
HAL Id: tel-01124007
https://theses.hal.science/tel-01124007

Submitted on 6 Mar 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Optimizing PaaS provider profit under service level
agreement constraints

Djawida Dib

To cite this version:
Djawida Dib. Optimizing PaaS provider profit under service level agreement constraints. Networking
and Internet Architecture [cs.NI]. Université de Rennes, 2014. English. �NNT : 2014REN1S044�.
�tel-01124007�

https://theses.hal.science/tel-01124007
https://hal.archives-ouvertes.fr

ANNÉE 2014

THÈSE / UNIVERSITÉ DE RENNES 1
sous le sceau de l’Université Européenne de Bretagne

pour le grade de

DOCTEUR DE L’UNIVERSITÉ DE RENNES 1

Mention : Informatique
École doctorale Matisse

présentée par

Djawida Dib
préparée à l’unité de recherche no 6074 - IRISA

Institut de Recherche en Informatique et Systèmes Aléatoires
ISTIC

Optimizing PaaS

Provider Profit

under Service

Level Agreement

Constraints

Thèse soutenue à Rennes
le 7 juillet 2014

devant le jury composé de :

Jean-Marc Menaud / Rapporteur

Professeur, École des Mines de Nantes

Pierre Sens / Rapporteur

Professeur, Université Pierre et Marie Curie

Michel Banâtre / Examinateur

Directeur de Recherche, Inria Rennes - Bretagne Atlantique

Stephen Scott / Examinateur

Professeur, Tennessee Tech University

Christine Morin / Directrice de thèse

Directrice de Recherche, Inria Rennes - Bretagne Atlantique

Nikos Parlavantzas / Co-directeur de thèse

Maître de Conférences, INSA de Rennes

When you see clouds gathering, prepare to catch rainwater ...
Golan proverb

Remerciements

Cette thèse est une aventure dans laquelle plusieurs personnes ont fait partie.
Tout d’abord, j’ai une profonde pensée pour Françoise André, avec qui j’ai commencé

ma thèse et qui nous a malheureusement quitté avant la fin de ma première année de
thèse. Françoise était une directrice rigoureuse et perfectionniste. Grâce à elle j’ai appris
à développer des arguments solides pour défendre mes idées.

Je tiens à exprimer ma gratitude à Christine Morin pour avoir pris le relais de Fran-
çoise et d’avoir toujours veillé à ce que ma thèse se passe dans de bonnes conditions.
Merci Christine d’avoir su orienter mes travaux. Merci également de m’avoir trouvé du
temps pour des discussions malgré un planning très chargé. Chacune de nos discussions
m’a permis de voir mes travaux de différents angles et de penser à plein de perspectives.

Je remercie Nikos Parlavantzas d’avoir co-diriger ma thèse et d’avoir été disponible
pour discuter sur toutes les idées et les approches utilisées, même sur les plus petits
détails de configuration. Toutes nos discussions étaient très enrichissantes. Merci Nikos
pour toutes tes reflexions pertinentes qui ont fait avancer mes travaux de thèse.

J’adresse mes remerciements aux membres de jury : Pierre Sens et Jean-Marc Menaud
d’avoir été rapporteurs, Michel Banâtre d’avoir présider le jury et Stephen Scott d’avoir
participer à l’évaluation de ma thèse. Je vous remercie tous pour l’intérêt que vous avez
porté à mes travaux et pour vos retours constructifs.

Je remercie tous les membres de l’équipe Myriads pour tous les moments agréables
que j’ai pu partager avec eux. Merci Pierre d’avoir toujours été disponible pour donner
un coup de main ou un conseil et ça depuis mon stage de Master. Je remercie Marko,
Louis et Maxence pour leur support concernant Kerrighed. Je remercie Guillaume et
Erwan pour leur support concernant Safdis. Un grand merci à Eugen pour toutes les
discussions intéressantes et amusantes ainsi que pour son support concernant Snooze. Je
remercie également Matthieu d’avoir pris le relais de Eugen dans le support technique
de Snooze. Je remercie Anca pour ses scripts de configuration d’Hadoop. Je remercie
Guillaume, Anne-Cécile et Alexandra pour notre contribution fructueuse "Green PaaS".
Merci à Roberto et Anne-Cécile pour la pertinence de leurs retours concernant mes
présentations orales. Je remercie la communauté de Grid’5000 et plus particulièrement
David, Yvon et Pascal pour leur support technique. Un grand merci à Maryse pour son
aide dans les formalités administratives ainsi que dans l’organisation des missions qui
n’étaient pas des plus simples. Je remercie chaleureusement Anca, Stefania, Elya, Peter,
Rémy, Amine, Guillaume, Mohammed, Ghislain, Alexandra, Bogdan, Anne-Cécile, An-
dré, Pierre, Roberto, Eugen, Matthieu, ... et tous ceux qui rendaient le quotidien social
agréable.

Un énorme merci à ma famille pour m’avoir toujours soutenue et encouragée. À mes
parents pour leur affection, leurs sacrifices et leur soutien inconditionnel. À mon mari
pour avoir été à mes côtés pendant les moments les plus difficiles de la thèse et d’avoir
toujours su trouver les mots pour me rassurer. À mon petit bout’chou Abdesselem pour
m’avoir tenue compagnie pendant la rédaction et la soutenance de la thèse. À ma soeur
Nassima et mon petit frère Mohammed Riad pour leur amour et leurs encouragements
infinis. À mes frères Mokhtar et Kheir-edinne. À mon beau frère Samir. À mes belles
soeurs Leila et Souhila. À mes petits nerveux et nièces Mehdi, Zakia, Abderrahmene,
Meriem et Yacine. À mes grands mères pour toutes leurs prières. À mes tantes, oncles,
cousins et cousines. À mes beaux parents et mes belles soeurs Ilhem et Dounyazed pour

5

leur sympathie et leurs encouragements.
J’ai une pensée particulière pour ma mère Zakia. J’espère qu’elle est contente de ce

que j’ai accomplis de là où elle est.
Enfin, un grand merci à tous mes amis. À Sarra pour son amitié exceptionnelle et

pour ses encouragements. À Esma pour toutes nos discussions et pour son grand sou-
tien, notamment durant les derniers jours précédant la soutenance. À Wahida, Fadhela,
Rafik, Hakim, ... et tous ceux qui ont partagé avec moi cette aventure.

6

Contents

1 Introduction 13
1.1 Context . 14
1.2 Objectives . 15
1.3 Contributions . 15
1.4 Outline of the Thesis . 16

2 Background 17
2.1 IT Infrastructures . 18

2.1.1 Cluster . 18
2.1.2 Grid . 19
2.1.3 Utility Computing . 19

2.2 Taxonomy of Application Models . 20
2.2.1 Parallelism Model . 20
2.2.2 Resource Requirements . 20
2.2.3 Resource Usage . 21
2.2.4 Lifetime . 21
2.2.5 Interactivity . 22

2.3 Service Level Agreement (SLA) . 22
2.3.1 Overview . 22
2.3.2 SLA Specification . 23
2.3.3 SLA metrics . 23
2.3.4 Price Formation and Billing Models 23
2.3.5 Penalties . 24
2.3.6 SLA Lifecycle . 24

2.4 Cloud Computing . 24
2.4.1 Overview . 24
2.4.2 Service Models . 25
2.4.3 Deployment Models . 28
2.4.4 Business Aspects . 29

2.5 Summary . 30

3 SLA-Based Profit Optimization in Cloud Bursting PaaS 33
3.1 Thesis Objective . 34
3.2 Platform as a Service (PaaS) . 34

3.2.1 Commercial PaaS . 35
3.2.2 Open Source PaaS . 41
3.2.3 Research PaaS . 45

7

Contents

3.3 Cloud Bursting . 49
3.3.1 Based on User Constraints . 49
3.3.2 Based on Economic Criteria . 50
3.3.3 Targeting Specific Application Types 51

3.4 Economic Optimizations . 52
3.4.1 Targeting Specific Application Types 52
3.4.2 Targeting Specific Infrastructures . 54
3.4.3 Focusing on the Optimization of Energy Costs 55

3.5 Gaps . 56
3.6 Summary . 56

4 Profit Optimization Model 61
4.1 Definitions and Assumptions . 62
4.2 PaaS System Model . 63

4.2.1 Notations . 63
4.2.2 Objective . 64
4.2.3 Constraints . 64

4.3 Policies . 65
4.3.1 Basic Policy . 66
4.3.2 Advanced Policy . 66
4.3.3 Optimization Policy . 68

4.4 Summary . 70

5 Computational Applications 73
5.1 Definitions and Assumptions . 74
5.2 Performance Model . 74
5.3 Service Level Agreement (SLA) . 74

5.3.1 SLA Contract . 74
5.3.2 SLA Classes . 75
5.3.3 Revenue Functions . 76
5.3.4 Lifecycle . 77

5.4 Bids Heuristics . 78
5.4.1 Waiting Bid . 78
5.4.2 Donating Bid . 79

5.5 Summary . 82

6 Meryn: an Open Cloud-Bursting PaaS 85
6.1 Design Principles . 86
6.2 System Architecture . 86

6.2.1 Overview . 87
6.2.2 Components . 87
6.2.3 Application Life-Cycle . 89
6.2.4 VC Scaling Mechanisms . 90

6.3 Implementation . 90
6.3.1 Frameworks Configuration . 90
6.3.2 Components Implementation . 91
6.3.3 Parallel Submission Requests . 92

8

6.3.4 Cloud Bursting . 93
6.4 Summary . 93

7 Evaluation 95
7.1 Evaluation Setup . 96

7.1.1 Meryn Prototype . 96
7.1.2 Policies . 96
7.1.3 Workloads . 97
7.1.4 Pricing . 97
7.1.5 SLAs . 98
7.1.6 Grid’5000 testbed . 98
7.1.7 Evaluation Metrics . 99

7.2 Simulations . 100
7.2.1 Environment Setup . 100
7.2.2 Results . 101

7.3 Experiments . 105
7.3.1 Measurements . 105
7.3.2 Environment Setup . 107
7.3.3 Results . 110

7.4 Summary . 115

8 Conclusions and Perspectives 117
8.1 Contributions . 118
8.2 Perspectives . 119

Bibliography 121

A Publications 135

B Résumé en Français 137
B.1 Introduction . 137
B.2 Objectifs . 138
B.3 Contributions . 139

B.3.1 Modèle d’optimisation de profit . 139
B.3.2 Application du modèle d’optimisation 139
B.3.3 Meryn : un système de PaaS avec la fonctionnalité de cloud bursting140

B.4 Évaluation . 140
B.5 Organisation du manuscrit . 141

9

Contents

10

List of Figures

2.1 Overview of a cluster managed using a programming framework 18
2.2 Overview of a cluster managed using a single system image 19
2.3 SLA overview . 22
2.4 Cloud service models . 25

4.1 Overview of the considered hosting environment 62

5.1 Linear revenue function . 76
5.2 Bounded linear revenue function . 77
5.3 Constant revenue function . 77
5.4 Hosting options . 78
5.5 Application times according to the three impact forms. 82

6.1 Meryn architecture overview . 87
6.2 Meryn components . 88
6.3 Application life-cycle . 89
6.4 Configuration of the Hadoop VC . 91

7.1 Meryn prototype configuration. 96
7.2 Workload profit comparison. Profit shown is the sum of profits of all jobs

in the workload. (Simulations) . 102
7.3 VMs usage proportion for each workload and policy, calculated as the

number of the used VMs multiplied by the usage duration. (Simulations) 103
7.4 Workloads completion time (seconds), from the submission of the first job

to the completion of the final job. (Simulations) 105
7.5 Creation and configuration of OGE VMs 106
7.6 Creation and configuration of Hadoop VMs 107
7.7 Submission time of batch applications on (a) local VMs, (b) VC VMs, and

(c) public VMs . 108
7.8 Submission time of MapReduce applications on (a) local VMs, (b) VC

VMs, and (c) public VMs . 108
7.9 Workload profit comparison. Profit shown is the sum of profits of all jobs

in the workload. (Experiments) . 112
7.10 VMs usage proportion for each workload and policy, calculated as the

number of the used VMs multiplied by the usage duration. (Experiments) 114
7.11 Workloads completion time (seconds), from the submission of the first job

to the completion of the final job. (Experiments) 115

11

List of Figures

12

List of Tables

2.1 Examples of existing cloud SLA metrics . 31

3.1 Summary of commercia PaaS solutions . 39
3.2 Summary of open source PaaS solutions . 44
3.3 Summary of commercial, open source and research PaaS solutions 48
3.4 Summary of cloud bursting related work 53
3.5 Summary of economic optimization policies 57
3.6 Positioning this thesis with the main related works. 58

4.1 Notations . 65

7.1 Configuration parameters of SLA classes. 98
7.2 Profit Rates of the advanced and the optimization policies compared to

the basic policy. (Simulations) . 102
7.3 Profit Rates of the optimization policies compared to the advanced policy.

(Simulations) . 103
7.4 Percentage of the used public cloud VMs. (Simulations) 104
7.5 Percentage of (A) delayed applications and (B) average delay of delayed

applications with the optimization policy. (Simulations) 104
7.6 Average applications submission time on public VMs. 111
7.7 Required time for processing a local VM(s) loan. 111
7.8 Average applications submission time on local VMs. 111
7.9 Required time for processing a VC VM(s) loan. 111
7.10 Average applications submission time on VC VMs. 111
7.11 Profit Rates of the advanced and the optimization policies compared to

the basic policy. (Experiments) . 113
7.12 Profit Rates of the optimization policies compared to the advanced policy.

(Experiments) . 113
7.13 Percentage of the used public cloud VMs. (Experiments) 113
7.14 Percentage of (A) delayed applications and (B) average delay of delayed

applications with the optimization policy. (Experiments) 115

13

List of Tables

14

Chapter 1

Introduction

Contents
1.1 Context . 14

1.2 Objectives . 15

1.3 Contributions . 15

1.4 Outline of the Thesis . 16

This PhD thesis examines economic optimizations in cloud computing environments,
focusing mainly on the optimization of PaaS providers’ profits. This chapter in-

troduces the context, objectives and contributions of this PhD thesis and presents the
outline of this document.

15

1.1. Context

1.1 Context

Cloud computing is an emerging paradigm revolutionizing the use and marketing of
Information Technology (IT). The cloud computing concept enables customers from all
over the world to access very large computing capacities, using a simple Internet con-
nection, while paying only for the resources they really use. Indeed, the pay-as-you-go
pricing model of cloud computing services attracts many customers and small compa-
nies aiming at reducing the cost of their IT usage and offers providers new opportunities
for commercializing computing resources. Cloud computing services are provided ac-
cording to three fundamental models: Infrastructure as a Service (IaaS), Platform as a
Service (PaaS) and Software as a Service (SaaS). The IaaS model provides basic comput-
ing resources, such as computing machines as well as storage and networking devices.
The PaaS model provides configured execution environments, ready to host cloud ap-
plications. The SaaS model provides hosted applications, ready for use.

In this thesis we are interested in the PaaS service model, which gained a lot of
attention over the past years. A PaaS environment is typically built on top of virtu-
alized resources owned by the PaaS provider or rented on-demand from public IaaS
providers. The advantage of this model over the two others is that it hides the complex-
ity of the used resources while offering customers the possibility to run and control their
own applications. The interactions between PaaS customers and providers are governed
by Service Level Agreements (SLAs), specifying the obligations of each party as well
as associated payments and penalties. For instance, the PaaS offerings of the current
big players, such as Amazon Elastic Beanstalk [10] and Microsoft Windows Azure [13],
guarantee a high service availability. Their clients pay for the resources consumed by
their applications. Then, if the promised availability target is missed, the providers give
customers a service credit.

The socio-economic impact of PaaS services becomes critical since the number of
PaaS users and providers is growing. PaaS providers want to generate the maximum
profit from the services they provide. This requires them to face a number of challenges.
They have to efficiently manage the underlying resources and to decide between us-
ing privately owned resources or renting public IaaS resources. Moreover, they must
manage the placement and isolation of customer applications on the resources and sat-
isfy their SLAs in order to avoid the payment of penalties. Current big commercial
PaaS providers, such as Amazon and Microsoft, use their own resources. However,
smaller PaaS providers, such as Heroku [15], CloudBees [34] and dotCloud [35], rent
on-demand public IaaS resources. In this thesis we consider a cloud-bursting PaaS envi-
ronment, which is built on a limited number of private resources and is able to burst
into public IaaS cloud resources. Such an environment represents the general case and
offers several options for the PaaS provider to select resources for hosting applications.

Recently, a number of research works focusing on economic optimizations in multi-
cloud environments have been proposed. However, most of them either focus on specific
application types [120][79][64] or target specific hosting environments [90][141][158].
Therefore, exploring and investigating the possible solutions for managing a cloud-
bursting PaaS environment with the objective of optimizing the provider profit remains
an open research topic. The work of this thesis is part of this theme.

16

Chapter 1. Introduction

1.2 Objectives

The main objective of this thesis is to provide a profit-optimization solution for SLA-enabled,
cloud-bursting, PaaS systems. To achieve this objective, this thesis investigates four main
sub-objectives:

• Profit Optimization. The profit optimization is the central objective of every PaaS
provider. On one hand, this involves accepting and satisfying client requests
whether in low or peak periods. On the other hand, the competition between
providers compels each provider to propose prices following the market, which
limits their revenues. Therefore, the provider profit optimization should be per-
formed through the optimization of the incurred costs for hosting applications.
However, if such a cost optimization leads the provider to miss its commitments
regarding the QoS promised to applications, the customers will be disappointed
and may migrate to an other competitor. Thus our objective here is to provide a pol-
icy that searches the cheapest resources for the provider to host clients applications, taking
into account the provider’s reputation and its long-term profit.

• SLA Support. PaaS customers expect PaaS providers to propose SLA contracts
that guarantee a QoS level to their applications. An important part of the SLA
agreement consists in arranging to compensate users if the agreed QoS level of
their applications is missed. Such compensations may penalize providers’ profits
but are necessary to gain the confidence of clients. Thus, our goal here is to provide
QoS-based SLA to applications and to take into account the payment of penalties if the
providers fail in providing the QoS level promised to their clients’ applications.

• Support for Multiple Application Types. An open PaaS solution, easily extensible
to support of new application types, is appealing to both customers and providers.
On one hand, it offers more flexibility to customers having various requirements.
On the other hand, it enables PaaS providers to attract clients from several profes-
sional areas and to easily add the support of any new profit-making application
type, which helps increasing their turnovers. Therefore, we aim at providing an
open and generic PaaS profit-efficient solution, which is independent from a specific ap-
plication type. The difficulty in building such a PaaS solution lies in the support
of various application types, each application type having its own hardware and
software dependencies.

• Cloud-Bursting PaaS System. A cloud-bursting PaaS system enabling the de-
ployment of applications simultaneously on private and public cloud resources
offers PaaS providers several deployment options to optimize either application
performance or costs. The support of cloud-bursting capability requires signifi-
cant engineering work to enable the PaaS system to use several IaaS systems and
to maintain the SLA of the applications deployed simultaneously on several IaaS
clouds. Therefore, our goal is to design a cloud-bursting PaaS system enabling the
deployment of applications on multiple clouds.

1.3 Contributions

This thesis tackles the introduced objectives with the following contributions.

17

1.4. Outline of the Thesis

• Profit Optimization Model. We define a generic model of an open cloud-bursting
PaaS system, based on which we propose a policy for optimizing the PaaS provider
profit. The profit optimization policy proposes a placement of applications on
the cheapest resources, taking into account the satisfaction of their SLAs. The
proposed policy is generic and may be applied on any application type with only
one condition, which consists in cooperating with application type-specific entities
providing information about the performance and SLAs of the hosted applications.

• Application of the Optimization Model. To demonstrate the genericity of the
model, we applied it to rigid and elastic computational applications. Specifically,
we defined corresponding SLA terms. Based on that, we proposed heuristics for
providing the information required by the generic profit optimization policy. The
idea behind this investigation is to show a concrete and complete illustration of
the generic profit optimization policy.

• Meryn: an Open Cloud-Bursting PaaS. We propose an open cloud-bursting PaaS
system, called Meryn, providing all the features required for implementing the
generic profit optimization policy. To support the extensibility regarding applica-
tion types, we use existing frameworks for managing the supported application
types. For instance, the Oracle Grid Engine (OGE) framework is used for manag-
ing batch applications and the Hadoop framework is used for managing MapRe-
duce applications. Moreover, to facilitate the management of cloud bursting, we
built Meryn on top of virtualized private resources similar to the virtual resources
leased from public cloud providers.

1.4 Outline of the Thesis

The rest of this thesis is organized as follows. Chapter 2 presents background defi-
nitions in the context of our work. Specifically, it gives an overview of the different
IT infrastructures and application models, and defines the service level agreement and
cloud computing concepts. Chapter 3 presents the requirements to achieve the thesis
objectives, covers the state of the art and positions the contributions of this thesis. The
main covered axes are: economic optimization policies, cloud bursting mechanisms,
and PaaS systems. Chapter 4 describes the first contribution of this thesis consisting in
a generic model for optimizing the provider profit in an open cloud-bursting PaaS sys-
tem environment. Chapter 5 investigates rigid and elastic computational applications in
order to enable a concrete applicability of our generic profit optimization model. Chap-
ter 6 presents the design principles, architecture and implementation of Meryn, our open
cloud-bursting PaaS system. Chapter 7 presents an evaluation of our approach through
a set of simulations and experiments performed on the Grid’5000 testbed [40]. Chap-
ter 8 concludes this thesis by summarizing our contributions and presenting some future
work directions.

18

Chapter 2

Background

Contents
2.1 IT Infrastructures . 18

2.1.1 Cluster . 18

2.1.2 Grid . 19

2.1.3 Utility Computing . 19

2.2 Taxonomy of Application Models . 20

2.2.1 Parallelism Model . 20

2.2.2 Resource Requirements . 20

2.2.3 Resource Usage . 21

2.2.4 Lifetime . 21

2.2.5 Interactivity . 22

2.3 Service Level Agreement (SLA) . 22

2.3.1 Overview . 22

2.3.2 SLA Specification . 23

2.3.3 SLA metrics . 23

2.3.4 Price Formation and Billing Models 23

2.3.5 Penalties . 24

2.3.6 SLA Lifecycle . 24

2.4 Cloud Computing . 24

2.4.1 Overview . 24

2.4.2 Service Models . 25

2.4.3 Deployment Models . 28

2.4.4 Business Aspects . 29

2.5 Summary . 30

This chapter provides the background related to the contributions of this PhD thesis.
First, we present existing IT infrastructures and a taxonomy of existing application

models. Then, we present the Service Level Agreement (SLA) concept. Finally, we
present the cloud computing technology, its service and deployment models as well as
its business aspects.

19

2.1. IT Infrastructures

2.1 IT Infrastructures

IT (Information Technology) infrastructures refer to systems composed of software and
hardware to process and manage information automatically. IT infrastructures emerged
over the last century, evolved very quickly, and revolutionized our society and our in-
dustry. The development of IT infrastructures has gone through several steps and gave
rise to the emergence of multiple software models. Software refers to programs written
using specific programming languages and hosted on specific IT infrastructures. There
are mainly two classes of software: system and user software. System software is de-
signed to operate and manage the IT infrastructure’s hardware and provide a platform
for running user software. User software, also called Applications, is designed to per-
form specific tasks to help users. In this section we present a number of existing IT
infrastructures as well as their respective system software.

2.1.1 Cluster

A cluster is a set of homogeneous computers interconnected through a fast Local Area
Network (LAN)1. There are mainly two types of cluster’s system software: programming
frameworks and Single System Images (SSI). A programming framework, also called a clus-
ter resource manager, provides control over the cluster’s compute resources to allocate
them to users jobs2. Programming frameworks are often configured in a master node
and a set of slave nodes. The master node has a global view of the cluster. It is responsi-
ble for scheduling the jobs on the slave nodes using specific scheduling algorithms such
as the well known first-fit and round-robin algorithms. The slave nodes are responsible
for the execution of the jobs assigned to them, as illustrated in Figure 2.1. For running
applications in such systems, the users have to connect to the master node, wrap their
applications using a job template specific to the programming framework and submit
their jobs using the programming framework tools. Examples of well known program-
ming frameworks include batch frameworks such as OAR [69], Torque [138], Oracle Grid
Engine (OGE) [89] and data-intensive frameworks such as Hadoop [151] and HPCC [29]
for respectively batch and data-intensive applications (more details about application
types are given in Section 2.2).

Slave nodes Master node

submit jobs schedule jobs

Users

execute jobs

Figure 2.1: Overview of a cluster managed using a programming framework

A single system image (SSI), also called a cluster operating system, hides the dis-
tributed nature of the cluster and gives users the illusion of a single multiprocessor

1Local Area Network (LAN) is a communication system used to interconnect computers in a limited
geographical area, such as a campus, a laboratory or a company.

2A job is a collection of one or more applications that run together.

20

Chapter 2. Background

Cluster Virtual multiprocessor machine Users multiprocessor

submit jobs

Figure 2.2: Overview of a cluster managed using a single system image

machine. This enables the use of the cluster in exactly the same way as the use of a
single computer, as seen in Figure 2.2. Usually SSIs are implemented as an extension of
standard operating systems. In such systems, users may connect to any node of the clus-
ter to have a global view of the available resources and run their applications. Examples
of SSI are Kerrighed [125], MOSIX [60] and OpenSSI [147].

2.1.2 Grid

A grid is a federation of geographically distributed heterogeneous computing resources
interconnected through a Wide Area Network (WAN)3. The computing resources may
be individual machines, clusters or any other PDA4 devices, belonging to several Virtual
Organizations (VOs). Virtual organizations may be a group of people or real organiza-
tions with common goals. They share their resources for the purpose of providing access
to compute resources in the same way as electric grids. However, the access to resources
is governed by specific sharing rules defined locally by each virtual organization. Users
must join a VO to be able to use the grid resources. Examples of existing grids include
experimental grids such as PlanetLab [62] and Grid’5000 [65], and compute grids such
as the European Grid Infrastructure (EGI) [30].

There are mainly two types of grid system software: grid middleware and grid operat-
ing system. A grid middleware is a software layer between operating systems installed
in the individual computers and the applications. It provides users with standardized
interfaces for monitoring, reserving and using the grid resources for running their appli-
cations. Some well known grid middleware are Globus [31], gLite [112] and DIET [55].
A grid operating system hides the heterogeneity of the grid environment and provides
users with the same functionalities of a traditional operating system. Examples of grid
operating systems include XtreemOS [124], Legion [94], and GridOS [128].

2.1.3 Utility Computing

Utility computing is a computing business model which consists in providing comput-
ing resources on-demand, as a measured service, in exchange of a payment according
to the use of resources. This model is inspired from the conventional utilities such as
phone services, electricity and gas. Basically, the entity that owns, operates, manages
and provides the resources is called a provider and the entity that accesses and uses
the resources is called a customer. The provider makes the resources available to users

3Wide Area Network (WAN) is a communication network used to interconnect computers from very
large geographic area that cannot be covered using a LAN.

4PDA (Personal Digital Assistant) is a handheld computing device such as smartphones.

21

2.2. Taxonomy of Application Models

through a network. The provided resources may be either computational hardware or
software applications. Utility computing may be applied in any computing environ-
ment but the most known and used environment is cloud computing. We present the
cloud computing technology in detail in Section 2.4.

2.2 Taxonomy of Application Models

An application is a computing software that consists of a set of tasks, designed to solve
specific problems from a specific activity domain. Nowadays, there are several software
applications for almost all life activity domains such as health, education, and science.
Applications may be classified according to many parameters, such as the activity do-
main of the problem to solve, used programming languages, supported operating sys-
tems and infrastructures and so on. In this section we classify applications based on their
parallelism model, resource requirements, resource usage, lifetime and interactivity.

2.2.1 Parallelism Model

There are mainly three application parallelism models: sequential, parallel and distributed.
A sequential application is a single process containing a set of instructions to run one
after another in a successive fashion. The sequential applications may run on any IT
infrastructure type, even on a simple uni-processor and mono-task computer.

A parallel application consists of multiple processes or threads able to run simulta-
neously where each process or thread has a set of instructions to run sequentially. The
parallel applications are designed to solve very large problems requiring capabilities of
more than one CPU. Thereby, usually a separate CPU is assigned for each process or
thread that composes the parallel application. Parallel applications may run on a mul-
tiprocessor machine or on a cluster managed using an SSI system software. They may
also run or uni-processor machines but in this case they will not run in parallel, they
will just have the illusion of parallelism.

A distributed application is a collection of multiple processes to run on multiple
computers. The distributed applications are designed as independent processes; each
one solves a subproblem. Applications are designed to be distributed either to take
advantage of available computation resources or because the distribution is necessary for
solving the concerned problem. For example utility computing providers may require a
distributed software to manage users requests where one part of the software runs on
the users side for enabling them specifying their requests and preferences and the other
part runs on the providers side for configuring and providing the required resources for
the users.

Parallel and distributed applications can also be classified as tightly-coupled or loosely-
coupled applications according to their communication patterns. In a tightly-coupled ap-
plication the processes have frequent communications and inversely in a loosely coupled
application the communication between the processes is insignificant.

2.2.2 Resource Requirements

Based on their resource requirements, applications can be classified as static and dynamic.
The static applications require a fixed amount of resources over their whole execution.

22

Chapter 2. Background

They can be subclassed as either rigid or moldable applications. The number of resources
required for running a rigid application is decided at the development time. Therefore,
rigid applications may only run on a specific configuration of resources. The number of
resources required for running a moldable application is decided at the submission time.
Thus, moldable applications can run on a wide variety of resource configurations. The
flexibility on allocating resources to moldable applications may considerably improve
the utilization of resources and the performance of the applications [100]. Some mold-
able applications may only run on a predefined set of specific resource configurations
such as the NAS Parallel Benchmarks [59].

The resource requirements of dynamic applications may change during their exe-
cutions. Basically, there are two types of dynamic applications: malleable and evolving
applications. Malleable applications are able to adapt to changes in their resource al-
location during their execution. Thus, the malleable applications may be shrinked or
extended depending on the availability of resources. However, these applications have
a minimum and maximum values of resource requirements. The application does not
progress if its allocated resources are less than the minimum value and does not benefit
from the allocated resources that exceed the maximum value. Examples of malleable
applications include Bag of tasks [75] and MapReduce applications [77]. Evolving appli-
cations are constrained by a resource requirement change during their execution. The
resource requirement change may be generated either internally because of an increased
or decreased complexity of the executed algorithms, or externally because of specific
interactions with external entities. Scientific workflows [63] are an example of evolving
applications.

2.2.3 Resource Usage

The applications may be classified based on the main hardware resource used inten-
sively. Namely, there are four main application classes according to the resource usage
parameter: CPU-intensive, IO-intensive and data-intensive applications. A CPU-intensive
application uses a high percentage of CPU resources and may reach 100% of CPU(s)
usage. Usually CPU-intensive applications are designed to be parallel or distributed.
An IO-intensive application reads and/or writes data very frequently, possibly with big
size, either from stored files or from IO devices. A data-intensive application processes
a very large amount of data and may have different access patterns to it. MapReduce
applications are a well known example of data-intensive applications.

2.2.4 Lifetime

Software applications may be hosted in the infrastructures in two ways: permanently or
temporally. A permanent software application ends only if the underlying infrastructure
is turned off or following a manual user intervention. The permanent applications are
not necessarily always actively using resources. Web applications are a good example
of permanent applications. In contrast, a temporary software application runs during a
finite duration that may be known in advance or not.

23

2.3. Service Level Agreement (SLA)

Provider Consumer

SLA

service

remuneration

enforcement of violation penalties

Figure 2.3: SLA overview

2.2.5 Interactivity

The applications may also be classified according to the degree of their interactivity with
users during their execution. The interactivity between applications and users may be
in the form of a request to select an option or to give specific data. An application is
said to be interactive if it requires recurrent interactions with the user. In general, inter-
active applications become temporally idle when an interaction is required. Examples of
interactive applications include visualization applications. An application is said to be
passive or batch if it requires no interaction with users during its execution. The required
input data of a passive application is given at submission time and the possible output
data is given at the end of the application execution. Generally, passive applications
are not permanent and can be suspended and resumed later, or check-pointed or killed
and restarted later. Examples of passive applications include a big number of scientific
simulations.

2.3 Service Level Agreement (SLA)

2.3.1 Overview

A Service Level Agreement (SLA) is a formal contract concerning a given service be-
tween two parties: the service provider and the service consumer. The SLA explicitly de-
fines the concerned service using measurable metrics such as the service availability and
performance. It also specifies the expectations and obligations of each party. A cloud
provider may also list in the SLAs a set of restrictions or limitations, and obligations that
cloud consumers must accept. If the customer or the provider violates the agreement,
the SLA indicates how violation penalties will be enforced (see Figure 2.3). Thus, the
SLA is used to guarantee the satisfaction of the service quality expected by the consumer
and the deserved remuneration for the provider. SLAs started to be used in IT domains
with the advent of utility computing. Then, many system models have been proposed
in the literature to support autonomic SLA management [106][67][152] which consists in
managing and automating the entire SLA lifecycle using an SLA specification language.

24

Chapter 2. Background

2.3.2 SLA Specification

To ease the automation of SLA negotiation and management, the SLA should be pre-
sented in a formalized way such that the concerned service may be adapted accord-
ing to the agreed SLA terms. Several SLA specification languages have been proposed
in the literature. The most popular and widely used ones are WSLA [119] and WS-
Agreement [56]. Both of them provide support for the entire SLA lifecycle and rely
on WSDL (Web Service Description Language) to describe the service functionalities.
WSLA (Web Service Level Agreement) is a framework developed by IBM to specify and
monitor SLAs for web services. It provides a formal language based on XML to rep-
resent SLAs for both the provider and the consumer. Based on the interpretation of
the WSLA document the provider and the consumer configure their respective systems.
The WSLA framework can measure, monitor and report to the two parties the values of
multiple implemented SLA metrics. Moreover, it enables the creation and the implemen-
tation of new SLA metrics. WS-Agreement (Web Service Agreement) is a language and
protocol defined by Open Grid Forum (OGF) for the creation, specification and man-
agement of SLAs. The WS-Agreement language uses XML to formalize the agreement
in a template. The template defines, among other things, the agreement parties and de-
scribes the offered service. The WS-Agreement protocol is based on request response for
the interaction between the provider and the consumer. WS-Agreement does not define
specification for SLA metrics as WSLA but many research works have been proposed in
order to extend the WS-Agreement model such as [134], [131] and [126].

2.3.3 SLA metrics

The SLA metrics are measurable aspects, defining what services and guarantees the
cloud provider will provide. The SLA metrics may be categorized as functional and
nonfunctional. Functional properties cover aspects like the number of arguments and
the semantics of operations. Nonfunctional properties define the service capabilities and
robustness, covering terms regarding the QoS, security, and remedies for performance
failures. The SLA metrics should be monitored and reported to both the provider and
the consumer for the assessment of the service’s ability to achieve the agreement.

2.3.4 Price Formation and Billing Models

The price formation model determines how to account the price of a service based on
a set of parameters. According to [113] there are mainly three price formation models:
cost-based, demand-driven and competition-oriented. The cost-based price formation model
establishes the price using the provider cost for operating the service which may include
expenses of the used resources and third party services. The demand-driven price for-
mation model establishes the price based on the consumers demand of the service in
the current market. Finally the competition-oriented price formation model establishes
the price based on competitors prices, thus competitive providers propose equivalent
services with attractive prices to get a large market share.

The billing model determines how consumers pay for using a service. Service
providers apply mainly two billing models: pay-as-you-go and subscription. The pay-
as-you-go billing model accounts the service price according to the actual consumer’s
usage of the service. The service usage is accounted using service-specific units. Well

25

2.4. Cloud Computing

known examples of services provided in a pay-you-go model include the electric energy
and the telephony, where consumers usually pay a predefined price per respectively
consumed kWh or seconds of voice transfer. The subscription billing model gives con-
sumers an unlimited access to the service or a maximum service usage value while
demanding a periodical payment of a predefined price. For example, many mobile
telephony suppliers propose monthly subscriptions for an unlimited access to calls to
mobiles in a same country. Usually, the subscription billing model is more advantageous
for the consumers than the pay-as-you-go billing model if the service is used more than
a specific usage threshold and vice-versa.

2.3.5 Penalties

Penalties may be enforced against both providers and consumers if one of them does
not fulfill the agreement. If it is the customer that does not satisfy the agreement, she
may for example be forced to pay additional fees or undergo a deterioration in service
quality. If it is the provider that fails in delivering the agreed service quality, it may be
forced to refund the affected customers. The refund is usually in the form of service
credit rather than a real monetary refund because the latter may seriously compromise
the provider profit.

