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Résumé 

La métabolomique a été introduite comme la dernière des approches “omics” dont l’objet est 

de caractériser l’ensemble des métabolites d’un système biologique et leurs variations en 

réponse à un facteur d’intérêt, comme une maladie, une perturbation génétique ou 

environnementale, d’un point de vue global. Cette approche exploite les derniers 

développements de méthodes analytiques telles que la spectroscopie par Résonance 

Magnétique Nucléaire (RMN) ou la spectrométrie de masse. Elle a été utilisée dans un grand 

nombre de domaines scientifiques, de la biologie moléculaire à la recherche de marqueurs 

biologiques de pathologies humaines, en tant que nouvel outil de caractérisation du 

métabolisme.  

Cette thèse est dédiée aux développements méthodologiques et applications de la 

métabolomique exploitant la RMN à très hauts champs. Nous caractérisons une grande variété 

d’échantillons biologiques, des fluides biologiques humains aux organismes modèles comme 

le vers Caenorhaditis elegans (C. elegans) ou la lignée cellulaire HepG2, dans le cadre de 

problématiques très différentes. Nous soulignons les points communs et les spécificités de 

l’utilisation de la métabolomique dans ces différents contextes. 

La première partie de ce manuscrit est dédiée à une présentation générale de la 

métabolomique. Nous décrivons les principes de cette approche, introduisons l’usage de la 
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RMN dans ce contexte et présentons l’analyse des données. Nous décrivons également les 

résultats obtenus concernant l’introduction d’une technique à dimensionnalité réduite pour la 

caractérisation des mélanges complexes, dénommée spectroscopie RMN par projections 

ciblées, dont l’objectif est de réduire le recouvrement entre les signaux des métabolites afin de 

permettre une identification non ambiguë. Nous introduisons cette approche dans le cadre 

d’un mélange complexe modèle en enregistrant une projection optimisée d’un spectre à 3 

dimensions 1H-1H-13C TOCSY-HSQC. 

La seconde partie de ce manuscrit décrit les résultats de trois études métabolomiques 

portant sur des populations humaines. La première analyse démontre que les échantillons de 

sérum collectés dans le cadre de la cohorte européenne prospective internationale EPIC sont 

appropriés pour une étude métabolomique, par la bonne qualité des spectres RMN obtenus, 

l’identification réussie de 10 paires de doublons en aveugle et l’évaluation de différences 

entre pays de collecte. La seconde étude recherche une signature métabolique dans le sérum 

du cancer du sein métastatique par comparaison des profils sériques de patientes souffrant de 

cancers du sein localisés et métastatiques. La dernière analyse établit une signature 

plasmatique potentielle pour différentes pathologies hépatiques comme le carcinome 

hépatocellulaire (CHC) et la maladie chronique du foie, à partir d’échantillons collectés en 

Thaïlande. Nous montrons que la fonction hépatique, évaluée à partir de la concentration 

d’albumine, a un impact très important sur les profils métaboliques plasmatiques mais ne 

suffit pas à elle seule à expliquer la signature métabolique du CHC. Nous étudions également 

la corrélation entre profiles métaboliques et infection par les virus de l’hépatite B ou C, et la 

corrélation avec les niveaux de LTBP2, nouveau marqueur potentiel de CHC. 

La troisième partie de cette thèse est dédiée à la caractérisation d’organismes modèles 

variés dans le cadre de différentes questions biologiques. La première étude présente la 

caractérisation des différences métaboliques plasmatiques et urinaires entre quatre souches de 

rats, Fisher, Lewis, Wistar Kyoto and Brown Norway couramment utilisées comme contrôles 

en génétique, par RMN du liquide. Dans la seconde analyse, nous étudions les effets du 

vieillissement physiologique chez C. elegans et observons que le processus de restriction 

alimentaire, qui augmente la durée de vie d’un grand nombre d’organismes, tamponnent les 

modifications métaboliques associées au vieillissement, à travers la caractérisation de deux 

mutants de C. elegans, slcf-1 et eat-2. Nous observons également que des perturbations du 

métabolisme de la phosphocholine corrèlent avec l’espérance de vie. La troisième étude 

caractérise un mutant de C. elegans, pour le gène ahr-1 avec perte de fonction, codant pour un 

orthologue du récepteur AHR chez les mammifères, médiateur principal de la toxicité de la 
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dioxine. Nous observons de modifications métaboliques importantes chez ce mutant qui 

suggèrent une implication de ce gène dans le développement et le vieillissement de C. 

elegans. Enfin, nous étudions dans la dernière analyse les effets au niveau métabolique de 

l’interaction entre la protéine endogène E4F1 et la protéine virale HBx dans des cellules 

hépatiques infectées par le virus de l’hépatite B et suggérons que la protéine E4F1 équilibre 

les perturbations du métabolisme oxydatif induites par HBx, améliorant ainsi la tolérance des 

cellules hépatiques. 
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Abstract 

Metabolomics has been introduced as the last of the “omics” approaches, aiming at 

delineating the ensemble of metabolites, low molecular weight molecules and changes in 

metabolite concentrations of biological systems in a holistic way, in response to specific 

stimuli such as diseases, genes or environmental perturbations. Relying on state-of-the-art 

analytical technologies, such as Nuclear Magnetic Resonance (NMR) spectroscopy and mass 

spectrometry (MS), this approach has been applied as a new readout casting light on 

metabolism, for a wide range of scientific fields, from cell biology to disease biomarker 

discovery in humans. 

This thesis is dedicated to developments and applications of metabolomics, exploiting 

high field NMR spectroscopy. We characterized a wide range of biological samples, from 

human biofluids to Caenorhaditis elegans (C. elegans) and cell cultures, addressing various 

issues. We highlight the similarities and specificities in the use of metabolomics in these 

different contexts. 

The first part is dedicated to a general presentation of metabolomics. We describe the 

principle of this approach, introduce the use of NMR spectroscopy in this context and present 

data analysis. We also report results about the introduction of reduced dimensionality 
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techniques for the characterization of complex mixtures, coined targeted projection NMR 

spectroscopy aiming at reducing metabolite signal overlaps and solve assignment ambiguities. 

We introduce this approach in a model complex mixture, recording an optimized projection of 

a 3D 1H-1H-13C TOCSY-HSQC experiment.  

The second part of this manuscript reports results about three different metabolomic 

studies carried out in human populations. The first analysis demonstrates the suitability for 

metabolomics of serum samples collected in the framework of the European Prospective 

Investigation into Cancer and Nutrition (EPIC) study by assessing the good quality of NMR 

spectra, identifying in a blind analysis 10 pairs of duplicates and evaluating metabolic 

differences between countries of sample origin. The second study investigates a serum 

metabolic signature of metastatic breast cancer by comparing serum metabolic profiles of 

patients suffering from localized and metastatic breast cancer. The last analysis establishes 

potential plasma metabolic signatures for different liver pathologies, hepatocellular carcinoma 

(HCC) and chronic liver disease (CLD), from samples collected in Thailand. We show that 

liver function through the measure of albumin levels has a strong impact on plasma metabolic 

profiles but can not alone explain the HCC metabolic signature. We investigate the correlation 

between plasma metabolic profiles and infection by hepatitis B (HBV) and C (HCV) viruses 

as well as LTPB2, a proteomic marker of HCC. 

The third part of this thesis is dedicated to the characterization of various model 

organisms to address different types of biological questions. The first study presents a 

characterization of plasma and urine metabolic differences between four rat strains, Fisher, 

Lewis, Wistar Kyoto and Brown Norway, commonly used as controls in genetic studies, using 

liquid-state NMR spectroscopy. In the second study, we investigate the effects of 

physiological aging in C. elegans and observe that dietary restriction (DR), a process which 

increases lifespan buffers metabolic changes associated with aging through the 

characterization of two C. elegans DR mutants, slcf-1 and eat-2. We further identify that 

perturbations in phosphocholine metabolism correlate with life expectancy. The third analysis 

of this part characterizes of ahr-1 loss-of-function C. elegans mutant, a gene coding for an 

ortholog of the Aryl hydrocarbon receptor (AhR) in mammals, which mediates dioxin 

toxicity. We observe strong metabolic changes in ahr-1 mutants, which suggest an 

involvement in development and aging processes, requiring further evaluation. We finally 

investigate in the last study the effects at the metabolic level of the interaction between an 

endogenous protein E4F1 and a viral protein HBx in liver cells infected by hepatitis B virus 
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and suggest that E4F1 balances cell oxidative metabolism perturbations induced by HBx, 

further enhancing tolerance of liver cells.  
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Introduction 

Over the past two decades, technological developments have driven the introduction of new 

tools and concepts for the study of biological systems, gathered under the generic term of 

“omics” approaches. These approaches aim at describing the whole content of a biological 

system in a global and unbiased manner, at a defined molecular level. Genomics intends to 

delineate the complete assembly of genes, transcriptomics and proteomics of transcripts or 

mRNA and proteins respectively. Their use allows the investigation of the global response of 

an organism at the system level to a particular event like a disease, deciphering complex 

interaction networks. 

In this framework, metabolomics has been introduced as the study of the ensemble of 

metabolites, low molecular weight molecules, and of changes in metabolite concentrations of 

biological systems in a holistic way, in response to specific stimuli such as diseases, genes or 

environmental perturbations. Metabolomics relies on state-of-the-art analytical devices, such 

as Nuclear Magnetic Resonance (NMR) spectroscopy and mass spectrometry (MS) to profile 

metabolic compositions of biological samples. This approach has been applied as a new 

readout casting light on metabolism, from microbiology, toxicology, ecology, plant biology to 

biomedical studies for biomarker discovery or understanding of disease pathology. 
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This thesis is dedicated to developments and applications of metabolomics, exploiting 

high field NMR spectroscopy. Various types of biological samples have been characterized 

from human biofluids to Caenorhabditis elegans (C. elegans) worms and cell cultures to 

address different questions from investigating blood metabolic signature of human cancers to 

deciphering metabolic changes of C. elegans during aging. We highlight the similarities and 

specificities in the use of metabolomics in these different contexts. 

The first part is dedicated to a general presentation of metabolomics and results about 

the introduction of targeted projection NMR spectroscopy for the study of complex mixtures. 

The first section of this part presents general principles of the metabolomic approach, 

highlights the fields of applications and gives a general picture of metabolomic studies. The 

second section focuses on the use of NMR spectroscopy for metabolomics. We introduce the 

different devices like High Resolution Magic Angle Spinning (HR-MAS) and NMR 

experiments necessary to obtain well-resolved metabolic profiles for liquid and semi-solid 

samples such as tissues or intact C. elegans worms and help metabolite identification. 

However, assignment of metabolites without ambiguities could be challenging. In this 

context, we report in the third section results about the introduction of reduced dimensionality 

techniques for the characterization of complex mixtures, coined targeted projection NMR 

spectroscopy. For complex mixtures with high signal overlaps, where metabolite assignment 

is ambiguous even in standard 2D experiments but possible in higher dimensional spectra, the 

principle is to record an optimized projection of a spectrum of high dimension to capture the 

relevant information necessary to solve the assignment issue in a small amount of time. We 

introduce this approach in a model complex mixture, recording a projection of a 3D 1H-1H-13C 

TOCSY-HSQC experiment. Eventually, the fourth section of this first part describes the 

different steps of data analysis and focuses on the biostatistical tools used in this manuscript. 

The second part of this manuscript reports results about a range of metabolomic 

studies carried out in human populations, from blood samples analyzed by liquid-state NMR 

spectroscopy for epidemiological or clinical purposes. The first section evaluates the 

suitability for metabolomics of serum samples collected in a large biobank between 1992 and 

1998, in the framework of the European Prospective Investigation into Cancer and Nutrition 

(EPIC) study, designed to investigate the association between nutrition and cancer. In this 

pilot study, we analyze 50 samples including 10 pairs of duplicates, originating from three 

different countries. We assess the good quality of NMR spectra, identify in a blind analysis 

the 10 pairs of duplicates and evaluate differences between countries, demonstrating that 

these serum samples are appropriate for metabolomic analyses. Collaborators perform the 
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same experiments in parallel with mass spectrometry. The second section reports 

investigation about a serum metabolic signature of metastatic breast cancer. We compare the 

serum metabolic profiles of patients suffering from localized and metastatic breast cancer to 

characterize the metabolic differences between these two groups. We confirm these results 

with an independent validation set. The last section of this second part is dedicated to the 

analysis of plasma metabolic signatures of different liver pathologies like hepatocellular 

carcinoma (HCC) and chronic liver disease (CLD), from samples collected in Thailand, an 

area of high hepatitis B incidence. We investigate the effects of a range of biological and 

experimental factors on plasma metabolic profiles. We derive specific signatures for HCC and 

CLD, as well as common features by comparison to healthy subjects. We show that liver 

function through the measure of albumin levels has a strong impact on plasma metabolic 

profiles. However, we show that the signature of HCC cannot be reduced to this parameter. 

We investigate the correlation between plasma metabolic profiles and infection by hepatitis B 

(HBV) and C (HCV) viruses as well as LTPB2, a proteomic marker of HCC. 

The third part of this thesis is dedicated to the characterization of various model 

organisms to address different types of biological questions. The first section presents a 

characterization of plasma and urine metabolic differences between four rat strains, Fisher, 

Lewis, Wistar Kyoto and Brown Norway, commonly used as controls in genetic studies, using 

liquid-state NMR spectroscopy. The following sections describe analyses carried out on small 

model organisms, C. elegans worms and HepG2 cell lines by HR-MAS NMR spectroscopy. 

In the second section, we investigate the effects of physiological aging in C. elegans. We then 

characterize the changes in worm metabolism during dietary restriction (DR), a process which 

increases lifespan, by the analysis of two long-lived worm mutants, slcf-1 and eat-2, models 

of DR. We observe that DR buffers metabolic changes associated with aging. Double mutants 

carrying a mutation that suppresses the long-lived phenotype allow us to identify that 

perturbations in phosphocholine metabolism specifically correlate with life expectancy. The 

third section presents results about the characterization of C. elegans mutant for the gene ahr-

1, undergoing a loss-of-function, by comparison to wild-type counterparts. The AHR-1 

protein is an ortholog of the Aryl hydrocarbon receptor (AhR) in mammals, which mediates 

dioxin toxicity. The AHR-1 function in C. elegans is not completely understood, while an 

important endogenous role is expected. We observe strong metabolic changes in ahr-1 

mutants, which suggest an involvement in development and aging processes, requiring further 

evaluation. In the last section of this third part we investigate the effects at the metabolic level 

of the interaction between an endogenous protein E4F1 and a viral protein HBx in liver cells 
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infected by hepatitis B virus. It has been shown that this interaction enhances the tolerance of 

liver cells towards HBV infection. We suggest that E4F1 balances cell oxidative metabolism 

perturbations induced by HBx, further enhancing tolerance of liver cells. 



 

Part 1: The metabolomic approach 

1.1 Introduction to metabolomics 

Since the beginning of the 21st century, metabolism has known a renewed interest through the 

development of metabolomics, with a reevaluation of its biological significance and potential 

applications.[1] Metabolism gathers the relationships between metabolites, low-molecular 

weight (< 1.5 kDa) organic or inorganic compounds involved in enzyme-mediated 

biochemical reactions.[2] The term metabolome was coined in 1998 as the quantitative 

complement of metabolites in a biological system.[3] Different terms were introduced, 

referring to the study of metabolomes and changes in metabolite concentrations of biological 

systems in a holistic way, in response to specific stimuli such as diseases, genes or 

environmental perturbations. Metabolomics was originally defined as the comprehensive 

analysis of all metabolites present in a biological system,[4] while metabonomics was 

introduced as “the quantitative measurement of the dynamic multiparametric metabolic 

response of living systems to pathophysiological stimuli or genetic modification”.[5] The 

difference between these two terms is essentially historical, originated respectively from 

microbial and plant studies by mass spectrometry and mammalian studies by Nuclear 
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Magnetic Resonance (NMR) spectroscopy and can now be considered as synonymous in 

practice.[2, 6]. In this thesis we will only use the term metabolomics. 

The idea of analyzing metabolism in a global manner to get insight into physio-

pathological processes dates back to the late 1960s, with the development of gas-liquid-

chromatographic procedures to study biofluid metabolite compositions.[7-10] In 1971, Pauling 

et al. conceived the idea that a quantitative analysis of metabolite body fluids composition 

could provide information-rich data reflecting individual status and permit disease 

diagnosis,[10] while Horning et al. independently introduced the notion of metabolic profile.[8] 

In the late 1990s, metabolism studies knew a new enthusiasm, capitalizing on 

progresses in analytical technologies and the development of “omics” approaches. Indeed the 

complete sequencing of organism genetic information,[11, 12] coined genome, paved the way for 

“omics” approaches, which consist in delineating the whole content of biological systems for 

a given level of description, to depict global systemic behaviors. Genomics was introduced 

for the study of genetic information and genomes, as well as transcriptomics for the analysis 

of mRNA (or transcripts) and transcriptome[13] and proteomics, focusing on the ensemble of 

proteins or proteome.[14] In this context, metabolomics has emerged as the last and 

complementary “omics” approach, dedicating to the study of metabolites. Further integration 

of these different levels has become the core of systems biology, aiming at deciphering 

complex interactions between components of biological systems.  

Metabolomics relies on state-of-the-art analytical techniques to profile metabolite 

composition of biological samples. Nuclear Magnetic Resonance (NMR) spectroscopy and 

mass spectrometry (MS) have been widely used to achieve this goal. Mass spectrometry is 

often coupled to chromatographic (gas-chromatography or liquid chromatography) or 

electrophoretic (capillary electrophoresis) separation devices prior to detection.[2] The choice 

of the separation and detection devices defines the set of detectable metabolites. We can 

further distinguish untargeted approaches, without a priori selection of detected metabolites 

and targeted approaches, optimized to identify and accurately quantified a pre-defined set of 

metabolites.[15] Up to now, none of these systems offers a complete coverage of the 

metabolome. NMR spectroscopy and the different MS systems could thus be used in a 

complementary manner to increase the number of detected compounds.[16] Protocols have 

been developed to study a wide range of mammals body fluids such as plasma or serum,[17, 18] 

urine,[17, 19, 20] amniotic fluid,[21] bile,[22] cerebral spinal fluid,[22] saliva[23] or follicular fluids.[24] 

NMR spectroscopy, through High-Resolution Magic Angle Spinning (HR-MAS) technology 

offers the possibility to study intact tissues,[25] cell cultures[26] or small model organisms.[27] 
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Mass spectrometry and liquid-state NMR spectroscopy can also be used to study these 

biological samples following an extraction step.[17, 28-30] The development of these analytical 

methods allows now the study of almost all types of biological compounds. 

Metabolomics has now been applied in a wide range of scientific fields, as a new 

readout casting light on metabolism, from microbiology,[31] toxicology,[32] ecology,[33] plant 

biology[4] to biomedical studies for biomarker discovery or understanding of disease 

pathology. Historically, metabolomics has been successfully applied in clinic for the 

screening of inborn errors of metabolism, where metabolic perturbations constitute by 

definition the pathological process.[15] Since that, the potential of metabolomics has been 

investigated in the other fields of medicine,[34] with pilot studies launched in the clinic.[35] The 

use of large cohorts of patients has been pioneered for biomarker discovery. Holmes et al. for 

instance showed correlations between high blood pressure, a set of urinary metabolites and 

geographical origins of patients,[36] while Wang et al. observed an association between 

branched-chain and aromatic amino acid profiles and future development of diabetes.[37] 

Beyond the study of pathological states, Suhre et al. investigated the links between genetics 

and serum or urine metabolic profiles.[38, 39] Furthermore, Clayton et al. demonstrated that 

metabolic profiles determined before drug administration could predict metabolic response 

and liver toxicity of acetaminophen in rats, a concept termed pharmaco-metabonomics.[40] 

Metabolomics identified the potential role of sarcosine and glycine in cancerous processes 

from cell lines.[41, 42] 

Metabolomic analyses are built as case-control studies, which consist in comparing 

two populations of samples coming from two relevant physio-pathological states. For instance 

one of the group gathers individuals suffering from a particular disease while the other one 

gathers healthy individuals used as controls. Comparing these two groups could give access to 

markers of the disease under study. Analytical devices derive a metabolic profile for each 

sample (Figure 1.1.1a). These metabolic profiles are then processed, normalized and scaled 

(Figure 1.1.1b). Different statistical tools such univariate tests or multivariate analyses, are 

then used to extract the significant differences in metabolite levels between groups defining a 

metabolic signature (Figure 1.1.1c). 

The next section introduces the use of NMR spectroscopy in this context of 

metabolomic studies. In the third section of this part, we report results about the introduction 

of reduced dimensionality techniques for the characterization of complex mixtures, coined 

targeted projection NMR spectroscopy aiming at reducing metabolite signal overlaps and 
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solve assignment ambiguities. Eventually, the fourth section describes the different steps of 

data analysis and focuses on the biostatistical tools used in this manuscript. 

 

 

Figure 1.1.1. Principle of the NMR metabolomic approach: a) metabolic profiles are recorded; b) 

processed and reduced; and c) analyzed with multivariate statistical methods. 
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1.2 NMR spectroscopy in metabolomics 

Nuclear Magnetic Resonance (NMR) spectroscopy is a quantitative and non-destructive 

technique widely used in chemistry, which provides detailed information on the molecular 

structure of compounds and on complex mixture compositions. It has become a technique of 

reference with mass spectrometry for metabolomics studies. NMR spectroscopy can detect 

various nuclei such as 1H, 13C, 31P or 15N according to the type of NMR experiment. In the 

context of biological sample analysis, 1H detection is essentially used due to both the high 

abundance of this nucleus in organic molecules and to the high 1H sensitivity for NMR. Each 
1H of a molecule creates a specific 1H NMR signal which shape (or multiplicity) or 

coordinates along an axis of energy termed 1H chemical shift are defined by the chemical 

environment of the 1H nucleus. The 1H NMR spectrum for a chemical compound is thus the 

sum of the signals of its different 1H nuclei and for a compound mixture, the sum of the 1H 

NMR spectra of the different compounds. In a biological sample, 1H NMR spectroscopy 

detects thus without a priori all the small molecules containing 1H nuclei reaching the 

detection limit, in an untargeted manner. The 1H NMR spectrum of a urine sample is thus the 

superimposition of the contributions of different metabolites such as amino-acids or organic 

acids creating a metabolic fingerprint (Figure 1.2.1). 

 
Figure 1.2.1. First 1GHz 1H NOESY NMR spectrum of urine sample, recorded on our 1GHz. 

NMR spectroscopy allows the characterization of liquid samples as well as semi-solid 

biological specimens, such as tissue biopsies, culture cells or small model organisms like the 

worm Caenorhabditis elegans (C. elegans).[26, 43, 44] However, liquid-state NMR spectroscopy 

is not directly applicable for these samples due to the presence of anisotropic interactions 

9.0 8.0 7.0 6.0 5.0 4.0 3.0 2.0 1.0 ppm
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causing unresolved and useless spectra (Figure 1.2.2a). Magic Angle Spinning technique, 

first introduced by Andrew et al.[45] and Lowe[46] for the study of solids, can be applied for 

these samples. Samples are spun at an angle of 54.7° with respect to the static magnetic field, 

coined the magic angle, in order to average the main anisotropic interactions such as dipolar 

interactions, variation in magnetic susceptibility and chemical shift anisotropy, and obtain 

well-resolved spectra (Figure 1.2.2b). Cheng et al. introduced the first application of MAS 

for the study of biological tissues, termed High Resolution Magic Angle Spinning 

(HRMAS).[47] Low spinning speeds are typically applied between 3.5 kHz and 5 kHz to obtain 

well-resolved spectra and minimize sample disruption. 

 
Figure 1.2.2. 700 MHz 1H 1D NOESY spectrum of C. elegans with water presaturation in a) static 

conditions and b) under rotation at the magic angle (spinning speed: 3.5 kHz), recorded at the CRMN. 

Sample preparation for NMR spectroscopy is quite straightforward. For liquid-state 

NMR spectroscopy, biofluids are mixed with an aqueous solution containing D2O to lock the 

deuterium signal during acquisition and reduce signal linewidth. Serum or plasma samples are 

usually mixed with saline solution (NaCl 0.9% wt/vol, D2O 10% vol/vol), while urine 

samples are mixed with a phosphate buffer (pH = 7.4) to control pH variations.[17] For 
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HRMAS NMR spectroscopy, 30 µl disposable Kel-f inserts with sealing caps are filled with 

tissues, cells or small model organism and analyzed in 4 mm zirconium NMR rotors. 

The same type of experiments can be performed for liquid-state and HRMAS NMR 

spectroscopy. The acquisition of metabolic profiles relies essentially on 1H 1D NMR radio-

frequency pulse sequences. Water signal suppression is achieved with solvent suppression 

methods such as water presaturation.[48] The most common sequence is the 1D NOESY with 

water presaturation, which achieves a good water signal suppression and maintains a flat 

baseline (Figure 1.2.1).[17, 48] Particular biological samples like serum or plasma contain 

proteins and lipids that generate broad signals, obscuring narrower signals from small 

molecules (Figure 1.2.3a). The contribution of proteins and lipids can be reduced through 

spectral editing. For instance, the Carr-Purcell-Meiboom-Gill (CPMG) pulse sequence, 

through T2 editing, decreases the signals of large compounds or metabolites with reduced 

mobility (Figure 1.2.3b).[17] On the contrary, editing through diffusion coefficient cancels out 

signals from small mobile molecules to focus on lipids and proteins.[17] 

After acquisition, NMR spectra are processed, with baseline and phase corrections, 

and calibrated. The calibration can be performed with an internal standard such as TSP or 

DSS introduced in samples, essentially for urine or directly on metabolite signals with stable 

chemical shifts such as the α-glucose anomeric proton signal (δ = 5.23 ppm) in serum or 

plasma and the alanine doublet signal (δ = 1.48 ppm) for C. elegans. 

NMR spectroscopy can usually identify 30-50 metabolites in serum or plasma 

samples, 30-100 in urine samples and 20-40 in tissue or C. elegans samples.[2] Indeed, one of 

the drawbacks of NMR is its poor sensitivity. The detection threshold, which varies between 

metabolites, is around 10 µmol/L in routine conditions (600 MHz NMR spectrometer, 

equipped with a cryoprobe, 15 min of acquisition). Sensitivity can be improved with 

development in hardware, such as the increase in spectrometer magnetic field or introduction 

of cryoprobes. Resolution and the ability to discriminate metabolites is also an issue for NMR 

spectroscopy. Resolution can be increased by different methods such as increase in magnetic 

fields, the use of coupling separation methods as for MS or the use of high dimensional NMR 

experiments, which reduce signal overlap. 
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Figure 1.2.3. 800 MHz 1D NMR spectra of a typical serum sample: a) NOESY pulse sequence and b) 

CPMG pulse sequence, recorded at the CRMN. 

Metabolite assignment is performed by comparison to reference spectra using academic 

spectral databases such as MMCD,[49] HMDB[50] and BMRB[51] as well as proprietary 

databases (Chenomx NMR Suite, Chenomx Inc, Edmonton, Canada; AMIX SpectraBase, 

Bruker GmbH, Rheinstetten, Germany). Complementary NMR experiments are usually 

recorded on a subset of representative samples to provide further structural information, 

reduce ambiguities and overlaps between signals and eventually ease assignment. These NMR 

experiments correlate information in two dimensions. For instance, the 2D 1H-13C HSQC 

experiment identifies adjacent proton and carbon nuclei (Figure 1.2.4),[52] while the 2D 1H-1H 

TOCSY experiment correlate all the 1H nuclei belonging to a spin-sytem, usually 

corresponding to a molecule (Figure 1.2.5).[53] The J-resolved experiment is also largely used 

in metabolomics and correlate chemical shift and signal multiplicity.[54] 
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Figure 1.2.4. First 1GHz 1H-13C HSQC NMR spectrum of urine (aliphatic region), obtained on our 

1GHz (01/2010). 

 
Figure 1.2.5 700 MHz HRMAS 1H-1H TOCSY NMR spectrum of C. elegans (aliphatic region), at the 

CRMN.  
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However, assignment of metabolites without ambiguities could still be challenging. In 

this context, we report in the next section results about the introduction of reduced 

dimensionality techniques for the characterization of complex mixtures, coined targeted 

projection NMR spectroscopy. For complex mixtures with high signal overlaps, where 

metabolite assignment is ambiguous even in standard 2D experiments but possible in higher 

dimensional spectra, the principle is to record an optimized projection of a spectrum of high 

dimension to capture the relevant information necessary to solve the assignment issue in a 

small amount of time. 
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1.3 NMR of complex mixtures: towards targeted projection NMR 

spectroscopy 

1.3.1 Introduction 

While Nuclear Magnetic Resonance (NMR) spectroscopy is established as a key technique for 

metabolomic approaches, providing unique and rich information content with high 

reproducibility,[17, 55] the identification of individual metabolites present in biological samples 

still constitutes a primary obstacle for metabolomics. Although basic 1D 1H NMR spectra are 

conventionally recorded for metabolic profiling in high throughput studies due to time 

constraints, these NMR experiments are not adequate for distinct metabolite identification by 

NMR which is based on unambiguous and comprehensive spin system assignment. Two-

dimensional natural abundance 1H and 13C NMR spectroscopy, such as implemented in 1H-1H 

TOCSY[53, 56] or 1H-13C HSQC[52] experiments, are commonly used as key NMR experiments 

in metabolic profiling of complex mixtures. They rely on the identification of the distinct 

metabolite spin systems.[57-59] However, severe NMR signal overlap, an inherent feature of 

two-dimensional NMR correlation spectra for complex systems or mixtures in practice often 

prevents unambiguous detection of metabolites. Various methods have been proposed to 

address the task of unambiguous metabolite identification, either based on semi-selective or 

selective excitation, such as selective 1D TOCSY,[60, 61] or on the use of statistical correlation 

with the STOCSY methods.[62, 63] Diffusion-Ordered Spectroscopy (DOSY) has also been 

proposed as a three-dimensional experiment to resolve analysis of complex mixtures,[64] while 

isotope tagging methods can allow to detect classes of derivatized metabolites in biological 

samples.[65, 66] Meanwhile, efforts have been made to speed up 2D acquisition, exploiting 

maximum entropy and non-linear sampling methods,[67] ultrafast 2D NMR[68] and Hadamard 

encoding[69] or to automate information recovery.[70, 71]  

Multidimensional NMR data are usually acquired by sampling the time domain in all 

dimensions equidistantly at an operator-selected resolution. In the context of metabolites at 

natural abundance, sensitivity and resolution considerations of acquisition of 1H and 13C NMR 

data pose strong limitations on the use of high-dimensional experiments (3D, 4D… ) that 

would clearly provide unambiguous spectra but would require unrealistically long acquisition 

times.  
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With recent advances in sensitivity, due to the use of increasing magnetic field 

strength and cryogenic NMR probes, the concept of reduced-dimensionality NMR 

spectroscopy[72-75] has seen a strong revival[76-78] which addresses the sampling limit issue of 

higher-dimensional NMR experiments by combining the acquisition of two or more indirect 

dimensions for multidimensional (4D, 5D...) NMR experiments in order to capture the desired 

high-dimensional chemical shift information in a lower dimensional experiment. Projection 

spectroscopy[74] consists in recording discrete sets of projection spectra from higher-

dimensional NMR experiments.[78] Major applications, mainly focused on sequence-specific 

resonance assignment in the field of protein NMR spectroscopy, have recently illustrated this 

approach by speeding up the acquisition of high dimensional correlation spectra.[79-85]  

In the present study, we recruit projection NMR techniques for unambiguous 

metabolite identification in complex mixtures by capturing essential information of high-

dimensional correlations in order to resolve NMR signal overlap present in standard 2D NMR 

experiments. We demonstrate this approach on a model metabolite mixture composed of 

ornithine, putrescine and arginine for which the resonances of putrescine overlap with the 

other metabolite signals in both classical 2D 1H-1H TOCSY and 1H-13C HSQC spectra, 

making this compound therefore undetectable. Acquisition of a single 2D projection of a 3D 
1H-1H-13C TOCSY-HSQC spectrum at an optimal projection angle selected by a fit-for-

purpose algorithm, allowed the unambiguous assignment of this metabolite mixture, by 

providing well-resolved NMR signals of the putrescine spin system in the selected 2D 

projection plane. 

1.3.2 Materials and methods 

Samples. Putrescine, hippurate, ornithine and arginine were purchased from Acros Organics, 

deuterated water (D2O) from Euriso-top, the chemical shift reference, 3-

(trimethylsilyl)propionic- 2,2,3,3-d4 acid sodium salt (TSP) from Sigma-Aldrich and  Sodium 

azide, Na2HPO4  and NaH2PO4 from Fluka Biochemika.  

A phosphate buffer (pH = 7.4) was prepared by weighing 0.577 g of Na2HPO4, 0.121 g 

of NaH2PO4, 0.02 mM of TSP and 0.06 mM of NaN3 into a 20 mL volumetric flask, adding 4 

mL of D2O and filling up to 20 mL with H2O. 

The model mixture was an aqueous solution of hippuric acid (10.9 mmol.L-1), 

ornithine (58.2 mmol.L-1), putrescine (3.6 mmol.L-1) and arginine (174.54 mmol.L-1). The 
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phosphate buffer represented one third of total volume and thus D2O 6.6% of sample in 

volume. A simpler model mixture was made similar to the previous one without arginine. 

 

Scheme 1.3.1. Structures of model mixture compounds. 

