
HAL Id: tel-01123740
https://theses.hal.science/tel-01123740v1

Submitted on 5 Mar 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Generic monitoring and reconfiguration for
service-based applications in the cloud

Mohamed S. A. Mohamed

To cite this version:
Mohamed S. A. Mohamed. Generic monitoring and reconfiguration for service-based applications in
the cloud. Networking and Internet Architecture [cs.NI]. Institut National des Télécommunications,
2014. English. �NNT : 2014TELE0025�. �tel-01123740�

https://theses.hal.science/tel-01123740v1
https://hal.archives-ouvertes.fr


Laboratoire CNRS UMR 5157 SAMOVAR École doctorale S&I
Institut Mines-Télécom/Télécom SudParis Université d’Évry-Val d’Essonne

GENERIC MONITORING AND
RECONFIGURATION FOR SERVICE-BASED

APPLICATIONS IN THE CLOUD

PHD THESIS

7 Novembre 2014

Thèse de doctorat de Institut Mines-Télécom, Télécom SudParis
dans le cadre

de l’école doctorale S&I en co-accréditation avec
l’Université d’Évry-Val d’Essonne

(spécialité informatique)

par

Mohamed Mohamed

Président de jury: Pr. Nazim AGOULMINE Université d’Evry Val d’Essonnes

Rapporteurs : Pr. Françoise BAUDE Université de Nice Sophia-Antipolis
Pr. Boualem BENATALLAH University of South Wales, Australia

Examinateurs Dr. Fabienne BOYER Université de Grenoble

Dr. Djamel BELAÏD (encadrant) Télécom SudParis
Pr. Samir TATA (Directeur de thése) Télécom SudParis

Thèse numéro : 2014TELE0025





Acknowledgements

First, I would like to express my deepest sense of gratitude to my supervisor Djamel BELAÏD for
his patient guidance, encouragement and excellent advices throughout this research. I would like also to
express my sincere gratitude and appreciation to my thesis director Samir TATA who has continually and
convincingly conveyed a spirit of adventure in regard to research.

I would like to thank all members of the jury especially Professor Fraçoise BAUDE and Professor
Boualem BENATALLAH for their attention and thoughtful comments.

I owe my deepest gratitude and warmest affection to the members of the computer science department
of Telecom Sud-Paris and to my fellows whose friendly company, during my thesis work, was a source
of great pleasure.

Finally, I want to dedicate this thesis to my parents, Habib and Sakina, who have given me the chance
of a good education, and so much love and support over the years. I probably owe them much more then
they think. I am deeply and forever indebted to them for their love, support and encouragement.



ii



For my parents,
in gratitude for their patience and love

iii



iv



Résumé

Le Cloud Computing est un paradigme émergent dans les technologies de l’information. L’un de ses
atouts majeurs étant la mise à disposition des ressources fondée sur le modèle pay-as-you-go. Les
ressources Cloud se situent dans un environnement très dynamique. Cependant, chaque ressource pro-
visionnée offre des services fonctionnels et peut ne pas offrir des services non fonctionnels tels que
la supervision, la reconfiguration, la sécurité, etc. Dans un tel environnement dynamique, les services
non fonctionnels ont une importance critique pour le maintien du niveau de service des ressources ainsi
que le respect des contrats entre les fournisseurs et les consommateurs. Dans notre travail, nous nous
intéressons à la supervision, la reconfiguration et la gestion autonomique des ressources Cloud. En
particulier, nous mettons l’accent sur les applications à base de services. Ensuite, nous poussons plus
loin notre travail pour traiter les ressources Cloud d’une manière générale. Par conséquent, cette thèse
contient deux contributions majeures. Dans la première contribution, nous étendons le standard SCA
(Service Component Architecture) afin de permettre l’ajout de besoins en supervision et reconfiguration
à la description des composants. Dans ce contexte, nous proposons une liste de transformations qui per-
met d’ajouter automatiquement aux composants des facilités de supervision et de reconfiguration, et ce,
même si ces facilités n’ont pas été prévues dans la conception des composants. Ceci facilite la tâche au
développeur en lui permettant de se concentrer sur les services fonctionnels de ses composants. Pour
être en conformité avec la scalabilité des environnements Cloud, nous utilisons une approche basée sur
des micro-conteneurs pour le déploiement de composants. Dans la deuxième contribution, nous éten-
dons le standard OCCI (Open Cloud Computing Interface) pour ajouter dynamiquement des facilités de
supervision et de reconfiguration aux ressources Cloud, indépendamment de leurs niveaux de service.
Cette extension implique la définition de nouvelles Ressources, Links et Mixins OCCI pour permettre
d’ajouter dynamiquement des facilités de supervision et de reconfiguration à n’importe quelle ressource
Cloud. Nous étendons par la suite nos deux contributions de supervision et reconfiguration afin d’ajouter
des capacités de gestion autonomique aux applications SCA et ressources Cloud. Les solutions que nous
proposons sont génériques, granulaires et basées sur les standards de facto (i.e., SCA et OCCI). Dans ce
manuscrit de thèse, nous décrivons les détails de nos implémentations ainsi que les expérimentations que
nous avons menées pour l’évaluation de nos propositions.

Mots-clés: Cloud Computing, Supervision, Reconfiguration, Autonomic Computing, Composant, Ser-
vice.



Abstract

Cloud Computing is an emerging paradigm in Information Technologies (IT). One of its major as-
sets is the provisioning of resources based on pay-as-you-go model. Cloud resources are situated in a
highly dynamic environment. However, each provisioned resource comes with functional properties and
may not offer non functional properties like monitoring, reconfiguration, security, accountability, etc. In
such dynamic environment, non functional properties have a critical importance to maintain the service
level of resources and to make them respect the contracts between providers and consumers. In our
work, we are interested in monitoring, reconfiguration and autonomic management of Cloud resources.
Particularly, we put the focus on Service-based applications. Afterwards, we push further our work to
treat Cloud resources. Consequently, this thesis contains two major contributions. On the first hand, we
extend Service Component Architecture (SCA) in order to add monitoring and reconfiguration require-
ments description to components. In this context, we propose a list of transformations that dynamically
adds monitoring and reconfiguration facilities to components even if they were designed without them.
That alleviates the task of the developer and lets him focus just on the business of his components. To
be in line with scalability of Cloud environments, we use a micro-container based approach for the de-
ployment of components. On the second hand, we extend Open Cloud Computing Interface standards to
dynamically add monitoring and reconfiguration facilities to Cloud resources while remaining agnostic
to their level. This extension entails the definition of new Resources, Links and Mixins to dynamically
add monitoring and reconfiguration facilities to resources. We extend the two contributions to couple
monitoring and reconfiguration in order to add self management capabilities to SCA-based applications
and Cloud resource. The solutions that we propose are generic, granular and are based on the de facto
standards (i.e., SCA and OCCI). In this thesis manuscript, we give implementation details as well as
experiments that we realized to evaluate our proposals.

Keywords: Cloud Computing, Monitoring, Reconfiguration, Autonomic Computing, Component, Ser-
vice.



List of Publications

[1] "An Autonomic Approach to Manage Elasticity of Business Processes in the Cloud", Mohamed
Mohamed, Mourad Amziani, Djamel Belaïd, Samir Tata and Tarek Melliti, Future Generation
Computer Systems published by Elsevier, October, 2014

[2] "An approach for Monitoring Components Generation and Deployment for SCA Applications",
Mohamed Mohamed, Djamel Belaïd and Samir Tata, in "Communications in Computer and Infor-
mation Science" published by Springer-Verlag, September, 2014

[3] "Monitoring and Reconfiguration for OCCI Resources", Mohamed Mohamed, Djamel Belaïd and
Samir Tata, CloudCom 2013, Bristol, UK,December 2-5, 2013

[4] "PaaS-independent Provisioning and Management of Applications in the Cloud", Mohamed Sell-
ami, Sami Yangui, Mohamed Mohamed and Samir Tata, CLOUD 2013, Santa Clara Marriott, CA,
USA, June 27-July 2, 2013

[5] "Self-Managed Micro-Containers for Service-Based Applications in the Cloud", Mohamed Mo-
hamed, Djamel Belaïd and Samir Tata, WETICE 2013, Hammamet, Tunisia,June 17-20, 2013

[6] "Monitoring of SCA-based Applications in the Cloud", Mohamed Mohamed, Djamel Belaïd and
Samir Tata, CLOSER 2013, Aachen, Germany, Mai 8-10, 2013

[7] "Adding Monitoring and Reconfiguration Facilities for Service-based Applications in the Cloud",
Mohamed Mohamed, Djamel Belaïd and Samir Tata, AINA 2013, Barcelona, Spain, March 25-28,
2013

[8] "How to Provide Monitoring Facilities to Services when they are Deployed in the Cloud?", Mo-
hamed Mohamed, Djamel Belaïd and Samir Tata, CLOSER 2012, Porto, Portugal, April 18-21,
2012

[9] "Scalable Service Containers", Sami Yangui, Mohamed Mohamed, Samir Tata and Samir Moalla,
CloudCom 2011, Athenes, Greece, November 29 - December 1, 2011.

[10] "Service micro-container for service-based applications in Cloud environments", Mohamed Mo-
hamed, Sami Yangui, Samir Moalla and Samir Tata, in WETICE 2011, Paris, France, June 27-29,
2011.



viii



Contents

Chapter 1 Introduction 1
1.1 General Context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Motivation And Problem Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Research Goals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.4 Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.5 Thesis Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

Chapter 2 Background
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2 Service Oriented Architecture and Service Component Architecture . . . . . . . . . . . 8

2.3 Monitoring, Reconfiguration and Autonomic Computing . . . . . . . . . . . . . . . . . 9

2.3.1 Monitoring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.3.2 Reconfiguration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.3.3 Autonomic Computing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.4 Cloud Computing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.5 Open Cloud Computing Interface (OCCI) . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

Chapter 3 State of the Art
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.2 Monitoring Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.3 Reconfiguration Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.4 Autonomic Computing Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.5 Synthesis of Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

ix



Contents

Chapter 4 Monitoring and Reconfiguration of SCA-based applications in the Cloud

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.2 Adding Monitoring and Reconfiguration facilities to component . . . . . . . . . . . . . 38

4.2.1 Extended SCA Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4.2.2 GenericProxy Service: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.2.3 Reconfiguration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.2.4 Monitoring by Polling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.2.5 Monitoring by Subscription . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.2.6 Transformation Example: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.3 Monitoring and Reconfiguration within Scalable Micro-containers . . . . . . . . . . . . 47

4.3.1 Deployment Framework and generated Micro-Container . . . . . . . . . . . . . 47

4.3.2 Adding Monitoring and Reconfiguration to Micro-Containers . . . . . . . . . . 48

4.4 Adding FCAPS properties to components . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.4.1 Extension of Deployment Framework for FCAPS management . . . . . . . . . . 50

4.4.2 IMMC Anatomy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.4.3 FCAPS Manager and IMMC basic functionalities . . . . . . . . . . . . . . . . . 52

4.4.4 FCAPS Management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

Chapter 5 Monitoring and Reconfiguration of Cloud Resources

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

5.2 Monitoring and Reconfiguration for Cloud Resources . . . . . . . . . . . . . . . . . . . 60

5.2.1 Adding Monitoring and Reconfiguration facilities to Cloud Resources . . . . . . 60

5.2.2 OCCI description for Monitoring and Reconfiguration . . . . . . . . . . . . . . 61

5.2.3 Example of using OCCI Monitoring and Reconfiguration extension . . . . . . . 67

5.3 Autonomic Management for Cloud Resources . . . . . . . . . . . . . . . . . . . . . . . 67

5.3.1 MAPE: Monitor, Analyze, Plan and Execute . . . . . . . . . . . . . . . . . . . 68

5.3.2 MAPE for Cloud Resources . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

5.3.3 OCCI extension for Autonomic Management . . . . . . . . . . . . . . . . . . . 70

5.4 Autonomic Infrastructure for Cloud Resources . . . . . . . . . . . . . . . . . . . . . . . 77

5.5 Adding FCAPS Management to Cloud Resources . . . . . . . . . . . . . . . . . . . . . 78

5.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

x



Chapter 6 Evaluation and Validation
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

6.2 Common Environment description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

6.3 Evaluation of Monitoring and Reconfiguration Approach of SCA-based applications in

the Cloud . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

6.3.1 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

6.3.2 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

6.4 Evaluation of Autonomic Computing Approach for Cloud Resources . . . . . . . . . . . 85

6.4.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

6.4.2 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

6.4.3 Evaluations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

6.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

Chapter 7 Conclusion and Perspectives
7.1 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

7.2 Perspectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

Bibliography

xi



Contents

xii



List of Figures

2.1 SOA architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2 Overview of the Standard Service Component Architecture Model. . . . . . . . . . . . . 9
2.3 Autonomic control loop [1] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.4 Cloud Computing Conceptual Reference Model defined by NIST. . . . . . . . . . . . . 13
2.5 OCCI’s place in a provider’s architecture [2]. . . . . . . . . . . . . . . . . . . . . . . . 14
2.6 UML Diagram of OCCI Core Model. . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.7 Overview Diagram of OCCI Infrastructure Types. . . . . . . . . . . . . . . . . . . . . . 16

3.1 Nagios Monitoring plugin [3]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.2 Proposed Monitoring information model [4]. . . . . . . . . . . . . . . . . . . . . . . . . 19
3.3 Proposed Monitoring Architecture [4]. . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.4 Architecture of Ganglia [5]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.5 Structure of GRM [6]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.6 Architecture of GridRM [7]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.7 GMA and R-GMA components [8]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.8 Support for dynamic reconfiguration [9]. . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.9 Adding reconfiguration to a component in .Net platforms [10]. . . . . . . . . . . . . . . 27
3.10 Autonomic Elements and their interactions [11]. . . . . . . . . . . . . . . . . . . . . . . 29
3.11 Autonomic Control Loop [12]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.12 System architecture for autonomic Cloud management [13]. . . . . . . . . . . . . . . . 30
3.13 Rainbow framework abstract model [14]. . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.14 StarMX high level static architecture [15]. . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.15 Overview of the CAPPUCINO distributed runtime [16]. . . . . . . . . . . . . . . . . . . 32
3.16 Adding reconfiguration to an SCA component [17]. . . . . . . . . . . . . . . . . . . . . 33

4.1 Extended SCA with monitoring and reconfiguration artifacts. . . . . . . . . . . . . . . . 39
4.2 Extended Component with Required Property. . . . . . . . . . . . . . . . . . . . . . . . 40
4.3 Component-based Application using required property. . . . . . . . . . . . . . . . . . . 41
4.4 Definition of the GenericProxy interface. . . . . . . . . . . . . . . . . . . . . . . . . . . 42
4.5 Reconfiguration and monitoring by polling. . . . . . . . . . . . . . . . . . . . . . . . . 43
4.6 Monitoring by subscription multi Notification Service. . . . . . . . . . . . . . . . . . . 44
4.7 Monitoring by subscription one Notification Service. . . . . . . . . . . . . . . . . . . . 44

xiii



List of Figures

4.8 Monitoring by subscription using hybrid schema. . . . . . . . . . . . . . . . . . . . . . 45
4.9 Extension of the Micro-container architecture with monitoring. . . . . . . . . . . . . . . 48
4.10 Extended Deployment Framework and Micro-Container for FCAPS management. . . . . 51
4.11 Intelligent Managed Micro Container Anatomy . . . . . . . . . . . . . . . . . . . . . . 52
4.12 Replication and Load balancing scenario. . . . . . . . . . . . . . . . . . . . . . . . . . 54
4.13 Migration scenario. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

5.1 Reconfiguration extension for Cloud Resources. . . . . . . . . . . . . . . . . . . . . . . 61
5.2 Monitoring by Polling extension for Cloud Resources. . . . . . . . . . . . . . . . . . . 61
5.3 Monitoring by Subscription extension for Cloud Resources. . . . . . . . . . . . . . . . . 62
5.4 OCCI Mixins for Monitoring and Reconfiguration. . . . . . . . . . . . . . . . . . . . . 62
5.5 OCCI Links for Monitoring and Reconfiguration. . . . . . . . . . . . . . . . . . . . . . 64
5.6 Example of using our extension. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
5.7 Autonomic control loop for a Cloud resource . . . . . . . . . . . . . . . . . . . . . . . 68
5.8 Autonomic infrastructure for a Cloud resource . . . . . . . . . . . . . . . . . . . . . . . 69
5.9 OCCI Core Model and our extension (colored boxes) for Autonomic Computing. . . . . 71
5.10 Autonomic Computing Infrastructure establishment for Cloud resources. . . . . . . . . . 77

6.1 Memory consumption of different types of micro-containers. . . . . . . . . . . . . . . . 84
6.2 Latency time using different scenarios of monitoring. . . . . . . . . . . . . . . . . . . . 84
6.3 Overview of the defined OCCI platform types. . . . . . . . . . . . . . . . . . . . . . . . 86
6.4 Overview of the defined OCCI application types. . . . . . . . . . . . . . . . . . . . . . 87
6.5 BPMN of a SBP example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
6.6 Petri net of a SBP example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
6.7 Example of the elasticity of a SBP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
6.8 HLPN model of the generic Controller . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
6.9 Response time before and after adding our Autonomic Infrastructure. . . . . . . . . . . . 100
6.10 Memory consumption before and after adding our Autonomic Infrastructure. . . . . . . . 101
6.11 Autonomic Computing Infrastructure establishment for SBP elasticity. . . . . . . . . . . 103
6.12 Response time of the SBP before and after adding our Autonomic Infrastructure. . . . . 104
6.13 Memory consumption before and after adding our Autonomic Infrastructure. . . . . . . . 105

xiv



List of Tables

3.1 Synthesis of Related Work. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

5.1 Definition of the Subscription Link . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
5.2 Actions defined for the Subscription Link . . . . . . . . . . . . . . . . . . . . . . . . . 64
5.3 Definition of the Notification Link . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
5.4 Actions defined for the Notification Link . . . . . . . . . . . . . . . . . . . . . . . . . . 65
5.5 Definition of the Action Link . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
5.6 Actions defined for the Action Link . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
5.7 Definition of the Autonomic Manager . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
5.8 Actions defined for the Autonomic Manager resource . . . . . . . . . . . . . . . . . . . 72
5.9 Definition of the Analyzer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
5.10 Actions defined for the Analyzer resource . . . . . . . . . . . . . . . . . . . . . . . . . 73
5.11 Definition of the Planner . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
5.12 Actions defined for the Planner resource . . . . . . . . . . . . . . . . . . . . . . . . . . 74
5.13 Definition of the Agreement Link . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
5.14 Actions defined for the Agreement Link . . . . . . . . . . . . . . . . . . . . . . . . . . 75
5.15 Definition of the Alert Link . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
5.16 Actions defined for the Alert Link . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

6.1 Summary of the monitoring and reconfiguration Mixins. . . . . . . . . . . . . . . . . . 97
6.2 Description of monitoring metrics, thresholds, alerts and reconfigurations of our use case. 99
6.3 Average times needed to reconfiguration actions. . . . . . . . . . . . . . . . . . . . . . 100

xv



List of Tables

xvi



Chapter 1

Introduction

Contents
1.1 General Context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Motivation And Problem Description . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Research Goals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.4 Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.5 Thesis Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.1 General Context

Over the last years, there has been an enormous shift in Information Technologies (IT) to Cloud Com-
puting. Cloud Computing is a recent paradigm enabling an economic model for virtual resources provi-
sioning. It refers to a model for enabling ubiquitous, convenient, on demand network access to a shared
pool of configurable computing resources (e.g., networks, servers, storage, applications and services)
that can be rapidly provisioned and released with minimal effort or service provider interaction [18]. In
this paradigm, there are basically three layers of services known as "IaaS" for Infrastructure as a Service,
"PaaS" for Platform as a Service and "SaaS" for Software as a Service. Adoption of Cloud Computing
is increasing due its economic model based on pay-as-you-go model. A Gartner survey [19] realized
on august 2013 on the future of IT services shows that 38 percent of all organizations surveyed indicate
cloud services use today. However, 80 percent of organizations said that they intend to use cloud services
in some form within 12 months, including 55 percent of the organizations not doing so when the survey
was performed.

As it is, the Cloud is well adapted to host Service-based applications that follow Service Oriented
Architecture (SOA). SOA is a software architecture based on services which communicate with each
other. Such type of applications can be described using Service Component Architecture (SCA) as
a composite that contains a detailed description for different components of the application and links
between them. All the elements in a composite must be described as one of the standard artifacts of the

1



Chapter 1. Introduction

SCA meta-model. A well described composite can be transmitted to a SCA runtime (e.g. FraSCAti [20],
TUSCANY [21]) that instantiates the different components and links them as described in the composite.

However, SCA-based applications in the Cloud are exposed to dynamic evolution during their life-
cycle. This evolution is due to the environment dynamic. Consequently, management of SCA-based
applications in Cloud environments is becoming a challenging task. Therefore, monitoring and recon-
figuration can play an important role to respect the agreements between the service’s consumer and its
provider. Monitoring process consists on informing the interested parts (users or application compo-
nents) about the changes of the monitored system properties by notifying them on a regular way or
whenever a change has occurred. While reconfiguration is a runtime modification of the structure or the
implementation of an component [22]. In order to remain efficient and accurate against the environment
dynamic, Cloud providers should enable dynamic monitoring and reconfiguration of the provisioned re-
sources with a minimal cost and a minimal performance degradation. Over and above providing the tools
of monitoring and reconfiguration, coupling these two functionalities has a big importance to cope with
the dynamic evolution of Cloud environments [13]. This coupling is possible by means of autonomic
loops [11]. An autonomic loop consists on harvesting monitoring data, analyzing them and generating
reconfigurations to correct violations (self-healing and self-protecting) or to target a new state of the
system (self-configuring and self-optimizing). Using these loops we can build Autonomic Computing
systems. Autonomic Computing [11] is the ability to manage computing resources automatically and
dynamically to respond to the requirements of the business based on SLA.

1.2 Motivation And Problem Description

Indeed, when applied to a SCA-based applications in a Cloud environment, monitoring becomes a com-
plicated problem that has to face many challenges. First, the description of the need to consume mon-
itoring information must be explicitly described in different granularities independently of the type of
the components (i.e., Network, Compute, Storage, Software, etc.). Moreover, the nature of monitored
components and the way their status should be retrieved depends on the component being monitored.
This dependency along with the absence of standardization efforts render the monitoring more compli-
cated. Finally, any monitoring solution must respect the scalability of the Cloud and should minimize
the resources and energy consumption to be in-line with the economic model of this paradigm based on
pay-as-you-go.

In the same context, reconfiguration is becoming more and more complicated since there is no stan-
dard description for reconfiguration requirements. Since reconfiguration is not the basic function of
resources, not all the resources are designed with reconfiguration facilities. Consequently, we can face
a problem if a component would like to reconfigure a given resource that do not offer any interface for
that matter. Furthermore, components may require to reconfigure each other in different granularities.
For example, a given component may require to reconfigure another component by changing one of its
attributes, it can also require to stop the component or to delete many components. Then, the way of
applying reconfiguration actions on component depends on the granularity of the action and the recon-
figured component. This task is really sophisticated if we do not have enough information about the
component.

2



1.3. Research Goals

Many attempts to provide monitoring and reconfiguration for applications in the Cloud exist in the
state of the art detailed in Chapter 3, but as we will explain, almost all the proposed solutions give
tooling solutions to monitor and reconfigure Cloud applications behavior. It is worth noting that the
cited works do not target monitoring and reconfiguration at different granularities. Furthermore, there is
no approach that expects to monitor or reconfigure components that were not designed with monitoring
and reconfiguration facilities. In addition, almost all of the existing solutions either do not take care of
scalability issue, or do not include an efficient solution to that problem.

As explained in Section 1.1, coupling monitoring and reconfiguration in a holistic loop is so impor-
tant. We advocate that making monitoring and reconfiguration collaborate in an autonomic loop is really
interesting since it allows to rapidly tackle violations and keep the cloud environment in a safe state.
Moreover, coupling Autonomic Computing with Cloud computing increases the availability of Cloud
resources and reduces their costs. However, this coupling remains critical and challenging according to
Buyya et al. [13] since Cloud environments are composed of thousands of interconnected heterogeneous
resources.

This coupling adds autonomic management behaviors to Cloud resources and particularly to appli-
cations. However, Cloud providers did not yet succeed to enable this kind of coupling. In contrast, they
provide interfaces or APIs to manually reconfigure the behavior of the application or their containers
from outside. That could tackle the resiliency of the application specially if the container is situated
in an environment with a low bandwidth, in this case, some decisions are critical and must be as fast as
possible. In our point of view, the fastest way is to take decisions from the closest location to the resource
itself.

For autonomic management in a Cloud environment, we need to specify in a granular way what
are the targets of monitoring and reconfiguration. Going from a simple attribute to a complex system.
This issue brings another major challenge to autonomic computing which is the heterogeneity of the
resources that need to be monitored and reconfigured in an autonomic loop. This problem is basically
due to the fact that monitoring and reconfiguration are treated as separate aspects. Almost all the time, the
resources used to these aims are not compatible with one another. The advantage brought by autonomic
management is to use monitoring data to apply reconfiguration actions to ensure self configuration, self
healing, self optimization, and self protecting.

Actually, almost all of the cloud computing projects suppose that monitoring is used just to gather
Key Performance Indicator (KPI) for billing or to notify the interested client of eventual problems [23,
24, 25, 26]. They also consider that reconfiguration consists of a new deployment of resources [23, 24,
25, 26]. Therefore, reconfiguration is as expensive as a new deployment. The few other works concerning
autonomic management cope just with specific use cases. Thus, they can not respond to the dynamic of
the cloud in different situations.

1.3 Research Goals

The objectives of this thesis are to provide solutions for monitoring and reconfiguration of service-based
applications in Cloud environments. However, the different solutions and mechanisms could be used
separately or combined in a holistic loop providing autonomic management facilities. For example, using

3



Chapter 1. Introduction

our monitoring mechanisms, an interested part can retrieve monitoring data from a given component
or application deployed in the Cloud. It can also apply reconfigurations to change the behavior of a
given component or application. Moreover, it can retrieve monitoring data, analyze them and generates
reconfigurations to be applied on one or more components.

The expected characteristics of the provided solutions are the following:

• Genericity: The description of monitoring and reconfiguration requirements must be generic and
agnostic to the resource. Consequently, this description could be applied on heterogeneous re-
sources without major modifications;

• Granularity: The proposed solution must enable monitoring and reconfiguring components at dif-
ferent granularities (i.e., attribute, component, application, etc.). Therefore, the proposed inter-
faces may allow an interested part to monitor or reconfigure different aspects of Cloud resources;

• Standardization: The proposed mechanisms should be conform to the de facto standards whenever
it is possible (e.g., SCA, OCCI, REST, HTTP, etc.). Using standards will enforce the conformance
of our solution to the requirements of monitoring and reconfiguration;

• Scalability: The solution must be in line with the scalability of Cloud environments. Using com-
munication mechanisms known with their scalability can improve the overall scalability of the
solution. We need also to use scalable mechanisms for applications deployment in the Cloud;

• Extensibility: The proposed solution should be extensible in order to enable adding new modules
to respond to new requirements;

• Flexibility: In order to respond to different flavors, the user of our solution may be able to choose
different ways to deploy and use the defined mechanisms and resources.

It is noteworthy that the proposed work in this thesis needs to be validated and evaluated. The
implementation aspects should be detailed. Furthermore, evaluation scenarios should be described and
experiments should be performed and analyzed.

1.4 Approach

In order to resolve the previously described problems, we propose different solutions to add monitoring
and reconfiguration facilities to resources in Cloud environments.

First, we propose an extension for SCA meta-model to enable a generic description of a compo-
nent’s needs to monitor other components. This extension enables monitoring SCA-based applications
at different granularities. And to take into account the case where components are designed without
monitoring facilities, we propose different transformations to render a component monitorable. Then,
another extension to SCA is proposed to enable generic description of component’s needs to reconfigure
other components. The description is granular so that it enables reconfiguring attributes, component or
application composites. We also propose transformation mechanisms to render reconfigurable a given
component.

4



1.4. Approach

Moreover, we propose a Deployment Framework able to add the described monitoring and recon-
figuration requirements to components prior deploying them in the Cloud. This framework deploys
components based on scalable micro-containers. These latter guaranty the scalability of the SCA-based
application once deployed in the cloud.

Furthermore, in order to integrate the usage of monitoring and reconfiguration and to add self man-
agement aspects to SCA-based applications, we extend our work to describe FCAPS (i.e., Fault, Config-
uration, Accountability, Performance and Security) aspects for components. We extend the Deployment
Framework to render it able to add monitoring and reconfiguration facilities to SCA components and
encapsulates them in self-managed micro containers with a high scalability and mobility. These micro-
containers have a high resiliency since they implement different transactions (i.e., replication, reconfigu-
ration, recombination and repairing) and provide FCAPS management. Using their monitoring services,
these Intelligent Managed Micro Containers (IMMCs) have the ability to dynamically and transparently
face the changes of their environments. This is supported by triggering reconfiguration or migration
mechanisms or by changing any of the strategies used for the FCAPS management.

Over and above SCA-based applications, we propose to extend our work in order to be independent
from the service level (i.e., IaaS, PaaS or SaaS). To this aim, we propose a generic description of moni-
toring and reconfiguration of Cloud resources. To resolve heterogeneity problems, the most trivial way
is to use standard interfaces. For Cloud Computing, the de facto standard is Open Cloud Computing
Interface (OCCI). OCCI is defined by the Open Grid Forum as "an abstraction of real world resources,
including the means to identify, classify, associate and extend those resources" [2]. Using OCCI standard
allows us also to propose a granular description for monitoring and reconfiguration requirements. The
extension mechanism of OCCI, based on the usage of Mixins, enables adding new functionalities easily.
The rendering of the infrastructure, based on REST interfaces using HTTP [27], enforces the scalability
of the proposed solution.

Afterwards, we push farther our work and we propose an on demand autonomic computing infras-
tructure based on OCCI standard. This infrastructure is based on new OCCI Entities (i.e., Resources
and Links) and Mixins. In order to add autonomic computing facilities to resources, we propose to add
Mixins to enable the following functionalities: (1) to inspect a specific SLA related to resources to be
able to define the needed elements for the autonomic loop, (2) to use our monitoring mechanisms to
extract data from resource, and (3) to enable reconfigurations on concerned resources based on our re-
configuration mechanisms. The rest of the infrastructure consumes monitoring data in order to analyze
it and generate reconfiguration actions. The established infrastructure needs eventually some Mixins for
specific processing (i.e., adding specific analysis rules and reconfiguration strategies, etc.). These Mixins
could be adapted at runtime to change the behavior of the system. In this manuscript we do not cover
all the self-CHOP (configuring, healing, optimizing and protecting) properties. Instead, we propose the
needed mechanisms that could be used to cover these properties.

It is worthy to note, that for each of the proposed approaches, we will detail the different aspects of
the realized implementations. We will also describe the realized scenarios and experiments performed to
evaluate our proposals.

5



Chapter 1. Introduction

1.5 Thesis Structure

The remainder of this manuscript is organized as follows. Chapter 2 contains a description to the differ-
ent concepts needed for the understanding of the rest of the work. In this chapter, we give the definitions
of Service-based and SCA-based applications that we will target in our work. We also define the man-
agement aspects that we are interested in, followed by a definition of Cloud Computing and an overview
of OCCI standard. Furthermore, we give an overview of the state of the art related to monitoring, re-
configuration as well as autonomic management in Chapter 3. Therein, we will cite the different works
in each area with a reasoning to show the advantages that we would like to have in our solution and the
drawbacks that we would like to escape. In Chapter 4, we present our proposals to add monitoring, re-
configuration as well as autonomic management to SCA-based applications in Cloud environments. The
proposal entails the description model, the deployment mechanisms as well as different transformations
proposed to render component monitorable and reconfigurable. Furthermore, we push farther our work
in Chapter 5. In this chapter, we propose to dynamically add monitoring, reconfiguration and autonomic
management mechanisms to Cloud resources while remaining level agnostic. In Chapter 6, we present
the different aspects of evaluation of our proposals. It details the implementation aspects, the evaluation
environment and scenarios as well as the results and findings. Finally, we sum up our contributions in
Chapter 7. We conclude this last chapter with some perspectives that we aim to realize at short, medium
and long term.

