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also assumed unknown, uniform asymptotical stability is achieved in this case and parameters estimation is guaranteed under a persistence of excitation condition. This controller consists of two loops, an internal loop based on a P I 2 D-type controller which is of particular interest given it is free-model; this loop drives the mechanical variables -that is position and velocity-towards a desired reference. An external control loop takes the electrical current towards a ''virtual" current reference which is generated based on a torque share approach. The controller is tested on numerical simulations, which are also presented. In the fourth chapter, a new approach on the modeling of the SRM is utilized to design the controller, in this scenario is assumed that the whole state and all the physical parameters are available, however this approach is thought to be suitable to observer based controller, whose ongoing research is being performed. The controller is composed by two loops, similarly to the one mentioned previously. This controller is selected because it is suitable for certainty equivalence control, that is, to substitute the "measurements" by the "observations" coming from a virtual sensor. Numerical implementation is performed on Simulink of Matlab.

Finally, in the Chapter five, the experimental results carried out to evaluate the performance of the proposed controllers are presented, these are the P I 2 D and the adaptive P I 2 D controllers for the simplified model and the P ID controller for the novel modeling approach. In the first part, a brief description of the construction of the utilized bench is presented as well as the some technical characteristics. Three different velocity profiles were imposed to each of the overmentioned controllers -these are the so called smooth step, the saturated ramp and the sinusoidal reference-and good results, considering that the controlled variable is the velocity, were obtained. The last chapter corresponds to the conclusions of the performed research as well as to the future work. 
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Moteur à réluctance variable

Le moteur à réluctance variable est un moteur électrique dont le couple est produit par la tendance de son rotor à se déplacer jusqu'à une position où l'inductance du stator est maximisée. L'origine du moteur à réluctance peut être retracée à 1842. Sa réinvention a été probablement due à l'avènement des dispositifs de commutation peu chers et de haute puissance. Le moteur à réluctance est un type de machine synchrone. Le stator, pareil au stator d'un moteur à courant continu, est bobiné ; néanmoins, le rotor n'est ni bobiné ni magnétisé. Celui-ci est plutôt fait de feuilles de fer. Tant le stator que le rotor ont des pôles saillants, d'où le qualificatif de machine doublement saillante attribué au moteur à réluctance variable [START_REF] Rajani | Modelling and control of switched reluctance motor[END_REF].

Le MRV a plusieurs caractéristiques qui le positionnent comme une option importante parmi d'autres machines couramment utilisées telles que les moteurs à courant continu, les moteurs asynchrones ou les moteurs synchrones . Ses principaux avantages sont sa construction simple et peu coûteuse, sans oublier sa capacité à se dispenser de courants bidirectionnels. De plus, les pertes thermiques n'apparaissent que dans le stator, facilitant son refroidissement. Un autre avantage majeur est la caractéristique vitesse-couple de rotation réglable qui permet l'obtention d'un couple élevé à basse vitesse et qui évite l'utilisation de boîtes de vitesses. Il est également possible de faire usage de ces moteurs à des températures plus élevées en comparaison à d'autres moteurs, tels que des moteurs à aimants permanents.

Cependant , le moteur à réluctance variable présente aussi des inconvénients. La construction à double saillance et la nature discrète de la production de couple par les phases indépendantes conduisent à plus d'ondulations de couple par rapport à d'autres machines. Ainsi, une ondulation de couple plus élevée, en même temps que la nécessité de récupérer de l'énergie à partir du flux magnétique, provoque une trop grande ondulation du courant, ce qui, en conséquence, réclame une grande capacité de filtrage. Également, la structure doublement saillante du moteur à réluctance variable provoque un bruit acoustique plus élevé par rapport à d'autres modèles. En fait, la principale source de bruit acoustique vient de la force magnétique radiale induite.

Ainsi, une plus grande ondulation de couple et le bruit acoustique sont les désavantages du MRV les plus critiqués. Toutefois, il faut souligner que les avantages du MRV sont nettement plus 1 importants que ses défauts, ce qui lui permet de disposer d'un large champ d'application dans les industries pour des usages réguliers comme dans les compresseurs, les ventilateurs, les pompes, les centrifugeuses, les robots culinaires, les machines à laver, les aspirateurs, et bien d'autres.

Il est d'ailleurs encore bien présent dans l'industrie émergente des véhicules électriques. Une étude approfondie de la physique du MRV va au-delà de la portée de cette thèse, (Les lecteurs intéressés sont invités à trouver plus d'informations dans [START_REF] Tahar | Torque Control[END_REF] et dans [START_REF] Krishnan | Switched Reluctance Motor Drives[END_REF]). Cependant, dans les prochaines pages sera présentée une brève description du principe de fonctionnement de cette machine populaire. q 2 q 3 q 4 La Lu q 1 q 2 q 3 q 4 q 1

Construction et fonctionnement

1. 0q 1 : Les pôles du stator et du rotor ne se chevauchent pas dans cette région et le flux est déterminé principalement par la voie d'air, ce qui rend le minimum d'inductance et à peu près constante. Par conséquent, cette région ne contribue pas à la production de couple.

L'inductance dans cette région est connue comme inductance non aligné L u .

2. q 1q 2 : Les pôles se chevauchent, conséquemment le flux s'établit principalement entre les tôles du stator et du rotor. Cela augmente l'inductance de la position du rotor, ce qui lui donne une pente positive. Un courant imposé dans l'enroulement de cette région produit un couple positif. Cette région prend fin lorsque le chevauchement des pôles est terminé..
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. q 2q 3 : Au cours de cette période, le mouvement du pôle de rotor ne modifie pas le chevauchement complet du pôle de stator et ne modifie pas le chemin de flux dominant. Ceci a pour effet de maintenir l'inductance maximale et constante, cette inductance est connue comme inductance alignée L a . Comme il n'y a pas de changement dans l'inductance au cours de cette région, la génération de couple est zéro même lorsqu'un courant est présent dans cet intervalle. En dépit de ce fait, cette période joue un rôle utile en fournissant des temps pour le courant du stator pour revenir à zéro, ce qui empêche la génération de couple négatif pour une partie du temps lorsque le courant a été en décomposition dans la région de l'inductance à la pente négative.

4. q 3q 4 : Dans cette région, le rotor s'éloigne du pôle du stator (le chevauchement se termine). Ceci est très similaire à la région q 1 -q 2 excepté que l'inductance diminue pendant que la position du rotor augmente, contribuant ainsi à une pente négative de la région Ainsi, le courant peut être fixé à n'importe quel niveau désiré au moyen de régulateurs (hystérésis

L a L u
T ma -T ma 0 0 q s q 1 q 2 q 3 P osition angulaire P as du rotor pôle Lorsque la vitesse augmente, la force contre-électromotrice augmente également. Alors, un avancement de l'angle de conduction est nécessaire pour atteindre le courant désiré avant que le rotor et le stator ne commencent à se chevaucher. Le courant désiré est une fonction de la vitesse et de l'état de charge. Étant donné qu'aucun courant arraché n'apparaît au cours de l'angle d'arrêt, seule la commande de l'angle peut être utilisée à ce stade, de sorte que le couple ne peut pas être maintenue constant, causant sa diminution linéaire pendant que la vitesse augmente. Dans la région de puissance en baisse, lorsque la vitesse augmente, l'angle de conduction ne peut pas être avancé plus loin. En raison de la chute rapide de couple, la puissance ne peut être maintenue et le courant de queue de la bobine de phase s'étend à la région de couple négatif. Le courant de queue ne peut même pas tomber à zéro. Dans le fonctionnement à grande vitesse, la conduction du courant continu dans la bobine de phase peut augmenter le courant de phase et la densité de puissance peut être augmentée. présente dans [START_REF] Ghanes | Cascade and high-gain observers comparison for sensorless closed-loop induction motor control[END_REF] et dans [START_REF] Ghanes | Tracking performances of backstepping and high gain observers for sensorless induction motor control against low frequencies benchmark[END_REF]. En ce qui concerne le moteur à réluctance variable, il existe un grand nombre d'approches de contrôle et d'identification qui sont basées sur l'euristique et validés expérimentalement . Ces dernières avec des objectifs différents de contrôle : contrôle de couple et de flux - [START_REF] Cheok | A new torque and flux control method for switched reluctance motor drives[END_REF], contrôle de vitesse - [START_REF] Hongwei Gao | Inductance model-based sensorless control of the switched reluctance motor drive at low speed[END_REF], estimation d'état - [START_REF] Husain | Observers for position and speed estimations in switched reluctance motors[END_REF], identification de paramètres - [START_REF] Reis | Identification and adaptive speed control for switched reluctance motor using DSP[END_REF]. Une comparaison de deux stratégies de contrôle qui permettent à la machine à réluctance variable de fonctionner en large plage de vitesse, est présenté dans [START_REF] Hannoun | Design of an srm speed control strategy for a wide range of operating speeds[END_REF]. En outre, l'auteur dans [START_REF] Hilairet | Design of an optimized srm control architecture based on a hardware/software partitioning[END_REF] décrit une architecture optimisée basée sur un partitionnement matériel/logiciel, la stratégie proposée atteint ondulations inférieures de courant et de couple dans une large gamme de vitesse. Les auteurs de [START_REF] Jinupun | Direct torque control for sensorless switched reluctance motor drives[END_REF] présentent un contrôle sans capteur pour les moteurs à réluctance variable basés sur le contrôle direct de couple. Diverses design et réalisations expérimentales des observateurs de Luenberger pour position mécanique sont présentés dans [START_REF] Elmas | Position sensorless operation of a switched reluctance drive based on observer[END_REF] et dans [START_REF] Elmas | Application of a full-order extended luenberger observer for a position sensorless operation of a switched reluctance motor drive[END_REF],

où les mesures de tensions et courants sont les seules entrées disponibles à l'observateur. Une approche intéressante apparaît dans [START_REF] Ray | A sensorless method for determining rotor position for switched reluctance motors[END_REF] ; où, sans l'aide de capteurs optiques ou magnétiques, les informations stockées de la caractéristique magnétique est utilisée afin d'élucider la position mécanique, la même approche est présentée dans [START_REF] Makwana | Sensorless control of switched reluctance motor drive: An analytical method[END_REF]. Une transformation de coordonnées du système de courants de phase est utilisé dans [START_REF] Cai | Estimation of srm rotor position based on coordinate transformation[END_REF] pour concevoir un observateur de position, des résultats expérimentaux sont également présentés. Certains travaux sur le contrôle non basé sur modèle a été ainsi déclarée, dans [START_REF] Cheok | A model free fuzzy logic based rotor position sensorless switched reluctance motor drives[END_REF] et dans [START_REF] Cheok | High robustness and reliability of a fuzzy logic based angle estimation algorithm for practical switched reluctance motor drives[END_REF] algorithmes de contrôle sans capteur basés sur la logique floue sont décrits et les résultats expérimentaux sont présentés. Dans [START_REF] Ooi | Simulation of neural networks to sensorless control of switched reluctance motor[END_REF] des réseaux neuronaux ont été utilisés pour prédire la position en utilisant l'inductance et des données de courant de phase sont utilisés par un deuxième réseau de neurones qui fournissent un courant de référence et minimise les ondulations de couple. De même, dans [START_REF] Zhong | Position sensorless control of switched reluctance motors based on improved neural network[END_REF], un réseau neuronal de propagation avec pré-traitement d'entrée est utilisé pour estimer la position du rotor du MRV.

Pour le contrôle entièrement sans capteur, dans [START_REF] Wolff | Sensorless speed control of a switched reluctance motor for industrial applications[END_REF] un contrôleur est présenté où la position et la vitesse sont obtenues à partir d'informations sur liaison de flux et courants de phase (pas d'analyse de la stabilité). Dans cette avenue, observateurs à mode glissant sont communs, par exemple, le papier [START_REF] Brandstetter | Sensorless control of switched reluctance motor using sliding mode observer[END_REF] règle le problème d'estimation de vitesse et de position, d'autres travaux sur observateurs à mode glissants sont [START_REF] Brandstetter | Sensorless control of switched reluctance motor using sliding mode observer[END_REF][START_REF] Lu | Sensorless control of switched reluctance motors using sliding mode observers[END_REF][START_REF] Park | A novel high performance position sensorless control of switched reluctance motor drives[END_REF] où des résultats expérimentaux sont même inclus.

Enfin, une revue intéressante sur commande sans capteur pour MRV est donnée dans [START_REF] Fahimi | Review of sensorless control methods in switched reluctance motor drives[END_REF] et, particulièrement sur le contrôle de position sans capteur, dans [START_REF] Kawamura | Survey of position sensorless switched reluctance motor control[END_REF]. Une variété d'approches pour la commande sans capteur dans la littérature est donnée dans [START_REF] Holling | The sensorless control of variable switched reluctance motors[END_REF]. Cependant, pour le meilleur de la connaissance des auteurs, des articles sur le contrôle des moteurs à réluctance variable en incluant une analyse rigoureuse de la stabilité, en particulier dans un contexte sans capteur (et encore moins dans l'incertitude paramétrique) sont rares, même que pour ad hoc solutions basées sur des méthodes telles que le contrôle de modèle prédictif - [START_REF] Peyrl | Model predictive torque control of a switched reluctance motor[END_REF]. Le résultat principal dans [START_REF] Espinosa-Perez | Passivity-based control of switched reluctance motors with nonlinear magnetic circuits[END_REF] garantit la stabilité asymptotique globale pour un contrôleur basé sur passivité dans le cas de charge mécanique inconnue, mais il fait usage de deux variables mécaniques, vitesse et position. Un contrôleur du type PID est proposé dans [START_REF] Taylor | Pulse-width modulated control of electromechanical systems[END_REF] mais il relaie sur la connaissance de la charge de couple. Dans [START_REF] Milman | Observer-based adaptive control of a variable reluctance motor: Experimental results[END_REF] les auteurs considèrent seulement la dynamique de rotor qui est, il est supposé que les courants sont entrés de commande physique valides. Dans [START_REF] Hu | nonlinear control of electric machinery[END_REF] The Switched Reluctance Motor

The switched reluctance motor is an electric motor in which torque is produced by the tendency of its rotor to move towards a position where the inductance of the excited winding is maximized.

The origin of the reluctance motor can be traced back to 1842, but the "reinvention" has been possibly due to the advent of inexpensive, high-power switching devices. The reluctance motor is a type of synchronous machine. It has wound field coils of a DC motor for its stator windings and has no coils or magnets on its rotor. Both the stator and rotor have salient poles; hence, the switched-reluctance motor is a doubly salient machine [START_REF] Rajani | Modelling and control of switched reluctance motor[END_REF].

It has several advantages that make it an important competitor among other widely used machines, such as direct-current motors, induction motors or even synchronous motors. We can point out its simple and low cost construction and the advantage that bidirectional currents are not necessary. Moreover, thermal losses appear only in the stator, which in fact is easier to cool down. Another important advantage is the speed-torque characteristic which is adjustable, making it possible to obtain high torque at low speed, thereby avoiding the use of gear boxes.

It is also possible to make use of these motors at high temperatures and speed in comparison to other motors such as permanent magnet motors.

However, arg1 the switched-reluctance motor also presents some disadvantages. The double saliency construction and the discrete nature of torque production by the independent phases lead to higher torque-ripple compared to other machines. The higher torque ripple, and the need to recover energy from the magnetic flux, also cause the ripple current in the DC supply to be quite large, necessitating a large filter capacitor. The doubly salient structure of the switchedreluctance motor also causes higher acoustic noise compared to other machines. The main source of acoustic noise is the radial magnetic force induced. Thus, higher torque ripple and acoustic noise are the most critical disadvantages of the SRM. After all, the SRM advantages are heavier and the SRM has a wide field of application in general purpose industrial drives, compressors, fans, pumps, centrifuges, food processors, washing machines, vacuum cleaners. It is even present in the emerging electric vehicle industry and aircraft applications.

A deep study of the physics of the switched-reluctance motor is beyond of the scope of this thesis, (we invite interested readers to find further information in [START_REF] Krishnan | Switched Reluctance Motor Drives[END_REF] and [START_REF] Tahar | Torque Control[END_REF], among others).

However, we present, next, a brief description of the operation principle of this popular machine.

Construction and operation

The switched-reluctance motor is among the simplest motors regarding its construction, the basic structure consists in a wound stator and an iron rotor that is neither wound nor magnetized. The rotor basically consists in a piece of laminated iron shaped to form salient poles. The stator poles are also salient and, furthermore, they are wound on radially opposite poles. Each stator phase is made up of concentrated coils placed on stator poles. Among many more options, the most common configurations are the 8-rotor/9-stator poles 4-phases motor and the 6-rotor/4-stator poles 3-phases motor, which is shown in Figure 2.1. Assume that the rotor poles r2 and r2 and stator poles c and c are aligned, as it is shown in On the other hand, the inductance in the SRM depends on the mechanical position. For instance, assume that phase a in Figure 2.3 is fed, when stator and rotor are completely misaligned (rotor between q 1 and q 4 ) a minimum in the inductance is achieved; likewise, when rotor and stator are aligned (rotor between q 2 and q 3 ) we have a maximum, such behavior is depicted in the following figure q 2 q 3 q 4 La Lu q 1 q 2 q 3 q 4 q 1

1. 0-q 1 : The stator and rotor poles do not overlap in this region and the flux is predominantly determined by the air path, making the inductance minimum and almost constant. Hence, this region does not contribute to torque production. The inductance in this region is known as unaligned inductance L u .

2. q 1q 2 : The poles overlap, so the flux path is mainly through stator and rotor laminations.

This increases the inductance with the rotor position, giving it a positive slope. A current impressed in the winding of this region produces a positive (i.e., motoring) torque. This region comes to an end when the overlap of poles is complete.

