
HAL Id: tel-01123624
https://theses.hal.science/tel-01123624v1
Submitted on 5 Mar 2015 (v1), last revised 1 Sep 2015 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Phonon engineering for hot-carrier solar cells
Hugo Levard

To cite this version:
Hugo Levard. Phonon engineering for hot-carrier solar cells. Physics [physics]. UPMC Université
Paris VI, 2015. English. �NNT : �. �tel-01123624v1�

https://theses.hal.science/tel-01123624v1
https://hal.archives-ouvertes.fr


Ecole Doctorale 397

These de doctorat
Spécialité : Physique et Chimie des Matériaux

présentée par

Hugo Levard

pour obtenir le grade de

DOCTEUR DE L’UNIVERSITE PIERRE ET MARIE CURIE

Ingénierie phononique pour les cellules solaires à
porteurs chauds

Soutenue le 20 janvier 2015 devant le jury composé de :

M. Sebastian Volz EM2C Rapporteur

M. Christophe Delerue ISEN Rapporteur

Mme Nadine Witkowski INSP Examinateur

M. Bernard Jusserand INSP Examinateur

M. Philippe Baranek MMC Examinateur

Mme Sana Laribi IRDEP Encadrant

M. Jean-François Guillemoles IRDEP Directeur de thèse



2

IRDEP - EDF R&D

Bat. K

6, quai Watier

78400 Chatou

Ecole doctorale ED397

Physique et Chimie des Matériaux

4 place Jussieu

75 252 Paris cedex 05



Ecole Doctorale 397

These de doctorat
Spécialité : Physique et Chimie des Matériaux

présentée par

Hugo Levard

pour obtenir le grade de

DOCTEUR DE L’UNIVERSITE PIERRE ET MARIE CURIE

Phonon Engineering for Hot-Carrier Solar Cells

Soutenue le 20 janvier 2015 devant le jury composé de :

M. Sebastian Volz EM2C Rapporteur

M. Christophe Delerue ISEN Rapporteur

Mme Nadine Witkowski INSP Examinateur

M. Bernard Jusserand INSP Examinateur

M. Philippe Baranek MMC Examinateur

Mme Sana Laribi IRDEP Encadrant

M. Jean-François Guillemoles IRDEP Directeur de thèse



4

IRDEP - EDF R&D

Bat. K

6, quai Watier

78400 Chatou

Ecole doctorale ED397

Physique et Chimie des Matériaux

4 place Jussieu

75 252 Paris cedex 05



5

[...] Two roads diverged in a wood and I-,

I took the one less traveled by,

And that has made all the difference.

Robert Frost
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Introduction

Concerning Photovoltaics

Contravening to the well established tradition according to which one must find in the

introduction of a doctoral thesis dealing with photovoltaic technology a long pro-solar en-

ergy argumentation, I will directly jump to the exciting topic of future generation concepts,

guiding the readers who are not convinced by the necessity to diversify energy sources to

appropriate litterature, namely, for instance, the remarquable review of A. Luque on the

race toward 50% efficiency [1].

The current question is not "will it work ?" but rather "how well can it work in prac-

tice ?". The famous Shockley-Queisser limit [2], theorised more than fifty years ago, and

that states the upper photovoltaic conversion limit to 31%, was definitely an objective

for the last decade. The 2010s are the years of third generation concepts, beyond single

p-n junction technologies, and among these, the ultimate photovoltaic device that is the

hot-carrier solar cell.

Imagined in 1982 by R. T. Ross and A. J. Nozik [3], it is expected to have a maximum

efficicency of the order of the thermodynamical limit [4], and is the most simple implemen-

tation of photovoltaic energy extraction principle, as it primarily works on charge carriers

separation.

The missing link between the concept and the practical realisation is our understand-

ing of some fundamental physical mechanism, so to choose the appropriate materials. But

the good news is that hot-carrier solar cells benefit from the exponentially increasing num-

ber of works devoted to photovoltaics technologies (figure 1). Significant improvements in

the field have then to be expected in the coming years.

Hot-carrier solar cells and Material Physics

With new technologies come fundamental scientific issues which, in the case of hot-

carrier solar cells, have a lot to do with interactions between the condensed matter fun-

damental particles and quasi-particles. The reason indeed for which charge carriers, after
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Figure 1: Number of publications referring to the initiating 1982 paper of R. T. Ross
and A. J. Nozik on hot-carrier solar cells (blue), compared to the relative increase of
publications related to photovoltaics in general (red), versus year.

having been photoexcited, lose their energy is because of their coupling with the atomic

environment. The quanta of exchanged energy here are phonons, or elementary vibrations

of the lattice, and the loss mechanism then is the electron-phonon interaction. But what

is yielded can be regained, and carriers may also absorb phonons provided the latters do

not decay "too quickly" through phonon-phonon interaction.

Research on hot-carrier solar cells absorber materials thus requires to be conducted from

the atomic to nanometric scale to first understand experimental existing evidence of the

hot-carrier effect, in order then to make predictions on the materials of interest for future

devices. First principle modelling methods have proven their efficiency and accuracy on

such small-sized systems, and the constantly increasing of computional power makes them

more and more convenient for this aim.

As demonstrated in A. Luque’s review [1], efficiency is the key for the photovoltaic tech-

nology to be viable. Not only are the hot-carrier solar cells the most simple one, but they

are expected to be able to reach higher efficiency than any other cell [4]. The difficult part

is, through our willing to prevent hot carriers from cooling, that we want to slow Nature

down.

Outline

This thesis is divided into four chapters. The second and the third ones are closely

related and deal with phonon-phonon interaction, while the fourth one deals with electron-
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phonon interaction. Ab initio computational methods are used for this purpose, namely

Density Functional Theory for electronic band features using the VASP code [5], and

Density Functional Perturbation Theory for the physics of phonons as implemented in

the Quantum Espresso package [6], not to mention the home-made programs for post-

processing each these and for coupling the two.

The first chapter is a journey from the classical photovoltaic single p-n junction to the

hot-carrier solar cell main issues. The questions related to fundamental Material Science

that the concept of hot-carrier solar cell rises are highlighted, and in particular the role of

LO-phonons. The intricating between hot-carrier solar cells success and a deeper under-

standing of the physics of phonons from what it is today is emphasised.

The second chapter deals with LO-phonon decay in semiconductors. A detailed study

of the available final states upon the atomic mass ratio and the LO-TO splitting is per-

formed in various bulk III-V and group-IV semiconductors, as well as two superlattices

examples. Discriminating criteria for absorber selection from a phonon point of view are

set, and the question of nanostructuration for LO-phonon decay prevention is discussed.

One step further, the third chapter is dedicated to the study of LO-phonon lifetime in

one singular material standing out from chapter 2. Specific two-phonon caracteristics are

shown as targets for candidate absorbers. The question of the relevance to use Density

Functional Perturbation Theory for this aim is addressed. Open remarks are risen on

higher-order phonon processes.

The fourth chapter intends to contribute to the exploration of the intermediate region

between bulk and quantum well materials, namely superlattices, from an electron-phonon

interaction and a hot-carrier solar cell point of view. A model is proposed to study the evo-

lution of the former strength upon the cell size, and eventually on the dimensionality of the

coupled electron and phonon populations. The final results highligh that phonon-phonon

and electron-phonon interactions issues should not be treated separately.
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18 Chapter 1. The Hot-Carrier Solar Cell

1.1 Third generation Photovoltaics: beyond the Shockley-

Queisser limit

1.1.1 The last decade objective

In 1961, W. Shockley and H. J. Queisser established the theoretical highest possible

conversion efficiency of a single p-n junction photovoltaic solar cell [2]. Known as the

Shockley-Queisser limit, it is a function of the absorber band gap (Eg) and of the solid

angle collection: known as the solar concentration, it is expressed in number of sun,

and takes a value between one (no concentration device) and approximately 46 000 suns

(maximum concentration), depending on the concentration device. Within the Shockley-

Queisser limit, the maximum efficiency a photovoltaic device can reach is 31% under

one sun for Eg = 1.4 eV [4] (41% under maximum concentration). It should be noted

that Silicon and Gallium Arsenide have a band gap that is close to this optimal value,

respectively 1.12 eV and 1.42 eV : in 2010, the world record conversion yield of solar cells

with an Si absorber was 24.7% (UNSW), and 25.9% with a GaAs absorber (Radboud

University), both without concentration. As we get closer to the maximum attainable

efficiency, research in Photovoltaics is diversified and explores beyond-Shockley-Queisser

technologies, that are gathered under the name Third Generation Photovoltaics.
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Figure 1.1: Efficiency and losses (non absorption, thermalisation, extraction, and recombi-
nation) as a function of the absorbing material band gap, under AM1.0 incident spectrum.
An optimal conversion efficiency of 31% is obtained for a 1.4 eV band gap. Reproduced
from [7]
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1.1.2 "There’s plenty of room above"

Figure 1.1 allows an immediate identification of the mechanisms limiting the photo-

voltaic conversion. Re-emission and loss in contacts contribute faintly to the global waste.

The unabsorbed part simply comes from photons whose energy is lower than the absorber

band gap, hence that cannot generate an electron-hole pair. This is the evident reason for

which single junction photovoltaic technologies requires reasonably low band gap, typically

between 1.0 and 1.4 eV [4]. From this latter value and below, the main loss mechanism is

labelled thermalisation, a rather "catch-all" term gathering several processes that will be

itemised in this chapter.

1.1.3 Promising already existing technologies

Third generation photovoltaic technologies thus aim at overstepping unabsorption and

thermalisation. A brief description of the four major current ones is given below, together

with the latest striking achievements in their respective field. An illustration of their

operating condition from an electronic band structure point of view is reproduced in

figure 1.2.

Figure 1.2: Types of solar cells to exceed the Schockley-Queisser limit. Reproduced
from [8]

Multijunctions

A multijunctions solar cell consists in a stack of different single p-n junctions with decreas-

ing gap ordering, so that the highest gap absorber faces the incoming sun light [9]. Both

the thermalisation loss and the unabsorbed number of photons are reduced. The total

theoretical conversion efficiency is of 42.7%, 49.1%, and 53.0% under one sun (respectively

55.9%, 63.8% and 68.8% under maximum concentration) for a well chosen stack of 2, 3
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and 4 junctions [10, 11], and in the limit of an infinite stack of single p-n junctions, the

conversion efficiency was calculated to be 86.8% [10]. In August 2014, the photovoltaic

conversion world record is held by the Soitec company, with a yield of 44.7% obtained

with a GaInP/GaAs/GaInAsP/GaInAs four-junction cell [12].

Intermediate band

Intermediate-band solar cells can be viewed as intrinsic three-junction cells: an additional

level lies in the band gap region, so that promoting an electron from the valence band to

the conduction band requires either a photon whose energy is at least equal to the band

gap, or two photons, exciting the electron in a two-step process through the intermediate

level. The latter can be an impurity state [13] or a continuous narrow band that may exist

in low dimensional systems [14]. The limiting efficiency is the same as for a three-junction

cell [15] (49.1%, or 63.8% under maximum concentration). The intermediate-band solar

cell was experimentally demonstrated in 2006 in InAs/(Al,Ga)As quantum dots [16].

Up/Down-conversion

What multijunctions and intermediate-band solar cells are thought to deal with is the

polychromatic nature of light. Instead of tuning the device to fit the photons energy,

another approach then consists in tuning the photons energy to fit a single-junction band

gap, i.e. quantum cutting photons whose energy is at least twice the one of the band gap

(down-conversion), or merging low energy photons (up-conversion). Down-conversion, re-

quiring a quantum efficiency greater than 1, is difficult to realise in practice [13], explaining

why most of the research is focusing on up-converter materials. The highest achievable

efficiency is the same as for an intermediate band solar cell [13], and most experimental

progresses had been made using rare earth elements [17] and their coupling with plasmonic

structures [18].

Hot carriers

Beyond the obstacle of the number of junctions or the individual photon energy in the

photovoltaic cell operating is the simple idea of charges separation and extraction. As the

quasi-Fermi levels splitting rules the voltage achieved from the cell, the highest potential

difference that can be obtained would be if the carriers were extracted from the absorber

well above the band gap, in a hot state. The practical implementation of this concept,

detailed in section (1.3), first requires a deep understanding of the hot carriers cooling

phenomenon.

1.2 Carrier cooling, the hot topic

In this section is recalled the non-radiative physical processes that are responsible for

the carriers average energy modification after photoexcitation. The distinction between
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carrier cooling and thermalisation is clarified because of their being often semantically

blended [14], although they refer to distinct physical mechanisms.

Γ − valley Satellite− valley
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Electron− hole generation

Intervalley threshold

Intravalley scattering

Intervalley scattering

Impact ionisation

Auger scattering

Figure 1.3: Hot electrons cooling processes.

1.2.1 Carrier-carrier scattering

After being photogenerated, the electrons and the holes are said "hot" in a sense that they

carry excess energy compared to the band gap. S. A. Lyon gave this definition in his

1986-review:

By "hot carriers" we mean electrons or holes with kinetic energies well above the

average thermal energy of the lattice, characterized by kTL. In general the carriers
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are not in an equilibrium distribution, and "hot" does not imply that their distribution

can be characterised by a carrier temperature. [19]

Within the first tenths of femtosencond after photogeneration, though, the elastic carrier-

carrier interaction dominates and equilibrates the kinetic energies, so that a carrier tem-

perature can be defined [20, 21]. This is called the thermalisation process, and has to be

distinguished from the cooling processes, which take place on a longer time-scale. From

this point, "hot carriers" definition is to be understood as a thermalised version of Lyon’s,

i.e. as a steady state population of carriers whose average energy is well above the band

gap. In practice, working in the steady state regime and being able to define a carrier

temperature [7], hereafter labelled TC , allows to study experimentally the hot carriers

energy relaxation with photoluminescence spectroscopy [21, 22].

1.2.2 Intravalley versus intervalley scattering

The cooling processes gather most of the phenomena responsible for the average (ther-

malised) carrier energy to drop at a level close to the conduction band minimum (CBM)

for the electrons, or to the valence band maximum (VBM) for the holes. These are the

electron/hole-phonon scattering mechanisms. They consist of unelastic interactions of the

carriers with the lattice, unelastic in the sense that the carriers energy is not conserved:

the loss in energy and momentum is carried by quasi-particles, quanta of atomic vibra-

tion, also known as phonons [23, 19]. In the following we will focus on electrons, because

only a small part of the photon energy is given to the holes due to their larger effective

mass [24, 25].

A distinction is to be made between interband and intraband scattering, since their domi-

nance one over the other is dependent upon the excited electron energy together with the

electronic band structure, and because the nature of their coupling with lattice vibrations

is of different nature (figure 1.3). The intravalley scattering involves the charge carrier

scattering with polar phonons (long wavelength longitudinal optic phonons [26]) through

the material polarisation these phonon modes create, whereas the intervalley is dominated

by the interaction with short-wavelength phonons, either optic or acoustic [24, 27, 28],

through an intervalley deformation potential [28]. The polar intravalley scattering was

first theorised by Fröhlich [29], and is often simply referred to as the Fröhlich interaction.

The experimental truth teaches us that the intervalley scattering is always dominant over

the intravalley scattering whenever it is energetically allowed [30, 31]. Thus if, once pho-

togenerated, carriers reach a state from which an intervalley transition is allowed, i.e. as

far as their energy is higher than the satellite valleys minimum (or intervalley threshold

energy, dashed line in figure 1.3 for the electrons), they will undergo such a transition

and rather give their excess energy to long wavevector phonons. However, quantifying the

scattering times related to these processes, in order to establish their precedence order, led

thirty years ago to one decade of unaccordant results. The following sections summarise
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the most cited papers results on a simple III-V semiconductor, GaAs, in order to shed

some light on these complex band structure phenomena.

1.2.2.1 The 80’s: femtosecond luminescence spectroscopy

A significant number of subpicosecond spectroscopy measurements were performed

until 1990. While a global consensus was set on the intraband polar-LO-phonon emission

rate [24, 30, 32], the value of the intervalley scattering rate remained rather controversial.

Table 1.1 gathered the reported data of the most cited papers related to the topic: the

Γ-to-L (τΓL) and L-to-Γ (τLΓ) scattering time values, particularly, scatter by an order of

magnitude. It should be highlighted that the experimental conditions from one work to

another differ by excitation energies and lattice temperature.

τΓΓ τΓX τΓL τLΓ

Collins and Yu [24](10 K) ∼0.10 <0.10(∼0.3 eV) <0.10(∼0.5 eV) >0.10

Shah et al. [33](300 K) 0.10 (0.50 eV) 2.00

Mirlin et al. [30](2 K),[34](30 K) 0.20 0.25 (0.39 eV) 0.03 (0.57 eV)

Young et al. [20](300 K) 0.19 1.40

Ulbrich et al. [32](2 K) 0.18 0.54 (0.48 eV) 0.18 (0.58 eV)

Table 1.1: Intra- (τΓΓ) and intervalley (τΓX , τΓL, τLΓ) scattering time according to different
authors. All the values are in ps. The initial electron energy is indicated in brackets for
the transitions from the Γ-valley to satellite-valleys, while, for the L-to-Γ transition, it
was always considered to be bottom of the L-valley. The working lattice temperature is
indicated for each reference.

1.2.2.2 The 90’s: empirical pseudopotentials calculations

A series of works [35, 28, 36, 37, 38] published in the early 1990’s by S. Zollner, S.

Gopalan and M. Cardona brought new comprehension elements on the large experimen-

tal range of results. Using a rigid-pseudoion model [28], they calculated the intervalley

deformation potentials (IDP) in GaAs, whose detailed analysis revealed the following fun-

damental properties: (i) the IDP are strongly k-dependent, k being the initial electron

wavevector; (ii) when initial and final states are taken elsewhere than strictly at valley

bottom, symmetry breaking allows so far-forbidden phonon assisted transitions to greatly

contribute to the scattering; (iii) as a consequence of (i) and (ii), the scattering rates

are also dependent on both the lattice temperature (because of its impact on the phonon

population) and the electronic temperature.

These conclusions explain why the comparison of experimental results with simple models

may fail; in particular, Zollner and co-workers show the considerable importance to take

into account TA-phonon mediated transitions from satellite valleys to the Γ-valley, which

is missing when considering highly symmetrical initial and final electron states [39, 27].
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They also showed that an electron in the X-valley has a probability to scatter in the L-

T (K) τΓL τΓX τLΓ τXL

10 0.75 ps (165 meV) 0.40 ps (200meV) 6.60 ps 0.41 ps
300 2.20 ps 0.13 ps

Table 1.2: Intervalley scattering rate according to Zollner and co-workers [35, 28, 36, 37, 38]
for different lattice temperatures T . The initial electron energy above the Γ−L threshold
is indicated in brackets for the transitions from the Γ-valley to the satellite valleys, while it
was taken as the minimum of the satellite-valleys for the back-to-Γ scattering transitions.
It should be noted that the ΓX scattering time, because of the highest energy position of
the X-valley compared to the L-valley, physically reflects transitions in both valleys and
not only in the former.

valley four times higher than to scatter back into the Γ-valley, so that they consider more

relevant to focus on determining τXL rather than τXΓ. Table 1.2 gathers some of their

main results, and we can notice a very good agreement with Ulbrich group’s ones [32]

reported in table 1.1. It is worth noting that the estimated uncertainties on the experi-

mentally determined/calculated deformation potential are also of comparable amplitude

in both studies, i.e. 20% (see [36] for a more detailed insight into this agreement).

1.2.2.3 The 2000’s: ab initio calculations

Full ab initio calculations of the deformation potential and intervalley scattering time

in the mid-2000’s were carried out by J. Sjakste and co-workers, who found a L-to-Γ

transition time of 1.5 ps (4.5 ps) for a lattice temperature of 300K (0K) [40, 41, 42], with

an estimated error bar of 0.2 ps. The discrepancy of this value compared to Zollner’s

work has been attributed by the authors to a consequence of their accurate treatment of

the screening potential generated by the intermediate phonon in the scattering process.

However, these values remain in the same order of magnitude, strengthening both Zollner

and Sjakste group’s results.

1.2.2.4 Conclusion on the intravalley/intervalley competition

Matching experimental results and theoretical understanding of intervalley scattering

turns out to be extremely complex, due to the multiple interdependency of the electronic

band parameters and of the electron-phonon interaction itself [36, 41]. However, we shall

retain for the following sections that above the intervalley threshold, the intervalley tran-

sition time is at most as high as the intravalley one, making it the dominant scattering

process in this energy range. Below the threshold, conservation of energy and momentum

restrains the relevant intermediate phonons to the ones with a wavevector close to the

Brillouin zone-center, i.e. of the order of few 107 cm−1 [21]. In non-polar materials, they

are the longitudinal optic (LO) and transverse optic (TO) phonons. In polar materials,
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the atomic displacements related to the LO-phonon modes induce an electric field that

makes the coupling between the electron and this phonon largely dominant over the cou-

pling with the TO-phonon [26], so that in the intravalley energy range we only have to

deal with the electron-LO-phonon interaction.

1.2.3 Auger scattering and carrier multiplication

Auger scattering and carrier multiplication are opposite phenomena (figure 1.3), and

belong to the inelastic-type scattering as the number of particles is not conserved. The

latter involves the recombination of an electron with a hole, whose resulting photon is

absorbed by another conduction electron, while the former refers to an intraband transition

whose released energy is captured by a valence electron then promoted to the conduction

band. These processes have a characteristic time of 102 ps [21], and are dependent upon

the carrier density and the band gap. Those are not strictly speaking "cooling processes",

but interfere on a long time scale in the establishment of the average carrier temperature.

1.2.4 The role of phonons in carrier cooling

LO-phonons emitted from intraband scattering are not stable (figure 1.3), but decay

into lower energy phonons within few picoseconds [43]. A detailed description of this

process will be given in chapter II and III. Previous to this decay, there is a certain

probability, related precisely to the phonon lifetime, that the electrons would reabsorb

LO-phonons. It was proven by several independent theoretical Monte Carlo studies [44,

19, 45, 46] and Boltzmann equation fitting of experimental data from room temperature

femtosecond spectroscopy [47] that the hot carriers energy relaxation time is strongly

dependent on the LO-phonon lifetime, and that the longer it is, the slower the cooling

for both electrons and holes. As an example, table 1.3 displays the average energy and

temperature of a photoexcited hot-electron population, as a function of the LO-phonon

lifetime, calculated within a full-band Monte Carlo solving of the Boltzmann Transport

Equation in In0.53Ga0.47As (details about the implementation can be found in [44]). 2.5 ps

τLO(ps) <E> (eV) Te (K)

2.5 0.060 320

5 0.099 486

10 0.137 497

20 0.173 544

Table 1.3: Average electron distribution energy and temperature versus LO-phonon life-
time calculated using a full-band Monte-Carlo. Reproduced from [48]

corresponds to the LO-phonon lifetime at room temperature, and is representative of

most of III-V semiconductors in the FCC crystal structure [49]. A gain of one order of
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magnitude on this parameter induces a significant enhancement of the conduction electrons

average energy: tuning the LO-phonon lifetime appears, then, as a key leverage on hot-

carrier cooling dynamics, which is of fundamental significance for the hot-carrier solar cell

concept.

1.3 Hot Carrier Solar Cell: the ultimate PV device

1.3.1 Principle and comparison with a single p-n junction solar cell
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Figure 1.4: Principle of a hot-carrier solar cell. Reproduced from [7]

The principle of a hot-carrier solar cell, suggested in 1982 by R. T. Ross and A.

J. Nozik [3], is depicted in figure 1.4. A photon with an energy much larger than the

absorber band gap (Eg) creates an electron-hole pair, that is extracted towards the elec-

trodes through energy selective contacts, at energies Ee
ext and E

h
ext, for the electrons and

the holes respectively, so that the total extracted energy Eext = E
e
ext −Eh

ext is larger than

Eg. Namely, the carriers are wished to be extracted in a hot state. The energy selective

contacts width δE has to be narrow enough to prevent entropy loss during extraction,

typically δE � kBT [50]. The working potential difference at the cell boundaries is the

difference between the electrodes Fermi level, qV = µn − µp.

This concept rests upon the hot-carrier effect, the steady state population of hot carri-

ers [51, 3, 52, 53].

1.3.2 Maximum efficiencies expected

As said in section (1.1.1), photovoltaic energy conversion is limited to 41% when using

a single p-n junction under maximum concentration, while the thermodynamic limit is

close to 86% [4]. In their original paper [3], R. T. Ross and A. J. Nozik predicted 66%
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Figure 1.5: Efficiency of a hot-carrier solar cell with a 0.7 eV band gap absorber (as in
GaSb) and perfectly selective contacts as a function of the thermalisation coefficient Q for
different concentrations of the incident radiation. Reproduced from [7]

of maximum photovoltaic conversion, assuming no thermal contact between the electron

population and the environment, namely the atomic field in the absorber. This maximum

yield was then found to be close to 86% under maximum concentration [55] (see figure 1.7).