NMR spectroscopy. All NMR experiments were carried out at 300K, on a Bruker Avance II 

spectrometer, operating at a 1H frequency of 700 MHz, using a standard triple resonance (1H-
13C-15N) 5 mm TXI probe. A standard 3D 1H-1H-13C TOCSY- HSQC pulse sequence using 

MLEV-17 isotropic mixing, States modulation in F1 (1H dimension) and gradient Echo/Anti-

echo modulation in F2 (13C dimension) was used. High power 1H and 13C 90° pulses were 

measured at 12 µs and 13.5 µs respectively. The mixing time was set at 60 ms for all 

experiments. The spectral width in the direct dimension F3 (1H) was set to 9803 Hz with a 

maximum t3 acquisition time of 52.2 ms and a relaxation delay between scans of 1 s.  

The 1H 2D TOCSY spectrum was recorded as the F1-F3 plane of the 3D 1H-1H-13C 

TOCSY- HSQC experiment, acquired by incrementing t1 and keeping t2 null. The F1 spectral 

width SW1 was set to 9803 Hz and 1024 Free Induction Decays (FID) were acquired 

corresponding to a t1
max of 52 ms. The 1H-13C 2D HSQC spectrum was recorded as the F2-F3 

plane of the 3D 1H-1H-13C TOCSY- HSQC experiment, acquired by incrementing t2 and 

keeping t1 null. The F2 spectral width SW2 was set to 13203 Hz and 1024 FIDs were acquired 

corresponding to a t2
maxof 38.8 ms. 

Projection planes were acquired by using the same 3D pulse sequence and 

incrementing t1 and t2 simultaneously in a constant ratio defining the projection angle α: 
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The value  of the increment of t depends on the spectral width SW of the tilted dimension 

as follows: 

        (2) 

with 

        (3) 

1024 FIDs were acquired with 16 scans each corresponding to a total experiment time of less 

than 5 hours for each set ( ) of 2D projections. 

Projection plane processing. As the experiment was acquired with States modulation in the 

F1 dimension and gradient Echo/Anti-echo schemes in F2, recombination of the FIDs was 

performed to separate projections on +α and -α planes. For each indirect dimension time 

increment, we obtained 4 FIDs modulated as follows:  

    

    

   

   
Recombination of these FIDs leads to: 

    

    

    

    
Consequently, these combinations generate the sum and difference frequencies  

       (4) 

corresponding respectively to projection on planes tilted from F1 by +α and by -α. 

These FID combinations were done using MATLAB (The Mathworks, Inc). Each plane, +α 

and -α, was then processed with NMRPipe[86] as a classical 2D experiment acquired with the 

States method. Zero filling was performed in both dimensions to double the number of data 

points. Sine-bell apodization was used in both dimensions prior to two-dimensional Fourier 

transformation. 

Projection angle optimization. In order to find the optimal projection angle α, to resolve 

each correlation signal of the spin system of a given metabolite with respect to all the other 

correlations originating from the other metabolites present in the mixture, signal positions 

! 

"

! 

" =1 SW

! 

SW = SW
1
cos" + SW

2
sin"

! 

±"

! 

cos("1t cos#)exp(i"2t sin#)

! 

(S
1
)

! 

sin("1t cos#)exp(i"2t sin#)

! 

(S
2
)

! 

cos("1t cos#)exp($i"2t sin#)

! 

(S
3
)

! 

sin("1t cos#)exp($i"2t sin#)

! 

(S
4
)

! 

cos("1t cos# +"2t sin#)

! 

(S
1
" S

2
/i + S

3
+ S

4
/i)

! 

sin("1t cos# +"2t sin#)

! 

(S
1
/i + S

2
" S

3
/i + S

4
)

! 

cos("1t cos# $"2t sin#)

! 

(S
1
+ S

2
/i + S

3
" S

4
/i)

! 

sin("1t cos# $"2t sin#)

! 

(S
1
/i " S

2
" S

3
/i " S

4
)

! 

"+# ="
1
cos# +"

2
sin#

"$# ="
1
cos# $"

2
sin#

% 
& 
' 



The metabolomic approach 37 

were calculated as a function of the projection angle α for a given NMR experiment using the 

correspondence between projected chemical shifts Ω±α in the + α or –α planes and chemical 

shifts from indirect original dimensions, as defined in equations 4. 

The search routine to find the optimal angle and described in the following was 

written in FORTRAN 90 as an autonomous module and has been implemented into the 

framework and data structure of the UNIO application platform[87-89] for automated NMR data 

analysis. 

1.3.3 Results and discussion 

Elucidation of the composition of a metabolite mixture by NMR spectroscopy requires 

unambiguous NMR signal assignment. This can be achieved when each metabolite displays at 

least one well-resolved characteristic NMR signal. Here, a characteristic NMR signal for a 

given metabolite is defined as a correlation peak of the expected metabolite spin system that 

cannot be explained by any other expected correlation peaks of any of the other metabolites 

present in the mixture composition. The specific question we address is then “is a given 

metabolite present in a mixture?”. To answer this question we make use of the fact that all 

metabolites are known, and their NMR spectra are available. As a model example, in this 

study we demonstrate the method on a model mixture made of four common metabolites 

(Scheme 1.3.1) found in biological samples,[58] hippuric acid (10.9 mmol.L-1), ornithine (58.2 

mmol.L-1), putrescine (3.6 mmol.L-1) and arginine (174.54 mmol.L-1) but for which 

unambiguous metabolite identification is not straightforward. Indeed, putrescine, cannot be 

unambiguously identified from either 2D 1H-1H TOCSY or 1H-13C HSQC: TOCSY patterns 

for putrescine and ornithine are superimposed, while the putrescine HSQC correlations 

overlap with either the ornithine or arginine signals, as illustrated in the spectra of Figure 

1.3.1. 
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Figure 1.3.1. Contour plots of a) a 2D 1H-1H TOCSY spectrum and b) a 2D 1H-13C HSQC spectrum 

of a mixture composed of putrescine (3.6 mmol.L-1), ornithine (58.2 mmol.L-1), arginine (174.54 

mmol.L-1) and hippurate (10.9 mmol.L-1). 

Rather than recording a whole 3D 1H-1H-13C TOCSY-HSQC experiment to resolve the 

assignment ambiguity, our strategy is to record a single appropriate 2D projection plane of the 

3D 1H-1H-13C TOCSY-HSQC, which allows identification of a characteristic putrescine NMR 

signal.  

For a given 3D NMR experiment, combined exploration of the indirect time domains 

allows the acquisition of a 2D projection spectrum experiment defined by a projection angle α 

with respect to first indirect dimension F1 as illustrated in Figure 1.3.2. The dimensions of the 

2D projection plane (also termed tilted plane) are the direct dimension of acquisition F3 and a 

tilted dimension, representing a linear combination of the two indirect dimensions F1 and F2. 

Recording a projection plane is a 2D experiment, built from the original 3D experiment, 

where the two indirect time parameters t1 and t2 are simultaneously incremented in a constant 

ratio (Eq. 1). 

Due to the use of quadrature detection schemes in both indirect dimensions, for each 

2D experiment corresponding to a given value of α, we simultaneously obtain the projection 

of the 3D spectrum on the + α plane and - α plane, as detailed in the materials and methods. 

Chemical shifts in the tilted dimension, Ω±α for the projection on a ± α plane, are defined by a 

linear combination of the chemical shifts Ω1 and Ω2 in the indirect dimensions and the 

projection angle α (Eq. 4).  
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Figure 1.3.2. Schematic principle of the projection technique. In our case, the indirect dimension F1 and 

F2, associated respectively with the time parameters t1 and t2, and to the chemical shit Ω1 and Ω2, 

correspond respectively to the 1H and 13C acquisition dimensions. F3 is the direct acquisition dimension, 

associated with the chemical shit Ω3. 

In our 3D 1H-1H-13C TOCSY-HSQC experiment, the first indirect dimension F1 

corresponds to the 1H dimension and F2 to the 13C dimension. As a consequence, for a 

projection angle of α = 0° and α = 90°, the 2D projection spectrum is equivalent to a 2D 1H-
1H TOCSY spectrum and a 2D 1H-13C HSQC spectrum, respectively. We recorded a set of 2D 

projection planes from the 3D 1H-1H-13C TOCSY-HSQC experiment for the projection angles 

α = ± 30°, ± 53°, ± 70° and ± 83° in order to assess the feasibility of the method in terms of 

sensitivity and resolution obtained. As illustrated Figure 1.3.3, this yields a progression of 

projected signal patterns from 2D TOCSY patterns to 2D HSQC patterns as α increases.  

For a simpler mixture made of hippuric acid (10.9 mmol.L-1), ornithine (58.2 mmol.L-

1) and putrescine (3.6 mmol.L-1), we compared the experimentally measured values of the 

chemical shifts of the projection correlations with the values calculated with equation (3) 

from the values determined with 2D TOCSY and 2D HSQC, for the projected plane α = +30°, 

and shown in Figure 1.3.4a. Good agreement was observed between expected and observed 

projected correlations, confirming the reliability of the technique. 

t1

t2

t3
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Figure 1.3.3. A series of four tilted 2D planes from a 3D 1H-1H-13C TOCSY- HSQC experiment, 

recorded in distinct experiments, corresponding to (a) α = ± 30°, (b) α = ± 53°, (c) α = ± 70° and (d) α 

= ± 83°. Note how the peaks move in characteristic, and perfectly predictable manners in the vertical 

(mixed) dimension. In particular peaks that are not resolved at α = ± 83° are clearly resolved at the 

other angles. 
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Figure 1.3.4. a) Comparison of experimental and calculated peak positions in tilted plane α = + 30° for 

a mixture composed of putrescine (3.6 mmol.L-1), ornithine (58.2 mmol.L-1) and hippurate (10.9 

mmol.L-1). b) Optimization of projection angle: the lines show the distances in Hz between the 

putrescine correlation that is potentially characteristic (Ω1H: 2.97 ppm, Ω13C: 23.7 ppm, Ω1H: 1.67 ppm) 

and all the ornithine (blue) and arginine (red) correlations at 1.67 ppm in F3 with respect to α. The 

optimum projection angle is determined automatically by selecting the angle with the largest gap 

between the baseline and the lowest difference, as illustrated in the figure for α = ± 30°. At this point 

we predict that the putrescine resonance will be separated in the vertical dimension from all the other 

resonances by at least 110 Hz. 

Selection of an optimal projection angle α . Here, we are interested in acquiring a single 

targeted 2D projection plane which contains a well-resolved characteristic NMR signal for 

putrescine, which is here the minor component of the mixture (and more generally for any 

given metabolite in a mixture). (As ornithine, arginine and hippurate have specific NMR 
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signals in both TOCSY and HSQC experiments, conserved in projection planes, we focused 

in this study on the ambiguous putrescine correlations for the optimization of the projection 

angle α.) To this end for each correlation in the spin system of putrescine, the predicted signal 

separation measured in Hertz with respect to all other correlation peaks of all the other 

metabolites present in the mixture are calculated as a function of the projection angle. This 

automatically performed analysis revealed the 3D putrescine correlation at Ω1H= 2.97 ppm, 

Ω13C= 23.7 ppm, and Ω1H= 1.67 ppm in the 3D 1H-1H-13C TOCSY-HSQC as a candidate for a 

characteristic unambiguous putrescine NMR signal. The calculation of the signal separation 

between this correlation and all other ornithine and arginine signals correlating at δ = 1.67 

ppm in the direct dimension as a function of the projection angle α using Eq. 4 identified the 

projection angle α = ± 30° as the optimal 2D projection plane with maximum achievable 

resolution for the potential characteristic putrescine signal, as illustrated in Figure 1.3.4b. At 

this point we predict that the putrescine resonance will be separated in the vertical dimension 

from all the other resonances by at least 110 Hz. As expected, projection planes shown in 

Figure 1.3.5 recorded for the optimized angle α = ± 30° display a well-resolved characteristic 

NMR signal for putrescine, making its identification unambiguous. The acquisition of a single 

targeted 2D projection plane allowed us to resolve signal overlap in a tailored manner and to 

identify unambiguously all the metabolites of the mixture. Though the main objective here is 

to resolve ambiguities arising from 2D data for known metabolites, the proposed approach is 

not limited to the studies of mixtures for which all metabolites are known. In the presence of 

unknown metabolites whose signals are fully overlapped with signals assigned to known spin 

systems, which would thus be undetectable at the start of the procedure and would not be 

included in the calculation of optimized projection angles, recording of a set of projections is 

likely to reveal the presence of these potential additional compounds in the mixture.  

Note finally that the objective of our approach is not to reconstruct a 3D spectrum but 

to exploit a minimum and targeted set of artifact-free 2D projections in order to resolve 

potential ambiguities present in the conventional 2D spectra. 
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Figure 1.3.5. a) Projection plane for α = –30° and b) zoom on the region [1H: δ = 1.5 - 2.5 ppm; tilted 

dimension: -1500 – 1500 Hz]. We see clearly that overlaps between ornithine, arginine and putrescine 

are now resolved, and the peak at δ(1H) = 1.67 ppm and at 200 Hz in the tilted dimension is an 

unambiguous indicator of the presence of putrescine in the mixture. 

1.3.4 Conclusion 

We have shown how targeted projection NMR spectroscopy appears to be a powerful and 

promising method for unambiguous elucidation of metabolite-mixture composition by giving 

efficient access to high dimensional correlations in a realistic amount of time, enabling 

resolution of spectral overlap and unambiguous metabolite identification. When ambiguities 

appear in signal identification with different plausible hypotheses, a priori knowledge of 
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potential mixture composition allows the selection of a discriminating optimized projection 

experiment in an automatic fashion.  

Note that to illustrate the approach, we have here used a model mixture, and identified 

the minor component. Of course, since the NMR spectra of essentially all metabolites are 

known (and are even increasingly present in databases) or can easily be determined, it is 

perfectly possible to imagine extending this approach to the identification of minor 

metabolites in biological complex mixture samples such as plasma or urine, recovering more 

information from these thousand compound mixtures of medical interest.  
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1.4 Data analysis in metabolomics 

After acquisition, NMR datasets are transformed to become suitable input for statistical 

analyses. Metabolite signal chemical shits can change with the pH or ionic strength of the 

medium. If these parameters are not completely controlled with buffering, like in urine 

datasets, it is sometimes necessary to realign some metabolite signals for reliable 

comparisons.[90, 91] NMR spectra are converted in a set of points termed NMR variables. This 

is usually performed with a regular binning (or bucketing), using typically buckets width of 

0.001 to 0.01 ppm, the signals being then integrated for each spectral bin.[92] With a resolution 

of 0.001 ppm for bucketing, each NMR spectrum is described by about 10000 variables. 

Different algorithms have been developed to perform an automatic binning, delineating 

meaningful variables such as peaks or multiplets.[93, 94] The statistical recoupling of variables 

(SRV) method, widely used in this thesis, is an automatic binning procedure developed in our 

laboratory, which defines bins or clusters according to the covariance/correlation ratio profile 

of consecutive variables along the chemical shift axis.[94] It is also possible to quantify 

metabolite concentrations in a targeted manner through deconvolution, prior to analysis.[95] 

Spectra are normalized to cancel out effects of dilution between samples and focus on 

biologically relevant differences by dividing each variable by the total intensity of NMR 

signals or with more sophisticated approaches such as the probabilistic quotient normalization 

(PQN) procedure.[96, 97] The PQN method evaluates the most probable coefficient of dilution 

between each spectrum and a reference spectrum and normalizes each spectrum by this 

coefficient.[97] The dataset are finally mean-centered and possibly scaled with the Pareto or 

autoscaling methods.[98] At the end of this step, the dataset corresponds to a matrix X, on 

which statistical analyses are performed. 

Unsupervised and supervised multivariate statistical methods are used to build models 

for data visualisation, sample classification and extract metabolic signatures between sample 

groups.[34] Principal component analysis (PCA) is first performed to derive the main sources 

of variance within the dataset, check population homogeneity and eventually identify 

technical or biological outliers. PCA defines a new orthonormal basis set, which vectors 

termed principal components, new linear combinations of initial variables, correspond to the 

eigenvectors of the covariance matrix XtX and are associated with maximum variance. PCA 

reduces the space of variables, initially represented by a few orthogonal principal 

components, which eases data visualisation. Data are represented as score plots, where each 
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point stands for the projection of a single sample on principal components and as loading 

plots, which represent the contributions of metabolic variables to principal components. 

Supervised methods such as Partial Least Square (PLS) or OPLS multivariate regression, are 

performed to build a sample classification model and derive group-specific metabolic 

phenotypes.[99, 100] These methods are run to discriminate groups by regressing a 

supplementary data matrix Y, containing information about the group-class on the X NMR 

dataset matrix. A new basis set is defined where the correlation between the sample projection 

on the first component and the Y matrix is maximized. As for PCA, results are visualized 

through score and loading plots (Figure 1.4.1).  

 
Figure 1.4.1. Visualization of results from an OPLS analysis. a) score plot: each point corresponds to 

one sample. A discrimination is observed between the group 1 in red and the group 2 in blue along the 

horizontal predictive component. b) loading plot: contributions of metabolite involved in this 

discrimination. Pyruvate here is associated with the group 1 while lipids are associated with the group 

2. 

Model performances are assessed by goodness-of-fit parameters R2 and Q2 calculated 

through a cross-validation procedure, related respectively to the explained and predicted 

variance by the model. We perform model validation by resampling the model 1000 times 

under the null hypothesis. The decrease of goodness-of-fit R2 and Q2 parameters when 

correlation between original model and random models decreases indicates the good quality 

of the model by rejecting the null hypothesis (Figure 1.4.2). However, the better test to assess 

model robustness is to evaluate it prediction ability on completely independent samples. 

Univariate analyses are also performed to identify significant changes in metabolite 

concentrations.[101] However, performing a large number of statistical tests simultaneously as 

encountered in metabolomics raises multiple testing issues. Indeed, the number of type I 

errors, i.e. false rejections of the null hypothesis, increases with the number of tests 

performed. Different error rates were defined in the framework of multiple testing with 

procedures for their control or estimation.  
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Figure 1.4.2. Typical results of a resampling validation procedure. a) R2 and Q2 goodness-of-fit 

parameters for random models are weaker than the initial model ones, which validates the initial model. 

b) R2 and Q2 goodness-of-fit parameters for random models are larger than the initial model ones. The 

performances observed for the initial model can thus be due to chance. The model is not validated. 

The Family-Wise Error Rate (FWER) is defined as the probability to perform at least 

one type I error for the test family. The FWER is conservatively and strongly controlled by 

the Bonferroni procedure.[101] The False Discovery Rate (FDR), defined as the expected 

proportion of type I errors among the rejected hypotheses, introduced by Benjamini and 

Hochberg is largely used in microarray experiments. Its control is less conservative than for 

the FWER.[102] The procedure published by Benjamini and Hochberg controls the FDR for 

independent tests and for mild or limited correlation structure.[102, 103] Benjamini and Yekutieli 

introduced a procedure, which controls the FDR under any dependence but with a lower 

power.[104] Many procedures were since published for optimizing the FDR control.[103] 

The choice of the error rate control depends on the aims of the study. The FDR control 

is more relevant for exploratory analyses (discovery phase…), while the FWER control 

should be used for assessing more robust statistical significance (validation phase).[103]  
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Different approaches have been developed to rationally understand the biological 

significance of variations in metabolite profiles. Some of them describe changes at the level 

of metabolites and chemical reactions, either by mapping changes on existing metabolic 

networks[105] or by reconstructing metabolic networks based on correlation values[63] while 

others focus on changes at the level of canonical pathways.[106-108] 



 

Part 2: Metabolomics for human population studies 

Developing new tools for public health has been a driving force for metabolomics, to better 

characterize human populations, diagnose diseases or predict treatment outcomes. In this 

second part, we present different metabolomic applications aiming at discovering metabolic 

biomarkers in the context of molecular epidemiology and clinics. 

Research for biomarker discovery relies mainly on observational case-control studies. 

The choice of the case and control groups defines the objectives of the study. The definition 

of control individuals is a crucial issue, on which the reliability of the study depends. Indeed, 

during this step, potential confounding factors are cancelled out through matching between 

cases and controls in order to focus on relevant differences.  

Differences between groups are often small, in particular for epidemiological studies, 

and inter-individual variations important, due to the lack of control of external factors in this 

type of population, requiring thus large sample numbers to obtain statistically significant 

results. 

In this part, we present three different studies, conducted on human biofluids, plasma 

and serum, using liquid-state NMR spectroscopy. 
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In the framework of molecular epidemiology, the first study aims at evaluating the 

feasibility of using the serum biobank collected from the European Prospective Investigation 

into Cancer and Nutrition (EPIC) cohort for metabolomics. 

The two following studies investigate systemic metabolic fingerprints of cancer in a 

clinical context. One aims at identifying metabolic differences between patients suffering 

from localized or metastatic breast cancers. The last study distinguishes a potential plasma 

metabolic signature for hepatocarcinoma, from healthy patients or patients suffering from 

chronic liver diseases. 
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2.1 Assessment of the exposome: the EPIC cross-sectional pilot 

study 

2.1.1 Introduction 

Genetics and environmental exposures, like radiation, infection, lifestyle or diet, play intricate 

key roles in the development of chronic diseases, such as cancer, diabetes or obesity. The 

purpose of epidemiology is to evaluate the individual contributions of these factors to the 

pathological processes. However, as well as the high complexity of the underlying 

corresponding mechanisms, epidemiology has to cope with the inherent difficulty to precisely 

evaluate the intensity of the exposures at the individual level.[109, 110] For instance, the 

assessment of lifestyle or dietary exposures rely on questionnaires, associated with 

measurement errors, which might obscure disease risk associations. Molecular epidemiology 

was introduced to overcome these limitations, through the determination of unambiguous 

biomarkers of exposure, aiming at improving exposure assessment, detecting early changes 

preceding diseases or defining subgroups at risks.[111] 

In this context, the development of high-throughput screening methods like 

metabolomics could be highly valuable for molecular epidemiology, assessing simultaneously 

multiple biological markers. Recent works have evaluated the applicability of metabolomics 

for the study of large prospective multicentric human cohorts and have determined new 

biomarkers of disease risks.[36, 112] A few studies have already compared the different 

analytical technologies, like NMR spectroscopy, GC-MS or LC-MS in a context of molecular 

epidemiology.[113, 114] However such work has to be carried out on every new sample biobank, 

to assess the specimen quality and suitability for the metabolomic approach. 

In this work, we have evaluated the applicability of metabolomics for a large serum 

biobank, collected in the framework of the European Prospective Investigation into Cancer 

and Nutrition (EPIC) study, a large multicentric prospective epidemiological study designed 

to investigate the association between nutrition and cancer, where 520,000 participants 

(healthy volunteers) were enrolled in 23 centers from 10 European countries (Denmark, 

France, Greece, Germany, Italy, Netherlands, Norway, Spain, Sweden and United Kingdom) 

between 1992 and 1998. The strength of this study was in the high quality of the recordings of 

individual lifestyle habits, diets, anthropometric data and blood samples, obtained at the 

inclusion before disease onset, designed for the identification of prospective markers of 
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pathologies.[115] However, blood samples were collected around 11 and 19 years ago without 

collection and storage protocols specifically designed for metabolomic studies. It is thus 

mandatory to evaluate serum samples for NMR and MS-based metabolomics, prior to further 

analyses for discovery of new dietary and disease risk biomarkers. 

This first pilot study was thus built to assess the suitability of serum samples from the 

EPIC biobank for high-field Nuclear Magnetic Resonance (NMR) spectroscopy and Ultra-

Performance Liquid Chromatography-Mass Spectrometry (UPLC-MS) metabolomic analyses. 

This work was a collaboration between the NMR Center for High-Magnetic Field (CRMN) in 

Lyon, where NMR experiments using a high-field 800 MHz spectrometer were carried out 

and Imperial College, London (ICL), where our collaborators performed UPLC-MS 

experiments and 600 MHz NMR experiments. 

2.1.2 Material and methods (see Part 4 for ICL methods) 

Population. Sera were collected from volunteers between 1992 and 1998 and stored in liquid 

nitrogen, according to harmonized protocols.[116]. Within the EPIC cohort serum biobank, a set 

of samples, associated to incomplete individual data recording, termed “orphan” samples, is 

dedicated to feasibility and validation studies. We included in this study 40 orphan specimens 

from 3 different European countries (United Kingdom, n=16; France, n=8; Italy, n=16). 

Furthermore, 10 samples were duplicated, bringing the total number of analyzed samples to 

50. Note that the 3 analytical platforms profiled aliquots of the same 50 samples. We 

conducted a blind analysis as the sample origins and the duplicate pair identities were only 

disclosed to all participants at the end of the analysis. 

Sample Preparation. Sample preparation for 1H-NMR spectroscopy was conducted in a 

similar manner as previously described by Beckonert et al.[17] Briefly, samples were thawed at 

room temperature and 200 µL of each mixed with 400 µL saline solution (NaCl 0.9% wt/vol, 

D2O 10% vol/vol), centrifuged for 5 min at 4°C at 12000g, 550 µL transferred into 5 mm 

NMR tubes and kept at 4°C until analysis. 

Profile Generation. All NMR experiments were carried out on a Bruker Avance III 

spectrometer operating at 800.14 MHz (proton resonance frequency), equipped with a 5 mm 

TXI probe and an automatic sample changer (SampleJet, Bruker) cooled at 4°C. Temperature 

was controlled at 300 K throughout the experiments. For each sample, a set of 1H 1D NMR 

experiments with water presaturation including 1H 1D NOESY with gradients and 1H CPMG 

were recorded. 128 transient free induction decays (FID), with a 20 ppm spectral width and an 



Metabolomics for human population studies 53 

acquisition time of 1.36 s, corresponding to 43588 data-points, were recorded with a 

relaxation delay of 2 s. The NOESY mixing time was set to 10 ms and the CPMG spin-echo 

delay adjusted to 300 µs for each of the 128 spin-echo loops (76.8 ms total echo time). 

NMR data processing. NMR data were processed at CRMN. All FIDs were multiplied by an 

exponential function corresponding to a 0.3 Hz line-broadening factor prior to Fourier 

transform. Phasing and baseline correction were automatically performed in Topspin 2.1 

(Bruker GmbH, Rheinstetten, Germany).  Spectra were automatically calibrated on the α-

glucose doublet at δ = 5.23 ppm or on the lactate doublet at δ = 1.32 ppm when glucose was 

lacking. Spectra were then divided into 10k or 1k bins of respectively 0.001 ppm width or 

0.01 ppm width in AMIX software (Bruker GmbH). Water signal was excluded (4.5-5 ppm) 

and spectra normalized to total intensity. Key metabolite assignment was achieved exploiting 

published literature,[55] the HMDB[50] and bbiorefcode-2-0-0 (Bruker, GmbH, Rheinstetten, 

Germany) spectral databases. 

Multivariate Analysis – PCA and HCA. Hierarchical cluster analysis (HCA) was performed 

in Matlab using mean-centred NOESY spectra with a bucket size of 0.01 ppm for NMR data 

and a single linkage algorithm based on Euclidean distances to identify sample clusters. 1H 

CPMG NMR auto-scaled or mean-centred data with a bucket size of 0.001 ppm were 

imported into Simca P+ v12.0.1 (Umetrics AB, Sweden) for principal component analysis. 

2.1.3 Results and discussion 

Duplicate identification. The first step of analysis was to determine the 10 duplicates in the 

dataset in a blinded manner. We performed a hierarchical clustering using the single linkage 

algorithm based on Euclidean distances and recognized the duplicates as the sample pairs 

with the highest similarity. Using the 1H NOESY 800 MHz NMR spectra, we were able to 

identify 10/10 duplicates (Figure 2.1.1b), while our collaborators determined 10/10 

duplicates with UPLC-MS (Figure 2.1.1a) and 9/10 duplicates with 1H NOESY 600 MHz 

NMR spectra (Figure 4.1.1).  
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Figure 2.1.1. Hierarchical clustering of UPLC-MS (A) and 800 MHz 1H NMR metabolic profiles (B). 

Duplicate samples are indicated by similar sample IDs. The dendrogram is colored according to country 

of origin  (green = Italy, red = France, blue = UK). All species detected by UPLC-MS with RSD<5% 

across pooled QC samples were used for analysis.  Peak intensities for each species were corrected 

individually for analytical batch differences and data were autoscaled prior to analysis. 1H NOESY 

NMR data were mean-centred prior to analysis. Dendrograms were generated using single linkage and 

the Euclidean distance metric. 
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These results confirmed the analytical reproducibility of current protocols to delineate 

sample metabolic profiles, allowing robust characterization of inter-individual metabolic 

variations. 

Metabolic profiles clustering according to the country of origin. Principal component 

analysis of the 1H NOESY 800 MHz dataset indicated a clustering according to the country of 

origin as a major source of variance (Figure 2.1.2a). UK and France samples displayed more 

similar metabolic profiles by comparison to their Italian counterparts, based on an increase in 

lactate concentration and a decrease in glucose level (Figure 2.1.2b).  

Similar clustering patterns were observed with UPLC-MS (data not shown). NMR and MS 

proved thus to be sensitive to subtle metabolic heterogeneity between the pools of samples 

from the different countries. Although we could not formally exclude at this stage a 

contribution of pre-analytical variations in sample collection, the observation of metabolic 

clustering according to the countries of origin, characterized by different diet habits, seem 

very promising towards the discovery of dietary or disease risk biomarkers. However, we 

could not further investigate these hypotheses, as for these orphan samples, we did not have 

any clinical or biological associated data, except the country of origin. 

Complementarity in NMR and MS serum metabolite coverage. Metabolites identified by 

the 2 analytical platforms NMR spectroscopy and UPLC-MS were compared, in termed of 

redundancy and complementarity (Table 4.1.2). NMR provided a good coverage of highly 

polar molecules such as sugars, amino acids or organic acids, whereas UPLC-MS captured 

metabolites of lower polarity (phosphocholines, carnitines…) (Table 4.1.2). These 

differences were mainly due to the choice of the chromatographic column (C18), chosen to 

provide a “one-shot” analysis, providing a good compromise between polar and non-polar 

metabolites. However, it may be valuable to optimize global metabolome coverage by 

improving NMR and MS complementarities, through the targeting with adequate 

chromatographic conditions of molecule classes poorly reported by NMR. 

Our findings complemented the evaluation of reproducibility in metabolomics procedures, 

mainly conducted in urine in the context of large-scale studies[112] and demonstrated that both 

NMR and UPLC-MS can produce accurate and convergent metabolic profiles from samples 

stored in a biobank for about 15 years. 

Further large-scale studies are now been conducted in our laboratory, in the 

framework of the EPIC cohort, to compare metabolic profiles throughout European countries 
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and correlate them to individual nutritional data (24h recall dietary assessment data) or later 

onset for pancreatic or liver cancers, offering a unique opportunity to derive individual 

profiles associated with nutritional statuses and with risk factors for cancers.  

 

Figure 2.1.2. Principal component analysis (PCA) model of 800 MHz 1H CPMG NMR metabolic 

profiles: a) scores plot showing clustering according to the countries of origin and b) loading plot giving 

the metabolite signature associated to PC1, responsible for the major variance within the dataset. 

Samples are colored according to the country of origin (green = Italy, red = France, blue = UK). 

Components PC1 and PC2 describe 74% and 13% of data variation respectively for the mean-centered 

NMR data. Lactate levels were increased in France and UK samples whereas the glucose concentration 

was higher in Italian samples. 
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2.2 Profiling systemic signatures of cancers: metastatic breast 

cancer serum signature 

2.2.1 Introduction 

Breast cancer (BC) incidence has slightly but steadily increased over the past three decades 

while its mortality rate has declined over the same period, thanks to advances in screening 

methods, early diagnosis and treatments. BC is the most common cancer and the leading 

cause of cancer death in women worldwide.[117] Breast cancer displays a high heterogeneity in 

terms of etiology and histology as well as prognosis, metastatic evolution and response to 

treatments. Deciphering the molecular basis of such heterogeneity is a major challenge, now 

achievable through new bio-molecular and analytical techniques, aiming at a comprehensive 

cancer characterization for risk stratification, therapeutic target identification and appropriate 

treatment selection. [111] 

Identification of BC tumor types prone to evolve towards metastatic disease and early 

detection of sub-clinical metastases could represent a major advance in BC management, by 

selecting patients for follow up intensification and more appropriate treatment administration. 

Major efforts have been made to characterize genetic alterations and modifications of gene 

expression profiles in the context of BC tumorigenesis through genomic and transcriptomic 

approaches,[118-120] suggesting prognosis factors for developing distant metastases.[17] Specific 

changes in metabolism during tumor progression have also early been reported by 

Warburg[121] and appear as keystone for understanding cancer evolution or response to drug 

treatment.[122, 123] Yet, detailed characterization of BC tumor metabolism as well as broader 

investigations of the global alterations to individual metabolism still represent a tremendous 

challenge.  

