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Sujet de thèse : Conception et réalisation d’un mobile piézoélectrique pour utilisation 
coopérative 

 
 
Résumé 
 
L’objectif de cette thèse est de concevoir et de réaliser un mobile piézoélectrique pour 
utilisation coopérative. Le terme mobile piézoélectrique est utilisé dans cette thèse pour 
décrire un robot piézoélectrique miniature. Ce robot miniature mobile est actionné par des 
matériaux piézoélectriques. L’objectif de la thèse est donc la conception et la réalisation d’un 
robot pouvant être miniaturisé et qui pourrait donc être utilisé dans le cadre du mimétisme des 
essaims biologiques (fourmis, abeilles…) pour un fonctionnement coopératif. 
 
Le robot réalisé est constitué d'un support mince et de patchs piézoélectriques. Les patchs 
piézoélectriques sont collés sur le support de façon intelligente afin de déplacer le support en 
milieu terrestre. Dans ce contexte, la thèse est divisée en trois parties. 
 
La première partie est consacrée à la modélisation d’un tel système (support mince avec des 
patches piézoélectriques sur une seule de ses faces). Une modélisation par la méthode des 
éléments finis est développée pour ce système en se basant sur le principe variationnel 
d’Hamilton et en considérant l'hypothèse de Love-Kirchhoff. L’originalité de cette 
modélisation réside dans l’utilisation de la notion du plan neutre pour modéliser ce système 
asymétrique. Cela permet de ne modéliser le système étudié que par un modèle éléments finis 
à deux dimensions (2D) tout en tenant compte de la troisième dimension dans le calcul.   
 
La deuxième partie présente le principe de fonctionnement du robot qui est inspiré des 
moteurs linéaire ultrasoniques à ondes progressive. Cette partie présente toutes les étapes de 
la conception optimale afin de créer les mouvements nécessaires. La conception optimale est 
étudiée en utilisant la modélisation par éléments finis obtenue dans la première partie.  
 
La troisième partie de cette thèse est dédiée à la réalisation d’un prototype expérimental. Le 
processus de fabrication ainsi que l’électronique associée au robot sont présentés dans cette 
partie. Le robot est caractérisé expérimentalement en mesurant la vitesse en fonction de la 
tension appliquée, la vitesse en fonction de masses embarquées par le robot et la vitesse en 
fonction de la force fournie par le robot. Ce robot est, par ailleurs, comparé avec d’autres 
systèmes de même nature. 
 
Mots clés : Robot piézoélectrique miniature, mimétisme des essaims biologiques (swarms), 
modélisation par la méthode des éléments finis, théorie des plaques minces asymétriques, 
moteurs linéaire ultrasoniques à ondes progressive. 
 
 
 
 
 
 
 
 



 
 
Thesis subject: Design and realization of a piezoelectric mobile for cooperative use 
 
Abstract 
 
The objective of this thesis is to design and realize a piezoelectric mobile for cooperative use. 
The term piezoelectric mobile is used in this thesis to describe a piezoelectric miniature robot. 
This mobile miniature robot is actuated by piezoelectric materials. The aim of the thesis is the 
design and the realization of a robot that can be miniaturized and could therefore be used in 
the context of biological mimicry swarms (ants, bees ...) for a cooperative operation. 
 
The realized robot consists of a thin support and piezoelectric patches. Piezoelectric patches 
are bonded on the support on an intelligent manner in order to move the support on land. In 
this context, the thesis is divided into three parts. 
 
The first part is devoted to the modeling of such a system (thin support with piezoelectric 
patches on one of its faces). Modeling by the finite element method is developed for this 
system based on the variational principle of Hamilton and considering the Love-Kirchhoff 
hypothesis. The originality of this model lies in the use of the concept of the neutral plane to 
model this asymmetric system. This allows modeling the system studied by a finite element 
model in two dimensions (2D), taking into account the third dimension in the calculation. 
 
The second part presents the operating principle of the robot which is inspired by the linear 
traveling wave ultrasonic motors. This section presents all the stages of the optimal design to 
create the necessary movements. The optimal design is investigated using finite element 
modeling obtained in the first part. 
 
The third part of this thesis is devoted to the realization of an experimental prototype. The 
manufacturing process and the associated electronics for the robot are presented in this 
section. The robot is characterized experimentally by measuring the speed according to the 
applied voltage, the speed versus mass loaded by the robot and the speed according to the 
force provided by the robot. This robot is also compared with other similar systems. 
 
Keywords: Piezoelectric miniature robot, mimicking biological swarms, modeling by the 
finite element method, the theory of thin plates asymmetric, linear traveling wave ultrasonic 
motors. 
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1. Introduction 

 
Ma thèse est intitulée conception et réalisation d’un mobile piézoélectrique pour utilisation 

coopérative. Commençons par expliquer le terme ‘’mobile piézoélectrique’’, puis nous 

expliquerons pourquoi nous avons choisi d’en concevoir pour une utilisation coopérative. 

Le terme ‘’mobile piézoélectrique’’ signifie robot piézoélectrique miniature. Ce sont des 

robots miniatures mobiles actionnés par des matériaux piézoélectriques. 

Dans ce manuscrit, je présenterai la conception et la réalisation de petits robots conçus pour 

une utilisation coopérative future. 

Ces robots sont constitués d'un support mince et de patchs piézoélectriques. Les patchs 

piézoélectriques sont collés sur le support de façon intelligente afin de permettre le 

déplacement du support avec plusieurs degrés de liberté.  

L'idée du projet est de déplacer le support mince dans les trois milieux (terre, air et liquide), 

elle est inspirée du poisson raie Manta. Le milieu de vie de la raie Manta est l'eau mais ce 

poisson est capable de voler sur une courte période (figure ci-dessous). Si l'on applique le 

principe de locomotion de cette raie Manta aux robots, nous pouvons réaliser des robots 

capables de se déplacer dans trois milieux car le déplacement sur terre peut être réalisé en 

utilisant le principe de locomotion aquatique de la raie Manta (ceci est montré dans la thèse).  

 

 
 

Manta ray fish inside and outside the water  
 

[http://animals.desktopnexus.com/wallpaper/209676/, 
http://picinpic.blogspot.fr/2011/07/manta-ray-fish.html] 

 

Ainsi, le projet consiste à concevoir et réaliser un robot miniature piézoélectrique capable de 

se déplacer dans les trois milieux (terre, air et liquide) pour une utilisation coopérative future. 

http://animals.desktopnexus.com/wallpaper/209676/�
http://picinpic.blogspot.fr/2011/07/manta-ray-fish.html�


3 
 

Mon travail dans ce projet consiste à vérifier la faisabilité d’un déplacement mimant la Manta 

raie sur la terre en utilisant des matériaux piézoélectriques, de concevoir et de réaliser un 

prototype pour démontrer cette faisabilité sur la terre. Nous accompagnons ce travail d’une 

étude préliminaire et de perspectives pour le déplacement aquatique et aérien basé sur le 

prototype terrestre.   

Mon travail a pour objectif de répondre aux questions suivantes: 

Est-il possible en utilisant des matériaux piézoélectriques de déplacer un avatar de raie Manta 

(la forme de la raie Manta est considérée comme une plaque mince), avec plusieurs degrés de 

liberté sur la terre en générant une onde progressive dans la plaque mince? 

Ce robot terrestre peut il être étendu pour provoquer des déplacements dans les milieux 

aquatique et aérien comme dans le cas de la raie Manta? 

L'intérêt de ce projet est plus marqué quand les robots piézoélectriques sont petits et qu'ils 

peuvent se déplacer dans différents milieux (sol, air, liquide). Les robots que nous 

envisageons pourraient être miniaturisés.  

Les essaims de robots sont aujourd'hui considérés comme une nouvelle solution pour 

surmonter les limites de la robotique traditionnelle. L'opération conjointe et coopérative de 

robots est inspirée de l'organisation collective des êtres vivants, qui émergent des formes 

d’intelligence et de contrôle de groupe au-delà de la capacité des organismes individuels 

impliqués (figure ci-dessous).  
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Swarms behavior 

[ 

http://www.ipvs.uni-stuttgart.de/abteilungen/bv/forschung/projekte/I-Swarm/print_view, 

http://www.hizook.com/blog/2009/08/29/i-swarm-micro-robots-realized-impressive-full-

system-integration, 

http://blog.autoworld.com.my/index.php/2009/02/26/swarm-technology-the-biggest-

contribution-to-eco-tech/ 

] 

Les robots essaims pourraient être utilisés dans de nombreuses applications, telles que 

stockage des cellules, la recherche des objets dans les zones étroites ou sur le comportement 

des essaims, la surveillance de la sécurité, les applications médicales, etc.  

Selon un rapport publié récemment par l’IRAP, Inc, ‘’ET112: Piezoelectric Actuators and 

Motors–Types, Applications, New Developments, Industry Structure and Global Markets,’’  

le marché mondial des matériaux piézoélectrique exploités en actionneurs et en moteurs a été 

estimé à 6,6 milliards de dollars en 2009 et devrait atteindre 12,3 milliards de dollars en 2014, 

représentant un taux de croissance annuel moyen (TCAM) de 13,2% par an. Le tableau ci-

dessous tiré de l’IRAP Inc, présente le marché mondial taille/pourcentage de la part des 

actionneurs piézoélectriques et des moteurs par application d'ici à 2014. 

 
Global share for piezoelectric actuators and motors by application, through 2014 

 

L'investissement des Etats (USA, Japon, Europe, Corée et Chine) dans la R&D dans le 

domaine des robots essaim est énorme étant donné la quantité de publications annuelles. Les 

http://www.ipvs.uni-stuttgart.de/abteilungen/bv/forschung/projekte/I-Swarm/print_view�
http://www.hizook.com/blog/2009/08/29/i-swarm-micro-robots-realized-impressive-full-system-integration�
http://www.hizook.com/blog/2009/08/29/i-swarm-micro-robots-realized-impressive-full-system-integration�
http://blog.autoworld.com.my/index.php/2009/02/26/swarm-technology-the-biggest-contribution-to-eco-tech/�
http://blog.autoworld.com.my/index.php/2009/02/26/swarm-technology-the-biggest-contribution-to-eco-tech/�
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mêmes idées de conception de robots sont mises en œuvre dans les pays qui tentent 

d'améliorer la maniabilité, le contrôle, la fonctionnalité, la vitesse et l'autonomie. 

L'investissement américain est énorme dans ce domaine et en particulier dans le cas des 

robots essaims à base de matériaux piézoélectriques (mon domaine d'intérêt dans cette 

recherche) et c'est pourquoi beaucoup d’idées nouvelles viennent d'eux. 

Je citerai ci-dessous quelques projets de recherche européens importants et récents dans le 

domaine des robots essaims (certains d'entre eux ont utilisé les matériaux piézoélectriques et 

d’autres non).  

Le projet I-SWARM est un projet européen (Allemagne, Suède, Suisse, Autriche, Grèce, 

Royaume-Uni, Italie et Espagne). Il a eu lieu entre 2004 et 2008. Cela a été un grand succès et 

a donné une remarquable présence de l'Europe dans le domaine de minirobots essaims. 

Le projet SYMBRION est un projet financé par la Commission européenne (Allemagne, 

Autriche, Pays-Bas, Belgique, Royaume-Uni et la France). Il a commencé à partir du 

développement et de la recherche précédente du projet I-SWARM et les projets open-source 

SWARMROBOT. La durée du projet est de 2008 à 2013. Une grande partie des 

développements au sein de SYMBRION est open-source et open-matériel aussi. 

Le projet E-SWARM contribuera à l'élaboration d'une méthodologie d'ingénierie pour la 

construction de systèmes d'intelligence en artificielle essaim fondée sur des bases 

scientifiques rigoureuses. Le projet a démarré en 2010 pour une période de 5 ans. Son 

investigateur principal est le professeur Marco Dorigo (IRIDIA laboratoire de l'université 

libre de Bruxelles), l'un des fondateurs de l'intelligence en essaim et des champs de recherche 

essaim robotique. 

En France, plusieurs projets sont parrainés par l'ANR, l'ONERA et le CNRS. 

REMANTA projet (2002-2006) a été inspiré par la nature pour la conception des drones à 

ailes battantes, ANR / ELESA OVMI projet (2007-2011) met l'accent sur l'élaboration de lois 

de commande pour actionner les ailes d'un robot piézoélectrique biomimétique volant. Le 

projet d'action PEA (2007-2014) a pour objectif de démontrer scientifiquement la coopération 

de plusieurs véhicules autonomes fonctionnant dans des environnements différents, ANCRES 

un projet ANR (2012-2015) étudie également la coopération de plusieurs véhicules 

autonomes hétérogènes (air et terre) dans un contexte de gestion des crises, notamment dans 

le domaine du nucléaire ... 

La recherche dans le domaine de la microrobotique essaims s'intéresse et se poursuit 

aujourd'hui avec un investissement de plus en plus d'états en raison des applications dans 

divers domaines et du faible coût de fabrication. Il est remarquable en Angleterre cette année, 
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que la recherche pour développer des machines intelligentes a reçu un coup de pouce de 16 

millions de livres par un partenariat entre le gouvernement et l'industrie dans des domaines 

tels que: la surveillance dans des environnements dangereux tels que les installations en eau 

profonde, les centrales nucléaires et les nursebots pour les hôpitaux et les avions. 

 

Permettez-moi maintenant de vous présenter la constitution du manuscrit: 

1. Comme nous l'avons vu plus haut, le robot piézoélectrique miniature conçu devrait 

être en mesure in fine de se déplacer dans trois mileix. Pour cela, nous avons 

commencé l'étude en consultant la littérature pour les robots piézoélectriques 

miniatures dans les trois milieux de déplacement (terre, liquide et air) afin d’éviter la 

répétition d’un travail antérieur inspiré du poisson raie Manta et actionné par des 

patchs piézoélectriques. Dans le premier chapitre de ce manuscrit, nous trouvons une 

classification des robots miniatures piézoélectriques selon les milieux de déplacement. 

En particulier, nous nous sommes intéressés aux principes de locomotion de ces 

robots, car le but de notre projet est d'utiliser un principe de locomotion afin de 

générer de déplacement (principe de locomotion de la raie Manta ou d’un mouvement 

ondulatoire). 

2. Après avoir comparé les principes de locomotion des robots piézoélectriques 

miniatures existants avec celui que nous avons proposé, nous étudierons dans le 

prochain chapitre la modélisation de notre système qui est composé d’une structure 

fine avec des pastilles piézoélectriques collé sur la structure. Le deuxième chapitre 

comprend une introduction à la modélisation des structures minces avec des pastilles 

piézoélectriques. 

3. Le troisième chapitre est consacré à la modélisation d'un tel système (patchs 

piézoélectriques collés sur des structures minces). À la fin de ce chapitre, nous 

pourrons en utilisant l'équation numérique obtenue, calculer les fréquences de 

résonance et déterminer les modes de résonance. Nous pouvons calculer les 

déplacements transversaux du système, les contraintes et les déformations obtenues en 

appliquant des forces sur le système ou en appliquant des tensions électriques sur 

certains patchs piézoélectriques. Nous pouvons également déterminer les tensions 

obtenues sur des patchs piézoélectriques déformés. Ainsi, nous pouvons calculer les 

valeurs des courants et les charges électriques des pastilles piézoélectriques. 

4. Dans le chapitre 4, des dispositifs expérimentaux seront construits et testés pour 

valider les modèles obtenus à partir du chapitre 3. 
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5. Le chapitre 5 est intitulé ‘’traveling wave piezoelectric beam robot’’. Dans ce chapitre, 

nous présentons la conception et le principe de fonctionnement du robot 

piézoélectrique à onde progressive de type poutre. La conception optimale sera étudiée 

en utilisant l'équation numérique obtenue dans le chapitre 3.  

6. Le processus de fabrication sera présenté dans le chapitre 6 et l’onde progressive sera 

démontrée expérimentalement par la caractérisation du robot (vitesse, masses 

embarquées, forces mécaniques, ...). A la fin, les avantages de ce robot par rapport aux 

autres existants seront présentés.  

7. Le principe de fonctionnement d’un robot de type plaque, ses dimensions, sa 

conception, ses procédés de fabrication, les résultats théoriques et expérimentaux ont 

été déposés pour un brevet. Le chapitre 7 est intitulé ‘’overview’’ et dans ce chapitre, 

nous allons parler brièvement de certains points, parmi lesquels: 

• Modélisation analytique du robot et comparaison à la modélisation par éléments finis. 

• La structure du robot (cas d’une plaque) sera présentée sous forme d’un 

transformateur piézoélectrique.  

• L’amortissement des vibrations des poutres et des plaques minces sera présenté 

brièvement avec quelques résultats théoriques et expérimentaux utilisant le modèle 

développé pour les applications robotiques. 

• Une équation matricielle dans l’espace d'état sera construite à partir de l'équation des 

éléments finis. L'équation dans l'espace d'état est très utile en automatique. Dans notre 

cas, elle peut être utilisée pour contrôler la vibration de la poutre/plaque de manière à 

amortir les vibrations, ou pour générer une onde progressive sans utiliser de circuits 

passifs. 

• A la fin, on donne un exemple de la façon dont nous pouvons utiliser notre modèle 

dans la théorie du traitement du signal afin de détecter des dommages dans des 

structures comme poutre / plaque minces. 

 

Enfin, une conclusion générale et des perspectives sont données. Dans les perspectives nous 

allons parler d’un futur modèle pour la poutre-plaque robot piézoélectrique en milieu 

aquatique. Quelques idées sont proposées pour le milieu aérien, ainsi que pour la 

miniaturisation.  
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2. Chapitre 1 

 
Le chapitre 1 concerne les principes de locomotion des robots piézoélectriques miniatures. 

Nous commençons par définir ce que signifie robot piézoélectrique miniature, puis, nous 

abordons les matériaux piézoélectriques et les actionneurs piézoélectriques. Enfin nous 

étudions les principes de locomotion des robots piézoélectriques miniatures qui sont classés 

en fonction de  leurs déplacements dans un milieu fluidique (liquide et air) ou sur un support 

solide. Des robots piézoélectriques miniatures sont pris comme exemples. 

La recherche faite dans le premier chapitre ne tient pas compte de tous les principes de 

locomotion des robots. Elle était seulement dédiée aux principes de locomotion des robots 

piézoélectriques miniatures existants. 

Après la lecture de cette recherche portant en particulier sur la locomotion sur un substrat 

solide, on va remarquer que la forme de la plaque que nous avons proposée utilise la 

locomotion ‘’resonant drive’’. En principe de locomotion ‘’resonant drive’’, les actionneurs 

piézoélectriques sont utilisés à leurs fréquences de résonance pour produire une déformation 

maximale. Ce mouvement est défini par la génération de glissement avec une variation de la 

force de contact [ (Driesen, 2008)]. Le mouvement se produit lorsque la force d'inertie devient 

supérieure à la force de frottement maximale. Ce principe est fréquemment utilisé dans les 

moteurs ultrasonores à ondes progressives et stationnaires. Comme nous volons à générer une 

onde progressive dans la plaque (raie Manta forme), notre modèle sera inspiré des moteurs 

ultrasonores à onde progressive. 

La recherche bibliographique montre que le poisson raie Manta utilise les nageoires médiane 

et/ou couplées (Median and/or Paired Fin : MBF) pour la propulsion. Plus précisément, il 

utilise le mode Rajiform pour générer la poussée nécessaire pour se déplacer. En dehors de 

l'eau, le poisson raie Manta utilise les ailes battantes (battement des nageoires pectorales qui 

sont flexibles et longues) pour produire la poussée nécessaire pour voler à l’extérieur de l'eau.  

La plupart des poissons robots piézoélectriques miniatures dans la littérature utilisent la 

nageoire caudale (Body and/or Caudal Fin : BCF) pour générer des mouvements de 

propulsion car cela est plus facile à concevoir, fabriquer et contrôler. La conception et le 

contrôle de la propulsion MPF pour créer l'ondulation nécessaire à la propulsion sont plus 

compliqués.  
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La réponse à la question : ‘’Pouvons-nous proposer à la fin de cette thèse une conception 

créant la propulsion ondulatoire de notre robot piézoélectrique miniature terrestre (comme le 

raie Manta)?’’  est dans les perspectives de ce manuscrit. 
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3. Chapitre 2 

 
Notre robot sera inspiré des moteurs ultrasonores à onde progressive. Ces moteurs sont 

connus par la théorie des poutres en flexion, c'est pourquoi nous avons divisé l'étude en 

théorie des poutres en flexion et théorie des plaques en flexion. Dans le manuscrit, l'onde est 

générée sur une poutre premièrement, puis dans une plaque. 

Le chapitre 2, présente brièvement l'élasticité linéaire, les équations de la mécanique et de la 

piézoélectricité sous forme matricielle 3D complète où toutes les contraintes et les 

déformations sont représentées pour des matériaux isotropes sous l'hypothèse d'élasticité 

linéaire. Dans certains cas particuliers, les équations mécaniques et piézoélectriques peuvent 

être écrites en 2D (cas d’une plaque mince) ou 1D (cas d’une poutre mince). Ces cas pratiques 

sont présentés dans le chapitre 3. On a présenté brièvement la théorie d'Euler-Bernoulli et de 

Love-Kirchhoff dans le cas de la théorie des poutres et des plaques respectivement. 