6



Chapter 2

Background

Contents
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2 Service Oriented Architecture and Service Component Architecture . . . . . . . . 8

2.3 Monitoring, Reconfiguration and Autonomic Computing . . . . . . . . . . . . . . 9

2.3.1 Monitoring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.3.2 Reconfiguration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.3.3 Autonomic Computing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.4 Cloud Computing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.5 Open Cloud Computing Interface (OCCI) . . . . . . . . . . . . . . . . . . . . . . . 14

2.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.1 Introduction

In this work we aim to provide a generic solution for monitoring and reconfiguration of Service-based
applications in cloud environments. In order to understand the remainder of this manuscript, one should
has a basic knowledge on different paradigms and concepts. We dedicate this chapter to briefly introduce
these basics to the reader. To do so, we will start by introducing the Service Oriented and Service
Component architectures that represent application architectures that we basically target. Afterwards,
we will define the different non functional aspects that we aim to deal with in this work resumed in
monitoring, reconfiguration and autonomic computing. Finally, we will present the environment of our
work which is Cloud Computing as well as the de facto standard in the Cloud known as Open Cloud
Computing Interface (OCCI).

7



Chapter 2. Background

2.2 Service Oriented Architecture and Service Component Architecture

Service-Oriented Architecture (SOA) is the outcome of the Web services developments and standards in
support of automated business integration [28] [29]. The purpose of this architecture style is to address
the requirements of loosely coupled, standards-based, and protocol-independent distributed computing.
As defined by Papazoglou [30], SOA is a logical way of designing a software system to provide ser-
vices to either end user applications or other services distributed in a network through published and
discoverable interfaces.

The main building blocks in SOA are services. Services are self-describing components that support
rapid, low-cost development and deployment of distributed applications. Thus, using SOA, applications
are defined as a composition of re-usable software services, which implement the business logic of the
application domain.

Figure 2.1: SOA architecture

The SOA architectural style is structured around the three basic actors depicted in Figure 2.1: Service
Provider, Service Client and Service Registry while the interactions between them involve the publish,
find and bind operations. Service Provider is the role assumed by a software entity offering a service.
Service Client is the role of a requestor entity seeking to consume a specific service. However, Service
Registry is the role of an entity maintaining information on available services and the way to access them.

The benefit of this approach lies in the loose coupling of the services making up an application.
Services are provided by platform independent parts, implying that a client using any computational
platform, operating system and any programming language can use the service. While different Ser-
vice Providers and Service Clients may use different technologies for implementing and accessing the
business functionality, the representation of the functionalities on a higher level (services) is the same.
Therefore, it should be interesting to describe an application as a composition of services in order to be
implementation-agnostic. This allows the separation of the business functionality from its implementa-
tion. Hence, an application can be executed by composing different services provided by heterogeneous
parts with respect to their services descriptions.

OASIS describes Service Component Architecture (SCA) [31] as a programming model for building
applications and solutions based on SOA. One basic artifact of SCA is the component, which is the
unit of construction for SCA (see Figure 2.2). "A component consists of a configured instance of a
piece of code providing business functions. It offers its functions through service-oriented interfaces and

8



2.3. Monitoring, Reconfiguration and Autonomic Computing

may require functions offered by other components through service-oriented interfaces as well. SCA
components can be implemented in Java, C++, and COBOL or as BPEL processes. Independent of
whatever technology is used, every component relies on a common set of abstractions including services,
references, properties and bindings" [31].

Figure 2.2: Overview of the Standard Service Component Architecture Model.

As shown in Figure 2.2, a service describes what a component provides, i.e., its external interface.
A reference specifies what a component needs from the other components or applications of the outside
world. Services and references are matched and connected using wires or bindings. A component also
defines one or more properties [31] that allow their reconfiguration.

2.3 Monitoring, Reconfiguration and Autonomic Computing

2.3.1 Monitoring

Monitoring consists of informing interested parts of the status of a property or a service. Monitoring is
important for both, service provider and service consumer. It is a key tool for controlling and managing
hardware and software infrastructures. Indeed, monitoring provides key performance indicators for ap-
plications and platforms. It involves many activities such as resource planning and management, SLA
management, billing, troubleshooting and security management.

In our work ([32], [33]), we consider two models of monitoring: monitoring by polling or by sub-
scription. Polling is the simpler way of monitoring, as it allows the observer to request the current state
of a property whenever there is a need. The interested part can generally interact with a specific interface

9



Chapter 2. Background

that provides a getter of the needed property. Monitoring by subscription model is based on a publish/-
subscribe system which is defined as a set of nodes divided into publishers and subscribers. Subscribers
express their interests by subscribing for specific notifications independently of the publishers. Publish-
ers produce notifications that are asynchronously sent to subscribers whose subscriptions match these
notifications [34]. Subscription allows an observing resource to be notified about changes of monitored
properties using one of the following modes: (1) The subscription on interval implies that the publisher
(producer) broadcasts the state of its properties periodically to the subscribers (consumers) and (2) The
subscription on change implies that the publisher has to notify the subscribers whenever there are new
monitoring information related to properties change, method calls or service time execution. The sub-
scription on change concerns different aspects, in our work [33] we suppose various types of monitoring:

• Property Changed Monitoring (PCM): the monitored component has to send notifications to all
subscribers whenever a monitored property is changed,

• Method Call Monitoring (MCM): the monitored component sends notifications whenever one
of the service’s methods is invoked,

• Execution Time Monitoring (ETM): the monitored component notifies the subscribers about the
execution time whenever a service invocation occurred.

2.3.2 Reconfiguration

Reconfiguration is a runtime modification of an infrastructure or a system [22]. This modification can
take the system from a current state (described by its properties, location, dependencies, implemen-
tations, etc.) to another objective state. It consists in readjusting the internal structure of the system
without changing its main function, which is a recombination process of certain targets in a certain way.
It can refer to making a recombination of the nodes topology structure in a distributed system, correcting
service failures, updating existing services and system modules online, increasing and deploying new
services dynamically and so on [35]. Reconfiguration is based on simple reconfiguration actions and
complex ones. The usual reconfiguration simple actions are: (1) Adding/Removing a component; (2)
Modification of an attribute; (3) Adding/Removing a link; and (4) Adding/Removing a resource inter-
face. Complex actions could be represented as a combination of a set of simple actions (e.g., migration
consists on adding a new component, adding a link, deleting a component and deleting a link).

In the literature, we can classify the reconfiguration in four classes:

• Structural: the reconfiguration leads to a change in the structure of the system (e.g., removing a
component);

• Geometric: the reconfiguration leads to a new mapping of the existing components to new loca-
tions (e.g., migrating a component);

• Implementation: the reconfiguration leads to change the implementation of one or more compo-
nents, but the structure of the system remains unchanged (e.g., adding an interface);

• Behavioral: the reconfiguration leads to a change of the behavior of one or more resources (e.g.,
modification of an attribute).

10



2.3. Monitoring, Reconfiguration and Autonomic Computing

2.3.3 Autonomic Computing

Autonomic computing aims to manage the computing systems with decreasing human intervention. The
term autonomic is inspired from the human body where the autonomic nervous system takes care of
unconscious reflexes, the digestive functions of the stomach, the rate and depth of respiration and so
forth [36]. Autonomic computing attempts to intervene in computing systems in a similar fashion as
its biological counterpart. The term autonomic was introduced by IBM in 2001 [11]. IBM defines
Autonomic Computing as the ability to manage computing resources that automatically and dynamically
responds to the requirements of the business based on SLA.

Management tasks like monitoring, configuration, protection, optimization, are not the main func-
tional objective of most applications, but if they are not properly addressed, the application cannot ac-
complish its task. The challenge, then, is to enable self-managing systems that take control of all these
non functional tasks, letting the developers to focus on the main functional goals of applications. In order
to really free developers from the burden of programming self-governing features on their applications,
there must exist a way to develop these concerns independently and to integrate them with the application
at some stage.

Figure 2.3: Autonomic control loop [1]

To achieve autonomic computing, IBM has suggested a reference model for autonomic control loops
[1] as depicted in Figure 2.3. It is called the MAPE-K (Monitor, Analyze, Plan, Execute, Knowledge)
loop. The central element of MAPE-K is the autonomic manager that implements the autonomic behav-
ior. In the MAPE-K autonomic loop, the managed element represents any software or hardware resource
that is coupled with an autonomic manager to exhibit an autonomic behavior. Sensors are used to col-
lect information about the managed element, while effectors carry out changes to the managed element.
Sometimes also a common element called Knowledge source is highlighted, which represents the man-
agement data that can be shared for all the phases of the control loop. Knowledge include for example,
change plans, adaptation strategies, etc. Thus, based on the data collected by the sensors and the internal

11



Chapter 2. Background

knowledge, the autonomic manager will monitor the managed element and execute changes on it through
effectors.

The phases of the autonomic control loop are defined as: Monitor, Analyze, Plan, and Execute.

• The Monitor function provides the mechanisms to collect, aggregate, filter and report monitoring
data collected from a managed resource through sensors.

• The Analyze function provides the mechanisms that correlate and model complex situations and
allow the autonomic manager to interpret the environment, predict future situations, and interpret
the current state of the system.

• The Plan function provides the mechanisms that construct the actions needed to achieve a certain
goal, usually according to some guiding policy or strategy.

• The Execute function provides the mechanisms to control the execution of the plan over the man-
aged resources by means of effectors.

The use of autonomic capabilities in conjunction with SOA provides an evolutionary approach in which
autonomic computing capabilities anticipate runtime application requirements and resolve problems with
minimal human intervention. Regarding the requirements for monitoring and reconfiguration of SCA-
based applications, the autonomic control loop cover the different aspects that we are interested in. The
monitoring is essential to detect the changes of the execution environment. The reconfiguration is needed
to adapt the application to its environment or to apply corrective actions on the environment itself to be
well suited for the execution of the application. Consequently, in this thesis, we will give more focus
on monitoring and reconfiguration as basic aspects in the autonomic loop. We will not cover the whole
autonomic loop with its different aspects.

2.4 Cloud Computing

Cloud Computing is an emerging paradigm in information technology. It is defined by the National
Institute of Standards and Technology [18] as a model for enabling ubiquitous, convenient, on-demand
network access to a shared pool of configurable computing resources (e.g., networks, servers, storage,
applications, and services) that can be rapidly provisioned and released with minimal management effort
or service provider interaction. Figure 2.4 shows an overview of Cloud Computing reference architecture
viewed by NIST. It identifies the major actors, their activities and functions in the Cloud. This figure
aims to facilitate the understanding of the requirements, uses, characteristics and standards of Cloud
Computing.

Cloud Computing is characterized by its economic model based on "pay-as-you-go" model. This
model allows a consumer to consume computing resources as needed. Moreover, resources in the Cloud
are accessible over the network through standard mechanisms that promote their use by different plat-
forms. The resources are offered to consumers using a multi-tenant model with heterogeneous resources
assigned to consumer on demand. These resources are provisioned in an elastic manner that allows to

12



2.4. Cloud Computing

Figure 2.4: Cloud Computing Conceptual Reference Model defined by NIST.

scale up or down rapidly in line with demand. Furthermore, Cloud resources usage can be monitored

and controlled in order to respect the "pay-as-you-go" model.

Services in the Cloud are basically delivered under three well discussed layers namely the Infrastruc-

ture as a Service (IaaS), the Platform as a Service (PaaS) and the Software as a Service (SaaS):

• IaaS: Consumers are able to access cloud resources on demand. These resources can be virtual

machines, storage resources and networks. The provider takes the responsibility of installing,

managing and maintaining these resources transparently.

• PaaS: Consumers are able to develop, deploy and manage their applications onto the cloud using

the libraries, editors and services offered by the provider. The provider takes the responsibility to

provision, manage and maintain the Infrastructure resources.

• SaaS: Consumers are able to use running applications on a IaaS or PaaS through an interface.

They are not responsible of managing or maintaining the used Cloud resources.

Nowadays, more models appeared generally referred to as XaaS targeting a specific area. For example

there is the DaaS for Desktop as a Service, NaaS for Network as a Service, etc.

At the same time, Clouds can be provisioned following different models according to the users needs.

If the Cloud is used by a single organization, we talk about Private Cloud. In this case, this organization

13



Chapter 2. Background

owns the Cloud and is responsible of its management and maintenance. However, if the Cloud is owned

by different organizations, we are talking about community or federation Cloud. Whenever the Cloud is

exposed to public use, we are talking about Public Cloud. In this case, an organization owns the Cloud

and manages it while it is used by other organizations. Finally, there is another model in which the cloud

is composed of two or more clouds. In these Clouds, Public or Private clouds are glued together.

2.5 Open Cloud Computing Interface (OCCI)

Service Provider
 Domain

Resource 
Management 
Framework

Resources

OCCI

Service 
Consumer

Comm. 
is HTTP

Comm. is 
related to IMF 
interface reqs

Comm. is 
internal

most 
interoperable

least
 interoperable

Proprietary

API

Figure 2.5: OCCI’s place in a provider’s architecture [2].

Open Grid Forum (OGF) defines OCCI [2] as "an abstraction of real world resources, including the
means to identify, classify, associate and extend those resources." OCCI provides a model to represent

resources and an API to manage them. As shown in Figure 2.5, it allows providers to offer a standardized

API that enables the consumption of their resources by users or other providers.

OCCI specifications consist essentially of three documents:

• OCCI Core: It describes the formal definition of the OCCI Core Model as seen by OGF [2].

• OCCI HTTP Rendering: It defines how to interact with the OCCI Core Model using the RESTful

OCCI API [27].

• OCCI Infrastructure: It contains the definition of the OCCI Infrastructure extension for the IaaS

domain [37].

OCCI Core formally describes the OCCI Core Model as shown in Figure 2.6. This Model defines a

representation of instance types which can be manipulated through an OCCI rendering implementation.

It is an abstraction of real-world resources, including the means to identify, classify, associate and extend

those resources. This core model describes Cloud resources as instances of Resource or a sub-type

thereof. Resources could be combined and linked to each other using instances of Link or a sub-type of

14



2.5. Open Cloud Computing Interface (OCCI)

Figure 2.6: UML Diagram of OCCI Core Model.

this latter. Resource and Link are sub-types of Entity. As shown in Figure 2.6 [2], each Entity instance
is typed using an instance of the class Kind and could be extended using one or more instances of the
class Mixin. Kind and Mixin are subtypes of Category and each Category instance can have one or more
instances of the class Action. A fundamental advantage of the OCCI Core Model is its extensibility.
It is noteworthy that any extension will be discoverable and visible to an OCCI client at run-time. An
OCCI client can connect to an OCCI implementation using an extended OCCI Core Model, without
knowing anything in advance, and still be able to discover and understand, at run-time, all the instance
types supported by that implementation. Extending OCCI core is possible using sub-types of the existing
types or using Mixins.

The second document is OCCI HTTP Rendering [27]. It specifies how the OCCI Core Model [2],
including extensions thereof, is rendered over the HTTP protocol. The document describes the general
behavior for all interaction with an OCCI implementation over HTTP together with three content types
to represent the data being transferred.

The OCCI model can be extended to cover different levels in the cloud (i.e., IaaS, PaaS, SaaS, etc.).
And that is the purpose of the third document that is OCCI Infrastructure [37]. It is an extension of the
Core Model to represent the cloud infrastructure layer. This extension brings basically the definition of
new resources that inherit the core basic types Resource and Link. As shown in Figure 2.7 [37], new

15



Chapter 2. Background

Resource subclasses are Network, Compute and Storage while the new Link subclasses are StorageLink
and NetworkInterface.

Link

(from occi :: core )

Resource

(from occi ::core )

+ summary :String [0..1 ]

StorageLink

+ occi.storagelink.deviceid :String

+ occi.storagelink.mountpoint :String [0..1 ]

+ occi.storagelink.state :Enum

Storage

+ occi.storage.size :int

+ occi.storage.state :Enum

NetworkInterface

+ occi.networkinterface.interface :String

+ occi.networkinterface.mac :String

+ occi.networkinterface.state :Enum

Network

+ occi.network.vlan :Integer [0..1 ]

+ occi.network.label :Token [0..1 ]

+ occi.network.state :Enum

Compute

+ occi.compute.architecture :Enum[0..1 ]

+ occi.compute.cores :Integer [0..1 ]

+ occi.compute.hostname :String [0..1 ]

+ occi.compute.speed :Float [0..1 ]

+ occi.compute.memory :Float [0..1 ]

+ occi.compute.state :Enum

cd: Infrastructure

target

source+

*

links

Figure 2.7: Overview Diagram of OCCI Infrastructure Types.

The Compute resource represents a generic information processing resource like a virtual machine.
However, Network resource represents networking entity like a virtual switch. The last defined resource
type for this extension is the Storage that represents resources that record information to a data storage
device. The extension entails also the different interfaces that enable using the defined resources.

2.6 Conclusion

In this chapter, we introduced the basic concepts related to our work. We specified the architecture that
we target namely Service Component Architecture (SCA). Afterwards, we defined the different manage-
ment aspects that we aim to treat. Then, we introduced Cloud Computing as the target environment of
our research. Finally, we gave an overview of OCCI that represents the de facto standard used in the
Cloud. In the next chapter, we will go further in our investigations. We will give a detailed study of the
state of the art related to the management functionalities that we are interested in.

16



Chapter 3

State of the Art

Contents
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.2 Monitoring Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.3 Reconfiguration Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.4 Autonomic Computing Related Work . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.5 Synthesis of Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.1 Introduction

Monitoring, reconfiguration and autonomic management in the Cloud are not deeply explored. Mean-
while, there is a plethora of works dealing with these aspects long before the apparition of Cloud
paradigm. In this chapter, we will present different works that treated monitoring, reconfiguration as
well as autonomic management in Cloud environments or distributed systems. We will start by present-
ing the works treating monitoring in Section 3.2. Afterwards, we will present the reconfiguration state of
the art in Section 3.3. In Section 3.4, we will present works on autonomic computing. We conclude this
chapter by a synthesis of the presented works comparing them on the basis of the criteria that we dressed
in our research objectives.

3.2 Monitoring Related Work

In this section, we will present a selection of works dealing with monitoring in cloud environments
and in distributed systems. One should bear in mind that a plethora of works exists trying to provide
monitoring solutions. However, in this manuscript we will refrain from citing all the works to highlight
just a selection of them.

17



Chapter 3. State of the Art

Nagios [3] is an open-source core system for network monitoring. It allows monitoring IT infrastruc-
ture to ensure that systems, applications and services are functioning properly. Monitoring can be applied
on private or public services (private services are server properties and services while public services are
services and properties available across network). To monitor any target, Nagios uses a list of plug-in
that would be executed to poll the target status. Plug-ins act as an abstraction layer between the mon-
itoring daemon and the monitored targets. As shown in Figure 3.1, a plugin enables remote command
execution to know the status of the monitored target. There are several plug-ins for different protocols
as SNMP (Simple Network Management Protocol), NRPE (Nagios Remote Plugin Executor) or SSH
(Secure SHell) protocols. Monitoring using Nagios can result in high load on the monitoring server if
applied on a large number of targets. There are different monitoring systems that are build on top of
Nagios, like GridIce. This system has a main server based on Nagios that periodically queries a set of
nodes to extract specific information. The collected information is stored in a DBMS and used to build
aggregate statistics, trigger alerts and dynamically configure Nagios to monitor any newly discovered
resource.

Figure 3.1: Nagios Monitoring plugin [3].

In [4], authors present the architectural design and implementation of a service framework that mon-
itors the resources of physical as well as virtual infrastructures. The solution extends Nagios through
the implementation of NEB2REST, a RESTful Event Brokering module. The implementation of this
component is based on the Nagios Event Broker API (NEB) which offers the ability of handling events
generated by Nagios. The proposed design realizes a twofold push and pull models: as shown in Fig-
ure 3.2 the information is pushed towards the Information Manager layer while each consumer can pull
pieces of data from the Information Manager when needed. The proposed solution serves all three
aforementioned layers. The Monitoring Service is a RESTful implementation. It is situated in the man-
agement layer along with the historical database. The role of the Information Provider is being fulfilled
in this case by the physical or virtual infrastructure of a cloud provider. To this end, the proposed ap-
proach uses Nagios for collecting resource information from the nodes of the infrastructure, either virtual
or physical as shown in Figure 3.3. Through Nagios, an administrator can define his own service-checks
through which he can acquire the status of the nodes. NEB2REST component was developed to export
monitoring information from the nodes to the Monitoring Service. It is a custom module that serves
as a broker for the low-level monitoring infrastructure towards the Monitoring Service. For every ser-
vice check realized by Nagios, the NEB2REST API exports all necessary information to the Monitoring
Service through a POST HTTP method. The interaction of NEB2REST with the Monitoring Service is
realized through the cURL and the libcurl APIs.

Ganglia [5] is a monitoring system for high performance computing systems. As shown in Figure 3.4

18



3.2. Monitoring Related Work

Figure 3.2: Proposed Monitoring information model [4].

Figure 3.3: Proposed Monitoring Architecture [4].

Ganglia is based on a hierarchical design targeted at federations of clusters. It uses a multi-cast-based
listen/publish protocol. Within each cluster, Ganglia uses heart beats messages on a well known multi-
cast address as the basis of a membership protocol. Membership is maintained by using the reception of
a heartbeat as a sign that a node is available. Each node monitors its local resources and sends multi-cast
packets containing monitoring data on a well known multi-cast address. All nodes listen for monitoring
packets on the agreed multi-cast address to collect and maintain monitoring data for all other nodes [5].
Aggregation of monitoring data is done by polling nodes at periodic intervals. Ganglia Monitoring is im-
plemented as a collection of threads, each assigned a specific task: 1) collect and publish thread (gmond):
collects local node information and publishes it on a well known multi-cast channel, 2) listening threads:
listen on the multi-cast channel for monitoring data from other nodes and updates monitoring data stor-
age, and 3) XML export threads: accept and process consumers requests for monitoring data. Ganglia
also provides a meta daemon gmetad to merge data from separate gmond threads and exposes them to

19



Chapter 3. State of the Art

Figure 3.4: Architecture of Ganglia [5].

a web front-end accessible to consumers. Ganglia Monitoring system assumes the presence of a native
multi-cast capability, an assumption that does not hold for the Internet.

In [38], authors proposed to use Mercury Grid Monitoring System along with GRM [6] monitoring
system. GRM is used for monitoring parallel applications on a local resource. It as a monitoring system
that consists of one Local Monitor per host (producer), a Main Monitor, and a Client Library. The
structure of GRM is shown in Figure 3.5. Based on the Client Library, the user start by instrumenting

Figure 3.5: Structure of GRM [6].

20



3.2. Monitoring Related Work

his application with trace generation functions that provides user defined events. Consequently, Local
monitors employ a set of sensors on each host to collect information about the local node, and send it
to the main monitor. The latter aggregates Local Monitors data and performs synchronization among
the different hosts. Mercury Grid Monitoring System offers a Monitoring Service which is also a client
for the Main Monitor. The GRM Client Library is rewritten to publish monitoring data using an API
proposed by Mercury.

H. Huang et al. [39] proposed an approach to monitor resources in the cloud using a hybrid model
combining push and pull models. In these models, there are three basic components, the Producer, the
Consumer and the Directory services. In the Push model, whenever the producer detects a change in a
resource’s status, it sends information to the consumer. Otherwise, in the Pull model, it’s the consumer
who asks the producer periodically about the resource’s status. It is obvious that these two models have
advantages and weakness. The authors propose a hybrid model that can switch to the best suited model
according to the user requirements. The user can define his tolerance to the status inaccuracy between
the producer and the consumer. Using this value, an algorithm can switch between pull and push models.
In this approach the producer is in charge of subscriptions and sending notifications for all interested
subscribers.

In GridRM [7], every organization has a Java-based gateway that collects and normalizes events from
local monitoring systems. Accordingly, every gateway operates as a republisher of external producers. A
global registry is used to support consumers in discovering gateways providing information of interest.
Each gateway consists of a global and a local layer as shown in Figure 3.6. The former includes an
abstract layer which interfaces with platform-specific consumer APIs (Java, Web/Grid Services, etc.)
and a security layer that applies an organization’s access control policy. The local layer, has several
components including an abstract data layer and a request handler. The latter receives consumer queries
from the global layer and collects real-time or archived data from appropriate sources depending on
the query’s type (last state or historical). The abstract data layer includes several JDBC-based drivers,

Figure 3.6: Architecture of GridRM [7].

each one for retrieving data from a specific producer. GridRM hides the diversity of monitoring sources
behind JDBC’s widely used interface. Gateways represent events according to the GLUE schema [40].
Consumers form and submit SQL queries using GLUE as the vocabulary, and gateways forward the

21



Chapter 3. State of the Art

queries to the appropriate drivers. Gateways are likely to become a bottleneck, whereas they also pose a
single point of failure.

In [8], authors presented Globus Monitoring and Discovery Service (MDS). This service is based on
two core protocols: the Grid Information Protocol (GRIP) and the Grid Registration Protocol (GRRP).
The former allows query/response interactions and search operations. GRIP is complemented by GRRP,
which is for maintaining soft-state registrations between MDS components. The LDAP is adopted as a
data model and representation (i.e., hierarchical and LDIF respectively—LDAP Directory Interchange
Format), a query language and a transport protocol for GRIP, and as a transport protocol for GRRP. Given
the LDAP-based hierarchical data model, entities are represented as one or more LDAP objects defined as
typed attribute-value pairs and organized in a hierarchical structure, called the Directory Information Tree
(DIT). Globus was implemented as a web services-based framework aiming to enhance interoperability
among heterogeneous systems through service orientation (i.e., hiding the underlying details by means
of consistent interfaces). Afterwards, Globus was redesigned and implemented as part of the Open
Grid services Architecture OGSA [41]. In OGSA, everything is represented as a grid service, that is,
a web service that complies to some conventions, including the implementation of a set of grid service
interfaces (portTypes in WSDL terminology). Every grid service exposes its state and attributes through
the implementation of the GridService portType and, optionally, the Notification-Source portType, to
support pull and push data delivery models, respectively. In this respect, the functionality of producers
is encapsulated within grid services. In OGSA, the equivalent of the republishers is the Index Service
which, among others, provides a framework for aggregation and indexing of subscribed grid services
and lower level Index Services. Index Services are organized in a hierarchical fashion. Information is
represented in XML according to the GLUE schema. Simple queries can be formed by specifying a
grid service and one or more service data elements, whereas more complex expressions are supported
using XPath. Consumers can submit queries to producers or republishers, or discover producers through
republishers using GRIP.

The CODE (Control and Observation in Distributed Environments) framework [42] includes ob-
servers, actors, managers and a directory service. Each observer process manages a set of sensors and
provides their events through an event producer interface, hence acting as a producer. Every actor pro-
cess can be asked, through an actor interface, to perform specific actions, such as restarting a daemon
or sending an email. A manager process consumes the events producers and, based on a management
logic instructs actors to perform specific actions. Producers and actors register their locations, monitor-
ing metrics in a LDAP-based registry where managers look up for the appropriate producers and actors.
A management agent, consisting of an observer, an actor and a manager, is placed in each server of a
Globus[8] installation. Events generated by management agents are forwarded to an event archive which
is discovered through the registry. A GUI management front-end (i.e., a consumer) retrieves events
from the archive (a republisher) to represent the current status of hosts and networks. The GGF’s XML
producer-consumer protocol is employed for exchanging events, while the event archive is an XML
database queried using XPath.

In [43], authors presented R-GMA as a framework that combines grid monitoring and information
services based on the relational model. That is, RGMA defines the GMA components, and hence their
interfaces, in relational terms. R-GMA is based on Relational Database Management System and Java
Servlets as shown in Figure 3.7. This system uses the notification of events where interested parts can

22



3.2. Monitoring Related Work

(a) GMA components (b) R-GMA components

Figure 3.7: GMA and R-GMA components [8].

subscribe with specific properties and filters. GMA is an architecture for monitoring components of
grid platforms. As shown in Figure 3.7(a), it consists of Consumers, Producers and Registry. Producers
register to the Registry while Consumers query the Registry to discover the existing Producers. As shown
in Figure 3.7(b), R-GMA follows the same architecture as GMA but using SQL queries. It is noteworthy
that R-GMA implementation is considered stable but suffers in terms of performance.

MonALISA [44] is a Jini-based extensible monitoring framework for hosts and networks in large-
scale distributed systems. It can interface with locally available monitoring and batch queuing systems
through the use of appropriate modules. The collected information is locally stored and made avail-
able to higher level services, including a GUI front-end for visualizing the collected monitoring events.
MonALISA includes one main server per site or cluster within a grid, and a number of Jini look-up dis-
covery services. The latter can join and leave dynamically, while information can be replicated among
discovery services of common groups. A main server hosts, schedules, and restarts if necessary, a set
of agent-based services. Each service registers to one or more discovery services to be found by other
services. The registration in Jini is lease-based, meaning that it has to be periodically renewed, and in-
cludes contact information, event types of interest and the code required to interact with a given service.
Each station server hosts a multi-threaded monitoring service, which collects data from locally available
monitoring sources (e.g., SNMP, Ganglia, LSF, PBS, Hawkeye) using readily available modules. The
collected data are locally stored and indexed in either an embedded or an external database, and provided
on demand to clients (i.e., consumer services). A client, after discovering a service through the look-up
service, downloading its code and instantiating a proxy, can submit real-time and historical queries or
subscribe for events of a given type. Services and modules can be managed through an administration
GUI, allowing an authenticated user to remotely configure what needs to be monitored. MonALISA uses
Jini that is based on multicast that is not adequate to Cloud environments.

Java Management Extension (JMX) [45] is a standard Java extension that allows managing complex
software systems. It defines three basic layers: instrumentation layer, agent layer and distributed services

23



Chapter 3. State of the Art

layer. The instrumentation layer exposes the application as one or more managed beans (Mbeans). A
Mbean is a Java class that implements one or more interfaces specified by JMX specifications. These
interfaces are used later to get information about the Mbean. The agent layer provides monitoring and
remote management access to all the registered Mbeans. Finally, the distributed services layer provides
the interfaces and components used to interface with agent layer. For each class to be monitored, the
developer needs to define the associate Mbean and to define the monitored properties. Afterwards, the
agent layer can invoke the actions proposed by the Mbean to retrieve monitoring data. This data could
be consumed by polling or by subscription through the tools provided by the distributed services layer.

Almost all of these monitoring approaches do not offer a granular description of monitoring require-
ments. In these solutions, the monitoring is added using a programmatic manner by adding annotations
to the application or by using instrumentation mechanisms to detect monitoring information. That needs
that the developers has the sufficient knowledge of the different properties or services to be monitored as
well as the different functionalities provided by the monitoring solution. However, we did not find any
work that adds automatically monitoring facilities to resources just from a given description. Moreover,
in almost all of the stated works, the monitoring systems do not address scalability issues or do not offer
an efficient solution in this direction. In contrast, in our approach, we will provide models to describe
the monitoring requirements with a fine granularity. We will also provide needed mechanisms to render
components and Cloud resources monitorable even if they were not designed with monitoring facilities.
Finally, in our proposal, we will give solutions that are in line with the scalability of Cloud environments.

3.3 Reconfiguration Related Work

In the literature, there are different proposed approaches for dynamic reconfiguration. In this section
we will present a list of these approaches. The list is far away of being exhaustive because of the large
number of existing works addressing dynamic reconfiguration.

Authors of [46] presented an extension of CORBA programming model to enable component re-
configuration with minimal service degradation. The considered actions for reconfiguration are objects
addition and deletion, object migration and binding modification. Authors defined two states of objects:
execution state where the objects can accept requests and reconfiguration state where the state of the
object is saved and the object can not accept any request. The state saving of an object is made by saving
its internal state including its data structure and context. To facilitate this task, it is necessary to verify
that there are no threads in execution. Since CORBA Identifier Object Reference (IOR) can change dur-
ing the migration of objects, authors proposed an extension to the CORBA naming service to support
the use of symbolic names for objects to identify them. Accordingly, an application is a collection of
components collaborating to a global objective. Adding or deleting components is performed by adding
or deleting existing binding between the components. Migration of a component could be performed by
suspending its execution, saving its state, recreating it in the target location and restoring its execution.
Finally, component replacement can be seen as an addition followed by a removal of component.

