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Abstract
“Velocity sensorless control of switched reluctance motors’4
by: Erik Alfredo CHUMACERO POLANCO

In this thesis dissertation we present the design, stability analysis, numerical simulations and
physical experiments of different controllers designed to drive the mechanical velocity of the
switched reluctance motor (SRM). In the First and Second Chapters a brief description of
the physics and construction of the SRM is presented, as well as the problem of control to
be aboard, that is the velocity sensorless control of motors and the state of the art of this
problem. The proposed solution is introduced and a summary of the published papers as well
as the contribution are also presented. In the Chapter number three is presented the velocity
sensorless and adaptive control of the SRM. It is assumed, in a first stage, that only mechanical
velocity is unknown, uniform exponential stability of the errors is achieved in this scenario. In
a second stage, conditions are stressed and in addition to the velocity, physical parameters are
also assumed unknown, uniform asymptotical stability is achieved in this case and parameters
estimation is guaranteed under a persistence of excitation condition. This controller consists of
two loops, an internal loop based on a PI?D-type controller which is of particular interest given
it is free-model; this loop drives the mechanical variables —that is position and velocity- towards

“virtual”

a desired reference. An external control loop takes the electrical current towards a
current reference which is generated based on a torque share approach. The controller is tested
on numerical simulations, which are also presented. In the fourth chapter, a new approach on
the modeling of the SRM is utilized to design the controller, in this scenario is assumed that the
whole state and all the physical parameters are available, however this approach is thought to be
suitable to observer based controller, whose ongoing research is being performed. The controller
is composed by two loops, similarly to the one mentioned previously. This controller is selected
because it is suitable for certainty equivalence control, that is, to substitute the “measurements”

by the “observations” coming from a virtual sensor. Numerical implementation is performed on

Simulink of Matlab.

Finally, in the Chapter five, the experimental results carried out to evaluate the performance of
the proposed controllers are presented, these are the PI?D and the adaptive PI2D controllers
for the simplified model and the PID controller for the novel modeling approach. In the first
part, a brief description of the construction of the utilized bench is presented as well as the
some technical characteristics. Three different velocity profiles were imposed to each of the
overmentioned controllers —these are the so called smooth step, the saturated ramp and the
sinusoidal reference- and good results, considering that the controlled variable is the velocity,
were obtained. The last chapter corresponds to the conclusions of the performed research as

well as to the future work.
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Chapitre 1

Moteur a réluctance variable

Le moteur a réluctance variable est un moteur électrique dont le couple est produit par la tendance
de son rotor a se déplacer jusqu’a une position ot l'inductance du stator est mazximisée. L’origine
du moteur a réluctance peut étre retracée a 1842. Sa Kréinvention>> a été probablement due
a lavénement des dispositifs de commutation peu chers et de haute puissance. Le moteur &
réluctance est un type de machine synchrone. Le stator, pareil au stator d’un moteur a courant
continu, est bobiné; néanmoins, le rotor n’est ni bobiné ni magnétisé. Celui-ci est plutdt fait de
feuilles de fer. Tant le stator que le rotor ont des pdles saillants, d’ow le qualificatif de machine

doublement saillante attribué au moteur a réluctance variable [1].

Le MRV a plusieurs caractéristiques qui le positionnent comme une option importante parmi
d’autres machines couramment utilisées telles que les moteurs a courant continu, les moteurs
asynchrones ou les moteurs synchrones . Ses principaur avantages sont sa construction simple
et peu codteuse, sans oublier sa capacité & se dispenser de courants bidirectionnels. De plus,
les pertes thermiques n’apparaissent que dans le stator, facilitant son refroidissement. Un autre
avantage majeur est la caractéristique vitesse-couple de rotation réglable qui permet ’obtention
d’un couple élevé a basse vitesse et qui évite l'utilisation de boites de vitesses. Il est également
possible de faire usage de ces moteurs a des températures plus élevées en comparaison a d’autres

moteurs, tels que des moteurs a aimants permanents.

Cependant , le moteur a réluctance variable présente aussi des inconvénients. La construction
a double saillance et la nature discréte de la production de couple par les phases indépendantes
conduisent & plus d’ondulations de couple par rapport a d’autres machines. Ainsi, une ondulation
de couple plus élevée, en méme temps que la nécessité de récupérer de l’énergie a partir du fluz
magnétique, provoque une trop grande ondulation du courant, ce qui, en conséquence, réclame
une grande capacité de filtrage. Egalement, la structure doublement saillante du moteur & réluc-
tance variable provoque un bruit acoustique plus élevé par rapport & d’autres modéles. En fait, la

principale source de bruit acoustique vient de la force magnétique radiale induite.

Ainsi, une plus grande ondulation de couple et le bruit acoustique sont les désavantages du MRV

les plus critiqués. Toutefois, il faut souligner que les avantages du MRV sont nettement plus
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importants que ses défauts, ce qui lui permet de disposer d’un large champ d’application dans les
industries pour des usages réguliers comme dans les compresseurs, les ventilateurs, les pompes,
les centrifugeuses, les robots culinaires, les machines & laver, les aspirateurs, et bien d’autres.
1l est d’ailleurs encore bien présent dans lindustrie émergente des véhicules électriques. Une
étude approfondie de la physique du MRV va au-dela de la portée de cette theése, (Les lecteurs
intéressés sont invités a trouver plus d’informations dans [2] et dans [3]). Cependant, dans les
prochaines pages sera présentée une bréve description du principe de fonctionnement de cette

machine populaire.

1.1 Construction et fonctionnement

Le MRV est parmi les moteurs les plus simples concernant sa construction. Sa structure de base
est composée d’un stator bobiné et d’un rotor en fer qui n’est ni bobiné ni magnétisé. Le rotor se
compose essentiellement d’un morceau de fer laminé pour former des podles saillants. Les poles
du stator sont également saillants et sont enroulés sur des pdles opposés radialement. Chaque
phase du stator est constituée de bobines de stator concentrées sur les pdles. Parmi de nombreuses
alternatives, les configurations les plus courantes sont les poles 8-rotor/9-stator 4-phases moteur

et le 6-rotor/4-stator 3-phases moteur, dont un schéma est présenté dans la Figure 1.1.

FIGURE 1.1: Schématique d’un 6/4 3 phases moteur & réluctance variable.

En supposant que les poles ro et 15 du stator sont parfaitement alignés aux poles co et ¢y du
rotor, tel que montré sur la Figure 1.2-(1), si un courant électrique est appliqué a travers la
phase a — a’, un flur magnétique est induit par les poles du stator a —a’ de sorte que les poles du
rotor r1 et ) tournent vers les poles du stator a et o’ tel qu’il est montré sur la Figure 1.2-(2).
Une fois que les péles sont alignés, le courant du stator de la phase a s’éteint. Ensuite, la bobine
du stator b — b est excité, tirant ro et 1y vers b et V' dans le sens inverse des aiguilles d’une

montre, comme illustré a la Figure 1.2-(3).

Par conséquent, il faut séquencer trois excitations dans l’ordre a — b — ¢ afin de déplacer le rotor
de 60 degrés. Suivant ce raisonnement, un tour de rotor est réalisé en effectuant la séquence
a—b—c autant de fois qu’il y a de nombre de pdles du stator. La commutation de courants dans

la séquence a — ¢ — b produit donc une inversion de rotation du rotor.
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FIGURE 1.2: Operation du MRV (1)-Phase c alignée (2)-Phase a alignée (3)-Phase b alignée
(4)-Phase ¢ alignée.

Linductance du MRV dépend de la position mécanique. En supposant que la phase a dans la
Figure 1.3 est alimentée lorsque le stator et le rotor sont complétement désalignés (rotor entre
q1 et q1), Uinductance réalisée est alors a son minimum. De méme, lorsque le rotor et le stator
sont alignés (rotor positionné au milieu de qo et q3) linductance atteint son mazimum. Ce

comportement est illustré dans la figure suivante.

FIGURE 1.3: L’inductance en tant que fonction de la position mécanique.

1. 0 —q1 : Les pdles du stator et du rotor ne se chevauchent pas dans cette région et le flux
est déterminé principalement par la voie d’air, ce qui rend le minimum d’inductance et a
peu pres constante. Par conséquent, cette région ne contribue pas a la production de couple.

L’inductance dans cette région est connue comme inductance non aligné L,,.

2. q1 — qo : Les poles se chevauchent, conséquemment le flux s’établit principalement entre les
toles du stator et du rotor. Cela augmente l'inductance de la position du rotor, ce qui lui
donne une pente positive. Un courant imposé dans l’enroulement de cette région produit un

couple positif. Cette région prend fin lorsque le chevauchement des pdles est terminé..

3. go — q3 : Au cours de cette période, le mouvement du pdle de rotor ne modifie pas le
chevauchement complet du pdle de stator et ne modifie pas le chemin de flux dominant. Ceci
a pour effet de maintenir inductance maximale et constante, cette inductance est connue

comme inductance alignée L,. Comme il n’y a pas de changement dans l'inductance au
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cours de cette région, la génération de couple est zéro méme lorsqu’un courant est présent
dans cet intervalle. En dépit de ce fait, cette période joue un réle utile en fournissant des
temps pour le courant du stator pour revenir a zéro, ce qui empéche la génération de couple
négatif pour une partie du temps lorsque le courant a été en décomposition dans la Tégion

de limductance a la pente négative.

4. g3 — qq : Dans cette région, le rotor s’éloigne du podle du stator (le chevauchement se
termine). Ceci est trés similaire a la région q1 —qa excepté que linductance diminue pendant
que la position du rotor augmente, contribuant ainsi & une pente négative de la région
d’inductance. Le fonctionnement de la machine dans cette région se traduit par un couple
négatif, a savoir, la génération d’énergie électrique & partir de l’entrée mécanique de la

machine & réluctance variable.

A cause de la saturation magnétique dans le MRV, il n’est pas possible d’atteindre les profils
d’inductance idéales représentées sur la Figure 1.5. Méme qui provoque, au-dela d’un point, une

diminution sur le couple et la puissance de sortie.

1.2 Production du couple mécanique

La dépendance de la production du couple sur la saturation magnétique, en addition auz effets
des champs frangeants et de [’excitation d’onde quarrée donne au MRV une caractéristique de

commande non linéaire.

Le couple mécanique d’origine électrique (couple électromagnétique) est produit grice a la ten-
dance des péles du rotor a s’aligner avec la phase du stator excité. Les déplacements du rotor a
une position ot la réluctance est & son minimum et ou linductance est & son maximum méme
que la relation entre l'inductance et de la production de couple selon la position du rotor sont
représentés sur la Figure 1.4. Pour un courant positif et constant, le couple positif est produit
lorsque l'inductance augmente, tandis qu’aucun couple n’est produit lorsque l'inductance reste
constante. Finalement, un couple négatif est produit lorsque l’inductance diminue. Sur la base de
ce comportement, il est possible de calculer le temps de commutation nécessaire pour produire le

couple désiré en fonction de la vitesse désirée.

La caractéristique couple-vitesse d’un MRV est donnée dans la Figure 1.5. Basée sur les plages de
vitesses différentes, la génération du couple du moteur a été divisée en trois régions différentes :

couple constant, puissance constante et région de chute de puissance.

La vitesse de base wp est la vitesse mazximale a laquelle le couple et le courant mazimale peut
étre atteinte & la tension nominale. Dessous de wg, le couple peut étre maintenue constante. A
faible vitesse, le courant de phase augmente presque immédiatement aprés que les interrupteurs
de phase se mettent en marche, depuis la force contre-électromagnétique est faible & ce moment.

Ainsi, le courant peut étre fixé a n’importe quel niveau désiré au moyen de régulateurs (hystérésis
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FIGURE 1.4: Le couple et linductance en tant que fonctions de la position mécanique.

ou controleur de modulation de largeur d’impulsion). Par conséquent, l'ajustement du cours de

langle de tir peut réduire le bruit et d’améliorer efficacité d’ondulation ou du couple.

Region 1

Zone de
couple
constant
Zone de puissance
constante

Couple genere

Zone de chute
de puissance

\
\
\
\
\
\
\
\
\
Vitesse du rotor ~ “F

FIGURE 1.5: La relation couple-vitesse.

Lorsque la vitesse augmente, la force contre-électromotrice augmente également. Alors, un avan-
cement de l’angle de conduction est nécessaire pour atteindre le courant désiré avant que le rotor
et le stator ne commencent & se chevaucher. Le courant désiré est une fonction de la vitesse et
de Uétat de charge. Etant donné qu’aucun courant arraché n’apparait au cours de Uangle d’arrét,
seule la commande de 'angle peut étre utilisée a ce stade, de sorte que le couple ne peut pas étre
maintenue constant, causant sa diminution linéaire pendant que la vitesse augmente. Dans la
région de puissance en baisse, lorsque la vitesse augmente, l’angle de conduction ne peut pas étre
avancé plus loin. En raison de la chute rapide de couple, la puissance ne peut étre maintenue et
le courant de queue de la bobine de phase s’étend a la région de couple négatif. Le courant de
queue ne peut méme pas tomber a zéro. Dans le fonctionnement & grande vitesse, la conduction
du courant continu dans la bobine de phase peut augmenter le courant de phase et la densité de

puissance peut étre augmentée.
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1.3 Le probleme de la commande sans capteur

Comme mentionné précédemment , les machines a réluctance variable sont attrayantes car elles
sont fiables, relativement pas cher et elles produisent un couple élevé a bas vitesse. Ces caracté-
ristiques les rendent aptes a des fins différentes, notamment pour les applications a utilisation
direct et pour l'actionnement des robots, ot la position et la vitesse de joints doivent étre contro-
lées. Toutefois, ce type de machine n’est pas facile a controler, méme sous des hypothéses expé-
rimentalement validées conduisant o des simplifications. Tout d’abord, le modéle dynamique est
fortement non linéaire par exemple, le couple électromagnétique est généré par une fonction com-
plexe des courants électriques et de la positions du rotor. Deuxiémement , les méthodes indirects
de détection pour les variables mécaniques qui soient fiables et précises sont fondamentales dans
le développement des moteurs a réluctance de codt basset de haute-performance. D’une part,
lutilisation de capteurs mécaniques augmente le cotdt de la mise en place et d’autre part, des
capteurs de vitesse sont souvent contaminées par du bruit. Par conséquent, éviter ['utilisation de
capteurs de vitesse et de position angulaire, qui est bien connu comme contréle sans capteur,

est au-dela de l'intérét purement théorique.

1.4 L’état de l’art et les objectives de la recherche

1l existe une riche littérature sur le contréole adaptatif sans capteur sur les autres catégories de
machines électriques. Par exemple, dans [4] un observateur adaptatif de flux, vitesse, couple de
charge et la résistance électrique d’un moteur a induction est présenté et la stabilité pratique
basée sur la théorie de Lyapunov est garantie, la validation expérimentale est méme présentée.
Dans [5] est présenté un observateur adaptatif a grand gain qui n’est fourni que par les mesures
de courants et tensions pour le moteur synchrone a aimants permanents, cet observateur estime
la vitesse du rotor, la position, la résistance du stator et le couple de charge. Dans [6], un contré-
leur de vitesse sans capteur pour des moteurs synchrones a aimants permanents est con¢u par
la combinaison d’un contréleur de retour robuste avec des actions intégrées et un observateur
d’adaptation interconnecté, des conditions suffisantes sont données afin de prouver la stabilité
pratique de la boucle fermée. Un controleur et un observateur & mode glissant avec retour de
sortie sont congus pour entrainer le moteur a induction sans l'aide de capteurs ni de fluz ni de
vitesse, des propriétés de stabilité sont garanties sur la base de la théorie de Lyapunov et des
preuves expérimentales sont ainsi présentés. Une intéressante comparaison entre l'observateur
de cascade et l'observateur a grand gain pour le contrdle sans capteur du moteur & induction est
présente dans [7] et dans [8]. En ce qui concerne le moteur & réluctance variable, il existe un
grand nombre d’approches de controle et d’identification qui sont basées sur l’euristique et validés
expérimentalement . Ces derniéres avec des objectifs différents de contréle : contréle de couple
et de flux -[9], controle de vitesse -[10], estimation d’état -[11], identification de paramétres -
[12]. Une comparaison de deux stratégies de controle qui permettent a la machine & réluctance

variable de fonctionner en large plage de vitesse, est présenté dans [13]. En outre, l'auteur dans
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[14] décrit une architecture optimisée basée sur un partitionnement matériel/logiciel, la straté-
gie proposée atteint ondulations inférieures de courant et de couple dans une large gamme de
vitesse. Les auteurs de [15] présentent un contrdle sans capteur pour les moteurs o réluctance
variable basés sur le contréle direct de couple. Diverses design et réalisations expérimentales
des observateurs de Luenberger pour position mécanique sont présentés dans [16] et dans [17],
ot les mesures de tensions et courants sont les seules entrées disponibles a [’observateur. Une
approche intéressante apparait dans [18]; ou, sans 'aide de capteurs optiques ou magnétiques,
les informations stockées de la caractéristique magnétique est utilisée afin d’élucider la position
mécanique, la méme approche est présentée dans [19]. Une transformation de coordonnées du
systéme de courants de phase est utilisé dans [20] pour concevoir un observateur de position, des
résultats expérimentaur sont également présentés. Certains travaux sur le contrdle non basé sur
modéle a été ainsi déclarée, dans [21] et dans [22] algorithmes de contréle sans capteur basés sur
la logique floue sont décrits et les résultats expérimentaux sont présentés. Dans [23] des réseaux
neuronaur ont €té utilisés pour prédire la position en utilisant l'inductance et des données de
courant de phase sont utilisés par un deuxiéme réseau de neurones qui fournissent un courant
de référence et minimise les ondulations de couple. De méme, dans [24], un réseau neuronal de
propagation avec pré-traitement d’entrée est utilisé pour estimer la position du rotor du MRV.
Pour le controle entierement sans capteur, dans [25] un contréleur est présenté ou la position
et la vitesse sont obtenues a partir d’informations sur liaison de fluz et courants de phase (pas
d’analyse de la stabilité). Dans cette avenue, observateurs 4 mode glissant sont communs, par
exemple, le papier [26] régle le probléme d’estimation de vitesse et de position, d’autres travaux
sur observateurs a mode glissants sont [26-28] ou des résultats expérimentaur sont méme inclus.
Enfin, une revue intéressante sur commande sans capteur pour MRV est donnée dans [29] et,
particuliérement sur le contréle de position sans capteur, dans [30]. Une variété d’approches pour
la commande sans capteur dans la littérature est donnée dans [31]. Cependant, pour le meilleur
de la connaissance des auteurs, des articles sur le contréle des moteurs a réluctance variable
en incluant une analyse rigoureuse de la stabilité, en particulier dans un contexte sans capteur
(et encore moins dans lincertitude paramétrique) sont rares, méme que pour ad hoc solutions
basées sur des méthodes telles que le contrdle de modele prédictif - [32]. Le résultat principal
dans [33] garantit la stabilité asymptotique globale pour un contréleur basé sur passivité dans le
cas de charge mécanique inconnue, mais il fait usage de deux variables mécaniques, vitesse et
position. Un contréleur du type PID est proposé dans [34] mais il relaie sur la connaissance de
la charge de couple. Dans [35] les auteurs considérent seulement la dynamique de rotor qui est, il
est supposé que les courants sont entrés de commande physique valides. Dans [36] un controleur
non linéaire utilisant un schéma similaire est présenté cependant, les auteurs supposent que la
charge de couple mécanique est connue et le modéle inclut frottement visqueux; Ce qui facilite
considérablement 'analyse de stabilité. En dépit d’un certain nombre d’articles sur le contréle des
machines a réluctance variable via retour complet d’état - [33, 37-39] et retour partielle d’état -
[10, 40] , il est intéressant de remarquer que l’absence d’analyse dans un contexte sans capteur
n’est certainement pas le cas pour d’autres machines électriques tels que les moteurs a induction

- woir [41, 42/, ou machines synchrones a aimants permanents - [43, 44].
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Les travaux expérimentaux sur le controle de MRV est présent dans la littérature consultée, par
exemple dans [45] la tension de chaque phase d’exécution et le signal de courant de référence sont
utilisés en tant qu’entrées dans un systéme neuro-flou d’apprentissage pour obtenir la vitesse du
rotor, alors, la position du rotor est déterminée par intégration de la valeur estimée de la vitesse.
Les résultats expérimentauxr montrent que la position du capteur de vitesse et le rotor virtuel
proposé peut fonctionner dans un systéme de controle sans capteur pour le moteur a réluctance
variable. Dans []6] sont réalisés des essais expérimentaux sur la base d’une approche de modéli-
sation par éléments finis. Dans [47] un dispositif de commande en fonction d’un compensateur de
type neuro-flou est proposé en plus d’un contréleur proportionnel-intégral. Dans [48] un systéme
de controle de vitesse du MRV en utilisant un controleur de logique floue est présenté et la perfor-
mance est étudiée expérimentalement o différentes conditions de fonctionnement. Une technique
de recherche en table est proposée dans [49] pour contréler la tension de sortie d’un générateur
a réluctance variable. Néanmoins, en dépit de l'importante quantité de littérature trouvée, aucun
d’entre eur comprenait une démonstration rigoureuse de la stabilité, ce qui est une contribution

importante de ce travail.

