subsonic in the other. For specific
details concerning the appropriate use of F∗∗ at the cells’ interfaces, see Section 2.2.4.2.

2.2 Simple Two-Dimensional HLL Riemann Solver
In this section, a simple method is developed to numerically approximate the solution
of the two-dimensional Riemann problem (2.12, 2.20). Suitably built as an extension
of the well-known HLL formalism to two dimensions, the scheme relies heavily on the
proper utilization of Rankine-Hugoniot relations, which hold across the surfaces of dis-
continuity that emerge from the origin O, to estimate the constant flux F∗∗. Hence,
before embarking on the details, we must understand what these conditions are like in
two dimensions.
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2.2.1 Rankine-Hugoniot Relation in Two Dimensions

We are interested in the derivation of the Rankine-Hugoniot relation in two dimensions
from a general point of view. The system of conservation laws in (2.12) can be rewritten
as

∇̃ ·U [θ] = 0, θ = 1, . . . ,ϑ, (2.45)

with ∇̃ the nabla operator in the physical space (x,y, t) and U [θ] = (f [θ],g[θ],w[θ]). Assume
that U [θ] is a bounded measurable function and divergence-free in a weak sense over an
open region Ω⊂ R

2× (0,∞) such that

∫

Ω
∇̃ϕ ·U [θ] dx dt= 0, (2.46)

for all continuously differentiable test functions ϕ : Ω→R with compact support and for
every θ ∈ {1, . . . ,ϑ}.

Let us consider a two-dimensional smooth surface S that splits the region Ω into
two open parts Ωl and Ωr. Suppose that U [θ] is smooth in each of the parts’ interiors
and uniformly continuous up to S, and also that it has limits along S from the left and
from the right, denoted by U

[θ]
l and U [θ]

r . Thus, based on the Rankine-Hugoniot relation
theorem presented in [152], equation (2.46) along S is equivalent to

n̄ ·
(
U

[θ]
r −U

[θ]
l

)
= 0, θ = 1, . . . ,ϑ, (2.47)

where n̄ = (nx,ny,nt) is the unit normal of the surface, pointing from Ωl to Ωr. The
previous equation in expanded form is nx(f [θ]

l − f [θ]
r ) +ny(g

[θ]
l − g[θ]

r ) +nt(w
[θ]
l −w[θ]

r ) = 0,
but is most commonly expressed as

Jnxf
[θ] +nyg

[θ]K = σJw[θ]K, θ = 1, . . . ,ϑ, (2.48)

having defined σ =−nt and the jump

J(·)K = (·)r − (·)l. (2.49)

For self-similar solutions, the discontinuity surface S described by an equation of
the form (a,b,c) · (x,y, t) = 0, may be identified by a similarity curve in the (ξ,η) plane
having the form Γ(ξ,η) = aξ + bη+ c = 0 and its normal can easily be obtained as the
gradient ∇Γ(ξ,η) in the physical space (x,y, t), i.e.,

n =
(
∂Γ
∂ξ

∂ξ

∂x
,
∂Γ
∂η

∂η

∂y
,
∂Γ
∂ξ

∂ξ

∂t
+
∂Γ
∂η

∂η

∂t

)
=

1
t

(a,b,c) . (2.50)

Now that all the theoretical notions have been formally introduced, we can proceed
with the complete description of the proposed scheme.



2.2 Simple Two-Dimensional HLL Riemann Solver 49

y

x

wsw wse

wnw wnewn∗

ws∗

w∗w w∗∗ w∗e

xsw xse

xnw xnesn
e ∆tsn

w∆t

sw
n ∆t

sw
s ∆t

ss
e∆tss

w∆t

se
n∆t

se
s∆t

(a) Supersonic in the x-direction

y

x

wsw wse

wnw wnewn∗

ws∗

w∗w
w∗∗ w∗e

xsw xse

xnw xnesn
e ∆tsn

w∆t

sw
n ∆t

sw
s ∆t

ss
e∆tss

w∆t

se
n∆t

se
s∆t

(b) Supersonic in both directions

Figure 2.6. Two examples of structures formed at time t= ∆t by outward propagating waves
related to flows that are supersonic in at least one of the spatial directions.

2.2.2 Derivation of Intermediate States and Fluxes

Any approach that deliberately aims to extend the approximate Riemann solver of HLL
type to two dimensions involves in some way the constant approximation of intermediate
states, as is our case. Furthermore, we expect the solution of the two-dimensional
Riemann problem (2.12, 2.20) to be self-similar, as was indicated in Section 2.1.1, and
we need to ensure that an implementation of our method invariably satisfies this property.

We therefore base our wave model and space-time control volume Q that will be used
in our forthcoming developments on the ones suggested by Wendroff in [145], accurately
portrayed in Figure 2.3 and carefully detailed in Section 2.1.2 of this chapter. Our strong
preference for his setup over other possible ones comes from the fact that it encloses not
only subsonic but also supersonic flow structures, e.g., those shown in Figure 2.6, and
provides the correct profile for the eventual use of jump conditions, which is readily seen
from the fact that the associated discontinuity planes and their normals are self-similar.
Moreover, the approximate Riemann solver is self-similar as long as the states defined in
the nine non-overlapping subdomains (resulting from the evolution in time of initial data
by virtue of flat space-time surfaces arising from an origin O) are self-similar themselves:
indeed, constant values on self-similar subdomains are always self-similar, i.e., wsw, wse,
wnw and wne satisfy this property, and for the other states, self-similarity is achieved
when wn∗, ws∗, w∗e, w∗w and w∗∗ are functions of ξ, ξ, η, η and (ξ,η), respectively.

Now, we take into account Balsara’s approach to reformulate Wendroff’s approx-
imate, quadrangular wave model and make use of the consistency with the integral
formulation through jump conditions to obtain the intermediate states and fluxes. How-
ever, contrary to the 1D HLL solver, the two-dimensional HLL derivation will only satisfy
these jump conditions in a weak sense.
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2.2.2.1 Strongly Interacting State

Regardless of the type, a flow characterized by the considered wave model forms spe-
cific patterns at the control volume’s faces that can be generalized as follows: the bot-
tom flat surface t = t0 comprises the four rectangles determined by the initial states
wne,wnw,wsw, and wse, each in its corresponding quadrant; the top face t = ∆t con-
sists of four trapezoids that result from applying the one-dimensional HLL [74] solver at
the underlying edges as described in Section 2.1.2, four rectangles containing unaltered
initial data, and a quadrilateral defined by the points Qsw, Qse, Qnw and Qne (with
speeds given in equation (2.21) for the general case) which bounds all two-dimensional
interactions at time ∆t that originated from O; and each of the lateral faces retains a
structure similar to that of Figure 2.1 created by a two-wave Riemann fan.

Therefore, all of the individual regions found at the rectangular prism’s surfaces have
simple geometric shapes and a computation of their areas does not pose a challenge. This
facilitates the application of the integral conservation law (2.14) over it, i.e., over the
discussed control volume Q = R × (0,∆t), providing a straightforward expression to
obtain w∗∗ given by
∑

µ=s,∗,n
ν=e,∗,w

aµνwµν = xryu wne−xlyu wnw +xlyd wsw−xryd wse

−∆t
2 [(2yu−sen∆t)fne−(2yu−swn∆t)fnw+(2yd−sws ∆t)f sw−(2yd−ses∆t)f se]

−∆t
2 [(2xr−sne∆t)gne−(2yl −snw∆t)gnw+(2yl−ssw∆t)gsw−(2xr−sse∆t)gse]

−∆t2

2 [sne (sne − snw)gn∗−(sse− ssw)gs∗+(sen− ses)f∗e−(swn − sws )f∗w],
(2.51)

where the origin O was set to (0,0,0), taking x0 = (0,0) and t0 = 0, to make later
computations simpler. We wish to note that the nine areas aµν (µ = n,∗,s, ν = e,∗,w)
correspond to the previously identified regions located at the top face, which in turn has
a total surface area |R|= δxe−w δyn−s since R= (xw,xe)× (ys,yn), and it is rather easy
to define the main quadrilateral’s extent a∗∗ as a remaining value, notably

a∗∗ = |R|− ane− an∗− anw− a∗w− asw− as∗− ase− a∗e

= ∆t2

2 [(sne − ssw)(swn − ses) + (sen− sws )(sse− snw)] . (2.52)

Substituting then the constant one-dimensional intermediate states wn∗, ws∗, w∗e

and w∗w defined in (2.23), in conjunction with the particular values of all areas having
the form aµν such as a∗∗ (2.52), into the left-hand side of equation (2.51) yields

w∗∗ =
1

(sne − ssw)(swn − ses) + (sen− sws )(sse− snw)
∗

[ (swn s
n
e +sses

e
n)wne− (sens

n
w+ssws

w
n )wnw + (sess

s
w+snws

w
s )wsw− (sws s

s
e+s

n
e s
e
s)wse

− swnfne + senfnw− sesf sw + sws f se− (sen− ses)f∗e + (swn − sws )f∗w

− ssegne + sswgnw− snwgsw + snegse− (sne − snw)gn∗ + (sse− ssw)gs∗ ],

(2.53)
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after considerable algebraic manipulation. This formulation is only complete after ap-
propriate definitions for the fluxes f∗e, f∗w, gn∗ and gs∗ have been furnished. For this
end, we adopt the solution (2.38) proposed by Balsara, thoroughly detailed in Section
2.1.3, and construct each of these unknown transverse fluxes with values obtained from
the corresponding normal flux and intermediate state.

Before turning to the determination of the flux F∗∗, we would like to point out that
the strong interaction region in the xy-plane at time ∆t is most likely delimited by a sonic
line consisting of a circle or ellipse (see [152]) and well contained in the quadrilateral with
vertices Xsw(∆t),Xse(∆t),Xnw(∆t), and Xne(∆t) and area a∗∗. If a larger interaction
region is considered, more dissipation is certainly introduced. For instance, in the case
that all wave speeds relax to the minimal and maximal ones defined in equation (2.22),
as in [9], the volume’s top and bottom surfaces will be formed entirely of rectangular
regions and the lateral faces of triangular parts, and equation (2.53) would reduce to

w∗∗ =
∆t2

2|R′| ∗ [ 2snsewne− 2snswwnw + 2ssswwsw− 2sssewse

− sn (fne−fnw)− ss (f sw−f se)− se (gne− gse)− sw (gsw− gnw)

− (sn− ss)(f∗e−f∗w)− (se− sw)(gn∗− gs∗) ] ,
(2.54)

with R′ = (sw∆t,se∆t) × (ss∆t,sn∆t). By comparing this expression with the one
derived by Balsara in [10], it is apparent that the dissimilarities arise from considering
different wave configurations at the control volume’s lateral faces. To be precise, using
Figure 2.4b as reference, the approach described in Section 2.1.3 does not require each
corner of the two-dimensional interaction region to exactly coincide with the sides of the
two neighboring one-dimensional intermediate scopes, whereas the proposed technique
essentially does to allow for the use of jump conditions, as will be explained in the
immediate section. We remark that in the limit sβα → sα for α,β ∈ {n,s,e,w}, both
equations (2.54) and (2.39) are nevertheless the same.

2.2.2.2 Fluxes from Jump Conditions

We will now restrict ourselves to the derivation of closed form expressions for both fluxes
f∗∗ and g∗∗. Recall that for the one-dimensional case, we exposed in Section 2.1 the
equivalence between the integral relation (1.69), also known as the consistency condition,
and the use of Rankine-Hugoniot conditions across the outermost waves, as a means to
recover the flux in the intermediate region. We wish to extend this latter concept to two
dimensions.

Let us denote by n̄e = ne/‖ne‖ the unit normal of the plane Se that contains the
three points Qse, Qne, and O, as illustrated in Figure 2.7. Without difficulty, we identify
the distinct vectors

−−→
OQne = (sne∆t,sen∆t,∆t) and

−−→
OQse = (sse∆t,s

e
s∆t,∆t) that lie on

the flat surface and determine their cross product to compute the normal ne, namely

ne =
−−→
OQne×

−−→
OQse = ∆t2 [(sen− ses) i− (sne − sse) j + (sne s

e
s− sensse) t] , (2.55)

with i, j and t the standard basis in the physical space (x,y, t). The Rankine-Hugoniot
condition across the discontinuity surface Se is ne · (f∗∗−f∗e,g∗∗− g∗e,w∗∗−w∗e) = 0,
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Figure 2.7. Planes in the interior of the space-time volume Q.

obtained by means of equation (2.48), which can be rewritten as

(sne s
e
s− sensse)(w∗e−w∗∗) + (sen− ses)(f∗e−f∗∗) + (sse− sne )(g∗e− g∗∗) = 0. (2.56)

For the remaining directions, a similar procedure is employed to get the conditions across
the corresponding planes, and a summary of all, including (2.56), is presented below:

N©
δw

1︷ ︸︸ ︷
(snws

e
n −swn sne )(wn∗−w∗∗) +

δf
1︷ ︸︸ ︷

(swn−sen)(fn∗−f∗∗)+

δg
1︷ ︸︸ ︷

(sne−snw)(gn∗ −g∗∗) = 0, (2.57a)

W©
δw

2︷ ︸︸ ︷
(ssws

w
n−sws snw)(w∗w−w∗∗)+

δf
2︷ ︸︸ ︷

(sws −swn )(f∗w−f∗∗)+

δg
2︷ ︸︸ ︷

(snw−ssw)(g∗w−g∗∗) = 0, (2.57b)

S©
δw

3︷ ︸︸ ︷
(sses

w
s − sesssw)(ws∗−w∗∗) +

δf
3︷ ︸︸ ︷

(ses−sws )(f s∗−f∗∗) +

δg
3︷ ︸︸ ︷

(ssw− sse)(gs∗ −g∗∗) = 0, (2.57c)

E©
δw

4︷ ︸︸ ︷
(sne s

e
s − sensse)(w∗e−w∗∗) +

δf
4︷ ︸︸ ︷

(sen− ses)(f∗e−f∗∗) +

δg
4︷ ︸︸ ︷

(sse− sne )(g∗e −g∗∗) = 0. (2.57d)

Relations (2.57) form a system of linear equations and, since the specific value of the
strongly interacting state w∗∗ is completely determined by equation (2.53), we opt to
rewrite it as

δf

1 f∗∗+δg

1 g∗∗ = δw
1 (wn∗ −w∗∗) + δf

1 fn∗ + δg

1 gn∗ = b1, (2.58a)

δf

2 f∗∗+δg

2 g∗∗ = δw
2 (w∗w−w∗∗) + δf

2 f∗w + δg

2 g∗w = b2, (2.58b)

δf

3 f∗∗+δg

3 g∗∗ = δw
3 (ws∗ − w∗∗) + δf

3 f s∗ + δg

3 gs∗ = b3, (2.58c)

δf

4 f∗∗+δg

4 g∗∗ = δw
4 (w∗e − w∗∗) + δf

4 f∗e + δg

4 g∗e = b4, (2.58d)
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with the unknown fluxes on the left hand-side. It is evident that (2.58) is overdetermined,
seeing that there are four equations to solve for two unknowns, and the method of
ordinary least squares can be utilized to find a solution. Hence, we express the linear
system (2.58) in the form Ax = b, by defining

A =




δf

1 δg

1

δf

2 δg

2

δf

3 δg

3

δf

4 δg

4


 , x =

(
f∗∗

g∗∗

)
, and b =




δw
1 (wn∗−w∗∗) + δf

1 fn∗ + δg

1 gn∗

δw
2 (w∗w−w∗∗) + δf

2 f∗w + δg

2 g∗w

δw
3 (ws∗ −w∗∗) + δf

3 f s∗ + δg

3 gs∗
δw

4 (w∗e −w∗∗) + δf

4 f∗e + δg

4 g∗e


 , (2.59)

and write the normal equations in matrix notation as ATAx = ATb. The least squares
solution x = M−1ATb = Kb, provided M = ATA can be inverted, is the exact one if
it exists or an approximate one if it does not.

Considering that M has in fact a strictly positive determinant (A.3) and is conse-
quently nonsingular (see Annex A), we are thus able to get explicit forms for the fluxes
in the interaction region as

f∗∗ = [k11 b1 + k12 b2 + k13 b3 + k14 b4]/detM ,

g∗∗ = [k21 b1 + k22 b2 + k23 b3 + k24 b4]/detM ,

(2.60a)

(2.60b)

given in terms of the matrix elements

k11 = δf

1(δg

2
2 + δg

3
2 + δg

4
2)− δg

1(δf

2δ
g

2 + δf

3δ
g

3 + δf

4δ
g

4),

k12 = δf

2(δg

1
2 + δg

3
2 + δg

4
2)− δg

2(δf

1δ
g

1 + δf

3δ
g

3 + δf

4δ
g

4),

k13 = δf

3(δg

1
2 + δg

2
2 + δg

4
2)− δg

3(δf

1δ
g

1 + δf

2δ
g

2 + δf

4δ
g

4),

k14 = δf

4(δg

1
2 + δg

2
2 + δg

3
2)− δg

4(δf

1δ
g

1 + δf

2δ
g

2 + δf

3δ
g

3),

k21 = δg

1(δf

2
2 + δf

3
2 + δf

4
2)− δf

1(δf

2δ
g

2 + δf

3δ
g

3 + δf

4δ
g

4),

k22 = δg

2(δf

1
2 + δf

3
2 + δf

4
2)− δf

2(δf

1δ
g

1 + δf

3δ
g

3 + δf

4δ
g

4),

k23 = δg

3(δf

1
2 + δf

2
2 + δf

4
2)− δf

3(δf

1δ
g

1 + δf

2δ
g

2 + δf

4δ
g

4),

k24 = δg

4(δf

1
2 + δf

2
2 + δf

3
2)− δf

4(δf

1δ
g

1 + δf

2δ
g

2 + δf

3δ
g

3). (2.61)

The advantage of the suggested formulation over existing ones is that it efficiently
encloses all feasible subsonic or supersonic configurations for the two-dimensional inter-
action of waves associated with the Riemann problem (2.12, 2.20), while providing a
single and perspicuous implementation of the approximate variables w∗∗ (2.53) and F∗∗

(2.60).
If we regard the elements of the matrix K as weights, we notice that k11, k13,

k22 and k24 become smaller as the strongly interaction region in the t= ∆t plane turns
rectangular. In fact, studying once more the situation discussed at the end of the previous
section where this region is a rectangle R′, we perceive that in the limit sβα → sα for
α,β ∈ {n,s,e,w}, δg

1 =−δg

3, δf

4 =−δf

2 and δf

1 = δf

3 = δg

2 = δg

4 = 0. This further implies that
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the four mentioned weights become zero and k12 = 2δf

2δ
g

1
2 =−k14, k21 = 2δg

1δ
f

2
2 =−k23,

allowing us to find

f∗∗ = 1
2 [(se + sw)w∗∗− sew∗e− sww∗w + f∗e + f∗w] , (2.62a)

g∗∗ = 1
2 [(sn + ss)w∗∗− snwn∗− ssws∗ + gn∗ + gs∗ ] , (2.62b)

having substituted the quantities defined in (2.57). Equations (2.62) aid to confirm that
our proposed approach is able to pick out the right ingredients for the determination of
the numerical flux F∗∗. It is worth observing that for this particular case, f∗∗ (respec-
tively, g∗∗) is simply the average of the jump conditions across the eastern and western
(respectively, northern and southern) planes of the inverted rectangular pyramid, as
expected.

The above analysis inspired us to develop alternative formulations to (2.60), which
will be duly justified in the subsequent section. For all details pertaining the appropriate
use of the resolved fluxes at the primary cells’ interfaces, refer to Section 2.2.4.2.

2.2.3 Alternative Formulations

As the linear system (2.58) is mathematically overdetermined, we could theoretically
propose infinitely many formulations to estimate F∗∗, not all of which would be sensible.
However, in this spirit, we detail two of which will give reasonable solutions and yield
shorter expressions than in (2.60), for later interpretation and implementation. The first
method gives fluxes that are dependent on the intermediate state w∗∗, as opposed to the
ones provided by the second. In addition, we briefly present an alternative methodology
that involves using the jump conditions to define the transverse fluxes f∗e, f∗w, gn∗ and
gs∗, resulting in a linearly dependent system of equations.

Form I

We first calculate the difference between equations (2.58a) and (2.58c), and separately,
the one between (2.58d) and (2.58b), to recover a system of two, not four, linear equations
that can be written in condensed form as

(
δf

1 − δf

3 δg

1− δg

3

δf

4 − δf

2 δg

4− δg

2

)(
f∗∗

g∗∗

)
=

(
b1− b3

b4− b2

)
, (2.63)

where the 2× 2 real matrix on the left-hand side is denoted by AI . A straightforward
substitution of the terms introduced in (2.57) into this matrix allows us to compute its
determinant as detAI = − 4

∆t2
a∗∗, which is certainly less than zero on the assumption

that both ∆t and a∗∗ are positive quantities. The unique solution of (2.63) is then

(
f∗∗

g∗∗

)
=−∆t2

4a∗∗

(
sse + ssw− sne − snw snw + ssw− sne − sse
ses + sws − sen− swn swn + sws − sen− ses

)(
b1− b3

b4− b2

)
. (2.64)

By substituting the constant one-dimensional states and fluxes defined in (2.23) and
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(2.24) into the terms b1− b3 and b4− b2, we obtain

b1−b3 = (swn s
n
e + sws s

s
e− snwsen− sswses)w∗∗− swn snewne + snws

e
nwnw + sess

s
wwsw− ssesws wse

+ swnfne− senfnw− sesf sw + sws f se− (snw− sne )gn∗− (ssw− sse)gs∗,
b4−b2 = (sens

s
e + swn s

s
w− sessne− sws snw)w∗∗− ssesenwne− sswswnwnw + sws s

n
wwsw + sne s

e
swse

+ ssegne + sswgnw− snwgsw− snegse− (ses− sen)f∗e− (sws − swn )f∗w,

so the fluxes f∗∗ and g∗∗ possess a clear and condensed form. Note that in the limit
sβα→ sα, with α,β ∈ {n,s,e,w}, system (2.64) corresponds to (2.62).

Form II

We shall now describe a method that is built with the specific intention of eliminating
the contribution of the resolved state w∗∗ to the flux tensor F∗∗. We start by summing
equation (2.57a) multiplied by δw

3 and equation (2.57c) multiplied by −δw
1 , to get

(δf

1δ
w
3 − δf

3δ
w
1 )f∗∗ + (δg

1δ
w
3 − δg

3δ
w
1 )g∗∗ = δw

1 δ
w
3 (wn∗−ws∗) + δf

1δ
w
3 fn∗

− δf

3δ
w
1 f s∗ + δg

1δ
w
3 gn∗− δg

3δ
w
1 gs∗ = c1,

(2.66)

and in an analogous manner, we multiply equation (2.57d) by δw
2 and equation (2.57b)

by −δw
4 so that their sum gives

(δf

4δ
w
2 − δf

2δ
w
4 )f∗∗ + (δg

4δ
w
2 − δg

2δ
w
4 )g∗∗ = δw

4 δ
w
2 (w∗e−w∗w) + δf

4δ
w
2 f∗e

− δf

2δ
w
4 f∗w + δg

4δ
w
2 g∗e− δg

2δ
w
4 g∗w = c2.

(2.67)

Using the same methodology as in Form I, we employ matrix notation to write both
linear equations as

(
δf

1δ
w
3 − δf

3δ
w
1 δg

1δ
w
3 − δg

3δ
w
1

δf

4δ
w
2 − δf

2δ
w
4 δg

4δ
w
2 − δg

2δ
w
4

)(
f∗∗

g∗∗

)
=

(
c1

c2

)
, (2.68)

with the square matrix denoted by AII , which, if invertible, allows us to find simple
and compact representations for the fluxes f∗∗ and g∗∗. We wish to point out that in
actual practice, we have not yet encountered a situation where AII is singular. However,
by removing w∗∗ from the computation, we are eliminating a dissipation that might be
needed in some problems.

It is interesting to observe the behavior of this method in the limit that has hitherto
been considered (sβα→ sα for α,β ∈ {n,s,e,w}), where

f∗∗ =
sef∗w− swf∗e + sesw (w∗e−w∗w)

se− sw
and g∗∗ =

sngs∗− ssgn∗ + snss (wn∗−ws∗)
sn− ss

,

(2.69)
which are clearly consistent and can be seen as one-dimensional HLL fluxes (2.10) with
initial data that are HLL intermediate states themselves.
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Alternative Jump Condition Approach

Until now, we have considered the transverse fluxes f∗e, f∗w, gn∗ and gs∗ as known
variables constructed with values taken out from the associated normal flux and inter-
mediate state (refer to equation (2.38) in Section 2.1.3). If we were to regard them
as unknown elements instead, the total number of unknowns in Balsara’s formulation
(2.39, 2.40, 2.41) would increase to seven. Thus, our first approach to define a well-posed
problem consisted in deriving four additional equations by enforcing the jump conditions
between the intermediate state w∗∗ and wn∗, w∗w, ws∗, w∗e, respectively, to obtain

gn∗ = g∗∗ + sn(wn∗ −w∗∗), (2.70a)

f∗w = f∗∗ + sw(w∗w−w∗∗), (2.70b)

gs∗ = g∗∗ + ss(ws∗ − w∗∗), (2.70c)

f∗e = f∗∗ + se(w∗e − w∗∗), (2.70d)

i.e., equations (2.57) for a rectangular interaction region. Substitution of these fluxes into
(2.39), (2.40), (2.41) yields a system with the same number of equations and unknowns.

However, given the complexity of the involved terms, the solution set of the linear
system cannot be readily determined. In practice, we found that the associated matrix
is almost always singular since the system is, in fact, ill-posed; for instance, if we assume
the flow is subsonic everywhere and take sβα→ sα for α,β ∈ {n,s,e,w}, we get




0 0 0
sw (sn− ss) 0 0
ss (se− sw) 0 0







w∗∗

f∗∗

g∗∗


=



d̃1

d̃2

d̃3


 . (2.71)

2.2.3.1 Consistency

In the next few paragraphs, we give various statements concerning the consistency of
the proposed numerical scheme, where w∗∗ is defined by equation (2.53) and F∗∗ by
(2.60). For this, let us define a state w̄ constant in x ∈ R

2, as well as w̄e, w̄n, w̄w, and
w̄s constant in x > 0, y > 0, x < 0 and y < 0, respectively, with the corresponding fluxes
denoted in a similar way.

Given that the scheme is in conservative form, we need to verify if the numeri-
cal fluxes are consistent with the physical ones, i.e., if f∗∗(w̄,w̄,w̄,w̄) = f(w̄) and
g∗∗(w̄,w̄,w̄,w̄) = g(w̄). Making use of equations (2.62) with the speeds defined as
se = sn = s = −ss = −sw, and recalling the fact that the one-dimensional HLL fluxes
are consistent, e.g., f∗e(w̄,w̄) = f(w̄), we surely recover that these basic consistency
equalities are satisfied.

In addition, if all variations occur in one spatial direction, as depicted in Figure 2.8,
equation (2.53) reduces to an analogue of (2.3). For instance, if the variation is restricted
to the y-direction, we are sure that w̄n = wne = wnw, w̄s = wse = wsw, F̄n = Fne = Fnw

and F̄s = Fse = Fsw, and the equality (2.53) changes into

w∗∗ =
snw̄n− ssw̄s− (ḡn− ḡs)

sn− ss
. (2.72)
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Figure 2.8. Two-dimensional variations restricted to a single spatial direction.

2.2.4 Extensions and Computational Remarks

The goal of this section is to exhibit a general representation of the proposed solver for
two-dimensional meshes satisfying certain properties and simultaneously provide insight
into its implementation. We then elaborate on how to assemble the total flux across the
mesh edges or interfaces and on how to obtain a second-order version of the scheme.

2.2.4.1 Non-Rectangular Meshes

In the framework of finite volume methods, the technique presented in Section 2.2 nat-
urally relies on integral relations that can be easily applied over any right prism in the
physical space (x,y, t). So, let T be an admissible mesh defined over an open bounded
region Ω ∈ R

2 in the sense of [54] (Definition 9.1) consisting of polygonal cells Cc ∈ T
(with c a unique index), edges, and vertices; the latter belonging to a family denoted by
P. Moreover, for each vertex p ∈ P, we construct a dual convex cell Dp by connecting
the centers of the polygons that share this point and establish the space-time control
volume Qp = Dp × (0,∆t). An integration of (2.12) over this prism Qp then yields the
expression

∫

Dp

w(x,∆t) dx−
∫

Dp

w(x,0) dx +
∫

Qp

∇ ·F(w(x, t)) dx dt= 0, (2.73)

with F = (f ,g) and x = (x,y), which is known to be equivalent to

∫

Dp

w(x,∆t) dx =
∫

Dp

w(x,0) dx−
∫

Sp

F(w(s, t)) · dS, (2.74)

by application of the divergence theorem, given Sp = ∂Dp × (0,∆t). For presentation
purposes, we shall hereafter limit ourselves to the case where Dp is a basic triangle.
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Figure 2.9. A solution example at time t= ∆t, resulting from the application of HLL Riemann
solvers at the interfaces and at the vertices of the underlying non-rectangular mesh.

However, we urge the reader to keep in mind that all subsequent developments can be
readily generalized to any convex polygonal dual cell.

Thus, we consider the volume Qp to be a triangular prism, provided Dp is adequately
defined by joining together the three distinct centers

xα = (xα,yα), α= 1,2,3, (2.75)

of the corresponding primary cells Cα, as exemplified in Figure 2.9. Owing to its con-
struction, the dual cell contains the vertex p that is evidently the intersection point
of three edges Lα, for which we know their respective formulations and unit normals
να = (ναx,ναy). We employ the notation Lα to designate the line segment having p as
one of its endpoints and lying between xα and xα+1, with the index α following a cyclic
order such that for α= 3, α+ 1 = 1.

As explained in Section 2.1.1, a constant state wα is assumed within each cell Cα at
the initial time t0 ≥ 0, for α = 1,2,3. Using now Figure 2.9b as reference, it is evident
that in order to obtain the desired values at the face Lα× (t0, t0 + ∆t) in the interior of
Qp, we must solve not only a one-dimensional Riemann problem in its normal direction,
but also a local two-dimensional Riemann problem, involving initial data w1, w2 and
w3, at the vertex p.

For the former, we identify as sαl and sαr the left and right Einfeldt’s wave speeds in
the direction of να, after making use of equation (2.11) with wl = wα+1 and wr = wα

(refer to Annex B.1 for implementation details). Moreover, solving the one-dimensional
Riemann problems at the edges allows us to derive expressions for the constant state
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w∗α (2.3) and HLL fluxes (2.10) associated with each problem, i.e.,

w∗α =
sαrwα− sαl wα+1 + να · (Fα+1−Fα)

sαr − sαl
, (2.76a)

fn∗α =
να · (sαrFα+1− sαl Fα) + sαl s

α
r (wα−wα+1)

sαr − sαl
, (2.76b)

where fn∗α = να ·F∗α is the flux perpendicular to the edge α ∈ {1,2,3}. We recall that
the transverse fluxes, denoted here as fn⊥

∗α = (−ναy,ναx) · (f∗α,g∗α), can be constructed
using values extracted from the associated normal flux (2.76b) and intermediate state
(2.76a), as was done in Section 2.1.3. In addition, we easily recover the two parallel lines
that bound the extent of w∗α on the xy-plane at some time t > t0, which are given by

Lrα(t) = {(x,y) | ναxx+ ναy y = sαr (t− t0)} , (2.77a)

Llα(t) = {(x,y) | ναxx+ ναy y = sαl (t− t0)} , (2.77b)

having conveniently set p = (0,0) and recalling that ‖να‖ = 1. From now on, we also
consider the time t= ∆t and t0 = 0.

With regard to the 2D Riemann problem found at the origin O = (p,0), we specify
a triangular region by connecting the vertices Xα = (x′

α∆t, y′
α∆t), α= 1,2,3, which are

essentially the intersection points of the bounding lines Llα(∆t) and Lrα+1(∆t) such that

x′
α =

sα+1
r ναy − sαl ν(α+1)y

ν(α+1)x ναy − ναx ν(α+1)y
and y′

α =
sαl ν(α+1)x− sα+1

r ναx

ν(α+1)x ναy − ναx ν(α+1)y
. (2.78)

Let us note that all two-dimensional complex interactions emanating from O and pro-
jected onto the planar surface t = ∆t, are well-contained in the previously mentioned
triangle, which in turn generates an inverted triangular pyramid during its time evolution
from 0 to ∆t.

