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Abstract

In this thesis we explore the linear logic approach to implicit computational
complexity, through the design of type assignment systems based on light linear logic,
or heavily inspired by them, with the purpose of giving a characterization of one
or more complexity classes, through variants of λ-calculi which are typable in such
systems.
In particular, we consider both a monovalent and a polyvalent perspective with
respect to ICC. In the first one the aim is to characterize a hierarchy of complexity
classes through an elementary λ-calculus typed in Elementary Linear Logic (ELL),
where the complexity depends only on the interface of a term, namely its type. The
second approach gives an account of both the functions computable in polynomial
time and of strong normalization, through terms of pure λ-calculus which are typed in
a system inspired by Soft Linear Logic (SLL); in particular, with respect to the usual
logical perspective, in the latter we erase the “!” modality in favour of employing
stratified types as a refinement of non-associative intersection types, in order to
improve typability and, as a consequence, expressivity.
Finally we explore the use of intersection types, deprived of some of their usual
properties, towards a more quantitative approach rather than the usual qualitative
one, namely in order to compute a bound on the computation of pure λ-terms,
obtaining in addition a characterization of strong normalization.
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Riassunto della tesi

Lo studio della complessità implicita (ICC) si pone come obiettivo la caratte-
rizzazione di classi di complessità tramite dei linguaggi di programmazione o delle
logiche, senza fare alcun riferimento esplicito a limiti di risorse (ad esempio tempo o
spazio di memoria). In questa tesi viene studiato l’approccio della logica lineare alla
complessità implicita. L’obiettivo è quello di dare delle caratterizzazioni implicite di
classi di complessità, attraverso delle varianti del λ-calcolo che siano tipabili in tali
sistemi.
In particolare, consideriamo sia una prospettiva monovalente sia una polivalente
rispetto all’ICC. Nel primo caso, l’idea è di dare una caratterizzazione una gerar-
chia di classi di complessità attraverso un λ-calcolo elementare tipato nella logica
lineare elementare (ELL), in cui la complessità dipende solamente dall’interfaccia
di un programma, ovvero il suo tipo. Il secondo approccio, invece, si propone di
caratterizzare sia le funzioni calcolabili in tempo polinomiale sia la normalizzazione
forte, attraverso termini del λ-calcolo puro a cui viene assegnato un tipo tramite un
sistema ispirato alla logica lineare Soft (SLL); in particolare, rispetto all’approccio
logico, qui abbandoniamo la modalità “!” a favore dell’utilizzo di tipi stratificati, visti
come un raffinamento dei tipi intersezione non associativi, con il fine di aumentare la
tipabilità e, come conseguenza, l’espressività.
Infine, esploriamo l’utilizzo dei tipi intersezione, privati di alcune delle loro proprietà
abituali, in una direzione quantitativa piuttosto che il classico approccio qualitativo,
con il fine di calcolare un limite per il calcolo dei λ-termini puri, ottenendo nello
stesso tempo anche una caratterizzazione della normalizzazione forte.
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Résumé de thèse

La complexité implicite (ICC) vise à donner des caractérisations de classes de
complexité dans des langages de programmation ou des logiques, sans faire référence
à des bornes sur les ressources (temps, espace mémoire). Dans cette thèse, nous
étudions l’approche de la logique linéaire à la complexité implicite. L’objectif est
de donner des caractérisations de classes de complexité, à travers des variantes du
λ-calcul qui sont typables dans de tels systèmes.
En particulier, nous considérons à la fois une perspective monovalente et une perspec-
tive polyvalente par rapport à l’ICC. Dans le premier cas, le but est de caractériser
une hiérarchie de classes de complexité à travers un λ-calcul élémentaire typé dans
la logique linéaire élémentaire (ELL), où la complexité ne dépend que de l’interface
d’un programme, c’est à dire son type. La deuxième approche rend compte à la fois
des fonctions calculables en temps polynomial et de la normalisation forte, à travers
des termes du λ-calcul pur qui sont typés dans un système inspiré par la logique
linéaire Soft (SLL) ; en particulier, par rapport à l’approche logique ordinaire, ici nous
abandonnons la modalité “ !” en faveur de l’emploi des types stratifiés, vus comme
un raffinement des types intersection non associatifs, afin d’améliorer la typabilité et,
en conséquence, l’expressivité.
Enfin, nous explorons l’utilisation des types intersection, privés de certaines de leurs
propriétés, vers une direction plus quantitative que l’approche qualitative habituelle,
afin d’obtenir une borne sur le calcul de λ-termes purs, en obtenant en plus une
caractérisation de la normalisation forte.
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Chapter 1

Introduction

The careful control of resource usage has gained more and more importance in
the field of computer science, due to the growing difficulty of problems that we wish
to solve, and for which the time and the storage needed to compute are often the
essence (and money).
Such aim has spurred a continuous growth in the study of computational complexity
and on the classification of algorithms, based on the time or space they require
in order to produce an output. In particular, only a subclass of the computable
problems are of practical interest from a computer science point of view, while
the remaining ones are called intractable, because of the tremendous amount of
resources they require for their computation when supplied with a large enough
input; in order to tackle such problems, or at least some recurring cases of them, a
range of non-deterministic algorithms has been proposed, such as probabilistic and
approximation algorithms, whose underlying idea is to sacrifice the accuracy of the
result in exchange for a more careful exploitation of both time and space resources.

The main issue concerning the inherent difficulty of a problem is the fact that it
does not depend on the particular language in which the program is written, nor on
the machine on which the algorithm itself is run: in fact, by considering larger and
larger input’s sizes, it is easy to see that intractable problems would require amount
of resources sometimes surpassing the very age of the Universe! Since any problem
can be classified regardless of its code or the support upon which it is executed,
the theory of computational complexity is mainly studied on a given computational
model, such as the Turing machine [Sip97]. Indeed, by the Church-Turing thesis it is
a commonly accepted fact that all Turing-complete models are equally powerful, in
the sense that any problem, which is computable on a given computational model,
is also computed by a Turing machine: most importantly, the computation can be
performed on a Turing machine with only a polynomial overhead with respect to the
time of execution required on most computational models. Because Turing machines
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2 CHAPTER 1. INTRODUCTION

are also prone to be easily analyzed in a formal way, such model is usually chosen as
the principal model in complexity theory.

Nonetheless, classical complexity theory presents some shortcomings, mostly
deriving from the fact that it is based on a particular computational model: this
ultimately means that the complexity measure is in a sense “given” from outside,
exposing the fact that a proof of complexity is not so easily formalised. Moreover, it
is a well known fact that if there is a Turing machine with two tapes representing
some algorithm, then a Turing machine with one tape can be built, doing essentially
the same job with a negligible increase in computation time [Pap94]. It is clear,
based on such premises, that writing a formal proof becomes quite the challenge.

For these reasons, the idea arose of turning to formal methods in order to give a
proper account of complexity classes and their properties, in a way which is ideally
independent on any machine model: this allows to give an implicit characterization of
complexity classes, through the design of systems where the complexity of programs
is statically verified, beside their usual correctness criterions.
In the following subsections we introduce the main ingredients of such approach,
which can be found in certain refinements of classical and intuitionistic logics, and
also in the use of the simplest paradigmatic functional language, that is λ-calculus.
We then give a brief review of the state of the art concerning implicit computational
complexity. A short history of intersection types and their recent use for proving
quantitative properties of programs follows. We conclude with an overview of the
content of this thesis.

1.1 Girard’s linear logic

Intuitionistic (or constructive) logic was introduced as a restriction of classical
logic, where the excluded middle and the involution of the negation are no more
provable; as a result, the notion of truth in classical logic is no more applicable:
indeed, a propositional formula of intuitionistic logic is considered true only if there
is an object demonstrating its existence, that is, a constructive proof of the formula
itself.
The constructivism of such logic is particularly suited for computer science, moreover
so since the Curry-Howard correspondence relates the proofs of intuitionistic logic
to programs written in some functional language. In practice, this means that
constructive proofs can be rewritten as functional programs, which in turn can
be run: indeed computation corresponds to the cut-elimination procedure in the
case of sequent calculus, or to reduction of a proof to normal form in the case of
natural deduction. It is then possible to study the computational complexity of such
proofs-as-programs simply by examining their reduction steps.
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Linear logic was introduced by Girard [Gir87] with the aim of combining the
inherent duality of classical logic with the constructive nature of intuitionistic logic,
the latter allowing to extract programs from proofs, so proving to be of great interest
in particular for computer science.
The intuition behind this new logic comes from the need of a more careful handling
of resources, something both classical and intuitionistic logic lack. In particular,
unrestricted weakening and contraction were the main problems to overcome: indeed,
not all resources are infinite in nature, on the contrary most of them are consumed
and thus they are not available anymore after usage. In order to achieve this effect,
Girard proposes a careful restriction of the so-called structural rules: indeed, these
can no more be disregarded as meaningless, but are to be treated explicitly in order
to gain a finer control on the number of premises needed to prove a formula.

Such proposal has the immediate consequence of splitting each binary connective
of classical logic in two connectives, respectively an additive and a multiplicative
one: ∧ becomes & and ⊗, while ∨ becomes ⊕ and `. However, the additive and
multiplicative fragments of linear logic are not very interesting from the point of
view of the cut-elimination procedure: indeed, cut-elimination can be carried out
in a linear number of steps with respect to the size of the proof, so the programs
which we can extract from such proofs are not very interesting from a computational
complexity point of view.

In order to overcome this lack of power, one has to consider the structural rules,
allowing duplication and erasure in cut-elimination, but also the rules for dereliction
and promotion, which allow to control such duplications. To this aim, Girard
introduces the exponentials ! and ?, as a way to gain expressivity in a controlled
manner. This marks a clear distinction between consumable (or linear) and reusable
resources, as the former disappear after they are used, while the latter -duly marked-
can be thought of as being available in an infinite number of copies. This is clearly a
big advantage to be exploited, as exponentials allow for much more expressivity: for
this reason, the exponential fragment of linear logic is most useful when linear logic
is used as a tool for the study of computational complexity.

1.2 Type assignment systems for λ-calculus

Alonzo Church proposed the formal system of λ-calculus (see [Bar84]) in the 30s,
in order to give a formal account of functions and the means to compute them. Such
calculus is based on a formal language endowed with a set of rewriting rules; the terms
of the language are variables, abstractions (representing functions) and applications
(representing applications of functions to their arguments), while the usual reduction
rule allows the computation of a function simply through the substitution of the
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M,N ::= x | λx.M |MN where x ∈ Var

Figure 1.1: Syntax of pure λ-calculus.

argument of an application into the body of the function, which may be triggered
when some condition on the redex is met (see [RP04] for a survey of the parametric
λ-calculus).
This calculus, although very basic, is Turing complete, in the sense that it allows
to capture all computable functions. Such fact, combined with the elegance and
simplicity of the language, has made it so that λ-calculus is commonly accepted as
the paradigmatic programming language in the functional setting, on which later
functional languages such as LISP, ML and Haskell have been based: the functional
core of all these languages share some common features, such as programs representing
the nested evaluation of functions and the absence of side effects, in the form of
storing and fetching of values into and from memory.

The λ-calculus has gained even more attention after the Curry-Howard isomor-
phism was proposed, relating it to the natural deduction formulation of intuitionistic
logic, and so giving way to strongly typed languages: indeed, the logic becomes
a type assignment system for the language, where hypotheses and formulas corre-
spond respectively to free variables and types, while implication elimination and
introduction correspond to application and abstraction respectively. This intuitively
means that the shape of a proof in natural deduction can be “read” from the term, so
linking the structure of a derivation with the programs typed by it and allowing such
programs to inherit the good properties of the logic, like termination and correctness:
this allows to capture only a proper subset of the λ-terms displaying some desirable
properties of “sensible” programs, that is, those programs which always produce an
output and never go wrong during execution.

There are mainly two versions of the typed standard λ-calculus, due to Church
and Curry respectively. In Church-style λ-calculus, only well-typed terms (so typing
derivations) are assigned a meaning, in the sense that the type of the formal parameter
of an abstraction is explicitly annotated on the term, so terms differing only by type
annotations can be assigned different meanings. On the other hand, in Curry-style
λ-calculus the terms are assigned a meaning independently on their typing, so they
are interpreted as they would in an untyped setting. See [BDS13] for an extensive
survey of typed λ-calculus and its applications. In this thesis we will focus on
Curry-style λ-calculus (see Figure 1.1).
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1.3 Implicit computational complexity

The idea of using a (functional) programming approach to complexity theory is
explored in [Jon97; Jon01], where complexity classes are the mean to characterize
the expressivity of some features of programming languages, such as constructors
and control flow structures.

The interest behind an intrinsic definition of complexity classes is twofold:

• from the computational complexity point of view, they offer characterizations
of complexity classes which are not tied to machine models;

• from the programming languages point of view, they allow to analyze the
impact of various programming features (such as higher-order types, recursive
definitions or I/O operations) on complexity.

Such intuitions form the basis for the research line of implicit computational complexity
(ICC), whose goal is to study complexity classes without relying on explicit bounds
on resources, but instead by considering restrictions on programming languages and
calculi. A very early work in this direction [Cob65] shows that the class of functions
which are definable by bounded recursion on notation and basic operations on binary
words is exactly the class of polynomial time computable functions.

A pervasive concept in the field of implicit complexity is that of stratification,
meant as the distribution of the computation over different strata. This notion is
the foundation of several systems: ramified and safe (or tiered) recursion [Lei94;
BC92], in which the variables of a function are divided into strata and the results
of recursive calls are only allowed to be processed via certain strata, in order to
prevent unwanted recursion; stratified comprehension [Lei02], where strata are used
for quantification and the classification of first order set-existence by implicational
rank yields a natural hierarchy of complexity classes inside the class of elementary
functions; various restrictions of linear logic [Gir98], where programs are divided into
strata by the modality ! and the complexity of the normalization procedure depends
on the depth of such strata. Stratification of variables into different strata is also
involved in secure flow information analysis, where the flow of information from lower
to higher strata must be forbidden in order to satisfy a non-interference condition
[Mar11].
In this line of work, a distinction can be made between monovalent characterizations,
in which one language corresponds to one given complexity class, and polyvalent
characterizations, in which the language allows to capture several complexity classes.
The first approach is further analyzed in the next section. As for the latter, some
examples of polyvalent characterizations are given by [Jon01; Lei02] which capture
the family of classes k-EXP, for k ≥ 0, and in [Red13], where a stratified version of
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combinatory logic is used in order to prove that the subsystem restricted to the levels
less than or equal to k + 1 characterizes k-EXP, so in particular PTIME when k = 0.

1.3.1 Linear logic in ICC

As introduced in the previous sections, the linear logic approach to ICC is based
on the proofs-as-programs correspondence of the Curry-Howard isomorphism. Linear
logic provides a powerful system to analyze the duplication and sharing of arguments
in typed λ-calculus and thus in functional languages: indeed, if a formal parameter
occurs many times in a λ-abstraction, then the reduction of a term containing an
application of such function can very well cause a complexity explosion. For this
reason, the idea is to use weak versions of !, in order to restrict the set of well-typed
terms and characterize complexity classes.

The use of exponentials can be restricted so as to limit the set of formulas which
can be proved in the system, thus characterizing different classes of functions. Some
subsystems of linear logic, called light logics, have been studied from the point of
view of the complexity of the cut-elimination procedure.

In order to obtain such characterization, one usually considers some encoding of
data (for example Church numerals or booleans) and then proceeds to show that the
system is sound and complete with respect to the functions in a given complexity
class (or a hierarchy of classes), where terms of the language are functional programs
representing the desired functions, whose type is in accord with the definition of the
chosen datatypes.

Monovalent characterizations Among the so-called light logics, Elementary
Linear Logic (ELL) [Gir98; DJ03] has a very simple syntax and it aims to characterize
(in the proofs-as-programs sense) the class of elementary functions, that is those
functions computable in time bounded by a tower of exponentials of fixed height.
Both Light Linear Logic (LLL) [Gir98] and Bounded Linear Logic (BLL) [GSS92]
characterize the complexity class of polynomial time functions, but the syntax of
both logics is slightly more complicated due to the presence of a second modality in
LLL and of explicit polynomials in BLL. Another proposal in this sense came from
Lafont [Laf04] and his Soft Linear Logic System, where only the ! modality is needed
and the control of both contraction and weakening is maintained by the multiplexor
rule.

Such logical systems can be adapted to act as type assignment systems for (variants
of) λ-calculus or other functional languages, transferring the time complexity bounds
from the logical derivation to well-typed programs.
For some subsystems of linear logic, a decoration with λ-calculus has been given,
with the aim of relating the number of reduction steps of the logical derivations
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with the complexity of the normalization procedure of a term, that is, the resources
needed in order to completely evaluate a term. In particular there are already two
proposals in this direction: the system DLAL [BT04], whose types are a proper subset
of formulae of LAL [AR02], a simplified affine version of LLL, and the system STA

[GR07], whose types are a proper subset of SLL formulae. On a similar note, in
[MA11] the authors design an elementary λ-calculus typed in ELL, endowed with
both the ! modality and a let construction, which is then extended to a setting of
concurrent parallel threads with references.

Polyvalent characterizations The polyvalent characterization from which we
take most inspiration is given in [Bai11], in which the author offers a sound and
complete characterization of k-EXP for k ≥ 0 through ELL. Here proof-nets are the
programming language of choice: such construct is essentially a representation of
proofs as graphs, where nodes represent rules and edges represent formulae, which
are useful in order to reason about cut-elimination.

1.3.2 Extensional completeness of logic-based systems

When speaking about extensional completeness of a language with respect to
some complexity class, we mean that for each function in such class there is at least
one program in the language representing it. However, all languages which are typed
in a logical system (such as the ones mentioned above) suffer from a common lack
of expressivity, due to the constraints imposed by the underlying type assignment
system, in the sense that they are able to capture only a subset of all the algorithms
representing a function in the desired complexity class.

Ideally, we are interested in identifying some criteria which allow to type more
and more programs, as long as the complexity bound is met, in order to obtain more
intensional expressivity.
In this direction, one possible approach is to enrich the features offered by the
programming language, such as higher-order types, polymorphism and the handling
of exceptions. This idea is explored in [Hof99], where the author proposes a typed
λ-calculus with unrestricted recursion operators, based on the observation that some
usually rejected programs actually do not increase the size of their input, since their
repeated iteration does not break the polynomial time bound.
In [CS12] an extension of STA is given, where λ-calculus is enriched with some features
like ML-polymorphism. In [BGM10] the authors propose a typed extension of DLAL,
resulting in a more user-friendly and modular language called LPL which features
pattern-matching and recursive definitions, while ensuring the polynomial bound
through the rejection of exponential recursive definitions.



8 CHAPTER 1. INTRODUCTION

1.4 Intersection type systems for complexity

If one wants to maintain pure λ-calculus as programming language, one possible
approach, which is extensively explored in this thesis, is to enrich the typing system
in order to expand the class of terms which can be typed in it, and thus the expressive
power of the language itself: a natural tool to this aim can be found in intersection
types [CD80].

The formulae-as-types correspondence can be trivially extended with the logical
conjunction, by endowing the pure λ-calculus accordingly with a pair constructor
and two pair selectors. In this case, the associated reduction rules of introduction
and elimination of a pair correspond to the typing rules for the newly introduced
constructs.
The idea of intersection types stems from the observation that the conjunction can
also be interpreted in a way which is not related to the Curry-Howard correspondence,
in the sense that a term might be assigned many types at the same time, that is, an
intersection of types:

Γ ` M : σ Γ ` M : τ
Γ ` M : σ ∧ τ (∧I) Γ ` M : σ ∧ τ

Γ ` M : σ
(∧El) Γ ` M : σ ∧ τ

Γ ` M : τ
(∧Er)

Figure 1.2: Derivation rules for ∧.

Clearly, such type constructor does not correspond to any logical connective in the
formulae-as-types correspondence: if a term is assigned an intersection type σ∧τ , then
the same term must be typable both by σ and τ ; this means that the subderivations
typing the term must have exactly the same structure, a meta-condition which would
no more be expressed if the type assignment system were stripped off the calculus.

The basic type assignment system is obtained by endowing the simply typed
λ-calculus with the rules of Figure 1.2, and has been proven to be sound and complete
with respect to the class of strongly normalizing λ-terms, that is, the terms whose
normalization procedure terminates regardless of which reduction strategy is used.
Moreover, with the introduction of a universal type ω and of a partial order relation,
the resulting typing system characterizes the class of normalizing terms, that is, the
terms for which there exists a reduction sequence to normal form. See [DCGL98] for
a review of intersection types.

Historically, intersection types are considered modulo the three equations given in
Figure 1.3. Indeed, intersection types were born with the aim of studying qualitative
properties of λ-terms, such as solvability, normalization and strong normalization.
Lately, however, the interest has shifted towards less standard formulations of the
intersection types discipline, that is, intersection types enjoying various combinations
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σ ∧ σ = σ (idempotence) (1.1)

σ ∧ τ = τ ∧ σ (commutativity) (1.2)

(σ ∧ τ) ∧ ρ = σ ∧ (τ ∧ ρ) (associativity) (1.3)

Figure 1.3: Properties of intersection types.

of the three properties shown in Figure 1.3. In fact, by considering non idempotent
or non associative intersection types, it is possible to reason also about quantative
properties of terms, such as bounds on the number of normalization steps or on the
size of the normal form with respect to the initial term or derivation.

In particular, non idempotent intersection types (see [CDCV80]) seem to be
suited to this purpose, since they retain a precise information about the number of
copies of a term which will be needed during reduction. In [Kfo00] non idempotent
intersection types are related to linear reduction through a linearization of λ-calculus,
where all copies of the argument of a function are explicitly written in the term,
with the aim of showing the characterization of strongly normalizing λ-terms by a
type assignment system of intersection types. In [KW04], the authors employ non
idempotent intersection types in order to design a unification-based type inference
algorithm, which finds the principal typing of a term when a finite-rank restriction of
the typing system is considered. Moreover, a quantitative approach is taken in [KV14],
where the authors consider a typing system of non-idempotent intersection types
in order to characterize linear-head, head, weak and strong normalization through
linear substitution calculus, namely a typed calculus with explicit substitutions.

Recently, non idempotent intersection types have been used [PR10] to characterize
the solvability of λ-terms in a variant of the calculus which allows to model resource
consumption, where the arguments of a function are represented as finite multisets
of (either linear or reusable) resources.

Both [dCa09] and [BL11] offer some insights about complexity of reduction
through non idempotent intersection types: the former relates the size of a type
derivation to the number of steps required to execute a term, using Krivine’s ma-
chine as computational model, while the latter gives a bound on the size of the
longest reduction sequence, which can be read from explicit labels written over type
derivations.

Following the direction suggested by these works, in this thesis we propose several
uses of intersection types for quantitative purposes, one of which marks the first use
of intersection types in the ICC setting.
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1.5 Content of this thesis

The present manuscript focuses on the characterization of complexity classes
through type assignment systems, based both on light linear logics and intersection
types; moreover, we use intersection types with the aim of studying both quantitative
and qualitative properties of λ-terms. In the following, we offer a brief overview of
the content of each chapter.

Chapter 2: A polyvalent characterization of the k-EXP hierarchy through
an elementary λ-calculus typed in ELL. We consider a version of pure λ-calculus
extended with the ! modality. For the normalization of the application of a program
to a binary word up to a given stratum, we prove a complexity result in terms of a
bound on both the number of normalization steps and the size of the resulting term.
In order to obtain a characterization of the desired hierarchy for both predicates
and functions, we introduce a type assignment system assigning formulae of ELL to
well-formed terms of the calculus. We show a correspondence between the complexity
class of k-EXP and all such programs whose output type’s depth depends on k, thus
effectively giving a characterization of the whole hierarchy of classes k-EXP, for both
predicates and functions. Moreover, we supply another characterization of functions
based on a representation of binary words through pairs, which allows to capture
some new properties of complexity classes such as the closure of FPTIME with respect
to composition.

Chapter 3: A monovalent characterization of FPTIME through stratified
types. Starting from the STA system, we design a type assignment system for pure
λ-calculus where the ! modality is substituted by stratification of types, that is,
by a non associative version of intersection types. The distinctive trait of such a
construction is the fact that the nesting of a type maintains a trace of its stratification
history, in order to prevent idempotence from erasing any quantitative information
from types. Such type system, named STR, guarantees both the usual correctness
and the complexity bound for the calculus typed in it; indeed, both STA and STR

characterize the class FPTIME, but the latter is much more expressive in that (as
usual intersection types systems) all strongly normalizing terms are typable, while in
STA only a strict subset of them is accepted. This result marks the first work in the
ICC field making use of intersection types; moreover, here we extend the result given
in [BPS03], where the authors prove the equivalence of simple types and intersection
types with respect to the class of function represented by typed terms: in particular,
we show that soft types and stratified types allow to characterize the same class of
functions, yet stratified types entail more expressivity in the sense that they allow
more programs to be typed.
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Chapter 4: Bounding normalization of λ-terms through non idempotent
intersection types. It is well known that leaving out the idempotence property
is enough in order to recover some quantitative properties of λ-terms: indeed, since
the number of copies of an argument is written in its type, the derivation contains
all necessary copies of it and so the derivation shrinks at each reduction step. The
system we consider is similar to the previous one, where the non associativity is
dropped in favor of a flat, non stratified construction of types. By adapting the
usual notion of strata to this setting, we bound the number of normalization steps
and the size of the normal form of a term with respect to the size and the depth of
the initial term; in order to prove this result, we consider a definition of weight of
a derivation depending on the number of premises contracted by each application
of the multiplexor rule, so achieving a more interesting bound than the naive one
resulting from the standard definition of size.





Chapter 2

Characterizing exponential
complexity classes through
elementary λ-calculus

Elementary linear logic (ELL) is a light linear logic which was introduced in order
to give a monovalent characterization of elementary complexity, namely computation
whose time (or space) is bounded by a tower of exponentials of fixed height. In
[Bai11], the author shows that it is also possible to use ELL, extended with a type
fixpoint, in order to give a polyvalent characterization of the complexity classes
of problems k-EXP, for k ≥ 0, and in particular to capture the class PTIME when
k = 0; this result is achieved by proving that each complexity class corresponds to
proofs whose conclusion depends on the parameter k. Such results are proved on
proof-nets and rely on a precise analysis of their normalization procedure, thus their
understanding requires a certain background knowledge in this field; furthermore,
the characterization is limited to the class of predicates k-EXP, since the author uses
a semantic argument which cannot be trivially adapted to the case of functions.

In this chapter we recast the methodology of !-stratification in the more standard
and widely known setting of λ-calculus, in order to show that the resulting simple
language is sufficient to obtain a polyvalent characterization not only of the hierarchy
of problems k-EXP, but also of the hierarchy of functions k-FEXP, for k ≥ 0.
Observe that the results of [Bai11] cannot be trivially extended to λ-calculus by con-
sidering a straightforward translation of λ-terms into proof-nets, since cut-elimination
cannot be directly simulated by reduction: indeed, the proof of the complexity bound
in the case of proof-nets follows a specific cut-elimination strategy; moreover, it uses
a partly semantic argument. For such reasons we need to define some new measures
on terms, which are not adapted from proof-nets, in order to give a direct proof
of the same result in λ!-calculus: we believe that this λ-calculus-based approach

13
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may be of help in revealing the underlying working principles of ELL and in building
characterizations of other complexity classes.
A nice aspect of this system, with respect to former polyvalent characterizations
[Jon01; Lei02], is the fact that the complexity bound can be deduced by looking only
at the interface of the program, namely its type, without referring to its constructions
steps. Moreover, we distinguish the respective roles played by the syntactic aspect
(well-formedness) and the typing; this allows us to illustrate how types can provide
two different characterizations of the class k-FEXP, based only on the use of different
datatypes, and it could prove to facilitate the possible future usage of such elementary
λ!-calculus with other typing systems.

Previous related works on ELL [Gir98; DJ03; Maz06; DL09] are all carried out
in the setting of proof-nets. Other syntaxes have since then been investigated: in
[Ter07; MA11] the authors propose each a specific term calculus corresponding to
LLL and ELL respectively; in [CDR08] the standard λ-calculus is typed with a type
system derived from ELL but, in order to maintain the stratification property, the
call-by-value paradigm of reduction has to be assumed.
Our elementary λ!-calculus is similar in its syntax to the one of [RR97; DMZ10],
while our type assignment system is clearly inspired by [CDR08].

Outline of this chapter We begin with the definition of an elementary λ-calculus
(Section 2.1), which is a variant of pure λ-calculus with an explicit account of the
! modality, and we consider the subset of all such terms satisfying a given well-
formedness condition. The stratification of the computation then allows to obtain
an elementary complexity bound when applying a well-formed program to a data:
namely, the k-approximation of the computation can be performed in time bounded
by a tower of 2’s of height k, whose exponent depends on the size of the supplied
data. Nevertheless, in order to characterize complexity classes we must consider
both a complete computation and the shape of the result. For these reasons we
introduce a type assignment system (Section 2.2), inspired by ELL, such that all
well-typed terms are also well-formed and functions are characterized by their type:
the result is a sound and complete characterization of k-EXP and k-FEXP, for k ≥ 0,
and in particular each hierarchy of complexity classes corresponds to a hierarchy
of types depending on k. However, the latter characterization of functions is a bit
disappointing, in the sense that it is does not account for the compositional closure of
the complexity class FPTIME; in order to overcome this issue, we propose a different,
maybe less natural typing for functions, which allows to compose programs whose
interface (type) corresponding to the FPTIME class (Section 2.3). Finally, we show
how such newly defined type can be employed fruitfully in order to characterize other
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complexity classes (Section 2.4). The core of the current chapter is presented in
[BDR14].

2.1 The elementary λ-calculus

2.1.1 Language of terms and term contexts

We introduce an elementary λ-calculus, which adds to ordinary λ-calculus a
!-modality and distinguishes between two notions of λ-abstraction. The language of
terms is defined by the following grammar:

M,N ::= x | λx.M | λ!x.M |MN |!M

where, as usual, x ranges over a countable set of term variables Var. The set of terms
is denoted by Λ!. The language itself is not new [RR97; DMZ10]; however, in the
sequel we will focus our attention on a strict subset of terms, for which a specific
condition of well-formedness holds.

As usual, terms are considered up to α-equivalence and the symbol = denotes
the syntactic equality modulo such renaming. Moreover, we assume the so-called
variable convention, that is, all bound variables are different from the free variables,
so that capture of free variables is prevented after substitution.
The usual notions of free variables, substitution and number of occurrences hold:

Definition 1 (Free variables).

FV(x) = x

FV(λx.M) = FV(M) \ {x}
FV(λ!x.M) = FV(M) \ {x}
FV(MN ) = FV(M) ∪ FV(N )

FV(!M) = FV(M)

Definition 2 (Substitution).

y[N/x] =

N if x = y

y otherwise

(λy.M)[N/x] =

λy.(M[N/x]) if y 6∈ FV(N )

λz.((M[z/y])[N/x]) otherwise

(λ!y.M)[N/x] =

λ!y.(M[N/x]) if y 6∈ FV(N )

λ!z.((M[z/y])[N/x]) otherwise

MP[N/x] = M[N/x][N/x]

(!M)[N/x] = !(M[N/x])
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Definition 3 (Free occurrences).

n0(x, y) =

1 if x = y

0 otherwise

n0(x, λy.M) = n0(x,M) where x 6= y

n0(x, λ!y.M) = n0(x,M) where x 6= y

n0(x,MP) = n0(x,M) + n0(x,P)

n0(x, !M) = n0(x,M)

In the following, we use the notation !i as a short for !...!︸︷︷︸
i

.

We consider the class of term contexts, with possibly several holes, generated by
the following grammar:

C ::= � | x | λx.C | λ!x.C | CC |!C

where the symbol � represents the hole in the term context. A context containing a
single hole is a simple context.

Let C be a context having n holes, for n ≥ 1: then C[N1]...[Nn] is the term
obtained by plugging the term Nj into the j-th hole of the context (1 ≤ j ≤ n),
where the holes are assumed to be ordered from left to right. If n = 1, then the case
is that of a simple context.
Observe that, as usual, capture of variables may occur.

We define an occurrence of a term N in M as a simple context C such that
M = C[N ]; in practice, we will simply write N for the occurrence, if there is no
ambiguity, and call it a subterm ofM.

2.1.2 Measures of stratification

The notion of depth in proof-nets of light logics is crucial in order to obtain a
bound on the cut-elimination procedure. Also in elementary λ-calculus we need
some measure of stratification, in order to study how the computation evolves over
different strata.
LetM be a term, and let C be a simple context such thatM = C[N ] for some term
N :

Definition 4 (Depth of a simple context). The depth of a simple context C, denoted
by δ(C), is defined by induction on C as follows:

- δ(�) = 0;

- δ(λx.C′) = δ(C′);

- δ(λ!x.C′) = δ(C′);
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- δ(C′Q) = δ(C′);

- δ(PC′) = δ(C′);

- δ(!C′) = δ(C′) + 1;

Observe that, intuitively, the depth of an occurrence C is the number of !s
enclosing the hole of the simple context C.

Such notion of depth can be generalized to the case of a multi-hole context:

Definition 5 (Depth of a multi-hole context).

- C[_]i1 ...[_]in denotes a context having n ≥ 0 holes, the j-th hole being at depth
ij ∈ N; moreover, C[N1]i1 ...[Nn]in is the term obtained by plugging the term Nj
into the j-th hole of the context (1 ≤ j ≤ n).

- Cb_, ...,_ci, where the symbol _ occurs n ≥ 0 times, denotes a context hav-
ing exactly n subterms at depth i ∈ N, all of which are holes; moreover,
CbN1, ...,Nnci is the term obtained by filling the context Cb_, ...,_ci with the
terms N1, ...,Nn, where holes are intended to be ordered from left to right.

Observe that, given a termM and an integer i, there is a unique context C such
thatM = CbN1, ...,Nnci.

Example 1. LetM = (λ!x.y!x!(λ!z.!z))!I, where I = λx.x: thenM = Cbx, λ!z.!z, Ic1,
where C = (λ!x.y!�!�)!�.
Note that any other representation ofM through a context of depth 1 does not satisfy
the constraints of the definition.

Informally, we often write that a term N is at depth i in M, for some i ≥ 0,
whenever there is a context C such thatM = C[N ]i. The notion of depth of a term
comes directly from the definition of depth for a proof-net:

Definition 6 (Depth of a term). The depth of a term M, denoted by δ(M), is
defined by induction as follows:

- δ(x) = 0;

- δ(λx.P) = δ(P);

- δ(λ!x.P) = δ(P);

- δ(PQ) = max{δ(P), δ(Q)};

- δ(!P) = δ(P) + 1.
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The depth of a termM can also be thought of as the maximal nesting of !s in
M, that is, the maximum depth of all simple contexts C such thatM = C[N ] for
some subterm N ofM.

Example 2. Let M =!((λx.x) !!y !y): then we have δ(!((λx.x) !!� !y)) = 3 and
δ(!((λx.x) !!y !�)) = 2; moreover, δ(M) = 3.

2.1.3 Dynamics of elementary λ-calculus

The reduction → is the contextual closure of the following rewriting rules, which
are naturally induced by the two notions of abstraction in the language:

(λx.M)N −→M[N/x] (β-redex) (λ!x.M)!N −→M[N/x] (!-redex)

Observe that a term of the shape (λ!x.M)P is a redex only if P =!N for some
term N ; otherwise such application, also called a block, cannot be reduced.
A redex (λx.M)N or (λ!x.M)!N is erasing if x 6∈ FV(M)

The intuition underlying these two kinds of redexes is that a λ-abstraction expects
an input at depth 0, while a λ!-abstraction expects an input at depth 1. Therefore,
while the former reduction may be fired regardless of the shape of its argument, for
the latter it is required that the argument is (at least) at depth 1.

If R is a redex at depth i in M, then there is a simple context C such that
M = C[R]i and δ(C) = i, where R is either a β or !-redex. Intuitively, →i denotes a
reduction of a redex at depth i; the notation ∗→ ( ∗→i) stands for the reflexive and
transitive closure of → (→i).

We denote by nf i the set of terms in i-normal form:

Definition 7 (i-normal form). The set nf i, for i ∈ N, is defined by induction on i
as follows:

• for i = 0

- x ∈ nf0 for every x ∈ Var;

- for every N ∈ Λ!, if N ∈ nf0 then λx.N ∈ nf0;

- for every N ∈ Λ!, if N ∈ nf0 then λ!x.N ∈ nf0;

- for every {P1, ...,Pn} ⊂ Λ! and n ≥ 1, if Pi ∈ nf0 (1 ≤ i ≤ n) then
xP1...Pn ∈ nf0;

- for every {P,N} ⊂ Λ! such that N 6=!Q, if P ∈ nf0 and N ∈ nf0 then
(λ!x.P)N ∈ nf0;

- !N ∈ nf0.

• for i > 0, for every M ∈ Λ! such that M = CbN1, ...,Nnci, if Ni ∈ nf0

(1 ≤ i ≤ n) andM∈ nf i−1 thenM∈ nf i.
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Informally, a term is in i-normal form if and only if it does not contain any redex
at depth less than or equal to i. As a consequence,M is in normal form if and only
if it is in δ(M)-normal form.

Among the terms of elementary λ-calculus, we restrict our attention to a specific
subclass of terms which is inspired by elementary linear logic (ELL):

Definition 8 (Well-formed term). A termM is well-formed if and only if:

- for any subterm λx.N ofM, x occurs at most once and only at depth 0 in N ;

- for any subterm λ!x.N ofM, x occurs any number of times and only at depth
1 in N .

Note that the abstraction λ is a (affine) linear one.
Consider a well-formed term λx.M; by Definition 5, if x ∈ FV(M) then there is

a context C such that eitherM = C[x]0 orM = Cbx, ..., xc1, where x occurs n ≥ 1

times in the latter. Moreover, in the first caseM[N/x] = C[N ]0, while in the second
caseM[N/x] = CbN , ...,Nc1, for every term N .

The motivation behind the definition of well-formed terms is that the depth of
a subterm in a well-formed term does not change after reduction, even though the
subterm itself might be duplicated: therefore, since a λ-abstraction expects an input
at depth 0 and its bound variable is at depth 0, the substitutions occur at depth 0;
on the contrary, a λ!-abstraction expects an input at depth 1 and its bound variable
occurs at depth 1, so the substitutions occur at depth 1.

Example 3.

• λ!x.x is not well-formed, because x is bound by a λ and it occurs at depth 0;
indeed this term corresponds to the linear logic principle !A( A (dereliction),
which is not valid in ELL.

• λ!x.!!x is not well-formed, because x is bound by a λ! and it occurs at depth 2:
again, this term corresponds to the principle !A(!!A (digging), which is not
valid in ELL.

• λx.!x is not well-formed, because x is bound by a λ and it occurs at depth 1:
this term corresponds to the principle A(!A, which holds neither in linear logic
nor in ELL.

• λf.λx.f(fx) is not well-formed, because f is bound by a λ and it occurs twice;
this term represents the Church integer 2 in ordinary λ-calculus.

• λ!f.!(λx.f(fx)) is well-formed: note that it is obtained from the term above
by replacing the λ binding f by a λ! and by adding a ! in such a way that the
occurrences of f are at depth 1.
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The class of well-formed terms is preserved by reduction:

Lemma 1. If M is a well-formed term and M→M′, then M′ is a well-formed
term; moreover, the depth of a subterm occurring both inM andM′ does not change.

Proof. LetM = C[R], where R is either a β-redex or a !-redex; the proof proceeds
by induction on C.

Let C = �. IfM = (λx.P)Q, the well-formedness condition onM implies that x
occurs at most once at depth 0 in P . Let us consider the non-trivial case P = C′[x]0:
then the contractumM′ = P[Q/x] = C′[Q]0 is such that Q is at depth 0, and so the
depth of any of its subterms does not change; otherwise, ifM = (λ!x.P)!Q, then x
occurs (possibly) more than once in P at depth 1. Let us consider the interesting
case P = C′bx, ..., xc1: then the contractum M′ = P[Q/x] = C′bQ, ...,Qc1 is such
that every copy of Q is at depth 1, so the depth of its subterms does not change. In
both cases, P and Q being well-formed terms implyM′ is also well-formed.

Now let C = λy.C′, so M = λy.C′[R]. By induction hypothesis C′[R]→ C′[R′]
implies C′[R′] is well-formed and the depth of the (possibly missing) occurrence of y
in C′[R] does not change after reduction: therefore λy.C′[R′] is a well-formed term
and the depth of its subterms does not change.

The case of C = λ!y.C′ is similar; all the other cases follow easily by induction.

From this moment forward, we only consider the subclass of well-formed elemen-
tary λ-terms and we refer to it as λ!-calculus.
Terms of λ!-calculus enjoy a confluence property, whose proof is adapted from [RP04]
by taking into account the notion of depth:

Property 1 (Confluence).

i. Let M →i P and M →i Q, then there is a term N such that P ∗→i N and
Q ∗→i N .

ii. Let M → P and M → Q, then there is a term N such that P ∗→ N and
Q ∗→ N .

iii. LetM∈ nf i andM→j M′, with j ≥ i+ 1, thenM′ ∈ nf i.

Proof.

i. The proof is given in Appendix A.1.

ii. The proof follows easily from point (i) of the current Property.
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iii. We want to show that, by reducing a redex R at depth j, no new redexes are
created at lower depths. LetM = C[R]j and R → P: we proceed by induction
on C.

The case C = � is not possible, since j > 0.

Let C = λx.C′, so M = λx.C′[R]j . By inductive hypothesis C′[R]j ∈ nf i and
j ≥ i+ 1 imply C′[P]j ∈ nf i: thenM′ = λx.C′[P]j ∈ nf i.
The case of C = λ!x.C′ is similar.

