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ABSTRACT 

 

Model-based Synthesis of Distributed Real-time Automotive Architectures 

 

by 

 

Ernest Wozniak 

 

 

Hardware/software based solutions play significant role in the automotive domain. 

They deliver functionality that normally wouldn’t be accomplishable with pure 

mechanics or electronics. In fact it is common that the implementation of certain 

functions that was done in a mechanical manner, like hydraulic brakes, in nowadays cars 

is done through the software and hardware. This tendency lead to the substantial number 

of functions operating as a set of software components deployed into hardware entities, 

i.e. Electronic Control Units (ECU). As a consequence the capacity of the overall code is 

estimated as tens of gigabytes and the number of ECUs easily reaches 50 up to 80. 

Therefore the industrial state of the practice development approaches become inefficient. 

The objective of this thesis is to add to the current efforts trying to employ the Model 

Driven Engineering (MDE) in the context of the automotive SW/HW architectures 

design. Adoption of the MDE is a sound choice towards an efficient and cheaper 

development process. To comply with this tendency this work introduces a framework 

developed as an instance of an Architecture Framework and aligned to the principles of 

the MDE. It serves for the modeling, analysis and optimization of the automotive 

architectures. Within the context of this framework a set of particular contributions is 

presented. 

First set of contributions relates to the guided strategies supporting the key 

engineering activities of the EAST-ADL2/AUTOSAR methodology. The main is the 

integration of the software architecture with the hardware platform. Although the 

amount of work on the synthesis is substantial, this thesis presents shortcomings that 

disable them to fully support the EAST-ADL2/AUTOSAR methodology. Firstly, this is 
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the omission of functional entities and secondly, incapability to handle situations in 

which execution times for them are missing. Presence of the functional entities is due to 

the introduction of the atomic functions and runnable entities correspondingly in the 

EAST-ADL2 and the AUTOSAR. The missing execution times, this is a very likely 

scenario to occur during the integration process as the synthesis is done on the abstract 

models without code implementation which is necessary to estimate them. The presence 

of the lasts is obligatory to enable qualitative synthesis. On the canvas of these 

shortcomings, a collection of new techniques to handle the synthesis step is presented. 

They account for the functional entities, are capable of dealing with missing execution 

times and optimize key parameters of the architectures, i.e. the end-to-end responses and 

the memory. 

Second contribution concerns approaches for the UML based modeling. 

Comprehensible specification is the key factor for the effective maintenance of the 

system architecture throughout the development cycle. Surprisingly the usage of general 

purpose modeling languages such as the UML, SysML and MARTE although beneficial, 

haven’t found its way yet to be fully exploited by the automotive OEMs (Original 

Equipment Manufacturer). This especially relates to the modeling of the analyzable 

input and the optimization concerns which would enable the analysis and optimization to 

be run directly on the model or generation of the input models for the other tools that 

serve for this purpose. Consequently this thesis presents models supporting these 

concerns, expressed with the OMG (Object Management Group) standards: UML, 

SysML and MARTE.  
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RESUME 

 

Synthèse Basée sur les Modèles d’Architectures Automobiles Temps Réel Distribuées 

 

1. Contexte de la thèse 

Les systèmes véhicules d’aujourd’hui sont caractérisés par une large gamme de 

solutions qui améliorent la performance, la sécurité et le confort de conduite. Des 

fonctionnalités telles que le système stationnement automatique vont au-delà des attentes 

des conducteurs ordinaires d’il y a seulement 10 ans. Les premiers prototypes des 

véhicules autonomes ont déjà été réalisés.  

Les systèmes automobiles sont des systèmes distribués, embarqués et tems réel. Tout 

d'abord, les fonctionnalités logicielles des véhicules sont distribuées sur plusieurs 

composants matériels embarqués nommées unités de commande électronique (ang. ECU 

– Electronic Control Unit) ou sur des capteurs/actionneurs. La couche d'application qui 

s'étend sur des ECU différents est composée de composants logiciels qui peuvent être 

conçus et livrés par plusieurs fournisseurs. Le middleware est responsable de la 

communication entre les composants logiciels distribués. Chaque ECU exécute un 

système d'exploitation. Tout cela implique une nature distribuée des systèmes 

automobiles (voir la Figure 1). Deuxièmement leur fonctionnement est contraint par des 

contraintes de temps de différents types, par exemple des contraintes temporelles de 

bout-en-bout. Par exemple, l'ouverture de l'airbag en cas d'accident doit se produire dans 

les 20 ms. Cette dernière est une contrainte de temps réel, dont la violation non 

seulement affirme le comportement incorrect du système, mais plus important, peut 

mettre en danger la vie de personnes humaines.  
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Figure 1. Système Distribué et Système Distribué Automobile 

Les architectures de systèmes automobiles (en raccourci architectures automobiles) 

sont des produits très complexes, de haute technologie. Différents facteurs contribuent à 

leur complexité: 

 Taille: le nombre de fonctions contrôlées par le logiciel et le matériel est 

substantiel dans les véhicules d’aujourd’hui. En une trentaine d’années, la 

quantité de code est passée de 0 à près de 10 Go, ce qui représente des millions 

de lignes de code. 

 Nature distribuée: les architectures automobiles d’aujourd’hui sont fortement 

distribuées, c.-à-d. les fonctions atomiques de la même fonctionnalités d’un 

véhicule sont distribuées sur plusieurs ECUs. Le même ECU peut accueillir des 

fonctions atomiques de différentes fonctionnalités du véhicule. Cela permet une 

meilleure optimisation de l'utilisation des ressources. 

 Les contraintes temps réel: le fonctionnement correct d'un système de véhicule 

n'est pas seulement défini par l'absence d'erreurs fonctionnelles, mais aussi par 

strict respect des contraintes temps réel. Leur existence sert principalement dans 

les situations critiques pour la sécurité, comme le freinage ou pendant un 

accident lorsque les airbags doivent être activés immédiatement. 

 Exigences de sécurité: l’aspect de la sécurité joue un rôle important car 

maintenant ce n'est pas seulement une préoccupation interne d'un OEM (ang. 
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Original Equipment Manufacturer)  de fournir des véhicules fiables, mais aussi 

un sujet pour les réglementations gouvernementales. 

 Exigences contradictoires: les différentes exigences comme les contraintes de 

temps, la réduction des ressources matérielles pour réduire les coûts, la sécurité, 

etc. sont dans de nombreux cas des exigences orthogonales. Cela signifie que la 

satisfaction d'une exigence peut conduire la dégradation des autres exigences. 

 Sensible aux changements: de légers changements de conception ou certaines 

propriétés des éléments d'architecture peuvent conduire à une modification 

radicale des caractéristiques non-fonctionnelles d'architecture. Par exemple, 

l'augmentation d'un temps d'exécution d'une fonction atomique peut conduire à la 

violation de plusieurs contraintes de temps. 

En raison de cette complexité qui a été et est encore en croissance exponentielle 

(prévue pour les 20 prochaines années), de nouvelles stratégies pour la conception des 

systèmes automobiles doivent être introduites. L'une d'entre elles est l'adoption de 

l'ingénierie dirigée par les modèles (IDM) pour le développement des systèmes 

automobiles. Le principe de l'approche IDM consiste à intégrer des modèles pour 

spécifier les exigences fonctionnelles et non fonctionnelles, et enfin, pour produire un 

code binaire qui respecte la spécification. Le potentiel de l’IDM a été identifié par les 

grands constructeurs automobiles et les fournisseurs qui ont initié un projet avec un 

objectif de fournir un standard commun fondé sur les principes de l’IDM. Ce projet 

appelé AUTOSAR (Automotive Open System Architecture) est actuellement le standard 

la plus influent en termes de modélisation des systèmes automobiles. La chaîne de 

développement de la méthodologie AUTOSAR (voir Figure 2) s'étend à partir de la 

représentation de composants logiciels d'application à l'infrastructure d'exécution, y 

compris la description de la plate-forme matérielle. Un inconvénient d’AUTOSAR est 

son manque de support pour la modélisation du niveau fonctionnel. Par conséquent, il y 

a un intérêt dans la combinaison de ce standard avec le langage de modélisation EAST-

ADL2 qui prend en charge la spécification fonctionnelle. 
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Figure 2. AUTOSAR Méthodologie 

EAST-ADL2 et AUTOSAR imposent des règles méthodologiques pour la 

construction de modèles. Leur avantage est qu'ils fournissent un cadre commun pour la 

conception de systèmes électroniques automobile. Toutefois, aucune de ces 

méthodologies ne définit comment effectuer certaines étapes de conception, par 

exemple, la façon de distribuer les composants logiciels sur les éléments matériels ou 

comment partitionner des entités fonctionnelles sur des tâches OS (ang. Operating 

System). À cet égard, ces deux standards comptent entièrement sur une expérience de 

concepteur, augmentant ainsi le potentiel nombre de défauts de conception. En 

conséquence, il est essentiel de procéder à une analyse comme, l’analyse temporelle ou 

l'analyse de sécurité pour assurer que les décisions prises par le concepteur n'a pas 

conduit à des architectures irréalisables. Nous pouvons aller encore plus loin et utiliser 

des techniques pour l’exploration de l'espace de conception (ang. DSE – Design Space 

Exploration). Leur emploi pourrait assurer la faisabilité, mais en plus permet d'optimiser 

les propriétés non-fonctionnelles clés. 
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2. Énoncé du problème & motivation 

Comme indiqué dans le paragraphe précédent, une vision claire et exhaustive d’une 

conception de système automobile, ainsi que son analyse / optimisation, sont les 

activités nécessaires pour rester compétitif sur le marché de l'automobile. Cela nécessite 

des langages de modélisation, de méthodes d'analyse et des techniques pour permettre le 

DSE. L'objectif général et initial de cette thèse est d'intégrer ces trois activités dans un 

cadre méthodologique, soutien de la conception des architectures automobiles et suivie 

par la méthodologie EAST-ADL2/AUTOSAR. Dans ce cadre, un ensemble de 

problèmes intéressants sont posés. La recherche de solutions appropriées est important 

pour rendre possible l'intégration de ces activités et la fourniture d'un flot continu guidé 

entre eux pour finalement produire un modèle d’implémentation optimisé d'un système 

automobile.  

Disposer de différents types de modèles, c.-à-d. le modèle d'architecture, modèle 

d’analyse et modèle d'optimisation, est nécessaire pour effectuer une synthèse optimisée 

du logiciel avec le matériel. La phase principale de la synthèse est appelée déploiement. 

Selon AUTOSAR, le déploiement concerne 1) l’allocation des composants logiciels sur 

ECU 2) le partitionnement des entités du comportement du composant (appelées 

runnable entities) sur des OS tâches et enfin 3) l'ordonnancement des tâches OS. Un 

point crucial pour cette étape est sa validité en fonction de ses propriétés temporelles. 

Depuis le raffinement du système (dont le déploiement est une partie intégrante), la 

validité peut être assurée sous certaines hypothèses concernant des détails de niveau 

inférieur. Un exemple typique est l'hypothèse sur la connaissance des temps d'exécution 

pire cas (WCETs) des entités exécutables AUTOSAR. Il est évident que l'hypothèse de 

la connaissance précise des WCETs de runnables avant l’implémentation du code est la 

plupart du temps irréaliste. Dans de nombreux cas, certains runnables de systèmes 

précédents sont réutilisés. Le WCET de ces runnables est alors connu. Cependant, ce 

n'est pas le cas quand les nouveaux runnables implémentant de nouvelles fonctionnalités 

sont introduits. Cela représente un problème pour la synthèse de l'architecture et, en 

général, la fourniture d'un flot top-down. Ce qui est encore plus important est que le 

déploiement défini dans AUTOSAR n'est pas supporté de manière holistique par les 

techniques existantes. Bien que la quantité de travail qui existe semble être conséquente, 
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un fossé existe. Les techniques proposées soit représentent les tâches OS comme entités 

d’allocation ou résolvent le problème dans les étapes sans tenir compte d'un impact 

négatif qu'elle a sur les résultats finaux par rapport à l'approche holistique. 

EAST-ADL2 et les spécifications AUTOSAR offrent un large éventail de concepts 

qui sont nécessaires pour définir l'architecture complète d’un système. Les efforts 

récents pour étendre ces standards ont fourni les capacités pour modéliser les 

informations nécessaires à l'analyse temporelle. Le travail adéquat n'a pas été fait jusqu'à 

présent pour gérer les optimisations. Bien que le domaine temps réel et des systèmes 

distribués est riche en techniques d'optimisation, il n'y a pas de concepts de modélisation 

qui permettraient de spécifier une entrée nécessaire pour cette activité tels que les 

objectifs d'optimisation (temps des réponses, la consommation de mémoire, etc.). En 

conséquence, la modélisation et l'analyse/l'optimisation ne sont pas bien intégrées. Cela 

a abouti à de nombreux outils décousus pour la modélisation ou l'analyse et/ou 

l'optimisation. 

3. Contributions 

Afin de permettre de développement sans couture dans le cadre proposé, ce travail 

propose un ensemble de solutions aux problèmes mentionnés ci-dessus: 

1) Concernant les techniques de DES les principales contributions portent sur la 

définition de nouvelles techniques pour optimiser le déploiement. Les techniques 

proposées sont conformes à la définition du déploiement comme inclus dans le standard 

AUTOSAR. C'est-à-dire, ils considèrent les runnable entities que les unités d’allocation. 

Par conséquent, l'étape de partitionnement qui n'est pas considérée par les approches 

existantes est supportée par la technique définie dans ce travail. Les techniques 

proposées sont basées sur des heuristiques, algorithmes évolutionnistes, diviser pour 

régner, amélioration itérative, c'est pourquoi ils sont capables de traiter de grandes 

architectures d'entrée. Cette caractéristique a été évaluée en effectuant plusieurs tests, 

atteignant 250 runnables. Un critère d'évaluation important a été la qualité des 

architectures déployées. Ceci a été réalisé en comparant les résultats à ceux obtenus avec 

les méthodes exactes ou des architectures pour lesquelles la configuration optimale de 

déploiement était connue a priori. Dans AUTOSAR, des modèles de comportement 
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pourraient correspondre soit à une sémantique d'exécution data driven ou time driven. 

Cela nécessite de définir les différents types de stratégies d'optimisation. La différence 

se situe dans l’analyse d'ordonnançabilité. En outre, les métriques d'optimisation telles 

que les métriques temporelles, les métriques de mémoire sont affectées d’une manière 

différente par les choix particuliers d'un déploiement. Ce qui caractérise aussi les 

techniques proposées est la prise en compte de critères multiples (par exemple, les 

réponses de bout-en-bout, les propriétés temporelles, la consommation mémoire) qui 

définit une bonne configuration de déploiement de l'architecture d'entrée. La Figure 3 

montre un exemple de l'architecture logicielle d'entrée (partie supérieure) et sa 

spécification de déploiement. 

 

 

 

Figure 3. Exemple de l'architecture logicielle d'entrée (partie supérieure) et sa spécification de 

déploiement (partie basse) 

. 

2) Pour améliorer les résultats d'un déploiement, ce travail suggère un raffinement de 

la méthodologie EST-ADL2/AUTOSAR. Le but est de permettre de résoudre de 

manière holistique le problème de déploiement, ce qui n’est pas possible avec définition 
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actuelle de cette méthodologie. Le changement concerne la répartition des 

responsabilités entre les deux niveaux, le niveau fonctionnel couvert par EST-ADL2 et 

le niveau implémentation couvert par AUTOSAR. L'activité Design qui se fait au niveau 

fonctionnel comprend l'étape d’allocation des fonctions atomiques aux ressources 

matérielles,  c.-à-d. ECUs. Ceci détermine la répartition des runnable entities en raison 

de l'hypothèse dans laquelle les runnable entities sont transformés à partir des fonctions 

atomiques. C'est pourquoi le problème de déploiement ne peut pas être résolu d’une 

manière holistique au niveau AUTOSAR parce qu’une dimension du problème, c.-à-d. 

l'allocation est déjà fixée. Par conséquent, ce travail préconise le changement dans lequel 

l'allocation est reportée jusqu'au niveau d’implémentation. L’évaluation de ce 

changement montré une amélioration remarquable des caractéristiques de l’architecture. 

3) Pour effectuer un déploiement qui optimise les réponses de bout-en-bout, les 

temps d'exécution des runnable entities sont nécessaires. Comme cette information peut-

être manquante pour certains runnables, la définition d'une nouvelle stratégie pour la 

configuration de l'architecture est inévitable. Pour contourner le problème, certains 

travaux proposent d'ajouter à la méthodologie d'une activité appelée budgétisation de 

temps (ang. time budgeting). Au lieu d'estimer WCETs, l'intégrateur de système spécifie 

des budgets temporels (ang. time budgets), c'est à dire des contraintes à des temps de 

réponse pire cas - WCRTs (ang. Worst Case Execution Times). Les budgets temporels 

doivent être respectés par les fournisseurs livrant l’implémentation des composants. Le 

problème typique de cette approche est que le fournisseur livre l’implémentation d'un 

composant particulier, qui sera intégrée par l'intégrateur en tant que partie intégrante du 

système, dans une étape ultérieure. Entre temps,  le fournisseur valide le composant en 

isolation, sans tenir compte d'éventuelles interférences avec d'autres composants. Il est 

alors incapable de calculer un temps de réponse pire cas (WCRT) correct. C'est-à-dire si 

le composant répond à la contrainte du budget temporel l'intégrateur du système doit 

prendre soin d'éviter toute interférence possible avec d'autres composants. Ce n'est pas 

seulement une tâche difficile, mais qui provoque généralement un surdimensionnement 

des ressources. Ce surdimensionnement des ressources peut représenter des coûts 

insoutenables pour une production en série. Une solution alternative est celle dans 

laquelle les budgets temporels représentent des contraintes de WCET de runnable entity 
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à la place de son WCRT. Ce travail propose une solution de budgétisation des WCETs. 

La plupart des travaux existants sur budget de WCRT ne pas bien adaptés à l'idée de 

« l'architecture intégré » proposée par AUTOSAR. Un autre avantage de la technique 

proposée dans ce travail par rapport aux approches existantes est l'hypothèse que le 

déploiement n'est pas connu à l'avance. En conséquence, un objectif de la technique 

proposée est de trouver conjointement le déploiement et l'affectation optimale des 

budgets temporels. La Figure 4 illustre une architecture logicielle d'entrée et une 

architecture matérielle pour lesquelles le déploiement ainsi que les budgets de temporels 

doit être spécifié. En fait, les budgets temporels doivent être définis pour ces runnable 

entities pour lesquels les informations sur le WCET n'est pas présent. La Figure 5 présente 

le résultat de la technique proposée, c.-à-d. l'architecture déployée ainsi que les budgets 

temporels.  

 

Figure 4. L’architecture Logicielle et Matérielle avec certains Runnables qui manquent WCETs 
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Figure 5. Résultant Déploiement avec la Spécification des Budgets Temps 

 

4) En ce qui concerne la modélisation de la première contribution, une spécification 

de concepts essentiels pour construire un modèle d'optimisation et pour exécuter des 

techniques DES telles que celles définies dans ce travail, servant pour le déploiement ou 

budgétisation de temps, a été réalisée. La Figure 6 représente une partie du profil UML 

définissant les principaux concepts permettant de construire un contexte d'optimisation. 

Au-dessus du modèle d'optimisation, des techniques d'optimisation peuvent être 

exécutés. 
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Figure 6. UML Profile pour le contexte d'optimisation 

 

5) Les modèles d'optimisation ainsi que des modèles pour l'analyse et la 

spécification de l'architecture sont basés sur UML. L'utilisation de l'UML permet de 

faciliter l'intégration des différentes activités. Ceci est obtenu en majeure partie par 

l'ensemble des transformations qui automatisent des étapes importantes telles que la 

production du modèle AUTOSAR préliminaire à partir du modèle EAST-ADL2. En fait, 

la spécification d'architecture basée sur les concepts de EAST-ADL2 et AUTOSAR est 

réalisée dans ce travail par un mécanisme de profil UML. Le profil UML complet pour 

l'EST-ADL2 était disponible. Ce n'était pas le cas pour AUTOSAR et donc ce travail en 

définit un. Les modèles d'analyse sont établis avec SysML et MARTE pour lesquels les 

profils UML ont été définis et standardisés par l'OMG (Object Management Group). Les 

concepts pour l'optimisation ne peuvent pas être exprimés ni avec SysML, ni MARTE 

ainsi qu’EST-ADL2 et AUTOSAR. En conséquence, pour eux, un modèle de domaine 

est formalisé et son profil UML est défini comme susmentionné dans le cadre de la 

contribution 4. 

Tous ces modèles, modèles d'architecture, d'analyse et d'optimisation avec des 

algorithmes d’analyse et d'optimisation peuvent être exécutés et ont été intégrés dans un 

cadre et structurés le long de couches d'abstraction et de points de vue. Le cadre lui-

même (appelé AFfMAO – Architecture Framework for Modeling Analysis and 

Optimization) a été développé comme une instance d'un Cadre d'Architecture de 
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l'Automobile (ang. Automotive Architecture Framework - AAF) définie dans ce travail. 

AAF a été construit en suivant les principes du Cadre Architectural (ang. Architecture 

Framework - AF) définie dans la norme ISO 42010. Cette relation est représentée sur la 

partie gauche de la Figure 7. En substance, le cadre d'architecture est un ensemble de 

conventions, principes et pratiques pour la description des architectures dans un domaine 

et/ou communauté des parties prenantes. Par conséquent la spécification de l'AAF a été 

faite en définissant des points de vue de l'architecture avec leurs préoccupations, sortes 

de modèles et de règles de correspondance. Le côté droit de la Figure 7 présente la 

perspective détaillée de AFfMAO. Les informations pertinentes à partir de cette figure 

concernent les choix des techniques de modélisation, un ensemble de transformations, 

des algorithmes d'analyse et d'optimisation et plate-forme utilisée pour réaliser l'AAF 

comme AFfMAO. 

 

 

Figure 7. AFfMAO construit comme une instance de l'AAF 

 

Les contributions de cette thèse apportent des solutions pour résoudre les problèmes 

cruciaux qui entravent la livraison d'un cadre pour une conception guidée des systèmes 

automobiles, alignés sur les principes de l'ingénierie dirigée par les modèles. Ils sont 

bénéfiques non seulement dans le contexte de ce cadre particulier, mais en général à ces 

constructeurs qui tentent de s’engager dans l’utilisation des standards EAST-ADL2 et 

AUTOSAR comme base de conception de leurs systèmes. 

ARGateway

EAXmlGen

EAQomp
Gateway

ARQomp
Gateway

ARXmlGen

<eaxml>

<arxml>

Analysis and 
Optimization

U
M

L 
P

ro
fi

le
 f

o
r 

EA
ST

-A
D

L2
U

M
L 

P
ro

fi
le

 f
o

r 
A

U
TO

SA
R

Architecture Framework
(ISO 42010)

Automotive Architecture Framework - AAF

Automotive Framework for Modeling Analysis 
and Optimization (AFfMAO)

V
ie

w
p

o
in

ts

C
o

rr
es

p
o

n
d

e
n

ce
 R

u
le

s

C
o

n
ce

rn
s

M
o

d
el

 K
in

d
s

St
ak

eh
o

ld
e

rs

Qompass 
Framework

MARTE + SysML



 

 
xxi 

 



 

 
xxii 

TABLE OF CONTENTS 

 

1. Introduction --------------------------------------------------------------------------------- 30 

1.1. Context ----------------------------------------------------------------------------------------------- 30 

1.2. Problem Statement & Motivation ------------------------------------------------------------ 33 

1.3. Contribution outlines ---------------------------------------------------------------------------- 35 

1.4. Thesis Structure ----------------------------------------------------------------------------------- 37 

2. Automotive Context ----------------------------------------------------------------------- 39 

2.1. Automotive System ------------------------------------------------------------------------------ 39 

2.2. Model Driven Engineering ---------------------------------------------------------------------- 45 

2.3. Architecture Framework ------------------------------------------------------------------------ 46 

2.4. Automotive Standards --------------------------------------------------------------------------- 47 

2.4.1. AUTOSAR ------------------------------------------------------------------------------------------------- 47 

2.4.2. EAST-ADL2 ----------------------------------------------------------------------------------------------- 49 

2.5. Methodology of Design (EAST-ADL2/AUTOSAR Methodology) ---------------------- 50 

3. Challenges ----------------------------------------------------------------------------------- 56 

3.1. General Challenges ------------------------------------------------------------------------------- 56 

3.2. Configuration of Automotive Architectures ----------------------------------------------- 58 

3.3. Architecture Description Specification ------------------------------------------------------ 60 

3.4. Conclusions ----------------------------------------------------------------------------------------- 61 

4. Approaches for the Computer-aided Configuration of the Automotive 

Architectures --------------------------------------------------------------------------------------------- 62 

4.1. Formalism ------------------------------------------------------------------------------------------- 62 

4.1.1. Data Driven Activation ------------------------------------------------------------------------------- 65 

4.1.2. Time Driven Activation ------------------------------------------------------------------------------- 66 

4.2. Schedulability Analysis -------------------------------------------------------------------------- 68 



 

 
xxiii 

4.2.1. Schedulability Analysis for DD ---------------------------------------------------------------------- 68 

4.2.2. Schedulability Analysis for TD ---------------------------------------------------------------------- 70 

4.3. Refinement of the EAST-ADL2/AUTOSAR Methodology ------------------------------- 72 

4.4. Deployment ---------------------------------------------------------------------------------------- 73 

4.4.1. Formalization of Deployment ---------------------------------------------------------------------- 73 

4.4.2. Related Work ------------------------------------------------------------------------------------------- 80 

4.4.3. Technique for Optimized Deployment of DD -------------------------------------------------- 83 

4.4.4. Evaluation & Conclusions ---------------------------------------------------------------------------- 88 

4.4.5. Technique for Optimized Deployment of TD --------------------------------------------------- 95 

4.4.6. Evaluation & Conclusions ---------------------------------------------------------------------------- 97 

4.5. Two-Step Approach ---------------------------------------------------------------------------- 104 

4.5.1. GA Formulation for the Two-Step Approach -------------------------------------------------- 105 

4.5.2. Establishment of the Global Order --------------------------------------------------------------- 108 

4.5.3. Evaluation & Conclusions --------------------------------------------------------------------------- 110 

4.6. Evaluation of the new Methodology ------------------------------------------------------ 115 

4.6.1. Allocation at the EAST-ADL2 Level --------------------------------------------------------------- 116 

4.6.2. Partitioning and Scheduling at the AUTOSAR level ------------------------------------------ 117 

4.6.3. Evaluation & Conclusions --------------------------------------------------------------------------- 117 

4.7. Time Budgets Assignment -------------------------------------------------------------------- 119 

4.7.1. Formalism ----------------------------------------------------------------------------------------------- 120 

4.7.2. Related Work ------------------------------------------------------------------------------------------ 121 

4.7.3. Method for Time Budgeting ----------------------------------------------------------------------- 123 

4.7.4. Evaluation & Conclusions --------------------------------------------------------------------------- 131 

4.8. Conclusions --------------------------------------------------------------------------------------- 139 

5. UML based & Optimization-aware modeling of the Automotive 

Architectures ------------------------------------------------------------------------------------------- 140 

5.1. Related Work ------------------------------------------------------------------------------------- 141 

5.1.1. Commercial Tooling ---------------------------------------------------------------------------------- 141 

5.1.2. Academia Tooling ------------------------------------------------------------------------------------- 143 

5.1.3. Automotive Architecture Framework ----------------------------------------------------------- 143 

5.1.4. Related Work Conclusions ------------------------------------------------------------------------- 146 



 

 
xxiv 

5.2. Automotive Framework for Modeling Analysis and Optimization ---------------- 147 

5.3. Viewpoints ---------------------------------------------------------------------------------------- 149 

5.3.1. Feature, Functional and Design Level Viewpoints ------------------------------------------- 152 

5.3.2. Technical Level Viewpoints ------------------------------------------------------------------------ 160 

5.3.3. Generation Viewpoint ------------------------------------------------------------------------------- 169 

5.3.4. Analysis Viewpoint ----------------------------------------------------------------------------------- 172 

5.3.5. Optimization Viewpoint ----------------------------------------------------------------------------- 177 

5.4. Interoperability Viewpoints ------------------------------------------------------------------ 183 

5.5. Correspondence Rules ------------------------------------------------------------------------- 184 

5.5.1. EAST-ADL2 and AUTOSAR -------------------------------------------------------------------------- 184 

5.5.2. EAST-ADL2 and Analyzable Model --------------------------------------------------------------- 185 

5.5.3. AUTOSAR and Analyzable Model ----------------------------------------------------------------- 186 

5.6. Conclusions --------------------------------------------------------------------------------------- 187 

6. Conclusion --------------------------------------------------------------------------------- 188 

6.1. Summary ------------------------------------------------------------------------------------------ 188 

6.2. Future Work -------------------------------------------------------------------------------------- 190 

References ----------------------------------------------------------------------------------------- 192 

Appendix ------------------------------------------------------------------------------------------- 201 

A. Tool Prototype ----------------------------------------------------------------------------------- 201 

B. AAF Revisited------------------------------------------------------------------------------------- 208 

 



 

 
xxv 

LIST OF FIGURES 

 

Figure 1. Système Distribué et Système Distribué Automobile ................................... x 

Figure 2. AUTOSAR Méthodologie ........................................................................... xii 

Figure 3. Exemple de l'architecture logicielle d'entrée (partie supérieure) et sa 

spécification de déploiement (partie basse) ........................................................ xv 

Figure 4. L’architecture Logicielle et Matérielle avec certains Runnables qui manquent 

WCETs .............................................................................................................. xvii 

Figure 5. Résultant Déploiement avec la Spécification des Budgets Temps ........... xviii 

Figure 6. UML Profile pour le contexte d'optimisation ............................................. xix 

Figure 7. AFfMAO construit comme une instance de l'AAF ..................................... xx 

Figure 1.1. Distributed System and Automotive Distributed System ......................... 31 

Figure 2.1. Conceptual Model of Architecture Description and Architecture Framework.

 ............................................................................................................................. 47 

Figure 2.2. AUTOSAR Architecture Layers Schema ................................................. 49 

Figure 2.3. EAST-ADL2 Abstraction Layers ............................................................. 50 

Figure 2.4. AUTOSAR Methodology ......................................................................... 53 

Figure 2.5. EAST-ADL2/AUTOSAR Methodology .................................................. 55 

Figure 4.1. Data Driven Activation Model ................................................................. 66 

Figure 4.2. Time Driven Activation Model ................................................................ 68 

Figure 4.3. Example of a Chromosome for a Specific Deployment Configuration .... 85 

Figure 4.4. OX3 Crossover Operator .......................................................................... 87 

Figure 4.5. Simple Use-Cases ..................................................................................... 90 

Figure 4.6. Solutions for the Simple Use-Cases obtained with the Metric 4.13 ......... 91 

Figure 4.7. Solution for the Simple Use-Case nr 4 obtained with the Metric 4.12 ..... 91 

Figure 4.8. CCS + ABS System .................................................................................. 92 

Figure 4.9. Non-replicated Use-Case .......................................................................... 93 

Figure 4.10. Comparison of the Optimal Solution with the Solution obtained with the 

GA. ...................................................................................................................... 94 

Figure 4.11. Runtimes for the GA with Different Initial Population .......................... 95 



 

 
xxvi 

Figure 4.12. Example of a Chromosome for a Specific Deployment Configuration in the 

Context of the TD ................................................................................................ 97 

Figure 4.13. Non-replicated Use-Case with TD Semantics ........................................ 99 

Figure 4.14. Optimal Configurations for Non-replicated Use-Case ........................... 99 

Figure 4.15. Results for MILP and GA (               ..................................... 100 

Figure 4.16. Results for MILP and GA (                      ................ 100 

Figure 4.17. Runtime for MILP and GA (               ................................... 101 

Figure 4.18. Runtime for MILP and GA (                      .............. 102 

Figure 4.19. Comparison using Fitness Function (             ) ...................... 103 

Figure 4.20. Comparison using Fitness Function (                    ) . 103 

Figure 4.21. The Two-Steps Deployment Approach (TSDA) .................................. 105 

Figure 4.22. Example of a Chromosome for a particular Allocation Configuration 106 

Figure 4.23. Example chromosome for the Partitioning and Scheduling Configuration

 ........................................................................................................................... 108 

Figure 4.24. Example of the Input Configuration ..................................................... 109 

Figure 4.25. Global Order for the Example of the Figure 4.24 ................................. 109 

Figure 4.26. Initial Configuration for the Simple Use-Case ..................................... 111 

Figure 4.27. Comparison of the Two Steps Approach with the Holistic Approach and the 

Optimal Solution ............................................................................................... 112 

Figure 4.28. Runtimes of the OS-GA and the TSDA-GA ........................................ 113 

Figure 4.29. Initial Configurations for the ABS + CCS ............................................ 114 

Figure 4.30. Comparison between the results of the MCDT and the Holistic Approach

 ........................................................................................................................... 118 

Figure 4.31. Iterative Improvement Loop for the Staged Approach ......................... 129 

Figure 4.32. Deployment Configuration for CCS and ABS ..................................... 132 

Figure 4.33. Results for One-step and Staged Approach (GA Initial Population = 10000)

 ........................................................................................................................... 134 

Figure 4.34. Runtimes of One-step and Staged TTBA (GA initial population = 10000)

 ........................................................................................................................... 135 

Figure 4.35. Comparison of two different metrics for Staged TTBA ....................... 136 



 

 
xxvii 

Figure 4.36. Comparison of Number of Iterations of two different metrics for Staged 

TTBA ................................................................................................................ 137 

Figure 5.1. AFfMAO built as an instance of the AAF .............................................. 148 

Figure 5.2. Layers and Viewpoints of the Automotive Architecture Framework .... 150 

Figure 5.3. Levels of the EAST-ADL2 Model ......................................................... 151 

Figure 5.4. Part of the EAST-ADL2 Metamodel for the FAA from [6] ................... 153 

Figure 5.5. Model of two Features ............................................................................ 153 

Figure 5.6. Part of the EAST-ADL2 Metamodel for the FunAA and FDA from [6] 154 

Figure 5.7. Function Types at the Function Layer .................................................... 154 

Figure 5.8. Function Prototypes at the Function Layer ............................................. 155 

Figure 5.9. Function Types at the Design Layer ....................................................... 156 

Figure 5.10. Function Prototypes at the Design Layer .............................................. 156 

Figure 5.11. Hardware Architecture Modeling in the EAST-ADL2 ........................ 157 

Figure 5.12. Model of the Hardware Types .............................................................. 157 

Figure 5.13. Model of Hardware Prototypes ............................................................. 158 

Figure 5.14. Model of the Allocation ........................................................................ 158 

Figure 5.15. Model with Timing Information ........................................................... 160 

Figure 5.16. Model of Software Component Types .................................................. 161 

Figure 5.17. Model of Software Component Prototypes .......................................... 162 

Figure 5.18. Model of Hardware Types based on the AUTOSAR Standard ............ 163 

Figure 5.19. Model of Hardware Prototypes based on the AUTOSAR Standard ..... 163 

Figure 5.20. Model of the Internal Behavior for the CruiseControlInput Software 

Component ........................................................................................................ 164 

Figure 5.21. Metamodel used for the ECU Configuration [97] ................................ 165 

Figure 5.22. Partitioning of the Runnable InputAcquisition in the task t1 ............... 167 

Figure 5.23. Specification of a Latency Constraint for the End-to-End flow under the 

Application Timing Viewpoint (at the AUTOSAR SystemTiming Level) ...... 169 

Figure 5.24. Specification of the Activation Period under the Application Timing 

Viewpoint (at the AUTOSAR SystemTiming Level) ....................................... 169 

Figure 5.25. UML Profile used to specify the Generation Strategy within the Generation 

Viewpoint .......................................................................................................... 171 



 

 
xxviii 

Figure 5.26. Generation Model providing a strategy for the generation of the Runnable 

Entities and the Software Components ............................................................. 172 

Figure 5.27.  Analyzable Model representing System Behavior under the Analysis 

Viewpoint .......................................................................................................... 175 

Figure 5.28. Model of Hardware Types specified within the Analysis Viewpoint ... 176 

Figure 5.29. Model of Hardware Prototypes specified within the Analysis Viewpoint176 

Figure 5.30. Model of a Complete Analysis Context containing specification of the 

Allocation, Partitioning and Scheduling. .......................................................... 177 

Figure 5.31. UML Profile for the Optimization Context .......................................... 179 

Figure 5.32. UML Profile for the Exploration Parameters ....................................... 180 

Figure 5.33. UML Profile for the Optimization Objective ....................................... 181 

Figure 5.34. UML Profile for the Optimization Technique based on the Genetic 

Algorithms ......................................................................................................... 182 

Figure 5.35. Optimization Model created under the Optimization Viewpoint ......... 183 

 

 

LIST OF TABLES 

Table 4.1. Basic Architecture Elements ...................................................................... 65 

Table 4.2. Additional Concepts for the Data Driven Activation Model ..................... 65 

Table 4.3. Additional Concepts for the Time Driven Activation Model .................... 67 

Table 4.4. Additional Notation for TD ........................................................................ 79 

Table 4.5. Summary of the Related Work for DD ...................................................... 82 

Table 4.6. Summary of the Related Work for TD ....................................................... 83 

Table 4.7. Intermediate Results for each Initial Configuration ................................. 115 

Table 4.8. Additional Formalism for Time Budgeting ............................................. 121 

Table 4.9. Summary of the Related Work for Time Budgeting ................................ 123 

Table 4.10. Results for Time Budgets Assignments and Initial Constraints ............ 132 

Table 4.11. Properties of the Testing Input Architectures ........................................ 133 

Table 4.12 Runtimes (seconds) of one-step and staged approach (GA initial population = 

10000) when using different budgeting algorithms .......................................... 138 

Table 5.1. Features of the Frameworks/Tools for the Automotive Domain ............. 147 



 

 
xxix 

Table 5.2. UML Profile for the AUTOSAR metamodel used by the Application 

Viewpoint .......................................................................................................... 161 

Table 5.3. UML Profile for the AUTOSAR metamodel used by the Topology Viewpoint

 ........................................................................................................................... 162 

Table 5.4. UML Profile for the AUTOSAR metamodel used by the Internal Behavior 

Viewpoint .......................................................................................................... 164 

Table 5.5. UML Profile for the AUTOSAR metamodel used by the Allocation 

Viewpoint .......................................................................................................... 164 

Table 5.6. UML Profile for the AUTOSAR metamodel used by the ECU Configuration 

Viewpoint .......................................................................................................... 167 

Table 5.7. UML Profile for the AUTOSAR Timing Extension Metamodel used by the 

Application Timing Viewpoint ......................................................................... 168 

Table 5.8. Metamodel for the specification of Generation Strategy ......................... 171 

Table 5.9. MARTE subset used for the Analysis Context and its SysML Extensions174 

Table 5.10. Correspondence Rules between the Design and Technical Level Viewpoints

 ........................................................................................................................... 185 

Table 5.11. Correspondence Rules between the EAST-ADL2 Model and the Analyzable 

Context .............................................................................................................. 186 

Table 5.12. Correspondence Rules between the AUTOSAR Model and the Analyzable 

Context .............................................................................................................. 187 

Table B.0.1. Viewpoints of the AAF with their Concerns and Model Kinds ........... 210 

 



 

 
30 

1. Introduction 

This introductory chapter gives an overview over the problems defining the scope of this 

work and lists the main contributions which aroused to handle them. For seek of clarity, it starts 

with a brief presentation of the context to which the thesis’ problems relate. The context 

description will be broadened in the next chapter to provide to the reader an exhaustive synthesis 

of all the concepts fundamental to clear understanding of this work. 