Metabolic phenotyping studies that provide untargeted identification of all detectable 

low molecular-weight molecules by profiling without any a priori the metabolic signatures of 

biological samples in connection to patho/physiological events,[4, 5] are prone to play a key 

role towards this objective. Versatile analytical techniques mainly based on Nuclear Magnetic 

Resonance spectroscopy (NMR) and Mass Spectrometry (MS) allow the analysis of various 

samples from bio-fluids such as serum or urine, to intact cells or tissues.[124, 125] Meanwhile, 

metabolomic approaches have already found promising applications in different fields from 

toxicology[32], functional genomics[4, 126] to oncology.[41, 127]  
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In BC research, metabolomics has been so far generally used for the direct 

characterization of tumor metabolism alterations, mainly through analysis of intact biopsies 

by high-resolution magic angle spinning (HR-MAS) NMR spectroscopy. Specific tumor 

metabolic profiles have been identified by comparison of control and tumor tissues,[128, 129] and 

correlation between metabolic tumor profiles and histological grade, hormone grade and 

axillary lymphatic spread were also observed,[130] highlighting the potential of tumor 

metabolic signatures as prognosis factors.  Recently work also showed the possibility to refine 

tumor gene-expression-based classification from tumor metabolic profiles, emphasizing the 

synergic use of transcriptomic and metabolomic approaches.[34, 35] 

Changes in global metabolism of individuals have also been identified in BC from 

biofluids such as urine and serum, most efforts being dedicated to the research of early non-

invasive diagnosis biomarkers.[131-133] One recent attempt was made so far to detect 

micrometastatic disease in early breast cancer patients from metabolomic analysis of 

peripheral blood serum.[134] We report here a 1H-NMR-based metabolomic study aiming at 

deciphering metabolic serum changes associated with advanced metastatic breast cancer by 

comparison to the localized disease. This work was carried out together with Elodie Jobard, 

PhD student at the CRMN 

2.2.2 Materials and methods 

Populations. This observational study was conducted in the Centre Léon Bérard, (Lyon, 

France) from January 2009 to February 2010. A cohort of female patients constituted of two 

subgroups was recruited, including patients suffering from early breast cancer (EBC; Group 

A) or metastatic breast cancer (MBC; Group B). Inclusion criteria for group A were: patients 

older than 18, with histologically proven EBC, who underwent a negative CT scan of the 

chest, abdomen, and pelvis, a negative whole body bone scan and were scheduled for a 

surgical procedure at Centre Léon Bérard. Inclusion criteria for the group B were: patients 

older than 18 with histologically proven MBC, eligible for a first line of chemotherapy; 

previous hormonal treatment was allowed. Diabetic patients were excluded due to the high 

concentration of glucose in their blood. For each patient, recorded clinical data included age, 

menopausal status, hormonal and HER2 receptor status, medical history and treatments. 

Chronologically, a first cohort of 52 patients, named the training cohort, was recruited to 

derive the statistical model, followed by recruitment of a second independent cohort of 33 

individuals, named the validation cohort, used for model validation. Written informed consent 
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was obtained from each patient. The institutional ethics committee approved the study 

protocol before implementation.  

Data collection and storage. Blood collection was performed in fasting conditions (12 hours 

without food intake) for each patient, in the morning before breast surgery for the group A, or 

in the morning before first chemotherapy cure for the group B. Blood samples were recovered 

from dry tubes and centrifuged 30 min after collection at 800 g for 10 min. Sera were then 

transferred in plastic straws, and stored in liquid nitrogen for a period of 6 to 12 months 

before acquisition of NMR data for the whole cohort. 

Sample Preparation. Samples were prepared as previously described by Beckonert et al.[17] 

Serum samples were thawed at room temperature before use. 200 µL of each was diluted with 

400 µL of a 0.9% saline solution (NaCl 0.9% wt/vol, D2O 10% vol/vol) in a microtube, then 

centrifuged for 5 min at 4°C at 12 000 g. Finally, 550 µL of supernatant was transferred into 5 

mm NMR tubes. Samples were kept at 4°C until analysis. 

1H-NMR spectroscopy of serum samples. All NMR experiments were carried out on a 

Bruker Avance III spectrometer operating at 800.14 MHz (proton resonance frequency) 

equipped with a 5 mm TXI probe, and high-throughput sample changer that maintained the 

samples temperature at 4°C until actual NMR acquisition. The temperature was then regulated 

at 300K throughout the NMR experiments. Standard 1H 1D NMR pulse sequences, NOESY 

and CPMG with water presaturation, were applied on each sample to obtain corresponding 

metabolic profiles. 128 transient free induction decays (FID) were collected for each 

experiment with a spectral width of 20 ppm, corresponding to 43588 data-points for an 

acquisition time of 1.36 s. For both sequences, the relaxation delay was set to 2 s. The 

NOESY mixing time was set to 100 ms and the CPMG spin-echo delay to 300 µs allowing an 

efficient attenuation of the lipid NMR signals. The 90° pulse length was automatically 

calibrated for each sample at around 9.25 µs. In addition, 2D NMR experiments (1H-13C 

HSQC, 1H-1H TOCSY and J-Resolved) were recorded on a subset of samples to achieve 

structural assignment of the metabolic signals.  

Data processing. All FIDs were multiplied by an exponential function corresponding to a 0.3 

Hz line-broadening factor, prior Fourier transformation. 1H-NMR spectra were automatically 

phased and referenced to the α-glucose anomeric proton signal (δ = 5.23 ppm) using Topspin 

2.1 (Bruker GmbH, Rheinstetten, Germany). Residual water signal (4.66 to 5.11 ppm) was 

excluded. Spectra were divided into 0.001 ppm-wide buckets over the chemical shift range 
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[0.1; 10 ppm] using the AMIX software (Bruker GmbH). Spectra were normalized to their 

total intensity and mean-centered prior to analysis. Data were then exported to SIMCA–P 12 

(Umetrics, Umea, Sweden) for statistical analysis. 

Population characterization (Elodie Jobard, CRMN). Descriptive statistical analysis was 

performed to characterize the two populations, using the Student t-test and Chi2 test for 

quantitative and qualitative data respectively. The significance threshold was set to 0.05 for 

both tests. 

Multivariate analysis of serum metabolic profiles. Unsupervised and supervised statistical 

multivariate methods were used to build models for sample classification and extract group-

specific metabolic signatures. Principal component analysis (PCA) was performed to derive 

the main sources of variance within the dataset, check population homogeneity and eventually 

identify technical or biological outliers. Data were visualized as score plots, where each point 

stands for the projection of a single sample on the main principal components and as loading 

plots, which represent the contribution of the metabolic variables to principal components. 

Supervised regression methods such as Orthogonal Partial Least-Squares (O-PLS)[100] were 

performed to build a robust sample classification model and derive group-specific metabolic 

phenotypes. The O-PLS analysis was run to discriminate populations by regressing a 

supplementary data matrix Y, containing information about the disease severity (EBC or 

MBC status) on the X NMR dataset matrix. Model performances were assessed by goodness-

of-fit parameters R2 and Q2, related respectively to the explained and predicted variance, 

calculated through a cross-validation procedure. We performed model validation by 

resampling the model 1000 times under the null hypothesis in Matlab (The Mathworks, Inc). 

The decrease of goodness-of-fit R2 and Q2 parameters, when correlation between original 

model and random models decreased, indicated the good quality of our model. 

Evaluation of classification performance (Elodie Jobard, CRMN). Model classification 

performance was characterized by the calculation of the receiver operating characteristic 

(ROC) curve and its area under the curve (AUC) from cross-validated results. Finally, 

evaluation of the overall model predictability was assessed on a completely independent 

dataset by predicting in blind condition the EBC or MBC status for the new individuals. 

Identification of statistically significant biomarkers discriminating EBC and MBC. To 

derive statistically significant discriminating biomarkers, we used an univariate methodology 

previously described that couples an automatic binning procedure named statistical recoupling 
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of variables (SRV) to subsequent ANOVA analysis and multiple testing correction of the p-

values,[94] here the Benjamini-Hochberg correction that controlled the false-discovery rate 

below a 0.05 threshold,[102] implemented with MATLAB (The MathWorks Inc., Natick, MA) 

homemade routines. 

Annotation of significant metabolites was achieved through the identification of full 

spin systems from analysis of 2D NMR experiments (1H-13C HSQC, 1H-1H TOCSY and J-

resolved experiments) as well as STOCSY analysis, which provides statistical correlations 

between NMR variables suggesting structural or biological connectivities.[62] Metabolite 

assignment procedure exploited knowledge from academic spectral databases such as 

MMCD,[49] HMDB[50] and BMRB[51] as well as proprietary databases (Chenomx NMR Suite, 

Chenomx Inc, Edmonton, Canada; AMIX SpectraBase, Bruker GmbH, Rheinstetten, 

Germany). 

2.2.3 Results 

Population and clinico-pathological characterization. In this study, we collected 52 serum 

samples from 28 female patients suffering from early breast cancer (EBC; Group A) and 24 

female patients suffering from metastatic breast cancer (MBC; Group B), defining a training 

cohort. We then recruited a validation cohort, made of 33 additional independent individuals, 

18 with EBC and 15 with MBC. For each cohort, we excluded one MBC sample, due to 

improper collection procedure as detailed herein. We compared clinicopathological data 

between group A and B for the training and validation cohorts to exclude biases related to 

patient selection, as summarized in Table 4.2.1 and Table 4.2.2. No significant differences 

have been detected for age, menopausal or HER2 gene status, medical history and treatments 

(data not shown). The tumor hormonal status was significantly different between EBC and 

MBC groups (p=0.007). 

NMR spectroscopy of serum samples. A typical high-field (800 MHz) 1H NMR spectrum, 

as recorded for each of the serum samples to derive well-resolved metabolic profiles, is 

illustrated in Figure 2.2.1. Sharp lines typical of the signals from small metabolites are 

superimposed on broader signals from larger lipids or proteins. 40 metabolites were identified 

from these spectra, supplemented by information from 2D 1H-1H and 1H-13C NMR 

experiments. Assignments are provided in Table 4.2.3.  
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Figure 2.2.1. Overview of the 1H NMR CPMG mean spectrum (800 MHz) for patients with metastatic 

breast cancer. (A) 0.5– 2.5 ppm region; (B) 2.5 – 5.5 ppm region; (C) 5.4 – 10 ppm region. 1: Lipid 

(LDL) CH3 (CH2) n, Cholesterol (C26, C27), Cholesterol (C21); 2: Lipid CH3CH2CH2 (CH2) n; 3: Lipid 

(VLDL) CH2CH2CO; 4: Lipid CH2CH2C=C; 5: Lipid CH2C=C; 6: Lipid CH2CO; 7: Lipid 

C=CCH2C=C; 8: Unsaturated lipid (CH=CHCH2CH=CH), Unsaturated lipid (=CHCH2CH2). 

Variance and outliers within 1D 1H NMR dataset. To derive the main sources of variance 

and identify potential analytical or biological outliers we performed a principal component 

analysis (PCA) on the 1D 1H NMR datasets from the training or validation cohorts. We 

identified in each cohort one severe outlier, with a high concentration of citrate for the first 

one, probably due to mis-collection of the blood in a citrated tube, and a high concentration of 

lactate for the second outlier. These two samples were excluded before further analysis. 
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Discrimination between EBC and MBC from metabolic serum profiles. A supervised 

analysis by O-PLS[100] analysis was carried out on the training cohort (51 spectra) to derive a 

robust statistical model based on discrimination between EBC and MBC metabolic profiles. 

We observed a clear discrimination between EBC and MBC individuals, as illustrated in 

Figure 2.2.2a, assessed by high values of goodness-of-fit model parameters R2 and Q2 related 

respectively to the explained and predicted variance in the model (R2  = 0.804; Q2 = 0.447). 

The discrimination robustness was further validated by re-sampling 1000 times the model 

under the null hypothesis showing a clear decrease of R2 and Q2 with the correlation between 

the original and permuted class information Y matrices (Figure 2.2.2b). In addition, we 

characterized the model classification performances with a ROC curve from cross-validated 

results (Figure 2.2.2c). We obtained a corresponding area under the curve of 0.92, assessing 

the powerful classification ability of the model. 

Data from the validation cohort were analyzed independently, in order to test the 

classification model generated from the training cohort. The disease status of these 

individuals, either EBC or MBC, was predicted in a blind analysis from the NMR metabolic 

profiles by projecting the data onto the O-PLS multivariate model. From the 32 predicted 

subjects, 26 samples were correctly classified (10 MBC and 16 EBC) while 4 were 

misclassified as EBC instead of MBC and 2 misclassified as MBC instead of EBC, 

corresponding to a sensitivity of 71% and a specificity of 89% (Figure 2.2.2d). These good 

prediction parameters are highlighted visually with a ROC curve from independent validation 

(Figure 2.2.2c). 

As an additional test to assess the robustness and reproducibility of the technique, 4 

additional samples from patients belonging to the training cohort, were analyzed together with 

the validation cohort. The disease status for these four patients was correctly predicted from 

our classification model (data not shown). 

Determination of a metabolic signature associated with breast cancer severity. Individual 

statistically significant metabolites discriminating EBC and MBC were identified with 

univariate analysis of the NMR metabolic profiles. Histidine was found in significantly higher 

concentration in the serum of EBC patients, while end-products of β-oxidation (acetoacetate 

and 3-hydroxybutyrate) and lipid degradation (glycerol), N-acetylglycoproteins (NAC 1 & 2), 

or pyruvate and phenylalanine concentrations in the serum increased for MBC individuals as 

compared to EBC (Figure 2.2.3 and Table 4.2.4). Three NMR signals could not be identified 

from the literature or currently available databases. Additional 1H NMR data was recorded 
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after microfiltration of serum samples (3 kDa filter), to ease the identification of possibly low-

concentrated metabolites. The significant doublets observed at 1.38 and 1.39 ppm on 

unfiltered samples were absent from the spectra recorded for the filtered sera, which sustains 

hypothesis that these specific signals are linked to serum (glyco)proteins. 

 

Figure 2.2.2. Serum metabolite profiles derived from metastatic breast cancer patients are different 

from localized breast cancer patients. (A) A 1+3 O-PLS model from the training cohort discriminating 

28 localized breast cancer patients (red diamonds) and 23 metastatic breast cancer patients (black dots); 

R2 = 0.804 and Q2 = 0.447. (B) The O-PLS model was validated by re-sampling under the null 

hypothesis. (C) Receiver operating characteristic curve showing the good prediction from cross-

validation and from independent validation. (D) O-PLS prediction of 32 additional subjects: 18 

localized breast cancer patients (red diamonds) and 14 metastatic breast cancer (black dots) projected 

onto the training model (light colors). 

2.2.4 Discussion 

This study demonstrates that NMR metabolomic analysis from peripheral blood can robustly 

classify patients according to the severity of breast cancer: localized versus metastatic 

diseases. A major challenge for metabolic phenotyping approaches lies in the intrinsic 

variability of the tumors and hosts. While the present study on cancer patient sera is designed 

to circumvent this former aspect, a number of metadata may directly impact the metabolic 
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status of individuals (such as sex, age, dietary, lifestyle, medication, diseases, etc…),[135] the 

related physiological variations hindering associations of metabolic fingerprints to specific 

pathological status or stimuli. All EBC and MBC patients in our cohort were thoroughly 

characterized from their metadata to verify the absence of such bias in our metabolomic study 

(Table 4.2.1 and Table 4.2.2). While no significant differences were observed for age, 

menopause, HER2 status, medical history or drug treatment, the hormonal receptor status 

(HR) was however significantly different (p = 0.007) between EBC and MBC populations in 

the training cohort. This status reflects the intrinsic characteristics of hormone-sensitive 

tumorigenesis, associated to better prognosis from generally slower tumor growing rates and 

higher response to hormone-suppression treatments. As a result, HR- patients are consistently 

overrepresented in the MBC group. 

 

Figure 2.2.3. O-PLS loading plot after SRV analysis and Benjamini-Hochberg multiple testing 

correction. Statistically significant signals correspond to the colored spectral regions. Highlighted 

candidate biomarkers are 1) Unassigned doublets at 1.38 ppm and 1.39 ppm; 3) N-AcetylGlycoprotein 

(NAC1); 4) NAC2 ; 5) Acetoacetate; 6) Pyruvate; 7) 3-Hydroxybutyrate; 8) Glycerol; 9) Histidine; 10) 

Unassigned multiplet at 7.24 ppm; 11) Phenylalanine. 

Statistical comparison of the NMR metabolic profiles of sera from breast cancer patients in 

our cohort provides a robust and predictive classification according to the localized or 

metastatic nature of the disease, as illustrated in Figure 2.2.2, with a sensitivity of 71% and a 

specificity of 89%. A range of investigations, using NMR or MS based metabolomic 

approach, have focused on establishing breast cancer biomarkers, from breast tumors or cell 
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lines.[128, 129] Major metabolites identified as correlated with breast cancer in these studies are 

glucose, lactate, lipids, choline, and amino acids.[136] Our findings highlight more specifically 

11 significant metabolic markers associated with a metastatic status of the disease, from 

which 8 could be unambiguously identified. MBC patients, as compared to EBC cases, 

display higher serum concentrations of acetoacetate, 3-hydroxybutyrate (beta-

hydroxybutyrate), glycerol, pyruvate, N-acetylglycoproteins and phenylalanine, and lower 

concentration of histidine. A subset from these significant metabolites has already been 

identified from patient sera as associated with either recurrent (histidine and 3-

hydroxybutyrate) or metastatic (phenylalanine) breast cancer in two recent studies.[133, 134] 

Oakman et al. compared, in a monocentric study design analogous to ours, the metabolic 

profiles of 44 patients with localized breast cancer versus 51 patients with metastatic breast 

cancer,[134] with a sensitivity of 75% and specificity of 69%, slightly lower than the result of 

statistical analysis from our cohort. In their study, metastatic subjects were characterized by 

high values of phenylalanine, glucose, proline, lysine and N-acetylcysteine and low values of 

lipids. It may be noted that although some of these metabolites do not appear as significant 

biomarkers in our model, our multivariate metabolic fingerprints confirm the same trends of 

variation associated to MBC vs. EBC status (e.g. higher concentration of glucose, lower 

levels of lipids) (Figure 2.2.3).  

An increased serum level of phenylalanine for patients with MBC was consistently 

highlighted in both studies, and therefore may constitute a potential robust marker of 

malignancy in breast cancer. Yet, phenylalanine was also previously shown from various 

serum or tissue metabolomic analyses, as associated with diverse cancers, regardless of their 

metastatic status.[137-139] In those cases, high concentrations of phenylalanine was always 

correlated to cancer (vs. healthy subjects), with one notable exception of a study on serum 

from human colorectal cancer patients that showed a decreased level of phenylalanine with 

respect to controls.[140] More generally, many studies to date have reported changes in amino 

acid metabolic profiles of patients with cancer, as reviewed by Lai and coworkers.[141] While 

some aberrations in the metabolic profile of amino acids are expected in cancer patients, no 

consistent cancer-specific amino acids has yet emerged. The metabolic profile of free amino 

acids can vary between the early and late stage of cancer. Histidine has also been identified as 

a potential marker in the recent literature on breast cancer[133] as well as for others types of 

cancers.[142, 143] The fact that L-histidine is lower in MBC patients compared with EBC patients 

may be explained by the higher activity of histidine decarboxylase. This enzyme may 
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accelerate the decarboxylation of histidine in the MBC patients, as observed already in the 

case of colorectal cancer.[143, 144] 

The significant increase, for MBC patients, of serum concentrations of the two ketone 

bodies acetoacetate and 3-hydroxybutyrate, which are by-products of fatty acid catabolism, 

may arise from altered lypolysis linked to high energy demands in the cells. When 

carbohydrates are not sufficient as primary energy source, beta-oxidation of fatty acids can 

produce large amounts of acetyl-CoA, which is then primarily used by the Krebs cycle 

(mitochondrial respiration). When saturated the surplus undergoes ketogenesis, and ketone 

bodies in excess are excreted from the cells, accumulating in the blood.[145] The presence of 

high ketones concentrations could therefore illustrate an increased fatty acids catabolism, 

consistent with the observed high levels of glycerol, and the incapacity of the Krebs cycle to 

fully metabolize acetyl-CoA by depletion of other TCA cycle intermediates. Meanwhile, 

recent investigations proposed a “reversed Warburg effect” mechanism that link metastatic 

dissemination to an increased mitochondrial metabolism in epithelial cancer cells, while 

ketone bodies produced by glycolytic stromal cells would feed the oxidative mitochondrial 

metabolism, to stimulate tumor growth and metastasis.[146] N-acetyl glycoproteins are acute-

phase glycoproteins, whose increased levels in circulating blood associated to human cancer 

is well established[147] and that were observed in several studies in the presence of high levels 

of ketone bodies and glycerol. Finally, the increased concentration of pyruvate can be 

associated to an exalted glycolytic activity. Under these mechanistic hypotheses, our 

observations in blood sera therefore fully converge towards high-energy needs due to 

aggressive tumor growth in MBC patients. 

2.2.5 Conclusion 

In conclusion, our investigation proposes a robust serum metabolic signature of metastatic 

breast cancer as compared to patients with localized breast tumors. These results are 

promising as a non-invasive method to improve the diagnosis, prognosis and management of 

patients. They confirm the outcome of an earlier comparable monocentric investigation, while 

our statistical model discriminating MBC from EBC sera shows slightly higher specificity, 

and extend the range of observed significant metabolic markers, notably including several 

amino-acids and ketone bodies. The observed biomarker pattern is possibly not unique to 

MBC but may result of more general characteristics of malignant disease. In the future, larger 

cohorts, if possible recruited in a multicenter context, should be exploited to further validate 
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these results. In addition, follow-up of EBC patients with possible occurrence of metastatic 

disease will enrich our present model by the determination of early (predictive) markers of 

MBC occurrence. 
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2.3 Plasma metabolic signature of hepatocellular carcinoma and 

chronic liver disease.  

2.3.1 Introduction 

Primary liver cancer (PLC) represents a major public health issue worldwide. With 700.000 to 

800.000 new cases each year, PLC is the 7th most common cancer and the 3rd cause of death 

by cancer.[117] The two main histological types are hepatocellular carcinoma (HCC), which 

corresponds to 80% of cases, and cholangiocarcinoma (CHCA). Many risk factors have been 

identified for HCC, such as hepatitis B/C (HBV/HCV) virus infection, dietary exposure to 

aflatoxin B1 and all other potential sources of chronic liver disease like chronic alcohol 

consumption or non-alcoholic steatohepatitis (NASH). Geographical HCC incidence is thus 

superimposed on risk factor distribution around the globe. HCC represents a major burden for 

areas of endemic HBV or HCV carriage such as Sub-Saharan Africa and Eastern Asia. 

Early detection of liver cancers is thus one of the main public health challenges for 

these areas of high incidence. The emergence of new technologies offers the opportunity to 

explore new fields of biomarker discovery. Metabolic profiling, relying on state-of-the-art 

high-throughput analytical techniques such as Nuclear Magnetic Resonance (NMR) 

spectroscopy or mass spectrometry appears as a key approach to probe metabolic 

perturbations induced by HCC and other liver diseases at the systemic level (plasma, 

serum…) and derive diagnostic biomarkers.  

Different studies have observed changes in plasma or serum metabolic profiles 

between healthy individuals and patients suffering from chronic liver disease (CLD) or HCC, 

essentially in Chinese populations.[138, 148-151] Similar studies have focused on the metabolic 

fingerprints of CLD and HCC in urine.[148, 152-156] Ye et al. have monitored the urinary 

metabolic signatures of early HCC recurrence after surgical removal.[157] Liver cirrhosis 

severity has also been evaluated from serum or urine metabolic profiles,[158-160] as well as 

differences between cirrhosis induced by HBV infection or by alcohol consumption.[161, 162] 

Our objective was to characterize the specific plasma metabolic signatures of 

individuals suffering from HCC by comparison to healthy controls, chronic liver disease or 

cholangiocarcinoma carriers, in a case-control study conducted in Thailand, an area of high 

HBV-related HCC incidence, using NMR spectroscopy. We investigated correlations between 

plasma metabolic profiles and HBV/HCV infection status, LTBP2 protein levels, a potential 
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marker of HCC identified by proteomic analysis carried out on the same cohort, and 

occurrence of R249S mutation of the TP53 gene, particularly associated with HCC induced 

by HBV infection. 

2.3.2 Material and Methods 

Sample collection. This study is part of the International Liver Cancer Study (ILCS), an 

international project aiming at contributing to intervention, prevention, early diagnosis and 

control of liver cancer. This case-control study was carried out in the National Cancer 

Institute, Thailand from April 2008 to December 2009. Diagnosis of hepatocellular carcinoma 

and cholangiocarcinoma was based on concordant clinical examination and abdominal 

imaging. Individuals assigned in the control group presented no clinical evidence of liver 

disease and were selected among individuals who came to the Institute for their annual check-

up. Written consent was obtained from all participants. The Institutional Review Boards of 

the Thailand National Cancer Institute and the International Agency for Research on Cancer 

approved this study. Samples were collected in EDTA tubes and kept at -80°C until 

analysis.[163] 

Sample preparation. Samples were prepared as previously described by Beckonert et al.[17] 

Plasma samples were thawed at room temperature before used. 200 µL of each was diluted 

with 400 µL of a 0.9% saline solution (NaCl 0.9% wt/vol, D2O 10% vol/vol) and centrifuged 

at 12,000g for 5 min at 4°C. Finally, 550 µL of supernatant was transferred into a 5 mm NMR 

tube. Samples were kept at 4°C until analysis. 

NMR spectroscopy of plasma samples. All NMR experiments were carried out on a Bruker 

Avance III spectrometer operating at 600 MHz (proton resonance frequency), equipped with a 

5 mm CPI cryoprobe and high throughput sample changer (SampleJet, Bruker) that 

maintained the sample temperature at 4°C until NMR acquisition. Temperature was 

controlled at 310 K throughout the experiments. For each sample, standard 1H 1D NMR pulse 

sequences, NOESY and CPMG with water signal presaturation were recorded for each 

samples to obtain corresponding metabolic profiles. 128 transient free induction decays (FID) 

were collected for each experiment with a spectral width of 20 ppm, corresponding to 32690 

data-points for an acquisition time of 1.36 s. For both sequences, the relaxation delay was set 

to 2 s. The NOESY mixing time was set to 100 ms and the CPMG spin-echo delay to 400 µs 

for a total echo time = 64 ms, allowing an efficient attenuation of the protein and lipid NMR 

signals. The 90° pulse length was automatically calibrated for each sample at around 13 µs. 
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Serum quality controls (QC) were analyzed at the beginning and at the end of each batch of 

NMR experiments to assess analytical reproducibility. In addition, 2D NMR experiments, 

(1H-1H TOCSY, 1H-13C HSQC and J-resolved experiments) were carried out on a subset of 

selected samples to characterize structural connectivities between nuclei and refine metabolite 

identification. 

Data processing. All FIDs were multiplied by an exponential function corresponding to a 0.3 

Hz line-broadening factor prior to Fourier transform. 1H-NMR phasing and baseline 

correction were automatically performed in Topspin 2.1 (Bruker GmbH, Rheinstetten, 

Germany). Spectra were automatically referenced to the α-glucose anomeric proton signal (δ 

= 5.23 ppm). Residual water signal (δ = 4.3-5.15 ppm) and EDTA signals (δ = 2.54-2.57, 

2.68-2.71, 3.06-3.24, 3.57-3.63 ppm) were excluded. Spectra were then divided into 10k bins 

of 0.001 ppm width using the AMIX software (Bruker GmbH). Spectra were normalized with 

the Probabilistic Quotient Normalization (PQN) method considering as reference spectrum 

the median spectrum from the whole dataset[97] and scaled with the Pareto method prior to 

analysis. 

Statistical Analysis. Unsupervised and supervised statistical multivariate methods were used 

to build models for sample classification and extract group-specific metabolic signatures. 

Principal component analysis (PCA) was performed to derive the main sources of variance 

within the dataset, check population homogeneity and eventually identify technical or 

biological outliers. Data were visualized as score plots, where each point stands for the 

projection of a single sample on the main principal components and as loading plots, which 

represent the contribution of the metabolic variables to principal components. Supervised 

regression methods such as Orthogonal Partial Least-Squares (O-PLS)[100] were performed to 

build a robust sample classification model and derive group-specific metabolic phenotypes. 

To derive statistically significant discriminating biomarkers, we used an univariate 

methodology previously described that couples an automatic binning procedure named 

statistical recoupling of variables (SRV)[94] to non-parametric Wilcoxon rank sum tests and p-

value corrections for multiple testing, in our case the Benjamini-Yekutieli correction that 

controlled the false-discovery rate below a 0.05 threshold,[104] implemented with MATLAB 

(The MathWorks Inc., Natick, MA) homemade routines. We generated loading plots 

representing back-scaled OPLS coefficients obtained from the Pareto-scaled dataset where 

each NMR variable coefficient was scaled back by the square root of its standard deviation to 
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ease metabolite identification. Only statistically significant metabolites were colored, 

according to their correlation with sample statuses.  

Identification of statistically significant metabolites. Metabolite assignment exploited 

academic spectral databases such as HMDB,[50] MMCD[49] as well as proprietary databases 

(AMIX SpectraBase, Bruker, GmbH, Rheinstetten, Germany; Chenomx NMR Suite 7.0, 

Chenomx Inc, Edmonton, Canada). 

2.3.3 Results 

Patient cohort. We analyzed 312 plasma samples by 600 MHz 1H NMR spectroscopy. The 

dataset was divided in 5 groups according to sample status: Control (n = 130), Chronic Liver 

Disease (CLD without HCC, n = 51), HCC (patients suffering from HCC, n = 86) further 

divided in HCC without cirrhosis (patients suffering from HCC without cirrhosis, n = 50) and 

HCC with cirrhosis (patients suffering from HCC with cirrhosis, n = 36), CHCA (patients 

suffering from cholangiocarcinoma, n = 37) and others (n = 8). Results concerning the CHCA 

group are not reported in this thesis. The group “others” gathered individuals suffering from 

two cancers simultaneously and was excluded during the analysis. 

Clinical and biological parameters were recorded: age, gender, body mass index 

(BMI), year of sample collection, hepatitis B virus (HBV) and hepatitis C virus status (HCV) 

and liver function biological parameters such as albumin level. We also had measurements of 

LTBP2 protein concentrations, identified in a proteomic study within the same sample-set as a 

potential marker of HCC and R249S copy numbers, a mutation of the TP53 gene particularly 

associated with HCC induced by HBV infection, measured from circulating free DNA 

(CFDNA) in plasma.[163] 

Principal component analysis. The analysis was carried out on CPMG 1H NMR 

spectra. We first performed a principal component analysis (PCA) on the whole dataset to 

identify the main sources of variance and trends between the samples. The quality control 

(QC) sample dispersion was very limited (Figure 2.3.1a) compared to the whole dataset 

dispersion, assessing analytical reproducibility. The first principal component was dominated 

by variations in lipids and the second by variations in glucose. The third component (PC3) 

showed a discrimination between Control samples and a large number of pathological 

samples (Figure 2.3.1a). We performed a second PCA model focusing only on Control, CLD 

and HCC (pooled with and without cirrhosis) data. Again, we observed an interesting trend 
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along the PC3, suggesting a discrimination between Control and HCC samples, CLD samples 

being superimposed on both HCC and Control individuals (Figure 2.3.1b). 

 
Figure 2.3.1. Principal component analysis for a) the whole dataset and b) control, CLD and HCC (with 

and without cirrhosis) groups. 

Discrimination between Control, CLD and HCC (with and without cirrhosis). We first 

compared the plasma metabolic signatures of Control, CLD and total HCC samples 

(corresponding to individuals suffering from HCC with and without liver cirrhosis). 

We observed a robust discrimination between Control and HCC samples, in an OPLS 

model, built with 5 orthogonal components (R2X = 0.769, R2Y = 0.809, Q2 = 0.732, Figure 

2.3.2a, Figure 4.3.1a, and Table 2.3.1). HCC samples were characterized by high levels of 

citrate, ethanol, formate, phenylalanine, pyruvate, tyrosine and N-acetylglycoproteins and low 

levels alanine and valine, compared to control samples. Lipid metabolism also contributed to 

this signature, with a global decrease in unsaturated and oxidized lipids in HCC individuals 

(Figure 2.3.2b). 

To further evaluate whether this signature was specific of HCC, we compared HCC 

and CLD groups. We were able to build an OPLS model discriminating the two groups (1 

orthogonal component, R2X = 0.444, R2Y = 0.372, Q2 = 0.305, Figure 2.3.2c, Figure 4.3.1b, 

and Table 2.3.1). However, this discrimination was less important than the previous observed 

between HCC and Control samples. HCC samples displayed high concentrations of ethanol 

and N-acetylglycoproteins and low concentrations of alanine, glucose and valine. Global 

changes in the lipid profile also contributed to this signature (Figure 2.3.2d). 

We finally compared the metabolic profiles of Control and CLD patients and observed 

a significant increase in acetate, citrate, ethanol, formate, glucose, phenylalanine, pyruvate 

and tyrosine for CLD individuals associated with a decrease in N-acetylglycoproteins, 

unsaturated and oxidized lipids (OPLS-DA, 3 orthogonal components, R2X = 0.766, R2Y = 

0.512, Q2 = 0.392, Figure 2.3.2e-f, Figure 4.3.1c, and Table 2.3.1). 
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Figure 2.3.2. Discrimination between Control, CLD and HCC. OPLS models discriminating a) HCC 

and Control (5 orthogonal components, R2X = 0.769, R2Y = 0.809, Q2 = 0.732), b) HCC and CLD (1 

orthogonal component, R2X = 0.444, R2Y = 0.372, Q2 = 0.305) and c) Control and CLD (3 orthogonal 

components, R2X = 0.766, R2Y = 0.512, Q2 = 0.392). 

These different analyses showed that HCC and CLD samples shared a common 

metabolic pattern by comparison to Control samples, involving an increase in citrate, ethanol, 

formate, phenylalanine, pyruvate and tyrosine and a decrease in unsaturated and oxidized 

lipids. This non-specific metabolic signature could be a fingerprint of liver disease. CLD 

individuals were specifically associated with high glucose and acetate levels, while HCC 

samples display high N-acetylglycoprotein levels and low alanine and valine levels. It seems 

thus that HCC could induce a specific plasma metabolic signature. However, in these 

comparisons, the HCC group gathered patients with and without cirrhosis, which increased 

the total individual number and statistical power but created an inhomogeneous population. 
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We thus performed a new set of analysis, distinguishing HCC individuals with or without 

cirrhosis, decreasing statistical power but increasing group homogeneity. 