2.3.6 SLA Lifecycle

The SLA lifecycle proposed in the literature [98][152] includes six phases: (1) definition,
(2) discovery and negotiation, (3) establishment, (4) execution and monitoring, (5) termination,
and (6) assessment and enforcement phases. In the first phase the provider develops the
service and defines its corresponding SLA terms which involve technical and legal as-
pects. SLA terms include a minimum and/or maximum values of SLA metrics as well
as associated billing and penalty policies. In the second phase, the consumer discovers
the service provider and negotiates the SLA terms until a mutual agreement between
the two parties. The third phase consists in the establishment of the agreement and the
deployment of the service for the consumer. The fourth phase consists in the execution
of the service and the monitoring of the values of each SLA metric over all the service’s
execution time. In the fifth phase, the SLA terminates following the completion of the
service or a violation of SLA terms from any party. In the sixth phase the monitored
values of SLA metrics are assessed and if any party violates the contract terms the cor-
responding penalties are enforced. The sixth phase may operate in parallel with the
fourth phase and the possible SLA violation penalties are enforced immediately. Oth-
erwise it operates at the end of the fifth phase and the possible SLA violation penalties
are enforced at the end of the service execution.

2.4 Cloud Computing

2.4.1 Overview

Several cloud computing definitions and features have been proposed in the literature
[145][95][135][57]. Most definitions converge on describing the cloud computing as a
new computing paradigm for providing on-demand software and hardware resources

26

Chapter 2. Background

Platform as a Service (PaaS)

Software as a
Service (SaaS)

Infrastructure as a Service (IaaS)

Figure 2.4: Cloud service models

as services over a network (e.g., Internet) in a pay-as-you-go pricing model. The main
cloud computing features are: elasticity, on-demand self-service, pay-as-you-go pricing model,
availability, and multi-tenancy.

Elasticity. Clouds appear to customers as an infinite pool of computing resources
(e.g., compute and storage capacity) that may be purchased at any quantity and at any
time. Thus, customers can easily scale up and down their resource provisioning to meet
changes in their applications and workloads requirements.

On-demand self-service. Customers can instantly provision computing resources
without requiring human interaction with the cloud provider. This feature is strongly
related to the elasticity feature but it implicitly requires autonomic resource management
software to enable an on-time reaction to new resource provision requests as well as
changes in existing resource provisions.

Pay-as-you-go pricing model. Cloud services are measured using predefined units
(e.g., resources consumption, QoS requirement) that depend on the type of the provided
service. Thereby, the cloud services are monitored, controlled and reported to both the
provider and customer in order to establish a billing according to the actual service
consumption.

Availability. Cloud services are almost constantly available over the networked and
accessible through standard network devices (e.g., laptops, servers, and PDAs).

Multi-tenancy. Cloud resources are pooled to be assigned to multiple customers
in a multi-tenant model, where the exact location of customer’s data and/or code is
unknown. This implies a high privacy issue in cloud systems.

2.4.2 Service Models

The cloud computing services are commonly classified in three fundamental delivery
models [135][95][156]: Infrastructure as a Service (IaaS), Platform as a Service (Paas), and
Software as a Service (SaaS). Each service model has its own specific properties. Figure 2.4
visualizes the three cloud service models in a pyramid.

2.4.2.1 Infrastructure as a Service (IaaS)

Infrastructure as a Service (IaaS) is the base cloud service model in the pyramid. It deliv-
ers fundamental compute resources (computing, storage, and network). The IaaS model
relies on the virtualization technology in order to hide the complexity of the underling

27

2.4. Cloud Computing

physical resources and expose a flexible virtual execution environment to customers.
The virtualization allows the creation of a pool of virtual computing, storage and net-
work resources on top of physical resources using specific virtualization tools. Virtual
computing resources, commonly called Virtual Machines (VMs), represent full comput-
ers containing hardware components and running an operating system in the same way
as real computers [137]. Virtual machines are obtained by partitioning physical machines
using a hypervisor [91] such as Xen [61], KVM [110], VMware Workstation [38], and Vir-
tualBox [149]. Virtual storage resources are obtained through the pooling of multiple
data pieces stored in multiple physical storage devices and appear to customers as a
single storage device (e.g., disk drive, folder, etc.) [150][132]. Examples of storage virtu-
alization systems include Hitachi Virtual Storage Platform (VSP) [12], IBM SAN Volume
Controller (SVC) [23], and DataCore SANsymphony [33]. Virtual network resources con-
sist in separate logical networks that have their own topology and IP addressing scheme
while sharing a common or multiple physical network infrastructures [70][74]. Exam-
ples of network virtualization software include VMware NSX [43], IPOP [88], CISCO
Easy Virtual Network (EVN) [47], and VIOLIN [102].

IaaS customers are able to build customized and elastic execution platforms on-
demand from the provided IaaS resources in order to fit their requirements. The elas-
ticity in the IaaS model may be either vertical or horizontal, where the vertical elastic-
ity refers to the modification of virtual machines capacities and the horizontal elasticity
refers to the modification of the amount of virtual machines. The customers have control
and administrative rights over operating systems installed in the rented virtual machines
and are able to install, configure and operate their own software (e.g., applications, li-
braries, etc.). Moreover, they have the possibility to delete, save, stop, and restart their
own environments as required. For instance, if a consumer does not use continuously
his/her environment he/she may stop it during the no-usage period and restart it later
in order to limit her expenses. On the other hand, IaaS providers may migrate virtual
machines from one physical machine to another one for maintenance reasons or for con-
solidating virtual machines during low demand periods in order to save energy and/or
cost of their infrastructure.

Today, there is a growing number of commercial IaaS providers, the main important
industry players are Amazon (EC2) [54], Rackspace [2], Microsoft (Windows Azure In-
frastructure) [1], and Google (Compute Engine) [49]. Furthermore, several open source
and commercial solutions for building and managing IaaS cloud services have emerged.
Open source solutions include Nimbus [108], OpenNebula [123], OpenStack [5], Cloud-
Stack [4], and Snooze [86] and commercial solutions include Flexiant [3], Microsoft pri-
vate cloud [6], Red Hat CloudForms [7], IBM SmartCloud Orchestrator [8], and HP
CloudSystem [9].

2.4.2.2 Platform as a Service (PaaS)

Platform as a Service (PaaS) is the middle cloud service model in the pyramid. It deliv-
ers a complete runtime environment for building, deploying and hosting software appli-
cations typically including operating systems, software libraries, storage and database
services. The PaaS model relies on computational resources in the form of IaaS re-
sources or operating system containers. On one hand, relying on virtual resources from
IaaS clouds brings a high degree of flexibility and multi-tenancy to the PaaS, but at the

28

Chapter 2. Background

cost of being dependent on IaaS and virtualization layers. On the other hand, relying
on operating system containers enables a better utilization of resources, but at the cost
of being constrained to host only applications running on the same operating system.
Therefore, the choice of computational resources on which the PaaS relies depends on
the PaaS’s goals and requirements.

PaaS customers deploy their applications on the PaaS environment without the com-
plexity of managing the underlying software and hardware required by their applica-
tions. PaaS environments are usually designed to support the execution of specific ap-
plication types (e.g., web services) developed using specific aprogram languages (e.g.,
Python, Java) and libraries (e.g., Apache libraries). Moreover, because of a lack of stan-
dardized interfaces, each PaaS provider exposes its own API to enable customers to use
its services. Thus, customers have to carefully choose their providers according to the
supported programming languages and the provided tools for building, running and
managing their applications because they are often subject to vendor lock-in.

Most of prominent IaaS providers propose also PaaS services and run the hosted ap-
plications on their infrastructures. For instance, Amazon provides Elastic Beanstalk [10]
for web-applications developed in familiar languages, such as Java, Python, Ruby, etc.
and Elastic MapReduce [11] for data-intensive applications. Microsoft provides Win-
dows Azure Cloud Services [13] for multi-tier web-applications. Google provides App
Engine [14] for web-applications developed in Java, Python, Go, or PHP. Other com-
mercial providers provide only PaaS services and host applications either on resources
from other IaaS providers or on their own infrastructures. For instance, Heroku [15]
hosts applications on resources from Amazon and Salesforce’s platform (Force.com) [16]
hosts applications on the Salesforce’s infrastructure. Similar to IaaS clouds there are
several open source and commercial solutions for building and managing PaaS cloud
services. Open source solutions include ConPaaS [130], AppScale [17], Cloudify [18],
and WSO2 Stratos [20]. Commercial solutions, also known as cloud managers, include
RightScale [21], Scalr [22], and Dell Cloud Manager [24]. In addition, some companies
provide PaaS solutions as well as hosted instances of their solutions, such as RedHat
OpenShift [25] and VMware Cloud Foundry [19].

2.4.2.3 Software as a Service (SaaS)

Software as a Service (SaaS) is the highest cloud service model in the pyramid. It de-
livers specific software applications with specific capabilities accessible through a client
interface such as a web browser (e.g., business functions, games, web-mails, etc.). The
provided applications are hosted on the provider’s infrastructure or on another cloud
infrastructure or platform. SaaS customers directly access and use the software appli-
cations without having to acquire the software licenses or to configure the underlying
infrastructure and hosting environment. However, customers have only a limited con-
trol on applications configuration where providers have full control and are in charge
of installing, operating, updating and managing the applications. Examples of SaaS
providers include Salesforce CRM [27], iCloud [28] and Google Apps [26] such as Gmail,
Gtalk, and Google Agenda.

29

2.4. Cloud Computing

2.4.3 Deployment Models

Cloud computing services are also classified according to their deployment models. The
are mainly three deployment models: public cloud, private cloud, and multi-cloud. In the
following we present each deployment model and describe some existing instances of
the multi-cloud deployment model.

2.4.3.1 Public Cloud

A public cloud is a commercial cloud owned by a business organization, known as public
cloud provider, and available to the general public, individuals or organizations. Public
cloud providers implement a payment method (e.g., automatic bank card debit) to bill
customers their resource and service usage. Thus, customers do not invest in hardware
equipments and pay only for what they really use.

2.4.3.2 Private Cloud

A private cloud is a cloud owned, managed and used by a single organization (e.g.,
company, academic institution). It is deployed on the organization’s datacenter using an
internal, open source or commercial solution and controlled by the organization’s staff.
The exposed cloud services and functionalities match the specific requirements of the
organization. Usually, private cloud customers do not pay for using the services but
some usage rules may be applied such as quotas and charters.

2.4.3.3 Multi-Cloud

A multi-cloud deployment model refers to the use of two or more cloud services (either
private or public), where each cloud service is provided by a different entity. There are
many instances of the multi-cloud deployment model. In the following we describe the
most common of them.

• Community Cloud. A community cloud is an aggregation of multiple private or
public clouds provided and shared by several organizations with common con-
cerns. Community clouds share some similarities with grids in terms of resource
sharing between multiple organizations. The community cloud is managed by the
community or a third party and is used exclusively by the community members,
following specific terms of use. For example a community cloud may be designed
for academic organizations working on a joint project.

• Hybrid Cloud. A hybrid cloud is a cloud composed of at least one private cloud
and one public cloud, which are bound together to form a unique cloud. This
deployment model offers more flexibility and takes advantage at the same time
of the private cloud in terms of control and security of sensitive services, and of
the public cloud in terms of on-demand expansion during high load periods. A
hybrid cloud may be built for either private or commercial purposes.

• Cloud Bursting. The cloud bursting deployment model can be classified as an
instance of the hybrid cloud deployment model. Specifically, it is a deployment
model based on private resources, in the form of cluster, grid or private cloud,

30

Chapter 2. Background

that may burst into public cloud resources on-demand, mainly to address the lack
of resources when the demand for computing increases. The cloud bursting ap-
proach is an appealing intermediate solution between static provisioning of local
computing resources and entirely outsourcing applications on public clouds.

• Cloud Federation. A cloud federation is the union of several cloud services, pri-
vate or public, to form a single cloud. The cloud federation provides interoperabil-
ity among many cloud providers and is responsible for mapping clients requests
on the best cloud provider according to the requirements and the type of the re-
quest.

• Cloud Broker. A cloud broker is a third party entity that acts as an intermediary
between cloud computing customers and cloud computing providers. The role of
a cloud broker is either to assist customers to select the cloud computing provider
based on their requirements, or to facilitate the distribution of customers requests
between different cloud service providers.

2.4.4 Business Aspects

Cloud providers spend a lot of money to provide and maintain their services and in
return they get payments from consumers using their services. In this document we call
provider expenses "costs" and consumer payments "revenues". To provide a global view
of cloud providers business models we present in the following a non-exhaustive list
of both cloud provider costs and revenues. Then, we briefly present characteristics and
limitations of existing cloud SLAs of the main commercial cloud providers.

2.4.4.1 Costs

The cost of cloud computing services comprises multiple factors, already identified in
many research works [57][78][107][140][143][127]. We classify the cloud cost factors in
five categories: acquisition, upgrading, electricity consumption, support and maintenance and
third-party services.

Acquisition. This category refers to the acquisition of software licenses and hard-
ware resources. Software licenses cover basic system software, internal cloud system
management software and application software used by final consumers. Hardware
resources include computing hardware (e.g., servers, storage disks), needed network
devices (e.g., routers, switches), plus the required cooling infrastructure.

Upgrading. The economic lifetime of the acquired software licenses and hardware
resources is limited. Moreover, software updates and hardware improvements are regu-
larly released. Thus, it is necessary for cloud providers to upgrade regularly their owned
software licenses and computing hardware resources.

Electricity consumption. This category considers the consumed electricity in the
entire datacenter including electric devices (e.g., computing hardware and cooling in-
frastructure) and premises lighting. The cost of the electricity consumption relies on
the price of the electricity which depends on the datacenter location. The electricity
consumption of computing resources varies according to their utilization. Usually, idle
resources consume less electricity than heavily utilized ones.

31

2.5. Summary

Support and maintenance. This category comprises salaries of employees working
on administering and managing the cloud system, maintaining software and hardware
and providing support to customers.

Third-party services. This category includes expenses for services obtained from
third party providers, such as internet network connectivity, premises renting and any
additional utilities.

2.4.4.2 Revenues

Cloud providers revenues are determined based on three aspects: services prices, ser-
vices utilization, and the providers ability to satisfy the promised service qualities.
Service prices are determined using the used price formation model and the used
billing model. Usually, with the subscription pricing model long contract periods im-
ply cheaper service prices, which is profitable for both service providers and con-
sumers [136]. And with the pay-as-you-go pricing model services have always same
prices per time unit, but the payment time unit varies from one provider to another one.
Initially all providers were charging the resource consumption of their consumers per
hour but recently some providers started to charge their customer’s resource consump-
tion per minute, such as Google App Engine and Windows Azure Cloud Services.

Cloud customers pay, directly or indirectly, for the used computing resources, for
providing them with services as well as for the provided services quality level. The
computing resources include computing nodes, network bandwidth and storage. Cus-
tomers may also pay for additional, often optional, services to improve and facilitate
their applications execution and management, such as resource utilization monitoring
and load balancing tools [116].

2.4.4.3 SLA

Cloud providers propose several services with different qualities to customers and also
propose separate SLAs for each service. However, current cloud computing offerings
provide a limited SLA penalty management support. Most of providers, including big
players, focus on services availability and uptime. Table 7.1 provides examples of exist-
ing cloud SLA metrics practiced by respectively Amazon EC2, Google Compute Engine
and Microsoft Azure. If the providers fail to ensure the promised service availability,
they propose to credit the user with a percentage of the bill for the eligible credit period.
However, their mechanisms are not automatic. The user should provide logs that docu-
ment the errors and send a request through an Email or the customer contact support.
Moreover, to benefit from SLA guarantees some providers impose specific conditions.
For instance, to benefit from a minimum uptime of 99.9% in Windows Azure Cloud
Services requires to have at least two compute node instances.

2.5 Summary

In this chapter we presented the background of this thesis. We started with a brief de-
scription of existing IT infrastructures and their respective system software. We also in-
troduced the utility computing paradigm and gave a taxonomy of the different software

32

Chapter 2. Background

Table 2.1: Examples of existing cloud SLA metrics

Metrics Values Penalties Enforcement
Amazon EC2 Availability 99.95% 10% service credit User’s request

99% 30% service credit
Google Compute Uptime 99.95% 10% service credit User’s request
Engine 99% 25% service credit

95% 50% service credit
Microsoft Azure Uptime 99.95% 10% service credit User’s request

99% 25% service credit

application models. We classified software applications according to their parallelism
model, resource requirements, resource usage, accommodation and interactivity.

Then, we presented the Service Level Agreement (SLA) concept which consists in
a formal contract between a service provider and a consumer. The SLA describes the
concerned services as well as obligations and penalties of both the provider and the
consumer. We described the SLA lifecycle, from its definition to its termination and
presented the main existing SLA specification languages. For the sake of clarity, we
highlighted the differences between functional and nonfunctional SLA metrics as well
as the different SLA pricing functions and models. We also briefly described penalty
enforcement forms currently practiced by service providers.

Finally, we presented the cloud computing technology and described its three service
model layers: IaaS, PaaS and SaaS. For each service model we described the used tech-
nology and mechanisms, the exposed form of services to users and the main existing
providers and solutions. We also described the four cloud deployment models: public,
private, community and hybrid. Furthermore, we presented cloud computing business
aspects in terms of providers costs, revenues and existing cloud SLAs of the main cloud
providers.

In the next chapter, we describe the objectives of this thesis, discuss the related work,
highlight the existing gaps and briefly introduce our contributions and show how we
fill the gaps.

33

2.5. Summary

34

Chapter 3

SLA-Based Profit Optimization in
Cloud Bursting PaaS

Contents
3.1 Thesis Objective . 34

3.2 Platform as a Service (PaaS) . 34

3.2.1 Commercial PaaS . 35

3.2.2 Open Source PaaS . 41

3.2.3 Research PaaS . 45

3.3 Cloud Bursting . 49

3.3.1 Based on User Constraints . 49

3.3.2 Based on Economic Criteria . 50

3.3.3 Targeting Specific Application Types 51

3.4 Economic Optimizations . 52

3.4.1 Targeting Specific Application Types 52

3.4.2 Targeting Specific Infrastructures 54

3.4.3 Focusing on the Optimization of Energy Costs 55

3.5 Gaps . 56

3.6 Summary . 56

The objective of this PhD thesis is to provide a profit-optimization solution for SLA-
enabled, cloud-bursting, PaaS systems. In this chapter, we specify the main required

features to achieve this objective and review the most recent proposed approaches in
three related fields: Platform as a Service (PaaS) systems, cloud-bursting environments,
and economic optimization policies. We highlight the limitations of the main related
work that prevent achieving the defined objectives. Finally, we summarize this chapter.

35

3.1. Thesis Objective

3.1 Thesis Objective

The main objective of this thesis is to provide a profit-optimization solution for SLA-
enabled, cloud-bursting, PaaS systems. To achieve this objective, the solution must
support the following two features: a PaaS hosting environment and a profit-making
business model.

• Profit-Making Business Model. The required profit-efficient business model should
take into account three main properties.

1. Generic. It should be generic and independent from specific application types.

2. Support for SLA constraints. It should take into account SLA constraints and
the payment of penalties if the QoS promised to applications is not satisfied.

3. Applicability to PaaS environments. It should be applicable on a cloud-bursting
PaaS environment.

• PaaS Hosting Environment. The required PaaS hosting environment should pro-
vide a number of properties to enable the implementation of a profit-making busi-
ness model for PaaS providers. In the following we identify two properties.

1. Open. An open PaaS hosting environment should be easily extensible to host
a large variety of application types. This is necessary in order to attract users
having different requirements, thus increasing providers’ turnovers.

2. Cloud bursting. The cloud bursting feature is required in a PaaS hosting envi-
ronment in order to avoid rejecting clients requests in peak periods. Moreover,
this provides several options to the PaaS provider for selecting the resources
that host applications.

Based on these requirements we review in the next sections three main fields: PaaS
systems, cloud bursting environments, and economic optimization policies.

3.2 Platform as a Service (PaaS)

Nowadays the number of emerging Platform as a Service (PaaS) cloud systems is in-
creasingly growing. Such systems aim at providing users with complete hosting envi-
ronments to deploy and manage their applications while shielding them from managing
the underlying resources. We classify the PaaS solutions in three categories: commer-
cial, open source and research. In this section, we review some existing PaaS solutions
from each category according to several characteristics: resources, services, applications,
languages, architectures, billing and SLA. The resources characteristic represents the un-
derlying infrastructure or computing nodes that may be used by the PaaS. The service
characteristics describe the provided features for executing applications. The applications
characteristic determines the application types supported by the considered PaaS. The
languages characteristic represents the program languages supported in the PaaS. The
architecture characteristic describes how the underlying resources are partitioned to be
used for running an application. The billing characteristic shows the used pricing model
which is often pay-as-you-go or subscription model. The SLA characteristic describes
the promised service quality levels if any.

36

Chapter 3. SLA-Based Profit Optimization in Cloud Bursting PaaS

3.2.1 Commercial PaaS

In this section, we review the main current commercial PaaS solutions and summarize
them in Table 3.1.

Google App Engine. Google App Engine (GAE) [14] is a PaaS designed and pro-
vided by Google for building and hosting distributed web applications. The supported
applications may be interactive, modeled on processing operations in a task queue, or
combining the two. GAE relies on the Google infrastructure [49], provides an automatic
scalability for applications and supports four programming languages Java, Python,
PHP and Go and three options for storing data: App Engine Datastore, Google Cloud
SQL and Google Cloud Storage. GAE provides an App Engine software development
kits (SDKs) for each supported language to emulate all of the App Engine services on
users’ local computers. To host applications, users create the corresponding code and
configuration files and upload them to the App Engine. The execution of each App En-
gine application is charged according to its resources and services usage. It is possible
to specify a maximum daily budget for each application to better control expenses. The
GAE’s SLA consists in providing to customers a monthly service’s uptime percentage at
least 99.95%. If Google does not meet the SLA, customers will be eligible to receive a
service credit of 10%, 25%, or 50% depending on if the monthly service uptime is respec-
tively less than 99.95%, 99% or 95%. However, this compensation is not automatically
assigned to customers. They are responsible for keeping logs to request and justify their
claim. Further, the service credit is applied to future service use within only 60 days
after the request.

Windows Azure Cloud Services. Windows Azure Cloud Services (Azure) [1] is
a PaaS designed and provided by Microsoft for building and hosting multi-tier web
applications, also called cloud services. The cloud services are hosted on top of the Win-
dows Azure IaaS resources where Windows Azure handles the resources provisioning
and load balancing while enabling users to configure their applications to automatically
scale up or down and match current demands. A cloud service is defined in two roles:
a web role and a worker role. The web role provides a dedicated Internet Information
Services (IIS) server used for handling web-based requests and hosting web applica-
tions front-end. The worker role hosts the long-running or perpetual tasks of the web
applications that are independent of user interaction or input. The creation of a cloud
service requires specific packages created using the Windows Azure SDKs or Visual
Studio. There are six supported programming languages: .NET, Node.js, PHP, Python,
Java, and Ruby and three types of storage services: SQL Database, Tables or Blobs. It is
possible to manage hosted applications either through the Windows Azure dashboard
or through a command line interface. The Azure’s SLA guarantees a monthly external
connectivity to the Internet facing roles at least 99.95% of the time, with the condition
of deploying at least two or more web role instances. The monthly connectivity uptime
percentage is calculated as the total number of maximum connectivity minutes less con-
nectivity downtime divided by maximum connectivity minutes for a giving month. If
the SLA guarantee is not met Microsoft undertakes to assign to customers 10% or 25% of
service credit depending if the monthly connectivity uptime percentage is respectively
less than 99.95% or 99%. To benefit from this compensation, customers have to contact
the Customer Support and provide reasonable details regarding the claim. The claim
should be submitted by the end of the billing month where the incident occurred.

37

3.2. Platform as a Service (PaaS)

Amazon Web Services. Amazon Web Services (AWS) provides two PaaS systems:
Elastic Beanstalk [10] and Elastic MapReduce (Amazon EMR) [11]. Elastic Beanstalk is
designed for deploying and hosting web applications. It enables the load balancing,
automatic scaling and the management of applications in the AWS cloud. Moreover,
it gives users full control over the AWS resources powering their applications. For in-
stance, customers may specify the number and the type of virtual machine instances
and decide to replicate the application on multiple geographic zones. AWS Beanstalk
supports six programming languages: Java, PHP, Python, Node.js, Ruby and .NET and
uses Amazon S3 for the data storage. Beanstalk’s clients are charged based on the used
resources to store and run their applications without any additional charge for the Elas-
tic Beanstalk. Elastic MapReduce (Amazon EMR) [11] is designed for processing data-
intensive tasks, specifically MapReduce applications. Amazon EMR utilizes a hosted
Hadoop framework [151] on the Amazon infrastructure using Amazon EC2, Amazon
S3 and Amazon SimpleDB services and supports seven programming languages: Java,
Perl, Python, Ruby, C++, PHP and R. To process their data, customers create a resizable
cluster and launch it without the need to worry about the cluster setup and Hadoop
configuration. As opposed to Beanstalk, customers using EMR pay an extra charge in
addition to normal Amazon EC2 and Amazon S3 pricing. Amazon provides no SLA
for its PaaS services but applies the SLAs of the IaaS services composing them. For
instance, the Amazon EC2’s SLA consists in making the EC2 resources available to ex-
ternal connectivity at least 99.95% per month. Otherwise, affected clients receive 10% or
30% service credit of the billing of the unavailability period depending if the availability
percentage is respectively less than 99.95% or 99%. To receive the service credit, cus-
tomers must submit a claim to the AWS support center by the end of the second billing
cycle after which the incident occurred.

Force.com. Force.com [16] is a PaaS, provided by Salesforce, for creating and de-
ploying business web applications on the Salesforce’s infrastructure. It uses a multi-
tenant architecture where all users share the same infrastructure which allows a lower
operational cost. The used application development model is metadata-driven where
developers build applications functionalities with tools provided by the platform. This
helps developers becoming more productive compared to the hard-coded development
model. In addition, Force.com provides three APIs to create a more customized appli-
cations behaviors: SOAP, REST and Bulk. These APIs may be called from a wide variety
of programming languages that support web services, such as Java, PHP, C#, or .NET.
The use of Force.com requires an annual contract where users pay monthly a predefined
invoice depending on the application characteristics and capabilities. To the best of our
knowledge Force.com does not provide a compensation if something goes wrong

Heroku. Heroku [15] is a PaaS for web applications, initially founded by a num-
ber of engineers then acquired by the Salesforce company. Heroku is designed based
on isolated and virtualized Unix containers, called dynos, that provide the runtime en-
vironment required for running applications. Heroku utilizes a process-based execu-
tion model for running the applications. It separately and dynamically assigns dynos
to the hosted applications and uses a dyno manager that provides mechanisms anal-
ogous to ones provided by traditional OS process managers. To build and run an
application, Heroku’s customers should provide the corresponding source code and
dependency files written in one of the five supported programming languages: Ruby,
Node.js, Python, Java Clojure and Scala. Based on the provided files, Heroku generates

38

Chapter 3. SLA-Based Profit Optimization in Cloud Bursting PaaS

a runnable ready for execution. Heroku calculates billing based on dynos and database
usage per application. Heroku provides four levels of the database uptime expectation
per month: hobby, standard, premium and enterprise. The database downtime tolerance
is up to 4 hours for the hobby tier, 1 hour for the standard tier and 15 minutes for the
premium and enterprise tiers. However, any measure of compensation is specified if
Heroku fails to achieve the promised database uptime.

Engine Yard. Engine Yard [32] is a PaaS designed for building, deploying and man-
aging web-applications written in one of the three supported programming languages:
Ruby on Rails, PHP and Node.js. It relies on the Amazon cloud infrastructure where
it configures and manages multiple software components depending on applications
particular needs. Engine Yard is responsible of VMs configuration and imaging, auto-
matic scaling, administering databases and load balancing and performing backups. In
addition, it enables customers to have control over VM instances. Engine Yard charges
customers based on resource usage of their applications and promises, in its SLA, a
system availability of 99.9% for a month. Otherwise, customers shall be entitled to a
service credit equivalent to the amount of unscheduled service downtime in excess of
0.1%, divided by the amount of scheduled service uptime for that month, and multiplied
by the total recurring fee for that month for the affected services payable by customer.
However, the maximum cumulative credit in a month is 50% of the total recurring fee
for that month for the affected services.

RightScale. RightScale [21] is a cloud management platform that provides abstrac-
tion for managing a set of cloud infrastructures on behalf customers. It enables in-
teroperability among the supported public clouds: Amazon AWS [54], Datapipe [37],
Google Compute Engine (GCE) [49], HP Cloud [9], Rackspace [2] and Windows Azure
(WA) [1], and private clouds: CloudStack [4] and OpenStack [5]. It enables customers
to easily run and manage their applications and development environments while pro-
viding them freedom to choose or mix vendors and technologies. RightScale provides
automation techniques and enables customers to make their operations scalable while
giving them visibility and control over the used IaaS resources. It delivers the necessary
tools to create runtime environments for HPC (High Performance Computing) tasks,
big data analytics, web, gaming and mobile applications. RightScale supports a range
of languages and frameworks including Java, .NET, PHP, Python Django, and Ruby on
Rails. For the pricing, RightScale proposes a range of customized subscription contracts
where some services are charged according to the usage. No compensation rules are
specified in the RightScale’s website if the services are not correctly provided.

CloudBees. CloudBees [34] is a PaaS for building, hosting and managing web appli-
cations on the cloud. The CloudBees PaaS is hosted on the Amazon cloud infrastructure.
It configures, scales (manually or automatically) and assigns the Amazon resources to
customers’ applications. CloudBees supports a set of well known tools for applica-
tions development such as Eclipse, and also proposes its own SKD. The main supported
programming language in CloudBees is Java, but there are also other languages such
as Node.js, PHP and JavaScript. CloudBees proposes several pricing models. Some
services are charged based on subscriptions such as databases and applications devel-
opment. Other services are made available on a pay-as-you-go basis. For example,
the application execution is charged according to the dedicated VM instances or the
consumed app-cells, where an app-cell is the basic unit for running an application on
CloudBees and is more finely grained than the Amazon instance types. The users pay-

39

3.2. Platform as a Service (PaaS)

ment also depends on the a committed level of response and problem resolution time
that varies from two days to four hours. No compensation measures are specified if the
response time is longer than expected.

AppFog. AppFog [36] is a PaaS for web applications built on CloudFoundry, the
open source PaaS of VMware described in section 3.2.2. AppFog provides a multi-cloud
deployment and scalability options. It may run on Amazon, HP, Microsoft Azure and
Rackspace clouds as well as on a private cloud. AppFog supports many web applica-
tion runtimes: PHP, Node.js, Ruby, Python, Java, and .NET and provides a number of
database services. To create and manage applications, AppFrog provides a graphical
user interface and command line tools. AppFog uses memory as the basis for establish-
ing different service levels and the corresponding subscription contracts. To the best of
our knowledge AppFog provides no compensation if something goes wrong.

dotCloud. dotCloud [35] is a PaaS for deploying, managing and scaling web applica-
tions where an application is considered as a collection of one or more services working
together. Each service includes specific support for a fixed program or data storage lan-
guage. dotCloud runs on the Amazon EC2 resources where it uses a container system,
called Docker, for allocating resources to the hosted applications. Docker [45] is an open
source engine based on the Linux container runtime to automate applications deploy-
ment and execution. dotCloud is responsible for automatically configuring Docker on
EC2 instances and applying scaling strategies specific to each application. dotCloud
provides a Command Line Interface (CLI) to be installed on customers computers for
deploying and managing applications. The supported programming languages on dot-
Cloud are: Java, Perl, PHP, Nodes.js, Python and Ruby. The price of applications hosted
on dotCloud is based on the total allocated memory per hour. dotCloud provides two
SLA support levels: expedited and live. The promised applications response time is
less than 30 minutes for the expedited level and less than one hour for the live level.
However, no compensation is considered if the SLA is not met.

We observe that most of commercial PaaS solutions have mainly three limitations: (1)
relying on specific IaaS providers, (2) focusing only on web applications and (3) having a
very limited support of SLA. Moreover, all of the reviewed commercial solutions charge
their users according to their resources consumption rather than service quality.

40

Chapter 3. SLA-Based Profit Optimization in Cloud Bursting PaaS

Ta
bl

e
3.

1:
Su

m
m

ar
y

of
co

m
m

er
ci

a
Pa

aS
so

lu
ti

on
s

Pa
aS

R
es

ou
rc

es
Se

rv
ic

es
A

pp
lic

at
io

ns
La

ng
ua

ge
s

A
rc

hi
te

ct
ur

e
Bi

lli
ng

SL
A

G
A

E
[1

4]
G

oo
gl

e
Bu

ild
in

g,
ho

st
in

g,
W

eb
Ja

va
,P

H
P,

U
nk

no
w

n
Pa

y-
as

-y
ou

-g
o

M
on

th
ly

up
ti

m
e

in
fr

as
tr

uc
tu

re
da

ta
st

or
ag

e,
au

to
Py

th
on

,G
o

pe
rc

en
ta

ge
sc

al
in

g
≥

99
.9

5%
A

zu
re

[1
]

W
in

do
w

s
Bu

ild
in

g,
ho

st
in

g,
M

ul
ti

-t
ie

r
.N

ET
,R

ub
y,

D
ed

ic
at

ed
Pa

y-
as

-y
ou

-g
o,

M
on

th
ly

co
nn

e-
A

zu
re

lo
ad

ba
la

nc
in

g,
au

to
w

eb
PH

P,
Py

th
on

,
V

M
s

pe
r

ap
p

su
bs

cr
ip

ti
on

ct
iv

it
y

up
ti

m
e

in
fr

as
tr

uc
tu

re
sc

al
in

g,
da

ta
st

or
ag

e
Ja

va
,N

od
e.

js
≥

99
.9

5%
A

W
S

El
as

ti
c

A
m

az
on

H
os

ti
ng

,l
oa

d
ba

la
n-

W
eb

Ja
va

,N
od

e.
js

D
ed

ic
at

ed

Pa
y-

as
-y

ou
-g

o
Ia

aS
re

so
ur

ce
s

Be
an

st
al

k
In

fr
as

tr
uc

tu
re

ci
ng

,a
ut

o
sc

al
in

g,
Py

th
on

,P
H

P
V

M
s

pe
r

ap
p

av
ai

la
bi

lit
y

[1
0]

da
ta

st
or

ag
e

R
ub

y,
.N

ET

≥
99

.9
5%

A
m

az
on

A
m

az
on

H
os

ti
ng

,s
ca

lin
g,

M
ap

R
ed

uc
e

Ja
va

,P
er

l,
R

,
H

ad
oo

p
EM

R
[1

1]
In

fr
as

tr
uc

tu
re

da
ta

st
or

ag
e

Py
th

on
,P

H
P,

cl
us

te
r

[1
51

]
C

++
,R

ub
y

Fo
rc

e.
co

m
Sa

le
sf

or
ce

Bu
ild

in
g,

ho
st

in
g,

W
eb

M
et

ad
at

a
M

ul
ti

-t
en

an
t

Su
bs

cr
ip

ti
on

N
o

[1
6]

in
fr

as
tr

uc
tu

re
da

ta
st

or
ag

e
A

PI
s:

Bu
lk

,
co

m
pe

ns
at

io
n

R
ES

T,
SO

A
P

H
er

ok
u

A
m

az
on

Bu
ild

in
g,

ho
st

in
g,

W
eb

R
ub

y,
Py

th
on

,
D

ed
ic

at
ed

Pa
y-

as
-y

ou
-g

o
D

at
a

ba
se

do
w

n-
[1

5]
in

fr
as

tr
uc

tu
re

au
to

sc
al

in
g,

da
ta

N
od

e.
js

,J
av

a,
dy

no
s:

U
ni

x
ti

m
e
≤

4h
ou

rs
-

st
or

ag
e

C
lo

ju
re

,S
ca

la
co

nt
ai

ne
rs

15
m

in
ut

es
En

gi
ne

A
m

az
on

Bu
ild

in
g,

ho
st

in
g,

W
eb

R
ub

y
on

R
ai

ls
,

D
ed

ic
at

ed
Pa

y-
as

-y
ou

-g
o

M
on

th
ly

sy
st

em
Ya

rd
[3

2]
in

fr
as

tr
uc

tu
re

au
to

sc
al

in
g,

lo
ad

ba
-

PH
P,

N
od

e.
js

V
M

s
pe

r
ap

p
av

ai
la

bi
lit

y
la

nc
in

g,
da

ta
st

or
ag

e
≥

99
.9

%
R

ig
ht

Sc
al

e
A

W
S,

D
at

ap
ip

e,
Bu

ild
in

g,
ho

st
in

g,
H

PC
,w

eb
,

Ja
va

,P
yt

ho
n,

D
ed

ic
at

ed
Pa

y
as

yo
u

go
,

N
ot

m
en

ti
on

ed
[2

1]
G

C
E,

O
pe

nS
ta

ck
,

au
to

sc
al

in
g,

m
ob

ile
,g

a-
R

ub
y,

.N
ET

,
V

M
s

pe
r

ap
p

su
bs

cr
ip

ti
on

R
ac

ks
pa

ce
,W

A
,

da
ta

st
or

ag
e,

m
es

,b
ig

da
-

PH
P

41

3.2. Platform as a Service (PaaS)
H

P,
C

lo
ud

St
ac

k,
ta

an
al

yt
ic

s
C

lo
ud

Be
es

A
m

az
on

Bu
ild

in
g,

ho
st

in
g,

W
eb

Ja
va

,N
od

e.
js

,
D

ed
ic

at
ed

Pa
y

as
yo

u
go

,
R

es
po

ns
e

ti
m

e
<

[3
4]

in
fr

as
tr

uc
tu

re
sc

al
in

g,
da

ta
Ja

va
Sc

ri
pt

,P
H

P
V

M
s

or
un

it
s

su
bs

cr
ip

ti
on

2
da

ys
-

4
ho

ur
s

st
or

ag
e

(a
pp

-c
el

ls
)

A
pp

Fo
g

A
m

az
on

,A
zu

re
H

os
ti

ng
,s

ca
lin

g,
W

eb
PH

P,
N

od
e.

js
C

lo
ud

Su
bs

cr
ip

ti
on

N
o

[3
6]

H
P,

R
ac

ks
pa

ce
da

ta
st

or
ag

e
R

ub
y,

Py
th

on
Fo

un
dr

y
co

m
pe

ns
at

io
n

pr
iv

at
e

cl
ou

d
Ja

va
,.