The previous statements facilitate the derivation of an algebraic equation to compute
the constant state w∗∗, when applying the integral conservation law (2.74) over the con-
trol volume Qp. However, for the determination of the flux f∗∗, we still need to provide
the Rankine-Hugoniot relations that hold across the surfaces of discontinuities emerging
from O, following the approach carefully detailed in Section 2.2.2.2. We therefore start
by identifying the points Qα = (Xα,∆t) and the normals

nα =
−−→
OQα+1×

−−→
OQα = ∆t2

[
(y′
α+1− y′

α) i + (x′
α−x′

α+1) j + (x′
α+1y

′
α−x′

αy
′
α+1) t

]
, (2.79)

that will allow us to deduce the jump conditions for α= 1,2,3 as

δw
α︷ ︸︸ ︷

(x′
α+1y

′
α−x′

αy
′
α+1)(w∗α−w∗∗) +

δf
α︷ ︸︸ ︷

(y′
α+1− y′

α)(f∗α−f∗∗) +

δg
α︷ ︸︸ ︷

(x′
α−x′

α+1)(g∗α− g∗∗) = 0,
(2.80)

which can be written in the following form:

δf
αf∗∗ + δg

αg∗∗ = δw
α(w∗α−w∗∗) + δf

αf∗α + δg
αg∗α = bα, α= 1,2,3. (2.81)
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Clearly, relations (2.81) form once again an overdetermined system of linear equa-
tions, since there are more equations (three) than unknowns (two). In view of the method
of ordinary least squares, we then express this system as AT x = bT by defining

AT =



δf

1 δg

1

δf

2 δg

2

δf

3 δg

3


 , x =

(
f∗∗

g∗∗

)
, and bT =



δw

1 (w∗1−w∗∗) + δf

1 f∗1 + δg

1 g∗1

δw
2 (w∗2−w∗∗) + δf

2 f∗2 + δg

2 g∗2

δw
3 (w∗3−w∗∗) + δf

3 f∗3 + δg

3 g∗3


 , (2.82)

and look for the least squares solution x = M T

−1AT

TbT , provided M T is invertible. It
is worth mentioning that in the general case when three or more edges (ε ≥ 3) meet at
the vertex p, the matrix

M T =




∑

α=1,...,ε

δf
α

2
∑

α=1,...,ε

δf
αδ

g
α

∑

α=1,...,ε

δf
αδ

g
α

∑

α=1,...,ε

δg
α

2



, (2.83)

has a determinant that can be expressed as the sum of square binomials of the form
(δf
αδ

g

β − δf

βδ
g
α)2, for all α,β ∈ {1,2, . . . ,ε}, which is geometrically proven to be strictly

positive as long as the area of the interaction region a∗∗ is not zero.
Hence, we confirm that the proposed approach is simple enough to be applied on

any admissible mesh, yielding useful closed expressions for w∗∗ and F∗∗. Our strategy
only relies on geometry to define the structures’ areas that are formed by the outward
propagation of waves from the origin O and edges Lα in order to compute the interme-
diate state. In fact, the estimation of the fluxes is entirely algebraic, as opposed to the
extension of Balsara’s multidimensional HLL solver to unstructured meshes [11], which
relies heavily on geometry to calculate both w∗∗ and F∗∗.

2.2.4.2 Flux Assembling at Faces

The assembling of the total flux at the cells’ faces is an important aspect that has to
be carefully considered. Although we perform the subsequent study focusing on the
rectangular mesh used in Section 2.2, we note that all formalisms developed here can be
easily adapted to other configurations such as the ones presented in the previous section.

After analyzing the structures shown in Figures 2.2a and 2.9a, we can infer that the
final expression will be a convex combination of one-and two-dimensional fluxes, as in
[9, 26, 85]. Each flux at an edge of the primary cell Ci,j can be obtained from the surface
average of the flux normal to the underlying space-time face, e.g.,

φx,i+ 1
2 ,j

=
1

∆y∆t

∫ y
j+ 1

2

y
j− 1

2

∫ ∆t

0
F(w(xi+ 1

2
,y, t)) · n̄i+ 1

2
dt dy, (2.84)

being n̄i+1/2 = (1,0) the unit normal vector of Si+1/2 = (yj−1/2,yj+1/2)× (0,∆t).
In the subsonic case, the above definite integral can be evaluated by considering the

contributions at the face coming from the one- and two-dimensional Riemann solvers
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initially applied at the cell’s edge and vertices, respectively. The averaged flux becomes

φx,i+ 1
2 ,j

= θs,i+ 1
2 ,j+

1
2

φhll2D
x,i+ 1

2 ,j+
1
2

+ θy,i+ 1
2 ,j

φhll
x,i+ 1

2 ,j
+ θn,i+ 1

2 ,j−
1
2

φhll2D
x,i+ 1

2 ,j−
1
2
, (2.85)

with
θs,i+ 1

2 ,j+
1
2

= ∆t
2 ∆y |ŝs,i+ 1

2 ,j+
1
2
|, θn,i+ 1

2 ,j−
1
2

= ∆t
2 ∆y |ŝn,i+ 1

2 ,j−
1
2
|,

and θy,i+ 1
2 ,j

= 1− θs,i+ 1
2 ,j+

1
2
− θn,i+ 1

2 ,j−
1
2
.

It is obvious that the weights θs,i+1/2,j+1/2 and θn,i+1/2,j−1/2 determine the amount of
two-dimensional contributions that the total flux at the cell’s face will possess, and
they are directly linked through the time step with the CFL number used in practice
(for details regarding the associated CFL condition, we refer the reader to [9, p. 1977]
where it is fully explained). We remark that a simpler alternative to (2.85) is fixing the
weights to the coefficients in Simpson’s rule, used to numerically integrate the average
of F(w(xi+1/2,y,∆t)) · n̄i+1/2 over the edge (yj−1/2,yj+1/2), yielding

φx,i+ 1
2 ,j

= 1
6 φhll2D

x,i+ 1
2 ,j+

1
2

+ 4
6 φhll

x,i+ 1
2 ,j

+ 1
6 φhll2D

x,i+ 1
2 ,j−

1
2
. (2.86)

Let us note that in equations (2.85) and (2.86), we have employed new variables
that need to be appropriately defined. First, the element having the superscript “hll”
is essentially the one-dimensional numerical flux described in equation (2.8), but with
a two-dimensional index instead, such that φhll

x,i+1/2,j = φhll
x (wn

i,j ,w
n
i+1,j). In a similar

manner, we specify

φhll2D
x,i+ 1

2 ,j+
1
2

= φhll2D
x (wn

i+1,j+1 ,w
n
i,j+1 ,w

n
i,j ,w

n
i+1,j), (2.87a)

φhll2D
x,i+ 1

2 ,j−
1
2

= φhll2D
x (wn

i+1,j ,w
n
i,j ,w

n
i,j−1 ,w

n
i+1,j−1), (2.87b)

where φhll2D
x,m,n is the local flux f∗∗ of the two-dimensional Riemann problem defined at the

vertex xm,n, with analogous considerations for the y direction. Next, the wave speeds
denoted by ŝα, for α∈ {n,s,e,w}, are determined from the intersection of the interaction
region with the x- and y-axes at time ∆t (notice the circles pictured in Figure 2.3b of
Section 2.1.2), specifically

ŝn = swn − snw
(
swn − sen
snw− sne

)
, ŝs = ses− sse

(
ses− sws
sse− ssw

)
,

ŝw = ssw− sws
(
snw− ssw
swn − sws

)
, ŝe = sne − sen

(
sse− sne
ses− sen

)
,

(2.88)

and in the limit sβα→ sα for α,β ∈ {n,s,e,w}, ŝα = sα.
Equations (2.85) and (2.86) are strictly valid only for a flow that is subsonic every-

where. However, if we reformulate our signal speeds defined in (2.21) as sn+
e , se+

n , sn−

w ,
sw+
n , ss−

w , sw−

s ss+
e , and se−

s , and utilize them to recover all one- and two-dimensional
states and fluxes associated with our multidimensional Riemann solver (2.23, 2.24, 2.38,
2.53, 2.60), we are able to account for supersonic situations and employ both (2.85) and
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(2.86) without any additional adjustments. Another way to deal with supersonic situa-
tions is to approximately define the fluxes φhll2D

x,m,n and φhll2D
y,m,n as the upwinded fluxes at

the space-time point (xm,n,∆t), as given in [10, p. 7483] and partially described in equa-
tion (2.44). Henceforth, we use the term Simpson assembling to denominate equation
(2.86) together with these upwinded 2D fluxes.

The most accurate approach to handle supersonic flows is to manually track the
position of the interaction region and deduce the actual elements that contribute to the
total flux at each of the cell’s faces. For instance, on examining the configuration shown
in Figure 2.6a, it is clear that for this example, f∗∗ does not have an effect in the total
flux assembled at the vertical edge, and choosing f∗w when assembling would certainly
be more accurate. For this, we choose to introduce a new expression

φx,i+ 1
2 ,j

= θ̃s,i+ 1
2 ,j+

1
2

φ̃
hll2D

x,i+ 1
2 ,j+

1
2

+ θ̃y,i+ 1
2 ,j

φhll
x,i+ 1

2 ,j
+ θ̃n,i+ 1

2 ,j−
1
2

φ̃
hll2D

x,i+ 1
2 ,j−

1
2
, (2.89)

where
θ̃s,i+ 1

2 ,j+
1
2

= ∆t
2 ∆y |s̃s,i+ 1

2 ,j+
1
2
|, θ̃n,i+ 1

2 ,j−
1
2

= ∆t
2 ∆y |s̃n,i+ 1

2 ,j−
1
2
|,

and θ̃y,i+ 1
2 ,j

= 1− θ̃s,i+ 1
2 ,j+

1
2
− θ̃n,i+ 1

2 ,j−
1
2
.

The x-directional flux φ̃
hll2D

x,m,n needs to be regarded as a convex combination of local fluxes
associated to the nine states, characterized by Lm,n = {∗∗, n∗, s∗, ∗e, ∗w, ne, nw, sw, se},
of the two-dimensional Riemann solver centered at xm,n, i.e.,

φ̃
hll2D

x,i+ 1
2 ,j+

1
2

= φ̃
hll2D

x (wn
i+1,j+1 ,w

n
i,j+1 ,w

n
i,j ,w

n
i+1,j) =

∑

(µν)∈L
i+ 1

2 ,j+ 1
2

βy,µν fµν , (2.90a)

φ̃
hll2D

x,i+ 1
2 ,j−

1
2

= φ̃
hll2D

x (wn
i+1,j ,w

n
i,j ,w

n
i,j−1 ,w

n
i+1,j−1) =

∑

(µν)∈L
i+ 1

2 ,j− 1
2

βy,µν fµν , (2.90b)

and βy,µν ≥ 0,
∑
βy,µν = 1, with similar equations and notation for the y-direction. Each

coefficient βy,µν corresponds to the fraction of the interaction surface associated to the
local state µν. In a subsonic configuration, notice that βy,∗∗ = 1 and all others are zero.

Equation (2.89) will now be referred to as manual assembling and in Annex B.2,
we provide the specific details for the implementation of (2.89, 2.90) with the help of
pseudocode. There, observe that the third algorithm corresponds to the approximate
(due to some simplifications) 2D analogue of φhll

x (2.2).

2.2.4.3 Predictor-Corrector Scheme of Second-Order Accuracy

The first-order scheme is now complete and the next step is to define an appropriate
second-order extension. This is achieved by means of a simple predictor-corrector ap-
proach similar to the one proposed by Balsara in [9, 10], which roughly consists of using
the two-dimensional Riemann solver for both steps involved in the algorithm. A conse-
quence of employing this solver in the corrector step is the introduction of more isotropy
into the simulation. Instead, “our use of the multidimensional Riemann solver in the
predictor step has the happy consequence of raising the maximal CFL number”, in the
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words of the author of [10], and we add the phrase “when needed”. For some problems,
e.g., the ones presented in Section 2.3.2, the multidimensional contributions are not
needed in the predictor step in order to have a high CFL number in the corresponding
simulations. However, for certain test cases, such as the double Mach reflection and
Sedov problems, these contributions are needed to be able to use the CFL 0.90.

Thus, in the predictor step, the vector w is spatially reconstructed from the center of
the primary cell to its corners or vertices following a MUSCL-type approach, i.e., using
piecewise linear interpolations with slope limiters such as the MC limiter [136], minmod
[118] or the positive preserving limiter [127]. The reconstruction provides the four states
that are necessary to solve the multidimensional Riemann solver (2.23, 2.24, 2.38, 2.53,
2.60) at each corner, yielding the x- and y-directional fluxes that will contribute to the
assembling at the cell’s faces. Now, to avoid the appearance of spurious solutions for
certain second-order simulations, we propose employing
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where
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with analogous expressions for the other main direction. We note that we have intro-
duced new variables “hll2D” which are defined in a way similar to (2.90) but with a
different subscript that denotes the location relative to the local vertices (we refer the
reader to Algorithm 4 in Annex B.2 for more details regarding their precise definition).
Moreover, the flux φ̃

hll

x,i+1/2,j at the center of the face is simply the average of the nearest
two x-directional HLL fluxes, one initially computed below the vertex xi+1/2,j+1/2 and
the other above xi+1/2,j−1/2, as partial inputs for our two-dimensional Riemann solver.
We then utilize the total assembled fluxes to estimate the vector of conservative variables
at the half time step tn + ζ∆t, with ζ = 1/2.

For the corrector step, we repeat the operations carried out in the predictor step
but having set ζ = 1. The slopes computed at time tn are now applied to spatially
reconstruct variables that are centered both in time and space, i.e., the output of the
predictor step. In the coming section, we will present several numerical tests that were
obtained with this simple yet second-order accurate predictor-corrector approach. First-
order approximations can be obtained using the same computer code, by performing
only one step with unreconstructed states and ζ = 1.

2.3 Numerical Results
The purpose of this section is to validate our scheme with several multidimensional test
problems on a uniform rectangular mesh. The numerical implementation of our solver
and Balsara’s [10] (hereafter referred to as BAL2012) has been done in the HERACLES
code [66] for astrophysical fluid flows. By having a common computational framework,
we can fairly compare the accuracy and robustness of both methods.

We note that employing Simpson assembling at the cells’ faces for our solver yields
almost the exact same results as BAL2012, for which this type of assembling is the default
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for second-order simulations, and thus, unless stated otherwise, we opt to display our
method’s solutions with the manual assembling (2.91). All tests were run with a CFL
number of 0.9 and making use of the predictor-corrector scheme mentioned in Section
2.2.4.3. As for the choice of slope limiters, we applied the MC limiter [136] for all except
the last (Section 2.3.4), where minmod [118] was utilized instead.

2.3.1 Accuracy Analysis

We wish to estimate the rate at which the L1 error for the proposed scheme decreases
as the numerical grid is refined. For this, we consider the initial density profile [81]

ρ0(x,y) = 1 + 0.2sin(π(x+ y)), (2.92)

Scheme with Manual Asmb. Scheme with Simpson Asmb.

Order Resolution L1 error L1 order L1 error L1 order

1st 25× 25 4.8975e-01 4.9536e-01

50× 50 4.1098e-01 0.25 4.2679e-01 0.21

100× 100 2.8650e-01 0.52 3.0515e-01 0.48

200× 200 1.7279e-01 0.73 1.8704e-01 0.71

400× 400 9.5487e-02 0.86 1.0429e-01 0.84

800× 800 5.0278e-02 0.93 5.5167e-02 0.92

1600× 1600 2.5808e-02 0.96 2.8383e-02 0.96

2nd MM [118] 25× 25 2.0198e-01 2.1682e-01

50× 50 6.5074e-02 1.63 6.7657e-02 1.68

100× 100 2.8358e-02 1.20 3.0418e-02 1.15

200× 200 7.8803e-03 1.85 8.4898e-03 1.84

400× 400 2.1739e-03 1.86 2.3589e-03 1.85

800× 800 5.9648e-04 1.87 6.4860e-04 1.86

1600× 1600 1.5876e-04 1.91 1.7275e-04 1.91

2nd PP [127] 25× 25 7.7416e-02 7.9507e-02

50× 50 2.5379e-02 1.61 2.3234e-02 1.77

100× 100 5.5017e-03 2.21 5.1137e-03 2.18

200× 200 1.1486e-03 2.26 1.0969e-03 2.22

400× 400 2.3008e-04 2.32 2.2597e-04 2.28

800× 800 4.5417e-05 2.34 4.5906e-05 2.30

1600× 1600 8.9790e-06 2.34 9.4001e-06 2.29

2nd MC [136] 25× 25 3.2846e-02 4.2989e-02

50× 50 4.4552e-03 2.88 5.8172e-03 2.89

100× 100 8.8114e-04 2.34 1.0172e-03 2.52

200× 200 2.0742e-04 2.09 2.1494e-04 2.24

400× 400 4.8755e-05 2.09 4.8707e-05 2.14

800× 800 1.1452e-05 2.09 1.1523e-05 2.08

1600× 1600 2.7050e-06 2.08 2.7568e-06 2.06

Table 2.1. L1 density errors and orders of accuracy for the wave advection test, using our
proposed scheme with different slope limiters.
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together with the velocities and pressure defined in Section 4.1 of [98], i.e., u0 = 1,
v0 = −0.5 and p0 = 1. The simulation is run to time t = 4, which corresponds to the
time it takes for the wave to be advected once around the periodic domain spanning
[0,2]× [0,2]. The final state is then compared with the analytical one.

In Table 2.1, the accuracy results for our scheme are summarized. For both assem-
bling methods being compared, the L1 density errors decrease as the numerical resolution
increases and we are able to see that the lowest values are obtained when the MC limiter
and manual assembling are present. In addition, we observe that second-order accuracy
is reached when any of the three selected limiters are used, as was previously mentioned
in Section 2.2.4.3. We mention that our method with Simpson assembling not only gives
roughly the same results as BAL2012 (e.g., differences after the seventh or eight deci-
mal place for the MC limiter results) but also takes the same amount of CPU time to
complete with HERACLES.

1D HLL Solvers Only

25× 25 50× 50 100× 100 200× 200 400× 400 800× 800 1600× 1600

L1 error 4.2162 e-02 6.5289e-03 1.3566e-03 3.5122e-04 8.7975e-05 2.1608e-05 5.2697e-06

L1 order 2.69 2.27 1.95 2.00 2.03 2.04

Table 2.2. Density errors measured in the L1 norm for the wave advection test using the MC
limiter and one-dimensional HLL Riemann solvers in both the predictor and corrector steps.

The advantage, in terms of accuracy, of taking into account the multidimensional
contributions for this problem is evident when we compare the rows corresponding to
the MC limiter in Table 2.1 with those of Table 2.2. The latter were obtained utilizing
only 1D HLL Riemann solvers in both steps of the predictor-corrector algorithm.

2.3.2 Multidimensional Riemann Problems
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Figure 2.10. Density variable ρ obtained using BAL2012 (left, ρ:0.53-1.72) and our scheme
(right, ρ:0.53-1.71) for the MultiD RP1; computations performed on a 400× 400 grid and 30
contour lines displayed from 0.54 to 1.70 with a step of 0.04.
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Firstly, we consider the two-dimensional problem described in [26, p. 183], with initial
data given in Table 2.3 (left). This Riemann problem (RP) initially consists of two
contact discontinuities J and two forward shock waves

−→
S , specifically

−→
S 21J32J34

−→
S 41

borrowing the notation used in [122]. In general, we expect that both slip lines encounter
the sonic circle of the constant state in the third quadrant of the xy-plane and bend to
end in spirals inside the subsonic area of the circle’s portion lying in this quadrant. In
addition, from the interaction of the shocks

−→
S 21 and

−→
S 41, we await the appearance of

a pair of three-shock configurations, such that part of the subsonic area is bounded by
two joining Mach shocks and two reflected shocks.

Multidimensional Riemann Problems 1 & 2

Quadrant ρ0(x,y) u0(x,y) v0(x,y) p0(x,y) ρ0(x,y) u0(x,y) v0(x,y) p0(x,y)

x > 0, y > 0 0.5313 0.0 0.0 0.4 1.0 0.75 −0.5 1.0

x < 0, y > 0 1.0 0.7276 0.0 1.0 2.0 0.75 0.5 1.0

x < 0, y < 0 0.8 0.0 0.0 1.0 1.0 −0.75 0.5 1.0

x > 0, y < 0 1.0 0.0 0.7276 1.0 3.0 −0.75 −0.5 1.0

Computational domain: [−1,1]× [−1,1]; Free-flow boundary conditions

Table 2.3. Initial data for the first MultiD RP described in [26] and the sixth of [86].

Multidimensional Riemann Problems 3 & 4

Quadrant ρ0(x,y) u0(x,y) v0(x,y) p0(x,y) ρ0(x,y) u0(x,y) v0(x,y) p0(x,y)

x > 0, y > 0 1.0 0.1 −0.3 1.0 1.5 0.0 0.0 1.5

x < 0, y > 0 0.5197 −0.6259 −0.3 0.4 0.5323 1.206 0.0 0.3

x < 0, y < 0 0.8 0.1 −0.3 0.4 0.1379 1.206 1.206 0.029

x > 0, y < 0 0.5313 0.1 0.4276 0.4 0.5323 0.0 1.206 0.3

Computational domain: [−1,1]× [−1,1]; Free-flow boundary conditions

Table 2.4. Initial data for the fifteenth MultiD RP described in [86] and the second of [10].

By means of the contour plots shown in Figures 2.10 and 2.11, we can analyze the
solutions of this MultiD Riemann problem, computed on uniform grids of 4002 and
10002 cells, for both methods being compared. All results follow the expected behavior
described in the above paragraph, with the additional property of being symmetric with
respect to the x = y line, as was also anticipated. There is no significant difference
between the plots obtained with the manual assembling and those of BAL2012 for this
particular test. Let us note that the low resolution of the contact discontinuities is
not surprising given that both methods are based on the two-wave model of the HLL
Riemann solver.

Next, we study the multidimensional Riemann problem
−−−−−−−−−→
J21J32J34J41 that involves

nothing more than slip line initial data, summarized on the right of Table 2.3. Partic-
ularly, we expect the solutions to have a vortex-type structure that turns in clockwise
direction, with contact discontinuities spiraling around the center, and this is the case
for the numerical results presented in Figure 2.12. We can observe that the ripples cre-
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Figure 2.11. The density computed with BAL2012 (left) and our scheme (right) for MultiD
RP1, using 1000× 1000 cells on 64 processors; contour lines chosen as in Fig. 2.10 (ρ:0.53-1.73).

ated in the first and third quadrants of the left plot have comparable resolution to those
found in [86, 87, 122]. The detail of the ripples and slip lines is greatly improved when
the number of zones is increased, e.g., to one million cells, as shown in the right image.
We wish to mention that once again there is no visible difference between the contours
obtained with our scheme and the ones acquired with BAL2012, and this is the reason
why we only display the former.
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Figure 2.12. Density ρ obtained using our scheme for MultiD RP2 on 400× 400 (left, ρ:0.23-
3.07) and 1000×1000 (right, ρ:0.16-3.06) grids; 29 contour lines displayed from 0.25 to 3.05 with
a step of 0.10.

The initial configuration of the third MultiD Riemann problem is given in Table 2.4
(left) and corresponds to

−→
R 21J32J34

←−
S 41. Both contact discontinuities bend after getting

in the subsonic area and are expected to end in a spiral. The rarefaction, instead, turns
backward in front of the shock wave, ending at the slip line J34. As there are no significant
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Figure 2.13. Contour plots of ρ using our scheme for MultiD RP3 on 400×400 (left, ρ:0.49-1.02)
and 1000× 1000 (right, ρ:0.42-1.01) grids; 29 contours from 0.43 to 0.99 with a step 0.02.

differences between the plots obtained with the two schemes being compared, Figure
2.13 only shows those corresponding to our approach. The results for the 4002 mesh are
satisfactory and comparable to [86], obviously improved when the grid is refined.
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Figure 2.14. Contour plots of the density ρ obtained employing BAL2012 (left) and our scheme
(right) for the MultiD RP4; computations done on a 400×400 grid and 32 contour lines displayed
from 0.16 to 1.71 with a step of 0.05 (ρ:0.14-1.76).

Our last multidimensional Riemann problem, initially consisting of four backward
shock waves

←−
S 21
←−
S 32
←−
S 34
←−
S 41, is the most severe of the tests presented in this subsection.

Its initial and boundary conditions are given in Table 2.4 (right). The expected behavior
of this problem is properly specified in Configuration 3 of [122]. Here, we briefly mention
that during its time evolution, the solution develops a double Mach reflection and a shock
propagates in the southwest direction at a 45-degree angle to the grid lines. This can
be appreciated in Figures 2.14 and 2.15, where we display the density variable ρ at
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Figure 2.15. Density estimated with BAL2012 (left) and our scheme (right) for MultiD RP4,
using 1000× 1000 cells on 64 proc.; contours chosen as in Fig. 2.14 (ρ:0.14-1.75).

time t= 1.1 by means of contour plots obtained with our scheme and BAL2012, on two
different meshes. Clearly, the region of strong and complex interactions associated with
the problem is located in the third quadrant, where we are able to observe a well-resolved
mushroom cap (especially in the finer grid where it is sharp), which is consistent with
expectations. Once more, all solutions are visually symmetric with respect to x= y.
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Figure 2.16. First-order density results for MultiD RP4 obtained with our scheme on 4000×
4000 (left, 512 processors) and 10000× 10000 (right, 1024 processors) cells; contours chosen as
in Fig. 2.14 (ρ:0.14-1.75).

We wish to note that if we do not properly assemble the flux at each cell’s faces for
this problem, second-order computations will suffer from the spurious solution known as
the carbuncle phenomenon. In fact, prevention of this instability is what inspired us to
derive and recommend equation (2.91) instead of (2.85) for the assembling (Algorithms
3 and 2 in Annex B.2, respectively). For first-order approximations, both mentioned
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expressions are equivalent; the results shown in Figure 2.16 were created using extremely
fine meshes of 16 and 100 million cells, proving the robustness of the first-order scheme.

2.3.3 Double Mach Reflection

The double Mach reflection problem proposed by Woodward and Colella [148] starts
off as a Mach 10 oblique shock in air encountering a reflecting wall. Using the set-up
originally given in [148], we run the simulation until the final time t= 0.2 for the range
of resolutions considered by Balsara [9, 10], i.e., grids consisting of 960×240, 1920×480
and 2400× 600 zones, spanning the domain [0,4]× [0,1].

Figure 2.17 shows twenty-five density contours obtained with the two methods being
compared, on the above-mentioned meshes. We are able to see that the jet formed by the
double Mach reflection is well captured, especially on the finest grid; in all plots, we can
observe the slipping contact line that leads around to the forward moving Mach stem,
which rolls-up creating a vortex head. For the single-step Eulerian MUSCL results found
in Figure 9e of [148], Woodward and Colella provided an explanation for the oscillations
and noise present near the slowly moving shock, which we now quote as it directly applies
to our case: “the shocks are extremely thin, but this thinness has permitted a numerical
instability to generate noise where the shocks move slowly and are nearly aligned with
the mesh”. However, despite this noise, all results are satisfactory.
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Figure 2.17. Results for the double Mach reflection problem obtained with BAL2012 (left)
and our scheme (right), using 25 density contours ranging from 1.77 to 22.44 with a constant
step; computations performed on 960× 240 (top), 1920× 480 (middle) and 2400× 600 (bottom)
meshes, 64 processors. All results have been plotted up to x= 3.
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2.3.4 Sedov Explosion

The multidimensional blast test presented by Sedov in 1946 [123] comprises an intense
explosion resulting from a punctual quantity of energy placed in the center of the nu-
merical domain. We then expect the solution to be a strong spherical shock propagating
outwards towards the boundaries, which are set to be periodic.
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Figure 2.18. Scatter plots for three different methods compared with the analytical time
dependent solution of the density (top) and pressure (bottom); computations performed on a
65× 65 grid.

For this problem, both the ambient gas density and the explosion energy are initially
set to unity. The latter is deposited in the central cell of a 65× 65 or 129× 129 grid
covering the computational domain [−0.5,0.5]× [−0.5,0.5] and the simulations are run
until a time t= 0.2, i.e., before the shock reaches the boundaries. The grid is purposely
chosen coarse to be able to easily detect the anisotropic behavior commonly observed
when performing this test with traditional Godunov codes. The results shown in Figures
2.18 and 2.19 for BAL2012 and our scheme were obtained using Simpson assembling, in
order to reiterate the fact that both methods yield almost identical numerical solutions
when this type of assembling is employed, and they are surely more isotropic than those
obtained with the conventional second order HLL scheme. In addition, Figure 2.19 aids
in understanding that the more we refine the grid, the more the corresponding solutions
will resemble the analytical ones.
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Figure 2.19. Density (top) and pressure (bottom) scatter plots compared with analytical
solutions represented as solid lines, using three methods; computations done on a 129×129 grid.

2.4 Conclusions
We have described a simple multidimensional Riemann solver for compressible homoge-
neous flows governed by the Euler system of equations. The associated numerical strat-
egy defines an approximate profile of 2D Riemann problems composed of plane waves
and makes use of Rankine-Hugoniot conditions as a guideline to adequately derive con-
stant state approximations on both sides of the discontinuities. The MultiD solver is a
two-dimensional extension of the well-known HLL scheme for the four-quadrant Riemann
problem that generalizes the 2D solver proposed by Balsara [9, 10]. For the considered
approximate profile consisting of nine constant states, jump conditions led to an overde-
termined system that we solved using a least squares approximation. Notwithstanding,
the derived numerical 2D fluxes look remarkably similar to the typical HLL flux and all
formulations reduce to those of the 1D solver when the initial Riemann data model a
one-dimensional flow.

Sample numerical results presented in this chapter show the effectiveness and robust-
ness of the proposed methodology when applied to subsonic and supersonic flows. For
the latter, particular attention must be paid when assembling the total flux at the cells’
faces with varying weights; therefore, we have provided a straightforward and robust
assembling approach, comparable to that which uses weights fixed to the coefficients in
Simpson’s rule for all time steps. In addition to the simplicity, we also propose a gener-
alization to unstructured grids with a formulation that is mostly algebraic rather than
geometrical and, following this line, we argue that there is a way to derive an HLL solver
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for Riemann problems with an arbitrary number of initial constant states connected at
a single point.

Jump conditions can be improved by designing complex profiles so that the Rankine-
Hugoniot relations define an invertible system with intermediate states and associated
fluxes as unknowns. Moreover, given that the consistency with the integral formulation
through these relations holds in three dimensions as well, we believe that a genuine
three-dimensional solver can readily be obtained in future work. Extensions of more
complex solvers such as the HLLE and HLLC are also feasible.





CHAPTER3
Divergence-Free MHD Simulations

Introduction
Given the ubiquity of electrically conducting fluids in presence of magnetic fields and
the simplicity of the model, MHD has widespread application in both astrophysics and
magnetic confinement fusion (see [31, 42]). In the field of plasma physics, the MHD
model is used to treat plasma as a single conducting fluid and describe different phe-
nomena using macroscopic quantities and a corresponding system of conservation laws.
Experimentally, these modelled phenomena are found to closely approximate aspects of
real plasma behavior, such as MHD equilibria, Alfvén waves, and field line freezing [42],
among others.

Therefore, it is not surprising that in the last few decades, the desire of performing
highly efficient MHD simulations has become increasingly important. According to P.
Janhunen [80], in order to have robust and accurate solutions, an optimal scheme for the
associated equations should meet the following four requirements: exactly conserve the
mass, momentum, and specific energy; preserve the positivity of the pressure and density
under all circumstances; have as little numerical dissipation as possible; and satisfy the
solenoidal property of the magnetic field as accurately as possible. The latter refers to
guaranteeing the constraint ∇ ·B = 0, while maintaining the conservation form of the
fundamental physical laws, and is directly linked to the other requirements. Indeed, spe-
cial care needs to be taken to satisfy and control this property on any numerical scheme,
even if the magnetic field is initially divergence-free. Failure to do so may result in non-
linear numerical instabilities and discretization errors increasing over time, manifesting
themselves as discrepancies in the simulations, e.g., incorrect jump conditions, wrong
propagation speed of discontinuities, appearance of unphysical effects such as plasma
transport orthogonal to the magnetic field and negative pressures and/or densities (see,
for instance, [12, 24, 45, 130]).

The conservation law formulation of the magnetohydrodynamic equations allows the
use of Godunov-type schemes for their solution, and as a consequence, several strategies
in multidimensional Godunov-type MHD codes and several algorithms that can be com-
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bined with shock-capturing Godunov-type base schemes have been developed with the
aim of maintaining the divergence-free property when performing numerical simulations
[130]. In this chapter, we focus on the divergence cleaning and constrained transport
(CT) methods. The latter, originally introduced by Evans and Hawley [52] (and consid-
ered to be a modification of the renowned Yee framework [150] for Maxwell’s equations
to the context of magnetohydrodynamic flows), involves the use of a staggered magnetic
field with components defined at cell interfaces, thus providing a natural expression for
the induction equation in conservative form. Hence, the combination of the CT frame-
work with the Godunov one is an attractive solution, see [9, 10, 12, 41, 52, 58, 61], and
this is the reason why it is the default technique used here in order to perform MHD
simulations. Tóth [130] showed that the staggered representation of the magnetic field
is not necessary in the formulation of constrained transport methods and various un-
staggered variants have been proposed in recent years (see, for instance, [56, 75, 119]).
However, our interest lies in conventional constrained transport techniques which involve
the estimation of the electric field at corners and zone edges in two and three dimensions,
respectively. Londrillo and Del Zanna [100] showed that these electric fields should be
obtained as solutions of two-dimensional Riemann problems in order to obtain a stable
numerical solution and fortunately, we have already derived a 2D HLL Riemann solver
in the previous chapter that can be easily applied in this situation. We note though
that several alternative methods have been developed in [12, 52, 100, 101, 130], among
others, but are not examined here except for that of Fromang et al. [58], which we adopt
for our numerical simulations and which we modify for our purposes.