Discrimination between Control, CLD and HCC without cirrhosis. A strong 

discrimination was observed between Control and HCC without cirrhosis individuals (OPLS-

DA, 3 orthogonal components, R2X = 0.723, R2Y = 0.763, Q2 = 0.714, Figure 2.3.3a, Figure 

4.3.1d, and Table 2.3.1). The HCC without cirrhosis group was associated with higher levels 

of formate, N-acetylglycoproteins, phenylalanine, pyruvate and tyrosine and lower levels of 

alanine, valine, oxidized and unsaturated lipids (Figure 2.3.3b). Here, citrate and ethanol did 

not significantly change between the two groups. CLD and HCC without cirrhosis groups 

were significantly discriminated (OPLS-DA, 2 orthogonal components, R2X = 0.691, R2Y = 

0.532, Q2 = 0.457, Figure 2.3.3c, Figure 4.3.1e, and Table 2.3.1) in a model displaying better 

performance than for the discrimination between total HCC and CLD groups. The HCC 

without cirrhosis group was associated with an increase in N-acetylglycoproteins, a decrease 

in acetate, alanine, citrate, glutamine, glucose, valine and global changes in the lipid profile 

(Figure 2.3.3d). 

 
Figure 2.3.3. Discrimination between Control, CLD and HCC without cirrhosis. OPLS models 

discriminating a) HCC without cirrhosis and Control (3 orthogonal components, R2X = 0.723, R2Y = 

0.763, Q2 = 0.714), b) HCC without cirrhosis and CLD (2 orthogonal components, R2X = 0.691, R2Y = 

0.532, Q2 = 0.457). 
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Discrimination between Control, CLD and HCC with cirrhosis. We finally completed the 

study with the analysis of the HCC with cirrhosis group. These patients were significantly 

different from their Control counterparts (OPLS-DA, 2 orthogonal components, R2X = 0.645, 

R2Y = 0.681, Q2 = 0.609, Figure 2.3.4a, Figure 4.3.1f, and Table 2.3.1), with higher levels of 

citrate, ethanol, formate, phenylalanine, pyruvate and tyrosine and lower levels of valine, 

unsaturated and oxidized lipids (Figure 2.3.4b). We compared the HCC with cirrhosis group 

from the CLD group. A small discrimination was observed, involving increased levels of N-

acetylglycoproteins for HCC and changes in lipid profiles (OPLS-DA, 2 orthogonal 

components, R2X = 0.431, R2Y = 0.365, Q2 = 0.216, Figure 2.3.4c-d, Figure 4.3.1g, and 

Table 2.3.1).  

 

Figure 2.3.4. Discrimination between Control, CLD and HCC with cirrhosis. OPLS models 

discriminating a) HCC with cirrhosis and Control (2 orthogonal components, R2X = 0.645, R2Y = 

0.681, Q2 = 0.609), b) HCC with cirrhosis and CLD (2 orthogonal components, R2X = 0.431, R2Y = 

0.365, Q2 = 0.216). 

Toward a plasma metabolic signature of CLD or HCC? These different analyses showed 

consistent results and allow us to distinguish metabolic signatures associated with CLD and 

HCC. High levels of N-acetylglycoproteins and low levels of alanine and valine characterized 

HCC. CLD samples displayed specifically high levels of acetate, citrate, glucose and ethanol. 

Furthermore, we identified a common metabolic signature for HCC and CLD, which could be 
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interpreted as a global marker of liver disease, involving an increase in formate, 

phenylalanine, pyruvate and tyrosine as well as changes in lipid metabolism.  

We then investigated the influence of potential confounding factors on the plasma 

metabolic profiles in order to evaluate the reliability of these signatures and get insight into 

their biological meanings. 

Table 2.3.1. Goodness-of-fit model parameters for OPLS models discriminating Control, 
CLD, HCC without cirrhosis, HCC with cirrhosis and total HCC. 

Model 
Orthogonal 
component 

number 

Sample 
number R2X R2Y Q2 

Control vs HCC without Cirrhosis 3 180 0.723 0.763 0.714 
Control vs CLD 3 181 0.766 0.512 0.392 
Control vs HCC with Cirrhosis 2 166 0.645 0.681 0.609 
CLD vs HCC without Cirrhosis 2 101 0.691 0.532 0.457 
CLD vs HCC with Cirrhosis 1 87 0.431 0.365 0.216 
Control vs total HCC 5 216 0.769 0.809 0.732 
CLD vs total HCC 1 137 0.444 0.372 0.305 

 

Influence of gender, BMI, age, year of collection and albumin levels on plasma 

metabolic profiles. We investigated the influence of different parameters such as gender, 

body mass index (BMI), age and year of collection on the metabolic profiles. Gender was 

correlated with metabolic profiles in the Control group (OPLS-DA, 4 orthogonal components, 

R2X = 0.772, R2Y = 0.594, Q2 = 0.316, Figure 2.3.5a-b, Figure 4.3.2a), involving changes in 

lipids and increase in branched-chain amino-acid concentrations (valine, leucine, isoleucine) 

for male individuals. To investigate the influence of BMI on the plasma metabolic profiles, 

we stratified the whole population in four groups: BMI < 20, 20 < BMI < 25, 25 < BMI < 30 

and BMI > 30. We observed only a significant discrimination between the two extreme BMI 

groups (BMI < 20 and BMI > 30) associated with a global increase in lipids for patients with 

the highest BMI (OPLS-DA, 1 orthogonal components, R2X = 0.546, R2Y = 0.472, Q2 = 

0.273, Figure 2.3.5c-d, Figure 4.3.2b). Age was not associated with any metabolic signature, 

even when comparing extreme age classes. We compared samples obtained during the first 

year of collection, 2008, and the second year of collection, 2009. Samples collected during 

2009 displayed higher lactate levels and lower glucose levels (OPLS-DA, 6 orthogonal 

components, R2X = 0.79, R2Y = 63, Q2 = 0.473, Figure 2.3.5e-f, Figure 4.3.2c).  



Part 2 78 

 
Figure 2.3.5. Effects of gender, BMI and year of collection on the metabolic signature. OPLS models 

discriminating a) gender (4 orthogonal components, R2X = 0.772, R2Y = 594, Q2 = 0.316), b) BMI (1 

orthogonal components, R2X = 0.546, R2Y = 0.472, Q2 = 0.273) and years of collection. (6 orthogonal 

components, R2X = 0.79, R2Y = 0.63, Q2 = 0.473). 

Finally, albumin levels, potential markers of liver function for this population,[164] considered 

as a continuous variable displayed a very strong correlation with the metabolic profiles 

(OPLS-DA, 5 orthogonal components, R2X = 0.797, R2Y = 0.874, Q2 = 0.786, Figure 2.3.6, 

Figure 4.3.2d) where high levels of citrate, formate, glucose, phenylalanine, pyruvate and 

tyrosine and low levels of valine and isoleucine were associated with low albumin levels. 

Evaluating disease metabolic signature reliability. We then re-evaluated the metabolic 

signatures observed for HCC or CLD groups in the light of these results, by matching groups 

on the different parameters to cancel out their effects for sample class discriminations. 
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Figure 2.3.6. Correlation between albumin levels and metabolic profiles (5 orthogonal components, 

R2X = 0.797, R2Y = 0.874, Q2 = 0.786). 

After matching on gender, BMI, year of collection and albumin levels (keeping only high 

albumin levels (albumin (alb) > 40 g/L) corresponding to a normal liver function), we were 

still able to discriminate Control from HCC without cirrhosis individuals (OPLS-DA, 2 

orthogonal components, R2X = 0.67, R2Y = 0.847, Q2 = 0.712, Figure 2.3.7a-b, Figure 

4.3.2e), involving an increase in phenylalanine, pyruvate and tyrosine for HCC individuals 

and global changes in lipid profiles. Only a few metabolites were involved in this 

discrimination but note that the statistical power was quite low due to the low number of 

samples kept for this analysis. 
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Figure 2.3.7. Discrimination between Control and HCC without cirrhosis individuals, after matching on 

gender, BMI, year of collection and liver function (albumin > 40g/L): OPLS-DA model (2 orthogonal 

components, R2X = 0.67, R2Y = 0.847, Q2 = 0.712) a) score plot and b) loading plot. 

We evaluated the effects of albumin level matching in the discrimination between 

Control and CLD individuals. We first compared Control and CLD samples with high 

albumin level, determined by standard clinical tests, (albumin > 40 g/L). We observed a very 

weak discrimination between the 2 groups after this step (Q2 = 0.261), just above the 

significance level. We thus further matched the samples on the BMI or gender or year of 

collection and combinations of these parameters. In each case, we did not observe any 

discrimination between Control and CLD, probably due to the decrease in statistical power 

with matching steps. Only two Control samples had low albumin levels, making the 

comparison between Control and CLD for low albumin levels meaningless. We finally 

compared Control samples with high albumin levels (alb > 40 g/L) and CLD with low 

albumin levels (alb < 40 g/L). We observed a strong discrimination between the 2 groups (Q2 

= 0.892), still robust after further matching steps on BMI, gender or year of collection. 

Overall this analysis showed that there were 2 groups in the CLD samples, low and high 

albumin levels, displaying different behaviors. Those with low albumins levels were clearly 

different from Control samples whereas those with high albumin level were very similar to 

Control samples.  

We were not able to perform a matching on albumin levels for the comparison of HCC 

with cirrhosis and Control groups as the former had only 2 samples with high albumin level 

(alb > 40 g/L) whereas the latter was associated with high albumin levels. After matching on 

albumin levels (keeping only samples with low albumin levels), we still observed 

discrimination between CLD and HCC with cirrhosis (Q2 = 0.538). 

Correlation with HBV and HCV status, LTBP2 levels and R249S copy numbers. We 

compared the metabolic profiles of individuals with positive and negative HBsAg, a marker 

of HBV infection. We did not observe any differences between positive and negative HBsAg 
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individuals, considering the whole dataset or each subgroup (Control, HCC without cirrhosis, 

HCC with cirrhosis, CLD or CHCA) individually.  

We then compared the metabolic profiles of individuals with positive and negative 

HCVAg, a marker of HCV infection. We did not observe any differences between positive 

and negative HCVAg, considering the following subgroups: HCC without cirrhosis, HCC 

with cirrhosis, CLD and CHCA. This analysis was not performed in the control group, as this 

group only gathered HCVAg negative individuals. 

LTBP2 protein was identified as a potential marker of HCC by comparison to healthy 

subjects. To further investigate whether LTBP2 levels could be linked to metabolic changes 

we correlated metabolic profiles and LTBP2 considered as a continuous variable. We did not 

observe any association in the subgroups individually, whereas we found a small association 

considering healthy and HCC samples as expected.  

TP53 R249S mutation copy numbers, determined by circulating-free DNA are 

associated with HCC cases developed on HBV infection. 

We considered either R249S copy numbers as a continuous variable or a discrete 

variable (values 1 and 2, defined with the threshold of 150 copies). In both cases, we did not 

observe any significant association between the metabolic profiles and the R249S copy 

numbers considering the HCC different subgroups individually. Note that in the HCC with 

cirrhosis group, we obtained a strong but not significant trend between individuals with low 

(< 150) and high (> 150) R249S copy numbers. 

2.3.4 Discussion 

We studied by 600 MHz 1H NMR spectroscopy the influence of different clinical and 

biological parameters on plasma metabolic profiles and derived potential markers for patients 

suffering from hepatocarcinoma or chronic liver disease. We evaluated correlations between 

the plasma metabolic data and a proteomic marker of HCC to further build a multi-marker 

approach. 

Influence of clinical and biological parameters on the plasma metabolic profiles. In this 

study gender was associated with branched-chain amino acid levels, through higher 

concentrations among males. Sexual dimorphism in serum metabolite concentrations, 

including similar variations in branched-chain amino acids, has already been observed with 

mass spectrometry in a large epidemiological study and correlated with genetic variants.[165] 

Global lipid levels discriminated individuals with low and high body mass indexes (BMI < 20 
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against BMI > 30), as already shown through characterization of effects of obesity on 

metabolism.[166] Plasma metabolic profiles did not correlate with age in this study, although a 

recent study demonstrated an age dependence for human serum metabolic profiles.[167] 

However, this last study was performed on 1038 females and 1124 males, thus with a larger 

statistical power allowing the detection of subtle variations. 

Samples collected in 2008 and 2009 were discriminated according to glucose and 

lactate concentrations. These changes could suggest uncontrolled modification in sampling 

procedure. Changes in time between sample collection and first centrifugation could be 

involved as this parameter is known to correlate with plasma glucose decrease and lactate 

increase due to anaerobic metabolism of blood cells.[168] 

The strongest correlation in this study was between albumin levels, determined with 

standard clinical tests and plasma metabolic profiles. This analysis was performed on CMPG 

NMR spectra, where protein signals in the background, which include a strong albumin 

contribution, are removed through NMR signal editing. The metabolic signature associated 

with this correlation involved a wide-range of metabolites instead of changes in the 

background, confirming the removal of albumin signals. Decrease in albumin levels can be 

observed in different pathological conditions, such as liver failure, undernutrition or nephrotic 

syndrome for instance. In this context, albumin levels were a good marker of liver function. 

Control sample distribution over albumin level was homogenous with high albumin 

concentration (alb > 40g/L), whereas pathological samples displayed an important spread for 

this parameter, reflecting different stages of liver dysfunction. This analysis thus suggested 

that chronic alteration of liver function induced important plasma metabolic changes. Similar 

results have been observed among patients suffering from cirrhosis of different gravity. Most 

of the studies referred to impairment of liver function but did not try to evaluate the 

contribution of this parameter in the metabolic signatures associated with pathological 

states.[138, 148-151]  

Plasma metabolic signatures of hepatocellular carcinoma and chronic liver disease. Our 

analysis derived specific metabolic signatures for HCC involving high N-acetylglycoproteins 

and low levels of alanine and valine and for CLD with high concentrations of acetate, citrate, 

glucose and ethanol. These both groups displayed an increase in formate, phenylalanine, 

pyruvate and tyrosine by comparison to healthy subjects. Of particular clinical interest, we 

observed a discrimination between HCC with cirrhosis and CLD mainly based on increase in 
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N-acetylglycoprotein levels and changes in lipid profiles. N-acetylglycoproteins have been 

largely associated to human cancer. [147] 

Gao et al. investigated in a pilot study differences between healthy individuals and 

patients suffering from HCC or liver cirrhosis by NMR spectroscopy and observed metabolic 

signatures sharing some similarities with ours.[138] High levels of phenylalanine, tyrosine, 

pyruvate and N-acetylglycoteins and low levels of unsaturated lipids and valine discriminated 

Control from HCC as in our study. Liver cirrhosis, as CLD here, was characterized by an 

increase in phenylalanine, tyrosine, pyruvate and acetate and decrease in unsaturated lipids. 

N-acetylglycoprotein levels, however, were lower for the liver cirrhosis group. Different 

studies observed metabolic changes between similar groups by mass spectrometry. Most of 

the metabolites involved in discriminations were not detectable by NMR spectroscopy, 

highlighting technique complementarities.[148, 149, 151] Interestingly, Chen et al. observed high 

pyruvate levels in HCC patients by comparison to healthy subjects but low levels of 

phenylalanine contrary to Wang et al., Zhou et al. and our study.  

We highlighted the influence of the liver function on plasma metabolic profiles 

through evaluation of the correlation between albumin levels and metabolite concentrations. 

However, we still observed a discrimination between healthy subjects and patients with HCC 

without cirrhosis and normal liver function, suggesting metabolic differences between these 

two groups uncorrelated with liver function. On the contrary, for the CLD groups, individuals 

with normal liver function were poorly discriminated from healthy subjects, suggesting that 

metabolic changes in the CLD group were mainly due to liver dysfunction. 

Influence of HBV or HCV infection. In this study, we did not monitor any effects of HBV 

or HCV infection on metabolic profiles. Zhou et al. did not observe also by UPLC-MS 

differences between patients with HCC infected by HBV or HCV.[151] Furthermore, Shariff et 

al. detected similar changes in urine for patients with HCC infected by HCV or HBV by 

comparison to healthy subjects.[153, 169] These different studies consistently suggest that HBV 

or HCV infection do not strongly influence biofluid metabolite composition.  

Correlation with LTPB2 protein levels and TP53 R249S copy numbers. The LTBP2 

protein was identified in a proteomic analysis, within the same sample set as a potential 

marker of HCC. We observed a correlation between LTBP2 concentrations and metabolic 

profiles considering healthy and HCC subjects, which was expected as both correlated with 

the HCC status. We did not detect any correlation considering each subgroup separately. 
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TP53 R249S copy numbers are increased in HCC with HBV infection. However, this 

parameter did not correlate with metabolic profiles in the HCC groups, which was expected, 

as we did not observe any correlation between HBV infection and metabolic profiles.  

It thus would be interesting to integrate in a model these different parameters in order 

to improve classification between control and HCC and the different types of HCC case in a 

global multimarker approach. 

2.3.5 Conclusion 

In conclusion, our investigation has identified plasma metabolic signatures for hepatocellular 

carcinoma and chronic liver disease by 1H NMR spectroscopy. Our collaborators are currently 

complementing this analysis with mass spectrometry measurements to crosscheck these 

results and extend metabolome coverage. These findings are promising as they potentially 

pave the way towards a non-invasive diagnostic tool for HCC. A global multimarker model 

will be built from genetics, proteomics and metabolomics data and should be validated with 

an independent patient cohort. 
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2.4 Conclusion 

In this second part, we have presented different applications of metabolomics focusing on 

biomarker discovery and delineating metabolic signature of potential interest for physicians. 

However, different issues have to be addressed, before planning a routine use of these 

results in hospitals. First of all, these metabolic signatures were derived from a relatively 

small number of patients coming from one geographical area. Validation of these results is 

mandatory on a larger number of samples collected in different places. 

Furthermore, the question of the specificity of these metabolic signatures can be 

partially assessed with these examples. For instance, N-acetylglycoprotein levels correlate 

with both metastatic status of breast cancer and hepatocarcinomas, showing that this marker 

cannot be associated with a unique biological state. Such biological tests should thus be 

limited to well-defined clinical situations in order to reach enough sensitivity and specificity 

to be useful. 

Extensive characterization of metabolic physiological changes in normal populations 

as well as effects of pathological states such as kidney or liver failures could help to delineate 

more precisely relevant clinical situations. This knowledge could also help to define more 

robust sampling protocols aiming at reducing inter-individual variations. 

To fully validate a biomarker, it is necessary to understand the underlying biological 

mechanism responsible for its properties. The combination of different types of analyses, 

from biofluids to tissues or model animals is often require to achieve this goal. 
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Part 3: Probing model organisms metabolism 

As widely used for the study of human populations in the framework of biomarker discovery, 

metabolomics has also been developed for the characterization of a wide range of model 

organisms, from yeasts to mammals, in order to address biological questions. In this third 

part, we shift our object of study from humans to model organisms, from epidemiological and 

clinical issues to biological ones. Describing the interest of model organisms for biology is 

beyond the scope of this introduction and we highlight here the specificities of model 

organisms metabolomic studies in terms of experimental design, analytical and statistical 

issues. 

First of all, metabolomics is a new read-out for biological studies in monitoring 

metabolic variations in response to a wide-range of perturbations. This approach can thus 

complement any experimental schemes. These studies are not restricted to biomarker 

discovery as they can get further insight into molecular mechanisms. Contrary to 

investigations in human populations, essentially observational, studies on model organisms 

are experimental, through control of parameters, design and tools to test hypotheses. The 

pertubation under study is induced by the experiment and its effect can be isolated and 

recorded. 
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From a technological point of view, we can distinguish two situations in the study of 

model organisms according to their size. For “macroscopic” animals, such as mammals, the 

metabolomic approach is similar to human studies. Each animal is analyzed individually and 

many samples can be collected, from biofluids to tissues, opening different windows on 

global metabolic homeostasis. On the contrary, for “microscopic” or small organisms, such as 

bacteria, cells or Caenorhabditis elegans worms, we monitor global whole-organism 

metabolism without details about compartmentalization, in samples gathering from thousand 

individuals for worms to millions for cells. 

Demonstrating statistically significant changes in model organisms requires less 

samples than for clinical or epidemiological studies, as metabolic perturbations induced in 

these systems are often larger and inter-individual variations lower through adequate control 

of experimental factors. Furthermore, in the case of whole-organism metabolomic studies, 

where each sample gathers thousand to million organisms, we monitor average behaviors 

without getting access to inter-individual variations. Metabolic variable distributions are thus 

tighter, reinforcing differences between conditions under study. 

In this third part, we present four metabolomic analyses performed from rats to cells, which 

illustrate the different aspects relative to model organism studies. 

We first investigate physiological metabolic differences in plasma and urine between 

four rat strains used as controls in genetic studies. Indeed, as for epidemiological or clinical 

studies, the choice of appropriate controls is a major issue in metabolomics and thus requires 

their extensive characterization. This descriptive analysis relies on liquid NMR spectroscopy 

of biofluids, as introduces in the previous part about human population studies. 

The three following studies focus on two small model organisms: the worm 

Caenorhabditis elegans (C. elegans) and the HepG2 cell line, model of hepatocarcinoma and 

liver cells, using whole-organism HR-MAS NMR spectroscopy and aiming at characterizing 

biological processes, gene function or protein interaction at the metabolic level. 

We investigate the effects of aging and dietary restriction on C. elegans metabolism 

by characterizing wild-type worms and different C. elegans genetic mutants, displaying 

different profiles of aging. 

In the framework of functional genomics, we then delineate the impact on C. elegans 

metabolism of the protein receptor AHR-1 loss-of-function, ortholog of the Aryl Hydrocarbon 

Receptor (AHR), involved in dioxin toxicity in mammals. 
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Finally, we investigate the effects of the interaction between an endogenous 

transcription factor E4F1 and a viral protein HBx in a model of liver cells, HepG2, infected 

by hepatitis B virus (HBV). 

These different projects were built as collaborations with different biological groups, experts 

in their area, which prepared all the samples and helped us to interpret the data. 
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3.1 Natural metabotype variations in healthy control inbred rat 

strains 

3.1.1 Introduction 

Maintenance of homeostatic biological functions in mammalian species is controlled by 

genetic and environmental factors that influence individual’s risks to develop increasingly 

prevalent pathological elements of the cardiometabolic syndrome (type 2 diabetes mellitus, 

hypertension, dyslipidemia and obesity).[170] Even though knowledge of their genetic basis 

keeps progressing with genome-wide association studies,[171] the multiple interacting 

mechanisms at play involving numerous tissues still hamper investigations into the cause of 

these diseases. Among models that can assist the elucidation of disease aetiology, the rat has 

attracted the attention of geneticists interested in dissecting out and mapping complex traits in 

experimental cohorts (backcross, F2 cross, recombinant inbred, heterogeneous stock).[172, 173] 

Identifying a strain that exhibits normal or disease resistant phenotypes is a crucial 

step in the design of genetic studies in animal models to derive an optimal experimental 

cohort of hybrids between affected and control strains that will be used for genotype and 

phenotype analyses, and maximise quantitative trait locus (QTL) detection. The mapping of 

intermediate phenotypes in rodents can be extended to molecular phenotypes derived by 

functional genomic technologies, which provide quantitative information on gene expression 

regulation.[174-176] In particular, metabolomics,[5, 177] a hypothesis-free metabolic systems 

biology approach based on 1H NMR spectroscopy and mass spectrometry, provides a 

powerful high-throughput molecular phenotyping system for acquiring repeated high-density 

multivariate phenotypic signatures of biological samples and for linking variations in 

metabolic abundance and genetic polymorphisms.[178, 179] 

Physiological and metabolomic studies in inbred control mouse strains have 

demonstrated that important interstrain genetic differences result in broad variability of 

biological functions that can nevertheless maintain metabolic and hormonal phenotypes 

within the normal range.[180] These data contradict claims based on investigations in Sprague-

Dawley outbred colonies, that all control laboratory rodents fed ad libitum display 

pathophysiological patterns associated to cancer, inflammation and metabolic syndrome.[181] 

This view is challenged by studies in inbred mice and rats showing that, even though natural 

phenotype variability exists,[182] metabolic and body weight variables in animals fed ad 
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libitum remain within a normal range.[183, 184] In support of this idea, metabolic variability in 

biofluids is used to define metabolic entropy,[185] for instance during a toxicological insult. 

Also, the establishment of a theory of biological robustness explains biological variability 

through essential systems robustness, i.e., pathway redundancy, adaptation, parameter 

insensitivity.[186] 

In the present work, we investigate the quantitative metabolic phenotypes relevant to 

the cardiometabolic syndrome in genetically distinct inbred rat strains predominantly used as 

healthy control models in experimental cohorts designed to map the genetic basis of complex 

phenotypes. Analysis of adiposity and glucose and lipid homeostasis combined with NMR-

based plasma and urine metabonomic profiles[5, 177] highlighted unexpectedly high, albeit non-

pathological, natural metabolomic variation between control strains, even when genetic 

polymorphism is reduced. These results underlie the involvement of distinct regulatory 

mechanisms of key biological functions, including transgenomic influences, which 

collectively contribute to maintain homeostasis within the normal, non-pathological range. 

3.1.2 Methods 

Animals (Jane F. Fearnside, University of Oxford). Male rats of four inbred rat strains 

(Fisher F344/NHsd [F344], n=5, Lewis Lew/SsNHsd [Lew], n = 5, Wistar Kyoto WKY/NHsd 

[WKY], n = 5, Brown Norway BN/Ox [BN], strain = 7-68) were used for this study. They 

were bred locally (BN) or purchased from a commercial supplier (F344, Lew, WKY) (Charles 

River Laboratories, Margate, Kent, UK).  A group of aged matched Goto-Kakizaki (GK, n = 

12) rats bred locally was also used for the preliminary study. All rats were housed in groups 

of 5, fed with standard laboratory chow pellets (ERB, Whitam, UK) and water ad libitum, and 

kept on 12 hours light/dark cycle. All experiments were performed in 13±1 week old rats. All 

experiments were carried out in accordance with UK national (Home Office) and institutional 

guidelines. 

A summary of the animal experimental procedures, physiological and analytical 

assays is given in Figure 4.4.1. 

Physiological procedures and sample collection (Jane F. Fearnside, University of 

Oxford). Intraperitoneal glucose tolerance tests (IPGTT) were carried out after 4 hours of 

fasting (from 9am until 1pm). Body weight and body mass index (BMI) were determined. 

Rats were anesthetized with ketamine hydrochloride (Ketalar, Parke-Davies, UK) (95 mg/kg 

body weight). After baseline blood sample had been taken from the tail vein, a solution of 
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glucose was injected intraperitoneally (2g/kg body weight). Subsequent blood samples were 

collected from the tail vein at 15, 30, 75 and 120 minutes post glucose injection to determine 

blood glucose concentration. The overall glucose tolerance of the animals was assessed by 

both the cumulative glycaemia (the total increment of plasma glucose during the IPGTT) and 

the ΔG (defined as the total increment of plasma glucose during the test over baseline). The K 

parameter, which measures glucose clearance rate following a glucose challenge, was 

calculated as the slope from the maximum glucose response 15 mins after glucose injection 

until the end of the IPGTT. 

To avoid possible metabolic effects of anesthesia and glucose challenge, rats were 

individually housed one week later in metabolic cages for one overnight for collection of 

urine and plasma samples for lipid assays and metabonomic profiling. Food consumption 

values were recorded. The rats were then fasted overnight in the metabolic cages to minimize 

metabolic effects of interindividual variations of food intake. The following morning (9-

10am) a second urine sample was obtained and a blood sample collected from the tail vein. 

Blood was centrifuged and plasma was taken and stored at -80 until lipid assays and 1H-NMR 

metabonomic analyses. 

One week later, rats were killed by CO2 asphyxiation following an overnight fast. 

Retroperitoneal fat pad (RFP) was collected and weighed. Adiposity index (AI) was 

determined as the ratio between RFP weight and body weight. 

Analytical assays (Jane F. Fearnside, University of Oxford). Blood glucose concentration 

was determined with a glucose meter (Accuchek, Roche Diagnostics). Total cholesterol (TC), 

cholesterol contained in high-density lipoproteins (HDL-C), in low-density lipoproteins 

(LDL-C) and triglycerides (TG) were determined using diagnostic enzymatic/colorimetric kits 

(ABX, Shefford, UK) on a Cobas Mira Plus automatic analyser (ABX, Shefford, UK). 

Metabolic Profiling by 1H-NMR Spectroscopy. Urine samples (n = 20, 5 per strain) were 

prepared according standard protocols[17] by mixing 400 µL of urine with 200 µL of a 

phosphate buffer (pH = 7.4; 20% D2O/H2O v/v) containing 1 mmol.L-1 of 3-

(trimethylsilyl)propionic-2,2,3,3-d4 acid (TSP). Plasma samples (n = 16, 4 per strain) were 

prepared[17] by mixing 300 µL of plasma with 150 µL of a 0.9 g.L-1 saline solution (20% 

D2O/H2O v/v). 1H-NMR spectra were acquired on Bruker Avance spectrometers operating at 

600 MHz and 700 MHz, using standard 5 mm TXI probes at the Rhône-Alpes Large Scale 

Facility for NMR and Imperial College London. Sample temperature was set to 300 K and 

controlled throughout the experiments, using low-power water presaturation pulse sequence 
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for water signal suppression during the relaxation time of 2 s and the mixing time of 10 ms. 

For each experiment, 128 transient free induction decays (FID) were collected with 49036 

data points and a spectral width of 20 ppm. All FID were multiplied by an exponential 

function, equivalent to a 0.3 Hz line-broadening factor before Fourier transformation. Spectra 

were phased and 1H chemical shifts were referenced to the TSP singlet (δ0) in urine and to the 

α-glucose doublet (δ5.23) in plasma. Each spectrum was reduced in 11k bins of 0.001 ppm 

width over the chemical shift range of -1 to 10 ppm using AMIX (Bruker). For urine samples, 

residual water signal (δ4.60-5.00) and urea signal (δ5.30-6.15) were excluded to remove 

effects of variation in water suppression. For plasma samples, residual water signal (δ4.66-

5.00) was discarded. Spectra were scaled to the sum of intensities and mean-centered or 

scaled to unit variance (UV) prior to analysis. 

Statistical analysis of phenotypic data. All phenotypic data collected from the inbred rat 

strains were analysed using SPSS version 14.0 statistical package. Covariates that account for 

variance that is not due to the dependent variable were selected using the univariate General 

Linear Model (GLM). Fisher’s LSD and Tamhane’s T2 post hoc tests according to Levene’s 

test for equality of variance were carried out to identify any significant differences between 

strains for each of the phenotypes analysed. Principal Component Analysis (PCA)[187] was 

performed on the UV-scaled physiological dataset and results were visualized as a biplot.[188] 

Multivariate analysis of metabolic profiles. OPLS analyses were performed to compare the 

different groups. The model coefficients were back-scaled according to Cloarec et al. to 

enhance interpretability.[92] Model validations were performed by resampling the model 999 

times under the null hypothesis, i.e. by generating models by random permutation of Y 

matrix, not related to the X matrix anymore. The analysis was performed in SIMCA P12 and 

in house Matlab script. 

Hierarchical clustering analysis. Hierarchical clustering was used to derive a phylo-genetic 

tree from single nucleotide polymorphism (SNP) data 

(http://gscan.well.ox.ac.uk/gsBleadingEdge/rat.snp.selector.cgi) and phylo-metabonomic trees 

from plasma and urine metabolic profiles. Similarity between profiles was measured from 

Euclidian distance. Dendrograms were built from maximum similarity between classes. SNP 

data were coded as Strain Distribution Pattern (SDP) prior to clustering. Plasma and urine 1H-

NMR spectra were averaged for each strain to obtain plasma and urine phylometabonomic 

trees respectively. The pairwise comparison of dendogramm topology was assessed by 

computing the Pearson correlation coefficient between their cophenetic distances.[189] 
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Hierarchical clustering and cophenetic analysis was carried out using R software 

(http://www.R-project.org). 

Metabolite-strain correlation networks. The metabolite-strain correlation network was 

implemented as a bipartite graph, GMS=(M,S,C) where M is the set of nodes corresponding to 

discriminant metabolites, S the set of nodes corresponding to strains and C the set of edges 

corresponding to correlation between metabolites and strains as obtained from OPLS loadings 

analysis. The Graph Exploration System (GUESS) software 

(http://graphexploration.cond.org) was used to visualize graphically the metabolite-strain 

correlation network.  

Metabolite-Set Enrichment Analysis (MSEA) (in collaboration with Vincent Navratil, 

University of Lyon). Metabolite-Set Enrichment Analysis (MSEA)[106] is an extension of 

Gene-Set Enrichment Analysis (GSEA)[190, 191] approach to test metabolic pathways 

enrichment from metabonomic data. The aim is to assess whether strain-associated 

metabolites correspond preferentially to particular metabolic pathways by comparing the 

proportions of pathway-associated metabolites in strain-associated metabolites and their 

respective proportions in global metabolism (Figure 4.4.2). The KEGG database 

(http://genome.jp/kegg) was first used to annotate discriminant strain-associated metabolites 

onto metabolic pathways using KEGG compound identification numbers.  