1.1. Context 

Nowadays vehicle systems are marked by a wide range of software-based solutions that 

improve performance, safety and comfort of driving. Features like the self-parking system were 

beyond belief for ordinary drivers just 10 years ago. Not mentioning that we cannot still frame in 

our mind the vehicles driving autonomously, which is currently happening as few running 

examples were already prototyped. 

From now on the term automotive/vehicle system will relate to those functionalities of a 

vehicle which are delivered through a combination of both software and hardware solutions. 

Automotive systems are perceived as distributed, embedded, real-time systems. First, software-

based vehicle features are distributed on several embedded hardware components named 

Electronic Control Units (ECU) or on sensors/actuators. The application layer that spans over 

different ECUs is composed of the software components that can be delivered by multiple 

suppliers. The middleware is responsible for the communication between distributed software 

components. Each ECU runs an Operating System. All of this implies a distributed nature of the 

automotive systems (see Figure 1.1). Secondly their operation is tightened by the timing 

constraints of different kinds, e.g. the end-to-end response timing constraints. For instance the 

opening of the airbags during an accident should occur within 20ms. The last is a real-time 

constraint whose violation not only states the incorrect behavior of the system, but more 

importantly, can endanger a human’s life. 
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Figure 1.1. Distributed System and Automotive Distributed System 

Automotive systems architectures (in short automotive architectures) are very complex high 

technology products. Architecture itself is defined as in the following Definition 1.1.  

Definition 1.1 – Architecture: fundamental concepts or properties of a system in its 

environment embodied in its elements, relationships, and in the principles of its design and 

evolution [1]. 

Different factors contribute then to the complexity of automotive system architecture: 

 Size: the number of features controlled by the software and hardware is substantial in 

nowadays premium cars. Within around 30 years the capacity of a code has increased 

from 0 to almost 10GB which implies millions of lines of code. 

 Distributed nature: the first software-based solutions were very local and isolated. 

This was achieved by having only one feature per ECU. However the growing number 

of the SW features forced the automotive industry to shift towards distributed 

architectures. The “one feature one ECU” approach became very costly due to the 

increasing demand for the hardware elements. The additional motivation for that it 

was the shrinking physical space in the car which prevents further expansion of a 

hardware plant. As a result, nowadays automotive architectures are highly distributed, 

i.e. functions of the same feature span over different ECUs. The same ECU might host 
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functions of different features. This lead to a better optimization of the resources 

usage. Nonetheless it imposes a big challenge when designing such distributed 

architectures. 

 Real-time constraints: correct functioning of a vehicle system is not only defined 

through the absence of functional errors but also by the means of a strict observance 

of the hard real-time constraints. Their existence serves primarily in a safety critical 

situations, like braking or during an accident when the airbags should be activated 

immediately. However in the competitive automotive world OEMs put high timing 

demands also on the features which don’t have any impact on the safety aspect, e.g. 

features classified as the infotainment.  

 Safety requirements: the safety aspect plays an important role as nowadays it is not 

only an internal concern of an OEM to provide reliable vehicles, but also a subject for 

regulations provided by the ISO [2]. 

 Conflicting requirements: all the different requirements like timing constraints, 

reduction of the hardware resources to lower the costs, provision of safety, etc. are in 

many cases orthogonal. This means that the satisfactory handling of one requirement 

can lead to the violation or deterioration of the others. 

 Sensitive to changes: slight changes of a design or certain properties of particular 

architecture artifacts can lead to a radical modification of the architecture non-

functional characteristics. For example, increase of an execution time of a single 

functional entity might lead to the violation of few timing constraints. 

Due to this complexity that was and is still growing exponentially (as presumed to be for the 

next 20 years [3]), new strategies for design of the automotive systems need to be introduced. As 

a response, a number of initiatives have emerged, which either directly relates to the automotive 

systems or indirectly as they concern in general the distributed real-time architectures. Among 

them is the adoption of the model driven engineering (MDE) for the development of the 

automotive electronic systems [4]. The principle of the MDE approach is to incorporate abstract, 

in many cases graphical models to specify the functional and non-functional requirements, and 

finally, to produce a binary code that will fully respect the specification. The potential of the 

MDE has been spotted by the major car manufacturers and suppliers which initiated a project 

with a goal to provide a common standard drawing on the principles of the MDE. It is called 
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AUTOSAR (AUTomotive Open System ARchitecture) [5] and currently, this standard is the 

most influential in terms of modeling automotive systems. The development chain of the 

AUTOSAR methodology stretches from the depiction of application software components to the 

runtime infrastructure, including the description of the hardware platform. A related drawback of 

the AUTOSAR is its lack of support for the function-level modeling. Therefore there is a 

growing interest in combining this standard with the EAST-ADL2 [6] modeling language which 

targets the abstract, functional specification. 

Besides the language aspect, the EAST-ADL2 and the AUTOSAR impose methodological 

rules for building the models. Their advantage is that they provide a common framework for the 

design of automotive electronic systems. However neither of those define how to perform certain 

design steps, e.g. how to distribute software components across hardware elements or how to map 

functional entities into OS (Operating System) tasks. In that respect, these two standards 

completely rely on a designer experience, increasing thereby the number of potential design 

flaws. As a consequence it is essential to conduct analysis like, timing or safety analysis to assure 

that the decisions made by the designer didn’t lead to unfeasible architectures. We can go even 

beyond that and use techniques for Design Space Exploration (DSE) [7]. Their employment 

might not only assure the feasibility but in addition can optimize the key non-functional 

properties. This might lower the system final cost or increase the reusability of the architecture 

constituents. 

1.2. Problem Statement & Motivation 

As outlined in the previous subsection, clear and comprehensive view on an automotive 

system design, as well as its analysis/optimization, are crucial activities on a way to develop 

high-quality architectures. This requires appropriate modeling languages, analysis methods and 

techniques for enabling DSE. The general and initial objective of this thesis is to integrate these 

three activities within one complete methodological framework, supporting the design of the 

automotive architectures, followed by the EAST-ADL2/AUTOSAR methodology. Within this 

context, a set of problems aroused. As shown later, finding of appropriate solutions is significant 

to make possible the final integration of the above activities and provision of the guided seamless 

flow between them, to finally deliver optimized implementation model of an automotive system. 

Having different types of models, i.e. architecture model, analyzable model and optimization 

model, is the main step towards the ability to perform an optimized synthesis of the software with 
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the hardware. The main phase of the synthesis is called deployment (see Definition 1.3). 

According to AUTOSAR, the deployment concerns the 1) allocation of the software components 

into the ECUs, 2) partitioning of the component’s behavioral entities (so called runnable 

entities) in the OS tasks, and finally 3) scheduling of the OS tasks. The deployment step is done 

at the abstract modeling level which speeds up the design process as it is not delayed by awaiting 

the final code implementation. A crucial point for this step is about its validity in terms of its 

timing properties. Since the system refinement (of which deployment is an integral part) is done 

top-down, validity can be assured only under some assumptions abstracting lower-level details. A 

typical example is the assumption about the knowledge of the worst-case execution times 

(WCETs) of the AUTOSAR runnable entities. It is obvious that the assumption about the 

precise knowledge of runnables’ WCET before code implementation is most of the time 

unrealistic. In many cases, implementation of certain runnables is re-used from previous 

systems, hence their WCET is known. However it is not true when new runnables are introduced. 

This causes the problem in the attempt to deliver guided strategies for the architecture 

synthesis and in general, provision of an undisrupted top-down flow within the framework. 

What is even more significant is that the deployment itself in a way as it is defined by the 

AUTOSAR is not holistically supported by the existing techniques. Although the amount of 

work that exists seems to be compelling and representative, there is a gap. Proposed techniques 

either account for the OS tasks as the allocable entities or solve the problem in stages 

without consideration of a negative impact it has on a final results when compared to the 

holistic approach. 

Definition 1.2 – Synthesis: derivation of a system from its specification. 

Definition 1.3 – Deployment: synthesis step to determine the allocation of functional entities, 

their partitioning in OS tasks and assignment of priorities for the tasks. 

The EAST-ADL2 and the AUTOSAR specifications deliver a broad range of concepts that are 

necessary to define the complete system architecture. Recent efforts in a further extension of 

these standards provided even the capabilities to model the information needed for the timing 

analysis [8]. This triggered some work showing specific kinds of timing analysis (e.g. 

schedulability analysis) that can be run and how the timing model should be interpreted to do this 

[9]. The adequate work hasn’t been done so far to handle the optimizations. Though the field of 
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real-time and distributed systems abounds in optimization techniques, there are no 

modeling concepts that would enable specifying an input necessary for this activity such as 

the optimization objectives (timing responses, memory consumption, etc.) or their priority, 

which plays an important role when optimizing orthogonal concerns. As a consequence the 

modeling and the analysis/optimization are not well integrated, namely consideration of these two 

problems simultaneously is not the case. This has resulted in many tools that deal either with the 

modeling or the analysis and/or optimization. As a consequence, it is difficult to embed these 

tools in the standard methodologies such as the EAST-ADL2/AUTOSAR methodology. This 

especially applies to the higher abstraction layers as those defined by the EAST-ADL2. It is a 

consequence of a high dependability of analysis/optimization tool on the platform specific 

information. 

1.3. Contribution outlines 

In order to enable the seamless development flow within the proposed framework this work 

offers a set of solutions to the aforementioned problems: 

1) From the Design Space Exploration (DSE) techniques side, the main contributions relate to 

the definition of new techniques for optimizing the deployments. The proposed techniques are 

compliant with a way in which the deployment is defined by the AUTOSAR standard. That is to 

say, they consider the runnable entities as allocable units. Therefore the partitioning step is 

supported which is out of the scope of what current approaches are offering. Proposed techniques 

are based on evolutionary algorithms which is why they are able to handle large input 

architectures. This ability was evaluated by performing multiple tests, reaching 250 runnables. 

Accompanying significant aspect that is assessed this is the quality of the delivered, deployed 

architectures. This was done by comparing the results to those acquired with the exact methods or 

to the architectures for which the optimal deployment configuration was a priori known. Within 

the AUTOSAR, behavioral models might conform either to a data driven or time driven 

execution semantics, requiring hence to define different types of optimization strategies. The 

difference occurs on behalf of the timing analysis which diverse. Furthermore optimization 

metrics such as the timing or the memory are affected in an unlike way by the particular choices 

of a deployment. What also characterizes proposed techniques is the consideration of the multiple 

criteria (e.g. end-to-end timing responses, memory consumption) that defines a sound 

deployment configuration of the input architecture. 
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2) To improve the results of a deployment, this work suggests a refinement of the 

methodology uniting the EAST-ADL2 and the AUTOSAR methodologies. The purpose of doing 

so is to enable holistic consideration of the deployment problem, which as will be shown cannot 

be done with the current definition of this combined methodology. The impact of the changes is 

evaluated and shows significant improvement in regards to the metrics considered all along the 

deployment process. 

3) In order to enable a qualitative deployment in regards to the optimization metrics, certain 

information is required. For instance to perform a deployment that optimizes the end-to-end 

response times, execution times of the runnable entities are necessary. As this information might 

be missing for certain runnables, definition of a new strategy for the architecture configuration is 

unavoidable. As a workaround, certain works propose to add to the methodology a special 

activity called time-budgeting. Instead of estimating worst-case execution times, the system 

integrator specifies so-called time budgets, i.e. constraints to the worst-case response times. Time 

budgets must be respected by the suppliers delivering the component implementation. The typical 

problem with this approach is that a supplier delivers the implementation of a particular 

component, which will be integrated as an interacting part of the system by the system integrator, 

in a later stage. Since the supplier will validate the component in isolation, without taking into 

account possible interferences of other components, it will be incapable of computing a correct 

worst-case response time (WCRT). In a sense if the component fulfills the time-budget 

constraint, the system integrator should take care of avoiding any possible interference with other 

components, which is not only a difficult task, but that typically inflates resource over-

dimensioning. Such resource over-dimensioning turns into unsustainable costs for a mass-

production. An alternative solution is the one in which time-budgets represent constraints to 

runnable’s execution time, i.e. worst-case execution time (WCET) instead of WCRTs. The main 

question that remains now is how to specify this constraint. This thesis provides a solution, 

compliant with the AUTOSAR methodology and the one that will automatically assign the values 

for time budgets. 

4) From the modeling side the first contribution is a specification of concepts essential to 

build an optimization model and to run Design Space Exploration techniques.  

5) Optimization models as well as models for the analysis and architecture specification are 

based on the UML [10]. Usage of the UML serves to ease the integration of different activities. 
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This is attained for the most part by the set of transformations automating significant steps such 

as the generation of the preliminary AUTOSAR model out of the EAST-ADL2 model. In fact the 

architecture specification is achieved basing on the concepts of the EAST-ADL2 and the 

AUTOSAR and to model them this work uses a UML profile mechanism. The complete UML 

profile for the EAST-ADL2 already exists which is not the case for the AUTOSAR and hence 

this work defines one. The analysis models are established with the SysML [11] & MARTE [12] 

for which the UML profiles were defined and standardized within the OMG (Object Management 

Group). The concepts for the optimization cannot be expressed neither with the SysML nor 

MARTE as well as the EAST-ADL2 and the AUTOSAR. Consequently for them, a separate 

domain model is formalized and its related UML profile is defined. 

Established contributions solve the crucial problems hindering the delivery of a framework 

for a guided design of the automotive systems aligned to the principles of the Model Driven 

Engineering. They are beneficial not just within the context of this particular framework, but in 

general to those OEMs who tries to engage the EAST-ADL2 and the AUTOSAR standards as the 

baselines for their systems. 

1.4. Thesis Structure 

Chapter 2 - Automotive Context: gives a general overview over the current trends in the 

automotive domain. It presents the main standards and the methodology for designing automotive 

architectures. The intent of this chapter is to provide detailed picture of the context and the 

fundamentals related to this thesis. 

Chapter 3 – Challenges: lists and describes the main challenges identified for the automotive 

domain. 

Chapter 4 – Approaches for the Computer-aided Configuration of the Automotive 

Architectures: relates to the contributions 1, 2 and 3 described in the section 1.3. It demonstrates 

a set of techniques contributing to the existing strategies used for the deployment of the real-time 

distributed architectures.  It also presents strategies for the time budgeting and the refinement of 

the EAST-ADL2/AUTOSAR methodology. All this is evaluated to show the added value of the 

new techniques and the refined methodology. 

Chapter 5 – UML based & Optimization-aware modeling of the Automotive Architectures: 

presents the contribution related to the UML modeling of the automotive architectures 

(contributions 4 and 5 described in the section 1.3). Above all it is the specification of the UML 
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profile that serves to express the optimization concerns. Accompanying is the presentation of the 

UML profile for the AUTOSAR and a set of transformations between different models 

(architecture model, analysis model and optimization model) that empower the overall integration 

of different activities within the framework. 

Chapter 6 – Conclusion: concludes this dissertation and draws possible directions for the future 

work. 
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2. Automotive Context 

This chapter starts by introducing the context of this thesis, i.e. automotive systems. Then it 

demonstrates the nowadays trends in the automotive domain by first discussing the employment 

of the Model Driven Engineering and then presenting the concept of an Architecture Framework 

The last establishes terminology based on which framework discussed within this work was built. 

Following is the overview of the most current and significant standards, i.e. the AUTOSAR [5] 

and EAST-ADL2 [6]. This chapter completes by presenting the methodology for designing 

automotive systems that is constituted by the EAST-ADL2 and the AUTOSAR. 

2.1. Automotive System 

Automotive systems these are distributed, embedded and real-time systems. 

Embedded nature of the Automotive System: an automotive system is built of elementary 

subsystems where each can be classified as an embedded system. Elementary subsystem is made 

of so called ECU (Electronic Control Unit) of which central part is a microcontroller. This latter 

runs a set of functional entities (e.g. computation of a wheel torque) that are executed on it via a 

dedicated operating system. Functional entities are delivered as part of software components 

which define the interfaces to access them. Software component is a black box that hinders the 

implementation of contained functional entities. Often elementary subsystems interact with 

vehicle physical parts such as wheels or brakes through sensors/actuators. The software 

components of different ECUs in many cases have to communicate as they might contribute with 

their offered functionality to particular vehicle features (specific functionality offered within 

vehicle) such as the Cruise Control System. This leads us to the distributed nature of the 

automotive systems. Specific implementation of a vehicle feature is called subsystem where the 

last is built of elementary subsystems.  

Distributed nature of the Automotive System:  vehicle features incorporate large amount of 

functions thus it is not possible to run all of them on one microcontroller. Even if some of the 

features require less computational power, to decrease the overall cost of the system, and equally 

balance the load among the resources, functions will be distributed. Manner in which it will be 

done depends now mostly on a designer expertise. For these reasons, automotive systems have 

naturally evolved towards their distributed nature. As will be shown later when describing the 

automotive standards, the distributed middleware is among the standardized elements.  
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Real-time nature of the Automotive System: the correctness of certain vehicle features is 

evaluated against non-functional real-time constraints. The real-time constraints which implicitly 

affect the safety aspect are common in nowadays vehicles. For instance braking that is now 

controlled by software is a feature that should respect hard real-time constraints. 

There is a large set of elements or concepts related to the automotive systems. Below are 

presented those which are the most common. 

ECU 

Electronic Control Unit is a computing unit that controls one or more subsystems in a vehicle. 

An ECU contains the hardware and software (firmware). The hardware incorporates electronic 

components distributed on a printed circuit board (PCB). The main component is a 

microcontroller. Among the others, there is a memory (EEPROM or flash memory), input/output 

interfaces to communicate with for instance sensors and a BUS communication unit, to 

send/receive messages on/from a communication BUS. The software (firmware) is stored either 

in the microcontroller or other chips on the PCB, typically in the EPROM or flash memory. 

Premium cars can have up to 80 ECUs. There exist multiple types of them depending on which 

mechanical part they control. These are electronic/engine control module (ECM), powertrain 

control module (PCM), transmission control module (TCM) and others, in total around 14 types.  

Sensor/Actuator 

Sensors are used to perceive the surrounding of a vehicle or the physical parameters of vehicle 

components like for example speed of a wheel. Actuators on the other hand affect the 

environment. They are controlling certain mechanisms in a car by introducing or preventing a 

motion. An example is an actuator for adjusting a vehicle idle speed. 

Communication BUS 

As highlighted before vehicle subsystems might be distributed over many ECUs. For most of 

the time, software functions of these subsystems need to communicate to fulfill the complex 

functionality. If communicating functions reside on different ECUs, these ECUs require a 

connection link. In the past, automotive OEMs were using point-to-point wiring systems. This 

turned out to be highly inefficient with an increase of the ECUs in a vehicle. To handle this 

problem, they replaced a dedicated wiring with in-vehicle networks. This reduced the overall 
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cost, complexity, and weight and enabled further expansion of the number of ECUs. There are 

different standards for the communication networks like CAN, FlexRay, TTCAN, LIN and 

Ethernet used for this purpose. The most popularized are the CAN and FlexRay. Recent efforts 

within the AUTOSAR group show the high interest in focusing only on the Ethernet. This topic 

will make one of the main contributions in the evolution of the AUTOSAR standard to the 

version 4.2. Below is a brief description of the mentioned standards for the bus. 

 CAN (Controller Area Network) – this bus employs serial communication protocol, i.e. 

bits are sent one at a time, sequentially. It handles the detection of collisions, errors, 

retransmission of corrupted messages and the prioritization of sent and received 

messages. There are few versions of the CAN protocol where the most popular is so 

called High-Speed CAN. Its implementation involves two wires and allows 

communication at transfer rates up to 1Mbit/s. CAN is based on a broadcast 

communication mechanism. Each message sent on the CAN bus has identifier which is 

unique. It defines the content of a message and its priority. As multiple ECUs might try to 

send a message at the same time, CAN bus features a scheduler which operates on 

messages’ fixed priorities. The scheduler is non-preemptive. Therefore before the 

transmission, arbitration process is run to decide whether a particular ECU can access a 

BUS. This will be possible only if the message that it wants to send, has the highest 

priority and currently, the bus is not processing any other message. This type of 

scheduling introduces non-determinism. Certain assumptions on the sending behavior of 

the nodes enable computation of worst case scenarios. This will be discussed more deeply 

in the section 4.4 when presenting techniques for the optimized synthesis. 

  FlexRay – was developed by the FlexRay Consortium with the objective to have a bus 

with a higher bandwidth than the CAN and with the support for the time-triggered (TT) 

systems. Indeed, the data rate can reach up to 10Mbit/s. Secondly FlexRay bus can handle 

an event-triggered (ET) and a time-triggered systems. This is done by having two slots for 

the bus, so called static (for ET) and dynamic (for TT). Hence it offers the flexibility of 

the ET and timing guarantees and some fault tolerance which is characterizing the TT. 

 TTCAN (Time-triggered CAN) – is an adaptation of the CAN bus to provide the 

capabilities of handling the time-triggered systems. The adaptation is done through the 

software in a higher layer, running on top of a CAN protocol. 
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 LIN (Local Interconnect Network) – was developed in order to create a low-cost 

communication standard. The CAN bus was too expensive to employ it for the realization 

of all the car features. LIN is a cheaper solution that can be used for less critical 

applications where the bandwidth and the versatility of the CAN are not required. It 

consists of a single master and one or more slave devices (up to 16).  Communication is 

fully controlled by the master. 

 Ethernet - is a widely known protocol for the Local Area Networks. Recently it is gaining 

more and more attention of the automotive players. The attractiveness of the Ethernet is 

due to the heavy and expensive wiring in nowadays cars. Therefore OEMs see the 

potential in the Ethernet as a technology that will reduce the complexity and cost of 

wiring. That is why the recent advances of the AUTOSAR standard are mostly focusing 

on the adoption of the Ethernet. 

Gateway 

These elements are used to enable the transfer of data between different sub-networks. In 

many cases networks communicated with the gateway are characterized by different protocols as 

one protocol cannot satisfy the requirements of all automotive applications. A typical gateway 

contains several interfaces corresponding to different networks such as CAN, LIN or FlexRay. 

ECU itself can serve as a gateway if it is connected to more than one communication bus. 

Operating System 

The ECUs, as these are embedded devices are controlled by the Operating System (OS). The 

high requirements on the timing behavior of the automotive systems require using a Real-Time 

Operating System (RTOS). The main feature of the RTOS is that it should serve the application 

requests in a real-time. In the automotive domain, OSEK/VDX [13] is the widely used standard 

for the RTOS. The AUTOSAR defines its own operating system called AUTOSAR OS [14] 

which is based on the OSEK v 2.2.3. The OSEK was created in 1993 by the consortium 

constituted by the main German players of the automotive market. In 1994 French car 

manufacturers which were leading a similar project called VDX (Vehicle Distributed eXecutive) 

joined the German consortium and hence the new name OSEK/VDX was established. 

Specification of the OSEK/VDX comprises three areas: 

 Communication: exchange of a data within and between ECUs. 
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 Operating System: real-time execution of ECU software. 

 Network Management: specification of protocols for managing the network. 

Its initial version considered event-triggered systems. It was later extended with a support for 

time-triggered systems. 

OS Task & BUS Frame 

Operating System task is the execution entity considered by the scheduler. The last is 

responsible for the sequence of tasks execution. Task itself frames an execution of functional 

entities. BUS Frame has a similar meaning as an OS task. However it is related to the 

communication BUS and instead of running functional entities, it transfers the signals sent 

between them. 

Scheduling 

Scheduling is responsible for the assignment of hardware resources, i.e. either a processor or 

a bus to OS tasks or bus frames which represent the schedulable entities. Large set of algorithms 

for the scheduling exists, the choice of which impacts the execution sequence of the schedulable 

entities. Apart from the scheduling algorithm itself, there are other important factors affecting the 

final execution order, so called scheduling factors. These are the: 

 hardware topology 

 performance of the underlying hardware platform 

 delays of the communication protocols 

 allocation of the software entities to the hardware 

 specification of the OS tasks (mapping of functional entities on them) 

 specification of the bus frames (mapping of the messages on them) 

 worst-case execution times of a functional entities or worst-case transmission times of 

a messages 

 etc. 

In the context of the embedded systems, there are two main scheduling strategies, the event-

triggered and the time-triggered. These two are applicable for the scheduling of the 

communication and the processing of the OS tasks. They differ in the triggering mechanism for 

the start of communication and processing actions [15]. 
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Event-triggered: assumes that all communication and processing activities are triggered when a 

significant event occurs. The event is unrelated with the clock tick but is realized by the interrupt 

mechanism [16].  

Time-triggered: communication and processing activities are initiated by the progression of a 

real-time clock. The interrupt in this case is the real-time clock interrupt. The activities are 

triggered according to the predefined periodic pattern of clock ticks [17]. The time-triggered 

systems assume that the clocks of all the hardware nodes are synchronized. This introduces a 

notion of a global time that is available at every node. This is very strong assumption and not 

easy to maintain however indispensable in a distributed environment. This resulted in 

specifications of synchronization protocols which establish the common time among distributed 

processors. Time-Triggered Protocol (TTP) is an example of integrated communication protocol 

for time-triggered architectures [18]. It provides the services required for the implementation of 

fault-tolerant real-time systems such as predictable message transmission but also clock 

synchronization. 

Each scheduling algorithm requires defining certain properties which are part of the 

scheduling factors. The process of their specification is also called scheduling. Therefore the term 

scheduling has two meanings. 1). Scheduling as a process deciding on how to commit hardware 

resources – CPUs/BUSes between the tasks/frames. 2). Scheduling as a specification of key 

parameters necessary to run a specific scheduler. Concerning the second definition the type of 

parameters to set is linked to the type of a scheduling used. If this is an event-triggered approach, 

then the main properties are the priorities of the OS tasks/bus frames. For time-triggered it is the 

specification of a schedule table which relates the clock ticks with the task/frames activation. The 

valuation of these properties has a direct impact on the scheduling algorithm and in consequence 

on the system behavior. The choices made can be evaluated. In the domain of the automotive 

systems this is an important step due to the multiple concerns, especially safety which is 

implicitly affected by the scheduler. Evaluation of the scheduling algorithms and of the values 

assignment done for crucial parameters determining the behavior of a scheduler, in the context of 

the real-time systems, is done against the real-time constraints. The analysis used to assess the 

schedule in regards to the timing constraints is called schedulability analysis. This work is 

focused on particular scheduling algorithms applicable for the automotive domain and for them 

existing schedulability analysis techniques will be presented. They are significant in the context 
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of the Model Driven Engineering as they enable to analyze abstract models for their correctness 

in terms of timing constraints. 

2.2. Model Driven Engineering  

The market of software applications grows rapidly as well as their complexity which can be 

expressed with their size, distribution, difficulty of the tasks to perform, etc. Automotive systems 

are great example of that. This constant evolution strives for the parallel amelioration of the 

approaches for building such systems. Efforts to do this moved us from the point in which the 

assembly code was a baseline for the development to the point in which object oriented 

programming is a common approach to proceed. Nowadays we can see a tendency of going even 

beyond that by employing abstract models as a starting point of a system specification. A model 

of a system serves as description or specification of that system but also of its environment. 

Apart from the modeling Model Driven Engineering (MDE) encompasses the actual process 

of a system design using models and also models exploration. These two additional concerns are 

significant to fully and efficiently employ the modeling. First the definition of process or as it is 

called in many cases, methodology, clearly states the crucial steps to be performed in order to 

deliver the final system specification. Apart from the steps itself it is also appropriate sequencing 

of them. The main goal is to achieve at the end high efficiency of a development process and 

correctly order the activities to prevent delays. Clear methodology allows building a tool or 

combining a set of tools to support the development chain. The tools embed modeling of domain 

languages, models transformations, code generation or exploitation of the models. The last is 

essential to lead a qualitative design. The adoption of the MDE by the automotive OEMs is done 

even in a standardized form. The standard is called AUTOSAR (see subsection 2.4.1). Apart 

from the modeling artifacts, the AUTOSAR provides also the methodology of design and 

enriches the models with concepts, like timing information, that makes it possible to analyze 

them. The MDE for the automotive needs to also respond to the problems caused by the 

distributed nature of a system design. The business model employed by the automotive OEMs 

favors engagement of many suppliers delivering subcomponents of a system which are then 

integrated by the OEM. This has economic advantages but poses few challenges like appropriate 

exchange of information or architecture integration in this distributed environment. These 

problems are implicitly handled by the AUTOSAR. For instance definition of a common 
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language supports distributed environment. Others like timing information exchange are 

considered by the research, just like in [19]. 

Framework advertised in this work connects to the principles of the MDE. It employs the 

domain specific modeling languages as a way to define the architecture. Then it follows a 

predefined methodology and employs strategies enabling to exploit the models. Hence this thesis 

shows through its contributions, that there are still deficiencies in a current organization of the 

MDE approach as it is defined for the automotive domain. 

2.3. Architecture Framework 

The framework described in this work (see chapter 5) builds on the principles of an 

Architecture Framework (AF). Architecture framework is a set of conventions, principles and 

practices for the description of architectures within a specific domain and/or community of 

stakeholders [1]. It can be considered as a subset of the architecture description. This relation is 

shown on the Figure 2.1 where the right side of this figure depicts architecture framework and the 

left, architecture description highlighting the elements which belong also to the AF. As can be 

seen the AF consists of entities such as stakeholders, concerns, architecture viewpoints, model 

kinds and correspondence rules, as well as the relationships between these entities. The 

stakeholders of a system have concerns. Concerns evolve from requirements, design, or 

implementation choices. Stakeholders might be individuals, teams, or organizations. An 

architecture viewpoint establishes the conventions for the construction, interpretation and use of 

architecture views. The latter express the system architecture from the perspective of a specific 

set of concerns. An architecture view is part of the architecture description but not of architecture 

framework. This is because AF aims to define set of practices for building architecture 

description and architecture view is already a work product of architecture specification, 

following the conventions defined in AF. An architecture viewpoint contains at least one model 

kind, which defines the conventions for an architecture model (which is only part of an 

architecture description). Next, the correspondence rules govern the relations between the 

elements of an architecture description which are represented in the architecture description as 

correspondences. For example, a correspondence rule between a hardware platform and software 

components might require that each software component must be allocated to a particular 

hardware element. Finally the architecture rationale which is not part of an AF specification but 

of an architecture definition, records explanation, justification or reasoning about architecture 



 

 
47 

decisions that have been made, e.g. rationale for each architecture viewpoint included for use in 

particular architecture description. Notable examples of architecture frameworks of this type are 

DoDAF (Department of Defense Architecture Framework) [20] and MODAF (British Ministry of 

Defense Architecture Framework) [21]. 

Definition 2.1 – Architecture Description: work product used to express an architecture [1]. 

Definition 2.2 – Architecture Framework: common set of principles and practices for creating, 

interpreting, analyzing, and using architectural descriptions for a given application domain or 

stakeholder community [1]. 
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Figure 2.1. Conceptual Model of Architecture Description and Architecture 

Framework. 

2.4. Automotive Standards 

This subsection describes the AUTOSAR standard and the EAST-ADL2 modeling language. 

2.4.1. AUTOSAR 

AUTOSAR (AUTomotive Open System ARchitecture) is a joint initiative launched by 

BMW, Bosch, Continental, Daimler Chrysler, Volkswagen, and Siemens VDO in August 2002. 

The current version of AUTOSAR is 4.0. The main goal of this project was to create an open 

standard for automotive E/E (Electrics/Electronics) architectures, mainly to control their 
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complexity. AUTOSAR defines also a methodology for designing automotive systems and a way 

of describing their software architecture. System architectures developed based on the 

AUTOSAR consist of the layers shown in the Figure 2.2. 

The Application layer contains a specification of software components which implement the 

desired functionality. It forms the basis for competition between OEMs. 

The AUTOSAR runtime environment (RTE) provides communication services for 

application software (AUTOSAR Software Components and/or AUTOSAR Sensor/Actuators). It 

enables AUTOSAR software components to be independent of specific ECU. RTE is an 

implementation of the VFB (Virtual Function Bus) which is an abstract communication 

environment. It does not specify which particular technology is to be used to exchange data. 