In general, the staggered collocation of magnetic and electric field variables makes
the use of CT method in unstructured grids rather laborious and costly. This had led to
the development of alternative methods, such as divergence cleaning ones, and since one
of our future goals is to design a high order finite volume approximation for hyperbolic
conservation laws in curvilinear unstructured grids, we believe that other methods that
do not involve a staggered formulation are simpler to extend to unstructured meshes
(given an existing structured mesh code) as an initial step for testing and validating.
Among the different existing techniques, we choose to investigate the hyperbolic cleaning
method introduced by Dedner et al. [45]. We mention that the main advantage of using
this method is that it is easy to implement, since it is completely based on the cell-
centered discretizations favored in Godunov schemes, and thus allows highly accurate
solutions with reduced computational effort.

This chapter is organized as follows. In the next section, we review and stress the
importance of maintaining the divergence-free constraint at all times when performing
numerical simulations of ideal MHD flows. Some background theory on the main ap-
proaches that have been proposed to control this constraint and some comments on
standard notation are given briefly in the same section. The details of the hyperbolic
divergence cleaning method and the constrained transport methods are presented in
Sections 3.2 and 3.3, respectively. Several numerical tests are presented and discussed in
Section 3.4, where we compare both considered methods with selected problems that aim
to put in evidence their advantages and disadvantages; first numerical results obtained
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with the 2D Riemann problem are also presented there. Finally, concluding remarks are
given in the last section.

3.1 The Divergence-Free Condition
Let us consider the ideal MHD equations (1.33) and the closure equation (1.35). The
constraint∇·B = 0 is not necessary in the time evolution in the sense that if the magnetic
field is assumed at the initial time step to be divergence-free, then an exact solution to
the MHD equations will satisfy this condition for all times t > 0. For smooth solutions,
this is guaranteed by the evolution equation (1.33d), since taking the divergence of the
equivalent equation (1.36) and recalling that ∇ · (∇× ·)≡ 0, gives

∂t(∇ ·B) = 0. (3.1)

As a result, from an analytical point of view, we sometimes find in the literature
that equation (1.34) is regarded as an involution rather than a constraint, as in [13, 75].
Ideally, when performing numerical simulations, we would expect this particular equation
to remain zero at all times. This is the case in one dimension, where the constraint
becomes ∂xBx = 0 and the evolution equation for Bx in (1.33d), decoupled from the other
equations, is reduced to ∂tBx = 0; hence, an initial ∂xBx(·,0) = 0 leads to ∂xBx(·, t) = 0
for all times t > 0. However, the matter is more complicated for multidimensional MHD
flows, and as detailed by the work of Brackbill and Barnes [24], numerical discretization
errors have an impact on the time evolution in the following way:

∂t(∇ ·B) = 0 +O ((∆x)m,(∆t)n) , (3.2)

where ∆x and ∆t are respectively the space and time discretization steps and m,n≥ 1,
related to the order of accuracy. In the same paper, Brackbill and Barnes show the
importance of choosing an appropriate discretization of ∇ ·B = 0 in order to avoid the
emergence of unwanted and unphysical effects in the MHD system. Basically, if∇·B 6= 0,
the magnetic force F defined by

F =∇ · (B⊗B)− 1
2∇(B ·B) = J ×B, (3.3)

will not in general disappear in the direction of the magnetic field, i.e.,

F ·B = (∇ ·B)(B ·B) 6= 0. (3.4)

Therefore, the behavior of the system may become unphysical due to an increase of
spurious forcing, leading to instabilities. In general, the effects of not controlling the
numerical errors arising from the discrete form of the divergence-free constraint have
been well-documented in the literature, and interesting examples and conclusions can
be found in [12, 24, 45, 130], as well as in Section 3.4 in this chapter. For the moment,
we only mention that, from a numerical point of view, ∇·B = 0 represents a constraint
which cannot be safely ignored.

Besides the constrained transport and hyperbolic divergence cleaning techniques that
will be explained in the immediate sections, two other interesting methods that aim to
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maintain this constraint are the projection scheme and Powell’s eight-wave formulation.
The former [24] relies on the projection of the approximate magnetic field B∗ (variables
with a star superscript usually denote predicted values) computed with the base mul-
tidimensional MHD scheme into the subspace of divergence-free fields after each time
step, specifically

Bn+1 = B∗ +∇ψ, (3.5)

where ψ satisfies a Poisson equation

∆ψ =−∇ ·B∗. (3.6)

Tóth [130] demonstrated that an appropriate implementation of this scheme preserves
the conservative and other important properties of the base MHD scheme. However,
since the solution requires a global elliptic solver per time step on a problem that is
hyperbolic by nature, this might be “especially computationally inefficient in the case of
adaptively refined grids” [75].

On the other hand, the eight-wave formulation was originally suggested by Powell in
[112] and is based on an eight-wave structure for the Riemann problem, hence its name.
In fact, the eighth wave is associated with the propagation of ∇ ·B and is added at
the expense of introducing source terms proportional to this quantity at the PDE level
(refer to Chapter 1). Although the deviations from the conservation are small in many
situations, the scheme is nonetheless nonconservative and in problems containing strong
shocks, the source terms might become significant enough to produce incorrect jump
conditions and consequently, incorrect results away from the discontinuity (see [130] for
a deeper analysis of the method).

3.1.1 Some Comments on Notation and Discretization

In this subsection, we introduce the notation as a standard for the numerical approxi-
mations of both the divergence cleaning and constrained transport techniques. First,
we consider a uniform numerical grid in a three-dimensional (d = 3) domain with
x = (x,y,z). If we integrate the system of conservation laws given in equation (1.1a)
over a grid cell Ci,j,k = (xi−1/2,xi+1/2)× (yj−1/2,yj+1/2)× (zk−1/2,zk+1/2) and over a time
step (tn, tn+1), we obtain the following expression:

wn+1
i,j,k = wn

i,j,k−
∆t
∆x

(
φx,i+ 1

2 ,j,k
−φx,i− 1

2 ,j,k

)

− ∆t
∆y

(
φy,i,j+ 1

2 ,k
−φy,i,j− 1

2 ,k

)
− ∆t

∆z

(
φz,i,j,k+ 1

2
−φz,i,j,k− 1

2

)
,

(3.7)

where ∆x, ∆y and ∆z are the mesh sizes in each direction. We mention that in equation
(3.7), both wn

i,j,k and wn+1
i,j,k are once again cell-averaged values of w(x,y,z, tn) and

w(x,y,z, tn+1), respectively, and the fluxes are obtained by a time-surface average (as
was done in Sections 1.3 and 2.1.1 for the one- and two-dimensional case), namely

wn
i,j,k =

1
|Ci,j,k|

∫

Ci,j,k

w(x,y,z, tn) dx, (3.8)
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φx,i± 1
2 ,j,k

=
1

∆t

∫ tn+1

tn

∫ y
j+ 1

2

y
j− 1

2

∫ z
k+ 1

2

z
k− 1

2

f(w(xi± 1
2
,y,z, t)) dy dz dt, (3.9a)

φy,i,j± 1
2 ,k

=
1

∆t

∫ tn+1

tn

∫ x
i+ 1

2

x
i− 1

2

∫ z
k+ 1

2

z
k− 1

2

g(w(x,yi± 1
2
,z, t)) dx dz dt, (3.9b)

φz,i,j,k± 1
2

=
1

∆t

∫ tn+1

tn

∫ x
i+ 1

2

x
i− 1

2

∫ y
j+ 1

2

y
j− 1

2

h(w(x,y,zi± 1
2
, t)) dx dy dt. (3.9c)

Recall that in conventional Godunov-type schemes, the numerical fluxes in equation
(3.7) are evaluated by solving Riemann problems in the normal direction n̄ at each cell
interface, and for MHD we will consider an approximation

φx,i+ 1
2 ,j,k

= φx(wi,j,k,wi+1,j,k;B · n̄x,i+ 1
2 ,j,k

), (3.10a)

φy,i,j+ 1
2 ,k

= φy(wi,j,k,wi,j+1,k;B · n̄y,i,j+ 1
2 ,k

), (3.10b)

φz,i,j,k+ 1
2

= φz(wi,j,k,wi,j,k+1;B · n̄z,i,j,k+ 1
2
). (3.10c)

This scheme directly applied to the MHD system of equations does not naturally achieve
the divergence-free property.

3.2 Hyperbolic Divergence Cleaning

When all variables defined in the hyperbolic system (1.33) are defined in the same posi-
tion, a cleaning technique is needed to enforce the constraint ∇·B = 0. The hyperbolic
divergence cleaning method suggested by Dedner et al. [45] is based on coupling the
divergence constraint (1.34) to the evolution equation for the magnetic field (1.33d) by
introducing a new scalar function or generalized Lagrangian multiplier (GLM) ψ. Then,
both of the mentioned equations, are replaced by

∂tB +∇ · (B⊗u−u⊗B) +∇ψ = 0, (3.11)

D(ψ) +∇ ·B = 0, (3.12)

with D(·) being a linear differential operator. Henceforth, the resulting system (1.33a,
1.33b, 1.33c, 3.11, 3.12) is called the generalized Lagrange multiplier (GLM) formulation
of the MHD equations, or simply, GLM-MHD. Dedner et al. analyzed different possibil-
ities for D and found that a satisfactory approximation to the original system may be
obtained by choosing a mixed hyperbolic/parabolic ansatz, which will be explained in
detail in Section 3.2.1. Additionally, in order to obtain a good numerical approximation,
it is necessary to choose adequate initial and boundary conditions for the unphysical
variable ψ (see Section 3.2.3). We keep the notation used by Dedner et al. with few
minor changes.
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3.2.1 Linear Differential Operator D

From equations (3.11) and (3.12), one can deduce that for any choice of D and for
sufficiently smooth solutions, the divergence of the magnetic field and the scalar function
ψ satisfy the same equation, namely

∂tD(∇ ·B)−∆(∇ ·B) = 0, (3.13)

∂tD(ψ) −∆ψ = 0. (3.14)

Parabolic Correction

Defining the linear differential operator as

D(ψ) =
1
c2
p

ψ, (3.15)

with cp ∈ (0,∞), and using it in (3.14) yields the heat equation ∂tψ− c2
p∆ψ = 0. Hence,

this type of correction allows for the perturbations in the magnetic field to be dissipated
and smoothed out, if appropriate boundary conditions are defined. However, the explicit
approximation to the MHD equations using a parabolic correction presents certain diffi-
culties due to the restrictions imposed on the parameter cp by stability conditions. Since
we are only interested in explicit schemes, we study more suitable operators proposed
by Dedner et al. [45].

Hyperbolic Correction

One obtains a hyperbolic correction by choosing

D(ψ) =
1
c2
h

∂tψ, (3.16)

with ch ∈ (0,∞). Substituting (3.16) into (3.14) gives the wave equation ∂2
ttψ− c2

h∆ψ = 0.
Thus, local divergence errors are transported to the boundary with finite speed ch. Now,
expressing equation (3.12) in terms of the hyperbolic correction, yields

∂tψ+ c2
h(∇ ·B) = 0, (3.17)

which is an attractive result since the resulting GLM-MHD system is purely hyperbolic.

Mixed Correction

Formally, this approach is nothing but the combination of the parabolic and hyperbolic
corrections, with the linear differential operator defined by

D(ψ) =
1
c2
h

∂tψ+
1
c2
p

ψ, (3.18)

where cp and ch are the parabolic and hyperbolic constants previously defined. Direct
substitution of this correction into (3.14) leads to ∂2

ttψ+ c2
h/c

2
p ∂tψ = c2

h∆ψ, i.e., the
telegraph equation, which implies that the errors associated to the divergence of the
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magnetic field are both transported with speed ch and damped with time and distance.
Following the same approach used for the other corrections, from (3.14), one gets

∂tψ+ c2
h(∇ ·B) =−c

2
h

c2
p

ψ, (3.19)

where it is evident that the damping comes now from a source term.

3.2.2 Eigensystem of the GLM-MHD Equations

The complete GLM-MHD system with the mixed correction (3.18) can be written in the
following form:

∂t




ρ
ρu

B

ρe
ψ




+∇ ·




ρu

ρu⊗u +
(
p+ 1

2B ·B
)

I−B⊗B

B⊗u−u⊗B +ψI
(ρe+ p+ 1

2B ·B) u− (u ·B) B

c2
hB




=




0
0
0
0

− c2
h
c2

p
ψ



, (3.20)

where I is a 3×3 identity matrix. This system, with a source term only in the equation
for the unphysical variable ψ, can be written in compact form as

∂tŵ +∇ ·G(ŵ) = ŝ(ŵ), (3.21)

with ŵ = (ρ,ρu,B,ρe,ψ)T and the flux function G = (f̂ , ĝ, ĥ). Note that, in the limiting
case where cp →∞, the mixed correction reduces to the hyperbolic one and ŝ(ŵ) = 0.
Moreover, given the primitive variables v̂ = (ρ,ux,uy,uz,Bx,By,Bz,p,ψ)T , the homoge-
neous version of equation (3.21) may be rewritten in the quasilinear form

∂tv̂ + Af̂ (v̂)∂xv̂ + Aĝ(v̂)∂yv̂ + Aĥ(v̂)∂zv̂ = 0, (3.22)

where, for example,

Af̂ (v̂) =




ux ρ 0 0 0 0 0 0 0

0 ux 0 0 −Bx
ρ

By

ρ
Bz
ρ

1
ρ 0

0 0 ux 0 −By

ρ −Bx
ρ 0 0 0

0 0 0 ux −Bz
ρ 0 −Bx

ρ 0 0

0 0 0 0 0 0 0 0 1

0 By −Bx 0 −uy ux 0 0 0

0 Bz 0 −Bx −uz 0 ux 0 0

0 γp 0 0 (γ− 1)u ·B 0 0 ux (1− γ)Bx
0 0 0 0 c2

h 0 0 0 0




. (3.23)

In the matrix Af̂ defined above, it is possible to decouple the equations for Bx and ψ
from the remaining system and solve them independently. Thus, for a one-dimensional
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problem, one obtains the following decoupled system of equations:

∂t

(
Bx
ψ

)
+

(
0 1
c2
h 0

)
∂x

(
Bx
ψ

)
=

(
0
0

)
. (3.24)

Additionally, given v̂′ = (ρ,ux,uy,uz,By,Bz,p)T , one can define the matrix A′
f̂
(v̂′) by

removing the fifth and ninth rows and columns from Af̂ (v̂). Considering Bx as a constant
parameter, the following quasilinear system is obtained:

∂tv̂
′ + A′

f̂
(v̂′)∂xv̂′ = 0. (3.25)

Matrix A′
f̂

is diagonalizable and has seven eigenvalues corresponding to one entropy
wave traveling with speed λ5 = ux; two Alfvén waves traveling with speed λ3,7 = ux∓ca;
and four magneto-acoustic waves, two fast and two slow with speeds λ2,8 = ux∓ cf and
λ4,6 = ux∓ cs, respectively, where

ca =
|Bx|√
ρ
, c2

f,s =
1
2


γp+ B ·B

ρ
±
√(

γp+ B ·B
ρ

)2

− 4
γpB2

x

ρ2


 . (3.26)

From the decoupled system, the eigenvalues λ1,9 = ∓ch are obtained, which turn out
to be distinct from the eigenvalues of A′

f̂
for a sufficiently large ch. Consequently, the

matrix Af̂ has nine eigenvalues, such that

λ1 ≤ λ2 ≤ λ3 ≤ λ4 ≤ λ5 ≤ λ6 ≤ λ7 ≤ λ8 ≤ λ9.

One can draw analogous results for the matrices Aĝ and Aĥ; thus, system (3.20) is
hyperbolic (see Definition 1.2.1).

3.2.3 Numerical Approximation

In the previous paragraphs, the eigenvalues λ1,9 =∓ch were obtained from the decoupled
system, where the constant ch represents the propagation speed of local divergence errors.
Thus, ch is chosen to be the maximum signal speed compatible with the time step ∆t,
such that

ch = max
Ci,j,k

(|ux|+ cfx , |uy|+ cfy , |uz|+ cfz ), (3.27)

where cfx , cfy and cfz are the fast magneto-acoustic speeds in the three directions. The
time increment is restricted by the Courant-Friedrichs-Levy (CFL) condition ccfl ∈ (0,1)
in the following way:

∆t= ccfl
min(∆x,∆y,∆z)

ch
. (3.28)

By attempting to solve equation (3.21) using a Godunov-type approach, it is neces-
sary to find a numerical flux for the GLM-MHD system and one can start by deriving
it for the hyperbolic one, i.e., system (3.21) with no source terms. First, notice that for
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arbitrary left and right states (Bxl, ψl) and (Bxr, ψr), the Godunov flux of system (3.24)
can be computed exactly since

(
B̃x

ψ̃

)
=

(
1
2(Bxl +Bxr)− 1

2ch
(ψr −ψl)

1
2(ψl +ψr)− ch

2 (Bxr −Bxl)

)
,

and the numerical flux (ψ̃, c2
hB̃x)T is derived. For the remaining system, one can there-

fore use an approximate Riemann solver W for the one-dimensional MHD equations
with the normal component of the magnetic field defined by B̃x. Hence, the numerical
flux φx that we employ for our numerical simulations has the following form:

φx = (φhlld
x (ŵl,ŵr;B̃x),0)T + (0,0,0,0, ψ̃,0,0,0, c2

hB̃x)T , (3.29)

and analogous expressions can be found for φy and φz. Moreover, for the mixed GLM-
MHD system, which considers the source terms in the right-hand side of system (3.20),
an operator-splitting approach is used. Thus, in the source step, the initial value problem

∂tψ =−c
2
h

c2
p

ψ, (3.30)

is solved, for which the initial condition ψ∗ is the output of the previous step. Integrating
exactly for a time increment ∆t, yields

ψn+1 = ψ∗ exp(−∆t c2
h/c

2
p). (3.31)

Dedner et al. recommend fixing the value cr = c2
p/ch = 0.18. Mignone and Tzeferacos

[106] (see also [113]) argue that this quantity cr is not dimensionless (indeed, it has units
of length) and propose to introduce an additional parameter α= ∆h/cr such that

ψn+1 = ψ∗ exp(−αch ∆t/∆h), (3.32)

with ∆h = min(∆x,∆y,∆z). Their numerical experiments indicate that divergence
errors are minimized if α ∈ [0,1].

Boundary Conditions

For the magnetohydrodynamic variables considered in system (1.33), the initial and
boundary conditions are chosen according to the specific physical settings of the problem
under consideration, but for the variable ψ, one is free to prescribe them. Given its
nature, a good choice for the initial value of the unphysical variable is ψ0 = 0. Regarding
the particular choice of the boundary condition, Dedner et al. recommend assuming
that the behavior of ψ and ρ is identical at the boundary, making the implementation
quite simple and straightforward on an existing code.

3.3 Constrained Transport
The constrained transport (CT) method, introduced by Evans and Hawley [52] in 1988,
is a numerical scheme that applies a staggered mesh to evolve the induction equation
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while maintaining the divergence-free property of the magnetic field to machine round-
off error precision. The approach relies on rewriting Faraday’s law (1.36) using Stokes’
theorem to obtain

d

dt

∫

S
B · dS =−

∮

∂S
E · dl, (3.33)

where S is the surface of a cell bounded by the closed contour ∂S; thus, the divergence
constraint is conserved in the integral sense.

3.3.1 Staggered Mesh Discretization

The staggered mesh formulation simply consists in defining the magnetic field compo-
nents at cell interfaces, the electric fields at zone corners (in two dimensions) or edges
(in three dimensions), and all the hydrodynamic variables at the cell centers. The main
justification for using a strategy of this type is that it allows to define an inherently
divergence-free method.

y

x

Ci−1,j Ci+1,j

Ci,j−1

Ci,j+1

xi−1/2 xi+1/2

yj− 1
2

yj+ 1
2

Ez Ez

Ez Ez

Bx Bx

By

By

Figure 3.1. Two-dimensional staggering in the constrained transport approach.

Recalling equation (3.33), it is clear that a discrete version of Stokes’ theorem may
be used to evolve in time a magnetic field that has a staggered representation. On
this account, let us consider the primary cell Ci,j in two dimensions with the volume-
averaged hydrodynamic variables given in (2.15). Figure 3.1 shows the collocation of the
magnetic and electric fields for this case, with Bx and By defined on the interface centers
to which they are orthogonal. Therefore, we define the staggered magnetic field variables
Bn
x,i−1/2,j , B

n
x,i+1/2,j , B

n
y,i,j−1/2

and Bn
y,i,j+1/2

, as surface-averaged values over each cell’s
face, e.g.,

Bn
x,i− 1

2 ,j
=

1
∆y

∫ y
j+ 1

2

y
j− 1

2

Bx(xi− 1
2
,y, tn) dy. (3.34)

In Figure 3.1, we also observe that the z-component of the electric field is located at the
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corners; the induction equation can then be discretized along the cell edges, yielding

Bn+1
x,i− 1

2 ,j
=Bn

x,i− 1
2 ,j
− ∆t

∆y

(
E∗
z,i− 1

2 ,j+
1
2
−E∗

z,i− 1
2 ,j−

1
2

)
, (3.35a)

Bn+1
x,i+ 1

2 ,j
=Bn

x,i+ 1
2 ,j
− ∆t

∆y

(
E∗
z,i+ 1

2 ,j+
1
2
−E∗

z,i+ 1
2 ,j−

1
2

)
, (3.35b)

Bn+1
y,i,j− 1

2
=Bn

y,i,j− 1
2

+
∆t
∆x

(
E∗
z,i+ 1

2 ,j−
1
2
−E∗

z,i− 1
2 ,j−

1
2

)
, (3.35c)

Bn+1
y,i,j+ 1

2
=Bn

y,i,j+ 1
2

+
∆t
∆x

(
E∗
z,i+ 1

2 ,j+
1
2
−E∗

z,i− 1
2 ,j+

1
2

)
. (3.35d)

If the numerical divergence ∇ ·B for cell Ci,j at time tn is defined as

(∇ ·B)ni,j =
Bn
x,i+1/2,j −Bn

x,i−1/2,j

∆x
+
Bn
y,i,j+1/2

−Bn
y,i,j−1/2

∆y
, (3.36)

it is quite easy to show that an initial (∇·B)ni,j = 0 leads to (∇·B)n+1
i,j = 0, with machine

round-off error accuracy, i.e., the staggered approach maintains the constraint equation
to machine round-off (see [52, 130]).

3.3.2 Numerical Methodology

Now, we proceed to briefly describe a general finite volume time-update strategy with
the purpose of showing the main steps needed to evolve all state variables over one time
step, considering the underlying staggered mesh formulation.

At the beginning of the time step, the hydrodynamic variables are defined at the
center of the cells and the staggered magnetic field at the corresponding interface centers
(see Figure 3.1). Let us denote by wn

i,j,k = (ρni,j,k, ρ
n
i,j,ku

n
i,j,k, ρ

n
i,j,ke

n
i,j,k, Bn

i,j,k)
T the vector

of centered variables, where the magnetic field Bn
i,j,k may be approximately obtained in

the following way:

Bn
x,i,j,k =

Bn
x,i−1/2,j,k +Bn

x,i+1/2,j,k

2
, Bn

y,i,j,k =
Bn
y,i,j−1/2,k +Bn

y,i,j+1/2,k

2
,

and Bn
z,i,j,k =

Bn
z,i,j,k−1/2

+Bn
z,i,j,k+1/2

2
. (3.37)

One is then able to find the fluxes (3.10) by means of an adequate Riemann solver for
MHD (see [25, 27, 72, 107, 97]); for instance, employing the HLLD solver [107] so that

φx,i+ 1
2 ,j,k

= φhlld
x (wi,j,k,wi+1,j,k;Bx,i+1/2,j,k), (3.38a)

φy,i,j+ 1
2 ,k

= φhlld
y (wi,j,k,wi,j+1,k;By,i,j+1/2,k), (3.38b)

φz,i,j,k+ 1
2

= φhlld
z (wi,j,k,wi,j,k+1;Bz,i,j,k+1/2), (3.38c)

to make the update of the state vector wn
i,j,k using expression (3.7) and obtain wn+1

i,j,k .
What remains at this point is to update the constituents of B at the faces. The main

idea consists in constructing an approximation to the electric field (1.37) at the edges
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and use it to update the face centered magnetic fields, in a way similar to that shown in
example (3.35). Note that in three dimensions, equation (3.35b) becomes

Bn+1
x,i+ 1

2 ,j,k
=Bn

x,i+ 1
2 ,j,k
−∆t

∆y

(
E∗
z,i+ 1

2 ,j+
1
2 ,k
−E∗

z,i+ 1
2 ,j−

1
2 ,k

)
+

∆t
∆z

(
E∗
y,i+ 1

2 ,j,k+ 1
2
−E∗

y,i+ 1
2 ,j,k− 1

2

)
,

(3.39)
with similar expressions for the other magnetic field components. Thus, it is necessary
to find an appropriate estimation for all terms of the form E∗

x,m,n,l, E
∗
y,m,n,l, and E∗

z,m,n,l,
and since it is of our interest to find second-order approximations, we will henceforth
address the estimation in this context.

Accordingly, we refer the reader to [58] for details regarding the algorithm, based
on the MUSCL-Hancock scheme [129, 134], that is used in HERACLES [66] to perform
second-order numerical simulations of astrophysical magnetohydrodynamics. Here, we
review the key aspects that are needed to characterize the upwinded value of the z-
component of the electric field E at an edge or, more precisely, the time- and line-
averaged electromotive force (EMF)

E∗
z,i+ 1

2 ,j+
1
2 ,k

=
1

∆z (t∗− tn)

∫ t∗

tn

∫ z
k+ 1

2

z
k− 1

2

Ez(xi+ 1
2
,yj+ 1

2
,z, t) dz dt. (3.40)

The scheme [58] follows a predictor-corrector approach, and in the C-MUSCL predic-
tive step [128], this EMF is spatially interpolated on cell edges at time tn by employing
simple arithmetic means of the magnetic and velocity field variables, namely,

En
z,i+ 1

2 ,j+
1
2 ,k

= ūx,i+ 1
2 ,j+

1
2 ,k
B̄y,i+ 1

2 ,j+
1
2 ,k
− ūy,i+ 1

2 ,j+
1
2 ,k
B̄x,i+ 1

2 ,j+
1
2 ,k
, (3.41)

with

ūx,i+ 1
2 ,j+

1
2 ,k

= 1
4

(
unx,i,j,k +unx,i+1,j,k +unx,i,j+1,k +unx,i+1,j+1,k

)
, (3.42a)

ūy,i+ 1
2 ,j+

1
2 ,k

= 1
4

(
uny,i,j,k +uny,i+1,j,k +uny,i,j+1,k +uny,i+1,j+1,k

)
, (3.42b)

B̄x,i+ 1
2 ,j+

1
2 ,k

= 1
2

(
Bn
x,i+1/2,j,k +Bn

x,i+1/2,j+1,k

)
, (3.42c)

B̄y,i+ 1
2 ,j+

1
2 ,k

= 1
2

(
Bn
y,i,j+1/2,k +Bn

y,i+1,j+1/2,k

)
. (3.42d)

It is important to note that this reconstruction is second-order accurate and is only used
to update the staggered magnetic field from time tn to tn+1/2 (see equation (3.39)), which
in turn serves to compute the cell-centered magnetic field at time tn+1/2 with (3.37); more
details can be found in [128].

Then, for the induction corrector step, one is required to estimate the EMF that will
be used for the final update of the magnetic field components. Londrillo and Del Zanna
[100] showed that they should be obtained as solutions of the two-dimensional Riemann
problems (defined at the edges) in order to obtain a stable numerical solution and we
have derived a 2D HLL Riemann solver that can be easily applied in this situation, as
will be seen in the coming part. We note though that several alternative methods have
been developed in [12, 52, 58, 100, 101, 130], among others, but are not examined here.
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3.3.3 Application of the Simple 2D HLL RS for the Electric Field

Essentially, the state vector of predicted variables w
n+1/2

i,j,k is spatially reconstructed from
the center of each primary cell to its edges following the MUSCL approach, as was done
in Section 2.2.4.3, providing the four states that are needed to solve a two-dimensional
Riemann solver at each edge. Moreover, given that the magnetic field components of the
staggered magnetic field are already defined on the interface centers at time tn+1/2, we
reconstruct the two longitudinal variables to the edges using face-centered TVD slopes
as in equations (30) and (31) of [58], and subsequently, obtain the corresponding values
for the cell-centered magnetic field after spatially averaging.

We have now all the necessary ingredients to compute the desired EMFs by applying
the simple two-dimensional HLL Riemann solver from Chapter 2 (and thus complete the
numerical description given in the previous subsection). For this, we begin by rewriting
the ideal Ohm’s law (1.37) and the evolution equation for the magnetic field (1.33d) in
expanded forms, to get

E =



Ex
Ey
Ez


=



uzBy −uyBz
uxBz −uzBx
uyBx−uxBy


 (3.43)

and the subsystem

∂t



Bx
By
Bz


+ ∂x




0
uxBy −uyBx
uxBz −uzBx


+ ∂y



uyBx−uxBy

0
uyBz −uzBy


+ ∂z



uzBx−uxBz
uzBy −uyBz

0


= 0, (3.44)

respectively, where (Bx,By,Bz)T = (w[6],w[7],w[8])T . As realized by Balsara and Spicer
[12], there exists a dualism between the fluxes of the conservative formulation (3.44) and
the components of the electric field (3.43), specifically

Ex =−g[8] = h[7], Ey = f [8] =−h[6], Ez =−f [7] = g[6], (3.45)

from which it is relative easy to determine the following averages (see [10]):

Ex = 1
2

(
h[7]− g[8]

)
, Ey = 1

2

(
f [8]−h[6]

)
, Ez = 1

2

(
g[6]− f [7]

)
. (3.46)

Once more, we turn our attention to the z-component of the electric field, noting that
equivalent formulations can also be found for the other components. Since our interest
lies in properly characterizing the upwinded value of Ez at an edge (x0,∆t), we define

Ez =





X̄( fne , gne ) if sn < 0 and se < 0,
X̄( fnw , gnw) if sn < 0 and sw > 0,
X̄( f sw , gsw ) if ss > 0 and sw > 0,
X̄( f se , gse ) if ss > 0 and se < 0,
X̄( fn∗ , gn∗ ) if sn < 0 and sw < 0< se,

X̄( f s∗ , gs∗ ) if ss > 0 and sw < 0< se,

X̄( f∗e , g∗e ) if ss < 0< sn and se < 0,
X̄( f∗w , g∗w ) if ss < 0< sn and sw > 0,
X̄( f∗∗ , g∗∗ ) if ss < 0< sn and sw < 0< se,

(3.47)
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where
X̄(fµν ,gµν) = 1

2

(
g[6]
µν − f [7]

µν

)
, (3.48)

with g[6]
∗∗ and f [7]

∗∗ defined in (2.60) and the other fluxes in (2.24,2.38), for the ideal MHD
equations. Given that only one value is calculated per cell edge at a time step, the
face-centered magnetic field satisfies the divergence constraint exactly according to the
considered numerical divergence (3.36).

3.4 Numerical Results
The numerical implementation of the methods presented in this chapter has been done
in the same software [66] so that we are able to compare the accuracy and robustness
of the hyperbolic divergence cleaning and constrained transport techniques in a fair
manner. In this section, we present a series of selected test problems, some of which
require the divergence of the cell-centered magnetic field to be computed numerically.
For this reason, we define

(∇ ·B)ni,j,k =
Bn
x,i+1,j,k−Bn

x,i−1,j,k

2∆x
+
Bn
y,i,j+1,k−Bn

y,i,j−1,k

2∆y
+
Bn
z,i,j,k+1−Bn

z,i,j,k−1

2∆z
,

(3.49)
i.e., the numerical divergence for cell Ci,j,k at time tn.

For second order approximations, we extend the hyperbolic cleaning scheme by using
the MUSCL-Hancock Method (MHM), see [129, 134], whereas in the constrained trans-
port case, the approach of Fromang et al. [58] (that is based on the MHM method) is
employed. As for the choice of slope limiters, we use two different ones: the minmod
limiter [118] when comparing both methods since it is known to ensure the positivity
of the solution in multiple space dimensions; and the MC limiter [136], when employing
our constrained transport variant (that relies on the 2D HLL Riemann problem to es-
timate the electric fields) to be consistent with the hydrodynamic tests. For the latter,
all results were obtained with a CFL of 0.90.

3.4.1 Advection in Bx

This problem, summarized in Table 3.1, has a non-zero initial divergence of the magnetic
field. Thus, the purpose of performing tests for this unphysical problem is to determine
whether the divergence cleaning technique is robust enough or not and we show results
obtained using the first order hyperbolic and mixed GLM approaches.

Advection in Bx

ρ0(x,y) ux0(x,y) uy0(x,y) uz0(x,y) Bx0(x,y) By0(x,y) Bz0(x,y) p0(x,y)

1 1 1 0 r(x2 + y2)/
√

4π 0 1/
√

4π 6.0

Computational domain: [−0.5,1.5]× [−0.5,1.5]; Periodic boundary conditions

Peak: r(s) =

{
4096s4− 128s2 + 1 if s ∈ [0,0.125],

0 otherwise

Table 3.1. Initial data for the peak in Bx problem described in [45].
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Figure 3.2. Isolines of Bx obtained with the HLLD scheme. The computations are performed
with 256× 256 cells for hyperbolic and mixed GLM approaches (from top to bottom).