In [22], authors proposed a solution to address dynamic reconfiguration for component-based ap-
plications. A first type of reconfiguration is the replacement of a component by another one having
compatible interfaces. The second type is the replacement of a subtree of the application components

24



3.3. Reconfiguration Related Work

hierarchy. Dynamic reconfiguration can be initiated by the application itself as well as from the outside
of the application. Based on SOFA [47] (SOFtware Appliances), authors presented the Nested Factory
Pattern as a solution to cover adding components and connections to the architecture. This pattern im-
plies that the newly created component is a result of a method invocation on factory component. The
newly created component is directly linked to the component that invoked the factory. To allow Adding/
Removing interfaces, authors introduced "utility interface" as an interface that could be used by all the
components as a an external service.

A new approach for Platform-independent dynamic reconfiguration was proposed in [9]. In this work,
reconfiguration aspects are described in an abstract manner. These aspects are satisfied by platform-
specific realization of the application.

Figure 3.8: Support for dynamic reconfiguration [9].

To this end, they resume reconfiguration in a list of entities and operations that could be applied on
these entities. Reconfiguration operations on entities are typically replacement, migration, creation and
removal. In their approach, authors distinguish between reconfigurable and non reconfigurable compo-
nents as shown in Figure 3.8. Reconfigurable components can be replaceable and/or migrateable. An
application reconfiguration is an incremental evolution from an initial configuration (initial state) to a
resulting configuration (objective state) through reconfiguration steps. A reconfiguration step can be
composed of a set of reconfiguration steps. Reconfiguration steps are handled by a Reconfiguration

25



Chapter 3. State of the Art

Manager.
Y. Li et al., [48] propose an adaptation approach to reconfigure SOA-based application to comply

with a new quality of service (QoS) constraint by replacing its individual or multiple component services.
They distinguish two major causes that can trigger the dynamic reconfiguration. Firstly, if one component
service violation happens, thus the service needs to be replaced by an appropriate candidate in order to
ensure an application working by complying with the initial QoS constraint. Secondly, if a user expects
to improve the QoS of the application, there is a need to replace components in order to satisfy a given
QoS constraint. In their work, authors focus on the second cause. For this, they propose to adapt the
applications in two phases: 1) try to replace each individual component service or 2) replace multiple
components services. Authors introduced a new factor named the significance factor, which reflects
the influence of a component on the QoS of the application. For the both phases, the adaptation is
achieved according to the global significance value. The global significance value is obtained by a
weighted quantitative calculation of QoS attributes of each component. In fact, four QoS attributes of
Web services are considered as follows: Response Time, Cost, Reliability, Availability. The importance
of the global significance value of a component is proportional with its contribution on the improvement
of the QoS of the application. Thus this component should be replaced firstly. Therefore, they go
through the candidate services having similar functions to find a substituter. If all candidates cannot
comply with the QoS constraint, they try to replace another service whose global significance value is
the highest among the rest of component services and so forth. If all attempts failed in the first phase,
the number of the replaced services will be increased gradually to replace multiple component services
until the application meets the new QoS constraint required by users. Hence, using this approach allows
to replace components gradually given their global significance values, whenever the user preferences
change.

In their work [49], authors present an approach for repairing failed services by replacing them with
new ones and ensuring that they meet the user specified end-to-end QoS constraints. The reconfiguration
is triggered by services failures to deliver the QoS as requested by users because of, for example, network
delay, host overload, unexpected inputs, etc. Their proposal consists of a reconfiguration algorithm
designed to produce reconfiguration regions. A reconfiguration region is composed of one or more failed
services. When one or more services in a service composition fail at runtime, they try to replace only
those failed services. In that way, the resulting service process must still comply with the original end-
to-end QoS constraints. The algorithm first identifies the regions that are affected by faulty services. The
motivation from the reconfiguration region is to reduce the number of services that need to be replaced
by the service recomposition algorithm. In this algorithm, the region identification procedure increases
the size of affected region gradually. The range bound starts from zero, which means the algorithm will
try to replace only the failed services first. For a failed service, an output reconfiguration region extends
from it to all nodes that are connected to it. If it fails to replace the services successfully, the range bound
will be increased, therefore, more services will be added to the region to be reconfigured. The algorithm
will then try to compose the replaced components and regions. After the initial composition attempt,
if there are still some regions that cannot be reconfigured, the algorithm will increase the range of the
affected regions, which means more nearby components will be added into the region. The algorithm
continues until all regions have a satisfactory composition.

MADAM (Mobility and ADaption enAbling Middleware) [50] proposes to reconfigure applications

26



3.3. Reconfiguration Related Work

by using plans. A plan describes an alternative application configuration. It mainly consists of a structure
that reflects the type of the component implementation and the QoS properties associated to the services
it provides. Plans are ranked by evaluating their utility with regards to the application objectives and
the user preferences in order to select a plan with a highest utility. However, these configuration plans
are predefined by a developer at design time, which limits the possible adaptations to these predefined
plans. Moreover, the utility function is limited to the application and hence can not be used for other
applications.

The PCOM system [51] also uses reconfiguration plan algorithms to support a PCOM component
reselection whenever this later is no longer available. With respect to the application model defined
by PCOM, which is presented as a tree, the reconfiguration consists of trying to replace the parent
component. This replacement attempt continues until the problem is resolved by reselecting components.
Thus, the replacement of a sub-tree starts from the predecessor of the component and may include its
successors if it is necessary even if they are not concerned by the changes.

In [10], authors presented their design and implementation of a framework for dynamic component
reconfiguration in a .Net environment. The used framework allows the description of application config-
urations and profiles. Based on measured environmental metrics, the framework loads the corresponding
configuration. To handle reconfiguration aspects separately from the functional code, they use aspect
oriented programming. To describe application configurations and profiles, they use an XML-based
language that allows them to specify an observer element that provides monitoring data. Then, they
describe the different profiles using Profile elements. Each profile refers to one configuration. Based
on monitoring data, the framework loads the associated profile and apply the associated configuration.
The framework has a central Configuration Manager, which is suspicious of forming a bottleneck in high
scale environments such as Clouds.

Figure 3.9: Adding reconfiguration to a component in .Net platforms [10].

For the configuration manager, to be able of reconfiguring components, each component must im-
plement an interface that allows the management of the component as shown in Figure 3.9. The basic
requirements for the reconfiguration algorithm used within the framework are minimizing the blackout
period (the timespan an application does not respond to user requests) and the overall duration of the
reconfiguration process. Dynamic reconfiguration in this approach deals with three basic operations: the
addition of a component, the removal of a component, and the modification of a component’s attribute

27



Chapter 3. State of the Art

value. Complex reconfiguration operations can be broken up into series of those basic operations. To
reconfigure an application, this latter must keep its consistency. This is possible if there are no pending
requests between components. To get the application to a reconfigurable state, the framework blocks the
connections between components. Using LOOM.NET [52], the framework enables adding configura-
bility to a component with no interaction with the programmer. All what it needs, is to recognize the
beginning and ending of a transaction.

Almost all of the proposed solutions, are specific to a given layer. Therefore, they can not be gener-
alized to all layers in the Cloud. In our study of the state of the art, we noticed that the majority of the
existing work proposed configurations based on adding/removing components or binding modification.
The enabled reconfiguration are described at design time and could not be adapted later. Moreover, the
existing works do not tackle neither scalability issues nor flexibility. In our case, since our proposals are
based on SCA or OCCI, we can apply the first proposal to all components while we can apply the sec-
ond proposal to all Cloud resources. The extensibility of our work is guaranteed using the mechanisms
proposed by SCA and OCCI. Since our descriptions are generic, we can apply them on different systems
without any modification. Furthermore, to enable different kinds of reconfigurations, all what we need
is to provide new extensions to add the new specific behavior (i.e., SCA intent or OCCI Mixin to be
detailed later). In our solutions, we will use mechanisms providing efficient solutions to scalability and
flexibility issues.

3.4 Autonomic Computing Related Work

In Cloud and distributed environments, there are different research works around autonomic computing.
In the following we will give an overview on these works.

One of the pioneer in the Autonomic Computing field is IBM who proposed an entire toolkit. It
is called the IBM Autonomic Computing Toolkit [11]. Figure 3.10 shows IBM vision of autonomic
elements and their interactions. Authors gave the IBM definition of Autonomic Computing as well as
the needed steps to add autonomic capabilities to components. The proposed toolkit is a collection
of technologies and tools that allows users to develop autonomic behavior for their systems. One of
the basic tools is the Autonomic Management Engine that includes representations of the autonomic
loop. Several tools are proposed to allow managed elements create log messages in a standard format
comprehensive by the Autonomic Manager. This is realized by creating a touch-point containing a sensor
and an effector. The sensor role is to sense the state of the managed elements and generate logs. While
the effector is used to execute adaptations on the resource. Moreover, IBM proposed an Adapter Rule
Builder that allows to create specific rules to generate adaptations. The proposed scenarios presented in
[11] show the efficiency of this solution. In our point of view, the efficiency of the proposed tools could
be adapted to Cloud environments by the usage of the de facto standards. Since we are not proposing
this large number of tools in our proposal, we can adapt some of them to our needs in order to enhance
our solution.

In [12], authors proposed a process to develop autonomic management systems for Cloud Comput-
ing. This process consists of a list of steps to respect in order to get an autonomic system. The first step is
to identify the control parameters. These parameters are the different elements that need to be monitored

28



3.4. Autonomic Computing Related Work

Figure 3.10: Autonomic Elements and their interactions [11].

or reconfigured in the system. The second step is to define a system model that provides a view of the
managed system. The next step is to identify the inputs of the elements that need to be monitored. Af-
terward, there is the initialization of the parameters of the system model previously defined. Then, they
need to decide the update rate of the model according to the measurements. A user needs also to specify
the type of the decisional system. If the system is proactive, there is a need to create a prediction system.
The user can also create a coordinator that represents a central link between the different components.
Finally, sensors and filters could be deployed to take measurements. At this step the autonomic system
is in place to control the managed system and apply reconfiguration actions on it. The autonomic system
needs also to be capable of monitoring and reconfiguring itself when needed.

The realized autonomic system is resumed in Figure 3.11. In this loop, authors propose to gather
monitoring data using sensors. The gathered data is aggregated and filtered and sent to a Coordinator.
This latter models the incoming information and process it using an Estimator prior sending it to a
Decision Maker. This Decision Maker decides the adaptations to be applied on the managed element or
on the system itself.

In their work [13] R. Buyya et al. proposed a conceptual architecture to enhance autonomic comput-
ing for Cloud environments. The proposed architecture is basically composed of a SaaS web application
used to negotiate the SLA between the provider and its customers, an Autonomic Management System
(AMS) located in the PaaS layer and a IaaS layer that provides public or private Cloud resources. As
shown in Figure 3.12, the AMS incorporates an Application scheduler responsible of assigning appli-
cations to Cloud resources. It incorporates also an Energy-efficient scheduler that aims to minimize the
energy consumption of all the system. The AMS implements the logic for provisioning and managing
virtual resources. The PaaS layer contains also a component to detect Security infraction and attack

29



Chapter 3. State of the Art

Figure 3.11: Autonomic Control Loop [12].

Figure 3.12: System architecture for autonomic Cloud management [13].

tentatives.
Autopilot [53] is a framework for enabling applications to dynamically adapt to changing environ-

ments. A real time monitor compares application’s progress against the requirements of its contract
and triggers corrective actions in case of violations. Application adaptability requires real time mea-
surements, reasoning and instructing the application to perform corrective actions when needed. Au-
topilot’s functionalities are implemented in separate components, namely sensors, actuators, clients and
distributed name servers. Sensors and actuators are for remote reading and writing application variables.
They have to register themselves to a name server (registry). Clients look up in the registry to find in-
teresting sensors and subscribes to receive their events. The client uses an application specific logic to
make decisions and instruct an actuator to perform adaptive instructions.

Rainbow [14] is a framework that uses an architecture-based approach to add self-adaptation mech-
anisms. It is based on an abstract model that represents the architecture of the application as a graph.

30



3.4. Autonomic Computing Related Work

The graph is composed of nodes that represent components and arcs that represent connectors and inter-
actions between components. The model is continuously adapted using a model manager. The model
manager gathers monitoring data from monitoring probes. The collected data is analyzed by means of a
constraint evaluator able of detecting violations and triggering adaptations. Rainbow uses an adaptation
engine to choose the appropriate adaptation and apply it using executors. As shown in Figure 3.13, the

Figure 3.13: Rainbow framework abstract model [14].

framework is divided basically into an architecture layer and a system layer. On the one hand, the system
layer describes the managed system and the ways to manage it by means of monitoring probes, effectors,
management APIs, etc. On the other hand, the architecture layer contains the needed components to
analyze monitoring data and to trigger adaptations when it is necessary. Between these two basic layers,
there is a translation infrastructure used as a mediator for the exchanged information.

StarMX [15] is a generic framework that allows building autonomic Java-based applications. It is
an open source project that uses JMX (Java Management eXtensions) to create autonomic loops. This
framework implements adaptive behaviors using policy languages or Java code following condition/ac-
tion model.
As shown in Figure 3.14, the framework implements management logic as a set of entities called pro-
cesses. The composition of processes forms the autonomic manager and the autonomic loop. Each
process implements one or more parts of the MAPE loop. At runtime, these processes are grouped in
execution chains. These chains are invoked to ensure their specific objectives with given parameters and
objects. The system uses anchors to get monitoring data and to execute actions. In their implementation,
anchors are mostly Java Mbeans. The communication between execution chains and anchors is per-
formed through services that allow initiating the activation mechanisms, querying anchors, data sharing,
etc.

CAPPUCINO [16] is a runtime supporting SOA execution in ubiquitous environments. It is based
on SCA as the basic model to build applications and their autonomic loops. Figure 3.15 describes CAP-

31



Chapter 3. State of the Art

Figure 3.14: StarMX high level static architecture [15].

Figure 3.15: Overview of the CAPPUCINO distributed runtime [16].

32



3.4. Autonomic Computing Related Work

PUCINO distributed runtime and its basic components. The Figure shows the usage of an adaptation
server, a mobile client and an application server. The adaptation server contains the control loop related
to an application. In order to deploy the proposed runtime, authors used FraSCAti [20]. They also used
COSMOS [54] framework for context information management. The connection between CAPPUCINO
and the managed applications is based on RESTful bindings.

C. Ruz et al. [17] introduced a framework that address monitoring, SLA management and adaptation
strategies for component-based applications. In their approach, authors separate Monitoring, Analysis,
Decision and Execution concerns by implementing each of them as separate components that could be
attached to a component to manage it (see Figure 3.16).

Figure 3.16: Adding reconfiguration to an SCA component [17].

These components can be added or removed when needed. Each component can communicate with
other components (i.e., monitoring component can use monitoring services from other monitoring com-
ponents). As shown in Figure 3.16, Monitoring component is responsible of collecting metrics from the
managed component using JMX (Java Management Extension [45]). The SLA Analysis component is
a consumer for monitoring data. It compares these data against previously defined SLA. The Decision
component implements one or more strategies to react to SLA infraction. It executes the associated strat-
egy to a notification and generates a list of actions to be applied on the managed component to meet the
SLA. The Execution component applies the list of actions provided by the Decision component.

In the state of the art, there are other works related to autonomic computing applying this paradigm
on different areas [55, 56, 57, 58, 59, 60, 61, 62]. Almost all of these works propose specific solutions.
Specially when coupled with Cloud environments, the proposed works are really facing a specific area
and could not be generalized. Moreover, in all the studied works, the autonomic management behaviors
are added in a programmatic way by implementing specific interfaces or by placing instrumentation
codes. This addition is made at design time and can not be modified without restarting the system. We
did not find any work that adds autonomic management facilities to resources automatically based on a
given description. However, in this manuscript we propose two generic solutions. The first one deals
with components in the Cloud, while the second is more generic and could be applied to Cloud resource
on all the levels. We propose to dynamically add autonomic management facilities to components and
Cloud resources even if they were designed without them based on a given descriptor. The extensions

33



Chapter 3. State of the Art

entails the description of needed autonomic elements as well as different mechanisms allowing to ensure
our objectives specified in Chapter 1.

3.5 Synthesis of Related Work

In this chapter, we proposed an overview on existing works related to monitoring, reconfiguration and
autonomic management in the Cloud and in distributed systems. In the following, we will show, how the
presented works failed to cover all the objectives that we dressed in Chapter 1. In Table 3.1, we propose
a synthesis of the studied works based on criteria derived directly from our requirements and objectives.
We show for each work, whether it responds or not to our objectives. In this table, an empty cell means
that the related work does not propose a solution for the given criteria. While, the X is used to say that
the proposed work treats the criteria.

34



3.5. Synthesis of Related Work

St
ud

ie
d

So
lu

tio
ns

L
ev

el
G

en
er

ic
ity

G
ra

nu
la

ri
ty

St
an

da
rd

iz
at

io
n

Sc
al

ab
ili

ty
E

xt
en

si
bi

lit
y

Fl
ex

ib
ili

ty
M

on
ito

ri
ng

N
ag

io
s

[3
]

Ia
aS

X
K

at
sa

ro
s

et
al

.[
4]

Ia
aS

R
E

ST
X

G
an

gl
ia

[5
]

Ia
aS

X
X

G
R

M
[3

8]
Ia

aS
X

C
O

D
E

[4
2]

X
aa

S
X

X
H

.H
ua

ng
et

al
.[

39
]

X
aa

S
X

X
G

ri
dR

M
[7

]
Ia

aS
X

G
lo

bu
s

M
D

S
[8

]
Ia

aS
X

X
X

X
M

on
A

L
IS

A
[4

4]
X

aa
S

X
X

X
X

R
-G

M
A

[4
3]

X
aa

S
X

X
R

ec
on

fig
ur

at
io

n
N

.-C
.P

el
le

gr
in

i[
46

]
Sa

aS
X

X
C

O
R

B
A

X
X

P.
H

ne
ty

nk
a

et
al

.[
22

]
Sa

aS
X

X
SC

A
X

J.
A

lm
ei

da
et

al
.[

9]
Sa

aS
X

X
X

Y.
L

ie
ta

l.
[4

8]
Sa

aS
X

Y.
Z

ha
ie

ta
l.

[4
9]

Sa
aS

X
X

M
A

D
A

M
[5

0]
Sa

aS
X

PC
O

M
[5

1]
Sa

aS
X

X
X

X
X

A
.R

as
ch

e
et

al
.[

10
]

Sa
aS

X
A

ut
on

om
ic

M
an

ag
em

en
t

IB
M

To
ol

ki
t[

11
]

X
aa

S
X

X
X

B
.S

ol
om

on
et

al
.[

12
]

X
aa

S
X

X
R

.B
uy

ya
et

al
.[

13
]

X
aa

S
X

X
R

ai
nb

ow
[1

4]
Sa

aS
X

X
X

St
ar

M
X

[1
5]

Sa
aS

X
X

JM
X

X
A

ut
op

ilo
t[

53
]

Sa
aS

X
X

X
X

C
A

PP
U

C
IN

O
[1

6]
Sa

aS
X

X
SC

A
X

C
.R

uz
et

al
.[

17
]

Sa
aS

X
X

SC
A

,J
M

X
X

Ta
bl

e
3.

1:
Sy

nt
he

si
s

of
R

el
at

ed
W

or
k.

35



Chapter 3. State of the Art

In Table 3.1, we notice that there is no work that covers all our objectives. Meanwhile, there are some
works close to offer a solution that responds to our requirements like Globus MDS [8], C. Ruz et al., [17]
and CAPPUCINO [16]. Moreover, we did not find any work that adds monitoring, reconfiguration
and autonomic management facilities to Cloud resources automatically based on a given description.
The majority of these presented works propose to add management facilities in a programmatic manner
(using annotations, adding instrumentation code to applications, etc.). Almost of them are limited to
specific areas or specific layer in the Cloud. At the same time, we did not find any solution that gives an
efficient solution to scalability issues. In our work, we tried to tackle the different drawbacks in the state
of the art regarding our requirements. Our two proposals have to respond to all the dressed objectives.
As we will detail later in this manuscript, our first proposal succeeds to realize almost all the objectives
for components in the Cloud. However, our second proposal raises all the challenges to provide a generic
solution that could be applied on Cloud resources independently of their levels.

3.6 Conclusion

Monitoring, reconfiguration and autonomic management exist way before Cloud Computing. So, there
is a plethora of works dealing with them. In this chapter, we proposed an overview of the existing work
in each area. It is worthy to say that there are some works that could be presented for one or more
areas (e.g., C. Ruz et al work treats monitoring, reconfiguration and autonomic management). Table 3.1
presents an illustrative picture to show how each work responds to the objectives listed in Chapter 1.
In our work, we will propose two solutions that respond to all the dressed objectives. Accordingly, in
Chapter 4, we will propose a solution for monitoring, reconfiguration and autonomic management for
SCA-based applications. This solution responds to all the objectives for components in the Cloud. In
Chapter 5, we propose a more generic solution that responds to all our requirements and that spans over
the different levels of the cloud.

36



Chapter 4

Monitoring and Reconfiguration of
SCA-based applications in the Cloud

Contents
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
4.2 Adding Monitoring and Reconfiguration facilities to component . . . . . . . . . . 38

4.2.1 Extended SCA Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4.2.2 GenericProxy Service: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.2.3 Reconfiguration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.2.4 Monitoring by Polling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.2.5 Monitoring by Subscription . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.2.6 Transformation Example: . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.3 Monitoring and Reconfiguration within Scalable Micro-containers . . . . . . . . . 47
4.3.1 Deployment Framework and generated Micro-Container . . . . . . . . . . . . 47

4.3.2 Adding Monitoring and Reconfiguration to Micro-Containers . . . . . . . . . 48

4.4 Adding FCAPS properties to components . . . . . . . . . . . . . . . . . . . . . . . 49
4.4.1 Extension of Deployment Framework for FCAPS management . . . . . . . . . 50

4.4.2 IMMC Anatomy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.4.3 FCAPS Manager and IMMC basic functionalities . . . . . . . . . . . . . . . . 52

4.4.4 FCAPS Management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.1 Introduction

Cloud environments are well suited to host service-based applications. As previously described (Chap-
ter 2), a service-based application is a collection of services which communicate with each other. Such

37



Chapter 4. Monitoring and Reconfiguration of SCA-based applications in the Cloud

type of applications can be described using Service Component Architecture (SCA) as a composite that
contains a detailed description for different components of the application and links between them. All
the elements in a composite must be described as one of the standard artifacts of the SCA model. In
our work, we aim to dynamically add monitoring and reconfiguration non functional facilities to SCA-
based applications. Doing so, we lighten the developers tasks from the burden of non functional facilities
and let them focus on the business of their applications. We propose a list of transformations that dy-
namically adds management facilities to components even if they were designed without them. In this
chapter, we will detail our proposal to add monitoring and reconfiguration to SCA-based applications.
Then, in order to enforce our solution scalability, we will show how we use a light-weight container to
deploy components in the Cloud. Further, we will present our extension to add Fault, Configuration,
Accounting, Performance and Security (FCAPS) facilities to enhance the autonomic capacities of SCA-
based applications. The proposal entails an extension of SCA model to add new elements supporting our
solution.

4.2 Adding Monitoring and Reconfiguration facilities to component

In this Section, we will show how we add monitoring and reconfiguration facilities to components even
if they where designed without them. Our idea consists in extending SCA model in order to allow a
component expressing its requirements to monitor or reconfigure a property of another component. The
extension entails all the needed elements to cover the different reconfiguration and monitoring types that
interest us. In the following, we will describe this extension as well as its different usages.

4.2.1 Extended SCA Model

As defined by Szyperski [63] "A software component is a unit of decomposition with contractually
specified interfaces and explicit context dependencies only". Thus, a component not only exposes its
services but it also specifies its dependencies. Most of the existing component models [51] [64] [65] [31]
allow specification of their dependencies for business services external to the component. However, they
do not allow specification of their dependency for external properties. The ability to specify dependency
for external properties that we refer to as Required Property has two important implications. First, it
results in specification at relatively fine granularity thus helping the architects and designers in fine tuning
the component’s requirements. Second, this fine tuning helps in elaborating the contract between two
components because the properties can be enriched with additional attributes that constrain the nature of
the contract through appropriate policies.

Since the existing SCA model does not support the explicit description of Required Properties of
a component, we decided to extend this model by adding some artifacts allowing the description of
monitoring and reconfiguration facilities for component-based applications. These new artifacts allow a
component to express its need to monitor or reconfigure properties of other components with a specific
monitoring model (i.e. by polling or by subscription) and with needed characteristics related to moni-
toring and reconfiguration. We also added an artifact, to describe the need of a component to monitor
services of another component. As shown in Figure 4.1, the basic added artifacts are RequiredProperty
and RequiredService.

38



4.2. Adding Monitoring and Reconfiguration facilities to component

The RequiredProperty artifact is used to describe the need of a component to monitor or reconfig-
ure one or more properties of another component. The RequiredProperty is further specified using the
following added artifacts:

• Reconfiguration: used to say that the property is used for reconfiguration aims;

• Monitoring: used to say that the required property is to be monitored by polling or by subscription;

Figure 4.1: Extended SCA with monitoring and reconfiguration artifacts.

Monitoring by polling is used to say that the required property is to be monitored using polling
model while monitoring by subscription is used to say that the required property is to be monitored
using subscription model. In this case, we propose to use the MonitoringMode artifact to specify the
mode of the subscription. Subscriptions could be on interval or on change. Monitoring by subscription
on interval is used when a monitoring component needs to receive monitoring data periodically. In this
case, the monitoring component may specify the start time and duration of its subscription, the interval of
notifications as well as the callback interface to be used for the notifications. Monitoring by subscription
on change is used when a component needs to be notified whenever there is a change on the value of the
monitored property.

The RequiredService artifact is used to describe the need of a component to monitor one or more
services of another component. For services, only monitoring by subscription on change is allowed.

39



Chapter 4. Monitoring and Reconfiguration of SCA-based applications in the Cloud

However, the monitoring type could be further specified using the MonitoringType artifact. The monitor-
ing types that we propose are Method Call Monitoring (MCM) and Time Execution Monitoring (TEM).
MCM allows to receive notifications whenever the required service is invoked and TEM allows to receive
monitoring information about the time needed for the required service to process the invocation.

The extended SCA model is shown in Figure 4.1. Some attributes related to monitoring may be
declared for these artifacts like the start time of the subscription, duration of the subscription, and notifi-
cation interval if the notification mode is on interval.

Figure 4.2 shows the main characteristics of a component. It provides a service through an interface
and may require a service from other components through a reference. The component may expose
properties through which it can be configured. Using our extension, the component can specify its
dependency on certain property. This required property, which appears at the bottom of the component,
will be satisfied if we can link this component with another component that offers the requested property,
thus, solving the dependency.

Component

Property

Service
Required 
Service

Required 
Property

Figure 4.2: Extended Component with Required Property.

Components can be combined together in a composite as an assembly of components to build com-
plex applications as shown in 4.3. A component (A) can specify its need to monitor properties of another
component (B) and use the service offered by the component (C). The description of an application can
be done using an Architecture Description Language (ADL). In this regard, SCA provides a rich ADL
that details most of the aspects that we are looking for. Using the extended model of SCA, we can
describe an assembly application using our extended SCA ADL as shown in Listing 4.1.

We take a generic example of a classic SCA-based application. The ComponentA is a component that
requires to monitor the propertyOfB provided by ComponentB. This requirement is expressed using the
requiredProperty element (Listing 4.1, Line 7). In this element, we can specify the monitoring type (i.e,
by subscription or by polling), mode (i.e, on change or on interval) and schema (i.e, using one channel
or multi-channel).

Listing 4.1: Description of a SCA-based Application using our extended SCA ADL

40



4.2. Adding Monitoring and Reconfiguration facilities to component

ComponentA

PropertyOfA

ServiceA

Required 
Service

Required Property

ComponentB

PropertyOfB

ServiceB

ComponentC

ServiceC

MonitoringBySubscription
-StartTime
-Duration
-Interval

Figure 4.3: Component-based Application using required property.

1 <composite name="SampleApplicationomposite">
2 <service name="ServiceOfA" promote="ComponentA/ServiceOfA"/>
3 <component name="ComponentA">
4 <service name="ServiceOfA" >
5 <interface.java interface="example.ServiceOfAInterface"/>
6 </service>
7 <requiredProperty resource="ComponentB.propertyOfB" monitoring="BySubscription" monitoringMode="

ON_CHANGE" multi_channel="true">
8 <property name="propertyOfB"/></requiredProperty>
9 ....

10 </component>
11 <component name="ComponentB">
12 <property name="propertyOfB">
13 <service name="serviceOfB" ><interface.javainterface="example.ServiceOfBInterface"/></service>
14 ....
15 </component>
16 </composite>

The extended SCA allows components to specify their needs to monitor other components’ proper-
ties. However, these components can be designed without monitoring capabilities and cannot provide
the status of their properties. To resolve this problem, we propose a list of transformations to apply to
components to render them monitorable and reconfigurable. In the next subsections, we introduce the
main features of monitoring and reconfiguration mechanisms and their transformation processes.

41



Chapter 4. Monitoring and Reconfiguration of SCA-based applications in the Cloud

4.2.2 GenericProxy Service:

In order to add monitoring and reconfiguration facilities to components, we have defined a general pur-
pose interface GenericProxy that provides four generic methods (see Figure 4.4). Each implementation
of this interface is associated with a component for which the first method getProperties() returns the
list of the properties of the component, the getPropertyValue() returns the value of a property, the set-
PropertyValue() changes the value of a property and the invoke() method invokes a given method on the
associated component and returns the result.

public interface GenericProxy {
Property[] getProperties();
Object getPropertyValue(String propertyName);
void setPropertyValue(String propertyName, Object propertyValue);
Object invoke(String methodName, Object[] params);

}

Figure 4.4: Definition of the GenericProxy interface.

The transformations that render a component monitorable and reconfigurable use a GenericProxy
Component. The result of the transformation implements the GenericProxy Interface and the (proxy)
services of that component.

4.2.3 Reconfiguration

A component may express its need to reconfigure a required property of another component. The recon-
figuration of a property can be made by calling its setter method. However, the component that wishes
to reconfigure a property of another component does not know a priori the type of this component. To
complete the reconfiguration of any component from only the name and type of a property, the reconfig-
urator component uses an appropriate interface that provides the method setPropertyValue() to change
the value of a property. However, the component to be reconfigured may not define its properties as
reconfigurable resources despite the request. So we need to transform the component to make its proper-
ties reconfigurable by offering an appropriate reconfiguration interface. As shown in Figure 4.5, this can
be done by encapsulating the component with a generated GenericProxy component as defined above.
The two components are combined together in a single composite that offers the services of the origi-
nal component as well as the GenericProxy interface. The component can be then reconfigured using
the setPropertyValue() method provided by the GenericProxy component. Then, we replace the original
component with the newly created composite in the application.

4.2.4 Monitoring by Polling

A component may express its need to monitor by polling a required property provided by another com-
ponent. The monitoring by polling of a property can be made by calling its getter method. To complete
the monitoring of any component from only the name and type of a property, the interested component

42



4.2. Adding Monitoring and Reconfiguration facilities to component

Component

GenericProxy

Service

GenericProxy 
Service

Figure 4.5: Reconfiguration and monitoring by polling.

often uses an appropriate interface that provides the method getPropertyValue(propertyName) to request
the current state of a property. However, the component to monitor may not define its offered properties
as monitorable by polling resources despite the request. Similarly to the reconfiguration, we need to
transform the component to make its properties to be monitorable by offering an appropriate interface of
monitoring. As shown in Figure 4.5, this can be done by encapsulating the component with a generated
GenericProxy component as defined above. Consequently, the component can be monitored using the
getPropertyValue() method provided by the composite. Then we use the newly created composite instead
of the original component.