Therefore, the VFB enables AUTOSAR to be used on various communication platforms such as 

CAN or FlexRay. Definition of data exchanges between software components using the VFB 

enables them to be independent of the underlying hardware platform. Moreover, this allows 

concentrating directly on communications between software components without concerns as to 

whether data is transmitted within an ECU or between ECUs. 

The BSW (Basic SoftWare) consists of many sub-layers. The highest layer of the BSW is the 

Services Layer. It provides the operating system, vehicle network communications, management 

services, memory services, and diagnostic services. 

Next, the ECU Abstraction Layer covers I/O (Input/Output) and communication hardware 

abstraction, allowing higher software layers to be independent of the ECU hardware layout. 

The Complex Drivers Layer bridges hardware and RTE. It provides non-AUTOSAR, special-

purpose functionality, such as device drivers. 

The Microcontroller Abstraction Layer is the lowest software layer of the BSW. It includes 

drivers with direct access to the microcontroller internal peripherals and memory mapped 

microcontroller external devices. Its purpose is to isolate higher software layers from the 

specifics of the microcontroller. 

AUTOSAR itself is missing the ability to express functional aspects. It concentrates mostly 

on implementation issues, viewing the software architecture as the highest level of system 

abstraction.  
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Figure 2.2. AUTOSAR Architecture Layers Schema 

2.4.2. EAST-ADL2 

The shortage in modeling constructs defining the functional characteristics of automotive 

systems was identified by the partners of the previously completed EAST-EEA project 

(Electronics Architecture and Software Technology – Embedded Electronic Architecture, see 

[22]) and the current ATESST I and II projects (Advancing traffic Efficiency and Safety through 

Software Technology) [23]. According to these findings, advanced and complex systems also 

require model-based design encompassing higher levels of abstraction and multiple concerns to 

support cost-efficient and effective development [24]. As a result, they defined the EAST-ADL 

(Electronics Architecture and Software Technology – Architecture Description Language) 

modeling language, refined subsequently in the ATESST project to EAST-ADL2 [6]. EAST-

ADL2 is an architecture description language that provides modeling concepts for high-level 

architecture descriptions of automotive electronic systems. The AUTOSAR concepts are included 

as the implementation level of the EAST-ADL2. However a serious drawback of the EAST-

ADL2 is its poor support for behavior modeling. This in turn prevents many kinds of early 

analyses of model validity. 

Similarly as in the AUTOSAR, the EAST-ADL2 defines abstraction layers (see Figure 2.3). 

The Vehicle Level (VL) contains a feature model, i.e. specification of a vehicle features. The 

Analysis Level (AL) refines the VL, namely features are refined into functions which accomplish 

a work of features that they build. The mapping between features of the VL and functions of the 
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AL is m-to-n. This level makes no distinction between HW and SW. Design Level (DL) is the 

last level specified by the EAST-ADL2 concepts. At this level, functions from the higher level 

are refined into sub-functions and atomic (non-decomposable) functions. Also at this stage an 

abstract hardware platform is introduced. The Implementation and Operational Levels relate to 

the AUTOSAR. They are mentioned as part of the EAST-ADL2 to show that the purpose of this 

language is to complement the AUTOSAR. 

 

 

Figure 2.3. EAST-ADL2 Abstraction Layers 

2.5. Methodology of Design (EAST-ADL2/AUTOSAR Methodology) 

The EAST-ADL2 and the AUTOSAR next to the specification of domain concepts deliver 

also methodologies. These methodologies aim to provide a seamless and model-based 

development process and to give guidance on how to use the languages to construct system and 

software architectures. 

EAST-ADL2 Methodology 

This methodology doesn’t intend to impose a fixed software development process [25]. It is a 

consequence of a large number of activities of the EAST-ADL2 for which companies have 

already developed certain approaches to proceed. In principle it divides the activities into two 

sets; Kernel Methodology and Extensions. The Kernel represents the essential development 

activities comprising a top-down, central, constructive phases, necessary to produce complete 
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architecture model. These activities are grouped accordingly to the layers of the EAST-ADL2 

and traverse them in a top-down way. They are as follows: 

 Vehicle Modeling – activity done at the Vehicle Level consisting in modeling vehicle 

features and in specifying related requirements. 

 Analysis – activity done at the Analysis Level to create a functional analysis model.  

 Design – activity done at the Design Level to create a functional design model. It 

employs a specification of a software and hardware entities separately. Most 

importantly this stage of the methodology requires mapping software entities 

represented by functions on the hardware elements. 

 Implementation – concerns the implementation of a hardware and software and 

configuration of a final solution. The models developed at this stage these are 

platform specific models where platform is described by the AUTOSAR concepts. 

Configuration at this level, according to the AUTOSAR is characterized by steps 

presented in more details below, in the context of the AUTOSAR methodology. 

Please note that the AUTOSAR is not mandatory to be used at this stage. 

The Extensions part talks about activities related to the modeling of environment, variability, 

behavior, etc. It also refers to the analysis of such non-functional concerns as timing or safety 

assurance. 

AUTOSAR Methodology 

The development chain of the AUTOSAR methodology [26] (see Figure 2.4) stretches from 

the depiction of application software components to the runtime infrastructure, including the 

description of the hardware platform. This methodology chain is specified through the following 

phases: 

 Vehicle Architecture Design: During this phase, the application is specified in terms of 

the software architecture: software components, interfaces, ports and connectors. The 

platform is specified in terms of hardware architecture: ECUs and their interconnection 

topology, i.e. physical ECUs interconnection through buses or dedicated links. The 

mapping of software components on ECUs is not done during this phase, but constraints 

on this mapping can be specified at this level. The vehicle architecture design models are 
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exchanged through an XML artifact called System Configuration Input, which actually 

serves as input for the following phase. 

 System Configuration: During this phase the mapping of the software architecture into 

the hardware architecture is performed. Software components are mapped into ECUs, and 

application messages are mapped into bus frames. Moreover, the internal behavior of 

software components is also specified. Internal behavior is a specification of events 

(RTEEvents) and runnable entities. The latter are the smallest code-fragments provided 

by software components. The artifact to be produced at the end of this phase is called 

System Configuration Description, which serves as input for the following phase. 

 ECU specific information extraction: During this phase information specific to each 

ECU is automatically extracted, and a first layer of RTE is automatically generated. The 

artifact to be produced at the end of this phase is called Extract of System Configuration 

Description, which serves as input for the following phase. 

 ECU configuration: During this phase the basic services of the platform are configured 

on each ECU. The most important step lies in the specification of the mapping of 

runnable entities into OS tasks. The artifact to be produced at the end of this phase is the 

ECU Configuration Description. This artifact is used for the generation of binary code. 
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AUTOSAR Methodology
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Figure 2.4. AUTOSAR Methodology 

Combined EAST-ADL2/AUTOSAR Methodology 

The intent of the EAST-ADL2 is to complement the AUTOSAR with a functional level 

modeling. Consequently, specification of the EAST-ADL2 layers contains a direct reference to 

the AUTOSAR which defines the Implementation and Operational Level of the EAST-ADL2 

language. Similar reference to the AUTOSAR is done when specifying the EAST-ADL2 

methodology. This shows a desire to reason about the overall development process as a 

combination of the activities done at the EAST-ADL2 level and then, at the AUTOSAR level. 

This concept hasn’t yet found its reflection in current practices of the automotive OEMs. It is due 

to the fact that the EAST-ADL2 itself hasn’t been yet fully adopted by the car manufacturers. 

Still low but constantly increasing tools support and a lack of language stability are the major 

issues preventing to recognize the EAST-ADL2 as an automotive standard. Also crucial are the 

gaps of the EAST-ADL2 with respect to company specific processes and needs and simply lack 

of engineers familiar with this relatively new language. However ongoing efforts to improve the 

EAST-ADL2 within projects such as MAENAD (Model-based Analysis & Engineering of Novel 
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Architectures for Dependable Electric Vehicles) prove the growing interest in using its 

constructs. Therefore the framework defined within this work accounts for the EAST-ADL2 

which implies employment of the EAST-ADL2/AUTOSAR methodology. 

The combination of the EAST-ADL2 and the AUTOSAR methodologies is not 

straightforward because certain decisions, done at the EAST-ADL2 level influence the activities 

of the AUTOSAR level. An important example would be an allocation of functional entities into 

the hardware elements, which is done at the design level of the EAST-ADL2 methodology. This 

determines the allocation of the runnable entities which normally would be done through the 

allocation of software components at the AUTOSAR level. Fixing the allocation on the EAST-

ADL2 level means that the allocation on the AUTOSAR level can be deducted due to the 

correspondences between EAST-ADL2 functions and AUTOSAR runnable entities. Additional 

challenge is a switch between the EAST-ADL2 and the AUTOSAR itself. These two languages 

operate on different concepts. Hence it is obligatory to define the mapping between them. This is 

presented later in this work in the subsection 5.5.1. The transformation requires additional 

activity in the methodology to specify how the functional entities will be transformed to runnable 

entities and how these generated runnables will be then embedded in the software components. 

Therefore the final, EAST-ADL2/AUTOSAR methodology would be that of presented on the 

Figure 2.5. According to it the activities of the EAST-ADL2 level remain unchanged. Next is the 

activity Generation Specification done to decide on the generation of the runnable entities and 

their grouping within the software components. Product of this activity called Generation Model 

enables to compose software architecture. The way in which runnables are grouped might be 

decided based on the distribution of the runnables implementation task among the suppliers. 

Suppliers deliver entire software component hence runnables implemented by different suppliers 

cannot be put in the context of the same software component. If the transformation model is not 

provided, generators might employ predefined strategies to handle such cases. For instance they 

might assume one-to-one mapping between atomic functions from the EAST-ADL2 level and 

runnable entities of the implementation level. Software components can be generated in one of 

the following ways: one sw component for one runnable entity, one sw component for all the 

runnables allocated on the same ECU or finally they can simply reflect the compositional 

specification done at the EAST-ADL2 level [27]. Now it is possible to directly produce the 

System Configuration Description. It is important to note that the last needs to also include the 
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specification of the SW components allocation. This can be inferred from the allocation of 

functional entities modeled at the EAST-ADL2 level and the transformation model. The activity 

Transform EAST-ADL2 to AUTOSAR which outputs the System Configuration Description can 

now be done either manually or automatically. Automatic generation is used within the 

framework proposed in this work and detailed in the subsection 5.5.1. 

 The rest of the activities and their final products remain unchanged in regards to the original 

AUTOSAR methodology. 
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Figure 2.5. EAST-ADL2/AUTOSAR Methodology 
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3. Challenges 

The diversity and scope of activities to be done when defining automotive architecture is 

substantial hence automotive domain is characterized by a vast range of challenges. This chapter 

highlights two main challenges which draw a borderline for the contributions of this work 

(section 3.2 and 3.3). Their choice is justified by presenting their significance in advancement 

towards qualitative development process. Compelling related work that confirms the fact that 

they still didn’t find appropriate handling will be cited and discussed when presenting particular 

contributions in the next two chapters. Their description follows the section 3.1 which briefly 

highlights other relevant concerns of the automotive domain. 

3.1. General Challenges 

As stated in section 1.1 different characteristics of the automotive systems contribute to their 

complexity. Among the many are their size, distributed nature, real-time constraints, safety 

requirements, conflicting requirements and sensitivity to changes. This complexity is expected to 

grow exponentially as software opens wide range of possibilities to design more efficient and 

safer vehicles. A workaround is to focus on finding new approaches for an adept design. This 

poses new challenges such as employment of model based design, handling of a distributed 

design process, establishment of standards, consideration of safety related issues in a design 

process or finally education to teach new culture of systems design. 

Challenges for Model Based Design 

These include new ways of architecture description such as the definition of abstraction layers for 

architecture specification. In order to cover these abstraction layers one of the challenges is to 

define domain specific modeling languages. They should not only provide the means to model 

elements of architecture but be sufficiently expressive to enable architecture analysis and 

qualitative exploration. 

Challenges in Distributed Design Process 

A key issue is a software engineering process which involves many first and second tier 

suppliers. This so called distributed development environment strives for new ways of 

management during the system design. First, distribution of tasks needs to be well coordinated, 

especially as there are multiply dependencies between output and input artifacts coming from 

different suppliers. Incorrect handling of this might cause significant delays in the delivery of the 
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final product. Quite notable problem is a coherency in understanding and interpretation of 

particular concepts or modeling constructs. Usage of common standards or well-known modeling 

languages such as UML or SysML can overcome this issue. Unfortunately these languages in 

certain cases are not expressive enough to model all the concerns related to the automotive 

domain. 

Challenges for Standardization 

It should be of a high interest to standardize these parts of the architecture that play crucial role 

during the synthesis process. Namely the overall architecture is built of subsystems which might 

be delivered by different suppliers. In fact subsystems itself might contain components coming 

from different vendors. Therefore to enable the communication between these components or 

subsystems it is essential to establish common communication protocols or description of 

interfaces so the synthesis will be possible. The establishment of the AUTOSAR standard and 

also the EAST-ADL2 language responds to that need. However still, incoherent interpretation of 

them leads in some cases to incompatibilities between different tools. 

Challenges for Safety 

Automotive OEMs needs to assure that their system will meet stringent constraints on fault 

tolerance and reliability. Nowadays it is not only their internal requirement driven by a desire to 

stay competitive on the market. It is prevailed through the international regulations to comply 

with safety concerns as expressed in the safety standard ISO 26262 [28]. This necessitates 

elaborating on the ways that will prove the conformance to this standard, so the vehicle can be 

considered as safe. 

Challenges in Education 

Lastly a big challenge is a switch in mentality of the software engineers’ community developing 

automotive systems. Engineers look at the system from the low level perspective such as an 

implementation code instead of a system level. If the advancements in the MDE for automotive 

are to be fully exploited, it is essential to acquaint new generation of engineers with a theoretical 

and practical knowledge related to the model based approaches. 

Since 2006 when Broy et al. [3] listed main challenges faced by the automotive domain 

significant advancements have been made. This is reflected in the numerous tools offered on the 

market, steady progress of the automotive standards (e.g. AUTOSAR or ISO 26262) and a 

research that is highly interested in the challenges posed by this industry. However there are still 
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significant deficiencies that remain unresolved. From among them this work addresses two, 

related to techniques for the optimized configuration of automotive architectures and architecture 

description specification. 

3.2. Configuration of Automotive Architectures 

Future engineering aims in optimizing not a single component of a system but the entire 

architecture from a system level perspective. This holistic approach leads to better optimization 

results as it considers the dependencies between the system components which have high 

influence on the final system non-functional properties. If a development follows a top-down 

approach, in an optimal scenario, synthesis of architecture from its components should be done at 

the abstract models level. Optimal in this case refers to the overall speedup of the design. When 

configuring architecture without awaiting the final implementation of system components, as 

soon as the implementation is done, system can be integrated and run. Even abstract model when 

synthetized can serve for further architecture evaluation using simulation or static analysis 

techniques.  This gain of time might not be noticeable in some domains, but is significant for the 

automotive systems design due to the distributed nature of this process. Of course lack of 

implementation implies deficiency of information that in many cases is necessary to lead a 

qualitative synthesis. Source code is essential to estimate the execution times of functional 

entities either using a static methods or simulation techniques. Execution times or in fact worst 

case execution times (WCET) are requisite to run schedulability analysis test which enables 

to assess feasibility of architecture but is also used throughout the search of an optimal in 

terms of end-to-end responses configuration. Their lack and desire to configure architecture at 

the early stage crave for new approaches that will still allow leading qualitative synthesis. As a 

workaround, automotive methodologies like in [29] propose to add a special activity in which so-

called time-budgets are specified. Time-budgets are specified on software components, 

establishing deadlines for the functional entities the component encapsulates. These deadlines 

represent 1) the constraints that have to be respected by the suppliers delivering the component’s 

implementation and 2) the execution times used by the system integrator to configure the 

software architecture. So far there is no satisfactory approach for time budgets assignment 

mainly due to the NP-hard nature of this problem and a lack of criteria to drive their 

specification. There is also a ubiquitous perception of what time budget should represent, 

whether constraint imposed on the worst case response or worst case execution time. If it restricts 
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WCRT their specification doesn’t account for the concurrency which results from the hardware 

resources contention due to the other components allocated on the same ECU. This implies that a 

supplier delivering a component cannot validate in isolation (out of the overall system context) if 

the implementation he will hand over, respects the time budget. Budgeting WCET overcomes this 

issue but on the other hand poses a bigger challenge. 

The related works as will be explained in more details later are characterized by certain 

deficiencies. First, most of them budget worst case response times and secondly they assume as 

an input the deployment specification. The latter simplification has a huge disadvantage. The 

deployment couldn’t have been done in a qualitative way as time values were missing. Therefore 

this work will advertise a technique incorporating an idea of interleaving the process of time 

budgets specification and deployment. For this technique to run an adequate approach to deploy 

software architecture into hardware is required. 

A considerable body of work targets the problem of deployment of distributed architectures 

and their optimization. Deployment step has a huge influence on non-functional properties of an 

automotive architecture. It impacts multiple crosscutting concerns such as the load balancing 

among ECUs or BUSes, end-to-end response times, memory consumption or safety. Number of 

possible deployment configurations increases exponentially with the number of hardware 

elements, functional entities or signals exchanged between them. Hence the space to explore is 

huge which means that the manual approaches as well as the extensive algorithms cannot be 

efficient. The deployment problem is not new and lots of techniques were already proposed. 

Nevertheless as will be shown later, none of the approaches is applicable for holistic handling of 

a deployment defined as allocation of functional entities, their partitioning in OS tasks and 

priorities assignment. Related works either consider OS tasks as allocable entities and hence the 

partitioning is out of their scope or treat the problem in stages without consideration of how the 

staged approaches might affect the final result in comparison to the holistic approach. On the 

canvas of this shortage set of contributions aroused. This is elaboration of techniques based 

on the evolutionary algorithms which are responsible for the deployment. In addition this 

work deliberates on their scalability and presents a technique to improve it. The scalability issue 

is not well addressed in other works although it is highly relevant especially in the automotive 

domain. 
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3.3. Architecture Description Specification 

Modeling languages for expressing main concepts of the automotive architectures are 

reaching a high maturity level. They also tend to be enriched with a constructs to model non-

functional properties and constraints. Hence the overall architecture description is composed of 

multiple models that relate to different concerns, spanning across abstraction layers. This leads to 

the first problem which is an overall integration. According to Broy et al. [4] an attractive vision 

is an integrated modeling approach that captures the relationship between all the models, and 

where parts of some models are generated from the models used in previous editions. Integration 

in this case boils down to the models refinement and mapping between the concepts of different 

modeling languages. The last requires defining a rigid mapping between the modeling constructs. 

This work extends also the integration to transitions between activities such as modeling, 

analysis and optimization. Concerning the integration of the activities a current problem is that 

there are numerous complementary tools that support only certain activities from the all possible. 

Separate tools serve for the modeling and synthesis, e.g. SystemDesk from dSpace [30] or 

DaVinci Developer from Vector [31]. Other set of tools can be used uniquely for the analysis 

(SymTA/S from SymtaVision [32] to run timing analysis) or just optimization during the 

architecture synthesis (SynDEx [33]). As for the modeling, there is a wide range of tools adapted 

to specific needs of the automotive domain. It is not the case for the analysis or optimization 

tools. In fact there exists no commercial tool support for optimized synthesis of automotive 

architectures. This observation demonstrates the direction of the evolution of the MDE in a 

commercial context. Namely, first need was to provide languages and tools supporting them. 

Next is functionality for analysis which starts to evolve. Then we should expect the emergence of 

the tooling for optimization or optimized synthesis. Finally it would be of a high value to 

integrate all these tools or even more, embed all the activities and their related models within one 

tool. Nevertheless for the moment tools in many cases use their own modeling constructs or 

specific interfaces to connect to them which makes the overall integration hard to accomplish. 

This work is highly concerned about the integration problem. As shown it is an 

interesting and vivid challenge of which proper handling will contribute to the speedup of the 

design process. Integration is achieved within the boundaries of the proposed framework, defined 

as an instance of an architecture framework (AF). The last implicitly serves for the integration. 

Each framework defined as an AF needs to specify correspondence rules between the models. 
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These can serve as guidelines for the designers on how to transform between models or for the 

tool suppliers to deliver automated transformations. 

The goal is not to only integrate the models but also the three activities, i.e. modeling, 

analysis and optimization. To do this a definition of an analysis and optimization models is 

substantial. The EAST-ADL2 and AUTOSAR deliver the concepts that can be used for triggering 

analysis of timing properties. The second concern can be modeled with neither of these two 

languages. This poses an interesting challenge for integrating optimization in a model based 

design. 

3.4. Conclusions 

This chapter presented essential challenges that drive the current industrial and research 

activities of automotive domain. Part of the challenges aroused due to the desire for employment 

of model based design which requires definition of languages and implementation of tools 

support. Secondly the great challenge this is safety which currently plays the dominant role in the 

further evolvement of the AUTOSAR standard. There are many other challenges from which 

those that refer to the configuration of automotive architectures and their modeling analysis and 

optimization state the main focus of this work. The next two chapters provide a set of solutions 

that further advance the current state of practices related to the challenges of interest. Chapter 4 

describes techniques for configuration of automotive architectures, in particular deployment and 

time budgets specification. Chapter 5 presents framework encompassing the modeling, analysis 

and optimization of automotive architectures by presenting modeling constructs that enable to 

integrate these activities.  
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4. Approaches for the Computer-aided Configuration of the 

Automotive Architectures 

This chapter is focused on contributions related to the computer-aided design of the 

automotive architectures. These are the techniques used for an optimized deployment of 

architectures and time budgets assignment. The beginning of this chapter, section 4.1 formalizes 

common notions used throughout this chapter. Its two subsections formalize two activation 

models, i.e. data driven and time driven correspondingly in the 4.1.1 and 4.1.2. They also 

introduce additional concepts which are specific for each of the activation models. Schedulability 

analysis test is described in the section 4.2. This test is used to assess the feasibility of the 

architecture in regards to the designated deadlines for the end-to-end flows. It is also used during 

the search of the optimal deployment configuration. Different activation models require different 

schedulability analysis tests. The following is section 4.3 which discusses a refinement of the 

EAST-ADL2/AUTOSAR methodology. The main intention of the refinement is to adapt the 

methodology to the proposed configuration techniques. This has a very pragmatic reason as the 

change allows handling the deployment problem holistically which ultimately leads to the 

amelioration of optimization metrics. This gain will be evaluated in the section 4.6, after the 

specification of the deployment techniques in sections 4.4 and 4.5. Lastly, section 4.7 is devoted 

to the time budgeting problem. 

4.1. Formalism 

As already discussed, the deployment is done at the implementation level whose 

specification follows the AUTOSAR. Therefore certain notions come directly from this standard. 

Accordingly the input system model consists of two graphs. The first one is the AUTOSAR 

execution model represented by a directed graph            in which    is the set of vertices 

representing runnables and    is the set of edges related to the links between them. Links model 

communication between the runnables and implicitly their precedence relation by specifying the 

source and receiver of the data. The second one is an undirected graph            that 

expresses hardware architecture. Nodes represent hardware resources and the edges represent 

communication links between them. The hardware resources are ECUs and communication 
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buses. The remaining notions used throughout this work were gathered in the table below for a 

better readability. 

 

Concept Definition 

  Set of ECUs 

     ECU 

  Set of BUSes 

   BUS 

      
This function returns a set of the ECUs communicating 

through the bus    

  Set of runnable entities.  

   Runnable entity 

    Period of a runnable entity 

    Response time of a runnable    

      ECU on which the runnable    is allocated 

 ⃗                            

Worst case execution time of a runnable, characterized by a 

vector of WCETs, due to the heterogeneity of the hardware 

nodes. Later in this work the second index specifying the ECU 

is omitted, just for the simplicity of the notation. 

     
Atomic software component. Its behavior is defined by the 

runnable entities. 

       
This function returns atomic software component of a 

runnable   . 

     Communication ports of runnable    

   
   Set of input ports of the runnable entity    

     
       input port of the  runnable    

   
    Set of output ports of the runnable entity    

     
        output port of the  runnable    

  Set of links 

   Link – represents an interaction between runnables 

  Set of data signals  
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Data signal – runnables exchange data through the signals on 

the links from the   

        Function returning runnable entity that sends a data signal    

        
Function returning set of runnable entities receiving a data 

signal    

    
Period of the signal   . It is equal to the period of a writer 

runnable. 

      BUS on which signal    is allocated. 

 ⃗                            

WCTT (Worst Case Transmission Time) of the signal    when 

transmitted on the BUS. It is assumed that the intra-ECU 

communication takes zero time. Also here for the sake of 

simplicity, the second index indicating the bus is omitted 

when relating to the signal WCTT. 

       Size of the data signal    

  Set of the OS tasks 

   
OS task – the code of a runnable entity executes in a context 

of an OS task 

    Period of the task    

    
Priority of the task   . Fixed priority systems are the focus of 

this work. 

      ECU on which the task    is allocated 

    
WCET of the task   . It equals to the sum of WCETs of all the 

runnables partitioned within this task, i.e.     ∑     (  )    
. 

      Task in which    is partitioned 

    
Priority of the runnable entity   . It equals to the priority of 

     , i.e.        

  Set of messages 

   BUS message 

   
 Priority of the message    

      Message that transmits the signal    

    
Priority of the signal   . It is equal to the priority of      , i.e. 

      
 

   
 WCTT of the message   . It is a sum of WCTT of all the 
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signals partitioned in this message, i.e.    
 ∑     (  )    

. 

Table 4.1. Basic Architecture Elements 

4.1.1. Data Driven Activation 

In order to describe this model, few additional concepts need to be added. These are defined 

below in the Table 4.2. 

 

Concept Definition 

               Set of transactions 

   
Transaction – each transaction is a 2-tuple,      . This work 

considers linear transactions. 

      This function returns a transaction to which runnable    belongs 

   
External event of a transaction   . Each transaction is triggered by 

an event which can be sporadic or periodic.  

   

Activation period or an inter-arrival time of an event   . Implicitly 

it is the period of a transaction   . Runnables and signals within a 

transaction inherits their period (respectively     and    ). 

   Deadline of a transaction    

   Response time of a transaction    

Table 4.2. Additional Concepts for the Data Driven Activation Model 

In the data driven activation model each transaction    is triggered by an external event   . 

Subsequent runnables are activated upon the completion of the predecessor runnable and retrieval 

of a data signal sent by the predecessor (if local) or the arrival of the message delivering the data 

values for its incoming signal (if remote). 
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Figure 4.1. Data Driven Activation Model 

4.1.2. Time Driven Activation 

The time driven activation paradigm requires defining some additional concepts. They are 

presented in the Table 4.3. 

 

Concept Definition 

               Set of paths
1
 

   

Path - each path is defined as an ordered interleaving sequence of 

runnables and signals defined as    

                             .             is the path’s source 

and             is the sink. Multiple paths may exist between 

each pair of source-sink. 

   Deadline of the path    

   Response time of the path    

    Event of a runnable entity    

  Set of shared resources 

   

Shared resource. Runnables communicate by sharing data signals 

accessed through their ports. Data signal can be communicated 

either through a shared resource or via a message passing. The 

identification of shared resources uniquely depends on the 

runnables allocation and partitioning. For each identified data 

signal communicated between runnables of different tasks but of 

the same ECU a shared resource is defined. Data signals 

                                                 
1
 Please note that a path and a set of paths use the same representation as transaction and a set of transactions. 

This is to simplify the overall representation by minimizing the amount of used notation and also due to the semantic 

proximity of these two concepts, namely transaction and path.  
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communicated between runnables of the same task don’t require 

defining a shared resource. Also, for the inter-ECU communication 

no shared resource is required as in this case data signal is 

communicated by the BUS message. 

      ECU on which shared resource    is specified 

       

Set of writer runnables, writing to the shared resource   . This work 

considers one-to-many communication hence        contains only 

one writer. 

       Set of readers of the shared resource    

      

Set of the data signals communicated through the shared resource 

  . Please note that this function returns a set, not just one data 

signal. This is because in the case of a one-to-many 

communication, all the data signals can be communicated through 

the same shared resource. 

       Shared resource corresponding to the signal    

   
 

Set of all the shared resources accessed by the input/output ports of 

the runnable    

 
     
         

    

WCET of the runnable entity    on the critical section used for 

accessing shared resources. The access is through the input/output 

port      
        

    

        

In the context of the time triggered systems this work accounts for 

an order of runnables inside a task. Runnables from different paths 

can be partitioned in the same task and hence their ordering 

influences the response times of paths (see section 4.2). This in fact 

constitutes an additional, fourth dimension of the deployment 

problem which is considered by the proposed technique (see 

subsection 4.4.5). Partitioning of runnables belonging to different 

transactions (data driven activation) is not permitted, consequently 

for the data driven activation model order is not considered. The 

index of a runnable inside a task is          . The      means that 

runnable    is at the     position in a task. 

Table 4.3. Additional Concepts for the Time Driven Activation Model 

In the time driven activation model each runnable entity    is triggered by a periodic timer event. 

Therefore the runnables are independent in a sense that the triggering of each doesn’t depend on 

the other runnables. 
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Figure 4.2. Time Driven Activation Model 

Characteristic for this activation model is communication between runnables that needs to be 

protected due to the concurrent access between writers and readers but also due to the necessity 

of preserving the semantic of a functional model (defined through the runnables and exchanged 

data signals). The last concern is called flow preservation and requires that the readers consume 

the right instances of data sent by the writers. This is not the case for the data driven 

communication as when the data is sent by the writer it is immediately consumed by the reader 

which in fact is triggered by the data arrival. Therefore the protection mechanism has to be 

specified for each data signal communicated between runnables of different tasks that are 

deployed on the same ECU. There exist two mechanisms which can be used for data protection. 

Our technique for the deployment of the time triggered systems (see subsection 4.4.5) will 

operate a choice between a time-consuming and a memory-consuming protection mechanism. 

4.2. Schedulability Analysis 

Timing analysis concerns computation of the response times for runnables and global signals 

and also computation of end-to-end responses. Schedulability analysis test differs among the two 

activation models. This implied their description within two separate subsections. 

4.2.1. Schedulability Analysis for DD 

Schedulability analysis for data-driven activation model comes from [34] and is called 

holistic analysis. The main rationale behind the choice of this schedulability test was a possibility 

to formulate it using MILP (Mixed Integer Linear Programming). The MILP was used in the 

evaluation stage (see 4.4.4, 4.4.6, 4.5.3) to look for optimal solutions to which results of proposed 

optimization technique could have been compared. The MILP formulation for more recent and 

more exact schedulability test like [35] was not possible. 
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Schedulability of Runnable Entities – to compute the WCRT of runnables this work uses the 

response time analysis with jitter propagation given in [34]. The last operates on the OS tasks 

whereas in this work it is adapted to consider the runnable entities. The WCRT     of a runnable 

entity    is computed by considering all the q runnable instances (distinct executions of    after 

activation) in the busy period, as follows in the equation 4.1. 

 

        
       

[   

   
             ]   4.1 

 

Since    is executed by a task, its release jitter     is the task release jitter (see 4.2), that is, the 

largest among all the latest release times for the runnables in the same task, which is zero if the 

runnable has no predecessor (or a predecessor within the same task), or the worst case response 

time of the signal it receives from a remote predecessor runnable (   is the signal received by   ). 

The    

   
 is the completion time of runnable    and is computed according to 4.3. The function 

       will return all the runnables allocated on the same ECU with a priority higher than that of 

the runnable   . The last part of the equation 4.3 represents the preemption time from functions 

belonging to       . When a task contains runnables with different periods, its interference is 

computed as the sum of the interferences of its runnables. The completion time is computed for 

        until the busy period ends, that is, an instance completes at or before the activation of 

the next instance. 
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Schedulability of Signals –     is computed only for signals representing an inter-ECU 

communication, otherwise it equals to 0. Its computation uses a formula similar to that for 

computing WCRT of a runnable (see 4.4). The difference is in the additional term that represents 

the blocking time     which needs to be added to the WCRT. It is an effect of impossibility to 
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preempt bus message while it is being transmitted on the bus, even if it has lower priority. This 

property applies to the CAN bus, considered in this work as a communication medium. 

According to 4.6 the blocking time for signal    equals to the maximal WCTT among all the 

messages transferred on the same bus and with a lower priority. The release jitter of a remote 

signal (see eq. 4.7) is the worst-case response time of its sender runnable represented as        . 
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                4.7 

 

End-to-end Responses Computation – the response time    of a transaction    equals to the 

response time of the last runnable entity in this transaction. 

4.2.2. Schedulability Analysis for TD 

This analysis is based on the work of [36] and adapted to consider runnable entities. 

Adaptation is due to the fact that the entities considered in the analysis of [36] focus on OS tasks 

and doesn’t consider functional entities as in our case.  

 

Schedulability of Runnable Entities - worst case response time of a runnable     for which 

         , is represented with       and computed according to 4.8. The       (see eq. 4.9) is the 

worst case computation time of the task until the     runnable partitioned in this task. Please note 

that the partitioning of the runnables with the harmonic periods in the same task is allowed. This 

means that when the task is executed not all of the runnables will be activated. Therefore the       

varies. However the worst case scenario is assumed hence this work accounts for all the 
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runnables up till the     when computing the      . The     is a blocking time of a task   . 

Blocking time depends on the shared resources accessed by the task and the way in which the 

shared resources are protected from multiple accesses. If the shared resource is protected with a 

semaphore lock, it causes a blocking time. The semaphore lock in our case is realized through the 

Priority Ceiling Protocol (PCP) [37]. The same blocking time applies to all the runnables that are 

partitioned in the same task and therefore it is computed for a task. To compute the blocking time 

with the PCP few additional things have to be clarified. First, the shared resources of a task    are 

specified with the set    
 ⋃     (  )   

. This means that the task inherits the access to the 

shared resources from the runnables partitioned in this task. The WCET of a task    for accessing 

(reading/writing) a critical section of a shared resource    is represented with   (   
  )  

            
      (   

   )              
    . Function        returns all the runnable entities 

allocated on the same ECU as   , with the priority higher than   . 

                       ∑ ⌈
     
   

⌉    
          

   4.8 

 

      ∑    
             

   4.9 

 

Schedulability of Signals - Worst case response time for a signal is computed in case when    

represents inter-ECU communication (see eq. 4.10). Otherwise the response time equals 0. This 

work just as for the data driven model considers the CAN bus to communicate distributed 

runnables. Therefore the computation of     accounts for a blocking time     which results from 

the impossibility to preempt a message that is being already transmitted on the bus, even if it has 

lower priority. Its computation was explained in the context of schedulability analysis of signals 

for data driven activation model (see eq. 4.6) and remains the same here. Function        

returns all the messages of the same bus as    with a priority higher. 
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End-to-end Responses Computation – this is a computation of a response time of a path. The 

worst case end-to-end latency     is computed for each path    by adding the worst case response 

times of all the runnables and global signals (i.e. signals representing inter-ECU communication), 

as well as the periods of all the global signals and their reader runnables on the path (see (8)). Set 

  represents all the global signals. The           is the reader runnable of    on the specific path 

   and           
 represents its period. 
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4.3. Refinement of the EAST-ADL2/AUTOSAR Methodology 

The section 2.5 and the Figure 2.5 from page 55 present the EAST-ADL2/AUTOSAR 

methodology. The change advertised in this section concerns distribution of responsibilities 

between two levels, functional level covered by the EAST-ADL2 and the implementation level 

covered by the AUTOSAR. The Design activity which is done at the functional level includes 

allocation step in which atomic functions are allocated on the ECUs. This determines the 

allocation of runnable entities due to the assumption in which runnable entities are transformed 

from the atomic functions. The mapping between these two modeling concepts is specified in the 

subsection 2.9. It is a result of their semantic proximity. The AUTOSAR level needs to respect 

this allocation decision by simply reflecting it in the runnables’ allocation. This infers that the 

deployment problem cannot be holistically considered at the AUTOSAR level as one problem 

dimension, i.e. the allocation is already fixed. Therefore a deployment technique can operate only 

on two instead of three parameters, i.e. the partitioning and the priorities assignment. This 

significantly shrinks the design space to explore and hence might exclude optimal deployment 

configurations. A sound workaround would be to perform an entire deployment at the EAST-

ADL2 level. This is however impossible as partitioning and priorities assignment cannot be done 

at the EAST-ADL2 level due to the missing concepts. This language is intended to abstract from 

the implementation objectives hence the tasks modeling is out of its scope. Consequently the 

overall methodology has to be changed. This work advocates the change in which the allocation 

is postponed till the implementation level. The gain of this change will be assessed in the section 
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4.6 by comparing the deployment techniques adjusted to the old methodology and those 

compliant with the refined methodology. 