3. q 2q 3 : During this period, movement of rotor pole does not alter the complete overlap of the stator pole and does not change the dominant flux path. This has the effect of keeping the inductance maximum and constant, and this inductance is known as aligned inductance L a . As there is no change in the inductance in this region, torque generation is zero even when a current is present in this interval. In spite of this fact, it serves a useful purpose by providing time for the stator current to come to zero or lower levels when it is commutated, thus preventing negative torque generation for part of the time if the current has been decaying in the negative slope region of the inductance.

4. q 3q 4 : In this region the rotor pole moves away from overlapping the stator pole. This is very much similar to the q 1q 2 region, but it has decreasing inductance and increasing rotor position contributing to a negative slope of the inductance region. The operation of the machine in this region results in negative torque (i.e., generation of electrical energy from mechanical input to the switched reluctance machine).

As aconsequence of saturation , it is not possible to achieve the ideal inductance profiles shown in Figure 2.3 in an actual motor. Saturation causes the inductance profile to curve near the top and thus reduces the torque constant. Hence, saturating the machine beyond a point produces a diminishing return on torque and power output.

Induction of mechanical torque

The dependence of torque production on magnetic saturation , coupled with the effects of fringing fields and the classical fundamental square wave excitation result in nonlinear control characteristics for the reluctance motor.

The mechanical torque of electrical origin (electromagnetic torque) is produced due to the tendency of rotor poles to align with the excited stator phase. The rotor shifts to a position where reluctance is minimized and inductance is maximized, the relationship between inductance and torque production according to rotor position is shown in Figure 2.4. For a constant positive current, positive torque is produced when inductance increases, no torque is produced when inductance remains constant and, finally, negative torque is produced when the inductance decreases, based on this behavior, it is possible to select the switch on and off regime to produce torque and movement.

The torque-speed characteristic of a switched-reluctance motor is shown in (2.5), based on different speed ranges, the motor torque generation has been divided into three different regions: constant torque, constant power and falling power region.

The base speed ω B is the maximum speed at which maximum current and rated torque can be achieved at rated voltage. Below ω B , the torque can be maintained constant or control the fat-top phase current. At lower speed, the phase current rises almost instantly after the phase switches turn-on since the back-electromagnetic force is small at this time. So it can be set at any desired level by means of regulators (hysteresis or pulse-width modulation controller).

Therefore, the adjustment of firing angle current can reduce noise and improve torque ripple or efficiency.

L a L u
T ma -T ma 0 0 q s q 1 q 2 q 3 Angular P osition Rotor pole pitch As speed increases, the back-EMF also increases, then an advanced turn-on angle is necessary to reach the desired current before rotor and stator start to overlap. The desired current is a function of the speed and load condition, since no current chopping appears during the dwell angle, only the angle control can be used at this stage so the torque cannot be kept constant and is falling linearly as speed is increasing. In the falling power region, as speed increases, the turn-on angle cannot be advanced further. Due to the faster fall of torque, the power cannot be maintained and the tail current of the phase winding extends to the negative torque region. The tail current may not even drop to zero. In the high speed operation, the continued conduction of current in the phase winding can increase magnitude of phase current and the power density can be increased.

The sensorless control problem

As previously mentioned, switched-reluctance machines are attractive since they are reliable, relatively cheap and they produce high torque at low speed. These characteristics make them suitable for different purposes, among others for direct-drive and actioning robots applications, where position and velocity of joints must be controlled. However, this kind of machine is not easy to control; even under experimentally-validated assumptions leading to some simplifications.

Firstly, the dynamic model is highly nonlinear e.g., the generated electromagnetic torque is a complicated function of the electric currents and rotor positions. Secondly, reliable and accurate indirect sensing methods for the mechanical variables are fundamental in the development of low-cost, high-performance switched-reluctance motors. On one hand, the use of mechanical sensors increase the cost of the set-up and on the other, velocity sensors are often contaminated with noise. Therefore, avoiding the use of angular velocity and position sensors which is well known as sensorless control, is beyond pure theoretical interest.

State of the art and objectives of research

Literature on sensorless adaptive control on other class of electrical machines is rich. For instance, in [START_REF] Traoré | Adaptive interconnected observer-based backstepping control design for sensorless induction motor[END_REF] an adaptive observer of flux, velocity, load torque and resistance of an induction motor is presented and practical stability based on Lyapunov theory is guaranteed, experimental validation is presented as well. In [START_REF] Ezzat | Sensorless speed control of pmsm via adaptive interconnected observer[END_REF] is presented an adaptive high gain interconnected observer which is only supplied by the measurements of electrical currents and voltages of the permanent magnet synchronous motor, this observer estimates the rotor speed, the position, the stator resistance and the load torque.

In [START_REF] Assaad Hamida | Robust integral backstepping control for sensorless {IPM} synchronous motor controller[END_REF], a sensorless speed control for interior permanent magnet synchronous motors is designed by combining a robust back-stepping controller with integral actions and an adaptive interconnected observer, sufficient conditions are given to prove practical stability of the closed-loop. A sensorless output feedback sliding-mode controller and observer are designed in order to drive the induction motor without using neither flux nor speed sensors, stability properties are guaranteed based in Lyapunov theory and experimental runs are presented as well. An interesting cascade and High-Gain Observers Comparison for Sensorless control of induction motor is presented in [START_REF] Ghanes | Cascade and high-gain observers comparison for sensorless closed-loop induction motor control[END_REF] and in [START_REF] Ghanes | Tracking performances of backstepping and high gain observers for sensorless induction motor control against low frequencies benchmark[END_REF].

Concerning the switched-reluctance motor, there exists a large number of efficient heuristicallybased and experimentally-validated identification and control approaches with different control objectives: torque and flux control - [START_REF] Cheok | A new torque and flux control method for switched reluctance motor drives[END_REF], velocity control - [START_REF] Hongwei Gao | Inductance model-based sensorless control of the switched reluctance motor drive at low speed[END_REF], state estimation - [START_REF] Husain | Observers for position and speed estimations in switched reluctance motors[END_REF], parameters identification - [START_REF] Reis | Identification and adaptive speed control for switched reluctance motor using DSP[END_REF]. A comparison of two control strategies, that allow the switched-reluctance machine to operate in wide-speed-range, is presented in [START_REF] Hannoun | Design of an srm speed control strategy for a wide range of operating speeds[END_REF]. Moreover, in [START_REF] Hilairet | Design of an optimized srm control architecture based on a hardware/software partitioning[END_REF] is described an optimized architecture based on a hardware/software partitioning, the proposed strategy achieves lower current and torque ripples in a large speed range. etc.

The authors of [START_REF] Jinupun | Direct torque control for sensorless switched reluctance motor drives[END_REF] presented a sensorless control for switched-reluctance motors based on direct torque control. Designs and experimental implementations of Luenberger-type observers for position are presented in [START_REF] Elmas | Position sensorless operation of a switched reluctance drive based on observer[END_REF] and in [START_REF] Elmas | Application of a full-order extended luenberger observer for a position sensorless operation of a switched reluctance motor drive[END_REF], where measurements of voltages and currents are the only available inputs to the observer. An interesting approach appears in [START_REF] Ray | A sensorless method for determining rotor position for switched reluctance motors[END_REF], where without using optical or magnetic sensors, stored magnetic characteristic information is utilized in order to elucidate the mechanical position, the same approach is presented in [START_REF] Makwana | Sensorless control of switched reluctance motor drive: An analytical method[END_REF].

A coordinate transformation of the current phases system is utilized in [START_REF] Cai | Estimation of srm rotor position based on coordinate transformation[END_REF] to design a position observer; experimental result are also presented. Some work on non model-based control has been as well reported, in [START_REF] Cheok | A model free fuzzy logic based rotor position sensorless switched reluctance motor drives[END_REF] and in [START_REF] Cheok | High robustness and reliability of a fuzzy logic based angle estimation algorithm for practical switched reluctance motor drives[END_REF] fuzzy logic-based sensorless control algorithms are described and experimental results are presented as well. In [START_REF] Ooi | Simulation of neural networks to sensorless control of switched reluctance motor[END_REF] neural networks have been applied to predict position from inductance and phase current data and a second neural network provides a current reference that minimizes torque ripple. Likewise, in [START_REF] Zhong | Position sensorless control of switched reluctance motors based on improved neural network[END_REF] an improved back propagate neural network with inductance input pretreatment for the rotor position estimator of switched-reluctance motor is proposed as well as a sensorless control algorithm.

For fully sensorless control, in [START_REF] Wolff | Sensorless speed control of a switched reluctance motor for industrial applications[END_REF] is given a controller where position and velocity are obtained from information about flux linkage and phase currents (no stability analysis). In this avenue, sliding mode observers are common, for example, paper [START_REF] Brandstetter | Sensorless control of switched reluctance motor using sliding mode observer[END_REF] deal with the velocity and position estimation problem, other works on sliding mode observers are [START_REF] Brandstetter | Sensorless control of switched reluctance motor using sliding mode observer[END_REF][START_REF] Lu | Sensorless control of switched reluctance motors using sliding mode observers[END_REF][START_REF] Park | A novel high performance position sensorless control of switched reluctance motor drives[END_REF] where experimental results are also included.

Finally, interesting review on sensorless control for switched-reluctance motor is given in [START_REF] Fahimi | Review of sensorless control methods in switched reluctance motor drives[END_REF] and, particularly on position-sensorless control, in [START_REF] Kawamura | Survey of position sensorless switched reluctance motor control[END_REF]. A variety of approaches for the sensorless commutation as reported in the literature is given in [START_REF] Holling | The sensorless control of variable switched reluctance motors[END_REF].

However, to the best of the authors knowledge, articles on control of switched-reluctance drives that include a rigorous stability analysis, especially in a sensorless context (let alone under parametric uncertainty), are rare. Certainly the same holds for ad hoc solutions based on methods such as model-predictive control - [START_REF] Peyrl | Model predictive torque control of a switched reluctance motor[END_REF].

The main result in [START_REF] Espinosa-Perez | Passivity-based control of switched reluctance motors with nonlinear magnetic circuits[END_REF] establishes global asymptotic stability for a passivity-based controller in the case of unknown load but it makes use of both mechanical variables, angular velocity and position measurements. A proportional-derivative-based controller is proposed in [START_REF] Taylor | Pulse-width modulated control of electromechanical systems[END_REF] but it relays on the knowledge of the torque load. In [START_REF] Milman | Observer-based adaptive control of a variable reluctance motor: Experimental results[END_REF] the authors consider only the rotor dynamics that is, it is assumed that the currents are valid physical control inputs. In [START_REF] Hu | nonlinear control of electric machinery[END_REF] a nonlinear controller using a similar scheme is presented however, the authors suppose that the mechanical load-torque is known and the model includes viscous friction; This which eases considerably the stability analysis.

In spite of a number of articles on control of switched-reluctance machines via full state feedback - [START_REF] Espinosa-Perez | Passivity-based control of switched reluctance motors with nonlinear magnetic circuits[END_REF][START_REF] Hao | Implementation of the three-phase switched reluctance machine system for motors and generators[END_REF][START_REF] Hannoun | High performance current control of a switched reluctance machine based on a gain-scheduling pi controller[END_REF][START_REF] Mademlis | Gain-scheduling regulator for high-performance position control of switched reluctance motor drives[END_REF] and partial state-feedback - [START_REF] Hongwei Gao | Inductance model-based sensorless control of the switched reluctance motor drive at low speed[END_REF][START_REF] Hossain | Four-quadrant and zero-speed sensorless control of a switched reluctance motor[END_REF], it is worth remarking that the lack of analysis in a sensorless context is certainly not the case for other electrical machines such as induction motors -see [START_REF] Marino | Nonlinear tracking control for sensorless induction motors[END_REF][START_REF] Ibarra-Rojasa | Global observability analysis of sensorless induction motors[END_REF], or permanent-magnet synchronous machines - [START_REF] Tomei | Observer-based speed tracking control for sensorless permanent magnet synchronous motors with unknown load torque[END_REF][START_REF] Shah | An asymptotically stable sensorless speed controller for non-salient permanent magnet synchronous motors[END_REF].

Experimental work on control of switched-reluctance motor is present in the consulted literature, for instance in [START_REF] De Araujo Porto Henriques | Development and experimental tests of a simple neurofuzzy learning sensorless approach for switched reluctance motors[END_REF] the voltage from each conducting phase and the reference current signal are used as inputs to a neurofuzzy learning system to obtain the rotor speed, then, the rotor position is determined by integrating the estimated value of speed. The experimental results show that the suggested "virtual" speed sensor and corresponding rotor position can operate well in a sensorless switched-reluctance speed control system. In [START_REF] Parreira | Obtaining the magnetic characteristics of an 8/6 switched reluctance machine: from fem analysis to the experimental tests[END_REF] experimental tests are performed based on a finite-element modeling approach. In [START_REF] Oscar | Proposition of an offline learning current modulation for torque-ripple reduction in switched reluctance motors: Design and experimental evaluation[END_REF] is proposed a controller based on a neurofuzzy compensator in addition to a proportional-integral controller. In [START_REF] Koblara | Implementation of speed controller for switched reluctance motor drive using fuzzy logic[END_REF] a speed control scheme of the switched-reluctance motor using a fuzzy logic controller is presented and the performance is investigated experimentally at different operating conditions. A "Lookup Table " technique is

proposed in [START_REF] Zhang | Modeling, simulation, and experiment of switched reluctance ocean current generator system[END_REF] to control the output voltage of a switched reluctance generator. Nevertheless, in spite of the large literature found, none of them included a rigorous proof of stability, which is an important contribution of the present work.

The main objective of this work is to offer some alternatives to the sensorless control of the switched-reluctance motor and to establish precise conditions to guarantee different kinds of stability. In order to accomplish this objective, we have split the work in several particular objectives:

1. to design a controller for the switched-reluctance motor under the assumption that only load torque and velocity are unknown;

2. to design a controller for the switched-reluctance motor under the assumption that, in addition to load torque and velocity, all the physical parameters are also unknown;

3. to design a controller based on a new modeling approach of the switched-reluctance motor which is suitable for observer based control.

The proposed solution and contributions

Generally speaking, our control-design method relies on the ability to separate the machine model into its electrical and mechanical components. Torque generation is achieved by following the torque-sharing approach of [START_REF] Taylor | Pulse-width modulated control of electromechanical systems[END_REF] with the aim of reducing the ripple in the mechanical variables that appears due to the electric commutation. A first control loop is designed to steer the stator currents to a desired "reference" that may be regarded as a virtual control input for the mechanical dynamics. Then, an "outer" control-loop is designed including a controller of proportional-integral-derivative type, probably the most often used in control practice.

We have used two different mathematical models, the first one introduced in [START_REF] Taylor | Pulse-width modulated control of electromechanical systems[END_REF] called the q-model and the second one called ρ-model is introduced in [START_REF] Loria | A novel pid-based control approach for switched-reluctance motors[END_REF] which is inspired by ideas expressed in [START_REF] Shah | Speed and load torque observer for rotating machines[END_REF].

For the q-model we proposed a first controller which make uses of position, current, parameters and a second controller which only considers position and current knowledge, that is velocity, parameters and load torque are unknown. The ρ-model is more interesting, this because it is suitable for observer-based control. For this model, we proposed a controller based on the assumption that position, velocity and electrical current are available and physical parameters are known.

It is important to point out that even when the technique of adding a derivative filter to the position in order to "know" the velocity is not new, to the best of our knowledge, a rigorous analysis of stability is not present in the literature on switched-reluctance motor; we present here stability analyses for the three designed controllers. Furthermore, assuming both physical parameters and velocity measurements as unknown in addition to load torque is new in the context of control theory of this kind of motors. On the other hand, the so called ρ-model has not been widely utilized and in this work we exploit the advantages that it offers for control design.

Another important contribution of this work is the physical implementation of the designed controllers, this was carried out in the department of Engineering at the National Autonomous University of Mexico.

We present the design, analysis, numerical simulations and physical experiments under several scenarios of different sensorless controllers for the switched-reluctance motor. Firstly, we assume that the physical parameters are known and that unknown velocity is obtained trough a derivative filter of the position,uniform global exponential stability of the origin is achieved in this case. Secondly we assume, in addition, that the physical parameters are unknown. We use a certainty-equivalence controller to achieve velocity tracking and parameters estimation.

Uniform global asymptotic stability is established, based on a gradient-type adaptive law and on a persistency of excitation condition. Finally, a new approach of modeling is used to express the mechanical dynamic of the switched-reluctance motor , i.e. this dynamic is described in a new set of coordinates, in this last stage uniform global exponential stability is achieved assuming that the parameters are known and the whole state is measured. We must clarify that this last control is a first step towards an ongoing work on observer based control. In each case, we give sufficient conditions to guarantee either uniform global exponential stability or uniform global asymptotical stability depending on the imposed assumptions. Moreover, we present the results of several physical experiments performed in order to evaluate the behavior of the designed controllers.

Published papers

The research work of this thesis led to the following publications.

Peer-reviewed journal Velocity Sensorless control via a P I 2 D type controller

Velocity control of electrical machines is important in a variety of applications. In this chapter we present the design and analysis of a robust adaptive velocity-sensorless controller for the switched-reluctance motor. For clarity of exposition, we present a first result on robust stabilization where only the rotor inertia and load torque are considered as unknown. Then, in a second stage, we assume that the rest of physical parameters are unknown (stator inductances and resistance). Finally we incorporate an adaptation law for the electrical parameters.

A general model

Under the experimentally justified and widely accepted assumption that the stator phases are magnetically decoupled, (the mutual inductance between stator phases can be neglected) a general mathematical model for the m-phases switched-reluctance motor is given by:

Ψj (q, x) + Rx j = u j (3.1a) J ω = T e (q, x) -T L (q, q) (3.1b) q = ω (3.1c)
where j = {1, 2 . . . , m} with m the number of phases, u j is the voltage applied to the stator terminals, x j is the stator electrical current, ψ j is the linkage flux, q and ω are respectively the angular rotor position and velocity, T L is the load torque, R is the stator winding resistance and J is the total rotor and load inertia. T e (q, x) is the mechanical torque of electrical origin (electromagnetic torque); note that it depends on both the angular position q and the electrical currents x.