‘objectif principal de ce travail est de proposer des alternatives a la commande sans capteur du
MRV méme que d’établir des conditions précises pour garantir différents types de stabilité. Afin

d’atteindre cet objectif, nous avons divisé le travail en plusieurs objectifs spécifiques :

1. concevoir un dispositif de commande pour le MRV en supposant que seulement le couple

de charge et la vitesse mécanique ne sont pas connus;

2. concevoir un dispositif de commande pour le MRV sous ’hypothése que, en plus de la charge

de couple et de la vitesse, tous les paramétres physiques sont également inconnus ;

3. concevoir un controleur basé sur une nouvelle approche de modélisation du moteur a réluc-

tance variable qui est appropriée pour le design de controleurs basés en observateur.

1.5 La solution proposée et les contributions

D’une maniére générale, notre méthode de conception de contréle est dépendant de la possibilité
de séparer le modéle de la machine en ses composants électriques et mécaniques. La génération
du couple est obtenue en suivant l’approche de couple couple présenté dans [34] avec le but
de réduire ’ondulation qui apparait dans les variables mécaniques & cause de la commutation
électriqgue. Une premiére boucle de commande est con¢ue pour orienter les courants de stator
a une référence” souhaitée qui peut étre comsidérée comme une entrée virtuelle de commande
pour la dynamique mécanique. Puis, une boucle “externe” de controle comprenant un controleur
de type PID est congue, sans doute, la plus fréquemment utilisée dans la pratique. Nous avons
utilisé deux différents modeles mathématiques, le premier introduit dans [34] surnommé dans

ce travail g-modéle et le second surnommé p-modéle qui est introduit dans [50] et est inspirée
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par les idées exprimées dans [51]. Pour le g-modéle nous avons proposé un premier controleur
qui font usage de la position mécanique, du courant électrique et des paramétres physiques et
un second controleur qui uniquement prend en compte la position et les courants ; la vitesse, les
paramétres et le couple de charge sont assumés inconnus. Le p-modéle est plus intéressant, car il
est propice a la commande basée sur observateur. Pour ce dernier modéle, nous avons proposé un
controleur basé sur ’hypothése que la position, la vitesse et le courant électrique sont disponibles

et les parametres physiques sont connus.

1l est important de souligner que méme si la technique d’ajouter un filtre de la dérivée de la posi-
tion pour connaitre la vitesse n’est pas nouvelle, autant que nous savons, une analyse rigoureuse
de la stabilité n’est pas encore présente dans la littérature. Ici, seront présentées les analyses
de stabilité pour les trois contréleurs concus en textbf supposant que les paramétres physiques
et que les mesures de vitesse et de couple de charge, en tant qu’inconnus, sont une nouveauté
pour la théorie de contréle de ce type de moteurs. D’autre part, il a été noté que le p-modele n’a
pas été largement utilisé. C’est pour quot, dans ce travail, sont exploités les avantages qu’il offre
pour la conception de commande. Une autre contribution importante de ce travail est la mise en
ceuvre d’expériences physiques sur les contréoleurs congus. Cela a été réalisé dans le Département

d’Ingénierie de I’Université Nationale Autonome du Mezique

Ce travail présente donc la conception, l'analyse, les simulations numériques et les résultats
expérimentaur obtenus pour les preuves de différents controleurs du moteur a réluctance variable.
Tout d’abord, les paramétres physiques sont supposés comme connus. La vitesse, quant a elle
inconnue, est obtenue a travers un filtre dérivatif de la position. La stabilité exponentielle globale
uniforme de l'origine est alors atteinte dans ce cas. Ensuite, il a €té supposé qu’en plus de
la vitesse les paramétres physiques soient aussi inconnus. Ainsi, un controleur d’équivalence
positive a été utilisé afin de réussir le suivi de vitesse et l’estimation des paramétres. La stabilité
asymptotique globale uniforme est établie sur la base d’une loi d’adaptation de type gradient et
sur une condition de persistance d’excitation. Enfin, une nouvelle approche de modélisation est
utilisée pour exprimer la dynamique mécanique du MRV, ie cette dynamique est décrite dans un
nouveau systéme de coordonnées. Dans ce dernier cas, la stabilité exponentielle globale uniforme
est réussie en supposant que les paramétres sont comnus et que tout [’état est mesuré. Il est
important de préciser que ce dernier controleur est une premiére étape vers un travail en cours sur
la commande basée a observateur. Dans chaque cas, les conditions suffisantes ont été crées pour
garantir que la stabilité soit exponentielle, asymptotique, globale, ou uniforme selon les hypothéses
imposées. En outre, les résultats des expériences physiques effectuées permettent d’évaluer le

comportement des controleurs congus.
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Chapter 2

The Switched Reluctance Motor

The switched reluctance motor is an electric motor in which torque is produced by the tendency
of its rotor to move towards a position where the inductance of the excited winding is maximized.
The origin of the reluctance motor can be traced back to 1842, but the “reinvention” has been
possibly due to the advent of inexpensive, high-power switching devices. The reluctance motor
is a type of synchronous machine. It has wound field coils of a DC motor for its stator windings
and has no coils or magnets on its rotor. Both the stator and rotor have salient poles; hence,

the switched-reluctance motor is a doubly salient machine [1].

It has several advantages that make it an important competitor among other widely used ma-
chines, such as direct-current motors, induction motors or even synchronous motors. We can
point out its simple and low cost construction and the advantage that bidirectional currents are
not necessary. Moreover, thermal losses appear only in the stator, which in fact is easier to
cool down. Another important advantage is the speed-torque characteristic which is adjustable,
making it possible to obtain high torque at low speed, thereby avoiding the use of gear boxes.
It is also possible to make use of these motors at high temperatures and speed in comparison to

other motors such as permanent magnet motors.

However, argl the switched-reluctance motor also presents some disadvantages. The double
saliency construction and the discrete nature of torque production by the independent phases
lead to higher torque-ripple compared to other machines. The higher torque ripple, and the need
to recover energy from the magnetic flux, also cause the ripple current in the DC supply to be
quite large, necessitating a large filter capacitor. The doubly salient structure of the switched-
reluctance motor also causes higher acoustic noise compared to other machines. The main source
of acoustic noise is the radial magnetic force induced. Thus, higher torque ripple and acoustic
noise are the most critical disadvantages of the SRM. After all, the SRM advantages are heavier
and the SRM has a wide field of application in general purpose industrial drives, compressors,
fans, pumps, centrifuges, food processors, washing machines, vacuum cleaners. It is even present

in the emerging electric vehicle industry and aircraft applications.

11
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A deep study of the physics of the switched-reluctance motor is beyond of the scope of this
thesis, (we invite interested readers to find further information in [3] and [2|, among others).

However, we present, next, a brief description of the operation principle of this popular machine.

2.1 Construction and operation

The switched-reluctance motor is among the simplest motors regarding its construction, the basic
structure consists in a wound stator and an iron rotor that is neither wound nor magnetized. The
rotor basically consists in a piece of laminated iron shaped to form salient poles. The stator poles
are also salient and, furthermore, they are wound on radially opposite poles. Each stator phase
is made up of concentrated coils placed on stator poles. Among many more options, the most
common configurations are the 8-rotor/9-stator poles 4-phases motor and the 6-rotor/4-stator

poles 3-phases motor, which is shown in Figure 2.1.

FIGURE 2.1: Schematic of a 6/4 3 phases switched-reluctance motor.

Assume that the rotor poles r2 and 72’ and stator poles ¢ and ¢ are aligned, as it is shown in
Figure 2.2-(1). If an electrical current is applied through the phase a — a’ , a magnetic flux is
induced through the stator poles a — a’ so the rotor poles r1 and r1’ tend to move toward the
stator poles a and a’ as it is shown in Figure 2.2-(2). Once they are aligned, the stator current
of phase a is turned off. Then, the stator winding b — b’ is excited, pulling 72 and r2’ toward b
and b/, in a counter clockwise direction, as illustrated in Figure 2.2-(3). Likewise, energization
of phase ¢ — ¢ results in the alignment of r1 and 1’ with ¢ and ¢ (note the feeding sequence
a-b-c). Hence, it takes three phase energization in sequence to move the rotor by 60 degrees and
one revolution of rotor is effected by performing the a-b-c sequence as many times as there are
number of stator poles. The switching of currents in the sequence a-c-b results in the reversal of

rotor rotation.
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FIGURE 2.2: Operation of a switched-reluctance motor (1)-Phase ¢ aligned (2)-Phase a aligned
(3)-Phase b aligned (4)-Phase ¢ aligned.

On the other hand, the inductance in the SRM depends on the mechanical position. For instance,
assume that phase a in Figure 2.3 is fed, when stator and rotor are completely misaligned (rotor
between ¢; and ¢4) a minimum in the inductance is achieved; likewise, when rotor and stator
are aligned (rotor between go and ¢3) we have a maximum, such behavior is depicted in the

following figure

FI1GURE 2.3: Inductance as function of mechanical position.

1. 0—q1: The stator and rotor poles do not overlap in this region and the flux is predominantly
determined by the air path, making the inductance minimum and almost constant. Hence,
this region does not contribute to torque production. The inductance in this region is

known as unaligned inductance L,,.

2. g1 —qo: The poles overlap, so the flux path is mainly through stator and rotor laminations.
This increases the inductance with the rotor position, giving it a positive slope. A current
impressed in the winding of this region produces a positive (i.e., motoring) torque. This

region comes to an end when the overlap of poles is complete.

3. g2 — q3: During this period, movement of rotor pole does not alter the complete overlap
of the stator pole and does not change the dominant flux path. This has the effect of
keeping the inductance maximum and constant, and this inductance is known as aligned

inductance L,. As there is no change in the inductance in this region, torque generation is
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zero even when a current is present in this interval. In spite of this fact, it serves a useful
purpose by providing time for the stator current to come to zero or lower levels when it is
commutated, thus preventing negative torque generation for part of the time if the current

has been decaying in the negative slope region of the inductance.

4. q3 — q4: In this region the rotor pole moves away from overlapping the stator pole. This
is very much similar to the g1 — ¢o region, but it has decreasing inductance and increasing
rotor position contributing to a negative slope of the inductance region. The operation of
the machine in this region results in negative torque (i.e., generation of electrical energy

from mechanical input to the switched reluctance machine).

As aconsequence of saturation , it is not possible to achieve the ideal inductance profiles shown
in Figure 2.3 in an actual motor. Saturation causes the inductance profile to curve near the top
and thus reduces the torque constant. Hence, saturating the machine beyond a point produces

a diminishing return on torque and power output.

2.2 Induction of mechanical torque

The dependence of torque production on magnetic saturation , coupled with the effects of fringing
fields and the classical fundamental square wave excitation result in nonlinear control character-

istics for the reluctance motor.

The mechanical torque of electrical origin (electromagnetic torque) is produced due to the ten-
dency of rotor poles to align with the excited stator phase. The rotor shifts to a position where
reluctance is minimized and inductance is maximized, the relationship between inductance and
torque production according to rotor position is shown in Figure 2.4. For a constant positive
current, positive torque is produced when inductance increases, no torque is produced when
inductance remains constant and, finally, negative torque is produced when the inductance de-
creases, based on this behavior, it is possible to select the switch on and off regime to produce

torque and movement.

The torque-speed characteristic of a switched-reluctance motor is shown in (2.5), based on dif-
ferent speed ranges, the motor torque generation has been divided into three different regions:

constant torque, constant power and falling power region.

The base speed wp is the maximum speed at which maximum current and rated torque can
be achieved at rated voltage. Below wpg, the torque can be maintained constant or control the
fat-top phase current. At lower speed, the phase current rises almost instantly after the phase
switches turn-on since the back-electromagnetic force is small at this time. So it can be set
at any desired level by means of regulators (hysteresis or pulse-width modulation controller).
Therefore, the adjustment of firing angle current can reduce noise and improve torque ripple or

efficiency.
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FIGURE 2.4: Torque and inductance as function of mechanical position.
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As speed increases, the back-EMF also increases, then an advanced turn-on angle is necessary
to reach the desired current before rotor and stator start to overlap. The desired current is a
function of the speed and load condition, since no current chopping appears during the dwell
angle, only the angle control can be used at this stage so the torque cannot be kept constant
and is falling linearly as speed is increasing. In the falling power region, as speed increases, the
turn-on angle cannot be advanced further. Due to the faster fall of torque, the power cannot be
maintained and the tail current of the phase winding extends to the negative torque region. The
tail current may not even drop to zero. In the high speed operation, the continued conduction
of current in the phase winding can increase magnitude of phase current and the power density

can be increased.
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2.3 The sensorless control problem

As previously mentioned, switched-reluctance machines are attractive since they are reliable,
relatively cheap and they produce high torque at low speed. These characteristics make them
suitable for different purposes, among others for direct-drive and actioning robots applications,
where position and velocity of joints must be controlled. However, this kind of machine is not
easy to control; even under experimentally-validated assumptions leading to some simplifications.
Firstly, the dynamic model is highly nonlinear e.g., the generated electromagnetic torque is a
complicated function of the electric currents and rotor positions. Secondly, reliable and accurate
indirect sensing methods for the mechanical variables are fundamental in the development of
low-cost, high-performance switched-reluctance motors. On one hand, the use of mechanical
sensors increase the cost of the set-up and on the other, velocity sensors are often contaminated
with noise. Therefore, avoiding the use of angular velocity and position sensors which is well

known as sensorless control, is beyond pure theoretical interest.

2.4 State of the art and objectives of research

Literature on sensorless adaptive control on other class of electrical machines is rich. For in-
stance, in [4] an adaptive observer of flux, velocity, load torque and resistance of an induction
motor is presented and practical stability based on Lyapunov theory is guaranteed, experimental
validation is presented as well. In [5] is presented an adaptive high gain interconnected observer
which is only supplied by the measurements of electrical currents and voltages of the permanent
magnet synchronous motor, this observer estimates the rotor speed, the position, the stator

resistance and the load torque.

In [6], a sensorless speed control for interior permanent magnet synchronous motors is designed
by combining a robust back-stepping controller with integral actions and an adaptive intercon-
nected observer, sufficient conditions are given to prove practical stability of the closed-loop. A
sensorless output feedback sliding-mode controller and observer are designed in order to drive the
induction motor without using neither flux nor speed sensors, stability properties are guaranteed
based in Lyapunov theory and experimental runs are presented as well. An interesting cascade
and High-Gain Observers Comparison for Sensorless control of induction motor is presented in

[7] and in [8].

Concerning the switched-reluctance motor, there exists a large number of efficient heuristically-
based and experimentally-validated identification and control approaches with different control
objectives: torque and flux control —[9], velocity control —[10], state estimation —[11], parameters
identification —[12|. A comparison of two control strategies, that allow the switched-reluctance
machine to operate in wide-speed-range, is presented in [13]. Moreover, in [14] is described
an optimized architecture based on a hardware/software partitioning, the proposed strategy

achieves lower current and torque ripples in a large speed range. etc.
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The authors of [15] presented a sensorless control for switched-reluctance motors based on direct
torque control. Designs and experimental implementations of Luenberger-type observers for
position are presented in [16] and in [17], where measurements of voltages and currents are the
only available inputs to the observer. An interesting approach appears in 18], where without
using optical or magnetic sensors, stored magnetic characteristic information is utilized in order

to elucidate the mechanical position, the same approach is presented in [19].

A coordinate transformation of the current phases system is utilized in [20] to design a position
observer; experimental result are also presented. Some work on non model-based control has
been as well reported, in [21] and in [22] fuzzy logic-based sensorless control algorithms are
described and experimental results are presented as well. In [23] neural networks have been
applied to predict position from inductance and phase current data and a second neural network
provides a current reference that minimizes torque ripple. Likewise, in [24] an improved back
propagate neural network with inductance input pretreatment for the rotor position estimator

of switched-reluctance motor is proposed as well as a sensorless control algorithm.

For fully sensorless control, in [25] is given a controller where position and velocity are obtained
from information about flux linkage and phase currents (no stability analysis). In this avenue,
sliding mode observers are common, for example, paper [26] deal with the velocity and position
estimation problem, other works on sliding mode observers are [26—28] where experimental results

are also included.