4.4. Deployment 

The main objective of a deployment whether for DD or TD is the integration of software 

architecture with a hardware platform. The software architecture is represented by software 

components embedding communicating runnable entities which send data signals. Hardware 

platform contains ECUs and BUSes. This section presents the deployment techniques that can be 

run at the AUTOSAR level of the refined EAST-ADL2/AUTOSAR methodology in order to 

support the deployment process. There are two separate techniques adjusted to support the data-

driven and time-driven semantic of execution. The subsection 4.4.1 formalizes the deployment 

problem correspondingly for data-driven and time-driven activation models. It presents the main 

objectives driving the deployment and a set of constraints designating a correct deployment. Next 

is the presentation of a related work. Subsections 4.4.3 and 4.4.5 specify the techniques for the 

deployment. Their evaluation assessing the quality of obtained results and the scalability is done 

correspondingly in 4.4.4 and 4.4.6. 

4.4.1. Formalization of Deployment 

Deployment for DD 

The formalization of a deployment consists of three steps. First is the definition of a problem 

itself, second these are the objectives that drive the deployment process and finally it is a 

specification of constraints that need to be respected by the final, deployed architecture. 

Problem Formulation – the goal of a deployment is to: 

1) Assign the runnables from the set   to the elements of the set   which contains ECUs. 

2) Assign the signals from the set   to the elements of the set B which contains BUSes. 

3) Group the runnables from the set   to the tasks and hence define the set  . 

4) Group the signals from the set   to the messages and hence define the set  . 

5) Assign the priorities to the OS tasks. 

6) Assign the priorities to the messages. 

The steps 1) and 2) are called allocation, steps 3) and 4) this is the partitioning and 5) and 6) the 

scheduling. 
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Optimization Metrics – optimization metric can be defined based on the system requirements. 

In the context of the DD, this work accounts for two formulations aiming to optimize the same 

objective, i.e. end-to-end responses. This function is called          and can have one of the two 

forms: 

1) The minimization of the sum of all (or some) transactions latencies. It is a loose indication 

of the system performance. 

    ∑  
  

   4.12 

2) The maximization of the minimum transactional slack time. A slack time for a given 

transaction is defined as the difference between the deadline and latency of the 

transaction. This metric can be related to the concept of robustness (or extensibility) of the 

system against changes in the time parameters of some runnables. 

        
  

          4.13 

Deployment Constraints – the deployment process has to respect multiple constraints. 

1) Allocation Constraints – these constraints concern allocation and resources utilization 

constraints. 

a. Each runnable can be allocated only on one ECU. If we denote with        set of 

ECUs on which runnable entity is allocated the constraint would be of that 

presented under 4.14. 

 ⋀|      |   

    

   4.14 

b. Similar constraint as in a. applies to the signals, i.e. each signal that is global, i.e. 

represents inter-ECU communication. If we denote with        set of BUSes on 

which data signal is allocated the constraint would be of that presented under 4.15. 

 ⋀ |      |   

         

   4.15 

c. Fixed Allocation – for certain runnables allocation is constrained to the subset of 

all the ECUs. 

d. Two communicating runnables cannot be allocated on separate ECUs for which 

there is no BUS connection. Function          will return true if there is a 
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connection between the ECU    and   . The         is a source runnable of a link 

   and         represents its destination runnable. 

 ⋀        (  )                          

       

          (  )  
  

4.16 

e. Utilization Constraint – the allocation cannot exceed utilization threshold specified 

for each ECU/BUS. The    
    and    

    is the maximal utilization constraint 

specified for the ECU    and the BUS   . Values of    
    and    

    are not greater 

than one. 

 ⋀ ∑
   
    (  )   
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    (  )   

 

    

   
      4.18 

2) Partitioning Constraints – these constraints concern allocation and resources utilization 

constraints. 

a. Harmonic Rate – this constraint forbids the partitioning of two runnables/signals 

with non-harmonic periods on the same task/message. 

 ⋀                      

       

             4.19 

 ⋀                      

       

             4.20 

b. Each runnable can be partitioned only in one task. If we denote with        set of 

tasks in which runnable entity    is partitioned the constraint would be of that 

presented under 4.21. 

 ⋀|      |   

    

   4.21 

c.  Similarly as in b, each signal can be partitioned only in one message. If we denote 

with        set of messages in which signal    is partitioned the constraint would 

be of that presented under  
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 ⋀|      |   

    

   4.22 

3) Execution Order Constraints 

a. Local Total Order – this constraint prevents from having two tasks/messages of 

the same ECU/BUS being assigned the same priority. 

 ⋀   

       

                    4.23 

 ⋀   

       

             
    

 
  4.24 

b. Runnables Order – order of execution of the runnable entities influences the 

priorities assignment for tasks. Namely if the runnables    and    belong to the 

same transaction and    precedes in the execution runnable    then runnable    

should be partitioned in the task with a priority higher or equal to the priority of a 

task hosting the runnable     

 ⋀        (  )          (  )             
       

        4.25 

c. Signals Order – this constraint is analogous to the runnables order constraint. 

 ⋀        (  )          (  )             

       

       
 

4.26 

 

4) Latency Constraint – response time of each transaction should be within a predefined 

deadline. 

 ⋀     
    

   4.27 

Deployment for TD 

The formalization of a deployment for the TD follows the same principles as for the DD. 

Problem Formulation – the deployment problem in the context of the TD is more complex due 

to the additional dimension, which is ordering in addition to the allocation, partitioning and 

scheduling. The goal in this case is to: 

1) Assign the runnables from the set   to the elements of the set   which contains ECUs. 
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2) Assign the signals from the set   to the elements of the set B which contains BUSes. 

3) Group the runnables from the set   to the tasks and hence define the set  . 

4) Group the signals from the set   to the messages and hence define the set  . 

5) Order the runnables inside the tasks, i.e. for each runnable    define its index           

inside a task. 

6) Assign the priorities to the OS tasks. 

7) Assign the priorities to the messages. 

8) Assign the protection mechanism for each shared resource    from the set  . Function 

      will return the value representing the protection mechanism used to protect a shared 

resource   .  

 

Concerning the point 5) the position of a runnable inside a task has an impact on its response time 

and implicitly on a response time of a path or paths to which this runnable belongs. The 

computation of a response time       for a runnable    at the position   (see eq. 4.8) contains       

which increases with every preceding runnable, by its WCET. Consequently the WCRT will 

increase as well. 

 

Concerning the point 8) protection mechanism has to be specified for each signal communicated 

between runnables of different tasks that are deployed on the same ECU. This is due to the 

asynchronous communication between periodic runnables and hence, mechanism to provide the 

data consistency is necessary. This work considers two mechanisms: 

 Wait-free access method such as Rate Transition (RT) block [38] – this mechanism 

behaves like a Zero-Order Hold block or a Unit Delay block plus a Hold block or Sample 

and Hold (for slow to fast transitions). Its implementation consists of a switched buffer. 

This mechanism incurs negligible time overhead but it consumes additional memory. 

 Semaphore Lock (SL) – this work uses semaphore locks based on the immediate priority 

ceiling protocol. Priority of a runnable that is accessing a shared resource is raised to the 

ceiling priority of a resource. The SL, opposite to the RT, imposes no additional memory 

overhead, however it suffers timing delays in the form of a blocking time. 

In this case function       will return one of the two possible values representing a protection 

mechanism used to protect a shared resource   . Value    concerns semaphore lock, whereas    
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means Rate Transition block. Overall memory overhead    
 for ECU    is computed according 

to 4.28. 

    
 ∑    

 (  )    

  ∑    

         

   4.28 

 

The     is a memory overhead caused by the RT and is computed according to [39] (see eq. 

4.30). For this additional notation is defined. The set of readers with higher (lower) priority than 

the writer        are denoted as         ( 
       . Function        returns the size of the data 

signals in the set   . As specified before in the Table 4.3 function       returns the set of data 

signals communicated through the shared resource   . The formula 4.30 is a simplification of 

what is included in [39] as in this work preemption thresholds are not considered. 
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Below table concludes the new notation. 

 

Concept Definition 

      
Function returning the protection mechanism specified for the 

shared resource    

   
Value returned by the function   if the protection mechanism this is 

Rate Transition block 

   
Value returned by the function   if the protection mechanism this 

Semaphore Lock 
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 Memory requirement for the ECU     

      
 Stack memory usage of a runnable    on the ECU    

    
Memory overhead caused by the Rate Transition block used to 

protect shared resource 

         
Set of reader runnables of a shared resource    with a priority 

higher than the writer 

         
Set of reader runnables of a shared resource    with a priority lower 

than the writer 

       Size of the data signals from the set    

Table 4.4. Additional Notation for TD 

Optimization Metrics – the synthesis process is driven by the predefined optimization criteria. 

This work defines two optimization metrics and for each its importance can be specified by 

assigning a weight. Therefore our final fitness function       where    represents a final 

configuration, i.e. deployed architecture, is a weighted sum of two functions as in the equation 

4.32. 

                             4.32 

The two functions      and        impose the optimization of the end-to-end response times and 

the memory. 

1) End-to-end Responses Optimization – optimization of the end-to-end responses aims at 

minimizing the response times of paths, relatively to their deadlines (see eq. 4.33). Their 

optimization serves to improve the system performance. 

          | |  ∑
   
     

   4.33 

2) Memory Optimization - Optimization of memory (see eq. 4.34) aims at minimizing the 

additional memory overhead that can be caused by using the Rate Transition blocks and 

inappropriate balancing when placing runnables on the ECUs. The last is due to the 

heterogeneous nature of the ECUs. The    
    represents the worst case possible memory 

overhead caused for   ;    
    ∑       

    
∑      . Its computation assumes that each 

runnable is partitioned in one task, writer has always higher priority than all its readers 

and all shared resources are protected with the RT. 
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        | |  ∑
   

 

   
   

  

   4.34 

Deployment Constraints – the deployment for TD should respect the same set of constraints as 

specified for DD (see subsection 4.4.1). There are few additional constraints presented below. 

1) Indexes – specification of the ordering through the assignment of the indexes representing 

the position of a runnable inside a task should refer to the position of the runnables within 

a path. Namely if there are two runnables of the same path and runnable    precedes 

runnable    then the index assigned for    should be smaller than this of   . 

 ⋀        (  )          (  )      

       

            (  ) 4.35 

2) Shared Resource – each data signal communicated between the runnables of the same 

ECU but partitioned in different tasks, needs to be communicated through the shared 

resource. 

 ⋀ (       )   (       )    (       )   (       )  

    

⋁    (  )

  

 4.36 

3) Protection Mechanism – for each shared resource one of the two possible protection 

mechanisms needs to be specified. 

 ⋀                  

    

  4.37 

4.4.2. Related Work 

The literature on the synthesis and in particular, deployment is rich. It can be structured 

according to multiple criteria like the type of systems considered, optimization constraints, 

domain, and so forth. The main criteria to structure this survey over the related work are based on 

the activation semantics, i.e. whether it is data or time driven, parameters to manipulate during 

the deployment and optimization objectives. 

In order to find good solutions to deployment problems optimization techniques have been 

extensively used. A very good survey provided in [40] classifies 188 papers along multiple 

criteria such as design goals, dimensionality (single objective versus multi-objective), domain 

(embedded systems, enterprises systems, etc.), phase (architecture versus run-time optimization), 

types of constraints, architecture representation (ADL, UML, etc.), optimization strategy (e.g. 



 

 
81 

exact vs metaheuristics, etc.) and constraint handling (prohibition, penalty, etc.). What is however 

significant is that none of the surveyed papers treats the worst-case latency of the deployed 

transactions/paths as either design constraint or goal.  

The concept of end-to-end deadline has been discussed in many research works. This applies 

both to single-processor and distributed architectures. In particular, for data-driven activation 

models end-to-end deadlines were considered in the context of schedulability analysis test such as 

holistic analysis with jitter propagation used in this work [34], or model with offsets as in [35]). 

Timing analysis techniques advanced significantly, considering new activation models, 

communication protocols or more expressive tasks representations (e.g. digraph model [41]). The 

optimization of deployment has not received comparable attention. [42] and [43] proposes a 

heuristics-based design optimization algorithm for mixed time-triggered and event-triggered 

systems. Its main assumption is that the nodes (in our case ECUs) are synchronized. An 

integrated framework for optimization is proposed in [44] for systems with periodic tasks on a 

network of processor nodes connected by a time-triggered bus. Authors use Simulated Annealing 

(SA) combined with geometric programming to hierarchically explore task allocation and 

assignment of tasks’ priority and period. In [45] the process of allocation of tasks and priority 

assignment targets the optimization of system flexibility, i.e. ability to adapt to changes which is 

important for real-time systems. The possible change this is introduction of new tasks into the 

system which obviously impacts the response-times of already deployed tasks. To solve the 

problem, just as in the previous work, authors are using simulated annealing. Work of Hamann et 

al. [46] optimizes multi-dimensional robustness criteria in a complex embedded system. Their 

approach is based on the stochastic multi-dimensional sensitivity analysis technique. Authors 

consider multiple problems affecting system performance such as changes in the execution times 

of tasks but also period speed-ups, etc. Azketa et al. [47] delivers an approach based on the 

genetic algorithms that optimizes the assignment of priorities to tasks and messages and then it 

maps them on the execution platform. Similarly allocation and scheduling decisions are being 

optimized in [48] and [49] under the real-time constraints. There are also approaches which 

consider only mono-processor architectures such as [50], [51] or [52] hence for all of them 

allocation is out of scope. 

The Table 4.5 gathers all the discussed work closely related to the DD activation model and 

with a similar goal of optimizing the deployment. It can be concluded that none of these works 
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targets all the possible deployment decisions at once, i.e. allocation, partitioning and 

scheduling. 

 

Work Allocation Partitioning Scheduling 
Optimization of End-

to-End Responses 

Pop [42], [43]     

He [44]     

Bate [45]     

Hamann [46]     

Azketa [47]     

Kugele [48]     

Richard [49]     

Bartolini [50]     

Saksena [51]     

Kodase [52]     

Proposed 

Approach 
    

Table 4.5. Summary of the Related Work for DD 

Concerning the time driven activation model and the optimization objectives, the approach 

presented in this thesis is closely related to the following works [53], [54]. The [53] and [36] 

similarly as in our approach consider periodic activation and end-to-end responses as 

optimization criteria. The main difference is that the authors are considering OS tasks as an 

allocation unit and hence partitioning and ordering is fixed for them. Ferrari et al. [55] is the first 

work discussing possible strategies to protect shared data items and memory/timing tradeoffs. 

The work in [56] proposes a two-step technique for the allocation of AUTOSAR software 

components to the ECUs, taking into account protection mechanism as a parameter to specify. 

However it considers neither partitioning nor ordering. Authors of [39] and [54] also relate to the 

periodic runnables in their model. They consider additional mechanisms that can assure data 

consistency like the absence of preemption. The last can be done by defining so called 

preemption thresholds or preemption groups. In their work the allocation is fixed and hence their 
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approach is for local optimization. Interestingly, the order of runnables as the parameter to 

manipulate is considered. The Table 4.6 groups the related work and highlights their main 

features. As can be seen there is no work supporting the allocation, partitioning, scheduling, 

ordering and memory protection specification which is the desired goal of a technique 

proposed in this thesis. In addition only [54] treats the deployment in regards to the optimization 

of the end-to-end responses. 
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Zhu [53]       

Zhu [36]       

Ferrari [55]       

Zhang [56]  
2
     

Zeng [39]       

Zeng [54]       

Proposed 

Approach 
      

Table 4.6. Summary of the Related Work for TD 

4.4.3. Technique for Optimized Deployment of DD 

The technique for the deployment of the DD is based on the genetic algorithms (GA). Genetic 

algorithm is an optimization technique patterned after natural selection in biological evolution. 

Algorithm 1 is a general form of a genetic algorithm. In a GA, the space of all possible solutions 

(feasible and not feasible) to the optimization problem is encoded using a string of bits, called 

chromosome. Each bit or group of bits in the sequence typically encodes one parameter of the 

solution (such as the placement of a runnable entity or the priority of a task). Several solutions 

are generated at each round (population), starting from an initial set and then obtaining new 

                                                 
2
 Partitioning uses predefined strategy, i.e. all the runnables with the same period are partitioned in the same task. 
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solutions by a composition function (or crossover) that applies to two chromosomes and produces 

a new one or by a mutation operator that changes the bit string of a chromosome to generate a 

new one. Each new generation (or offspring) is evaluated. Some bit strings correspond to non-

feasible solutions, or dead individuals and are discarded. A set of the most promising ones is 

retained and used for computing the next generation. Each problem intended to be solved with 

the GA requires the definition of an encoding, crossover, mutation operator and fitness function. 

Encoding is what mostly differs among the problems. The same crossover or mutation operators 

can be used for different problems but in many cases their proper choice can have a significant 

impact on a capability of the GA to deliver an optimal result. In the consecutive paragraphs, this 

subsection introduces the specification of an encoding, way to generate initial population, 

crossover and mutation operators, as well as the correction mechanism which maintains the 

correctness of the chromosomes. 

Algorithm 1: GA 
1: // Define encoding, crossover, mutation operator and fitness function. 

2: // Specify the size of an initial population -       

3: Generate initial population 

4: while termination condition is not met do 

5:       Evaluate each solution from the population   

6: Generate new population   by applying the crossover and mutation operators 

7:  end while 

8: return the best solution from   

 

Algorithm 1. General Form of Genetic Algorithm 

Encoding – the encoding definition translates a solution configuration in a string of bits. In the 

placement problem, a specific solution, i.e. a single chromosome    , represents a specific 

deployment configuration, i.e. allocation of runnables/signals to ECUs/BUSes, partitioning of 

runnables/signals to tasks/messages and assignment of priorities to tasks and messages. This 

work uses the value encoding, in which each gene    (subset of bits) in a chromosome contains a 

specific value. In this case, a gene relates either to a runnable entity or a data signal. For the first, 

gene            stores the value       representing runnable’s allocation and partitioning. For 

a data signal, value stored depends whether it is a global data signal or a data signal that is 

communicated locally. Value for a global data signal will hold information about the BUS and 

the message in which it is partitioned. If this is a local data signal    the value will not have any 

meaning, as in case of the intra-ECU communication, signals are communicated through the 
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message passing and they have to be assigned neither to bus nor to message. This whether the    

is a global or local data signal depends on the values assigned for the genes relating to the 

runnable entities which exchange the   . If these genes hold the same value representing ECU 

then the signal is local, otherwise it is global.  

The gene value         for the runnable    is one number but stores information about the ECU 

number on which runnable    is allocated and the task number in which it is partitioned. The 

        for runnable    for which selected ECU is    and the task    is computed in a specific 

way, according to 4.38. The        is computed as a maximal number of runnables that can be 

hosted by one ECU without violation of utilization (for this WCETs and periods of runnables are 

used). 

                            4.38 

The gene value for a data signal, if transmitted on the bus, is computed in a similar way (see 

4.39). The        is calculated as a maximal number of signals that can be hosted by one BUS 

without violation of utilization (for this WCTTs and periods of signals are used). Figure 4.3 

presents an example of a chromosome for a specific deployment configuration. For example the 

        equals 2 which means that    is allocated on the ECU 1 and partitioned in task with index 

3 (this index defines also a priority of a task). Signal    is a local signal therefore value of its 

gene is specified as x, to show that it has no meaning. 

                            4.39 
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Figure 4.3. Example of a Chromosome for a Specific Deployment Configuration 
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Initial Population - the initial population is generated randomly but to generate correct 

chromosomes, possible range of values for each gene depends on the values already assigned to 

others. Correct means chromosome representing deployment configuration that respects the 

constraints formalized in the subsection 4.4.1. The number of the elements in the initial 

population has a high impact on the quality of results obtained but a negative influence on the 

runtime. The       will represent a number of elements in the initial population. 

Fitness Function – defines how much the solution optimizes the performance criteria. 

Chromosomes are ranked according to this function and, the higher the rank, the higher the 

probability that the chromosome is selected as a parent for a crossover or the target of a mutation. 

The fitness function used by this specification of the GA was specified in subsection 4.4.1 and 

equations 4.12 and 4.13. 

Evolution - the evolution of a population is through the selection of chromosomes with good 

fitness and applying the crossover and mutation mechanism on them. The selection of the 

crossover operator is very important for the quality of the GA solution. The operator combines 

information from two parent chromosomes. The selection of parents can be done in many ways, 

but it is always highly dependent on a chromosome fitness rate. This work uses the OX3 

crossover operator [57] with a tournament selector [58] (with size equal to 5). The tournament 

selector with size 5 will first create two sets with 5 randomly chosen chromosomes. The most fit 

chromosome from each set will be taken and these two chromosomes will be used as parents for 

the crossover. Then the OX3 operator will randomly select the “crossover points”, i.e. indexes of 

genes that will constitute the boundaries of the crossover operation. The values between these 

points are copied from the first/second parent to the second/first child in the same absolute 

position. The remaining values are copied from the first/second parent to the first/second child. A 

simple result of the application of this operator on two random chromosomes is shown on the 

Figure 4.4.  
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Figure 4.4. OX3 Crossover Operator 

The mutation operator chooses a random point in a chromosome and changes the value of the 

gene at the selected point to a new random value. If the randomly selected gene corresponds to a 

runnable, the new value is chosen from the list of available execution nodes and tasks. If it relates 

to a message, the new value is chosen from the list of available buses. Additionally the 

probability that a chromosome after selection will undergo mutation is 70% which is a 

configuration parameter. Finally if the fitness value of a mutated chromosome is worse than 

before, the mutation is rolled back.  

Correction Mechanism – is used to avoid the generation of non-feasible solutions that can be 

produced after the crossover and mutation. There are few cases in which the correction 

mechanism needs to be called. Please note that not all the constraints specified in the subsection 

4.4.1 will be violated when applying the evolution operators. 

1) Violation of Utilization Constraint (constraints 4.17 and 4.18) – in this case, the 

chromosome is modified by lowering the load of the node(s) with excessive utilization. The 

procedure randomly selects a runnable from one of these nodes and then moves it to a 

destination node, randomly selected among those that can accommodate the additional load. 

Runnables are moved until a feasible load distribution is found. 

2) Incorrect Definition of the Communication (constraint 4.16) - if two communicating 

runnables are placed on different nodes, the gene in a chromosome that relates to the signal 

exchanged between the runnables must have a number associated with one of the buses that 

connect the two nodes. This correction mechanism checks all the values of genes related to 

signals. Each time an incorrect bus is found, the procedure randomly generates a new bus 

identifier among those that are valid with respect to the runnables allocation. 
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3) Incorrect Partitioning and Ordering (constraints 4.19, 4.20, 4.23, 4.24 and 4.25) – if the 

partitioning and ordering constraints are violated the correction mechanism will reassign the 

tasks/messages to runnables/signals. This is done by defining a set of possible partitioning 

configurations for runnables/signals and then choosing randomly one of them. 

The constraint related to the observance of the deadlines assigned to transactions might also 

be violated. This is not handled by the correction mechanism as fixing such case would be too 

time consuming and would require some strategies to look for a feasible solution. In fact, the 

generation of an initial population itself might produce configurations violating this constraint. 

Nevertheless the evolution will lead to the populations with fewer chromosomes violating end-to-

end deadlines and in a best case scenario, will lead to finding configuration characterized by the 

lowest response times, i.e. the optimal one. 

4.4.4. Evaluation & Conclusions 

The evaluation of this genetic approach has two goals. Assess quality of results and 

scalability. Assessment of the first is crucial for heuristic approaches such as the GA. This allows 

tuning the operators (crossover, mutation) in a way that will increase the effectiveness of the 

approach and see if a technique is capable of finding an optimal solution. The scalability on the 

other hand is a measure of the ability to handle large use-cases such as those present in the 

automotive domain. 

The quality is assessed by comparing the solutions obtained with proposed technique to those 

which assure reachability of the optimum. The last can be an extensive search or technique such 

as the MILP (Mixed Integer Linear Programming). Naturally it would be the best to use only 

exact techniques for supporting the deployment, but as it will be shown, these are not scalable. 

Conclusions on scalability are made basing on the runtimes of the proposed GA technique and 

observations of how the quality decreases with the size of the input architecture. 

Quality of Results – the optimal configurations for deployment as defined in this work for DD 

activation model are obtained using a MILP technique. The MILP formulation comes from [59]. 

A standard form of a MILP program is shown under eq. 4.40. The                is a vector 

representing a solution to the problem. Search of this aims to maximize the objective function 

and needs to satisfy a set of constraints. There exist many solvers handling MILP formulations. 

The one used in this work is CPLEX. This technique will be used to solve other problems 

presented later in this thesis. 
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4.40 

First set of examples these are randomly generated small use-cases. Their specification shows 

the Figure 4.5 together with the hardware architecture on which the runnables will be deployed. 

In all these systems the WCETs of runnables and the WCTTs of signals are the same for all 

nodes and buses. The maximal utilization constraint is set to 1 for all the nodes and buses. There 

is one software component per runnable entity which means that there is no constraint which 

would bind the allocation of more than one runnable. This is not presented on the Figure 4.5 for 

the sake of simplicity. The next, Figure 4.6 presents the solutions obtained with our technique but 

also with the MILP. The optimization metric corresponding to these results is the maximization 

of the minimal slack (see eq. 4.13). The value of minimal slack is displayed for each found 

configuration from the Figure 4.6. The similarity of the obtained results for the two techniques 

proves a high quality of our approach when used for the small use-cases. When driving the 

deployment with the second metric, i.e. minimizing the sum of all the response times of the 

transactions (see eq. 4.12) proposed technique delivered the same, optimal results as MILP. The 

resulting configurations are the same for the use cases 1, 2, 3, 4 and 6. The solution for the use 

case nr 4 is different as shown on the Figure 4.7. 
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Figure 4.5. Simple Use-Cases 
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Figure 4.6. Solutions for the Simple Use-Cases obtained with the Metric 4.13 
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Figure 4.7. Solution for the Simple Use-Case nr 4 obtained with the Metric 4.12 

These tests were run with an initial population       set to 1000. The criterion used for 

stopping the execution of the GA, i.e.        was that 20 consecutive evolutions bring the same 

result, i.e. the best configuration from the population doesn’t change. Also when going to the next 

iteration of the proposed GA, the best configuration from the previous population will replace the 

worst configuration from the evolved population. Of course this happens only if the worst 

configuration from the new population is worse than the best from the old one. 

Similar comparison between the MILP and GA techniques was done for a medium size use-

case combining a Cruise Control System [60] and a Brake-by-Wire [61]. For both the obtained 

result was the same which implies that GA reached the optimum. The optimal configuration has 
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one transaction per one ECU, and for each transaction one task. The values for the minimal slack 

and latency are respectively 7.45 and 68.27. 
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Figure 4.8. CCS + ABS System 

In order to assess the quality for the larger use-cases a specific approach was used. This is due 

to the complexity of the problem to solve which turned out to be too complex even for the MILP 

technique and the CPLEX solver. Already for the use case with 40 runnables CPLEX returned 

with an out of memory error although run on a powerful machine, i.e. AMD Opteron™ 6164 HE 

processor (12 cores) running at 1.7 Ghz with 48GB of memory. In general CPLEX might finish 

computation with an error message not providing any result or it stops with an out of memory 

message. In the second case, it returns a result, however it is not sure whether it is optimal. 

Therefore specific use-cases were established for which optimal configurations (solutions) can be 

inferred. This has been done by first fixing a simple use-case shown in the Figure 4.9. For this 

use-case the optimal configuration contains only one task with all the runnables partitioned to it. 

Once the simple use-case has been fixed, other use-cases were found by replicating the simple 

use-case. This means that, each transaction, runnable, ECU and BUS is replicated. Hence when 

replicating by 11 the obtained use-case consists of 55 runnables, 11 ECUs and 11 BUSes. Also 

each ECU is connected to the original bus and all the replicas. For the replicated use-cases, the 

set of optimal configurations is characterized by having each ECU containing only one 

transaction (no inter-ECU communication). It is irrelevant for the transaction on which ECU it 

will be placed as the ECUs are homogenous due to the replication. This means that instead of 
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only one optimal configuration, their number equals to the number of combinations for the 

distribution of transactions on ECUs, assuming only one transaction per ECU. 
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Figure 4.9. Non-replicated Use-Case 

The first set of tests used the following set of parameters for the GA:            and 

         . The Figure 4.10 shows the difference between the optimal results and these 

obtained with the GA. Starting from the replication factor 6, i.e. 30 runnables and 6 ECUs, the 

obtained result was not optimal. Until the replication factor 11, starting from the 6
th

 one, the sum 

of WCETs was on average 11,9% worse. The same use-cases were considered for the different 

configuration of the GA:             and          , i.e. with the bigger population. This 

gave an optimal result for all the replication factors but with the cost of an execution time. The 

two GA configurations were also launched for the replication factor 25, i.e. 125 runnables and 25 

ECUs. The first GA configuration gave a fitness value 0,9486667 and the sum of WCETs equal 

163,5. The optimal sum is 125. The second GA configuration returned fitness value 0,96666664 

and the sum of WCETs 150. 
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Figure 4.10. Comparison of the Optimal Solution with the Solution obtained with the GA. 

Scalability – the Figure 4.11 compares the runtimes of the same GA with different number of 

initial population elements, i.e. 1000 and 50000. The use cases are the same as on the Figure 

4.10. The runtime increases with the increase of the initial population. Nevertheless 2,82 hours of 

runtime for solving the use-case with replication factor 11, is acceptable.  The runtimes for the 

replication factor 25 for the first and second GA configurations were correspondingly 0,88 hours 

and 19,72 hours. On an average the runtime of the second GA configuration is 42,7 times bigger.  

It is close to the expected value 50 as the initial population is 50 times bigger. The main reason 

why it is not perfectly close to 50 is due to the stopping condition which can lead to the different 

number of iterations. Therefore the average time was compared by proportionally computing the 

time it takes to run 100 iterations for each GA configuration. Then by comparing the times the 

runtime of the second configuration turned out to be 48,12 bigger than for the first GA 

configuration. 
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Figure 4.11. Runtimes for the GA with Different Initial Population 

This part discussed adaptation of the GA technique to solve the deployment problem for the 

DD systems. It shows the applicability of the GA to holistically solve the deployment. Set of tests 

performed proves a high quality of obtained results. For those input architectures for which MILP 

was able to return solution with no error, GA was providing the same, optimal configuration. For 

larger use-cases the quality was increasing with an augmentation of the initial population size. 

This naturally causes the runtime increase but 2.82 hours can be easily considered as a small 

runtime to handle 55 runnables, 11 ECUs and BUSes. Even the runtime of 19.72 hours is 

acceptable (problem with 125 runnables, 25 ECUs and BUSes) as the benefit of providing a 

better configuration has a much higher value than the time spent to find it. 

4.4.5. Technique for Optimized Deployment of TD 

Technique for the deployment of TD similarly as in 4.4.3 is also based on the genetic 

algorithms. Although the nature of the problem is the same there are differences which influence 

the final specification of a genetic algorithm such as the encoding. The following description 

highlights these aspects of the GA for solving the deployment of the TD that differs from the 

previous specification. 

Encoding – this encoding is also based on so called value encoding, in which each gene    

(subset of bits) in a chromosome contains a specific value. Each gene relates either to a runnable 
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entity or a data signal. For the first, gene            stores the value       representing 

runnable’s allocation, partitioning and order, i.e. its index inside a task. For a data signal, value 

stored depends whether it is a global data signal or a data signal that is communicated locally. 

Value for a global data signal will hold information about the BUS and the message in which it is 

partitioned. If this is a local data signal   , value depends on whether    is communicated through 

the shared resource or no. For the first case, value represents one of the two mechanisms, either 

   (value = 1) or    (value = 2). For the second, value equals 0. 

The gene value         for the runnable    is one number but stores information about the ECU 

number on which runnable    is allocated, the task number in which it is partitioned, and the 

position (order) inside the task. The         for runnable    for which selected ECU is   , task    

and position   is computed in a specific way, according to 4.41. The        is the maximal 

number of runnables that can be allocated on one ECU and         is the maximal number of 

runnables that can be partitioned in one task. These values are automatically initialized before 

running the GA. The        is computed as a maximal number of runnables that can be hosted 

by one ECU without violation of utilization (for this WCETs and periods of runnables are used). 

The         is computed based on the maximal number of runnables with harmonic periods. 

                                                  4.41 

 

The gene value for a data signal   , if transmitted on the bus, is computed in exactly the same 

way as in the case of the DD (see 4.39). If this is a local signal the gene value as mentioned 

before can be either 1 which relates to the SL (Semaphore Lock) used as a workaround to protect 

shared resource        or 0 to refer to the RT (Rate Transition block). Of course for some cases 

the shared resources and in consequence the specification of a protection mechanism is not 

necessary. The Figure 4.12 presents an example of a chromosome for a specific deployment 

configuration. For example the         means that the runnable    is allocated on the ECU nr 2, 

partitioned on the task nr 2 with an index equal 1. Signal    is a local signal that needs to be 

transmitted through the shared resource with specific protection mechanism. In this case 

          which means that        is protected by the semaphore lock.  
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Figure 4.12. Example of a Chromosome for a Specific Deployment Configuration in the 

Context of the TD 

Initial Population – the principle of generating the initial population is the same as in the 4.4.3. 

The generation produces correct chromosomes, i.e. they represent deployment configuration that 

respects the constraints formalized in the subsection 4.4.1. 

Fitness Function – the fitness function used by this GA was specified in the subsection 4.4.1 

under equation 4.32. 

Evolution - the evolution of a population reuses the same mutation and crossover operators as in 

the context of the DD.  

Correction Mechanism – the deployment of the TD extends the constraints specified for the 

DD. Therefore the correction mechanism for TD apart from accounting for the base constraints 

needs to also respond to the violation of those additional.  

1) Incorrect Indexes (constraint 4.35) – if the assignment of an index for the runnable is not 

coherent with the constraint 4.35, the correction mechanism will first find the values of 

correct indexes for this runnable and then will randomly choose one of them. 

2) No Protection Mechanism for Shared Resource (constraints 4.36 and 4.37) – all the signals 

that require the shared resource needs to be identified and for them a protection mechanism 

needs to be selected. 

4.4.6. Evaluation & Conclusions 

The evaluation has the same goal as in the case of the DD, i.e. assess the quality of the results 

and the scalability by measuring the runtimes. This subsection will also provide an evaluation 
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against approaches with none or partial partitioning. Their characteristic and occurrence in the 

current state of the art will be discussed later within this subsection. This comparison aims to 

show the improvement that can be gained in regards to the optimization metrics, if the 

partitioning is fully supported. All the tests will be run considering two configurations of the 

fitness function. First configuration focus only on the optimization of the end-to-end response 

times which means that the weight responsible for the memory optimization equals 0, i.e. 

                         . In the second configuration the                    

          . 

