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Résumé

La théorie de l’homologie généralise en dimensions supérieures la no-
tion de connectivité dans les graphes. Étant donné un domaine, décrit par
un complexe simplicial, elle définit une famille de groupes qui capturent le
nombre de composantes connexes, le nombre de trous, le nombre de cav-
ités et le nombre de motifs équivalents en dimensions supérieures. En pra-
tique, l’homologie permet d’analyser des systèmes de données complexes,
interprétés comme des nuages de points dans des espaces métriques. La
théorie de l’homologie persistante introduit une notion robuste d’homologie
pour l’inférence topologique. Son champ d’application est vaste, et com-
prend notamment la description d’espaces des configurations de systèmes
dynamiques complexes, la classification de formes soumises à des déforma-
tions et l’apprentissage en imagerie médicale. Dans cette thèse, nous étudions
les ramifications algorithmiques de l’homologie persistante. En premier lieu,
nous introduisons l’arbre des simplexes, une structure de données efficace
pour construire et manipuler des complexes simpliciaux de grandes dimen-
sions. Nous présentons ensuite une implémentation rapide de l’algorithme
de cohomologie persistante à l’aide d’une matrice d’annotations compressée.
Nous raffinons également l’inférence de topologie en décrivant une notion
de torsion en homologie persistante, et nous introduisons la méthode de
reconstruction modulaire pour son calcul. Enfin, nous présentons un algo-
rithme de calcul de l’homologie persistante zigzag, qui est une généralisation
algébrique de la persistance. Pour cet algorithme, nous introduisons de nou-
veaux théorèmes de transformations locales en théorie des représentations
de carquois, appelés principes du diamant. Ces algorithmes sont tous implé-
mentés dans la librairie de calcul Gudhi.
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Summary

The theory of homology generalizes the notion of connectivity in graphs
to higher dimensions. It defines a family of groups on a domain, described
discretely by a simplicial complex, that captures the connected components,
the holes, the cavities and higher-dimensional equivalents. In practice, the
generality and flexibility of homology allows the analysis of complex data,
interpreted as point clouds in metric spaces. The theory of persistent ho-
mology introduces a robust notion of homology for topology inference. Its
applications are various and range from the description of high dimensional
configuration spaces of complex dynamical systems, classification of shapes
under deformations and learning in medical imaging. In this thesis, we ex-
plore the algorithmic ramifications of persistent homology. We first introduce
the simplex tree, an efficient data structure to construct and maintain high
dimensional simplicial complexes. We then present a fast implementation of
persistent cohomology via the compressed annotation matrix data structure.
We also refine the computation of persistence by describing ideas of homo-
logical torsion in this framework, and introduce the modular reconstruction
method for computation. Finally, we present an algorithm to compute zigzag
persistent homology, an algebraic generalization of persistence. To do so, we
introduce new local transformation theorems in quiver representation theory,
called diamond principles. All algorithms are implemented in the computa-
tional library Gudhi.
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Introduction

Computational Topology. Topology is the area of mathematics that for-
malizes and studies ideas of continuity. Continuity is a local property. It is
defined by adding, to set of points, a qualitative notion of "proximity", re-
lying on the definition of neighborhoods and limit. The notion of proximity
allows the drawing of a global figure, called a topological space. Consider
the three shapes of Figure 1. They geometrically appear different, but they

Figure 1: Three homeomorphic shapes.

are topologically identical, in the sense that the proximity between points
is the same: every small enough neighborhood around a point is a segment,
and all points are connected by a path. This topological equivalence is mea-
sured by the concept of homeomorphism. A homeomorphism h between
two topological spaces X and Y is a continuous bijective map h : X → Y
whose inverse h−1 is continuous. Topology studies topological spaces up to
homeomorphism, and in particular studies topological invariants of classes
of homeomorphic topological spaces.

Algebraic topology is the subdomain of topology that assigns algebraic
invariants to classes of homeomorphic topological spaces. The approach we
are interested in is to define algebraic invariants from the incidence relations
in a cellular discrete approximation of the topological space; specifically, a
cell complex. We focus in this dissertion on simplicial complexes but re-
sults generalize naturally to arbitrary cell complexes. A simplicial complex
is a combinatorial structure that consists of a collection of simplices – which
are elementary building blocks like vertices, edges, triangles, tetrahedra and
higher-dimensional equivalent – glued together along common faces. The
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Figure 2: Graph whose underlying domain is homeomorphic to a shape.

graph in Figure 2 is a simplicial complex (containing only vertices and edges
connected by their endpoints) that describes a domain topologically equiva-
lent to a continuous shape. Consequently, through adjacency and incidence
relations between simplices, simplicial complexes offer a discrete encoding of
the notion of proximity in topological spaces.

Homology Theory. A natural topological invariant for spaces is path
connectivity: are any two points in a topological space connected by a path?
In the discrete setting, this question reduces to graph connectivity. Homology
theory generalizes the notion of connectivity to higher dimensions. Homology
attaches to a topological space a family of groups Hd, one per dimension d,
as topological invariants. Intuitively, H0 captures the number of connected
components by measuring the void between them, H1 captures the number
of holes by encircling them with non-contractible loops, H2 captures the
number of cavities by wrapping them with non-contractible surfaces, etc.
Consider the torus and its homology groups H0, H1 and H2 in Figure 3.





H0
∼= Z

H1
∼= Z⊕ Z

H2
∼= Z

Figure 3: Homology groups with Z coefficients of the torus.

The number of Z summands in the primary decomposition of Hd corresponds
to the number of homology features of dimension d: the torus has one con-
nected component (dimension 0), two non-contractible independent loops
(dimension 1, pictured in blue) and one cavity (dimension 2).

The information provided by homology groups is more precise and they
also capture a notion of high-dimensional "twisting" of the shape. Consider
the Klein bottle, which is a non-orientable surface whose 3-dimensional self-
intersecting projection is pictured in Figure 4. The Klein bottle has one
non-contractible loop, inducing the Z summand in the primary decomposi-
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



H0
∼= Z

H1
∼= Z⊕ Z2

H2
∼= 0

Figure 4: Homology groups with Z coefficients of the Klein bottle.

tion of H1, and the "high-dimensional twisting" is represented by the cyclic
summand Z2.

Topology in the Real World. The generality of topology has made it
a great unifying theory of mathematics, where topological spaces show up
naturally in almost all domains. As a consequence, lots of systems in ap-
plied sciences may be interpreted as topological spaces, and studied per se.
A noticeable example is topological inference, where a system – a probability
distribution, a dynamical system, etc – is known only by a discrete sam-
pling P and a proximity relation between points, like a metric. The classic
approach is to fix a scale ε at which an approximation of the underlying
space is reconstructed, using a simplicial complex, from which the homology
is computed; see Figure 5. There exist many simplicial complexes (like Čech

{
H0
∼= Z

H1
∼= Zε

Figure 5: Homeomorphic approximation of a topological space from a point sample.

complex, Rips complex, and witness complex) defined, for a given scale pa-
rameter ε, on a point cloud. The scale ε represents, intuitively, the maximal
size of a simplex.

Homology groups are meant to differenciate topological spaces that are
not homeomorphic. They are consequently sensitive to discontinous trans-
formations of a space. By nature, point clouds are discontinuous and the
slightest perturbation of the points or variation of scale may affect the ho-
mology groups of the approximating complex; see Figure 6. In order to
provide a robust topological invariant in such a setting, persistent homology
has been introduced as a multi-scale theory of homology.
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ε ε′

Figure 6: Approximations from a perturbed point cloud with the wrong homology.

The Theory of Persistent Homology. Consider now not only one topo-
logical space X, but a sequence of topological spaces X1, · · · ,Xn connected
by continuous maps Xi → Xi+1 or Xi ← Xi+1. These continuous maps
induce group homomorphisms at the homology level for any dimension d:

X1

��

oo // X2

��

oo // · · · oo // Xn−1

��

oo // Xn

��
Hd(X1) oo // Hd(X2) oo // · · · oo // Hd(Xn−1) oo // Hd(Xn)

where an arrow ←→ is either backward or forward and each square:

Xi

��

// Xi+1

��

or Xi

��

oo Xi+1

��
Hd(Xi) // Hd(Xi+1) Hd(Xi) oo Hd(Xi+1)

commutes. The object of study of persistence is the induced sequence of
homology groups. This is a module. When homology is considered with
coefficients in a field k – a somehow weaker version of homology – Gabriel’s
theorem from quiver theory tells us that the sequence admits a direct sum
decomposition into interval modules, which may be interpreted as persistent
topological features. Specifically, define I[b; d] to be the interval module:

0 oo 0 // · · · oo
0 // 0 oo 0 // k oo 1 // · · · oo

1 // k oo 0 // 0 oo 0 // · · · oo
0 // 0︸ ︷︷ ︸

[1;b−1]

︸ ︷︷ ︸
[b;d]

︸ ︷︷ ︸
[d+1;n]

that we interpret as a homology feature which is born at index b and dies
after index d. The sequence of homology groups admits a direct sum decom-
position of the form

⊕
i I[bi; di]. Computing the persistent homology of the

sequence of topological spaces X1, · · · ,Xn consists in computing this interval
decomposition.

Considering homology with field coefficients is necessary for the interval
decomposition to exist. However, integral homology is strictly more infor-
mative than the homology groups with coefficients in a field k, denoted by
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Hd(X, k). Indeed, Hd(X, k) has the structure of a k-vector space and has
a decomposition Hd(X, k) ∼= kβ , with β the dimension of the vector space.
Consequently, there is no notion of torsion. Specifically, the torsion sub-
groups in the decomposition of Hd(X,Z) either vanish or appear as infinite
in the decomposition of Hd(X, k). As an example, consider the homology
of the torus and the Klein bottle with Z2 coefficients in Figure 7. Their





H0(Z2) ∼= Z2

H1(Z2) ∼= Z2 ⊕ Z2

H2(Z2) ∼= Z2





Figure 7: Homology with Z2 coefficients of the torus and the Klein bottle.

homology groups are identical whereas the spaces are not homeomorphic.
For the torus, every Z summand of its integral homology turns into a Z2

summand in homology with Z2 coefficients, and one can read the same in-
formation in term of homology features. For the Klein bottle though, the Z2

summand capturing the torsion in integral homology turns into a Z2 sum-
mand in H1(Z2). Note also that the 2-homology is affected. Finally, if k is
a field of characteristic different from 2, the homology with k coefficients of
the torus and the Klein bottle become different, and one can distinguish be-
tween the two spaces from their homology. The universal coefficient theorem
of homology relates the integral homology groups of a topological space with
its homology groups with k coefficients, depending on the characteristic of
the field k.

We now apply the idea of persistence to a noisy sample of one of our ear-
lier topological spaces. We reconstruct an approximation of the topological
space at increasing scales ε, which induces a sequence of growing simplicial
complexes Kε1 →֒ · · · →֒ Kεn , ε1 ≤ · · · ≤ εn, where arrows are all left-to-
right and the continuous maps between spaces are inclusions; see Figure 8.
This case is known as persistent homology and is the standard approach in
topological inference. We compute the direct sum decomposition into inter-
val modules of the induced sequence of homology groups and represent each
interval I[b; d] of the decomposition by a segment [b; d], hence giving a persis-
tence barcode. The long bars in the barcode give the meaningful topological
features of the underlying space, while the short bars are topological noise.
Additionally, unlike homology, persistent homology admits good stability
properties, which make it a robust mathematical invariant for the study of
topological spaces in practice.

x



H1

ε1 ε2 ε3 ε4 ε5 ε6 ε7

Figure 8: Persistent homology for topological inference.

The study of a persistence module with arrows in both directions is known
as zigzag persistent homology. It is an important improvement over standard
persistent homology. Indeed, persistent homology is defined for a nested
family of topological spaces, which essentially reduces its area of study to
the multi-scale example presented above. However, other parameters are of
interest for the study of data. An important one is the number of points used
as vertices for constructing the simplicial complexes. For example, one may
want to subsample many times a point cloud, in order to reduce the size of
the simplicial complexes constructed or based on density considerations. The
simplicial complexes obtained for the different subsamples are not connected
by inclusions, and we cannot study their persistent homology. However,
zigzag persistence allows one to connect these simplicial complexes in a global
zigzag module. Consider the example of Figure 9, where we adapt the scale
ε to the number of points we sample (the more points, the smaller is ε).
In this example, up-right arrows consist in adding more points, and up-left
ones consist in increasing the scale; they are both inclusions but in different
directions. With this approach, we are able to infer the homology of our
previous example while maintaining much smaller simplicial complexes.

The Algorithmic Problem. Going back to the simple problem of path
connectivity, an algebraic algorithm to determine whether a graph G(V,E)
is connected or not could consist in representing the graph by its |V | × |E|-
incidence matrix and computing its rank r. The incidence matrix of a graph
represents the incidence relations between vertices and oriented edges. Given

xi



H1

ε1 ε2 ε3 ε4 ε5 ε6 ε7

Figure 9: Zigzag persistent homology for topological inference.

the graph represented by its incidence matrix M in Figure 10, a diagonal-
isation of M gives us its rank. Algebraic graph theory teaches us that the
graph is connected iff |V | − r = 1. However, this approach is not natural
for two reasons. The first one is that the encoding of the graph with an inci-
dence matrix is not efficient. In the context of topology, a topological space
has usually a sparse connectivity; an adjacency list encoding is consequently
more appropriate. The second one is that the connectivity of a graph may be
computed with a simple graph traversal, or with a union-find data structure
depending on the graph representation; see Figure 11.

The connectivity example for the graph seems a bit far-fetched, because
historically graphs have been studied as combinatorial structures before be-
ing studied algebraically. However, despite being a higher-dimensional gen-
eralization of connectivity in graphs, the homology of simplicial complexes
is a mathematical theory that relies on non-trivial algebra, and studies an
intricate combinatorial structure. Consequently, existing algorithms in com-
putational topology tend to represent all incidence relations explicitly and









−1 −1 0 −1

1 0 −1 0

0 1 1 0

0 0 0 1









12 13 23 14

1

2

3

4

 









1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 0









1 2

34

Figure 10: Graph represented by its incidence matrix. Connectivity is computed
by diagonalising the incidence matrix.

xii



1 2

34

 

1

2 3 4

Figure 11: Graph represented by an adjacency list data structure. Connectivity is
computed with union-find.

rely on black-box matrix algorithms, without taking advantage of the intrin-
sically combinatorial structure of the problem.

In light of former mathematical and computer algebra works in the do-
main, the main thread of this dissertation is to revisit computational topol-
ogy towards the design of efficient algorithms, from point clouds to persis-
tence barcodes.

State of the Art. Homology groups, with arbitrary coefficients, of a sim-
plicial complex are known to be computable with a reduction to Smith nor-
mal form of matrices representing all the incidence relations between sim-
plices in all dimensions [59], leading to a O(n3) algorithm for a complex with
n simplices and for coefficients in a finite field k. Efficient methods exist for
the computation [41].

The first attempt to exploit the combinatorial structure of the problem
was to generalize the disjoint-set implementation of graph connectivity to
the computation of homology in a field k of complexes embedded on the
3-sphere [37]. The algorithm is simple and has a quasi-linear O(nα(n))
time complexity – using a union-find data structure [32] and where α(·)
is the slowly growing inverse Ackermann function – which is a substancial
improvement compared to the Smith normal form approach. The algorithm
is dynamic and, up to a O(n log n) time for reordering the simplices, adapts
to the computation of persistent homology.

The concept of persistent homology has been introduced in [43] for 3-
dimensional complexes and for homology with Z2 coefficients, together with
an efficient sparse matrix implementation. Both theory and algorithm have
been generalized to arbitrary dimensions and coefficient fields in [70]. The
later article analyzes the sequence of homology groups with k coefficients as
a k[t]-module, and shows that persistent homology may be computed by the
reduction to column echelon form of a single incidence matrix.

A persistent cohomology algorithm [35] has been introduced as a new
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approach – using cohomology, the dual of homology – to compute persistence.
By duality, it computes the same decomposition of the persistence module,
but shows better performance in practice. An interesting presentation of the
later algorithm was introduced in [40], where a cohomological information is
attached to each simplex of the complex as an annotation.

Both persistent homology and cohomology algorithms are simple algo-
rithms reducing to the computation of the echelon form of the incidence
matrix of a complex, and run in O(n3) time with O(n2) memory.

The major property of persistent homology is its stability with regard
to perturbation of the input sequence of topological spaces. This has been
proved in [30]. This result validates persistent homology as the right tool to
study the topology of a space in practice.

Persistent homology has been generalized in [24] to the theory of zigzag
persistence. The authors use quiver theory [38, 60] to give a general frame-
work for the decomposition of persistence modules, and introduce a general
algebraic algorithm for computing their decomposition. The algorithm is
applied to zigzag persistent homology in [25], and admits a cubic complexity
analysis. Compared to persistent homology, the description of the zigzag
persistence algorithm requires extra machinery, which makes it more chal-
lenging to grasp the higher-level picture of how and why it works. The
algorithm performs reasonably well in practice but is nowhere as efficient as
the optimized algorithms for standard persistence described below.

The complexity of persistent homology and zigzag persistent homology
algorithms has been improved in various directions. The authors of [29]
present an output-sensitive algorithm in the number of long-life homology
features. The complexity of zigzag persistence homology, and consequently
persistent homology as well, has been improved to matrix multiplication time
in [54]. These algorithms are based on advanced computer matrix algebra,
and remain essentially theoretical.

Finally, computational topology knows an exciting expansion in various
applied domains, requiring more efficient computational methods. This is
in particular visible through the publication of [42], introducing the founda-
tions of computational topology and making the domain accessible to a large
audience.

During my Ph.D. studies, other directions have been followed in order to
improve the algorithms in computational topology. One direction has been
to improve the matrix algorithm for persistent homology. In [10] the authors
show that most of the computation can be avoided due to the structure of
the reduced matrix, leading to a significant improvement in practice. They
also show that the algorithm may be parallelized, and, in a later publication,
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distributed [11]. Another direction has been to simplify combinatorially the
input complex using Morse simplifications [55] in order to compute persis-
tence on smaller complexes.

Finally, various computational libraries exist in the domain; we mention
three of them. The historically first library is JPlex, which furnishes con-
struction of Rips and witness complexes, as well as the computation of the
classic persistent homology algorithm. Dionysus [56] is a widely used library
that implements the construction of Rips complexes, the matrix reduction
algorithms for persistent homology and persistent cohomology [35, 70] with
Zp coefficients, as well as the O(n3) algorithm for zigzag persistence de-
scribed in [25]. Fianlly, PHAT [9] is a library that implements the optimized
computation of persistent homology of [10] and its parallelized version with
Z2 coefficients.

Contribution. This dissertation presents a complete and coherent set of
effective algorithms and data structures to solve the algorithmic problems
presented above, taking advantage of the intrinsically combinatorial nature
of computational homology. We present efficient algorithms and data struc-
tures to construct and represent simplicial complexes and compute their
persistent homology. We present also an algorithm to compute persistent
homology with various coefficients and infer the torsion subgroups of the
integral homology of the approximated topological space. We then intro-
duce an algorithm for computing zigzag persistence homology. Finally, we
present the design of a computational library implementing these algorithms
and data structures.

In Part I, we introduce the simplex tree data structure to represent gen-
eral simplicial complexes. The simplex tree may be interpreted as a spanning
tree of the Hasse diagram of the complex – representing all incidence relations
between simplices – that respects a notion of lexicographic order between the
ordered lists of vertices of the simplices. The data structure requires O(1)
memory word per simplex – which is optimal in persistence where an order
of the simplices must be represented – and allows the efficient construction
of simplicial complexes from point sets (Rips complexes, witness complexes),
and their manipulation (retrieval of incidence relations, insertion, deletion,
edge contraction, etc). The work has been published in [BM12, BM14b] and
received the conference best paper award at the European Symposium on
Algorithms 2012.

In Part II, we present the compressed annotation matrix, a data structure
to efficiently compute persistent cohomology via the annotation algorithm
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of [40]. Taking advantage of the structure of cohomology, we introduce a
framework separating the represention of the simplicial complex from the
representation of the cohomology groups, in order to design an efficient
sequential algorithm. The algorithm may be seen as a generalization of
the union-find algorithm for low dimensional persistent homology on the 3-
sphere [37], where a cohomology annotation is attached to each simplex. In
particular, most of the algebraic computation is replaced with combinatorial
union-find operations. The work has been published in [BDM13] and a jour-
nal version has been invited to a special issue of Algorithmica [BDM15]. The
algorithm is the most stable and one of the most efficient implementations
currently available.

In Part III, we present an algorithm for computing persistent homol-
ogy while infering efficiently torsion coefficients of the homology groups. As
explained earlier, homology with field coefficients, as opposed to homology
with integral coefficients, provides a less informative description of the topol-
ogy of a space. In particular, the description of the homology groups with
coefficients in a field is perturbed by the existence of torsion subgroups in
integral homology. As persistent homology must be computed with field co-
efficients for an interval decomposition to exist, we overcome this difficulty
by formulating an arithmetic framework for computing persistent homology
with coefficients in a family of fields with distinct characteristics simultane-
ously. From this computation, one can reconstruct the integral homology
groups using the universal coefficient theorem. The algorithm admits an
output-sensitive complexity analysis, in terms of the differences in the inter-
val decompositions of the persistence module with different coefficients. The
work has been published in [BM14a]. The algorithm is the only non-trivial
solution proposed to the problem of computing persistence with different
coefficient fields, and shows only a small overhead in practice compared to
persistence in a single field, while furnishing more topological information.

In Part IV, we introduce a simple algorithm for computing zigzag per-
sistence, designed in the same spirit as the standard persistence algorithm.
Our algorithm reduces a single matrix, maintains an explicit set of chains
encoding the persistent homology of the current zigzag, and updates it under
simplex insertions and removals. The total worst-case running time matches
the usual cubic bound. A noticeable difference with the standard persis-
tence algorithm is that we do not insert or remove new simplices at the end
of the zigzag, but rather in the middle. To do so, we use arrow reflections
and transpositions, in the same spirit as reflection functors in quiver theory.
Our analysis introduces a new kind of reflection called the weak diamond,
for which we are able to predict the changes in the interval decomposition
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and associated compatible bases. Arrow transpositions have been studied
previously in the context of standard persistent homology [31], and we ex-
tend the study to the context of zigzag persistence. The algorithm compares
favorably to the existing one in practice. Moreover, being close in nature to
the standard persistence algorithm, it is potentially amenable to the same
optimizations as the ones described in Parts I, II and III of this disserta-
tion. This opens exciting research questions towards very efficient zigzag
persistence implementations. The work has been submitted [MO15].

The theoretical techniques introduced in this dissertation are of practi-
cal significance, and open new computational horizons for applications. We
present in Part V the design of the Gudhi library (https://project.inria.
fr/gudhi/software/), a generic C++ computational library implementing
the algorithms and data structures mentioned above. The work has been
published in [MBGY14]. The goal of the Gudhi library is to make avail-
able sophisticated tools for complex high-dimensional geometry and topol-
ogy computation. The simplex tree and persistent cohomology packages are
available at [Mar].

The mathematical concepts involved in the different parts of the disser-
tation are diverse. Consequently, Part I to IV begin with introductory chap-
ters. These chapters give the reader the material to understand formally the
contributions presented in this work, and the context in which they have
been developed. When the concepts mentioned in the introductory chapters
are not new, their presentation, focused towards the algorithmic nature of
the theory and its various algorithmic branches, is original.
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Figure 12: Chapter dependency.

Each part of this dissertation presents an algorithmic problem and a
solution. They are all independent. However, as illustrated in Chapter 14,
solving computationally a standard topological problem requires the use of
all methods from Part I to Part IV chronologically.

Parts I to IV are subdivided into three chapters. The first chapter con-
tains the necessary background to understand formally the problem treated,
the underlying motivation and the state of the art. The second chapter
introduces an algorithmic solution and the third chapter presents practical
performance, except for Part IV which is of a more theoretical nature and
contains proofs of validity of the algorithm.

Any path starting from the root in Figure 12 is self-contained. In par-
ticular, walking entirely the horizontal path of the dependency tree gives a
complete introduction to computational topology and the topology inference
problem, with a view towards algorithms. Specifically, the motivation un-
der this introduction to computational topology is to start from the general
mathematical concepts of topology to describe formally how to define topo-
logical invariants that may be computed in a discrete setting and that are
of interest in practice.

The concepts of topology are not presented in their most general form,
but rather on a suitable level for computation. Theorems are proved, apart
from the ones requiring background out of scope of this dissertation. For
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these later results, sketches of proof are provided for giving an intuition to
the reader.
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Applications and Experimental Protocol

The work presented in this dissertation is of theoretical nature; it consists
in the design of algorithms and data structures to solve complex combinato-
rial and algebraic problems. However, these methods are of practical signif-
icance. An emphasis is put on the efficiency of these methods on real-world
problems, as expressed by the detailed experiments provided in each part of
this dissertation and culminating in the design and demonstration of use of
a computational library in Part V.

The algorithmical study of high-dimensional (more than 2 or 3) shapes
by a topological approach is a recent research topic. Persistent homology
has become a mathematical domain per se in the years 2000. Zigzag per-
sistent homology has been introduced even more recently and its theoretical
foundation are still not fully understood (see the Concluding Remarks of
this dissertation). As a consequence, despite the great success of persistence
in the applied sciences, it is still quite early to establish a list of applied
domains in which persistent homology is the right tool.

As already suggested in the Introduction, we have decided to focus in this
work on the problems of topological reconstruction and topological inference.
They are, at the same time, the more mature theoretically, the more general
model of reality and they offer the possibility for an interesting range experi-
ments. The problem is the following; we assume we are given a set of points,
with a notion of distance between them, sampling an unknown topological
space. The problem is to compute topological invariants of this space, by
reconstructing an approximation of it and computing the topology of this
approximation. Figures 5, 8 and 9 of the Introduction picture examples of
this problem.

The topology inference from a discrete sample is a problem that is the-
oretically mature because all computations may be done with theoretical
garantees. This will be detailled in the first Chapter of every Part of this
dissertation. It is a good model of reality because of the generality of the
concept of topological space, which is a simple set with a general notion
of proximity between points (see Chapter 1. Hence, many systems may be
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Data manifold embedded D d

Bud ✓ ✓ 3 2

Nep ✓ ✓ 3 2

Cy8 ✗ ✓ 24 2

Kl ✓ ✓ 5 2

L35 ✓ ✗ − 3

L57 ✓ ✗ − 3

S3 ✓ ✓ 4 3

S4 ✓ ✓ 5 4

Bro ✗ ✓ 25 unknown

Figure 13: Data sets used in the experiments.

modeled as a topological space, and study as such. We now enumerate the
topology inference experiments we use to validate the practical performance
of our algorithmic methods.

Experimental Protocol. All along this work, we use a variety of both
real and synthetic data sets, summarized in Figure 13.

• Bud and Nep are sets of points sampled from the surfaces in R3 of,
respectively, the Happy Buddha from the Stanford 3D Scanning Repos-
itory [62] and the Neptune statue from the Aim@Shape Project [3].

• Cy8 is a set of points in R24, sampled from the space of conformations
of the cyclo-octane molecule, which is the union of two intersecting
surfaces [53].

• Kl is a set of points sampled from the surface of the figure eight Klein
Bottle embedded in R5, generated by embedding a regular grid of
points (u, v) ∈ [0; 2π)× [0; 2π) into R5 using the formula:




x1 = [1/2 + cos(u/2)× sin(v)− sin(u/2)× sin(2v)]× cos(u)
x2 = [1/2 + cos(u/2)× sin(v)− sin(u/2)× sin(2v)]× sin(u)
x3 = sin(u/2)× sin(v) + cos(u/2)× sin(2v)
x4 = sin(u)
x5 = cos(v)

• L35 and L57 are sets of points sampling the lens spaces L(3, 5) and
L(5, 7) respectively. A lens space L(p, q) is a non-embedded manifold
homeomorphic to a 3-sphere quotiented by the equivalence relation

xxii



defined by an orbit on the sphere. The orbit depends on p and q and
all points of an orbit are equivalent. The point clouds are generated
by sampling randomly a 3-sphere, generating the orbit of every point,
selecting a representative for each orbit and computing its geodesic
distance to every other orbit.

• S3 and S4 are sets of points sampled from, respectively, the unit 3-
sphere in R4 and the unit 4-sphere in R5.

• Bro is a set of 5 × 5 high-contrast patches derived from natural im-
ages, interpreted as vectors in R25, from the Brown database (with
parameter k = 300 and cut 30%) [26, 48]. It is a data set of statistical
nature, and reveals different shapes depending on subsampling based
on density.

Based on these points, we construct a variety of simplicial complexes used
in computational topology. The most popular is the Rips complex (defined
in Chapter 1) which gives a provably correct topological reconstruction (see
Chapter 4). The second construction is the (relaxed) witness complex (de-
fined in Chapter 1), which is a Delaunay-like simplicial complex based only on
distance computation. Both complexes are well-suited for high-dimensional
geometry. Finally, we experiment on α-shapes which are filtrations of Delau-
nay triangulations. While they furnish good topological reconstruction, they
are well-suited for low dimensional spaces, and implementations restrict to
R3.

Our implementations are in C++ and are integrated in the Gudhi li-
brary [50], developped as part of this work. All timings are measured on
a Linux machine with 3.00 GHz processor and 32 GB RAM. All timings
are averaged over 10 independent runs. Timings are provided by the clock

function from the Standard C Library, and zero means that the measured
time is below the resolution of the clock function.

We compare our implementations with state of the art softwares in the
domain. Depending on the algorithms available, the softwares used for com-
parisons are JPlex [65], Dionysus [56] and/or PHAT [9]. JPlex is a Java

library which can be used with Matlab and provides an implementation of
the construction of Rips complexes and witness complexes. Dionysus is a
C++ library which provides implementations of the construction of Rips com-
plexes and oscillating Rips zigzag, the computation of persistent homology
and cohomology with Zp coefficients (for an arbitrary prime p), and the
computation of zigzag persistence with Z2 coefficients. PHAT is a C++ library
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that furnishes implementations of optimized matrix reduction algorithms for
persistent homology and persistent cohomology with Z2 coefficients.
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Standard Notations

Z, Q, R, respectively the relative integers, the rationals and the real numbers

Zn, the integer modulo n

RD, the D-dimensional Euclidean space

#A, the size of a finite set A
∼=, isomorphism relation

1A, the identity function on a set A

iff, if and only if
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Part I

Simplex Tree for Simplicial

Complexes
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This Part is based on the following publications:

• Jean-Daniel Boissonnat and Clément Maria. The Simplex Tree: An
Efficient Data Structure for General Simplicial Complexes. European
Symposium on Algorithms 2012, Best Paper Award [18]

• Jean-Daniel Boissonnat and Clément Maria. The Simplex Tree: An
Efficient Data Structure for General Simplicial Complexes. Algorith-
mica, 2014 [20]

2



Chapter 1

Topology and Simplicial

Complexes

In this chapter we introduce basic notions of topology. The central con-
cept of topology is the topological space. A topological space is essentially
a set of points together with a qualitative notion of proximity, expressed
through the idea of neighborhood. Topology classifies topological spaces up
to homeomorphisms. Being homeomorphic is an equivalence relation be-
tween topological spaces, which preserves local relations between points in
the space. The classic approach to study equivalent topological spaces is to
study topological invariants, which are properties of topological spaces that
remain unchanged under homeomorphisms.

In computational topology, one studies simplicial complexes. They are
finite representation which are both geometric domains admitting a topology
and abstract combinatorial structures. Simplicial complexes are related by
simplicial maps, which are the equivalent of continuous maps in the discrete
setting. Finally, we introduce the Čech complex, the Rips complex and the
witness complex, that are simplicial complexes useful in topology to solve the
topological inference problem.

1.1 General Topology

Topological Space. Let X be a point set. A topology on X is a collection
O of subsets of X, called the open sets, such that:

(i) X and the empty set ∅ are open.

(ii) every union of open sets is open,
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(iii) every intersection of finitely many open sets is open,

A topological space is a pair (X,O) consisting of a set X, called the space,
and a topology O on X. The elements of X are called points. If for some
x ∈ X and an open set U ⊆ X we have x ∈ U , we say that U is a neighborhood
of x. A set S ⊆ X is open iff for every x ∈ S there exists a neighborhood
Ux of x contained in S. Indeed, if S is an open set then we can take Ux = S
for every x ∈ S, and if the condition is satisfied, then S = ∪x∈SUx is open
by virtue of axiom (i).

Let (X,O) be a topological space. A set F ⊆ X is closed iff its comple-
ment X\F is open. The set of closed sets C have properties dual to the ones
of open sets:

(i’) the empty set ∅ and X are closed.

(ii’) every intersection of closed sets is closed;

(iii’) every union of finitely many closed sets is closed;

The closure S of a set S ⊆ X is defined to be the intersection of all closed
sets F ⊆ X containing S. By virtue of property (i’) of C, this is a closed set.
It follows from the definition that the closure of a set is the smallest closed
set with regards to inclusion that contains it. Moreover, the family of closed
sets is exactly the family of subsets of X that are equal to their closure.

Let Y be a subset of a topological space X with topology O. The subspace
topology OY of Y is the topology induced by the one of X in the following
way

OY = {U ∩ Y : U ∈ O}

Metric Space. Let X be a set. A metric on the set X is a function d :
X× X→ R satisfying, for every x, y, z ∈ X,

(i) d(x, y) = 0 iff x = y;

(ii) d(x, y) = d(y, x);

(iii) d(x, z) ≤ d(x, y) + d(y, z).

In particular, these axioms implies that d(x, y) ≥ 0.
A metric space is a pair (X, d) consisting of a set X, called the space, and

a metric d on X. The elements of X are called points, and the number d(x, y)
is called the distance between x and y. An open ball B(x, r), centered at
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x ∈ X and of radius r > 0, is defined to the be set of points of X at distance
at most r from x, ie

B(x, r) = {y ∈ X : d(x, y) < r}

One can define a topology on a metric space by considering as open set any
union of open balls.

Example 1.1. The set of all unions of open balls of the Euclidean space RD

is a topology.

In a metric space (X, d), we can define the distance between two subsets
U, V ⊆ X, called the Hausdorff distance, to be:

dH(U, V ) = max{sup
u∈U

inf
v∈V

d(u, v), sup
v∈V

inf
u∈U

d(u, v)}

Equivalence between Topological Spaces. Let (X,O) and (Y,O′) be
two topological spaces; a mapping f from X to Y is called continuous if
f−1(U) ∈ O for any U ∈ O′, ie if the inverse image of any open subset of Y
is open in X. A continuous mapping f : X → Y is called a homeomorphism
if f maps X onto Y in a one-to-one way and the inverse mapping f−1 of Y
to X is continuous. We say that two topological spaces are homeomorphic
if there exists a homeomorphism between them. Being homeomorphic is an
equivalence relation.

A topological invariant is a property of topological spaces that is pre-
served under homeomorphisms, ie if X has a property P that is a topological
invariant, then so does all spaces homeomorphic to X.

Example 1.2. A topological space (X,O) is connected iff it cannot be rep-
resented as the union of two disjoint open sets of O. Being connected is a
topological invariant because homeomorphisms preserve open sets and hence
the property. Note that in general this is weaker than the more intuitive no-
tion of path-connectedness mentioned in the introduction. However, in our
setting (topological spaces described by finite simplicial complexes), the two
notions are equivalent.

A weaker notion of equivalence between topological spaces is a interest.
Let X and Y be two topological spaces, and f, g : X → Y two continuous
maps. A homotopy between f and g is a continuous map H : X× [0; 1]→ Y
such that

(i) H(·, 0) : X→ Y and f are equal, ie H(x, 0) = f(x) for every x ∈ X,
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Figure 1.1: Three homotopy equivalent shapes. The curve in the middle may
be embedded homeomorphically in both the Möbius strip (left) and the annulus
(right). The embeddings are drawn in red. There are natural deformation retracts
from the Möbius strip and the annulus to the embedded curve.

(ii) H(·, 1) : X→ Y and g are equal, ie H(x, 1) = g(x) for every x ∈ X.

This is an equivalence relation for continuous maps, we write f ≃ g and call
f and g homotopic. We can think of a homotopy as a continuous deformation
of a continuous map into the other.

The notion can be used to relate spaces. Specifically, X and Y are homo-
topy equivalent if there are continuous maps f : X→ Y and g : Y→ X such
that g ◦ f ≃ 1X and f ◦ g ≃ 1Y. This gives an equivalence relation, and we
write X ≃ Y and say that the two spaces have same homotopy type.

An important type of homotopy equivalence is induced by deformation
retractions. We call a space Y ⊆ X a retract of X if there is a continuous map
r : X→ Y that is the indentity 1Y when restricted to Y. The map r is called
a retraction. We call Y a deformation retract and r a deformation retraction
if there is a homotopy between the retraction r and 1X. We say that X
deformation retracts into Y. This is clearly a particular case of homotopy
equivalence. See Figure 1.1 for examples. Actually, two spaces X and Y are
homotopy equivalent iff there exists a third space T that contains both of
them and that deformation retracts to each of them.

We will see in Chapter 4 that being homotopy equivalent is enough for
having isomorphic homology groups, the topological invariants we study in
this dissertation.

1.2 Triangulation of Topological Spaces

Geometric Simplicial Complex. Let x0, · · · , xd be points in the Eu-
clidean space RD. A point x =

∑d
i=0 λixi, with each λi ∈ R, is an affine

combination of the xi if the λi sum to 1. The affine hull is the set of affine
combinations. We say that the d+ 1 points x0, · · · , xd are affinely indepen-
dent if any two affine combinations x =

∑d
i=0 λixi and y =

∑d
i=0 µixi are

identical iff λi = µi for every i. An affine combination x =
∑d

i=0 λixi is a
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convex combination if all λi are non-negative. The convex hull is the set of
convex combinations

Conv {x0, · · · , xd} =

{
d∑

i=0

λixi :
∑

i

λi = 1 and λi ≥ 0 for all i

}
(1.1)

A d-simplex is the convex hull of d+ 1 affinely independent points. The
dimension of a d-simplex σ is dimσ = d. Simplices of dimension 0 are called
vertices, 1-simplices are called edges, 2-simplices triangles and 3-simplices
tetrahedra (see Figure 1.2). Every subset of affinely independent points is

Figure 1.2: From left to right, vertex, edge, triangle and tetrahedron embedded in
R3.

affinely independent and therefore also defines a simplex. A face of a simplex
σ is the convex hull of a non-empty subset of the xi and it is proper if the
subset is not the entire set. If τ is a (proper) face of σ we say that σ is a
(proper) coface of τ . The boundary of σ, denoted by bd σ, is the union of all
of its proper faces and its interior is σ from which the boundary has been
removed int σ = σ \ bd σ.

For the definitions above, we note that the interior of a simplex is an
open set. The simplex itself is the closure of its interior and is hence closed.

A geometric simplicial complex K in RD is a collection of simplices in
RD such that:

(i) every face of a simplex of K is in K,

(ii) the intersection of any two simplices of K is either empty or a face of
each of them.

The set of vertices of K is denoted by VertK. For simplicity, we identify
each vertex {xi} ∈ K with the corresponding point xi ∈ RD.

The dimension of K is the maximum dimension of one of its simplices.
A subcomplex of K is a simplicial complex L ⊆ K. A particular subcomplex
of K is the j-skeleton, which contains all simplices of K of dimension less or
equal to j, ie K(j) = {σ ∈ K : dimσ ≤ j}.

A subset of a simplicial complex useful when discussing local neighbor-
hoods is the star of a simplex τ consisting of all cofaces of τ , ie St τ = {σ ∈
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K : τ ⊆ σ}. The star of a simplex is not a simplicial complex in general.
We can make it into a complex by adding all missing faces. The result is the
closed star St τ which is the smallest subcomplex of K containing the faces
of St τ . The link of τ consists of all the faces of its star that are disjoint
from τ , ie Lk τ = {σ ∈ St τ : σ ∩ τ = ∅}.

The underlying space of K, denoted by |K|, is the union of its simplices
together with the subspace topology inherited from the ambient Euclidean
space RD in which the simplices live. It is a topological space.

We study in the following the combinatorial structure of simplicial com-
plexes, through the concept of abstract simplicial complex. Note that related
concepts between geometric and abstract simplicial complexes share the same
name.

Abstract Simplicial Complex. All following definitions are the combi-
natorial equivalents of the geometric notions introduced above. Let V be
an arbitrary finite set, called the set of vertices . A simplex σ is a subset
of the vertices σ = {v0, · · · , vd} ⊆ V , and we say that v0, · · · , vd are the
vertices of σ. If a simplex σ contains precisely d + 1 vertices (d ≥ 0), it
is called a d-simplex and has dimension dimσ = d. A face of a simplex
σ = {v0, · · · , vd} is a simplex whose vertices form a subset of {v0, · · · , vd}.
It is proper if it is different from σ. If τ is a (proper) face of σ we say that
σ is a (proper) coface of τ. The boundary of σ is the set of its proper faces
of maximal dimension (dimσ− 1), ie

∂σ = ∂{v0, · · · , vd} = {{v0, · · · , v̂i, · · · , vd} : 0 ≤ i ≤ d}

where the symbol v̂i means that vi is removed from the set. We call the faces
of the boundary of a simplex its facets .

An abstract simplicial complex on a set of vertices V is a set K of simplices
that is required to satisfy the following two conditions:

(i) every vertex v ∈ V is a 0-simplex {v} ∈ K,

(ii) every face of a simplex in K is in K, ie σ ∈ K, τ ⊆ σ ⇒ τ ∈ K.