Finally, interesting review on sensorless control for switched-reluctance motor is given in [29]
and, particularly on position-sensorless control, in [30]. A variety of approaches for the sensorless

commutation as reported in the literature is given in [31].

However, to the best of the authors knowledge, articles on control of switched-reluctance drives
that include a rigorous stability analysis, especially in a sensorless context (let alone under para-
metric uncertainty), are rare. Certainly the same holds for ad hoc solutions based on methods

such as model-predictive control —[32].

The main result in [33] establishes global asymptotic stability for a passivity-based controller
in the case of unknown load but it makes use of both mechanical variables, angular velocity
and position measurements. A proportional-derivative-based controller is proposed in [34] but it
relays on the knowledge of the torque load. In [35] the authors consider only the rotor dynamics
that is, it is assumed that the currents are valid physical control inputs. In [36] a nonlinear
controller using a similar scheme is presented however, the authors suppose that the mechanical
load-torque is known and the model includes viscous friction; This which eases considerably the

stability analysis.

In spite of a number of articles on control of switched-reluctance machines via full state feedback
—[33, 37-39] and partial state-feedback —[10, 40|, it is worth remarking that the lack of analysis
in a sensorless context is certainly not the case for other electrical machines such as induction

motors — see [41, 42|, or permanent-magnet synchronous machines —[43, 44].
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Experimental work on control of switched-reluctance motor is present in the consulted literature,
for instance in [45] the voltage from each conducting phase and the reference current signal are
used as inputs to a neurofuzzy learning system to obtain the rotor speed, then, the rotor position
is determined by integrating the estimated value of speed. The experimental results show that
the suggested “virtual” speed sensor and corresponding rotor position can operate well in a
sensorless switched-reluctance speed control system. In [46] experimental tests are performed
based on a finite-element modeling approach. In [47] is proposed a controller based on a neuro-
fuzzy compensator in addition to a proportional-integral controller. In [48] a speed control scheme
of the switched-reluctance motor using a fuzzy logic controller is presented and the performance
is investigated experimentally at different operating conditions. A “Lookup Table” technique is
proposed in [49] to control the output voltage of a switched reluctance generator. Nevertheless,
in spite of the large literature found, none of them included a rigorous proof of stability, which

is an important contribution of the present work.

The main objective of this work is to offer some alternatives to the sensorless control of the
switched-reluctance motor and to establish precise conditions to guarantee different kinds of
stability. In order to accomplish this objective, we have split the work in several particular

objectives:

1. to design a controller for the switched-reluctance motor under the assumption that only

load torque and velocity are unknown;

2. to design a controller for the switched-reluctance motor under the assumption that, in

addition to load torque and velocity, all the physical parameters are also unknown;

3. to design a controller based on a new modeling approach of the switched-reluctance motor

which is suitable for observer based control.

2.5 The proposed solution and contributions

Generally speaking, our control-design method relies on the ability to separate the machine model
into its electrical and mechanical components. Torque generation is achieved by following the
torque-sharing approach of [34| with the aim of reducing the ripple in the mechanical variables
that appears due to the electric commutation. A first control loop is designed to steer the
stator currents to a desired ‘reference” that may be regarded as a virtual control input for
the mechanical dynamics. Then, an “outer” control-loop is designed including a controller of

proportional-integral-derivative type, probably the most often used in control practice.

We have used two different mathematical models, the first one introduced in [34] called the
g—model and the second one called p—model is introduced in [50] which is inspired by ideas

expressed in [51].
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For the g—model we proposed a first controller which make uses of position, current, parameters
and a second controller which only considers position and current knowledge, that is velocity,
parameters and load torque are unknown. The p—model is more interesting, this because it
is suitable for observer-based control. For this model, we proposed a controller based on the
assumption that position, velocity and electrical current are available and physical parameters

are known.

It is important to point out that even when the technique of adding a derivative filter to the
position in order to “know" the velocity is not new, to the best of our knowledge, a rigorous
analysis of stability is not present in the literature on switched-reluctance motor; we present
here stability analyses for the three designed controllers. Furthermore, assuming both
physical parameters and velocity measurements as unknown in addition to load torque
is new in the context of control theory of this kind of motors. On the other hand, the so called
p—model has not been widely utilized and in this work we exploit the advantages that it offers

for control design.

Another important contribution of this work is the physical implementation of the de-
signed controllers, this was carried out in the department of Engineering at the National

Autonomous University of Mexico.

We present the design, analysis, numerical simulations and physical experiments under several
scenarios of different sensorless controllers for the switched-reluctance motor. Firstly, we as-
sume that the physical parameters are known and that unknown velocity is obtained trough
a derivative filter of the position,uniform global exponential stability of the origin is achieved
in this case. Secondly we assume, in addition, that the physical parameters are unknown. We
use a certainty-equivalence controller to achieve velocity tracking and parameters estimation.
Uniform global asymptotic stability is established, based on a gradient-type adaptive law and on
a persistency of excitation condition. Finally, a new approach of modeling is used to express the
mechanical dynamic of the switched-reluctance motor , i.e. this dynamic is described in a new
set of coordinates, in this last stage uniform global exponential stability is achieved assuming
that the parameters are known and the whole state is measured. We must clarify that this last
control is a first step towards an ongoing work on observer based control. In each case, we give
sufficient conditions to guarantee either uniform global exponential stability or uniform global
asymptotical stability depending on the imposed assumptions. Moreover, we present the results
of several physical experiments performed in order to evaluate the behavior of the designed

controllers.
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Chapter 3

Velocity Sensorless control via a PI2D

type controller

Velocity control of electrical machines is important in a variety of applications. In this chapter
we present the design and analysis of a robust adaptive velocity-sensorless controller for the
switched-reluctance motor. For clarity of exposition, we present a first result on robust stabi-
lization where only the rotor inertia and load torque are considered as unknown. Then, in a
second stage, we assume that the rest of physical parameters are unknown (stator inductances

and resistance). Finally we incorporate an adaptation law for the electrical parameters.

3.1 A general model

Under the experimentally justified and widely accepted assumption that the stator phases are
magnetically decoupled, (the mutual inductance between stator phases can be neglected) a general

mathematical model for the m-phases switched-reluctance motor is given by:

(g, ) + Rx; = u, (3.1a)
Jw = T.(q,x) - Tr(g,q) (3.1b)
i = w (3.1c)

where j = {1,2...,m} with m the number of phases, u; is the voltage applied to the stator
terminals, x; is the stator electrical current, v; is the linkage flux, ¢ and w are respectively the
angular rotor position and velocity, 717, is the load torque, R is the stator winding resistance
and J is the total rotor and load inertia. T¢(g, ) is the mechanical torque of electrical origin
(electromagnetic torque); note that it depends on both the angular position ¢ and the electrical

currents .

21
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The structure of model (3.1) is quite general and applies to several versions for complete and
simplified models found in literature. What makes a difference among them, is the considered
structure of the linkage flux ¥;(g,z). Also note that Equation (3.1a) describes the behavior
of the electrical variables while Equations (3.1b)-(3.1c) describe the behavior of the mechanical

variables and correspond to a linear differential equation in ¢, ¢ with inputs T(q, z) and T7.(q, q).

3.2 A saturated-flux model

In this section we present a mathematical model that takes into account the magnetic flux sa-
turation phenomena, that is, the flux does not exceeds a threshold regardless electric current
increases indefinitely —see Figure 3.1. This behavior can be described in different ways, we use
the saturated model presented in [52] and [53], where the saturation phenomenon is described

by an exponential -type function.

Vi(gq, z5) = s (1 - ffj(q)“cj) ; (3.2)

for the electrical current z; > 0 with j as defined in previous section. The constant 15 denotes
the saturated flux linkage and f;(q), known as the winding inductance, is a strictly positive

periodic function commonly represented by a Fourier series as

fila) = a+m§:1 {bmsin <mNTq— (- 1)%”) + e, cos (mqu . 1)2§>}'

N, denotes the number of pole pairs. The parameters a, b,, and ¢, are constant positive reals,
it is important to mention that the function f; reflects the behavior of the inductance described
in Section 2.1-Figure 2.3. A scheme of the linkage flux ¥ (g, z) expressed in (3.2), considering a
positive fixed winding inductance f(j(q)) € [Lu, La], is depicted in the following figure:

ws 77777777777

saturating current

Linkage flux 1;

Electrical current x;

FIGURE 3.1: The current-linkage flux relationship.
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On the other hand, as a result of the decoupled behavior, the torque of electrical origin, T¢(q, x),

results from the contribution of each stator electric current that is,

T.(g,) = 3 T30 )
j=1
where
Ti(0.)) = 5 W (0.2 (33)
and i
Wila.a) = [ wy(a.2))da. (3.4)

is the magnetic co-energy at each winding. Hence, taking into account (3.2), (3.3) and (3.4) the

electromagnetic torque at each phase results in

% afj (Q)
f3(a) Oq

Ty(a,)) = {11+ aif(@exp=h @} (3.5)

which clearly illustrate the complexity and nonlinear nature of the model.

Expression (3.2) enjoys two attractive features, namely, it accounts for magnetic saturation and,
from a mathematical perspective, it is a continuous function. Its main disadvantage lies in the
fact that the resulting electromagnetic torque T¢ defines a not invertible map z; — Tj, -see
Equation (3.5).

Remark 3.1. From (3.2), notice that if the current winding x; is positive and bounded then the
fluz linkage is also positive and bounded. In fact, the mazimum value that the flux can reach is

the saturation value .

From (3.5), the assumed positivity of stator currents and the positivity of the nonlinear induc-
tance f;(q), the torque sign is only determined by the term (0f;(q)/0q), i.e., the variation of
fj(g) with respect to rotor position g. This property agrees with the physical behavior of the
motor and will be fundamental in the definition of the sharing functions -see torque sharing

technique in page 28.

3.3 A simplified model in conventional coordinates

The mathematical model presented in Section 3.2 accounts for magnetic saturation but it leads
to the definition of a non-invertible z; — T; map (3.5). Therefore, the inductance of each phase
fj is now expressed as a strictly positive Fourier series truncated at the first harmonic, L;(q)
—see [33, 54]; this implies that

¥(q, x) = L(q)z. (3.6)
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Where the winding inductance matrix L(q) = diag {L;(q)} is positive definite and each entry is
defined as

. 2
Li(q) = ¥€o—{icos <qu - (- 1)§>’

and 5
L; . . 2T
Kj(q) = a—qj = N, {1 sin (qu —(j - 1)?)
corresponds to the phase-inductance variation relative to the rotor angular position. Constants

ly > f1 > 0 and N, is the number of rotor poles. It is clear that
0 < b < |Li(@)] < lare K5(0)] < . (3.7)

for some positive constants I,,, [y and ks

Under such definitions, after (3.1a) and (3.6), a simplified mathematical model for the switched-

reluctance motor is given by

L(¢) + K(¢)Jwzx + Rx = wu (3.8a)
Jw = Te(qv‘r) - TL(Q»Q) (38b)
i = w (3.8¢)

Variable u is a column vector denoting the voltage applied to the stator terminals, x denotes
the stator currents column vector, ¢ and w are respectively the rotor position and velocity, R
denotes the stator winding resistance, J is the total rotor inertia. The load torque 77, and the

mechanical torque of electrical origin T.

Considering the decoupled behavior of stator windings, the mechanical torque T, corresponds

to the sum of torques T} produced by m phases, that is

1
Te =) 5Ki(0)z]. (3.9)
j=1

This model is adopted in both the electrical-machines and the control research communities —cf.
[54].

3.4 The control problem and its solution

The control problem for the simplified model of the switched-reluctance motor is to design a
dynamic controller whose output u = [u1 ug u]', depending only on measurements of the
stator currents « and rotor angular positions g, stabilizes exponentially the origin e, = 0, that
is to achieve w(t) tracks a desired reference trajectory w*(t), this problem was open until [55].

The control approach consists in applying two control loops, as illustrated in Figure 3.2. The
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first one is an outer loop to robustly stabilize the rotor dynamics via the virtual control input 7.
The second and inner loop is used to stabilize the stator dynamics using currents measurements
to guarantee the tracking control goal T. — T, this is performed through the voltage input,

which is the real control input.

Switched-reluctance

Electrical controller motor_model Ty
( _________ b T 2t -_—
~ | ~ - N

. s *
1(\]/Iecharllllcal CE&(;,;:égtc T, | Feedback ul Electrical TE; Mechanical -|—)“’

ontroller reference Controller |" | part part
generation A I | I
l v a I

‘ L

_________ —_ e e e | —

Fi1GURE 3.2: Control approach for the SRM in g—model.

For switched-reluctance motors modeled by (3.8) with torque of electrical origin defined by (3.9),
we solve the velocity sensorless control problem via dynamic feedback control u = [u; ug u3]"
which depends on the stator currents and rotor angular positions. The variable to be controlled

is the rotor velocity w. To that end, we make the following standing hypothesis.
Assumption 3.4.1.

o the wvelocity reference trajectory, denoted w*, is bounded, differentiable almost everywhere

w* 1s piecewise constant;

o the inertia J is unknown and belongs to an interval of known limits Jn,, Jyr t.e., J €
[va JM];

e the load torque Ty, is piece-wise-constant and unknown.

Note that Assumption 3.4.1 is fairly realistic; it comprises the case of piecewise continuous
reference trajectories w* composed of steps and ramps —see the Simulations section. Also, in
contrast to other theoretically-validated results in the literature, we assume that the inertia and

the load-torque are unknown.

3.5 The control approach

We present in detail the two control loops mentioned above. The first one is applied to drive the
rotor speed w, toward its imposed reference w*, through a “virtual input” T,;. The second loop is
designed in order to control the electrical current x and, therefore, the torque of electrical origin
T.. Moreover, we present a model reference adaptive control in case the physical parameters £,

{1 and R are not known.
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3.5.1 Robust control of rotor velocity

Considering T, as an input, the rotor Equation (3.8b) is linear in the state w with a (piecewise)
constant perturbation 77 /J hence, we chose to use proportional-integral-derivative (PID) con-
trol, however, since the velocity w is neither measured nor computed we use the PI?D controller,
introduced in [56] for robot manipulators. Its name comes from the fact that it corresponds to
a modified PID controller; it consists in a correction term proportional to the tracking errors
eq, a “derivative” term proportional to filtered velocities ¥ and a double integral action (where
the notation I? comes from), both on eq and . The PI?D controller is easy to implement, it
conserves the passivity properties of Lagrangian systems and it ensures asymptotic stability pro-
vided a property of detectability holds —see [57|. Moreover, it is model-free which is fundamental
in the present context in which we assume that the physical parameters are unknown. The PI?2D

tracking controller for the rotor dynamics is defined by

P 1?2 D

—~N AN
Ty = —kpeq +v —kq¥ +w* (3.10a
o= —ki(eg— 1) (3.10b

)
)
de = —a(ge+beg) (3.10c)
¥ = q.+beg (3.10d)

where g. is a internal integrator and k,, k;, kq, a, b are the positive control gains and e; = ¢ —¢*

the position tracking error with

70 = [ Wis a0 =g €l (3.11)

Since the variable to be controlled is w, the initial value ¢*(0) is innocuous. Equations (3.10c)
and (3.10d) correspond to the widely-used “approximate differentiation” filter

b .

9= e & U= —al+ be,
p+a

where p is the Laplace variable and e, := w — w* denotes the velocity tracking error. Variable
¥ is not an estimate of the velocity error e, but a filtered version of it; in the limit case, when

the pole is at —oo, ¥ = e, modulo the DC gain b/a.

The following is a preliminary but original result on the stability of the solutions of (3.8b) driven
by the PI?D controller 3.10.

Proposition 3.1. Consider the PPD controller (3.10), let kj, := k, — (ki/e) where € € (0,1),
k; < e and let
T =nTy, n>0. (3.12)
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Then, the solution

(3.13)

{[qw V]T = [q* w* V*]T},

of the system (3.8b), (3.8¢c) with T. = T and under Assumption 3.4.1, is uniformly globally
exponentially stable, provided that

[0 1 0 0 ]
P R -
i —ki —ki/{:‘ kl 0 i

is Hurwitz. Consequently, if T. # T the system is input-to-state stable with input T. := T.—T;.

Remark 3.2. The equilibrium of the closed-loop system for the rotor dynamics depends on the
parameter 1 which, on a case-by-case basis, may be known or unknown. However, the stability
of the equilibrium may be established independently of its value. In Appendix A.1 we show that
the matrix A(n) is Hurwitz for any n € [y, nav] and J € [Jp,, Ju] if

b > [%+1}a+1, K> ka.
Hence, the eigenvalues of A may be made negative by properly choosing the control gains k,, kg

and k; without the knowledge of n and J.

Proof of proposition 3.1. In view of (3.10a) and (3.12), Equation (3.8b) is equivalent to

o N ks n % Ty, Te
W——j[kpeq‘i‘;eq—“kdﬁ +j(l/+w )—7+7
Next, let
k.
zi=v—v"— e, (3.15)
€

where v* is defined in (3.13) then,

et

: n
bw =~ kpeq + kqd — 2| +

So differentiating on both sides of (3.15), using (3.10b) and rearranging terms we obtain the

rotor closed-loop dynamics.
£ = A+ BT,, €:=leqe,vz]" (3.16)

where B = [0 (1/J) 0 0]". Now, the Hurwitz property of A is equivalent to the existence of
P =P" >0 and a constant v such that [PB| < v; such that —(ATP + PA) = Q for a given
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positive definite matrix @), therefore

Vi() = 3£ P (3.17)
satisfies
T,

() < -3¢ Qe+ 2L ae (3.18)

that is, V; is an input to state-Lyapunov function and T, = 0 implies global exponential stability

of {¢ = 0}. The result follows observing that £ = 0 implies that [q w I/]T = [q* w* I/*]T O]

3.5.2 Control of the stator dynamics

Equation (3.16) is valid if and only if (3.12) holds for a given Ty; this is accomplished by solving
T(q,z*) = nTy for * i.e.,

3 3

1 x

3 Z 22 Ki(q) = 1Ty Z m;(q).
i=1 i=1

To that end, we employ the so-called torque sharing technique —cf. [34]. We consider the

commutation smooth functions ¢ — m; such that 2?21 m;(q) = 1 then, we define

. [ 2nTym;

1/2
@ )] vije{1,2,3}

Nr€18j(q

where s;(¢) may be equal to zero and the quotient above may be negative. For 7 to be well-posed
we exploit the physics of the reluctance machine as in [34, 54| and introduce a current-switching

policy as follows. Let the sets

6; = {g € [-m,7) : 5i(q) < 0}

@;r ={q e [-m, 7] :s;(q) >0}

and let

where
mi(qg) >0 Yge O, mi(q)=0 vgeO,

m;(q)>0 VYq € O, m;(q):O Vg€ OT.