N
ET

do
tC

lo
ud

A
m

az
on

Bu
ild

in
g,

ho
st

in
g,

W
eb

Ja
va

,P
er

l
D

ed
ic

at
ed

Pa
y

as
yo

u
go

R
es

po
ns

e
<

30
[3

5]
in

fr
as

tr
uc

tu
re

lo
ad

ba
la

nc
in

g,
PH

P,
N

od
e.

js
co

nt
ai

ne
rs

m
in

ut
es

-
1

ho
ur

sc
al

in
g,

da
ta

st
or

e
Py

th
on

,R
ub

y
(D

oc
ke

r)

42

Chapter 3. SLA-Based Profit Optimization in Cloud Bursting PaaS

3.2.2 Open Source PaaS

In this section, we review the main well-known open source PaaS solutions and summa-
rize them in Table 3.2.

Cloud Foundry. Cloud Foundry [19] is an industry open source PaaS developed
by VMware for deploying and running web applications written in Java, Groovy, Scala,
Ruby, PHP, Python or Node.js, using the Spring, Grails, Lift, or Play frameworks. Cloud
Foundry provides different services for storing data and enables an horizontal scalabil-
ity of the services required by applications. Cloud foundry may be deployed on Amazon
AWS, WMware vSphere, vCloud Director or OpenStack. The Cloud Foundry architec-
ture uses Linux containers in the virtual machines obtained from an IaaS cloud in order
to create isolated environments. These containers can be limited in terms of CPU usage,
memory usage, disk usage, and network access. Each container is managed and con-
trolled using a component called Warden container running in the same virtual machine.
Droplet Execution Agent (DEA) components are also hosted on the virtual machines for
managing Warden containers and assigning applications to them. The DEA manages
the entire lifecycle of all its applications and periodically broadcasts the applications
state to a Health Manager. The Health Manager is responsible for reconciling appli-
cations’ current state (e.g. running, stopped, crashed) and their expected state. If the
reconciliation fails the Health Manager directs the Cloud Controller to take actions. The
Cloud Controller maintains a database with tables for applications, services, DEAs, etc.
When a new application is submitted the Cloud Controller selects a DEA from the pool
of available DEAs to stage the application. A Micro Cloud Foundry is provided as a vir-
tual machine image that can be deployed on a laptop to help developers running a local
instance of Cloud Foundry. Also, there is a public instance of Cloud Foundry operated
by Pivotal1 and hosted on the Amazon infrastructure to enable an online deployment
of web-applications. The Hosted Cloud Foundry instance uses a price formation model
based on the memory usage per application and the container hosting the application
is configured accordingly. However, no compensation is provided if the services are not
correctly delivered.

ConPaaS. ConPaaS [130] is an open source PaaS, developed in the framework of the
EU FP7 Contrail project. It is designed to leverage cloud computing resources from a
wide variety of public and private IaaS clouds in order to provide a flexible and scal-
able hosting environment for high-performance scientific applications as well as online
web applications. The current ConPaaS implementation is compatible with Amazon
EC2 and OpenNebula infrastructures. It provides data storage services, support for
hosting web applications written in Java or PHP and high-performance computing en-
vironments including Hadoop MapReduce cluster and bag of tasks scheduler services.
Each service is deployed on one or more VMs and each application is organized as a
collection of services. The services can be scaled on demand to adapt the number of
computing resources to the capacity required by the application. ConPaaS provides sev-
eral tools and building blocks for building complex runtime environments and cloud
applications. Moreover, it provides two ready-made applications: WordPress and Me-
diaWiki. A hosted instance of ConPaaS is available2 offering a free trial feature with a
credit system. Users are given a number of credits where one credit corresponds to one

1run.pivotal.io
2https://online.conpaas.eu/

43

3.2. Platform as a Service (PaaS)

hour of execution of one virtual machine. However, no SLA is provided.
OpenShift. OpenShift [25] is the RedHat PaaS offered in three forms: Online, En-

terprise and Origin. OpenShift Online is a public PaaS hosted by RedHat on top of the
Amazon infrastructure. OpenShift Enterprise is a private PaaS designed to run within
organizations’ data center. OpenShift Origin is the open source software underlying
OpenShift Online and OpenShift Enterprise. It is able to run on top of OpenStack, AWS,
or in a data center on top of KVM or VMware. It may run also in a personal laptop on
top of Virtual Box or on top of unvirtualized Linux hosts. OpenShift allows develop-
ers developing, hosting, and scaling their web applications written either in Java, Ruby,
PHP, Python, Node.js or Perl. In OpenShift, an application is a combination of code,
configurations and application components called cartridges. Each cartridge provides a
specific services to build the application, which may be web framework, database, mon-
itoring service, or connector to external backends. Cartridges are deployed and isolated
in one or more containers known as gears. A single server may have multiple gears
running at the same time and isolated from each other. Each gear is given an allocation
of CPU, memory, disk, and network bandwidth using Linux control groups. Overall,
in OpenShift the servers hold gears that contain one or more cartridges, and cartridges
hosted on one gear belong to the same application. When a new cartridge needs to be
added to an application, OpenShift chooses where to deploy it based on the type and
needs of the cartridge. The OpenShift Online pricing model is based on the number and
types of used gears per hour. However, no SLA is provided.

AppScale. AppScale [17] is an open-source PaaS implementing the Google App
Engine APIs for hosting web applications either on the Google Compute Engine or
any other supported infrastructure (Eucalyptus, RackSpace, CloudStack, OpenStack and
Amazon EC2) or virtualization tool (KVM and VirtualBox). The AppScale software stack
is packaged with a single VM image to be deployed on the cloud using one or more in-
stances. AppScale tools are provided to automatically assign roles to each deployed VM
instance and accordingly each instance implements one or more AppScale components
and services. AppScale provides automatic configuring, deploying, and scaling as well
as applications and data backup and migration from one IaaS cloud to another one.
AppScale supports the same application runtimes supported in Google App Engine;
namely Java, PHP, Python and Go.

Paasmaker. Paasmaker [42] is an open source PaaS designed to be run on a cluster
of machines. It can also be run on Amazon EC2 resources or on a single node for de-
velopment. The Paasmaker architecture consists of three node roles: pacemaker, router
and heart. The pacemaker is the master node responsible for coordinating all the activi-
ties on the cluster and providing a front end for the users. The router directs incoming
requests to the corresponding nodes that can serve them. The heart node is instructed
by the pacemaker node to run and manage user applications written in one of the four
supported languages: Python, PHP, Node.js and Ruby. An application may be replicated
or scaled horizontally using multiple heart nodes.

Cloudify. Cloudify [18] is an enterprise-class open source PaaS for deploying, man-
aging and scaling enterprise-grade web applications. Cloudify can run on a laptop,
datacenter or any cloud supporting the JClouds API, particularly the following public
and private cloud environments: AWS, Rackspace, Windows Azure, HP, OpenStack,
and CloudStack. Cloudify supports many programming languages such as Java, PHP,
.NET and Ruby on Rails and provides data storage and auto-scaling services. To de-

44

Chapter 3. SLA-Based Profit Optimization in Cloud Bursting PaaS

ploy applications on Cloudify, no change in their code is required but customers have
to describe their needed services and interdependencies using recipes components. A
recipe describes the execution plans for the application lifecycle and the required virtual
machines as well as their images for a chosen cloud. Cloudify auto-installs its agents on
each VM to process the recipes and install the corresponding application tiers. It enables
customers to define custom application metrics such as availability and performance, to
monitor the metrics and to define scaling rules based on those metrics. Cloudify recipes
can also describe an SLA for each service as the minimum number of instances Cloud-
ify has to start and maintain. If Cloudify detects that a service’s minimum number of
service instances are not running, it will attempt to heal by reinstalling and starting the
service instances again. If it detects that a service instance’s VM has stopped respond-
ing, Cloudify provisions a new VM for the service instance. Cloudify does not propose
billing methods for using its services.

Tsuru. Tsuru [41] is an open source PaaS for hosting web applications written
in Python, PHP, Node.js, Go, Ruby or Java. Tsuru uses either Ubuntu Juju [44] or
Docker [45] to deploy the applications. Each application runs on a set of units hav-
ing all dependencies the application needs to run. A unit may be either an isolated Unix
container or a virtual machine, depending on the used provisioner, Docker or Juju. Juju
deploys the applications on a data center or any other supported cloud environment
such as EC2, CloudStack and Azure and Docker runs the applications on containers.
Tsuru enables users to easily add and remove units in order to scale their applications.
Tsuru does not provide any billing model but proposes the usage of quotas where a
quota defines for each user the maximum number of applications and the maximum
number of units that an application may have.

Many open source PaaS solutions rely on more than one IaaS infrastructure but they
provide no policies for selecting the IaaS resources to use. Moreover, most of them only
focus on web applications.

45

3.2. Platform as a Service (PaaS)
Ta

bl
e

3.
2:

Su
m

m
ar

y
of

op
en

so
ur

ce
Pa

aS
so

lu
ti

on
s

Pa
aS

R
es

ou
rc

es
Se

rv
ic

es
A

pp
lic

at
io

ns
La

ng
ua

ge
s

A
rc

hi
te

ct
ur

e
Bi

lli
ng

SL
A

C
lo

ud
A

W
S,

O
pe

nS
ta

ck
,

H
os

ti
ng

,s
ca

lin
g,

W
eb

Ja
va

,R
ub

y,
PH

P
D

ed
ic

at
ed

Pa
y

as
yo

u
go

N
o

Fo
un

dr
y

vC
lo

ud
D

ir
ec

to
r,

da
ta

st
or

ag
e

G
ro

ov
y,

Sc
al

a,
Li

nu
x

fo
r

th
e

ho
st

ed
co

m
pe

ns
at

io
n

[1
9]

V
M

w
ar

e
vS

ph
er

e
N

od
e.

js
,P

yt
ho

n
co

nt
ai

ne
rs

in
st

an
ce

C
on

Pa
aS

A
m

az
on

EC
2,

Bu
ild

in
g,

ho
st

in
g,

W
eb

,b
at

ch
,

Ja
va

,P
H

P
D

ed
ic

at
ed

Pa
y

as
yo

u
go

Se
rv

ic
es

[1
30

]
O

pe
nN

eb
ul

a
sc

al
in

g,
st

or
ag

e
M

ap
R

ed
uc

e
V

M
s

pe
r

ap
p

cr
ed

it
sy

st
em

en
fo

rc
em

en
t

O
pe

nS
hi

ft
O

pe
nS

ta
ck

,A
W

S,
Bu

ild
in

g,
ho

st
in

g
W

eb
Ja

va
,R

ub
y,

Pe
rl

,
D

ed
ic

at
ed

Pa
y

as
yo

u
go

N
ot

pr
ov

id
ed

[2
5]

K
V

M
,V

M
w

ar
e,

sc
al

in
g,

st
or

ag
e

PH
P,

Py
th

on
,

co
nt

ai
ne

rs
fo

r
O

pe
nS

hi
ft

V
Bo

x,
Li

nu
x

cl
us

te
r

N
od

e.
js

(G
ea

rs
)

O
nl

in
e

A
pp

Sc
al

e
G

C
E,

Eu
ca

ly
pt

us
,

Bu
ild

in
g,

ho
st

in
g,

W
eb

Py
th

on
,J

av
a,

D
ed

ic
at

ed
N

ot
pr

ov
id

ed
N

ot
pr

ov
id

ed
[1

7]
K

V
M

,R
ac

kS
pa

ce
,

da
ta

st
or

ag
e,

G
o,

PH
P

V
M

s
pe

r
ap

p
V

Bo
x,

C
lo

ud
St

ac
k,

fa
ul

t
to

le
ra

nc
e,

EC
2,

O
pe

nS
ta

ck
au

to
sc

al
in

g
Pa

as
m

ak
er

C
lu

se
r,

si
ng

le
H

os
ti

ng
,s

ca
lin

g,
W

eb
PH

P,
N

od
e.

js
,

D
ed

ic
at

ed
N

ot
pr

ov
id

ed
N

ot
pr

ov
id

ed
[4

2]
no

de
,A

W
S

EC
2

da
ta

st
or

ag
e

R
ub

y,
Py

th
on

no
de

s
C

lo
ud

if
y

A
W

S,
R

ac
ks

pa
ce

H
os

ti
ng

,d
at

a
W

eb
Ja

va
,P

H
P,

D
ed

ic
at

ed
N

ot
pr

ov
id

ed
R

es
ou

rc
e

[1
8]

W
A

,O
pe

nS
ta

ck
,

st
or

ag
e,

au
to

-
R

ub
y,

.N
ET

V
M

s
pe

r
ap

p
re

qu
ir

em
en

ts
H

P,
C

lo
ud

St
ac

k
sc

al
in

g
Ts

ur
u

[4
1]

U
bu

nt
u

Ju
ju

,
H

os
ti

ng
,s

ca
lin

g,
W

eb
Py

th
on

,P
H

P,
D

ed
ic

at
ed

N
ot

pr
ov

id
ed

N
ot

pr
ov

id
ed

D
oc

ke
r

da
ta

st
or

ag
e

N
od

e.
js

,G
o,

un
it

s:
V

M
s,

R
ub

y,
Ja

va
co

nt
ai

ne
rs

46

Chapter 3. SLA-Based Profit Optimization in Cloud Bursting PaaS

3.2.3 Research PaaS

In this section, we present some relevant research PaaS solutions and summarize them in
Table 3.3. Note that, the majority of research PaaS works focuses only on specific aspects
of the PaaS systems. Thus, not all the PaaS characteristics are provided. In Table 3.3,
when either the applications types and programming languages are not a focus of a
research PaaS work we just write "Common" in the corresponding cell.

MCP. MCP (Multi-Cloud-PaaS) [129] is an architecture for managing elastic applica-
tions across multiple cloud providers. MCP replicates the application on multiple clouds
and continuously monitors their workloads and resources provisioning. A load balancer
component routes requests to application instances and dispatches load among the dif-
ferent cloud providers in a round robin fashion. To avoid a single point of failure the
MCP architecture is deployed in at least two different cloud providers. The MCP com-
ponents are deployed on one cloud and replicated on a second a cloud. MCP allocates
and deallocates IaaS resources according to the workloads and resources utilization.

PoI. PoI (PaaS on IaaS) [109] is a method for improving the utilization of supersat-
urated clouds while easily deploying SaaS. Supersaturated clouds are defined as allo-
cating more logical resources than actual physical resources. In this work the authors
compare Single Tenant PaaS (ST-PaaS) and Multi Tenant PaaS (MT-PaaS). The ST-PaaS
dedicates a VM instance of IaaS to a single tenant user in order to allow applications to
be easily installed. The MT-PaaS shares a VM instance of IaaS between multiple tenant
users, thus reducing the cost of the cloud. The authors state the relationship between
MT-PaaS and ST-PaaS as a trade off where the running cost of MT-PaaS is smaller than
that of ST-PaaS but the development cost is higher.

[66] presents a PaaS architecture, developed in the frame of the EU IST IRMOS
project, for online interactive multimedia applications. The authors identify require-
ments and opportunities for new PaaS capabilities to guarantee real-time QoS for inter-
active applications. They propose an architecture that uses and provisions on-demand
virtualized IaaS resources (storage, networking and computing) for application service
components. The resources to provision are determined based on specified applications
QoS and a predicted user interaction in the form of SLA. The application runtime infor-
mation is collected and if SLA violations are detected, the provider is notified to trigger
corresponding mitigating actions.

CloudServ. CloudServ [154] is a PaaS system dedicated to service-based applications
regardless of their programming languages and hosting frameworks. CloudServ consists
of a set of PaaS resources able to offer or consume a particular PaaS service. The authors
define three types of PaaS resources: container, database and router. The container is
the engine that hosts and runs services, the database enables the data storage and the
router provides routing protocol between services. These resources are continuously
provisioned along with the arrival of new requests. CloudServ deploys a personalized
container each time a new service is deployed where a service may be any dependency
required by an application.

COSCA. COSCA [104] is a component-based PaaS inspired from the OSGi program-
ing model. It is built on top of Java Virtual Machine (JVM) and runs on each cloud node
a layer of cloud extension above the JVM to provide support for user applications. The
applications are composed from multiple bundles that can be started, stopped, updated
and replicated as OSGi bundles. COSCA provides a virtual OSGi-like container for

47

3.2. Platform as a Service (PaaS)

each application in order to grant isolation between components of the different appli-
cations. The platform allows the loading of new application components at runtime and
permits the coexistence of components in different versions. To deploy an application,
COSCA users have to provide an application description containing the application ex-
ecution settings and links to the corresponding application components to be deployed.
COSCA keeps track of the service usage in order to check the workload flow. In case
of a high workload, COSCA automatically duplicates the services and distributes client
requests among them while ensuring load balancing. The client requests distribution
is based on a weighted round-robin scheduling where a load-level is assigned to each
node. COSCA enables applications to be cloud-independent and easily switch between
the use of a local infrastructure and a cloud platform. It also implements a module to
collect the applications resources usage to be utilized for the establishment of a pay as
you go pricing model. COSCA may run on a cluster or on cloud nodes. No explicit
specification about the supported IaaS cloud solution is given by the authors.

Resilin. Resilin [101] is a PaaS system for running MapReduce applications using
the Hadoop framework. Resilin provisions a Hadoop cluster and submits MapReduce
jobs on behalf the user. The Hadoop cluster interacts with a cloud storage repository
to provide input and output data for the MapReduce applications. Resilin supports
MapReduce applications written in Java or Python as well as data analysis systems such
as Apache Hive and Pig. The main Resilin feature, compared to Amazon EMR, is the
possibility to execute MapReduce computations over multiple private, community and
public clouds, such as Nimbus, OpenNebula, OpenStack, Eucalyptus and Amazon EC2.
Moreover, users have the possibility to select the VM types, the operating system and
the Hadoop version they want to use for running their applications. Users are also able
to add and remove VMs to their Hadoop cluster during the execution of their jobs. For
interoperability reasons, Resilin implements the Amazon EMR API and provides most
of its supported features. In order to provide a uniform interface to the most open-
source and commercial IaaS clouds, Resilin uses the Apache Libcloud library. Resilin
does not provide any support for the pricing and SLA functions.

Merkat. Merkat [76] is a private platform that shares cloud resources between com-
peting applications using a market-based allocation mechanism. In Merkat, each ap-
plication runs in an autonomous virtual platform, defined as a composition of one or
multiple virtual clusters, a set of monitors and an application controller. A virtual cluster
is defined as a group of VMs having the same disk image and hosting the same appli-
cation components. The application controller manages the application life-cycle and
provides Service Level Objective (SLO) support by applying elasticity rules to scale the
application demand according to user performance objectives. Each virtual platform
adapts individually, without knowledge regarding other participants. Thus, users can
run different applications and express a variety of performance goals. Merkat relies on
a market-based resource allocation where users have an amount of credit received from
a banking service and distribute it to the virtual platforms running their applications.
The assigned credit to a virtual platform reflects the maximum cost for executing the
application. Further, the CPU and memory resources have a price set through market
policies which fluctuates based the resource demand. Virtual platforms autonomously
adapt their applications resource demand to price variations with the aim to meet ap-
plications SLO. The Merkat system ensures a fair and maximized resource utilization
based on a budget-proportional share policy. Merkat is designed to manage a single

48

Chapter 3. SLA-Based Profit Optimization in Cloud Bursting PaaS

cloud and it current implementation relies on the OpenNebula cloud manager.
Qu4Ds. Qu4Ds [111] is a PaaS-level framework for the applications based on the

Master/Worker pattern. The framework includes mechanisms for SLA negotiation,
translation, and enforcement and supports both performance and reliability QoS prop-
erties. When a new QoS contract is proposed Qu4Ds translates this on resource require-
ments and configurations able to ensure the QoS and provisions the resources until the
end of the QoS contract. Qu4Ds provides a QoS assurance loop that monitors the job’s
dynamic metrics and handles the possible failures and delays.

Aneka. Aneka [146] is a PaaS framework for deploying multiple application models
on the cloud. It supports many program models and languages by creating customizable
software containers. The Aneka platform relies on physical or virtualized computing re-
sources connected through a network. Each resource hosts an instance of a container,
the Aneka core unit, representing the applications’s runtime environment. The con-
tainer provides the basic management features to a single node and leverages the other
operations needed by the hosted services. The services available on the container may
be customized and deployed according to the application-specific needs. Also, it is pos-
sible to increase on-demand the number of the Aneka framework nodes according to
the user needs. Aneka provides a basic resource controlling feature that restricts the
number of resources that can be used per deployment or the number of nodes allowed
in the Aneka platform.

The reviewed research PaaS works have different focuses but none of them provides
the features required to achieve our objectives. Specifically, they do not provide open-
ness, support for cloud bursting and support for provider’s profit optimization under
SLA constraints.

49

3.2. Platform as a Service (PaaS)
Ta

bl
e

3.
3:

Su
m

m
ar

y
of

co
m

m
er

ci
al

,o
pe

n
so

ur
ce

an
d

re
se

ar
ch

Pa
aS

so
lu

ti
on

s

Pa
aS

R
es

ou
rc

es
Se

rv
ic

es
A

pp
lic

at
io

ns
La

ng
ua

ge
s

A
rc

hi
te

ct
ur

e
Bi

lli
ng

SL
A

M
C

P
[1

29
]

M
ul

ti
-C

lo
ud

H
os

ti
ng

,s
ca

lin
g

El
as

ti
c

C
om

m
on

N
ot

N
ot

sp
ec

ifi
ed

N
ot

sp
ec

ifi
ed

(W
A

,E
C

2,
et

c.
)

lo
ad

-b
al

an
ci

ng
sp

ec
ifi

ed
Po

I
[1

09
]

Ia
aS

H
os

ti
ng

Sa
aS

C
om

m
on

Si
ng

le
/m

ul
ti

N
ot

sp
ec

ifi
ed

N
ot

sp
ec

ifi
ed

te
na

nt
us

er
s

[6
6]

Ia
aS

re
so

ur
ce

s
H

os
ti

ng
In

te
ra

ct
iv

e
C

om
m

on
D

ed
ic

at
ed

N
ot

sp
ec

ifi
ed

Q
oS

as
su

ra
nc

e
m

ul
ti

m
ed

ia
re

so
ur

ce
s

C
lo

ud
Se

rv
V

ir
tu

al
no

de
s

H
os

ti
ng

,d
at

a
Se

rv
ic

e
C

om
m

on
D

ed
ic

at
ed

N
ot

sp
ec

ifi
ed

N
ot

sp
ec

ifi
ed

[1
54

]
(O

pe
nN

eb
ul

a)
st

or
ag

e
ba

se
d

co
nt

ai
ne

rs
C

O
SC

A
C

lu
st

er
,c

lo
ud

H
os

ti
ng

,l
oa

d
ba

la
n-

C
om

m
on

Ja
va

O
SG

i
pa

y
as

yo
u

go
N

ot
sp

ec
ifi

ed
[1

04
]

no
de

s
ci

ng
,a

ut
o-

sc
al

in
g

co
nt

ai
ne

rs
M

er
ka

t
si

ng
le

cl
ou

d
H

os
ti

ng
,s

ca
lin

g,
C

om
m

on
C

om
m

on
D

ed
ic

at
ed

bu
dg

et
-b

as
ed

A
im

s
at

m
ee

ti
ng

[7
6]

(O
pe

nN
eb

ul
a)

lo
ad

ba
la

nc
in

g
re

so
ur

ce
s

re
so

ur
ce

sh
ar

in
g

ap
pl

ic
at

io
ns

SL
O

R
es

ili
n

M
ul

ti
-c

lo
ud

H
os

ti
ng

,s
ca

lin
g,

M
ap

R
ed

uc
e

Ja
va

,P
yt

ho
n,

H
ad

oo
p

N
ot

sp
ec

ifi
ed

N
ot

sp
ec

ifi
ed

[1
01

]
(L

ib
cl

ou
d)

da
ta

st
or

ag
e

H
iv

e,
Pi

g
Q

u4
D

s
Ph

ys
ic

al
/v

ir
tu

a-
H

os
ti

ng
,f

au
lt

M
as

te
r

/
C

om
m

on
D

ed
ic

at
ed

pa
y

as
yo

u
go

Q
oS

as
su

ra
nc

e
[1

11
]

liz
ed

re
so

ur
ce

s
to

le
ra

nc
e

W
or

ke
r

re
so

ur
ce

s
A

ne
ka

Ph
ys

ic
al

/v
ir

tu
a-

H
os

ti
ng

,s
ca

lin
g,

W
eb

,b
at

ch
,

.N
ET

,C
#,

C
++

,
D

ed
ic

at
ed

N
ot

pr
ov

id
ed

N
ot

pr
ov

id
ed

[1
46

]
liz

ed
re

so
ur

ce
s

da
ta

st
or

ag
e

ta
sk

fr
am

in
g

V
B,

et
c.

no
de

s

50

Chapter 3. SLA-Based Profit Optimization in Cloud Bursting PaaS

3.3 Cloud Bursting

Cloud bursting has been defined for the first time by Amazon’s Jeff Barr [39] for run-
ning applications on a powerful and high scalable hosting environment that combines
enterprises’ owned infrastructures and cloud-based infrastructures. Many researchers
have been attracted by the cloud bursting approach for its many benefits, such as cost-
efficiency, performance optimization and users satisfaction. In this section, we review
some recent research works related to cloud bursting. We classify the related work in
three categories: works based on user constraints, works based on economic criteria,
and works targeting specific application types. We describe the objective of each work,
its context as well as the used method for achieving its objective. Finally, we summarize
the reviewed work in Table 3.3.3.

3.3.1 Based on User Constraints

We identified a significant number of interesting cloud-bursting research works focusing
on covering resources overload or satisfying user preferences and constraints in terms
of applications deadline and performance as well as VM placement [84][105][115][103].

[84] proposes a multi-cloud environment for processing user demands where the
users specify the percentage of resources to use from each cloud environment. If user
preferences may not be satisfied initially because of unavailability of resources, the au-
thors propose using already deployed instances in less desirable clouds and then rebal-
ancing instances progressively instead of pending user demands until the environment
matches the specified cloud preferences. The rebalancing policies determine whether
or not an excess instance (an instance in a particular cloud that exceed the user desired
amount) should be terminated to create a new one in a higher-preferred cloud. The au-
thors proposed three rebalancing policies: Opportunistic-Idle, Force-Offline and Aggressive
Policy. The Opportunistic-Idle policy terminates only idle excess instances. The Force-
Offline policy marks excess instances offline to prevent them from accepting new jobs
while allowing them to finish running jobs, then terminates the instances when they
become idle. The Aggressive Policy aggressively terminates excessive instances even if
they are running user jobs while giving the possibility to specify a job progress threshold
after which the instance may no longer be terminated.

[105] considers optimizing the completion time of data-intensive jobs with cloud
bursting while preserving the same order of their submission. They propose three
scheduling heuristics that adapt to changing workload and available resources to op-
timize ordered throughput. The heuristics determine the number of resources to provi-
sion on the external cloud and decide which jobs to burst. The first heuristic parses the
job queue in the order of job arrival and schedules each job in the internal or external
cloud according to where it is expected to complete earliest. The second heuristic cal-
culates the time of the entire job execution in the external cloud (uploading, processing,
downloading) before the jobs preceding it complete in the private cloud. Based on this
calculation the heuristic determines if there are enough workload queued in the internal
cloud and decides whether or not bursting the current job. The third heuristic calculates
a suffrage value as the difference between the best and the second best completion time
of each job. Then schedules the job with the maximum suffrage on the node where it
could complete earliest.

51

3.3. Cloud Bursting

[115] presents a cloud bursting model for enabling elastic applications running across
different cloud infrastructures. The authors propose a framework for building cloud-
bursting applications that monitors their performance and decides when to burst them
into the public cloud and when to consolidate them again accordingly, where they link
applications’ performance to the private resources load. When an application finishes,
the mapping of the other applications to resources is replanning.

[103] aims at optimizing the performance of big-data analytics in loosely-coupled
distributed computing environments such as federated clouds. The data is divided into
chunks to be analyzed by an algorithm that determines the nodes to use for each data
chunk. Initially, the algorithm sorts the set of data chunks according to their size and the
nodes from each cloud according to their data transfer delay plus their computation time
for a fixed size of data. The algorithm assigns data chunks to nodes such that large data
chunks are handled by nodes with higher data transfer delay and computation time.
The algorithm organizes the sequence of chunks for each node in order to maximize the
overlap between the data transfer and computation.

The main limitation of the aforementioned works consists in under-estimating the
additional cost incurred using public cloud resources.

3.3.2 Based on Economic Criteria

We identified other works that base their cloud bursting decisions according to economic
criteria [97][141][90][142].

[97] proposes a system, called Seagull, for determining the most economic appli-
cations to migrate into the cloud when the enterprise local resources are overloaded.
The authors assume that applications are composed of one or more virtual machines
hosted in a private data center and each application may be scaled either horizontally
or vertically. They also assume that the data center overload is predictable. Based on
that, they generate a list of applications likely to become overloaded on which they pe-
riodically perform pre-copying by transferring an incremental snapshot of their virtual
machine’s disk-state to the cloud in order to reduce the cloud bursting latency once it
occurs. When an application is overloaded, they decide whether moving it to the cloud
or moving other applications and free-up resources to the overloaded application. Their
decision is driven by the migration cost with the objective of optimizing the amount of
local capacity freed per dollar spent running applications in the cloud. The underesti-
mated cost in this work is the cost of saving VM disk images.

[141] considers cloud providers supporting two QoS levels and VM pricing models:
on-demand and spot. The two models are inspired from the VM pricing models pro-
vided by Amazon EC23. On-demand VMs are provisioned for the users and payed by
its hour usage. If the provider doesn’t possess enough resources the request is rejected.
Spot VM requests include the number of VMs and a maximum price, called a bid, the
user is willing to pay per VM/hour. The VMs are instantiated if the current price is
below the bid price and run until either the user decides to terminate them or the price
goes above the bid. When the provider receives an on-demand VMs request and re-
sources are unavailable, the authors propose comparing the profit of outsourcing the
request to other clouds member of a federation or terminating spot VMs. In this work,
the cost of the lost computation due to terminating spot instances is underestimated.

3http://aws.amazon.com/ec2/purchasing-options/

52

Chapter 3. SLA-Based Profit Optimization in Cloud Bursting PaaS

[90] focuses on the parameters impacting the profitability of using a cloud federa-
tion for one cloud provider. A global scheduler is proposed to enable cloud providers
deciding between selling their free resources to other providers, buying resources from
other providers or shutting down unused nodes to save power. The scheduler tries to
maximize the provider’s profit while guaranteeing that the hosted services meet their
performance goals. The main considered parameters for deciding where services will be
executed are the provider’s incoming workload, the cost of buying additional resources,
the generated revenues from selling unused resources and the cost of maintaining the
provider’s resources active.

[142] proposes an architecture for cloud brokering and multi-cloud VM placement.
The objective is to optimize the placement of VMs across multiple cloud providers ac-
cording to user-specified criteria, such as VM hardware configuration, the number of
VMs of each instance type, the minimum and maximum percent of all VMs to be lo-
cated in each cloud as well as the minimum performance and the maximum price.
Based on these criteria and the available cloud providers, the cloud broker should gen-
erate an optimal deployment plan. The authors provide an integer programming model
formulation to enable an optimized VM placement based on price-performance trade-
offs and propose using modeling languages and solvers, such as AMPL, to solve this
optimization problem.

Some of these works present a limitation that consists in under-estimating the cost
of their used mechanisms [97][141] and other works do not consider how to concretely
apply their approaches in a real cloud environment [90][142].

3.3.3 Targeting Specific Application Types

There are other relevant cloud-bursting research works aware of the public cloud re-
sources cost but they target specific application types [99][79][121].

[99] presents a framework, called PANDA, for scheduling BoT (Bag of Task) applica-
tions across resources in both private and public clouds. The objective of this work is
to optimize the performance to cost ratio and enabling users choosing the best tradeoff
between application completion time and cost. The authors assume having a generator
that produces a set of feasible Pareto-optimal points proposed to the user for selecting
the point with the maximum utility. Based on the selected Pareto-optimal point PANDA
finds a near optimal schedule by defining an optimal workload for each resource and
rearranging tasks in the way cost and/or makespan is reduced. The authors use a model
where each of the private and public resources has a specific speed and cost and each
task of an application has a specific and known running time.

[79] proposes a set of algorithms to cost-efficiently schedule batch workloads under
deadline constraints on either a private infrastructure or on public clouds. In this work,
the authors assume that private resources are costless and they attempt to maximize
the local infrastructure utilization. They propose a scheduler to decide whether an
incoming application can be scheduled on the organization’s private infrastructure or
on the public cloud depending on the application’s deadline and potential cost. When
a new application is submitted for execution, it is inserted in the singe system queue
according a queue sort policy that follows FCFS (First-Come First-Served) and EDF
(Earliest Deadline First) policies. The scheduler executes the application at the front
of the queue on the private cloud as soon as sufficient resources become available and

53

3.4. Economic Optimizations

constantly scans the queue in order to detect unfeasible applications (applications that
will not be able to finish before their deadlines). If an unfeasible application is detected,
the authors propose two options, either moving the unfeasible application to a public
cloud or moving application(s) which precede(s) the unfeasible application and incurs a
lowest cost on the public cloud.

[121] proposes a model, called Elastic Site, to extend a private cluster using public
cloud resources in order to respond to changing demand. The model is integrated with
a batch scheduler where the resources are provisioned based on changes in the cluster
job queue. The authors propose three provisioning policies: On-demand, Steady stream
and Bursts. The on-demand policy boots a new cloud VM each time a new job is queued
and terminates all idle VMs when the queue is empty. For the second and third policies
the authors estimate the waste time as the sum of average startup times and shutdown
times for a particular VM image on the cloud. In the steady-stream policy a new VM is
booted when the total queued wall time becomes greater than five times the estimated
waste time of a particular cloud and terminates when the total queued wall time drops
below three times the estimated waste time of the cloud. In the bursts policy the number
of VMs to launch is calculated by dividing the total wall time of all queued jobs by two
times the estimated waste time.

3.4 Economic Optimizations

Economic optimizations have been a focus of multiple research work in cloud comput-
ing due to its economic importance. In this section, we survey and classify some of the
recently proposed related work in three categories: works targeting specific application
types, works targeting specific infrastructures, and works focusing on the optimization
of energy costs. Our survey focuses on presenting the objective of each work, its consid-
ered constraints, its targeted type of applications and/or infrastructures, and the used
methods for achieving its objectives. Finally, we summarize the reviewed works in Ta-
ble 3.4.3.

3.4.1 Targeting Specific Application Types

We identified many economic optimization works in the literature that focus on specific
application types [93][114][58][64][120]. In the following we describe some relevant ones.

[93] considers the SLA-based resource allocation problem for multi-tier applications
in cloud computing. The objective is to optimize the total profit from the SLA con-
tracts that may be reduced by operational costs. The authors assume that servers are
characterized by a maximum capacity and the SLA of each client request has a price
based on the response time. The proposed solution first provides an upper bound on
the total profit then tries to reach it by applying a simultaneous server consolidation and
resources assignment based on force-directed search method.