Nous avons discuté dans le chapitre 2, le champ de déplacement dans le cas des vibrations de 

flexion des poutres et des plaques. Le champ de déplacement a été, sans prendre en 

considération les pastilles piézoélectriques. Le champ de déplacement avec des pastilles 

piézoélectriques collées sur la poutre et la plaque est traité dans le chapitre 3.  

Les équations numériques statiques et dynamiques dans le cas général d'un système contenant 

des matériaux élastiques et piézoélectriques sont présentées. Ces équations sont dérivées du 

principe variationnel, qui est détaillé. La discrétisation temporelle en utilisant la méthode de 

Newmark est aussi brièvement présentée à la fin.  
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4. Chapitre 3 
 

Les structures minces contenant des matériaux piézoélectriques sont largement utilisées pour 

contrôler les vibrations [(Hariri, et al., 2011), (Yasin, et al., 2010)], pour détecter des 

dommages dans la structure [(Qu, et al., 2006), (Yan, et al., 2002)], pour réaliser des 

micropompes [(Hernandez, et al., 2010)], des vannes [(Bernard, et al., 2011)] et des robots 

miniatures [(Hariri, et al., 2010)]. Deux grosses branches sont étudiées dans la littérature pour 

des structures minces contenant des matériaux piézoélectriques en fonction de leur domaine 

d'application : des structures de types poutre et des structures de types plaque.  Ces systèmes 

peuvent être symétriques ou asymétriques si les matériaux piézoélectriques sont placés sur 

une ou les deux faces. 

Dans un système symétrique les matériaux piézoélectriques sont collés face à face de part et 

d'autre de la poutre/plaque (colocalisés) alors que dans un système asymétrique les matériaux 

piézoélectriques sont collés seulement sur une face (non-colocalisés). Il convient de noter 

qu'il existe un autre type de structure renfermant des matériaux piézoélectriques où les 

matériaux piézoélectriques sont intégrés dans la poutre/plaque, ce type de structure n'est pas 

abordé dans notre étude.  

Pour des structures symétriques ou asymétriques de type poutre avec respectivement des 

patchs piézoélectriques colocalisés ou non-colocalisés, un modèle 1D analytique ou 

numérique peut être utilisé pour modéliser un tel système. Dans le premier cas l'axe neutre est 

pris comme axe de symétrie du système tandis que, dans le cas des systèmes asymétriques, il 

est nécessaire de déterminer l'axe neutre. 

Dans le cas des structures de type plaque, une méthode par éléments finis 2D ou 3D peut être 

utilisée pour modéliser le système. Dans l’approche 3D, des éléments de volume sont utilisés 

tandis que dans l’approche 2D des éléments de surface sont utilisés. La 3ème dimension est 

introduite dans les équations du modèle. Il est évident que la seconde approche est plus 

rapide, mais un peu plus compliquée dans la formulation du modèle. 

Dans la littérature plusieurs articles sont consacrés à la modélisation des structures fines avec 

des pastilles piézoélectriques en utilisant l'approche 2D dans le cas où la symétrie du système 

est maintenue par la disposition de patchs. L'approche 2D est plus difficile pour une structure 

asymétrique, où des patchs piézoélectriques ne sont pas, en raison du fait que le plan neutre de 

la structure n'est pas confondu avec le plan médian.  
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Le but du chapitre 3 est de développer une méthode éléments finis 2D (et 1D respectivement) 

pour modéliser un système asymétrique où les patchs piézoélectriques non-colocalisées sont 

collés sur une plaque mince (et une poutre mince respectivement), en utilisant la notion de 

plan neutre (et axe neutre, respectivement). Ce n'est pas une méthode standard 2D, puisque le 

calcul est effectué sur une structure qui n'a pas de symétrie qui permette de telles hypothèses 

simples. En fait, sans déterminer le plan neutre pour ce système asymétrique, nous ne pouvons 

pas le modéliser en 2D et la modélisation devrait être faite en modélisation éléments finis 3D 

[ (Hariri, et al., 2012)]. 

L'équation générale qui représente tout système mécanique et/ou piézoélectrique déterminée 

en utilisant le principe variationnel dans le chapitre 2 est utilisée dans le chapitre 3 pour 

déterminer l'équation numérique des patchs piézoélectriques non-colocalisées collés sur des 

structures fines. 

Deux cas particuliers sont traités à la fin de chapitre 3, le premier cas est celui dit'' actionneur-

capteur'' où certains patchs sont utilisés comme capteurs et d'autres comme actionneurs, tandis 

que le second est le cas de ''actionneur actionneur'', où tous les patchs sont utilisés comme 

actionneurs. 
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5. Chapitre 4 
 

Un dispositif expérimental a été construit. Il est décrit dans le chapitre 4 et sert à valider notre 

modèle du chapitre 3. Dans le chapitre 4, nous avons présenté  le dispositif expérimental, puis 

nous avons commencé le processus de validation en comparant les résultats du modèle avec 

les données expérimentales dans le cas d’une poutre et d’une plaque (figures ci-dessous). La 

comparaison est effectuée aux fréquences de résonance et concerne les déplacements du 

système pour une tension appliquée aux patchs piézoélectriques actionneurs, ainsi que la 

tension obtenue aux patchs piézoélectriques capteurs. 

Après validation du modèle dans le chapitre 4, les deux chapitres suivants (chapitres 5 et 6) 

parlent de la génération d'une onde progressive dans la poutre tandis que la génération d'une 

onde progressive dans la plaque a fait l’objet d’un brevet. 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 

Beam experimented device 
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Plate experimented device 
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6. Chapitre 5 
 

Le chapitre 5 est l’aboutissement de  notre projet, nous avons appliqué le modèle développé 

dans le chapitre 3 et validé dans le chapitre 4 pour démontrer théoriquement la génération 

d'une onde progressive sur une structure de type poutre mince. Ensuite, un prototype 

expérimental pour valider les résultats théoriques est présenté dans le chapitre 6.  

Comme nous le savons maintenant, le principe de fonctionnement de notre robot est inspiré de 

moteurs linéaires ultrasons à ondes progressives. Ainsi, au début du chapitre 5, nous avons 

introduit le principe de fonctionnement de notre robot piézoélectrique à onde progressive 

(figures ci-dessous) en l’illustrant une brève revue sur les moteurs linéaires ultrasonique à 

onde progressive pour être en mesure de voir les différences entre notre robot et les autres. 

 

                                              Schematic figure of the one mode excitation: 1ME 

 
 

                                           Schematic figure of the two modes excitation: 2ME 
 

 

Après avoir introduit le principe de fonctionnement de notre robot piézoélectrique à onde 

progressive, la modélisation du robot piézoélectrique est présentée en utilisant l'équation 
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matricielle obtenue dans le chapitre 3 à notre cas d'application. La conception optimale est 

étudiée en détail, intégrant les dimensions du robot, les positions des patchs piézoélectriques, 

la fréquence de fonctionnement optimal et les performances des ondes progressives du robot.  

Une poutre en aluminium a été choisie avec des dimensions données (180 mm × 17 mm × 0,5 

mm). Les dimensions des patchs piézoélectriques ont été déterminées (32 mm × 17 mm × 

0,27 mm). Deux positions des patchs piézoélectriques près des extrémités de la poutre ont été 

étudiées pour le robot à ‘’un mode d’excitation : 1ME’’ et le robot à ‘’deux modes 

d’excitation : 2ME’’.  

Deux échantillons avec des positions Xp des patchs différentes, échantillon 1 (Xp1 = 24 mm, 

Xp2 = 124 mm) et échantillon 2 (Xp1 = 14 mm, Xp2 = 134 mm). L’échantillon 1 a montré les 

meilleures performances dans le 1ME et le 2ME à la fois (les performances de l'onde 

dépendent de la forme d'onde [voir chapitre 5] et le déplacement transversal). Selon le tableau 

ci-dessous, les performances de l’onde sont, dans l'ordre décroissant: 2ME position 1, 2ME 

position 2, 1ME position 1 et 1ME position 2.  

Dans la technique à deux modes d'excitation, on excite les deux patchs à une fréquence entre 

deux modes de résonance alors que dans la technique à un mode d'excitation, un patch est 

excité à la fréquence de résonance et l'autre est utilisé pour absorber l’énergie mécanique afin 

d'éviter la réflexion de l’onde. Cela explique pourquoi les déplacements transversaux dans la 

technique à deux modes d'excitation sont plus grands que dans la technique à un mode 

d'excitation, même si dans cette dernière nous excitons à la fréquence de résonance (tableau 

ci-dessous). La propagation des ondes dans la poutre générées par la technique à deux modes 

d'excitation est moins homogène que dans le cas d'une mode d’excitation. Les figures 

montrent que dans le cas de la technique à un mode d’excitation, l'amplitude a le même 

niveau au milieu de la poutre alors que dans le cas de la technique à deux modes d’excitation, 

l'amplitude n’a pas le même niveau au milieu de la poutre.  
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One mode excitation 

(1) Position 1 at f17 (2) Position 2 at f16 

  
Two modes excitation 

(3) Position 1 at f16*17 (4) Position 2 at f16*17 

  
 

Table: Optimal traveling wave performances for both modes at each position 
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7. Chapitre 6 
 

Le chapitre 6 est consacré à la fabrication et à la validation expérimentale du robot. Deux 

robots ont été fabriqués dans le chapitre 6. Le robot 1 correspond à l’échantillon 1 et le robot 

2 correspond à l’échantillon 2 (voir figures ci-dessous). 

 

 
Robot 1 where piezoelectric patches are located at position 1 & Robot 2 where piezoelectric patches are located at 

position 2 

 

Un circuit supplémentaire constitué d’une résistance et d’une inductance en série (RL série) 

est connecté à l'un des deux patchs piézoélectriques dans le cas de la technique à un mode 

d’excitation. Pour le robot 1, le circuit RL série a été calculé à la 17ème fréquence de résonance 

(R17 = 9.75 Ω, L 17 = 9 mH). Pour le robot 2, le circuit RL série a été calculé à la 16ème 

fréquence de résonance (R16 = 23.75 Ω, L16 = 11.4 mH). 

Des circuits électroniques pour alimenter les actionneurs piézoélectriques ont été conçus et 

des circuits RL série pour les capteurs piézoélectriques ont été réalisés (figures ci-dessous). 

Les deux robots ont été testés expérimentalement dans la technique à ’un mode d'excitation’’ 

et la technique à ‘’deux modes d’excitation’’ afin de valider nos résultats de simulation 

donnés dans le chapitre 5. 

 

Robot 2 

Robot 1 
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Robot structure for the one mode excitation operating principle (1: power amplifier, 2: robot body, 3: series RL synthetic 

inductor) 

 
Robot structure for the two modes excitation operating principle (1: Power amplifiers, 2: robot body) 

Le robot 1 qui montre une meilleure vitesse dans les deux modes de fonctionnement a été 

choisi pour mener un caractérisation complète. La vitesse en fonction de la tension appliquée, 

la vitesse en fonction de masse embarquée et la vitesse en fonction de la force mécanique 

fournie ont été mesurées sur une surface lisse en verre.  

Le robot 1 a une fréquence de fonctionnement optimale égale à 11,3 kHz. Il se déplace à 

131.5 mm/s sous 30V d'amplitude sans masse embarquée dans le cas de la technique à ‘’deux 

modes d'excitation’’. Sous la même tension, ce robot peut fournir 432 W (7.2 mN, 60 

mm/s). 

1 

2 

3 

1 

2 
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Dans le cas de la technique à ‘’un mode d’excitation’’, il a une fréquence de fonctionnement 

optimale égale à 11,6 kHz. Il se déplace à 81.19 mm/s sous 30V d'amplitude sans masse 

embarquée. Sous la même tension, ce robot peut fournir 360 W à son point de 

fonctionnement nominal 9 mN, 40 mm/s).  

A la fin du chapitre 6, une comparaison entre nos robots et des robots existants similaires 

(chapitre 5) et quelques moteurs linéaires ultrasonores à onde progressive est faite.  
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8. Chapitre 7 

 
L'objectif de ce travail était de créer une onde progressive sur une plaque mince pour la 

déplacer suivant plusieurs degrés de liberté en utilisant des patchs piézoélectriques (Figure ci-

dessous).  

 

 
One piezoelectric patch bonded on thin plate 

 

 

La création d'une onde progressive sur une poutre mince a été présentée dans le chapitre 5 et 

le chapitre 6 (figure ci-dessous).  

 

 
 
 
 
                             
 
 
 
 
 
 
 
 
                                                   Piezoelectric patches  
            Elastic beam  
                                                                                               Traveling wave 
                                  Motion direction 
 

 Schematic diagram of the traveling wave piezoelectric beam robot. 3D view on the top and side view on the 
bottom 
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Deux principes de fonctionnement sont présentés et utilisés pour déplacer la poutre mince en 

utilisant des patchs piézoélectriques : La technique ‘’un mode d'excitation’’ et la technique 

‘’deux modes d’excitation’’. La conception optimale et le processus de fabrication ont 

également été présentés dans les chapitres précédents.  

La création d'une onde progressive sur une plaque mince en utilisant des pastilles 

piézoélectriques n'a pas encore été présentée. Les dimensions, la conception, les procédés de 

fabrication, la simulation et les résultats expérimentaux ont été déposés pour un brevet et ne 

seront pas détaillés dans cette thèse.   

Le chapitre 7 est intitulé ‘’overview’’ et montre toutes les autres applications qui pourrait être 

faites en utilisant le modèle par éléments finis développé. 

Tout d'abord, nous avons présenté la possibilité de concevoir des transformateurs 

piézoélectriques en utilisant notre modèle et un prototype est présenté à cet effet.  

Deuxièmement, l’amortissement de vibrations d’une poutre mince et plaque mince en utilisant 

notre modèle est présenté et est vérifié expérimentalement.  

Troisièmement, le contrôle actif de structures flexibles est examiné sous peu, alors le principe 

de contrôle actif en utilisant notre modèle éléments finis est présenté par transformation de 

notre modèle éléments finis en espace modal, puis en espace d'état.  A  la fin de cette section, 

les fonctions de transfert sont déterminées. 

 Ensuite, la détection de défauts dans des structures par l'emploi de matériaux piézoélectriques 

est présentée et des papiers sont cités.  

Nous avons ensuite parlé de la nécessité d'une optimisation topologique telle que des 

algorithmes stochastiques dans le cas de structures complexes, certains articles sont pris 

comme exemples. 

Enfin des modèles analytiques sont comparés à notre modèle éléments finis (en citant 

quelques articles analytiques pour des structures minces avec des pastilles piézoélectriques). 

Une analogie électrique est donnée à partir de notre modèle éléments finis. Nous sommes 

donc en mesure de représenter une structure mince avec des patchs piézoélectriques 

actionneurs/capteurs par un circuit électrique équivalent. Cette analogie électrique est donnée 

dans la littérature en utilisant des modèles analytiques, on peut le mettre en œuvre à partir du 

modèle par éléments finis.  
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9. Perspectives 

 
Dans les perspectives de ce manuscrit, nous vous avons proposé un futur état de l'art des 

systèmes intelligents utilisant des matériaux piézoélectriques. Nous avons parlé de la façon 

dont d’améliorer notre modèle éléments finis pour décrire notre robot, de la façon 

d’augmenter les degrés de liberté de notre robot et de la façon d’améliorer l'efficacité du robot 

en utilisant d'autres circuits passifs. Un asservissement est proposé comme perspectives pour 

augmenter l'autonomie du robot. A la fin, un prototype est proposé pour le déplacement 

aquatique et terrestre à la fois. Enfin, nous avons essayé de répondre à la question de la 

miniaturisation. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



24 
 

10. Originalité de travail 
 

En fait, la théorie de 1ME a été démontrée en 1993 par Sashida et al. [ (Sashida, et al., 1993)], 

ainsi qu’en 1985 par Kuribayashi et al. [ (Kuribayashi, et al., 1985)]. Celle de 2ME a été 

introduite par Loh et al. [ (Loh, et al., 2000)] en 2000.  

En outre, la génération d'une onde progressive sur une poutre à l'aide de ces deux principes de 

fonctionnement (1ME et 2ME) a été réalisée expérimentalement par Hernandez [(Hernandez, 

2010)] dans sa thèse de doctorat dans notre laboratoire. 

Il a utilisé ces deux principes pour générer une onde progressive sur une poutre pour 

application au micro-pompage et son travail a été breveté.  

Le concept de notre système est différent. Dans notre cas, l'onde progressive générée doit 

déplacer tout le système (application robot) et pas seulement objet posé sur la poutre.  

L'originalité est dans la conception proposée pour ce système. Notre robot, comme montré 

dans la bibliographie du chapitre 1 est le premier dans la littérature qui se déplace au moyen 

de deux pastilles piézoélectriques collées sur la même face d'une structure de type poutre.  

Ainsi, l'originalité était dans le design. Derrière cette fabrication facile, se cache une 

conception optimale complexe. Le but de mon travail consistait à trouver cette conception 

optimale afin de créer une onde capable de déplacer tout le système (2 patchs collées sur la 

poutre), puis à valider et prouver expérimentalement le déplacement de l’ensemble.  

Qui est plus, dans le cas de la plaque, c'est non seulement le design qui est nouveau, mais 

aussi le principe de fonctionnement.  

La modélisation 2D par éléments finis pour des structures minces avec des patchs 

piézoélectriques colocalisés (structures symétriques) a été faite dans la littérature. Pour des 

structures asymétriques (structures minces avec des patchs piézoélectriques non-colocalisées), 

nous sommes les premiers a avoir proposé une modélisation par éléments finis 2D pour ces 

structures grâce à la détermination du plan neutre [ (Hariri, et al., 2012)]. La résolution de ce 

genre de structures en 2D permet d'économiser du temps de calcul. Cela est intéressant si une 

conception optimale est nécessaire. 
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11. Historique de travail  

 
 Dans ce paragraphe, je voudrais vous présenter mon travail de doctorat durant ces trois 

années comme un bref historique.  

J'ai d'abord commencé par une recherche bibliographique sur la locomotion des animaux [ 

(Biewener, 2003)] dans les trois milieux des déplacements (terre, eau et air) et sur les robots 

piézoélectriques miniatures existants dans la littérature [ (Hariri, et al., 2010), chapitre 1].  

Après avoir vu qu'il n'y a pas de robot ayant la même structure que celle que nous avons 

proposée, nous avons commencé à travailler sur notre idée. L'idée de départ était de coller 

astucieusement des pastilles piézoélectriques sur une plaque mince dont les oscillations 

(induites par l'actionnement piézoélectrique) créaient un mouvement adapté à l'environnement 

terrestre. 

Le système proposé m'a forcé à faire une autre recherche bibliographie sur les structures 

similaires (systèmes intelligents utilisant des matériaux piézoélectriques) comme les systèmes 

unimorphse, bimorphes, matériaux piézoélectriques intégrés dans des poutres, poutres avec 

des pastilles piézoélectriques (colocalisées ou non-colocalisées), des systèmes de type plaque 

avec des pastilles piézoélectriques, des plaques circulaires, etc.  

Nous avons constaté qu'il y a beaucoup de systèmes intelligents utilisant des matériaux 

piézoélectriques (systèmes de type plaque/poutre fine avec des pastilles piézoélectriques) dans 

la littérature pour des applications telles que l'amortissement des vibrations, récupération 

d'énergie, détection des défauts causés aux structures [chapitre 7] et quelques moteurs 

piézoélectriques ultrasonores à onde progressive. Différentes manières sont utilisées pour 

décrire ces systèmes, tels que des modèles analytiques, des modèles par circuit équivalent 

(poutre, plaque) [chapitre 7] et des modèles par éléments finis [chapitre 3]. 

Pour avoir une conception optimale pour une application donnée, les modèles ont été 

combinés avec des techniques d'optimisation (déterministes ou stochastiques) [chapitre 7].  

Dans le chapitre 7, nous avons justifié le choix d’un modèle éléments finis pour décrire notre 

système. Un modèle par éléments finis 1D pour une poutre avec des pastilles piézoélectriques 

localisées pour une application d'amortissement avait été developpé par Romain CORCOLLE 

lors de son stage de MASTER 2 au laboratoire. Nous n'avons donc pas commencé de zéro. 

Ensuite, la décision a été prise de diviser notre travail en deux parties : robot piézoélectrique à 

onde progressive de type poutre et robot piézoélectrique à onde progressive de type plaque.  
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La modélisation des deux cas d'étude (modèles de poutres et de plaques) a été comparée aux 

modèles avec un logiciel par éléments finis commercial (COMSOL 3.5a). Après validation, 

une conception optimale a été faite en utilisant la stratégie de modélisation développée dans 

cette thèse, puis des prototypes expérimentaux ont été fabriqués, et nos modèles ont été 

comparés avec les résultats expérimentaux cette fois-ci (chapitre 4). 

Les modèles éléments finis développés ont l'avantage d'avoir une dimension en moins par 

rapport à ceux des logiciels par éléments finis commerciaux. Par exemple une poutre avec des 

patchs piézoélectriques (colocalisés ou non-colocalisés) est modélisée en 2D à l'aide du 

logiciel commercial par éléments finis, alors qu’elle est modélisée en 1D par notre modèle 

éléments finis.  