Let C = NC′, so M = NC′[R]j . By inductive hypothesis C′[R]j ∈ nf i and
j ≥ i+ 1 imply C′[P]j ∈ nf i.
Consider the shape of N ∈ nf i:

- if N = λx.Q, thenM = (λx.Q)C′[R]j , thus contradicting the hypothesis
thatM∈ nf i;

- if N = λ!x.Q, then C′[P]j 6=!P ′: indeed C′[P]j =!P ′ would imply C′ =

!C′′, since j ≥ 1, and so M = (λ!x.Q)!C′′[R]j−1, thus contradicting the
hypothesis thatM∈ nf i;

- in every other case,M′ ∈ nf i.

Let C = C′N , so M = C′[R]jN . By inductive hypothesis C′[R]j ∈ nf i and
j ≥ i+ 1 imply C′[P]j ∈ nf i.
Consider the shape of C′[P]j ∈ nf i:

- if C′[P]j = λx.Q, then C′ = λx.C′′, thus contradicting the hypothesis that
M∈ nf i;

- if C′[P]j = λ!x.Q, then C′ = λ!x.C′′ and N 6=!N ′: indeed N =!N ′ would
implyM = (λ!x.C′′[R]j)!N ′, thus contradicting the hypothesis thatM∈
nf i;

- in every other case,M′ ∈ nf i.

Let C =!C′, so M =!C′[R]j−1. By inductive hypothesis C′[R]j−1 ∈ nf i−1 and
j ≥ i+ 1 imply C′[P]j−1 ∈ nf i−1: thenM′ =!C′[P]j−1 ∈ nf i.

As a consequence of the definition of λ!-terms, we also obtain that their depth
does not increase during reduction:

Theorem 1. IfM is a λ!-term andM→M′, then δ(M′) ≤ δ(M).

Proof. If M = C[R] and R is either (λx.P)Q or (λ!x.P)!Q, where x 6∈ FV(P),
then M′ = C[P]; so by definition δ(M′) ≤ δ(M). Otherwise x ∈ FV(P) and by
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Lemma 1 the depth of any subterm occurring both inM and inM′ is the same, so
δ(M′) = δ(M).

2.1.4 Measures and strategies of reduction

In order to study the reduction of a term, and thus its complexity, it is necessary
to define a measure of terms which is also based on their depth:

Definition 9 (Size of a term).

• The size ofM at depth i, denoted by |M|i, is defined by induction onM as
follows:

- IfM = x, then |x|0 = 1 and |x|i = 0 for every i ≥ 1;

- IfM = λx.N , then |M|0 = |N |0 + 1 and |M|i = |N |i for every i ≥ 1;

- IfM = λ!x.N , then |M|0 = |N |0 + 1 and |M|i = |N |i for every i ≥ 1;

- If M = NP, then |M|0 = |N |0 + |P|0 + 1 and |M|i = |N |i + |P|i for
every i ≥ 1;

- IfM =!N , then |M|0 = 0 and |M|i+1 = |N |i for every i ≥ 0;

• Let δ(M) = d; then the size ofM from depth i is |M|i+ =
∑d

j=i |M|j, while
the size ofM is |M| =

∑d
i=0 |M|i.

The definition above is extended naturally to contexts by imposing |�|i = 0 for
every i ≥ 0. Observe that |C[N1]i1 ...[Nn]in |j = |C|j + a1 + ...+ an, where ak = 0 if
j < ik, ak = |Nk|j−ik otherwise, for 1 ≤ k ≤ n: indeed we need to take into account
the (possible) increase of depth of each term Nk when plugged into the k-th hole of
the context.

It is interesting to examine how the size at all depths lower than or equal to i
changes, after reducing a redex at depth i:

Lemma 2. IfM→iM′, then |M′|i < |M|i and |M′|j = |M|j for j < i.

Proof. IfM→iM′ by reducing an erasing redex, then the proof is trivial. Otherwise,
letM = C[R]i, where R is either a β-redex or a !-redex: the proof is by induction
on C.

Let C = �, so i = 0. If M = (λx.P)Q, then P = C′[x]0 by definition of well-
formed term, soM′ = C′[Q]0: therefore |M′|0 = |C′|0 + |Q|0 < |C′|0 + |Q|0 + 3 = |M|0.
OtherwiseM = (λ!x.P)!Q and P = C′bx, ..., xc1 by definition of well-formed term,
soM′ = C′bQ, ...,Qc1: then |M′|0 = |C′|0 < |C′|0 + 2 = |M|0.

Let C = λy.C′, soM = λy.N and λy.N →i λy.N ′ =M′. By inductive hypothesis
|N ′|i < |N |i and |N ′|j = |N |j for j < i. If i = 0, then |M′|0 = 1 + |N ′|0 < 1 + |N |0 = |M|0;
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otherwise |M′|i = |N ′|i < |N |i = |M|i and |M′|0 = 1 + |N ′|0 = 1 + |N |0 = |M|0 if
j = 0, while |M′|j = |N ′|j = |N |j = |M|j if 0 < j < i.
The case of C = λ!y.C′ is similar.

Let C = C′Q, so M = NQ and NQ →i N ′Q =M′. By inductive hypothesis
|N ′|i < |N |i and |N ′|j = |N |j for j < i. If i = 0, then |M′|0 = 1 + |N ′|0 + |Q|0 <
1 + |N |0 + |Q|0 = |M|0; otherwise it is easy to see that |M′|i = |N ′|i + |Q|i <
|N |i + |Q|i = |M|i and |M′|0 = 1 + |N ′|0 + |Q|0 = 1 + |N |0 + |Q|0 = |M|0 if j = 0,
while if if 0 < j < i then |M′|j = |N ′|j + |Q|j = |N |j + |Q|j = |M|j .
The case of C = QC′ is similar.

Let C =!C′, so M =!N and !N →i!N ′ = M′ for i > 0; note that this implies
N →i−1 N ′. By inductive hypohesis |N ′|i−1 < |N |i−1 and |N ′|j = |N |j for j < i−1:
then |M′|i = |N ′|i−1 < |N |i−1 = |M|i and |M′|j = |N ′|j−1 = |N |j−1 = |M|j if
j < i− 1.

By Prop. 1.iii, reducing a redex at a given depth does not create any redex at
strictly lower depth. Such property of λ!-calculus suggests that we consider the
following non-deterministic level-by-level reduction strategy : if the term is not in
normal form, then reduce (non deterministically) a redex at depth i, where i ≥ 0 is
the minimal depth such thatM 6∈ nf i.

A level-by-level reduction sequence is a reduction sequence following the level-by-
level strategy. We say that a reduction sequence is maximal if either it is infinite or
it finishes with a normal term.

Property 2. Any reduction of a termM by the level-by-level strategy terminates.

Proof. LetM be any λ!-term and let δ = δ(M). By Prop. 1 we know that, in order
to reduceM, it is sufficient to reduce it to a δ-normal form. To such aim, we show
that any maximal level-by-level reduction sequence s of M contains an i-normal
form, for any i ≤ δ: then the statement follows by choosing i = δ.

If i = 0, then by Lemma 2 the number of reduction steps at depth 0 is bounded
by |M|0.

Now let i = k such that 0 < k < δ: consider a maximal level-by-level reduction
sequence s, such thatMi is the first i-normal form reached by s. By Prop. 1.iii, all
reduction steps in s afterMi occur at depth j > i; moreover, by Lemma 2 there are
at most |Mi|i+1 reduction steps at depth i+ 1: therefore s reaches an (i+ 1)-normal
form and so the statement holds for i = k + 1.

Observe that a maximal level-by-level reduction sequence of a λ!-termM has the
shape shown in Figure 2.1, where ;i denotes one reduction step at depth i according
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to the level-by-level strategy; we use simply ; when we do not refer to a particular
depth. Note that, for all i,M1

i+1 belongs to nf i.

M1
0 ;0 ... ;0 Mn0

0 =M1
1 ;1 ... ;1 Mn1

1 ...M1
i ;i ... ;iMni

i =M1
i+1... ;δMnδ

δ =M1
δ+1

Figure 2.1: General shape of a level-by-level reduction sequence.

In a particular case, namely in Corollary 2, we use a leftmost deterministic version
of the level-by-level strategy, which proceeds at every level from left to right by
taking into account the shape of the different redexes of λ!-calculus: at every step,
the leftmost subterm of the shapeMN is chosen, whereM is an abstraction; if such
application is a redex, then it is reduced, otherwise the application is a block, i.e. a
term of the shape (λ!x.P)N where N 6=!Q, so the strategy looks for the next redex
in N .
In practice, this corresponds to using the call-by-name discipline for β-redexes and
the call-by-value discipline for !-redexes [RP04].

We denote byM =⇒ N the fact that N is obtained fromM by performing one
reduction step according to the leftmost-by-level strategy; all notations for → are
extended to ; and =⇒ in a straightforward way.

2.1.5 Representation of functions and computation

Representation of functions

Since our primary aim is representing functions, we first need to encode data in
order to represent input and output of such functions.

The representation of boolean values is given by the familiar encoding:

true = λx.λy.x

false = λx.λy.y

On the contrary, the representation of tally integers and binary words cannot
be given by the usual Church encoding, since the terms corresponding to Church
integers and words do not satisfy the well-formedness condition, that is, neither are
terms of λ!-calculus. In order to overcome such issue, we use the following encodings
for Church integers and Church binary words:

n ∈ N, n = λ!f.!(λx.f (f . . . (f x) . . . ))

w ∈ {0, 1}?, w = 〈i1, . . . , in〉, w = λ!f0.λ
!f1.!(λx.fi1 (fi2 . . . (fin x) . . . ))

where, by abuse of notation, we also denote by 1 the term λ!f.!f .
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A last encoding of data is needed, in the form of Scott binary words:

ε̂
def
= λf0.λf1.λx.x 0̂w

def
= λf0.λf1.λx.f0ŵ 1̂w

def
= λf0.λf1.λx.f1ŵ

Observe that the terms encoding booleans and Scott binary words are of depth 0,
while those representing Church integers and Church binary words are of depth 1.
We denote the length of a word w ∈ {0, 1}? by length(w).

Representation of the computation

Let P be a closed λ!-term in normal form, which we call a program. We represent
the computation of a program on a binary word w, by considering applications of
the form P !w, where the argument is at depth 1 because we want the program to be
able to duplicate its input if needed. Concerning the shape of the result, since we
want to allow computation at arbitrary depth, we require the output to be of the
form !kD, where k ∈ N and D is one of the data representations above.

We thus say that a function f : {0, 1}? → {0, 1}? is represented by a program
P if there exists k ∈ N such that, for any w ∈ {0, 1}?, P!w

∗→!kD where D = f̂(w).
Note that here we are using the Church binary word representation for the input
and the Scott binary word representation for the output; however, this definition
can be adapted to functions with other domains and codomains: in particular the
codomain can be simply {0, 1}, which is represented by {true, false}.

2.1.6 Complexity of reduction

As introduced in the previous subsection, we are interested in studying the
complexity of reduction of λ!-terms of the shape P!w, where P is a program and w
is a binary word fed to the program as input.
As far as the stratification is concerned, it is useful to analyze the complexity of the
reduction of such terms to their k-normal form, that is by reducing up to depth k,
for k ∈ N.

Let us consider a level-by-level reduction sequence ofM = P!w, adopting the
notations of Figure (2.1). By Lemma 2, the number of steps at depth i is bounded
by |M1

i | and there are (d+ 1) total rounds, where d = δ(M); then, in order to bound
the total number of steps, it is sufficient to bound |M1

i | by means of |M|.

The leftmost-by-level strategy

In Subsection 2.1.4 we introduced the leftmost-by-level strategy as a mean to prove
a key lemma about complexity. Here we give a formal account of the leftmost-by-level
strategy, starting with a notion of evaluation context:
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Definition 10 (Stratified evaluation context). The stratified evaluation context of
M at depth i, for i ≤ δ(M), is denoted by EMi and it is a simple context defined by
induction on i:

• EM0 is defined inductively as

� ifM = (λx.P)Q orM = (λ!x.P)!Q
(λ!x.P)EQ0 ifM = (λ!x.P)Q and Q 6=!Q′

(λ!x.EP0 )Q ifM = (λ!x.P)Q,Q ∈ nf0 and Q 6=!Q′

λx.EN0 ifM = λx.N
λ!x.EN0 ifM = λ!x.N
NEQ0 ifM = NQ,N is not an abstraction and N ∈ nf0

EN0 Q ifM = NQ and N is not an abstraction
undefined in any other case

• LetM = CbN1, ...,Nnci, and let Nk (1 ≤ k ≤ n) be the leftmost subterm ofM
such that Nk 6∈ nf i: then EMi = ENk0

The evaluation context of a term is defined accordingly as follows:

Definition 11 (Evaluation context). The evaluation context of a termM is:

EM =

EMi where i is the least i such that EMi is defined, if any;

undefined otherwise.

We are now able to give a formal definition of the leftmost-by-level strategy =⇒,
that is,M =⇒M′ if there are an evaluation context EM, a redex N and a term N ′

such thatM = EM[N ],M′ = EM[N ′] and N → N ′.
In order to find a sharp bound for the increase of size at depth greater than

or equal to i, we need to identify a measure at depth i which decreases with every
reduction at depth i − 1, for every i > 0; clearly the size at depth i as given in
Definition 9 does not have such a property, since a !-redex can make the size at depth
i grow quadratically.

LetM =⇒iM′, which represents the reduction of a redex at depth i following
the leftmost-by-level strategy. The measure satisfying the previous constraint is
the maximum number of potential duplications of a subterm at depth i during the
reduction ofM, called active points, which are denoted by dMei. Note that such
measure is dynamic, in the sense that it accounts for the number of occurrences of
variables bound by a λ!-abstraction which could be replaced during the reduction:
therefore, this measure depends strictly on the evaluation strategy.

The formal notions of λ!-bound occurrences and active points follow:
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Definition 12 (λ!-bound occurrences). The maximum number of λ!-bound occur-
rences at depth i in M, denoted by oi(M), for i > 0, is defined inductively as
follows:

• If i = 1, then

– M = x implies o1(M) = 0;

– M = λx.P implies o1(M) = o1(P);

– M = λ!x.P implies o1(M) = max{n0(x,P), o1(P)};

– M = NP implies o1(M) = max{o1(N ), o1(P)};

– M =!N implies o1(M) = 0

• If i > 1, thenM = CbN1, ...,Nmci−1 implies oi(M) = maxmj=1 o1(Nj).

Definition 13 (Active points). The number of active points ofM at depth i, denoted
by dMei, is defined by induction on EM as follows:

• If EM = EM0 , then

– EM0 = � implies dMe1 = o1(M);

– EM0 = λx.EN0 implies dMe1 = dNe1;

– EM0 = λ!x.EN0 implies dMe1 = dNe1;

– EM0 = PEN0 implies dMe1 = dNe1;

– EM0 = EP0 N implies dMe1 = max{dPe1, o1(N )};

– EM0 = (λ!x.P)EN0 implies dMe1 = max{o1(λ!x.P), dNe1};

– EM0 = (λ!x.EP0 )N implies dMe1 = dPe1.

• If EM = EMi for some i > 0 and M = CbN1, ...,Nmci, then dMei+1 =

maxmj=1dNje1.

• If EMi is undefined for some i ≥ 0, then dMei+1 = 0.

Observe that the number of active points is undefined at depth 0: indeed there
are no active points at depth 0, because all variables bound by a λ!-abstraction occur
at depth greater than 0. Moreover, it is easy to see that dMe1 ≤ |M|1 for anyM,
since the number of λ!-bound occurrences is always bounded by the total number of
occurrences of variables inM. Furthermore, dMe1 ≤ |M|1 ≤ |M|
Note that, when EM0 = (λ!x.P)EN0 , it means that at this point of the computation we
don’t know yet whetherM is a !-redex or a block; therefore we take into consideration
the number of active points of N , which will later be discarded in caseM proves to
be a block.
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Example 4. Consider the termM = λ!z.(λ!y.(λ!x.!(zxx))!(zyy))!z: then o1(M) =

3, while EM0 = λ!z.� and dMe1 = 2.

Our main goal now is to show that the number of active points does not increase
during a reduction. To do so, we first prove that the number of active points of a
term M at depth i is bounded by oi(M); moreover, reducing a redex M to M′

implies that the number of λ!-bound occurrences does not increase:

Lemma 3.

i. If x occurs at most once and at depth 0 in P, then o1(P[Q/x]) ≤ max{o1(P), o1(Q)};
if x occurs at depth 1 in P, then o1(P[Q/x]) ≤ o1(P).

ii. dMei+1 ≤ oi+1(M) for everyM, i ≥ 0.

iii. LetM = (λx.P)Q orM = (λ!x.P)!Q: then o1(P[Q/x]) ≤ dMe1.

Proof.

i. Easy: in the first case, Q is copied only once and so the number of λ!-bound
occurrences is left untouched; in the second case Q might be copied multiple
times, but since all λ!-bound occurrences of Q are at depth greater than 1, their
number does not count at depth 1

ii. By induction on EM.

If EM = EM0 , then:

• EM0 = � implies dMe1 = o1(M), so the inequality is satisfied;

• EM0 = λx.EN0 implies dMe1 = dNe1: by inductive hypothesis dNe1 ≤
o1(N ), so dMe1 = dNe1 ≤ o1(N ) = o1(M);

• EM0 = λ!x.EN0 implies dMe1 = dNe1: by inductive hypothesis dNe1 ≤
o1(N ), so dMe1 = dNe1 ≤ o1(N ) = o1(M);

• EM0 = PEN0 implies dMe1 = dNe1: by inductive hypothesis dNe1 ≤ o1(N ),
so dMe1 = dNe1 ≤ o1(N ) ≤ o1(M);

• EM0 = EP0 N implies dMe1 = max{dPe1, o1(N )}: by inductive hypothesis
dPe1 ≤ o1(P), so dMe1 = max{dPe1, o1(N )} ≤ max{o1(P), o1(N )} = o1(M);

• EM0 = (λ!x.P)EN0 implies dMe1 = max{o1(λ!x.P), dNe1}: by induc-
tive hypothesis dNe1 ≤ o1(N ), so dMe1 = max{o1(λ!x.P), dNe1} ≤
max{o1(λ!x.P), o1(N )} = o1(M);

• EM0 = (λ!x.EP0 )N implies dMe1 = dPe1: by inductive hypothesis dPe1 ≤
o1(P), so dMe1 = dPe1 ≤ o1(P) ≤ o1(M).
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If EM = EMi andM = CbN1, ...,Nmci, then dMei+1 = maxmj=1dNje1. By induc-
tive hypothesis dNje1 ≤ o1(Nj),for 1 ≤ j ≤ m: then dMei+1 = maxmj=1dNje1 ≤
maxmj=1 o1(Nj) = oi+1(M).

If EMi is undefined for some i ≥ 0, then dMei+1 = 0 ≤ oi+1(M).

iii. LetM = (λx.P)Q, so x can occur at most once and at depth 0 in P . By point i
of the current Lemma o1(P[Q/x]) ≤ max{o1(P), o1(Q)}, so o1(P[Q/x]) ≤
max{o1(P), o1(Q)} = o1(M) = dMe1.

Now let M = (λ!x.P)!Q, so x can occur any number of times and only at
depth 1 in P. By point i of the current Lemma o1(P[Q/x]) ≤ o1(P), so
o1(P[Q/x]) ≤ max o1(P) ≤ o1(M) = dMe1.

The previous results are of help in showing that the number of active points does
not increase while reducing a term by the leftmost-by-level strategy:

Lemma 4. M =⇒M′ implies dM′ei+1 ≤ dMei+1, for every i ≥ 0.

Proof. We proceed by induction on EM0 . Observe that ifM′ ∈ nf0 then the proof is
trivial, since dM′e1 = 0 ≤ dMe1; therefore we consider all possible cases where EM′0

is defined.
Let EM0 = �: then the proof follows by points ii and iii of Lemma 3.
Let EM0 = (λ!x.P)EN0 , soM = (λ!x.P)N andM′ = (λ!x.P)N ′ whereN =⇒0 N ′.

By inductive hypothesis, dN ′e1 ≤ dNe1. We must consider three cases:

• if EM′0 = (λ!x.P)EN ′0 , then the proof follows by induction;

• if EM′0 = (λ!x.EP0 )N ′, then by definition dM′e1 = dPe1: by Lemma 3.ii
dPe1 ≤ o1(P), so dM′e1 = dPe1 ≤ o1(P) ≤ max{o1(λ!x.P), dNe1} = dMe1;

• if EM′0 = �, then N ′ =!N ′′ for some term N ′′ and M′ = (λ!x.P)!N ′′:
by definition dM′e1 = o1(M′) = max{o1(λ!x.P), o1(!N ′′)} = o1(λ!x.P) ≤
max{o1(λ!x.P), dNe1} = dMe1;

All other cases follow easily by induction. Moreover, the property can be easily
checked for i > 0 by using the definition of context.

Example 5. Consider again the term M = λ!z.(λ!y.(λ!x.!(zxx))!(zyy))!z: since
EM0 = λ!z.�, we haveM =⇒M′ = λ!z.(λ!x.!(zxx))!(zzz) and dMe1 = 2. Moreover,
EM′0 = λ!z.�, so dM′e1 = 2.

As a further step, we study how the size of the whole term changes at depths
higher than n, when performing a =⇒n step:
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Lemma 5. M =⇒n N implies |N |i ≤ dMen+1 · |M|i + |M|i for every i > n.

Proof. We proceed by induction on n, and then by induction on EMn . If n = 0, then
we consider all possible cases of EM0 .

• Let EM0 = �, then there are two possibilities:

i) ifM = (λx.P)Q, N = P [Q/x], then |N |i ≤ |M|i ≤ dMe1 · |M|i + |M|i;

ii) if M = (λ!x.P)!Q, N = P[Q/x], then |N |i ≤ |M|i · n0(x,P) + |M|i ≤
|M|i · o1(M) + |M|i = dMe1 · |M|i + |M|i.

• Let EM0 = λx.EP0 , thenM = λx.P and N = λx.P ′, where P =⇒0 P ′ implies
|P ′|i ≤ dPe1 · |P|i+ |P|i for every i ≥ 0 by inductive hypothesis; so by induction
|N |i = |P ′|i ≤ dPe1 · |P|i + |P|i = dMe1 · |M|i + |M|i for i > 0.

• The case EM0 = λ!x.EP0 is similar to the previous one.

• Let EM0 = PEQ0 , then M = PQ and N = PQ′, where Q =⇒0 Q′ implies
|Q′|i ≤ dQe1 · |Q|i + |Q|i for every i ≥ 0 by inductive hypothesis; so, if by
induction |N |i = |P|i + |Q′|0 ≤ dQe1 · |Q|i + |Q|i + |P|i = dMe1 · |M|i + |M|i
for i > 0.

• The case EM0 = (λ!x.EP0 )Q is similar to the previous one.

• Let EM0 = EP0 Q, then M = PQ and N = P ′Q, where P =⇒0 P ′ implies
|P ′|i ≤ dPe1 · |P|i + |P|i for every i ≥ 0 by inductive hypothesis. By definition
dMe1 = max{dPe1, o1(Q)}, so |N |i = |P ′|i + |Q|0 ≤ dPe1 · |P|i + |P|i + |Q|i =

dMe1 · |M|i + |M|i for i > 0.

• The case EM0 = (λ!x.P)EQ0 follows by induction as the previous one.

If n > 0, letM = CbN1, ...,Nk, ...,Nmcn for some index k,m such that Nj ∈ nf0

for 1 ≤ i ≤ k − 1, Nk 6∈ nf0, so EMn = ENk0 and N = CbN1, ...,N ′k, ...,Nmcn. By
inductive hypothesis Nk =⇒0 N ′k implies |N ′k|i ≤ dNke1 · |Nk|i+ |Nk|i for every i > 0.
Moreover, by definition dMen+1 = maxmj=1dNje1: therefore

|N |i = |C|i + |N1|i−n + ...+ |N ′k|i−n + ...+ |Nm|i−n
≤ |C|i + |N1|i−n + ...+ (dNke1 · |Nk|i−n + |Nk|i−n) + ...+ |Nm|i−n
= dNke1 · |Nk|i−n + |M|i
≤ dMen+1 · |M|i + |M|i.

All these results allow us to easily obtain a sort of stratified version of the size-
growth result when performing a reduction step at depth n, where the size of the
reduced term at depth i is bounded by a function of the size of the initial term at
depth i and of the number of its active points at depth n+ 1:
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Lemma 6. M ∗
=⇒nM′ in k reduction steps implies |M|′i ≤ |M|i · (dMen+1 + 1)k,

for every i > n.

Proof. LetM =M1 =⇒nM2 =⇒n ... =⇒nMk =M′: we proceed by induction
on k.

Let k = 2, soM =⇒M′ and dMen+1 = |M|n+1: then |M|′i ≤ |M|i · (dMen+1 +

1) by Lemma 5.
Now let M ∗

=⇒n Mh in h − 1 reduction steps, for some h > 2. By inductive
hypothesis |Mh|i ≤ |M|i · (dMen+1 + 1)h−1, for every i > n. If Mh =⇒n Mh+1,
then

|Mh+1|i ≤ |Mh|i · (dMhen+1 + 1) by Lemma 5

≤ |Mh|i · (dMen+1 + 1) by Lemma 4

≤ |M|i · (dMen+1 + 1)h−1 · (dMen+1 + 1) by inductive hypothesis

= |M|i · (dMen+1 + 1)h.

The main result of this subsection, namely a bound of the growth in size for a
reduction step at depth i, now follows easily:

Corollary 2 (Size-growth). If M ∗
=⇒i M′ by c reduction steps, then |M′| ≤

|M| · (|M|+ 1)c (0 ≤ i ≤ δ(M)).

Proof. As a consequence of Definition 13 we know that dMei+1 ≤ |M|. By Lemma 6,
|M′|j = |M|j for j < i, so |M′|j ≤ |M|j · (dMei+1 + 1)c also holds for j ≤ i: then
|M′| =

∑δ(M′)
j=0 |M′|j ≤

∑δ(M)
j=0 |M|j · (dMei+1 + 1) ≤ |M| · (dMei+1 + 1)c.

Complexity bound

In the previous section we gave a bound on the reduction of a λ!-term, using the
leftmost-by-level strategy, with respect to the size of the initial term. Nevertheless,
such dedicated strategy was necessary only in order to define the active points of a
term; in the present section the result of Corollary 2 is then employed to prove a
more general result based on the level-by-level reduction strategy.

Let 2ni be defined inductively as 2x0 = x and 2xi+1 = 22xi . We employ the result of
the previous subsection in order to prove a bound on the reduction of a λ!-term up
to a given depth:

Property 3. Let P be a program; for any k ≥ 2, there exists a polynomial q such that,
for any w ∈ {0, 1}?, P!w

∗;M1
k ∈ nfk−1 in at most 2

q(n)
k−2 steps and |M1

k| ≤ 2
q(n)
k−2,

where n = length(w). In particular, if k = 2 then the bound is polynomial in n.
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Proof. We proceed by induction on k.
Without loss of generality, we can assume P to be a λ!-abstraction of the form

λ!y.Q; otherwise P!w is a normal form and the property holds.

• Let k = 2 and consider a level-by-level reduction sequence ofM1
0 = P!w: we

examine round 0 and round 1 of the reduction sequence, following the notation
of Figure 2.1.

At round 0, the only reduction is (λ!y.Q)!w → Q[w/y] =M1
1. Observe that

M1
1 ∈ nf0 because the occurrences of y in Q are at depth 1.

Let us now consider round 1. Let b = n0(y,Q), which is independent of n:
then |Q[w/y]|1 ≤ |Q|1 + b · |w|0 and, by definition of w, |w|0 = 2. Therefore,
|M1

1|1 = |Q[w/y]|1 ≤ |Q|1 + 2b. Let c be the constant |Q|1 + 2b, which is again
independent of n: by Lemma 2, the number of steps at the end of round 1 is
bounded by c, so the part of the statement concerning the number of steps
holds.
Now letM1

2 ∈ nf1 be the term obtained at the end of round 1. By Property 1.i
(confluence)M1

1
∗

=⇒1 M1
2 and by Lemma 2 such reduction is performed in c′

steps, where c′ ≤ |M1
1|1 ≤ c; therefore |M1

2| ≤ |M1
1|·(|M1

1|+1)c by Corollary 2.
Moreover |M1

1| ≤ |Q|+ b|w|, so the size is polynomial in n.

• Let us assume the property holds for k: we prove that it holds also for k + 1.

By inductive hypothesis,M reduces toM1
k in at most 2

q(n)
k−2 steps and |M1

k| ≤
2
q(n)
k−2. LetM

1
k
∗;kM1

k+1 ∈ nfk.
By Lemma 2 the reduction sequence has at most |M1

k|k steps and |M1
k|k ≤

|M1
k| ≤ 2

q(n)
k−2, thereforeM reduces toM1

k+1 in at most 2 · 2q(n)
k−2 ≤ 2

2q(n)
k−2 steps.

Moreover, by Property 1.i (depth-wise confluence) M1
k
∗

=⇒ M1
k+1 and by

Lemma 2 and Corollary 2 we obtain

|M1
k+1| ≤ |M1

k| · (|M1
k|+ 1)2

q(n)
k−2

≤ 2
q(n)
k−2 · (2

q(n)
k−2 + 1)2

q(n)
k−2

≤ 2
q(n)
k−2 · (2

2q(n)
k−2 )2

q(n)
k−2

≤ 2
q(n)
k−2 · 2

2
2q(n)
k−3 ·2

q(n)
k−2

≤ 2
q(n)
k−2 · 2

2
3q(n)
k−2

≤ 2
q′(n)
k−1

for some polynomial q′(n): therefore the statement holds for k + 1.
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Approximations

From Property 3 we can easily derive a 2
q(n)
k−2 bound on the number of steps of

the reduction of P!w, not only to its (k − 1)-normal form, but also to its k-normal
formM1

k+1. Unfortunately, this does not yield directly a time bound O(2
q(n)
k−2) for

the simulation of this reduction on a Turing machine: indeed, even though the
size of the final term of round k fulfills the desired bound, the same does not hold
for intermediate terms of round k, for which the size at depth k + 1 can grow
exponentially.

Nonetheless, since we are only interested in the result of the computation at
depth k, the size of the subterms at depth k + 1 is actually irrelevant. In order to
overcome such issue we introduce a notion of approximation, which allows to compute
up to a certain depth k while ignoring the higher strata of the term: such notion
is inspired by the semantics of stratified coherence spaces [Bai04], where partial
information is managed with the aim of obtaining more and more refinements of the
actual computation.

In order to accomodate approximations, we extend the calculus with a constant
∗, whose sizes are | ∗ |0 = 1 and | ∗ |i+1 = 0 for every i ≥ 0. The definition is then
extended to term contexts:

Definition 14 (i-th approximation). The i-th approximation of a context C for
i ∈ N, denoted by Ci, is defined by induction on C as follows:

- !C0
=!∗;

- !Ci+1
=!Ci;

- xi = x;

- �i = �;

- CC′i = CiC′i;

- λx.Ci = λx.Ci;

- λ!x.C
i

= λ!x.Ci.

Note that CbN1...Nncj
i

= CibN1
i−j
...Nn

i−jcj if j ≤ i; otherwise CbN1...Nncj
i

= Ci,
since all subterms filling the holes at depth j > i do not count when the approximation
at depth i is considered.

In practice, when considering the i-th approximation of a termM,Mi is obtained
by replacing all subterms ofM at depth i+ 1 by the constant ∗.

Example 6. For every Church binary word w, the approximations at depth 0 and
i+ 1 are respectively w0 = λ!f0.λ

!f1.!∗ and wi+1 = w, for i ≥ 0.
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First we examine the effect of approximation on substitutions, reductions and
contexts respectively:

Lemma 7 (Approximation of substitution).

i. If the occurrence of x inM is at depth 0, thenM[N/x]
i

=Mi
[N i

/x].

ii. If all occurrences of x inM are at depth 1, thenM[N/x]
0

=M0,M[N/x]
i+1

=

Mi+1
[N i

/x], for i ≥ 0.

Proof.

i. LetM = C[x]0: thenM[N/x]
i

= C[N ]0
i

= Ci[N i
]0 =Mi

[N i
/x] for every i ≥ 0.

ii. Let M = C[x]1...[x]1: then M[N/x]
0

= C[N ]1...[N ]1
0

= C0
= M0 and

M[N/x]
i+1

= C[N ]1...[N ]1
i+1

= Ci+1
[N i

]1...[N
i
]1 = Ci+1

[N i
/x] for every i ≥ 0.

Lemma 8 (Approximation of reduction). (λx.M)N i →M[N/x]
i
and (λ!x.M)!N

i
→

M[N/x]
i
for i ≥ 0.

Proof. If the redex is erasing the proof is trivial.
Otherwise, the proof follows easily by Lemma 7: in the first case, by defi-

nition of λ!-terms we know that M = C[x]0, so (λx.M)N i
= (λx.C[x]0

i
)N i →

Ci[N i
]0 = Mi

[N i
/x] = M[N/x]

i
. in the second case, since M = Cbx...xc1 by

definition, (λ!x.M)!N
0

= (λ!x.M0
)!∗ → M0

= M[N/x]
0
and (λ!x.M)!N

i+1
=

(λ!x.Cbx...xc1
i+1

)N i → Ci+1bN i
...N ic1 = Mi+1

[N i
/x] = M[N/x]

i+1
for every

i ≤ 0.

Lemma 9 (Approximation and depth).

i. M→j M′ impliesMi →j M′
i if j ≤ i,Mi

=M′i otherwise.

ii. Mi →iM′
i implies |M′i| < |Mi|.

Proof.

i. As M → M′ by one step at depth j, we have that M = C[P]j and M′ =

C[P ′]jwhere P is a redex and P ′ is its contractum. Therefore by Lemma 7
Mi

=M′i if i+ 1 ≤ j, otherwiseMi
= Ci[P i−j ]j → C

i
[P ′i−j ]j =M′i by using

Lemma 8, where the reductions takes place at depth j.
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ii. LetMi →M′i by one reduction step at depth i. By Lemma 2 |M′i|j ≤ |M
i|j

for every j < i and |M′i|i < |M
i|i; now we examine the size of Mi at depth

i+ 1.

We know thatMi
= C[P]i andM′

i
= C[P ′]i, where P is a redex and P ′ is its

contractum:

- if P is a β-redex, then |M′i|i+1 < |M
i|i+1;

- if P is a !-redex, then Mi
= C[P]i and P = (λ!x.N )!∗; moreover, all

occurrences of x in N are at depth 1, so they occur at depth i+ 1 inMi.
Since any subterm of Mi at depth i + 1 is the constant ∗, there are no
occurrences of x in N : therefore P ′ = N and |M′i|i+1 < |M

i|i+1.

If j ≥ i+ 2, then |M′i|j = 0 = |Mi|j and so the statement follows.

Finally, with the aid of approximants, we are able to prove the time bound for
the computation of the application P!w on a Turing machine:

Property 4. Let P be a program; for any k ≥ 2, there exists a polynomial q such
that for any w ∈ {0, 1}?, the reduction of P!w

k to its k-normal form can be computed
in time O(2

q(n)
k−2) on a Turing machine, where n = length(w).

Proof. Observe that P!w
k

= Pk!w. By Prop. 3 and Lemma 9.i, Pk!w reduces to
its (k − 1)-normal formM1

k

k
in O(2

q(n)
k−2) steps and with intermediary terms of size

O(2
q(n)
k−2).

By Lemma 9.ii, the reduction ofM1
k

k
at depth k is done in O(2

q(n)
k−2) steps and with

intermediary terms of size O(2
q(n)
k−2): therefore, we can conclude by using the fact

that one reduction step in a termM can be simulated in time p(|M|) on a Turing
machine [Ter07], for a suitably chosen polynomial p.

2.2 A type assignment system for λ!-calculus

In Section 2.1 we proved a complexity bound for computation up to a given depth
in the untyped λ!-calculus. Note, however, that we cannot make any claim about
the result of the application of a program to a binary word: indeed, although the
output is well-formed, we can tell nothing else about its shape.

Since we are interested in characterizing predicates (from words to booleans) and
functions (from words to words), we would like such result to have the specific shape
of either a boolean or a word. To this aim, we now introduce a type assignment
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Γ, x : A | ∆ | Θ ` x : A
(AxL)

Γ | ∆ | x : σ,Θ ` x : σ
(AxP )

Γ, x : A | ∆ | Θ ` M : τ

Γ | ∆ | Θ ` λx.M : A( τ
(( IL)

Γ | ∆, x :!σ | Θ ` M : τ

Γ | ∆ | Θ ` λ!x.M :!σ( τ
(( II)

Γ1 | ∆ | Θ ` M : σ( τ Γ2 | ∆ | Θ ` N : σ Γ1#Γ2

Γ1,Γ2 | ∆ | Θ ` MN : τ
(( E)

Γ | ∆ | Θ ` M : S a 6∈ FTV(Γ) ∪ FTV(∆) ∪ FTV(Θ)

Γ | ∆ | Θ ` M : ∀a.S (∀I)

Γ | ∆ | Θ ` M : ∀a.S
Γ | ∆ | Θ ` M : S[σ/a]

(∀E)
∅ | ∅ | Θ′ ` M : σ

Γ |!Θ′,∆ | Θ `!M :!σ
(!)

Γ | ∆ | Θ ` M : S[µa.S/a]

Γ | ∆ | Θ ` M : µa.S
(µI)

Γ | ∆ | Θ ` M : µa.S

Γ | ∆ | Θ ` M : S[µa.S/a]
(µE)

Table 2.1: Derivation rules for typed λ!-calculus.

system for λ!-calculus based on ELL, such that all typed terms are also well-formed
and therefore all previous results are preserved in the typed setting.

2.2.1 An elementary typing system

The set T of types is generated by the following grammar:

A ::= a | S (linear types)
S ::= σ( σ | ∀a.S | µa.S (strict linear types)
σ ::= A |!σ (types)

where a ranges over a countable set of type variables Var.
Observe that, among linear types, we distinguish the subclass of strict linear types,
also featuring polymorphic types (∀a.S) and type fixpoints (µa.S). Such subclass
contains all non-atomic linear types and is closed by substitution:

Lemma 10 (Strict linear types). If S is a strict linear type and σ is a type, then
S[σ/a] is a strict linear type.

Proof. By induction on S.
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Let S = τ ( ρ: then τ [σ/a]( ρ[σ/a] is an arrow type, thus a strict linear type.
Let S = ∀b.S′. By inductive hypothesis S′[σ/a] is a strict linear type: then

(∀b.S′)[σ/a] is a strict linear type.
Finally, let S = µb.S′. By inductive hypothesis S′[σ/a] is a strict linear type: then

(µb.S′)[σ/a] is a strict linear type.

Let a be a (possibly empty) sequence of type variables: then ∀a.S (resp. µa.S)
denotes both S, if a is empty, and ∀a1.∀a2....∀an.S (resp. µa1.µa2....µan.S), if a =

a1a2....an for some n ≥ 1.
A basis is a partial function from variables to types, with finite domain, ranging

over Γ,∆,Θ. As usual, the domain of a basis Γ is denoted by dom(Γ) and it represents
the set of variables for which there exists a mapping in Γ, that is, dom(Γ) = {x |
Γ(x) is defined}.
Taking inspiration from [CDR08], we consider three different bases having pairwise
disjoint domains, called the linear, modal and parking basis, such that Γ assigns
linear types to variables, while ∆ maps variables to modal types:

• Γ is the linear basis, where for every x ∈ dom(Γ) there is a linear type A such
that Γ(x) = A;

• ∆ is the modal basis, where for every x ∈ dom(∆) there is a type σ such that
∆(x) =!σ;

• Θ is the parking basis, where for every x ∈ dom(∆) there is a type σ such that
Θ(x) = σ.

The rules of the type assignment system are given in Table 2.1, where Γ1#Γ2

stands for dom(Γ1) ∩ dom(Γ2) = ∅, while ∆1 ⊆ ∆2 means that x : σ ∈ ∆1 implies
x : σ ∈ ∆2. Moreover, FTV(σ) denotes the set of free variables of σ, while FTV(Γ)

denotes the set {a | a ∈ ∪
x∈dom(Γ)

FTV(Γ(x))}.
The typing system proves statements of the shape Γ | ∆ | Θ ` M : σ; derivations are
ranged over by Π,Σ,Φ, so that we write Π . Γ | ∆ | Θ ` M : σ to identify particular
derivation proving the desired statement. When all three bases are empty, we write
the derivation as Π . ` M : σ. As usual, we use the notationMσ as a shorthand for
there is a derivation assigning type σ toM.

We say that a termM is well-typed if and only if there is a derivation Π .Γ | ∆ |
∅ ` M : σ for some Γ,∆, σ: indeed, variables in the parking context are considered
as having an intermediary status, since they eventually have to shift to the modal
context in order for the term to be well-typed.

Some comments about the rules are in order:
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- in rule (( E),M and N share variables in the modal and parking basis, but
their linear bases must be disjoint;

- there is no axiom rule for introducing variables in the modal basis, but a
variable can be introduced in the parking basis and then moved to the modal
basis by applying rule (!);

- there is no abstraction rule for variables in the parking basis, thus underlining
the fact that parking variables only have a "temporary" status;

- with respect to the system of [CDR08], rule (!) is restricted so that both the
linear and modal bases in the premise are empty; such restriction guarantees
that typed terms are also well-formed, a condition which is crucial in order to
obtain a stratified complexity bound for a specific k depending on the type,
instead of the usual rough elementary bound.

- rules (µI), (µE), (∀I) and (∀E), also referred to as non-constructive rules, are
the only rules which do not contribute to the syntactic construction of the
term.

