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Fall 2014



i

Abstract

Let F be a field and X, Y some F -varieties. In this dissertation, we are interested in
knowing if the class y ∈ CH(YF (X)) of an algebraic cycle defined over the function field
F (X) is actually defined over the base field, i.e belongs to the image of the pull-back
homomorphism CH(Y ) → CH(YF (X)). We study this issue in different contexts, the
variety X varying among classes of varieties such as quadrics or projective homogeneous
varieties.

Keywords: Chow groups, quadrics, Steenrod operations, exceptional al-
gebraic groups, projective homogeneous varieties, Chow motives, central
simple algebras, principal homogeneous spaces.

2010 Mathematics Subject Classification: 14C25; 11E04; 20G41; 20G15.

Acknowledgements. I express my sincere gratitude to my advisor Nikita Karpenko for
both sharing his very valuable advice and the latitude he gave me. He offered me a topic of
interest and made me discover connected areas of mathematics. It has truly been an honor
to work under his supervision.

I would like to thank Alexander Merkurjev, Philippe Gille, Bruno Kahn, Mathieu Flo-
rence, Vladimir Chernousov, Stephan Gille and Arturo Pianzola.

This Phd dissertation is dedicated to my father and my mother.



ii

Contents

I Introduction 1

II Basic material 4
II.1 Definition and basic properties of Chow groups . . . . . . . . . . . . . . . . 4
II.2 Further properties of Chow groups . . . . . . . . . . . . . . . . . . . . . . . 8
II.3 Steenrod operations on Chow groups modulo 2 . . . . . . . . . . . . . . . . . 9
II.4 Grothendieck rings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

IIIQuadrics 15
III.1 Decomposition on Chow groups of projective quadrics . . . . . . . . . . . . . 16
III.2 Rationality on Chow groups modulo 2 - Main result . . . . . . . . . . . . . . 17
III.3 Rationality on Chow groups modulo 2 - Other results . . . . . . . . . . . . . 24
III.4 Rationality on integral Chow groups - Main version . . . . . . . . . . . . . . 30
III.5 Rationality on integral Chow groups - A stronger version . . . . . . . . . . . 37

IV Exceptional projective homogeneous varieties 41
IV.1 Filtrations on Grothendieck ring of projective homogeneous varieties . . . . . 42
IV.2 Generically split projective homogeneous varieties . . . . . . . . . . . . . . . 46
IV.3 J-invariant . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
IV.4 Proof of the result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

V Principal homogeneous space for SL1(A) 54
V.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
V.2 Proof of the result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
V.3 Link with Chapter IV - Exceptional projective homogeneous varieties . . . . 57

VI Special correspondences 60
VI.1 A conjecture of A. Vishik . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
VI.2 Rationality of special correspondences on quadrics . . . . . . . . . . . . . . . 62
VI.3 A partial answer to the conjecture . . . . . . . . . . . . . . . . . . . . . . . . 68
VI.4 Special correspondences on A-trivial varieties . . . . . . . . . . . . . . . . . . 75

A Milnor K-Theory 78



iii

B Chern classes 80

C Correspondences on Chow groups 82

D Torsors of algebraic groups 84

Bibliography 85



1

Chapter I

Introduction

Let Y be a variety over a field F , let X be a geometrically integral variety over F and let us
denote its function field as F (X). For any integer m ≥ 0, consider the following commutative
diagram given by change of field homomorphisms for Chow groups CHm of codimension m
classes of algebraic cycles

CHm(Y ) //

��

CHm(YF (X))

��
CHm(Y ) �

� // CHm(YF (X))

,

where we write Y := YF with F an algebraic closure of F .
An element y of CH(Y ) is F (X)-rational if its image yF (X) under CH(Y )→ CH(YF (X)) is

in the image of CH(YF (X))→ CH(YF (X)). An element y of CH(Y ) is simply called rational if

it is in the image of CH(Y )→ CH(Y ), denoted by CH(Y ). Note that since F is algebraically
closed, the bottom homomorphism CH(Y ) → CH(YF (X)) is injective by the specialization
arguments.

The general question is the following

Question I.0.1. When is an F (X)-rational element y in CHm(Y ) actually rational?

In the aftermath of the previous question, one has the strongest following one.

Question I.0.2. When is the change of field homomorphism CHm(Y )→ CHm(YF (X)) sur-
jective?

Example I.0.3. The change of field homomorphism CH(Y ) → CH(YE) associated with a
purely transcendental extension E/F is surjective, in any codimension (this follows from
the continuity property of Chow groups and the Homotopy Invariance). Therefore, for
any rational F -variety X, the homomorphism CH(Y ) → CH(YF (X)) is surjective, in any
codimension. In particular, this applies to X an isotropic quadric over F , see [7].
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For any integer p, one can ask the same questions with the Chow group Ch = CH/pCH
instead of the integral Chow group CH. The choice of the coefficients depends on what
variety X is considered.

These questions originally come from the work of Alexander Vishik on the Kaplansky’s
Conjecture (see [48, Theorem 5.1]). In this paper, A. Vishik showed that for r ≥ 3, there
exists a field F of u-invariant 2r + 1 (the u-invariant of a field F is the maximal dimension of
an anisotropic quadratic form over F ). To prove this result, he needed the following so-called
Main Tool Lemma (proved in [49]), where Ch is the Chow group modulo 2 (see Theorem
III.2.1 for a more complete statement).

Theorem I.0.4. (Vishik) Let Q be a smooth projective quadric over a field F and let Y
be a smooth quasi-projective F -variety. If char(F)=0 then any F (Q)-rational element
y ∈ Chi(Y ) with i < dim(Q)/2 is rational.

Actually, A. Vishik used the contrapositive statement of the MTL for quadrics to find
some F (Q)-irrational algebraic cycles.

In his proof, A. Vishik states the problem in terms of Chow groups then lifts elements of
the Chow groups to elements of the algebraic cobordism groups, which requires him to work
with the assumption char(F ) = 0 (since the algebraic cobordism theory relies on resolution
of singularities). It is a natural idea to try to find a proof which stays at the level of Chow
groups. In [23], Nikita Karpenko extends the above early version of the MTL for quadrics
to any field of characteristic different from 2 (modulo 2-torsion). He was able to do so
because his method uses Steenrod operations of cohomological type on Chow groups instead
of symmetric operations in the algebraic cobordism theory.

In Chapter III, we extend the method introduced by N. Karpenko to get a complete ver-
sion of the MTL on quadrics, modulo 2-torsion (the complete version allows one to consider
algebraic cycles with a larger codimension, see Sections III.2 and III.3). Since the proof of
[48, Theorem 5.1] only deals with torsion-free Chow groups, our versions modulo 2-torsion
element can also be used here.

In another paper ([51]), A. Vishik adressed the question treated in Theorem I.0.3 but
for integral Chow groups CH. He got a similar result assuming that the quadric Q has a
projective line defined over its function field. Since his method uses symmetric operations,
he needed once again the assumption char(F ) = 0.

Using a similar method but Steenrod operations in place of symmetric operations, we
were able to get statements valid in any characteristic different from 2 (modulo 2-torsion).
This is the topic of the second part of Chapter III (Sections III.4 and III.5).

There are also existing versions of the MTL for varieties X different from quadrics.
For a smooth variety X with a special correspondence in the sense of Markus Rost, Kirill
Zainoulline proved in [55, Theorem 1.3] a version of the MTL over a field of characteristic
0. In Chapter VI (Section VI.3), we use his method to get an improved version when X is
a quadric with a special correspondence.
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For such a smooth variety X with a special correspondence, the result [26, Theorem SC.1]
by N. Karpenko and Alexander Merkurjev constitutes another version, which allows one to
consider algebraic cycles with a larger codimension. We slightly extend this result at the
very end of Chapter VI. In the same article, the authors also provided a version of the MTL
for X the norm variety of a symbol s ∈ Hn+1(F, µ⊗np ) ([26, Theorem 4.3]).

In Chapter IV, we prove a version of the MTL for X a projective homogeneous varieties
under a linear algebraic group of type F4 or E8 over a field of arbitrary characteristic (see
Theorem IV.0.1). The proof notably involves a motivic decomposition of the Chow motive
of X with the help of a Rost motive R and the Riemann-Roch Theorem without denom-
inators. Over a field of characteristic 0, this version is, for the type F4, contained in the
aforementioned result [55, Theorem 1.3] (modulo torsion) and it is, for both types, contained
in the aforementioned result [26, Theorem 4.3].

In Chapter V, we prove a version of the MTL for X a principal homogeneous space for
SL1(A), with A a central simple algebra of prime degree (see Theorem V.0.1). The proof
mainly relies on a result of I. Panin about the Grothendieck ring of such a variety. In fact,
this version implies the previous one on exceptional projective homogeneous varieties.

Finally, in Chapter VI (Sections VI.1 to VI.3), we are interested in a conjecture ([48,
Conjecture 3.13]) of A. Vishik. This conjecture would be a version of the MTL for quadrics
which brings into play certain algebraic cycles on associated Grassmannians. First, we
compare the rationality of this cycles on Grassmannians with the rationality of certain special
correspondences on product of quadrics. Then we use this to broach the conjecture.

In this dissertation, the word scheme means a separated scheme of finite type over a field
and a variety is an integral scheme. Basic material is introduced in Chapter II.
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Chapter II

Basic material

II.1 Definition and basic properties of Chow groups

In this section, we define the Chow groups, which are the main object of this work. We
also describe some basic properties of Chow groups. Further properties are given is the next
section.

The Rost complex

We follow the construction given in [7, §49] (see also [42]). For a field L, we write K∗(L)
for its Milnor ring (see Appendix A). Let X be scheme over a field F . For x ∈ X, we write
F (x) for its residue field and dim(x) for the dimension of the closure {x}. We recall that
x′ ∈ X is a specialization of x if x′ ∈ {x}.

Let x, x′ ∈ X such that x′ is a specialization of x with dim(x′) = dim(x)− 1. Then the
local ring O{x},x′ is a 1-dimensional excellent domain with quotient field F (x) and residue

field F (x′).
Moreover, it is known that in this situation (i.e more generally when one has a 1-

dimensional excellent domain at one’s disposal) the integral closure Õ{x},x′ in F (x) is semi-
local, 1-dimensional and finite as a O{x},x′-algebra. Let us index by 1, . . . , n the maximal

ideals of Õ{x},x′ . Then for each i = 1, . . . , n, the corresponding localization is a discrete
valuation ring with valuation vi and we denote by Fi the associated residue field. For each
i = 1, . . . , n, the field Fi is a finite extension of F (x′). Thus, for any such point x, x′ ∈ X,
one can define the homomorphism

δx,x′ : K∗(F (x))→ K∗−1(F (x′))

by the formula

δx,x′ =
n∑
i=1

cFi/F (x′) ◦ δvi ,
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where δvi : K∗(F (x)) → K∗−1(Fi) is the residue homomorphism associated with the dis-
crete valuation vi on F (x) and cFi/F (x′) : K∗(Fi) → K∗(F (x′)) is the norm homomorphism
associated with the extension Fi/F (x′) (see Appendix A).

Now, for every pair of points x, x′ ∈ X, one can consider the homomorphism

δx
′

x : K∗(F (x))→ K∗−1(F (x′))

defined by δx
′
x = δx,x′ if x′ is a specialization of x with dim(x′) = dim(x) − 1 and δx

′
x = 0

otherwise. Furthermore, by [7, Lemma 49.1], for each x ∈ X and α ∈ K∗(F (x)), the residue
δx
′
x (α) is nontrivial only for finitely many points x′ ∈ X. It follows that there is a well-defined

endomorphism dX of the direct sum

C(X) :=
∐
x∈X

K∗(F (x))

given by δx
′
x on the (x, x′)-component. The group C(X) is graded by the dimension: for any

integer k ≥ 0, we set

Ck(X) :=
∐

x∈X(k)

K∗(F (x))

where X(k) the set of point of X of dimension k, and one can extend this grading by setting
Ck(X) = 0 for k < 0. Note that the endomorphism dX is of degree −1 with respect to this
grading. For any integer n, we also set

Ck,n(X) :=
∐

x∈X(k)

Kk+n(F (x)).

Note that the graded group C∗,n(X) is invariant under dX .
By [7, Proposition 49.30], the endomorphism dX is such that d2

X = 0, that is to say
(C∗(X), dX) is a complex, called the Rost complex of the scheme X.

Definition of Chow groups

For any integers k and n, let us denote by Ak(X,Kn) the homology group of the sequence

Ck+1,n(X)→ Ck,n(X)→ Ck−1,n(X)

given by the differential dX . In other words, the group Ak(X,Kn) is the k-th homology
group of the complex C∗,n(X).

Definition II.1.1. The group

CHk(X) := Ak(X,K−k)

is called the Chow group of dimension k classes of cycles on X.
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Remark II.1.2. Since for any x ∈ X, one has K−1(F (x)) = 0 and K0(F (x)) = Z, it follows
from the very definition that CHk(X) is a quotient of the free group

Zk(X) :=
∐

x∈X(k)

Z

called the group of algebraic cycles of dimension k on X. We denote by [x] the element of
Zk(X) associated with x ∈ X(k). Such an algebraic cycle is called prime cycle. Hence, any
element in Zk(X) is a finite formal sum with coefficients in Z of prime cycles of dimension k.
Identifying x with its closure in X, any element in Zk(X) can also be considered as a finite
formal sum of cycles [Z] associated with closed subvarieties Z ⊂ X of dimension k. We will
use the same notation for the class in CHk(X) and all along this dissertation we will simply
called an element of a Chow group an algebraic cycle or even a cycle.

Example II.1.3. Assume that X is of dimension d. Then the group CHd(X) = Zd(X) is
free with basis the classes of the generic points, or equivalently – the irreducible components
– of X.

We will use the following notion of Chow group as well.

Definition II.1.4. For X equidimensional of dimension d, the group

CHk(X) := Ad−k(X,Kk−d)

is called the Chow group of codimension k classes of cycles on X.

Functorial properties

Push-forward. Let f : X → Y be a morphism of F -schemes. We define a homomorphism

f∗ : C∗(X)→ C∗(Y )

as follows. Let x ∈ X and y ∈ Y . If y = f(x) and the extension F (x)/F (y) is finite, we set

f∗
x
y := cF (x)/F (y) : K∗(F (x))→ K∗(F (y))

(where cF (x)/F (y) is the norm homomorphism associated with the extension F (x)/F (y), see
Appendix A), otherwise, we set f∗

x
y = 0. The homomorphism f∗ is of degree zero with

respect to the grading by dimension on C∗.
Furthermore, if f is a proper morphism then f∗ is a morphism of complexes (see [7,

Proposition 49.9]). Therefore, for any integer n, the homomorphism f∗ induces some homo-
morphsims between the homology groups of the respective complexes C∗,n. In particular, f∗
gives rise to a homomorphism at the level of Chow groups

f∗ : CHk(X)→ CHk(Y ),

called the push-forward of f . For g : Y → Z another proper morphism, one has (g ◦ f)∗ =
g∗ ◦ f∗ (this follows from the transitivity of the norm homomorphism).
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Example II.1.5. Let X be a complete scheme over F . The pushforward deg : CH0(X) →
CH0(Spec(F )) = Z of the structure morphism X → Spec(F ) is called the degree homomor-
phism because for any closed point x ∈ X, one has deg([x]) = [F (x) : F ].

Pull-back. Let g : Y → X be a flat morphism of F -schemes. One says that g is of relative
dimension d if for every x ∈ X in the image of g and for every generic point y of g−1({x}),
one has dim(y) = dim(x) + d.

Let g : Y → X be a flat morphism of F -schemes of relative dimension d. For every
x ∈ X, we denote by Yx the fiber scheme Y ×X Spec(F (x)) over F (x) and we identify its
underlying topological space with a subspace of Y . For any generic point y of Yx, the local
ring OYx,y is noetherian 0-dimensional, hence is artinian and consequently has finite length
l (OYx,y). Then one defines a homomorphism

g∗ : C∗(X)→ C∗+d(Y )

as follows. Let x ∈ X and y ∈ Y . If g(y) = x and y is a generic point of Yx, we set

g∗xy := l (OYx,y) · rF (y)/F (x) : K∗(F (x))→ K∗(F (y)),

where rF (y)/F (x) is the restriction homomorphism (see Appendix A), otherwise, we set g∗xy = 0.
As in the case of the push-forward, for any integer k, the homomorphism g∗ induces a

homomorphism at the level of Chow groups

g∗ : CHk(X)→ CHk+d(Y ),

called the pull-back of g. If X and Y are equidimensional then the latter pull-back can be
rewritten as

g∗ : CHn−k(X)→ CHn−k(Y ),

with n = dim(X). For h : Z → Y another morphism of constant relative dimension, one has
(g ◦ h)∗ = h∗ ◦ g∗.

Example II.1.6. Let X be a scheme over F and let L/F be an extension. The projection
XL → X is flat of relative dimension 0. The associated pull-back

CHk(X)→ CHk(XL)

is called the change of field homomorphism. This homomorphism has the central place in
this work.

We conclude this subsection by stating a proposition which mixes push-forwards and
pull-backs. Consider a fiber product diagram

X ′
g′ //

f ′

��

X

f
��

Y ′
g // Y

of F -schemes. The following functorial property comes from [7, Proposition 49.20].
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Proposition II.1.7. Assume that g and g′ are flat morphisms of constant relative dimension
d and that f and f ′ are proper morphisms. Then the diagram

CH∗(X)
g′∗ //

f∗
��

CH∗+d(X
′)

f ′∗
��

CH∗(Y )
g∗ // CH∗+d(Y

′)

is commutative.

Products

Let X and Y be two schemes over F . By [7, §52.C], for any integers k, l, i, j, there is a well
defined pairing

Ak(X,Ki)⊗ Al(Y,Kj)→ Ak+l(X × Y,Ki+j).

Assume that Y = X and that X is smooth of dimension d. The diagonal morphism ∆ :
X → X ×X is a regular closed embedding of codimension d. By taking the particular case
i = −k and j = −l in the above pairing and by combining it with the pull-back associated
with ∆, one get a new pairing

CHk(X)⊗ CHl(X)→ CHk+l−d(X),

which endows CH∗(X) with a commutative ring structure, with neutral element the class
[X] ∈ CHd(X).

II.2 Further properties of Chow groups

In this section, we introduce some properties of Chow groups we will use all along this
dissertation. All facts provided are taken from the book [7, Chapters IX and X] by R. Elman,
N. Karpenko and A. Merkurjev.

Let F be a field. The first property below shows that pull-backs commute with the
product on the Chow ring CH∗ (see [7, Proposition 56.8]).

Proposition II.2.1. Let f : X → Y be a morphism of smooth F -varieties. Then one has

f ∗(α · β) = f ∗(α) · f ∗(β)

for every α, β ∈ CH(Y ) and f ∗([Y ]) = [X].

The Projection Formula below (see [7, Proposition 56.9]) will be extensively use in this
dissertation, especially in Chapter VI.
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Proposition II.2.2. Let f : X → Y be a proper morphism of smooth F -varieties. Then
one has

f∗ (α · f ∗(β)) = f∗(α) · β

for every α ∈ CH(X) and β ∈ CH(Y ).

One also has the following analog of the projection formula (see [7, Proposition 56.11])

Proposition II.2.3. Let f : X → Y be a morphism of equidimensional smooth F -varieties.
Then one has

f∗ (f ∗(β)) = f∗([X]) · β

for every β ∈ CH(Y ).

The proposition below constitutes the first step of proofs of the main results in Chapter III.

Proposition II.2.4. ([7, Corollary 57.11]) For every variety X of dimension n and scheme
Y over F , the pull-back homomorphism CH∗(X × Y )→ CH∗−n(YF (X)) is surjective.

The following statement is a slightly altered version of the result [7, Lemma 88.5] (see
also the proof of [26, Proposition 2.8]). This propostion constitutes the basis of proofs of the
results in Chapter IV and V.

Proposition II.2.5 (Karpenko, Merkurjev). Let X be a smooth variety over a field F and
Y an equidimensional F -variety. Given an integer k such that for any nonnegative integer i
and any point y ∈ Y of codimension i the change of field homomorphism

CHk−i(X) −→ CHk−i(XF (y))

is surjective, the change of field homomorphism

CHk(Y ) −→ CHk(YF (X))

is also surjective.

Note that this statement remains true for any prime p when one considers the group Ch
with Z/pZ-coefficients instead of CH.

II.3 Steenrod operations on Chow groups modulo 2

For a smooth scheme X over a field F of characteristic different from 2, P. Brosnan con-
structed in [4, §10] a certain homomorphism

SX : Ch(X)→ Ch(X),



CHAPTER II. BASIC MATERIAL 10

where Ch is the Chow group modulo 2, called the total Steenrod operation on X of cohomo-
logical type. For any integer j ≥ 0, we denote by

SjX : Ch∗(X)→ Ch∗+j(X)

the jth Steenrod operation on X of cohomological type (or simply by Sj if there is no ambi-
guity). We refer to the book [7, §61] or to [4, §10] for an introduction to the subject. In this
subsection, we just present some basic properties of Steenrod operations of cohomological
type we will need in Chapter III.

The following proposition shows that Steenrod operations of cohomological type commute
with pull-back homomorphisms.

Theorem II.3.1. ([7, Theorem 61.9]) Let f : X → Y be a morphism of smooth schemes.
Then the diagram

Ch(X)
SX //

f∗

��

Ch(X)

f∗

��
Ch(Y )

SY // Ch(Y )

,

is commutative

The interaction between Steenrod operations of cohomological type and push-forward is
more complicated and is described with the following statement. For a vector bundle E over
a scheme, we abuse notation and write c(E) for both the total Chern class with value in CH
and its modulo 2 reduction (Chern classes are defined in Appendix B).

Proposition II.3.2. ([7, Proposition 61.10]) Let f : X → Y be a smooth projective mor-
phism of smooth schemes. Then

SY ◦ f∗ = f∗ ◦ c(−Tf ) ◦ SX ,

where Tf is the relative tangent bundle of f .

Now, let us recall the basic values taken by Sj.

Theorem II.3.3. ([7, Theorem 61.13]) Let X be a smooth scheme. Then for any algebraic
cycle α ∈ Chk(X), one has

Sj(α) =


α if j = 0
α2 if j = k
0 if j < 0 or j > k.

The following theorem says that the total Steenrod operation of cohomological type on
a product of smooth schemes is just the product of the total Steenrod operations on the
respective schemes.
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Theorem II.3.4. ([7, Theorem 61.14]) Let X and Y be two smooth schemes. Then one has

SX×Y = SX × SY .
One easily deduce the following Cartan formula from the previous theorem.

Corollary II.3.5. ([7, Corollary 61.15]) Let X be a smooth variety. Then for any j and for
any α, β ∈ Ch(X), one has

Sj(α · β) =
∑
k+i=j

Sk(α) · Si(β).

In the following proposition, whose the statement and the proof are very close to [27,
Lemma 3.1], we focus on how the Steenrod operations interact with the composition of
correspondences (correspondences are defined in Appendix C). This will be useful during
the proof of the main result of Section III.4.

Let X1, X2, X3 be smooth schemes over F (of characteristic 6= 2), and assume that X2

is complete (so the push-forward associated with the projection X1 ×X2 ×X3 −→ X1 ×X3

is well defined).