The set of vertices of K is equal to V and is denoted by VertK.
The dimension of the simplicial complex K is the maximum dimension of

its simplices. We denote by Kj the set of j-simplices of K. A subcomplex of K
is a abstract simplicial complex L ⊆ K. A particular subcomplex of K is the
j-skeleton, denoted by K(j), which contains all the faces of K of dimension
at most j. In particular, the 1-skeleton of K contains the vertices and the
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edges of K and has the structure of an undirected graph. We equivalently
refer to the 1-skeleton of a simplicial complex or the graph of a simplicial
complex.

The subset of simplices consisting of all the cofaces of a simplex τ ∈ K
is called the star of τ . The link of τ is defined as the set of faces

Lkτ = {σ ∈ K : τ ∩ σ = ∅ and τ ∪ σ ∈ K}

Geometric simplicial complexes and abstract simplicial complexes are
concepts that are closely related, as explained in the next paragraph.

Abstraction and Geometric Realization. Let K be a geometric sim-
plicial complex with Vert K = {x1, · · · , xn} ⊆ RD. We also denote the
set {x1, · · · , xn} by V and consider V as a set of (abstract) vertices. If,
for each simplex σ = {xi0 , · · · , xid} ∈ K we consider the (abstract) simplex
σ = {i0, · · · , id}, we obtain naturally an abstract simplicial complex K whose
vertex set is V , specifically K = {σ : σ ∈ K}. We call K the abstraction of
K.

Conversely, a geometric realization of an abstract simplicial complex K
is a geometric simplicial complex K together with a bijective embedding
φ : VertK → VertK such that an abstract simplex σ = {v0, · · · , vd} is in
K iff the convex hull Conv {φ(v0), · · · , φ(vd)} is a geometric simplex of K.
Every abstract simplicial complex admits an embedding in low dimension,
as expressed by the following theorem:

Theorem 1.1 (Geometric Realization Theorem). Every abstract simplicial
complex of dimension d admits a geometric realization in R2d+1.

Consequently, geometric simplicial complexes and abstract simplicial com-
plexes are closely related and the geometric and abstract definitions match.
Note in particular that the notion of face and coface are identical, and by
extension the notion of star and link. Note also that the concepts of bound-
ary differ; the geometric boundary bd σ is defined to contain all proper faces
of a simplex when the abstract boundary ∂σ contains only the maximal
ones. However, the geometric realization restricted to the simplices of ∂σ is
equal to the geometric boundary bd σ. We use the same notations for both
concepts in the following, refering to a simplicial complex K, a simplex σ,
etc.

Simplicial Maps. A simplicial map f : K → L between two simplicial
complexes is a map that sends every vertex v ∈ VertK to a vertex f(v) ∈
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VertL, and every simplex {v0, · · · , vd} ∈ K to a simplex {f(v0), · · · , f(vn)} ∈
L. Note that they may be redundancy in the set {f(v0), · · · , f(vn)}, in which
case the simplex image has lower dimension that its pre-image.

The simplicial map f can be extended to a continuous maps between the
underlying spaces |K| and |L|. Specifically, note that every point x ∈ |K|
belongs to the interior of exactly one simplex K. Let σ be that simplex,
with σ = Conv {x0, · · · , xd}. According to Equation 1.1, the point x may
be uniquely written as x =

∑d
i=0 λixi, with

∑
i λi = 1 and λi > 0 for

all i. The last inequality is strict because we have removed the boundary
bd σ. We can consequently extend the simplicial map f to a continuous map
f : |K| → |L| by setting f(x) =

∑d
i=0 λif(xi) where σ = {x0, · · · , xd} is

such that x ∈ int σ.
Consequently, simplicial complexes together with simplicial maps offer

a piecewise linear counterpart to topological spaces and continuous maps.
Even further, simplicial complexes can also represent, up to homeomorphism,
of a much wider class of topological spaces – the triangulable spaces – and
continuous maps between them. We elaborate on this point in the next
paragraph.

Triangulation of Topological Spaces. A triangulation of a topological
space X is a simplicial complex K together with a homeomorphism between
|K| and X. A topological space is triangulable if it has a triangulation. As
a consequence, we can study the topological invariants of any triangulable
topological space by studying a homeomorphic simplicial complex, that gives
a discrete representation.

When simplicial maps can be extended to continuous maps, continuous
maps between triangulable topological spaces can be approximated by sim-
plicial maps. Specifically, we mention the following theorem:

Theorem 1.2 (Simplicial Approximation Theorem). Let K and L be two
simplicial complexes, and h : |K| → |L| a continuous map between their
underlying domains. There exist a subdivision K′ of K and a simplicial
map f : K′ → L such that the continuous map |f | : |K′| → |L| is homotopic
to h.

Hence, simplicial complexes offer a complete encoding, up to homeo-
morphism, of triangulable topological spaces together with continuous maps
between them.
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Figure 1.3: Čech complex of 6 points from the Euclidean space R2. The existence
of a tetrahedron prevents the complex to be embeddable in R2.

1.3 Approximation of Topological Spaces

Topological Inference. Let P be a finite set of point in a metric space.
Assuming P sample a topological space, we want to construct a simplicial
complex using the points of P as vertices that is a faithful topological ap-
proximation of the underlying unknown topological space.

For a radius ρ > 0, consider the family F of closed balls B(x, ρ) centered
on the points x ∈ P and of radius ρ. The nerve of F consists in all non-
empty subcollections of F whose balls have non-empty common intersection,
ie

NrvF = {X ⊆ F :
⋂

B(x,ρ)∈X

B(x, ρ) 6= ∅}

The nerve of a collection of arbitrary sets is always an abstract simplicial
complex. Moreover, we can relate the topology of the union of sets, if convex,
with the topology of its nerve.

Theorem 1.3 (Nerve Theorem). Let F be a finite collection of closed convex
sets in Euclidean space, and let K be its nerve NrvF . Then the underlying
space of K and the union of the sets in F have the same homotopy type.

Čech Complex. For a radius ρ ≥ 0, the Čech complex of a set of points
P embedded in a metric space is the simplicial complex which is the nerve
of the balls B(x, ρ) centered on the points x ∈ P and of radius ρ

Cρ(P) = {σ ⊆ P :
⋂

x∈σ

B(x, ρ) 6= ∅}

Note that the Čech complex of a set of points is not in general embedded in
the metric space in which the points are, see for example Figure 1.3.

11



ρ =

Figure 1.4: Union of balls centered on a dense sample of an unknown topological
space, for different radii ρ. The first and second radii are to small to close the loop,
when the last one is to big and fills up the hole. The third and fourth radii give a
homotopy equivalent reconstruction.

The main property of Čech complexes is that, under mild conditions,
they furnish a topologically correct reconstruction of a topological space,

Theorem 1.4 (Topological Reconstruction). Let C be a compact set of RD,
with a strictly positive topological feature size1, and let P be a set of points
such that dH(C,P) < ε. For sufficiently small ε, there exists a range (γε; δε)
such that for every γε < ρ < δε, C and |Cρ(P)| are homotopy equivalent.

We refer to Figure 1.4 for an example.
Intuitively, the small Hausdorff distance between the point cloud and the

unknown domain ensures a dense sample. The proof of Theorem 1.4 uses
the following arguments. One can define a retraction from the union of balls
following a flow induced by the distance function to the compact domain C

d(·, C) : RD → R

See Figure 1.5 for an illustration. The domain C needs to be a compact for
the flow to be well-defined. For a suitable radius ρ, the retract of the union
of balls does not induce a change in topology. As a consequence, the retract
defines an homotopy equivalence between C and the union of balls. By
applying the Nerve Theorem 1.3, one concludes that the underlying space of
the corresponding Čech complex has the same homotopy type as the compact
C.

Despite its good topological approximation properties, the Čech complex
is hard to construct algorithmically due to the algebraic complexity of the
problem. Indeed, computing intersections of balls is equivalent to minimum

1A wide variety of topological reconstruction theorems exists, with different notion of
topological feature size, which is a parameter like the weak feature size, the µ-reach or the
convexity defect.
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Figure 1.5: Arrows following the flow induced by the distance function to the
compact domain.

enclosing ball queries. In the Euclidean space RD, the best known algorithm
to compute the minimum enclosing ball of N points is linear in N , but de-
pends superexponentially on the dimension D. Hence, it does not scale to
high dimensions. Moreover evaluating higher dimensional geometric predi-
cates results into numerical instability. We introduce in the following two
families of simplicial complexes, the flag complexes and the witness com-
plexes, both based on simpler geometric predicates.

Flag Complex. A flag complex is a simplicial complex whose combinato-
rial structure is entirely determined by its 1-skeleton. Specifically, a simplex
is in the flag complex if and only if its vertices form a clique in the graph
of the simplicial complex, or, in other terms, if and only if its vertices are
pairwise linked by an edge.

The most popular flag complex for topological inference is the Rips com-
plex , which may be seen as an approximation of the Čech complex. Specifi-
cally, for a threshold ρ ≥ 0, the Rips complex Rρ(P) on a set of points P in a
metric space is the flag complex defined on the 1-skeleton of Cρ(P). In other
words, given a set of points P, every two points are linked by an edge iff
their distance is less or equal than 2ρ; the Rips complex is then the maximal
simplicial complex admitting this graph as its 1-skeleton; see Figure 1.6.

As a consequence, the Čech complex Cρ(P) is included in the Rips com-
plex Rρ(P). The converse is true if we augment slightly the threshold ρ,

Lemma 1.1. For a set of points P in Euclidean space RD, and for every
threshold ρ ≥ 0,

Cρ(P) ⊆ Rρ(P) ⊆ CϑD·ρ(P) where ϑD =

√
2D

D + 1
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Figure 1.6: Rips complex of 6 points from the Euclidean space R2. Note that it
contains one triangle that is not in the previous Čech complex with same threshold.

Hence, the Rips complex approximate the Čech complex, but does not
inherit, in general, its properties for topological reconstruction. Note that
computing the Rips complex of a set of points requires only distance com-
putations. As a consequence, the Rips complex can be constructed in an
arbitrary metric space.

Witness Complexes. Let L be a finite set of points, called the landmarks,
and W a possibly infinite set of points, called the witnesses, embedded in a
metric space. We say that a witness w ∈W witnesses, or is a witness for, a
simplex σ ⊆ L if

∀x ∈ σ and ∀y ∈ L \ σ, we have d(w, x) ≤ d(w, y)

For simplicity of exposition, we suppose that no landmarks are at the
exact same distance to a witness. In this case, a witness w ∈ W witnesses
a simplex σ ⊆ L iff the vertices of σ are the #σ nearest neighbors of w in
L. The witness complex Wit(W,L) is the maximal simplicial complex, with
vertices in L, whose faces admit a witness in W .

When the Rips complex is an approximation of the Čech complex with
only distance computations, the witness complex is an approximation of the
Delaunay triangulation

Theorem 1.5. In the Euclidean space RD, the witness complex Wit(RD, L),
picking the whole space for witnesses, is equal to the Delaunay triangulation
of L.

For computation the number of witnesses has to be finite, which induces
missing simplices. We introduce a relaxed version of the complex. Given a

14



threshold ρ ≥ 0 we define the relaxed witness complex. We say that a witness
w ∈W ρ-witnesses, or is a ρ-witness for, a simplex σ ⊆ L if

∀x ∈ σ and ∀y ∈ L \ σ, we have d(w, x) ≤ d(w, y) + ρ

The relaxed witness complex Witρ(W,L) with threshold ρ is the maximal
simplicial complex, with vertices in L, whose faces admit a ρ-witness in W .
For ρ = 0, the relaxed witness complex is the standard witness complex.
Note that the witness complexes rely on nearest neighbors predicates, which
are solved efficiently in high-dimension.

Filtration Function. The Čech complex, the Rips complex and the re-
laxed witness complex have the common point of depending on a threshold
ρ, which defines a filtration of the space. A filtration function on a simplicial
complex is a function f : K → R satisfying f(τ) ≤ f(σ) whenever τ ⊆ σ.
If K contains the simplices {σ1, · · · , σn}, the sequence [σi]i=1,··· ,n sorted ac-
cording to increasing f values, and breaking ties so as a face of a simplex
appears before it, induces the sequence of inclusions ∅ = K0 ( K1 ( · · · (
Kn−1 ( Kn = K, Ki+1 = Ki ∪ {σi+1}. In topological inference, a filtration
function allows us to consider the reconstructed topological space at differ-
ent scales. Considering Figure 1.4, for example, the correct threshold ρ for
reconstruction is unknown. Computing a reconstruction of a space to learn
its topology is one of the motivation of persistent homology introduced in
Chapter 4, which defines the equivalent of a multi-scale topological invariant
and a more general notion of filtration.

The main difficulty with these simplicial complexes is that their size in-
creases extremely fast when ρ gets bigger. The next chapter introduces a
data structure that is both optimal in memory and provides efficient con-
struction of both Rips complex and witness complex.

Bibliographic Notes.

The introduction to topological spaces and metric spaces follows [44]. The
introduction to homotopy and simplicial complexes follows [42] and [59]. We
refer to these references for further reading.

We refer to [59] for more details on the Simplicial Approximation Theo-
rem 1.2. This is a foundational result for algebraic topology, as topological
invariants defined on simplicial complexes are well-defined on triangulable
topological spaces. In particular, the simplicial approximation theorem will
appear implicitly in Chapter 4 when defining homology groups.
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The Nerve Theorem 1.3 is a classic result in homotopy theory. We refer
to [47] for a proof. It relies on the fact that the intersection of finitely many
convex sets is contractible, and a homotopy equivalence can be explicitely
constructed from this fact. The best algorithm for the minimum enclosing
ball is described in [68].

The main result for topological inference is the Topological Reconstruc-
tion Theorem 1.4. It results from a long list of articles, defining sampling
conditions, measures of complexity of a shape and different level of recon-
struction theorems. We refer to [27] for a definition of the different sampling
conditions using parameters based on the medial axis, and to [8] for a more
recent approach.

The witness complex has been studied in [33]. The equality with the
Delaunay triangulation has been generalized in [17] under weaker sampling
conditions, in particular with a finite set of witnesses. For more details
on nearest neighbors computation in a general topological setting, we refer
to [4].
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Chapter 2

Simplex Tree Data Structure

In this chapter, we introduce a data structure to represent arbitrary simpli-
cial complexes. Our approach aims at combining both generality and scala-
bility. We propose a tree representation for simplicial complexes. The nodes
of the tree are in bijection with the simplices (of all dimensions) of the sim-
plicial complex. In this way, our data structure, called a simplex tree [15, 20],
explicitly stores all the simplices of the complex but does not represent ex-
plicitly all the adjacency relations between the simplices, two simplices being
adjacent if they share a common face. Storing all the simplices provides gen-
erality, and the tree structure of our representation enables us to implement
basic operations on simplicial complexes efficiently, in particular to retrieve
incidence relations, ie to retrieve the simplices that contain a given simplex
or are contained in a given simplex.

2.1 Representation of Simplicial Complexes

Simplicial complexes are a generalization of graphs in the sense that they
allow higher order adjacency, ie more than two vertices being connected by a
simplex. In computer science, they were first used to represent surfaces in R3

and many specific data structures have been introduced for encoding them.
This section does not aim at giving an inventory of all data structures dedi-
cated to specific cases, but rather aim at raising attention to the difficulties
encountered when generalizing a data structure for simplicial complexes en-
countered in computational topology. Hence, we focus on one data structure,
that is in particular used in CGAL [1, 14], and try to generalize it.

Let K be a simplicial complex with VertK = {1, · · · ,#VertK}. Suppose
that K triangulates a surface. As a consequence, every maximal simplex is
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a triangle and every triangle shares one of its edges with exactly one other
triangle. We represent only the triangles and all other simplices are deduced
by enumerating faces of these triangles. Each triangle maintains its three
vertices and three pointers towards its adjacent triangles; see Figure 2.1.
Additionally, because the dimension of the maximal simplices is fixed, ver-

a b c

a

b

c

Figure 2.1: Data structure for surfaces, representing only the maximal sim-
plices of a complex.

tices and pointers may be stored in arrays. Because each edge is shared by
exactly two triangle, we can orient the triangles (counterclockwise in Fig-
ure 2.1) and order the vertices and pointers so as the ith triangle pointed to
is the one opposite to the ith vertex stored.

This data structure naturally generalizes to d-dimensional simplicial com-
plexes triangulating d-dimensional manifolds (the generalization of surfaces).
We maintain only the d-simplices and each of them is represented by an ar-
ray of d + 1 vertices and an array of d + 1 pointers towards the d-simplices
sharing exactly one facet with the simplex. The structure also generalizes
to simplicial complexes whose underlying domain has a boundary, ie where
some simplices admit exactly one coface. This results into NULL pointers
in the arrays. For a simplicial complex K of dimension k, and under the
previous conditions, the memory complexity of the data structure is

#Kk × 2(k + 1)

Suppose now that the facets of a maximal simplex may be shared by
strictly more than one other maximal simplex. Arrays need to be replaced by
dynamic structures, like lists. Moreover, ordering according to an orientation
does not allow anymore to associate vertices and there opposite faces. With
a list representation, all inner data structures are twice bigger. Moreover,
the full data structure has potentially a quadratic size in the number of k-
dimensional simplices. Finally, consider the case where all maximal simplices
do not have the same dimension. It is not clear how to link adjacent simplices
of different dimension, like the triangle and the tetahedron in Figure 2.2.
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Figure 2.2: General adjacency relations in a complex.

The general configurations mentioned above and summarized in Fig-
ure 2.2 are common in computational topology and topological inference.
A reason for that is the very general setting of the problem, ie points in a
metric space allowing only distance computations and no higher dimensional
geometric predicates. Moreover, the fact that Čech complex provides a topo-
logically correct approximation of a topological domain relies on the ability
of the union of balls, whose nerve is the Čech complex, to cover entirely the
unknown space. As a consequence, many simplices are adjacent to the same
facet.

Another information useful for computational topology is the filtration
function f : K → R defined on a simplicial complex. All mentioned com-
plexes so far are naturally filtered. Storing such information requires Ω(#K)
memory words. The data structure described above does not allow the repre-
sentation of a filtration of a simplicial complex, as the non-maximal simplices
are represented implicitly. We consequently take a different approach.

The Hasse diagram of a poset (P,�) is a graph containing one node per
element in P and one directed edge (x, y) ∈ P ×P for every elements x and
y such that x ≺ y and there is no z ∈ P such that x ≺ z ≺ y. A Hasse
diagram is usually represented as a drawing of the graph in the plane, with
bigger elements on top. For convenience, we reverse the representation and
draw the smaller elements on top. Simplicial complexes are posets wrt the
inclusion relation between simplices. Hence, they admit a Hasse diagram;
see Figure 2.3.

The Hasse diagram is also a data structure. Let K be an arbitrary k-
dimensional simplicial complex. The Hasse diagram of K contains #K + 1
nodes, and a node representing a d-simplex stores d+1 vertices and d+1 edges
directed towards codimension 1 cofaces. The structure has size O(k ×#K)
for a complex of dimension k. Note that the structure is insensitive to fact
that maximal simplices may have distinct dimensions and that simplices may
share facets with more than one other simplex.

Additionally, as every simplex is represented explicitely, one can represent
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{2, 3, 4,5}

∅

Figure 2.3: Simplicial complex and corresponding Hasse diagram.

a filtration on the complex.
The simplex tree data structure that we introduce in this chapter is a

specific spanning tree of the Hasse diagram. Its properties allow us to store
in a node only the biggest vertex of the simplex it represents and reach an
optimal memory complexity of O(1) word per simplex. The biggest labels
are pictured in blue in Figure 2.3.

Before introducing the simplex tree, we mention other data structures
used for representing simplicial complexes. Brisson [21] and Lienhardt [49]
have introduced data structures to represent d-dimensional cell complexes,
most notably subdivided manifolds. While those data structures have nice
algebraic properties, they are very redundant and do not scale to large data
sets or high dimensions. Zomorodian [69] has proposed the tidy set, a com-
pact data structure to simplify a simplicial complex and compute its ho-
mology. The construction of the tidy set requires the computation of the
maximal simplices of the simplicial complex, which is difficult in general
without constructing the whole complex explicitly. In the same spirit, At-
tali et al. [6] have proposed the skeleton-blockers data structure. Again, the
representation is general but it requires to compute blockers, the simplices
which are not contained in the simplicial complex but whose proper faces
are. Computing the blockers is as difficult as computing maximal simplices
in general. These two last data structures are efficient in the special case of
flag complexes, where the maximal simplices are the maximal cliques in the
graph and the set of blockers is empty. None of these data structures are, at
the same time, well-suited to general simplicial complexes and scale to both
dimension and size.
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2.2 The Simplex Tree

Let K be a simplicial complex of dimension k. The vertices are labeled from
1 to #VertK and ordered accordingly. We can thus associate to each simplex
of K a word on the alphabet 1 · · ·#VertK. Specifically, a j-simplex of K is
uniquely represented as the word of length j+1 consisting of the ordered set
of the labels of its j+1 vertices. Formally, let simplex σ = {vℓ0 , · · · , vℓj} ∈ K,
where vℓi ∈ VertK, ℓi ∈ {1, · · · ,#VertK} and ℓ0 < · · · < ℓj . σ is represented
by the word [σ] = [ℓ0, · · · , ℓj ]. The last label of the word representation of a
simplex σ is called the last label of σ and denoted by last(σ).

The simplicial complex K can be defined as a collection of words on an
alphabet of size #VertK. To compactly represent the set of simplices of K,
we store the corresponding words in a tree satisfying the following properties:

1. the nodes of the tree are in bijection with the simplices (of all dimen-
sions) of the complex. The root is associated to the empty simplex,

2. each node of the tree, except the root, stores the label of a vertex.
Specifically, a node associated to a simplex σ 6= ∅ stores the label
last(σ),

3. the vertices whose labels are encountered along a path from the root
to a node associated to a simplex σ are the vertices of σ. Along such a
path, the labels are sorted by increasing order and each label appears
no more than once.

We call this data structure the simplex tree of K. It is a trie [12] on the words
representing the simplices of the complex; see Figure 2.4. The depth of the
root is 0 and the depth of a node is equal to the dimension of the simplex
it represents plus one. In addition, we augment the data structure so as to
quickly locate all the instances of a given label in the tree. Specifically, all
the nodes at a same depth j which contain a same label ℓ are linked in a
circular list Lj(ℓ), as illustrated in Figure 2.4 for label ℓ = 5.

The children of the root of the simplex tree are called the top nodes. The
top nodes are in bijection with the elements of VertK, the vertices of K.
Nodes which share the same parent (eg . the top nodes) are called sibling
nodes. We also attach to each set of sibling nodes a pointer to their parent
so that we can access a parent in constant time.

We give a constructive definition of the simplex tree. Starting from an
empty tree, we insert the words representing the simplices of the complex
in the following manner. When inserting the word [σ] = [ℓ0, · · · , ℓj ] we
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Figure 2.4: A simplicial complex on 10 vertices and its simplex tree. The deepest
node represents the tetrahedron of the complex. All the positions of a given label
at a given depth are linked in a list, as illustrated in the case of label 5.

start from the root, and follow the path containing successively all labels
ℓ0, · · · , ℓi, where [ℓ0, · · · , ℓi] denotes the longest prefix of [σ] already stored
in the simplex tree. We then append to the node representing [ℓ0, · · · , ℓi] a
path consisting of the nodes storing labels ℓi+1, · · · , ℓj . It is easy to see that
the three properties above are satisfied. Hence, if K consists of #K simplices,
the associated simplex tree contains exactly #K + 1 nodes, counting the
empty simplex at the root.

We use dictionaries with size linear in the number of elements they store
(like a red-black tree or a hash table) for searching, inserting and removing
elements among a set of sibling nodes. Consequently these additional struc-
tures do not change the asymptotic memory complexity of the simplex tree.
For the top nodes, we simply use an array since the set of vertices Vert is
known and fixed. Let deg(T ) denote the maximal outdegree of a node, in
the simplex tree T , distinct from the root. Remark that deg(T ) is at most
the maximal degree of a vertex in the graph of the simplicial complex. In the
following, we will denote by Dm the maximal number of operations needed
to perform a search, an insertion or a removal in a dictionary of maximal
size deg(T ) (for example, with red-black trees Dm = O(log deg(T )) worst-
case, with hash-tables Dm = O(1) amortized). Some algorithms, that we
describe later, require to intersect and to merge sets of sibling nodes. In
order to compute fast set operations, we will prefer dictionaries which allow
to traverse their elements in sorted order (eg red-black trees). We discuss
the value of Dm at the end of this section in the case where the points have
a geometric structure.

We introduce two new notations for the analysis of the complexity of
the algorithms. Given a simplex σ ∈ K, we define Cσ to be the number
of cofaces of σ, ie #Stσ. Note that Cσ only depends on the combinatorial
structure of the simplicial complex K. Let T be the simplex tree associated
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to K. Given a label ℓ and an index j, we define T >j
ℓ to be the number of

nodes of T at depth strictly greater than j that store label ℓ. These nodes
represent the simplices of dimension at least j that admit ℓ as their last label.
T >j
ℓ depends on the labelling of the vertices and is bounded by C{vℓ}, the

number of cofaces of the vertex with label ℓ. For example, if ℓ is the greatest
label, we have T >0

ℓ = C{vℓ}, and if ℓ is the smallest label we have T >0
ℓ = 1

independently from the number of cofaces of {vℓ}.
We provide in the following algorithms for

• Search/Insert/Remove-simplex to search, insert or remove a single
simplex, and Insert/Remove-full-simplex to insert a simplex and
its faces or remove a simplex and its cofaces,

• Locate-cofaces to locate the cofaces of a simplex,

• Locate-boundary to locate the boundary, ie the maximal proper faces,
of a simplex,

• Elementary-collapse to proceed to an elementary collapse,

• Edge-contraction to proceed to the contraction of an edge.

Insertions and Removals. Using the previous top-down traversal, we
can search and insert a word of length j in O(jDm) operations.

We can extend this algorithm so as to insert a simplex and all its faces
in the simplex tree. Let σ be a simplex we want to insert with all its faces.
Let [ℓ0, · · · , ℓj ] be its word representation. For i from 0 to j we insert, if
not already present, a node Nℓi , storing label ℓi, as a child of the root. We
recursively call the algorithm on the subtree rooted at Nℓi for the insertion of
the suffix [ℓi+1, · · · , ℓj ]. Since the number of faces of a simplex of dimension
j is

∑
i=0···j+1

(
j+1
i

)
= 2j+1, this algorithm takes time O(2jDm).

We can also remove a simplex from the simplex tree. Note that to keep
the property of being a simplicial complex, we need to remove all its cofaces
as well. We locate them thanks to the algorithm described below.

Locate Cofaces. Computing the cofaces of a simplex is required to re-
trieve adjacency relations between simplices. In particular, it is useful when
traversing the complex or when removing a simplex. We also need to com-
pute the cofaces of a simplex when contracting an edge (described later) or
during the construction of the witness complex, described later.
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If τ is represented by the word [ℓ0 · · · ℓj ], the cofaces of τ are the simplices
of K represented by words of the form [⋆ℓ0 ⋆ ℓ1 ⋆ · · · ⋆ ℓj⋆], where ⋆ denotes
any word on the alphabet, possibly the empty word.

To locate all words of the form [⋆ℓ0 ⋆ ℓ1 ⋆ · · · ⋆ ℓj⋆] in the simplex tree,
we first find all words of the form [⋆ℓ0 ⋆ ℓ1 ⋆ · · · ⋆ ℓj ]. Using the lists Li(ℓj)
(i > j), we find all nodes at depth at least j + 1 which contain label ℓj .
For each such node Nℓj , we traverse the tree upwards from Nℓj , looking for
a word of the form [⋆ℓ0 ⋆ ℓ1 ⋆ · · · ⋆ ℓj ]. If the search succeeds, the simplex
represented by Nℓj in the simplex tree is a coface of τ , as well as all the
simplices represented by the nodes in the subtree rooted at Nℓj , which have
word representation of the form [⋆ℓ0 ⋆ ℓ1 ⋆ · · · ⋆ ℓj⋆]. Remark that the cofaces
of a simplex are represented by a set of subtrees in the simplex tree. The
procedure searches only for the roots of these subtrees.

The complexity of searching for the cofaces of a simplex σ of dimension
j depends on the number T >j

last(σ) of nodes with label last(σ) and depth at
least j + 1. If k is the dimension of the simplicial complex, traversing the
tree upwards takes O(k) time. The complexity of this procedure is thus
O(kT >j

last(σ)).

Locate Boundary. Locating the boundary of a simplex efficiently is the
key point of the incremental algorithm we use to construct witness complexes
in Section 2.3, and is central when computing the homology and persistent
homology of a simplicial complex in Part II.

Given a simplex σ, we access the nodes of the simplex tree representing
the facets of σ. Let the word representation of σ be [ℓ0, · · · , ℓj ]. Thus the
word representations of the facets of σ are the words [ℓ0, · · · , ℓ̂i, · · · , ℓj ], for
all 0 ≤ i ≤ j, where ℓ̂i indicates that ℓi is omitted. As before, we denote
by Nℓi , for all i = 0, · · · , j, the nodes representing the words [ℓ0, · · · , ℓi],
i = 0, · · · , j respectively. A traversal from the node representing σ up to the
root will exactly pass through the nodesNℓi , i = j, · · · , 0. When reaching the
node Nℓi−1

, a search from Nℓi−1
downwards for the word [ℓi+1, · · · , ℓj ] locates

(or proves the absence of) the facet [ℓ0, · · · , ℓ̂i, · · · , ℓj ]. See Figure 2.5 for a
running example. This procedure locates the entire boundary of a j-simplex
σ in O(j2Dm) operations.

We now present the implemention of two topology preserving operations
on a simplicial complex represented as a simplex tree, specifically elemen-
tary collapses and edge contractions. Both have been used in computational
topology in order to reduce the size of a simplicial complex before study-
ing its topology. These operations do not change the homotopy type of the
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Figure 2.5: Boundary computation of the simplex σ = {2, 3, 4, 5}, starting from
the position of σ in the simplex tree. The nodes representing the facets are colored
in grey.

simplicial complex.

Elementary Collapse. We say that a simplex σ is collapsible through one
of its simplex τ if σ is the only coface of τ . This can be verified algorithmically
by computing the cofaces of τ . Such a pair of simplices (τ, σ) is called a free
pair. Removing both simplices of a free pair is an elementary collapse.

Since τ has no coface other than σ, either the node representing τ in
the simplex tree is a leaf (and so is the node representing σ), or it has the
node representing σ as its unique child. An elementary collapse of the free
pair (τ, σ) consists either in the removal of the two leaves representing τ
and σ, or the removal of the subtree containing exactly two nodes: the node
representing τ and the node representing σ.

Edge Contraction. Edge contractions are used in [7] as a tool for homo-
topy preserving simplification and in [40, 66] for designing small filtrations
for topological inference.

It has been proved in [7, 39] that contracting an edge {vℓa , vℓb} preserves
the homotopy type of a simplicial complex whenever the link condition is
satisfied

Lk {vℓa , vℓb} = Lk {vℓa} ∩ Lk {vℓb}

The link condition can be checked algorithmically using the procedure
Locate-cofaces.

Let K be a simplicial complex. Given an edge {vℓa , vℓb} in the complex,
the contraction of vℓb to vℓa is the simplicial map f : K→ K that maps vℓb
to vℓa and acts as the identity function on all other vertices

f(u) =

{
vℓa if u = vℓb
u otherwise
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Figure 2.6: Contraction of vertex 3 to vertex 1 and the associated modifications
of the simplicial complex and of the simplex tree. The nodes which are removed
are marked with a red cross, the subtrees which are moved are colored in blue.

A consequence of the contraction is that the link of vℓa is augmented with the
link of simplex {vℓb} and, vℓb and its cofaces are removed from the complex.
Specifically, for every simplex σ ∈ K, we distinguish three cases

1. σ does not contain vℓb and remains unchanged,

2. σ contains both vℓa and vℓb , hence f(σ) = σ \ {vℓb}, #f(σ) =#σ − 1
and f(σ) is a proper face of σ,

3. σ contains vℓb but not vℓa and f(σ) = (σ \ {vℓb})∪{vℓa}, (#f(σ) =#σ).

We describe how to compute the contraction of vℓb to vℓa when K is rep-
resented as a simplex tree. We suppose that the edge {vℓa , vℓb} is in the
complex and, without loss of generality, ℓa < ℓb. All the simplices which do
not contain vℓb remain unchanged (case 1.) and we do not consider them.
If a simplex σ contains both vℓa and vℓb (case 2.), it becomes σ \ {vℓb} after
edge contraction, which is a simplex already in K. We simply remove σ from
the simplex tree. Finally, if σ contains vℓb but not vℓa (case 3.), we remove
σ from the simplex tree and add the new simplex (σ \ {vℓb}) ∪ {vℓa}.

We consider each node Nℓb with label ℓb in turn. To do so, we use the
lists Lj(ℓ) which link all nodes cointaining the label ℓ at depth j. Let σ be
the simplex represented by Nℓb . The algorithm traverses the tree upwards
from Nℓb and collects the vertices of σ. Let TNℓb

be the subtree rooted at
Nℓb . As ℓa < ℓb, σ containing both vℓa and vℓb implies that every simplex
represented by a node in TNℓb

also contains both vℓa and vℓb . Moreover,
if σ contains only vℓb , so does every simplex representated by a node in
TNℓb

. Consequently, when σ contains both vℓa and vℓb , we remove the whole
subtree TNℓb

from the simplex tree. When σ contains only vℓb , all words
represented in TNℓb

are of the form [σ′] � [σ′′] � [ℓb] � [σ
′′′] and turn into words

[σ′] � [ℓa] � [σ
′′] � [σ′′′] after edge contraction, where � denotes the concatenation
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of words. We consequently move the subtree TNℓb
(apart from its root)

from position [σ′] � [σ′′] to position [σ′] � [ℓa] � [σ
′′] in the simplex tree. If

a subtree is already rooted at this position, we have to merge TNℓb
with

this subtree as illustrated in Figure 2.6. In order to merge the subtree TNℓb

with the subtree rooted at the node representing the word [σ′] � [ℓa] � [σ
′′],

we successively insert every node of TNℓb
in the corresponding set of sibling

nodes, stored in a dictionary. See Figure 2.6.
We analyze the complexity of contracting an edge {vℓa , vℓb}. For each

node storing the label ℓb, we traverse the tree upwards. This takes O(k)
operations for a simplicial complex of dimension k. As there are T >0

ℓb
such

nodes, the total cost is O(kT >0
ℓb

). We also manipulate the subtrees rooted
at the nodes storing label ℓb. Specifically, either we remove such a subtree
or we move a subtree by changing its parent node. In the later case, we
have to merge two subtrees. This is the more costly scenario and it takes,
in the worst case, O(Dm) operations per node in the subtrees to be merged.
As any node in such a subtree represents a coface of vertex vℓb , the total
number of nodes in all the subtrees we have to manipulate is at most C{vℓb}

,
and the manipulation of the subtrees takes O(C{vℓb}

Dm) operations in total.
Consequently, the time needed to contract the edge {vℓa , vℓb} is O(kT >0

ℓb
+

C{vℓb}
Dm).

Remark 2.1. The quantity Dm appears as a key value in the complexity
analysis of the algorithms. Recall that Dm is the maximal number of opera-
tions needed to perform a search, an insertion or a removal in a dictionary
of maximal size deg(T ) in the simplex tree. As mentioned earlier, deg(T )
is bounded by the maximal degree of a vertex in the graph of the simplicial
complex. For an arbitrary simplicial complex, deg(T ) may be as big as the
number of vertices in the complex. However, in a framework where the ver-
tices are points in a space, deg(T ) is bounded by a small quantity depending
only on the intrinsic dimension of the point cloud [20].

2.3 Construction of Simplicial Complexes

In this section, we describe algorithm to construct flag complexes and witness
complexes using a simplex tree.

Flag Complex. Given the 1-skeleton, presented as a graph, of a flag com-
plex, we call expansion of order k the operation which consists in constructing
the k-skeleton of the flag complex. If the 1-skeleton is stored in a simplex
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vℓjvℓ0
vℓ1

N+(vℓ0) ∩ · · · ∩ N
+(vℓj−1) = Avℓj

N+(vℓj)

A ∩N+(vℓj)

N+(vℓ0)

Figure 2.7: Representation of a set of sibling nodes as intersection of neighbor-
hoods.

tree, the expansion of order k consists in successively inserting all the sim-
plices of the k-skeleton into the simplex tree.

Let G = (V,E) be the graph of the simplicial complex, where V is the
set of vertices and E ⊆ V × V is the set of edges. For a vertex vℓ ∈ V , we
denote by

N+(vℓ) = {ℓ
′ ∈ {1, · · · ,#V } : (vℓ, vℓ′) ∈ E and ℓ′ > ℓ}

the set of labels of the neighbors of vℓ in G that are bigger than ℓ. Let
Nℓj be the node in the tree that stores the label ℓj and represents the word
[ℓ0, · · · , ℓj ]. The children of Nℓj store the labels in N+(vℓ0)∩ · · · ∩N

+(vℓj ).
Indeed, the children of Nℓj are neighbors in G of the vertices vℓi , 0 ≤ i ≤ j,
(by definition of a clique) and must have a bigger label than ℓ0, · · · , ℓj (by
construction of the simplex tree). Consequently, the sibling nodes of Nℓj are
exactly the nodes that store the labels in A = N+(vℓ0) ∩ · · · ∩ N

+(vℓj−1
),

and the children of Nℓj are exactly the nodes that store the labels in A ∩
N+(vℓj ); see Figure 2.7. For every vertex vℓ, we have an easy access to
N+(vℓ) since N+(vℓ) is exactly the set of labels stored in the children of the
top node storing label ℓ. We easily deduce an in-depth expansion algorithm.

The time complexity for the expansion algorithm depends on our ability
to fastly compute intersections of the type A∩N+(vℓj ). In all of our exper-
iments in Chapter 3 on the Rips complex we have observed that the time
taken by the expansion algorithm depends linearly on the size of the output
simplicial complex, for a fixed dimension.

Witness Complex. Let L and W be respectively a set of landmarks and
witnesses. For the description of the algorithm, we call a simplex σ fully
witnessed if it is witnessed and all of its facets are in the witness complex
Wit(W,L).
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We suppose the sets L and W finite and give them labels {1, · · · ,#L}
and {1, · · · ,#W} respectively. We describe an algorithm to construct the
k-skeleton of the witness complex, for an arbitrary dimension k. Our con-
struction algorithm is incremental, from lower to higher dimensions. At step
j we insert in the simplex tree the j-dimensional fully witnessed simplices.

During the construction of the k-skeleton of the witness complex, we need
to access the nearest neighbors of the witnesses, in L. To do so, we compute
the k + 1 nearest neighbors of all the witnesses in a preprocessing phase,
and store them in a #W × (k + 1) matrix. Given an index j ∈ {0, · · · , k}
and a witness w ∈ W , we access in constant time the (j + 1)th nearest
neighbor of w. We denote this landmark by swj . We maintain a list of active
witnesses, initialized with W . We insert the vertices of Wit(W,L) in the
simplex tree. For each witness w ∈ W we insert a top node storing the
label of the nearest neighbor of w in L, if no such node already exists. w
is initially an active witness and we make it point to the node mentionned
above, representing the 0-dimensional simplex w witnesses. We maintain the
following loop invariants:

1. at the beginning of iteration j, the simplex tree contains the (j − 1)-
skeleton of the witness complex Wit(W,L),

2. the active witnesses are the elements ofW that witness a (j−1)-simplex
of the complex; each active witness w points to the node representing
the (j − 1)-simplex in the tree it witnesses.

At iteration j ≥ 1, we traverse the list of active witnesses. Let w be an
active witness. We first retrieve the (j + 1)th nearest neighbor swj of w from
the nearest neighbors matrix (Step 1). Let σj be the j-simplex witnessed by
w and let us decompose the word representing σj into [σj ] = [σ′] � [swj ] � [σ

′′],
where � denotes the concatenation of words. We then look for the location
in the tree where σj might be inserted (Step 2). To do so, we start at the
node Nw which represents the (j− 1)-simplex witnessed by w. Observe that
the word associated to the path from the root to Nw is exactly [σ′] � [σ′′].
We walk #[σ′′] steps up from Nw, reach the node representing [σ′] and then
search downwards for the word [sjw] � [σ′′]; see Figure 2.8, left. The cost of
this operation is O(jDm).

If the node representing σj exists, σj has already been inserted; we update
the pointer of the active witness w and return. If the simplex tree contains
neither this node nor its father, σj is not fully witnessed because the facet
represented by its longest prefix is missing. We consequently remove w from
the set of active witnesses. Lastly, if the node is not in the tree but its
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Figure 2.8: Third iteration of the witness complex construction. The active witness
w witnesses the tetrahedron {2, 3, 4, 5} and points to the triangle {2, 4, 5}. Left:
search for the potential position of the simplex {2, 3, 4, 5} in the simplex tree. Right:
facets location for simplex {2, 3, 4, 5} and update of the pointer of the active witness
w.

father is, we check whether σj is fully witnessed. To do so, we search for the
j + 1 facets of σj in the simplex tree (Step 3). The cost of this operation is
O(j2Dm) using the Locate-boundary algorithm described in Section 2.2. If
σj is fully witnessed, we insert σj in the simplex tree and update the pointer
of the active witness w. Else, we remove w from the list of active witnesses;
see Figure 2.8, right. It is easily seen that the loop invariants are satisfied
at the end of iteration j.