The comparison between the list of metabolites from KEGG pathways and the list of 

significantly affected metabolites leads to the construction of a series of 2x2 contengency 

tables, for each strain and each pathway. For a given pathway α, significant metabolites 

belonging to pathway α are accounted for as “observed” (n11) whereas the other non-

significant metabolites from pathway α are classified as “unobserved” (n21). n12 corresponds 

to the other significant metabolites that do not belong to pathway α according to KEGG 

pathway annotations, and finally, n22 corresponds to all the other metabolites listed in KEGG 

that are not significant and do not belong to pathway α. Lipids and glycoproteins moieties 

were not considered in this analysis, as they did not unequivocally match specific metabolites 

and therefore unique KEGG entries. To test for a significant overrepresentation in metabolites 

from pathway α, an exact Fisher test is then computed on this contingency table (Figure 

4.4.2). 

To control the false discovery rate associated to multiple testing, the exact Fisher test 

P-value was finally adjusted using Benjamini and Hochberg procedure. A pathway-strain 

association network was finally represented as a bipartite graph, GPS=(P,S,E) where P is the 



Probing Model Organism Metabolism 95 

set of nodes corresponding to enriched KEGG pathways with adjusted P-Values ≤ 0.05), S the 

set of nodes corresponding to strains and E the set of edges corresponding enriched pathways. 

The Graph Exploration System (GUESS) software (http://graphexploration.cond.org) was 

used to visualize graphically the pathway-strain correlation network.  

3.1.3 Results 

Metabolic variability in disease and control rat strains. A crucial step in the experimental 

design of control/case and subsequent QTL studies lies in the choice of a healthy control 

strain bred to the disease strain to derive the cohort of hybrids. To test the power of 

metabolomics to separate a disease model from controls, we carried out a preliminary study 

designed to test the segregation of plasma metabonomic data of the Goto-Kakizaki (GK) 

strain, a model the cardiometabolic syndrome, and normoglycemic (BN, WKY) rats, using an 

OPLS-DA model. The distribution of the three strains along the OPLS score clearly shows 

that the WKY strain is closer to GK than BN (Figure 4.4.3), indicating the strong metabolic 

impact of genetic divergence between BN and Wistar-derived strains (WKY, GK). In fact, the 

WKY strain appears at the centre of the OPLS score, whereas BN and GK strains lie at either 

ends of the distribution. This result shows that although BN and WKY are both considered as 

healthy negative control strains, the BN strain is more metabolically distant from GK strain, 

and therefore a better control to map the genetic control of metabolic traits. This result is also 

suggestive of an unexpected level of metabonomic variability in inbred rat strains, otherwise 

used indifferently as neutral controls. To investigate whether this natural metabolomic 

variation in control strains is metabolically morbid, we characterized the genomic, 

physiological and metabolomic variability of several standard control rat strains (Fisher –

F344, Lew, BN, WKY) used in cardiometabolic syndrome research. To characterize natural 

physiological and metabolic variation in healthy control strains, we applied a series of 

physiological procedures and metabolic assays outlined in Figure 4.4.1. 

Definition of strain-specific physiological plasticity in inbred rats. To identify strain-

specific phenotypic patterns, we performed a principal component analysis (PCA) model on 

average physiological data, visualized as a Gabriel’s biplot (Figure 3.1.1a-b). This 

representation illustrates the clear separation of the four control strains and the physiological 

variables that contribute to strain divergence (Figure 3.1.1a). Interestingly, variability 

between control strains remains important when physiological data of the spontaneously 
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diabetic GK strain were included in the model (Figure 3.1.1b). The physiological variation 

between BN and GK strains was of the same order of magnitude as between BN and WKY. 

When compared to the four control strains, GK rats showed marked increased 

adiposity (Table 4.4.1), hyperglycaemia (Figure 3.1.1c) and glucose intolerance (Figure 

3.1.1c-d), which is the single pathophysiological selection criterion used to derive this strain 

over many successive generations of breeding outbred Wistar rats. Impaired glucose 

homeostasis, altered lipid metabolism (reduced plasma concentrations of total, HDL and LDL 

cholesterol and elevated triglycerides) (Figure 3.1.1e), and systematically elevated body 

weight, BMI, adipose tissue weight and adiposity index (Table 4.4.1) in GK were significant 

when compared to WKY, which also derives from an outbred Wistar stock and is therefore 

the genetically closest control to GK. This pattern of pathological features provides 

confirmatory evidence that the GK is a model of the cardiometabolic syndrome and that the 

other four strains used in the study exhibit relative normal relevant phenotypic patterns. 

All four control inbred rat strains exhibited close to normoglycemia (5.5mM). 

Consistent with data shown in the Gabriel’s biplot (Figure 3.1.1a-b), WKY show relative 

basal hyperglycemia, reduced glucose tolerance as indicated by increased glycemic response 

to glucose during the intra peritoneal glucose tolerance test (IPGTT, see Methods) and 

elevated cumulative glycemia and ΔG (Figure 3.1.1c-d), increased plasma levels of total and 

HDL cholesterol (Figure 3.1.1e), elevated body weight (Table 4.4.1), increased 

retroperitoneal fat pad weight and adiposity index (Table 4.4.1) when compared to BN, F344 

and Lew rats. Rats of the BN strain are characterized by enhanced glucose tolerance and high 

plasma level of LDL cholesterol (Figure 3.1.1c-e). The BN strain showed significantly lower 

body weight, body mass index, RFP weight and adiposity index than Lew and WKY (Table 

S1). F344 rats showed specifically lower plasma LDL cholesterol and higher triglyceride 

levels than the other three strains (Figure 3.1.1e). BN and F344 shared identical low plasma 

concentrations of total and HDL cholesterol. Lew rats generally showed intermediate 

phenotype values. Altogether, these physiological results show that inbred control rat strains 

fed ad libitum maintain non-pathological body weight and glucose and lipid regulations when 

compared to outbred rat strains[181] and rat models of diabetes (GK) and obesity (Zucker fa/fa). 
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Figure 3.1.1 Evidence for physiological heterogeneity in inbred rat strains. Biplot graph of PCA 

model built with physiological data obtained in strains BN, Lew, F344 and WKY a) and in BN, Lew, 

F344, WKY and GK b), glucose tolerance  illustrated by glycemic profiles during the IPGTT c), 

cumulative glycemia, ΔG and K parameter during the test d), and plasma concentrations of total, HDL 

and LDL cholesterol and triacylglycerol e) in the five inbred rat strains are shown. Data shown are 

mean ± SEM. Differences between strains were assessed by Fisher’s LSD and Tamhane’s T2 post hoc 

tests. Significant differences (P<0.05) between strains are shown as: a, BN vs F344; b, BN vs Lew; c, 

BN vs WKY; d, F344 vs Lew; e, F344 vs WKY; f, Lew vs WKY;g, GK vs F344; h, GK vs Lew; i, GK 

vs WKY; j, GK vs BN. BW: body weight; BMI: body mass index; RFP: retroperitoneal fat pad weight; 

AI: adiposity index; TC: total cholesterol; HDLc: HDL cholesterol; LDLc: LDL cholesterol; TG: 
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triglycerides; G: glycemia; CumG: cumulative glycemia, K and ΔG were calculated with data from the 

IPGTTs (see Methods). For BW, BMI, RFP and AI sample numbers are the same as stated in Table 

4.4.1. For BN: LDLc, HDLc, TC, TG (n = 32), G, CumG, DG, K (n =15). For Lewis n = 4, for GK, 

F344 and WKY, n = 5. 

Metabotyping of inbred control rats. To identify strain-specific metabotypes underlying 

such striking physiological plasticity in healthy control strains, we acquired high-resolution 

700 MHz 1H-NMR spectra from urine and plasma collected from BN, Lew, F344 and WKY 

rats Figure 4.4.4). An O-PLS-DA model was derived for each biofluid. Robustness of these 

models was assessed by high goodness-of-fit parameter values, R2X = 0.780 and Q2Y = 0.590 

for the model based on plasma data and R2X = 0.753 and Q2Y = 0.637 for the model based on 

urinary data. For validation purposes, models were randomly re-sampled 999 times following 

the null hypothesis (i.e. assuming there are no differences between strains). We observed a 

decrease in associated goodness-of-fit parameters (Figure 4.4.5), reinforcing the validity of 

our initial models. A significant discrimination between the four strains was observed for both 

O-PLS-DA scores plots (Figure 3.1.2a-b), which define obvious clusters (Figure 3.1.2c-d), 

suggestive of strain-specific urinary and plasma metabotypes, as derived from O-PLS-DA 

loadings (Figure 3.1.3). Only metabolites displaying correlation values superior to 0.5 were 

assigned in model coefficient plots. 

Natural variation in metabotypes. Structural assignment of the biofluid-specific O-PLS-DA 

loading plots reveals broad-ranging metabolic variations in plasma (Table 3.1.1 and Figure 

3.1.3), involving lipids (CH3; CH2; C=CCH2C=C; CH2=C; CH2CH2CO, CH2CO; VLDL; 

LDL) and amino acids (alanine, glycine, valine and isoleucine). In urine, variation in the 

choline oxidation pathway (choline, betaine, N,N-dimethylglycine, creatinine) but also 

tricarboxylic acid (TCA) intermediates and energy metabolites (lactate, citrate, succinate, 2-

oxoglutarate), short-chain fatty acids (valerate) or gut microbiota related metabolites 

(phenylacetylglycine and hippurate) amongst others is observed (Table 3.1.1). 

Relationships between natural variations at genetic, physiology and metabolic 

levels. To investigate the relationship between strain-specific genetic, physiological and 

metabolic patterns, we compared phylogenetic trees obtained from published single 

nucleotide polymorphism (SNP) data in the rat strains 

(http://gscan.well.ox.ac.uk/gsBleadingEdge/rat.snp.selector.cgi),[192] physiological data and 1H-NMR 

based metabolic profiles (Figure 3.1.4). Variance within the SNP, plasma and urine datasets 

was similar. Pairwise dendrogram comparisons were performed by computing cophenetic 
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correlations (cophenetic correlations measure the similarity between dissimilarity matrices 

obtained from the different types of data: genotypes, physiology, plasma and urine 

metabolomes). Physiological data and plasma metabolic profiles presented positive 

cophenetic correlations, but no cophenetic correlation was observed between urine metabolic 

profile and SNP clustering trees (Table 3.1.2 and Figure 3.1.4). Interestingly these 

cophenetic tendencies reflect the influence of genetics over homeostasis, including 

physiological phenotypes and plasma metabotypes, whereas urinary metabotypes exhibit 

phenotypic hypervariability unmatched by SNP variability in the rat genome. 

 

 

Figure 3.1.2. Urine and plasma metabolic variability in control strains. 3D score plots of OPLS-DA 

models a), b) and subsequent hierarchical clustering trees c), d) for plasma samples (n = 16, Q2Y = 

0.590), a) c), urine samples (n = 20, Q2Y = 0.753), b), d).  BN,  Lewis,  Fisher,  WKY. For a) 

and b), the different axis T1, T2 and T3 correspond to the 3 predictive components of each OPLS-DA 

model. For c) and d), vertical axis correspond to distances between individuals calculated with 

Euclidean metrics (in the OPLS predictive score subspace), expressed in arbitrary units. 
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Figure 3.1.3. Metabolic signatures. Loadings plot from plasma O-PLS-DA models a) BN vs others, b) 

Lewis vs others, c) Fisher vs others and d) WKY vs others and urine O-PLS-DA models e) BN vs 

others, f) Lewis vs others, g) Fisher vs others and h) WKY vs others. 

Natural metabotype variation networks. We used correlation networks (Figure 3.1.5) to 

simultaneously visualize the metabotype of the different strains. Metabolites and strains were 

connected in a bipartite graph according to their correlation values (see Methods). Metabolites 

located at the network centre, connecting a large number of strains, were suggestive of 

common differentially active pathways. On the contrary, strain-specific mono-associated 



Probing Model Organism Metabolism 101 

metabolites located at the network periphery, reflected strain-specific metabolic pathway 

activity. 

Table 3.1.1. Summary of significant metabolites derived from OPLS-DA models of urine and 
plasma 1H NMR spectraa. 

Metabolite δ (ppm) & 
multiplicity 

BN 
(r) 

Lewis 
(r) 

F344 
(r) 

WKY 
(r) 

Plasma 
acetoacetate 2.23 (s)   0.79  

alanine 1.48 (d) 0.83    

D-3-hydroxybutyrate 2.29 (m), 1.19 
(d)  0.8 -0.6  

cholesterol (C18 in HDL) 0.67 (m)   -0.57 0.69 
choline 3.21 (s) -0.65 0.7  0.85 
glycerol 3.64 (dd) 0.92    
glycine 3.55 (s)    0.68 

isoleucine 1.00 (d)    0.73 
lactate 4.11 (q) 0.63    

lipoprotein (C=CCH2C=C) 2.74 (m) -0.82 0.69  0.68 
lipoprotein (CH2) 1.26 (m)   0.71 0.9 

lipoprotein (CH2=C) 2.03 (m) -0.82 0.72   
lipoprotein (CH2CH2CO, 

VLDL) 1.59 (m) -0.8  0.71  

lipoprotein (CH2CO) 2.23(m)   0.79  
lipoprotein (CH3, LDL, 

VLDL) 0.87(m) -0.73 0.65 -0.63 0.85 

valine 0.97 (d)    0.72 
unknown 3.7 (s) 0.92    

Urine 
1-methylnicotinamide 4.47 (s) 0.73  0.84 -0.76 

2-oxoglutarate 3.01 (t), 2.45 (t)  0.72  0.89 
acetoacetate 2.3 (s) 0.8    

betaine 3.89 (s), 3.27 (s) -0.73 0.6 0.84 0.92 
carnitine 3.23 (s) 0.8    
citrate 2.68 (d), 2.57 (d)  0.54 0.87  

creatinine 4.05 (s), 3.04 (s)  0.58  0.85 
dimethylamine 2.73 (s)   0.76  

ethanol 1.19 (t)  0.65  0.53 
hippurate 7.55 (t)    -0.79 

N,N-dimethylglycine 2.93 (s) -0.56  0.91 0.83 
phenylacetylglycine 7.35 (m) 0.81    

succinate 2.41 (s)  0.83 0.83  
taurine 3.43 (t)  0.54   

cis-aconitate 3.16 (s) 0.88    
glycoprotein (N-acetyl) 2 (s)   0.92  

valerate 0.87 (t)  0.97   
a Correlation coefficients (r) between metabolites and strains were displayed when |r| > 0.5. Note that 

other resonances from a given metabolites may not pass the threshold because of signal overlap. 
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Figure 3.1.4. Urine and plasma metabolic variability in control strains and relationship to phylogeny. 

Clustering analysis of the BN, Lewis, Fisher and WKY strains, derived from a) SNP data (16,829 

variables, n = 1 per isogenic strain), b) physiological data (12 variables, n>8 per strain), c) 1H-NMR 

plasma metabonomic data (10,999 variables, n = 4 per strain) and d) 1H-NMR urine metabonomic data 

(10,999 variables, n = 5 per strain). The vertical axis corresponds to distances between strains 

calculated with an Euclidean metrics in arbitrary units (derived from the initial variables). Total 

variance for each dataset was calculated by computing the sum of eigenvalues from the UV-scaled 

matrix of strain average spectra: Var (SNP dataset) = 380; Var(physiological dataset) = 13; Var(plasma 

dataset) = 275; Var(urine dataset) = 293. 

The correlation networks based on plasma data (Figure 3.1.5a) reveals that saturated 

lipids (CH3; VLDL, LDL) were the most connected metabolites (i.e. hubs), associated with 

the four strains, whereas unsaturated lipids (C=CCH2C=C) and choline were associated with 

three strains. Glycine, valine and isoleucine were specific to WKY, CH2CO and acetoacetate 

to F344 and glycerol, alanine, lactate and an unknown signal at 3.70 ppm to BN. Lew rats did 

not display any specific mono-association pattern. 

According to the correlation network derived from urine data (Figure 3.1.5b), BN rats 

displayed the largest number of specific, mono-associated metabolites: cis-aconitate, 
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carnitine, acetoacetate, and phenylacetylglycine. Taurine and valerate were specifically mono-

associated to Lew, dimethylamine and N-acetyl groups of glycoproteins to F344 and 

hippurate to WKY. Betaine and 1-methylnicotinamide were highly connected to respectively 

3 or 4 strains, showing pluri-associations. 

Table 3.1.2. Pairwise comparison of hierarchical clustering trees using cophenetic Pearson 
correlation coefficient. 

 SNP Physiology Plasma Urine 

SNP 1 0,96 0,84 -0,32 
Physiology  1 0,92 -0,44 

Plasma   1 -0,5 
Urine    1 

 

Finally, in order to evaluate the systems-wide metabolic variation in both biofluids, we 

merged plasma and urine data in a unique correlation network (Figure 3.1.5c) and we 

observed that saturated lipids (CH3; VLDL, LDL), unsaturated lipids (C=CCH2C=C), betaine, 

1-methylnicotinamide and choline were highly connected to three or four strains. 

Valine,isoleucine, glycine, hippurate and cholesterol were WKY-specific, whereas cis-

aconitate, glycerol, carnitine, lactate, alanine, phenylacetylglycine and an unknown metabolite 

corresponding to a NMR signal at 3.70 ppm were BN-specific. The other two strains 

displayed a relatively small number of specific mono-associated metabolites. Only valerate 

and taurine are characteristically associated to Lewis and N-acetyl groups of glycoproteins, 

dimethylamine and oxidized lipids (CH2CO) to F344. These results illustrate the power of 

metabolomics to identifying genetically determined metabolic signatures that contribute to 

phenotypic variability irrespective of disease susceptibility. 

Mapping broad-ranging metabotype variation onto known metabolic pathways. 

Metabolic network reconstruction is now part of the post-genomic effort.[193] Such metabolic 

pathway databases can be used to reveal higher-order systemic operation of the cell and the 

organism. We developed a metabolite-set enrichment analysis (MSEA) strategy to identify 

over-represented metabolic pathways[106] and map strain-spectific metabolites (or metabolite-

set), onto the KEGG database,[193] (see Methods, Figure 4.4.2 and Figure 3.1.6a). We then 

visualized significant strain-pathway associations (assessed by Fisher’s exact test) under the 

form of a correlation network (Figure 3.1.6b). Natural variation in glycine, serine and 

threonine metabolism was associated with all four strains and propanoate metabolism with 

three strains. WKY displayed the largest number of specifically active pathways with bile 
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acid biosynthesis, methane metabolism, valine, leucine and isoleucine biosynthesis and 

degradation. 

 
Figure 3.1.5. Strain-specific metabolite association networks. Correlation networks visualizing 

association between strains (colored squares) and metabolites (black circles) according to correlation 

values in a) plasma, b) urine and c) merged dataset. Edges are color-coded from red to black according 

to the correlation value. 
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Synthesis and degradation of ketone bodies and tyrosine metabolism were F344-specific. 

F344 and Lew were both associated with butanoate metabolism, tricarboxylic acid (TCA) 

cycle and glyoxylate and dicarboxylate metabolism. Figure 3.1.5 summarizes the metabolites 

associated with each strain for plasma (Figure 3.1.5a), urine  (Figure 3.1.5b) or both (Figure 

3.1.5c), whereas Figure 3.1.6b summarizes the metabolic pathways significantly enriched in 

each strain, as derived by a MSEA performed on the metabolites from Figure 3.1.5c. 

Note that in BN and WKY strains, a compound involved in butanoate metabolism was 

significantly affected. However, the MSEA revealed that this pathway was not significantly 

enriched, as the number of observed metabolites for these strains was larger than that of LEW 

F344, decreasing the relative representation for this pathway. Interestingly, although BN had 

the largest number of specific metabolites (Figure 3.1.5c), this strain did not display any 

specific pathway. In fact, these specific metabolites belonged to several metabolic pathways 

and thus none of them was significantly enriched. 

The application of NMR-based MSEA in genetically diverse individuals is a powerful 

approach to generate a global and accurate overview of altered metabolic pathways caused by 

genetic polymorphisms. 

3.1.4 Discussion 

We report an unexpectedly high level of non-morbid phenotype variability in normal control 

inbred rat strains at both metabolite and metabolic pathway levels, using a purpose-built 

metabolite-set enrichment analysis (MSEA)[106] based on 1H NMR metabolic profiles. These 

knowledge-based over-representation approaches, popular in transcriptomic studies,[190, 191] 

enhance the interpretation of complex hypothesis-free metabolic signatures. Natural metabolic 

variation patterns between rat strains revolve around key compounds and pathways (Figure 

3.1.7) and appear as subtle modulations of main hubs of mammalian metabolism (e.g. lipid, 

amino acid, energy metabolism) in interaction with the gut microbiome, which collectively 

reflect distinct physiological regulatory mechanisms contributing to the maintenance of 

homeostasis. 
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Figure 3.1.6. Strain-specific Metabolic Set Enrichment Analysis (MSEA). a) List of pathways 

significantly enriched for each strain. Bars correspond to number of involved metabolites in each 

pathway in blue for urine and red for plasma. b) Correlation networks visualizing association between 

strains (colored squares) and metabolic pathways (black circles), derived from OPLS-DA models listed 

in Figure 3.1.2, Figure 3.1.3 and Table 3.1.1. 

The maintenance of healthy metabolic phenotypes that we demonstrate in inbred 

control strains strongly argues against recently published opinions that rodent models fed ad 

libitum systematically exhibit morbid phenotypes.[181] The definition of both healthy 

phenotypes in inbred control strains and covariates that affect phenotype expression are 

central considerations in the experimental design of rodent genetic studies, in order to 

maximise the detection of genetic polymorphisms in hybrid cohorts accounting for 

phenotypic differences between disease susceptible and resistant models 

(www.jax.org/phenome).[183, 184, 194] The vast majority of these studies in all disease areas have 

used phenotypic data from animals fed ad libitum and led to the identification of disease-

related QTLs. Results from genetic studies in cohorts derived from inbred rat models of 

hypertension and diabetes bred to different inbred controls have demonstrated chromosomal 
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clustering of linkages to cardiometabolic traits,[195-197] providing evidence of QTL replication 

which is a gold standard criterion to assess rodent QTL robustness[198] Our results provide a 

comprehensive phenotype screen that can be used for selecting the most appropriate healthy 

control strain in genetic studies of metabolic phenotypes. Phenotype and metabonomic 

divergences between control strains also support the possibility to map the genetic basis of 

complex phenotypes in the rat heterogeneous stock which derives from eight progenitor 

strains, including the WKY, BN and F344 strains tested here.[183, 184] 

Our results illustrate the system-level biological robustness achieved through 

distributed control of cellular processes leading to an overall stabilization of the organism.[186] 

According to the metabolic entropy framework, homeostatic normalization, a physiological 

process involved in correcting any biological process diverging in physiologically-controlled 

parameters, leads to a metabolic penalization.[185] We find an illustration of this metabolic 

penalization in the higher cophenetic correlation between SNP, physiological and plasma 

metabotypes, these parameter being controlled at the genetic level, whilst urinary 

metabotypes present a stronger variation, presumably related to metabolic compensation at 

the cellular and systemic level, as well as to active transport phenomena in kidney 

physiology.[199] The identification of the genes influencing physiological data and plasma or 

urinary metabotypes would require analyzing genome polymorphisms and metabotypes in a 

segregating population (mQTL studies[178, 179]) and is clearly outside the scope of this work. 

Physiological plasticity and metabolic variability in control strains. Physiological data 

and metabolic profiles highlighted broad differences between the four strains tested, which, 

for all phenotypes, remained within a normal range. Rats of the WKY strain displayed low 

glucose tolerance, high plasma cholesterol, elevated body weight and adiposity when 

compared to BN, F344 and Lew rats. F344 rats showed divergence in plasma LDL cholesterol 

and triglycerides, whereas Lew rats generally had intermediate phenotype values. 

Interestingly, such heterogeneity in the four strains could be replicated using urine and plasma 

metabolic profiling data, suggesting the existence of strain-specific metabolic signatures. The 

development and application of MSEA allowed mapping spectroscopically-derived metabolic 

signatures onto known metabolic pathways. For a given set of metabolites, several different 

affected pathways were identified due to interconnection and involvement of a given 

metabolite in several pathways. For instance, metabolites associated with Lew include citrate, 

succinate and 2-oxoglutarate, which indicated perturbations in TCA cycle and glyoxylate and 

dicarboxylate metabolism. These pathways were also altered in F344, wheareas valine, 
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leucine, isoleucine biosynthesis and degradation were found altered in WKY, compared to the 

other strains. Although BN displayed the largest number of mono-associated metabolites, 

MSEA only identified two metabolic pathways. This observation highlights the necessity to 

derive appropriate knowledge-based bioinformatic tools, such as MSEA, to enhance the 

systems-wide interpretation of broad-range metabolomic variation derived from experimental 

metabolic datasets. In the present case, broad-range natural metabotypic variation supports 

physiological plasticity, i.e., homeostatic, non-pathological variation, in primary phenotypes, 

i.e., BMI, blood lipids, IPGTT, and can be summarized as outlined hereafter. 

Differential affinity for energy metabolism substrates and products. Energy metabolites 

contributed to strain discrimination, in particular for F344 and Lew, which showed excretion 

of metabolites involved in TCA cycle (Figure 3.1.7). TCA intermediates excretion is 

dominated by renal tubular pH and renal transporter function.[200] The TCA cycle is the 

common final pathway for the oxidation of fuel molecules, such as carbohydrates, fatty acids 

and amino acids. Associated with oxidative phosphorylation, in aerobic conditions, it allows 

the release of the maximum amount of energy from fuel molecules.[201] Thus, it is a central 

hub role in intermediate metabolism and as a consequence is connected to a large number of 

pathways. For instance, 2-oxoglutarate, citrate and succinate are all involved in alanine, 

glutamate and aspartate degradation, and in glyoxylate and dicarboxylate pathways as well as 

in reductive carboxylate pathways. Amino acid carbon backbones enter the TCA cycle 

through 2-oxoglutarate for arginine, glutamate, glutamine, histidine, proline and through 

succinyl-CoA for isoleucine, methionine, threonine and valine.[201] These TCA cycle 

intermediates can also be converted into phosphoenolpyruvate and then into glucose. The 

level of excretion should depend on different complex interactions between these previous 

pathways, including regulation by substrate availability and product inhibition. Furthermore 

F344 was associated with higher acetoacetate and D-3-hydroxybutyrate, i.e., ketone bodies, 

suggestive of ketosis. These molecules are mainly produced in the liver from fatty acids or 

certain amino acids and are released in blood to be transported in peripheral tissues where 

they can be used as sources of energy instead of glucose (Figure 3.1.7). These data thus 

suggested differential mobilisation of fatty acid to produce energy.[201] 

Consequences for lipid metabolism. Lipid parameters quantified by classical assays provide 

complementary data to those measured by 1H NMR spectroscopy, which provides data on 

functionality of lipids (unsaturation patterns, oxidized functions) rather than quantifying the 

different lipoproteins. For this reason, lipid metabolism was not part of MSEA via KEGG 
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pathways and we analysed data through standard interpretations. As opposed to BN, Lewis 

and WKY shared common features as they both showed increased plasma concentration of 

saturated and unsaturated lipids from LDL and VLDL. Considering their BMI, this result is 

consistent with the rise of LDL and VLDL lipids found in plasma of obese (fa/fa) Zucker.[202] 

Interestingly, F344 displayed a characteristic lipid profile with low plasma LDL cholesterol 

concentration and high triglyceride concentration and specifically high level of oxidized 

lipids, which may be due to changes in β-oxidation. 

 

Figure 3.1.7. Synthetic map of heterogeneous metabolism found in normal control strains. TG, 

triglycerid; DG, diglycerid; MG, monoglycerid; FA, fatty acid, Alb, Albumin. 

Consequences for amino acid metabolism. Glycine, serine and threonine metabolism, 

mapped in KEGG, was identified as an enriched pathway for the 4 different strains, thus 

being differentially activated and not strain-specific. The metabolites involved belong to the 

choline degradation pathway to glycine through betaine and N,N-dimethylglycine (Figure 

3.1.7).[203, 204] BN rats showed lower plasma choline level and consistently lower excretion of 

betaine and N,N-dimethylglycine than the other strains. As we observed lower plasma lipid 

level in BN rats, we suggest that relative choline deficiency in BN was due to reduced 

recycling of phosphatidylcholine in choline. The MSEA also indicated a specific branched-

chain amino acid metabolism for WKY. Interestingly, this pathway may contribute to human 
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obesity-associated insulin resistance, in the context of high fat diet through the interplay of 

mTor,[205] which seems consistent with increased adiposity and low glucose tolerance in 

WKY. 

Influence of gut microbiota metabolism. We investigated the different transgenomic 

interactions between host and gut microbiota in the four strains. Gut microbiota metabolism 

influences mammalian phenotypes, through a complex molecular crosstalk between bacterial 

and mammalian genes.[206-208] For instance, we observed a specific reduction of hippurate 

excretion in WKY rats. Hippurate is a mammalian-microbial co-metabolite formed by glycine 

conjugation of benzoate, which is produced from bacterial degradation of plant polyaromatic 

compounds.[179, 209] Consistently, WKY displayed also specific high plasma level of glycine. 

These data suggest that WKY metabolism exhibits a specific transgenomic interaction with 

gut microbiota, leading to reduced benzoate formation and thus reduced glycine conjugation 

and hippurate excretion, explaining the observed metabotype. Along the same line, changes in 

dimethylamine excretion were found specifically in F344. Methylamine formation is related 

to microbial processing of dietary choline in the gut.[203, 210] Interestingly, when compared to 

WKY and Lew, F344 had lower plasma choline level. We identified BN-specific changes in 

phenylacetylglycine excretion, which is directly linked to gut microbiota activity.[211] This 

observation indicates BN-specific microbiota transgenomic interaction. As all strains used in 

this study were fed the same diet and maintained in identical environmental conditions, these 

different results indicate a complex modulation from the host strain on the composition or 

activity of its gut microbiota, highlighting the complexity of mammalian organisms through 

transgenomic interactions and fully justifying an integrative systems biology approach. 

Relationships between natural metabolic variation, host genetic polymorphisms and 

microbiome metabolic functions. We observed that the four strains, often used as healthy or 

disease resistant controls in genetic studies, were markedly different at the physiological and 

metabolic levels. Our results show that, quantitatively, genetic variations investigated through 

SNP-based hierarchical clustering, did not match metabolic changes in our experimental 

conditions used here for physiological studies and sample collection. However, plasma 

metabotypes correlate strikingly more with genetics than urinary metabotypes. Plasma 

composition and their associated metabolic processes are tightly controlled by homeostatic 

regulation to maintain organism integrity, involving complex protein interaction networks, 

determined to a certain extent by genetics. As for urine, it contains end products of 

metabolism, the excretion of which is a reflection of the balance between the dietary inputs 
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and the metabolic requirements, so that the relationship with genetic determinants is weaker. 

These observations are made at the genome-wide and metabolome-wide level. The 

identification of gene variants influencing specific metabolite levels is possible using an 

mQTL approach, which is out of the scope of the current study.[178, 179] These results support 

the concept that metabolic variations cannot be entirely reduced to their genetic component, 

and should be understood through an integrative systems biology process associating different 

parameters, such as genetics, but also environmental influences such as exercise, diet and 

host-gut microbiotal transgenomic interactions.[212] 

3.1.5 Conclusion 

Altogether, these results introduce the concept of natural metabolomic variation driving 

physiologically stable, albeit diverse, phenotypic outputs within the range of normality, 

through dynamic readjustment of the fluxes among the metabolic network,[213] as well as 

differential excretion rates, both phenomena being suggestive of systems-wide robustness. 

Ongoing efforts in genome resequencing in inbred rat strains[214] may shed light on naturally 

occurring polymorphisms that cause non-morbid phenotype variability. Our results bring 

further support to the complexity of mammalian metabolism involving strain-specific 

transgenomic (host/symbiont) interactions. By highlighting physiological and metabolic 

differences between strains, our data contribute to improving design of future genome-wide 

metabolome-wide studies, such as mQTLs discovery, in a truly integrative genomic and 

systems biology context. The possibility to identify metabotypes separating groups of control 

individuals demonstrates the power and sensitivity of metabolomics, which may directly 

impact human clinical and genetic studies through the detection of metabolic biomarkers 

allowing fine stratification of patients and controls. 
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3.2 Metabolic phenotyping of Caenorhabditis elegans  

Originally introduced in the early 1970s by Sydney Brenner as a multicellular genetic model 

for development and organogenesis,[215-217] the nematode Caenorhabditis elegans (C. elegans) 

became a key model organism in modern biology, being complex enough to address high-

order questions but still, easy to work with.  

This 1 mm long transparent roundworm belongs to the invertebrate multicellular 

eukaryotes. The worms are sexually dimorphic with males and self-fertilizing hermaphrodites. 

The later possess 959 somatic cells, fully differentiated in organs, organized in systems 

(epithelial system, reproductive system, nervous system, excretory system and muscle 

system).[218] At 20°C, C. elegans has a short generation time of approximately 3 days, 

corresponding to the development of fertilized eggs into sexually mature adults, through 4 

larval stages termed L1, L2, L3 and L4. C. elegans has an average lifespan of two to three 

weeks. After the L2 stage, if the environmental conditions are not favorable for growth, 

worms may enter an alternative larval stage termed dauer in which they develop a thick 

cuticle and stop feeding, surviving for several months, until experiencing more favorable 

conditions to proceed to L4 stage.  