4.2.5 Monitoring by Subscription

A component may express its need to monitor by subscription a required property provided by another
component. The monitoring by subscription of a property can be made by subscribing to a specific in-
terface to receive monitoring notifications. However, the monitored component may not propose any
interface to this aim. Consequently we propose to encapsulate the original component with a gener-
ated NotificationByteCode component and a predefined Notification Service component as shown in Fig-
ure 4.6. The Notification Service component is responsible of managing client subscriptions (Subscrip-
tion service), receiving notifications (Notification service) from producer and sending them to interested
subscribers.

If the monitoring mode is on interval, each time the Notification Service component have to notify the
subscribers, it gets (or monitor by polling) the value of the required property of the monitored component
via the GenericProxyService proposed by the GenericProxy component.

When the notification mode is on change for a required property of the monitored component, the
Notification Service component offers a service of notification Notification to the NotificationByteCode
component so that it can be notified of the changes of the required property and in turn inform all the
subscribers of this change. The dynamically generated byte-code of the NotificationByteCode component
allows to notify the Notification Service for the changes of the monitored component properties. It is
worthy note that the same transformations are used for the Property Changed Monitoring, Method Call

43



Chapter 4. Monitoring and Reconfiguration of SCA-based applications in the Cloud

Component

GenericProxy

NotificationByteCode

Notification

Subscription

Notification
Service

GenericProxy
Service

Service

Figure 4.6: Monitoring by subscription multi Notification Service.

Monitoring and Time Execution Monitoring.
To be in line with Cloud environments scalability, it is really important to imagine the different

schemas to enhance the scalability of the application. In order to add more flexibility to our approach, we
propose to use one Notification Service monitoring (Figure 4.7) or multi Notification Service monitoring
(Figure 4.6). One Notification Service monitoring implies that this Notification Service manages all
producers notifications. In contrast, the multi Notification Service monitoring implies that every producer
has its own Notification Service and will so manage just its monitored component.

Component

GenericProxy

NotificationByteCode

Notification
Service

Notification

Subscription

GenericProxy
Service

Service

Notification

Figure 4.7: Monitoring by subscription one Notification Service.

We can also imagine a hybrid schema (as shown in Figure 4.8) in which we deploy a Notification Ser-
vice component when needed. In each monitored component, we place a notification proxy component

44



4.2. Adding Monitoring and Reconfiguration facilities to component

Component

GenericProxy

NotificationByteCode

Notification
ServiceNotification

Proxy

Notification

SubscriptionSubscription

GenericProxy 
Service

Service

Notification

Figure 4.8: Monitoring by subscription using hybrid schema.

that forwards the incoming subscriptions to the related Notification Service component. This component
is deployed once and instantiated as much as needed. This hybrid schema generalizes the two previously
explained schemas (one and multi Notification Service monitoring). To emulate the multi Notification
Service schema we can associate one instance of this component to each monitored component. For the
one Notification Service schema, we can use just one instance for all the monitored components.

4.2.6 Transformation Example:

Going back to the example previously described in paragraph 4.2.1, we would like to transform the
ComponentB, that was designed without monitoring facilities, to render it monitorable by subscription on
change. After applying the needed transformations on this component, we get a new composite offering
the ServiceOfB and new monitoring services. According to the used schema, the resulting composite
could be represented as it is shown in Figure 4.6 and Figure 4.7.

The SCA ADL description of the newly created composite is described in Listing 4.2 following
the multi-channel schema. This description is conform to the standard SCA description that could be
instantiated using any SCA runtime.

Listing 4.2: Description of the Monitored Component after its transformation (multi-channel schema)
using SCA ADL

1 <composite name="TransformedBComposite">
2 <service name="ServiceOfB" promote="ComponentB/ServiceOfB" />
3 <service name="GenericProxyService" promote="GenericProxy/GenericProxyService" />
4 <service name="SubscriptionService" promote="NotificationService/SubscriptionService" />
5 <reference name="NotificationService" propmote="NotificationService/Notification"/>
6

7 <component name="ComponentB">

45



Chapter 4. Monitoring and Reconfiguration of SCA-based applications in the Cloud

8 <service name="ServiceOfB">
9 <interface.java interface="example.ServiceOfBInterface"/>

10 </service>
11 <implementation class="example.impl.ModifiedServiceOfBImpl"/>
12 <reference name="notification" target="NotificationService/NotificationService"/>
13 </component>
14

15 <component name="GenericProxy">
16 <service name="GenericProxyService">
17 <interface.java interface="GenericProxyInterface"/>
18 </service>
19 <implementation class="impl.GenericProxyImpl"/>
20 </component>
21

22 <component name="NotificationService">
23 <service name="SubscriptionService">
24 <interface.java interface="SubscriptionServiceInterface" />
25 </service>
26 <service name="NotificationService">
27 <interface.java interface="NotificationServiceInterface"/>
28 </service>
29 <reference name="GenericProxyService" target="GenericProxy/GenericProxyService"/>
30 <reference name="Notification"/>
31 <implementation class="impl.SubscriptionImpl"/>
32 </component>
33

34 </composite>

This same example could be presented following the one Notification Service monitoring schema.
In this case the result of the transformation is two separate composites encapsulating the monitored
component and the added components of monitoring.

Listing 4.3: Description of the Monitored Component after its transformation (one channel schema)
using SCA ADL

1 <composite name="TransformedBComposite">
2 <service name="ServiceOfB" promote="ComponentB/ServiceOfB" />
3 <service name="GenericProxyService"promote="ComponentB/GenericProxyService" />
4 <reference name="Notification" promote="ComponentB/Notification"/>
5

6 <component name="ComponentB">
7 <service name="ServiceOfB">
8 <interface.java interface="example.ServiceOfBeInterface"/>
9 </service>

10 <implementation class="example.impl.ModifiedServiceOfBImpl"/>
11 <reference name="notification" target="NotificationServiceComposite/Notification"/>
12 </component>
13

14 <component name="GenericProxy">
15 <service name="GenericProxyService">
16 <interface.java interface="GenericProxyInterface"/>
17 </service>

46



4.3. Monitoring and Reconfiguration within Scalable Micro-containers

18 <implementation class="impl.GenericProxyImpl"/>
19 </component>
20 </composite>
21

22 <composite name="NotificationServiceComposite">
23 <service name="Notification" promote="NotificationService/Notification"/>
24 <service name="Subscription" promote="NotificationService/Subscription"/>
25 <reference name="GenericProxyService" promote="NotificationService/GenericProxy" />
26 <reference name="Notification" promote="NotificationService/Notification"/>
27

28 <component name="NotificationService">
29 <service name="Subscription">
30 <interface.java interface="SubscriptionInterface"/>
31 </service>
32 <service name="Notification">
33 <interface.java interface="NotificationInterface"/>
34 </service>
35 <reference name="GenericProxy" target="TransformedBComposite/GenericProxyService"/>
36 <reference name="Notification"/>
37 <implementation class="impl.Subscription"/>
38 </component>
39 </composite>

At this stage, we did not treat yet the scalability issue related to Cloud environments. The next section
show how we tackle this issue using a framework based on scalable micro-containers. We will describe
this framework that we use to add monitoring to components and to deploy them in the Cloud.

4.3 Monitoring and Reconfiguration within Scalable Micro-containers

In [66], we introduced a new scalable and platform independent micro-container that enables compo-
nents’ deployment and execution in the Cloud. In this Section, we start by giving an overview of the
deployment framework and the generated micro-container. In this work we want to add monitoring and
reconfiguration capabilities to this micro-container.

4.3.1 Deployment Framework and generated Micro-Container

We designed a deployment framework able to generate light weight containers that we call micro-
containers. As shown in Figure 4.9, this framework contains basically a processing module to en-
sure minimal micro-containers generation process. This module coordinates the generation of micro-
containers based on an SCA descriptor. It adds the needed communication and processing modules
(HTTP, RMI or other communication mechanisms) to be used by the component in order to communicate
with clients or other components. Communication modules are chosen from existing generic modules
available in the Communication Generic Package of the Deployment Framework. To assemble these
elements, the Processing Module uses the Assembly Module to generate a micro-container. The deploy-
ment framework is modular. Consequently, we can plug new modules to respond to new requirements.
The basic modules that make up the architecture of the generated micro-container are those needed to

47



Chapter 4. Monitoring and Reconfiguration of SCA-based applications in the Cloud

ensure its minimal functionalities resumed at: 1) hosting a component and its context, 2) enabling the

communication with clients and 3) query marshalling and demarshalling. The two latter functionalities

are ensured by a Communication and Processing Component (CPC) dynamically generated based on the

chosen communication module.

4.3.2 Adding Monitoring and Reconfiguration to Micro-Containers

To add monitoring and reconfiguration capabilities to the micro-container, we use the component model

that we presented in paragraph 4.2.1 to represent components. Since some components can be designed

without monitoring and reconfiguration facilities, we integrated the transformations presented in sub-

section 4.2 to render these components monitorable and reconfigurable. And in order to integrate these

transformations in our framework, we added the monitoring module to the deployment framework. This

latter contains several modules shown in Figure 4.9 and are as follows: 1) Processing Module: orches-

trates all the steps to generate a micro-container, 2) Generic Communication Module: contains different

modules implementing communication protocols, 3) Monitoring Module: supports different monitoring

models, and 4) Assembly Module: generates a micro-container with monitoring capabilities.

Processing Module

Monitoring and Reconfiguration Module

Generic Communication Module

Assembly Module

Polling Subscription

Generic 

HTTP

Communc 

RMI

ication Mn

REST

ModuleM

….

Reconfiguration

Figure 4.9: Extension of the Micro-container architecture with monitoring.

To generate a micro-container with a component hosted in, one must provide the needed implemen-

tation of the component and a descriptor describing how to assemble and deploy the micro-container

into a Cloud environment. The processing module sends directly this descriptor to the assembly module

before analyzing the implementation and generating the corresponding description. Then, the processing

module detects the components’ binding types and monitoring aspects. It selects the communication

modules implementing the described bindings available at the Generic Communication Module and uses

the chosen monitoring module to apply the needed transformations on the component. Finally, it sends

the new resulting implementation to the assembly module whose responsibility is to generate the new

48



4.4. Adding FCAPS properties to components

micro-container enhanced with monitoring capabilities. Prior deploying the generated micro-container,
the Deployment Framework verifies if there is an already deployed micro-container containing the No-
tification Service composite. If it is not the case, it generates a new micro-container encapsulating the
generic Notification Service composite. This is to assert that the generic Notification Service is deployed
once and instantiated as much as needed.
As shown in Figure 4.9, the Monitoring and Reconfiguration Module supports reconfiguration, monitor-
ing by polling and monitoring by subscription with its two modes: on interval and on change. Monitoring
on change mode includes Property Changed Monitoring, Method Call Monitoring and Time Execution
Monitoring.

The generated micro-container (Figure 4.9) is responsible of holding its service, managing its com-
munication with the clients, and processing all incoming or outgoing messages. These communica-
tion and processing aspects are handled using the Communication and Processing Component (see CPC
component in Figure 4.9). Moreover, it is important to notice that the client can interact with the micro-
container either to invoke the contained service, to reconfigure the component properties, or to request
monitoring information. It can also send subscription requests to receive notifications on change or on
interval.

4.4 Adding FCAPS properties to components

Management of service-based applications in Cloud environments is becoming a challenging task. Par-
ticularly, fault, configuration, accounting, performance and security (FCAPS) management can play an
important role to respect the agreement between the service’s consumer and its provider. In fact, adding
FCAPS management can improve the resiliency and autonomy of our container specially if we enforce it
with a granular monitoring service. A mobility service can also enhance the management since it allows
the migration of services between virtual machines or between different platforms.

We already extended SCA model to allow components to express their requirements for monitoring
and reconfiguration of properties. We added a new RequiredProperty element to the SCA model. For the
FCAPS requirements we use the "requires" attribute defined by SCA. This term is to say that the related
component or service requires a non functional facility provided by an existing composite defined as an
"intent". In Listing 4.4, the componentA specifies that it requires (Line 3) the usage of FaultIntent and
AccountingIntent. In the same Listing, the componentB requires the usage of ConfigurationIntent (Line
14).

Listing 4.4: Extended SCA example
1 <composite name="InputSampleComposite">
2 <service name="serviceComponentA" promote="ComponentA/serviceA"/>
3

4 <component name="ComponentA" requires="FaultIntent, AccountingIntent">
5 <service name="serviceA" >
6 <interface.java interface="example.serviceA"/>
7 </service>
8 ...
9 <requiredProperty resource="ComponentB.propertyOfB" monitoring="BySubscription" notificationMode="

ON_CHANGE">

49



Chapter 4. Monitoring and Reconfiguration of SCA-based applications in the Cloud

10 <property name="propertyOfB"/>
11 </requiredProperty>
12 ....
13 </component>
14

15 <component name="ComponentB" requires="ConfigurationIntent">
16 <property name="propertyOfB">
17 <service name="serviceB">
18 <interface.java interface="example.ServiceBInterface"/>
19 </service>
20 ........
21 </component>
22

23 </composite>

A SCA "intent" allows to add non functional facilities and links them with the appropriate composite
or component responsible of their processing. Consequently, we have to prepare the description of the
composite responsible of the execution of the non functional facility. In Listing 4.5 we show an example
of a composite playing the role of an intent for Fault tolerance processing. Respectively, we defined the
intents that we will use all over our work for the different FCAPS services. Each intent refers to a handler
describing the processing mechanisms for a non functional facility. These intents could be described as
Java implementation or Web Services, etc. For example, as shown in Listing 4.5 (Line 7), we specify the
Java class implementing the intent responsible of Fault tolerance. Afterwards, any component can use
this intent to use its provided non functional facility by referring to it via the "requires" attribute.

Listing 4.5: SCA intent example
1 <composite xmlns="http://www.osoa.org/xmlns/sca/1.0" name="FaultIntent">
2 <service name="faultIntentService" promote="faultIntentComp/faultIntentService"/>
3 <component name="faultIntentComp">
4 <service name="faultIntentService">
5 <interface.java interface="eu.telecom.intent.IntentHandler"/>
6 </service>
7 <implementation.java class="eu.telecom.intent.FaultIntentHandlerImpl"/>
8 </component>
9 </composite>

4.4.1 Extension of Deployment Framework for FCAPS management

In order to support the deployment of SCA components extended with monitoring, mobility and FCAPS
management, we extended the Deployment Framework to add these facilities to our containers. We
call these extended containers Intelligent Managed Micro-Containers (IMMCs). An IMMC is a light-
weight container able to host an SCA component having self management capabilities. As shown in
Figure 4.10, the extended framework is responsible of generating specific IMMCs for components. The
Processing Module receives the extended SCA descriptor of the composite. It applies the needed moni-
toring transformations to add monitoring facilities to the service [32]. Then, it adds FCAPS management
functionalities following the management descriptor. Besides, it adds the mobility service and the needed

50



4.4. Adding FCAPS properties to components

Processing Module

Monitoring 
and 

Reconfiguration Module

Generic Communication Module

Assembly Module

Generic 

HTTP

Communc 

RMI

ication Mn

REST

ModuleM

….

SF C A P

FCAPS Module

Mobility
Module

Component

GenericProxy

NotificationByteCode

Notification

CPC OSP CPCRSP

CPC CPC
Manager

F C A P S

Mobility

Component

GenericProxy

NotificationByteCode

Notification

CPC OSP

CPC CPC
Manager

F C A P S

Mobility

CPC

CPC

CPC

Figure 4.10: Extended Deployment Framework and Micro-Container for FCAPS management.

communication module. Finally, it generates an IMMC that could be deployed and instantiated in the

Cloud. The generated IMMC has an FCAPS Manager able to consume monitoring data and to take

decisions (see Section 4.4.4).

4.4.2 IMMC Anatomy

The IMMC is composed of different components as shown in Figure 4.11. The Communication and

Processing Component (CPC) is responsible of the interactions with the outside (i.e., sending and re-

ceiving of messages). It performs also packing and unpacking of the incoming and outgoing messages

to the specific message formats. Monitoring, Mobility and FCAPS management are performed using the

appropriate component (respectively detailed in 4.2.5, 4.4.3.2 and 4.4.4).

Basically, the IMMC contains a composite offering the services of the original component with new

services of monitoring offered by a dynamically generated component (described in Section 4.2).

Additionally, for each component to be deployed in an IMMC, we dynamically generate two proxies.

The first one called Offered Service Proxy (OSP) and it offers the same service as the concerned compo-

nent. It handles the incoming queries, adds specific functionalities (detailed in 4.4.4), and forwards the

call to the component. The second proxy called Required Service Proxy (RSP) offers the same service as

the one required by the component. It handles the outgoing calls, adds specific functionalities (detailed

in 4.4.4), and forwards these calls to the called IMMC. These two proxies are important to ensure the

51



Chapter 4. Monitoring and Reconfiguration of SCA-based applications in the Cloud

Component

GenericProxy

NotificationByteCode

Notification

CPC OSP CPCRSP

CPC CPC

Manager

F C A P S

Mobility

CPC

Manager

Service

Subscription

CPC

CPC

GenericProxy
Service

Figure 4.11: Intelligent Managed Micro Container Anatomy

rest of the management functionalities.

4.4.3 FCAPS Manager and IMMC basic functionalities

IMMC instances are able of deciding to apply create, replace, update and delete functionalities on them-
selves using their FCAPS Managers. The FCAPS manager (shown in Figure 4.11) is responsible of the
different functionalities of FCAPS Management. The Fault, Configuration, Accounting, Performance
and Security functionalities are encapsulated in the IMMC, following the description contained in the
extended SCA composite description. When needed, the FCAPS Manager is able to request the Deploy-
ment Framework to instantiate a new IMMC in a specific virtual machine. It can also request replacing
an existing IMMC by a new one. For example, if an IMMC is faulty, the FCAPS Manager sends a request
to the Deployment Framework asking to replace the faulty IMMC with a healthy one. Moreover, this
Manager has the ability to change the implementation of the encapsulated component. Finally, it can re-
quest the Deployment Framework to delete an existing IMMC. For all these operations, the Deployment
Framework notifies the concerned IMMCs in order to update all the bindings to conserve the consistency
of the application.

4.4.3.1 IMMC Replication and Load Balancing

The FCAPS Manager can decide to perform replication of IMMCs. Using the previously defined basic
functionalities (described in Section 4.4.3), this manager asks the Deployment Framework to create a
new instance of the concerned IMMC. Since this framework has all the needed information about the
contained component, it instantiates a new IMMC with the same component and running services as the
original one. In order to render useful this mechanism, we defined a Load Balancer component. This
component could be deployed in a new IMMC and related to the different replicas of an IMMC. As shown
in Figure 4.12, this Load Balancer is acting like a proxy providing the same services provided by the

52



4.4. Adding FCAPS properties to components

replicated IMMC and requiring the services offered by the component. It has a specific table containing
a list of the different IMMC services. It intercepts the different calls to the service, and forwards them to
a specific IMMC instance following a specific strategy (e.g, Round Robin, Random). The Load Balancer
is generated dynamically to fit the replicated IMMC business functionalities. Different strategies could
be used by the FCAPS Manager in order to decide when to duplicate (add new instance) an overloaded
IMMCs and when to consolidate (retrieve an instance) underloaded ones. In our work, the main strategies
that we used are described in [67]. It was formally proved that these strategies maintain the semantics of
the application. Figure 4.12 shows an example of replicating an IMMC and using a Load Balancer.

In Figure 4.12, we show the three sequences of the proposed example of replication and load bal-
ancing (noted 1 , 2 and 3 ). In 1 , we show the initial step where we have two IMMCs hosting
two components. ComponentA requires the use of the service provided by ComponentB. FCAPS Man-
agers of the two IMMCs are also connected. In 2 , the IMMC containing ComponentA notices that the
second IMMC is overloaded. Consequently, it sends a Replicate request to the Deployment Framework.
As shown in 3 , the Deployment Framework replicates the overloaded IMMC and places a new IMMC
containing a LoadBalancer to balance the queries between the two IMMCs.

4.4.3.2 Mobility

In [68], we proposed an extension for our micro-container that enhances it with mobility. To do that,
we added a Mobility module responsible of adding a Mobility component to micro-containers. Here, we
propose to delegate the mobility decisions to the FCAPS Manager of the IMMC. In fact, each FCAPS
Manager is able to take decisions of migration for reasons of performance, scalability or energy effi-
ciency.

As shown in Figure 4.13, whenever there is a need to migrate an IMMC, the FCAPS Manager of the
concerned IMMC or any other IMMC connected to this latter can take the decision to send a migrate
query to the Deployment Framework. This framework serializes the IMMC and instantiates it in the
targeted virtual machine. Afterward, it updates all the bindings between the concerned IMMCs of the
application. Finally, when it receives the acknowledgement of the binding updates, it deletes the old
instance of the IMMC.

Figure 4.13 shows an example of migrating an IMMC and updating the binding accordingly (noted
as 1 , 2 and 3 ). In 1 , we show the initial sequence where two linked IMMCs are located in
the same VM. In 2 , The IMMC on the top notices that the other IMMC needs a migration to another
VM. Consequently it sends a Migrate query to the Deployment Framework. This latter fetches the
existing VMs and deploys the concerned IMMC in the available VM as shown in 3 . Afterwards, the
Deployment Framework updates the bindings of the IMMCs using the migrated one and deletes the old
IMMC.

4.4.4 FCAPS Management

FCAPS management functionalities are added to IMMCs according to their SCA descriptors. In order
to have an adaptable system, these functionalities could be adapted during the runtime. In the following,
we will detail further the different FCAPS management functionalities.

53



Chapter 4. Monitoring and Reconfiguration of SCA-based applications in the Cloud

2

3

1

Deploy

ComponentA

GenericProxy

NotificationByteCode

Notification

CPC OSP CPCRSP

CPC CPCManager
F C A P S

Mobility

ComponentB

GenericProxy

NotificationByteCode

Notification

CPC OSP

CPC CPCManager
F C A P S

Mobility

ServiceOfB

CPC

CPC

ComponentA

GenericProxy

NotificationByteCode

Notification

CPC OSP CPCRSP

CPC CPCManager
F C A P S

Mobility

ComponentB

GenericProxy

NotificationByteCode

Notification

CPC OSP

CPC CPCManager
F C A P S

Mobility

ServiceOfB

CPC

CPC

ComponentB

GenericProxy

NotificationByteCode

Notification

CPC OSP

CPC CPCManager
F C A P S

Mobility

ComponentB’

GenericProxy

NotificationByteCode

Notification

CPC OSP

CPC CPCManager
F C A P S

Mobility

ComponentA

GenericProxy

NotificationByteCode

Notification

CPC OSP CPCRSP

CPC CPCManager
F C A P S

Mobility

Load BalancerCPC OSP

CPC
CPC

Manager
F C A P S

Mobility

CPC

CPC

CPC

ServiceOfB

ServiceOfBServiceOfB

CPC

CPC CPC

Figure 4.12: Replication and Load balancing scenario.

54



4.4. Adding FCAPS properties to components

2

3

1

VM1

ComponentA

GenericProxy

NotificationByteCode

Notification

CPC OSP CPCRSP

CPC CPCManager
F C A P S

Mobility

ComponentB

GenericProxy

NotificationByteCode

Notification

CPC OSP

CPC CPCManager
F C A P S

Mobility

ServiceOfB

VM1

ComponentA

GenericProxy

NotificationByteCode

Notification

CPC OSP CPCRSP

CPC CPCManager
F C A P S

Mobility

ComponentB

GenericProxy

NotificationByteCode

Notification

CPC OSP

CPC CPCManager
F C A P S

Mobility

ServiceOfB

VM1

ComponentA

GenericProxy

NotificationByteCode

Notification

CPC OSP CPCRSP

CPC CPCManager
F C A P S

Mobility

VM2

ComponentA

GenericProxy

NotificationByteCode

Notification

CPC OSP CPCRSP

CPC CPCManager
F C A P S

Mobility

CPC

CPC

CPC

CPC

CPCCPC

3

Migrate
&

Update

Figure 4.13: Migration scenario.

4.4.4.1 Fault

The Fault functionality of the FCAPS Manager is used to ensure the execution continuity of the service

in an internal view (i.e., the FCAPS Manager is responsible of the management of its IMMC) or in an

external view (i.e., when using a composition of IMMCs, an FCAPS Manager can monitor other IMMCs

and take management decisions). This mechanism is based on the two added proxies OSP (Offered

Service Proxy) and RSO (Required Service Proxy). In fact, the first proxy OSP intercepts the incoming

55



Chapter 4. Monitoring and Reconfiguration of SCA-based applications in the Cloud

calls and forwards them to the called service and gets back the response. If it detects that the component is
not responding it notifies the FCAPS Manager. This latter re-instantiates the faulty component and sends
back its reference to the OSP to update its reference and to use the newly instantiated component. The
OSP updates its references and continues its task to invoke the service and return the response to its caller.
In a component based application, a component can detect that another component is not responding. In
this case the RSO is responsible to detect that. In fact, the RSO intercepts all the outgoing calls of the
managed component. It forwards them to the called component, gets back the response and forwards
it to the encapsulated component. If it detects that the required IMMC is not responding, it notifies
the FCAPS Manager. This latter may use its basic functionalities to request the instantiation of a new
IMMC, to notify all the related IMMCs to update their references and finally after being notified from all
these IMMCs that they updated their references, the faulty IMMC is deleted. After receiving the update
notification, the FCAPS Manager notifies its RSP to update its references. This latter continues, then,
its invocation to the newly instantiated IMMC and returns the response to the encapsulated component.
In some cases, we can have a concurrence scenario of healing an IMMC. For example, if two IMMCs
request to heal the same IMMC at the same time. To resolve this problem, we defined a Relaxation
Time (RT) that allows the Deployment Framework to ignore any request to heal an IMMC that is being
replaced. This RT is estimated based on the average time needed to replace an IMMC.

4.4.4.2 Configuration

The configuration can be done at the init time of the IMMC or at runtime. Runtime configuration (re-
configuration) is based on configuration strategies described for the SCA intent responsible of this func-
tionality. Configuration strategies could be adapted at runtime. Our framework enables all the classes
of reconfigurations that we defined in Section 2.3.2. To ensure the Structural reconfiguration, the basic
functionalities of the FCAPS Manager allows it to decide when to create new IMMCs and to delete exist-
ing ones. Before deleting an IMMC, the Deployment Framework has to notify all the related IMMCs to
update their references. These IMMCs update their references and update their RSPs. For the Geometric
reconfiguration, the FCAPS Manager uses the mobility mechanism to migrate IMMCs from a location
to another. Accordingly, it has to notify the related IMMCs so they can update their references to the
migrated IMMC. Furthermore, the Implementation reconfiguration is enabled locally for each IMMC.
The local FCAPS Manager of each IMMC is able to change the implementation of the encapsulated
component. Accordingly, it has to update the OSP reference to the new instance. Finally, the Behav-
ioral reconfiguration is enabled by the dynamically generated GenericProxy component (described in
Section 4.2). This latter, allows to reconfigure an encapsulated component by modifying its attributes.

4.4.4.3 Accounting

This functionality consists on applying a specific strategy of accounting by the FCAPS Manager compo-
nent. Accounting strategies could be based on different metrics as the resources consumption, the time
of a transaction or even the number of services’ invocations. These information could be retrieved from
the notification component of each IMMC. To receive monitoring data concerning the IMMC usage, the
FCAPS Manager component may subscribe to the Notification Service to receive notifications concern-
ing the Execution Time or the Method Call number. Each IMMC uses its Accounting functionality to

56



4.4. Adding FCAPS properties to components

collect monitoring data related to the encapsulated component. Accordingly, the FCAPS Manager com-
ponent has all the needed information of the consumption of the IMMC. It has a local table containing
all the needed data for accounting. Among others, this table contains data about the memory, CPU con-
sumption of the IMMC. It saves also the incoming calls number and the total usage time of the IMMC.
The FCAPS Manager can apply aggregation rules to generate a more consolidated accounting informa-
tion. Accounting rules are defined for the intent responsible of this functionality in the SCA descriptor
at deployment time and could be adapted at runtime. These rules may be specified as a formula that
calculates the usage price or as a call to an external service that is in charge of this task.

4.4.4.4 Performance

The Performance functionality has a twofold role. It aims to enhance the performance of the IMMC
and to optimize the consumed resources. It is a critical functionality of the FCAPS Manager in the
elasticity of our solution. This functionality needs that the FCAPS Manager consumes monitoring data by
subscribing to the Notification component. It receives information about the execution time of services,
the resource consumption and the number of simultaneous service calls. Based on these information, it
detects if there is a need to enhance the performances of the IMMC. If the response time of the component
is greater than a given threshold, there are two possible causes for this degradation. It may be caused
by the important number of simultaneous calls targeting the IMMC. In this case, the FCAPS Manager
decides to replicate the overloaded IMMC. It instantiates a new IMMC with the same characteristics,
places a Load Balancer IMMC, bind this latter to the two instances of the target IMMC and makes it
intercept the simultaneous calls and balance them between the two instances of the IMMC. The second
case, is when the response time is greater than the given threshold with a small number of simultaneous
calls. In this case, the FCAPS Manager decides to migrate the IMMC to a more efficient virtual machine.
Otherwise, the Load Balancer IMMC has a particular role that enhances the elasticity of our solution. It
can detect that the number of used IMMCs is greater then what is required. In which case, its FCAPS
Manager decides to reduce the number of used IMMCs. The FCAPS Manager updates the bindings of
the related IMMCs and deletes the unused one. If the Load Balancer IMMC is not needed anymore,
the FCAPS Manager requests to delete this IMMC. The Deployment Framework let the related IMMCs
update their references to the targeted IMMC then delete the Load Balancer.

4.4.4.5 Security

The security functionality allows the FCAPS Manager to verify whether the incoming queries are au-
thenticated and authorized to do what they aim to do. In fact, this functionality is based on the OSP
that we introduced previously. In this case, this proxy intercepts the incoming queries and verifies their
authentication and authorization. If the query is authenticated and authorized it forwards the query and
sends back the response. Else it returns a response message to say that the query is not authorized. In our
future work we can enhance this component by adding more security strategies (i.e., DDoS detection).

57



Chapter 4. Monitoring and Reconfiguration of SCA-based applications in the Cloud

4.5 Conclusion

Adoption of Cloud platforms to host Service-based applications is increasing more and more. This type
of applications could be described as SCA composites containing all the information of the application.
The need of managing this kind of applications along with the dynamic nature of Cloud environments
favored our research to describe suitable management mechanisms that could be used at different granu-
larities and in a scalable manner. In this chapter, we proposed an extension of SCA Component model to
allow the description of non functional facilities of monitoring and reconfiguration as well as Fault, Con-
figuration, Accounting, Performance and Security management. However, to face the scalability issues
of Cloud environments, we proposed a framework that adds management facilities to components auto-
matically. This framework, packages the modified components in scalable Micro-Containers that could
be deployed independently in the Cloud. We made our best effort to make this framework extensible so
we can add new functionalities when needed.

After facing the challenges of adding non functional facilities to SCA-based applications, we were
motivated to extend our work to cover different kinds of Cloud resources. We are interested in adding
monitoring and reconfiguration facilities to any type of Cloud resources independently from its level
(whether it is in IaaS, PaaS or SaaS). These facilities could form the pillar blocks in order to provision
autonomic Cloud resources. In the following chapter, we will propose a level agnostic model to add mon-
itoring and reconfiguration facilities to Cloud resources. These facilities are used to build an autonomic
infrastructure on demand for any resource in the Cloud.