Proposition II.3.6. For any correspondence α ∈ Ch(X1×X2) and for any correspondence
β ∈ Ch(X2 ×X3), one has

(i) SX1×X3(β ◦ α) = (SX2×X3(β) · c(−TX2)) ◦ SX1×X2(α);

(ii) SX1×X3(β ◦ α) = SX2×X3(β) ◦ (SX1×X2(α) · c(−TX2)) ,

where TX2 is the tangent bundle of X2 and c is the total Chern class.

Proof. For any i, j ∈ {1, 2, 3} such that i < j, let us write pij for the projection

X1 ×X2 ×X3 −→ Xi ×Xj.

We recall that the composition rule of correspondences (described in Appendix C) is

β ◦ α = p13∗ (p12
∗(α) · p23

∗(β)) .

Therefore, by Proposition II.3.2 applied to p13, we get

SX1×X3(β ◦ α) = p13∗ (SX1×X2×X3 (p12
∗(α) · p23

∗(β)) · p12
∗ ([X1]× c(−TX2))) ,

and since S commutes with products and pull-backs, we get

SX1×X3(β ◦ α) = p13∗ (p12
∗ (SX1×X2(α)) · p23

∗ (SX2×X3(β)) · ([X1]× c(−TX2)× [X3])) ,

this gives, on the one hand

SX1×X3(β ◦ α) = p13∗ (p12
∗ (SX1×X2(α)) · p23

∗ (SX2×X3(β) · c(−TX2))) ,

thus (i) is proved, and on the other hand, this gives

SX1×X3(β ◦ α) = p13∗ (p12
∗ (SX1×X2(α) · c(−TX2)) · p23

∗ (SX2×X3(β))) ,

thus (ii) is proved.
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II.4 Grothendieck rings

Definitions and properties

All facts provided here can be found in [11, §15].
Let X be a smooth scheme. The Grothendieck group K(X) of X is the abelian group

given by generators, the isomorphism classes [E] of vector bundles E over X, modulo the
relation

[E] = [E ′] + [E ′′]

whenever one has an exact sequence

0→ E ′ → E → E ′′ → 0

of vector bundles over X.
The tensor product on vector bundles over X induces a ring structure on K(X) given by

[E] · [E ′] = [E ⊗ E ′] for any vector bundles E and E ′ over X.

For any morphism of smooth schemes f : X → Y there is an induced pull-back homo-
morphism

f ∗ : K(Y )→ K(X)

taking [E] to [f ∗E]. For example, if X is a smooth scheme over a field F then for any
extension L/F one can consider the associated change of field homomorphism K(X) →
K(XL). Hence, K is a contravariant functor from the category of smooth schemes to the
category of commutative rings.

If f is a proper morphism, there exists also an induced push-forward homomorphism
f∗ : K(X)→ K(Y ).

If X is irreducible, there is a ring epimorphism

rk : K(X)→ Z

taking the class of a vector bundle over X to its rank. This epimorphism is called the rank
homomorphism and has kernel the term τ 1(X) of the topological filtration on K(X) defined
in the next subsection.

Note that since X is smooth, one can define the Grothendieck ring K(X) in exactly the
same way but using coherent sheaves F on X instead of vector bundles E over X.

Filtrations on the Grothendieck ring

In this subsection, we introduce two particular filtrations on the Grothendieck ring K(X) of
a smooth variety X over a field F . Material presented here can be found in [22, §2].

On the one hand, the term of codimension i of the topological filtration on K(X) is given
by
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τ i(X) = 〈[OZ ] |Z ↪→ X and codim(Z) ≥ i〉,
where [OZ ] is the class in K(X) of the structure sheaf of a closed subvariety Z of X.

On the other hand, the term of codimension i of the γ-filtration on K(X) is given by

γi(X) = 〈cKn1
(a1) · · · cKnm(am) |n1 + · · ·+ nm ≥ i and a1, . . . , am ∈ K(X)〉,

where the endomorphism cKn is the n-th Chern class with values in K.
As in the case of Chern classes with values in CH, Chern classes with values in K commute

with push-forwards (see Appendix B), i.e for any morphism f : X → Y of smooth varieties
over F and any a ∈ K(Y ), one has the identity cKn (f ∗(a)) = f ∗(cKn (a)) in K(X).

For any i, one has γi(X) ⊂ τ i(X) and one even has γi(X) = τ i(X) for i ≤ 2. We write
γi/i+1(X) and τ i/i+1(X) for the respective quotients.

We denote by pri the canonical surjection

CHi(X) −� τ i/i+1(X)
[Z] 7−→ [OZ ]

.

By the Riemann-Roch Theorem without denominators the i-th Chern class induces an ho-
momorphism in the opposite way ci : τ i/i+1(X)→ CHi(X) such that the composition ci ◦ pr
is the multiplication by (−1)i−1(i− 1)! (see [11, Example 15.3.6]).

Furthermore, for any smooth F -variety X, Chern classes with different values are con-
nected by the following commutative diagram of maps

K(X)
cCH
i //

cKi
��

CHi(X)

pri
��

γi/i+1(X) // τ i/i+1(X)

(II.4.1)

(see [22, Lemma 2.16]).

Remark II.4.2. Note that for any prime p, one can also consider the γ-filtration γp and
the topological filtration τp on the ring K(X)/pK(X) by replacing K(X) by K(X)/pK(X)
in the previous definitions. In particular, one get that for any 0 ≤ i ≤ p, the map prip :

Chi(X) � τ
i/i+1
p (X), where Ch is the Chow group modulo p, is an isomorphism.

Brown-Gersten-Quillen spectral sequence

For any smooth variety X and any i ≥ 1, the epimorphism pri coincides with the edge
homomorphism of the spectral Brown-Gersten-Quillen structure Ei,−i

2 (X)⇒ K(X) (see [41,
§7]), that is to say

pri : CHi(X) ' Ei,−i
2 (X) � · · ·� Ei,−i

i+1 (X) = τ i/i+1(X).
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In particular, for any prime p, the map prp+1
p is the compostion of the surjections

qr : Ep+1,−p−1
r (X) (mod p) �

Ep+1,−p−1
r (X)

Im(δr)
(mod p),

for r from 2 to p+ 1, where δr is the differential starting at Ep−r+1,−p+r−2
r (X).

Moreover, by the result [31, Theorem 3.4] of A. Merkurjev on Adam’s operations, every
prime divisor l of the order of δr is such that l−1 divides r−1. Therefore, for any r ≤ p−1, the
differential δr is of prime to p order and this implies that qr is an isomorphism. Consequently,
for any smooth variety X and any prime p, one has

Chp+1(X) ' Ep+1,−p−1
p (X) (mod p). (II.4.3)
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Chapter III

Quadrics

In this chapter, we prove some results comparing rationality of algebraic cycles over the
function field of a smooth projective quadric and over the base field. First, we deal Chow
groups modulo 2 and then with integral Chow groups. Our work is largely inspired by the
work of A. Vishik on this topic. We recall that the word scheme means a separated scheme
of finite type over a field and a variety is an integral scheme.

Remark III.0.1. The case of affine norm quadrics can be treated as follows. Let U be a
non-degenerate anisotropic affine norm quadric given by the equation π = c for π a Pfister
form over a field F and c ∈ F×. By a result of M. Rost, one has CHi(U) = 0 for any i > 0,
where CH is the integral Chow group (see [21, Theorem A.4] for a proof). M. Rost used this
in [44] in the proof of the Rost Nilpotence Theorem for Chow motives of smooth projective
quadrics. Combining this with Proposition II.2.5, one get that for any equidimensional
F -variety Y , the change of field homomorphism

CH(Y )→ CH(YF (U)),

is surjective in codimension < dim(U). It is also surjective in codimension dim(U) for a
given Y provided that for each generic point ζ of Y , the variety U remains anisotropic over
F (ζ).

Remark III.0.2. Let Qπ be an r-fold Pfister quadric over a field F of characteristic 6= 2.
The combination of [27, Theorem 8.1] with the motivic decomposition result [44, Proposition
19] and Proposition II.2.5 gives that for any equidimensional F -variety Y the change of field
homomorphism

CH(Y )→ CH(YF (Qπ))

is surjective in codimension < dim(Qπ)/2 = 2r−1 − 1. Note that the proof of [27, Theorem
8.1] uses the computation of Chow groups of affine quadrics mentionned in the previous
remark. One also has the equivalent result for the norm quadric associated with π⊥〈−c〉.
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III.1 Decomposition on Chow groups of projective

quadrics

The main purpose of this section is to introduce the notion of coordinates for a cycle x ∈
CH(Q × Y ), where Q is a smooth projective quadric over F and Y is a smooth F -variety.
This notion will be useful during the proofs of the results of this chapter.

Let Q be a smooth projective quadric over F of dimension n given by a quadratic form
ϕ (see [7, §22]), and let us set i0(Q) := i0(ϕ), where i0(ϕ) is the Witt index of ϕ, i.e the
dimension of a maximal totally isotropic subspace of the form ϕ.

For i = 0, ..., n, let us denote as hi ∈ CHi(Q) the ith power of the hyperplane section
class (note that for any i, the cycle hi is defined over the base field). For i < i0(Q), let us
denote as li ∈ CHi(Q) the class of an i-dimensional totally isotropic subspace of P(V ), where
V is the underlying vector space of ϕ. For i ≤ bn/2c, we still write li ∈ CHi(Q) for the class
of an i-dimensional totally isotropic subspace of P(VF ), (if i < i0(Q), the cycle li ∈ CHi(Q) is
the image of li ∈ CHi(Q) under the change of field homomorphism CH(Q)→ CH(Q)). Let
us notice that for i < bn/2c, the cycle li (in CHi(Q) or in CHi(Q) if i < i0(Q)) is canonical
by [7, Proposition 68.2] (in case of even n, there are two classes of n/2-dimensional totally
isotropic subspaces and we fix one of the two).

Moreover, we recall that the total Chow group CH(Q) is free with basis {hi, li|i ∈ [0, [n
2
]]}

and that the following multiplication rule holds in the ring CH(Q):

h · li = li−1 for any i ∈ [1, [
n

2
]].

(see [7, Proposition 68.1]). Finally, we recall also that

hi = 2ln−i for any i > [
n

2
].

Let x be an element of CHr(Q × Y ). We write pr for the projection Q × Y → Y . For
every i = 0, ..., i0(Q)− 1, we have the following homomorphisms

CHr(Q× Y ) −→ CHr−i(Y )
x 7−→ pr∗(li · x) =: xi

,

and
CHr(Q× Y ) −→ CHr−n+i(Y )

x 7−→ pr∗(h
i · x) =: xi

.

Definition III.1.1. The cycle xi ∈ CHr−i(Y ) is called the coordinate of x on hi while
xi ∈ CHr−n+i(Y ) is called the coordinate of x on li.

Note that if r < n/2, for any i = 0, ..., i0(Q)− 1, one has xi = 0 by dimensional reasons.
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Remark III.1.2. For any nonnegative integer k < i0(Q), let us set x(k) := x−
∑k

i=0 h
i × xi−∑k

i=0 li × xi. Note that for any i = 0, ..., k, the coordinate of x(k) on hi (as well as its
coordinate on li) is 0. The writing

x = x(k) +
k∑
i=0

hi × xi +
k∑
i=0

li × xi

is called a decomposition of x.
Assume now that r < i0(Q) and r ≤ k. Then, by [7, Theorem 66.2], one can write

x(k) =
r∑
i=0

hi × wi

with some wi ∈ CHr−i(Y ). Since, for any i = 0, ..., r, the cycle wi coincides with the
coordinate x(k)i of x(k) on hi, we get that x(k) = 0.

Recall that one says that the quadric Q is completely split if i0(Q) is maximal, i.e i0(Q) =
bn/2c+1 (this terminology is consistent with the fact that for such a quadric the semisimple
group SO(Q) is split, see [29, §25]).

Remark III.1.3. Assume that Y = Q, r = n, and that k < bn/2c (what is the case if the
quadric Q is not completely split). Let x be an element of CHn(Q×Q). Since, for i = 0, ..., k,
the group CHn−i(Q) is free with basis {li} (because i < bn/2c), one can uniquely write

x = x(k) +
k∑
i=0

bi · hi × li +
k∑
i=0

li × xi,

with some bi ∈ Z.

Note that everything in this section holds for Chow groups Ch modulo 2 in place of the
integral Chow groups CH.

III.2 Rationality on Chow groups modulo 2 - Main

result

In this section, we deal with Question I.0.1 in the context of smooth projective quadrics and
for Ch is the Chow group modulo 2.

Let Y be a smooth variety over a field F of characteristic different from 2. We recall that
for any j ≥ 0, the map

Sj : Ch∗(Y )→ Ch∗+j(Y )

denotes the j-th Steenrod operation on Y of cohomological type (see Section II.3).

The complete version of the Main Tool Lemma by A. Vishik is the following (see [49,
Theorem 3.1(1)]).
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Theorem III.2.1 (Vishik). Let Y be a smooth quasi-projective variety over a field F of
characteristic 0 and let Q be a smooth projective quadric. Then for any F (Q)-rational
element y ∈ Chm(Y ), with m < dim(Q)/2 + j, the element Sj(y) is rational.

This can be visualized with the following commutative diagram.

Chm+j(Y )

��

Chm(Y )Sjoo //

��

Chm(YF (Q))

��
Chm+j(Y ) Chm(Y )

Sj
oo � � // Chm(YF (Q))

This technical result plays the crucial role in the construction by A. Vishik of fields with
u-invariant 2r + 1, for r ≥ 3 (in fact, he used the contrapositive statement to show that
certain irrational cycles are F (Q)-irrational, see [48, Theorem 5.1]).

A. Vishik’s proof of the Main Tool Lemma uses symmetric operations in the algebraic
cobordism theory constructed in [52], which requires to work with fields of characteristic 0
since it relies on resolution of singularities.

However, N. Karpenko introduced a method in [23] which works in any characteristic
different from 2 because it only uses Steenrod operations on Chow groups modulo 2 and
no symmetric operations in the algebraic cobordism theory (Chow theory does not rely on
resolution of singularities). Namely, N. Karpenko proved the case j = 0 of the following
theorem and we generalized his method to get a statement similar to Theorem III.2.1 (see
[8, Theorem 1.1]).

Theorem III.2.2. Let Y be a smooth variety over a field F of characteristic different from 2
and let Q be a smooth projective quadric. Then for any F (Q)-rational element y ∈ Chm(Y ),
with m < dim(Q)/2 + j, the element Sj(y) is is the sum of a rational element and the class
modulo 2 of an integral element of exponent 2.

The version of A. Vishik remains stronger in the sense that his use of symmetric operations
in the algebraic cobordism theory allowed him to get rid of the exponent 2 element appearing
in our conclusion.

Nevertheless, since the proof of [48, Theorem 5.1] only deals with torsion-free Chow
groups, our versions with exponent 2 element can also be used here.

Moreover, the only use of the Steenrod operations allows one to get rid of the assumption
of quasi-projectivity for Y (A. Vishik needed that assumption because the algebraic cobor-
dism theory is defined on the category of smooth quasi-projective schemes over a field of
characteristc 0, see [30]).

Note that in the case j = 0, A. Vishik provided an example [49, Statement 3.7] prov-
ing that, without further assumptions on Q and Y , the bound dim(Q)/2 in the previous
statements is sharp.



CHAPTER III. QUADRICS 19

If one imposes Y to be complete and dim(Y ) ≤ dim(Q)−i1(Q) then there is the interesting
result [34, Theorem 3.1] of N. Karpenko and A. Merkurjev stating that any closed point of
YF (Q) of odd degree actually exists over the base field F .

Most of material needed for the proof of Theorem III.2.2 below is taken from the book
[7] by R. Elman, N. Karpenko and A. Merkurjev. In the next section, we prove some other
technical results around rationality of algebraic cycles using the same methods (Proposition
III.3.1 and Theorem III.3.6). Those results are weaker versions of some proved by A. Vishik
in [49] (Proposition 3.3(2) and Theorem 3.1(2)) over fields of characteristic 0.

Proof of Theorem III.2.2

We use material and notation introduced in Section III.1 and we denote by n the dimension
of the quadric Q.

We assume that 0 ≤ j ≤ m (otherwise we get Sj(y) = 0, see Theorem II.3.3). Let
y be an F (Q)-rational element of Chm(Y ). Since the quadric Q is isotropic over F , the
homomorphism CH(Y )→ CH(YF (Q)) is surjective and is consequently an isomorphism (see

Chapter I). The element y ∈ Chm(Y ) being F (Q)-rational, there exists y ∈ Chm(YF (Q))
mapped to y under the homomorphism

Chm(YF (Q))→ Chm(YF (Q))
∼−→ Chm(Y ).

Let us fix an element x ∈ Chm(Q×Y ) mapped to y under the surjection (see Proposition
II.2.4)

Chm(Q× Y ) � Chm(YF (Q)).

Since over F the quadric Q becomes completely split, by Remark III.1.2, the image x ∈
Chm(Q× Y ) of x decomposes as

x = h0 × x0 + · · ·+ h[n
2

] × x[n
2

] + l[n
2

] × x[n
2

] + · · ·+ l[n
2

]−j × x[n
2

]−j (III.2.3)

where xi ∈ Chm−i(Y ) is the coordinate of x on hi and xi ∈ Chm−n+i(Y ) is the coordinate of
x on li (see Definition III.1.1). Note that, by [49, Lemma 3.2], one has

x0 = y.

For every i = 0, ...,m, let si be the image in CHm+i(Q×Y ) of an element in CHm+i(Q×Y )
representing Si(x) ∈ Chm+i(Q× Y ). We also set si := 0 for i > m.

The integer n can be uniquely written in the form n = 2t − 1 + s, where t is a non-
negative integer and 0 ≤ s < 2t. Let us denote 2t− 1 as d. Since d ≤ n, we can fix a smooth
subquadric P of Q of dimension d; we write in for the imbedding

(P ↪→ Q)× idY : P × Y ↪→ Q× Y.
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Lemma III.2.4. For any integer r, one has

Srpr∗in
∗x =

r∑
i=0

pr∗(ci(−TP ) · in∗Sr−i(x)) in Chr+m−d(Y ),

where TP is the tangent bundle of P , ci are the Chern classes, and pr is the projection
P × Y → Y .

Proof. Since pr : P ×Y → Y is a smooth projective morphism between smooth schemes, for
any integer r one has,

Sr ◦ pr∗ =
r∑
i=0

pr∗(ci(−Tpr) · Sr−i)

by Proposition II.3.2, where Tpr is the relative tangent bundle of pr over P × Y (so here
Tpr = TP ). Finally, since in : P × Y ↪→ Q× Y is a morphism between smooth schemes, the
Steenrod operations of cohomological type commute with in∗ (see Theorem II.3.1) and we
are done.

We apply Lemma III.2.4 taking r = d+ j. Since pr∗in
∗x ∈ Chm−d(Y ) and m− d < d+ j

(indeed, m − d < n/2 + j − d by assumption, and n/2 < 2d thanks to our choice of d), we
have Sd+jpr∗in

∗x = 0.
Hence, we have by Lemma III.2.4,

d+j∑
i=0

pr∗(ci(−TP ) · in∗Sd+j−i(x)) = 0 in Chm+j(Y ).

In addition, for any i = 0, ..., d, by [7, Lemma 78.1] we have ci(−TP ) =
(
d+i+1
i

)
· hi,

where hi ∈ Chi(P ) is the ith power of the hyperplane section class, and where the binomial
coefficient is considered modulo 2. Furthermore, for any i = 0, ..., d, the binomial coefficient(
d+i+1
i

)
is odd (because d is a power of 2 minus 1, see [7, Lemma 78.6]). Note also that for

i > d, we have ci(−TP ) = 0 since P is of dimension d. Thus, we get

d∑
i=0

pr∗(h
i · in∗Sd+j−i(x)) = 0 in Chm+j(Y ).

Therefore, the element
d∑
i=0

pr∗(h
i · in∗sd+j−i) ∈ CHm+j(Y )

is twice a rational element.

Furthermore, for any i = 0, ..., d, we have

pr∗(h
i · in∗sd+j−i) = pr∗(in∗(h

i · in∗sd+j−i))
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(the first pr is the projection P ×Y → Y while the second pr is the projection Q×Y → Y ).
Since in is a proper morphism between smooth schemes, we have by the projection formula
(see Proposition II.2.2),

in∗(h
i · in∗sd+j−i) = in∗(h

i) · sd+j−i = hn−d+i · sd+j−i

and we finally get
pr∗(h

i · in∗sd+j−i) = pr∗(h
n−d+i · sd+j−i).

Hence, we get that the element

d∑
i=0

pr∗(h
n−d+i · sd+j−i) ∈ CHm+j(Y )

is twice a rational element.

We would like to compute the sum obtained modulo 4. Since sd+j−i = 0 if d+ j− i > m,
the ith summand is 0 for any i < d + j −m ((j −m) ≤ 0 by assumption). Otherwise – if
i ≥ d + j −m – the factor hn−d+i is divisible by 2 (indeed, we have hn−d+i = 2ld−i because
n− d+ i ≥ n+ j−m > n/2) and in order to compute the ith summand modulo 4 it suffices
to compute sd+j−i modulo 2, that is, to compute Sd+j−i(x).

According to the decomposition (III.2.3), we have

Sd+j−i(x) =

[n
2

]∑
k=0

Sd+j−i(hk × xk) +

j∑
k=0

Sd+j−i(l[n
2

]−k × x[n
2

]−k).

And we set

Ai :=

[n
2

]∑
k=0

Sd+j−i(hk × xk) and Bi :=

j∑
k=0

Sd+j−i(l[n
2

]−k × x[n
2

]−k).

For any k = 0, ..., [n
2
], we have by Theorem II.3.4,

Sd+j−i(hk × xk) =

d+j−i∑
l=0

Sd+j−i−l(hk)× Sl(xk).

Moreover, for any l = 0, ..., d+ j − i, we have by [7, Corollary 78.5],

Sd+j−i−l(hk) =

(
k

d+ j − i− l

)
hd+j+k−i−l.
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Thus, choosing an integral representative εk,l ∈ CHm−k+l(Y ) of Sl(xk) (we choose εk,l = 0
if l > m− k), we get that the element

[n
2

]∑
k=0

d+j−i∑
l=0

(
k

d+ j − i− l

)
(hd+j+k−i−l × εk,l) ∈ CHm+d+j−i(Q× Y )

is an integral representative of Ai.

Therefore, for any i ≥ d+j−m, choosing an integral representative B̃i of Bi, there exists
γi ∈ CHm+d+j−i(Q× Y ) such that

sd+j−i =

[n
2

]∑
k=0

d+j−i∑
l=0

(
k

d+ j − i− l

)
(hd+j+k−i−l × εk,l) + B̃i + 2γi.

Hence, according to the multiplication rules in the ring CH(Q) described in Section III.1,
for any i ≥ d+ j −m, we have

hn−d+i · sd+j−i = 2

[n
2

]∑
k=0

d+j−i∑
l=0

(
k

d+ j − i− l

)
(ll−j−k × εk,l) + hn−d+i · B̃i + 4ld−i · γi.

If k ≤ d − i, one has j + k ≤ d + j − i, and for any 0 ≤ l ≤ d + j − i, we have by
dimensional reasons,

pr∗(ll−j−k × εk,l) =

{
εk,l if l = j + k
0 otherwise.

Otherwise k > d − i, and pr∗(ll−j−k × εk,l) = 0 for any 0 ≤ l ≤ d + j − i. Moreover, for
k > d− i, one has j + k > j + d− i ≥ m > m− k, therefore εk,j+k = 0.