The following generation Lemma allows to infer the general shape of a derivation
from the shape of its subject:

Lemma 11 (Generation). Let Π . Γ | ∆ | Θ ` M : σ.

i. M = x implies x ∈ dom(Γ) ∪ dom(Θ) and Π ends with an application of either
(AxL) or (AxP ) rule, followed by a (possibly empty) sequence of non-constructive
rules.

ii. M = λx.N implies Π ends with an application of (( IL) rule, followed by a
(possibly empty) sequence of non-constructive rules.

iii. M = λ!x.N implies Π ends with an application of (( II) rule, followed by a
(possibly empty) sequence of non-constructive rules.

iv. M = NP implies Π ends with an application of (( E) rule, followed by a
(possibly empty) sequence of non-constructive rules.

v. M =!N implies Π ends with an application of (!) rule and σ =!τ , for some τ .

Proof. All points follow easily by checking the rules of the system.

Our aim is to give a characterization of a hierarchy of complexity classes with
respect to typed programs, which should enjoy the stratification property given in
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Theorem 1: therefore, in order to examine the computation of a typed λ!-term, we
need to show that both the type and the maximum depth of a term are preserved
during reduction.

By observing the shape of the rules, it is easy to see that new mappings of variables
to types can be added to any basis by means of implicit weakening; moreover, it is
always possible to move a variable from the linear to the parking basis:

Lemma 12 (Weakening). If Π . Γ1 | ∆1 | Θ1 ` M : σ, then there is a derivation
Σ . Γ1,Γ2 | ∆1,∆2 | Θ1,Θ2 ` M : σ, for every Γ2,∆2,Θ2 disjoint from each other
and from Γ1,∆1,Θ1.

Proof. Easy, by induction on Π.

Lemma 13 (Shifting). If Π . Γ, x : A | ∆ | Θ ` M : τ then there is a derivation
Σ . Γ | ∆ | Θ, x : A ` M : τ .

Proof. Easy, by induction on Π.

The substitution lemma, essential to the proof of the subject reduction property,
is split into three points, one for each basis in which the substituted variable may
occur:

Lemma 14 (Substitution). Let Γ1#Γ2.

i) If Π . Γ1, x : A | ∆ | Θ ` M : τ and Σ . Γ2 | ∆ | Θ ` N : A, then there is
Φ . Γ1,Γ2 | ∆ | Θ ` M[N/x] : τ .

ii) If Π . Γ1 | ∆ | Θ, x : σ ` M : τ and Σ . ∅ | ∆ | Θ ` N : σ, then there is
Φ . Γ1 | ∆ | Θ ` M[N/x] : τ .

iii) If Π . Γ1 | ∆, x :!σ | Θ ` M : τ and Σ . Γ2 | ∆ | Θ `!N :!σ, then there is
Φ . Γ1,Γ2 | ∆ | Θ ` M[N/x] : τ .

Proof. All three points follow by induction on Π.

i) Let Π end with an application of rule (AxL); then either Π is

Γ1, x : A | ∆ | Θ ` x : A
(AxL)

where M = x and τ = A, so Φ . Γ1,Γ2 | ∆ | Θ ` N : A follows directly by
applying Lemma 12 to Σ, or Π is

Γ′1, x : A, y : B | ∆ | Θ ` y : B
(AxL)
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whereM = y, τ = B and Γ1 = Γ′1, y : B, so S(Σ,Π) is

Γ′1,Γ2, y : B | ∆ | Θ ` y : B
(AxL)

Let Π be

Γ1, x : A | ∆ | Θ′, y : τ ` y : τ
(AxP )

whereM = y and Θ = Θ′, y : τ , so Φ is

Γ1,Γ2 | ∆ | Θ′, y : τ ` y : τ
(AxL)

Let Π be

Π′ . Γ1, x : A, y : B | ∆ | Θ ` P : φ

Γ1, x : A | ∆ | Θ ` λy.P : B( φ
(( IL)

where M = λy.P and τ = B ( φ. By inductive hypothesis on Π′ there is
Φ′ . Γ1,Γ2, y : B | ∆ | Θ ` P[N/x] : φ; then Φ is obtained by applying rule
(( IL) to Φ′.

Let Π be

Π′ . Γ1, x : A | ∆, y :!ρ | Θ ` P : φ

Γ1, x : A | ∆ | Θ ` λy.P :!ρ( φ
(( II)

whereM = λy.P and τ =!ρ( φ. By Lemma 12 there is Γ2 | ∆, y :!ρ | Θ ` N : A,
so by inductive hypothesis on Π′ there is Φ′ . Γ1,Γ2 | ∆, y :!ρ | Θ ` P[N/x] : φ;
then Φ is obtained by applying rule (( IL) to Φ′.

Let Π be

Π1 . Γ, x : A | ∆ | Θ ` P : ρ( τ Π2 . Γ′ | ∆ | Θ ` Q : ρ

Γ,Γ′, x : A | ∆ | Θ ` PQ : τ
(( E)

where x ∈ FV(P), x 6∈ FV(Q), M = PQ and Γ1 = Γ,Γ′. By inductive
hypothesis on Π1 and Π2 there are Φ1 . Γ,Γ2 | ∆ | Θ ` P[N/x] : ρ( τ and
Φ2 . Γ′′ | ∆ | Θ ` Q : ρ: then Φ is obtained by applying rule (( E) to Φ1 and
Φ2.
The case of x 6∈ FV(P), x ∈ FV(Q) is similar.

Let Π be
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Π′ . ∅ | ∅ | Θ′ ` P : ρ

Γ1, x : A |!Θ′,∆′ | Θ `!P :!ρ
(!)

where M =!P, τ =!ρ and ∆ =!Θ′,∆′. Observe that !(P[N/x]) =!P, since
x 6∈ FV(P), so Φ is

Π′ . ∅ | ∅ | Θ′ ` P : ρ

Γ1,Γ2 |!Θ′,∆′ | Θ `!P :!ρ
(!)

The cases of (∀I), (∀E), (µI), (µE) follow easily by induction.

ii) Let Π be

Γ′1, y : A | ∆ | Θ, x : σ ` y : A
(AxL)

whereM = y, τ = A and Γ1 = Γ′1, y : A, so Φ is

Γ′1, y : A | ∆ | Θ ` y : A
(AxL)

Let Π end with an application of rule (AxP ); then either Π is

Γ1 | ∆ | Θ, x : σ ` x : σ
(AxP )

whereM = x and τ = σ, so Φ . Γ1 | ∆ | Θ ` N : τ follows directly by applying
Lemma 12 to Σ, or Π is

Γ1 | ∆ | Θ′, x : σ, y : τ ` y : τ
(AxP )

whereM = y and Θ = Θ′, y : τ , so Φ is

Γ1 | ∆ | Θ′, y : τ ` y : τ
(AxP )

Let Π be

Π′ . Γ1, y : B | ∆ | Θ, x : σ ` P : φ

Γ1 | ∆ | Θ, x : σ ` λy.P : B( φ
(( IL)

where M = λy.P and τ = B ( φ. By inductive hypothesis on Π′ there is
Φ′ . Γ1, y : B | ∆ | Θ ` P[N/x] : φ; then Φ is obtained by applying rule (( IL)

to Φ′.

Let Π be
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Π′ . Γ1 | ∆, y :!ρ | Θ, x : σ ` P : φ

Γ1 | ∆ | Θ, x : σ ` λy.P :!ρ( φ
(( II)

whereM = λy.P and τ =!ρ( φ. By Lemma 12 there is ∅ | ∆, y :!ρ | Θ ` N : σ,
so by inductive hypothesis on Π′ there is Φ′ . Γ1 | ∆, y :!ρ | Θ ` P[N/x] : φ;
then Φ is obtained by applying rule (( IL) to Φ′.

Let Π be

Π1 . Γ | ∆ | Θ, x : σ ` P : ρ( τ Π2 . Γ′ | ∆ | Θ, x : σ ` Q : ρ

Γ,Γ′ | ∆ | Θ, x : σ ` PQ : τ
(( E)

whereM = PQ and Γ = Γ,Γ′. By inductive hypothesis on Π1 and Π2 there
are Φ1 . Γ | ∆ | Θ ` P[N/x] : ρ ( τ and Φ2 . Γ′′ | ∆ | Θ ` Q : ρ: then Φ is
obtained by applying rule (( E) to Φ1 and Φ2.

Let Π be

Π′ . ∅ | ∅ | Θ′ ` P : ρ

Γ1 |!Θ′,∆′ | Θ, x : σ `!P :!ρ
(!)

where M =!P, τ =!ρ and ∆ =!Θ′,∆′. Observe that !(P[N/x]) =!P, since
x 6∈ FV(P), so Φ is

Π′ . ∅ | ∅ | Θ′ ` P : ρ

Γ1 |!Θ′,∆′ | Θ `!P :!ρ
(!)

The cases of (∀I), (∀E), (µI), (µE) follow easily by induction.

iii) Observe that, by Lemma 11, Σ is

Σ′ . ∅ | ∅ | Θ′′ ` N : σ

Γ2 | ∆ | Θ `!N :!σ
(!)

where ∆ =!Θ′′,∆′′ for some ∆′′.

Let Π be

Γ′1, y : B | ∆, x :!σ | Θ ` y : B
(AxL)

whereM = y, τ = B and Γ1 = Γ′1, y : B, so S(Σ,Π) is

Γ′1,Γ2, y : B | ∆ | Θ ` y : B
(AxL)
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Let Π be

Γ1 | ∆, x :!σ | Θ′, y : τ ` y : τ
(AxP )

whereM = y and Θ = Θ′, y : τ , so S(Σ,Π) is

Γ1,Γ2 | ∆ | Θ′, y : τ ` y : τ
(AxP )

Let Π be

Π′ . Γ1, y : B | ∆, x :!σ | Θ ` P : φ

Γ1 | ∆, x :!σ | Θ ` λy.P : B( φ
(( IL)

where M = λy.P and τ = B ( φ. By inductive hypothesis on Π′ there is
Φ′ . Γ1,Γ2, y : B | ∆ | Θ ` P[N/x] : φ; then Φ is obtained by applying rule
(( IL) to Φ′.

Let Π be

Π′ . Γ1 | ∆, x :!σ, y :!ρ | Θ ` P : φ

Γ1 | ∆, x :!σ | Θ ` λy.P :!ρ( φ
(( II)

whereM = λy.P and τ =!ρ( φ. By Lemma 12 there is Γ2 | ∆, y :!ρ | Θ `!N :

!σ, so by inductive hypothesis on Π′ there is Φ′.Γ1,Γ2 | ∆, y :!ρ | Θ ` P [N/x] : φ;
then Φ is obtained by applying rule (( IL) to Φ′.

Let Π be

Π1 . Γ | ∆, x :!σ | Θ ` P : ρ( τ Π2 . Γ′ | ∆, x :!σ | Θ ` Q : ρ

Γ,Γ′ | ∆, x :!σ | Θ ` PQ : τ
(( E)

whereM = PQ and Γ1 = Γ,Γ′. From Σ′ we can build the following derivation:

Σ′ . ∅ | ∅ | Θ′′ ` N : σ

∅ | ∆ | Θ `!N :!σ
(!)

By inductive hypothesis on Π1 and Π2 there are Φ1.Γ | ∆ | Θ ` P [N/x] : ρ( τ

and Φ2 . Γ′ | ∆ | Θ ` Q[N/x] : ρ: then Φ is obtained by applying rule (( E) to
Φ1 and Φ2.

Let Π end with an application of rule (!); then either x 6∈ FV(P) and Π is

Π′ . ∅ | ∅ | Θ′ ` P : ρ

Γ1 | ∆, x :!σ | Θ `!P :!ρ
(!)
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whereM =!P, τ =!ρ and ∆ =!Θ′,∆′, so Φ is

Π′ . ∅ | ∅ | Θ′ ` P : ρ

Γ1,Γ2 | ∆ | Θ `!P :!ρ
(!)

or x ∈ FV(P) and Π is

Π′ . ∅ | ∅ | Θ′, x : σ ` P : ρ

Γ1 | ∆, x :!σ | Θ `!P :!ρ
(!)

where M =!P, τ =!ρ and ∆ =!Θ′,∆′. By Lemma 12 we can build Π′′ . ∅ |
∅ | Θ′′′, x : σ ` P : ρ and Σ′′ . ∅ | ∅ | Θ′′′ ` N : σ such that Θ′′′ = Θ′,Θ′′ and
∆ =!Θ′′′,∆′′′ for some context ∆′′′. Then by applying point ii of the current
Lemma to Π′′, followed by one application of rule (!), Φ is

Φ′ . ∅ | ∅ | Θ′′′ ` P[N/x] : ρ

Γ1,Γ2 | ∆ | Θ `!(P[N/x]) :!ρ
(!)

The cases of (∀I), (∀E), (µI), (µE) follow easily by induction.

As usual, a detour occurs in a derivation whenever the application of a rule intro-
ducing a connective is immediately followed by an application of a rule eliminating
the same connective. Here we have three kinds of detours, namely the ∀-detour, the
µ-detour and the(-detour.
Because of the non-constructive rules and their respective detours, derivations of
λ!-terms can often become quite involved. However, all ∀ and µ detours in a deriva-
tion can be erased without altering the structure of the term, so generating a clean
derivation of the same statement:

Lemma 15. Let Π . Γ | ∆ | Θ ` M : σ; then there is a clean derivation Π′, proving
the same statement as Π, which is obtained from Π by erasing all ∀-detours and
µ-detours.

Proof. It is sufficient to erase all ∀-detour and µ-detours as in Figures 2.2 and 2.3.

Using Lemma 14 and Lemma 15, the subject reduction property follows easily:

Theorem 3 (Subject reduction). Π . Γ | ∆ | Θ ` M : σ and M → M′ imply
Π′ . Γ | ∆ | Θ ` M′ : σ.
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Π . Γ | ∆ | Θ ` M : S

Γ | ∆ | Θ ` M : ∀a.S (∀I)

Γ | ∆ | Θ ` M : S[S′/a]
(∀E)

; Π[S′/a] . Γ | ∆ | Θ ` M : S[S′/a]

Figure 2.2: Erasing of a ∀-detour.

Π . Γ | ∆ | Θ ` M : S[µa.S/a]

Γ | ∆ | Θ ` M : µa.S
(µI)

Γ | ∆ | Θ ` M : S[µa.S/a]
(µE)

; Π . Γ | ∆ | Θ ` M : S[µa.S/a]

Figure 2.3: Erasing of a ∀-detour.

Proof. Let M = C[R], where either R = (λx.P)Q or(λ!x.P)!Q: we proceed by
induction on C.

Let C = �, soM = R andM′ = P [Q/x]. IfM is a β-redex, then by Lemma 11
Π is

Γ′, x : A′′ | ∆ | Θ ` P : σ′′

Γ′ | ∆ | Θ ` λx.P : A′′( σ′′
(( IL)

Γ′ | ∆ | Θ ` λx.P : A′( σ′
δ′

Γ′′ | ∆ | Θ ` N : A′

Σ . Γ′,Γ′′ | ∆ | Θ ` (λx.P)N : σ′
(( E)

Γ′,Γ′′ | ∆ | Θ ` (λx.P)N : σ
δ

Otherwise, ifM is a !-redex, then by Lemma 11 Π is

Γ′ | ∆, x : τ ′′ | Θ ` P : σ′′

Γ′ | ∆ | Θ ` λ!x.P : τ ′′( σ′′
(( IL)

Γ′ | ∆ | Θ ` λ!x.P : τ ′( σ′
δ′

Γ′′ | ∆ | Θ `!N : τ ′

Σ . Γ′,Γ′′ | ∆ | Θ ` (λ!x.P)!N : σ′
(( E)

Γ′,Γ′′ | ∆ | Θ ` (λ!x.P)!N : σ
δ

In both cases, δ and δ′ are (possibly empty) sequences of non-constructive rules:
it is easy to check that δ′ is a sequence of ∀-detours and µ-detours, since both the
initial and the final types are arrow types. By Lemma 15 there is a clean derivation
proving the same statement as Σ, such that δ′ is empty and A′′ = A′, τ ′′ = τ ′, σ′′ = σ′.
By Lemma 14 there is Σ′ . Γ′,Γ′′ | ∆ | Θ ` P[N/x] : σ′: then Π′ is obtained by
applying sequence δ to Σ′.

All the other cases follow easily by induction.

Furthermore we examine the depth of the free occurrences of a variable in a typed
λ!-term. The following property, similar to the result given in Theorem 1 for the
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untyped calculus, essentially depends on the restriction imposed on the premise of
rule (!), which is responsible for the fact that all free variables are either at depth 0

or 1, so effectively guaranteeing that the depth of a (sub)term does not increase:

Property 5 (Depth of a free variable). Let Π . Γ | ∆ | Θ ` M : σ and x ∈ FV(M):

- x ∈ dom(Γ) ∪ dom(Θ) if and only if x occurs at depth 0 inM,

- x ∈ dom(∆) if and only if x occurs at depth 1 inM.

Proof. By induction on Π.

Let Π be

Γ, x : A | ∆ | Θ ` x : A
(AxL)

Then x ∈ dom(Γ, x : A) ∪ dom(Θ) if and only if x occurs at depth 0 in x. The
case of (AxP ) is similar.

Let Π be

∅ | ∅ | Θ′, x : τ ` N : σ

Γ |!Θ′,∆′, x :!τ | Θ `!N :!σ
(!)

By inductive hypothesis x ∈ dom(Θ′, x : τ) if and only if x occurs at depth 0 in
N : then x ∈ dom(!Θ′,∆′, x :!τ) if and only if x occurs at depth 1 in !N .

All the other cases follow easily by induction.

Finally, by exploiting the results of Theorem 3 and Property 5, we are able to
show that the typed terms are exactly those of λ!-calculus:

Property 6. If a term is well-typed, then it is also well-formed.

Proof. Consider a derivation Π typingM. For each subderivation of Π of the shape

Γ, x : A | ∆ | Θ ` P : σ

Γ | ∆ | Θ ` λx.P : A( σ
(( IL) or

Γ | ∆, y :!τ | Θ ` Q : σ

Γ | ∆ | Θ ` λ!y.Q :!τ ( σ
(( II)

by Prop. 5 x occurs at most once at depth 0 in P, while all occurrences of y (if
any) are at depth 1 in Q: this corresponds exactly to the notion of well-formed terms
given in Definition 8.
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2.2.2 Types of data and pairs

In Section 2.1.5 we introduced the kind of λ!-terms which serve for the encoding
of data. For such terms we define the following datatypes, adapted from System F,
representing respectively booleans, Church tally integers, Church binary words and
Scott binary words:

B
def
= ∀a.a( a( a

N
def
= ∀a.!(a( a)(!(a( a)

W
def
= ∀a.!(a( a)(!(a( a)(!(a( a)

WS
def
= µb.∀a.(b( a)( (b( a)( (a( a)

Note that Scott binary words have already been used in the literature for the
study of light logics [LB06; RV10; BT10].

Representation of pairs As usual, it is possible to define the connective ⊗ for
pairs by second order as:

σ ⊗ τ def
= ∀a.(σ( τ ( a)( a.

For such new type construction, the following syntactic sugar on terms is specified:

M1 ⊗M2
def
= λx.xM1M2 : σ1 ⊗ σ2

λ(x1 ⊗ x2).M def
= λx.(xλy1y2.λz.zy1y2)(λx1x2.M) : (A1 ⊗ A2)( τ

λ!(x1 ⊗ x2).M def
= λx.(xλ!y1y2.λz.z!y1!y2)(λ!x1x2.M) : (!σ1⊗!σ2)( τ

πi
def
= λ(x1 ⊗ x2).xi : (A1 ⊗ A2)( Ai for i ∈ {1, 2}

π!
i

def
= λ!(x1 ⊗ x2).!xi : (!σ1⊗!σ2)(!σi for i ∈ {1, 2}

along with the two derivable reductions rules:

(λ(x1 ⊗ x2).N )(M1 ⊗M2)→ N [M1/x1,M2/x2]

(λ!(x1 ⊗ x2).N )(!M1⊗!M2)→ N [M1/x1,M2/x2].

Observe that, contrary to what one would expect, we chose not to define λ!(x1 ⊗
x2).M simply as λx.xλ!x1x2.M. The reason behind this choice is that the application
of the latter could require the substitution of a non-linear type to a type variable,
an operation which is forbidden by our typing system: indeed such behavior would
undermine subject reduction, a crucial property for the characterization we aim to
prove.

It is easy to check that the typing rules in Table 2.2 are derivable: the full proof
is given in Appendix A.2.
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Γ, x1 : A1, x2 : A2 | ∆ | Θ ` M : τ

Γ | ∆ | Θ ` λ(x1 ⊗ x2).M : (A1 ⊗ A2)( τ
(( IL⊗)

Γ | ∆, x1 :!σ1, x2 :!σ2 | Θ ` M : τ

Γ | ∆ | Θ ` λ!(x1 ⊗ x2).M : (!σ1⊗!σ2)( τ
(( II⊗)

Γ1 | ∆ | Θ ` M1 : σ1 Γ2 | ∆ | Θ ` M2 : σ2 Γ1#Γ2

Γ1,Γ2 | ∆ | Θ ` M1 ⊗M2 : σ1 ⊗ σ2
(⊗I)

Table 2.2: Rules for the ⊗ connective.

Basic and composite operations on datatypes First, let us observe that Scott
words allow for an easy definition of the basic operations on binary words and of the
case function:

cons0 def
= λw.λs0.λs1.λx.s0w : WS (WS

cons1 def
= λw.λs0.λs1.λx.s1w : WS (WS

tail
def
= λw.w I I nil : WS (WS

case
def
= λs0.λs1.λx.λw.ws0s1x : ∀a.(WS ( a)( (WS ( a)( a( (WS ( a)

For Church binary words, it is possible to define the following terms:

length
def
= λw.λ!s.(λ!x.!(λz.xz))(wss) : W( N

conv
def
= λw.(λ!x.!(x nil))(w !cons0 !cons1) : W(!WS

The former returns the length of a Church binary word as a tally integer, while the
latter turns a Church binary word into the corresponding Scott binary word.

Consider the following basic operations on Church binary words:

S0
def
= λw.λ!s0.λ

!s1.(λ
!y.!(λx.y(s0x)))(w!s0!s1) : W(W

S1
def
= λw.λ!s0.λ

!s1.(λ
!y.!(λx.y(s1x)))(w!s0!s1) : W(W

Z
def
= λ!s0.λ

!s1.!(λx.x) : W

By combining such operations, we can define a program which “raises” the depth of a
Church binary word, namely coer

def
= λw.(λ!y.!(yZ))(w!S0!S1) : W(!W, whose be-

havior is coer w =!w. By applying Property 1 to such term, it is possible to build the
program coerk

def
= λ!w.coerk(coerk−1(...(coer1 !w)...)) of type !W(!k+1W such

that coerk!w =!k+1w, for every k ≥ 1 and for any Church word w.
Moreover, we define ` iter :!A(!(A( A)( N(!A as the term which, when

applied to a base, a step function and a value n, iterates the step function n times
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starting from the base:

...
∅ | ∅ | x : A( A, b : A, s : A( A ` x b : A

∅ | x :!(A( A),∆ | ∅ `!(x b) :!A
(!)

∅ | ∆ | ∅ ` λ!x.!(x b) :!(A( A)(!A
(( I)

...
y : N | ∆ | ∅ ` y !s :!(A( A)

y : N | ∆ | ∅ ` (λ!x.!(x b))(y !s) :!A
(( E)

∅ | ∆ | ∅ ` λy.(λ!x.!(x b))(y !s) : N(!A
(( IL)

` λ!b.λ!s.λy.(λ!x.!(x b))(y !s) :!A(!(A( A)( N(!A
(( II)

where ∆ = b :!A, s :!(A( A). It is easy to check that, given terms base and step,
the terms (λ!b.λ!s.λy.(λ!x.!(x b))(y !s)) base step n and !(stepn base) reduce to
the same normal form.

2.2.3 Properties of typed λ!-terms

In order to give a characterization of functions through programs of λ!-calculus,
we need to be able to extract the output result which is computed by the program on
a given input: in particular, what we aim to prove is a sort of inverted Generation
Lemma, in which the shape of the term can be inferred from its type, where both
the term and the type satisfy some conditions of normalization and closure.

We start by examining under which conditions a λ!-term with a ! type is either a
! term or an application:

Property 7. Let Π . Γ | ∆ | ∅ ` M :!σ, whereM∈ nf0. Then:

i. Γ = ∅ impliesM =!N for some N .

ii. if there is x ∈ FV(M) such that Γ(x) is defined, thenM = NQ for some N ,Q.

Proof. Both points follow by induction on Π. Observe that the only rules which can
assign a non-linear type are (AxP ), (!) and (( E).

i. Let Γ = ∅.

Since the parking basis is empty, Π cannot be an application of (AxP ).

If Π ends with an application of rule (!), then the proof is trivial.

Now let Π end with an application of rule (( E). Observe thatM ∈ nf0, so
M is not a redex; moreover, the case M = xP1...Pn is not possible, since by
Property 5 x should occur either in the linear or in the parking basis, which are
both empty. To rule out the last possibility, assume thatM is a block and Π is

Π1 . ∅ | ∆ | ∅ ` λ!x.P :!τ (!σ Π2 . ∅ | ∆ | ∅ ` N2 :!τ

∅ | ∆ | ∅ ` (λ!x.P)Q :!σ
(( E)
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where Q 6=!N . However, by inductive hypothesis on Π2 we know that Q =!N
for some N : thenM cannot be an application, so the last rule is not (( E).

ii. Let Γ = Γ′, x : A. Since the conclusion of rule (!) is such that no variable in the
linear basis occurs inM, Π cannot end with an application of rule (!): then Π

ends with an application of rule (( E) andM = NQ for some N ,Q.

Secondly, we identify some criteria according to which a term is not an application:

Lemma 16. Let Π . Γ | ∅ | ∅ ` M : σ such thatM∈ nf0:

i. if Γ(x) = a for every x ∈ FV(M), thenM is not an application;

ii. if σ 6= a and for every x ∈ FV(M) either Γ(x) = a or Γ(x) = A( a, thenM
is not an application.

Proof. For both points we proceed by induction on Π.
The only non obvious case is that of Π ending with an application of rule

(( E), followed by a (possibly empty) sequence δ of non-constructive rules: then
M =M1M2 and Π is

Π1 . Γ1 | ∅ | ∅ ` M1 : ρ( τ Π2 . Γ2 | ∅ | ∅ ` M2 : ρ

Γ1,Γ2 | ∅ | ∅ ` M1M2 : τ
(( E)

Γ1,Γ2 | ∅ | ∅ ` M1M2 : σ
δ

By inductive hypothesisM1 is not an application; moreover,M1 cannot be a linear
abstraction, since by hypothesisM∈ nf0. AssumeM1 = λ!x.P , with ρ =!µ for some
µ. If Γ2 = ∅, then by Property 7.iM2 =!Q: but this contradicts the hypothesis, since
M ∈ nf0. Otherwise, by Property 7.iiM2 is an application: but this contradicts
the inductive hypothesis, since every premise in Γ2 has type a or A( a and !µ 6= a,
thus neitherM2 norM are applications. Finally, assumeM1 to be a variable y:

i. in the first case, since all variables in Γ1 have type a,M1 cannot be a variable;

ii. in the second case, since all variables in Γ1 have either type a or A ( a and
ρ( τ is an arrow type, then ρ( τ = A( a: but this would mean τ = a = σ

(δ being the empty sequence), which in turn would contradict the hypothesis
that σ 6= a, soM1 cannot be a variable.

With these ingredients, we are finally able to prove the reading property of B

and WS, namely the fact that every derivation assigning such datatype is inhabited
by a corresponding data, where both the type and the term are at depth k ≥ 0:
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Property 8 (Reading property of B and WS).

i. If ` M :!kB andM∈ nfk, thenM =!ktrue or !kfalse, for k ≥ 0.

ii. If Γ | ∅ | ∅ ` M :!kWS and M ∈ nfk, such that for each x ∈ dom(Γ) either
Γ(x) = a or Γ(x) = A( a, then M =!kŵ for some Scott binary word ŵ, for
k ≥ 0.

Proof. Assume Π to be a clean derivation by Lemma 15: both points are proved by
induction on k.

i. Let k = 0. By Lemma 16,M is not an application; moreover,M being closed
implies that it cannot be a variable: then either M = λx.N or λ!x.N , so by
Lemma 11 the derivation is

Π . Γ | ∆ | ∅ ` N : τ

∅ | ∅ | ∅ ` M : σ( τ
(( I∗)

∅ | ∅ | ∅ ` M : ∀a.a( a( a
δ

where either the rule is (( IL), with Γ = x : σ and ∆ = ∅, or the rule is (( II),
with Γ = ∅ and ∆ = x : σ, where δ is a sequence of non-constructive rules. Since
the derivation is clean, δ is an application of rule (∀I), so σ( τ = a( a( a

and Π . x : a | ∅ | ∅ ` N : a( a is followed by an application of rule (( IL).
Again by Lemma 16, N cannot be an application; moreover, N cannot be a
variable because of the context: then either N = λy.P or N = λ!y.P. By
repeating the same reasoning as before, N = λy.P and Π is obtained by applying
rule (( I) to Π′ . x : a, y : a | ∅ | ∅ ` P : a.
By Lemma 16.i, P cannot be an application; moreover P cannot be an abstraction,
otherwise x : a, y : a | ∅ | ∅ ` P : a would be obtained by applying either rule
(( IL) or rule (( II) to Π′, followed by a sequence of non-constructive rules:
but both abstraction rules derive an arrow type, whereas a cannot be obtained
from σ( τ by means of applications of non-constructive rules.
Therefore P is a variable, so eitherM = λx.λy.x orM = λx.λy.y.

Now let k = i + 1. By Property 7.i, M =!N ; moreover, by Lemma 11 the
derivation ends with an application of rule (!) to ∅ | ∅ | ∅ ` N :!iB. By inductive
hypothesis either N =!itrue or N =!ifalse: then the proof follows from the
fact thatM =!N , so eitherM =!i+1true orM =!i+1false.

ii. Let k = 0. By Lemma 16.ii,M is not an application; moreover,M cannot be a
variable because of the constraints on the type of the variables in Γ: then either
M = λf0.N or λ!f0.N . By Lemma 11, the derivation is

Π . Γ′ | ∆′ | ∅ ` N : τ

Γ | ∅ | ∅ ` M : σ( τ
(( I∗)

Γ | ∅ | ∅ ` M : µb.∀a.(b( a)( (b( a)( (a( a)
δ
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where the last rule is either (( IL), with Γ′ = Γ, f0 : σ and ∆ = ∅, or (( II),
with Γ′ = Γ and ∆ = f0 : σ, where δ is a sequence of applications of non-
constructive rules: then, since the derivation is clean, δ is an application of rule
(∀I) followed by an application of rule (µI), so σ( τ = (WS ( a)( (WS (

a) ( (a( a) and Π . f0 : WS ( a,Γ | ∅ | ∅ ` N : (WS ( a) ( (a( a) is
followed by an application of rule (( IL): observe that a 6∈ FTV(Γ) because of
the side condition of rule (∀I).
By Lemma 16.ii, N cannot be an application; moreover, given the basis Γ,
N cannot be a variable: then N is an abstraction. By repeating the same
reasoning as before, N = λf1.P and Π is obtained by applying rule (( IL) to
Π′ . f0 : WS ( a, f1 : WS ( a,Γ | ∅ | ∅ ` P : a( a.
By following exactly the same steps, P = λx.Q and Π′ is obtained by applying
rule (( IL) to Π′′ . f0 : WS ( a, f1 : WS ( a, x : a,Γ | ∅ | ∅ ` Q : a.
Notice that Q cannot be an abstraction, since it has a variable type, so Q is
either a variable or an application. In the former case, since a does not occur
free in Γ, the only variable that can have type a is x, soM = λf0.λf1.λx.x = ε̂.
In the latter case, Q = Q1Q2 and Π′′ is obtained by applying rule (( E) to
Γ1 | ∅ | ∅ ` Q1 : σ ( a, Γ2 | ∅ | ∅ ` Q2 : σ, where Γ1,Γ2 = f0 : WS ( a, f1 :

WS ( a, x : a,Γ. Since by hypothesis Q ∈ nf0, we know that Q1 is not a linear
abstraction; moreover, by Lemma 16.ii Q1 is not an application: then Q1 is a
variable and the derivation is

Γ1 | ∅ | ∅ ` fi : WS ( a
(AxL)

Σ . Γ2 | ∅ | ∅ ` Q2 : WS

Γ1,Γ2 | ∅ | ∅ ` fiQ2 : a
(( E)

for i ∈ {0, 1}. By induction hypothesis on Σ, Q2 is a binary word ŵ: then either
M = λf0.λf1.λx.f0ŵ = 0̂w orM = λf0.λf1.λx.f1ŵ = 1̂w.

Now let k = i+ 1. By applying Property 7.i we know thatM =!N ; moreover, by
Lemma 11 the derivation ends with an application of rule (!) to ∅ | ∅ | ∅ ` N :!iWS.
By inductive hypothesis N =!iŵ for some Scott binary word ŵ: then the proof
follows from the fact thatM =!N =!i+1ŵ.

2.2.4 Complexity soundness

We are interested in giving a precise account of the hierarchy of classes character-
ized by the typed λ!-calculus. In particular, we want to show that it is possible to
represent exactly the class k-EXP by considering a subclass of typed λ!-terms, whose
type depends on the parameter k. Before presenting the main complexity result, we
briefly introduce the notations used to identify the hierarchy of complexity classes.
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Complexity classes

Let FDTIME(f(n)) and DTIME(f(n)) be respectively the class of functions and the
class of predicates on binary words computable on a deterministic Turing machine in
time O(f(n)). The complexity classes that we wish to capture are the following ones:

k-EXP = ∪i∈NDTIME(2n
i

k ) for k ≥ 0

k-FEXP = ∪i∈NFDTIME(2n
i

k ) for k ≥ 0

In particular, observe that the classes of polynomial time predicates and polynomial
time functions are defined respectively by PTIME = ∪i∈NDTIME(ni) = 0-EXP and
FPTIME = ∪i∈NFDTIME(ni) = 0-FEXP.

Soundness result

In this subsection we want to study the relation between the type of a program
representing a function and the complexity class to which such function belongs. In
particular, we show that a closed term of type !W(!k+2B and a closed term of type
!W(!k+2WS represent respectively a predicate and a function which, when applied
to a word of length n, can be evaluated in time O(2

p(n)
k ) for some polynomial p.

Let F (σ) denote the class of functions represented by programs of type σ. First,
we prove that F (!W (!k+2B) ⊆ k-EXP, namely, that every program having type
!W(!k+2B represents (in the sense of Section 2.1.5) a predicate of k-EXP:

Theorem 4. Let ` P :!W (!k+2B and ` w : W, where P is a program and
length(w) = n; then the reduction P!w

∗→!k+2D can be computed in time 2
p(n)
k ,

where D is either true or false and p is a polynomial.

Proof. LetM′ be the normal form of P!w. By Property 4, we know that P!w
k+2

can be reduced to a term N ∈ nfk+2 in time O(2
p(n)
k ) on a Turing machine, where

n = length(w). MoreoverM′k+2
= N by combining Lemma 9.i and Property 1.ii.

Since P !w has type !k+2B, by Theorem 3M′ is a closed term of type !k+2B: then by
Property 8.iM′ is either !k+2true or !k+2false.
Since N =M′k+2

=M′, P!w can be computed in time O(2
p(n)
k ).

The soundness result can be extended to functions in order to show that F (!W(

!k+2WS) ⊆ k-FEXP, that is, every program of type !W(!k+2WS represents a function
of k-FEXP. This can be easily proved by retracing the same steps of the previous
proof and by applying the reading property of Scott binary words in order to extract
the output:

Theorem 5. Let ` P :!W (!k+2WS and ` w : W, where P is a program and
length(w) = n; then the reduction P!w

∗→!k+2ŵ′ can be computed in time 2
p(n)
k ,

where ŵ′ is a Scott binary word and p is a polynomial.
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Π

...
∅ | ∅ | w : W ` coer w :!W

∅ | ∅ | w : W ` iter(coer w) :!(W(W)( N(!W
(( E)

Σ

∅ | ∅ | w : W ` iter(coer w)(!lenX2) : N(!W
(( E)

...
∅ | ∅ | w : W ` (length w) : N

∅ | ∅ | w : W ` iter(coer w)(!lenX2)(length w) :!W
(( E)

∅ | w :!W | ∅ `!(iter(coer w)(!lenX2)(length w)) :!2W
(!)

` λ!w.!(iter(coer w)(!lenX2)(length w)) :!W(!2W
(( I)

where
Π . ∅ | ∅ | w : W ` iter :!W(!(W(W)( N(!W

Σ . ∅ | ∅ | w : W `!lenX2 :!(W(W)

Figure 2.4: Term of type !W(!2W representing an exponential function.

Proof. We proceed exactly as before, up to the application of the reading property:
by Property 8.ii, the output of the computation is !k+2ŵ′, where ŵ′ is a Scott binary
word, and the evaluation of P!w is done in time O(2

p(n)
k ).

One might wonder why we should use Scott binary words as the output type for
the representation of functions, instead of Church binary words, as the latter would
seem like a more obvious direction to take.
Considering the case of k = 0, the reason behind such refusal is easily explained by
the fact that Church binary words are data of depth 1: from the point of view of
expressivity, there are some FPTIME functions which are not captured by terms of
type !W(!W, while programs of type !W(!2W allow also the typing of functions
outside the FPTIME class, like exponential functions.
As a proof of the latter claim, let lenX2 def

= λw.λ!f0.λ
!f1.(λ

!y.!(λx.y(yx)))(wf0f1) be
the program of type W ( W whose behavior is that of doubling the length of a
binary word: then we can easily build λ!w.!(iter(coer w)(!lenX2)(length w)) of
type !W(!2W (see Figure 2.4) which, when supplied with a binary word !w, returns
a word of length 2n, where n = length(w).

2.2.5 Completeness

In Section 2.2.4 we proved both F (!W(!k+2B) ⊆ k-EXP and F (!W(!k+2WS) ⊆
k-FEXP: we now want to strengthen these results by examining the converse inclusions,
namely, by showing that for every predicate of k-EXP (resp. function of k-FEXP) there
is at least one program of type !W(!k+2B (resp. !W(!k+2WS) representing it.

In order to achieve such results, we simulate time-bounded Turing machines
through terms of λ!-calculus; we then prove that the computation of a desired
function can be performed through a term of λ!-calculus respecting the given time
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complexity bound. We start by showing how to encode polynomials on tally integers,
which are needed to bound the iterations of the machine; we then proceed to define
the encoding of a Turing machine itself through λ!-calculus.

Encoding polynomials

We begin by proving the functoriality of the ! modality, which is needed to define
coercions of some key λ!-terms:

Proposition 1. Let ` M : σ1 ( ...( σn( τ for some n > 0: then there is a term
Mk such that ` Mk :!kσ1 ( ...(!kσn(!kτ , andMk!kP1...!

kPn and !k(MP1...Pn)

have the same normal form, for any closed term Pi (1 ≤ i ≤ n), for any k ≥ 1.

Proof. By induction on k.
Let k = 1. By applying n times rule (( E) to ` M : σ1 ( ... ( σn ( τ

and to the parking axioms ∅ | ∅ | xi : σi ` xi : σi (1 ≤ i ≤ n), we obtain the proof
∅ | ∅ | x1 : σ1, ..., xn : σn ` Mx1...xn : τ . By applying rule (!) to such derivation,
followed by n applications of rule (( II), we obtain ` λ!x1...xn.!(Mx1...xn) :!σ1 (

...!σn(!τ . Observe that (λ!x1...xn.!(Mx1...xn))!P1...!Pn and !(MP1...Pn) have the
same normal form, since the former can be easily reduced to the latter by n reduction
steps:

(λ!x1...xn.!(Mx1...xn))!P1...!Pn → (λ!x2...xn.!(MP1x2...xn))!P2...!Pn
∗→ (λ!xn.!(MP1P2...Pn−1xn))!Pn
→ !(MP1...Pn)

The inductive case follows easily.

The multiplication and the sum of two tally integers are given respectively by
` mult : N( N( N and ` add : N( N( N, where mult

def
= λn.λm.λ!s.n(m!s)

and add
def
= λn.λm.λ!s.(λ!x.λ!y.!(λz.x(yz)))(n!s)(m!s).

Example 7. The type derivation for add is the following:

Σ . ∅ | ∅ | s : a( a, x : a( a, y : a( a | ∅ ` λz.x(yz) : a( a

∅ | s :!(a( a), x :!(a( a), y :!(a( a) | ∅ `!(λz.x(yz)) :!(a( a)
(!)

∅ | s :!(a( a) | ∅ ` λ!x.λ!y.!(λz.x(yz)) :!(a( a)(!(a( a)(!(a( a)
(( II)

Πn

n : N | s :!(a( a) | ∅ ` (λ!x.λ!y.!(λz.x(yz)))(n!s) :!(a( a)(!(a( a)
(( E)

Πm

n : N,m : N | s :!(a( a) | ∅ ` (λ!x.λ!y.!(λz.x(yz)))(n!s)(m!s) :!(a( a)
(( E)

n : N,m : N | ∅ | ∅ ` λ!s.(λ!x.λ!y.!(λz.x(yz)))(n!s)(m!s) :!(a( a)(!(a( a)
(( II)

n : N,m : N | ∅ | ∅ ` λ!s.(λ!x.λ!y.!(λz.x(yz)))(n!s)(m!s) : N
(∀I)

` λn.λm.λ!s.(λ!x.λ!y.!(λz.x(yz)))(n!s)(m!s) : N( N( N
(( IL)

where Πn . n : N | s :!(a ( a) | ∅ ` n!s :!(a ( a), Πm . m : N | s :!(a ( a) | ∅ `
m!s :!(a( a) and Σ are easy to obtain.
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From this point forward, for any given M of type σ1 ( ...( σn( τ we de-
note byMk the term of type !kσ1 ( ...(!kσn(!kτ such that !k(M P1...Pn) and
Mk!

kP1...!
kPn reduce to the same normal form, by implicitly applying Property 1.