58



Chapter 5

Monitoring and Reconfiguration of Cloud
Resources

Contents
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

5.2 Monitoring and Reconfiguration for Cloud Resources . . . . . . . . . . . . . . . . 60

5.2.1 Adding Monitoring and Reconfiguration facilities to Cloud Resources . . . . . 60

5.2.2 OCCI description for Monitoring and Reconfiguration . . . . . . . . . . . . . 61

5.2.3 Example of using OCCI Monitoring and Reconfiguration extension . . . . . . 67

5.3 Autonomic Management for Cloud Resources . . . . . . . . . . . . . . . . . . . . 67

5.3.1 MAPE: Monitor, Analyze, Plan and Execute . . . . . . . . . . . . . . . . . . 68

5.3.2 MAPE for Cloud Resources . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

5.3.3 OCCI extension for Autonomic Management . . . . . . . . . . . . . . . . . . 70

5.4 Autonomic Infrastructure for Cloud Resources . . . . . . . . . . . . . . . . . . . . 77

5.5 Adding FCAPS Management to Cloud Resources . . . . . . . . . . . . . . . . . . 78

5.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

5.1 Introduction

In the previous chapter, we proposed a new approach to add monitoring and reconfiguration facilities
to SCA-based applications prior deploying them in the Cloud. For deployment aspects, we used a De-
ployment Framework that grants a light weight container (micro-container) to each component. We
also extended our approach to add more autonomy and self-management capabilities to the used micro-
containers. To go beyond the boundaries of SCA-based applications, and to be agnostic from the Cloud
resource level, we propose in this chapter an approach that adds monitoring and reconfiguration facilities

59



Chapter 5. Monitoring and Reconfiguration of Cloud Resources

to Cloud resources independently of their level (i.e., IaaS, PaaS or SaaS). Later on, we extend this ap-
proach to use monitoring and reconfiguration facilities as pillar blocks to build an autonomic infrastruc-
ture attached to any Cloud resource. We describe our model as an extension of Open Cloud Computing
Interface (OCCI). Hereafter, we will detail all the newly added Resources, Links and Mixins that enables
the establishment of the aforementioned autonomic infrastructure.

5.2 Monitoring and Reconfiguration for Cloud Resources

In this section, we define our generic approach to add monitoring and reconfiguration facilities to Cloud
resources. This approach is a generalization of our approach of monitoring and reconfiguration for
SCA-based applications. We start by defining our model for monitoring and reconfiguration. Then, we
describe this model based on Open Cloud Computing Interface specifications. Afterwards we propose
an example to show the usage of our proposal.

5.2.1 Adding Monitoring and Reconfiguration facilities to Cloud Resources

In this section, we will explain the needed functionalities to be added to Cloud resources in order to
enable their monitoring and reconfiguration. We will define these functionalities as extensions to Cloud
resources in a generic manner. These extensions could be described later using any description model.
In the rest of this work, the extended resources (with monitoring and reconfiguration) are referred to as
managed resources.

5.2.1.1 Adding Reconfiguration for Cloud Resources

A Cloud resource may require to reconfigure another resource in order to ensure a global objective of
the system. That implies that the reconfigured resource proposes an interface that allows to reconfigure
it. However, not all Cloud resources are designed with reconfiguration facilities. And, some resources
may not provide any interface to enable the reconfiguration of their properties. We propose to extend any
Cloud resource to allow its configuration by other resources. The extension consists on adding the needed
functionalities to change the properties of this resource to become reconfigurable. The class diagram in
Figure 5.1 shows the defined extension for reconfiguration. The newly added functionalities allow a
Cloud resource to reconfigure the managed resource (extended with Reconfiguration functionalities) by
changing its attributes values or by applying more complicated reconfiguration functions.

5.2.1.2 Adding Monitoring by Polling for Cloud Resources

A Cloud resource may require to monitor by polling another resource to get its status and to take deci-
sions accordingly. In this case, the monitored resource allows monitoring its status by mean of defined
interfaces of monitoring by polling. However, not all Cloud resources are designed with monitoring ca-
pabilities. And some resources may not provide any interface to enable monitoring of their properties.
We propose to extend any Cloud resource by adding monitoring by polling facilities. The extension con-
sists on adding the needed functionalities to get the status of the managed resource (resource enhanced

60



5.2. Monitoring and Reconfiguration for Cloud Resources

Figure 5.1: Reconfiguration extension for Cloud Resources.

with monitoring). Afterwards, any other resource can monitor the managed resource using its new exten-
sion. The class diagram in Figure 5.2 shows the defined extension for monitoring by polling. A resource
can use this extension to get all the monitorable properties of the managed resource as well as the value
of each property.

Figure 5.2: Monitoring by Polling extension for Cloud Resources.

5.2.1.3 Adding Monitoring by Subscription for Cloud Resources

A Cloud resource may require to monitor by subscription another resource. That means that the mon-
itored resource provides the needed interfaces to receive and manage subscriptions for its properties.
Since not all Cloud resources are designed with these facilities, we propose to extend them with moni-
toring by subscription. The extension allows any resource to subscribe on one or more properties. The
subscription results on receiving eventual notifications about the status of the concerned property. No-
tifications could be periodic or on change of the property. The class diagram in Figure 5.3 shows the
defined extension for monitoring by subscription. A resource can subscribe to a specific property, it can
unsubscribe or update its subscription. The Subscription extension should save the list of subscribers that
need to be notified whenever needed.

5.2.2 OCCI description for Monitoring and Reconfiguration

In Section 5.2.1 we defined the needed extension for Cloud resources to enable monitoring and recon-
figuration facilities. Our definition was generic, that could be described using any description model.
For our solution to be accepted in the Cloud community, we made the choice to use the standard OCCI

61



Chapter 5. Monitoring and Reconfiguration of Cloud Resources

Figure 5.3: Monitoring by Subscription extension for Cloud Resources.

to describe our resources and extensions. Indeed, OCCI provides an extensible model based on Mixin
mechanism. A Mixin is an extension that could be added to any Cloud resource in order to define new
functionalities or attributes. In the following we describe the different elements that we need to add
monitoring and reconfiguration facilities to Cloud resources based on OCCI. These elements are new
Mixins to extend any Resource as it is defined in OCCI Core Model [2]. We also define new Links to
enable monitoring and reconfiguration of remote resources based on different communication mecha-
nisms. These Links extend the Link base type defined in OCCI Core Model [2]. They are described
as abstract resources that could be specified using newly defined Mixins. OCCI fits well our needs to
express the newly defined extensions for Cloud resources. In the following we describe the different
Mixins and Links that we defined for monitoring and reconfiguration. The newly defined Mixins are
shown in Figure 5.4. Moreover, the newly defined Links are shown in Figure 5.5.

Figure 5.4: OCCI Mixins for Monitoring and Reconfiguration.

5.2.2.1 Reconfiguration Mixin

It provides the needed functionalities to ensure reconfiguration. By extending a Resource with this Mixin,
we add new methods that render a resource configurable. Technically, this Mixin implements a Recon-
figurationInterface that defines three abstract methods. The method setAttributeValue(attributeName)
changes the value of a given attribute. The getActions() returns the list of actions that one could apply

62



5.2. Monitoring and Reconfiguration for Cloud Resources

on the managed Resource. The invokeAction(action) invokes a given action on the Resource. We also

defined a reconfigure() method that allows to implement a specific way to reconfigure a Resource. For a

specific use case, the implementation of this Mixin must describe exactly how to realize these actions. For

example, we can implement the reconfigure() method to resize the disk of an OCCI Compute instance.

In this case, the implementation can be a REST query to the infrastructure manager (e.g., OpenNebula

or OpenStack) to resize the disk. It can also be a usage of libvirt API 1 through the virt-resize command

that allows to resize a given disk.

5.2.2.2 Polling Mixin

It describes the needed operations to monitor a Resource by polling. By extending a Resource with

this Mixin, we add a list of actions that render a Resource monitorable by polling. This Mixin is an

implementation of the interface PollingInterface that describes two abstract methods getAttributes() and

getAttributeValue(attributeName). The first method getAttributes() returns the list of the attributes of the

managed Resource. The second method getAttributeValue(attributeName) returns the value of a given

attribute. These two methods are implemented by Polling Mixin according to the specific use case. For

example, to be able to monitor by polling the memory usage of an OCCI Compute instance, the Polling
can be implemented as a call to an external program able to retrieve this data or it can be a remote UNIX

command "top | grep KiB" assuming that the Compute is a Linux instance.

5.2.2.3 Subscription Mixin

It allows an interested part to subscribe for monitoring data and to receive notifications. For each Re-

source that we want to manage, we add a Subscription Mixin to manage subscriptions on specific metrics

in order to send notifications containing monitoring data. Notifications may be on interval so that the

client receives a notification periodically containing the state of one or more metrics. It may also be

on change, so the Subscription Mixin pushes the new state of the metric whenever a change occurred.

This Mixin implements the interface SubscriptionInterface that defines a list of actions to manage clients

subscriptions (i.e., subscribe(), unsubscribe(), etc.). The implementation must define how to realize these

actions according to a specific scenario. For example, the subscribe() method could be implemented as

an HTTP Restlet that can receive subscriptions via REST queries. It is worth noting that this Mixin plays

the same role as the Notification Service proposed in Chapter 4.

5.2.2.4 Subscription Link

It is a Link between a subscriber (see source in Table 5.1)and the Resource to be monitored (see target
in Table 5.1). It models the occurrence of subscriptions on specific metrics. A Subscription Link is

related to one consumer that requires monitoring information and one managed Resource that have a

Subscription Mixin. A Subscription is specified with a Mixin instance from the SubscriptionTool Mixin

collection (described later).

1http://libvirt.org/

63

http://libvirt.org/


Chapter 5. Monitoring and Reconfiguration of Cloud Resources

Figure 5.5: OCCI Links for Monitoring and Reconfiguration.

Model attribute value
scheme http://ogf.schemas.sla/occi/autonomic#

term Subscription
source URI
target URI

attributes (see below)
related http://ogf.schemas.sla/occi/core#link

Attributes for the Subscription Link
name type mut. req. Description

occi.subscriptionlink.name string yes yes Name of Subscription Link
occi.subscriptionlink.version number yes no Version of Subscription Link

Table 5.1: Definition of the Subscription Link

Action Term Target State Attributes
start active -
stop inactive -

Table 5.2: Actions defined for the Subscription Link

The actions applicable on instances of Subscription Link are depicted in the Table 5.2. The Subscrip-
tion Link could be started by invoking the start action. It can be stopped by invoking the stop action.

5.2.2.5 Notification Link

It is a Link between a monitored Resource ((see source in Table 5.3)) and a subscriber (see target in
Table 5.3). It models the activity of notifying subscribers about the state of a monitored metric. This
activity depends on the type of the subscription. If the subscription is on change, a notification will
occur whenever the monitored metric changes. If the subscription is on interval, a notification will occur
periodically based on the period specified in the subscription. The notification aspects are described
using an instance of the NotificationTool Mixin collection (described in Section 5.2.2.8). Eventually, a
Notification Link is instantiated whenever a subscription occurred.

64



5.2. Monitoring and Reconfiguration for Cloud Resources

Model attribute value
scheme http://ogf.schemas.sla/occi/autonomic#

term Notification
source URI
target URI

attributes (see below)
related http://ogf.schemas.sla/occi/core#link

Attributes for the Subscription Link
name type mut. req. Description

occi.notificationlink.name string yes yes Name of Notification Link
occi.notificationlink.version number yes no Version of Notification Link

Table 5.3: Definition of the Notification Link

The different attributes of the Subscription Link are depicted in Table 5.3. The actions applicable on
instances of Notification Link are depicted in the Table 5.4. The Notification Link could be started by
invoking the start action. It could be stopped by invoking the stop action.

Action Term Target State Attributes
start active -
stop inactive -

Table 5.4: Actions defined for the Notification Link

5.2.2.6 Action Link

It is a Link that has a reconfiguring Resource (any OCCI Resource that needs to reconfigure the managed
Resource) as source (see target in Table 5.5) and a managed Resource as target (see target in Table 5.5)
on which the reconfiguration actions are applied. It models the transfer of actions from the source to
be applied on the target. An Action Link is characterized by applying reconfiguration actions on other
Resources. This is specified using a Mixin instance from the ActionTool Mixin collection (described later
in Section 5.2.2.9).

The actions applicable on instances of Action Link are depicted in the Table 5.6. The Action Link
could be started by invoking the start action. It can be stopped by invoking the stop action.

5.2.2.7 SubscriptionTool Mixin

It models a Subscription instance. It contains the different details of a subscription (i.e., subscription
type, duration, and eventually filters). This Mixin may describe the mechanism of the subscription or
may refer to an external program that handles this task. This Mixin implements a SubscriptionToolIn-
terface that defines subscribe() method specifying how to pass a subscription from a subscriber to the

65



Chapter 5. Monitoring and Reconfiguration of Cloud Resources

Model attribute value
scheme http://ogf.schemas.sla/occi/autonomic#

term Action
source URI
target URI

attributes (see below)
related http://ogf.schemas.sla/occi/core#link

Attributes for the Action Link
name type mut. req. Description

occi.actionlink.name string yes yes Name of Action Link
occi.actionlink.version number yes no Version of Action Link

Table 5.5: Definition of the Action Link

Action Term Target State Attributes
start active -
stop inactive -

Table 5.6: Actions defined for the Action Link

managed resource. For example, this method can prepare a REST query with the different details of the
subscription and send it to the managed resource.

5.2.2.8 NotificationTool Mixin

It models the needed tools by which notifications are sent to subscribers. An instance of the Notifi-
cationTool may enable notification messages by different tools like emails, messages, or simple HTTP
notifications. This Mixin may implement the needed mechanisms to send the notification or it may refer
to an external program that handles this task. It implements a NotificationToolInterface that describes a
notify() method specifying how to pass a notification from a managed resource to a subscriber. For exam-
ple, an implementation of this method can create a REST query with the information of the notification
and send it to the subscriber.

5.2.2.9 ActionTool Mixin

It models the needed mechanisms by which reconfiguration actions are applied on a specific Resource.
An instance of the ActionTool may represent a simple Action as it is defined for the OCCI Core model
[2]. It may also be a composed action that refers to a list of actions. This Mixin implements a Strategy-
SetInterface that defines a method applyAction(reconfigurationAction). An implementation of this Mixin
must describe how actions are executed, they can be applied directly using the Reconfiguration Mixin of
a given resource. They can be also a call to the IaaS or PaaS managers to add or retrieve new resources
for example.

66



5.3. Autonomic Management for Cloud Resources

5.2.3 Example of using OCCI Monitoring and Reconfiguration extension

In real Cloud environments, there are different use cases of our resources. For example, as shown in
Figure 5.6, ResourceB requires to monitor by subscription the ResourceA. To make that possible, we can
extend the ResourceA to render it monitorable and reconfigurable. To this aim, we use Polling, Subscrip-
tion and Reconfiguration Mixins. Then, we can subscribe the ResourceB to make it receive notifications
of the status of the monitored resource. This subscription is based on the Subscription Link that we de-
fined. The different aspects of the subscription could be specified using an instance of SubscriptionTool
Mixin. At the occurrence of a subscription, a Notification Link instance is created to link the managed
resource (i.e., ResourceA) to the monitoring resource (i.e., ResourceB). The different aspects of notifica-
tion mechanism are specified using an instance of the NotificationTool Mixin. ResourceB processes the
incoming monitoring information and can execute reconfiguration actions on the managed resource by
mean of the Action Link. This latter is specialized using an instance of ActionTool Mixin.

NotificationLink

ResourceB

Monitoring

Reconfiguration

ResourceA

SubscriptionTool

NotificationTool

ActionTool

ActionLink

SubscriptionLink

Figure 5.6: Example of using our extension.

5.3 Autonomic Management for Cloud Resources

IBM [11] defines Autonomic Computing as the ability to manage computing resources that automati-
cally and dynamically respond to the requirements of the business based on SLA. In our work, we are
interested in Cloud environments. Such environments are composed of an increasing number of het-
erogeneous resources. The management of these resources is becoming more and more complex. We
advocate that management tasks like monitoring, configuration, protection, optimization, are not the
main functional objective of most resources, but if they are not properly addressed, these resources can-
not accomplish their tasks. The challenge, then, is to enable autonomic management to take control of all
these non functional tasks, letting the developers focus on the main functional goals of the resource. In
order to really free developers from the burden of autonomic management features on their applications,
there must exists a way to dynamically add these features to Cloud resources. Autonomic management
is usually presented as a Monitor, Analyze, Plane and Execute (MAPE) loop. In the following we will
detail each function of this loop.

67



Chapter 5. Monitoring and Reconfiguration of Cloud Resources

5.3.1 MAPE: Monitor, Analyze, Plan and Execute

Figure 5.7: Autonomic control loop for a Cloud resource

Autonomic management features for Cloud resources are presented in Figure 5.7. In this autonomic

loop, the central element represents any Cloud resource for which we want to exhibit an autonomic

behavior. For this loop we need monitoring mechanisms to collect information about the managed re-

source. We need also configuration mechanisms to carry out changes of the managed resource. The

different functions of the autonomic control loop are defined as:

1. Monitor function that provides the mechanisms to collect, aggregate, filter and report monitoring

data collected from a managed resource;

2. Analyze function that provides the mechanisms that correlate and model complex situations and

allow to interpret the environment, interpret the current state of the system and predict future

situations;

3. Plan function that provides the mechanisms that construct a plan of actions needed to achieve a

certain goal, usually according to some guiding strategies;

4. Execute function that provides the mechanisms to control the execution of the plan over the man-

aged resources.

5.3.2 MAPE for Cloud Resources

The usage of autonomic capabilities in conjunction with Cloud computing provides an evolutionary

approach in which autonomic computing capabilities anticipate runtime resource requirements and re-

solve problems with minimal human intervention. To add autonomic management features for Cloud

resources, we propose to dynamically add the needed resources and extensions to ensure the MAPE

68



5.3. Autonomic Management for Cloud Resources

(Monitor, Analyze, Plan and Execute) functions. In Section 5.2, we presented how we add monitoring

and reconfiguration facilities to Cloud resources. The mechanisms that we proposed are our pillar blocks

to ensure Monitor and Execute functions of the MAPE loop. Consequently, we propose to dynamically

transform the resource into a managed Resource (with monitoring and reconfiguration facilities).

For the Analyze and Plan functions, we propose to define two new abstract resources responsible of

these functions. Later, we can customize these abstract resources according to the managed Resource.

To support the Analyze function we define the Analyzer resource that allows analyzing monitoring data

and eventually generating alerts whenever the SLA is not respected. Moreover, in order to support the

Plan function, we define the Planner resource that receives alerts from the Analyzer. Based on these

alerts, the Planner may generate reconfiguration actions to be applied on Resources. The customization

of these abstract resources consists on specifying the strategies to be used by the Analyzer to process the

incoming monitoring information. These strategies are extracted from the SLA of the managed Resource.

A strategy can be an event-condition-action rule. For example, if the monitoring data is related to a

service response time, we can specify a strategy that raises an alert if the value of the response time is

over a given threshold. The customization of the Planner is based on specifying the actions to be used

for the processing of the incoming alerts. Examples of these aspects will be detailed later in Chapter 6.

Managed
Resource Analyzer

Planner

SubscriptionPollingReconfiguration

Subscription Link

Strategies

Reconfiguration Actions

Alert LinkAction Link

Notification Link

ME

A

P

E

P

A

A

M

M

Mixin X Role In the MAPE

Figure 5.8: Autonomic infrastructure for a Cloud resource

The previously described extensions and resources are our basics in order to add autonomic manage-

ment for Cloud resources. To enable the holistic autonomic loop, we need to link these elements. On

69



Chapter 5. Monitoring and Reconfiguration of Cloud Resources

one hand, the Analyzer needs to be linked to the managed Resource in order to subscribe for monitoring
data and to receive notifications. On the other hand, it needs to be linked to the Planner to send alerts. In
Figure 5.8, we show how we extend a Cloud resource to render it manageable. We use also the following
links that could be customized according to the use case (see Chapter 6 for an example of customization
according to elasticity property of applications and Service-based Business Processes): (1) Subscription
link that enables the subscription of an Analyzer to a managed Resource; (2) Notification link that de-
livers notifications from the managed Resource to the Analyzer; (3) Alert link that delivers alerts from
the Analyzer to the Planner; and (4) Action link that executes reconfiguration actions on the managed
Resource or on other resources related to this managed Resource. As shown in Figure 5.8, our extension
covers the different functions of the MAPE loop to ensure autonomic management for Cloud resources.

For our solution to be widely adopted among Cloud providers, we need to build it upon a stan-
dard. The de facto standard for description of Cloud resources is the Open Cloud Computing Interface
(OCCI). Consequently, we will use OCCI to describe the different elements for autonomic management
infrastructure.

5.3.3 OCCI extension for Autonomic Management

To provide a generic description for autonomic computing using OCCI, we defined new Resources, Links
and Mixins. As shown in Figure 5.9, the resources are the Autonomic Manager, the Analyzer and the
Planner. These Resources inherits the Resource base type defined in OCCI core [2]. The Links that we
added including those described in Section 5.2 are Agreement Link, Subscription Link, Notification Link,
Alert Link and Action Link. These Links inherit the Link base type defined for OCCI core. Finally, we
defined different Mixins inheriting the Mixin base type defined in OCCI core.

70



5.3. Autonomic Management for Cloud Resources

Fi
gu

re
5.

9:
O

C
C

IC
or

e
M

od
el

an
d

ou
re

xt
en

si
on

(c
ol

or
ed

bo
xe

s)
fo

rA
ut

on
om

ic
C

om
pu

tin
g.

71



Chapter 5. Monitoring and Reconfiguration of Cloud Resources

5.3.3.1 Autonomic Manager Resource

In order to automatize the establishment of the autonomic infrastructure, we defined an Autonomic Man-
ager Resource as a generic OCCI Resource. It inspects a given SLA and carries out the list of actions to
build the autonomic computing infrastructure. From a given SLA, this Resource determines monitoring
targets (i.e., the needed metrics to be monitored). It is also responsible of extracting the strategies to
be used by the Analyzer Resource (see Section 5.3.3.2) and the reconfiguration plans to be used by the
Planner (see Section 5.3.3.3). After inspecting the contract (SLA), the Autonomic Manager instantiates
the needed Entities (i.e., Resources and Links). Then, it customizes these Entities with the needed Mix-
ins and eventually configure them with the needed parameters. Since the SLA can be described using
different specifications (i.e., WS-Agreements, USDL, etc), the Autonomic Manager uses a SpecificSLA
Mixin (detailed in Section 5.3.3.6) that describes how to deal with a specific SLA.

Table 5.7: Definition of the Autonomic Manager
Model attribute value

scheme http://ogf.schemas.sla/occi/autonomic#
term Autonomic Manager

attributes (see below)
related http://ogf.schemas.sla/occi/core#resource

Attributes for the Autonomic Manager
name type mut. req. Description
name String yes yes Autonomic Manager name

version String yes no Autonomic Manager Version
SLALocation String yes no SLA Location

As shown in Table 5.7, we specify the name of the Autonomic Manager to instantiate and its version.
Moreover, we specify the location of the SLA. This SLA will be used to provision the Resource and to
establish the rest of the autonomic infrastructure. The last attribute is not mandatory because we can get
the SLA directly if we have an instance of the Agreement Link (see Section 5.3.3.4).

The actions applicable on instances of Autonomic Manager resource are depicted in Table 5.8. The
Autonomic Manager resource could be started/stopped by invoking the start/stop action. And it can be
reconfigured by invoking the reconfigure action passing as parameter a new SLA. It is important to note
that reconfiguring the Autonomic Manager may result on changing the Mixins used to process SLA or to
reconfigure other Mixins used in the autonomic infrastructure.

Action Term Target State Attributes
start active -
stop inactive -
reconfigure reconfiguring sla

Table 5.8: Actions defined for the Autonomic Manager resource

72



5.3. Autonomic Management for Cloud Resources

5.3.3.2 Analyzer

It is a generic OCCI Resource that allows to analyze monitoring data and eventually to generate alerts.
Notifications are received through an instance of the Notification Link (described in Section 5.2). The
Analyzer is an abstract resource that could be specified using Strategies Mixin collection (described
later). It uses Strategies Mixin to specify rules to apply on incoming monitoring data. The definition of
this Resource is depicted in Table 5.9.

Table 5.9: Definition of the Analyzer
Model attribute value

scheme http://ogf.schemas.sla/occi/autonomic#
term Analyzer

attributes (see below)
related http://ogf.schemas.sla/occi/core#resource

Attributes for the Analyzer
name type mut. req. Description
name String yes yes Analyzer name

version String yes no Analyzer version

As shown in Table 5.9, in order to provision an Analyzer Resource, we need to specify its name and
version.The actions applicable on instances of Analyzer resource are depicted in Table 5.10.

Action Term Target State Attributes
start active -
stop inactive -
reconfigure reconfiguring Strategies

Table 5.10: Actions defined for the Analyzer resource

The Analyzer resource could be started/stopped by invoking the start/stop action. It can be reconfig-
ured by invoking the reconfigure action passing as parameter the new reconfiguration (reference to new
Strategies Mix-in).

5.3.3.3 Planner

It is a generic OCCI Resource that receives alerts from the Analyzer through an Alert Link (described
later). To receive alerts, this Resource must be the target of one or more Alert Link instances. The
Planner is an abstract resource that could be specialized using Reconfiguration Actions Mixin collection
(described in Section 5.3.3.9). This latter is used to specify reconfiguration plans (list of actions) to
apply for each received alert. Based on these alerts the Planner may generate reconfiguration actions to
be applied on Resources. The definition of the Planner is depicted in Table 5.11. In order to instantiate
a Planner Resource, we need to specify its name and version.

73



Chapter 5. Monitoring and Reconfiguration of Cloud Resources

Table 5.11: Definition of the Planner
Model attribute value

scheme http://ogf.schemas.sla/occi/autonomic#
term Planner

attributes (see below)
related http://ogf.schemas.sla/occi/core#resource

Attributes for the Planner
name type mut. req. Description
name String yes yes Planner name

version String yes no Planner version

The actions applicable on instances of Planner resource are depicted in Table 5.12. The Planner
resource could be started/stopped by invoking the start/stop action. It could be reconfigured by invoking
the reconfigure action passing as parameter the new reconfiguration (i.e., new Plans).

Action Term Target State Attributes
start active -
stop inactive -
reconfigure reconfiguring Plans

Table 5.12: Actions defined for the Planner resource

5.3.3.4 Agreement Link

It is a Link between an Autonomic Manager (source in Table 5.13) and a managed Resource (target in
Table 5.13). It allows an Autonomic Manager to inspect the SLA of the managed Resource. It is an
abstract link that could be specified using an instance of SpecificSLA Mixin describing how to process a
specific kind of SLAs (e.g., WS-Agreement, USDL).

The actions applicable on instances of Agreement Link are depicted in the Table 5.14. The Agreement
Link could be started/stopped by invoking the start/stop action.

5.3.3.5 Alert Link

It is a Link between the Analyzer Resource (source in Table 5.15) and the Planner Resource (target in
Table 5.15). Its role is to drive alerts from the Analyzer to the Planner. An alert is generated when the
Analyzer detects that the SLA is not respected. An alert is specified by an instance of the AlertTool Mixin
collection (described later).

As shown in Table 5.15, in order to instantiate and Alert Link, one must specify its name and version
as well as the start time and duration of the establishment of this link. The actions applicable on instances
of Alert Link are depicted in the Table 5.16. The Alert Link could be started by invoking the start action.
It can be stopped by invoking the stop action.

74



5.3. Autonomic Management for Cloud Resources

Model attribute value
scheme http://ogf.schemas.sla/occi/autonomic#

term Agreement
source URI
target URI

attributes (see below)
related http://ogf.schemas.sla/occi/core#link

Attributes for the Agreement Link
name type mut. req. Description

occi.agreementlink.name string yes yes Name of Agreement Link
occi.agreementlink.version number yes no Version of Agreement Link

Table 5.13: Definition of the Agreement Link

Action Term Target State Attributes
start active -
stop inactive -

Table 5.14: Actions defined for the Agreement Link

To customize the different Resources and Links, we defined different Mixins. These latter inherits
the Mixin base type defined in OCCI Core [2] (see Figure 5.9).

5.3.3.6 SpecificSLA Mixin

In Cloud Computing, there are different languages to describe SLA. To tackle this heterogeneity we de-
fined this Mixin that describes the needed tools allowing an Autonomic Manager to extract the needed
information from a specific SLA. This Mixin allows the Autonomic Manager to get the metrics that need
to be monitored, the analysis rules and the reconfiguration strategies. Based on these metrics, the Auto-
nomic Manager instantiates the needed Resources to establish the autonomic loop and configures them.
Technically, a Mixin instance of SpecificSLA implements the interface SpecificSLAInterface. This inter-
face defines an abstract method called inspectSLA(File SLA). For each type of SLAs we can implement
a Mixin that describes exactly how to process SLAs. An example is a WS-Agreement Mixin using a
WSAgreementParser that we developed to inspect any SLA based on WS-Agreement. At this stage of
the research, we don’t tackle the semantics of the described SLA. The SpecificSLA Mixin, uses a sim-
ple XML file that syntactically matches the described information in the SLA with the existing Mixins.
However, in our future work we need to extend this aspect to take into account semantic interpretation of
SLA information.

5.3.3.7 Strategies Mixin

It represent a computation strategy that based on incoming monitoring information triggers specific
alerts. It represents a function applied by the Analyzer to compare monitoring information values against

75



Chapter 5. Monitoring and Reconfiguration of Cloud Resources

Model attribute value
scheme http://ogf.schemas.sla/occi/autonomic#

term Alert
source URI
target URI

attributes (see below)
related http://ogf.schemas.sla/occi/core#link

Attributes for the Alert Link
name type mut. req. Description

occi.alert.name string yes yes Name of Alert Link
occi.alert.version number yes yes Version of Alert Link

occi.alert.starttime number yes yes Start time of Alert Link
occi.alert.duration string yes no Duration of Alert Link

Table 5.15: Definition of the Alert Link

Action Term Target State Attributes
start active -
stop inactive -

Table 5.16: Actions defined for the Alert Link

previously defined thresholds. Whenever a condition is not respected, the Mixin instance makes the
Analyzer trigger a specific alert. This Mixin implements the StrategiesInterface that defines a method
analyze(notification). An implementation of this method describes how the analyzer process the incom-
ing notifications. An example of this Mixin can use the Event-Condition-Action model.

5.3.3.8 AlertTool Mixin

It models the needed tools by which alerts can reach a Reconfiguration Manager. This Mixin implements
an AlertToolInterface that defines a method alert(). An implementation of this method can entail sending
a simple message containing the description of the encountered violation or a creation of an alert and
sending it to a given interface. It may also refer to an external program that handles the alerting.

5.3.3.9 Reconfiguration Actions Mixin

Each instance of this Mixin implements a computation plan, that based on incoming alerts triggers re-
configuration actions on specific Resources. It represents a function applied by the Reconfiguration
Manager to process incoming alerts. This Mixin implements the ReconfigurationActionsInterface that
defines a method generateReconfigurationActions(alert). An implementation of this method describes
how to process the incoming alert in order to generate reconfiguration actions. It can also refer to an
external program that handles planning for reconfigurations. For example, this Mixin can make a di-
rect matching between the alert and existing actions: if the incoming alert is a scaleUpAlert, this Mixin

76



5.4. Autonomic Infrastructure for Cloud Resources

generates a scaleUp action.

5.4 Autonomic Infrastructure for Cloud Resources

In this section, we detail the usage of the previously defined OCCI Entities (i.e., Resources and Links)
and Mixins to establish an autonomic computing infrastructure (see Figure 5.10).

OCCI Server
Analyzer

Planner

ActionLink

AlertLink

SubscriptionLink

Strategy1

Strategy2
NotificationLink

Autonomic

 Manager

SLA

Action1

Action2

C

O

A

P

S

Resource

Polling

Subscription

Reconfiguration

Figure 5.10: Autonomic Computing Infrastructure establishment for Cloud resources.

To establish our autonomic computing infrastructure, we start by setting up our OCCI Server. This
server is responsible of instantiating any OCCI Entity. The first Resource instantiated in this server is the
Autonomic Manager Resource. In our proposal, the Autonomic Manager plays an important role. It is
responsible of processing the SLA and extracting all the needed information to establish and customize
the needed Resources and Links. Using this information, it sends requests to the OCCI Server in order to
build the autonomic infrastructure as shown in Figure 5.10. When the Autonomic Manager is activated,
it is customized using an instance of the SpecificSLA Mixin to inspect each SLA using a different de-
scription language. Based on the SLA, the Autonomic Manager is able to detect the attributes or services
that need to be monitored for the different resources. Consequently, it is able to extend the resources by a
Polling Mixin to allow the retrieval of monitoring data or by a Subscription Mixin to allow subscriptions
and thus notifications. It can also extend them using Reconfiguration Mixins to enable reconfigurations.
The Autonomic Manager sends a request to the OCCI Server to instantiate the Mixed OCCI Resources
(i.e., the Resources with newly added Mixins). Whenever this Resource is ready, the Autonomic Manager
orders the OCCI Server to deploy and start them.