We study the complexity of the construction. The cost of accessing a
neighbor of a witness using the nearest neighbors matrix is O(1). We access
a neighbor (Step 1) and locate a node in the simplex tree (Step 2) at most
k#W times during the whole construction. In total, the cost of Steps 1 and
2 together is O(#Wk2Dm). In Step 3, either we insert a new node in the
simplex tree, which happens exactly #K times, where the simplicial complex
K is the output, or we remove an active witness, which happens at most #W
times. The total cost of Step 3 is thus O((#K+#W )k2Dm). In conclusion,
constructing the k-skeleton K of the witness complex takes time

O((#K+#W )k2Dm + k#W ) = O((#K+#W )k2Dm)

Landmark Insertion. We present an algorithm to update the simplex tree
under landmark insertions. Given the set of landmarks L, the set of witnesses
W and the k-skeleton of the witness complex Wit(W,L) represented as a
simplex tree, we take a new landmark point x and we update the simplex
tree so as to construct the simplex tree associated to Wit(W,L ∪ {x}). We
assign to x the biggest label #L + 1. We suppose we have at our disposal
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an oracle that can compute the subset W x ⊆W of the witnesses that admit
x as one of their k + 1 nearest neighbors. Computing W x is known as the
reverse nearest neighbor search problem.

Let w be a witness in W x and suppose x is its (i+1)th nearest neighbor
in L ∪ {x}, with 0 ≤ i ≤ k. Let σj ⊆ L be the j-dimensional simplex
witnessed by w in L and let σ̃j ⊆ L ∪ {x} be the j-dimensional simplex
witnessed by w in L ∪ {x}. Consequently, σj = σ̃j for j < i and σj 6= σ̃j
for j ≥ i. We equip each node N of the simplex tree with a counter of
witnesses which maintains the number of witnesses that witness the simplex
represented by N . As for the witness complex construction, we consider all
nodes representing simplices witnessed by elements of W x, proceeding by
increasing dimensions. For a witness w ∈ W x and a dimension j ≥ i, we
decrement the witness counter of σj and insert σ̃j if and only if its facets
are in the simplex tree. We remark that [σ̃j ] = [σj−1] � [x] because x has
the biggest label of all landmarks. We can thus access in time O(Dm) the
position of the word [σ̃j ] since we have accessed the node representing [σj−1]
in the previous iteration of the algorithm.

If the witness counter of a node is turned down to 0, the simplex σ
it represents is not witnessed anymore, and is consequently not part of
Wit(W,L ∪ {x}). We remove the nodes representing σ and its cofaces from
the simplex tree, using Locate-cofaces.

The update procedure is a “local” variant of the witness complex con-
struction, where, by “local”, we mean that we reconstruct only the star of
vertex x. It admits an output-sensitive complexity analysis. Let Cx denote
the number of cofaces of x in Wit(W,L ∪ {x}). The same analysis as above
shows that updating the simplicial complex takes time O((#W x+Cx)k

2Dm),
plus one call to the oracle to compute W x.

Relaxed Witness Complex. Given W , L and ρ ≥ 0, we resort to a
similar incremental algorithm as above for the construction of Witρ(W,L).
At each step j, we insert, for each witness w, the j-dimensional simplices
which are ρ-witnessed by w. Differently from the standard witness complex
though, there may be more than one j-simplex that is witnessed by a given
witness w ∈W . Consequently, we do not maintain a pointer from each active
witness to the last inserted simplex it witnesses. We use simple top-down
insertions from the root of the simplex tree.

Given a witness w and a dimension j, we generate all the j-dimensional
simplices which are ρ-witnessed by w. For the ease of exposition, we suppose
we are given the sorted list of nearest neighbors of w in L, denoted by
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Figure 2.9: Computation of the ρ-witnessed simplices σ of dimension 5. If z3 is
the first neighbor of w not in σ, then σ contains {z0, z1, z2} and any 3-uplet of
A3 = {z4, · · · , z8}.

{z0 · · · z#L− 1}, and their distance to w, denoted by mi = d(w, zi), with
m0 ≤ · · · ≤ m#L− 1, breaking ties arbitrarily. Note that if one wants to
construct only the k-skeleton of the complex, it is sufficient to know the list
of neighbors of w that are at distance at most mk+ρ from w. We preprocess
this list of neighbors for all witnesses. For i ∈ {0, · · · ,#L− 1}, we define the
set Ai of landmarks z such that mi ≤ d(w, z) ≤ mi + ρ. For i ≤ j + 1, w
ρ-witnesses all the j-simplices that contain {z0, · · · , zi−1} and a (j + 1− i)-
subset of Ai, provided #Ai ≥ j + 1 − i. We see that all j-simplices that
are ρ-witnessed by w are obtained this way, and exactly once, when i ranges
from 0 to j + 1.

For all i ∈ {0, · · · , j + 1}, we compute Ai and generate all the simplices
which contain {z0, · · · , zi−1} and a subset of Ai of size (j+1− i). In order to
easily update Ai when i is incremented, we maintain two pointers to the list
of neighbors, one to zi and the other to the end of Ai. We check in constant
time if Ai contains more than j+1− i vertices, and compute all the subsets
of Ai of cardinality j + 1− i accordingly; see Figure 2.9.

We study the complexity of the algorithm. Let Rj be the number of
j-simplices ρ-witnessed by w. Generating all those simplices takes O(j+Rj)
time. Indeed, for all i from 0 to j+1, we construct Ai and check whether Ai

contains more than j + 1− i elements. This is done by a simple traversal of
the list of neighbors of w, which takes O(j) time. Then, when Ai contains
more than j + 1− i elements, we generate all subsets of Ai of size j + 1− i

in time O(
(
#Ai
j+1−i

)
). As each such subset leads to a ρ-witnessed simplex, the

total cost for generating all those simplices is O(Rj).
We can deduce the complexity of the construction of the k-skeleton of the

relaxed witness complex. Let R =
∑

w∈W

∑
j=0···k Rj be the number of ρ-

witnessed simplices we try to insert. The construction of the relaxed witness
complex takes O(Rk2Dm) operations. This bound is quite pessimistic and,
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in practice, we observed that the construction time is sensitive to the size of
the output complex. Observe that the quantity analogous to R in the case of
the standard witness complex was k#W and that the complexity was better
due to our use of the notion of active witnesses.
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Chapter 3

Performance of the Simplex

Tree

In this section, we report on the performance of the Locate-boundary algo-
rithm, Locate-cofaces algorithm and the construction of Rips complexes,
witness complexes and relaxed witness complexes with a simplex tree. We
compare the performance for the construction of simplicial complexes with
JPlex and Dionysus. We also provide a study of the memory performance
of the simplex tree compared to other representations. We use a variety of
real and synthetic data, listed in Figure 3.3 with details on the sets of points
P or landmarks L and witnesses W , their size #P , #L and #W , the ambi-
ent dimension D, the intrinsic dimension d of the object the sample points
belong to (if known), the threshold ρ for the complex, the dimension k up to
which we construct the complexes, the time Tg to construct the Rips graph
or the time Tnn to compute the lists of nearest neighbors of the witnesses, the
number of edges #E, the time for the construction of the Rips complex TRips

or for the construction of the witness complex TWitρ , the size of the complex
#K, and the total construction time Ttot and average construction time per
simplex Ttot/#K. Unless mentioned otherwise, all simplicial complexes are
computed up to the embedding dimension.

We use the ANN library [58] to compute the 1-skeleton graph of the Rips
complex, and to compute the lists of nearest neighbors of the witnesses for the
witness complexes. For its efficiency and flexibility, we use the map container
of the Standard Template Library for storing sets of sibling nodes, except
for the top nodes which are stored in an array. Experiments are stopped
after one hour of computation, and data missing on plots means that the
computation ran above this time limit. For readability, we first report on
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dim j 0 1 2 3 4 5 6 7 8 9 10 11 12 13
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Figure 3.1: Repartition of the number of simplices per dimension (top) and average
time to locate the boundary (left) and the cofaces (right) of a simplex of a given
dimension.

the performance of each algorithm on a subset of the data, and furnish more
timings at the end of the paragraphs.

As illustrated in Figure 3.3, we are able to construct and represent both
Rips and relaxed witness complexes of up to several hundred million simplices
in high dimensions, on all datasets.

Data Structures in JPlex and Dionysus. Both JPlex and Dionysus

represent the combinatorial structure of a simplicial complex by its Hasse
diagram. JPlex and Dionysus are libraries dedicated to topological data
analysis, where only the construction of simplicial complexes and the com-
putation of the boundary of a simplex are necessary.

For a simplicial complex K of dimension k and a simplex σ ∈ K of
dimension j, the Hasse diagram has size Θ(k #K) and allows to compute
Locate-boundary(σ) in time O(j), whereas the simplex tree has size Θ(#K)
and allows to compute Locate-boundary(σ) in time O(j2Dm).

3.1 Incidence Retrieval

We report on the experimental performance of the boundary and cofaces
location algorithms. They are at the heart of other computations, like the
edge contractions and the construction of witness complexes. Figure 3.1
represents the average time for these operations on a simplex, as a function
of the dimension of the simplex. We use the dataset Bro, consisting of
points in R25, on top of which we build a relaxed witness complex with 300
landmarks and 15, 000 witnesses, and relaxation parameter ρ = 0.15. We
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Figure 3.2: Statistics and timings for the Rips complex (Left) and the relaxed
witness complex (Right) on S4.

obtain a 13-dimensional simplicial complex with 140, 000 simplices in less
than 3 seconds.

The theoretical complexity for computing the boundary of a j-simplex σ
is O(j2Dm). As reported in Figure 3.1, the average time to search all facets
of a j-simplex is well approximated by a quadratic function on the dimension
j (the standard error in the approximation is 2.0%).

A bound on the complexity for computing the cofaces of a j-simplex σ
is O(kT >j

last(σ)), where T >j

last(σ) stands for the number of nodes in the simplex
tree that store the label last(σ) and have depth larger than j+1. Figure 3.1
provides experimental results for a random labelling of the vertices. As can
be seen, the time for computing the cofaces of a simplex σ is low, on average,
when the dimension of σ is either small (0 to 2) or big (6 to 13), and higher
for intermediate dimensions (3 to 5). The value T >j

last(σ) in the complexity
analysis depends on both the labelling of the vertices and the number of
cofaces of the vertex vlast(σ): these dependencies make the analysis of the
algorithm quite difficult, and we let as an open problem to fully understand
the experimental behavior of the algorithm as observed in Figure 3.1 (right).

3.2 Memory Performance

In order to represent the combinatorial structure of an arbitrary simplicial
complex, one needs to mark all maximal simplices. Indeed, except in some
special cases (like in flag complexes where all simplices are determined by
the 1-skeleton of the complex), one cannot infer the existence of a simplex
in a simplicial complex K from the existence of its faces in K. Moreover,
the number of maximal simplices of a k-dimensional simplicial complex is
at least #VertK/(k + 1). In the case, considered in this paper, where the
vertices are identified by their labels, a minimal representation of the maxi-
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Data #P ρ Tg #E TRips #K Ttot Ttot/#K

Bud 49,990 0.11 1.5 1,275,930 104.5 354,695,000 104.6 3.0 · 10−7

Bro 15,000 0.019 0.6 3083 36.5 116,743,000 37.1 3.2 · 10−7

Cy8 6,040 0.4 0.11 76,657 4.5 13,379,500 4.61 3.4 · 10−7

Kl 90,000 0.075 0.46 1,120,000 68.1 233,557,000 68.5 2.9 · 10−7

S4 50,000 0.28 2.2 1,422,490 95.1 275,126,000 97.3 3.6 · 10−7

Data #L #W ρ Tnn TWitρ #K Ttot Ttot/#K

Bud 10,000 49,990 0.12 1. 729.6 125,669,000 730.6 0.58 · 10−5

Bro 3,000 15,000 0.01 9.9 107.6 2,589,860 117.5 4.5 · 10−5

Cy8 800 6,040 0.23 0.38 161 997,344 161.2 16 · 10−5

Kl 10,000 90,000 0.11 2.2 572 109,094,000 574.2 0.53 · 10−5

S4 50,000 200,000 0.06 25.1 296.7 163,455,000 321.8 0.20 · 10−5

Figure 3.3: Data, timings in seconds and statistics for the construction of Rips
complexes (top) and relaxed witness complexes (bottom). All complexes are con-
structed up to embedding dimension.

mal simplices would then require at least Ω(log(#VertK)) bits per maximal
simplex, for fixed k. The simplex tree uses O(log(#VertK)) memory bits per
simplex of any dimension. The following experiment compares the memory
performance of the simplex tree with the minimal representation described
above, and with the representation of the 1-skeleton.

Figure 3.2 shows results for both Rips and relaxed witness complexes
associated to 10, 000 points from S4 and various values of the threshold ρ.
The figure plots the total number of simplices #K, the number of maximal
simplices #mF , the size of the 1-skeleton #G and the construction times
TRips and TWitρ .

As expected, the 1-skeleton is significantly smaller than the two other
representations. However, as explained earlier, a representation of the graph
of the simplicial complex is only well suited for flag complexes.

As shown on the figure, the total number of simplices and the number of
maximal simplices remain close along the experiments. Moreover, we catch
the topology of S4 when ρ ≈ 0.4 for the Rips complex and ρ ≈ 0.08 for
the relaxed witness complex. For these “good” values of the parameters, the
total number of simplices is not much bigger than the number of maximal
simplices. Specifically, the total number of simplices of the Rips complex is
less than 2.3 times bigger than the number of maximal simplices, and the
ratio is less than 2 for the relaxed witness complex.
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Figure 3.4: Statistics and timings for the construction of the Rips complex on
(Left) Bud and (Right) Cy8.

3.3 Construction of Simplicial Complexes

Construction of Rips Complexes. We test our algorithm for the con-
struction of Rips complexes. In Figure 3.4 we compare the performance of
our algorithm with JPlex and with Dionysus along two directions.

In the first experiment, we build the Rips complex on 49, 000 points from
the dataset Bud. Our construction is at least 36 times faster than JPlex

along the experiment, and several hundred times faster for small values of
the parameter ρ. Moreover, JPlex is not able to handle the full dataset
Bud nor big simplicial complexes due to memory allocation issues, whereas
our method has no such problems. In our experiments, JPlex is not able
to compute complexes of more than 23 million simplices (r = 0.07) while
the simplex tree construction runs successfully until r = 0.11, resulting in a
complex of 237 million simplices. Our construction is at least 7 times faster
than Dionysus along the experiment, and several hundred times faster for
small values of the parameter ρ.

In the second experiment, we construct the Rips complex on the 6040
points from Cy8, with threshold r = 0.4, for different dimensions k. Again,
our method outperforms JPlex, by a factor 11 to 14. JPlex cannot compute
complexes of dimension higher than 7 because it is limited by design to
simplicial complexes of dimension smaller than 7. Our construction is 4 to
12 times faster than Dionysus.

The simplex tree and the expansion algorithm we have described are
output sensitive. As shown by our experiments, the construction time using
a simplex tree depends linearly on the size of the output complex. Indeed,
when the Rips graphs are dense enough so that the time for the expansion
dominates the full construction, we observe that the average construction
time per simplex is constant and equal to 3.7 × 10−7 seconds for the first
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Figure 3.5: Statistics and timings for the construction of: (top) the witness com-
plex and (bottom) the relaxed witness complex, on datasets (left) Bro and (right)
Kl.

experiment, and 4.1×10−7 seconds for the second experiment (with standard
errors 0.20% and 0.14% respectively). Additional timings are reported in
Figure 3.6.

Construction of Witness Complexes. We test our algorithms for the
construction of witness complexes and relaxed witness complexes. Figure 3.5
(top) shows the results of two experiments for the full construction of witness
complexes. The first one compares the performance of the simplex tree
algorithm and of JPlex on the dataset Bro consisting of 15, 000 points in
dimension R25. Subsets of different size of landmarks are selected at random
among the sample points. Our algorithm is from several hundred to several
thousand times faster than JPlex (from small to big subsets of landmarks).
Moreover, the simplex tree algorithm for the construction of the witness
complex represent less than 1% of the total time spent, when more than 99%
of the total time is spent computing the nearest neighbors of the witnesses.

In the second experiment, we construct the witness complex on 2, 500
landmarks from Kl, and sets of witnesses of different size. The simplex tree
algorithm outperforms JPlex, being tens of thousands times faster. JPlex

runs above the one hour time limit while the simplex tree algorithm stays
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under 0.1 second all along the experiments. Moreover, the simplex tree algo-
rithm spends only about 10% of the time constructing the witness complex,
and 90% computing the nearest neighbors of the witnesses.

Finally we test the full construction of the relaxed witness complex.
JPlex does not provide an implementation of the relaxed witness complex
as defined in this paper; consequently, we were not able to compare the al-
gorithms on the construction of the relaxed witness complex. We test our
algorithms along two directions, as illustrated in Figure 3.5 (bottom). In the
first experiment, we compute the 5-skeleton of the relaxed witness complex
on Bro, with 15, 000 witnesses and 1, 000 landmarks selected randomly, for
different values of the parameter ρ. In the second experiment, we construct
the k-skeleton of the relaxed witness complex on Kl with 10, 000 landmarks,
100, 000 witnesses and fixed parameter ρ = 0.07, for various k. We are able
to construct and store complexes of up to 260 million simplices. In both
cases the construction time is linear in the size of the output complex, with
a contruction time per simplex equal to 4.9 × 10−6 seconds in the first ex-
periment, and 4.0 × 10−6 seconds in the second experiment (with standard
errors 1.6% and 6.3% respectively).
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Bud: ρ 0.08 0.085 0.090 0.095 0.100 0.105 0.110

TRips 19.4 26.5 35.8 46.7 60.5 77.7 98.7
#K 69 · 106 94 · 106 127 · 106 167 · 106 217 · 106 280 · 106 355 · 106

Bro: ρ 0.184 0.186 0.188 0.190 0.192 0.194 0.196

TRips 15.3 18.1 28.2 34.5 40.8 56.2 81.1
#K 52 · 106 61 · 106 95 · 106 117 · 106 138 · 106 190 · 106 275 · 106

Cy8: ρ 0.406 0.415 0.424 0.433 0.442 0.451 0.460

TRips 5.7 8.7 13.6 21.4 34.5 57.3 96.6
#K 17 · 106 27 · 106 42 · 106 67 · 106 108 · 106 180 · 106 305 · 106

Kl: ρ 0.059 0.062 0.065 0.068 0.071 0.074 0.077

TRips 7.0 11.1 17.8 26.3 38.4 58.3 87.3
#K 24 · 106 38 · 106 61 · 106 90 · 106 133 · 106 204 · 106 305 · 106

S4: ρ 0.22 0.23 0.24 0.25 0.26 0.27 0.28

TRips 2.7 4.7 8.5 15.4 28.0 50.9 93.7
#K 7 · 106 13 · 106 23 · 106 43 · 106 79 · 106 146 · 106 271 · 106

Figure 3.6: Timings TRips for the construction of the Rips complex on the data
sets and size of the simplicial complexes #K, for different values of the parameter ρ.
On all these experiments, the time complexity is linear in the number of simplices.
Specifically, the timing per simplex ranges between 2.79 × 10−7 and 3.47 × 10−7

seconds per simplex depending on the dataset, with standard error at most 0.40%.
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Bud: ρ 0.06 0.07 0.08 0.09 0.10 0.11 0.12

TWitρ 18.3 36.9 71.1 135.8 249.1 440.2 758.6
#K 7.8 · 106 14 · 106 23 · 106 38 · 106 58 · 106 88 · 106 130 · 106

Bro: ρ 0.0075 0.0080 0.0085 0.0090 0.0095 0.0100 0.0105

TWitρ 4.0 6.1 10.7 16.5 39.3 123.2 530.9
#K 1.2 · 106 1.5 · 106 1.9 · 106 2.2 · 106 3.1 · 106 4.6 · 106 7.0 · 106

Cy8: ρ 0.194 0.200 0.206 0.212 0.218 0.224 0.230

TWitρ 18.7 33.1 130.2 273.0 512.9 37.2 1411.2
#K 0.45 · 106 0.66 · 106 0.82 · 106 1.1 · 106 1.7 · 106 2.3 · 106 3.6 · 106

Kl: ρ 0.05 0.06 0.07 0.08 0.09 0.10 0.11

TWitρ 3.2 9.7 24.6 55.3 118.0 261.1 584.5
#K 0.78 · 106 2.2 · 106 5.2 · 106 11 · 106 23 · 106 49 · 106 109 · 106

S4: ρ 0.03 0.035 0.040 0.045 0.050 0.055 0.060

TWitρ 7.6 14.1 26.4 48.9 89.2 164.6 297.3
#K 2.8 · 106 5.3 · 106 11 · 106 22 · 106 43 · 106 85 · 106 161 · 106

Figure 3.7: Timings TWitρ for the construction of the relaxed witness complex on
the data sets and size of the simplicial complexes #K, for different values of the
parameter ρ. The timings per simplex vary, as the complexity of the construction
algorithm depends also on the number of witnesses. It however ranges between
≈ 10−6 and ≈ 10−4 seconds per simplex depending on the number of witnesses
compared to the number of simplices of the output.

42



Part II

Compressed Annotation

Matrix for Persistent

Cohomology

43



This Part is based on the following publications:

• Jean-Daniel Boissonnat, Tamal K. Dey and Clément Maria. The Com-
pressed Annotation Matrix: An Efficient Data Structure for Com-
puting Persistent Cohomology. European Symposium on Algorithms
2013 [15]

• Jean-Daniel Boissonnat, Tamal K. Dey and Clément Maria. The Com-
pressed Annotation Matrix: An Efficient Data Structure for Comput-
ing Persistent Cohomology. Algorithmica 2015 [16]
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Chapter 4

Homology Theory and

Persistence

Homology theory generalizes the notion of connectivity to higher dimensions.
A family of groups – one per dimension – is attached to a topological space.
These groups are topological invariants, and intuitively capture the number
of connected components of the space, its number of holes, its number of
cavities and higher dimensional equivalents. Similarly to the fact that sim-
plicial complexes are a natural generalization of graphs allowing more general
incidence relations, homology groups are a natural generalization of graph
connectivity to higher dimensional connectivity for triangulated shapes.

The homology groups are topological invariants in the sense that two
homeomorphic shapes have isomorphic homology groups. However, for prac-
tical purpose like in topological inference, we do not deal with exact repre-
sentations of spaces and comparing homology groups give an excessively rigid
classification. Persistent homology has been introduced as a dynamic ver-
sion of homology, where one studies the evolutation of the homology groups
under a sequence of modifications of the topological space, called a filtration.
A filtration induces a persistence module which we use as a topological in-
variant. We study the algebraic decompositions of the persistence modules
and define a distance to compare them.

Finally, we present algorithms for computing persistent homology and
persistent cohomology, and detail their implementation.

We assume in the following knowledge about general algebra. All neces-
sary results are summarized in Appendix A.
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Figure 4.1: 1-dimension simplicial complex with vertices {x, y, z, t} and edges
{α, β, γ, δ} with an arbitrary orientation.

Intuition. A hole is, by essence, something that is not material; it exists
only because a domain encloses it. Mathematically, it is the same: nothing
exists outside the topological space, which is only a set with a notion of
proximity between its points. However, this is enough to draw closed loops
and hence to enclose holes. Specifically, we count the number of holes in
Figure 4.1 by enumerating the closed loops in the simplicial complex. With
an additive notation and keeping track of the orientation of edges, the left
loop is α+ β + ǫ, the right loop is δ − ǫ+ γ and finally the external loop is
α+ β + γ + δ. We call them cycles in the following. Additionally, there is a
linear dependence between these three cycles. Indeed, if we suppose we can
commute the terms in each sum, we get

(α+ β + ǫ) + (δ − ǫ+ γ) = (α+ β + γ + δ)

What we are constructing is the structure of an abelian group. We formalize
this idea. Consider C0 to be the free abelian group generated by the vertices,
ie C0 = 〈x, y, z, t〉 and C1 to be the free abelian group generated by the
edges, ie C1 = 〈α, β, γ, δ, ǫ〉. The cycles presented above belong to C1,
together with other elements like α− 3γ.

We characterize cycles algebraically by defining the following group ho-
momorphism, called boundary operator

∂1 : C1 → C0

which assigns to an oriented edge [u, v] the oriented sum of its endpoints, ie
∂1([u, v]) = v−u. For example, the boundary of α is y−x. The cycles above
have a 0 boundary, because vertices cancel pairwise in the closed loop. For
example

∂1(α+ β + γ + δ) = (−x+ y) + (−y + z) + (−z + t) + (−t+ x) = 0
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Figure 4.2: 1-dimension simplicial complex with vertices {x, y, z, t} and edges
{α, β, γ, δ} with an arbitrary orientation.

The kernel of ∂1 is called the group of 1-cycles and denoted Z1. In Figure 4.1,
Z1 is a free abelian group generated by, for example, {α+ β + ǫ, γ + δ − ǫ}.
Note that the basis of Z1 contains as many elements as holes in the simplicial
complex.

Consider now the simplicial complex of Figure 4.2, with an additional
(oriented) triangle θ. We define similarly the free abelian group C2 generated
by θ. The groups C1 and Z1 remain unchanged, but now the rank of Z1 =
ker ∂1 is not anymore equal to the number of holes. We refine the notion by
defining equivalence classes of cycles, where a class contains essentially all
cycles that encircle the same hole. The boundary operator can be generalized
naturally to dimension 2

∂2 : C2 → C1

where the boundary of a triangle is the oriented sum of the edges of its
boundary, for example ∂2θ = γ + δ − ǫ.

Note now that the cycles α + β + ǫ and α + β + γ + δ, which encircle
the same hole after the insertion of the triangle θ, may be deformed one into
another by crossing the triangle θ. Algebraically, their difference is equal to
the boundary of one (or more) triangles

∂2θ = γ + δ − ǫ = (α+ β + γ + δ)− (α+ β + ǫ)

Denote by B1 the image of ∂2, which we call the group of boundaries. We
study the equivalence classes of the quotient Z1/B1 in order to capture the
number of holes of a shape. Note that in this quotient, α + β + ǫ and
α+β+γ+ δ belongs to the same non-trivial equivalence class, and γ+ δ− ǫ
belongs to the trivial class [0]. Now, the quotient Z1/B1 is generated by one
element {[α+ β + ǫ]} and we count exactly one hole.
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4.1 Simplicial Homology and Cohomology Theories

Let K = (V, S) be a simplicial complex and G be an abelian group, either
equal to Z or to a field k.

Homology Groups. Let σ = {v0, · · · , vd} be a simplex of K. Define two
orderings of its vertex set to be equivalent if they differ from one another
by an even permutation. If d > 1, these orderings fall into two equivalence
classes. Each of these classes are called an orientation of σ. If σ has dimen-
sion 0, there is only one orientation of σ. An oriented simplex [v0, · · · , vd] is
a simplex {v0, · · · , vd} equipped with an orientation (for which the ordering
v0, · · · , vd is a representative).

A d-chain on K is a function c from the set of oriented d-simplices of K
to G, such that:

(i) c(σ) = −c(σ′) if σ and σ′ are opposite orientations of the same simplex,

(ii) c(σ) = 0 for all but finitely many oriented d-simplices.

In our case, we consider only simplicial complexes with finitely many sim-
plices, so condition (ii) is automatically satisfied.

We add d-chains by adding there values; the set of d-chains with + forms a
free abelian group Cd(K,G) generated by the d-simplices of K, Cd(K,G) =
〈σ〉σ∈Kd . If d < 0 or d > dimK, we let Cd(K) denote the trivial group.

If σ is an oriented simplex, the elementary chain c corresponding to σ is
the function defined as follows:

1. c(σ) = 1,

2. c(σ′) = −1 if σ′ is the opposite orientation of σ,

3. c(τ) = 0 for all other oriented simplices.

By abuse of notation, we denote by σ the elementary chain associated to
the oriented simplex σ and by −σ the elementary chain associated to σ′, the
opposite orientation of σ. If we fix an orientation on the simplices of K, we
can consequently talk about formal sum of d-simplices to describe a d-chain,
as any d-chain c can be written:

c =
∑

α

nασα

where the sum is over all oriented d-simplices of K, and verifies c(σα) = nα
and c(σ′α) = −nα, where σα belongs to the oriented d-simplices of K and σ′α
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is the opposite orientation. We call c(σα) the coefficient of simplex σα in the
chain c, and we say that c contains σα if c(σα) 6= 0.

We now define the homomorphism:

∂d : Cd(K,G)→ Cd−1(K,G)

called the boundary operator. If σ = [v0, · · · , vd] is an oriented simplex with
d > 0, we define:

∂dσ = ∂d[v0, · · · , vd] =
d∑

i=0

(−1)i[v0, · · · , v̂i, · · · , vd]

where v̂i means that vi is deleted from the list. It is easy to verify that:

Lemma 4.1 (Fundamental lemma of homology). ∂d ◦ ∂d+1 = 0.

Proof. It is enough to prove that ∂d◦∂d+1 is null on a simplex σ = [v0, · · · , vd+1]:

∂d ◦ ∂d+1[v0, · · · , vd+1] =

p+1∑

i=0

(−1)i∂d[v0, · · · , v̂i, · · · , vd+1]

=
∑

j<i

(−1)i(−1)j [v0, · · · , v̂j , · · · , v̂i, · · · , vd+1]

+
∑

j>i

(−1)i(−1)j−1[v0, · · · , v̂i, · · · , v̂j , · · · , vd+1]

= 0

because every term of the first sum appears in the second sum with opposite
sign.

The kernel of ∂d : Cd(K,G) → Cd−1(K,G) is called the group of d-
cycles and denoted Zd(K,G). The image of ∂d+1 : Cd+1(K,G)→ Cd(K,G)
is called the group of d-boundaries and denoted Bd(K,G). By the preced-
ing fundamental lemma, each boundary of a (d + 1)-chain is a d-cycle, and
Bd(K,G) ⊆ Zd(K,G). We define

Hd(K,G) = Zd(K,G)/Bd(K,G)

to be the dth homology group of K with G coefficients.
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Homology Coefficients and Decomposition. We have considered ho-
mology with coefficients in G, where G is either Z or a field k. With integral
coefficients, the abelian group of d-chains Cd(K,Z) is, by construction, free
and admits as a basis the set of d-simplices of K. Being subgroups of a free
group, the group of d-cycles Z(K,Z) and the group of d-boundaries B(K,Z)
are also free abelian groups. Consequently, the homology groups are all
finitely generated, as quotients of these groups. By virtue of the structure
theorem of finitely generated abelian groups (Theorem A.1), every homology
group with integer coefficients admits a primary decomposition:

Hd(K,Z) ∼= Zβd(Z)
⊕

q prime

(
Zqk1 ⊕ · · · ⊕ Z

q
kt(d,q)

)

for uniquely defined integers βd(Z), and ki > 0 and t(d, q) ≥ 0 over all
prime numbers q. The summand Zβd(Z) of the decomposition describes the
free part of Hd(K,Z) and the integer βd(Z) is the dth Betti number of K

in integral homology. The summand
⊕

q prime

(
Zqk1 ⊕ · · · ⊕ Z

q
kt(d,q)

)
of the

decomposition, made of finite cyclic groups, is the torsion part of Hd(K,Z)
and, if t(d, q) > 0, the integers qk1 , · · · , qkt(d,q) of the primary decomposition
are the torsion coefficients of Hd(K,Z).

When homology is defined with coefficients in a field k, the groups
Cd(K, k), Zd(K, k), Bd(K, k) and Hd(K, k) become k-vector spaces. As
a consequence, the homology group Hd(K, k) admits a decomposition:

Hd(K, k) ∼= kβd(k)

for a unique integer βd(k) – the dimension of the vector space – also called
the dth Betti number of K in homology with k coefficients. Note that there
is no notion of torsion anymore.

Integral homology is strictly stronger than homology with coefficients in
a field, in the sense that one can deduce the decomposition of the vector
space Hd(K, k) for every d, knowing the primary decomposition if the ho-
mology groups Hd(K,Z), for every d. This is formalized by the universal
coefficient theorem that we describe in Chapter 7. However, being vector
spaces, homology groups with k coefficients offer better computational prop-
erties as well as stronger algebraic decomposition theorems when defining
persistence in Section 4.2. When there is no ambiguity on the coefficients
we use or when coefficients do not play a role, we omit the coefficient field
from the notations.

To come back to the intuitive behavior of homology groups, the Betti
numbers βd may often be related as the number of d-dimensional holes. For
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Figure 4.3: Homology groups of the torus.

example, it is always true that H0 is free, even with Z coefficients, and
that β0 is equal to the number of connected components. In Figure 4.1,
β0 = 1, β1 = 2 and there is no torsion, as expected. A more interesting
example, the torus in Figure 4.3, has 1 hole that induces 2 independent
non-contractible loops. When homology groups have torsion subgroups, the
Betti numbers differ depending on the coefficients. We discuss the question
of torsion and its influence on homology groups depending on the coefficients
used in Chapter 7.

Cohomology Groups. Cohomology is the theory dual to the theory of
homology, in a sense that we make precise below. Its definition is highly
algebraic in nature. In our setting, cohomology groups capture a topolog-
ical information equivalent to the one of homology groups but offer new
algorithmic possibilities as explained in Chapter 5.

For simplicity, we consider in the following homology and cohomology
with coefficients in a field k. Under this assumption, cohomology groups are
dual to homology groups in the sense of vector spaces and are consequently
isomorphic. For a k-vector space U , we define Hom(U) to be the vector
space of all homomorphisms of U into k. The group of d-cochains, with k
coefficients, of a simplicial complex K is the group

Cd(K, k) = Hom(Cd(K), k)

This is the k-vector space dual to Cd(K). For a simplex σ ∈ K, we define the
elementary cochain σ∗ that is the dual to the chain σ, ie the homomorphism
of Hom(Cd(K), k): {

σ∗(σ) = 1
σ∗(τ) = 0 for τ 6= σ

The coboundary operator δd : Hom(Cd(K), k) → Hom(Cd+1(K), k) is
defined to be the dual of the boundary operator ∂d, ie for any d-cochain
ϕ ∈ Cd(K) we have δd(ϕ) = ϕ◦∂d+1 ∈ Hom(Cd+1(K), k). Note that δ raises
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dimension by 1. We define Zd(K,G) to be the kernel of δd, Bd+1(K,G) to
be the image of δd and, noting that δd+1 ◦ δd = 0,

Hd(K,G) = Zd(K,G)/Bd(K,G)

These groups are called respectively the group of d-cocycles, the group of
d-coboundaries and the dth cohomology group of K with k coefficients.

Invariance of Homology Groups. Let f : K → L be a simplicial map.
It induces a homomorphism between chain groups:

f# : Cd(K)→ Cd(L)

defined as follows. For every oriented simplex σ = [v0, · · · , vd] of K

f#([v0, · · · , vd]) =

{
[f(v0), · · · , f(vd)] if all f(v0), · · · , f(vd) are distinct,
0 otherwise.

This map is well-defined. Exchanging two vertices in the expression of
[v0, · · · , vd] changes the sign of the right side of the equation.

A simple computation shows that the induced map f# : Cd(K)→ Cd(L)
commutes with the boundary operator, such that ∂Ld ◦ f# = f# ◦ ∂

K

d+1. As
a consequence, the homomorphism f# carries cycles to cycles, since the
equation ∂c = 0 for c ∈ Z(K) implies ∂f#(c) = f#(∂c) = 0. More-
over f# carries boundaries to boundaries, since the equation c = ∂d im-
plies that f#(c) = f#(∂d) = ∂f#(d). Thus, f# induces a homomorphism
f∗ : Hd(K)→ Hd(L) at the homology level.

The following theorem shows that continuous maps between underlying
domains also induce homomorphisms at the homology level:

Theorem 4.1 (Induced Homomorphism). Let K and L be two simplicial
complexes and h : |K| → |L| be a continuous function between their respective
underlying domains. There exists an homomorphism induced by h at the
homology level,

h∗ : Hd(K)→ Hd(L)

This is the homology analog of the simplicial approximation Theorem 1.2.
Finally, the following theorem sets the homology groups as topological in-
variants.

Theorem 4.2 (Invariance of Homology Groups). If h : |K| → |L| is a
homeomorphism, then h∗ : Hd(K)→ Hd(L) is an isomorphism.
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As a direct consequence, by composing homeomorphisms, homology groups
are well-defined on triangulable topological spaces. Moreover, two triangu-
lable topological spaces X and Y that are homeomorphic have isomorphic
homology groups. Homology groups are thus topological invariants.

4.2 Persistent Homology

As shown in the previous section, homology groups are invariants for a topo-
logical space. They are meant to differenciate topological spaces that are not
homeomorphic. They are consequently sensitive to discontinous transforma-
tions of a space. When dealing with practical problems in computational
topology, we are unlikely to study a homeomorphic representation of a topo-
logical space, but rather a coarse approximation. In topological data analysis
for example, we reconstruct a topological space from a point sample. To do
so, we use the types of simplicial complexes – Rips complex, witness complex
– introduced in Chapter 1. By nature, point clouds are discontinuous and
the slightest perturbation of the points or variation of scale may affect the
homology groups of the approximating complex; see Figure 4.4. In order to

ε ε′

Figure 4.4: Approximations from a perturbed point cloud with the wrong homol-
ogy.

provide a robust topological invariant in such a setting, persistent homology
has been introduced as a multi-scale theory of homology.

Specifically, persistent homology formalizes the idea of topological invari-
ant for a monotonic sequence of topological spaces connected by continuous
maps. In the discrete setting, consider the sequence of simplicial complexes
connected by simplicial maps:

K := K0
f1 // K1

f2 // · · ·
fn−1 // Kn−1

fn // Kn

We call such sequence a filtration. We see that a filtration function, defined
in Chapter 1, on a simplicial complex induces such sequence K of simpli-
cial complexes, where all maps are inclusions. For every dimension d, the
sequence of simplicial complexes induces a sequence a homology groups con-
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nected by induced homomorphisms:

Hom := Hd(K0)
f1∗ // Hd(K1)

f2∗ // · · ·
fn−1∗ // Hd(Kn−1)

fn∗ // Hd(Kn)

This sequence of homology groups connected by homomorphisms is called a
persistence module. It is the object of study of persistent homology.

Persistence and Living Homological Features. Unless mentioned oth-
erwise, all homology groups in the following have coefficients in a field k. We
focus on the case where the simplicial maps fi in the filtration K are all el-
ementary inclusion, ie Ki+1 = Ki ∪ {τi+1} where τi+1 is a simplex not in
Ki. For simplicity, we denote such a map by τi+1 and the induced map at
homology level by τi+1∗.

First, we study the effect of an elementary inclusion K
τ // L on the

homology groups. Suppose τ is a d-simplex. We prove,

Lemma 4.2. If there exists a cycle c ∈ Cd(L) with c(τ) 6= 0, then dimHd(L) =
dimHd(K) + 1 and the other homology groups do not change. We say that
τ is a creator. Otherwise, dimHd−1(L) = dimHd−1(K) − 1 and other ho-
mology groups do not change. We say that τ is a destructor.

Proof. We use the same notation for a chain in K and its image in L, as
they are equal to the same formal sum of simplices.
Case 1: If τ is contained in a cycle c, we prove that c cannot be homologous
to any cycle in Cd(K). Suppose instead that there is such a cycle c′ ∈ Cd(K)
such that c − c′ = ∂a, for a chain a ∈ Cd+1(L). Denote by α 6= 0 the
coefficient of τ in c. Because c′ is a cycle in K, it does not contain the simplex
τ , ie c′(τ) = 0 in L. Consequently, (∂a)(τ) = α 6= 0. This is a contradiction
because L does not contain any proper coface of τ . Hence, [c] is independent
from other homology classes in Hd(L) and dimHd(L) ≥ dimHd(K)+1. The
inequality dimHd(L) ≤ dimHd(K)+1 is a direct consequence from the fact
that Hd is the quotient of Zd over Bd, and the addition of a simplex increases
the dimension of Zd by at most 1. Note that in this case [∂τ ] = 0 in Hd−1(K).
Indeed, ∂c = 0 = ∂τ + ∂a for some chain a ∈ Cd(K). Consequently ∂τ is a
boundary in K.
Case 2: Suppose τ is contained in no cycle. Then the chain ∂τ is a non-
trivial cycle in K that become a boundary in L. It is a cycle because ∂◦∂ = 0.
It is obviously a boundary in L because τ ∈ Cd(L). We prove it is not a
boundary in K. Suppose instead that there is a chain a ∈ Cd(K) such
that ∂τ = ∂a. Thus, τ − a is a cycle of Cd(L) containing τ which is a
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Figure 4.5: Elementary inclusion with addition of a triangle. Left: creation
of a homological feature in dimension 2. Right: destruction of a homological
feature in dimension 1.

contradiction. Using a similar argument as in Case 1, we conclude that
dimHd−1(L) = dimHd−1(K)− 1.

The fact that the homology groups in other dimensions do not change is
direct.

We refer to Figure 4.5 for an illustration of this lemma. Assuming we
can decide if a simplex is a creator or a destructor, we can deduce from
this lemma an incremental algorithm to compute the Betti numbers of all
complexes Ki of the filtration K, by adding the simplices τi in turn and
update the Betti numbers under elementary inclusions.

Persistent homology furnishes a stronger information on the evolution of
the topology in the filtration. It also gives a description of which homological
feature is created or destructed, and furnishes a pairing of the birth and death
of each feature. From this pairing we can construct a topological invariant
for filtrations.

In order to define an invariant of algebraic nature for the persistence
module, we need to classify persistence modules up to isomorphism. Every
sequence of homology groups, with field coefficients, Hom decomposes into
interval submodules I[b; d]:

Hom ∼=
⊕

i

I[bi; di] (4.1)

where an interval submodule I[bi; di] is a persistence module equal to:

0
0 // · · ·

0 // 0
0 // k

1 // · · ·
1 // k

0 // 0
0 // · · ·

0 // 0︸ ︷︷ ︸
[1;bi−1]

︸ ︷︷ ︸
[bi;di]

︸ ︷︷ ︸
[di+1;n]

and we call bi and di respectively the birth and the death of I[bi; di]. This
decomposition is unique up to reordering of the terms and allows a full
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Figure 4.6: Filtration K and corresponding persistence module Hom. The basis
with homology classes [c] and [c′] is compatible with the interval decomposition of
Hom ∼= I[4; 7] ⊕ I[6; 6], in the sense that interval [4; 7] corresponds to the lifespan
of [c], catching the left hole, and interval [6; 6] corresponds to the lifespan of [c′],
catching the right hole.

classification of persistence modules up to isomorphism. Note that such de-
composition does not exist in general when homology is defined with integer
coefficients. We partly overcome this difficulty in Part III where we extract
some information about torsion in the context of persistence.