Because the functions s; are sinusoids out of phase by 2m/3, for each ¢ and T, there always
exists (at least) one j € {1,2,3} such that

T .
> 0, supM<oo

sj(q)

. Tam;(q)
inf 7Sj(q)
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Furthermore, to make the phase transitions smooth we introduce hysteresis around the switching

condition s; = 0 i.e.,

[ 2 ]”2 [Tdqu)r”
v5(q, Ty) := Nty s5(q)
0 otherwise

if |sj(q)| > 6k (3.19)

where 0f is the hysteresis design parameter. Under these conditions we have TX(q,z*) = 0Ty

so to ensure that T, — 1Ty we must solve the new tracking control problem x — x*.

The rationale behind the design of the tracking controller for the stator dynamics builds on the

observation that under the action of the tracking control law
u=L(q)t" + W' K(q)x + Rx" — kppes, ez =x—2a", (3.20)
the origin of the closed-loop equation
L(q)és + [R+ kpzlex = —K(q)ze,, (3.21)

with zero input (e, = 0) is globally exponentially stable, provided that k,, > 0, since L is
positive definite. Furthermore, the system may be rendered input to state stable from the input
e, provided that the gain k,, dominates over the input “gain” function K(g)x; note that this is
feasible since ¢ and x are measured states. Under these conditions one may invoke a small-gain
argument to establish global exponential stability of the origin of the closed-loop system (3.16),
(3.21).

However, the control law (3.20) is not implementable since #* depends on the unmeasured

velocity w indeed,
a; [pj —|—(5jew} if |s;(q)| > ok

0 otherwise
where, if |s;(q)| > 0k,
1 1/2 1-L/2
o = - |2 Td (3.22)
2 Nrf1 Sj
oy N9 — L. 8Tnj wa*} _ m;jNyc; «
o= |(kaa + k)9 = hieq + 5 T
1 om; m;Nyc;
5~:7[—m-k+kb+ ]T}— G
J s ]( P d ) dq d S? d

otherwise, a; = p; = 6; = 0.

Therefore, we introduce the following control law which is reminiscent of u as defined in (3.20)

except that we drop the term a;dje, in the definition of &* = [&%, @3, @3]T i.e., let

u=L(q)ap+w K(q)x + Rz* — kpze,, (3.23)
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where o = diag {a1, az, a3}, p = [p1 p2 p3]" and 6§ = [6; 82 03]". Therefore, (3.23) is equivalent
to

u=L(q)i" + w*K(q)x + Rx* — kpye, — L(q)ade,,. (3.24)

The closed-loop Equation (3.8a) with (3.24) yields
L(q)ér = — [R+ kpz] ez — [K(q)ac + L(q)a&] €w (3.25)

which is also reminiscent of a perturbed linear system with stable drift; in this case the input

gain is given by

g9(t,z,y) = | K(q(t)z + L(Q(t))a(tay)5(t7y)] (3.26)

in which we underline the dependence of « and ¢ on w*(t), ¢(t) and the measurable output

. m; . .
Y= [eqﬁy]T. Moreover, since L, K, mj, ——2 and w* are uniformly bounded, there exists a

non-decreasing function v : Ry x Ry — R, such that

l9(t, 2, y)| < 2 (|yl|=]) -

Note that vo depends on 775y > 17 but not on the constant n. Thus, it may be established that
(3.25) is input-to-state stable with respect to the input e,,, for an appropriate choice of the gain

kpz depending on vz, hence on |y| and |z|.

3.5.3 Robust control of the switched-reluctance motor

From the previous developments we see that the closed-loop system (3.16), (3.25) consists in
the interconnection of two input-to-state stable systems for which the feedback gains may be

adjusted to ensure global exponential stability under the following hypothesis.

Assumption 3.5.1. (i) Let the control gains and J, which is a constant estimate of J, be such

that the matriz A(J) in (3.14) is Hurwitz for any J € [Jn, Jun] —see Remark 3.2.

(i1) Assume that the stator parameters £y, {1 and R are known.

Proposition 3.2. Consider the system (3.8) in closed loop with the P2D controller (5.10)
under the conditions of Proposition 3.1 and the control law (3.23) where x* = [z} 3 23]T is
defined via (3.19) with n := Je [Jm, Jar]. Let Assumption 3.5.1 hold. Then, there exist a real
number ky, > 0 and a continuous function (w*, Y], 2], |2*]) — Ky, such that kp, (w*, ) s
non-decreasing and

kpx = kjlazv +kllolx(w*v ‘y| ) |$| ’ |x*’)’

with e, == x—x*, the origin {[5, ez] =10, 0]} of the closed-loop system (3.16)-(3.25) is uniformly
globally exponentially stable.
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This result establishes uniform global exponential stability for the closed-loop system, under the
assumption that the gain k,,, in the stator control loop, is a nonlinear function of the measurable
currents and y := [eq ¥ v]T. The proof of the proposition above is presented in Appendix A.2.1,

where a precise expression for k,, is given.

Now we assume that, in addition to J and 77, the physical parameters £y, 1 and R are also
unknown. Let matrix C(q) := diag{c;(q)}, S(¢) := diag{s;(¢q)}, where we recall that c;(q) =
cos (Nrq — (j — 1)3) and s;(q) = sin (Ng — (j — 1)%F). Then, L(q) = b —¢1C(q) and K (q) =
(1N,S(g). We introduce the constant estimate of €1, £1, € [(, £a7] to redefine 7 in (3.19) as

_Jh
Elo

UE (3.27)

so a in (3.22) and z* in (3.19) depend only on known quantities. With this notation, the control

law (3.23) may be written as
u = EOOZP - flc(Q)aP + W*ElNrS(Q)$ + Ra™ — kpzem
which is linear in the physical parameters ¢y, ¢; and R therefore,

u=V(t,y, em)TG) — kpees,
U(t,y,ez) = [ap w*N:S(q)z — Clg)ap 7],

0= [eo 0 R}T

We stress that U is a function of ¢, the measured outputs y = [eqﬂu]T and the closed-loop
states ey; indeed, one should read ¢(t) and = e, + z* in place of ¢ and x while «, p and z*

are functions of ¢, ¥ and known constants.

Proposition 3.3. Consider the system (3.8) in closed loop with the PI2D controller (3.10) under

the conditions of Proposition 3.1 and

u = U(t,y,es) O — kpgen, (3.28a)

© = —koU(t,y,ez)es, ke > 0. (3.28b)

Let the control gains and J € [Jm, Jan| be such that the matriz A(n), with n as in (3.27), is
Hurwitz for any J € [Jpm, Ju). Define O := O — O. Then, the origin of the closed-loop system,
{[f, ez, ©] = [0, 0, 0]} is uniformly globally stable (i.e., the origin is uniformly stable and the
solutions are uniformly globally bounded) and the tracking errors & and e, satisfy

lim [£()] =0 Jim Jex (1) = 0.

t—o00

The proof of the above proposition is presented in Appendix A.2.2.
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Furthermore, under the additional condition of persistence of excitation, we establish the uniform

convergence of the parameter estimation errors.

Proposition 3.4. Consider the system (3.8) in closed loop with the PI2D controller (3.10)
under the conditions of Proposition 3.1 and (3.28) under the conditions of Proposition 3.3.
Then, the origin of the closed loop system is uniformly globally asymptotically stable if and only
if Wo(t) := ¥(t,0,0) is persistently exciting that is if there exist up > 0 and T > 0 such that
M(t) :

t+T
/ Wo(s)Wo(s)Tds > pl Vt>0. (3.29)
t

The proof is based on Matrosov’s theorem and it is presented in Appendix A.2.3.

3.6 Simulation Results

With aim at evaluating the controller of Proposition 3.4 we performed some numerical simula-
tions in SIMULINK™ of MATLAB™on a fully-nonlinear model which takes into consideration
linkage-flux saturation, that is we have used the flux expression v;(q, x) = 95 exp(—L;(0)z;), a

diagram of this is shown in 3.3.

Saturated model
Feedback controller u V; = —Raxj + u;
u=L(q)ap+Rz*+w*K(q)x JZ):ZEC((]’ x) =T
d)j(% xj) = g (1 _ e—L](Q)IJ)
z* T Tr , )
> W(a,x;) = [, (g, s)ds
Te)(a,0;) = £Wi(a,2))
va
T, PI?’D Controller
Current Ty = —kpeq — kg¥ +v +*
f Torque | | ¥ = —ki(eq — V)
reference ™, (@)| share qlg = —a(ge + beq)
x_ [2mi@Ta =qc+beg
VA 10) ba

FIGURE 3.3: Diagram of simulation

The parameters are shown in Table 3.1 —some of the motor parameters are taken from [54].

It is important to point out that matrix A(n) in Equation (3.14) is Hurwitz for the gains exposed

in the table above.

Motor Controller
R =0.3]Q] a = 1500
£y = 24|mH]| b = 3200
¢1 = 19|mH]| k, = 3500
J = 10e 4kgm? | k; =5e*
s = 0.25 kq = 1500
N, =25 e=5e"
n =0.1275 kpe = 750

TABLE 3.1: Simulation parameters
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On the other hand, the velocity reference signal w*(t) is obtained from the following smooth

function

wi(t) if ¢<6.25

iy — 4 @0 i 623 <1<125
wit) if 125 <t < 18.75
wit) if 18.75 <t

where each wj(t) is in turn defined by the function

Wi, — Wy 1 —exp
Kook flk — Yok p
wk(t) = Wok + 72 (1 + 1+ eXp_'yt>
for B = {1,2,3,4} and wg;, = 5, wi = 100, wgy = 100, w}y = 150, wiz = 150, wiy =
—50, wy, = —50 and w;‘c4 = 5. Finally, v = 5. The gain of the adaptive law is to kg =
diag[5e™", 1e76, 2.5¢7°].

We recall that the nonlinear part of the gain, k;,’x, has importance in the theoretical statement as
it guarantees the global nature of the stability property however, in a typical case-study scenario
and for implementation purpose it is both sufficient and convenient to use a constant value for

kpe to avoid high values in the input voltages.

The commutation functions m; : [0,27) — R4, which are illustrated along with the currents in

Figure 3.7, are defined as follows. Let

) = L N 6"
- (@/N)P (7Nt (7 /NP

and ¢; := mod(q, 27 /N;), ¢2 := mod(q — 27 /3N,, 2w /N,), g3 := mod(q + 27 /3N, 27 /N, ) where
the operator mod resets ¢ that is, ¢; = mod(/31, 52) takes the initial value ¢;(0) = 51 and is reset
to the latter when ¢;(t) = 2. This behavior is reflected on the following figure.

— Q1
— 2 h
— a3

Rolled position ¢; [rad]
2
~

0 1 1 1 1 1 1
0 2m Am bm 8 10w Lr
. N, N, N, N,
Position ¢ [rad]

2
2

FIGURE 3.4: Rolled positions.
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Then, auxiliary functions m7 (q) and m; (q) are defined as

J
( ™ T 47
filg)  0<q < g file) <43y
1 T <q < 27 1 47 <q 51
an j = _ j =
mj(q) = 32¥r 37%\@ and  m; (q) = 35]>7T7“ %]Xr
1= fi(gj) sV, <SR 1 — fi(g;) sv. <0 S
L 0 otherwise [ O otherwise.

The following figure depicts the function mj(q) and m; (¢) in phase with Kj;(q), it can be noticed

that mj (g) is positive when Kj is positive and zero otherwise. The same occurs with mj_(q),

which is positive when Kj(q) is negative.

K;(q) and m;(q)

2pi/32 3pi/32 4pi/32 5pi/32 6pi/32
Position ¢ [rad]

FIGURE 3.5: Switching regime function

The simulation consists in imposing a realistic speed reference namely, the desired motor speed
starts off from 5|rad/sec|, accelerating gradually up to 100[rad/s|. This value is kept constant
until £ =~ 7s when the reference velocity increases up to 150[rad/s|. The new velocity reference
is kept up to t &~ 13s when the motor is rapidly brought to a regime of inverse rotation at
—b0[rad/s|, afterwards, the reference is taken to 5[rad/sec| where remains until the end of the

simulation. During the first 5s, the load torque equals to 1[Nm] and it is abruptly increased by

50% at t = 5s.
200 | . ]
— W) 149.995

150 15 12 125 13 1354

100

50

0 5 10 15 20 25
time [sec]

Velocity tracking [rad/sec]

-50  99.96
3

FIGURE 3.6: Velocity Tracking.
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In Figures 3.7 and 3.8 we show the results of the electrical current tracking. In Figure (3.7) it
is shown on left-hand side plots the transient during the first three seconds note that currents
do not overpass 2.5A. On middle plot it is shown a zoom over the steady state behavior around
t = 5, when load torque T}, arise by 50%. On right-hand side plot it is shown the current over

a small time window, note that for all ¢, at least two currents are larger than zero.

4

o
—_
(4]
8
w
—~
~
~

N
o
3

Current tracking [Amp)

Current tracking [Amp)
o =
Current [Amp]

0 1 2 3 4.99 5 5.01 4.99 4.992 4.994
time [sec] time [sec] time [sec]

FIGURE 3.7: Electric current during the transient and tracking during the steady state.

On Figure (3.8) we show the overlap of signal concerning the electrical current z;(t) and the

switching regime function m;(t), note that this last leads the reference x7(¢), such as it was

stated by the torque share approach.

PR U 750N W VAN W 74
5 5.0005 5.001 5.0015 5.002 5.0025 5.003
time|sec]

0 L \
4.999 4.9995

FI1GURE 3.8: Electric current around ¢ = 5s when the load torque changes. The dashed lines
correspond to the commutation signals m;.

We show the voltage input, In Figure 3.9 is shown the transient over the first three seconds,

notice that magnitudes are suitable for the SRM and seldom overpass 100V in magnitude.
On the small zoom is noticed the sequence of phasing, which is characteristic in this machine.

In Figure 3.10 is shown the behaviour of the input control over the time of simulation, once

again the magnitude is not too high.

The last two figures illustrate the performance of the adaptation law. In this regard, it is worth
recalling that, for model-reference adaptive controlled systems, persistency of excitation is a

necessary condition for the estimation errors of the parameters —see [58|.
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250 : : : . - ,

200t > A AN T u(t)
0

150k 50 v V ua(t)
100
100 | 150 uz(t)
1296 12962 12964  12.966
50

Voltage input [V]

-100

-150

0 0.5 1 1.5 2 25 3
time [sec]

FIGURE 3.9: Voltage control inputs u;

200
Phase 1

0 m
-200 b

200
Phase 2

——

Voltage input [V]
o

0 5 10 15 20 25
time [sec]

FIGURE 3.10: Voltage control inputs u;

Common knowledge includes the fact that at least as many frequencies as unknown parameters
must be involved in the regressor matrix W(¢, &, e,), however, this does not imply that the
entries of the latter must be periodic or even continuous. In general, verifying the persistency
of excitation condition is a very hard task since it involves solving in closed form complex and
involved integrals of functions of time. Alternatively, one may as well accept as verification of
(3.29), its numerical computation on a finite simulation window. In that spirit Figure 3.12 clearly
shows that the eigenvalues of M (t), which is defined in (3.29), are positive. This illustrates for
this case-study, in the absence of rigorous proof, that the condition of persistency of excitation

is satisfied.

3.6.1 Verification of the persistence of excitation condition

It is worth recalling that, for model-reference adaptive controlled systems, persistence of exci-
tation is a necessary condition for the estimation errors of the parameters —see [58]. Common

knowledge includes the fact that at least as many frequencies as unknown parameters must be
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— — =4
0.1 o 12
———0 &
0.1 — R
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FiGURE 3.11: Estimated parameters converging to the true values

Characteristic values of M (t)
>

0 5 10 15 20 25
time [sec|

FIGURE 3.12: Verification of the condition of persistency of excitation: eigenvalues of M(t) in
(3.29) on the window of simulation.

involved in the regressor matrix, however, this does not imply that the entries of the latter must

be periodic or even continuous.

Generally speaking, verify the persistence of excitation condition is very hard since it involves
solving complex integrals of functions of time in closed form. Alternatively, one may as well
accept as verification of (3.29), its numerical computation on a finite simulation window. In that
spirit, Figure 3.15 shows that the eigenvalues of M (t), which is defined in (3.29), are positive for
all t € [0 25]. This illustrates, for this case-study, that the condition of persistence of excitation

is satisfied on the simulation window of 25[sec].

We will show that, for a fixed T" > 0, function M is positive definite for all ¢ in the interval
of simulation, that is, all three eigenvalues of M(t) are strictly positive. Note that the time

simulation is 25 seconds.



The PI? D+ Feedback controller in g coordinates 38

The eigenvalues of M (t) are computed numerically, using MATLAB™. First, we recall that W (t)
is defined as
o (t) := V(t,0,0) = [Oéopo w*N;S(q*)z* — C(¢")aopo  Z* (3.30)

where ag = diag {ag1 ap2 a3}, po = [po1r Po2 pog]T and T*, as defined in 3.19, with e; = 0,
g = ¢* and v = v*. That is, ¥ (t) corresponds to the 3x3 matrix that results from setting e; = 0

=
and { = le, e, z 9| =0inY(t,e,,&) and it is a function of ¢ since so is ¢*.
Therefore, for each j = {1,2,3} we have

si(q* V*m;- )w* — v*m;(q*)Nycj(¢*

g = (q*) (¢*) — (¢")Nrci(g*) (3.31)

o silan)rrmi(q) = (kp 4 bka)m;(q*)si(q") — v m;(q”)Nrc; (q7)
S 2@

(3.32)

for |s;(¢*)] > 0x and ag; = poj = 0 otherwise. Furthermore, for the purpose of numerical

computation, we define the matrix

Hll(t) ng(t) Hys(t)
H(t) = Wo(t)q (t) =: | Ha1(t) Haa(t) Has(t)| - (3.33)
Hsp (t) H32(t) Hgg(t)

With this notation, M (t) corresponds to

tt+T Hll(T)dT tt+T ng(T)dT tt+T H13 (T)dT

M(t) = tHT Hoy (7)dr tHT Hoo(T)dr tt+T Hos(7)dr

tt+T Hsy(1)dr tt+T Hso(1)dr tt+T Hss(T)dr

In order to integrate the nine functions H;;(7) over [t t+ T} , as illustrated in the figure below,

FIGURE 3.13: Window of integration of the function Hij(r).