By composing addition and multiplication with the term representing the expo-
nential function, it is possible to represent all the functions of the form 2

q(n)
k on tally

integers, for some polynomial q(n) and k ≥ 0:

Lemma 17. If p is a polynomial over one variable with coefficients in N, then

i) there isM representing p(n) such that ` M :!N(!N;

ii) there isM representing 2
p(n)
k such that ` M :!N(!k+1N, for any k ≥ 1.

Proof. i) Given Πadd. ` add : N( N( N and Πmult. ` mult : N( N( N, there
is a termM, obtained by composing add and mult in a suitable way, representing
the polynomial q(n), such thatM :!N(!N. Indeed, let Π . ∅ | ∅ | x : N ` N : N

be a composition of add and mult with argument x; then the derivation forM
is

Π . ∅ | ∅ | x : N ` N : N

∅ | x :!N | ∅ `!N :!N
(!)

` λ!x.!N :!N(!N
(( II)

As an example, the polynomial function q(n) = n2 is represented by the program
` λ!x.!(mult x x) :!N(!N.

ii) The function f(n) = 2n is represented by Πdouble. ` double
def
= mult 2 : N( N;

then the function 2n can be represented by iterating double, so the resulting
derivation Πexp is

...
. ` λ!y.!(y 1) :!(N( N)(!N

...
x : N | ∅ | ∅ ` x !double :!(N( N)

Φ . x : N | ∅ | ∅ ` (λ!y.!(y 1))(x !double) :!N
(( E)

` exp def
= λx.(λ!y.!(y 1))(x !double) : N(!N

(( IL)

Let Πexpk. ` expk : N(!kN, where expkn = expk−1(expk−2(...(exp1(exp n))...))

is the program representing function 2nk , for every k ≥ 0.
The derivation obtained by applying Property 1 to Πexpk is composed with
` M :!N(!N, whereM represents the polynomial q(n); then the term of type
!N(!k+1N representing 2

q(n)
k is obtained in the following way:

...
∅ | ∅ | x : N, y : N ` expky :!kN

∅ | x :!N, y :!N | ∅ `!(expky) :!k+1N
(!)

∅ | x :!N | ∅ ` λ!y.!(expky) :!N(!k+1N
(( II)

...
∅ | x :!N | ∅ ` M!x :!N

∅ | x :!N | ∅ ` (λ!y.!(expky))(Mx) :!k+1N
(( E)

` λ!x.(λ!y.!(expky))(Mx) :!N(!k+1N
(( I)
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Simulation of Turing machines

In the previous section we showed how to represent polynomials and exponentials
on tally integers in λ!-calculus: now, such results are employed to simulate k-EXP-time
bounded Turing machines.

For simplicity, the notation for the tensor product can be generalized to the n-ary
case, withM1 ⊗ ...⊗Mn

def
= λx.xM1...Mn and λ(x1 ⊗ ...⊗ xn).N def

= zλx1. ...λxn.N ,
for n ≥ 2. If σ1⊗ ...⊗σn

def
= ∀a.(σ1 ( ...( σn( a)( a, then the rules of Table 2.2

can be extended accordingly to (( IL⊗n), (( II⊗n) and (⊗nI).
Furthermore, we can generalize the boolean datatype to the n-ary case by defining

Bn def
= ∀a. a( ...( a︸ ︷︷ ︸

n

( a, typing normal forms of the shape λx1....λxn.xi for some

i ∈ {1, ..., n} and n ≥ 1; note that B2 = B.

Configurations and transitions of a Turing machine Let M be a Turing
machine with alphabet Σ = {0, 1} and a set of n statesQn = {q1, ..., qn}. We represent
the configurations of a one-tape Turing machine M over a binary alphabet with
n states through a term NL ⊗ P ⊗NR ⊗ P, having type C

def
= WS ⊗ B⊗WS ⊗ Bn,

where:

1. the first component of type WS represents the portion of the tape on the left-hand
side of the scanned symbol, in reverse order;

2. the second component of type B represents the currently scanned symbol;

3. the third component of type WS represents the portion of the tape on the right-
hand side of the scanned symbol;

4. the fourth and final component of type Bn represents the current state of the
machine.

We define 1̃ to be the first value of type Bn, where n is the number of states of
M, which is conventionally chosen to represent the initial state of the machine.

As a last tool in order to prove the completeness result, we need to define three
more terms, which allow us to simulate the operations of a Turing machine through
λ!-calculus:

Lemma 18 (Transitions of a Turing machine). Let M be a one-tape deterministic
Turing machine over a binary alphabet; then the following programs can be typed:

i) ` init : WS ( C, mapping a Scott binary word to the corresponding initial
configuration of M;

ii) ` step : C( C, computing the next configuration of M based on the current
configuration;



58 CHAPTER 2. POLYVALENT CHARACTERIZATION

iii) ` accept : C ( B, returning true (respectively false) if the state of the
current configuration is accepting (respectively rejecting);

iv) ` extract : C(WS, returning the binary word written on the tape.

Proof. We show how to define each of the described terms; the respective typings
are trivial and thus their proof is omitted.

i. We define init as init def
= caseM1M2M3, whereM1 = λw.nil⊗ true⊗ w ⊗ 1̃,

M2 = λw.nil⊗ false⊗ w ⊗ 1̃ andM3 = nil⊗ false⊗ nil⊗ 1̃.

ii. The term step can be defined by retracing the transition function of M and by
doing a case distinction.

iii. We define accept def
= λ(yL ⊗ x⊗ yR ⊗ s).sQ1...Qn where, for 1 ≤ i ≤ n,Qi = true

(respectively Qi = false) if the state encoded by the i-th element of type Bn is
accepting (respectively rejecting) for M.

iv. The last term, returning the right-hand tape portion of the tape, is trivially
defined as extract def

= λ(yL ⊗ x⊗ yR ⊗ s).yR.

Finally we have all the necessary ingredients to prove the main completeness
result:

Theorem 6 (Extensional completeness).

i. Let f be a binary predicate in k-EXP, for any k ≥ 0; then there is a term M
representing f such that ` M :!W(!k+2B.

ii. Let g be a function on binary words in k-FEXP, for k ≥ 0; then there is a term
M representing g such that ` M :!W(!k+2WS.

Proof.

i. Let M be a deterministic Turing machine of time 2
q(n)
k computing a binary

function f on binary words.
By Lemma 17 there is a derivation ` Q :!N(!k+1N representing 2

q(n)
k . Moreover,

the following derivations can be easily built:

Π . ∅ | w :!W | ∅ ` initk+2(convk+1(coerk !w)) :!k+2C

Σ . ∅ | w :!W | ∅ `!k+2step :!k+2(C( C)

Φ . ∅ | w :!W | ∅ ` Q(length1 !w) :!k+1N

Observe that Π types the initial configuration at depth k + 2, which is obtained
by applying the initializing function to the input word w, while Σ types the step
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function at depth k + 2 and Φ types the tally integer representation of 2
q(n)
k at

depth k + 1.
Let P = iterk+1(initk+2(convk+1(coerk !w)))(!k+2step)(Q(length1 !w)) be
the term obtained by applying iterk+1 to such typed terms, thus iterating the
step function 2

q(n)
k times starting from the initial configuration, which is typed

by applying ∅ | w :!W | ∅ ` iterk+1 :!k+2C(!k+2(C( C)(!k+1N(!k+2C to
derivations Π, Σ and Φ in turns; let Ψ . ∅ | w :!W | ∅ ` P :!k+2C be the derivation
obtained by this construction.
Then we can apply rule (( E) to ∅ | w :!W | ∅ ` acceptk+2 :!k+2C(!k+2B and
to Ψ, followed by one application of rule (( II) to abstract over w, in order to
obtain the desired derivation.

ii. The proof retraces the same steps of the previous point, up to the construc-
tion of Ψ; then the desired derivation is obtained by applying rule (( E) to
∅ | w :!W | ∅ ` extractk+2 :!k+2C(!k+2WS and to Ψ, followed by one applica-
tion of rule (( II) to abstract over w.

Observe that, as usual, such completeness results hold in the sense of function
representation, whereas few polynomial time algorithms can actually be implemented
by λ!-term of the desired type. We do not claim our typed language to be algorith-
mically expressive in this sense; instead, the interest of the present approach lies
in the simple setting it provides in order to obtain a characterization of a family of
complexity classes in a generic way.

By looking at the type of programs representing functions of FPTIME, one obvious
drawback of such characterization is the fact that it does not account for composi-
tionality; indeed polytime functions are closed by composition, while the mismatch
of input and output type of our programs, paired with the nonexistence of a coercion
from Scott to Church binary words, makes it so that they cannot be composed: for
such reason, in the next section we offer an alternative characterization which is
capable of solving the issue.

2.3 Composite types for an alternative characterization

In order to be able to compose programs representing FPTIME functions, we want
to define a datatype which is better suited to serve as both input and output type
of a function. To this aim, we wish to represent a word w′ ∈ {0, 1}? through a pair
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〈n,w〉, where n ∈ N, w ∈ {0, 1}?, such that the following invariant holds:

w′ =

w, if length(w) ≤ n

prefix of w of length n, otherwise.

The ⊗ operator on types, defined in Section 2.2.2, comes in handy for the
representation of a pair of datatypes. Nevertheless, the depth of each component has
to be chosen carefully. Consider again the case of k = 0, namely, the characterization
of FPTIME: if we take the pair N⊗WS as both input and output type of a program,
then we do not achieve much expressivity since no duplication is possible at depth
0; similarly, by considering a pair of the shape !N⊗!WS , then the iteration of the
second component based on the first integer component is forbidden, again affecting
completeness.

However, the latter property gives a hint on the right shape of the pair to be
chosen: the iter term is typed in such a way that, if the natural number it expects
is at depth i, then its other arguments and its result are at depth i + 1. We thus
introduce a new combined datatype defined as !k+1N⊗!k+2WS , for k ≥ 0, containing
a pair of a Church integer n and a Scott binary word ŵ, where n is meant to represent
the length of a list, whose content is described by ŵ; so, in particular, we choose the
datatype !N⊗!2WS for k = 0.

Notation 1 (Match). We use the following notation:

match w with cons0u ⇒M0[u, x]

cons1u ⇒M1[u, x]

nil ⇒ N [x]

as syntactic sugar for w λu.λx.M0 λu.λx.M1 λx.N x, where x stands for a sequence
of variables x1...xn, while λx.M stands for the abstraction λx1. ...λxn.M, for n ≥ 1.

Note that such notation is also equivalent to case λu.λx.M0 λu.λx.M1 λx.N w x.
When computing on elements !k+1n⊗!k+2ŵ of type !k+1N⊗!k+2WS , we want

to maintain the invariant that length(w) ≤ n, which is enforced by the following
lemma:

Lemma 19 (Invariant of composite datatype). For any k ≥ 0, there exists a term
` M :!N(!2WS (!k+2WS for k ≥ 0 such that, for any n and ŵ,

M!n!2ŵ
∗→!k+2ŵ′

where w′ = w if length(w) ≤ n, otherwise w′ is the prefix of w of length n.

Proof. Let Ai = (!iW(!iW)⊗W = ∀a.((!iW(!iW)(W( a)( a and consider
the following terms:
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` step0 = λ(f ⊗ u). match u with cons0v ⇒ λy.(f (cons0y))⊗ v
cons1v ⇒ λy.(f (cons1y))⊗ v
nil ⇒ f ⊗ nil

: A0 ( A0

` stepi+1 = λ(f ⊗ u). match u with cons0v ⇒ λ!y.(f !(cons0
i y))⊗ v

cons1v ⇒ λ!y.(f !(cons1
i y))⊗ v

nil ⇒ f ⊗ nil

: Ai+1 ( Ai+1

where ` cons0
i :!iWS (!iWS and ` cons1

i :!iWS (!iWS are obtained as usual by
applying Property 1 to ` cons0 : WS (WS and ` cons1 : WS (WS respectively.

Then the desired programM is built as follows:

Σ

...
∅ | ∅ | Θ ` n!stepk :!(Ak ( Ak)

∅ | ∅ | Θ ` (λ!y.λ!z.!((π1(y(I ⊗ z)))!k ε̂))(n!stepk) :!WS (!k+1WS

(( E)
∅ | ∅ | Θ ` w :!WS

(AxP )

∅ | ∅ | Θ ` (λ!y.λ!z.!((π1(y(I ⊗ z)))!k ε̂))(n!stepk)w :!k+1WS

(( E)

∅ | n :!N, w :!2WS | ∅ `!((λ!y.λ!z.!((π1(y(I ⊗ z)))!k ε̂))(n!stepk)w) :!k+2WS

(!)

` λ!n.λ!w.!((λ!y.λ!z.!((π1(y(I ⊗ z)))!k ε̂))(n!stepk)w) :!N(!2WS (!k+2WS

(( II⊗)

where Π is:

...
∅ | ∅ | Θ′ ` π1 : Ak ( (!kWS (!kWS)

∅ | ∅ | Θ′ ` y : Ak ( Ak
(AxP )

Σ

∅ | ∅ | Θ′ ` y(I ⊗ z) : Ak

∅ | ∅ | Θ′ ` π1(y(I ⊗ z)) :!kWS (!kWS

...
∅ | ∅ | Θ′ `!k ε̂ :!kWS

∅ | ∅ | Θ′ ` (π1(y(I ⊗ z)))!k ε̂ :!kWS

(( E)

∅ |!Θ′ | Θ `!((π1(y(I ⊗ z)))!k ε̂) :!k+1WS

(!)

∅ | ∅ | Θ ` λ!y.λ!z.!((π1(y(I ⊗ z)))!k ε̂) :!(Ak ( Ak)(!WS (!k+1WS

(( IL)

and Σ is

...
∅ | ∅ | Θ′ ` I : ∀a.a( a

∅ | ∅ | Θ′ ` I :!kWS (!kWS

(∀E)
∅ | ∅ | Θ′ ` z : WS

(AxP )

∅ | ∅ | Θ′ ` I ⊗ z : Ak
(⊗I)

with Θ = n : N, w :!WS and Θ′ = y : Ak ( Ak, z : WS .
It is easy to check that M!n!2WS and !2((π1(stepnk(I ⊗ ŵ)))!k ε̂) reduce to the

same normal form, which is the word !k+2ŵ′ such that w′ is a prefix of w and
length(w′) ≤ n.



62 CHAPTER 2. POLYVALENT CHARACTERIZATION

Retracing the reading properties of datatypes B and WS , we need to examine
under which conditions we can read out a value of the composite datatype. In order
to do so, we need a few intermediary results about the shape of terms which are
typed either with a ! type or with a type variable:

Lemma 20 (Term of ! type). Let Π . Γ | ∅ | Θ ` M :!τ and M ∈ nf0, such that
Γ,Θ ⊆ x : σ1 ( ...( σn ( a, y1 : a1, ..., yk : ak (n ≥ 1, k ≥ 0): then M =!N for
some N .

Proof. By induction on Π.
By inspecting the rules of the system, the last application of Π is of either rule (!) or
rule (( E).

Let Π end with an application of rule (!): then the result follows trivially.
Otherwise, let Π be

Π1 . Γ1 | ∅ | Θ ` P : ρ(!τ Π2 . Γ2 | ∅ | Θ ` Q : ρ

Γ1,Γ2 | ∅ | Θ ` PQ :!τ
(( E)

whereM = PQ and Γ = Γ1,Γ2. Let us check all three possible cases:

- letM = (λz.R)A(!τQA, soM is be a β-redex, which contradicts the hypothesis
thatM∈ nf0: therefore this case is not possible;

- letM = (λ!z.R)!σ(!τQ!σ, so by inductive hypothesis Q =!Q′ for some Q′, and
M is a !-redex, which contradicts the hypothesis thatM∈ nf0: therefore this
case is not possible;

- letM = zρ1(...(ρm(!τPρ11 ...Pρmm , where z = x because x is the only variable to
be assigned an arrow type in Γ, therefore Π1 . Γ1 | ∅ | Θ ` xP1...Pm−1 : σ(!τ

and Π2 . Γ2 | ∅ | Θ ` Pm : σ: since every application of x to m ≤ n subterms
produces a term having either an arrow type or a type variable, this case is
not possible.

Therefore, Π cannot end with an application of rule (( E).

Lemma 21 (Term of type variable). Let Π . Γ | ∅ | Θ ` M : a, such thatM∈ nf0

and Γ,Θ = x : σ1 ( ... ( σn ( a, y1 : a1, ..., yk : ak (n ≥ 1, k ≥ 0): then either
M = yi, if a = ai, orM = xP1...Pn for some P1, ...,Pn.

Proof. By induction on Π.
Since a is not an arrow type, Π cannot end with rule (( IL) nor (( II). Similarly,

the last application cannot be of a non-constructive rule, since the assumption of Π

being clean. Moreover, since the type is linear, Π cannot end with an application of
rule (!).
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Let Π end with an application of rule (AxL) (resp. (AxP )): then there is
yi ∈ dom(Γ) (resp. yi ∈ dom(Θ)) such that x = yi and a = ai, therefore the first
point has been proved.

Otherwise, let Π be

Π1 . Γ1 | ∅ | Θ ` P : ρ( a Π2 . Γ2 | ∅ | Θ ` Q : ρ

Γ1,Γ2 | ∅ | Θ ` PQ : a
(( E)

whereM = PQ and Γ = Γ1,Γ2. SinceM∈ nf0, there are only two possibilities:

- let M = (λ!y.P)!τ(aQ!τ where Q 6=!Q′, namely M is a block; by applying
Lemma 20 to Π2 . Γ2 | ∅ | Θ ` Q :!τ , we know that Q =!Q′, which contradicts
the hypothesis thatM∈ nf0: thereforeM is not a block;

- letM = zρ1(...(ρm(aPρ11 ...Pρmm ; since x is the only variable to be assigned an
arrow type whose rightmost type is a, we know that Π . Γ | ∅ | Θ ` xP1...Pn : a

and m = n, where x is introduced either through rule (AxL), if x ∈ dom(Γ),
or through rule (AxP ), if x ∈ dom(Θ): therefore the second point has been
proved.

Now we are able to prove a reading result, similar to the ones of Property 8, for
both pairs and Church integers:

Property 9 (Reading property of pairs). If ` M : (σ1 ⊗ σ2) and M ∈ nf0, then
there are ` M1 : σ1 and ` M2 : σ2 such thatM =M1 ⊗M2.

Proof. Consider a clean derivation Π proving ` M : ∀a.((σ1 ( σ2 ( a)( a). Since
Π is clean, the derivation ends with an application of rule (∀I), whose premise is
Π′. ` M : (σ1 ( σ2 ( a)( a.
By Lemma 16 and by the fact that all bases are empty,M is not an application nor
a variable; thenM is an abstraction, in particular a linear one since the type is of
the shape A( a, soM = λx.N and Π′ ends with an application of rule (( IL),
whose premise is Π′′ ` x : σ1 ( σ2 ( a | ∅ | ∅ ` N : a.
By applying Lemma 21 to Π′′, N = xM1M2 for some termsM1,M2, so Π′′ is

Γ | ∅ | ∅ ` x : σ1( σ2( a
(AxL)

Σ1. ` M1 : σ1

Γ | ∅ | ∅ ` xM1 : σ2( a
(( E)

Σ2. ` M2 : σ2

Γ | ∅ | ∅ ` xM1M2 : a
(( E)

where Γ = x : σ1 ( σ2 ( a.
SinceM = λx.xM1M2 =M1 ⊗M2, the desired derivations forM1 andM2 are
respectively Σ1 and Σ2.
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Property 10 (Reading property of N). If ` M :!kN for k ≥ 0 and M ∈ nfk+1,
then there exists n ∈ N such thatM =!kn.

Proof. Recall that n = λ!f.!(λx.fnx) for any n ∈ N. Let Π be a clean derivation for
` M :!kN: we proceed by induction on k.

Let k = 0, so Π. ` M : N andM∈ nf1.
Since Π is clean, the derivation ends with an application of rule (∀I), whose premise
is Π′. ` M :!(a( a)(!(a( a). By Lemma 16 and since the term is closed,M is
not an application nor a variable; thenM is an abstraction, in particularM = λ!f.N
since the type has the shape !σ( τ , so Π′ ends with an application of rule (( II),
whose premise is ∅ | f :!(a( a) | ∅ ` N :!(a( a).
By Property 7.i, N =!P for some P: then M = λ!f.!P and Π′′ ends with an
application of rule (!), whose premise is Σ . ∅ | ∅ | f : a( a ` P : a( a.
Again by Lemma 16, P is not an application. If P = f , thenM = λ!f.!f and Σ is a
parking axiom, so the proof is done. Otherwise P is an abstraction, in particular
P = λx.Q since the type has the shape A( τ : then Σ ends with an application of
rule (( IL), whose premise is Σ′ . x : a | ∅ | f : a( a ` Q : a. By Lemma 21 either
Q = x, soM = 0, or Q = fQ′: in the second case, Σ′ ends with an application of
rule (( E), whose premises are the parking axiom ∅ | ∅ | f : a( a ` f : a( a and
Σ′′ ` x : a | ∅ | f : a( a ` Q′ : a.
Finally, by repeating the same reasoning n times on the right premise of rule (( E),
we obtainM = λ!f.!(λx.fnx) for some n ∈ N: thereforeM = n.

Now consider the case k + 1. By repeatedly applying Property 7.i,M =!k+1N
and Π′. ` N : N: then the proof follows by inductive hypothesis.

Such results can be combined in order to prove a reading result for pairs of
datatypes:

Property 11 (Reading property of pairs of datatypes). If ` M :!kN⊗!k+1WS

for k ≥ 0 and M ∈ nfk+1, then there exists m ∈ N and w ∈ {0, 1}? such that
M =!km⊗!k+1ŵ.

Proof. By Property 9, ` M :!kN⊗!k+1WS andM∈ nf0 imply there are derivations
` M1 :!kN and ` M2 :!k+1WS such thatM =M1 ⊗M2: then the result follows
easily by Properties 10 and 8.ii.

It is possible to prove a result similar to the one of Property 3, where a stratified
bound on the size of the reduction is given for programs taking combined data as
input:
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Property 12. Given a program P, for any k ≥ 2, there exists a polynomial q such
that, for any m ∈ N, w ∈ {0, 1}?, P(!m⊗!2ŵ)

∗;M1
k ∈ nfk−1 in at most 2

q(n)
k−2 steps,

and |M1
k| ≤ 2

q(n)
k−2, where n = m+ length(w). In particular, in the case where k = 2

we have a polynomial bound q(n).

Proof. The statement can be proved in a way similar to Property 3. For k = 2, it is
easy to check that the number of steps at depths 0 and 1 are bounded by a constant,
since the size of the term P(!m⊗!2ŵ) at depth lower than or equal to 1 does not
depend on m nor w.

The complexity soundness result can be proved, in a similar way to that of
Theorem 5, by combining the bound for the reduction in the untyped λ!-calculus
with the reading property of pairs:

Theorem 7 (Soundness for combined datatype). Let ` P : (!N⊗!2WS)( (!k+1N⊗!k+2WS)

where P is a program, then for any m and ŵ the reduction of P(!m⊗!2ŵ) to its normal
form can be computed in time 2

p(n)
k , where p is a polynomial and n = m+ length(w).

Proof. Easy, by combining Property 12, Theorem 3 and Property 9.

Finally we examine the matter of expressivity with respect to the combined
datatype:

Theorem 8 (Completeness for combined datatype). Let f be a function on binary
words in k-FEXP, for k ≥ 0; then there is a term M representing f such that
` M : (!N⊗!2WS)( (!k+1N⊗!k+2WS).

Proof. We show how to simulate a Turing machine for a function of k-FEXP through
a term of type !W(!k+2WS , in a way similar to the proof of Theorem 6.ii.

Consider a Turing machine M of time 2
q(n)
k computing f , thus the size of the

output is also bound by 2
q(n)
k .

By Lemma 17 there is ` Q :!N(!k+1N such that Q is a term representing 2
q(n)
k . Let

!n⊗!2ŵ be the input ofM, and let w′ be the binary word represented by 〈n,w〉; by
Lemma 19 there is ` P :!N(!2WS (!k+2WS such that P!n!2ŵ

∗→!k+2ŵ′.
Let ∆ = m :!N, u :!2WS ; it is easy to build the following derivations:

Π . ∅ | ∆ | ∅ ` initk+2(P!m!u) :!k+2CS

Σ . ∅ | ∆ | ∅ `!k+2step :!k+2(CS ( CS)

Φ . ∅ | ∆ | ∅ ` Q !m :!k+1N

Let N = iter2(initk+2(P!m!u))(!k+2step)(Q !m) be obtained by applying
iterk+2 to the typed terms above; by suitable applications of rule (( E) to
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∅ | ∆ | ∅ ` iterk+1 :!k+2CS (!k+2(CS ( CS) (!k+1N (!k+2CS and derivations
Π,Σ,Φ, we can build the derivation Ψ . ∅ | ∆ | ∅ ` N :!k+2CS .
Then the desired termM is the subject of the following derivation:

Ψ

...
∅ | ∆ | ∅ ` extractk+2 :!k+2CS (!k+2WS Ψ . ∅ | ∆ | ∅ ` N :!k+2CS

∅ | ∆ | ∅ ` extractk+2N :!k+2WS

(( E)

∅ | ∆ | ∅ ` (Q!m)⊗ (extractk+2N ) :!k+1N⊗!k+2WS

(⊗I)

` λ!(m⊗ u).(Q!m)⊗ (extractk+2N ) : (!N⊗!2WS)( (!k+1N⊗!k+2WS)
(( II⊗)

where the derived rules (⊗I) and (( II⊗) are defined in Table 2.2.

Observe here that the size of the output word w′′ is bounded by the running
time 2

q(n)
k , namely the clock of the Turing machine. Then the composite type

!k+1n′⊗!k+2ŵ′′ representing the output of the computation, where n′ = 2
q(n)
k , respects

the invariant stated at the beginning of Section 2.3 and thus is a correct representation
of w′′.

Note that, in particular, terms of type (!N⊗!2WS) ( (!k+1N⊗!k+2WS) corre-
spond to the class k-FEXP. Some aspects of this alternative characterization are
worth mentioning.

- We can now compose two terms of type (!N⊗!2WS)( (!N⊗!2WS), mirroring
the fact that FPTIME is closed by composition.

- If f ∈ FPTIME and g ∈ k-FEXP, then by Theorem 8 there are programsM andN ,
representing f and g respectively, such that Π. ` M : (!N⊗!2WS)( (!N⊗!2WS)

and Σ. ` N : (!N⊗!2WS)( (!k+1N⊗!k+2WS). Then we can compose these
programs as follows:

Σ

Π x :!N⊗!2WS | ∅ | ∅ ` x :!N⊗!2WS
(AxL)

x :!N⊗!2WS | ∅ | ∅ ` Mx :!N⊗!2WS

(( E)

x :!N⊗!2WS | ∅ | ∅ ` N (Mx) :!k+1N⊗!k+2WS

(( E)

` λx.N (Mx) : (!N⊗!2WS)( (!k+1N⊗!k+2WS)
(( IL)

which shows that g ◦ f ∈ k-FEXP.

- If k ≥ 1, then the class k-FEXP is not closed by composition; nonetheless, the typ-
ing allows to show that f ∈ k-FEXP and g ∈ k′-FEXP imply g ◦ f ∈ (k + k′)-FEXP,
for k ≥ 1 and k′ ≥ 1. By Theorem 8 there are termsM and N , representing
functions f and g respectively, such that Π. ` M : (!N⊗!2WS)( (!k+1N⊗!k+2WS)

and Σ. ` N : (!N⊗!2WS)( (!k
′+1N⊗!k

′+2WS).
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Let Σ′ . ∅ | n :!N, w :!2WS | ∅ ` N : (!N⊗!2WS)( (!k
′+1N⊗!k

′+2WS) be obtained
from Σ by Lemma 12; then we can build the following derivation Ψ

Σ′

∅ | ∅ | n : N, w :!WS ` n : N
(AxP )

∅ | n :!N, w :!2WS | ∅ `!n :!N
(!)

∅ | ∅ | n : N, w :!WS ` w :!WS
(AxP )

∅ | n :!N, w :!2WS | ∅ `!w :!2WS

(!)

∅ | n :!N, w :!2WS | ∅ `!n⊗!w :!N⊗!2WS

(⊗I)

∅ | n :!N, w :!2WS | ∅ ` N (!n⊗!w) :!k
′+1N⊗!k

′+2WS

(( E)

from which we obtain Ψ1. ` λ!n.λ!w.π1(N (!n⊗!w)) :!N(!2WS (!k
′+1N and

Ψ2. ` λ!n.λ!w.π2(N (!n⊗!w)) :!N(!2WS (!k
′+2WS , by applying the respec-

tive projector and then abstracting over n and w.

By applying Property 1 to Ψ1 and Ψ2, there are ` P1 :!k+1N(!k+2WS (!k+k′+1N

and ` P2 :!k+1N(!k+2WS (!k+k′+2WS , such that Pi represent the same func-
tion as λ!n.λ!w.πi(N (!n⊗!w)) for i ∈ {1, 2}.
Let ∆ = n :!k+1N, w :!k+2WS ; then we can build the following derivation Φ:

...
∅ | ∆ | ∅ ` P1!n!w :!k+k′+1N

...
∅ | ∆ | ∅ ` P2!n!w :!k+k′+2WS

∅ | ∆ | ∅ ` (P1!n!w)⊗ (P2!n!w) :!k+k′+1N⊗!k+k′+2WS

(⊗I)

` λ!(n⊗ w).(P1!n!w)⊗ (P2!n!w) : (!k+1N⊗!k+2WS)( (!k+k′+1N⊗!k+k′+2WS)
(( II⊗)

where P = λ!(n ⊗ w).(P1!n!w) ⊗ (P2!n!w) is a term representing the same
function as N , namely g ∈ k′-FEXP.
Finally we can compose the programM with the term obtained above:

Φ

Π x :!N⊗!2WS | ∅ | ∅ ` x :!N⊗!2WS
(AxL)

x :!N⊗!2WS | ∅ | ∅ ` Mx :!k+1N⊗!k+2WS

(( E)

x :!N⊗!2WS | ∅ | ∅ ` P(Mx) :!k+k′+1N⊗!k+k′+2WS

(( E)

` λx.P(Mx) : (!N⊗!2WS)( (!k+k′+1N⊗!k+k′+2WS)
(( IL)

which shows that g ◦ f ∈ (k + k′)-FEXP.

While the previous characterization of k-FEXP, given in Section 2.2.1, offers the
advantage of simplicity by employing classical datatypes (Church and Scott binary
words), this alternative composite characterization offers a better account of the
closure properties of the considered complexity classes, at the price of a slightly more
involved representation of words.
Moreover, as shown in the next section, the flexibility of the latter choice allows also
to tackle other less explored characterizations.

2.4 Other characterizations through composite datatypes

We give two examples of characterizations, beside that of the k-FEXP hierarchy,
which can be achieved by carefully tuning the composite datatype introduced at the
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beginning of Section 2.3.

2.4.1 Characterization of polyFEXP

We denote by polyFEXP the class of functions computable in exponential time
on a deterministic Turing machine, whose output size is polynomially bounded with
respect to the input. In order to obtain this effect, we choose the type !N⊗!3WS

as the output type of the program: the intuition behind such choice is that, when
looking at the components of the pair, we can actually see only a part of the binary
word, since the tally integer represented by the first component is smaller than the
second component. This general reasoning can be exploited in order to characterize
classes of functions whose output’s size is bounded by a function of the input:

Theorem 9 (Characterization of polyFEXP).

i. Let ` P :!N⊗!2WS (!N⊗!3WS; then there exists a polynomial q such that, for
any n ∈ N and w ∈ {0, 1}? such that length(w) ≤ n, P(!n⊗!2ŵ)

∗; Q ∈ nf3 can
be computed in time O(2q(n)) on a Turing machine and Q =!n′⊗!3ŵ′ represents
the word w′′, where length(w′′) ≤ q(n).

ii. Let f be a function on binary words in P-bound-EXP: then there is a term M
representing f such that ` M : (!N⊗!2WS)( (!N⊗!3WS).

Proof.

i. Let P = λ!(x1⊗x2).N = λx.x(λ!x1.λ
!x2.N ), so x 6∈ FV(N ) and both x1 and x2

occur at depth 1 in N : we examine the reduction of ` P(λy.y !n !2ŵ) :!N⊗!3WS

using the level-by-level reduction strategy.

Let us consider rounds 0 through 3, using the notation of Fig. 2.1

R-0. At round 0, the reduction sequence is the following:

(λx.x(λ!x1.λ
!x2.N ))(λy.y !n !2ŵ) ;0 (λy.y !n !2ŵ)(λ!x1.λ

!x2.N ) =M1
0

;0 (λ!x1.λ
!x2.N )!n !2ŵ =M2

0

;0 (λ!x2.N [n/x1])!2ŵ =M3
0

;0 N [n/x1, !ŵ/x2] =M4
0

whereN = C[x1]1...[x1]1[x2]1...[x2]1 for some context C. Let ci = n0(xi,M0
0),

which depends only on the program P (i ∈ {1, 2}).
By definition we have:

M4
0 = C[n/x1]1...[n/x1]1[!ŵ/x2]...[!ŵ/x2]1

= C[λ!f.!(λx.fnx)/x1]1...[λ
!f.!(λx.fnx)/x1]1[!ŵ/x2]...[!ŵ/x2]1
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so M4
0 = M0

1 ∈ nf0, since N ∈ nf0 implies N [n/x1, !ŵ/x2] ∈ nf0. By
Lemma 2

|M0
1|0 < |P|0

|M0
1|1 ≤ |P|1 + c1

|M0
1|2 ≤ |P|2 + 2 · c1 · n+ c2 · |ŵ|

|M0
1|i ≤ |P|i for i ≥ 3

therefore |M0
1| is linear in n.

R-1. At round 1, by Property 1.iM0
1
∗;1 M0

2 ∈ nf1. By Lemma 2,such reduction
takes d1 steps, where d1 ≤ |M0

1|1 ≤ |P|1 + c1 and |M0
2|1 ≤ |M0

1|1. By
Corollary 2 |M0

2| ≤ |M0
1| · (|M0

1| + 1)|P|1+c1 : therefore the number of
reduction steps is a constant and the size after round 1 is polynomial in n,
namely |M0

2| ≤ p(n) for some polynomial p.

R-2. At round 2, by Property 1.iM0
2
∗;2 M0

3 ∈ nf2. By Lemma 2 the reduction
is done in d2 ≤ |M0

2|2 ≤ p(n) steps and |M0
3|2+ ≤ |M0

2|2+.

Observe that, by Property 9, ` M0
3 :!N⊗!3WS and M0

3 ∈ nf0 imply
M0

3 = R⊗Q, for some ` R :!N and ` Q :!3WS ; moreover, by Property 10,
` R :!N and R ∈ nf2 imply R =!n′, for some n′ ∈ N. Since |R| ≤ |M0

3|2 ≤
|M0

2|2 ≤ p(n) by Lemma 2, n′ is polynomial in n, and by Corollary 2 we
obtain

|M0
3| ≤ p(n) · (p(n) + 1)p(n) ≤ p(n) · (2 · p(n))p(n) ≤ p(n) · 23·p(n) ≤ 2q(n)

for some polynomial q(n).

R-3. Since !n′ ∈ nf3, at round 3 we consider the reduction Q = Q0
3
∗;3 Q0

4 ∈ nf3,
which follows from Property 1.i. By Lemma 2, the reduction is performed
in d3 ≤ |Q0

3| ≤ 2q(n) steps and |Q0
4|3+ ≤ |Q0

3|3+ ≤ 2q(n).

Observe that, by Lemma 8.ii, ` Q0
4 :!3WS and Q0

4 ∈ nf3 imply Q0
4 =!3ŵ′, for

some Scott binary word w′. ThenM0
4 =!n′⊗!3ŵ′ ∈ nf3 represents a binary

word w′′, such that length(w′′) ≤ n′ ≤ q(n), and the reductionM ∗;M0
4

is done in at most 2q(n) steps. Finally, by employing the approximations
introduced in Section 2.1.6, a proper time bound can be obtained as in
Property 4.

ii. Consider a Turing machine M of time 2q(n) computing f , so the size of the
output is also bound by 2q(n).

By Lemma 17, let ` R :!N(!N and ` Q :!N(!2N represent the polynomial
q(n) and the exponential 2q(n) respectively; moreover, let !n⊗!2ŵ be the input
ofM, such that |ŵ| ≤ n. By Lemma 19 there is ` P : (!N⊗!2WS)(!3WS such
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that P(!n⊗!2ŵ)
∗→!3ŵ. Let ∆ = m :!N, u :!2WS ; it is easy to build the following

derivations:
Π . ∅ | ∆ | ∅ ` init3(P(!m⊗!u)) :!3CS

Σ . ∅ | ∆ | ∅ `!3step :!3(CS ( CS)

Φ . ∅ | ∆ | ∅ ` Q !m :!2N

By applying ∅ | ∆ | ∅ ` iter2 :!3CS (!3(CS ( CS)(!2N(!3CS to derivations
Π,Σ,Φ, we obtain Ψ.∅ | ∆ | ∅ ` iter2(init3(P(!m⊗!u)))(!3step)(Q !m) :!3CS .
For short, let N denote the subject of Ψ, so that Ψ . ∅ | ∆ | ∅ ` N :!3CS .

Then the desired termM is the subject of the following derivation:

...
∅ | ∆ | ∅ ` R!m :!N

...
∅ | ∆ | ∅ ` extract3 :!3CS (!3WS Ψ . ∅ | ∆ | ∅ ` N :!3CS

∅ | ∆ | ∅ ` extract3N :!3WS

(( E)

∅ | ∆ | ∅ ` (R!m)⊗ (extract3N ) :!N⊗!3WS

(⊗I)

` λ!(m⊗ u).(R!m)⊗ (extract3N ) :!N⊗!2WS (!N⊗!3WS

(( II⊗)

where the derived rules (⊗I) and (( II⊗) are defined in Table 2.2.

2.4.2 Characterization of NP problems

The class NP is known as the class of languages that have polynomial time verifiers
[Sip97], that is, those functions for which we are able to check in polynomial time
whether the input is in the language when given a polynomial size witness for it.
More formally, given a language L, we say that L is in NP if and only if there are
two polynomials p, q and a deterministic Turing machine M such that:

• for all u,w′ the machine M runs in time p(|u|) on input (u,w′);

• for all u ∈ L, there is w′ of length q(|u|) such that M accepts on input (u,w′);

• for all u 6∈ L, for all w′ of length q(|u|), M rejects on input (u,w′).

We want to show that it is possible, using the deterministic language of λ!-calculus,
to characterize also the class of functions for which there exists a polynomial verifier,
namely, the class NP. We say that a predicate is w-representable if it is representable
through a witness:

Definition 15. Let g : {0, 1}∗ → {0, 1} be a predicate: we say that g is w-represented
by ` M :!N⊗!2WS⊗!2WS (!2B if, for any word u represented by !n⊗!2ŵ,

g(u) =

1 if ∃w′ ∈ {0, 1}∗.M (!n⊗!2ŵ⊗!2ŵ′)
∗;!2true;

0 if ∀w′ ∈ {0, 1}∗.M (!n⊗!2ŵ⊗!2ŵ′)
∗;!2false.
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We show that the predicates w-representable with such type are all and only
those of NP:

Theorem 10 (Characterization of NP).

i. If g is w-represented by ` P :!N⊗!2WS⊗!2WS (!2B, then g ∈ NP.

ii. If g ∈ NP, then there is a program P such that g is w-represented by ` P :

!N⊗!2WS⊗!2WS (!2B.

Proof.

i. Let P = λ!(x1 ⊗ x2 ⊗ x3).N = λx.x(λ!x1.λ
!x2.λ

!x3.N ): we study the reduction
of ` (λ!(x1 ⊗ x2 ⊗ x3).N )(!n⊗!2ŵ⊗!2ŵ′) :!2B using the level-by-level reduction
strategy, where !n⊗!2ŵ represents the word w′′ such that length(w′′) ≤ n, and
length(w′) ≤ p(n) for some polynomial p.

In the following we use the notation introduced in Fig. 2.1. Let us consider
rounds 0 through 2; the proof is essentially the same of Theorem 9.i, except that
here we have to consider the additional argument of the composite input.

R-0. At round 0, the reduction sequence is the following:

P(λy.y!n !2ŵ !2ŵ′) ;0 (λy.y!n !2ŵ !2ŵ′)(λ!x1.λ
!x2.λ

!x3.N ) =M1
0

;0 (λ!x1.λ
!x2.λ

!x3.N )!n !2ŵ !2ŵ′ =M2
0

;0 (λ!x2.λ
!x3.N [n/x1])!2ŵ !2ŵ′ =M3

0

;0 (λ!x3.N [n/x1, !ŵ/x2])!2ŵ′ =M4
0

;0 N [n/x1, !ŵ/x2, !ŵ′/x3] =M5
0

Let N = C[x1]1...[x1]1[x2]1...[x2]1[x3]1...[x3]1 for some context C; note that
ci = n0(xi,M) depends only on the program P (i ∈ {1, 2, 3}). By definition:

M5
0 = C[n/x1]1...[n/x1]1[!ŵ/x2]...[!ŵ/x2]1[!ŵ′/x3]...[!ŵ′/x3]1

= C[λ!f.!(λx.fnx)/x1]1...[λ
!f.!(λx.fnx)/x1]1[!ŵ/x2]...[!ŵ/x2]1[!ŵ′/x3]...[!ŵ′/x3]1

whereM5
0 = M0

1 ∈ nf0, since N ∈ nf0 implies N [n/x1, !ŵ/x2, !ŵ′/x3] ∈
nf0. By Lemma 2:

|M0
1|0 < |P|0

|M0
1|1 ≤ |P|1 + c1

|M0
1|2 ≤ |P|2 + 2 · c1 · n+ c2 · |ŵ|+ c3 · |ŵ′|

|M0
1|i ≤ |P|i for i ≥ 3

so |M0
1| is polynomial in n.
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R-1. At round 1, by Property 1.i we haveM0
1
∗;1 M0

2 ∈ nf1. By Lemma 2 the
reduction is done in d1 steps, where d1 ≤ |M0

1|1 ≤ |P|1 + c1, and |M0
2|1+ ≤

|M0
1|1+. By Corollary 2 |M0

2| ≤ |M0
1| · (|M0

1| + 1)|P|1+c1 : therefore the
number of reduction steps is a constant and the size after round 1 is
polynomial in n, that is, |M0

2| ≤ q(n) for some polynomial q.