The success of persistent homology relies somehow on the intuition one
can have of this decomposition. Consider the example in Figure 4.6. The
persistence module decomposes into two interval modules that represent the
lifespan of the classes [c] and [c′], which in turns are linked to the birth and
death of 1-dimensional holes. The interval modules spanned by [c] and [c′]
also agree with Lemma 4.2, in the sense that c and c′ are the cycles (the ones
encircling the holes as in Figure 4.1) containing the new simplex when they
are created.

This intuition generalizes to the case of persistent homology, as we see
in algorithmic Section 4.3 through the concept of encoding. We prove that
the approach is correct in Chapter 10.

Persistence Diagram and Stability. In standard topology, two topo-
logical spaces are equivalent if they are homeomorphic, which implies that
they have isomorphic homology groups. The isomorphism of invariants is
too rigid in persistent homology, where one does not usually deal with an
exact representation of a space. Persistence modules are instead compared
using a more flexible notion of closeness expressed by a distance between
persistence diagrams.

The direct sum decomposition of the persistence module is visualized
using a persistence diagram. For a persistence module Hom of length n with
decomposition Hom ∼=

⊕
i I[bi; di], bi, di ∈ {1, · · · , n} for all i, the index

persistence diagram is a plot in the plane with a point (bi, di) for every
interval module I[bi; di] of the decomposition. For convenience, the diagonal
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Hom ∼= I[4; 7]⊕ I[6; 6]

Figure 4.7: Index persistence diagram.

x = y, with infinitely many points, is added; see Figure 4.7.
When a filtration function f : K→ R is defined on the simplicial complex

K, every index j ∈ {1, · · · , n} corresponds to the insertion of a simplex τj .
In this context, we call persistence diagram the plot in the plane of the points
(f(τbi), f(τdi)). Another convenient representation is the (index) persistence
barcode, where every interval module I[bi; di] is represented by an horizontal
bar with endpoints at abscissa f(τbi) and f(τdi) (or bi and di). See Figure 4.8
for a practical exemple on a topological inference problem. The long bar
in the barcode corresponds to a meaningful homological feature – ie one
appearing in the topological space we approximate – when the short bars
are topological noise. In the persistence diagram, the topological noise is
represented by the points close to the diagonal.

The similarity between persistence modules is measured by the bottle-
neck distance between their persistence diagrams. Let X and Y be the sets
of points, including the diagonal, of two persistence diagrams. We consider
bijections µ : X → Y between these sets of points. A bijection X → Y al-
ways exists thanks to the addition of infinitely many points on the diagonals.
For two points x = (x1, x2) and y = (y1, y2) in the plane, let ‖x−y‖∞ denote
the L∞-distance between them, ie ‖x−y‖∞ = max{|x1−y1|, |x2−y2|}. We
attach a value to every bijection µ : X → Y which is the supremum over all
pairs of points (x, µ(x)), with x ∈ X, of the distance ‖x− µ(x)‖∞. The bot-
tleneck distance dB(X,Y ) between two persistence diagrams is the infimum
over all bijection µ(x) of the value attached to µ, ie

dB(X,Y ) = inf
µ:X→Y

sup
x∈X
‖x− µ(x)‖∞

One of the main result of the theory of persistent homology is the stability
of the bottleneck distance. Specifically,

Theorem 4.3 (Stability Theorem). Let K be a simplicial complex and f, g :
K → R two filtration functions on K. For a dimension d, let X and Y
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Figure 4.8: Persistent homology for topological inference.

be the points of the persistence diagrams of the d-homology of f and of g
respectively. The bottleneck distance between X and Y is bounded from above
by the L∞-distance between f and g, ie

dB(X,Y ) ≤ ‖f − g‖∞ , with ‖f − g‖∞ = sup
σ∈K
|f(σ)− g(σ)|

As a consequence, having close filtrations, in the sense of the Stabil-
ity Theorem 4.3, implies having close persistence diagrams wrt bottleneck
distance. Hence, we have defined a notion of topological similarity for filtra-
tions.

Proximity of Diagrams for Čech and Rips Complexes. As an appli-
cation of the Stability Theorem 4.3, we prove that in topological inference the
long bars in the persistence barcodes of the Rips complex give the homology
of the unknown space.

We call quadrant (b, d) the open area of the plane containing all points
(x, y) ∈ R2 with x < b and y > d. In a persistence diagram, the quadrant
(b, d) contains all points corresponding to homological features which are
born before time b and die after time d. Let P be a point cloud in RD

sampling an unknown topological space X such that the sampling satisfies the
conditions of the Topological Reconstruction Theorem 1.4. The Topological
Reconstruction Theorem implies that the Čech complex Cρ(P) has homology
groups isomorphic to the ones of X for every ρ in some interval (γε; δε).
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Consequently, all points in the quadrant (γε, δε) of its persistence diagram
correspond to homological features of X.

Recall now Lemma 1.1: for every ρ, we have the inclusions Cρ(P) ⊆
Rρ(P) ⊆ CϑD·ρ(P), for a constant ϑD depending only on the dimension D.
Suppose wlog that γε = ρ0 and δε = (ϑD)

kρ0. We extend the sequence of
inclusions:

Cρ0(P) ⊆ Rρ0(P) ⊆ · · · ⊆ R(ϑD)k−1×ρ0(P) ⊆ C(ϑD)k×ρ0(P)

The parameter ρ defines two filtration functions f and g, one for the Čech
and one for the Rips complexes, on the final simplicial complex C(ϑD)k×ρ0(P).
In order to make the progression of the parameter ρ arithmetic instead of
geometric, we take the log of f and g, which gives again two filtration func-
tions log f and log g by monotonicity of log. The L∞-distance between these
two functions is at most ‖ log f − log g‖∞ = log ϑD. As a consequence, the
bottleneck distance of the persistence diagrams of the Čech and Rips log-
filtrations is bounded by log ϑD. Consequently, if P is dense enough in X
so that the quadrant (log γε, log δε) is far enough from the diagonal and the
topological noise, then the quadrant (log γε − log ϑD, log δε − log ϑD) of the
persistence diagram of the log-filtration of the Rips complex contains the
points corresponding to the homological features of X.

Note that there are better and more direct proofs of the topological in-
ference properties of the Rips complex, mentioned at the end of this chapter.

4.3 Computational Aspects of Persistence

We now present algorithms to compute persistent homology and persistent
cohomology. Because homology and cohomology are considered with coeffi-
cients in a field k, they are dual vector spaces and the interval decomposition
of the two corresponding persistence modules are isomorphic. The algorithm
returns the same result.

For simplicity, we denote by C∗(K) the external direct sum of the chains
groups for all dimensions, ie C∗(K) =

⊕
dCd(K). We define similarly

Z∗(K), B∗(K) and H∗(K). This way, we do not have to precise the dimen-
sion when computing the full persistent homology of a filtration. Similarly,
we use the notations C∗(K), Z∗(K), B∗(K) and H∗(K) for the direct sums in
all dimensions of the cochain, cocycle, coboundary and cohomology groups,
respectively. We prove the validity of the persistent homology algorithm
in Chapter 10, after introducing a uniform presentation of persistence and
zigzag persistence in the framework of quiver theory.
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Persistent Homology Algorithm. In order to represent the vector space
H(Ki), we represent a basis that is compatible with the decomposition of the
persistence module. We formalize the notion of compatible basis in Chap-
ter 10 where we prove the validity of the algorithm. The elements of H(Ki)
are equivalence classes of cycles that we cannot represent directly. Instead,
we maintain explicitly three families of chains.

For a filtration ∅ = K0
τ1 // K1

τ2 // · · ·
τn−1 // Kn−1

τn // Kn , there
exist chains τ̂1, · · · , τ̂n ∈ C∗(Kn), a partition of the indices {1, · · · , n} =
F ⊔G⊔H, and a bijective pairing G↔ H, denoted by P ⊆ G×H, satisfy-
ing the following conditions:

1. for all i, the leading term of τ̂i is τi, meaning that τ̂i = α1τ1+ · · ·+αiτi,
with αi 6= 0,

2. for all f ∈ F , ∂τ̂f = 0,

3. for all pairs (g, h) ∈ P, ∂τ̂h = τ̂g and hence ∂τ̂g = 0.

We call such a partitioned set of chains an encoding of the persistence mod-
ule . Condition 1. is equivalent to the fact that C∗(Ki) = 〈τ̂1, · · · , τ̂i〉. For
f ∈ F , τ̂f is a cycle created at index f whose homology class is non-zero
in Kn. For g ∈ G, paired with h ∈ H, τ̂g is a cycle created at index g and
whose homology class is non-zero from index g up to index h−1, after which
it becomes the boundary of the chain τ̂h. We prove in Chapter 10 that these
cycles span submodules of Hom that are in direct sum and are isomorphic
to interval modules. Hence, one can read directly the persistent pairs from
this encoding. In other words, an encoding of a persistence module encodes
completely the interval decomposition defined in Equation 4.1.

Computing the persistent homology of a filtration consists in maintaining
an encoding of the persistence module under maps induced by elementary
inclusions. Suppose we have an encoding {τ̂j}, with indices j in F ⊔G⊔H =
{1, · · · , i} and a paring P , of the persistence module corresponding to the

filtration ∅ = K0
τ1 // · · ·

τi // Ki and consider the map Ki

τi+1 // Ki+1 .
Note first that B∗(Ki) is generated by the cochains {τ̂g}g∈G and Z∗(Ki)

is generated by the cochains {τj}j∈F⊔G. We insert τi+1 and check whether
it is a creator or a destructor.
Case 1: if [∂τi+1] = 0 in Ki, τi+1 is a creator (see proof of Lemma 4.2). It
is equivalent to say that:

∂τi+1 =
∑

g∈G

αg · τ̂g
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The new cycle containing τi+1 is:

c = τi+1 −
∑

(g,h)∈P

αg · τ̂h

whose boundary is 0 by virtue of the equality above. We set τ̂i+1 ← c for the
new chain of the encoding, and set F ← F ∪ {i+ 1}. Note that the leading
term of τ̂i+1 is τi+1.
Case 2: if [∂τi+1] 6= 0 in Ki, τi+1 is a destructor (see proof of Lemma 4.2).
Because ∂τi+1 is a cycle, it is equivalent to say that:

∂τi+1 =
∑

f∈F

αf · τ̂f +
∑

g∈G

αg · τ̂g

where the sum over the indices in F is non zero. Let f0 be the biggest index
in F for which αf0 6= 0 in the expression of ∂τi+1; we pair f0 and i+ 1. We
set: {

τ̂i+1 ← τi+1 −
∑

(g,h)∈P αg · τ̂h
τ̂f0 ←

∑
f∈F αf

and update the indices:

F ← F \ {f0} G← G ∪ {f0} H ← H ∪ {i+ 1}

Note that the leading term of τ̂f0 is still τf0 because f0 has been taken max-
imal and that the leading term of τ̂i+1 is indeed τi+1. Also, by construction,
∂τ̂i+1 = τ̂f0 .

In both cases, we obtain valid encodings for the persistence module of

the filtration ∅ = K0
τ1 // · · ·

τi // Ki

τi+1 // Ki+1 . Note that picking f0
to be maximal in Case 2 implies that the simplex destroys the youngest
homological feature to which its boundary is related. This is known as the
elder rule of persistence, which preserves the older homological features.

Persistent Cohomology Algorithm. An inclusion K → L induces a
homomorphism at cohomology level that goes in reverse direction H∗(K)←
H∗(L). This is due to the fact that K → L induces a reverse map between
cochain groups Hom(C∗(K), k) ← Hom(C∗(L), k) where the image of a
cochain c∗ ∈ Hom(C∗(L), k) is its restriction to the domain C∗(K) ⊆ C∗(L).
Note that this last map is surjective, when the map between chain groups
C∗(K)→ C∗(L) is injective. Consequently, the filtration:

K := K0
f1 // K1

f2 // · · ·
fn−1 // Kn−1

fn // Kn
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induces the persistence module in cohomology:

Hom := H∗(K0) oo
f∗

1
H∗(K1) oo

f∗

2
· · · oo

f∗

n−1
H∗(Kn−1) oo

f∗

n
H∗(Kn)

We have a dual definition of an encoding of a persistence module in co-

homology. For a filtration ∅ = K0
τ1 // K1

τ2 // · · ·
τn−1 // Kn−1

τn // Kn ,
there exist cochains τ̃1, · · · , τ̃n ∈ C∗(Kn), a partition of the indices {1, · · · , n}
= F ⊔G ⊔H, and a bijective pairing G↔ H, denoted by P ⊆ G×H, sat-
isfying the following conditions:

1’. for all i, the leading term of τ̃i is τ∗i , meaning that τ̃i = αiτ
∗
i +· · ·+αnτ

∗
n,

with αi 6= 0,

2’. for all f ∈ F , δτ̃f = 0,

3’. for all pairs (g, h) ∈ P, δτ̃h = τ̃g and hence δτ̃g = 0.

Note that because the arrows are reversed, the leading term has now smallest
index and every pair (g, h) ∈ P satisfies h < g.

A cochain τ̃f , with f ∈ F , is a non trivial cocycle over the range of
indices {f, · · · , n}. Each chain τ̃h, for h ∈ H, restricts to a non trivial
cocycle over the range {h, · · · , g − 1}. For indices bigger or equal to g, τ̃h
is not a cocycle anymore as its coboundary is equal to δτ̃h = τ̃g which is a
non zero chain in the range {g, · · · , n}. Note that this is different from the
encoding in homology, where a homology class is represented by a cycle τ̂g
with index in G, until this cycle becomes trivial (but is still a cycle). As
before, such an encoding of the persistence module encodes completely its
interval decomposition.

We present an algorithm to maintain an encoding in cohomology when
going backward on a homomorphism H∗(Ki) oo f∗

i+1 H∗(Ki+1) . Given an
encoding, with indices in F ⊔G⊔H = {1, · · · , i}, of the persistence module

in cohomology of the filtration ∅ = K0
τ1 // · · ·

τi // Ki , we consider the

map Ki

τi+1 // Ki+1 . The impact of adding simplex τi to the complex is
that the cochains have an extra coefficient, ie





δτ̃f = αf · τ
∗
i+1 for f ∈ F

δτ̃h = τ̃g + αh · τ
∗
i+1 for h ∈ H and (g, h) ∈ P

δτ̃g = αg · τ
∗
i+1 for g ∈ G

We modify the encoding so as to satisfy Conditions 1’., 2’. and 3’. in
Ki+1. First we set:

{
τ̃h ← τ̃h for h ∈ H
τ̃g ← δτ̃h = τ̃g + αh · τ

∗
i+1 for g ∈ G and (g, h) ∈ P
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Hence Condition 3’. is satisfied for the pairs in P . Now, we consider two
cases:
Case 1’: All the coefficients αf , for f ∈ F , are 0. Then we set:

{
τ̃i+1 ← τ∗i+1

τ̃f ← τ̃f

and set F ← F ∪{i+1}. This is equivalent to creating a cycle in homology.
Case 2’: Some αf are non zero. Let f0 be the largest index for which
αf0 6= 0. We set:





τ̃f0 ← τ̃f0
τ̃f ← τ̃f − (αf/αf0) · τ̃f0 for f ∈ F \ {f0}

τ̃i+1 = δτ̃f0 = αf0τ
∗
i+1

As f0 is chosen largest, Condition 1’. still holds. These modifications pair
f0 with i+ 1, we consequently set:

F ← F \ {f0} H ← H ∪ {f0} G← G ∪ {i+ 1}

This is equivalent to destroying a cycle in homology.
In both cases, Conditions 1’., 2’. and 3’. are satisfied and we get, after

update, a valid encoding of persistence module in cohomology of the filtration

∅ = K0
τ1 // · · ·

τi // Ki

τi+1 // Ki+1 .
These algorithms give a high level presentation of the persistence homol-

ogy and cohomology algorithms. We give in the next paragraph a matrix
implementation of these algorithms.

Implementation with Matrix Reduction. In homology we represent
an encoding by an (n×n)-matrix M with k coefficients, where each column j,
denoted by colj , represents the chain τ̂j in the basis {τ1, · · · , τn} of C∗(Kn).
We denote the ith coefficient of a column by col[i]. Due to Condition 1., M
is upper-triangular, with non-zero elements on the diagonal. For a column
colj , we denote by low(j) the row index of its lowest non-zero element.

For any chain c ∈ C∗(Kn), represented as a column coln+1 with index
n+1 and length n, and for any set of indices I ⊆ {1, · · · , n}, we can express
c as a linear combination of the chains {τ̂i}i∈I (whenever possible) using
the reduction of Algorithm 4.1. If the output value of coln+1 is 0, then
we have computed an expression c +

∑
i∈I′ αiτ̂i = 0, where I ′ ⊆ I is the

set of indices i0 picked in the while loop, and αi is the coefficient −γ−1δ.
Otherwise, if coln+1 6= 0, then c /∈ 〈τ̂i〉i∈I . The algorithm is valid because
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Algorithm 4.1: Reduction(coln+1,I)

while there exists i0 ∈ I with low(i0) = low(n+ 1) do
γ ← coli0 [low(i0)]; δ ← coln+1[low(n+ 1)];
coln+1 ← coln+1 − γ

−1δ × coli0 ;
end

low : {1, · · · , n} → {1, · · · , n} is injective in M (actually, the identity) and
every column addition strictly reduces low(n + 1). Consequently, we can
express ∂τi+1 as a sum of τ̂g and τ̂f by creating a column col for the chain
and running Reduction(coln+1,G) and Reduction(coln+1,F ⊔ G). The
modifications of the chains of the encoding are computed via elementary
column operations.

Remark 4.1. Note that if we are just interested in computing the persistence
diagram, we do not need to represent the chains with indices in F and H, as
the chains {τg}g∈G are enough to decide whether a simplex is a creator or a
destructor.

In cohomology we represent an encoding by an (n × n)-matrix M with
k coefficients, where each row j, denoted by rowj , represents the cochain
τ̃j in the basis {τ∗1 , · · · , τ

∗
n} of C∗(Kn). The column j, denoted colj or aτj ,

contains all values of the cochains τ̃i evaluated on the chain τj . We call the
columns annotations in the next chapter. All the coefficients αj of the new
term αj · τ

∗
j+1 of the coboundaries δτ̃j = αj · τj+1 after insertion of τi+1 can

be computed by evaluating the sum of columns:

a∂τi+1
= coli0 − coli1 + · · ·+ (−1)dcolid , where ∂τi+1 =

d∑

j=0

(−1)jτij

Indeed, the jth coefficient of a∂τi+1
is:

a∂τi+1
[j] = τ̃j(τi0)− τ̃j(τi1) + · · ·+ (−1)dτ̃j(τid)

= τ̃j(∂τi+1)
= δτ̃j(τi+1)
= αj

Updating the encoding consists then only in elementary row operations.

Remark 4.2. Note that if we are just interested in computing the persistence
diagram, we do not need to represent the chains with indices in G and H, as
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the chains {τf}f∈F are enough to decide whether a simplex is a creator or a
destructor. In teh next chapter, we describe an efficient implementation of
this algorithm using, in particular, this more compact representation of the
encoding.

Bibliographical Notes.

The paragraph giving an intuition about homology reproduces the introduc-
tion to computational homology the author taught at the winter school on
algorithmic geometry of triangulations, in January 2014 at INRIA Sophia
Antipolis.

The formal introduction to homology and cohomology theory is mostly
inspired from [59] and [42], to which we refer for further reading. In partic-
ular, we refer to [59] for an explicit construction of the induced homomor-
phisms of Theorem 4.1 and the proof of the invariance of homology groups
of Theorem 4.2.

The homology groups with Z and k coefficients are computable using a
reduction to Smith normal form of the matrices of the boundary operators
∂d for all dimensions d (see [59] and [41] for an efficient implementation).

The algebraic foundation of persistent homology has first appeared in [43]
for 3-dimensional simplicial complexes and Z2 coefficients. The theory has
been generalized to its general form (arbitrary dimensions and coefficients in
a field k) in [70]. The authors of [70] proved that persistence modules could
decompose into intervals by modelizing them with k[t]-modules and using
a decomposition theorem for graded modules over the PID k[t] [67]. They
also provide an algorithm for computing persistence, presented as a matrix
algorithm.

The matrix reduction algorithm for persistent homology has running time
O(n3) where n is the number of simplices of the simplicial complex and,
despite good performance in practice, this bound is tight [57].

Recent optimizations taking advantage of the special structure of the
matrix to be reduced have led to significant progress in the theoretical anal-
ysis [29, 54], where the time complexity has been reduced to matrix multi-
plication time, as well as in practice [10, 29].

The persistent cohomology algorithm has been introduced in [35]. In or-
der to uniformize the perspective about persistent (co)homology algorithms,
the presentation in terms of a partition F ⊔G ⊔H detailled in this chapter
has been suggested in [34]. The cohomology algorithm has been reported to
work better in practice than the standard homology algorithm [34] but this
advantage seems to fade away when optimizations are employed to the ho-
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mology algorithms [10]. A simple description of the cohomology algorithm,
using the notion of annotations, has been introduced in [40] and used to
design more general algorithms for maintaining cohomology groups under
simplicial maps. This algorithm admits an efficient implementation with a
compressed annotation matrix [15], that we detail in the next chapters.

The Stability Theorem 4.3 for persistence diagram has been proved in [30].
It generalizes to more general functions – with a notion of tameness – defined
on triangulable topological spaces.
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Chapter 5

Compressed Annotation

Matrix

Along this chapter, the cohomology groups are defined with coefficients in a
field k. The algorithmic complexity of addition, substraction, multiplication
and inversion is considered constant. The approach is independent from the
type of complex used to represent the topological space. In particular, the
approach is valid for any cell complex.

We introduce an implementation of a matrix algorithm for computing
persistent cohomology presented in Chapter 4. We separate the represen-
tation of the simplicial complex from the representation of the cohomology
groups, and introduce a new data structure for maintaining the annotation
matrix, called the compressed annotation matrix. The implementation may
be seen as a generalization of the union-find algorithm to compute the con-
nected components of a graph. We extend this algorithm to the cohomology
of a simplicial complex by attaching topological information, called anno-
tations, to the simplices. In addition, we propose a heuristic to simplify
further the representation of the cohomology groups and improve both time
and space complexities.

5.1 Annotations and Persistent Cohomology

Disjoint Sets for Connected Components. Maintaining dynamically
the number of connected-components, or in other words the dimension of the
0-dimensional homology group, of a simplicial complex can be implemented
easily with a disjoint sets data structure. A disjoint sets data structure [32]
maintains a collection F = {s1, · · · , sk} of disjoint sets, where all si are a
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subset of a finite universe U . Each set is identified by a unique represen-
tative element, which is a member of the set. The representative element
is always the same until the data structure is modified. The data structure
supports the following operations: for two elements x, y ∈ U and a collection
{s1, · · · , sk} of disjoint sets,

• Make-sets(x): for an element x such that x /∈ si for any i, create a
new set sk+1 containing only element x.

• Union-sets(x,y): for two elements x and y belonging to some sets,
respectively si and sj , of the collection. If si 6= sj , the procedure
computes the collection {s1, · · · , ŝi, · · · , ŝj , · · · , sk, si∪sj}. It does not
modify the collection otherwise.

• Find-set(x): for an element x belonging to a set si, returns the rep-
resentative of the set si. While Union-sets is not called, the represen-
tative of every set remains unchanged. In particular, if the structure is
not modified between two calls to Find-set, the property Find-set(x)
6= Find-set(y) is true iff x and y are in different sets of the collection.

Given a filtration of a 1-dimensional complex:

K = ∅ = K0
τ1 // K1

τ2 // · · ·
τn−1 // Kn−1

τn // Kn

we can maintain its 0-dimensional persistent homology with the procedure
0-persistent-homology described in Algorithm 5.1. The procedure main-
tains the connected components using disjoint sets of vertices. When a new
vertex is added to the complex, we create a new set for a new connected

Algorithm 5.1: 0-persistent-homology(K)

for i = 1 · · ·n do
if dim τi > 1 then do nothing;
if τi is a vertex u then Make-set(u);
if τi is an edge (u, v) where u = τj1 and v = τj2 then

if Find-set(u) 6= Find-set(v) then
add a pair (max{j1, j2}, i) to the persistence diagram;
Union-set(u,v);

end
end

end
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component, using Make-set. When a new edge (u, v) connects two distinct
components – which happens when the sets of u and v are distinct – we
merge them using Union-set and we add a pair creator - destructor to the
persistence diagram. Among the two merged components, we destroy the
youngest one, as an expression of the elder rule. Note that when u and v
are in the same component, the edge (u, v) actually creates a 1-cycle class.
This disjoint sets approach has also been used to compute the (persistent)
homology, in all dimensions, of any simplicial complex embedded in the 3-
sphere [36].

This algorithm works because the 0-dimensional cohomology group of
the complex Ki keeps a simple expression along the experiment. Suppose
Ki has β connected components. Let sj be the set of vertices of the jth

connected component of Ki, define the chain τ̃j : C0(Ki)→ k that evaluates
to 1 on every vertex of s and 0 otherwise. It is a cocycle. Indeed, on every
oriented edge e = [u, v], δτ̃je = τ̃ v − τ̃u is always 0, as the edge e either
connects two vertices of the component s, or two vertices outside s. Finally,
the set of cohomology classes {[τ̃1], · · · , [τ̃β ]} is a basis for H0(Ki). Note in
particular that, because we are in dimension 0, B0 = 0, and every cocycle
must always evaluate the same for all vertices of the same component.

From a different perspective, every vertex evaluates to 1 on exactly one
representative cocycle of the aforementioned cohomology basis, the one cor-
responding ot the connected component containing the vertex. We generalize
the disjoint set approach in the rest of the chapter, where we maintain an
additionnal annotation vector for each simplex – its values on a cohomology
basis – to keep track of topological information.

Annotation Algorithm. The persistence cohomology algorithm has first
appeared in [35]. We have followed the same presentation in Chapter 4In
the following, we use the vocabulary of annotations from [40] and give an
implementation based on elementary column operations instead. Given as
input a filtration:

K := ∅ = K0
τ1 // K1

τ2 // · · ·
τn−1 // Kn−1

τn // Kn = K

where all maps are elementary inclusions, we compute the persistence dia-
gram of K. Along the computation, we maintain only the cochains of an en-
coding with indices in F , as defined in the previous chapter. These cochains
are cocycles that represent cohomology classes forming a basis of the coho-
mology groups (see Remark 4.1). Given a complex K from the filtration,
let τ̃1, · · · , τ̃β be the cocycles mentioned above and belonging to an encoding
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of the persistence module of the filtration K. By definition of an encoding,
the cohomology classes of the cocycles {τ̃f}f∈F form a basis of H∗(K). In
particular, note that β is equal to dimH∗(K).

The annotation vector of a simplex σ ∈ K is the vector aσ of kβ such
that aσ[j] = τ̃j(σ). We extend the definition by linearity; the annotation
vector of a chain c =

∑
αjτj is equal to ac =

∑
j αjaτj . When K is the last

simplicial complex Kn of a filtration K, we say that the annotation is valid
if the set of cochains:

{τ̃j : τ̃j [σ] = aσ[j] for every σ ∈ K}j

is equal to the set of cocycles with indices in F of an encoding of K. In
particular, the annotation vector of a simplex σ, in a valid annotation, is the
vector of values of the cocycles, representing a basis of H∗(K), evaluated on
σ.

We represent the annotation vectors of a valid annotation in a β × n
matrix with k coefficients, whose jth column is the annotation aτj of τj .
This matrix is equal to the matrix M of the matrix implementation of the
persistent cohomology algorithm of Chapter 4 from which we remove the
rows corresponding to the cochains τ̃j with index j ∈ G ⊔H.

Suppose we are given a valid annotation for Ki represented as a matrix
Mi, and corresponding to the cocycles {τ̃1, · · · , τ̃β} with indices in F in an
encoding of the filtration up to Ki. We update the matrix Mi so as to get a

valid annotation matrix Mi+1 for Ki+1, where Ki

τi+1 // Ki+1 . We compute
a∂τi+1

and proceed as follows:

Case 1: a∂τi+1
= 0. We are in Case 1’. of the persistent cohomology algo-

rithm. Hence we create the new cocycle τ̃β+1 = τ∗i+1 to the cocycles
{τ̃1, · · · , τ̃β}. Specifically, we add a new row and a new column in
Mi, with value 0 everywhere except at the bottom right corner of the
martrix, where the value is 1.

Case 2: a∂τi+1
6= 0. let f0 be the bigger index for which a∂τi+1

6= 0. Denote
by γf0 this value. To proceed to the row operations of the cohomology
algorithm, we set:

aτi ← aτi − aτj [f0]γ
−1 × a∂τi+1

Note that this modifies only the annotation vectors aτ for which aτ [f0] 6=
0. This operation implements the operation τ̃f ← τ̃f − (αf/αf0) · τ̃f0
of Case 2’. of the cohomology algorithm. We keep track of the pair
(f0, i+ 1) as a point in the output index persistence diagram.
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Figure 5.1: Compressed annotation matrix of a matrix with integer coefficients.

Since we process the filtration in a direction opposite to the cohomology
sequence, we discover the death points of cohomology classes earlier than
their birth points. To avoid confusion, we still say that a new cocycle (or its
class) is born when we discover it for the first time and an existing cocycle
(or its class) dies when we see it no more.

The annotation approach adapts [40] to a simple and natural extension
of the persistence algorithm for filtrations connected with general simplicial
maps (and not simply inclusion).

5.2 The Compressed Annotation Matrix

In this section, we present our implementation of the annotation-based per-
sistent cohomology algorithm. We separate the representation of the complex
from the representation of the cohomology groups.

Representation of the Complex. We represent the simplicial complex
K in a data structure SC equipped with the operation Compute-boundary(σ)
that computes the boundary of a simplex σ together with the coefficients of
the corresponding chain. We denote by Cd∂ the complexity of this opera-
tion where d is the dimension of σ. Additionally, the simplices are ordered
according to the filtration.

Two data structures, presented in Chapter 2, to represent (simplicial)
complexes are of particular interest here; we recall some complexity results.
The first is the Hasse diagram which is a graph of size O(k·#K) for a complex
of dimension K. It allows the representation of general cell complexes and
gives an access to the boundary of a cell σ in O(#∂σ) operations. The second
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data structure is the simplex tree, which is a specific spanning tree of the
Hasse diagram. It allows the representation of simplicial complexes. For a
simplicial complex of size #K, the size of the simplex tree is O(#K) and it
gives an access to the boundary of a d-simplex σ in O(d2Dm), for a quantity
Dm that depends on the incidence relations in the complex and remains small
in practice.

Both structures can be used in our setting. For readability, we will use a
Hasse diagram in the following.

Representation of the Annotation Matrix. We introduce the com-
pressed annotation matrix , which is an efficient representation of the matrix
Mi that allows to implement the persistent cohomology algorithm of Sec-
tion 5.1.
Sparse encoding: in most applications, the annotation matrix is sparse
and we store it as illustrated in Figure 5.1. A column is represented as the
singly-linked list of its non-zero elements, where the list contains a pair (i, γ)
if the ith element of the column is γ 6= 0. The pairs in the list are ordered
according to row index i. All pairs (i, γ) with same row index i are linked in
a doubly-linked list.
Compression: to avoid storing duplicate columns, we use two data struc-
tures. The first one, AV , stores the annotation vectors and allows fast search,
insertion and deletion. AV can be implemented as a red-black tree or a hash
table. We denote by CAV the complexity of an operation in AV . For exam-
ple, if AV contains m elements and cmax is the length of the longest sparse
column, we have CAV = O(cmax logm) for a red-black tree implementation
and CAV = O(cmax) amortized for a hash-table.

The simplices that have the same annotation vector are now stored in a
same set and the collection of disjoint sets are stored in a disjoint sets data
structure. For its efficiency, the disjoint set data structure is implemented
with a union-find, and is denoted by UF . UF is encoded as a forest where
each tree contains the elements of a set, the root being the representative
of the set. The trees of UF are in bijection with the different annotation
vectors stored in AV and the root of each tree maintains a pointer to the
corresponding annotation vector in AV . Each simplex σ in the simplicial
complex SC stores a pointer to an element of the tree of UF associated to
the annotation vector aσ. See Figure 5.1.

As a consequence, finding the annotation vector of σ consists in getting
the element it points to in a tree of UF and then finding the root of the tree
which points to aσ in AVp. We avail the following operations on UF .
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The union-find UF avails the operations Make-set (creates a new tree
with one element), Union-sets (merges two trees) and Find-set (finds the
root of a tree, given an element in the tree). The number of elements main-
tained in UF is at most the number of simplices. The operations Find-root
and Union-sets on UF can be computed in amortized time O(α(#Kp)),
where α(·) is the very slowly growing inverse Ackermann function (constant
less than 4 in practice), and Create-set is performed in constant time worst
case.

We call this data structure the compressed annotation matrix. Note that
it generalizes the disjoint set algorithm for connected components described
in Section 5.1. Indeed, it maintains classes of simplices that are equivalent
if they have the same annotation vector. As mentioned before, in dimension
0, having the same annotation vector is equivalent to being in the same
connected component.

Operations on the Compressed Annotation Matrix. The compressed
annotation matrix described above supports the following operations. We
define cmax to be the maximal number of non-zero elements in a column
of the compressed annotation matrix (or equivalently in an annotation vec-
tor) and rmax to be the maximal number of non-zero elements in a row of
the compressed annotation matrix, during the computation. We express our
complexities using cmax and rmax.

• Sum-ann(a1, a2): computes the sum of two annotation vectors a1 and
a2, and returns the lowest non-zero coefficient if it exists. The column
elements are sorted by increasing row index, so the sum is performed
in O(cmax) time.

• Search-ann,Insert-ann,Remove-ann(a): searches, inserts or removes
an annotation vector a from AV in O(CAV) time.

• Create-cocycle(): implements Case 1 of the annotation algorithm
described in Section 5.1. It inserts a new column in AV containing
one element (β+1, 1), where β+1 is the index of the created cocycle.
This is performed in O(CAV) time. It also creates a new disjoint set in
UF for the new column. This is done in O(1) time using Create-set.
Create-cocycle() takes time O(CpAV) in total.

• Kill-cocycle(a∂σ, γ, f0): implements Case 2 of the algorithm. It
finds all columns with a non-zero element at index f0 and, for each such
column a, it adds to a the column −a[j]γ−1

j × a∂σ To find the columns
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with a non-zero element at index f0, we use the doubly-linked list of
row f0. We call Sum-ann to compute the sums. The overall time needed
for all columns is O(cmax rmax) in the worst-case. Finally, we remove
duplicate columns using operations on AV (in O(rmax C

p−1
AV ) time in

the worst-case) and call Union-sets on UF if two sets of simplices,
which had different annotation vectors before calling Kill-cocycle,
are assigned the same annotation vector. This is performed in at most
O(rmax α(#K)) time. The total cost of Kill-cocycle is O(rmax(cmax+
CAV + α(#K))).

Persistent Cohomology via the Compressed Annotation Matrix.
Given as input a filtered simplicial complex represented in a data structure
SC, we compute its persistence diagram.

We insert the simplices in the filtration order and update the data struc-
tures during the successive insertions. The simplicial complex K is stored
in a simplicial complex data structure SC and we maintain a compressed
annotation matrix representing a valid annotation. The matrix is empty
at the beginning of the computation. For readability, we add the following
operation on the set of data structures:

• Compute-a∂σ(σ): given a d-simplex σ in K, computes its boundary in
SC using Compute-boundary (in O(Cd∂) time). For each of the d+1
simplices in ∂σ, it then finds their annotation vector using Find-set

in UF (in O(dα(#K)) time). Finally, it sums all these annotation
vectors together (with the appropriate +/− signs) using at most d+1
calls to Sum-ann (in O(d cmax) time). Note that, with the compression
method, two simplices in ∂σ may point to the same annotation vector;
the computation is fasten by adding such annotation vector only once,
with the appropriate multiplicative coefficient. The total worst case
complexity of this operation is O(Cd∂ + dα(#K) + d cmax).

Let σ be a d-simplex to be inserted. We compute the annotation vector
of ∂σ using Compute-a∂σ. Depending on the value of a∂σ, we call either
Create-cocycle or Kill-cocycle. The algorithm computes the pairing of
simplices from which one can deduce the persistence diagram. By reversing
the pointers from the UF to the simplices in SC, one can compute explicitly
the representative cocycles of the basis classes and have an explicit represen-
tation of the cohomology groups along the computation.

We study the complexity of the computation of persistent cohomology
using the compressed annotation matrix. Let k be the dimension and n the
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number of simplices of K. Recall that cmax and rmax represent respectively
the maximal number of non-zero elements in an annotation vector and in
a row of the compressed annotation matrix, along the computation. Recall
that, in dimension d, Cd∂ is the complexity of Compute-boundary in SC and
CAV the complexity of an operation in AV . α(·) is the inverse Ackermann
function. The complexity for inserting σ with dimension d is:

O
(
Cd∂ + d(α(#K) + cmax) + CAV + rmax(cmax + CAV + α(#K))

)

Consequently, the total cost for computing persistent cohomology is:

O
(
n×

[
Ck∂ + k(α(n) + cmax) + rmax(cmax + CAV + α(n))

])

Specifically, if we implement SC as a Hasse diagram and AV with a
hash-table, we get Ck∂ = O(k) and CAV = O(cmax). If we consider α(n) as a
small constant and remove it for readability, we get that the total cost for
computing persistent cohomology is:

O(n cmax(k + rmax))

We show in the next chapter that cmax and rmax remain small in practice.
Hence, the practical complexity of the algorithm is linear in n for a fixed
dimension.

5.3 Reordering Iso-simplices

Many simplices, called iso-simplices, may have the same filtration value. This
situation is common when the filtration is induced by a geometric scaling
parameter, like in the Čech, Rips and relaxed witness complexes. Assume
that we want to compute the cohomology groups Hp(L) from Hp(K) where
K ⊆ L and all simplices in L\K have the same filtration value. Depending on
the insertion order of the simplices of L\K, the dimension of the cohomology
groups to be maintained along the computation may vary a lot as well as the
computing time. This may lead to a computational bottleneck. We propose
a heuristic to reorder iso-simplices and show its practical efficiency in the
next Chapter.

Intuitively, we want to avoid the creation of many short life holes of
dimension d and want to fill them up as soon as possible with simplices of
dimension d + 1. For example, in Figure 5.2, we want to avoid inserting
all edges first, which would create two holes that would get filled up when
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Figure 5.2: Inclusion K ⊆ L. Left: upward traversal (in green) from simplex {c}.
The ordering of the maximal cofaces appears in blue. Right: downward traversal
(in orange) from simplex {a, b, c}. The ordering of the faces appears in blue.

inserting the triangles. To do so, we look for the maximal simplices to
be inserted and recursively insert their faces. We conduct the recursion
so as to minimize the maximum number of holes. In addition, to avoid
the creation of holes due to maximal simplices that are incident, maximal
simplices sharing faces are inserted next to each other. We can describe the
reordering algorithm in terms of a graph traversal. The graph considered is
the graph of the Hasse diagram of L \K; see Figure 5.2.

Let σ1 · · ·σℓ be the iso-simplices of L \ K, sorted so as to respect the
inclusion order. We attach to each simplex two flags, a flag Fup and a flag
Fdown, set to 0 originally. When inserting a simplex σj , we proceed as follows.
We traverse the Hasse diagram upward in a depth-first fashion and list the
inclusion-maximal cofaces of σj in L \ K. The flags Fup of all traversed
nodes are set to 1 and the maximal cofaces are ordered according to the
traversal. From each maximal coface in this order, we then traverse the
graph downward and order the faces in a depth-first fashion: this last order
is the order of insertion of the simplices. The flags Fdown of all traversed
nodes are set to 1. We stop the upward (resp. downward) traversal when we
encounter a node whose flag Fup (resp. Fdown) is set to 1. We do not insert
either simplices that have been inserted previously.

By proceeding as above on all simplices of the sequence σ1 · · ·σℓ, we define
a new ordering which respects the inclusion order between the simplices.
Indeed, as the downward traversal starts from a maximal simplex and is
depth first, a simplex is always inserted after its faces. Every edge in the
graph is traversed twice, once when going upward and the other when going
downward. Indeed, during the upward traversal, at each node N associated
to a simplex σN , we visit only the edges between N and the nodes associated
to the cofaces of σN and, during the downward traversal, we visit only the
edges between N and the nodes associated to the faces of σN . If L \ K
contains ℓ simplices, the reordering takes in total O(ℓ × (C∂ + Cco∂)) time,
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where C∂ (resp. Cco∂) refers to the complexity of computing the codimension
1 faces (resp. cofaces) of a simplex in the simplicial complex data structure
SC.