The structure of model (3.1) is quite general and applies to several versions for complete and simplified models found in literature. What makes a difference among them, is the considered structure of the linkage flux Ψ j (q, x). Also note that Equation (3.1a) describes the behavior of the electrical variables while Equations (3.1b)-(3.1c) describe the behavior of the mechanical variables and correspond to a linear differential equation in q, q with inputs T e (q, x) and T L (q, q).

A saturated-flux model

In this section we present a mathematical model that takes into account the magnetic flux saturation phenomena, that is, the flux does not exceeds a threshold regardless electric current increases indefinitely -see Figure 3.1. This behavior can be described in different ways, we use the saturated model presented in [START_REF] Ilic'-Spong | Feedback linearizing control of switched reluctance motors[END_REF] and [START_REF] Espinosa-Perez | Passivity-based control of switched reluctance motors with nonlinear magnetic circuits[END_REF], where the saturation phenomenon is described by an exponential -type function.

ψ j (q, x j ) = ψ s 1 -e -f j (q)x j ; (3.2)
for the electrical current x j ≥ 0 with j as defined in previous section. The constant ψ s denotes the saturated flux linkage and f j (q), known as the winding inductance, is a strictly positive periodic function commonly represented by a Fourier series as

f j (q) = a + ∞ m=1 b m sin mN r q -(j -1) 2π 3
+ c m cos mN r q -(j -1) On the other hand, as a result of the decoupled behavior, the torque of electrical origin, T e (q, x), results from the contribution of each stator electric current that is,

T e (q, x) = m j=1 T j (q, x)
where

T j (q, x j ) = ∂ ∂q W j (q, x j ) (3.3)
and

W j (q, x j ) = x 0 ψ j (q, x j )dx j . (3.4)
is the magnetic co-energy at each winding. Hence, taking into account (3.2), (3.3) and (3.4) the electromagnetic torque at each phase results in

T j (q, x j ) = ψ s f 2 j (q) ∂f j (q) ∂q 1 -[1 + x j f j (q)] exp -x j f j (q) . (3.5)
which clearly illustrate the complexity and nonlinear nature of the model.

Expression (3.
2) enjoys two attractive features, namely, it accounts for magnetic saturation and, from a mathematical perspective, it is a continuous function. Its main disadvantage lies in the fact that the resulting electromagnetic torque T e defines a not invertible map x j → T j , -see Equation (3.5).

Remark 3.1. From (3.2), notice that if the current winding x j is positive and bounded then the flux linkage is also positive and bounded. In fact, the maximum value that the flux can reach is the saturation value ψ s .

From (3.5), the assumed positivity of stator currents and the positivity of the nonlinear inductance f j (q), the torque sign is only determined by the term (∂f j (q)/∂q), i.e., the variation of f j (q) with respect to rotor position q. This property agrees with the physical behavior of the motor and will be fundamental in the definition of the sharing functions -see torque sharing technique in page 28.

A simplified model in conventional coordinates

The mathematical model presented in Section 3.2 accounts for magnetic saturation but it leads to the definition of a non-invertible x j → T j map (3.5). Therefore, the inductance of each phase f j is now expressed as a strictly positive Fourier series truncated at the first harmonic, L j (q)

-see [START_REF] Espinosa-Perez | Passivity-based control of switched reluctance motors with nonlinear magnetic circuits[END_REF][START_REF] Ilic-Spong | Feedback linearizing control of switched reluctance motors[END_REF]; this implies that

Ψ(q, x) = L(q)x. (3.6)
Where the winding inductance matrix L(q) = diag {L j (q)} is positive definite and each entry is defined as

L j (q) = 0 -1 cos N r q -(j -1) 2π 3
, and

K j (q) = ∂L j ∂q = N r 1 sin N r q -(j -1) 2π 3
corresponds to the phase-inductance variation relative to the rotor angular position. Constants 0 > 1 > 0 and N r is the number of rotor poles. It is clear that

0 < l m ≤ |L j (q)| ≤ l M , |K j (q)| ≤ k M . (3.7)
for some positive constants l m , l M and k M Under such definitions, after (3.1a) and (3.6), a simplified mathematical model for the switchedreluctance motor is given by

L(q) ẋ + K(q)ωx + Rx = u (3.8a) J ω = T e (q, x) -T L (q, q) (3.8b) q = ω (3.8c)
Variable u is a column vector denoting the voltage applied to the stator terminals, x denotes the stator currents column vector, q and ω are respectively the rotor position and velocity, R denotes the stator winding resistance, J is the total rotor inertia. The load torque T L and the mechanical torque of electrical origin T e .

Considering the decoupled behavior of stator windings, the mechanical torque T e corresponds to the sum of torques T j produced by m phases, that is

T e = m j=1 1 2 K j (q)x 2 j . (3.9)
This model is adopted in both the electrical-machines and the control research communities -cf.

[54].

The control problem and its solution

The control problem for the simplified model of the switched-reluctance motor is to design a dynamic controller whose output u = [u 1 u 2 u 3 ] , depending only on measurements of the stator currents x and rotor angular positions q, stabilizes exponentially the origin e ω = 0, that is to achieve ω(t) tracks a desired reference trajectory ω * (t), this problem was open until [START_REF] Loria | Exponential stabilization of switchedreluctance motors via speed-sensorless feedback[END_REF].

The control approach consists in applying two control loops, as illustrated in Figure 3.2. The first one is an outer loop to robustly stabilize the rotor dynamics via the virtual control input T e .

The second and inner loop is used to stabilize the stator dynamics using currents measurements to guarantee the tracking control goal T e → T * e , this is performed through the voltage input, which is the real control input. which depends on the stator currents and rotor angular positions. The variable to be controlled is the rotor velocity ω. To that end, we make the following standing hypothesis.

Assumption 3.4.1.

• the velocity reference trajectory, denoted ω * , is bounded, differentiable almost everywhere ω * is piecewise constant;

• the inertia J is unknown and belongs to an interval of known limits J m , J M i.e., J ∈

[J m , J M ];

• the load torque T L is piece-wise-constant and unknown.

Note that Assumption 3.4.1 is fairly realistic; it comprises the case of piecewise continuous reference trajectories ω * composed of steps and ramps -see the Simulations section. Also, in contrast to other theoretically-validated results in the literature, we assume that the inertia and the load-torque are unknown.

The control approach

We present in detail the two control loops mentioned above. The first one is applied to drive the rotor speed ω, toward its imposed reference ω * , through a "virtual input" T d . The second loop is designed in order to control the electrical current x and, therefore, the torque of electrical origin T e . Moreover, we present a model reference adaptive control in case the physical parameters 0 , 1 and R are not known.

Robust control of rotor velocity

Considering T e as an input, the rotor Equation (3.8b) is linear in the state ω with a (piecewise) constant perturbation T L /J hence, we chose to use proportional-integral-derivative (PID) control, however, since the velocity ω is neither measured nor computed we use the PI 2 D controller, introduced in [START_REF] Ortega | A semiglobally stable output feedback PI2D regulator for robot manipulators[END_REF] for robot manipulators. Its name comes from the fact that it corresponds to a modified PID controller; it consists in a correction term proportional to the tracking errors e q , a "derivative" term proportional to filtered velocities ϑ and a double integral action (where the notation I 2 comes from), both on e q and ϑ. The PI 2 D controller is easy to implement, it conserves the passivity properties of Lagrangian systems and it ensures asymptotic stability provided a property of detectability holds -see [START_REF] Ortega | Passivity-based Control of Euler-Lagrange Systems: Mechanical, Electrical and Electromechanical Applications[END_REF]. Moreover, it is model-free which is fundamental in the present context in which we assume that the physical parameters are unknown. The PI 2 D tracking controller for the rotor dynamics is defined by

T d = P -k p e q I 2 +ν D -k d ϑ + ω * (3.10a) ν = -k i (e q -ϑ) (3.10b) qc = -a(q c + be q ) (3.10c) ϑ = q c + be q (3.10d)
where q c is a internal integrator and k p , k i , k d , a, b are the positive control gains and e q = qq * the position tracking error with

q * (t) = t 0 ω * (s)ds, q * (0) = q * 0 ∈ [-π, π]. (3.11) 
Since the variable to be controlled is ω, the initial value q * (0) is innocuous. Equations (3.10c) and (3.10d) correspond to the widely-used "approximate differentiation" filter

ϑ = b p + a e ω ⇔ θ = -aϑ + be ω
where p is the Laplace variable and e ω := ωω * denotes the velocity tracking error. Variable ϑ is not an estimate of the velocity error e ω but a filtered version of it; in the limit case, when the pole is at -∞, ϑ = e ω modulo the DC gain b/a.

The following is a preliminary but original result on the stability of the solutions of (3. (3.12)

Then, the solution

q ω ν = q * ω * ν * , ν * := T L η + J η -1 ω * (3.13)
of the system (3.8b), (3.8c) with T e = T * e and under Assumption 3.4.1, is uniformly globally exponentially stable, provided that

A(η) :=        0 1 0 0 -(η/J)k p 0 -(η/J)k d (η/J) 0 b -a 0 -k i -k i /ε k i 0        (3.14)
is Hurwitz. Consequently, if T e = T * e the system is input-to-state stable with input Te := T e -T * e .

Remark 3.2. The equilibrium of the closed-loop system for the rotor dynamics depends on the parameter η which, on a case-by-case basis, may be known or unknown. However, the stability of the equilibrium may be established independently of its value. In Appendix A.1 we show that

the matrix A(η) is Hurwitz for any η ∈ [η m , η M ] and J ∈ [J m , J M ] if b ≥ η M J m + 1 a + 1, k p > k d .
Hence, the eigenvalues of A may be made negative by properly choosing the control gains k p , k d and k i without the knowledge of η and J.

Proof of proposition 3.1. In view of (3.10a) and (3.12), Equation (3.8b) is equivalent to

ω = - η J k p e q + k i ε e q + k d ϑ + η J (ν + ω * ) - T L J + Te J .
Next, let

z := ν -ν * - k i ε e q , (3.15) 
where ν * is defined in (3.13) then,

ėw = - η J k p e q + k d ϑ -z + Te J .
So differentiating on both sides of (3. that is, V 1 is an input to state-Lyapunov function and Te = 0 implies global exponential stability of {ξ = 0}. The result follows observing that ξ = 0 implies that q ω ν = q * ω * ν * 

T * e (q, x * ) = ηT d for x * i.e., 1 2 
3 i=1 x * 2 i K i (q) = ηT d 3 i=1 m i (q).
To that end, we employ the so-called torque sharing technique -cf. [START_REF] Taylor | Pulse-width modulated control of electromechanical systems[END_REF]. We consider the commutation smooth functions q → m j such that 3 j=1 m j (q) = 1 then, we define

x * j = 2ηT d m j N r 1 s j (q) 1/2 ∀ j ∈ {1, 2, 3}
where s j (q) may be equal to zero and the quotient above may be negative. For x * j to be well-posed we exploit the physics of the reluctance machine as in [START_REF] Taylor | Pulse-width modulated control of electromechanical systems[END_REF][START_REF] Ilic-Spong | Feedback linearizing control of switched reluctance motors[END_REF] and introduce a current-switching policy as follows. Let the sets

Θ + j = {q ∈ [-π, π] : s j (q) ≥ 0} Θ - j = {q ∈ [-π, π] : s j (q) < 0}
and let

m j (q) = m + j (q) if T d ≥ 0 m - j (q) if T d < 0 where m + j (q) > 0 ∀q ∈ Θ + , m + j (q) = 0 ∀q ∈ Θ -, m - j (q) > 0 ∀q ∈ Θ -, m - j (q) = 0 ∀q ∈ Θ + .
Because the functions s j are sinusoids out of phase by 2π/3, for each q and T d there always exists (at least) one j ∈ {1, 2, 3} such that inf T d m j (q) s j (q) > 0, sup T d m j (q) s j (q) < ∞ Furthermore, to make the phase transitions smooth we introduce hysteresis around the switching condition s j = 0 i.e.,

x * j (q, T d ) :=      2η N r 1 1/2 T d m j (q) s j (q) 1/2 if |s j (q)| > δ K 0 otherwise (3.19)
where δ K is the hysteresis design parameter. Under these conditions we have T * e (q, x * ) = ηT d so to ensure that T e → ηT d we must solve the new tracking control problem x → x * .

The rationale behind the design of the tracking controller for the stator dynamics builds on the observation that under the action of the tracking control law

u = L(q) ẋ * + ω * K(q)x + Rx * -k px e x , e x = x -x * , (3.20) 
the origin of the closed-loop equation

L(q) ėx + [R + k px ]e x = -K(q)xe ω (3.21)
with zero input (e ω ≡ 0) is globally exponentially stable, provided that k px > 0, since L is positive definite. Furthermore, the system may be rendered input to state stable from the input e ω provided that the gain k px dominates over the input "gain" function K(q)x; note that this is feasible since q and x are measured states. Under these conditions one may invoke a small-gain argument to establish global exponential stability of the origin of the closed-loop system (3.16), (3.21).

However, the control law (3.20) is not implementable since ẋ * depends on the unmeasured velocity ω indeed,

ẋ * j =    α j ρ j + δ j e ω if |s j (q)| > δ K 0 otherwise where, if |s j (q)| > δ K , α j = 1 2 2η N r 1 1/2 m j T d s j -1/2 (3.22) ρ j = m j s j (k d a + k i )ϑ -k i e q + ∂m j ∂q T d ω * m j - m j N r c j s 2 j T d ω * δ j = 1 s j -m j (k p + k d b) + ∂m j ∂q T d - m j N r c j s 2 j T d otherwise, α j = ρ j = δ j = 0.
Therefore, we introduce the following control law which is reminiscent of u as defined in (3.20) except that we drop the term α j δ j e ω in the definition of

ẋ * = [ ẋ * 1 , ẋ * 2 , ẋ * 3 ] i.e., let u = L(q)αρ + ω * K(q)x + Rx * -k px e x , (3.23) 
where

α = diag {α 1 , α 2 , α 3 }, ρ = [ρ 1 ρ 2 ρ 3 ] and δ = [δ 1 δ 2 δ 3 ] . Therefore, (3.23) is equivalent to u = L(q) ẋ * + ω * K(q)x + Rx * -k px e x -L(q)αδe ω . (3.24)
The closed-loop Equation (3.8a) with (3.24) yields

L(q) ėx = -[R + k px ] e x -K(q)x + L(q)αδ e ω (3.25)
which is also reminiscent of a perturbed linear system with stable drift; in this case the input gain is given by g(t, x, y) := K(q(t))x + L(q(t))α(t, y)δ(t, y)

(3.26)
in which we underline the dependence of α and δ on ω * (t), q(t) and the measurable output

y := [e q ϑ ν] . Moreover, since L, K, m j , ∂m j ∂q
and ω * are uniformly bounded, there exists a non-decreasing function γ 2 : R

+ × R + → R + such that |g(t, x, y)| ≤ γ 2 (|y| , |x|) .
Note that γ 2 depends on η M ≥ η but not on the constant η. Thus, it may be established that (3.25) is input-to-state stable with respect to the input e ω , for an appropriate choice of the gain k px depending on γ 2 , hence on |y| and |x|.

Robust control of the switched-reluctance motor

From the previous developments we see that the closed-loop system (3.16), (3.25) consists in the interconnection of two input-to-state stable systems for which the feedback gains may be adjusted to ensure global exponential stability under the following hypothesis. This result establishes uniform global exponential stability for the closed-loop system, under the assumption that the gain k px , in the stator control loop, is a nonlinear function of the measurable currents and y := [e q ϑ ν] . The proof of the proposition above is presented in Appendix A.2.1, where a precise expression for k px is given. Now we assume that, in addition to J and T L , the physical parameters 0 , 1 and R are also unknown. Let matrix C(q) := diag{c j (q)}, S(q) := diag{s j (q)}, where we recall that c j (q) = cos N r q -(j -1) 2π 3 and s j (q) = sin N r q -(j -1) 2π 3 . Then, L(q) = 0 I -1 C(q) and K(q) = 1 N r S(q). We introduce the constant estimate of 1 , 

ˆ 1• ∈ [ m , M ] to redefine η in (3.19) as η := Ĵ 1 ˆ 1• (3.
u = 0 αρ -1 C(q)αρ + ω * 1 N r S(q)x + Rx * -k px e x
which is linear in the physical parameters 0 , 1 and R therefore,

u = Ψ(t, y, e x ) Θ -k px e x , Ψ(t, y, e x ) := [αρ ω * N r S(q)x -C(q)αρ x * ] , Θ := 0 1 R .
We stress that Ψ is a function of t, the measured outputs y = [e q ϑ ν] and the closed-loop states e x ; indeed, one should read q(t) and x = e x + x * in place of q and x while α, ρ and x * are functions of t, y and known constants. Then, the origin of the closed loop system is uniformly globally asymptotically stable if and only if Ψ 0 (t) := Ψ(t, 0, 0) is persistently exciting that is if there exist µ > 0 and T > 0 such that

M (t) := t+T t Ψ 0 (s)Ψ 0 (s) ds ≥ µI ∀ t ≥ 0. (3.29)
The proof is based on Matrosov's theorem and it is presented in Appendix A.2.3.

Simulation Results

With aim at evaluating the controller of Proposition 3.4 we performed some numerical simulations in Simulink TM of Matlab TM on a fully-nonlinear model which takes into consideration linkage-flux saturation, that is we have used the flux expression ψ j (q, x) = ψ s exp(-L j (θ)x j ), a diagram of this is shown in 3.3.