Après une étude de conception optimale afin de générer l'onde progressive dans la poutre 

[chapitre 5], les prototypes de type poutre ont été testés et les résultats sont donnés dans le 

chapitre 6.  

Le prototype de type plaque, ses simulations et ses résultats expérimentaux ont été déposés 

pour un brevet. 
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Forward and motivation of this work 
 
My project thesis is entitled design and realization of a piezoelectric mobile for cooperative 

use. So let start by explaining the term piezoelectric mobiles and then to answer the question 

about why we chose to design it for a cooperative use.  

The term piezoelectric mobile here means piezoelectric miniature robots. These are mobile 

miniature robots actuated by piezoelectric materials.  

In this manuscript I will present the design and realization of small robots designed for future 

cooperative use.  

These robots consist of a thin support and piezoelectric patches. The piezoelectric patches are 

bonded on the support in a clever way in order to move the support with multi degree of 

freedom.  

The idea of the project is to move the thin support in the three mediums (earth, liquid and air) 

and it is inspired from the Manta ray fish. As we know the living environment for the Manta 

ray is the water but, this fish is able to fly also for a short time (figure below). If we apply the 

locomotion principle of this Manta ray to robots we can realize robots able to move in three 

mediums because moving in earth could be done using the liquid locomotion principle for the 

Manta ray. The flapping of wings of the Manta ray is used for the air environment.  

 

 
 

Manta ray fish inside and outside the water  
[http://animals.desktopnexus.com/wallpaper/209676/, 

http://picinpic.blogspot.fr/2011/07/manta-ray-fish.html] 
 
So, the project consists of design and realizes a piezoelectric miniature robot able to move in 

the three mediums (earth, liquid and air) for future cooperative use.  

My work in the project consists to verify the feasibility of the displacement of a mimetic 

Manta ray on earth using piezoelectric materials, design and realize a prototype to 

http://animals.desktopnexus.com/wallpaper/209676/�
http://picinpic.blogspot.fr/2011/07/manta-ray-fish.html�
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demonstrate this feasibility on earth. Then make a preliminary design and perspective for 

liquid and air displacement based on the same prototype as in earth, in order to be able to 

move in the three mediums of displacement in a future work.  

My work aims to answer these following questions: 

Is it possible using piezoelectric materials to move a mimetic Manta ray (Manta ray shape is 

considered as a thin plate) with multi degree of freedom on the earth by generating a traveling 

wave motion on the thin plate? 

Is this robot can be extended based on the same prototype as in earth to create displacement 

on liquid and air environments like Manta ray fishes? 

The interest of this project lies especially when the piezoelectric robots are small and they can 

move in various media (soil, air, liquid). Robots we envision are inspired from the locomotion 

of Manta ray and they could be miniaturized, so they can be placed within the scope of 

mimetic biological swarms.   

Robot swarms are considered today as a new solution to overcome the limitations of 

traditional robotics. The joint  and cooperative operation of robots are inspired from the 

collective organizing of living beings, which emerge forms of intelligence and group control 

beyond the capacity of individual organisms involved (figure below). 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

Swarms behavior 
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[ 

http://www.ipvs.uni-stuttgart.de/abteilungen/bv/forschung/projekte/I-Swarm/print_view, 

http://www.hizook.com/blog/2009/08/29/i-swarm-micro-robots-realized-impressive-full-

system-integration, 

http://blog.autoworld.com.my/index.php/2009/02/26/swarm-technology-the-biggest-

contribution-to-eco-tech/ 

] 

Swarms robots could be used in many applications, such as cell storing, research objects in 

narrow areas or on swarm behavior, surveillance for security, medical applications & etc. 

According to a recently published report from IRAP, Inc., ‘’ET112: Piezoelectric Actuators 

and Motors–Types, Applications, New Developments, Industry Structure and Global 

Markets,’’ the global market for piezoelectric-operated actuators and motors was estimated to 

be $6.6 billion in 2009 and is estimated to reach $12.3 billion by 2014, showing an average 

annual growth rate (AAGR) of 13.2% per year. Below a table taken from IRAP Inc., presents 

global market size/percentage share for piezoelectric actuators and motors by application 

through 2014. 

 
Global share for piezoelectric actuators and motors by application, through 2014 

 
The Investment of states (USA, Japan, Europe, Korea, and China) in R&D in the area of 

swarm robots is enormous given the amount of annual publications. The same design ideas of 

robots are repeated between countries trying to improve maneuverability, control, 

functionality, speed, autonomy...  

The U.S. investment is huge in this area and in particular in the case of swarms robots based 

on piezoelectric materials (my field of interested in this research) and this is why many new 

http://www.ipvs.uni-stuttgart.de/abteilungen/bv/forschung/projekte/I-Swarm/print_view�
http://www.hizook.com/blog/2009/08/29/i-swarm-micro-robots-realized-impressive-full-system-integration�
http://www.hizook.com/blog/2009/08/29/i-swarm-micro-robots-realized-impressive-full-system-integration�
http://blog.autoworld.com.my/index.php/2009/02/26/swarm-technology-the-biggest-contribution-to-eco-tech/�
http://blog.autoworld.com.my/index.php/2009/02/26/swarm-technology-the-biggest-contribution-to-eco-tech/�
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ideas come from them. More detailed about the U.S., piezoelectric swarms robots can be seen 

in chapter one.  

I will cite below some important and recent European research projects in the field of swarm 

robots (some of them have used the piezoelectric materials and some of them not) and in 

particular the case of France. 

The I-SWARM project is a European project (Germany, Sweden, Switzerland, Austria, 

Greece, United Kingdom, Italy, and Spain), it took place between 2004 and 2008. It was a 

great success and gave a remarkable presence of Europe in the field of swarms minirobotics. 

Then the SYMBRION project is a project funded by European Commissions (Germany, 

Austria, Netherlands, Belgium, United Kingdom and France), started from previous 

development and research from project I-SWARM and the open-source SWARMROBOT 

projects. The project duration is between 2008 and 2013. A large part of the developments 

within SYMBRION is open-source and open-hardware also.  

The E-SWARM project will contribute to the development of an engineering methodology for 

the construction of artificial swarm intelligence systems based on rigorous scientific 

foundations. The project started in 2010 for a period of 5 years. Its principal investigator is 

Professor Marco Dorigo (IRIDIA lab at the university libre de Bruxelles), one of the founders 

of the swarm intelligence and swarm robotics research fields. 

In France, several projects are sponsored with ANR, ONERA and CNRS.  

REMANTA project (2002-2006) was inspired by nature to design UAVs with flapping wings, 

ANR/ELESA OVMI project (2007-2011) focuses on the development of control laws for 

actuating the wings of a biomimetic piezoelectric flying robot. PEA Action project (2007-

2014) aims to scientifically demonstrate the cooperation of multiple autonomous vehicles 

operating in different environments, ANCHORS ANR project (2012-2015) is also studying 

the cooperation of several heterogeneous autonomous vehicles (air and earth) in a context of 

crisis management, especially in the nuclear ... 

Research in the field of swarms microrobotics takes interest and continues nowadays with 

more and more investment of states due to its applications in various fields and low 

manufacturing cost. It was remarkable in England this year that, research to develop 

intelligent machines has received a boost of 16 million pounds through a partnership between 

government and industry in areas such as: monitoring in hazardous environments such as 

water facilities deep and nuclear power plants, nursebots for hospitals and aircraft. 

Let me now introduce the constitution of the manuscript: 
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1. As we have seen above, the piezoelectric miniature robot designed should be able at 

the final stage to move in the three mediums displacement. For that, we began the 

study by looking on the literature to piezoelectric miniature robots in the three 

mediums displacement (earth, liquid and air) to avoid repetition of work if there is 

any robot based on the inspiration from the Manta ray fish and actuated by 

piezoelectric patches like what we have proposed.  In the first chapter of this 

manuscript, we find a classification of piezoelectric miniature robots by medium 

displacement. In particular, we were interested in the locomotion principles of these 

robots because the goal of our project is to use a locomotion principle to generate 

displacement (Manta ray locomotion principle or undulatory traveling wave motion).   

2. After comparing the existing locomotion principles for piezoelectric miniature robots 

with our proposed one, we will study in the next the modeling of our system which is 

composed of thin structure with piezoelectric patches bonded on it. The second 

chapter includes an introduction to modeling of thin structures with piezoelectric 

patches. 

3. The third chapter is dedicated to modeling of such system (non-collocated 

piezoelectric patches bonded on thin structures).  At the end of this chapter, we will 

be able by using the obtained numerical equation to calculate the resonance 

frequencies and determining the mode shapes. We can compute the transverse 

displacements of the system, stresses, and strains obtained by applying forces on the 

system or by applying electrical voltages on some piezoelectric patches; we can also 

determine the obtained voltages for others piezoelectric batches. Also we can 

compute the currents values and the electric charges of piezoelectric patches.  

4. In chapter 4, an experimental device will be built and tested to validate the model 

obtained from chapter 3. 

5. Chapter 5 is entitled traveling wave piezoelectric beam robot. In this chapter we will 

present the design and the operation principle for this traveling wave piezoelectric 

beam robot. The optimal design will be studied using the numerical equation obtained 

in chapter 3. This numerical equation will be readapted with the operation principle of 

the robot in order to demonstrate the generation of the traveling wave.  

6. Fabrication process will be presented in chapter 6 and traveling wave will be 

demonstrated experimentally by characterization of the robot (velocity, embedded 

masses, mechanical forces,…). At the end significance and benefits for this robot 

compared to others will be presented. 
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7. No discussion in chapter 7 about piezoelectric plate robot. Actually, the operation 

principle of this robot, dimensions, design, fabrication processes, theoretical and 

experimental results have been filed for a patent. This chapter is entitled overview and 

in this chapter we will talk shortly about some points, among them: 

• Analytical modeling versus finite element modeling for this robot. 

• The robot structure (plate case) will be presented as a piezoelectric 

transformer. The piezoelectric transformer design, theoretical and 

experimental results are presented briefly by using our developed model. 

• Damping vibration of thin beams and plates will be presented briefly with 

some theoretical and experimental results using the same model developed for 

robotics applications. 

• A state space matrix equation will be represented from the finite element 

equation. The state space equation is very useful in automatic. Particularly in 

our case, it can be used to control the vibration of the beam/plate in order to 

damp the vibration for example or to generate a traveling wave instead of the 

use of passive circuits.   

• At the end, an example is given for how we can use our model in the theory of 

signal processing in order to detect damage in structures like beam/plate. 

• ……. 

•  

 
Finally, a general conclusion and perspective are given. In the perspective we will talk shortly 

about a future design for the piezoelectric beam-plate robot in aquatic medium. Some ideas 

are proposed for flying beam-plate robot.  Also we will talk about miniaturization. 
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1.1. Introduction  
The locomotion principle proposed in our project is the Manta ray locomotion as we have 

seen in the forward and motivation of this work. This locomotion principle consists of 

generating a travelling wave on a plate in order to move it in multi degree of freedom by 

using piezoelectric patches.  

This chapter presents a big review of existing works on piezoelectric miniature robots. They 

are classified by medium displacement and we are interested on the locomotion principle of 

these robots in order to see the similarities and differences between the existing locomotion 

principles and those we have proposed.  

This chapter concerns locomotion principle for piezoelectric miniature robots, we begin by 

defining what means piezoelectric miniature robot, then, I give a bit of background about the 

definition of piezoelectric materials and piezoelectric actuators, and then we will study the 

locomotion principles of piezoelectric miniature robots which are classified by their 

displacement through a fluid medium or on a solid substrate. Some piezoelectric miniature 

robots are taken as examples. 

 

1.2. Piezoelectric miniature robot 
A general definition of robots does not exist in literature because there is no one satisfies 

everyone. Some definition can be found in [ (ISO), (Lee, et al., 2006)]. Furthermore, a 

possible one is to define a robot as an electromechanical system designed for a given 

application. Miniature robots are either defined on a basis of the task they are performing 

either on their size [(Dario, et al., 1992), (Caprari, 2003)]. However, henceforth in this 

chapter, the term mobile miniature robots will represent robots with a size of less than 1 dm3 

and a motion range of at least several times the robots body length [(Driesen, 2008)]. Then 

piezoelectric miniature robots are mobile miniature robots actuated by piezoelectric materials. 

Mobile miniature robots could be used in many applications, such as cell storing, research 

objects in narrow areas or on swarm behavior, surveillance for security, medical applications 

&c.  

 

1.3. Piezoelectric actuators 
Many actuators types are used in mobile miniature robots to convert electrical to mechanical 

energy. The choice of an actuator depends in the application. A comparison of some actuation 

types are given in (Penella, 2005). The piezoelectric actuators are piezoelectric materials 
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using the indirect effect. In piezoelectric materials, an electric potential is produced when a 

stress is applied. This is known as the direct piezoelectric effect. Conversely the application of 

an electric field results in the development of a strain and/or stress in the materials. This is 

known as the indirect piezoelectric effect. Later in chapter 2, we will describe in more details 

the modeling concept of piezoelectric materials. 

The piezoelectric actuators are able to interact in different medium displacement. In 

comparison with other types of actuation, the piezoelectric actuators have low displacement 

range and a low strain but high displacement accuracy and high response speed. In addition, 

they are suitable for miniaturization [(Uchino, 2006)] and do not generate electromagnetic 

noise. Manufacturing of multilayer piezoelectric actuators and bending piezoelectric actuators 

have the potential to eliminate the drawbacks of piezoelectric materials and make them among 

the most commonly used in mobile miniature robots. Piezoelectric actuators are responsible 

for motion in mobile miniature robots and are characterized by two energy transformations. 

The first conversion is the electrical to mechanical conversion and the second is the 

mechanical to mechanical conversion.  The first conversion reflects the reverse piezoelectric 

effect, which generates small motion of mobile miniature robots. The second conversion 

containing specific locomotion principles amplifies the motion of mobile miniature robots. 

Locomotion principles for mobile miniature robots are mostly inspired from animal 

locomotion and are classified by their displacement through a fluid medium or on a solid 

substrate. In this chapter, we will study these locomotion principles and some piezoelectric 

miniature robots are taken as examples. 

 

1.4. Locomotion on a solid substrate 
The forces related to motion on land are the force of gravity, the normal reaction, the friction 

force, which depends on friction coefficient, contact force and the active force that generates 

the motion. Locomotion on a solid substrate for mobile miniature robots includes wheeled 

locomotion, walking, inchworm, inertial drive, resonant drive and friction drive. We will 

describe in this section, these locomotion principles.  

 

1.4.1. Wheeled locomotion  
The principle is based on small engines powering wheels. These engines can be DC motors, 

step motors, electromagnetic motors or piezomotors. Rolling motion with wheels for 

miniature robots is characterised by great motion velocities due to the low friction between 
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wheels and substrate. However it is not very effective in terms of resolution because the 

efficiency of motors drives decreases with decreasing scale, moreover at small scale the 

integration of efficient rotary bearings is very complicated [(Driesen, 2008)]. As examples for 

wheeled locomotion in miniature robots driven by piezoelectric materials, we can count:  

1-The world-smallest 4W vehicle [(Uchino, 2006)] driven by two metal tube USM’s in the 

Penn State university (Figure 1. 1);  

2-A miniature robot called Jemmy has been developed at EPFL driven by rotating 

piezomotors [(Driesen, 2008)];  

3-Epson Micro Robot System presented a miniature robot called Monsieur II-P driven by two 

ultra thin ultrasonic motors [(Epson, 2010)]. 

 

 
Figure 1. 1: The world-smallest 4W vehicle [(Uchino, 2006)] 

1.4.2. Walking locomotion 
The principle of this locomotion is based on legs which are the drive units, to achieve a 

walking similar to the biological organism. The legs are either fixed on a robot (Figure 1.2) or 

in a stationary element (Figure 1.3) where the slider moves. The second case is not considered 

for mobile miniature robots. In walking mechanisms, the legs are divided into two sets, where 

each set alone can maintain the equilibrium of robot or slider. The legs maybe thermal, 

polymer, electrostatic or piezoelectric drives units. The piezoelectric actuators are generally 

multilayer benders or monolithic multilayer. The control signals are a square wave [(Ebefors, 

et al., 2005)], sinusoidal or trapezoidal waves like in reference [(Simu, et al., 2006)]. Walking 

is essentially a quasistatic locomotion. At high frequency, the control of drive unit can cause 

motion instabilities, for this reason it is advisable to work in quasi static mode and the goal of 

high speed can achieve by using other locomotion principles. We can count as examples for 

walking locomotion in piezoelectric miniature robots:  
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1- A piezoelectric walking robot called SPIDER-II actuated by 9 piezoelectric bimorph is 

present in [(Rembold, et al., 1997)] 

2- Within the scope of MINIMAN project [(MINIMAN, 2010)], the MINIMAN V robot 

consists of two monolithic piezoelectric drive units put together back to back [(Simu 

& Johansson, 2002)]. The top drive unit is intended for locomotion whiles the button 

for manipulating. Each drive unit has six monolithic piezoelectric legs. 

3- Within the scope of MiCRoN project [(MiCRoN, 2010)], a walking locomotion is 

demonstrated in [(Snis, et al., 2004)]. The module consists of four feet actuated by 

monolithic multilayer piezoelectric benders. Some examples are taken in Figure 1. 4. 

 
 

Figure 1.2 : mechanisms (Robot motion) [(Ebefors, et al., 2005)] 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.3 : Walking mechanisms (Slider motion) [(Driesen, 2008)] 

Jumping is one of solution to overcome the difficulty of locomotion in rough terrain for small 

size system. The jumping locomotion idea is to store energy and release it quickly to jump. In 

order to be able to perform repetitive jumps in a given direction, it is important to be able to 
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upright after landing, steer and jump gain. A review of the uprighting and steering principles 

of existing jumping miniature robots is present in [(Kovac, 2010)]. Figure 1.5 describes the 

basic principle of locomotion for one miniature robot actuated by 3 piezoelectric drive units. 

As we can remark, the control signal is based on smooth contraction (store energy) and rapid 

elongation (release it quickly). 

 

 
Figure 1. 4:  walking locomotion examples [(J.B.Penella, 2005)] 

 

 
Figure 1.5 : Basic principle of locomotion, a. initial position, b. combined forces from the legs and the floor, c .robot is 

lifted, d. robot loosing contact with the floor, e. robot is falling down, f. robot is back on the floor. The deflection 

amplitudes of the legs are exaggerated here for clarity [(Nguyen, et al., 2006)]. 

 
1.4.3. Inchworm locomotion 
 An inchworm device consists of 3 actuators, two clampers and one extensor actuators. 
Always, the extensor is situated between the two clampers .The clamper is used to clamp the 
device into the slider (Figure 1.6) or into the substrate (Figure 1.7 & Figure 1.8) while the 
extensor generate the stroke required for the displacement. As examples for inchworm 
locomotion in piezoelectric miniature robots, we can count:   

1- A two mobile mini- and microrobots with inchworm locomotion driven by 

piezoelectric actuators and electromagnetic clamps are presented in [(Aoyama, et al., 

2001), (Fuchiwaki, et al., 2002)]. 
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2- A three mobile minirobot driven by three, triangularly arranged piezoelectric stack 

actuators are presented in [(Codourey, et al., 1995), (Koyanagi, et al., 2000), (Torii, et 

al., 2001)] as we can show in Figure 1. 9. 

3- A minirobot consists of one piezoelectric stack actuator and four electromagnetic 

clamps are presented in [(Yan, et al., 2006)]. 

4- A biomimetic micro crawling robot built using smart composite microstructures 

(SCM) is made of articulated microstructures integrated with piezoelectric actuators, 

wiring, and sensors [(J.Wood, 2008), (Wood, et al., 2008)]. Many bio inspired device 

like worm miniature robot operates in inchworm principles not based on piezoactuator 

exist in literature [(Phee, et al., 2002),(Lim, et al., 2008), (Carrozza, et al., 1997), 

(Asari, et al., 2000),(Menciassi, et al.)]. 

 
 

Figure 1.6 : Inchworm principle (slider motion) [(May, 1975.)] 

 

 

Figure 1.7 : Inchworm principle (robot colonoscopy motion) [(Phee, et al., 2002)] 
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Figure 1.8 : Inchworm principle (robot motion) [(Kotay & D.Rrus, 2000) ] 

 

 
 

Figure 1.9: Inchworm locomotion examples [(Codourey, et al., 1995) & (Torii, et al., 2001)] 

 
1.4.4. Inertial drive 
The inertial drive principle is generated in the case of asymmetric actuation, i.e. in the case of 

rapid extension (or contraction) and slow contraction (or extension) of the actuator; for this 

reason, the most of miniature robots based on inertial drive principles are actuated by 

piezoelectric actuators, because of their high bandwith. Two types of inertial drive principles 

can be distinguished: the stick-slip principle and the impact drive principle. This distinction is 

due to the difference in the design of the device (Figure 1.10). A stick-slip design consists of: 

an inertial mass which is the main body; legs which are the piezoelectric drive units, they are 

either fixed in the inertial mass (robot motion), either fixed on the substrate (slider motion) 

and a contact surface which is fixed in the legs. An impact drive design consists of an inertial 

mass connected to the main body via a piezoelectric element, due to its design, the impact 

drives are typically driven by a sawtooth signal with a quadratic ramp phase to enable store a 

maximum amount of kinetic energy in the motion of the inertial mass, resulting in the 

maximum step displacement of the body of the robot [(Driesen, 2008)]. The steps of motion 

for each device are shown in Figure 1.11 & Figure 1.12 



17 
 

Many miniature robots based on the inertial drive principles, as examples we can take: 

1- A cybernetic in-pipe impact drive actuator based on impact drive principle and 

actuated by two piezo stacks [(Ikuta, et al., 1991)].  