The next step realized by the Autonomic Manager is to carry out a series of queries addressed to the
OCCI Server to instantiate and customize the needed Resources and Links. It starts by instantiating the
Analyzer that consumes monitoring data and applies analysis strategies. To receive monitoring notifi-
cations, the Analyzer must be subscribed to the monitored Resource using a Subscription Link having
as source the Analyzer itself and as target the Resource to be monitored. The Subscription Link being

77



Chapter 5. Monitoring and Reconfiguration of Cloud Resources

abstract, needs to be specified using a SubscriptionTool Mixin. This latter contains the specific aspects of
the subscription. An instance of this Mixin can specify the start time of the subscription, its duration and
its type whether it is on interval or on change. These information are extracted from the SLA. Based on
the type of the needed subscription, the Analyzer may receive periodic notifications if the subscription
is on interval, and it may receive notifications whenever the monitored metric changes if the monitoring
is on change. Notifications are received through an instance of the Notification Link. Technically, the
aspects related to notifications are described using instances of the NotificationTool Mixin. Based on the
content of the SLA, this Mixin may specify exactly how the notifications can reach the subscriber (i.e.,
the notification can be an email, a message or a HTTP callback, etc). At the reception of a notification,
the Analyzer uses Strategies Mixin instances that specify analysis strategies to be applied on incoming
monitoring data. These Mixin instances can be simple conditions comparing the data against previously
defined values or they can be calls to an external program that applies some analysis. In the two cases, if
the SLA is violated, the Analyzer may raise alerts to the Planner. Accordingly, the Autonomic Manager
asks the OCCI Server to instantiate the Planner Resource and to link it to the Analyzer via an Alert
Link. This latter specifies how the alerts are sent to the Planner using an instance of the AlertTool Mixin.
The Planner uses specific reconfiguration plans to generate reconfiguration actions. These plans are in-
stances of the Reconfiguration Actions Mixin. This latter Mixin can refer to a simple matching between
incoming alerts and outgoing actions. It can be also a call to external program able to handle alerts and
generate reconfiguration actions. The information about the used Reconfiguration Actions are extracted
by the Autonomic Manager from the SLA.

The last step is to link the Planner to the managed Resource using an Action Link that uses the
generated reconfiguration actions and applies them on the Resource. We specify how to apply these
actions using an ActionTool Mixin. The generated actions could concern the managed resource as well
as other resources.

We precise that an instance of the Analyzer Resource can subscribe to different Resources to receive
monitoring data. Moreover, the Planner can be linked to one or more Resources to apply reconfiguration
actions. Consequently, we can have one autonomic loop for multiple resources or one loop per resource.
In this work, we don’t treat the problem where different autonomic loops collaborate together to a global
objective. We would rather include this problem in our future work.

5.5 Adding FCAPS Management to Cloud Resources

In order to show the usefulness of our autonomic mechanisms, we describe in the following how we can
use our autonomic infrastructure to enable Fault, Configuration, Accounting, Performance and Security
management services for Cloud resources. For each one of the FCAPS services, we can implement the
associated Mixins in order to specify the autonomic infrastructure according to the required service.

Fault In order to ensure Fault management, we can implement monitoring Mixins responsible of gath-
ering data related to the availability of the managed resource. For example, if the managed resource is a
Compute instance provided by an OpenNebula IaaS manager, we can imagine that monitoring Mixin re-
trieves the state of resource from the IaaS manager through a REST query. It sends then, notifications to

78



5.6. Conclusion

the Analyzer containing a description of the state of the managed resource. The Analyzer uses its strate-
gies that can be a simple comparison between the actual state value of the resource and the unavailability
states values (e.g., failed, pending or unknown). If the actual state matches one of these unavailability
states, the Analyzer raises an alert to the Planner. This latter uses its Reconfiguration Actions Mixin
to generate reconfiguration actions. These actions could be a REST query sent to the IaaS manager to
redeploy the Compute or to deploy a new instance having the same characteristics.

Configuration This non functional service is enabled using the Reconfiguration Mixin defined in Sec-
tion 5.2.2.1. The implementation of this Mixin allows the different reconfiguration types (previously
described in Chapter 2). To define new configuration behaviors, one should implement this Mixin re-
specting the implementation details described in Section 6.4.2.

Accounting Accounting remains an important service for both Cloud providers and consumers. Using
our mechanisms can easily enable this service by implementing the desired manner to monitor resources
usage. For example, we can implement a Mixin that monitors the memory consumption of a given
resource. Using monitoring by subscription on interval, the Analyzer can receive periodic notifications
of the memory consumption. Then, accounting strategies could be implemented and associated to the
Analyzer to process monitoring notifications and to send alerts to the Planner. For this latter we can
implement the desired billing models as Reconfiguration Actions Mixins allowing the calculation of the
bills and describing how exactly to make them available to providers and consumers.

Performance Autonomic facilities are often used to control the performance of resources and whether
they are performing their tasks. For example, the performance of a web-service could be calculated
based on its response time. Accordingly, we can implement monitoring Mixins that allow to retrieve the
response time of the service and send it to the Analyzer. This latter can use specific strategies to compare
the response time received in the notifications against given thresholds. If a violation occurs, it can alert
the Planner who is responsible of generating reconfiguration actions. We can implement reconfiguration
actions for this kind of situation to enable the duplication or migration of the service in order to enhance
its performances.

Security In order to add security services based on our mechanisms, we can implement monitoring
Mixins to detect security breaches. These Mixins can notify the Analyzer on the occurrence of violations.
This latter can use its strategies to verify if it needs to alert the Planner. In which case, this latter
generates reconfiguration actions in order to face the violation. We can implement reconfiguration actions
to rapidly block unauthorized access for example.

5.6 Conclusion

Monitoring and Reconfiguration of Cloud resources are critical to ensure a good QoS for Cloud re-
sources. In this chapter, we proposed a level-agnostic approach to add monitoring and reconfiguration

79



Chapter 5. Monitoring and Reconfiguration of Cloud Resources

facilities to Cloud resources. Our proposal is a generic model that allows to describe these non func-
tional facilities. We used Open Cloud computing Interface (OCCI) which is the de facto standard for the
Cloud to describe our model. We defined new OCCI Resources, Links and Mixins for monitoring and
reconfiguration. Then we used this model as pillar blocks to build a holistic autonomic infrastructure for
Cloud resources. We also described how one can use our model to establish an autonomic infrastructure
for any Cloud resource.

In the next chapter, we will validate our contributions. The validation includes different use cases
for monitoring, reconfiguration and autonomic management of SCA-based applications as well as Cloud
resources. We performed different experiments to test our proposals in real Cloud environments.

80



Chapter 6

Evaluation and Validation

Contents
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
6.2 Common Environment description . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
6.3 Evaluation of Monitoring and Reconfiguration Approach of SCA-based applica-

tions in the Cloud . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
6.3.1 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
6.3.2 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

6.4 Evaluation of Autonomic Computing Approach for Cloud Resources . . . . . . . . 85
6.4.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
6.4.2 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
6.4.3 Evaluations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

6.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

6.1 Introduction

Cloud Computing can significantly reduce investment and operating costs in IT field. However any
proposed solution for this paradigm needs to be validated to ensure its contribution to enhance Cloud
services behaviors. In our work, we proposed novel approaches to add monitoring, reconfiguration and
autonomic management facilities to SCA-based applications as well as Cloud resources in general. In
this chapter, we will evaluate our approach. The evaluation includes the implementation aspects as well
as the experiments details and their results. For this validation, we used a real Cloud environment.
This environment is common for all our evaluations. We will start with the description of the experi-
ments environment. Then, we will detail the implementation and experiments of our approach of adding
management facilities to SCA-based applications. Afterwards, we will detail the implementation and
experiments of our approach of adding management facilities to Cloud resources. This last part contains
two detailed use cases proving the efficiency of our approach to add autonomic management facilities to
Cloud resources.

81



Chapter 6. Evaluation and Validation

6.2 Common Environment description

To perform our evaluations we used the NCF (Network and Cloud Federation) experimental platform
deployed at Telecom SudParis France. The NCF experimental platform aims at merging networks and
Cloud concepts, technologies and architectures into one common system. NCF users can acquire virtual
resources to deploy and validate their own solutions and architectures. The hardware component of
the network is in constant evolution and has for information: 380 Cores Intel Xeon Nehalem, 1.17
TB RAM and 100 TB as shared storage. Two Cloud managers allow managing this infrastructure and
virtual resources i.e., OpenNebula [69] and OpenStack [70]. In our work, we used OpenNebula which
is a virtual infrastructure engine that provides the needed functionality to deploy and manage virtual
machines (VMs) on a pool of distributed physical resources. To create a VM, we can use one of the three
predefined templates offered by OpenNebula i.e. SMALL, MEDIUM and LARGE, or we can specify a
new template. During our experiments, we used our specific template with the following characteristics:
4 cores (2.66 GHZ each core) and 4 Gigabytes of RAM.

6.3 Evaluation of Monitoring and Reconfiguration Approach of SCA-based
applications in the Cloud

In our work, we proposed a novel approach to add monitoring, reconfiguration and FCAPS management
facilities to SCA-based applications prior deploying them in the Cloud. In order to validate our approach
and show its efficiency, we dedicate this section to the evaluation of this proposal. We start by detailing
the implementation aspects of our work. Then we present the experiments scenarios and their results.

6.3.1 Implementation

The implementation process took place in different phases. We have first developed a minimal Java de-
ployment framework, which allows developers to deploy a Java service on a hard-coded micro-container
before deploying both of them in the cloud. To enhance the performance of the platform and facili-
tates updates and future changes, the deployment framework is made modular to allow us to plug or
unplug specific modules. The generation process is based primarily on the parsing of the extended SCA
composite.

The next phase was implementing a prototype of the monitoring framework as services that offer the
transformation mechanisms to the components. The byte code of the managed component is transformed
to add notification code. For this required byte-code level manipulation we used the Java reflection API
and the open source software JAVA programming ASSISTant (Javassist) library [71]. The Java reflection
API [72] provides classes and interfaces for obtaining reflective information about classes and objects.
Reflection allows programmatic access to information about the fields, methods and constructors of
loaded classes, and the use of reflected fields, methods, and constructors to operate on their underlying
counterparts objects. Javassist is a class library for editing Java byte-codes; it enables Java programs to
define a new class and to modify a class file when the Java Virtual Machine (JVM) loads it.

For the Mobility service, we used the Java Serializable API for serialization and deserialization. We
used SSH protocol to transfer the serialized code of the micro-containers. If the deployed service is a

82



6.3. Evaluation of Monitoring and Reconfiguration Approach of SCA-based applications in the Cloud

stateful service, the state is saved in a specific file that will be serialized with the micro-container. After
running this latter in the new VM, it reloads its state from the saved file.

Finally, we implemented Java classes for the FCAPS management. Each class is a thread that uses
a list of rules extracted from the extended SCA composite to ensure a specific task. The Fault, Ac-
counting and Performance tasks are clients for the monitoring service. They have the ability to consume
notifications to take specific decisions.

6.3.2 Evaluation

In our work, we proposed a platform able to deploy components in the Cloud on top of light weight
micro-containers, with the capability of transforming components to be self managed even if they were
not designed with management facilities. The monitoring mechanism that we use is flexible in the way
of choosing the best deployment scenario to meet the deployer requirements. As far as we know, almost
all of the existing monitoring solutions in Cloud environments use one channel to deliver monitoring
information, but in our approach we exhibit the possibility of using a channel (i.e., Notification Service)
at the granularity of a component. In our experiments, we compare the results obtained using one No-
tification Service for all publishers and using one Notification Service per publisher. To this aim, we
have considered two criteria: 1) Memory consumption: Memory size consumed by the micro-container
with or without management facilities, and 2) Notification Latency Time: The elapsed time between the
occurrence of the event and the notification reception from all subscribers.

Use Case description:
To perform our tests, we defined two scenarios that reflect the objectives we want to highlight in

our experiments. In these experiments we want to: 1) Compare micro-container memory consumption
before and after adding management facilities to estimate the overhead of the management modules on
the micro-container consumption, and 2) Compare notification latency time in the micro-container using
monitoring system with one Notification Service or with multi-Notification Service (i.e., one Notification
Service per micro-container).
In the different series of tests, we deployed different numbers of services on top of micro-containers.
The used service in these experiments is a service that has a changing property. Whenever this property
changes the service sends a notification to its channel (Notification Service component). This latter
pushes this notification to all the subscribers.

In the first series we deployed services on micro-containers without management capabilities and
we took memory consumption measurements for each number. Then, we deployed the same number
of services on top of the micro-container enhanced with management facilities. The purpose of these
experiments was to estimate the overhead of the management modules on the memory consumption of
the micro-container. Figure 6.1 shows the different values stored during these series including the JVM
size.

These experiments show that the overhead of the management module on the memory consumption
of the micro-container is fair. In fact, the memory consumption is linear, increasing with the number of
deployed services. The results show that the overhead of the memory consumption using multi Notifica-
tion Service is more important than the overhead using one Notification Service scenario, and this is due

83



Chapter 6. Evaluation and Validation

Figure 6.1: Memory consumption of different types of micro-containers.

to adding an instance of the Notification Service component to each micro-container. That adds the extra

memory consumption noticed in Figure 6.1.

Figure 6.2: Latency time using different scenarios of monitoring.

In the second series of tests, we aimed to compare the notification latency time using the micro-

container enhanced with monitoring mechanisms in the two cases: using one Notification Service and

multi Notification Service monitoring. In each series, we fixed the number of deployed services and we

changed the frequency of events occurrence. After storing these measurements, we calculate the average

latency time for each series. The stored values are shown in Figure 6.2. Specifically, these values

represent the needed time from the event’s raise till the reception of the notification by all subscribers.

84



6.4. Evaluation of Autonomic Computing Approach for Cloud Resources

When the number of events becomes important, the Notification Service is exposed to a large number of
notifications, since all notifications are targeting the same Notification Service. This latter should forward
each notification to the list of the interested subscribers. When using multi Notification Services, every
micro-container contains its own Notification Service component. Consequently, it is asked to manage
just its own notifications. It will deal with a less number of notifications and subscribers. That explains
the results shown in Figure 6.2 where the notifications’ latency time is almost the same using the multi
Notification Service monitoring system and it is increasing proportionally with the number of services
when we use micro-containers with one Notification Service monitoring system.

6.4 Evaluation of Autonomic Computing Approach for Cloud Resources

In Chapter 5, we proposed a generic approach to add monitoring, reconfiguration and autonomic man-
agement facilities to Cloud resources independently of their service level. In this section, we advocate
the genericity and efficiency of our proposal. To do so, we will apply our autonomic infrastructure on
two use cases. The first allows to provision autonomic applications in the Cloud. The second enables
provisioning elastic service-based business processes (SBPs). We will start by presenting a background
of the used models to represent Platforms and Applications. Afterwards, we will chain up with the de-
scription of the SBP model that we used as well as the added elasticity mechanisms. Afterwards, we will
detail the different aspects of our implementation. Then, we will describe the two use cases evaluating
our work. We will also present the experiments that we performed for each use case. Finally, we will
discuss the results of these experiments.

6.4.1 Background

In order to facilitate the understanding of our evaluation, we will start by introducing the different con-
cepts used in our use cases. The first use case consists on provisioning autonomic applications in the PaaS
based on OCCI extensions for Platforms and Applications. Accordingly, we will start by describing these
models used to describe applications and their requirements of platform resources in Section 6.4.1.1. The
second use case consists on provisioning elastic SBPs in the Cloud. To this aim, we used Petri nets to
model SBPs and to add elasticity mechanisms. Accordingly, we will detail the SBP model and elasticity
mechanisms in Section 6.4.1.2.

6.4.1.1 Application provisioning in the Cloud

In this section, we present and comment the PaaS and Application resources description models that we
use to provision applications in the PaaS. This model extends the OCCI core model and it consists of
types:

• Platform extension which describes the platform components (e.g., service containers, database
instance, etc.) needed to made up the needed environment to host an application.

• Application extension which describes an application (i.e., any computer software or program) that
can be hosted and executed in a PaaS and its related hosting environment,

85



Chapter 6. Evaluation and Validation

Platform Extension:
Platform types model all resources that can be provisioned by a PaaS provider to make up an ap-

plication hosting environment. Defined resources and the links between them are respectively derived
from Resource and Link entities of the OCCI core model (see Figure 6.3). The main defined OCCI plat-
form resources are Database, Container and Router. Over and above we defined a set of links to connect
and interact with these resources. These Links are ContainerLink, RouterLink and DatabaseLink.

Figure 6.3: Overview of the defined OCCI platform types.

• Database resource type represents storage resources which can be provisioned by a PaaS provider
for applications which process persistent Data (e.g., MySQL, Apache CouchDB, etc.).

• Container resource type represents service containers, application servers and engines provisioned
by PaaS providers to host and run applications (e.g., Apache Axis, Oracle GlassFish Server, etc.).

• Router resource type models message format transformation and routing systems provided by
PaaS providers to route and deliver messages between Container resources. Router entities are
useful where deployed applications on Cloud platforms are multi-tenant and/or service-based and
requires then several (may be heterogeneous) containers.

• DatabaseLink represents a binding between a Container and a Database resources. This enables
a Database instance to be attached to a Container instance.

• RouterLink enables to connect one or several Container resources to a Router resource.

• ContainerLink allows to connect one or several Container resources between them.

More informations and details about defined attributes, actions and related state diagram of each
resources of our PaaS resources description model can be found at [73] [74] [75].

Application Extension:
Application types extend OCCI core entities. The defined resources and the links between them are

respectively derived from Resource and Link entities of the OCCI core model (see Figure 6.4). The
defined OCCI application entities are Application, Environment, Deployable and EnvironmentLink.

86



6.4. Evaluation of Autonomic Computing Approach for Cloud Resources

Figure 6.4: Overview of the defined OCCI application types.

• Environment resource models a set of components and services of the target Cloud platform. These
resources are needed to host and run applications on PaaS. Environment resource includes, among
others, the needed containers (e.g., Spring, Tomcat, Ruby, etc.), databases (MySQL, Redis, Man-
goDB) and optionally needed routers.

• Application resource models any computer software or program that can be deployed on top of
a PaaS into a hosting Environment. This Environment is set up thanks to the instantiation and
the configuration of necessary platform resources (see Section 6.4.1.1). To deploy an application,
the end-user specifies a set of properties (e.g. application name, application description, etc.).
Moreover, if the target PaaS provider supports the management of multiple instances (e.g., Cloud
Foundry), the user can specify the desired number of active instances to ensure application scal-
ability and availability. Once deployed, the Application can be invoked and executed through its
public URL provided by the target PaaS.

• Deployable resource models the Application archives. By deployables, we mean all necessary
artifacts (e.g., ZIP file, EAR file, etc.), configuration files and/or deployment descriptors (e.g.,
scripts, XML file, DAT file, etc.) needed to carry out the application deployment.

• EnvironmentLink is used to link an application to an environment. It models the deployment
mechanism of an application on a given environment.

COAPS API:
We developed an OCCI-compliant API called COAPS to handle Application and Environment re-

sources defined in our description model. Environment resources are in turn composed of platform
resources (e.g. Container, Router, DatabaseLink, etc.). An early implementation of COAPS which is not
OCCI-compliant was published in [76], [77].

COAPS API is based on both OCCI HTTP Rendering [27] and the Representational State Transfer
(REST) architecture [78]. OCCI HTTP Rendering defines how to interact with an OCCI model using

87



Chapter 6. Evaluation and Validation

a RESTful API. COAPS exposes a set of generic and RESTful HTTP operations (i.e., GET, POST,

PUT and DELETE) for Cloud applications management and provisioning. Concretely, these operations

implement actions that can be applied to platform and application resources.

To define a new COAPS implementation in order to provision resources from a given PaaS provider,

one can simply implement COAPS generic interfaces according to the proprietary actions exposed by the

target PaaS provider API. Several COAPS interfaces can be coupled to a single PaaS operation if needed

(e.g., POST Deployables and POST Application operations for Cloud Foundry implementation) and/or

some COAPS operations can be ignored (and then not implemented) when they are not supported by a

specific PaaS provider (e.g., POST RouterLink operation for Cloud Foundry implementation insofar as

Cloud Foundry manages itself the routing between its components).

Our provisioning mechanisms were adopted by the French FUI CompatibleOne 2 and the ITEA Easi-

Clouds project 3. It allows CompatibleOne Cloud broker to provision PaaS resources from existing PaaS

providers. In Easi-Clouds project, partners have developed a collaborative IDE for the Cloud called

CoRED [79]. It uses COAPS-Cloud Foundry implementation to deploy their developed applications on

Cloud Foundry PaaS. In the near future, they plan to add a new implementation to deploy a part of their

applications in AppScale PaaS. In addition, other partners added a GAE-PaaS implementation to deploy

their services on Google App Engine PaaS [80].

6.4.1.2 Elasticity of Service-based business processes in the Cloud

Our focus in this section is on the Service-based Business Processes (SBPs) level and more particularly

on SBPs elasticity. Cloud environments are being increasingly used for deploying and executing busi-

ness processes and particularly SBPs. A SBP is a business process that consists in assembling a set of

elementary IT-enabled services. These services realize the business activities of the considered SBP.

Assembling services in a SBP can be ensured using any appropriate service composition specifications

(e.g., BPEL). One of the expected facilities of Cloud environments is elasticity at different levels. The

principle of elasticity is to ensure the provisioning of necessary and sufficient resources such that a Cloud

service continues running smoothly even as the number or quantity of its use scales up or down, thereby

avoiding under-utilization and over-utilization of resources [81]. Since the elasticity of platforms, pro-

cess engines and service containers is not sufficient to ensure the elasticity of the deployed business

processes[82]. We advocate that these latter should be provided with their own elasticity mechanisms

to allow them to adapt to the workload changes. The main challenges in this direction are to define the

needed mechanisms to perform elasticity of SBPs, and a way to couple these mechanisms with elasticity

strategies in order to ensure SBPs elasticity.

Elasticity of a SBP is the ability to duplicate or consolidate as many instances of the process or some

of its services as needed to handle the dynamics of the received requests. We believe that handling elas-

ticity does not only operate at the process level but it should operate at the level of services too. In fact, it

is not always necessary to duplicate or consolidate all the process (and so, all the services that compose

the process) while the bottleneck comes from one or some services of the process. Consequently, our

goal here is to provide elasticity mechanisms (duplication/consolidation) that allow deployed SBPs to

2http://compatibleone.org
3http://easi-clouds.eu/

88

http://compatibleone.org
http://easi-clouds.eu/


6.4. Evaluation of Autonomic Computing Approach for Cloud Resources

Figure 6.5: BPMN of a SBP example

Figure 6.6: Petri net of a SBP example

scale up or down when needed. To scale up a SBP, these mechanisms have to create, as many instances
as necessary, of some business services (part of the considered SBP). To scale down a SBP, they have to
remove unnecessary instances of some services.

We propose in the following, a formal model to ensure SBPs elasticity by duplicating/consolidating
services that compose the SBP, while preserving the semantics of the SBP.

SBP Modeling:
To model SBPs, several techniques can be used (BPEL [83], BPMN [84], Petri nets [85]). In our

work, we are interested in the formal aspect of the model. So, we model the SBP using Petri nets. Many
approaches model SBPs using Petri nets, but instead of focusing on the execution model of processes
and their services, we focus on the dynamic (evolution) of loads on each basic service of the SBP’s
composition. In our model, each service is represented by at least one place (the set of places of each
service are related with an equivalence relation). The transitions represent calls transfer between services
according to the behavioral specification of the SBP. Our model can be considered as a deployment
model in which we represent the way a process and its services are deployed and the way the load evolve
between these services.

The Figure 6.5 shows a BPMN model of a SBP example composed by 4 services (S1,S2,S3 and
S4). The modeling of this SBP example with our model gives the Petri net shown in Figure 6.6. It is
noteworthy that we present here a simplified SBP model based on place/transition Petri nets that does
not take into account state of services. A more rigorous model based on Colored Petri nets (CPN) for
stateful SBPs can be found in [67].

Definition A SBP model is a Petri net N =< P, T, Pre, Post >:

• P : a set of places (represents the set of services/activities involving in a SBP).

89



Chapter 6. Evaluation and Validation

• T : a set of transitions (represents the call transfers between services in a SBP).

• Pre : P × T → {0, 1}

• Post : T × P → {0, 1}

For a place p and a transition t we give the following notations:

• p• = {t ∈ T |Pre(p, t) = 1}

• •p = {t ∈ T |Post(t, p) = 1}

• t• = {p ∈ P |Post(t, p) = 1}

• •t = {p ∈ P |Pre(p, t) = 1}

Definition Let N be a Petri net, we define a net system S = 〈N, M〉 with M : P → N a marking that
associates to each place an amount of tokens.

The marking of a Petri net represents a distribution of calls over the set of services that compose the
SBP. A Petri net system models a particular distribution of calls over the services of a deployed SBP. We
assume in our model that all service calls are treated in the same manner.

Definition Given a net system S = 〈N, M〉 we say that a transition t is fireable in the marking M , noted
by M [t〉 iff ∀p ∈• t : M(p) ≥ 1.

Definition The firing of a transition t in marking M changes the marking to M ′ s.t. ∀p : M ′(p) =
M(p) + (Post(t, p)− Pre(p, t)).

The transition firing represents the evolution of the load distribution after calls transfer. The way that
calls are transferred between services depends on the behavior specification (workflow operators) of the
SBP.

Elasticity Operations:
When a service has a lot of calls, it will be overloaded and this can lead to loss of QoS. A solution to

this overflow problem is to duplicate the service (create a new instance of this service) in order to increase
service capacity and ensure the desired QoS despite the increased load. When a service has few calls,
the containers that host its instances use more resources than required. A solution is to consolidate the
service (remove an unnecessary instance of this service) in order to avoid under utilization of resources.

Hereafter, we give the definition of two elasticity operators that duplicates/consolidates a service
without changing underlying SBP.

90



6.4. Evaluation of Autonomic Computing Approach for Cloud Resources

Place Duplication:

Definition Let S = 〈N, M〉 be a net system and let p ∈ P , the duplication of p in S by a new place pc

(6∈ P ), noted as D(S, p, pc), is a new net system S′ = 〈N ′, M ′〉 s.t

• P ′ = P ∪ {pc}

• T ′ = T ∪ T ′′ with T ′′ = {tc|t ∈ (•p ∪ p•)}

• Pre′ : P ′ × T ′ → {0, 1}

• Post′ : T ′ × P ′ → {0, 1}

• M ′ : P ′ → N with M ′(p′) = M(p′) if p′ 6= pc and 0 otherwise.

The Pre′ (respectively Post′) functions are defined as follows:

Pre′(p′, t′) =



Pre(p′, t′) p′ ∈ P ∧ t′ ∈ T
Pre(p′, t) t ∈ T ∧ t′ ∈ (T ′ \ T )

∧p′ ∈ (P \ {p})
Pre(p, t) t ∈ T ∧ t′ ∈ (T ′ \ T )

∧p′ = pc

0 otherwise.

Post′(t′, p′) =



Post(t′, p′) p′ ∈ P ∧ t′ ∈ T
Post(t, p′) t ∈ T ∧ t′ ∈ (T ′ \ T )

∧p′ ∈ (P \ {p})
Post(t, p) t ∈ T ∧ t′ ∈ (T ′ \ T )

∧p′ = pc

0 otherwise.

Place Consolidation:

Definition Let S = 〈N, M〉 be a net system and let p, pc be two places in N with p 6= pc, the consoli-
dation of pc in p, noted as C(S, p, pc), is a new net system S′ = 〈N ′, M ′〉 s.t

• N ′: is the net N after removing the place pc and the transitions (pc)• ∪• pc

• M ′ : P ′ → N with M ′(p) = M(p) + M(pc) and M ′(p′) = M(p′) if p′ 6= p.

Example Figure 6.7-(a) shows an example of nets system (empty marking) that represents the SBP of
Figure 6.6. Figure 6.7-(b) is the resulting system from the duplication of s2_1. Figure 6.7(c) is the
consolidation of the place s2_1 in its copy s2_2. The boxes represent the equivalence relations.

91



Chapter 6. Evaluation and Validation

Figure 6.7: Example of the elasticity of a SBP

In a previous work [86], we proved that the semantics of the SBP is preserved by duplication and
consolidation operators. To this aim, we proved that according to some equivalence relation, any se-
quence of transformation on a SBP is equivalent, according to some properties, to the original one. In
this case here, as mentioned previously, the Petri net of a SBP does not denote an execution model but
a dynamic view on the evolution of the SBP load (the marking). Therefore, we want to keep the same
view of load evolution regardless of any transformation of a net. In order to do so, the following two
properties have to be preserved:

• Property 1: By any transformation of the net using duplication/consolidation operators, we do not
lose or create SBP invocations (i.e., the load in terms of the number of requests of all the instances
of a given service must be the same as the load of the original one without duplications/consolida-
tions).

• Property 2: The dynamics in terms of load evolution of the original process must be preserved
in the transformed one (i.e., for any reachable load distribution in the original net there is an
equivalent (according to property 1) reachable load distribution in the transformed net).

In this section, we introduced our formal model to describe SBPs and two elasticity operations (duplica-
tion/consolidation). In the next section, we present how we can couple these elasticity operations with a
generic controller to ensure elasticity of deployed SBPs.

Generic Controller for SBPs elasticity:
Several strategies can be used [87, 88, 89] to manage SBPs elasticity. A strategy is responsible of

making decisions on the execution of elasticity mechanisms (i.e., deciding when and how to use these
mechanisms). The abundance of possible strategies requires a generic solution which allows the im-
plementation and execution of different elasticity strategies. For this reason, we propose a framework,
called generic Controller, for SBPs elasticity in which different elasticity strategies can be implemented.
Our generic Controller has the capability to perform three actions:

92



6.4. Evaluation of Autonomic Computing Approach for Cloud Resources

• Routing: Is about the way a load of services is routed over the set of their copies. It determines
under which condition we transfer a call. We can think of routing as a way to define a strategy to
control the flow of the load (e.g., transfer a call if and only if the resulted marking does not violate
the capacity of the services.)

• Duplication: Is about the creation of a new instance of an overloaded service in order to meet its
workload.

• Consolidation: Is about the deletion of an unnecessary instance of a service in order to meet its
workload decrease.

If we consider the three actions that can be performed by the elasticity Controller, any combination
of conditions associated with a decision of routing, duplication and consolidation is an elasticity strategy.

Figure 6.8: HLPN model of the generic Controller

It is worthy to note that our goal here is not to propose an additional elasticity strategy, but a frame-
work, called generic Controller, to execute different strategies. In order to simulate the execution of an
instantiated Controller, we propose to model the Controller as a high level Petri net (HLPN). Indeed,
by instantiating our generic Controller one can observe and evaluate the execution of the implemented
strategies using the HLPN analysis tools. The structure of the Controller is shown in Figure 6.8. The
Controller contains one place (BP) of type net system. The marking of this place evolves either by calls
transfer (Routing), by the duplication of an overloaded service (Duplication) or by the consolidation of
an underused service (Consolidation). These three transitions (actions) are guarded by conditions that
decide when and how to perform these actions:

93



Chapter 6. Evaluation and Validation

• Routing: This transition is fireable if we can bind the variable Z to a net system S = 〈N, M〉
where exists a transition t fireable in S and the predicate Ready_R(S, t) is satisfied. The firing of

the Routing transition adds the net system S after the firing of t (Next(Z, t) returns the marking

after the firing of t).

• Duplication: This transition is fireable if we can bind the variable Z to a net system S = 〈N, M〉
where exists a place s and the predicate ready_D(Z, s) is satisfied. The firing of the Duplication

transition adds a new net system resulted from the duplication of s in S.

• Consolidation: This transition is fireable if we can bind the variable Z to a net system S = 〈N, M〉
where exist two instances of the same service, s and s′, and the predicate ready_C(Z, s, s′) is sat-

isfied. The firing of the Consolidation transition adds a net system resulted from the consolidation

of s′ in S.