R-2. At round 2, by Property 1.i we haveM0
2
∗;2 M0

3 ∈ nf2. By Lemma 2 the
reduction is done in d2 ≤ |M0

2|2 ≤ q(n) steps and |M0
3|2+ ≤ |M0

2|2+.
Observe that, by Property 8.i, ` M0

3 :!2B and M0
3 ∈ nf2 imply either

M0
3 =!2true orM0

3 =!2false; moreover, by Lemma 2 |M0
3| ≤ |M0

2| ≤ q(n):
therefore |M0

3| is polynomial in n.

Since we are able to verify in polynomial time if w′ is a witness for g, that is,
whether g(w′) = 0 or g(w′) = 1, we have that g ∈ NP.

ii. Consider a Turing machine M of time p(n), such that M is a verifier for g; then
there exists a polynomial q such that:

• if g(u) = 0 then for all w′ of size q(n) the machine rejects on input (u,w′);

• if g(u) = 1 then there is a w′ of size q(n) such that the machine accepts on
input (u,w′).

Let init+ be the program which initializes the tape with the input words, such
that ` init+ :!2WS (!2WS (!2C; this program is easily adapted from the
definition of init.

By Lemma 17, let ` R :!N (!N represent the polynomial p(n); moreover,
let !n⊗!2ŵ⊗!2ŵ′ be the input of M, such that |ŵ| ≤ n and |ŵ′| ≤ q(n). By
Lemma 19 there is ` P : (!N⊗!2WS)(!2WS such that P(!n⊗!2ŵ)

∗→!2ŵ. Let
∆ = m :!N, u :!2WS , v :!2W; then we can easily build the following derivations:

Π . ∅ | ∆ | ∅ ` init+(P(!m⊗!u))(P((R!m)⊗!v)) :!2CS

Σ . ∅ | ∆ | ∅ `!2step :!2(CS ( CS)

Φ . ∅ | ∆ | ∅ ` R !m :!N

Let N = iter1(init+(P(!m⊗!u))(P((R!m)⊗!v)))(!2step)(R !m). By applying
∅ | ∆ | ∅ ` iter1 :!2CS (!2(CS ( CS)(!N(!2CS to derivations Π,Σ,Φ, we
obtain Ψ . ∅ | ∆ | ∅ ` N :!2CS .
Then the desired termM is the subject of the following derivation:

...
∅ | ∆ | ∅ ` accept2 :!2CS (!2B Ψ . ∅ | ∆ | ∅ ` N :!2CS

∅ | ∆ | ∅ ` accept2N :!2B
(( E)

` λ!(m⊗ u⊗ v).accept2N : (!N⊗!2WS⊗!2WS)(!2B
(( II⊗3)
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where the derived rule (( II⊗n) is the extension of the second rule of Table 2.2
to the n-ary case.





Chapter 3

Characterizing FPTIME and strong
normalization through stratified
types

In Chapter 2 we explored the widely known ML-like approach to ICC, based on
the use of λ-calculus as paradigmatic programming language and on the design of a
type assignment system for λ-terms based on Linear Logic, where types guarantee
both the functional correctness and the desired complexity bound. A common
drawback of all such systems can be found in their lack of typability: indeed, they all
give type to a proper subset of the strongly normalizing terms, so basically cutting
out a big slice of admissible algorithms.

In order to break such boundary, we propose a system of stratified types, which
are clearly inspired by non-associative intersection types. This system, called STR, is
correct and complete for polynomial time computations; moreover, all the strongly
normalizing terms are typed in it, thus increasing the typing power with respect
to the previous proposals based on subsystems of Linear Logic, while maintaining
the language of pure λ-calculus. In particular, STR enjoys a stronger expressivity
with respect to the previous system STA [GR07], since it allows to type a restricted
version of iteration on binary words.

The aim is to design a type assignment system for λ-calculus, where types enforce
both the functional correctness and the polynomial bound of terms. Earlier proposals
along this line include the systems DLAL [BT04] and STA [GR07], both based on Light
Logics, whose design is based on the inheritance of the complexity properties from
the logic to the typed terms, according to the proofs-as-programs approach: more
precisely, types of DLAL are a proper subset of formulae of LAL [AR02], while types
of STA are a proper subset of formulae of SLL [Laf04]. The above mentioned systems
both characterize the polynomial time functions, in the sense that all and only the

75
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polynomial time functions can be encoded by typed terms in such systems, according
to the standard coding of functions as λ-terms. Here, the logical inspiration is at
the same time the key ingredient of their correctness and the reason for their weak
expressivity, since it limits the set of algorithms which can be typed: indeed, from a
typability point of view, both systems give types to a proper subset of the strongly
normalizing terms.

While a stronger expressive power can be achieved by endowing the basic language
with some stronger features [CS12; BGM10], here we wish to explore a different
direction: namely, we want to maintain pure λ-calculus as a programming language,
but on the other hand we aim to design a system with a stronger typability power in
order to obtain, as a side effect, also a gain in expressivity, while at the same time
preserving the desired polynomial bound.

The system we design, called STR, is polynomial -in the previous sense- and it
allows to type all the strongly normalizing terms, thus increasing in a significant way
the typability power with respect to both DLAL and STA; in particular STR is shown
to be more expressive than STA, since a restricted form of iteration, which cannot be
expressed in the latter, is typable in the former system.

From a logical point of view, while in STA the promotion is a sort of multiple
contraction for different copies of the same premise, here we are able to contract also
premises having different types. Observe that this feature can no longer be expressed
in a logical way: indeed, STR is introduced directly as a type assignment system,
without a pure logical counterpart.
In such design we were inspired by intersection types [CD80]; indeed the relation
between STA and STR recalls, in a shallow way, the relation between simple types
and intersection types assignment system, the latter being derived from the former
by allowing a variable to be assigned different types.

Surprisingly enough, STR preserves the polynomial bound; indeed, the introduction
of the intersection increases the typability power without increasing the computability
power, as shown in [BPS03], in the sense that more programs are typed, but the class
of functions characterized by such programs is exactly the same as STA, i.e. FPTIME.

Outline of this chapter We begin with a quick overview of STA and its prop-
erties (Section 3.1). We then introduce the type assignment system for λ-calculus
(Section 3.2), where stratified types are essentially intersection types not enjoying
the associative property, for which we prove the usual properties of generation and
subject reduction.
We proceed to prove that STR characterizes strong normalization of λ-terms (Sec-
tion 3.3). In order to prove that typed λ!-terms of STR are strongly normalizing, we
define a measure of weight on derivations, which is then proved to decrease after
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reduction simply by retracing the proof of subject reduction and endowing derivations
with their respective weights; this allows also to prove a bound on both the number of
reduction steps and the size of the normal form with respect to the initial term. For
the opposite direction, we start by proving an expansion lemma, through which we
show that the three rules defining the set of strongly normalizing terms are derivable
in STR.
In order to prove the polynomial characterization (Section 3.4), we show that STR
and STA can compute the same class of functions: the completeness of STR with
respect to FPTIME comes easily by giving a translation from the types of STR to the
types of STA, while the soundness is shown by examining the reduction of a term
representing the application of a function to its arguments.
Finally we comment on the choice of stratified types with respect to intersection
types and we offer some technical observations on the use of intersection types for
quantitative purposes (Section 3.5).
The current chapter is presented in [DR14].

3.1 An overview of the Soft Type Assignment system

The Soft Type Assignment system of [GR07] is a typing system for pure λ-calculus
in (almost) natural deduction style, where types are a subset of the formulae of SLL
[Laf04]. The set T S of STA-types is defined by the following syntax:

U ::= a | µ( U | ∀a.U (linear types)
µ, ν ::= U |!µ (modal types)

Note that only strict types having linear types on the right-hand side of the arrow
are considered, in order to design a system for which the subject reduction property
holds.

A judgment of STA has the shape Θ `STA M : µ, where Θ is a partial function
from term variables to types of T S (basis),M is a pure λ-term and µ is a type of
T S. The typing rules are given in Table 3.1.

In order to prove the complexity bound, some notions of measure are defined:

Definition 16 (Measures of STA).

i. The rank of a multiplexor rule (m)

Θ, x1 : µ, . . . , xn : µ `STAM : ν

Θ, x :!µ `STAM[x/x1, ..., xn] : ν
(m)

is the cardinality of the set {x1, ..., xn} ∩FV(M). Let r be the maximum rank of
all rules (m) in Π; then the rank rkS(Π) of Π is the maximum between 1 and r.
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x : U `STA x : U
(Ax)

Θ `STAM : µ x 6∈ domΘ

Θ, x : U `STAM : µ
(w)

Θ, x : µ `STAM : U

Θ `STA λx.M : µ( U
(( I)

Θ `STAM : µ( U Ξ `STA N : µ Θ#Ξ

Θ,Ξ `STAMN : U
(( E)

Θ, x1 : µ, . . . , xn : µ `STAM : ν

Θ, x :!µ `STAM[x/x1, ..., xn] : ν
(m)

Θ ` M : µ

!Θ `STAM :!µ
(sp)

Θ `STAM : U a 6∈ FV (Θ)

Θ `STA M : ∀a.U (∀I)
Θ `STAM : ∀a.B

Θ `STAM : B[U/a]
(∀E)

Table 3.1: The Soft Type Assignment (STA) system.

ii. The degree of a proof Π, denoted by dS(Π), is the maximal nesting of applications
of the (sp) rule in Π, namely the maximal number of applications of the (sp)

rule in any path connecting the conclusion with some axiom of Π.

iii. Let r be a positive integer. The weight WS(Π, r) of Π with respect to r is defined
inductively as follows:

- if Π ends with an application of rule (Ax), then WS(Π, r) = 1;

- if Π ends with an application of rule (( I) with premise Π′, then WS(Π, r) =

WS(Π
′, r) + 1;

- if Π ends with an application of rule (( E) with premises Π1 and Π2, then
WS(Π, r) = WS(Π1, r) + WS(Π2, r) + 1;

- if Π ends with an application of rule (sp) with premise Π′, then WS(Π, r) =

r · WS(Π′, r)

- in every other case, WS(Π, r) = WS(Π
′, r) where Π′ is the premise of the rule.

Here we recall only the key technical property of STA, which is very similar to
the property of STR which will be shown in Theorem 15:

Property 13 (Proved in [GR07]). Let Π .Θ `STAM : µ andM ∗→M′ in m steps;
then:

1. m ≤ |M|dS(Π)+1.

2. |M′| ≤ |M|dS(Π)+1.
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By employing Property 13 and the usual simulation of polytime Turing machines
through λ-terms, the authors then show that:

Theorem 11 (Proved in [GR07]). STA characterizes FPTIME.

3.2 The STR typing system

In this section we introduce the STR type assignment system for pure λ-calculus,
based on the notion of stratification of types, for which we prove that subject
reduction holds.

3.2.1 Definition of the typing system

Calculus

As usual, the set Λ of λ-terms is defined by the following syntax:

M,N ::= x | λx.M |MN

where x ranges over a countable set of term variables Var.
The same assumptions made in Chapter 2 hold, namely we consider terms modulo
α-equivalence and up to the variable convention. Free variables and substitution
are defined as in Definitions 1 and 2, where the substitutionM[N1/x1, ...,Nn/xn],
also denoted byM[Ni/xi]ni=1, is the capture-free substitution of Ni to all the free
occurrences of xi inM (1 ≤ i ≤ n). The symbol = denotes the identity on terms,
modulo renaming of bound variables.

A term context is generated by the same grammar, starting from a constant �
(the hole), in addition to variables. Term contexts are denoted by C, while C[M]

denotes the result of pluggingM into every occurrence of � in C; observe that, as
usual, the plugging operation does not forbid the capture of free variables.

The reduction relation → is the contextual closure of the following rule:

(λx.M)N →M[N/x]

and the relation ∗→ is the reflexive and transitive closure of →.

Types

In Chapter 2 we considered an extended version of λ!-calculus, where the strat-
ification of the computation was directly readable on the calculus. As already
mentioned earlier, here we have a different aim, namely using pure λ-calculus as a
typed functional language: indeed, all information on the stratified structure of the
computation is now stored in the types assigned to λ-terms.
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To this aim, in addition to the usual notion of linear type, we specify stratified types.
A stratified type is essentially a set, where the depth of each component is memorized
through a stratified structure, so remembering the construction steps of the type.
We start by giving a notion of pre-types:

Definition 17 (Pre-types). The set of pre-types is defined by the following syntax:

A ::= a | σ( A | ∀a.A (linear pre-types)
σ ::= A | {σ, ..., σ︸ ︷︷ ︸

n

} (stratified pre-types)

where a ranges over a countable set of type variables and n ≥ 1.

Let ∼ denote the syntactical equality between (stratified) pre-types. On pre-types
we define the following equivalence =, modulo renaming of bound variables:

- A ∼ B implies A = B;

- A = B implies ∀a.A = ∀a.B;

- σ = τ and A = B imply σ( A = τ ( B;

- {σ1, ..., σn} = {τ1, ..., τm} if and only if ∀i.∃j.σi = τj and ∀j.∃i.σi = τj

(1 ≤ i ≤ n, 1 ≤ j ≤ m), namely, a stratified pre-type represents a set.

Example 8. Consider the following pre-types: σ ∼ {a, a, {b}}, τ ∼ {{b}, a} and
ρ ∼ {{a}, a, {b}}. It is easy to check that σ = τ , since both pre-types represent the
same set, while both σ 6= ρ and τ 6= ρ.

Among pre-types, we then isolate the class of types satisfying the above equiva-
lence relation:

Definition 18 (Types). The types of STR, whose set is denoted by T , are pre-types
modulo the equivalence relation =.

In order to avoid reasoning modulo =, when writing {σ1, ..., σn} we assume that
σi 6= σj , for i 6= j (1 ≤ i, j ≤ n), where σ1, ..., σn are the components of {σ1, ..., σn}.
Operations on sets are naturally extended to stratified types; in particular, we denote
by ∪ni=1{σi} the stratified type obtained by unifying the singletons {σ1}, ..., {σn}. In
order to avoid unnecessary parentheses, we assume that( takes precedence over ∀,
that is ∀a.σ( A is equivalent to ∀a.(σ( A).

A multiset over T is an unordered list [σ1, ..., σn], where the number of occurrences
of σi is its multiplicity, and the multiset union ] is the concatenation of lists. It is
useful to be able to identify the elements of a stratified type:
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Definition 19 (Linear components). The multiset of the linear components of σ,
denoted by σ, is defined inductively as

A = [A] {σ1, ... , σk} = σ1 ] ... ] σk.

Example 9. Let σ = {A, {A, B}}: then σ = [A, A, B].

Bases

A basis is a partial function from variables to types, whose finite domain is
represented by dom(Γ) as usual. The empty context is denoted by ∅.

Let {σ}n be a shorthand for {...{︸︷︷︸
n

σ }...}︸︷︷︸
n

, for every n ≥ 0.

We introduce a few notations that are used throughout the chapter:

Notation 2 (Bases).

- Let Γ be a basis: then {Γ}n is the basis such that {Γ}n(x) = {Γ(x)}n.

- The condition Γ1#...#Γn, also written #n
i=1Γi, holds if and only if j 6= h

implies dom(Γj) ∩ dom(Γh) = ∅, for 1 ≤ j, h ≤ n.

- The condition Γ1 � ...� Γn, also written �ni=1Γi, holds if and only if j 6= h

implies dom(Γj) = dom(Γh), for 1 ≤ j, h ≤ n.

- If #n
i=1Γi, then Γ1, ...,Γn is the basis such that (Γ1, ...,Γn)(x) = Γi(x), where

x ∈ dom(Γi) (1 ≤ i ≤ n).

- If �ni=1Γi, then ∪ni=1{Γi} is the basis such that (∪ni=1{Γi})(x) = ∪ni=1{Γi(x)}.

3.2.2 Properties of STR

System STR proves judgments of the kind Γ ` M : σ, where Γ is a basis,M is
a term and σ is a type; if the basis of a judgement is empty, then we abbreviate
it by ` M : σ. The rules of the system are shown in Table 3.2. Observe that the
premises of rule (( E) must have disjoint sets of free variables; however, more
general applications can be built by renaming term variables through the multiplexor
rule (m). Moreover, retracing the behavior of rule (!) in SLL, the stratification rule
(st) introduces the stratification on both the left and the right hand side. Finally,
rule (∀E) allows to replace type variables only with linear types, in order to preserve
the syntax.

Among the rules we can again distinguish between some constructive rules,
namely (Ax), (( I) and (( E), which contribute to building the subject, and
non-constructive ones. The latter can be further classified into quantifier rules,
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x : A ` x : A
(Ax)

Γ ` M : σ (x 6∈ dom(Γ))

Γ, x : A ` M : σ
(w)

Γ, x : σ ` M : B

Γ ` λx.M : σ( B
(( I)

Γ1 ` M : σ( A Γ2 ` N : σ (Γ1#Γ2)

Γ1,Γ2 ` MN : A
(( E)

Γ, x1 : σ1, ..., xn : σn ` M : τ

Γ, x : ∪ni=1{σi} ` M[x/x1, ..., x/xn] : τ
(m)

(Γi ` M : σi)1≤i≤n �ni=1Γi

∪ni=1{Γi} ` M : {σ1, ..., σn}
(st)

Γ ` M : A (a 6∈ FTV(Γ))

Γ ` M : ∀a.A (∀I)
Γ ` M : ∀a.B

Γ ` M : B[A/a]
(∀E)

Table 3.2: Derivation rules of system STR.

namely (∀I) and (∀E), which modify the types but do not affect the subject, and
renaming rules, namely (w) and (m), renaming term variables or introducing new
variables in the basis.
A sequence of applications of renaming (resp. quantifier) rules is called a renaming
(resp. quantifier) sequence.

For renaming rules, we adopt the following notation:

Notation 3 (Renaming rules). The domain and the range of an application of rule
(m) are respectively the set of variables contracted by it and the singleton of the new
introduced variable.
The domain and the range of an application of rule (w) are respectively the empty
set and the singleton of the new introduced variable.

Considering the rules of Table 3.2, the domain and range of rule (m) are respec-
tively {x1, ..., xn} and {x}, while the range of rule (w) is {x}.

Based on the above notation, two applications of renaming rules are said to be
disjoint if and only if both their domains and their ranges are disjoint.

Type derivations are denoted by Σ, Π. When writing Γ ` M : σ we mean that
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there exists a derivation proving such statement, whereas Π . Γ ` M : σ identifies a
particular derivation Π.
Given the application of a rule in a derivation, the derivations to which it is applied
are its premises.

The following notations apply to derivations:

Notation 4 (Derivations).

- Given a derivation Σ, dom(Σ) represents the set of term variables ∪Γ∈Σdom(Γ),
where Γ ∈ Σ means that Γ is a basis occurring in the application of a rule in Σ.

- By abuse of notation, we denote by Σ1#...#Σn, also written #n
i=1Σi, the fact

that j 6= h implies dom(Σj) ∩ dom(Σh) = ∅, for 1 ≤ j, h ≤ n.

It is easy to show that a more general weakening rule is derivable:

Property 14 (Weakening). Γ ` M : σ and x 6∈ dom(Γ) imply Γ, x : τ ` M : σ, for
every τ .

Proof. By induction on τ .
If τ is linear, it is sufficient to apply rule (w).
Otherwise, let τ = [A1, ..., An]: then we can build the following derivation:

Γ ` M : σ
Γ, x1 : A1, ..., xn : An ` M : σ

(w)

Γ, x : τ ` M : σ
δ

where δ is a suitable sequence of applications of rule (m).

Example 10. Let Γ ` M : σ and τ = {{A}, {A, B}}, so τ = [A, A, B]: then we can
build the following derivation:

Γ ` M : σ
Γ, y1 : A, y2 : A, y3 : B ` M : σ

(w)

Γ, x1 : {A}, y2 : A, y3 : B ` M : σ
(m)

Γ, x1 : {A}, x2 : {A, B} ` M : σ
(m)

Γ, x : {{A}, {A, B}} ` M : σ
(m)

Note that, as a result of the previous property, the condition on the contexts in
rule (st) is not at all restrictive.

In order to build a derivation for a given term, we first need to type a linear
version of it, that is, a term where each free variable occurs exactly once. In order to
better formalize such operation, we give the following notion of instance of a term:
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Definition 20 (Instance of a term). A term M is an instance of N if and only
if there are X1, ...,Xn disjoint subsets of FV(N ) and fresh variables y1, ..., yn, for
n ≥ 0, such thatM is obtained from N by replacing all variables in Xi with yi.
If all Xi are singletons and ∪ni=1X〉 = FV(N ), thenM is a copy of N ; in particular,
if ∪ni=1Xi and {y1, ..., yn} are disjoint, thenM is a disjoint copy of N .

We supply an example in order to clarify the previous definition.

Example 11. Let N = f1(f2(f3x)).

- The termM = y(y(zx)) is an instance of N , since there are Y = {f1, f2} ⊆ FV(N ),
Z = {f3} ⊆ FV(N ) and fresh variables y, z such thatM is obtained from N
by replacing variables in Y and Z with y and z respectively.

- The term g1(g2(g3y)) is a disjoint copy of N , obtained by replacing variables in
the singletons {f1}, {f2}, {f3}, {x} with fresh variables g1, g2, g3, y respectively.

- Consider the instance f(f(fx)) of N : by abstracting over x and f , we obtain
the Church representation of the integer 3. In general, the Church integer
λf.λx.f(f...(fx)...), for n ≥ 0, can be assigned in STR both the uniform type
N = ∀a.{a( a}( a( a and a parametric type Nm = ∀a.{a( a}m( a( a

for every m ≥ 1.
The latter then allows to type the following programs on Church integers:

` λy.λf.λx.f(yfx) : Ni( Ni+1 (successor)
` λy.λz.λf.λx.yf(zfx) : Ni( Nj ( Nmax{i,j}+1 (addition)
` λy.λz.λf.y(zf) : Ni( {Nj}i( Ni+j (multiplication)

The notion of (disjoint) copy can be extended to bases and derivations in a
straightforward way: in the former case, Γ is a copy of ∆ (disjoint, if Γ#∆) if and
only if one is obtained from the other by renaming variables in it; in the latter, Π is
a copy of Σ (disjoint, if Π#Σ) if and only if both their bases and their subject are
copies of each other.

The following lemma follows easily from the above definition:

Lemma 22 (Instance of a derivation). Let Π . Γ ` M : σ and let N be an instance
of M: then there is ∆ such that Σ . ∆ ` N : σ, where Σ is obtained from Π by a
renaming sequence.

Proof. By definition 20, there are X1, ...,Xn subsets of FV(M) and fresh variables
y1, ..., yn, for some n ≥ 0, such that N is obtained fromM by renaming variables in
Xi by yi: then the desired derivation is obtained by n applications of rule (m), the
i-th application having domain Xi and range {yi}, for 1 ≤ i ≤ n.
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Due to the presence of many non-constructive rules, and in order to reason more
easily about derivations in proofs, we again introduce a notion of clean derivation:
in this context, a derivation is clean if, in every application of rule (( E) with
premises Π1 and Π2, it holds that Π1#Π2.
The proof of the following property is then obvious, thanks to the renaming rule (m):

Property 15 (Clean derivation). For every derivation Π, there is a clean derivation
Σ proving the same statement.

Proof. By induction on Π.
The only interesting case is that of Π ending with an application of rule (( E),

whose premises are Π1 and Π2. By inductive hypothesis there are clean derivations
Σ1 and Σ2 proving the same statements. Since the bases of Σ1 and Σ2 are disjoint
by definition of the rule, Σ is obtained by replacing the clean derivation Σ1 with a
copy of Σ1 which is disjoint from Σ2.

From now on, we implicitly assume that all derivations are clean.
The following is a key property of the system, which allows to deconstruct a

derivation assigning a stratified type into its immediate premises assigning simpler
types:

Property 16 (Subject with stratified type). Let Π . Γ ` M : {σ1, ... , σn}; then
there are Πi . Γi ` N : σi (1 ≤ i ≤ n) such that Π consists of an application of rule
(st) with premises (Πi)1≤i≤n, followed by a renaming sequence.

Proof. By induction on Π. Observe that the last application of Π is either rule (w),
(m) or (st).

Let Π end with an application of rule (w) or (m): then the proof follows easily
by induction.

Otherwise, let Π be

(Γi ` M : σi)1≤i≤n

∪ni=1{Γi} ` M : {σ1, ... , σn}
(st)

Then the proof is trivial, sinceM = N and the renaming sequence is empty.

Corollary 12. Let Γ ` M : {σ1, ... , σn} and σ = [A1, ..., An]; then there is Γi such
that Γi ` M : Ai (1 ≤ i ≤ n).

Proof. Easy, by applying repeatedly Property 16.
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Observe that, by the previous Corollary, we can consider without loss of generality
derivations assigning linear types to terms, sinceM being an instance of N implies
that both terms have the same structure.
As usual, the generation lemma connects the shape of a term with its possible typings:

Lemma 23 (Generation). Let Π . Γ ` M : A and let Σ .∆ ` N : B be the smallest
subderivation of Π such that Π is obtained from Σ by a (possibly empty) renaming
and quantifier sequence:

i. ifM = x, then Σ ends with an application of rule (Ax);

ii. ifM = λx.P, then Σ ends with an application of rule (( I) and A = ∀a.σ( C

for some a, σ and C;

iii. ifM = PQ, then Σ ends with an application of rule (( E).

Proof. Easy by considering each constructive rule.

The following technical lemma shows that it is possible to mimic a sequence
of applications of rule (st) through a renaming sequence, thus recovering the same
basis:

Lemma 24 (From stratification to renaming). Let Σi .Θi ` Ni : σi be a copy of Πi .

∆i ` N : σi such that #n
i=1Θi and �ni=1∆i, with ∆ = ∪ni=1{∆i} (1 ≤ i ≤ n). Then,

from any Γ,Θ1, ...,Θn ` M[Ni/xi]ni=1 : τ such that Γ#∆, we obtain Γ,∆ ` M[N/xi]ni=1 : τ

by a renaming sequence.

Proof. By induction on ∆.
If ∆ = ∅, thenM[Ni/xi]ni=1 =M[N/xi]ni=1, so the renaming sequence is empty.
Otherwise, let ∆i = ∆′i, y : ρi and ∆ = ∆′i, y : ρ = ∪ni=1{∆′i},∪ni=1{ρi}. More-

over, let Θ′i, yi : ρi ` Ni[yi/y] : σi be a copy of ∆′i, y : ρi ` N : σi such that #n
i=1Θ′i

and �ni=1∆′i, with ∆′ = ∪ni=1{∆′i} (1 ≤ i ≤ n). By inductive hypothesis, from
Γ,Θ′1, ...,Θ

′
n, y1 : ρ1, ..., yn : ρn ` M[Ni[yi/y]/xi]

n
i=1 : τ such that Γ#∆′, we can de-

rive Γ,∆′, y1 : ρ1, ..., yn : ρn ` M[N [yi/y]/xi]
n
i=1 : τ by a renaming sequence: from

this derivation we obtain Γ,∆′, y : ρ ` M[N/xi]ni=1 : τ by one application of rule (m)

with domain {y1, ..., yn} and range {y}.

We supply an example in order to make the previous lemma clearer:

Example 12. Let

Σ1 . x : σ1, y : τ1, z : ρ1 ` N : φ1 Σ2 . x : σ2, y : τ2, z : ρ2 ` N : φ2

x : {σ1, σ2}, y : {τ1, τ2}, z : {ρ1, ρ2} ` N : {φ1, φ2}
(st)



3.2. THE STR TYPING SYSTEM 87

and consider
Σ′1 . x1 : σ1, y1 : τ1, z1 : ρ1 ` N1 : φ1

Σ′2 . x2 : σ2, y2 : τ2, z2 : ρ2 ` N2 : φ2

where N1 ≡ N [x1/x, y1/y, z1/z] and N2 ≡ N [x2/x, y2/y, z2/z], as copies of Σ1 and
Σ2 respectively.

Then, from Γ, x1 : σ1, y1 : τ1, z1 : ρ1, x2 : σ2, y2 : τ2, z2 : ρ2 ` M[N1/w1,N2/w2] : φ

such that {x, y, z}∩dom(Γ) = ∅, we obtain the following derivation simply by applying
some renaming rules:

Γ, x1 : σ1, y1 : τ1, z1 : ρ1, x2 : σ2, y2 : τ2, z2 : ρ2 ` M[N1/w1,N2/w2] : φ

∆, x : {σ1, σ2}, y1 : τ1, z1 : ρ1, y2 : τ2, z2 : ρ2 ` M[N1[x/x1]/w1,N2[x/x2]/w2] : φ
(m)

∆, x : {σ1, σ2}, y : {τ1, τ2}, z1 : ρ1, z2 : ρ2 ` M[N1[x/x1, y/y1]/w1,N2[x/x2, y/y2]/w2] : φ
(m)

∆, x : {σ1, σ2}, y : {τ1, τ2}, z : {ρ1, ρ2} ` M[N/w1,N/w2] : φ
(m)

As usual, the substitution lemma is the prelude to the more important subject
reduction property:

Lemma 25 (Substitution). Let Π . Γ, x1 : σ1, ..., xn : σn ` M : τ and Σi .∆i ` Ni : σi,
for 1 ≤ i ≤ n, such that Γ#∆1#...#∆n; then there is a clean derivation

Φ . Γ,∆1, ...,∆n ` M[Ni/xi]ni=1 : τ .

Proof. By induction on the shape of Π. Note that, since the hypothesis Γ#∆1#...#∆n,
it is immediate to see that Φ is clean.

Let Π be
x : A ` x : A

(Ax)

Then n = 1, Σ1 .∆1 ` N1 : A, and Φ = Σ1.
Let Π end with an application of rule (w) having range {y}. If y 6∈ {x1, ..., xn},

then the proof follows by induction. Otherwise, let y ≡ x1 and let Π be

Π′ . Γ, x2 : σ2, ..., xn : σn ` M : τ x1 6∈ dom(Γ)

Γ, x1 : A, x2 : σ2, ..., xn : σn ` M : τ
(w)

so Σ1 .∆1 ` N1 : A and Σi .∆i ` Ni : σi (2 ≤ i ≤ n).
By inductive hypothesis, there is Φ′ . Γ,∆2, ...,∆n ` M[N2/x2, ...,Nn/xn] : τ ; then
the desired proof is obtained from Φ′ by Property 14.

Let Π end with an application of rule (( I): then the result follows easily by
induction.

Let Π be

Π1 . Γ1 ` P : τ ( B Π2 . Γ2 ` Q : τ Γ1#Γ2

Γ1,Γ2 ` PQ : B
(( E)

where Γ = Γ1,Γ2. Since Γ1#Γ2, we can consider without loss of generality a partition
of n such that Γ1 = Γ′1, x1 : σ1, ..., xk : σk and Γ2 = Γ′2, xk+1 : σk+1, ..., xn : σn. By



88 CHAPTER 3. MONOVALENT CHARACTERIZATION

inductive hypothesis there are derivations Φ1 . Γ′1,∆1, ...,∆k ` P[N/x] : τ ( B and
Φ2 . Γ′2,∆k+1, ...,∆n ` Q[N/x] : τ : then the result follows by one application of rule
(( E) to Φ1 and Φ2.

Let Π end with an application of rule (m) having range {y}.
If y 6∈ {x1, ..., xn}, then the proof follows by induction.
Otherwise, let y ≡ x1 and let Π be

Π′ . Γ, y1 : ρ1, ... , yh : ρh, x2 : σ2, ... , xn : σn ` P : τ

Γ, x1 : σ1, x2 : σ2, ... , xn : σn ` M : τ
(m)

where M ≡ P[x1/yk]
h
k=1 and σ1 = ∪hk=1{ρk}. Let σ1 = {µ1, ... , µm}, for some

m ≤ h.
By Property 16, Σ1 .∆1 ` N1 : {µ1, ... , µm} implies there are Ψs . Θs ` Q : µs

(1 ≤ s ≤ m) such that Σ1 is obtained by an application of rule (st) to (Ψs)
m
s=1,

followed by a renaming sequence δ.
Observe that, for every k (1 ≤ k ≤ h), there is sk such that ρk = µsk ; moreover
ρk = ρk′ implies Ψsk = Ψsk′ . Let Ψ′sk . Θ′sk ` Qsk : µsk be a copy of Ψsk , for
1 ≤ k ≤ h, such that (Γ,∆2, ...,∆n)#Θ′s1#...#Θ′sh .
By inductive hypothesis Ψ . Γ,Θ′s1 , ...,Θ

′
sh
,∆2, ...,∆n ` P[Qsk/yk]hk=1[Ni/xi]ni=2 : τ ,

from which we derive Π′′ . Γ,∪hk=1{Θsk},∆2, ...,∆n ` P[Q/yk]hk=1[Ni/xi]ni=2 : τ by
Lemma 24.
Note that Π′′ . Γ,∪ms=1{Θs},∆2, ...,∆n ` P[Q/yk]hk=1[Ni/xi]ni=2 : τ also holds, since
∪hk=1{Θsk} = ∪ms=1{Θs}: then the desired derivation Φ is obtained by applying
renaming sequence δ to Π′′.

Let Π be
(Πk . Γk, x1 : σk1 , ..., xn : σkn ` M : τk)1≤k≤h

Γ, x1 : σ1, ..., xn : σn ` M : τ
(st)

where Γ = ∪hk=1{Γk}, τ = {τ1, ... , τh} and σi = ∪hk=1{σki }.
Let σi = {ρ1

i , ..., ρ
hi
i }, where hi ≤ h. By Property 16, Σi . ∆i ` Ni : {ρ1

i , ..., ρ
hi
i }

implies there are Σs
i . ∆s

i ` Pi : ρsi (1 ≤ s ≤ hi) such that Σi is obtained by an
application of rule (st) to (Σs

i )
hi
s=1, followed by a renaming sequence δi (1 ≤ i ≤ n).

Since by hypothesis Γ#∆1#...#∆n, we can safely assume Π#Σ1#...#Σn. For
1 ≤ i ≤ n and 1 ≤ k ≤ h, there is sk such that σki = ρski ; moreover, σki = σk

′
i implies

Σsk
i = Σ

sk′
i .

By inductive hypothesis there are Φk . Γk,∆
sk
1 , ...,∆

sk
n ` M[Pi/xi]ni=1, for 1 ≤ k ≤

h; then we build Π′ . Γ,∪hk=1{Θ
sk
1 }, ...,∪hk=1{Θsk

n } ` M[Pi/xi]ni=1 : τ by applying
rule (st) to (Φk)1≤k≤h. Note that Π′ . Γ,∪h1s=1{Θs

1}, ...,∪
hn
s=1{Θs

n} ` M[Pi/xi]ni=1 : τ

because ∪hk=1{∆
sk
i } = ∪his=1{∆s

i}: then, since by hypothesis #n
i=1∆i, the desired

derivation Φ is obtained by applying renaming sequences δ1, ..., δn consecutively to
Π′.
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The cases of rules (∀I) and (∀E) follow directly by induction, since the subject
is not affected by the quantifier rules.

Another crucial ingredient for proving the subject reduction property is, as usual,
is elimination of detours in a type derivation:

Definition 21 (Detour elimination).

i. A ∀-detour is a derivation ending with an application of rule (∀I), immediately
followed by an application of rule (∀E), which is erased by the following rule:

Π . Γ ` M : B a 6∈ dom(Γ)

Γ ` M : ∀a.B (∀I)

Γ ` M : B[A/a]
(∀E)

7→ Π[A/a] . Γ ` M : B[A/a]

where Π[A/a] denotes the derivation obtained from Π by replacing every occurrence
of a by A.

ii. A(-detour is a derivation ending with an application of rule (( I), immediately
followed by an application of rule (( E), which is erased by the following rule:

Π . Γ, x : σ ` M : A

Γ ` λx.M : σ( A
(( I)

Σ .∆ ` N : σ
Γ ` (λx.M)N : A

(( E)
7→ Φ . Γ,∆ ` M[N/x] : A

where Φ is defined in Lemma 25.

Observe that the operation of (-detour elimination, if merely performed as
shown above, is not guaranteed to produce a correct derivation. Consider for example
a derivation ending with an application of rule (st) to n ≥ 1 subderivations, whose
subject contains a β-redex: in this case, a(-detour having the same subject appears
in n different subderivations, but eliminating only one of such (-detours would
result in an incorrect derivation.
Here the intuition is that one β-reduction may correspond to many detour eliminations;
in practice, this happens in two cases: on one hand, when there are applications of
quantifier rules in between the introduction and the elimination of the (; on the
other hand, when there is an application of rule (st) to n ≥ 1 subderivations whose
subject contains the current β-redex. In such cases, the reduction is performed by
first erasing all ∀-detours in sequence, followed by the elimination of all(-detours
simultaneously in every premise of the application of rule (st).
In order to achieve this result, we need to be able to shift the applications of quantifier
rules above a renaming sequence:

Lemma 26 (Lifting of quantifier rules). A sequence of applications of renaming and
quantifier rules can be rearranged in such a way that the applications of the quantifier
rules precede the applications of the renaming rules.
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Proof. Observe that quantifier rules only affect the type, while renaming rules
deal with both the subject and the variables in the context. Let (R) and (Q) be
respectively a renaming and a quantifier rule: it is sufficient to prove that the sequence
of applications of rules (R)(Q) can be replaced by the sequence of applications (Q)(R).

If (R) = (m) the proof is obvious; otherwise, if (R) = (w) then the constraints
for the application of rule (∀I) are obviously preserved, since the applications of rule
(w) may introduce new type variables.

Finally the main result of the present section is shown:

Theorem 13 (Subject Reduction). Γ ` P : σ and P → Q implies Γ ` Q : σ.

Proof. If P → Q, then there is a term context C such that P ≡ C[(λx.M)N ] and
Q ≡ C[M[N/x]]: the proof is by induction on C and then by induction on σ.

Let C = �, so Γ ` (λx.M)N : σ, and let σ be a linear type A. By Lemma 23, Π

is
Π′ .Θ′′, x : σ′′ ` M′′ : A′′

Θ′′ ` λx.M′′ : σ′′( A′′
(( I)

Θ′ ` λx.M′ : σ′( A′
δ1

Σ .∆′ ` N ′ : σ′ Θ′#∆′

Θ′,∆′ ` (λx.M′)N ′ : A′
(( E)

Θ,∆ ` (λx.M)N : A
δ2

whereM is an instance ofM′ (which in turn is an instance ofM′′) and N is an
instance of N ′, Γ = Θ,∆ and δ1, δ2 are renaming and quantifier sequences.
By Lemma 26, δ1 can be replaced by δ′, δ′′, where δ′ contains only quantifier rules
and δ′′ contains only renaming rules. Moreover, Θ′′#∆′ by the assumption that all
derivations are clean. Then we can rewrite Π in the following way:

Π′ .Θ′′, x : σ′′ ` M′′ : A′′

Θ′′ ` λx.M′′ : σ′′( A′′
(( I)

Θ′′ ` λx.M′′ : σ′( A′
δ′

Σ .∆′ ` N ′ : σ′ Θ′′#∆′

Θ′′,∆′ ` (λx.M′′)N ′ : A′
(( E)

Θ′,∆′ ` (λx.M′)N ′ : A′ δ
′′

Θ,∆ ` (λx.M)N : A
δ2

Let us assume the non-trivial case in which the sequence δ′ is not empty; then,
since σ′( A′ is a( type, sequence δ′ must end with one application of (∀E) rule;
however, since σ′′ ( A′′ is also a ( type, sequence δ′ must contain a matching
application of (∀I) rule: therefore, δ′ contains a ∀-detour, which can be erased as
shown in Definition 21.i. At this point, sequence δ1 decreases by two applications
of quantifier rules. By retracing the same step and thus erasing all ∀-detours in
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sequence δ′, we obtain the following derivation:

Π′′ .Θ′′, x : σ′ ` M′′ : A′

Θ′′ ` λx.M′′ : σ′( A′
(( I)

Σ .∆′ ` N ′ : σ′ Θ′#∆′

Θ′′,∆′ ` (λx.M′′)N ′ : A′
(( E)

Θ′,∆′ ` (λx.M′)N ′ : A′ δ
′′

Θ,∆ ` (λx.M)N : A
δ2

Finally, by applying Lemma 25 and substituting Σ in Π′′ as in Definition 21.ii, the
resulting derivation is

Φ .Θ′′,∆′ ` M′′[N ′/x] : A′

Θ′,∆′ ` M′[N ′/x] : A′
δ′′

Θ,∆ ` M[N/x] : A
δ2

Notice that, since the property of a derivation being clean is preserved by substitution,
the resulting proof is clean.

Now let C = � and σ = {σ1, ..., σn} for some n ≥ 1.
By Property 16 there are Πi . Γi ` (λx.M′)N ′ : σi (1 ≤ i ≤ n) and a renaming
sequence δ such that Π has the following shape:

(Πi . Γi ` (λx.M′)N ′ : σi)1≤i≤n

∪ni=1{Γi} ` (λx.M′)N ′ : σ
(st)

Γ ` (λx.M)N : σ
δ

By inductive hypothesis there are Φi . Γi ` M′[N ′/x] : σi, for 1 ≤ i ≤ n; then the
result follows by applying rule (st) to Φ1, ...,Φn, followed by sequence δ.

The inductive cases of C 6= � are straightforward, since both the basis and the
type are not affected by the subject reduction.

3.3 Strong normalization

In this section we show that system STR characterizes strong normalization,
namely, that Γ ` M : σ, for some Γ and σ, if and only ifM is strongly normalizing;
as usual, the result is proved by examining both directions of the implication.