2- A miniature robot called  SPIDER-I based on stick-slip principle and actuated by 3 

times 2 piezoelectric bimorph actuators connected in series [(Rembold, et al., 1997)].  

3- The MINIMAN V and the MiCRoN miniature robots, already presented in walking 

locomotion are also able to do the stick-slip motion as discussed in [(Simu & 

Johansson, 2006)].  

 
 

  

 

 

 

 
 

 

 

 

 

 

 

 

 

 
 

 
 

 

 

 

 

 

Figure 1.10: inertial drive design 

Figure 1.11: stick-slip principle [ (Stepping principles, 2010)] 
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1.4.5. Resonant drive 
Resonant drive mechanisms are frequently used in the field of ultrasonic motors (USM) and it 

is defined by inertial slip generation with contact force variation [ (Driesen, 2008)]. 

According to this definition, the motion is generated by variation of the contact force, where 

the contact force variation is the inertial effect of a vertical vibration, which results from the 

back-and-forth motion of the robot body. Therefore to increase the inertial force, one must 

increase the horizontal vibration and consequently the frequency of feet vibration. Motion 

occurs when this inertial force becomes larger than the maximum friction force between feet 

and substrate. So we must increase the frequency until a threshold where motion occurs. As 

examples for piezoelectric mobile miniature robot: 

1- Based on the configuration of inclined vibrating legs, two miniature robots are 

developed at the Uppsala University. The first one is actuated by multilayer 

piezoceramic legs and the second is developed within the scope of I-Swarm project 

[(SWARMS, 2010)], it is named I-Swarm robot and it is actuated by a monolithic 

structure of a piezoelectric polymer (P(VDF-TrFE)) [(Edqvist, et al., 2008)].  

2- A minirobot based on SWUSM is presented in [(Ferreira, et al., 1997)], The SWUM 

consists of a piezoelectric plate assembled to the metallic resonator. 

3- A minirobot based on bidirectional SWUSM is proposed in [(Son, et al., 2006)]. The 

bidirectional SWUSM consists of two piezoelectric-metal composite beams vibrating 

in resonance mode (Figure 1. 13).  

Figure 1.12 : impact drive principle [ (Stepping principles, 2010)] 
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4- A mobile minirobot developed at EPFL [(Cimprich, et al., 2006)], actuated in the 

resonance mode by 3 monolithic piezoelectric push-pull actuators (Figure 1.13). 
 

 
 

Figure 1. 13: Resonant drive examples  

1.4.6. Friction drive 
In this case, the generation of motion is due to the change of friction coefficient during 

horizontal vibration of robot body. The change of friction coefficient results from a no-

perpendicular contact angle between robot feet and substrate. It differs from the resonant 

drive by the fact that, in the resonant drive the horizontal vibration generates the inertial 

vibration, that in turn generates the motion of the robot; in the friction drive, no inertial force 

vibration occurs during horizontal vibration but a change in the friction coefficient, which 

causes a motion in the direction of low friction without intervention of the inertial force. As 

examples for piezoelectric miniature robots using this mode, we can take: 

1- A mobile tube wall miniature robot consists of piezoelectric bimorph actuator with 

four flexible fins attached to it [(Aoshima, et al., 1993)] as shown Figure 1.14. 

2- A microrobot based on the friction drive, driven by piezoelectric actuators is presented 

in [(Ishihara, et al., 1995)]. 

3- A microrobot proposed in [(Matsuoka, et al., 1993)] actuated by two piezoelectric 

unimorph disk actuators. 

A novel type of locomotion proposed by Driesen et al. [(Driesen, Breguet, & Clavel, 2006)], 

can be classified as a mix between resonant and friction drive, it based on the superposition of 

a variation of the contact force and a horizontal vibration generating a periodic slip at the 

interface between robot and work floor. In the same manner, we can classified the miniature 

robots taken in example 1, presented in the section inertial drive as a mix between resonant 

and friction drive due to the use of inclined vibrating legs. 
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Figure 1. 14: Friction drive examples [(Aoshima, et al., 1993)] 

1.4.7. Summary of miniature robots on a solid substrate 
 
Find below a summarized table (Table 1. 1) for piezoelectric miniature robots on a solid 
substrate. 
 

Institution Brief description Reference 

Penn state university, USA 
The world-smallest 4W vehicle 

driven by two metal tube USM 
[(Uchino, 2006)] 

EPFL, Switzerland 
A miniature robot called Jemmy 

driven by rotating piezomotors 
[(Driesen, 2008)] 

Seiko Epson Corporation, Japan 

a miniature robot called 

Monsieur II-P driven by two 

ultra thin ultrasonic motors 

[(Epson, 2010)] 

Karlsruhe Institute of 

Technology (KIT), Germany 

A piezoelectric walking robot 

called SPIDER-II actuated by 9 

piezoelectric bimorph 

[(Rembold, et al., 1997)] 

 

Department of Materials 

Science, Uppsala University, 

Sweden 

MINIMAN V robot consists of 

two monolithic piezoelectric 

drive units put together back to 

back. The top drive unit is 

intended for locomotion whiles 

the button for manipulating. 

Each drive unit has six 

monolithic piezoelectric legs. 

[(Simu & Johansson, 2002)] 
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Institution Brief description Reference 

Uppsala University, Department 

of Engineering Sciences 

Department of Physics and 

Materials Science, Sweeden 

The module consists of four feet 

actuated by monolithic 

multilayer piezoelectric benders 

[(MiCRoN, 2010)] 

NanoRobotics Laboratory, 

Department of Computer 

Engineering and Institute of 

Biomedical Engineering, 

École Polytechnique de 

Montréal (EPM), Campus of the 

Université de Montréal, 

Montréal (Québec) Canada 

one jumping miniature robot 

actuated by 3 piezoelectric drive 

units 

[(Nguyen, et al., 2006)] 

Dept. of Mech. Eng. & 

Intelligent Syst., Univ. of 

Electro-Commun., Chofu, Japan 

A two mobile mini- and 

microrobots with inchworm 

locomotion driven by 

piezoelectric actuators and 

electromagnetic clamps 

[(Aoyama, et al., 2001), 

(Fuchiwaki, et al., 2002)] 

Inst. of Robotics, 

Eidgenossische Tech. 

Hochschule, Zurich 

A mobile minirobot driven by 

three, triangularly arranged 

piezoelectric stack actuators 

[(Codourey, et al., 1995)] 

Aichi Institute of Technology, 

Toyota, Japan 

A mobile minirobot driven by 

three, triangularly arranged 

piezoelectric stack actuators 

[(Koyanagi, et al., 2000), 

(Torii, et al., 2001)] 

Department of Precision 

Instruments and Mechanology, 

Tsinghua University, China 

minirobot consists of one 

piezoelectric stack actuator and 

four electromagnetic clamps 

[(Yan, et al., 2006)] 

School of Engineering & Appied 

Sciences, Harvard University, 

Cambridge, UK. 

Department of Electrical 

Engineering & Computer 

Sciences, University of 

California, Berkeley, USA. 

A biomimetic micro crawling 

robot built using smart 

composite microstructures 

(SCM) is made of articulated 

microstructures integrated with 

piezoelectric actuators, wiring, 

and sensors 

[(J.Wood, 2008), (Wood, et al., 

2008)] 
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Institution Brief description Reference 

Dept. of Mech. Syst. Eng., 

Kyushu Inst. of Technol., 

Fukuoka, Japan 

A cybernetic in-pipe impact 

drive actuator based on impact 

drive principle and actuated by 

two piezo stacks 

[(Ikuta, et al., 1991)] 

Karlsruhe Institute of 

Technology (KIT), Germany 

A miniature robot called  

SPIDER-I based on stick-slip 

principle and actuated by 3 

times 2 piezoelectric bimorph 

actuators connected in series 

[(Rembold, et al., 1997)] 

Uppsala University, Sweden 

I-swarm robot is based on the 

configuration of inclined 

vibrating legs and actuated by a 

monolithic structure of a 

piezoelectric polymer 

[(Edqvist, et al., 2008)] 

 

Electrotechnical Laboratory, 

Intelligent Systems Division, 

Autonomous Systems Section, 

Tsukuba,Japan. 

Laboratoire de Mécanique 

Appliquée, Besançon, France 

A minirobot based on SWUSM, 

consists of a piezoelectric plate 

assembled to the metallic 

resonator 

[(Ferreira, et al., 1997)] 

Department of Mechanical 

Engineering, Carnegie Mellon 

University, Pittsburgh,USA 

A minirobot based on 

bidirectional SWUSM consists 

of two piezoelectric-metal 

composite beams vibrating in 

resonance mode 

[(Son, et al., 2006)] 

EPFL, Switzerland 

A mobile minirobot actuated in 

the resonance mode by 3 

monolithic piezoelectric push-

pull actuators 

[(Cimprich, et al., 2006)] 

NTT Transmission Systems 

Laboratories, Ibaraki-Ken, Japan 

A mobile tube wall miniature 

robot consists of piezoelectric 

bimorph actuator with four 

flexible fins attached to it 

[(Aoshima, et al., 1993)] 

Dept. of Micro Syst. Eng., 

Nagoya Univ., Japan 

A microrobot based on the 

friction drive, driven by 

piezoelectric actuators 

[(Ishihara, et al., 1995)] 
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Institution Brief description Reference 

MEITEC Corp., Nagoya, Japan 

A microrobot actuated by two 

piezoelectric unimorph disk 

actuators 

[(Matsuoka, et al., 1993)] 

 

Table 1. 1:  Piezoelectric miniature robot on a solid substrate  

 

 

1.5. Locomotion in liquid 
The movement in liquid is totally inspired from animal locomotion and is divided into 

locomotion inside liquid and locomotion at the liquid surface. The design of miniature robots 

in aquatic medium depends on the liquid properties; the forces were acting on and some 

factors influencing the locomotion. The forces acting on miniature robots inside liquid are 

thrust, drag, weight buoyancy and hydrodynamic lift (Figure 1.15).  

 
 
 
 

 

 

 

 

Figure 1.15 : The forces acting on a swimming fish 

 
The thrust here is defined as the force generated by moving portions of the miniature robot 

body on the fluid surrounding it, to move miniature robot forward. The inertial force depends 

on the body mass while the buoyancy force is generated by fins and it depends on the mass of 

fluid displaced. The hydrodynamic lift is generated by fins to supplement buoyancy and 

balance the vertical forces when horizontal motion is demanded. The drag is the resistive 

force exerted by the fluid on its body and it consists of viscous drag and pressure drag. 

Viscous drag is skin friction between the miniature robot and boundary layer of water. The 

pressure drag exerted by distortions of flow around miniature robot body and energy lost in 

the vortices formed by the fins as they generate lift or thrust. At the liquid surface, the forces 

acting on miniature robots are the same but in this case the miniature robots use the surface 



24 
 

tension of liquid which represents the work required to deform a liquid over a unit area 

[(BIEWENER, 2003)] to generate lift, buoyancy and thrust, or  they use the mass density of 

liquid to generate these forces. An important factor influencing the locomotion for miniature 

robots in liquid is the Reynolds number (Re) that describes the viscous versus inertial forces. 

At low Re viscous forces reign, but at high Re inertial forces dominate. This has important 

consequences for the propulsive mechanisms and design for locomotion at low and high Re 

[(BIEWENER, 2003)]. The Froude number (Fr) is also an important factor that describes the 

propulsive efficiency of the miniature robots. It is the ratio of the useful propulsive power 

over the total power expended by the mobile miniature robots. As already mentioned the 

design of miniature robots in aquatic medium depends on surface tension of liquid, density of 

liquid, Reynolds number and the forces were acting on, locomotion principles itself are not 

influenced by the type of liquid. So, the study of locomotion principles in any type of liquid is 

the same, we then consider the case of water in the following. As the movement in liquid for 

mobile miniature robots is totally inspired from animal locomotion, a study of animal 

locomotion in water is given in this section, with some applications in the field of 

piezoelectric miniature robots.  

 

1.5.1. Locomotion inside water 
Locomotion inside water includes swimming or non-swimming locomotion. The latter 

includes specialized actions such as flying and gliding, as well as jet propulsion. In this 

section, we will describe only the swimming locomotion because it is the most used in the 

field of miniature robot and it is divided into fish swimming mechanisms (at high and 

moderate Re) and micro-organisms swimming mechanisms (at low Re).  

1.5.1.1. Fish swimming mechanisms 
To aid in the description of fish swimming mechanisms; Figure 1.16 identifies the elements of 

fish. The fish swims either by body and/or caudal fin (BCF) movements or using median 

and/or paired fin (MPF) propulsion. 

The BCF propulsion has been classified into five swimming modes: Anguilliform, 

subcarangiform, carangiform, thurnniform and ostraciform. The latter is the only oscillatory 

BCF mode; it is characterized by the pendulum oscillation of the caudal fin, while the body 

remains essentially rigid. The others are undulatory BCF modes. In anguilliform mode, 

ondulations of large amplitude are obtained by whole body.  
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Figure 1.16 : Elements of fish [(Sfakiotakis, et al., 1999)] 

Similarly for subcarangiform mode, but the amplitude of undulations is limited in front and 

increased in the latter half of the body. For carangiform mode, the amplitude of the 

undulations is limited to the last third of the body. In thunniform mode, the thrust is generated 

by the caudal fin only.  

The MBF propulsion has been classified into seven swimming modes: Rajiform, 

diodontiform, amiiform, gymnotiform, balistiform, labriform and tetraodontiform. The two 

latter modes are classified into undulatory fin motions, while the five remaining are classified 

into oscillatory fin motions. In rajiform mode, the most of the body length undulate vertically 

along the pectorals that are flexible and very long. Similarly, in diodontiform mode, thrust is 

generated by the pectoral fins but they are not in the same level and the same shape as that in 

mode Rajiform. In amiiform mode, propulsion is obtained by undulations of a long-based 

dorsal fin. Contrary, in gymnotiform mode, propulsion is obtained by undulations of a long-

based anal fin. In balistiform mode, both the anal and dorsal fins undulate to generate thrust. 

In labriform mode, thrust is generated by oscillatory movements of the pectoral fins. In 

tetraodontiform mode, the dorsal and anal fins beat together, either in phase or alternating 

phase to generate thrust. Figure 1.17 describes fish swimming modes. 

Some piezoelectric miniature robots like swimming fishes are developed in [(Fukuda, et al., 

1994),(Tzeranis, et al., 2003), (Borgen, et al., 2003),(Deng, et al., ICRA 2005), (Kodati, et al., 

2007), (Wiguna, et al., 2006),(Hu, et al., 2006)], where piezoelectric actuators are used for 

producing the movements of BCF and MPF for miniature robots. The choice between 

swimming modes in liquid depends on the application expected. For example the design of 

thunniform swimmers miniature robots is optimized for high speed swimming in calm waters 
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and is not well suited to other actions such as slow swimming, turning maneuvers and rapid 

acceleration from stationary and turbulent water [(Sfakiotakis, et al., 1999)]. Example is given 

in Figure 1.18. 

 

 

 
 

 

 

 

 

Figure 1.17 : Swimming modes associated with (a) BCF propulsion and (b) MPF propulsion. Shaded areas contribute to 

thrust generation [(Sfakiotakis, et al., 1999)] 

 
Figure 1. 18: Fish swimming locomotion example  

 

1.4.1.2. Micro-organisms swimming mechanisms 
All the micro swimming mechanics such as flagella, spermatozoa, cilia, and amoeba crate in 

one way or another traveling wave, advanced in the opposite direction of the micro organisms 

locomotion. The swimming mechanics of micro-organisms are divided into flagellar and 

ciliary swimming. 

Flagellar swimming is the simplest swimming method for micro system and is produced by a 

sinusoidal or helical wave in an elastic tail. In contrast of flagella, cilia beat in asymmetrical 

fashion i.e. by orienting the cilia parallel to the flow during the recovery stroke much lower 

drag is produced than when they beat in a more perpendicular orientation during the 

propulsive stroke [(BIEWENER, 2003)].  

Piezoelectric actuators are used in [(Kosa, et al., 2007), (Kosa, et al., 2008)] for creating the 

travelling wave needed for the movements of swimming micro organisms (Figure 1. 19).  
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Figure 1. 19: Micro-organisms locomotion example  

 
1.5.2. Locomotion at the water surface 
Locomotion at the water surface is divided into two different locomotion principles: striding 

on the water surface like water striders and running on the water surface like a basilisk lizard. 

Water striders take advantage of their size by using the surface tension of water to generate 

forces in order to step over the surface of water. These forces increase with the depth of the 

unwetted limb of the water striders [(BIEWENER, 2003)]. Basilisk lizard have a weight 

which is larger than the surface tension can support, it takes advantage of the mass density of 

the water, which exerts a reactive force when running rapidly with its webbed feet 

[(BIEWENER, 2003)]. As example we take the water strider miniature robot walking on 

water describes in [(Suhr, et al., 2005)] (Figure 1.20). 
 

 
Figure 1. 20: Locomotion example at the water surface  

 

 

 
 
 
 
 
 
 
 
 
 



28 
 

1.5.3. Summary of piezoelectric miniature robots inside and on liquid 

Find below a summarized table (Table 1.2) for piezoelectric miniature robots inside and on 

liquid.  
Institution Locomotion principles   Reference 

Nagoya University in Japan 

Micro-mobile robot in water, 

which possesses a pair of fins 

and moves them symmetrically 

(pectoral). 

[(Fukuda, et al., 1994), 

(Fukuda, Kawamoto, Arai, & 

Matsuura, 1995)]  

National Technical University of 

Athens, Greece. 

A small autonomous robotic 

vehicle driven by an oscillating 

foil (ostraciiform). 

[(Tzeranis, et al., 2003)]  

Dept. of Mech. Eng., Ohio State 

Univ., Columbus, OH, USA   

A miniature swimming vehicle 

that propels itself through 

oscillations of a flexible fin 

mounted in the stern 

(ostraciiform). 

[(Borgen, et al., 2003)]  

Dept. Mechatronics 

Engineering, Incek, Ankara, 

Turkey 

Fish-like swimming mini robot, 

that propels by oscillating its tail 

fin(ostraciiform). 

[(Tunçdemir, et al., 2004)]  

Robotics and Intelligent 

Machines Laboratory University 

of California, Berkeley 

Micro underwater vehicle 

mimicking a boxfish , with rigid 

body propelled by a oscillating 

tail fin (ostraciiform) and steered 

by a pair of independent side 

fins (tetraodontiform) 

[(Deng, et al., ICRA 2005)]  

NanoRobotica Lab at Carnegie 

Mellon University, Pittsburgh, 

USA 

Miniature water strider 

miniature robot walking on 

water, biologically inspired from 

water strider 

[(Suhr, et al., 2005), (Song, et 

al., 2007)]  
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Institution Locomotion principles   Reference 

Konkuk University, Korea 

Biomimetic fish miniature robot 

uses subcarangiform, 

ostraciiform and thunniform 

caudal fins as swimming modes. 

[(Wiguna, et al., 2006), (Heo, et 

al., 2007), (Wiguna, Heo, Park, 

& Goo, 2009), (Nguyen, et al., 

2010)]  

Inst. of Autom., National Univ. 

of Defense Technol., 

Changsha,China. 

An underwater bio-robot 

inspired by Rhinecanthus 

aculeatus, which belongs to 

median and/or paired fin (MPF) 

propulsion fish and impresses 

researchers with agility by 

cooperative undulation of the 

dorsal-and-anal fins 

(balistiform) 

[(Hu, et al., 2006)]  

Dept. of Mech. Eng., Technion - 

Israel Inst. of Technol., Haifa   

Microrobot powered by 

traveling waves in elastic tails, 

for maneuvering inside the 

human body(flagellar 

swimming) 

[ (Kosa, Shoham, & Zaaroor, 

2007)]  

Delaware Univ., Newark, USA 

Micro autonomous robotic uses 

Ostraciiform mechanism as 

swimming mode. 

[(Kodati, et al., 2007)]  

Dept. of Inf. Technol. & Electr. 

Eng., ETH Zurich, Swiss 

Medical  micro robot using 

flagellar swimming method. 
[(Kosa, et al., 2008)]  

Table 1.2 : Piezoelectric miniature robots in liquid 

 

1.6. Locomotion in air  
The movement in air for mobile robots is classified into two groups: active air vehicle and 

passive air vehicle. The first group is divided into three different locomotion principles: 

flapping, rotary and fixed wing. The passive air vehicle consists of one locomotion principle, 

the gliding flight. Like in liquid locomotion, the Reynolds number (Re) is an important 

parameter in the design of flight vehicles, and it is defined in the same manner.  The Re varies 

linearly with air vehicle weight [(Mueller, 1999)], so miniature air vehicles (MAVs) operate 

at low Re where the viscous forces dominate. The flapping wing method is the most efficient 

way for MAVs because it generates the greatest thrust with the same power expended, among 

the other methods and it is the most used in the field of piezoelectric miniature robots, for this 

reason, it is the only method described here. 
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1.6.1. Flapping wing MAV 
Unsteady state flow aerodynamics is obtained in the case of flapping wing MAV, because 

leading-edge vortices (LEV) are formed during downstroke wing (Figure 1.22) and are shed 

at the start of the upstroke and so on. LEV helps to generate a high lift coefficient during 

flight and according to the movements of wings and wind, forward thrust is generated during 

downstroke movement and drag is generated during upstroke (Figure 1.23). As examples for 

piezoelectric flapping wings MAV, see references [(Sitti, 2001), (Campolo, et al., 2003), 

(Park, et al., 2006), (Nguyen, et al., 2007), (Ming, et al., 2008)] as shown Figure 1. 21. Below 

some piezoelectric flapping wing MAVs are given. 