Feedback controller

u=L(q)αρ+Rx * +ω * K(q)x Saturated model ψj = -Rx j + u j J ω = Te(q, x) -T L q = ω ψ j (q, x j ) = ψs 1e -L j (q)x j W j (q,x j ) =

x j 0 ψ j (q, s)ds Te j (q, x j ) = ∂ ∂q W j (q, x j )

P I 2 D Controller T d = -kpeq -k d ϑ + ν + ω * ν = -k i (eq -ϑ) qc = -a(qc + beq) ϑ = qc + beq Torque share x * = 2m j (q)T d K j (q) Current reference x * x T L u q T d m j (q) q Figure 3.3: Diagram of simulation
The parameters are shown in Table 3.1 -some of the motor parameters are taken from [START_REF] Ilic-Spong | Feedback linearizing control of switched reluctance motors[END_REF]. 

Motor Controller R = 0.3[Ω] a = 1500 0 = 24[mH] b = 3200 1 = 19[mH] k p = 3500 J = 10e -4 [kg•m 2 ] k i = 5 e -4 ψ s = 0.25 k d = 1500 N r = 25 ε = 5 e -4 η = 0.1275 k px = 750
ω * k (t) = ω * 0k + ω * f k -ω * 0k 2 1 + 1 -exp -γt 1 + exp -γt for k = {1,
k θ = diag[5e -7 , 1e -6 , 2.5e -5 ].
We recall that the nonlinear part of the gain, k px , has importance in the theoretical statement as it guarantees the global nature of the stability property however, in a typical case-study scenario and for implementation purpose it is both sufficient and convenient to use a constant value for k px to avoid high values in the input voltages.

The commutation functions m j : [0, 2π) → R + , which are illustrated along with the currents in Figure 3.7, are defined as follows. Let

f (x) = 10x 3 (π/N r ) 3 - 15x 4 (π/N r ) 4 + 6x 5 (π/N r ) 5
and q 1 := mod(q, 2π/N r ), q 2 := mod(q -2π/3N r , 2π/N r ), q 3 := mod(q + 2π/3N r , 2π/N r ) where the operator mod resets q that is, q j = mod(β 1 , β 2 ) takes the initial value q j (0) = β 1 and is reset to the latter when q j (t) = β 2 . This behavior is reflected on the following figure. Then, auxiliary functions m + j (q) and m - j (q) are defined as

q 1 q 2 q 3 Position q [rad] Rolled position q j [rad]
m + j (q) =                f j (q j ) 0 < q j ≤ π 3N r 1 π 3N r < q j ≤ 2π 3N r 1 -f j (q j ) 2π 3N r < q j ≤ π N r 0 otherwise and m - j (q) =                f j (q j ) π N r < q j ≤ 4π 3N r 1 4π 3N r < q j ≤ 5π 3N r 1 -f j (q j ) 5π 3N r < q j ≤ 2π N r 0 otherwise.
The following figure depicts the function m + j (q) and m - j (q) in phase with K j (q), it can be noticed that m + j (q) is positive when K j is positive and zero otherwise. The same occurs with m - j (q), which is positive when K j (q) is negative.

2pi/32 3pi/32 4pi/32 5pi/32 6pi/32

Position q [rad] K j (q) and m j (q) do not overpass 2.5A. On middle plot it is shown a zoom over the steady state behavior around t = 5, when load torque T L arise by 50%. On right-hand side plot it is shown the current over a small time window, note that for all t, at least two currents are larger than zero. Current [Amp]

K 1 (q) K 3 (q) K 2 (q) m + 1 (q) m + 3 (q) m + 2 (q) -m - 1 (q) -m - 3 (q) -m - 2 (q)
x 1 (t)

x 2 (t)

x 3 (t) On Figure (3.8) we show the overlap of signal concerning the electrical current x j (t) and the switching regime function m j (t), note that this last leads the reference x * j (t), such as it was stated by the torque share approach. x(t) and x * (t)

x 1 (t) x * 1 (t) m 1 (t)
x 3 (t)

x * 3 (t) m 3 (t)
x 2 (t)

x * 2 (t) We show the voltage input, In Figure 3.9 is shown the transient over the first three seconds, notice that magnitudes are suitable for the SRM and seldom overpass 100V in magnitude.

m 2 (t)
On the small zoom is noticed the sequence of phasing, which is characteristic in this machine.

In Figure 3.10 is shown the behaviour of the input control over the time of simulation, once again the magnitude is not too high.

The last two figures illustrate the performance of the adaptation law. In this regard, it is worth recalling that, for model-reference adaptive controlled systems, persistency of excitation is a necessary condition for the estimation errors of the parameters -see [START_REF] Narendra | Stable adaptive systems[END_REF]. Common knowledge includes the fact that at least as many frequencies as unknown parameters must be involved in the regressor matrix Ψ(t, ξ, e x ), however, this does not imply that the entries of the latter must be periodic or even continuous. In general, verifying the persistency of excitation condition is a very hard task since it involves solving in closed form complex and involved integrals of functions of time. Alternatively, one may as well accept as verification of (3.29), its numerical computation on a finite simulation window. In that spirit Figure 3.12 clearly

shows that the eigenvalues of M (t), which is defined in (3.29), are positive. This illustrates for this case-study, in the absence of rigorous proof, that the condition of persistency of excitation is satisfied.

Verification of the persistence of excitation condition

It is worth recalling that, for model-reference adaptive controlled systems, persistence of excitation is a necessary condition for the estimation errors of the parameters -see [START_REF] Narendra | Stable adaptive systems[END_REF]. Common knowledge includes the fact that at least as many frequencies as unknown parameters must be involved in the regressor matrix, however, this does not imply that the entries of the latter must be periodic or even continuous.

Generally speaking, verify the persistence of excitation condition is very hard since it involves solving complex integrals of functions of time in closed form. Alternatively, one may as well accept as verification of (3.29), its numerical computation on a finite simulation window. In that spirit, Figure 3.15 shows that the eigenvalues of M (t), which is defined in (3.29), are positive for all t ∈ [0 25]. This illustrates, for this case-study, that the condition of persistence of excitation is satisfied on the simulation window of 25[sec].

We will show that, for a fixed T > 0, function M is positive definite for all t in the interval of simulation, that is, all three eigenvalues of M (t) are strictly positive. Note that the time simulation is 25 seconds.

The eigenvalues of M (t) are computed numerically, using Matlab TM . First, we recall that Ψ 0 (t) is defined as

Ψ 0 (t) := Ψ(t, 0, 0) = α 0 ρ 0 ω * N r S(q * )x * -C(q * )α 0 ρ 0 x * (3.30)
where α 0 = diag {α 01 α 02 α 03 }, ρ 0 = [ρ 01 ρ 02 ρ 03 ] and x * , as defined in 3.19, with e x = 0, q = q * and ν = ν * . That is, Ψ 0 (t) corresponds to the 3x3 matrix that results from setting e x = 0 and ξ = e q e ω z ϑ = 0 in Ψ(t, e x , ξ) and it is a function of t since so is q * . Therefore, for each j = {1, 2, 3} we have

α 0j = s j (q * )ν * m j (q * )ω * -ν * m j (q * )N r c j (q * ) s 2 j (q * ) (3.31) ρ 0j = s j (q * )ν * m j (q * ) -(k p + bk d )m j (q * )sj(q * ) -ν * m j (q * )N r c j (q * ) s 2 j (q * ) (3.32)
for |s j (q * )| > δ K and α 0j = ρ 0j = 0 otherwise. Furthermore, for the purpose of numerical computation, we define the matrix Matlab TM offers different options to integrate functions expressed in closed forms as well as data vectors. Given the complexity of the function M (t), we use the we compute this integral by using Matlab TM function trapz(X,Y) and the following Matlab TM code:

H(t) = Ψ 0 (t)Ψ 0 (t) =:     H 11 (t
Matlab TM built-in function trapz(X,Y) := X(f ) X(i) Y dX.
X =0: pi /100: pi ; % build a data vector with entries from 0 to pi with increments of pi /100 Y = sin ( X ) ; % computes vector Y , where each entry i corresponds to sin ( X ( i ) ) q = trapz (X , Y ) % Computes integral of Y with respect to X

The code gives as result q = 1.9998. In fact, a little lower than the correct value 2, the error comes from the magnitude π/100 of increments in X, in fact, the smaller the increments, the better the result of q. For instance, building X = 0 : π/200 : π, we obtain as result q = 2.0, which is the exact value. This function allows one to integrate a data vector Y with respect to a data vector X by using the trapezoidal method of integration.

Integrating the data results

To integrate the data vector H ij -see Equation (3.33)-with respect to a time data vector T v over a time window of width T = 500[ms], see Figure 3.13, we proceed as follows:

1. We build a data vector of time T v = 0 t i 2t i . . . 27 , where t i = 1x10 -5 is the fixed step of integration. Consequently, T v is a data vector with Eigenvalues of M (t) 

27 t i + 1 = 27x10
λ 1 (t) λ 2 (t) λ 3 (t) 10 

Concluding Remarks

We presented a robust adaptive controller for the switched-reluctance motor, considering both the stator and rotor dynamics via fairly simple control laws (PID, approximate differentiation), widely used in control practice. Although our results guarantee robustness with respect to bounded disturbances (possibly unmodelled dynamics) it is of utmost importance in motor control, to design controllers with guaranteed performance. Further ongoing research focuses on avoiding the use of position measurements.

Chapter 4

A novel PID-based control approach for switched-reluctance motors

As previously explained the control approach that we follow in this thesis relies on the ability to split the control problem into one for the electrical part and one for the mechanical part.

The control action on the rotor dynamics enters through the mechanical torque; naturally, the current x may be seen as a virtual control input. Accordingly, a control law u must be designed for the stator equations and implemented by applying the corresponding input voltage (via the torque share approach). The control u must be such that the actual current x tracks a desired reference x * which is viewed as the control law for the rotor electric equations. See However appealing this approach is, it is stymied by two major technical difficulties:

• the rotor equation is non-affine in the 'control input' x,

• the mechanical position appears non-linearly.

The first difficulty is addressed in Section 4.2 via the so-called torque-sharing approach. The second, which presents an obstacle to observer-design and output-feedback control, is circumvented by using an alternative dynamic model in new coordinates. Such model, presented in Section 4.1, is propitious to certainty-equivalence control since it is linear in the unmeasured variables.

Indeed, the rotor dynamics model in the new coordinates lends itself naturally to the design of Luenberger-type observers.

For clarity of exposition, we divide the rest of the chapter in three parts that are coherent with the control approach described above. First, in Section 4.3, we discuss the control of the rotor dynamics (design of T d ) then, we present a tracking (x → x * ) control law u for the stator dynamics in Section 4.4. Finally, using a small-gain argument we establish, that the interconnection of the two subsystems, schematically represented in Figure 4.1, is exponentially stable.

Motor model for control purposes

We use a change of coordinates to state a new system equation equivalent to the simplified model (3.8) in q coordinates. The main advantage of this model consists in the linearity of the map from "position" to inductance.

Following ideas from [START_REF] Ortega | Estimation of rotor position and speed of permanent magnet synchronous motors with guaranteed stability[END_REF] we introduce the function :

[-π, π] → S a where S a := {( 1 , 2 ) ∈ R 2 : 2 1 + 2 2 = a}, with a ∈ R + . Let ϑ ∈ [-π, π], A > 0 and 1 := A cos N r [q + q 0 ] 2 := A sin N r [q + q 0 ] .
Now, if we set q 0 = -q(0) and for any ρ • ∈ R + , we see that the solutions of

ρ = ωJρ, ρ = [ρ 1 , ρ 2 ] , ρ(0) = [ρ • , 0]
where

J = N r 0 -1 1 0 .
satisfy ρ(t) ∈ S ρ• for all t ≥ 0 and are given by ρ(t) = (q(t)) i.e.,

ρ 1 (t) = ρ • cos N r [q(t) -q(0)] ρ 2 (t) = ρ • sin N r [q(t) -q(0)] .
The electromagnetic torque

T e (ρ, x) = 1 2 x K(ρ)x (4.2)
is now expressed as a function of ρ as well as the inductance matrix K(ρ) = 1 N r K (ρ) where

K (ρ) =     ρ 2 0 0 0 1 2 ρ 2 - √ 3ρ 1 0 0 0 1 2 ρ 2 + √ 3ρ 1     and L(ρ) = 0 I + 1 L (ρ) with L (ρ) =     -ρ 1 0 0 0 -1 2 ρ 1 + √ 3ρ 2 0 0 0 -1 2 ρ 1 - √ 3ρ 2     .
Note that, although T e in (4.2) and T e in (3.9) are different functions T e (ρ(q), x) and T e (q, x)

represent the same quantity. The same applies for L(ρ) and K(ρ) in this chapter when they are compared to L(q) and K(q) in Chapter 3. Consequently, it is clear that there exist positive

constants m , M , k m and k M such that m ≤ |L(ρ)| (4.3a) M |ρ 1 -ρ 2 | ≥ max {|L(ρ 1 -ρ 2 )| , |L(ρ 1 ) -L(ρ 2 )|} (4.3b) k M |ρ 1 -ρ 2 | ≥ max {|K(ρ 1 -ρ 2 )| , |K(ρ 1 ) -K(ρ 2 )|} . (4.3c)
Considering these new definitions, the motor dynamic is described by equations:

L(ρ) ẋ + K(ρ)ωx + Rx = u (4.4a) ρ = ωJρ (4.4b) J ω = T e (ρ, x) -T L (q, q). (4.4c)
The advantage of the model (4.4) is that it is linear in the new 'position' variables ρ, hence, it is propitious for certainty-equivalence, observer-based control.

Torque sharing technique in ρ-coordinates

As illustrated in Figure 4.1, the control approach relies on the ability to control the rotor dynamics via the stator currents x provided, this technique is used to induce a virtual control input into the mechanical Equation (4.4c). Ideally, the virtual control input enters through the mechanical torque T e (ρ, x). That is, given a control law T d , one must solve the equation

T * e (ρ, x * ) J = T d (4.5)
for the current reference x * . Using Equation (4.5), mechanical subsystem Equation (4.4c) may be equivalently written as:

J ω = T * e (•) JT d -T L + Te [T e (ρ, x) -T * e (ρ, x * )]
which, for control purposes, may be viewed as Clearly, the difficulty to solve (4.5) relies on the fact that T * e , after (4.2), is quadratic in x * . The torque sharing approach as used in [START_REF] Espinosa-Perez | Passivity-based control of switched reluctance motors with nonlinear magnetic circuits[END_REF][START_REF] Taylor | Pulse-width modulated control of electromechanical systems[END_REF][START_REF] Ilic-Spong | Feedback linearizing control of switched reluctance motors[END_REF] and Chapter 3, exploits the fact that the mechanical torque T e corresponds to the sum of torques due to each phase therefore, we define

T * e = N r 1 1 2 K 1 (ρ)x * 1 2 + K 2 (ρ)x * 2 2 + K 3 (ρ)x * 3 2 . (4.6)
with K j (ρ) the entries in the diagonal of matrix K (ρ). Now we solve (4.5) for x * j after (4.6) to obtain

x * j =        2J N r 1 1/2 m j (ρ)T d K j (ρ) 1/2 if K j (ρ) = 0 0 otherwise (4.7)
where the functions m j ensure that x j exists for any ρ * and any T d . That is, depending on the current phase of the reference model, the function m j ensures that the respective signs of the numerator and of the denominator in the previous expression are equal for at least one j ∈ {1, 2, 3}. To that end, we define the sets

Θ + j = ρ ∈ S ρ : K j (ρ) ≥ 0 Θ - j = ρ ∈ S ρ : K j (ρ) < 0
where the superscripts + and -stand for required positive and negative torque respectively.

Accordingly, given T d , we define

m j (ρ) = m + j (ρ) if T d ≥ 0, m - j (ρ) if T d < 0. where m + j (ρ) > 0 ∀ρ ∈ Θ + , m + j (ρ) = 0 ∀ρ ∈ Θ -, m - j (ρ) > 0 ∀ρ ∈ Θ -, m - j (ρ) = 0 ∀ρ ∈ Θ + .
Moreover, we impose that

3 j=1 m + j (ρ) = 1, 3 j=1 m - j (ρ) = 1.
so we have

T d = T d 3 j=1 m j (ρ)
and (4.5) holds.

Rotor robust state-feedback control

In this section we present two results on robust state-feedback control of the rotor dynamics.

In the first case, we establish a result of practical stability with respect to the uncompensated constant disturbance induced by the load-torque; in the second case, we add an integrator to establish global exponential stability. In both scenarios we recover a property of input-to-state stability with respect to external inputs. This is significant to analyze the stability of the system interconnected with the stator dynamics.

For the purpose of tracking control we introduce a reference oscillator dynamics for (4.4b). Given a desired constant reference ω * , we introduce q * as the angular position reference for q that is, q * = ω * and the reference oscillator dynamics

ρ * = ω * Jρ * , ρ * (0) = [ρ * • , 0] (4.8) 
where the initial condition ρ * • ∈ R + is a free design parameter. The solutions to (4.8) which define the angular reference trajectories, are

ρ * (t) = ρ * • cos N r [q * (t) -q * (0)] sin N r [q * (t) -q * (0)] (4.9)
where q * (t) = ω * t + q * (0) and the initial reference angular position q * (0) ∈ [-π, π]; without loss of generality we fix q * (0) = 0. Note that ρ * (t) ∈ S ρ * • for all t ≥ 0.

Control without load compensation

Let ν * = T L J then, the rotor model is given by Then, if

ω = T e J -ν * (4.10a) ρ = ωJρ. ( 4 
|ρ * • | ≥ N r 2
e π/Nrω * (4.17

)
we have

3 i=1 Vci ≤ -kd3 e 2 ω - N r π 2ω * |ρ * • | |ρ * • | e -π/ω * - N r 2 |e ρ | 2 -ε 1 kp3 ρ * J e ρ 2 + ε 1 ρ * J e ρ + e ω v. (4.18)
The proof of Lemma 4.1 is included in Appendix B. Input-to-state stability with respect to the input v follows remarking that 3 i=1 V ci is an input to state stable-Lyapunov function; indeed, it is enough to choose a constant α sufficiently small such that |v| ≤ α |e ω , e ρ | implies that 3 i=1 Vc is negative definite.