In the contour plots shown in Figure 3.2, we can perceive that during the time
evolution, the initial peak in Bx decreases in height for both the hyperbolic and mixed
cleaning, but is well advected with the flow velocity nonetheless. The mixed GLM
solutions do not show the complex wave interactions seen in the hyperbolic case, because
of the additional damping. Additionally, this problem also allows to find the optimal
value for the ratio c2

p/ch = 0.18 [45] (see Figure 3.3).
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Figure 3.3. Time averages of the total divergence obtained with the HLLD scheme for problem
3.4.1 using different values of cr = c2

p/ch. The optimal value is about 0.18, independent of the
grid resolution.
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3.4.2 Orszag-Tang

The Orszag-Tang vortex is a standard and well-known two-dimensional test for MHD
codes. It describes a periodic fluid configuration, with initial conditions in Table 3.2,
that leads to a system of supersonic MHD turbulence. As a result, this problem allows
to test a method’s ability to handle such turbulence and MHD shocks.

Orszag-Tang

ρ0(x,y) ux0(x,y) uy0(x,y) uz0(x,y) Bx0(x,y) By0(x,y) Bz0(x,y) p0(x,y)

γ2 −sin(2πy) sin(2πx) 0 −sin(2πy) sin(4πx) 0 γ

Computational domain: [0,1]× [0,1]; Periodic boundary conditions

Table 3.2. Initial data for the Orszag-Tang vortex described in [106].

First, comparing the hyperbolic divergence cleaning with the constrained transport
approach (without utilizing the 2D HLL Riemann solver), we show density distributions
at times t= 0.5 and t= 1.0 in Figure 3.4, where we can visualize the formation of small
scale vortices and turbulence.
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Figure 3.4. 2D density plots, first order in both space and time, for the Orszag-Tang system
using 256× 256 points at times t= 0.5 (top) and t= 1.0 (bottom).

In Figure 3.5, the evolution of the L1 norm and maximum value of the divergence is
plotted for different cell-centered techniques. It is evident that the measured L1 errors
for the hyperbolic and mixed approaches seem to converge to zero as time increases,
while those obtained without correction tend to increase with time. We note that a
second order simulation with no correction is not possible to obtain since the blow-up
of divergence errors causes the crash of the simulation. Finally, in Figure 3.6 (left), we
show horizontal cuts at y = 0.3125 of the pressure distribution, and find no perceivable
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difference between the hyperbolic and mixed GLM techniques. Moreover, the same
figure allows to conclude that the constrained transport method solves this problem
more accurately than the divergence cleaning techniques presented in this chapter.
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Figure 3.5. L1(∇ ·B) (left) and max(∇ ·B) (right) obtained with the HLLD scheme for the
Orszag-Tang vortex; computations performed using a cell-centered approach on 256× 256 cells.
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Figure 3.6. One-dimensional pressure distribution along y= 0.3125 for the Orszag-Tang system
at time t = 0.5 employing several methods for comparison (left) and the CT method described
in Section 3.3 (right); the solid line gives a reference solution obtained only with Roe Riemann
solvers (see [58]) on a fine grid of 1024× 1024 cells.

Now, we test the proposed constrained transport approach of Section 3.3.3. Density
(respectively, pressure) plots for different mesh sizes at times t = 0.5 and t = 1.0 are
shown in Figure 3.7 (respectively, Figure 3.8), where we can visualize the formation of
small-scale vortices, as well as turbulence, and the development of a current sheet in the
center of the domain (most evident in the very fine grids of 10242 and 20482 cells). We
wish to add that these variables ρ and p remained positive for the entire simulation. All
results follow the expected behavior and are symmetric under a rotation of π radians;
the good agreement between our results and the ones obtained in previous investigations,
such as in [41, 58, 101, 106, 107, 130], is satisfactory. Moreover, in Figure 3.6(right),
we display horizontal cuts of the gas pressure at y = 0.3125 and note that no spurious
oscillations are visible.
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Figure 3.7. Grayscale density plots for the Orszag-Tang system using the CT approach of
Section 3.3 at t= 0.5 (top) and t= 1.0 (bottom); density ranges: 1.05-6.22, 1.06-6.23, 1.06-6.23,
1.06-6.23 (top, left to right) and 0.60-4.55, 0.51-4.60, 0.47-5.20, 0.50-5.25 (bottom, left to right).
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Figure 3.8. Grayscale 2D plots of the pressure p for Orszag-Tang at times t = 0.5 (top) and
t= 1.0 (bottom), obtained with the constrained transport scheme (Section 3.3); pressure ranges:
0.28-6.39, 0.29-6.40, 0.29-6.41, 0.29-6.77 (top, left to right) and 0.12-5.61, 0.10-7.53, 0.09-9.47,
0.09-13.34 (bottom, left to right).



3.4 Numerical Results 93

3.4.3 Blast Wave in Three Dimensions

The evolution of a 3D blast wave in a low plasma beta medium helps to demonstrate the
method’s robustness and the code’s ability to handle strong shocks and rarefactions in
multidimensions. This test was originally introduced in the two-dimensional context by
[12] and later extended to three dimensions (see [9, 10, 61, 124], among others), and it
is the most severe of the problems presented in this chapter. It consists of the explosion
of an overpressurized region in the center of the domain over an exterior low β ambient
medium. We then expect the solution to be a strong shock wave propagating outwards
towards the boundaries, which are set to be periodic, and a rarefaction propagating
inwards, evacuating the overpressurized region. Let us note that the beta of a plasma is
simply the ratio of the pressure to the magnetic one, i.e., β = p/pm.

Here, we consider the settings described in [9], where the 3D computational domain is
[−0.5,0.5]× [−0.5,0.5]× [−0.5,0.5], with a resolution of 1293. The problem is initialized
with a unit density and a uniform magnetic field B0 = (40/

√
12π, 40/

√
12π, 40/

√
12π)

everywhere in the domain. The gas pressure is set to 1000 within a central sphere of
radius 0.1 and is fixed to 0.1 outside of this sphere such that β ≈ 0.00157. The test is
run until a time t = 0.013, with the method proposed in Section 3.3.3, the positivity
preserving limiter [127] and γ = 1.4. The contour plots shown in Figure 3.9 correspond
to the density, energy density, magnitude of the magnetic field, magnitude of the velocity
vector, gas pressure and total pressure in the z = 0 plane at this time, and we notice
that the contours are visually symmetric with respect to x= y.

One of the main difficulties encountered when numerically simulating this low beta
problem lies in maintaining the positivity of the gas pressure and density (specially the
former), and this is the reason why in the literature, one finds variants that tend to
increase the value of β, e.g., by decreasing the magnitude of the magnetic field [124] or
increasing the value of the ambient gas pressure [61], to make this test less stringent.
Given that p is determined by subtracting both the magnetic and kinetic energies from
the total energy density (and multiplying by the term γ − 1), a numerical error in the
estimation of the magnetic field can be significant enough to produce a negative pressure
for low beta plasmas. Thus, in our code, we make use of the energy density correction
described in [12, p. 277], which put in our notation becomes

(ρe)n+1
i,j,k = (ρe)n+1

i,j,k − 1
2(|Bhlld,n+1

i,j,k |2− |Bn+1
i,j,k |2) (3.50)

where

Bn+1
i,j,k = 1

2

(
Bn+1
x,i−1/2,j,k +Bn+1

x,i+1/2,j,k, B
n+1
y,i,j−1/2,k +Bn+1

y,i,j+1/2,k, B
n+1
z,i,j,k−1/2

+Bn+1
z,i,j,k+1/2

)T
,

to preserve the pressure positivity of this blast wave problem, as can be appreciated in
Figures 3.9 and 3.10 for two different mesh sizes, with p ranging from 0.10 to 61.22 and
0.10 to 65.35, respectively. The value B

hlld,n+1
i,j,k in the previous equation corresponds to

the magnetic field obtained as output of the one-dimensional (HLLD) Riemann solver.
We add that the price to pay for using this correction is a small loss of the conservation
of total energy density (see Table 3.3).
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Figure 3.9. Contour plots of the density (ρ : 0.06− 1.60), energy density (ρe : 61.84− 178.81),
magnitude of the magnetic field (|B| : 2.32 − 16.53), magnitude of the velocity vector (|u| :
0.00− 8.93), gas pressure (p : 0.10− 61.22) and total pressure (pt = p+ pm : 45.44− 138.51) in
the midplane z = 0 using the constrained transport scheme of Section 3.3 on a 129× 129× 129
grid; 20 contour lines are displayed with a constant step.
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Figure 3.10. Density (ρ : 0.04− 1.73), energy density (ρe : 63.61− 187.34), magnitude of B

(|B| : 1.95−16.72), magnitude of the velocity field (|u| : 0.00−9.19), gas pressure (p : 0.10−65.35)
and total pressure (pt : 43.19−141.69) in the plane z= 0 obtained with the CT approach of Section
3.3 on a 2573 grid; 20 contour lines are displayed with a constant step.
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Loss of the Total Energy Conservation

0.0000 0.0013 0.0026 0.0039 0.0053 0.0065 0.0078 0.0091 0.0105 0.0118 0.0130

74.4446 74.4297 74.4193 74.4147 74.4129 74.4146 74.4180 74.4221 74.4272 74.4318 74.4363

Table 3.3. Total energy density for the three-dimensional blast problem using 1292 cells (bottom
row) at different times t (top row).

3.4.4 Magnetized Rotor Problem

Another test that is well-known in magnetohydrodynamics is the rotor problem, orig-
inally described by Balsara and Spicer (BS) in [12]. However, Gábor Tóth made an
accurate observation in [130] and brought up the difference found in the plots provided
by BS and their proposed setup. For this reason, and because we wish to make proper
comparisons, we choose to use Tóth’s “second rotor problem” (thoroughly detailed in his
paper) as reference. Here, we only mention that this test consists of a “dense, rapidly
spinning cylinder, in the center of an initially stationary, light ambient fluid” [9].

Figure 3.11. The density (ρ : 0.55− 10.77), pressure (p : 0.01− 0.78), magnitude of B (|B| :
0.11−1.18) and magnitude of the velocity vector (|u| : 0.00−0.58) computed using the proposed
CT scheme with 400× 400 cells; 30 contour lines are displayed with a constant step.
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The results obtained using a 400× 400 grid have been successfully reproduced (see
Figure 3.11) with the constrained transport method of Section 3.3.3 and are comparable
to those obtained in [130, Fig. 19] (we mention that the comparison is not difficult as
we have displayed the same number of contours for the final time t= 0.249 as in Tóth’s
paper). In addition, we also ran this problem on grids of 1000×1000 and 4000×4000 cells
and found no outstanding difference between the two; we show the results for the latter
in Figure 3.11 and note that the pressure remained positive throughout the computation
without the need of employing the fix mentioned in Section 3.4.3.

Figure 3.12. Contour plots of the density (ρ : 0.51−12.11), pressure (p : 0.01−0.78), magnitude
of the magnetic field (|B| : 0.06− 1.19) and magnitude of the velocity vector (|u| : 0.00− 0.61)
computed using the proposed CT scheme with 40002 cells; 30 contour lines are displayed with a
constant step.

3.4.5 Kelvin-Helmholtz Instability

As a final test, we study the nonlinear evolution of the two-dimensional MHD Kelvin-
Helmholtz instability [106] resulting from velocity shear. The setup for this problem is
summarized in Table 3.4, where y0 is the steepness of the shear, M the Mach number, ca
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the Alfvén speed, and upy(x,y) the single-mode perturbation introduced into the system
at the initial time. Our interest in this test lies in demonstrating the scheme’s ability to
evolve the perturbation into nonlinear turbulence, while maintaining a divergence-free
magnetic field.

Kelvin-Helmholtz Instability

ρ0(x,y) ux0(x,y) uy0(x,y) uz0(x,y) Bx0(x,y) By0(x,y) Bz0(x,y) p0(x,y)

1 M
2 tanh

(
y

y0

)
0 0 ca cos(θ)

√
ρ 0 ca sin(θ)

√
ρ 1

γ

y0 = 1/20, M = 1, θ = π/3, ca = 0.1

Computational domain: [0,1]× [−1,1]; Reflecting boundaries (top & bottom), periodic (left & right)

Single mode perturbation: up
y(x,y) = 0.01 sin(2πx)exp(−y2/σ2), with σ = 0.1

Table 3.4. Initial data for the Kelvin-Helmholtz instability described in [106].

The left plot in Figure 3.13 shows the L1 norm of the divergence ∇ ·B at different
times for the methods that use a cell-centered collocation. For the case without cor-
rection, a blow-up of divergence errors occurs, causing the simulation to crash. This
problem is then addressed by adding a divergence cleaning technique. Additionally, on
the right plot, we present the time evolution of the L1 norm of the total energy density
ρe, a conserved quantity in the MHD equations. However, for the constrained transport
method, there is a slight loss of the conservation at the level of discretization error.
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Mixed GLM

Figure 3.13. L1(∇ ·B) (left) and L1(ρe) (right) obtained with the HLLD scheme for the
Kelvin-Helmholtz instability. The computations are performed using 256× 256 points.

Now, the simulation is run using the constrained transport approach of Section 3.3.3
and the MC limiter [136] until the final time t = 20.0 and on computational grids con-
sisting of 64× 128, 128× 256 and 256× 512 cells, spanning the domain [0,1]× [−1,1].
Several evolution plots for the ratio of the poloidal field strength and the toroidal com-
ponent, i.e., (B2

x +B2
y)1/2/Bz, are shown in Figure 3.15. There, we are able to observe

that the instability has been realistically captured (see [57, 105]), especially on the finest
grid: the typical vortex associated with this instability develops and the magnetic field,
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frozen into the fluid, grows; then, as noted in [106], the field amplification is prevented
by tearing mode instabilities (t & 8.0) and strong fluid motions are generated by tran-
sient reconnection events, followed by a saturation stage. Thus, the three phases in the
instability’s evolution [105] can be seen clearly in our results.

3.5 Conclusions
In this chapter, we have investigated and compared two different methods that aim to
maintain the divergence-free property of the magnetic field, a constraint that cannot be
ignored without having consequences.

The method proposed by Dedner et al. [45] prescribes a hyperbolic equation that al-
lows for the divergence errors to be propagated to the boundary of the domain. The same
authors recommend using a small variation of this approach, the mixed GLM ansatz,
which offers both propagation and damping of the errors. The advantage of the diver-
gence cleaning technique is that it is easy to implement as it is based on the cell-centered
formulation favored in the Godunov approach. However, one of its disadvantages is that
it depends on tunable parameters.

On the other hand, the constrained transport (CT) approach, originally introduced
by Evans and Hawley [52], relies on a staggered formulation of the magnetic and electric
fields. One clear advantage of this method is its inherently divergence-free magnetic field.
Moreover, it does not have tunable parameters, as in the hyperbolic divergence cleaning
technique. However, this method is harder to implement and it sometimes presents loss
of the conservation of the total energy density.

Through the different numerical test cases, we have shown that the implementation
of the hyperbolic divergence cleaning approach in the HERACLES code was successful,
as well as that of the proposed constrained transport approach that uses the 2D HLL
Riemann solver to estimate the electric field. We were able to reproduce quantitatively
results obtained by other authors and found that both methods are robust and efficient.
Although we find that the hyperbolic divergence cleaning generates more diffusive results
than the constrained transport, the simplicity of the method makes it an attractive
technique for our future work in the design of a high order finite volume approximation
for hyperbolic conservation laws in curvilinear unstructured grids.
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(a) t= 5
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(b) t= 8
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(c) t= 12
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(d) t= 20

Figure 3.14. Evolution of the Kelvin-Helmholtz instability obtained with the HLLD scheme for
the mixed GLM, constrained-transport, second order mixed GLM, and second order constrained-
transport (from left to right). The results for the hyperbolic GLM (not shown) are almost
identical to those obtained with the mixed GLM technique. The plots show the ratio of the
poloidal field strength and the toroidal component, i.e., (B2

x +B2

y)1/2/Bz. The computations are
done on a mesh of 256×512 points and show that results obtained with the hyperbolic divergence
technique are the most diffusive.
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(a) 64× 128 cells
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(b) 128× 256 cells
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Figure 3.15. Evolution of the Kelvin-Helmholtz instability in a 2D computational domain
with the constrained transport approach described in Section 3.3. The plots show the ratio
(B2

x +B2

y)1/2/Bz at times t= 5.0, 8.0, 12.0, 20.0 (top to bottom) on 8 processors.





CHAPTER4
A Relaxation Scheme for Inviscid Flows Under

Gravitational Influence

Introduction
Gravitational flows are widely found in the field of astrophysics and their study is a
matter of great interest to the scientific community. In stellar physics, numerous of these
flows reach steady or quasi-steady states characterized by a balance between gravitational
forces and distinct forces, such as pressure gradients. In some other areas, e.g., physical
cosmology, the former forces are largely dominant over the latter ones. Therefore, in
view of numerical simulations, the proper treatment of gravitational effects related to a
vast range of problems presents a challenge.

We are particularly interested in astrophysical flows modeled by the Euler equations
(1.20) with gravity source terms derived from a potential Φ, the evolution of which
is described by a Poisson equation. Thus, the associated solutions are governed by
the Euler-Poisson model, given by the following system of nonlinear partial differential
equations: 




∂t (ρ) + ∇ · (ρu) = 0,
∂t (ρu) + ∇ · (ρu⊗u) +∇p = −ρ∇Φ,
∂t (ρe) + ∇ · ((ρe+ p)u) = −ρu · ∇Φ,
∆Φ = 4πGρ,

(4.1)

where ρ, u and e are the density, d-dimensional velocity and specific total energy already
introduced in Section 1.2.1. The universal gravitational constant G is approximately
equal to 6.67× 10−11m3kg−1s−2 and the gravitational potential Φ is always a smooth
function since it is the solution of the Laplace equation. The thermodynamic pressure p
is governed by a suitable equation of state of the form (1.21), and as usual (see [64, 146]),
it is assumed to satisfy

c2 = ∂ρp(ρ,ǫ) +
p(ρ,ǫ)
ρ2

∂ǫp(ρ,ǫ)> 0, (4.2)

with c denoting the speed of sound.
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Due to its importance, several numerical strategies can be adopted to solve system
(4.1) and for simplicity of notation, we first write it in compact form as

{
∂tw +∇ ·F(w) + B(w)∇Φ = 0,

∆Φ = 4πGρ,
(4.3)

with

w =



ρ
ρu

ρe


 , F(w) =




ρu

ρu⊗u + p I
(ρe+ p)u


 , B(w) = ρ




0T

I
uT


 , (4.4)

where 0 = (0, . . . ,0)T is the null vector in R
d. Here, B : V → R

ϑ × R
d represents the

gravitational contribution when multiplied by the gradient of the gravitational potential
(∇Φ), with ϑ= 2 +d. Moreover, we define the convex set of admissible state vectors by

V =

{
w ∈ R

ϑ; ρ > 0, u ∈ R
d, ǫ= e− |u|

2

2
> 0

}
. (4.5)

System (4.3) is completed with appropriate initial and boundary conditions. In the
field of astrophysics, it is common to find isolated boundary conditions for the potential
Φ, i.e., the potential gets approximated by a multipolar development of the mass distri-
bution at the boundary (see [79]). For the initial data, we define both w(x,0) = w0(x)
and Φ(x,0) = Φ0(x), chosen according to the specific physical settings of the problem
being considered.

The Euler-Poisson system of equations is certainly a commonly used plasma physics
model and an abundant literature is devoted to its application in this context (see, for
instance, [39, 40, 46, 47, 48, 55, 96, 110]). In fact, the model is used to describe ions
and electrons flows which are usually highly dynamic. A particular issue resides in the
quasi-neutral limit where the Poisson equation becomes singular and the derivation of
efficient numerical schemes becomes a complex task: the space and time scales of the
solution tend toward zero, leading to severe consistency and stability criteria. In order
to overcome this difficulty, Degond et al. [39, 40, 47, 48] (see also [46]) proposed a
reformulation of the Poisson equation which is not singular in this limit. The resulting
numerical scheme resolves successfully all the plasma regimes (particularly attractive
when different ones are present in a single domain). However, simulations of plasma
flows are not the purpose of the work presented in this chapter and we will restrict
our attention to gravitational flows of astrophysical fluid dynamics, where the Poisson
equation never bears singularities. The main challenge then consists in discretizing the
gravitational effects governed by B(w)∇Φ. We note that in the limit of a steady flow,
the first equation of system (4.3) gives

∇ ·F(w) =−B(w)∇Φ, (4.6)

and a major difficulty lies in the design of a numerical scheme that preserves this asymp-
totic regime accurately.
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Hence, using an operator splitting approach (Yanenko splitting, first-order, or Strang
splitting, second-order accurate) and in the context of the first-order decomposition, we
choose to solve equation (4.3) in two steps. First, being w ∈ V an unknown state vector
and Φ an a priori given gravitational potential, the following nonlinear hyperbolic system
is considered:

∂tw +∇ ·F(w) + B(w)∇Φ = 0, (4.7)

which is clearly in nonconservative form and the method used to solve it will be our
primary focus. Once the solution has been found, the second step consists in using the
element ρ of the obtained w to solve the elliptic Poisson equation

∆Φ = 4πGρ, (4.8)

by means of a classical second-order finite difference approach. Therefore, the operator
splitting approach allows to decompose (4.3) into two subproblems and treat equations
(4.7) and (4.8) individually, which are hyperbolic and elliptic, respectively.

Now, several numerical strategies can be adopted in view of solving (4.7). The first
idea [89] is to decompose the solution into a hydrostatic steady part governed by system
(4.6) and an acoustic dynamic part described by the Euler equations without source
terms (1.20). Although classical Godunov-type based numerical schemes can be used
to approximate the latter, the overall technique tends to become much too complex in
three dimensions or when a complete implicit formulation is required because of system
(4.6) resolution. The second idea consists in constructing a Godunov-type solver that
takes into account the gravitational effects. A full conservative reformulation of (4.7)
proposed in another context [7] (see also Chièze [33]) could be used, e.g., by introducing
the specific energy eΦ = e+ Φ to rewrite the last equation of (4.7) in conservative form.
However, the nonlinearities involved in this formulation’s differential operators make the
approach of little interest from a scientific computing perspective.

Another approach comes from the work of Greenberg et al. [69, 68] where the
potential form of the source term is used with some benefits to derive well-balanced
schemes. Such a numerical procedure has been widely improved in the literature (see,
for instance, [23, 59, 60, 82, 111] for the shallow-water equations, [19] in the framework
of radiative transfer or [5] for extensions of the Kerr-Debye model), and constitutes
a relevant alternative to discretize (4.7). However, the nonlinear Riemann problem
involved by this approach is too sophisticated in the present framework to be directly
considered. Hence, the extension of this technique to the present context is obtained
by involving a relaxation scheme. This relaxation technique is adopted to introduce
relevant linearizations and thus derive a Suliciu-type relaxation solver for the Euler-
Poisson system. From now on, we note that the obtained scheme is not well-balanced in
the sense of [69, 68], but the steady states will be approximated with a better accuracy
than with standard fractional step splitting approaches. We mention that a large part
of this work was done in collaboration with B. Braconnier and C. Berthon [140].

This chapter is organized as follows. In Section 4.1, we detail the derivation of
the one-dimensional relaxation model used to approximate the solutions of the system
under consideration. One of the benefits of the proposed model, in which the pressure
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is a supplementary variable and the Poisson equation is transformed into a hyperbolic
equation with a penalty parameter, is that it ensures a strong coupling between the Euler
equations and the gravitational potential. The details of the Riemann solution associated
with the homogeneous relaxation model are presented in Section 4.2, and its subsequent
section is then devoted to the derivation of the relaxation scheme. The resulting Riemann
solver provides better robustness compared to other approaches available in the same
software and is capable of preserving gravitational equilibria when required. Several
numerical tests are presented and discussed in Section 4.4. Finally, concluding remarks
are given in the last section.

4.1 Derivation of the One-Dimensional Relaxation Model
In this section, we consider the numerical approximation of the hyperbolic-elliptic cou-
pled system (4.3). Following a strategy similar to that employed in [108, 109] to obtain
the constrained formulation of Maxwell’s equations and in [45] to couple the divergence-
free constraint on the magnetic field with the ideal magnetohydrodynamic equations
(refer to Section 3.2), we introduce a new parameter ch ≥ 0 and transform the elliptic
equation ∇ · (∇Φ) = 4πGρ to an approximate hyperbolic system with an augmented
variable κ =∇Φ. Thus, we get





∂t (ρ) + ∇ · (ρu) = 0,
∂t (ρu) + ∇ · (ρu⊗u) + ∇p + ρ∇Φ = 0,
∂t (ρe) + ∇ · ((ρe+ p)u) + ρu · ∇Φ = 0,
1
ch
∂t (Φ) + ∇ ·κ = −ch

∫ t
0

4πGρdτ,
1
ch
∂t (κ) + ∇Φ = 0.

(4.9)

This reformulated system is globally hyperbolic with a source term under integral
form. For sufficiently smooth solutions, combining the last two equations yields the
nonhomogenous wave equation

1
c2
h

∂ttΦ−∇ · (∇Φ) = 4πGρ. (4.10)

Note that when the parameter ch tends towards zero, we formally recover both that
∂ttΦ =O(c2

h) and ∇·∇Φ = 4πGρ+O(c2
h). For the moment, we only assume that ch≪ 1.

We focus now on the numerical approximation of system (4.9). For the sake of math-
ematical simplicity, we begin our analysis by studying the one-dimensional subsystem





∂t (ρ) + ∂x(ρu) = 0,
∂t (ρu) + ∂x(ρu2 + p) + ρ∂xΦ = 0,
∂t (ρe) + ∂x((ρe+ p)u) + ρu∂xΦ = 0,

(4.11)

i.e., system (4.7) in one dimension. By making use of the definitions given in (4.4) and
denoting the first element of B by b, we are able to write (4.11) under the form

∂tw + ∂xf(w) + b(w)∂xΦ = 0, (4.12)
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where the 1D state vector w = (ρ,ρu,ρe)T belongs to the phase space defined by (4.5)
(ϑ= 3 since d= 1).

As mentioned in the introduction of this chapter, particular attention must be given
to the proper discretization of the gravity terms. Thus, we propose to derive a relaxation
scheme, a classical numerical approach widely spread across the literature considering
fluid flow simulations [4, 16, 17, 18, 32, 92]. Motivated by the work of Jin-Xin [83] and
Bouchut [23], (see [14, 36, 29] as well), we choose to approximate the weak solutions
of (4.12) by the weak solutions of a relaxation system, designed to render the Riemann
problem easily solvable. According to Coquel and Perthame [36] (see also [14, 20], for
instance), most of the nonlinearities of the initial system, called relaxation equilibrium
system, must be preserved by the relaxation system to enforce accuracy of the resulting
numerical scheme.

After the influential work of Suliciu [125, 126] (see [4, 16, 17, 18, 32, 28, 92] for several
interesting extensions), the pressure p is relaxed with an approximation π governed by
an adequate evolution equation supplemented by a relaxation source term. Such an
evolution law can be deduced from the commonly known pressure equation (e.g., refer
to [64]) given by

∂tp+u∂xp+ ρc2∂xu= 0, (4.13)

with the sound speed c satisfying (4.2). Let us underline that the above relation does not
depend on the gravitational potential Φ. From (4.13), we suggest the evolution equation

∂tπ+u∂xπ+
a2

ρ
∂xu=

1
δ

(p−π), (4.14)

to govern the additional variable π. As the parameter δ tends to zero, a relaxation
equilibrium limit characterized by π= p is reached. Concerning the relaxation parameter
a, we will eventually consider a sub-characteristic Whitham condition [147] to fix its
value. It is evident that the choice of a plays an important role in the stability and
robustness of the scheme, as will be seen in Section 4.4.

Now, we propose to introduce a relaxation procedure to approximate the potential
Φ. We start by writing the last two equations of the integro-differential system (4.9) in
their one-dimensional form

{
∂tΦ + ch∂xκ = −c2

h

∫ t
0

4πGρdτ,
∂tκ + ch∂xΦ = 0,

(4.15)

and their combination as 1/c2
h ∂ttΦ− ∂xxΦ = 4πGρ (see equation (4.10)). The relaxation

system, which ensures adequate coupling of the Poisson and Euler equations, is then




∂t (ρ) + ∂x (ρu) = 0,
∂t (ρu) + ∂x(ρu2 +π) + ρ∂xΦ = 0,
∂t (ρe) + ∂x((ρe+π)u) + ρu∂xΦ = 0,
∂t (π) + u∂xπ + a2

ρ ∂xu = 1
δ (p−π),

∂t (Φ) + ch∂xκ = −c2
h

∫ t
0

4πGρdτ,
∂t (κ) + ch∂xΦ = 0.

(4.16)
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Note that if we study the last two equations of (4.16) or system (4.15) in the limit
ch = 0, we obtain ∂tΦ = 0 and ∂xxΦ = 4πGρ, consistent with the first-order decomposition
described at the beginning of this chapter. Therefore, in this asymptotic case, we suggest
to relax the gravitational potential Φ by replacing it with a new variable ψ governed by

∂tψ =
1
δ

(Φ−ψ), (4.17)

so that in the general case, the complete relaxation system becomes




∂t (ρ) + ∂x (ρu) = 0,
∂t (ρu) + ∂x(ρu2 +π) + ρ∂xψ = 0,
∂t (ρe) + ∂x((ρe+π)u) + ρu∂xψ = 0,
∂t (ρπ) + ∂x((ρπ+ a2)u) = ρ

δ (p−π),
∂t (ψ) + ∂x(chκ) = 1

δ (Φ−ψ)− c2
h

∫ t
0

4πGρdτ,
∂t (κ) + ∂x(chΦ) = 0,

(4.18)

where the fourth equation is easily obtained from (4.14), i.e., multiply it by ρ and make
use of the density equation. Setting the general relaxed state to ŵ = (ρ,ρu,ρe,ρπ,Φ,κ)T ,
we can put (4.18) in the form

∂tŵ + ∂xf̂(ŵ) + b̂(ŵ)∂xΦ =
1
δ

ŝ0(ŵ) + chŝ1(ŵ). (4.19)

In the asymptotic situation ch = 0, the previous system of equations reduces to a
smaller one that corresponds exclusively to subsystem (4.11), where Φ is now an a priori
given function, solution to the Poisson equation ∂xxΦ = 4πGρ. We have





∂t (ρ) + ∂x (ρu) = 0,
∂t (ρu) + ∂x(ρu2 +π) + ρ∂xψ = 0,
∂t (ρe) + ∂x((ρe+π)u) + ρu∂xψ = 0,
∂t (ρπ) + ∂x((ρπ+ a2)u) = ρ

δ (p−π),
∂t (ψ) = 1

δ (Φ−ψ).

(4.20)

Let us stress out that as δ tends to zero, π = p and Φ = ψ, and the evolution equations
for (ρ,ρu,ρe)T are thus equivalently to those found in (4.11). Moreover, by defining
w

δ
= (ρ,ρu,ρe,ρπ,ψ)T ∈V

δ
, with V

δ
the set of admissible relaxation state vectors, namely

V
δ

=
{

w
δ
∈ R

5; ρ > 0, u ∈ R, ǫ= e−u2/2> 0, π ∈ R, ψ ∈ R

}
,

we propose a compact form representation of (4.20) written in terms of the relaxed
variables as follows:

∂twδ
+ ∂xf

δ
(w

δ
) + b

δ
(w

δ
)∂xψ =

1
δ

s
δ
(w

δ
), (4.21)

with

f
δ
(w

δ
) =




ρu
ρu2 +π

(ρe+π)u
(ρπ+ a2)u

0



, b

δ
(w

δ
) =




0
ρ
ρu
0
0



, s

δ
(w

δ
) =




0
0
0

ρ(p−π)
Φ−ψ



. (4.22)
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In the coming section, we will present the solution of the Riemann problem for the
relaxation model (4.21) with a vanishing relaxation source term. Relevant choices of the
parameter a are then specified to enforce a suitable positive preserving property.

4.2 Solution W
δ

of the Riemann Problem
We consider the algebra of system (4.20) and propose to perform a simple change of
variables. If we introduce the state vector v

δ
defined as

v
δ

= (ρ,u,ǫ,π,ψ)T , (4.23)

and omit the source term, system (4.20)δ=∞ can be reformulated to

∂tvδ
+ A

δ
(v

δ
)∂xv

δ
= 0, (4.24)

with

A
δ
(v

δ
) =




u ρ 0 0 0

0 u 0 1
ρ 1

0 π
ρ u 0 0

0 a2

ρ 0 u 0

0 0 0 0 0




. (4.25)

A direct computation gives λ0 = 0, λ1
u = λ2

u = u and λ± = u± a/ρ as eigenvalues of
the above matrix A

δ
(v

δ
). One alternative way to specify these values relies on a simple

analysis of the full relaxation system (4.19)δ=∞ after a specific change of variables has
taken place:

∂tv̂ + Â(v̂)∂xv̂ = chŝ1(v̂), (4.26)

where v̂ = (ρ,u,ǫ,π,ψ,κ)T and

Â(v̂) =




u ρ 0 0 0 0

0 u 0 1
ρ 1 0

0 π
ρ u 0 0 0

0 a2

ρ 0 u 0 0

0 0 0 0 0 ch

0 0 0 0 ch 0




, (4.27)

which is clearly diagonalizable and with real eigenvalues ±ch, u, u± a/ρ. Hitherto, we
have only assumed ch ≪ 1; now, we also suppose that ch ≤ |u| (see Figure 4.1). Then,
it is evident that in the limit ch = 0, equation (4.26) reduces to (4.24), as was already
explained in the previous section, and the waves associated with ±ch become a single
stationary one. In fact, following the pioneering work of Greenberg-LeRoux [69, 68],
we have purposely introduced a source term in the associated Riemann solver which
naturally comes with a stationary wave (see also [23]).
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Figure 4.1. Solution structure of the Riemann problem for the general system (4.26) without
any source terms, i.e., for ∂tv̂ + Â(v̂)∂xv̂ = 0.