To ease the practical implementation of energy selective contacts, A. Le Bris and co-

workers [50] simulated the conversion efficiency as a function of the extraction energy,

the contact selectivity, and a thermalisation factor Q related to the carrier cooling rate

(figure 1.5). For a highly, though not infinitely, selective contact of width δE = 1 meV ,

they found that the maximum efficiency is considerably lower than the thermodynamical

limit when dealing with a realistic thermalisation factor (as measured in bulk GaAs, Q =

1000 W.K−1.cm−2, or AlGaAs quantum wells, Q = 10 W.K−1.cm−2), but still leading

to more than an efficiency of 50% (figure 1.6), which is higher than the current world

record with multijunctions. This result was born out by Y. Takeda and co-workers in [56].

Another result of this study is the possibility to reach such a conversion yield with semi-

selective contacts, i.e. well chosen potential barriers [50], provided the absorber shows a

thermalisation factor of 1 W.K−1.cm−2 at the most. Carrier cooling and energy selective

contacts are hence the two key issues for hot-carrier solar cells fulfillment.

1.3.3 Recent experimental achievements on hot-carrier solar cell issues

Below are given the last striking experimental progress related to the hot-carrier solar

cell main issues deduced from the just above conversion efficiency analysis.
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Figure 1.6: Conversion efficiency vs extraction energy at various thermalisation rate, for
a 1 eV band gap absorber under maximum concentration with highly selective contacts
(δE = 1 meV ). Q = 0 W.K−1.cm−2: no thermalisation in the absorber. Q = 100: fast
thermalisation. A value of Q = 10 W.K−1.cm−2 was measured in GaAs quantum wells
samples [54]. Eabs is the average energy of absorbed photons, i.e. 1.91 eV for a 6000 K
black body spectrum. Reproduced from [50]

1.3.3.1 Energy selective contacts: resonant tunneling transport

Most of the research dedicated to energy selective contacts focuses on resonant tun-

neling transport, consisting of a low dimensional structure confined between two bulk

materials, and leading to a sharp peak of the electronic transmission coefficient at par-

ticular energies [58]. It refers most of the time to quantum wells, but is also relevant for

quantum dot superlattices.

Quantum wells

Electronic transport through double barrier resonant tunneling was experimentally proved

in AlGaAs/GaAs/AlGaAs structures, first in 1974 by L. L. Chang and co-workers [59], and

later by S. Yagi and Y. Okada [60] from an energy selective contact perspective. It reveals

that quantum dot superlattices may be more relevant for the extraction purpose because

of their narrower energy transmission range. However, in 2013, an AlAs/GaAs/AlAs

double barrier structure was made by J. Dimmock and co-workers in a hot-carrier solar

cell prototype [61]: although they could not measure the ratio of the converted over the

incident energy, they experimentally demonstrated hot-carrier current extraction at zero

bias.
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Figure 1.7: Maximum efficiency expected as a function of the electronic band gap in a
hot-carrier solar cell. The energy selective contacts are assumed perfect (no entropy loss).
Reproduced from [57]

Quantum dots

The discretisation of energy levels in quantum dots could allow to realise transport of

carriers in a narrow energy range. The key synthesis challenge then is the homogeneity

of the dots size, since non-uniformity causes widening of energy levels [62]. Despite this

technical difficulty, experimental evidence of hot carriers extraction was demonstrated in

2008 and 2013, respectively by G. J. Conibeer et al. [63] and D. König et al. [64], from an

Si absorber through an Si-quantum dots array embedded in an SiO2 matrix.

1.3.3.2 Carrier temperature mapping

Opto-electronic characterisation tools are of highest importance in evidencing hot-

carrier effect and hot-carrier absorber characteristics. Photoluminescence using a confocal

microscope has been demonstrated to be a relevant tool for this aim [65, 22]. A signifi-

cant improvement in characterising potential candidates for hot-carrier solar cell absorber

was achieved in 2013 by J. Rodière [22]. From spectrally and spatially resolved photo-

luminescence, the carriers temperature TC , the quasi-Fermi levels splitting Δµ and the

thermalisation factor Q [57] were extracted for several light concentrations (figure 1.8).

These thermodynamical quantities, although required for hot-carrier absorbers discrim-

ination, are hardly predictable for complex systems such as quantum wells. Rodiere’s

work allows to reach all this quantities almost simultaneously for any semiconductor. In

particular, he isolated an InGaAsP multi-quantum well structure that exhibits a thermal-
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isation factor of 4 W.K−1.cm−2, which, referring to figure 1.5, would lead to a conversion

efficiency of almost 50% at 10 000 suns.

Figure 1.8: Local measurement of the thermalisation rate deduced from an absorbed power
map based on integrated PL map and the corresponding local temperature map of emission
under 22000 suns. Reproduced from [22]

1.4 Materials for hot-carrier solar cell absorber

After delving into the analysis of a hot-carrier solar cell operating, we face the issue

of specific material criteria choices, both for the absorber and energy selective contacts.

With nascent technological concepts come fundamental scientific issues: each of these two

latter elements have totally different functions, and require both deep and independent

investigations. In this thesis, we focus only on the absorber.

1.4.1 Carrier cooling and atomic scale engineering

As seen in section (1.3.1), carrier cooling hindering is one of the two hot-carrier solar

cell challenges: we aim at designing (or discovering) a material with a low thermalisation

coefficient compared to standard bulk semiconductors, i.e. of the order or lower than

1 W.K−1.cm−2, or hot-carrier relaxation time longer than 1 ns [62]. From section (1.2)

on carrier cooling dynamics, two paths take shape: softening the electron-phonon interac-

tion (what is called the electron-phonon bottleneck), and tuning the phonon spectrum so
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to extend the LO-phonon lifetime (typically to the order of several tens of ps at 300K),

increasing the reabsorption rate (the phonon-phonon bottleneck, or simply phonon bottle-

neck, or again hot-phonon effect). It is worth noting that this latter effect is only relevant

for electrons below the intervalley threshold. In the following we summarise the current

knowledge on these two bottlenecks.

1.4.1.1 Electron-phonon bottleneck

Interestingly, most of the experimental reports of reduced carrier thermalisation time [66,

67, 68, 54] came after R. T. Ross and A. J. Nozik essential paper on the hot-carrier solar

cell concept [3]. The guiding line of these papers is the comparison of the evolution in

time of the electronic temperature in bulk GaAs and GaAs/AlGaAs multi quantum wells.

Whether there was or not an energy loss rate reduction in 2D systems compared to bulk

was an extremely controversial topic [69, 68] until the conciliating paper of W. S. Pelouch

and co-workers [68]. The main admitted conclusions about this topic are:

• The energy loss rate (ELR) of carriers is substantially reduced both in bulk and 2D

systems, whatever the carrier density nc, compared to what can be expected within

the simple Fröhlich model, that assumes no electron-phonon interaction screening

and a phonon population at the lattice temperature [45, 70]. This ELR reduction

has different understandings, though, depending whether nc is below or above a soft

threshold carrier density estimated to be ñc ≈ 0.5 − 1.0 1018cm−3 [54, 70, 71, 68];

• For a given carrier density below ñc, the ELR of carriers cannot be explained by

electron-phonon interaction screening effect, but can be related to a hot-phonon

effect, i.e. reabsorption by carriers of out-of-equilibrium LO-phonons [72, 71]. In this

range of density, there is no substantial difference between the carriers ELR in bulk

and 2D systems, i.e. is dimensionally- and width-independent [73, 74, 70, 75, 68];

• For a given carrier density above ñc, the ELR of carriers is substantially reduced

in 2D systems compared to bulk, and, in addition to the hot-phonon effect, have

to be taken into account electron-phonon interaction screening effects [67, 68, 54]

and dependence on ñc [76], as well as plasmon-phonon renormalisation of phonon

modes [44, 76]. Finally, the thermalisation factor [7, 77], that is related to the

thermalisation time inverse, is linearly dependent on the absorber thickness [57, 22];

• At a given average carrier temperature, the ELR of holes is one to two orders of

magnitude lower than the electron one [72].

Recent theoretical works [78, 79] pointed out that considering realistic scattering times

leads to the conclusion that the absorber (respectively a stack of absorbers in the case of

a multi quantum wells structure) should not be thicker than 10 nm (10 nm each absorber

slab) to allow the carriers to efficiently reach the contact without too much energy loss, in

accordance with J. Rodière’s experimental results [22]. They also highlighted the necessity

of correctly including confinement, i.e. the modification of electron-phonon interaction in

such small 2D systems.
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Quantum dots have been a more recent increasing research field for hot-carrier solar cell

absorber compared to quantum wells [14, 53, 62], partly because the electron-phonon

bottleneck effect is thought to be very efficient, provided the energy difference between

two electronic excitation levels is larger than the highest phonon energy, thus preventing

carrier cooling though phonon emission [62]. Since radiative recombination would then

be the dominant energy losing process, electron-hole separation is a key issue and a hot

topic in quantum dot solar cells [62]. It is of fundamental importance to note that, even

though dimensionality effects on ELR reduction in 2D materials is a bit better understood

since W. S. Pelouch conciliation paper [68], ELR reduction in quantum dots is still a

controversial topic considering the large number of papers reporting thermalisation time

of the same order or even longer than in bulk materials [14, 62].

1.4.1.2 Phonon-phonon bottleneck

The basic idea of phonon engineering for hot-carrier solar cell is to restrict or deprive

the LO-phonon of decay final states. From a quantum mechanical point of view, this

induces a shorter transition rate from the one LO-phonon state to the two- (or more-

) phonon states, hence a longer characteristic time. This has been shown to occur in

binary materials exhibiting a large gap in their phonon band structure [80, 81], because

of the large mass ratio between the two atoms. InN , for instance, received a particular

attention [82, 80, 83, 84], as it was thought to be a "good" candidate due to the large

mass difference between Indium and Nitrogen. However, ultrafast Raman spectroscopy

experiments have shown the a wide band gap between optic and acoustic branches was not

sufficient as other decay processes would occur due to a wide LO-TO splitting [85, 86]. It

seems reasonable to the author to state that the LO-phonon decay has not received, from

an experimental point of view, a large enough interest, so that a simple literature review

could not allow to find a proper candidate, and, apart from few exceptions, theoretical

studies of phonon band structure in a hot-carrier solar picture have been performed with

approximated phonon band structure, and on high symmetry directions only.

1.4.2 Formal requirements

From what precedes, we can formalise the suitable requirements for a hot-carrier solar

cell absorber. From a phononic point of view to start with, the following properties are

considered to be beneficial [80, 87].

(i) First, a large phononic gap between acoustic and optic branches that could be ob-

tained with a large mass difference between the atoms in the unit cell to suppress

the channels through which phonons decay into two acoustic phonons, namely the

Klemens channels [43];

(ii) secondly, a narrow LO-TO splitting to suppress Ridley channels [88], leading to one

acoustic and one optic phonons;
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(iii) a relatively small LO-phonon and LA-phonon maximum energies, in order to both

reduce the energy loss by LO-phonon generation and ensure property (i);

(iv) as a final phonon requirement, a narrow optic phonon energy dispersion to minimise

the Ridley-decays.

In order to absorb the widest part of the solar electromagnetic spectrum, HCSC absorber

must fulfill some additional conditions regarding its electronic structure, to wit:

(v) a low band gap (typically below 1 eV [7]) to maximise the optical absorption;

(vi) a continuous electronic joint density of states to allow absorption of the entire solar

spectrum [87];

(vii) a low electronic effective mass to ensure a high mobility;

(viii) finally, since no evidence of intervalley or intra-satellite-valleys scattering rate reduc-

tion has been reported so far (unlike intravalley scattering rate), so that this process

is considered to be an irrepressible cooling mechanism, a band structure showing

high energetic intervalley threshold, typically above 1 eV , is preferable.

1.4.3 Physical challenges for materials science

Thermalisation and cooling processes, channels and rates at the nanoscale are inciden-

tally not only a key issue for hot-carrier solar cells. Those are common challenges shared

with various semiconductor physics research fields [89, 90, 91], such as thermal transport

in nanotechnologies [91], quantum computing [92], energy conversion and storage [93], and

is a fundamental challenge for thermolelectricity [94] and thermionic effect [95].

1.5 Open questions

S. A. Lyon began the conclusion of his review on spectroscopy of hot carriers in semi-

conductors by: "So far we have concentrated on what we think we know. Here we will

summarise the accomplishments, and discuss some of what we do not know." [19]. In the

same spirit, we will summarize the missing links in our understanding of hot-carrier cool-

ing from a hot-carrier solar cell point of view, and propose some ways of exploration that

will be developed in the next chapters.

• Study of LO-phonon decay has often suffered from its lack of precision because

of rough approximation of the band structures, its representation limited to high

symmetrical directions, or else the irrelevance or virtuality of the studied materials.

We may legitimately ask whether a full picture of the phonon decay, using an exact

band structure, would not improve our comprehension of the phenomenon and bring

new clues towards finding candidates for hot-carrier solar cells absorbers. This issue

will be addressed in chapters II and III.

• Electron-phonon interaction has been extensively studied in bulk as well as quantum

wells of width larger than 10 nm, but the intermediate range remains under-explored.
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It constitutes however the transition from the bulk to the 2D system, and is thus

favourable for studying the fundamental interactions dimensionality dependence. In

chapter IV will be exposed such an analysis of the electron-LO-phonon interaction

in superlattices.

In both cases, and as explained all along section (1.4), a fine description of electronic

and phononic properties is required. In addition, this work intends to be predictive in

seeking for candidates materials. These studies will thus be performed using ab initio

computational tools, namely Density Functional Theory (DFT) and Density Functional

Perturbation Theory (DFPT). Only the most basic theoretically founding principles of

these techniques are recalled whenever it is required for results understanding.
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2.1 The Physics of phonons

Phonons are quanta of atomic vibration in a crystal. They are pseudo-particles, car-

rying a momentum q and an energy �ω (expressed here in cm−1), ω being the vibration

frequency. One of the most popular method to experimentally probe phonon band struc-

ture is neutron scattering spectroscopy: a neutron beam of known energy and momentum

passing through a crystal experiences inelastic scattering with matter; after being col-

lected, the difference in energy and momentum between the final and the initial neutrons

gives access to the exchanged quanta of these two quantities within the crystal, hence the

phonon energy �ω versus q dispersion relation.

It is very convenient to picture a crystal at the atomic scale as a set of nuclei bounded

together by springs, on an infinite range. In practice, the springs stiffness is an expo-

nentially decreasing function of the interatomic distance, and is negligible beyond few

angstroms [96]. In this section, we will show that the knowledge of the springs stiffness,

named interatomic force constants within solid state physics, is the essential element to

compute the phonon dispersion relation.

2.1.1 Interatomic force constants

We denote R0
I , the nucleus equilibrium position of the unique atom I in the crystal.

Its uniqueness is ensured by introducing a cell label l, so that R0
I = Rl+τ I , the first term

being the position of the cell within the crystal, the second the position of I within the

cell. If moved away from its lower-energy position by ulI , the new position RI writes:

RI = R
l + τ I + u

l
I (2.1)

Expanding the total energy upon atomic displacements u around the equilibrium positions

leads to:

Etot({u
l
I}) = E

(0)
tot

+
1

1!

�

l,I,α

∂Etot

∂ulI,α
ulI,α

+
1

2!

�

ll�,IJ,αβ

∂2Etot

∂ulI,α∂u
l�
J,β

ulI,αu
l�
J,β

+
1

3!

�

ll�l��,IJK,αβγ

∂3Etot

∂ulI,α∂u
l�
J,β∂u

l��
K,γ

ulI,αu
l�

J,βu
l��

K,γ + ...

(2.2)

with I, J , K labeling the atoms in the unit cells, l, l�, and l�� the ones they belong to, and

α, β and γ the cartesian axes along which they are displaced. The first term in the above

equation simply fixes the origin of the energies, and can be set to zero. So must be the

second term: as a simple derivative of the energy upon displacement, it corresponds to a

spring restoring force, whose sum over all atoms is zero at equilibrium. In this chapter,
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we limit ourselves to the harmonic approximation, truncating the development at the first

non-zero term, the second derivative (i.e. the third term in the total expansion). We

define the 3Nat × 3Nat interatomic force constants (IFC) matrix as:

CI,α;J,β(l, l
�) :=

∂2Etot

∂ulI,α∂u
l�
J,β

(2.3)

= CI,α;J,β(l, l
�) (2.4)

Within a ball-and-spring picture, CI,α;J,β(l, l
�) corresponds to the stiffness of the spring

acting on atom I in the cell l along the α axis when atom J in the cell l� is moved from

equilibrium along the β axis. Within this definition we can rewrite the harmonic term of

equation (2.2) as:

E
(2)
tot ({u

l
I}) =

1

2!

�

ll�,IJ,αβ

CI,α;J,β(l, l
�)ulI,αu

l�

J,β (2.5)

2.1.2 Equation of motion, dynamical matrix and secular equation

Using Newton’s second law and Hooke’s law, we can write the equation of motion for

the atom (I,l) along the direction α:

MI ü
l
I,α = −

�

J,β,l�

CI,α;J,β(l, l
�)ul

�

J,β (2.6)

with MI the mass of atom I. Because of the translational invariance of the crystal at the

cell scale, no cell index is required on u, and the IFC matrix elements dependence on the

cell labels l and l� can be gathered into the sole Rl −Rl� difference, so that l can be set to

0, and CI,α;J,β(l, l
�) ≡ CI,α;J,β(0, l

�). The solution should have an oscillatory form such as:

uI,α(t) =
u

(0)
I,αe

iωt

√
MI

(2.7)

that, by inserting it in equation (2.6), leads to the homogeneous system of unknown

amplitudes u
(0)
J,β:

�

J,β

�
CI,α;J,β(0, l

�)
√
MIMJ

− ω2δIJδαβ

�

u
(0)
J,βe

iωt = 0 (2.8)

We introduce the definition of the dynamical matrix defined, at a particular q-vector, as:

DI,α;J,β(q) :=
�

l�

e−iq.Rl� CI,α;J,β(0, l
�)

√
MIMJ

(2.9)

=
1

N

1
√
MIMJ

∂2E

∂uα∗
I (q)∂uβJ (q)

(2.10)
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with N being the number of unit cells in the crystal. Equation (E.1) becomes:

�

J,β

�
DI,α;J,β(q)− ω(q)2δIJδαβ

�
u

(0)
J,β = 0 (2.11)

which has non trivial solutions (u
(0)
J,β �= 0) only if the determinant is zero:

Det
�
DI,α;J,β(q) − ω(q)2Id

�
= 0 (2.12)

In a 3-dimensional crystal, there are 3 ×Nat solutions for each q, called modes, that will

be labelled with the letter s. It is worth noting that the knowledge of the IFC matrix, the

force constants in real space, allows to calculate the frequencies and atomic displacements

for any reciprocal vector q, without breaking the crystal symmetry [97].

2.1.3 Phonon dispersion and one-phonon density of states

The allowed frequency ω is a function of a three-dimensional q wavevector. The one-

phonon density of states, hereafter referred to simply as phonon density of states when no

confusion is possible, is defined as:

g(ω0) =
NΩ

8π3

�

q,s

δ(ω0 − ωs(q)) (2.13)

where N0Ω is the volume of the entire crystal. It describes the number of states in each

infinitely small energy interval at each energy, and its integration over the entire energy

spectrum gives 3 × Nat [98]. As an example, the calculated phonon dispersion relation

and corresponding one-phonon density of states of Silicon is depicted in figure 2.1. The
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Figure 2.1: Left: Calculated (red) versus experimental (blue, reproduced from [99]) phonon
dispersion relation of bulk Si. Right: Calculated one-phonon density of states. The
computation methodology is given in section 2.3
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phonon branches are usually named after the corresponding atomic displacement in the

short wavevector limit. The three lowest ones are called acoustic (A), and correspond to

vibrations of the cells while the atoms are fixed. All the others are called optic (O), and

are related to atomic displacement within the cells. Among these two sorts, phonons are

said to be longitudinal (LA, LO) or transverse (TA, TO) depending on whether the

displacements are, respectively, parallel or perpendicular to the wavevector.

2.2 Phonon decay

As recalled in section (1.2), we focus here on the interaction between a hot electron

and a nearly-zone-centre longitudinal-optic-phonon (hereafter simply called "LO"): below

the intervalley transition regime, and because it is responsible for the generation of a static

electric field, the LO phonon is most likely to couple with a hot electron [100]. This phonon

is not stable in time compared to lower energy phonons [101], and decays, within few

picoseconds at most in the known semiconductors, into lower energy phonons [102, 49, 103].

2.2.1 Conservation rules

We limit ourselves to the first order of decay, a three-phonon process, i.e. one phonon

(ωs1
q1
) decaying into two other phonons (ωs2

q2
and ωs3

q3
). This approximation has so far been

always sufficient to explain and quantitatively reproduce related experimental results [104,

105, 106]. This decay is governed by the energy and momentum conservation rules:

q2 + q3 = q1 (2.14)

�ωs
�

q2
+ �ωs

��

q3
= �ωsq1

(2.15)

where "2" and "3" label the two final phonons. As we focus on the LO-phonon decay, we

have q1 ≡ qLO and ωs1
q1

≡ ωLO. We denote here a two-phonon final state (or simply a

final state when no confusion is possible) a couple of phonons {ωs2
q2
, ωs3

q3
} that satisfies the

energy and momentum conservation rules.

2.2.2 Decay channels nomenclature

The final states in the cubic phase are divided into four subspaces for the upcoming

analysis: those that involve two LA-phonons will be referred to as the first Klemens

states [43], and similarly, when they involve one LA and one TA-phonon, they will be

referred to as the second and third Klemens states, one for each TA mode. The cases

where the two resulting phonons are one TO and one acoustic (either LA or TA), are

labelled the Ridley states [88]; making the distinction between the different Ridley surfaces

(TOs+LA/TAs) does not bring here any supplementary information. An illustration of

this labeling is displayed in figure 2.2, for all two-phonon states fulfilling the conservation

rules (2.14) and (2.15) in GaAs, along high symmetry directions in the first Brillouin zone.
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possible two-final phonons. The experimental data (black filled squares) are reproduced
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2.2.3 Engineering phonon band structure for hot-carrier solar cells

From a quantum mechanical point of view, the fewer the final states are, the less

probable the decay is, and thus the greater is the LO-phonon lifetime. Hence, the first

basic idea in phonon engineering for hot-carrier solar cells is to find or design an absorbing

material that exhibits few allowed two-phonon final states. The idea of using the gap

formation in the density of states may come from an indirect reading of a paper from B.

K. Ridley [88], in which he noticed that the gap between the optic and acoustic branches

in bulk GaP is too large to allow LO-phonon decay though Klemens channels, and that

other channels have to be considered (as it happened, the Ridley channels).

In a first approach, with a one-dimensional ball-and-spring model [102], it appears that

the mass ratio between the atoms is a key parameter. As an example, the phonon band

structure was calculated for a one-dimensional (GaSb)NL−(AlSb)NL superlattice, together

with bulk GaSb and AlSb cases, within the approximation of nearest neighbour-only

interaction, where NL is the number of layers of each binary, the whole structure having

periodic boundary conditions (figure 2.3). In the bulk cases to start with, the gap opening

between the acoustic and the optic region is solely determined by the atomic mass ratio: at

the zone boundary, the acoustic and optic frequencies are respectively given by ωO =
�

2C
m

and ωA =
�

2C
M , m and M being the mass of the lightest and heaviest atom, C the

stiffness of the interatomic springs, that are assumed atomic species-independent. Hence,

the opening is simply ωO

ωA
=

�
M
m . Considering the superlattice, forbidden energy ranges
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Figure 2.3: Band folding and mini-gaps formation in one-dimensional (GaSb)NL −
(AlSb)NL superlattice, NL being the number of layers of each compound. The lattice
parameters of GaSb and AlSb are considered to be identical, and equal to a, so that the
superlattice one is b = 2aNL. The shaded areas highlight the forbidden energy range for
bulk GaSb (red), bulk AlSb (green), and the superlattice (grey).

appear in the equivalent bulk acoustic regions (grey shaded areas), whose number and

extent depend on NL. As it turns out, the size of the gaps decreases as an inverse

function of the superlattice size (as found elsewhere in [96]). However, the size and position

of the gaps can be tuned, depending on the periodic arrangement of the layers. Hence,

nanostucturing allows creating gaps in the acoustic region that seems to make Klemens

decay prevention possible. From a hot-carrier solar cell point of view, this has been the

motivation for seeking large phononic gaps in both simple bulk semiconductors [80, 87]

superlattices and quantum dots [108, 83, 109].