C. elegans attractiveness as a model organism was reinforced by its experimental 

tractable management and by major biological characterizations. Indeed, C. elegans is 

inexpensive and easy to grow on a diet of bacteria in Petri dishes. Important developmental 

and anatomical descriptions were achieved as for instance, the identification of the complete 

lineage of every cell[219] or the entire nervous system reconstruction.[220] The discovery of the 

usefulness of RNA interference to manipulate gene expression[221] and the complete C. 

elegans genome sequencing were also two majors steps in the field of genetics.[222]  

In combination, all these features made C. elegans a key model organism for the study 

of genomics, neuroscience, cell biology, aging or human diseases, such as neurodegenerative 

diseases.[217] 

Intermediary metabolism appears highly conserved between C. elegans and humans, 

as for most key eukaryotic enzymes involved in these metabolic pathways, corresponding 

genetic patterns, termed orthologs have been found in the worm genome.[217, 223] The nematode 

has thus all the metabolic machinery for the fundamental pathways of cellular respiration or 

anaerobic glycolysis.[223] Furthermore, unlike humans, C. elegans can perform also in 

anaerobic ethanolic fermentation[224] and malate dismutation, which produces acetate, 
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propionate and succinate as waste products while using fumarate as electron acceptor instead 

of oxygen.[217, 225]  

With the development of metabolic profiling strategies, the study of C. elegans 

metabolism is of a growing interest recently. Blaise et al. developed a whole-organism NMR-

based approach, relying on the use of the HR-MAS NMR spectroscopy to derive metabolic 

signatures directly from whole organisms.[27, 44] In the meantime, different approaches were 

also developed, coupling a first extraction step with solution NMR spectroscopy or mass 

spectrometry.[30] As the metabolic phenotype can be considered as a functional readout, many 

studies used it in a functional genomics context, aiming at deciphering gene functions, in the 

fields of aging,[226-229] oxidative stress[27, 230, 231] or fatty acid metabolism.[232, 233] Metabolic 

profiling was also used to characterize worm metabolic perturbations in response to external 

stimuli such as exposure to toxic agents[234, 235] or diet variations.[236] Metabolomics has been 

also used to identify small molecules signals that regulate behavior and development in C. 

elegans.[237-239]  

In this chapter, we first investigate the effects of aging and dietary restriction on C. 

elegans metabolism by characterizing wild-type worms and different C. elegans genetic 

mutants, displaying different profiles of aging. We then delineate the impact on C. elegans 

metabolism of the protein receptor AHR-1 loss-of-function, ortholog of the Aryl Hydrocarbon 

Receptor (AHR), involved in dioxin toxicity in mammals, in the framework of functional 

genomics. 
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3.2.1 Dietary restriction buffers metabolic changes associated with aging in 

Caenorhabditis elegans 

3.2.1.1 Introduction 

Metabolism and lifespan are tightly linked. It has been known for decades that modulating 

metabolism via genetic interventions such as mutation in genes encoding the insulin/IGF-1 

receptor[240] or via environmental changes such as dietary restriction (DR), significantly 

extend longevity and delays aging in many species.[241] Yet, whether physiological aging 

involves a metabolic shift as an early or late event in the process of aging, and how 

interventions such as DR specifically affect the metabolic changes associated to aging has not 

been extensively studied. Metabolomic investigation provides a comprehensive and unbiased 

strategy to address this question at the whole organism level. In mammals, this approach is 

restricted to the description of metabolite concentrations in biofluids or specific tissues, which 

provides complementary but partial information on the homeostatic network of the whole 

body.[242-245] We therefore address this question by using the nematode C. elegans as a model 

system, as metabolic phenotypes can be investigated by Nuclear Magnetic Resonance (NMR) 

spectroscopy to detect global metabolic changes.[27] 

Our study identified a list of metabolites, which concentrations vary during early 

aging. We show that those changes are affected by DR and can be used to discriminate, 

among worms of the same chronological age, those that are healthier and which will live 

longer from those that have a short life expectancy.   

3.2.1.2 Material and Methods 

Nematode strains and culture conditions (Laurent Mouchiroud et al. Université de 

Lyon). C. elegans strains were cultured at 20°C on nematode growth media (NGM)[215] agar 

plates freshly poured and seeded with E Coli strain OP50 culture. Wild-type Bristol N2, eat-

2(ad465) II and daf-18(e1375) IV strains were provided by the Caenorhabditis Genetics 

Center (University of Minnesota). slcf-1(tm2258) mutants were obtained from the C. elegans 

knockout consortium directed by Pr Mitani and outcrossed five times in our wild-type strain. 

slcf-1(tm2258);daf-18(e1375) double mutants were obtained by genetic crosses. 

Sample preparation for metabolomics analysis (Laurent Mouchiroud et al. Université de 

Lyon). In order to get rid of variations relative to sample preparation or analysis, the assays 

were performed on large number of worms (40 000 worms for each age in total, split into 
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1000 worms per analysed NMR sample) prepared in at least 3 independent experiments. For 

worm amplification and synchronization, ten adult worms were allowed to lay eggs, on E. 

Coli OP50 seeded 55mm NGM plates, for 2-3 hours at 20°C then removed. When F1 worms 

reached the preadult-L4 stage, 5 flurouracile (5-FU, Sigma) was added on top of the plate at a 

final concentration of 1.30 mg/L (10µM). 5-FU inhibits the development of eggs laid by F1 

progeny, allowing the maintenance of a synchronized F1 population until old age while 

avoiding to transfer worms every couple of days to separate them from their progeny, which 

represents stressful conditions. In order to standardize the experimental conditions, 5-FU was 

also added when worms were recovered at the young adult stage. Davis et al. have shown that 

the addition of FUdR to maintain synchronous C. elegans population had an impact on the 

metabolic signature of worms.[246] However, FUdR, which acts in a concentration dependent 

manner, was introduced in high concentration (0.4mM, 100 mg.L-1), and induces major 

biological perturbation in worms as revealed by complete sterility of worms. In our 

experimental conditions (we used 40 times less concentrated 5-FU) worms still lay eggs that 

fail to develop.  

Synchronized worms were recovered 24 hours later (YA stage) or 7 days later (A7). 

Worms cultures synchronisation and recovery were set up in order to recover both young 

adult and 7 days old worms on the same day for all genotypes, and repeated at least 3 times. 

On the day of recovery, 50 plates for each condition (age/genotype) were washed 5 times in 

50 ml of M9 buffer, separated by 5 min sedimentation steps in order to get rid of residual 

bacteria. Worms were then fixed for 45 minutes in 1% paraformaldehyde and then washed 5 

times in distilled water followed by 5 washes in deuterium oxide. 30 µl disposable Kel-f 

inserts with sealing caps for 4 mm NMR rotors were filled with around 1000 whole worms 

and frozen at -80°C for storage until NMR analysis. Samples were thawed at room 

temperature 15 minutes before the NMR experiments. 

Whole C. elegans HR-MAS NMR spectroscopy. C. elegans HR-MAS NMR spectroscopy 

was performed as previously described by Blaise et al.[27, 44] All experiments were carried out 

on a Bruker Avance II spectrometer, operating at 700 MHz (proton resonance frequency), 

equipped with a 4 mm HR-MAS double resonance (1H-13C) probe. Temperature was 

controlled at 295 K throughout the experiments and magic angle spinning speed set to 3.5 

KHz. A set of 1D 1H NMR experiments with water presaturation, including 1D 1H NOESY 

and 1D 1H CPMG were preformed on each sample to derive metabolic profiles. 256 free 

induction decays (FIDs) were co-added, with a 12 ppm spectral width and an acquisition time 
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of 1.4 s, corresponding to 23568 data-points, with a relaxation delay of 1.7 s, for a total 

experimental time of 13 minutes per spectrum. The NOESY mixing time was set to 100 ms 

and the CPMG spin-echo delay adjusted to 300 µs for each of the 80 spin-echo loops (48 ms 

total echo time). The 1H 90° hard pulse length was calibrated at 7.5 µs.  

2D NMR experiments, including 1H-1H TOCSY and 1H-13C HSQC experiments, were 

carried out on a subset of selected samples to characterize structural connectivities between 

nuclei and refine metabolite identification. 

NMR data processing. All FIDs were multiplied by an exponential function corresponding to a 

0.3 Hz line-broadening factor prior to Fourier transform. Phasing and baseline correction were 

performed manually in Topspin 2.1 (Bruker, GmbH, Rheinstetten, Germany). Spectra were 

automatically calibrated on the CH3 alanine doublet at δ = 1.48 ppm. Spectra were reduced 

over the chemical range of 0.55-8.75 ppm to 8200 bins (10-3 ppm wide) with integration of 

signal intensity. Residual water signal (δ = 4.5-5 ppm), residual methanol signal originated 

from formaldehyde fixation step (δ = 3.32-3.39 ppm) and a noise area (δ = 5.5-6.5 ppm) were 

discarded prior to analysis. Spectra were normalized using the probabilistic quotient 

normalization (PQN) approach,[97] with a median of all spectra as reference spectrum. We 

applied a Pareto scaling on the dataset for multivariate analysis only. Metabolite assignment 

was completed exploiting reference data from the literature,[27, 226] the HMDB,[50] MMCD,[49] 

bbiorefcode-2-0-0 (Bruker, GmbH, Rheinstetten, Germany) and Chenomx NMR Suite 7.0 

(Chenomx Inc, Edmonton, Canada) spectral databases. 

NMR data analysis. Principal component analysis (PCA)[187] was first conducted in SIMCA 

P12+ (Umetrics, Umea, Sweden) to derive the main sources of variance within the dataset, 

assess sample homogeneity and exclude biological or technical outliers. Orthogonal 

projection to latent structure discriminant analysis (OPLS-DA) was then performed in 

MATLAB (The MathWorks Inc., Natick, MA) to derive pair-wise comparison between the 

different conditions (strains and ages).[100]  

Metabolites involved in class discrimination are then derived from an univariate 

approach based on the statistical recoupling of variables (SRV) analysis recently described. [94] 

SRV corresponds to an automatic binning scheme based on the relationship of covariance and 

correlation between consecutive variables, which is followed by an univariate unpaired two-

tailed t-test calculated for each variable under the Benjamini-Yekutieli correction to cope with 

multiple testing issue.[104]  
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Statistically significant metabolites found in the previous analysis are finally 

quantified either by direct signal integration in case of non-overlapping signals or by 

computer assisted manual fitting (deconvolution) of overlapping NMR peaks using the 

Chenomx NMR Suite 7.0 (Chenomx Inc, Edmonton, Canada). Results are plotted as means 

and 95% confidence intervals and p-values were calculated for each pair-wise comparison 

from univariate unpaired two-tailed t-tests. 

3.2.1.3 Results and discussion 

Metabolic changes correlate with both chronological and physiological age in C. elegans. 

Wild-type (WT) worms raised at 20°C have a median and maximal lifespan of respectively 17 

and 30 days in average.[228] Under these experimental conditions, obvious morphological 

changes and functional decline appear after a week and progressively increase until death.[247] 

In order to investigate the metabolic variations that occur during early adulthood, we analysed 

the metabolome of worms staged at two different adult ages: as young adults (YA) before egg 

production starts, and at day 7 of adulthood (A7), just after egg production ceases,[228] in order 

to target a time window preceding the onset of strong morphological alterations while 

minimising the impact of eggs production on the metabolism. Acquisition of 1H NMR 

metabolic profiles (Figure 3.2.1) was performed on a pool of intact fixed animals following 

our recently described high-resolution magic angle-spinning (HRMAS) protocol.[44] 

Unsupervised and supervised multivariate statistical modelling show that WT YA and A7 

worms can clearly be distinguished by their metabolic fingerprints (Figure 3.2.2a, Figure 

3.2.3a-c, Table 3.2.1). YA and A7 worms were essentially isogenic and maintained in a 

steady environment, while any bias linked to individual phenotype is precluded by our 

sampling conditions. These data therefore show that metabolic profiles correlate with the 

chronological age of adult worms and may constitute a fingerprint characteristic of 

physiological aging. In this case, one would expect that the metabolic profile of worms with 

extended longevity should harbour a “young fingerprint “, i.e similar to WT YA, at more 

advanced age. In order to test this hypothesis we analysed the metabolome of worms carrying 

a mutation in the slcf-1 gene, which have been shown to increase worms average lifespan by 

30% compared to WT animals.[228] Similarly to WT animals, YA and A7 slcf-1(tm2258) 

mutants can still be separated according to their metabolic profiles from unsupervised or 

supervised analysis (Figure 3.2.2a, Figure 3.2.4a-c). Furthermore, WT and long -lived 

worms can also be discriminated at the same chronological age (YA or A7) (Table 3.2.1) 

Indeed, principal component analysis (PCA) reveals that the metabolic fingerprint of A7 slcf-
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1 mutants is closer to the profiles of young adults, either slcf-1(tm2258) or WT, than to the A7 

WT fingerprint (Figure 3.2.2a). 

 
Figure 3.2.1. Typical 700 MHz 1H HR-MAS NOESY NMR spectrum of whole slcf-1(tm2258) C. 

elegans worms for aliphatic (δ = 0.5-5.3 ppm) and aromatic (δ = 6.5-9 ppm, magnified 5 times) regions. 

The resolution of a 1H HR-MAS NMR spectrum is typically of 1.3 Hz (measured as the width at half 

height for one of the alanine doublet peaks). Spectra were recorded with a signal-to-noise ratio of 300. 

Keys: 1. cyclic fatty acids, 2. lipids (CH3), 3. lipids ((CH2)n), 4. lipids (CH2CH2CO), 5. unsaturated 

lipids (CH2CH=CH), 6. lipids (CH2CO), 7. unsaturated lipids (CH=CHCH2CH=CH), 8. glyceryl of 

lipids, 9. unsaturated lipids (CH=CH), PCho: phosphocholine, GPC: glycerophosphocholine 

Dietary restriction prevents metabolic changes associated with aging. The slcf-1 gene 

encodes a putative monocarboxylates transporter expressed in the intestine of the worm and 

we have recently shown that its mutation increases longevity by mechanisms similar to 

DR.[228] We thus asked whether the difference in the metabolic shift observed with age 

between WT and slcf-1(tm2258) mutants was specific for slcf-1(tm2258) mutants or may be a 

paradigm for metabolic changes that take place in response to DR. To this end we aimed to 

validate these results by using eat-2(ad465) mutants as a second genetic model of DR. The 

eat-2 gene encodes a subunit of nicotinic acetylcholine receptors that regulates pharyngeal 

pumping, which is dramatically slowed down in eat-2(ad465) mutants, thus inducing a strong 

reduction in food intake. eat-2(ad465) mutants have been extensively used as a genetic model 

of dietary restriction since its identification[248] as it was the only existing DR model before 

the identification of slcf-1. PCA shows a distinct cluster for eat-2(ad465) mutants and 
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discrimination between eat-2(ad465) YA and A7 (Figure 3.2.2a) confirmed by supervised 

analysis (Figure 3.2.4d-f, Table 3.2.1). PCA reveals a common axis for discrimination 

between YA and A7 in the three strains, but with less amplitude for the two long-lived 

mutants. In order to further evaluate how long-lived mutants behave along the metabolic 

coordinates of WT, we projected slcf-1(tm2258) and eat-2(ad465) individuals onto the OPLS 

model discriminating YA and A7 WT worms (Figure 3.2.3d). YA, for both slcf-1(tm2258) 

and eat-2(ad465) mutants, cluster with the WT YA worms, whereas long-lived A7 adults are 

projected at an intermediate position on the physiological aging axis, between YA and A7 

WT worms.  

 
 

Figure 3.2.2. Metabolic variations in WT, slcf-1(tm2258) and eat-2(ad465) worms during aging. a) 

PCA including young adults and adults WT, slcf-1(tm2258) and eat-2(ad465); b) Relative 

concentrations in arbitrary units of 22 metabolites and lipid signals corresponding to specific chemical 

functions. Results are reported with means and 95% confidence intervals. 
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Overall those results show that there are fewer differences between old and young 

long-lived worms for metabolic variations associated with physiological aging than between 

young and old WT worms and suggest that the metabolic reprogramming triggered by DR 

specifically prevents the age-associated metabolic variations. 

To further investigate this hypothesis we sought to define metabolites that discriminate the 

different WT worm populations. We identified a set of metabolites which concentrations 

increase with age: saturated and unsaturated lipids, glycerophosphocholine (GPC), 

phosphocholine (PCho), glutamine and glycine, while a decrease in concentration is observed 

for 14 metabolites that includes a range of amino acids (alanine, arginine, isoleucine, leucine, 

lysine, phenylalanine, tyrosine, valine,), formate and cystathionine, which are both linked to 

folate metabolism, as well as tricarboxylic acid cycle (TCA) metabolites (glutamate, acetate 

and lactate) and glycerol (Figure 3.2.2b and Table 3.2.2).  When considering specifically the 

metabolites which levels significantly vary with age for the WT worms, we measured for slcf-

1(tm2258) mutants lower basal levels of lipids and PCho at the YA stage and only a moderate 

increase with age (Figure 3.2.2b, Figure 3.2.4b, Table 3.2.2 and Table 3.2.3). An attenuated 

decrease in the concentration of alanine, arginine, phenylalanine, tyrosine, cystathionine, and 

formate was also observed for slcf-1(tm2258) aging animals as compared to WT (Figure 

3.2.2b). Furthermore, a set of common metabolic features clearly discriminated both eat-

2(ad465) and slcf-1(tm2258) animals from the WT worms. These differences include lower 

levels of lipids, leucine, PCho, trehalose and higher levels of lysine and cystathionine (Figure 

3.2.2b, Table 3.2.3). These metabolites may therefore constitute a common signature of the 

long life phenotype for DR mutants.  
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Figure 3.2.3. Metabolic signature of aging in wild-type C. elegans worms. OPLS model discriminating 

wild-type young adults and wild-type adults (1 predictive component and 3 orthogonal components; 

R2X = 0.846, R2Y = 0.978, Q2 = 0.956) from Pareto-scaled dataset: a) score plot, b) loadings plot 

resulting from the SRV analysis, showing back-scaled OPLS coefficients values, colored from the 

original OPLS coefficients if variables were found statistically significant after a multiple testing 

univariate procedure (Benjaminin-Yekutieli correction) and c) model validation resulting from 1000 

permutations, demonstrating the model robustness, as model R2 and Q2 values were significantly higher 

than random model ones. d) Score plot of the projections of slcf-1(tm2258) and eat-2(ad465) adults and 

young adults in the OPLS model (A), discriminating wild-type adults and young adults. Keys: 1. cyclic 

fatty acids, 2. lipids (CH3), 3. lipids ((CH2)n), 4. lipids (CH2CH2CO), 5. unsaturated lipids 

(CH2CH=CH), 6. lipids (CH2CO), 7. unsaturated lipids (CH=CHCH2CH=CH), 8. Glyceryl of lipids, 9. 

unsaturated lipids (CH=CH), 10. tyrosine, 11. phenylalanine, 12. formate, PCho: phosphocholine, GPC: 

glycerophosphocholine. 

Table 3.2.1. Goodness-of-parameter values for the different OPLS models built to 
discriminate WT, slcf-1 and eat-2 young adults and adults. 

 Number of orthogonal components R2X R2Y Q2 
WT: YA vs A7 3 0.846 0.978 0.956 

slcf-1: YA vs A7 3 0.794 0.97 0.934 

eat-2: YA vs A7 2 0.728 0.978 0.934 

YA: WT vs slcf-1 5 0.827 0.987 0.96 

A7: WT vs slcf-1 4 0.903 0.985 0.947 

YA: WT vs eat-2 2 0.759 0.963 0.933 

A7: WT vs eat-2 1 0.868 0.955 0.94 

YA: 1-day old young adult; A7: 7-day old adult. 
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Figure 3.2.4. Metabolic signatures of aging in slcf-1(tm2258) and eat-2(ad465) C. elegans worms. 

OPLS model discriminating slcf-1(tm2258) young adults and slcf-1(tm2258) adults (1 predictive 

component and 3 orthogonal components; R2X = 0.794, R2Y = 0.97, Q2 = 0.934) from Pareto-scaled 

dataset: a) scores plot, b) loadings plot resulting from the SRV analysis and c) model validation 

resulting from 1000 permutations, demonstrating the model robustness, as model R2 and Q2 values were 

significantly higher than random model ones. OPLS model discriminating eat-2(ad465) young adults 

and eat-2(ad465) adults (1 predictive component and 2 orthogonal components; R2X = 0.728, R2Y = 

0.978, Q2 = 0.934) from Pareto-scaled dataset: d) scores plot, e) corresponding loadings plot resulting 

from the SRV analysis and f) model validation resulting from 1000 permutations, demonstrating the 

model robustness. Keys: 1. cyclic fatty acids, 4. lipids (CH2CH2CO), 5. unsaturated lipids 

(CH2CH=CH), 6. lipids (CH2CO), 7. unsaturated lipids (CH=CHCH2CH=CH), 8. glyceryl  
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Higher phosphocholine content is predictive of a short lifespan expectancy. These 

observations show that DR is associated with a metabolic reprogramming that involves an 

attenuation of the metabolic variations associated with the physiological aging observed in 

worms fed ad libitum, and that this effect could participate in beneficial effect of DR on 

lifespan. A mutation that suppresses the extended lifespan phenotype of DR worms should 

thus affect those metabolite levels in a converse manner. In order to test this hypothesis, we 

investigated the metabolic pattern of short-lived daf-18(e1375) mutants. daf-18(e1375) 

mutation shortens average lifespan by 30% compared to WT while it completely suppresses 

the extended longevity of slcf-1(tm2258) worms by reducing their lifespan by 60%.[228, 249] 

Interestingly, phosphocholine levels which are both lower in A7 eat-2(ad465) and slcf-

1(tm2258) mutants compared to WT (Figure 3.2.2b), are dramatically increased in daf-

18(e1375) single mutants and slcf-1(tm2258);daf-18(e1375) double mutants (Figure 3.2.5a, 

Table 3.2.4 and Table 3.2.5). It is noteworthy that this observation is not restricted to long-

lived DR worms. Indeed Fuchs et al. recently reported that long-lived insulin/IGF-1/daf-2 

mutants also harbour lower level of PCho compared to WT, and this level is increased in 

short-lived FOXO/daf-16 single or daf-16; daf-2 double mutants.[226] Overall, these results 

strongly suggest that PCho levels reflect the healthspan of worms: while low level is 

associated with youthfulness, high PCho level is predictive of short life expectancy in both 

WT animals and different long lived conditions including dietary restriction. 

 



 

Table 3.2.2. Metabolite variations with age in WT, slcf-1(tm2258) and eat-2(ad465) . 

Metabolite 
Chemical Shift 

(ppm) and 
multiplicity 

WT: 
A7 vs YAa Pb slcf-1: 

 A7 vs YAa Pb eat -2:  
A7 vs YAa Pb 

Alanine 1.48 (d) ↓ 5.82E-07 ns 1.00E+00 ns 8.42E-01 

Betaine 3.27 (s) ns 2.29E-01 ns 1.00E+00 ns 6.57E-01 

Choline 3.204 (s) ns 1.00E+00 ns 1.00E+00 ↑ 2.92E-02 

Cystathionine 3.145 (m) ↓ 2.00E-40 ↓ 1.96E-10 ↓ 3.07E-06 

Formate 8.46 (s) ↓ 1.82E-11 ↓ 1.96E-10 ns 8.42E-01 

GPC 3.235 (s) ↑ 2.28E-28 ↑ 5.50E-14 ↑ 2.01E-03 

Glutamate 2.355 (m) ↓ 3.87E-11 ↓ 3.38E-04 ns 9.01E-02 

Glutamine 2.465 (m) ↑ 1.44E-07 ↑ 4.89E-03 ns 1.00E+00 

Isoleucine 1.015 (d) ↓ 1.12E-24 ↓ 5.08E-11 ns 7.38E-01 

Leucine 0.96 (d) ↓ 6.99E-18 ↓ 5.08E-11 ↓ 2.92E-02 

Lysine 3.025 (t) ↓ 1.22E-30 ↓ 6.33E-09 ↓ 6.25E-04 

Phenylalanine 7.43 (t), ↓ 5.83E-09 ↓ 5.41E-03 ns 1.00E+00 

Phosphocholine 3.225 (s) ↑ 1.85E-28 ↑ 1.77E-08 ↑ 8.65E-04 

Succinate 2.41 (s) ns 1.00E+00 ns 3.03E-01 ns 1.00E+00 

Tyrosine 7.20 (d) ↓ 2.11E-08 ns 2.00E-01 ns 1.00E+00 

Trehalose 5.20 (d) ns 4.13E-01 ↑ 8.20E-05 ↑ 2.92E-02 

Valine 1.045 (d) ↓ 8.47E-23 ↓ 1.01E-09 ns 8.42E-01 

Arginine 3.246 (t) ↓ 2.46E-20 ↓ 4.56E-02 ns 1.80E-01 

Acetate 1.92 (s) ↓ 2.39E-09 ↓ 2.50E-04 ns 5.33E-01 

Lactate 1.33 (d) ↓ 4.86E-13 ns 6.69E-01 ns 2.14E-01 

Glycerol 3.56 (m) ↓ 1.47E-13 ↓ 2.25E-06 ns 1.00E+00 

Glycine 3.56 (s) ↑ 6.39E-18 ↑ 2.96E-07 ns 1.80E-01 
a↑: increase in metabolite concentration with age; ↓: decrease in metabolite concentration with age; ns: non significant metabolite variation. b P-values 
obtained an unpaired two-tailed t-test, corrected with the Benjamini-Yekutieli method for multiple testing. P-values < 0.05 are significant. YA: young adult; 
A7: adult. 
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Table 3.2.3. Metabolite variations between WT and long-lived mutants (slcf-1(tm2258) or eat-2(ad465) ) in young adults and adults. 

Metabolite 
Chemical Shift 

(ppm) and 
multiplicity 

YA: 
slcf-1 vs 

WT a 
Pb 

A7: 
slcf-1 vs 

WT a 
Pb 

YA: 
eat-2  vs 

WT a 
Pb 

A7: 
eat-2 vs 

WT a 
Pb 

Alanine 1.48 (d) ns 1.68E-01 ↑ 2.27E-06 ns 4.34E-01 ns 1.00E+00 

Betaine 3.27 (s) ↓ 5.05E-04 ns 1.00E+00 ns 1.00E+00 ns 4.67E-01 

Choline 3.204 (s) ↑ 3.65E-03 ↑ 7.79E-03 ns 2.05E-01 ns 1.29E-01 

Cystathionine 3.145 (m) ↑ 5.85E-03 ↑ 8.79E-07 ↑ 2.67E-11 ↑ 2.13E-20 

Formate 8.46 (s) ns 1.00E+00 ns 6.98E-02 ↓ 4.01E-10 ↓ 4.59E-06 

GPC 3.235 (s) ns 1.00E+00 ns 3.91E-01 ↓ 1.09E-04 ↓ 1.22E-12 

Glutamate 2.355 (m) ns 1.00E+00 ns 8.72E-02 ↑ 5.55E-12 ↑ 3.78E-15 

Glutamine 2.465 (m) ns 8.03E-01 ns 1.00E+00 ↑ 3.75E-11 ↑ 2.38E-08 

Isoleucine 1.015 (d) ↓ 3.26E-03 ns 1.00E+00 ↓ 1.76E-10 ns 1.00E+00 

Leucine 0.96 (d) ns 2.81E-01 ↓ 2.92E-04 ↓ 4.38E-10 ↓ 8.07E-08 

Lysine 3.025 (t) ↑ 6.47E-14 ↑ 3.08E-19 ↑ 2.04E-06 ↑ 2.13E-20 

Phenylalanine 7.43 (t), ns 1.68E-01 ↑ 7.79E-03 ↓ 3.07E-05 ns 9.41E-01 

Phosphocholine 3.225 (s) ↓ 3.65E-03 ↓ 1.68E-07 ↓ 1.94E-05 ↓ 1.78E-14 

Succinate 2.41 (s) ↑ 2.29E-03 ns 1.00E+00 ↑ 3.18E-10 ↑ 9.08E-08 

Tyrosine 7.20 (d) ns 1.00E+00 ns 9.81E-02 ↓ 2.01E-05 ns 1.00E+00 

Trehalose 5.20 (d) ↓ 4.74E-17 ↓ 2.17E-03 ↓ 3.55E-11 ↓ 5.29E-10 

Valine 1.045 (d) ↓ 1.42E-02 ns 1.00E+00 ↓ 5.55E-12 ns 4.42E-01 

Arginine 3.246 (t) ns 1.60E-01 ↑ 2.27E-06 ↓ 1.21E-03 ↑ 2.50E-10 

Acetate 1.92 (s) ns 1.00E+00 ns 1.00E+00 ↓ 2.78E-10 ns 9.41E-01 

Lactate 1.33 (d) ↓ 7.50E-05 ns 1.00E+00 ↓ 2.61E-10 ns 6.06E-01 

Glycerol 3.56 (m) ns 6.74E-02 ns 1.00E+00 ↓ 2.32E-05 ns 1.00E+00 

Glycine 3.56 (s) ns 8.80E-01 ns 1.00E+00 ↑ 8.21E-05 ns 1.00E+00 
a↑: increase in metabolite concentration in long-lived mutant (slcf-1 or eat-2) by comparison to WT; ↓: decrease in metabolite concentration in long-lived mutant (slcf-1 or eat-2) by 
comparison to WT; ns: non significant metabolite variation. b P-values obtained an unpaired two-tailed t-test, corrected with the Benjamini-Yekutieli method for multiple testing. P-values 
< 0.05 are significant. YA: young adult; A7: adult. 



 

Choline kinase expression correlated with physiological age. In mammals, higher PCho 

content is also a hallmark of several cancers and its increase has been associated with choline 

kinase overexpression in tumour cells where the tumour suppressor PTEN pathway is 

inactivated.[250] PTEN is the ortholog of daf-18 and regulates longevity in worms and 

mammals.[249, 251, 252] Interestingly, genes overexpressed in daf-18(e1375) mutants (data not 

shown) include ckb-2 which encodes a choline kinase.[253] In order to test the hypothesis that 

variations in PCho levels may be linked to transcriptional regulation of the ckb-2 gene, we 

quantified ckb-2 transcripts in WT and lifespan mutants at different ages. Indeed, ckb-2 

transcripts levels correlate with PCho content in worms for all genotypes and ages, further 

supporting the idea that choline pathway activation may reflect the physiological age of the 

worms (Figure 3.2.5b).  

Table 3.2.4. Metabolite variations with age in daf-18(e1375) mutants and slcf-1(tm2258);daf-
18(e1375) double mutants. 

Metabolite 
Chemical Shift 

(ppm) and 
multiplicity 

daf-18: 
A7 vs 
YAa 

Pb slcf-1;daf-18: 
A7 vs YA a Pb 

Alanine 1.48 (d) ↓ 1.92E-08 ↓ 1.03E-06 

Betaine 3.27 (s) ↓ 9.63E-03 ↑ 1.44E-04 

Choline 3.204 (s) ↑ 6.74E-05 ↑ 1.82E-06 

Cystathionine 3.145 (m) ↓ 9.63E-03 ↓ 4.37E-05 

Formate 8.46 (s) ↓ 3.92E-10 ↓ 4.29E-08 

GPC 3.235 (s) ↑ 2.66E-08 ↑ 1.12E-11 

Glutamate 2.355 (m) ns 9.16E-01 ns 3.40E-01 

Glutamine 2.465 (m) ↑ 1.48E-07 ↑ 2.33E-08 

Isoleucine 1.015 (d) ↓ 1.33E-13 ↓ 3.54E-11 

Leucine 0.96 (d) ↓ 8.53E-11 ↓ 3.10E-12 

Lysine 3.025 (t) ↑ 3.34E-02 ↓ 1.82E-06 

Phenylalanine 7.43 (t), ↓ 1.37E-07 ↓ 1.88E-07 

Phosphocholine 3.225 (s) ↑ 4.24E-06 ↑ 4.50E-24 

Succinate 2.41 (s) ↓ 1.69E-06 ↑ 1.19E-13 

Tyrosine 7.20 (d) ns 6.12E-01 ns 1.00E+00 

Trehalose 5.20 (d) ↓ 1.09E-04 ↓ 1.38E-06 

Valine 1.045 (d) ↓ 1.01E-12 ↓ 1.09E-10 

Arginine 3.246 (t) ns 1.00E+00 ↓ 5.51E-12 

Acetate 1.92 (s) ↓ 2.06E-07 ↓ 8.64E-07 

Lactate 1.33 (d) ↓ 3.22E-05 ↓ 4.88E-16 

Glycerol 3.56 (m) ↓ 2.06E-07 ↓ 1.63E-08 

Glycine 3.56 (s) ns 6.91E-01 ns 1.28E-01 
a↑: increase in metabolite concentration with age; ↓: decrease in metabolite concentration with age; ns: non 
significant metabolite variation. b P-values obtained with an unpaired two-tailed t-test, corrected with the 
Benjamini-Yekutieli method for multiple testing. P-values < 0.05 are significant. YA: young adult; A7: adult. 
Acetate, lactate, glycerol and glycine p-values are not reliable due to signal overlaps. 



 

Table 3.2.5. Metabolite variations between WT and daf-18(e1375) and between slcf-1(tm2258) and slcf-1(tm2258);daf-18(e1375) in young 
adults and adults. 