Using common notation, the eigenvectors of A
δ
(v

δ
) are

r0 =




ρ2

−uρ
π
a2

(u2ρ2− a2)/ρ



, r1

u =




1
0
0
0
0



, r2

u =




0
0
1
0
0



, r± =




ρ2

±a
π
a2

0




(4.28)

with r1
u and r2

u associated to the double eigenvalue u, henceforth denoted only by the
symbol λu. From simple calculations, we deduce that all the characteristics fields of
(4.24) are linearly degenerate and we complete the algebra of this system by exhibiting
the Riemann invariants. Let us recall that the Riemann invariants I associated with the
eigenvector r are defined as ∇I · r = 0, and after straightforward computations, with the
setting of π̃ = π+ a2/ρ and ǫ̃= ǫ−π2/(2a2), we find them across each wave:

1. For the λ0-wave, we have

dρ
ρ2

=
du
−uρ =

dǫ
π

=
dπ
a2

=
dψ

(u2ρ2− a2)/ρ
,

which leads to

I1
0 = ρu, I2

0 = π̃, I3
0 = ǫ̃, I4

0 = ψ+
u2

2
− a2

2ρ2
. (4.29)
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2. For the λu-wave, we have
du
0

=
dπ
0

=
dψ
0
,

which leads to
I1
u = u, I2

u = π, I3
u = ψ. (4.30)

3. For the λ±-waves, we have

dρ
ρ2

=
du
±a =

dǫ
π

=
dπ
a2

=
dψ
0
,

which leads to

I1
± = u± a

ρ
, I2

± = π̃, I3
± = ǫ̃, I4

± = ψ. (4.31)

Let us introduce some notation for the sake of simplicity. It is known that the
specific volume τ is the reciprocal of the density, namely τ = 1/ρ. Therefore, several of
the quantities previously defined can be written in terms of τ instead of ρ. In addition,
given two constant values (·)l and (·)r, we take again into consideration the jump function
(2.49) of Chapter 2.

Fix now two admissible states w
δl and w

δr in V
δ

to define the initial data of the
Riemann problem for system (4.20)δ=∞, specifically

w
δ0(x,0) =

{
w

δl if x < x0,

w
δr if x > x0,

(4.32)

assuming x0 = 0 for convenience. We need to find the solution to (4.24) with Riemann
initial data expressed as

v
δ0(x,0) =

{
vl = v

δl if x < 0,

vr = v
δr if x > 0.

(4.33)

Given that all eigenvalues are linearly degenerate, we can compute the exact solution
W

δ
to the Riemann problem, which has four wave speeds and three intermediate states.

To evaluate these intermediate constant states, we make use of the Riemann invariants
that are continuous across the contact discontinuity associated with a particular eigen-
vector. Note that the speeds of the stationary, contact, slowest and fastest waves will
henceforth be denoted by s0, sm, sl and sr, respectively.

The characterization of the solution is conditioned by the knowledge of the wave
ordering, which is not straightforward. By construction, the wave speeds are

s0 = 0, sl = ul− aτl, sr = ur + aτr, (4.34)

and since τl > 0 and τr > 0, we find that the difference sr − sl = ur − ul + a(τr + τl) is
positive as long as a is large enough. From a numerical point of view, the choice of the
parameter a is crucial since it governs (in a way to be defined) the numerical diffusion
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involved in the scheme. As a consequence, choosing an a too large will produce a very
viscous scheme while choosing it too small will lead to an unstable scheme. As usual,
the parameter a cannot be smaller than the exact impedance Z = ρc involved in the
initial system (4.11) (see [16, 23, 29]).

Because sr > sl for large enough values of a, the wave order problem then comes
from the position of sr, sl and sm compared to the stationary wave s0. Thus, to cover
all possibilities, we set the wave speed

σ =
ul +ur

2
− JπK

2a
, (4.35)

which corresponds to the velocity in the intermediate region of the Suliciu relaxation
model used to approximate the solution of the Riemann problem for the Euler equations
(see Bouchut [23], for instance). Like so, only four distinct cases are possible and they
are studied below. In all of them, the intermediate velocity σ can easily be recovered by
setting JψK = 0. Recall that we consider only small values of JψK, making this a valid
approach to segregate the second and third cases.

4.2.1 Case I: sl > 0

In this case, we suppose that the wave ordering is s0 = 0< sl < sm < sr. Thus, we search
for the exact Riemann solution having the following structure:

x

t

0

sl

sm

sr

s0

v∗
r

v∗∗
l

v∗
l

vl

vr

vl = ( τl, ul, π̃l, ǫ̃l, ψl )T

v∗
l = ( τ∗

l , u
∗
l , π̃

∗
l , ǫ̃

∗
l , ψ

∗
l )T

v∗∗
l = ( τ∗∗

l , u
∗∗
l , π̃

∗∗
l , ǫ̃

∗∗
l , ψ

∗∗
l )T

v∗
r = ( τ∗

r , u
∗
r , π̃

∗
r , ǫ̃

∗
r , ψ

∗
r )T

vr = ( τr, ur, π̃r, ǫ̃r, ψr )T

The unknowns that compose this solution are then determined by considering the
system given by the continuity of the Riemann invariants (4.29, 4.30, 4.31) across each
field. We can easily derive the equalities ψr = ψ∗

r = ψ∗∗
l = ψ∗

l and

π̃l = π̃∗
l = π̃∗∗

l , π̃r = π̃∗
r , (4.36a)

ǫ̃l = ǫ̃∗l = ǫ̃∗∗
l , ǫ̃r = ǫ̃∗r . (4.36b)

Since the velocity and the term π are constant across the sm-wave, we have

sm = u∗∗
l = u∗

r , π∗∗
l = π∗

r , (4.37)

respectively. Additionally, across the s0-wave, we have two more relations

ul/τl = u∗
l /τ

∗
l , (4.38a)

ψl + 1
2 [(ul)2− (aτl)2] = ψ∗

l + 1
2 [(u∗

l )
2− (aτ∗

l )2], (4.38b)
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and across the waves with speeds sl and sr, we get

u∗
l − aτ∗

l = u∗∗
l − aτ∗∗

l , (4.38c)

u∗
r + aτ∗

r = ur + aτr . (4.38d)

Equation (4.38a) can be rewritten as

u∗
l = ul τ

∗
l /τl. (4.39)

We substitute both this relation (4.39) and the equality given by ψ∗
l = ψr into equa-

tion (4.38b) to produce (τ∗
l )2 = (τl)2− 2JψK/((ul/τl)2− a2 ). Since the specific volume

τ∗
l has to be positive, we derive the expression

τ∗
l = τl

√

1− 2JψK

(ul)2− (aτl)2
. (4.40)

Recall that π̃ = π + a2τ . We express the right hand sides of (4.36a) in this form and,
consequently, obtain π̃l = π∗∗

l + a2τ∗∗
l and π̃r = π∗

r + a2τ∗
r . By performing algebraic ma-

nipulations on these two equations and making use of the second equation in (4.37), we
are able to define

τ∗
r = τ∗∗

l +
Jπ̃K

a2
. (4.41)

Now, substitution of u∗
l from (4.39) into (4.38c) gives

u∗∗
l = (ul/τl− a)τ∗

l + aτ∗∗
l = sm, (4.42)

and use of the relation u∗
r = ur + aτr − aτ∗

r = sm derived from (4.38d) leads to

τ∗∗
l = 1

a (ur + aτr − aτ∗
r − (ul/τl− a)τ∗

l ) . (4.43)

Then, by utilizing (4.41) and (4.43), we obtain the values

τ∗∗
l =

1
2a

(
sr − sl

√

1− 2JψK

(ul)2− (aτl)2
− Jπ̃K

a

)
, (4.44a)

τ∗
r =

1
2a

(
sr − sl

√

1− 2JψK

(ul)2− (aτl)2
+

Jπ̃K

a

)
. (4.44b)

We skip the computation for the other variables since they can be easily deduced from
one another. However, from (4.40), we find the necessary condition

JψK< 1
2

(
(ul)2− (aτl)2

)
, (4.45)

where (ul)2− (aτl)2 > 0 since sl > 0, i.e., ul + aτl > ul− aτl > 0. Additionally, in order
for τ∗∗

l and τ∗
r to be positive, the following condition must be satisfied:

|Jπ̃K|< a

(
sr − sl

√

1− 2JψK

(ul)2− (aτl)2

)
. (4.46)

If this condition is not met, to avoid the appearance of vacuum, we decide to degenerate
the sl-wave by choosing a larger value of a such that sl < 0 < sr, σ > 0 and, therefore,
switch to the subsequent case.
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4.2.2 Case II: sl < 0 < sr, σ > 0

Assume that the exact solution follows the wave ordering given by sl < s0 < sm < sr,
which implies looking for the exact Riemann solution of the form:

x

t

0

sl sm

sr

s0

vl

v∗
l

v∗∗
l

v∗
r

vr

vl = ( τl, ul, π̃l, ǫ̃l, ψl )T

v∗
l = ( τ∗

l , u
∗
l , π̃

∗
l , ǫ̃

∗
l , ψ

∗
l )T

v∗∗
l = ( τ∗∗

l , u
∗∗
l , π̃

∗∗
l , ǫ̃

∗∗
l , ψ

∗∗
l )T

v∗
r = ( τ∗

r , u
∗
r , π̃

∗
r , ǫ̃

∗
r , ψ

∗
r )T

vr = ( τr, ur, π̃r, ǫ̃r, ψr )T

Once again, by employing the continuity of the Riemann invariants (4.29, 4.30, 4.31)
across each field, we are able to specify several expressions

ul− aτl = u∗
l − aτ∗

l , (4.47a)

u∗
l /τ

∗
l = u∗∗

l /τ
∗∗
l , (4.47b)

ψ∗
l + 1

2 [(u∗
l )

2− (aτ∗
l )2] = ψ∗∗

l + 1
2 [(u∗∗

l )2− (aτ∗∗
l )2], (4.47c)

u∗
r + aτ∗

r = ur + aτr, (4.47d)

and obtain, without difficulty, the equalities

ψr = ψ∗
r = ψ∗∗

l , ψl = ψ∗
l , (4.48a)

π̃l = π̃∗
l = π̃∗∗

l , π̃r = π̃∗
r , (4.48b)

ǫ̃l = ǫ̃∗l = ǫ̃∗∗
l , ǫ̃r = ǫ̃∗r . (4.48c)

Moreover, since the velocity and the variable π are constant across the sm-wave, we find

sm = u∗∗
l = u∗

r , π∗∗
l = π∗

r . (4.49)

Before proceeding, we wish to note that equation (4.47b) can be rewritten to solve for
the velocity u∗

l as
u∗
l = u∗∗

l τ
∗
l /τ

∗∗
l . (4.50)

Direct substitution of the previous relation (4.50) and the values of ψ∗
l = ψl and

ψ∗∗
l = ψr into equation (4.47c) yields

(
τ∗
l

τ∗∗
l

)2

= 1 +
2JψK

(u∗∗
l )2− (aτ∗∗

l )2
. (4.51)

In addition, from (4.47a) and (4.50), we get the expression

τ∗
l

τ∗∗
l

=
ul− aτl
u∗∗
l − aτ∗∗

l

. (4.52)
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By expanding now the right hand sides of (4.48b), having in mind that π̃ = π + a2τ ,
we recover π̃l = π∗∗

l +a2τ∗∗
l and π̃r = π∗

r +a2τ∗
r . We perform algebraic manipulations on

these two equations and also utilize the one on the right of (4.49) to derive

τ∗
r = τ∗∗

l +
Jπ̃K

a2
, (4.53)

that can be substituted into (4.47d) to give

u∗∗
l = u∗

r = α− aτ∗∗
l , (4.54)

with

α= sr −
Jπ̃K

a
. (4.55)

Next, upon substitution of relations (4.54) and (4.52) into equation (4.51), we obtain
the second-order polynomial

(α− 2aτ∗∗
l )2 + 2

αJψK(α− 2aτ∗∗
l )− (sl)2 = 0, (4.56)

which has two real roots, i.e.,

τ∗∗
l =

1
2a


α+

JψK

α
±
√(

JψK

α

)2

+ (sl)2


 . (4.57)

The suitable root is chosen by considering physical criteria. Recall that the specific
volume τ∗∗

l has to be a positive quantity. Therefore, we select the solution capable of
restoring the Riemann solution to the Suliciu model as JψK tends to zero, namely,

τ∗∗
l =

1
2a


α+

JψK

α
+

√(
JψK

α

)2

+ (sl)2


 , (4.58a)

and as a result,

τ∗
r =

1
2a



(
sr +

Jπ̃K

a

)
+

JψK

α
+

√(
JψK

α

)2

+ (sl)2


 . (4.58b)

An easy substitution of τ∗∗
l into (4.54) leads to

sm =
1
2


α− JψK

α
−
√(

JψK

α

)2

+ (sl)2


 . (4.59)

Let us note that if α is large enough such that |JψK| ≪ |α|, then the value of the speed
sm is approximately

1
2 (α− |sl|) = 1

2(ul +ur − 1
aJπK) = σ. (4.60)
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Now, by performing steps similar to the ones used to find τ∗∗
l , we find the second-

order polynomial
(sl + 2aτ∗

l )2− 2
sl

JψK(sl + 2aτ∗
l )−α2 = 0, (4.61)

which is used to obtain an expression for τ∗
l . Hence, after some algebraic manipulations,

we are able to find

τ∗
l =

1
2a


−sl +

JψK

sl
+ sgn(α)

√(
JψK

sl

)2

+α2


 . (4.62)

Again, we omit the computation for the remaining unknowns since they can be easily
deduced from one another.

4.2.3 Case III: sl < 0 < sr, σ < 0

In this case, we assume that the wave ordering is sl < sm < s0 < sr, and we look for the
exact Riemann solution having the structure:

x

t

0

srsm

sl

s0

vr

v∗
r

v∗∗
r

v∗
l

vl

vl = ( τl, ul, π̃l, ǫ̃l, ψl )T

v∗
l = ( τ∗

l , u
∗
l , π̃

∗
l , ǫ̃

∗
l , ψ

∗
l )T

v∗∗
r = ( τ∗∗

r , u
∗∗
r , π̃

∗∗
r , ǫ̃

∗∗
r , ψ

∗∗
r )T

v∗
r = ( τ∗

r , u
∗
r , π̃

∗
r , ǫ̃

∗
r , ψ

∗
r )T

vr = ( τr, ur, π̃r, ǫ̃r, ψr )T

The continuity of the Riemann invariants (4.29, 4.30, 4.31) across the linearly de-
generate fields reads

ul− aτl = u∗
l − aτ∗

l , (4.63a)

u∗
r/τ

∗
r = u∗∗

r /τ
∗∗
r , (4.63b)

ψ∗
r + 1

2 [(u∗
r)

2− (aτ∗
r )2] = ψ∗∗

r + 1
2 [(u∗∗

r )2− (aτ∗∗
r )2], (4.63c)

u∗
r + aτ∗

r = ur + aτr, (4.63d)

and

ψl = ψ∗
l = ψ∗∗

r , ψr = ψ∗
r , (4.64a)

π̃r = π̃∗
r = π̃∗∗

r , π̃l = π̃∗
l , (4.64b)

ǫ̃r = ǫ̃∗r = ǫ̃∗∗
r , ǫ̃l = ǫ̃∗l . (4.64c)

Across the wave with speed sm, we also have the relations

sm = u∗∗
r = u∗

l , π∗∗
r = π∗

l . (4.65)
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In order to find the solution for this case, we use a methodology similar to the one
presented in Section 4.2.2 (Case II), and derive the specific volumes

τ∗
r =

1
2a


sr +

JψK

sr
− sgn(β)

√(
JψK

sr

)2

+β2


 , (4.66a)

τ∗∗
r =

1
2a


−β+

JψK

β
+

√(
JψK

β

)2

+ (sr)2


 , (4.66b)

τ∗
l =

1
2a


−

(
sl +

Jπ̃K

a

)
+

JψK

β
+

√(
JψK

β

)2

+ (sr)2


 , (4.66c)

with β specified later in (4.67). We omit here the computation for the remaining un-
knowns, which easily follows from the relations defined in (4.63)-(4.65). However, due
to its importance, we give the solution for sm = u∗∗

r = u∗
l , with u∗

l = sl + aτ∗
l , as:

sm =
1
2


β +

JψK

β
+

√(
JψK

β

)2

+ (sr)2


 , β = sl−

Jπ̃K

a
. (4.67)

If β is large enough such that |JψK| ≪ |β|, then the value of the wave speed sm is ap-
proximately 1

2(β+ |sr|) = 1
2(ul +ur − 1

aJπK), and consequently, one recovers the term σ
defined in equation (4.35).

4.2.4 Case IV: sr < 0

Suppose that the exact solution follows the wave ordering sl < sm < sr < s0 = 0 and is
composed of five constant states: vl, v∗

l , v∗∗
r , v∗

r , and vr.

x

t

0

sr

sm

sl

s0

v∗
l

v∗∗
r

v∗
r

vr

vl

vl = ( τl, ul, π̃l, ǫ̃l, ψl )T

v∗
l = ( τ∗

l , u
∗
l , π̃

∗
l , ǫ̃

∗
l , ψ

∗
l )T

v∗∗
r = ( τ∗∗

r , u
∗∗
r , π̃

∗∗
r , ǫ̃

∗∗
r , ψ

∗∗
r )T

v∗
r = ( τ∗

r , u
∗
r , π̃

∗
r , ǫ̃

∗
r , ψ

∗
r )T

vr = ( τr, ur, π̃r, ǫ̃r, ψr )T

By means of the trivial Riemann invariants, we search for the Riemann solution
having the structure presented above. We first derive the simple equalities

ψl = ψ∗
l = ψ∗∗

r = ψ∗
r , π̃r = π̃∗

r = π̃∗∗
r , π̃l = π̃∗

l , ǫ̃r = ǫ̃∗r = ǫ̃∗∗
r , ǫ̃l = ǫ̃∗l , (4.68)
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and then the relations

ul− aτl = u∗
l − aτ∗

l , (4.69a)

ur/τr = u∗
r/τ

∗
r , (4.69b)

ψr + 1
2 [(ur)2− (aτr)2] = ψ∗

r + 1
2 [(u∗

r)
2− (aτ∗

r )2], (4.69c)

u∗
r + aτ∗

r = u∗∗
r + aτ∗∗

r . (4.69d)

Moreover, across the sm-wave, we also obtain the useful expressions

sm = u∗∗
r = u∗

l , π∗∗
r = π∗

l , (4.70)

and using an approach similar to the one presented in Case I, we find the values for the
following specific volumes:

τ∗
r = τr

√

1 +
2JψK

(ur)2− (aτr)2
, (4.71a)

τ∗∗
r =

1
2a

(
−sl + sr

√

1 +
2JψK

(ur)2− (aτr)2
+

Jπ̃K

a

)
, (4.71b)

τ∗
l =

1
2a

(
−sl + sr

√

1 +
2JψK

(ur)2− (aτr)2
− Jπ̃K

a

)
. (4.71c)

Once more, we decide to skip the computation details for the other variables since
they can be simply deduced from one another. Yet, from (4.71a), we extract the neces-
sary condition

JψK>−1
2

(
(ur)2− (aτr)2

)
. (4.72)

It is worth recalling that sr < 0; therefore, ur − aτr < ur + aτr < 0 and the quantity
(ur)2 − (aτr)2 is strictly positive. Now, for τ∗∗

r and τ∗
l to be positive specific volumes,

we must satisfy the following condition:

|Jπ̃K|< a

(
−sl + sr

√

1 +
2JψK

(ur)2− (aτr)2

)
. (4.73)

If this condition is not met, in order to avoid the appearance of vacuum, we degenerate
the sr-wave by choosing a larger value of a such that we can switch to Case III.

Review of Necessary Conditions

Summarizing the necessary conditions from Cases II and III yields

|JψK|<min(|α|, |β|) .
and for Cases I and IV, we must consider

|JψK|< 1
2 min

(
(ur)2− (aτr)2, (ul)2− (aτl)2

)
.

Thus, we confirm that the solver is robust for small values of JψK. In Annex B.3, we
provide several implementation details with regard to the proposed approach and its
four cases, and simultaneously, specify the values of all the associated unknowns.
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4.3 One-Dimensional Relaxation Scheme
Based on the relaxation model (4.21), we now present the main steps involved in the
numerical time-update strategy employed to approximate the solution of the initial value
problem 




∂tw + ∂xf(w) + b(w)∂xΦ = 0,

∂xxΦ = 4πGρ,

w(x,0) = w0(x), Φ(x,0) = Φ0(x).

(4.74)

As mentioned in Section 4.1, we apply a first-order operator splitting approach to
decompose (4.74) into two subsystems: the Euler equations with gravity source terms
and the Poisson equation. We consider a uniform numerical grid with a total of Nx cells
Ci = (xi−1/2,xi+1/2) of size ∆x and time increments ∆t such that tn+1 = tn + ∆t, using
the notation introduced in Section 1.3 for a one-dimensional finite volume discretization.

4.3.1 Euler Equations with Gravity Source Terms

In this part, w is the unknown vector and the gravitational potential Φ is an a priori
given function. Hence, we suppose for the moment that for each time step tn, the
approximate potential Φh is known, namely,

Φh(x,tn) =
∑

i=1,...,Nx

Φn
i χi,j(x) with χi,j(x) =

{
1 if x ∈ Ci,
0 if x 6∈ Ci.

(4.75)

Moreover, we assume that at the same time tn, a piecewise constant approximate solution
denoted by wh(x,tn) is also known:

wh(x,tn) =
∑

i=1,...,Nx

wn
i χi,j(x). (4.76)

The obtained approximations are then evolved in time using a two-step splitting tech-
nique, which will be described in detail subsequently.

First Step: Evolution in Time (δ =∞)

At the beginning of the time step tn, we construct the initial data

w
δh(x,tn) = (ρni , (ρu)ni , (ρe)ni , (ρπ)ni = ρni p

n
i , ψ

n
i = Φn

i )T , x ∈ Ci, (4.77)

which coincides with a relaxation equilibrium state as πni = pni and ψni = Φn
i are set.

Then, for all t ∈ (0,∆t), we look for the weak solutions w
δh(x,tn + t) of the Cauchy

problem
∂twδ

+ ∂xf
δ
(w

δ
) + b

δ
(w

δ
)∂xψ = 0, (4.78)

subject to the previously defined initial data w
δh(x,tn). We wish to point out that

equation (4.78) is in fact the relaxation model (4.21) without the source terms, i.e.,
with δ = ∞. Now, the solution w

δh(x,tn + t) is approximated as a superposition of
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non-interacting Riemann solutions emerging at each interface xi+1/2 for positive times t
smaller than ∆t, satisfying the restriction

∆t max
i=1,...,Nx

(
|λ−,i+ 1

2
|, |λ+,i− 1

2
|
)
≤ ∆x

2
, (4.79)

where λ−,i+1/2 and λ+,i+1/2 are estimates of the slowest and fastest wave speeds, respec-
tively. The description and details of these waves were given in Section 4.2, as well as
the Riemann solution W

δ
for the relaxation model (4.78).

In order to enforce a suitable positive preserving property, we discuss relevant criteria
for the correct characterization of the parameter a. Thus, given two constant states (w

δ
)ni

and (w
δ
)ni+1 separated by a discontinuity at x= xi+1/2, this parameter is defined locally

at each interface as
ai+ 1

2
= a0 max

(
ρni c

n
i ,ρ

n
i+1c

n
i+1

)
, (4.80)

with a0 a positive constant, the value of which is fixed according to the specific physical
settings of the problem addressed so all robustness conditions described in the previous
section are satisfied. Unless specified otherwise, we use a0 = 1.05 for our numerical
simulations. In this manner, the Riemann solution depends not only on the left and
right states (w

δ
)ni and (w

δ
)ni+1, but also on the parameter a. Then, we write

w
δh(x,tn + t) = W

δ

(
x−xi+ 1

2

t
; (w

δ
)ni ,(wδ

)ni+1,ai+ 1
2

)
, x ∈ (xi,xi+1), t ∈ (0,∆t),

and its projection over the piecewise constant functions as

(w
δ
)n+1,−
i =

1
∆x

∫ x
i+ 1

2

x
i− 1

2

w
δh

(
x,tn+1

)
dx

=
1

∆x

∫ xi

x
i− 1

2

W
δ

(
x−xi− 1

2

∆t
; (w

δ
)ni−1,(wδ

)ni ,ai− 1
2

)
dx

+
1

∆x

∫ x
i+ 1

2

xi

W
δ

(
x−xi+ 1

2

∆t
; (w

δ
)ni ,(wδ

)ni+1,ai+ 1
2

)
dx.

(4.81)

Let us note that because of the potential source term, the standard conservative flux
balance cannot be reached. However, making use of the formalism introduced by Harten,
Lax and van Leer [74], we define

f l
(
(w

δ
)ni ,(wδ

)ni+1

)
=f

δ
((w

δ
)ni )

− 1
∆t

∫ x
i+ 1

2

xi

(
W

δ

(
x−xi+ 1

2

∆t
; (w

δ
)ni ,(wδ

)ni+1,ai+ 1
2

)
− (w

δ
)ni

)
dx,

f r
(
(w

δ
)ni ,(wδ

)ni+1

)
=f

δ

(
(w

δ
)ni+1

)

+
1

∆t

∫ xi+1

x
i+ 1

2

(
W

δ

(
x−xi+ 1

2

∆t
; (w

δ
)ni ,(wδ

)ni+1,ai+ 1
2

)
− (w

δ
)ni+1

)
dx,
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such that

(w
δ
)n+1,−
i = (w

δ
)ni −

∆t
∆x

(
f l
(
(w

δ
)ni ,(wδ

)ni+1

)− f r
(
(w

δ
)ni−1,(wδ

)ni
))
. (4.82)

Second Step: Relaxation Equilibrium (δ = 0)

This step of the scheme consists in solving ∂twδ
= 1

δs
δ
(w

δ
), with initial data defined

by the piecewise constant approximation (w
δ
)n+1,−
i . As δ tends to zero, the updated

approximate equilibrium solution is given by

wn+1
i =

(
ρn+1,−
i ,(ρu)n+1,−

i ,(ρe)n+1,−
i

)T
, (4.83)

and we enforce πn+1
i = pn+1

i and ψn+1
i = Φn+1

i to recover a relaxation equilibrium.

4.3.2 Poisson Equation

This second part consists in using the first component of wn+1
i , i.e., ρn+1

i , to solve the
Poisson equation and thus obtain Φn+1

i .The discretization of ∂xxΦ = 4πGρ by means of a
second-order finite difference approach yields a tridiagonal matrix. There are numerous
ways of solving the resulting matrix equation that can be categorized into direct and
iterative methods.

4.3.3 Summary and Additional Remarks

Now, involving the usual framework of finite volume methods, the complete relaxation
scheme is summarized below:

wn+1
i = wn

i −
∆t
∆x

(
φl
x,i+ 1

2
−φr

x,i− 1
2

)
, (4.84)

where

φl
x,i+ 1

2
= f l

(
w

δ
(wn

i ),w
δ
(wn

i+1)
)
, (4.85a)

φr
x,i+ 1

2
= f r

(
w

δ
(wn

i ),w
δ
(wn

i+1)
)
, (4.85b)

with w
δ
(wn

i ) = (w
δ
)ni defined according to the relaxation equilibrium, i.e., πni = pni and

ψni = Φn
i . Indeed, considering the projection step and the relaxation system solution,

the numerical fluxes can be written as functions of the relaxation equilibrium states

φl
x,i+ 1

2
= φl

x,i+ 1
2
(ρni , u

n
i , (ρe)ni , Φn

i , ρ
n
i+1, u

n
i+1, (ρe)ni+1, Φn

i+1), (4.86a)

φr
x,i+ 1

2
= φr

x,i+ 1
2
(ρni , u

n
i , (ρe)ni , Φn

i , ρ
n
i+1, u

n
i+1, (ρe)ni+1, Φn

i+1). (4.86b)

Let us remark that we kept the notation φα
x,i+1/2 (with α ∈ {l, r}) for the fluctu-

ations, on account of the numerical scheme not being a conservative one. In fact, the
nonconservative operator, coming from b(w)∂xΦ in (4.12), is null except at the interfaces
xi+1/2 because of the evolution equation (4.17) that governs the relaxation potential. In
Section 4.2, we have clearly shown that the continuity of the flux function is lost across
any interface.
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4.4 Numerical Results
The purpose of this section is to illustrate the interest of the proposed relaxation solver
for the Euler-Poisson model. To address numerical issues, several astrophysical tests
are performed: in the first four, we consider a fluid subject to a constant external
gravitational field, and in the last, we numerically recover the Lane-Emden equation [84]
which describes the hydrostatic equilibrium of a self-gravitating star.

The relaxation strategy has been implemented in the code HERACLES [66]. For
second-order approximations, we extend the scheme by using the MUSCL-Hancock
Method (MHM), see [129], and as for the choice of slope limiters, we employ the mono-
tonized central (MC) one [136], unless stated otherwise. Let us note, though, that no
slope limiting is used for the gravitational potential in order to have a proper potential
jump at each cell interface, as is also done in [102].

When needed, the relaxation scheme is compared with the standard fractional step
splitting method (hereafter referred to as standard method). This approach also consists
on treating subsystems (4.7) and (4.8) individually, with the sole difference being that
the former subsystem is simply solved by splitting it into

∂tw +∇ ·F(w) = 0, (4.87a)

∂tw =−B(w)∇Φ. (4.87b)

4.4.1 One-Dimensional Equilibrium Flow

As a first test, we consider a one-dimensional equilibrium flow with a relatively simple
setup. In this case, we neglect the gravitational interactions between particles and
suppose that they are subject to a uniform gravitational field. With a potential of the
form φ(x) = gx and constant g > 0, the flow satisfies the relation ∂xp = −ρg. We then
suppose that the fluid is governed by an isentropic equation of state p= c2ρ so we obtain
the equilibrium ρeq(x) = ρ0 exp(−gx/c2), with ρ0 = 10kg, c = 1ms−1 and g = 10ms−2.
From this relation, we can define the characteristic scales associated to this experiment:
the gravitational length Lref = c2/g and time Tref = (Lref/g)1/2.

−4.5 −4.0 −3.5 −3.0 −2.5 −2.0 −1.5
log(∆x)
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−3.0

−2.5

−2.0
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−0.5

lo
g
(
√

∆
x
∑

i(
ρ
i
−
ρ
e
q
(x

i
))

2
)

Trendline y = 0.9556 x + 0.8632

Relaxation 1st Order

Figure 4.2. Accuracy of the relaxation method in the case of an isentropic hydrostatic atmo-
sphere in a constant gravitational field.



4.4 Numerical Results 123

In order to illustrate the accuracy of the relaxation method, we intend to compute
this equilibrium flow and perform an error analysis in the L2 norm. The experiment is
then initialized on a computational domain x ∈ [0,1]m consisting of N = 1000 uniform
cells and is run a sufficiently long time T = 50s≫ Tref = 0.1 s, with a CFL number of
0.5. Homogenous and non-homogenous Dirichlet boundary conditions are set for ρ and
u, respectively, to ensure the hydrostatic equilibrium. Figure 4.2 displays the L2 error
of the estimated density compared to the analytical solution ρeq for different mesh sizes
∆x in a log-log scale. The slope of the error gives the order of accuracy of the method:
using the least squares approach, we obtain a linear fit y = 0.9556 x+ 0.8632 and thus,
the order is approximately 0.96.
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Figure 4.3. Results in logarithmic scale for the one-dimensional hydrostatic atmosphere with
1000 cells; solid line: proposed relaxation method (a0 = 1.0), dotted line: standard method. Since
the same half CFL condition (4.79) is used, the total number of time steps for both methods is
of the same order of magnitude, specifically, 1.001× 105 and 1.006× 105 steps for the relaxation
and standard methods, respectively.

Figure 4.3 shows the evolution in time of the L2 error for the density (left) and the
L2 norm of the velocity (right), in logarithmic scales. We can observe that the L2 error
grows exponentially for a short time and then stabilizes itself, and this holds true for
both methods being compared. Note that both the error and residual velocity are con-
siderably smaller for the relaxation method than for a standard fractional step splitting
method. Therefore, the relaxation scheme clearly enables a better approximation of the
equilibrium solution ρeq.

4.4.2 Perturbed One-Dimensional Isothermal Equilibrium

LeVeque and Bale [91] first proposed this test to determine a method’s ability to capture
perturbed near-equilibrium solutions. The problem consists of an ideal gas in isothermal
equilibrium. A small perturbation to the pressure is introduced and its behavior is then
examined over time. The initial conditions and perturbation are given in Table 4.1.
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Perturbed Isothermal Equilibrium

ρ0(x) u0(x) p0(x) Gravity potential

e−x 0.0 e−x Φ(x) = gx, with g = 1.0

Computational domain: [0,1]; Fixed boundary conditions

Initial perturbed pressure: p(x,0) = p0(x) + ηe−100(x−0.5)2

, with 0< η≪ 1

Table 4.1. Initial data for the 1D isothermal equilibrium described in [91].