[114] proposes an SLA-aware scheduling mechanism for running scientific applica-
tions on a public IaaS cloud. The authors assume that each application has an approxi-
mated execution time and once it starts running it may not be interrupted or moved to
a different resource. They take into account the required time to provision and sched-
ule an application and consider the payment of penalties if an application’s execution
is delayed. To minimize the cost of running the applications, each time an application

54

Chapter 3. SLA-Based Profit Optimization in Cloud Bursting PaaS

Table 3.4: Summary of cloud bursting related work

Objective Context Method
[84] Satisfying user Multi-cloud Terminating excess VMs: (1) if idle, (2) after

preferences running jobs complete, (3) aggressively.
[105] Fast and ordered Scheduling Bursting a job if (1) it completes earlier exter-

jobs’ completion data-intensive nally. (2) many jobs are queued internally.
apps (3) it saves max time when running externally.

[115] Covering load Elastic apps Bursting and consolidating the applications
spikes based on the load increase and decrease.

[103] Optimizing big-data Assigning data to nodes based on chunks si-
performance analytics ze and nodes transfer and computation time.

[97] Managing local Enterprise Determining the least costly applications
resources overload to migrate into the cloud.

[141] Maximizing Cloud federa- Deciding between outsourcing resources
provider’s profit tion and using or terminating spot instances to serve new

spot instances requests.
[90] Maximizing cloud Cloud Deciding between resources outsourcing,

provider revenues federation insourcing or nodes shut downing.
[142] Optimizing VM Multi-cloud Formulating an integer programming model

placement to be solved with a modeling solver (AMPL).
[99] Optimizing ratio Scheduling Preprocessing workload and assigning

performance/cost BoT apps tasks according to a Pareto-optimal point.
[79] Cost-efficiently Scheduling ba- Moving to cloud either the application that

meeting deadlines tch workloads cannot meet its deadline locally or the chea-
pest application preceding it in the queue.

[121] Responding to Cluster: batch Adding one VM (1) when a new job is queued.
changing demand scheduler (2) when queued wall time is 5x greater than

waste time. Or (3) calculating VMs to add by
dividing queued wall time by 2x waste time.

55

3.4. Economic Optimizations

request arrives they decide between instantiating new resources for running it or using
existing ones.

[58] provides a cost-efficient cloud resource allocation approach for web applications.
The method proposed for reducing the applications hosting costs consists in reducing
the number of required VMs by sharing them between applications. The authors define
applications’ QoS in terms of server resource utilization metrics and provide a proactive
scaling algorithm accordingly. Thus, they add and remove fractions of VMs for the
applications and maintain resource utilization below a specific upper limit and a suitable
number of VMs to host the applications.

[64] focuses on time and cost sensitive execution for data-intensive applications ex-
ecuted in a hybrid cloud. The authors consider two different modes of execution: (1)
Cost constraint-driven execution, where they minimize the execution time while staying
below a user-specified cost constraint, and (2) Time constraint-driven execution, where
they minimize the cost while completing the execution within a user-specified deadline.
They monitor data processing and transfer times to predict the expected time and cost
for finishing the execution. The allocation of resources may change, when needed, to
meet the specified time and cost constraint. They propose a model based on a feedback
mechanism in which compute nodes regularly report their performance to a centralized
resource allocation subsystem, and the resources are dynamically provisioned according
to the user constraints

[120] formulates the problem of minimizing the cost of a running computational
application on a hybrid cloud infrastructure as a mixed integer nonlinear programming
problem and specifies it using a modeling language. The authors assume heterogeneous
compute and storage resources from multiple cloud providers and a private cloud. Each
cloud has a maximum number of resources and the resources are parameterized by
costs and performance. To calculate the cost of a single task, they include the cost of
the VM instance, the time required for transferring data and the time for computing the
task. For each task, they compute the relation between deadline and cost. The defined
objective function consists in getting the minimum total cost for running the application
tasks under a deadline constraint.

3.4.2 Targeting Specific Infrastructures

We identified other relevant economic research works which are applicable on specific
computing infrastructures different from the infrastructure considered in this thesis,
namely a cloud-bursting PaaS [158][157][153][68][139][87]. In the following we present
some of these works.

[158] formalizes the global cost optimization problem among multiple IaaS clouds.
The authors assume a cooperative scenario where each IaaS cloud exposes it’s workload
and cost information. They propose an inter-cloud new job scheduling and leftover job
migration. Their method is based on a double auction mechanism where each cloud
provider gives buy-bids and sell-bids for the required VM instances for the jobs.

[157] studies the profit maximization in a cloud environment with geo-distributed
data centers, where the data centers receive VM requests from customers in the form of
jobs. The authors assume having a complete information of all job arrivals to guarantee
a bounded maximum job scheduling latency. They propose a dynamic pricing of VM
resources related to customers’ maximum value for a job at a data center and choose the

56

Chapter 3. SLA-Based Profit Optimization in Cloud Bursting PaaS

minimum number of servers required to meet the VM demands.
[153] proposes a resource allocation algorithm for SaaS providers to minimize infras-

tructure cost and SLA violations. To achieve this goal, the authors propose mapping and
scheduling mechanisms to deal with the customer-side dynamic demands and resource-
level heterogeneity. The mechanisms translate client requests into VM capacity and try
to minimize their cost by using the available space within existing VMs which allows a
cost effective usage of resources.

[68] studies the optimal multi-server configuration for maximizing the profit in a
cloud environment. The multi-server system is treated as an M/M/m queuing model to
formulate and solve the profit optimization problem. The servers are configured based
on the speed and power consumption models of a service request. Then, a probability
density function (pdf) of the waiting time of the newly arrived service request is derived.
And based on that the expected service charge is calculated. If the service quality satis-
fies the customer expectation then the service charge is linearly proportional to the task
execution time. Otherwise, the service charge decreases linearly as the service response
time increases. If the request waits too long then no service charge is applied and the
service is free. Based on that, the expected business gain is obtained in unit of time and
the optimal server’s size and speed are numerically deduced.

[139] proposes a cost-efficient task scheduling in a cloud environment. The problem
is presented as a directed acyclic graph (DAG), where nodes are tasks and edges are
precedence constraints between tasks. Weights are assigned to nodes and edges based
on respectively the predicted tasks execution time and the predicted time to transfer data
between VMs. Finally, the scheduling plans for mapping tasks are calculated according
to the most cost-efficient VMs

[87] provides an SLA-driven management solution for maximizing the profit of PaaS
providers that host their services on IaaS clouds. To achieve the providers’ profit maxi-
mization, the authors propose reducing resource costs by sharing them among different
contracts while ensuring agreed QoS in the SLA. They propose a mechanism with mul-
tiple control loops for adjusting services configurations and resource usage in order to
maintain SLAs in the most cost-effective way. In peak periods, their mechanism chooses
the most suitable request to be aborted to handle the lack of resources.

3.4.3 Focusing on the Optimization of Energy Costs

There are other research works that focus on the optimization of the electricity costs
for optimizing cloud data centers costs. For instance, [148] studies the power consump-
tion of data centers for cost-effective operation taking into account multiple electricity
pricing schemes. [117] considers geographically distributed data centers in a multi-
electricity market environment and proposes an energy-efficient, profit and cost aware
request dispatching and resource allocation algorithm to maximize a service provider’s
net profit. [92] considers resource allocation problem aiming to minimize the total en-
ergy cost of cloud computing system while meeting specific client-level SLAs. [122]
maximizes providers net revenue by dynamically powering servers on and off in order
to minimize the amount of consumed energy.

As it can be observed, the majority of the reviewed economic optimization works
do not handle peak periods. They consider either using a public IaaS cloud and having
access to an unlimited number of resources or rejecting requests that may not be served

57

3.5. Gaps

if no resources are available.

3.5 Gaps

Table 3.5 compares the goal of this thesis (the last row) with the most relevant related
systems previously analyzed. The comparison criteria highlight the required features
for meeting the objectives of this thesis; namely, optimizing the provider profit in a
cloud-bursting PaaS environment under SLA constraints. In the comparison table we
use three symbols to express (1) if the criterion is met (X), (2) if the satisfaction of the
criterion is unknown, i.e. there is no publicly available information (-), and (3) if the
criterion is not met (7). In the following we explain the meaning of each criterion.

Hosting Environment. The hosting environment describes the computing environ-
ment considered in each work and its capabilities. We focus on three capabilities.

1. Open. A hosting environment is considered as open if it is designed to be extensible
and able to support a large variety of application types, frameworks and program
languages.

2. Multi-Cloud Applications Deployment. This capability is valid if the hosting environ-
ment enables the deployment of applications on simultaneously several IaaS cloud
systems.

Business Model. The business model considers the economic policy provided in
each work and its corresponding features that are part of the business model. We focus
on the three following features.

1. Optimization of Provider Profit. This feature is valid if the marketing solution pro-
vides a provider profit optimization policy.

2. Support for SLA Constraints. This feature is valid if the marketing solution pro-
vides SLA/QoS support, aims to satisfy them and incurs penalties if they are not
satisfied.

3. Support for PaaS. This feature is valid if the marketing solution is applicable on a
PaaS environment.

The general observation is that no related work targets the objectives of this thesis
nor covers the required features to achieve them. The works focusing on optimizing the
provider profit are generally specific to application models and may not be applied to
an open hosting environment. Further, many works providing an open hosting environ-
ment provide no economic oriented features. Moreover, few works provide or consider
the possibility of deploying applications on a multi-cloud environment.

3.6 Summary

In this chapter we presented the main required features to achieve the objective of this
thesis, which consist in a cloud-bursting PaaS hosting environment and a profit-efficient
business model. We reviewed the current state of the art of cloud bursting environments
and economic optimization policies. Moreover, we analyzed some current commercial,

58

Chapter 3. SLA-Based Profit Optimization in Cloud Bursting PaaS

Table 3.5: Summary of economic optimization policies

Objective Constraints Target applica- Method
tions and infra-
structure types

[93] Optimizing profit Response Multi-tier Force-directed resources
time applications assignment

in IaaS cloud
[114] Minimizing cost Execution Scientific Deciding between reusing

time applications or renting new VMs
on IaaS cloud

[58] Minimizing cost Bounded Web Dynamically allocating
server load applications VM’s fractions to

hosting (PaaS) applications
[64] (1) Minimizing (1) Cost Data-intensive Dynamic resource allo-

execution time applications cation based on feedback
(2) Minimizing cost (2) Deadline in hybrid cloud

[120] Minimizing cost Deadline Batch Mixed integer nonlinear
applications formalization
in hybrid cloud

[158] Minimizing cost Response Multiple IaaS Inter-cloud job scheduling
time clouds based on sell/buy bids

[157] Maximizing profit Bounded Geo-distributed Dynamic VM pricing
latency data centers and server provisioning

[153] Minimizing cost and - SaaS Optimizing the use of
SLA violations VMs available resources

[68] Maximizing profit Response Multi-server Defining server
time system configurations

[139] Minimizing cost and - IaaS cloud Scheduling tasks on VMs
makespan with low monetary cost

[87] Maximizing profit Throughput Services Dynamic resource sha-
hosting (PaaS) ring between services

[117] Maximizing profit - Geo-distributed Dynamic request dispa-
data centers ching on resources

[92] Minimizing energy Service time IaaS Cloud Dynamic resource
costs allocation

[122] Maximizing profit - IaaS Cloud Dynamically powering
servers on/off to minimize
consumed energy

59

3.6. Summary

Table 3.6: Positioning this thesis with the main related works.
Approach Hosting Environment Business Model

Open Multi-Cloud Optimization Support Support
Applications of Provider for SLA for PaaS
Deployment Profit Constraints

[93] 7 7 X X X
[157] 7 7 X X 7

[58] 7 7 X X X
[87] 7 7 X X X
[114] 7 7 X X X
[120] 7 X X X X
[68] 7 7 X X X
[99] 7 X 7 X X
[105] 7 X 7 X X
[90] 7 - X X X
[141] 7 - X 7 7

[79] 7 7 X X X
GAE [14] 7 7 - X X
Azure [1] 7 7 - X X

RightScale [21] X X 7 7 X
Cloud Foudry X 7 7 7 X

[19]
ConPaaS [130] X X 7 7 X
OpenShift [25] X 7 7 7 X
Cloudify [18] X 7 7 X X

[66] 7 7 7 X X
Resilin [101] 7 X 7 7 X
Merkat [76] X 7 7 X X
Aneka [146] X 7 7 7 X
Thesis goal X X X X X

60

Chapter 3. SLA-Based Profit Optimization in Cloud Bursting PaaS

open source and research PaaS systems regarding a number of characteristics; partic-
ularly, regarding their underlying infrastructure, provided services, supported applica-
tion types and program languages, architecture, and billing and SLA models . We also
stressed the limitations of the related work that prevent achieving the objective of this
thesis. In the next chapters we introduce the contributions of this thesis.

61

3.6. Summary

62

Chapter 4

Profit Optimization Model

Contents
4.1 Definitions and Assumptions . 62

4.2 PaaS System Model . 63

4.2.1 Notations . 63

4.2.2 Objective . 64

4.2.3 Constraints . 64

4.3 Policies . 65

4.3.1 Basic Policy . 66

4.3.2 Advanced Policy . 66

4.3.3 Optimization Policy . 68

4.4 Summary . 70

In the previous chapter we presented and analyzed a number of recent works treating
aspects related to the objective of this PhD thesis, which consists in optimizing the

provider profit in a cloud-bursting PaaS environment under SLA constraints. Our anal-
ysis has shown that existing works are applicable either to specific application types or
on specific hosting environments different from a cloud-bursting PaaS. To address these
limitations we propose in this chapter a generic profit optimization model, independent
from specific application types and considering the payment of penalties if the SLAs
of clients applications are not satisfied. First, we present a mathematical model of a
cloud-bursting PaaS environment as well as the objective and the constraints of the PaaS
provider. Then, we propose generic policies for optimizing the PaaS provider profit.

This chapter is organized as follows. Section 4.1 provides definitions and assump-
tions about the considered PaaS hosting environment. Section 4.2 describes the consid-
ered system using a mathematical model. Section 4.3 presents a number of policies used
to optimize the PaaS provider profit. Finally, Section 4.4 summarizes the chapter.

63

4.1. Definitions and Assumptions

4.1 Definitions and Assumptions

In this section we define the characteristics of the considered PaaS hosting environment
as well as the background assumptions. First of all, we consider an open PaaS system
able to host a wide variety of application types and that relies on private resources
owned by the provider and is able to burst into public IaaS cloud resources, as seen in
Figure 4.1. The main function of the PaaS is to assign resources to applications according
to specific policies that depend on the provider objectives. Furthermore, we consider
that the PaaS system uses a different resource configuration for each application type
because each type has specific dependencies and requirements in terms of software
stack and management tools. Thus, the private resources are partitioned into several
groups, where each group is dedicated to a specific application type. When necessary,
each group may burst into public cloud resources independently from the other groups.
Thereby, each group is composed of a set of private resources and possibly some public
resources.

The PaaS providers objective considered here is the optimization of their profit while
taking into account two parameters. The first parameter consists in providing SLAs to
the hosted applications based on QoS properties, such as response time and throughput.
The second parameter consists in the payment of penalties if the level of QoS promised
in the SLA is not met. To achieve this objective, our approach consists mainly in se-
lecting the cheapest resources for the provider able to host and satisfy the SLA of each
application. Indeed, we consider that both of private and public resources have a known
cost for the PaaS provider.

Our approach is generic and independent from the types of supported applications
but it relies on one background assumption. Namely, the considered assumption is
that for each supported application type there is a corresponding manager capable to
translate the applications’ required QoS levels into resource requirements, to estimate
their possible penalties due to QoS impacts and to predict their resource usage scheme.
Such capabilities are based on application type-specific knowledge and performance
model.

PaaS provider

Private resources Public resources

PaaS solution

Public IaaS providers

Figure 4.1: Overview of the considered hosting environment

64

Chapter 4. Profit Optimization Model

4.2 PaaS System Model

In this section, we formalize the considered PaaS system as well as the provider objective
and constraints using a mathematical model.

4.2.1 Notations

Basically, the considered PaaS system relies on a constant number K of private resources
and on a variable number Z of public cloud resources, R = {R1, R2, ..., RK, RK+1, ..., RK+Z}.
The private resources may be either available or used by the hosted applications and the
public resources may only be used, otherwise they are released to avoid the provider
paying additional charges. Note that in this model we consider that the PaaS provider
pays the public resources exactly according to their usage duration. For simplicity rea-
sons, we consider that each of the private and public resources are built in a way to be
homogeneous. Thus, if an application runs on a resource Ri from the private or public
cloud it achieves the same QoS level. Each resource has a cost and a price. The resource
price Rprice is set by the PaaS provider and used for billing the provided services. The
resource cost may be either private Rprivate or public Rpublic depending on the location
of the resource. The private cost is estimated by the PaaS provider according to the
incurred operational costs and the public cost is dynamically obtained from public IaaS
cloud providers. Obviously, we assume that the resource price is set to be higher than
the private and public costs, in order to enable the provider to make profit.

The resources are partitioned into M groups, G = {G1, G2, ..., GM}, where M is
the number of the supported types of applications. Each group Gj holds a subset of
resources Gj

R, where (1) the sum of the number of resources assigned to each one of
the groups in the system is equal to the total number of resources in the system (see
Equation 4.1a) and (2) each resource Ri in the system belongs to a unique group Gj

(see Equation 4.1b). The PaaS system hosts N applications, A = {A1, A2, ..., AN}, of
all the supported types. Each group Gj hosts a subset of applications Gj

A of the same
type where the sum of the number of applications belonging to each one of the groups
in the system is equal to the total number of applications hosted in the system (see
Equation 4.1c). Further, the resources are considered as computing units that may not
be shared between multiple applications. Thus, each resource is held by at most one
application and each application holds at least one resource.

More generally, each application Ax holds a number of resources Ax
R that may be

either private Ax
private or public Ax

public and requires a specific QoS level Ax
QoS. The cost of

hosting an application for the provider Ax
cost is calculated as a function of the required

QoS level, the number of private and public resources used by the application, and the
cost of the private and public resources for the provider. The price paid by the user for
hosting an application Ax

price is calculated as a function of the required QoS level, the
number of resources used by the application, and the resources price set by the provider.
If the QoS level required by an application is impacted according to an impact level
Ax

impact (e.g., the impact level could be the extent that the application runtime exceeds
its deadline), an application penalty Ax

penalty is calculated as a function of this impact
and the initial application revenue paid by the user. Otherwise, the application penalty
is zero. The revenue generated by the provider from hosting an application Ax

revenue
is calculated as the difference between the application price and penalty. Finally, the

65

4.2. PaaS System Model

profit obtained by the provider from hosting an application Ax
pro f it is calculated as the

difference between the application revenue and the application cost.
Table 4.1 summarizes all the notations used in this chapter, the aforementioned ones

as well as the ones that will be used in the next sections.

PaaS system properties:

M

∑
j=1

∣∣∣Gj
R

∣∣∣ = K + Z (4.1a)

∀Ri ∈ R, ∃!Gj ∈ G, Ri ∈ Gj
R (4.1b)

M

∑
j=1

∣∣∣Gj
A

∣∣∣ = N (4.1c)

4.2.2 Objective

As already mentioned, our objective is to maximize the overall PaaS provider profit
while providing specific QoS levels to applications or paying penalties otherwise. We
consider that the QoS level required by an application is translated into resources re-
quirements by a manager specific to the corresponding application types. If this QoS is
impacted, an application penalty that affects the application profit is computed accord-
ingly. Thus, the objective is formulated here in the maximization of the sum of all the
hosted applications profits (see equation. 4.2).

Objective:

max(
N

∑
x=1

Ax
pro f it) (4.2)

4.2.3 Constraints

The payment of penalties when the required QoS level by an application is not met is
an attractive feature for the users. However, if the provider does not fulfill its com-
mitments regarding the initially promised QoS level to applications, the customers will
be disappointed and may migrate to an other competitor. Consequently, in addition
to the penalties, the provider should also care about its reputation. Specifically, the
provider has to limit the number of impacted applications as well as the level of impact
for each impacted application, even if this may decrease its profit. Indeed, if a QoS im-
pact exceeding a predefined limit is detected during the execution of an application the
provider should fix it by adding resources for example, even if the additional resources
will not be accounted in the price paid by the user. This may reduce the provider profit
in the short term but it is advantageous for the longer term.

Namely, we consider two constraints. First, the impact level of impacted applications
should not exceed a threshold Athreshold predefined by the provider (see Equation 4.3a),
where the threshold Athreshold is the highest allowed level of QoS impact of each appli-
cation in the PaaS system. Second, the ratio of the impacted applications in the PaaS

66

Chapter 4. Profit Optimization Model

Table 4.1: Notations
Notation Definition Value

Rprice Resource price Defined by the PaaS provider
Rprivate Private resource cost Estimated by the PaaS provider
Rpublic Public resource cost Obtained from public providers

GR Set of resources in the group
GA Set of applications in the group
Gimpact Percentage of impacted apps in G
Gwait_bid Group’s waiting bid See section 4.3.3.2
Gdonating_bid Group’s donating bid See section 4.3.3.1
Gdonating_impact Percentage of impacted apps See section 4.3.3.1

if Gdonating_bid is selected

Aprivate Application’s private resources
Apublic Application’s public resources
AR Application’s used resources Aprivate + Apublic
AQoS Application’s required QoS Negotiated with SLA
Acost Application’s cost cost(AQoS, (Aprivate, Rprivate),

(Apublic, Rpublic))

Aprice Application’s price price(AQoS, AR, Rprice)

Arevenue Application’s revenue Aprice − Apenalty
Aimpact Application’s impact
Apenalty Application’s penalty penalty(Aimpact, Aprice)

Apro f it Application’s profit Arevenue − Acost

Athreshold Application’s impact threshold Defined by the PaaS provider

reqprivate_cost Request’s private cost See section 4.3
reqpublic_cost Request’s public cost See section 4.3

PaaSthreshold Ratio of impacted applications Defined by the PaaS provider
threshold

system should be limited to a threshold PaaSthreshold predefined by the provider (see
Equation 4.3b), where the threshold PaaSthreshold is the maximum authorized ratio of
applications that may be impacted in the PaaS system.

Constraints:

∀Ax ∈ A, Ax
impact 6 Athreshold (4.3a)

∑M
j=1

∣∣∣Gj
A

∣∣∣× Gj
impact

N
6 PaaSthreshold (4.3b)

4.3 Policies

In this section we define three policies for sharing the private resources between the
different application type-specific groups and hosting each newly arriving application.
In the three policies we consider that initially the private resources are shared between

67

4.3. Policies

the groups either equally or according to application type-specific workload predictions.
Then, each time a request req for hosting a new application arrives the policies try to
find the suitable resources to host it. We consider that the user of the new application
has already negotiated an SLA and QoS properties with the corresponding applica-
tion type-specific manager which translates the application QoS level requirement into
resources requirement. The request has the same attributes as the other applications
hosted in the PaaS system, presented in Section 4.2, plus two additional ones: a private
cost reqprivate_cost and a public cost reqpublic_cost. The private cost is calculated as if the new
application will use private resources only and the public cost is calculated as if the new
application will use totally or partially public resources. The two costs are compared
and the cheapest one determines the resources to use for hosting the application.

4.3.1 Basic Policy

The basic policy is naive. It statically partitions the private resources between the groups.
Thus, a constant number of private resources is assigned to each group. If a group has
no more available private resources and a new application arrives, the new application
will be hosted on public resources regardless of the possible available private resources
in the other groups.

Specifically, when a new application request arrives its corresponding manager be-
haves as shown in Algorithm 1. First, the manager gets the current resources prices from
a set of public IaaS cloud providers on which the PaaS may burst. The cheapest public
cloud price is selected as a resource’s public cost. Then, the manager compares this
public cost with the private cost predefined by the PaaS provider. The cheapest cost de-
termines whether the new application will be hosted on the private or public resources.
Nevertheless, if there are not enough private resources available in the corresponding
group we rent public resources.

Algorithm 1: Basic Policy
Data: req
Result: Find resources for req

1 Get current resources’ prices from a set of pubic cloud providers ;
2 Rpublic = min(public cloud prices) ;
3 if (Rprivate 6 Rpublic) ∧ (∃r ⊆ Gcurrent

R , (∀Ri ∈ r, Ri is available) ∧ (|r| > reqR)) then
4 Use private resources ;
5 else
6 Rent public resources from the provider with the cheapest price;
7 end

4.3.2 Advanced Policy

The advanced policy offers more flexibility than the basic one. It provides mainly
two more features: exchange and hybrid. The exchange feature consists in enabling
the application-type specific groups to exchange private resources between each other.
Specifically, when the private resource cost is cheaper than the public resource cost and
the corresponding group does not have enough private resources for hosting a new

68

Chapter 4. Profit Optimization Model

application, we check if the other groups have available private resources before rent-
ing public cloud resources. The hybrid feature consists in enabling applications to run
simultaneously on both private and public resources. Specifically, when the private re-
sources cost is cheaper than the public one and there are not enough available private
resources for hosting a new application, rather than renting all the required resources
from a public cloud we rent only the number of missing resources.

In Algorithm 2 we show the pseudocode of the advanced policy run by an applica-
tion type-specific manager when its corresponding group receives a request for hosting
a new application. First, the manager gets the cheapest public cloud resource cost and
compares it with the private resource cost in the same way as in the basic policy. If the
public cost is cheaper the manager rents the resources from the corresponding public
cloud provider. Otherwise, the manager checks the number of private resources avail-
able in the current application type-specific group. If the available private resources are
sufficient the manager uses them to host the new application. Otherwise, the manager
calculates the number of missing resources Rmissing and checks if the other groups have
at least as much available private resources. If so, the required resources are transferred
from their initial groups to the requesting group to be used for hosting the new applica-
tion. If not, the number of resources available on the other groups Ravailable is calculated
to deduce the number of missing sources. Then, the resources available on the other
groups will be transferred to the requesting group, and the missing resources will be
rent from the public cloud provider.

Algorithm 2: Advanced Policy
Data: req
Result: Find resources for req

1 Get current resources’ prices from a set of public cloud providers ;
2 Rpublic ← min(public cloud prices) ;
3 Rmissing ← reqR ;
4 r ← set of available resources in Gcurrent

R ;
5 if (Rprivate 6 Rpublic) then
6 if (|r| < reqR) then
7 Rmissing ← reqR − |r| ;
8 if (other groups have Rmissing) then
9 Get Rmissing from corresponding groups ;

10 else
11 Ravailable ← available resources on other groups ;
12 Rmissing ← Rmissing − Ravailable ;
13 Get Ravailable from corresponding groups ;
14 Rent Rmissing from corresponding public cloud ;
15 end
16 else
17 Use available resources in Gcurrent;
18 end
19 else
20 Rent Rmissing from corresponding public cloud ;
21 end

69

4.3. Policies

4.3.3 Optimization Policy

The optimization policy goes one step further than the advanced policy in optimizing
the use of private resources if their cost is cheaper than the public one. Specifically,
when the available private resources in all the groups are not sufficient for hosting a
new application, the policy compares the cost of three options for getting the missing
resources: (1) renting them from a public cloud provider, (2) getting them from running
applications, or (3) waiting for private resource to become available. The first option
is the simplest one and is similar to the one used in the advanced policy. The second
option, called donating option, may generate an impact on the promised QoS properties
of the affected applications. The third option, called waiting option, may generate an
impact on the promised QoS properties of the new application. In two last options,
the payment of the incurred penalties should be considered. In the next subsections,
we explain each of the donating and waiting options and provide the algorithm of the
optimization policy.

4.3.3.1 Donating Option

The donating option consists in removing or borrowing a part of resources used by
applications already running and giving them to the new application. The resources
could be obtained either from one application or from a subset of applications belonging
to a same group, where the number of resources to donate is less or equal to the total
number of private resources in the group. The QoS promised in the SLAs of the affected
applications may deteriorate and as a result the provider loses some revenue due to the
payment of penalties. The sum of the possible penalties of the applications that may be
affected in a group in order to donate the required resources is called a group donating
bid and referenced as Gdonating_bid. Each application type-specific manager is responsible
for determining which applications could be affected for calculating the amount of their
possible penalties. This calculation is based on the corresponding application type-
specific performance model. Thus, each group provides (1) a donating bid, (2) the
average ratio of impacted applications in the group if the donating bid is taken, and (3)
the average ratio of applications impacted in the past.

The idea is to select one donating bid from the proposed ones and use it to make
the choice between using the private and public resources. As shown in Algorithm 3, to
select a donating bid first we perform an ascendant sort on the groups based on their
corresponding donating bids. Then, we calculate the average ratio of the impacted ap-
plications in the overall PaaS system as if the smallest donating bid was selected. If this
average ratio is smaller or equal to the predefined PaaS threshold then we select the
smallest donating bid. Otherwise, we perform the same steps with the next smallest
donating bids until we find a donating bid that satisfies the impact threshold constraint
or exhaust all groups. If no proposed donating bids enable the satisfaction of the thresh-
old constraint, we set the donating bid value to infinity in order to avoid selecting the
donating option.

4.3.3.2 Waiting Option

The waiting option consists in either maintaining the new application in a queue until
all the required resources become available or starting the application with only the part

70

Chapter 4. Profit Optimization Model

Algorithm 3: get_donating_bid() function
Data: Rmissing
Result: Find Gj, donating_bid

1 ∀Gj ∈ G, get(Gj
donating_bid, Gj

donating_impact, Gj
impact) ;

2 sort(Gj, Gj
donating_bid) ;

3 for j← 1 to M do
4 bid← Gj

donating_bid ;

5 donating_bidimpact ←

∣∣∣Gj
A

∣∣∣× Gj
donating_impact + ∑M

y=1,y 6=j
∣∣Gy

A

∣∣× Gy
impact

N + 1
;

6 if (donating_bidimpact 6 PaaSthreshold) then
7 break ;
8 end
9 end

10 if (donating_bidimpact > PaaSthreshold) then
11 donating_bid← ∞ ;
12 end
13 return Gj, donating_bid ;

of resources already available and adding the missing resources once they become avail-
able. The resources become available following either the end of a temporal application
or a decrease in the resource consumption of a permanent application. This waiting
time may impact the QoS properties promised to the new application which leads to the
payment of a penalty, waiting bid, which is assumed to be calculated by the correspond-
ing application type-specific manager. The required time for the other applications to
release a number resources is also assumed to be computed by their corresponding
application type-specific managers, knowing their application performance model. We
assume that each application-type specific group provides its required time to have a
number of available private resources Gwait and its corresponding waiting bid Gwait_bid
calculated as the penalty of new application caused by Gwait. As shown in Algorithm 4,
once all the groups propose their waiting bid, we select the smallest one and calculate
the average ratio of impacted application in the overall PaaS system taking into account
the impact of the new application. If this average ratio is greater than the predefined
threshold, we set the waiting bid to infinity to avoid selecting this option and impacting
one more application.

4.3.3.3 Algorithm

Algorithm 5 shows the pseudocode of the optimization policy with both options donat-
ing and waiting bids. First, the manager receiving the request gets the resource costs
from a set of public cloud providers, selects the cheapest one as the public resource cost
and compares it with the private resource cost. If the public cost is cheaper the manager
hosts the new application on resources from the corresponding public cloud provider.
Otherwise, the manager checks the availability of private resources on its corresponding
application type-specific group. If the resources are sufficient the manager uses them for
hosting the new application. Otherwise, the manager computes the number of missing

71

4.4. Summary

Algorithm 4: get_waiting_bid() function
Data: Rmissing, req
Result: Find Gj, waiting_bid

1 ∀Gj ∈ G, get(Gj
wait, Gj

wait_bid, Gj
impact) ;

2 sort(Gj, Gj
wait_bid) ;

3 waiting_bid← G1
wait_bid ;

4 waitimpact ←
1 + (∑M

j=1

∣∣∣Gj
A

∣∣∣× Gj
impact)

N + 1
;

5 if (waitimpact > PaaSthreshold) then
6 waiting_bid← ∞ ;
7 end
8 return G1, G1

wait, waiting_bid ;

resources and checks if the other groups have as much private resources available. If
so, the available resources will be transferred from their corresponding groups to the
requesting group and will be used for hosting the new application. If not, in addition
to transferring the available resources from their corresponding groups, the manger up-
dates the number of missing resources to get the donating and the waiting bids. The
two bids are compared and the smallest one is used to calculate the cost of the request
using private resources. The cost of the request using public resources to cover the miss-
ing resources is also calculated. Finally, the two costs are compared and the cheapest
one determines if the missing resources will be rent from a public cloud provider or
obtained through the waiting or the donating bid options.

4.4 Summary

In this chapter we introduced the considered PaaS hosting environment and formalized
it using a mathematical model. We also presented a set of policies for optimizing the
profit of the PaaS provider when hosting applications. The main considered hosting
environment features are the support of cloud bursting and the capacity to host sev-
eral application types. Our mathematical model formalizes such a system as well as
the applications’ characteristics and requirements. The model formalizes also the PaaS
provider objective and constraints. Specifically, the provider objective considered here is
to earn the maximum profit from hosting applications with the constraint of satisfying
their required QoS levels or paying penalties. Another considered constraint consists in
limiting the QoS impact level of applications and the number of impacted applications
if an impact is required to achieve the provider’s objective. We provided a set of policies
to map arriving applications on resources in a profit-efficient way. The policies compare
the cost of hosting applications with the private resources and public resources at dif-
ferent levels to select the cheapest one. The main assumption of the proposed model
and policies is that the PaaS system is able to estimate the QoS level of an application
its type-specific knowledge and performance model.

In the following chapter we investigate computational applications and propose SLA
and pricing function accordingly, in order to provide an example of an application-type

72

Chapter 4. Profit Optimization Model

Algorithm 5: Optimization Policy
Data: req
Result: Find resources for req

1 Get current resources’ prices from a set of public cloud providers ;
2 Rpublic = min(public cloud prices) ;
3 Rmissing ← reqR ;
4 r ← set of available resources in Gcurrent

R ;
5 if (Rprivate 6 Rpublic) then
6 if (|r| < reqR) then
7 Rmissing ← reqR − |r| ;
8 if (other groups have Rmissing) then
9 Get Rmissing from corresponding groups ;

10 else
11 Ravailable ← available resources on other groups ;
12 Rmissing ← Rmissing − Ravailable ;
13 Get Ravailable from corresponding groups ;
14 (Gj, donating_bid)← get_donating_bid(Rmissing) ;
15 (Gj, wait, waiting_bid)← get_waiting_bid(Rmissing, req) ;
16 if (donating_bid < waiting_bid) then
17 reqprivate_cost ←

cost(reqQoS, (reqR, Rprivate), (0, Rpublic)) + donating_bid ;
18 private_option← donating bid ;
19 else
20 reqprivate_cost ← cost(reqQoS, (reqR, Rprivate), (0, Rpublic)) + waiting_bid ;
21 private_option← waiting bid ;
22 end
23 reqprivate ← reqR − Rmissing ;
24 reqpublic_cost ← cost(reqQoS, (reqprivate, Rprivate), (Rmissing, Rpublic)) ;
25 if (reqprivate < reqpublic) then
26 if (private_option = waiting bid) then
27 if (req support running with partial resources) then
28 Start running the new application with available resources ;
29 end
30 Wait during wait time ;
31 end
32 Get Rmissing from Gj ;
33 else
34 Rent Rmissing from corresponding public cloud ;
35 end
36 end
37 else
38 Use available resources in Gcurrent ;
39 end
40 else
41 Rent Rmissing from corresponding public cloud ;
42 end

73

4.4. Summary

specific manager.

74

Chapter 5

Computational Applications

Contents
5.1 Definitions and Assumptions . 74

5.2 Performance Model . 74

5.3 Service Level Agreement (SLA) . 74

5.3.1 SLA Contract . 74

5.3.2 SLA Classes . 75

5.3.3 Revenue Functions . 76

5.3.4 Lifecycle . 77

5.4 Bids Heuristics . 78

5.4.1 Waiting Bid . 78

5.4.2 Donating Bid . 79

5.5 Summary . 82

This chapter completes the formalism of the PaaS profit optimization model pro-
posed in the previous chapter with a computational applications’ group model.

Specifically, it proposes an SLA model for computational applications and presents cor-
responding donating and waiting bids heuristics for providing private resources from
running applications.

The chapter is organized as follows. Section 5.1 defines computational applications
and presents the considered background assumption in this work. Section 5.2 presents
the assumed computational application performance model. Section 5.3 presents the
used service level agreement contract, classes, functions and lifecycle. Section 5.4 de-
scribes the used donating and waiting bids heuristics. Finally, Section 6.4 summarizes
this chapter.