With compensation of unknown load

In the previous section, Proposition 4.1 establishes global exponential stability for the system without load torque. As a byproduct, the system is robust with respect to additive disturbances such as torque-load uncertainty (ν = const.). By exploiting the passivity of (4.13) we add a second loop which we close with integral action, to compensate for ν. That is, let the variable ν in (4.11) be defined by

ν = -k i e ω + ε 1 ρ * J e ρ , k i > 0, (4.19)
then, the map e ω + ε 1 ρ * J e ρ → ν is passive, the passivity and robustness properties of (4.13) are conserved.

Proposition 4.2 (Global exponential stability by state-feedback, with load compensation).

The system (4.13) with v = ν + ∆ 1 is input-to-state-stable with respect to ∆ 1 and the map

∆ 1 → e ω + ε 1 ρ * J e ρ is output-strictly passive. Moreover, if ∆ 1 ≡ 0 that is if v = ν, then
the origin (e ρ , e ω , ν) = (0, 0, 0) of (4.13) is globally exponentially stable for appropriate values of the gains k p , k d and k i .

Proof. Consider the system (4.13) with v = ν + ∆ 1 and the function

V c4 (ν) := 1 2k i ν2 .
The total time derivative of 4 i=1 V ci along the trajectories of (4.13), and

ν = -k i e ω + ε 1 ρ * J e ρ , k i > 0 (4.20) 
satisfies (4.18) with v = ∆ 1 . Integrating the resulting expression of 4 i=1 Vci on both sides, we see that the map ∆ 1 → e ω + ε 1 ρ * J e ρ is output-strictly passive. Furthermore, if ∆ 1 ≡ 0 global asymptotic stability follows invoking Lasalle's principle, as in the proof of Proposition 4.1. Now we proceed to show that

5 i=1 V ci with V c5 (e ρ , e ω , ν) := -ε 3 νe ω - 1 2 ε 1 ε 3 k i |e ρ | 2
qualifies as an input-to-state-stable-Lyapunov function. The total time derivative of V c5 along the trajectories generated by (4.13), (4.20) yields

Vc5 = ε 3 k i e ω + ε 1 ρ * J e ρ e ω -ε 3 ν2 -ε 3 ν -k d e ω -k p ρ * J e ρ + ∆ 1 -ε 1 ε 3 k i e ρ ωJe ρ + e ω Jρ * .
Adding Vc4 and the latter to (4.18), we obtain

5 i=1 Vci ≤ -[ kd4 -ε 3 k i ]e 2 ω - N r π 2ω * |ρ * • | |ρ * • | e -π/Nrω * - N r 2 |e ρ | 2 -ε 1 kp4 ρ * J e ρ 2 - ε 3 2 ν2 -δ 2 + ∆ 1 ε 1 ρ * J e ρ + e ω -ε 3 ν (4.21) 
where we recall (see Lemma 4.1) that kdj = 6 i=j k di , k di = λ i k d λ i ∈ (0, 1) (similarly for k p ) and we defined

δ 2 := 1 2     e ω ρ * J e ρ ν         2k d3 0 ε 3 k d 0 2ε 1 k p3 ε 3 k p ε 3 k d ε 3 k p ε 3         e ω ρ * J e ρ ν     . Let ε 3 satisfy min k d4 k i , λ 3 k d , ε 1 λ 3 k p ≥ ε 3 (4.22)
then, δ 2 ≥ 0 and 5 i=1 V ci is an input-to-state-stable-Lyapunov function for the system (4.13)-(4.21), with v = ν + ∆ 1 , with respect to the input ∆ 1 . Furthermore, if ∆ 1 ≡ 0, is bounded by a quadratic negative definite function of the state; global exponential stability follows invoking standard Lyapunov theory.

Stator robust state-feedback control

In the previous section we established input-to-state stability for the rotor dynamics with respect to inputs ∆ 1 which vanish with e x = xx * . In this section we focus on the tracking control of the stator dynamics that is, the control goal is to make x → x * where x * := [x * 1 x * 2 x * 3 ] and the latter is defined by (4.7). The controller that we propose next establishes global exponential stability in the case of perfect velocity tracking (e ω = 0) and input-to-state stability with respect to external inputs, which vanish as e w → 0.

For Equation (4.4a) we introduce the control law

u * (t, x) := L(ρ * ) ẋ * + K(ρ * )ω * x + Rx * -k px e x
where k px is shorthand notation for k px (t, |e x |) and is defined by a continuous function k px :

R + × R + → R + such that k px (t, •) is non-decreasing.
Note that ẋ * is a function of time, Ṫd and T d which depend only on measured states and computed quantities. Indeed, defining

σ j (ρ) := m j (ρ) K j (ρ)
we have, after (4.7),

ẋ * j =      2J 1 1/2 [σ j (ρ)T d ] -1/2 σj T d + σ j Ṫd if K j (ρ) = 0 0 otherwise. (4.23) 
Applying u = u * into (4.4a) we see that

L(ρ) ėx + [R + k px ] e x = ∆ 2 (t, e ρ , e x , ẋ * ) (4.24a) ∆ 2 (t, e ρ , e x , ẋ * ) = -L (e ρ ) ẋ * + K(e ρ )ω * x + K(ρ)e ω x (4.24b) 
and, from (4.3) we have

|∆ 2 | ≤ M | ẋ * | + k M ω * |x| |e ρ | + k M |ρ * • | |x| |e ω | .
That is, the origin {e x = 0} of the the stator closed-loop system is exponentially stable in the case that the rotor controller achieves perfect velocity tracking. Global exponential stability for (4.24) implies local input-to-state stability; the global property is established next.

Proof. The motor model corresponds to the Equations (4.4). Therefore, the closed-loop system corresponds to (4.12), (4.13b), (4.20) and (4.24). The term ∆ 1 in (4.12b) satisfies, using

|K(ρ)| ≤ k M |ρ * • |, |∆ 1 | ≤ k M J |ρ * • | |e x | |x * | + |x| .
In view of the latter, (4.21), (4.22) and (4.27), it follows that the total time derivative of V c :=

6 i=1 V ci satisfies Vc ≤ -[ kd5 -0.5]e 2 ω - N r π 2ω * |ρ * • | |ρ * • | e -π/Nrω * - N r 2 |e ρ | 2 -ε 1 kp4 ρ * J e ρ 2 - ε 3 2 ν2 -[R + k px1 ] |e x | 2 + k M J |ρ * • | |e x | |x * | + |x| ε 1 ρ * J e ρ + |e ω | + ε 3 |ν|
which, in virtue of the triangle inequality, (4.28) and provided that k p4 , k d5 ≥ 1, implies that Vc ≤ -W (e x , e ρ , e ω , ρ * J e ρ ) (4.29a) That is, V c qualifies as an input to state-Lyapunov function for the closed-loop system with inputs v s , v m .

W ≤ kd6 e 2 ω + R + 1 2 k px1 |e x | 2 + ε 1 kp5 ρ * J e ρ 2 + ε 3 4 ν2 + N r π 2ω * |ρ * • | |ρ * • | e -π/Nrω * - N r 2 |e ρ | 2 (4.29b) hence 

Simulation results

We have tested our P ID+Feedback controller on a fully-nonlinear model ψj (q, x) + Rx j = u j where, for implementation purpose we have used the flux expression ψ j (q, x j ) = ψ s 1e -f j (q)x j from Equation (3.2). In Figure 4.2 we show the implementation diagram of the simulation.

The numerical simulations were carried out in the software Simulink TM of Matlab TM . The physical parameters and the control gains are the shown in Table 4.1.

To reproduce a realistic scenario the reference consists in a smooth function which gradually increases from an initial value to a final constant desired speed,

ω * (t) = 1 -e -α(t-T )
1 + e -α(t-T ) + 1

ω * f -ω * 0 2 + ω * 0 . (4.30) Feedback controller u=L(ρ * ) ẋ * +Rx * + ω * K(ρ * )x Saturated model ψj = -Rxj + uj J ω = Te(q, x) -TL q = ω ψj(q, xj) = ψs 1 -e -f j (q)x j W j (q,xj) = x j 0 ψj(q, s)ds t PID controller T d =-kpϕ -k d eω + ν + ω * ρ * = ω * Jρ * ν = -ki eω + ε1 ρ * J eρ
Torque share approach Current reference generator

x * = 2m j (ρ)T d K j (ρ) u TL q ρ ρ ρ ω ω * mj(ρ) T d x * ρ * x Figure 4.2:
Diagram of simulation, note that the feedback controller is in ρ coordinates while the motor model is in q coordinates and it does consider linkage flux saturation -Model (3.2). Furthermore there is a coordinate transformation block which takes the position "measurement" q and returns ρ We use ω 0 = 10 and a final value of 50[rad/s].

Motor Control R = 2.5[Ω] 0 = 52[mH] k p = 2000 k i = 5e -4 1 = 20[mH] N r = 8 k d = 25000 ε 1 = 0.1 J = 0.01kg -m 2 T L = 0.1[Nm] ρ * 0 = 20 K px = 150 β = 2 ψ s = 0.25
The functions m j , which are illustrated in Figure 4.3, are constructed as follows. First, we define q as a function of ρ i.e.

q(ρ) =        ς(ρ) if ρ 2 > ρ 1 > 0 ς(ρ) + π 4 if ρ 1 > ρ 2 > 0 or ρ 1 > 0 > ρ 2 ς(ρ) + π 8 if ρ 1 < 0 (4.31) 
where

ς(ρ) = tg -1 ( ρ2 /ρ1) -2π /Nr N r
. Then, q ∈ [0, 2π /Nr] is used in the construction of the auxiliary functions m+ j (•) and mj (•),

m+ j (q) =              f (q j ) if 0 < q j ≤ π 3Nr 1 if π 3Nr < q j ≤ 2π 3Nr 1 -f (q j -2π /Nr) if 2π 3Nr < q j ≤ π Nr 0 otherwise and m- j (q) =              f (q j -π Nr ) if π Nr < q j ≤ 4π 3Nr 1 if 4π 3Nr < q j ≤ 5π 3Nr 
1f (q j -5π /3Nr) if 5π 3Nr < q j 0 otherwise with q 1 = q, q 2 = q -2π /3Nr, q 3 = q + 2π /3Nr. Finally, m j (ρ) is obtained from

m j (ρ) = m+ j (q(ρ)) if T d ≥ 0 m- j (q(ρ)) if T d < 0 (4.32) 
-notice, from Figure 4.3, that for each j ∈ {1, 2, 3}, m + j (ρ) = m+ j (q(ρ)) is larger than zero only when K j (ρ) > 0 and it equals zero when K j (ρ) < 0. Similarly m - j (ρ) = mj (q(ρ)) is larger than zero only when K j (ρ) < 0, the latter guarantees that it is always possible to compute x * as it is expressed in (4.7). Position q * [rad] The overall behavior of the electrical currents during all the simulation time is depicted in The small mismatch between the currents and their references in Figure 4.5 may be reduced or eliminated by increasing the control gain k px , note that in the simulation we have used

K j (ρ) and m j (ρ) K 1 (ρ) K 2 (ρ) K 3 (ρ) m + 1 (ρ) m + 2 (ρ) m + 3 (ρ) -m - 1 (ρ) -m - 2 (ρ) -m - 3 (ρ) 
k px = k px1 = 150 -cf. Eq. (4.26).
However, in view of the good velocity tracking performance depicted in Figure 4.8, it is not worth to apply high gain at the stator level by imposing large values to the control gain k px , at the expense of large control inputs.

The control input magnitude for the three phases are showed in Electric current

x 1 (t)

x 2 (t)

x 3 (t) 

time [sec] Current tracking and m j (t) In Figures 4.7 and 4.8 we show, respectively, the good position and velocity tracking performance.

x 1 (t) x 2 (t) x 3 (t) x * 1 (t) x * 2 (t) x * 3 (t) m 1 (t) m 2 (t) m 3 (t) x 1 (t) -x * 1 (t) x 2 (t) -x * 2 (t) x 3 (t) -x * 3 (t)
Note that in both cases the position ρ(t) and the velocity ω(t) converge asymptotically toward their respective references; that is, the rotor (4.4c) synchronizes with the virtual rotor (4.8) generated by the reference oscillator. Note as well that, while the signal reference ω * (t) starts up at ω * (0) = 10[rad/sec], the switchedreluctance motor is started up from the standstill condition ω(0) = 0. This condition stresses the controller and it is not used during real time applications. We just imposed this condition in simulation in order to show the performance of our controller under non-friendly conditions.

As a result of this, we have in Figures 4.4 

Conclusions

In this chapter we have presented a control approach to the robust stabilization of the switchedreluctance motor. The control approach consists in stabilizing separately the stator and the rotor dynamics. We have established global exponential stability and input-to-state stability with respect to external disturbances. Moreover, our control scheme has the special feature of being tailored to be implemented as a certainty-equivalence controller, with a state estimator.

The design of the latter is under current research. Simulation results are encouraging to pursue this avenue towards the solution of full-sensorless control via certainty-equivalence control.

Chapter 5

Experimental Results

In this chapter we present the results of experimental tests that were run with the aim of evaluating the behavior and performance of the controllers described in the previous Chapters.

Description of the benchmark

A detailed description of the benchmark goes beyond the objective of this document (interested reader is invited to find further details about in [START_REF] Aguado | Construction and design of a benchwork for switched reluctance motors[END_REF]). However, a brief description is necessary to familiarize with the performed tests. The following picture present the utilized benchmark 

Description of the experiments

In previous chapters we presented the design and numerical tests of different controllers for the switched-reluctance motor , these are: For each one of controllers listed above, we have imposed three different velocity-reference profiles.

1. Smooth-steps reference: Constructed by using an hyperbolic-tangent type function

ω * (t) := 4 i=1 ω 0i + 1 2
(ω f iω 0i )

1exp -5(t-Ti) 1 + exp -5(t-Ti)

(5.1)

where

ω 01 = 0, ω 02 = 0, ω 03 = 0, ω 04 = 0 ω f 1 = 110, ω f 2 = -220, ω f 3 = 220, ω f 4 = -110 T 1 = 4, T 2 = 16, T 2 = 28, T 2 = 40
2. Saturated-ramp reference: This reference is constructed by utilizing the following function 

ω * (t) :=                                  ω 1 t 1 t 0 ≤ t ≤ t 1 ω 1 t 1 ≤ t ≤ t 1 ω 2 -ω 1 t 3 -t 2 (t -t 2 ) + ω 1 t 2 ≤ t ≤ t 3 ω 2 t 3 ≤ t ≤ t 4 ω 3 -ω 2 t 5 -t 4 (t -t 4 ) + ω 2 t 4 ≤ t ≤ t 5 ω 1 t 5 ≤ t ≤ t 6 -ω 3 t 7 -t 6 (t -t 6 ) + ω 3 t 6 ≤ t ≤ t 7

Tests to the P I 2 D+Feedback controller

In this section we present the result of the experiments performed in order to evaluate the P I 2 D+ Feedback controller

P I 2 D              T d = -k p e q -k d ϑ + ν + ω * ν = -k i (e q -ϑ) qc = -a(q c + be q ) ϑ = q c + be q Feedback controller u = L(q)αρ + ω * K(q)x + Rx * -k px e x e x = x -x *
presented in Sections 3.5.1 and 3.5.3 respectively. The control gains are in the table below. The test corresponds to the most favorable scenario, we imposed this velocity reference and the results in tracking are shown in Figure 5.2. We notice a good behavior with only a small delay in both upper-zoomed plots. Furthermore, the results on tracking of the desired current reference is illustrated in Figure 5.3, we show the overall behavior of the controller during the whole experiment on left-side plots.

On the right hand side plots of the figure, we show the tracking performance with more detail during a narrow time-window. The performance is good enough when we take into account that the objective of control is the mechanical velocity. 

Saturated-ramp velocity reference

Next, we tested the performance of the P I 2 D+Feedback controller, with the saturated-ramp velocity reference, constructed by applying Equation (5.2).

The result of velocity tracking is shown in Figure 5.5, where a good response in tracking is appreciated and only a small delay appears on the two zoomed plots. The tracking of the desired electric current for this scenario is shown in Figure 5.6. Notice on the right hand side plots a better response compared to that presented in the previous scenario.

However, a small delay with respect to its reference can be noticed. Finally, the control input is shown in Figure 5.7, note that the magnitude of this signal seldom exceeds ±100[V] and it is around ±50[V] during the most of the time, which is convenient for the half-bridge asymmetric converter. 

Sinusoidal velocity reference

The last velocity-reference profile imposed to this controller corresponds to a sinusoidal signal -see Equation (5.3), this sinusoidal function has an amplitude of 100[V] and a period of 14s.

In Figure 5.8 we show the obtained results for velocity tracking. Similarly to the last scenario, a small delay is present, yet a good response of the motor is achieved and the control objective is attained. In Figure 5.9 we show the current reference tracking performance. Note that even when there are small errors in the tracking, it is better than the results presented in the previous scenarios. Finally, in Figure 5.10, we present the control input generated by the controller, we note that the demanded voltage magnitude is not high, around ±50V , which is fed without problem by the converter. In this section we have presented the obtained results of the tests performed to the P I 2 D+ feedback control considering three different scenarios, these are the smooth step, the saturated ramp and the sinusoidal reference. We obtained good results in tracking velocity in the all of the three scenarios, with only small delays, however these are not significant for the control goal achievement. The current reference tracking is also good enough and in all cases reference and real current are in phase with a small difference in amplitude. Finally, we get low level voltages in the control signal, which is suitable for the half-bridge asymmetric converter. The designed controller achieves almost with no problems the control objectives. 