The execution of these actions is performed after checking the guards of the execution of these ac-

tions (ready_R, ready_D, ready_C). The elasticity conditions that decide when duplicate/consolidate

a service are implemented in predicates ready_D (for duplication) and ready_C (for consolidation)

while the condition that decides on how the service calls are routed is implemented in the predicate

ready_R. In our Controller, the conditions (Ready_D, Ready_C, Ready_R) are generic to allow the

use of different elasticity strategies. By instantiating our generic Controller, one can analyze and evaluate

behaviors and performances of the implemented strategies.

6.4.2 Implementation

To implement the different Resources, Links and Mixins that we previously defined we used a JAVA

implementation provided by OCCI working group called occi4java 4. This implementation is developed

by the OCCI working group according to the specifications. The project is divided into three parts.

Each of these parts corresponds to one of the three basic documents of OCCI specifications (i.e., OCCI

Core, OCCI Infrastructure and OCCI HTTP Rendering). We already used this project to implement our

extensions of OCCI Platform [74, 76] and Application [73]. Using occi4java, we extended the Resource

class to create our own resources for autonomic computing. We also extended the Link class to define

our links.

Since the Mixin mechanism is not a native functionality for JAVA, we used the mixin4j framework 5

to define our Mixins. This framework allows to create Java Mixins by the use of annotations. To this

end, it is possible to define the classes to be extended as abstract classes annotated with "@MixinBase"
annotation. It is to say that this abstract class will be extended using Mixins. To create the Mixin itself,

it is necessary to create an interface for this Mixin. Then, the "@MixinType" annotation is used to say

that this interface represents a Mixin. The implementation of the interface must be specified following

the "@MixinType" annotation. Consequently, the framework allows to instantiate new classes from the

abstract classes annotated with "@MixinBase" mixed with implementations of the interfaces annotated

with "@MixinType". We annotated our OCCI Resources and Links with "@MixinBase" to be able to

4https://github.com/occi4java/occi4java
5http://hg.berniecode.com/java-mixins

94

https://github.com/occi4java/occi4java
http://hg.berniecode.com/java-mixins


6.4. Evaluation of Autonomic Computing Approach for Cloud Resources

extend them later. Then, we defined all the interfaces of our Mixins and annotated them with "@Mix-
inType". Moreover, we implemented the different Mixins containing the needed functionalities for our

autonomic infrastructure. In our implementation, the Autonomic Manager is implemented as an abstract

Mixin Base. Using mixin4j, we mixed it with an implementation of the SpecificSLAInterface as a Mix-

inType and a WSAgMixinImpl that represents the real implementation that uses WSAgreementParser to

parse WS-Agreements SLAs. Similarly, the Analyzer and Reconfiguration Manager are implemented as

MixinBase. The Strategies and the ReconfigurationActions Mixins implement respectively the Mixin-

Type interfaces StrategiesInterface and ReconfigurationActionsInterface.

For REST HTTP Rendering, the occi4java project uses Restlet framework 6. Restlet is an easy frame-

work that allows to add REST mechanisms. After adding the needed libraries, one needs just to add the

Restlet annotations to implement the different REST actions (i.e., POST, GET, PUT and DELETE). Then

to set up the server, one has to create one or more Restlet Components and attach the resources to them.

We used the proposed annotations to define the needed actions for our OCCI Resources, Links and Mix-

ins. That allowed us to use the HTTP REST Rendering to manage our autonomic infrastructure. And in

order to enforce the scalability of our solution, we implemented different Restlet Components to allow

the distribution of our infrastructure. We also used this framework to implement all the communication

mechanisms used by Mixins to specify the Links communication (i.e., SubscriptionTool, Notification-

Tool, AlertTool and ActionTool Mixins use Restlet to send and receive data).

Furthermore, we used WS-Agreement to describe SLAs (see Listing 6.1). WS-Agreement is an

extensible language to describe SLAs. The extendability of this language allows to define user specific

elements and use them. In our example, we were able to specify the attributes to be monitored and

their different thresholds. We started from the WS-Agreement XSD7 and we added new elements to

describe the analysis strategies (i.e., <strategy:ScaleUpStrategy>) and the reconfiguration actions (i.e,

<plan:ReconfigurationActions>). The Mixin that we implemented to parse this kind of SLAs is used by

the Autonomic Manager to detect the content of these elements and makes a syntactic matching between

a list of existing Mixins for each type (Strategies or ReconfigurationActions Mixins). If it finds a Mixin

that matches the description it uses it to extend the concerned resource. More work is needed in the

specifications of strategies and reconfiguration actions in a more rigorous way.

Listing 6.1: WS-Agreement sample

1 <?xml version="1.0" encoding="UTF−8"?>

2 <wsag:AgreementOffer AgreementId="ab97c409">

3 <wsag:Name>xs:CFApplicationAg</wsag:Name>

4 <wsag:AgreementContext> ... </wsag:AgreementContext>

5 <wsag:Terms>

6 <wsag:All>

7 <wsag:GuaranteeTerm wsag:Name="g1" wsag:Obligated="ServiceProvider">

8 <wsag:ServiceLevelObjective>

9 <wsag:KPITarget>

10 <wsag:KPIName>averageResponseTime</wsag:KPIName>

11 <wsag:CustomServiceLevel xmlns:xsi="http://www.w3.org/2001/XMLSchema−instance"

12 xmlns:exp="http://www.telecom−sudparis.com/exp">

6http://restlet.org/
7http://schemas.ggf.org/graap/2007/03/ws-agreement

95

http://restlet.org/
http://schemas.ggf.org/graap/2007/03/ws-agreement


Chapter 6. Evaluation and Validation

13 <exp:Less><exp:Variable>maxthreshold</exp:Variable> <exp:Value>1200</exp:Value></exp:Less>
14 </wsag:CustomServiceLevel>
15 <wsag:KPIName>minthreshold</wsag:KPIName>
16 <wsag:CustomServiceLevel xmlns:xsi="http://www.w3.org/2001/XMLSchema−instance"
17 xmlns:exp="http://www.telecom−sudparis.com/exp">
18 <exp:Greater><exp:Variable>minthreshold</exp:Variable><exp:Value>700</exp:Value></exp:Greater>
19 </wsag:CustomServiceLevel>
20 </wsag:KPITarget>
21 </wsag:ServiceLevelObjective>
22 <wsag:BusinessValueList>
23 <wsag:CustomBusinessValue xmlns:strategy="http://www.telecom−sudparis.com/strategy">
24 <strategy:ScaleUpStrategy><if> <ResponseTime from=maxthreshold/><then> scaleUpAlert</then></if>
25 </strategy:ScaleUpStrategy>
26 <strategy:ScaleDownStrategy><if> <ResponseTime to=minthreshold/><then> scaleDownAlert</then></if>
27 </strategy:ScaleUpStrategy>
28 </wsag:CustomBusinessValue>
29 <wsag:CustomBusinessValue xmlns:plan="http://www.telecom−sudparis.com/plan">
30 <plan:ReconfigurationActions>scaleUp</plan:ReconfigurationActions>
31 <plan:ReconfigurationActions>scaleDown</plan:ReconfigurationActions>
32 ...
33 </wsag:CustomBusinessValue>
34 </wsag:BusinessValueList>
35 </wsag:GuaranteeTerm>
36 </wsag:All>
37 </wsag:Terms>
38 </wsag:AgreementOffer>

In order to parse WS-Agreement SLAs, we used Eclipse Modeling Framework8(EMF) to imple-
ment WSAgreementParser. EMF is a modeling framework that allows building tools and applications
based on their structured data models (e.g., XSD). We used WS-Agreement XSD to generate the needed
classes to process WS-Agreements. Based on these classes, we developed a parser that responds to our
requirements. This parser is used by an instance of SpecificSLA Mixin.

To realize the evaluation use cases, we implemented different monitoring and reconfiguration Mixins
based on OCCI REST queries. Table 6.1 resumes the different actions performed by each Mixin. Moni-
toring Mixin for Applications is based on the REST API proposed by NewRelic [90] service integrated
in CloudFoundry PaaS. We also implemented three Mixins to monitor Compute resources. These three
Mixins communicate with the OCCI server proposed by the IaaS manager (we used OpenNebula in our
use case). These monitoring Mixins get the needed information about the resource and create notifica-
tions related to the monitored attributes and send them to the Analyzer. We implemented also different
reconfiguration Mixins. Each one implements the reconfigure() method differently. The different Mixins
implementations to reconfigure OCCI Compute resources, address REST queries to the OCCI server of
the IaaS manager (i.e., OpenNebula). As shown in Table 6.1, we need to send an XML file describing
the new targeted state of the Compute resource. Finally, we implemented a Mixin able to reconfigure
applications deployed on CloudFoundry by adding or retrieving application instances. This latter uses
a REST query to communicate with COAPS (detailed in Section 6.4.1.1). As shown in Table 6.1, the
queries sent to COAPS must contain the identifier of the application as well as the instances number.

8http://www.eclipse.org/modeling/emf/

96



6.4. Evaluation of Autonomic Computing Approach for Cloud Resources

Mixins Role REST Query
Monitoring Compute memory consumption GET http://<OpenNebulaOCCIserver>/compute/<id>/

Monitoring Compute remain free disk GET http://<OpenNebulaOCCIserver>/compute/<id>/

Monitoring Compute availability GET http://<OpenNebulaOCCIserver>/compute/<id>/

Monitoring Application avg response time GET http://<NewRelicInstance>/v2/applications.xml

Adding memory to Compute PUT http://<OpenNebulaOCCIserver>/compute/<id>/vm.xml

Deducing memory from Compute PUT http://<OpenNebulaOCCIserver>/compute/<id>/vm.xml

Hot-plugging a disk to Compute PUT http://<OpenNebulaOCCIserver>/compute/<id>/vm.xml

Redeploying Compute PUT http://<OpenNebulaOCCIserver>/compute/<id>/vm.xml

Hot-detaching a disk from Compute PUT http://<OpenNebulaOCCIserver>/compute/<id>/vm.xml

Scaling up an Application PUT http://<COAPSAddress>/coaps/<appid>/instances/<nbr>

Scaling down an Application PUT http://<COAPSAddress>/coaps/<appid>/instances/<nbr>

Table 6.1: Summary of the monitoring and reconfiguration Mixins.

6.4.3 Evaluations

In this section, we will show how we can add autonomic computing management facilities to Cloud

resources. To do so, we will describe two use cases. The first one deals with applications deployment in

the Cloud. This use case uses the concepts described in Section 6.4.1.1 and it shows how our autonomic

mechanisms can be applied on heterogeneous Cloud resources spanning over the different layers of the

Cloud. The second one deals with provisioning elastic business processes in the Cloud and it is based

on the concepts described in Section 6.4.1.2. It shows an example of adding a non functional service to

Cloud resources based on our mechanisms.

6.4.3.1 Provisioning of Autonomic Applications on Cloud Foundry

In this section we show the usefulness of our approach. Our goal is to show how we can build an

autonomic infrastructure spanning over the different layers of the Cloud. Our experiments may show that

our mechanisms enhance the resource behavior. The established infrastructure have to harvest monitoring

data from different target, to analyze it and to generate reconfiguration actions when needed.

Use Case description:
To evaluate our work we present a real use case that spans over the different levels of the Cloud

(i.e., IaaS, PaaS and SaaS levels). It consists of the deployment of an application (i.e., the SaaS) on a

private instance of CloudFoundry PaaS9. Our PaaS is deployed on three virtual machines managed by

OpenNebula IaaS manager. OpenNebula provides an OCCI server that allows us to describe and manage

the VMs as OCCI Compute resources.

It is noteworthy that we used OCCI extension for Infrastructure [37] to describe the IaaS level.

Moreover, we used a generic model that we proposed in Section 6.4.1.1 to describe PaaS and SaaS

resources as extensions of OCCI. We also used COAPS to interact with CloudFoundry PaaS.

9http://www.cloudfoundry.com/

97

http://www.cloudfoundry.com/


Chapter 6. Evaluation and Validation

The used application is a Servlet that performs numerical analysis on matrices. The Servlet receives
client queries containing the size of the matrices. It generates the matrices and applies the desired com-
putation and saves the result on the disk. In our use case, we will focus on matrices products calculation.
We assume that these matrices could be with large sizes. Consequently, the used disk could be saturated.
The client queries number can also increase or decrease. Consequently, the application instances could
be more or less solicited. We also consider that the virtual machines instances could encounter failures
or disconnections.

In order to ensure the continuity of the application execution with all its required resources, we ap-
plied our approach to add autonomic behaviors to Application and Compute resources. Our targeted
metrics to monitor are (1) Compute disk usage, (2) Compute memory usage, (3) Application response
time , and (4) Compute availability. The analysis of monitoring data of these metrics could result on
the following reconfiguration actions (1) reconfiguring the used disk by the Compute instance by hot-
plugging new disk or by resizing the original one, (2) resizing the Compute instance to add or to retrieve
memory capacity, (3) auto-scaling of the application by adding or retrieving instances, and (4) redeploy-
ing a new instance of the Compute instead of the failing one.

To monitor the Compute instances (i.e., 3 used VMs), we implemented three monitoring Mixins. As
described in Section 6.4.2, the first Mixin monitors the memory consumption of the VM, the second
monitors its remaining free disk, while the third monitor its availability. All these Mixins are based on
OCCI REST queries sent to OpenNebula OCCI server. The collected data is sent to the Analyzer as
notifications. The Analyzer uses its Strategies Mixins to analyze these data and to generate alerts if the
SLA is violated.

Accordingly, we need to monitor the Application resource. To do that, we used the associated Mixin
that gathers response time related to a CloudFoundry Application. As well, this Mixin sends notifications
to the Analyzer that applies the related strategies to verify whether the SLA is violated or not.

Table 6.2 resumes the monitoring metrics of our use case, their associated thresholds, alerts and
reconfigurations. This information is directly used by our implemented Mixins. As shown in the table,
we used two strategies for the Application response time. In each case, the Analyzer uses its strategies to
verify if the monitoring data respects the defined thresholds or not. If the SLA is violated, the Analyzer
sends an alert to the Reconfiguration Manager with the associated alert. The Reconfiguration Manager
uses its Mixin to generate the associated reconfiguration actions. For example, if the Compute resource
consumes more than 80% of its memory, the Analyzer would send an alert saying that the Compute
memory is over-used. Consequently, the Reconfiguration Manager generates actions to reconfigure the
Compute instance. This reconfiguration is based on the associated Mixin described in Section 6.4.2.
It is worthy to note that the thresholds are deduced from the SLA, and that the analysis strategies are
proactive. The strategies do not wait till the SLAs are violated, instead they anticipate by sending alerts
before the occurrence of the violation. More work in this area will be conducted in our future work. But
since it is not the basic objective of this work, we fixed the thresholds to ± 5 % of the hard thresholds
specified in the SLA. This choice was made based on our experiments and it is specific to this use case.

The input of our OCCI Server is an SLA (similar to Listing 6.1) describing the needed Compute and
Application instances and their requirements as well as the needed details for the autonomic aspects. It
is passed to the Autonomic Manager in the following HTTP POST request:

> POST http://localhost:8182/amanager

98



6.4. Evaluation of Autonomic Computing Approach for Cloud Resources

Metrics Thresholds Alerts Reconfigurations

Compute Memory
Max 80% Memory overloaded Add memory to Compute
Min 20% Memory underloaded Retrieve memory from Compute

Compute Disk Max 80% Disk full Hot-plug disk to Compute
Compute Availability - Compute unavailable Redeploy Compute

Application
Response Time

Max
S1: 1140

Application overloaded Scale up Application
S2: 760

Min
S1: 735

Application underloaded Scale down Application
S2: 525

Table 6.2: Description of monitoring metrics, thresholds, alerts and reconfigurations of our use case.

> Category: amanager; class="kind";
X-OCCI-Attribute: name=AManager
X-OCCI-Attribute: version=1
X-OCCI-Attribute: slalocation=../wsAgSLA.xml
Content-Type: text/occi

The Autonomic Manager uses the SLA to build the environment where to deploy the application.
It caries on the list of queries to the OCCI Server to instantiate the three Mixed Compute instances
(with monitoring and reconfiguration Mixins) using their identifiers. These instances are configured to
run a CloudFoundry instance. Once deployed, they offer an endpoint of this PaaS that we specified as
api.cloudfoundry.io. Afterwards the Autonomic Manager sends the needed queries so that the OCCI
server deploys and starts the Application extended with monitoring and reconfiguration Mixins. To this
aim, the OCCI Server uses the actions proposed by COAPS.

After the provisioning of the application, the Autonomic Manager proceeds to the instantiation of all
the needed Resources, Links and Mixins via the OCCI Server. From the SLA, the Autonomic Manager
detects the metrics to be monitored. It extracts also the defined thresholds as well as the analysis strategies
and the reconfiguration actions. These information are described using user specific elements that we
added to WS-Agreement as shown in Listing 6.1 (lines 23-31).

Evaluation Results:
In these evaluations, we took different measurements of the needed time to deploy and start Applica-

tion and Compute resources and the needed time to build the autonomic infrastructure. The measure-
ments show that the deployment and starting time depends on the size of the Resource. However, the
establishment of the rest of the autonomic infrastructure is independent of the Resource. The instantia-
tion of a Compute instance takes 15.8 seconds. And since the queries are simultaneous, the instantiation
of the three instances takes 38.7 seconds. To deploy our test application, having the size of 8.4 Kb, on
CloudFoundry we measured 48.03 seconds. To start this application we measured 11.3 seconds. The
needed time to establish the rest of the autonomic infrastructure is independent of the resources size,
but it depends on the number of the managed resources. This time was around 5.3 seconds. This time
is encouraging since it is negligible compared to the resources deployment and starting time. During

99



Chapter 6. Evaluation and Validation

Reconfiguration Action Time (s)
Adding Memory to Compute 23.5

Retrieving Memory from Compute 24.6

Hot-plugging disk to Compute 7.9

Hot-detaching disk from compute 8.2

Redeploying Compute instance 20.2

Scaling up an application 11.6

Scaling down an application 11.4

Table 6.3: Average times needed to reconfiguration actions.

Figure 6.9: Response time before and after adding our Autonomic Infrastructure.

the experiments, we measured the needed time to apply the different reconfiguration actions. Table 6.3

resumes the average needed times to apply each reconfiguration action.

Furthermore, we compared the behavior of the application before and after adding our autonomic

infrastructure. We used two strategies (see S1 and S2 in Table 6.2) to see the impact of the strategy

choice on the autonomic behavior of the application. Moreover, we developed a REST client able to

send queries to the deployed application. We deployed this client on different VMs in order to launch

a large number of parallel calls. This is to create a client query burst targeting the application. In each

series of this experiments we modified the number of the used clients targeting our application and we

saved the measured response times. The results of this evaluation are shown in Figure 6.9.

The response time of the application without our mechanisms is increasing proportionally with the

number of clients queries. Moreover, after 5000 parallel clients, the application went down and its execu-

tion continuity was broken. In contrast, using our mechanisms, whenever the response time approached

the max threshold that we specified in the SLA, a reconfiguration action is triggered to scale up the ap-

plication by adding a new instance. This reconfiguration decreases the response time of the application.

100



6.4. Evaluation of Autonomic Computing Approach for Cloud Resources

If the response time is approaching the min threshold, a reconfiguration action is triggered to scale down

the application. The experiments show the efficiency of our approach to enhance the behavior of the

application. In fact, over 1000 clients, the response time remains around the specified thresholds. The

experiments show also that we reached 7000 clients without any downtime of the application. We no-

ticed that using the two strategies the response time remains between the specified thresholds. However,

Strategy 2 consumes more memory than Strategy 1 to conserve a lower response time. So whenever we

want to decrease the thresholds we need to consume more memory since the infrastructure will add more

instances of the application to guarantee the desired response time.

Figure 6.10: Memory consumption before and after adding our Autonomic Infrastructure.

Over and above the response time of the Application, we measured its memory consumption. The

Figure 6.10 shows the difference between the memory consumption of an Application with and without

our mechanisms (using two strategies). The memory consumption of a non autonomic one is constant

since it has a constant allocated memory and no new instances are added. Meanwhile, for an autonomic

Application, the curve shows that the memory consumption is changing whenever there is a duplication

or a consolidation. The cost of a duplication correspond to 512 Mb that represents the size of an added

application instance. These changes in the memory consumption could have an impact on the other met-

rics and reconfiguration actions (i.e., memory usage of the Compute instances and their configuration).

Strategy 2 is consuming more memory in order to guarantee a lower response time. These results open

new perspectives for further studies to fine tune the choice of the used thresholds.

As previously mentioned, the thresholds used for analysis strategies are deduced from the values

specified in the SLA. We started our experiments by using the hard thresholds specified in the SLA and

we noticed that there are some violations. In order to guaranty the accuracy of the system regarding the

specified SLA, we start gradually to add ± percentage to each threshold value. After multiple experi-

ments series, we reached 100% of accuracy by adding ± 5% to all the specified thresholds in the SLA.

We note that this value is specific to this use case. This direction needs more attention in our future work.

In this section, we proved that our approach is efficient when applied to real resources spanning over

101



Chapter 6. Evaluation and Validation

the different layers of the Cloud. The obtained results show that our mechanisms do not represent a large

time or resource consumption overhead compared to traditional Cloud resources. In the following, we

apply our approach on a Service-based Business Process to render it elastic by means of our mechanisms.

6.4.3.2 Provisioning of Elastic SBP on Cloud Foundry

Our focus in this section is on the Service-based Business Processes (SBPs) level and more particularly

on SBPs elasticity. We will specialize our autonomic mechanisms to add elasticity to Service-based

Business Processes (SBPs) in Cloud environment. We will use the different concepts described in 6.4.1.2.

We will merely break the Controller between the Analyzer and the Planner Resources. Consequently,

the ready_D and ready_C are implemented as instances of the Strategies Mixin while the Duplication

and Consolidation are implemented as instances of the Reconfiguration Actions Mixin. Notwithstanding,

spurred by the fact that almost all the existing Cloud providers offer the routing functionality, we delegate

the routing mechanisms to the targeted environment in which we will deploy our SBP.

Use Case description:
To evaluate our work we present a real use case of Service-based Business Processes. It consists on

the deployment of an SBP on the public PaaS CloudFoundry 10. For the SaaS and PaaS descriptions

and provisioning we are using COAPS 6.4.1.1. Our goal is to show how we add granular elasticity

mechanisms to SBPs in a generic manner. For evaluation aims, we create an SBP composed of three

services collaborating to generate random matrices and to apply numerical analysis on them. The first

service receives the sizes of the matrices and the desired analysis operation from the client and it passes

this parameter to the second service. This latter generates two matrices and saves them on the disk and

passes their addresses to the third service along with the desired operation. The third service applies the

operation on the matrices and sends back the result to the client. We included the needed information

related to the deployment of each service of the SBP and the establishment of the infrastructure in an

SLA expressed with the extended WS-Agreement that we presented in Section 6.4.2. Afterwards, we

run our OCCI Server on VMs deployed by OpenNebula IaaS manager. The input of our OCCI Server is

an SLA describing the SBP and its requirements as well as the needed details for the autonomic aspects.

The Autonomic Manager uses the SLA to build the environment where to deploy the SBP. It caries on the

list of queries to the OCCI Server to deploy and start services of the SBP after adding the needed Mixins

(i.e., monitoring and reconfiguration Mixins) to each service. To deploy and start the services, the OCCI

Server uses the actions proposed by COAPS to this aim. In the realized use case, the Subscription Mixin

uses a NewRelic monitoring service [90] to get monitoring data about each service instance. The realized

infrastructure is shown in Figure 6.11.

After the provisioning of the SBP, the Autonomic Manager proceeds to the instantiation of all the

needed Resources and Links via the OCCI Server. From the SLA, the Autonomic Manager detects the

need to monitor the response time of each service. It extracts also the defined thresholds as well as

the analysis elasticity strategies and the reconfiguration actions. These information are described using

user specific elements that we added to WS-Agreement. As shown in Listing 6.1 the max and min

thresholds are fixed respectively to 1200 and 700 ms for all the services. The monitoring data gathered

10http://www.cloudfoundry.com/

102

http://www.cloudfoundry.com/


6.4. Evaluation of Autonomic Computing Approach for Cloud Resources

by the Subscription Mixin are parsed by this latter. It extracts the response time of each service and
sends eventual notifications to the Analyzer via the related Notification Link. For each notification, the
Analyzer applies its elasticity strategies to verify that the response time respects the SLA. If there is any
violation, the Analyzer resource triggers an alert targeting the Planner via the Alert Link. This Planner
generates reconfiguration actions to duplicate or consolidate the concerned service.

OCCI Server

Analyzer

Planner

ActionLinkAlertLinkSubscriptionLink NotificationLink

Autonomic

 Manager

SLA C

O

A

P

S

S1

S2

S3

Managed

Resource

(SBP)

ready_D

ready_C

Duplication

Consolidation

Figure 6.11: Autonomic Computing Infrastructure establishment for SBP elasticity.

At this step, we showed how the Autonomic Manager can instantiate the autonomic loop with all the
needed Resources, Links and Mixins. When a service of the SBP is overloaded, the response time of this
service will change and become greater than max threshold. Using its Subscription Mixin, the concerned
service generates a notification containing the new value of the monitored attribute. The notification
is sent via the Notification Link to notify the Analyzer. At the reception of the notification, this latter
applies its strategies to verify if the SLA is violated or not. If the readyD is verified, the Analyzer raises
a duplicationAlert and send it to the Planner via the Alert Link. Receiving this alert, the Planner verifies
the list of applicable plans. Consequently, it generates the needed actions to ensure the Duplication via
the Action Link. This latter asks COAPS to add more instances to the concerned service.

When a service is underloaded, the Subscription Mixin of the service will generate a notification
and send it to the Analyzer. If the readyC strategy is verified, the Analyzer sends a consolidationAlert
to the Planner. This latter, generates the needed actions to ensure the Consolidation.These actions are
addressed to COAPS via the Action Link. In order to avoid the shutdown of the application, the Action
Link verifies if the instances number is greater than 1 to forward the Consolidation action to COAPS.

Evaluation Results:
In our tests, we took different measurements of the needed time to deploy and start an SBP and to build

the related autonomic infrastructure. To deploy our test SBP composed of three services to CloudFoundry
we measured 155.12 seconds. To start this same SBP we measured 35.9 seconds. The time needed to
establish the autonomic infrastructure is around 16.5 seconds.

103



Chapter 6. Evaluation and Validation

Furthermore, to compare the behavior of the SBP in CloudFoundry before and after adding our

autonomic infrastructure, we developed a REST Client able to call the deployed SBP. We deployed this

client on different VMs on the NCF in order to launch a large number of parallel calls. In each series

of this experiments we modified the number of the used clients targeting our SBP and we saved the

measured response times. The results of this evaluation are shown in Figure 6.12.

Figure 6.12: Response time of the SBP before and after adding our Autonomic Infrastructure.

The response time of the SBP without our mechanisms is increasing proportionally with the number

of clients queries. Moreover, after 1600 clients, the SBP went down. In contrast, using our mechanisms,

whenever the response time reached the max threshold that we specified in the SLA (i.e., 1200 ms in this

case), a reconfiguration action is triggered to duplicate the overloaded service by adding a new instance

to it. This reconfiguration decreases the response time of all the SBP. If the response time is under the

min threshold that we specified in the SLA (i.e., 700 ms in this case), a reconfiguration action is triggered

to consolidate the service instances. The experiments show the efficiency of our approach to enhance the

behavior of the SBP. In fact, over 700 clients, the response time remains around the specified thresholds.

The experiments show also that we reached 2000 clients without any downtime of the SBP. As shown

in Figure 6.12, in some points, the response time is over the max threshold, this is due to the number of

clients queries sent before the reconfiguration action takes effect.

During this series of experiments, we measured also the needed time to apply a reconfiguration action

(i.e., duplication or consolidation). The needed time to reconfigure a service is about 11.8 seconds. This

time is negligible compared to the needed time to redeploy and start all the SBP. Over and above the

response time of the SBP, we measured its memory consumption. The results shown in Figure 6.13 show

the difference between the memory consumption of a traditional SBP and an elastic one (enhanced with

our mechanisms). The memory consumption of a traditional SBP is constant since each service has its

allocated memory and no new instances are added. Meanwhile, for an elastic SBP, the curve shows that

the memory consumption is changing whenever there is a duplication or a consolidation. The cost of

a duplication correspond to 512 mb that represents the size of an added service instance. These results

104



6.5. Conclusion

Figure 6.13: Memory consumption before and after adding our Autonomic Infrastructure.

open new perspectives for further studies to fine tune the choice of the used thresholds according to the

user requirements.

In this section, we proved that our approach is efficient when applied to a real SBP deployed in a

public PaaS. The obtained results open new perspectives and future work.

6.5 Conclusion

Cloud Computing is changing perceptions of IT technologies. Although many solutions are proposed to

be in line with Cloud characteristics, consumers do not accept to adopt a solution that did not proved its

efficiency in real environments. In this chapter, we proposed different scenarios of resources management

in the Cloud. We showed the feasibility and efficiency of our approach of monitoring and reconfiguration

of SCA-based applications in Cloud environments. Afterwards, we explained the usage of our autonomic

infrastructure for Cloud resources by means of two use cases. The first use case shows how our autonomic

mechanisms could be applied on heterogeneous resources spanned on different layers in the Cloud, while

the second use case shows that using our mechanisms we can easily add non functional services to Cloud

resources. We presented the different experiments that we realized to prove the efficiency of our work.

Indeed, the results are encouraging. At the same time, they opened new perspectives to our work.

105



Chapter 6. Evaluation and Validation

106



Chapter 7

Conclusion and Perspectives

Contents
7.1 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

7.2 Perspectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

7.1 Contributions

Cloud Computing is a recent trend in Information Technologies (IT), it refers to a model for enabling
ubiquitous, convenient, on demand network access to a shared pool of configurable computing resources
(e.g., networks, servers, storage, applications and services) that can be rapidly provisioned and released
with minimal effort or service provider interaction [18]. In this paradigm, there are three well discussed
layers of services known as "IaaS" for Infrastructure as a Service, "PaaS" for Platform as a Service and
"SaaS" for Software as a Service. Other "XaaS" terms are used nowadays to name different resources
provided as services in the cloud.

Cloud environments can be used to host applications that follow Service Oriented Architecture
(SOA). SOA is a collection of services that communicate with each other [91]. Each service must be
self-contained (i.e., it can always provide the same functionality, independently of other services). Such
type of applications can be described using Service Component Architecture (SCA) as a composite that
contains a detailed description for different components of the application and links between them. A
well described composite can be passed to a SCA runtime (e.g, FraSCAti [20], TUSCANY [21]) that
instantiates the different components and links them according to the composite description.

Management of SCA-based applications in Cloud environments still did not get the needed attention
in research work. Particularly, monitoring and reconfiguration that face many challenges. The require-
ment for these non functional facilities needs a generic and granular description. Consequently, this
description can be used to automatically add the needed mechanisms to gather monitoring data and to
enable reconfigurations when needed. At the same time, the used mechanisms should be in line with the
scalability of the environment.

107



Chapter 7. Conclusion and Perspectives

In this PhD thesis, we dressed a list of objectives in order to provide a solution that satisfies our
requirements of adding management facilities in the Cloud. We started by studying different existing
works. Our study of the state of the art was divided to three parts treating respectively monitoring, re-
configuration and autonomic management. Afterwards, we made a synthesis of the presented work to
recapitulate the advantages and drawbacks of each one. Consequently, we proposed two major contribu-
tions in order to cover the objectives that we dressed for our solution.

In the first contribution, we proposed an extension of Service Component Architecture (SCA) compo-
nent model. At a first step, the extension allows to express monitoring and reconfiguration requirements
related to components. Later steps allowed us to add self-management behaviors to components. Us-
ing SCA we were able to express FCAPS (Fault, Configuration, Accounting, Performance and Security)
properties of components. In this work we proposed a list of transformations that allows to dynamically
add the non functional facilities of monitoring, reconfiguration and FCAPS management to components
even if they were designed without them. Furthermore, in order to be in line with the scalability of
Cloud environment, we used a deployment mechanism based on a scalable micro-container able to host
components. In this manuscript, we detailed all the aspects of our implementation as well as the evalua-
tion. The different experiments that we performed in a real Cloud environment show the added value of
our contribution in adding monitoring, reconfiguration and self-management facilities to service-based
applications in the Cloud.