Metabolite 
YA: 

daf-18a vs 
WTa  

Pb 
A7: 

daf-18 vs 
WTa 

Pb 

YA: 
slcf-1; 

daf-18 vs 
slcf-1a 

Pb 

A7: 

slcf-1; 

daf-18 vs 

slcf-1a 

Pb 

Alanine ↑ 2.21E-08 ↓ 4.27E-03 ns 1.00E+00 ↓ 1.61E-11 

Betaine ns 4.09E-01 ns 1.00E+00 ns 1.00E+00 ↑ 1.35E-02 

Choline ns 1.00E+00 ↑ 4.57E-08 ns 7.20E-01 ↑ 1.54E-06 

Cystathionine ns 1.00E+00 ↑ 7.29E-14 ns 1.00E+00 ↑ 2.93E-14 

Formate ns 1.00E+00 ↓ 3.30E-07 ns 2.03E-01 ↓ 9.55E-08 

GPC ns 1.00E+00 ns 4.95E-01 ns 5.19E-01 ↓ 3.03E-07 

Glutamate ns 1.00E+00 ↑ 2.00E-05 ↓ 3.48E-04 ns 5.72E-01 

Glutamine ↓ 2.20E-02 ↑ 1.25E-03 ns 5.19E-01 ↑ 4.06E-03 

Isoleucine ↑ 3.26E-02 ↑ 4.74E-02 ns 5.19E-01 ns 1.38E-01 

Leucine ↑ 1.72E-03 ↑ 2.56E-03 ↑ 3.66E-02 ↑ 6.65E-05 

Lysine ↑ 2.54E-03 ↑ 9.91E-11 ns 1.00E+00 ns 1.00E+00 

Phenylalanine ↑ 4.20E-03 ↑ 2.00E-05 ns 8.54E-01 ns 6.42E-01 

Phosphocholine ns 5.39E-01 ↑ 3.30E-07 ns 1.00E+00 ↑ 3.93E-26 

Succinate ns 5.11E-02 ↑ 1.22E-13 ns 1.21E-01 ↑ 3.11E-14 

Tyrosine ns 4.75E-01 ↑ 2.46E-08 ns 2.03E-01 ↑ 2.24E-06 

Trehalose ↓ 2.96E-04 ↓ 1.54E-09 ns 8.83E-01 ↓ 4.58E-05 

Valine ↑ 4.94E-03 ns 1.00E+00 ns 1.00E+00 ns 1.00E+00 

Arginine ↑ 1.53E-04 ↑ 4.01E-06 ↑ 3.66E-02 ↓ 1.21E-06 

Acetate ↑ 1.54E-04 ↑ 1.37E-07 ns 1.00E+00 ns 1.00E+00 

Lactate ns 1.00E+00 ↓ 3.07E-19 ↑ 2.19E-02 ↓ 3.51E-17 

Glycerol ↓ 1.96E-03 ↓ 4.52E-05 ns 5.19E-01 ↓ 2.34E-04 

Glycine ↑ 3.79E-02 ↑ 1.85E-02 ns 1.00E+00 ns 1.00E+00 
a↑: increase in metabolite concentration in daf-18 or slcf-1;daf-18 by comparison to WT or slcf-1; ↓: decrease in metabolite concentration in daf-18 or slcf-1;daf-18 by comparison to WT or slcf-1; 
ns: non significant metabolite variation. bP-values obtained with an unpaired two-tailed t-test, corrected with the Benjamini-Yekutieli method for multiple testing. P-values < 0.05 are significant. 
YA: young adult; A7: adult. Acetate, lactate, glycerol and glycine p-values are not reliable due to signal overlaps. 



 

These results thus suggest that the regulation of PCho pathway by DAF-18/PTEN is 

conserved across species. Furthermore DR not only extends lifespan but also prevents 

cancer.[241] Our data therefore underline a new mechanism by which DR may counteract 

tumour development by preventing the up-regulation of choline kinase expression. 

 
Figure 3.2.5. Activation of the phosphocholine pathway with aging; a) Relative concentrations in 

arbitrary units of phosphocholine in young and 7 day-old adults WT, slcf-1(tm2258), daf-18(e1375) and 

slcf-1(tm2258);daf-18(e1375) double mutants. Results are reported with means and 95% confidence 

intervals. b) Relative concentrations in arbitrary units of ckb-2 mRNA in young and 7 day-old adults 

WT, slcf-1(tm2258), daf-18(e1375) and slcf-1(tm2258);daf-18(e1375) double mutants. Results are 

reported with means and standard deviations. 

Recent studies also reported the modification with age of PCho levels and/ or other 

choline metabolites, among many other metabolites, in different species including human.[167, 

243-245, 254] Our data thus establish C. elegans as a relevant model to investigate the regulation of 

choline metabolism in aging and its relationship with age associated diseases. 
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3.2.2 Metabolic phenotyping of ahr-1(ia03) C. elegans mutant 

3.2.2.1 Introduction 

Toxicity and carcinogenic effects of a wide variety of environmental contaminants such as 

dioxin (TCDD; 2,3,7,8-tetrachlorodibenzo-[p]-dioxin) are mediated in a large extent by the 

Aryl hydrocarbon (dioxin) receptor (AhR), a ligand-activated transcription factor.[255] Beyond 

activation with xenobiotics, studies have shown that AhR possesses an independent 

endogenous cellular function, involved in cell proliferation, cell differentiation and cell 

migration as wells as carcinogenesis. However, the molecular bases of the AhR endogenous 

function have not been yet completely characterized and understood.[255] 

In the model organism Caenorhabditis elegans, an AhR ortholog termed AHR-1 has 

been identified.[256] This receptor is not activated by dioxin or related chemical compounds.[257] 

The endogenous AHR-1 function, evaluated with the characterization of loss-of-function in C. 

elegans mutants plays at least a role in regulation of neural development,[257] or fatty acid 

metabolism.[258] Furthermore, a transcriptomic analysis of AHR-1 mutants has characterized 

expression changes of genes involved in development, growth and metabolism.[258] 

Metabolomics approaches have focused mainly on the effects of dioxin-related 

compounds on metabolism in different systems such as HepG2 liver cells,[259] mice[260] or 

rats[261, 262] in the context of toxicological studies. However, endogenous AhR function on 

global metabolism has never been investigated with untargeted metabolomic techniques. 

In this study, we applied whole-organism HR-MAS NMR spectroscopy to characterize 

metabolic changes induced by ahr-1 C. elegans mutants and get insight into the effects of the 

endogenous AHR-1 function on worm metabolism. We thus compared the metabolic profiles 

of control wild-type worms (N2) and ahr-1(ia03) C. elegans mutants where the mutation 

causes a loss of function for the AHR-1 receptor, with or without AHR-1 coupling with a 

GFP reporter (WT-GFP and KO-GFP). 

3.2.2.2 Material and Methods 

Sample preparation (Bui Linh-Chi, Université Paris Descartes). Worms were grown 

according to standard protocol except for a liquid step in worm amplification. Worms were 

fixed for 45 minutes in 1% paraformaldehyde and then washed 5 times in distilled water 

followed by 5 washes in deuterium oxide. 30 ml disposable Kel-f inserts with sealing caps for 

4 mm NMR rotors were filled with around 1000 whole worms and frozen at -80°C for storage 
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until NMR analysis. Samples were thawed at room temperature 15 minutes before the NMR 

experiments. 

Whole C. elegans HR-MAS NMR spectroscopy. C. elegans HR-MAS NMR spectroscopy 

was performed as previously described by Blaise et al.[27, 44] All experiments were carried out 

on a Bruker Avance II spectrometer, operating at 700 MHz (proton resonance frequency), 

equipped with a 4 mm HR-MAS double resonance (1H-13C) probe. Temperature was 

controlled at 295 K throughout the experiments and magic angle spinning speed set to 3.5 

KHz. A set of 1D 1H NMR experiments with water presaturation, including 1D 1H NOESY 

and 1D 1H CPMG were preformed on each sample to derive metabolic profiles. 256 free 

induction decays (FIDs) were co-added, with a 12 ppm spectral width and an acquisition time 

of 1.4 s, corresponding to 23568 data-points, with a relaxation delay of 1.7 s, for a total 

experimental time of 13 minutes per spectrum. The NOESY mixing time was set to 100 ms 

and the CPMG spin-echo delay adjusted to 300 µs for each of the 80 spin-echo loops (48 ms 

total echo time). The 1H 90° hard pulse length was calibrated at 6.2 µs. 2D NMR experiments, 

including 1H-1H TOCSY and 1H-13C HSQC experiments, were carried out on a subset of 

selected samples to characterize structural connectivities between nuclei and refine metabolite 

identification. 

NMR data processing. All FIDs were multiplied by an exponential function corresponding 

to a 0.3 Hz line-broadening factor prior to Fourier transform. Phasing and baseline correction 

were performed manually in Topspin 2.1 (Bruker, GmbH, Rheinstetten, Germany). Spectra 

were automatically calibrated on the CH3 alanine doublet at δ = 1.48 ppm.  Spectra were then 

imported in the AMIX software (Bruker, GmbH, Rheinstetten, Germany) and reduced over 

the chemical range of 0.55-8.75 ppm to 8200 10-3 ppm wide bins with integration of signal 

intensity. Residual water signal (δ = 4.45-5.1 ppm) as well as the DMSO signal (δ = 2.71-2.75 

ppm) and the methanol signal (δ = 3.35-3.36 ppm) were discarded prior to analysis. Spectra 

were normalized using the probabilistic quotient normalization (PQN) approach,[97] with a 

median of all spectra as reference spectrum and mean-centred. Metabolite assignment was 

completed exploiting reference data from the literature,[27, 226] the HMDB,[50] MMCD,[49] 

bbiorefcode-2-0-0 (Bruker, GmbH, Rheinstetten, Germany) and Chenomx NMR Suite 7.0 

(Chenomx Inc, Edmonton, Canada) spectral databases. 

NMR data analysis.  Principal component analysis (PCA)[187] was first conducted in SIMCA 

P12+ (Umetrics, Umea, Sweden) to derive the main sources of variance within the dataset, 

assess sample homogeneity and exclude biological or technical outliers. Orthogonal 
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projection to latent structure discriminant analysis (OPLS-DA) was then performed in 

MATLAB (The MathWorks Inc., Natick, MA) to derive pair-wise comparison between the 

different conditions (strains and ages).[100] Metabolites involved in class discrimination are 

then derived from an univariate approach based on the statistical recoupling of variables 

(SRV).[94] Univariate analysis is performed using the non-parametric two-sided rank sum test 

calculated for each recoupled clusters of variables. Variable statistical significance threshold 

was evaluated from the Benjamini-Hochberg correction for multiple testing.[102] 

3.2.2.3 Results and Discussion 

The ahr-1(ia03) mutation carried by the ahr-1(ia03) C. elegans mutants corresponds to a 

1517-bp deletion in the ahr-1 gene inducing a strong loss-of-function for that gene.[257] We 

recorded HR-MAS NMR metabolic signatures for wild-type (N2) worms, ahr-1(ia03) 

mutants and their counterparts which possessed a GFP reporter, WT-GFP and KO-GFP. A 

typical 700 MHz 1H NOESY NMR C. elegans spectra displayed broad signals from lipids on 

which narrower signals from small mobile molecules such as amino acids, organic acids, 

choline derivatives or carbohydrates were superimposed. We detected in the different strains 

of this study some metabolites such as allantoin or β-alanine, which were not observed in the 

previous study on the effects of aging on C. elegans metabolism (see Part 1.2.1). These 

differences could come from the sample preparation protocols, which were slightly different 

with an amplification step in liquid phase for this study on AHR-1, but also from C. elegans 

strains themselves, which were probably not genetically identical, even for N2 wild-type 

worms, as their origins were different. Above all, this observation highlights the necessity to 

include adequate controls within each study to get the most reliable comparisons between 

strains. 

Effects of AHR-1 GFP-reporter. We investigated the effects of the GFP reporter for AHR-1 

on worm metabolism by comparing N2 and WT-GFP in an OPLS model built with 7 

orthogonal components, and associated with high goodness-of-fit-parameter values (R2X = 

0.933, Q2 = 0.955, Figure 3.2.6). We observed a robust discrimination between the two 

strains. Coupling with GFP is associated with an increase in phenylalanine, tyrosine, 

asparagine, β-alanine and glutamate and a decrease in phosphocholine. 
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Figure 3.2.6. OPLS model discriminating N2 worms and WT-GFP worms (7 orthogonal components; 

R2X = 0.933, Q2 = 0.955): a) score plot, b) validation results with 1000 permutations and c) 

corresponding loadings plot resulting from the SRV analysis, showing OPLS coefficients values, 

colored from correlation values if variables were found statistically significant after an univariate 

procedure corrected for multiple testing (Benjaminin-Hochberg correction). 

We performed the same analysis in the ahr-1 mutants. An OPLS model was built with 

3 orthogonal components, associated with high goodness-of-fit-parameters (R2X = 0.875, Q2 

= 0.853, Figure 3.2.7). Worms with GFP reporter for AHR-1 are associated with an increase 

in phenylalanine, tyrosine, cystathionine, lysine, asparagine, β-alanine, glutamine and leucine 

and a decrease in phosphocholine and glycerophosphocholine. 

These results showing that coupling AHR-1 with GFP has an effect on the worm 

metabolism are quite unexpected and suggest that AHR-1 function is probably altered when 

coupled with GFP. For ahr-1 mutants, we could interpret this data as a modification of the 

residual AHR-1 function in response to coupling with GFP. 
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Figure 3.2.7. OPLS model discriminating KO-GFP mutants and AhR(ia03) mutants (3 orthogonal 

components; R2X = 0.875, Q2 = 0.853): a) score plot, b) validation results with 1000 permutations and 

c) corresponding loadings plot resulting from the SRV analysis, showing OPLS coefficients values, 

colored from correlation values if variables were found statistically significant after an univariate 

procedure corrected for multiple testing (Benjaminin-Hochberg correction). 

The inactivation of the AHR-1 receptor has an impact on C. elegans metabolism. To 

evaluate the effects of the AHR-1 receptor inactivation on C. elegans metabolism, we 

compared the metabolic profiles of wild-type N2 control worms and ahr-1(ia03) mutants. We 

built an OPLS model with 3 orthogonal components, associated with high goodness-of-fit-

parameter values, showing a robust discrimination between the two worm strains involving a 

wide range of metabolites (R2X = 0.903, Q2 = 0.93, Figure 3.2.8). Compared to N2 worms, 

ahr(ia03) mutants are associated with high levels of tyrosine, glycerol, cystathionine, lysine, 

asparagine, β-alanine, valine, leucine and isoleucine, and low levels of allantoin, trehalose, 

phosphocholine, glycerophosphocholine, cyclic and oxidized fatty acids. 
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Figure 3.2.8. OPLS model discriminating N2 worms and AhR(ia03) mutants (3 orthogonal 

components; R2X = 0.903, Q2 = 0.93): a) score plot, b) validation results with 1000 permutations and c) 

corresponding loadings plot resulting from the SRV analysis, showing OPLS coefficients values, 

colored from correlation values if variables were found statistically significant after an univariate 

procedure corrected for multiple testing (Benjaminin-Hochberg correction). 

KO-GFP and WT-GFP worms are also metabolically distinct. To confirm the previous 

metabolic signature of AHR-1 inactivation in C. elegans, we compared the metabolic profiles 

of WT-GFP and KO-GFP worms in an OPLS model, built with 2 orthogonal components and 

associated with high goodness-of-fit-parameter values (R2X = 0.783, Q2 = 0.973, Figure 

3.2.9). We observed a robust discrimination between the two strains where KO-GFP worms 

are associated with high levels of phenylalanine, tyrosine, cystathionine, lysine, β-alanine, 

glutamine, valine, leucine and isoleucine, and low levels of allantoin, trehalose, 

phosphocholine and glycerophosphocholine, glutamate, cyclic and oxidized fatty acids by 

comparison to WT-GFP. 
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Figure 3.2.9. OPLS model discriminating WT-GFP worms and KO-GFP mutants (2 orthogonal 

components; R2X = 0.783, Q2 = 0.973): a) score plot, b) validation results with 1000 permutations and 

c) corresponding loadings plot resulting from the SRV analysis, showing OPLS coefficients values, 

colored from correlation values if variables were found statistically significant after an univariate 

procedure corrected for multiple testing (Benjaminin-Hochberg correction). 

Specific metabolic signature of AHR-1 inactivation. The metabolic signatures observed in 

response to AHR-1 inactivation are very consistent between the conditions with or without 

coupling with GFP. We were thus able to define a robust specific metabolic signature of 

AHR-1 inactivation as the intersection of these two metabolic signatures. The AHR-1 

inactivation in C. elegans thus induces a decrease in levels of allantoin, trehalose, 

phosphocholine, glycerophosphocholine, glutamate, cyclic and oxidized fatty acids and an 

increase in levels of tyrosine, cystathionine, lysine, β-alanine, valine, leucine and isoleucine.  

The AHR-1 inactivation induces thus important changes in amino-acid and 
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analysis performed in ahr-1 C. elegans mutants, where many genes involved in these 

metabolic pathways were over or under-expressed.[258] Furthermore, fatty acid metabolism 

appears regulated by AHR-1, as total fatty acid levels are decreased in ahr-1 mutants. Links 

between AHR-1 and fatty acid biosynthesis have already been suggested, in particular 

through the changes of the length of fatty acid methyl esters in response to AHR-1 

inactivation.[258] 

Curiously, the metabolic signature of ahr-1 mutants shares large similarities with the 

metabolic signature of physiological aging determined in the previous study (see Part 1.2.1). 

Indeed, ahr-1 mutants are characterized by high levels of valine, isoleucine, leucine, lysine, 

cystathionine and tyrosine and low levels of oxidized and cyclic fatty acids, 

glycerophosphocholine and phosphocholine as young adult wild-type worms compared to 

adult wild-type worms. Our results could thus suggest an effect of AHR-1 on the process of 

development and aging of C. elegans. To further support this hypothesis, a transcriptomic 

analysis has also shown the regulation of genes involved in larval development and normal 

growth.[258] 

3.2.2.4 Conclusion 

In this study, we demonstrated that loss-of-function mutation in the ahr-1 gene induces strong 

metabolic changes in the model organism C. elegans involving amino-acid metabolism, 

carbohydrate metabolism as well as fatty acid metabolism. These metabolic perturbations 

were consistently observed in C. elegans strains including or not a GFP reporter for AHR-1. 

Above all, our results suggest an effect of AHR-1 on the development and aging of C. 

elegans, which would require validation and characterization. Experiments are already 

planned to evaluate ahr-1 C. elegans longevity modification and further interprete this 

dataset. 
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3.3 Metabolic phenotyping of HBV-infected liver cells 

3.3.1 Introduction 

Understanding the molecular bases of the interaction between hepatitis B virus (HBV) and its 

host, the liver cell, leading to chronic hepatitis and liver cancer, is a rational approach to 

derive new drug targets to fight the HBV pandemic.  

Dai et al. identified a physical and functional interaction between the HBV protein 

HBx and the endogenous multifunctional E4F1 protein in a cellular model of 

hepatocarcinoma, HepG2, infected by HBV.[263] The E4F1 protein is known as a transcription 

factor involved in different biological processes like cellular proliferation control,[264, 265] 

oxidative stress metabolism[266] or survival of embryonic and somatic adult stem cells.[267, 268] It 

was demonstrated that E4F1 protein neutralizes p53 protein-dependent detrimental activities 

of HBx on cytoplasmic vesicle processing and cell proliferation. This enhances the tolerance 

of liver cells towards HBV infection and thus contributes to the maintenance and survival of 

chronically infected cells. We aimed at complementing these observations by investigating 

the effects of the E4F1-Hbx interaction on the HBV-infected cell metabolism. 

Different metabolomic approaches have been developed to probe mammalian cell 

metabolism, based on mass spectrometry, liquid-state NMR spectroscopy or high-resolution 

magic angle spinning (HR-MAS) NMR spectroscopy.[269] In this context, the HepG2 cell line 

has been used as a cellular model of hepatocarcinoma for cancer research[270] and also as a 

cellular model of liver to evaluate drug liver metabolism and hepatotoxicity in toxicology 

studies.[259, 271-273] In our study, we investigated whether the interaction between E4F1 and HBx 

had an effect on the HBV-infected liver cell metabolism. We probed HBV-infected HepG2 

cell metabolism from intact whole cells by HR-MAS NMR spectroscopy.[26] We characterized 

these cells in three different conditions, with reduction of E4F1 levels through RNA 

interference (E4F1 silencing, siE4F1), reduction of both E4F1 and HBx levels (E4F1 and 

HBx double silencing, siE4F1-HBx) and control silencing (scr), looking for HBx-dependent 

metabolic perturbations of E4F1 silencing. 
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3.3.2 Materials and methods 

Experiment model of HBV-infected hepatocarcinoma cells and targeted gene silencing. 

To model HBV-infected liver cells, we used the cellular model of hepatocarcinoma, HepG2, 

modified to express cDNA encoding HBV genotype D and assemble viral particles in vitro, 

referred as HepG2/2.2.15.[274] 

Sample preparation (Yayun Dai, IARC). 4.105 cells were seeded in six-well plates and 

transfected for 48hrs with E4F1 or Scramble small interfering RNA (siRNA) as described in 

Appendix. Cells were then harvested by trypsinization and the cell pellet (32.106) was washed 

in a freshly prepared 0.9% NaCl solution in D2O (D215B - Deuterium oxide 100%, 

CortecNet, France). After gentle homogenization in 250 ml of NaCl/D2O solution the cell 

suspension was distributed in 30 ml disposable NMR inserts (B4495, CortecNet, France) and 

immediately stored at -80℃ until analyzed.  

Whole HepG2 cells HR-MAS NMR spectroscopy. All experiments were carried out on a 

Bruker Avance II spectrometer, operating at 700 MHz (proton resonance frequency), 

equipped with a 4 mm HR-MAS double resonance (1H-13C) probe. Temperature was 

controlled at 293 K throughout the experiments and magic angle spinning speed set to 3.5 

KHz. 1D 1H NOESY NMR experiments with water presaturation were preformed on each 

sample to derive metabolic profiles. 512 free induction decays (FIDs) were co-added, with a 

12 ppm spectral width and an acquisition time of 1.36 s, corresponding to 22856 data-points, 

with a relaxation delay of 2 s, for a total experimental time of 30 minutes per spectrum. The 

NOESY mixing time was set to 100 ms. The 1H 90° hard pulse length was calibrated at 7.5 

µs. 2D NMR experiments, including 1H-1H TOCSY and 1H-13C HSQC experiments, were 

carried out on a subset of selected samples to characterize structural connectivities between 

nuclei and refine metabolite identification. 

NMR data processing. All FIDs were multiplied by an exponential function corresponding 

to a 0.3 Hz line-broadening factor prior to Fourier transform. Phasing and baseline correction 

were performed manually in Topspin 2.1 (Bruker, GmbH, Rheinstetten, Germany). Spectra 

were automatically calibrated on the CH3 alanine doublet at δ = 1.48 ppm.  Spectra were then 

imported in the AMIX software (Bruker, GmbH, Rheinstetten, Germany) and reduced over 

the chemical range of 0.5-8.6 ppm to 8100 10-3 ppm-wide bins with integration of signal 

intensity. Residual water signal (δ = 4.5-5.18 ppm) and ethanol signals (δ = 1.17-1.197, 

3.636-3.674 ppm) were excluded. Spectra were normalized using the probabilistic quotient 
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normalization (PQN) approach,[97] with a median of all spectra as reference spectrum and 

mean-centred. Metabolite assignment was completed exploiting reference data from the 

literature,[259] the HMDB,[50]MMCD,[49] bbiorefcode-2-0-0 (Bruker, GmbH, Rheinstetten, 

Germany) and Chenomx NMR Suite 7.0 (Chenomx Inc, Edmonton, Canada) spectral 

databases. 

NMR data analysis. Principal component analysis (PCA)[187] was first conducted in SIMCA 

P12+ (Umetrics, Umea, Sweden) to derive the main sources of variance within the dataset, 

assess sample homogeneity and exclude biological or technical outliers. Orthogonal 

projection to latent structure discriminant analysis (OPLS-DA) was then performed in 

MATLAB (The MathWorks Inc., Natick, MA) to derive pair-wise comparison between the 

different conditions (strains and ages).[100] Metabolites involved in class discrimination are 

then derived from an univariate approach based on the statistical recoupling of variables 

(SRV) analysis.[94] Univariate analysis is performed using the non-parametric two-sided rank 

sum test on each recoupled clusters of variables. Variable statistical significance was 

evaluated with different thresholds for p-values: 0.05, 0.01, and the threshold calculated from 

the Benjamini-Hochberg correction for multiple testing.[102] 

3.3.3 Results and discussion 

We studied HepG2/2.2.15 cells with reduction in E4F1 levels only (siE4F1) or in both E4F1 

and HBx levels (siE4F1-HBx), using small interfering RNA. This process of protein depletion 

corresponds to targeted post-transcriptional gene silencing based on RNA interference.[275] We 

used HepG2/2.2.15 cells undergoing silencing with a non functional siRNA (scr) as controls 

to cancel out the effects of the silencing procedure in pair-wise comparisons. We performed 

HR-MAS NMR spectroscopy on intact whole HepG2/2.2.15 cells to derive a metabolic 

profile for each sample. A typical 700 MHz 1H NOESY NMR spectrum of siE4F1-HBx cells 

displays signals from mobile low-molecular weight molecules, such as amino-acids, choline 

compounds or nucleoside derivatives, superimposed on broad signals from lipids (Figure 

3.3.1). 
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Figure 3.3.1 700 MHz 1D 1H HR-MAS Noesy NMR spectrum of siE4F1-HBx cells for aliphatic (δ = 

0.5-4.5 ppm) and aromatic (δ = 5.5-8.5 ppm, magnified 5 times) regions. 

Effects of E4F1 silencing on HepG2/2.2.15 metabolism. We first probed the effects of E4F1 

level reduction on HBV-infected hepatocarcinoma cell metabolism, by comparing the 

metabolic profiles of HepG2/2.2.15 cells undergoing E4F1 silencing (siE4F1) and control 

HepG2/2.2.15 cells undergoing silencing with a non functional siRNA (scr). We observe a 

significant discrimination between scr control cells and siE4F1 cells (Figure 3.3.2a, b, R2X = 

0.965, R2Y = 0.976 and Q2 = 0.854). Glutathione, acetate, leucine and tyrosine levels are 

lower in siE4F1 cells while inosine and phosphocholine levels are higher, reaching the level 

of significance (q-value < 0.05) after Benjamini-Hochberg correction for multiple testing. 

Without reaching this degree of significance but still associated with low p-values (without 

correction for multiple testing, p-value < 0.05), glutamate, succinate and uridine derivatives 

show lower levels and unsaturated lipids higher levels in siE4F1 (Figure 3.3.2c, Table 3.3.1). 

These metabolic variations may correspond to the cell endogenous response to E4F1 protein 

depletion as well as to perturbations of the effects on the cell metabolism of the viral HBx 

protein interacting with E4F1. 

Effects of E4F1 and HBx double silencing on HepG2/2.2.15 metabolism. We 

characterized the metabolic profiles of HepG2/2.2.15 cells undergoing a double silencing, for 

E4F1 and HBx proteins (siE4F1-HBx). 
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Figure 3.3.2 Discrimination between control scr cells and siE4F1 cells obtained with an OPLS model 

(7 orthogonal components, R2X = 0.965, R2Y = 0.976 and Q2 = 0.854): a) score plot, b) validation 

results with 100 permutations and c) loading plot. NMR variable clusters associated with a p-value < 

0.05 are colored according to their correlation values. 

We first observe a smaller but significant discrimination between siE4F1 cells and siE4F1-

HBx cells (Figure 3.3.3a, b, 2 orthogonal components, R2X = 0.857, R2Y = 0.592 and Q2 = 

0.39) involving higher levels of glutathione, uridine derivatives in siE4F1-HBx cells, reaching 

the level of significance (q-value < 0.05) after Benjamini-Hochberg correction for multiple 

testing (Figure 3.3.3c, Table 3.3.1). Phosphocholine, glutamate and tyrosine are also 

increased and inosine decreased in siE4F1-HBx cells without reaching this level of 

significance but with p-values below 0.05 (Figure 3.3.3c, Table 3.3.1). 
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Figure 3.3.3 Discrimination between control siE4F1 cells and siE4F1-HBX cells obtained with an 

OPLS model (2 orthogonal components, R2X = 0.857, R2Y = 0.592 and Q2 = 0.39): a) score plot, b) 

validation results with 1000 permutations and c) loading plot. NMR variable clusters associated with a 

p-value < 0.05 are colored according to their correlation values. 

Furthermore, siE4F1-HBx and scr cells are significantly discriminated (Figure 3.3.4a, 

b, 4 orthogonal components, R2X = 0.908, R2Y = 0.884 and Q2 = 0.748). The metabolic 

signature involves an increase in unsaturated lipids reaching the level of significance (q-value 

< 0.05) after Benjamini-Hochberg correction and with less significance but still with low p-

values (p < 0.05) higher levels of creatine, inosine, uridine derivatives, phosphocholine, 

oxidized lipids and lower levels of acetate, alanine and choline in siE4F1-HBx cells (Figure 

3.3.4c, Table 3.3.1). Glutathione, glutamate and tyrosine levels are not significantly different 

between siE4F1-HBx and scr cells (Figure 3.3.4c, Table 3.3.1). 
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Figure 3.3.4 Discrimination between control scr cells and siE4F1-HBX cells obtained with an OPLS 

model (4 orthogonal components, R2X = 0.908, R2Y = 0.884 and Q2 = 0.748): a) score plot, b) 

validation results with 1000 permutations and c) loading plot. NMR variable clusters associated with a 

p-value < 0.05 are colored according to their correlation values. 

Phosphocholine and lipid metabolism perturbations in siE4F1 and siE4F1-HBx cells. 

Phosphocholine and unsaturated lipid levels are both increased in siE4F1 and siE4F1-HBx 

cells by comparison to scr cells. Dai et al. observed an increase in intra-cytoplasmic large 

vesicle turnover and accumulation after E4F1 silencing in HepG2/2.2.15 cells which is not 

cancelled out by further HBx silencing. Changes in phosphocholine and lipid metabolism 

could thus be linked to higher lipid membrane production and disruption in HepG2/2.2.15 

cells undergoing E4F1 or E4F1-HBx silencing.[276] 
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Table 3.3.1. Metabolites involved in the discrimination between scr, siE4F1 and siE4F1-HBx 

Metabolites δ 1H 
(ppm) 

siE4F1 
vs scra 

p-value  
siE4F1vs 

scrd 

siE4F1-
HBx vs 

scrb 

p-value 
siE4F1-

HBx vs scrd 

siE4F1-
HBx vs 
siE4F1c 

p-value 
siE4F1-
HBx vs 
siE4F1d 

acetate 1.919 ↓*** 5.89 × 10-4 ↓** 7.03 × 10-3 - - 
alanine 1.48 - - ↓* 2.33 × 10-3 - - 
creatine 3.93 - - ↑** 9.63 × 10-3 - - 

glutamate 2.355 ↓* 3.39 × 10-2 - - ↑** 4.42 × 10-2 
glutathione 2.96 ↓*** 2 × 10-3 - - ↑*** 3.47 × 10-4 

inosine 6.10 ↑*** 3.93 × 10-5 ↑* 1.12 × 10-2 ↓* 2.25 × 10-3 
leucine 0.96 ↓*** 9.175 × 10-3 - - - - 

succinate 2.41 ↓* 1.43 × 10-2 - - - - 
tyrosine 7.187 ↓*** 1.91× 10-4 - - ↑** 2.96 × 10-3 
uridine  

derivatives 7.96 ↓* 2.5 × 10-2 ↑* 3.20 × 10-2 ↑*** 3.58 × 10-5 

choline 3.20 - - ↓* 1.24 × 10-2 - - 
glyceryl lipids 5.228 ↑*** 2.90 × 10-5 ↑*** 6.99 × 10-5 - - 

phosphocholine 3.62, 
3.225 ↑*** 1.68 × 10-3 ↑** 7.41 × 10-3 ↑** 8.01 × 10-3 

unsaturated lipids 
(CH=CH) 5.33 ↑* 1.23 × 10-2 ↑*** 1.93 × 10-4 - - 

oxydized lipids 
(CH2-CH2-CO) 2.255 - - ↑* 1.12 × 10-2 - - 

lipids 
(-(CH2)n)- 

1.31 - - ↑* 3.66 × 10-2 - - 
a ↑: increase in siE4F1 cells by comparison to scr cells, ↓: decrease in siE4F1 cells by comparison to scr cells; b ↑: 
increase in siE4F1-Hbx cells by comparison to scr cells, ↓: decrease in siE4F1-Hbx cells by comparison to scr 
cells; c ↑: increase in siE4F1-HBx cells by comparison to siE4F1 cells, ↓: decrease in siE4F1-HBx cells by 
comparison to siE4F1 cells; d P-values obtained from a two-sided rank-sum test; *: p-value < 0.05; **: p-value < 
0.01; ***: q-value (defined with Benjamini-Hochberg correction) < 0.05. 
 