The reordering of the filtration can either be done as a preprocessing
step if the whole filtration is known, or on-the-fly as only the neighboring
simplices of a simplex need to be known at a time. The reordering of a set of
iso-simplices respects the inclusion order of the simplices and the filtration,
and therefore does not change the persistence diagram of the filtered sim-
plicial complex. This is a direct consequence of the Stability Theorem 4.3
of persistence diagrams. However, a homology feature may be created and
destroyed by different simplices.
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Chapter 6

Performance of the

Compressed Annotation

Matrix

In this section, we report on the experimental performance of the compressed
annotation matrix implementation of persistent cohomology. Given a filtered
simplicial complex as input, we compute the persistence diagram of the cor-
responding filtration. We measure timings and provide various statistics.
We compare the timings with Dionysus and PHAT. Dionysus provides im-
plementation for persistent homology [43, 70] and the persistent cohomology
algorithm [35] (denoted DioCoH) described in Chapter 4, with coefficients
in field Zp, for any prime p. PHAT provides an implementation of the opti-
mized matrix algorithm for persistent homology [28, 10] (using the -twist

option) as well as an implementation of persistent cohomology [10] (using
the -dualize option), with coefficients in Z2 only. Note that the persistent
cohomology algorithm of PHAT is different from the one we have described.
It is very similar to the persistent homology algorithm, but proceeds to op-
erations in a different order.

DioCoH, PHAT⊥ and PHAT have been reported to be the most efficient
implementation in practice [10, 35]. The symbols T∞ means that the com-
putation lasted more than 12 hours.

We construct three families of simplicial complexes [42] which are of par-
ticular interest in topological data analysis: the Rips complexes (denoted
Rips), the relaxed witness complexes (denoted Wit) and the α-shapes (de-
noted αSh). These complexes depend on a relaxation parameter denoted by
ρ. When the data points are embedded, the complexes are constructed up to
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DioCoH PHAT⊥PHAT CAM

Data Cpx P ρmax k #K Z2 Z11 Z2 Z2 Z2 Z11

Cy8 Rips 6040 0.41 16 21× 106 420 4822 44 5.3 6.4 6.5
S4 Rips 507 0.715 5 72× 106 943 1026 95 3591 22.5 23.2
L57 Rips 4769 0.02 3 34× 106 239 240 35.2 972 9.3 9.5
Bro Wit 500 0.06 18 3.2× 106 807 T∞ 6.3 0.88 2.7 2.9
Kl Wit 10000 0.105 5 74× 106 569 662 101 1785 19.7 19.9
L35 Wit 700 0.06 3 18× 106 109 110 17.5 869 5.1 5.1
Bud αSh 49990 ∞ 3 1.4× 106 30.0 30.9 2.6 0.32 0.7 0.7
Nep αSh 2× 106 ∞ 3 57× 106 T∞ T∞ 163 33 39.5 40.2

Figure 6.1: Data, timings (in seconds) and statistics.

embedding dimension, with Euclidean metric. They are constructed up to
the intrinsic dimension of the space with intrinsic metric otherwise. We use
a variety of both real and synthetic datasets, listed in Figure 6.1 with details
on the sets of points P, their size #P, the threshold ρmax, the dimension k
of the simplicial complexes and the size #K of the simplicial complexes.

6.1 Time Performance

As Dionysus and PHAT encode explicitely the boundaries of the simplices,
we use a Hasse diagram for implementing SC. We thus have the same
time complexity for accessing the boundaries of simplices. We use the per-
sistent homology algorithm of PHAT with options -twist -sparse-pivot

and the persistent cohomology algorithm (noted PHAT⊥) with option -twist

-sparse-pivot -dualize as the -sparse-pivot representation of columns
has been observed to be the most efficient in practice. As illustrated in
Figure 6.1, the persistent cohomology algorithm of Dionysus is always two
orders of magnitude slower than our implementation. Moreover, DioCoH is
sensitive to the field used, as illustrated in the case of Cy8 and Bro. On
the contrary, CAM shows almost identical performance for Z2 and Z11 coeffi-
cients on all examples. The persistent cohomology algorithm PHAT⊥ performs
better than DioCoH. However, CAM is still between 2.3 and 6.9 times faster.

The persistent homology algorithm of PHAT shows good performance in
the case of the alpha shapes and on Cy8 and Bro: CAM and PHAT have
close timings. However, PHAT provides computation with Z2 coefficients only,
whereas CAM computes persistence for general field coefficients and integrates
no specific optimization for Z2. Moreover, CAM scales better to more complex
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Nep #M #kop.
Compression 126057 84× 106

¬Compression 574426 3860× 106

Nep average maximum
cav, cmax 0.79 18
rav, rmax 1.02 18

Bro time
Reordering 2.9 s.
¬Reordering 14.2 s.

Bro Z11 Q

MDS a∂σ Mop MDS a∂σ Mop

71% 19% 10% 67% 21% 12%

Figure 6.2: Statistics on the effect of the optimizations.

examples (such as S4, L57, Kl and L35, which have higher intrinsic dimen-
sion and more complex topology). Indeed, the running time per simplex
of CAM remains stable on all examples and for all field coefficients (between
2.7× 10−7 and 9.1× 10−7 seconds per simplex).

6.2 Statistics and Optimization

Figure 6.2 presents statistics about the computation. The top table presents,
on the left, the effect of the compression (removal of duplicate columns) of
the annotation matrix on the number of non-zero coefficients #M stored in
the sparse representation and the number of changes #kop. operated in the
matrix during the computation of the persistence diagram of Nep. We note
a reduction factor of 4.5 for the size of the matrix, and we proceed to 46 times
less field operations with the compression. Considering Nep is 57 million
simplices, we proceed to less than 1.5 field operations per simplex on aver-
age. The right part of the table shows the average and maximum number
of non-zero elements in a column when proceeding to a sum of annotation
vectors (Sum-ann) and the average and maximum number of non-zero ele-
ments in a row when proceeding to its reduction (Kill-cocycle). These
values are key variables (cmax and rmax respectively) in the complexity anal-
ysis of the algorithm. We note that these values remain really small. The
bottom table presents the effect of the reordering strategy on the example
Bro. Reordering iso-simplices makes the computation 4.9 faster. Finally,
the right side of the table presents how the computing time is divided into
maintaining the compressed annotation matrix (denoted by MDS), comput-
ing the annotation vector a∂σ and modifying the values of the elements in
the compressed annotation matrix (denoted by Mop). The percentage are
given when computing persistent cohomology with Z11 and Q coefficients.
The computational complexity of field operations 〈k,+, ·,−, /, 0, 1〉 depends
on the field we use. For Z11, or any field of small cardinal, the operations
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can be precomputed and accessed in constant time. The field operations in
Q are more costly. Specifically, an element q in Q is represented as a pair
of coprime integers (r, s) such that q = r/s, and field operations may re-
quire greatest common divisor computations to ensure that nominator and
denominator remain coprime. However, the computational time of CAM is
quite insensitive to the field we use. Specifically, as it minimizes the number
of matrix changes using the compression method, the computational time is
only increased by 8% when computing persistence with Q coefficients instead
of Z11, whereas the computation involving field operations takes 34% more
time.

In all our experiments, the size of the compressed annotation matrix is
negligible compared to the size of the simplicial complex. Consequently,
combined with the simplex tree data structure [18] for representing the sim-
plicial complex, we have been able to compute the persistent cohomology of
simplicial complexes of several hundred million simplices in high dimension.
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Part III

Modular Reconstruction for

Multi-Field Persistence

82



This Part is based on the following publications:

• Jean-Daniel Boissonnat and Clément Maria. Computing Persistent
Homology with Various Coefficient Fields in a Single Pass. European
Symposium on Algorithms 2014 [19]
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Chapter 7

Multi-Field Persistence

We study the possibility of defining a stronger persistence-based topologi-
cal invariant. Persistent homology is restricted to field coefficients in order
for an interval decomposition of the persistence module to exist. However,
the homology groups with coefficients in a field furnish a weaker topological
invariant, even on simple examples. We study, through the universal coeffi-
cient theorem, the relation between homology groups with integer and field
coefficients and show that a partial reconstruction of the homology groups in
Z may be infered from the computation of homology groups in various fields
Zp with p prime. This approach adapts to persistent homology. We finally
introduce the problem of multi-field persistent homology, which consists in
computing persistence with various coefficient fields. We present an efficient
algorithm for this problem in Chapter 8.

For simplicity, we focus in the following on simplicial homology. However,
the approach applies to any type of cell complex.

7.1 Coefficients in Homology and Universal Coeffi-

cient Theorem

Torus vs Klein Bottle. We have introduced in Chapter 4 homology
groups with coefficients either in Z or in a field k. The integral homology
groups provide a stronger topological information on the topological space
under study, in the sense that one can compute the decompositions of the
homology groups with k coefficients of a space X from the knowledge of the
decompositions of the integral homology groups of Z. In particular, the in-
tegral homology groups convey information about torsion. Torsion can be
pictured geometrically as a twisting of the shape and happens frequently as
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global topological feature in topological data analysis where, for example,
Klein bottles appear naturally [26, 53]. Algebraically, torsion is character-
ized by cyclic subgroups of the integral homology groups. When computed
with field coefficients, these subgroups may either vanish or appear as infi-
nite, and consequently obfuscate the study of the topology of data. Consider
the torus in Figure 7.1. The homology groups of the torus, with respectively

Figure 7.1: The torus is a surface embeddable in R3 that can be constructed by
identifying the opposite oriented edges of the square on the left. Its 3-dimensional
representation is pictured on the right.

Z, Z2 and Zp (for p > 2 prime) coefficients are:




H0(Z) ∼= Z H0(Z2) ∼= Z2 H0(Zp) ∼= Zp

H1(Z) ∼= Z⊕ Z H1(Z2) ∼= Z2 ⊕ Z2 H1(Zp) ∼= Zp ⊕ Zp

H2(Z) ∼= Z H2(Z2) ∼= Z2 H2(Zp) ∼= Zp

Their is no torsion subgroups in the integral homology and the Betti numbers
are identical for all coefficients considered. They describe, respectively, one
connected component (β1 = 1), two non-contractible independent loops (in
blue, β1 = 2) and one void (β2 = 1).

Consider now the Klein bottle in Figure 7.2. The homology groups of the

Figure 7.2: The Klein bottle is a surface embeddable in R4 that can be constructed
by identifying the opposite oriented edges of the square on the left. One of its 3-
dimensional projection is pictured on the right.

Klein bottle, with respectively Z, Z2 and Zp (for p > 2 prime) coefficients
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are:




H0(Z) ∼= Z H0(Z2) ∼= Z2 H0(Zp) ∼= Zp

H1(Z) ∼= Z⊕ Z2 H1(Z2) ∼= Z2 ⊕ Z2 H1(Zp) ∼= Zp

H2(Z) ∼= 0 H2(Z2) ∼= Z2 H2(Zp) ∼= 0

As expected, the Betti number β0 remains unchanged and represents the
number of connected components (see Chapter 4). More surprisingly, the
Betti numbers differ in dimension 1 and 2 depending on the coefficients.
When considering Zp homology with p > 2, the torsion summand of H1(Z)
vanishes, and the Betti numbers are the one of integral homology. When
considering Z2 coefficients, the order 2 element in dimension 1, characterized
by the torsion summand in integral homology, appears as infinite which
augments the free part of the decomposition of H1(Z2) with one summand.
This also induces the creation of a non-trivial homology feature in dimension
2.

As a consequence, the homology groups with Z2 coefficients are topolog-
ical invariants too weak to distinguish a torus from a Klein bottle, which are
not homeomorphic. We study in the next paragraph the relations between
integral homology and homology with coefficients in a field.

Universal Coefficient Theorem. The universal coefficient theorem is
a theorem of homological algebra that explains the relation between the
integral homology groups and the homology groups with coefficients in a
field. We present a corollary that gives a formula for computing the field
Betti numbers from the Betti numbers and the torsion coefficients of the
integral homology groups. Let X be a triangulable topological space whose
homology groups are written:

Hp(X,Z) ∼= Zβp(Z)
⊕

q prime

(
Zqk1 ⊕ · · · ⊕ Z

q
kt(p,q)

)
and Hp(X, k) ∼= kβp(k)

(7.1)
Let k be a field of characteristic q, like Zq. We have the following corol-
lary [47] to the universal coefficient theorem:

Corollary 7.1 (to the Universal Coefficient Theorem). For βd(Z) and βd(k)
the Betti numbers of Hd(X,Z) and Hd(X, k) respectively, and t(j, q) the num-
ber of Zqki summands in the primary decomposition of Hj(X,Z), we have:

βd(k) = βd(Z) + t(d, q) + t(d− 1, q)
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Going back to the torus, the Betti numbers do not depend on the co-
efficients because there is no torsion so all t(d, q) are 0. For the Klein
bottle, t(1, 2) = 1 so we find that β1(Z2) = β1(Z) + t(1, 2) = 2 and
β2(Z2) = β2(Z) + t(1, 2) = 1. In other words, a Zqk summand in the decom-
position of Hd(Z) creates a Zq summand in the decomposition of Hd(k) and
Hd+1(k) if k has characteristic q, and nothing otherwise.

The homology groups with field coefficients are consequently entirely
characterized by the integral homology groups. We reverse partially this
property. Let {q1, · · · , qr} be the first r prime numbers and suppose that qr
is a strict upper bound on the prime divisors of the torsion coefficients of X.
According to Corollary 7.1, βd(Zqr) = βd(Z) for all dimensions d. Moreover,
we have seen in Chapter 4 that there is no torsion in 0-homology because
the homology group H0(X,Z) is always isomorphic to Zβ0 , where β0 is the
number of connected components of the space X. Hence, t(0, q) = 0 for every
prime q.

Given the Betti numbers of X in all fields Zqs , for all 1 ≤ s ≤ r, we
deduce from Corollary 7.1 the recurrence formula:

t(d, qs) = βd(Zqs)− βd(Zqr)− t(d− 1, qs)

from which we compute the value of t(d, q) for every dimension d and prime
q. From the knowledge of the homology groups with coefficients in Zqs , for
all 1 ≤ s ≤ r, we consequently infer, for any dimension d, the integral Betti
numbers and the number t(d, q) of Zqki summands in the primary decompo-
sition of Hd(X,Z). Note however that the powers ki from the decomposition
remain unknown.

7.2 Multi-Field Persistent Homology

We have seen in Chapter 4 that an algebraic limitation of persistent homology
was that it had to be defined with coefficients in a field to admit an interval
decomposition. The theory defines ideas of an invariant for filtrations and
distances between persistence diagrams from this interval decomposition.
Such decomposition is consequently necessary.

In order to define a stronger topological invariant for filtrations, a simple
solution consists in computing persistent homology with different coefficient
fields and infering the prime divisors of the torsion coefficient as presented
in Section 7.1. We call the algorithmic problem of computing persistent
homology with various coefficient fields multi-field persistent homology .
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Z⊕ Z2∗ Z3 ⊕ Z2∗

Z2

only in Z2

only in Z3

in Z2 and Z3

Death

Birth

Figure 7.3: Multi-field persistence diagram of the most persistent features of H1

for a Rips complex reconstructing a Klein bottle. We obtain one feature that is very
persistent in Z2 only and one very persistent in both Z2 and Z3. We consequently
find the expression Z ⊕ Z2∗ for H1, which is as expected because the homology
group of the Klein bottle in dimension 1 is Z ⊕ Z2. The remaining features are
topological noise.

Topological Inference. We know from Chapter 1 and 4 that, under cer-
tain conditions where a sequence of complexes of a filtration K approximates
an underlying topological space X at various scales, one can infer the homol-
ogy of X from the persistent homology of K. Specifically, for persistent
homology with coefficients in any field k, the number of pairs (i, j) with
long persistence |j − i| in dimension d corresponds to the Betti number of
Hd(X, k).

As a consequence, given the persistent pairs of the persistent homology
of K with various coefficient fields – more particularly Zq1 , · · · ,Zqr as defined
earlier – one can infer the Betti numbers and prime divisors of the torsion
coefficients of the integral homology of X.

We proceed to this construction at all scales, and introduce a new repre-
sentation of the persistence diagram, which is essentially a superimposition
of the persistence diagrams of K for all coefficient fields.

Representation of Multi-Field Persistence Diagrams. Note first that,
as the powers ki of the decompositon in Equation (7.1) remain unknown, we
simplify the notation and denote Zqα1 ⊕ · · · ⊕Zqαt by Z

(t)
q∗ , for any family of

integers αi ≥ 1. Hence, infering Betti numbers and prime divisors of torsion
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coefficients consists in computing an expression:

Hd(X,Z) ∼= Zβd(Z)
⊕

q prime

Z
(t(d,q))
q∗ (7.2)

of the integral homology groups.
Consider a persistence diagram of homology with coefficients in k. For

any point (x, y) in the plane, the number of homology features that are
created before time x and destroyed after time y is equal to the number of
point in the quadrant (x, y). Hence, to every point (x, y) in the plane is
attached a persistent Betti number βx,yd for every dimension d.

Knowing the persistence diagram for all coefficient fields Zq1 , · · · ,Zqs ,
we can consequently obtain, for every point (x, y), an expression in the form
of Equation (7.2) from the persistent Betti numbers βx,yd . Constant persis-
tent Betti numbers define polygonal areas pictured with color in Figure 7.3.
We call the resulting diagram a multi-field persistence diagram. It consists
essentially of the superimposition of the persistence diagrams in each coeffi-
cient field, but provides a readable and more informative description of the
topology of a filtration. In particular, in topological ineference, one can read
directly the Betti numbers and prime divisors of torsions coefficients of the
integral homology groups of an approximated space.

We refer to Figure 7.3 for an example. It pictures the multi-field persis-
tence diagram of the 1-homology of a simplicial complex K approximating
a Klein bottle (for field coefficients Z2 and Z3). In particular, the confusion
with a torus is resolved.

Remark 7.1. This multi-field framework seems to give an interval-like de-
composition of the persistence module with more general coefficients than
the ones in a field. This is not in contradiction with the non-existence, in
general, of an interval decomposition of the persistence module in Z. This
approach provides an inference of the integral homology groups for each com-
plex Ki of a filtration and relies on the fact that all results in the theory of
persistence are independent from the coefficients as long as they are from a
field.

This is not a universal coefficient theorem for persistent modules, with an
algebraic relation between the decompositions of the whole persistence mod-
ules for homology with different coefficients. One the other side, the simplic-
ity of the idea allows us to define a very efficient algorithm for multi-field
persistence in the next Chapter.
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Infering Torsion Coefficients with Garantees. We have previously
assumed that we had a bound qs on the prime divisors of the torsion co-
efficients of the complexes of the filtration. It is possible to compute such
bound. Indeed, for a fixed simplicial complex K, the torsion coefficients of
Hd(K,Z) are the eigenvalues of the matrix of the boundary operator ∂d+1 :
Cd+1(K,Z)→ Cd(K,Z) (see [59]). Consequently, in order to bound the tor-
sion coefficients of one single complex, one can use the Hadamard bound or
finer estimates like the ovals of Cassini [41]. These bounds increase when we
add simplices to a complex. Hence, for a filtration K1

// · · · // // Kn

where each map is an inclusion, the Hadamard bound or the ovals of Cassini
bound evaluated for the last simplicial complex Kn furnish a bound on the
torsion coefficients of every simplex Ki of the filtration.

Bibliographic Notes.

We refer to [59] for more details on the universal coefficient theorem.
Computing persistent homology with different coefficients has been men-

tioned in the literature [70] in order to verify if a persisting feature was
due to an actual hole (or high-dimensional equivalent) or to torsion (and
consequently existed only for a certain coefficient field).

However, the work presented in this Chapter and the next one, based
on [19], is, to the best of our knowledge, the first attempt to formalize the
inference of torsion coefficients in the framework of persistent homology and
describe an efficient algorithm to compute persistence with various coefficient
fields.

90



Chapter 8

Modular Reconstruction

Algorithm

In this chapter we introduce an algorithm to compute the persistent homol-
ogy of a filtered complex with various coefficient fields in a single matrix
reduction. The algorithm is output-sensitive in the total number of distinct
persistent homological features in the diagrams for the different coefficient
fields. The output of the algorithm is the multi-field persistence diagram.

For a complex of size n, we know that the persistence diagram for any
coefficient field contains at most n pairs. When computing multi-field per-
sistent homology for r coefficient fields, denote by n′ the total number of dis-
tinct pairs in all persistence diagrams. In practice, the fields are Zq1 , · · · ,Zqr

for the r first prime numbers q1, · · · , qr, where qr is an upper bound on the
prime divisors of the torsion coefficients of the integral homology of the space,
which are usually small. The quantity n′ satisfies n′ ≤ r× n but in practice
we observe that n′ ≈ n. We design in the following an algorithm for the
multi-field persistence problem whose complexity depends mostly on n′. It
is however an interesting open problem to exhibit a "natural" example where
n′ is must larger than n and/or the prime divisors of the torsion coefficients
are big (for a fix n).

We build on this idea and describe an algorithm to compute persistent
homology with various coefficient fields Zq1 , · · · ,Zqr in a single pass of the
matrix reduction algorithm. To do so, we introduce a method we call mod-
ular reconstruction consisting in using the Chinese Remainder Isomorphism
to encode an element of Zq1 × · · · × Zqr with an element of Zq1···qr . We de-
scribe algorithms to perform elementary row/column operations in a matrix
with Zq1···qr coefficients, corresponding to simultaneous elementary row/col-
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umn operations in matrices with coefficients in the fields Zq1 , · · · ,Zqr . The
method results in an algorithm with an output-sensitive complexity in the
total number of distinct pairs in the echelon forms of the matrices with
Zq1 , · · · ,Zqr coefficients, plus an overhead due to arithmetic operations on
big numbers in Zq1···qr . The method is generic and applies to every algorithm
for persistent homology. Finally, we describe how to infer the torsion coeffi-
cients of the integral homology using the Universal Coefficient Theorem for
Homology.

We provide detailed experimental analysis of the algorithm and show, in
particular, that on practical examples our method is substancially faster than
the brute-force approach consisting in reducing separately r matrices with
coefficients in Zq1 , · · · ,Zqr . It is important to note that the method does not
pretend to scale to very large r, as the arithmetic complexity of operations in
Zq1···qr becomes problematic. Experiments show, however, that for very large
r (up to 100000) our approach is still substancially faster than brute-force.

In computer algebra, working modulo small prime numbers is usually
desirable in order to reduce coefficient growth. Our work goes the otherway
around: we introduce tools to reduce a family of r matrices with coefficients
in the fields Zq1 , · · · ,Zqr respectively, by means of a single reduction of a
matrix with coefficients in Zq1···qr . We give theoretical and experimental
evidence that, for reasonable values of r, our algorithm is significantly more
efficient than the brute-force approach consisting in reducing the r matrices
separately.

In the following, Zn denotes the ring (Zn,+,×) for any integer n ≥ 1.
and Z×

n the subset of invertible elements for ×. If it exists, we denote the
inverse of x ∈ Zn by x−1.

8.1 Matrix Reduction for Persistent Homology

We have presented in Chapter 4 the persistent homology and persistent co-
homology algorithms at the algebraic level, which are both based on the
maintainance of an encoding of the persistence modules. Working at the
algebraic level is the approach chosen in this dissertation to give a uniform
presentation of persistent homology (Chapter 4) and zigzag persistent ho-
mology (Chapter 11) algorithms. The validity of algorithms is proved by
relating the computation to the interval decomposition of the (zigzag) per-
sistence module.

The modular reconstruction method introduced in this chapter is of an
arithmetic nature and works at the level of coefficients. As a consequence,
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we have chosen to present the persistent homology algorithm as a matrix
reduction. The atomic operation is the elementary row/column operation,
and we can work directly with the coefficient of homology by working with
the coefficients of the matrix. Note that the matrix reduction presentation
is the original form of the persistent homology algorithm [43, 70], and the
most popular because of its very simple description [42].

Additionally, we present the algorithms for persistent homology and multi
field persistent homology with pseudo-code notations, so as to emphasize
the low level operations and offer an easy comparison between the two algo-
rithms.

Persistent Homology Algorithm. For clarity, we focus in this section
on the persistent homology algorithm. The persistent cohomology algorithm
is based on a similar reduction, and our approach adapts directly.

For a matrix M, denote by colj the jth column of M and colj [k] its kth

coefficient. Let low(j) denote the row index of the lowest non-zero coefficient
of colj . If the column j is entirely zero, low(j) is undefined. We say that
M is in reduced column echelon form if low(j) 6= low(j′) for every non-zero
columns colj and colj′ with j 6= j′.

An elementary column operation on a matrix M with coefficients in a
ring is one of the following three operation:

(i) exchange colk and colℓ,

(ii) multiply colk by −1,

(iii) replace colk by colk + x× colℓ, for an element x in the ring.

Elementary column operations are the atomic operation to reduce a matrix
to column echelon form.

Let K = [σi]i=1···n be a filtered complex. Its boundary matrix M∂ is
the n × n matrix, with k coefficients, of the endomorphism ∂∗ in the basis
{σ1, · · · , σn} of C∗(K, k) =

⊕
dCd(K, k). The basis is ordered according to

the filtration. It is a matrix with {−1, 0, 1} coefficients, where 0 and 1 are
the identities for + and × in k respectively, and −1 is the inverse of 1 in
k. The persistent homology algorithm consists in a left-to-right reduction
to column echelon form of M∂ : we denote by R the matrix we reduce, with
columns colj , which is initially equal to M∂ . The algorithm returns the
(indexed) persistence diagram, which is the set of pairs {(low(j), j)} in the
reduced column echelon form of the matrix. The reduced form of the matrix
is not unique, but the pairs (i, j) such that i = low(j) in the column echelon
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Algorithm 8.1: Persistent-homology
Data: Boundary matrix R←M∂ , persistence diagram P ← ∅
Output: Persistence diagram P = {(i, j)}
for j = 1, · · · , n do

while there exists j′ < j with low(j′) = low(j) do
k ← low(j);
colj ← colj −

(
colj [k]× colj′ [k]

−1
)
· colj′ ;

end
if colj 6= 0 then P ← P ∪ {(low(j), j)};

end

form are [42]. The algorithm requires O(n3) arithmetic operations in k. See
Algorithm 8.1.

This reduction is correct because it implements the persistent homology
algorithm of Chapter 4. Indeed, after iteration i of the for loop, the i first
columns of the matrix maintain a chain related to an encoding {τ̂1, · · · , τ̂i},

F ⊔ G ⊔ H and P of the filtration ∅ = K0
τ1 // · · ·

τi // Ki . Specifically,
let j be the index of a column, with 1 ≤ j ≤ i:

1. if j ∈ F or j ∈ G, then colj = 0,

2. if j ∈ H, then let (g, j) ∈ P. The column colj represents the chain
∂τ̂j = τ̂g, and its lowest non-zero element is at index g, because τg is
the leading term of τ̂g by definition of an encoding.

Entering the (i+1)st iteration of the procedure, the while loop corresponds
to Algorithm 4.1 called with input Reduction(col,G), where col is a column
corresponding to chain ∂τi+1. Indeed, the non-zero columns of the matrix
among the i first columns are the ones representing the chains {τ̂g}g∈G.

8.2 Modular Reconstruction for Matrix Reduction

The modular reconstruction method consists in representing a set of coef-
ficients in distinct fields by their product. We use this method to define
arithmetic operations in the different fields simultaneously, then to define
elementary column operations and ultimately an algorithm for multi-field
persistence. We first present a particular case of the chinese remainder the-
orem [46]:
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Theorem 8.1 (Chinese Remainder Theorem). For a family {q1, · · · , qr} of r
distinct prime numbers, there exists a ring isomorphism ψ : Zq1×· · ·×Zqr →
Zq1···qr . The isomorphisms ψ and ψ−1 can be computed in O(r) arithmetic
operations in Zq1···qr .

Proof. For all 1 ≤ s ≤ r, there exists Us such that Us mod qt = 1 if s = t and
0 otherwise. One can easily verify that ψ and ψ−1 realize the isomorphism:

ψ : Zq1 × · · · × Zqr → ZQ

(u1, · · · , ur) 7→ (u1U1 + · · ·+ urUr) mod Q
ψ−1 : (x mod q1, · · · , x mod qr) ←[ x

Let [r] refer to the set {1, · · · , r}. For a family of r distinct prime numbers
{q1, · · · , qr}, and a subset of indices S ⊆ [r], QS refers to

∏
s∈S qs, and we

write simply Q = Q[r]. We define the function ψS :
∏

s∈S Zqs → ZQS

realizing the isomorphism of the Chinese Remainder Theorem for the subset
{qs}s∈S of primes, and we write simply ψ for ψ[r]. For a family of elements
us ∈ Zqs , s ∈ S, we denote the corresponding |S|-uplet (us)s∈S ∈

∏
s∈S Zqs .

Finally, we recall Bezout’s lemma [46]:

Lemma 8.1 (Bezout’s Lemma). For two integers a and b, not both 0, there
exist integers v and w such that:

va+ wb = gcd(a, b)

where gcd(a, b) is the greatest common divisor of a and b, and |v| < |b/ gcd(a, b)|
and |w| < |a/ gcd(a, b)|.

The Bezout’s coefficients (v, w) can be computed with the extended Eu-
clidean algorithm [46].

Elementary Column Operations. We are given a family of distinct
prime numbers {q1, · · · , qr}, and their product Q = q1 · · · qr. Let MQ be a
matrix with coefficients in the ring ZQ. Denoting ψ−1 : ZQ → Zq1×· · ·×Zqr

the isomorphism of the chinese remainder theorem, and πs : Zq1×· · ·×Zqr →
Zqs the projection on the sth coordinate, we call projection of MQ onto Zqs ,
denoted MQ(Zqs), the matrix Mqs with Zqs coefficients, obtained by apply-
ing πs ◦ψ−1 to each coefficient of MQ. Conversely, given r (m×m)-matrices
Mq1 , · · · ,Mqr with coefficients in Zq1 , · · · ,Zqr respectively, there exists a
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unique matrix MQ with ZQ coefficients such that for every s the projec-
tion of MQ onto Zqs is Mqs . This is simply a matrix version of the chinese
remainder theorem.

We have introduce elementary column operations of type (i), (ii) and (iii)
in Section 8.1. For an elementary column operation of type (∗) (ie of type
(i), (ii) or (iii)) applied to columns k (and ℓ)), we denote by (∗)◦Mq the
result of applying (∗) to Mq. In this section, we introduce algorithms to run
elementary column operations simultaneously on the matrices (Mqs)s=1,··· ,r

by performing "partial column operations" on MQ. Specifically, for an ele-
mentary column operation (∗) and a subset of indices S ⊆ [r], we call partial
column operation on MQ the operation transforming MQ into M′

Q such that:
for every s /∈ S, the projection onto Zqs satisfies MQ(Zqs) = M′

Q(Zqs) = Mqs

and for every s ∈ S, the projection onto Zqs satisfies M′
Q(Zqs) = (∗) ◦Mqs .

As the correspondence ψ : Zq1×· · ·×Zqr → ZQ is a ring homomorphism,
it satisfies the properties: ψ(u1, · · · , ur) + ψ(v1, · · · , vr) × ψ(w1, · · · , wr) =
ψ(u1 + v1 × w1, · · · , ur + vr × wr) and we can compute addition and mul-
tiplication componentwise in Zq1 × · · · × Zqr using addition and multipli-
cation in ZQ. In order to compute partial column operations, we first in-
troduce the set of partial identities , which are coefficients that allow us to
proceed to the partial column operations of type (i) and (ii). Secondly, as
the rings Zqs are fields, we need to compute the multiplicative inverse of an
element, that is used as multiplicative coefficient x in elementary column op-
eration (iii). As ZQ is not a field, inversion is not possible, and we introduce
the concept of partial inverse to overcome this difficulty. In the following,
the term arithmetic operation refers to any operation {+,−,×, gcd(·, ·), ·
mod QS ,Extended Euclidean algorithm} on integer smaller than Q. Note
they do not have constant time complexity for large Q.

Partial Identity and Partial Inverse. Given a subset of indices S ⊆ [r],
we define the partial identities wrt S, denoted LS , by LS = ψ(δ1,S , · · · , δr,S)
where the symbol δt,S ∈ Zqt is equal to 1 if t ∈ S and to 0 otherwise. For
any S ⊆ [r], the partial identity LS can be constructed in O(r) arithmetic
operations in ZQ by evaluating ψ on (δ1,S , · · · , δr,S). However, it is impor-
tant to notice that if S = [r], L[r] = ψ(1, · · · , 1) = 1, because ψ is a ring
isomorphism, and L[r] is computed in time O(1).

Knowing the partial identities, we can implement the partial column
operations (i) and (ii) for a set of indices S. Partial column operation (i) is
implemented by replacing column k by (colk×L[r]\S+colℓ×LS) and column
ℓ by (colℓ×L[r]\S + colk×LS). Partial column operation (ii) is implemented
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by multiplying column k by L[r] − 2× LS .
We define now the partial inverse of an element in the ring ZQ:

Definition 8.1 (Partial Inverse). Given a set S ⊆ [r] of indices, the partial
inverse of x = ψ(u1, · · · , ur) with regard to S is the element xS ∈ ZQ:

xS = ψ(u1
S , · · · , ur

S), with us
S =

{
u−1
s if s ∈ S and us ∈ Z×

qs

0 otherwise

Using elementary algebra, we prove:

Proposition 8.1 (Partial Inverse Construction). For x = ψ(u1, · · · , ur) ∈
ZQ and S ⊆ [r],

(1) gcd(x,QS) = QR for some R ⊆ S and for all s ∈ S, us is invertible in
Zqs iff s /∈ R; we denote T = S \R.

(2) The Bezout’s identity for x and QT gives vx+wQT = 1, where v satisfies
v mod QT = ψT ((u

−1
s )s∈T )

(3) xS =
[
ψT ((u

−1
s )s∈T )× LT mod Q

]
∈ ZQ, where LT is the partial iden-

tity wrt T .

Proof. (1): The gcd of x and QS divides QS so gcd(x,QS) = QR for some
R ⊆ S, and for every index s ∈ S, qs divides x (denoted qs | x) iff s ∈
R. According to the Chinese remainder theorem, for any s ∈ T = S \ R,
us = x mod qs 6= 0 as qs ∤ x. As Zqs is a field, its unique non invertible
element is 0 and consequently us is invertible. Conversely, as qt | x for
t ∈ R, x mod qt = ut = 0 is non invertible.

(2): First note that x mod QT = ψT ((ut)t∈T ) ∈ ZQT
. Indeed, as qt |

QT , ∀t ∈ T , we have (x mod QT ) mod qt = x mod qt = ut. By definition of
T , gcd(x,QT ) = 1 and so the Bezout’s lemma gives vx+wQT = 1. Applying
(· mod QT ) to both sides of the equality gives (v mod QT )ψT ((ut)t∈T ) = 1
and consequently, for every qt, t ∈ T , we have ((v mod QT ) mod qt)ut = 1
and the result follows.

(3): Let LT be the partial identity wrt T . We form the product x̃ =[
ψT ((u

−1
t )t∈T )× LT mod Q

]
and evaluate it modulo qs. For any index s ∈

[r], x̃ mod qs =
[
(ψT ((u

−1
t )t∈T ) mod qs)× (LT mod qs)

]
mod qs. If s /∈ T ,

then LT mod qs = 0 and x̃ mod qs = 0. If s ∈ T , then LT mod qs = 1,
ψT ((u

−1
t )t∈T ) mod qs = u−1

s and consequently x̃ mod qs = u−1
s . Thus, x̃

satisfies the definition of xS , the partial inverse of x wrt S.
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We directly deduce an algorithm to compute the partial inverse of x wrt
S if QS is given: compute QR = gcd(x,QS) and QT = QS/QR, then v using
the extended Euclidean algorithm and finally xS = (v mod QT )×LT mod Q.
Computing the partial identity LT requiresO(r) arithmetic operations in ZQ,
but is constant if T = [r], which happens iff S = [r] and x is invertible in ZQ.
Consequently, computing xS requires O(r) arithmetic operations in general,
but only O(1) arithmetic operations in the later case.

Modular Reconstruction for Multi-Field Persistent Homology Let
K be a filtered complex with n simplices. Define M∂(Zqs) to be the n × n
boundary matrix of K with Zqs coefficients. Define M to be the n × n
matrix with ZQ coefficients such that the projection of M onto Zqs is equal
to M∂(Zqs), for all s ∈ [r]. Note that the matrices M and M∂(Zqs), for
any s, are identical matrices in the sense that they contain 0, 1 and −1
coefficients at the same positions, where 0, 1 and −1 refer respectively to
elements of ZQ and Zqs .

We reduce a matrix R which is initially equal to M. Denote by colj the
jth column of R. Define low(j,QS) to be the index of the lowest element of
colj such that colj [low(j,QS)] mod QS 6= 0. In particular, low(j, qs) is equal
to the index of the lowest non-zero element of column j in the projection
R(Zqs). After iteration j, we say that the columns col1, · · · , colj are reduced.
We maintain, for every reduced column colj , the collection of "lowest indices"
i as a set L(j) = {(i, QS)} satisfying:

• For every (i, QS) ∈ L(j), i = low(j,QS)

• For every (i, QS), (i
′, QS′) ∈ L(j), either i = i′ and S = S′, or i 6= i′

and S ∩ S′ = ∅

• ∪(i,QS)∈L(j)S = [r]

The algorithm returns the set of triplets P = {(i, j, QS)} such that i = low(j)
in the column echelon form of the matrix M∂(Zqs) iff s ∈ S, or, equivalently,
(i, QS) ∈ L(j) once colj has been reduced. This is a compact encoding of
the multi-field persistence diagram of the filtered complex.

The modular reconstruction algorithm for persistent homology is de-
scribed in Algorithm 8.2. The {L(j)}j form an index table that we maintain
implicitely. At iteration j of the for loop, we use QS for the product of all
prime numbers

∏
s∈S qs for which the column j in R(Zqs) has not yet been

reduced.
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Algorithm 8.2: Modular-reconstruction
Data: Matrix R = M

Output: Multi-field persistence diagram P = {(i, j, QS)}
for j = 1, · · · , n do

QS ← Q[r];
while low(j,QS) is defined do

k ← low(j,QS); QT ← QS/ gcd(colj [k], QS) ;
while there exists j′ < j with (i, QT ′) ∈ L(j′) satisfying

[i = low(j,QS) and gcd(QT ′ , QT ) > 1] do

colj ← colj −
(
colj [k]× colj′ [k]

T
)
· colj′ ;

QT ← QT / gcd(QT ′ , QT );
end
if QT 6= 1 then P ← P ∪ {(k, j,QT )}; QS ← QS/QT ;
;

end
end

Correctness of the Multi-Field Algorithm. First, note that all oper-
ations processed on R correspond to left-to-right elementary column opera-
tions in the matrices R(Zqs) for all s ∈ [r]. By definition of the partial in-
verse, the column operation in line 7 can only reduce the value of low(j,QS).
Moreover, one iteration of the while loop in line 3 either strictly reduces QS

by dividing it by QT (in line 10) or set (colj [k] mod QS) to zero, hence
reducing strictly low(j,QS). The later case happens when QT is set to 1 in
line 8. Consequently, the algorithm terminates.

We prove recursively, on the numbers of columns, that each of the matrix
R(Zqs) gets reduced to column echelon form. We fix an arbitrary field Zqs :
suppose that the j− 1 first columns of R(Zqs) have been reduced at the end
of iteration j − 1 of the for loop in line 1. We prove that at the end of
the jth iteration of the for loop in line 1, the j first columns of the matrix
R(Zqs) are reduced. Consider two cases. First suppose there is a triplet
(i, j, QT ) ∈ P for some i < j and QT satisfying qs | QT . This implies
that the algorithm exits the while loop in line 5 with qs | QS (because
by definition of QT , in line 4, QT | QS) and there is no j′ < j such that
[low(j′, QT ′) = low(j,QS) and gcd(QT ′ , QT ) > 1]. This in particular implies
that there is no j′ < j such that low(j′, qs) = low(j, qs) and column j is
reduced in R(Zqs).
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Secondly, suppose that there is no such pair (i, j, QT ) in P, with qs
dividing QT . Consequently, during all the computation of the while loop
in line 3, qs | QS . When exiting this while loop, low(j,QS) is undefined,
implying in particular that low(j, qs) is undefined and column j of R(Zqs) is
zero, and hence reduced.

8.3 Output-Sensitive Complexity Analysis

Arithmetic Complexity Model for Large Integers. During the reduc-
tion algorithm we perform arithmetic operations on big integers, for which
we describe a complexity model [46]. Suppose that on our architecture, a
memory word is encoded on w bits (on modern architectures, w is usually 64).
Computer chips contain Arithmetic Logic Units that allow arithmetic oper-
ations on a 1-memory word integer in O(1) machine cycles. Let the length
of an integer z be defined by: λ(z) = ⌊log2 z/w⌋ + 1, i.e. by the number of
memory words necessary to encode z. We express the arithmetic complexity
as a function of the length. For any positive integer z of length λ(z) = B,
operations in Zz cost A+(z) = O(B) for addition, A×(z) = O(M(B)) for
multiplication and A÷(z) = O(M(B) logB) for (extended) Euclidean algo-
rithm, inversion and division, where M(n) is a monotonic upper bound on
the number of word operations necessary to multiply two integers of length
B. By a result of [45], M(B) = O(B logB 2O(log∗ B)), where log∗ n is the
iterated logarithm of n. In the following, we write A(z) for a bound on the
complexity of arithmetic operations on integers smaller than z.

In the case of multi-field persistent homology, we are interested in the
value of λ for an element in ZQ, Q = q1 · · · qr, in the case where {q1, · · · , qr}
are the first r prime numbers. We know [64] that lnQ < 1.01624qr and
qr < r ln(r ln r) for r ≥ 6. Consequently, λ(Q) < ⌊1.46613r ln(r ln r)/w⌋+1.
Note that λ(Q)≪ r for r ln r ≪ ew, which is a reasonable assumption.

Complexity of the Modular Reconstruction Algorithm. Let K be
a filtered complex of size n. The persistent homology algorithm described
in Section 8.1, applied on K with coefficients in a field k, requires O(n3)
operations in k. For a field Zq these operations take constant time and
the algorithm has complexity O(n3). The output of the algorithm is the
persistence diagram, which has size O(n) for any field.