While generic and efficient, our first contribution remains limited to SaaS and PaaS levels. Con-
sequently, we go further in our reflexion, and we proposed in a second contribution a generic solution
agnostic to the Cloud service level. This contribution consists on a generic description of monitoring and
reconfiguration for Cloud resources extending the de facto standard OCCI [2] (Open Cloud Computing
Interface defined by the Open Grid Forum). The extension entails all the needed OCCI Resources, Links
and Mixins that allow gathering monitoring data from resources and applying reconfiguration actions in
order to ensure a specific business objective. The framework that we proposed adds monitoring and re-
configuration facilities to Cloud resources and deploys them in a Cloud environment (i.e., IaaS or PaaS).
The framework offers the needed mechanisms to monitor and/or reconfigure any Cloud resource. After-
wards, we extended our work to couple monitoring and reconfiguration facilities in a holistic autonomic
loop. This extension allows continuously monitoring the deployed resources and eventually adapting
them according to a previously defined rules and strategies. To this end, we defined the needed Re-
sources, Links and Mixins to create a holistic MAPE loop. The implementation of the different elements
and mechanisms that we realized is detailed. We also evaluated our proposals in different scenarios to
show how generic and efficient it is.

The contributions that we presented in this manuscript respect the research objectives that we dressed
since the beginning of this work. Meanwhile, the first contribution is still limited to the SaaS and PaaS
levels. However, the second contribution is generic and level-agnostic.

7.2 Perspectives

During our work, we faced different complex problems. We solved various of them and we included
others in our future work. The evaluation also opened new research perspectives to follow in short,

108



7.2. Perspectives

medium and long term.
As short term work, we aim to go further in the dynamic processing of SLAs. In our evaluation, we

started by proposing a Mixin able to process WS-Agreement SLAs. This Mixin is based on a parser that
we implemented using Eclipse Modeling Framework. We are aware that this work is still in early stage
and we would like to enhance it and evaluate its efficiency and accuracy. Since the syntactic matching
between the requirements specified in the SLA and the proposed management mechanisms provided
as Mixins is not always sufficient, we plan to add semantic processing to SLAs in order to allow the
dynamic semantic matching between SLA contents and Mixins. We are aware that adding semantics to
SLA will bring new challenges. But we are confident that the maturity of the research works in semantic
processing could help us to provide a more efficient solution.

As medium term future work, we will focus on two major related challenges. First, we aim to enable
the establishment of a standardized SLA negotiation mechanism. To do that, we can be inspired from
existing works (e.g., CompatibleOne [23] using WS-Agreement and EASI-CLOUDs[24] using WS-
Agreement and Linked-USDL) and the proposed mechanisms for negotiation. We are also aware of the
effort made by OCCI working group on this direction. This latter work is still at first stage and it is in a
slow evolution. Providing an OCCI-compliant model for SLA could be in line with our mechanisms for
autonomic management. Second, we would like to enhance the analysis rules and strategies description
and processing. As we noticed during our evaluation, there are possible violation of the SLA even when
we use our mechanisms. These violation impacts the accuracy of the system regarding its SLA. In order
to enforce the accuracy of our solution, we aim to add predictive analysis rules and strategies. These
rules and strategies would be able to trigger adaptation before the occurrence of the violation. Based
on the usage history, these rules and strategies are in a continuous adaptation. In this work, we have to
propose algorithms that allows a consumer to choose the best strategies that suits its requirements.

Finally, as long term work, we will provide a generic model that describes the environment resources
provided by complex systems. Consequently, we will be able to define the needed mechanisms that
allow transforming any system to an autonomic one that has the ability to monitor and adapt itself fol-
lowing the changes of its environment and its behavior. To make that possible, we consider an autonomic
component-based complex system as composition of autonomic components. Each autonomic compo-
nent is responsible for managing its role to finalize the global business objective of the system. The
autonomic management of each component may be based on dynamically generated strategies. These
strategies can be extracted dynamically from the related Service Level Agreement. Based on this latter
and on the environment description, the system deploys the components on the best matching resources.
Therefore, the deployments of the system components are eventually distributed over different nodes or
different environments. Thus, in order to ensure the global objective of the system, each component is
governed using two types of strategies: local strategies that govern the local behavior of the component
without having any impact on the rest of the system and global strategies that have an impact on one or
more components. For strategies having an impact on one or more components, there is a need to specify
how different autonomic components collaborate in order to realize the global autonomy of the system
taking into account the dynamic nature of complex systems and their scalability.

109



Chapter 7. Conclusion and Perspectives

110



Bibliography

[1] IBM Corp., “An architectural blueprint for autonomic computing,” Oct. 2004. xiii, 11

[2] R. Nyren, A. Edmonds, A. Papaspyrou, and T. Metsch, “Open Cloud Computing Interface - Core,”

Tech. Rep., 2011. [Online]. Available: http://www.ogf.org/documents/GFD.183.pdf xiii, 5, 14, 15,

62, 66, 70, 75, 108

[3] Nagios Entreprises, “Nagios Documentation.” 2010. [Online]. Available: http://www.nagios.org/

documentation xiii, 18, 35

[4] G. Katsaros, G. Gallizo, R. Kübert, T. Wang, J. O. Fitó, and D. Henriksson, “A Multi-level Archi-

tecture for Collecting and Managing Monitoring Information in Cloud Environments.” in Proceed-
ings of the third International Conference on Cloud Computing and Services Science, 2011, pp.

232–239. xiii, 18, 19, 35

[5] M. L. Massie, B. N. Chun, and D. E. Culler, “The Ganglia Distributed Monitoring System: Design,

Implementation And Experience,” Parallel Computing, vol. 30, p. 2004, 2003. xiii, 18, 19, 20, 35

[6] Z. Balaton, P. Kacsuk, and N. Podhorszki, “Application Monitoring in the Grid with GRM and

PROVE,” in Computational Science, ser. Lecture Notes in Computer Science, V. Alexandrov,

J. Dongarra, B. Juliano, R. Renner, and C. Tan, Eds. Springer Berlin Heidelberg, vol. 2073, pp.

253–262. [Online]. Available: http://dx.doi.org/10.1007/3-540-45545-0_34 xiii, 20

[7] M. Baker and G. Smith, “GridRM: an extensible resource monitoring system,” in Proceedings of
IEEE International Conference on Cluster Computing, Dec 2003, pp. 207–214. xiii, 21, 35

[8] S. Fitzgerald, I. Foster, C. Kesselman, G. von Laszewski, W. Smith, and S. Tuecke, “A directory

service for configuring high-performance distributed computations,” in Proceedings of The Sixth
IEEE International Symposium on High Performance Distributed Computing., Aug 1997, pp. 365–

375. xiii, 22, 23, 35, 36

[9] J. Almeida, M. van Sinderen, L. Pires, and M. Wegdam, “Platform-independent dynamic recon-

figuration of distributed applications,” in Proceedings of the 10th IEEE International Workshop on
Future Trends of Distributed Computing Systems , May 2004, pp. 286–291. xiii, 25, 35

111

http://www.ogf.org/documents/GFD.183.pdf
http://www.nagios.org/documentation
http://www.nagios.org/documentation
http://dx.doi.org/10.1007/3-540-45545-0_34


Bibliography

[10] A. Rasche and A. Polze, “Configuration and dynamic reconfiguration of component-based applica-

tions with Microsoft .NET,” in Sixth IEEE International Symposium on Object-Oriented Real-Time
Distributed Computing, May, pp. 164–171. xiii, 27, 35

[11] B. Jacob, R. Lanyon-Hogg, D. K. Nadgir, and A. F. Yassin, A Practical Guide to the IBM Autonomic
Computing Toolkit, 2004. [Online]. Available: http://books.google.fr/books?id=XHeoSgAACAAJ

xiii, 2, 11, 28, 29, 35, 67

[12] B. Solomon, D. Ionescu, M. Litoiu, and G. Iszlai, “Designing autonomic management systems for

cloud computing,” in International Joint Conference on Computational Cybernetics and Technical
Informatics, 2010. xiii, 28, 30, 35

[13] R. Buyya, R. Calheiros, and X. Li, “Autonomic Cloud computing: Open challenges and archi-

tectural elements,” in Third International Conference on Emerging Applications of Information
Technology, 2012. xiii, 2, 3, 29, 30, 35

[14] D. Garlan, S.-W. Cheng, A.-C. Huang, B. Schmerl, and P. Steenkiste, “Rainbow: architecture-based

self-adaptation with reusable infrastructure,” Computer, vol. 37, no. 10, pp. 46–54, Oct 2004. xiii,

30, 31, 35

[15] R. Asadollahi, M. Salehie, and L. Tahvildari, “StarMX: A framework for developing self-managing

Java-based systems,” in ICSE Workshop on Software Engineering for Adaptive and Self-Managing
Systems, May 2009, pp. 58–67. xiii, 31, 32, 35

[16] D. Romero, R. Rouvoy, L. Seinturier, S. Chabridon, D. Conan, and N. Pessemier, “Enabling

Context-Aware Web Services: A Middleware Approach for Ubiquitous Environments,” in

Enabling Context-Aware Web Services: Methods, Architectures, and Technologies, M. Sheng,

J. Yu, and S. Dustdar, Eds. Chapman and Hall/CRC, May 2010, pp. 113–135. [Online]. Available:

http://hal.inria.fr/inria-00414070 xiii, 31, 32, 35, 36

[17] C. Ruz, F. Baude, and B. Sauvan, “Component-based generic approach for reconfigurable manage-

ment of component-based SOA applications,” in Proceedings of the 3rd International Workshop on
Monitoring, Adaptation and Beyond, 2010. xiii, 33, 35, 36

[18] NIST, “Final Version of NIST Cloud Computing Definition Published.” http://www.nist.gov/itl/csd/

cloud-102511.cfm, 2011. 1, 12, 107

[19] J. Rivera and R. van der Meulen, “Gartner Says the Road to Increased Enterprise Cloud Usage

Will Largely Run Through Tactical Business Solutions Addressing Specific Issues,” Tech. Rep.,

2013. [Online]. Available: http://www.gartner.com/newsroom/id/2581315 1

[20] L. Seinturier, P. Merle, D. Fournier, N. Dolet, V. Schiavoni, and J.-B. Stefani, “Reconfigurable

SCA Applications with the FraSCAti Platform,” in Proceedings of IEEE International Conference
on Services Computing, Bangalore, India, 2009, pp. 268–275. 2, 33, 107

112

http://books.google.fr/books?id=XHeoSgAACAAJ
http://hal.inria.fr/inria-00414070
http://www.nist.gov/itl/csd/cloud-102511.cfm
http://www.nist.gov/itl/csd/cloud-102511.cfm
http://www.gartner.com/newsroom/id/2581315


[21] S. Laws, M. Combellack, H. Mahbod, and S. Nash, Tuscany SCA in Action., 2011. [Online].

Available: http://dl.e-book-free.com/2013/07/tuscany_sca_in_action.pdf 2, 107

[22] P. Hnětynka and F. Plášil, “Dynamic Reconfiguration and Access to Services in Hierarchical

Component Models,” in Component-Based Software Engineering, ser. Lecture Notes in Computer

Science, I. Gorton, G. Heineman, I. Crnković, H. Schmidt, J. Stafford, C. Szyperski, and

K. Wallnau, Eds., vol. 4063. Springer Berlin Heidelberg, pp. 352–359. [Online]. Available:

http://dx.doi.org/10.1007/11783565_27 2, 10, 24, 35

[23] “CompatibleOne: the first real Open Cloud Broker,” 2013. [Online]. Available: http:

//www.compatibleone.org 3, 109

[24] “ EASI-CLOUDS: Extensible Architecture and Service Infrastructure for Cloud-aware Software ,”

2014. [Online]. Available: http://easi-clouds.eu 3, 109

[25] “Open Cloudware,” 2013. [Online]. Available: http://www.opencloudware.org 3

[26] “Cloud4SOA,” 2012. [Online]. Available: http://www.cloud4soa.eu 3

[27] T. Metsch and A. Edmonds, “Open Cloud Computing Interface - RESTful HTTP Rendering,”

Tech. Rep., 2011. [Online]. Available: http://www.ogf.org/documents/GFD.185.pdf 5, 14, 15, 87

[28] D. Booth, H. Haas, F. McCabe, E. Newcomer, M. Champion, C. Ferris, and D. Orchard, “Web

Services Architecture,” W3C Working Group Note, vol. 11, pp. 2005–1, 2004. 8

[29] S. Burbeck, “The Tao of e-business services: The evolution of Web applications into

service-oriented components with Web services,” IBM Software Group, 2000. [Online]. Available:

http://www-106 8

[30] M. P. Papazoglou, “Service-oriented computing: concepts, characteristics and directions,” in Pro-
ceedings of the Fourth International Conference on Web Information Systems Engineering, Dec.

2003, pp. 3–12. 8

[31] Open SOA Collaboration, “Service Component Architecture (SCA): SCA Assembly Model v1.00

specifications.” 2008. [Online]. Available: http://www.osoa.org 8, 9, 38

[32] M. Mohamed, D. Belaïd, and S. Tata, “How to Provide Monitoring Facilities to Services When They

Are Deployed in the Cloud?” in Proceedings of the International Conference on Cloud Computing
and Services Science, 2012, pp. 258–263. 9, 50

[33] ——, “Adding Monitoring and Reconfiguration Facilities for Service-Based Applications in the

Cloud,” in IEEE 27th International Conference on Advanced Information Networking and Appli-
cations, 2013. 9, 10

[34] R. Baldoni, R. Beraldi, S. Piergiovanni, and A. Virgillito, “Measuring notification loss in publish/-

subscribe communication systems.” in Proceedings of the 10th IEEE Pacific Rim International
Symposium, Dependable Computing, march 2004. 10

113

http://dl.e-book-free.com/2013/07/tuscany_sca_in_action.pdf
http://dx.doi.org/10.1007/11783565_27
http://www.compatibleone.org
http://www.compatibleone.org
http://easi-clouds.eu
http://www.opencloudware.org
http://www.cloud4soa.eu
http://www.ogf.org/documents/GFD.185.pdf
http://www-106
http://www.osoa.org


Bibliography

[35] S. Wang, F. Du, X. Li, Y. Li, and X. Han, “Research on dynamic reconfiguration technology of

cloud computing virtual services,” in IEEE International Conference on Cloud Computing and
Intelligence Systems, Sept 2011, pp. 348–352. 10

[36] M. C. Huebscher and J. A. McCann, “A survey of autonomic computing degrees, models, and

applications,” ACM Computing Surveys, vol. 40, no. 3, pp. 7:1–7:28, Aug. 2008. 11

[37] T. Metsch and A. Edmonds, “Open Cloud Computing Interface - Infrastructure,” Tech. Rep., 2011.

[Online]. Available: http://www.ogf.org/documents/GFD.184.pdf 14, 15, 97

[38] N. Podhorszki, Z. Balaton, and G. Gombás, “Monitoring Message-Passing Parallel Applications in

the Grid with GRM and Mercury Monitor,” in Grid Computing, ser. Lecture Notes in Computer

Science, M. Dikaiakos, Ed. Springer Berlin Heidelberg, vol. 3165, pp. 179–181. [Online].

Available: http://dx.doi.org/10.1007/978-3-540-28642-4_21 20, 35

[39] H. Huang and L. Wang, “P&P: A Combined Push-Pull Model for Resource Monitoring in Cloud

Computing Environment.” in IEEE 3rd International Conference on Cloud Computing , july 2010,

pp. 260–267. 21, 35

[40] S. Andreozzi et al., “GLUE Specification,” Tech. Rep., March 2009. [Online]. Available:

http://www.ogf.org/documents/GFD.147.pdf 21

[41] I. Foster, C. Kesselman, J. M. Nick, and S. Tuecke, “The Physiology of the Grid: An Open Grid

Services Architecture for Distributed Systems Integration,” Tech. Rep., 2002. [Online]. Available:

http://docencia.ac.upc.edu/dso/papers/ogsa.pdf 22

[42] W. Smith, “A system for monitoring and management of computational grids,” in Proceedings of
International Conference on Parallel Processing, 2002, pp. 55–62. 22, 35

[43] A. Cooke, A. J. G. Gray, L. Ma, W. Nutt, J. Magowan, M. Oevers, P. Taylor, R. Byrom, L. Field,

S. Hicks, J. Leake, M. Soni, and A. Wilson, “R-GMA: An Information Integration System for

Grid Monitoring,” in Proceedings of the 11th International Conference on Cooperative Information
Systems, 2003, pp. 462–481. 22, 35

[44] H. B. Newman, I. Legrand, P. Galvez, R. Voicu, and C. Cirstoiu, “MonALISA : A Distributed

Monitoring Service Architecture,” CoRR, vol. cs.DC/0306096, 2003. 23, 35

[45] T. Bowker, “Superior app management with JMX,” june 2001.

[Online]. Available: http://www.javaworld.com/article/2075350/java-web-development/

superior-app-management-with-jmx.html 23, 33

[46] N.-C. Pellegrini, “Dynamic reconfiguration of Corba-based applications,” in Proceedings of Tech-
nology of Object-Oriented Languages and Systems, 1999. 24, 35

[47] F. Plasil, D. Balek, and R. Janecek, “SOFA/DCUP: architecture for component trading and dynamic

updating,” in Proceedings of Fourth International Conference on Configurable Distributed Systems,

May 1998, pp. 43–51. 25

114

http://www.ogf.org/documents/GFD.184.pdf
http://dx.doi.org/10.1007/978-3-540-28642-4_21
http://www.ogf.org/documents/GFD.147.pdf
http://docencia.ac.upc.edu/dso/papers/ogsa.pdf
http://www.javaworld.com/article/2075350/java-web-development/superior-app-management-with-jmx.html
http://www.javaworld.com/article/2075350/java-web-development/superior-app-management-with-jmx.html


[48] Y. Li, Y. Lu, Y. Y. Yin, S. Deng, and J. Yin, “Towards QoS-Based Dynamic Reconfiguration of

SOA-Based Applications,” in IEEE Asia-Pacific Services Computing Conference, Dec 2010, pp.

107–114. 26, 35

[49] Y. Zhai, J. Zhang, and K.-J. Lin, “SOA Middleware Support for Service Process Reconfiguration

with End-to-End QoS Constraints,” in IEEE International Conference on Web Services, 2009, pp.

815–822. [Online]. Available: http://dx.doi.org/10.1109/ICWS.2009.126 26, 35

[50] J. Floch, S. Hallsteinsen, E. Stav, F. Eliassen, K. Lund, and E. Gjorven, “Using Architecture Models

for Runtime Adaptability,” IEEE Software Journal, vol. 23, pp. 62–70, 2006. 26, 35

[51] C. Becker, M. Handte, G. Schiele, and K. Rothermel, “PCOM - a component system for pervasive

computing,” in Proceedings of the Second IEEE Annual Conference on Pervasive Computing and
Communications, March 2004, pp. 67–76. 27, 35, 38

[52] O. W. crew, “LOOM .NET Project,” Tech. Rep. [Online]. Available: https://www.dcl.hpi.

uni-potsdam.de/research/loom 28

[53] R. Ribler, J. Vetter, H. Simitci, and D. Reed, “Autopilot: adaptive control of distributed applica-

tions,” in Proceedings of The Seventh International Symposium on High Performance Distributed
Computing, Jul 1998, pp. 172–179. 30, 35

[54] R. Rouvoy, D. Conan, and L. Seinturier, “Software Architecture Patterns for a Context-Processing

Middleware Framework,” IEEE Distributed Systems Online, vol. 9, p. 1, june 2008. 33

[55] T. Baker, O. Rana, R. Calinescu, R. Tolosana-Calasanz, and J. Bañares, “Towards Autonomic Cloud

Services Engineering via Intention Workflow Model,” in Economics of Grids, Clouds, Systems, and
Services, ser. Lecture Notes in Computer Science, J. Altmann, K. Vanmechelen, and O. Rana, Eds.

Springer International Publishing, 2013. 33

[56] J. Diaz-Montes, M. Zou, I. Rodero, and M. Parashar, “Enabling autonomic computing on federated

advanced cyberinfrastructures,” in Proceedings of the ACM Cloud and Autonomic Computing
Conference, 2013. [Online]. Available: http://doi.acm.org/10.1145/2494621.2494641 33

[57] M. Hasan, E. Magana, A. Clemm, L. Tucker, and S. Gudreddi, “Integrated and autonomic cloud

resource scaling,” in IEEE Network Operations and Management Symposium, 2012. 33

[58] D. Kurian and P. Chelliah, “An autonomic computing architecture for business applications,” in

World Congress on Information and Communication Technologies, 2012. 33

[59] D. Ionescu, B. Solomon, M. Litoiu, and M. Mihaescu, “A Robust Autonomic Computing Archi-

tecture for Server Virtualization,” in International Conference on Intelligent Engineering Systems,

2008. 33

[60] Z. Zhao, C. Gao, and F. Duan, “A survey on autonomic computing research,” in Asia-Pacific Con-
ference on Computational Intelligence and Industrial Applications, vol. 2, 2009. 33

115

http://dx.doi.org/10.1109/ICWS.2009.126
https://www.dcl.hpi.uni-potsdam.de/research/loom
https://www.dcl.hpi.uni-potsdam.de/research/loom
http://doi.acm.org/10.1145/2494621.2494641


Bibliography

[61] G. Martinovic and B. Zoric, “E-health Framework Based on Autonomic Cloud Computing,” in

Second International Conference on Cloud and Green Computing, 2012. 33

[62] D. Bantz, C. Bisdikian, D. Challener, J. Karidis, S. Mastrianni, A. Mohindra, D. Shea, and

M. Vanover, “Autonomic personal computing,” IBM Systems Journal, vol. 42, no. 1, 2003. 33

[63] C. Szyperski, Component Software: Beyond Object-Oriented Programming, 2nd ed. Boston, MA,

USA: Addison-Wesley/ACM Press, 2002. 38

[64] E. Bruneton, T. Coupaye, M. Leclercq, V. Quéma, and J.-B. Stefani, “The FRACTAL component

model and its support in Java: Experiences with Auto-adaptive and Reconfigurable Systems.” Soft-
ware Practice and Experience (SP&E), vol. 36, pp. 1257–1284, 2006. 38

[65] OSGI, “Open Services Gateway Initiative,” 1999. [Online]. Available: http://www.osgi.org 38

[66] S. Yangui, M. Mohamed, S. Tata, and S. Moalla, “Scalable Service Containers.” in Proceedings of
the third IEEE International Conference on Cloud Computing Technology and Science, 2011, pp.

348–356. 47

[67] M. Amziani, T. Melliti, and S. Tata, “Formal Modeling and Evaluation of Stateful Service-Based

Business Process Elasticity in the Cloud,” in OTM Conferences On the Move to Meaningful
Internet Systems, ser. Lecture Notes in Computer Science, R. Meersman, H. Panetto, T. Dillon,

J. Eder, Z. Bellahsene, N. Ritter, P. De Leenheer, and D. Dou, Eds. Springer Berlin Heidelberg,

2013, vol. 8185, pp. 21–38. [Online]. Available: http://dx.doi.org/10.1007/978-3-642-41030-7_3

53, 89

[68] A. Omezzine, S. Yangui, N. Bellamine, and S. Tata, “Mobile Service Micro-containers for Cloud

Environments,” in IEEE 21st International Workshop on Enabling Technologies: Infrastructure
for Collaborative Enterprises, June 2012, pp. 154–160. 53

[69] “OpenNebula.” 2011. [Online]. Available: http://opennebula.org 82

[70] “Openstack.” 2011. [Online]. Available: http://www.openstack.org 82

[71] “JAVA programming Assistant.” 2010. [Online]. Available: http://www.csg.is.titech.ac.jp/~chiba/

javassist 82

[72] Oracle, “Java 2 Platform API Specification,” 2010. [Online]. Available: http://docs.oracle.com/

javase/7/docs/api/java/lang/reflect/package-summary.html 82

[73] M. Sellami, S. Yangui, M. Mohamed, and S. Tata, “Open Cloud Computing Interface -

Application,” Tech. Rep., 2013. [Online]. Available: http://www-inf.int-evry.fr/SIMBAD/tools/

OCCI/occi-application.pdf 86, 94

[74] S. Yangui, M. Mohamed, M. Sellami, and S. Tata, “Open Cloud Computing Interface -

Platform,” Tech. Rep., 2013. [Online]. Available: http://www-inf.int-evry.fr/SIMBAD/tools/OCCI/

occi-platform.pdf 86, 94

116

http://www.osgi.org
http://dx.doi.org/10.1007/978-3-642-41030-7_3
http://opennebula.org
http://www.openstack.org
http://www.csg.is.titech.ac.jp/~chiba/javassist
http://www.csg.is.titech.ac.jp/~chiba/javassist
http://docs.oracle.com/javase/7/docs/api/java/lang/reflect/package-summary.html
http://docs.oracle.com/javase/7/docs/api/java/lang/reflect/package-summary.html
http://www-inf.int-evry.fr/SIMBAD/tools/OCCI/occi-application.pdf
http://www-inf.int-evry.fr/SIMBAD/tools/OCCI/occi-application.pdf
http://www-inf.int-evry.fr/SIMBAD/tools/OCCI/occi-platform.pdf
http://www-inf.int-evry.fr/SIMBAD/tools/OCCI/occi-platform.pdf


[75] “Open Cloud Computing Interface - Platform and Application,” 2014. [Online]. Available:

http://www-inf.it-sudparis.eu/SIMBAD/tools/OCCI 86

[76] M. Sellami, S. Yangui, M. Mohamed, and S. Tata, “PaaS-Independent Provisioning and Manage-

ment of Applications in the Cloud,” in IEEE Sixth International Conference on Cloud Computing,

June 2013, pp. 693–700. 87, 94

[77] S. Yangui, I.-J. Marshall, J.-P. Laisne, and S. Tata, “CompatibleOne: The Open Source

Cloud Broker,” Journal of Grid Computing, vol. 12, no. 1, pp. 93–109. [Online]. Available:

http://dx.doi.org/10.1007/s10723-013-9285-0 87

[78] L. Richardson and S. Ruby, Restful Web Services, 1st ed. O’Reilly, 2007. 87

[79] J. Lautamäki, A. Nieminen, J. Koskinen, T. Aho, T. Mikkonen, and M. Englund, “CoRED:

Browser-based Collaborative Real-time Editor for Java Web Applications,” in Proceedings of the
ACM Conference on Computer Supported Cooperative Work, 2012, pp. 1307–1316. [Online].

Available: http://doi.acm.org/10.1145/2145204.2145399 88

[80] E. Hossny, S. Khattab, F. Omara, and H. Hassan, “A Case Study for Deploying Applications on

Heterogeneous PaaS Platforms,” in International Conference on Cloud Computing and Big Data,

Dec 2013, pp. 246–253. 88

[81] J. Geelan et al., “Twenty-One Experts Define Cloud Computing,” 2009. [Online]. Available:

http://virtualization.sys-con.com/node/612375 88

[82] M. Mohamed, S. Yangui, S. Moalla, and S. Tata, “Web Service Micro-Container for

Service-based Applications in Cloud Environments,” in IEEE International Workshop on Enabling
Technologies: Infrastructure for Collaborative Enterprises, 2011, pp. 61–66. [Online]. Available:

http://dx.doi.org/10.1109/WETICE.2011.51 88

[83] A. Alves et al., “Web Services Business Process Execution Language 2.0 .” OASIS, Tech. Rep.,

2007. [Online]. Available: http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html 89

[84] Open Management Group, “Business Process Model and Notation (BPMN),” Tech. Rep., 2011.

[Online]. Available: http://www.bpmn.org 89

[85] C. A. Petri, “Communication with automata,” Ph.D. dissertation, Universität Hamburg, 1966. 89

[86] M. Amziani, T. Melliti, and S. Tata, “Formal Modeling and Evaluation of Service-Based Business

Process Elasticity in the Cloud,” in IEEE 22nd International Workshop on Enabling Technologies:
Infrastructure for Collaborative Enterprises, June 2013, pp. 284–291. 92

[87] H. Ghanbari, B. Simmons, M. Litoiu, and G. Iszlai, “Exploring Alternative Approaches to Imple-

ment an Elasticity Policy,” in IEEE International Conference on Cloud Computing, July 2011, pp.

716–723. 92

117

http://www-inf.it-sudparis.eu/SIMBAD/tools/OCCI
http://dx.doi.org/10.1007/s10723-013-9285-0
http://doi.acm.org/10.1145/2145204.2145399
http://virtualization.sys-con.com/node/612375
http://dx.doi.org/10.1109/WETICE.2011.51
http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html
http://www.bpmn.org


Bibliography

[88] G. Galante and L. de Bona, “A Survey on Cloud Computing Elasticity,” in IEEE International
Conference on Utility and Cloud Computing, 2012, pp. 263–270. 92

[89] L. M. Vaquero, L. Rodero-Merino, and R. Buyya, “Dynamically Scaling Applications in the

Cloud,” SIGCOMM Computer Communication Review, vol. 41, no. 1, pp. 45–52, Jan. 2011.

[Online]. Available: http://doi.acm.org/10.1145/1925861.1925869 92

[90] Cloud Foundry Blog, “Monitoring Cloud Foundry Applications with

New Relic,” 2014. [Online]. Available: http://blog.cloudfoundry.com/2013/10/10/

monitoring-cloud-foundry-applications-with-new-relic 96, 102

[91] D. van Thanh and I. Jrstad, “A service-oriented architecture framework for mobile services,” in

Proceedings of the advanced industrial conference on telecommunications/service assurance with
partial and intermittent resources conference/e-learning on telecommunications workshop, July

2005, pp. 65–70. 107

118

http://doi.acm.org/10.1145/1925861.1925869
http://blog.cloudfoundry.com/2013/10/10/monitoring-cloud-foundry-applications-with-new-relic
http://blog.cloudfoundry.com/2013/10/10/monitoring-cloud-foundry-applications-with-new-relic

	Introduction
	General Context
	Motivation And Problem Description
	Research Goals
	Approach
	Thesis Structure

	Background
	Introduction
	Service Oriented Architecture and Service Component Architecture
	Monitoring, Reconfiguration and Autonomic Computing
	Monitoring
	Reconfiguration
	Autonomic Computing

	Cloud Computing
	Open Cloud Computing Interface (OCCI)
	Conclusion

	State of the Art
	Introduction
	Monitoring Related Work
	Reconfiguration Related Work
	Autonomic Computing Related Work
	Synthesis of Related Work
	Conclusion

	Monitoring and Reconfiguration of SCA-based applications in the Cloud
	Introduction
	Adding Monitoring and Reconfiguration facilities to component
	Extended SCA Model
	GenericProxy Service:
	Reconfiguration
	Monitoring by Polling
	Monitoring by Subscription
	Transformation Example:

	Monitoring and Reconfiguration within Scalable Micro-containers
	Deployment Framework and generated Micro-Container
	Adding Monitoring and Reconfiguration to Micro-Containers

	Adding FCAPS properties to components
	Extension of Deployment Framework for FCAPS management
	IMMC Anatomy
	FCAPS Manager and IMMC basic functionalities
	FCAPS Management

	Conclusion

	Monitoring and Reconfiguration of Cloud Resources
	Introduction
	Monitoring and Reconfiguration for Cloud Resources
	Adding Monitoring and Reconfiguration facilities to Cloud Resources
	OCCI description for Monitoring and Reconfiguration
	Example of using OCCI Monitoring and Reconfiguration extension

	Autonomic Management for Cloud Resources
	MAPE: Monitor, Analyze, Plan and Execute
	MAPE for Cloud Resources
	OCCI extension for Autonomic Management

	Autonomic Infrastructure for Cloud Resources
	Adding FCAPS Management to Cloud Resources
	Conclusion

	Evaluation and Validation
	Introduction
	Common Environment description
	Evaluation of Monitoring and Reconfiguration Approach of SCA-based applications in the Cloud
	Implementation
	Evaluation

	Evaluation of Autonomic Computing Approach for Cloud Resources
	Background
	Implementation
	Evaluations

	Conclusion

	Conclusion and Perspectives
	Contributions
	Perspectives

	Bibliography