MATLAB™ offers different options to integrate functions expressed in closed forms as well as
data vectors. Given the complexity of the function M (), we use the MATLAB™ built-in function
X(f)

trapz(X,Y) := / YdX.
X(3)
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Example 2.1. The defined integral of y(x) = sin(x) between 0 and 7 is 2 ,

[ sin(z)dx =2
0
>
0 1S

FIGURE 3.14: Defined integral of sin(z) between 0 and 7.
we compute this integral by using MATLAB™function trapz(X,Y) and the fol-
lowing MATLAB™ code:

X=0:pi/100:pi; %build a data vector with entries from O to pi with
increments of pi/100

Y=sin(X); YJcomputes vector Y, where each entry i corresponds to sin(X(i))

q=trapz(X,Y) J Computes integral of Y with respect to X

The code gives as result ¢ = 1.9998. In fact, a little lower than the correct value 2,
the error comes from the magnitude 7/100 of increments in X, in fact, the smaller
the increments, the better the result of q. For instance, building X = 0: 7/200 : 7,
we obtain as result ¢ = 2.0, which is the exact value.

This function allows one to integrate a data vector Y with respect to a data vector X by using

the trapezoidal method of integration.

3.6.1.1 Integrating the data results

To integrate the data vector H;; -see Equation (3.33)- with respect to a time data vector T;, over

a time window of width T' = 500|ms|, see Figure 3.13, we proceed as follows:

1. We build a data vector of time T, = |0 ¢; 2¢; ... 27|, where t; = 1x107° is the fixed

. . . L 27
step of integration. Consequently, T, is a data vector with - +1 = 27x10° + 1 elements

(3

2. We run a simulation in SIMULINK™ to obtain nine data vectors Hy; as defined in (3.33)
3. For each t € [0, 25],

3.1. we build a data vector tr by taking tz = 5x10% elements from 7T, starting at the

element % + 1 down to the element % +1.

3.2. we build nine data vectors Hpy; by taking T'/t; elements from Hy; for k = {1,2,3}
and [ = {1,2,3}, starting at the element % + 1 down to the element % +1.

3.3. by using MATLAB™ command trapz(X,Y) we compute

iHy = trapz(tr, Hrg) for  k=4{1,2,3} and [={1,2,3}
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3.4. we build the matrix M(t) as

iHyy iHyp iHi3
M(t) = |iHy iHoy iHas
tH31 iH3zy iHsg

and compute the three eigenvalues A(t) = eig(M(t))

The above procedure is programed in MATLAB™ and the code is available in Appendix A.4. As
result we obtain a data matrix A € R%;XS where each row contains the three eigenvalues A(¢)
corresponding to a given time instant ¢. From the Figure 3.15 it is easily noted that the all of the
eigenvalues are positive for all ¢ € [0, 25], consequently the persistency of excitation condition is

satisfied, albeit on the window of integration.

6 x 10
x 10
10 6 T
A1 (t)

or ORI

8_ )\B(t) .
= 7t |
= T TRTYTYSETT e
= 6 10 10.002 10.004 10.006 10.008 10.01 7
wn
i:a 5
:
[
o0
h 3

2

1

0 1 1 1 1

0 5 10 15 20 25

time [sec]

FIGURE 3.15: Eigenvalues of M (t) for all ¢ € [0, 25].

3.7 Concluding Remarks

We presented a robust adaptive controller for the switched-reluctance motor, considering both
the stator and rotor dynamics via fairly simple control laws (PID, approximate differentiation),
widely used in control practice. Although our results guarantee robustness with respect to
bounded disturbances (possibly unmodelled dynamics) it is of utmost importance in motor
control, to design controllers with guaranteed performance. Further ongoing research focuses on

avoiding the use of position measurements.



Chapter 4

A novel PID-based control approach

for switched-reluctance motors

As previously explained the control approach that we follow in this thesis relies on the ability
to split the control problem into one for the electrical part and one for the mechanical part.
The control action on the rotor dynamics enters through the mechanical torque; naturally, the
current £ may be seen as a virtual control input. Accordingly, a control law « must be designed
for the stator equations and implemented by applying the corresponding input voltage (via the
torque share approach). The control u must be such that the actual current = tracks a desired

reference x* which is viewed as the control law for the rotor electric equations. See Figure 4.1.

T
i
‘?ﬁ ROTOR|
1 T
‘ I: STATOR[ ™
Ty 7 PID u
! <0 r;f;"e;C;I NL
! Y oscillator - — | CONTROL
T L____1
I -7
L {7 x
T

FIGURE 4.1: Illustration of the control approach. A PID controller virtually injected through

the variable Ty steers w — w* —See Section 4.3. Ty is also injected in the form of a reference

current x* into the stator control loop and a nonlinear controller ensures current tracking control

—see Section 4.4. The systems are feedback interconnected through the nonlinear map T.. The

proper definition of the reference model (dashed lines) ensures that the interconnection remains
stable in view of a small-gain argument —see Section 4.5.

However appealing this approach is, it is stymied by two major technical difficulties:

e the rotor equation is non-affine in the ‘control input’ x,

e the mechanical position appears non-linearly.

The first difficulty is addressed in Section 4.2 via the so-called torque-sharing approach. The sec-

ond, which presents an obstacle to observer-design and output-feedback control, is circumvented
41
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by using an alternative dynamic model in new coordinates. Such model, presented in Section
4.1, is propitious to certainty-equivalence control since it is linear in the unmeasured variables.
Indeed, the rotor dynamics model in the new coordinates lends itself naturally to the design of

Luenberger-type observers.

For clarity of exposition, we divide the rest of the chapter in three parts that are coherent
with the control approach described above. First, in Section 4.3, we discuss the control of
the rotor dynamics (design of T,) then, we present a tracking (z — z*) control law wu for the
stator dynamics in Section 4.4. Finally, using a small-gain argument we establish, that the
interconnection of the two subsystems, schematically represented in Figure 4.1, is exponentially

stable.

4.1 Motor model for control purposes

We use a change of coordinates to state a new system equation equivalent to the simplified model
(3.8) in g coordinates. The main advantage of this model consists in the linearity of the map

from “position” to inductance.

Following ideas from [59] we introduce the function g : [—m, 7] — S* where S* := {(01, 02) €
R? : 02 + 03 = a}, witha € R;. Let ¥ € [-m, 7], A > 0 and

01 = Acos(NT[q+q0])
02 = Asin(N:[q+ qo]).

Now, if we set gy = —¢q(0) and for any p, € R, we see that the solutions of
p=wlp, p=Ip1,p2]", p(0) =[po,0]"

where

satisfy p(t) € SPe for all t > 0 and are given by p(t) = 0(q(t)) i.e.,

p1(t) = pocos (Ny[q(t) —q(0)])
p2(t) = posin (N:[q(t) — ¢

The electromagnetic torque
1
T(p.x) = 2o K(p)a (12)
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is now expressed as a function of p as well as the inductance matrix K(p) = ¢; N, K'(p) where

P2 0 0
K@=|0 Le-v3n) 0
0 0 5 (p2+V3p1)
and L(p) = oI + 1L (p) with
—p1 0 0
L(p)=10 —5(p1+3p2) 0
0 0 —%(p1 —V3p2)

Note that, although T, in (4.2) and T, in (3.9) are different functions T.(p(q),z) and T.(q, z)
represent the same quantity. The same applies for L(p) and K(p) in this chapter when they
are compared to L(q) and K(q) in Chapter 3. Consequently, it is clear that there exist positive

constants £,,,, £as, kym and kjs such that

U < |L(p)] (4.3a)
ar |p1 — p2| > max {|L(p1 — p2)|, [L(p1) — L(p2)[} (4.3b)
ket |p1 — p2| = max {|K(p1 — p2)|, [K(p1) — K(p2)} - (4.3¢)

Considering these new definitions, the motor dynamic is described by equations:

L(p)t + K(p)wz + Rx = u (4.4a)
p = wlp (4.4Db)
Jw = T, (107 (E) - 1717 (Q7 Q) (44C)

The advantage of the model (4.4) is that it is linear in the new ‘position’ variables p, hence, it

is propitious for certainty-equivalence, observer-based control.

4.2 Torque sharing technique in p-coordinates

As illustrated in Figure 4.1, the control approach relies on the ability to control the rotor
dynamics via the stator currents x provided, this technique is used to induce a virtual control
input into the mechanical Equation (4.4c). Ideally, the virtual control input enters through the
mechanical torque T¢(p, x). That is, given a control law Ty, one must solve the equation

T;(p,x")

o =T (4.5)
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for the current reference z*. Using Equation (4.5), mechanical subsystem Equation (4.4c) may

be equivalently written as:

Te*() Te
. =~ " .
Jw = JTd _TL+[Te(pax)_Te (P,flf )]

which, for control purposes, may be viewed as a nominal system w = T; — Ty, /J perturbed by
the term [T, — T]. By design, Ty is such that w — w* provided that [T, — 7] = 0. Note that

[Te — T] vanishes provided that current reference trajectories z* are asymptotically tracked.

Clearly, the difficulty to solve (4.5) relies on the fact that T, after (4.2), is quadratic in z*.
The torque sharing approach as used in [33, 34, 54] and Chapter 3, exploits the fact that the

mechanical torque T, corresponds to the sum of torques due to each phase therefore, we define

* 1 * * *
T = Nota [Ki(p)ai® + Kh(p)as” + Kh(p)as’]- (4.6)

with K;(p) the entries in the diagonal of matrix K’(p). Now we solve (4.5) for x after (4.6) to

obtain
1/2

it 1(p) #0

[ 2J ]1/2 mj(p)Ty
Nty Kg/(P)

0 otherwise

(4.7)

where the functions m; ensure that z; exists for any p* and any Ty. That is, depending on
the current phase of the reference model, the function m; ensures that the respective signs of
the numerator and of the denominator in the previous expression are equal for at least one

j €{1,2,3}. To that end, we define the sets

07 ={pes’: Kj(p) >0}
@;:{pESp:KJ/-(p) <0}

where the superscripts ™ and ~ stand for required positive and negative torque respectively.

Accordingly, given Ty, we define

m;j(p) = {

mi(p) >0 YpeO©t, mi(p)=0 VYpeO,
m

m;(p) >0 VYpe o, ;(p)=0 Ypeor.

m;'(p) it T;>0,
m; (p) if Ty <0.

where

Moreover, we impose that
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so we have

3
Ta=1y Z m;(p)
j=1

and (4.5) holds.

4.3 Rotor robust state-feedback control

In this section we present two results on robust state-feedback control of the rotor dynamics.
In the first case, we establish a result of practical stability with respect to the uncompensated
constant disturbance induced by the load-torque; in the second case, we add an integrator to
establish global exponential stability. In both scenarios we recover a property of input-to-state
stability with respect to external inputs. This is significant to analyze the stability of the system

interconnected with the stator dynamics.

For the purpose of tracking control we introduce a reference oscillator dynamics for (4.4b). Given
a desired constant reference w*, we introduce ¢* as the angular position reference for ¢ that is,

¢* = w* and the reference oscillator dynamics
pr=wlp*,  p*(0) = [p5,0]" (4.8)

where the initial condition p} € Ry is a free design parameter. The solutions to (4.8) which

define the angular reference trajectories, are

cos (N [q*(¢)

-7 49
sin (N;[¢*(t) — ¢*(0)]) 9

where ¢*(t) = w*t + ¢*(0) and the initial reference angular position ¢*(0) € [—m, 7]; without loss

of generality we fix ¢*(0) = 0. Note that p*(t) € SP> for all t > 0.

4.3.1 Control without load compensation

Let v* = TTL then, the rotor model is given by

y = Lo (4.10a)
R .10a
p = wlp. (4.10b)

Define the position error e, := p — p* and the velocity error e, := w — w* then, according to the

policy described in Section 4.2, we pose the state-feedback control law

Ty = —kaew — kpp* "I e, + v + " (4.11)
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Define further 7 := v — v* and add T; — T /J to the right-hand side of Equation (4.10a). Then,

the latter may be rewritten as

bw = —kgew —kpp T e, + 0+ A1ty ex) (4.12a)
1
Ai(t,y,ep) = ﬁ(ex + 22" K (p)e, (4.12Db)

T
where y = [ep Ew 17} , #* is a function of t and y, and p = e, + p*(t). Subtracting (4.8) from
(4.10b) and defining v = A + 7, the mechanical error dynamics becomes

bw = —kge, —kpp*(t) TTe, +v (4.13a)
e, = e Jp*(t) +wle, (4.13b)

which may be viewed as a non-autonomous periodic system perturbed by the input v. The

interest of this observation relies on the following statement.

Proposition 4.1 (Global exponential stability by state-feedback, no load). Provided that k,,
kq are positive, the system (4.13) is input-to-state-stable with respect to the input v and the map
v — e, is output-strictly passive. In addition, in the case that v = 0 the origin (e, e.) = (0,0)

of (4.13) is globally exponentially stable.

Proof. Consider the positive definite radially unbounded function V1,

1
Valewsep) = 5 (2 +kylesl?)

whose time derivative along the trajectories of (4.13) yields
Vei(ew,ep) = —kae2 + eyv . (4.14)

Output strict passivity of the map v — e, follows by integrating on both sides of (4.14) since
Vi1 = 0. The proof of global asymptotic stability under the condition v = 0, follows invoking
Lasalle’s theorem for periodic systems —see e.g. [60, Theorem 5.3.79]: note that e,, = 0 implies
that V,; = 0 and the only solution of kpo*(t)TJTe, = 0 for any ¢, is e, = 0 that is, the origin
is the largest invariant set contained in {V,; = 0}. Global exponential stability is established
invoking standard results from adaptive control literature, observing that Jp*(¢) is persistently

exciting that is, there exist T, and p. > 0 such that

t+T, t+Te

/ Jp*(1)p*(7) "I dr = N2 p}? / Y(r)dr > ped. (4.15)
t t

where 7°(t) is defined in Section B.1 on page 91. As a matter of fact, (4.15) holds with T, =
7/Npw* and pe = |pt|> N2T,./2 —see properties of matrix 7'(¢) in Appendix B.1. Input-to-state

stability follows from the following statement.
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Lemma 4.1. Let g1 € (0,1) be a small parameter to be defined, leti € {1,...6}, A; > 0 be such
that 25:1 Ai =1, kg := Nikg and Edj = Z?:j kai; similarly for ky,. Define the functions Vg,
Ves by

Veo(t, ew,ep) = z-:lewp*(t)TJTep (4.16a)
4T,
Ves(t,ep) = —e;/ eI Ip* (1) p*(7) T dre,,. (4.16Db)
¢
Then, if
pi] = e (417
we have

T

3

. — N * * — * Nr 2
Do Ve < el = S ot (It e = ) e
1=

—e1kp3 {p*TJTepr + (El [p*Tq]]Tep} + ew) v. (4.18)

The proof of Lemma 4.1 is included in Appendix B. Input-to-state stability with respect to the
input v follows remarking that Z?:l V,; is an input to state stable-Lyapunov function; indeed, it
is enough to choose a constant « sufficiently small such that [v| < a|e,, e,| implies that Y25, V.,

is negative definite. O

4.3.2 With compensation of unknown load

In the previous section, Proposition 4.1 establishes global exponential stability for the system
without load torque. As a byproduct, the system is robust with respect to additive disturbances
such as torque-load uncertainty (7 = const.). By exploiting the passivity of (4.13) we add a
second loop which we close with integral action, to compensate for 7. That is, let the variable
v in (4.11) be defined by

v = —k (ew +e [p*TJTepD . k>0, (4.19)

then, the map (ew + €1 [p*TJTepD — v is passive, the passivity and robustness properties of

(4.13) are conserved.

Proposition 4.2 (Global exponential stability by state-feedback, with load compensation).
The system (4.13) with v = U + Ay is input-to-state-stable with respect to Ay and the map
A — (ew + &1 [p*TJTepD s output-strictly passive. Moreover, if A1 = 0 that is if v =1, then
the origin (ep, €., 7) = (0,0,0) of (4.13) is globally exponentially stable for appropriate values of
the gains ky, kq and k;.
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Proof. Consider the system (4.13) with v = 7 + A; and the function

The total time derivative of Z?:l Ve; along the trajectories of (4.13), and
U= —k; (60_; + &1 [p*TJTep]) , ki>0 (4.20)

satisfies (4.18) with v = A;. Integrating the resulting expression of Z?Zl V.; on both sides, we
see that the map Ay — (ew + &1 [p*TJTepD is output-strictly passive. Furthermore, if A; =0
global asymptotic stability follows invoking Lasalle’s principle, as in the proof of Proposition
4.1.

5
Now we proceed to show that _ V.; with
i=1
_ - 1 )
Ves(ep, €w, V) 1= —e3le, — 55153/% lep]

qualifies as an input-to-state-stable-Lyapunov function. The total time derivative of V 5 along

the trajectories generated by (4.13), (4.20) yields

Vis = e3k (ew +e1 [P*TJT%D €w
—83132 — &3V <—k§d6w — pp*TJTBp + A1>

—alsgkie; [wJeP + ewq]]p*} .

Adding V4 and the latter to (4.18), we obtain

5

: T N T _ * N’l" - 2 2
ZVci < —[kas — eskile — QT* |p3] <|Pz| g /N 7) ‘€p|2 —e1kp {P*TJT%} - %’ﬂ
=1 w

Gyt A (sl [p*TJ]Tep] Y, — 5317) (4.21)

where we recall (see Lemma 4.1) that l_fdj = Z?: i kdis kai = Nika A € (0,1) (similarly for k)

and we defined

. ey 2k g3 0 eskq €w
09 1= 3 p*TJTep 0 2e1kps e3kp p*TJTep
1 83]{2d €3kp €3 v
Let e3 satisfy
kas A3 €173
— = > 4.22
n{/@-’kd’ ky | =°° (422)

then, do > 0 and Z?:l Vi is an input-to-state-stable-Lyapunov function for the system (4.13)-
(4.21), with v = 7 + Ay, with respect to the input A;. Furthermore, if A; = 0, Z?Zl Ves
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is bounded by a quadratic negative definite function of the state; global exponential stability

follows invoking standard Lyapunov theory. O

4.4 Stator robust state-feedback control

In the previous section we established input-to-state stability for the rotor dynamics with respect
to inputs Ay which vanish with e, = z — 2*. In this section we focus on the tracking control
of the stator dynamics that is, the control goal is to make x — x* where z* := [z} 23 23] and
the latter is defined by (4.7). The controller that we propose next establishes global exponential
stability in the case of perfect velocity tracking (e,, = 0) and input-to-state stability with respect

to external inputs, which vanish as e,, — 0.