The test is initialized on a computational domain x ∈ [0,1] consisting of 100 evenly
spaced cells, with the initial perturbation centered at x= 0.5. Three different values for
the perturbation amplitude η are considered: η = 0.01, η = 0.001 and η = 0.0001. For
the middle one, it has been already demonstrated in [91] that the standard method is
not able to correctly capture the perturbed pressure nor maintain the boundary values,
and here, we attempt to reproduce the observed numerical behavior.

0.0 0.2 0.4 0.6 0.8 1.0
x

−0.002

0.000

0.002

0.004

0.006

0.008

0.010

0.012

P
e
rt

u
rb

a
ti
o
n

Initial

Reference

Standard 1st Order

Standard 2nd Order

Relaxation 1st Order

Relaxation 2nd Order

(a) η = 0.01

0.0 0.2 0.4 0.6 0.8 1.0
x

−0.0002

0.0000

0.0002

0.0004

0.0006

0.0008

0.0010

0.0012

0.0014

0.0016

P
e
rt

u
rb

a
ti
o
n

Initial

Reference

Standard 1st Order

Standard 2nd Order

Relaxation 1st Order

Relaxation 2nd Order

(b) η = 0.001

0.0 0.2 0.4 0.6 0.8 1.0
x

−0.00002

0.00000

0.00002

0.00004

0.00006

0.00008

0.00010

P
e
rt

u
rb

a
ti
o
n

Initial

Reference

Standard 1st Order

Standard 2nd Order

Relaxation 1st Order

Relaxation 2nd Order

(c) η = 0.0001
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Figure 4.4. Comparison of the standard and relaxation schemes for the perturbed isothermal
equilibrium test at time t = 0.25 and with Nx = 100. For the relaxation method, a0 = 0.83 and
a0 = 2.01 were used for first- and second-order, respectively. The solid gray line gives a reference
solution obtained with the second-order relaxation scheme on a finer mesh of 4000 zones.
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We run this test and the perturbation p(x,t)− p0(x) at time t = 0.25 is shown in
Figure 4.4. The perturbation at the initial time is indicated by the dashed line and
the reference solution obtained with the second-order relaxation method using a higher
resolution is included with a solid gray line. Second-order results show that both methods
implemented in HERACLES [66] are able to capture the correct solution. First-order
results are more dissipative and we can perceive that the standard method fails to
capture the perturbation, specially when η = 0.0001, as seen in Figures 4.4c and 4.4d.
The advantages of the proposed relaxation scheme are then adequately demonstrated by
performing this test.

4.4.3 Sod Shock Tube Under Gravitational Influence

Now, we consider the Sod shock tube problem under a gravitational field, as described
in [102, 149]. The main advantage of this test is that it consists of a relatively simple
initial setup, summarized in Table 4.2.
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Figure 4.5. Several distributions obtained with the relaxation scheme proposed in this paper
for Test 4.4.3 at time t= 0.2, using Nx = 100 cells and a0 = 1.0. The results are compared with
a reference solution obtained using the second-order algorithm on a finer grid of 4000 cells.

The test is then run to time t= 0.2 on a coarse grid composed of 100 cells using the
relaxation scheme presented in Section 4.3. Figure 4.5 shows the corresponding density,
velocity, pressure, and total energy density plots, compared with a reference solution



126 A Relaxation Scheme for Inviscid Flows Under Gravitational Influence

Shock Tube with Gravity

ρ0(x) u0(x) p0(x) Gravity potential

x≤ 0.5 1.000 0.0 1.0
Φ(x) = gx, with g = 1.0

x > 0.5 0.125 0.0 0.1

Computational domain: [0,1]; Reflecting boundaries

Table 4.2. Initial data for the Sod shock tube under a gravitational field described in [102].

computed on a refined grid of 4000 cells. Due to the existence of a gravitational field,
the first plot in the series shows how the density profile is pushed towards the left and
the velocity plot reveals the development of negative velocities. As expected, the first-
order results are the most diffusive given that the initial discontinuities are spread out
over several zones. Second-order results are clearly more accurate and satisfying, and
demonstrate that the relaxation scheme is able to capture shocks correctly.

4.4.4 Two- and Three-Dimensional Rayleigh-Taylor Instability

As a fourth test, we consider the Rayleigh-Taylor instability occurring as a consequence
of a heavy fluid driven into a lighter one under the acceleration of a gravitational field,
both in two and three dimensions.
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Figure 4.6. Rayleigh-Taylor instability computed with the proposed relaxation scheme in a 2D
computational domain. The results are given at times t= 2.4s, 4.0s, 5.6s, 7.2s (top to bottom).

First, we wish to carry out this experiment in the two-dimensional plane approxima-
tion (translational invariance along the z-axis). The derived numerical method given by
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(a) Minmod (ρ : 0.73− 3.46)
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(b) MC limiter (ρ : 0.71− 3.36)
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(c) Superbee (ρ : 0.80− 3.19)
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(d) Positivity preserving (ρ : 0.75− 3.33)

Figure 4.7. Rayleigh-Taylor instability computed with a MUSCL-type second-order extension
of the relaxation scheme using different limiters. The computations are performed with 800×200
cells and the results are given at times t= 2.4 s, 4.0 s, 5.6 s, 7.2 s (top to bottom).

(4.84) is easily extended to consider 2D simulations, and as is usual, we suggest

wn+1
i,j = wn
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(
φl
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−φr
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2 ,j
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−φr

y,i,j− 1
2

)
, (4.88)
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where φα
x,m,n and φα

y,m,n are the numerical fluxes in the x- and y-directions, respectively,
with α ∈ {l, r} (refer to equation (4.85)). Moreover, the gravity potential is governed by
Φ(x,y) = gx, with g = 1.0ms−2. Initially, the two-dimensional computational domain
[0,Lx]×[0,Ly] contains two fluids of different densities separated by an unstable interface

x= 1
2Lx

(
1− 1

10cos[(
y
Ly
− 1

2)π]
)
. (4.89)

We set the densities on the right and on the left of this discontinuity to ρl = 1.0 kgm−3

and ρr = 2.0kgm−3, respectively. After fixing the lengths to Lx = 4.0m and Ly = 1.0m,
we run this unsteady problem with imposed reflecting boundary conditions on two grids
composed of 800×200 and 8000×2000 cells and using a CFL number of 0.5. The results
are displayed in Figure 4.6, with the density ranging from 0.70 to 3.50. A graphical
comparison indicates that a more accurate solution is obtained using the finer grid,
which is not surprising.

Additionally, given that the approximately first-order scheme is too diffusive, we
perform second-order computations employing four different limiters: minmod [118],
MC [136], superbee [118], and the positivity preserving limiter [127]. We then use the
mesh composed of 160000 cells to obtain the plots shown in Figure 4.7, where it is clear
that the use of the minmod (respecitvely, MC) limiter yields the most (respectively, least)
dissipative results for this particular experiment. In all of the simulations (including the
first-order ones), we perceive the formation of the expected Rayleigh-Taylor mushroom
cap and the development of side rolls along the evolution. In general, we observe that
the Rayleigh-Taylor instability has been successfully reproduced in two dimensions.

3D Rayleigh-Taylor

ρ0(x) u0(x) p0(x) Gravity potential

z ≤ S(x,y) 1 0 10− z
Φ(x,y,z) = gz, with g = 1.0

z > S(x,y) 2 0 10− 2z+S(x,y)

Computational domain: [0,Lx]× [0,Ly]× [0,Lz] with Lx = Ly = 1, Lz = 4; Reflecting boundaries

Interface: S(x,y) = 1
2Lz

(
1− 1

10 cos[( x
Lx

− 1
2 )π]

)(
1− 1

10 cos[( y
Ly

− 1
2 )π]

)

Table 4.3. Initial data for the 3D Rayleigh-Taylor instability (SI units).

Now, let us consider this instability in three dimensions, extending the numerical
approach (4.84) to 3D, i.e.,
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2
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(4.90)

using notation analogous to that of equation (4.88). The test, with initial data summa-
rized in Table 4.3, is run using the MC limiter [136] on a fine grid of 200× 200× 800
cells. Several snapshots of the density evolution are displayed in Figure 4.8, where once
again, we are able to evidence the development of the mushroom cap and secondary
Kelvin-Helmholtz instabilities along its edge. The test has been successfully reproduced.
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(a) t= 1.2 (b) t= 2.2 (c) t= 3.2 (d) t= 4.2 (e) t= 5.2

Figure 4.8. Rayleigh-Taylor instability computed with a second-order extension of the relax-
ation scheme on 1024 processors and using 200× 200× 800 cells (a0 = 1.05).

4.4.5 Equilibrium of a Self-Gravitating Compressible Fluid

In this context, we rewrite system (4.1) in spherical coordinates (r,θ,ϕ), assuming rota-
tional invariance around the axes eθ and eϕ, and obtain





∂t(ρ) + 1
r2∂r(r2ρur) = 0,

∂t(ρur) + 1
r2∂r(r2ρu2

r) + ∂rp = −ρ∂rΦ,
1
r2∂r(r2∂rΦ) = 4πGρ.

(4.91)

For this last test, we consider a self-gravitational fluid at hydrostatic equilibrium, gov-
erned by the polytropic equation of state p= κργ = κρ1+ 1

n , where κ is the polytropic
constant, γ the adiabatic exponent and n the polytropic index. Interestingly, this equi-
librium flow can be characterized by the Lane-Emden equation [84], derived below.

First, assuming the fluid to be at hydrostatic equilibrium, i.e., ∂t = 0 and ur = 0,
reduce system (4.91) to {

∂r(p) =−ρ∂rΦ,
1
r2∂r(r2∂rΦ) = 4πGρ.

(4.92)

Combine the momentum equation with the polytropic relation and then perform a space
integration to obtain a relation that links the fluid density to the potential, namely

ρ=
( −Φ

(n+ 1)κ

)n
. (4.93)

Using the Poisson equation, find the following second-order ordinary differential equation
for the potential:

∂2
r (Φ) +

2
r
∂r(Φ) = 4πG

( −Φ
(n+ 1)κ

)n
. (4.94)
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Now, define

z =Ar, w =
Φ
Φc

=
(
ρ

ρc

)1
n
, A2 =

4πG(−Φc)n−1

(n+ 1)nκn
=

4πG
(n+ 1)κ

(ρc)
n−1
n ,

where Φc and ρc are the potential and the density at the center of the domain, respec-
tively, so that the differential equation (4.94) becomes the Lane-Emden equation [84]

1
z2 ∂z

(
z2∂zw

)
+wn = 0. (4.95)

We are only interested in solutions to the ordinary differential equation (4.95) that
are finite at the center z = 0. Thus, we assume that w(z,n) is a solution that fulfills the
central boundary conditions w(0,n) = 1 and ∂zw(0,n) = 0. Additionally, for n = 0,1,5,
we have

w(z,n= 0) = 1− z
2

6
, w(z,n= 1) =

sin(z)
z

, w(z,n= 5) =
1√

1 + z2/3
. (4.96)

Later on, we will validate the relaxation method with a polytropic gas n= 1. However,
in order to reproduce this experiment, the numerical codes must be extended to the
spherical finite volume formulation. For this, we propose to integrate system (4.91) over
the space-time domain Ci× (tn, tn+1), with Ci = (ri−1/2, ri+1/2)× (0,π)× (0,2π). Using
the elementary volume expression dv= r2 sinθdrdθdϕ, we integrate the time differential
terms using a finite volume approach and get

∫

Ci

∫ tn+1

tn
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)
,

∫
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)
,

where the cell’s volume is |Ci|= 4π(r3
i+1/2

− r3
i−1/2

)/3. The integration of the divergence
terms gives

∫

Ci

∫ tn+1

tn

1
r2
∂r(r2ρur) dt dv = 4π

∫ tn+1

tn

∫ r
i+ 1

2

r
i− 1

2

∂r(r2ρur) dr dt

= 4π∆t
(
r2
i+ 1

2
(ρur)li+ 1

2
− r2

i− 1
2
(ρur)ri− 1

2

)
,

and ∫

Ci

∫ tn+1

tn

1
r2
∂r(r2ρu2

r) dt dv = 4π∆t
(
r2
i+ 1

2
(ρu2

r)
l
i+ 1

2
− r2

i− 1
2
(ρu2

r)
r
i− 1

2

)
,

with (·)αi+1/2
, α ∈ {l, r}, already defined for the relations (4.85). For the gradient terms,

we note that ρ∂rΦ = 0 on the integration domain so that we approximate the pressure
differential integration as follows:
∫

Ci

∫ tn+1

tn
(∂r(p) + ρ∂r(Φ)) dtdv≈ 4πr2

i

∫ tn+1

tn

∫ r
i+ 1

2

r
i− 1

2

∂r(p)drdt= 4πr2
i ∆t

(
(p)l

i+ 1
2
− (p)r

i− 1
2

)
.
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The numerical scheme associated with the first two equations of system (4.91) and
the relaxation method is thus given by




ρn+1
i − ρni

∆t
+3

r2
i+1/2

(ρur)li+1/2
−r2

i−1/2
(ρur)ri−1/2

r3
i+1/2

− r3
i−1/2

= 0,

(ρur)n+1
i − (ρur)ni

∆t
+3

r2
i+1/2

(ρu2
r)
l
i+1/2
−r2

i−1/2
(ρu2

r)
r
i−1/2

r3
i+1/2

− r3
i−1/2

+ 3
r2
i

(
(p)li+1/2

−(p)ri−1/2

)

r3
i+1/2

− r3
i−1/2

= 0,

(4.97a)

and for the Poisson equation, we propose an implicit scheme deduced from the integration
over the volume Ci, i.e.,

3r2
i+1/2

∆r (r3
i+1/2

− r3
i−1/2

)
Φn+1
i+1 −

3(r2
i+1/2

+ r2
i−1/2

)

∆r (r3
i+1/2

− r3
i−1/2

)
Φn+1
i +

3r2
i−1/2

∆r (r3
i+1/2

− r3
i−1/2

)
Φn+1
i−1 = 4πGρni .

(4.97b)

In order to make numerical comparisons, the standard method in spherical coordinates is
then introduced. The first step is devoted to the resolution of system (4.91) with ∂rΦ = 0
by making use of the relaxation scheme in the spherical formulation (4.97a)ψl=ψr=0. For
the second step, we solve 




∂t(ρ) = 0,
∂t(ρur) = −ρ∂rΦ,
1
r2∂r

(
r2∂rΦ

)
= 4πGρ.

(4.98)

As a numerical test, we consider a polytropic gas of index n = 1, with its initial
state summarized in Table 4.4. The number of grid cells is set to 100 and the final
time of the experiment to 1.0× 107. Since the evolution of the potential is described by
the Poisson equation in spherical symmetry, we choose to solve equation (4.97b) with
Dirichlet boundary conditions on the one-dimensional domain by means of a standard
LU method at each time step (since efficiency is not required at the present time).

Self-Gravitational Fluid at Hydrostatic Equilibrium - n= 1

ρc ρ0(r) ur0(r) p0(r) Gravity potential

10.0 ρe(r) 0.0 κ(ρe(r))2 Φ0(r) =−2κ ρe(r)

Computational domain: [0,Lr] with Lr = 6.0× 105 ; Fixed boundary conditions

Solution to the Lane-Emden equation: ρe(r) = ρc ∗ sin(z)/(z) with z =Ar =
√

4πG/(2κ) r

Table 4.4. Initial data for the self-gravitational fluid at hydrostatic equilibrium with the poly-
tropic constant κ= 1000.

The numerical densities for both schemes, compared with the exact solution ρe(r),
at the final simulation time t= 1.0×107 are displayed in Figure 4.9(a). Additionally, we
observe the evolution of the parasitic currents during the simulation in Figure 4.9(b).
This plot of the evolution in time of the L2 norm of the velocity, in logarithmic scale,
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Figure 4.9. Comparison of relaxation and standard schemes for the self-gravitational fluid at
equilibrium, using Nr = 100 cells and a0 = 1.05. The approximate number of time steps for this
simulation is 1.065× 107 steps, for both methods.

shows that the residual velocity is far lower for the relaxation method than for the stan-
dard method. Thus, the relaxation scheme enables a good approximation of equilibrium
solutions since it generates very low parasitic currents.

4.5 Conclusions
In this chapter, we have detailed the derivation of a one-dimensional relaxation model
that ensures adequate coupling of the Poisson and Euler equations and yields an inter-
esting scheme described in the limit as the penalty parameter ch tends to zero. Although
several asymptotically stable methods for the Euler-Poisson system in the quasineutral
limit have already been developed [40, 46], they become far too complex in three di-
mensions or when an implicit formulation is required. We have presented here a simpler
numerical scheme based on a Godunov-type solver deduced from a relaxation system to
resolve accurately steady equilibrium flows.

Many problems of current interest require not only the preservation of equilibrium
states but also robust numerical simulations. With different types of examples, we
have established the scheme’s robustness and demonstrated its ability to capture and
preserve steady and perturbed quasi-steady states when required. Additionally, in view
of astrophysical simulations, the last test case shows that the method is able to preserve
the stationary regime of self-gravitational equilibrium flows. Future work will be devoted
to a well-balanced time implicit formulation of the method and simulations of 3D self-
gravitating astrophysical problems.



CHAPTER5
Finite Volumes in Toroidal Geometry

Introduction
Many problems possess obvious geometric symmetries in coordinate systems for Eu-
clidean space in which several (if not all) coordinate lines and surfaces are curved. Thus,
it results more convenient and sometimes simpler to describe them using the formalism of
curvilinear coordinates rather than the Cartesian ones. In the context of plasma physics,
numerous problems occur in a spatial domain that can be represented by a torus and
one example of ongoing research concerns the study of plasma confinement in a toka-
mak, which is currently the most developed and researched candidate for controlled,
thermonuclear fusion power production. Additionally, in the field of astrophysics, sev-
eral problems are characterized by a central gravitational field, e.g., thin accretion disks
[93, 94] or the evolution of protoplanetary nebula leading to the formation of planets
around a young star [78].

From a mathematical point of view, even though space and time scales are clearly
different, these types of problems can be described by systems of equations having a
common structure. Hence, in order to obtain approximate solutions for these problems,
similar numerical methods in curvilinear coordinates can be used, to some extent. In
particular, the choice of an adequate approximation strategy depends heavily on the
toroidal geometry and on the existence of an intense force field governing the physics of
the problem. A toroidal geometry (see, for instance, Figure 5.1) is a three-dimensional
domain defined as

Ω̂T
3d =

2π⋃

φ=0

Ω̂2d(φ), (5.1)

where, for any toroidal angle φ, Ω̂2d(φ) is a rotation of angle φ (around a given axis)
of a fixed surface known as poloidal section; we denote the boundary of the domain
Ω̂T

3d by ∂Ω̂T
3d. In this framework, numerical methods need to take into account all

geometrical effects and any strong anisotropy existing in the flows, which in turn are
largely dominated by convective phenomena having a preferred direction.
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(a) Torus
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(b) Toroidal system of coordinates

Figure 5.1. Example of a toroidal geometry.

The focus of this chapter is to describe a numerical tool that can be adapted to
toroidal geometry based on finite volume methods for hyperbolic conservation laws in
cylindrical coordinates, whose design is not as straightforward as in the Cartesian case
since valuable conservation properties are sometimes lost when discretizing. Moreover,
vectors in curvilinear coordinate systems are expressed in terms of bases that are spatially
dependent and the projection of a vector onto a local basis introduces geometrical source
terms (arising from the variations of this basis with respect to the coordinate variables) to
the conservation equations. From a numerical point of view, the challenge then consists
in finding a proper approximation of the geometrical terms such that all of the system’s
conservation properties are kept, avoiding the introduction of possible numerical errors
that may affect stability and accuracy.

Bonnement et al.’s approach [22] consists in constructing the finite volume approx-
imation for a hyperbolic system of conservation laws in general curvilinear coordinates
without utilizing any preliminary projection when dealing with the vector equations,
e.g., those that describe the evolution of the magnetic field in ideal MHD. All averaged
quantities are chosen carefully in order to construct a scheme capable of capturing the
principal characteristics of the physical models, and in this way, “automatically approxi-
mate the non-conservative terms in a consistent manner independently of the curvilinear
system used” [22]. In this chapter, we examine their approach in cylindrical coordinates
and apply it for the simulation of stable hydrodynamic flows in a three-dimensional
rectangular torus. The chapter structure is the following: first, we present all necessary
background information on curvilinear coordinates in the subsequent section; next, we
describe the finite volume methods in these coordinates, paying particular attention to
the geometrical terms; then, the developed strategy is validated through an application
to a stationary, multi-dimensional test problem in Section 5.3; and finally, concluding
remarks are given in the last section.

5.1 A Review of Curvilinear Coordinates
In order to use finite volume approximations in toroidal geometries, we first consider a
system of conservation laws formulated in the Cartesian (or physical) domain Ω(x)⊂ R

3

and then describe it in a curvilinear computational domain Ω̂(ξ)⊂ R
3. Curvilinear coor-
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dinates may be derived from the usual Cartesian ones xi by employing a transformation
Υ : x→ ξ (that is locally invertible Υ−1 : ξ→ x) at each point. For example, one has

x1 = r cosφ

x2 = r sinφ

x3 = z





Υ−→
Υ−1

←−





r = (x2
1 +x2

2)1/2

φ= tan−1
(
x2
x1

)

z = x3,

(5.2)

for the cylindrical coordinate system ξ = (r,φ,z), as seen in Figure 5.2. Formally speak-
ing, this one-to-one map Υ is assumed to be at least a C1-diffeomorphism, meaning that
the determinant J of the Jacobian matrix

JΥ =




∂x1

∂z1
∂x1

∂z2 · · · ∂x1

∂zd

∂x2

∂z1
∂x2

∂z2 · · · ∂x2

∂zd

...
...

. . .
...

∂xd

∂z1
∂xd

∂z2 · · · ∂xd

∂zd




(5.3)

is positive [22].

Ωα

x

Ω̂α

ξ

Υ

Υ−1

dΩ = dx dΩ̂ = r dξ

Figure 5.2. Transformation of an example control volume from the cylindrical coordinate
system to the Cartesian one and back.

Employing the Einstein summation convention, any vector v in a d-dimensional space
can be written as

v = vke
k = vkek, (5.4)

where vk (respectively, vk) are the vector components with respect to the dual or con-
travariant basis ek (respectively, covariant basis ek). These basis vectors have the prop-
erty of being mutually dual, i.e.,

ek · ej = δkj (5.5)

with δkj the Kronecker tensor having covariant index j and contravariant index k. Now,
restricting ourselves to the three-dimensional case d = 3 and to cylindrical or spherical
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coordinate systems with coordinates ξk (k = 1,2,3), most commonly used to define a
torus, one can make the distinction between natural basis vectors

ek =
∂x

∂ξk
, x = x1i +x2j +x3k, (5.6)

and the physical or normalized ones

ẽk =
ek

‖ek‖
, (5.7)

which are orthogonal and orthonormal, respectively (being i, j and k the standard basis
vectors). For clarity of presentation, indices i will henceforth be associated to Cartesian
elements, and for the curvilinear coordinate systems, we will use mostly j or k; thus,

ek =
∂xi

∂ξk
ei and ek =

∂ξk

∂xi
ei. (5.8)

5.1.1 Vector and Tensor Calculus: Gradient and Divergence

Now, we go over the mathematical definitions of gradient and divergence in curvilinear
coordinates. First, consider a scalar function s and its gradient given by

∇s=
∂s

∂x
=

∂s

∂ξk
ek, (5.9)

usually expressed in terms of physical basis vectors ek (and not in terms of the normalized
ones ẽk). Additionally, to compute the gradient of a vector or tensor, it is necessary to
keep in mind that basis vectors in curvilinear coordinates are functions of position unlike
in the Cartesian case and

∂em

∂ξl
=

∂2xi

∂ξl ∂ξk
ei, (5.10)

which in the dual space becomes

Γkml = ek · ∂em

∂ξl
, (5.11)

where Γkml is a Christoffel symbol (of the second kind), also called a coefficient of con-
nection [6]. Then, the gradient of the vector v(ξ) is defined in the following way:

∇v =
∂
(
vjej

)

∂x
=

(
∂vj

∂ξl
+ vmΓjml

)
ej ⊗ el; (5.12)

that of a tensor T as

∇T =
∂
(
T jk ej ⊗ ek

)

∂x
=

(
∂T jk

∂ξl
+TmkΓjml +T jmΓkml

)
ej ⊗ ek⊗ el. (5.13)
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Essentially, the divergence of a vector v(ξ) or tensor T is obtained by contraction of
the associated gradient expression such that

∇ ·v =
∂vk

∂ξk
+ vkΓjkj , ∇ ·T =

(
∂T jk

∂ξk
+TmkΓjmk +T jmΓkmk

)
ej , (5.14)

and by using the identity Γjkj = 1/J ∂ξk(J), one gets the two compact relations

∇ ·v =
1
J

∂(Jv · ek)
∂ξk

, (5.15a)

∇ ·T =
1
J

∂(JT · ek)
∂ξk

. (5.15b)

5.1.2 Cylindrical Coordinate System

The cylindrical coordinate system can be seen as an extruded three-dimensional version
of the known 2D polar coordinate system. The link between the coordinates ξ = (r,φ,z),
with ξ ∈ (0,∞)× [0,2π)× (−∞,∞), and the Cartesian ones is given in (5.2); the deter-
minant of the associated transformation Υ is J = r. Covariant basis vectors (5.6) are
defined as

er =




cosφ
sinφ

0


 , eφ =



−r sinφ
r cosφ

0


 , ez =




0
0
1


 , (5.16)

and the contravariant ones as er = er, eφ = (−sinφ/r, cosφ/r, 0)T , ez = ez. Further-
more, the corresponding normalized bases

ẽr = er, ẽφ = 1
reφ, ẽz = ez, (5.17)

constitute the change-of-variable matrix Oφ = (ẽr ẽφ ẽz), which in turn satisfies the
property OφOT

φ = I. In expanded form, this matrix is

Oφ =




cosφ −sinφ 0
sinφ cosφ 0

0 0 1


 , (5.18)

equally expressed in terms of

ẽr = er, ẽφ = reφ, ẽz = ez. (5.19)

Equipped with the above notations, we can write down the formulations of the gra-
dient and divergence operators in cylindrical coordinates. For a scalar s, equation (5.9)
leads to

∇s=
∂s

∂r
er +

∂s

∂φ
eφ +

∂s

∂z
ez =

∂s

∂r
ẽr +

1
r

∂s

∂φ
ẽφ +

∂s

∂z
ẽz. (5.20)
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Any vector v in Cartesian coordinates can be defined as a function of the covariant
bases in the cylindrical coordinate system, namely

v(x) = vx i + vy j + vz k,
v(ξ) = vr er + vφeφ + vz ez = ṽr ẽr + ṽφ ẽφ + ṽz ẽz,

(5.21)

where ṽr ẽr + ṽφ ẽφ + ṽz ẽz = Oφ (vr, r vφ, vz)T . Equation (5.15a) then yields

∇ ·v(ξ) =
1
r

(
∂(rvr)
∂r

+
∂(rvφ)
∂φ

+
∂(rvz)
∂z

)
=

1
r

(
∂(r ṽr)
∂r

+
∂(ṽφ)
∂φ

+
∂(r ṽz)
∂z

)
. (5.22)

Finally, for the tensor T (ξ) decomposed as

T (ξ) = T̃ rrẽr ⊗ ẽr + T̃ rφẽr ⊗ ẽφ + T̃ rzẽr ⊗ ẽz + T̃ φrẽφ⊗ ẽr

+ T̃ φφẽφ⊗ ẽφ + T̃ φzẽφ⊗ ẽz + T̃ zrẽz ⊗ ẽr + T̃ zφẽz ⊗ ẽφ + T̃ zzẽz ⊗ ẽz,

(5.23)

its divergence (see equation (5.15b)) reads

∇ ·T (ξ) =
1
r

(
∂(rT · er)

∂r
+
∂(rT · eφ)

∂φ
+
∂(rT · ez)

∂z

)
. (5.24)

By substituting er,eφ,ez from (5.19) into (5.24) and expanding the result, one is able
to determine the following expression:

∇ ·T (ξ) = 1
r∂r(r T̃

rrẽr + r T̃ rφẽφ + r T̃ rzẽz)

+ 1
r∂φ( T̃ φrẽr + T̃ φφẽφ + T̃ φzẽz) + 1

r∂z(r T̃
zr + r T̃ zφ + r T̃ zz),

(5.25)

which in the physical or normalized basis comes to be

ẽr · (∇ ·T (ξ)) = 1
r [ ∂r(r T̃ rr) + ∂φ(T̃ φr) + ∂z(r T̃ zr)− T̃ φφ ], (5.26a)

ẽφ · (∇ ·T (ξ)) = 1
r [ ∂r(r T̃ rφ) + ∂φ(T̃ φφ) + ∂z(r T̃ zφ) + T̃ φr ], (5.26b)

ẽz · (∇ ·T (ξ)) = 1
r [ ∂r(r T̃ rz) + ∂φ(T̃ φz) + ∂z(r T̃ zz) ], (5.26c)

after having considered ∂φẽr = ẽφ and ∂φẽφ =−ẽr.

5.2 Finite Volume Schemes in Cylindrical Coordinates
This section deals with the design of a finite volume approximation for hyperbolic con-
servation laws in cylindrical coordinates, following the pattern of mathematical devel-
opments given in Bonnement et al.’s paper [22, p. 165-170], but with some changes in
the presentation style and the addition of a subsection on control volumes and outward
normals. Thus, let us start by considering the general system of conservation laws (1.1b),
which we rewrite here for convenience:

∂tw +∇ ·F(w) = 0, in Ω(x)× (0,T ). (5.27)
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Recalling the transformation Υ : x→ ξ (5.2) with Jacobian determinant detJΥ =
J = r, the above expression becomes

∂w

∂t
+

1
r

∂(rF(w) · ek)
∂ξk

= 0, in Ω̂(ξ)× (0,T ), (5.28)

having used equality (5.15). To proceed with the construction of the finite volume
method, it is helpful to study separately the scalar and vector-valued cases for the
state variable w, for which the flux F is respectively a vector and tensor. However,
before diving into details concerning these cases, we must specify the subdivisions of the
computational domain Ω̂(ξ) and the associated elements.

5.2.1 Control Volumes and Outward Normals

The design of the finite volume method (first-order accurate) can be achieved by properly
defining the control volumes and their normals. We choose to decompose the computa-
tional domain Ω̂(ξ) into N non-overlapping subdomains, i.e.,

Ω̂(ξ) =
N⋃

α=1

Ω̂α(ξ), Ω̂µ ∩ Ω̂ν = ∅ for µ 6= ν, µ,ν = 1, . . . ,N, (5.29)

being Ω̂α a cell with volume |Ω̂α| and n̂ = (nr,nφ,nz) the outward pointing unit normal
field of its boundary ∂Ω̂α.

5.2.1.1 Structured Meshes

To find a numerical approximation in a structured mesh, we break the spatial domain
into grid cells with centers indexed as i, j,k, where i, j and k refer to the r-, φ- and
z-coordinate directions, respectively. Notice that these symbols play multiple roles in
different contexts and we urge the reader to take particular care so as to avoid any
confusion. Moreover, ∆r = 1/Nr, ∆φ= 1/Nφ and ∆z = 1/Nz are the grid spacings such
that ri = (i− 1)∆r, φj = (j− 1)∆φ and zk = (k− 1)∆z, with i= 1, . . . ,Nr, j = 1, . . . ,Nφ

and k = 1, . . . ,Nz; as in other chapters, the corresponding cell interfaces are denoted by
half integers. We can therefore write the domain decomposition as

Ω̂(ξ) =
N⋃

α=1

Ω̂α(ξ) =
⋃

i,j,k

Ω̂i,j,k(ξ), N =Nr ×Nφ×Nz. (5.30)

5.2.1.2 Toroidal Cells

One might choose to decompose the toroidal geometry Ω̂T
3d in the sense of (5.29) by

simply setting N =Nφ in (5.1) and defining

Ω̂α(ξ) =
φj+1⋃

φj

Ω̂2d,j(φ), (5.31)

where the poloidal section Ω̂2d,j (see, for instance, Figure 5.3) has a boundary of the
form ∂Ω̂2d,j = Ω̂2d(φj) + [φj ,φj+1]× ∂Ω̂2d + Ω̂2d(φj+1).
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Figure 5.3. Control volumes generated by revolving rectangular (left) and triangular (right)
sections in a three-dimensional space about the z-axis.