Thus we deduce the identity

pr∗

2

[n
2

]∑
k=0

d+j−i∑
l=0

(
k

d+ j − i− l

)
(ll−j−k × εk,l)

 = 2

[n
2

]∑
k=0

(
k

d− i− k

)
εk,j+k.

Then,

d∑
i=d+j−m

pr∗

2

[n
2

]∑
k=0

d+j−i∑
l=0

(
k

d+ j − i− l

)
(ll−j−k × εk,l)


= 2

d∑
i=d+j−m

[n
2

]∑
k=0

(
k

d− i− k

)
εk,j+k.
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In the latest expression, for every k = 0, ..., [m−j
2

], the total coefficient at εk,j+k is

2
d∑

i=d+j−m

(
k

d− i− k

)
= 2

d−k∑
i=d−2k

(
k

d− i− k

)
= 2

k∑
s=0

(
k

s

)
= 2k+1,

which is divisible by 4 for k ≥ 1.

Therefore, the cycle
∑d

i=d+j−m pr∗(h
n−d+i ·sd+j−i) ∈ CHm+j(Y ) is congruent modulo 4 to

2ε0,j +
d∑

i=d+j−m

pr∗(h
n−d+i · B̃i).

Thus, the cycle 2ε0,j+
∑d

i=d+j−m pr∗(h
n−d+i ·B̃i) is congruent modulo 4 to twice a rational

element.

Finally, the following lemma will lead to the conclusion.

Lemma III.2.5. For any d + j −m ≤ i ≤ d, one can choose an integral representative B̃i

of Bi so that
pr∗(h

n−d+i · B̃i) = 0.

Proof. We recall that Bi :=
∑j

k=0 S
d+j−i(l[n

2
]−k × x[n

2
]−k). For any k = 0, ..., j, we have

Sd+j−i(l[n
2

]−k × x[n
2

]−k) =

d+j−i∑
l=0

Sd+j−i−l(l[n
2

]−k)× Sl(x[n
2

]−k).

And for any l = 0, ..., d+ j − i, we have by [7, Corollary 78.5],

Sd+j−i−l(l[n
2

]−k) =

(
n+ 1− [n

2
] + k

d+ j − i− l

)
l[n

2
]−k−d−j+i+l.

Thus, choosing an integral representative δk,l ∈ CHm−k+l(Y ) of Sl(x[n
2

]−k) (we choose
δk,l = 0 if l > m+ [n

2
]− k − n), we get that the element

j∑
k=0

d+j−i∑
l=0

(
n+ 1− [n

2
] + k

d+ j − i− l

)
(l[n

2
]−k−d−j+i+l × δk,l) ∈ CHm+d+j−i(Q× Y )

is an integral representative of Bi. Let us denote it B̃i.

Hence, we have

hn−d+i · B̃i =

j∑
k=0

d+j−i∑
l=0

(
n+ 1− [n

2
] + k

d+ j − i− l

)
(l[n

2
]−k−n−j+l × δk,l).
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Moreover, we have

pr∗(l[n
2

]−k−n−j+l × δk,l) 6= 0 =⇒ l = j + k + n− [
n

2
].

Furthermore, for any 0 ≤ k ≤ j, we have d+j−i ≤ m < j+ n
2
≤ j+n−[n

2
] ≤ j+k+n−[n

2
].

Thus, for any 0 ≤ l ≤ d + j − i and for any 0 ≤ k ≤ j, we have pr∗(l[n
2

]−k−n−j+l × δk,l) = 0.

It follows that pr∗(h
n−d+i · B̃i) = 0 and we are done.

We deduce from Lemma III.2.5 that the cycle 2ε0,j ∈ CHm+j(Y ) is congruent modulo 4
to twice a rational cycle. Therefore, there exist a cycle γ ∈ CHm+j(Y ) and a rational cycle
α ∈ CHm+j(Y ) so that

2ε0,j = 2α + 4γ,

hence, there exists an exponent 2 element δ ∈ CHm+j(Y ) so that

ε0,j = α + 2γ + δ.

Finally, since ε0,j is an integral representative of Sj(x0) and x0 = y, we get that Sj(y) is
the sum of a rational element and the class modulo 2 of an integral element of exponent 2.
We are done with the proof of Theorem III.2.2.

III.3 Rationality on Chow groups modulo 2 - Other

results

In this section, we continue to use notation introduced in the previous section and we prove
some results which deal with the limit case of Theorem III.2.2. Those results have already
been proved by A. Vishik over fields of characteristic 0 (see [49, Proposition 3.3(2) and
Theorem 3.1(2)] respectively).

Proposition III.3.1. Assume that m = [n+1
2

] + j. Let x ∈ Chm(Q × Y ) be some element,
and let xi, xi be the coordinates of x (as in decomposition (III.2.3)). Then the element

Sj(x0) + x0 · x[n
2

]

differs from a rational element by the class of an exponent 2 element of CHm+j(Y ).

Proof. The image x ∈ Chm(Q × Y ) of x decomposes as in (III.2.3). Let x ∈ CHm(Q × Y )
be an integral representative of x. The image x ∈ CHm(Q× Y ) decomposes as

x = h0 × x0 + · · ·+ h[n
2

] × x[n
2

] + l[n
2

] × x[n
2

] + · · ·+ l[n
2

]−j × x[n
2

]−j

where the elements xi ∈ CHi(Y ) (resp. xi ∈ CHm−n+i(Y )) are some integral representatives
of the elements xi (resp. xi) appearing in (III.2.3).
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For every i = 0, ...,m−1, let si be the image in CHm+i(Q×Y ) of an element in CHm+i(Q×
Y ) representing Si(x) ∈ Chm+i(Q×Y ). We also set si := 0 for i > m. Finally, we set s0 := x
and sm := (s0)

2
(because Sm(x) = x2, see Theorem II.3.3). Therefore, for any nonnegative

integer i, si is the image in CHm+i(Q× Y ) of an integral representative of Si(x).

The integer n can be uniquely written in the form n = 2t−1+s, where t is a non-negative
integer and 0 ≤ s < 2t. Let us denote 2t − 1 as d.

We would like to use again Lemma III.2.4 to get that the sum

d∑
i=d+j−m

pr∗(h
n−d+i · sd+j−i) ∈ CHm+j(Y ) (III.3.2)

is twice a rational element. To do this, it suffices to check that m − d < d + j. Then the
same reasoning as the one used during the proof of Theorem III.2.2 gives us the desired
result. We have m− d = [n+1

2
] + j − d = d+ j + ([n+1

2
]− 2d), and since our choice of d and

the assumption n > 0, one can easily check that 2d > [n+1
2

]. Thus we do get that the sum
(III.3.2) is twice a rational element. We would like to compute that sum modulo 4.

For any i ≥ d+ j−m, the factor sd+j−i present in the ith summand is congruent modulo
2 to Sd+j−i(x), which is represented by Ãi + B̃i, where

Ãi :=

[n
2

]∑
k=0

d+j−i∑
l=0

(
k

d+ j − i− l

)
(hd+j+k−i−l × εk,l)

and

B̃i :=

j∑
k=0

d+j−i∑
l=0

(
n+ 1− [n

2
] + k

d+ j − i− l

)
(l[n

2
]−k−d−j+i+l × δk,l)

where εk,l ∈ CHm−k+l(Y ) (resp. δk,l ∈ CHm−k+l(Y )) is an integral representative of Sl(xk)
(resp. of Sl(x[n

2
]−k)), and we choose εk,l = 0 if l > m−k (resp. δk,l = 0 if l > m+[n

2
]−k−n).

Finally, in the case of even m− j , we choose εm−j
2
,m+j

2
= (x

m−j
2 )2.

Furthermore, for any i ≥ d+ j −m, we have

hn−d+i · B̃i =

j∑
k=0

d+j−i∑
l=0

(
n+ 1− [n

2
] + k

d+ j − i− l

)
(l[n

2
]−k−n−j+l × δk,l).

And we have

pr∗(l[n
2

]−k−n−j+l × δk,l) 6= 0 =⇒ l = j + k + n− [
n

2
].

On the one hand, for any i > d+j−m, we have d+j−i < m = n−[n
2
]+j ≤ j+k+n−[n

2
].

Hence, for any 0 ≤ l ≤ d+ j − i and for any 0 ≤ k ≤ j, we have pr∗(l[n
2

]−k−n−j+l × δk,l) = 0.

Then, for any i > d+ j −m, we get that pr∗(h
n−d+i · B̃i) = 0.



CHAPTER III. QUADRICS 26

On the other hand, for i = d+ j −m, we have d+ j − i = j + n− [n/2] and

l = j + k + n− [
n

2
]⇐⇒ k = 0 and l = d+ j − i.

Thus, we have
pr∗(h

n+j−m · B̃d+j−m) = δ0,m.

Since m > m+ [n/2]− n, one has δ0,m = 0.

Therefore, for any i ≥ d+ j −m, we have

pr∗(h
n−d+i · B̃i) = 0.

Then, for any i > d + j − m, the cycle hn−d+i is divisible by 2. Hence, according to
the multiplication rules in the ring CH(Q) described in Section III.1 and by doing the same
computations as those done during the proof of Theorem III.2.2, for any i > d + j −m, we
get the congruence

pr∗(h
n−d+i · sd+j−i) ≡ 2

[n
2

]∑
k=0

(
k

d− i− k

)
εk,j+k (mod 4).

Moreover, since d − i − k ≤ k if and only if k ≤ [m−j
2

], for any i > d + j −m, we have the
congruence

pr∗(h
n−d+i · sd+j−i) ≡ 2

[m−j
2

]∑
k=0

(
k

d− i− k

)
εk,j+k (mod 4). (III.3.3)

Now, we would like to study the (d + j − m)th summand, that is to say the cycle
pr∗(h

n+j−m · sm) modulo 4. That is the purpose of the following lemma.

Lemma III.3.4. One has

pr∗(h
n+j−m · sm) ≡

{
2εm−j

2
,m+j

2
+ 2x0 · x[n

2
] (mod 4) if m− j is even

2x0 · x[n
2

] (mod 4) if m− j is odd.

Proof. We recall that sm = (x)2. Thus, we have

hn+j−m · sm = hn+j−m · (A+B + C)

where
A :=

∑
0≤i,l≤[n

2
]

hi+l × (xi · xl),

B :=
∑

0≤i,l≤j

(l[n
2

]−i · l[n
2

]−l)× (x[n
2

]−i · x[n
2

]−l)
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and

C := 2

[n
2

]∑
i=0

hi × xi ·
j∑
l=0

l[n
2

]−l × x[n
2

]−l.

First of all, we have

hn+j−m · A =
∑

0≤i,l≤[n
2

]

hn+j−m+i+l × (xi · xl).

Now we have m = [n+1
2

] + j, so n + j −m + i + l = [n
2
] + i + l. Thus, if i ≥ 1 or l ≥ 1, we

have n + j −m + i + l > [n
2
], and in this case we have hn+j−m+i+l = 2lm−i−l−j. Therefore,

the cycle hn+j−m · A is equal to

hn+j−m × (x0)2 + 4
∑

1≤i,l≤[n
2

]
i6=l

lm−i−l−j × (xi · xl) + 2

[n
2

]∑
i=1

lm−j−2i × (xi)2.

Then, since n ≥ 1, we have n+ j −m 6= n. It follows that pr∗(h
n+j−m × (x0)2) = 0.

Furthermore, we have

pr∗(

[n
2

]∑
i=1

lm−j−2i × (xi)2) =

{
(x

m−j
2 )2 if m− j is even
0 if m− j is odd.

Therefore, pr∗(h
n+j−m · A) is congruent modulo 4 to 2εm−j

2
,m+j

2
if m− j is even, and to 0 if

m− j is odd.

Then, by dimensional reasons, we have l[n
2

]−i · l[n
2

]−l = 0 if i ≥ 1 or if l ≥ 1. Hence, we

have B = (l[n
2

] · l[n
2

])× (x[n
2

])
2. It follows that

hn+j−m ·B = (l0 · l[n
2

])× (x[n
2

])
2

and l0 · l[n
2

] = 0 by dimensional reasons. Therefore, we get that hn+j−m ·B = 0.

Finally, we have

hn+j−m · C = 2

[n
2

]∑
i=0

hn+j−m+i × xi ·
j∑
l=0

l[n
2

]−l × x[n
2

]−l.

Now for any i ≥ 1, we have n + j − m + i > [n
2
], and in this case the cycle hn+j−m+i is

divisible by 2. Thus, the element hn+j−m · C is congruent modulo 4 to

2

j∑
l=0

(h[n
2

] · l[n
2

]−l)× (x0 · x[n
2

]−l),
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and, by dimensional reasons, in the latest sum, each summand is 0 except the one corre-
sponding to l = 0. Therefore, the cycle hn+j−m ·C is congruent modulo 4 to 2l0× (x0 ·x[n

2
]).

It follows that pr∗(h
n+j−m · C) is congruent modulo 4 to 2x0 · x[n

2
]. We are done.

By the congruence (III.3.3) and Lemma III.3.4, we deduce that the cycle

d∑
i=d+j−m

pr∗(h
n−d+i · sd+j−i)

is congruent modulo 4 to

2
d∑

i=d+j−m

[m−j
2

]∑
k=0

(
k

d− i− k

)
εk,j+k + 2x0 · x[n

2
].

It follows that the cycle

2
d∑

i=d+j−m

[m−j
2

]∑
k=0

(
k

d− i− k

)
εk,j+k + 2x0 · x[n

2
]

is congruent modulo 4 to twice a rational element α ∈ CHm+j(Y ). Then, we finish as in the
proof of Theorem III.2.2. For every k = 0, ..., [(m − j)/2], the total coefficient at εk,j+k is
2k+1, which is divisible by 4 for k ≥ 1. Therefore, there exists a cycle γ ∈ CHm+j(Y ) such
that

2ε0,j + 2x0 · x[n
2

] = 2α + 4γ,

hence, there exists an exponent 2 element δ ∈ CHm+j(Y ) so that

ε0,j + x0 · x[n
2

] = α + 2γ + δ.

Finally, since ε0,j is an integral representative of Sj(x0) and x0 (resp. x[n
2

]) is an integral

representative of x0 (resp. of x[n
2

]), we get that Sj(x0) + x0 · x[n
2

] differs from a rational

element by the class of an exponent 2 element of CHm+j(Y ). We are done with the proof of
Proposition III.3.1.

Remark III.3.5. In the case of j = 0, and if we make the extra assumption that the image
of x under the composition

Chm(Q× Y )→ Chm(QF (Y ))→ Chm(QF (Y ))→ Chm(Q)

(the last passage is given by the inverse of the change of field isomorphism) is rational, then
we get the stronger result that the cycle x0 differs from a rational element by the class of an
exponent 2 element of CHm(Y ). That is the subject of [23, Proposition 4.1].
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Finally, the following theorem is a consequence of Proposition III.3.1.

Theorem III.3.6. Assume that m = [n+1
2

] + j. Let y be an F (Q)-rational element of

Chm(Y ). Then there exists a rational element z ∈ Chj(Y ) such that Sj(y) + y · z is the sum
of a rational element and the class modulo 2 of an integral element of exponent 2.

Proof. The element y being F (Q)-rational, there exists x ∈ Chm(Q × Y ) mapped to yF (Q)

under the composition

Chm(Q× Y )→ Chm(YF (Q))→ Chm(YF (Q)).

Moreover, the image x ∈ Chm(Q× Y ) of x decomposes as in (III.2.3). Thus, by Propo-
sition III.3.1, the cycle Sj(y) + y · x[n

2
] is the sum of a rational element and the class of an

element of exponent 2.

Finally, we have by Proposition II.1.7,

(pr)∗(x · h[n
2

]) = pr∗(x · h[n
2

]) = x[n
2

] ∈ Chj(Y )

and we are done.
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III.4 Rationality on integral Chow groups - Main

version

In this section we continue to use notation introduced in the previous sections and we deal
with Question I.0.1 still in the context of smooth projective quadrics but for integral Chow
groups CH.

In the aftermath of the Main Tool Lemma, A. Vishik adressed similar questions for inte-
gral Chow groups CH instead of Chow groups modulo 2. Namely, he proved the following
integral version of the Main Tool Lemma (see [51, Theorem 3.1]).

Theorem III.4.1 (Vishik). Let Y be a smooth quasi-projective variety over a field F of
characteristic 0 and let Q be a smooth projective quadric with i1(Q) > 1. Then any F (Q)-
rational element y ∈ CHm(Y ) , with m < dim(Q)/2, is rational.

In the above statement, the assumption that the first Witt index i1(Q) of Q is strictly
greater than 1 means that Q has a projective line defined over the generic point of Q (such
quadrics are quite widespread).

Once again, the use of symmetric operations in the algebraic cobordism theory forced
A. Vishik to work with a smooth quasi-projective variety Y over a field of characteristic 0.

However, we proved a similar result using only Chow theory itself, which allows one to
get a valid statement in any characteristic different from 2 (since Chow theory does not rely
on resolution of singularities) and to get rid of the assumption of quasi-projectivity for Y
(see [9, Theorem 3.1]).

Theorem III.4.2. Let Y be a smooth variety over a field F of characteristic different from
2 and let Q be a smooth projective quadric with i1(Q) > 1. Then any F (Q)-rational element
y ∈ CHm(Y ) , with m < dim(Q)/2, is the sum of a rational and an exponent 2 element.

Once again, the version of A. Vishik remains stronger in the sense that his use of sym-
metric operations in the algebraic cobordism theory allowed him to get rid of the exponent
2 element appearing in our conclusion.

The main idea of the proof of Theorem III.4.2 (inspired by the proof of Theorem III.4.1) is
as follows. First of all, we consider the F (Q)-rational element y ∈ CHm(Y ) as the coordinate
on h0 of a rational cycles x ∈ CH

m
(Q × Y ), and we use x mod 2, the 1-primordial cycle in

Ch(Q×Q) and the Steenrod operations on Chow groups modulo 2 to form “special cycles”.
Then we choose carefully some integral representatives of these special cycles and we obtain
y as a specific linear combination of rational cycles (modulo 2-torsion). Most of material
needed for the proof can be found Chapter XIII and Chapter XV of the book [7].

Remark III.4.3. Let Q be a smooth projective quadric over F of positive dimension (in
that case, Q is geometrically integral) given by a quadratic form ϕ. Since for isotropic Q,
any F (Q)-rational element (in any codimension) is rational, one can make the assumption
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that the quadric Q is anisotropic in order to prove Theorem III.4.2. In particular, Q is not
completely split and one can consider the first Witt index i1(ϕ) of ϕ, which we simply denote
as i1.

Proof of Theorem III.4.2

We denote by n the dimension of Q.
The statement being trivial for negative m, we may assume that m ≥ 0 in the proof. Let

y be an F (Q)-rational element of CHm(Y ). Since over F the quadric Q becomes completely
split and m < n/2, one can fix an element x ∈ CHm(Q×Y ), as in the beginning of the proof
of Theorem III.2.2, such that the image x ∈ CHm(Q× Y ) of x decomposes as

x =
m∑
i=0

hi × xi, (III.4.4)

where xi ∈ CHm−i(Y ) is the coordinate of x on hi and x0 = y (see Remark III.1.2 with
r = k = m).

Let π ∈ Chn+i1−1(Q2) be the 1-primordial cycle (see [7, Definition 73.16] and paragraph
right after [7, Theorem 73.26]). Since i1 > 1, by [7, Proposition 83.2], we get that the cycle
(h0 × hi1−1) · π ∈ Chn(Q2) decomposes as

(h0 × hi1−1) · π =
r∑
p=0

εp(h
2p × l2p) +

r∑
p=0

εp(l2p+i1−1 × h2p+i1−1), (III.4.5)

where εp ∈ {0, 1}, ε0 = 1, and r = bd−i1+1
2
c with d = bn

2
c. Thus, one can choose a rational

integral representative γ ∈ CHn(Q2) of (h0 × hi1−1) · π such that γ decomposes as

γ =

bn
2
c∑

i=0

αi(h
i × li) +

bn
2
c∑

i=0

βi(li × hi) + δ(lbn
2
c × lbn

2
c), (III.4.6)

with some integers αi, βi and δ, where αi is even for all odd i and α0 is odd.
The element γ being rational, there exists γ ∈ CHn(Q2) mapped to γ under the change

of field homomorphism CHn(Q2) → CHn(Q
2
). The cycles γ and γ are considered here as

correspondences of degree 0 (correspondences are defined in Appendix C).

Lemma III.4.7. For any i = 0, ...,m, one can choose a rational integral representative
si ∈ CHm+i(Q× Y ) of Si((x mod 2) ◦ (γ mod 2)) such that

(i) for any 0 ≤ j ≤ m, 2si,j is rational , where si,j ∈ CHm+i−j(Y ) is the coordinate of si

on hj;

(ii) for any odd 0 ≤ j ≤ m, si,j is rational.
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Proof. First of all, since m < n/2, for any j = 0, ...,m, one has hn−j = 2lj. Therefore,
for any rational cycle s ∈ CH(Q × Y ), the element 2pr∗(lj · s) (where pr is the projection
Q× Y → Y ) is rational and (i) is proved.

Assume now that j is odd. By Proposition II.3.6(i), for any i = 0, ...,m, one has

Si((x mod 2) ◦ (γ mod 2)) =
m∑
k=0

m∑
t=0

(St(x mod 2) · ci−k−t(−TQ)) ◦ Sk(γ mod 2). (III.4.8)

For every k = 0, ...,m, let ãk ∈ CHn+k(Q × Q) be a rational integral representative of
Sk(γ mod 2) ∈ Chn+k(Q×Q). We write ãk,j ∈ CHn+k−j(Q) for the coordinate of ãk on hj.
For every k = 0, ...,m and every t = 0, ...,m, we choose a rational integral representative
dk,t ∈ CHm+i−k(Q × Y ) of St(x mod 2) · ci−k−t(−TQ) ∈ Chm+i−k(Q × Y ). Thus, by the
equation (III.4.8), the cycle

si :=
m∑
k=0

m∑
t=0

dk,t ◦ ãk ∈ CHm+i(Q× Y )

is a rational integral representative of Si((x mod 2) ◦ (γ mod 2)).

Moreover, for any 0 ≤ k ≤ m, one has by (III.4.5)

Sk(γ mod 2) =
r∑
p=0

εpS
k(h2p × l2p) +

r∑
p=0

εpS
k(li1−1+2p × hi1−1+2p).

Therefore, for any 0 ≤ k ≤ m, denoting as ak,j ∈ Chn+k−j(Q) the coordinate of
Sk(γ mod 2) on hj, we have

ak,j =
∑

(p,t)∈Ek,j

εp

(
2p

t

)
Sk−t(l2p),

where Ek,j = {(p, t) ∈ J0, rK× J0, kK |2p+ t = j}.
Furthermore, since j is odd, for any (p, t) ∈ Ek,j, the binomial coefficient

(
2p
t

)
is even.

Therefore, for any 0 ≤ k ≤ m, we have ak,j = 0 and, consequently, the cycle ãk,j ∈
CHn+k−j(Q) is divisible by 2. Since j − k < n/2, the group CHn+k−j(Q) is generated
by lj−k and 2lj−k = hn+k−j (see Section III.1). Hence, for any 0 ≤ k ≤ m, the cycle ãk,j is
rational.