For Equation (4.4a) we introduce the control law
u*(t,x) == L(p")z" + K(p")w*x + Rx™ — kpze,

where ky,, is shorthand notation for k,.(t,|e;|) and is defined by a continuous function k,, :
Ry x Ry — Ry such that k. (t,-) is non-decreasing. Note that 4* is a function of time, T and

T, which depend only on measured states and computed quantities. Indeed, defining

_ m;(p)
Kj(p)

a;(p) :

we have, after (4.7),

21N oy T [oTa k03] K ) £ 0
#=4 Lo | R [t ostd] RGP (4.23)
otherwise.
Applying u = u* into (4.4a) we see that
L(p)és + [R+ kpzl ez = Aa(t,ep, eq, &%) (4.24a)
Aog(t,ep, €0,3%) = —[L'(e,)" + K(ep)w*z + K(p)ewz] (4.24b)

and, from (4.3) we have
[Aa| < | ar [&7] + kppw” |$!] lepl + kar [05] 2] few -

That is, the origin {e; = 0} of the the stator closed-loop system is exponentially stable in the
case that the rotor controller achieves perfect velocity tracking. Global exponential stability for

(4.24) implies local input-to-state stability; the global property is established next.
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Proposition 4.3. Let p, = p and let!.
u=u*— [eM ] + kpw* W le,| sgn(es). (4.25)

Assume further that

2

1
kpe 1= kpe1 + 5 [kM P ygﬂ ka1 > 0 (4.26)

then, the closed-loop system (4.4a) with (4.25) is input-to-state stable from the input e,. More-
over, in the case that |Ag| = 0, the origin {e, = 0} is globally exponentially stable with uw = u*

and kpz = kpg1.

Proof. The total time derivative of

1
Ves(ex) := 5 \€m|2

along the closed-loop trajectories 2 (4.24) yields
Vo < = [R+ kye] lew + [ 3] 21| lewl e
which, in view of (4.26), implies that
: 2, 1 2
Ves < _[R + kpml] |€:v| + 5 |€w| (427)

hence, Vg is an [SS-Lyapunov function for the stator closed-loop system. The proof of the second

statement follows directly observing that |Ag| = 0 implies that Vs < —[R + kpe| |ex|*. O

4.5 Robust control of switched-reluctance motor

Now we present our main results, we establish global exponential stability for the controlled
switched-reluctance via state feedback. We also establish that the interconnection of the two
control loops for the rotor dynamics and the stator dynamics, remains input-to state stable with

respect to external inputs.

Proposition 4.4. Consider the SRM model (4.4) under the assumption of relatively low current
in closed loop and the electric controller defined by equations (4.25), (4.23) and (4.7). Moreover,
constder the pid control (4.11) with po = p}. Let the gain kp, of the electric controller be given
by (4.26) where

o > & [Rar 03] (12 + [z ] (01 + 223 + 1) (4.28)

where €1 and €3 are small positive constants and let (4.17) hold. Then, the origin of the closed-

loop system is globally exponentially stable.

!By an abuse of notation, the vector sgn(e,) = col[sign(ez:)], where the sign function is defined as sign(0) €
[—1,1] and sign(z) = abs(z)/z if  # 0
2Tt is considered that solutions are defined in Filippov’s sense.
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Proof. The motor model corresponds to the Equations (4.4). Therefore, the closed-loop system
corresponds to (4.12), (4.13b), (4.20) and (4.24). The term A; in (4.12b) satisfies, using | K (p)| <

kM |IO;|7
kM * *
D] < 2 10 el [ 2] + [a] |-

In view of the latter, (4.21), (4.22) and (4.27), it follows that the total time derivative of V, :=
6
> Vi satisfies

=1

Nrﬂ- * *| _—7/Npw* Nr 2 7. T 71 2 €3 ~2
s 3l (1l e = S0 e = vt [T, - 20

Ve < —[k:d5—0.5]ei—[

kar s
— R+ kpaal leal” + S o3l ol [ 2%] + Jal | (=1

p*TJTep’ ¥ lew| + &3 ypy)

which, in virtue of the triangle inequality, (4.28) and provided that kp4, kg5 > 1, implies that

Vo < —Wlerepewp' Ie,) (4.29a)
_ 1 _ . 2 ~
W < kasel, + [RJr 5’%1} lex|? + e1kps [p TJTep} + %I/2
Ny —n/Npw* _ Nr 2
+ [m |ps (Ipi!e /N —2)] (A (4.29b)

hence, V, is negative definite. Global exponential stability follows invoking standard Lyapunov
theory. Now, let v, and vs be bounded external inputs and reconsider (4.13a) with v = v +

A1 + vy, and let u = u* 4+ vs. Then, from the previous development we obtain
Ve < Wiew ep ew p* ITe,) + exvs + vy (51 {p*TJTep} +e, — 531))

That is, V. qualifies as an input to state-Lyapunov function for the closed-loop system with

inputs vg, Up,. ]

4.6 Simulation results

We have tested our PID+ Feedback controller on a fully-nonlinear model @Z.Jj (¢,x) + Rxj = u;
where, for implementation purpose we have used the flux expression 1;(g, z;) = s (1 —eli (q)“j)

from Equation (3.2). In Figure 4.2 we show the implementation diagram of the simulation.

The numerical simulations were carried out in the software SIMULINK™ of MATLAB™. The

physical parameters and the control gains are the shown in Table 4.1.

To reproduce a realistic scenario the reference consists in a smooth function which gradually

increases from an initial value to a final constant desired speed,

1 — e—(t=T) Wi — wp "
W () = (erl)( L )+w0. (4.30)
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Feedback controller
u=L(p*)z*+Rz* + w*K (p*)x

Y

Saturated model

b = —Raj +u;

Jw="Te(q,z) —TL
§g=w

¥;(q, x5) = s (1 - e’ff(q)zf>
W (¢,%;)

fojw] q7

#w

t
Current
reference l
generator Ty
e 2m;(p) Ty l@——| Torque share
- K;(p) m;(p) approach
A
p

PID controller
To=kpp — kqew, + v+ w*
p* = W*Jp* <

v=—k; (6w +é&1 [p*TJTepD

FIGURE 4.2: Diagram of simulation, note that the feedback controller is in p coordinates while
the motor model is in ¢ coordinates and it does consider linkage flux saturation -Model (3.2).
Furthermore there is a coordinate transformation block which takes the position “measurement”
q and returns p

Motor Control
R = 2.5|Q] lo = 52[mH| | k, =2000 | k; = 5e — 4
{1 = 20[mH] N, =38 kg = 25000 | e; =0.1
J=0.0lkg—m? | T, = 0.1|Nm| | p§ =20 | Kp, =150
B =2 s = 0.25

TABLE 4.1: Parameters of the motor and gains of the PI D+Feedback controller.

We use wp = 10 and a final value of 50[rad/s|.

The functions m;, which are illustrated in Figure 4.3, are constructed as follows. First, we define

q as a function of p i.e.

s(p) if p2 > p1 >0
a(p) = §(ﬂ)+£ if pry >p2>00rp; >0>ps
<(p)+F ifp <0

tg™" (v2/or) — 27/,
N,

functions mj( ) and m;(),

where ¢(p) =

if0<gq; < ]7{,

3N,
2
it (g) = 1 if 5, <45 < 3y,
’ 1— f(q —27/N.) if 5 < qj < F
0 otherwise
and
4
g — %) if 3~ <45 < 3
77 (q) 1 f4w<qJ<351<fr
m: (q) = T
’ 1— f(q —57/3n,) if 3 < g
0 otherwise

(4.31)

. Then, ¢ € [0,27/N,] is used in the construction of the auxiliary
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with ¢1 = ¢, 2 = ¢ — 27/3N,, ¢3 = ¢ + 27/3N,. Finally, m;(p) is obtained from
(4.32)

—notice, from Figure 4.3, that for each j € {1,2,3}, mj(p) = m;r(q(p)) is larger than zero only

when Kjj(p) > 0 and it equals zero when Kj(p) < 0. Similarly m; (p) = m;

zero only when K;(p) < 0, the latter guarantees that it is always possible to compute z* as it is

(q(p)) is larger than

expressed in (4.7).

K;(p) and m;(p)

-0.15

-0

2
pi/16 2pil16 3pil16 4pil16 5pi/16
Position ¢* [rad]
FIGURE 4.3: Construction of functions m;(p) for the simulation test of the PID+ Feedback
controller.

The overall behavior of the electrical currents during all the simulation time is depicted in
Figure 4.4, notice that high currents, with magnitudes reaching 25[A], appear during the first
half second, this behavior comes as resut of the more stressing condition imposed by the velocity

reference profile -see the initial difference between w(t) and w*(¢) in Figure 4.8.

In Figure 4.5, the electrical currents are compared against the commutation functions m; along
trajectories and the reference currents on a zoomed window of time. Recall function m; as

defined in (4.32) corresponds to the above mentioned torque sharing technique.

The small mismatch between the currents and their references in Figure 4.5 may be reduced
or eliminated by increasing the control gain kp;, note that in the simulation we have used
kpe = kpe1 = 150 —cf. Eq. (4.26).

However, in view of the good velocity tracking performance depicted in Figure 4.8, it is not
worth to apply high gain at the stator level by imposing large values to the control gain k., at

the expense of large control inputs.

The control input magnitude for the three phases are showed in Figure 4.6. Once again, notice
the high magnitude of the input voltages reaching values of almost 500[V|]. These values appears
during the first half second, which accords with the electrical current results and have the same

explanation.
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20 b
:Cl(t)
| wg(t)

15 (1) b

"W‘H\‘”w ] e e 8O L

Electric current
=)
T
1

0 0.5 1 15
time [sec]

FIGURE 4.4: Three phases currents of the simulation test of the PID+ Feedback controller..

41 zy(t) —27(t) | A

za(t) —a3(t) |

as(t) - a3(1)

w
T

n
w”

Current tracking and m;(t)
o on

—_

o
3

0
1.45 1.452 1.454 1456 1.458 1.46 1.462 1.464 1.466 1.468 1.47
time [sec]

FIGURE 4.5: Zoom on the commutation functions and the three phases currents as well as their
references.

T T
100 F ur(t) 1
= uz(t)
550 - .
=~ I
3
4; 0 /“ l“ H”‘MHHH”UH‘W»”‘MHM L A R R T
o
R=!
S
g . - - - - .
§50 - b
S WWW
AR R R AR
-40 ' ' ' '
0.75 0.76 0.77 0.78 0.79 0.8
-150 L L
0 0.5 1 1.5
time [sec]

FIGURE 4.6: Voltage control inputs of the simulation test of the PID+ Feedback controller.

In Figures 4.7 and 4.8 we show, respectively, the good position and velocity tracking performance.

Note that in both cases the position p(t) and the velocity w(t) converge asymptotically toward
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their respective references; that is, the rotor (4.4c) synchronizes with the virtual rotor (4.8)

generated by the reference oscillator.

20

p1 tracking
o

po tracking

0 0.05 0.1 0.15 0.2 0.25
time [sec]

FIGURE 4.7: Tracking of mechanical position of the simulation test of the PID+ Feedback
controller.

Note as well that, while the signal reference w*(t) starts up at w*(0) = 10[rad/sec|, the switched-
reluctance motor is started up from the standstill condition w(0) = 0. This condition stresses
the controller and it is not used during real time applications. We just imposed this condition
in simulation in order to show the performance of our controller under non-friendly conditions.

As a result of this, we have in Figures 4.4 and 4.6 high values during the first half second.

w tracking

time [sec]

FIGURE 4.8: Tracking of mechanical velocity of the simulation test of the PID+ Feedback
controller.

4.7 Conclusions

In this chapter we have presented a control approach to the robust stabilization of the switched-
reluctance motor. The control approach consists in stabilizing separately the stator and the

rotor dynamics. We have established global exponential stability and input-to-state stability
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with respect to external disturbances. Moreover, our control scheme has the special feature of
being tailored to be implemented as a certainty-equivalence controller, with a state estimator.
The design of the latter is under current research. Simulation results are encouraging to pursue

this avenue towards the solution of full-sensorless control via certainty-equivalence control.



Chapter 5

Experimental Results

In this chapter we present the results of experimental tests that were run with the aim of

evaluating the behavior and performance of the controllers described in the previous Chapters.

5.1 Description of the benchmark

A detailed description of the benchmark goes beyond the objective of this document (interested
reader is invited to find further details about in [61]). However, a brief description is necessary

to familiarize with the performed tests. The following picture present the utilized benchmark

FIGURE 5.1: Benchmark at the Control Laboratory of the Postgraduate Building at UNAM.

As it may appreciated in Figure 5.1 the labeled elements of the benchmark are as follows:

1. A personal computer where the SIMULINK™ and CONTROLDESK™ software are ins-
talled. SIMULINK™ is used to directly program the control algorithms, that is the con-
trollers presented in Chapters 3 and 4. CONTROLDESK™ serves to manipulate the control
parameters and to process the information obtained during the experiments.

o7
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2. A DSpace data acquisition and processing card, model DS1104, which is used to implement
the controller as well as a communication device model CP1104, also of DSpace, acting as
interconnecting device between the data acquisition card and the power electronic device.

The sampling time during the tests was set to ¢, = 1x107%.

3. A Half-Bridge Asymmetric Converter (HBAC) which is in charge of translating the control
signal, coming from the connecting device, to a train of square pulses in order to feed
the switched-reluctance motor. This is performed by using the well known Pulse Width

Modulation techniques. The HBAC is fed by a direct-current voltage-bus of 120[V].

4. The three phases, twelve stator-poles and eight rotor-poles switched-reluctance motor man-
ufactured by Emerson Electric Co. The nominal values are
Voltage: 120[V] Current: 2.5[A] Power: 250{W|
and the physical parameters are the aligned inductance ¢y = 30lmH], the unaligned induc-

tance: ¢y = 24|mH], the electric resistance: R = 2.5|2] and the rotor inertia J unknown.

5. A direct current motor running in open loop and mechanically coupled to the switched-
reluctance motor. This DC motor is fed in such way that it acts as a constant load torque

during the experiments.

5.2 Description of the experiments

In previous chapters we presented the design and numerical tests of different controllers for the

switched-reluctance motor , these are:

1. PI’D + Feedback control with known parameters and unknown mechanical velocity
(sections 3.5.1 and 3.5.2)

2. PI?’D + Adaptive feedback control where in addition to velocity unavailability, physical
parameters are as well assumed unknown and they are estimated estimated online

(sections 3.5.1 and 3.5.3).

3. PID + Feedback control for the p-model where both physical parameters and the

whole state are assumed known (sections 4.3 and 4.4).

For each one of controllers listed above, we have imposed three different velocity-reference pro-
files.

1. Smooth-steps reference: Constructed by using an hyperbolic-tangent type function

4
* 1
wi(t) := ZWOi + 3 (Wi — woi)

=1

1 —exp 2(t-Ti)

1+ exp—5(t=Ti) (5-1)

where
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wo1 = 0, wo2 = 0, woz = 0, woa =0
wr1 = 110, Wro = —220, wr3 = 220, Wrq = —110
T =4, T, = 16, T, = 28, Ty =40

2. Saturated-ramp reference: This reference is constructed by utilizing the following function

“iy

0<t<t
ty

w1 t1 <t <t
DT bty wy by <t<ts
ts — to

wi(t) == wo t3 <t <ty (5.2)

ST (b)) fwy ta <t <ty
ts — 14

w1 ts <t <tg
2 (t—tg) fws  tg <t <ty

\ 7 — g

where

wp =100, we=-100 w3 =100
t1 =25 to =12.5 t3 =175 11 =275 t5=325 1t6=425 t;=45

3. Sinusoidal reference: The easiest reference signal to construct, where we have chosen a

suitable amplitude and frequency, i.e.,

w*(t) = 100 sin(0.45¢) (5.3)

Consequently, we present the result of nine different experiments (three velocity profiles for
each one of the three designed controllers). The load torque imposed by the coupled DC motor

remains piece-wise constant and unknown during all the experiments.

5.3 Tests to the PI?2D-+ Feedback controller

In this section we present the result of the experiments performed in order to evaluate the
PI?D+ Feedback controller

Ty = —kyeq— kgt + v+ o
PI2D Vo= —ki(eg— 1)

Ge = —a(qe+beg)

¥ = q.+beg

Feedback u = L(q)ap+ w*K(q)x + Rx* — kpze,
controller

ez = x—xF

presented in Sections 3.5.1 and 3.5.3 respectively. The control gains are in the table below.
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PI2D Feedback
kp=2000 | k;=>5e""| ky, =24
kg = 15000 | a =750 | 1 =6.4e"*
b = 1600 e=1le?

TABLE 5.1: Control gains for the experiments corresponding to the PI%2D+ Feedback controller.

5.3.1 Smooth-steps velocity reference

This reference signal is constructed by implementing Equation (5.1), it starts at w*(0) = 0 and
increases smoothly up to w*(t) = 110[rad/s| at t = 5.5s, where it remains during around 10

seconds. Then, it gradually decreases until it shifts the spin sense and reaches —110[rad/s].

The test corresponds to the most favorable scenario, we imposed this velocity reference and the
results in tracking are shown in Figure 5.2. We notice a good behavior with only a small delay

in both upper-zoomed plots.

250 F T T T T T T T T ]
110.4
110.2 1094
g 109.8 -109.8
@ 109.6 -110
§ 150 - 109.4 L -110.2 g
< 15
S 100 .
2
<
£ 50 4
2
g 0
N
-50 R
-100 1
20 25 45
time [sec]

FIGURE 5.2: Velocity tracking of the smooth step reference for the PI? D+ Feedback controller.

Furthermore, the results on tracking of the desired current reference is illustrated in Figure 5.3,
we show the overall behavior of the controller during the whole experiment on left-side plots.
On the right hand side plots of the figure, we show the tracking performance with more detail
during a narrow time-window. The performance is good enough when we take into account that

the objective of control is the mechanical velocity.
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FIGURE 5.3: Current tracking corresponding to the smooth step reference for the PI2D-+
Feedback controller.

The last figure of this scenario corresponds to the signal control input, shown in Figure 5.4,
this signal is entered to the half bridge asymmetric converter; which, based on the pulse width

modulation methods, feeds the switched-reluctance motor.

300 . . . R
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Voltage input [V]
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FIGURE 5.4: Voltage control input corresponding to the smooth step reference for the PI?D
+ Feedback controller.
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5.3.2 Saturated-ramp velocity reference

Next, we tested the performance of the PI2D-+Feedback controller, with the saturated-ramp
velocity reference, constructed by applying Equation (5.2).

The result of velocity tracking is shown in Figure 5.5, where a good response in tracking is

appreciated and only a small delay appears on the two zoomed plots.

250 4005 — ' ' ' 99 |
9951 | —100} —
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FIGURE 5.5: Velocity tracking of the saturated ramp reference for the PI?D+ Feedback con-
troller.

The tracking of the desired electric current for this scenario is shown in Figure 5.6. Notice on
the right hand side plots a better response compared to that presented in the previous scenario.

However, a small delay with respect to its reference can be noticed.

Current tracking [Amp)]
Current tracking [Amp)

0 10 20 30 40 39.96 39.98 40 40.02 40.04

time [sec] time [sec]

FIGURE 5.6: Current tracking of the saturated ramp reference for the PI?D+ Feedback con-
troller.
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Finally, the control input is shown in Figure 5.7, note that the magnitude of this signal seldom
exceeds £100[V] and it is around +50[V| during the most of the time, which is convenient for

the half-bridge asymmetric converter.