2.2.4 Need for a complete picture

At this point, we need a tool to compute the phonon dispersion relation with an arbi-

trary precision and an excellent accordance with experiment. The band structure and gap

formation in figure 2.3 were calculated within a first-neighbour ball-and-spring approach,

a toy model, that is not satisfactory for accurate phonon engineering, since only a rough

accordance with experimental dispersion can be expected. In addition, it does not take

into account the three degrees of freedom of a real crystal, that may change the band

dispersion and thus the gaps width.

As seen in section (2.1), the key parameter for calculating phonon band structure is the

interatomic force constant matrix. Empirical methods exist to calculate long range in-

teratomic interactions, within which the matrix elements are parametrised and adjusted

to reproduce some experimental values, such as the sound velocity or the Raman peak
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position. A review of the most common parametrisation methods can be found in [100].

However the transferability of the fitted parameters for two materials A and B for com-

puting the band structure of any AxBy material is questionable, not to mention that, most

of the time, they do not allow to include the long range polar interaction responsible for

LO-TO splitting [26] (see section (2.3.1.2)).

For these reasons, the Density Functional Perturbation Theory (DFPT ), an ab initio

method, is chosen to compute the interatomic force constant matrix, preventing us from

any ad hoc assumption on the band structure and dependence on existing experimental

data for the materials of interest.

2.3 Phonons within Density Functional Perturbation Theory

The ab initio calculation of phonon properties is one of the brightest successes of

computational condensed matter physics, as it provides a predictive tool, for instance,

to perform Raman spectra analysis, or to search for new materials according to specific

parameters, such as the lattice thermal conductivity in the field of thermoelectricity. In this

section are recalled the essential ideas and equations required for an overall understanding

of the manuscript, leaving the exhaustive derivation to specialised litterature [97, 110].

2.3.1 Principle and formalism

We focus here on the computation of the interatomic force constant (IFC) matrix in

real space (equation (2.4)) using the ground state electronic density as the basic ingredient.

2.3.1.1 Generalized forces and IFC as an electronic density functional

Within the Born-Oppenheimer approximation, the Hamiltonian of N electrons in the

field of fixed nuclei with coordinates {R} is [110]:

H = Hel +HN +He−N (2.16)

Hel = Ti +E
C
i (2.17)

=
�

i

−�2

2mi

∂2

∂r2
i

+
e2

2

�

i�=j

1

|ri − rj|
(2.18)

HN = TN + EC
N ({R}) (2.19)

=
�

I

−�2

2mI

∂2

∂R2
I

+
e2

2

�

I �=J

ZIZJ

|RI −RJ |
(2.20)

He−N =
�

I �=J

−ZIe
2

|ri −RI |
≡

�

i,I

∂vI(ri −RI) (2.21)

whereHel/N is the sum of the electronic/nucleus kinetic energy and Coulombic interaction

between the electrons/nuclei, and He−N is the total electron-phonon interaction. The
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capital letters refer to nuclei, the small ones to the electrons; ri is the position of the

electron i, e is the elementary electronic charge, ZI the charge of nucleus I.

The equilibrium state of the crystal is reached when the sum of all the forces acting on

every nucleus is zero. We thus define the generalised expression of the force F as the

partial derivative of the Hamiltonian with respect to RI
α:

FI ≡ −
∂E({R})

∂RI
=

�

Ψ{R}

�
�
�
�
∂H{R}

∂RI

�
�
�
�Ψ{R}

�

(2.22)

where Ψ is the ground state wavefunction of the system in the nuclear configuration {R}.

The electronic charge density in this set is:

n(r) = N

� �
�
�Ψ{R}(r, r2, ..., rN )

�
�
� dr2...drN (2.23)

and making use of the Hellmann-Feynman theorem [111, 112], equation (2.22) now reads:

FI = −

�

n(r)
∂vI(r−RI)

∂RI
dr−

∂EN ({R})

∂RI
(2.24)

From here to the interatomic force constants remains only one single derivation step.

Evaluating terms of equation (2.24) is achievable within different models and approxima-

tions [97], either ab initio, empirical or semi-empirical. The adopted method here the

Density Functional Theory (DFT ), as briefly recalled in appendix A, within which we can

rewrite the generalised force expression:

FDFT
I = −

�

n(r)
∂V{R}(r

∂RI
dr−

∂EN ({R})

∂RI
−
δE({R})

δn(r)

∂n(r)

∂RI
(2.25)

(where V{R} ≡
�

I vI(r−RI)). Because the system total energy is extremal for the ground

state density, when all atoms are in their equilibrium positions, the last term vanishes and

the latter equation matches exactly the generalised force expression (equation (2.24)).

Differentiating FDFT
I with respect to nuclear coordinates leads to the interatomic force

constant expression within DFPT:

∂2E({R})

∂RI∂RJ
=

�
∂n(r)

∂RJ

∂V{R}(r)

∂RI
dr+ δI,J

�

n(r)
∂2V{R}(r)

∂RI∂RJ
dr+

∂2EN ({R})

∂RI∂RJ
(2.26)

and we end up with what was required in equation (2.10) to compute the dynamical matrix

DI,α;J,β(q). Defining C̃I,α
J,β (q) :=

√
MIMJ × DI,α;J,β(q), the reciprocal space interatomic

force constant matrix, we can write C̃I,α;J,β as the sum of two terms:

C̃I,α
J,β = elC̃I,α

J,β + ionC̃I,α
J,β (2.27)
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where the second term in the right hand side is an ionic contribution that does not depend

on the density (the last term in equation (2.26)). The electronic contribution elC̃I,α
J,β writes:

elC̃I,α
J,β =

1

N

�� �
∂n(r)

∂uαI (q)

�∗
∂V{R}(r)

∂uβJ(q)
dr+ δI,J

�

n(r)
∂2V{R}(r)

∂u∗α
I (q = 0)∂uβJ (q = 0)

dr

�

(2.28)

Hence, the second derivative of the energy depends solely on the linear response to the

lattice distortion of the electronic charge density (∂n/∂u). This is a particular case of the

so-called (2n+1) theorem [113], stating that the knowledge of the density response to the

nth order gives access to the energy response up to the (2n+ 1)th order. The interatomic

force constants in reciprocal space can then be Fourier-transformed back to real space, so

that the ω(q) relation can be computed at any q vector.

2.3.1.2 The LO-TO splitting

In polar materials, the long wavelength vibrations of oppositely charged atoms are

responsible for a macroscopic electric field [26]. In addition to the only remaining term in

equation (2.2) up to the second order at equilibrium, one has to include this electric field

E contribution to the total energy. It can be divided into two terms, an electronic one and

an ionic one, so that the new total energy writes [99]:

E({u},E) =
1

2

�

IJ

�

αβ

uI · anC̃IJ · uJ −
Ω

8π
E · �∞ · E − e

�

I

uI · Z∗
I · E (2.29)

where the label an was added onto the dynamical matrix to highlight its analytical feature,

�∞ is the dielectric tensor, and Z∗
s the Born effective charge carried by the atom I. To

the analytical term anC̃ has then to be added the system response to the perturbation it

creates itself, a non-analytical term naC̃, that writes:

naC̃I,α
J,β =

4πe2

Ω

(q · Z∗
I)α(q · Z∗

J)β
q · �∞ · q

(2.30)

This coupling between the lattice vibrations and the polarisation is responsible for the

so-called LO-TO splitting in polar semiconductors. Although we will develop this point

later in chapter 4, it is already worth noting that this "correction" is not only effective at

the very vicinity of the zone-centre, and, strictly speaking, not only for the LO mode, as

can be seen in figure 2.4.

2.3.2 Successes and limitations

DFPT as implemented in the Quantum Espresso package [97, 6] has been used for this

thesis. It has been worldwidely recognised as an extremely efficient tool in the compre-

hension of a significant number of vibrational related properties, among which, study of

soft modes and pressure induced phase transitions [115]; phonons in superlattices [116],
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Figure 2.4: Phonon dispersion relation of bulk GaAs with (red) and without (green) taking
into account the coupling between electric field at atomic vibration. Experimental data
(blue points) are reproduced from [114].

alloys [117], and nanostructures such as Graphene [118] and Fullerene [119]; defects vibra-

tional properties [120]; surface modes [121]; thermodynamics properties of solids within

the quasi-harmonic approximation [122]; Raman tensor analysis [123]; and phonon lifetime

in semiconductors [104, 124].

Unfortunately, the required computational effort scales as Nα
at, α ∼ 3−4, which limits the

affordable system size to ∼100 atoms [97]. This corresponds for instance to a 1.3×1.3×1.3

nm3 Silicon FCC cubic cell, or a 1.6×1.6 nm2 Graphene sheat.

2.4 Two-phonon final states in bulk semiconductors

In this section, we use the phonon band structure of different bulk materials computed

within DFPT, and apply the energy and momentum conservation rules, equations (2.14)

and (2.15), for an initial LO-phonon emitted in the intraband electron cooling process.

We then investigate the phonon criteria defined in section (1.4.2).

2.4.1 Practical implementation

Below are given practical details on the implementation of the conservation rules (2.14)

and (2.15) for any material in the entire first Brillouin zone. Additional computational

details can be found in appendix B.
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2.4.1.1 The zone centre approximation

Since the exchange wavevector in the electronic cooling process is small compared to

the Brillouin zone size [21], a very common [43, 125, 104, 126, 84, 127] and convenient

approximation is to set qLO to 0 in equation (2.14), so that the conservation rules now

write:

q2 = −q3 (2.31)

�ωs
�

q2
+ �ωs”

q3
= �ωLO (2.32)

Since phonon eigenvalues have the inversion property ω(q) = ω(−q), within this approx-

imation the two conservation rules reduce only to (2.32).

2.4.1.2 Searching algorithm

The equality (2.32) cannot be exactly solved numerically. A tolerance delta function

has to be added on the right-hand side of the equation:

�ωs
�

q2
+ �ωs”

q3
= �ωLO ± Δ (2.33)

The dispersion relation is computed on a very tight mesh into the whole irreducible Bril-

louin zone (1/48th of the whole BZ for a bulk FCC crystal, see figure 2.5), so that the

volume of each q-point is 0.125.10−6 in unit of (2π
a )

3, a being the lattice parameter. This

is equivalent to mesh the ΓX axis in the reciprocal space into 200 q-points. In this chap-

ter, because we simply seek for a visual representation of the allowed two-phonon final

states, Δ is taken as a rectangular function. E. Haro-Poniatowski and co-workers [125]

chose a width of 1% of the optic phonon frequency. Considering the density of the mesh

and the reached agreement with experiment (see for instance figure 2.4), we chose 0.1%,

so that the density of final states in q-space is sparse enough to allow a readable analysis.

An example is shown in figure 2.2, where this methodology was applied on GaAs along a

particular path in the BZ (the negative q region is folded onto the positive one for clarity).

2.4.2 Detailed two-phonon states analysis

We investigate the two-phonon final states as defined in section (2.2.2), within the

framework of phonon criteria for hot-carrier solar cells as defined in (1.4.2), first on a wide

range of bulk semiconductors in the Zinc-Blende phase. The results in reciprocal space

are displayed in figure 2.6 for the III-V group, and figure 2.7 for the IV-IV: they are the

equivalent three-dimensional picture of figure 2.2.
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Figure 2.5: Full (grey) and irreducible (black) FCC Brillouin zone. The red broken line
corresponds to the q-path along which the band structure was plotted in figure (2.2).

2.4.2.1 Bulk III-V group

GaAs is a case state since it has been the most studied semiconductor of the III-

V group, both experimentally and theoretically [114, 125, 104, 49]. In addition to the

Ridley channels, the three different Klemens channels are allowed. The different channels

contribution, gathered in table 2.1, is in contradiction with some previous studies [49, 136].

Indeed, F. Vallée and F. Bogani [136] claimed that the LO-phonon decay in GaAs is led by

another two-phonon process, involving one LO-phonon near the L point of the Brillouin

zone and one LA-phonon. This channel does not appear in our results for the chosen

energy conservation function width of 0.1%. Trying to relax this latter parameter, we find

that at 7%, a similar channel appears, but involving a zone edge LO-phonon near the

K-point of the Brillouin zone. The Vallée-Bogani channel, as it is described above, only

appears at 7.2%. In both cases, the tolerance parameter is too large to seem reasonable for

the author: in a phonon lifetime calculation (see section (3.4.2)), the Gaussian linewidth

in the energy conservation relation is taken at most for simple semiconductors to be

5 cm−1 [49, 137, 106, 124], which, for the above channel, gives a Gaussian weight of

5.10−2 (instead of 1 in a perfectly energy conservation situation). This channel thus

cannot possibly be the leading one, and is considered not to take place within the current

approximations. This conclusion is consistent with recent full-band Boltzmann transport

equation solving via Monte Carlo simulation [127].

When increasing the atomic mass ratio, the second and third Klemens surfaces disappear,
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Figure 2.6: Two-phonon final states in the zone-centre approximation for III-V semicon-
ductors. The blue surfaces are Klemens states (K1, K2 and K3 for first, second and
third Klemens states), the green ones are Ridley states (R). The insets show the accor-
dance between computed dispersion relation and experimental data on high symmetry
lines([114, 107, 128, 129, 130, 131, 132, 133, 134]).
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third Klemens states), the green ones are Ridley states (R). The insets show the accor-
dance between computed dispersion relation and experimental data whenever they exit
([99, 135]).
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Klemens channel
Ridley channel

LA+LA LA+TA1 LA+TA2

GaAs
93.20

6.80
9.73 59.23 31.04

AlAs
67.25

32.71
100.00 0.00 0.00

AlSb
0.00

100.00
0.00 0.00 0.00

GaSb
83.78

6.22
100.00 0.00 0.00

GaP
74.10

25.56
100.00 0.00 0.00

InP
16.28

83.72
100.00 0.00 0.00

Table 2.1: Contribution of each channel in the two-phonon final states number (in %) in
the bulk III-V semiconductors. The detailed of the Klemens states are given in % of the
total Klemens channel contribution.

as in GaSb and GaP (figure 2.6). The remaining allowed channels lead to an almost

spherical first Klemens surface, which is of high interest when considering creating a gap

in the dispersion relation in order to prevent the phonon decay, because the gap has to

remain at a constant energy in all reciprocal directions, and this can be directly associated

with nanostructures such as quantum dots. The narrow splitting between LO and TO

branches is also responsible in GaSb for the Ridley states to be confined very close to

the Γ point. As the mass difference between the two atoms increases, the first Klemens

surface is split into three parts in the vicinity of particular high symmetry points, K, L

and X, as in AlAs. This behaviour is emphasized in InP, where even the first Klemens

states near K are not allowed. AlSb is the ultimate case since the Klemens channels are

forbidden everywhere because all acoustic branches remain below half of the LO-phonon

energy. Unfortunately, AlSb has an indirect band gap, which makes it unsuitable for an

absorber.

2.4.2.2 Bulk IV-IV group

The same calculation is performed for Si, SiGe, SiC, CSn and SiSn, and the two-phonon

final states are depicted in figure 2.7. Si is the case state of non-polar semiconductors. The

three Klemens channels are energetically allowed, and its elemental feature makes Ridley

channel not relevant. As in GaAs, we can see from table 2.2 that in this case the first

Klemens process is not dominant in the purely acoustic final states. It is also clear when

considering the relative size of the three Klemens surfaces in figure 2.7. SiGe is another

example for which the mass difference is high enough to forbid the second and third

Klemens channels, leaving only possibilities for the first Klemens process. Interestingly,

the first Klemens surface in SiGe differs from pure Si. This is an edge case: the first
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Klemens surface is bowing in the centre, which for higher mass differences, like in AlAs,

leads to the case where this surface is split into three pieces (figure 2.6). The LO and

TO branches are centered so close around Γ that no Ridley channel is observed within

an energy conservation function width of 0.1%. In SiC, the high electronegative feature

of the Carbon atom is responsible for the large and complete LO-TO splitting, so that

the gap between the LO and the TO branch is effective in the whole Brillouin zone. As a

consequence, we find a large number of Ridley final states. In addition, in accordance with

the fact that the mass ratio between the two atoms is between the one of GaAs and of

GaP, all the Klemens channels are energetically allowed. In the CSn case, the mass ratio

is close to 10, which is much larger than any of the other semiconductors treated here. In

addition, the LO-TO splitting is even wider than in SiC. While no Klemens channel decay

are allowed, the Ridley surfaces are numerous and stretched even farther from the Γ point

than in SiC.

SiSn shows particular features that call for development. The LO and TO branches

Si
100.00

0.00
12.12 33.94 53.94

SiGe
100.00

0.00
100.00 0.00 0.00

SiC
64.47

35.53
18.19 20.97 60.84

CSn
0.00

100.00
0.00 0.00 0.00

SiSn
87.28

12.72
100.00 0.00 0.00

Table 2.2: Contribution of each channel in the two-phonon final states number (in %) in
the IV-IV. The detailed of the Klemens states are given in % of the total Klemens channel
contribution.

split just enough around Γ to open an extremely narrow energy window for the Ridley

decay to occur. Due to the relatively high mass ratio of 4.23, the first Klemens surface is

restricted to a small reciprocal volume in the vicinity of the X-point. In this situation,

the results strongly depend on the accuracy of the calculated phonon dispersion relation.

Unfortunately, no experimental data exist in the very knowledge of the author.

2.4.2.3 Questioning the zone centre approximation

The relevance of the zone centre approximation as defined in paragraph (2.4.1.1) is

illustrated in figure 2.8, on which the variation of the normalised number of final states

upon the initial value of the LO-phonon wavevector is depicted. Three behaviors are to

be distinguished. The first one is the small increase of this number whith |qLO|, and

this is relevant, except for AlSb and SiSn, for all the studied semiconductors. In these

cases indeed the Klemens surfaces are the leading final states, and they have to undergo
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expansion when increasing |qLO| to keep fulfilling the conservation rules. AlSb, shows the

opposite trend since the number of final states decreases: as |qLO| is enlarged, contrarily to

the Klemens surfaces, the Ridley ones shrink, and since only Ridley channels are allowed

in this case, this reduction of final states is not compensated by an increasing number of

Klemens states. Finally, it is obvious that SiSn has an extraordinary behavior, unrivalled

to any other semiconductor. A detailed study of this material will follow in chapter 3.

For now, we shall just remember that the zone-centre approximation is reasonable when

the final states are not confined near the Brillouin zone edges, and that SiSn is a counter

example.
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Figure 2.8: Dependence of the bare two-phonon final states number upon the wavevector
|qLO| of an initial LO-phonon belonging to ΓX, ΓK and ΓL. For an easier comparison
number of final states are normalized to 1 at |qLO| = 0.

2.4.3 Discussion

In terms of available two-phonon final states, the presence of a wide enough gap be-

tween the acoustic and the optic branches has often been pointed out as a sufficient

criterion for absorber candidate from a phononic point of view. We showed the impor-

tance to consider also the LO-TO splitting width, since it can be responsible for a large

number of Ridley states (as in CSn or SiC in figure 2.7, or again InN [85, 86]), and also

because it partly determines the optic phonon energy dispersion (condition (iv) in (1.4.2)).

This has consequences on the choice of chemical elements for material design: the LO-TO
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splitting being related to effective charges on atoms [26], it can be related to the difference

of electronegativity of the atoms that form the absorber.

2.5 Gaps in the density of states of nanostructured materials

The analysis on available final states is performed in superlattices and quantum dots,

as atomic scale nanostructuration was shown to open forbidden energy ranges in the band

structure.

2.5.1 Practical implementation of PhDOS calculation on large systems

Due to band folding, the number of final states in superlattices is expected to be too

large to perform a detailed analysis as the one done in section (2.4.2). Hence, we limit

ourself to the study of the one-phonon density of states (PhDOS), investigating the gap

formation as described for instance in [83] and [84].

The size issue

The superlattices size is chosen so to step away from quasi-bulk systems. We consider a

512-atom square box within periodic boundary conditions, in which the atoms are arranged

in well or dot patterns. Computing the interatomic force constant in such a large system

using DFPT is not affordable within a reasonable time (section (2.3.2)). Hence, we will

limit ourselves to atomic types for which the transferability of the force constants is valid.

Transferability of the force constants

Considering equations (2.12) and (2.10), we can address the possibility of building the

dynamical matrix of a material using the appropriate atomic masses and the interatomic

force constants of another. If one refers to a ball-and-spring model, this is equivalent

to consider that the springs binding the atoms together have the same stiffness in both

materials. This is often referred to as the mass approximation. Its accuracy has been

studied for III-V and IV-IV FCC materials [99], and led to the conclusion that, for III-

V, it gives very satisfactory results when the materials differ by their cations, while a

much poorer transferability is observed when they differ by their anions. Finally, the

transferability of Si interatomic force constants to Ge is found to be relevant in the sense

that the error between the band structure calculated with any of the two sets of force

constants is of the same order of magnitude than the one between experimental and

calculated values (see appendix E).

Choice of atomic species

We will use Si/Ge as the test case for group-IV materials. Concerning the III-V, lots of

work has already been done on GaAs/AlAs superlattices [138, 139, 140, 141] using polarised

Raman spectroscopy together with an elastic continuum model for interpretation, that
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allowed to witness experimental evidence of few cm−1 band gap opening in the superlattice

direction. We chose GaSb-AlSb, for it has been less investigated, and as it shows a larger

atomic mass ratio than in GaAs/AlAs, enhancing a priori our chance to observe phonon

gaps formation.

2.5.2 Application to superlattices

The phonon density of states is calculated for Si16−NGeN superlattices, N ranging

from 0 (bulk Si) to 16 (bulk Ge). The results in the Silicon acoustic region, the region of

interest, are plotted in figure 2.9. As can be seen, no gap appears in the density of states:

it turns almost continuously from one bulk shape to the other. This last statement is
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Figure 2.9: Phonon density of states of Si16−NGeN superlattices.

even more relevant for GaSb8−NAlSbN superlattices (figure 2.10), as there is only a very

soft change in the acoustic region. This is due to the especially strong overlap of GaSb and

AlSb acoustic branches which, from a phononic point of view, does result in interferences.

2.5.3 Application to quantum dots

Figures 2.11 and 2.12 show the phonon density of states for different sized Si(Ge)

quantum dots embedded in a Ge(Si) matrix. We cannot witness the creation of a gap in

the acoustic region, even for small-sized dots. On the contrary, the comb-like structure

seems to appear when increasing the size of the quantum dot. The same experiment is

performed for AlSb (GaSb) dot in a GaSb (AlSb) matrix (figure 2.13 (2.14)). On the joint

acoustic region we observe the same feature as for superlattices, i.e. an almost unchanging

shape. In the case of the AlSb dot, the depopulation of the equivalent GaSb optic energy

range is not sharp enough to create gaps. For the GaSb dot, the situation is the opposite.

As seen in figure 2.6, AlSb alone has a gap wide enough to prevent all Klemens channels
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Figure 2.10: Phonon density of states of GaSb8−NAlSbN superlattices.

 0  50  100  150  200  250  300

P
ho

no
n 

de
ns

it
y 

of
 s

ta
te

s 
(a

.u
.)

Frequency (cm-1)

(nm)

Ge Si

0.00
0.11
0.22
0.33
0.44
0.55
0.66
0.77
0.88
0.99
1.10

Figure 2.11: Phonon density of states of different sized Si quantum dot embedded in a Ge
matrix. The legend indicates the dot radius.

from being allowed: we face the question of the possibility that a dot may or not induce

intermediate states in the gap that would form new decay channels. As can be seen in

figure 2.14, apart from the limit of highly diluted defect, the gap is filled with intra-dot

modes that can couple with the quasi-LA region modes to energetically allow LO-phonon

decay. However, the effective weight of these channels is still an open question.
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Figure 2.12: Phonon density of states of different sized Ge quantum dot embedded in a Si
matrix. The legend indicates the dot radius.
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Figure 2.13: Phonon density of states of different sized AlSb quantum dot embedded in a
GaSb matrix. The legend indicates the dot radius.

2.6 Gaps in the density of states, a lost cause ?

2.6.1 Superlattice: how gaps are filled

If a gap in the dispersion relation may indeed be observed in the superlattice growing

direction [138, 142], this gap does not exist at the same energy in any other direction.

This feature is illustrated in figure 2.15, where the phonon density of states was calculated

by the integration of the band structure on specific directions, from the growing axis to
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Figure 2.14: Phonon density of states of different sized GaSb quantum dot embedded in
an AlSb matrix. The legend indicates the dot radius.

the in-plane axis, for a Si6Ge2 superlattice. The gap that exists along ΓZ (the grey area

delimited by the two arrows) gets narrower as the integration direction has an increasing

in-plane component, until it totally disappears when the z-component reaches 0. The

whole space integration though cannot lead to a full, nor a deep, gap in the phonon

density of states in the case of a superlattice.