 

 
 

Figure 1. 21: Flapping wing MAV examples  

 
 

 
 

Figure 1.22 : LEV are formed during downstroke 
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Figure 1.23 : Forces acting on wings during up and down movement 

 
Institution Brief description   Reference 

Dept. of Electr. Eng. & Comput. 

Sci., California Univ., Berkeley, 

CA, USA 

Inspired by biological insect flight, 

an autonomous flight microrobot is 

developed using 2 flapping wings 

[(Yan, et al., 2001)]  

Dept. of Electr. Eng. & Comput. 

Sci., California Univ., Berkeley, 

CA, USA 

PZT actuated four-bar mechanism 

with two flexible links for 

micromechanical flying insect 

thorax 

[(Sitti, 2001)]  

Department of Mechanical 

Engineering, Vanderbilt 

University, Nashville, TN, USA 

Development of Elastodynamic 

Components for Piezoelectrically 

Actuated Flapping Micro-Air 

Vehicle 

 [(Cox, et al., 2002)]  

 Dept. of Electr. Eng. & 

Comput. Sci., California Univ., 

Berkeley, CA, USA 

Two types of biomimetic 

gyroscopes have been constructed 

using foils of stainless steel 

[(Wu, et al., 2002)]  

Dept. of Electr. Eng. & Comput. 

Sci., California Univ., Berkeley, 

CA, USA 

Inspired by biological insect, 

design of a microrobot using wing 

rotation at the end to increase 

maneuverability for flying flapping 

wings 

[(Yan, et al., 2002)]  
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Institution Brief description   Reference 

Dept. of Electr. Eng. & Comput. 

Sci., California Univ., Berkeley, 

CA, USA 

Development of piezoelectric 

bending actuators for 

micromechanical flapping 

mechanisms 

[(Campolo, et al., 2003)]  

Artificial Muscle Research Center, 

Department of Aerospace 

Engineering, Konkuk University, 1 

Hwayang, Korea 

An Insect-Mimicking Flapping 

System 

 [ (Park, Syaifuddin, Goo, Byun, & 

Yoon, 2006)]  

Harvard Univ., Cambridge, USA Flight of an insect-sized robotic fly [(Wood, 2007)]  

Dept. of Adv. Technol. Fusion, 

Konkuk Univ., Seoul, South Korea 

Flying insect-like flapper actuated 

by a compressed LIPCA 
[(Nguyen, et al., 2007)]  

Dept. of Mech. Eng. & Intell. 

Syst., Univ. of Electro-Commun., 

Chofu,Tokyo  

Develop flapping robots using a 

new type of piezoelectric material, 

(piezoelectric fiber composites) 

[(Ming, et al., 2008)]  

Dept. of Mater., Cranfield Univ., 

Bedford, UK 

Coupled piezoelectric fans with 

two degree of freedom motion for 

the application of flapping wing 

micro aerial 

[(Chung1, et al., 2008)]  

Institut Polytechnique de 

Grenoble, France 

Modeling and control of a 

piezoelectric flapping wing 

biomimetic robot 

[(Rifai, 2008)] 

Army Research Laboratory, USA 

Bio-Mimetic Millimeter-Scale 

Flapping Wings for Micro Air 

Vehicles 

[(Kroninger, et al., 2009)] 

 
Table 1.3 : piezoelectric flapping wing MAVs 

 

1.7. Conclusion and discussion  
At the beginning, it is useful to remind that our goal in this thesis is to realize a terrestrial 

piezoelectric miniature robot by generating a traveling wave on the plate taken as the shape of 

the Manta ray fish and to propose at the end a design for aquatic locomotion based on the 

same plate shape (Manta ray form).  

This review does not include all locomotion principles for robots. It was dedicated on 

locomotion principles for the existing piezoelectric miniature robots only.  

After reading this review and looking in particular at the locomotion on a solid substrate, we 

can notice that the plate shape that we have proposed uses resonant drive locomotion. As we 

have seen in this chapter, section 1.4.5, in resonant drive principle the piezoelectric actuators 
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are used at their resonant frequency to produce maximal deformation and it is defined in [ 

(Driesen, 2008)] by inertial slip generation with contact force variation, so motion occurs 

when the inertial force becomes larger than the maximum friction force. This principle is 

frequently used in standing wave and traveling wave type ultrasonic motors. As we are 

interested to generate a traveling wave on the plate (Manta ray shape), our design will be 

inspired from traveling wave motors and it will be for robotics application.  

we can note that the Manta ray fish uses inside water the Median and/or Paired Fin (MPF) for 

propulsion, more precisely it uses the Rajiform mode (most of the body length undulate 

vertically along the pectorals that are flexible and very long) to generate the thrust needed to 

move. Outside the water, the Manta ray fish uses the flapping wings (flapping pectorals fins 

that are flexible and very long) to generate the thrust needed to fly over water.    The most of 

piezoelectric miniature robots fishes in literature use Body and/or Caudal Fin (BCF) 

propulsion to generate movements because it is easy to design, manufacture and control it 

while, the design and the control of MPF propulsion to create the undulation needed for 

propulsion are more complicated. The question arises now is can we propose at the end of this 

thesis a design for undulatory propulsion piezoelectric miniature robot in water for our earth 

piezoelectric miniature robot? 

Our conclusion is that, the operation principle of traveling wave ultrasonic motors (resonant 

drive locomotion) will be used to generate the traveling wave on the plate (Manta ray shape), 

we should begin now to study the modeling of our system that is composed of thin structure 

with piezoelectric patches bonded on it.  

The second chapter includes an introduction to modeling thin structures with piezoelectric 

patches in the general case while the third is dedicated to modeling of non-collocated 

piezoelectric patches bonded on thin structures taking a particular case of study.  
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2.1. Introduction 
As we said in chapter one, the traveling wave generated on the plate will be based on the 

operation principle of linear traveling wave ultrasonic motors (resonant drive locomotion). 

These motors are known by the bending beam theory, that is why we will divide the study 

into bending beam theory and bending plate theory. Later in the manuscript the traveling 

wave will be generated on the beam first, and then we will take the case of the plate.  

Here in this chapter we will present briefly the linear elasticity, mechanical and piezoelectric 

equations, and then theory of Euler-Bernoulli and Love-Kirchhoff in the case of bending 

beam and bending plate theory respectively.   

We will speak about modeling of thin structures (beams and plates) with piezoelectric patches 

in the general case, which means without taking a particular case of study. We will talk first 

about the static and dynamic equations in the case of thin structures with piezoelectric patches 

in general. Then, we will talk about the numerical modeling of bending vibrations of beams 

and bending vibrations of plates, also in the general case. These numerical equations of beams 

and plates are obtained using the variational principle, which is detailed in this chapter. At the 

end the time discretization using Newmark method is briefly presented.  
Many books in literature are talking about piezoelectricity, beams and plates multilayer 

theory, metal-piezoelectric composite, ultrasonic motors and finite element modeling [ 

(Jaouen, 2005), (Chevalier, 1996), (Brissaud, 2007), (Decolon, 2000), (Gay, 2005), (Sashida, 

et al., 1993), (Senturia, 2002), (Dhatt, et al., 2005)].  Readers can refer to these books for 

more details.  

Our work can be classified in the case of intelligent structures where smart structures 

integrated with piezoelectric actuators and/or sensors. Also to be short, I direct readers to [ 

(Chopra, 2002)] where a big review of state of art of smart structures and integrated systems 

in particularly integrated piezoelectric materials.  

 

2.2. Mechanical equations 
It is necessary to use the mechanics of deformable solids to know the static and dynamic 

behavior of a plate/beam (Figure 2.1).  

The state of a deformable solid is characterized by: 

• Its strains  (unitless), 

• And stresses  (N m-2). 

Assume also be in the case of linear elasticity. 
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Figure 2.1 :  Plate/Beam fixed at one end  

2.2.1 Strains  
Strains can be represented by a 3×3 tensor.  

{  (M)} =  

2. 1 

Assumes that a deformable solid in a 3D orthonormal basis ( ) and whose movements 

along these three axes are , , . So, assuming small strain, the strain tensor is related to 

the spatial derivatives of displacements as follows:  

{  (M)} =  

2. 2 

Note that the tensor {  } is symmetric. 

Interpretation of various  on a 2D case is shown in Figure 2.2. 

 
Figure 2.2: Applied strain in 2 direction (uniaaxial and shear strains) 
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It appears that the diagonal elements ,  and  represent the relative elongations, while 
the non-diagonal terms ,  and  represent the angular distortions. Moreover, it is 
noteworthy that  = -2  (for i j), as shown Figure 2.2. Therefore it is preferable to 
calculate 2  (for i j) rather than  to keep a physical meaning.  
 

2.2.2 Stresses 
As strains, stresses can be expressed as a 3x3 tensor. 

{  (M)} =  

2. 3 

For equilibrium reasons:  = . So the tensor { } is symmetric too as the strain tensor. 
Interpretation of different  is shown in Figure 2. 3. 

 
 

 
 

 
 
  
 
The diagonal terms , ,  are the uniaxail stresses while the non-diagonal terms are the 
shear stresses.  
 
 
 

2.2.3 Linear elasticity  
The linear elastic behavior is characterized by a linear relationship between stress and strain 

(equation 2. 4). 

 

{ } = [C] { } 
2. 4 

Where [C] is the stiffness tensor (4th order thus 81 coefficients). This equation can be 

rewritten in another form reporting the 4th order of [C]. 

 =   

2. 5 

As the strain tensor and the stress tensor are symmetric, the stiffness tensor has only 36 
coefficients. Hence the idea to condense all these tensors: 

Figure 2. 3: Stresses applied to an elementary volume around a point M 
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• The strain tensor is condensed in a 6x1 tensor : { } =  

• The stress tensor is condensed in a 6x1 tensor : { } =   

• The stiffness tensor is condensed in a 6x6 tensor. 
 
The factor 2 in the condensed strain tensor ensures the coherence energy for the product 

{ }.  
 
In the case of an isotropic material (independent behavior in all directions), the condensed 

stiffness tensor is expressed in terms of only two independent coefficients:  

 

 =  

2. 6 

Where Y is the Young's modulus of the material (N m-2) and  is the Poisson's ratio (unitless). 

The inverse relation may be written as 

 

=   

2. 7 

 
2.3. Piezoelectricity  
The constitutive equations of linear piezoelectricity can be given by the coupling ( , E) as the 

following:  
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 = { }  -   {E} 

 =    [e]{ } +   [ ]{E} 
2. 8 

These two equations are tensor equations like the equation of linear elasticity (equation 2. 4), 

involving two new variables: {E} the electric field (Vm-1, 3 component vector) and {D} the 

electric displacement (in Cm-2 or NV-1m-1, 3 component vector). , [e] & [ ] denote 

respectively the condensed tensors of elastic stiffness at constant electric field, piezoelectric 

constants and dielectric permittivities at constant strain.  

With the simplifications due to the symmetries of crystals and in the case of PZT isotropic 

material, the tensors are: 

=   

 
2. 9 

Another coupling that should be used in our study is the ( , E) coupling  
 

 = { }  +   {E} 

 =    [d]{ } +   [ ]{E} 
2. 10 

In its extension form for crystals and in the case of PZT isotropic material, the tensors are: 

=   

2. 11 
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2.4. Unknowns to be determined  
Given the device geometry (thin beam/plate), only the bending will be considered. Twists and 

pulls-compression are therefore neglected. 

The displacement field to be determined to know the status of the device is: 

 

2. 12 

With simplifying assumptions, this displacement field can be expressed using the single 

function w(x, y) (case of bending vibrations of plates) or w(x) (case of bending vibration of 

beams), which represents the deflection of the plate/beam along the z axis ( 

Figure 2.4) [ (Jaouen, 2005)]. 

 
 

Figure 2.4: Kinematics of the deformation of an Euler-Bernoulli beam 
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2.4.1. Bending vibrations of beams 
We call beam, a continuous medium having a very large dimension (x) with respect to the 

others two.  

To simplify the displacement field, a Taylor series development of  with respect to 

y and z is made:  

 =  +   y  +  z  

                                         +    +  

                      +   yz  + … 

2. 13 

Theory of thin beam consists to neglect the terms of 2nd order and higher orders in this 

development.  

   +   y  +  z  
2. 14 

In the case of bending in the plane (x, z), displacements along y are zero (u2 = 0). 

According to Timoshenko assumptions [ (Timoshenko, 1921), (Timoshenko, 1922)], the only 

unknowns are the deflection w and the rotation of the cross sections . So, the 

displacement field is: 

 

2. 15 

Moreover, the assumption of Bernoulli imposes the additional condition that the cross 

sections remain perpendicular to the neutral axis after deformation: 

 =  
2. 16 

This assumption of Bernoulli returns to neglecting the transverse shear  of the cross 

sections. This assumption is legitimate for a homogeneous material and for the first modes of 

vibration. All these assumptions lead to the following displacement field: 

 

2. 17 
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This displacement field is a good approximation for small deformations, which is supposed to 

be the case here.  

 

2.4.2. Bending vibrations of plates  
 

 
Figure 2. 5:  Kinematics of the deformation of a Love-Kirchhoff plate 

To determine the displacement field, the same process as in the case of beam bending is 

performed. This time, the plate having its two most important dimensions in the plane (x, y), 

the Taylor series development is made only with respect to z. 

 =  + z  +  + … 

2. 18 

Always neglecting terms of order 2 or more (thin plate theory), the equation becomes:  

  + z  

2. 19 

Therefore, bending is defined by three independent functions: the deflection w and the terms 

of rotation  and . The Kirchhoff-Love hypotheses are those of Timoshenko 

transposed to the case of plate and indicates that the deformed cross sections should remain 

Before deformation   

After deformation   

Neutral plane  
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normal to the neutral plane of the plate. This imposes additional assumptions on the terms of 

rotation  and .  So, the displacement field is:  

 

2. 20 

As in the case of beam, this displacement field is a good approximation in the case of small 

displacements.  

2.5. Static equation 
For the system studied, the unknowns are: 

• the deflection w (displacement along z-axis) and its spatial derivatives (∂w), 

• and the voltage V on the piezoelectric elements 

External actions are: 

• forces (F) and moments (M) applied to the beam / plate, 

• the electric charge Q applied to the electrodes. 

The charge Q is related to the electrical displacement vector   by the equation: 

Q =  

2. 21 

Similarly, the external mechanical actions (forces and moments) are related to the stress 

tensor; so in static, the system studied can be written as an equation like this: 

 =  

2. 22 

2.6. Dynamic equation 
In dynamics, it must be added to the last equation the terms of inertia and friction. Assume 

that only the elastic friction occurs and that the electrical inertia does not take place to be 

taken into account. 

The above equation becomes: 

  +    +  =  

2. 23 

For some particular circuits, circuit equation may involve time derivatives of V. It is then 

possible to use this equation and adding to the matrices [M], [C] and [K] the terms due to the 

circuit. Sometimes it is better to use a formulation with the time derivatives of Q; it will 
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therefore make a change of variable to have as unknowns the vector   and as external 

action .  

 

2.7. Numerical modeling 
Piezoelectric and mechanical equations for system like plate/beam with piezoelectric patches 

are difficult to solve analytically. Numerical modeling is recommended in these types of 

systems. This requires spatially discretizing of the plate/beam but also discretizing the time 

for time response analyses; the same for frequency, in case of frequency response analyses. 

For systems like bending vibrations of plates/beams as the case here, Hermite elements must 

be used to ensure the continuity of the solution w and its spatial derivatives [ (Dhatt, et al., 

2005)].  

 

2.7.1. Bending vibrations of beams 
The elements in the case of bending of beam (1D) are segments oriented along x-axis with 

two unknowns at each node: the deflection w and its spatial derivative .   

The numerical equation for N discretization points of the beam becomes (in static):  

  =  

2. 24 

Where [ ] has dimension 2N 2N, [ ] =  has dimension 2N 1 and [ ] has 

dimension 1 1. The forces applied to the various nodes are carried by the z-axis while the 

moments are carried by the y-axis to be placed in the case of flexion.  

These are the same unknowns in dynamic.  

2.7.2. Bending vibrations of plates  
The elements in the case of bending of plate (2D) are triangles (or quadrangles) in the plane 

(x, y) with unknowns in each node: the deflection w, its derivative  and .  

The numerical equation for N discretization points of the plate becomes (in static):  



48 
 

  =  

2. 25 

Where [ ] has dimension 3N 3N, [ ] =  has dimension 3N 1 and [ ] has 

dimension 1 1. The forces applied to the various nodes are carried by the z-axis while the 

moments are carried by the y-axis or x-axis to be placed in the case of flexion.  

These are the same unknowns in dynamic.  

 

2.7.3. Variational principle 
To obtain the matrices [M], [C] and [K], we can express the energy balance of the system 

studied as a function: it is the variational formulation. The real trajectory is the one that makes 

this function stationary with respect to any arbitrary variation of displacement.  

The most widely used variational principle in dynamic structures is the Hamilton principle, 

which sets that the sum of variations of kinetic energy and potential energy and the variation 

of work done by non-conservative forces, taken during any time interval t1 to t2 are zero. 

dt = 0 

2. 26 

Where  is the Lagrangian (  = J - H with J the kinetic energy and H the global enthalpy) and  

W is the virtual work of external mechanical and electric forces.  

The kinetic energy is equal to 

J =  

{ }dV 

2. 27 

Where  is the volume density (kg m-3). 

The global enthalpy is equal to  

H =  ( { } – { })dV 
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2. 28 

And finally, the virtual work of external mechanical and electrical forces is equal to 

 =  { }dV + tp{E}Q 

2. 29 

Where { } represents the body applied forces and tp the thickness of piezoelectric layer. 

 

By applying Hamilton principle (2. 26) and replacing { } and {D} by their equation (2. 8), 

we obtain:  
 { } - { } +  {E} + [e]{ } + [ ]{E} +    

         { })dV  + tp{ E}Q]dt = 0    
2. 30 

Integrating by parts the kinetic energy (2. 27), we obtain:  

{ }dt = [  { }   -   { }dt  

2. 31 

{ } is zero at t=t1 and t=t2, the first term is zero. 

Equation (2. 30) must be verified for any time interval thus the term to integrate temporally 

must be zero. Finally: 

{ } - { } +  [e]t{E} + [e]{ } +  [ ]{E}+ { })dV    

+ tp{ E}Q = 0 
2. 32 

This equation is representative of any mechanical and / or piezoelectric system.  

Thanks to this equation, the creation of matrices [M], [C] and [K] will be easier as they will 

be built from elementary matrices for each element.                                                                                                                                     

2.7.4. Time discretization: Newmark method   
In dynamic, the equation is of order 2 in time and it looks like: 

[M] } + [C] } + [K]{U}= {F} 
2. 33 

To numerically solve this problem, there are several methods which one of the most common 

is the Newmark method [ (Dhatt, et al., 2005)].  

This method is called implicit, it can construct the vectors {U}, { } and { } at time t from 

the same known vectors at time t- . For this, the following expansions are used (a and b are 

two coefficients between 0 and 1): 
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{ } = { } + { } + ((1-b) } + b }) 

{ } = { } + (1-a) } + a) }) 
2. 34 

The solution at time t can be calculated; with, 

{ } = { }  
2. 35 

Where   
 = [M] + a [C] + b  [K] 

{ } = b  {Ft} + [M] ({ } +  } + (1-b)  }) 

+ [C](a  + (2a-b) } + (a-b) }) 

2. 36 

Then, the velocity and acceleration at time t must also be determined to calculate the solution 

to the next iteration. To do this, the expansions (equation 2. 34) should be used.  

The convergence and stability of the method depends on the choice of the coefficients a and b.    

The most frequently used values are: a = b = ½ because it is a sufficient condition for 

stability, which assumes constant acceleration during time interval , t.    

 

2.8. Conclusion and discussion   
In this chapter, we have briefly presented the definition of strains and stresses, and then we 

have seen shortly the mechanical and piezoelectric equations in matrix 3D complete form 

where all stresses and strains are represented for isotropic materials under the linear elasticity 

assumption. In some particular cases of study, mechanical and piezoelectric equations can be 

written in 2D (case of thin plate) or 1D (case of thin beam) matrix form. These practical cases 

are represented in the next chapter. 

We have discussed the displacement field case of bending vibrations of beams and plates. The 

displacement field was determined in the case of beam and plate only without taking 

piezoelectric patches into consideration. The displacement field cases of piezoelectric patches 

bonded on the beam and the plate will be considered in the next chapter.   