According to the composition rules of correspondences described in Appendix C, we have
the identity

hj × si,j =
m∑
k=0

m∑
t=0

dk,t ◦ (hj × ãk,j) =
m∑
k=0

m∑
t=0

hj × pr∗(ãk,j · dk,t).

Therefore, since for any 0 ≤ k ≤ m and for any 0 ≤ t ≤ m, the cycles ãk,j and dk,t are
rational, we get that si,j is rational and (ii) is proved.
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Furthermore, we fix a smooth subquadric P of Q of dimension m; we write in for the
imbedding

(P ↪→ Q)× idY : P × Y ↪→ Q× Y.

Then, considering x as a correspondence, we set

z := in∗(x ◦ γ) ∈ CHm(P × Y ).

In view of decompositions (III.4.4) and (III.4.6), we get that the image z ∈ CHm(P ×Y )
of z can be written as

z =
m∑
i=0

αi · hi × xi

(we recall that the integer αi is even for all odd i and that α0 is odd). For every i = 0, ...,m,
we set zi := αi ·xi ∈ CHm−i(Y ). Note that since x0 = y, the cycle z0 is an odd multiple of y.

Note also that since the Steenrod operations of cohomological type commute with in∗

(see Theorem II.3.1), for every i = 0, ...,m, the cycle in∗(si) ∈ CHm+i(P × Y ) (with si as in
Lemma III.4.7) is a rational integral representative of Si(z mod 2) ∈ Chm+i(P × Y ).

Lemma III.4.9. For any b(m+ 1)/2c ≤ m′ ≤ m, the cycle

m′∑
i=0

(
m′ + i+ 1

i

)
sm
′−i,m′−i ∈ CHm(Y )

is the sum of a rational element δm′ and an exponent 2 element.

Proof. For any b(m+1)/2c ≤ m′ ≤ m, we can fix a smooth subquadric P ′ of P of dimension
m′; we write inm′ for the imbedding

(P ′ ↪→ P )× idY : P ′ × Y ↪→ P × Y.

By Lemma III.2.4, one has

Sm
′
prm′∗inm′

∗(z mod 2) =
m′∑
i=0

prm′∗(ci(−TP ′) · inm′∗Sm
′−i(z mod 2)) in Chm(Y )

(where TP ′ is the tangent bundle of P ′, ci are the Chern classes, and prm′ is the projection
P ′ × Y → Y ).

If m′ ≥ b(m + 1)/2c+ 1, since prm′∗inm′
∗(z mod 2) ∈ Chm−m

′
(Y ) and m−m′ < m′, we

have Sm
′
prm′∗inm′

∗(z mod 2) = 0. Therefore, we get

m′∑
i=0

prm′∗(ci(−TP ′) · inm′∗Sm
′−i(z mod 2)) = 0 in Chm(Y ).



CHAPTER III. QUADRICS 34

Furthermore, by [7, Lemma 78.1], for any i = 0, ...,m′, one has ci(−TP ′) ≡
(
m′+i+1

i

)
hi (mod 2).

By combining the congruence for Chern classes with the observation just prior to the state-
ment of the lemma, we deduce that

m′∑
i=0

(
m′ + i+ 1

i

)
prm′∗(h

i · inm′∗in∗(sm
′−i))

is twice a rational element δm′ ∈ CHm(Y ). Since, by the projection formula (Proposition
II.2.2), for any i = 0, ...,m′, one has prm′∗(h

i · inm′∗in∗(sm
′−i)) = pr∗(h

n−m′+i · sm′−i) =
2sm

′−i,m′−i, we are done with the case m′ ≥ b(m+ 1)/2c+ 1.

If m′ = b(m + 1)/2c and m is odd, we still have m −m′ < m′ and we can do the same
reasoning as in the first case. If m′ = b(m+1)/2c and m is even, we have m−m′ = m′ = m/2,
and in this case, we have

Sm/2prm/2∗inm/2
∗(z mod 2) = (prm/2∗inm/2

∗(z mod 2))2.

Therefore, by the same reasoning as in the first case, there exists δm/2 ∈ CHm(Y ) such that

2

m/2∑
i=0

(
m
2

+ i+ 1

i

)
s
m
2
−i,m

2
−i = 2δm/2 + (prm/2∗inm/2

∗(z))2.

Moreover, we have

(prm/2∗inm/2
∗(z))2 = (2z

m
2 )2 = 2 · (2z

m
2

2
),

and since for any i = 0, ...,m, the cycle 2zi = prm∗(h
m−i · z) is rational, the cycle

2z
m
2

2
= prm∗(z

2)− 4
∑

0≤i≤m
i6=m2

zi · zm−i

is rational also and we are done with the proof of Lemma III.4.9.

Lemma III.4.10. For any j = 0, ...,m, one can choose an integral representative vj ∈
CHm(Y ) of Sj(zj mod 2) such that

(i) the cycle 2vj is rational and v0 is an odd multiple of y;

(ii) the cycle vj is rational for odd j;

(iii) for any k = 0, ...,m, one has sk,k =
∑k

j=0 a
k
jv

j, where akj is the binomial coefficient(
j

k−j

)
.
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Proof. We induct on j. For j = 0, one has 2z0 = prm∗(h
m · z). Hence the element 2z0 is

rational, and since the cycle z0 is an odd multiple of y, we choose v0 := z0. For j = 1, one
has

S1((x mod 2)◦(γ mod 2)) =
m∑
i=0

hi×S1(zi mod 2)+
m∑
i=0

i·hi+1×(zi mod 2) ∈ Chm+1(Q×Y ).

In the latter expression, the coordinate on h1, whose s1,1 is an integral representative, is
S1(z1 mod 2). Since, by Lemma III.4.7(ii), the cycle s1,1 is rational, we choose v1 := s1,1.
Assume that the representatives v0, v1, ..., vj−1 are already built.

One has

Sj((x mod 2) ◦ (γ mod 2)) =

j∑
k=0

m∑
i=0

Sk(hi)× Sj−k(zi mod 2) ∈ Chm+j(Q× Y ).

In the latter expression, the coordinate on hj, whose sj,j is an integral representative, is

ajj · Sj(zj mod 2) + ajj−1 · Sj−1(zj−1 mod 2) + · · ·+ aj0 · S0(z0 mod 2),

where aji =
(
i
j−i

)
for any 0 ≤ i ≤ j. Therefore, the cycle

vj := sj,j − (ajj−1 · vj−1 + · · ·+ aj0 · v0)

is an integral representative of Sj(zj mod 2). Moreover, the element

2sj,j = 2(vj + ajj−1 · vj−1 + · · ·+ aj0 · v0)

is rational by Lemma III.4.7(i). By the induction hypothesis, we get that the cycle 2vj is
rational. Furthermore, if j is odd, then the cycle sj,j is rational by Lemma III.4.7(ii), and
for any even 0 ≤ i ≤ j, the binomial coefficient aji is even. Therefore, by the induction
hypothesis, we get that the cycle vj is rational. We are done with the proof of Lemma
III.4.10.

Finally, the following lemma will lead to the conclusion. Denote by η(X) the power series∑
i≥0 ηi ·X i in variable X, where ηl = (−1)l

(
2l+1
l

)
.

Lemma III.4.11. For any polynomial f ∈ Z[X] of degree ≤ bm/2c, the linear combination

m∑
j=0

gm−j · vj

is the sum of a rational element and an exponent 2 element, where g(X) =
∑

l gl ·X l is the
power series f(X) · η(X).
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Proof. Let f =
∑
fk · Xk ∈ Z[X] be some polynomial of degree ≤ bm/2c. Consider the

element

ε :=
m∑

m′=bm+1
2
c

fm−m′ · δm′ ∈ CHm(Y ),

with δm′ as in Lemma III.4.9. Then, we have

2ε = 2
m∑

m′=bm+1
2
c

fm−m′
m′∑
i=0

(
m′ + i+ 1

i

)
sm
′−i,m′−i.

Furthermore, by Lemma III.4.10(iii), for any k = 0, ...,m, one has sk,k =
∑k

j=0 a
k
jv

j. Hence,
we get the identity

2ε = 2
m∑

m′=bm+1
2
c

fm−m′
m′∑
j=0

(
m′−j∑
l=0

(
m′ + l + 1

l

)(
j

m′ − l − j

))
vj,

and the latter identity can be rewritten as

2ε = 2

bm
2
c∑

i=0

m∑
j=0

fi · ci,j · vj,

where ci,j :=
∑m−i−j

l=0

(
m−i+l+1

l

)(
j

m−i−j−l

)
. If m− i− j < 0, then we have ci,j = ηm−i−j = 0.

Otherwise – if m− i− j ≥ 0 – we set k := m− i− j, and we have

ci,j ≡
k∑
l=0

(
−k − j − 2

l

)(
j

k − l

)
(mod 2),

which is congruent modulo 2 to
(−k−2

k

)
by the Chu-Vandermonde Identity (see [1, Corollary

2.2.3]). Therefore, since
(−k−2

k

)
≡
(

2k+1
k

)
(mod 2), we get that, for any i = 0, ..., bm/2c and

for any j = 0, ...,m,
ci,j ≡ ηm−i−j (mod 2).

Thus, since by Lemma III.4.10(i), for any j = 0, ...m, the cycle 2vj is rational, we get that
there exists an element δ ∈ CHm(Y ) such that

2δ = 2

bm
2
c∑

i=0

m∑
j=0

fi · ηm−i−j · vj = 2
m∑
j=0

gm−j · vj,

where g(X) =
∑

l gl ·X l is the power series f(X) · η(X). Hence, there exists an exponent 2
element λ ∈ CHm(Y ) such that

m∑
j=0

gm−j · vj = δ + λ,

and we are done.
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We finish now the proof of Theorem III.4.2. By [51, Lemma 3.13], there exists a polyno-
mial f ∈ Z[X] of degree ≤ bm/2c such that the power series g(X) := f(X) · η(X) has an
odd coefficient gm at Xm and even coefficients gm−j (with even j) at smaller monomials of
the same parity. Applying Lemma III.4.11 to this polynomial f , we get that there exists an
exponent 2 element λ ∈ CHm(Y ) such that the cycle

m∑
j=0

gm−j · vj − λ

is rational. Since for any j = 1, ...,m, the cycle 2vj is rational and vj is rational for all odd
j, the product gm−j · vj, with j ≥ 1, is always rational. Therefore, we get that the cycle

gm · v0 − λ

is rational. Furthermore, since gm is odd, the cycle 2v0 is rational and v0 = α0 · y, where α0

is odd, there exist an integer k and an element δ ∈ CHm(Y ) such that gm · v0 = y+ 2ky+ δ.
Finally, note that the cycle 2y is rational since it is equal to pr∗(h

n · x).
This concludes the proof of Theorem III.4.2.

III.5 Rationality on integral Chow groups - A

stronger version

In this section, we continue to use notation introduced in the previous section. The following
result is stronger than Theorem III.4.2 although its statement is less eloquent.

Let K/F be an extension and X be an F -variety. In the following proof, an element
x ∈ CH∗(XK) is called rational if it is in the image of the change of field homomorphism
CH∗(X)→ CH∗(XK).

In the same way as before, the following theorem is a generalization of [51, Proposition
3.7] to any field of characteristic different from 2 (although, putting aside characteristic,
Theorem III.5.1 is still weaker than the original version in the sense that an exponent 2
element appears in the conclusion).

Theorem III.5.1. Assume that m < n/2 and i1 > 1, and let E/F be an extension such
that i0(QE) > m. Then, for any y ∈ CHm(YF (Q)) there exists δ ∈ CHm(Y ) and an exponent
2 element λ ∈ CHm(YE(Q)) such that yE(Q) = δE(Q) + λ.

Proof. We proceed the same way as in the proof of Theorem III.4.2.
Let us fix an element x ∈ CHm(Q× Y ) mapped to y under the surjection

CHm(Q× Y ) � CHm(YF (Q)).
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Since i0(QE) > m, by Remark III.1.2 (applied with r = k = m), the image xE(Q) ∈
CHm(QE(Q) × YE(Q)) of x decomposes as

xE(Q) =
m∑
i=0

hi × xi

where xi ∈ CHm−i(YE(Q)) is the coordinate of xE(Q) on hi.

The image of x under the composition

CHm(Q× Y )→ CHm(QE × YE)→ CHm(YE(Q))

is x0. Therefore, by the commutativity of the diagram

CHm(QE × YE) // CHm(YE(Q))

CHm(Q× Y )

OO

// CHm(YF (Q))

OO

we get that x0 = yE(Q) and we want to prove that there exists δ ∈ CHm(Y ) and an exponent
2 element λ ∈ CHm(YE(Q)) such that x0 = δE(Q) + λ.

Let π ∈ Chn+i1−1(Q2) be an element mapped to the 1-primordial cycle under the homo-
morphism Ch∗(Q)→ Ch∗(Q). By [7, Proposition 83.2], there is no cycle of type hj × lj with
odd j appearing in the decomposition of (h0 × hi1−1) · πE(Q) ∈ Chn(Q2

E(Q)
) (and the cycle

h0 × l0 appears).

Moreover, since the coefficients near the cycles contained in the decomposition of (h0 ×
hi1−1) ·πE(Q) ∈ Chn(Q2

E(Q)) given by Remark III.1.3 (with k = m) do not change when going

over E(Q), the cycle (h0 × hi1−1) · πE(Q) can be uniquely written as a linear combination of
cycles of type hj × lj with even j ∈ J0,mK (and the coefficient near h0× l0 is 1) , of cycles of
type lj × hj (where j ∈ J0,mK), and of a cycle ρ ∈ Chn(Q2

E(Q)) whose coordinate on hj (as

well as coordinate on lj) is 0 for j ∈ J0,mK.

Thus, fixing a rational integral representative γE(Q) ∈ CHn(Q2
E(Q)) of (h0× hi1−1) · πE(Q),

we get that the integral coefficient αj near the cycle hj × lj contained in the decomposition
of γE(Q) (given by Remark III.1.3, with k = m), is even for all odd j, and that α0 is odd.

Let γ ∈ CHn(Q2) mapped to γE(Q) under the homomorphism CHn(Q2) → CHn(Q2
E(Q)).

We have the following lemma, whose the statement and the proof are very close to Lemma
III.4.7.

Lemma III.5.2. For any i = 0, ...,m, one can choose a rational integral representative
si ∈ CHm+i(QE(Q) × YE(Q)) of Si((xE(Q) mod 2) ◦ (γE(Q) mod 2)) such that

(i) for any 0 ≤ j ≤ m, 2si,j is rational , where si,j is the coordinate of si on hj;
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(ii) for any odd 0 ≤ j ≤ m, si,j is rational.

Proof. We use same notation as those introduced during the proof of Lemma III.4.7. One
can prove (i) exactly as the same way as Lemma III.4.7(i). We need the following proposition
to prove (ii).

Proposition III.5.3. Let X be a smooth F -variety and let ρ be an element of Ch(Q×X)
such that for any j = 0, ..., r, its coordinate ρj on hj is 0. Then, for any integer k and for
any j = 0, ..., r, the coordinate of Sk(ρ) on hj is 0.

Proof. We induct on k. For k = 0, one has S0 = Id. Assume that the statement is true till
the rank k and let j ∈ J0, rK. By the Cartan formula (Corollary II.3.5), one has

Sk+1(lj · ρ) = lj · Sk+1(ρ) +
k+1∑
i=1

Si(lj) · Sk+1−i(ρ).

Since for any i = 1, ..., k+ 1, the cycle Si(lj) is a multiple of lj−i (see [7, Corollary 78.5]), by
the induction hypothesis, we get

pr∗(lj · Sk+1(ρ)) = pr∗(S
k+1(lj · ρ)).

Furthermore, by Proposition II.3.2, one has

Sk+1 ◦ pr∗(lj · ρ) =
k+1∑
i=0

pr∗(ck+1−i(−TQ) · Si(lj · ρ)),

and since pr∗(lj · ρ) = 0, we deduce that

pr∗(lj · Sk+1(ρ)) =
k∑
i=0

ai,

where ai = pr∗(ck+1−i(−TQ) · Si(lj · ρ)). We are going to prove that for any i = 0, ..., k, one
has ai = 0. Let i be an integer in J0, kK. Since by [7, Lemma 78.1], the cycle ck+1−i(−TQ) is
a multiple of hk+1−i, it suffices to show that pr∗(h

k+1−i · Si(lj · ρ)) = 0.
By the Cartan Formula and [7, Corollary 78.5], the cycle pr∗(h

k+1−i ·Si(lj · ρ)) is a linear
combination of cycles of type pr∗(h

k+1−i · lj−t · Si−t(ρ)), where t ∈ J0, iK. Since for any
t = 0, ..., i, one has hk+1−i · lj−t = lj−t−(k+1−i), we are done by the induction hypothesis.

We finish now the proof of Lemma III.5.2. Assume that j is odd. Since by Proposition
III.5.3, for any k = 0, ...,m, the coordinate of Sk(ρ) on hj is 0, the only fact that we have to
explain here to prove (ii) (i.e what is new compared to the proof of Lemma III.4.7) is why
the corresponding cycle ãk,j ∈ CHn+k−j(QE(Q)) is rational.

For the same reasons as in the proof of Lemma III.4.7, the cycle ãk,j ∈ CHn+k−j(QE(Q))
is divisible by 2. Moreover, since one has j − k ≤ m < i0(QE), the cycle lj−k is defined
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over E and it is consequently defined over E(Q). Furthermore, since j − k ≤ m < n/2, the
group CHn+k−j(QE(Q)) is free with basis {lj−k} (as well as the group CHn+k−j(QE(Q))) and
therefore the restriction homomorphism

CHn+k−j(QE(Q)) −→ CHn+k−j(QE(Q))

is injective (it is even an isomorphism). Since 2lj−k = hn+k−j, we deduce that any cycle of
CHn+k−j(QE(Q)) divisible by 2 is rational. Thus, for any 0 ≤ k ≤ m, the cycle ãk,j is rational
and we finish as in the proof of Lemma III.4.7.

Now, one can finish the proof of Theorem III.5.1 exactly the same way as the proof of
Theorem III.4.2 replacing F by E(Q).
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Chapter IV

Exceptional projective homogeneous
varieties

The purpose of this chapter is to prove the following theorem dealing with rationality of
algebraic cycles over function field of some exceptional projective homogeneous varieties (see
[10, Theorem 1.1]). This theorem gives an answer to Question I.0.2 in the context of those
exceptional projective homogeneous varieties. We refer to [3] for an introduction to linear
algebraic groups.

Theorem IV.0.1. Let G be a linear algebraic group of type F4 or E8 over a field F and let
X be a projective homogeneous G-variety. For any equidimensional variety Y , the change of
field homomorphism

Ch(Y )→ Ch(YF (X)),

where Ch is the Chow group modulo p, with p = 3 when G is of type F4 and p = 5 when G
is of type E8, is surjective in codimension < p+ 1.

It is also surjective in codimension p+ 1 for a given Y provided that 1 /∈ deg Ch0(XF (ζ))
for each generic point ζ ∈ Y .

In this chapter, a linear algebraic group G over a field F is a twisted form ξG0 by mean
of a cocycle ξ ∈ H1(F,G0) (see Appendix D), where G0 is a split linear algebraic group of
the same type as G (one says that G is of inner type). A projective homogeneous G-variety
X is a twisted form ξ(G0/P ) of G0/P for P is a parabolic subgroup of G0. The proof of
Theorem IV.0.1 is given in Section IV.4.

The above statement is to put in relation with the result [26, Theorem 4.3] by N. Karpenko
and A. Merkurjev, where generic splitting varieties have been considered. In characteristic
0, Theorem IV.0.1 is contained in [26, Theorem 4.3]. In an earlier paper (see [55, Corol-
lary 1.4]), K. Zainoulline proved the first conclusion of Theorem IV.0.1 (modulo torsion) in
characteristic 0 if G is of type F4. Our result is valid in any characteristic.

The method of proof is basically the method used to prove [26, Theorem 4.3] combined
with a motivic decomposition result for generically split projective homogeneous varieties
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due to V. Petrov, N. Semenov and K. Zainoulline (see [40, Theorem 5.17]) and involving the
Rost motive. This is described in Section IV.2.

In Section IV.3, we give the definition of the J-invariant and we present some properties
about Chow groups of the Rost motive of groups of strongly inner type (e.g F4 and E8) with
maximal J-invariant. Those properties make the method particularly suitable for groups of
type F4 and E8.

The method also relies on a linkage between the γ-filtration on the Grothendieck ring of
projective homogeneous varieties and Chow groups, in the spirit of [14].

In the aftermath of Theorem IV.0.1, we get the following statement dealing with integral
Chow groups (see [26, Theorem 4.5]).

Corollary IV.0.2. We use notation introduced in Theorem IV.0.1. If p ∈ deg CH0(X)
(for example, if F is p-special), then for any equidimensional variety Y , the change of field
homomorphism

CH(Y )→ CH(YF (X))

is surjective in codimension < p+ 1.
It is also surjective in codimension p+ 1 for a given Y provided that 1 /∈ deg Ch0(XF (ζ))

for each generic point ζ ∈ Y .

Remark IV.0.3. Our method of proof for Theorem IV.0.1 works for groups of type G2 as
well (with p = 2). However, the case of G2 can be treated in a more elementary way if
char(F ) 6= 2.

Indeed, it is known that to each group G of type G2 one can associate a 3-fold Pfister
quadratic form π such that, denoting by Xπ the associated Pfister quadric, the variety
X has a rational point over F (Xπ) and vice versa (see [46, Theorem 9]). Thus, for any
equidimensional variety Y , the right and the bottom maps in the commutative diagram

CH(Y ) //

��

CH(YF (X))

��
CH(YF (Xπ)) // CH(YF (Xπ×X))

are isomorphisms. Furthermore, by Remark III.0.2, the change of field homomorphism
CH(Y )→ CH(YF (Xπ)) is surjective in codimension < 3.

IV.1 Filtrations on Grothendieck ring of projective

homogeneous varieties

In this section, we prove two statements concerning filtrations on Grothendieck ring of certain
class of projective homogeneous varieties. Those propositions play a crucial role in the proof
of Theorem IV.0.1 (see Section IV.4). We use notation introduced in Section II.4.
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Coincidence of filtrations

We have seen in Section II.4 that for any any smooth variety X over a field F and for any
integer i ≥ 0, the term γi(X) of codimension i of the γ-filtration on the Grothendieck ring
K(X) is contained in the the term τ i(X) of codimension i of the topological filtration.

The following proposition provides us a way to get the existence of a variety X for
which the two filtrations actually coincide when dealing with a certain class of projective
homogeneous varieties. The method of proof is largely inspired by the proof of [24, Theorem
6.4 (2)] by N. Karpenko and A. Merkurjev.

Proposition IV.1.1. Let G0 be a split connected semisimple linear algebraic group over a
field F and let B be a Borel subgroup of G0. There exist an extension E/F and a cocycle ξ ∈
H1(E,G0) such that the topological filtration and the γ-filtration on K(ξ(G0/B)) coincide.

Proof. Let n be an integer such that G0 ⊂ GLn and let us set S := GLn and E := F (S/G0).
We denote by T the E-variety S ×S/G0 Spec(E) given by the generic fiber of the projection
S → S/G0. Note that since T is clearly a G0-torsor over E, there exists a cocycle ξ ∈
H1(E,G0) such that the smooth projective variety X := T/BE is isomorphic to ξ(G0/B).
We claim that the Chow ring CH(X) is generated by Chern classes.