2.6.2 Quantum dot: how gaps vanish because dots are not round

To expand the gap as observed in superlattices in the direction perpendicular to the

interface, one would need, at the atomic scale, a flat interface in every direction around

a centre, i.e. a perfectly round dot. In the limit of an infinitely small dot, the atomic

feature of matter forbid to consider an isotropically smooth interface. In the limit of a large

dot, it is tantalizing to treat the system in an elastic continuum model. Yet, this would

not include the enormous number of internal degrees of freedom whose corresponding

modes vibrational energy is likely to span a large range below the highest optic frequency.

In addition, when depopulating a dense frequency region, one has to be careful not to

populate a previously empty range that may create new two-phonon final states. This is

intrinsically in contradiction with criteria (iii) (see section (1.4.2)) since a wide frequency

range would be required to avoid density peaks overlaps.

This is an example of an inverse problem, since it would obviously be more efficient to
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integration direction in the Brillouin zone. The banner at the bottom in a zoomed picture
of a filed accoustic gap.

look for a crystal structure and composition from a given band dispersion, if only it were

solvable. However, it has been estimated that such a sufficient single gap in the phonon

density of states would be achievable with a 1 nm3 at the most quantum dot, whose single

element exhibits a mass ratio a 1/7 with the matrix one [83]. This leaves few hopes for

the practical achievement of such a phonon band structure.

2.6.3 How it turns out that gaps are sufficient but not necessary

We showed that engineering phonon band structure with, as a goal, the creation of

well energetically positioned gaps in the density of states is a very complicated task. It

is even more true considering the fact that we have restricted ourselves to cubic systems.

For crystal with lower symmetry, the increasing number of degree of freedom decreases

the chance to find reasonably large forbidden phonon energy range. However, it is im-

portant at this point to recall that the experimental pieces of evidence of the hot-carrier

effect have not been highlighted in such materials. In the numerous GaAs/AlxGa1−xAs

superlattices systems in which it has not been reported [67, 68, 54], it is manifest, referring

to figure 2.6, 2.10, and to the previous discussion, that there is no chance to witness an

appropriate phonon gap. This later feature is thus a sufficient but not necessary condition

for a material to be a good candidate for hot-carrier solar cells from a phonon point of



2.7. Conclusion on the two-phonon final states investigation 59

view. From the results presented in this chapter, it appears that such gaps are more likely

to be found in bulk materials, such as in SiSn.

2.7 Conclusion on the two-phonon final states investigation

Basic elements of the Physics of phonons were recalled, as well as a summary of the

derivation of the dynamical matrix within Density Functional Perturbation Theory. Based

on previously existing elements in the literature, an accurate nomenclature of the two-

phonon final states was developped.

A detailed study of LO-phonon decay was performed in various III-V and group-IV bulk

semiconductors, which revealed that in addition to the atomic mass ratio, the electronega-

tivity difference, related to the LO-TO splitting, was a key parameter to take into account

when discriminating potential candidates that exhibit few two-phonon final states. This

explains in particular why experimental verification showed that InN has a much shorter

phonon lifetime than what it was when only considering the atomic mass ratio.

The creation and evolution of gaps in the one-phonon density of states were investigated

in Si/Ge and GaSb/AlSb superlattices. It has been confirmed that, while such a gap can

indeed be found in the growing direction, the overall integration of the dispersion relation

fade it, and that if no specific symmetry conservation rule restricts the two final phonons

possible wavevector, expecting a thermalisation rate reduction in such a system because

of the phonon band structure is by no means relevant.

Finally, it was highlighted that SiSn shows hitherto unseen features, that may be set as

target for bulk candidate seeking. For this reason, an even more detailed study of the

LO-phonon in this material is to be performed, by investigating the weight of each type

of final states using third order Density Functional Perturbation Theory, and get a fully

ab initio calculation of the phonon lifetime.
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3.1 LO-phonon lifetime

In this section is recalled the relation between LO-phonon lifetime and experimental

measurements, as well as this chapter field of study.

3.1.1 Phonon decay from experiment

Considering phonons to be eigen modes easily reach a limit, for instance, by the reality

of a finite thermal conductivity. This non-ideality feature finds a macroscopic analogy in

the fact that there is no such a thing as a spring vibrating ad infinitum. A basic hypothesis

then is to assume that phonons have an intrisic lifetime due to their anharmonic feature,

and that they decay into other pseudo-harmonic modes. This decay time was shown to

be probed experimentally.

Raman spectroscopy

A Raman experiment consists in measuring the shift in energy of a beam of photons sent on

a sample due to their inelastic interaction with matter. They either yield (Stokes shift) or

gain (anti-Stokes shift), at first order, one quantum of inner-cell lattice vibration, an optic

phonon. From an experimental point of view, and for an isotopically pure crystal [143],

the phonon lifetime τ is related to the full width at half maximum Γ of the one-phonon

Raman peak through Γ = 1/2τ . Because of this relation, and because the accuracy of a

Raman experiment is limited, measurable lifetimes can only be of the order or lower than

few tens of picoseconds (short lifetimes).

Time-resolved coherent anti-Stokes Raman spectroscopy

Another technique uses a picosecond coherent excitation of phonons (Stokes Raman scat-

tering) whose population decrease is probed through coherent anti-Stokes Raman scatter-

ing, with a decay probability per unit of time of 1/τ . The phonon population lifetime is

not, strictly speaking, equivalent to the phonon lifetime because of the phonon generation

time [143]. However, for a long phonon lifetime, exceeding typically 10 ps (long lifetimes),

the phonon generation time is small compared to the decay time, so that the measured

quantity is close to the bare phonon lifetime.

Hence, Raman spectroscopy is suitable for short lifetimes, while Time-resolved coherent

anti-Stokes Raman spectroscopy is, on the other hand, suitable for long lifetimes [144].

3.1.2 Lifetime in bulk materials

LO-phonon lifetime has been experimentally investigated mostly in bulk material, in

which it commonly ranges between 1 and 20 ps near 0 K, and between ∼ 0.1 and ∼

10 ps at room temperature (see section (3.2.4)). The target value for the LO-phonon

lifetime to be sufficient for hot-carrier solar cells practical implementation is ∼ 100 ps,
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one order of magnitude greater than the common range (1.4). Bare phonon lifetime in

nanostructured materials, and more particularly in quantum wire and quantum dots [53],

may not be a relevant parameter because of the strong electron-phonon or plasmon-phonon

coupling [76, 79]. More than in bulk materials, it cannot be studied independently from

the electronic density [145, 146].

Considering the peculiar features noticed in chapter 2, we focus in the following on the

SiSn bulk case. Based on the elements of the Physics of phonons recalled in 2.1, the

analytical formulation of the LO-phonon lifetime is derived, followed by its implementation

within Density Functional Perturbation Theory and the eventual results.

3.2 Formalism - Beyond the harmonic approximation

So far we have addressed vibrational issues within the harmonic approximation, i.e.

assuming the phonons to be eigen modes. To account for experimental evidence of phonons

finite lifetime, we have to go beyond this latter assumption, so one order at least further

in the total energy development.

3.2.1 Derivation

Back to equation (2.2), we focus this time on the fourth term of the sum, the third

derivative of the energy:

E
(3)
tot ({u

l
I}) =

1

3!

�

ll�l”,IJK,αβγ

∂3Etot

∂ulI,α∂u
l�
J,β∂u

l”
K,γ

ulI,αu
l�
J,βu

l”
K,γ (3.1)

where u is the displacements around the equilibrium position, that we express this time in

terms of phonon creation (a†
s(q)) and annihilation (as(−q)) operators through the second

quantization [147]:

ulI,α =
�

q,s

�
�

2ωs(q)MIN

� 1
2
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iq·Rl

�
a†
s(−q) + as(q)
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(3.2)

whereMI is the mass of atom I, N the number of unit cells in the crystal. eI,α(q, s) is the

(I, α) element of the phonon eigenvector, solution of the secular equation (2.11). Inserting

equation (3.2) into (3.1), we obtain the fourth order term, or the first anharmonic order,

of the Hamiltonian:

H(3) =
1
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(3.3)

The expression of V will be recalled at the end of the section. We place ourself in the

zone-centre approximation (section 2.4.1.1), so that { q, s }, { q2, s2 }, and { q3, s3 }
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become respectively { 0, LO }, { q, s2 } and { -q, s3 }. Developing the products in the

square brackets leads to eight sub-terms in the Hamiltonian, gathered in table 3.1. The

a product Relevance

1 a†
LO(0) a

†
s2
(−q) a†

s3
( q) Forbidden

2 a†
LO(0) a

†
s2
(−q) as3(−q) Forbidden

3 a†
LO(0) as2( q) a†

s3
( q) Forbidden

4 a†
LO(0) as2( q) as3(−q) Allowed

5 aLO(0) a
†
s2
(−q) a†

s3
( q) Allowed

6 aLO(0) a
†
s2
(−q) as3(−q) Forbidden

7 aLO(0) as2( q) a†
s3
( q) Forbidden

8 aLO(0) as2( q) as3(−q) Forbidden

Table 3.1: Creation-annihilation terms of the third-order Hamiltonian within the zone-
centre approximation

first and eigth terms are energetically forbidden in any case. Terms 2, 3, 6 and 7 are

also forbidden if we consider that no phonon has an energy higher than the zone-centre

LO-phonon one, which is the case in Zinc-Blende crystals. The remaining two terms, 4

and 5, represent respectively the "fusion" of two phonons into one LO-phonon, and the

decay of an LO-phonon into two lower energy phonons. At thermal equilibrium, the two

processes are balanced and the occupation number of any state { q, s } is given by the

Bose-Einstein distribution:

ns(q) =
1

e
�ωs(q)

kBT − 1
(3.4)

where T is the lattice temperature, and ns(q) is related to the creation and annihilation

operators through standard notations:

a†
s(q)|n

s(q)� =
�
ns(q) + 1 |ns(q) + 1� (3.5)

as(q)|n
s(q)� =

�
ns(q) |ns(q) − 1� (3.6)

As we saw in chapter 1, the electron cooling, or the laser pulse in a Raman experiment,

generates an out-of-equilibrium population of LO-phonons. In this case, the contribution

of term 4 in table 3.1 is highly negligible compared to term 5, so that we retain only this

latter one. The rate of this process is given by the Fermi golden rule:

Γ =
2π

�

�

f

�
�
�< f |H(3)|i >

�
�
�
2
δ(Ef − Ei) (3.7)
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Inserting equation (3.3) into (3.7) makes the LO-phonon decay rate write, within the

zone-centre approximation:

Γ =
π

2�2
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where the matrix element V takes the cumbersome visual form:
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(3.9)

The factor between square brackets is called the anharmonic tensor.

3.2.2 State of the art of phonon lifetime calculation

Within the elastic continuum model (see for instance [148]), several LO-phonon life-

time calculations were performed in simple bulk binary semiconductors. In this case, the

third-order anharmonic tensor taken as a q-, atom- and coordinate-independent parame-

ter, written either as a function of the experimentally measured second- and third-order

elastic constants [149, 125], or, slightly differently, of the Gruneisen parameter, the mate-

rial density, and the average acoustic velocity [49, 126]. The difficulty in evaluating the

anharmonic tensor leads some authors to prejudice the results either on its value, or on

the channels involved [43, 150, 107]. In the mid-90’s, a full ab initio calculation was in-

troduced [151] in order to get rid of the constant anharmonic tensor approximation. The

guiding lines of this method will be given in section (3.3).

3.2.3 Drawbacks of tantalizing approximations

Taking anharmonic tensor as a constant parameter and assuming that the polarisation

overlap is consistently of the order of unity [150, 88, 109] leads to the problem of ghost

channels. Let us take once again Silicon as a simple instance, and find the LO-phonon

decay channels on the ΓL-branch when the two-atom Zinc-Blende primitive cell is taken as

the crystal building block (figure 3.1, left). The only allowed channel in this direction is the

first Klemens channel (blue line), leading to two phonons of equal energies. If we mentally

duplicate the building block by a factor of two in all crystallographic directions, we end up

with an eight times larger "primitive" cell. In addition to the equivalent of the first Klemens

channel (green line), a considerably larger number of other decay channels (black lines)
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are found in this case (figure 3.1, right). Since the two materials are identical, the black

channels are ghost channels, have not physical relevance, and the information allowing to

remove them has to be contained in mode- and q-dependent factors of the matrix element

V (equation (3.9)), namely the anharmonic tensor and the polarisation vectors overlap.

This argument shows how delicate working with these common approximations can be.

Beyond the pointless complication of a non-primitive cell in a bulk calculation, this issue
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Figure 3.1: (Left) LO-phonon decay channels in bulk Si when the two-atom Zinc-Blende
primitive cell is taken as the crystal building block. (Right) LO-phonon decay channels
in bulk Si when an eight times larger cell is taken as the crystal building block. The blue
line highlights the single common channel between the two, hence the only relevant one.

is of considerable importance in the study of non defect-free crystals, where new channels

of unknown contribution relevance may appear, not to talk about the superlattice cases

for which the band folding is definitely not an artifact anymore.

3.2.4 Misleading success in fitting experimental data

With the anharmonic tensor taken as a scalar adjustable parameter, though, one can fit

experimental data and reproduce the temperature dependence of the phonon lifetime. This

was done in the cases of different bulk Zinc-Blende semiconductors for which experimental

data were available, and the results are depicted in figure 3.2. The calculated lines follow

well the different experimental trends, but, this does not give any information on the

relative weight of the different processes, nor allows to make predictions.
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Figure 3.2: LO-phonon lifetime for several Zinc-Blende III-V and IV-IV semiconductors,
calculated using a scalar adjustable parameter for the third derivative of the energy (square
bracket in equation (3.9)). Experimental data points, acquired using time-resolved coher-
ent anti-Stokes Raman spectroscopy, are reproduced from [105, 125, 152, 136, 106, 107]

3.3 Third order anharmonic tensor within DFPT

The importance to have a first principles knowledge of the third order derivative of

the energy upon displacement was shown. In this section, we derive the computational

methodology to reach and make use of this latter quantity within Density Functional

Perturbation Theory. The complete technical description can be found in [144], [104],

and [124]. In the same spirit as in equation (2.5), we express the third order of the total

energy as:

E
(3)
tot ({u

l
I}) =

1

3!

�

ll�l”,IJK,αβγ

CI,α;J,β;K,γ(l, l
�, l”)ulI,αu
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with CI,α;J,β;K,γ(l, l�, l”) defined as:

CI,α;J,β;K,γ(l, l�, l��) :=
∂3Etot

∂ulI,α∂u
l�
J,β∂u

l��
K,γ

(3.11)

It is the key ingredient in the matrix element (3.9). It can be rewritten in the wavevector

space:

CI,α;Jβ;K,γ(q,q�,q��) =
1
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�
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Making use of the reciprocal space expression for the lattice distortion:

uI(q) =
�

l

ulIe
iq·Rl

(3.13)

and replacing label (I,α) with p for clarity, we can rewrite equation (3.11):

Cp,p�,p��(q,q�,q��) =
∂3Etot

∂up(q)∂up�(q�)∂up��(q��)
(3.14)

It was demonstrated [151, 144] that Cpp�p��(q,q�,q��) can be decomposed into a sum of

permutation terms:

Cpp�p��(q,q�,q��) = Ẽpp�p��(q,q�,q��) + Ẽpp�p��(q�,q,q��)

+ Ẽpp�p��(q,q��,q�) + Ẽpp�p��(q��,q�,q)

+ Ẽpp�p��(q�,q��,q) + Ẽpp�p��(q��,q�,q)

(3.15)

in which each Ẽ is a sum of an electronic part and an electronic density-independent ionic

part:

Ẽpp�p��(q,q�,q��) = Ẽel
pp�p��(q,q�,q��) + Ẽion

pp�p��(q,q�,q��) (3.16)

The former contribution takes the brobdingnagian 1 form:
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1. Jonathan Swift, Gulliver’s Travels
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In accordance with the "2n+1" theorem [113], the six-order Cp,p�,p��(q,q�,q��) matrix, and

thus the third derivative of the total energy, is a functional of only the electronic density

and its first derivative. Its full derivation was done is an essential work by A. Debernardi

and co-workers [153] for elemental semiconductors in the zone-centre approximation, then

extended to polar semiconductors [104], and finally generalized very recently to any q-

vector triplet by L. Paulatto and co-workers [124].

3.4 Practical implementation

In this section we take a closer look at the key ingredients appearing in the phonon

decay rate equation (3.9). In particular, a great care is taken to assess the relevance of

some approximations very commonly found in the literature. The example of bulk Silicon

is taken as a case in point to illustrate the following subsections.

3.4.1 Phonons eigenvectors and eigenfrequencies

It has been shown in section (2.3.1) that the phonon frequencies and related atomic

displacements can be computed at any q-vector within Density Functional Perturbation

Theory with the same computational cost. As also previously said in section (3.2.3), it is

tantalising to prejudice the result of the polarisation overlap, which is the triple atomic

displacements product in the right-hand-side of (3.9), by simply considering the involved

branches polarisation label. Doing so, a final state involving one LA and one TA-phonon

would lead to an overlap of zero, while two LA-phonons would lead to unity [150]. This

sophism is the result of a misuse of the terms longitudinal and transverse, which are strictly

valid, from a semantic point of view, only in the vicinity of the Γ point. The polarisation,

i.e. the longitudinal or transverse character, of the six branches in bulk Silicon is depicted

in figure 3.3: each point of a series of q-slabs in the irreducible Brillouin zone is colored

according to its longitudinality, the red colour standing for a fully longitudinal mode,

while the blue colour for a fully transverse mode. It appears that the longitudinal or

transverse feature of the branches is q-dependent and easily leads to hybrid characters, as

it was obvious a priori. This is the reason why the polarisation overlap must be rigorously

calculated for each sextuplet { I,α;J ,β;K,γ}.

3.4.2 q-space mesh and energy smearing

In section (2.4.1.2) a rectangular function was used to mimick the conservation delta

function of equation (2.33). This check function, reported here in equation (3.8), is taken

as a Gaussian function of the form [124]:

δ̃(ω) =
1

σ
√

2π
e

−

�
(ω−ωLO)2

2σ2

�

(3.18)
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(blue) colour stands for fully longitudinal (transverse) branch. Discontinuities (branches
4, 5 and 6) are due to band crossing (the branches numerotation is simply based on their
relative order in energy.)
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where ω is the sum of the two final phonons frequency, σ is set to 1 cm−1 (a discussion on

the proper choice of this parameter is proposed in appendix F). The third order tensor

calculation is expected to be computationally demanding. Hence, δ̃ is used to restrict the

number Nq of q-point in the sum (3.8), so that only the ones for which δ̃(ω)/δ̃(ωLO) > 0.1

are retained. The convergence study on the q-space mesh is plotted in figure 3.4, where the

reference parameter is taken as the experimental LO-phonon lifetime. It appears that a

25×25×25 q-points density is required as a minimum so to reach satisfactorily converged

results. On the same figure is depicted the corresponding computational time, that indeed

follows a cubic increase upon Nq (dashed blue line), of the form c · N3
q . This highlights

the necessity to first perform a second-order calculation as in chapter 2 in order to select

only materials in which the volume of final states is small, typically of the order of InP, or

confined near the Brillouin zone edges, so not to have to perform a systematic third order

calculation for all studied materials.

 0

 5

 10

 15

 20

 0  10  20  30  40  50
 10

 100

 1000

 10000

τ 
(p

s)

C
P

U
 t

im
e 

(h
ou

r)

q-mesh

Figure 3.4: Convergence of the sum (3.8) on the reciprocal space mesh (red) and corre-
sponding CPU time (green). The number on the x-axis is the number of intervals from
the zone centre to the zone boundary. The black dotted line is the LTO-phonon lifetime
extrapolated at 0 K from experimental results [125]. The dashed blue line is a cubic fit of
the CPU time dependence on q density.

3.4.3 The two-phonon density of final states

Also called the frequency-resolved final states spectrum, the two-phonon density of

(final) states (2PhDOS) is defined as:

γ(ω0) =
π

2�2

�

q,s2,s3

�
�
�
�
�
V

�
0 q −q

LO s2 s3

��
�
�
�
�

2

× (ns2(q) + 1)(ns3(−q) + 1)

δ
�
ωLO(0) − ωs2(q) − ωs3(−q)

�
δ (ωs2,3(q) − ω0)

(3.19)
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and shows the relative final states weight as a function of their energy ω0. It is worth
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K2,3 K2,3

1PhDOS
2PhDOS

Figure 3.5: One- and two-phonon density of states in Silicon. K1, K2 and K3 stands
for first, second and third Klemens states, respectively (K2 and K3 overlap the same
energy range).

noting that the additional delta function in equation (3.19) can be completed with a mode

label argument, so to be able to decouple the total weight of each single channel.

The 2PhDOS of Silicon is depicted in figure 3.5. As found elsewhere [153], the LTO-

phonon decay in this case turns out to be led by the second and third Klemens channels

rather than by the first Klemens channel, i.e. two final phonons of equal energy, which

turns out to contribute very little compared to the two others; strictly opposite results

can be found within the scalar anharmonic factor approximation and a simplistic picture

of the phonon polarisation overlap [150].

3.4.4 Validation and commentary on DFPT for HCSC

The integration of the 2PhDOS gives the LTO-phonon lifetime in Si, plotted in fig-

ure 3.6 for different temperatures, for a mesh in reciprocal space of 50 × 50 × 50 and a

Gaussian width of 1 cm−1. The ab initio calculation results reproduce extremely well

the experimental measurements. For comparison, the LTO-phonon creation rate from two

lower-energy phonons is also depicted on the same figure. It can be verified that this

process is fairly negligible compared to the phonon decay.

Several remarks have to be drawn. Firstly, the LTO-phonon decay rate in Si appears

to be correctly described by only three-phonon processses, neglecting higher orders. It is

reasonable, at this point, to assume this would be the case for any semiconductors whose
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Figure 3.6: LO-phonon decay (process 1) and creation (process 2) in a three-phonon
interaction in Silicon. Experimental data are reproduced from [125].

lifetime lays into the experimental range which most of known materials belong to. This is

also to be related to a large density of final states, typically of the order of the Silicon one.

Secondly, this approach shows how careful any attempt to build an analytical or mode-

average model should be. The polarisation overlap and the anharmonic tensor remain the

most hardly ad hoc estimable components. Finally, the computational effort required is

an issue when investigating more-than-few atoms systems, since the ratio (increasing CPU

time due to higher number of valence electrons)/(reduction time due to smaller Brillouin

Zone volume) is, in every instance, an increasing function of the number of atoms.

3.5 Application to SiSn

SiSn is typically a well chosen case since, among the different semiconductors depicted

in figures 2.6 and 2.7, more than the others, catches our attention due to its very small

number of available final states. It is thus, from what has just been noted, a case state of

a potential hot-carrier solar cell absorber for which we can perform a detailed analysis at

a reasonable cost.

3.5.1 Two-phonon density of states

The phonon band structure of SiSn computed along high symmetry lines is depicted

in figure 3.7, together with the one- and two-phonon densities of states. The latter has

been split in two differently coloured parts in figure 3.7: the peaks corresponding to the

Ridley states (green) had to be amplified by a factor of 10 so to be visible. The Klemens

channels (red) are restricted to a corner of the reduced reciprocal space near the X-
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point, and the Ridley channels are very few and restricted to the vicinity of the Γ-point.

Each of these peculiar features can be explained by one intrinsic parameter. First, the

high mass ratio between Sn and Si (mSn/mSi = 4.2) is responsible for an uncommon

wide band gap between the optic and the acoustic branches, leaving very few energetically

allowed Klemens final states. The Zinc-Blende structure makes the acoustic phonon energy

reaching its maximum on the LA-branch at the X-point. Secondly, the electronegativity

difference between Si and Sn (0.06 in Pauling units) is among the lowest difference in

the periodic table, leading to an extremely small LO-TO splitting (smaller than 3 cm−1),

fulfilling condition (ii) (section 1.4.2), so that the Ridley [88] states, involving one TO

and one acoustic phonons (LA/TA), are confined in an extremely small volume near the

Brillouin zone centre.
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Figure 3.7: (Left) Phonon band structure of SiSn (black) and LO-phonon decays through
Klemens and Ridley channels (red and green lines, respectively). (Right) One-phonon
density of states of SiSn (dark line) and two-phonon density of states in a two-phonon
decay involving one zone-centre LO phonon (red and green lines). The magnitude of the
Ridley states in the two-phonon density of states are emphasised by a factor of 10 for
clarity.