P I 2 D              T d = -k p e q -k d ϑ + ν + ω * ν = -k i (e q -ϑ)
qc = -a(q c + be q ) ϑ = q c + be q

Adaptive-Feedback 5.1, however, the gains k θ for the adaptive law and the gains k w for the anti-windup strategy are the following:

Adaptive law Anti windup k θ1 = 3.2e -6 k w1 = 0.7 k θ2 = 7.5e -6 k w1 = 1.5 k θ3 = 1.6e -3 k w1 = 7

Table 5.2: Control gains for the adaptive law and the anti windup technique.

Anti-windup strategy

The adaptation law Θ = -k θ Ψ (t, y, e x )e x essentially consists in the integral of two multiplied terms. The first, Ψ(t, e x , y), is bounded and persistently exciting 1 at y = 0 and e x = 0 whilst the second term, e x , corresponds to the state of the controlled system. Given the boundedness and the persistency-of-excitation property of Ψ(•), a necessary condition for Θ to converge to zero is that e x vanishes, that is e x → 0 as t → ∞. Theoretically speaking, the last comes from the uniform global exponential stability property of e x = 0. Nonetheless, x * is a complicated function of the state trajectories which oscillates between zero and positive values. That is, it is a highly changing function difficult to follow, this condition generates a persistent error in its tracking, just when x(t) is almost reaching its reference, x * (t) abruptly changes giving a "new" reference to follow, this provokes e x (t) to slightly grow just before it again tends to zero. The latter phenomenon is repeated all long of the experiment. Consequently, Θ, which comes from the integral of a non-vanishing term e x , grows indefinitely. To avoid this, an anti-windup strategy was implemented, this technique allows us to restart the integral term once it has reached a given threshold. The anti-windup technique consists in adding saturation term to (3.28b)

Θ = -k θ Ψ (•)e x + k w Θs -Θ
where Θs = sat( Θ1 ) sat( Θ2 ) sat( Θ3 ) , Θ 1 = 0 , Θ 2 = 1 , and Θ 3 = R. The gains k θ and k w are set in Table 5.2.

Smooth-steps velocity reference

In order to investigate the response of the adaptive controller to a smooth reference signal, we impose the profile given by Equation (5.1). The obtained result of velocity tracking is plotted in Figure 5.11. Note the good response of the controller with only small oscillations around the desired velocity, moreover there are not delays in the tracking. It is also notorious that there is not an important difference between these results and those for the non-adaptive controller presented in Section 5.3.1. The result of the experiment concerning the current tracking is shown in Figure 5.12. Note, from the plots on the left, that the currents rarely exceed 3[A], they are higher only when motor is speeding up. From the plots on the right it can be noticed that the electric current is below 2.5[A] and tracking errors are quite acceptable.

The control input produced by the controller under test is depicted in Figure 5.13. This result is similar to that presented in the previous scenarios, magnitude of voltage around ±55[V] is proper for the half-bridge asymmetric converter, which will not be strained in excess under this regime. Finally for this scenario, we show, in Figure 5.14, the result of estimation of the physical parameters 0 , 1 and R. It is important to note that the estimations of parameters do not converge to the real values, they are oscillating around them as result of the effect of the anti-windup strategy. 

Saturated-ramp velocity reference

In another experiment we injected a saturated ramp reference, constructed by implementing the function in (5.2). Note the good overall response of the velocity tracking in Figure 5.15, it only appears a small delays, see zoomed plot on the same figure, just after velocity stabilizes at 100[rad/s] and -100[rad/s], however this delay does not impact on the overall behavior. The tracking of the desired electric current for this scenario is shown in Figure 5.16, note in the right side plots that the actual current does not reach its reference in magnitude.

The control input is depicted in Figure 5.17 the half-bridge asymmetric converter. Finally, the results concerning to the estimation of the physical parameters are presented in Figure 5.18. As it may be observed in this figure, the estimate oscillates around the mean value which correspond to that of the real parameter. 

Sinusoidal velocity reference

In this section we present the results of the experiments where a sinusoidal velocity reference was imposed.

The corresponding result of velocity tracking is depicted in Figure 5.19. This scenario requires the motor to constantly shift the sense of spin. The velocity tracking performance is not as good as in the previous cases and small delays may be observed on zoomed plots. Nevertheless, a good overall behavior is obtained. The tracking of the desired electric current is shown in Figure 5.20. In Figure 5.21 the control signal is shown and, similarly to the previous scenarios, its magnitude is not too high which allows the converter to handle them with no problems and feed the motor. 

Tests of the P ID+Feedback controller for the ρ-model

We present now the results of the experiments corresponding to the P ID+feedback control

PID T d = -k d e ω -k p b * (t) e ρ + ν + ω * . ν = -k i e ω -ε 1 k i b * (t) e ρ Feedback controller u * (t, x) := L(ρ * ) ẋ * + K(ρ * )ω * x + Rx * -k px e x
presented in Chapter 4. This controller is composed by equations; where, after a tuning process, the following control gains were utilized Similarly to the experiments reported in previous sections, we have imposed three different velocity profiles ω * (t); the corresponding results are presented in the following sections.

PID Feedback k p = 40 k i = 1e -8 k px = 24 k d = 200 ρ * 0 = 4 ε 1 = 1e -8

Smooth-steps velocity reference

The corresponding result of velocity tracking is depicted in Figure 5.23; as in the previous scenarios, a good performance may be observed. Note the small oscillations around t = 23[sec],

this is due to a step-increment of unknown magnitude in the load torque imposed by the coupled direct motor. Despite this disturbance, the controller works properly and the motor velocity is again driven to its reference. Finally, voltage control input is depicted in Fig (5.25), in this figure it is noted the effect of the load torque increment, however magnitude seldom goes beyond ±50[V], which is suitable for the half-bridge asymmetric converter. 

V oltage input [V ] u 1 (t) u 2 (t) u 3 (t)

Saturated-ramp velocity reference

First, velocity tracking is depicted in Figure 5.26, note the good fit between the actual velocity and the imposed reference despite the small overshoot appreciated in the zoomed plots. voltage control must shift sequence of phases in order to achieve the spin sense shift, -see on 

V oltage input [V ] u 1 (t) u 2 (t) u 3 (t)

Sinusoidal velocity reference

The last scenario for this controller corresponds to the sinusoidal velocity reference constructed by the function ω * (t) = 100 sin(0.45t).

The result of control for the velocity tracking is depicted in Figure 5. presented in left hand side plots, it must be remarked that current merely reaches 3.5[A], with some overshoots apearing which are not significant.

On the right hand side plots detailed current tracking is depicted, notice the small errors and magnitude of the currents. It is also important to notice that the current does not reach zero, which means that stator remains magnetized despite the shooting off of the corresponding phase.

The last graph, shown in Figure 5.31, corresponds to the voltage control input. Once again, notice in the zoomed window that the voltage magnitudes are not larger than ±50[V] for almost all time and, consequently, the utilized converter is appropriate for these conditions and scenarios.

We must point out that this graph pictures the "output" Chapter 6

V oltage input [V ] u 1 (t) u 2 (t) u 3 (t)

Conclusions

General conclusions

In this thesis we have designed, and tested experimentally three different velocity controllers for the switched-reluctance motor. In Chapters 3 and 4 we have presented the design, the theoretical results and the numerical simulations of three velocity controllers of the switched-reluctance motor. The first controller was designed for the so-called q-model with the assumption of known parameters and unknown both velocity and load torque. In a second stage, in addition to velocity and load torque, physical parameters are assumed unknown. This work is presented in Chapter 3. For these two first controllers we have achieved uniform global exponential stability of the error variables in the parameter known case and uniform global asymptotical stability in the case of parameter uncertainty.

The third controller, presented in Chapter 4, was designed considering the so called ρ-model under the assumption of unknown load torque but parameters and the whole state are available. For this controller we have achieved uniform global exponential stability of the origin of the controlled system. This result is important because it is a first step towards the full sensorless control were position and velocity measurements are replaced by the observed states coming from a virtual sensor. All these result are summarized in Tables 6.1 and 6.2. Finally, in Chapter 5 we have presented the results of the experimental tests performed in order to investigate the behavior of the proposed controllers. During these experiments three different profiles were imposed for each one of the three designed controllers. The control objectives of the all tests was the mechanical velocity. As it can be noted in Chapter 5, we have obtained good results during the experimental tests, where the variable of interest is the mechanical velocity. where λ ∈ (0, 1). Then, under the conditions (A.1) there exists a positive definite matrix P (η, J)

Controller

and reals q m , p M ≥ p m > 0 and ε ∈ (0, 1) independent of η and J such that

2p m |ξ| 2 ≤ ξ P ξ ≤ p M |ξ| 2 , Q = -(A P + P A) = -(Q 1 + Q 2 ) such that Q 1 = Q 1 is positive definite and Q 2 = Q 2 is
positive semidefinite such that q m |ξ| 2 ≤ 1 2

ξ Q 1 ξ and ξ Q 2 ξ ≥ ε(J/η)(b -1)e 2 ω .

Proof of Claim 1. Let ε 1 , ε 2 ∈ (0, 1) and P in (3.17) defined as

P =        k p (J/η)ε 1 0 0 (J/η)ε 1 (J/η) -(J/η)ε 1 -ε 2 0 -(J/η)ε 1 k d /b 0 0 -ε 2 0 ε 1 /k i        .
This matrix is diagonal dominant hence positive definite, if

k p > (J M /η m )ε 1 , 1 > 2(J M /η m )ε 1 + ε 2 k d b > (J M /η m )ε 1 , ε 1 k i > ε 2 .
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These conditions hold for sufficiently small ε 1 and ε 2 such that k i ≤ ε 1 , therefore there exist p m and p M > 0 such that

p m |ξ| 2 ≤ V 1 (ξ) ≤ p M |ξ| 2 .
Next, let Q := A P + P A be partitioned as

Q = - Q 1B 0 0 (η/J)ε 2 Q 1 - Q 2B Q 2v Q 2v (η/J)ε 2 Q 2 (A.2)
where

Q 1B =       ε 1 k p -ε 2 k i ε 1 (k d -k p ) -ε 2 k i ε 1 J η (b -1) - 2ε 2 k i ε 2 1 ε 2 k i - J η ε 1 a ε 1 (k d -k p ) ε 2 k i - J η ε 1 a k d a b -ε 1       , Q 2B =      ε 1 k p 0 0 0 ε 1 J η (b -1) 0 0 0 k d a b -ε 1      ,
and

Q 2v = η J -ε 2 k p 0 -k d ε 2
Since (η/J)ε 2 > 0 the matrix Q 1 in (A.2) is positive definite if and only if so is Q 1B ; the latter holds if Q 1B is diagonal dominant. This in turn holds for small values of ε 1 ≥ ε 2 ≥ k i and control gains satisfying (A.1). Thus, there exists q m > 0 such that q m |ξ| 2 ≤ 1 2

ξ Qξ. On the other hand, the Schur complement of Q 2 is positive for sufficiently small values of ε 1 and ε 2 , independently of the center element in Q 2B hence, we have ξ Q 2 ξ ≥ (J/η)ε(b -1)e 2 ω with ε := ε 1 . This is detailed along the following lines. 

k i k p J m η M 1 + λ λ 2 -1 -1 .
Note that given a, b, k p , k i and k d satisfying (A.3), the conditions (A.5) and (A.6) hold for sufficiently small values of ε 1 and ε 2 . Also note that λ 2 > 1 since, in view of (A.5) we have a > bε 1 . Now, Q 1 is diagonal dominant if

ε 1 |λ -1| k p + ε 2 k i ≤ ε 1 k p (A.7
)

ε 2 k i + |ε 2 k i -(J/η)ε 1 a| ≤ ε 1 (J/η)(b -1) - 2ε 2 k i ε 2 1 (A.8) ε 1 k p |λ -1| + ε 2 k i + (J/η)ε 1 a ≤ λk p a b
ε 1 (A.9)

Since λ < 1 (A.7) holds if

ε 1 k p ≥ ε 2 k i + ε 1 (1 -λ)k p ⇔ ε 1 λk p ≥ ε 2 k i which is equivalent to ε 2 ε 1 ≤ λk p k i
which holds in view of (A.6) and (A.4). Now, we show that (A.8) holds. Again, from (A.6) we have

ε 2 ε 1 ≤ aε 1 2k i ⇔ 2ε 2 k i ≤ ε 2 1 a
hence, (A.8) holds if

J η ε 1 (b -1) -ε 1 a ≥ 2ε 2 k i + ε 1 a which is satisfied if J η ε 1 (b -1) ≥ 2ε 2 k i + ε 1 a 1 + J η
or equivalently if

J η b -1 -a] -a ≥ 2ε 2 k i ε 1
which in turn, holds in view of (A.6).

Finally, we show that inequality (A.9) holds. Indeed since λ < 1, (A.9) is implied by Since ε 1 < 1, the latter holds if

λk p 2b ≥ ε 1 2 1 + 2J η ⇔ k d b 1 + 2J η -1 ≥ ε 1
which holds in view of (A.5).

On the other hand, definite positiveness of Q 2 results from the application of the Schur complement, which is non-negative if

ε 2 ≥ -ε 2 k p -k d ε 2   ε 1 k p 0 0 k d a b -ε 1   -1 -ε 2 k p -k d ε 2 η J
the latter is equivalent to

ε 2 ≥ η J   ε 2 2 k p ε 1 + ε 2 2 k p λ a b
ε 1   (A.12) using λ 2 := a bε 1 we see that (A.12) holds if

ε 2 ≥ η J ε 2 2 k p ε 1 + ε 2 2 k p λ (λ 2 -1)ε 1 = ε 2 2 k p ε 1 η J 1 + λ λ 2 -1
which holds in view of (A.6). We remark that

ξ Q 2 ξ ≥ J 2η ε 1 (b -1)
A.2 Proofs of the propositions in Chapter 3

A.2.1 Proof of Proposition 3.2

In view of the definition of x * we have T * e = ĴT d so the rotor closed-loop dynamics yields (3.16) with A = A( Ĵ). In view of Proposition 3.1 the equilibrium defined by (3.13) is uniformly globally exponentially stable if Te = 0. Let q m > 0, ε ∈ (0, 1) and Q = Q > 0 be such that

Q = Q 1 + Q 2 where Q 1 = Q 1 is positive definite and Q 2 = Q 2 is positive semidefinite such that q m |ξ| 2 ≤ 1 2
ξ Q 1 ξ and ξ Q 2 ξ ≥ (J/η)ε(b -1)e 2 ω . In view of the Hurwitz assumption and [63, Theorem 4.2] there exist a matrix P and positive real numbers γ 1 , p m and p M such that Q = -(A P + P A), |P B| ≤ γ 1 and

p m |ξ| 2 ≤ V 1 (ξ) ≤ p M |ξ| 2 .
Then, the derivative of V 1 satisfies (3.18) with Q as defined above and since T e and T * e are quadratic functions uniformly bounded in q, 2 Te ≤ k M e x (x + x * ) so, a. e x K(q(t))e x K(q(t)) e x + 1 λ 1

+ 1 2λ 3 e 2 ω
for which we used d dt L(q(t)) = K(q(t))[e ω + ω * ], e x K(q)e x e ω ≤ (1/λ 3 )e 2 ω + λ 3 e x K(q)e x 2 and e x ge ω ≤ λ 1 γ 2 2 |e x | 2 +(1/λ 1 )e 2 ω . Thus, the total derivative of the Lyapunov function V 3 := V 1 +V 2 along the closed-loop trajectories satisfies

V3 ≤ -(J m /η M )ε(b -1)- 1 λ 1 - 1 2λ 3 e 2 ω -q m - λ 2 k M γ 1 2 |ξ| 2 -k px -λ 1 γ 2 2 - k M 2 ω * + λ 3 k M |e x | 2 + γ 1 λ 2 |x + x * | 2 |e x | 2 a.e.
where we used e x (x + x * ) |ξ| ≤ (1/λ 2 ) |x + x * | 2 + λ 2 |ξ| 2 . Therefore, given q m and b, for any J, η and ε, there exist positive numbers λ 1 , λ 2 , λ 3 and c such that, defining k px > 0 and

k px := k M 2 ω * + λ 3 k M |e x | 2 + γ 1 λ 2 |x + x * | 2 + λ 1 γ 2 (|y| , |x|) 2 ,
We propose W 1 (t, ξ, e x , Θ) = -e x L(q(t)) Ψ 0 (t) Θ whose total derivative along the closed-loop trajectories (3.25) , (3.16) and (3.28b) yields Ẇ1 t,ξ, e x Θ = -e x (k px + R) Ψ 0 (t) Θ g(t, x, ξ) Ψ 0 (t) Θe ω -Θ Ψ(t, y, e x )Ψ 0 (t) Θ e x L(q(t)) Ψ 0 (t) Θe x L(q(t)) Ψ0 (t) Θ + k θ e x L(q(t)) Ψ 0 (t) Ψ(t, y, e x )e x .

Let Ω ⊂ R 10 be a compact set; we see that for all (t, [ξ, e x , Θ]) ∈ R + × Ω ∩ {Y 0 = 0} we have Ẇ1 t, ξ, e x , Θ = Y 1 (t, Θ) ≤ 0, Y 1 (t, Θ) = -Θ Ψ 0 (t)Ψ 0 (t) Θ.