For a set of prime numbers {q1, · · · , qr}, let n′ be the total number of
distinct pairs in all persistence diagrams for the persistent homology of K
with coefficient fields Zq1 , · · · ,Zqr . We express the complexity of the modular
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reconstruction algorithm in terms of the size of its output (i.e. the multi-
field persistence diagram of size n′), the number of fields r and the arithmetic
complexity A(Q). First, note that, for a column j′ in the reduced form of
R, the size of L(j′) is equal to the number of triplets of the multi-field
persistence diagram with death index j′; denote this quantity by |L(j′)|.
Hence, when reducing column j > j′, the column colj′ is involved in a column
operation colj ← colj+α ·colj′ at most |L(j′)| times. Consequently, reducing
colj requires O(

∑
j′<j |L(j

′)|) = O(n′) column operations. There is a total
number of O(m×m′) column operations to reduce the matrix, each of them
being computed in time O(n× A(Q)).

Computing the partial inverse of an element x ∈ ZQ takes time O(r ×
A(Q)) in the general case, and only O(A(Q)) if x is invertible in ZQ. The
partial inverse of an element x = colj [k] is computed only if there is a
pair (k,QT ) ∈ L(j). This element is not invertible in ZQ iff |L(j)| > 1.
There are consequently O(|n′ − n|) non-invertible elements x that are at
index low(j,QT ) in some column j, for some QT . If we store the partial
inverses when we compute them, the total complexity for computing all
partial inverses in the modular reconstruction algorithm is O((n+ r× (n′ −
n) × A(Q)). We conclude that the total cost of the modular reconstruction
algorithm for multi-field persistent homology is O(

[
r × (n′ − n) + n2n′

]
×

A(Q)) = O(
[
r × (n′ − n) + (n′)3

]
× A(Q)), while the brute-force algorithm,

consisting in computing persistence separately for every field Zq1 , · · · ,Zqr

requires O(r × n3) operations.
Note that asymptotically in r, one arithmetic operation in ZQ[r]

becomes
more costly than r distinct arithmetic operations in Zq1 , · · · ,Zqr , in which
case the modular reconstruction approach developed in this chapter becomes
worse than the brute-force algorithm (even when n′ and n are close). This
however happens for extremely big values of r (see Chapter 9) and had, in
particular, no incidence on all experiments we have run in the next Chapter.

Remark 8.1. On all datasets considered in our experiments, we have found
no example where n′ was significantly bigger than n. However, it is unclear
whether many "short-lived torsion" might appear in general. This is not
an issue as the persistent homology algorithm admits a complexity analysis
depending on the length of bars in the output persistence barcode [42]. In
this analysis, the cost for computing a pair (i, j) in the persistence diagram
is function of the quantity |j − i|. This analysis adapts naturally to the
modular reconstruction approach, showing that short-bars induce a smaller
cost for computation.
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Chapter 9

Performance of Modular

Reconstruction

In this section, we report on the performance of the modular reconstruction
algorithm for multi-field persistent homology. We compute the persistent
homology of Rips complexes built on a variety of both real and synthetic
datasets. We use the compressed annotation matrix implementation of per-
sistence cohomology presented in Chapter 5. The coefficients of the matrix
are represented with the multi-precision integers of the GMP library [2]. We
compare the performance of the modular reconstruction algorithm for multi-
field persistent homology with the brute-force approach. By brute-force, we
mean that we compute persistence independently in each field of coefficients.
In this later case, we use standard C++ int to represent the coefficients. Note
that, comparatively, memory allocation and arithmetic operations are slower
with GMP integers, even if they fit in one memory word.

The datasets are listed in Figure 9.1 with the size of point sets |P|, the
threshold ρ for the Rips complex and the size of the complex |K|. The
values Tr for r ∈ {1, 50, 100, 200} refers to the running time of the modular
reconstruction algorithm for the r first prime numbers, and Rr refers to
the ratio between the brute-force approach and the modular reconstruction
algorithm.

9.1 Time Performance

Surprisingly, we have observed that, on all experiments, the number of dif-
ferences between persistence diagrams with various coefficient fields was ex-
tremely small. Let n be the number of points in a persistent diagram and
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Data |P| ρ |K| T1 R1 T50 R50 T100 R100 T200 R200

Bud 49,990 0.09 127 · 106 96.3 0.51 110.3 22.2 115.9 42.3 130.7 75.0
Bro 15,000 0.04 142 · 106 123.8 0.41 143.5 17.8 150.2 34.0 174.5 58.5
Cy8 6,040 0.8 193 · 106 121.2 0.63 134.6 28.2 139.2 54.6 148.8 102.2
Kl 90,000 0.25 114 · 106 78.6 0.52 89.3 23.0 93.0 44.1 105.2 78.0
S3 50,000 0.65 134 · 106 125.9 0.40 145.7 17.2 152.6 32.8 177.6 50.3

Figure 9.1: Timings of the modular reconstruction algorithm vs brute-force.

n′ the total number of points in the multi-field persistence diagram. The
quantity n′ − n, that appears in the complexity analysis of the modular re-
construction algorithm, can be considered as a very small constant in our
experiments (≤ 10). We have also observed that these differences between
persistence diagrams appeared for small prime numbers qs.

Figure 9.1 presents the timings of the modular reconstruction approach
for a variety of simplicial complexes ranging between 114 and 193 million
simplices. We note that from r = 1 to r = 200 prime numbers, the time for
computing multi-field persistence using the modular reconstruction approach
only increases by 23 to 41%, when the brute-force approach requires about
200 times more time. This difference appears in the speedup expressed by
the ratio Rr. For r = 1, the modular reconstruction approach is about twice
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Figure 9.2: Timings for the modular reconstruction algorithm and brute
force.
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Figure 9.3: Asymptotic behavior of modular reconstruction and brute force.

slower than the standard persistent homology algorithm in a single field,
because modular reconstruction is a more complex procedure and deals, in
our implementation, with GMP integers that are slower than the classic int

used in the standard persistent homology algorithm. However, this difference
fades away as soon as r > 1 and the modular reconstruction is significantly
more efficient than the brute-force algorithm: it is, in particular, between
50.3 and 102.2 times faster for r = 200.

Figures 9.2 and 9.3 present the evolution of the running time of the mod-
ular reconstruction approach and the brute-force approach for an increasing
number of fields r (using the first r prime numbers). Persistence is com-
puted for a Rips complex built on a set of 10000 points sampling a Klein
bottle, which contains torsion in its integral homology, resulting in a simpli-
cial complex of 6.14 million simplices. We analyze the result in terms of the
complexity analysis of Section 8.3. The quantity m is fixed and m′ is fixed
for r ≥ 2. The complexity of the brute-force algorithm is O(r×m3) and we
indeed observe a linear behavior when r increases. The complexity of the
modular reconstruction approach is O(

[
r × (m′ −m) +m′3

]
A(Q[r])). The

part r×(m′−m) of the complexity is negligeable because m′−m is extremely
small. For medium values of r (≤ 150), like in Figure 9.2, the arithmetic com-
plexity O(A(Q[r])) increases very slowly because λ(Q[r]) =

⌊
log2Q[r]/w

⌋
+ 1

increases slowly. We consequently observe a very slow increasing of the time
complexity compared to the one of brute-force.
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9.2 Asymptotic Behavior

Figure 9.3 describes the asymptotic behavior of the modular approach, where
the arithmetic operations become costly. We observe that the timings for
the modular reconstruction approach follow a convex curve. The convexity
comes from the growth of λ(Q[r]), which is asymptotically Θ(r log r)) [64].
However, the increasing of the slope is very slow: all along this experiment,
we have been unable to reach a value of r for which the modular approach
is worse than the brute-force approach. For readability, the timings for the
brute-force approach are implicitly represented through their ratio with the
modular approach: all along the experiment, for 10000 ≤ r ≤ 100000, the
modular approach is between 55 and 90 times faster. Based on a linear
interpolation of the timings for the brute-force approach, and a polynomial
interpolation of the modular reconstruction timings, we expect the modular
reconstruction to become worse than brute-force for a number of primes
r bigger than 4.9 million. In the case of multi-field persistent homology
however, there is no need to take r bigger than 200, because r is related to
torsion coefficients, which are small in practice.
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Part IV

Zigzag Persistence via

Reflections and Transpositions
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This Part is based on the following publications:

• Clément Maria and Steve Y. Oudot. Zigzag Persistence via Reflections
and Transpositions. SODA 2015 [52]
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Chapter 10

The Theory of Zigzag

Persistence

In the previous chapters of this dissertation, we have studied persistent ho-
mology and efficient methods to compute persistence diagrams. In partic-
ular, the material introduced offers tools to solve the topological inference
problem. On the mathematical side, persistent homology allows one to infer
with garantees the homology of an unknown topological space. On the algo-
rithmic side, the techniques introduced (simplex tree, compressed annotation
matrix and modular reconstruction) allow one to compute an approximation
of the space and to compute its persistent homology with various coeffi-
cient fields. Moreover, the experimental chapters demonstrate that the full
computation takes a few minutes for simplicial complexes with hundreds of
million simplices.

However, the theory of persistence is limited. On one side, approxi-
mating, with garantees, a topological space from a point cloud using only
distance computations leads to Čech complex-like constructions which are
extremely big. Even the big complexes we have considered so far may not
be sufficient to obtain a valid persistence diagram. On the other side, persis-
tent homology is rigid in the sense that the left-to-right simplicial maps in a
filtration restricts the area of application to the multi-scale approximation of
topological spaces we have presented so far. This motivates the introduction
of the theory of zigzag persistent homology, that generalizes the theory of
persistence. We propose an algorithm to compute zigzag persistence in the
next chapter.

The theory of zigzag persistence is a generalization of the theory of per-
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sistent homology to filtrations of the following form:

K1
oo // K2

oo // · · · oo // Kn−1
oo // Kn

where bidirectional arrows indicate that the actual arrow orientations can
be arbitrary. These filtrations are called zigzag filtrations. For a dimension
d and a coefficient field k, the zigzag (persistence) module associated to this
sequence is:

Hd(K1, k) oo // Hd(K2, k) oo // · · · oo // Hd(Kn−1, k) oo // Hd(Kn, k)

This is the target object of zigzag persistence. Before studying it formally,
we introduce some background about quiver theory.

10.1 Introduction to Quiver Theory

Let (k,+, ·) be an arbitrary field. In the following, all vector spaces are finite
dimensional k-vector spaces.

Quivers and Representations. A quiver is a directed graph. Specifi-
cally, a quiver is a pair Q = (Q0, Q1) of a finite set of vertices Q0 and a finite
set of (directed) arrows between them. If a ∈ Q1 is an arrow, then ta and
ha denote its tail and its head respectively.

Let us fix a quiver Q = (Q0, Q1). A k-representation V of Q is an
assignement of a finite dimensional k-vector space for each vertex of Q:

{Vx : x ∈ Q0}

together with an assignement of a k-linear maps for each arrow:

{va : Vta → Vha : a ∈ Q1}

We write for short V = (Vx, va). In a sense, quiver representations gen-
eralize the idea of vector space to a collection of vector spaces connected
by homomorphisms. It is an algebraic object per se. We define now sub-
representations, summands and morphisms of k-representations, which are
defined pointwise.

A subrepresentation U of a representation V = (Vx, va) of Q is a rep-
resentation (Ux, ua) of Q such that Ux is a subspace of Vx for every vertex
x ∈ Q0 and ua is the restriction of the linear map va to the subspace Uta.

Let V = (Vx, va) and W = (Wx, wa) be two k-representations. A mor-
phism of representations φ : V → W is a set of linear maps {φx : Vx →
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Wx}x∈Q0 such that, for every arrow a ∈ Q1, the following diagram com-
mutes:

Vta
va //

φta

��

Vha

φha

��
Wta

wa //Wha

The morphism is called a monomorphism if every φx is injective, an epimor-
phism if every φx is surjective, and an isomorphism (denoted ∼=) if every φx
is bijective.

Morphisms between k-representations are composed pointwise, by com-
posing the linear maps at each vertex x ∈ Q0 independently. That is the
composition of φ : U→ V with ψ : V→W is the morphism ψ◦φ : U→W de-
fined by (ψ◦φ)x = ψx◦φx for all x ∈ Q0. Moreover, for each k-representation
V we have the identity morphism 1V : V → V defined by (1V)x = 1Vx for
all x ∈ Q0. These definitions induce the following properties on the k-
representations of Q:

- They contain a zero object, which is the k-representation with all spaces
and maps equal to 0.

- They have a direct sum defined for any V,W as the k-representation V⊕W
with spaces Vx ⊕Wx for all x ∈ Q0 and maps va ⊕wa =

(
va 0
0 wa

)
for every

arrow a ∈ Q1. A non-trivial k-representation V is called decomposable if it
is isomorphic to the direct sum of two non-trivial k-representations (called
summands), and indecomposable otherwise.

- Every morphism φ : V → W has a kernel, defined by (kerφ)a = kerφa for
all a. Similarly, φ has an image and a cokernel, also defined pointwise.

- A morphism φ is a monomorphism if and only if kerφ = 0, an epimorphism
if and only if cokφ = 0, and an isomorphism if and only if φ is both a
monomorphism and an epimorphism.

Remark 10.1. A representation of Q has the structure of a module [38].
In the following, we use the terms (sub-)module and (sub-)representation
indifferently.

Quivers of Type An. In zigzag persistent homology, we focus on quivers
of type An. An An-type quiver is a quiver which takes the following form:

•1 oo // •2 oo // · · · oo // •n−1
oo // •n
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where bidirectional arrows indicate that the actual arrow orientations can
be arbitrary. We define two total order relations on the indices {1, . . . , n} of
the vertices of the quiver, depending on the orientation of the arrows. Let
≤b be the order satisfying for every indices i, j ∈ {1, . . . , n}, i ≤b j iff:





either i = j,
or i < j and •j−1 → •j is forward,
or i > j and •i−1 ← •i is backward.

Symmetrically, we define the order ≤d satisfying, for every indices i, j ∈
{1, . . . , n}, i ≤d j iff:





either i = j,
or i > j and •j ← •j+1 is backward,
or i < j and •i → •i+1 is forward.

We also define max≤b
and max≤d

which are the maximum function w.r.t.
to the orders ≤b and ≤d respectively. For example, in the quiver:

•1 // •2 // •3 oo •4 // •5 oo •6

the indices satisfy 6 ≤b 4 ≤b 1 ≤b 2 ≤b 3 ≤b 5 and 1 ≤d 2 ≤d 4 ≤d

6 ≤d 5 ≤d 3. Note that the list of indices sorted according to increasing
≤b is made of, first, the list of indices, in decreasing index order, that are
the tail of a backward arrow, then the index 1, then the list of indices, in
increasing index order, that are the head of a forward arrow. The list of
indices sorted according to increasing ≤d is made of, first, the list of indices,
in increasing index order, that are the tail of a forward arrow, then the index
n, then the list of indices, in decreasing index order, that are the head of a
backward arrow. Note that these orders are a reformulation of the birth-time
and death-time indices of [24].

In computational topology, the (sub-)representations of An-type quivers
are also called zigzag (sub-)modules. We usually denote the set of vertices
Q0 by {1, · · · , n} and the homomorphism (of a representation) on the ith

arrow by fi if the arrow is forward •i // •i+1 and by gi if the arrow is
backward •i oo •i+1 .

Let V be a k-representation of an An-type quiver:

V1 oo // V2 oo // · · · oo // Vn−1
oo // Vn (10.1)

Both the Krull-Schmidt principle and Gabriel’s theorem hold and take the
following form:
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Theorem 10.1 (Krull-Schmidt, Gabriel). Every zigzag module V over a
given field k is decomposable as a direct sum of indecomposable modules

V = V1 ⊕ V2 ⊕ · · · ⊕ VN , (10.2)

where each indecomposable Vi is isomorphic to some interval module I[bi; di],
defined as:

0 oo 0 // · · · oo
0 // 0 oo 0 // k oo 1 // · · · oo

1 // k oo 0 // 0 oo 0 // · · · oo
0 // 0︸ ︷︷ ︸

[1;bi−1]

︸ ︷︷ ︸
[bi;di]

︸ ︷︷ ︸
[di+1;n]

(10.3)

Moreover, the decomposition is unique up to isomorphism and reordering of
the terms Vi. We call bi the birth and di the death of each interval module
I[bi; di].

What this result says is that the algebraic structure of a zigzag module V
is completely determined by the finite collection of intervals [bi; di] involved
in its decomposition. This collection is called the persistence barcode of V,
and it is our target object when computing zigzag persistence. Similarly, we
can define a persistence diagram and bottleneck distances between them.

For a k-representation V = (Vi, fi/gi)i=1...n of an An-type quiver Q, we
define V[b; d] to be the representation V = (Vi, fi/gi)i=b...d of the quiver
Q[b; d] restricted to the vertices (and arrows between them) of indices b ≤
i ≤ d. We call V[b; d] a restriction of the module V to the range [b; d]. If
b = 1, we call V[1; d] a prefix of V and if d = n we call V[b;n] a suffix. The
following theorem states that the interval decomposition of the restriction
V[b; d] is the direct sum of the intervals of the decomposition of V restricted
to [b; d].

Theorem 10.2 (Restriction Principle [24]). Let V be a zigzag module that
decomposes into:

V ∼=
⊕

j∈J

I[bi; di]

then the restriction V[b; d] decomposes into:

V[b; d] ∼=
⊕

j∈J

I ([bi; di] ∩ [b; d])

where I ([bi; di] ∩ [b; d]) is the interval module over the interval [bi; di] ∩ [b; d]
if [bi; di] ∩ [b; d] 6= ∅ and is the 0 module otherwise.
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10.2 Zigzag Persistent Homology

In practice, zigzag modules are obtained by computing the homology of finite
sequences K of simplicial complexes connected by inclusion maps (or more
generally simplicial maps), called zigzag filtrations:

K := K1
oo // K2

oo // · · · oo // Kn−1
oo // Kn (10.4)

We call standard persistence the case where all arrows are oriented in the
same direction. In this case, K is called a standard filtration.

As in standard persistence, a zigzag filtration induces a sequence Hom of
homology groups with coefficients in a field k:

Hd(K1, k) oo // Hd(K2, k) oo // · · · oo // Hd(Kn−1, k) oo // Hd(Kn, k)

This is a k-representation of an An-type quiver. It admits an interval de-
composition by virtue of Theorem 10.1.

We focus in this part on the case where all maps of the zigzag filtration are
elementary inclusions. Computing zigzag persistence consists in computing
the interval decomposition of the zigzag module Hom corresponding to a
zigzag filtration K, given the sequence of simplex insertions and deletions of
K.

Algorithmic Aspects of Zigzag Persistence. Standard persistent ho-
mology has attracted a lot of attention in the recent years and, as mentioned
previously, very efficient algorithms have been developed.

By contrast, the general zigzag case has received much less attention
despite its growing interest in applications. Perhaps the main reason is
that, unlike standard persistence modules, it is unknown whether general
zigzag modules can be viewed as modules over a ring of polynomials. Hence,
computing their interval decompositions as in Theorem 10.1 requires more
elaborate machinery than mere matrix reduction. The so-called right filtra-
tion functor of Carlsson and de Silva [24] is an example of such machinery.
Introduced originally as a tool to prove Gabriel’s theorem, it was eventually
turned into the first – and so far only – practical algorithm to decompose
general zigzag modules [25]. This algorithm works with modules derived
at the homology level from zigzag filtrations K in which each arrow corre-
sponds to a single simplex insertion or deletion. It scans the zigzag filtration
K from left to right, adding or removing one simplex at a time, and main-
taining a compatible basis – in fact three, one for the cycles, one for the
boundaries, and one for the killing chains – for the right filtration of the
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zigzag prefix K[1; i] at iteration i (i.e. the zigzag filtration restricted to the
i first complexes). Its implementation is available as part of the C++ library
Dionysus [56] and performs reasonably well in practice, however nowhere
as efficiently as the aforementioned optimized algorithms for standard per-
sistence. Its pseudo-code is also significantly longer and more intricate due
to the required extra machinery. As a result, while reproducing it step by
step is easy, grasping the higher-level picture of how and why it works is a
comparatively challenging task. To what extent the approach (and its the-
oretical analysis) can be simplified and optimized is becoming an essential
question.

We introduce in Chapter 11 an algorithm for computing zigzag persis-
tence, and discuss the implications of such an algorithm in the concluding
remarks of this dissertation.

Oscillating Rips Zigzag and Inference. When solving the topological
inference problem, the classic approach in persistent homology is to recon-
struct the unknown topological space at different scales with a Rips complex,
using a scale parameter. The oscillating Rips zigzag is a zigzag filtration that
exploits two parameters: scale and number of points.

Let P be a set of points in a metric space and let [p1, · · · pn] be an
ordering of the points. We denote by Pi the ith prefix [p1, · · · , pi] of the
ordering, and by εi the Hausdorff distance dH(Pi,P). The value εi is called
the ith geometric scale. Given two multipliers η ≤ ρ, the oscillating Rips
zigzag on the ordered points P is the following filtration:

· · · Rρ·εi−1(Pi) Rρ·εi(Pi+1) · · ·

Rη·εi−1(Pi−1)

ee 66

Rη·εi(Pi)

ff 77

Rη·εi+1(Pi+1)

hh ::

where Rα(P) is the Rips complex of threshold α and vertices the points of
P . Up-right arrows consist in adding more points, and up-left ones consist in
increasing the threshold for the Rips; they are both inclusions but in different
directions.

A standard ordering of the points is the furthest point ordering consisting
in constructing the sequence of Pi incrementally:

- P1 = (p1), for an arbitrary point p1 ∈ P,

- if Pi has been computed, then pick pi+1 such that:

pi+1 = argmax
p∈P

d(p,Pi)
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H1

ε1 ε2 ε3 ε4 ε5 ε6 ε7

Figure 10.1: Zigzag persistent homology for topological inference.

Figure 10.1 pictures an application of zigzag persistence using an oscillat-
ing Rips filtration for topology inference. The same example has been solved
with standard persistence in Figure 4.8. Because the threshold of the Rips
complex adapts to the density of points, the simplicial complexes maintained
along the filtration are much smaller than the ones in a Rips filtration for
standard persistence. Note that the persistence diagram provides the right
homology for the unknown topological space.

The oscillating Rips zigzag actually produces a provably good result. The
following theorem is also based on the proximity of the Rips and the Čech
complexes in RD (Lemma 1.1) and the homotopy equivalent reconstruction
result of Theorem 1.4:

Theorem 10.3 (Reconstruction with Oscillating Rips Zigzag). Let C be a
compact set of RD, with a strictly positive topological feature size, and let
P = {p1, · · · , pn} be a set of points such that dH(C,P) < ε. There exist
values of the multipliers η and ρ (depending only on the dimension D) such
that, for a sufficiently small ε, there is a range of indices [ℓ, k] ⊆ [1;n] such
that the persistence barcode of the oscillating Rips filtration, restricted to
the geometric scales from εℓ to εk, contains only full-length intervals and
ephemeral (length 0) ones. The number of full-length intervals is equal the
the Betti number of C.

As a consequence, zigzag persistence furnishes all tools for solving the
topological inference problem with a provably good result, while maintaining
much smaller simplicial complexes.
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Remark 10.2. Zigzag persistence does not allow to consider several param-
eters (like scale and number of points) independently. Indeed, in the oscil-
lating Rips zigzag we consider two parameters but make their values depend
on each other. Hence, a zigzag filtration draws a path that explores a multi-
dimensional space of parameters, but does not describe it entirely. Consider-
ing different parameters independently is known as multi-dimensional persis-
tence, where the quivers considered are no longer zigzaging paths. Gabriel’s
theorem does not apply to these quivers, and finding and computing a direct-
sum decomposition into indecomposables modules for particular families of
multi-dimensional persistence modules is an active area of research.

10.3 Representative Sequences and Encoding

We now introduce the main low-level object used to prove theorems and the
validity of our algorithm.

Definition 10.1. For an k-representation V = (Vi, fi/gi) of an An-type

quiver Q, a representative sequence, denoted by u(b) oo // · · · oo // u(d) , is an
n-tuple (u(1), . . . , u(n)) ∈ V1 × · · · × Vn such that:
(a) The index b, called the birth index, satisfies either b = 1, or •b−1 → •b

is forward, or gb−1(u
(b)) = 0. In addition, u(i) = 0 for every i < b.

(b) The index d, called the death index, satisfies either d = n, or •d ← •d+1

is backward, or fd(u(d)) = 0. In addition, u(i) = 0 for every i > d.
(c) For all i, b ≤ i < d, either fi(u

(i)) = u(i+1) or u(i) = gi(u
(i+1)),

depending on the direction of the arrow •i ↔ •i+1. In addition, u(i) 6= 0
for every i, b ≤ i ≤ d.

The following easy propositions relates the representative sequences to
the so-called interval submodules of V, i.e. the submodules of V that are
isomorphic to interval representations as in (10.3):

Proposition 10.1. U is an interval submodule of V if and only if there exists
a representative sequence u(b) oo // · · · oo // u(d) such that U is equal to:

0 · · · 0//oo 〈u(b)〉//oo oo // · · · 〈u(d)〉//oo oo // 0 · · · oo // 0

If an interval submodule of V is in direct sum, we call it an interval
summand. As a direct consequence of the definitions, we deduce:

Proposition 10.2. Let V = (Vi, fi/gi) be a representation of an An-type

quiver and { u(bj)j
oo // · · · oo // u

(dj)
j }j∈J be a family of representative sequences
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for V. If, for every index i ∈ {1, . . . , n}, the set {u(i)j : u
(i)
j 6= 0}j∈J is a basis

for Vi, then:
V ∼=

⊕

j∈J

I[bj ; dj ]

In this case, we say that the family of representative sequences represents an
interval decomposition for V.

Arithmetic of Representative Sequences. Let V = (Vi, fi/gi) be a
representation of an An-type quiver.

Definition 10.2. Let u = u(b) oo // · · · oo // u(d) and v = v(b
′) oo // · · · oo // v(d

′)

be two representative sequences. Define bm = max≤b
{b, b′} and dm = max≤d

{d, d′}.
If the two sequences satisfy:

(a) [b; d] ∩ [b′; d′] 6= ∅,

(b) for all j ∈ [b; d] ∩ [b′; d′], the vectors u(j) and v(j) are linearly indepen-
dent in Vj,

(c) bm ≤ dm,

then we define the binary operator ∗:

( u(b) oo // · · · oo // u(d) ) ∗ ( v(b
′) oo // · · · oo // v(d

′) ) :=

u(bm) + v(bm) oo // · · · oo // u(dm) + v(dm)

of birth bm and death dm. We also define, for any representative sequence
u(b) oo // · · · oo // u(d) and scalar γ ∈ k, not equal to 0, the scalar multiplication:

γ · ( u(b) oo // · · · oo // u(d) ) := γu(b) oo // · · · oo // γu(d)

Lemma 10.1. For two representative sequences u and v satisfying condi-
tions (a), (b) and (c) above, and a non-zero scalar γ, u ∗ v and γ · u are
representative sequences.

Proof. The case of γ · u is direct. Denote u = u(b) oo // · · · oo // u(d) and v =

v(b
′) oo // · · · oo // v(d

′) . We prove that u∗v is a representative sequence. First,
we prove that definition 10.1 (a) is satisfied. If bm = 1 or •bm−1 → •bm
is forward, (a) is satisfied. Suppose now that bm > 1 and that the arrow
•bm−1 ← •bm is backward. We prove that gbm−1(u

(bm)+v(bm)) = 0. Suppose,
w.l.o.g., that bm = b. Hence b′ ≤b b which implies, together with •bm−1 ←
•bm being backward:

117



- either b = b′, in which case gbm−1(u
(bm)) = gbm−1(v

(bm)) = 0,

- or b > b′, in which case gbm−1(u
(bm)) = 0 and v(bm) = 0.

Definition 10.1 (b) is satisfied with a similar proof.
We prove now that definition 10.1 (c) is satisfied. Definition 10.2(c)

ensures that the interval [bm; dm] is not empty and definition 10.2(a) implies
that [bm; dm] ⊆ [b; d] ∪ [b′; d′]. As a consequence, for any index j ∈ [bm; dm],
u(j) and v(j) are not both equal to 0 and, by virtue of definition 10.2(b),
u(j) + v(j) 6= 0. Finally, we verify that for all j ∈ [bm; dm], fj(u(j) + v(j)) =
u(j+1) + v(j+1) or gj(u(j+1) + v(j+1)) = u(j) + v(j). For every j ∈ [bm; dm] \
{b − 1, b′ − 1, d, d′}, definition 10.1 (c) is satisfied by linearity of fj and
gj . Suppose, w.l.o.g., that the index b is contained within (bm; dm]. Hence,
b′ < b and b ≤b b

′, which implies that •b−1 ← •b is backward. Consequently,
gb−1(u

(b)) = 0 and gb−1(u
(b)+v(b)) = u(b−1)+v(b−1). The case of d contained

within [bm; dm) is similar.

The following lemma gives some properties of ” · ” and ” ∗ ”:

Lemma 10.2. Let u,v and w be three representative sequences pairwise
satisfying conditions (a), (b) and (c) of definition 10.2. We have:

1. u ∗ v = v ∗ u (commutativity),

2. (u ∗ v) ∗w = u ∗ (v ∗w) (associativity),

3. γ · (δ · u) = (γδ) · u,

4. 1 · u = u.

Proof. The commutativity (1.) is direct. Properties (3.) and (4.) follow
directly from the definition of the multiplication ” · ”. We prove the as-
sociativity (2.). First, we prove that the sequences (u ∗ v) and w satisfy
conditions (a), (b) and (c) of definition 10.2. Denote by bu, bv and bw the
births of u, v and w respectively, and du, dv and dw their deaths. The fact
that the pairwise intersections of the intervals [bu; du], [bv; dv] and [bw; dw]
is non-empty implies that their common intersection is non-empty1. Hence
definition 10.2 (a) is satisfied. Definition 10.2 (b) and (c) are directly inher-
ited from the fact they are pairwise satisfied by bu, bv and bw. By symmetry,
the result applies to the sequences u and v ∗w.

1This is a particular case of Helly’s theorem.
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Finally, associativity follows from the associativity of + in each vector
space and the associativity of the functions max≤b

and max≤d
.

For example, consider the following representation V of the quiver of
A6-type presented above:

k
1 // k

1 // k oo π1
k2

ιz // k3 oo ιy
k2

x ✤ // x ✤ // x oo ✤ (x, y) ✤ // (x, y, z) oo ✤ (x, z)

Naturally, V ∼= I[1; 6]⊕I[4; 5]⊕I[5; 6]. Let x(1) oo // · · · oo // x(6) and y(4) oo // · · · oo // y(5)

be representative sequences for submodules respectively isomorphic to I[1; 6]
and I[4; 5]. We have:

( x(1) oo // · · · oo // x(6) ) ∗ ( y(4) oo // · · · oo // y(5) ) =

(x+ y)(1) oo // · · · oo // (x+ y)(5)

In the following, the operators ” ∗ ” and ” · ” offer tools to manipulate
interval submodules of an k-representation.

Validity of the Persistence Algorithm. Our approach to computing
the zigzag persistence of V in the next chapter is to maintain representative
sequences for the interval summands of a direct sum decomposition of V.
Note that this is what the standard persistence algorithm does. Indeed, let
H(K) = 0 // H∗(K1) // · · · // H∗(Kn) be a standard persistence
module, and let {τ̂i}, i ∈ F ⊔ G ⊔ H, be an encoding. The representative
sequences induced by the cycles τ̂f for f ∈ F and τ̂g for g ∈ G paired with
h ∈ H are:

(0, · · · , 0, [τ̂f ]f , · · · , [τ̂f ]n) and (0, · · · , 0, [τ̂g]g, · · · , [τ̂g]h−1, 0, · · · , 0)

where the notation [τ̂i]j for i ≤ j means that the cycle class is considered as
an element of H∗(Kj). This does not change the formal sum of the chain τ̂i
because, by definition of an encoding, its leading term is τi. These represen-
tative sequences represent the interval summands isomorphic to I[f ;n] and
I[g;h− 1] in a direct-sum decomposition of V.
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tailed study of quiver theory and their use in persistent homology. This
introduction to quiver theory is mostly inspired from the last reference.

The theory of zigzag persistence has been introduced in [24] together
with an algorithm based on the concept of right-filtration. The definition
of birth and death index comes from this source. A cubic algorithm for
zigzag persistence has been then introduced in [25]. Without considering
the algorithm presented in next chapter, this is the only existing practical
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Chapter 11

Zigzag Persistence Algorithm

We introduce a new algorithm for computing zigzag persistence, designed in
the same spirit as the standard persistence algorithm. Our algorithm reduces
a single matrix, maintains an explicit set of chains encoding the persistent
homology of the current zigzag, and updates it under simplex insertions and
removals. The total worst-case running time matches the usual cubic bound.

A noticeable difference with the standard persistence algorithm is that we
do not insert or remove new simplices "at the end" of the zigzag, but rather
"in the middle". To do so, we use arrow reflections and transpositions, in
the same spirit as reflection functors in quiver theory. Our analysis intro-
duces new kinds of reflections in quiver representation theory: the "injective
and surjective diamonds". It also introduces the "transposition diamond"
which models arrow transpositions. For each type of diamond we are able to
predict the changes in the interval decomposition and associated compatible
bases. Arrow transpositions have been studied previously in the context of
standard persistent homology, and we extend the study to the context of
zigzag persistence. For both types of transformations, we provide simple
procedures to update the interval decomposition and associated compatible
homology basis.

For simplicity of exposition, we present the algorithm for homology with
coefficients in the field Z2. The presentation generalizes naturally to arbi-
trary field coefficients k. In particular, we prove the diamond principles in
full generality in Chapter 12.

Overview of the Approach We introduce a new method for computing
zigzag persistence in the same context as [25]. Our approach is inspired from
another (and more ancient) proof of Gabriel’s theorem [13], which performs
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arrow reflections in sequence in a zigzag module and tracks the corresponding
changes in its interval decomposition. Our algorithm scans the input zigzag
filtration K from left to right as before, however it appends to the current
prefix K[1; i] := K1

oo // · · · oo // Ki a descending chain of subcomplexes in
which every arrow is backward and corresponds to a single simplex deletion:

K1 · · · Ki

Ki \ {τm} Ki \ {τm, τm−1} · · · ∅

τm

τm−1 τm−2 τ1

Adding such a descending chain is a way for us to anticipate the simplex
deletions that will occur in the rest of the input zigzag, even though the
actual order in which they will occur may not be the same as ours. Every
new simplex insertion or deletion happens at the junction between the zigzag
prefix and the descending chain. The corresponding changes in the zigzag
filtration can be described as a combination of arrow reflections and arrow
transpositions taking place in the descending chain. An arrow reflection is
described by the diagram:

K ∪ {σ}

· · · oo // K jj

1

σ 44
K44

1

σjj
oo // · · ·

K

and an arrow transposition is described by the diagram:

K ∪ {τ}

· · · oo // K ∪ {σ, τ}
ss
σ

kk
τ

K

τii

σuu
oo // · · ·

K ∪ {σ}

The changes in the zigzag filtration consist in passing from the bottom rep-
resentation to the top representation of either one of these diagrams.

These transformations of the zigzag filtration induce diamonds at the
homology level. Specifically, an arrow reflection induces an injective or sur-
jective diamond :

W

· · · oo // V ii

1

f 55

V55

1

fii

oo // · · ·

V
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depending whether f is injective or surjective. An arrow transposition in-
duces a transposition diamond :

Wi

· · · oo // Vi+1
uu

d

jj
c

Vi−1

bjj

auu

oo // · · ·

Vi

where a, b, c, d satisfy an exactness hypothesis [24]. We introduce and prove
the Injective Diamond Principle, the Surjective Diamond Principle and the
Transposition Diamond Principle in order to express the evolution in the in-
terval decomposition of a zigzag module when passing one of the diamonds
presented above. These diamond principles add up to the Exact Diamond
Principle originally introduced by Carlsson and de Silva [24]. The dia-
monds corresponding to arrow transpositions were studied by Cohen-Steiner
et al. [31] in the context of standard persistence. The transposition diamond
principle generalizes the study to zigzag persistence.

Our algorithm to compute zigzag persistence is just one big sequence of
diamond traversals. We handle each arrow reflection in time O(m2) and each
arrow transposition in time O(m), where m is the size of the largest sim-
plicial complex in the zigzag filtration. Hence our algorithm can decompose
zigzag modules into intervals in time O(nm2) as in [25]. Our preliminary
experiments show a good behavior of our algorithm compared to the one
in [25] in practice. Moreover, the similarity of our method to the standard
persistence algorithm opens the door to all kinds of optimizations. These
questions, and others, are discussed in the concluding remarks.

11.1 Diamond Principles.

In this section we relate the interval decompositions of two representations
V and W related by a local change, called a diamond. We recall the Exact
Diamond Principle of [24] and introduce the main theoretical results of the
chapter, specifically the Injective and Surjective Diamond Principles and the
Transposition Diamond Principle.

Exact Diamonds. Consider the diagram:

W := Wi

V1 · · ·//oo oo // Vi−1

b 44

jj
a

Vi+1

djj

44
c

· · ·//oo oo // Vn

V := Vi

(11.1)
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We say that the following diagram:

Vi+1
d //Wi

Vi

c

OO

a // Vi−1

b

OO (11.2)

is exact [24] if imD1 = kerD2 in the sequence Vi D1
// Vi−1 ⊕ Vi+1 D2

//Wi ,
where D1(v) = (a(v), c(v)) and D2(x, y) = b(x) − d(y). Note in particular
that an exact diamond commutes, i.e. b ◦ a = d ◦ c.

If diagram 11.2 is exact we say that the representations V and W are
related by an exact diamond at index i. We recall the Exact Diamond Prin-
ciple:

Theorem 11.1 (Exact Diamond Principle [24]). Given V and W related by
an exact diamond at index i, there is a partial bijection between the intervals
of the decompositions of V and W:

- intervals I[i; i] are unmatched,

- for b < i, intervals I[b; i] are matched with intervals I[b; i− 1] and vice
versa,

- for d > i, intervals I[i; d] are matched with intervals I[i+1; d] and vice
versa,

- intervals I[b; d] are matched with intervals I[b; d] in all other cases.

Injective and Surjective Diamonds. For simplicity of exposition, we
assume in the following that every representation U has an interval decom-
position that satisfies the following:

- for every index i > 1, there is at most one interval with birth i,

- for every index j < n, there is at most one interval with death j.

These conditions are in particular satisfied in zigzag persistent homology
(section 11.2).

We relate the interval decompositions of the bottom representation V
and top representation W of the following diagram:

W := W

V1 · · ·//oo oo // V

f 55

ii
1

V

fii

55
1

· · ·//oo oo // Vn
V := V

(11.3)
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where the diamond is located at index i in the module. We distinguish the
case where f is injective of corank 1 and the case where f is surjective of
nullity 1.

Theorem 11.2 (Injective Diamond Principle). Suppose f is injective of
corank 1. Then,

W ∼= V⊕ I[i; i]

Proof. V and W are related by an exact diamond. Indeed, by injectivity
of f , im D1 = kerD2 in the sequence V D1

// V ⊕ V D2
//W with D1 :

v 7→ (v, v) and D2 : (x, y) 7→ f(x) − f(y). The nature of the maps and the
partial bijection of the exact diamond principle 11.1 imply that there is only
an extra summand I[i; i] in the decomposition of W.

When f is surjective, the diamond is not exact as ker f 6= {0}. For
example, in the sequence V D1

// V ⊕ V D2
//W , the couple (u, 0) belongs

to kerD2 \ im D1 for any u ∈ ker f , u 6= 0. Formulating the Surjective
Diamond Principle requires an explicit expression of the interval submodules
of the decomposition, using representative sequences. Recall that ≤b and
≤d are some prescribed orders on the indices {1, . . . , n} that depend only on
the sequence of arrow orientations in the zigzags. In the following, ≤b and
≤d are defined on the quiver of the bottom diagram.

Theorem 11.3 (Surjective Diamond Principle). Suppose f is surjective of

nullity 1, and ξ is a vector generating its kernel. Let { u(bj)j
oo // · · · oo // u

(dj)
j }j∈J

be a family of representative sequences representing an interval decomposition
of V. Up to a reordering of the indices in J , write ξ as:

ξ = α1u
(i)
1 + . . .+ αpu

(i)
p ,

with αj 6= 0 for every 1 ≤ j ≤ p and d1 ≤d . . . ≤d dp. Letting bℓp =
max≤b

{bj}j=1,...,p, the modules V and W admit the following interval de-
compositions:

V ∼= U ⊕
⊕

1≤j≤p I[bj ; dj ] and

W ∼= U ⊕ I[bℓp ; i− 1] ⊕ I[i+ 1; dp] ⊕⊕p−1
j=1 I[bℓj ; dj ]

where the pairing (bℓj , dj)1≤j≤p−1 is computed as follows (assuming bℓp and
dp are considered as already "paired"):
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Algorithm 11.1: Pairing for Surjective Diamond

for j from 1 to p− 1 do
if bj not yet paired then

bℓj ← bj ; pair bℓj with dj ;
end
else

bℓj ← max≤b

k=1,...,p

{bk : bk not yet paired};

pair bℓj with dj ;
end

end

Sketch of Proof. The proof of the surjective diamond principle consists in
working at the level of representative sequences in order to explicitly con-
struct an internal direct sum decomposition of W, from the one of V. In-
tuitively, the underlying idea of the proof is to split the modules V and W
at the index i of the surjective diamond, in order to consider their prefix
V[1; i − 1] = W[1; i − 1] and suffix V[i + 1;n] = W[i + 1;n] separately. We
manipulate the restricted representative sequences using ∗ and the scalar
multiplication ” ·” in order to "align" them with the kernel of f , and we join
them back to represent submodules of W. We prove the surjective diamond
principle in section 12.2.