Perturbations of oxidative metabolism. Glutamate and total glutathione, both involved in 

glutathione pathway, display low levels in siE4F1 cells by comparison to scr or siE4F1-HBx 

cells and no significant changes between scr and siE4F1-HBx cells. We did not monitor any 

variations in the ratio between oxidized and reduced glutathione. These metabolic variations 

are thus induced by siE4F1 silencing and cancelled out by siHBx silencing. We can thus 

hypothesize that these metabolic perturbations reflect the effects of the viral HBx protein on 

HepG2/2.2.15 cell metabolism, counteracted by E4F1. Glutathione is known to be an 

antioxidant specie associated with oxidative metabolism. Low glutathione levels observed in 

siE4F1 cells only could thus be interpreted as the reflect of a high oxidative cell state induced 

by HBx but balanced by E4F1 in normal conditions. It has already been shown that HBx is 

closely linked to oxidative stress, as HBx increases production of reactive oxygen species[277] 

and conversely, reactive oxygen species increase HBx levels.[278] Our results thus suggest that 

E4F1 balances HBx effects on cell oxidative metabolism. 
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3.3.4 Conclusion 

Dai et al. identified E4F1 as partner for HBx in HCC cells and demonstrated that this 

interaction neutralizes detrimental activities of HBx on cytoplasmic vesicle processing and 

cell proliferation. Our study shows that these changes are reflected at the metabolic level 

through perturbations of lipid and phosphocholine metabolism. Furthermore, our data 

suggests that E4F1 balances cell oxidative metabolism perturbations induced by HBx, further 

enhancing liver cell tolerance towards HBV infection. 
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3.4 Conclusion 

In this third part, we have introduced four metabolomic studies on model organisms, from rats 

to cells, highlighting how metabolomics can help to get insight into molecular mechanisms 

through charaterization of metabolic perturbations. Indeed, this approach allowed us to make 

hypotheses about the function of ahr-1 gene and link phosphocholine metabolism to aging in 

Caenorhabditis elegans, as well as monitoring the effects on HepG2 cell metabolism of the 

interaction between the endogenous E4F1 protein and the HBx viral protein. 

However, these studies allow us only to generate hypotheses at the molecular level, as 

they relied on observations and statistical correlations. For instance, we have observed a 

correlation between phosphocholine metabolism variations and aging in C. elegans but we are 

not able to distinguish if these variations are directly involved in aging mechanisms or due to 

global homeostatic metabolic changes indirectly linked to aging. It is thus mandatory to 

complement these studies by biological evidences proving involvment of metabolism in 

biological mechanisms under investigation with for instance modulation of enzyme activities 

through RNA interference. 

Metabolomic studies of small organisms should soon benefit from progress in 

analytical technologies towards higher sensitivity and spatial resolution, opening access to 

single-organism and single-cell characterization. These achievements would allow an increase 

in the throughput of analyses, improving biological condition coverage and result robustness. 

Furthermore, monitoring inter-organism or inter-cell variations would be particularly relevant, 

for instance, to characterize the different cell populations, which constitute tumors. 

 



 

Conclusion 

The improvements of analytical techniques such as Nuclear Magnetic Resonance 

spectroscopy and mass spectrometry, as well as the emergence of “omics” approaches have 

cast a new light on metabolism during this last decade, through the development of 

metabolomics. It has been discovered for instance that metabolism plays a central role in the 

biology of particular cancers, like glioblastoma. Metabolomics have been widely applied in 

the framework of clinical or epidemiological for biomarker discovery, with the hope to 

capture a global picture of diseases and organisms in their context as metabolism is located at 

the cross-road of different influences such as genetics, pathologies, diet, gut microbiota and 

more generally global environment. 

In this thesis, we have presented different developments and applications of 

metabolomics by high field NMR spectroscopy, from human biofluids studies to model 

animal characterizations, highlighting differences and specificities of this approach in 

different contexts. We have introduced the notion of targeted projection NMR spectroscopy 

for the analysis of complex mixtures, aiming at reducing metabolite signal overlaps and solve 

assignment ambiguities. We have introduced this approach in a model complex mixture, 

recording an optimized projection of a 3D 1H-1H-13C TOCSY-HSQC experiment. We have 

demonstrated that the serum samples from the EPIC cohort are suitable for NMR 
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metabolomics studies, by assessing the good quality of NMR spectra, identifying in a blind 

analysis 10 pairs of duplicates and evaluating metabolic differences between countries of 

sample origin, opening access to this rich biobank for the discovery of new dietary and 

disease risk biomarkers. Furthermore, we have shown that a blood metabolic signature can be 

associated with metastatic breast cancer. We have established potential plasma metabolic 

signatures for different liver pathologies, hepatocellular carcinoma (HCC) and chronic liver 

disease (CLD), from samples collected in Thailand. We have showed that liver function 

through the measure of albumin levels has a strong impact on plasma metabolic profiles but 

could not alone explain the HCC metabolic signature. Moving on to analyses of model 

organisms, we have characterized plasma and urine metabolic profiles of different rat strains, 

Fisher, Lewis, Wistar Kyoto and Brown Norway, commonly used as controls in genetic 

studies. We have investigated the effects of physiological aging in C. elegans and observed 

that dietary restriction (DR), a process which increase lifespan buffers metabolic changes 

associated with aging through the characterization of two C. elegans DR mutants, slcf-1 and 

eat-2. We have further identified that perturbations in phosphocholine metabolism correlate 

with life expectancy. We have then characterized the effects on metabolism of the loss of 

function mutation of ahr-1 gene, suggesting an involvement in development and aging 

processes, requiring further evaluation. We have finally investigated the metabolic influences 

of the interaction between the endogenous E4F1 protein and the HBx viral protein in a model 

of liver cells infected by HBV and suggested that E4F1 balances cell oxidative metabolism 

perturbations induced by HBx, further enhancing tolerance of liver cells. 

Metabolomics have strongly benefited from the advances of analytical devices we can 

expect some new improvements in the following years. For NMR spectroscopy, development 

of hardware technologies such as cryoprobes, microcoils or increase in magnetic field could 

improve sensitivity and resolution for this technique. Furthermore, the use of Dynamic 

Nuclear Polarization (DNP) raises hopes to dramatically increase the sensitivity of NMR 

devices. However, a global metabolome coverage by a single analytical technique seems still 

utopian and combination of complementary devices would be necessary in the future. Getting 

access to single single-cell analysis could address new relevant questions, related for instance 

to the spatial distribution of metabolites in tissues and tumors, delineating different cellular 

behaviors. 

In vivo magnetic resonance spectroscopy with the increase of magnetic fields in 

particular, could soon completely benefit from the results of in vitro metabolomics analytical 

strategies. Indeed, the chemical resolution of metabolic profiles, which can be obtained in 
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vivo, in small volumes, is increasing, capturing more and more information contained in ex-

vivo metabolomic profiles. A reinforced crosstalk between the two fields could thus be 

expected. 

Metabolomics offers now a new readout at the metabolic level for many biological 

systems, such as yeast, bacteria or cell cultures, small or large model organisms. We can 

imagine that biologists would exploit this tool to characterize their systems and further 

investigate the role of metabolism in biological processes. 

Except for the characterization of inborn errors of metabolism, metabolomics has not 

yet reached real clinical applications and is still in a discovery phase. A growing number of 

articles report metabolic differences between individuals in various conditions, of potential 

interests. However these results need to be validated in large patient cohorts, which should be 

now prospectively recruited according to the standard and designs of metabolomics studies. 

The issue of the specificity of these results for their use in a daily clinical environment is also 

of major interest. Many metabolites are now associated with completely different 

physiological or pathological processes. It seems thus necessary to refine clinical questions to 

obtain enough specificity. A global picture of metabolic variations in normal physiological 

conditions seems thus mandatory as well as the characterization of the effects on metabolism 

of non-specific pathological states encountered in many diseases such as anemia, kidney or 

liver failure.  

Metabolomics is a growing field which benefit from the late technological advances. 

From a discovery phase, the field is now moving to a validation phase, through the replication 

of studies with an increase in sample numbers and refinement of clinical questions towards 

real biomedical applications.  
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4.1 On EPIC cross-sectional pilot study: Methods for UPLC-MS 

and 600 MHz NMR spectroscopy 

In this part, we reported protocols used by our collaborators in Imperial College London for 

Ultra-Performance Liquid Chromatography-Mass Spectrometry (UPLC-MS) and Nuclear 

Magnetic Resonance (NMR) spectroscopy performed on a spectrometer operating at 600 

MHz, corresponding to established procedures.[17] 

Chemicals. All chemicals (water, methanol, acetonitrile, formic acid, leucine encephalin 

acetate hydrate, fetal bovine serum) were obtained from Sigma with all solvents of LCMS 

grade.  

Ultra Performance Liquid Chromatography – Quadrupole Time-of-Flight Mass 

Spectrometry (UPLC-QToFMS). All samples were thawed together on ice, vortex mixed 

(30 s) and kept on ice until prepared. Quality control (QC) samples were prepared using a 

linear combination of all samples. Column preconditioning samples were prepared using a 

surrogate FBS matrix, prepared in the same way as the biobank samples.  

For each sample, an aliquot (80 µL) was mixed with water (80 µL) and methanol (480 

µL, 4°C) and vortex mixed (30 s). Samples were kept at 4°C before a further vortex mix (30 

s) and then centrifugation (10 min, 16000 g, 4° C) to effectively deproteinize the sample. The 

supernatant (480 µL) was removed and transfered to a clean sample tube. Samples were then 

dried (Eppendorf SpeedVac, 40°C, 2hrs), recapped and stored at -80°C until the analysis by 

UPLC-QToFMS.  Samples were thawed (30 min, RT) before reconstitution in water (100 

µL), aided by vortex mixing (30 s). To ensure no particulate matter remained in the sample, 

each was centrifuged (10 min, 16000g, 4°C) before the supernatant (75 µL) was transferred to 

a clear glass sample vial (Waters Certified LCMS Vials).  

Analyses were performed on Acquity UPLC system (Waters Corporation, Milford, 

MA, USA) comprising a binary solvent manager, sample manager, column oven and 

photodiode array detector, hyphenated to a Water LCT Premier mass spectrometer (Waters 

MS Technologies, Manchester, UK) and controlled using MassLynx v4.1 software. An 

Acquity UPLC BEH C18 1.7 um 2.1 x 100mm column was used for the chromatographic 

separation of serum metabolites. The column was maintained at 50°C and the sample 

manager at 4°C. Samples remained in the cooled sample manager (4oC) during the entire 

analysis. 
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A binary gradient (solvent A = water + 0.1 % formic acid (v/v); solvent B = methanol 

+ 0.1 % formic acid (v/v)) was supplied to the chromatographic column at a flow rate of 0.4 

ml min-1. Gradient conditions are given in the Table 4.1.1. 

Table 4.1.1. Gradient conditions for UPLC-ToF-MS analysis of EPIC samples. Solvent A = 
water + 0.1 % formic acid (v/v); Solvent B = methanol + 0.1 % formic acid (v/v)). 

 
The chromatographic column was preconditioned with injections of FBS surrogate 

sample matrix, and then pooled QC samples (n=3) prior to the start of the full analytical 

batch. Visual inspection of the retention times of the main spectral features across the 

chromatograms resulting from these injections was used to determine whether the system was 

adequately reproducible and therefore equilibrated. Sample injections (5 µL) were made 

following an equilibration time (2 min) at the starting gradient conditions (100% A). Pooled 

QC samples were injected and analysed at the start, end, and after every 10 samples within the 

batch.  

The chromatographic eluent was delivered to the inlet of the mass spectrometer with 

the ion optics operating in V mode (resolution ~8000). Data was collected in the m/z range 

50-1000 in electrospray positive mode (ESI+). The source temperature was held at 120°C 

with a flow of nitrogen desolvation gas supplied at a rate of 900 L hr-1 at 350°C. The nitrogen 

sample cone gas was supplied at 25 L hr-1. The sample capillary voltage was set at 3.2 kV and 

the sampling cone voltage at 35 V. A reference solution (50:50 water:acetonitrile) containing 

1% (v/v%) formic acid and leucine enkephalin (m/z 556.2771, 50 pg µL-1) was infused into 

the LockSpray inlet at 10 µL min-1 to provide a linear mass calibration. 

Spectral Alignment, Feature Selection and Data Preprocessing. Mass spectral data was 

converted to NetCDF format using the DataBridge utility supplied with MassLynx v4.1 

(Waters). The resulting profile data from the analyte channel was processed using XCMS 

v1.16.3 running in the R computing environment. Briefly, spectral features comprising m/z-

retention time pairs were identified and extracted from the profile data using the centWave 

algorithm in XCMS. This uses a continuous wavelet transformation to identify regions of 

interest (ROIs) in the data and performs integration to generate a spectral feature intensity 
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matrix. The mass spectral data for one sample could not be processed at this stage (file error), 

and therefore this sample was omitted from related analysis. The relative standard deviation 

(RSD) of intensity data for mass-retention time spectral features selected by XCMS was 

calculated across the pooled QC (n=4) samples run throughout the batch for each mode (first 

and then after every 10 consecutive injections). “Well-behaved” features with RSD<5% 

across the QC samples were selected for use in multivariate analysis.  

1H Nuclear Magnetic Resonance Spectroscopy. Sample preparation and data processing 

were similar between ICL and CRMN. Concerning profile generation, 1H All NMR 

experiments were carried out on a Bruker AVANCE 600 NMR operating at 600.13 MHz 

(proton resonance frequency), equipped with a 5mm BBI probe and an automatic sample 

changer (B-ACS, Bruker) at ambient room temperature, Temperature was controlled at 300 K 

throughout the experiments. 1H 1D CPMG spectra were acquired into 32 K data-points as the 

sum of 128 transients, following 16 dummy scans. The water resonance was suppressed using 

resonance presaturation during the relaxation delay (2s). 



Appendixes 155 

Table 4.1.2. Major putative serum metabolites detected by 1H NMR and UPLC-MS. 
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Figure 4.1.1. Hierarchical clustering of 600 MHz 1H NMR metabolic profiles. Duplicate samples are 

indicated by similar sample IDs. The dendrogram is coloured according to country of origin  (green = 

Italy, red = France, blue = UK). Peak intensities for each species were corrected individually for 

analytical batch differences and data were autoscaled prior to analysis. 1H NOESY NMR data were 

mean-centred prior to analysis. Dendrograms were generated using single linkage and the Euclidean 

distance metric. 
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4.2 On metastatic breast cancer serum signature 

Table 4.2.1. Summary of clinicopathological characteristics of breast cancer patients: a) 
Training cohort characteristics; b) Validation cohort characteristics (Elodie Jobard, CRMN) 
 

A- Model 

Characteristics Localized Patients Metastatic Patients p valuea+ 

No. of subjects 28 23  

Age (mean/SD) 56.0 ± 9.2 57.5 ± 11.5 0.63 

Menopause   0.51 

Post-menopausal women 15(54%) 16(70%)  

Pre-menopausal women 11(39%) 6(26%)  

Unknown 2(7%) 1(4%)  

HER2 status   0.29 

Positive 5(18%) 7(30%)  

Negative 23 (82%) 16(70%)  

Hormone receptorsb   0.007 

HR+ 25(89%) 13(57%)  

HR- 3(11%) 10(43%)  

 

B - Validation  

Characteristic Localized Patients Metastatic Patients p valuea 

No. of subjects 18 14  

Age (mean/SD) 56.2 ± 11.0 56.7 ± 11.8 0.91 

Menopause   0.65 

Post-menopausal women 9(50%) 9(64%)  

Pre-menopausal women 8(44%) 4(29%)  

Unknown 1(6%) 1(7%)  

HER2 status   0.65 

Positive 2(11%) 2(14%)  

Negative 15(83%) 12(86%)  

Unknown 1(6%) 0(%)  

Hormone receptorsb   0.66 

HR+ 11(61%) 9(64%)  

HR- 6(33%) 5(36%)  

Unknown 1(6%) 0(0%)  

 

The two outliers are not included in these tables.a p-value calculated using either the Student 

or Chi2 tests respectively for the mean and for proportions.b Hormone receptors are receptors 

for estrogen and progesterone; HR-: at least one of the two receptors is negative; HR+: both 

receptors are positive. 
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Table 4.2.2. Summary of medical history of breast cancer patients (Elodie Jobard, CRMN) 
 

A- Medical History - Training Cohort 

Characteristics Localized Patients Metastatic Patients p value 

Hypertension 7 (25%) 7 (30%) 0.66 

Hypothyroïdism 3 (11%) 1 (4%) 0.40 

Deep vein thrombosis 1 (4%) 0 (0%) 0.36 

Hypercholesterol 3 (11%) 3 (13%) 0.79 

Bronchiectasis 1 (4%) 0 (0%) 0.36 

Viral cirrhosis C 1 (4%) 0 (0%) 0.36 

Glomerulonephritis 1 (4%) 0 (0%) 0.36 

Of allergy 1 (4%) 0 (0%) 0.36 

Dyslipidemia 0 (0%) 1 (4%) 0.26 

Tyroidectomy 0 (0%) 1 (4%) 0.26 

Stroke 0 (0%) 1 (4%) 0.26 

Tuberculosis 1 (4%) 0 (0%) 0.36 

Parkinson 1 (4%) 0 (0%) 0.36 

 

B- Medical History - Validation Cohort 

 Localized Patients Metastatic Patients p value  

Hypertension  1 (13%) 2 (40%) 0.4 

Hypothyroïdism 3 (38%) 1 (20%) 0.42 

Acute pancreatitis 1 (13%) 0 (0%) 0.37 

Bouveret’s disease 1 (13%) 0 (0%) 0.37 

Osteoporosis 1 (13%) 0 (0%) 0.37 

Depression 0 (0%) 1 (20%) 0.25 

Epilepsy 0 (0%) 1 (20%) 0.25 

Osteoarthritis 1 (13%) 0 (0%) 0.37 
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 Table 4.2.3. Metabolites identified from 1D and 2D NMR profiles of blood sera of patients 
with either metastatic or localized breast cancer (Elodie Jobard, CRMN). 

Metabolites 
 δ  1H 

ppm 

 δ  13C 

ppm 
Multiplicity Group Observed 

1.19 24.3 d γ-CH3 CPMG, J-Res, HSQC, TOCSY 

2.29  q half β-CH2 CPMG, J-Res, TOCSY 

2.39  q half β-CH2 CPMG, J-Res, TOCSY 
3-hydroxybutyrate 

4.14  m β-CH CPMG, J-Res, TOCSY 

Acetate 1.91  s CH3 CPMG, J-Res, TOCSY 

2.27 32.2 s CH3 CPMG, J-Res, HSQC 
Acetoacetate 

3.43 56.1 s  CPMG, J-Res 

Acetone 2.22  s CH3 CPMG, J-Res, TOCSY 

1.46 18.9 d CH3 CPMG, J-Res, HSQC, TOCSY 
Alanine 

3.76 53 q α-CH CPMG, J-Res, HSQC, TOCSY 

2.89 42 t ε-CH2 CPMG, HSQC 

2.96 42 t ε-CH2 HSQC Albumin lysil 

3.01 42 t ε-CH2 HSQC 

2.65  dd half β-CH2 J-Res 
Aspartate 

2.80  dd half β-CH2 J-Res 

3.25 56.3 s CH3 CPMG, J-Res 
Betaine 

3.90  s  CPMG,J-Res, HSQC 

0.65 14.2 m C18 NOESY, HSQC 

0.84 25.1  m C26, C27 CPMG, HSQC 

0.9 21.2 m C21 HSQC 

1.47 30.3 m C25 HSQC 

Cholesterol 

1.11 42 m C12 CPMG, HSQC 

Choline 3.21 56.5 s N (CH3)3 CPMG, J-Res, HSQC, TOCSY 

Choline (in lipid) 3.66  m  CPMG, J-Res 

2.52  d half-CH2 CPMG, J-Res, TOCSY 
Citrate 

2.67  d half-CH2 CPMG, J-Res, TOCSY 

3.02  s CH3 CPMG, J-Res, TOCSY 
Creatine 

3.91  s CH2 CPMG, J-Res, TOCSY 

3.03  s CH3 CPMG, J-Res, TOCSY 
Creatinine 

4.05  s CH2 CPMG, J-Res, TOCSY 

Dimethylamine 2.71  s CH3 CPMG, J-Res 

Formate 8.45  s CH CPMG, J-Res, TOCSY 

3.24 76.8 dd H2 CPMG, J-Res, HSQC, TOCSY 

3.40 72.2 q H4 CPMG, J-Res, HSQC, TOCSY  

3.46 78.4 t H5 CPMG, J-Res, HSQC, TOCSY 

3.48 78.4 t H3 CPMG, J-Res, HSQC, TOCSY 

3.89 63.4 dd half CH2C6 CPMG, J-Res, HSQC, TOCSY 

b-glucose 

4.64 98.4 d H1 CPMG, J-Res, HSQC, TOCSY 

3.40 72.2 q H4 CPMG, J-Res, HSQC, TOCSY 

3.53 74 dd H2 CPMG, J-Res, HSQC, TOCSY 

3.71 75.3 t H3 CPMG, J-Res, HSQC, TOCSY 

a-glucose 

3.72 63.4 dd half CH2C6 CPMG, J-Res, HSQC, TOCSY 
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3.76 63.3 m half CH2C6 CPMG, J-Res, HSQC, TOCSY 

3.82 74 ddd H5 CPMG, J-Res, HSQC, TOCSY 

3.84 63.2 m half CH2C6 CPMG, J-Res, HSQC, TOCSY 

 

5.23 94.6 d H1 CPMG, J-Res, HSQC, TOCSY 

2.04  m half β-CH2 CPMG, TOCSY 

2.12  m half β-CH2 CPMG, J-Res, TOCSY Glutamate 

2.34  m half γ-CH2 CPMG, J-Res, TOCSY 

2.09 29.5 m half β-CH2 CPMG, J-Res, HSQC, TOCSY 

2.43 33.6 m half γ-CH2 CPMG, J-Res, HSQC, TOCSY Glutamine 

3.76 57,1 t α-CH2 CPMG, J-Res, HSQC, TOCSY 

3.56 65.5 dd half-CH2 CPMG, J-Res, HSQC, TOCSY 

3.64 65.3 dd half-CH2 CPMG, J-Res, HSQC, TOCSY Glycerol 

3.88 74.3 m C2-H CPMG, J-Res, TOCSY 

Glycine 3.54 44.4 s CH2 CPMG, J-Res, HSQC, TOCSY 

Glycoprotein (N-acetyl) NAC 1 2.03 24.7 s NHCOCH3 CPMG, JRes, HSQC, TOCSY 

Glycoprotein (N-acetyl) NAC 2 2.06 24.8 s NHCOCH3 CPMG, JRes, HSQC, TOCSY 

7.03  s H4 CPMG, TOCSY 
Histidine 

7.73  s H2 CPMG, J-Res, TOCSY 

Isobutyrate 1.06  d CH3 CPMG, J-Res, TOCSY 

0.92  t δ-CH3 CPMG, J-Res 
Isoleucine 

1  d β-CH3 CPMG, J-Res 

1.32 22.7 d CH3 CPMG, J-Res, HSQC, TOCSY 
Lactate 

4.10 71 q CH CPMG, J-Res, HSQC, TOCSY 

0.94  t δ-CH3 CPMG, J-Res, TOCSY 
Leucine 

0.95  d δ-CH3 CPMG, J-Res 

Lipîd (LDL) 0.84 16.5 m CH3 (CH2) n CPMG, HSQC 

0.86 23.4 m  CPMG,HSQC 

1.24 34.2 m CH3CH2CH2 CPMG, HSQC 

1.26 32.1 m (CH2) n CPMG, HSQC 
Lipid (VLDL) 

1.55 27.3 m CH2CH2CO CPMG, HSQC 

0.93 27.3 m CH3CH2  

1.26 25.1 m 
CH3CH2CH2 

(CH2) 
CPMG, HSQC 

1.7 29.1 m CH2CH2C=C CPMG, HSQC 

2 29.6 m CH2C=C CPMG, HSQC 

2.22 36.1 m CH2CO CPMG, HSQC 

Lipid 

2.71 28 m C=CCH2C=C CPMG, HSQC 

1.47  m  CPMG, TOCSY 

1.71  m  CPMG, TOCSY 

1.89  m  CPMG, TOCSY 
Lysine 

3.02  t  CPMG, TOCSY 

Mannose 5.17  d  CPMG, J-Res, TOCSY 

Malonate 3.15  s  CPMG, J-Res, TOCSY 

Methanol 3.35  s CH3 CPMG, J-Res, TOCSY 

Methionine 2.13  s S-CH3 CPMG, J-Res, TOCSY 

Phenylalanine 3.99  m α -CH CPMG 
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7.31  m H2, H6 CPMG 

7.35  m H4 CPMG 

 

7.43  m H3,H5 CPMG 

Pyruvate 2.36  s CH2 CPMG, J-Res 

3.95  dd α-CH J-Res 

6.87  m H3, H5 CPMG, J-Res, TOCSY Tyrosine 

7.17  m H2, H6 CPMG, J-Res, TOCSY 

0.97 19.2 d CH3 CPMG, J-Res, HSQC, TOCSY 

1.02 20.6 d CH3 CPMG, J-Res, HSQC, TOCSY 

2.25 32 spt of d β-CH CPMG, J-Res, HSQC, TOCSY 
Valine 

3.58 63.2 d α-CH CPMG, J-Res, HSQC, TOCSY 

5.23  m  CPMG 

5.26 130.2 m 
(CH=CHCH2CH

=CH) 
CPMG, HSQC 

5.27  m (=CHCH2CH2) CPMG 

5.29 131.7 m 
(CH=CHCH2CH

=CH) 
CPMG, HSQC 

5.31  m (=CHCH2CH2) CPMG 

Unsaturated lipid 

5.33  m (=CHCH2CH2) CPMG 
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Table 4.2.4. Significant metabolites differentiating patients with metastatic and localized 
breast cancer. 
ID Metabolite 

1H 
ppm 

13C 
ppm 

Signal 
Multiplicity 

Group Observed by NMR p-value 
q-value 

BH b 

1  1.38  d  CPMG, J-Res, TOCSY 0.003 0.03 

2  1.39  d  CPMG, J-Res, TOCSY 0.003 0.03 

3 NACa 1 2.03 24.7 s NHCOCH3 
CPMG, J-Res, HSQC, 

TOCSY 
0.0001 0.005 

4 NACa 2 2.06 24.8 s NHCOCH3 
CPMG, J-Res, HSQC, 

TOCSY 
0.0000 0.005 

2.27 32.2 s CH3 
CPMG, J-Res, HSQC, 

TOCSY 
0.002 0.03 

5 Acetoacetate 

3.43 56.1 s  
CPMG, J-Res, HSQC, 

TOCSY 
0.003 0.03 

6 Pyruvate 2.36  s CH2 CPMG, J-Res 0.0003 0.009 

7 3-hydroxybutyrate 2.29  q half β-CH2 CPMG, J-Res, TOCSY 0.005 0.04 

3.56 65.5 dd half β-CH2 
CPMG, J-Res, HSQC, 

TOCSY 
0.0001 0.006 

3.64 65.3 dd half β-CH2 
CPMG, J-Res, HSQC, 

TOCSY 
0.001 0.01 

8 Glycerol 

3.88 74.3 m C2H CPMG, J-Res, TOCSY 0.0009 0.01 

9 Histidine 7.03  s H4 CPMG, TOCSY 0.001 0.01 

10  7.24  m  CPMG 0.0005 0.01 

3.99   α-CH CPMG 0.001 0.02 

7.31  m H2, H6 CPMG 0.0006 0.01 11 Phenylalanine 

7.35  m H4 CPMG 0.0002 0.006 
a NAC = N-acetylgylcoprotein, b q-value BH = p-value after Benjamini-Hochberg false discovery rate 
multiple testing correction 
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4.3 On plasma metabolic signature of hepatocellular carcinoma 

and chronic liver disease. 

 
Figure 4.3.1. Model validations resulting from 1000 permutations, demonstrating model robustness for 

discrimination between a) HCC and Control, b) HCC and CLD, c) Control and CLD, d) HCC without 

cirrhosis and Control, e) HCC without cirrhosis and CLD, f) HCC with cirrhosis and Control and f) 

HCC with cirrhosis and CLD. 
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Figure 4.3.2. Model validations resulting from 1000 permutations, demonstrating model robustness for 

discrimination between a) males and females, b) high and low BMI, c) years of collection (2008 vs 

2009), d) correlation between albumin levels and NMR dataset, e) discrimination between HCC and 

Control after matching on gender, BMI, years of collection and albumin levels. 
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4.4 Natural metabotype variations in healthy control inbred rat 

strains 

 
Figure 4.4.1. Summary of animal experimental procedures, physiological and analytical assays. 

 

 

 
Figure 4.4.2. Flowchart for Metabolite-Set Enrichment Analysis. 
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Figure 4.4.3. Evidence for metabonomic-based metabolic hypervariability in inbred rat strains. 

Projections are shown for BN (n = 13), WKY (n = 14), and GK (n = 16) rats on predictive component 

from an OPLS-DA model using plasma 1H NMR spectra obtained at 600 MHz. 
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Figure 4.4.4. 1H 700 NMR MHz spectra of urines from a) LEW, c) F344, e) WKY and g) BN strains, 

and of plasma from b) LEW, d) F344, f) WKY strain and h) BN strains. 
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Figure 4.4.5. Cross-validation with 999 permutations for urine OPLS-DA models: a) BN, b) LEW, c) 

F344 and d) WKY strains; and for plasma OPLS-DA models: e) BN, f) Lewis, g) Fisher and h) WKY 

plasmas. 
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Table 4.4.1. Physiological data in inbred rat strains 
 BN F344 LEW WKY GK 
Body weight 
(g) 

243.8±3.0 
(68)  

259.2±8.4 
(5) 

309.9±5.0 
(5) bd 

316.9±7.2 (5) 

ce 
299.9±6.5 (12) 

gj 
BMI (g.cm-2) 0.499±0.004 

(35)  
0.492±0.027 
(5)  

0.602±0.012 
(5) b 

0.639±0.024 
(5) ce 

0.562±0.013 
(12) gj 

RFP weight 
(g) 

0.600±0.041 
(7)  

0.932±0.121 
(5)  

1.552±0.093 
(5) d 

3.861±0.487 
(5) cef 

5.213±0.410 
(12) ghij 

Adiposity 
index 

2.53±0.16 
(7) bc 

3.63±0.53 
(5) e 

4.99±0.23 
(5) bf 

12.11±1.30 
(5) cef 

17.65±1.71 
(12) ghij 

(x1000)      
Food intake 
(g) 

15.0±1.4 
(53) 

17.6±1.2 (5) 20.1±0.8 (5) 

b 
17.9±0.1 (5) c 21.2±0.4 (5) j 

Body weight, body mass index (BMI), retroperitoneal fat pad (RFP) weight and adiposity index (AI) in 12 
week old rats of various inbred strains. RFP weight was used for AI calculation. Data are means ± SEM. Number 
of rats is reported in parentheses. Differences between groups were assessed by Fisher’s LSD and Tamhane’s T2 
post hoc tests according to Levene’s test for variance. Significant differences (P<0.05) between strains are 
shown as: a, BN vs F344; b, BN vs Lew; c, BN vs WKY; d, F344 vs Lew; e, F344 vs WKY; f, Lew vs WKY; g, 
GK vs F344; h, GK vs Lew; i, GK vs WKY; j, GK vs BN. 
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4.5 On metabolic phenotyping of HBV-infected liver cells 

Cell lines and cultures. HepG2 (ATCC HB-8065) cells were cultured at 37℃ under 5% 

CO2, in MEM (minimum essential medium (InvitrogenTM, Carlsbad, CA)) supplemented with 

10% fetal calf serum (InvitrogenTM), 100 UI/ml penicillin, 100 mg/ml streptomycin, 2mM 

glutamin (Sigma–Aldrich, St. Louis, MO), non-essential amino acids and 1mM sodium 

pyruvate (both from InvitrogenTM). HepG2/2.2.15 cells were cultured at 37℃ under 5% CO2, 

in DMEM high gulucose (4.5 g/l) plus 10% fetal calf serum (InvitrogenTM), 100 UI/ml 

penicillin, 100 mg/ml streptomycin, 2mM glutamin (Sigma–Aldrich, St. Louis, MO), and 

2mM sodium pyruvate (both from InvitrogenTM) with a final concentration of 200 mg/L G418. 

RNA silencing. HepG2/2.2.15 cells were plated in six-well plates with a concentration of 

3.105 cells per well. After 24 h, cells were transfected in Opti-MEM (InvitrogenTM) containing 

HiPerfect (6ml/well) (Qiagen) and 20nM p53 small interfering RNA (siRNA) (5#-

CAAUGGUUCACUGAAGACCTT-3# and 5#-GGUCUUCAGUGAACCAUUGTT-3#) or a 

control (Scramble) siRNA (5#-CAUAGAUUACCGUGAGCACTT-3# and 5#-

GUGCUCACGGUAAUCUAUGTT-3#) and/or 9.5nM HBx siRNA (5#-

ACAUAAGAGGACUCUUGGATT-3# and 5#-UCCAAGAGUCCUCUUAUGUTT-3#) 

(Eurogentec, Seraing, Belgium), or 20nM E4F1 siRNA (5#- 

GGAUUUUGUUCAGCACAAGTT-3# and 5#-CUUGUGUCUGAACAAAAUCCTC-3#) 

(Applied Biosystems, Ambion). Cells were recovered and analyzed 24 or 48 hs after 

transfection. 
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4.6 Personal contribution to the different projects 

Projects Sample 
Production NMR analysis 

Data and 
statistical 
analysis 

Interpretation 

Targeted 
projection NMR 

spectroscopy 
T C T T 

Epic Pilot Study - T T C 
Metabolic 

signature of 
metastatic 

breast cancer 

- C C C 

Metabolic 
signatures of 

liver 
pathologies 

- T T T 

Metabolic 
variations in rat 

strains 
- T C C 

Aging and 
dietary 

restriction in C. 
elegans 

- T T C 

Characterization 
of the ahr-1 C. 
elegans mutant 

- T T T 

Characterization 
of 

HepG2/2.2.15 
cells 

- T T C 

“-“: no contribution, “C”: performed in collaboration, “T”: performed completely 

 

Most of these projects were collaborations between the CRMN, specialized in NMR spectroscopy and 

data analysis and clinicians or biologists. With a background in Chemistry and following medical 

studies, I tried in during this thesis to make a link between these different expertises.  
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