3.5.2 Lifetime of the LO-phonon: beyond the zone centre approximation

The two-phonon density of final states has been studied as a function of the LO-phonon

wavevector. In the case of SiSn, the TPFS volume turns out to be extremely dependent

on the wavevector compared to other semiconductors, as can be seen in figure 3.8-(a), in
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which we also plotted the case of Si for comparison, for a momentum belonging to the

ΓX axis. This is a direct consequence of the fact that the final states are close to the

Brillouin zone edge (figure 3.7). While the volume is normalized to 1 for q = 0, in the

case of SiSn it primarily increases with the initial wavevector. This can be understood

in the following manner: the volume of the TPFS resulting from Ridley decays undergoes

an expansion in the first tenths of percents of ΓX, and although they are fewer than the

Klemens states, the Ridley states have a non negligible contribution to the lifetime due to

their high polarisation overlap value. This Ridley volume then quickly reaches zero above

q=0.5% of ΓX, and the volume of the TPFS resulting from Klemens channel (’Klemens

states’) keeps decreasing. Calculating the corresponding phonon lifetime would require to

compute the anharmonic tensor for a triplet { qLO,q2,q3 } with qLO �= 0, i.e. to get rid

of the zone-centre approximation. In order to save computational time, the anharmonic

tensor computed at qLO = 0 was used for all q-dependent calculations: as the LO-phonon

wavevector remains small compared to the Brillouin zone size, it is reasonable to make

the assumption:

Cp,p�,p��(0,q, -q) ≈ Cp,p�,p��(δq,q+ δq2, -q+ δq3) (3.20)

given that δq2,3 � q2,3 and δq = δq1+δq2. The corresponding phonon lifetime is depicted

in figure 3.8-(b). Not only at q = 0 the lifetime is already of 3.105 ps, but it reaches easily

the microsecond range when its momentum is above 2% of the distance between Γ and

the zone-boundary, that is five orders of magnitude above all the known values in most

III-V and group-IV semiconductors [103]. The lifetime diverges so rapidly that it becomes

computationally extremely demanding to calculate it for a momentum above 2.5% of

(2π
a ). Actually, above this limit, the volume of the Klemens states shrinks to zero, so that

only the Ridley decays remain possible, and the corresponding TPFS volume is extremely

small. It is worth noting that the small variation of the two-phonon final states density

in Si induces indeed almost no change on the lifetime upon the momentum. To the very

knowledge of the author, such a behaviour has never been reported in the literature.

3.5.3 Lifetime dependence on the LO-phonon reciprocal position

The LO-phonon lifetime was computed for every electronic cooling step of an electron

belonging to the first conduction band. There is indeed, for each electronic position on a

one-dimensional band, only one possible final state that satisfies energy and momentum

conservation through a LO-phonon emission due to intravalley scattering. The lifetime

of this unique phonon is computed and plotted as a coloured dot at the electron initial

position on the band in figure 3.9, so that we visualize a band-curvature dependence

of the eventual phonon lifetime. Because the exchange energy in the electron-phonon

interaction from one electronic position is of the order of the electronic band derivative at

this particular point, high quality band structure is required. It is thus computed within
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G0W0 corrected PAW method (see appendix C).

The band structure shows a direct band gap of 0.88 eV at Γ, and two indirect band

gaps at L and between Γ and X, of 0.82 and 0.94 eV respectively. This range of optic

absorption threshold is favourable for a high conversion efficiency according to condition

(iv). It clearly appears that the band curvature has a strong influence on the resulting

LO-phonon lifetime in this compound. Thus it can be stated that, in SiSn, depending on

the localisation of the electron on the energy surface, the lifetime of the eventual emitted

LO phonon is very dependent on the flatness of the energy surface, in a three-phonon

interaction scheme.

3.5.4 Eventual photovoltaic efficiency

Using the thermodynamic model derived by A. Le Bris and co-workers in reference [77],

it is possible to estimate what would be the photovoltaic efficiency of a hot-carrier solar cell

based on an absorber having the gap and the LO-phonon lifetime of SiSn, and for which

the thermalisation would solely be limited by the LO-phonon decay. Such a material would

have a thermalisation coefficient on the order of 10−4W.cm−2.K−1, leading to a conversion

efficiency greater than 70% under 100 suns. The LO-phonon lifetime calculated in this

work is thus the required value for a hot-carrier solar cell to operate in the low concentration
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Figure 3.9: (Left) G0W0 corrected DFT calculated SiSn electronic band structure. The
color of the first conduction band illustrates the corresponding LO phonon lifetime at 300
K via intra-valley scattering (see text). The slope remains black if no phonon fulfilling
equations (2.14) and (2.15) is found. (Right) Electronic density of states.

regime with a steady-state hot-carrier population yielding very high conversion efficiency

(twice the Schockley Queisser value under similar conditions), and constitutes a target for

future hot-carrier absorber materials.

3.6 Towards higher orders-phonon processes

3.6.1 Previous discussions on four-phonon processes

In the Taylor expansion of the total energy (equation 2.2), one naturally supposes that

the cubic term would be the leading of the non-harmonic ones [154, 155]. This intuitive

hypothesis seems to be confirmed by the above-presented results on the LO-phonon life-

time dependence on temperature in Silicon (section (3.4.4)).

Yet, Silicon appears to be an exception: typically from 200 K for most materials studied

with first principles calculations [104], an increasing divergence is observed between the-

oretical and experimental data that can reach 100% at 300 K, although it is important

to note that the measured dependence on temperature is very dependent on the used ex-

perimental method. Assuming a non-negligible contribution of fourth-order (and greater)

phonon scattering is then a legitimate hypothesis to explain this disparity. The develop-

ment of conceptual tools to probe this mechanism turns nevertheless to be a complicated

task: as a matter of fact, the number of publications having dealt with this issue is very
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low. In addition, it is important to note that the observed discrepancy might be, in some

cases, an artifact of taking anharmonic tensors as constant scalar values, as it is to be

made explicit, and as it looks to be the case for instance between 200 K and 300 K in

figure 3.2 for AlAs and InP where such an assumption was used.

In an essential article on the topic, M. Balkanski and co-workers [156] legitimated the

necessity to take into account four-phonon processes, claiming that acoustic phonons ab-

sorption rate takes an increasing importance at high temperature because of their finite

Bose-Einstein population number. Within the constant anharmonic tensors approxima-

tion for both third- and fourth-orders, they showed that an excellent fit of the LO-phonon

lifetime dependence on temperature can be achieved in Silicon, the correction being effec-

tive from 200 K to 1200 K. The method was also used by G. P. Strivastava to achieve up

to more than 1000 K fit on group-III Nitrides [126]. On the contrary, the results displayed

in this work, in section (3.4.4), tends to conjure up that including third-order processes

only is sufficient in Silicon to reproduce up to 800 K the experimental measurement, with

no ad hoc assumption on the asymptotic value at 0 K. This suggests that the discrepancy

in this case is caused by third-order taking anharmonic tensor as a constant scalar value.

A. Debernardi also observed a divergence in III-V semiconductors, but using a third-

order anharmonic tensor calculated ab initio within Density Functional Perturbation The-

ory [104]. In a more recent paper [137], he showed that, indeed, a fourth-order correction

(computed by derivation through finite differences of the third-order tensor) allows a bet-

ter agreement above 200K, and in particular, for the two above-mentioned cases, AlAs and

InP . Unlike the case of Si, the necessity to include fourth-order processes in these mate-

rials does not seem to be a methodological artifact. It is worth noting that this correction

induces no change in the asymptotic value at 0 K, which in all treated systems remains

well reproduced within third-order interactions. This work turned also out to validate

the intuitive feeling according to which fourth-order processes have a lower weight than

third-order in the rate integral, since their contribution is calculated to be one order of

magnitude lower for AlAs and InP , and even smaller for GaAs and GaP .

One may argue, though, that these considerations are of small importance from a hot-

carrier solar cell point of view since it is not expected to work high above room tem-

perature, and that third order seems to have always proven its efficiency up to room

temperature. But this issue can however be expected to have a significant relevance in

the peculiar case of SiSn, since the third-order conservation relations (2.14) and (2.15)

are fulfilled in a very small reciprocal space volume, and higher-order terms may have a

non-negligible weight is the rate integral, even at low temperature.
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3.6.2 Estimation of the four-phonon processes contribution

In the same spirit of the third-order derivation of section (3.2.1), the fourth-order

matrix element would take the form:

V

�
0 q2 q3 q4

LO s2 s3 s4

�

=
�

I,J,K,L
α,β,γ,δ

�
�4

16NMIMJMKMLωLO(0)ωs2(q2)ωs3(q3)ωs4(q4)

� 1
2

×




�

l�,l��,l���

∂4Etot

∂ulI,α∂u
l�
J,β∂u

l��
K,γ∂u

l���
L,δ

ei(q2.R
l�+q3.R

l�� +q4.R
l��� )





eI,α(0, LO)eJ,β(q2, s2)eK,γ(q3, s3)eL,δ(q4, s4)

(3.21)

where the factor between squared brackets is the fourth-order anharmonic tensor. This

term is evaluated within the delicate approximation of a scalar anharmonic tensor, using

the frozen phonon approach [157, 158]: the total energy is computed within DFT, at equi-

librium and for a displaced atom corresponding to an LO-mode in the [111] direction (see

appendix G). The found coupling constant is 96 eV.Å−4, which is of the same order of

magnitude than for Silicon (135 eV.Å−4). Once again, this represents a rough approxima-

tion, since it is known to be q-dependent, and, in particular, the weight of the channels

involving a near-zone centrer optic phonon was demonstrated to decrease linearly with its

wavevector [104]. Hence, the final result must not be taken as anything but an order of

magnitude of the fourth-order correction. The sum is performed on all three-phonon final

states fulfilling energy and momentum conservation rules to reach the related scattering

time τ4. Considering that the decays either in three or four phonons are independent, the

total lifetime is calculated via the Matthiessen’s rule [102]:

1

τtot
=

1

τ3
+

1

τ4
(3.22)

where τ3 is the lifetime through a three phonon process. The results are displayed on

figure 3.10, for a zone center LO-phonon. The four-phonon processes are found to have a

significant contribution at any temperature, although it does not change the order of mag-

nitude of the lifetime computed considering only three-phonon processes (see table 3.2).

Above 300K, the latters appears to have a lower influence than the four-phonon decays.

This is explained by the increasing weight of the four-phonon processes that include, in

addition to the LO-phonon, the annihilation of already existing acoustic phonons (for

instance, referring to section (3.2.1), an aLO(0)aLA(q2)a†
s3(−q3)a†

s4(q4) process), whose

occupation number increases with the temperature. Through the Matthiessen’s rule, it

is obvious that the relevance of the four-phonon correction is dependent on the decay

rate through three-phonon processes only: it does not bring, for instance, any signifi-

cant correction in the case of Silicon. These results on SiSn, an archetype of an a priori
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Figure 3.10: LO-phonon lifetime in SiSn considering three-phonon processes (grey solid
line), four-phonon processes (grey dashed line), and both (black solid line).

Temperature (K) τ3 τ4 τtot

200 182 146 81

300 108 57 38

400 71 32 22

500 51 22 15

Table 3.2: Particular LO-phonon lifetime in SiSn at particular temperatures, considering
three- or four-phonon processes only (τ3 and τ4 respectively), or both contributions (τtot).
All values are in picoseconds.

good candidate from a phononic band structure point of view, although based on a crude

approximation, rises the question of the possibility to ever find a material exhibiting a

lifetime of the order of 100 ps above room temperature.

3.6.3 Consecutive three-phonon processes

In a recent study, A. Dyson and B. K. Ridley [159] claimed that, in a two-phonon decay,

the bare one-step phonon lifetime might be different from the one measured experimentally

if the two final phonons have themselves a lifetime of the same order of magnitude than the

initial phonon: in this case, an effective lifetime of the following form would be relevant:

τ∗ = τ(1 +B) = τ(1 +A0)[(n̄2 − n0)τ1 + (n̄1 − n0)τ2]) (3.23)
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where τ is the bare phonon lifetime in a three-phonon process, (τ)−1 = A0(1 + n̄1 + n̄2),

n̄1 and n̄2 are the Bose-Einstein occupation number at thermodynamic equilibrium of the

two final phonons of the first decay. The authors stated that for a small deviation from

the latter, the correction B must be positive.

Determining whether or not it brings substantial changes in the previous results in SiSn

requires to compute the lifetime of the two final phonons. Considering that the Ridley

channels contribute very little to the total rate in this case, we focus on the Klemens

states decay (figure 3.11 and 3.12). The two final LA-phonon are close to the zone edge,
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Figure 3.11: 2D picture of the two-phonon final states of the X-zone-edge LA-phonon
decay through Umklapp processs in SiSn.

so that the near-zone-centre approximation used in section (3.5.2) to compute the third-

order anharmonic tensor is not reasonable anymore. Oppositely, thanks to band folding,

the choice of an appropriate supercell would make these states appear at the zone-centre.

This band folding introduces ghost channels but, as said in (3.2.3), working within DFPT

prevents them from artificially contributing to the decay rate. A third-order calculation

is thus performed, for a four-atom tetragonal cell, using the same computational criteria

as the one used in the Zinc-Blende structure, the only exception being the q-points mesh,

set to 18 × 25 × 25 to respect reciprocal space commensuration. As can be seen on

figures 3.11 and 3.12, the large number of final states allows to work within the zone-

centre approximation, and the dependence of the LA-phonons lifetime on their wavevector

can be assumed to be negligible. In addition, it should be mentioned that available two-

phonon final states can be found for the LA-phonons only by taking into account Umklapp
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decay through Umklapp processses in SiSn. The channels classification is as follows: LL:
LA+LA, LT1: LA+TA1, LT2: LA+TA2, T1T1: TA1+TA1, T2T2: TA2+TA2, T1T2:
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processes [102], so that the momentum conservation rule writes:

q2 + q3 +Q = 0 (3.24)

with Q = (1, 0, 0). Umklapp processes have not been included so far, consistently with L.

Paulatto and co-workers results [124] showing that they do not contribute to the decay of

a phonon having a wavevector close to 0.

The LA-lifetime is found to be 1.3 ps in the low temperature limit, and 0.2 ps at 300 K. In

such conditions, the correction in the effective lifetime described above is infinitely small.

This is consistent with A. Dyson and B. K. Ridley’s analysis according to which Klemens

final states would have a negligible contribution compared to the Ridley final states because

of the lower sum of Bose-Einstein occupation numbers in the latter. However, and once

again, the Ridley channels contribute so little in the first place to the total two-phonon

decay rate in the case of SiSn that they cannot be relevantly included in this two-step

decay.

3.6.4 Crystal symmetry and higher-order anharmonic tensors

As said previously, the ab initio determination of the anharmonic contributions is a

very demanding task, and no implementation exists above third order. However, in the
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spirit of finding at least an approximate expression that may work as a small corrective

perturbation, it is worth noting that all the elements of the nth-order anharmonic tensor

are in theory not required, depending on the crystal symmetry. We denote this tensor

element φI1l1...Inln
α1...αn

as:

φI1l1...Inln
α1...αn

=
∂nEtot

∂uI1l1
α1 ...∂u

Inln
αn

(3.25)

where I,l,α label the atom, unit cell and coordinate. It was demonstrated by G. Leibfried

z
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Ωy

Figure 3.13: Invariant rotation matrices Ω in the tetrahedral environment. The index
(x,y,z) stands for the axis around which the rotation is performed.

and W. Ludwig [160] that it has to be invariant under symmetry operations that depend

on the crystal structure, in particular:

�

α�

1...α
�

n

φI1l1...Inln
α�

1...α
�
n

Ωα�

1α1
... Ωα�

nαn
= φI1l1...Inln

α1...αn
(3.26)

where Ωα�

i
αi

are the elements of a set of rotation matrices that transform the lattice into

itself. The primed indices are the coordinates into which the unprimed coordinates are

transformed. If we limit ourself for now to the Zinc-Blende case, three rotation matrices

ensue from the atomic tetrahedral environment, and write, as labelled in figure 3.13:

Ωx =







1 0 0

0 −1 0

0 0 −1





 ; Ωy =







−1 0 0

0 1 0

0 0 −1





 ; Ωz =







−1 0 0

0 −1 0

0 0 1





 (3.27)
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The eventual first condition leading to non zero matrix elements is α�
i = αi, so that the

sum is reduced to one single term:

φI1l1...Inln
α1...αn

Ωα1α1 ... Ωαnαn = φI1l1...Inln
α1...αn

(3.28)

Non-trivial solutions (φI1l1...Inln
α1...αn

�= 0) are given for the product of the Ωαiαi
being equal to

1. Depending on the rotation matrix considered, these products are given in table 3.3 (nx,

ny and nz being the number of times x, y and z appear in the string α�
1...α

�
n), followed

by the obvious (second) condition that leads to non-zero potential matrix element in each

case. The possible { nx, ny, nz } combinations depend on the derivative order n, since

Ωαiαi
product Unity condition

Ωx (−1)ny (−1)nz ny+nz even
Ωy (−1)nx(−1)nz nx+nz even
Ωz (−1)nx(−1)ny nx+ny even

Table 3.3: Lattice potential rotational invariance conditions for the tetrahedral environ-
ment. nx, ny and nz are the number of times x, y and z appear in the string α�

1...α
�
n of

equation (3.26).

indeed 0 ≤ nx, ny, nz ≤ n, and nx + ny + nz = n. For n = 3, the only solution is {

nx = 1, ny = 1, nz = 1 }, while for n = 4 there are two, { nx = 4, ny = 0, nz = 0 } and {

nx = 2, ny = 2, nz = 0 } (in accordance with what was found elsewhere by D. Vanderbilt

and co-workers [157]), not to mention all the index permutations. This matrix analysis

was used for instance to study the flexural phonons contribution to the three-phonon

processes in Graphene [161], which reveals that only an even number of such phonons can

be involved.

The required number of matrix element from an analytical point of view is indeed very low,

and since it depends on the crystal structure, may be approximated in highly symmetrical

directions [157]. In addition, what takes shape here is an inverse problem: are there sets

of rotational matrices, hence particular crystal structures, that induce a non-fulfillment of

the invariance relations for n � 4 ? A large phonon lifetime would be expected in such

a crystal. However,this condition being not fulfilled in such a highly symmetric case as

Zinc-Blende structure tends to suggest that their is no positive answer to this question.

3.7 Conclusions on LO phonon lifetime calculations for HCSC

Basic elements on phonon lifetime formalism and methodological details within Density

Functional Perturbation Theory were recalled with Silicon as a case study.

3.7.1 SiSn features as references

This method was used to study the LO-phonon lifetime in SiSn in the Zinc-Blende

crystal structure. Its stiff dependence on the initial LO-phonon wavevector was pointed
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out and is a fundamentally new behaviour and is explained by the particular location

of the two-phonon final states in the first Brillouin zone. As a consequence, Klemens

channels might be acceptable in the aim of a more than 100 ps LO-phonon lifetime at

300K, provided the final states are located at the Brillouin-zone edges, and provided also

the Ridley states lie close to the Brillouin zone centre. A subsequent analysis on the

dependence of the two-phonon density variation upon the initial wavevector is required in

each individual case to turn or not the might be into are. These features are, although

bounded to, more accurate targets than simply macroscopic characters such as the atomic

mass ratio or the electronegativity difference.

3.7.2 Limitations

This study also revealed that, despite its providing a full understanding of the mech-

anisms at stake, Density Functional Perturbation Theory may not be the most suitable

method for routinely investigation of phonon lifetime in more than few atoms systems

because of its strong computational time dependence on the number of valence electron

within the pseudopotential method. Moreover, up to December 2014, no study was pub-

lished on more-than-two-atom per cell systems [144, 104, 124].

If no elegant solution of the inverse problem derived in section (3.6.4) is found, it has been

demonstrated why a detailed calculation is required to predict phonon lifetime in new

materials. In addition, the borderline case of SiSn highlights the necessity of including

more than three-phonon processes in the materials of interest for hot-carrier solar cell

absorbers. This brings another severe limitation to the study of phonon lifetime since no

fully ab initio derivation is nowadays available for this aim, and as it has been shown that

even approximate higher-order corrections are difficult to handle. Yet, the approximate

fourth-order correction already suggests that LO-phonon lifetime of the order of ∼ 100 ps

might be unlikely to reach in practice.

3.7.3 Towards other ways to hinder carrier cooling

As was pointed out in section (2.6.3), there is no reason to think, from our under-

standing, that the materials in which a hot-carrier effect was measured exhibit a long

LO-phonon lifetime: this latter condition is once again, although sufficient, not necessary

in a hot-carrier solar cell absorber.

The reason for low thermalisation rate in these materials might hence not be found in

the phonon-phonon interaction, but one process ahead, in the carrier-phonon interaction.

This will be the topic of the next chapter.
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4.1 Dimensionality issue

The energy loss rate reduction has been experimentally found to be systematically

lower in 2D structure than in bulk materials, and, in the former, dependent on the elec-

tronic density only above a critical value of ñc ≈ 0.5 − 1.0 1018cm−3 (section 1.4.1.1).

A distinction is made here between superlattices (thickness � 40 Å) and quantum wells

(thickness � 40 Å). This classification is justified, for instance in A. Nozik’s review on hot

carriers in quantum wells and quantum dots [14], as it corresponds to the thickness be-

low which electronic bands throughout the materials allow carriers delocalisation, whereas

quasi-bulk structures appear above in each sub-crystal. This critical thickness is of course

dependent on the material atomic nature, and the value 40 Å is no more than an order

of magnitude. The dependence of the energy loss rate reduction in the superlattice range

is not clear; in particular, the necessity to work within high concentration levels is not

established [67, 14].

Muliple quantum wells no thicker than 10 nm were pointed out as candidates for hot-

carrier solar cell absorber due to a combination of a low thermalisation coefficient and a

short distance to travel for the carriers to the energy selective contacts [78, 79]. As their

width belongs to this range, and because they remain less studied than quantum wells,

superlattices are of potential interest from a hot-carrier solar cell point of view. The short-

ness of the thickness at stake allows first principle investigations, and makes affordable

the reaching of a detailed picture of electronic scale phenomena, namely, in the present

case, the electronic cooling. The aim here is not to reach a complete dynamical picture

of a cooling hot carrier population [78], but rather to study the bare electron-phonon in-

teraction in the limit of extremely thin superlattices, assuming no renormalisation of the

quasi-particles self energy due to strong coupling effects [76].

4.1.1 Electron cooling in superlattices

In order to determine whether or not the superlattice size has an impact on electron

cooling, a simulation of this latter process is performed for several superlattice thicknesses.

A hot electron population is photogenerated by a photon beam, from the highest valence

band to the first conduction band. In order to determine whether or not the superlattice

size has an impact on electron cooling. No ad hoc assumption is made on the electronic and

phononic band structures: as said previously, the relatively small size of the systems allows

a full-band calculation of both. In particular, an ab initio calculation of the dispersion

relation allows to consider the actual band folding and the accurate curvature modification.

This is of particular importance since the exchange phonon energy is of the order of the

electronic band derivative with respect to the electronic wavevector k.

How dimensionality affects the electron-phonon interaction on this scale is however at this

point still an open question, and a pragmatic and simple way to model it in superlattices

has to be set.
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4.1.2 Self-induced electric field and intraband scattering

It has been recalled that, below the intervalley energy threshold, the photoexcited

hot electrons cool through intraband scattering, emitting LO-phonons (section 1.2). The

electric field induced by the out-of-phase vibration of oppositely charged atoms (sec-

tion 2.3.1.2) is responsible for the dominance of this particular electron-phonon interaction

over the coupling with other modes [14].

All the materials studied in the previous chapters have in common to exhibit only one LO-

phonon mode, i.e for any q-vector close to 0, one inner cell out-of-phase atomic vibration

mode whose polarisation is parallel to the direction of propagation. But the number of

these phonon modes, so the number of modes with which an electron might couple to cool

via intraband scattering, grows with the number of atoms (Nat) as Nat − 1. Depending

on their eigenvector components, these modes may not induce an electric field of the same

amplitude, so that the coupling between electrons and each of these phonons may be of

different strength.

In addition, as the materials were in the Zinc-Blende crystal structure, the electric field

was isotropic in the vicinity of the Brillouin zone centre. In the case of superlattices, or

more generally nanostructured materials, symmetry breaking must be responsible for the

electric field associated to each LO-mode to be anisotropic.

Finally, depending on the crystal structure, the electronic band structure is also not

isotropic, even at the very bottom of the Γ-valley. This may have an impact on the

phonons the electrons are allowed to couple with in order to fulfill energy and momentum

conservation rules.

These are the key parameters our model must correctly include for the simplest study on

the impact of dimensionality on the electronic cooling. How to compute them will be the

centre of section (4.2).

4.1.3 [InAs]n-[GaAs]n

InAs and GaAs are two III-V semiconductors that match the electronic criteria listed

in section (1.4.2). InAs, in particular, has a deep Γ-valley (a high intervalley energy

threshold) of more than 1 eV [162]. The chosen material is the superlattice [InAs]n-

[GaAs]n, thereafter referred to as [InGaAs]n, and is simply a stack of n layers of GaAs

on n layers of InAs. As an example, the unit cell is depicted in figure 4.1 for n = 4. The

number of LO-modes in this type of structure grows with n as 4n − 1.