Consider the example, in computational topology, depicted in figure 11.1.
The bottom and top zigzags of the diagram are related by a surjective di-
amond reflection and their interval decompositions at the homology level
(dimension 1) are presented. Following the intuition, the decomposition for
the bottom diagram corresponds to the addition and removal of each circu-
lar arc: for example, the birth of the closed interval I[2; 6] agrees with the
insertion of the bottom arc (creating a "hole"), and its death agrees with the
removal of the bottom arc when following the backward arrow •6 ← •7. By
contrast, inserting the cap on top of the outer circle in the top zigzag links
the three holes together and leads to a new pairing of the births and deaths
of the corresponding intervals, according to theorem 11.3. In this example,
the order relation ≤b satisfies 7 ≤b 6 ≤b 4 ≤b 1 ≤b 2 ≤b 3 ≤b 5 and ≤d

satisfies 1 ≤d 2 ≤d 4 ≤d 7 ≤d 6 ≤d 5 ≤d 3. The arrow reflection first re-
sults in the apparition of intervals I[3; 3] and I[5; 5] (intervals I[bℓp ; i−1] and
I[i+ 1; dp] of the theorem). This induces a redistribution of birth and death
indices. The interval dying at index 7 was born initially at index 3, which is
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Top module

Bottom module

1 2 3 4 5 6 7

Figure 11.1: Two zigzags in computational topology, related by a surjective
diamond at index 4 in 1-homology, and their interval decompositions. The decom-
positions are pictured as barcodes, where a bar from index i to index j represents
an interval summand I[i; j].

already used in I[3; 3]. It therefore gets assigned the largest available birth
index w.r.t. ≤b, which is 2. Similarly, the interval dying at index 6 gets
assigned 1 as new birth index.

Transposition Diamonds. Consider the diagram:

W := Wi

V1 · · ·//oo oo // Vi−1

b 44

a **
Vi+1
**

d

44
c

· · ·//oo oo // Vn

V := Vi

(11.4)

We say that the representations V and W are related by a transposition
diamond if the following diagram is exact :

Wi
d // Vi+1

Vi−1

b

OO

a // Vi

c

OO Vi−1 D1
// Vi ⊕Wi D2

// Vi+1 with D1(v) =

(a(v), b(v)) and D2(x, y) = c(x) − d(y) such
that im D1 = kerD2

Note that the transposition diamond diagram (11.4) is similar to the
exact diamond diagram (11.1) except that the diamond is "rotated by 90o".
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Theorem 11.4 (Transposition Diamond Principle). Given V and W related
by a transposition diamond as above, we assume that the maps a, b, c, d are
of two different types: injective of corank 1 and surjective of nullity 1. We
have:
1. if a and c surjective of nullity 1 then V ∼= U⊕ I[b; i− 1]⊕ I[b′; i] for some
indices b, b′ ≤ i − 1. Let (. . . , u, 0, 0 . . .) and (. . . v, a(v), 0 . . .), u, v ∈ Vi−1,
be representative sequences for the interval summands I[b; i − 1] and I[b′; i]
respectively. There exists α ∈ k such that v + αu ∈ ker b and:

(i) if α = 0 then W ∼= U⊕ I[b; i]⊕ I[b′; i− 1],

(ii) if α 6= 0 then W ∼= U⊕ I[max≤b
{b, b′}; i− 1]⊕ I[min≤b

{b, b′}; i].

2. if a and c injective of corank 1 then V ∼= U⊕ I[i; d]⊕ I[i+ 1; d′] for some
indices d, d′ ≥ i+1. Let (0 . . . 0, v, c(v), . . .) and (0 . . . 0, 0, u, . . .), v ∈ Vi and
u ∈ Vi+1, be representative sequences for the interval summands I[i; d] and
I[i+ 1; d′] respectively. There exists α ∈ k such that u+ αc(v) ∈ im d and:

(i) if α = 0 then W ∼= U⊕ I[i+ 1; d]⊕ I[i; d′],

(ii) if α 6= 0 then W ∼= U⊕ I[i; max≤d
{d, d′}]⊕ I[i+ 1;min≤d

{d, d′}].

3. if a injective of corank 1 and c surjective of nullity 1 then:
V ∼= U⊕ I[i; d]⊕ I[b; i] and W ∼= U⊕ I[i+ 1; d]⊕ I[b; i− 1].

4. if a surjective of nullity 1 and c injective of corank 1 then:
V ∼= U⊕ I[i+ 1; d]⊕ I[b; i− 1] and W ∼= U⊕ I[i; d]⊕ I[b; i].

Sketch of Proof. The proof of the transposition diamond principle consists
in turning a family of representative sequences that represents an interval
decomposition of V into a family of representative sequences that represents
an interval decomposition of W. Specifically, every representative sequence
for an interval summand of V, with birth b and death d such that b /∈ {i; i+1}
and d /∈ {i − 1, i}, is matched via a natural map with a representative
sequence for an interval summand of W with same birth and death. Cases
1.(i), 2.(i), 3. and 4. consider the cases where two intervals with birth in
{i; i+1} and death in {i− 1; i} exchange their endpoints. Finally, the cases
1.(ii) and 2.(ii) are more intricate: given two representative sequences u and
v with births in {i; i+ 1} or deaths in {i− 1; i}, we form the representative
sequence u ∗ (α · v). This explains the use of max≤b

and max≤d
to describe

the birth and death of the new interval. We prove the transposition diamond
principle in section 12.1.
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11.2 Zigzag Persistent Homology Algorithm.

We assume familiarity with homology theory, referring the reader to [59] for
an introduction. In the following we use simplicial homology with coefficients
in a field k.

A simplicial complex K on a finite set of vertices V is a collection of
simplices {σ}, σ ⊆ V , such that τ ⊆ σ ∈ K ⇒ τ ∈ K. The dimension d =
|σ|−1 of σ is its number of elements minus 1. The group of d-chains, denoted
Cd(K), of K is the group of formal sums of d-simplices with k coefficients.
The boundary operator is a linear operator ∂d : Cd(K) → Cd−1(K) such
that ∂dσ = ∂d[v0, · · · , vd] =

∑d
i=0(−1)

i[v0, · · · , v̂i, · · · , vd], where v̂i means
vi is deleted from the list. The kernel of ∂d, denoted by Zd(K), is the
group of d-cycles and the image of ∂d, denoted by Bd−1(K), is the group
of (d − 1)-boundaries. Observing ∂d ◦ ∂d+1 = 0, the dth homology group
Hd(K) of K is defined to be the quotient Hd(K) = Zd(K)/Bd(K). We drop
the dimension d by considering the external direct sum C(K) =

⊕
dCd(K)

and the boundary operator ∂ : C(K) → C(K) extended by linearity. We
define Z(K), B(K) and H(K) similarly. Because the coefficients belongs to
a field k, these are vector spaces, and since K is a finite simplicial complex,
they have finite dimensions. In this context, the insertion of a simplex σ of
dimension d in a simplicial complex K, K (σ) // K ∪ {σ} may either create
a homology class in dimension d, or destroy a homology class in dimension
d − 1. In the first case, the map induced at homology level is injective of
corank 1. In the second case, it is surjective of nullity 1, and its kernel is
spanned by [∂σ].

For ease of exposition, throughout the main body of the paper we assume
the field of coefficients to be Z2. Nevertheless, our approach is not tied to
Z2, and the proofs of the diamonds principles are written for an arbitrary
field of coefficients k.

Zigzag Filtrations. A zigzag filtration on an An-type quiver Q is an as-
signment of a simplicial complex Ki for each vertex •i, and of an elementary
inclusion corresponding either to a simplex insertion Ki (σ) // Ki+1 (i.e.

Ki+1 = Ki ∪ {σ}) or to a simplex deletion Ki Ki+1(σ)oo (i.e. Ki+1 =

Ki \ {σ}) for each arrow •i oo // •i+1 . A zigzag filtration K induces a Z2-
representation H(K) of Q at the homology level, whose homology groups
and linear maps are induced by the simplicial complexes and elementary in-
clusions. Computing zigzag persistence consists in computing the interval
decomposition of this zigzag module H(K), given the sequence of simplex
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insertions and deletions. Note that for an index i ∈ {2, · · · , n} there is at
most one interval with birth i in the interval decomposition of H(K), and
for an index i ∈ {1, · · · , n − 1} there is at most one interval with death i.
There may be as many births equal to 1 and deaths equal to n. This is
true generally when the maps between the simplicial complexes are elemen-
tary inclusions. We call standard persistence the case where all arrows are
oriented in the same direction. In this case, K is called a standard filtration.

Standard Persistence and Matrix Reduction. We review the presen-
tation of standard persistence as in [34], where explicit chains representing
a compatible homology basis are maintained. For a standard filtration K =

Km
oo τm

· · · oo
τ2

K1
oo τ1

∅ , there exist chains τ̂m, · · · , τ̂1 ∈ C(Km), a
partition of the indices {1, · · · ,m} = F ⊔ G ⊔ H, and a bijective pairing
G↔ H, denoted by P ⊆ G×H, satisfying the following conditions:

1. for all i, C(Ki) = 〈τ̂i, · · · , τ̂1〉,
2. for all f ∈ F , ∂τ̂f = 0, and
3. for all pairs (g, h) ∈ P, ∂τ̂h = τ̂g and hence ∂τ̂g = 0.

We call such a partitioned set of chains an encoding of the persistence module.
Condition 1. is equivalent to the fact that every τ̂i admits τi as leading term
(i.e. τ̂i = ε1τ1+ · · ·+εiτi, with εi 6= 0). According to Theorem 2.6 of [34], an
encoding of a standard persistence module encodes completely its interval
decomposition. Indeed, for f ∈ F , τ̂f is a cycle created at index f and whose
homology class is non-zero in Km. For g ∈ G, paired with h ∈ H, τ̂g is a
cycle created at index g and whose homology class is non-zero from index
g up to index h − 1, after which it becomes the boundary of the chain τ̂h.
One can read directly the persistent interval from this encoding. Indeed,
let H(K) = H(Km) oo · · · oo H(K1) oo 0 be the corresponding
persistence module. The representative sequences induced by the cycles τ̂f
for f ∈ F and τ̂g for g ∈ G are respectively:

[τ̂f ]
(m) oo // · · · oo // [τ̂f ]

(f) and [τ̂g]
(h−1) oo // · · · oo // [τ̂g]

(g)

where [τ̂i]
(j) refers to the homology class of τ̂i in the simplicial complex Kj .

This is well-defined because τ̂i has τi as leading term and j ≥ i in the previ-
ous sequences. Moreover, these homology classes are pointwise independent.
By virtue of proposition 10.2, these sequences represent the interval decom-
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position1 of the zigzag module:

H(K) ∼=
⊕

f∈F

I[m; f ]
⊕

(g,h)∈P

I[h− 1; g]

In the following, we represent an encoding by an (m×m)-matrix2 M with
Z2 coefficients, where each column j, denoted by colj , represents the chain
τ̂j in the basis {τ1, · · · , τm} of C(Km). Due to Condition 1., M is upper-
triangular, with non-zero elements on the diagonal. For a non-zero column
col, we denote by low(col) the row index of its lowest non-zero element. If
the column is null, low is undefined.

For any chain c ∈ C(Km), represented as a column col in M, and for
any set of indices I ⊆ {1, · · · ,m}, we can express c as a linear combination
of the chains {τ̂i}i∈I (whenever possible) using the following reduction:

Algorithm 11.2: Reduction(col,I)

while ∃i0 ∈ I with low(coli0) = low(col) do
col← col+ coli0 ;

end

If the output value of col is 0, then we have computed an expression c +∑
i∈I′ τ̂i = 0, where I ′ ⊆ I is the set of indices i0 picked in the while loop.

Otherwise, if col 6= 0, then c /∈ 〈τ̂i〉i∈I . The algorithm is valid because
low : {1, · · · ,m} → {1, · · · ,m} is injective in M (actually, the identity) and
every column addition strictly reduces low(col). This reduction is at the
heart of the standard persistence algorithm.

For any index i ∈ {1, · · ·m}, the boundary group B(Ki) is generated by
the cycles τ̂g, for g ∈ G paired with an index h ∈ H such that g < h ≤ i.
The cycle group Z(Ki) is generated by all the cycles τ̂j for j ∈ F ⊔ G and
j ≤ i. In particular, for any chain c ∈ C(Km), we can express c in the
basis {τ̂g}g∈G of B(Km) (or prove that it does not belong to B(Km)) by
representing c as a column col and running Reduction(col,G). Similarly for
expressing c in Z(Km) by running Reduction(col,F ⊔G).

1Since the persistence module is represented backwards, birth and death times are
reversed compared to the standard persistence setting. For instance, in this example, m
is the birth time and f is the death time.

2This matrix can be viewed as a compact encoding of the matrices R and V in the
R = DV decomposition of the boundary matrix D (see [34]).
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Algorithm 11.3: Zigzag Persistence Algorithm

M← ∅;

foreach arrow •i •i+1
//σoo do

if the arrow is forward ( //σ
) then

compute ∂σ =
∑

g∈G′ τ̂g +
∑

f∈F ′ τ̂f via
Reduction(col∂σ,F ⊔G);

if F ′ = ∅ then injective_diamond(M, G′);
else surjective_diamond(M, F ′, G′);

end

if the arrow is backward (
σoo ) then

let (τi0 )
oo be the backward arrow of Ki[m; 0] s.t. τi0 = σ;

for j = i0 + 1 · · ·m do transposition_diamond(M, j − 1, j);
restrict the encoding to Ki+1[m− 1; 0];

end
end

Overview of the Algorithm. Given an input zigzag filtration K, we
want to compute the intervals in a direct sum decomposition of the induced
zigzag module H(K) at the homology level. By convention, we denote the
complexes in K by K′

j for 1 ≤ j ≤ n, so as K is written:

K′
1
oo // · · · K′

i
//oo K′

i+1
//σoo · · ·//oo K′

n
//oo (11.5)

For two indices b and d, b ≤ d, we denote by K[b, d] the restriction of K to
the simplicial complexes contained between complexes K′

b and K′
d (included).

For a fixed index i ∈ {1, . . . , n}, denote by m the number of simplices of K′
i

and define Ki to be the following zigzag filtration:
(11.6)

K′
1 · · · K′

i = Km

Km−1 Km−2 · · · ∅

τm
τm−1 τm−2 τ1

where the prefix made of the restriction of Ki to its i leftmost vector spaces
is equal to K[1; i], and the suffix of Ki, denoted by Ki[m; 0], made of the
m+1 rightmost vector spaces contains only backward arrows. The simplices
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τ1, · · · , τm of K′
i are removed in an arbitrary order3 in the suffix Ki[m; 0].

Note that we refer to the set of i leftmost indices of the zigzag filtration Ki

using the interval notation [1; i], and we refer to the set of its m+1 rightmost
indices using the interval notation [m; 0]. The algorithm is iterative and
maintains, at the end of iteration i, a set of chains of K′

i that encodes an
interval decomposition of the standard persistence module Ki[m; 0] and is
compatible with the whole zigzag module Ki. We call this set a compatible
basis of Ki and detail its definition later. During iteration i + 1, there are
two cases:
1. K′

i
σ // K′

i+1 is forward: in this case, we turn the set of chains of Ki

forming a compatible basis of Ki, in the following bottom module, into a set
of chains of K′

i+1 forming a compatible basis of Ki+1, in the following top
module:

K′
i+1

K′
1 · · ·

oo // K′
i ii

1

σ 55

K′
i55

1

oo τm
σii

Km−1
oo τm−1

· · · ∅

K′
i

(11.7)

Note that the bottom module is simply the module Ki with two extra identity
arrows added for convenience. In particular, it does not change the interval
decomposition, up to a shift in the indices. The top module is a valid form for
Ki+1. The transformation between the two modules is an arrow reflection.
At the homology level, the zigzag modules corresponding to the bottom
and top zigzag filtration are related by an injective diamond if the map
H(K′

i) → H(K′
i ∪ {σ}) induced by the insertion of σ is injective, and are

related by a surjective diamond if the map is surjective.
2. K′

i
oo σ

K′
i+1 is backward: in this case, there exists an index i0 ∈ [m; 1]

such that σ = τi0 . For every j from i0+1 to m, we transpose the consecutive
arrows (τj)oo and (τi0=σ)oo , so as to get in the end:

K′
1 · · ·K

′
i K′

i+1 K′
i+1 \ {τm}

· · · K′
i+1 \ {τm, . . . , τi0+1} · · · ∅

τi0=σ τm

τm−1

τi0+1 τi0−1

Under each arrow transposition, we update the compatible basis of Ki. We
finally restrict the basis to the simplices of K′

i+1, that is contained in K′
i.

3In the algorithm described below, the simplices are removed in the reverse order of
their insertion.
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Note that an arrow transposition consists in going from the bottom to the
top module in the following diagram:

K′
1 · · ·K

′
i · · ·

K ∪ {τj}

K ∪ {τj , σ} K · · · ∅

K ∪ {σ}

τm

σ
τj+1

σ

τj

τj−1

τj

At the homology level, the zigzag modules corresponding to the bottom and
top zigzag filtrations are related by a transposition diamond by virtue of the
Mayer-Vietoris theorem [59] (see also [24] for the case of the exact diamond).

Compatible Basis for a Zigzag Modules. Given Ki as in (11.6), we
suppose that we have τ̂m, . . . , τ̂1 ∈ C(Km), a partition {1, . . . ,m} = F ⊔G⊔
H, and a bijective pairing P ⊆ G×H that give an encoding of the module
Ki[m; 0], which is a standard persistence module. We say that this encoding
is compatible with the whole zigzag module Ki iff there exists a direct sum
decomposition Ki =

⊕
j Uj into interval summands Uj

∼= I[bj ; dj ], together
with bijective matching between:

- F and the interval summands Uj with bj ∈ [1; i] and dj ∈ [m; 0],

- G and the interval summands Uj
∼= I[bj ; dj ] with bj , dj ∈ [m− 1; 0],

such that the submodules Uj are represented by sequences

Uj = (#, . . . ,#, [τ̂f ]m, . . . , [τ̂f ]f , 0, . . .)

for f in F , and

Uj = (. . . , [0]m, . . . , [0]h, [τ̂g]h−1, . . . , [τ̂g]g, 0, . . .)

for g ∈ G. The symbol # indicates that the vector space element at this
position in the sequence can be arbitrary. Additionally, we maintain the
birth b[colj ] of each column colj which is equal to the birth of the interval
submodule associated to τ̂j in the bijection mentioned above.

Algorithm. The algorithm is purely online: we assume the input to be a
stream of couples (σi, ∂σi)i≥1 of a simplex σi and its boundary ∂σi, together
with a flag specifying the direction of the arrow. At the beginning of iteration
i + 1 of the algorithm, we suppose we have a compatible basis of Ki. The
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Algorithm 11.4: injective_diamond(M, G′)

let H ′ be the set of indices h ∈ H paired with some g ∈ G′ in P ;
τ̂m+1 ← σ +

∑
h∈H′ τ̂h and let colm+1 represent τ̂m+1; set

F ← F ∪ {m+ 1};
add column colm+1 to M and rowm+1 that is 0 everywhere except at
index m+ 1;

algorithm is iterative and maintains, at the beginning of step i, a matrix M

that represents an encoding of Ki[m; 0] that is compatible with Ki as defined
previously. The procedure is described in algorithm 11.3.

Note that the intervals are computed when restricting the set of chains
of the compatible basis at the end of the processing of a backward arrow.
Indeed, after the sequence of calls to transposition_diamond, the matrix
M maintains a compatible basis for Ki after transposing the arrows. The
chains of the compatible basis are defined on K′

i, and we restrict them to
K′

i+1 = K′
i \{σ}. If there exists a chain τ̂m with m ∈ F in the encoding, and

let bm be its birth, we record an interval I[bm; i] in the decomposition of the
zigzag persistence module H(K). Algorithmically, the restriction consists in
removing the rightmost column and the bottom row of matrix M.

Complexity. Denote by n the total number of arrows in the quiver and
by m the maximal number of simplices of a simplicial complex in the zigzag
filtration. The matrix M contains at most m columns and m rows. The
subroutine Reduction proceeds to at most O(m) column additions and
hence O(m2) operations. We prove in section 11.3 that the cost of the
procedure surjective_diamond is O(m2) operations and the cost of the
procedure injective_diamond is O(1). We also prove that the cost of
transposition_diamond is O(m), and this subroutine is called O(m) times
during an iteration of the algorithm. Finally, the time complexity of the al-
gorithm to compute zigzag persistent homology is O(nm2), and its memory
complexity is O(m2).

11.3 Arrow Reflections and Transpositions.

Recall that, for ease of exposition, we assume the field of coefficients to be
Z2. Our proofs are however written for an arbitrary field k.
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Algorithm 11.5: surjective_diamond(M, F ′, G′)

set colfp ← colf1 + · · ·+ colfp ; set bℓp ← max≤b
{b1, · · · , bp};

for j from 1 to p− 1 do
set b← bfj ;
while there exists j0 < j or j0 = p such that bℓj0 = b do

colfj ← colfj + colfj0
; b← predb(b);

end
set bℓj ← b;

end
F ← F \ {fp}; G← G ∪ {fp};
let H ′ be the set of indices h ∈ H paired with some g ∈ G′ in P ;
τ̂m+1 ← σ +

∑
h∈H′ τ̂h and let colm+1 represent τ̂m+1;

add column colm+1 to M and rowm+1 that is 0 everywhere except at
index m+ 1;
H ← H ∪ {m+ 1}; and pair fp and m+ 1 in P

Arrow Reflection. As said before, computing an arrow reflection consists
in traversing a diamond from bottom to top. We distinguish between the case
where the linear map, induced at homology level by the simplex insertion

σ // , is injective (of corank 1), and the case where the map is surjective
(of nullity 1).

Injective Diamond. If ∂σ =
∑

g∈G′ τ̂g is a sum of boundaries, its insertion
creates a new cycle class at the homology level, represented by τ̂m+1 and
constructed in algorithm 11.4. The induced map at the homology level is
injective.

It is easy to verify that, after the update, M represents an encoding of
Ki+1[m + 1; 0]. The sequence with one non zero element equal to [τ̂m+1] at
index i+1 is a representative sequence for an interval submodule of H(Ki+1)
isomorphic to I[i+1; i+1]. It is a summand because the element [τ̂m+1] is lin-
early independent of the elements {[τ̂f ]}f∈F in H(Ki+1). Finally, the classes
[τ̂f ]f∈F remain independent in H(Ki+1) because the map induced at the
homology level by the insertion of σ is injective. Consequently, we conclude,
using the injective diamond principle 11.2, that the encoding represented by
M is compatible with Ki+1.

Surjective Diamond. If ∂σ =
∑

f∈F ′ τ̂f +
∑

g∈G′ τ̂g, with F ′ ⊆ F and
G′ ⊆ G, the kernel of the morphism induced at the homology level by
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Algorithm 11.6: transposition_diamond(M, i, i+ 1)

z←M[i+ 1][i]; transpose rowi and rowi+1;
if z = 0 then transpose coli and coli+1;

exchange i and i+ 1 in F,G,H and P;
else

M[i]← coli + coli+1;
switch τ̂i, τ̂i+1 do

case (both cycles) i0 ← argmin≤d
{bi, bi+1};

M[i+ 1]← coli0 ;
case (exactly one cycle) let τ̂i0 , i0 ∈ {i, i+ 1}, be the cycle;

M[i+ 1]← coli0 ;
case (no cycle) i, i+ 1 ∈ H are paired with gi, gi+1 ∈ G;

let i0, i1 = i, i+ 1 such that gi0 < gi1 ;
M[gi1 ]← colgi + colgi+1 ; M[i+ 1]← coli0 ;
if i0 6= i+ 1 then exchange i and i+ 1 in

F,G,H and P;
endsw

end

the insertion of σ is spanned by [∂σ] =
∑

f∈F ′ [τ̂f ], and this morphism is
surjective. Write F ′ = {f1, . . . , fp}, where the fj are ordered such that
df1 ≤d . . . ≤d dfp . We define, for the set of births {bf1 , . . . , bfp}, the func-
tion predb(b) that returns the predecessor of the index b w.r.t the order
≤b among the set {bf1 , . . . , bfp}. The procedure described in algorithm 11.5
gives the change of compatible encoding underlying the new pairing pre-
sented in the surjective diamond principle 11.3. Note that the births bℓj are
the ones described in the surjective diamond principle 11.3. For details on
the correction of the algorithm, we refer to section 12.2. In particular, the
column operations done in algorithm 11.5 are exactly the column operations
done when reducing matrix X in algorithm 12.1 (when matching colfp with
x0 and, for j ≥ 0, colfj with xj).

In conclusion, we observe that algorithm 11.5 performs only left to right
column additions. Hence, M is upper-triangular and its is easy to verify that
the output matrix M stores an encoding of Ki+1[m+ 1; 0]. It is compatible
with the zigzag Ki+1 by virtue of the surjective diamond principle. We prove
in lemma 12.3 that this algorithm proceeds to a linear number of column
operations and hence has complexity O(m2).
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Arrow Transposition. Algorithmically, transposing the consecutive ar-
rows oo (τi+1) • oo (τi) consists in transposing rows i + 1 and i in the
matrix M, corresponding to simplices τi+1 and τi (see figure 11.2).

1

coli coli+1

1
10
∗

1
1
∗1
1

coli coli+1

∗
0

τi

τi+1

τi+1

τi

transpose rowi

and rowi+1

Figure 11.2: Row transposition

We must maintain the property that M represents an encoding of the
suffix Ki[m; 0] of the zigzag filtration after arrow transposition. Moreover,
the new encoding must agree with the interval decomposition described by
the transposition diamond principle 11.4. After transposition, M is not
upper triangular anymore. If z = 0, we fall into one of cases 1.(i), 2.(i), (3)
or (4) of the transposition diamond principle. Hence, for z = 0, we transpose
the columns coli and coli+1 and update the pairing P in consequence (the
chains represented by coli and coli+1 are paired with the same chains, but
are now represented by the (i+ 1)st and ith columns of M respectively). To
avoid confusion with the notation colj that may not correspond to the jth

column of M after transposition, we denote the jth column of M by M[j].
If z 6= 0, we fall into one of the cases 1.(ii), 2.(ii), (3) or (4) of the

transposition diamond principle 11.4. Hence, we set M[i] to be the sum
coli + coli+1, and M[i+1] to be either coli or coli+1 depending on birth and
death indices. We distinguish between the cases where both coli and coli+1

represent cycles (i.e. i, i + 1 ∈ F ⊔ G), where only one represents a cycle
(i.e. i ∈ F ⊔ G and i + 1 ∈ H or the other way around), and where none
represents a cycle (i, i+1 ∈ H). We present the procedure in algorithm 11.6.

It is easy to verify that these updates turn M into an encoding of Ki[m; 0]
after arrow transposition. Using the transposition diamond principle 11.4,
this encoding is compatible with the whole zigzag. In particular, the sum of
cycles corresponds to the "sum" of representative sequence computed in the
proof of the transposition diamond principle (section 12.1). The algorithm
transposition_diamond proceeds to a constant number of column additions
in M, and hence has complexity O(m).

138



Data |V | dη ρdimKmax |K|nb. arrows TRT TDio
Cli 2000 4 33.2 3 66172 7408112 99 sec. 272 sec.
Bro 59525 33.2 31219926 2776108622498 sec.65331 sec.

Figure 11.3: Timings for the zigzag persistence algorithms.

Experiments. As a proof of concept, we have implemented our zigzag
persistence algorithm in C++. The implementation relies on a sparse matrix
representation, as in the standard persistence algorithm [42]. In figure 11.3,
we compare the performance of our implementation with the one of the
Dionysus library [56]. The Cli data set is a set of points from the Clifford
dataset described in [61], which admits as underlying spaces a topological
circle at small scales, a torus at larger scales and a 3-sphere at even larger
scales. The Bro data set contains 5 × 5 high-contrast patches derived from
natural images, interpreted as vectors in R25, from the Brown database [26].

We construct oscillating Rips zigzags on these sets of points. Details on
the constructions are listed in figure 11.3, like the number of points |V |, the
ambient dimension d, the parameter η and ρ for the oscillating Rips, the
maximal dimension of the complex dimK, the maximal size of a complex in
the filtration max |K|, the total number of arrows of the zigzag filtration "nb.
arrows". The timings for the zigzag persistence algorithm with reflections
and transpositions is denoted by TRT and the timings for the algorithm,
based on the right-filtration [24, 25], implemented in Dionysus is denoted
by TDio.

The speed-up is encouraging. In particular, the performance of the two
algorithms is comparable on the Cli data set, but the algorithm introduced
in this chapter scales much better to the data set Bro compared to Dionysus.
Note that in Dionysus, the processing of backward arrows is much slower
than the processing of forward arrows in the case of Bro. This is partly
due to implementation issues. However, counting the timings of Dionysus
as twice the running time for forward arrows, our algorithm remains faster.
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Chapter 12

Proofs of the Diamond

Principles

12.1 Proof of the Transposition Diamond Principle.

Let I[b; d] be an interval summand of V. If b > i+1 or d < i−1, the restriction
principle 10.2 implies that the interval is matched with an interval summand
I[b; d] of W.

If b < i and d > i, we prove that the interval is matched with an in-
terval summand I[b; d] of W. Note that if (. . . u, a(u), c ◦ a(u) . . .) is a rep-
resentative sequence for the submodule of V isomorphic to the summand
I[b; d], we use (. . . u, b(u), d ◦ b(u) . . .) as representative sequence for the sub-
module of W, where the ” . . . ” are the same prefixes and suffixes in the
two sequences. The new sequence is a representative sequence because, by
commutativity, d ◦ b(u) = c ◦ a(u) and b(u) 6= 0. We prove that the val-
ues at index i of the representative sequences for W remain independent.

Let { u(bj)j
oo // · · · oo // u

(dj)
j }j∈J be representative sequences for the interval

summands of V satisfying i ∈ (bj ; dj). In particular, for every j ∈ J ,
u
(i)
j = a(u

(i−1)
j ) and u

(i+1)
j = c ◦ a(u

(i−1)
j ). Suppose there exists a family

of scalars {αj}j∈J , not all zero, such that
∑

j∈J αjb(u
(i−1)
j ) = 0. By com-

mutativity, this implies that
∑

j∈J αjd ◦ b(u
(i−1)
j ) =

∑
j∈J αjc ◦ a(u

(i−1)
j ) =

∑
j∈J αju

(i+1)
j = 0, which is in contradiction with the fact that the family

{u
(i+1)
j }j∈J is free.
We study now the evolution of interval summands I[b; d], with b ∈ {i, i+

1} and d ∈ {i − 1, i}, when passing a transposition diamond. For all cases
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of the theorem, we exhibit representative sequences that, together with the
ones defined above, represent an interval decomposition for W.
Case 1. Recall that, by commutativity of the diamond, b and d must be
both surjective of nullity 1. We first describe ker b. As c ◦ a(v) = 0, the
element (a(v), 0) belongs to kerD2 and hence belongs to im D1 by exactness.
The preimage a−1({a(v)}) is v + 〈u〉, thus there exists α ∈ k such that
ker b = 〈v + αu〉 (b has nullity 1). Note that this implies that b(u) 6= 0.

(i) If α = 0, we consider the representative sequences (. . . u, b(u), 0 . . .)
and (. . . v, 0, 0 . . .).

(ii) If α 6= 0, we consider the representative sequences (. . . v, 0, 0 . . .) ∗
α · (. . . u, b(u), 0 . . .) = (. . . v + αu, 0, 0 . . .) (with birth max≤b

{b, b′}) and
(. . . w, b(w), 0 . . .) (with birth min≤b

{b, b′}), where w ∈ Vi−1 is taken to be
u if b ≤b b

′ and v otherwise. Note that the ∗ is well-defined.
Let {b(u(i−1)

j )}j∈J be the family of ith elements of all representative se-

quences of W traversing index i (as defined above). In case (i), {b(u(i−1)
j )}j∈J∪

{b(u)} is a basis for Wi. Indeed, the family is free. Suppose otherwise:
there exist scalars α, αj such that αb(u) +

∑
j∈J αjb(u

(i−1)
j ) = 0, i.e. αu +

∑
j∈J αju

(i−1)
j = βv, as ker b = 〈v〉. This a contradiction with the fact that

{u, v} ∪ {u
(i−1)
j }j∈J is free. Additionally, dimWi = 1 + |J |.

In case (ii), we prove similarly that {b(w)}∪ {b(u(i−1)
j )}j∈J is a basis for

Wi. We conclude using proposition 10.2.
Case 2. Recall that, by commutativity of the diamond, b and d must be
both injective of nullity 1. Let (. . . 0, v, c(v), . . .) and (. . . 0, 0, u, . . .), v ∈ Vi
and u ∈ Vi+1, be representative sequences for the interval submodules of
V isomorphic to I[i; d] and I[i + 1; d′] respectively. First, we prove that
c(v) /∈ im d. Suppose otherwise: there exists w ∈Wi such that d(w) = c(v).
But then (v, w) belongs to kerD2 and hence to im D1 by exactness. This is
in contradiction with the fact v /∈ im a.

Because d has corank 1, there exists α ∈ k such that u + αc(v) ∈ im d.
Note that for any α, u + αc(v) /∈ im d ◦ b. Suppose otherwise: u + αc(v)
belongs to im c ◦ a which implies u + αc(v) ∈ im c and finally u ∈ im c, a
contradiction. We distinguish the two cases:

(i) If α = 0 then there exists w ∈ Wi \ im b such that d(w) = u. We
consider the representative sequences (. . . 0, w, u . . .) and (. . . 0, 0, c(v) . . .).

(ii) If α 6= 0 then u /∈ im d and there exists w ∈Wi\im b such that d(w) =
u+ αc(v). We consider the representative sequences (. . . 0, w, u+ αc(v) . . .)
(with death max≤d

{d, d′}) and (. . . 0, 0, x, . . .) (with death min≤d
{d, d′}),

where x ∈ Vi+1 is taken to be u if d′ ≤d d and c(v) otherwise.
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In both cases (i) and (ii) we can verify that the family containing w

and {b(u(i−1)
j )}j∈J is free for otherwise the family {u, v} ∪ {d ◦ b(u(i−1)

j ) =

u
(i+1)
j }j∈J would not be free in Vi+1. We conclude using proposition 10.2.

Case 3. We prove that d is injective (of corank 1). Suppose otherwise: there
exists w 6= 0 in Wi such that d(w) = 0. Hence, (0, w) belongs to kerD2 and
belongs to im D1 by exactness. This implies the existence of x 6= 0 in Vi−1

such that a(x) = 0, a contradiction with a injective. To preserve dimensions,
b is thus surjective of nullity 1.

We now prove that there is no summand I[i; i] in V. Suppose otherwise:
there exists x ∈ Vi \ im a and c(x). Hence, (x, 0) ∈ kerD2 = im D1 while x
does not belong to im a, a contradiction.

Consequently, let (0 . . . 0, v, c(v) . . .) and (. . . , u, a(u), 0 . . .), u ∈ Vi−1 and
v ∈ Vi, be representative sequences for the interval submodules of V isomor-
phic to I[i; d] and I[b; i] respectively. We prove that c(v) /∈ im d. Suppose
otherwise: there exists w ∈Wi such that d(w) = c(v). We use, as previously,
the exactness to show that this would imply that v has a preimage through
a.

Finally, we prove that b(u) = 0. Indeed, the element (0, b(u)) belongs
to kerD2 because c ◦ a(u) = d ◦ b(u) = 0 and hence belongs to im D1 by
exactness. Because a is injective, a−1(0) = 0, which implies that b(u) must
be 0.

In conclusion, we consider the representative sequences (. . . 0, 0, c(v) . . .)
and (. . . , u, 0, 0 . . .) for interval submodules of W that are isomorphic to
I[i+ 1; d] and I[b; i− 1] respectively. We conclude using proposition 10.2.
Case 4. Case 4. is deduced by symmetry from case 3.

12.2 Proof of the Surjective Diamond Principle.

Consider the diagram:

W := W

V1 · · ·//oo oo // V

f 55

1
))

V

fii

1
uu

· · ·//oo oo // Vn
V := V

(12.1)

where the diamond is located at index i in the module and where f is surjec-
tive of nullity 1. Note that the arrows at index i in V are reverted compared
to diagram 11.3. Because the morphisms on these arrows are the identity, it
does not change the decomposition of V. Suppose V is isomorphic to:

V ∼=
⊕

j∈J

I[bj ; dj ].
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All along the proof, we fix a family of representative sequences

{ u
(bj)
j

oo // · · · oo // u
(dj)
j }j∈J

that represents the interval decomposition of V. From these representative
sequences, we construct explicit representative sequences for the interval sub-
modules in the direct sum decomposition of W. The construction is ad hoc as
it depends on the chosen representative sequences of V. However, it provides
an interval decomposition of W that is canonical due to theorem 10.1.

Contributing Intervals. Let ξ 6= 0 be a vector in ker f . Up to a reorder-
ing of the indices in J , write ξ as:

ξ = α1u
(i)
1 + · · ·+ αpu

(i)
p ,

with αj 6= 0 for every 1 ≤ j ≤ p and d1 ≤d · · · ≤d dp. We say that such
interval I[bj ; dj ] of the decomposition, with 1 ≤ j ≤ p, contributes to the
kernel of f .

Lemma 12.1. Every interval I[b; d] of the decomposition of V that does not
contribute to ker f is matched with an interval I[b; d] in the decomposition of
W.

Proof. Let V ∼=
⊕p

j=1 I[bj ; dj ] ⊕ U, where U contains all intervals not con-
tributing to ker f . Consider the morphism φ : V→W defined as:

V :

φ

��

V1

1

��

· · ·//oo oo // V
1 //

1

��

V

f

��

V
1oo

1

��

· · ·//oo oo // Vn

1

��
W : V1 · · ·//oo oo // V

f //W V
foo · · ·//oo oo // Vn

The first isomorphism theorem implies that:

V/ kerφ ∼= im φ = W

by surjectivity of φ. We conclude that:

W ∼=




p⊕

j=1

I[bj ; dj ]


 / kerφ⊕ U.
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Consequently, we assume in the following that all the intervals in the
decomposition of V contain index i and contribute to ker f . Specifically, the
decomposition of V is V ∼=

⊕p
j=1 I[bj ; dj ] and it is represented by

{ u
(bj)
j

oo // · · · oo // u
(dj)
j }j=1,...,p, with bj < i < dj for all j and p = dimV .

Formal Sums of Sequences. We consider the restrictions V[1; i− 1] and
V[i+1;n] of the representation V. By mean of the restriction principle 10.2,
their interval decompositions are:

V[1; i− 1] ∼=

p⊕

j=1

I[bj ; i− 1] and V[i+ 1; dj ] ∼=

p⊕

j=1

I[i+ 1; dj ]

and are represented by

{ u
(bj)
j

oo // · · · oo // u
(i−1)
j }j=1,...,p and { u(i+1)

j
oo // · · · oo // u

(dj)
j }j=1,...,p

respectively. For short, we denote by xj the sequence u
(bj)
j

oo // · · · oo // u
(i−1)
j

and by yj the sequence u
(i+1)
j

oo // · · · oo // u
(dj)
j . These sequences also rep-

resent interval decompositions for W[1; i − 1] and W[i + 1;n] as V and W
differ only by a vector space at index i. We call a representative sequence in
V[1; i− 1] whose death is i− 1 a right sequence, and we call a representative
sequence in V[i+ 1;n] whose birth is i+ 1 a left sequence.

Let U be the set of all formal sums of {x1, . . . ,xp} with coefficients in k,
i.e.

U = { x : x = γ1x1 + . . .+ γpxp, γj ∈ k } ,

and let V be the set of all formal sums of {y1, . . . ,yp} with coefficients in k,
i.e.

V = { y : y = γ1y1 + . . .+ γpyp, γj ∈ k } .

Naturally, U and V are k-vector spaces. Recall that ≤b and ≤d are total
order relations defined on the indices {1, . . . , n} of the bottom quiver in
diagram 12.1. Recall also that ”·” is a scalar multiplication for representative
sequences and ∗ is a binary operator.

Proposition 12.1. Every formal sum γ1x1 + . . .+ γpxp 6= 0 of U defines a
right sequence:

γ1u
(b)
1 + . . .+ γpu

(b)
p

oo // · · · oo // γ1u
(i−1)
1 + . . .+ γpu

(i−1)
p
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where the birth b is equal to max≤b
{bj : γj 6= 0}j=1,...,p. Similarly, every

formal sum γ1y1 + . . .+ γpyp 6= 0 of V defines a left sequence:

γ1v
(i+1)
1 + . . .+ γpv

(i+1)
p

oo // · · · oo // γ1v
(d)
1 + . . .+ γpv

(d)
p

where the death d is equal to max≤d
{dj : γj 6= 0}j=1,...,p.

Proof. We prove the result for U only, the case of V being symmetric. Let
i1, . . . , ik be the indices such that γij 6= 0. We prove the proposition by
induction on j for the formal sum γi1xi1 + . . . + γijxij . For j = 1, γi1xi1

defines the right sequence γi1 · xi1 , where ” · ” is the scalar multiplication
of definition 10.2. Suppose the property true up to j: γi1xi1 + . . . + γijxij

defines a right sequence x =

γi1u
(b)
i1

+ . . .+ γiju
(b)
ij

oo // γi1u
(i−1)
i1

+ . . .+ γiju
(i−1)
ij

We prove that x and γij+1 · xij satisfy conditions (a), (b) and (c) of defini-
tion 10.2 and show that x ∗ (γij+1 · xij ) is the right sequence associated to
γi1xi1 + . . .+ γij+1xij+1 . Conditions (a) and (c) are directly satisfied consid-
ering the two sequences have same death i− 1, and i− 1 is the largest index
in the restricted module V[1; i−1]. We prove condition (b) by contradiction:
suppose there exists and index k ∈ [b; i−1]∩ [bij+1 ; i−1] such that, for some
α, β ∈ k, not both 0, we have:

α(γi1u
(k)
i1

+ . . .+ γiju
(k)
ij

) + βγij+1u
(k)
ij+1

= 0

By hypothesis on k, not all u(k)i in the sum are 0 and hence we have a
contradiction with the fact that the family {u(k)j : u

(k)
j 6= 0} is free in Vk.