Indeed, the morphism h : X → S/B induced by the canonical G0-equivariant morphism
T→ S being a localization, the associated pull-back

h∗ : CH(S/B) −→ CH(X)

is surjective. Furthermore, the ring CH(S/B) itself is generated by Chern classes: by [24,
§6,7] there exists a morphism

S(T ∗) −→ CH(S/B), (IV.1.2)

(where S(T ∗) is the symmetric algebra of the group of characters T ∗ of a split maximal torus
T ⊂ B) with its image generated by Chern classes. Moreover, the morphism (IV.1.2) is
surjective by [24, Proposition 6.2]. Since h∗ is surjective and Chern classes commute with
pull-backs, the claim is proved.

We show now that the two filtrations on K(X) coincide by induction on codimension.
Let i ≥ 0 and assume that τ i+1(X) = γi+1(X). Since for any j ≥ 0, one has γj(X) ⊂ τ j(X),
the induction hypothesis implies that

γi/i+1(X) ⊂ τ i/i+1(X).

Thus, the ring CH(X) being generated by Chern classes, one has γi/i+1(X) = τ i/i+1(X) by
(II.4.1). Therefore one has τ i(X) = γi(X) and the proposition is proved.

Note that this result remains true when one consider a special parabolic subgroup P , i.e
a parabolic subgroup P for which H1(F, P ) is trivial, instead of B (see [24]).
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γ-filtration on Borel variety of strongly inner groups

We say that a linear algebraic group G over a field F is of strongly inner type if it is a twisted
form ξG0 by mean of a cocycle ξ ∈ H1(F,G0) with G0 a split simply-connected group of the
same type as G.

Remark IV.1.3. Assume that G0 is simply-connected (e.g F4 and E8) and let B be a Borel
subgroup of G0. Consider an extension E/F and a cocycle ξ ∈ H1(E,G0). By the result
[38, Theorem 2.2.(2)] of I. Panin, the change of field homomorphism

K(ξ(G0/B)E)→ K(ξ(G0/B)E) ' K(G0/B),

for Grothendieck ring of Borel varieties of strongly inner groups, with E an algebraic closure
of E, is an isomorphism.

Therefore, since the γ-filtration is defined in terms of Chern classes and the latter com-
mute with pull-backs, the terms of the γ-filtration on K(ξ(G0/B)E) do not depend nor on
the extension E/F neither on the choice of ξ ∈ H1(E,G0).

Chow groups and topological filtration

Now, we prove a result which will be used in Section IV.4 to get the second conclusion of
Theorem IV.0.1.

We recall that for any smooth variety X over a field F , for any prime p, and for any i <
p+ 1, the canonical surjection prip : Chi(X) � τ

i/i+1
p (X) is an isomorphism by the Riemann-

Roch Theorem without denominators (see Remark II.4.2). The following proposition extends
this fact to i = p + 1 provided that X is a projective homogeneous variety under a certain
class of linear algebraic groups (containing the groups of type F4 and E8) and p > 2.

Proposition IV.1.4. Let X be a projective homogeneous variety under a semisimple adjoint
algebraic group G of strongly inner type. For any prime p > 2 the canonical surjection

Chp+1(X) � τ p+1/p+2
p (X),

is injective.

Proof. First of all, we have seen in Section II.4 that the surjection prp+1
p coincides with the

composite qp+1 ◦ qp

Ep+1,−p−1
p (X) (mod p) � Ep+1,−p−1

p+1 (X) (mod p) �
Ep+1,−p−1
p+1 (X)

Im(δp+1)
(mod p).

Furthermore, since any prime divisor l of the order of δp+1 is such that l − 1 divides p and
p > 2, the differential δp+1 is of prime to p order. It follows that qp+1 is an isomorphism.
Therefore, we have shown that prp+1

p is injective if and only if qp is an isomorphism.



CHAPTER IV. EXCEPTIONAL PROJECTIVE HOMOGENEOUS VARIETIES 45

Now let us consider the following inclusions given by the Brown-Gersten-Quillen structure

E1,−2
∞ (X) ⊂ · · · ⊂ E1,−2

3 (X) ⊂ E1,−2
2 (X).

By the very definition of the Brown-Gersten-Quillen spectral sequence, one has E1,−2
∞ (X) =

E1,−2
2 (X) if and only if for any r ≥ 2 the differential starting from E1,−2

r (X) is zero. In
particular, the equality E1,−2

∞ (X) = E1,−2
2 (X) implies that the differential δp (starting from

E1,−2
p (X)) is zero and consequently that qp is an isomorphism. Therefore, the following

lemma completes the proof of the proposition.

Lemma IV.1.5. Let G be a semisimple adjoint algebraic group of strongly inner type. For
any projective homogeneous G-variety X, the inclusion E1,−2

∞ (X) ⊂ E1,−2
2 (X) given by the

Brown-Gersten-Quillen spectral sequence is an equality.

Proof. On the one hand, by the very definition, the group E1,−2
∞ (X) is the first quotient

K
(1/2)
1 (X) of the topological filtration on K1(X). On the other hand, one has E1,−2

2 (X) =
A1(X,K2) (for any integers p and q, one has Ep,q

2 (X) = Ap(X,K−q)).
First, we claim that the natural map

A0(X,K1)⊗ CH1(X)→ A1(X,K2) (IV.1.6)

is an isomorphism. Indeed, since Gsep has only trivial Tits algebras (because it is adjoint
and simply-connected), by [33, Theorem], one has

A1(X,K2) ' A1(Xsep, K2)Γ,

where Γ is the absolute Galois group of F . Moreover, since the variety Xsep is cellular, by
[33, Proposition 1], one has

A1(Xsep, K2) ' K1Fsep ⊗ CH1(Xsep).

Note that since X is smooth, the Picard group Pic(Xsep) is identified with CH1(Xsep). Fur-
thermore, since Gsep has only trivial Tits algebras, the group Pic(Xsep) is rational by [36,
Proposition 2.3]. Therefore one has CH1(X) ' CH1(Xsep) and since (K1Fsep)Γ = K1F =
A0(X,K1), one has A0(X,K1)⊗ CH1(X) ' A1(X,K2) and the claim is proved.

Now, it is known that CH1(Xsep) is a free abelian group of finite rank (see [45, §2] for
example). Let us denote by ϕ the isomorphism

(F×)⊕k −→ A1(X,K2)

such that for any a ∈ (F×)⊕k the element ϕ(a) corresponds by (IV.1.6) to
∑k

i=0 πi(a) ⊗ ei
in A0(X,K1)⊗ CH1(X), where (ei)1≤i≤k is a basis of CH1(X) and πi : (F×)⊕k → F× is the
standard projection.
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Then it suffices to find a homomorphism ψ : (F×)⊕k → K
(1/2)
1 (X) such that the diagram

K
(1/2)
1 (X) �

� // A1(X,K2)

(F×)⊕k
ψ

ee

ϕ
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is commutative to get the conclusion (as in [20, §4]). The homomorphism ψ defined as follow
is suitable (and ψ is necessarily defined this way). For every i = 0, . . . , k, let ji : Zi ⊂ X
be a subvariety of codimension 1 such that [Zi] = ei in CH1(X) and let pi be the structure
morphism Zi → Spec(F ). Then we set ψ =

∑k
i=1 ψi, with

ψi : (F×)⊕k
πi // F×

pi
∗
// K1(Zi)

ji
∗
// K1

1(X) // K
1/2
1 (X).

This concludes the proof of Proposition IV.1.4.

IV.2 Generically split projective homogeneous

varieties

In this section, we present a motivic decomposition result due to V. Petrov, N. Semenov and
K. Zainoulline (see [40, Theorem 5.17]) and we introduce in a more general context the basis
of the method we will use in Section IV.4 to prove Theorem IV.0.1.

Let X be a projective homogeneous variety under an algebraic group G over a field F .
The variety X is said to be generically split if the group G splits over the generic point of
X (e.g any projective homogeneous variety X under a group G of type F4 or E8 which has
no splitting extension of degree coprime to 3 or 5 respectively).

Assume furthermore that G is semisimple, then such a generically split G-variety X
presents the interest that for any prime p, its Chow motive M(X,Z/pZ) with coefficients
in Z/pZ decomposes as a sum of twists of an indecomposable motive Rp(G), called Rost
motive, by mean of the following theorem.

Theorem IV.2.1 (Petrov, Semenov, Zainoulline). Let G be a semisimple linear algebraic
group over a field F and let p be a prime. Then for any generically split projective homoge-
neous variety X under G one has the motivic decomposition

M(X,Z/pZ) '
⊕
i≥0

Rp(G)(i)⊕ai ,

where Σi≥0ait
i = P (CH(X), t)/P (CH(Rp(G)), t), with P (−, t) the Poincaré polynomial.
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It follows immediatly from Theorem IV.2.1 that for any integer k and any extension L/F ,
one has the following decomposition concerning Chow groups

Chk(XL) '
⊕
i≥0

Chk−i(Rp(G)L)⊕ai . (IV.2.2)

If the group G is of strongly inner type (e.g F4 and E8) and has no splitting field of degree
coprime to p, the indecomposable motive Rp(G) coincides with a generalized Rost motive
and

Rp(G) '
p−1⊕
i=0

Z/pZ (i(p+ 1))

(see [54, (5.4-5.5)]).

Remark IV.2.3. The Poincaré polynomial P (CH(Rp(G)), t) only depends on the J-invariant
modulo p of G defined in the next section. Moreover, the Poincaré polynomial P (CH(X), t)
can be computed thanks to the Solomon’s Theorem (see [45, §2.5]) when one knows the
parabolic subgroup P determining X. Note that this allows one to easily compute the co-
efficient ai’s of the decomposition (IV.2.2) when X is a twisted form B of G0/B, with B a
Borel subgroup of the split group G0 of the same type as G. Beside, except for the follow-
ing proposition, we will only apply decomposition (IV.2.2) to B in the sequel. Note that
since the group G splits over any extension E/F over which B admits a rational point, the
projective homogeneous variety B is in particular generically split.

The following statement, which is obtained by combining the decomposition (IV.2.2) with
Proposition II.2.5, constitutes the first step in our way to prove Theorem IV.0.1.

Proposition IV.2.4. Let G be a semisimple linear algebraic group over a field F . Let p be
a prime and Rp(G) the associated Rost motive of G. If for any extension L/F , the change
of field

Ch(Rp(G)) −→ Ch(Rp(G)L)

is surjective in codimension < k then for any equidimensional variety Y and for any gener-
ically split projective homogeneous G-variety X, the change of field

Ch(Y )→ Ch(YF (X))

is surjective in codimension < k.

IV.3 J-invariant

The notion of J-invariant, at first, of an orthogonal group, has been introduced by A. Vishik
in [50], and he notably used it to get his result on the u-invariant of a field (see [48]).
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In the aftermath of the works of A. Vishik, V. Petrov, N. Semenov and K. Zainoulline have
generalized in [40] the notion of J-invariant to an arbitrary semisimple algebraic group. In
this section, we recall some material about the J-invariant of a semisimple algebraic group
and then we study some connections between the J-invariant and Chow groups of the Rost
motive Rp(G) introduced in the previous section.

Let G0 be a split semisimple linear algebraic group over a field F and let B be a Borel
subgroup of G0. Let G = ξG0 be a twisted form of G0 given by a cocycle ξ ∈ H1(F,G0) and
let B = ξ(G0/B) be the associated Borel variety.

Definition and properties

Most of material and facts described here can be found in [40, §4].
Let us fix a prime p and write Ch for the Chow ring with coefficients in Z/pZ. We

consider the ring homomorphism given by the composite of pullbacks

Ch(B) // Ch(B) π // Ch(G) .

The map π is surjective by [18, p.21]. Moreover, an explicit description of the ring Ch(G) is
known for all types of G and all torsion primes p of G (see [18, Definition 3]). Namely, by
[19, Theorem 3], there exists an integer r ≥ 1 such that one has

Ch∗(G) = Z/pZ[x1, . . . xr]/(x
pk1
1 , . . . , xp

kr

r ),

where, for every i = 1, . . . , r, the variable xi is of codimension the coprimary part di of the
ith p-exceptional degree of G0 while the integer ki is the respective p-primary power. In the
case where a prime p is not a torsion prime of G one has Ch∗(G) = Z/pZ.

We give now the definition of the J-invariant of G in the case where Ch∗(G) has only
one generator (if G is of type F4 or E8 for example) although this definition can easily be
generalized for arbitrary r (see [40, Definition 4.6]).

Definition IV.3.1. Let p be a tosion prime of G such that r = 1. The J-invariant Jp(G)

of G modulo p is the smallest non-negative integer j such that xp
j

1 ∈ π(Ch(B)).

It follows immediatly from the definition that for any extension E/F , one has Jp(GE) ≤
Jp(G).

For arbitrary r, the J-invariant Jp(G) of G consists of a r-tuple of integers (j1, . . . , jr)
with ji ≤ ki for any 1 ≤ i ≤ r. We will need the following fact about the J-invariant (see
[40, Corollary 6.7]).

Property IV.3.2. One has the equivalence

(i) The J-invariant Jp(G) of G modulo p is trivial, i.e (j1, . . . , jr) = (0, . . . , 0);

(ii) G splits over a finite extension of prime to p degree;

(iii) Rp(G) = Z/pZ (Tate motive).
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Groups of strongly inner type with maximal J-invariant

In this subsection, we assume furthermore that G is simple of strongly inner type.

For any torsion prime p of G, we say that the J-invariant Jp(G) = (j1, . . . , jr) modulo p
of G is maximal if for every i = 1, . . . , r, one has ji = ki.

In this subsection, we present some properties about Chow groups of the Rost motive
of simple linear algebraic groups of strongly inner type (e.g F4 and E8) with maximal J-
invariant modulo some torsion prime. In the next section, we will combine those properties
with the method described in Proposition IV.2.4 to prove Theorem IV.0.1.

Lemma IV.3.3. Let G be a simple linear algebraic group of strongly inner type such that
its J-invariant Jp(G) is maximal. Then one has

(i) p = 3 or 5 ;

(ii) Ch2(Rp(G)) ' Z/pZ and Ch3(Rp(G)) = 0.

Proof. Since Jp(G) is maximal, by [16, Example 5.3], the cocycle ξ ∈ H1(F,G0) corresponds
to a generic G0-torsor in the sense of [16] (see also Appendix D). Thus, by [14, Proposition
3.2] and [13, pp. 31, 133], one has TorspCH2(B) 6= 0 (we need the assumption strongly inner
to use material from [14, §3]). The conclusion is given by [14, Proposition 5.4].

Lemma IV.3.4. Let G be a simple linear algebraic group of strongly inner type such that
its J-invariant Jp(G) is maximal and let L/F be an extension such that Jp(GL) = Jp(G).
Then one has

(i) Ch2(Rp(G)L) ' Z/pZ and Ch3(Rp(G)L) = 0 ;

(ii) the change of field Ch2(B)→ Ch2(BL) is an isomorphism.

Proof. Since Jp(GL) is maximal then by Lemma IV.3.3 one has Ch2(Rp(GL)) ' Z/pZ and
Ch3(Rp(GL)) = 0. Moreover, since Jp(GL) = Jp(G), one has Rp(GL) ' Rp(G)L (see [40,
Proposition 5.18 (i)]) and (i) is proved.

We show now that the change of field Ch2(B) → Ch2(BL) is an isomorphism. We use
material and notation introduced in Sections II.4 and IV.1 about filtrations on Grothendieck
rings. Since Jp(G) = Jp(GL) is maximal, the cocycles ξ and ξL correspond to generic G0-
torsors and one consequently has γ3(B) = τ 3(B) and γ3(BL) = τ 3(BL) (see [14, Theorem
3.1(ii)]). In particular, it follows that

γ2/3
p (B) = τ 2/3

p (B) and γ2/3
p (BL) = τ 2/3

p (BL).

Therefore, since 2 < p+ 1, the homomorphism Ch2(B)→ Ch2(BL) coincides with

Ch2(B) ' γ2/3
p (B)→ γ2/3

p (BL) ' Ch2(BL)

and the center arrow is an isomorphism by Remark IV.1.3.
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Lemma IV.3.5. In this statement, one has p=5. Let G be a simple linear algebraic group of
strongly inner type such that its J-invariant J5(G) is maximal and let L/F be an extension
such that J5(GL) = J5(G). Then one has

Ch4(R5(G)L) = 0 and Ch5(R5(G)L) = 0.

Proof. Since J5(GL) = J5(G) one has R5(G)L = R5(GL) and it suffices to prove that
Ch4(R5(G)) = Ch5(R5(G)) = 0.

By Proposition IV.1.1 there exist an extension E/F and a cocycle ξ′ ∈ H1(E,G0) such
that the topological filtration and the γ-filtration on K(B′), with B′ = ξ′(G0/B), coincide.
Let us set G′ = ξ′G0.

We claim that J5(G′) 6= (0, . . . , 0). Indeed, assume that J5(G′) = (0, . . . , 0). In that case,
one has R5(G′) = Z/5Z (Tate motive) and the isomorphism (IV.2.2) gives that Ch2(B′) '
Z/5Z⊕a2 . Since 2 < p+ 1, it implies that γ

2/3
5 (B′) ' Z/5Z⊕a2 , and consecutively γ

2/3
5 (B) '

Z/5Z⊕a2 by Remark IV.1.3. However, we have γ
2/3
5 (B) = τ

2/3
5 (B) (because γ3(B) = τ 3(B)

since ξ ∈ H1(F,G0) is generic). Thus, we have Ch2(B) ' Z/5Z⊕a2 which contradicts
Ch2(R5(G)) ' Z/5Z and the claim is proved (we recall that for any i < 6 = p + 1, one has

τ
i/i+1
5 (X) ' Chi(X)).

We now compute the groups γ
i/i+1
5 (B′) for i = 3, 4, 5. We recall that one has K(B′) '

K(G0/B) by Remark IV.1.3. Furthermore, the description of the free group K(G0/B) in
terms of generators does not depend on the characteristic of the base field (see [5, Lemma

13.3(4)]). Thus, in order to compute the groups γ
i/i+1
5 (B′) for i = 3, 4, 5, since J5(G′) 6=

(0, . . . , 0), one can use the following theorem (adapted from [26, Theorem RM.10] to our
situation)

Theorem IV.3.6 (Karpenko, Merkurjev). Let H be a semisimple linear algebraic group
over a field of characteristic 0 and let p be a torsion prime of H. If Jp(H) 6= (0, . . . , 0) then

Chj(Rp(H)) '
{

Z/pZ if j = 0 or j = k(p+ 1)− p+ 1, 1 ≤ k ≤ p− 1
0 otherwise,

which combined with (IV.2.2) gives that

γ
i/i+1
5 (B′) ' Chi(B′) ' Z/5Z⊕(ai−2+ai) for i = 3, 4, 5

(where the first isomorphism is due to i < p+ 1). Therefore, we get

γ
i/i+1
5 (B) ' Z/5Z⊕(ai−2+ai) for i = 3, 4, 5.

Thus, since τ
3/4
5 (B) ' Ch3(B), the isomorphism (IV.2.2) for k = 3 gives that τ

3/4
5 (B) =

γ
3/4
5 (B). Since the γ-filtration is contained in the topological one, we get

τ 4
5 (B) = γ4

5(B),
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which implies the existence of an exact sequence

0→ (τ 5
5 (B)/γ5

5(B))→ γ
4/5
5 (B)→ τ

4/5
5 (B)→ 0.

Thus, since τ
4/5
5 (B) ' Ch4(B), by applying the isomorphism (IV.2.2) for k = 4, we get a

surjection
Z/5Z⊕(a2+a4) � Ch4(R5(G))⊕ Z/5Z⊕(a2+a4),

which implies that Ch4(R5(G)) = 0.
We prove that Ch5(R5(G)) = 0 by proceeding in exactly the same way.

IV.4 Proof of the result

In this section, we prove Theorem IV.0.1.

Remark IV.4.1. Let G be a semisimple linear algebraic group over a field F and let X
be a projective homogeneous G-variety. The F -variety X is A-trivial in the sense of [26,
Definition 2.3] (see [26, Example 2.5]), i.e for any extension L/F with X(L) 6= ∅, the degree
homomorphism deg : CH0(XL)→ Z is an isomorphism.

Since by [26, Lemma 2.9], any A-trivial variety X with 1 ∈ deg Ch0(X) is such that for
any equidimensional variety Y the change of field homomorphism Ch(Y )→ Ch(YF (X)) is an
isomorphism (in any codimension, with Ch the Chow group modulo p, for any prime p), one
can assume that 1 /∈ deg Ch0(X) in order to prove Theorem IV.0.1.

Now, we know from [40, Table 4.13] that ifG is of type F4 or E8 then the J-invariant Jp(G)
of G is equal to (0) or (1) and in the latter case, the J-invariant modulo p is maximal (with
p = 3 if G is of type F4 and p = 5 if G is of type E8). However, the assumption Jp(G) = (0) is
equivalent to the existence of a splitting field K/F of G of degree coprime to p (see Property
IV.3.2). In that case one has Ch0(X) ' Ch0(XK) and consequently 1 ∈ deg Ch0(X). Thus,
under the assumption 1 /∈ deg Ch0(X), one necessarly has Jp(G) = (1) and that is why we
can assume Jp(G) nontrivial, i.e maximal, in the sequel.

Since for G with nontrivial Jp(G) the prime p must divide the degree of any finite split-
ting extension, every projective homogeneous variety under a group of type F4 or E8 with
nontrivial Jp(G) (p = 3 for the type F4 and p = 5 for the type E8) is generically split by
[40, Example 3.6]. Then, by Proposition IV.2.4, the first conclusion of Theorem IV.0.1 is a
direct consequence of the following proposition.

Proposition IV.4.2. Let G be a linear algebraic group of type F4 or E8 over a field F such
that Jp(G) is nontrivial, with p = 3 if G is of type F4 and p = 5 if G is of type E8. Then,
for any extension L/F , the change of field

Ch(Rp(G)) −→ Ch(Rp(G)L), (IV.4.3)

where Rp(G) is the associated Rost motive, is surjective in codimension < p+ 1.
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Proof. First of all, the homomorphism (IV.4.3) is clearly surjective in codimension 0 since
one has Ch0(Rp(G)L) = Z/pZ for any extension L/F . Then, Ch1(B) is identified with the
Picard group Pic(B) and is rational (for the same reason as in the proof of Lemma IV.1.5).
Furthermore, one can compute the coefficients ai’s in the decomposition (IV.2.2): we get
a0 = 1 and a1 = rank(G) = rank(CH1(B)) (see Remark IV.2.3). Thus, the isomorphism
(IV.2.2) implies that Ch1(Rp(G)L) = 0 for any extension L/F . Therefore, we have already
shown that the homomorphism (IV.4.3) is surjective in codimension 0 and 1.

Now we show that it is surjective in codimension 2 and 3 (which proves the proposition for
G of type F4). Since Jp(G) is maximal, one has Ch2(Rp(G)) ' Z/pZ and Ch3(Rp(G)) = 0 by
Lemma IV.3.3. Moreover, since Jp(GL) ≤ Jp(G) for any extension L/F , one has Jp(GL) = (0)
or Jp(GL) = Jp(G) (i.e is maximal).

If Jp(GL) = Jp(G) then one has Ch2(Rp(G)L) ' Z/pZ and Ch3(Rp(G)L) = 0 by Lemma
IV.3.4(i) and the homomorphism (IV.4.3) is clearly surjective in codimension 3. Thanks
to the decomposition (IV.2.2) and Lemma IV.3.4(ii), we see that it is also surjective in
codimension 2.