Quality of Results – in order to assess the quality of results obtained with the GA, this technique 

was compared to the results obtained with the MILP. The problem of finding optimal 

configuration in the context of the TD is even more complex as for the DD due to the necessity 

for specifying the ordering. Consequently this evaluation uses similar approach serving to create 

use-cases for which the optimal configuration can be inferred. The initial use-case that will be 

replicated is that of presented on the Figure 4.13. The utilization constraint for the ECU 1 and its 

replicas equals 1. Each runnable is included in one software component. Please note that the 

replication assumes no changes for the characteristics of the ECUs/BUSes and therefore the 

WCETs/WCTTs of runnables/signals are the same on each ECU/BUS. For this non-replicated 

case, with the only optimization of response time, the set of optimal configurations contains any 

possible partitioning, and for each shared resource (if any) the protection mechanism is the RT. 

The left configuration presented in the Figure 4.14 is an example of an optimal solution for the 

simple use-case. For the replicated use-cases, the set of optimal configurations is characterized by 

having each ECU containing only one path (no inter-ECU communication). The right 

configuration from the Figure 4.14 shows an example of an optimal solution for the simple use-

case if the fitness function accounts for the response-times and memory optimization. The entire 

path should be partitioned in one task. The replicated use-cases are optimally configured if each 

ECU contains only one path, partitioned in one task. 
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Figure 4.13. Non-replicated Use-Case with TD Semantics 
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Figure 4.14. Optimal Configurations for Non-replicated Use-Case 

The test results for the two metrics and two techniques (MILP and GA) are displayed on the 

two graphs Figure 4.15 and Figure 4.16. Indexes on the horizontal axes express the factor for the 

replication. As can be seen on the Figure 4.15, when architecture has been multiplied 6, 9, 10 and 

11 times, the solver didn’t return any solution. This was due to the returned error. For the factor 

5, 7 and 8, the CPLEX finished execution with “out of memory exception”. Nevertheless for the 

factor 5, returned result is optimal, which is not the case for 7 and 8. The GA for all the 

replication factors was able to return the optimal solution. The similar tests were run with weights 

0.5 for the end-to-end responses and 0.5 for the memory optimization (see Figure 4.16). Already 

for the replication factor 5 the returned result was not optimal and starting from 9, CPLEX didn’t 

provide any result. The degradation of the results given by the GA, started from factor 8. In 

general, the reason for this is that when using equal weights for the latency and memory 

optimization functions, the set of optimal configurations is smaller than if optimizing only end-

to-end latencies. This is due to the fact that optimal solutions only have the runnables of the same 

path partitioned in the same task. 
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In all of those use-cases the GA was run with an initial population of 10000. The algorithm 

stops if during the 30 consecutive evolutions, the fittest chromosome doesn’t change. When the 

GA was run on the population of 100000 it reached the optimal solution for the second metric 

and the replication from 8 to 11. This however increased the runtime to around 12 hours on a 2.4 

GHz single processor computer with 8GB of memory. 

 

Figure 4.15. Results for MILP and GA (               

 

Figure 4.16. Results for MILP and GA (                          

 

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

1 2 3 4 5 6 7 8 9 10 11

Fi
tn

e
ss

 V
al

u
e

 

Replication Factor 

MILP GA

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

1 2 3 4 5 6 7 8 9 10 11

Fi
tn

e
ss

 V
al

u
e

 

Replication Factor 

MILP GA



 

 
101 

Scalability – the below charts display the runtimes needed to accomplish the previous tests. 

MILP on average gives the results in a shorter time. Concerning the Figure 4.17 the time was on 

average 41 times lower. This result would be much better if not the long execution for the use-

case with the replication of 6 times. Running this use-case CPLEX experienced the problems 

with the memory and finally after the long run it returned with an error message. Similar problem 

occurred for the replication by 11 as is visible on the Figure 4.18. Although this decreased the 

advantage of the MILP runtime, it is still 36.7 times faster than the GA. Nevertheless the 

runtimes of the GA although much worse are still very acceptable, as finding the deployment 

with 55 runnables and 11 ECUs took only 1.01 hour when accounting only for timing responses 

and 1.4 hour when considering also the memory. Additionally the advantage of the GA runtimes 

is that they are predictable. Their increase was steady without any unexpected long runs as was 

the case for the MILP and the CPLEX solver. 

 

Figure 4.17. Runtime for MILP and GA (               
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Figure 4.18. Runtime for MILP and GA (                          

Evaluation Against Approaches with None or Partial Partitioning – this set of tests shows the 

added value of considering the partitioning. It will compare the results obtained with the GA with 

those that doesn’t consider the partitioning (which is the case for [36]) or approaches that 

consider only partial partitioning, i.e. only runnables of the same period can be merged together 

(the case for [56]). The last two were implemented in MILP hence for them the obtained results 

are optimal in case when solver returned the result without error. The tests were run on a set of 

random input architectures. 

Figure 4.19 and Figure 4.20 show that consideration of the partitioning has an impact on the 

optimization metrics. For the fitness 1.0 for the          (Figure 4.19) the GA obtained results 

34.87% better than those with no partitioning and 16.48% from those with partial partitioning. 

For the last use-case, i.e. 35 runnables, 5 ECUs and 5 BUSes, MILP didn’t provide any solution. 

Please note that for all of the approaches the same schedulability test is used (see subsection 

4.2.2). Hence the metric improvement is a consequence of the constrained design space for the 

approach with partial and no partitioning.  

Considering the Figure 4.20, the results of the GA were 6.8% better than those obtained with 

the approach disregarding partitioning, and 5.7% better from those which limit partitioning to the 

same periods. Let us note that for 35 runnables, CPLEX didn’t return any result. 
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Figure 4.19. Comparison using Fitness Function (             ) 

 

Figure 4.20. Comparison using Fitness Function (                        ) 

Similarly as in the case of the DD, genetic algorithms are applicable for solving the 

deployment also in the context of the TD systems. In addition to the standard evaluation, i.e. the 

quality and scalability, several tests were run to compare with the state-of-the art techniques. The 

results show the significant improvement of the system timing and memory consumption if the 

partitioning is handled by the optimization technique. The last is not the case for the current 

approaches. 
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The two proposed techniques (subsections 4.4.3and 4.4.5) which try to solve the deployment 

problem as defined for the DD and TD in one step are very efficient for the medium-sized input 

architectures, i.e. those that contain around 50 runnables. It is however desirable to be able to 

tackle problems of larger sizes, i.e. with 200 runnables and more. This motivated the work on 

improving the holistic approach. Result in a form of so called Two-Step Approach is described in 

the next section. 

4.5. Two-Step Approach 

It was shown that the quality of the results given by the GA can be improved by increasing 

the population size. This however leads to the increase of the algorithm runtime. In order to 

improve the results without boosting the runtime this section presents a two-step approach called 

in this work TSDA (Two-Step Deployment Approach). The TSDA is a heuristic which 

fundamental part is a combination of two strategies: divide-and-conquer (DaD) and iterative 

improvement.  

The DaD strategy serves in this case to organize the deployment into two sub-problems. 

These sub-problems differ depending on the activation model. For the DD the two steps are: (1) 

allocation of tasks/messages on ECUs/BUSes and (2) partitioning and scheduling of 

runnables/signals in tasks/messages considering the allocation from the previous step. The Figure 

4.21 describes the principle of the TSDA. Please note that the first step, i.e. the allocation is done 

for tasks and messages. This means that the tasks and messages are defined, i.e. the partitioning 

of runnables/signals is known as well as priorities assignment. Therefore the tasks/messages 

allocation will determine the runnables/signals allocation which then can be repartitioned in the 

second step to improve the configuration. The solution for the partitioning and scheduling comes 

either from the Step 2 and is delivered with the inner loop or in the case of the initial run of the 

algorithm, it comes as an “initial configuration”. The last can be provided by the designer or with 

some predefined strategies, e.g. one runnable/signal to one task/message or randomly generated. 

The evaluation subsection 4.5.3 will study the influence of the initial configuration (IC) on the 

final result. 

The iterative improvement guides the solution towards the optimum. This strategy is 

implemented at two levels of the proposed algorithm; inner and outer loops. The inner loop tries 

to find an optimal system configuration by applying iteratively an optimization sequence until 

convergence which is reached if two consecutive inner iterations deliver the same result. As it 
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can be seen on the Figure 4.21 the inner loop embeds two phases. These are (1) optimization of 

the tasks/signals allocation (Step 1) and optimization of the partitioning and scheduling of a given 

allocation (Step 2). The final result of an inner loop might represent a local optimum. In order to 

escape from the local optimum, the outer loop is used. This requires providing a new initial 

configuration. 

Optimize tasks/signals allocation

Provide initial configuration

Optimize partitioning and scheduling for 

a given allocation

Found convergence

Store obtained solution

Close to estimated 

optimum or timeout

outer loop

NO

inner loop

NO

YES

Return the optimum among the stored 

solutions

Step 1

Step 2

YES

 

Figure 4.21. The Two-Steps Deployment Approach (TSDA) 

4.5.1. GA Formulation for the Two-Step Approach 

This subsection provides the specification of the genetic algorithms used to solve the two 

main steps of the TSDA approach, i.e. Step 1 and Step 2. All the other phases of the TSDA are 

intuitive. The “Provide initial configuration” was discussed before. Test for checking the 

convergence (“Found convergence”) simply compares the fitness values of the previous and the 

current solution obtained within the inner loop. If convergence is reached, the solution will 

simply be remembered so later it can be compared at the level of the outer loop (block “Store 

obtained solution”). The decision block “Close to estimated optimum or timeout” is a simple 
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condition that will check if the solution is satisfactory in regards to the optimization metric or 

whether the overall runtime of the approach reach the predefined timeout. The last block simply 

returns the best configuration from among all the stored solutions. 

 

A GA Solution to the Allocation Problem (Step 1) 

Encoding – in the allocation problem, a specific solution, i.e. a single chromosome    , 

represents the allocation of tasks onto the processing units, and messages on buses. Each gene 

relates either to a task or a message. For the first, gene            stores the value       

representing task’s allocation. For a message    its corresponding gene            holds 

value of the allocation BUS. The Figure 4.22 presents an exemplary chromosome for a specific 

tasks/messages allocation. 

r1 r3

r4 r5 r6

τ3 τ4

τ2 τ5

ECU 1 ECU 2

s1

BUS 1

CHROMOSOME

s4

r2

τ1
s2

s3

m1

m2

1 11 2 1 1 2

τ3 τ1 m1 τ4 τ2 m2 τ5

 

Figure 4.22. Example of a Chromosome for a particular Allocation Configuration 

Initial Population - population is generated randomly, i.e. for each task gene, a random number 

representing its execution node is assigned. However, the initial population does not contain 

solutions which violate the utilization constraints. Therefore if a generated chromosome leads to 

the violation of a utilization constraint, a correction procedure is being called. 

 

Fitness Function – the fitness function is the same as specified for the technique for the holistic 

deployment of the DD (see 4.4.1). 
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Evolution – the evolution operators are the same, i.e. OX3 crossover operator and mutation 

operator that randomly choice a gene to change its value (considering only the correct ones 

during the change). 

 

Correction Mechanism - in the case of the violation of utilization constraint, the chromosome is 

modified by lowering the load of the node(s) with excessive utilization. The procedure randomly 

selects a task from one of these nodes and then moves it to a destination node, randomly selected 

among those that can accommodate the additional load. Tasks are moved until a feasible load 

distribution is found. Incorrect definitions of the communication are also fixed. If two 

communicating tasks are placed on different nodes, the gene in a chromosome that relates to the 

message exchanged between the tasks must have a number associated with one of the buses that 

connect the two nodes. Our correction mechanism checks all message values. Each time an 

incorrect bus is found, the procedure randomly generates a new bus identifier among those that 

are valid with respect to the tasks placement. 

 

The GA Formulation for the Partitioning and Scheduling (Step 2) 

After the definition of the runnables and signals allocation (implicitly by the placement of 

tasks and messages) the maximum number of new possible tasks and messages for each node and 

bus can be computed as the number of runnables or signals allocated on the resource. Also, 

signals that result in local communications are not represented in chromosomes. For the second 

step, only the encoding, the generation of the initial population and the correction mechanism are 

described. The crossover mutation operators follow the same logic as in the allocation stage. The 

fitness function is the same. 

Encoding - each gene represents a runnable or a signal exchanged among CPUs. The value of the 

gene is the index of the task or message executing the runnable or transmitting the signal. The 

index of a task or message also represents its priority, and its period is the gcd of the 

runnables/signals mapped onto it. In the case of the configuration from the Figure 4.22, the 

system partitioning and scheduling is represented by the chromosome shown in the Figure 4.23, 

where    is executed by    (with priority 1). 
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CHROMOSOME

r1 r2 s2 r3 r4 s3 r5 r6

3 1 1 4 2 2 5 5

 

Figure 4.23. Example chromosome for the Partitioning and Scheduling Configuration 

Correction Mechanism - called when a new chromosome is generated as part of the initial 

population or after the crossover and mutation enforces the order of execution constraints. The 

range of values for a gene is constrained by the values assigned to other genes. If runnable    

precedes   , and the gene representing    is assigned to a task with priority    , then    should be 

partitioned on the same task or a task with priority lower than    .  

4.5.2. Establishment of the Global Order 

The Step 1 takes as an input configuration which is either the “initial configuration” or the 

configuration obtained from running the Step 2. The problem that occurs is that the priorities 

order between the tasks and messages delivered with the input configuration is local (local order). 

This means that the priorities relation holds valid within the boundaries of a single ECU/BUS 

(note that the input configuration provides information about the specific allocation). Valid 

means that it obeys the constraints as specified in 4.4.1. However in the global context, i.e. when 

looking for a new allocation for given tasks/messages, the local order might no longer be valid 

for all the allocation configurations. Therefore it is necessary to establish a global order out of the 

local, i.e. the one that will be valid for all tasks/messages allocation combinations. To ease the 

understanding let’s consider an example input configuration as visible on the Figure 4.24 and 

assume that the task/message index represents its priority and the higher the index the higher is 

the priority. Such input configuration can result from the GA run. The Step 1 will take from this 

configuration only information about the partitioning and scheduling and will look for an optimal 

allocation (of course it might happen that the allocation from this figure is in fact the optimal 

one). Considering such partitioning and scheduling certain, possible allocation configurations 

might be invalid in regards to the local total order and runnables order constraints. For example a 

configuration in which    is allocated on ECU 2 will violate the local total order constraint 

because    should be partitioning in task with a priority higher than the priority of a task hosting  

   or partitioned on the same task. Therefore the technique developed for the Step 1 wouldn’t 

allow such configuration. This is however not the best solution because it shrinks the space of 
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possible configurations to consider. A workaround is to establish priorities order called in this 

work, the global order. The main feature of a global order in regards to the local order is that for 

all the configurations in which local order holds valid, global order is also valid and gives the 

same results for the schedulability analysis test. The global order for the example from the Figure 

4.24 is shown on the Figure 4.25. Please note that on this figure the priorities are not represented 

with the task indexes but with an additional notation        
. 
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Figure 4.24. Example of the Input Configuration 
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Figure 4.25. Global Order for the Example of the Figure 4.24 

The following is a presentation of a MILP formulation (parameters, constraints and objective 

function) used to establish a global order for an input configuration of Step 1. 

Parameters: the parameters are the tasks’ and messages’ priorities        
. 

Constraints:  

1) Local order constraints – the global order should respect the properties of the local order, 

i.e. the priorities order between the tasks/messages belonging to the same ECU/BUS. 

2) Global runnables order – this constraint is similar to the runnables order constraint 

specified in 4.4.1.  The last is specified in the context of an ECU/BUS whereas in this 

case the context is global. 
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3) Global signals order – this constraint is analogous to the above “Global runnables order 

constraint”. 
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4) Minimum & maximum constraint – this constraint specifies the minimal and maximal 

allowed value for the task/message priority. 

 
⋀      | |
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Objective Function: there is no optimization objective driving the search of the global order. 

The only goal is to find priorities that will respect all the above constraints. 

4.5.3. Evaluation & Conclusions 

The evaluation has the following objectives: (1) compare the quality of results obtained with 

the TSDA and the holistic approach, (2) compare the runtimes of the TSDA and the holistic 

approach and (3) see how the different initial configurations influence the final result. 

The evaluation of the results quality is based on the same use-case as defined in 4.4.4 under 

the Figure 4.9 and its replications. It was shown that for them the optimal solution is known. In 

this set of tests the initial configuration was very simple, i.e. one task per one runnable entity. The 

Figure 4.26 shows an initial configuration for the simple use-case where the index of the task 

represents also its priority. The higher the value the higher is the priority. The rule for the initial 

configuration of the replicated use case is that the runnables’ replicas will have the task with a 

priority smaller than that of the original runnable by the factor 5*replica_index. For instance for 

the replication factor 2, all the replicated runnables have the replica index equal 1, i.e. runnable    

where               will have only one replica,     . Runnable    will be partitioned in task 
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with priority 10 and its replica,      on the task with priority 5. Similarly each signal is partitioned 

in one message and the priority of the message equals the priority of its sending task. 
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s1

(P = D = 30)
1 11
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C = 1r 4

C = 1r 5
C = 1r1

C = 0.5s 2
C = 0.5s 3

C = 0.5s 4
C = 0.5s
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m3
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Figure 4.26. Initial Configuration for the Simple Use-Case 

The comparison of the results obtained with the One Step GA (OS-GA) and the GA Two 

Steps Approaches (TSDA-GA) in regards to the optimal solution is shown on the Figure 4.27. 

Both were run with the initial population of 1000 chromosomes, i.e. OS-GA and the Steps 1 and 

2 of the TSDA-GA. The GA One Step was already evaluated in the context of these use-cases 

and it was shown that starting from the replication factor 6 it didn’t provide an optimal result. On 

average the sums of WCRTs were 11.9% worse when considering only those input architectures 

for which the provided solution was not optimal. The TSDA-GA didn’t give an optimal solution 

already for the factor 5, however for the 7 the optimal solution was reached which wasn’t the 

case for the OS-GA. These results were 10,62% worse from the optimal result, accounting for 

those use-cases for which result was not optimal. This shows that in this set of tests the TSDA-

GA performed better. The TSDA-GA was also tested for the replication factor 25 and the 

obtained sum of WCRTs was 136,5 which is only 9,2% worse than the optimal solution. This 

result is much better from the OS-GA which was 163,5 when run on the same population. In fact 

the result was still better from the OS-GA when the last was run on the population with 50000 

chromosomes. The sum of WCRTs that it returned was 150. For this size of a population the 

TSDA-GA improved the result and returned 133. The TSDA-GA was also tested with the 

replication 50 which gives us 250 runnables, 50 ECUs and 50 BUSes. The optimal sum of 

WCRTs is 250 and the obtained result was 281 which is 12,4% worse. 
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Figure 4.27. Comparison of the Two Steps Approach with the Holistic Approach and the 

Optimal Solution 

The significant feature of the TSDA-GA is that it provides good results for larger use-cases in 

a time that is comparable to the runtime of the OS-GA or even better. For small use-cases its 

runtime is worse. This is due to the fact that although the optimal result might be found in the 

first iteration of the inner loop, the second iteration needs to be run to check whether the 

algorithm converges. This overhead is negligible for the larger use-cases. Therefore as it can be 

seen starting from the replication factor 7, the runtimes of the TSDA-GA were better, with only 

exception for the replication factor 11, where the runtime of the OS-GA was only slightly better. 

Concerning the replications by 25 and 50 the runtimes were correspondingly 1809,623s (0,5h) 

and 7352,271s (2,04h) which is highly acceptable. The OS-GA with replication 25 returned result 

after 0.9h which is almost twice longer. These results were for the initial population of 1000. 

When run with 50000 initial chromosomes the runtime of the TSDA-GA for the replication 25 

was 41102,221s (11,42h) and for the OS-GA 70980,911s (19,72h). 
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Figure 4.28. Runtimes of the OS-GA and the TSDA-GA 

The above tests were run with the specific initial configuration assuming one task per one 

runnable and analogously for signals, each of them was partitioned in a separate message. There 

might be multiple other configurations to consider. Their number equals to the amount of 

combinations for the correct partitioning and scheduling respecting the constraints from the 4.4.1 

(both for the DD or TD) plus the constraints specified for the global order. The choice of the 

initial configuration highly impacts the final result but also the number of the iterations until 

convergence which has an implicit effect on the runtime. The following tests are performed to 

show this. The chosen use-case is the one from the Figure 4.8 which is a combination of the 

Cruise Control System and the Anti-lock Braking System. The considered initial configurations 

are shown on the Figure 4.29. This figure discards the information about the periods, deadlines, 

WCETs, etc. This timing information was already included in the Figure 4.8.  
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Figure 4.29. Initial Configurations for the ABS + CCS 

When running the OS-GA on this use-case the obtained sum of WCRTs was 68,27. This is 

the optimal solution which was proven by obtaining the same result using the MILP formulation 

from [59]. The table below (Table 4.7) shows the results obtained with the TSDA-GA 

considering different initial configurations. This table also shows the intermediate results 

obtained in each iteration and also in each step, i.e. allocation (Step 1) and scheduling & 

partitioning (Step 2). The first and second initial configurations didn’t lead to the optimal 

solution. The strategy employed in the initial configuration 1 is the same as in the IC used in the 

previous tests. This strategy delivered optimal results for the replication factors 1 to 5 and 7 but 

in this example it proves not to be the best choice. Importantly, the intermediate results were 

always optimal (i.e. results obtained for the Step 1 and 2). This knowledge is due to the 

comparison to what has been obtained with the MILP formulation present in [59]. The last was 

specified for each step, i.e. Step 1 and 2. This confirms that the problem lies not in the technique 

implementing consecutive steps but in the initial configuration itself. The same result is delivered 

when using the IC 2. The optimal solution was reached for the third initial configuration. Worth 

noting is also the number of iterations that differs among the initial configurations. The IC 3 

hasn’t only lead to the best solution but reached it in two iterations. In fact this result was 
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obtained after one iteration but in order to evaluate the convergence, the second iteration had to 

be run as well. 

 

Iteration 

Initial Config. Step 1 2 3 4 5 

1 
1 112,69 96,67 78,8 72,75 71,82 

2 103,09 81,85 76,23 71,82 71,82 

2 
1 89,47 74,32 71,82 - - 

2 78,32 71,82 71,82 - - 

3 
1 68,27 68,27 - - - 

2 68,27 68,27 - - - 

Table 4.7. Intermediate Results for each Initial Configuration 

The TSDA is a workaround to the scalability issue that poses a big challenge for the 

deployment strategies. One way to deal with it is the usage of the heuristic approaches such as the 

genetic algorithms which outperform the MILP in a holistic approach. They serve well for the 

medium-sized problems for which they are capable of finding an optimal deployment 

configuration. The TSDA reveals its usefulness for large input architectures. Its drawback lies in 

the necessity of providing an initial configuration which has an impact on the final result. It might 

happen that for small or medium-sized use-cases wrong choice of the IC will result in a solution 

that is not optimal. Therefore it is advisable to use the TSDA rather for larger problems as for 

them the holistic approach might be less efficient. This was shown by considering the input 

architectures with 125 and 250 runnables for which the TSDA was able to provide a result close 

to the optimal and better when compared to the holistic approach. 

4.6. Evaluation of the new Methodology 

The change done in the EAST-ADL2/AUTOSAR methodology as described in the section 

4.3 suggests postponing the decision about the allocation of the functional entities (atomic 

functions at the EAST-ADL2 level, runnable entities at the AUTOSAR level) until the 

implementation level, i.e. the AUTOSAR. This enables holistic consideration of a deployment 

problem at the AUTOSAR level as the allocation will not be fixed within the EAST-ADL2 

model. In order to show the benefit of the holistic approach, this section compares described 
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techniques with the approach compliant with the current status of the EAST-ADL2/AUTOSAR 

methodology. The comparison is done within the context of the DD activation model. For this 

purpose a two staged technique was designed (don’t confuse with the Two-Step Approach 

presented in 4.5) that will be called Methodology Compliant Deployment Technique (MCDT). 

This technique first supports the allocation of the atomic functions done at the EAST-ADL2 

level. Then, as these functions will be transformed into the runnable entities, the last will already 

have a fixed allocation. Therefore the next part of the technique supports the partitioning and 

scheduling. In the following paragraphs two stages of the technique compliant with the EAST-

ADL2/AUTOSAR methodology are described. 

4.6.1. Allocation at the EAST-ADL2 Level 

The allocation of the atomic functions (represented with    , and its hosting ECU with the 

 (   )) on the ECUs and exchanged signals on the BUSes is supported by the GA 

implementation. The mutation and crossover operators are similar as in all the previous 

implementations. The encoding can be compared to this described in 4.5.1 but the gene in this 

case represents either atomic function or exchanged signal, not task and message. Values stored 

correspond to the number of the ECU/BUS. The optimization objective in this case is the 

minimization of the utilization of each ECU/BUS (see eq. 4.46) as defined in [62]. Observance of 

the utilization constraint is the necessary condition for the system to be schedulable. The timing 

metric such as this used by the holistic approaches cannot be computed here as there is no 

information about the OS tasks and messages specification of which is necessary to run the 

schedulability test. This is the main disadvantage of the EAST-ADL2/AUTOSAR methodology. 

Namely the final concern, i.e. the minimization of the end-to-end responses cannot be considered 

throughout the entire development process. The optimization of utilization is a way to abstract the 

final metric at the higher level, however it doesn’t necessarily lead to the optimal response times 

when configuring architecture at the AUTSOAR level with fixed allocation.  Nevertheless it is 

the only timing metric that can be used at this level considering the input information. Additional 

clarification is necessary for the full understanding of the eq. 4.46. The       is the utilization 

computed for the ECU   , i.e.       ∑
   

   
 (   )   

. Similarly       represents the utilization 

computed for the bus   ;       ∑
   

   
 (  )   

. 
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 4.46 

 

Apart from the utilization metric objectives of other types can be considered at this level. 

Examples are the cost or safety [62]. The cost can be expressed by the number of hardware 

resources used, i.e. ECUs and BUSes. The functional safety corresponds to the number of 

replicas provided for the safety critical functions. Redundancy is regarded as a safety architecture 

concept according to the safety standard ISO 26262 [28]. Nevertheless as mainly the timing 

characteristics will be compared when evaluating the new, refined methodology the presented 

technique accounts only for the utilization metric. 

4.6.2. Partitioning and Scheduling at the AUTOSAR level 

The partitioning and scheduling are done at the AUTOSAR level on the runnables and data 

signals. This activity is also supported by the two staged technique. In fact this part reuses the GA 

implementation as defined in the 4.5.1 under “The GA Formulation for the Partitioning and 

Scheduling”. At this stage schedulability test can be run. Consequently the metric used at this 

level refers to the end-to-end responses, i.e. the final objective to be optimized.  

4.6.3. Evaluation & Conclusions 

The goal of this subsection is to compare the results obtained by running the MCDT and the 

holistic approach, compliant with the refined EAST-ADL2/AUTOSAR methodology. The 

selected holistic approach is the one from the subsection 4.4.3. The input architectures for 

comparison are the following: 

 Simple use-cases from the Figure 4.5 

 CCS+ABS from the Figure 4.8 

 Use-case for replication with replication factors from 2 to 6 (Figure 4.9) 
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The results as presented on the Figure 4.30 clearly show that the holistic approach provides better 

results. On average, basing on the considered use-cases the sum of the response times of the 

holistic approach is lower by 53.33%.  

 

 

Figure 4.30. Comparison between the results of the MCDT and the Holistic Approach  

The evaluation shows that lots of pessimism is being introduced when dividing the 

deployment on two stages, first with the allocation, second with the partitioning and scheduling. 

Impossibility to model the OS tasks and messages at the EAST-ADL2 level and in consequence 

inability to run the schedulability analysis test has a significant impact on the optimization 

approaches. Usage of the utilization metric as a substitute for the end-to-end responses metric, at 

the first stage, doesn’t lead to the allocation for which an optimal solution for scheduling and 

partitioning can be found. Optimal in this case is understood as the optimal solution that can be 

found when considering the problem holistically. Of course staged approaches have an advantage 

of being more scalable as the subsequent problems are less complex. This capability was used 

when introducing the Two-Steps Approach (see 4.5). However in this case it is possible to run the 

schedulability test at each stage of this approach, hence the final metric was considered 

throughout the whole process. Authors of [63] in addition to the utilization metric defined another 

abstraction for the end-to-end responses metric, called preemptions metric. In principle it tries to 

minimize the possible amount of preemptions between the atomic functions. Nevertheless its 
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usage at the first stage, similarly when considering utilization, doesn’t lead to the satisfactory 

results. 

The provision of new deployment techniques, accounting for the functional entities (runnable 

entities) was the main objective so far of the chapter 4. They represent an intermediate step to 

accomplish the initial goal, i.e. the technique for the specification of time budgets. The last is 

called in this work TTBA (Technique for Time Budgets Assignment) and is described in the next 

section. 

4.7. Time Budgets Assignment 

The general idea of the TTBA is to interleave the deployment with the time budgets 

assignment. This is due to the bidirectional dependency between these two processes. Namely to 

lead a qualitative deployment as is the case for the techniques presented in this work, it is 

necessary to have an information about the WCETs of the runnable entities and for those whose 

WCET is unknown, specification of the time budgets. However if the architecture is already 

deployed it is easier to provide a better estimates of time budgets. For example knowledge about 

the allocation when assigning the time budgets for two communicating runnables, enables to 

determine whether an additional time budget needs to be reserved for the inter-ECU 

communication, if the two runnables are hosted by different ECUs. This means that the budget 

allocated for the communication will have to be subtracted from the time budget of these 

communicating runnables or from any runnable belonging to the same transaction/path in order to 

respect the end-to-end constraint. As will be shown in the related work the existing techniques 

either assume that the deployment is already fixed (which means it wasn’t done considering the 

timing constraints) or the deployment is not known and hence the time budgets assignment 

doesn’t take into account possible overhead for the communication. This section presents the first 

approach which tries to overcome this issue. Ultimately the problem tackled in this subsection 

consists of four sub-problems (1) allocation, (2) partitioning, (3) scheduling and (4) time 

budgeting, where the last concerns the relaxation of time budget values. Providing for a time 

budget that allows for additional slack time mitigates the design risks associated with 

uncertainties about the execution time of the runnable implementation delivered by the supplier. 

The authors of [64] propose a method to derive a certainty of obtaining a feasible system 

configuration under the assumption of uncertain design parameters such as WCET of new 

runnables. For this purpose, they define an uncertainty function that enables the system integrator 
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to estimate the risk of obtaining an infeasible design and consider it in the definition of the 

contract with a supplier.  

These four sub-problems have significant cross-dependencies. Ideally, they should be solved 

as an integral problem, but this could be very challenging in terms of the computational effort 

that is required. Alternatively, they can be solved in stages, with the possibility of early choices 

restricting the set of available decisions for later stages. This work tries to lessen the problem by 

wrapping the staged solution in an iteration loop, in which the first stage is performed several 

times trying to improve on the results of the previous cycle. In fact the general idea is similar to 

the solution employed in the Two-Step Deployment Approach (see section 4.5) which uses two 

strategies; iterative improvement and divide and conquer. 

 In the following subsection some formalism will be added necessary to describe the TTBA. 

Next is the related work. Subsection 4.7.3 is a specification of the TTBA. Finally, the proposed 

approach is evaluated by presenting a set of results obtained by running the TTBA. 

4.7.1. Formalism 

This subsection extends the formalism introduced in the previous sections. The new concepts 

are gathered in the Table 4.8. 

 

Concept Definition 

     

Time budget for the runnable entity   . Time budget in our case represents the 

constraint imposed on the WCET of a runnable entity. In the work [65] it is called 

execution time budget. For the sake of simplicity the term “time budget” will be 

used. Please note that time budget, in opposite to the WCET, is not represented as a 

vector. This is due to the fact that time budget is specified for particular deployment 

hence at this stage the hosting ECU for runnable    is known. 

    
  

Minimal time budget for the runnable   . The designer has the option to provide a 

minimum value for      as     
 . Its intuitive meaning is a preliminary evaluation of 

the minimum required execution time for the functionality, based on the experience 

of the designer. If it is not specified, then     
   . 

    
  

Maximal time budget for the runnable   . Its intuitive meaning is a preliminary 

evaluation of the maximal execution time for the functionality, based on the 

experience of the designer. If not explicitly set, it is assigned with the period of the 

transaction to which    belongs. 
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   Set of runnables for which a budget assignment must be provided. 

    
This set represents specific Time Budget values Assignment, i.e. the valuation. 

Namely each element is a value assigned for a corresponding time budget     . 

Table 4.8. Additional Formalism for Time Budgeting 

4.7.2. Related Work 

The problem of defining time budgets for components and runnables is affine to the issue of 

end-to-end deadline partitioning. Several research works have investigated the option of 

partitioning the end-to-end deadline into time windows or intermediate deadlines, upon the 

assumption that the interaction model allows the composition of the local response times to 

compute end-to-end response times. A graph-based algorithm for deadline partitioning to 

maximize the minimum slack is presented in [66], and an approach for periodic processes in [67]. 

More recently, deadline partitioning schemes for transaction chains scheduled under EDF or 

fixed priority can be found in [68], [69], [70]. Other efforts have been specifically tailored to 

automotive architectures. The TIMMO-2-USE project [29] discusses the need for time budgeting 

in the context of the process stages dedicated to the refinement of the system architecture. The 

project deliverables discuss a set of guidelines for budgeting the worst-case response times, based 

on the designer experience and do not provide a specific algorithm. Scheickl et al. [19] considers 

a similar process in which the definition of the WCRT budgets is based on the experience of the 

designer. Similarly, WCRTs are budgeted in [71], with a discussion on how different activation 

patterns (event- or time-driven) influence the specification of time budgets. [71] also studies the 

influence of time budgeting on the later reuse of ECUs, on the attempts to add new functions, or 

on the changes of the topology. Nevertheless, as in the previous two works, the approach relies 

on the experience of the designer to specify the time budget values. 

The methodology of partitioning deadlines on response times is more suitable to the concept 

of federated automotive architectures [72], when suppliers provide hardware units or ECUs 

(Electronics Control Units) with operating systems and tasks, or at the very least when the 

responsibility of the task design is delegated to the suppliers. In the new concept of integrated 

architecture, enabled by AUTOSAR, the definition of the tasks and the design of the hardware 

architecture pertains to the integrator. Therefore, budgeting should be performed at the level of 

the WCET of the runnables. 
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The concept of time budgeting in the integration of automotive systems is among the research 

topics of the ALL TIMES project [65]. The approach proposed in the project deliverables takes 

as an input an already deployed architecture, i.e. the software components are already assigned to 

tasks and mapped onto the hardware platform. Since WCETs are not known, the deployment 

choices (assumed as predetermined and not subject to optimization) could very well be 

suboptimal and affect the final result (the assigned budgets). In [73] the budgeting problem is 

formulated and solved by applying Parametric Linear Temporal Logic (PLTL). A method is 

presented to automatically decompose end-to-end deadlines into a set of time budgets. The 

authors automatically compute a set of linear constraints for which they finally find a valuation 

(using a solver) that guarantees all deadlines and maximizes the values of the time budgets. The 

proposed solution also integrates the consideration of non-functional properties related to the 

ECU utilization [74]. As in all previous cases, the authors assume that the deployment, i.e. the 

integration of the software architecture with the hardware platform and the design of the task, is 

already done. In a fully integrated AUTOSAR solution, it is possible to leverage the freedom in 

the definition and allocation of the tasks to further improve the budget values. 

The Table 4.9 gathers the related work and presents it in regards to the four criteria. These tell 

whether related approach requires designer knowledge (is manual) or not (is automatic), if it 

budgets WCRTs or WCETs, if it assumes that the deployment is unknown, and finally whether it 

directly relates to the automotive domain. 