Next, we look for a second auxiliary function W 2 such that its derivative is negative semi-definite on R + × Ω ∩ {Y 0 = 0} ∩ {Y 1 = 0}. Let W 2 : R + × R 3 → R + be defined by By the same reasoning we see that the product Υ J = sin(N r q * ) cos(N r q * ) sin(N r q * ) 2 cos(N r q * ) 2 sin(N r q * ) cos(N r q * ) N r satisfies the following. The matrix 

Π := t+π/Nrω * t Υ ( 
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  Le MRV est parmi les moteurs les plus simples concernant sa construction. Sa structure de base est composée d'un stator bobiné et d'un rotor en fer qui n'est ni bobiné ni magnétisé. Le rotor se compose essentiellement d'un morceau de fer laminé pour former des pôles saillants. Les pôles du stator sont également saillants et sont enroulés sur des pôles opposés radialement. Chaque phase du stator est constituée de bobines de stator concentrées sur les pôles. Parmi de nombreuses alternatives, les configurations les plus courantes sont les pôles 8-rotor/9-stator 4-phases moteur et le 6-rotor/4-stator 3-phases moteur, dont un schéma est présenté dans la Figure 1.1.
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 11 Figure 1.1: Schématique d'un 6/4 3 phases moteur à réluctance variable.

Figure 1 . 2 :

 12 Figure 1.2: Operation du MRV (1)-Phase c alignée (2)-Phase a alignée (3)-Phase b alignée (4)-Phase c alignée.

Figure 1 . 3 :

 13 Figure 1.3: L'inductance en tant que fonction de la position mécanique.
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 12 d'inductance. Le fonctionnement de la machine dans cette région se traduit par un couple négatif, à savoir, la génération d'énergie électrique à partir de l'entrée mécanique de la machine à réluctance variable. À cause de la saturation magnétique dans le MRV, il n'est pas possible d'atteindre les profils d'inductance idéales représentées sur la Figure 1.3. Même qui provoque, au-delà d'un point, une diminution sur le couple et la puissance de sortie. Production du couple mécanique La dépendance de la production du couple sur la saturation magnétique, en addition aux effets des champs frangeants et de l'excitation d'onde quarrée donne au MRV une caractéristique de commande non linéaire. Le couple mécanique d'origine électrique (couple électromagnétique) est produit grâce à la tendance des pôles du rotor à s'aligner avec la phase du stator excité. Les déplacements du rotor à une position où la réluctance est à son minimum et où l'inductance est à son maximum même que la relation entre l'inductance et de la production de couple selon la position du rotor sont représentés sur la Figure 1.4. Pour un courant positif et constant, le couple positif est produit lorsque l'inductance augmente, tandis qu'aucun couple n'est produit lorsque l'inductance reste constante. Finalement, un couple négatif est produit lorsque l'inductance diminue. Sur la base de ce comportement, il est possible de calculer le temps de commutation nécessaire pour produire le couple désiré en fonction de la vitesse désirée. La caractéristique couple-vitesse d'un MRV est donnée dans la Figure 1.5. Basée sur les plages de vitesses différentes, la génération du couple du moteur a été divisée en trois régions différentes : couple constant, puissance constante et région de chute de puissance.La vitesse de base ω B est la vitesse maximale à laquelle le couple et le courant maximale peut être atteinte à la tension nominale. Dessous de ω B , le couple peut être maintenue constante. À faible vitesse, le courant de phase augmente presque immédiatement après que les interrupteurs de phase se mettent en marche, depuis la force contre-électromagnétique est faible à ce moment.
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 1412315 Figure 1.4: Le couple et l'inductance en tant que fonctions de la position mécanique.

Figure 2 . 1 :

 21 Figure 2.1: Schematic of a 6/4 3 phases switched-reluctance motor.

Figure 2 . 2 -Figure 2 . 2 :

 2222 Figure 2.2-(1). If an electrical current is applied through the phase aa , a magnetic flux is induced through the stator poles aa so the rotor poles r1 and r1 tend to move toward the stator poles a and a as it is shown in Figure 2.2-(2). Once they are aligned, the stator current of phase a is turned off. Then, the stator winding bb is excited, pulling r2 and r2 toward b and b , in a counter clockwise direction, as illustrated in Figure 2.2-(3). Likewise, energization of phase cc results in the alignment of r1 and r1 with c and c (note the feeding sequence a-b-c). Hence, it takes three phase energization in sequence to move the rotor by 60 degrees and one revolution of rotor is effected by performing the a-b-c sequence as many times as there are number of stator poles. The switching of currents in the sequence a-c-b results in the reversal of rotor rotation.
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 23 Figure 2.3: Inductance as function of mechanical position.
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 2412325 Figure 2.4: Torque and inductance as function of mechanical position.
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 331 Figure 3.1: The current-linkage flux relationship.

Figure 3 . 2 :

 32 Figure 3.2: Control approach for the SRM in q-model.

  8b) driven by the PI 2 D controller 3.10. Proposition 3.1. Consider the PI 2 D controller (3.10), let k p := k p -(k i /ε) where ε ∈ (0, 1), k i ≤ ε and let T * e = ηT d , η > 0.

1 (

 1 15), using (3.10b) and rearranging terms we obtain the rotor closed-loop dynamics. ξ = Aξ + B Te , ξ := [e q e ω ϑ z] (3.16) where B = [0 (1/J) 0 0] . Now, the Hurwitz property of A is equivalent to the existence of P = P > 0 and a constant γ 1 such that |P B| ≤ γ 1 such that -(A P + P A) = Q for a given positive definite matrix Q, therefore V

Assumption 3 . 5 . 1 .Proposition 3 . 2 .

 35132 (i) Let the control gains and Ĵ, which is a constant estimate of J, be suchthat the matrix A( Ĵ) in (3.14) is Hurwitz for any J ∈ [J m , J M ] -see Remark 3.2.(ii) Assume that the stator parameters 0 , 1 and R are known. Consider the system (3.8) in closed loop with the PI 2 D controller (3.10) under the conditions of Proposition 3.1 and the control law (3.23) where x * = [x * 1 x * 2 x * 3 ] is defined via (3.19) with η := Ĵ ∈ [J m , J M ]. Let Assumption 3.5.1 hold. Then, there exist a real number k px > 0 and a continuous function ω * , |y| , |x| , |x * | → k px , such that k px ω * , •, •, • is non-decreasing and k px = k px + k px ω * , |y| , |x| , |x * | , with e x := x-x * , the origin [ξ, e x ] = [0, 0] of the closed-loop system (3.16)-(3.25) is uniformly globally exponentially stable.

  27) so α in (3.22) and x * in (3.19) depend only on known quantities. With this notation, the control law (3.23) may be written as

Proposition 3 . 3 .Proposition 3 . 4 .

 3334 Consider the system (3.8) in closed loop with the PI 2 D controller (3.10) under the conditions of Proposition 3.1 and u = Ψ(t, y, e x ) Θk px e x , (3.28a) Θ = -k θ Ψ(t, y, e x )e x , k θ > 0. (3.28b) Let the control gains and Ĵ ∈ [J m , J M ] be such that the matrix A(η), with η as in (3.27), is Hurwitz for any J ∈ [J m , J M ]. Define Θ := Θ -Θ. Then, the origin of the closed-loop system, [ξ, e x , Θ] = [0, 0, 0] is uniformly globally stable (i.e., the origin is uniformly stable and the solutions are uniformly globally bounded) and the tracking errors ξ and e x satisfy lim t→∞ |ξ(t)| = 0 lim t→∞ |e x (t)| = 0. The proof of the above proposition is presented in Appendix A.2.2. Furthermore, under the additional condition of persistence of excitation, we establish the uniform convergence of the parameter estimation errors. Consider the system (3.8) in closed loop with the PI 2 D controller (3.10) under the conditions of Proposition 3.1 and (3.28) under the conditions of Proposition 3.3.

2 , 3 ,

 23 4} and ω * 01 = 5, ω * f 1 = 100, ω * 02 = 100, ω * f 2 = 150, ω * 03 = 150, ω * f 3 = -50, ω * 04 = -50 and ω * f 4 = 5. Finally, γ = 5. The gain of the adaptive law is to
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 34 Figure 3.4: Rolled positions.
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 35 Figure 3.5: Switching regime function
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 36 Figure 3.6: Velocity Tracking.
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 37 Figure 3.7: Electric current during the transient and tracking during the steady state.

Figure 3 . 8 :

 38 Figure 3.8: Electric current around t = 5s when the load torque changes. The dashed lines correspond to the commutation signals m j .
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 39310 Figure 3.9: Voltage control inputs u j

Figure 3 . 11 :Figure 3 . 12 :

 311312 Figure 3.11: Estimated parameters converging to the true values

T 25 Figure 3 . 13 :

 25313 Figure 3.13: Window of integration of the function Hij(τ ).

Example 2 . 1 . 2 Figure 3 . 14 :

 212314 Figure 3.14: Defined integral of sin(x) between 0 and π.

  three eigenvalues λ(t) = eig(M (t))The above procedure is programed in Matlab TM and the code is available in Appendix A.4. As result we obtain a data matrix Λ ∈ RT t ix3 where each row contains the three eigenvalues λ(t) corresponding to a given time instant t. From the Figure3.15 it is easily noted that the all of the eigenvalues are positive for all t ∈ [0, 25], consequently the persistency of excitation condition is satisfied, albeit on the window of integration.

Figure 3 . 15 :

 315 Figure 3.15: Eigenvalues of M (t) for all t ∈ [0, 25].

Figure 4 Figure 4 . 1 :

 441 Figure 4.1: Illustration of the control approach. A PID controller virtually injected through the variable T d steers ω → ω * -See Section 4.3. T d is also injected in the form of a reference current x * into the stator control loop and a nonlinear controller ensures current tracking control -see Section 4.4. The systems are feedback interconnected through the nonlinear map T e . The proper definition of the reference model (dashed lines) ensures that the interconnection remains stable in view of a small-gain argument -see Section 4.5.

  a nominal system ω = T d -T L /J perturbed by the term [T e -T * e ]. By design, T d is such that ω → ω * provided that [T e -T * e ] ≡ 0. Note that [T e -T * e ] vanishes provided that current reference trajectories x * are asymptotically tracked.

  .10b) Define the position error e ρ := ρρ * and the velocity error e ω := ωω * then, according to the policy described in Section 4.2, we pose the state-feedback control law T d = -k d e ωk p ρ * J e ρ + ν + ω * . (4.11) Define further ν := νν * and add T d -T * e /J to the right-hand side of Equation (4.10a). Then, the latter may be rewritten as ėω = -k d e ωk p ρ * J e ρ + ν + ∆ 1 (t, y, e x ) (4.12a) ∆ 1 (t, y, e x ) = 1 2J (e x + 2x * ) K(ρ)e x (4.12b) where y = e ρ e ω ν , x * is a function of t and y, and ρ = e ρ + ρ * (t). Subtracting (4.8) from (4.10b) and defining v = ∆ 1 + ν, the mechanical error dynamics becomes ėω = -k d e ωk p ρ * (t) J e ρ + v (4.13a) ėρ = e ω Jρ * (t) + ωJe ρ (4.13b)which may be viewed as a non-autonomous periodic system perturbed by the input v. The interest of this observation relies on the following statement.

Proposition 4 . 1 (2 e 2 ωΥ

 412 Global exponential stability by state-feedback, no load). Provided that k p , k d are positive, the system (4.13) is input-to-state-stable with respect to the input v and the map v → e ω is output-strictly passive. In addition, in the case that v ≡ 0 the origin (e ρ , e ω ) = (0, 0) of (4.13) is globally exponentially stable. Proof. Consider the positive definite radially unbounded function V c1 , V c1 (e ω , e ρ ) = 1 + k p |e ρ | 2 whose time derivative along the trajectories of (4.13) yields Vc1 (e ω , e ρ ) = -k d e 2 ω + e ω v . (4.14) Output strict passivity of the map v → e ω follows by integrating on both sides of (4.14) since V c1 ≥ 0. The proof of global asymptotic stability under the condition v ≡ 0, follows invoking Lasalle's theorem for periodic systems -see e.g. [60, Theorem 5.3.79]: note that e w = 0 implies that Vc1 = 0 and the only solution of k p ρ * (t) J e ρ = 0 for any t, is e ρ = 0 that is, the origin is the largest invariant set contained in { Vc1 = 0}. Global exponential stability is established invoking standard results from adaptive control literature, observing that Jρ * (t) is persistently exciting that is, there exist T c and µ c > 0 such that t+Tc t Jρ * (τ )ρ * (τ ) J dτ = N 2 r ρ (τ )dτ ≥ µ c I. (4.15) where Υ (t) is defined in Section B.1 on page 91. As a matter of fact, (4.15) holds with T c = π/N r ω * and µ c = |ρ * • | 2 N 2 r T c /2 -see properties of matrix Υ (t) in Appendix B.1. Input-to-state stability follows from the following statement.

Lemma 4 . 1 .

 41 Let ε 1 ∈ (0, 1) be a small parameter to be defined, let i ∈ {1, . . . 6}, λ i ≥ 0 be suchthat 6 i=1 λ i = 1, k di := λ i k d and kdj := 6 i=j k di ; similarly for k p . Define the functions V c2 , V c3 by V c2 (t, e ω , e ρ ) = ε 1 e ω ρ * (t) J e ρ(4.16a)V c3 (t, e ρ ) = -e ρ t+Tc t e (t-τ ) Jρ * (τ )ρ * (τ ) J dτ e ρ . (4.16b)

,

  Vc is negative definite. Global exponential stability follows invoking standard Lyapunov theory. Now, let v m and v s be bounded external inputs and reconsider (4.13a) with v = ν + ∆ 1 + v m and let u = u * + v s . Then, from the previous development we obtain Vc ≤ W (e x , e ρ , e ω , ρ * J e ρ ) + e x v s + v m ε 1 ρ * J e ρ + e ωε 3 ν

Figure 4 . 3 :

 43 Figure 4.3: Construction of functions m j (ρ) for the simulation test of the P ID+Feedback controller.

Figure 4 . 4 ,

 44 Figure 4.4, notice that high currents, with magnitudes reaching 25[A], appear during the first half second, this behavior comes as resut of the more stressing condition imposed by the velocity reference profile -see the initial difference between ω(t) and ω * (t) in Figure 4.8. In Figure 4.5, the electrical currents are compared against the commutation functions m j along trajectories and the reference currents on a zoomed window of time. Recall function m j as defined in (4.32) corresponds to the above mentioned torque sharing technique.

Figure 4 . 6 .

 46 Once again, notice the high magnitude of the input voltages reaching values of almost 500[V]. These values appears during the first half second, which accords with the electrical current results and have the same explanation.
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 44 Figure 4.4: Three phases currents of the simulation test of the P ID+Feedback controller..
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 4546 Figure 4.5: Zoom on the commutation functions and the three phases currents as well as their references.
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 47 Figure 4.7: Tracking of mechanical position of the simulation test of the P ID+Feedback controller.

Figure 4 . 8 :

 48 Figure 4.8: Tracking of mechanical velocity of the simulation test of the P ID+Feedback controller.
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 514 Figure 5.1: Benchmark at the Control Laboratory of the Postgraduate Building at UNAM.

1. P I 2 D

 2 + Feedback control with known parameters and unknown mechanical velocity (sections 3.5.1 and 3.5.2) 2. P I 2 D + Adaptive feedback control where in addition to velocity unavailability, physical parameters are as well assumed unknown and they are estimated estimated online (sections 3.5.1 and 3.5.3). 3. P ID + Feedback control for the ρ-model where both physical parameters and the whole state are assumed known (sections 4.3 and 4.4).

1 3 .

 13 = 100, ω 2 = -100 ω 3 = 100 t 1 = 2.5 t 2 = 12.5 t 3 = 17.5 t 4 = 27.5 t 5 = 32.5 t 6 = 42.5 t 7 = 45 Sinusoidal reference: The easiest reference signal to construct, where we have chosen a suitable amplitude and frequency, i.e., ω * (t) = 100 sin(0.45t) (5.3) Consequently, we present the result of nine different experiments (three velocity profiles for each one of the three designed controllers). The load torque imposed by the coupled DC motor remains piece-wise constant and unknown during all the experiments.

  k i = 5e -4 k px = 24 k d = 15000 a = 750 η = 6.4e -4 b = 1600 ε = 1e -2

5. 3 . 1

 31 Smooth-steps velocity referenceThis reference signal is constructed by implementing Equation (5.1), it starts at ω * (0) = 0 and increases smoothly up to ω * (t) = 110[rad/s] at t = 5.5s, where it remains during around 10 seconds. Then, it gradually decreases until it shifts the spin sense and reaches -110[rad/s].
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 452 Figure 5.2: Velocity tracking of the smooth step reference for the P I 2 D+ Feedback controller.
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 53 Figure 5.3: Current tracking corresponding to the smooth step reference for the P I 2 D+ Feedback controller.
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 54 Figure 5.4: Voltage control input corresponding to the smooth step reference for the P I 2 D + Feedback controller.
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 55 Figure 5.5: Velocity tracking of the saturated ramp reference for the P I 2 D+ Feedback controller.
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 56 Figure 5.6: Current tracking of the saturated ramp reference for the P I 2 D+ Feedback controller.

Figure 5 . 7 :

 57 Figure 5.7: Voltage control input corresponding to the saturated ramp reference for the P I 2 D+ Feedback controller.
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 58 Figure 5.8: Velocity tracking of the sinusoidal reference for the P I 2 D+ Feedback controller.

Figure 5 . 9 :

 59 Figure 5.9: Current tracking corresponding to the sinusoidal reference for the P I 2 D+ Feedback controller.
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 510 Figure 5.10: Voltage control input corresponding to the sinusoidal reference for the P I 2 D + Feedback controller.

5. 4 P I 2

 42 Tests to the P I 2 D+Adaptive feedback controller Now we present the results corresponding to the performed experimental tests considering the D+Adaptive feedback controller

  controller û = Ψ(t, y, e x ) Θk px e x Θ = -k θ Ψ (t, y, e x )e x presented in section 3.5.3. The control gains k p , k i , k d , a and b utilized during the experiments are presented in Table
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 511 Figure 5.11: Velocity tracking of the smooth step reference for the P I 2 D+ Adaptive feedback controller.
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 512 Figure 5.12: Current tracking corresponding to the smooth step reference for the P I 2 D+Adaptive feedback controller.
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 513 Figure 5.13: Voltage control input corresponding to the smooth step reference for the P I 2 D + Adaptive feedback controller.
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 514 Figure 5.14: Estimation of parameters 0 , 1 and R for the smooth-step reference.
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 515 Figure 5.15: Velocity tracking of the saturated ramp reference for the P I 2 D+Adaptive feedbackcontroller.