75

5.1. Definitions and Assumptions

5.1 Definitions and Assumptions

We define a computational application as a temporal passive application running for
a finite duration without any human intervention (see definitions in Section 2.2). The
applications may use either a fixed or a variable set of resources. Accordingly, we dif-
ferentiate between two types of applications: rigid and elastic. The rigid applications
require a fixed amount of resources and the elastic applications can be adapted to use
different amounts of resources.

In this chapter, we propose a computational application manager responsible for
providing and managing the entire lifecycle of applications and their corresponding
SLAs. The role of this manager in our profit optimization model is to provide the do-
nating and waiting bids of its corresponding application group. Our manager relies on
one background assumption that consists in being capable to integrate a QoS predictor
plugin. Such a plugin estimates the quality level of an application based on its character-
istics and used resources. In the context of computational applications, we consider that
the predictor plugin provides the runtime of applications according to the performance
model described in the next section.

5.2 Performance Model

In our current implementation we assume that the computational applications have a
linear speedup performance model, where the application runtime is inversely propor-
tional to the used number of resources. Moreover, if an elastic application uses less or
more resources during its execution, its remaining runtime changes according to its new
number of resources. We also assume that based on the application progress and the
number of resources we can predict its remaining execution time.

In practice, this simple performance model can be replaced by more realistic per-
formance models. Examples of such models provided in the literature are [133] for
MapReduce applications and [73] for scientific applications.

5.3 Service Level Agreement (SLA)

In this section we define a service level agreement for computational applications. Basi-
cally, we make use of a QoS-based SLA metric, called deadline. The deadline, referenced
as Adeadline, is a main QoS property of computational applications, which consists in
the overall time for running an application and giving results to its corresponding user.
Accordingly, the user pays an amount of money to the provider, called henceforth the
application price, referenced as Aprice. In the following, we define the SLA contract and
classes, propose revenue functions, and finally present the SLA lifecycle management.

5.3.1 SLA Contract

We consider an SLA contract where the user provides the description of the application.
The application description contains the application characteristics such as its resource
consumption pattern, and requirements in terms of software and hardware dependen-
cies. Based on this description the PaaS system predicts the application runtime and

76

Chapter 5. Computational Applications

calculates the corresponding deadline and price. The application’s deadline is calcu-
lated as the sum of its predicted runtime, Aruntime, and the required time for processing
the application submission, Aprocessing, as seen in Equation 5.1a. The processing time
includes the time for getting and configuring resources in order to host the application.
The application’s price is calculated as the product of its runtime, used resources and
the resources price set by the provider, as seen in Equation 5.1b. If an application uses
different quantities of resources during its execution, the price function will be decom-
posed in multiple runtime periods where in each period the application uses the same
amount of resources. For example, if an application uses AR1 resources during a period
Ap1 and AR2 resources during a period Ap2, its price would be calculated as seen in
Equation 5.1c. If the agreed application’s deadline is exceeded, a penalty is calculated
according to a specific function and deduced from the initial price in order to provide
the real provider revenue (see Equation 5.1d).

Adeadline = Aruntime + Aprocessing (5.1a)

Aprice = Aruntime × AR × Rprice (5.1b)

Aprice = (Ap1 × AR1 + Ap2 × AR2)× Rprice (5.1c)

Arevenue = Aprice − Apenalty (5.1d)

5.3.2 SLA Classes

In order to target a wide range of consumers, service providers may propose several lev-
els of QoS and corresponding prices. We call each QoS level and its corresponding price
an SLA class. In our scenario, an application with a high SLA class has a shorter deadline
and a higher price compared to the deadline and the price of the same application with
a lower SLA class, taking into account the minimal possible application’s runtime. On
one hand, the SLA classes give many choices to customers for hosting their applications
according to their preferences, best price or best QoS level. On the other hand, the SLA
classes enable the providers to leave a margin when hosting applications with low SLA
classes in order to serve applications with high SLA classes in peak periods .

We set a number of SLA classes, from the highest to the lowest one. Specifically, we
define a deadline margin and a price factor for each SLA class, used to be multiplied
respectively by the initial deadline and price, calculated in Equations 5.1 according to
the predicted application’s runtime (see Equations 5.2). The deadline margin and the
price factor are set to be inversely proportional.

Adeadline_class = Adeadline ×margin_class (5.2a)

Aprice_class = Aprice × f actor_class (5.2b)

77

5.3. Service Level Agreement (SLA)

5.3.3 Revenue Functions

Provider revenues depend on their capacity to provide the QoS promised in the SLAs
of their hosted applications. In our scenario, if the provider fails to give applications’
results before their deadlines, the corresponding applications’ revenues decrease ac-
cording specific revenue functions. We call the difference between the initially expected
application’s revenue and the real application’s revenue a penalty, referenced as Apenalty.

In this section we define three revenue functions for calculating an application’s
penalty: linear, bounded linear and step. The three functions depend on the delay to
deliver results to the user, where an application’s delay is calculated as the difference
between the real application’s completion time and its agreed deadline and is referenced
as Adelay. In the following we describe each revenue function.

5.3.3.1 Linear

The linear function consists in increasing the penalty linearly to the increase of the delay.
Specifically, it calculates the penalty according to the delay and an α value determining
how fast the penalty increases, as seen in Figure 5.1. Specifically, the penalty is calculated
as a delay coefficient (delay divided by the deadline) multiplied by the application price
divided by α (see Equation 5.3). A high α value is more advantageous for the provider
while a low one is more advantageous for the user. An α value is defined by the provider
for each SLA class; the higher the SLA class, the lower the alpha value.

Apenalty =
Adelay

Adeadline
×

Aprice

α
, α > 0 (5.3)

Deadline Completion time

Revenue

Price

Delay

Penalty

Figure 5.1: Linear revenue function

5.3.3.2 Bounded linear

The bounded linear function is quite similar to the linear function. However, the penalty
is bounded to a maximum value defined by the provider in order to limit its loss of in-
comes (see Figure 5.2). Initially, the penalty is calculated exactly as in the linear function
(Equation 5.3) then it is compared to a defined maximum penalty value. If it is greater,
its value gets the maximum penalty value (see Equation 5.4). Otherwise, it keeps the
same value.

If (Apenalty > penaltymax) then Apenalty ← penaltymax (5.4)

78

Chapter 5. Computational Applications

Deadline Completion time

Revenue

Price

Delay

Penalty

Bound

Figure 5.2: Bounded linear revenue function

5.3.3.3 Step

The step function consists in many constant values of revenues (see Figure 5.3). Each
value corresponds to a completion time interval. Given that the penalty is the differ-
ence between the revenue and the initial price and the delay is the difference between
the completion time and the deadline, the penalty gets a specific value for each delay
interval (see Equation 5.5). A set of penalty values are defined by the provider for each
SLA class; the higher the SLA class, the higher the penalty value.

Apenalty =




C1 for 0 � Adelay � x1

C2 for x1 � Adelay � x2

...

Cn for xn−1 � Adelay

(5.5)

Deadline Completion time

Revenue

Price

Delay

Penalty Level 1
Level 2

Level n

x1 x2 ….. xn

Figure 5.3: Constant revenue function

5.3.4 Lifecycle

As mentioned earlier, to enable the PaaS system to propose SLAs, first of all the user
provides a description of the application to host. Based on this description and the
used predictor plugin, the computational application manager provides the user with
a set of pairs (deadline, price), each pair corresponding to an SLA class, and lets the
user select one of them. If the user does not agree with any proposed pairs she may

79

5.4. Bids Heuristics

propose one of the two SLA metrics. Then, whenever possible the provider proposes
accordingly the second SLA metric for each SLA class if this is feasible. For instance,
if the user has budget constrains, she may impose a price and the manager gives the
corresponding deadline. Otherwise, if the user’s application is urgent, she may impose
a deadline and the manager gives the corresponding price. If the proposed SLA metric is
not acceptable to the system, the user may propose another one and a new negotiation
round is launched until the user and the provider agree. Based on the agreement,
resources are provisioned and configured for hosting the application. At the end of the
application execution, if the agreed deadline is exceeded, the penalty to be paid by the
provider is calculated according to the delay and the used revenue function.

5.4 Bids Heuristics

As seen in the previous chapter, several options are possible when the PaaS system re-
ceives a request for hosting a new application, see Figure 5.4. The main options are
the use of available private resources or public cloud resources. With the optimization
policy there are two more options. Specifically, when no private resources are available
and the cost of public resources is higher than the cost of private resources, each appli-
cation type-specific group is asked to propose donating and waiting bids for providing a
number of resources. The donating bid is calculated as the sum of the possible penalties
of the applications that may be affected to donate the required resources. The waiting
bid is calculated as the possible penalty of the new application due to waiting private
resources to become available. In the following we present the heuristics for providing
computational applications donating and waiting bids.

Private resources Public resources

Available Donating bid Waiting bid

Hosting options

Figure 5.4: Hosting options

5.4.1 Waiting Bid

To propose a waiting bid, the computational applications’ manager considers waiting
private resources used by the running applications to become available. The required
time for a running computational application to finish and release its resources is de-
duced from its predicted runtime and referenced henceforth as Await. Such a waiting
time may impact the deadline of the new application with a specific delay that leads to a
penalty, which is called henceforth application’s waiting bid and referenced as Await_bid.
The group’s waiting bid is then calculated as the smallest possible application’s waiting
bid.

80

Chapter 5. Computational Applications

Specifically, we calculate the group’s waiting bid as shown in Algorithm 6. First, the
computational application manager performs an ascending sort of the applications be-
longing to the group according to their waiting bid. Afterwards, in a loop the manager
selects the application with the smallest waiting bid and compares the number of its
private resources to the number of missing resources. If it is greater or equal, the man-
ager considers the application’s waiting bid as the group waiting bid and exits the loop.
Otherwise, the manager increments a variable R f ound by the number of the application’s
private resources. Then, it selects the next application with the smallest waiting bid and
performs the same check, and so on for the rest of applications. The manager exits the
loop if (1) it finds an application holding enough resources, or (2) the number of found
resources in the variable R f ound becomes greater or equal to the missing resources. Thus,
the group’s waiting bid is respectively (1) the selected application’s waiting bid, or (2)
the waiting bid of the last application having incremented R f ound.

Algorithm 6: Waiting bid of computational applications’ group
Data: Rmissing, req
Result: Gwait, Gwait_bid

1 ∀Ai ∈ GA, calculate (Ai
wait, Ai

wait_bid) ;
2 sort(GA, Ai

wait_bid) ;
3 // initializing variables ;
4 Gwait ← ∞ ; Gwait_bid ← ∞ ;R f ound ← 0 ; ;
5 for (i← 1 to |GA|) do
6 if (Ai

private > Rmissing) then
7 Gwait_bid ← Ai

wait_bid ;
8 Gwait ← Ai

wait ;
9 break ;

10 else
11 R f ound+← Ai

private ;
12 if (R f ound > Rmissing) then
13 Gwait_bid ← Ai

wait_bid ;
14 Gwait ← Ai

wait ;
15 break ;
16 end
17 end
18 end
19 return Gwait, Gwait_bid ;

5.4.2 Donating Bid

To propose a donating bid, the computational applications’ manager considers impact-
ing its applications using one of three possible forms of impact. The first form, called
partial lending, consists in lending a subset of application resources to the request, the
application continues running with the remaining resources, and gets back the borrowed
resources once the request finishes its execution. The second form, called total lending,
consists in suspending the application, lending all its resources to the request, and re-

81

5.4. Bids Heuristics

suming it once the request finishes its execution. The third form of impact, called giving,
consists in giving a subset of application resources to the request and finish its execution
only with the remaining VMs. The three forms of impact may potentially lead the ap-
plications to exceed their agreed deadlines by a given delay. Obviously, the estimation
of the delay depends on the form of impact. Note that the rigid applications may be
impacted only with a total lending while the elastic applications may undergo the three
forms of impact. In the next subsections we explain in more detail how we estimate
the delay of each of the rigid and elastic applications. Based on the delay and the used
revenue function we calculate the possible penalty of each application (see Section 5.3.3).

We calculate the group’s donating bid similarly to what we do for calculating the
group’s waiting bid. As shown in Algorithm 7, we calculate the applications penalty as
well as their impact. The application impact is calculated here as a ratio between the
delay and the deadline (see Equation 5.6). Then, we perform an ascending sort of the
applications according to their penalties. The group’s donating bid may be obtained
from only one application that holds enough private resources for the request or from
a number of applications. In the second case the group’s donating bid is calculated
as the sum of penalties of all the applications to impact. The number of applications
to be impacted for providing the bid is counted in order to provide the percentage of
impacted applications if this group’s bid is selected.

Aimpact =
Adelay

Adeadline
× 100 (5.6)

5.4.2.1 Rigid Applications Delay

To estimate the delay of a rigid application, we consider impacting the application with
a total lending impact form. Thus, the application is suspended during a requested
duration that includes the request runtime and the time for transferring the resources
to the request and getting them back later. Thus, we first compute the application’s
spent time from its submission until the time the request is received, (see Figure. 5.5).
Then, we deduce the remaining time as the predicted application’s runtime minus the
spent time. Afterwards, we estimate the time when the application ends its execution as
the remaining time plus the requested duration and compare it to the deadline. If the
estimated application’s end time is before the deadline, then the delay is zero. Otherwise
the delay is calculated as the difference between the end time and the deadline.

5.4.2.2 Elastic Applications Delay

To estimate the delay of an elastic application we first have to select the correct form
of impact. If the application holds the requested number of resources or less, the ap-
plication may only be impacted with a total lending and its delay is calculated in the
same way as that of a rigid application. Otherwise, if the application holds more re-
sources than requested, we estimate its delay that corresponds to the partial lending and
the giving impact forms. Then, we select the form of impact according to the smallest
corresponding penalty. Initially for both impact forms we calculate the spent time and
the remaining time of the application, as we do for rigid applications. However, the
remaining time of the application changes in a different way according to the impact
form, see Figure. 5.5. With the giving form, we assume that the predictor plugin is able

82

Chapter 5. Computational Applications

Algorithm 7: Donating bid of computational applications’ group
Data: Rmissing, reqruntime, Athreshold
Result: Gdonating_bid, Gdonating_impact

1 ∀Ai ∈ GA, calculate Ai
penalty and Ai

impact ;

2 sort(GA, Ai
penalty) ;

3 // initializing variables ;
4 Gdonating_bid ← ∞; R f ound ← 0; donating_bid← 0; donating_impact← 0 ;
5 for (i← 1 to |GA|) do
6 if (Ai

private > Rmissing) then
7 if (Ai

penalty 6 Gdonating_bid) ∧ (Ai
impact 6 Athreshold) then

8 Gdonating_bid ← Ai
penalty ;

9 donating_impact← 1 ;
10 break ;
11 end
12 else
13 if (Ai

impact 6 Athreshold) then
14 R f ound+← Ai

private ;
15 donating_bid+← Ai

penalty ;

16 impact ++ ;
17 if (R f ound > Rmissing) then
18 Gdonating_bid ← donating_bid ;
19 break ;
20 end
21 end
22 end
23 end

24 Gdonating_impact ←
(

Gimpact
100 ×|GA|)+donating_impact

|GA| ;

25 return Gdonating_bid, Gdonating_impact ;

83

5.5. Summary

to predict the application remaining time based on the progress of the application ex-
ecution, the number of remaining resources, and the application performance model.
With the partial lending form, the predictor estimates the application runtime according
to two phases. In the first phase, during the requested duration, the application runs
with the remaining resources and in the second phase, after getting back the borrowed
resources, the application runs with all its resources.

Total Lending

Runtime
Deadline Spent time

Requested duration

Remaining time

Start Request

Delay

new Remaining time

End
Remaining time

Runtime
Deadline Spent time Remaining time

Start
Request

Delay
End Giving

new Remaining time

Runtime
Deadline Spent time Remaining time

Start

Request

Delay
End Partial Lending

Requested duration
Progress

Figure 5.5: Application times according to the three impact forms.

5.5 Summary

In this chapter we investigated computational applications, proposed SLA metrics and
functions, and presented the corresponding donating and waiting bid heuristics for max-
imizing the PaaS provider profit. Basically, when the PaaS system receives a request for
hosting a new application and private resources are not readily available, each applica-
tion type-specific group is asked to propose donating and waiting bids for providing a
number of resources. We proposed a computational applications waiting bid heuristic
that estimates the required time for applications to finish their execution and calculates
the possible penalty of the new application accordingly. Then, it tries to provide the
waiting time generating the smallest possible penalty of the new application. We also
proposed a computational applications donating bid heuristic that calculates the bid
based on the possible penalties of the running applications providing some of their re-
sources. We defined three forms to be used by computational applications for providing
resources during their execution. The first form, partial lending, consists in lending a part
of running applications resources to the new application and continue running with the
remaining resources until the new application gives back the borrowed resources. The
second form, total lending, consists in suspending the running applications during the
execution of the new application and resuming them once the new application finishes
its execution. The third form, giving, consists in giving a part of the running applications
resources to the new application and continue their execution only with the remaining
resources. The partial lending and giving forms of impact may be used only by elastic
applications. Each form leads to a different penalty for applications . Thus, the heuristic

84

Chapter 5. Computational Applications

selects the impact form causing the smallest penalty.
In the next chapter we present the design and implementation of an open cloud-

bursting PaaS system able to incorporate the proposed profit optimization model as
well as the computational applications heuristics presented in this chapter.

85

5.5. Summary

86

Chapter 6

Meryn: an Open Cloud-Bursting
PaaS

Contents
6.1 Design Principles . 86

6.2 System Architecture . 86

6.2.1 Overview . 87

6.2.2 Components . 87

6.2.3 Application Life-Cycle . 89

6.2.4 VC Scaling Mechanisms . 90

6.3 Implementation . 90

6.3.1 Frameworks Configuration . 90

6.3.2 Components Implementation . 91

6.3.3 Parallel Submission Requests . 92

6.3.4 Cloud Bursting . 93

6.4 Summary . 93

In the two previous chapters we presented a set of heuristics providing a complete
view of our profit optimization model for PaaS providers. This model requires to be

incorporated in a real PaaS system providing support to specific features, in order to be
able to evaluate its efficiency. In this chapter we present Meryn, our PaaS design and
architecture, providing all the features required by our profit optimization model.

This chapter is organized as follows. Section 6.1 discusses the design principles of
Meryn. Section 6.2 describes the Meryn system architecture. Section 6.3 presents the
implementation details of the Meryn prototype. Finally, Section 6.4 summarizes this
chapter.

87

6.1. Design Principles

6.1 Design Principles

Our main goal in designing a PaaS system architecture is to provide support for the main
required features enabling the provider to optimize its profit. Specifically, as discussed
in Section 3.1, to achieve our objectives we need a PaaS system supporting cloud bursting
and extensibility regarding application types. The majority of existing PaaS systems do
not provide such features. They either focus on specific application types or rely on
specific infrastructures. Therefore, we made three key design decisions in designing our
PaaS system, called Meryn1.

The first decision concerns the resource granularity. We chose to use virtual ma-
chines (VMs) as the basic resource unit running applications. Thus, each application
is separately hosted on at least one virtual machine. Our choice is motivated by the
well-know advantages of virtualization in terms of flexible resource control and isola-
tion. Moreover, as we aim at being extensible to host several application types, the use
of virtual machines is more advantageous than the use of system containers because it
enables hosting applications with different operating system requirements (find more
details in Section 2.4.2.2). Furthermore, using this approach private resources and re-
sources dynamically leased from public clouds can be managed in a similar way, which
greatly simplifies the resources management as well as the deployment and accounting
of the resources consumed by each application.

The second decision concerns the use of existing programing frameworks to manage
the supported application types. A great variety of frameworks have proven to be widely
useful and are currently part of PaaS offerings, including web application frameworks,
MapReduce, batch frameworks, and task framing frameworks. These frameworks em-
ploy sophisticated scheduling and resource management policies, optimized to support
the quality objectives of framework-based applications. The key idea here is to facili-
tate the extensibility of the PaaS system with the support of new application types with
minimal effort.

The final decision concerns the division of resource management responsibilities be-
tween the frameworks and the PaaS system. We adopt a decentralized architecture in
which the frameworks collaborate though exchanging resources with the aim of increas-
ing the provider profit. Compared to a centralized architecture, the advantage of this
approach is that it imposes minimal changes on the frameworks, thus facilitating the
extensibility of the PaaS system. Indeed, the frameworks continue to take most of the
resource management decisions regarding their hosted applications, taking advantage
of their application type-specific knowledge to better satisfy their SLA objectives.

6.2 System Architecture

In this section we present the system architecture of Meryn, our open cloud-bursting
PaaS system. First, we present a high level overview. Then, we provide more details
about the system components, the application life-cycle and and used scaling mecha-
nisms.

1Meryn is an Arabic word (
àQÓ) that means Flexible and Elastic.

88

Chapter 6. Meryn: an Open Cloud-Bursting PaaS

6.2.1 Overview

The overall Meryn architecture is illustrated in Figure 6.1, where private resources con-
sist in a fixed number of VMs shared between multiple elastic Virtual Clusters (VCs).
We define a VC as a set of VMs running on private resources plus possibly some VMs
rent from public IaaS clouds. Each VC is associated with an application type-specific
group and is managed by a specific framework. For example, it is possible to use the
Oracle Grid Engine (OGE) framework to manage a VC that hosts batch applications, and
the Hadoop framework to manage a VC that hosts MapReduce applications.

Note that for each framework we create a set of customized VM disk images with
the suitable software stack, used to create VMs of the corresponding VC. Each VC has
an initial amount of resources. Then, according to specific policies VCs may exchange
the private resources among each other. The overall resource management is fully de-
centralized where each VC autonomously manages its own resources and decides when
to burst into public cloud resources. The end users submit their applications through a
common and uniform interface, whatever the type of their applications.

Public
Cloud 1
Public

Cloud 1

Submission Interface Submission Interface Submission Interface Submission Interface

Public
Cloud 2

Private Resources

VC 1 VC 2 VC 3

App. 1 App. 2 App. 3 Private VMs
Public cloud VMs

Figure 6.1: Meryn architecture overview

6.2.2 Components

The main components of the Meryn system, shown in Figure 6.2, are a Client Manager, a
Cluster Manager for each VC, an Application Controller for each hosted application and a
Resource Manager.

Most frameworks consist of one master daemon and a set of slave daemons. In
Meryn, we run the master daemon separately on one or more private VMs, called Master
VM(s), and the slave daemons either on private VMs or public cloud VMs, called Slave
VMs. The master VMs are shared between all the applications hosted in the same VC
and run the Cluster Manager component as well as the Application Controllers of the
applications running on the VC. The slave VMs are dedicated to applications and run
their corresponding code. In the following we give more details about each Meryn
component.

• Client Manager. The Client Manager is the entry point of the system providing
users with a uniform submission interface. It is responsible for receiving sub-
mission requests and transferring them to the corresponding Cluster Manager. It

89

6.2. System Architecture

also enables users to get the results of their applications. Meryn may have several
Client Managers in order to avoid a potential bottleneck, which could happen in
peak periods.

• Cluster Manager. The Cluster Manager plays the role of the application type-
specific manager and consists of two parts, a generic part and a framework-specific
part. The generic part is the same for all Cluster Managers and consists in man-
aging resources and deciding when to horizontally scale up and down. Specifi-
cally, the Cluster Manager has to decide when releasing resources to other VCs,
when to acquire resources from other VCs and when to rent resources from public
clouds. The framework-specific part depends on the hosted type of applications
as well as the used framework. This part wraps the interface of the framework
to enable a standardized interaction between the Client Manager and the Cluster
Managers of all the supported application types. The wrapping implementation
translates for example the submission request template of the Client Manager to a
submission request template compatible with the framework. Moreover, depend-
ing on the hosted application type, this part implements a QoS predictor plugin
and proposes corresponding SLA metrics accordingly. Consequently, the exten-
sion of Meryn with the support of a new application type requires three terms:
(1) creating a new VC, (2) managing the VC and the applications using the cor-
responding framework, and (3) implementing the application type-specific part of
the Cluster Manager.

• Application Controller. The Application Controller is responsible for monitoring
the execution progress of its associated application as well as the satisfaction of
its agreed SLA. This component is mainly based on mechanisms provided by the
framework.

• Resource Manager. The Resource Manager provides support to functions for ini-
tially deploying the PaaS system and for transferring VMs from one VC to another
one. The Resource Manager interacts with a VM manager software, such as Open-
Stack [5], OpenNebula [123] or Snooze [86].

Cluster Manager Cluster Manager Cluster Manager

Client Manager Client Manager

Resource Manager

SlavesMaster

A
pp

li
ca

tio
n

C
on

tr
ol

le
rs

...
... ...

VC 1 VC 2 VC 3{
Master Slaves Master Slaves

VM Management System

Figure 6.2: Meryn components

90

Chapter 6. Meryn: an Open Cloud-Bursting PaaS

6.2.3 Application Life-Cycle

The application life-cycle is shown in Figure 6.3. The process starts when the user
contacts the Client Manager and gives a description of her application using a standard-
ized template provided by the submission interface. The application description should
mainly characterize the application in terms of resource consumption requirements as
well as software dependencies. Based on the application description the Client Manager
determines its corresponding VC and acts as an intermediary between the user and the
Cluster Manager. The Cluster Manager and the user negotiate the SLA terms, through
the Client Manager, until a mutual agreement. Then, the user transfers the executable
file and the needed input data of the application to the corresponding VC.

The Cluster Manager translates the application description to a template compatible
with the corresponding framework, launches a new Application Controller instance,
and submits the application to the framework. The Application Controller monitors the
application progress and regularly checks the satisfaction of its agreed SLA. If an SLA
violation is detected, the Application Controller computes the corresponding penalty
and informs the Cluster Manager. Finally, the Client Manager provides a way for the
user to retrieve the results of her application from the Cluster Manager.

Client Manager Framework Cluster Manager Cluster Manager

Describe application Transfer description

SLA negotiation

Agree SLA

Upload application files

Allow uploading

Translate standard template
to framework template

Application
Controller

Create
Application Controller

Submit application

Run
application

Monitor
application

SLA violation

Enforce SLA Application end

Application results

Figure 6.3: Application life-cycle

91

6.3. Implementation

6.2.4 VC Scaling Mechanisms

Horizontally scaling up a VC is performed either using private VMs taken from the other
VCs or using public clouds VMs. Below we describe the used technical mechanisms for
each option.

Obtaining VMs from other VCs. The transfer of VMs from a source VC to a desti-
nation VC operates as follows. First, the Cluster Manager of the source VC selects the
VMs to remove, removes them from the framework and requests the Resource Manager
to shut them down. Then, the Cluster Manager of the source VC informs the Cluster
Manager of the destination VC about the availability of the VMs. The Cluster Manager
of the destination VC requests the Resource Manager to start new VMs with the corre-
sponding VM disk image, gets their corresponding IP addresses, configures them and
adds them to its framework resources.

Obtaining VMs from Public Clouds. The cloud bursting mechanism of a VC oper-
ates as follows. First, the Cluster Manager of the corresponding VC requests a selected
public cloud to create the VMs, gets their corresponding IP addresses, configures them
and adds them to its framework resources. When the VC finishes using the public VMs,
its Cluster Manager removes the VMs from the framework and asks the corresponding
public cloud to stop them. Note that before enabling a VC to burst into public clouds,
we first make sure that the corresponding VM disk images are saved in the set of public
clouds that may be used.

6.3 Implementation

We have developed a Meryn prototype in about 4,000 lines of shell script. The proto-
type is built upon the Snooze VM manager software for virtualizing the private physical
resources. The prototype provides support to batch and MapReduce applications using
respectively Oracle Grid Engine OGE 6.2u7 and Hadoop 0.20.2 frameworks. In the fol-
lowing we describe the configuration of each framework, the implementation details of
each Meryn component, the management of parallel submissions, and the implementa-
tion of the bursting mechanism.

6.3.1 Frameworks Configuration

The two used frameworks have different structures and mechanisms for scheduling jobs.
The OGE framework operates as any classic batch scheduler (as seen in Figure 2.1),
where the Hadoop framework has specific configurations and scheduling mechanisms
for running data intensive applications. Therefore, we configured differently each frame-
work such that we get more control over the assignment of resources to applications.

OGE. We set the OGE virtual cluster such that it consists of one master node run-
ning the sgemaster daemon and a number of slave nodes, each node running an sgeexec
daemon. The slave nodes are set such that each node cannot host more than one applica-
tion. However, one application may run on multiple slave nodes. Furthermore, the slave
nodes are set to belong to a unique queue that handles all the submissions. In order to
control the submitted jobs spend in the queue, our policy specifies the hostname of the
slave node(s) to use for hosting the new job .

92

Chapter 6. Meryn: an Open Cloud-Bursting PaaS

Hadoop. The default Hadoop scheduler performs a fair assignment of resources
to jobs. For instance, when there is only one job running in the cluster, the job uses
all the resources. If other jobs are submitted some resources are assigned to the new
jobs, so that each job gets on average the same amount of CPU time. This scheduling
mechanism, performed by the JobTracker daemon, makes it complex to predict the ap-
plication runtimes. Therefore, we setup our Hadoop virtual cluster to have multiple
sub-clusters, such that each sub-cluster runs a separate JobTracker daemon and hosts
only one application. Each application sub-cluster consists on at least one node running
the JobTracker and TaskTracker daemons. When required by the application, its sub-cluster
may hold additional nodes running the Tasktracker daemon. Furthermore, we configured
the Hadoop storage nodes to be shared between all the hosted applications. The storage
nodes consists in one node running the NameNode daemon and a set of nodes running
the DataNode daemon to store data and ensure replicas. In our Meryn prototype we run
the Cluster Manager and Application Controllers components on the node running the
NameNode daemon. Finally, the free nodes belonging to the VC do not have any particu-
lar function and do not run any daemon. When a new MapReduce application needs to
be hosted, we configure and start daemons in a number of free nodes according to the
application requirements.

Free nodes

Sub-clusters
Storage

JobTracker +
TaskTracker

TaskTracker NameNode
 (Master)

DataNode

Figure 6.4: Configuration of the Hadoop VC

6.3.2 Components Implementation

In the following we present the important implementation aspects of each Meryn com-
ponent.

Client Manager. We implemented a command line interface for submitting applica-
tions where the client has to fill a submission template, such as the example shown in
the Extract 6.1. The main required fields are the application type (batch or MapReduce),
the number of processes, the path to the source code file and possibly the required pa-
rameters. Note that the path should be accessible by the Client Manager for uploading
the source code. The Client Manager transfers the information provided in the template
to the corresponding Cluster Manager, using the Secure Copy Protocol (SCP). The re-
quired interaction between the client and the Cluster Manager to negotiate SLA is also
performed using files exchanges between the Cluster Manager and the Client Manager
with SCP. After an SLA agreement, the Client Manager transfers the template file as well

93

6.3. Implementation

as the application source files to the Cluster Manager for performing the submission.

Extract 6.1: Example of job submission template

User Input
Type=mapreduce
Nb_processes=1
S o u r c e _ f i l e =/tmp/hadoop/benchmarks . j a r
Parameters ="Benchmark2 /data/ v i s i t s / output/aggre101/ −m 10 −r 3"

SLA
Deadline =1230
P r i c e =.08668800
Class=Medium

Cluster Manager. First, to enable a framework to add a new VM, the Cluster Man-
ager starts on the new VM the corresponding daemon and informs the master daemon
about its availability. Inversely to remove a VM, the Cluster Manager asks the master
daemon to remove it from the list of its slave nodes, then it optionally stops the daemon
running on the VM. Then, to standardize the basic actions performed on the applications
such as start/stop and suspend/resume, the Cluster Manager wraps the functionalities
provided by each framework’s management tool with common commands. Finally, the
Cluster Manager implements the policies described in Chapters 4 and 5 for making de-
cisions about resources provisioning and assignment, in about 400 lines of Java code and
interacts with them through synchronized read/write operations in XML files.

Application Controller. The Application Controller regularly gets the state of its
corresponding application using commands provided by the programing framework
and checks its number of resources. We implemented an Application Controller specific
to computational applications that also checks the elapsed runtime of applications and
compares it to their agreed deadline. If the agreed deadline is violated, the Application
Controller informs the Cluster Manager. If the real application completion time exceeds
its expected deadline, the Application Controller computes the corresponding penalty
and informs the Cluster Manager.

Resource Manager. The Resource Manager interacts with Snooze through its Lib-
cloud API for creating and removing VMs either for initially deploying the VCs of the
PaaS system or upon Cluster Manager request for VMs exchange.

In the current deployment, we host the Client Manager and Resource Manager com-
ponents in one physical node, hosting also some Snooze daemons and not used for cre-
ating virtual machines. In a production deployment, we can host separately the Client
Manager in a front-end web node.

6.3.3 Parallel Submission Requests

In order to handle requests submitted in parallel and provide consistent resource as-
signment, we implement two mechanisms. First, we use mutual exclusion mechanisms
to access the parts of code checking or modifying the resources availability and status.
Second, we use a reservation flag to tag resources (1) under SLA negotiation, (2) waited
for by an application or (3) lent to an application for a specific duration that should be

94

Chapter 6. Meryn: an Open Cloud-Bursting PaaS

reassigned to their initial application. The tagged resources may not be assigned to any
application until they are untagged.

6.3.4 Cloud Bursting

To enable each VC to burst into public clouds, we set in a specific config file of the
Cluster Manager the IP addresses and the user account credentials of the entry point
of each supported public cloud provider. Currently, we deploy a second instance of the
Snooze VM manager in remote resources accessed over a wide-area network from the
deployed Meryn prototype.

6.4 Summary

In this chapter we presented the design, architecture and implementation of Meryn, our
open cloud-bursting PaaS system. The architecture relies on private virtual machines
and may burst into virtual machines from public cloud providers. To enable Meryn to
support extensibility regarding application types, we make use of independent virtual
clusters. Each virtual cluster is managed using an existing framework dedicated to a
specific application type. In the next chapter we evaluate our profit optimization model
using the Meryn prototype.

95

6.4. Summary

96

Chapter 7

Evaluation

Contents
7.1 Evaluation Setup . 96

7.1.1 Meryn Prototype . 96

7.1.2 Policies . 96

7.1.3 Workloads . 97

7.1.4 Pricing . 97

7.1.5 SLAs . 98

7.1.6 Grid’5000 testbed . 98

7.1.7 Evaluation Metrics . 99

7.2 Simulations . 100

7.2.1 Environment Setup . 100

7.2.2 Results . 101

7.3 Experiments . 105

7.3.1 Measurements . 105

7.3.2 Environment Setup . 107

7.3.3 Results . 110

7.4 Summary . 115

In this chapter we evaluate the contributions of this PhD thesis. The purpose of our
evaluations is to show the efficiency of the proposed profit optimization policies in

increasing the provider profit as well as in satisfying SLAs and QoS properties required
by the clients. This chapter is organized as follows. Section 7.1 describes our evaluation
setup, specifying the configuration parameters of the Meryn prototype and optimization
policies, and describing the used workloads, pricing model, SLA classes, revenue func-
tions, and testbed. It also defines the used evaluation metrics. Section 7.2 presents a first
evaluation based on simulations and discusses the corresponding results. Section 7.3
presents a second evaluation based on experiments and discusses the corresponding
results. Finally, Section 7.4 summarizes this chapter.

97

7.1. Evaluation Setup

7.1 Evaluation Setup

This section discusses the evaluation setup used in both the simulations and the exper-
iments. We describe the setup of the Meryn prototype, the profit optimization policies
and the submitted workloads. We also present the used configuration of resources costs
and prices as well as SLA classes and revenue functions.

7.1.1 Meryn Prototype

As shown in Figure 7.1, we configured the Meryn prototype with two VCs, one VC for
MapReduce applications managed with the Hadoop framework and one VC for batch
applications managed with the OGE framework. We used a VM instance model similar
to the Amazon EC2 medium instance1, which consists of 2 CPUs and 3.75 GB of memory.
The Snooze managed private cloud is configured to have 100 VMs. Thus, we assigned
50 private VMs to each VC. We assume that the number of VMs available in the Snooze
managed public cloud, able to be rent as public VMs, is infinite.

Submission Interface Submission Interface Submission Interface Submission Interface

Private Resources

Hadoop OGE

Public VMs
Private VMs

Remote Resources
(Public cloud)

Figure 7.1: Meryn prototype configuration.