 

Work 
Manual/ 

Automatic 

Budgeting 

WCRT 

Budgeting 

WCET 

Unknown 

Deployment 

Automotive 

Context 

Di Natale [66] Automatic     

Gerber [67] Automatic     

Hong [69] Automatic     

Jayachandran [70] Automatic     

TIMMO2USE [29] Manual     

Scheickl [19] Manual     

Feiertag [71] Manual     

Dixit [73] Automatic     

AllTimes [65] Automatic     
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Proposed Approach Automatic     

Table 4.9. Summary of the Related Work for Time Budgeting 

4.7.3. Method for Time Budgeting 

The Technique for Time Budgets Assignment (TTBA) builds upon three important 

assumptions: 

1) time budgets represent the constraint imposed on the runnables WCET 

2) the input for the TTBA these are the software and the hardware architecture which are not 

yet synthetized 

3) the objective is to relax the time budgets maintaining at the same time the preservation of 

end-to-end deadlines. 

Therefore the TTBA interleaves the time budgeting with the deployment process. By interleaving 

the two and because these are orthogonal concerns the relaxation of the time budgets can be 

controlled by the end-to-end deadlines. Please also note that the response times can be computed 

only for a deployed architecture hence the time budgeting needs to be done in parallel with the 

deployment process. Lack of a deployed architecture is the reason why some of the current 

approaches are budgeting worst case response times. 

This work elaborates on two heuristic approaches for finding time budgets. The first (One-

step TTBA) provides a holistic one-step solution to the problem, whereas the second (Staged 

TTBA) divides it into two sub-problems solved one after the other. In any case both of these 

approaches reuse the previously presented deployment techniques with few minor changes (both 

in case of the One-step and Staged TTBA) to consider the budgeting. The following three 

paragraphs present the optimization objective that induces the relaxation of time budgets, the 

One-step TTBA and finally the Staged TTBA. 

 

Optimization Objective 

This work considers an optimization metric expressing the relaxation of time budgets within 

the end-to-end deadline constraints. The function          in eq. 4.47 requires as an input the set 

TBA of runnables with the specific valuation for their time budgets. It is defined as the minimum 

time budget value for all runnables in    normalized with respect to the target range (    
      

 ). 
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The optimization objective is to maximize         , or equivalently, to maximize the minimum 

normalized time budget among runnables in   . 

             
     

         
 

    
      

  4.47 

 

Relaxation of budget values lies in the interest of the [65]. The [65] employs the binary 

sensitivity analysis [75] which searches for an upper bound of the runnable execution time so that 

the system remains schedulable. The proposed algorithm is designed to consider the relaxation of 

only one runnable, which is why the metric of interest does not need to be normalized. In our 

case, relaxation should affect all the runnables in RB. [76] accounts for more than one runnable, 

by simply returning a schedulability region of all the possible combinations of the time 

budgets for runnables in RB. Our proposed metric in 4.47 instead targets at only the best 

combination, i.e. one that equally distributes the budget constraints among different suppliers 

delivering implementation of runnables from RB. 

 

One-step TTBA 

To solve the problem of time budgeting (as defined consisting of four sub-problems) this 

work first considers a one-step approach and a solution based on a Genetic Algorithm and MILP. 

A genetic algorithm is used to find solutions for the deployment problem which includes 

allocation, partitioning, and scheduling (the first three sub-problems). Simply here this work is 

reusing the GA as defined before. In particular it refers to the GA solving the deployment 

holistically as described in section 4.4.3 for data driven activation model following some minor 

adjustments. Also, based on this version, the tests presented in the section 4.7.4 were run. 

However as the changes are not significant the TTBA can easily port the GA used for the 

deployment of time-driven systems (see subsection 4.4.5) or the GA implementing the Two-Step 

Approach (section 4.5). The last in fact would be desirable in order to further improve on the 

scalability of the TTBA. This issue is discussed in the evaluation part (subsection 4.7.4). 

The principle of the One-step TTBA is to assign time budgets for all the possible deployment 

configurations created during the run of the GA. The deployment configuration in the context of 

the GA implementation is represented with a single chromosome. The time budgets for each 

deployment (chromosome) are assigned using the Time Budgeting Algorithm (Algorithm 2) 
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explained later in some more details. This means that the first change to the specification of the 

GA as defined in subsection 4.4.5 is that Algorithm 2 is run for each chromosome. The second 

difference lies in the fitness function which changes as the optimization objective this is now the 

relaxation of time budgets. Hence chromosomes are ranked according to the result of the metric 

function from the eq. 4.47. This function requires as an input    , i.e. specific time budgets 

valuation, which is obtained by running the Algorithm 2. Of course at the initial stage of the GA 

most of the chromosomes will represent deployments for which any relaxation of time budgets 

will not be possible. This means that for all of them their fitness value would equal 0. This is not 

the best solution as it won’t lead to the improvement of the initial population. Therefore to 

differentiate between the chromosomes for which fitness equals 0 (i.e.                ), they 

are evaluated in respect to how much they violate the end-to-end deadlines. It simply means that 

to their fitness (equal 0) additional factor will be added (as presented in eq. 4.48) which will 

always represent a negative value. 

 ⋀    (        )  ∑
       

          
                

 4.48 

 

Time Budgeting Algorithm 

Within the GA optimization cycle, Algorithm 2 is executed for each chromosome to compute 

the corresponding optimum set of time budgets based on which value for the metric function 

         can be calculated. 

The time budgeting algorithm has four inputs:  , RB,   and MRB.   is the maximum error 

on the computed budgets that controls the terminating condition (line 15). The lower is the value 

of  , the more accurate are the time budgets, and the larger is the runtime of the algorithm.     is 

a set of upper bounds on the runnable budgets computed for a specific deployment  , where 

       is the maximum value for   . The values in     are computed before running Algorithm 

2, based on the end-to-end deadlines, utilization bounds, and the constraints     
  and     

 . The 

formulation that is used to compute the bounds     is discussed after the description of the time 

budgeting algorithm (section 3.6). 

Algorithm 2 tries to relax the time budgets for all the runnables in    according to the metric 

4.47 using a binary search algorithm (as in the sensitivity analysis test in [75]). The upper bound 

values are tried first, giving the maximum possible value of          (lines 6-8). If the 
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corresponding configuration is schedulable, it is returned as the optimum value (line 9). If not, 

then the algorithm assigns to each    in    a budget value that is the medium value between the 

minimum     
  and the upper bound         (lines 11-13). 

From this point on, Algorithm 2 continues by iteratively reducing the range of the time 

budgets, defined as [     ,      ] for runnable   . The algorithm works as a binary search. In 

each iteration, if the current budget values, at the midpoint between the upper and lower bounds 

result in a schedulable solution, the upper bound       remains the same, and the lower bound 

      is updated to be midpoint (line 20), and the range is reduced to be half of the size. If the 

current settings result in an unschedulable solution, it means that the time budget value is too 

large, and the next iteration will search within the lower half of the range (line 22). 

In [75], budget values are computed for each runnable separately, in a set of recurrent calls, 

exploring all the possible options for the relaxation of each individual runnable budget, at the 

price of higher complexity. However, for the metric 4.47 this is not required. Given any optimal 

solution according to 4.47, there exists another solution with the same value of 4.47 that is 

computed by our bisection algorithm, performing an equal relaxation of all time budgets (i.e. 

proportionally to     
  and     

 ). Of course, the solution computed by Algorithm 2 can have 

smaller budget values for those runnables that are not affecting the value of 4.47. 
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Algorithm 2: Time Budgeting Algorithm 
Require:  ,   ,  ,     

1: forall       do 

2:              

3:           
  

4: end forall 

5: if isSchedulable(       then 

6: forall       do 

7:                    

8: end forall 

9: return     

10: else 

11: forall       do 

12:                      

13: end forall 

14: end if 

15: while                     do 

16: forall       do 

17:                  

18: end forall 

19: if isSchedulable(     ) then 

20: forall       do 

21:            

22: end forall 

23: else 

24: forall        do 

25:            

26: end forall 

27: end if 

28:                            

29: end while 

30: return     

Algorithm 2. Algorithm for the One-dimensional Binary Search 

 

Calculating     using MILP 

Finally, the upper bounds     that are required to reduce the initial interval of possible 

budget values in Algorithm 2, are computed using MILP formulation. The values in     are 

(optimistic) upper bounds and do not guarantee the system schedulability as the constraints used 

for their computation are a linear approximation representing only a necessary schedulability 

condition that does not consider interference. However, they are useful in constraining the search 

space for the bisection algorithm. 
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In the MILP formulation, the problem is represented with parameters, decision variables, and 

constraints over the parameters and decision variables. Moreover, an objective function is defined 

to characterize the optimal solution. 

Variables: the only set of variables is         where        . 

Objective function: the objective is to maximize the metric function in Equation 4.47, with 

        in place of     . 

Constraints: three types of constraints are considered: 

 Utilization constraints – utilization bound applies to each ECU (   ). If not otherwise 

specified, the limit value is 1. 

 

       ∑
       

     (  )         

     ∑
      
     (  )           

 4.49 

 

 Computation time constraints - are a linear (under-) approximation of the deadline 

constraints, ensuring that the sum of the execution times and budgets on each chain is 

lower than the deadline. These constraints do not consider interference and therefore do 

not guarantee end-to-end deadlines. 

 

 
       ∑        

 (  )           

    
 ∑          

 (  )           
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 Minimum and maximum value constraints 

 

            
              

  4.51 

 

Staged Approach 

The one-step holistic approach is simple and effective but does not scale to very large-size 

problems. Hence, an alternate solution was developed by dividing the four sub-problems in two 

stages. The first stage solves the first three sub-problems on deployment (including placement, 
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partitioning and scheduling). The second stage tries to optimize the time budgeting only. The two 

stages are computed sequentially inside a loop until there is no further improvement as shown in 

Figure 4.31. The computation time savings derive from the execution of Algorithm 2 once for 

each iteration instead of once for each chromosome. 

 

TBA = Initialize Time Budgets

(Ψ, λ) = Perform Deployment(λ, currentSlackFitness)

currentSlackFitness = f    (Ψ, TBA)

currentSlackFitness 

globalSlackFitness 

TBA = TimeBudgetingAlgorithm

currentTBFitness = f  (TBA)

globalSlackFitness = f    (Ψ, TBA)

globalTBFitness = 0

currentTBFitness = 0

globalSlackFitness = 0

currentSlackFitness = 0
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slack
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Figure 4.31. Iterative Improvement Loop for the Staged Approach 

The staged algorithm implements an iterative improvement strategy that is in essence a local 

search. Starting from an initial solution, the current best solution is tentatively improved in the 

iterations of an inner cycle that includes the two optimization stages. If at any iteration, the two 

stages fail to produce a better result, the algorithm terminates and returns the best solution found 

until that point. The algorithm starts with the initialization of the variables storing the population 

of chromosomes  , and the current best metric values (first two blocks from Figure 4.31). The 

second stage (second block in the figure) initializes the values of time budgets with their 

minimum values, i.e.                
 . The rationale for this choice is that we do not want the 

algorithm (a local search) to end prematurely and we try to ease schedulability (and provide for 
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maximum allocation freedom) as much as possible in the first step. In the experiments section, 

we discuss the impact of different values for the initial time budgets. 

Next, the deployment optimization is performed considering the current values of the time 

budgets (the first time the loop is entered these are the initial budgets). During the deployment 

optimization stage, budgets are fixed, the metric function          has a constant value, and 

cannot be used to evaluate the quality and drive the selection of the deployment solutions. Hence, 

the fitness function considered in this step is based on the end-to-end response times. The 

function              , defined in equation 4.52, expresses the goal of maximizing the 

minimum slack time (the difference between the deadline and response time) of each transaction. 

 

                  
    

    
      4.52 

 

Maximizing the minimum slack means maximizing the minimum distance between the 

response time and deadline of any transaction, which is an indication of an opportunity for having 

larger budgets and hence a better deployment. The function               is computed based on 

the schedulability analysis formulas for computing the response times of runnables and messages. 

Subsection 4.7.4, discusses the results obtained when trying different metric function at this 

stage. 

At each iteration of the main loop, a new deployment solution is computed and then 

evaluated. If the value of               does not improve on the current best solution, i.e., the 

minimum slack is lower, the loop terminates and the best solution computed up to this point is 

returned. Otherwise, Algorithm 2 is executed to compute a new optimum set of time budgets (for 

the current deployment). Then, the fitness value           is computed for the new set of time 

budgets and the new fitness value is compared with the current best. If the new 

deployment/budgets improve on the current best solution, they are considered for the next 

iteration, and the new budget drive the next deployment optimization step. Otherwise, the 

algorithm terminates and returns the best current deployment and time budget solution. The 

procedure is summarized in Figure 4.31. 

Besides the different optimization metric used during the deployment, another significant 

difference with the One-step TTBA deployment algorithm is the stop condition. The loop 

terminates not only if no improvement is found after n internal GA iterations, but also when the 
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fitness of the best chromosome from the new population is not better (lower or equal) than the 

current best fitness value (currentSlackFitness   globalSlackFitness). 

Finally, the set   defines the initial population for the GA algorithm. At each iteration round, 

  preserves the population selected in the previous run of the deployment algorithm. When the 

deployment is run for the first time and the set   is empty, the deployment procedure initializes   

with a random initial set of chromosomes which is consistent with the constraints that apply to 

the system configuration. 

4.7.4. Evaluation & Conclusions 

To evaluate the algorithms, a series of experiments have been performed on a collection of 

case studies. First, a set of case studies is used to compare the one-step approach with the staged 

approach in terms of the quality of the results and the required execution time. Next, this 

subsection discusses the robustness of the staged approach by evaluating the influence on the 

final results when replacing the metric in eq. 4.52 with a different function. Finally, we present 

experiments to see if and by how much different initial assignments of time budget values affect 

the final result. All tests were run on a machine with 8GB of memory and a single processor 

running at 2.4GHz. Also, all the tests assume the maximum error factor  =0.5 and the stop 

condition for the GA (regardless of initial population size) is that n=30 consecutive iterations 

compute the same value. 

 

Representative Use-Case 

The evaluation part starts first with a representative use-case to show the principles of the 

TTBA. It is a use-case combining the CCS (Cruise Control System) and ABS (Anti-lock Braking 

System) from the Figure 4.8, used previously for testing the deployment techniques. The 

functional model contains twelve runnables in four transactions with their deadlines and trigger 

periods. For five runnables, i.e., Input Acquisition, Input Interpretation, Basic Function, 

Diagnosis and Self Diagnosis, the WCET information is not available and time budget must be 

assigned (they belong to the set RB). The other seven runnables are assumed as reused from 

legacy libraries and their WCETs are known. The hardware topology contains four ECUs, each 

connected to the single CAN bus. The Table 4.10 displays minimum and maximum budget 

values for the runnables in RB. It also shows their computed time budget values and for runnables 
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which don’t belong to RB, their WCET information is provided. The Figure 4.32 displays the 

deployment configuration for the CCS+ABS example obtained with the One-step TTBA. 

 

Runnable WCET         tb   ECU 

Input Acquisition - 0 40 8.73    1 

Input Interpretation - 0 40 8.73    1 

Basic Function - 0 40 8.73    1 

Diagnosis - 0 10 2.18    4 

Self Diagnosis - 0 10 2.18    1 

Limp Home 1.03 - - -    4 

Speed Setpoint 3.5 - - -    1 

Application Condition 3.92 - - -    1 

Controller 1.4 - - -    2 

Data Processing 10 - - -    3 

AL1 15 - - -    2 

AL2 15 - - -    4 

Table 4.10. Results for Time Budgets Assignments and Initial Constraints 

 

 

Figure 4.32. Deployment Configuration for CCS and ABS 

One-step vs. Staged TTBA 

This part presents results of the comparison between the one-step holistic algorithm and the 

staged iterative approach. It examines and compares the quality of the solutions obtained with the 
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two approaches, i.e. the final fitness values - the maximized          and the runtimes that are 

required by the two algorithms. 

For this purpose, the automotive case study has been extended with lower and higher 

complexity examples that have been generated starting from the 50-runnable case study (index 9 

in a list) presented in [47] and extended to lower and higher sizes. Table 4.11 shows a summary 

of the fifteen system configurations by growing complexity. The table contains in the first 

column an index identifying the test case, in the second column the total number of runnables, in 

the third column the number of runnables for which budgets must be assigned, and, finally, the 

number of ECUs in the hardware architecture. In all these examples, we assume a single CAN 

bus connecting all ECUs. The original automotive case study is in the fourth row, with twelve 

runnables (as shown in the second column) and 7 of them in RB. Finally, as a further assumption, 

each software component has only one runnable entity. This means that for each runnable, its 

placement is independent of any other runnable's placement, as AUTOSAR requires that all 

runnables in the same component must be placed to the same ECU. 

 

Test nb Runnables |  |      

1 5 2 2 

2 6 2 2 

3 10 4 4 

4 12 5 4 

5 16 6 6 

6 20 8 8 

7 32 12 9 

8 40 14 9 

9 50 17 9 

10 60 20 9 

11 70 25 10 

12 80 27 12 

13 90 30 16 

14 100 35 18 

15 200 70 36 

Table 4.11. Properties of the Testing Input Architectures 
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Figure 4.33 shows the final fitness value of the best solution obtained by the One-step TBBA, 

compared with the Staged TTBA. The size of the initial population of the GA considered for 

these tests is 10000. The fitness value of the solutions computed by the two approaches for tests 1 

to 6 is exactly the same, and also the same value was computed for test 10. For tests 7 to 9 the 

staged approach provided results slightly better than the one-step algorithm (in detail, 0.33%, 

0.34% and 3.48% better, respectively). Finally, the one-step approach could not compute the final 

solution for case 11 after more than 24 hours of processing time. During this time, the GA 

internal loop performed 76 iterations. The best result obtained after this time was 8.75% worse 

than the final result computed by the staged approach (after 5.86 hours). The Staged TTBA was 

also tested on a case (test 12) with 200 runnables, 70 runnables in RB and 36 ECUs. The best 

result (fitness value of 0.13) was reached after 28.7 hours. The processing time required by the 

one-step algorithm prevented a realistic comparison in this case. 

 

Figure 4.33. Results for One-step and Staged Approach (GA Initial Population = 10000) 

Not only the staged approach manages to get equal or better quality solutions than the one-

step approach, but computes them in a much shorter time. The graph in Figure 4.34 shows a 

comparison of the execution times required by the two algorithms for each experimental case. 

The runtime of the one-step and staged approaches increases not only with the problem size but 

also with the size of the GA initial population. Augmenting the size of the GA population is 

desirable, as in many cases this leads to a better value for the final solution. In our experiments, 
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the final fitness value was mostly independent from the size of the initial population if it has more 

than 1,000 initial chromosomes. The runtimes in the figures are shown for an initial population of 

10,000 chromosomes. As shown by the graphs, the two algorithms have an execution time that 

still grows exponentially with the size of the problem. However, the staged approach can solve 

problem configurations of a size comparable with the typical problems of the industry 

(approximately 6 hours for 100 runnables). 

 

Figure 4.34. Runtimes of One-step and Staged TTBA (GA initial population = 10000) 

Robustness of the Staged TTBA 

This subsection evaluates the sensitivity of the staged approach with respect to the metric 

used in eq. 4.53 to select placement solutions. As an alternative to maximizing the minimum 

laxity metric in (eq. 4.52) this work used a metric function (eq. 4.53) that minimizes the sum of 

the latencies of (a subset of) the transactions (which is another indication of an opportunity for 

assigning larger budgets). 

 

             | |  ∑
   
     

 4.53 

 

As shown in Figure 4.35, the original metric (4.52) provides better optimization results on the 

tests from 1 to 11, in the average by 4.05%. The reason for this is intuitive. Metric 4.53 may lead 
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to situations, in which for some transactions the response time is significantly reduced, whereas 

for others it is close to the deadline. This last set of transactions is a bottleneck for the relaxation 

of time budget values that follows next. This is not the case for the metric 4.52 which minimizes 

the response times with respect to the deadlines and maximizes the minimum value (does not 

operate on a sum of values). 

 

 

Figure 4.35. Comparison of two different metrics for Staged TTBA 

Concerning the runtime, there is no significant difference between the two metrics. The slight 

differences in runtimes are mostly caused by the difference in the number of iterations of the 

main loop in the staged approach. However, the number of iterations (see Figure 4.36) is mostly 

similar and so are the runtimes. The only exception is test 11 where the use of metric 4.53 

resulted in 138 iterations and a runtime of 7.6 hours, which is 29.75% higher than the case of a 

slack metric (4.52), but the final result is slightly better. 
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Figure 4.36. Comparison of Number of Iterations of two different metrics for Staged TTBA 

Influence of Initial Time Budgets 

Additional tests were run to confirm the choice of starting the iterative improvement 

algorithm with an initial setting of time budgets equal to the minimum allowed value for each 

runnable in RB. As previously stated, since the algorithm is a local search and terminates when 

no further improvements are possible, a selection of initial values that prevents schedulability 

would likely cause a premature termination. To verify, initial budget assignments at 1%, 2%, 3%, 

5%, 10% and 20% of the range between the minimum and maximum values [    
 ,     

 ] were 

tried. In all experiments, there was no sensible difference in the quality of the final result. 

However, for the highest values of the initial budgets (a 20% increase over the minimum value), 

the algorithm ended prematurely for all cases from 7 to 10. In these cases, the first deployment 

step from the iterative algorithm was not able to find any feasible solution. 

Comparison with All-Times Approach [65] 

This part compares the presented approach with the work on time budgeting coming from the 

All-Times project [65]. 

Budgeting Algorithms 

First was studied the performance of the presented time budgeting algorithm (see Algorithm 

2) with respect to the algorithm used in [65]. Authors of [65] claim that during each manual 
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reconfiguration of deployment, they use the sensitivity analysis to find the relaxation of time 

budget values. The sensitivity analysis they refer to comes from [75]. This analysis is applicable 

if there is only one runnable in RB. The extended version of this algorithm that can budget 

multiple runnables is deifned in [76]. Ultimately this is the algorithm implemented in this work 

for the comparison. It was then ported in the one-step and staged approach for deployment 

instead of the Algorithm 2 to see if it can be applied in the automated process of budgets and 

deployment specification. 

Table 4.12 presents the runtimes which clearly shows that usage of Algorithm 2 leads to 

shorter runtimes in the context of both one-step and staged approaches. This difference is more 

significant for the one-step approach because the calls to the budgeting algorithm occur much 

more often. In fact, starting from test nb 3, usage of algorithm from [76] in the context of the one-

step approach was too time consuming, i.e. after 24 hours the algorithm did not finish executing. 

The reason is that sensitivity analysis from [76] was designed to construct the map of all budget 

combinations for which the system remains schedulable (the schedulability region). Our 

algorithm is adapted to the metric of interest which allows to select one single configuration of 

time budgets, which equally distributes budget constraints among the suppliers based on the 

predefined values of     
  and     

 . For all the tests for which algorithms terminated, we obtained 

the same fitness value, which supports the usage of the Algorithm 2 in the automated process of 

time budgeting and deployment. 

 

Test nb One-step Staged One-step with [76] Staged with [76] 

1 68.474 3.874 2088.665 24.416 

2 177.383 4.667 2006.573 31.96 

3 1014.547 27.442 >86400 699.729 

4 598.003 131.609 >86400 1072.178 

5 2565.429 429.153 >86400 84132.114 

6 2862.052 685.726 >86400 >86400 

Table 4.12 Runtimes (seconds) of one-step and staged approach (GA initial population = 

10000) when using different budgeting algorithms 
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Improvements due to deployment 

Interleaving of deployment with time budgeting has positive impact on the relaxation of 

budget values. The approach from [65] assumes that the deployment is known a priori. On the 

other hand, our techniques (either one-step or staged) interleave the deployment with budgets 

specification. This additional design freedom allows to further improve on time budget values. To 

show the gain, we first fix the deployment for tests 1 to 6 using presented deployment technique 

(the runnables from RB were assigned WCETs equal to     
 ). Then the budgeting algorithm from 

[65] was run and the following values for metric in Equation (4.47) were obtained: 0.31666666, 

0.53333336, 0.178125, 0.088630214, 0.0712207, 0.07819336. By further manipulation of 

deployment interleaved with budgets assignment, we managed to get results: 0%, 0%, 77.78%, 

146.15%, 200.7%, 174.52% better for tests 1 to 6 respectively. 

4.8. Conclusions 

This chapter presented a set of techniques for the synthesis of the automotive architectures. 

Their main characteristic is the consideration of the functional entities as the base for the 

deployment. It was shown that most of the current approaches don’t refer to the functional but 

implementation model as an input for the synthesis. This is contradictory to the current trends in 

the MDE for automotive which is to abstract from the implementation details and configure the 

system architectures earlier and hence account for the functional specification. As the scalability 

poses a big challenge in a delivery of the deployment techniques a heuristic based on the divide 

and conquer and iterative improvement strategies has been proposed. This chapter also exhibited 

a new idea for the specification of time budgets. Presented technique by combining deployment 

with time budgeting, grants the possibility for qualitative deployment even though the WCET 

information for certain runnables is absent. Finally it advocated refinement of the EAST-

ADL2/AUTOSAR methodology to enable the holistic consideration of the deployment problem. 
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5. UML based & Optimization-aware modeling of the Automotive 

Architectures 

The focal point of the previous chapter was a designation of the crucial design steps and the 

delivery of the techniques to take off the burden of the manual system configurations from a 

designer. Its content contributes to the principal goal of this thesis which is to add to the current 

efforts trying to employ the Model Driven Engineering (MDE) in the context of the automotive 

SW/HW architectures design. The presented techniques work on an abstraction level named the 

“system level” which represents a higher abstraction of a system specification. They don’t require 

low level characteristics of a system such as the exact properties of a Basic SoftWare used on 

each of the ECUs. Consequently they are applicable on the system level models and as such can 

serve to configure them. Parallel development of techniques supporting the model analysis and 

optimizations is crucial for the employment of the MDE in any kind of industry, especially in the 

automotive domain. Also the other way around, modeling languages should embed concepts 

enabling to detail attributes needed to run the analysis/optimizations. Last issue but not least is 

the integration of the modeling analysis and optimization activities. The base requirement is the 

presence of the analysis/optimization enabling artifacts in the modeling languages. Secondly 

these are the transformations used to define the context for the analysis/optimization and how 

their results can be applied on the system models. 

This chapter is focused on the integration problem. It starts by presenting the related work to 

show the deficiencies in the automotive domain concerning the frameworks that would integrate 

the modeling, analysis and optimization (MAO) activities. Next is the description of a framework 

proposed in this thesis, called AFfMAO (Automotive Framework for Modeling Analysis and 

Optimization) (Section 5.2). It is built as an instance of the Automotive Architecture Framework. 

Consequently sections 5.3 and 5.4 present the main viewpoints of the AAF related to the 

architecture specification analysis and optimization. They also discuss the final implementation 

of them within the AFfMAO through the UML profile mechanism. Section 5.5 is about the 

correspondence rules which enforce relations within an architecture description. Finally this 

chapter is concluded in the last section 5.6. 
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5.1. Related Work 

The main objective of the related work is to show the deficiencies in the nowadays 

tooling/frameworks and practices for the model based development of the automotive 

architectures. In particular these are the: 

1) Poor MAO integration. The rest of the mentioned deficiencies highly contribute to this 

problem. 

2) Lack of the modeling capabilities to express the optimization concerns. 

3) Absence of a standardized Architecture Framework for the automotive. 

4) Weak interoperability between the tools. 

Correspondingly this section reports first on the commercial and academia tooling used for the 

specification of automotive architectures, paying particular attention to their modeling, analysis 

and optimization capabilities if supported. Secondly as the advertised framework is based on the 

AF, related work discusses the concept of architecture framework for automotive. Finally it 

concludes by gathering the properties of interest and described tools in the Table 5.1 to highlight 

the main differences with the AFfMAO. 

5.1.1. Commercial Tooling 

Lots of tools based on the MDE principles have emerged to support software development of 

automotive systems. Many of them are based on the MDE principles using AUTOSAR or 

Simulink (Simulation and Model-Based Design) environment [77]. They mainly support the 

specification of system and network architectures and code generation. Manufacturers provide 

also software for testing embedded systems. For this purpose they use techniques such as HIL 

(Hardware in the Loop) [78] or SIL (Software in the Loop) [79]. The primary providers of tools 

supporting AUTOSAR for automotive system design are dSPACE [30], Vector [31] and Mentor 

Graphics [80]. All of them support AUTOSAR in their tools chain. 

DSpace provides a product called SystemDesk [81]. Its main functionality is the specification 

of AUTOSAR software components, ports, and runnable entities. SystemDesk has interfaces to 

communicate with other tools such as TargetLink [82]. It is used for code generation based on 

specifications of software components. SystemDesk adopts solutions to aid system design in a 

distributed development environment. It allows subsetting of the system architecture to be used 
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by different subcontractors and also supports the reverse process, i.e., merging of multiple 

architectural subparts into a single AUTOSAR model.  

Vector supports designers delivering tool called DaVinci Developer [83]. Their product, 

similarly to SystemDesk, provides clear, graphical representation for AUTOSAR software 

components and functionality to specify and integrate them. DaVinci Developer enables design 

of systems with single or many ECUs. For testing purposes, Vector offers DaVinci Component 

Tester. It can validate software components without hardware architecture, using AUTOSAR 

concept of VFB (Virtual Function Bus). 

Mentor Graphics supports design of automotive systems via its VSx (Vehicle Systems) 

toolset [84]. This collection contains a variety of tools. The first tool in this toolset is VSA 

(Vehicle System Architect) for defining the overall system architecture. These are specifications 

of both, the software and hardware architectures, the ECU resources, and the system topology. 

From this it is possible to generate code automatically using BridgePoint [85]. This is code 

representing software components and their communications at the VFB (Virtual Function Bus) 

level. The VFB is an abstract communication environment. Next in the development chain is 

VSB (Vehicle System Builder). It consists of various plugins. They allow configuring the BSW 

(Basic SoftWare) and operating system through partitioning runnable entities in tasks. The VSI 

(Virtual System Integrator), similarly to the DaVinci Component Tester, analyzes software 

components at the VFB level. It is an execution environment for AUTOSAR systems providing 

early validation of software functionality on a virtual ECU and BSW. It is used to prove 

application software correctness even before hardware is available. Hardware-based testing is 

performed using VST (Vehicle System Tester). 

The joint initiative team established by the members and affiliated partners of the AUTOSAR 

group defined another development platform for AUTOSAR compliant systems. Artop 

(AUTOSAR Tool Platform) [86] is an implementation of common base functionality for 

AUTOSAR development tools, based on Eclipse. The basic version of Artop allows only 

specification of the software and hardware architectures. The editor depicting the system is based 

on a hierarchical model browser and, therefore, does not provide a clear view of the overall 

architecture. 

A current, important drawback of these tools (except for Artop) is the lack of support 

for AUTOSAR 4.0, which prevents timing requirements specification that is compatible 
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with the standard. This leads to the inability to carry out schedulability analysis. For these 

reasons, none of the above tools are able to recommend optimal configurations for mapping 

software components onto ECUs or for mapping runnable entities onto OS tasks. On these 

matters they rely solely on the experience of the system architect. 

Another common drawback of these commercial tools is that the system descriptions 

rely too heavily on implementation-specific terms and concepts. They don’t cover the 

feature, functional and design layers. Recent advancements of the EAST-ADL2 convinced 

certain tool suppliers to support this language. Currently the tools which make EAST-ADL2 

modeling possible these are the MetaEdit+ from MetaCase [87] and SystemWeaver from 

Systemite [88]. Also the previously mentioned VSA from Mentor Graphics has been extended 

with the EAST-ADL2 modeling. Others like PREEVision [89] from Vector have their own 

modeling concepts related to functional level. This confirms the interest in moving with a design 

starting point to the abstraction layer which is higher than the software layer. 

5.1.2. Academia Tooling 

Apart from the commercial tools worth noting are the academic initiatives presenting 

prototypes supporting automotive system design. One of them is the AutoMoDe (Automotive 

Model-based Development) methodology [90] based on custom, problem-specific design 

notations with an explicit formal foundation. This approach has been prototyped within the 

existing framework called AutoFocus (A Distributed Multi-User CASE Tool) framework [91]. A 

step forward in their approach is introduction of higher abstraction levels adjusted to automotive 

design chain. Also in regards to the commercial tooling, AutoFocus offers computer aided design 

related to the deployment and its optimization in regards to the timing properties [92]. This is a 

very recent functionality. Their framework doesn’t operate on the standard notations as 

defined by the EAST-ADL2 or the AUTOSAR. AutoMoDe uses the AutoFocus notation which 

is very closely related to the subset of the UML 2.0 concepts. Finally the AutoFocus is not 

defined as an instance of the architecture framework. 

5.1.3. Automotive Architecture Framework 

There is only one work which discusses the first concept of an architecture framework for 

automotive systems also called Automotive Architecture Framework [93]. The authors of this 

paper define four levels. 
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The meta Architecture Framework (mAF) is the most generic level. It introduces standard 

architecture framework concepts (view, viewpoint, interface, component, concern). This level of 

abstraction can be compared to the definition of architecture frameworks presented in the IEEE 

42010 standard. However, it contains some minor differences. It extends the standard 

specification of frameworks with some additional elements and relations. For instance, mAF 

specifies scope, which contains a boundary (a specific type of view) and sub-scopes. Also, a view 

may contain sub-views and descriptions that might be formal or informal. Lastly, concern 

contains metrics. 

The common Architecture Framework (cAF) defines terms that are relevant for each type of a 

system. Elements of the cAF are divided into three main parts, which define the layers of 

abstraction of the system to be built. These parts are described as the following views: Functional 

Architecture, Logical Architecture and Technical Architecture. The Functional Architecture 

describes the total system as a black-box. User functions that are part of this level describe the 

functionality visible to the system's environment. Each user function may be further refined into 

finer-grained user functions. The Logical Architecture presents the system as a white-box. On 

this level, a system is decomposed into a number of interacting logical components (which might 

be further decomposed into logical components) that realize the functionality described by the 

Functional Architecture. This level might also describe the functionality of individual 

subsystems, which are part of the full system. The Technical Architecture is implementation 

oriented. It describes how the system specified by means of logical components can be 

distributed across hardware elements. It is composed of three parts: These are the Runtime Model, 

the Hardware Topology and Allocation. The first specifies the behavior. Hardware Topology 

describes the structure of the hardware platform, while the Allocation view relates the elements 

of the first two views. 

The domain-specific Architecture Framework (dAF) focuses on specific types of systems 

(avionics, automotive, etc.). It provides a common terminology, structure, methods, architecture 

models, guidance and rules for developing, understanding, representing and comparing domain-

specific product architectures to different stakeholders. It also provides an insight for external 

stakeholders into how a specific product is developed. 