If Jp(GL) = (0) then on the one hand one has Rp(GL) = Z/pZ and on the other hand the
motivic decomposition given in [40, Proposition 5.18 (i)] implies the following decomposition
on Chow groups for any integer k

Chk(Rp(G)L) '
p−1⊕
i=0

Chk−i(p+1)(Rp(GL)). (IV.4.4)

In particular, one has Chk(Rp(G)L) = 0 for k = 2 or 3 and the conclusion follows.

For G of type E8, we now prove that Ch(R5(G)) −→ Ch(R5(G)L) is surjective in
codimension 4 and 5 by showing that one has Ch4(R5(G)L) = Ch5(R5(G)L) = 0 for
any extension L/F . By Lemma IV.3.5, this is true when Jp(GL) = Jp(G). Moreover, if
Jp(GL) = 0 then one has (R5(GL) = Z/5Z and the isomorphism (IV.4.4) implies that
Ch4(R5(G)L) = Ch5(R5(G)L) = 0. This completes the proof of Proposition IV.4.2.

Finally, using the same notation as in the statement of Theorem IV.0.1, we want to prove
the second conclusion of Theorem IV.0.1. Since for any generic point ζ of Y , one has

1 /∈ deg Ch0(XF (ζ))⇒ Jp(GF (ζ)) = (1),

by Proposition IV.2.4 and in view of what has already been done, it is sufficient to prove the
following lemma to get the second conclusion.

Lemma IV.4.5. Let G be a linear algebraic group of type F4 or E8 over a field F such that
Jp(G) is nontrivial, with p = 3 if G is of type F4 and p = 5 if G is of type E8. Then one has

Chp+1(Rp(G)) = 0.
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Proof. Thanks to Proposition IV.1.4, one can prove the lemma by proceeding in exactly the
same way Lemma IV.3.5 has been proved.

This concludes the proof of Theorem IV.0.1.
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Chapter V

Principal homogeneous space for
SL1(A)

Let A be a central simple algebra over a field F and let Nrd : A× → F× be the reduced norm
homomorphism . We recall that the homomorphism F× → H1(F,SL1(A)), associating to
c ∈ F× the SL1(A)-torsor Xc given by the equation Nrd = c, is surjective (with kernel
Nrd(A×)) – see [15, Proposition 2.7.3] for instance.

The main purpose of this chapter is to prove the following theorem dealing with rationality
of algebraic cycles over function field of SL1(A)-torsors.

Theorem V.0.1. Let A be a central simple algebra of prime degree p over a field F and let
X be a SL1(A)-torsor. Then

(i) for any equidimensional F -variety Y , the change of field homomorphism

CH(Y )→ CH(YF (X)),

where CH is the integral Chow group, is surjective in codimension < p+ 1.

(ii) it is also surjective in codimension p+ 1 for a given Y provided that the variety XF (ζ)

does not have any closed point of prime to p degree for each generic point ζ ∈ Y .

Note that the previous statement is a version of Theorem IV.0.1 for principal homoge-
neous space for SL1(A) (it gives an answer to Question I.0.2 in this particular context).
Besides we describe in Section V.3 how Theorem IV.0.1 is related to Theorem V.0.1.

The method of proof mainly relies on Proposition II.2.5. We need to introduce some new
material before giving the proof.
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V.1 Preliminaries

Chow groups of principal homogeneous spaces for SL1(A)

Let X be a SL1(A)-torsor and let p be a prime. One has K(X) = Z by the result [39,
Theorem A] of I. Panin and consequently, for i ≥ 1, the term τ i(X) of the topological
filtration on K(X) is equal to zero. Therefore, for any 1 ≤ i ≤ p, one has Chi(X) = 0, with
Ch the Chow group modulo p (see Remark II.4.2).

Moreover, by the result [47, Theorem 2.7] of A. Suslin, one has CHi(SLp) = 0 for any
i ≥ 1. Hence, for A of degree p (then there exists a splitting field of A of degree p), it follows
by transfert argument that p ·CHi(X) = 0 for any i ≥ 1. Therefore, for X a SL1(A)-torsor,
with A of prime degree p, one has

CHi(X) = 0 for any 1 ≤ i ≤ p. (V.1.1)

Note that, by Proposition II.2.5, this gives Theorem V.0.1(i) already.

Brown-Gersten-Quillen spectral sequence

We recall that for any smooth variety X and any i ≥ 1, the epimorphism pri coincides with
the edge homomorphism of the spectral Brown-Gersten-Quillen structure Ei,−i

2 (X)⇒ K(X)
(see [41, §7]), that is to say

pri : CHi(X) ' Ei,−i
2 (X) � · · ·� Ei,−i

i+1 (X) = τ i/i+1(X).

Assume that X is a SL1(A)-torsor, with A of prime degree p. Then it follows from
(V.1.1) that Ei,−i

i−1 (X) = 0 for 3 ≤ i ≤ p. Consequently, one has A1(X,K2) = E1,−2
p (X).

Moreover, by the result [31, Theorem 3.4] of A. Merkurjev, for any smooth variety X,
every prime divisor l of the order of the differential δr ending in Ep+1,−p−1

r (X) is such that
l − 1 divides r − 1. Therefore, for any prime p and 2 ≤ r ≤ p − 1, the differential δr is of
prime to p order. Assume furthermore that X is a SL1(A)-torsor, with A of prime degree
p. Since p · CHp+1(X) = 0, one deduce that, for 2 ≤ r ≤ p− 1, the differential δr is trivial.
Consequently, one has CHp+1(X) = Ep+1,−p−1

p (X).

Therefore, for X a SL1(A)-torsor, with A of prime degree p, the differential δp in the
BGQ-structure is a homomorphism

δ : A1(X,K2)→ CHp+1(X).

Remark V.1.2. Let X be a principal homogeneous space for a semisimple group G. By
[13, Part II, Example 4.3.3 and Corollary 5.4], one has E0,−1

2 (X) = A0(X,K1) = F× and
the composition F× = K1(F ) → K1(X) → A0(X,K1) of the pullback of the structural
morphism with the inclusions

K
(0/1)
1 (X) = E0,−1

∞ (X) ⊂ · · · ⊂ E0,−1
3 (X) ⊂ E0,−1

2 (X)
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given by the BGQ spectral sequence, is the identity. Therefore, for any i ≥ 2, the differential
starting from E0,−1

i (X) is zero, i.e for any i ≥ 2, one has

Ei,−i
i (X) = τ i/i+1(X).

In particular, for X a SL1(A)-torsor, with A of prime degree p, one has Ep+1,−p−1
p+1 (X) = 0,

i.e the differential δ : A1(X,K2)→ CHp+1(X) is surjective.

On the group A1(X,K2)

The proof in the next section will use the work of A. Merkurjev on the Rost invariant of
simply connected algebraic groups (see [13, Part II]). Let X be a SL1(A)-torsor over F .
The group A1(XF (X), K2) is infinite cyclic with generator q and isomorphic to A1(SLn, K2)
under restriction (where n = deg(A)). Furthermore, the restriction map r : A1(X,K2) →
A1(XF (X), K2) is injective with finite cokernel of order the same order as the elementRSL1(A)(X),
where

RSL1(A) : H1(F,SL1(A))→ H3(F,Q/Z(2))

is the Rost invariant of SL1(A) (see [13, Theorem 9.10]). Moreover, the homomorphism
RSL1(A) is of order exp(A) by [13, Theorem 11.5].

If char(F ) = l is prime then the modulo l component H3(F,Z/lZ(2)) of the Galois
cohomology group H3(F,Q/Z(2)) is the group H3

l (F ) defined by K. Kato in [28] by means
of logarithmic differential forms.

V.2 Proof of the result

In this subsection, we prove the result of this chapter.

Theorem V.2.1. Let A be a central simple algebra of prime degree p over a field F and let
X be a SL1(A)-torsor. Then

(i) for any equidimensional F -variety Y , the change of field homomorphism

CH(Y )→ CH(YF (X)),

where CH is the integral Chow group, is surjective in codimension < p+ 1.

(ii) it is also surjective in codimension p+ 1 for a given Y provided that the variety XF (ζ)

does not have any closed point of prime to p degree for each generic point ζ ∈ Y .

Proof. We use notation and material introduced in the previous section. One can assume
that X does not have any rational point over F (or equivalently X does not have any closed
point of prime to p degree, by the result [2, Theorem 3.3] of J. Black), if else there is nothing
to prove. Note that in this situation, the central simple algebra A is necessarily a division
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algebra. We recall that conclusion (i) has already been proved. According to Proposition
II.2.5, it suffices to show that CHp+1(XF (ζ)) = 0 for each generic point ζ ∈ Y to get conclusion
(ii). Since XF (ζ) does not have any closed point of prime to p degree, it is enough to prove
that CHp+1(X) = 0.

Assume on the contrary that CHp+1(X) 6= 0. Then δ : A1(X,K2)→ CHp+1(X) is nonzero
(since δ is surjective by Remark V.1.2), i.e E1,−2

p+1 (X) is strictly included in E1,−2
p (X) =

A1(X,K2). We claim that this implies that, by denoting as qX the generator of A1(X,K2),
one has r(qX) = q. Indeed, otherwise one has r(qX) = p · q by the previous subsection.
Consecutively, by denoting as c the corestriction morphism A1(SLp, K2) → A1(X,K2), for
any i ≥ 2, one has c(E1,−2

i (SLp)) = c(A1(SLp, K2)) = A1(X,K2) (where the first identity
is due to CHi(SLp) = 0 for any i ≥ 2). In particular, one has E1,−2

p (X) = c(E1,−2
p+1 (SLp)) ⊂

E1,−2
p+1 (X), which is a contradiction.

Therefore, we have shown that under the assumption CHp+1(X) 6= 0, the generator q
of A1(XF (X), K2) is rational. Then it follows that the generator g of CHp+1(XF (X)) is also
rational.

However, since AF (X) is a still a division algebra, by [25, Theorem 7.2 and Theorem
8.2], the cycle gp−1 in CH0(SL1(AF (X))) is nonzero and the latter group is cyclic of order p
generated by the class of the identity of SL1(AF (X)). Thus, the degree of the rational cycle
gp−1 is prime to p.

It follows that X has a closed point of prime to p degree, which is a contradiction.
The Theorem is proved.

Remark V.2.2. The end of the above proof shows in particular that for a division algebra
A of prime degree p over a field F , the kernel of the Rost invariant RSL1(A) is trivial. This
is already contained in the result [35, Theorem 12.2] of A. Merkurjev and A. Suslin under
the assumption char(F ) 6= p. Indeed, let ξ ∈ H1(F,SL1(A)) and let X be the associated
SL1(A)-torsor. Assume that RSL1(A)(ξ) is trivial. It follows then that the generator of
A1(XF (X), K2) is rational (see Section V.1). As we have seen in the above proof, this implies
that X has a rational point over F , i.e the cocycle ξ is trivial.

Note also that for a division algebra A of prime degree p over a field F , the Rost invariant
RSL1(A) coincides, up to sign, with the normalized invariant given by the cup product [A] ∪
(c) ∈ H3(F,Z/pZ(2)) for any class cNrd(A×), where [A] is the class of the algebra A in the
Brauer group Br(F ), see [13, §11].

V.3 Link with Chapter IV - Exceptional projective

homogeneous varieties

In this section, we describe how Theorem V.0.1 implies a similar version of it for projective
homogeneous varieties under a group of type F4 or E8. Namely, we give an alternative proof
of Theorem V.3.1 below (see Theorem IV.0.1). The following proof requires the characteristic
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of the base field to be different from p, with p = 3 when G is of type F4 and p = 5 when G is
of type E8, although the original result Theorem IV.0.1 is valid for arbitrary characterisitic.

Let X be a nonsplit SL1(A)-torsor over a field F , with A a division algebra of prime
degree p. There exists a smooth compactification X̃ of X such that the Chow motive
M(X̃,Z/pZ) decomposes as a direct sum Rp ⊕ N , where Rp is the indecomposable Rost
motive associated with the symbol [A]∪ (c) ∈ H3(F,Z/pZ(2)), with c ∈ F×\Nrd(A×) giving
X, see [25, Theorem 1.1]. Note that the projective variety X̃ is a norm variety of s.

Theorem V.3.1. ([10, Theorem 1.1]) Let G be a linear algebraic group of type F4 or E8 over
a field F of characteristic different from p, with p = 3 when G is of type F4 and p = 5 when
G is of type E8, and let X ′ be a projective homogeneous G-variety. For any equidimensional
variety Y , the change of field homomorphism

Ch(Y )→ Ch(YF (X′)),

where Ch is the Chow group modulo p, is surjective in codimension < p+ 1.
It is also surjective in codimension p+ 1 for a given Y provided that 1 /∈ deg Ch0(X ′F (ζ))

for each generic point ζ ∈ Y .

Proof. Since the F -variety X ′ is A-trivial in the sense of [26, Definition 2.3], one can assume
that G has no splitting field of degree coprime to p. Indeed, otherwise 1 ∈ deg Ch0(X ′) by
corestricition and this implies that Ch(Y )→ Ch(YF (X′)) is an isomorphism in any codimen-
sion by A-triviality, see [26, Lemma 2.9].

Let us now write G = ξG0 for a nontrivial cocycle ξ ∈ H1(F,G0), with G0 a split
group of the same type as G. Then the motive Rp(G) living on the Chow motive (with
coefficients in Z/pZ) of X ′ given in [40, Theorem 5.17] is the Rost motive of the symbol
RG0,p(ξ) = [A] ∪ (c) ∈ H3(F,Z/pZ(2)), where RG0,p is the the modulo p component of the
Rost invariant RG0 , A is a division algebra of degree p and c ∈ F×\Nrd(A×) – see [37, §4]
and [12, §14] (here the assumption char(F ) 6= p is needed).

Let us denote as X the nonsplit SL1(A)-torsor over F associated with c and as X̃ its
smooth compactification. We claim that X ′ has a closed point of prime to p degree over
F (X̃) and vice versa.

Indeed, since X̃ is a norm variety for [A] ∪ (c), the motive Rp(G) decomposes as a sum
of Tate motives over F (X̃). Therefore, the group GF (X̃) is split by an extension of degree

coprime to p and it follows that X ′ has a closed point of prime to p degree over F (X̃) (this
is more generally true for any extension L/F over which X̃ has a closed point of prime to
p degree). Moreover, the motive Rp(G) decomposes as a sum of Tate motives over F (X ′)
because G is split by F (X ′). Consequently, X̃ has a closed point of prime to p degree over
F (X ′).
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It follows then (note that X̃ is A-trivial by [26, Example 5.7]) that the right and the
bottom homomorphisms in the commutative square

Ch(Y ) //

��

Ch(YF (X′))

��
Ch(YF (X̃))

// Ch(YF (X̃×X′))

are isomorphisms. Since F (X̃) = F (X), Theorem V.3.1 is now a direct consequence of
Theorem V.0.1.

The following was pointed out to me by Philippe Gille.

Remark V.3.2. Let G0 a split group of type E8 over a 5-special field F (i.e F has no proper
extension of degree coprime to 5) of characteristic 6= 5. The above proof gives rise to a new
argument for the triviality of the kernel of the Rost invariant modulo 5

H1(F,G0)→ H3(F,Z/5Z(2)).

This result is originally due to Vladimir Chernousov (under the assumption char(F ) 6= 2, 3,
5, see [6, Theorem]).

Indeed, since F is 5-special, for any nontrivial cocycle ξ ∈ H1(F,G0), the group ξG0 has
no splitting field of degree coprime to 5. Then, as we have seen in the proof, there is a
division algebra A of degree 5 such that RG0,5(ξ) is equal to a symbol [A] ∪ (c) associated
with a nonsplit SL1(A)-torsor X. The injectivity of RG0,5 follows now from Remark V.2.2.
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Chapter VI

Special correspondences

Let p be prime and let X be a geometrically irreducible variety of dimension pn − 1 over a
field F of characteristic 6= p. We refer to [7, §62] or to Appendix C for an introduction to
correspondences. In this chapter, an antisymmetric correspondence σ ∈ CHb(X×X), where
b = (pn − 1)/(p− 1), is said to be special if its image H ∈ CHb(XF (X)) under the pull-back
associated with the morphism Spec(F (X))×X → X ×X is such that

(i) σF (X) = 1×H −H × 1 in CHb(X2
F (X)) ;

(ii) deg(Hp−1) is not divisible by p.

This notion has initially been introduced by M. Rost in [43].

In the first part of this chapter (section VI.1 to VI.3), we are interested in a conjecture (see
Conjecture VI.1.1 below) due to Alexander Vishik. That conjecture deals with rationality
of algebraic cycles over function field of quadrics and it can be related to some special
correspondences on quadrics. In the second part, we prove the case of equality of a theorem
([26, Theorem SC.1]) due to Nikita Karpenko and Alexander Merkurjev and involving special
correspondences on A-trivial varieties.

VI.1 A conjecture of A. Vishik

Let Y be a smooth quasi-projective variety over a field F , let Q be a smooth projective
quadric of dimension n over F and let us denote its function field as F (Q). For any integer
m ≥ 0, we recall that one can consider the following commutative diagram given by change
of field homomorphisms for Chow groups modulo 2 of codimension m classes of algebraic
cycles

Chm(Y ) //

��

Chm(YF (Q))

��
Chm(Y ) �

� // Chm(YF (Q))

,
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where we write Y := YF , with F an algebraic closure of F .
We recall that an element y of Ch(Y ) is F (Q)-rational if its image yF (Q) under Ch(Y )→

Ch(YF (Q)) is in the image of Ch(YF (Q)) → Ch(YF (Q)). Since F is algebraically closed, the

bottom homomorphism Ch(Y )→ Ch(YF (Q)) is injective by the specialization arguments.

Furthermore, for any I ⊂ {0, . . . , [n/2]}, let us denote the associated partial flag variety
as G(I) (in particular, for any i ∈ {0, . . . , [n/2]}, the variety G(i) is the Grassmannian
of i-dimensional totally isotropic subspaces) and for J ⊂ I we write π with subindex I
with J underlined inside it for the natural projection G(I) → G(J). In particular, for any
i ∈ {0, . . . , [n/2]}, one can consider

Q G(0, i)π(0,i)
oo

π(0,i)
// G(i),

and we set
zi := π(0,i)∗ ◦ π

∗
(0,i)(l0) ∈ CHn−i(G(i)F (Q)),

where l0 ∈ CH0(QF (Q)) is the class of a closed point x ∈ QF (Q) of degree 1.

In the aftermath of its use of the Main Tool Lemma to refute the Kaplansky’s conjecture,
A. Vishik stated the following conjecture (see [48, Conjecture 3.13])

Conjecture VI.1.1 (Vishik). Let Y be a smooth quasi-projective variety over a field F
with char(F ) = 0, let Q be a smooth projective F -quadric of dimension n and let i ∈
{0, . . . , [n/2]}. If the cycle zi (mod 2) is rational then any F (Q)-rational element y ∈
Chm(Y ), with m ≤ n− i, is rational.

Note that A. Vishik proved in [48, Proposition 2.5] that the rationality of zi implies the
rationality of zj for any j > i.

This conjecture is known for the extremal values i = 0 (if z0 = l0 is rational, i.e if
Q is isotropic, then one has CHm(Y ) ' CHm(YF (Q)) for any m) and i = [n/2] (see [48,
Proposition 3.12]). It is claimed to be known also for i = 1 in [48, end of section 3.2] but a
proof is not given (we get the case i = 1 by combining Proposition VI.2.8 with Proposition
VI.3.2). Moreover, if one considers Conjecture VI.1.1 with Ch := CH (mod 2), where
CH = CH (modulo 2-torsion), instead of Ch, then the case i = 1 is given by the result [55,
Theorem 1.3] of K. Zainoulline.

In the second section of this chapter, we link the rationality of the cycles zi with the
rationality of certain special correspondences ρi of Q. In the third section, we give a partial
answer to Conjecture VI.1.1 (in the case the first Witt index i1 of Q is sufficiently large)
which go in the direction of a positive general answer (see Proposition VI.3.1).
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VI.2 Rationality of special correspondences on

quadrics

Let Q be a smooth projective anisotropic quadric of dimension n over a field F . Let us
denote [n/2] as d. Let ρ = 1× l0 + l0×1 ∈ CHn(Q2

F (Q)) be the so-called Rost correspondence

on Q (in the sense of [7, §80]). Note that if ρ is rational then ρ − hn × 1 is a special
correspondence as defined in the introduction of this chapter, however we choose to work
with ρ for convenience with computations (note that, since Q is anisotropic, the rationality
of ρ would imply that n+ 1 is a power of 2 by [7, Corollary 80.8]).

For every i = 0, . . . , d, we set ti := 1 × h × · · · × hi−1 × l0 ∈ CHn+i(i−1)/2(Qi+1
F (Q)), where

h is the hyperplane section class (always rational), and for any σ ∈ Si+1 we also denote by
σ : Qi+1 → Qi+1 the associated isomorphism. Then we set

ρi := Σσ∈Si+1
σ∗(ti) ∈ CHn+i(i−1)/2(Qi+1

F (Q)).

We called ρi the i-th Rost correspondence of Q. One has ρ0 = l0 = z0 and ρ1 = ρ. Note
that the rationality of ρi implies the rationality of ρj for any j > i.

The purpose of this section is to prove the two propositons below. We will need the
following lemma, which can easily be deduced from [48, Propositon 2.1 and Lemma 2.6] and
its proofs.

For any positive integers k ≤ d and j such that j + k ≤ n, we set

W k
j := π(0,k)∗ ◦ π

∗
(0,k)(h

j+k) ∈ CHj(G(k)).

Lemma VI.2.1 (Vishik). For any 0 ≤ k < d, one has

(i) π(0,k)∗ ◦ π
∗
(0,k)(h

k) = [G(k)];

(ii) π(0,k,k+1)∗ ◦ π
∗
(0,k,k+1)(h

k) = [G(k, k + 1)];

(iii)
π∗(k,k+1)(zk) = c1(O(1)) · π∗(k,k+1)(zk+1),

where O(1) is the standard sheaf on the projective bundle G(k, k + 1) = PG(k)(T̃k+1),

with T̃k+1 the vector bundle dual to the tautological bundle Tk+1 on G(k + 1).

(iv)
c1(O(1)) · π∗(k,k+1)(W

k+1
j ) = π∗(k,k+1)(W

k
j+1)− π∗(k,k+1)(W

k+1
j+1 ).

In the following statement, the fact that if ρ is rational then z1 is also rational has already
been shown by A. Vishik in the proof of [53, Theorem 4.4].
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Proposition VI.2.2. Let i ∈ {0, . . . , d}. If ρi is rational then zi is also rational.

Proof. In order to simplify the notation in the proof, for any 0 ≤ i ≤ d we denote π(0,i) as fi
and π(0,i) as gi.