3.3.1 Typability implies strong normalization

We first prove that, if a termM is typable in STR, thenM is strongly normalizing.
The intuition is that, given a typed term M, the stratified structure of its

derivation allows to give a bound on the number of β-reduction steps necessary to
reach the normal form of M, which depends both on the size of M and on the
nesting of applications of rule (st) in Π: namely, the number of reduction steps is
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bounded by a polynomial in the size of the term, whose degree depends on the degree
of the underlying type derivation. As a consequence, the reduction of a typed term
to its normal form is performed in a finite number of step; therefore all typable terms
in STR are strongly normalizing.

We start by giving a few necessary definitions of measure:

Definition 22 (Measures).

i. The size |M| of a termM is defined inductively as follows:

|x| = 1 |λx.M| = |M|+ 1 |MN| = |M|+ |N |+ 1

ii. The size |Π| of a derivation Π is defined inductively as follows:

- if Π ends with an application of rule (Ax), then |Π| = 1;

- if Π ends with an application of any other rule with n ≥ 1 premises Π1...Πn,
then |Π| =

∑n
i=1 |Πi|.

iii. The rank of an application of rule (m) with domain X is the cardinality of
the set X ∩ FV(M), that is, the number of variables in the domain of the rule
appearing free inM. Let r be the maximum rank of all applications of rule (m)

in Π: then the rank of Π, denoted by rk(Π), is equal to max{1, r}.

iv. The degree of a derivation Π, denoted by d(Π), is defined inductively as follows:

- if Π ends with an application of rule (Ax), then d(Π) = 0;

- if Π ends with an application of rule (( I) with premise Π′, then
d(Π) = d(Π′);

- if Π ends with an application of rule (( E) with premises Π1 and Π2, then
d(Π) = max{d(Π1), d(Π2)};

- if Π ends with an application of rule (st) with premises (Πi)
n
i=1, then

d(Π)r = maxni=1 d(Πi) + 1;

- if Π ends with an application of a renaming or quantifier rule with premise
Π′, then d(Π) = d(Π′).

v. Let r be a positive number; the weight W(Π, r) of Π with respect to r is defined
inductively as follows:

- if Π ends with an application of rule (Ax), then W(Π, r) = 1;

- if Π ends with an application of rule (( I) with premise Π′, then
W(Π, r) = W(Π′, r) + 1;
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- if Π ends with an application of rule (( E) with premises Π1 and Π2, then
W(Π, r) = W(Π1, r) + W(Π2, r) + 1;

- if Π ends with an application of rule (st) with premises (Πi)
n
i=1, then

W(Π, r) = r ·maxni=1 W(Πi, r);

- if Π ends with an application of a renaming or quantifier rule with premise
Π′, then W(Π, r) = W(Π′, r).

Such measures are related to each other as shown by the following lemma:

Lemma 27 (Relations between measures). If Π . Γ ` M : σ, then:

i. rk(Π) ≤ |M| ≤ |Π|;

ii. W(Π, r) ≤ rd(Π) · W(Π, 1);

iii. W(Π, 1) = |M|.

Proof. All three points are proved by induction on Π.

i. Let Π end with an application of rule (Ax): then rk(Π) = 0 and |x| = |Π| = 1,
so 0 ≤ 1 ≤ 1 and the inequality is satisfied.

Let Π end with an application of either rule (w), rule (∀I) or rule (∀E), where
Π′ is the premise of the rule. By inductive hypothesis rk(Π′) ≤ |M| ≤ |Π′|: then
rk(Π) = rk(Π′) ≤ |M| ≤ |Π′| < |Π|.

Let Π end with an application of rule (( I), where Π′ is the premise of the
rule and M = λx.P. By inductive hypothesis rk(Π′) ≤ |P| ≤ |Π′|: then
rk(Π) = rk(Π′) ≤ |P| < |M| ≤ |Π′|+ 1 = |Π|.

Let Π end with an application of rule (( E), where Π1,Π2 are the premises
of the rule and M = PQ. By inductive hypothesis rk(Π1) ≤ |P| ≤ |Π1| and
rk(Π2) ≤ |Q| ≤ |Π2|: then rk(Π) = max{rk(Π1), rk(Π2)} < rk(Π1) + rk(Π2) +

1 ≤ |P|+ |Q|+ 1 = |M| ≤ |Π1|+ |Π2|+ 1 = |Π|.

Let Π end with an application of rule (m) of domain {x1, ..., xn} and range
{x}, where Π′ is the premise of the rule and M = P[x/xi]

n
i=1. By inductive

hypothesis rk(Π′) ≤ |P| ≤ |Π′|, with n ≤ |P| = |M|: then

rk(Π) =

rk(Π′) ≤ |P| = |M| ≤ |Π| if max{rk(Π′), n)} = rk(Π′);

n ≤ |P| = |M| ≤ |Π| otherwise.

Finally, let Π end with an application of rule (st), where Π1, ...,Πn are the
premises of the rule. By inductive hypothesis rk(Πi) ≤ |M| ≤ |Πi| for 1 ≤ i ≤ n:
then rk(Π) = maxni=1 rk(Πi) ≤ |M| ≤ |Πi| < |Π|.



94 CHAPTER 3. MONOVALENT CHARACTERIZATION

ii. Observe that rd(Π) ≥ 1 for any r ≥ 1.

Let Π end with an application of rule (Ax): then by definition W(Π, r) = W(Π, 1) =

1 and d(Π) = 0, so 1 ≤ r0 · 1 and the inequality is satisfied.

Let Π end with an application of either rule (w), rule (∀I), rule (∀E) or rule
(m), where Π′ is the premise of the rule. By inductive hypothesis W(Π′, r) ≤
rd(Π′) · W(Π′, 1), and by definition d(Π) = d(Π′): then W(Π, r) = W(Π′, r) ≤
rd(Π) · W(Π′, 1) = rd(Π) · W(Π, 1).

Let Π end with an application of rule (( I), where Π′ is the premise of the rule.
By inductive hypothesis W(Π′, r) ≤ rd(Π′) · W(Π′, 1): then W(Π, r) = W(Π′, r) + 1 ≤
rd(Π) · W(Π′, 1) + 1 ≤ rd(Π) · W(Π′, 1) + rd(Π) < rd(Π) · W(Π, 1).

Let Π end with an application of rule (( E), where Π1 and Π2 are the premises
of the rule. By inductive hypothesis W(Πi, r) ≤ rd(Πi) · W(Πi, 1) for i ∈ {1, 2}:
then W(Π, r) = W(Π1, r) + W(Π2, r) + 1 ≤ rd(Π1) · W(Π1, 1) + rd(Π2) · W(Π2, 1) + 1 ≤
rd(Π) · W(Π1, 1) + rd(Π) · W(Π2, 1) + rd(Π) = rd(Π) · W(Π, 1).

Finally, let Π end with an application of rule (st), where Π1, ...,Πn are the
premises of the rule. By inductive hypothesis W(Πi, r) ≤ rd(Πi) · W(Πi, 1) for
1 ≤ i ≤ n, and in particular maxni=1 W(Πi, r) ≤ rmaxni=1 d(Πi)·maxni=1 W(Πi, 1): then
W(Π, r) = r ·maxni=1 W(Πi, r) ≤ r · rmaxni=1 d(Πi) ·maxni=1 W(Πi, 1) = rmaxni=1 d(Πi)+1 ·
maxni=1 W(Πi, 1) = rd(Π) · W(Π, 1).

iii. Let Π end with an application of rule (Ax): then W(Π, 1) = 1 and |x| = 1, so the
equality is satisfied.

Let Π end with an application of either rule (w), rule (∀I) or rule (∀E), where
Π′ is the premise of the rule. By inductive hypothesis W(Π′, 1) = |M|: then
W(Π, 1) = W(Π′, 1) = |M|.

Let Π end with an application of rule (( I), where Π′ is the premise of the rule.
By inductive hypothesis W(Π′, 1) = |M|: then W(Π, 1) = W(Π′, 1) + 1 = |M|+ 1 =

|λx.M|.

Let Π end with an application of rule (( E), where Π1 and Π2 are the premises
of the rule. By inductive hypothesis W(Π1, 1) = |M| and W(Π2, 1) = |N |: then
W(Π, 1) = W(Π1, 1) + W(Π2, 1) + 1 = |M|+ |N |+ 1 = |MN|.

Let Π end with an application of rule (m) of domain {x1, ..., xn} and range {x},
where Π′ is the premise of the rule. By inductive hypothesis W(Π′, 1) = |M|:
then W(Π, 1) = W(Π′, 1) = |M| = |M[xi/x]ni=1|.

Finally, let Π end with an application of rule (st), where Π1, ...,Πn are the
premises of the rule. By inductive hypothesis W(Πi, 1) = |M| for 1 ≤ i ≤ n, and
in particular maxni=1 W(Πi, 1) = |M |: then W(Π, 1) = 1 ·maxni=1 W(Πi, 1) = |M|.
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Note that copies of a derivation have the same measures:

Property 17 (Size of a copy). Let Π′ be a copy of Π: then rk(Π′) = rk(Π),
d(Π′) = d(Π) and W(Π′, r) = W(Π, r) for every r ≥ 1.

Proof. Easy, since Π and Π′ have exactly the same structure.

Using the results obtained so far, we are able to state a sort of weighted version
of Lemma 25, where the substitution is shown not to increase the overall weight of
the derivation:

Lemma 28 (Weighted substitution). Let Π . Γ, x1 : σ1, ..., xn : σn ` M : τ and
Σi .∆i ` Ni : σi, for 1 ≤ i ≤ n, such that {x1, ..., xn} ∩ FV(M) = {xi1 , ..., xip}
and Γ#∆1#...#∆n; then there is Φ . Γ,∆1, ...,∆n ` M[Ni/xi]ni=1 : σ such that

W(Φ, r) ≤ W(Π, r) +

p∑
s=1

W(Σis , r)

for every r ≥ max{rk(Σ1), ..., rk(Σn), rk(Π)}.

Proof. By induction on Π. Since the first part of the statement was already shown
to be valid in the proof of Lemma 25, we refer to the notation used in that proof in
order to prove that the given inequality holds.

Let Π end with an application of rule (Ax): then W(Φ, r) = W(Σ1, r), so the proof
is obvious.

Let Π end with an application of rule (w), having range {y}, to the premise
Π′. If y 6∈ {x1, ..., xn}, then the proof follows by induction. Otherwise, let y = x1,
so x1 6∈ {xi1 , ..., xip}. By inductive hypothesis W(Φ′, r) ≤ W(Π′, r) +

∑p
s=1 W(Σis , r);

then

W(Φ, r) = W(Φ′, r) ≤ W(Π′, r) +

p∑
s=1

W(Σis , r)

= W(Π, r) +

p∑
s=1

W(Σis , r)

Let Π end with an application of rule (( I): then the result follows easily by
induction.

Let Π end with an application of rule (( E) to Π1 and Π2; moreover, let
{x1, ..., xk} ∩ FV(M) = {xi1 , ..., xiq} and {xk+1, ..., xn} ∩ FV(P) = {xiq+1 , ..., xip}. By
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inductive hypothesis on Π1 and Π2 respectively, W(Φ1, r) ≤ W(Π1, r) +
∑q

s=1 W(Σis , r)

and W(Φ2, r) ≤ W(Π2, r) +
∑p

s=q+1 W(Σis , r); then

W(Φ, r) = W(Φ1, r) + W(Φ2, r) + 1

≤ W(Π1, r) + W(Π2, r) + 1 +

q∑
s=1

W(Σis , r) +

p∑
s=q+1

W(Σis , r)

= W(Π, r) +

p∑
s=1

W(Σis , r)

Let Π end with an application of rule (m), having range {y}, to Π′.
If y 6∈ {xi1 , ..., xip}, then the proof follows by induction.
Otherwise let y = x1. Let us assume that {y1, ..., yh} ∩ FV(P) = {yj1 , ..., yjq} and
{x2, ..., xn} ∩ FV(M) = {xi1 , ..., xip}. By inductive hypothesis on the premise Π′,
W(Ψ, r) ≤ W(Π′, r) +

∑q
l=1 W(Ψ′sjl

, r) +
∑p

s=1 W(Σis , r).
Note that W(Σ1, r) = r ·maxms=1 W(Ψs, r) = r ·maxhk=1 W(Ψ′sk , r) by Property 17. More-
over, W(Π, r) = W(Π′, r) and q ≤ rk(Π) ≤ r.
Since δ is a renaming sequence, by definition W(Φ, r) = W(Ψ, r); then

W(Φ, r) = W(Φ, r)

≤ W(Π′, r) +

q∑
l=1

W(Ψ′sjl
, r) +

p∑
s=1

W(Σis , r)

≤ W(Π′, r) + r · q
max
l=1

W(Ψ′sjl
, r) +

p∑
s=1

W(Σis , r)

= W(Π, r) + r · h
max
k=1

W(Ψ′sk , r) +

p∑
s=1

W(Σis , r)

= W(Π, r) + W(Σ1, r) +

p∑
s=1

W(Σis , r)

Let Π end with an application of rule (st) to the premises (Πk)1≤k≤h. Note that
W(Σi, r) = r ·maxhis=1 W(Σs

i , r) = r ·maxhk=1 W(Σsk
i , r) (1 ≤ i ≤ n). By induction

hypothesis W(Φk, r) ≤ W(Πk, r) +
∑p

j=1 W(Σsk
ij
, r), for every 1 ≤ k ≤ h; then

W(Φ, r) = r · h
max
k=1

W(Φk, r)

≤ r · h
max
k=1

W(Πk, r) +

p∑
j=1

W(Σsk
ij
, r)


< r · h

max
k=1

W(Πk, r) + r · h
max
k=1

p∑
j=1

W(Σsk
ij
, r)

≤ r · h
max
k=1

W(Πk, r) +

p∑
j=1

(
r · h

max
k=1

W(Σsk
ij
, r)

)

= W(Π, r) +

p∑
j=1

W(Σij , r)
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Let Π end with an application of a quantifier rule: then the result follows by
induction.

Observe that erasing a ∀-detour does not change the weight of the proof; then we
can easily prove that the weight of a proof strictly decreases with each normalization
step:

Theorem 14 (Weighted subject reduction). Π .Γ ` P : σ and P → Q implies there
is Ψ . Γ ` Q : σ, such that W(Ψ, r) < W(Π, r) for every r ≥ rk(Π).

Proof. Let P = C[(λx.M)N ] and Q = C[M[N/x]]. We proceed by induction on the
term context and then by induction on σ. We already proved in Theorem 13 that
the subject reduction holds; we refer to the notation used in that proof in order to
prove that the stated inequality holds.

Let C = � and let σ be a linear type. Since δ1, δ2 are sequences of renaming
and quantifier rules, W(Π, r) = W(Π′, r) + W(Σ, r) + 2 = W(Π′′, r) + W(Σ, r) + 2: then
W(Ψ, r) = W(Φ, r) ≤ W(Σ, r) + W(Π′′, r) < W(Π, r) by Lemma 28.

Let C = � and let σ = {σ1, ..., σn}. By inductive hypothesis W(Φi, r) < W(Πi, r),
for 1 ≤ i ≤ n: then W(Ψ, r) = r ·maxni=1 W(Φi, r) < r ·maxni=1 W(Πi, r) = W(Π, r).

If C 6= �, the proof follows easily by induction.

From such results we can easily derive both the complexity bound and the strong
normalization property:

Theorem 15. If Π . Γ ` M : σ and letM ∗→M′ in m steps, then:

i. m ≤ |M|d(Π)+1;

ii. |M′| ≤ |M|d(Π)+1.

Proof. Let r = rk(Π) and let Π′ . Γ ` M′ : σ.

i. By Lemma 27, r ≤ |M| and W(Π, r) ≤ rd(Π) · W(Π, 1) = rd(Π) · |M| ≤ |M|d(Π) · |M|.
Let M → M1 → M2 → ... → Mm = M′, with m ≥ 1. By Theorem 14, if
M reduces toM1 in one β-reduction step, then there is Π1 . Γ ` M1 : σ such
that W(Π1, r) ≤ W(Π, r)− 1; ifM1 reduces toM2 in one β-reduction step, then
there is Π2 . Γ ` M2 : σ such that W(Π2, r) ≤ W(Π1, r)− 1 ≤ W(Π, r)− 2, and so
on. After m reduction steps, we obtain W(Π′, r) ≤ W(Π, r)−m, so m ≤ W(Π, r):
by substituting W(Π, r) ≤ |M|d(Π)+1 in the above expression, we finally obtain
m ≤ |M|d(Π)+1.
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M1 ∈ SN ... Mn ∈ SN
xM1...Mn ∈ SN (3.1)
M∈ SN

λx.M∈ SN (3.2)
M[N/x]M1...Mn ∈ SN N ∈ SN

(λx.M)NM1...Mn ∈ SN (3.3)

Table 3.3: Rules defining the set SN.

ii. By Theorem 14, W(Π′, r) < W(Π, r). Since W(Π′, 1) ≤ W(Π′, r) and by Lemma 27
|M′| = W(Π′, 1), we obtain

|M′| ≤ W(Π, r) ≤ rd(Π) · W(Π, 1) = rd(Π) · |M| ≤ |M|d(Π)+1.

Since the number of steps in the reduction path for a given term is a finite number,
we also obtain a proof of strong normalization:

Theorem 16. If a termM is typed in STR, thenM is strongly normalizing.

Proof. Easy by Theorem 15.

Note that, as usual, a typed term can be assigned an infinite number of types by
fiddling with non-constructive rules; in particular, since stratifications can be added
ad libitum, different derivations of the same term may supply a different bound on
the number of its normalization steps.
Nonetheless, a minimal bound on the normalization time of a term can be easily
obtained, simply by choosing a derivation with minimal depth in which “useless”
applications of non-constructive rules are avoided.

3.3.2 Strong normalization implies typability

We now show the converse implication, namely that all strongly normalizing
terms are typed in STR, by following the technique of [Val01; RSSX99; BDS13].
The set of strongly normalizing terms, denoted by SN, is the smallest set of terms
closed under the rules depicted in Table 3.3.

For each of these rules, we prove that if the premises of the rule are typable
then the conclusion is also typable; in particular, in order to prove such property for
Rule (3.3), we need to show that the expansion holds for typed terms of STR.
To this aim we start by giving a sort of inversion of Lemma 25:
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Lemma 29 (Inverted substitution). Let Γ,∆ ` M[Ni/xi]ni=1 : τ , where N1, ...,Nn
are typable in STR, dom(Γ) = FV(M) \ {x1, ..., xn} and {x1, ..., xn} ∩ dom(∆) = ∅;
then there are ∆i ` Ni : σi, for 1 ≤ i ≤ n, such that Γ, x1 : σ1, .., xn : σn ` M : τ .

Proof. Let Π be a derivation proving Γ,∆ ` M[Ni/xi]ni=1 : τ . The proof is by
induction on Π. The key cases, to be considered more carefully, are the ones of rule
(( E) and (m).

Let Π be
x : A ` x : A

(Ax)

soM is a variable. By hypothesis Ni is typable: then there is Σi .∆i ` Ni : Ai for
some linear type Ai, for 1 ≤ i ≤ n.
IfM = xk, for 1 ≤ k ≤ n, we have Γ = ∅ andNk = x: then x1 : A1, ..., xn : An ` xk : Ak

follows from axiom xk : Ak ` xk : Ak by Property 14. Otherwise we have M = x

and x 6∈ {x1, ..., xn}, so Γ = x : A: then x : A, x1 : A1, ..., xn : An ` x : A follows from
axiom x : A ` x : A by Property 14.

Let Π be
Γ,∆ ` P : τ

Γ,∆, y : B ` P : τ
(w)

Since y 6∈ FV(M), the proof follows by induction.
Let Π be

Γ,∆, y : ρ ` P : A

Γ,∆ ` λy.P : ρ( A
(( I)

where λy.P =M[Ni/xi]ni=1, so eitherM = λy.P ′ orM = xk, for some k ∈ {1, ..., n}.
LetM = λy.P ′. Since (λy.P ′)[Ni/xi]ni=1 = λy.(P ′[Ni/xi]ni=1), by induction there are
∆i ` Ni : σi such that Γ, y : ρ, x1 : σ1, ..., xn : σn ` P : A (1 ≤ i ≤ n): then the proof
follows by applying rule (( I) to this derivation.
Otherwise, letM = xk. Since Nk = λy.P , Ak = ρ( A and Γ = ∅, by one application
of rule (Ax) xk : ρ( A ` xk : ρ( A: then x1 : σ1, .., xk : ρ( A, ...xn : σn ` xk : ρ( A

follows by Property 14.
Let Π be

Γ′,∆′ ` P : ρ( A Γ′′,∆′′ ` Q : ρ

Γ,∆ ` PQ : A
(( E)

where Γ = Γ′,Γ′′, so eitherM = P ′Q′ orM = xk, for some k ∈ {1, ..., n}.
LetM = P ′Q′, so PQ = P ′[Ni/xi]ni=1Q′[Ni/xi]ni=1.
By inductive hypothesis, since P = P ′[Ni/xi]ni=1 and Q = Q′[Ni/xi]ni=1, there are
∆′i ` Ni : σ′i and ∆′′i ` Ni : σ′′i (1 ≤ i ≤ n) such that Γ′, x1 : σ′1, ..., xn : σ′n ` P ′ : ρ( A

and Γ′′, x1 : σ′′1 , ..., xn : σ′′n ` Q′ : ρ.
From such derivations we obtain Σ′ . Γ′, x′1 : {σ′1}, ..., x′n : {σ′n} ` P ′[x′i/xi]ni=1 : ρ( A

and Σ′′ . Γ′′, x′′1 : {σ′′1}, ..., x′′n : {σ′′n} ` Q′[x′′i /xi]ni=1 : ρ respectively, by a renaming se-
quence such that {x′1, ..., x′n} ∩ {x′′1, ..., x′′n} = ∅.
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For every 1 ≤ i ≤ n, let σi = {{σ′i}} ∪ {{σ′′i }}: if σ′i 6= σ′′i , then we can build

∆′i ` Ni : σ′i
{∆′i} ` Ni : {σ′i}

(st)
∆′′i ` Ni : σ′′i

{∆′′i } ` Ni : {σ′′i }
(st)

∆i ` Ni : σi
(st)

where ∆i = {{∆′i}} ∪ {{∆′′i }}; otherwise, if σ′i = σ′′i , then we build the following

∆′i ` Ni : σ′i
{∆′i} ` Ni : {σ′i}

(st)

∆i ` Ni : σi
(st)

where ∆i = {{∆′i}}. Then there are ∆i ` Ni : σi, for 1 ≤ i ≤ n and a renaming
sequence δ such that the desired derivation is

Σ′ Σ′′

Γ, x′1 : {σ′1}, ..., x′n : {σ′n}, x′′1 : {σ′′1}, ..., x′′n : {σ′′n} ` P ′[x′i/xi]ni=1Q′[x′′i /xi]ni=1 : A
(( E)

Γ, x1 : σ1, ..., xn : σn ` P ′Q′ : A
δ

IfM = xk, then the proof follows easily as in the previous case (( I).
Let Π be

Γ,∆, y1 : ρ1, ..., ym : ρm : τm ` P : τ

Γ,∆, y : ∪mj=1{ρj} ` P[y/yj ]
m
j=1 : τ

(m)

where P[y/yj ]
m
j=1 =M[Ni/xi]ni=1.

Let y 6∈ ∪ni=1FV(Ni), soM =M′[y/yj ]mj=1 and P =M′[Ni/xi]ni=1. If y 6∈ FV(M),
then P = P[y/yj ]

m
j=1 =M[Ni/xi]ni=1 and the proof comes by induction. Otherwise,

let y ∈ FV(M) and {ys1 , ..., ysp} = {y1, ..., ym} ∩ FV(M). By inductive hypothesis
there are ∆i ` Ni : σi such that Γ, ys1 : ρs1 , ..., ysp : ρsp , x1 : σ1, ..., xn : σn ` M : τ ;
then, from such derivation, we obtain the desired result by Property 14 and by one
application of rule (m) with domain {y1, ..., yn} and range {y}.
Now let us consider y ∈ ∪ni=1FV(Ni), soM =M′[y/yj ]mj=1[xi/x

1
i , ..., xi/x

ri
i ]ni=1 and

M[Ni/xi]ni=1 = (M′[N 1
i /x

1
i , ...,N

ni
i /xrii ]ni=1)[y/yj ]

m
j=1.

Let {ys1 , ..., ysp} = {y1, ..., ym} ∩ FV(M′). Since P =M′[N 1
i /x

1
i , ...,N

ri
i /x

ri
i ]ni=1, by

inductive hypothesis there are ∆h
i ` N h

i : σhi , for 1 ≤ i ≤ n and 1 ≤ h ≤ ri, such that

Ψ . Γ, ys1 : ρs1 , ..., ysp : ρsp , x
1
1 : σ1

1, ..., x
r1
1 : σr11 , ..., x

1
n : σ1

n, ..., x
rn
n : σrnn ` M′ : τ

Note that Ni = N h
i [y/ym]mj=1, so we can build ∆′hi ` N h

i [y/ym]mj=1 : σhi by applying
rule (m) with domain FV(N h

i ) ∩ {y1, ..., ym} and range {y} to ∆h
i ` N h

i : σhi , for

1 ≤ i ≤ n and 1 ≤ h ≤ ri. Then, for every 1 ≤ i ≤ n, if σi = ∪rih=1{σ
h
i } = {σs

i
1
i , ..., σ

siq
i }

we can build
(∆′hi ` N h

i [y/ym]mj=1 : σhi )si1≤h≤siq
∆i ` Ni : σi

(st)
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Let δ be a renaming sequence containing n applications of rule (m), the i-th one
having domain {x1

i , ..., x
ri
i } and range {xi}, for 1 ≤ i ≤ n. If y ∈ FV(M), then from

Ψ we derive

Γ, y : ∪mj=1{ρj}, x1 : σ1, ..., xn : σn ` M′[y/yj ]mj=1[xi/x
1
i , ..., xi/x

ri
i ]ni=1 : τ

by Property 14 and by one application of rule (m) with domain {y1, ..., yn} and
range {y}, followed by sequence δ. Otherwise, if y 6∈ FV(M), thenM′ = M and
{ys1 , ..., ysp} = ∅, so we obtain the desired result by applying renaming sequence δ
to Γ, x1

1 : σ1
1, ..., x

r1
1 : σr11 , ..., x

1
n : σ1

n, ..., x
rn
n : σrnn ` M : τ .

Let Π be
(Γj ,Θj ` M[Ni/xi]ni=1 : τj)1≤j≤m

Γ,∆ ` M[Ni/xi]ni=1 : τ
(st)

where Γ = ∪mj=1{Γj} and τ = {τ1, ... , τm}. For 1 ≤ j ≤ m, by inductive hypothesis
there are ∆j

i ` Ni : σji , for 1 ≤ i ≤ n, such that Γj , x1 : σj1, ..., xn : σjn ` M : τj .

Then, for 1 ≤ i ≤ n, if σi = ∪mj=1{σ
j
i } = {σs

i
1
i , ..., σ

sip
i } there are

(∆j
i ` Ni : σji )si1≤j≤sip

∆i ` Ni : σi
(st)

such that the desired derivation is

(Γj , x1 : σj1, ..., xn : σjn ` M : τj)1≤j≤m
Γ, x1 : σ1, ..., xn : σn ` M : τ

(st)

Finally, let Π end with an application of a quantifier rule: then the proof follows
easily by induction.

Then we are able to prove a particular case of the (typed) subject expansion,
where only the case of the subject being a redex is considered:

Lemma 30 (Subject expansion). Θ ` M[N/x] : σ and N typable in STR imply there
exists Θ′ such that Θ′ ` (λx.M)N : σ.

Proof. By induction on σ.
Let σ = A. Consider Θ = Γ,Ξ where dom(Γ) = FV(M) \ {x}. By Lemma 29,

there is ∆ ` N : τ such that Γ, x : τ ` M : A; let ∆′ ` N ′ : τ be a copy of ∆ ` N : τ ,
such that Γ#∆′: then we can build the following derivation

Γ, x : τ ` M : A

Γ ` λx.M : τ ( A
(( I)

∆′ ` N ′ : τ
Γ,∆′ ` (λx.M)N ′ : A

(( E)
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and, since (λx.M)N is an instance of (λx.M)N ′, the result follows by Lemma 22.
Otherwise, let σ = {σ1, ... , σn}. By Property 16, Π . Γ ` M[N/x] : {σ1, ... , σn}
implies there are derivations Πi . Γi ` P : σi (1 ≤ i ≤ n) such that Π is obtained
by an application of rule (st) to (Πi)

n
i=1, followed by a renaming sequence δ. By

applying sequence δ to Πi we obtain Γ′′i ` M[N/x] : σi, for 1 ≤ i ≤ n.
By inductive hypothesis there are Γ′i such that Γ′i ` (λx.M)N : σi, for 1 ≤ i ≤ n:
then by applying rule (st) to such derivations we obtain Γ′ ` (λx.M)N : σ, where
Γ′ = ∪ni=1{Γ′i}.

Finally we can prove the desired implication, namely that all strongly normalizing
terms are typable in STR:

Theorem 17. IfM is strongly normalizing, thenM is typable in STR.

Proof. For each of the three rules of Table 3.3 we show that, if the premises of the
rule are typable, then the conclusion is typable as well.

Let us consider Rule (3.1), so M = xN1...Nn. Let x′,N ′1, ...,N ′n be instances
of x,N1, ...,Nn respectively, such that j 6= h implies FV(N ′j) ∩ FV(N ′h) = ∅, for
1 ≤ j, h ≤ n, and x′ 6∈ ∪ni=1FV(N ′i ): we prove that there is a derivation, assigning to
x′N ′1...N ′n a linear type, from which we can derive a typing for xN1...Nn.
If n = 0, then the proof is obvious.
Otherwise, by inductive hypothesis on N ′1, ...,N ′n and by Corollary 12 there are
Γ′i ` N ′i : Ai, for 1 ≤ i ≤ n. Let A = A1 ( A2 ( ...( An( B; then we can build

x′ : A ` x′ : A
(Ax)

Γ′1 ` N ′1 : A1

x′ : A,Γ′1 ` x′N ′1 : A2 ( ...( An( B
(( E)

Γ′2 ` N ′2 : A2

...
(( E)

x′ : A,Γ′1, ...,Γ
′
n ` x′N ′1...N ′n : B

(( E)

and, since xN1...Nn is an instance of x′N ′1...N ′n, the desired derivation follows by
Lemma 22.

Now let us consider Rule (3.2), so M = λx.N . Since N ∈ SN, by inductive
hypothesis on N there is a derivation Γ ` N : B. If x ∈ FV(N ), then Γ = Γ′, x : τ ,
so the desired derivation follows by one application of rule (( I) to Π′; otherwise,
we first apply a rule (w) with range {x}, followed by an application of rule (( I) to
abstract over x.

Finally, let us consider the crucial case of Rule (3.3), soM = (λx.M)NM1...Mn.
By induction, bothM[N/x]M1...Mn and N are typable. Moreover, by Lemma 23
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the derivation proving Γ ` M[N/x]M1...Mn : A is

Θ1 ` P1 : σ1
1 ( ...( σ1

n( B1 ∆1 ` M1
1 : σ1

1

Θ1,∆1 ` P1M1
1 : σ1

2 ( ...( σ1
n( B1

(( E)

Θ2 ` P2M2
1 : σ2

2 ( ...( σ2
n( B2

δ1
∆2 ` M2

2 : σ2
2

Θ2,∆2 ` P2M2
1M2

2 : σ2
3 ( ...( σ2

n( B2

(( E)

Θ3 ` P3M3
1M3

2 : σ3
3 ( ...( σ3

n( B3
δ2

...
Θn,∆n ` PnMn

1 ...Mn
n : Bn

Γ ` M[N/x]M1...Mn : A
δn

whereM[N/x] is an instance of Pi,Mi is an instance ofMj
i and δi is a renaming

and quantifier sequence, for 1 ≤ i ≤ n and i ≤ j ≤ n.
Without loss of generality, we can safely assume that FV(M) ∩ ∪ni=1FV(Mi

i) = ∅
and FV(N ) ∩ ∪ni=1FV(Mi

i) = ∅. By Lemma 26, each sequence δi (1 ≤ i ≤ n) can
be rearranged in such a way that the applications of quantifier rules precede the
applications of renaming rules; let δ′1...δ′n be such quantifier sequences.
SinceM[N/x] is an instance of P1, by Lemma 22 Θ ` M[N/x] : σ1

1 ( ...( σ1
n( B1

can be obtained from Θ1 ` P1 : σ1
1 ( ...( σ1

n( B1 by a renaming sequence. More-
over, since by hypothesis N is typable in STR, by Lemma 30 there is Θ′ such that
Θ′ ` (λx.M)N : σ1

1 ( ...( σ1
n( B1: then we can build

Θ′ ` (λx.M)N : σ1
1 ( ...( σ1

n( B1 ∆1 ` M1
1 : σ1

1

Θ′,∆1 ` (λx.M)NM1
1 : σ1

2 ( ...( σ1
n( B1

(( E)

Θ′,∆1 ` (λx.M)NM1
1 : σ2

2 ( ...( σ2
n( B2

δ′1 ∆2 ` M2
2 : σ2

2

Θ′,∆1,∆2 ` (λx.M)NM1
1M2

2 : σ2
3 ( ...( σ2

n( B2

(( E)

Θ′,∆1,∆2 ` (λx.M)NM1
1M2

2 : σ3
3 ( ...( σ3

n( B3

δ′2

...
Θ′,∆1, ...,∆n ` (λx.M)NM1

1...Mn
n : Bn

Θ′,∆1, ...,∆n ` (λx.M)NM1
1...Mn

n : A
δ′n

Since (λx.M)NM1...Mn is an instance of (λx.M)NM1
1...Mn

n, the desired derivation
follows by applying Lemma 22.

3.4 Polynomial characterization

From the point of view of implicit complexity, we are interested in proving that
STR characterizes exactly the functions of FPTIME; therefore, while being considerably
more expressive, STR characterizes exactly the same functions as the Soft Type
Assignment system STA [GR07], which was proved to be sound and complete with
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respect to FPTIME. This is somehow in line with the result obtained in [BPS03],
where a typing system assigning simple types to λ-terms is proved to represent
exactly the same class of functions as one endowed with intersection types, by giving
a translation of terms typed in the former system into terms typed in the latter one.

3.4.1 Translation from STA to STR

In order to prove the FPTIME characterization, we consider the relation between
STA and STR. We start by showing that if a term is typable in STA, then it is also
typed by STR. Such translation is easy to define on both types and bases, since STA
can be seen as a restriction of STR, where only variables with the same type can be
contracted by rule (m), while rule (!) is the equivalent of rule (st) where only one
premise is allowed and stratification is replaced by the ! marker:

Definition 23 (Translation from STA to STR).

- The translation (.)◦ from T S to T is defined inductively as follows::

(a)◦ = a; (µ( U)◦ = (µ)◦( (U)◦; (!µ)◦ = {(µ)◦}

- Let Θ be a basis in STA: then (Θ)◦ is the basis such that (Θ)◦(x) = (Θ(x))◦.

By the previous definition, the translation is obtained in a straightforward way:

Lemma 31. Θ `STAM : µ implies (Θ)◦ ` M : (µ)◦.

Proof. Let Φ .Θ `STAM : µ. We proceed by induction on Φ.
Let Φ end with an application of rule (Ax): then the proof is trivial.
Let Φ end with an application of rule (sp) to Π′. By inductive hypothesis

(Π′)◦ . (Θ)◦ `STAM : (ν)◦: then (Π)◦ is obtained by applying rule (st) to the unique
premise (Π′)◦.

All the other cases follow easily by induction and by applying the respective rule
in STR.

Observe that the converse translation from STR to STA is not at all straightforward,
since STR is much more expressive than STA, in which only a strict subset of the
strongly normalizing terms can be typed. In particular, the technique of [BPS03] can
hardly be adapted to our setting, since both typing systems employ the renaming of
variables in order to control the duplication of terms.
The reason of this difficulty lays in the fact that a translation from T to T S cannot
be designed simply by induction on the type, but it should depend on the whole
derivation, since in principle only a partial linearization of a term typed in STR could
be typed in STA. Luckily, there is an easier way to prove the soundness of STR with
respect to FPTIME, by using the result of Theorem 15.
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3.4.2 Polynomial time soundness and completeness

As in Section 2.1.5, we need to define an encoding of data and its respective
datatype, in order to represent functions. We choose the Church representation of
binary words:

w ∈ {0, 1}?, w = 〈i1, . . . , in〉, w = λf0.λf1.λx.fi1 (fi2 . . . (fin x) . . . )

where, by abuse of notation, we also denote by 1 the identity λf.f . The size of the
binary word w is denoted by |w|; it is easy to check that |w| is linear with respect to
|w|.

Church binary words can be assigned in STA both a uniform and a para-
metric type, defined respectively as W = ∀a.!(a( a)(!(a( a)( a( a and
Wn,m = ∀a.!n(a( a)(!m(a( a)( a( a, for every n ≥ 1 and m ≥ 1; note
that W = W1,1.
It is easy to check that every derivation Π. `STA w : Wn,m, for n ≥ 1 and m ≥ 1, is
such that dS(Π) = 0: indeed, the polynomiality of STA depends on this very property.

The parametric datatypes play an essential role in bounding the running time of
the computation of a program in STA, since a term representing a numerical function
can have different parameters for its input(s) and output types: because of the
mismatch between such types, the iteration of such functions is thus forbidden, with
the result that terms representing non-polynomial functions (such as exponentiation)
cannot be typed.

In a very similar way, Church binary words can be assigned in STR both
the uniform type WI = ∀a.{a( a}( {a( a}( a( a and a parametric type
WIn,m = ∀a.{a( a}n( {a( a}m( a( a, for any n ≥ 1 and m ≥ 1. Again, it
is easy to check that the depth of any derivation Π. `STA w : WIn,m is equal to 0,
for n ≥ 1 and m ≥ 1.

Now we are able to formally define the representation of functions in both STA

and STR. Such definition is a straightforward extension of the classical definition of
λ-representation of functions [Bar84; RP04] in a typed setting [BPS03; GR07].
The additional power of STR with respect to STA is illustrated by the fact that, while
in STA every input data must be assigned a parametric type for natural numbers, in
STR we allow each input number to be assigned a stratified set of types, with the
proviso that all its linear components are numerical types:

Definition 24 (Representation of functions). Let φ : Np −→ N be a function of arity
p.

i. A program M = λx1...xp.P represents φ in STA if and only if, for any binary
word w1, ..., wp:

• Mw1...wp
∗→ φ(w1, ..., wp);
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• `STAM :!i1Wj1,k1 ( ...(!ipWjp,kp (Wj,k, for some j, k, jh, kh (1 ≤ h ≤ p).

ii. A programM = λx1...xp.P represents φ in STR if and only if:

• Mw1...wp
∗→ φ(w1, ..., wp);

• ` M : σ1 ( ...( σp(WIh,k and σi = [WIhi1,ki1
, ...,WIhiqi ,k

i
qi

], for some
h, k, hi, ki, qi, h

i
r, k

i
r (1 ≤ i ≤ p, 1 ≤ r ≤ qi).

In [GR07], the authors prove that STA is sound and complete with respect to
FPTIME; here we exploit the translation from STA to STR, given in Lemma 31, in
order to extend the completeness result to STR:

Lemma 32 (FPTIME completeness). Let φ : Np −→ N be a polynomial time function,
for p ≥ 1: then there is a typed term of STR representing it.

Proof. By Definition 24.i, letM be a term representing function φ in STA, such that
Mw1...wp

∗→ φ(w1, ..., wp) and `STAM :!i1Wj1,k1 ( ...(!ipWjp,kp (Wj,k, for any
binary word w1, ..., wp and some j, k, jh, kh (1 ≤ h ≤ p).
By Definition 23, we know that (!isWjs,ks)

◦ = {WIjs,ks}is , for 1 ≤ s ≤ p, and
(Wj,k)

◦ = WIj,k. By Lemma 31, the above STA derivation typing M is trans-
lated into ` M : {WIj1,k1}i1 ( ...( {WIjp,kp}ip (WIj,k: thenM represents φ
in STR by Definition 24.ii.

LetM be a term representing a numerical function φ : Np −→ N in STR; in order
to prove the soundness of STR with respect to FPTIME, we show that the reduction
of Mw1...wp to its normal form can be performed on a Turing machine of time
polynomial in the size of the input.
Consider the application of a program to a given argument. Our aim is to bound
the number of duplications (namely, substitutions) performed by a reduction step;
therefore, we need to know how many application of rule (Ax) play a role in creating
an occurrence of the formal parameter of the considered program. Since each
occurrence of a variable is born linear, we have to keep track of the renaming history
of each variable, namely of its set of ancestors:

Definition 25 (Ancestors of a variable). Let Π . Γ ` M : τ and x ∈ dom(Γ); the
set of ancestors of x in Π, denoted by A(x,Π), is defined inductively as follows:

• if Π is

x : A ` x : A
(Ax)

then A(x,Π) = {x};
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• if Π is
Π′ . Γ ` M : τ
Γ, y : A ` M : τ

(w)

then A(x,Π) = {x} if y = x, A(x,Π) = A(x,Π′) otherwise;

• if Π is
Π′ . Γ, y : σ ` P : A

Γ ` λy.P : σ( A
(( I)

then A(x,Π) = A(x,Π′);

• if Π is
Π′ . Γ′ ` P : σ( A Π′′ . Γ′′ ` Q : σ

Γ′,Γ′′ ` PQ : A
(( E)

then A(x,Π) = A(x,Π′) if x ∈ dom(Γ′), A(x,Π) = A(x,Π′′) otherwise;

• if Π is
Π′ . Γ, y1 : σ1, ..., yn : σn ` M : τ

Γ, y : ∪ni=1{σi} ` M[y/yi]
n
i=1 : τ

(m)

then A(x,Π) = ∪ni=1A(yi,Π
′) if x = y, A(x,Π) = A(x,Π′) otherwise;

• if Π is
(Πi . Γi ` M : σi)1≤i≤n

∪ni=1{Γi} ` M : {σ1, ... , σn}
(st)

then A(x,Π) = ∪ni=1A(x,Πi);

• if Π is
Π′ . Γ ` M′ : σ′

Γ ` M : σ
(R)

where (R) is a quantifier rule, then A(x,Π) = A(x,Π′).