The last, organization-specific Architecture Framework (oAF) adapts dAF to the specific 

requirements of a particular Original Equipment Manufacturer (OEM). 
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Respecting the rules of mAF, cAF and dAF, the authors of [93] defined an instance of such a 

domain-specific Architecture Framework for the automotive industry, called the Automotive 

Architecture Framework (AAF). The specification of the AAF contains a set of viewpoints which 

are divided into two subcategories; mandatory, which are independent of specific product 

strategies, and optional, which reflect specific OEM focus. The recommended mandatory 

viewpoints are the Functional Viewpoint, the Technical Viewpoint, the Information Viewpoint, 

the Driver/ Vehicle Operations Viewpoint, and the Value Net Viewpoint. The first one views the 

vehicle as a set of functions and their logical interactions. The Technical Viewpoint looks at the 

car from the perspective of its physical components (electronic and electrical hardware), its 

behavior (this also includes physical aspects - thermodynamics, acoustics, vibrations, mechanical 

deformations), its dependencies and its constraints. The Information Viewpoint is a specification 

of information and data objects used to define and manage a vehicle. This includes the 

description of mechanisms, protocols and standards that support information transfer between 

vehicle subsystems. The Driver/Vehicle Operations Viewpoint presents the vehicle from the 

driver's point of view. Therefore it describes interactions, interfaces, interdependencies between 

vehicle and the driver, together with the surrounding environment. The authors also suggest 

additional optional viewpoints, most of which relate to non-functional concerns such as safety, 

security, etc. Nevertheless, they do not provide details of any particular example. As part of the 

future AAF they also envision the following: 

 the specification of modeling methods for architectures and their properties 

 a meta-language and meta-models for describing the structure and parts of an architecture 

description 

 pragmatic and methodological facets of architectures, including principles, rules and best 

practices 

 general terminology with precise definitions of the relevant notions to be used to describe, 

discuss, and evaluate architectures 

 methods and approaches to assess and evaluate architectures 

 a clear understanding and definition of the function and role of architecture in the 

development process 
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Authors of [93] provide an interesting, first concept of an architecture framework for the 

automotive. They admit that their work needs further continuation. The specification of the AAF 

done within this thesis responds to this need by addressing some of the features envisioned 

in [93] and listed before. Specifically, it provides meta-models (EAST-ADL2, AUTOSAR, 

SysML, MARTE and optimization profile), modeling methods (UML profile mechanism) 

and finally additional viewpoints that enable the evaluation of architecture (most 

importantly timing, analysis and optimization viewpoints) which is missing in the work of 

[93]. 

5.1.4. Related Work Conclusions 

The advancements in commercial tooling are rapid and clearly visible. Just two years ago 

there was no commercial tool that would support the EAST-ADL2 language. Nowadays not only 

the higher level modeling is evolving but the tool suppliers are also trying to integrate ways for 

analyzing the system level models. The next expected outcome of this evolution is the integration 

of the techniques for the optimized deployment process. 

Table 5.1 highlights the main properties of the existing frameworks discussed before. As it 

can be seen none of the commercial tools features the full MAO integration. This doesn’t apply to 

the AutoFocus which combines the modeling with the architecture analysis and optimization. The 

main difference and hence contribution of the AFfMAO in regards to the AutoFocus is the (1) 

usage of the automotive standards (EAST-ADL2 and AUTOSAR) and UML profile mechanism 

and (2) reference to the Architecture Framework. The last employs novel idea of the (3) 

optimization objectives elicitation through the provision of the optimization viewpoint which 

requires (4) defining a new modeling concepts to express the optimization concerns. Also 

relevant is the usage of the SysML/MARTE as a pivot language to integrate automotive 

architecture languages, i.e. the EAST-ADL2 and the AUTOSAR. 

 

     Property 

 

Tool 

Higher 

Level 

Modeling 

Implement

ation Level 

Modeling 

System 

Level 

Analysis 

System 

Level 

Optimization 

Based 

on 

AF 

Modeling 

Languages 

SystemDesk      AUTOSAR 

DaVinci 

Developer 
     AUTOSAR 

VSx toolset      EAST-ADL2, 
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AUTOSAR 

MetaEdit+      
EAST-ADL2, 

AUTOSAR 

SystemWeaver      
EAST-ADL2, 

AUTOSAR 

PREEVision      DSL 

Artop      AUTOSAR 

SymtaS      AUTOSAR 

AutoFocus      
AutoFocus 

specific notation 

Proposed 

Framework 

(AFfMAO) 

     

EAST-ADL2, 

AUTOSAR, 

SysML, MARTE 

Optimization Lng 

Table 5.1. Features of the Frameworks/Tools for the Automotive Domain 

5.2. Automotive Framework for Modeling Analysis and Optimization 

The AFfMAO was implemented as an instance of a conceptual Automotive Architecture 

Framework. This relation is shown on the left side of the Figure 5.1. The AAF itself was 

constructed following the principles of the Architecture Framework as defined in the ISO 42010 

standard [1] and introduced in section 2.3. In that respect, description of the AFfMAO will be 

done implicitly through the specification of the AAF. In substance the Architecture Framework is 

a set of conventions, principles and practices for the description of architectures within a specific 

domain and/or community of stakeholders. Consequently specification of the AAF in the 

following sections will be comprised of the definition of architecture viewpoints with their 

related concerns, model kinds and correspondence rules. 
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Figure 5.1. AFfMAO built as an instance of the AAF 

The right side of the Figure 5.1 presents detailed perspective over the AFfMAO. Relevant 

information from this figure concerns final choices of the modeling techniques, set of 

transformations, analysis and optimization engines and platform used to implement the AAF as 

the AFfMAO. 

 

Platform 

The base development platform was Papyrus MDT [94] which is a framework built on top of 

the Eclipse project [95]. It provides functionality for graphical modeling of UML and SysML 

languages. Significantly it supports mechanism for constructing UML profiles which is largely 

used by the AFfMAO.  

 

Modeling Techniques 

It can be noticed from the Figure 5.1 that AFfMAO adopts UML profiles for most of the 

languages. UML profile mechanism is specified as a possible modeling mechanism within the 

AAF. Therefore, later in this chapter for those languages for which UML profile wasn’t defined 

yet, this work provides its own specification. This refers to the optimization metamodel but also 

the AUTOSAR. 
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The AAF includes viewpoints expressing analysis and optimization concerns (see 5.3.4 and 

5.3.5). They are implemented in a separate module called Qompass framework (previously called 

Optimum [61]). Models created according to the analysis and optimization viewpoints can be 

analyzed and optimized as Qompass delivers a set of algorithms for timing analysis and 

optimization of deployment. Algorithms presented in chapter 4 were integrated within the 

Qompass. 

5.3. Viewpoints 

The Figure 5.2 presents the viewpoints of the Automotive Architecture Framework. The 

viewpoint establishes the conventions for constructing, interpreting and analyzing the view to 

address concerns framed by that viewpoint. The following subsections will detail the 

characteristics of the proposed viewpoints. 

 

Architecture Modeling Viewpoints 

The viewpoints related to the architecture modeling were mostly influenced by the current 

specification of the EAST-ADL2 and the AUTOSAR although neither of these languages 

implicitly lists any viewpoint. In fact a viewpoint is not only the inclusive part of the architecture 

framework but also of the architecture description language such as the EAST-ADL2 or the 

AUTOSAR. Therefore their absence in their specification might be somewhat surprising. The 

EAST-ADL2 provides the metamodel presenting the hierarchy of the different models (see 

Figure 5.3). This inspired the viewpoints of the AAF and their layering. These are the Feature 

Analysis Architecture (relates to EAST-ADL2::VehicleLevel model), Functional Analysis 

Architecture (EAST-ADL2::FeatureAnalysisArchitecture), Functional Design Architecture 

(EAST-ADL2::FunctionalDesignArchitecture), Hardware Architecture (EAST-

ADL2::HardwareArchitecture) and Allocation (EAST-ADL2::Allocation). Layers specification is 

not required but it provides more clearance to the AAF description. The EAST-ADL2 doesn’t 

differentiate the models of the Implementation Level. This model corresponds to the Technical 

Layer therefore viewpoints specification for this layer was done inspecting the main modeling 

activities included in the AUTOSAR standard. Worth noting is that all these models from the 

Figure 5.3 combined together represent the system level model. Analogously the presented 

viewpoints constitute the system level specification. 
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The design and technical levels contain also timing viewpoint (correspondingly Timing and 

Application Timing). It is used to enhance the system model with the additional information 

related to time. This timing information can be then used by the analysis and optimization 

viewpoints to configure and evaluate architecture. 

 

 

Figure 5.2. Layers and Viewpoints of the Automotive Architecture Framework 
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Figure 5.3. Levels of the EAST-ADL2 Model 

Analysis and Optimization Viewpoints 

The second type of viewpoints relate to the analysis and optimization (Analysis Viewpoint 

and Optimization Viewpoint). According to [1] viewpoint conventions can also include the 

analysis techniques. The analysis viewpoint is an enabler for running the numerous analysis 

techniques. In the context of this work the analysis techniques relate to the timing and memory 

overhead analysis. These aspects are also considered by the Optimization Viewpoint which 

presents the concerns related to the architecture optimization. 

 

Transformation and Exchange Viewpoints 

The third type of viewpoints supports the transitions within the framework, i.e. Generation 

Viewpoint and with other frameworks; Technical Level Exchange and Functional Level 

Exchange Viewpoints. The first one is concerned about the models expressing the constraints for 

the generation of the technical layer models out of the design layer models. The next two relate to 

the standard exchange formats which enable the tools interoperability. 
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5.3.1. Feature, Functional and Design Level Viewpoints 

The Feature, Functional and Design Level are the three levels which abstract from the 

implementation specific concerns such as the software architecture. The purpose of the feature 

level is to represent the vehicle as a set of features without particular decision about the way to 

implement them, i.e. whether in hardware or in software. The functional level should describe the 

functional composition of a vehicle, its functions, interfaces, interactions, behavior and 

constraints. It represents the first refinement of the features as defined at the feature level. 

Following that is the design level in which higher level functions are refined into sub-functions 

and, finally, into atomic functions which are non-concurrent units. This layer also delivers the 

specification of hardware resources. The main characteristic of this layer is that it abstracts from 

a specific platform such as the AUTOSAR. 

Feature Analysis Architecture Viewpoint (FAA) 

The Feature Analysis Architecture Viewpoint (FAA) is located at the feature layer. The 

concern of this viewpoint is to specify the features of a vehicle, links between them and data 

types. This viewpoint aggregates one model kind which defines conventions for a type of 

modeling. According to [1] an architecture viewpoint for each identified model kind shall specify 

the languages, notations, conventions, modeling techniques, analytical methods and/or other 

operations to be used on the models of this kind. 

 The language used to express the concerns of the FAA is EAST-ADL2. The Figure 5.4 is a 

snapshot of the EAST-ADL2 [6] metamodel used by the FAA. The modeling technique relates to 

the UML profile mechanism. The UML profile itself comes from [96]. Diagram that is used to 

model the features with the profile is the UML Composite diagram. All the viewpoints from the 

feature, function and design layer except the analysis, optimization and functional level 

exchange, uses dedicated parts of the EAST-ADL2 metamodel from [6] and UML profile as 

defined in [96]. 

 



 

 
153 

 

Figure 5.4. Part of the EAST-ADL2 Metamodel for the FAA from [6] 

 

 

Figure 5.5. Model of two Features 

Functional Analysis Architecture Viewpoint (FunAA) 

The Functional Analysis Architecture Viewpoint (FunAA) is located at the function layer. 

The concern of this viewpoint is to specify the system functions which provide a solution to the 

features modeled at the FAA viewpoint. This viewpoint has two model kinds. The first one called 

Functions Types serves to specify the types of the functions located at the functional layer. The 

Figure 5.6 is a fragment of the EAST-ADL2 metamodel whose part related to the 

AnalysisFunctionType is used by this model kind. The diagram that it uses this is the UML 

Composite diagram. The second model kind called Functions Prototypes serves to define the 

instances of the types modeled under the first model kind. The metamodel used refers to the 

AnalysisFunctionPrototype element from the Figure 5.6. These elements are modeled within the 

UML Composite diagram.  
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Figure 5.6. Part of the EAST-ADL2 Metamodel for the FunAA and FDA from [6] 

 

 

Figure 5.7. Function Types at the Function Layer 
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Figure 5.8. Function Prototypes at the Function Layer 

Functional Design Architecture Viewpoint (FDA) 

The Functional Design Architecture Viewpoint (FDA) is located at the design layer. The 

concern framed by this viewpoint refers to the further refinement of the functions specified at the 

functional layer. There are two model kinds. First called Design Functions Types serves to model 

the function types at the design layer. It uses the UML Composite diagram and for the metamodel 

it is the one from the Figure 5.6 related to the DesignFunctionType element. The second model 

kind, Design Function Prototype as its metamodel uses the specification related to the 

DesignFunctionPrototype element from the Figure 5.6. The function prototypes are modeled 

using the UML Composite diagram. 
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Figure 5.9. Function Types at the Design Layer 

 

Figure 5.10. Function Prototypes at the Design Layer 

Hardware Architecture Viewpoint (HA) 

The Hardware Architecture Viewpoint (HA) is also part of the design layer. Its concern is 

provision of an abstract hardware platform specification. This relates to the sensors, actuators, 

ECUs and their topology defined through the direct links and the communication BUSes (see 

Figure 5.11). There are two model kinds for this viewpoint. First called Hardware Types uses the 
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UML Composite diagram and the part of the metamodel from the Figure 5.11 related to the 

HardwareComponentType. The second model kind called Hardware Prototypes uses the UML 

Composite diagram and the part of the metamodel from the Figure 5.11 related to the 

HardwareComponentPrototype. 

 

 

Figure 5.11. Hardware Architecture Modeling in the EAST-ADL2 

 

 

Figure 5.12. Model of the Hardware Types 
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Figure 5.13. Model of Hardware Prototypes 

Allocation Viewpoint 

The Allocation Viewpoint from the design layer relates the elements of the FDA and the HA 

viewpoints. The only element used is a stereotype called Allocation applied on the UML 

Dependency (see the Figure 5.6). Diagram used to model the allocation concerns this is the UML 

Composite diagram. 

 

Figure 5.14. Model of the Allocation 
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Timing Viewpoint 

A key concern when developing automotive systems is to take into account non-functional 

requirements. These can include the timing constraints imposed on the functions, safety, and 

limitations on memory usage and power consumption. For this reason an AAF should include 

viewpoints that refer to non-functional concerns. Besides as it was already shown in the context 

of the optimization techniques, non-functional requirements such as end-to-end deadlines can 

drive the design. To meet these expectations the Timing Viewpoint is included into the AAF 

specification. Its concern is to provide the timing characteristics such as events’ periods, 

functions’ execution times and the timing constraints such as end-to-end deadlines, 

synchronization constraints or time budgets. The EAST-ADL2 metamodel contains the elements 

which enable to enhance the models with additional information related to time. Consequently 

within this viewpoint designer can model the timing properties of each function or specify the 

end-to-end flows for which the deadlines can be assigned, etc. This viewpoint is attached to the 

viewpoints describing the static architecture, i.e. FAA, FunAA and FDA as the timing description 

needs to reference the system architecture. 

The information provided under this viewpoint serves to run early stage timing analysis such 

as the computation of the utilization for each ECU/BUS if of course the allocation is specified. 

The timing model is used during the generation of the analysis model governed by the analysis 

viewpoint (see section 5.3.3) if the analysis itself concerns timing analysis such as the utilization 

computation. 

The Figure 5.15 is an example of the model specified under the timing viewpoint. The timing 

information present in this model is a subset of the overall timing specification related to the CCS 

& ABS use case. It shows specification of one end-to-end flow (event chain), its triggering event, 

period and deadline. There is also information about the execution time of the dataProcessing 

atomic function. 

 



 

 
160 

 

Figure 5.15. Model with Timing Information 

5.3.2. Technical Level Viewpoints 

Technical level viewpoints refer to the AUTOSAR standard. They use the AUTOSAR 

metamodel to express their concerns which in general relate to software and hardware 

architecture specification.  

Application Viewpoint 

The concern of the Application Viewpoint is the specification of the software architecture. Its 

fundamental part is the specification of software components, ports, interfaces and data elements. 

For the modeling of software entities SwComponentPrototype is used, typed with 

SwComponentType. There are few types of SwComponentType where the most significant are 

AtomicSwComponentType and CompositionSwComponentType. The last is to allow encapsulation 

of specific functionality by aggregating existing software components. Since it inherits from the 

SwComponentType it can be aggregated as well. This is solely an architectural element and serves 

only to take away the complexity when viewing or designing logical software architecture. 

For the purpose of communication, software components can have ports (PortPrototype) 

which are characterized by interfaces (PortInterface). The Table 5.2 presents the UML profile 

used for this viewpoint by showing the UML extensions for the key elements used to specify the 

application. There are two model kinds using this UML profile. These are the Software Types and 

Software Prototypes model kind. The first one uses the UML Class diagram to define the types 
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for the software components. Second one is used for the specification of software components 

instances using the UML Composite diagram. 

The Figure 5.16 and Figure 5.17 present the model of software component types and 

prototypes. This entire model in order to be complete should also contain a UML Property 

stereotyped with SwComponentPrototype and typed with 

ElectronicBrakeControlCruiseControlSystem. 

 

AUTOSAR Concept UML Extension 

SwComponentType Class 

SwComponentPrototype Property 

PortPrototype Port 

PortInterface Interface 

Table 5.2. UML Profile for the AUTOSAR metamodel used by the Application Viewpoint 

 

 

Figure 5.16. Model of Software Component Types 
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Figure 5.17. Model of Software Component Prototypes 

Topology Viewpoint 

The Topology Viewpoint has the same purpose as the Hardware Architecture viewpoint from 

the design layer. The difference lies in the language used to express its concerns. Analogously as 

in the case of the previous viewpoints, this one aggregates two model kinds. The first one is 

called Topology Types to specify the types of the hardware elements. The second Topology 

Prototypes delivers the instances of the previously defined types. Both of these model kinds use 

the UML Composite diagram and the UML profile shown in the Table 5.3. 

 

AUTOSAR Concept UML Extension 

ECU Class 

SensorHw Class 

ActuatorHw Class 

ECUInstance Property 

PhysicalChannel Connector 

CommunicationConnector Port 

CommunicationController Property 

CommunicationCluster Class 

HwPort Port 

 Table 5.3. UML Profile for the AUTOSAR metamodel used by the Topology Viewpoint 
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Figure 5.18. Model of Hardware Types based on the AUTOSAR Standard 

 

 

Figure 5.19. Model of Hardware Prototypes based on the AUTOSAR Standard 

Internal Behavior Viewpoint 

The Internal Behavior Viewpoint serves to describe the behavioral decomposition of the 

software components. The internal behavior describes the scheduling relevant aspects of a 

component, i.e. the runnable entities (RunnableEntity) and the events (RTEEvent). Furthermore 

the behavior specifies which runnable responds to which event. There is only one model kind 

aggregated by this viewpoint. The UML profile that it uses presents the Table 5.4. The diagram 

used to model concerns of this viewpoint is the UML Activity diagram. 

 

AUTOSAR Concept UML Extension 

InternalBehavior Activity 
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RunnableEntity Activity 

RTEEvent Event 

Table 5.4. UML Profile for the AUTOSAR metamodel used by the Internal Behavior 

Viewpoint 

 

 

Figure 5.20. Model of the Internal Behavior for the CruiseControlInput Software 

Component 

Application Allocation Viewpoint 

The Allocation Viewpoint from the technical layer relates the elements of the Application 

viewpoint with the elements of the Topology viewpoint. The software components are allocated 

on the ECUs using the SwcToEcuMapping meta-element. It holds a reference to the ECU 

(ECUInstance) and a reference to all of those software component instances that will be allocated 

on this particular ECU. Hence the concern of this viewpoint is the partial specification of the 

deployment. It is called partial as this viewpoint doesn’t hold information about runnables 

partitioning and tasks scheduling. The Table 5.5 presents the UML extension for the 

SwcToEcuMapping artifact. Diagram used by the Allocation viewpoint this is the UML 

Composite diagram. The model of allocation specified under this viewpoint is analogous to what 

is shown on the Figure 5.14, except that here the dependencies are stereotyped with the 

SwcToEcuMapping stereotype, the allocated entities these are software component prototypes 

SwcComponentPrototype and allocation target this is ECUInstance. 

 

AUTOSAR Concept UML Extension 

SwcToEcuMapping Constraint 

Table 5.5. UML Profile for the AUTOSAR metamodel used by the Allocation Viewpoint 
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ECU Configuration Viewpoint 

This viewpoint corresponds to the phase of the AUTOSAR methodology called ECU 

configuration [97]. One of the configuration procedures is the partitioning of the runnables in OS 

tasks and assignment of priorities for them. Therefore the concern of this viewpoint is to 

complete the deployment specification initiated by the Application Allocation viewpoint by 

formulating the tasks, specifying runnables partitioning and priorities assignment. 

The configuration language of AUTOSAR uses containers and actual parameters. Containers 

are used to group corresponding parameters. Parameters hold the relevant value that configures 

the specific parts of an ECU. The process of ECU configuration is twofold. First is specification 

of ECU Configuration Parameter Definition and the second is specification of ECU 

Configuration Value. ECU Configuration Definition declares how and what information will be 

presented whereas ECU Configuration Value holds the actual configuration. For the first part, 

there are existing AUTOSAR templates that define standard configuration descriptions, e.g. how 

to proceed with the definition of OS specification. However vendor might want to specify his 

own, specific ECU configuration parameters. This can be achieved thanks to the flexibility 

delivered by the meta-model for ECU configuration (see Figure 5.21). 

 

 

Figure 5.21. Metamodel used for the ECU Configuration [97] 
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Consequently specification of the tasks for each ECU is also a twofold process. In this case 

we are following the standard template as defined by the AUTOSAR. 

1. Definition of parameters 

a. Creating an instance of EcucModuleDef named “OS” (Operating System) 

b. Creating  an instance of EcucParamConfContainerDef named “OsTask” and 

setting it as a value of property container of the previously created “OS” 

2. Definition of parameter values, i.e.  

a. Creating an instance of EcucModuleConfigurationValues with its property 

definition set to the element created in 1.a, i.e. “OS”. 

b. Representing each task as an instance of EcucContainerValue and setting its 

property definition to the element created in 1.b, i.e. “OsTask”. 

 

Partitioning of runnables into OS tasks is done indirectly. Tasks are correlated with events 

(RTEEvent) that trigger runnable entities. This modeling is also a two steps procedure.  

1. Definition of parameters 

a. Creating an instance of EcucModuleDef named “Rte” 

b. Creating container, i.e. an instance of EcucParamConfContainerDef named 

“RteSwComponentInstance” and setting it as a value of property container of the 

previously created “Rte” 

c. Creating another container, i.e. an instance of EcucParamConfContainerDef 

named “RteEventToTaskMapping” and setting it as a value of property 

subContainer of the previoiusly created “RteSwComponentInstance”. This one 

allows referencing previously specified OS tasks and RTEEvents. 

2. Definition of parameter values 

a. Creating an instance of EcucModuleConfigurationValues with property definition 

set to element created in 1.a, i.e. “Rte” 

b. Creating an instance of EcucContainerValue with property definition set to 

element created in 1.b., i.e. “RteSwComponentInstance”. 

c. Creating an instance of EcucContainerValue per each runnable to task mapping, 

with property definition set to element created in 1.c., i.e. 

“RteEventToTaskMapping”. 
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Table 5.6 lists AUTOSAR concepts needed by this viewpoint to specify the configuration of 

an ECU in terms of its OS tasks and partitioning of runnables, together with UML elements that 

they extend. The Figure 5.22 shows an example of mapping runnable inputAcquisition to task t1. 

 

AUTOSAR Concept UML Extension 
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EcucModuleConfigurationValues InstanceSpecification 

EcucContainerValue InstanceSpecification 

EcucReferenceValue InstanceValue 

EcucInstanceReferenceValue InstanceValue 

Table 5.6. UML Profile for the AUTOSAR metamodel used by the ECU Configuration 

Viewpoint 

 

 

Figure 5.22. Partitioning of the Runnable InputAcquisition in the task t1 

Application Timing Viewpoint 

This viewpoint has the same concern as the Timing viewpoint defined for the higher 

abstraction levels. The main difference lies in the language concepts defined for the AUTOSAR 

timing extension [8]. Most of them reflect the elements from the EAST-ADL2 timing metamodel 

using even the same names in many cases. The fundamental notion for the description of timing 

properties is the notion of event chain, specified through the TimingDescriptionEventChain 

element. A timing event chain expresses the temporal correlation between two observable timing 

events, namely stimulus and response that have functional dependency. Timing events are 

specified through so-called TimingDescriptionEvent elements. Event chains can be built from sub 

event-chains (segments). Triggering behavior (e.g. periodic, sporadic, and arbitrary) of event 
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chains are specified through EventTriggeringConstraint element that refer to the stimulus of the 

corresponding event chain. An event chain is used as the subject to attach a timing constraint, 

represented by LatencyTimingConstraint elements. Actually, event chains can be defined at 

different levels of granularity, in accordance with the Timing View concept of AUTOSAR. First 

level called VfbTiming deals with timing information related to the interaction of software 

components at the VFB (Virtual Function Bus) level. Next, SwcTiming extends timing 

specification with timing properties of software component’s internal behavior. For example at 

this level it is possible to specify the WCETs of runnable entities. The SystemTiming includes 

information about topology, software deployment, and signals mapping in timing specification. 

The BswModuleTiming focuses on the activation, start and end of the execution of basic software 

module entities. Finally, at the EcuTiming level, timing can reference all the ECU-relevant 

information, e.g. an ECU bus communication. This work is interested in the SystemTiming level. 

This level of timing information refinement fits to the level of information required by the timing 

analysis techniques and optimization algorithms as employed for the analysis and optimization 

viewpoints. Possible advancement of the AAF with other techniques requiring more refined 

timing information would naturally lead to the inclusion of other timing description levels. This 

viewpoint analogously to the timing viewpoint at the EAST-ADL2 level references the elements 

modeled under the internal behavior and application viewpoints. The diagram used to express the 

concerns of this viewpoint this is the UML Composite diagram. The key modeling elements and 

its corresponding UML profile are specified in the Table 5.7. 

 

AUTOSAR Concept UML Extension 

TimingExtension Comment 

TimingConstraint Constraint 

TimingDescriptionEvent TimeObservation 

TimingDescriptionEventChain InformationFlow 

Table 5.7. UML Profile for the AUTOSAR Timing Extension Metamodel used by the 

Application Timing Viewpoint 

The two below figures are the models expressing the timing concerns. The model from the 

Figure 5.23 specifies the end-to-end flow between the events occurring on the InputAcquisition 

and the Controller runnables (SensorDataAcquired and ThrottleTorqueComputed events), with 
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corresponding end-to-end deadline of 40ms. The Figure 5.24 represents the model which adds the 

information about the period of the previously defined end-to-end flow. This is done implicitly by 

assigning a period value to the event of the sink runnable, i.e. SensorDataAcquired. Analogous 

models should be defined to include the rest of the necessary timing information, i.e. deadline of 

the remaining three end-to-end flows and their periods. 

 

 

Figure 5.23. Specification of a Latency Constraint for the End-to-End flow under the 

Application Timing Viewpoint (at the AUTOSAR SystemTiming Level) 

 

 

Figure 5.24. Specification of the Activation Period under the Application Timing Viewpoint 

(at the AUTOSAR SystemTiming Level) 

5.3.3. Generation Viewpoint 

The generation viewpoint expresses the concern related to the generation of the preliminary 

implementation model based on the AUTOSAR out of the functional model based on the EAST-

ADL2. The necessity of this viewpoint is a consequence of the multiple possible strategies to 

consider when generating the software architecture. For example one possibility is to generate 
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one runnable entity from one atomic function and embed each of these runnables in one software 

component as in [98]. However more advanced schemes should be also allowed, e.g. generation 

of one runnable out of more than one atomic function. Generation viewpoint with established 

modeling rules can be a base for the implementation of the generators that will produce the 

AUTOSAR model out of the EAST-ADL2 model. 

The strategies that are considered in this work concern: 

 Generation of the runnables out of the atomic functions. There are three possibilities: 

o 1-to-1 – there will be one runnable entity generated out of one atomic function 

o n-to-1 – one runnable entity will be generated out of n atomic functions 

o customized generation 

 Generation of the software components: 

o one software component per one runnable entity 

o customized composition of runnables within software components 

The possibility to express different strategies for the generation of software architecture is 

granted by the dedicated metamodel developed for this purpose and its corresponding UML 

profile. The metamodel comprise of four artifacts presented and described in the Table 5.8. The 

UML profile called Generation Strategy Profile (GSP) is shown on the Figure 5.25. 

 

Generation Profile Concept Semantics 

RunnableGeneration 

Serves to specify a way in which runnables will be generated from 

elementary design functions. The property sourceFunction is a list of 

functions from which single runnable will be generated. Second 

property, nameOfGeneratedRunnable allows specifying the name of 

a runnable to be generated. 

SwcGeneration 

Is an abstract stereotype extended by two types of software 

components that can be generated, i.e. atomic and composite 

software component. It contains property nameOfGeneratedSWC to 

specify the name of a swc component that will be generated. 

AtomicSwcGeneration 

Serves to specify a way to aggregate runnable entities that will be 

generated, into the atomic software components. The property 

runnablesToCompose is a list of those runnable entities that will be 

aggregated to the same software component. 

CompositeSwcGeneration Serves to specify a way to aggregate generated software components 
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into the composite software components. Its property containedSwc 

is a list of those software components (either atomic or another 

composite) that will be aggregated together. 

Table 5.8. Metamodel for the specification of Generation Strategy 

 

 

 

Figure 5.25. UML Profile used to specify the Generation Strategy within the Generation 

Viewpoint 

 The Figure 5.26 shows the model with the generation strategy for the Cruise Control & Anti-

lock Braking use case. In order to unburden the designer from the specification of the entire 

generation strategy, the generator itself might employ some predefined scenarios. For example in 

case if an implicit specification of the generation strategy for particular design function is absent, 

the generation will produce one runnable entity out of this function, i.e. one-to-one strategy will 

be applied. Analogously can be done for the mapping of runnables in software components. 

Possible approach is to assume that for each runnable without predefined mapping in software 

components, it will be always mapped in a software component containing only this runnable. 

This approach would simplify the generation model as is the case for the Figure 5.26. In the 

model from this figure, the instances of RunnableGeneration are created only for those design 

functions which corresponding runnable entities will be ultimately sharing software component 

with other runnable. For the rest of the design functions, one corresponding runnable will be 

generated which then will be aggregated in its unique atomic software component. This strategy 
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was employed by the ARGateway which is a generation plugin embedded in the AFfMAO (see 

Appendix A for more details on the ARGateway). 

 

 

Figure 5.26. Generation Model providing a strategy for the generation of the Runnable 

Entities and the Software Components 

5.3.4. Analysis Viewpoint 

This viewpoint main concern is to enable the analysis of automotive architectures. The main 

criteria according to which it is analyzed are the timing properties, such as the observance of the 

end-to-end deadlines or the utilization constraints specified for each ECU/BUS. Additional 

concern relates to the analysis of the memory consumption. Therefore the analysis that can be 

currently run on the models governed by this viewpoint are the schedulability analysis test, 

computation of resources utilization and memory consumption. Of course there might be other 

analysis concerns such as the dependability analysis, etc. 

This viewpoint uses a subset of the MARTE and the SysML language. The MARTE subset 

comes in a form of few packages; GQAM (Generic Quantitative Analysis Modeling), GRM 

(Generic Resource Modeling), SAM (Schedulability Analysis Modeling) and HRM (Hardware 

Resource Modeling). The SAM uses similar domain concepts as the GQAM extending it with 

few artifacts which are specific to the theory of schedulability analysis. An example is the 

concept of end-to-end flow (SAM::SaEndToEndFlow) which is not present in the GQAM.  
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The base for this viewpoint is the UML4SysML activity diagram for modeling the control 

flows and events. The elements of this diagram are extended in a specification of a profile for the 

GQAM and SAM. This way they can be stereotyped with the MARTE to enrich the model with 

non-functional concerns and properties used to analyze the architecture. Additionally this 

viewpoint uses the SysML Block and the Internal Block diagrams to model the platform 

resources such as sensors, computing resources or shared resources. The SysML elements of 

these diagrams are enriched with the MARTE stereotypes relating to the platform resources 

which come from the GQAM, GRM and HRM package. 

The central part of the GQAM is called analysis context. An analysis context is the root 

concept used to collect the information relevant for analysis scenario. It was formalized in [99]. 

In principle according to the Definition 5.1, the analysis context consists of the specification of 

end-to-end flows, resources platform and specification of a deployment, i.e. allocation, 

partitioning, scheduling and ordering (if time driven model is considered). The Table 5.9 below 

specifies the subset of the MARTE elements used by this viewpoint and the SysML elements that 

they extend. 

The designer might construct multiple analysis contexts, one per each analysis scenario. Their 

presence in the architecture definition can serve to trace type of analysis performed during the 

system construction. 

Definition 5.1 – Analysis Context: The analysis context is defined as a triple            

where                represents a workload behavior, i.e. set of transactions/paths 

(depending on activation model),                represents resources platform, i.e. set of 

processing resources and    is a deployment specification. 

 

MARTE concept SysML base concept 

GQAM::WorkloadBehavior UML4SysML::Activity 

GQAM::GaResourcesPlatform SysML::Block 

GQAM::GaWorkloadEvent UML4SysML::AcceptEventAction 

GQAM::GaAnalysisContext UML4SysML::Package 

GRM::SchedulableResource SysML::Part 

HRM::HwComputingResource SysML::Block 

HRM::HwBus SysML::Block 

HRM::HwEndPoint SysML::FlowPort 
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HRM::HwActuator SysML::Block 

HRM::HwSensor SysML::Block 

SAM::SaExecHost SysML::Block 

SAM::SaCommHost SysML::Block 

SAM::SaStep UML4SysML::CallAction 

SAM::SaSharedResource SysML::Block 

SAM::SaAnalysisContext UML4SysML::Package 

SAM::SaEndToEndFlow UML4SysML::ActivityPartition 

SAM::SaCommStep UML4SysML::ObjectFlow 

Table 5.9. MARTE subset used for the Analysis Context and its SysML Extensions 

This work in addition to the analysis context provides also the notion of the partial analysis 

context. In principle according to the Definition 5.2 it is the analysis context but without the 

deployment specification. The partial analysis context describes the input for the optimization 

techniques whereas analysis context might be a product of the optimization but also manual 

configuration. 

Definition 5.2 – Partial Analysis Context: The partial analysis context is defined as a tuple 

         where                represents a workload behavior, i.e. set of 

transactions/paths (depending on activation model) and                represents 

resources platform, i.e. set of processing resources. 

The Figure 5.27 is a model created within the analysis viewpoint. It represents the workload 

specification, i.e.  . There are four end-to-end flows, i.e. absFlow, selfDiagnosisFlow, 

controlFlow and diagnosisFlow. Each end-to-end flow is represented with the ActivityPartition 

stereotyped with the SaEndToEndFlow stereotype. The functional entities are represented with 

the CallBehaviorAction stereotyped with the SaStep. The important property of this stereotype is 

called hostDemand and represents the WCET of the functional entity. The signals are represented 

with the control flows stereotyped with the SaCommStep. The last also contains property 

hostDemand and hence information about the WCTT (Worst Case Transmission Time) can be 

provided. The AcceptEventAction stereotyped with the GaWorkloadEvent represents an event 

triggering an end-to-end flow. The type of an event (sporadic, periodic, etc.) can be specified 

within the property called pattern. If it is periodic, period can be provided as well. In this case 
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there are four events for each end-to-end flow. This model refers to the data driven activation. To 

represent the TD there would be one AcceptEventAction per one functional entity. 

 

 

Figure 5.27.  Analyzable Model representing System Behavior under the Analysis 

Viewpoint 

In addition to the flows specification the analysis viewpoint contains also the specification of 

the platform resources, i.e.  . The types of the hardware elements are modeled using the SysML 

Block diagram and the Block concept coming from this language. Additionally to differentiate 

between the types of hardware elements (sensors, actuators, etc.) MARTE is used. The Figure 

5.28 presents the model of the hardware types specified under the analysis viewpoint. The 

hardware topology specification which completes the hardware platform is modeled using the 

SysML Internal Block diagram. The model of hardware topology (example on the Figure 5.29) 

presents specific instances of hardware element types and a way in which they communicate. 