Figure 5 . 16 :

 516 Figure 5.16: Current tracking corresponding saturated ramp reference for the P I 2 D+ Adaptive feedback controller.
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 517 Figure 5.17: Voltage control input corresponding to the saturated ramp reference for the P I 2 D + Adaptive feedback controller.

Figure 5 . 18 :

 518 Figure 5.18: Estimate of electric parameters 0 , 1 and R for the saturated ramp reference.
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 519520 Figure 5.19: Velocity tracking of the sinusoidal reference for the P I 2 D+ Adaptive feedback controller.

Figure 5 . 21 :Figure 5 . 22 :

 521522 Figure 5.21: Voltage control input corresponding to the sinusoidal reference for the P I 2 D + Adaptive feedback controller.

Figure 5 . 23 :

 523 Figure 5.23: Velocity tracking of the smooth step reference for the P ID+ Feedback controller.

Figure 5 . 24 :

 524 Figure 5.24: Current tracking corresponding to the smooth step reference for the P ID+ Feedback controller.

Figure 5 . 26 :Figure 5 . 27 :

 526527 Figure 5.26: Velocity tracking of the saturated ramp reference for the P ID+ Feedback controller.

Figure 5 .

 5 Figure 5.26 the velocity profile.

Figure 5 . 28 :

 528 Figure 5.28: Control input corresponding to the saturated ramp reference for the P ID+ Feedback controller.

Figure 5 . 29 :

 529 Figure 5.29: Velocity tracking of the sinusoidal reference for the P ID+ Feedback controller.

Figure 5 . 30 :

 530 Figure 5.30: Current tracking corresponding to the sinusoidal reference for the P ID+ Feedback controller.

6. 2 Claim 1 .+ 1 a

 211 Future workFuture work includes observer based control of the switched-reluctance motor by modifying the P ID+feedback controller presented in Chapter 4, that is, adding a certainty equivalence control. Concerning the P I 2 D presented in Chapter 3, it is interesting to run research towards improvements in the adaptive law, based on the research presented in [62] among others, this because the results obtained during experiments are subject to improvements. Appendix A Material in support of the PI 2 D Controller A.1 Hurwitz property of matrix A(η) in (3.14) The matrix A(η) in (3.14) is Hurwitz for any 0 < J ∈ [J m , J M ] and 0 < η ∈ [η m , η M ] + 1, k p > k d (A.1)

Matrix Q 1 ε 1 ≤

 11 in (A.2) is definite positive if the following stands. For given positive numbers k p ,k d , k i , a and b such that b ≥ η M J m + 1 a + 1, k p > k d (A.3) there exist ε 1 , ε 2 > 0 s.t. Q 1 > 0. min 1,

and ε 2 be such that ε 2 ε 1 ≤ 1 k i min α 1 , α 2 , α 3 , α 4 (A. 6 ) where α 1 = 3 = ε 1 a 2 and α 4 =

 1112461324 k d , α 2 = J m η M b -1aa, α

≥ ε 1 ( 1

 11 λk p a b ≥ ε 1 k p + ε 2 k i + J η ε 1 a + λk p ε 1 which holds if λa 2b.10) holds in view of (A.5). Since from (A.6) 2ε 2 k i ≤ ε 2 1 a, Inequality (A.11) holds if λk p a 2b

2 ω 2 e 2 |e x | 2 ≤ 2 .

 22222 e.,V1 (ξ) ≤ -q m |ξ| 2 + k M γ 1 2 |ξ| e x (x + x * ) -(J/η)ε(b -1)eOn the other hand, substituting u from (3.23) in (3.8a) we obtain the stator closed-loop Equation(3.25). Consider the functionV 2 : R + × R 3 → R + defined by V 2 (t, e x ) = 1 x L(q(t))e xwhich is positive definite and radially unbounded since |L(q)| is uniformly bounded and positive definite actually, in view of (3.7),m V 2 (t, e x ) ≤ M |e x |The total derivative of V 2 along the trajectories of (3.25) satisfies V2 (t, e x ) ≤e x k px -

W 2 ( 2 consequentlyW 2 2 . 2 .

 22222 t, Θ) = -∞ t e t-τ Φ(τ, Θ) 2 dτwhere Φ(t, Θ) = Ψ 0 (t) Θ. Note that∞ t e t-τ Φ(τ, Θ) 2 dτ ≥ t+T t e t-τ Φ(τ, Θ) 2 dτand after(3.29), that impose the persitence of excitation condition on Ψ 0 (t), we obtaint+T t e t-(t+T ) Φ(τ, Θ) 2 dτ ≥ µe -T Θ (t, Θ) ≤ -µe -T Θ 2 . (A.15)On the other hand, the total time derivative of W 2 along the closed-loop trajectories satisfies, after inequality (A.15),Ẇ2 (t, Θ) ≤ 2k θ ∞ t e t-τ Θ Ψ 0 (τ )Ψ 0 (τ ) dτ Ψ(t,y, e x )e x + Φ(t, Θ) 2µe -T Θ Now, we have {Y 0 = 0} ∩ {Y 1 = 0} = [ξ, e x , Φ] = [0, 0, 0] hence, on this set and for all t ∈ R + , Ẇ2 (t, Θ) ≤ -µe -T Θ The functions V , Ẇ1 and Ẇ2 are bounded from above by continuous functions which vanish On the other hand, t+π/Nrω * t sin(N r q * (τ )) cos(N r q * (τ ))dτ = t+π/Nrω * t sin(2N r ω * τ )dτ = 0 so finally, we obtain t+π/Nrω * t Υ (τ )dτ = π 2N r ω * I. (B.1)

2 + ε 1 = -ε 1 k p ρ * J e ρ 2 + N 2 r ε 1 ρ| 2 e 2 ω-ε 1 k 2 and δ 1 ρ * J e ρ k d2 ε 1 k d ε 1 k d ε 1 k p2 e ω ρ * J e ρ which is non-negative if k p λ 2 2 k d ≥ ε 1 . (B. 10 )

 212121212110 τ )Jdτ = 0 -π/2ω * π/2ω * 0 (B.2)hence, it is skew-symmetric and|Π| := λ M Υ Υ = π/2ω * .The above expressions become useful in the following section.B.2 Proof of Lemma 4.1In this section we present the details concerning the proof of Lemma 4.1. The derivative of V c2 , as expressed in (4.16a) , along the trajectories of (4.13) yieldsVc2 = ε 1 -k d e ωk p ρ * J e ρ + v ρ * J e ρ +ε 1 e ω ρ * J e ρ + ε 1 e ω ρ * J Jρ * e ω + ωJe ρ = -ε 1 k d e ω ρ * J e ρε 1 k p ρ * J e ρ vρ * J e ρ +ε 1 e ω ρ * J J e ρ ω * + N 2 r ε 1 |ρ * • | 2 e 2 w + ε 1 e w ρ * J Je ρ ω * e ρ + |ρ * • d ρ * J e ρ e ω + ε 1 ρ * J e ρ v . (B.3)Next, we expose some properties of V c3 . Firstly, note thatV c3 = -e ρ t+Tc t e (t-τ ) Υ (τ )dτ e ρ N 2 r |ρ * • | Under these conditions, putting together the expressions (4.14), (B.3) and (B.7) we obtain (4.18) in Lemma 4.1.

  Le problème de la commande sans capteur Comme mentionné précédemment , les machines à réluctance variable sont attrayantes car elles sont fiables, relativement pas cher et elles produisent un couple élevé à bas vitesse. Ces caractéristiques les rendent aptes à des fins différentes, notamment pour les applications à utilisation direct et pour l'actionnement des robots, où la position et la vitesse de joints doivent être contrôlées. Toutefois, ce type de machine n'est pas facile à contrôler, même sous des hypothèses expérimentalement validées conduisant à des simplifications. Tout d'abord, le modèle dynamique est fortement non linéaire par exemple, le couple électromagnétique est généré par une fonction complexe des courants électriques et de la positions du rotor. Deuxièmement , les méthodes indirects de détection pour les variables mécaniques qui soient fiables et précises sont fondamentales dans le développement des moteurs à réluctance de coût basset de haute-performance. D'une part,

1.3

l'utilisation de capteurs mécaniques augmente le coût de la mise en place et d'autre part, des capteurs de vitesse sont souvent contaminées par du bruit. Par conséquent, éviter l'utilisation de capteurs de vitesse et de position angulaire, qui est bien connu comme contrôle sans capteur, est au-delà de l'intérêt purement théorique.

1.4 L'état de l'art et les objectives de la recherche

Il existe une riche littérature sur le contrôle adaptatif sans capteur sur les autres catégories de machines électriques. Par exemple, dans

[START_REF] Traoré | Adaptive interconnected observer-based backstepping control design for sensorless induction motor[END_REF] 

un observateur adaptatif de flux, vitesse, couple de charge et la résistance électrique d'un moteur à induction est présenté et la stabilité pratique basée sur la théorie de Lyapunov est garantie, la validation expérimentale est même présentée.

Dans

[START_REF] Ezzat | Sensorless speed control of pmsm via adaptive interconnected observer[END_REF] 

est présenté un observateur adaptatif à grand gain qui n'est fourni que par les mesures de courants et tensions pour le moteur synchrone à aimants permanents, cet observateur estime la vitesse du rotor, la position, la résistance du stator et le couple de charge. Dans

[START_REF] Assaad Hamida | Robust integral backstepping control for sensorless {IPM} synchronous motor controller[END_REF]

, un contrôleur de vitesse sans capteur pour des moteurs synchrones à aimants permanents est conçu par la combinaison d'un contrôleur de retour robuste avec des actions intégrées et un observateur d'adaptation interconnecté, des conditions suffisantes sont données afin de prouver la stabilité pratique de la boucle fermée. Un contrôleur et un observateur à mode glissant avec retour de sortie sont conçus pour entraîner le moteur à induction sans l'aide de capteurs ni de flux ni de vitesse, des propriétés de stabilité sont garanties sur la base de la théorie de Lyapunov et des preuves expérimentales sont ainsi présentés. Une intéressante comparaison entre l'observateur de cascade et l'observateur à grand gain pour le contrôle sans capteur du moteur à induction est

Table 3 .

 3 

	On the other hand, the velocity reference signal ω * (t) is obtained from the following smooth
	function		
	ω * (t) =	            	ω * 1 (t) if t < 6.25 ω * 2 (t) if 6.25 ≤ t < 12.5 ω * 3 (t) if 12.5 ≤ t < 18.75 ω * 4 (t) if 18.75 ≤ t
	where each ω * k (t) is in turn defined by the function

1: Simulation parameters It is important to point out that matrix A(η) in Equation (3.14) is Hurwitz for the gains exposed in the table above.

  5 + 1 elements 2. We run a simulation in Simulink TM to obtain nine data vectors H kl as defined in (3.33) T kl by taking T /t i elements from H kl for k = {1, 2, 3} and l = {1, 2, 3}, starting at the element t iH 11 iH 12 iH 13 iH 21 iH 22 iH 23 iH 31 iH 32 iH 33

	
	3. For each t ∈ [0, 25], 3.1. we build a data vector t T by taking element t ti + 1 down to the element t+T T t i ti + 1. = 5x10 4 elements from T v , starting at the 3.2. we build nine data vectors H M (t) =   

ti + 1 down to the element t+T ti + 1. 3.3. by using Matlab TM command trapz(X,Y) we compute iH kl = trapz(t T , H T kl ) for k = {1, 2, 3} and l = {1, 2, 3} 3.4. we build the matrix M (t) as

Table 4 . 1 :

 41 Parameters of the motor and gains of the P ID+Feedback controller.

Table 5 . 1 :

 51 Control gains for the experiments corresponding to the P I 2 D+Feedback controller.

Table 5 . 3 :

 53 Control gains for the experimental test of the P ID+Feedback controller.

  Voltage control input corresponding to the smooth step reference for the P ID+ Feedback controller.

	50				
	0				
	-50				
	16.5	16.52	16.54	16.56	16.58
	Figure 5.25:				

  [START_REF] Fahimi | Review of sensorless control methods in switched reluctance motor drives[END_REF], where it can be noticed, once again, good results. Furthermore, unlike experiments for the P I 2 D controller, there are no delays; this result is better than the presented in Figures 5.8 and 5.19. Although we may notice small oscillations around the desired velocity, a very good fit between reference and real velocity is achieved.

Table 6 . 1 :

 61 Assumed conditions and theoretical results of the designed controllers.

			Assumptions		Stability results
	P I 2 D+Feedback . controller in Chapter 3	Parameters known Load torque unknown . . Velocity unknown	uniform global exponential stability
			Parameters	unknown
	P I 2 D+Adaptive	feedback	Load torque unknown	uniform global asymptoti-
	controller in Chapter 3	Velocity unknown	.	cal stability
			Parameter estimation
	P ID+Feedback controller in Chapter 4	Parameters known Load torque unknown . . Velocity known	uniform global exponential stability

Table 6 . 2 :

 62 Tested controllers and imposed velocity-profiles.

	X Controller X X X X X X P I 2 D+Feedback X X Profile Smooth steps X X Good velocity track-	Saturated ramp Velocity tracking	Sinusoidal reference Velocity tracking
	controller	ing well behaved	with small delay	with small delay
		Good	in	current	Good	in	current	Good	in	current
		tracking			tracking			tracking	
	P I 2 D+Adaptive	Good velocity track-	Velocity		tracking	Velocity		tracking
	feedback controller	ing well behaved	with small delay	with small delay
		Good	in	current	Current tracking with	Not good in current
		tracking			error in magnitude	tracking	
		Parameter estimation	Parameter estimation	Parameter estimation
		with bounded error	with bounded error	with bounded error
	P ID+Feedback	Good in velocity	Vel. Tracking with	Good in velocity
	controller	tracking			small overshoot	tracking	
		Good tracking	in	current	Current tracking with error in magnitude	Good tracking with erroro in current in magnitude

This property is shown in section 3.6.1.

In[START_REF] Loría | A nested Matrosov theorem and persistency of excitation for uniform convergence in stable non-autonomous systems[END_REF] it is not assumed that F is locally Lipschitz in x uniformly in t
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Assume further that

then, the closed-loop system (4.4a) with (4.25) is input-to-state stable from the input e ω . Moreover, in the case that |∆ 2 | ≡ 0, the origin {e x = 0} is globally exponentially stable with u = u * and k px := k px1 .

Proof. The total time derivative of

along the closed-loop trajectories 2 (4.24) yields

which, in view of (4.26), implies that

hence, V c6 is an ISS-Lyapunov function for the stator closed-loop system. The proof of the second statement follows directly observing that

Robust control of switched-reluctance motor

Now we present our main results, we establish global exponential stability for the controlled switched-reluctance via state feedback. We also establish that the interconnection of the two control loops for the rotor dynamics and the stator dynamics, remains input-to state stable with respect to external inputs. Let the gain k px of the electric controller be given by (4.26) where

where ε 1 and ε 3 are small positive constants and let (4.17) hold. Then, the origin of the closedloop system is globally exponentially stable.

1 By an abuse of notation, the vector sgn(ex) = col[sign(exi)], where the sign function is defined as sign(0) ∈ [-1, 1] and sign(x) = abs(x)/x if x = 0

2 It is considered that solutions are defined in Filippov's sense. 

(A.13b)

with g(•) as defined in (3.26). Next, consider the Lyapunov function

which is positive definite and radially unbounded. The Hurwitz property of A implies by Proposition 3.2 that the total derivative of V along the closed-loop trajectories generated by (A. the property that their time derivatives are negative semi-definite on very particular sets. The first auxiliary function must be negative semi-definite on {Y 0 = 0} hence, we look for a function

simultaneously only at [ξ, e x , Φ, Θ] = [0, 0, 0, 0]. The result follows invoking the generalized Matrosov's theorem, recalled below.

A.3 Generalized Matrosov's theorem

The following material is taken from [START_REF] Loría | A nested Matrosov theorem and persistency of excitation for uniform convergence in stable non-autonomous systems[END_REF]. Consider the time varying, not necessarily periodic, differential equation

where t denotes the time, x = x 1 x 2 the state with x ∈ R n . We assume that F (t, 0) = 0 for all t > 0, that F is continous in t and locally Lipschitz in x uniformly in t. Then, under the following assumptions 1 the origin of (A. [START_REF] Elmas | Position sensorless operation of a switched reluctance drive based on observer[END_REF]) is uniformly globally asymptotically stable.

Ass. 1 The origin of (A. [START_REF] Elmas | Position sensorless operation of a switched reluctance drive based on observer[END_REF]) is Uniformly Globally Stable; that is, there exist functions V 0 (x), W 0 (x 1 ) ∈ K ∞ such that the time derivative of V 0 (x) along system (A.16) satisfies

Ass. 2 There exist integers j, m > 0 and for each ∆ > 0 there exist We stress some useful properties of Υ (t). First of all, let q * (0) = 0 therefore q * (t) = ω * t, then define R 2x2 matrix Υ (τ ) := sin(N r q * (τ )) 2 sin(N r q * (τ )) cos(N r q * (τ ))

sin(N r q * (τ )) cos(N r q * (τ )) cos(N r q * (τ ))

where each entry is periodic with period π/N r ω * . We compute the integral over the indicated limits t+π/Nrω * t sin(N r q * (τ ))

and since Υ (τ ) ≥ 0 and e (t-τ ) ≥ e (t-[t+Tc]) we have

Then, setting T c = π/N r ω * and using (B.1) we obtain

in which ρ * • is a design parameter. Furthermore, the total derivative of V c3 along the trajectories of (4.13) satisfies

Substituting (4.13b) in the first term we obtain