300 _ o : : : .

Voltage input [V]
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time [sec]

FIGURE 5.7: Voltage control input corresponding to the saturated ramp reference for the
PI?D+ Feedback controller.

5.3.3 Sinusoidal velocity reference

The last velocity-reference profile imposed to this controller corresponds to a sinusoidal signal

-see Equation (5.3), this sinusoidal function has an amplitude of 100[V]| and a period of 14s.

In Figure 5.8 we show the obtained results for velocity tracking. Similarly to the last scenario,
a small delay is present, yet a good response of the motor is achieved and the control objective

is attained.
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FIGURE 5.8: Velocity tracking of the sinusoidal reference for the PI?D+ Feedback controller.
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In Figure 5.9 we show the current reference tracking performance. Note that even when there

are small errors in the tracking, it is better than the results presented in the previous scenarios.

Current tracking [Amp)
Current tracking [Amp]

0 10 20 30 40 8.98 9 9.02 9.04

time [sec] time [sec]

FIGURE 5.9: Current tracking corresponding to the sinusoidal reference for the PI? D+ Feed-
back controller.

Finally, in Figure 5.10, we present the control input generated by the controller, we note that
the demanded voltage magnitude is not high, around +50V, which is fed without problem by

the converter.

300f gor—— ' | ur(t) [
Us (T

000l 0 2(t) ||
55 16.52 16.54 16.56 16.58 ua(f)
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0

-100

0 10 20 30 40 50

FIGURE 5.10: Voltage control input corresponding to the sinusoidal reference for the PI2D +
Feedback controller.

In this section we have presented the obtained results of the tests performed to the PI?D+
feedback control considering three different scenarios, these are the smooth step, the saturated

ramp and the sinusoidal reference. We obtained good results in tracking velocity in the all of
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the three scenarios, with only small delays, however these are not significant for the control goal
achievement. The current reference tracking is also good enough and in all cases reference and
real current are in phase with a small difference in amplitude. Finally, we get low level voltages
in the control signal, which is suitable for the half-bridge asymmetric converter. The designed

controller achieves almost with no problems the control objectives.

5.4 Tests to the PI?D- Adaptive feedback controller

Now we present the results corresponding to the performed experimental tests considering the
PI?D 4 Adaptive feedback controller

Ty = —kpeqg— kg +v+w*
PI2D o= —ki(eg—1)
Ge = —a(qge+beg)
v = qc+begy

controller

Adaptive-Feedback u = V(t,y, ex)(:) — kppey
0 = —kU'(ty, er)en
presented in section 3.5.3. The control gains ky, k;, k4, a and b utilized during the experiments

are presented in Table 5.1, however, the gains kg for the adaptive law and the gains k,, for the

anti-windup strategy are the following;:

Adaptive law | Anti windup
kg1 = 3.2¢76 kw1 = 0.7

kga = 7.5¢76 kw1 =1.5

ko3 = 1.6e73 kw1 =17

TABLE 5.2: Control gains for the adaptive law and the anti windup technique.

5.4.1 Anti-windup strategy

The adaptation law é = —ko¥ T (t,y,es)e, essentially consists in the integral of two multiplied
terms. The first, (¢, e;, %), is bounded and persistently exciting! at y = 0 and e, = 0 whilst
the second term, e;, corresponds to the state of the controlled system. Given the boundedness
and the persistency-of-excitation property of W(-), a necessary condition for O to converge to
zero is that e, vanishes, that is e, — 0 as t — oco. Theoretically speaking, the last comes from
the uniform global exponential stability property of e, = 0. Nonetheless, x* is a complicated
function of the state trajectories which oscillates between zero and positive values. That is, it

is a highly changing function difficult to follow, this condition generates a persistent error in its

!This property is shown in section 3.6.1.
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tracking, just when x(t) is almost reaching its reference, x*(t) abruptly changes giving a “new”
reference to follow, this provokes e;(t) to slightly grow just before it again tends to zero. The
latter phenomenon is repeated all long of the experiment. Consequently, ©, which comes from
the integral of a non-vanishing term e,, grows indefinitely. To avoid this, an anti-windup strategy
was implemented, this technique allows us to restart the integral term once it has reached a given

threshold. The anti-windup technique consists in adding saturation term to (3.28b)
O = kU (Vew + ku 6,-6]

. . . . 1T
where O, = [sat(@l) sat(©2) sat(O3)| , O1 = ly, O = {1, and O3 = R. The gains kg and
k., are set in Table 5.2.

5.4.2 Smooth-steps velocity reference

In order to investigate the response of the adaptive controller to a smooth reference signal, we
impose the profile given by Equation (5.1). The obtained result of velocity tracking is plotted
in Figure 5.11. Note the good response of the controller with only small oscillations around the
desired velocity, moreover there are not delays in the tracking. It is also notorious that there
is not an important difference between these results and those for the non-adaptive controller

presented in Section 5.3.1.
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FIGURE 5.11: Velocity tracking of the smooth step reference for the PI?D+ Adaptive feedback
controller.

The result of the experiment concerning the current tracking is shown in Figure 5.12. Note,
from the plots on the left, that the currents rarely exceed 3[A], they are higher only when motor
is speeding up. From the plots on the right it can be noticed that the electric current is below

2.5|A] and tracking errors are quite acceptable.

The control input produced by the controller under test is depicted in Figure 5.13. This result

is similar to that presented in the previous scenarios, magnitude of voltage around £55[V] is
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FiGUure 5.12: Current tracking corresponding to the smooth step reference for the
PI?2D+Adaptive feedback controller.

proper for the half-bridge asymmetric converter, which will not be strained in excess under this

regime.
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FIGURE 5.13: Voltage control input corresponding to the smooth step reference for the PI?>D
+ Adaptive feedback controller.

Finally for this scenario, we show, in Figure 5.14, the result of estimation of the physical param-
eters {g, ¢1 and R. It is important to note that the estimations of parameters do not converge
to the real values, they are oscillating around them as result of the effect of the anti-windup

strategy.
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FIGURE 5.14: Estimation of parameters £y, ¢; and R for the smooth-step reference.

5.4.3 Saturated-ramp velocity reference

In another experiment we injected a saturated ramp reference, constructed by implementing
the function in (5.2). Note the good overall response of the velocity tracking in Figure 5.15, it
only appears a small delays, see zoomed plot on the same figure, just after velocity stabilizes at

100[rad/s] and —100[rad/s|, however this delay does not impact on the overall behavior.
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FIGURE 5.15: Velocity tracking of the saturated ramp reference for the PI?D+ Adaptive feed-
backcontroller.

The tracking of the desired electric current for this scenario is shown in Figure 5.16, note in the

right side plots that the actual current does not reach its reference in magnitude.

The control input is depicted in Figure 5.17, it is possible to note well behaved control signal

and in the zoomed plot not too high voltage signals are shown, which can be easily handed by
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FIGURE 5.16: Current tracking corresponding saturated ramp reference for the PI2D+ Adap-
tive feedback controller.

the half-bridge asymmetric converter.
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F1GURE 5.17: Voltage control input corresponding to the saturated ramp reference for the
PI?D + Adaptive feedback controller.

Finally, the results concerning to the estimation of the physical parameters are presented in
Figure 5.18. As it may be observed in this figure, the estimate oscillates around the mean value

which correspond to that of the real parameter.
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F1GURE 5.18: Estimate of electric parameters £y, 1 and R for the saturated ramp reference.

5.4.4 Sinusoidal velocity reference

In this section we present the results of the experiments where a sinusoidal velocity reference

was imposed.

The corresponding result of velocity tracking is depicted in Figure 5.19. This scenario requires
the motor to constantly shift the sense of spin. The velocity tracking performance is not as good
as in the previous cases and small delays may be observed on zoomed plots. Nevertheless, a
good overall behavior is obtained. The tracking of the desired electric current is shown in Figure
5.20.
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FIGURE 5.19: Velocity tracking of the sinusoidal reference for the PI?D+ Adaptive feedback
controller.



Tests to the PI?D+Adaptive feedback controller 71

N

|
N o N

|
N o \S] S

Current tracking [Amp)
Current tracking [Amp]

|
N o N S

0 10 20 30 40 8.98 9 9.02 9.04
time [sec] time [sec]

FiGURE 5.20: Current tracking corresponding to the sinusoidal reference for the
PI?2D+Adaptive feedback controller.

In Figure 5.21 the control signal is shown and, similarly to the previous scenarios, its magnitude

is not too high which allows the converter to handle them with no problems and feed the motor.
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FIGURE 5.21: Voltage control input corresponding to the sinusoidal reference for the PI2D +
Adaptive feedback controller.

The estimations of the physical parameters are shown in Figure 5.22, note the oscillating behavior

around the real values, which are consistent with the imposed velocity reference.
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FIGURE 5.22: Estimate of electric parameters £y, /1 and R for sinusoidal reference.

5.5 Tests of the PID+ Feedback controller for the p-model

We present now the results of the experiments corresponding to the PI D+ feedback control

PID Ty = —kaew — kb (t)Te, + v+ ™.
vo= —kiew — €1kib*(t)Tep
Feedback )
{ u*(t,z) == L(p*)&* + K(p*)w*x + Rx* — kpyeq
controller

presented in Chapter 4. This controller is composed by equations; where, after a tuning process,

the following control gains were utilized Similarly to the experiments reported in previous

PID Feedback
kp =40 | ki =1e78 | kp, = 24
kg =200 | p; =4
£1 = le~8

TABLE 5.3: Control gains for the experimental test of the PI D+ Feedback controller.

sections, we have imposed three different velocity profiles w*(t); the corresponding results are

presented in the following sections.

5.5.1 Smooth-steps velocity reference

The corresponding result of velocity tracking is depicted in Figure 5.23; as in the previous
scenarios, a good performance may be observed. Note the small oscillations around ¢ = 23[sec|,
this is due to a step-increment of unknown magnitude in the load torque imposed by the coupled
direct motor. Despite this disturbance, the controller works properly and the motor velocity is

again driven to its reference.
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FIGURE 5.23: Velocity tracking of the smooth step reference for the PI D+ Feedback controller.

The results for current tracking are shown in Figure 5.24. Note on left side plots the overshoots
in current at ¢t = 23|sec| as effect of the load torque increment. On the right hand side plots, a

zoomed window shows the good results.
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FIGURE 5.24: Current tracking corresponding to the smooth step reference for the PID+
Feedback controller.

Finally, voltage control input is depicted in Fig (5.25), in this figure it is noted the effect of the
load torque increment, however magnitude seldom goes beyond +50[V], which is suitable for the

half-bridge asymmetric converter.
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FIGURE 5.25: Voltage control input corresponding to the smooth step reference for the PI D+
Feedback controller.

5.5.2 Saturated-ramp velocity reference

First, velocity tracking is depicted in Figure 5.26, note the good fit between the actual velocity

and the imposed reference despite the small overshoot appreciated in the zoomed plots.
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FIGURE 5.26: Velocity tracking of the saturated ramp reference for the PID—+ Feedback con-
troller.

Electrical current tracking is depicted in Figure 5.27 where currents not larger than 4[A] are
shown but they are smaller that 2.5[A| the most of the time. Good tracking of current is shown
on right hand side plots with a small error in magnitude, however this error does not impact on

the velocity tracking.

Finally, for this scenario, the voltage input is shown in Figure 5.28, where values seldom overpass

magnitudes of £60[V]. Moreover, note around ¢ = 15[sec|] and ¢t = 30[sec|, the way how the signals
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FIGURE 5.27: Current tracking corresponding to the saturated ramp reference for the PI D+
Feedback controller.

voltage control must shift sequence of phases in order to achieve the spin sense shift, -see on

Figure 5.26 the velocity profile.
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FiGURE 5.28: Control input corresponding to the saturated ramp reference for the PID+
Feedback controller.

5.5.3 Sinusoidal velocity reference

The last scenario for this controller corresponds to the sinusoidal velocity reference constructed
by the function w*(¢) = 100sin(0.45t).
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The result of control for the velocity tracking is depicted in Figure 5.29, where it can be noticed,
once again, good results. Furthermore, unlike experiments for the PI2D controller, there are no
delays; this result is better than the presented in Figures 5.8 and 5.19. Although we may notice
small oscillations around the desired velocity, a very good fit between reference and real velocity

is achieved.

250 [ T T T T T T T T ]
100 -9

200 b

150 ~-100 i

3 3.5 4 10 10.5 11

95

100

50

Velocity tracking [rad/sec]

0 5 10 15 20 25 30 35 40 45

time [sec]

FIGURE 5.29: Velocity tracking of the sinusoidal reference for the PID-+ Feedback controller.

The results corresponding to electrical current tracking are shown in both plots on Figure 5.30,

similarly to the presented in the previous sections. The overall behavior of the currents is
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FIGURE 5.30: Current tracking corresponding to the sinusoidal reference for the PI D+ Feed-
back controller.

presented in left hand side plots, it must be remarked that current merely reaches 3.5[A], with

some overshoots apearing which are not significant.
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On the right hand side plots detailed current tracking is depicted, notice the small errors and
magnitude of the currents. It is also important to notice that the current does not reach zero,

which means that stator remains magnetized despite the shooting off of the corresponding phase.

The last graph, shown in Figure 5.31, corresponds to the voltage control input. Once again,
notice in the zoomed window that the voltage magnitudes are not larger than £50[V] for almost
all time and, consequently, the utilized converter is appropriate for these conditions and scenarios.

We must point out that this graph pictures the “output®
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F1GURE 5.31: Voltage control input corresponding to the sinusoidal reference for the PI D+
Feedback controller.






Chapter 6

Conclusions

6.1 General conclusions

In this thesis we have designed, and tested experimentally three different velocity
controllers for the switched-reluctance motor. In Chapters 3 and 4 we have presented the
design, the theoretical results and the numerical simulations of three velocity controllers of the
switched-reluctance motor. The first controller was designed for the so-called g—model with
the assumption of known parameters and unknown both velocity and load torque. In
a second stage, in addition to velocity and load torque, physical parameters are assumed
unknown. This work is presented in Chapter 3. For these two first controllers we have achieved
uniform global exponential stability of the error variables in the parameter known case and

uniform global asymptotical stability in the case of parameter uncertainty.

The third controller, presented in Chapter 4, was designed considering the so called p—model
under the assumption of unknown load torque but parameters and the whole state are
available. For this controller we have achieved uniform global exponential stability of the origin
of the controlled system. This result is important because it is a first step towards the full
sensorless control were position and velocity measurements are replaced by the observed states

coming from a virtual sensor. All these result are summarized in Tables 6.1 and 6.2.

Controller Assumptions Stability results

PI?D+Feedback  controller Parameters known uniform global exponential

. Load torque unknown -
hapt . tabilit
in Chapter 3 Velocity unknown M

Parameters  unknown
PI?D+Adaptive feedback | Load torque unknown | uniform global asymptoti-
controller in Chapter 3 Velocity unknown cal stability

Parameter estimation

Parameters known
Load torque unknown
Velocity known

PID++Feedback controller in
Chapter 4

uniform global exponential
stability

TABLE 6.1: Assumed conditions and theoretical results of the designed controllers.
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Finally, in Chapter 5 we have presented the results of the experimental tests performed in order

to investigate the behavior of the proposed controllers. During these experiments three different

profiles were imposed for each one of the three designed controllers. The control objectives of the

all tests was the mechanical velocity. As it can be noted in Chapter 5, we have obtained good

results during the experimental tests, where the variable of interest is the mechanical velocity.

Profile Smooth steps Saturated ramp Sinusoidal reference
Controller
PI?D+Feedback Good velocity track- | Velocity tracking | Velocity tracking
controller ing well behaved with small delay with small delay
Good in  current | Good in  current | Good in  current
tracking tracking tracking
PI?D+Adaptive Good velocity track- | Velocity tracking | Velocity tracking

feedback controller

ing well behaved
Good in  current
tracking

Parameter estimation
with bounded error

with small delay
Current tracking with
error in magnitude
Parameter estimation
with bounded error

with small delay

Not good in current
tracking

Parameter estimation
with bounded error

PID+Feedback Good in  velocity | Vel. Tracking with | Good in velocity

controller tracking small overshoot tracking
. . . Good i t
Good in  current | Current tracking with co€ A cuten
. . . tracking with erroro

tracking error in magnitude . .

in magnitude
TABLE 6.2: Tested controllers and imposed velocity-profiles.
6.2 Future work

Future work includes observer based control of the switched-reluctance motor by modifying

the PID+feedback controller presented in Chapter 4, that is, adding a certainty equivalence

control. Concerning the PI2D presented in Chapter 3, it is interesting to run research towards

improvements in the adaptive law, based on the research presented in [62] among others, this

because the results obtained during experiments are subject to improvements.




Appendix A

Material in support of the PIFD

Controller

A.1 Hurwitz property of matrix A(n) in (3.14)

Claim 1. The matriz A(n) in (3.14) is Hurwitz for any 0 < J € [y, Ju] and 0 < n € [N, nus)
if
b [M 4 1)a+1, k> ka (A1)
—_ J ) p .

m

where X € (0,1). Then, under the conditions (A.1) there exists a positive definite matriz P(n, J)
and reals qm, pyr = pm > 0 and € € (0, 1) independent of n and J such that

2 €] < €T PE < p €2,

Q = —(ATP+ PA) = —(Q1 + Q2) such that Q1 = Q is positive definite and Q2 = Qg is
positive semidefinite such that qm |€]* < %fTQlf and €T Q26 > e(J/n)(b— 1)e2.

Proof of Claim 1. Let 1, g2 € (0,1) and P in (3.17) defined as

ks, (J/m)er 0 0
p_ |Umer  (/m) =(I/ner —e
0 —(J/mer ka/b 0
| 0 —E&9 0 51/]%_

This matrix is diagonal dominant hence positive definite, if

k‘zlj > (JM/nm)sl, 1> 2(JM/nm)61 + &2
k
?d>(JM/T]m)€1, %>62.
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These conditions hold for sufficiently small €1 and €9 such that k; < €1, therefore there exist p;,
and pps > 0 such that
P €1 < VA(E) < par [€°.