7.1.2 Policies

We evaluate and compare the efficiency of the three policies described in Chapter 4:
basic, advanced and optimization. The basic policy statically partitions the private re-
sources between the groups and hosts applications using public resources each time the
group has no more available private resources. The advanced policy offers more flexi-
bility than the basic policy. It enables the exchange of resources between the application
type-specific groups and the deployment of applications simultaneously on private and
public resources. The optimization policy goes one step further than the advanced pol-
icy. In order to optimize the provider profit, it considers either impacting the QoS level
of running applications to host a new application or impacting the QoS level of the new
application due to waiting for private resources to become available. Accordingly, we
define two threshold setups for both the ratio of applications in the PaaS system that

1http://aws.amazon.com/ec2/instance-types/ [Online; accessed February 2013]

98

Chapter 7. Evaluation

may be impacted and the allowed impact on the impacted applications. In the first
setup, referenced henceforth as opt1, the threshold of applications ratio able to be im-
pacted is set to 20% and the threshold of the allowed applications impact is set to 50%.
In the second setup, referenced henceforth as opt2, the threshold of applications ratio
able to be impacted is set to 50% and the threshold of the allowed applications impact is
set to 100%. Overall, the opt2 policy is more aggressive than the opt1 policy in impacting
applications.

7.1.3 Workloads

We submit to the Meryn prototype simultaneously two workloads, one for the batch
VC and one for the MapReduce VC. The batch workload follows the Lublin workload
model [118]. To adapt this workload model to our scenario, we consider the number of
nodes in each Lublin request as the number of VMs in a job and limit this number to
128 simultaneous VMs for one job. In order to generate a shorter workload we changed
the following parameters of the Lublin workload model: the number of jobs from 1000
to 100, the maximum job runtime from two days to one hour, and the maximum inter-
arrival time from five days to half an hour.

The MapReduce workload is based on the distribution of job sizes and inter-arrival
times seen at Facebook over a week in october 2009, reported in [155]. The workload
consists of 100 jobs randomly submitted over 25 minutes with a mean inter-arrival time
of 14s. The jobs are instances of the four queries of Hive benchmarks [48]: text search
(grep), selection, aggregation, and join. Basically, there are ten job instances submitted a
number of times such that the total number of submitted jobs is 100. Each job instance
runs one of the four Hive queries and uses a specific number of mappers and reducers.
To determine the runtime of each job instance in the workload, we generated 2 GB
of Grep data, 3 GB of Rankings data, and 2 GB of UserVisits data. Then, we separately
measured the average runtime of each job instance using a randomly predefined number
of TaskTracker VMs.

We generated three instances of each workload, batch and MapReduce, and ran-
domly combined them to get three workloads (workload 1, workload 2, and workload3).
Each workload consists of one batch workload instance and one MapReduce workload
instance to be submitted together.

7.1.4 Pricing

In our pricing model we assume a per-second billing, following the current trend for
increasingly shorter billing periods in cloud platforms [53]. To calculate the cost and
revenue of applications we defined a cost for public cloud VMs, a cost for private VMs,
and a VM price as follows. The cost of a public cloud VM is based on the per-hour
Amazon EC2 pricing of a standard medium VM instance in the Ireland datacenter2

divided by 3600 (the number of seconds per hour), giving 0.00003612$/s. The cost of
a private cloud VM is based on the per hour power cost of one core, reported in [144].
The reported cost is converted to dollars (with an exchange rate of 1.35), multiplied by
2 (as medium VM instances have 2 cores), and divided by 3600 (the number of seconds
per hour), giving 0.0000064497$/s. The VM price for end users is calculated as the cost

2http://aws.amazon.com/ec2/pricing/ [Online; accessed June 2013]

99

7.1. Evaluation Setup

of a public cloud VM multiplied per 2, giving 0.00007224$/s. This is justified by the fact
that our system offers an extra service compared to IaaS providers.

7.1.5 SLAs

First, we define three SLA classes: high, medium, and low. We randomly distribute the
SLA classes among jobs in workloads as follows. We set 10% of jobs with a high SLA
class, 70% of jobs with a medium SLA class and 20% of jobs with a low SLA class.
Furthermore, we defined a different deadline margin, price factor, and α value in the
linear and bounded linear revenue functions for each SLA class.

In the bounded linear revenue function, we compute a lower revenue bound for each
application according to its SLA class and initial price. Specifically, we define a lower
revenue percentage compared to the initial price of applications for each SLA class,
based on which we deduce the minimum revenue bound for each application. The
value of the maximum penalty of each application is then calculated as the application
initial price minus the value of the application lower revenue bound.

In the step revenue function, we defined three penalty levels corresponding to three
delay levels. The delay levels are computed for each application as a percentage of
the agreed deadline and are common for all applications and all SLA classes. The first
defined level is included between zero and 20% (0 < level 1 6 20%). The second level is
included between 20% and 50% (20% < level 2 6 50%). Finally, the third level is greater
than 50% (50% < level 3). For each SLA class and delay level we define a different
penalty where penalties are calculated as a percentage of the application initial price.

All the defined values for each SLA class are shown in Table 7.1.

Table 7.1: Configuration parameters of SLA classes.
High Medium Low

Deadline margin 1 2 3
Price factor 3 2 1
Linear SLA: α 2 5 20
Bounded linear SLA: 10% 20% 30%
min revenue percentage
Step SLA: 15% 5% 0%
L1 delay percentage
Step SLA: 30% 15% 5%
L2 delay percentage
Step SLA: 50% 25% 10%
L3 delay percentage

7.1.6 Grid’5000 testbed

Grid’5000 [40] is a testbed supporting experiment-driven research in large scale parallel
and distributed computing. It provides 5000 cores geographically distributed on 10 sites
in France (Bordeaux, Grenoble, Lille, Luxembourg, Lyon, Nancy, Reims, Rennes, Sophia-
Antipolis, Toulouse) plus one site abroad in Porto Alegre, Brazil. All sites in France are
connected through a 10 Gb/s backbone.

100

Chapter 7. Evaluation

We carried out our simulations and experiments on the Grid’5000 testbed. Accord-
ing to our requirements and availability of resources, we have used resources from three
clusters of the Rennes site (paradent, paradent, and parapluie) and two clusters of the
Nancy site (griffon and graphene). The paradent cluster consists of 64 Carri System CS-
5393B nodes supplied with 2 Intel Xeon L5420 processors (each with 2 cores at 2.5GHz),
24 GB of memory, and Gigabit Ethernet network interfaces. The parapide cluster con-
sists of 25 SUN FIRE X2270 nodes supplied with 2 Intel Xeon X5570 processors (each
with 2 cores at 2.93 GHz), 24 GB of memory, and Gigabit Ethernet network interfaces.
The parapluie cluster consists of 40 HP Proliant DL165 G7 nodes supplied with 2 AMD
Opteron(tm) 6164 HE processors (each with 6 cores at 1.7 GHz), 48 GB of memory, and
Gigabit Ethernet network interfaces. The griffon cluster consists of 92 Carri System CS-
5393B nodes supplied with 2 Intel Xeon L5420 processors (each with 2 cores at 2.5GHz),
16 GB of memory, and Gigabit Ethernet network interfaces. The graphene cluster consists
of 144 Carri System CS-5393B nodes supplied with 1Intel Xeon X3440 processors (with
4 cores at 2.53 GHz), 16 GB of memory, and Gigabit Ethernet network interfaces.

7.1.7 Evaluation Metrics

In this section we describe a set of evaluation metrics used to show to which extent (1)
the PaaS provider profit is optimized and (2) the deadlines of computational applications
are violated.

• Profit. The profit of a workload is calculated as the sum of profits of all the submit-
ted jobs from that workload. The profit of one job is calculated as the job’s revenue
minus the job’s cost.

• VMs usage proportions. The VMs used for hosting each application are obtained
either from the private or public IaaS resources (public VMs). The private resources
may be obtained either (1) from available VMs on the same VC where the appli-
cation is hosted (local VMs), (2) from available VMs on a VC different than the
one hosting the application (VC VMs), (3) from running applications, from any VC
(donating VMs), or (4) by waiting the execution end of running applications, from
any VC (waiting VMs). The amount of VMs used from each source is calculated as
a percentage compared to the total number of VMs used in the workloads.

• Completion time. The completion time of a workload is the elapsed time between
the arrival of the first job in the workload and the completion of the final job in
the workload (not necessarily the last submitted one). The goal of this metric is to
show the overhead of the optimization policies.

• Deadline violations. The deadline violations are presented in two ways. The first
way consists in presenting the ratio of the delayed applications in the workload
by counting the number of applications missing their deadlines. The second way
consists in presenting the average delay percentage of the delayed applications by
computing the delay percentage of each delayed application.

101

7.2. Simulations

7.2 Simulations

In this section we evaluate our policies through a series of simulations. The objective of
these simulations is to show the behavior of the policies in mapping the applications on
the resources for optimizing the provider profit. The interest of performing simulations
in our context is the limited amount of needed resources, in contrast to real experiments.
In the following we describe the simulations environment setup, then we present and
analyze the results.

7.2.1 Environment Setup

To perform the simulations we used the implemented Meryn prototype with the follow-
ing modifications.

1. No VC is really created. Instead, we create a different folder for each VC containing
the corresponding Cluster Manager component, the applications information as
well as their corresponding Application Controller components.

2. We removed the interaction of the Resource Manager with Snooze. Thus, instead
of really creating and removing VMs we simply modify the values of the number
of used and available VMs of the VCs in the corresponding configuration files.

3. The submitted jobs are treated as follows. First we find VMs for hosting them
and switch the VMs states from available to busy. Then, instead of really running
the applications we create a process that sleeps for the entire application runtime.
Finally, when the sleep process ends we switch the state of VMs from busy to
available. We simulate the possibility that applications’ execution time is different
from their predicted runtime by adjusting the sleep time

4. We run all Meryn components (Client Manager, Resource Manager, Cluster Man-
agers and Application Controllers) in only one physical machine.

Using this prototype, we measured the submission time of an application with differ-
ent resource availability scenarios and different VMs requirements (from 1 to 100 VMs).
We define the submission time as the required time from the submission of an applica-
tion in the PaaS system to the time the application really starts running. The application
submission time varied from one second to 13 seconds. Thus, for homogeneity reasons
and to leave a margin, we set the processing time of all the submitted applications to 15
seconds. Note that the difference between the submission time and the processing time
of an application is that the processing time should be the same whatever is the source
of the used VMs, because in this thesis we consider that the deadline proposed to a spe-
cific application requiring a specific number of VMs and a specific SLA class is always
the same. We also measured the required time for an application to lend one or more
VMs and to get them back (without counting the runtime of the application borrowing
the VMs). This loan duration varied from 5 seconds to 16 seconds, depending on the
number of the lent VMs (measured with 1 to 50 VMs). Therefore, we left a margin and
set this parameter to 20 seconds.

We carried out our simulations on the Grid’5000 testbed using nodes from the pa-
radent and the parapide clusters of the Rennes site.

102

Chapter 7. Evaluation

7.2.2 Results

We evaluate the optimization policies, opt1 and opt2, with the three defined revenue
functions: opt1 with linear revenue function (Lopt1), opt2 with linear revenue function
(Lopt2), opt1 with bounded linear revenue function (Bopt1), opt2 with bounded linear
revenue function (Bopt2), opt1 with step revenue function (Sopt1), and opt2 with step
revenue function (Sopt2). We also evaluate the basic and advanced policies, without
specifying any revenue function because in these policies we do not intentionally im-
pact applications. Thus, in the simulations there is practically practically no deadline
violation. We performed three simulations using each policy. In each simulation we
submit a different workload instance. In the following we compare the obtained results
from the eight polices according to the aforementioned evaluation metrics.

Each simulation presented here was performed five times and the results are pre-
sented as means (± standard deviations in the bars).

7.2.2.1 Profit

Figure 7.2 shows the generated profit in the three workloads using the basic, advanced
and Sopt2 policies. We show only the Sopt2 optimization policy in the figure for visibil-
ity reasons because it is the one that generates the best profit for the provider in three
workloads, from 2.64% to 4.98% more profit than the advanced policy. The basic policy
generates the worst provider profit. Then, the advanced policy generates from 1.91% to
6.32% more profit than the basic policy. The provider profit generated using the other
optimization policies is between the one generated using the advanced policy and the
one generated using the Sopt2 policy, as seen in Tables 7.2 and 7.3. In Table 7.2 we show
the rate of profit gains obtained with all the polices compared to the basic one and in
Table 7.3 we show the rate of profit gains obtained with all the optimization policies
compared to the advanced one. The optimization rates differ from one workload to an-
other one. The general observation is that the opt2 policies generate a little more profit
than the opt1 policies using the same revenue function, from 0.06 % to 0.77%. More-
over, the optimization policies using a bounded linear revenue function generate more
profit than the same policies using the linear revenue function, up to 1.02% in opt1 using
workload1; and the optimization policies using a step revenue function generate more
profit than the same policies using the bounded linear revenue function, up to 1.59% in
opt2 using workload1. These differences between policies in the generated profit vary
inversely with the amount of the used public cloud resources, as seen in Figure 7.3 and
described in the next subsection.

7.2.2.2 VMs Usage Proportions

Figure 7.3 shows the used VMs proportions for each workload and policy. Each pro-
portion in the figure represents a percentage of the used VMs compared with the total
VMs used. Each of the total used VMs and the proportions are calculated as the number
of VMs multiplied by the VMs usage duration. We clearly see in the figure that the
policies using the less public cloud VMs in all workloads are ordered as follows: Sopt2,
Sopt1, Bopt2, Bopt1, Lopt2, Lopt1, then the advanced policy. The basic policy is the one
which uses the more public cloud VMs. The Sopt2 policy uses up to 82.61% less public

103

7.2. Simulations

Workload 1 Workload 2 Workload 3

0

10

20

30

40

50

60

70

80

B
as

ic

B
as

ic

B
as

ic

A
dv

ce
d

A
dv

ce
d

A
dv

ce
d

S
op

t2

S
op

t2

S
op

t2

W
o

rk
lo

a
d

 P
ro

fi
t

[$
]

Figure 7.2: Workload profit comparison. Profit shown is the sum of profits of all jobs in
the workload. (Simulations)

Table 7.2: Profit Rates of the advanced and the optimization policies compared to the
basic policy. (Simulations)

Workload 1 Workload 2 Workload 3
Advanced 6.29 % 1.91 % 6.32 %
Linear Opt 1 8.77 % 3.87 % 8.37 %
Linear Opt 2 9.54 % 4.37 % 8.44 %
Bounded Opt 1 9.79 % 4.68 % 8.57 %
Bounded Opt 2 10 % 4.77 % 8.64 %
Step Opt 1 11.06 % 4.95 % 9.08 %
Step Opt 2 11.59 % 5.14 % 9.14 %

cloud resources compared to the basic policy (find more details in Table 7.4). This usage
scheme of public cloud VMs is directly reflected in the overall provider profit.

We notice that in the optimization policies the donating VMs are more used than
the waiting VMs. The selection of one option, donating or waiting, depends on the loan
duration, the runtime and SLA class of the new application and the remaining execution
time of the running applications. In our evaluation the order and arrival time of the
applications in the workloads as well as their corresponding SLA classes are random.
However, the configured loan duration in these simulations (20 seconds) is relatively
smaller than the average applications runtime (around 350 seconds). Thus, often the
donating bid is cheaper than the waiting bid.

104

Chapter 7. Evaluation

Table 7.3: Profit Rates of the optimization policies compared to the advanced policy.
(Simulations)

Workload 1 Workload 2 Workload 3
Linear Opt 1 2.33 % 1.92 % 1.92 %
Linear Opt 2 3.06 % 2.41 % 1.99 %
Bounded Opt 1 3.29 % 2.71 % 2.11 %
Bounded Opt 2 3.48 % 2.80 % 2.17 %
Step Opt 1 4.48 % 2.98 % 2.59 %
Step Opt 2 4.98 % 3.17 % 2.64 %

0

10

20

30

40

50

60

70

80

90

100

V
M

s
 U

s
a
g
e
 P

ro
p
o
rt

io
n

Local

VC

Donating

Waiting

Public

a b c d e f g h
Workload 1

a b c d e f g h
Workload 2

a b c d e f g h
Workload 3

a = Basic b = Advanced c = Lopt1 d = Lopt2 e = Bopt1 f = Bopt2 g = Sopt1 h = Sopt2

Figure 7.3: VMs usage proportion for each workload and policy, calculated as the num-
ber of the used VMs multiplied by the usage duration. (Simulations)

7.2.2.3 Completion Time

Figure 7.4 shows the completion time of the three workloads. We see that the workload
completion time in the basic and advanced policies is almost the same in all the work-
loads. However, the workload completion time in the optimization policies is slightly
higher, especially in workload 1 (up to 5.43% with the Sopt2 policy) and workload 2
(up to 2.13% with the Lopt1 policy). This overhead in workloads completion time is
mainly due to the incurred delay of the impacted applications and the required time for
calculating the bids.

Indeed, the required time for calculating the bids varies according to the number
of requested VMs as well as the number of running applications and their used VMs.
In our simulations the bid calculation time varied from 6 seconds to 20 seconds with
outliers values up to 345 seconds. The median bid calculation time is 7 seconds which
corresponds to the most frequent case.

105

7.2. Simulations

Table 7.4: Percentage of the used public cloud VMs. (Simulations)

workload 1 workload 2 workload 3
Basic 45.13 % 75.38 % 72.58 %
Advanced 20.46 % 69.62 % 55.68 %
Linear Opt 1 9.13 % 61.44 % 48.73 %
Linear Opt 2 9.07 % 60.46 % 48.37 %
Bounded Opt 1 8.98 % 59.68 % 48.16 %
Bounded Opt 2 8.51 % 59.51 % 47.95 %
Step Opt 1 8.06 % 57.87 % 47.14 %
Step Opt 2 7.85 % 57.11 % 47 %

7.2.2.4 Deadline Violations and Impact

As expected, in these simulations the deadlines of all applications in the three workloads
were satisfied with the basic and the advanced policies. With the optimization policies,
there are some applications that exceeded their deadlines in each workload, in order to
improve the provider profit. Nevertheless in all the workloads the ratio of the delayed
applications and the average delay percentage of delayed applications did not go beyond
their respective defined thresholds. As it can be observed in Table 7.5, the ratio of the
impacted applications is between 3.5% and 7.75% in the opt1 policy and between 2% and
7% in the opt2 policy. The average delay of the delayed applications is between 35.33%
and 47% in opt1 policy and between 35.6% and 54.17% in the opt2 policy. We notice
that both of the ratio of impacted applications as well as the average delay of delayed
applications do not reach the respective defined thresholds. This is because impacting
many applications with a high delay while considering the payment of penalties is not
beneficial for optimizing the provider profit. We also notice that there are more impacts
with the optimization policies using the step revenue function. This is because the
penalty calculation in the step revenue function is more advantageous for the provider.

Table 7.5: Percentage of (A) delayed applications and (B) average delay of delayed ap-
plications with the optimization policy. (Simulations)

workload 1 workload 2 workload 3
A B A B A B

Lopt1 4.5 % 35.33 % 3.5 % 45.41 % 7.5 % 36.6 %
Bopt1 5 % 35.9 % 4 % 46.74 % 6 % 36.75 %
Sopt1 5.75 % 36 % 5.5 % 47 % 7.75 % 36.94 %
Lopt2 2 % 38.8 % 2.5 % 54.17 % 4 % 35.6 %
Bopt2 6 % 36 % 4.75 % 48.8 % 7 % 36.87 %
Sopt2 5 % 35.73 % 6.5 % 45 % 6 % 35.66 %

106

Chapter 7. Evaluation

Workload 1 Workload 2 Workload 3

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

5500

B
as

ic

B
as

ic

B
as

ic

A
dv

ce
d

A
dv

ce
d

A
dv

ce
d

Lo
pt

1

Lo
pt

1

Lo
pt

1

Lo
pt

2

Lo
pt

2

Lo
pt

2

B
op

t1

B
op

t1

B
op

t1

B
op

t2

B
op

t2

B
op

t2

S
op

t1

S
op

t1

S
op

t1

S
op

t2

S
op

t2

S
op

t2

W
o

rk
lo

a
d

 c
o

m
p

le
ti
o

n
 T

im
e

 [
s
e

c
]

Figure 7.4: Workloads completion time (seconds), from the submission of the first job to
the completion of the final job. (Simulations)

7.2.2.5 Conclusion

In this section we evaluated our optimization policies using different revenue functions
through a set of simulations and compared them to the basic and the advanced policies.
Our results show that the optimization policies generates more profit for the provider
than the basic and the advanced policies with a small overhead on the workloads com-
pletion time. The comparison between to the instances of the optimization policies, opt1
and opt2, shows that the possibility to impact more applications and with more delay
is not highly exploited because of the corresponding payment of penalties. Finally, the
comparison between the optimization policies using different revenue functions shows
that when the penalty calculation is more advantageous for the provider, the profit is
greater and the applications are more impacted.

7.3 Experiments

In this section we evaluate our profit optimization policies through a series of experi-
ments. The experiments’ goal is to see the behavior of our policies in a real PaaS environ-
ment. In the following we present some measurements and describe the experimental
environment setup, then we describe and analyze the results.

7.3.1 Measurements

In this section we measure the time for creating and configuring private and public VMs.
Then, we measure the time for processing the submission of a batch and MapReduce
applications on (1) available private resources, (2) private resources transferred from
another VC, and (3) public cloud resources. The objective of these measurements is to
configure our experimental environment.

107

7.3. Experiments

 1 2 5 10 20
0

50

100

150

200

250

300

350

VMs

T
im

e
 [
s
e
c
]

(a) Private VMs

 1 2 5 10 20
0

50

100

150

200

250

300

350

VMs

T
im

e
 [
s
e
c
]

(b) Public VMs

Figure 7.5: Creation and configuration of OGE VMs

To perform these measurements, we deployed a private instance of Snooze to host
Meryn on 10 nodes from the paradent and parapluie clusters of the Rennes site, and
deployed a public instance of Snooze on 14 nodes from the griffon and graphene clusters
of the Nancy site.

7.3.1.1 VM(s) Creation and Configuration

Figure 7.5 shows the required time for creating and configuring 1, 2, 5, 10, and 20
private and public VMs of the OGE VC. Figure 7.6 shows the required time for creating
and configuring 1, 2, 5, 10, and 20 private and public VMs of the Hadoop VC. We used
a VM instance model similar to the Amazon EC2 medium instance3, which consists of 2
CPUs and 3.75 GB of memory. With the two frameworks OGE and Hadoop, the required
time for creating public cloud VMs is greater than the required time for creating private
VMs. This is mainly because of the network latency between the two remote sites.

We tried to parallelize most of the operations to create and configure multiple VMs.
However, for consistency reasons, many configuration operations consist in modifying
specific shared configuration files which requires the use of mutual exclusion. Thus, the
required time for creating multiple VMs is approximately linear.

We also measured the required time for removing separately a local and a public
cloud VM from both the OGE and the Hadoop programming frameworks and shutting
the VM down. With both frameworks and with the private and the public VM, this
operation takes around 2 seconds. We didn’t measure the removal of multiple VMs
because the framework’s remove operation requires the name or the IP address of the
specific VM to remove. Thus, if we need to remove multiple VMs we should do it
sequentially.

7.3.1.2 Job Submission

We measure the submission time of batch and MapReduce applications on (1) available
private resources (local VMs), (2) private resources transferred from another VC (VC

3http://aws.amazon.com/ec2/instance-types/ [Online; accessed February 2013]

108

Chapter 7. Evaluation

 1 2 5 10 20
0

50

100

150

200

250

300

350

VMs

T
im

e
 [
s
e
c
]

(a) Private VMs

 1 2 5 10 20
0

50

100

150

200

250

300

350

VMs

T
im

e
 [
s
e
c
]

(b) Public VMs

Figure 7.6: Creation and configuration of Hadoop VMs

VMs), and (3) public cloud resources (public VMs). We define the submission time as the
required time from the submission of an application in the PaaS system to the time the
application really starts running.

Figure 7.7 shows the submission time of batch applications requiring 1, 2, 5, 10
and 20 VMs, on local VMs (Figure 7.7(a)), VC VMs (Figure 7.7(b)) and public VMs (Fig-
ure 7.7(c)). Figure 7.8 shows the submission time of MapReduce applications requiring
1, 2, 5, 10 and 20 VMs, on local VMs (Figure 7.8(a)), VC VMs (Figure 7.8(b)) and public
VMs (Figure 7.8(c)).

Our first observation is that with both types of application and the three sources of
VMs (local, VC and public) the applications submission time increases with the increase
of the number of VMs required by the applications. Our second observation is that the
applications submission time varies according to the source of VMs and the greatest
application submission time values are obtained with the use of public VMs.

7.3.2 Environment Setup

Our first setup concerns the batch applications. As it is difficult to find real batch ap-
plications matching the applications properties described in the used batch workload
model, we implemented a simple sleep MPI application taking as input a number of
processes and a sleep duration.

Our second setup concerns the definition of a function for computing applications
processing time which is used to compute the application deadline, as seen in Sec-
tion 5.3. The difference between the submission time and the processing time of an
application is that the processing time should be the same whatever is the source of
the used VMs, because in this thesis we consider that the deadline proposed to a spe-
cific application requiring a specific number of VMs and a specific SLA class is always
the same. Thus, for all applications we calculate the processing time according to the
submission time values obtained with the source of VMs requiring the maximum time,
namely with the public VMs.

The average application submission time on public VMs of batch and MapReduce
applications requiring from 1 to 20 VMs is shown in Table 7.6. To define a function

109

7.3. Experiments

 1 2 5 10 20
0

5

10

15

VMs

T
im

e
 [

s
e

c
]

(a) Local VMs

 1 2 5 10 20
0

50

100

150

200

250

300

VMs

T
im

e
 [

s
e

c
]

(b) VC VMs

 1 2 5 10 20
0

50

100

150

200

250

300

350

VMs

T
im

e
 [

s
e

c
]

(c) Public VMs

Figure 7.7: Submission time of batch applications on (a) local VMs, (b) VC VMs, and (c)
public VMs

 1 2 5 10 20
0

5

10

15

20

25

30

35

40

VMs

T
im

e
 [

s
e

c
]

(a) Local VMs

 1 2 5 10 20
0

50

100

150

200

250

300

VMs

T
im

e
 [

s
e

c
]

(b) VC VMs

 1 2 5 10 20
0

50

100

150

200

250

300

350

VMs

T
im

e
 [

s
e

c
]

(c) Public VMs

Figure 7.8: Submission time of MapReduce applications on (a) local VMs, (b) VC VMs,
and (c) public VMs

110

Chapter 7. Evaluation

for calculating the applications processing time we make use of these values and the
polyfit function of the NumPy Python library [46]. The polyfit function gets a sample
of points (x: number of VMs, y: submission time) and returns a vector of coefficient
for the polynomial function. Thus, we define a processing time function for batch and
MapReduce applications as seen in Equations 7.1, where AR is the number of resources
required by the application.

Batch : Aprocessing = −0.4877× (AR)
2 + 25.34× AR + 8.482 (7.1a)

MapReduce : Aprocessing = −0.5462× (AR)
2 + 27.72× AR + 13.83 (7.1b)

Our final setup concerns the definition of a function for computing the VM loan
duration. This duration depends if the loan is between applications from the same VC
or between applications from different VCs.

In the first scenario the VM loan duration includes (1) the time for suspending/shrink-
ing the source application, (2) the time for cleaning up the VM(s), (3) the submission time
of the new application, (4) the time for cleaning up the VM(s) after the end of the new
application (e.g., removing the new application files), and (5) the time for resuming/ex-
tending the source application. We measure the required time for each step for both
batch and MapReduce applications, as seen in Table 7.7. The time for suspending a batch
application is around 2 seconds and the time for shrinking or suspending a MapReduce
application is around 1 second. The time for cleaning up an OGE VM is null (because
of our simple sleep MPI applications).The time for cleaning up a Hadoop TaskTracker
VM is around 1 second (for stopping the corresponding daemons and reconfiguring the
application sub-cluster). The submission time of the new application on local VMs is
measured in the previous section and the average values are shown in Table 7.8. Based
on these values and using the polyfit function of the NumPy library we define a function
for calculating the submission time of batch and MapReduce applications on local VMs,
see Equations 7.2. The required time for cleaning up the VM(s) after the end of a batch
application is null and after the end of a MapReduce application is around 1 second.
Finally, the time for resuming a batch application follows the same batch local sub-
mission function and the time for extending a MapReduce application also follows the
same MapReduce local submission function where the function depends on the number
of VMs to add to the impacted application Alend_R rather than AR. Therefore, we use
Functions 7.3 to calculate the required time for loaning VMs between applications from
the same VC.

Batch local submission time = −0.007576× (AR)
2 + 0.4025× AR + 9.944 (7.2a)

MapReduce local submission time = −0.0625× (AR)
2 + 2.349× AR + 12.973 (7.2b)

Batch local_VMs_loan = 2 + 2× (−0.007576× (new_AR)
2 + 0.4025× new_AR + 9.944)

(7.3a)

111

7.3. Experiments

MapReduce local_VMs_loan = 3 + (−0.0625× (new_AR)
2 + 2.349× new_AR + 12.973)+

(−0.0625× source_Alend_R)
2 + 2.349× source_Alend_R + 12.973)

(7.3b)

In the second scenario the VM loan duration between applications from different VCs
includes (1) the time for suspending/shrinking the source application (2) the time for
removing the VM(s) from the source VC and creating new VM(s) in the destination VC
and submitting the new application, and (3) removing the VM(s) from the destination
VC after the end of the new application, creating VM(s) in source VC and resuming/ex-
tending the source application. We measure the required time of each step for both
batch and MapReduce applications, as seen in Table 7.9. The first step is similar to the
one in the first scenario. The second and the third steps are similar to processing the
submission of an application on private VMs from a different VC (VC VMs), which was
reported in Section 7.3.1 and is shown in Table 7.10. Based on these values and using
the polyfit function of the NumPy library we define a function for calculating the re-
quired time for submitting batch and MapReduce applications on VC VMs, as seen in
Equations 7.4. Therefore, we use functions 7.5 to calculate the required time for loan-
ing VMs between applications from the different VCs. Note that Function 7.5a is used
by MapReduce applications lending VMs for a new batch application and inversely in
Function 7.5b.

Batch VC submission time = 0.02187× (AR)
2 + 11.8× AR + 20.22 (7.4a)

MapReduce local submission time = −0.0894× (AR)
2 + 14.97× AR + 21.68 (7.4b)

Batch vc_VMs_loan = 1 + (0.02187× (new_AR)
2 + 11.8× new_AR + 20.22)+

(−0.0894× (source_AR)
2 + 14.97× source_AR + 21.68)

(7.5a)

MapReduce vc_VMs_loan = 2 + (−0.0894× (new_AR)
2 + 14.97× new_AR+

21.68) + (0.02187× (source_AR)
2 + 11.8× source_AR + 20.22)

(7.5b)

To carry out these experiments, we deployed a private instance of Snooze to host
Meryn on 20 nodes from the parapluie cluster of the Rennes site, and deployed a public
instance of Snooze on 70 nodes from the griffon cluster of the Nancy site.

7.3.3 Results

Due to the high number of resources required to carry out the experiments, here we
evaluate only the opt2 instance optimization policy and compare it with the advanced
the basic policies. We evaluate three instances of the opt2 policy, each instance uses a
specific revenue function: opt2 with linear revenue function (Lopt2), opt2 with bounded
linear revenue function (Bopt2), and opt2 with step revenue function (Sopt2). We do not
specify a revenue function in the basic and the advanced polices because there would be

112

Chapter 7. Evaluation

Table 7.6: Average applications submission time on public VMs.

1 VM 2 VMs 5 VMs 10 VMs 20 VMs
Batch [sec] 33.4 57.5 117.5 209.6 310
MapReduce [sec] 38.1 67.3 133.5 231.9 341.8

Table 7.7: Required time for processing a local VM(s) loan.

(1) (2) (3) (4) (5)
Batch [sec] 2 null equation 7.2a null equation 7.2a
MapReduce [sec] 1 1 equation 7.2b 1 similar to equation 7.2b

Table 7.8: Average applications submission time on local VMs.

1 VM 2 VMs 5 VMs 10 VMs 20 VMs
Batch [sec] 9.7 10.5 11.6 12.8 14.4
MapReduce [sec] 14 18.2 22.6 29.2 34.6

Table 7.9: Required time for processing a VC VM(s) loan.

(1) (2) (3)
Batch [sec] 2 equation 7.4a equation 7.4b
MapReduce [sec] 1 equation 7.4b equation 7.4a

Table 7.10: Average applications submission time on VC VMs.

1 VM 2 VMs 5 VMs 10 VMs 20 VMs
Batch [sec] 30.2 44.8 79 138.3 261.4
MapReduce [sec] 36 52.1 88.4 159.7 279.5

113

7.3. Experiments

no deadline violation with the used environment setup. We perform three experiments
using each policy. In each experiment we submited a different workload instance. In
the following we compare the obtained results from the six policies according to the
aforementioned evaluation metrics.

Each experiment presented here was performed three times and the results are pre-
sented as means (± standard deviations in the bars).

7.3.3.1 Profit

Figure 7.9 shows the profit generated in the three workloads using each policy. The re-
sults are quite similar to the ones obtained with simulations. The main noticed difference
is that with the experiments all the policies generate less profit than with simulations
For instance in the basic policy we generate 32.74$, 75.15$, and 53.46$ rather than 33.11$,
76.35$, and 54.26$ in respectively workload 1, workload 2 and workload 3. This is be-
cause in a real environment the VMs usage is longer due to the required configurations
for hosting applications, which increases the costs of hosting applications. In Table 7.11
we show the rate of profit gains obtained with all the polices compared to the basic one
and in Table 7.12 we show the rate of profit gains obtained with all the optimization
policies compared to the advanced one. The advanced policy generates from 1.90% to
5.06% more profit than the basic policy and the Sopt2 policy generates from 2.99% to
4.29% more profit than the advanced policy. Similarly to simulations, these differences
vary inversely with the amount of the used public cloud resources, as seen in Figure 7.10
and described in the next subsection.

Workload 1 Workload 2 Workload 3

0

10

20

30

40

50

60

70

80

B
as

ic

B
as

ic

B
as

ic

A
dv

ce
d

A
dv

ce
d

A
dv

ce
d

Lo
pt

2

Lo
pt

2

Lo
pt

2

B
op

t2

B
op

t2

B
op

t2

S
op

t2

S
op

t2

S
op

t2

W
o

rk
lo

a
d

 P
ro

fi
t

[$
]

Figure 7.9: Workload profit comparison. Profit shown is the sum of profits of all jobs in
the workload. (Experiments)

114

Chapter 7. Evaluation

Table 7.11: Profit Rates of the advanced and the optimization policies compared to the
basic policy. (Experiments)

Workload 1 Workload 2 Workload 3
Advanced 4.53 % 1.90 % 5.06 %
Linear Opt 2 7.12 % 4.01 % 7.93 %
Bounded Opt 2 7.38 % 4.20 % 8.24 %
Step Opt 2 9.01 % 4.96 % 9.02 %

Table 7.12: Profit Rates of the optimization policies compared to the advanced policy.
(Experiments)

Workload 1 Workload 2 Workload 3
Linear Opt 2 2.48 % 2.07 % 2.73 %
Bounded Opt 2 2.72 % 2.26 % 3.03 %
Step Opt 2 4.29 % 2.99 % 3.77 %

7.3.3.2 VMs Usage Proportion

Figure 7.10 shows the used VMs proportions for each workload and policy. The opti-
mization policies uses clearly less public cloud VMs than the basic and advanced poli-
cies. For instance, the Sopt2 policy uses up to 80.55% and 57.14% less public VMs than
respectively the basic and the advanced policies. More details are shown in Table 7.13.
Similarly to simulations, the usage scheme of public cloud VMs is directly reflected in
the overall provider profit.

We notice that with the experiments in the optimization policies waiting VMs are
more used than donating VMs. The reason is related to two factors. First, the VM loan
duration is more significant than in the simulations which highly affects the comple-
tion time of the impacted applications with a donating bid as well as their penalties.
Therefore the proposed donating bid is often higher than the waiting bid, and thus it is
not selected. Second, the time for exchanging VMs between VCs is comparable to the
average applications runtime in our workloads. Thus, waiting the end of the execution
of running applications often takes a comparable time and with a more attractive cost.

Table 7.13: Percentage of the used public cloud VMs. (Experiments)

workload 1 workload 2 workload 3
Basic 45.04 % 75.28 % 72.60 %
Advanced 20.44 % 69.59 % 55.78 %
Linear Opt 2 10.12 % 60.59 % 50.05 %
Bounded Opt 2 9.80 % 60.41 % 49.49 %
Step Opt 2 8.76 % 58.63 % 48.07 %

115

7.3. Experiments

0

20

40

60

80

100

V
M

s
 U

s
a
g
e
 P

ro
p
o
rt

io
n

a b c d e
Workload1

a b c d e
Workload 2

a b c d e
Workload 3

Local

VC

Donating

Waiting

Public

a = Basic b = Advanced c = Lopt2 d = Bopt2 e = Sopt2

Figure 7.10: VMs usage proportion for each workload and policy, calculated as the
number of the used VMs multiplied by the usage duration. (Experiments)

7.3.3.3 Completion Time

Figure 7.11 shows the completion time of the three workloads. Similarly to the simula-
tions, the completion time of the workloads with the basic and the advanced policies are
almost the same. However, workload completion time with the optimization policies is
slightly higher, especially in workload 1 (up to 4.17% with the Sopt2 policy) and work-
load 2 (up to 6.63% with the Sopt2 policy). The workloads completion time overhead is
due to the incurred delay of the impacted applications, the required time for calculating
the bids, and the mechanisms for transferring VMs between VCs. In these experiments
the bid calculation time varied from 14 seconds to 50 seconds with outliers values up to
876 seconds. The median bid calculation time is 23 seconds which corresponds to the
most frequent case.