Static and dynamic numerical equations in the general case of a system containing elastic and 

piezoelectric materials are presented. These equations are derived from the variational 

principle, which is detailed in this chapter.  
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Our interest is to study the case of piezoelectric patches bonded on thin beam and thin plate 

structures on the same face, which we call non-collocated piezoelectric patches bonded on 

thin structure (beam and plate). This case of study will be done in the next chapter. 
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3.1. Introduction  
Thin structures containing piezoelectric materials are widely used to control vibrations 

[(Hariri, et al., 2011), (Yasin, et al., 2010)], for detecting damage in the structure [(Qu, et al., 

2006), (Yan, et al., 2002)], in micropumps [(Hernandez, et al., 2010)], in valves [(Bernard, et 

al., 2011)] and in miniature robots [ (Hariri, et al., 2010)]. Two large branches are studied in 

the literature for thin structures containing piezoelectric materials due to their domain of 

applications, namely beam structures and plate structures. On the other hand, these systems 

may be symmetrical or asymmetrical where the piezoelectric materials are collocated or not 

on the thin beam/plate structures. In a symmetrical system the piezoelectric materials are 

bonded face-to-face on both sides of the beam/plate structure while in an asymmetrical one 

the piezoelectric materials are bonded only on one side surface of the structure. It may be 

noted that there is another type of structure containing piezoelectric materials where the 

piezoelectric materials are embedded in the beam/plate structure [(Yan, et al., 2002)], this 

type of structure is not concerned in this research study.  

For symmetrical or asymmetrical beam structures with respectively collocated or non-

collocated piezoelectric materials, a 1D analytical or numerical model can be used to model 

such system; examples for modeling symmetrical systems can be found in [(Corcolle, et al., 

2008), (de Abreu, et al., 2004), (Jalili, 2009), (Lin, et al., 1999), (Nguyen, et al., 2006), (Park, 

2003), (Varadan, 1996), (Yasin, et al., 2010)] and for asymmetrical ones in [(Chen, et al., 

2007), (Hariri, Bernard, & Razek, 2011), (Jalili, 2009), (Kayacik, et al., 2008), (Son, et al., 

2006)]. In the first case the neutral axis is taken as the symmetry axis (mid plane) of the 

system while in the case of asymmetrical systems it is necessary to determine such neutral 

axis.  

In the case of plate structures, 2D or 3D Finite Element Method (FEM) can be used to model 

the system. In the 3D approach volume elements are used while in the 2D case surface 

elements are used, the 3rd dimension is introduced in the model equations. It is obvious that 

the second approach is faster but a little more complicated in model formulation. 

Several papers in literature are devoted for modeling thin structure with piezoelectric patches 

using the 2D approach in the case where the symmetry of the system is maintained at the 

disposal of patches [(Corcolle, et al., 2008), (de Abreu, et al., 2004), (Jalili, 2009), (Liu, 

1999), (Wang, 2003), (Yasin, et al., 2010)]. The 2D approach is more difficult for an 

asymmetrical structure, where piezoelectric patches are not collocated (patches bonded on 
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only one side of structure surface), due to the fact that the neutral plane of the structure is not 

confused with the mid plane as in the case of a symmetrical structure. 

The aim of this chapter is to develop a 2D (and 1D respectively) Finit Element Model (FEM) 

to model an asymmetrical system where non-collocated piezoelectric patches are bonded on a 

thin plate (and thin beam respectively), using the notion of neutral plane (and neutral axis 

respectively). It is not a standard 2D model, since the calculation is performed on a structure 

that does not have symmetries that allow such easy assumptions. Actually without 

determining the neutral plane for such asymmetric system, we can’t model it in 2D and the 

modeling should be done in 3D FEM.  

In chapter 2, we have seen the mechanical and piezoelectric equations (constitutive equations) 

for isotropic materials under linear elasticity condition in matrix 3D complete form where all 

stresses and strains are represented. Cases of thin beams and thin plates stresses can be 

represented in 1D and 2D matrix form. These cases are treated in this chapter. 

The displacement field was determined in the case of beam and plate without taking 

piezoelectric patches into consideration in the last chapter. Here the displacement field will be 

readapted in the case of asymmetric systems (non-collocated piezoelectric patches bonded on 

thin structures) by determining the neutral plane and the neutral axis of thin plate and thin 

beam respectively.  

The general variational equation that represents any mechanical and / or piezoelectric system 

determined using the variational principle in the last chapter section 2.7.3 will be used here to 

determine the numerical equation of non-collocated piezoelectric patches bonded on thin 

structures.  

Two cases are treated at the end, the first is the case said ‘’actuator-sensor’’ where some 

patches are used as sensors and others as actuators, while the second is the case of ’'actuator-

actuator’’, where all patches are used as actuators (refer to the definition of piezoelectricity in 

chapter 1, section 1.3).  

 
3.2. Constitutive equations  

The constitutive equations in mechanics as in piezoelectricity (equation (2.6), (2.7), (2.9) & 

(2.11)) are valid in the general case i.e. in 3D. The approximations made to move in 1D or 2D 

leads to use new constitutive equations extracting from the general constitutive equations.  

For thin components e.g., web or flange of an I-beam, automobile door panel, airplane skin, 

etc (Figure 3. 1), the in-plane stresses are much higher than out-of-plane stresses: (σ1, σ2, σ6) 
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>> (σ3, σ4, σ5). It is convenient to assume the out-of-plane stresses equal zero. This is called a 

state of plane stress.  

 

 
Figure 3. 1: Plane stress example [ (Tuttle, 2009)] 

For thick or very long components e.g., thick-walled pressure vessels, buried pipe, etc (Figure 

3. 2), the in-plane strains are much higher than out-of-plane strains: (ε1, ε2, ε6) >> (ε3, ε4, ε5). 

It is convenient to assume the out-of-plane strains equal zero. This is called a state of plane 

strain. 

 
Figure 3. 2: plane strain example [ (Tuttle, 2009)] 

In the case of uniaxial load eg. truss members (Figure 3. 3),  σ1 is the only non zero stress. 

 
Figure 3. 3:  Uniaxial stress example [ (Tuttle, 2009)] 

 
 
 
 
 
 
 
 
 



57 
 

3.2.1 Case of piezoelectric patches bonded on a beam  
 

 

 

 

 

Our system studied is composed of non-collocated piezoelectric patches bonded on a thin 

beam (having a very large dimension (x) with respect to the two others) has the same width as 

the piezoelectric patches, as shown in Figure 3. 4. Electric field and electric displacement are 

uniform across the piezoelectric thicknesses and aligned on the normal to the mid-plane (z-

direction), also the piezoelectric patches are polarized in z-direction.  

 =  ,   =  

3. 1 

In this case, when polarization and applied electric field have the same direction, transversal 

mode variation occurs in the piezoelectric patches; results in a variation along x-axis and y-

axis. Case of thin beam, only x-direction is considered; therefore variation along y-axis is 

vanished (σ1 is the only non zero stress). Figure 3.5 shows moments result from the uniaxial 

stresses distribution along x-axis, to produce the bending of the beam.   

 
 
 
 
 
 
 
 
 
 
 
 
 
    Legend: 
 
 
 
 
 
 
 
 
 Figure 3. 5:  Schematic of moment and normal stress distribution 

 

 

 

Figure 3. 4:  non-collocated piezoelectric patches bonded on a beam of the same width 
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3.2.1. 1 Mechanical constitutive equations 
As we said before, in this case we considered that σ1 is the only non zero stress. Using the 

compliance matrix of equation (2.7) we obtain according to Hook’s law uniaxial stress 

[(Tuttle, 2009)]: 

 = Y  = cm  
3. 2 

Where   and cm represent respectively, the uniaxial stress in the x-direction and the Young 

modulus for the elastic layer.  

 

3.2.1. 2 Piezoelectric constitutive equations 

The formulation used is that of the coupling ( , E) of equation 2.8 shown again below: 

 = { }  -   {E} 

 =    [e]{ } +   [ ]{E} 
3. 3 

By using equation (2.11) and taking into account the assumption of equation (3. 1), we get: 

 

3. 4 

Then, equation 3. 4 is transformed to ( , E) coupling and we obtained:  
 

 

 
3. 5 

Where  represents the uniaxial stress in the x-direction for the piezoelectric layer. Using the 

same notation as in equation 3. 3, we can write equation 3. 5 as the following: 

 

3. 6 
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3.2.2 Case of piezoelectric patches bonded on a plate 

 

 
 
 
 
The system studied in this case is composed of non-collocated piezoelectric patches bonded 

on a thin plate (having its two most important dimensions in the plane (x, y)) as shown in 

Figure 3. 6.  

Similar to the case of beam, a uniform distribution in the z-direction is assumed for the 

electric field and the electric displacement. Also piezoelectric patches are polarized in the z 

direction.   

In this case and as we considered the variation along y-axis, two active moments appeared 

due to stresses induced in x-direction and y-direction. 

 

3.2.2.1 Mechanical constitutive equation 
We are in the case of thin components, so state of plane stress is applied. σ1, σ2 and σ6 are 

considered while σ3, σ4 and σ5 are neglected. Using equation (2.7), we obtain:  

 =           

3. 7 

The inverse relation may be written as  
 

 =   =   

3. 8 

 = [ ]  
3. 9 

Where { } is the in plane stresses for the elastic layer and [ ] is the compliance tensor for the 

elastic layer case of plane stress assumption.  

Figure 3. 6: Non-collocated piezoelectric patches bonded on a plate 
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3.2.2.2 Piezoelectric constitutive equation  

The same as the case of beam, the formulation used is that of ( , E) coupling represented by 

equation (3. 3).  

By using equation (2.11) and taking into account the assumption of equation (3. 1), we get: 

 =   

3. 10 

Then, equation 3. 10 is transformed to ( , E) coupling and we obtain:  
 

 

3. 11 

Using the same notation as in equation 3. 3, we can write equation 3. 11 as the following: 

 

 =   

3. 12 

Or in its compact form like the following:  

 =  

 =   
3. 13 

 

3.3. Displacement field 
When we determined the displacement field in chapter 2, section 2.4, it was determined 

according to the neutral axis in the case of beam or the neutral plane in the case of a plate. The 

neutral axis (plane) is the middle axis (plane) of a homogenous, symmetric and isotropic beam 

(plate) if this beam (plate) is not curved before bend occurs. It is the only axis (plane) where 
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there are no longitudinal stresses or strains, all the other axes (planes) on one side of it are in a 

state of tension, while those on the opposite side are in compression.  

In our case of study where non-collocated piezoelectric patches bonded on thin structures, the 

system is asymmetric. Then, the neutral axis (plane) is not confused with the middle of the 

structure. We noted by , the distance from the bottom of the system to the neutral axis 

(plane). Then equations (2.17) in the case of a beam and (2.20) in the case of a plate should be 

rewritten as the following:  

 

3. 14 

 

3. 15 

Where  is the transverse displacement of the neutral axis (plane) of the system, and z is 

referred from the bottom of the system according to the coordinate system taken in Figure 3.7.  

Figure 3.7 gives the geometric parameters for the system studied (top figures) and schematic 

figures for the position of the neutral axis (plane) in the case of this asymmetric studied 

system (bottom figures). ,  represent respectively the thickness of the elastic material and 

the piezoelectric layer. ,  represent respectively the width of the elastic material and the 

piezoelectric layer. ,  represent respectively the length of the elastic material and the 

piezoelectric layer and ( , ) represent the coordinate position of the ith piezoelectric 

patch.   can be determined by using the first Newton law. 
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Figure 3.7:  Geometric parameters for the system (top figures) and schematic figures for the position of the neutral axis 
(plane) in the case of this asymmetric studied system (bottom figures). 

 

3.3.1 Neutral axis  
Solving first Newton law gives: 

  = 0 
3. 16 

Equation 3. 16 can be written as 

b   + b    = 0 

3. 17 

The strain is calculated as a function of the flexion w using equation 2.2, them 

 =  =  
3. 18 

Utilizing Hook’s law (3. 2 & 3. 6) for each segment, while substituting strain relationship (3. 

18), yields 
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  +    = 0 

3. 19 

And after simplification, the neutral plane  calculated from the bottom of the system 

according to the coordinate system adopted in  

Figure 3.7 is equal to 

 

3. 20 

We denote by x, the point that has an abscissa x 

3.3.2 Neutral plane  
Solving first Newton law gives: 

  = 0 

  = 0 
3. 21 

Using equation 2.2, strains in x and y directions are determined in function of the transverse 

displacement w: 

 =  =  

 =  =  

3. 22 

Utilizing Hook’s law (3. 8 & 3. 12), while substituting strain relationship (3. 22), yields 

 + 

 = 0 

3. 23 

 + 

 = 0 

3. 24 

 

 

 

 



64 
 

Equations (3. 23) and (3. 24) give 

 =  

3. 25 

And after simplification, the neutral plane  calculated from the bottom of the system 

according to the coordinate system adopted in  

Figure 3.7 is equal to  

 

3. 26 

Be denoted by (x, y), the point that has an abscissa x and coordinate y. 

 

3.4. Variational formulation  
The variational equation is the last step before the numerical calculation. It will be used to 

write the element matrices of each element in the finite element formulation.  

To obtain this equation, we should transform equation 2.32 represented again below in 

function of the flexion w(x, t) or w(x, y, t).  

{ }- { } +  [e]t{E} + [e]{ } +  [ ]{E}+ { })dV    

+ tp{ E}Q = 0 
3. 27 

3.4.1 Case of 1D formulation 
In the 1D case, w depends only of x direction so the integration in the y direction gives b, the 

width of the beam can be simplified from the equation.   

In this case, each vector in the equation 3. 27 should be written as a function of w(x, t) and 

matrices must be replaced by what has been obtained in paragraph 3.2.1, then:  

The variation of displacements can be written by:  

 =  

3. 28 

The second derivative displacement is given by:  
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3. 29 

The same, the strain tensor and the variation of strain are given by equation 3. 18:  

 = =   

 =  =  
3. 30 

The electric field is supposed to be uniformly distributed across the piezoelectric thicknesses 

and aligned on the normal to the mid-plane (z-direction), therefore:  

 =  

 =  

3. 31 

Where  is the electric field for the jth piezoelectric patch. 

Volume density, stiffness tensor, piezoelectric constant tensor and dielectric permittivity 

tensor can be written in the case of 1 D formulation according to equations 3. 2 and 3. 6 by the 

following:  

     =  

  =  

 [e] =   

 =  

3. 32 

Replacing equations 3. 28 to 3. 32 into the variational equation 3. 27 and taking the case where 

there are n piezoelectric patches bonded on the beam we obtain an integral over the volume 

depending on w(x,t). In this case, this integral is actually an integral over the surface 

equivalent to multiplying the surface integral by b and then integrates over the length of the 

beam. Moreover, the terms in z can be integrated. 

 Equation 3. 27 becomes:   
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 +  – 

 -  - { w}{ } = 0        

3. 33 

 is the external mechanical forces applied to the beam having a component along z because 

that one takes into account the bending (forces along x are tensile forces and they are 

neglected in this modeling). 

 =  + . w + cm .                                    

 = + )  + ) . w 

+( cp+ cm) .  

 = b  dz =b  [( )3 + ] 

 = b  dz =b  [( )3 - ( )3] 

q = b  dz =b  [( )2 - ( )2] 

3. 34 

Where  is the electric charge for the jth piezoelectric patch.  

 

3.4.2 Case of 2D formulation 
 
In this case w depends on x and y, the volume integral of equation 3. 27 is transformed on 

surface integral by integrating the terms of z.   

Doing the same as the 1D formulation case, the variation of displacements can be written by:  

 =  

3. 35 

The second derivative displacement is given by:  

 

3. 36 

The same, the strain tensor and the variation of strain are given by:  

 



67 
 

 =  =   =  

3. 37 

The electric field is supposed to be uniformly distributed across the piezoelectric thicknesses 

and aligned on the normal to the mid-plane (z-direction), therefore:  

 =  

 =  

3. 38 

Where  is the electric field for the jth piezoelectric patch. 

Volume density, stiffness tensor, piezoelectric constant tensor and dielectric permittivity 

tensor can be written in the case of 2D formulation according to equations 3. 9 and 3. 13 by 

the following:  

     =  

    =  

       [e] =   

 =  

3. 39 

Replacing equations 3. 35 to 3. 39 into the variational equation 3. 27 and taking the case where 

there are n piezoelectric patches bonded on the plate we obtain an integral over the volume 

depending on w(x, y, t). By integrating the terms of z, an integral over the surface x, y is 

obtained. 

Equation 3. 27 becomes:   

+

 – -      - 

{ w}{ } = 0 
3. 40 
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 is the external mechanical forces applied to the plate having a component along z because 

that one takes into account the bending (forces along x are tensile forces and they are 

neglected in this modeling). 

= + . w+          

 = + )  + ) . w + 

 +  

 

 =  dz =  [( )3 + ]                                                                                 

 =   dz =  [( )3 - ( )3]                                                          

q =  dz =  [( )2 - ( )2] 

3. 41 

Where  is the electric charge for the jth piezoelectric patch.  

 

 

3.5. 1D finite element formulation  
In a finite element formulation, the unknowns are the solution values at the nodes of the mesh 

and the displacement field {u} is related to the corresponding node values {ui} by an 

interpolation functions. Lagrangian functions are not used in this problem because the 

solution w (x, t) must be C1-continuous while Lagrange ensures C0 continuity; the choice of 

Hermite elements satisfies this condition. Thus, with Hermite elements, the solution {u} that 

depends only on w (x, t) in this case, and it is written as follows on a segment Si: 

w(x, t) = [ ]{ui} 
3. 42 

Where  = [          ] are the interpolation functions [(Dhatt, et al., 2005)] 

and {ui} =  are the unknowns in segment Si.  
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Therefore, to calculate the first spatial derivative, it suffices to derive the interpolation 

functions: 

 =  
3. 43 

It is similarly for a second derivative or more. 

Furthermore, with this formulation, we can express the variation in displacement  

 =  
3. 44 

Thus, the variational equation 3. 33 becomes a sum of integrals over each element: 

 + 

– 

  { ui}t{ i} = 0                                     

3. 45 

This equation will be used to determine the numerical equation in matrix form. 

 

3.6. 2D finite element formulation 
For the same reason as in the 1D case, Hermit elements are used as the interpolation functions 

in this problem because the solution w (x, y, t) must be C1-continuous.  

w (x, y, t) in this case reads as follows on a triangle i:  

w(x, y, t) =  
3. 46 

Where [ ] = [ ] are the interpolation functions [(Dhatt, et al., 2005)], and 

 =  are the unknowns of the triangle i. 
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Following the same procedure as in 1D formulation and integrating equation 3. 40 in the plane 

(x, y) of the system returns to integrate on each triangle and makes the sum:  

+ 

      -  { ui}t{ i} = 0 
 

3. 47 
This equation will be used to determine the numerical equation in matrix form. 

 

3.7. Numerical equation 
Differentiating equations 3. 45 and 3. 47 with respect to , the mechanical equation is 

obtained.  The same, differentiating with respect to , the electrical equation is 

obtained.  

With these equations, constructing elementary matrices for each element (segment and 

triangle) and assembling all thanks to the inter-element continuity property, the numerical 

equation is written, taken into account the boundary conditions in the assembly of matrices. 

Taking the case where there are N nodes of the mesh in the two cases.   
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3.7.1 Case of beam  
Differentiating equations 3. 45 with respect to , the mechanical equation is obtained:                  

 + 

– { i} = 0     

3. 48 

Using equation 3. 48, elementary matrices for each segment are constructed as the following:  

 

 

 has dimension 4 4 

 

 

 

 has dimension 4 4 

 

 

 has dimension 4 1 
3. 49 

Assembling all thanks to the inter-element continuity property, the numerical mechanical equation is 

written:  

 +  +  =  

3. 50 
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: the structural mass matrix has dimension 2N 2N, 

 : the structural stiffness matrix has dimension 2N 2N, 

: the piezoelectric stiffness matrices for the n piezoelectric patches (j=1 to n), 

where ] = , has dimension 2N  n. 

: the vector with nodal structural displacements has dimension 2N 1, 

: the vector with the electric fields for the n piezoelectric patches (j=1 to n) has 

dimension n  1, 

: the vector with nodal forces has dimension 2N 1. 

 

The same, differentiating 3. 45 with respect to , the electrical equation is obtained:  

– =    

3. 51 

Using the above equation, elementary matrices for each segment are constructed as the following:  

 

 has dimension 1 4 

 

 

 has dimension 1 1 
 

3. 52 

Assembling all thanks to the inter-element continuity property, the numerical mechanical 

equation is written: 

 +  

3. 53 

 =  has dimension n 2N 

: the dielectric stiffness matrix for the n piezoelectric patches (j=1 to n), where  

 = , has dimension n n 

: the vector with the charges for the n piezoelectric patches (j=1 to n), has dimension 

n 1. 
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3.7.2 Case of plate 
Differentiating equations 3. 47 with respect to , the mechanical equation is obtained:                   

+ 

  { i}  

 
3. 54 

With this equation doing the same as the case of beam, constructing elementary matrices for 

each triangle and assembling all thanks to the inter-element continuity property, the numerical 

mechanical equation is written:  

 +  +  =  

3. 55 

, , ,  and  have respectively 3N 3N, 3N 3N, 3N n, 3N 1 and  

3N 1 dimensions.  