Consequently, x ∗ (γij+1 · xij ) is a well-defined right sequence. Its birth
is max≤b

{biℓ}ℓ=1,...,j+1 and its death is i− 1.
Finally, using the commutativity and associativity of ∗ (lemma 10.2), we

conclude that the representative sequence constructed does not depend on
the order in which the sequences are added.

By a small abuse of notation, we use the same notation x for the formal
sum and for the representative sequence it defines.

Recall that ξ = α1u
(i)
1 + · · ·+αpu

(i)
p generates the kernel of f . We define

the right and left sequences ξU and ξV to be equal to α1x1 + · · ·+αpxp and
α1y1 + · · ·+ αpyp respectively.
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The Join Operator. Let u(b) oo // · · · oo // u(i−1) and v(i+1) oo // · · · oo // v(d)

be respectively a right sequence in V[1; i−1] and a left sequence in V[i+1;n].
Recall that f is the surjective map in the diamond. If the sequences satisfy
f(u(i−1)) = f(v(i+1)) (we denote this element by w), we define the join of
these right and left sequences by the representative sequence of W equal to:

( u(b) oo // · · · oo // u(i−1) ) ✶ ( v(i+1) oo // · · · oo // v(d) ) :=

u(b) oo // · · · oo // u(i−1) // w oo v(i+1) oo // · · · oo // v(d)

The following lemma is a direct consequence of the linearity of f :

Lemma 12.2. Let x,x′ ∈ U , y,y′ ∈ V such that x ✶ y and x′
✶ y′ are well-

defined. For any α, β ∈ k, the join (αx+ βx′) ✶ (αy + βy′) is well-defined.

Greedy Pairing of Births and Deaths. Up to a reordering of the indices
{1, . . . , p}, suppose that the deaths satisfy d1 ≤d . . . ≤d dp. Define π to be
the permutation of {1, · · · , p} satisfying bπ(1) ≤b . . . ≤b bπ(p), breaking ties
arbitrarily. In particular dp is the maximum w.r.t. ≤d among all the death
indices {d1, · · · , dp} and bπ(p) is the maximum w.r.t. ≤b among all the birth
indices {b1, · · · , bp}.

We construct new bases {x0, . . . ,xp−1} for U and {y0, · · · ,yp−1} for V
such that:

1. the p right sequences xj , 0 ≤ j ≤ p − 1, have births exactly the set
{b1, . . . , bp},

2. the p left sequences yj , 0 ≤ j ≤ p − 1, have deaths exactly the set
{d1, . . . , dp},

3. for every j such that 1 ≤ j ≤ p − 1, the join between xj and yj is
well-defined,

4. the joins x0 ✶ 0 and 0 ✶ y0 are well-defined, where 0 refers to the
sequence where all elements are 0. x0 ✶ 0 has death i− 1 and 0 ✶ y0

has birth i+ 1.

We pick x0 = ξU and y0 = ξV as first elements for the new bases. They
satisfy condition (4.) above. Note that {x0,x1, · · · ,xp−1} and {y0,y1, · · · ,
yp−1} are bases for U and V respectively. Note also that, by definition of the
xj and the yj , conditions (2.) and (3.) are satisfied, but not condition (1.)
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Algorithm 12.1: Reduction to column echelon form of X and Y.
Data: Matrices X and Y

for j = 1 to p− 1 do
while there exists j0 < j with lowX(j0) = lowX(j) do

xj ← xj +

(
−γlowX(j)

γlowX(j0)
xj0

)
;

if j0 6= 0 then yj ← yj +

(
−γlowX(j)

γlowX(j0)
yj0

)
;

end
end

as ξU does not have, in general, birth bp. The construction is algorithmic1

and consists of a simultaneous basis change in the vector spaces U and V .
Let X be the (p × p) matrix, with k coefficients, representing the basis
{ξU ,x1, · · · ,xp−1} of U into the basis {xπ(1), · · · ,xπ(p)}, and let Y be the
(p× p) matrix, with k coefficients, representing the basis {ξV ,y1, · · · ,yp−1}
of V into the basis {y1, · · · ,yp}, as depicted in figure 12.1. Note that columns
are labeled from 0 to p − 1 and rows are labeled from 1 to p, in order to
match with the indices of the bases elements.

For a matrix M, we define lowM(j) to be the row index of the lowest
non-zero coefficient of the jth column, for 0 ≤ j ≤ p − 1. Let γlow(j) ∈ k
be the value of this lowest coefficient in matrix X. We denote the reduced
columns of X and Y by xi and yi respectively. The algorithm is a reduction
to column echelon form of the matrix X, meaning that at the end of the
algorithm, any row index j admits a unique column k such that j = lowX(k).
The process is presented in algorithm 12.1. The reduction is done by mean
of elementary column operations, that are reproduced almost identically in
Y (if condition). In the algorithm, for any 0 ≤ j ≤ p − 1, we denote by
γlowX(j) the value of the lowest non-zero coefficient of column j in matrix X.

Because the algorithm consist in a change of basis in vector spaces U and
V , the algorithm is valid and, at the end of the reduction, X is in column
echelon form. The if condition of the reduction ensures that the function
lowY does not change and Y is in column echelon form as well. Because
the rows are sorted by increasing birth values w.r.t. ≤b in X, the birth of
xj is the birth bπ(k) such that k = lowX(j). Consequently, as the function

1Note that these algorithm are theoretical and are not used in the zigzag persistence
algorithm presented in section 11.2. They are meant to prove the surjective diamond prin-
ciple, which offers a simpler computational rule for updating the interval decomposition.
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x0 xi xp−1xi0

0

0

0

0

γlow(i0) γlow(i)

xπ(p)

xπ(1) 1

1

1

0

0

y1y0 yi yi+1

y1

yp

yp−1

1

απ(1)

απ(p)

α1

αp

Figure 12.1: Matrices X and Y during the jth iteration of algorithm 12.1.

lowX is bijective (X is in column echelon form and is full-rank), condition
(1.) is satisfied. With a similar argument on Y, condition (2.) is satisfied.
Finally, condition (3.) is satisfied because, for any j ≥ 1 and all along the
procedure, the vector at index i− 1 in the right sequence xj and the vector
at index i + 1 in the left sequence yj are either identical, or differ by γξ.
They consequently have the same image by f .

Proposition 12.2. The family {x0 ✶ 0, 0 ✶ y0,x1 ✶ y1, · · · ,xp−1 ✶ yp−1}
of representative sequences of W represents an interval decomposition of W.

Proof. For any index j, 0 ≤ j ≤ p − 1, denote xj and xj by, respectively,

u(bj) oo // · · · oo // u(i−1) and u
(bℓj )

j
oo // · · · oo // u

(i−1)
j . We prove that, for any

index k ≤ i − 1, the family {u(k)j : u
(k)
j 6= 0}j=0,...,p−1 is a basis for Vk. By

virtue of proposition 12.1, the family {u(k)j : u
(k)
j 6= 0}j=0,...,p−1 is a subset of

the family {Xu(k)j : u
(k)
j 6= 0}j=0,...,p−1, where X is in column echelon form

and is invertible, and the set of non-zero u(k)j is free. Consequently, for any

index k ≤ i − 1, the family of non-zero u(k)j is free. Because, the births of
the representative sequences {x0 ✶ 0, 0 ✶ y0,x1 ✶ y1, · · · ,xp−1 ✶ yp−1}

are exactly the set {b1, . . . , bp}, the set {u(k)j : u
(k)
j 6= 0}j=0,...,p−1 contains

dimVk elements and is a basis of Vk. Denoting yj = v
(i+1)
j

oo // · · · oo // v
(dj)
j ,

we prove similarly that the family of non-zero v(k)j is a basis for Vk, for any
index k ≥ i+ 1.

Finally, at index k = i, the non zero vectors u(i)j form a basis because the
decomposition is aligned with the kernel of f . We conclude using proposi-
tion 10.2.
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Finally, we study a bit closer the structure of the matrix X during the
reduction, in order to deduce the simpler pairing rule described in algo-
rithm 11.1 of the surjective diamond principle 11.3.

Lemma 12.3. The reduction algorithm 12.1 satisfies the following proper-
ties.

(i) During its reduction, any column col of X is either equal to [0, . . . , 0, 1,
0, . . . 0]T or to γ × [απ(1), . . . , απ(lowX(col)), 0, . . . , 0]

T for some γ 6= 0.

(ii) The reduction of X performs O(p) column operations in X.

(iii) The pairing procedure in algorithm 11.1 of the surjective diamond prin-
ciple 11.3 is correct.

Proof. (i) We prove the result by induction on the column index j. For j = 0,
x0 = [απ(1), . . . , απ(p−1)]

T and the property is satisfied. Suppose all columns
xk, for k ≤ j, satisfy the property. We reduce column xj+1, originally equal
to [0, . . . , 0, 1, 0, . . . , 0]. If there is no column xk, with k < j + 1, such that
lowX(k) = lowX(j + 1), then the column xj+1 is reduced and satisfies the
property. Otherwise, let xk be such that k ≤ j and lowX(k) = lowX(j + 1).
By induction, xk satisfies the property. Because the matrix has full-rank, xk

must be equal to γ × [απ(1), . . . , απ(lowX(j+1)), 0, . . . , 0]
T for some γ 6= 0.

We reduce xj+1 using xk as in the while loop. Denote lowX(j + 1) by
ℓ. We get xj+1 = γ′ × [απ(1), . . . , απ(ℓ−1), 0, . . . , 0]

T for some γ′ 6= 0. By
induction, and because X has full-rank, the remainder of the reduction of
xj+1 involves only columns of the form [0, . . . , 0, 1, 0, . . . , 0]T . Consequently,
the reduced column xj+1 satisfies the property.

(ii) The property follows by noticing that, during the whole reduction,
a column xk is picked at most once in the while loop condition for reducing
another column (i.e. j0 ← k).

(iii) For each column operation xj ← xj + γxj0 , the index lowX(j) de-
creases by exactly 1. Recall that the birth of the representative sequence de-
fined by xj is bπ(lowX(j)). Recall also that, by definition of the permutation π,
the rows are ordered by increasing birth w.r.t. ≤b, i.e. bπ(1) ≤b . . . ≤b bπ(p).
We prove by induction on j that algorithm 11.1 of the surjective diamond
principle 11.3 is correct. More precisely, we prove that every reduced col-
umn xj equal to [0, . . . , 0, 1, 0, . . . , 0]T has birth bℓj = bj and every reduced
column xj equal to γ × [απ(1), . . . , απ(lowX(j)), 0, . . . , 0]

T has birth bℓj equal
to the maximal birth index, w.r.t. ≤b, available during its reduction. For
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j = 0, x0 has birth bπ(p) which is the maximum w.r.t. ≤b. Suppose the
property true for all k ≤ j. Consider column xj+1. If its reduced form is
[0, . . . , 0, 1, 0, . . . , 0]T , then its representative sequence has indeed birth bj+1.
Otherwise, there exists a column xk = γ× [απ(1), . . . , απ(lowX(j+1)), 0, . . . , 0]

T

for k ≤ j. Hence, by induction, none of the births larger than bj+1 are avail-
able. By reducing lowX(j +1) by exactly 1 for each column operation, xj+1

is assigned the largest birth w.r.t. ≤b that is available.

This concludes the proof of the surjective diamond principle.
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Part V

Computational Library for

Topology
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This Part is based on the following publications:

• Clément Maria, Jean-Daniel Boissonnat, Marc Glisse and Mariette
Yvinec: The Gudhi Library: Simplicial Complexes and Persistent Ho-
mology. International Congress on Mathematical Software [51]

and the computational library is available at

• Clément Maria: Gudhi, Simplicial Complexes and Persistent Homology
Packages, https://project.inria.fr/gudhi/software/ [50]
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Chapter 13

Generic Design

We present the main algorithmic and design choices that have been made
to represent complexes and compute persistent homology in the Gudhi li-
brary. The Gudhi library (Geometric Understanding in Higher Dimensions)
is a generic C++ library for computational topology. Its goal is to provide
robust, efficient, flexible and easy to use implementations of state-of-the-art
algorithms and data structures for computational topology. We present the
different components of the software, their interaction and the user interface.
We justify the algorithmic and design decisions made in Gudhi and provide
benchmarks for the code.

The challenge is twofold. On the one hand we need to design a generic
library in computational topology, in order to adapt to the various config-
urations of the problem: nature of the complexes (simplicial, cubical, etc)
and their representation, nature of the maps between them (inclusions, edge
contractions, etc), ordering of the maps (linear, zigzag, etc) and types of
algorithm for persistence (homology, cohomology). On the other hand, we
need to implement a high-performance library to handle complex practical
examples.

In Section 13.1 we describe the challenges when designing a library for
computational topology and Section 13.2 presents the design of the Gudhi

library. In Section 13.3, we discuss the implementation choices and the user
interface. Specifically, simplicial complexes are implemented with a simplex
tree data structure (Chapter 2. The simplex tree is an efficient and flexible
data structure for representing general (filtered) simplicial complexes. The
persistent homology of a filtered simplicial complex is computed by means
of the persistent cohomology algorithm implemented with a compressed an-
notation matrix (Chapter 5). The persistent homology package provides the
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Complex

0 0 0 0Cohomology 〈[e∗1]〉 〈[e∗1], [e
∗
2]〉〈[e∗1]〉 〈[e∗1]〉

Figure 13.1: Standard computation of persistence, with simplicial complexes con-
nected by left to right inclusions.

computation of persistence with different coefficient fields, including the im-
plementation of the multi-field persistence algorithm (Chapter 8). Finally,
in we discuss the future components of the library and their integration in
the design.

13.1 Philosophy of the Library

Suppose we are given a set of points and a metric, approximating a topo-
logical space whose homology groups we want to compute. We can compute
the Rips complex on top of these points using a simplex tree, then compute
the persistent homology of the filtered complex with multi-field coefficients
and hence get, with garantees, the homology groups (integral Betti num-
bers and prime divisors of torsion coefficients) of the topological space (see
Figure 13.1).

In light of the experiments in Parts I, II and III, the time complexity
of such computation would be of order 10−8 seconds per simplex for the
construction of the simplex tree and 10−6 seconds per simplex for the com-
putation of multi-field persistence for the first few hundred prime numbers
on a desktop machine. Memorywise, the size of the simplicial complex is
the bottleneck of the computation, and we can store a simplicial complex
in a simplex tree of up to a few hundred million simplices. Consequently,
we need only a few minutes to compute the persistent homology of a simpli-

· · ·

Figure 13.2: Filtration of simplicial complexes connected by general simplicial
maps. In particular, the edge contractions allows the computation of the same
changes at homology level while reducing the size of the simplicial complex.
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Figure 13.3: Simplification of a filtered simplicial complex. The result is a filtration
whose persistent homology is identical to the original one. The complexes are
now general cell complexes, but individually contain fewer cells that the original
simplicial complexes.

cial complex that fills up the memory entirely: memory is the limitation of
the approach, independently of what data structures are used. Indeed, the
simplex tree has an optimal size to represent a filtered simplicial complex.
Moreover, the theoretical bounds (Theorem 1.4) on the threshold of a Rips
complex to obtain a valid topological approximation of a topological space
lead to gigantic simplicial complexes in practice.

Designing new approaches to topological inference, that solve the mem-
ory issue while preserving good computational timings in practice, is a recent
and major challenge for computational topology. Recently, a few methods
have been introduced. The first one consists in defining new types of filtra-
tions that give good topological approximations while remaining small. For
example, in [66] the author introduce a linear-size (in the number of vertices)
Rips complex that gives a provably good persistence diagram, and in [40] the
authors show how to compute the persistent homology of the filtration using
general simplicial maps (in particular edge contractions, see Figure 13.2).

Another approach is to simplify the filtered simplicial complex. In par-
ticular, such an approach as been developed using Morse simplifications [55],
which preserve the homology. By simplifying the filtered simplicial complex
within ranges of simplices with same filtration value, one obtains a filtered

Figure 13.4: Zigzag filtration of a complex.
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Indexing

Complex

Homology 0 0 0 0

10 3 42 5 6 7

〈[c]〉 〈[c]〉 〈[c]〉〈[c], [c′]〉

Figure 13.5: Indexing of eight simplicial complexes and corresponding sequence of
homology groups in dimension 1.

cell complex with fewer cells (see Figure 13.3).
Finally, zigzag persistence, which has been introduced in Part IV, is a

generalization of persistent homology. Zigzag persistent homology not only
allows the computation of persistence on smaller complexes but also open
new areas for applications. Oudot and Sheehy prove in [61] that the filtra-
tion of the oscillating Rips zigzag gives provably good persistence diagram
while maintaining small simplicial complexes along the computation (under
some reasonable geometric assumptions). We refer to Figure 13.4 for an il-
lustration of a zigzag filtration and to Chapter 14 for a practical example of
topological inference and a comparison of standard persistence and zigzag
persistence (in particular on the size of the simplicial complexes). Part IV
of this dissertion presents an algorithm to compute zigzag persistence more
efficiently and with a simpler approach, and falls within the category of these
recent works.

The common point of these approaches is that they require generaliza-
tions of some aspects of standard persistence, which may be either a general
type of simplicial maps in the filtration – as opposed to inclusions –, a gen-
eral type of cell complexes – as opposed to simplicial complexes – or maps
going in both directions – instead of left-to-right only. We describe in the
following a flexible design for a generic library for computational topology.
In particular, the design adapts to the different improvements on the theory
of persistence that are described above. The library is available at [50] and
implements all algorithms presented in this dissertation.

Components of the Theory. Figure 13.5 illustrates the three compo-
nents of the theory of persistence and their connections. The top one is
what we call an indexing scheme and is a quiver of type An, together with
a left to right traversal order. From the computational point of view, there
are two types of indexing schemes of interest in persistent homology: lin-
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FilteredComplex

typedef ... typedef

typedef

...

... Filtered complex

Coefficient fieldIndexing tag

PersistentHomology

CoefficientField

IndexingTag

Concept Model

Figure 13.6: Overview of the design of the library.

ear ones • −→ • −→ · · · −→ • −→ • in persistent homology (Chapter 4),
and zigzag ones • −→ • ←− · · · −→ • ←− • in zigzag persistent homology
(Chapter 10). We describe indexing schemes with ranges and iterators, plus
an indication of the orientation – forward or backward – of the arrows.

In the following, we consider the case where the indexing scheme is
induced by a filtration. A filtration of a simplicial complex is a function
f : K → R satisfying f(τ) ≤ f(σ) whenever τ ⊆ σ. Ordering the simplices
by increasing filtration values (breaking ties so as a simplex appears after its
subsimplices of same filtration value) provides a linear indexing scheme.

The middle of Figure 13.5 represents the sequence of simplicial com-
plexes connected by simplicial maps, ie the filtration. Finally, the bottom
represents the persistence module.

Remark 13.1. The separation into indexing, filtration and persistence mod-
ule is close in spirit to the categorification of persistent homology. In partic-
ular, the vertical arrows in Figure 13.5 represent functors of categories. We
refer to [22] for more details on the category theory approach of persistence.

13.2 Design of the Library

A concept is a set of requirements (valid expression, associated types, etc)
for a type. If a type satisfies these requirements, it is a model of the concept.
The general idea under our design is to associate a concept per component
presented above: the three components of the theory (indexing, complex and
homology) are illustrated in Figure 13.5. Given two components related by
a vertical arrow in Figure 13.5, and two models A and B of their respective
associated concepts, we connect B with A through a template argument B<A>.

IndexingTag Concept. In order to describe the indexing scheme, we use
a tag IndexingTag that is either linear_indexing_tag or zigzag_indexing
_tag, corresponding to the two indexing schemes of interest mentioned above.
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The tag is passed as a template argument to a model of the concept
FilteredComplex, representing filtered cell complexes.

FilteredComplex Concept. We define the concept FilteredComplex

that describes the requirement for a type to implement a filtered cell com-
plex. We use the vocabulary of simplicial complexes, but the concept is valid
for any type of cell complex. The main requirements are the definition of:

1. type Indexing_tag, which is a model of the concept IndexingTag,
describing the nature of the indexing scheme,

2. type Simplex_handle to manipulate simplices,

3. method int dimension(Simplex_handle) returning the dimension of
a simplex,

4. type and method Boundary_simplex_range boundary_simplex_

range(Simplex_handle) that returns a range giving access to the codi-
mension 1 subsimplices of the input simplex, as well as the coefficients
(−1)i in the definition of the operator ∂. The iterators have value type
Simplex_handle,

5. type and method Filtration_simplex_range filtration_simplex_

range () that returns a range giving access to all the simplices of the
complex read in the order assigned by the indexing scheme,

6. type and method Filtration_value filtration(Simplex_handle)

that returns the value of the filtration on the simplex represented by
the handle.

Figure 13.7 illustrates the use of a model of the concept FilteredComplex.
It sketches the algorithm used for computing persistent homology via the
annotation algorithm of Chapter 5.

PersistentHomology Concept. The concept PersistentHomology de-
scribes the requirement for a type to compute the persistent homology of a
filtered complex. The requirement are the definition of:

1. a type Filtered_complex, which is a model of FilteredComplex and
provides the type of complex on which persistence is computed,

2. a type Coefficient_field, which is a model of CoefficientField

and provides the coefficient field on which homology is computed.
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void compute_persistent_homology( FilteredComplex cpx ) {

for( Simplex_handle sh : cpx.filtration_simplex_range() ) {

int dim = cpx.dimension(sh);

update_cohomology_groups( dim, sh, cpx );

//inside update_cohomology_groups

for( Simplex_handle b_sh :

cpx.boundary_simplex_range(sh) ) {...}

//out

} } }

Figure 13.7: Sample code for the computation of persistence, illustrating the use
of a model of concept FilteredComplex.

The requirements of the concept CoefficientField are essentially the
definition of field operations (addition, multiplication, inversion, etc).

We refer to Figure 13.6 for a presentation of the concepts and their
connections.

13.3 Implementation

In this section we describe how these concepts are implemented. The code
is available at [50].

Simplicial Complex. We use a simplex tree (Chapter 2) to represent sim-
plicial complexes. The class Simplex_tree is a model of FilteredComplex
and hence furnishes all requirements of the concept. Moreover, it furnishes
algorithms to construct efficiently simplicial complexes, and in particular flag
complexes.

Persistent Homology. We use the compressed annotation matrix (Chap-
ter 5) to implement the persistent cohomology algorithm [35, 40] for persis-
tence. This leads to the class Persistent_cohomology, which is a model of
PersistentHomology. The class Persistent_cohomology allows the com-
putation of the persistence diagram of a filtered complex, using the method
compute_persistent_homology (see Figure 13.7).

The coefficient fields available as models of CoefficientField are Field
_Zp for Zp (for any prime p) and Multi_field for the multi-field persistence
algorithm – computing persistence simultaneously in various coefficient fields
– described in Chapter 8.
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Future Components. The library may be extended in various directions
that fit naturally in the design. The first direction is to allow zigzag index-
ing schemes, by the creation of a tag zigzag_indexing_tag. In this case,
the method filtration_simplex_range must indicate the direction of the
arrows. The implementation of the zigzag persistence algorithm presented
in Chapter 11 is at the prototype stage, and will be integrated within the
Gudhi library soon.

New implementations and models for FilteredComplex will be added.
For example, the construction of witness complexes will be added to the
class Simplex_tree. Additionnaly, new types of complexes (like cubical
complexes) and new data structures to represent them may be added to the
library: in order to compute their persistent homology, they only need to
satisfy the requirements of the concept FilteredComplex.

So far, only inclusions have been considered for simplicial maps between
simplicial complexes. As explained in [40], any simplicial map may be imple-
mented with a sequence of inclusions and edge contractions. We will conse-
quently add edge contractions as updates in the class Simplex_tree and im-
plement the induced updates in the class Persistent_cohomology (an algo-
rithm for edge contraction in a simplex tree is described in Chapter 2 and an
algorithm for updating an annotation matrix at cohomology level is described
in [40]). This way, we will be able to compute persistent homology of simpli-
cial maps. In this case, the range provided by filtration_simplex_range

must indicate the nature of the map between complexes.
Future works include also the implementation of a class Field_Q, model

of concept CoefficientField, for homology with Q coefficients. Finally the
interface between complexes and persistent homology allows us to implement
more persistent homology algorithms.

Ongoing projects include also the fast computation of nearest neighbors
in metric spaces, the computation of the bottleneck distance between persis-
tence diagrams and an interface for the Gudhi library in the R language.
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Chapter 14

Computational Topology in

Action

14.1 Example of Use of the Library

We study in more details the Clifford data set [61], which consists of 2000
points evenly spaced along the line y = 20x mod 2π in the flat torus (R
mod 2π)2, then mapped onto the Clifford torus in R4 via the embedding
f : (u, v) 7→ (cosu, sinu, cos v, sin v). This data set admits three non-trivial
underlying spaces: at small scales, a topological circle (ie the helicoidal
curve), at larger scales, the torus and at even larger scales the 3-sphere
on which the torus is sitting. This is a data set of interest for persistent
homology, because of the different levels of reconstruction. We use the Gudhi
library, described in the previous chapter and using the algorithms and data
structures developed in this dissertation, to infer the topology of the Clifford
data set.

Figure 14.1 illustrates the user interface for constructing the 4-skeleton
of a flag complex from a graph (we use a Rips graph for the experiments),
using a simplex tree (Chapter 2), and computing its persistent homology with
various coefficient fields, using the compressed annotation matrix (Chapter 5)
with modular reconstruction (Chapter 8).

We have been able to store and compute the multi-field persistent homol-
ogy of a 4-dimensional simplicial complex with up to 491 million simplices
before running out of memory. Precisely, we have constructed the 4-skeleton
of the Rips complex (with threshold ρ = 0.9) on the Clifford data set in
20 seconds using a simplex tree. The multi-field persistent homology of the
complex has been computed in 16 minutes for all coefficient fields Zp for the
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Graph g; ... //compute the graph

Simplex_tree< linear_indexing_tag > st; //linear ordering

st.insert(g); //insert the graph as 1-skeleton of the complex

st.expand(4); //construct the 4-skeleton of the associated flag

complex

Persistent_cohomology< Simplex_tree<linear_indexing_tag>,

Multi_field > pcoh; //persistence with "multi field

coefficients" defined on a simplex tree

pcoh.compute_persistent_homology(st,2,1223); //compute persistent

homology of st in all fields Zp for p prime between 2 and 1223

Figure 14.1: User interface for the construction of a filtered flag complex with a
simplex tree and the computation of its persistent homology.

200 first prime numbers p (ie p ∈ [2; 1223]). Note that the total computa-
tion per simplex is 2.0 × 10−6 seconds per simplex, including construction
of the simplex tree and, for every simplex in the complex, computation of
the boundary in the simplex tree and update of the compressed annotation
matrix with multi-field coefficients.

We have noticed no difference between the persistent features of the dif-
ferent persistence diagram for the various coefficient fields. This fact garan-
tees that the integral homology groups of the underlying spaces have no tor-
sion subgroup Zqk , for any q ≤ 1223. The absence of torsion was expected,
as we know that the underlying spaces are a topological circle, a torus and
a 3-sphere. However, in a practical case where the underlying spaces are
unknown, it is very unlikely that the homology we infer contains torsion
subgroups which such big prime divisor of torsion coefficient (ie > 1223).
We discuss this point in the concluding remarks of the dissertion.

We obtain the persistence diagram presented in Figure 14.2 (only the
most persistent bars are pictured; the bars for topological noise are all shorter
than 0.063). We note that we approximate properly the circle (from ρ =
0.0629 to ρ = 0.31), then the torus (from ρ = 0.316 to the end of the
computation with ρ = 0.9). Despite the size of the compex, we are enable to
find a feature in 3-dimensional homology. The impossibility of infering the
3-sphere with standard persistence had already been observed in [61], but
for the 4-skeleton of a Rips complex with much smaller threshold ρ = 0.625,
which results into a simplicial complex with less than 24 million simplices.

Consequently, it seems out of reach to infer the topology of a 3-sphere
from the Clifford data set using standard persistence. We use our prototype
implementation of the zigzag persistent homology algorithm, presented in
Chapter 11, in order to compute a more informative persistence diagram.
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Figure 14.2: Persistence barcode for the standard persistence of the 4-skeleton of
the Rips complex (ρ = 0.9) on the Clifford data set. The filtration contains 491
millions insertions of simplices.

We use an oscillating Rips zigzag filtration with the multipliers η = 3 and
ρ = 3.2, and ordering the points of the Clifford data set using a furthest point
strategy. We obtain the persistence diagram pictures in Figure 14.3. The
computation took 139 seconds for a filtration containing 14 million arrows
and simplicial complexes containing at most 175 thousands simplices. We
observe that the 3-sphere appears clearly in the persistence barcode, with
a persistent bar [0.65; 0.74], for a much smaller filtration (in number of ar-
rows and maximal complex size) than standard persistence. Note that the
zigzag persistence algorithm is efficient in practice, but is nowhere as fast as
the persistence cohomology algorithm implemented with a compressed an-
notation matrix. Specifically, the average computation time per arrow for
updating the encoding in zigzag persistence homology is 1.0× 10−5 seconds
(we use Z2 as coefficient field). The average time per arrow for updating the
encoding in standard persistence with a compressed annotation matrix is, on
the same example, 5.1× 10−7 seconds per arrow (we use only Z2 coefficient
and do not consider boundary computation for this timing). We discuss the
possibility of adapting all optimizations (compressed annotation matrix and
modular reconstruction), developed in this dissertation, to the algorithm for
zigzag persistence of Chapter 11 in the concluding remarks.

14.2 Additional Experiments.

Figure 14.4 presents timings Tst for the construction of flag complexes with
a simplex tree using the algorithm of Chapter 2, T ph

Z2
and T ph

Z1223
for the com-

putation of persistent homology with coefficient is Z2 and Z1223 respectively,
using the implementation of Chapter 5, and T ph

Z2
1223

for the simultaneous com-
putation of persistent homology in the 200 coefficient fields Zp with p prime,
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Figure 14.3: Persistence barcode for the zigzag persistence of the 4-skeleton of the
oscillating Rips zigzag (η = 3 and ρ = 3.2) on the Clifford data set. The filtration
contains 14 million insertion and deletion of simplices, and the maximal size of a
simplicial complex is 175 thousand simplices.

for 2 ≤ p ≤ 1223, using the multi-field persistent homology algorithm de-
scribed in Chapter 8. Experiments have been realized on Rips complexes
built on a variety of data points. Datasets are listed in Figure 14.4 with the
size of points sets #P, the ambient dimension D and intrinsic dimension d of
the sample points ("?" if unknown), the parameter ρ for the Rips complex
and the size of the complex #K.

The average timings per simplex of the various algorithms are ranging
between 4.08 · 10−8 and 7.28 · 10−8 seconds per simplex for the construction
of the simplex tree, between 1.27 · 10−6 and 2.00 · 10−6 seconds per simplex
for the computation of persistent homology with coefficient field Z2 or Z1223

(including the computation of boundaries in the simplex tree, for each sim-
plex insertion), and between 1.68 · 10−6 and 3.52 · 10−6 seconds per simplex
for the computation of multi-field persistent homology in all fields Zp for p
prime, 2 ≤ p ≤ 1223. Note that most of the time to computate the persistent
homology is spent in computing boundaries in the simplex tree.

Data #P D d r #K Tst T ph
Z2

T ph
Z1223

T ph

Z2
1223

Bud 49,990 3 2 0.09 127 · 106 5.7 161 161 252
Bro 15,000 25 ? 0.04 142 · 106 5.8 252 252 380
Cy8 6,040 24 2 0.8 193 · 106 8.4 249 249 325
Kl 90,000 5 2 0.25 114 · 106 8.3 228 227 401
S3 50,000 4 3 0.65 134 · 106 7.2 176 176 310

Figure 14.4: Timings in seconds for the various algorithms.
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Appendix A

General Algebra

We recall in this chapter the definitions and properties of basic algebraic
structures.

Groups

A group is a nonempty set G, called the underlying set of the group, together
with a binary operation on G, noted + in the additive case, with satisfies
the following properties:

(i) Associativity: For all x, y, z ∈ G, (x+ y) + z = x+ (y + z).

(ii) Identity: There exists an element 0G ∈ G, called the identity element
of the group, for which: 0 + x = x+ 0 = x for all x ∈ G.

(iii) Inverse: For each x ∈ G, there is an element −x ∈ G, called the
inverse of x, for which: x+ (−x) = (−x) + x = 0G.

A subgroup H of G is a group with the binary relation + of G which
underlying set is a non-empty subset of the underlying set of G. Two elements
x, y ∈ G commute if x+y = y+x, and a group G is Abelian, or commutative,
if every pair of elements commute. A group is finite if the underlying set G
is a finite set; otherwise, it is infinite. The order of a group is the cardinality
of the underlying set G, denoted by |G|.

The group we concider in the following are Abelian and, unless mentioned
otherwise, are written additively. When there is no ambiguity, the identity
0G of G is denoted 0. If n is a non-negative integer (n ≥ 0) and x is an
element of G, nx denotes the n-fold sum x + · · · + x, where 0x = 0G, and
(−n)x denotes n(−x).
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The order of an element x ∈ G, x 6= 0, is the smallest positive interger n
such that nx = 0. If no such n exists, x is said to have infinite order.

Homomorphisms. A group homomorphism is a relation preserving func-
tion between two groups. Let G and H be two groups. A function f : G→ H
is a group homomorphism.

Free Abelian Groups. Let G be an Abelian group. A family {xα} of
elements G generates G if every element x ∈ G can be written as a sum∑

α nαxα where finitely many integers nα are non-zero. If G is generated by
a finite family {x1, · · · , xn} of elements, we say that G is finitely generated
and we write G = 〈x1, · · · , xn〉.

A family {xα} of elements in G is a basis of G if every x ∈ G can
be written uniquely as a finite sum

∑
α nαxα. Uniqueness implies that each

element xα has infinite order; that is, xα generates an infinite cyclic subgroup
〈xα〉 of G. A group G is free if it has a basis.

For an abelian group G, the set of elements x ∈ G of finite order form
a subgroup T of G, called the torsion subgroup. If T vanishes, we say G is
torsion-free. A free abelian group is necessary torsion-free.

The following theorem classifies finitely-generated groups up to isomor-
phism:

Theorem A.1 (Structure Theorem of Finitely Generated Abelian Groups).
Let G be a finitely-generated Abelian group, then G is isomorphic to:

G ∼= Zβ
⊕

q prime

(
Zqk1 ⊕ · · · ⊕ Z

q
kt(p,q)

)

for unique integers β and qki .

Ring

A ring (R,+,×) is a set R together with two binary operations (addition +
and multiplication ×) such that:

(i) (R,+) is a group,

(ii) the multiplication is associative – ie (x × y) × z = x × (y × z) – and
distributive over addition – ie x×(y+z) = x×y+x×z and (x+y)×z =
x× z + y × z.
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We shall consider only rings which are commutative, ie for all x, y ∈ R,
x × y = y × x, and which have an identity element 1, ie ∃1 ∈ R such that
1 × x = x × 1 = x for every x ∈ R. All the rings we consider satisfy 0 6= 1
and the product x × y of two nonzero elements x, y ∈ R \ {0} is nonzero.
Such rings are called integral domains.

Principal Ideal Domain. An ideal I of R is a subset of R that is an
additive subgroup and such that for every x ∈ R and every y ∈ I, x× y ∈ I.
An ideal is principal if it is generated by a single element, ie there exists an
element x0 ∈ I such that I is equal to x0 ×R, the smallest ideal containing
x0.

A principal ideal domain (PID for short) is an integral domain in which
every ideal is principal.

Module

Let R be a ring. A R-module M is an abelian group (written additively)
on which R acts linearly: more precisely, it is a pair (M, µ), whereM is an
abelian group and µ is a mapping of R×M into M such that, if we write
r · x for µ(r, x), r ∈ R, x ∈ M, the following axioms are satisfied: for every
r, r′ ∈ R, x, y ∈M,

(i) r · (x+ y) = r · x+ r · y,

(ii) (r + r′) · x = r · x+ r′ · x,

(iii) (r × r′) · x = r · (r′ · x).

Module Homomorphism. LetM and N be two R-modules. A mapping
f :M→N is an R-module homomorphism if: for every r ∈ R, x, y ∈M,

(i) f(x+ y) = f(x) + f(y),

(ii) f(r · x) = r · f(x).

Thus f is a homomorphism of abelian groups which commutes with the
action of each r ∈ R.

Bibliographical Notes

We refer to [59, 63] for more details on Abelian groups, and to [5] for more
details on rings and modules.
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Concluding Remarks and Open

Problems

We have presented in this dissertation a coherent set of data structures and
algorithms for computational topology. The contributions range from the
representation and manipulation of topological spaces to the computation of
the persistent and zigzag persistent homology of filtrations. The methods
presented are diverse and solve algorithmic questions in combinatorics, com-
puter algebra and computer arithmetics. We summarize the contributions
and discuss the perspective they open.

Simplex Tree. We have first considered the problem of representing and
manipulating topological spaces in computational topology. We have in-
troduced the simplex tree to represent simplicial complexes. The structure
requires only O(1) memory word per simplex, which is optimal when repre-
senting general filtered simplicial complexes. In particular, filtered simplicial
complexes are the ones we are interested in when computing persistence. The
simplex tree allows a wide range of computations on the simplicial complex,
from incidence retrieval to construction of simplicial complexes.

An interesting, yet not well understood, question is the effect of the
labelling of the vertices, in the simplex tree, on the complexity of some oper-
ations. Indeed, the time complexity for computing cofaces and contracting
edges depends crucially on the number of nodes containing a label ℓ at a
certain depth in the tree. However, the smaller ℓ, the more unlikely it is
to find a node deep in the tree with label ℓ, because the vertices of each
simplex are ordered. It is an open question to understand the repartition of
labels in the simplex tree, depending on the combinatorics of the underlying
simplicial complex and the labelling of its vertices.
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Compressed Annotation Matrix. We have introduced the compressed
annotation matrix for computing the persistent cohomology of a filtration.
The data structure is a sparse matrix with an extra compression phase. The
compressed annotation matrix allows a compact representation of an encod-
ing in persistence, and leads to an implementation with a sparse complexity
analysis and with a practical linear-time behavior. This work raises two
questions.

1. The complexity of the persistent homology algorithm in cubic, and this
bound is tight. However, there is no good complexity model to explain the
practical behavior of the persistent (co)homology algorithm. In particu-
lar, why do the quantities cmax and rmax (measuring the "sparsity" of the
annotation matrix) remain small ? An interesting direction is the analysis
of the reordering strategy for iso-simplices, presented in this dissertation
as a heuristic. Under certain properties of the simplicial complex (like
shellability), the iso-simplices reordering tends to insert successively the
two simplices of collapsible pairs, which leads to constant time updates
in the annotation matrix. Can we generalize this idea to a wider class of
simplicial complexes (beyond shellable) ?

There are similarities between these questions and the Morse simplifica-
tion approach for persistent homology [55]. A gradient vector field in
discrete Morse theory pairs codimension 1 simplices and defines a simpli-
fication order. To which extent is the iso-simplices ordering related to a
Morse simplification ? Morse simplifications have been well-studied [23],
and relating our algorithm with them is of interest.

2. The effect of the compression of the annotation matrix reduces drastically
the number of operations. It is not well-understood why. As presented
earlier, in 0-cohomology two vertices have the same annotation vector iff
they belong to the same connected component. Can we generalize the
criterion to higher dimensions, so as to explain why so many simplices
have the same annotation vector in practice?

Modular Reconstruction. We have introduced the modular reconstruc-
tion method for multi-field persistent homology. This work is the only at-
tempt we know to compute persistence with different coefficient fields effi-
ciently.

In order to infer properly the prime divisor of torsion coefficients, we
have assumed a bound on the torsions to be known. This bound may be
computed with Hadamard’s formula or the ovals of Cassini, but these bounds
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are usually big. In the context of topological inference, given a set of points
on a compact, and under reasonnable sampling conditions, is it possible to
improve the bound on the torsion coefficient, using only the number of points
and geometric quantities ?

Zigzag Persistence. We have introduced an algorithm for zigzag persis-
tence. The novelty of the approach and of the mathmetical tools introduced
raises some questions:

1 A main motivation for introducing our zigzag persistent algorithm was its
simplicity and proximity with the standard persistence algorithm. A direct
consequence is the possibility to adapt the methods presented in Parts I, II
and III to the zigzag framework, in order to obtain a very efficient zigzag
persistence algorithm in practice. In particular, this requires to define a
cohomology version of the zigzag algorithm. This is a natural extension
to the work presented in this dissertation.

2 On the theoretical side, the weak diamond principles we have introduced
hold in a fairly specific setting, but the techniques developed in our proofs
(in particular the vector space of representative sequences) may be used
in a larger context. One goal is to handle weak diamonds with arbitrary
maps. Such a result would allow a zigzag persistence algorithm with gen-
eral simplicial maps in the filtration.

3 Our arrow permutations are a special type of vineyards [31], obtained by
sequences of transpositions in the descending chain of the zigzag. Devising
general rules for transpositions of simplex insertions and deletions in a
general position in an arbitrary zigzag seems within our reach, as such
transpositions reduce basically to three kinds of diamonds, depending on
the arrow orientations: weak diamonds and transposition diamonds as
presented, and Mayer-Vietoris diamonds as in [24].
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