7.3.3.4 Deadline Violations

As expected, in the these experiments the deadlines of all applications in the three work-
loads were satisfied with the basic and the advanced policies. With the optimization
policies some applications exceeded their deadlines. However, the ratio of delayed ap-
plications and the average delay percentage of delayed applications do not go beyond
their respective thresholds. As it can be observed in Table 7.14, the ratio of the impacted
applications is between 4% and 8.75% and the average delay of the delayed applications
is between 39% and 65.52%. We notice that in the experiments the impact of applica-
tions is higher than the one in the simulations, mainly because of the overhead of the
mechanisms for handling VMs.

116

Chapter 7. Evaluation

Workload 1 Workload 2 Workload 3

0

1000

2000

3000

4000

5000

B
as

ic

B
as

ic

B
as

ic

A
dv

ce
d

A
dv

ce
d

A
dv

ce
d

Lo
pt

2

Lo
pt

2

Lo
pt

2

B
op

t2

B
op

t2

B
op

t2

S
op

t2

S
op

t2

S
op

t2

W
o

rk
lo

a
d

 c
o

m
p

le
ti
o

n
 T

im
e

 [
s
e

c
]

Figure 7.11: Workloads completion time (seconds), from the submission of the first job
to the completion of the final job. (Experiments)

Table 7.14: Percentage of (A) delayed applications and (B) average delay of delayed
applications with the optimization policy. (Experiments)

workload 1 workload 2 workload 3
A B A B A B

Lopt2 4 % 46.5 % 4 % 59.07 % 4.5 % 40.65 %
Bopt2 6.5 % 39 % 6.75 % 49.23 % 8 % 46.93 %
Sopt2 7 % 55.63 % 7.5 % 49 % 8.75 % 65.51 %

7.3.3.5 Conclusion

In this section we evaluated the opt2 optimization policy using different revenue func-
tions through a set of experiments and compared it to the basic and the advanced poli-
cies. Our results show that the optimization policy generates more profit for the provider
than the basic and the advanced policies. As a cost of this profit increase, the workloads
completion time with the optimization policy is slightly higher and the deadline of some
applications is violated. The results also show that all the policies generate less profit in
the experiments than in the simulations.

7.4 Summary

In this chapter we presented the evaluation of our contributions through a series of sim-
ulations and experiments on the Grid’5000 testbed. We have used different workloads,
SLA classes and revenue functions. We compared the efficiency of the optimization,
basic and advanced policies in optimizing the provider profit and satisfying SLAs. The

117

7.4. Summary

results show that the optimization policies are able to improve the provider profit and
significantly reduce the number of the used public cloud VMs. Moreover, the number of
applications undergoing an impact in their QoS properties does not exceed the prede-
fined thresholds. Furthermore, the results of the simulations and the experiments agree
with each other, which validates the evaluation.

118

Chapter 8

Conclusions and Perspectives

Contents
8.1 Contributions . 118

8.2 Perspectives . 119

This chapter summarizes the contributions of this PhD thesis and presents some fu-
ture research directions.

119

8.1. Contributions

8.1 Contributions

Cloud computing is an emerging paradigm revolutionizing the usage and marketing
of Information Technology (IT). Nowadays, the socio-economic impact of cloud com-
puting and particularly PaaS services becomes critical since the number of PaaS users
and providers is growing. PaaS providers want to generate the maximum profit from
the services they provide. This requires them to face a number of challenges such as
efficiently managing the underlying resources and satisfying the SLAs of customer ap-
plications. This thesis addresses these challenges and focuses on optimizing the PaaS
provider profit while considering the payment of penalties if the QoS level promised to
the hosted applications is violated. The contributions of this thesis are summarized in
the following.

Profit Optimization Model. In order to address the challenges related to optimizing
the provider profit, this thesis considered a cloud-bursting PaaS environment and pro-
posed a profit optimization policy that tries to find the cheapest resources for hosting
applications. After each request submission, our optimization policy estimates the cost
of hosting the new application using the private and the public resources and chooses
the most profit-efficient option. During peak periods and unavailability of private re-
sources, the policy tries to optimize the use of private resources with the consideration
of two more options. The first option consists in taking resources from running appli-
cations while considering the payment of penalties if their promised QoS is impacted.
The second option consists in evaluating the possible penalty of the new application due
to waiting for private resources to become available. This policy cooperates with a set
of application type-specific heuristics that provide the required information about the
hosted applications.

Application of the Optimization Model. To show the applicability of our profit op-
timization model to a particular class of applications, we investigated rigid and elastic
computational applications. We defined a deadline-based revenue function and pre-
sented two heuristics that collaborate with the profit optimization policy for maximizing
the PaaS provider profit. The first heuristic provides a waiting bid, the smallest possible
penalty of the new application due to waiting for private resources to become available.
The second heuristic provides a donating bid, the smallest possible penalty of running
applications due to providing some of their resources during their execution. We de-
fined three possible forms that may be used by computational applications for providing
resources during their execution. The first form consists in suspending the applications
during the execution of the new application and resuming them once the new appli-
cation finishes its execution and gives back the resources. The second form consists
in lending a part of their resources to the new application and continuing to run with
the remaining resources until the new application finishes and gives back the borrowed
resources. The third form consists in giving a part of their resources to the new applica-
tion and continuing their execution only with the remaining resources. The second and
third forms may be used only by elastic applications. Each form leads applications to a
different penalty. Thus, the heuristic selects the form of impact leading to the smallest
possible penalty.

120

Chapter 8. Conclusions and Perspectives

Meryn: an Open Cloud-Bursting PaaS. We designed and implemented a PaaS architec-
ture, called Meryn, able to incorporate the profit optimization policy as well as different
application type-specific heuristics. The Meryn architecture relies on virtualized private
resources, using an IaaS manager solution, and supports bursting into public clouds
when it is necessary. To support extensibility regarding application types, Meryn makes
use of independent virtual clusters and manages each virtual cluster using an existing
programming framework (e.g., OGE, Hadoop). Each programming framework is dedi-
cated to a specific application type (e.g., batch, MapReduce). The private resources are
dynamically shared between the virtual clusters according to specific policies and objec-
tives, namely in our context according to the profit optimization policy. An application
type-specific manager is hosted on each virtual cluster in order to provide and manage
application SLAs.

To validate our contributions, we implemented a prototype that supports batch and
MapReduce applications and used workload models based on real world traces. We
performed a set of simulations and experiments on the Grid’5000 testbed. The results
show that the proposed profit optimization model enables the provider to generates
up to 11.59% and 9.02% more profit for the provider in respectively the simulations
and experiments compared to a basic approach. As a cost of such an optimization, the
completion time of workloads using our optimization model is slightly higher compared
to the basic approach and the expected QoS level of some applications is impacted.

8.2 Perspectives

The work presented in this thesis, as any research work, is far from being complete or
finished. Thus, several research directions are open for future work. Some of them aim
at improving the proposed contributions, others at exploring new research areas. In the
following we present the main identified perspectives.

Meryn Software. The Meryn software prototype was tested only on the Grid’5000
testbed. To make it available and useful for potential external users two improvement
directions are possible. First, the Client Manager requires two additional features to be
usable in a productive environment. The first feature consists in storing and managing
user identities and their authentication credentials. The second feature consists in mak-
ing the Client Manager more user-friendly through the implementation of a graphical
web submission interface.

Second, the Meryn prototype should be tested on top of further IaaS managers, such
as Open Stack, Eucalyptus and Nimbus in order to make it available to a larger com-
munity. For that reason, the Resource Manager needs to interact with IaaS managers
through standard interfaces, such as the EC2 interface.

Optimization Model. The proposed profit optimization model makes three simplifi-
cations concerning PaaS environments. First, it considers that the PaaS system is built
on top of homogenous private and public resources. However, both private and pub-
lic resources may be heterogeneous, for example in the form of multiple VM instance
types like in Amazon. Thus, the model should be extended to take into account the
possibility of having resources with different capacities, which is more realistic. As a

121

8.2. Perspectives

result, the Cluster Manager component requires changes particularly for predicting the
performance of applications and estimating their possible penalties for providing the
donating and waiting bids.

Second, the proposed profit optimization model considers a per second resource
billing model. However, the majority of current commercial providers propose a per
hour resource pricing. Considering such pricing in our model leads to revise the price
and cost functions for hosting applications. Moreover, the model should be extended to
take into account the possibility to use idle public resources, which are already rented.

Finally, this thesis did not investigate the optimization of providers’ profits during
idle periods where the private resources are underutilized. The current behavior of our
system in such a situation is to keep the resources idle. However, other actions are pos-
sible such as shutting down the idle resources to reduce their energy consumption and
possibly their cost (as it was investigated in [122]), or selling the idle resources in the
form of IaaS services (as it was investigated in [141]). Thus to complete our profit op-
timization model, a future direction would be to investigate the impact of such actions
on the PaaS provider profit.

Evaluation. We have identified two possible future evaluations. The first evaluation
consists in integrating an existing solution that predicts the runtime of computational
applications such as the work presented in [133] and [73] (see Chapter 5). Then, we
could measure the accuracy of predicting the runtime of real applications, and evaluate
the impact of this accuracy on the PaaS provider profit. The second evaluation consists
in measuring the effectiveness of the proposed policy in optimizing the profit with the
use of several real public clouds with different characteristics and pricing models.

Application Types. The PaaS system and profit optimization approach proposed in this
thesis are designed to be open and easily extensible to support new application types.
In this thesis, we investigated rigid and elastic computational applications. A future
direction would be to investigate further application types and associated programing
frameworks and QoS properties. For instance to add support for workflow applications,
it is possible to use existing workflow management systems such as Xerox [52], Apache
ODE [51], or Activiti [50] for managing the workflow virtual cluster. In addition, the
application type-specific part of our Cluster Manager component may implement the
QoS specification and prediction of workflow applications proposed in research work,
such as [71] and [96].

Energy Consumption. The energy consumption in cloud computing environments is
growing and has become a major concern in the cloud computing community. A possi-
ble future direction of our work in this context is evaluating the impact of energy-saving
actions on the performance and availability of virtual machines used by the Meryn sys-
tem. Energy-saving actions, such as dynamically consolidating private VMs in the least
number of physical machines and transitioning the idle physical machines into a lower
power-state, may be provided by a VM manager such as Snooze [85]. Furthermore, it
would be interesting to study PaaS management policies for minimizing the energy con-
sumption of the hosted applications while meeting their SLAs, as already proposed for
IaaS cloud environments [92]. Then, it would be possible to measure how the optimiza-
tion of the energy consumption of applications impacts their costs.

122

Bibliography

[1] Microsoft Windows Azure Infrastructure. http://www.windowsazure.com/en-us/
solutions/infrastructure/, 2013. [Online; accessed 30-November-2013]. 26, 35,
37, 39, 58, 137

[2] Rackspace: The Open Cloud Company. http://www.rackspace.com/, 2013. [On-
line; accessed 30-November-2013]. 26, 37

[3] Flexiant. http://www.flexiant.com/, 2013. [Online; accessed 30-November-2013].
26

[4] The Apache Software Foundation. CloudStack: Open Source Cloud Computing.
http://cloudstack.apache.org/, 2013. [Online; accessed 30-November-2013]. 26,
37

[5] OpenStack. http://www.openstack.org/, 2013. [Online; accessed 30-November-
2013]. 26, 37, 88

[6] Microsoft Private Cloud. http://www.microsoft.com/en-us/server-cloud/
solutions/virtualization-private-cloud.aspx#fbid=vbMp209OQ4l, 2013. [On-
line; accessed 30-November-2013]. 26

[7] Red Hat CloudForms. http://www.redhat.com/products/cloud-computing/
cloudforms/, 2013. [Online; accessed 30-November-2013]. 26

[8] IBM SmartCloud Orchestrator. http://www-03.ibm.com/software/products/en/
smartcloud-orchestrator/, 2013. [Online; accessed 30-November-2013]. 26

[9] HP CloudSystem. http://www8.hp.com/us/en/business-solutions/solution.
html?compURI=1079455#tab=TAB2, 2013. [Online; accessed 30-November-2013]. 26,
37

[10] Amazon AWS Elastic Beanstalk. http://aws.amazon.com/elasticbeanstalk/,
2013. [Online; accessed 16-Decembre-2013]. 14, 27, 36, 39, 137

[11] Amazon AWS Elastic MapReduce. http://aws.amazon.com/elasticmapreduce/,
2013. [Online; accessed 16-Decembre-2013]. 27, 36, 39, 137

[12] Hitachi Data Systems’ Virtual Storage Platform (VSP). http://www.hds.com/
products/storage-systems/hitachi-virtual-storage-platform.html, 2013.
[Online; accessed 30-November-2013]. 26

123

http://www.windowsazure.com/en-us/solutions/infrastructure/
http://www.windowsazure.com/en-us/solutions/infrastructure/
http://www.rackspace.com/
http://www.flexiant.com/
http://cloudstack.apache.org/
http://www.openstack.org/
http://www.microsoft.com/en-us/server-cloud/solutions/virtualization-private-cloud.aspx#fbid=vbMp209OQ4l
http://www.microsoft.com/en-us/server-cloud/solutions/virtualization-private-cloud.aspx#fbid=vbMp209OQ4l
http://www.redhat.com/products/cloud-computing/cloudforms/
http://www.redhat.com/products/cloud-computing/cloudforms/
http://www-03.ibm.com/software/products/en/smartcloud-orchestrator/
http://www-03.ibm.com/software/products/en/smartcloud-orchestrator/
http://www8.hp.com/us/en/business-solutions/solution.html?compURI=1079455#tab=TAB2
http://www8.hp.com/us/en/business-solutions/solution.html?compURI=1079455#tab=TAB2
http://aws.amazon.com/elasticbeanstalk/
http://aws.amazon.com/elasticmapreduce/
http://www.hds.com/products/storage-systems/hitachi-virtual-storage-platform.html
http://www.hds.com/products/storage-systems/hitachi-virtual-storage-platform.html

BIBLIOGRAPHY

[13] Microsoft Windows Azure Cloud Services. http://www.windowsazure.com/
en-us/services/cloud-services/, 2013. [Online; accessed 16-Decembre-2013].
14, 27

[14] Google App Engine. https://cloud.google.com/products/app-engine/, 2013.
[Online; accessed 16-Decembre-2013]. 27, 35, 39, 58

[15] Heroku. https://www.heroku.com/, 2013. [Online; accessed 16-Decembre-2013].
14, 27, 36, 39, 137

[16] SalesForce Platform (Force.com). http://www.salesforce.com/platform/
overview/, 2013. [Online; accessed 16-Decembre-2013]. 27, 36, 39

[17] Amazon AWS. Cloudbursting - Hybrid Application Hosting. http://www.
appscale.com/, 2014. [Online; accessed 20-January-2014]. 27, 42, 44

[18] Cloudify. http://www.cloudifysource.org/, 2014. [Online; accessed 20-January-
2014]. 27, 42, 44, 58

[19] VMware Cloud Foundry. http://www.cloudfoundry.com/, 2013. [Online; ac-
cessed 17-Decembre-2013]. 27, 41, 44, 58

[20] WSO2 Stratos. http://wso2.com/cloud/stratos/, 2014. [Online; accessed 20-
January-2014]. 27

[21] RightScale. http://www.rightscale.com/, 2013. [Online; accessed 16-Decembre-
2013]. 27, 37, 39, 58

[22] Scalr. http://www.scalr.com/, 2013. [Online; accessed 16-Decembre-2013]. 27

[23] IBM SAN Volume Controller (SVC). http://www-03.ibm.com/systems/storage/
software/virtualization/svc/, 2013. [Online; accessed 30-November-2013]. 26

[24] Dell Cloud Manager. https://www.enstratius.com/, 2013. [Online; accessed 17-
Decembre-2013]. 27

[25] RedHat OpenShift. https://www.openshift.com/, 2013. [Online; accessed 17-
Decembre-2013]. 27, 42, 44, 58

[26] Google Apps. http://www.google.com/intl/en/about/products/, 2013. [Online;
accessed 17-Decembre-2013]. 27

[27] SalesForce CRM. https://www.salesforce.com/crm/, 2013. [Online; accessed 17-
Decembre-2013]. 27

[28] iCloud. https://www.icloud.com/, 2013. [Online; accessed 17-Decembre-2013].
27

[29] High-Performance Computing Cluster (HPCC). http://hpccsystems.com/
Why-HPCC/How-it-works, 2013. [Online; accessed 27-Decembre-2013]. 18

[30] European Grid Infrastructure (EGI). http://www.egi.eu/, 2013. [Online; accessed
27-Decembre-2013]. 19

124

http://www.windowsazure.com/en-us/services/cloud-services/
http://www.windowsazure.com/en-us/services/cloud-services/
https://cloud.google.com/products/app-engine/
https://www.heroku.com/
http://www.salesforce.com/platform/overview/
http://www.salesforce.com/platform/overview/
http://www.appscale.com/
http://www.appscale.com/
http://www.cloudifysource.org/
http://www.cloudfoundry.com/
http://wso2.com/cloud/stratos/
http://www.rightscale.com/
http://www.scalr.com/
http://www-03.ibm.com/systems/storage/software/virtualization/svc/
http://www-03.ibm.com/systems/storage/software/virtualization/svc/
https://www.enstratius.com/
https://www.openshift.com/
http://www.google.com/intl/en/about/products/
https://www.salesforce.com/crm/
https://www.icloud.com/
http://hpccsystems.com/Why-HPCC/How-it-works
http://hpccsystems.com/Why-HPCC/How-it-works
http://www.egi.eu/

BIBLIOGRAPHY

[31] Globus. https://www.globus.org/, 2013. [Online; accessed 28-Decembre-2013].
19

[32] Engine Yard. https://www.engineyard.com/, 2014. [Online; accessed 15-January-
2014]. 37, 39

[33] DataCore SANsymphony. http://www.datacore.com/Software/Products/
SANsymphony-V.aspx, 2013. [Online; accessed 30-November-2013]. 26

[34] CloudBees. http://www.cloudbees.com/platform/, 2014. [Online; accessed 15-
January-2014]. 14, 37, 40, 137

[35] dotCloud. https://www.dotcloud.com/index.html, 2014. [Online; accessed 15-
January-2014]. 14, 38, 40, 137

[36] AppFog. https://www.appfog.com/, 2014. [Online; accessed 15-January-2014]. 38,
40

[37] DATAPIPE. http://www.datapipe.com/, 2014. [Online; accessed 15-January-
2014]. 37

[38] VMware Workstation. http://www.vmware.com/fr/products/workstation/,
2013. [Online; accessed 30-November-2013]. 26

[39] AppScale. http://aws.typepad.com/aws/2008/08/cloudbursting-.html, 2008.
[Online; accessed 05-February-2014]. 49

[40] Grid5000. https://www.grid5000.fr/, 2014. [Online; accessed 20-March-2014].
16, 98, 140, 141

[41] Tsuru. http://www.tsuru.io, 2014. [Online; accessed 20-January-2014]. 43, 44

[42] Paasmaker. http://paasmaker.org/, 2014. [Online; accessed 20-January-2014].
42, 44

[43] VMware NSX. http://www.vmware.com/products/nsx/, 2013. [Online; accessed
30-November-2013]. 26

[44] Ubuntu Juju. https://juju.ubuntu.com/, 2014. [Online; accessed 11-February-
2014]. 43

[45] Docker. http://www.docker.io/, 2014. [Online; accessed 12-February-2014]. 38,
43

[46] NumPy library. http://docs.scipy.org/doc/numpy/reference/index.html,
2014. [Online; accessed 11-April-2014]. 109

[47] CISCO Easy Virtual Network (EVN). http://www.cisco.com/en/US/products/
ps11783/products_ios_protocol_option_home.html, 2013. [Online; accessed 30-
November-2013]. 26

[48] Hive performance benchmarks. https://issues.apache.org/jira/browse/
HIVE-396, 2014. [Online; accessed 01-April-2014]. 97

125

https://www.globus.org/
https://www.engineyard.com/
http://www.datacore.com/Software/Products/SANsymphony-V.aspx
http://www.datacore.com/Software/Products/SANsymphony-V.aspx
http://www.cloudbees.com/platform/
https://www.dotcloud.com/index.html
https://www.appfog.com/
http://www.datapipe.com/
http://www.vmware.com/fr/products/workstation/
http://aws.typepad.com/aws/2008/08/cloudbursting-.html
https://www.grid5000.fr/
http://www.tsuru.io
http://paasmaker.org/
http://www.vmware.com/products/nsx/
https://juju.ubuntu.com/
http://www.docker.io/
http://docs.scipy.org/doc/numpy/reference/index.html
http://www.cisco.com/en/US/products/ps11783/products_ios_protocol_option_home.html
http://www.cisco.com/en/US/products/ps11783/products_ios_protocol_option_home.html
https://issues.apache.org/jira/browse/HIVE-396
https://issues.apache.org/jira/browse/HIVE-396

BIBLIOGRAPHY

[49] Google Compute Engine. https://cloud.google.com/products/
compute-engine, 2013. [Online; accessed 30-November-2013]. 26, 35, 37

[50] Activiti. http://activiti.org/index.html, 2014. [Online; accessed 30-April-
2014]. 120

[51] Apache ODE. http://ode.apache.org/, 2014. [Online; accessed 30-April-2014].
120

[52] Xerox. http://www.xerox.com/, 2014. [Online; accessed 30-April-2014]. 120

[53] Google App Engine Billing. https://developers.google.com/appengine/kb/
billing#time_granularity_instance_pricing, 2014. [Online; accessed 06-May-
2014]. 97

[54] Amazon AWS EC2. http://aws.amazon.com/ec2/, 2013. [Online; accessed 30-
November-2013]. 26, 37

[55] Abdelkader Amar, Raphaël Bolze, Aurélien Bouteiller, Andréea Chis, Yves Caniou,
Eddy Caron, Pushpinder-Kaur Chouhan, Gaël Le Mahec, Holly Dail, Benjamin
Depardon, et al. Diet: New developments and recent results. In Euro-Par 2006:
Parallel Processing, pages 150–170. Springer, 2007. 19

[56] Alain Andrieux, Karl Czajkowski, Asit Dan, Kate Keahey, Heiko Ludwig,
Toshiyuki Nakata, Jim Pruyne, John Rofrano, Steve Tuecke, and Ming Xu. Web
services agreement specification (ws-agreement). In Global Grid Forum, volume 2,
2004. 23

[57] Michael Armbrust, Armando Fox, Rean Griffith, Anthony D. Joseph, Randy H.
Katz, Andrew Konwinski, Gunho Lee, David A. Patterson, Ariel Rabkin, Ion Sto-
ica, and Matei Zaharia. Above the clouds: A berkeley view of cloud computing.
Technical Report UCB/EECS-2009-28, EECS Department, University of California,
Berkeley, Feb 2009. 24, 29

[58] Adnan Ashraf, Benjamin Byholm, and Ivan Porres. Cramp: Cost-efficient resource
allocation for multiple web applications with proactive scaling. 4th IEEE Interna-
tional Conference on Cloud Computing Technology and Science Proceedings, 0:581–586,
2012. 52, 54, 57, 58

[59] David H Bailey, Eric Barszcz, John T Barton, David S Browning, Robert L Carter,
Leonardo Dagum, Rod A Fatoohi, Paul O Frederickson, Thomas A Lasinski, Rob S
Schreiber, et al. The nas parallel benchmarks summary and preliminary results.
In Supercomputing, 1991. Supercomputing’91. Proceedings of the 1991 ACM/IEEE Con-
ference on, pages 158–165. IEEE, 1991. 21

[60] Amnon Barak and Oren La’adan. The mosix multicomputer operating system
for high performance cluster computing. Future Generation Computer Systems,
13(4):361–372, 1998. 19

[61] Paul Barham, Boris Dragovic, Keir Fraser, Steven Hand, Tim Harris, Alex Ho, Rolf
Neugebauer, Ian Pratt, and Andrew Warfield. Xen and the art of virtualization. In
Proceedings of the Nineteenth ACM Symposium on Operating Systems Principles, SOSP
’03, pages 164–177, New York, NY, USA, 2003. ACM. 26

126

https://cloud.google.com/products/compute-engine
https://cloud.google.com/products/compute-engine
http://activiti.org/index.html
http://ode.apache.org/
http://www.xerox.com/
https://developers.google.com/appengine/kb/billing#time_granularity_instance_pricing
https://developers.google.com/appengine/kb/billing#time_granularity_instance_pricing
http://aws.amazon.com/ec2/

BIBLIOGRAPHY

[62] Andy Bavier, Mic Bowman, Brent Chun, David Culler, Scott Karlin, Steve Muir,
Larry Peterson, Timothy Roscoe, Tammo Spalink, and Mike Wawrzoniak. Operat-
ing system support for planetary-scale network services. In Proceedings of the 1st
Conference on Symposium on Networked Systems Design and Implementation - Volume
1, NSDI’04, pages 19–19, Berkeley, CA, USA, 2004. USENIX Association. 19

[63] S. Bharathi, A. Chervenak, E. Deelman, G. Mehta, Mei-Hui Su, and K. Vahi. Char-
acterization of scientific workflows. In Workflows in Support of Large-Scale Science,
2008. WORKS 2008. Third Workshop on, pages 1–10, 2008. 21

[64] Tekin Bicer, David Chiu, and Gagan Agrawal. Time and cost sensitive data-
intensive computing on hybrid clouds. Cluster Computing and the Grid, IEEE In-
ternational Symposium on, pages 636–643, 2012. 14, 52, 54, 57, 138

[65] Raphaël Bolze, Franck Cappello, Eddy Caron, Michel Daydé, Frédéric Desprez,
Emmanuel Jeannot, Yvon Jégou, Stephane Lanteri, Julien Leduc, Noredine Melab,
Guillaume Mornet, Raymond Namyst, Pascale Primet, Benjamin Quetier, Olivier
Richard, El-Ghazali Talbi, and Iréa Touche. Grid’5000: A large scale and highly
reconfigurable experimental grid testbed. Int. J. High Perform. Comput. Appl.,
20(4):481–494, November 2006. 19

[66] M. Boniface, B. Nasser, J. Papay, S.C. Phillips, A. Servin, Xiaoyu Yang, Z. Zlatev,
S.V. Gogouvitis, G. Katsaros, K. Konstanteli, G. Kousiouris, A. Menychtas, and
D. Kyriazis. Platform-as-a-service architecture for real-time quality of service man-
agement in clouds. In Internet and Web Applications and Services (ICIW), 2010 Fifth
International Conference on, pages 155–160, 2010. 45, 48, 58

[67] M. J. Buco, R. N. Chang, L. Z. Luan, C. Ward, J. L. Wolf, and P. S. Yu. Utility com-
puting sla management based upon business objectives. IBM Syst. J., 43(1):159–178,
January 2004. 22

[68] Junwei Cao, Kai Hwang, Keqin Li, and Albert Y. Zomaya. Optimal multiserver
configuration for profit maximization in cloud computing. IEEE Trans. Parallel
Distrib. Syst., 24(6):1087–1096, June 2013. 54, 55, 57, 58

[69] N. Capit, G. Da Costa, Y. Georgiou, G. Huard, C. Martin, G. Mounie, P. Neyron,
and O. Richard. A batch scheduler with high level components. In Proceedings of
the Fifth IEEE International Symposium on Cluster Computing and the Grid (CCGrid’05)
- Volume 2 - Volume 02, CCGRID ’05, pages 776–783, Washington, DC, USA, 2005.
IEEE Computer Society. 18

[70] Jorge Carapinha and Javier Jiménez. Network virtualization: A view from the
bottom. In Proceedings of the 1st ACM Workshop on Virtualized Infrastructure Systems
and Architectures, VISA ’09, pages 73–80, New York, NY, USA, 2009. ACM. 26

[71] Jorge Cardoso, Amit Sheth, and John Miller. Workflow quality of service. In
Enterprise Inter-and Intra-Organizational Integration, pages 303–311. Springer, 2003.
120

[72] Alexandra Carpen-Amarie, Djawida Dib, Anne-Cécile Orgerie, and Guillaume
Pierre. Towards Energy-Aware IaaS-PaaS Co-design. In SMARTGREENS: Inter-
national Conference on Smart Grids and Green IT Systems, colocated with International

127

BIBLIOGRAPHY

Conference on Cloud Computing and Services Science (CLOSER),, Barcelona, Spain,
2014. 135

[73] Laura Carrington, Allan Snavely, and Nicole Wolter. A performance prediction
framework for scientific applications. Future Gener. Comput. Syst., 2006. 74, 120

[74] N. M. Mosharaf Kabir Chowdhury and Raouf Boutaba. Network virtualization:
State of the art and research challenges. Comm. Mag., 47(7):20–26, July 2009. 26

[75] W. Cirne, D. Paranhos, L. Costa, E. Santos-Neto, F. Brasileiro, J. Sauve, F. A B
Silva, C.O. Barros, and C. Silveira. Running bag-of-tasks applications on compu-
tational grids: the mygrid approach. In Parallel Processing, 2003. Proceedings. 2003
International Conference on, pages 407–416, 2003. 21

[76] Stefania Victoria Costache, Nikos Parlavantzas, Christine Morin, and Samuel Ko-
rtas. Merkat: A Market-based SLO-driven Cloud Platform. In 5th IEEE Interna-
tional Conference on Cloud Computing Technology and Science (CloudCom 2013), Bristol,
Royaume-Uni, December 2013. 46, 48, 58

[77] Jeffrey Dean and Sanjay Ghemawat. Mapreduce: Simplified data processing on
large clusters. Commun. ACM, 51(1):107–113, January 2008. 21

[78] Ewa Deelman, Gurmeet Singh, Miron Livny, G. Bruce Berriman, and John Good.
The cost of doing science on the cloud: the montage example. In SC, page 50.
IEEE/ACM, 2008. 29

[79] Ruben Van den Bossche, Kurt Vanmechelen, and Jan Broeckhove. Online cost-
efficient scheduling of deadline-constrained workloads on hybrid clouds. Future
Generation Computer Systems, 29(4):973 – 985, 2013. Special Section: Utility and
Cloud Computing. 14, 51, 53, 58, 138

[80] Djawida Dib. Adaptation dynamique des fonctionnalités d’un système
d’exploitation large échelle, May 2011. Publication de la journée ADAPT 2011.
135

[81] Djawida Dib, Nikos Parlavantzas, and Christine Morin. Towards multi-level adap-
tation for distributed operating systems and applications. In Proceedings of the 12th
International Conference on Algorithms and Architectures for Parallel Processing - Vol-
ume Part II, ICA3PP’12, pages 100–109, Berlin, Heidelberg, 2012. Springer-Verlag.
135

[82] Djawida Dib, Nikos Parlavantzas, and Christine Morin. Meryn: Open, sla-driven,
cloud bursting paas. In Proceedings of the First ACM Workshop on Optimization
Techniques for Resources Management in Clouds, ORMaCloud ’13, pages 1–8, New
York, NY, USA, 2013. ACM. 135

[83] Djawida Dib, Nikos Parlavantzas, and Christine Morin. SLA-based Profit Opti-
mization in Cloud Bursting PaaS. In 14th IEEE/ACM International Symposium on
Cluster, Cloud and Grid Computing, Chicago, États-Unis, 2014. 135

128

BIBLIOGRAPHY

[84] Dmitry Duplyakin, Paul Marshall, Kate Keahey, Henry Tufo, and Ali Alzabarah.
Rebalancing in a multi-cloud environment. In Proceedings of the 4th ACM Workshop
on Scientific Cloud Computing, Science Cloud ’13, pages 21–28, New York, NY, USA,
2013. ACM. 49, 53

[85] E. Feller, C. Rohr, D. Margery, and C. Morin. Energy management in iaas clouds:
A holistic approach. In Cloud Computing (CLOUD), 2012 IEEE 5th International
Conference on, pages 204–212, June 2012. 120

[86] Eugen Feller, Louis Rilling, and Christine Morin. Snooze: A scalable and auto-
nomic virtual machine management framework for private clouds. In Proceedings
of the 2012 12th IEEE/ACM International Symposium on Cluster, Cloud and Grid Com-
puting (Ccgrid 2012), CCGRID ’12, pages 482–489, Washington, DC, USA, 2012.
IEEE Computer Society. 26, 88

[87] A.L. Freitas, N. Parlavantzas, and J-L Pazat. Cost reduction through sla-driven
self-management. In Web Services (ECOWS), 2011 Ninth IEEE European Conference
on, pages 117–124, Sept 2011. 54, 55, 57, 58

[88] Arijit Ganguly, Abhishek Agrawal, P. Oscar Boykin, and Renato Figueiredo. Ip
over p2p: Enabling self-configuring virtual ip networks for grid computing. In In
Proc. of 20th International Parallel and Distributed Processing Symposium (IPDPS-2006,
pages 1–10, 2006. 26

[89] Wolfgang Gentzsch. Sun grid engine: Towards creating a compute power grid.
In Cluster Computing and the Grid, 2001. Proceedings. First IEEE/ACM International
Symposium on, pages 35–36. IEEE, 2001. 18

[90] I. Goiri, J. Guitart, and J. Torres. Characterizing cloud federation for enhancing
providers’ profit. In Cloud Computing (CLOUD), 2010 IEEE 3rd International Confer-
ence on, pages 123–130, July 2010. 14, 50, 51, 53, 58, 138

[91] Robert P. Goldberg. Survey of virtual machine research. Computer, 7(9):34–45,
September 1974. 26

[92] Hadi Goudarzi, Mohammad Ghasemazar, and Massoud Pedram. Sla-based op-
timization of power and migration cost in cloud computing. In 12th IEEE/ACM
International Symposium on Cluster, Cloud and Grid Computing, CCGrid, 2012. 55, 57,
120

[93] Hadi Goudarzi and Massoud Pedram. Multi-dimensional sla-based resource allo-
cation for multi-tier cloud computing systems. In Proceedings of the 2011 IEEE 4th
International Conference on Cloud Computing, CLOUD ’11. IEEE Computer Society,
2011. 52, 57, 58

[94] Andrew S. Grimshaw, Wm. A. Wulf, and CORPORATE The Legion Team. The le-
gion vision of a worldwide virtual computer. Commun. ACM, 40(1):39–45, January
1997. 19

[95] NIST Cloud Computing Standards Roadmap Working Group, Michael Hogan,
Fang Liu, Annie Sokol, and Jin Tong. NIST Cloud Computing Standards

129

BIBLIOGRAPHY

Roadmap. Technical report, National Institute of Standards and Technology, July
2011. 24, 25

[96] L Guo, AS McGough, A Akram, D Colling, J Martyniak, and M Krznaric. Qos
for service based workflow on grid. In Proceedings of UK e-Science 2007 All Hands
Meeting, Nottingham, UK, 2007. 120

[97] Tian Guo, Upendra Sharma, Timothy Wood, Sambit Sahu, and Prashant Shenoy.
Seagull: Intelligent cloud bursting for enterprise applications. In Proceedings of
the 2012 USENIX Conference on Annual Technical Conference, USENIX ATC’12, pages
33–33, Berkeley, CA, USA, 2012. USENIX Association. 50, 51, 53

[98] Peer Hasselmeyer, Henning Mersch, Bastian Koller, HN Quyen, Lutz Schubert,
and Philipp Wieder. Implementing an sla negotiation framework. In Proceedings
of the eChallenges Conference (e-2007), volume 4, pages 154–161, 2007. 24

[99] M. Reza HoseinyFarahabady, Young Choon Lee, and Albert Y. Zomaya. Pareto-
optimal cloud bursting. IEEE Transactions on Parallel and Distributed Systems,
99(PrePrints):1, 2013. 51, 53, 58

[100] Jan Hungershofer. On the combined scheduling of malleable and rigid jobs. In Pro-
ceedings of the 16th Symposium on Computer Architecture and High Performance Com-
puting, SBAC-PAD ’04, pages 206–213, Washington, DC, USA, 2004. IEEE Com-
puter Society. 21

[101] Anca Iordache, Christine Morin, Nikos Parlavantzas, Eugen Feller, and Pierre
Riteau. Resilin: Elastic mapreduce over multiple clouds. Cluster Computing and
the Grid, IEEE International Symposium on, 0:261–268, 2013. 46, 48, 58