The same, differentiating 3. 47 with respect to , the electrical equation is obtained:  

  

3. 56 
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Then, after constructing elementary matrices for each triangle and assembling all of them, the 

numerical electrical equation is given:  

 +  
3. 57 

3.7.3 Beam-plate numerical equation 
By assembling mechanical and electrical equations in one matrix equation, we get: 

  + +  =                

3. 58 

The structural damping matrix [C] is added to the system and it is determined experimentally 

to match the damping behavior of the real system (more detailed in chapter 4). 

Particular cases for two and four piezoelectric patches are taken in appendix to better 

understanding.  Sometimes it is better to use a formulation with the time derivatives of Q or a 

mix between Q and E as the cases of the two following subparagraphs.  

3.7.4 Actuator – sensor 
The first case treated is the case actuator-sensor where the patches actuators are deformed 

under the effect of an electric fields  and the patches sensors behave like an open 

circuit ( ), while no external loads applied. The letter ‘a’ is referred to actuators 

patches and the letter ‘s’ to sensors patches. The equation 3. 58 becomes: 

 + +   

 =  

3. 59 

To clarify, a particular case of four piezoelectric patches where two patches are considered as 

actuators and the two others as sensors is taken in appendix. 

3.7.5 Actuator – Actuator 
In this case all patches are used as actuators while no external loads applied. The model 

system obtained from equation 3. 58 is governed by the following matrix equation: 
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 + +   

 =  

3. 60 

A particular case of four piezoelectric patches is taken in appendix to clarify.  

3.8 Conclusion of the chapter 
Using this beam-plate numerical equation, we are able to analyze any asymmetric system 

consisted of non-collocated piezoelectric patches bonded on thin structures. In the following 

some examples are cited: 

Using this numerical equation, we can calculate the resonance frequencies and determining 

the mode shapes. We can compute the transverse displacements of the system, stresses, and 

strains obtained by applying forces on the system or by applying electrical voltages on some 

piezoelectric patches; we can also determine the obtained voltages for others piezoelectric 

batches. Also we can compute the currents values and the electric charges of piezoelectric 

patches.  

An experimental device will be built and tested in the next chapter to validate the model. 
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3.9 Appendix: Particular cases  
 
 1. Modeling of the system using FEM 

In the case of two piezoelectric patches, the equation (3. 58) wrote as: 
 

+ + =        (A.1.1) 

 
And if we have four piezoelectric patches for example, the equation (3. 58) should be written as: 
 

+ +

 =  

 
(A.1.2) 

 
2. Actuator-sensor 

Taking the case of four piezoelectric patches where the patch 1 and 3 are considered as actuators while 
the two others as sensors, the equation (3. 59) is written as: 
 

+ + 

=  

 
(A.2.1) 
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3. Actuator-actuator 

Consider the case where four piezoelectric patches are used as actuators, the equation (3. 60) should be 
written as:  

+ + 

 

=  

 
(A.3.1) 
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4.1 Introduction  
An experimental device has been built and described in this chapter to validate our model 

obtained in chapter 3. First we present the experimental device, and then we begin the 

validation process by comparing the model results with experiment in the cases of beam and 

plates. The comparison will be done at resonance frequencies and concerned the deformation 

of the system for an applied voltage to actuator piezoelectric patches, as well as the obtained 

voltage for sensor piezoelectric patches. 

4.2 Experimented device  
To validate our Finite Element Model (FEM) experimentally, we took an aluminum thin 

beam/plate structure fixed at one end, the other being left free. Two ceramic PZT patches are 

bonded on one side of the beam/plate and they are polarized along the axis z. Properties and 

geometrical parameters for the piezoelectric ceramic PZT and the elastic structure (beam and 

plate) are presented in Table 4.1 and systems are shown in Figure 4.1 and Figure 4.2. A fixed-

free boundary condition is taking into account during the assembly of matrices (appendix).  

 In the case of two piezoelectric patches, equation 3.58 becomes:  

 

4. 1 

As we said in the previous chapter, the damping matrix [C] is added to the system and it is 

determined experimentally via Rayleigh damping to match the damping behavior of the real 

system. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. 1: beam experimented device 
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                                                 PZT (p)                                 Elastic structure (m) 
Young’s modulus (Pa)                                            /                                               cm = 69  109 
Poison’s ratio                                                               /                                              = 0.33 
Volume density (Kg.m-3)                                       = 7900                                     = 2700 
Relative permittivity                                             = 1282                                       / 
Piezoelectric constant (m.V-1)                              d31 = - 1.3  10-10                             / 
Elastic compliances  (Pa-1)                                   S11 = 1.3  10-11                                / 
                                                                              S12 = -4.76  10-12                            / 
Max peak to peak electric field(V.mm-1)         Emax =   300                                  / 
Max compressive strength (Pa)                           = 600  106                              / 
         Plate dimensions 
Length  width  thickness (mm3)                     32 17 0.27                          100  60  0.5 
(lp, lm)  (bp, bm)  (tp, tm) 
       Beam dimensions 
Length  width  thickness (mm3)                     32 17 0.27                          180  17  0.5 
(lp, lm)  (bp, bm)  (tp, tm) 
Piezo positions case of beam 
               Xp1, Xp2(mm)            24,126  
Piezo positions case of plate 
               Xp1, Xp2,Yp(mm)            10,58,21.5  
 

Table 4. 1: Properties and geometry of the system 

 
 
 

 
 

 

y 

x 

z 
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Figure 4. 2: Plate experimented device 

 

4.3 Rayleigh damping  
The Rayleigh damping is considered as a classical way to model the damping of the structure 

and is proved as effective way of considering damping for analysis of structures [(Clough, et 

al., 1995), (Craig, et al., 2006),(Liu, et al., 1994), (Pons, et al., 2004), (Giosan, 2006), 

(Chowdhury, et al., 2006)]. It uses the assumption that the damping matrix is proportional to a 

linear combination of the mass matrix and the stiffness.  

 
4. 2                                          

 and  are the Rayleigh coefficients or the damping ratio, they are also called as mass 

proportional and stiffness proportional respectively.  and  have units of sec-1 and sec, 

respectively. 

In the formulation of equation 4. 2 orthogonal transformation [(Pons, et al., 2004), 

(Chowdhury, et al., 2006)] form the following equation: 

 
4. 3 

 is the damping ratio and  is the resonance frequency at the ith mode.   

The relationship between damping ratio and frequency expressed by equation 4. 3 is shown 

graphically in Figure 4.3. 
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Figure 4.3: Relationship between damping ratio and frequency (for Rayleigh damping) 

From this we can say that low fundamental frequency structure will show nonlinear damping 

properties in beginning with respect to frequency and will converge to linear proportionality 

with frequency as Eigen values increases with each subsequent mode.  

Now it is apparent that the two Rayleigh damping factors,  and , can be evaluated by the 

solution of a pair of simultaneous equations if the damping ratios  and  associated with 

two specific frequencies (modes) ,  are known. Writing equation 4. 3 for each of these 

two cases and expressing the two equations in matrix form leads to:  

 =  

4. 4 

And the factors resulting from the simultaneous solution are: 

 =  

4. 5 

Rayleigh coefficients can be determined, by obtaining damping ratio  at two different 

frequencies   , as we can remark in equation 4. 5. Damping ratios were obtained 

experimentally from the frequency response curve shown in Figure 4.4 corresponding to the 

two chosen frequencies according to  
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  =   

4. 6 

Where  is the resonance frequency for the ith vibration mode,  and  are the upper 

and lower frequency for which the amplitude is 3dB below the amplitude at  [(Pons, et al., 

2004),(Inman, 2001), (Brandt, 2011)]. 

 
Figure 4.4: Resonance frequency curve 

In most of the analysis problems, analyst assumes constant damping ratio for each mode of 

the structure. This assumption is totally based on previous experiences or on standard 

literature [(Giosan, 2006)], it is recommended in this case that  generally be taken as the 

fundamental frequency of the system and that  set among the higher frequencies of the 

mode that contribute significantly to the dynamic response (  =  = ) [(Clough, et al., 

1995)]. This method is still practical because it is quiet hard to measure damping ratio for 

each mode. But it is quiet unrealistic to assume constant damping ratio for all modes. 

Damping for structure varies mode to mode. Modal mass participation decreases with 

increasing in modes [(Kandge, 2007)]. In our case we will measure individual  and  for the 

first ten resonance frequencies and an equivalent value of  and  for all frequencies higher 

than the 10th resonance frequency by curve fit method.   

The experimental damping ratios and resulting Rayleigh coefficients corresponding of the 

first ten vibration modes were obtained from the system resonance curve and are shown in 
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Table 4.2 and Table 4.3 in case of beam and plate respectively (frequency are taken from 

paragraph 4.4.1). The curves fitting damping ratio versus frequency are also shown in Figure 

4.5 and Figure 4.6 for the case of beam and plate respectively. 

 

Frequency Damp. Ratio ( )   

 0.0096    ,  0.00743     1.2915 2.5420e-05 

 0.00743    ,  0.00367     6.6939 1.8112e-06 

 0.00367    ,  0.00321       7.7226 1.2758e-06 

 0.00321    ,  0.00352     10.0257 1.0271e-06 

 0.00352    ,   0.00327     23.4379 4.5358e-07 

   0.00327  ,   0.00341 23.4221 4.5393e-07 
 

Table 4.2: Experimental determination of damping parameters in the case of beam structure 

 

Frequency Damp. Ratio ( )   

 0.0167, 0.002 -20.1870 3.2992e-04 

 0.002, 0.00734 3.5262e+03 -9.8203e-04 

 0.00734, 0.00781 -356.2392 1.1308e-04 

 0.00781, 0.00868 8.3599e+03 -2.9620e-04 
 

Table 4.3: Experimental determination of damping parameters in the case of plate structure 

By using these curves (Figure 4.5 and Figure 4.6), we can obtain damping ratios for two given 

frequencies. Then by using equation 4. 5, the corresponding   and  values are shown in 

table 4.4.  

 Beam structure Plate structure 

 3.8661 1.7706 

 8.1030e-07 4.1158e-06 

 

Table 4.4: Curve fitted parameters 
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Figure 4.5: Curve fitted damping ratio versus frequency to beam structure 

 
Figure 4.6: Curve fitted damping ratio versus frequency to plate structure 
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4.4 Validation process  
We begin the process of model validation by comparing the resonant frequencies of the model 

(1D and 2D) with the experimental ones, then we apply a sinusoidal electrical voltage to one 

patch, we measure the transverse displacement of the beam/plate and the obtained electrical 

voltage for the other patch in the case of open circuit and resistance shunt circuit and we 

compare it with the model. All measures are done using a high resolution laser interferometer 

LK-G3001PV Keyence France.  

4.4.1 Resonance frequencies validation  
In short-circuit, the voltage  is zero. In the case of an open circuit, the electric charge  is 

constant. In this case, it is nil. The resonance frequencies and modes shapes of the system 

when the two electrodes of the piezoelectric patches are short circuited ( ) are given by 

(referring to equation 4. 1): 

([ – [ ]){U}=0 
4. 7 

In the case where one patch is open circuited ( ) and the other is short circuited 

( ), resonance frequencies and modes shapes of the system are given by (referring to 

equation 4. 1): 

([ ] –  [ ]){U} = 0 

4. 8 

By reversing the roles of the two patches, we obtain:  

([ ] –  [ ]){U} = 0 

4. 9 

In the case where the two patches are open circuited ( ), resonance frequencies and 

modes shapes of the system are given by (referring to equation 4. 1): 

([ ] –  [M]){U} = 0 

4. 10 

These equations (4. 7, 4. 8, 4. 9 & 4. 10) give the resonance frequencies  and the modes 

shapes {U} at each resonance frequency.  

This shows that the stiffness matrix depends on the electrical boundary conditions. The 

overall stiffness of the system increases if the electrodes are left open (the term being 

negative), the resonant frequencies are slightly higher in the case of open circuit piezoelectric 

patches rather than short circuit. 
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Table 4. 5, Figure 4. 7 and Table 4. 6, Figure 4. 8 show the first resonance frequencies 

determined experimentally and by FEM in case of beam and plate respectively, where the first 

patch (p1) is short circuited and the second (p2) is open circuited (using equation 4. 9). Tables 

and figures show good agreement between model and measurements. The first eight modes 

shapes in the case of plate are given in Figure 4.9 (using equation 4. 9 for the 2D model). In 

the case of beam, modes shapes are validated but they aren’t presented here.  

After modes shapes and frequency validation in the case of beam and plate, the mass and 

stiffness matrices for models are partially validated. To complete models validation, a 

dynamic validation is doing in the next two paragraphs.  
 

Mode order 1 2 3 4 5 6 7 8 9 10 

FEM (1D)  11.92 76.13 221.21 486.85 772.04 1060.4 1546.6 2173 2746.4 3421.6 

Experimental 12 77 225 515 837 1117 1645 2338 2843 3526 

 
Table 4. 5: Eigen frequency for the beam structure in Hz 

 
Figure 4. 7: Frequency comparison for beam structure 
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Figure 4. 8: Frequency comparison for plate structure 

 
 
 
 
 
 
 

Mode FEM (2D) Experimental 
1 48.22 43.5 
2 197.84 190 
3 300.28 271 
4 653.27 629 
5 841.02 905 
6 1072.7 951 
7 1240.8 1132 
8 1337.9 1332 
9 1814.6 1676 

10 1906.8 1855 
11 2029.6 1952 
12 2470.2 2122 
13 2604.8 2602 
14 2778.6 2750 
15 2958.2 2817 

Table 4. 6: Eigen frequency for the plate structure in Hz 
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Figure 4. 9: Modes shapes for the plate structure 

                                                                        

4.4.2 Transverse displacement validation  
We treat here the case sensor-actuator where the first piezoelectric patch near from the fixed 

end is left as open circuited (sensor) while the second piezoelectric patch near from the free 

end is powered by a sinusoidal voltage (actuator). According to this and referring to equation 

4. 1 and equation 3.59, transverse displacements (flexion) are given by:  

=  

4. 11 

After this validation, we will be able to say that the mass and stiffness matrices are completely 

validated. To be more sure, the voltage at the piezoelectric sensor patch can be measured and 

compared with the model obtained voltage for different resonance frequencies. This 

procedure is done in paragraph 4.4.2.3, in the case of 2D model only. Also the piezoelectric 

capacitance can be determined by models and compared with the calculated one and the given 

capacitance in the datasheet. This procedure is done in paragraph 4.4.2.4, in the case of 1D 

model.  
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4.4.2.1 Case of beam  
As we said before, we treat here the case sensor-actuator. The actuator is powered by a 

sinusoidal voltage of 10V amplitude and frequency equal successively to the first, second and 

third resonant frequency of the system. Measurements of displacement along the z axis are 

performed on all the length of the device and they are compared with the model results given 

by equation 4.11 in the case of 1D model. Figure 4.10 shows comparison between 

experimental and the 1D FEM for the transverse displacement along the z-axis all the length 

of the beam at the first resonance frequency. Figure 4.11 shows comparison between 

experimental and model at the second resonance frequency and Figure 4.12 shows 

comparison at the third one. Figures show also a good agreement between model and 

experimental as in the case of resonance frequency validation.  

 
Figure 4. 10:  Displacement at the first resonance frequency 
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Figure 4. 11: Displacement at the second resonance frequency 

 
Figure 4. 12: Displacement at the third resonance frequency 
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Figure 4.13: Tip displacement of the beam versus frequency 

4.4.2.2 Case of plate  
Same as beam case, we treat here the case sensor-actuator. But we are applying now a 

sinusoidal voltage of 20V amplitude and frequency equal successively to the first, second and 

fourth resonant at the actuator piezoelectric patch. Measurements of displacement along the z 

axis are performed on a portion of the device as shown Figure 4.14 and they are compared 

with the model results given by the equation 4.11 in the case of 2D model.  

Figure 4.15 to Figure 4.20 show displacements comparison between experimental 

measurements and simulation results.  

 
Figure 4.14: schematic top view of the experimental measurements points for the device 
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Figure 4.15: z-displacement along the length of the plate at the first resonance frequency 

 
Figure 4.16: z-displacement along the width of the plate at the first resonance frequency 
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Figure 4.17: z-displacement along the length of the plate at the second resonance frequency 

 
Figure 4.18: z-displacement along the width of the plate at the second resonance frequency 



98 
 

 
Figure 4.19: z-displacement along the length of the plate at the third resonance frequency 

 
Figure 4.20: z-displacement along the width of the plate at the third resonance frequency 
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4.4.2.3 Piezoelectric sensors Validation  
As we said before, the piezoelectric patch near from the free end is the actuator patch and it is 

powered by a sinusoidal voltage of 20V amplitude in the case of plate device. The other is the 

sensor piezoelectric patch. Figure 4.12 below shows this functionality.  

 

 

 
Figure 4.21: Piezoelectric actuator-sensor functionality 

We are comparing the sensor functionality by measuring the obtained voltage for the 

piezoelectric sensor in the case of open circuit and shunt resistance circuit of 50 k .  

Equation 4.11 is used to determine voltage in case of open circuit piezoelectric sensor ( ). 

This equation is repeated again below. 

=  

4. 12 

Then, we considered that the sensor piezoelectric patch is connected to a resistance shunt 

circuit. So to introduce resistance in the model, the following equation will be used 

 =  
4. 13 

To incorporate the resistance shunt circuit in the model, otherwise , it is useful to appear  

in the matrix equation, i.e to take it as an unknown. So referring to equation 3.58, mass matrix 

will be the same, damping and stiffness matrix will change. Obtained equation is similar to 

Actuator    Sensor 
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equation 3.60 obtained in the case of actuator-actuator in paragraph 3.7.5 with the adding of 

equation 4. 13.  

 +  +  

 =          

4. 14 

Using the above equation, the influence of the shunt resistance circuit is taken. Equation 4. 14 

can be rewritten as below; then the voltage for the piezoelectric sensor is calculated.  

=  

4. 15 

Experimental and model results for the two piezoelectric sensor cases (open circuit and shunt 
circuit) are illustrated in  
Table 4.7. Also this table can affirm the validity of our model in the particular case of sensor 

functionality.  

 

Frequency Open circuit Resistance shunt circuit 
Experimental 2D FE model Experimental 2D FE model 

f1 2 V 2.1 V 0.5 V 0.53 V 
f3 4 V 4.1 V 3.4 V 3.41 V 
f5 14.5 V 14.2 V 12.5 V 12.9 V 

f10 29 V 29.05 V 28.8 V 28.8 V 
f14 12 V 12.09 V 11.8 V 11.8 V 

 

Table 4.7: Obtained voltage for the piezoelectric sensor 

4.4.2.4 Piezoelectric capacitance Validation 
Let us now verify the capacitance value of the piezoelectric patch given in the datasheet of the 

appendix. Equation 3.58 in the case of no displacement of the device becomes: 

 =  
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4. 16 

In our particular case we have:  

 =  
4. 17 

By using the above equation we can obtain the simulated capacitance  of the piezoelectric 

sensor. The value obtained by simulation is compared to the calculated one in the case of 1D 

FEM model and results are shown in Table 4. 8.  

 Simulation Formula 

   

(nF) 20 22 
 

Table 4. 8: Comparison between simulation and analytic for the capacitance value  

 

4.5 Conclusion and discussion   
The model validation has been done. Now, it is useful to remind that our goal in this work is 

to create a traveling wave on thin structures using non-collocated piezoelectric patches in 

order to move the thin structures on a solid substrate.  As we have seen in chapter 1, this 

traveling wave will be generated using the same operation principle as the linear traveling 

wave ultrasonic motors which were classified under the resonant drive locomotion. A short 

review about linear traveling wave ultrasonic motors is discussed in the next chapter. 

Actually, in our literature review of chapter 1, there was no any traveling wave piezoelectric 

robots similar to the design that we proposed (non-collocated piezoelectric patches bonded on 

thin structures). But in the global point of view, linear traveling wave ultrasonic motors are 

similar to our design. That is why the same operation principle (resonant drive) will be used. 

Only one piezoelectric robot was reported in chapter 1 using the resonant drive locomotion 

and it is somewhat similar to our structure [(Son, et al., 2006)] but this robot uses a standing 

wave to create propulsion and not a traveling wave as we proposed. This robot will be 

presented briefly in the next chapter too.  

The next two chapters (chapter 5 and 6) will be talking about the generation of a traveling 

wave on the beam while the generation of a traveling wave on the plate has been filed for a 

patent. 
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4.6 Appendix 
1. Fixed-free boundary conditions 

  (A.1.1) 

 

   (A.1.2) 
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5.1 Introduction  
This chapter is the base of our project, where we will apply the model developed in chapter 3 

and validated in chapter 4 to demonstrate theoretically the generation of a traveling wave on a 

finite beam structure. Then an experimental prototype to validate the theoretical results will 

be presented in the next chapter. 

As we now know, the operation principle of our robot is inspired from linear traveling wave 

ultrasonic motors. So, at the beginning of this chapter we will introduce the operation 

principal of our traveling wave piezoelectric beam robot by illustrating first a short review on 

linear traveling wave ultrasonic motors to be able to see the potential differences between our 

proposed robot and the others. For interested readers, an introduction to ultrasonic motors can 

be found in [(Sashida, et al., 1993)], a state of the art of piezoelectric linear motors is 

presented in [(Hemsel, et al., 2000)] and a comparative analysis and modeling of both 

standing and traveling wave ultrasonic linear motor is presented in [(Fernandez, et al., 2003)]. 