For a control volume Ω̂2d,j , the quantity |Ω̂2d,j | is directly related to the evaluation
of the divergence over the cell and can be found as follows:

|Ω̂2d,j |=
∫

Ω̂2d,j

∇ ·x
3

dx =
∫ φj+1

φj

∫

Ω̂2d

∇ ·x
3

r dξ. (5.32)

By using relation (5.22), we are able to obtain

3 |Ω̂2d,j |
φj+1−φj

=
∫

Ω̂2d

(
∂r(r2) + ∂z(rz)

)
dr dz =

∫

∂Ω̂2d

(
r2nr + rznz

)
dS, (5.33)

being nr and nz components of the unit normal vector n̂. Now, considering a boundary
∂Ω̂2d composed only of straight edges e ∈ ∂Ω̂2d with unit normal vectors denoted by
n̂e = (ner, neφ, nez)T , we write

∫

∂Ω̂2d

(
r2nr + rznz

)
dS =

∑

e∈∂Ω̂2d

∫

e

(
r2ner + rznez

)
dSe. (5.34)

Since the edges are assumed to be straight lines of definite length |e|, both r and z can
be defined in terms of l (the normalized coordinate aligned with e), such that

r(l) = (1− l)re,a + l re,b, z(l) = (1− l)ze,a + l ze,b, (5.35)

and with ∆φj = φj+1−φj , equation (5.33) can be rewritten as

3 |Ω̂2d,j |
∆φj

=
∑

e∈∂Ω̂2d

|e|
(
ner

∫ 1

0
r(l)2 dl+nez

∫ 1

0
r(l)z(l) dl

)
. (5.36)
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Then, the result derived above is algebraically manipulated to determine the expression

|Ω̂2d,j |= 1
3 ∆φj

∑

e∈∂Ω̂2d

ner |e|
[
re,are,b + 1

3(re,a− re,b)2
]

+ 1
3 ∆φj

∑

e∈∂Ω̂2d

nez |e|
[

1
2(re,aze,b + ze,are,b) + 1

3(re,a− re,b)(ze,a− ze,b)
]
,

(5.37)

whose interest is most obvious for general control volumes in unstructured meshes.

Examples Ω̂α

To exemplify the usage of the previous formulation, let us consider both toroidal cells
Ω̂α (5.31) displayed in Figure 5.3. If the poloidal section is a rectangle of size ∆r×∆z,
by employing equation (5.37) one gets

|Ω̂2d,j |= ri∆φj∆r∆z, (5.38)

for which it was necessary to work with the definitions of the unit normals related to
the square’s four edges, specifically (1,0,0)T , (0,0,1)T , (−1,0,0)T and (0,0,−1)T . In the
right-hand side of (5.38), ri is the radius of the poloidal section’s centroid.

With regard to the triangle with two sides of length L, we assume the following unit
normal vectors for the edges: (1,0,0)T , 1/

√
2(−1,0,1)T and (0,0,−1)T . Hence,

|Ω̂2d,j |= 1
3∆φj

[
L (ra +L)2− 1

3L
(
3ra (ra +L) +L2

)
+ 1

6L
(
3ra L+ 2L2

)]

= 1
2∆φjL2

(
ra + 2

3L
)
, (5.39)

which is a result that can be verified using Pappus-Guildinus theorem. For this, the
elemental volume is Vj = 1/2ri∆φj L2, being L2/2 the area of the triangular section; in
this context, the radius to its centroid is ri = ra + 2/3L and consequently, Vj = |Ω̂2d,j |.

For these examples, the geometries and the corresponding outward normal vectors
were designed to make the estimation of the volumes simple and straightforward. How-
ever, in the general case, one needs to properly determine all variables n̂e for a given
subdomain Ω̂2d,j such that the equality

0 =
∫

Ω̂2d,j

∇ ·1 dx =
∫ φj+1

φj

∫

Ω̂2d

∇ ·1 r dξ, (5.40)

is satisfied. Performing steps similar to the ones used at the beginning of the subsection
5.2.1.2, we have

0 =
∫ φj+1

φj

∫

∂Ω̂2d,j

(
(cosφ+ sinφ) nr + nz

)
r dl dφ

+ |Ω̂2d|
(
(cosφj+1− sinφj+1) nφj+1 + (cosφj − sinφj) nφj

)
,

(5.41)

recalling that ∂Ω̂2d,j = Ω̂2d(φj) + [φj ,φj+1]× ∂Ω̂2d + Ω̂2d(φj+1). The terms nφj+1 and nφj

refer to the second components of the outward unit normal vectors to Ω̂2d(φj+1) and
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Ω̂2d(φj), respectively. Note that the previous expression can be simplified to produce

0 =
∑

e∈∂Ω̂2d,j

1
2 |e|(re,a + re,b)

[(
(sinφj+1− sinφj)− (cosφj+1− cosφj)

)
ner + ∆φj nez

]

+ |Ω̂2d|
[
(cosφj+1− sinφj+1) nφj+1 + (cosφj − sinφj) nφj

]
.

(5.42)

5.2.2 Scalar Equation

Taking w = s a scalar and F(w) = v a vector, equation (5.28) turns into

∂s

∂t
+

1
r

∂(rv · ek)
∂ξk

= 0, in Ω̂(ξ)× (0,T ), (5.43)

and integrating it over a control volume Ω̂α, gives

1

|Ω̂α|

∫

Ω̂α

∂s

∂t
dΩ̂ +

1

|Ω̂α|

∫

Ω̂α

1
r

∂(rv · ek)
∂ξk

dΩ̂ = 0, (5.44)

after having divided the result by the cell’s volume. Now, let us introduce the average
value of the scalar variable over this cell and denote it by sα, i.e.,

sα =
1

|Ω̂α|

∫

Ω̂α

rs dξ, (5.45)

recalling that dΩ̂ = r dξ. Since Ω̂α is fixed in time, it is then possible to rewrite (5.44) as

∂sα
∂t

+
1

|Ω̂α|

∫

Ω̂α

∂(rv · ek)
∂ξk

dξ = 0, (5.46)

which is equivalent to

∂sα
∂t

+
1

|Ω̂α|

∫

∂Ω̂α

(
rvk(ek · n̂)

)
dσ̂(ξ) = 0, (5.47)

by application of the divergence theorem, with dσ̂(ξ) the Lebesgue measure on the
surface ∂Ω̂α. If we assume the boundary ∂Ω̂α to be defined only by straight edges
e ∈ ∂Ω̂α with their corresponding outward pointing unit normal vectors n̂e, equation
(5.47) becomes

∂sα
∂t

+
1

|Ω̂α|
∑

e∈∂Ω̂α

∫

e

(
rvk(ek · n̂e)

)
dσ̂e(ξ) = 0, (5.48)

where the summation part is estimated from knowledge of numerical fluxes [64, 90, 129].
For the purpose of exemplification, consider first the term

∫
e(·)dσ̂e(ξ) of the above

relation in cylindrical coordinates (refer to equation (5.22)) such that
∫

e
rvknek dσ̂e(ξ) =

∫

e

(
rṽrner + ṽφneφ + rṽz nez

)
dσ̂e(ξ), (5.49)
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and then set s= ρ and v = ρu = ρũr ẽr + ρũφ ẽφ + ρũz ẽz in (5.48, 5.49), yielding

∂ρα
∂t

+
1

|Ω̂α|
∑

e∈∂Ω̂α

∫

e

(
rρũrner + ρũφneφ + rρũz nez

)
dσ̂e(ξ) = 0, (5.50)

i.e., the equation of conservation of mass in cylindrical coordinates. Using the notation
of Section 5.2.1.1, the discretization of this equation on a structured mesh is

ρn+1
i,j,k = ρni,j,k −

1
ri

∆t
∆r

[
ri+ 1

2
(ρũr)i+ 1

2 ,j,k
− ri− 1

2
(ρũr)i− 1

2 ,j,k

]

− 1
ri

∆t
∆φ

[
(ρũφ)i,j+ 1

2 ,k
− (ρũφ)i,j− 1

2 ,k

]
− ∆t

∆z

[
(ρũz)i,j,k+ 1

2
− (ρũz)i,j,k− 1

2

]
,

(5.51)
since |Ω̂i,j,k| = ri∆r∆φ∆z. We wish to add that a similar expression can be found for
the conservation of the energy density in the context of the Euler equations (1.20) for
inviscid compressible gas flows.

5.2.3 Vector Equation: Two Approaches for Discretization

Let us now turn our attention to the case where w = v is a vector and F(w) = T a
tensor, so that equation (5.28) can be rewritten as

∂v

∂t
+

1
r

∂(rT · ek)
∂ξk

= 0, in Ω̂(ξ)× (0,T ). (5.52)

By integrating (5.52) over Ω̂α and dividing the result by |Ω̂α|, as was done in Section
5.2.2 (Scalar Equation), one gets

1

|Ω̂α|

∫

Ω̂α

∂v

∂t
dΩ̂ +

1

|Ω̂α|

∫

Ω̂α

1
r

∂(rT · ek)
∂ξk

dΩ̂ = 0. (5.53)

Given that v is a vector, equation (5.53) needs to be expressed component-by-
component in a given basis; thus, the methodology used to obtain the final discretization
is not straightforward as in the scalar case. In the following, we will present two methods
for this purpose and the associated equivalence relation between them.

Method I: Projection→Integration

This classic approach consists in taking the scalar product between equation (5.52) and
the normalized covariant basis ẽk (respectively, normalized contravariant basis ẽk) to
obtain a scalar equation for the contravariant component ṽk (respectively, covariant
component ṽk) of v. Then, the resulting equation gets discretized using the approach of
Section 5.2.2; hereafter, this method will be referred to as projection→integration.

It can be easily verified that the projection of equation (5.52) onto ẽk is simply

∂(ṽk)
∂t

+ ẽk ·
[

1
r

∂(rT · ek)
∂ξk

]
= 0, (5.54)



144 Finite Volumes in Toroidal Geometry

and by employing definition (5.26), one is able to expand it in cylindrical coordinates in
order to obtain three relations:

∂tṽ
r + 1

r [ ∂r(r T̃ rr) + ∂φ(T̃ φr) + ∂z(r T̃ zr) ] = 1
r T̃

φφ, (5.55a)

∂tṽ
φ + 1

r [ ∂r(r T̃ rφ) + ∂φ(T̃ φφ) + ∂z(r T̃ zφ) ] =−1
r T̃

φr, (5.55b)

∂tṽ
z + 1

r [ ∂r(r T̃ rz) + ∂φ(T̃ φz) + ∂z(r T̃ zz) ] = 0. (5.55c)

Note that since cylindrical basis vectors are spatially dependent, they do not commute
with the differential operators and this is the reason why some geometrical source terms
appear in the previous equations. This in turn implies that (5.55) is no longer in con-
servation form, i.e., the conservative character of system (5.52) is lost when projecting
as in (5.54). Moreover, utilizing the methodology detailed in Section 5.2.2, we specify

|Ω̂α|
∂ṽrα
∂t

+
∑

e∈∂Ω̂α

∫

e

(
r T̃ rrner + T̃ φrneφ + rT̃ zrnez

)
dσ̂e(ξ) =

∫

Ω̂α

T̃ φφ dξ, (5.56a)

|Ω̂α|
∂ṽφα
∂t

+
∑

e∈∂Ω̂α

∫

e

(
r T̃ rφner + T̃ φφneφ + r T̃ zφnez

)
dσ̂e(ξ) =−

∫

Ω̂α

T̃ φr dξ, (5.56b)

|Ω̂α|
∂ṽzα
∂t

+
∑

e∈∂Ω̂α

∫

e

(
r T̃ rz ner + T̃ φz neφ + r T̃ zz nez

)
dσ̂e(ξ) = 0, (5.56c)

which can be discretized in space on a structured mesh, resulting in

r© |Ω̂i,j,k|∂t(ṽri,j,k) + ∆φ∆z(ri+1/2 T̃
rr
i+1/2,j,k− ri−1/2 T̃

rr
i−1/2,j,k) (5.57a)

+ ∆r∆z(T̃ φri,j+1/2,k− T̃ φri,j−1/2,k) + ri∆r∆φ(T̃ zri,j,k+1/2− T̃ zri,j,k−1/2) =
∫

Ω̂i,j,k

T̃ φφ(ξ) dξ,

φ© |Ω̂i,j,k|∂t(ṽφi,j,k) + ∆φ∆z(ri+1/2 T̃
rφ
i+1/2,j,k− ri−1/2 T̃

rφ
i−1/2,j,k) (5.57b)

+ ∆r∆z(T̃ φφi,j+1/2,k−T̃ φφi,j−1/2,k) + ri∆r∆φ(T̃ zφi,j,k+1/2− T̃ zφi,j,k−1/2)=
∫

Ω̂i,j,k

−T̃ φr(ξ) dξ,

z© |Ω̂i,j,k|∂t(ṽzi,j,k) + ∆φ∆z(ri+1/2 T̃
rz
i+1/2,j,k− ri−1/2 T̃

rz
i−1/2,j,k) (5.57c)

+ ∆r∆z(T̃ φzi,j+1/2,k− T̃ φzi,j−1/2,k) + ri∆r∆φ(T̃ zzi,j,k+1/2− T̃ zzi,j,k−1/2) = 0.

There are various strategies that can be used to compute the “source terms” present
on the right-hand side of equation (5.57). Some authors (see [129] for a list of references)
have pointed out that their discretization should be associated to the boundary cell values
obtained from the Riemann problem solution. How to properly evaluate these terms
becomes natural when the integration is performed before the projection of equations.

Method II: Integration→Projection

As in the paper of Bonnement et al. [22], we recommend the use of the procedure that
follows, which from now will be called integration→projection approach. Its simplicity
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is not its only advantage; it also accounts for a general (and implicit) discretization of
the geometrical source terms.

First, let us define the average basis ẽk,α in the control volume Ω̂α as

ẽk,α =
1

|Ω̂α|

∫

Ω̂α

r ẽk dξ so that
1

|Ω̂α|

∫

Ω̂α

rv dξ = ṽkαẽk,α, (5.58)

being ṽkα constant in the cell. Then, after establishing the dual average basis ẽkα, the
finite volume approximation reads

∂ṽkα
∂t

ẽk,α +
1

|Ω̂α|

∫

Ω̂α

∂(rT · ek)
∂ξk

dξ = 0, (5.59)

and its projection onto ẽkα as

∂ṽkα
∂t

+
ẽkα

|Ω̂α|
·
∫

Ω̂α

∂(rT · ek)
∂ξk

dξ = 0. (5.60)

Switching to the cylindrical coordinate system context, we need to find the explicit
expressions for the average values of the normalized basis vectors over a cell, i.e., for

ẽr,α =
1

|Ω̂α|

∫

Ω̂α

r ẽr dξ, ẽφ,α =
1

|Ω̂α|

∫

Ω̂α

r ẽφ dξ, ẽz,α =
1

|Ω̂α|

∫

Ω̂α

r ẽz dξ. (5.61)

Considering once more the notation introduced in Section 5.2.1.1, we are able to deduce

ẽr,i,j,k =
1

∆φ




sin(φj+1/2)− sin(φj−1/2)
cos(φj−1/2)− cos(φj+1/2)

0


 , ẽφ,i,j,k =

1
∆φ




cos(φj+1/2)− cos(φj−1/2)
sin(φj+1/2)− sin(φj−1/2)

0


 ,

(5.62)
and ẽz,i,j,k = ẽz. In addition, the corresponding dual values are given by

ẽri,j,k =
∆φ2

2(1− cos∆φ)
ẽr,i,j,k, ẽφi,j,k =

∆φ2

2(1− cos∆φ)
ẽφ,i,j,k, ẽzi,j,k = ẽz. (5.63)

We have now all the necessary ingredients to derive the finite volume approximation
associated to the integration→projection approach in cylindrical coordinates. With the
above definitions and recalling the one of divergence for a tensor in (5.25), equation
(5.59) is expanded into

|Ω̂i,j,k| [∂t(ṽri,j,k)ẽr,i,j,k + ∂t(ṽφi,j,k)ẽφ,i,j,k + ∂t(ṽzi,j,k)ẽz,i,j,k]

+ ∆φ[∆z(ri+1/2 T̃
rr
i+1/2,j,k− ri−1/2 T̃

rr
i−1/2,j,k) + ri∆r(T̃ zri,j,k+1/2− T̃ zri,j,k−1/2) ]ẽr,i,j,k

+ ∆φ[∆z(ri+1/2 T̃
rφ
i+1/2,j,k− ri−1/2 T̃

rφ
i−1/2,j,k)+ ri∆r(T̃ zφi,j,k+1/2− T̃ zφi,j,k−1/2) ]ẽφ,i,j,k

+ ∆φ[∆z(ri+1/2 T̃
rz
i+1/2,j,k− ri−1/2 T̃

rz
i−1/2,j,k) + ri∆r(T̃ zzi,j,k+1/2− T̃ zzi,j,k−1/2) ]ẽz,i,j,k

+ ∆r∆z[ T̃ φri,j+1/2,kẽr|φj+1/2
− T̃ φri,j−1/2,k ẽr|φj−1/2

]

+ ∆r∆z[ T̃ φφi,j+1/2,kẽφ|φj+1/2
− T̃ φφi,j−1/2,kẽφ|φj−1/2

]

+ ∆r∆z[ T̃ φzi,j+1/2,k− T̃ φzi,j−1/2,k]ẽz,i,j,k
= 0. (5.64)
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Furthermore, a projection of this long expression onto ẽri,j,k, ẽφi,j,k, ẽzi,j,k, yields

r© |Ω̂i,j,k|∂t(ṽri,j,k) + ∆φ∆z(ri+1/2 T̃
rr
i+1/2,j,k− ri−1/2 T̃

rr
i−1/2,j,k)

+ ri∆r∆φ(T̃ zri,j,k+1/2− T̃ zri,j,k−1/2)− 1
2∆r∆φ∆z(T̃ φφi,j+1/2,k + T̃ φφi,j−1/2,k)

+ 1
2∆r∆φ∆z (sin∆φ)/(1− cos∆φ)(T̃ φri,j+1/2,k− T̃ φri,j−1/2,k) = 0, (5.65a)

φ© |Ω̂i,j,k|∂t(ṽφi,j,k) + ∆φ∆z(ri+1/2 T̃
rφ
i+1/2,j,k− ri−1/2 T̃

rφ
i−1/2,j,k)

+ ri∆r∆φ(T̃ zφi,j,k+1/2− T̃ zφi,j,k−1/2) + 1
2∆r∆φ∆z(T̃ φri,j+1/2,k + T̃ φri,j−1/2,k)

+ 1
2∆r∆φ∆z (sin∆φ)/(1− cos∆φ)(T̃ φφi,j+1/2,k− T̃ φφi,j−1/2,k) = 0, (5.65b)

z© |Ω̂i,j,k|∂t(ṽzi,j,k) + ∆φ∆z(ri+1/2 T̃
rz
i+1/2,j,k− ri−1/2 T̃

rz
i−1/2,j,k)

+ ∆r∆z(T̃ φzi,j+1/2,k− T̃ φzi,j−1/2,k) + ri∆r∆φ(T̃ zzi,j,k+1/2− T̃ zzi,j,k−1/2) = 0. (5.65c)

Equivalence Relation in Cylindrical Coordinates

The full comparison between equations (5.57) (projection→integration) and those of the
integration→projection approach (see above) is summarized in the subsequent result.

Proposition 5.2.1. The projection→integration and integration→projection procedures
applied to a vector equation written in cylindrical coordinates are equivalent if and only
if the source terms (of projection→integration) are discretized in the following way:

∫

Ω̂i,j,k

T̃ φφ(ξ) dξ =1
2∆r∆φ∆z(T̃ φφi,j+1/2,k + T̃ φφi,j−1/2,k)

+ ∆r∆z
(

1− ∆φ
2

sin∆φ
1− cos∆φ

)
(T̃ φri,j+1/2,k + T̃ φri,j−1/2,k) (5.66a)

∫

Ω̂i,j,k

T̃ φr(ξ) dξ =1
2∆r∆φ∆z(T̃ φri,j+1/2,k + T̃ φri,j−1/2,k)

−∆r∆z
(

1− ∆φ
2

sin∆φ
1− cos∆φ

)
(T̃ φφi,j+1/2,k + T̃ φφi,j−1/2,k) (5.66b)

Moreover, this discretization is consistent on ξ.

Let us note that, after dividing by the cell’s volume Ω̂i,j,k = ri∆φj∆r∆z, the two equa-
tions in the above proposition can be rewritten in the following way:

ri

|Ω̂i,j,k|

∫

Ω̂i,j,k

T̃ φφ(ξ) dξ =1
2(T̃ φφi,j+1/2,k + T̃ φφi,j−1/2,k) + c(∆φ)(T̃ φri,j+1/2,k + T̃ φri,j−1/2,k)

ri

|Ω̂i,j,k|

∫

Ω̂i,j,k

T̃ φr(ξ) dξ =1
2(T̃ φri,j+1/2,k + T̃ φri,j−1/2,k)− c(∆φ)(T̃ φφi,j+1/2,k + T̃ φφi,j−1/2,k),

(5.67)
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having defined the function

c(x) =
(

1
x
− sinx

2− 2 cosx

)
. (5.68)

As one refines the underlying mesh, the mean values of T̃ φφ and T̃ φφ should be recovered
in equation (5.67). Thus, by looking at the right-hand side of (5.67), it is clear that for
this to be the case, the limit of c(∆φ) should be zero as ∆φ→ 0. To verify this, we write

lim
x→0

c(x) =
1
2

(
lim
x→0

x sinx+ 2(cosx− 1)
x(cosx− 1)

)
, (5.69)

and by applying L’Hôpital’s rule three times, we finally obtain

lim
x→0

x sinx+ 2(cosx− 1)
x(cosx− 1)

= lim
x→0

x cosx+ sinx
3cosx−xsinx

=
limx→0(sinx)

limx→0(3cosx−xsinx)
, (5.70)

which is zero since the limit of sin(x) as x→ 0 is zero. Therefore, we can write

lim
x→0

c(x) = 0, (5.71)

and conclude that the discretization of Proposition 5.2.1 is indeed consistent on ξ.

5.3 Numerical Results
In this section, we present first numerical results for an interesting test problem defined
on a three-dimensional rectangular torus, in order to validate the approach detailed in
this chapter for cylindrical coordinates; only first-order approximations are considered
for the moment.

5.3.1 Three-Dimensional Gresho Vortex

The two-dimensional Gresho vortex problem [70] consists of a stable time-independent
vortex, where the pressure gradient is well-balanced with the centrifugal force. It is
supposed that the density ρ and the radial velocity ũr are, respectively, one and zero
everywhere. In addition, both the angular velocity ũφ and pressure p depend solely on
the radius r, namely

ũφ(r) =





5r

−5r+ 2

0

, p(r) =





25
2 r

2 + 5 if 0.0≤ r < 0.2,
25
2 r

2− 20r+ 9− 4ln(0.2) + 4ln(r) if 0.2≤ r < 0.4,

3 + 4ln(2) if 0.4≤ r < rmax,

(5.72)
with rmax being the maximum radius of the domain. The Gresho problem was originally
used for incompressible flows in [70] and later applied to the Euler equations in [98]. All
initial profiles are shown in Figure 5.4, with rmax = 1. We verify that the centrifugal
force matches the pressure gradient in the following way:

ũ2
φ

r
=
∂p

∂r
=





25r if 0.0≤ r < 0.2,

25r− 20 + 4
r if 0.2≤ r < 0.4,

0 if 0.4≤ r < rmax.

(5.73)
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(a) Density ρ (b) Velocity ũr (c) Velocity ũφ (d) Pressure p

Figure 5.4. Exact solution of the 2D Gresho vortex problem [70, 98].

For our purposes, we modify this test and adapt it to a toroidal geometry. Thus, we
assume once more that the density ρ = 1 and the radial velocity ũr = 0, everywhere in
the computational domain. Moreover, we define the angular velocity such that its profile
matches the one of Figure 5.5c but shifted by one unit in the r-direction, i.e.,

ũφ(r) =





5(r− 1) if 1.0≤ r < 1.2,

−5r+ 7 if 1.2≤ r < 1.4,

0 if 1.4≤ r < rmax.

(5.74)

Then, the pressure can be obtained as a solution of the ordinary differential equation
p′(r) = ũ2

φ/r such that

p(r) =





25(1
2r

2− 2r+ ln(r)) + 85
2 1.0≤ r < 1.2,

25
2 r

2− 70r+ 49ln(r) + 133
2 − 24ln(1.2) 1.2≤ r < 1.4,

49ln(1.4)− 24ln(1.2)− 7 1.4≤ r < rmax.

(5.75)

In Figure 5.5, we have depicted these profiles with rmax = 2. As a last step, a simple ex-
tension of the previous problem to three dimensions is done by setting w(r,φ,z) = w(r),
for all φ and z.

(a) Density ρ (b) Velocity ũr (c) Velocity ũφ (d) Pressure p

Figure 5.5. Exact solution of the modified two-dimensional Gresho vortex problem.

Now, we compute this equilibrium flow for the Euler equations of gas dynamics
with an ideal equation of state (γ = 5/3). The problem is initialized on a cylindrical
computational mesh of size [1,2]× [0,2π]× [−0.5,0.5] consisting of 10× 4× 10 uniform
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cells and is run a sufficiently long time T = 500, using a CFL of 0.9. Periodic boundary
conditions are set in φ; reflecting ones in z and for the exterior boundary in the r-
direction; and the slip BC is applied to the remaining boundary. Despite the coarseness
of the mesh, the cylindrical method gives a solution close to the stationary one as can
be appreciated in Figure 5.6.

(a) Density at t= 0.0 (b) Velocity mag. at t= 0.0 (c) Pressure at t= 0.0

(d) Density at t= 50.0 (e) Velocity mag. at t= 50.0 (f) Pressure at t= 50.0

Figure 5.6. Density, pressure and velocity magnitude for the three-dimensional Gresho test in
a toroidal geometry, with N = 10× 4× 10 and at times t= 0 (top) and t= 50 (bottom).

Figure 5.7 shows the evolution in time of the L2 error for the density (left) and the
L2 norm of the velocity (right), in logarithmic scales. The four different lines in each plot
correspond to a change in the number of cells in the toroidal direction when performing
the simulations. Observe that as this number is increased, the slope of the stabilized
line diminishes for the L2 error, representing more stability in the long run. Note that
errors remain small even if Nφ is small.

5.4 Conclusions
We have studied the derivation of finite volume methods in cylindrical coordinates for
hyperbolic conservation laws. Since vectors in curvilinear coordinate systems are ex-
pressed in terms of bases that are spatially dependent, the projection of a vector onto
a local basis introduces geometrical source terms that should not be arbitrarily dis-
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Figure 5.7. Results in logarithmic scale for the three-dimensional Gresho vortex with 10×
Nφ× 10 cells; computations performed on one processor.

cretized. Actually, we have investigated the proper approximation of these geometrical
terms such that all of the system’s conservation properties are kept. A numerical test
has been proposed and the approach has been successfully applied for the simulation of
a stable hydrodynamic flow in a three-dimensional rectangular torus. More numerical
tests should be performed, especially in the context of MHD equations.



CHAPTER6
Conclusions and Perspectives

The work presented in this thesis deals with the study and design of Godunov-type finite
volume methods for the numerical solution of systems of conservation laws, with partic-
ular interest in applications to gas dynamics and magnetohydrodynamics. In general,
we believe that simple formulations can be highly effective in practice, as Godunov-type
schemes are likely to be implemented and used by individuals who are not algorithm
developers themselves as means to simulate real problems in various contexts. With
simplicity we do not mean developing simplistic solutions that compromise quality, but
rather providing the method’s fundamental considerations and resulting expressions in a
way that will allow others to reproduce our findings without any unnecessary difficulties.

In the first part, we have described a simple multidimensional Riemann solver for
hyperbolic conservation laws that can be regarded as a 2D generalization or extension
of the HLL formalism. The associated numerical strategy relies on an approximate
description of the two-dimensional Riemann problem consisting of planar waves which
separate several constant states. We make use of the consistency with the integral formu-
lation through Rankine-Hugoniot relations (holding across the discontinuities) to derive
closed-form expressions for the fluxes, facilitating their implementation. The problem’s
unknowns are in fact solutions of an overdetermined system that we solve using a least
squares approximation. We have also provided a robust assembling approach (based on
varying weights) that is useful to estimate the total flux at the cells’ faces, which has been
validated through several numerical tests applied to subsonic and supersonic flows. In
addition to the simplicity, we have also proposed a generalization to unstructured grids
with a formulation that is mostly algebraic rather than geometrical. We argue that
jump conditions can be improved by designing complex profiles so that the Rankine-
Hugoniot relations define an invertible system; extensions of more complex solvers such
as the HLLE (linear intermediate state) and HLLC (with a contact discontinuity wave)
are also feasible. Moreover, given that the consistency with the integral formulation
through these relations holds in three dimensions as well, a genuine 3D solver can be
obtained in future work. The application of our solver for the evolution of the MHD
equations (and not only for the estimation of the electric field as in Chapter 3) is possible.



152 Conclusions and Perspectives

Next, our investigation and comparison of two different methods that aim to main-
tain the divergence-free property of the magnetic field have assured us (and hopefully,
the reader as well) that it is a constraint that cannot be ignored without having con-
sequences. In particular, we have investigated the hyperbolic divergence technique pro-
posed by Dedner et al. [45] applied to the ideal MHD equations on a collocated grid
and have compared it to the constrained transport approach, originally introduced by
Evans and Hawley [52] and which relies on a staggered formulation of the magnetic and
electric fields. Our findings show that the advantage of the divergence cleaning tech-
nique is its simplicity in terms of implementation and the fact that it is based on the
cell-centered formulation favored in the Godunov approach; however, it has the draw-
back of depending on tunable parameters, which in turn are avoided in the constrained
transport methodology. Although this last method, i.e., the CT one, sometimes presents
loss of conservation of the total energy density, it has an inherently divergence-free mag-
netic field given its associated staggered mesh discretization and the 2D Riemann solver
can easily be employed to estimate the staggered electric field. Through different nu-
merical test cases, we have been able to reproduce results obtained by other authors
and conclude that both methods are robust and efficient (yet, they still permit room for
improvement). Although we find that the hyperbolic divergence cleaning generates more
diffusive results than the constrained transport, the simplicity of the method makes it
an attractive technique for our future work in the design of a high order finite volume
approximation for hyperbolic conservation laws in curvilinear unstructured grids.

In Chapter 4, we have shown the derivation of a Suliciu-type relaxation model that
ensures adequate coupling of the Poisson and Euler equations, yielding an interesting
scheme described in the limit as a penalty parameter tends to zero. In view of astro-
physical simulations, the asymptotic regime of self gravitational equilibrium flows must
be preserved, and although several asymptotically stable methods for the Euler-Poisson
system in the quasineutral limit have already been developed [40, 46], they become far
too complex in three dimensions or when an implicit formulation is required. We have
proposed a simpler numerical scheme based on a Godunov-type solver deduced from a
relaxation system, and with different types of examples, we have established the scheme’s
robustness and demonstrated its ability to capture and preserve steady (and perturbed
quasi-steady) states when required. Moreover, the scheme has been reconsidered in
spherical coordinates in order to recover precisely the solution of the Lane-Emden equa-
tion. Future work will be devoted to a well-balanced time implicit formulation of the
method and simulations of 3D self-gravitating astrophysical problems.

Finally, we have studied the derivation of finite volume methods in cylindrical coor-
dinates for hyperbolic conservation laws. Since vectors in curvilinear coordinate systems
are expressed in terms of bases that are spatially dependent, the projection of a vector
onto a local basis introduces geometrical source terms that should not be arbitrarily dis-
cretized. Actually, we have investigated the proper approximation of these geometrical
terms such that all of the system’s conservation properties are kept; the approach has
been applied for the simulation of a stable hydrodynamic flow in a three-dimensional
rectangular torus. Forthcoming works include extending this approach to unstructured
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meshes and applying the resulting schemes to real magnetic confinement fusion problems,
with the aim of contributing to this exciting field of research.

Most of the numerical results in this thesis have been obtained with the software
HERACLES [66], a 3D parallel hydrodynamical code used to simulate astrophysical
fluid flows. In the context of high-performance computing (HPC), the code uses the MPI
library to distribute large computational domains among many processors and perform
the necessary communication among them. Recently, a new cluster named Poincare was
installed at Maison de la Simulation for development, testing and research, featuring:
92 nodes for calculation, each with 2 processors Sandy Bridge E5-2670, i.e., 16 cores per
node; 2 large nodes x3755 M3 with 64 cores each; and 4 GPU nodes. As a matter of
fact, all results on more than one core have been computed using Poincare, allowing us
to investigate several problems on mesh sizes that were previously beyond reach.





Conclusions et Perspectives

Le travail présenté dans cette thèse traite de l’étude et de la construction des méthodes
volumes finis de type Godunov pour résoudre numériquement des systèmes de lois de
conservation, avec un intérêt particulier dans les équations de la dynamique des gaz et de
la magnétohydrodynamique. En général, nous croyons que les formulations simples sont
très efficaces dans la pratique pour simuler de problèmes du monde réel, étant donné que
les schémas de type Godunov sont susceptibles d’être mises en œuvre et utilisés par des
individus qui ne sont pas des développeurs eux-mêmes. Avec le terme «simple», nous
ne parlons pas de développement de solutions simplistes où la qualité est compromise,
mais plutôt d’apporter des idées et des expressions fondamentales de l’approche d’une
manière qui permette aux autres de reproduire nos résultats sans difficulté.