Since the conclusion is obvious for i = 0, we assume i ≥ 1 in the proof. Let Θ ⊂
Q×Q×G(0, 1) be the subvariety {((y, z), (y, l))| z ∈ l} and let

θ := [Θ] ∈ CHdim(G(0,1))+1(Q×Q×G(0, 1))

be its class as an algebraic cycle.
View as a correspondence, the cycle θ defines an homomorphism θ∗ : CH∗(Q × Q) →

CH∗−1(G(0, 1)) and one easily checks that for any (α, β) ∈ {1, h, . . . , hi−1, l0}2, with α 6= β,
one has

θ∗(α× β) =


g1
∗(z1) if α× β = 1× l0

[G(0, 1)] if α× β = 1× h
0 or f1

∗(l0) if else

Thus one has the following identity in CH(Qi−1 ×G(0, 1)F (Q)),(
(IdQi−1∗ × θ∗)(ρi)

)
·
(
[Qi−1]× f1

∗(h)
)

= Σσ∈Si−1
σ∗(h× h2× · · · × hi−1)× (g1

∗(z1) · f1
∗(h))

+ Σσ∈Si−1
σ∗(l0 × h2 × · · · × hi−1)× f1

∗(h).

Then, by applying the homomorphism IdQi−1∗×g1∗ to the previous identity and by combining
the fact that g1∗ ◦ f1

∗(h) = [G(1)] (see Lemma VI.2.1(i)) with the projection formula (see
Proposition II.2.2), one get that in CH(Qi−1 ×G(1)F (Q)) the cycle

Σσ∈Si−1
σ∗(h× h2 × · · · × hi−1)× z1 + Σσ∈Si−1

σ∗(l0 × h2 × · · · × hi−1)× [G(1)] (VI.2.3)

is rational. Note that this gives the conclusion if i = 1 so one can assume i ≥ 2 in the sequel.

Let us denote the sum (VI.2.3) as s = u + v. We write in for the imbedding G(0, 1) ↪→
Q×G(1) and we set t = IdQi−2∗ × r where r : CH(Q×G(1))→ CH(G(2)), is defined by

r(α) = π(1,2)∗

((
π∗(1,2)(W

2
1 )
)
·
(
π(0,1,2)∗ ◦ π

∗
(0,1,2) ◦ in∗(α)

))
for any α ∈ CH(Q × G(1)) (we intentionally write r this way for convenience with compu-
tations).

We claim that one has t(v)=0. Note that since s is rational and t commutes with change
of field homomorphisms, this would imply that the cycle t(u) is rational. We prove the claim.
For any 2 ≤ k ≤ i− 1, one has

π(0,1,2)∗ ◦ π
∗
(0,1,2) ◦ in∗(hk × [G(1)]) = 0

for dimensional reasons. Furthermore, one has

π(0,1,2)∗ ◦ π
∗
(0,1,2) ◦ in∗(l0 × [G(1)]) = π∗(1,2)(z1)
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and by the projection formula it follows that

r(l0 × [G(1)]) = W 2
1 · π(1,2)∗

(
π∗(1,2)(z1)

)
.

Since π(1,2)∗

(
π∗(1,2)(z1)

)
= 0 by dimensional reasons, we get that t(v) = 0.

Now we would like to compute the rational cycle t(u). First of all, for any integer
2 ≤ k ≤ i− 1, one has π(0,1,2)∗ ◦ π

∗
(0,1,2) ◦ in∗(hk × z1) = 0 by dimensional reasons. Moreover,

one has
π∗(0,1,2) ◦ in∗(h× z1) = π∗(0,1,2)(h) · π∗(0,1,2)

(
π∗(1,2)(z1)

)
.

By Lemma VI.2.1(ii), (iii) and the projection formula, it follows that

π(0,1,2)∗ ◦ π
∗
(0,1,2) ◦ in∗(hk × z1) = c1(O(1)) · π∗(1,2)(z2). (VI.2.4)

Therefore, using Lemma VI.2.1(iv) (with k = j = 1) and once again the projection formula,
from (VI.2.4) one get

r(h× z1) = z2 · π(1,2)∗ ◦ π
∗
(1,2)(W

1
2 ). (VI.2.5)

Moreover, by [48, Proposition 2.1], one has W 1
2 = c2(−T1), with T1 the tautological bundle

over G(1). Hence, since the bundle π∗(1,2)(T1) is naturally identified with the tautological line

bundle O(−1) over G(1, 2) = PG(1)(T̃2), one get

π(1,2)∗ ◦ π
∗
(1,2)(W

1
2 ) = π(1,2)∗ (c2(−O(−1))) = c0(−T̃2) = [G(2)] (VI.2.6)

and it follows from (VI.2.5) that

t(u) = Σσ∈Si−2
σ∗(h

2 × h3 × · · · × hi−1)× z2.

Now, for every k = 2, . . . , i, we set

uk := Σσ∈Si−kσ∗(h
k × hk+1 × · · · × hi−1)× zk ∈ CH(Qi−k ×G(k)F (Q)).

Since the cycle u2 = t(u) is rational and one has the identity ui = zi, it suffices to show that,
for any 2 ≤ k ≤ i− 1, the rationality of uk implies the rationality of uk+1, to conclude.

Let 2 ≤ k ≤ i − 1 and assume that the cycle uk is rational. We set tk = IdQi−k−1∗ × r
where r : CH(Q×G(k))→ CH(G(k + 1)), is defined by

r(α) = π(k,k+1)∗

((
π∗(k,k+1)(W

k+1
k )

)
·
(
π(0,k,k+1)∗ ◦ π

∗
(0,k,k+1) ◦ in∗(α)

))
for any α ∈ CH(Q×G(k)) (for k = 1, tk is the homomorphism t that we used).

We claim that tk(uk) = uk+1. Note that this would give us the conclusion since tk
commutes with change of field homomorphisms. To prove this we reproduce what has been
done for the computation of t(u)
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First of all, for any k + 1 ≤ j ≤ i− 1, one has π(0,k,k+1)∗ ◦ π
∗
(0,k,k+1) ◦ in∗(hj × zk) = 0 by

dimensional reasons. Thus, one get

tk(uk) = tk
(
Σσ∈Si−k−1

σ∗(h
k+1 × · · · × hi−1)× hk × zk

)
.

Moreover, one has

π∗(0,k,k+1) ◦ in∗(hk × zk) = π∗(0,k,k+1)(h
k) · π∗(0,k,k+1)

(
π∗(k,k+1)(zk)

)
.

Hence, by Lemma VI.2.1(ii), (iii) and the projection formula, it follows that

π(0,k,k+1)∗ ◦ π
∗
(0,k,k+1) ◦ in∗(hk × zk) = c1(O(1)) · π∗(k,k+1)(zk+1). (VI.2.7)

Then using once again the projection formula and Lemma VI.2.1(iv), from (VI.2.7) one
deduce the identity

tk(uk) = uk+1 ·
(

[Qi−k−1]×
(
π(k,k+1)∗ ◦ π

∗
(k,k+1)(W

k
k+1)

))
.

Finally, as in (VI.2.6), one has

π(k,k+1)∗ ◦ π
∗
(k,k+1)(W

k
k+1) = [G(k + 1)]

and the proposition is proved.

We simply write z for z1.

Proposition VI.2.8. ρ is rational if and only if z is rational.

Proof. By Proposition VI.2.2, it remains to show that the rationality of z implies the ratio-
nality of ρ. We denote π(0,1) as f , π(0,1) as g and G(1) as G.

Let Θ′ ⊂ G × Q × Q be the subvariety {(l, y1, y2)| y1, y2 ∈ l} and let θ′ := [Θ′] ∈
CHdim(G)+2(G×Q×Q) be its class as an algebraic cycle. As a correspondence, the cycle θ′

defines an homomorphism

θ′∗ : CHn−1(G)→ CHn(Q×Q).

Let us denote by ∆ th class of the diagonal {(y, y)} ⊂ Q × Q. We want to show that
one has the identity θ′∗(z) + 1× l0 + l0 × 1 = ∆F (Q) (this gives us the conclusion). To do so,
viewing the previous cycles as correspondences, one has to prove that the homomorphism

(θ′∗(z) + 1× l0 + l0 × 1)∗ : CH∗(QF (Q))→ CH∗(QF (Q))

is the identity. Moreover, one easily checks that for any α ∈ CHk(QF (Q)), one has

(1× l0 + l0 × 1)∗ (α) =

{
α if k = 0 or k = n
0 if else
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Therefore, one has to show that for any α ∈ CHk(QF (Q)), one has

(θ′∗(z))∗ (α) =

{
α if 0 < k < n
0 if else

Note that since the correspondence θ′∗(z) is symmetric, it is sufficient (see [7, §68]) to show
that

(θ′∗(z))∗ (hk) =

{
hk if 0 < k < d
0 if k = 0

To do so, let us first find an explicit formula for (θ′∗(z))∗. Consider the following commu-
tative diagram given by projections

G×Q×QpG×Q×Q
//

pG×Q×Q

��

Q×Q
pQ×Q

��
G×Q pG×Q

// Q

.

By the very definition, one has θ′∗(z) = pG×Q×Q∗ (z× [Q]× [Q] · θ′). Hence it follows by the

projection formula that for any α ∈ CHk(QF (Q)), one has

(θ′∗(z))∗ (α) = pQ×Q∗ ◦ pG×Q×Q∗ (z× α× [Q] · θ′) ,

that is to say, by the commutativity of the above diagram,

(θ′∗(z))∗ (α) = pG×Q∗ ◦ pG×Q×Q∗ (z× α× [Q] · θ′) .

Moreover, by denoting γ ∈ CHn−1(G×Q) the class of the subvariety {(l, y)|y ∈ l}, one has
the identity θ′ = γ × [Q] · p∗G×Q×Q(γ). Consequently, using the projection formula, one get

(θ′∗(z))∗ (α) = pG×Q∗

(
γ ·
(
pG×Q∗ ((z× α) · γ)× [Q]

))
,

that is to say, using again the projection formula,

(θ′∗(z))∗ (α) = pG×Q∗

(
γ · (z× [Q]) ·

(
pG×Q∗

(
p∗G×Q(α) · γ

)
× [Q]

))
. (VI.2.9)

Furthermore, since γ = in∗([G(0, 1)]) (with in : G(0, 1) ↪→ G×Q), by the analog Proposition
II.2.3 of the projection formula , one has

p∗G×Q(α) · γ = in∗ ◦ in∗
(
p∗G×Q(α)

)
and by the very definition of the morphisms f and g, it follows that

pG×Q∗

(
p∗G×Q(α) · γ

)
= g∗ ◦ f ∗(α).
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In the same way, one has γ · (z× [Q]) = in∗ ◦ g∗(z). Consequently, one deduce from (VI.2.9)
the following identity

(θ′∗(z))∗ (α) = pG×Q∗

(
(in∗ ◦ g∗(z)) ·

(
p∗G×Q(g∗ ◦ f ∗(α))

))
,

that is to say, applying the projection formula to in, followed by Proposition II.2.1,

(θ′∗(z))∗ (α) = f∗ ◦ g∗ (z · g∗ ◦ f ∗(α)) . (VI.2.10)

We will use this formula for computations.

First of all, one has (θ′∗(z))∗ (h0) = 0 since g∗ ◦ f ∗(h0) ∈ CH−1(G). Let us show now that
(θ′∗(z))∗ (h) = h. Since g∗ ◦ f ∗(h) = [G] by Lemma VI.2.1(i), one has

(θ′∗(z))∗ (h) = f∗ ◦ g∗(z) = pG×Q∗ ([X]) , (VI.2.11)

where X is the subvariety {(l, y)|x, y ∈ l} ⊂ G × Q. Let us denote by H the hyperplane
section of Q determined by the orthogonal complementary of the vectorial line associated
with the point x. Then one has pG×Q(X) = H and the projection pG×Q maps isomorphi-
cally the open {(l, y)|x, y ∈ l; y 6= x} of X to the open H\{x} of H. Therefore, one has
pG×Q∗ ([X]) = [H] = h, that is to say

(θ′∗(z))∗ (h) = h.

Now let 0 ≤ k ≤ d− 1. By (VI.2.10), one has

(θ′∗(z))∗ (hk+1) = f∗
(
(g∗(z)) ·

(
g∗ ◦ g∗ ◦ f ∗(hk+1)

))
,

and it follows from Lemma VI.2.1(iv) that

(θ′∗(z))∗ (hk+1) = f∗
(
g∗(z) · f ∗(hk)

)
− f∗

(
c1 (O(1)) · (g∗(z)) ·

(
g∗ ◦ g∗ ◦ f ∗(hk)

))
.

By the projection formula and (VI.2.11), the first summand of the right side of the previous
identity is equal to hk · ((θ′∗(z))∗ (h)), that is to say hk+1.

Therefore, it only remains to prove that the second summand of the right side of the
previous identity is equal to zero to conclude. Using successively the fact that c1 (O(1)) ·
(g∗(z)) = f ∗(l0) (see Lemma VI.2.1(iii)) and the projection formula, one get that this second
summand can be rewritten as

−l0 ·
(
f∗ ◦ g∗ ◦ g∗ ◦ f ∗(hk)

)
and this is equal to zero for dimensional reasons. The proposition is proved.

We do not know if for i ≥ 2 the rationality of zi implies the rationality of ρi.
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VI.3 A partial answer to the conjecture

Let Q be a smooth projective anisotropic quadric of dimension n over a field F of charac-
teristic 0. We need that assumption on the characteristic of the base field because we will
use the algebraic cobordism theory and the latter relies on resolution of singularities. Let us
denote by i1 the first Witt index of Q. The purpose of this section is to prove the following
proposition.

Proposition VI.3.1. Let 0 ≤ i ≤ i1. If ρi is rational then for any smooth quasi-projective
variety Y and for any integer m ≤ n− i, the change of field homomorphism

CHm(Y )→ CHm(YF (Q))

is surjective.

Note that, if the rationality of ρi is equivalent to the rationality of zi, then the previous
proposition gives an answer to the Conjecture VI.1.1 in the case the quadric Q has an
(i− 1)-dimensional subspace defined over the generic point of Q.

Proposition VI.3.1 is actually a consequence of the following statement, which is in fact
the case i = 1 of Proposition VI.3.1 (note that by the very definition of i1, one always has
i1 ≥ 1).

Proposition VI.3.2. If ρ = 1× l0 + l0 × 1 is rational then for any smooth quasi-projective
variety Y and for any integer m ≤ n− 1, the change of field homomorphism

CHm(Y )→ CHm(YF (Q))

is surjective.

The proof of Proposition VI.3.2, which is largely inspired by the proof of [55, Theorem
1.3] by K. Zainoulline, is given in the last subsection (we need to introduce some material
about algebraic cobordism before giving the proof). For the moment, let us explain how
Proposition VI.3.2 implies Proposition VI.3.1.

Proof of Proposition VI.3.1. Since the result is known for i = 0 and i = 1, one can assume
that i ≥ 2 in the proof. Let Q′ ⊂ Q be a subquadric of codimension i− 1. One can consider
the following commutative diagram

CH∗(Y )

��

// CH∗(YF (Q))

��
CH∗(YF (Q′)) // CH∗(YF (Q×Q′))

. (VI.3.3)

Since i1 > i − 1, the quadric Q′ has a rational point over F (Q) and it follows that the
right homomorphism is an isomorphism. Since Q has a rational point over F (Q′) as well,
the bottom homomorphism is also an isomorphism.
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Hence, one has to show that the homomorphism CHm(Y ) → CHm(YF (Q′)) is surjective.
Moreover, since m ≤ n− i = dim(Q′)− 1, it is sufficient by Proposition VI.3.2 to prove that
the cycle

ρ′ = 1× l′0 + l′0 × 1 ∈ CH0(Q′
2
F (Q′)) ' CH0(Q′

2
F (Q))

is rational.

Let us denote by π ∈ CH
n−i1+1

(Q2) a rational integral representative of the 1-primordial

cycle in Ch
n−i1+1

(Q2) (see [7, Definition 73.16] and paragraph right after [7, Theorem 73.26]).
Even if it means adding a rational cycle to π, one can assume that π decomposes as

π = 1× li1−1 + li1−1 × 1 +

d−i1+1∑
j=i1

aj
(
hj × lj+i1−1 + lj+i1−1 × hj

)
,

where for every j = i1, . . . , d − i1 + 1, the coefficient aj is an integer (the fact that one can
choose to make the previous sum start from j = i1 is due to [7, Proposition 73.27]).

Furthermore, let us denote by σ ∈ Si+1 the cyclic permutation which sends k to k+ 1 for
1 ≤ k ≤ i and i + 1 to 1. We also denote by σ : Qi+1 → Qi+1 the associated isomorphism.
Then, viewing the algebraic cycles at work as correspondences, we recursively define the
following sequence of rational cycles{

ε0 := ρi
εk := σ∗

(
εk−1 ◦

(
(1× hi1−i+k−1) · π

))
for k = 1, . . . , i− 1

One easily checks that, in CH
n
(Qi+1), one has the identity

εi−1 = ρ× 1× 1× · · · × 1 + δi,i1
(
(1× hi−1 + hi−1 × 1)× li−1 × 1× · · · × 1

)
,

where δ is the Kronecker symbol. We write ∆ for the diagonal morphism

Q2 −→ Qi+1

(x, y) 7−→ (x, y, . . . , y)
.

By applying ∆∗ to the previous equation, one get that the cycle

γ := 1× l0 + l0 × 1 + δi,i1
(
1× l0 + hi−1 × li−1

)
∈ CHn(Q2)

is rational. Then, by denoting in the inclusion Q′2 ↪→ Q2, one has the identity

in∗ (γ ◦ π) = l′i1−i × 1 + δi,i1
(
1× l′i1−i

)
.

If i = i1 then the previous identity gives us directly the conclusion. If else – i.e i < i1 – it
follows from the previous identity that the cycle (l′i1−i × 1) · (hi1−i) = l′0 × 1 is rational and
consecutively that ρ′ is rational. The proposition is proved.
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Symmetric operations in algebraic cobordisms

In this subsection, we briefly recall some properties of symmetric operations in algebraic
cobordisms.

We recall that for any smooth variety X over a field F of characteristic 0, M. Levine and
F. Morel have defined in [30] the ring of algebraic cobordisms Ω∗(X) with a natural surjective
map pr : Ω∗(X) � CH∗(X). An element β ∈ Ω∗(X) is a finite sum of classes [v], where the
morphism v : Y → X belongs to a certain class of morphims containing the class of smooth
projective morphisms. In particular, for any smooth projective F -variety U of dimension n,
the class [U → Spec(F )] of the structure morphism is an element of Ln ⊂ L = Ω∗(Spec(F )),
with L the Lazard ring. Moreover, one has

Ker (pr : Ω∗(X) � CH∗(X)) = L>0 · Ω∗(X).

For our purpose (the proof of Proposition VI.3.2), one can keep in mind the following
commutative diagram, for any extension K/F ,

Ω∗(X)

pr

��

// Ω∗(XK)

pr

��
CH∗(X) // CH∗(XK)

.

Then A. Vishik constructed in [53] and [52] some cohomological operations

Φtr : Ωd(X)→ Ω2d+r(X),

for r ≥ 0, called symmetric operations. For r ≥ 0, we write φt
r

= pr ◦ Φtr . For r > 0, the
operation φt

r
is additive. For any q(t) =

∑
i≥0 qit

i ∈ CH∗(X) [[t]], we set φq(t) :=
∑

i≥0 qiφ
ti .

For a vector bundle E over X, we write c(E)(t) for the total Chern polynomial
∏

i≥0(t+

λi), where the λi ∈ CH1(X) are the roots of E.
The following properties of symmetric operations, which have been proved by A. Vishik

(see [52, Propositions 3.4 and Proposition 3.15] and [51, Proposition 2.4(3)]), will be useful
during the proof of Proposition VI.3.2.

The following proposition describes how φ interacts with pull-backs and push-forwards.

Proposition VI.3.4 (Vishik). Let f : X → Y be a morphism of smooth projective varieties.
For any r ≥ 0, one has

(i) f ∗ ◦ φtr([w]) = φt
r ◦ f ∗([w]) ;

(ii) If f is a regular embedding then

φt
r

(f∗([1X ]) · [w]) = φt
r·f∗(c(Nf )(t))([w]),

where Nf is the normal bundle of f .
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For any smooth projective F -varietyX and any integer j, we denote by SjLN the Landweber-
Novikov operation associated with the integer j. We recall that one has the following com-
mutative diagram

Ω∗(X)
SjLN //

pr

��

Ω∗+j(X)

pr

��
CH∗(X)

��

CH∗+j(X)

��
Ch∗(X)

Sj
// Ch∗+j(X)

where Sj is the j-th Steenrod operation of cohomological type on X (we recall that both
S0
LN and S0 are the identity).

Furthermore, the formula below links in a particular case the symmetric operations by
A. Vishik with the Chow trace of the Landweber-Novikov operations (see [52, Proposition
3.15]).

Let U be a smooth projective F -variety of positive dimension n and let us denote as [U ] ∈
L the class of its structure morphism. We write η(U) for the Rost invariant −deg(cn(−TU ))

2
∈ Z

of U , where TU is the tangent bundle of U (the fact that η(U) is an integer can be found in
[32]).

Proposition VI.3.5 (Vishik). Let U be a smooth projective F -variety of positive dimension
n and let β ∈ Ωi(X). For any j > max(i− 2n ; 0), one has

φt
j−i+2n

([U ] · β) = (−1)j−i+2nη(U) ·
(
pr ◦ SjLN(β)

)
.

Proof of Proposition VI.3.2

In this subsection, we prove Proposition VI.3.2. For an element β in CH∗ or Ω∗ and
an extension L/F , we write βL for the image of β under the associated change of field
homomorphism. In the proof, we also denote by ρ an element of CHn(Q2) mapped to
1× l0 + l0 × 1 ∈ CHn(Q2

F (Q)) under the change of field homomorphism

Since 2 ∈ deg (CH0(Q)) (because hn = 2l0), it suffices by [26, Corollary 2.10] to prove the
surjectivity at the level of Chow groups modulo 2, i.e one has to show that for any integer
m ≤ n− 1, the change of field homomorphism

Chm(Y )→ Chm(YF (Q))

is surjective.
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Let y ∈ Chm(YF (Q)) and let us fix an element x ∈ Chm(Q × Y ) mapped to y under the
surjection (see Proposition II.2.4)

Chm(Q× Y ) � Chm(YF (Q)).

We set x′ := x ◦ (ρ (mod 2)) ∈ Chm(Q × Y ). Note that since ρ is a correspondence of
multiplicity 1, the cycle x′ is also mapped to y under the previous surjection (see [26, Lemma
2.1(1) and Lemma 2.6]). Furthermore, one has

x′F (Q) = xF (Q) ◦ (1× l0) + xF (Q) ◦ (l0 × 1) = 1× y, (VI.3.6)

the term xF (Q) ◦ (1× l0) being equal to zero since m ≤ n− 1 We will use this identity at th
very end of the proof.

Since the cycle 1 × l0 + l0 × 1 ∈ CHn(Q2
F (Q)) is rational, there exists an element α ∈

L>0 · Ω(Q2
F (Q)) such that, by denoting the class of g : pt ↪→ QF (Q) in Ω0(QF (Q)) as x0, the

element
1× x0 + x0 × 1 + α

is rational (with 1 = [IdQ]). Now let us fix an element w ∈ Ωm(Q× Y ) mapped to x′ under
Ω∗(Q× Y ) � Ch∗(Q× Y ) and let us consider the following rational element

v := (1× x0 + x0 × 1 + α)∗(wF (Q)) ∈ Ωm(Q× YF (Q)).

The element v decomposes as

v = 1× vn + x0 × v0 + α∗(wF (Q)), (VI.3.7)

where vj ∈ Ωm−n+j(YF (Q)) and pr(vn) (mod 2) = y (basic computations for correspondences
are the same for both Chow theory and algebraic cobordism theory).