 



 

 
176 

 

Figure 5.28. Model of Hardware Types specified within the Analysis Viewpoint 

 

 

Figure 5.29. Model of Hardware Prototypes specified within the Analysis Viewpoint 

The last three figures represent the model of the partial analysis context and hence specify the 

input for the optimization. In order to complete it the deployment needs to be specified. Therefore 

the model needs to provide information about the allocation of functional entities/signals to 

ECUs/BUSes, their partitioning in OS tasks/messages and priorities assignment which refers to 

the   (see Definition 5.1). This additional information is provided in the activity diagram, i.e. 

previous workload specification such as this from the Figure 5.27 is enriched with the additional 

modeling concepts (see Figure 5.30). The functional entities/signals allocation is specified using 

the property host of the stereotypes SaStep and SaCommStep. The OS tasks and messages are 

represented with the ActivityPartition stereotyped with the SaStep. The partitioning is specified 
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through the UML as ActivityPartition can contain named elements (property inPartition). In this 

case these will be call behavior actions and control flows relating to functional entities and 

signals. The SaStep and SaCommStep have property priority which holds the priority of the OS 

task/message. Ordering is defined through the appearance on the list of the named elements 

contained by the ActivityPartition. 

 

 

Figure 5.30. Model of a Complete Analysis Context containing specification of the 

Allocation, Partitioning and Scheduling. 

5.3.5. Optimization Viewpoint 

Search for an optimized configuration requires provision of additional information such as a 

definition of exploration dimensions, constraints for an exploration or metrics of interest 

expressing optimization goals. In the context of the MDE it is a rational choice to include 

“exploration/optimization information” in a form of a model (called in this work optimization 

model) that can be then manipulated or interpreted by the optimization tool or built-in 

optimization engine. It can also help to trace the type of optimizations applied throughout the 

entire design process. This approach has been used for the specification of concerns related to the 

analysis such as it was done in the analysis viewpoint (see 5.3.4). There the inclusion of 
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additional modeling concepts coming in a form of the SysML/MARTE language empowered the 

handling of analysis concerns throughout a development process by specifying analysis models. 

Concerns targeted by the optimization viewpoint refer to the DSE and interest in optimal 

configuration of system architectures using techniques such as those defined in the chapter 4. The 

main challenge lies in the modeling of optimization objectives, i.e. provision of an optimization 

model. As for analysis concerns MARTE delivers necessary concepts to create analysis model, 

there are no modeling constructs embedded in this language referring to the optimization. This 

shortage is the main motivation behind the definition of the GOM (Generic Optimization 

Modeling) profile extending and reusing MARTE. Extension concerns the optimization related 

concepts whereas reuse refers to the modeling of constraints and non-functional properties which 

are covered by the MARTE and which enable to establish partial and complete analysis context. 

The GOM can be then used to build optimization models. Together with the specification of the 

UML extension for the GOM and the GOM itself, this subsection presents an example of an 

optimization model on top of which one of the optimization techniques from the chapter 4 can be 

run to configure the considered use-case. 

 

Specification of the GOM 

The central part of the GOM is the optimization context (OptimizationContext) defined below 

(see Definition 5.3). The partial analysis context which is part of this definition was formalized 

before (see subsection 5.3.4).   

Definition 5.3 – Optimization Context: The optimization context is defined as a quadruple 

             where    represents partial analysis context,  {          } exploration 

parameters,   {          } constraints and   {          } optimization objectives. 

The set of exploration parameters    in other words relates to the decision variables, i.e. 

elements of the architecture that will be explored. These can be priorities assignment but also the 

overall deployment, etc. The constraints   come in two forms. The first type of constraints, called 

exploration constraints restrict the space of possible solutions. An example would be the 

allocation constraint preserving certain allocation configurations. The second type, are constraints 

inherited from the analysis context. An example is the latency constraint which needs to be 

respected by the found architecture configuration. The last but not least are the optimization 
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objectives  . There might be multiple objectives driving the search for the best solution, i.e. 

multi-objective optimization. Single objective    is expressed through the specification of an 

objective function    . 

The following figures present a metamodel of the GOM and the UML profile specification. 

The Figure 5.31 contains the core concept, i.e. the OptimizationContext which refers to the  . 

The OptimizationContext holds a reference to the GaAnslysisContext coming from the 

MARTE and referring to the partial analysis context, i.e.    (property input). The partial analysis 

context is a subject for design space exploration and optimization. The final product of running 

the DSE is another instance of the GaAnalysisContext related to the input instance of the partial 

analysis context but with the additional information resulting from the DSE (property result). For 

example input analysis context might be missing information about the allocation, specified by 

setting the property host of the SaStep. The resulting analysis context in turn will contain this 

information. 

 

 

Figure 5.31. UML Profile for the Optimization Context 

The next referenced element is the ExplorationParameter, i.e.   . There needs to be at least 

one parameter of exploration. This work differentiates few types of exploration parameters (see 

Figure 5.32). These are the allocation (Allocation), specification of a memory protection 

mechanism (MemoryProtectionSpecification), etc. Other types of exploration parameters in 
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addition to those visible on the Figure 5.32 are possible, presenting a challenge for further 

extension of the GOM. 

 

 

Figure 5.32. UML Profile for the Exploration Parameters 

Following is the OptimizationObjective which corresponds to the   . As the optimization 

might be multi-objective, each OptimizationObjective can be assigned a weight signifying its 

importance in regards to other objectives. The Figure 5.33 presents few types of optimization 

objectives. For instance E2EResponses refers to the optimization of end-to-end responses. It 

contains a property end2endFlows which is used to specify the flows of interest, i.e. those end-to-

end flows which are the subject for response times optimization. Similarly as in the case of 

exploration parameters, specification of other objectives types should be considered in the 

evolution of the GOM. Optimization objective is also characterized by property type which 

defines whether the interest of this objective is to maximize or minimize the objective function. 

ObjectiveFunction quantifies how much a specific architecture configuration fulfills the given 

objective. The property functionSpecification serves to provide a mathematical expression of an 

objective function. 
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Figure 5.33. UML Profile for the Optimization Objective 

The two types of constraints  , i.e. exploration and analysis constraints are represented 

respectively with the ExplorationConstraint stereotype and within the analysis context with the 

properties of the MARTE stereotypes. Concerning the last an example would be the EndToEndD 

of the SaEndToEndFlow. This constraint needs to be taken into account during the exploration. 

There exists a wide range of exploration constraints (see the Figure 5.32) corresponding to the 

different types of exploration parameters. For instance the constraint called AllowedResources is 

referenced by the exploration parameter Allocation. This constraint serves to reduce the number 

of allocation resources from the all specified within the analysis context to only a specific subset. 

This limitation is modeled for a particular allocable entity. One of the examples could be a 

runnable entity which can be allocated only to those ECUs from all available which are 

connected to a specific sensor. 

The last and optional might be specification of an optimization technique that will be used to 

explore and configure an input architecture. This might prove to be extremely useful in the 

attempt to generate an input for external optimization tools and hence automate the design 

process. The abstract stereotype OptimizationTechnique should be extended by the definition of a 

stereotypes relating to the particular optimization techniques. An example of such extension is 

the stereotype GeneticAlgorithm. It provides additional properties specific for the configuration 

of the GA run. These are the specification of the initial population size (initialPopulationSize), 

definition of the stop condition (stopCondition), number of iterations for the GA (nbOfIterations) 

and information about the used crossover and mutation operators (crossoverOperator, 

mutationOperator). 
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Figure 5.34. UML Profile for the Optimization Technique based on the Genetic Algorithms 

The Figure 5.35 represents an optimization model created under the optimization viewpoint. 

This model is a complete input necessary to run an optimization technique such as it was done in 

the subsection 4.4.4 on a use-case from the Figure 4.8. The input analysis context 

(PartialAnalysisContext) this is the one from the Figure 5.27. There are three objectives of this 

optimization which refer to the allocation, partitioning and scheduling, hence in this case the 

overall deployment as defined for the data driven activation model will take place. The 

optimization objective concerns the end-to-end responses. The objective function is expressed as 

a sum of end-to-end flows latencies which is a subject for minimization. The result of 

optimization is another analysis context here named AnalysisContext. The resources platform 

remains unchanged. What changes is the specification of a workload behavior which additionally 

to the specification of the end-to-end flows contains now the specification of an allocation and 

the definition of OS tasks together with their priorities. The Figure 5.30 is a generated, 

configured and optimized workload behavior. 
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Figure 5.35. Optimization Model created under the Optimization Viewpoint 

5.4. Interoperability Viewpoints 

Interoperability between the tools is among the major issues in the design of a tools chain 

where each tool is covering a subset of activities from the all identified within the development 

process. The definition of the automotive architecture framework should ease the exchange of 

information between the different tools where each might cover only a subset of viewpoints. The 

proposed instance of the automotive architecture framework, i.e. the AFfMAO covers all the 

hitherto specified viewpoints, however we are aware that the AAF should be enriched with other 

types of viewpoints. These can be safety, simulation or driver perspective related viewpoints. 

Then an exchange even for the AFfMAO would be unavoidable. Thus the provision of the 

interoperability viewpoints in the specification of the AAF is desirable. This work accounts for 

two interoperability viewpoints. 

Functional Level Exchange 

This viewpoint serves to exchange models developed under the viewpoints of the feature, 

function and design layer (except the analysis and optimization viewpoint models). These models 

are expressed with the EAST-ADL2 language. Therefore the language used by the Functional 

Level Exchange viewpoint is the EAXML (EAST-ADL XML) [100] which is a standardized 

exchange format for the EAST-ADL2 models. 

Technical Level Exchange 

The concern of this viewpoint is to exchange models developed under the viewpoints of the 

technical layer. These models as presented are expressed with the AUTOSAR language. 
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Consequently the ARXML (AUTOSAR XML) [101] defined by the AUTOSAR consortium is 

the language used by this viewpoint. 

5.5. Correspondence Rules 

The correspondence rules are used to enforce relations within an architecture description or 

between architecture descriptions. This subsection specifies correspondence rules within an 

architecture description, enabling to transit from the design level models to the technical level 

models. Following are the correspondence rules used to construct the analysis context out of the 

EAST-ADL2 model or the AUTOSAR model. This implicitly enables to analyze, explore, 

configure and optimize the EAST-ADL2 and AUTOSAR models. 

5.5.1. EAST-ADL2 and AUTOSAR 

Correspondence rules between the design and technical level are significant, as they enable 

guided generation of the technical level elements. The main idea is to support and speed up the 

development process by generating the technical level. Naturally it is not possible to generate a 

complete AUTOSAR model as upper layers abstract away most of the technical level 

information. However preliminary AUTOSAR model can be produced due to the direct relations 

of certain EAS|T-ADL2 and AUTOSAR concepts. The Table 5.10 relates the main artifacts of 

the EAST-ADL2 and the AUTOSAR. 

 

System 

Aspect 
Design Level – EAST-ADL2 Technical Level - AUTOSAR 

F
u

n
ct
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n
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/S
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w
ar

e 
S

p
ec

if
ic

at
io

n
 

DesignFunctionPrototype typed with a 

DesignFunctionType with a property 

isAtomic set to false. 

SwComponentPrototype 

DesignFunctionType SwComponentType 

FunctionalDevice SensorActuatorSwComponentType 

FunctionClientServerPort 

Port (RPortPrototype or PPortPrototype) with an 

interface set to ClientServerInterface. 

(RPortPrototype represents in this case a client 

port, PPortPrototype represents a server port). 

FunctionFlowPort 
Port with an interface set to 

SenderReceiverInterface 

FunctionConnector SwConnector 
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System 

Aspect 
Design Level – EAST-ADL2 Technical Level - AUTOSAR 

FunctionClientServerInterface ClientServerInterface 

Operation ClientServerOperation 

Allocation SwcToEcuMapping 

B
eh

av
io

o
r DesignFunctionPrototype typed with a 

DesignFunctionType with a property 

isAtomic set to true. 

RunnableEntity 

H
ar

d
w

ar
e 

Node ECU 

HardwareComponentPrototype typed with 

an element stereotyped with the Node 
ECUInstance 

Sensor SensorHw 

Actuator ActuatorHw 

LogicalBus CanPhysicalChannel/FlexrayPhysicalChannel 

HardwarePort HwPort 

HardwarePin HwPin 

Table 5.10. Correspondence Rules between the Design and Technical Level Viewpoints 

5.5.2. EAST-ADL2 and Analyzable Model 

The main reason for defining the correspondence rules between the EAST-ADL2 and the 

analysis context is to enable the analysis and exploration of the functional models. For instance to 

evaluate the allocation at the EAST-ADL2 level if given or to find an allocation (such as in the 

subsection 4.6.1) the functional model should be transformed to the analysis context. Also the 

opposite way in order to apply the results of exploration on the EAST-ADL2 model, the 

correspondence rules needs to be identified. 

 

EAST-ADL2  SysML & MARTE 

DesignFunctionPrototype CallBehaviorAction stereotyped with the MARTE SaStep 

FunctionConnection ControlFlow stereotyped with the SaCommStep 

EventFunctionFlowPort, 

EventFunctionClientServerPort 
AcceptEventAction stereotyped with the GaWorkloadEvent 

PeriodicConstraint and its property 

period 
GaWorkloadEvent and its property period 

ExecutionTimeConstraint SaStep and its property hostDemand 
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EventChain 
ActivityPartition stereotyped with the MARTE 

SaEndToEndFlow 

ReactionConstraint Property end2EndD of a stereotype SaEndToEndFlow 

Node 
SysML::Block stereotyped with the 

MARTE::HwComputingResource 

LogicalBus SysML::Block typed with the MARTE::HwBus 

Sensor/Actuator 
SysML::Block stereotyped with the 

MARTE::HwSensor/HwActuator 

HardwareComponentPrototype typed 

with the Node  

SysML::Part typed with the SysML::Block stereotyped 

with the MARTE HwComputingResource   

HardwareComponentPrototype typed 

with the Sensor/Actuator 

SysML::Part typed with the SysML::Block stereotyped 

with the MARTE::HwSensor/HwActuator 

Table 5.11. Correspondence Rules between the EAST-ADL2 Model and the Analyzable 

Context 

5.5.3. AUTOSAR and Analyzable Model 

The motivation behind the correspondence rules between the AUTOSAR and the analysis 

context is similar as in the case of the correspondence rules defined in the previous subsection. 

Namely, they serve to transform the AUTOSAR model to the analysis context and hence enable 

the analysis and exploration of AUTOSAR models. 

 

AUTOSAR  SysML & MARTE 

RunnableEntity CallBehaviorAction stereotyped with the MARTE SaStep 

TDEventSwcInternalBehavior AcceptEventAction stereotyped with the GaWorkloadEvent 

PeriodicEventTriggering and its 

property period 
GaWorkloadEvent and its property period 

TimingDescriptionEventChain 

ActivityPartition stereotyped with the MARTE 

SaEndToEndFlow. Based on the specification of the events 

chain the control flow is constructed, i.e. instances of the 

ControlFlow stereotyped with the SaCommStep are 

created. 

LatencyTimingConstraint Property end2EndD of a stereotype SaEndToEndFlow 

ECU 
SysML::Block stereotyped with the 

MARTE::HwComputingResource 

Cluster and PhysicalChannel SysML::Block typed with the MARTE::HwBus 
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SensorHw/ActuatorHw 
SysML::Block stereotyped with the 

MARTE::HwSensor/HwActuator 

ECUInstance  
SysML::Part typed with the SysML::Block stereotyped 

with the MARTE HwComputingResource   

Property typed with the 

SensorHw/ActuatorHw 

SysML::Part typed with the SysML::Block stereotyped 

with the MARTE::HwSensor/HwActuator 

Table 5.12. Correspondence Rules between the AUTOSAR Model and the Analyzable 

Context 

5.6. Conclusions 

This chapter presented the automotive architecture framework and its specific instance called 

in this work AFfMAO. The specification of the AAF comprise the definition of the viewpoints 

and its structuring into the abstraction layers. Each viewpoint is defined through its model kinds 

which accommodate specification of the modeling languages and modeling techniques. Notable 

for this framework is the tackling of concerns related to the analysis and optimization by defining 

the analysis and optimization viewpoints. The analysis viewpoint incorporates the SysML and 

MARTE languages as enablers for the analysis such as the schedulability analysis test. The 

optimization viewpoint as its notation uses the optimization profile also defined in this chapter. 

This and the correspondence rules defined between the EAST-ADL2 and the AUTOSAR models 

permit to integrate the analysis and optimization in the design flow which corresponds to the 

concern of leading a qualitative design. The integration was also eased through the use of the 

UML profiles mechanism. This facilitates the development of the transformations based on the 

predefined correspondence rules but also the integration of new modeling concepts as either 

structural or behavioral models can be simply annotated with additional information central for 

running the analysis or optimization. Lastly, this chapter described correspondence rules between 

the design and technical layers to support an idea of a seamless development flow. 

In general the AAF as presented here responds to the crucial concern, i.e. qualitative design 

and modeling of the architecture at the system level. It is however clear that to cover all the 

aspects of the design and other possible concerns, the current definition of the AAF should be 

extended with additional viewpoints. For instance simulation or safety are the substantial 

concerns which haven’t been addressed by this work. 
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6. Conclusion 

6.1. Summary 

This thesis proposed a framework for the modeling analysis and optimization of automotive 

architectures. It builds upon established EAST-ADL2 and AUTOSAR methodology and concept 

of Architecture Framework. Its main goal is to support design activities in order to produce 

system architecture of high quality. This is obtained first through the use of models and their 

composition in a set of viewpoints referring to different design concerns. This makes the overall 

design more comprehensible as models abstract from the low level implementation details. 

Secondly it is the application of analysis techniques to assess the feasibility of the architecture in 

regards to the predefined constraints. These concern the timing constraints, i.e. preservation of 

end-to-end deadlines for transactions or paths. Thirdly the quality of design is improved by 

engaging the optimization techniques. Due to the revealed shortcomings in current support for the 

automated design space exploration, this thesis proposed techniques for the deployment and time 

budgeting paying particular attention to the problem of scalability. This provoked an idea for 

using powerful evolutionary algorithms further enhanced with an adoption of two strategies: 

divide and conquer and iterative improvement. 

Chapter 2 presented standards such as Architecture Framework, AUTOSAR or CAN 

protocol and the methodology for designing automotive architectures based on the EAST-ADL2 

and the AUTOSAR. Its intent was to provide detailed picture of the context and the fundamentals 

necessary to comprehend the main, tackled challenges and developed contributions. 

Chapter 3 listed the challenges identified for the automotive domain paying particular 

attention to the problem of configuration of automotive architectures and architecture description 

specification. 

Chapter 4 refers to the optimization capabilities of the advertised framework. It 

demonstrated a set of techniques for design space exploration. First it formalized two models of 

computation, i.e. data driven and time driven and for each of them problem of deployment. In the 

case of data driven the deployment consists of specification of allocation of runnables, their 

partitioning in OS tasks and scheduling, i.e. assignment of priorities to tasks. The deployment for 

time driven systems expands with two additional sub-problems which is the ordering of runnables 

inside the OS tasks (as in this case the runnables of different paths are allowed to reside on the 
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same task) and choice of a protocol for the protection of shared resources.  Through the study 

over the related work it was shown that for such defined deployment the current techniques don’t 

treat all the deployment dimensions holistically. Consequently this work contributed by 

presenting holistic approaches for solving the deployment, based on the genetic algorithms. 

Approach for data driven activation model uses end-to-end deadlines as the exploration timing 

constraint. For the optimization objective it refers to two timing performance metrics, the sum of 

response times and the minimal slack. Similarly, the timing plays the role of a constraint and 

optimization objective when optimizing deployment of architectures based on time driven 

assumptions. However as the specification of protection mechanism impacts the used memory 

overhead as well as timing, the second optimization objective, referring to the memory was 

defined. 

Also in this chapter large effort was dedicated to the scalability issue. Due to the NP hard 

nature of the deployment problem the runtime for the holistic approaches, although based on the 

powerful genetic algorithms increases exponentially. This prevents the qualitative optimization of 

large sized input architectures. Consequently this work applied two additional heuristic strategies 

i.e. the iterative improvement and divide and conquer. 

Finally this chapter exhibited a new idea for the specification of time budgets. It is built upon 

three distinct assumptions that the time budgets represent constraint on the runnables WCET, the 

input for this is architecture not yet synthetized and the objective is to relax the time budgets 

finding at the same time the deployment which respects the timing constraints. As the 

deployment is an inherent part of the time budgeting process, this work reuses the previous 

contributions and combines them with the algorithm for time budgets assignment. 

Chapter 5 elaborated on the modeling capabilities of the advertised framework and how the 

three activities, i.e. modeling, analysis and optimization can be integrated in the model based 

design of automotive systems. It presented an instance of the Architecture Framework for the 

automotive (Automotive Architecture Framework). Its specification comprised the definition of 

the viewpoints and its structuring into the abstraction layers. Each viewpoint was defined through 

its model kinds which accommodate specification of the modeling languages and modeling 

techniques. The main languages used to define the system architecture these are the EAST-ADL2 

and the AUTOSAR. 



 

 
190 

The analysis and optimization was integrated with the modeling through the definition of 

analysis and optimization viewpoints. The first one incorporates the SysML and MARTE 

languages. To express the concerns of the optimization viewpoint, this work defined the UML 

profile. This and the correspondence rules defined between the viewpoints using notation of the  

EAST-ADL2/AUTOSAR, and analysis and optimization viewpoints permit to integrate the 

analysis and optimization in the design flow which corresponds to the concern of leading a 

qualitative design. The integration was also achieved through the use of the UML profile 

mechanism. This facilitates the development of the transformations based on the predefined 

correspondence rules but also the integration of new modeling concepts as either structural or 

behavioral models can be simply annotated with additional information central for running the 

analysis or optimization 

6.2. Future Work 

There exist many possible scenarios for further extension of this work. First and natural 

extension would be an inclusion of additional concerns in the definition of the AAF such as those 

related to the non-functional characteristics of an architecture description. Please note that this 

work paid particular attention to the timing and memory. It is however substantial to refer also to 

safety, cost, power consumption, etc. Their consideration is not straightforward due to significant 

cross-dependencies between all of them. Work on these aspects is advanced but it might occur 

that certain shortcomings exist, similarly as it was for the deployment and consideration of timing 

and memory. Nevertheless the AAF would have to be extended with additional viewpoints for 

which definition of supplementary modeling constructs would be indispensable. In this respect, 

example of a useful related work is [102] or [103]. The first one provides a viewpoint to account 

for safety through the specification of a replication strategy for safety critical components. 

Authors define UML profile which captures concepts of replica, replication strategy and others. 

The second work extends MARTE to grasp the information necessary for reasoning about the 

power consumption. Definitely further evolution of the AAF should be stimulated by the 

cooperation among the automotive partners to grasp their common concerns. This work might 

encourage the reflection about the advantages of having common AAF definition and hence 

trigger some discussions on that issue.  

Qualitative consideration of new properties (i.e. safety, cost, etc.) would require to expand 

with proposed design space exploration techniques. In consequence this would necessitate further 
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evolvement of the optimization profile. This means adding new exploration parameters and 

constraints, optimization objectives and hence new metrics, and most probably optimization 

techniques with their parameters. 

Concerning the proposed techniques for deployment, it is believed that additional gain can be 

achieved from further improvements. It would be interesting to evaluate other choices of initial 

population or evolution operators for the genetic algorithms. Although the runtimes of presented 

algorithms are already compatible with problems of industrial size we could also try to profit 

from the powerful grid machines. This requires parallel implementation of the genetic algorithms 

so they can be run on distributed computing architectures. 

Finally the resulting AFfMAO framework can be restructured to embed other domains, not 

just the automotive. For instance avionic or train systems share lots of common concerns with the 

automotive systems. These are also highly critical systems therefore analysis of their behavior, 

especially timing behavior is of a high importance. Consequently the Qompass framework can be 

successfully reused within these two domains. This is especially because it builds upon general 

purpose modeling language, i.e. SysML which is applicable to the wide range of systems due to 

its generic nature. Also the MARTE profile has no tight connections to any particular domain, 

except that it targets group of real-time systems to which avionic or train systems belong. In fact, 

the desire to apply Qompass to other domains was the main factor that determined the choice of 

the SysML and MARTE languages. 

Automotive domain is evolving rapidly if we consider the emergent of new solutions but also 

new challenges. This makes it an interesting and practical background for further scientific 

advancements. I believe that this framework is a good base reference to continue with research 

activities related to modeling, analysis and optimization of automotive systems. 
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Appendix 

A. Tool Prototype 

This part provides information about the implementation of the AFfMAO. This concerns the 

platform on top of which it was developed, creation of UML profiles, implementation of 

transformations and algorithms for analysis and optimization. It also provides links to the videos 

presenting some of the features of the AFfMAO. 

 

Platform 

All the functionality of the AFfMAO was built on top of the Papyrus MDT framework. 

Papyrus is aiming at providing an integrated environment for editing EMF (Eclipse Modeling 

Framework) models, in particular supporting UML and related modeling languages such as 

SysML and MARTE. Papyrus is also convenient to develop custom plugins. This includes 

definition of UML profiles for Domain Specific Languages (DSL), customization of a palette to 

display the DSL concepts and customization of Property View, etc. The Figure A.1 shows the 

layers of the Papyrus MDT. 

 

 

Figure A.1. Layers of Papyrus MDT 

New AFfMAO Project 

The new AFfMAO project can be created by importing a project template. It contains initial 

structure of a project, i.e. views corresponding to each of the viewpoints (see Figure A.2). They 

are also grouped according to the layers as described in section 5.3.  

 

Eclipse incl. EMF 

Papyrus MDT

Custom Papyrus Plugins
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Figure A.2. Generation of AFfMAO Project Template 

Creation of UML Profiles 

The Papyrus implements mechanism for creating UML profiles. These profiles can be then 

used by simply importing them to the modeling project. The Figure A.3 shows an example in 

which EAST-ADL2 profile is being imported. 

The AFfMAO is using UML profiles for the EAST-ADL2, MARTE, AUTOSAR, 

Optimization Metamodel and Generation Metamodel. The UML profiles for the first two 

languages were already implemented in the Papyrus tool for the needs of the previous projects. 

For the rest, the UML profiles were implemented explicitly for the needs of the AFfMAO. The 

Figure A.4 shows part of the UML profile specification done within the Papyrus for the 

AUTOSAR. 

In order to facilitate the modeling, another possible improvement is the customization of a 

palette. The Figure A.5 shows a palette for the EAST-ADL2. 
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Figure A.3. Applying UML profile for the EAST-ADL2 

 

Figure A.4. UML Profile for the AUTOSAR 

 



 

 
204 

 

Figure A.5. Palette for the EAST-ADL2 

Transformations 

The proposed framework integrates few transformation engines called: EAXmlGen, 

EAQompGateway, ARQompGateway, ARXmlGen, ARGateway. They were all implemented as 

an Eclipse plugins. 

 EAXmlGen – generates an eaxml file from the EAST-ADL2 model created in Papyrus 

with its UML profile. Its purpose is to serialize and deserialize the EAST-ADL2 model 

within an eaxml file. The last is an xml file whose content conform to the xml schema of 

the corresponding EAST-ADL2 release. The generation of eaxml is done in Java. For this 

purpose it is using the Java API delivered with the EATOP (EAST-ADL Tool Platform - 

https://projects.eclipse.org/projects/modeling.eatop). This API facilitates the creation and 

manipulation of the eaxml files by reason of methods for creating EAST-ADL2 entities or 

setting of their properties, etc. The following video shows an example of serialization of 

the EAST-ADL2 model in eaxml file using EAXmlGen - 

http://www.youtube.com/watch?v=0Y2Uk6rcCiA.  

 EAQompGateway – generates an analysis context (expressed with the SysML and 

MARTE) from the EAST-ADL2 model. This analysis context is managed by the 

Qompass framework. The generation was done purely in Java with no additional 

frameworks such as QVT. The EAST-ADL2 model taken as an input for the generation 

refers to the Functional Design Architecture viewpoint, Hardware Architecture 

viewpoint, Allocation viewpoint and Timing viewpoint. The model developed under the 

https://projects.eclipse.org/projects/modeling.eatop
http://www.youtube.com/watch?v=0Y2Uk6rcCiA
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Functional Design Architecture viewpoint serves to generate the workload behavior, i.e. 

using employed notation this means control flows of the activity diagram. The hardware 

viewpoint is used to generate the resources platform. The allocation viewpoint is a 

deployment specification but of course at the EAST-ADL2 level it refers only to the 

specification of allocation of atomic design functions to the hardware. If the allocation 

information is not present the transformation will produce a partial analysis context, 

subject for optimization. Finally the timing viewpoint delivers the timing properties and 

constraints (execution times, deadlines) indispensable to run the analysis. The following 

video shows generation of the analysis context from the EAST-ADL2 using 

EAQompGateway - http://www.youtube.com/watch?v=vyEVCDEKl2Y. It also shows an 

example of analysis, e.g. utilization of ECUs computed for particular allocation 

configuration. 

 ARQompGateway – generates an analysis context or similarly a partial analysis context 

from the AUTOSAR model. The AUTOSAR model taken as an input for the generation 

refers to the models developed under all the viewpoints of the Technical Layer except the 

technical layer exchange viewpoint. The principle of transformation is similar as for the 

EAQompGateway. Implementation is using a pure Java. 

 ARXmlGen – generates arxml file from the AUTOSAR model created in Papyrus with its 

UML profile. Its purpose is to serialize and deserialize the AUTOSAR model within an 

arxml file. The last is an xml file whose content conform to the xml schema of the 

corresponding AUTOSAR release. The arxml format is supported by the Artop 

(AUTOSAR Tool Platform). This platform is an implementation of a common base 

functionality for AUTOSAR development tools inter alia modeling of AUTOSAR 

architectures. It also provides Java API to manipulate the arxml files which was used to 

create and manipulate arxml files based on the AUTOSAR model created in Papyrus. The 

following video shows an example of the generation of arxml file out of the Papyrus 

AUTOSAR model using ARXmlGen - 

http://www.youtube.com/watch?v=qmHW0LOzpjw.  

 ARGateway – generates AUTOSAR model from the EAST-ADL2 model. It was 

implemented as a Java transformation. The ARGateway employs the strategy in which 

each runnable entity is generated from one atomic function. Concerning their composition 

http://www.youtube.com/watch?v=vyEVCDEKl2Y
http://www.youtube.com/watch?v=qmHW0LOzpjw
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in software components, it follows the compositional structure of the EAST-ADL2 model. 

For instance if two atomic functions are in the same composite design function, they will 

be put in the same software component. This strategy can be overwritten with the 

specification of a generation strategy using the proposed UML profile. In that case, 

ARGateway for those atomic functions for which generation strategy was explicitly 

specified using the profile, will overwrite its default strategy. The operation of the 

ARGateway is shown in the following video - 

http://www.youtube.com/watch?v=qmHW0LOzpjw. 

 

Analysis and Optimization Algorithms 

The analysis and optimization algorithms, similarly as the transformations, were implemented 

as an Eclipse plugins. In order to run the analysis user needs to select the analysis context of 

interest, make a right click to display the menu, then choose the Qompass framework, and 

appropriate action. The Figure A.6 shows an example of running the Offset-based Schedulability 

Analysis [40] on one of the defined analysis contexts. The analysis, no matter which one, will 

traverse the model of selected analysis context to extract the information necessary for particular 

analysis algorithm. For instance if this is response times analysis, information such as host 

demand of behavior actions stereotyped with the SaStep will be considered. 

The optimization works in a similar way however in this case the user needs to select the 

model representing optimization context and then choose an appropriate optimization technique. 

The Figure A.7 shows an example for running the optimization concerning time budgets 

assignment, taking as an input one of the optimization contexts. 

 

http://www.youtube.com/watch?v=qmHW0LOzpjw
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Figure A.6. Running Schedulability Analysis on the Analysis Context 

 

Figure A.7. Running Optimization (Time Budgets Assignment) on the Optimization 

Context 



 

 
208 

B. AAF Revisited 

The table below lists all the viewpoints presented in the chapter 5. It discusses their main 

properties, i.e. the concerns and model kinds. The last is composed of three properties: language 

used, modeling technique (mechanism such as UML profile plus the used diagram) and analytical 

methods such as algorithms for the analysis or optimization if applicable. 

 

Architecture 

Viewpoint 
Concern 

Model Kind 

Language 
Modeling 

Technique 

Analytical 

Methods 

Feature Analysis 

Architecture (FAA) 

Specification of vehicle 

features 

Subset of 

EAST-ADL2 

UML 

profile/UML 

Composite 

diagram 

 

Functional Analysis 

Architecture (FunAA) 

Specification of function 

types 

Subset of 

EAST-ADL2 

UML 

profile/UML 

Composite 

diagram 

 

Specification of function 

prototypes 

Subset of 

EAST-ADL2 

UML 

profile/UML 

Composite 

diagram 

 

Functional Design 

Architecture (FDA) 

Refinement of function types 

specified at functional layer 

Subset of 

EAST-ADL2 

UML 

profile/UML 

Composite 

diagram 

 

Refinement of function 

prototypes specified at 

functional layer 

Subset of 

EAST-ADL2 

UML 

profile/UML 

Composite 

diagram 

 

Hardware Architecture 

(HA) 

Provision of 

abstract 

hardware 

platform 

specification 

Types of hw 

elements 

 

Subset of 

EAST-ADL2 

UML 

profile/UML 

Composite 

diagram 

 

Prototypes of 

hw elements 

Subset of 

EAST-ADL2 

UML 

profile/UML 

Composite 

diagram 

 

Allocation Allocate entities from FDA to 

those from HA 

Subset of 

EAST-ADL2 

UML 

profile/UML 

Composite 

diagram 

 

Timing Provision of timing 

characteristics at the feature, 

function and design layer 

Subset of 

EAST-ADL2 

for timing 

(TADL) 

UML 

profile/diagrams 

of FAA, FunAA 

and FDA 
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extended with 

timing 

information 

Application Specificatio

n of 

software 

architecture 

Types of 

software 

entities 

Subset of 

AUTOSAR 

UML 

profile/UML 

Class diagram 

 

Prototypes of 

software 

entities 

Subset of 

AUTOSAR 

UML 

profile/UML 

Composite 

diagram 

 

Topology Provision of 

hardware 

platform 

specificatio

n 

Types of hw 

elements 

Subset of 

AUTOSAR 

UML 

profile/UML 

Composite 

diagram 

 

Prototypes of 

hw elements 

Subset of 

AUTOSAR 

UML 

profile/UML 

Composite 

diagram 

 

Internal Behavior Behavioral decomposition of 

software components 

Subset of 

AUTOSAR 

UML 

profile/UML 

Activity diagram 

 

Application Allocation Allocate entities from 

Application viewpoint to 

those from the Topology 

viewpoint 

Subset of 

AUTOSAR 

UML 

profile/UML 

Composite 

diagram 

 

ECU Configuration Completion of the 

deployment specification by 

formulating the tasks, 

specifying runnables 

partitioning and priorities 

assignment 

Subset of 

AUTOSAR 

UML 

profile/UML 

Class diagram 

 

Application Timing Specification of timing 

information for the software 

architecture 

AUTOSAR 

Timing 

Extensions 

UML 

profile/UML 

Composite 

diagram 

 

Generation Specification of strategy for 

the generation of preliminary 

implementation model out of 

the functional model 

Metamodel for 

Generation 

Strategy 

UML 

profile/UML 

Composite 

diagram 
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Analysis Enabling analysis of 

automotive architectures in a 

design process 

Subset of 

SysML and 

MARTE 

UML4SysML 

Activity diagram 

Algorithms 

for response 

times analysis 

and memory 

overhead 

computation 

Optimization Enabling optimization of 

automotive architectures in a 

design process 

Subset of 

SysML, 

MARTE and 

metamodel for 

optimization 

UML profile for 

optimization 

metamodel/UML

4SysML Activity 

diagram 

Techniques 

for design 

space 

exploration 

Table B.0.1. Viewpoints of the AAF with their Concerns and Model Kinds 

 

 