Dans la première partie, nous avons décrit un solveur de Riemann multidimension-
nel simple et peut être considéré comme une généralisation 2D du formalisme HLL pour
les lois de conservation hyperboliques. La stratégie numérique associée s’appuie sur un
profil approché du problème de Riemann bidimensionnel constitué d’ondes planes sé-
parant des états constants. Nous proposons d’utiliser la consistance avec la formulation
intégrale à travers les relations de Rankine-Hugoniot afin d’obtenir des expressions assez
simples à mettre en œuvre du flux numérique. Les inconnues du problème de Riemann
2D sont alors les solutions d’un système surdéterminé que nous résolvons par la méthode
des moindres carrés. Nous avons également fourni une approche d’assemblage robuste
qui s’avère utile pour estimer le flux total aux faces des cellules et qui a été validé
par plusieurs cas tests d’écoulements subsoniques et supersoniques. En plus de la sim-
plicité, nous avons également proposé une généralisation de la méthode aux maillages
non structurés avec une formulation algébrique. Nous savons que les relations de saut
peuvent être améliorées si nous considérons des profils complexes pour lesquels les con-
ditions Rankine-Hugoniot définissent un système inversible ; des extensions de solveurs
de Riemann plus complexes comme HLLE (état intermédiaire linéaire) et HLLC (avec
un discontinuité de contact) sont également envisageables. En outre, étant donné que la
consistance avec la formulation intégrale à travers les relations de saut s’applique aussi en
trois dimensions, un solveur 3D peut être obtenu dans les travaux à venir. L’application
de notre solveur pour l’évolution des équations MHD (et pas seulement pour l’estimation
du champ électrique dans le Chapitre 3) est un des perspectives de ce travail.

Ensuite, notre étude s’est porté sur la comparaison de deux stratégies numériques
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visant à préserver, au niveau discret, la contrainte de divergence nulle sur le champ
magnétique. Les résultats obtenus montrent que cette contrainte ne peut pas être ig-
norée numériquement, sas conséquences néfastes sur la fiabilité des résultats. En par-
ticulier, nous avons étudié la technique d’épuration de la divergence par une correction
hyperbolique («hyperbolic cleaning»), proposée par Dedner et al. [45] et appliquée aux
équations de la MHD idéale sur une grille colocalisée. Nous la comparons à l’approche
du transport contraint, initialement introduit par Evans et Hawley [52] et qui, utilise
une grille décalée (pour les champs magnétiques et électriques) pour maintenir cette
propriété. Nos résultats montrent que l’avantage de la technique hyperbolic cleaning est
sa simplicité en termes de la mise en œuvre et du fait qu’elle est basée sur la formula-
tion centrée des cellules (cette formulation s’intègre aisément dans l’approche Godunov).
Cependant, cette technique a l’inconvénient de dépendre de paramètres ajustables. La
méthode CT n’a, quant à elle, pas de paramètres ajustables mais présente parfois une
perte de la conservation de l’énergie totale, mais elle a l’avantage d’avoir un champ mag-
nétique avec une divergence parfaitement nulle sur la discrétisation décalée ; le solveur
Riemann 2D peut facilement être utilisé pour estimer le champ électrique aux coins du
maillage. Grâce à différents tests numériques, nous avons été en mesure de reproduire
les résultats obtenus par d’autres auteurs et de conclure que les deux méthodes sont
robustes et efficaces (mais, ils permettent toujours place à l’amélioration). Même si
nous constatons que l’épuration de la divergence par une correction hyperbolique génère
des résultats plus diffusifs que ceux du transport contraint, la simplicité de la méthode
est attrayante pour nos travaux futurs sur la construction des schémas volumes finis
d’ordre élevés pour les lois de conservation hyperboliques en maillages non structurés et
curvilignes.

Dans le chapitre 4, nous avons présenté la dérivation d’un modèle de relaxation de
type Suliciu qui assure un couplage adéquat des équations d’Euler et de la équation de
Poisson, donnant un schéma intéressant qui est obtenu à la limite quand le paramètre
de pénalisation tend vers zéro. Au vu des simulations numériques en astrophysique, le
régime asymptotique des équilibres autogravitationnels doit être préservé, et même si
plusieurs méthodes asymptotiques et stables pour ce système d’Euler-Poisson à la limite
quasi neutre ont déjà été mis en œuvre [40, 46], ils deviennent trop complexes soit en
trois dimensions ou lorsque quand une formulation implicite est nécessaire. Nous avons
proposé un schéma numérique simple basé sur un solveur de type Godunov construit à
partir du modèle de relaxation, et avec différents types d’exemples, nous avons testé la
robustesse du schéma et démontré sa capacité de capturer et préserver des états stables
(et quasi-stables) lorsque le problème l’exige. En outre, le schéma a été aussi formulé
en coordonnées sphériques afin de récupérer avec précision la solution de l’équation de
Lane-Emden. Les travaux à venir traiteront de la formulation implicite et bien équilibrée
de la méthode et des simulations de problèmes autogravitationnels en trois dimensions.

Enfin, nous avons étudié la dérivation des méthodes volumes finis en coordonnées
cylindriques pour les lois de conservation hyperboliques. Puisque les vecteurs dans
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systèmes de coordonnées curvilignes sont exprimés en termes de bases qui sont spa-
tialement variables, la projection d’un vecteur sur une base locale introduit des termes
sources géométriques qui ne doivent pas être arbitrairement discrétisés. En fait, nous
avons étudié la bonne approximation de ces termes géométriques afin que toutes les pro-
priétés de conservation du système soient conservées ; la méthode a été appliquée pour
simuler un écoulement hydrodynamique stable dans un tore rectangulaire tridimension-
nel. Travaux à venir incluent l’extension de cette approche aux maillages non structurés
et l’application des schémas résultants aux problèmes réels de la fusion par confinement
magnétique, avec pour objectif de contribuer à ce domaine de recherche.

La plupart des résultats numériques dans cette thèse ont été obtenus avec la plate-
forme de calcul HERACLES [66], un code hydrodynamique parallèle en trois dimensions
utilisé pour simuler des écoulements en astrophysique. Dans le contexte de calcul haute
performance, le code utilise la bibliothèque MPI permettant de distribuer des grands
domaines de calcul sur plusieurs nœuds et d’effectuer la communication nécessaire entre
eux. Récemment, un nouveau cluster, nommé Poincaré, a été installé à la Maison de
la Simulation pour faciliter le développement, la recherche et l’expérimentation, avec :
92 nœuds de calcul (chacun avec 2 processeurs Sandy Bridge E5-2670, c’est à dire, 16
cœurs par nœud), 4 nœuds GPU et 2 grands nœuds x3755 M3 avec 64 cores chacun. En
fait, tous les résultats sur plusieurs cœurs ont été calculés en utilisant Poincaré et nous
permettent d’étudier les différents problèmes sur des maillages très fins.





APPENDIXA
Invertible Matrix M to Obtain the 2D Fluxes

Here, we are interested in finding the determinant of M , introduced in Section 2.2.2.2,
and analyzing the result. We begin by evaluating the matrix product ATA in order to
get
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which is a two-dimensional square matrix with a straightforward determinant
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after expansion and some simplification. It is well-known from basic linear algebra that
M is nonsingular if and only if its determinant is nonzero. Thus, we propose to rewrite
equation (A.2) as a sum of squared binomials
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that is obviously greater or equal to zero. It suffices then to find a term that is greater
than zero to prove the determinant is strictly positive.

For this, we consider the squared binomial rne =
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following: δf

4 = sen − ses > 0, recalling that sen and ses are the distinct maximum and
minimum signal velocities (2.11) associated with the one-dimensional Riemann problem
on the right of the y-axis, and δg

1 = sne −snw > 0, using an analogous reasoning. Therefore,
we are certain that the product δf
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Two simple but useful properties that hold for the absolute value are |ab|= |a||b|, for
any a,b ∈ R, and ab ≤ |a||b|, so that we can obtain δf
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long as a∗∗ 6= 0. In other words, if a∗∗ 6= 0, the determinant of M is strictly positive and
the matrix is invertible

M−1 =
1

detM

(
δg

1
2 + δg

2
2 + δg

3
2 + δg

4
2 −δf

1δ
g

1− δf

2δ
g

2− δf

3δ
g

3− δf

4δ
g

4

−δf

1δ
g

1− δf

2δ
g

2− δf

3δ
g

3− δf

4δ
g

4 δf

1
2 + δf

2
2 + δf

3
2 + δf

4
2

)
. (A.4)



APPENDIXB
Implementation Notes

B.1 Einfelt Speeds
Here, we provide the algorithm to compute the pair of wave speeds sαl and sαr of Section
2.2.4.1 in the case where the spatial domain is multidimensional.

Algorithm 1 Defining sαl and sαr in the direction of να

1: function total_enthalpy(ρ, e , p)
2: H← (ρe+ p)/ρ
3: return H
4:
5: function sound_speed(u , H , γ)

6: c←
[
(γ− 1)(H − 1

2

∑d

m=1 u2
m)
]1/2

7: return c
8:
9: function average(ρl , ρr , (·)l , (·)r)

10: den←√ρl +
√
ρr

11: (·) ←
[√
ρl (·)l +

√
ρr (·)r

]
/den

12: return (·)

13:
14: Hl ← total_enthalpy(ρl , el , pl)
15: Hr ← total_enthalpy(ρr , er , pr)
16:
17: u ← average(ρl , ρr , ul , ur)
18: H← average(ρl , ρr , Hl , Hr)
19:
20: cl ← sound_speed(ul , Hl , γ)
21: cr ← sound_speed(ur , Hr , γ)
22: c ← sound_speed(u , H , γ)
23:
24: sα

l ←min(u ·να− c , ul ·να− cl)
25: sα

r ←max(u ·να + c , ur ·να + cr)

B.2 Pseudocode for Manual Assembling

With regard to equation (2.89) and its analogue in the y direction, we present three
snippets of pseudocode that will help the reader compute the values for the speeds s̃α,
with α ∈ {n,s,e,w}, and for the “hll2D” fluxes.

After obtaining the eight approximate signal velocities that determine the vectors
(2.21), we propose to restrict in some cases the diagonal crossing of the interaction
region corners (2.25), in order to reduce further coding difficulties. Basically, we want to
avoid the type of situations where a corner lies in the quadrant diagonal to that where
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its subsonic counterpart would be and, at the same time, at least two of the remaining
corners are in their respective “subsonic” quadrants. For this, we use:

Algorithm 2 Restricting certain crossings

1: if (sn
e < 0 and se

n < 0) then ⊲ Northeast
2: if sw

n > 0 then se
n← 0

3: if ss
e > 0 then sn

e ← 0

4: if (sn
w > 0 and sw

n < 0) then ⊲ Northwest
5: if ss

w < 0 then sn
w← 0

6: if se
n > 0 then sw

n ← 0

7: if (ss
w > 0 and sw

s > 0) then ⊲ Southwest
8: if sn

w < 0 then ss
w← 0

9: if se
s < 0 then sw

s ← 0

10: if (ss
e < 0 and se

s > 0) then ⊲ Southeast
11: if sn

e > 0 then ss
e← 0

12: if sw
s < 0 then se

s← 0

We then recover all one- and two-dimensional states and fluxes with equations (2.23),
(2.24), (2.38), (2.53), and (2.60). To estimate the values of the speeds and fluxes men-
tioned in the first paragraph of this section, we suggest considering the following piece
of pseudocode:

Algorithm 3 Defining the speeds s̃α for α∈ {n,s,e,w}, and the fluxes φ̃
hll2D

x and φ̃
hll2D

y

1: if (se
s ≥ 0 and sw

s ≥ 0) then

2: s̃e← ss
e ⊲ Above x-axis

3: s̃w← ss
w

4: else if (se
n ≤ 0 and sw

n ≤ 0) then

5: s̃e← sn
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6: s̃w← sn
w

7: else
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10:
11: if (sn

w ≥ 0 and ss
w ≥ 0) then

12: s̃n← sw
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13: s̃s← sw
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14: else if (sn
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e (se−

s − sw−

s )/(ss+

e − ss−

w )

20:
21: if (s̃w ≥ 0 and s̃s ≥ 0) then

22: φ̃
hll2D

x ← [(s̃n− s̃s)f∗w + s̃s fsw]/s̃n

23: φ̃
hll2D

y ← [(s̃e− s̃w)gs∗ + s̃w gsw]/s̃e

24: else if (s̃w ≥ 0 and s̃n ≤ 0) then

25: φ̃
hll2D

x ← [(s̃s− s̃n)f∗w + s̃n fnw]/s̃s

26: φ̃
hll2D

y ← [(s̃e− s̃w)gn∗ + s̃w gnw]/s̃e

27: else if (s̃e ≤ 0 and s̃s ≥ 0) then

28: φ̃
hll2D

x ← [(s̃n− s̃s)f∗e + s̃s fse]/s̃n

29: φ̃
hll2D

y ← [(s̃w − s̃e)gs∗ + s̃e gse]/s̃w

30: else if (s̃e ≤ 0 and s̃n ≤ 0) then

31: φ̃
hll2D

x ← [(s̃s− s̃n)f∗e + s̃n fne]/s̃s

32: φ̃
hll2D

y ← [(s̃w − s̃e)gn∗ + s̃e gne]/s̃w

33: else if s̃w ≥ 0 then

34: φ̃
hll2D

x ← f∗w

35: φ̃
hll2D

y ← [(s̃e− s̃w)g∗∗ + s̃w g∗w]/s̃e

36: else if s̃e ≤ 0 then

37: φ̃
hll2D

x ← f∗e

38: φ̃
hll2D

y ← [(s̃w − s̃e)g∗∗ + s̃e g∗e]/s̃w

39: else if s̃s ≥ 0 then

40: φ̃
hll2D

x ← [(s̃n− s̃s)f∗∗ + s̃s fs∗]/s̃n

41: φ̃
hll2D

y ← gs∗

42: else if s̃n ≤ 0 then

43: φ̃
hll2D

x ← [(s̃s− s̃n)f∗∗ + s̃n fn∗]/s̃s

44: φ̃
hll2D

y ← gn∗

45: else

46: φ̃
hll2D

x ← f∗∗

47: φ̃
hll2D

y ← g∗∗
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Algorithm 3 serves to understand how the “hll2D” fluxes found in equation (2.89)
are to be defined. However, we introduce a more general algorithm associated with the
manual assembling (2.91) that serves to obtain robust first- and second-order approx-
imations. Observing closely, we find that the flux estimation part of Algorithm 3 is
somehow contained in what follows:

Algorithm 4 Defining the fluxes φ̃
hll2D

xn
, φ̃

hll2D

xs
, φ̃

hll2D

ye
and φ̃

hll2D

yw

1: s̃y = max(|s̃n|, |s̃s|)
2: s̃x = max(|s̃e|, |s̃w|)
3:
4: if (s̃w ≥ 0 and s̃s ≥ 0) then

5: φ̃
hll2D

xn
← [(s̃n− s̃s)f∗w + s̃s fsw]/s̃n

6: φ̃
hll2D

xs
← fsw

7: φ̃
hll2D

ye
← [(s̃e− s̃w)gs∗ + s̃w gsw]/s̃e

8: φ̃
hll2D

yw
← gsw

9: else if (s̃w ≥ 0 and s̃n ≤ 0) then

10: φ̃
hll2D

xn
← fnw

11: φ̃
hll2D

xs
← [(s̃s− s̃n)f∗w + s̃n fnw]/s̃s

12: φ̃
hll2D

ye
← [(s̃e− s̃w)gn∗ + s̃w gnw]/s̃e

13: φ̃
hll2D

yw
← gnw

14: else if (s̃e ≤ 0 and s̃s ≥ 0) then

15: φ̃
hll2D

xn
← [(s̃n− s̃s)f∗e + s̃s fse]/s̃n

16: φ̃
hll2D

xs
← fse

17: φ̃
hll2D

ye
← gse

18: φ̃
hll2D

yw
← [(s̃w − s̃e)gs∗ + s̃e gse]/s̃w

19: else if (s̃e ≤ 0 and s̃n ≤ 0) then

20: φ̃
hll2D

xn
← fne

21: φ̃
hll2D

xs
← [(s̃s− s̃n)f∗e + s̃n fne]/s̃s

22: φ̃
hll2D

ye
← gne

23: φ̃
hll2D

yw
← [(s̃w − s̃e)gn∗ + s̃e gne]/s̃w

24: else if s̃w ≥ 0 then

25: φ̃
hll2D

xn
← [(s̃y − s̃n)fnw + s̃n f∗w]/s̃y

26: φ̃
hll2D

xs
← [(s̃y + s̃s)fsw − s̃s f∗w]/s̃y

27: φ̃
hll2D

ye
← [(s̃e− s̃w)g∗∗ + s̃w g∗w]/s̃e

28: φ̃
hll2D

yw
← g∗w

29: else if s̃e ≤ 0 then

30: φ̃
hll2D

xn
← [(s̃y − s̃n)fne + s̃n f∗e]/s̃y

31: φ̃
hll2D

xs
← [(s̃y + s̃s)fse− s̃s f∗e]/s̃y

32: φ̃
hll2D

ye
← g∗e

33: φ̃
hll2D

yw
← [(s̃w − s̃e)g∗∗ + s̃e g∗e]/s̃w

34: else if s̃s ≥ 0 then

35: φ̃
hll2D

xn
← [(s̃n− s̃s)f∗∗ + s̃s fs∗]/s̃n

36: φ̃
hll2D

xs
← fs∗

37: φ̃
hll2D

ye
← [(s̃x− s̃e)gse + s̃e gs∗]/s̃x

38: φ̃
hll2D

yw
← [(s̃x + s̃w)gsw − s̃w gs∗]/s̃x

39: else if s̃n ≤ 0 then

40: φ̃
hll2D

xn
← fn∗

41: φ̃
hll2D

xs
← [(s̃s− s̃n)f∗∗ + s̃n fn∗]/s̃s

42: φ̃
hll2D

ye
← [(s̃x− s̃e)gne + s̃e gn∗]/s̃x

43: φ̃
hll2D

yw
← [(s̃x + s̃w)gnw − s̃w gn∗]/s̃x

44: else

45: φ̃
hll2D

xn
← [(s̃y − s̃n)fn∗ + s̃n f∗∗]/s̃y

46: φ̃
hll2D

xs
← [(s̃y + s̃s)fs∗− s̃s f∗∗]/s̃y

47: φ̃
hll2D

ye
← [(s̃x− s̃e)g∗e + s̃e g∗∗]/s̃x

48: φ̃
hll2D

yw
← [(s̃x + s̃w)g∗w − s̃w g∗∗]7/s̃x

B.3 Cases I-IV of the Solution W
δ

We provide the following pieces of pseudocode to aid in the numerical implementation
of the four distinct cases associated with the solution W

δ
obtained in Section 4.2:

Algorithm 5 Defining the jumps and wave speeds, followed by the cases
1: JψK← ψr −ψl

2: Jπ̃K← (πr −πl) + a2 (τr − τl)
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3: σ ← 1
2 (ul +ur − Jπ̃K/a)

4:
5: s0← 0
6: sl ← ul− aτl

7: sr ← ur + aτr

8:
9: if (sl > 0) then

10: go to Algorithm 6

11: else if (sl < 0 and σ ≥ 0) then

12: go to Algorithm 7

13: else if (sr > 0 and σ ≤ 0) then

14: go to Algorithm 8

15: else

16: go to Algorithm 9

Algorithm 6 Case I: sl > 0

1: if (2JψK> (u2
l − a2τ2

l )) then

2: print “Automatic adjustment of a.”
3: adjust_a(1.01a)
4: go to Algorithm 5

5:
6: var←

√
1− 2JψK/(u2

l − a2τ2
l )

7:
8: if ( |Jπ̃K| ≥ a(sr − sl var)) then ⊲ Degenerate
9: print “Degenerate case”

10: eps←1.0e-12
11:
12: if ( |ul|< eps) then

13: go to Case II

14: else

15: adjust_a(1.01ul/τl)
16: go to Algorithm 5

17:
18: τ∗

l ← τl var ⊲ Density
19: τ∗∗

l ← (sr − Jπ̃K/a− sl var)/(2a)
20: τ∗

r ← τ∗∗
l + Jπ̃K/a2

21:
22: ρ∗

l ← 1/τ∗
l

23: ρ∗∗
l ← 1/τ∗∗

l

24: ρ∗
r ← 1/τ∗

r

25:
26: u∗

l ← ul τ
∗
l /τl ⊲ Velocity

27: u∗∗
l ← u∗

l + a(τ∗∗
l − τ∗

l )
28: u∗

r ← u∗∗
l

29: sm ← u∗∗
l

30:
31: u∗

l ← (u∗
l −ul)e + ul

32: u∗∗
l ← (u∗∗

l −ul)e + ul

33: u∗
r ← (u∗

r −ur)e + ur

34:
35: π∗

l ← πl + a2(τl− τ∗
l ) ⊲ Pressure

36: π∗∗
l ← πl + a2(τl− τ∗∗

l )
37: π∗

r ← π∗∗
l

38:
39: if (not isothermal) then ⊲ Energy
40: ǫ∗

l ← ǫl + ((π∗
l )2−π2

l )/(2a2)
41: ǫ∗∗

l ← ǫl + ((π∗∗
l )2−π2

l )/(2a2)
42: ǫ∗

r ← ǫr + ((π∗
r )2−π2

r/(2a
2)

43:
44: (ρe)∗

l ← ρ∗
l (ǫ∗

l + |u∗
l |2/2)

45: (ρe)∗∗
l ← ρ∗∗

l (ǫ∗∗
l + |u∗∗

l |2/2)
46: (ρe)∗

r ← ρ∗
r (ǫ∗

r + |u∗
r |2/2)

47:
48: s← (s0,sl,sm,sr)T ⊲ Wave speeds
49:
50: Ms(1,3)← ρ∗∗

l ⊲ Solution
51: Ms(2 : ϑ− 1,3)← ρ∗∗

l u∗∗
l

52:
53: if (not isothermal) then

54: Ms(ϑ,3)← (ρe)∗∗
l

55:
56: ρsol ← ρ∗

l

57: usol← u∗
l

58: πsol ← π∗
l
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Algorithm 7 Case II: sl < 0< sr, σ > 0

1: α← sr − Jπ̃K/a
2: sgn← α/|α|
3:
4: var ←

√
(JψK/sl)2 +α2

5:
6: τ∗

l ← (−sl + JψK/sl + sgnvar)/(2a) ⊲ Density

7: τ∗∗
l ← (α+ JψK/α+

√
(JψK/α)2 + s2

l )/(2a)

8: τ∗
r ← τ∗∗

l + Jπ̃K/a2

9:
10: ρ∗

l ← 1/τ∗
l

11: ρ∗∗
l ← 1/τ∗∗

l

12: ρ∗
r ← 1/τ∗

r

13:
14: u∗

l ← sl + aτ∗
l ⊲ Velocity

15: u∗∗
l ← u∗

l (τ∗∗
l /τ∗

l )
16: u∗

r ← u∗∗
l

17: sm ← u∗∗
l

18:
19: u∗

l ← (u∗
l −ul)e + ul

20: u∗∗
l ← (u∗∗

l −ul)e + ul

21: u∗
r ← (u∗

r −ur)e + ur

22:
23: π∗

l ← πl + a2(τl− τ∗
l ) ⊲ Pressure

24: π∗∗
l ← πl + a2(τl− τ∗∗

l )
25: π∗

r ← π∗∗
l

26:
27: if (not isothermal) then ⊲ Energy
28: ǫ∗

l ← ǫl + ((π∗
l )2−π2

l )/(2a2)
29: ǫ∗∗

l ← ǫl + ((π∗∗
l )2−π2

l )/(2a2)
30: ǫ∗

r ← ǫr + ((π∗
r )2−π2

r/(2a
2)

31:
32: (ρe)∗

l ← ρ∗
l (ǫ∗

l + |u∗
l |2/2)

33: (ρe)∗∗
l ← ρ∗∗

l (ǫ∗∗
l + |u∗∗

l |2/2)
34: (ρe)∗

r ← ρ∗
r (ǫ∗

r + |u∗
r |2/2)

35:
36: s← (sl,s0,sm,sr)T ⊲ Wave speeds
37:
38: Ms(1,3)← ρ∗∗

l ⊲ Solution
39: Ms(2 : ϑ− 1,3)← ρ∗∗

l u∗∗
l

40: if (not isothermal) then Ms(ϑ,3)← (ρe)∗∗
l

41:
42: ρsol,usol,πsol← ρ∗∗

l ,u∗∗
l ,π∗∗

l

Algorithm 8 Case III: sl < 0< sr, σ < 0

1: β← sl− Jπ̃K/a
2: sgn← β/|β|
3:
4: var ←

√
(JψK/sr)2 +β2

5:
6: τ∗

r ← (sr + JψK/sr − sgnvar)/(2a) ⊲ Density

7: τ∗∗
r ← (−β+ JψK/β+

√
(JψK/β)2 + s2

r )/(2a)
8: τ∗

l ← τ∗∗
r − Jπ̃K/a2

9:
10: ρ∗

r ← 1/τ∗
r

11: ρ∗∗
r ← 1/τ∗∗

r

12: ρ∗
l ← 1/τ∗

l

13:
14: u∗

r ← sr − aτ∗
r ⊲ Velocity

15: u∗∗
r ← u∗

r(τ∗∗
r /τ∗

r )
16: u∗

l ← u∗∗
r

17: sm ← u∗∗
r

18:
19: u∗

r ← (u∗
r −ur)e + ur

20: u∗∗
r ← (u∗∗

r −ur)e + ur

21: u∗
l ← (u∗

l −ul)e + ul

22:
23: π∗

r ← πr + a2(τr − τ∗
r ) ⊲ Pressure

24: π∗∗
r ← πr + a2(τr − τ∗∗

r )
25: π∗

l ← π∗∗
r

26:
27: if (not isothermal) then ⊲ Energy
28: ǫ∗

r ← ǫr + ((π∗
r )2−π2

r)/(2a2)
29: ǫ∗∗

r ← ǫr + ((π∗∗
r )2−π2

r)/(2a2)
30: ǫ∗

l ← ǫl + ((π∗
l )2−π2

l /(2a
2)

31:
32: (ρe)∗

r ← ρ∗
r (ǫ∗

r + |u∗
r |2/2)

33: (ρe)∗∗
r ← ρ∗∗

r (ǫ∗∗
r + |u∗∗

r |2/2)
34: (ρe)∗

l ← ρ∗
l (ǫ∗

l + |u∗
l |2/2)

35:
36: s← (sl,sm,s0,sr)T ⊲ Wave speeds
37:
38: Ms(1,3)← ρ∗∗

r ⊲ Solution
39: Ms(2 : ϑ− 1,3)← ρ∗∗

r u∗∗
r

40: if (not isothermal) then Ms(ϑ,3)← (ρe)∗∗
r

41:
42: ρsol,usol,πsol← ρ∗∗

r ,u∗∗
r ,π∗∗

r
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Algorithm 9 Case IV: sr < 0

1: if (2JψK<−(u2
r − a2τ2

r )) then

2: print “Automatic adjustment of a.”
3: adjust_a(1.01a)
4: go to Algorithm 5

5:
6: var←

√
1 + 2JψK/(u2

r − a2τ2
r )

7:
8: if ( |Jπ̃K| ≥ a(−sl + sr var)) then ⊲ Degenerate
9: print “Degenerate case”

10: eps←1.0e-12
11:
12: if ( |ur|< eps) then

13: go to Case III

14: else

15: adjust_a(−1.01ur/τr)
16: go to Algorithm 5

17:
18: τ∗

r ← τr var ⊲ Density
19: τ∗∗

r ← (−sl + Jπ̃K/a+ sr var)/(2a)
20: τ∗

l ← τ∗∗
r − Jπ̃K/a2

21:
22: ρ∗

r ← 1/τ∗
r

23: ρ∗∗
r ← 1/τ∗∗

r

24: ρ∗
l ← 1/τ∗

l

25:
26: u∗

r ← ur τ
∗
r /τr ⊲ Velocity

27: u∗∗
r ← u∗

r + a(τ∗
r − τ∗∗

r )
28: u∗

l ← u∗∗
r

29: sm ← u∗∗
r

30:
31: u∗

r ← (u∗
r −ur)e + ur

32: u∗∗
r ← (u∗∗

r −ur)e + ur

33: u∗
l ← (u∗

l −ul)e + ul

34:
35: π∗

r ← πr + a2(τr − τ∗
r ) ⊲ Pressure

36: π∗∗
r ← πr + a2(τr − τ∗∗

r )
37: π∗

l ← π∗∗
r

38:
39: if (not isothermal) then ⊲ Energy
40: ǫ∗

r ← ǫr + ((π∗
r )2−π2

r)/(2a2)
41: ǫ∗∗

r ← ǫr + ((π∗∗
r )2−π2

r)/(2a2)
42: ǫ∗

l ← ǫl + ((π∗
l )2−π2

l /(2a
2)

43:
44: (ρe)∗

r ← ρ∗
r (ǫ∗

r + |u∗
r |2/2)

45: (ρe)∗∗
r ← ρ∗∗

r (ǫ∗∗
r + |u∗∗

r |2/2)
46: (ρe)∗

l ← ρ∗
l (ǫ∗

l + |u∗
l |2/2)

47:
48: s← (sl,sm,sr,s0)T ⊲ Wave speeds
49:
50: Ms(1,3)← ρ∗∗

r ⊲ Solution
51: Ms(2 : ϑ− 1,3)← ρ∗∗

r u∗∗
r

52:
53: if (not isothermal) then

54: Ms(ϑ,3)← (ρe)∗∗
r

55:
56: ρsol ← ρ∗

r

57: usol← u∗
r

58: πsol ← π∗
r

Algorithm 10 Final solution

1: Ms(1,1)← ρl

2: Ms(1,2)← ρ∗
l

3: Ms(1,4)← ρ∗
r

4: Ms(1,5)← ρr

5:
6: Ms(2 : ϑ− 1,1)← ρlul

7: Ms(2 : ϑ− 1,2)← ρ∗
l u∗

l

8: Ms(2 : ϑ− 1,4)← ρ∗
ru∗

r

9: Ms(2 : ϑ− 1,5)← ρrur

10:
11: if (not isothermal) then

12: Ms(ϑ,1)← (ρe)l

13: Ms(ϑ,2)← (ρe)∗
l

14: Ms(ϑ,4)← (ρe)∗
r

15: Ms(ϑ,5)← (ρe)r

16:
17: φl,φr ← get_flux(s ,Ms)
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Schémas de type Godunov pour la
modélisation hydrodynamique et magnétohydrodynamique

Résumé : L’objectif principal de cette thèse concerne l’étude, la conception et la mise en œu-
vre numérique de schémas volumes finis associés aux solveurs de type Godounov. On s’intéresse
à des systèmes hyperboliques de lois de conservation non linéaires, avec une attention partic-
ulière sur les équations d’Euler et les équations MHD idéale. Tout d’abord, nous dérivons un
solveur de Riemann simple et véritablement multidimensionnelle, pouvant s’appliquer à tout
système de lois de conservation. Ce solveur peut être considéré comme une généralisation 2D
de l’approche HLL. Les ingrédients de base de la dérivation sont : la consistance avec la formu-
lation intégrale et une utilisation adéquate des relations de Rankine-Hugoniot. Au final nous
obtenons des expressions assez simples et applicables dans les contextes des maillages structurés
et non structurés. Dans un second temps, nous nous intéressons à la préservation, au niveau
discret, de la contrainte de divergence nulle du champ magnétique pour les équations de la MHD
idéale. Deux stratégies sont évaluées et nous montrons comment le solveur de Riemann multi-
dimensionnelle peut être utilisé pour obtenir des simulations robustes à divergence numérique
nulle. Deux autres points sont abordés dans cette thèse : la méthode de relaxation pour un
système Euler-Poisson pour des écoulements gravitationnels en astrophysique, la formulation
volumes finis en coordonnées curvilignes. Tout au long de la thèse, les choix numériques sont
validés à travers de nombreux résultats numériques.

Mots-clés : Schéma de type Godunov, solveur de Riemann multidimensionnel, solveur de
Riemann approché, méthode de relaxation, lois de conservation, dynamique des gaz, magnéto-
hydrodynamique, effets gravitationnels

Godunov-type schemes for
hydrodynamic and magnetohydrodynamic modeling

Abstract: The main objective of this thesis concerns the study, design and numerical imple-
mentation of finite volume schemes based on the so-called Godunov-type solvers for hyperbolic
systems of nonlinear conservation laws, with special attention given to the Euler equations and
ideal MHD equations. First, we derive a simple and genuinely two-dimensional Riemann solver
for general conservation laws that can be regarded as an actual 2D generalization of the HLL
approach, relying heavily on the consistency with the integral formulation and on the proper
use of Rankine-Hugoniot relations to yield expressions that are simple enough to be applied
in the structured and unstructured contexts. Then, a comparison between two methods aim-
ing to numerically maintain the divergence constraint of the magnetic field for the ideal MHD
equations is performed and we show how the 2D Riemann solver can be employed to obtain ro-
bust divergence-free simulations. Next, we derive a relaxation scheme that incorporates gravity
source terms derived from a potential into the hydrodynamic equations, an important problem
in astrophysics, and finally, we review the design of finite volume approximations in curvilinear
coordinates, providing a fresher view on an alternative discretization approach. Throughout
this thesis, numerous numerical results are shown.

Key-words: Godunov-type scheme, multidimensional Riemann solver, approximate Rie-
mann solver, relaxation method, conservation laws, gas dynamics, magnetohydrodynamics,
gravitational effects
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