We can now prove the FPTIME soundness result for STR as well:

Theorem 18 (FPTIME soundness). Let φ : Np −→ N, with p ≥ 1, and let M be a
program representing φ in STR; then there is a polynomial P such that, for any binary
word w1, ..., wp,Mw1...wp can be evaluated to its normal form on a Turing Machine
in time O(P (|w1|+ ...+ |wp|)).

Proof. By Definition 24.(ii), ifM represents φ thenMw1...wp
∗→ φ(w1, ..., wp) and

` M : σ1 ( ...( σp(WIh,k, where σi = [WIhi1,ki1
, ...,WIhiqi ,k

i
qi

] for some h, k, hi,
ki, qi, hir, kir (1 ≤ i ≤ p,1 ≤ r ≤ qi).
SinceM is a program, namely a closed normal form, by Lemma 23 we can safely
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assume thatM = λx1...xp.P andM : σ1 ( ...( σp(WIh,k ends with p applica-
tions of rule (( I), whose initial premise is Φ . x1 : σ1, ..., xp : σp ` P : WIh,k. Then
we can build the following derivation:

Φ . x1 : σ1, ..., xp : σp ` P : WIh,k

` M : σ1 ( ...( σp(WIh,k
(( I)

Φ1 ` w1 : σ1

...
` Mw1...wp−1 : σp(WIh,k

(( E)

Φp ` wp : σp

` Mw1...wp : WIh,k
(( E)

where each Φi (1 ≤ i ≤ p) is obtained from derivations ` wi : WIhit,kit (1 ≤ t ≤ qi),
each of depth 0, by a suitable sequence of applications of rule (st).
By Lemma 25, there is a derivation Π. ` P[wi/xi]

p
i=1 : WIh,k. Moreover, by observ-

ing the proof of the substitution Lemma, it is easy to see that such derivation is
obtained by replacing axiom y : WIhit,kit ` y : WIhit,kit of Φ, for each y ∈ A(xi,Φ),
with derivation ` wi : WIhit,kit of depth 0, for 1 ≤ i ≤ p and 1 ≤ t ≤ qi; therefore
d(Π) = d(Φ), so d(Π) does not depend on the size of the input.
LetMw1...wp

∗→ P[wi/xi]
p
i=1

∗→ φ(w1, ..., wp) inm β-reduction steps; by Theorem 15,
m ≤ |Mw1...wp|(d(Π)+1) and each intermediate term N in the reduction sequence
is such that |N | ≤ |Mw1...wp|(d(Π)+1). Since a β-reduction step N → N ′ can be
simulated in time O(|N |2) on a Turing machine [Ter01], each reduction step takes a
time O(|Mw1...wp|2(d(Π)+1): then, since the size of the program is a constant with
respect to the computation, the conclusion follows.

Since STR is both sound and complete with respect to FPTIME, the desired
characterization result holds:

Corollary 19 (FPTIME characterization). STR characterizes FPTIME.

Proof. Easy by combining Lemma 32 and Theorem 18.

Note that, since STA is also sound and complete with respect to FPTIME, the
functions representable in STR are exactly the ones representable in STA. However,
more programs can be typed in STR, as a consequence of the introduction of stratified
(intersection) types into the equation.

3.4.3 Examples of gain in expressivity

Consider the following successors, concatenating a binary word with either 0 or 1:

• succ0 = λw.λf0.λf1.λx.wf0f1(f0x) has type WIm,n(WIm+1,n in STR (resp.
Wm,n(Wm+1,n in STA) and corresponds to the function f(x) = 2x;
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• succ1 = λw.λf0.λf1.λx.wf0f1(f1x) has type WIm,n(WIm,n+1 in STR (resp.
Wm,n(Wm,n+1 in STA) and corresponds to the function f(x) = 2x+ 1.

Let A = a( a; the derivation for succ0 is the following:

Π . w : WIm,n, f
′
0 : {A}m, f1 : {A}n ` wf ′0f1 : A

f ′′0 : A ` f ′′0 : A
(Ax)

x : a ` x : a
(Ax)

f ′′0 : A, x : a ` f ′′0 x : a
(( E)

f ′′0 : {A}m, x : a ` f ′′0 x : a
(m)

w : WIm,n, f
′
0 : {A}m, f ′′0 : {A}m, f1 : {A}n, x : a ` wf ′0f1(f ′′0 x) : a

(( E)

w : WIm,n, f0 : {A}m+1, f1 : {A}n, x : a ` wf0f1(f0x) : a
(m)

w : WIm,n ` λf0.λf1.λx.wf0f1(f0x) : {A}m+1( {A}n( A
(( I)

w : WIm,n ` λf0.λf1.λx.wf0f1(f0x) : WIm+1,n
(∀I)

` succ0 : WIm,n(WIm+1,n
(( I)

where Π is

w : WIm,n ` w : WIm,n
(Ax)

w : WIm,n ` w : {A}m( {A}n( A
(∀E)

f ′0 : A ` f ′0 : A
(Ax)

f ′0 : {A}m ` f ′0 : {A}m
(st)

w : WIm,n, f
′
0 : {A}m ` wf ′0 : {A}n( A

(( E)
f1 : A ` f1 : A

(Ax)

f1 : {A}n ` f1 : {A}n
(st)

w : WIm,n, f
′
0 : {A}m, f1 : {A}n ` wf ′0f1 : A

(( E)

The typing of succ1 is similar.
As an example of the gain in expressivity of STR with respect to STA, let us first

consider the iteration of the successor function over binary words; such programming
construct is not typable in STA with a meaningful type, because the polynomial
bound is enforced by the fact that functions cannot be iterated, but only composed,
in order to forbid the construction of exponential functions. Nonetheless, in STR it is
possible to type a limited notion of iteration, as shown in the following example.

Example 13 (Iteration of the successor). In STR it is possible to iterate the successor
of a binary number a constant number k of times.
Consider the k-loop term ITERk = λf.λx.fkx; in order to be applied to the program
succ0, the ITERk term can by typed in the following way:

...
f1 : V1, ..., fk : Vk, x : WIm,n ` fk(...(f1x)...) : WIm+k,n

f : {V1, ... , Vk}, x : WIm,n ` fkx : WIm+k,n

(m)

` λf.λx.fkx : {V1, ... , Vk}(WIm,n(WIm+k,n

(( I)

where Vi = WIm+i−1,n(WIm+i,n, for 1 ≤ i ≤ k.
The term ITERk succ0 can then be obtained by applying rule (( E) to the derivation
above and to the one obtained as follows:

(` succ0 : Vi)1≤i≤k

` succ0 : {V1, ... , Vk}
(st)
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Similarly, in order to apply ITERk to succ1, the k-loop term can be assigned the
following type:

{WIm,n(WIm,n+1, ...,WIm,n+k−1 (WIm,n+k}(WIm,n(WIm,n+k

Observe that this term is not typable in STA, because it is not possible to assign
the same type to every fi (1 ≤ i ≤ k).

Now consider the term

addmsb = λw.λf0.λf1.λx.(wF0F1(λy.x))true

representing the function ψ : N→ N such that ψ(x) = x+ 2blog2(x)c+1, which consists
of adding a 1-bit in the position to the immediate left of the most significative bit of
the input word, where

F0 = λt.λb.f0(t b)

F1 = λt.λb.(b f1 I)(f1(t false))

Let Π0 be

f0 : a( a ` f0 : a( a
(Ax) t : B( a ` t : B( a

(Ax)
b : B ` b : B

(Ax)

t : B( a, b : B ` t b : a
(( E)

f0 : a( a, t : B( a, b : B ` f0(t b) : a
(( E)

f0 : a( a ` F0 : (B( a)( (B( a)
(( I)

f0 : {a( a}m ` F0 : {(B( a)( (B( a)}m
(st)

and let Π1 be

b : B ` b : B
b : B ` b : (b( b( b)[a( a/b]

(∀E)
f ′1 : a( a ` f ′1 : a( a

(Ax)

f ′1 : a( a, b : B ` b f ′1 : (a( a)( (a( a)
(( E)

...
` I : a( a

f ′1 : a( a, b : B ` b f ′1 I : a( a
(( E)

Σ

f ′1 : a( a, f ′′1 : a( a, t : B( a, b : B ` (b f ′1 I)(f ′′1 (t false)) : a
(( E)

f1 : {a( a}, t : B( a, b : B ` (b f1 I)(f1(t false)) : a
(m)

f1 : {a( a} ` F1 : (B( a)( (B( a)
(( I)

f1 : {a( a}n+1 ` F1 : {(B( a)( (B( a)}n
(st)

where Σ is

f ′′1 : a( a ` f ′′1 : a( a
(Ax) t : B( a ` t : B( a

(Ax)
...

false : B ` false : B
t : B( a ` t false : a

(( E)

f ′′1 : a( a, t : B( a ` f ′′1 (t false) : a
(( E)
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Let A = B( a; then addmsb is easily typed as follows:

Φ

...
` true : B

w : WIm,n, f0 : {a( a}m, f1 : {a( a}n+1, x : a ` (wF0F1(λy.x))true : a
(( E)

w : WIm,n ` λf0.λf1.λx.(wF0F1(λy.x))true : {a( a}m( {a( a}n+1 ( a( a
(( I)

w : WIm,n ` λf0.λf1.λx.(wF0F1(λy.x))true : WIm,n+1
(∀I)

` addmsb : WIm,n(WIm,n+1
(( I)

where Φ is

w : WIm,n ` w : WIm,n
(Ax)

w : WIm,n ` w : {A( A}m( {A( A}n( A( A
(∀E)

Π0

w : WIm,n, f0 : {a( a}m ` wF0 : {A( A}n( A( A
(( E)

Π1

w : WIm,n, f0 : {a( a}m, f1 : {a( a}n+1 ` wF0F1 : A( A
(( E)

...
x : a ` λy.x : A

w : WIm,n, f0 : {a( a}m, f1 : {a( a}n+1, x : a ` wF0F1(λy.x) : A
(( E)

Note that this term is also typable in STA with type Wm,n(Wm,n+1.

Example 14 (Iteration of addmsb). In STR it is possible to iterate the term addmsb

a constant number k of times, similarly to what has been shown in Example 13 for
succ1 since both terms have the same type.

We conclude with another example of a useful term, which can be typed in STR

but not in STA, representing a function through the if-then-else construct.

Example 15 (if-then-else). Consider the following derivation Σm,n:

Π . w : WIm,n ` w(AND true) : {A}n( A

...
` AND false : A

` AND false : {A}n
(st)

w : WIm,n ` w(AND true)(AND false) : A
(( E)

true : B ` true : B
(Ax)

w : WIm,n ` w(AND true)(AND false)true : B
(( E)

where Π is

w : WIm,n ` w : WIm,n
(Ax)

w : WIm,n ` w : {A}m( {A}n( A
(∀E)

...
` AND true : A

` AND true : {A}m
(st)

w : WIm,n ` w(AND true) : {A}n( A
(( E)

` AND : B ( B ( B represents the usual conjunction of boolean values and
A = B( B, for any m,n ≥ 1.
Let ISZEROw = w(AND true)(AND false)true; it is easy to check that the term
ISZEROw[v/w] reduces to true if v = 0 and to false otherwise.
Now let φ : N→ N be defined as follows:

φ(x) =

x if x = 0;

2x+ 1 otherwise.
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The intuitive closed normal term λw.ISZEROw w(succ1w), representing φ, can
be typed in STR as follows:

Π

...
` succ1 : WIm,n(WIm,n+1 w3 : WIm,n ` w3 : WIm,n

(Ax)

w3 : WIm,n ` succ1 w3 : WIm,n+1
(( E)

w1 : WIm,n, w2 : WIm,n+1, w3 : WIm,n ` ISZEROw1 w2 (succ1 w3) : WIm,n+1
(( E)

w : {WIm,n,WIm,n+1} ` ISZEROw w (succ1 w) : WIm,n+1
(m)

` λw.ISZEROw w (succ1 w) : {WIm,n,WIm,n+1}(WIm,n+1
(( I)

where Π is

Σm,n . w1 : WIm,n ` ISZEROw1 : B

w1 : WIm,n ` ISZEROw1
: WIm,n+1(WIm,n+1(WIm,n+1

(∀E)
w2 : WIm,n+1 ` w2 : WIm,n+1

(Ax)

w1 : WIm,n, w2 : WIm,n+1 ` ISZEROw1 w2 : WIm,n+1(WIm,n+1
(( E)

A similar function could be built by using addmsb instead of succ1.
Observe that this term is not typable in STA, because it is not possible to assign

the same type to every wi (1 ≤ i ≤ 3).

3.5 Relations between stratification and intersection

It is natural to wonder whether there is a connection between stratified and
intersection types, and if so, why we should prefer one over the other in certain cases.
Let I be the set of intersection and quantifier types, where types are considered to
be strict (that is, intersection is not allowed on the right-hand side of the arrow) and
intersection is a n-ary connective, for n ≥ 2:

C ::= a | ζ → C | ∀a.C
ζ ::= C | ζ ∧ ... ∧ ζ︸ ︷︷ ︸

n

(n ≥ 2)

where a ranges over the set of type variables previously defined for T .
There is quite a natural translation (.)∗ from T to I, defined inductively as follows:

- (a)∗ = a;

- (σ( A)∗ = (σ)∗ → (A)∗;

- ({σ1, ..., σn})∗ = (σ1)∗ ∧ ... ∧ (σn)∗;

- (∀a.A)∗ = ∀a.(A)∗.

Such translation can be easily extended to bases, so that (∅)∗ = ∅, while
(Γ, x : σ)∗ = (Γ)∗, x : (σ)∗.
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We can then define a type assignment system INTER, obtained from STR by applying
the translation (.)∗ to both bases and types, such that for each rule (R) of STR:

(Γi ` M : σi)i∈I
Γ ` M : σ

(R)

where the cardinality of I depends on (R), there is a corresponding rule (R∗) in
INTER:

((Γi)
∗ `IM : (σi)

∗)i∈I
(Γ)∗ ` M : (σ)∗

(R∗)

Intersection is usually considered modulo idempotence (ζ = ζ ∧ ζ), commutativity
(ζ1 ∧ ζ2 = ζ2 ∧ ζ1) and associativity (ζ1 ∧ ζ2) ∧ ζ3 = ζ1 ∧ (ζ2 ∧ ζ3). It is easy to check
that the system INTER is equivalent to STR, namely that Γ ` M : σ if and only if
(Γ ` M : σ)∗, with the proviso that intersection is considered modulo idempotence
and commutativity, but not associativity.

Note that the non-associative approach is not the standard use of intersection,
which usually enjoys idempotence, associativity and commutativity. However, the
presence of all these properties has the effect of erasing every quantitative information
from the typing: this is not an issue as long as intersection types are used for proving
qualitative properties of terms, as has been done for a long time, yet it proves to be
troublesome when one wants to inquire about quantitative properties, such as the
complexity of reduction, which will further be explored in the next chapter, or ICC
related questions, as has been done in the previous sections.

Even more worthy of note is the fact that stratified types, despite being idempo-
tent, are able to store a finer information on the usage of resources with respect to
usual intersection types. Consider for example the intersection and the stratification
of two copies of a type: while ζ ∧ ζ = ζ does not retain any memory of the intersec-
tion from which it is obtained, the stratification of σ and σ results into a type {σ}.
Therefore, while the latter gives no information about the number of occurrences of
type σ in it, it still remembers that some occurrences of σ have been contracted in
order to obtain the current type.
For such reasons, and in order to stress that we consider intersection as set formation,
we chose the notation of stratified types over that of intersection types.





Chapter 4

Bounding normalization time
through intersection types

In Chapter 3 we studied a typing system using stratified types, whose behavior
is essentially that of non-associative intersection types.
Actually, an earlier attempt in such direction was that of designing a type assign-
ment system, similar to STR, where types did not enjoy neither idempotence nor
associativity, in order to represent intersection through multisets, instead of sets.

As was already noted in the previous chapter, removing the associativity property
is required in order to express a bound on the complexity of the reduction: indeed
the stratification, derived from the lack of associativity, is crucial in order to obtain
a decreasing measure on the derivation which, in turn, allows to give a bound on the
number of nested duplications of subterms. Here we explore a further restriction of
intersection types, namely the absence of both associativity and idempotence.

Intersection types have been introduced essentially with the aim of analyzing
λ-models and the normalization properties of λ-terms; since the interpretation of
types as properties of terms induces naturally the idempotence property, intersection
was historically considered modulo idempotence.
Nevertheless, recently it has been observed that, when dropping idempotence, inter-
section types can be used for reasoning about quantitative properties, such as the
complexity of β-reduction. Some results have been obtained along this line: in [Ter06]
a typing system is designed, assigning non-idempotent intersection types to λ-terms,
in which all and only the strongly normalizing terms are typed and the size of a
derivation with subjectM is bigger than the size of every term in the β-reduction
sequence fromM to its normal form; such property can further be exploited in order
to compute a bound of every normalizing β-reduction sequence starting fromM.
A more precise result in this direction is found in [BL11], where the authors give
a precise account of the number of β-reduction steps of a term to its normal form;

115
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this result is achieved by designing a type assignment system where intersection is
considered without idempotence, upon which both notions of measure of a derivation
and of principal derivation for a given term are defined: finally it is shown that the
measure of a principal derivation of a type for a normalizing termM corresponds to
the maximal length of a normalizing β-reduction sequence forM.

Other type assignment systems without idempotence have been studied in the
literature for various purposes. In [KW04] non-idempotent intersection is employed
in order to formalize a type inference semi-algorithm, whose complexity is further
studied in [NM04]. Moreover, in [Kfo00] non idempotent intersection types are
studied in relation with linear β-reduction.
Recently, non idempotent intersection types have been used in [PR10] with the aim of
characterizing the solvability in the resource λ-calculus, whereas in [DHL08] the game
semantics of a typed λ-calculus is described in logical form using an intersection type
assignment system, where the intersection does not enjoy any of its usual properties.
Some complexity results via non-idempotent intersection are given in [dCa09], through
a λ-algebra induced by non idempotent intersection types, and in [BEM07], where
a logical description of relational model of λ-calculus has been designed through a
non-idempotent type assignment system.
A quantitative approach is also taken in [KV14], where non-idempotent intersection
types are employed, in the guise of multisets of types, in order to design two
type assignment systems for a calculus with explicit substitutions; by allowing the
controlled use of the empty multiset, the authors give a characterization of linear-head,
head and weak normalization, while the characterization of strong normalization is
obtained by requiring all subterms to be typed, possibly by a witness-type.

Our aim here is to take a further step in this direction; namely, we want to
use non-idempotent, non-associative intersection types in order to to express the
functional dependence of the length of a normalizing β-reduction sequence for a term
M on the size ofM itself.
In order to obtain such result, we again take inspiration from the system STA [GR07]
which characterizes polynomial time computation. The resulting typing system,
called STI, allows us to give a bound on the number of steps necessary to reduce
a normalizing term M to its normal form, of the form |M|d+1, where |M| is the
size of the term and d is a measure of depth depending on the type derivation for it.
Note that, since for every normalizing term there is a type derivation with minimal
depth, this bound does not depend on a particular derivation.
Here a result very similar to that of Theorem 15 is proved to hold; however, such
result is not very suitable for an implicit characterization of complexity classes:
indeed non-idempotent intersection types are too informative, in the sense that there
is not a common type which can be assigned to all usual data (such as Church
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integers or binary words); as a consequence, the notion of datatype is not satisfied
and so a characterization of complexity classes through STI is not achievable. As a
matter of fact, in Chapter 3 we showed that taking away the associativity property
is sufficient in order to obtain a polynomial characterization.

Outline of this chapter We start by presenting the type assignment system STI

for pure λ-calculus and by proving its subject reduction property (Section 4.1). As
usual for intersection based systems, we must consider the possible presence of many
subderivations typing the same redex, whose parallel elimination is necessary in order
to obtain a correct proof. In order to clarify this matter, an example of reduction is
shown at the end of the section.
After introducing some necessary measures for terms and derivations, we give a
weighted version of the subject reduction theorem which shows that the overall
weight of a derivation strictly decreases whenever a reduction step is performed;
this result then allows to bound both the number of reduction steps and the size of
the normal form with respect to the size of the initial term and of the depth of the
derivation (Section 4.2).
Finally, we prove that STI characterizes strongly normalizing terms (Section 4.3), by
combining the result of the previous section and the adaptation to system STI of the
proof given in Section 3.3.2.
The content of this chapter is introduced in [DB11] and further developed in [DR13].

4.1 Syntax and properties of system STI

We introduce STI (Soft Type assignment with Intersection), a typing system for
λ-calculus assigning intersection types to λ-terms, where intersection is assumed to
enjoy neither associativity nor idempotence.

4.1.1 Definition of the typing system

The definition of the language of terms and of the rewriting rule is the same
already given in Section 3.2.1 for pure λ-calculus. Likewise, we say that a termM
is an instance of N whenM is obtained from N by renaming a subset of its free
variables with a unique fresh name, as in Definition 20.

The types of STI are either linear or intersection types, the latter enjoying only
the commutativity property:
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x : A ` x : A
(Ax)

Γ ` M : σ x /∈ dom(Γ)

Γ, x : A ` M : σ
(w)

Γ, x : σ ` M : A

Γ ` λx.M : σ( A
(( I)

Γ ` M : σ( A ∆ ` N : σ Γ#∆

Γ,∆ ` MN : A
(( E)

Γ, x1 : σ1, ..., xn : σn ` M : τ

Γ, x : σ1 ∧ ... ∧ σn ` M[x/xi]
n
i=1 : τ

(m)
(Γi ` M : σi)1≤i≤n �ni=1Γi
∧ni=1Γi ` M : σ1 ∧ ... ∧ σn

(∧n)

Table 4.1: Derivation rules of system STI.

Definition 26 (Types). The set of STI types is defined by the following syntax:

A ::=a | σ( A (linear types)

σ ::=A | σ ∧ ... ∧ σ︸ ︷︷ ︸
n

(intersection types)

where a ranges over a countable set of type variables and n ≥ 2.

Intersection types are considered modulo the equivalence σ1 ∧ ... ∧ σn = σi1 ∧ ... ∧ σin ,
for every permutation (i1, ..., in) of {1, ..., n}.
Note that a type σ can be loosely considered as a multiset σ, according to Defini-
tion 19, where the multiset of linear components is defined inductively as

A = [A] σ1 ∧ ... ∧ σk = σ1 ] ... ] σk.

The number of occurrences |σ| is simply the cardinality of the multiset σ.
As usual a basis, ranged over by Γ,∆,Θ, is a partial function mapping term

variables to types, whose domain is denoted by dom(Γ).
Similarly to Notation 2, we adopt the following conventions for bases:

Notation 5 (Bases).

i. The condition Γ1#...#Γn (or #n
i=1Γi) holds if and only if j 6= h implies

dom(Γj) ∩ dom(Γh) = ∅, for 1 ≤ j, h ≤ n.

ii. The condition Γ1 � ...� Γn (or �ni=1Γi) holds if and only if j 6= h implies
dom(Γj) = dom(Γh), for 1 ≤ j, h ≤ n.

iii. The n-ary intersection of bases, denoted by Γ1 ∧ ... ∧ Γn or ∧ni=1Γi, is the basis
such that (∧ni=1Γi)(x) = ∧ni=1(Γi(x)), where �ni=1Γi.
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iv. The basis Γ1, ...,Γn represents the concatenation of bases, provided that #n
i=1Γi.

The system STI proves sequents of the shape Γ ` M : σ, where Γ is a basis,M
is a λ-term and σ is a type. The rules are given in Table 4.1.

Derivations are ranged over by Π,Σ, such that Π.Γ ` M : σ denotes a particular
derivation Π with conclusion Γ ` M : σ.

Observe that, as in system STR, terms are first built in a linear form and then
variables are unified through the explicit multiplexor rule (m): this allows to control
the number of contractions, which is responsible for the growth of the reduction time.
The counterpart of the contraction on the right-hand side of a derivation is handled
by rule (∧n), which is parametric in n for n ≥ 2. In designing system STI, we again
took inspiration from SLL [Laf04].
We still retain the distinction between constructive rules, which contribute in building
the subject, and non constructive rules: the former are rules (Ax), (( I) and (( E),
while the latter are rules (w), (m) and (∧n). As before, we denote by renaming
sequence a (possibly empty) sequence of applications of rules (w) and (m), whose
domain and range are defined as in Notation 3.

4.1.2 Properties of STI

The notion of intersection tree proves to be quite useful in dealing with derivations
assigning intersection types to their subject:

Definition 27 (Intersection tree). The intersection tree of a derivation Π is a
subderivation of Π defined inductively as follows:

• if Π is
Σ ` N : A
Γ ` M : σ

δ

where δ is a renaming sequence and Σ is a derivation whose last application is
of a constructive rule, then the intersection tree of Π has conclusion Γ ` M : σ

and a single leaf Σ;

• if Π is
(Σi . Γi ` N : σi)1≤i≤n
∧ni=1Γi ` N : σ1 ∧ ... ∧ σn

(∧n)

Γ ` M : σ1 ∧ ... ∧ σn δ

where δ is a renaming sequence, then the intersection tree of Π has conclusion
Γ ` M : σ1 ∧ ... ∧ σn and its subtrees are the intersection trees of Σ1, ...,Σn.

Example 16. Let Π be

ΠA. ` M : A ΠB. ` M : B
ΠC. ` M : C ΠD. ` M : D

` M : C ∧ D (∧2)

` M : A ∧ B ∧ (C ∧ D)
(∧3)
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where ΠA,ΠB,ΠC,ΠD all end with an application of a structural rule: then the inter-
section tree of Π has conclusion ` M : A ∧ B ∧ (C ∧ D) and leaves ΠA,ΠB,ΠC,ΠD.

Since rule (∧n) is the only rule building an intersection type on the right of the
turnstile symbol, it is possible to state the following key property of STI:

Property 18 (Subject with intersection type). Let Π . Γ ` M : σ1 ∧ ... ∧ σn with
n ≥ 2; then:

i. Π ends with an application of rule (∧n), possibly followed by a renaming sequence;

ii. Π ends with an intersection tree with at least n leaves.

Proof. By induction on the shape of Π. Note that the Π must end with a non
constructive rule.

i. Easy, since rule (∧n) is the only rule introducing the ∧ connective on the
right-hand side of the turnstile symbol.

ii. Let Π end with an application of rule (∧n): then the statement is trivially true
and δ is the empty sequence.

Otherwise, let Π end with an application of either rule (w) or (m): then the
proof follows by induction.

By employing the previous result, we prove that the substitution property holds
for terms having disjoint free variables sets:

Lemma 33 (Substitution). Let Π . Γ, x : σ ` M : τ and Σ .∆ ` N : σ, where Γ#∆

and x 6∈ dom(∆); then there is Φ . Γ,∆ ` M[N/x] : τ .

Proof. By induction on Π. If Π ends with an application of a constructive rule, then
the proof is trivial; we thus consider the three remaining cases.

Let Π end with an application of rule (w). If the range of the application is {y}
such that y 6= x, then the proof follows by induction. Otherwise, let Π be

Π′ . Γ ` M : τ x /∈ dom(Γ)

Π . Γ, x : A ` M : τ
(w)

If ∆ maps each variable of its domain to a linear type, then Φ is

Π′ . Γ ` M : τ
Γ,∆ ` M : τ

(w)
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Otherwise, let us assume that ∆ = ∆′, y : ρ, such that ρ = [A1, ..., An] and ∆′ contains
only bindings of variables to linear types: then Φ is

Π′ . Γ ` M : τ

Γ,∆′, y1 : A1, ..., yn : An ` M : τ

Γ,∆′, y : ρ ` M : τ
(m)

(w)

where the sequence of applications of rule (m) builds the desired intersection type ρ.
The proof can be easily extended to the general case.

Let Π be
Π′ . Γ, x1 : σ1, . . . , xn : σn ` M : τ

Γ, x : σ1 ∧ ... ∧ σn ` M[x/xi]
n
i=1 : τ

(m)

where σ = σ1 ∧ ... ∧ σn.
By applying Property 18 to Σ, there are Σi .∆i ` N ′ : σi, for 1 ≤ i ≤ n, such that
Σ is obtained by one application of rule (∧n) to (Σi)

n
i=1 and then by a renaming

sequence δ.
By renaming the variables of ∆i, we can easily obtain Σ′i .∆′i ` N ′i : σi, such that
N ′i is an instance of N ′ and #n

i=1∆′i. Not that this is not restrictive, since we are
able to easily recover ∆′ and N ′ by applying a suitable renaming sequence ρ.
By inductive hypothesis, there are

Φ1 . Γ,∆′1, x2 : σ2, ..., xn : σn ` M[N ′1/x1] : τ

Φ2 . Γ,∆′1,∆
′
2, x3 : σ3, ..., xn : σn ` M[N ′i/xi]2i=1 : τ

...
Φn . Γ,∆′1, ...,∆

′
n ` M[N ′i/xi]ni=1 : τ

Then Φ is
Φn . Γ,∆′1, ...,∆

′
n ` M[N ′i/xi]ni=1 : τ

Γ,∆′ ` M[N ′/xi]ni=1 : τ
ρ

.Γ,∆ ` M[N/xi]ni=1 : τ
δ

where ρ and δ are the previously defined renaming sequences.
Let Π be

(Πi . Γi, x : σi ` M : τi)1≤i≤n
Γ, x : σ ` M : τ

(∧n)

where Γ = ∧ni=1Γi, σ = σ1 ∧ ... ∧ σn and τ = τ1 ∧ ... ∧ τn. By Property 18, Σ is

(Σi .∆i ` N ′ : σi)1≤i≤n

∆′ ` N ′ : σ1 ∧ ... ∧ σn
∆ ` N : σ1 ∧ ... ∧ σn

(δ)

(∧n)

where δ is a renaming sequence and N is an instance of N ′. We can assume without
loss of generality that Γi#∆i, for 1 ≤ i ≤ n, since the renaming allows to consider
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disjoint sets of variables.
By inductive hypothesis there is Φi . Γi,∆i ` M[N ′/x] : τi, for 1 ≤ i ≤ n: then Φ is

(Φi . Γi,∆i ` M[N ′/x] : τi)1≤i≤n

Γ,∆′ ` M[N ′/x] : τ1 ∧ ... ∧ τn
(∧n)

Γ,∆ ` M[N/x] : τ1 ∧ ... ∧ τn
(δ)

The following generation lemma relates the structure of a term with its typing:

Lemma 34 (Generation). Let Π . Γ ` M : A and let Σ .∆ ` N : B be the smallest
subderivation of Π such that Σ is obtained from Π by a renaming sequence:

i. if x ∈ FV(M), then x ∈ dom(Γ);

ii. ifM = x, then Σ ends with an application of rule (Ax);

iii. if M = λx.P, then Σ ends with an application of rule (( I) and A = σ ( B

for some σ and B;

iv. ifM = PQ, then Σ ends with an application of rule (( E).

Proof. Easy by considering each constructive rule.

As in Chapter 3, in order to prove the subject reduction property, we must take
into account the fact that one step of β-reduction on the subject can correspond to
n ≥ 1 parallel detour eliminations in the underlying derivation, whose behavior is
that of reducing all copies of the same redex which are assigned different types:

Theorem 20 (Subject reduction). Π . Γ ` M : σ and M→M′ implies Π′ . Γ `
M′ : σ.

Proof. If M → M′, then there is a context C such that M = C[(λx.Q)N ] and
M′ = C[Q[N/x]]; the proof is by induction on C.

Let C = �, soM = (λx.Q)N .
By Lemma 34, each leaf Πi of the intersection tree of Π is

Σ′i . Γ′i, x : σi ` Q′i : Ai

Γ′i ` λx.Q′i : σi( Ai
(( I)

Γi ` λx.Qi : σi( A
(δi) Σ′′i .∆i ` Ni : σi Γi#∆i

Γi,∆i ` (λx.Qi)Ni : Ai
(( E)

where (λx.Q)N is an instance of (λx.Qi)Ni and δi is a renaming sequence, for
1 ≤ i ≤ n.
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Since the domain of each application of rule (m) in δi deals with variables in dom(Γ′i),
sequence δi can be delayed in order to obtain the derivation

Σ′i . Γ′i, x : σi ` Q′i : A

Γ′i ` λx.Q′i : σi( Ai
(( I)

Σ′′i .∆i ` Ni : σi

Γ′i,∆i ` (λx.Q′i)Ni : Ai
(( E)

Γi,∆i ` (λx.Qi)Ni : Ai
(δi)

By Lemma 33, there are Π′i . Γi,∆i ` Qi[Ni/x] : Ai: then Π′ is obtained by replacing
each leaf Πi by Π′i in the intersection tree of Π.

The cases of C 6= � follow easily by induction.

Non-idempotent intersection types allow to obtain a precise quantification of the
occurrences of a variable in a normal term; indeed, we can think of an intersection
as a multiset of types, which can be used to count the occurrences of free variables
in a normal form:

Property 19 (Normal forms). LetM be a normal form; then there is a derivation
Π . Γ ` M : A such that |Γ(x)| = n0(x,M) for every x ∈ FV(M).

Proof. By induction on the shape ofM.
LetM = x: then the desired derivation is obtained by applying rule (Ax).
Let M = λx.P, where P is in normal form. If x ∈ FV(P), then by inductive

hypothesis there is a derivation Π′ . Γ, x : σ ` P : B such that |Γ(y)| = n0(y,P) for
every y ∈ FV(P): then the desired derivation is obtained by applying rule (( I) to
Π′ to abstract over x.
If x 6∈ FV(P), by inductive hypothesis there is a derivation Π′ . Γ ` P : B such that
|Γ(x)| = n0(x,P) for every x ∈ FV(P): then the desired derivation is obtained by
applying rule (w) with range {x} to Π′, followed by the application of rule (( I)

abstracting over x.
LetM = yN1...Nn, where N1, ... ,Nn are normal forms. LetM be an instance

ofM′ = y′N ′1...N ′n, such that FV(y′) ∩ FV(N ′1) ∩ ... ∩ FV(N ′n) = ∅.
By inductive hypothesis there are n derivations Πi . Γ′i ` N ′i : Ai such that |Γ′i(x)| =
n0(x,N ′i ) for every x ∈ FV(N ′i ). Let C = A1 ( A2 ( ...( Am( B: then Π is

y′ : C ` y′ : C
(Ax)

Π1

y′ : C,Γ′1 ` y′N ′1 : A2 ( ...( An( B
(( E)

Π2

...
(( E)

y′ : C,Γ′1, ... ,Γ
′
n−1 ` y′N ′1...N ′n−1 : An( B Πn

y′ : C,Γ′1, ... ,Γ
′
n ` y′N ′1 . . .N ′n : B

(( E)

Γ ` yN1...Nn : B
(m)
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where the renaming sequence contains k ≥ 0 applications of rule (m), each having
domain Yj and range {zj}, where Yj ⊆ FV(M′) and zj ∈ FV(M), for 1 ≤ j ≤ k. Let
Γ′ = y′ : C,Γ′1, ... ,Γ

′
n: then |Γ(zj)| =

∑
y∈Yj |Γ

′(y)| =
∑

y∈Yj n0(y,M′) = n0(zj ,M),
for every 1 ≤ j ≤ k, while |Γ(x)| = |Γ′(x)| = n0(x,M) for every x ∈ dom(M) ∩
{z1, ..., zk}.

Example 17. We show an example of a derivation in STI, with the aim of clarifying
the behavior of the subject reduction in the case where the intersection tree has at
least 2 leaves.
Consider the following derivations:

y : A ` y : A
(Ax)

` λy.y : A( A
(( I)

z : A ` z : A
(Ax)

Σ1 . z : A ` (λy.y)z : A
(( E)

and
y : a ` y : a

(Ax)

` λy.y : a( a
(( I)

z : a ` z : a
(Ax)

Σ2 . z : a ` (λy.y)z : a
(( E)

where A = a( a.
By reducing the term (λx.xx)((λy.y)z), we first obtain

x1 : A ` x1 : A
(Ax)

x2 : a ` x2 : a
(Ax)

x1 : A, x2 : a ` x1x2 : a
(( E)

x : A ∧ a ` xx : a
(m)

` λx.xx : (A ∧ a)( a
(( I)

Σ1 . z : A ` (λy.y)z : A Σ2 . z : a ` (λy.y)z : a

Σ . z : A ∧ a ` (λy.y)z : A ∧ a
(∧2)

z : A ∧ a ` (λx.xx)((λy.y)z) : a
(( E)

Observe that there are two virtual copies of the same redex; therefore, if we reduce
the redex (λy.y)z, we obtain

x1 : A ` x1 : A
(Ax)

x2 : a ` x2 : a
(Ax)

x1 : A, x2 : a ` x1x2 : a
(( E)

x : A ∧ a ` xx : a
(m)

` λx.xx : (A ∧ a)( a
(( I) z : A ` z : A

(Ax)
z : a ` z : a

(Ax)

z : A ∧ a ` z : A ∧ a (∧2)

Π . z : A ∧ a ` (λx.xx)z : a
(( E)

where the subject of both Σ1 and Σ2 has been reduced.
Finally we reduce (λx.xx)z, so obtaining the proof

z1 : A ` z1 : A
(Ax)

z2 : a ` z2 : a
(Ax)

z1 : A, z2 : a ` z1z2 : a
(( E)

z : A ∧ a ` zz : a
(m)
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Note that, as explained in the proof of Lemma 33, the premises of rule (∧2) need
to be rewritten in the substitution so that their contexts are disjoint; the original
context is then recovered through a suitable renaming sequence.

4.2 Normalization bound

In computing the normalization bound for system STI, we must take into account
the mismatch between proof simplification and β-reduction, since the presence of
intersection allows the coexistence of many subderivations typing the same subject.
As a consequence, here we do not consider the derivation as reduction machine, but
rather as a tool for computing the number of reduction steps.

To this aim we start by introducing a few necessary notions of measure, similar
to the ones of Definitions 22 and 16:

Definition 28 (Measures).

i. The size |Π| of a proof Π is the number of applications of rules in it.

ii. The size |M| of a termM is defined inductively as follows:

|x| = 1; |λx.M| = |M|+ 1; |MN| = |M|+ |N |+ 1.

iii. The rank of a multiplexor of domain X is the cardinality of the set X ∩ FV(M).
If r is the maximum rank of an application of rule (m) in Π, then the rank rk(Π)

of Π is the maximum between 1 and r.

iv. The degree of a derivation Π, denoted by d(Π), is the maximal nesting of
applications of the (∧n) rule in Π, namely the maximal number of applications
of rule (∧n) in a path connecting the conclusion to any axiom of Π.

v. The weight W(Π, r) of Π with respect to r is defined inductively as follows:

- if Π ends with an application of rule (Ax), then W(Π, r) = 1;

- if Π ends with an application of rule (( I) and Σ is the premise of the
rule, then W(Π, r) = W(Σ, r) + 1;

- if Π ends with an application of rule (( E) and Σ1,Σ2 are the premises of
the rule, then W(Π, r) = W(Σ1, r) + W(Σ2, r) + 1;

- if Π ends with an application of rule (∧n) and Σ1, ...,Σn are the premises
of the rule, then W(Π, r) = r ·maxni=1 W(Σi, r);

- if Π ends with an application of either rule (w) or rule (m) and Σ is the
premise of the rule, then W(Π, r) = W(Σ, r).
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The previously introduced measures are related to each other as shown explicitly
by the following lemma:

Lemma 35 (Relations between measures). Let Π . Γ ` M : σ; then:

i. rk(Π) ≤ |M| ≤ |Π|.

ii. W(Π, r) ≤ rd(Π) · W(Π, 1).

iii. W(Π, 1) = |M|.

Proof. By induction on Π. Since the proof is very similar to the one of Lemma 27,
we only consider the most meaningful cases.

i. Let Π be
Σ . Γ, x1 : τ1, ..., xn : τn ` P : σ

Γ, x : τ1 ∧ ... ∧ τn ` P[x/xi]
n
i=1 : σ

(m)

whereM = P[x/xi]
n
i=1.

By inductive hypothesis rk(Σ) ≤ |P| ≤ |Σ|. Let k ≤ n be the cardinality of the
set {x1, ..., xn}∩FV(M). Note that rk(Π) = max{rk(Σ), k} and k ≤ |M| = |P|
by definition, so

• if max{rk(Σ), k)} = rk(Σ), then rk(Π) = rk(Σ) ≤ |M| ≤ |Π|;

• if max{rk(Σ), k)} = k, then rk(Π) = k ≤ |M| ≤ |Π|.

Therefore rk(Π) ≤ |M| ≤ |Π|.

All the other cases are proved easily.

ii. Let Π end with an application of rule (∧n) with premises Π1...Πn. By in-
ductive hypothesis W(Πi, r) ≤ rd(Πi) · W(Πi, 1) for 1 ≤ i ≤ n, so in particular
maxni=1 W(Πi, r) ≤ rmaxni=1 d(Πi) ·maxni=1 W(Πi, 1): then

W(Π, r) = r ·maxni=1 W(Πi, r)

≤ r · rmaxni=1 d(Πi) ·maxni=1 W(Πi, 1)

= rmaxni=1 d(Σi)+1 ·maxni=1 W(Πi, 1)

≤ rd(Π) · W(Π, 1)

All the other cases are proved easily.

iii. Let Π end with an application of rule (∧n) with premises Π1...Πn. By inductive
hypothesis W(Πi, 1) = |M|, for 1 ≤ i ≤ n: then W(Π, 1) = maxni=1 W(Πi, 1) = |M|.