4.2 Directionally dependent electron-phonon interaction model

The aim of this section is to discriminate the phonons, that photoexcited carriers are

most likely to couple with, in the cooling process. The interaction rate must allow a

dependence on dimensionality to appear. Following the Fermi Golden Rule, the transition
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Figure 4.1: Crystal unit cell of [InGaAs]4. In, Ga and As atoms are coloured in grey, pink
and yellow rescpectively.

rate probability from one initial state i to the final state f is given by:

Γ =
2π

�

�

f

|�Ψf |M |Ψi�|
2 δ(Ef −Ei) (4.1)

The matrix element and the electronic wavefunction Ψ is to be defined in the following

subsections.

4.2.1 Electron-phonon coupling strength

Here is addressed the possibility to extend two well known bulk approaches for electron-

LO-phonon interaction to the superlattice cases. The common starting point between the

two is the existence of an electric field E created by an LO-phonon.

4.2.1.1 The electrostatics picture

The definition of the electric induction writes:

D = E + 4πP (4.2)

where P is the electric polarisation. Assuming no free charge in the system, and no

magnetic effects, first and third reciprocal space Maxwell equations take the form:

iq · D = 0 (4.3)

q× E = 0 (4.4)

q being the wavevector of the electromagnetic wave, that in our case is a LO-phonon

making oppositely charged atoms oscillate. As q �= 0, equation (4.3) immediately leads

to E = −4πP. The two assumptions differ in the choice of an appropriate polarisation.
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4.2.1.2 Fröhlich coupling constant

Fröhlich approach [29] consists in setting the polarisation proportional to the atomic

displacement:

Pq = eUuq (4.5)

where U is an effective atomic charge that accounts for electric screening of the ionic

polarisation, as [163]:

U2 =
nω2

LO

4π

�
1

�∞
−

1

�0

�

(4.6)

where the high frequency (�∞) and low frequency (�0) dielectric tensors are taken as scalar

values. The subsequent matrix elementM is expressed with the Fröhlich coupling constant

αF :

M2 =
4παF�(�ωLO)3/2

√
2m

(4.7)

αF =
e2

�

�
m

2�ωLO

�1/2 �
1

�∞
−

1

�0

�

(4.8)

This expression, as it was originally formulated, does not allow to study a directional

dependence of the electron-phonon coupling. Expecting this interaction not to be isotropic

in a superlattice, the sole study of this coupling constant is not sufficient. However, it

may be stated that a tensorial form of equation (4.5) could be found be substituting the

scalar part between parenthesis by a suitable vectorial expression such as
�

1
q·�∞·q − 1

q·�0·q

�
.

Reaching an accurate value of the low frequency dielectric tensor is possible with the use

of Time Dependent Density Functional Theory [164]. The assumption of an effective

dielectric tensor and the use of �0 can be avoided when having the knowledge of the exact

atomic displacement induced by a particular mode and the effective charges carried by the

atoms, which Density Functional Perturbation theory alone allows.

4.2.1.3 Born-Huang effective charges and electric field

In what we will call the Born and Huang approach, the idea is rather to decouple,

at the beginning, the electronic and ionic contribution to the polarisation, Pel and Pion,

as [165]:

Pel = χ∞E (4.9)

Pion =
4πe

Ω

�

I

Z∗
IuI (4.10)

where χ∞ is the electronic susceptibility tensor, that is assumed q-independent considering

the materials of interest [100]. Z∗
I is called the Born-Huang effective charge [26] and is the

bare charge (i.e. in the absence of field) carried by atom I. Finally, uI is the displacement

vector of atom I, which in the case of no external forces is simply the eigenvector related
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to a specific phonon mode. The induction can thus be written:

D = �∞E +
4πe

Ω

�

I

Z∗
IuI (4.11)

with �∞ = 1 + 4πχ∞. Making use of equations (4.3) and (4.4), an expression is reached

for the electric field [99]:

E = −
4πe

Ω

�

I

q(q · Z∗
IuI)

q · �∞ · q
(4.12)

The elegance of this formulation is to carry an explicit directional dependence on q, both

in the ionic contribution (numerator) and in the electronic screening (numerator). In ad-

dition, using the appropriate eigenvector u, it is possible to calculate E for any phonon

mode. The matrix element in the interaction rate is hence just defined proportional to

the q-dependent electric field amplitude E ≡ |E|. Born effective charges and the dielec-

tric tensor are computed ab initio within DPFT [113, 165]. The agreement between the

experimental and calculated LO-TO splitting witnessed in chapter 2 (section (2.3.1.2),

figures 2.6 and 2.7) makes trustable the computed values for any III-V material.

4.2.2 Electron wave function

It is very convenient, and still relevant in the superlattice regime, to assume the elec-

tronic wave functions to be Bloch functions [98]:

�
�Ψn,k

�
= eik·r

�
�un,k

�
(4.13)

where n is the branch label and k is the electronic wavevector, and un,k a periodic func-

tion having the lattice periodicity. Hence, the overlap factor in the Fermi Golden Rule

equation (4.1) can be written:

|�Ψf |M |Ψi�|
2 =

�
�
�
�
ei(k−q)·r

�
�
�M

�
�
�eik·r

��
�
�
2

· I2
Bloch(k− q,k) (4.14)

where I2
Bloch(k− q,k) =

�
�
�
un�,k−q|un,k

��
�2, the overlap of the Bloch functions periodic

parts. Assuming the electron always remains on the same conduction band (the lowest

one), n� is set equal to n. Although it is tantalising to assume that this overlap factor

has always to be of the order of 1, it was shown by E. Tea [48] that this is a crude

approximation, except for electrons at the very the bottom of the Γ-valley, and that the

expression given by W. Fawcett [166] is much more relevant:

I2
Bloch(k,k�) =

(
√

1 + αEk

�
1 + αEk� + α

�
EkEk� cosθk,k�)2

(1 + 2αEk)(1 + 2αEk�)
(4.15)

where k� in our particular case is k− q, θk,k� is the angle between wavevectors k and k�,

and α is the non-parabolicity coefficient.
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4.2.3 Electron evolution equations

The electronic transition from one reciprocal position {Ei, kxi, kyi, kzi } (labelled i) to

another {Ei+1, kxi+1, kyi+1, kzi+1 } (i + 1) must obviously follow energy and momentum

conservation rules (equations (4.16 and (4.17)). A deterministic picture is adopted by the

addition of a third conservation rule (equation (4.18)): among the multiple possible final

states fulfilling energy and momentum conservation rules, only the one that corresponds

to the highest interaction rate is retained at each iteration.

ki+1 + q = ki (4.16)

Ei+1 + �ω(q) = Ei (4.17)

Γi→i+1 − max(Γi→i�+1) = 0 (4.18)

This model differs from a Monte Carlo method since the path from one electronic posi-

tion to the bottom of the conduction band is unique within equation (4.18) assumption:

electrons follow an extremal path in the k-space, and it has been verified that chosing

a Gaussian form instead of a Dirac form for this equation introduces no change in the

results.

4.3 Full-band cascade: practical implementation

How to compute the phonon band structure on an arbitrary fine mesh has been recalled

in chapter 2. Taking bulk GaAs and InAs as illustrating examples, a brief computational

methodology is given concerning the required electronic energy dispersion relation E(k),

and the mode-dependent electric field dispersion relation E(q).

4.3.1 Electronic band

How to choose the appropriate reciprocal mesh is not trivial since the electronic and

phononic dispersions in energy are very different. Considering the example of an electron

photoexcited just below the intervalley threshold, so around 1 ∼ eV , or ∼ 8000 cm−1,

above the conduction band minimum in InAs. The LO-phonon energy being ∼ 230 cm−1,

the number of cooling steps for such a hot electron would be of the order of 35. The hot

electron would have an initial k-vector whose norm would be of the order of ∼ 0.2·1010 m−1,

which gives an average exchange wavevector of ∼ 5 · 107 m−1. Hence, a step of 107 m−1

(∼ 0.1% of the size of the Brillouin zone) is required for a trustable reproduction of the

cooling steps.

Calculations were done within Density Functional Theory using the Projector Augmented

Wave method (PAW ) [167] as implemented in the VASP package [5]. Since an accurate

description of the band structure is required, the HSE06 hybrid functional was chosen

(details are displayed in appendix D). Wannier functions extrapolation [168, 169, 170]
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was used to avoid the first principle computation of such a k-space mesh: electronic

bands, just as phonon bands, incidentally, are smooth functions of k (q, respectively),

and such an extrapolation has proven to be very trustable [170]. The found gaps at high

symmetry points are gathered in table 4.1 and 4.2 for GaAs and InAs respectively.

Γ6
v − Γ6

c Γ6
v −X6

c Γ6
v − L6

c

This work 1.35 2.10 1.74

Adachi 1.42 1.90 1.71

Table 4.1: Band parameter in GaAs. The comparison in made with S. Adachi’s re-
sults [171].

Γ6
v − Γ6

c Γ6
v −X6

c Γ6
v − L6

c

This work 0.29 2.25 1.54

[171] 0.35 1.37 1.08

[172] 0.37 2.28 1.53

Table 4.2: Band parameters in InAs. The comparison in made with S. Adachi’s [171]
and J. R. Chelikowsky’s results. A discussion on the discrepancy with [171] is given in
appendix D.

4.3.2 Phonon polar field

Born effective charges Z∗ and dielectric tensor �∞ are computed within density func-

tional perturbation theory (section (2.3)). In figure 4.2 is depicted the variation of the

LO-phonon induced electric field norm, as defined by equation (4.12), as a function of the

q-vector in the vicinity of the zone center, for GaAs and InAs. As expected, the field

amplitude is smaller in InAs than in GaAs, what is experimentally suggested (and found

with DFPT) by the smaller LO-TO splitting in InAs than in GaAs. As expected also,

considering the variation of the LO-TO-splitting variation in figure 2.4, E is a decreasing

function of q, and this is a direct consequence of the phase evolution of the atomic displace-

ment vector. From this sole point of view, one would expect the exchanged wavevector

to be assymptotically close to 0 since the field takes its highest value. What prevent the

electrons to behave so is the energy and momentum conservation rules, as electrons and

phonons cannot just exchange energy.

4.3.3 Electronic cascade

The principle of the electronic cascade is illustrated in figure 4.3: an electron popu-

lation is photogenerated, by a 6000 K black body-like photons beam, from the highest
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Figure 4.2: Electric field induced by the LO phonon mode along the Γ −X direction in
bulk GaAs and InAs. All values are normalised by E

GaAs
q=0 .

valence band (grey surface) to the lowest conduction band (coloured surface) to an ini-

tial energy-versus-k position (black cross). The absorption coefficient is assumed to be

energy-independent and equal to 1. A filter restricts the allowed energy of the incident

photons in such a way that the excited carriers always remain below the intervalley en-

ergy threshold, so to focus on the intraband scattering. From this position, all final states

satisfying conservation rules (4.16) and (4.17) are examined. The retained new position

is the one that fulfills equation (4.18), i.e. corresponding to the highest rate:

Γi→i+1 = |E|2·I2
Bloch(ki − qi→i+1,ki)

δ
�
Ei+1 − (Ei + �ωLO(qi→i+1))

�
δ
�
ki+1 − (ki + qi→i+1)

� (4.19)

This procedure is iterated, and the electrons then undergo a step-by-step cooling until

they reach a minimum. We limit ourselves to the Γ-valley in direct band gap materials, so

that this minimum is always the conduction band lowest energy point. A two-dimensional

illustration of the cooling process is depicted in figure 4.3.

Statistics are performed on the emitted phonon wavevector q, as well as on the angle of

emission, on several thousands of cooling photogenerated electrons. The emission angles

are labeled in-plane or out-of-plane, depending whether their dominant component belongs

to the xy-plane or to the z-axis (i.e. the growing axis in the superlattice cases).

4.3.4 Validation: bulk case

As it is expected, an equal distribution of in-plane and out-of-plane emitted phonons

is found in bulk GaAs and InAs. The |q|-resolved emission distribution for these two

materials is depicted in figure 4.4. Concerning the peak position in GaAs, an excellent
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 0  1  2  3  4  5  6

Excitation energy (eV)

Eg

Figure 4.3: Two-dimensional picture of the electronic cooling implementation in GaAs
(see text). The grey surface is the highest valence band, the coloured one is the lowest
conduction band. The colour illustrates the required photon energy to promote an electron
from the valence band to the conduction band at each point. Note that on this picture the
space mesh variables have been reduced from {kx,ky,kz} to {kx,ky}, and that the actual
energy surface is a function of three reciprocal coordinates. On this figure also, the mesh
size is forty times larger than in the actual calculation, for clarity.

agreement is found with C. L. Collins and P. Y. Yu pioneer Monte Carlo work on hot-

carrier cooling in this particular binary compound [24]. The shifted peak position for InAs

compared to GaAs is a direct consequence of the stiffer band curvature in the Γ-valley.

4.4 Effects of the superlattice size

The cooling process described in (4.3.3) is set for [InGaAs]n superlattices. As the size of

the stack grows with n as 0.6n (in nm), remaining in the superlattice range (∼ 4 nm [14])

imposes a priori not to work with n � 7. This statement is to be developed in the

following.
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Figure 4.4: Emitted LO-phonon wavevector distribution in the cooling process for bulk
GaAs and InAs.

4.4.1 Effect on the electric field

The influence of the confinement on the electric field along unequivalent directions is

here investigated. We first discuss the definition of a reference in the in-plane direction

(E�) to then compare the out-of-plane field with (E⊥).

Reference setting

From n = 1 to 7, it appears that the phonon mode leading to the highest electric field

corresponds to the highest energy branch, with q belonging to the in-plane direction (E�).

From an atomic displacement point of view, it is related to an out-of-phase vibration of

all XAs (X = In,Ga) couples of atoms of the crystal. It can be reasonably assumed a

priori that the eventual electric field has to be equal to the average of the bulk GaAs and

InAs ones:

E
[InGaAs]n
th = (EGaAs

� + E
InAs
� )/2 (4.20)

For this reason, the in-plane electric field (E�) plotted in figure 4.5 is normalised by Eth

and compared to unity. Up to n = 6, the deviation is lower than 4 %, and reaches 5.5 %

for n = 7. Interestingly, the rough limit in width between superlattice and quantum well

lies between n = 6 and n = 7, and, for n � 8, this particular phonon mode does not

exist anymore: the highest electric fields are in these cases induced by bulk like modes,

i.e. all Ga− As ((respectively In− As) couples vibrating out-of-phase while all In −As

(respectively Ga−As) couples are fixed.

The conclusion is that above n = 6 − 7, the material is no longer a superlattice but a

multi quantum-well, both pseudo-bulk regions having localised electronic and phononic

band structures. In this regime, the real-space localisation of the photogenerated electron
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Figure 4.5: Relative electric field induced by the in-plane all-couples-in-phase vibration
mode (number (6) in figure 4.7) upon dimensionality. The reference value Eth is the exact
average of bulk GaAs and InAs (see text). The blue dashed line indicates the (rough)
separation between superlattices and quantum wells from a phonon point of view (4.1).

has to be taken into account, and the current model of electronic cooling on a single band

structure is no longer valid. We then limit the study up to n=7.

Electric field screening

In figure 4.6 are plotted the electric fields norm associated with each LO-mode in the

growing axis direction (z) upon n, normalised by the in-plane value. For each depicted

mode, the labelling number refers to the atomic displacements drawn in figure 4.7. At a

given n, the actual number of components to plot is 4n − 1, but are depicted only those

whose norm is greater than 5 % of the reference value (because of the deviation compared

to the theoretical value, depicted in figure 4.5, 5% is assumed to be the systematic error on

E). Identification of atomic displacements may appear subjective, since no atom is never

really unmoving. Thus, the label "E⊥ Bulk GaAs", for instance, has to be understood as

"Ga-As couples vibrate out-of-phase as they would do in bulk GaAs while the In-As couples

have a displacement amplitude fairly negligible compared to the formers".

On the in-plane direction, in addition to the all-atoms-vibrating-in-phase mode discussed

previously, only one exhibits a non-negligible field (red triangles), and corresponds to all in-

phase Ga-As couples vibrating out-of-phase with all In-As couples (label (1) in figure 4.7).

This mode equivalent in the growing direction is plotted using blue triangles, and does

not exist above n = 2.

The mode equivalent to the one studied in figure 4.5 in the z-direction (label (6)) is plotted
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Figure 4.6: LO-modes induced electric field in [InGaAs]n superlattice normalized by the
in-plane GaAs-InAs bulk value. An illustration of the atomic displacements associated
with each depicted mode is drawn in figure 4.7. The label VCA highlights the virtual
crystal approximation limit.
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1 2 3 4 5 6

Figure 4.7: Atomic displacement associated with the modes label on figure 4.6. In, Ga
and As atoms are coloured in grey, pink and yellow rescpectively.

with blue stars. From n = 4, this mode disappears and "splits" into two quasibulk modes

(open and filled blue circles).

It is satisfying to notice, from the perspective of validating the model, that in the limit of

the virtual crystal approximation (VCA), i.e. a bulk XAs crystal with X an imaginary

atom having an average character of In and Ga, the ratio E/E⊥ seems to get close to

unity for mode (6) (bulk XAs LO-mode vibration), and the ratio E/E� to 0 for mode (1)

(neutral pair of atoms out-of-phase vibration).

At all n-orders, the in-plane all-couples-in-phase mode appears to dominate from an electric

field point of view.

4.4.2 Effect on the electron-phonon interaction dimensionality

The influence of the above results on the electron-phonon scattering rate and on the

electronic cooling is investigasted through statistics performed on the emission angle. To

decorrelate anisotropy effect on the cooling process from the increasing, with the dimen-

sionality n, of the band stiffness in the z-direction, a simulation is also performed at each

n assuming an isotropic field having a similar q-dependence as the one observed in the

bulk cases (figure 4.2). A 2-dimensional example of cooling in both cases is depicted in
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figure 4.8 for InGaAs1. This reduced picture gives a visual first indication of the field

kz

kx

⊥

⊥
⊥

⊥

//

//

//

//

 0  1  2  3  4  5  6

Excitation energy (eV)

Figure 4.8: Two-dimensional picture of the electronic cooling implementation in InGaAs1
considering the actual (top) or a bulk like (bottom) LO-induced electric field. The colour of
the lowest conduction band illustrates the required photon energy to promote an electron
from the valence band at each point. The plane between the two plots indicate the plane
axis (kx) and the growing axis (kz) as well as the emission angles nomenclature. Note that
on this picture the space mesh variables have been reduced from {kx,ky,kz} to {kx,ky},
and that the actual energy surface is a function of three reciprocal coordinates. On this
figure also, the mesh size is forty times larger than in the actual calculation, for clarity.

anisotropy effect on the interaction dimensionality: the electron seems to "move" more

parallel to the in-plane axes when the actual electric field is used. The interaction ex-

tremal path differs from the topological one, and the number of cooling steps is larger.
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Figure 4.9 allows a quantitative analysis by displaying the phonon emission angle statistics

upon the dimensionality n. They are labelled in-plane if this component is dominant over

the z-direction, and out-of-plane in the opposite situation. In the trivial case of bulk GaAs

and InAs, the distribution of in-plane/out-of-plane phonons is found to be 50 %/50 %,

with a systematic error of � 1 %. The results in the case of an artificial isotropic field is

depicted using dashed line. The proportion of emitted in-plane phonons is much larger for
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Figure 4.9: Proportion of emitted phonons having a dominant in-plane (red) or out-of-
plan (blue) component, upon the dimensionality factor n. The dotted black line highlights
the asymptotic bulk case. The inset shows the variation upon n of the phonon cone of
emission angle.

all n than the out-of-plane ones. This distribution is of 91±1%/9±1% for n = 1 and 2 and

95± 1%/5± 1% for n = 3. From n = 4, not only is the electric field anisotropy responsible

for the dimensionality effect on the interaction rate: the stiffness of the band structure in

the growing direction forbids energy (4.16) and momentum (4.17) conservation rules along

the extremal topological path, so that the electrons are forced to move more and more

along the in-planes directions, and the above-mentioned ratio is of 100 ± 1%/0 ± 1%.

While in the bulk case phonon emission angle can have any value between 0̊ and 90̊ (in

an irreducible picture), this is not the case in InGaAsn, as a reduction of the emission

cone angle is observed. Its value at each n is plotted in the inset of figure 4.9. The as-

symptotic bulk case (45̊ ) is plotted with a dashed line for comparison. The systematic

precision is 1.8̊ . The emission cone is closing with increasing n, and reaches 0̊ ± 1.8̊ at

n = 4. As the in-plane distribution becomes considerably dominant, it can be stated that

in the superlattice range, the electron cloud interacts mainly with a 2D-phonon population.
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4.5 Conclusions on the electron-phonon interaction in

superlattices

4.5.1 Approach and results

A model was derived to study the influence of dimensionality on the electron-LO-

phonon interaction in thin superlattices. This model intended to allow a directional de-

pendence of this interaction, as well as having not to make any ad hoc assumptions on the

electronic nor on the phononic band structures. The latter are fully computed using first

principle techniques. The electron-phonon interaction is related to the coupling between

the hot electron and the macroscopic electric field induced by the LO-phonon atomic vi-

brations.

For all superlattice sizes, this electric field highest value is associated with an in-plane

wavevector. The subsequent consequence on the electron-phonon interaction is that elec-

trons interact mainly with a two-dimensional population of phonons. Although calcula-

tions did not allow to check this hypothesis, the above results lead to the reasonable con-

jecture that, within the superlattice range, the electron density required to significantly

increase the average electron temperature TC is lower than in bulk materials.

4.5.2 Approximations and subsequent limitations

Although reasonable, the above conjecture must be received cautiously. This model

does not allow a dynamical description of the electronic cooling, as the interaction rates

are not calculated in absolute, but compared one to another, in a deterministic picture:

the expected result is a cooling time-averaged trend. In addition, it has been explained

why the model is not valid anymore aside from the thin superlattice typical size systems.

As shown by K. Leo and co-workers [70, 71], the electron and phonon densities two-

dimensionality match in the quantum well range.

Although it has no influence on the electron-phonon interaction dimensionality, it is worth

noting that neither the density dependent electron-electron interaction nor the phonon

reabsorption were included in this study.

4.5.3 Perspective on the hot-carrier effect in superlattices

K. Leo and co-workers [70] introduced a parameter (α) to evaluate the critical electronic

density from which the energy loss rate is reduced to less than half the low density limit

(α ≥ 2). It includes LO-phonon reabsorption, and takes the form:

α = 1 +
nelec
nLO

τLO
τe−LO

(4.21)
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where nelec and nLO are respectively the electronic and the LO-phonon densities, τe−LO

and τLO being the electron-LO-phonon interaction time and LO-phonon lifetime. The

expression for the critical electronic density as defined just above is then ñelec = nLO ·

τe−LO/τLO. Working with multiquantum wells systems, K. Leo and co-workers assumed

their electron and phonon populations to be 2D, so that nelec and nLO are not dependent on

the system size, and the only leverage to increase α is the enhancement of the LO-phonon

lifetime. From what preceeds, a 3D-dependence of both the electronic and LO-phonon

densities on the cell size appears to be relevant within the superlattice range.

The discussion is focused on nLO, as the restriction on the phonon emission angle reduces

the phonon density more than the bare confinement due to Brillouin zone flattening would:

from bulk to superlattice well, within the current approximations, the phonon population

becomes two-dimensional "more quickly" than the electron population. Within the first

assumption of a constant electron-phonon scattering time, the critical density ñelec could

be computed simply by a reciprocal space integration of the emitted phonon distribution,

so to observe its variation upon the superlattice dimensionality factor n.



Conclusion

Main results

In this thesis, the hot-carrier solar cell concept has been investigated from a phononic

point of view. More precisely, the phonon-phonon and the electron-phonon bottlenecks,

both critical for carrier cooling hindering, and related, in the energy range considered, to

the LO-phonon, have been analysed.

The LO-phonon decay was studied, in a fist part, through computation of the two-phonon

final states in various bulk semiconductors. Density Functional Perturbation Theory was

used for this aim, as it allows high precision calculations of the phonon dispersion. The

frequently mentioned large atomic mass ratio feature, responsible for a gap in the phonon

band structure that prevents LO-phonon decay through two acoustic phonons, was shown

not to be sufficient for limiting the final states number, as the importance of the less

cited low LO-TO splitting criterion was found non-negligible. One material, SiSn in the

Zinc-Blende crystal structure, gathers both requirements.

The more than commonly used zone-centre approximation was tested to the limit. It was

found to be extremely relevant, expect when it does not: the case of SiSn, which exibits

the singular feature of all two-phonon final states being located close to the Brillouin zone

boundary, is an example of this assumption failure. In such cases, the actual LO-phonon

wavevector is decisive for its lifetime. To the very knowledge of the author, this behaviour

has never been reported before.