[102] Xuxian Jiang and Dongyan Xu. Violin: Virtual internetworking on overlay infras-
tructure. In Jiannong Cao, LaurenceT. Yang, Minyi Guo, and Francis Lau, editors,
Parallel and Distributed Processing and Applications, volume 3358 of Lecture Notes in
Computer Science, pages 937–946. Springer Berlin Heidelberg, 2005. 26

[103] Gueyoung Jung, N. Gnanasambandam, and T. Mukherjee. Synchronous parallel
processing of big-data analytics services to optimize performance in federated
clouds. In Cloud Computing (CLOUD), 2012 IEEE 5th International Conference on,
pages 811–818, June 2012. 49, 50, 53

[104] Steffen Kächele, Jörg Domaschka, and Franz J. Hauck. Cosca: An easy-to-use
component-based paas cloud system for common applications. In Proceedings of
the First International Workshop on Cloud Computing Platforms, CloudCP ’11, pages
4:1–4:6, New York, NY, USA, 2011. ACM. 45, 48

[105] S. Kailasam, N. Gnanasambandam, J. Dharanipragada, and N. Sharma. Opti-
mizing ordered throughput using autonomic cloud bursting schedulers. Software
Engineering, IEEE Transactions on, 39(11):1564–1581, Nov 2013. 49, 53, 58

[106] Mira Kajko-Mattsson. Sla management process model. In Proceedings of the 2Nd
International Conference on Interaction Sciences: Information Technology, Culture and
Human, ICIS ’09, pages 240–249, New York, NY, USA, 2009. ACM. 22

130

BIBLIOGRAPHY

[107] Mohammad Mahdi Kashef and Jörn Altmann. A cost model for hybrid clouds. In
Proceedings of the 8th international conference on Economics of Grids, Clouds, Systems,
and Services, GECON’11, pages 46–60, Berlin, Heidelberg, 2012. Springer-Verlag.
29

[108] Kate Keahey, Tim Freeman, Jerome Lauret, and Doug Olson. Virtual workspaces
for scientific applications. Journal of Physics: Conference Series, 78(1):012038, 2007.
26

[109] S. Kibe, S. Watanabe, K. Kunishima, R. Adachi, M. Yamagiwa, and M. Uehara.
Paas on iaas. In Advanced Information Networking and Applications (AINA), 2013
IEEE 27th International Conference on, pages 362–367, 2013. 45, 48

[110] Avi Kivity. kvm: the Linux virtual machine monitor. In OLS ’07: The 2007 Ottawa
Linux Symposium, pages 225–230, July 2007. 26

[111] André Lage Freitas, Nikos Parlavantzas, and Jean-Louis Pazat. An Integrated
Approach for Specifying and Enforcing SLAs for Cloud Services. In The IEEE 5th
International Conference on Cloud Computing (CLOUD 2012), Honolulu, États-Unis,
June 2012. 47, 48

[112] E. Laure, C. Gr, S. Fisher, A. Frohner, P. Kunszt, A. Krenek, O. Mulmo, F. Pacini,
F. Prelz, J. White, M. Barroso, P. Buncic, R. Byrom, L. Cornwall, M. Craig, A. Di
Meglio, A. Djaoui, F. Giacomini, J. Hahkala, F. Hemmer, S. Hicks, A. Edlund,
A. Maraschini, R. Middleton, M. Sgaravatto, M. Steenbakkers, J. Walk, and A. Wil-
son. Programming the grid with glite. In Computational Methods in Science and
Technology, page 2006, 2006. 19

[113] Sonja Lehmann and Peter Buxmann. Pricing strategies of software vendors. Busi-
ness & Information Systems Engineering, 1(6):452–462, 2009. 23

[114] P. Leitner, W. Hummer, B. Satzger, C. Inzinger, and S. Dustdar. Cost-efficient
and application sla-aware client side request scheduling in an infrastructure-as-a-
service cloud. In Cloud Computing (CLOUD), 2012 IEEE 5th International Conference
on, pages 213–220, June 2012. 52, 57, 58

[115] Philipp Leitner, Zabolotnyi Rostyslav, Alessio Gambi, and Schahram Dustdar.
A framework and middleware for application-level cloud bursting on top of
infrastructure-as-a-service clouds. 6th IEEE/ACM International Conference on Utility
and Cloud Computing (UCC 2013), 2013. 49, 50, 53

[116] Siew Huei Liew and Ya-Yunn Su. Cloudguide: Helping users estimate cloud
deployment cost and performance for legacy web applications. In Proceedings of
the 2012 IEEE 4th International Conference on Cloud Computing Technology and Science
(CloudCom), CLOUDCOM ’12, pages 90–98, Washington, DC, USA, 2012. IEEE
Computer Society. 30

[117] Shuo Liu, Shaolei Ren, Gang Quan, Ming Zhao, and Shangping Ren. Profit aware
load balancing for distributed cloud data centers. In Parallel Distributed Processing
(IPDPS), 2013 IEEE 27th International Symposium on, pages 611–622, May 2013. 55,
57

131

BIBLIOGRAPHY

[118] Uri Lublin and Dror G. Feitelson. The workload on parallel supercomputers: mod-
eling the characteristics of rigid jobs. Journal of Parallel and Distributed Computing,
63(11):1105 – 1122, 2003. 97

[119] Heiko Ludwig, Alexander Keller, Asit Dan, Richard P King, and Richard Franck.
Web service level agreement (wsla) language specification. IBM Corporation, pages
815–824, 2003. 23

[120] Maciej Malawski, Kamil Figiela, and Jarek Nabrzyski. Cost minimization for com-
putational applications on hybrid cloud infrastructures. Future Generation Com-
puter Systems, 29(7):1786 – 1794, 2013. 14, 52, 54, 57, 58, 138

[121] Paul Marshall, Kate Keahey, and Tim Freeman. Elastic site: Using clouds to elas-
tically extend site resources. In Proceedings of the 2010 10th IEEE/ACM International
Conference on Cluster, Cloud and Grid Computing, CCGRID ’10, pages 43–52, Wash-
ington, DC, USA, 2010. IEEE Computer Society. 51, 52, 53

[122] Michele Mazzucco and Dmytro Dyachuk. Optimizing cloud providers revenues
via energy efficient server allocation. Sustainable Computing: Informatics and Sys-
tems, 2(1):1 – 12, 2012. 55, 57, 120

[123] Dejan Miloji?i?, I.M. Llorente, and Ruben S. Montero. Opennebula: A cloud man-
agement tool. Internet Computing, IEEE, 15(2):11–14, 2011. 26, 88

[124] Christine Morin. Xtreemos: a grid operating system making your computer ready
for participating in virtual organizations. In Object and Component-Oriented Real-
Time Distributed Computing, 2007. ISORC’07. 10th IEEE International Symposium on,
pages 393–402. IEEE, 2007. 19

[125] Christine Morin, Renaud Lottiaux, Geoffroy Vallée, Pascal Gallard, Gaël Utard,
Ramamurthy Badrinath, and Louis Rilling. Kerrighed: a single system image clus-
ter operating system for high performance computing. In Euro-Par 2003 Parallel
Processing, pages 1291–1294. Springer, 2003. 19

[126] C. Müller, O. Martín-Díaz, A. Ruiz-Cortés, M. Resinas, and P. Fernández. Improv-
ing temporal-awareness of ws-agreement. In BerndJ. Krämer, Kwei-Jay Lin, and
Priya Narasimhan, editors, Service-Oriented Computing – ICSOC 2007, volume 4749
of Lecture Notes in Computer Science, pages 193–206. Springer Berlin Heidelberg,
2007. 23

[127] Alek Opitz, Hartmut König, and Sebastian Szamlewska. What does grid comput-
ing cost? Journal of Grid Computing, 6(4):385–397, 2008. 29

[128] Pradeep Padala and JosephN. Wilson. Gridos: Operating system services for grid
architectures. In TimothyMark Pinkston and ViktorK. Prasanna, editors, High Per-
formance Computing - HiPC 2003, volume 2913 of Lecture Notes in Computer Science,
pages 353–362. Springer Berlin Heidelberg, 2003. 19

[129] Fawaz Paraiso, Philippe Merle, and Lionel Seinturier. Managing elasticity across
multiple cloud providers. In Proceedings of the 2013 international workshop on Multi-
cloud applications and federated clouds, MultiCloud ’13, pages 53–60, New York, NY,
USA, 2013. ACM. 45, 48

132

BIBLIOGRAPHY

[130] G. Pierre and C. Stratan. Conpaas: A platform for hosting elastic cloud applica-
tions. Internet Computing, IEEE, 16(5):88–92, 2012. 27, 41, 44, 58

[131] Omer Rana, Martijn Warnier, Thomas B. Quillinan, and Frances Brazier. Moni-
toring and reputation mechanisms for service level agreements. In Proceedings of
the 5th International Workshop on Grid Economics and Business Models, GECON ’08,
pages 125–139, Berlin, Heidelberg, 2008. Springer-Verlag. 23

[132] James E Reuter, David W Thiel, Richard F Wrenn, and Andrew C St Martin. Sys-
tem and method for managing virtual storage, June 1 2004. US Patent 6,745,207.
26

[133] Nikzad Babaii Rizvandi, Albert Y. Zomaya, Ali Javadzadeh Boloori, and Javid
Taheri. On modeling dependency between mapreduce configuration parameters
and total execution time. CoRR, 2012. 74, 120

[134] Rizos Sakellariou and Viktor Yarmolenko. On the flexibility of ws-agreement for
job submission. In Proceedings of the 3rd International Workshop on Middleware for
Grid Computing, MGC ’05, pages 1–6, New York, NY, USA, 2005. ACM. 23

[135] Lutz Schubert, Keith G Jeffery, and Burkard Neidecker-Lutz. The Future of Cloud
Computing: Opportunities for European Cloud Computing Beyond 2010:–expert Group
Report. European Commission, Information Society and Media, 2010. 24, 25

[136] B. Sharma, R.K. Thulasiram, P. Thulasiraman, S.K. Garg, and R. Buyya. Pric-
ing cloud compute commodities: A novel financial economic model. In Cluster,
Cloud and Grid Computing (CCGrid), 2012 12th IEEE/ACM International Symposium
on, pages 451–457, 2012. 30

[137] James E. Smith and Ravi Nair. The architecture of virtual machines. Computer,
38(5):32–38, May 2005. 26

[138] Garrick Staples. Torque resource manager. In Proceedings of the 2006 ACM/IEEE
Conference on Supercomputing, SC ’06, New York, NY, USA, 2006. ACM. 18

[139] Sen Su, Jian Li, Qingjia Huang, Xiao Huang, Kai Shuang, and Jie Wang. Cost-
efficient task scheduling for executing large programs in the cloud. Parallel Com-
puting, 39(4-5):177–188, 2013. 54, 55, 57

[140] Byung Chul Tak, Bhuvan Urgaonkar, and Anand Sivasubramaniam. To move or
not to move: The economics of cloud computing. In Proceedings of the 3rd USENIX
Conference on Hot Topics in Cloud Computing, HotCloud’11, pages 5–5, Berkeley, CA,
USA, 2011. USENIX Association. 29

[141] Adel Nadjaran Toosi, Rodrigo N. Calheiros, Ruppa K. Thulasiram, and Rajku-
mar Buyya. Resource provisioning policies to increase iaas provider’s profit in a
federated cloud environment. In Proceedings of the 2011 IEEE International Confer-
ence on High Performance Computing and Communications, HPCC ’11, pages 279–287,
Washington, DC, USA, 2011. IEEE Computer Society. 14, 50, 51, 53, 58, 120, 138

133

BIBLIOGRAPHY

[142] Johan Tordsson, Rubén S. Montero, Rafael Moreno-Vozmediano, and Ignacio M.
Llorente. Cloud brokering mechanisms for optimized placement of virtual ma-
chines across multiple providers. Future Generation Computer Systems, 28(2):358 –
367, 2012. 50, 51, 53

[143] Hong-Linh Truong and Schahram Dustdar. Composable cost estimation and mon-
itoring for computational applications in cloud computing environments. Procedia
Computer Science, 1(1):2175 – 2184, 2010. <ce:title>ICCS 2010</ce:title>. 29

[144] Radu Tudoran, Alexandru Costan, Gabriel Antoniu, and Luc Bougé. A perfor-
mance evaluation of azure and nimbus clouds for scientific applications. In Pro-
ceedings of the 2Nd International Workshop on Cloud Computing Platforms, CloudCP
’12, pages 4:1–4:6, New York, NY, USA, 2012. ACM. 97

[145] Luis M. Vaquero, Luis Rodero-Merino, Juan Caceres, and Maik Lindner. A break
in the clouds: Towards a cloud definition. SIGCOMM Comput. Commun. Rev.,
39(1):50–55, December 2008. 24

[146] Christian Vecchiola, Xingchen Chu, and Rajkumar Buyya. Aneka: a software plat-
form for .net-based cloud computing. High Speed and Large Scale Scientific Comput-
ing, pages 267–295, 2009. 47, 48, 58

[147] Bruce J Walker. Open single system image (openssi) linux cluster project. 2005,
2008. 19

[148] Cheng Wang, Bhuvan Urgaonkar, Qian Wang, George Kesidis, and Anand Siva-
subramaniam. Data center cost optimization via workload modulation under real-
world electricity pricing. arXiv preprint arXiv:1308.0585, 2013. 55

[149] Jon Watson. Virtualbox: Bits and bytes masquerading as machines. Linux J.,
2008(166), February 2008. 26

[150] Barry B White. Virtual storage system and method, August 21 1984. US Patent
4,467,421. 26

[151] Tom White. Hadoop: the definitive guide. O’Reilly, 2012. 18, 36, 39

[152] Linlin Wu and Rajkumar Buyya. Service level agreement (sla) in utility computing
systems. CoRR, abs/1010.2881, 2010. 22, 24

[153] Linlin Wu, S.K. Garg, and R. Buyya. Sla-based resource allocation for software as
a service provider (saas) in cloud computing environments. In Cluster, Cloud and
Grid Computing (CCGrid), 2011 11th IEEE/ACM International Symposium on, 2011.
54, 55, 57

[154] S. Yangui and S. Tata. Cloudserv: Paas resources provisioning for service-based
applications. In Advanced Information Networking and Applications (AINA), 2013
IEEE 27th International Conference on, pages 522–529, 2013. 45, 48

134

BIBLIOGRAPHY

[155] Matei Zaharia, Dhruba Borthakur, Joydeep Sen Sarma, Khaled Elmeleegy, Scott
Shenker, and Ion Stoica. Delay scheduling: A simple technique for achieving lo-
cality and fairness in cluster scheduling. In Proceedings of the 5th European Confer-
ence on Computer Systems, EuroSys ’10, pages 265–278, New York, NY, USA, 2010.
ACM. 97

[156] Qi Zhang, Lu Cheng, and Raouf Boutaba. Cloud computing: state-of-the-art and
research challenges. Journal of Internet Services and Applications, 1(1):7–18, 2010. 25

[157] Jian Zhao, Hongxing Li, Chuan Wu, Zongpeng Li, Zhizhong Zhang, and F Lau.
Dynamic pricing and profit maximization for clouds with geo-distributed data-
centers. Proc. of IEEE INFOCOM to appear, 2014. 54, 57, 58

[158] Jian Zhao, Chuan Wu, and Zongpeng Li. Cost minimization in multiple iaas
clouds: A double auction approach. CoRR, abs/1308.0841, 2013. 14, 54, 57, 138

135

BIBLIOGRAPHY

136

Appendix A

Publications

• International Conferences

– Djawida Dib, Nikos Parlavantzas, and Christine Morin. SLA-based Profit
Optimization in Cloud Bursting PaaS. In Proceedings of the 14th IEEE/ACM
International Symposium on Cluster, Cloud and Grid Computing (CCGrid 2014),
May 2014. [83]

– Alexandra Carpen-Amarie, Djawida Dib, Anne-Cécile Orgerie, and Guillaume
Pierre. Towards Energy-Aware IaaS-PaaS Co-design. In SMARTGREENS: In-
ternational Conference on Smart Grids and Green IT Systems, colocated with Inter-
national Conference on Cloud Computing and Services Science (CLOSER), April
2014. [72]

– Djawida Dib, Nikos Parlavantzas, and Christine Morin. Towards Multi-Level
Adaptation for Distributed Operating Systems and Applications. In Proceed-
ings of the 12th international conference on Algorithms and Architectures for Parallel
Processing - Volume Part II (ICA3PP’12), Yang Xiang, Ivan Stojmenovic, Bernady
O. Apduhan, Guojun Wang, and Koji Nakano (Eds.), Vol. Part II. Springer-Verlag,
Berlin, Heidelberg, 100-109., September 2012. [81]

• International Workshops

– Djawida Dib, Nikos Parlavantzas, and Christine Morin. Meryn: Open, SLA-
driven, Cloud Bursting PaaS. In Proceedings of the first ACM workshop on Opti-
mization techniques for resources management in clouds (ORMaCloud ’13). ACM,
New York, NY, USA, 1-8., June 2013. [82]

• Other

– Djawida Dib. Adaptation dynamique des fonctionnalités d’un système d’exploitation
large échelle. In Journée Adapt, Saint-Malo, France May 2011. [80]

138

Annexe B

Résumé en Français

B.1 Introduction

L’apparition de l’informatique dans les nuages (cloud computing) ces dernières années
a ouvert de nouvelles perspectives à l’utilisation et la commercialisation des ressources
informatiques. Le concept de cloud computing permet aux utilisateurs du monde entier
d’accéder à de très grandes capacités de calcul en utilisant une simple connexion Internet
et en ne payant que pour les ressources réellement utilisées. Ce modèle de tarification à
l’usage (pay-as-you-go) attire beaucoup de consommateurs et de petites entreprises ayant
l’objectif de réduire le coût d’utilisation des ressources informatiques, et offre aux four-
nisseurs de nouvelles opportunités pour commercialiser les ressources informatiques.
Les services de cloud computing sont fournis selon trois modèles fondamentaux : infra-
structure en tant que service (IaaS), plate-forme en tant que service (PaaS), et logiciel en
tant que service (SaaS). Le modèle de service IaaS fournit des ressources de base, tels
que des processeurs, de l’espace de stockage et du réseau. Le modèle de service PaaS
fournit un environnement de développement et d’exécution prêt à être exploité par les
applications. Le modèle de service SaaS fournit des applications hébergées prêtes à être
utilisées.

Dans cette thèse nous nous intéressons au modèle de service PaaS fondé sur des
ressources du niveau IaaS. Les systèmes PaaS dispensent leurs utilisateurs d’acquérir
des compétences techniques de programmation et d’administration pour déployer leurs
applications et de gérer les ressources sous-jacentes. L’interaction entre les clients et les
fournisseurs de PaaS est gouvernée par des contrats de service SLA (Service Level Agree-
ment), spécifiant les obligations de chaque partie ainsi que les paiements et les pénalités
associés. L’impact socio-économique des services de PaaS devient essentiel puisque le
nombre d’utilisateurs et de fournisseurs des clouds PaaS est en pleine croissance.

L’objectif principal des fournisseurs de cloud PaaS est de générer le maximum de
profit des services qu’ils fournissent. Cela les oblige à faire face à un certain nombre
de défis. Ils doivent gérer efficacement le placement et l’isolation des applications des
clients sur les ressources et satisfaire les SLAs des applications afin d’éviter le paie-
ment de pénalités. Les grands fournisseurs de clouds PaaS commerciaux, tels que Ama-
zon [10][11] et Microsoft [1], utilisent leurs propres ressources. Cependant, les fournis-
seurs émergeants, tels que Heroku [15], CloudBees [34] et dotCoud [35], louent à la
demande des ressources de clouds IaaS publics. Dans cette thèse nous considérons un
environnement PaaS hybride de cloud bursting, où le système PaaS est fondé sur un

139

B.2. Objectifs

nombre limité de ressources privées et est capable de s’étendre sur des ressources de
clouds IaaS publics. Un tel environnement représente le cas général et offre plusieurs
options au fournisseur de cloud PaaS pour sélectionner les ressources qui hébergent les
applications.

Récemment, plusieurs travaux de recherche se sont intéressés aux optimisations éco-
nomiques dans des environnements composés de plusieurs systèmes de cloud. Cepen-
dant, la plupart de ces travaux visent des types d’application spécifiques [120][79][64]
ou des types d’environnement spécifiques [90][141][158]. C’est pourquoi l’optimisation
du profit d’un fournisseur de cloud PaaS exploitant la fonctionnalité de cloud bursting
reste un sujet de recherche ouvert. Les travaux de cette thèse s’inscrivent dans cette
thématique.

B.2 Objectifs

L’objectif principal de cette thèse est de proposer une solution d’optimisation du profit des
fournisseurs PaaS permettant le support de SLA et du cloud bursting. Afin d’atteindre cet
objectif, cette thèse étudie quatre sous-objectifs.

• Optimisation du profit. L’optimisation du profit est l’objectif principal de chaque
fournisseur de cloud PaaS. D’un côté, ceci implique l’acceptation et la satisfac-
tion des requêtes des clients que ce soit dans des périodes de forte ou de faible
demande. D’un autre côté, la compétition entre les fournisseurs contraint chaque
fournisseur à proposer des prix raisonnables et compétitifs par rapport aux prix
pratiqués sur le marché, ce qui limite leurs revenus. Par conséquent l’optimisation
du profit du fournisseur doit passer par l’optimisation des coûts induits pour l’hé-
bergement des applications. Cependant, si l’optimisation de tels coûts conduit le
fournisseur à ne pas tenir ses engagements concernant la qualité de service (QoS)
promise aux applications, les utilisateurs seront déçus et peuvent se tourner vers
d’autres fournisseurs. Ainsi notre objectif ici est de fournir une politique qui cherche
les ressources les moins chéres pour le fournisseur pour héberger les applications des clients,
tout en prenant en compte la réputation du fournisseur et le profit sur le long terme.

• Support de SLA. Les consommateurs de clouds PaaS s’attendent à ce que les
fournisseurs proposent des contrats de SLA qui garantissent un certain niveau
de QoS à leurs applications. Une partie importante d’un accord de SLA consiste
à compenser les utilisateurs si le niveau de QoS promis à leurs applications n’est
pas tenu. De telles compensations peuvent pénaliser le profit des fournisseurs mais
sont nécessaires pour gagner la confiance des clients. Ainsi notre but est de fournir
aux applications des contrats de SLA fondés sur la QoS et de prendre en compte le paiement
de pénalités si le fournisseur n’arrive pas a fournir aux applications de ses clients le niveau
de QoS promis.

• Support de plusieurs types d’applications. Une solution de cloud PaaS facile-
ment extensible pour supporter de nouveaux types d’applications est attrayante
pour les consommateurs et les fournisseurs. D’un côté, elle offre plus de flexibi-
lité aux consommateurs ayant des besoins variés. D’un autre côté, elle permet aux
fournisseurs d’attirer des clients de différents domaines professionnels et d’ajou-
ter facilement le support aux nouvelles applications rentables, ce qui les aide à

140

Appendix B. Résumé en Français

augmenter leur chiffre d’affaire. Pour cela, notre objectif est de fournir une solution
d’optimisation de profit de fournisseur PaaS générique qui soit indépendante d’un type
d’application spécifique.

• Système PaaS avec cloud bursting Un système PaaS avec cloud bursting permet-
tant le déploiement des applications simultanément sur des ressources privées et
publiques offre au fournisseur de cloud PaaS plusieurs options de déploiement
pour optimiser le coût ou la performance des applications. Le support du cloud
bursting nécessite un travail d’ingénierie important pour permettre au système de
PaaS d’utiliser plusieurs systèmes IaaS et de garantir les termes de SLA des ap-
plications déployées simultanément sur plusieurs clouds IaaS. À cet effet, notre
but est de concevoir un système PaaS avec cloud bursting permettant le déploiement des
applications sur plusieurs clouds.

B.3 Contributions

L’objectif de cette thèse est de fournir une solution d’optimisation du profit du fournis-
seur PaaS sous des contraintes de SLA dans un environnement de cloud bursting. Cette
thèse aborde cet objectif avec les contributions suivantes.

B.3.1 Modèle d’optimisation de profit

Nous définissons un modèle générique de système PaaS avec la fonctionnalité de cloud
bursting et nous proposons une politique d’optimisation du profit du fournisseur de
cloud PaaS. La politique proposée essaye de trouver les ressources les moins chères pour
héberger les applications des clients, tout en prenant en compte la satisfaction de leurs
SLAs. Concrètement, à chaque requête d’un client la politique évalue le coût d’héberger
son application en utilisant les ressources publiques et privées et choisit l’option qui gé-
nère le plus de profit. Pendant les périodes de pointe et l’indisponibilité des ressources
privées, la politique essaye d’optimiser l’utilisation des ressources privées en considè-
rant deux autres options. La première option consiste à emprunter quelques ressources
aux applications en cours d’exécution tout en considérant le paiement de pénalités si
leur niveau de QoS promis est affecté. La seconde option consiste à évaluer la pénalité
possible de la nouvelle application due à l’attente de la libération de ressources privées.
La politique proposée est générique et peut être appliquée sur n’importe quel type d’ap-
plication avec une seule condition qui consiste à faire coopérer des entités spécifiques
aux types d’application supportés. De telles entités fournissent des informations sur le
modèle de performance et le contrat de SLA des applications hébergées.

B.3.2 Application du modèle d’optimisation

Pour montrer l’applicabilité de notre modèle d’optimisation de profit sur une classe par-
ticulière d’application, nous avons étudié les applications de calcul rigides et élastiques
Nous avons défini des termes de SLA correspondants et présenté deux heuristiques qui
collaborent avec la politique d’optimisation pour maximiser le profit du fournisseur de
cloud PaaS. La première heuristique fournit une offre d’attente qui représente la plus pe-
tite pénalité possible pour la nouvelle application due à l’attente de la disponibilité de

141

B.4. Évaluation

ressources privées. La deuxième heuristique fournit une offre de don qui représente la
plus petite pénalité possible pour des applications en cours d’exécution induite par la
fourniture d’une partie de leurs ressources à la nouvelle application. Nous avons défini
trois formes possibles qui peuvent être utilisées par les applications de calcul pour four-
nir des ressources durant leur exécution. La première forme consiste à suspendre des
applications durant l’exécution de la nouvelle application et les reprendre une fois que
la nouvelle application termine son exécution et rend les ressources. La deuxième forme
consiste à prêter une partie des ressources des applications en cours d’exécution à la
nouvelle application et de continuer leur exécution avec les ressources restantes jusqu’à
ce que la nouvelle application termine son exécution et rende les ressources emprun-
tées. La troisième forme consiste à donner une partie des ressources des applications en
cours d’exécution à la nouvelle application et à continuer leur exécution avec les res-
sources restantes. La deuxième et troisième forme ne peuvent être utilisées qu’avec les
applications de calcul élastiques. Chaque forme induit pour l’application une pénalité
différente. Ainsi, l’heuristique sélectionne la forme d’impact qui conduit à la plus petite
pénalité possible.

B.3.3 Meryn : un système de PaaS avec la fonctionnalité de cloud bursting

Nous avons conçu et implémenté une architecture de système PaaS, appelée Meryn, ca-
pable d’incorporer la politique d’optimisation de profit ainsi que les différentes heuris-
tiques spécifiques aux types d’application. L’architecture du système Meryn repose sur
des ressources privées virtualisées, en utilisant une solution de gestion de cloud IaaS,
et supporte la fonctionnalité de cloud bursting dans des cloues publics quand cela est
nécessaire. Pour supporter l’extensibilité par rapport aux types d’applications, Meryn
fait usage de clusters virtuels et gère chaque cluster virtuel en utilisant un framework
existant dédié à un type d’application spécifique. En l’occurrence, le framework OGE
est dédié aux applications batch et le framework Hadoop est dédié aux applications
MapReduce. Les ressources privées sont dynamiquement partagées entre les clusters
virtuels suivant des politiques et des objectifs spécifiques, à savoir dans notre contexte
suivant la politique d’optimisation de profit.

B.4 Évaluation

Pour valider nos contributions nous avons implémenté un prototype Meryn supportant
les applications batch et MapReduce. Nous avons évalué la politique d’optimisation de
profit proposée en utilisant le prototype Meryn et des modèles de workload fondés sur
des traces du monde réel. Nous avons effectué un ensemble de simulations et d’expé-
riences sur la plate-forme d’expérimentation Grid’5000 [40].

Nous avons comparé la politique d’optimisation proposée à une approche de base
qui attribue un nombre fixe de ressources privées aux clusters virtuels et elle ne leur
permet de s’étendre qu’avec des ressources de clouds publics. Les résultats montrent
que notre politique d’optimisation permet au fournisseur de cloud PaaS d’augmenter
son profit de 11.59% et 9.02% dans respectivement les simulations et les expériences
par rapport à l’approche de base. Comme coût d’une telle optimisation, le temps de
terminaison des workloads dans un système utilisant notre politique d’optimisation est

142

Appendix B. Résumé en Français

légèrement supérieure par rapport à l’approche de base. En outre, le niveau de QoS
promis à certaines applications a été affecté.

B.5 Organisation du manuscrit

Ce manuscrit est organisé comme suit. Le chapitre 2 présente les définitions générales
du contexte de notre travail. Plus précisément, ce chapitre fournit un aperçu des dif-
férentes infrastructures de calcul et des différents modèles d’applications. En outre, il
définit les concepts de Service Level Agreement (SLA) et de cloud computing. Le chapitre 3
présente les différentes conditions requises pour atteindre les objectifs de cette thèse,
il couvre l’état de l’art et il positionne les contributions de cette thèse. Les principaux
axes couvèrt sont : les politiques d’optimisation économique, les mécanismes de cloud
bursting, et les systèmes de type PaaS. Le chapitre 4 décrit la première contribution de
cette thèse qui consiste en la proposition d’un modèle générique pour l’optimisation du
profit d’un fournisseur de cloud OaaS dans un environnement de cloud bursting. Le
chapitre 5 étudie les applications de calcul rigides et élastiques dans le but d’appliquer
concrètement notre modèle générique d’optimisation de profit. Le chapitre 6 présente
les principes de conception, l’architecture et la mise en œuvre du système Meryn, un
cloud PaaS qui implémente le scénario de cloud bursting et les algorithmes d’optimi-
sation que nous avons proposés. Le chapitre 7 montre les résultats d’évaluation de nos
contributions à l’aide de simulations et expériences effectuées sur la plate-forme d’expé-
rimentation Grid’5000 [40] avec notre prototype. Le chapitre 8 conclut ce manuscrit en
résumant nos contributions et en présentant quelque perspectives.

143

Optimizing PaaS Provider Profit under Service Level Agreement
Constraints

Abstract

Cloud computing is an emerging paradigm revolutionizing the use and marketing of information
technology. As the number of cloud users and providers grows, the socio-economical impact of
cloud solutions and particularly PaaS (platform as a service) solutions is becoming increasingly
critical. The main objective of PaaS providers is to generate the maximum profit from the services
they provide. This requires them to face a number of challenges such as efficiently managing the
underlying resources and satisfying the SLAs of the hosted applications.

This thesis considers a cloud-bursting PaaS environment where the PaaS provider owns a
limited number of private resources and is able to rent public cloud resources, when needed.
This environment enables the PaaS provider to have full control over services hosted on the
private cloud and to take advantage of public clouds for managing peak periods. In this context,
we propose a profit-efficient solution for managing the cloud-bursting PaaS system under SLA
constraints. We define a profit optimization policy that, after each client request, evaluates the
cost of hosting the application using public and private resources and chooses the option that
generates the highest profit. During peak periods the optimization policy considers two more
options. The first option is to take some resources from running applications, taking into account
the payment of penalties if their promised quality of service is affected. The second option is
to wait until private resources become available, taking into account the payment of penalties if
the promised quality of service of the new application is affected. Furthermore we designed and
implemented an open cloud-bursting PaaS system, called Meryn, which integrates the proposed
optimization policy and provides support for batch and MapReduce applications. The results of
our evaluation show the effectiveness of our approach in optimizing the provider profit. Indeed,
compared to a basic approach, our approach provides up to 11.59% and 9.02% more provider
profit in, respectively, simulations and experiments.

Keywords

Cloud computing, Platform as a Service (PaaS), Service Level Agreement (SLA), economic opti-
mization, computational applications.

Résumé

L’informatique en nuage (cloud computing) est un paradigme émergent qui révolutionne l’utili-
sation et la commercialisation des services informatiques. De nos jours, l’impact socio-économique
de l’informatique en nuage et plus particulièrement des services de PaaS (plate-forme en tant
que service) devient essentiel, puisque le nombre d’utilisateurs et de fournisseurs des cloud
PaaS est en pleine croissance. L’objectif principal des fournisseurs de cloud PaaS est de générer
le maximum de profit des services qu’ils fournissent. Cela les oblige à faire face à un certain
nombre de défis, tels que la gestion efficace des ressources sous-jacentes et la satisfaction des
SLAs (contrat de service) des applications hébergées.

Dans cette thèse, nous considérons un environnement PaaS hybride de cloud bursting, où le
fournisseur PaaS possède un nombre limité de ressources privées et a la possibilité de louer des
ressources publiques. Ce choix permet au fournisseur PaaS d’avoir un contrôle complet sur les
services hébergés dans les ressources privées et de profiter de ressources publiques pour gérer
les périodes de pointe. De plus, nous proposons une solution rentable pour gérer un tel système
PaaS sous des contraintes de SLA. Nous définissons une politique d’optimisation de profit qui, à
chaque requête d’un nouveau client, évalue le coût d’hébergement de son application en utilisant
les ressources publiques et privées et choisit l’option qui génère le plus de profit. Pendant les

périodes de pointe la politique considère deux autres options. La première option consiste à
emprunter quelques ressources aux applications en cours d’exécution tout en considérant le
paiement de pénalités si leur qualité de service est affectée. La seconde option consiste à attendre
que des ressources privées soient libérés tout en considérant le paiement de pénalités si la qualité
de service de la nouvelle application est affectée. En outre, nous avons conçu et mis en œuvre
une architecture de cloud PaaS, appelée Meryn, qui intègre la politique d’optimisation proposée,
supporte le cloud bursting et héberge des applications du type batch et MapReduce. Les résultats
de notre évaluation montrent l’efficacité de notre approche dans l’optimisation du profit du
fournisseur. En effet, comparée à une approche de base, notre approche fournit jusqu’à 11.59 % et
9.02 % plus de profits pour le fournisseur dans respectivement les simulations et les expériences.

Mots clés

Informatique en nuage, plate-forme en tant que service, contrat de service, optimisation écono-
mique, applications de calcul.

	Introduction
	Context
	Objectives
	Contributions
	Outline of the Thesis

	Background
	Taxonomy of Application Models
	Parallelism Model
	Resource Requirements
	Resource Usage
	Lifetime

	Service Level Agreement (SLA)
	SLA Specification
	SLA metrics
	Price Formation and Billing Models
	Penalties
	SLA Lifecycle

	Cloud Computing
	Overview
	Deployment Models
	Business Aspects

	Summary

	SLA-Based Profit Optimization in Cloud Bursting PaaS
	Thesis Objective
	Platform as a Service (PaaS)
	Commercial PaaS
	Open Source PaaS
	Research PaaS

	Cloud Bursting
	Based on User Constraints
	Based on Economic Criteria
	Targeting Specific Application Types

	Economic Optimizations
	Targeting Specific Application Types
	Targeting Specific Infrastructures
	Focusing on the Optimization of Energy Costs

	Gaps
	Summary

	Profit Optimization Model
	PaaS System Model
	Notations
	Objective
	Constraints

	Policies
	Basic Policy
	Advanced Policy
	Optimization Policy

	Summary

	Computational Applications
	Definitions and Assumptions
	Performance Model
	Service Level Agreement (SLA)
	SLA Contract
	SLA Classes

	Bids Heuristics
	Donating Bid

	Meryn: an Open Cloud-Bursting PaaS
	Design Principles
	System Architecture
	VC Scaling Mechanisms

	Implementation
	Frameworks Configuration
	Parallel Submission Requests
	Cloud Bursting

	Summary

	Evaluation
	Evaluation Setup
	Workloads
	Pricing
	SLAs
	Grid'5000 testbed
	Evaluation Metrics

	Simulations
	Environment Setup
	Results

	Experiments
	Measurements
	Environment Setup
	Results

	Summary

	Conclusions and Perspectives
	Contributions
	Perspectives

	Bibliography
	Publications
	Résumé en Français
	Introduction
	Objectifs
	Contributions
	Modèle d'optimisation de profit
	Application du modèle d'optimisation
	Meryn: un système de PaaS avec la fonctionnalité de cloud bursting

	Évaluation
	Organisation du manuscrit