All the other cases are proved easily.
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By employing the previously introduced measures, we can prove the following
weighted version of Lemma 33:

Lemma 36 (Weighted substitution). Let Π . Γ, x : σ ` M : τ and Σ .∆ ` N : σ,
such that Γ#∆ and x 6∈ dom(∆); then Φ . Γ,∆ ` M[N/x] : τ and

W(Φ, r) ≤ W(Π, r) + W(Σ, r)

for every r ≥ max{rk(Π), rk(Σ)}.

Proof. By induction on the shape of Π. Since the first part of the statement was
shown to hold in the proof of Lemma 33, here we refer to the notation used in such
proof in order to show that the condition on the measure is true.

If Π ends with an application of a constructive rule, then the proof is easy;
therefore we consider the cases of (w), (m) and (∧n).

Let Π end with an application of rule (w) with premise Π′. If the range of
the application oi {y} such that y 6= x, then the proof is trivial. Otherwise
W(Φ, r) = W(Φ′, r) = W(Π, r), since the renaming sequence does not contribute to
the weight, so the inequality is satisfied1.

Let Π end with an application of rule (m) with premise Π′ and domain {x1, ..., xn}.
For simplicity, we can safely assume that {x1, ... , xk} = FV(M) ∩ {x1, ... , xn};
moreover W(Σ, r) = r ·maxni=1 W(Σi, r) = r ·maxni=1 W(Σ′i, r), since the renaming of
variables does not change the structure, and thus the weight, of a derivation.
By inductive hypothesis W(Φ1, r) ≤ W(Σ′1, r) + W(Π′, r), W(Φ2, r) ≤ W(Σ′2, r) + W(Φ1, r),
and so on; therefore, W(Φk, r) ≤ W(Σ′k, r) + W(Φk−1, r).
Note that both ρ and δ, being renaming sequences, do not contribute to the weight:
then

W(Φ, r) = W(Φk, r)

≤
∑k

i=1 W(Σ′i, r) + W(Π′, r)

≤ k ·maxki=1 W(Σ′i, r) + W(Π′, r)

= W(Σ, r) + W(Π, r)

so the inequality is satisfied.
Let Π end with an application of rule (∧n), with n > 1 and premises Π1...Πn.

By inductive hypothesis W(Φi, r) ≤ W(Σi, r) + W(Πi, r) for 1 ≤ i ≤ n: then

W(S(Σ,Π), r) = r ·maxni=1 W(S(Σi,Πi), r)

≤ r ·maxni=1 W(Σi, r) + r ·maxni=1 W(Πi, r)

= W(Σ, r) + W(Π, r)

so the inequality is satisfied.

1Here the non-associativity of the intersection comes into play: indeed, if intersection were to be
considered as an associative operator, then Property 18.i would not hold; therefore, we would not
be able to use the inductive hypothesis in order to prove the desired inequality.
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Since STI is in (mostly) natural deduction style, a detour can be defined as an
application of rule (( I), possibly followed by a renaming sequence, acting as the
left premise of an application of rule (( E): in this case, the detour can be erased
by the usual procedure, simply by delaying the renaming sequence and then by
performing the substitution.
The weighted substitution property states that the overall weight of a derivation
decreases when a detour-elimination step is performed; since a β-reduction step
corresponds to n ≥ 1 detour-elimination steps, the following result holds:

Theorem 21 (Weighted subject reduction). Π . Γ ` M : σ and M →M′ imply
Π′ . Γ ` M′ : σ and W(Π′, r) < W(Π, r), for every r ≥ rk(Π).

Proof. Consider the context C such that M = C[(λx.Q)N ] and M′ = C[N [Q/x]];
we proceed by induction on C.
Since the first part of the statement was already shown to hold, we refer to the
notation used in the proof of Theorem 20 with the aim of proving the remaining
inequality.

Let C = �, soM = (λx.Q)N .
Note that, because Π′ is obtained from Π by replacing every subproof Πi with
Π′i, for 1 ≤ i ≤ n, the intersection tree connecting all the subproofs is left un-
changed. By Lemma 36 W(Π′i, r) ≤ W(Σ′′i , r) + W(Σ′i, r), for every r ≥ rk(Π): then,
since W(Π′i, r) < W(Σ′′i , r) + W(Σ′i, r) + 2 = W(Π′i, r), the inequality holds.

Again, the cases of C 6= � follow easily by induction.

Now we have all the necessary ingredients for proving that both the number of
normalization steps and the size of the normal form are bounded by a function of
the size of the term:

Theorem 22 (Measure of reduction). Let Π . Γ ` M : σ and letM β-reduce toM′

in n steps; then:

i. n < |M|d(Π)+1;

ii. |M′| < |M|d(Π)+1.

Proof.

LetM→M1 → ...→Mn =M′ and r = rk(Π).
By Lemma 35, r ≤ |M| and W(Π, r) ≤ rd(Π) · W(Π, 1) = rd(Π) · |M| ≤ |M|d(Π) · |M|.
By Theorem 21, if Π rewrites to Π1 in 1 step then W(Π1, r) ≤ W(Π, r)− 1; by the
same Lemma, if Π1 rewrites to Π2 in 1 step then W(Π2, r) ≤ W(Π1, r)− 1 ≤ W(Π, r)− 2,
and so on: then W(Π′, r) ≤ W(Π, r)− n and n < W(Π, r) after n(-normalization
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steps. Since the rank of a derivation never increases during reduction, by
substituting in the above expression we obtain n < W(Π, r) ≤ |M|d(Π)+1.

i.ii. By Lemma 35, |Mi| = W(Πi, 1) for all i. Since obviously W(Π′, 1) ≤ W(Π′, r)

and by Lemma 35 |M′| = W(Π′, 1), we obtain |M′| ≤ W(Π′, r) < W(Π, r) ≤
rd(Π) · W(Π, 1) = rd(Π) · |M| ≤ |M|d(Π)+1 by applying Theorem 21.

Note that the exponent of such function is, in general, dependent on the term; for
this reason, the bound on the normalization procedure can easily become exponential
with respect to the size of the term. Nevertheless, the proof given above is independent
on the reduction strategy: therefore, the result given above also shows that all terms
typed in STI are strongly normalizing.

One might wonder why we choose to employ the n-ary intersection, instead of
the more standard binary connective, since the use of the intersection guarantees
that the typability power of the system is the same in both cases. To answer such
question, let us remark that our interest lies not only in the typability, but also in
using derivations for measuring the complexity of the reduction.
As an example, consider the termM = (λx.λy.yx...x)(II), where x occurs n times
and I represents the identity function. By the definition of size, |M| = 2n+ 6; note
that a minimal derivation typingM in STI has depth 1 and rank n:

...
x1 : a( a, ..., xn : a( a ` λy.yx1...xn : An( b

x : σn ` λy.yx...x : An( b
(m)

` λx.λy.yx...x : σn( An( b
(( I)

...
(` II : a( a)1≤i≤n

` II : σn
(∧n)

` (λx.λy.yx...x)(II) :
(( E)

where σn = (a ( a) ∧ ... ∧ (a ( a), An = (a ( a) ( ... ( (a ( a) ( b and
a( a occurs n times in both σ and A. Then the resulting bound for the number
of β-reduction steps is (2n+ 6), while the effective number of reductions is at most
2n+ 1.

Let us now consider an alternative version of the system, where the intersection is
considered to be a binary connective; in this case, the multiplexor rule (m) has a fixed
rank of 2 and the rule (∧n) becomes (∧2), so the depth of the minimal derivation is
n− 1:

...
x1 : σn−1, x2 : a( a ` λy.yx1...x1x2 : An( b

x : σn ` λy.yx...x : An( b
(m)

` λx.λy.yx...x : σn( An( b
(( I)

...
` II : σn−1

...
` II : a( a

` II : σn
(∧2)

` (λx.λy.yx...x)(II) :
(( E)

where σn = (...((a( a) ∧ (a( a)) ∧ ...) ∧ (a( a), An = (a( a)( ...( (a(

a)( b and a( a occurs n times in both σ and A. Tehn the resulting rough bound
is (2n+ 6)n, which is exponential in the size of the initial term.
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This example shows that the choice of using the n-ary intersection allows us to
obtain a more refined bound with respect to the one obtained by opting for the
binary connective.

4.3 Characterization of strong normalization

In the present section we show that system STI characterizes strongly normalizing
terms, namely thatM is typable in STI if and only ifM is strongly normalizing.

The first implication is obtained as a byproduct of the complexity bound:

Lemma 37 (Typability implies strong normalization). If Γ ` M : σ, then M is
strongly normalizing.

Proof. By Theorem 22.i, the number of reductions steps is bounded by a finite
number.

It is easy to check that the size of Π, defined simply as the number of applications
of rules in it, decreases with each reduction step regardless of the reduction strategy
we adopt; this depends essentially on the use of non-idempotent intersection types,
whose main advantage is the fact that the size of a derivation reflects the size of
the normal form of its subject, rather than the size of the actual term it gives
type to. This ultimately means that all the copies of a subterm, which might be
duplicated during some reduction step, are already laid out in the initial derivation:
this property, which is inherent of non-idempotent intersection, ensures that the size
of the derivation never increases.

As for the right-to-left implication, we employ the same technique of Section
3.3.2 by adapting it to system STI.

The first requirement is that every normal form can be assigned a linear type;
such statement holds by Property 19.

We then prove that the typability of a term is preserved under substitution:

Lemma 38 (Inverted substitution). Let Φ.Γ,∆ ` M[Ni/xi]ni=1 : τ , where N1, ...,Nn
are typable in STI, dom(Γ) = FV(M) \ {x1, ..., xn} and {x1, ..., xn} ∩ dom(∆) = ∅;
then there are ∆i ` Ni : σi, for 1 ≤ i ≤ n, such that Γ, x1 : σ1, .., xn : σn ` M : τ .

Proof. By induction on the shape of Φ.
Let Φ be

y : B ` y : B
(Ax)

so N = y and Γ = ∅: then Π is

x : B ` x : B
(Ax)
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and Σ is the same derivation as Φ, where σ = τ = B andM[N/x] = x[y/x] = y.
Let Φ end with an application of rule (w): then the proof follows easily by

induction.
Let Φ be

Φ′ . Γ,∆, y : ρ ` P : A

Γ,∆ ` λy.P : ρ( A
(( I)

where y 6∈ FV(N ).
LetM = λy.Q, where x ∈ FV(P), so thatM[Ni/xi]ni=1 = λy.P and P = Q[Ni/xi]ni=1:
by inductive hypothesis Φ′ . Γ,∆, y : ρ ` Q[Ni/xi]ni=1 : A implies there are Σi .∆i ` Ni : τi,
for 1 ≤ i ≤ n, such that Π′ . Γ, x1 : τ1, ..., xn : τn, y : ρ ` Q : A. Then Π is obtained
by applying rule (( I) to Π′ in order to abstract over y.
LetM = x, so thatM[N/x] = x[N/x] = N and N = λy.P: then Π is

x : ρ( A ` x : ρ( A
(Ax)

and Σ is the same derivation as Φ.
Let Φ be

Φ′ . Γ′,∆′ ` P : ρ( A Φ′′ . Γ′′,∆′′ ` Q : ρ

Γ,∆ ` PQ : A
(( E)

where Γ = Γ′,Γ′′ and ∆ = ∆′,∆′′.
Let M = P ′Q′, so that P = P ′[Ni/xi]ni=1 and Q = Q′[Ni/xi]ni=1: by inductive hy-
pothesis Φ′ . Γ′,∆′ ` P ′[Ni/xi]ni=1 : ρ( A and Φ′′ . Γ′′,∆′′ ` Q′[Ni/xi]ni=1 : ρ imply
there are derivations Σ′i .∆′i ` Ni : τ ′i and Σ′′i .∆′′i ` Ni : τ ′′i , for 1 ≤ i ≤ n, such that
both Π′ . Γ′, x1 : τ ′1, ..., xn : τ ′n ` P ′ : ρ( A and Π′′ . Γ′′, x1 : τ ′′1 , ..., xn : τ ′′n ` Q′ : ρ.
By applying rule (∧2) to Σ′i and Σ′′i , we obtain Σi .∆i ` Ni : τi, where ∆i = ∆′i ∧∆′′i
and τi = τ ′i ∧ τ ′′i , for 1 ≤ i ≤ n. Consider now disjoint derivations Ψ′ and Ψ′′, respec-
tively copies of Π′ and Π′′, such that Ψ′ . Γ′, x′1 : τ ′1, ..., x

′
n : τ ′n ` P ′[x′i/xi]ni=1 : ρ( A

and Ψ′′ . Γ′′, x′′1 : τ ′′1 , ..., x
′′
n : τ ′′n ` Q′[x′′i /xi]ni=1 : ρ: then we can build

Ψ′ Ψ′′

Γ′,Γ′′, x′1 : τ ′1, ..., x
′
n : τ ′n, x

′′
1 : τ ′′1 , ..., x

′′
n : τ ′′n ` P ′[x′i/xi]ni=1Q′[x′′i /xi]ni=1 : A

(( E)

Γ′,Γ′′, x1 : τ1, ..., xn : τn ` P ′Q′ : A
(m)

LetM = x, so thatM[N/x] = x[N/x] = N and N = PQ: then Π is

x : A ` x : A
(Ax)

and Σ is the same derivation as Φ.
Let Φ be

Γ,∆, y1 : ρ1, ..., ym : ρm : τm ` P : τ

Γ,∆, y : ρ1 ∧ ... ∧ ρm ` P[y/yj ]
m
j=1 : τ

(m)
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where P[y/yj ]
m
j=1 =M[Ni/xi]ni=1.

Let y 6∈ ∪ni=1FV(Ni), soM =M′[y/yj ]mj=1 and P =M′[Ni/xi]ni=1. If y 6∈ FV(M),
then P = P[y/yj ]

m
j=1 =M[Ni/xi]ni=1 and the proof comes by induction. Other-

wise, {ys1 , ..., ysp} = {y1, ..., ym} ∩ FV(M) and by inductive hypothesis there are
Σi .∆i ` Ni : σi such that Π′ . Γ, ys1 : ρs1 , ..., ysp : ρsp , x1 : σ1, ..., xn : σn ` M : τ . Then
the result is obtained from Π′ by a suitable renaming sequence and by one application
of rule (m) with domain {y1, ..., yn} and range {y}.
Now let us consider y ∈ ∪ni=1FV(Ni), soM =M′[y/yj ]mj=1[xi/x

1
i , ..., xi/x

ri
i ]ni=1 and

M[Ni/xi]ni=1 = (M′[N 1
i /x

1
i , ...,N

ni
i /xrii ]ni=1)[y/yj ]

m
j=1.

Let {ys1 , ..., ysp} = {y1, ..., ym} ∩ FV(M′). Since P =M′[N 1
i /x

1
i , ...,N

ri
i /x

ri
i ]ni=1, by

inductive hypothesis there are Σh
i .∆h

i ` N h
i : σhi , for 1 ≤ i ≤ n and 1 ≤ h ≤ ri, such

that

Ψ . Γ, ys1 : ρs1 , ..., ysp : ρsp , x
1
1 : σ1

1, ..., x
r1
1 : σr11 , ..., x

1
n : σ1

n, ..., x
rn
n : σrnn ` M′ : τ

Note that Ni = N h
i [y/ym]mj=1, so we can build ∆′hi ` N h

i [y/ym]mj=1 : σhi from Σh
i by

applying rule (m) with domain FV(N h
i ) ∩ {y1, ..., ym} and range {y}, for 1 ≤ i ≤ n

and 1 ≤ h ≤ ri. Then we can build Σi as

(∆′hi ` N h
i [y/ym]mj=1 : σhi )1≤h≤ri
∆i ` Ni : σi

(∧ri)

where σi = σ1
i ∧ ... ∧ σ

ri
i , for every 1 ≤ i ≤ n.

Let δ be a renaming sequence containing n applications of rule (m), the i-th one
having domain {x1

i , ..., x
ri
i } and range {xi}, for 1 ≤ i ≤ n. If y ∈ FV(M), then from

Ψ we derive Π proving

Γ, y : ρ1 ∧ ... ∧ ρm, x1 : σ1, ..., xn : σn ` M′[y/yj ]mj=1[xi/x
1
i , ..., xi/x

ri
i ]ni=1 : τ

by a suitable renaming sequence and by one application of rule (m) with domain
{y1, ..., yn} and range {y}, followed by sequence δ. Otherwise, if y 6∈ FV(M), then
M′ =M and {ys1 , ..., ysp} = ∅, so we obtain the desired derivation Π by applying
renaming sequence δ to Γ, x1

1 : σ1
1, ..., x

r1
1 : σr11 , ..., x

1
n : σ1

n, ..., x
rn
n : σrnn ` M : τ .

Let Φ be
(Γj ,Θj ` M[Ni/xi]ni=1 : τj)1≤j≤m

Γ,∆ ` M[Ni/xi]ni=1 : τ
(∧m)

where Γ = ∧mj=1Γj and τ = τ1 ∧ ... ∧ τm.
For 1 ≤ j ≤ m, by inductive hypothesis there are Σj

i .∆j
i ` Ni : σji , for 1 ≤ i ≤ n,

such that Πj . Γj , x1 : σj1, ..., xn : σjn ` M : τj . Then we can build Σi as

(∆j
i ` Ni : σji )1≤j≤m

∆i ` Ni : σi
(∧m)
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where σi = σ1
i ∧ ... ∧ σmi , for 1 ≤ i ≤ n, such that Π is

(Γj , x1 : σj1, ..., xn : σjn ` M : τj)1≤j≤m
Γ, x1 : σ1, ..., xn : σn ` M : τ

(∧m)

The simplest case of the subject expansion property follows from the previous
result:

Lemma 39 (Subject expansion under substitution). Θ ` M[N/x] : σ and N typable
in STI imply there exists Θ′ such that Θ′ ` (λx.M)N : σ.

Proof. By induction on σ.
Let σ = A. Consider Θ = Γ,Ξ where dom(Γ) = FV(M) \ {x}. By Lemma 38,

there is ∆ ` N : τ such that Γ, x : τ ` M : A; let ∆′ ` N ′ : τ be a copy of ∆ ` N : τ ,
such that Γ#∆′: then we can build the following derivation

Γ, x : τ ` M : A

Γ ` λx.M : τ ( A
(( I)

∆′ ` N ′ : τ
Γ,∆′ ` (λx.M)N ′ : A

(( E)

and, since (λx.M)N is an instance of (λx.M)N ′, the result follows by the application
of a suitable renaming sequence.
Otherwise, let σ = σ1 ∧ ... ∧ σn. By Property 18, Π . Γ ` M[N/x] : σ1 ∧ ... ∧ σn
implies there are derivations Πi . Γi ` P : σi (1 ≤ i ≤ n) such that Π is obtained
by an application of rule (∧n) to (Πi)

n
i=1, followed by a renaming sequence δ. By

applying sequence δ to Πi we obtain Γ′′i ` M[N/x] : σi, for 1 ≤ i ≤ n.
By inductive hypothesis there are Γ′i such that Γ′i ` (λx.M)N : σi, for 1 ≤ i ≤ n:
then by applying rule (∧n) to such derivations we obtain ∧ni=1Γ′i ` (λx.M)N : σ.

Now we are able to prove that all strongly normalizing terms are typable in STI:

Theorem 23 (Strong normalization implies typability). IfM is strongly normalizing,
thenM is typable in STI.

Proof. For each of the three rules of Table 3.3 we show that, if the premises of the
rule are typable in STI, then the conclusion is typable in STI as well.

The proof, analogous to the one of Theorem 23, follows from Property 19 and by
Lemma 39.

Finally the desired result follows:
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Property 20 (Strong normalization). Π . Γ ` M : σ if and only if M is strongly
normalizing.

Proof. Easy by combining Lemma 37 and Theorem 23.



Chapter 5

Conclusion and future
developments

In this thesis we examined a few different, somehow orthogonal, approaches to
the ICC setting. On one level, we considered both a polyvalent and a monovalent
characterization of complexity classes through type assignment systems for (variants
of) λ-calculus. On another level, we considered both a typing system based on light
logics (ELL) and one, not having a logical counterpart but inspired by it (SLL), using
a slight variation of non-associative intersection types. The latter approach is further
explored by considering non-associative and non-idempotent intersection, in order to
prove some quantitative properties of λ-terms.

As a future development of this thesis, it would be interesting to check whether
the approach used in Chapter 3, namely the extension of a typing system based on a
light logic using intersection types, could be also applied to the system of Chapter 2:
would it then be possible to build a similar intersection type system, starting from
ELL instead of SLL?

If we consider the system characterizing the hierarchy of k-EXP, it should be
possible to design a type assignment system for λ!-calculus by using the same
stratified types of STR, namely intersection types enjoying both commutativity and
idempotence, but not associativity:

A ::= a | S
S ::= σ( A | ∀a.S | µa.S
σ ::= A | {σ, ..., σ︸ ︷︷ ︸

n

}

Indeed, the idempotence property seems to be essential in the ICC setting
because it allows to obtain a uniform representation of data, while some notion of
non-associativity is needed in order to store information about the stratification.
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Γ, x : A | ∆ | Θ ` x : A
(AxL)

Γ | ∆ | x : {A},Θ ` x : A
(AxP )

Γ, x : A | ∆ | Θ ` M : τ

Γ | ∆ | Θ ` λx.M : A( τ
(( IL)

Γ | ∆, x : σ | Θ ` M : τ

Γ | ∆ | Θ ` λ!x.M : σ( τ
(( II)

Γ1 | ∆ | Θ1 ` M : τ ( σ Γ2 | ∆ | Θ2 ` N : τ Γ1#Γ2

Γ1,Γ2 | ∆ | Θ1 ∪Θ2 ` MN : σ
(( E)

(∅ | ∅ | Θi ` M : σi)1≤i≤n

Γ | ∪ni=1Θi,∆ | Θ `!M : {σ1, ... , σn}
(st)

Table 5.1: Derivation rules for typed λ!-calculus with stratified types.

Both the modal and the parking context could be defined as partial functions
assigning stratified types to variables, because then we would be able to assign
different types to the same variable. The rules of the system (minus the quantifier
and fix-point rules) would be defined as in Table 5.1.
Note that rule (( E) builds the parking context of its conclusion by taking the union
of the parking contexts of its premises, since all variables in the parking context are
assigned a stratified type.

Based on the previous definitions, booleans and Scott binary words would then
have the usual datatype, while Church integers and binary words would be typable
with N = ∀a.{a( a}( {a( a} and W = ∀a.{a( a}( {a( a}( {a( a} re-
spectively.

Let the integer d(σ) and the set s(σ) be defined inductively as follows:

d(A) = 0, d({σ1, ... , σn}) =
n

max
i=1

d(σi) + 1;

s(A) = {A}, s({σ1, ... , σn}) = ∪ni=1s(σi).

For the characterization, one would then expect predicates corresponding to k-EXP
to have the type {W}( σ, where d(σ) = k + 2 and s(σ) = {B}; similarly, functions
would have the type {W}( τ , where d(τ) = k + 2 and s(τ) = {WS}.

The previous construction comes easily because of the restricted (!) rule we
consider in Chapter 2. If we consider instead a system like the one of [CDR08],
assigning ELL types to pure λ-calculus, then the issue of associativity for intersection
becomes more tricky, because the rule of stratification does not have any restriction
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on the contexts of its premises and so the use of stratified types (as defined for STR)
causes subject reduction to fail.
This issue can be avoided by considering a milder notion of associativity, where the
only information we care to retain is the distribution of linear types over different
strata. The latter approach is being considered, in order to give a bound on the
reduction of terms of call-by-value λ-calculus. Here we use stratified types in the
guise of intersection types enjoying both commutativity and a limited notion of
associativity; an intuitive way to explain the latter is to think of these stratified
types as finite lists of (possibly empty) multisets of linear types, where the position
of a multiset in the list (namely its index) represents the depth of the linear types
belonging to it.
While the notion of normal form is not as interesting in this setting, we believe
that the power of intersection types should be enough to capture all solvable terms,
namely all terms normalizable with leftmost reduction to their head normal form.





Appendix A

Additional proofs

A.1 Depth-wise confluence

In this section we prove Property 1.i, namely that λ!-calculus is depth-wise
confluent, by following the proof given in [RP04].

First we define the determinist parallel reduction-by-level, which reduces all
redexes of a term at depth i in a single step; then we introduce a non-deterministic
parallel reduction-by-level, which reduces only a subset of all redexes present at
depth i in a term.

Definition 29 (Reduction ↪→i). The deterministic parallel reduction-by level at
depth i, denoted by ↪→i, is defined inductively as follows:

- x ↪→i x;

- N ↪→i N ′ implies λx.N ↪→i λx.N ′;

- N ↪→i N ′ implies λ!x.N ↪→i λ
!x.N ′;

- !N ↪→0!N , while N ↪→i N ′ implies !N ↪→i+1!N ′;

- if PN is not a redex, P ↪→i P ′ and N ↪→i N ′ imply PN ↪→i P ′N ′;

- P ↪→0 P ′ and N ↪→0 N ′ imply (λx.P)N ↪→0 P ′[N ′/x], while P ↪→i P ′ and
N ↪→i N ′ imply (λx.P)N ↪→i (λx.P ′)N ′ for i ≥ 1;

- P ↪→0 P ′ implies (λ!x.P)!N ↪→0 P ′[N/x], while P ↪→i P ′ and !N ↪→i!N ′ imply
(λ!x.P)!N ↪→i (λ!x.P ′)!N ′ for i ≥ 1.

We denote by [M]i the term such that M ↪→i [M]i, also called the complete
development ofM at depth i. It is easy to see that for each termM there is only
one [M]i:
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Proposition 2 (Complete development at depth i). M ↪→i P andM ↪→i Q imply
P = Q = [M]i.

Proof. Trivial, since the reduction is deterministic.

Definition 30 (Reduction #i). The non-deterministic parallel reduction-by-level,
denoted by #i, is defined inductively as follows:

- x#i x;

- N #i N ′ implies λx.N #i λx.N ′;

- N #i N ′ implies λ!x.N #i λ
!x.N ′;

- !N #0!N , while N #i−1 N ′ implies !N #i!N ′ for i ≥ 1;

- P #i P ′ and N #i N ′ imply PN #i P ′N ′;

- P #0 P ′ and N #0 N ′ imply (λx.P)N #0 P ′[N ′/x], while P #i P ′ and
N #i N ′ imply (λx.P)N #i (λx.P ′)N ′ for i ≥ 1;

- P #0 P ′ implies (λ!x.P)!N #0 P ′[N/x], while P #i P ′ and !N #i!N ′ imply
(λ!x.P)!N #i (λ!x.P ′)!N ′ for i ≥ 1.

Observe thatM→i N impliesM#i N ,M#i N impliesM ∗→i N , and ∗→i is
the transitive closure of #i. Moreover, the following substitution property holds for
#i:

Proposition 3. i. If x occurs at depth 0 in M, then M #i M′ and N #i N ′

implyM[N/x]#iM′[N ′/x];

ii. if x occurs at depth 1 in M, then M #0 M′ implies M[N/x] #0 M′[N/x],
whileM#iM′ and !N #i!N ′ implyM[N/x]#iM′[N ′/x] for i ≥ 1;

Proof. By induction onM.

i. LetM = x; by definitionM′ = x, soM[N/x] = N #i N ′ =M′[N ′/x].

Let M = λy.P; by definition P #i P ′ implies M′ = λy.P ′, so by inductive
hypothesis P #i P ′ and N #i N ′ imply P [N/x]#i P ′[N ′/x]: thenM[N/x] =

λy.P[N/x]#i λy.P ′[N ′/x] =M′[N ′/x].

The case ofM = λ!y.P is similar.

LetM =!P : note that x cannot occur at depth 0 inM, since |M|0 = 0, so this
case is not possible.

Let M = PQ, such that x occurs at depth 0 in both P and Q; if x 6∈ FV(P)

or x 6∈ FV(Q), the proof is similar. By definition P #i P ′ and Q #i Q′
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imply M′ = P ′Q′, so by inductive hypothesis P #i P ′, Q #i Q′ and N #i

N ′ imply P[N/x] #i P ′[N ′/x] and Q[N/x] #i Q′[N ′/x]: then M[N/x] =

P[N/x]Q[N/x]#i P ′[N ′/x]Q′[N ′/x] =M′[N ′/x].

LetM = (λy.P)Q; by definition P #i P ′ and Q#i Q′ implyM′ = P ′[Q′/y]

for i = 0, while P #i P ′ and Q #i Q′ imply M′ = (λx.Q′)N ′ for i ≥ 1.
By inductive hypothesis P[N/x]#i P ′[N ′/x] and Q[N/x]#i Q′[N ′/x]; then
M[N/x] = (λy.P[N/x])Q[N/x] #i P ′[N ′/x][Q′[N ′/x]/y] = M′[N ′/x] for
i = 0, while M[N/x] = (λy.P[N/x])Q[N/x] #i (λy.P ′[N ′/x])Q′[N ′/x] =

M′[N ′/x] for i ≥ 1.

Let M = (λ!y.P)!Q; by definition P #i P ′ implies M′ = P ′[Q/y] for i = 0,
while P #i P ′ and !Q #i!Q′ imply M′ = (λ!x.P ′)!Q′ for i ≥ 1. Observe
that x cannot occur at depth 0 in Q, so !Q[N/x] #0!Q and !Q[N/x] #i!Q′

for i ≥ 1. By inductive hypothesis P[N/x] #i P ′[N ′/x]: then M[N/x] =

(λ!y.P [N/x])!Q[N/x]#i P ′[N ′/x][Q/y] =M′[N ′/x] for i = 0, whileM[N/x] =

(λ!y.P[N/x])!Q[N/x]#i (λy.P ′[N ′/x])!Q′ =M′[N ′/x] for i ≥ 1.

ii. LetM = y: note that x cannot occur at depth 1 inM, since |x|1 = 0, so this
case is not possible.

Let M = λy.P; by definition P #i P ′ implies M′ = λy.P ′, so by inductive
hypothesis P #0 P ′ implies P[N/x]#i P ′[N/x] for i = 0, while P #i P ′ and
N #i N ′ imply P [N/x]#i P ′[N ′/x] for i ≥ 1: thenM[N/x] = λy.P [N/x]#i

λy.P ′[N/x] =M′[N/x ] for i = 0, whileM[N/x] = λy.P [N/x]#i λy.P ′[N ′/x] =

M′[N ′/x] for i ≥ 1.

The case ofM = λ!y.P is similar.

LetM =!P; if x occurs at depth 1 inM, then x occurs at depth 0 in P. By
definition !P #i!P impliesM′ =!P for i = 0, while P #i−1 P ′ impliesM′ =!P ′

for i ≥ 1. If i = 0, then M[N/x] =!(P[N/x]) #i!(P[N/x]) = M′[N/x].
Otherwise, by point i of the current Lemma, P #i−1 P ′ and N #i−1 N ′ imply
P [N/x]#i−1 P ′[N ′/x]: then, since P #i−1 P ′ and N #i−1 N ′ imply !P #i!P ′

and !N #i!N ′, we have M[N/x] =!(P[N/x]) #i!(P ′[N ′/x]) = M′[N ′/x] for
i ≥ 1.

Let M = PQ, such that x occurs at depth 1 in both P and Q; if x 6∈ FV(P)

or x 6∈ FV(Q), the proof is similar. By definition P #i P ′ and Q#i Q′ imply
M′ = P ′Q′, so by inductive hypothesis P[N/x] #i P ′[N/x] and Q[N/x] #i

Q′[N/x] for i = 0, while P[N/x] #i P ′[N ′/x] and Q[N/x] #i Q′[N ′/x] for
i ≥ 1: then M[N/x] = P[N/x]Q[N/x] #i P ′[N/x]Q′[N/x] = M′[N/x ] for
i = 0, whileM[N/x] = P[N/x]Q[N/x]#i P ′[N ′/x]Q′[N ′/x] =M′[N ′/x] for
i ≥ 1.
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LetM = (λy.P)Q; by definition P #i P ′ and Q#i Q′ implyM′ = P ′[Q′/y]

for i = 0, while P #i P ′ and Q #i Q′ imply M′ = (λy.P ′)Q′ for i ≥ 1. By
inductive hypothesis P[N/x] #i P ′[N/x] and Q[N/x] #i Q′[N/x] for i = 0,
while P [N/x]#i P ′[N ′/x] and Q[N/x]#i Q′[N ′/x] for i ≥ 1: thenM[N/x] =

(λy.P[N/x])Q[N/x] #i P ′[N ′/x][Q′[N ′/x]/y] = M′[N ′/x] for i = 0, while
M[N/x] = (λy.P[N/x])Q[N/x] #i (λy.P ′[N ′/x])Q′[N ′/x] = M′[N ′/x] for
i ≥ 1.

Let M = (λ!y.P)!Q; by definition P #i P ′ implies M′ = P ′[Q/y] for i = 0,
while P #i P ′ and !Q #i!Q′ imply M′ = (λx.P ′)!Q′ for i ≥ 1. By inductive
hypothesis P[N/x] #i P ′[N/x] and !Q[N/x] #i!Q[N/x] for i = 0, while
P[N/x] #i P ′[N ′/x] and !Q[N/x] #i!Q′[N ′/x] for i ≥ 1: then M[N/x] =

(λ!y.P[N/x])!Q[N/x] #i P ′[N/x][Q[N/x]/y] = M′[N ′/x] for i = 0, while
M[N/x] = (λ!y.P[N/x])!Q[N/x] #i (λ!y.P ′[N ′/x])Q′[N ′/x] = M′[N ′/x] for
i ≥ 1.

Lemma 40. M#iM′ impliesM′ #i [M]i.

Proof. By induction onM.
LetM = x; by definitionM′ = x and [M]i = x.
Let M = λx.P; by definition P #i P ′ implies M′ = λx.P ′. By inductive

hypothesis P ′ #i [P]i: thenM′ = λx.P ′ #i λx.[P]i = [M]i.
The case ofM = λ!x.P is similar.
Let M =!P; by definition !P #0!P implies M′ =!P, while P #i P ′ implies

M′ =!P ′ for i ≥ 1. If i = 0, then M =!P #i!P = M′ = [M]i; otherwise, by
inductive hypothesis P ′ #i−1 [P]i−1: thenM′ =!P ′ #i![P]i−1 = [M]i.

Let M = PQ; by definition P #i P ′ and Q #i Q′ imply M′ = P ′Q′. By
inductive hypothesis P ′ #i [P]i and Q′ #i [Q]i: then M′ = P ′Q′ #i [P]i[Q]i =

[M]i.
LetM = (λx.P)Q; if x 6∈ FV(P), then the proof follows by induction. Otherwise,

since M is a w.f. term, x occurs at depth 0 in P. By definition P #i P ′ and
Q #i Q′ imply M′ = P ′[Q′/x] for i = 0, while P #i P ′ and Q #i Q′ imply
M′ = (λx.P ′)Q′ for i ≥ 1. By inductive hypothesis P ′ #i [P]i and Q′ #i [Q]i:
then by Lemma 3.i M′ = P ′[Q′/x] #i [P]i[[Q]i/x] = [M]i for i = 0, while M′ =

(λx.P ′)Q′ #i (λx.[P]i)[Q]i = [M]i.
Let M = (λ!x.P)!Q; if x 6∈ FV(P), then the proof follows by induction.

Otherwise, since M is a w.f. term, x occurs at depth 1 in P. By definition
P #i P ′ implies M′ = P ′[Q/x] = [M]i for i = 0, while P #i P ′ and !Q #i!Q′

imply M′ = (λ!x.P ′)!Q′ for i ≥ 1. By inductive hypothesis P ′ #i [P]i and
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!Q′ #i−1 [!Q]i: then by Lemma 3.ii M′ = P ′[Q/x] #i [P]i[Q/x] = [M]i for
i = 0, whileM′ = (λ!x.P ′)!Q′ #i (λx.[P]i)[!Q]i = [M]i.

The proof of confluence is based on the fact that ∗→i, being the transitive closure
of #i for which the diamond property holds, is itself confluent:

Lemma 41 (Diamond property of #i). IfM#i P andM#i Q, then there is N
such that both P #i N and Q#i N .

Proof. By Lemma 40,M#i P implies P #i [M]i andM#i Q implies Q#i [M]i,
so N = [M]i, as in Figure A.1.

M
# #

P Q
# #

N

Figure A.1: The diamond property.

Finally the proof of the confluence at fixed depth follows:

of Prop. 1.i. Recall that ∗→i is the transitive closure of #i; therefore, there are
P1, ...,Pn and Q1, ...,Qm such thatM#i P1 #i ...#i Pn #i P andM#i Q1 #i

... #i Qm #i Q: then the proof follows by repeatedly applying Lemma 41, as in
Figure A.2.

A.2 Derivability of the rules for ⊗

In this section we prove that the rules of Table 2.2 are derivable by the rules of
Table 2.1.

i) For rule (( IL⊗), we have:

x : A1 ⊗ A2 | ∆ | Θ ` x : A1 ⊗ A2
(AxL)

x : A1 ⊗ A2 | ∆ | Θ ` x : (A1 ( A2 ( A)( A
(∀E)

Σ

x : A1 ⊗ A2 | ∆ | Θ ` xλy1y2.λz.zy1y2 : A
(( E)

Γ | ∆, x1 : A1, x2 : A2 | Θ ` M : τ

Γ | ∆, x1 : A1 | Θ ` λx2.M : A2 ( τ
(( II)

Γ | ∆ | Θ ` λx1x2.M : A1 ( A2 ( τ
(( IL)

Γ, x : A1 ⊗ A2 | ∆ | Θ ` (xλy1y2.λz.zy1y2)λx1x2.M : τ
(( E)

Γ | ∆ | Θ ` λx.(xλy1y2.λz.zy1y2)λx1x2.M : (A1 ⊗ A2)( τ
(( IL)
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∗
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

β

β

y

∗

M #i P1 #i · · · #i Pn #i N

# # # #

Q1 #i [M] #i · · · #i · · · #i
...

# # #

... #i
...

...

# # ∗→ #

Qm #i
...

...

# # #

Q #i · · · #i · · · #i · · · #i N

Figure A.2: The diamond closure.

where B = A1 ( A2 ( τ , A = B( τ and Σ is

z : B | ∆ | Θ ` z : B
(AxL)

y1 : A1 | ∆ | Θ ` y1 : A1
(AxL)

y1 : A1, z : B | ∆ | Θ ` zy1 : A2 ( τ
(( E)

y2 : A2 | ∆ | Θ ` y2 : A2
(AxL)

y1 : A1, y2 : A2, z : B | ∆ | Θ ` zy1y2 : τ
(( E)

y1 : A1, y2 : A2 | ∆ | Θ ` λz.zy1y2 : A
(( IL)

y1 : A1 | ∆ | Θ ` λy2.λz.zy1y2 : A2 ( A
(( IL)

∅ | ∆ | Θ ` λy1y2.λz.zy1y2 : A1 ( A2 ( A
(( IL)

ii) For rule (( II⊗), we have:

x :!σ1⊗!σ2 | ∆ | Θ ` x :!σ1⊗!σ2
(AxL)

x :!σ1⊗!σ2 | ∆ | Θ ` x : (!σ1 (!σ2 ( A)( A
(∀E)

Σ

x :!σ1⊗!σ2 | ∆ | Θ ` xλ!y1y2.λz.z!y1!y2 : A
(( E)

Γ | ∆, x1 :!σ1, x2 :!σ2 | Θ ` M : τ

Γ | ∆, x1 :!σ1 | Θ ` λ!x2.M :!σ2 ( τ
(( II)

Γ | ∆ | Θ ` λ!x1x2.M :!σ1 (!σ2 ( τ
(( II)

Γ, x :!σ1⊗!σ2 | ∆ | Θ ` (xλ!y1y2.λz.z!y1!y2)λ!x1x2.M : τ
(( E)

Γ | ∆ | Θ ` λx.(xλ!y1y2.λz.z!y1!y2)λ!x1x2.M : (!σ1⊗!σ2)( τ
(( IL)
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where B =!σ1 (!σ2 ( τ , A = B( τ , ∆′ = y1 :!σ1, y2 :!σ2,∆ and Σ is

z : B | ∆′ | Θ ` z : B
(AxL)

∅ | ∅ | y1 : σ1 ` y1 : σ1
(AxP )

∅ | ∆′ | Θ `!y1 :!σ1
(!)

z : B | ∆′ | Θ ` z!y1 :!σ2 ( τ
(( E)

∅ | ∅ | y2 : σ2 ` y2 : σ2
(AxP )

∅ | ∆′ | Θ `!y2 :!σ2
(!)

z : B | ∆′ | Θ ` z!y1!y2 : τ
(( E)

∅ | ∆′ | Θ ` λz.z!y1!y2 : A
(( IL)

∅ | y1 :!σ1,∆ | Θ ` λ!y2.λz.z!y1!y2 :!σ2 ( A
(( II)

∅ | ∆ | Θ ` λ!y1y2.λz.z!y1!y2 :!σ1 (!σ2 ( A
(( II)

iii) For rule (⊗I), we have:

x : σ1 ( σ2 ( a | ∆ | Θ ` x : σ1 ( σ2 ( a
(AxL)

Γ1 | ∆ | Θ ` M1 : σ1

x : σ1 ( σ2 ( a,Γ1 | ∆ | Θ ` xM1 : σ2 ( a
(( E)

Γ2 | ∆ | Θ ` M2 : σ2

x : σ1 ( σ2 ( a,Γ1,Γ2 | ∆ | Θ ` xM1M2 : a
(( E)

Γ1,Γ2 | ∆ | Θ ` λx.xM1M2 : (σ1 ( σ2 ( a)( a
(( IL)

Γ1,Γ2 | ∆ | Θ ` λx.xM1M2 : σ1 ⊗ σ2
(∀I)

where λx.xM1M2 =M1 ⊗M2 by definition.
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