As nanostructuration has been thought to be suitable for phonon gap opening in the band

structure, group-IV and III-V superlattices and dots, of various sizes, were studied. It

was shown that even if gaps may open indeed in the growing direction, they does not

appear in the one-phonon density of states because of the band structure integration over

the entire reciprocal space. It led to the conclusion that bulk material should be preferred

for large phonon gap seeking.

Although large enough phonon gaps might be rare in relevant absorber candidates, it was

pointed out that such a feature is sufficient but not necessary, as the hot-carrier effect has

been measured in materials where large phonon gaps are absent.

The peculiar case of SiSn discoverd in chapter 2, was investigated in more details by
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calculating the LO-phonon lifetime ab initio within Density Functional Perturbation The-

ory. This is achieved through computation of the third order anharmonic tensor, which

turned out to be a computationally demanding task, suggesting that Density Functional

Perturbation Theory may not be suitable for routinely lifetime computation. This empha-

sised the necessity to perform a step-by-step selection of the potential candidate, starting

with the two-phonon final states study, as performed in chapter 2.

The unusual dependence of the two-phonon density of final states on the initial phonon

wavevector induces a stiff variation of the lifetime upon this particular parameter, and is

found to be orders of magnitude greater than the common range every known semiconduc-

tors belong to. Considering how small the number of final states in a two-phonon decay is,

a discussion was conducted on the possibility to reach higher order phonon processes. An

average fourth-order anharmonic contribution to the LO-phonon decay was determined.

It brought a correction on the LO-phonon lifetime: although not changing its order of

magnitude, it brings significative change to the enventual value.

The amplitude of the rough fourth-order correction rises the question of the eventuality to

ever find a material exhibiting a several tens of picoseconds LO-phonon lifetime at room

temperature. However, and once again, the long LO-phonon lifetime being a sufficient

but not necessary condition for hot-carrier effect witnessing, and since, from this chapter

results, there is no reason to think that the materials in which such a hot-carrier effect

was measured showed a long phonon lifetime, its origin might be found in another process,

namely the electron-phonon interaction.

The electron-phonon bottleneck dependence on dimensionality was investigated in the in-

termediate region between bulk and quantum well that is the superlattice range. A model

was proposed for the electron-phonon intraband interaction based on the LO-phonon self-

induced electric field to be directional-dependent. The cooling process of hot electrons

was studied in several sized [InAs]n − [GaAs]n superlattice, n being the number of atomic

layers.

The field anisotropy induces a stronger electron interaction with in-plane phonons, for

any n. This suggests that within the superlattice range, the electrons mainly interact with

a 2-dimensional phonon bath, which is of considerable importance for hot-carrier solar

cell, since the electronic density required to enhance a hot-carrier effect might be reduced

compared to bulk materials. These results call for development.

Perspectives

Numerical physics can be either philosophical, i.e. going from experimental fact to

mind conceptualisation and theorisation, or, oppositely, metaphysical, so from pure mind

production to an attempt to describe a posteriori measured results. From this point of

view, the second and third chapters of this thesis are philosophical: based on measured
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phonon properties and their theorisation, predictions are made on new materials. From our

understanding, they allow the reasonable statement according to which finding a material

exhibiting a LO-phonon lifetime sufficiently long, in a hot-carrier solar cell perspective, is

unlikely.

What logically follows is the investigation of the carrier-phonon interactions. The fourth

chapter, a modest step toward this topic, is rather metaphysical, as we formulate a model

based on mind feelings and intuitions, pushing the stair-like electronic cooling picture to

the limit. This work hopefully gave enough intriguing results to stimulate the research on

thin superlattices for hot-carrier solar cell, and in particular from an experimental point of

view. Developped models for practical results to rely on should include stronger coupling

effect than what was done in this work: even if it was stated that hot-carrier solar cells

practical achievement should be correlated to a better understanding of the Physics of

phonons, the concept of bare phonon might not be relevant at the end, as it is said to

occur, for instance, in quantum dot solar cells, by the necessity of renormalising phonon

self-energy through phonon-plasmon interaction.

In June 2014, in an article published in Physical Review Letters, M. Bernardi and co-

workers [173] presented new tools for cooling dynamics comprehension: a full ab initio

study of the hot electrons behaviour during the first picosecond after photoexcitation

was demonstrated, including first principles calculations of electron-electron and electron-

phonon interactions within Density Functional Theory and Many-Body Perturbation the-

ory [174, 175]. The electronic lifetime at any {E, k} could be determined, as can be seen

on figure 4.10. It is highly probable that new elements concerning the electron-phonon

Figure 4.10: The band structure of Si, together with a colour map of electron-phonon
self-energy imaginary part. Reproduced from [173].

interactions competition discussed in the first chapter will be revealed in the coming years,
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and that the feasibility of electronic band engineering will be addressed. As is stated in

the conclusion, this work "paves the way to ab initio studies of hot carriers in materials

for renewable energy".



Appendix A

Elements of Density Functional

Theory

Within Density Functinoal Theory (DFT ), the total energy is written as a functional

of the electronic density n(r) as [176]:

E({R}) =T0[n(r)] +
e2

2

�
n(r)n(r�)

|r− r�|
drdr�

+

�

V{R}n(r)dr+ EN ({R}) + Exc[n(r)]

(A.1)

ψn(r) being related to the electronic density through:

n(r) = 2

N/2�

n=1

|ψn(r)|2 (A.2)

The first term in equation (A.1) is the kinetic energy of the non-interacting electrons

having n(r) as a ground state density:

T0[n(r)] = −2
�2

2m

N/2�

n=1

�

ψ∗
n(r)

∂2ψn(r)

∂r2
dr (A.3)

The second term is the Hartree energy, or the classical Coulomb electronic interaction

energy expressed as a function of n(r). V{R} the external potential acting on the elec-

trons, which, in the case of a bare Coulombic potential due to the nuclei, is
�

I vI(r−RI),

with vI(r −RI) = −ZIe
2/|r −RI |, I labelling the ions. The fourth term is the interac-

tion between the nuclei. Finally, Exc[n(r)] is the exchange-correlation energy, that gather

all the many-body effects. The essence of research in DFT is the derivation of a rele-

vant expression for Exc[n(r)]. Kohn-Sham orbitals are obtained by solving Kohn-Sham
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Schrödinger-like equation:

HSCF ψn(r) ≡

�

−
�2

2m

∂2

∂r2
+ VSCF (r)

�

ψn(r) = �nψn(r) (A.4)

where the effective potential, refering to Kohn-Sham energy (A.1), is:

VSCF (r) = V{R} + e2
�

n(r�)

|r− r�|
dr� + υxc(r) (A.5)

with υxc(r) ≡ δExc/δn(r) the exchange-correlation potential. The expression of the force

related to this energy is obtained derivating E({R}) with respect to the ionic position RI .

In addition to the derivative of the third and the fourth term comes another term from

the dependence of the total energy upon the electronic density:

FDFT
I = −

�

n(r)
∂V{R}(r

∂RI
dr−

∂EN ({R})

∂RI
−
δE({R})

δn(r)

∂n(r)

∂RI
(A.6)

Because the total energy of the system is extremal for the ground state density, the last

term vanishes and the latter equation matches exactly the generalised force expression

(equation (2.24)).



Appendix B

Elements of Density Functional

Perturbation Theory

In this appendix are given computational details related to the calculation of the

phonon dispersion relation within Density Functional Perturbation Theory (DFPT ).

Ground state calculations were performed within Density Functional Theory (DFT ) as

implemented in the Quantum Espresso package [6], using the Local-Density Approxi-

mation (LDA) plane-wave pseudopotential method for exchange and correlation energy.

Norm-conserving pseudopotentials generated within the Troullier-Martins formalism [177]

were used. The Brillouin zone integration over the electronic states was performed using

the special k-point Monkhorst-Pack method [178] on a shifted 6 × 6 × 6 grid. A system-

atic accuracy of 0.1 meV.atom−1 on the ground state total energy was reached for all

studied materials so to ensure a precision on the phonon band struture of the order of

1 cm−1 [157]. The interatomic force constants were determined within DFPT using the

grid method [179] on a 8 × 8 × 8 mesh (so equivalent to a direct real space force constant

calculation in a 1024-atom supercell), that leads to 29 special q-point for the Zinc-Blende

crystal structure, and then Fourier-extrapolated on a much finer mesh (section (2.4.1.2)).

To show the reliability of the calculation, some of the computed phonon frequencies are

gathered in table B.1 and compared to experimental data whenever they exist. The ac-

cordance is also displayed in the insets of figures 2.6 and 2.7.
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ΓLO ΓTO XLO XTO XLA XTA LLO LTO LLA LTA

GaAs 294 275 242 258 226 79 267 241 212 62

([114]) (293) (271) (240) (256) (225) (82) (263) (242) (207) (63)

AlAs 396 358 389 330 213 97 366 345 210 72

([107, 132]) (400) (362) (385) (333) (225) (104) (205) (79)

GaSb 238 231 212 209 162 58 221 203 157 46

([131]) (230) (211) (211) (167) (57) (217) (204) (154) (45)

AlSb 338 328 341 292 162 66 324 312 152 52

([133]) (346) (326) (340) (293) (153) (68) (320) (306) (148) (54)

GaP 408 374 372 363 259 107 373 368 240 83

([130]) (405) (368) (372) (357) (254) (104) (372) (359) (314) 86

InP 355 315 331 322 195 70 335 318 178 56

([128, 129]) (353) (307) (329) (322) (193) (66) (339) (318) (166) 53

Si 509 509 406 455 406 140 408 485 372 108

([99]) (515) (515) (411) (449) (411) (147) (411) (488) (378) (113)

SiC 964 788 983 758 632 365 833 763 613 269

([135]) (970) (789) (834) (765) (609) (267)

Table B.1: Computed phonon frequencies at high symmetry points Γ, X and L. All valued
are in cm−1. The experimental references are given between parenthesis.
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SiSn electronic band structure

The electronic band structure of SiSn was determined using G0W0 correction [180, 181]

on top of a Density Functional Theory (DFT ) calculation using the Projector Augmented

Wave method (PAW ) [167] as implemented in the VASP package [5].

The differences in energy between Γ-, L- and X-valley as a function of the inclusion

of the d-states in the valence are gathered in table C.1. The inclusion of d-states in the

valence within the pseudopotential approximation appears to have only a soft influence in

PAW. In addition, the G0W0 correction clearly appears to be k-point-dependent, so that

a scissor shift is not a relevant correction. There are qualitative agreements between the

two sets of results: the direct band gap at Γ is close to 1 eV , and the X-valley appears to

be at least 0.1 eV above the two others. The PAW method is thus used to compute the

band structure since it has a low dependence on the inclusion of d-states. The spin-orbit

coupling is taken as a first order perturbation taken from DFT, as a gap-closing constant

of 0.1 eV.

Method Γc − Γv Lc − Γv Xc − Γv

PAW 0.36 0.43 0.78
PAW + G0W0 1.04 (+0.68) 0.93 (+0.50) 1.10 (+0.32)

PAW_d 0.40 0.44 0.77
PAW_d + G0W0 0.98 (+0.58) 0.92 (+0.48) 1.14 (+0.37)

Table C.1: G0W0 corrections comparison on the valley ordering. These results do not
include the spin-orbit coupling corrections applied on the band structure calculation. The
values are in eV .





Appendix D

DFT calculation using hybrid

functional

Predicting the electronic properties of Zinc-Blende InX III-V materials (X = N,P,As,

Sb) from first principle calculations had been a remaining issue until the use of hybrid

functional by G. Kresse and his co-workers [182]. In addition to the lack of inversion sym-

metry, consubstantial with the Zinc-Blende crystal structure, and the spin-orbit coupling

that splits the threefold-degenerate highest valence band into a split-off, a light hole and

a heavy hole bands, the interaction between semicore d-electrons from the Indium atom

creates shallow bands close to the valence band region. For this reason, it is well known

now that these d-states have to be treated as valence states within the pseudopotential

approximation, and that one should take into account the spin-orbit coupling in the cal-

culations [183].

The band structure of InAs within several approximations is depicted on figure D.1. The

first conduction band energy level at the Γ, X and L points are compared to two refer-

ences: S. Adachi’s work [184, 171] on GaxIn1−xAsySb1−y band gap extrapolation (referred

as (1)), and J. R. Chelikowsky’s and M. L. Cohen’s one [172] with the use of an empirical

non-local pseudopotential method (referred as (2)). Despite their extremely similar results

on the band gap (0.35 eV (1) and 0.37 eV (2)), the values X6
c − Γ6

v and L6
c − Γ6

v show a

large discrepancy, respectively 0.91 eV and 0.45 eV . Unfortunately, no experimental data

exist for these parameters.

The simple Density Functional theory (DFT ) calculation (red line) gives a "negative" band

gap, as could be expected since it is small (< 0.5 eV ) in InAs, and systematically lowered

within DFT. The PBE0 (blue line) and HSE06 (grid solid line) hybrid method differ by

the introduction of a function in the latter that screens the long-range part of the Hartree-

Fock interaction, the amount of the latter incorporated in the exchange-correlation energy

being the same in both methods [185]. The PBE0 method obviously leading to much less

accurate results in this case, we focus on the HSE06 one. This latter approximation leads

to an excellent agreement with the results of (2) on the three high symmetry points, when
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Figure D.1: InP band structure within several approximations for the exchange-correlation
energy functional. The reference values are reproduced from S. Adachi’s [171] (1) and J.
R. Chelikowsky’s and M. L. Cohen’s work [172] (2).

indeed the d-states are included in the valence (black solid line), while the band gap is

0.1 eV lower if they are omitted (green solid line). The found values are recalled in table

D.1. The addition of a G0W0 correction does not bring substantial improvement (black

dashed line), so that it is not used in the subsequent calculations.

Γ6
v − Γ6

c Γ6
v −X6

c Γ6
v − L6

c

This work 0.29 2.25 1.54

(1) [171] 0.35 1.37 1.08

(2) [172] 0.37 2.28 1.53

Table D.1: Band parameters of InAs.



Appendix E

Transferability of the interatomic

force constants

The transferability of the force constants is here checked for Si/Ge and GaSb/AlSb.

The region of interest in both cases is the acoustic one (see chapter 2). Getting back to

equation E.1 to be solved (section 2.1.2):

�

J,β

�
CI,α;J,β(0, l�)

√
MIMJ

− ω2δIJδαβ

�

u
(0)
J,βe

iωt = 0 (E.1)

where I and J label the atoms, α and β the coordinates, the idea of the mass approxima-
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Figure E.1: Transferability of the force constant from Si to Ge. The Ge band structure
has been calculated using the force constant of Ge (red solid line) and Si (black dashed
line), and is compared to experimental values reproduced from [186] (blue crosses).

tion is to use the real space interatomic force constant CI,α;J,β calculated for one material

(A) to compute the band structure of another (B), simply inserting the appropriate atomic
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massesM in the above equation. From a ball-and-spring model point of view, this is equiv-

alent to assume that the springs stiffness in equal in both materials, and that only the

balls mass changes. In figure E.1 are plotted the Ge phonon band structures computed

using the interactomic force constant of Ge and Si, respectively label Ge[Ge] and Ge[Si]. In

figure E.2 are plotted the AlSb phonon band structures computed using the interactomic

force constant of AlSb and GaSb, respectively label AlSb[AlSb] and AlSb[GaSb]. The largest

observed discrepancy between B[B] and B[A] is 8 cm−1 in the case of Si/Ge, and 10 cm−1

for GaAs/AlSb. This result agrees with the statement according to which the mass ap-
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Figure E.2: Transferability of the force constant from GaSb to AlSb. The AlSb band
structure has been calculated using the force constant of AlSb (red solid line) and GaSb
(black dashed line), and is compared to experimental values reproduced from [99] (blue
crosses).

proximation is satisfactorily accurate when the two materials differ by their cations, as it

has been for instance verified in GaAs/AlAs compared to GaAs/GaSb [99].



Appendix F

Conservation rules Gaussian width

The need for an error function comes from that we have no knowledge of an analytical

form for the iso-energy suface defined by energy and momentum conservation rules:

�ωs2
q2

+ �ωs3
q3

− �ωLO = 0 (F.1)

which is the reason for which we substitute the Dirac delta function in the rate equation

(3.8) by a tolerance numerical function δ̃(ω):

δ̃(ω) =
1

σ
√

2π
e

−

�
(ω−ωLO)2

2σ2

�

(F.2)

where ω = �ωs2
q2

+ �ωs3
q3
. By taking a Gaussian form for δ̃, the closer to 0 the sum

�ωs2
q2

+ �ωs3
q3

− �ωLO, the more the three-phonon process contributes in the rate integral.

The tolerance parameter σ is to be determined. Values reported in the literature are of

the order of 1 cm−1 [125, 104, 124].

The LO-phonon lifetime in Silicon was computed for several q-independent trial σ values

and reported on figure F.1. Over two orders of magnitude (10−1 to 101) the computed

lifetime does not sharply depend on the trial σ values: from 4.22 ps for σ = 0.1 cm−1,

it passes through an extremum (4.56 ps for σ = 1 cm−1) and ends at 4.44 ps for σ =

101 cm−1. A larger discrepancy compared to experiment is found for σ = 10−2 (8.8 ps).

The value σ = 1 cm−1 was retained for the rate integral calculation in chapter 3.
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Figure F.1: Dependence of the computed LO-phonon lifetime on the Gaussian width in
equation (F.2) in Silicon at 0K. The experimental value (dashed blue line) is reproduced
from [125].



Appendix G

Average fourth-order

phonon-phonon coupling constant

The simplest approach to reach an average fourth-order anharmonic constant is to

compute the total energy of the system, when the atoms are in their equilibrium positions,

and when they are displaced by Δu according to a LO vibration mode (typically, 0.04 Åin

the [111] direction [158]). The energy difference is written ΔE(u), and the constant would

simply be ΔE(u)/(Δu)4. Call it simple model.

We instead use the approach of D. Vanderbilt and co-workers [157], which consists in

computing ΔE ≡ [ΔE(u) + ΔE(−u)]/2 to eliminate the odd term, and then plot ΔE/u2

versus u2, the slope of the curve giving the fourth derivative of the total energy (see

figure G.1) The values obtained using both methods are gathered in table G.1.

Si SiSn

simple model 125 82

Vanderbilt [157] 135 96

Table G.1: Fourth-order anharmonic coupling constants obtained with different computa-
tional methods (see text). All values are in eV.Å−4.
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Résumé en français

Introduction

Il est d’usage, dans les premières pages d’une thèse de doctorat ayant trait à l’énergie

solaire, d’y trouver un long plaidoyer en faveur de l’exploitation des sources d’énergies

renouvelables. Sautant ce préambule, je commencerai à m’attacher directement à ce su-

jet ô combien passionnant qu’est le photovoltaïque de future génération. Une analyse de

la nécessité de diversifier notre production d’énergie peut par exemple être trouvée dans

la revue de A. Luque [1]. A ce jour, la question n’est en effet plus "Le photovoltaïque

fonctionne-t-il ?", mais plutôt "A quel rendement maximum pouvons-nous prétendre". La

limite de Shockley-Queisser [2], théorisée il y a plus de cinquante ans, et selon laquelle le

rendement maximal d’une cellule à simple jonction p-n ne peut excéder 31%, n’est désor-

mais plus un objectif suffisamment ambitieux compte tenu des progrès réalisés. L’heure

est plutôt aux technologies de troisième génération, parmi lesquelles figure la cellule solaire

à porteurs chauds (HCSC).

Imaginée en 1982 par R. T. Ross et A. J. Nozik [3], cette cellule possède un rendement

maximum théorique de l’ordre de la limite thermodynamique [4]. Son mode de fonction-

nement est simple, et joue sur le principe premier du gain photovoltaïque, se concentrant

sur la séparation des charges électriques. Le fossé, de moins en moins profond, qui nous

sépare de la réalisation concrète d’un tel dispositif se caractérise dans notre manque de con-

naissance ou de compréhension de certains phénomènes physiques fondamentaux. D’elles

découle pourtant la capacité de choisir les matériaux adéquats pour l’implémentation des

HCSC. Cependant, il est à noter que l’engouement pour la recherche sur ce type de cel-

lules semblent suivre celui pour les technologies photovoltaïques en général (figure 1). Il

est raisonnable de s’attendre à de sérieux progrès dans les prochaines années.

Ces problématiques sont principalement liées aux mécanismes de perte d’énergie des por-

teurs de charges (souvent réduits aux seuls électrons, les trous ayant un comportement

symétrique). Ces derniers cèdent ainsi, après avoir été photogénérés, leur excès d’énergie

cinétique au réseau cristallin sous la forme de quanta vibrationels, appelés phonons ; c’est

un cas particulier de l’interaction électron-phonon. Le processus inverse, l’absorption de

phonon, est également possible, pourvu que ces pseudo-particules ne se décomposent pas,
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Figure 1: Nombre de publications scientifiques par an citant l’article originel de R. T. Ross
et A. J. Nozik qui introduisit le concept de cellules photovoltaïques (bleu), et variation
relative du nombre de publications ayant trait aux technologies photovoltaïques en général
(rouge).

entre temps, en d’autres phonons; il est alors question d’interaction phonon-phonon.

S’attaquer à ce type de problématique requiert donc des outils rendant compte des interac-

tions fondamentales à l’échelle sub-nanométrique. Il devient alors possible de comprendre

les phénomènes relatifs à l’effet porteurs chauds tels qu’il est mesuré, puis de prédire son

existence sous certaines conditions bien identifiées. Les méthodes de simulation dites ab

initio ont en ce sens prouvé leur efficacité ainsi que leur précision, et l’augmentation con-

stante de la puissance de calcul disponible rend leur utilisation de plus en plus standart,

en plus d’élargir leur domaine d’application.

La recherche d’un rendement toujours plus élévé est moteur de l’innovation dans le do-

maine du photovoltaïque en général. Les cellules à porteurs chauds sont en ce sens un but

ultime. La difficulté réside en ce que, par notre volonté de freiner le refroidissement des

porteurs, nous cherchons à exalter un comportement presque contre nature.

Plan de l’étude

Cette thèse est divisée en quatre chapitres. Ayant un but explicatif et une visée prédic-

tive, les études sont menées numériquement, utilisant des techniques de calculs ab initio.

Le premier chapitre s’attache à fixer le contexte de l’étude, allant du concept général de

photovoltaïque de troisième génération vers les problématiques phononiques spécifiques

aux cellules à porteurs chauds. Dans un second temps, la décomposition du phonon LO
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est étudié en terme d’états finaux à deux phonons disponibles. Une discussion est menée

sur les critères de sélection de candidats pour le matériaux absorbeurs. Le troisième

chapitre pousse l’analyse un cran plus loin, par l’étude du temps de vie du phonon LO

dans un matériau spécifique mis en lumière dans le chapitre précédent. Une discussion est

menée sur la possibilité d’évaluer la contribution des ordres de décomposition supérieurs

à trois, et sur l’atteignabilité des critères phononiques jugés suffisants pour exalter l’effet

porteur chaud. Dans le dernier chapitre, une étude exploratoire de l’interaction électron-

phonon dans les super-réseaux est proposée. Un modèle reliant la constante de couplage

au champ électrique induit par le phonon LO est proposé, et la dimensionalité des popu-

lations électroniques et phononiques en jeu est examinée.

Seuls les résultats principaux sont rappelés dans ce résumé. Les détails méthodologiques

et bibliographiques peuvent être trouvés dans la version anglaise du manuscrit.

La cellule solaire à porteurs chauds

La cellule de Ross et Nozik fait partie des cellules photovoltaïques dites de troisième

génération, parmi lesquels figurent également les cellules à multijonctions et à bandes inter-

médiaires, pour ne citer que les concepts les plus répandus. Ces technologies sont conçues

pour palier la nature polychromatique de la lumière, adaptant les niveaux d’énergies de

l’absorbeur de façon à les rendre résonants à plusieurs longueurs d’onde, et partant toujours

du principe que la population d’électrons photogénérés est extraite au niveau d’énergie de

conduction le plus bas. Celle imaginée par Ross et Nozik il a maintenant plus de trente

ans (figure 2), au contraire, a pour ambition d’extraire les porteurs non encore à l’équilibre

thermique avec le réseau cristallin, bien au dessus du bas de la bande de conduction. Le

gain en voltage correspond ainsi à la différence entre l’énergie d’extraction et le bas de la

bande de conduction

Comprendre son fonctionnement implique au préalable de définir le simple concept de

"porteur chaud". Dans un article traitant du refroidissement des porteurs de charge, S. A.

Lyon en donne cette définition :

Nous appelons "porteurs chauds" des électrons, ou des trous, ayant une énergie ciné-

tique bien supérieure à l’énergie thermique moyenne du réseau cristallin, notée kTL.