Next, let Q := AT P + PA be partitioned as

0=— [QlB 0 ] B [QZB Q2 ] (A2)

0 (n/J)e2 Q3, (n/J)e2
o s
where
eik) —eok; e1(ka — k)
) J _ _ 262]% L 1
Qip = eok; €1 L](b 1) 2 } <52k:l nqa)
El(kd - k;) (Egki — i81a> kd<% — 81)
81]% 0 0
J
0 0 kd(% - 51)
and

N VR

Since (n/J)e2 > 0 the matrix @1 in (A.2) is positive definite if and only if so is Q1p; the latter
holds if Q1 p is diagonal dominant. This in turn holds for small values of €1 > 5 > k; and control
gains satisfying (A.1). Thus, there exists ¢,, > 0 such that ¢, |§]2 < %fTQf. On the other hand,
the Schur complement of ()9 is positive for sufficiently small values of €; and €5, independently
of the center element in Q25 hence, we have ¢ Q2& > (J/n)e(b — 1)e? with & := e;. This is

detailed along the following lines.

Matrix @i in (A.2) is definite positive if the following stands. For given positive numbers k]’m
kg, ki, a and b such that

> [P t1fat 1, K>k (A.3)

there exist €1,e9 > 0 s.t. Q1 > 0. Let

A= — <1, (A4)
Ky,
. kg 27,01 ax
< — .
51—mm{’b<1+w) ’2b(/\+1)}’ (A-5)
Ay 1= £
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and g9 be such that

1
2 < —min{al,ag,ag,cu} (A6)
€1 kl
-1
where a1 = kg, ozgzj—m[b—l—a} —a, agzel—a anda4:k—f[Jm} [1—{— A } .
Ny 2 kp nm )\2—1

Note that given a,b, k), k; and kg satisfying (A.3), the conditions (A.5) and (A.6) hold for

sufficiently small values of e1 and 9. Also note that Ao > 1 since, in view of (A.5) we have

a > bey. Now, @@ is diagonal dominant if

€1 |)\— 1|k‘;—|—52ki < 61/61,) (A7)
) ) 282]@
eok; + |eak; — (J/n)eral <ei|(J/n)(b—1) — = (A.8)
1
e1ky A= 1]+ [eaki + (J/m)era] < M (5 — 1) (A.9)

Since A < 1 (A.7) holds if
Elk;) > eok; + 81(1 - /\)k; =4 51)\]%/0 > eok;

which is equivalent to

which holds in view of (A.6) and (A.4). Now, we show that (A.8) holds. Again, from (A.6) we

have

2 6

& 29k < 2a
g1 — 2k 2hi = =1

hence, (A.8) holds if
%[al(b —-1)— 81(1] > 2e9k; +e1a

which is satisfied if
%51(6 — 1) > 2e9k; + 61a(1 + %)

or equivalently if
2e0k;
i[b—l—a]—az Zeoks
n €1

which in turn, holds in view of (A.6).

Finally, we show that inequality (A.9) holds. Indeed since A < 1, (A.9) is implied by

k'
e Z Elk';, + (62]% + %810,) + )\k;,&‘l

b
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which holds if

2o (140 (A.10)
2b
and
k! a J
P 42
% > (52kz + 1761&). (All)

Inequality (A.10) holds in view of (A.5). Since from (A.6) 2e2k; < £2a, Inequality (A.11) holds
if

MkLa agy | J Ak, e2 J
Feal el gz (§ )
% _51< 5 —i—na)(:) 5 —1—7751

Since €1 < 1, the latter holds if

Py -1
p> A4 ) e R 2N
20 2 n n

which holds in view of (A.5).

On the other hand, definite positiveness of ()5 results from the application of the Schur comple-
ment, which is non-negative if
—1

-
oy > —eaky, 1k, aO —éeak,, [Q]
—kqeo 0 k’d(g - 51) —kqe2 J

the latter is equivalent to

2k/ 2k/)\
e > 1] | 224 2 (A.12)

o Ga)

using Ag 1= % we see that (A.12) holds if
1

e > [Q] r%k{n N eski A } _ 3k, [Q] [1 N A }
— LJ €1 ()\2—1)61 g1 LJ Ay —1

which holds in view of (A.6). We remark that

€T Qo > ;{’el(b —1)

A.2 Proofs of the propositions in Chapter 3

A.2.1 Proof of Proposition 3.2

In view of the definition of z* we have T} = JT,; so the rotor closed-loop dynamics yields
(3.16) with A = A(.J). In view of Proposition 3.1 the equilibrium defined by (3.13) is uniformly
globally exponentially stable if T, = 0. Let g, > 0, € € (0,1) and @ = Q" > 0 be such that

Q = Q1 + Q2 where Q1 = QI is positive definite and Q2 = Q; is positive semidefinite such
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that g, ]§|2 < %fTQﬁ and €7 Qo€ > (J/n)e(b — 1)e2. In view of the Hurwitz assumption and
[63, Theorem 4.2] there exist a matrix P and positive real numbers 71, p,, and pps such that
Q=—(ATP+ PA), |PB| <~ and

P €7 < VA(E) < par €.

Then, the derivative of V; satisfies (3.18) with @ as defined above and since T, and T are

quadratic functions uniformly bounded in ¢,

a(z+2%)| s0, ae.,
VA(E) < —am € + 200 g] [e] (2 + )| = (J/me(b — 1)e?

On the other hand, substituting u from (3.23) in (3.8a) we obtain the stator closed-loop Equation
(3.25). Consider the function V5 : Ry x R? — R, defined by

Valt,e2) = gel Lig(h)ea

which is positive definite and radially unbounded since |L(q)| is uniformly bounded and positive

definite actually, in view of (3.7),
T Jea < Valten) < o leal?

The total derivative of V5 along the trajectories of (3.25) satisfies

%(taem) S_ST[(]{Z Al_kTMUJ*)I
EsTK((» K@@»}%+[ _%ig]Q

for which we used £L(q(t)) = K(q(t))[ew + w*], el K(q)esew < (1/X3)e2 + As[e] K(q) x]z and
el gew < M2 lex|*+(1/A1)e2. Thus, the total derivative of the Lyapunov function Vs := Vi + Vs

along the closed-loop trajectories satisfies

Vs < = Um/man)eb =)= 5 = 51| 2

1

Aokaryi 42
— |dm — 9 |£‘

k *
_ |:kpm — )\1’722 — 7M(w + A3k |€x|2

71 2 2
+ij+xﬂ)h%\ ae.

where we used ‘e;—(x + x*)| €] < (1/X2) |z + z*|* + X2 |€]*. Therefore, given ¢y, and b, for any
J, n and ¢, there exist positive numbers A1, A2, A3 and ¢ such that, defining k{w > 0 and

kv
ko = - 2w + Askas |es)? —|— ]a;—i—x] )

+>\172(|@/|>|33|) ,
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V3 satisfies
“/3(757&61) S _C[ ’€|2 + |€;p|2:| a.e.

Note that k;, is a non-decreasing function of |y|, || and |2*| since lz*|? = O(Ty) where T} is

linear in y. The result follows.

A.2.2 Proof of Proposition 3.3

A direct computation using
_ T TA
u=VY(ty,e;) © —kpre, +V(t,y,e;) O,
leads to the closed-loop equations

L(q)ér = —[R+ kpslex — g(t,z,y)ew + V(t,y,e.) © (A.13a)
0 = —kgU(t,y,er)es (A.13Db)

with g(-) as defined in (3.26). Next, consider the Lyapunov function V : Ry x R* x R3 xR3 — R
defined by
~ 1~
V(t, & e, 0) :=V5(t, &, e,) + %H@Hz

which is positive definite and radially unbounded. The Hurwitz property of A implies by Propo-
sition 3.2 that the total derivative of V' along the closed-loop trajectories generated by (A.13)
satisfies

V(t,& er,0) < —c[[{\Q + \ez\ﬂ <0 ae. (A.14)

Uniform global stability of the origin follows integrating V < 0 along the closed-loop trajectories
hence £ € L, e, € Lo and, in view of (3.7), a simple inspection at the closed-loop equations
show that € € Lo and é, € Loo. Furthermore, the first inequality in (A.14) implies that & € Lo,
ez € Lo. The result follows e.g., from [64, Lemma A.5, p. 392].

A.2.3 Proof of Proposition 3.4

The proof of Proposition 3.4 follows by applying Matrosov’s theorem —see Section A.3. The first
condition of the latter requires the origin {f [ C:)] = 0 be uniformly globally stable, this is
established in Proposition 3.3. In fact, from (A.14) we have V < Yj(€, ;) a.e. with Yp(&,e,) =
—c[ €% + |e$]2] < 0. It is left to find differentiable locally bounded auxiliary functions with
the property that their time derivatives are negative semi-definite on very particular sets. The
first auxiliary function must be negative semi-definite on {Yy = 0} hence, we look for a function
W1 :Ry x R* x R? x R? — R such that

€, e.] = 10,00 = Wy <0.
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We propose
Wi(t,€ e, ©) = —e; L(q(t)) "o () 'O

whose total derivative along the closed-loop trajectories (3.25) , (3.16) and (3.28b) yields

Wi (t,€,e.0) = —el (kpe + R) To(t) 'O
—g(t,,6) "Wo(t) 'Oy, — OTW(t,y, ) Wo(t) O
— g L(q(t)) TWo(t) "0 — ] L(q(t)) "¥o()©
+kgey L(q(t) " Wo(t) "W (t,y, ex)eq.

Let © C R0 be a compact set; we see that for all (¢, [¢,e,,0]) € Ry x QN {Yy = 0} we have

Wi(t,€,e:.0) = Yi(t,0) <0,
Yi(t,0) = —OTW(t)Ty(t)"O.

Next, we look for a second auxiliary function Wy such that its derivative is negative semi-definite

on Ry x QN {Yy=0}n{Y; =0}. Let Wo: R, x R® — R, be defined by
Wa(t,©) = - / o7||®(r, &) dr
t
where ®(t,0) = Wy(t)"O. Note that

o0 o t+T o
/ 7(|o(r, 6)| d7>/ o7||®(r, &) | dr
t t

and after (3.29), that impose the persitence of excitation condition on ¥ (t), we obtain
t+T <12 <12
[ ot efar> el
t

consequently
Wa(t,0) < —ue T 6| (A.15)

On the other hand, the total time derivative of W5 along the closed-loop trajectories satisfies,

after inequality (A.15),

Walt, 6) < 2k / e TOT Wy (r)Wo (1) Tdr U(t, y, ex)es
t

+ 21, 0)| — ue "0

Now, we have {Yy = 0} N {Y; =0} = {[, ey, ®] = [0, 0, 0]} hence, on this set and for all
teR,,

. ~ _T ~ 2

Wa(t,0) < —pe"||0]|".

The functions V, W, and Wy are bounded from above by continuous functions which vanish
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simultaneously only at [£, e;, D, é] =10, 0, 0, 0]. The result follows invoking the generalized
Matrosov’s theorem, recalled below.

A.3 Generalized Matrosov’s theorem

The following material is taken from [65]. Consider the time varying, not necessarily periodic,

differential equation
&= F(t,x) (A.16)

where ¢ denotes the time, z = [z] mﬂ—r the state with € R". We assume that F(¢t,0) = 0
for all t > 0, that F' is continous in ¢ and locally Lipschitz in x uniformly in ¢. Then, under the

following assumptions! the origin of (A.16) is uniformly globally asymptotically stable.

Ass. 1 The origin of (A.16) is Uniformly Globally Stable; that is, there exist functions Vy(x), Wy(x1) €
K such that the time derivative of Vy(x) along system (A.16) satisfies

Vo(z) < —Wo(z1)

Ass. 2 There exist integers j,m > 0 and for each A > 0 there exist

e a number y > 0
e locally Lipschitz continuous functions V; : R>g x R — R,i € {1,--- ,j};
e a function ¢ : R>g x R" — R™;

e continuous functions W; : R” x R™ — R, i € {1,---,j};

such that, for almost all (¢,z) € R>¢ x f(A) and all i € {1,---, j}

max {|Vi(t, z)[, [6(t, )|} < p

Ass. 3 For each integer k € {1,---,j}, we have that

(a) {Wi(z,) =0 Vi€ {l, -, k—1},and all(z, ) € B(A) x B(u)} implies that
(b) {Wi(z,4) <0 and all(z,¢) € B(A) x B(u)}
Ass. 4 we have that the statement
(a) {Wi(z9) =0 Vi€ {l,---,j},and all(z,1)) € B(A) x B(z)} implies that

(b) {z =0}

n [65] it is not assumed that F is locally Lipschitz in = uniformly in ¢
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Note that any of the function Vj, is required to be signed-definite on the set set where all the

previous bounding functions W; with i € {1,--- |k — 1} are zero.

It can be useful to note that when the z +— F\(t,z) is locally Lipschitz uniformly in ¢ then the
uniform global stability assumption can be relaxed to uniform (local) stability and boundedness

of trajectories for each x.

A.4 MATLAB™code to integrate data vectors

The following code allows one to calculate the integral (3.29) for all ¢ € [0, 25]

clear

Nr=25; m=3 ; xm=180/(m*Nr); sigma=0.1275; TL=0.15; J=0.001; nua=TL/J;
pi=3.14159265358979323846264338327; d=80e-2; d2=0.500;

f = [6/xm~5 -15/xm~4 10/xm~3 0 O 0]; Tc=360/(2%*3*%xNr); Tc2=2*Tc;
Tc3=Tc*3; Tc4=Tc*4; Tc5=Tc*5; Tc6=Tc*6;

ti=be-5; Jtime of integration

tmax=27; t=0:ti:tmax; t=t’;

WDv=180%*ones (max(size(t)) ,1); SWDv=zeros (max(size(t)) ,1);
sim IntegraWD Jto obtain g~
SM1v=0*QDv; SM2v=0*QDv; SM3v=0xQDv;
for i=1:max(size(t))
qd=QDv (i)
SM1v(i,1)=sm1(qgd); SM2v(i,1)=sm2(qd); SM3v(i,1)=sm3(qd);
end
sim Compute_Hk1l_0K ’run Simulink to obtain Hk1
T=1 % width of time integration
Np=T/ti;
for i=1:1:(25/ti)+1
tT=t (i:i+Np);
M11T=M11(i:i+Np); M12T=M12(i:i+Np); M22T=M22(i:i+Np);
M13T=M13(i:i+Np); M23T=M23(i:i+Np); M33T=M33(i:i+Np);
iMT=[trapz (tT,M11T) trapz(tT,M12T) trapz(tT,M13T);
trapz (tT,M12T) trapz (tT,M22T) trapz(tT,M23T);
trapz (tT,M13T) trapz (tT,M23T) trapz(tT,M33T)];
E=eig (iMT);
el(i,1)=E(1);e2(i,1)=E(2);e3(i,1)=E(3);

end







Appendix B

Material in support of the PID

Controller

B.1 Properties of matrix 7°(+)

We stress some useful properties of 1'(t). First of all, let ¢*(0) = 0 therefore ¢*(t) = w*t, then

define R%*2 matrix

T(T) — [ Sin<qu*(7—))2 _Sin<N'I‘q*(7—))COS(NTq*(T))]

—sin(Npg*(7)) cos(Nrq* (7)) cos(Nyq*(7))?

where each entry is periodic with period m/N,w*. We compute the integral over the indicated

limits

t+7T/Nrw* ) 1 N?“w*[t-l-ﬁ/Nrw*} )
sin(Nyq'(r)Par = o sin(q")?dg"
/ : .

: [1 S U } Nrerleem ]

= ~ | 54" — —sin(2q")

Nrw 2 4 N’r“-’*t

r r

o s

~ 2N,w*

while a similar computation yields

t+7‘r/Nrw* ) 1 1 1 NTW*[t+7r/NTw*]
cos(Nqq*(7))*dr = [q* + = sin(2¢* }
/ (Vg (7 = s 5+ o)

T
2N, w*

91
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On the other hand,

t+m/Nyw* t+m/Nrw*
/ sin(N,-q* (7)) cos(N,¢*(7))dr = / sin(2N,w*r)dr =0
t t

so finally, we obtain

t+7/Nyw* T
/t Y(r)dr = O I (B.1)

By the same reasoning we see that the product

— sin(Nyq¢*) cos(N-¢*) — sin(N,.¢*)?

] = N,
cos(N.q*)? sin(N,.q¢*) cos(N,q*)

satisfies the following. The matrix

hence, it is skew-symmetric and

|IT] := \/)\M<TTT) = 7/2w*.

The above expressions become useful in the following section.

B.2 Proof of Lemma 4.1

In this section we present the details concerning the proof of Lemma 4.1. The derivative of Vo,
as expressed in (4.16a) , along the trajectories of (4.13) yields
Vo = &1 |—kge, — p,o*TJTep + U} p*TJTeP
+€16w[)*TJT€p +erenp’ I {Jp*ew + wq]]ep}
2
= —slkdewp*TJTe,, —e1ky {p*TJTe,}} + slvp*TJTep
+ereyp* I I e w* + N2ey P el + erewp™ I Je,w
2
= —eikp {p*TJTep] + NZe; [p*Tep + ]pi\ﬂei

—e1kg [p*TJTep} ew + €1 [p*TJTep} v. (B.3)

Next, we expose some properties of V.3. Firstly, note that

t+Te
Va= e | [ |2
t
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and since 7(7) > 0 and e(*=7) > (=I+7T)) we have

t+T,
Vi < —ef [ / T(ﬂd{ epN2 gt e
t

Then, setting T, = 7/N,w* and using (B.1) we obtain

N, _ x
Vi < = (Gor ot e/ ) e (B4)

in which p} is a design parameter. Furthermore, the total derivative of V.3 along the trajectories
of (4.13) satisfies

) 4T
Vg < — / 12T N2 o521 (r)dr

2
| I e,| + Vs, (B.5)

Substituting (4.13b) in the first term we obtain
_ e =196 T N2 | 0* 2 T (+)dr —
| N
t+Te
—N? \p§|2/ e(t*T)e;T(T)Jp*(T)dTew
' t+Te
—N? |p§|2we;r (/t e(tT)T(T)JdT> e,. (B.6)

Set T, = m/N,w*. Then, we use (B.2) to see that the first term on the right-hand side of (B.6)
is bounded by wN2|p*|? lep| |ew| /2w* while the second term is bounded by
t+m/Nyw*
e;—/ Y(r)ldre,
t

* (2
NZ |pal |wl =0;

see (B.2). We conclude that

. 2 N, «
R O I - e
w
Ny *13
DT el el B

The last term in B.7 satisfies

N2m
2w*

N7
4w

3 T 2 4 2
1051 leol lewl < S 1031 (lel” + 1031 fewl? ).

Then, recalling that kg; = A\ikg and kp; = Aikp, let

Y

%2 ™ *3
ka = N2t (3e1+ o o3l
k‘pl = 1/61

—~ o~
W W
N0 o]
= =
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5 1 Cu kdg &1 k’d €w
1: =7z
2 p*T.,]]Tep Elkd €1 ka p*TJTep

kA3
kq
Under these conditions, putting together the expressions (4.14), (B.3) and (B.7) we obtain (4.18)

and

which is non-negative if

> e, (B.10)

in Lemma 4.1.
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