The following lemma constitutes the next step of the proof.

Lemma VI.3.8. One has

y = φt
2n−m ◦ pY ∗(v) − φt

2n−m
(v0) − φt

2n−m ◦ pY ∗
(
α∗(wF (Q))

)
(mod 2),

where pY is the projection Q× Y → Y .

Proof. We apply φt
2n−m ◦ pY ∗ to the decomposition (VI.3.7) of v. First, we deal with the

first summand of the right side of the equation. By the projection formula, one has

φt
2n−m ◦ pY ∗(1× vn) = φt

2n−m
(q∗(1) · vn) ,

where q : Q→ Spec(F ) is the structure morphism. Since one has q∗(1) = [Q] ∈ Ln, one get
from Proposition VI.3.5 that

φt
2n−m ◦ pY ∗(1× vn) = (−1)mη(Q) · pr(vn) in CHm(YF (Q)).
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Consequently, as η(Q) (mod 2) = 1 ∈ Z/2Z since the quadric Q is anisotropic (see [43,
Theorem 9.9]), one has

φt
2n−m ◦ pY ∗(1× vn) (mod 2) = y .

Secondly, we deal with the second summand of of the right side of the equation. Once
again by the projection formula, one has

φt
2n−m ◦ pY ∗(x0 × v0) = φt

2n−m
(q∗(x0) · v0) = φt

2n−m
(v0)

and the lemma is proved.

The following lemma constitutes the second step of the proof.

Lemma VI.3.9. One has

φt
2n−m

(v0) = pY ∗ ◦ φt
n−m

(v) − pY ∗ ◦ φt
n−m (

α∗(wF (Q))
)
.

Proof. We apply pY ∗ ◦ φt
n−m

to the decomposition (VI.3.7) of v. Let us start with the first
summand of the right side of the equation. The projection formula and Proposition VI.3.4(i)
imply the following string of identities

pY ∗ ◦ φt
n−m

(1× vn) = pY ∗ ◦ φt
n−m ◦ (p∗Y (vn)

= pY ∗ ◦ p∗Y ◦ φt
n−m

(vn)

= φt
n−m

(vn) · pY ∗(1),

and pY ∗(1) = 0 for dimensional reasons.

We deal now with the second summand of the right side of equation (VI.3.7). Let
f : Spec(F (Q))×Y ↪→ Q×Y be the regular embedding g× IdY . Since x0× v0 = f∗ (1× 1) ·
(1× v0), it follows from Proposition VI.3.4(ii) that

φt
n−m

(x0 × v0) = φt
n−m·f∗(c(Nf )(t))(1× v0). (VI.3.10)

Moreover, one has Ng = g∗(TQ), with TQ the tangent bundle of Q (see [17, Corollary 17.12.3]
or [7, Proposition 104.12]). Hence, by [7, Proposition 54.5] (see also Appendix B), one has
g∗ (c(Ng)(t)) = c(TQ)(t) · g∗(1) = c(TQ)(t) · l0. Since c(TQ)(t) = (t − h)n+1 · (t − 2h)−1 (see
[50, Proposition 6.1] for example), one get from (VI.3.10) that

φt
n−m

(x0 × v0) = (l0 × 1) · φt2n−m(1× v0) = l0 × φt
2n−m

(v0),

where the last identity is due to Proposition VI.3.4(i). Consequently, one has pY ∗◦φt
n−m

(x0×
v0) = φt

2n−m
(v0) and the lemma is proved.

One get from the two previous lemmas that y = φt
2n−m◦pY ∗(v)−pY ∗◦φt

n−m
(v) (mod 2)+z,

with z := pY ∗ ◦ φt
n−m (

α∗(wF (Q))
)
− φt

2n−m ◦ pY ∗
(
α∗(wF (Q))

)
(mod 2). Therefore, the

conclusion is given by the following lemma.
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Lemma VI.3.11. In Chm(YF (Q)), one has z = 0.

Proof. Since φt
r

is additive for r > 0, one can assume there exist an integer d > 0 and some
elements [U ] ∈ Ld and β ∈ Ωn+d(Q2

F (Q)) such that α = [U ] · β. By L-linearity, it follows that

α∗(wF (Q)) = [U ] · β∗(wF (Q)). Consequently, by Proposition VI.3.5, one has

φt
n−m (

α∗(wF (Q))
)

= (−1)n−mη(U) ·
(
pr ◦ Sn−dLN

(
β∗(wF (Q))

))
in CHm(YF (Q)),

and therefore, in Chm(YF (Q)), one has the following identity

pY ∗ ◦ φt
n−m (

α∗(wF (Q))
)

(mod 2) = η(U) · pY ∗ ◦ Sn−d
(
pr
(
β∗(wF (Q))

)
(mod 2)

)
. (VI.3.12)

Moreover, since again by L-linearity one has pY ∗
(
α∗(wF (Q))

)
= [U ] ·pY ∗

(
β∗(wF (Q))

)
, one

also has the following identity

φt
2n−m ◦ pY ∗

(
α∗(wF (Q))

)
(mod 2) = η(U) · Sn−d ◦ pY ∗

(
pr
(
β∗(wF (Q))

)
(mod 2)

)
, (VI.3.13)

and by combining (VI.3.12), (VI.3.13) and Proposition II.3.2, one get that the cycle z can
be rewritten as

z = η(U) · pY ∗

( ∑
0<i≤n−d

ci(−TQ) · Sn−d−i
(
pr
(
β∗(wF (Q))

)
(mod 2)

))
.

Since ci(−TQ) = hi ∈ Chi(Q) (see [7, Corollary 80.11 and Lemma 78.1]), by denoting the
cycle pr(β) (mod 2) ∈ Chn+d(Q2

F (Q)) as β′, the latter equation can be rewritten as

z = η(U) · pY ∗

( ∑
0<i≤n−d

hi · Sn−d−i(x′F (Q) ◦ β′)

)
. (VI.3.14)

We claim that, for every i = 1, . . . , n−d, the summand zi := pY ∗

(
hi · Sn−d−i(x′F (Q) ◦ β′)

)
of

(VI.3.14) is equal to zero. Indeed, one deduce from (VI.3.6) that x′F (Q) ◦ β′ = pQ×Q∗(β
′)× y.

Then by the Cartan formula (see Corollary II.3.5), it follows that for every i = 1, . . . , n− d,
one has

zi =
n−d−i∑
j=0

zi,j with zi,j := pY ∗

((
hi · Sj ◦ pQ×Q∗(β

′)
)
× Sn−d−i−j(y)

)
.

If j 6= n−d−i then one has zi,j = 0 for dimensional reasons. Otherwise, hi ·Sn−d−i◦pQ×Q∗(β
′)

is a 0-cycles and zi,n−d−i = 0 since deg
(
hi · Sn−d−i ◦ pQ×Q∗(β

′)
)

= 0 by [43, Lemma 9.3].

Proposition VI.3.2 is now completely proved.
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VI.4 Special correspondences on A-trivial varieties

In this section, we state the result [26, Theorem SC.1] (see Theorem VI.4.1 below) due to
Nikita Karpenko and Alexander Merkurjev and then we give an extension, namely we deal
with the case of equality of this theorem.

Let p be a prime and let X be a smooth complete geometrically irreducible variety over
a field F of characteristic 6= p. We denote by Ch the Chow group modulo p. First, we
recall that X is said to be A-trivial for Z/pZ if for any extension L/F such that X(L) 6= ∅,
the degree homomorphism deg : Ch0(XL) → Z/pZ is an isomorphism (for example, any
smooth projective quadric is A-trivial for Z/2Z). We say that X and X ′ are equivalent if
for any extension L/F , one has 1 ∈ deg Ch0(XL) if and only if 1 ∈ deg Ch0(X ′L). This is an
equivalence relation.

For any integer i, we write Si for the cohomological Steenrod operation on Ch which
increases the codimension by i (as in [26]). This indexing differs from that of [4]. In this
indexing, one has Si = 0 if i is not divisible by p−1. We recall that b refers to (pn−1)/(p−1).

Theorem VI.4.1 (Karpenko, Merkurjev). Let X be an A-trivial F -variety for Z/pZ equiva-
lent to an A-trivial F -variety of dimension pn− 1 possessing a special correspondence. Then
for any smooth irreducible F -variety Y , any m, s ∈ Z with s > (m − b)(p − 1), and any
y ∈ Chm(YF (X)), the element Ss(y) ∈ Chm+s(YF (X)) is rational up to the class modulo p of
an exponent p element of CHm+s(YF (X)).

The proof of the following proposition is widely inspired by the proof of the previous
statement and is for this reason to be read along with the proof of [26, Theorem SC.1].

Proposition VI.4.2. Let X be an A-trivial F -variety for Z/pZ equivalent to an A-trivial
F -variety of dimension pn − 1 possessing a special correspondence. Then for any smooth
irreducible F -variety Y , any m ∈ Z, and any y ∈ Chm(YF (X)), there exists a polynomial P
of degree ≤ p−1, with rational coefficients in Ch(YF (X)), such that the element Ss(y)+P (y) ∈
Chm+s(YF (X)), with s = (m− b)(p− 1), is rational up to the class modulo p of an exponent
p element of CHm+s(YF (X)).

Proof. We make the assumption that dim(Y ) > 0 (otherwise, the conclusion is immediate).
Since the conclusion is given by [26, Lemma 2.9] if 1 ∈ deg Ch0(X), one can assume that
deg CH0(X) ⊂ pZ. Furthermore, using a commutative diagram similar to (VI.3.3), one can
also assume that X itself is of dimension d := pn− 1 and possesses a special correspondence
σ ∈ CHb(X ×X). As in the introduction of this chapter, we write H ∈ CHb(XF (X)) for the
image of σ under the corresponding pull-back.

As in the proof of [26, Theorem SC.1], one can find an element x ∈ Chm(X × Y ) such
that x decomposes over F (X) as

xF (X) = 1× y +H × x1 + · · ·+Hp−1 × xp−1 (VI.4.3)
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with some x1, ..., xp−1 ∈ Ch(YF (X)).

Let us fix an integral representative x̃ ∈ CHm(X × Y ) of x ∈ Chm(X × Y ) and for each
integer k ≥ 0, an integral representative Skσ ∈ CHb+k(X ×X) of Sk(σ) ∈ Chb+k(X ×X) (we
choose σ for S0

σ) and an integral representative Skx ∈ CHm+k(X ×Y ) of Sk(x) ∈ Chm+k(X ×
Y ). By combining the reasoning done in the beginning of [26, Proposition SC.12] with the
fact that Sd+s(x) = xp, one get that there exist some cycles bk ∈ Chk(X) such that the
element ∑

i+j+k+l1+···+lp−1=d+s
i>0; j,k,l1,...,lp−1≥0

pY ∗
(
bj ·
(
pX,X∗

(
bi · Sl1σ · ... · Slp−1

σ

))
· Skx) + pY ∗(x̃

p
)
∈ CH(Y ),

is divisible by p (in the previous sum, bk· always stands for (bk × 1)·). Let us denote this
sum as A+ pY ∗(x̃

p).

Furthermore, one knows from the proof of [26, Proposition SC.12] that there exist a cycle
β ∈ CH(YF (X)), a cycle γ ∈ CH(Y ), and a prime to p integer q such that

AF (X) = p2β + pγF (X) + qdeg(bd)S
s
y,

where Ssy ∈ CHm+s(YF (X)) is an integral representative of Ss(y) ∈ Chm+s(YF (X)). Therefore,
even if it means modifying β and γ, one can write

qdeg(bd)S
s
y + pY ∗(x̃

p
F (X)) = p2β + pγF (X). (VI.4.4)

Moreover, according to the decompositon (VI.4), there exists a cycle α ∈ CHm(X × YF (X))
such that

x̃F (X) = 1× ỹ +H × x̃1 + · · ·+Hp−1 × x̃p−1 + pα,

where the cycles ỹ, x̃1, ..., x̃p−1 are some integral representatives of the cycles y, x1, ..., xp−1.
Hence, one has

x̃pF (X) =

p∑
k=0

(
p

k

)
(pα)p−k ·

(
1× ỹ +H × x̃1 + · · ·+Hp−1 × x̃p−1

)k
.

In the lattest expression, each summand, except the one corresponding to k = p, is divisible
by p2. Thus, even if it means modifying β, we deduce from the equation (VI.4.4) the following
identity

qdeg(bd)S
s
y + pY ∗

((
1× ỹ +H × x̃1 + · · ·+Hp−1 × x̃p−1

)p)
= p2β + pγF (X). (VI.4.5)

Furthermore, by the multinomial Theorem, the cycle pY ∗

((∑
0≤i≤p−1 H

i × x̃i
)p)

(with

x0 = y) is equal to ∑
k0+k1+···+kp−1=p

k1+2k2+···+(p−1)kp−1=p−1

(
p

k0, k1, . . . , kp−1

)
ỹk0 · x̃1

k1 · · · x̃kp−1

p−1 .
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Since for any i = 0, . . . , p− 1, one has ki < p, each multinomial coefficient appearing in the
previous sum is a multiple of p. Thus, that sum can be rewritten as

p

p−1∑
k=1

ak · ỹk,

where

ak :=
∑

k1+k2+···+kp−1=p−k
k1+2k2+···+(p−1)kp−1=p−1

(
p− 1

k, k1, . . . , kp−1

)
x̃1

k1 · x̃2
k2 · · · x̃kp−1

p−1 ∈ CH(YF (X)).

Therefore, since the integer deg(bd) is divisible by p (by assumption) but not by p2 (see
proof of [26, Proposition SC.12], this results from [43, Theorem 9.9] by M. Rost), we deduce
from the equation (VI.4.5) that the element

Ss(y) +

p−1∑
k=1

ak · yk (VI.4.6)

is rational up to the class modulo p of an exponent p element of CHm+s(YF (X)) (for k =
1, ..., p − 1, we still write ak for the class in Ch(YF (X)), and we replace the coefficient in
(Z/pZ)? near Ss(y) by 1). From now on, we work with Chow groups modulo p. For any
k = 1, ..., p− 1, one has

ak =

(
p− 1

k − 1

)
k−1pY ∗

((
H × x1 +H2 × x2 + ...+Hp−1 × xp−1

)p−k)
= (−1)k−1k−1pY ∗

((
xF (X) − 1× y

)p−k)
= (−1)k−1k−1

k∑
i=0

(
p− k
i

)
(−1)ipY ∗

(
xp−k−iF (X) · (1× y

i)
)

= (−1)k−1k−1

k∑
i=0

(
p− k
i

)
(−1)iyi · pY ∗(x

p−k−i
F (X) ).

Therefore, setting for every j = 1, ..., p− 1,

ej :=

(
j∑
l=1

l−1

(
p− l
j − l

))
(−1)j−1pY ∗(x

p−j) ∈ Ch(Y ),

one get that
p−1∑
k=1

ak · yk = P (y), (VI.4.7)

where P is the polynomial in variable Z with coefficients in Ch(YF (X)) such that P (Z) =∑p−1
j=1 ejF (X) · Z

j (there is no coefficient ep because pY ∗(1 × 1) = 0). One get the desired

result by combining (VI.4.6) and (VI.4.7).
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Appendix A

Milnor K-Theory

All material presented here can be found in [7, §100]

Graded Milnor ring. Let F be a field and let us denote by T∗ the tensor ring of the
multiplicative group F×. We write I for the ideal of T∗ generated by the tensors a⊗ b with
a+ b = 1 and we set

K∗(F ) = T∗/I.

This graded ring is called the Milnor ring. The class of a tensor a1 ⊗ · · · ⊗ an in Kn(F ) is
denoted by {a1, . . . , an} and is called a symbol. One has Kn(F ) = 0 for n < 0, K0(F ) = Z
and K1(F ) = F×. For n ≥ 2,, Kn(F ) is generated by the symbol {a1, . . . , an} with ai ∈ F×
subject to the multilinearity relation and the Steinberg relation.

Note that for any extension L/F , one has a natural restriction homomorphism rL/F :
K∗(F )→ K∗(L) associating to any symbol {a1, . . . , an}F the symbol {a1, . . . , an}L.

Residue homomorphsim. Let L be a field with discrete valuation v : L× → Z and residue
field F . For any n ≥ 0, the residue homomorphism

δv : Kn+1(L)→ Kn(F )

is uniquely determined by the condition: if a0, a1, . . . an ∈ L× are such that v(ai) = 0 for
each i = 1, . . . , n, then δv ({a0, a1, . . . , an}) = v(a0){a1, . . . , an}, where ai ∈ F× is the residue
of ai.

Milnor’s Theorem. Let X be an integral scheme over F . For any regular point x ∈ X
of codimension 1, the local ring OX,x is a discrete valuation ring with quotient field F (X)
and residue field F (x). We write δx : K∗+1(F (X)) → K∗(F (x)) for the associated residue
homomorphism.

Milnor’s Theorem describes the Milnor K-groups of the function field F (A1
F ) = F (t) of

the affine line, by means, the following sequence

0 // Kn+1(F )
rF (t)/F// Kn+1(F (t))

(δx) //
∐

x∈A1
(0)
Kn(F (x)) // 0
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is split exact.

Norm homomorphism. For any finite extension L/F and n ≥ 0, we describe how is
constructed the associated norm homomorphism

cL/F : Kn(L)→ Kn(F ).

We assume first that the extension L/F is simple. Then L can be identified with the residue
field of F (y) of a closed point y ∈ A1

F . Now let α ∈ Kn(L) = Kn(F (y)). By Milnor’s
Theorem, there exists β ∈ Kn+1(F (t)) such that δx(β) = α if x = y and δx(β) = 0 otherwise.

Let v be the discrete valuation of the field F (P1
F ) = F (A1

F ) = F (t) associatd with the
infinite point of the projective line P1

F . We set

cL/F (α) = δv(β).

In the genreal case, we choose an arbitrary sequence of simple field extensions

F ⊂ F1 ⊂ · · · ⊂ Fn = L

and the composite
cL/F := cF1/F ◦ · · · ◦ cFn/Fn−1

is well defined.
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Appendix B

Chern classes

Let X be a scheme and let p : E → X be a vector bundle of rank r > 0. The associated
pull-back homomorphism

p∗ : A∗(X,K∗)→ A∗+r(E,K∗−r)

is an isomorphism (see [7, Corollary 52.14]). Let us denote by s : X → E the zero section.
The composite

e(E) := (p∗)−1 ◦ s∗ : A∗(X,K∗)→ A∗−r(X,K∗+r)

is called the Euler class of E.
We write q : P(E) → X for the projective bundle associated with p and L for the

tautological line bundle over P(E). We set e = e(L). The following statement is known as
the Projective Bundle Theorem (see [7, Theorem 53.10]).

Theorem B.0.1. The homomorphism

r∐
i=1

er−i ◦ q∗ :
r∐
i=1

A∗−i+1(X,K∗+1−i)→ A∗(P(E), K∗)

is an isomorphism

Let α ∈ A∗(X,K∗). Since −er ◦ q∗(α) ∈ A∗−1(P(E), K∗+1), by the previous theorem,
there exist αi ∈ A∗−i(X,K∗+i) such that

−er ◦ q∗(α) =
r∑
i=1

(−1)ier−i ◦ q∗(αi).

Therefore, one get some homomorphisms

ci(E) A∗(X,K∗) → A∗−i(X,K∗+i)
α 7→ αi
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for i = 1, . . . , r. Moreover, we set c0(E) = id and ci(E) = 0 for i < 0 or i > r. Those
homomorphisms are called the Chern classes of E and

c(E) := c0(E) + c1(E) + · · · cr(E)

is the total Chern class of E.
When X is a smooth variety, the homomorphism ci(E) : CH∗(X) → CH∗+i(X) is just

the multiplication by an element of CHi(X), which is still denoted by ci(E).

The following statement describes the functorial behaviour of Chern classes.

Proposition B.0.2. ([7, Proposition 54.5]) Let f : Y → X be a morphism and E a vector
bundle over X. Set E ′ = f ∗(E). Then

(i) If f is proper then c(E) ◦ f∗ = f∗ ◦ c(E ′).

(ii) If f is flat then f ∗ ◦ c(E) = c(E ′) ◦ f ∗.
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Appendix C

Correspondences on Chow groups

In this appendix, we only present the category of correspondences (used in Chapters III and
VI). Note that the category of Chow motive is built from this category (see [7, §64]) All
material presented here is taken from [7, §62, §63].

Let Λ be a commutative ring and CH the Chow group with coefficients in Λ. Let X and
Y be smooth complete schemes over a field F . Let X1, . . . , Xn be the irreducible components
of X of dimension d1, . . . , dn, respectively. For every i ∈ Z, we set

Corri(X, Y ) =
n∐
k=1

CHi+dk(Xk × Y ).

An element α ∈ Corri(X, Y ) is called a correspondence between X and Y of degree i with
coefficients in Λ. There is an associative composition between correspondences. Namely, if
Z is another smooth complete scheme, one can consider the associative composition

Corri(Y, Z)× Corrj(X, Y )→ Corri+j(X,Z) (C.0.1)

given by
β ◦ α = pX,Y,Z∗

(
p∗X,Y ,Z(α) · p∗X,Y ,Z(β)

)
for any (β, α) ∈ Corri(Y, Z) × Corrj(X, Y ), where the underlined schemes in indices deter-
mined the associated projection. In Chapters III and VI, for α ∈ Corri(X, Y ), we have
denoted by α∗ and α∗ the composition by α on the left and on the right, respectively.

The category CR∗(F ) of correspondences (with coefficients in Λ) over F is defined as
follows: objects of CR∗(F ) are smooth complete schemes over F and a morphism between
two objects X and Y is an element of the graded group∐

k∈Z

Corrk(X, Y ).

Composition of morphisms is given by (C.0.1). The identity morphism of X is the class
[Γ1X ] ∈ CH(X2) of the graph of the identity morphism 1X . The direct sum in CR∗(F )
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is given by the disjoint union of schemes and the composition (C.0.1) being bilinear, the
category CR∗(F ) is additive. A smooth complete scheme X, view as an object of CR∗(F ),
is denoted by M(X) and is called a Chow motive.
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Appendix D

Torsors of algebraic groups

The purpose of this appendix is to recall the notion of a generic torsor. All material presented
here can be found in [29, Chapter VII], [13, Part II, §3] and [24, §6].

Let G be a linear algebraic group over a field F . We recall that an F -variety Y is
called a G-torsor (or a principal homogeneous space under G) if G acts (on the right)
simply transitively on Y . The set of isomorphism classes of G-torsors is in bijection with
the set H1(F,G) of classes of 1-cocycles (sometimes simply referred as 1-cocycles in this
dissertation).

Let n be an integer such that G ⊂ GLn. Let us set S := GLn and X := S/G (X is a
classifying variety of G). Since for any field extension E/F one has H1(E, S) = 1, the set
H1(E,G) can be identified with the orbit space of the action of S(E) on X(E):

H1(E,G) = X(E)/S(E).

The G-torsor Y over the function field F (X) corresponding to the generic point of X is
called a generic torsor.

One can show that if G is split and Y is a generic torsor with corresponding 1-cocycle ξ ∈
H1(F (X), G), the Chow ring CH(ξ(G/B)), where B is a Borel subgroup of G, is generated
by Chern classes (as in the proof of Proposition IV.1.1). That is the reason why in Chapter
IV we call a 1-cocycle ξ generic if the associated Chow ring CH(ξ(G/B)) is generated by
Chern classes.
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