Ces porteurs ne forment pas en général une distribution à l’équilibre, de sorte que

"chauds" n’implique pas que l’on puisse en définir une température. [19]

Il s’avère en fait que les porteurs équilibrent entre eux leur excès d’énergie cinétique dans

les premières dizaines de femtosecondes suivant leur excitation, et qu’une température peut

être définie au delà de ce temps critique [20, 21]. Ce processus est appelé thermalisation,

et est bien distinct de celui de refroidissement [14], détaillé plus loin. Notre définition de

"porteurs chauds" sera donc une version thermalisée de celle de S. A. Lyon, c’est à dire
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une population à l’équilibre thermique ayant une énergie supérieure à celle de l’énergie de

bande interdite (gap).
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Figure 2: Principe du fonctionnnement de la cellule solaire à porteurs chauds. Les élec-

trons/trous sont extraits à une énergie E
e/h
ext via des contacts sélectifs en énergie de largeur

δE. Le gain en voltage par rapport à une extraction au bas de la bande conduction est
Eext − qV . Reproduit depuis [7].

Refroidissement des porteurs et problématiques phononiques

La tendance selon laquelle l’énergie moyenne des porteurs tend à décroître dans le

temps est appelé refroidissement, et est reliée à une multitude de phénomènes complexes,

nommément des transitions intervallée et intravallée, ainsi que les processus Auger et

d’ionisation par impact (voir figure 3). Dans la suite nous prendrons seulement l’exemple

des électrons, dans un matériau à gap direct, mais il est à noter que les trous ont un

comportement similaire, bien que couvrant une plus petite gamme d’énergie du fait de

leur plus grande masse effective. Il a été empiriquement démontré que si, après avoir été

photogénéré, un électron se trouve au dessus du seuil de transition intervallée (ligne en

pointillé sur la figure 3), alors il rejoindra avec une très grande probilité une vallée satel-

lite, et perdra peu à peu son excès d’énergie cinétique d’abord via des transitions inter et

intravallées satellites [30, 31]. Il ne rejoindra la vallée Γ qu’une fois au plus bas de celles-ci.

La perte d’énergie se poursuit alors par transition intravallée, via l’émission, dans le cas

d’un semiconducteur polaire, d’un phonon LO, soit un mode de vibration correspondant

à un déplacement des atomes en opposition de phase les uns par rapport aux autres. Le

phénomène inverse, i.e. l’absorption d’un tel phonon, est également possible, de sorte que

le ratio emission/absorption influence le temps global de refroidissement des porteurs [48].

L’effet porteurs chauds est caractérisé par un temps de refroidisement global au moins de

l’ordre de 1 ns [62].
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Figure 3: Processus de refroidissement des porteurs chauds.

Au premier ordre, les phonons sont des modes propres, ayant une stabilité infinie dans

le temps. Là encore, le rapport à l’expérience conduit à la nécessité d’aller au delà de

cette approximation, afin de rendre compte, par exemple, de la finitude de la conductivité

thermique [102]. Ainsi, le phonon LO émit lors du refroidissement n’est pas stable, et se

décompose, typiquement entre une en quelques picosecondes dans la plupart des semicon-

ducteurs, en d’autre phonons de plus basse énergie. La vitesse à laquelle une population

de porteurs chauds revient à l’équilibre thermique du réseau est ainsi très dépendante du

temps de vie du phonon LO [48].

La discussion précédente fait apparaître deux axes de travail pour exalter l’effet porteurs
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chauds : écranter l’interaction electron-phonon LO d’une part, et travailler avec un ab-

sorbeur dans lequels le temps de vie du phonon LO est au minimum un ordre de grandeur

plus long qu’il ne l’est en moyenne dans les matériaux dans lesquels il a été mesuré, soit

typiquement de l’ordre de 100 ps.

Techniques ab initio

L’analyse des propriétés phononiques des matériaux se voulant prédictive, le choix

de la méthode s’est portée sur la théorie de la fonctionnelle densité perturbée (DFPT ),

telle qu’implémentée dans la suite de codes Quantum Espresso [99, 97, 110]. Cet outil a

prouvé son efficacité dans la compréhension d’un grand nombre problématiques liées aux

vibrations du réseau cristalin, parmi lesquels, l’étude des modes mous et des transitions de

phase sous pressions [115] ; les phonons dans les super-réseaux [116], les alliages [117], et

les nanostructures de type graphene [118] et fullerene [119] ; les propriétés vibrationelles

des défauts [120] ; les modes de surface [121] ; les propriétés thermodynamiques dans

l’approximation quasi-harmonique [122] ; l’analyse du tensor Raman [123] ; et finalement,

le temps de vie des phonons dans les semiconducteurs via la dérivée troisième de l’énergie

totale par rapport aux déplacements atomiques [104, 124].

Malheureusement, le temps de calcul requis varie avec le nombre d’atomes Nat selon N
α
at,

α ∼ 3 − 4, ce qui limite dans la pratique la taille des systèmes à environ 100 atomes. Cela

correspond, par exemple, à une maille cubiques de silicium de volume 1,3×1,3×1,3 nm3,

ou à une feuille carrée de graphene de surface 1,6×1,6 nm2.

Etats finaux à deux phonons

La décomposition du phonon LO peut être décrite au premier ordre par son annihila-

tion et la création de deux autres phonons. Ce processus doit évidemment respecter les

règles de conservation du vecteur d’onde q2 +q3 = q1 et de l’énergie �ω
s�

q2
+ �ωs

��

q3
= �ωsq1

,

�ωsq étant l’énergie du phonon de vecteur d’onde q et d’index de branche s. Dans notre

cas, q1 ∼ 0 et s ≡ LO. Les pairs de phonons "2" et "3" vérifiant ces relations sont les

états finaux de décomposition. Le principe de l’ingénierie phononique consiste à travailler

sur la structure de bande phononique, par choix des atomes dans la maille cristalline ou

nanostructuration, de sorte que les deux relations précédentes soient vérifiées pour le plus

petit nombre possible d’états finaux. Pour les besoins de l’analyse, nous classerons les

canaux de décomposition en deux familles : les canaux Ridley d’une part, dans le cas où

les phonons finaux sont tous les deux des phonons acoustiques, et les canaux Ridley, pour

lesquels l’un des phonons finaux est un acoustique et l’autre un optique (figure 4).

Une description simple des modes de vibrations dans un cristal permet de mettre en
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finaux. Les points expérimentaux (carrés pleins noirs) sont reproduits d’après [107].

évidence une forte dépendance de la largeur des bandes interdites phononiques au ratio

des masses atomiques. Une étude des états finaux à deux phonons a donc été menée, dans

un premier temps, sur une gamme de semiconducteurs binaires appartenant aux groupes

III-V et IV-IV.

Matériaux massifs

Cette étude a révélé la singularité du matériau SiSn en stucture Zinc-Blende. Le fort

ratio des masses entre le silicium et l’étain engendre un gap entre les régions acoustiques

et optiques presque suffisamment large pour interdire complètement les canaux Klemens :

les quelques états disponibles sont alors confinés au bord le zone de Brillouin près du

point X. Il a aussi été mis en évidence que le critère souvent omis selon lequel le gap

entre les branches LO et TO doit être aussi petit que possible est tout aussi critique que

celui d’un grand ratio des masses atomiques, et ce dans un double intérêt : le nombre

de canaux finaux de Ridley n’en est que plus réduit, et le poids des états finaux dans le

processus global de décomposition, qui décroît linéairement avec q [104], en est d’autant

plus faible puisque ces états sont alors confinés proche du centre de la zone de Brillouin.

Cet argument a trouvé un écho expérimental particulier avec le cas d’InN. Ayant d’abord

été présenté comme un potentiel excellent candidat de par sa structure de bande interdisant

strictement les canaux Klemens [82, 80], une étude Raman a ensuite montré que le grand

nombre d’états finaux dû au fort écart entre les bandes LO et TO ramenait le temps de

vie à des valeurs très en dessous des premières estimations [85, 86].
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Nanostructures

Une étude similaire est menée sur des super-réseaux et des boîtes quantiques, de type

Si/Ge et GaSb/AlSb, l’accent étant mis cette fois sur l’apparition ou non de gaps dans la

densité d’états de phonon. Il est mis en évidence, pour les super-réseaux, que le (ou les

gaps) qui peuvent s’ouvrir à cause de la rupture de symmétrie suivant l’axe de croissance

n’occupe pas la même position en énergie dans toutes les directions de l’espace réciproque,

et de fait, n’apparait pas dans la densité d’états totale. L’analyse des boîtes quantiques

met aussi en évidence que le grand nombre de degrés de liberté dans des structures aussi

complexes rend très difficile l’ajustement de ces gaps. Ces résultat rejoignent ceux d’autres

travaux [83, 109] selon lesquels un gap suffisant serait obtenu à condition de se restreindre

à des boîtes ayant un volume de 1 nm3 tout au plus, et dont le ratio des masses entre les

atomes de la boîte et de la matrice serait de 7, au minimum.

Ces résultats tendent à faire penser que la recherche de gap dans les structures de bande

de phonons a plus de chance d’aboutir en se limitant aux matériaux bulks. SiSn est en

ce sens un exemple intéressant, et a servi d’exemple lors de l’investigation du calcul du

temps de vie du phonon LO par la DFPT, détaillée dans le chapitre 3.

Taux de décomposition et temps de vie du phonon LO

L’analyse mise en place au chapitre précédent agit comme un filtre, et permet de n’avoir

à mener l’étude complète du temps de vie du phonon LO que sur un nombre très restreint

de matériaux. En effet, son calcul via des méthodes ab initio, nommément ici, la DFPT,

est très couteuse en temps de calcul et augmente avec le cube du nombre d’électrons de va-

lence dans l’approximation des pseudopotentiels. Il requiert entre autres la détermination

de la dérivée troisième de l’énergie totale par rapport au déplacement atomique, le tenseur

anharmonique du troisième ordre. Une analyse des états finaux dans les super-réseaux

montre que la connaissance de cette quantité est primordiale pour éliminer des canaux

dits "fantôme", plus généralement pour déterminer le poids précis de chacun des canaux

lors de l’intégration de tous les processus possible, c’est à dire, enfin, pour être prédictif

sur la valeur absolue du temps de vie, et non simplement sur sa dépendence en température.

La particularité de SiSn par rapport aux autres semiconducteurs étudiés est double :

en plus d’une densité d’états finaux à deux phonons très réduite, ceux-ci sont confinés aux

bords de la zone de Brillouin (figure 5). Une approximation systématiquement utilisée

dans l’étude de la décomposition du phonon LO issu du refroidissement électronique est

de considérer son vecteur d’onde comme nul. Alors qu’il est vérifié que cette approxima-

tion est pertinente pour tous les autres matériaux étudiés, il est montré qu’elle n’est pas

valable dans le cas de SiSn : le nombre d’états finaux, et donc le temps de vie, se révèlent

être très dépendant du vecteur d’onde initial.
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Compte tenu du très faible nombre d’états finaux à deux phonons accessibles, une dis-
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Figure 5: Gauche : structure de bande de SiSn (noir) et décomposition du phonon LO
via les canaux de Klemens (rouge) et Ridley (vert). Droite : densités d’états à un phonon
(noir) et à deux phonons (rouge et vert). L’amplitude des pics correspondant aux états
Ridley (verts) a état multipliée par 10 par souci de lisibilité.

cussion est menée sur la possibilité d’évaluer la contribution des décompositions de l’ordre

supérieur, c’est à dire impliquant au total quatre phonons. Un tenseur anharmonique

du quatrième ordre moyen est évalué, et le temps de vie associé à ces deux processus,

ainsi qu’au processus total, est reporté sur la figure 6. La contribution du quatrième

ordre, bien que délicate à manipuler, apparaît comme loin d’être négligeable, sans pour

autant changer complètement l’ordre de grandeur du résultat final : le temps de vie du

phonon LO est de respectivement 38 ou 108 ps à 300 K, suivant que sont inclues ou pas

les contributions du quatrième ordre. Il convient d’insister sur le fait que la correction

du quatrième ordre n’est qu’approximative, et que compte tenu des variations du tenseurs

du troisième ordre, notamment au voisinage de Γ, est probablement légèrement surévaluée.

SiSn représentant, d’un point de vue de la densité d’états finaux à deux phonons, un

cas presque idéal, ces résultats tendent à faire penser non seulement que se limiter à

vouloir supprimer les canaux de décomposition au troisième ordre n’est pas suffisant, mais

plus généralement que trouver un matériau ayant les caractéristiques décrites plus haut,

i.e. un temps de vie de l’ordre de 100 ps, est une tâche dont la réalisation pratique peut

être remise en question.
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Figure 6: Temps de vie du phonon LO dans SiSn calculé en prenant en compte les processus
à trois phonons seulement (trait plein gris), à quatre phonons seulement (trait gris en
pointillé), ou la somme de ces deux processus (trait plein noir).

Cependant, il est fondamental de noter que dans l’état actuel de notre compréhension

de ces mécanismes, il n’y a aucune raison de penser que les phonons LO dans les matéri-

aux dans lesquel un ralentissement du refroidissement des porteurs a été mesuré [68, 54]

présentent de tels temps de vie. La longueur de ce dernier est ainsi une condition suffisante

mais non nécessaire à l’éxaltation de l’effet porteur chaud.

Interaction électron-phonon dans les super-réseaux

Une étude de l’interaction électron-phonon LO est menée dans le domaine intermédiaire

entre le bulk et les puits quantiques que constituent les super-réseaux. Il se caractérisent

par une périodicité dans une direction inférieure à environ 40 Å, longueur caractéristique

qui dépend évidemment du matériau en question. La relative petite taille de la cellule

primitive permet une approche ab initio. Le modèle mis en place relie la constante de

couplage au champ électrique macroscopic induit par le phonon LO, et permet de rendre

compte de sa variation en fonction du vecteur d’onde du phonon échangé : cela donne

accès à une étude de l’interaction électron-phonon résolue en angle. Le système choisi est

le super-réseau [InAs]n[GaAs]n.

L’étude consiste à laisser une population d’électrons chauds refroidir via des proces-
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Figure 7: Proportion de phonons émis ayant une composante dans le plan (rouge) et
perpendiculaire au plan (bleu), en fonction du facteur de dimensionnalité n. La ligne
en pointillé noire représente le comportement bulk. La variation du cône d’émission en
fonction de n est tracé sur la figure en insertion.

sus intrabandes, de sorte que le phonon échangé à chaque interaction corresponde au

couplage le plus fort : il s’agit d’une approche déterministe, ne cherchant à décrire qu’un

comportement global, et se concentrant sur la dimensionalité des interactions.

L’analyse des modes de vibrations LO amène à fixer la limite haute de n à 7, de sorte

à ne pas basculer dans la gamme de taille des puits quantiques. Celle sur les angles

d’émissions indique que, pour tout n, plus de 90% des phonons émis lors du refroidisse-

ment ont une composante perpendiculaire dominante, alors qu’elle est de 50% dans le cas

bulk (figure 7). De plus, l’angle du cône d’émission de ces phonons par rapport à l’axe de

croissance du super-réseau décroît quand n augmente, et est calculé proche de 0̊ pour n

≥ 4.

Conclusions générales et perspectives

Cette thèse s’est concentrée sur les problématiques liées aux phonons dans les cellules

solaires à porteurs chauds, et en particulier celles relatives au phonon-LO, dont il a été

rappelé qu’elles sont fortement liées à celle du refroidissement des porteurs.

La décomposition du phonon LO a d’abord été étudiée en terme d’états finaux finaux
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disponibles. La pertinence de certains critères dans la recherche de candidats absorbeurs

a été ré-affirmé. Il a égalemment été montré que la recherche de gaps dans la densité

d’états de phonons est plus pertinente dans les matériaux bulk que dans les nanostruc-

tures, même de taille subnanométrique.

L’étude s’est poursuivie avec le calcul du temps de vie du phonon LO dans un matériau

présentant des caractéristiques particulières du point de vue des critères déterminés au

chapitre précédent, SiSn dans la phase cubique face centrée. La nécessité d’un calcul ab

initio pour palier le caractère non-prédictif voire faussant de certaines approximations

très répandues a été démontré. Il s’est avéré que, dans un processus à trois phonons, ce

temps de vie est très dépendant du vecteurs d’onde du phonon LO initial, comportement

jusqu’alors jamais observé dans aucun autre matériau. La question d’inclure dans le taux

de décomposition total des processus à plus de trois phonons a été posée : une correction

a été apportée en estimant la contribution des interactions à quatre phonons, et a révélé la

difficulté pratique de trouver des matériaux dont le phonon LO auraient un temps de vie

intrinsèque de l’ordre de 100 ps. Cependant, il est à noter que ce dernier point est une con-

dition suffisante mais non nécessaire. Ces résultats tendent à faire penser que l’écrantage

de l’interaction électron-phonon est la raison première, voire exclusive, de l’exaltation de

l’effet porteurs chauds dans certains matériaux.

Cette même interaction a été examinée à l’échelle des super-réseaux. Plus spécifique-

ment, elle s’est concentrée sur la relation entre dimensionalité de la cellule cristalline et

celle des populations électroniques et phononiques interagissantes. Un modèle a été pro-

posé en ce sens pour lier la constante de couplage au champ électrique induit par le phonon

LO. Il a été mis en évidence que l’anisotropie de cette interaction, dûe à celle du champ

électrique, conduit à ce que les électrons chauds se refroidissent principalement via leur

interaction avec des phonons orientés perpendiculairement à l’axe de croissance du super-

réseau, même pour des tailles de cellule pour lesquelles il est encore pertinent de considérer

des populations d’électrons chauds tridimensionnels. Ce résultat est prometteur pour les

HCSC, puisqu’il suggère que la densité électronique requise pour exalter un effet porteurs

chauds serait dans ce cas réduite comparé au matériau bulk.

La physique numérique peut revêtir un caractère soit philosophique, c’est à dire allant

des faits expérimentaux vers les conceptualisation et théorisation, soit à l’inverse mé-

taphysique, ne tentant qu’a postriori de décrire des vérités empiriques à partir de con-

cepts ex mente. De ce point de vue, les deux premiers chapitres sont substanciellement

philosophique : d’une théorisation de la décomposition du phonon LO, expérimentalement

suggérée, des prédictions ont été faites sur un matériau nouveau. Notre compréhension

actuelle de ces phénomènes nous amène à penser que la découverte d’un matériau présen-

tant les critères définis comme suffisant pour exalter l’effet porteur chaud est improbable.
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De là suit logiquement l’examen de l’interaction porteur-phonon. La modeste introduc-

tion initiée dans le quatrième chapitre a elle un caractère plus métaphysique, en ce que la

formulation du modèle a une forte composante intuitive et que les supports expérimentaux

sont rares. Il est à souhaiter que ces quelques premiers résultat seront suivis d’études plus

appronfondis sur la pertinence des super-réseaux pour les HCSC.

De nouveau outils d’analyse numérique des problématiques porteurs chauds ont été in-

troduits par M. Bernardi et al. en juin 2014, dans un article publié dans la prestigieuse

revue Physical Review Letters [173] : un calcul dynamique du refroidissement des élec-

trons chauds dans le silicium est mené, incluant des calculs complètement ab initio de

toutes les interactions électron-électron et électron-phonon. Un des résultats marquant

est l’obtention du temps de vie des porteurs résolu en énergie et en vecteur d’onde (fig-

ure 8). Il y a fort à parier qu’un nouveau niveau de compréhension des interactions

Figure 8: Structure de bande de Si. La couleur représente la partie imaginaire de la self
énergie de l’élément de matrice électron-phonon. Reproduit depuis [173].

électron-phonon discutées dans le premier chapitre sera atteint dans les prochaines an-

nées, et que la possibilités d’une ingénierie de bandes électroniques sera envisagée. Pour

citer les derniers mots de l’introduction, cette étude "ouvre la voie aux études ab initio des

porteurs chauds dans les matériaux pour les énergies renouvelables".
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Notations

a Lattice parameter (Å)

CI,α;J,β(l, l�) Second-order interatomic force constant matrix (eV.Å−2)

CI,α;J,β;K,γ(l, l�, l��) Third-order anharmonic tensor (eV.Å−3)

D Electric induction (C.m−2)

DI,α;J,β(l, l�) Dynamical matrix eV.Å−2.(a.u.m.)−1

E LO-phonon-induced macroscopic electric field (V.m−1)

eI,α Phonon eigenmode element

E Electron energy (eV )

E
e(h)
e xt Hot electron (holes) extraction energy (eV )

Eg Band gap (eV )

Etot Crystal total energy (eV )

�ω Phonon energy (cm−1)

IBloch Bloch function periodic part overlap

I, J, K Atom labels

k Electronic wavevector (m−1)

l, l�, l�� Atomic cell labels

n Electronic density (cm−3)

ñc Hot-carrier effect threshold electronic density (cm−3)

MI Atomic mass (a.u.m.)

N Number of unit cell

Nat Number of atoms

P Dielectric polarisability (C.m−2)

q Phonon wavevector (m−1)

Q Thermalisation factor (W.K−1.cm−2)

s Phonon mode label

TC Carrier temperature (T )

u Atomic displacement

U Fröhlich effective charge (m−3)

Z Atomic charge (C)
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Z∗ Born effective charge

α, β, γ Coordinate labels

αF Fröhlich coupling constant

Γ Quantum rate (s−1)

δE Energy selective contact width (eV )

δµ Quasi Fermi level splitting (eV )

Δ Numerical rectangular delta function (cm−1)

�0 Low frequency dielectric tensor (F.m−1)

�∞ High frequency dielectric tensor (F.m−1)

τ Lifetime (ps)

χ∞ High frequency susceptibility tensor (F.m−1)

ψ Electronic wavefunction

Ω Unit cell volume (Å3)

BZ Brillouin zone

DFT Density Functional Theory

DFPT Density Functional Perturbation Theory

ELR Energy Loss Rate

FCC Face-centred cubic

LA Longitudinal acoustic

LO Longitudinal optic

TA Transverse acoustic

TO Transverse acoustic

PhDOS Phonon density of states

1PhDOS One-phonon density of states

2PhDOS Two-phonon density of states

PV Photovoltaic

TDDFT Time Dependent Density Functional Theory

TPFS Two-phonon final states
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Abstract

This thesis deals with fundamental issues related to phonons in hot-carrier solar cells, a

third generation photovoltaic technology. This concept aims at extracting photogenerated

charge carriers before their reach a thermal equilibrium with the lattice, and exhibits a

theoretical efficiency close to thermodynamic limit. One of the main issue is to hinder

carrier cooling, which occurs through LO-phonon emission. In addition to the idea of

screening the electron-phonon interaction, one approach consists in designing an absorber

in which the LO-phonon has an intrinsic lifetime longer than what it is in conventional

materials, enhancing the rate of its reabsorption by the carriers. The LO-phonon decay

and lifetime is first investigated in semiconductors within density functional perturbation

theory. Specific criteria for relevant absorbing materials choosing, from a phonon point

of view, are derived. A full study of the LO-phonon lifetime is performed on a singular

material, and the possibility to achieve the sufficient phononic requierements is discussed.

Secondly, the above-mentioned electron-phonon interaction is modelled in superlattices.

The coupling strength is related to the LO-phonon induced macroscopic electric field,

which allows to study the directional dependence of the phonon emission. The latter

reveals to differently affect the dimensionality of the electronic and phononic interacting

populations. This study calls for development of these structure in the framewok of hot-

carrier solar cells.
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Résumé court en français

Cette thèse traite des problématiques fondamentales liées aux phonons dans le cadre

des cellules solaires à porteurs chauds. Ce concept appartient aux technologies photo-

voltaïques dites de troisième génération, et vise à l’extraction des porteurs de charges

photogénérés non-encore à l’équilibre thermique avec le réseau cristallin, ce qui conduit à

un rendement théorique maximum de l’ordre de la limite thermodynamique. Un des enjeux

majeurs est ainsi le ralentissement du refroidissement des porteurs, refroidissement qui se

traduit principalement par l’émission de phonon LO via l’interactions électron-phonon.

En plus de l’idée d’écranter ce dernier processus, une approche consiste à concevoir un

matériau absorbeur dans lequel le phonon LO présente un temps de vie intrinsèque plus

long qu’il ne l’est dans les matériaux classiques, favorisant ainsi sa réabsorption par les

porteurs. Dans une première partie, et utilisant la théorie de la fonctionnelle densité per-

turbée, la décoposition du phonon LO est étudiée en terme d’états finaux disponibles. Suit

une discussion sur le calcul du temps de vie de ces phonons, et sur la possibilité d’atteindre

les critères phononiques définis comme suffisants. Dans une deuxième partie, une étude de

l’interaction électron-phonon est menée dans les super-réseaux. La constante de couplage

est reliée au champ électrique macroscopique induit par le phonon LO, de sorte à pour-

voir précisément rendre compte de son anisotropie. Il apparaît que la dimensionalité des

populations électroniques et phononiques est différemment affectée. Cette étude appelle à

développer l’analyse de ce type de structure dans le cadre des cellules à porteurs chauds.
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