Note that, in our project we are interested only in the traveling wave linear motion.  

After introducing the operation principal of our traveling wave piezoelectric beam robot, 

modeling of the piezoelectric robot will be presented by readapting the matrix equation 

obtained in chapter 3 to our case of application. Then the optimal design will be studied in 

details including dimensions of the robot, piezoelectric patches positions, optimal operating 

frequency and traveling wave performance of the robot. The next chapter will be dedicated to 

the manufacture and the experimental validation.  

 

5.2 Operation principle  
The idea is to generate a traveling wave in a beam structure to move this beam on a solid 

substrate using piezoelectric patches bonded on the beam surface. This idea is inspired from 

linear traveling wave ultrasonic motor [(Sashida, et al., 1993), (Ueha, et al., 1993)] and it is 

applied to robotic systems to move all the system instead of moving the slider as the case of 

linear traveling wave ultrasonic motors.   

Several configurations were reported in literature to excite traveling waves in finite structures. 

Among them we can cite the one mode excitation presented first by Kuribayashi et al. 

[(Kuribayashi, et al., 1985)] and the two modes excitation presented first by B.G. Loh et al. 

[(Loh, et al., 2000)]. Both methods are presented for ultrasonic linear motor. Other methods 

used to generate traveling wave in finite beam structure, like feedback control method, active 

control method and adaptive control method are also exist in literature but they were not in 
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our field of interest in this project. Interested readers can refer to [(Gabai, et al., 2009)] where 

it presents an important review to excite traveling wave in finite beam structure.  

The followings are some keys examples of traveling wave generated on a finite beam 

structure using two Langevin piezoelectric transducers; the principle of these following works 

is inspired from linear traveling wave ultrasonic motors theory: 

C. Hernandez at LGEP laboratory, France [(Hernandez, 2010)] used two Langevin 

piezoelectric transducers to create a traveling wave on a finite beam, the traveling wave is 

created by actuating the two piezoelectric transducers (vibrator-vibrator: two modes 

excitation) and also by actuating one transducer while the other is used as absorber (vibrator-

absorber: one mode excitation). He used the traveling wave to realize a linear pump system.  

G.H. Kim and J.W. Park at the department of mechanical engineering, Chosun University, 

Korea [(Kim, et al., 2009)] used two piezoelectric Langevin transducers as vibrators to create 

the traveling wave on a finite beam. They studied theoretically the change in traveling wave 

direction according to frequency and verified it experimentally. 

B.G. Loh and P.I. Ro at the department of mechanical aerospace engineering, North Carolina 

University, Raleigh, USA [(Loh, et al., 2000)] were demonstrate experimentally the 

possibility to generate a traveling wave on a finite length using two piezoelectric Langevin 

transducers as vibrator (two modes excitation). Some experimental tests are done in their 

works to characterize this linear traveling wave ultrasonic motor.   

Figure 5.1 and Figure 5.2 show one mode excitation and two modes excitation linear traveling 

wave motors respectively. These two motors use two Langevin piezoelectric transducers to 

generate the traveling wave on a finite beam length.   

Other type of traveling wave linear ultrasonic motors using piezoelectric patches bonded on 

an elastic structure as actuators and not Langevin actuators are presented also in literature. 

These types of motors use many piezoelectric patches bonded on one or both side of the 

elastic structure and also teeth on the structure to generate the traveling wave. As examples of 

such type of motors we can cite [(Bein, et al., 1997),(Roh, et al., 2001)]. These motors are 

presented in Figure 5.3 and Figure 5. 4. 
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Figure 5.1: schematic figure for a one mode excitation linear traveling wave motor 

 

 
 

Figure 5.2: Schematic figure for a two modes excitation linear traveling wave motor 
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Figure 5.3: Linear ultrasonic motor uses the first longitudinal and the fourth bending mode [(Bein, et al., 1997)]  

 

 

 
Figure 5. 4:  Traveling wave ultrasonic linear motor presented by (Roh, et al., 2001) 

 
 

Dual piezoelectric actuators for the traveling wave ultrasonic motor is presented in 

[(Suybangdum, et al., 2009)], this motor uses dual piezoelectric patches bonded on the beam 

structure but it uses teeth also to generate this traveling wave using the two modes excitation 

method (Figure 5. 5).  
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Figure 5. 5: The schematic diagram of the dual piezoelectric actuators ultrasonic linear motor presented by 

(Suybangdum, et al., 2009) 

 

Initially, we started our project by a literature search on piezoelectric miniature robots that 

exist as it was presented in Chapter 1. We noticed that there is no robot based on this principle 

from which the originality of the work. The only robot that has been found and presented in 

Chapter 1, Section 1.4.5 uses the standing wave with legs to generate motion. Locomotion 

principle, schematic diagram and a prototype of this miniature walking robot are presented in 

[(Son, et al., 2006)] and shown here below in Figure 5.6. 
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Figure 5. 6: Locomotion principle, schematic diagram and the fabricated prototype presented in [(Son, et al., 2006)] 

This robot has the same structure as our robot. It consists of a piezoelectric layer bonded on a 

metal layer.  

Our robot consists of only two piezoelectric patches bonded on a beam layer. The originality 

of our system compared to this robot and to all linear ultrasonic motors presented is that we 

use two piezoelectric patches without using teeth or legs - in robotic notation - to generate the 

traveling wave for robotic application as presented in Figure 5.7. What I meant by robotic 

application is that we are interested to move the entire system and not a slider (rotor) on the 

elastic beam (stator). The motion is generated using one mode or two modes excitation. 

Before presenting the one mode and two modes excitation functionality of the traveling wave 

piezoelectric beam robot, it is necessary to remind about the definition of a standing and a 

traveling wave.  

 
 
 
 
                             
 
 
 
 
 
 
 
 
                                                   Piezoelectric patches  
            Elastic beam  
                                                                                               Traveling wave 
                                  Motion direction 
 

 

 

 

Figure 5.7: schematic diagram of the traveling wave piezoelectric beam robot. 3D view on the top and 
side view on the bottom 
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5.2.1 Standing wave and traveling wave 
A standing wave is expressed by the formula: us(x, t) = Acos(kx)sin(wt), and a travelling 

wave is expressed by: up(x, t) = Acos(kx-wt). Using the trigonometric relations, a standing 

wave can be expressed with two travelling waves and a travelling wave can be also expressed 

as two standing waves as shown below:  

2Acos(kx)sin(wt) = Asin(kx-wt) + Asin(kx+wt) 
5. 1 

Acos(kx-wt) = Acos(kx)cos(wt) + Acos(kx-π/2)cos(wt-π/2) 
5. 2 

Where k is the wave number and w is the angular frequency.  

According to equation 5. 1, a standing wave is generated by superposition of two travelling 

waves with the same amplitude and frequency but moving in different directions. Also 

equation 5. 2 shows that, a travelling wave is generated by superposition of two standing 

waves with a phase difference of 90° from each other both in time and space.  

Figure 5. 8 and Figure 5. 9 illustrate a pure standing wave and a pure travelling wave 

successively projected on a plane of length (x) and time (t) of a flexural beam. These figures 

will be used later to visualize the travelling wave performance in a beam structure.  

After definition of standing wave and travelling wave, let us now introduce the one mode and 

two modes excitation functionality of this traveling wave piezoelectric beam robot 

schematized in Figure 5.7.  

 
Figure 5. 8: Pure standing wave reading in length and time 
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Figure 5. 9: Pure travelling wave reading in length and time 

 
5.2.2 Operation principle case of one mode excitation 
We repeat that our idea is to generate this traveling wave in a beam structure to move it on a 

solid substrate. The traveling wave is generated without using legs, with two non-collocated 

piezoelectric patches bonded on the beam surface (Figure 5.7).  

As we know, pure linear traveling waves are usually observed on long structures and rarely on 

normal finite structures. In finite structures like beams, the excited vibration wave produced 

by one piezoelectric patch is partially reflected when it hits the boundaries, which create a 

mixture between standing and traveling waves; as a standing wave is generated by 

superposition of two traveling waves with the same amplitude and frequency but moving in 

opposite directions (equation 5. 1).  

An additional piezoelectric patch can be used to avoid wave reflection. Our system consists of 

a beam structure, with two non-collocated piezoelectric patches attached to its surface. One 

patch produces the mechanical displacement of the beam by applying an electrical voltage, 

while the other converts this mechanical displacement into electrical energy which is then 

dissipated through passive RL electrical networks to avoid wave reflection. The device 

studied is presented in Figure 5.10.  
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Figure 5.10: Schematic figure of the one mode excitation  

 

It can be noted that, by switching the role of both piezoelectric patches, the motion direction 

will change. Series RL connection was chosen to study in this work as we can see in Figure 

5.10, but this is not the only way to absorb wave. It was chosen due to the simplicity of its 

modeling and implementation. In order to obtain a great rate of travelling wave, in other term 

to avoid the maximum possible wave reflexion, R & L must be calculated to obtain the 

maximum ratio of power dissipated over power provided. The power dissipated is the power 

consumed by the electrical shunt circuit and the power provided is the power consumed by the 

patch actuator. Ratio of power dissipated over power provided must be calculated because not 

only the power dissipated depends on the charge (RL values), the power provided depends 

also on the charge, the applied frequency and piezoelectric patches positions.  

As we said, many other passive methods exist in literature. For example Hariri et al. present in 

their paper [(Hariri, et al., 2011)] a comparison between open circuit, R shunt circuit, RL 

series connection and RL parallel connection for damping vibrations of the same asymmetric 

system (2 non-collocated piezoelectric patches bonded on thin beam). They demonstrated that 

RL series and Parallel give approximately the same result for this system.  Also others passive 

techniques like SSDS (Synchronized Switch Damping on a Short circuit) and SSDI 

(Synchronized Switch Damping on an Inductor) are compared in [(Corcolle, et al., 2008)]. 

Semi passive techniques are given in [(Badel, 2006)] for damping applications. The advantage 

of RL series or parallel technique compared to other passive or semi passive techniques is the 

simplicity of its modeling and implementation but its major drawback is that it is not very 

effective at low frequencies. In our case we are not interested to work at low frequencies, in 

contrast we need a high frequency in order to get enough contact points between the robot and 

the ground to move the robot. Also we take into account that transverse displacement of the 

beam decreases with frequency. 
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Others types like feedback control method, active control method and adaptive control 

method are reviewed in [(Gabai, et al., 2009)] for damping application also.  We should note 

that the active control method is somehow the two modes excitation method; it will be 

discussed in the next sub-section.   

 

5.2.3 Operation principle case of two modes excitation 
In one mode excitation, one patch is used as actuator to produce vibration on the beam while 

the other is used as sensor to convert this mechanical vibration into heating in the goal to 

produce a traveling wave on the beam. In two modes excitation, the two patches are used as 

actuators to produce the mechanical displacement of the beam in order to create the traveling 

wave. Due to this aim, the two piezoelectric patches producing the mechanical displacement 

of the beam by applying simultaneously two neighbored natural mode shapes of the beam at 

the same frequency but with a phase difference of 90 . The vibration can be approximated as 

the superposition of these two modes; this is called a two modes excitation.  

It becomes clear now that, the principle of two modes excitation is based on the excitation of 

the two patches, at a frequency between two resonance frequencies. This principle is 

necessary to generate the traveling wave on the beam. At the resonance frequency, two 

progressive waves with the same amplitude propagating in opposite directions cancel each 

other, resulting in standing wave on the beam, so the beam robot will be stopped moving. 

Below or above the resonance frequency, one progressive wave is excited more than the 

other. The resulting waves propagate in the same direction as the waves with the greater 

amplitude propagate [(Loh, et al., 2000)]. This result was demonstrated theoretically and 

verified also experimentally in [(Kim, et al., 2009)] for linear traveling wave ultrasonic 

motors. They demonstrated that, the generated travelling wave changes direction according to 

the excitation frequency (left side of Figure 5.11).  

Taking now the case where the two patches are actuated by Vsin(wt) and Vsin(wt+ ) 

respectively. When  equal to 90 , the traveling wave reaches its maximal speed. The motion 

direction can be reversed by changing phase difference from 90  to -90  without causing the 

motion speed to decrease. This result is demonstrated experimentally in [(Loh, et al., 2000)]. 

A plot representing the variation of speed versus phase difference is shown in the right side of 

Figure 5.11. Schematic figure for the two modes excitation at  equal to 90  is represented in 

Figure 5.12.  
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Figure 5.11: Variation of speed versus frequency (left) and variation of speed versus phase difference (left) 

                                                     
Figure 5.12: Schematic figure of the two modes excitation 

 

5.3 Modeling of the piezoelectric beam robot  
Take first the case of one mode excitation. In this case one patch (p2) is acting as actuator 

where a sinusoidal voltage is applied (Vsin(wt)) while the other (p1) is connected to series RL 

connection.  

As the case of equation 4.15 when a resistance shunts circuit is added, the following equation 

will be used here to add series RL connection. 

 =  + L  
5. 3 

The obtained equation is similar to equation 3.60 obtained in the case of actuator-actuator in 

section 3.7.5 with the addition of equation 5. 3.  
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 +  +  

 = 

 

5. 4 

Equation 5. 4 is used to represent the piezoelectric beam robot in the case of one mode 

excitation. Where  is the electric field amplitude, w = ,  is the resonance frequency. 

Otherwise, the last equation can be written as the following: 

 +  +  

 = 

 

5. 5 

Where 

 =  

 =  

5. 6 

In frequency domain this equation can be rewritten as below: 
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=  

5. 7 

Take now the case of two modes excitation. In this case the two patches are acting as 

actuators where two sinusoidal voltages are applied with the same amplitude and a phase 

difference of 90  (Vsin(wt) & Vcos(wt)). 

The obtained equation is similar to equation 3.60 obtained in the case of actuator-actuator in 

section 3.7.5 in the case where two patches are used. So, the equation that represents the 

piezoelectric beam robot case of two modes excitation is given below by 

 

 +  +  

 = 

 

5. 8 

The equation can be rewritten in frequency domain as below: 

 

=  

5. 9 
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We should note that during assembly of matrices free-free boundary conditions are taking into 

account (Appendix).  

 

5.4 Optimal design  
Our goal is to demonstrate the generation of a traveling wave on a beam. For this purpose, 

matrices equations obtained in the last section will be used here in order to determine optimal 

geometric parameters of the system, type of material used for the beam, optimal operating 

frequency and optimal R & L values (case of one mode excitation) i.e. better travelling wave 

performance, being given dimensions of the beam.  

The given dimensions of the beam are (lm = 180 × bm = 17 × tm = 0.5 mm). Width of the 

piezoelectric patches was chosen to be the same as the beam width (bp = 17 mm).  

A study in [(Dehez, et al., 2010)] for ultrasonic motors using two Langevin piezoelectric 

transducers (punctual force applied on the beam) demonstrates that the location of the 

transducer has an influence on the vibration of the beam (transverse displacement). When the 

actuator is placed on a point corresponding to an anti-node of a given frequency, the 

transverse displacement will be maximized. At the opposite when it is placed at a node of this 

frequency, the transverse displacement will be completely absent. Actually here, in view of 

creating the better traveling wave, it is suggested to locate the transducers on the positions of 

the first antinodes observed from the ends of the beam.  At first glance and taking that into 

account, the length of the piezoelectric patches should be equals to the half of the wave length 

( ) being given the resonant mode of operation of the system and placed at the first 

antinodes observed from the ends of the beam as we can see in Figure 5.13.  

Figure 5.13 shows the vibration of a beam at the 20th and 7th resonant modes and accordingly 

the piezoelectric patches length at each resonant mode. Actually, that cannot be working here 

because we need a high frequency in order to get enough friction points between the robot and 

the ground to move the robot forward. High resonance frequency means here small 

piezoelectric patches length and in this case the piezoelectric patches would not generate 

enough bending moment to create vibrations of the beam.  

Also displacement cannot be more important if we place the patches at more anti-nodes than 

nodes because vibrations maybe canceled. Take for example the case of two punctual 

longitudinal forces (Langevin transducers) applied at two neighboring anti-nodes, vibrations 

can be canceled each other. The same in our case, piezoelectric patch is equivalent to two 
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bending moments at both ends of the patch [ (Hariri, et al., 2011)]. The influence of 

piezoelectric positions on the traveling wave performance will be studied later in this chapter. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Several conditions must be looking forward before talking about the length of patches. Firstly, 

polarization and applied electric field have the same directions, therefore transversal mode 

variation occurs in the piezoelectric patches; results in a variation along x-axis and y-axis. 

Cases of thin beam, only x-direction is considered (bending moment); therefore variation 

along y-axis is vanished (σ1 is the only non zero stress). So for piezoelectric patches, it is  
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Figure 5.13:  Length of the piezoelectric patches at the 20th (top figure) and 7th (bottom figure) resonant modes 
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useful to have the length of patch more than its width. Secondly, it was demonstrated by 

simulations that the transverse displacement is smaller in the position where the piezoelectric 

patches are placed through the length of the beam. Figure 5. 14 shows transverse displacement 

through the length of the beam for several sampling time at the third (left figure) and fourth 

(right figure) resonant frequencies where two piezoelectric patches are placed near from both 

ends of the beam. It can be seen from figure that the transverse displacement is smaller in the 

position where the piezoelectric patches are placed. Also that affects the traveling wave 

performance at the position of patches because magnitude of waves decreases. 

 

 
 

As conclusion, for small piezoelectric patches length we cannot generate enough bending 

moment to create vibrations of the beam and big piezoelectric patches length decrease the 

transverse displacement in the position where the piezoelectric patches are placed and affects 

the traveling wave performance. But as we are in the case of thin beam where only x-direction 

is considered for modeling, it is good to have the length of patch more than its width. 

Practically, two times its width. Consequently the length of the piezoelectric patches was 

selected to be between 30 mm and 35 mm.  

Being given dimensions of the beam and after determining the width and the length of the 

piezoelectric patches, thickness of piezoelectric patches and material used for the beam will 

be studied in the next sub-section.  

 

5.4.1 Thickness of piezoelectric patches and material used for the beam 

In this sub-section, we will study the influence of the thickness of the piezoelectric patches 

and the material rigidity of the structure on the amplitude of the transverse displacement and 

the resonance frequency of the system.  

Figure 5. 14: Transverse displacement in time trough the length of a beam at the third (left) and fourth (right) resonant 
frequencies 
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We are interested in the thickness which gives a maximum transverse displacement of the 

beam and this optimal thickness is the same for static and dynamic operation of the system 

(appendix of this chapter). So, a static study is done to determine this thickness at fixed-free 

boundary conditions because free-free boundary conditions cannot be solved in static 

operation [ (Hariri, et al., 2011)].  

The optimum thickness for the two patches is determined for a constant electric field applied 

to a patch, while the other is kept in open circuit. This particular case does not lose the 

generality of the study because the optimum thickness does not change if the voltage is 

applied to the first patch, the second or both patches at the same time. 

By varying the thickness of the patches and calculating the transverse displacement at a given 

point for different rigidities of the beam (Table 5. 1), we obtain the curves of Figure 5.15. The 

decrease (in each curve) in of Figure 5.15 shows that when the thickness of the piezoelectric 

patches becomes large, the bending stiffness of the system becomes more important than the 

bending moment generated by piezoelectric patches [(Wang, et al., 1998)]. We can also see 

the influence of the stiffness of the structure on transverse displacement function of 

piezoelectric thickness. 

 

Materials Young’s modulus 
N/m2 

Density 
  Kg/m3 Poisson’s ratio 

Aluminum 6.9 1010 2700 0.33 
Brass 11 1010 8800 0.35 
Steel 19.5 1010 7700 0.3 

Acrylic 0.31 1010 1185 0.4 
 

Table 5.1:  Materials properties used for the elastic structure 

Figure 5.15 shows that there is an optimal piezoelectric patches thickness for each material 

used.  But which materials we should use? Is it the one that gives maximum transverse 

displacement (acrylic in this case)?  

We are interested on the maximum transverse displacement but we are also interested on the 

maximum frequency to be nearest from the ultrasonic range. Figure 5.16 represents the first 

resonant frequency depending on the thickness of piezoelectric patches for different rigidities 

of the beam. The first resonant frequency is simulated when one patch is open circuited (p1) 

and the other is short circuited (p2) with free-free boundary conditions. 
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Figure 5.15: Displacements at the free end of the system depending on the thickness of piezoelectric patches 

 

 
Figure 5.16: First resonant frequency depending on the thickness of piezoelectric patches 



124 
 

Assume for example that the 30th resonance frequency is the operation frequency of our 

system. In this case and basing on these above two figures, we can classify these materials 

used in our study in descending frequency order with respect to their optimum thicknesses by 

the following: Steel, aluminum, brass and acrylic. And in descending transverse displacement 

order relative to their optimum thicknesses by: Acrylic, aluminum, brass and steel. 

As we are interested at the material that gives the best compromise between maximum 

transverse displacement and maximum frequency, aluminum was chosen at its optimal 

thickness to be the better elastic materials in our study. For this material and basing on Figure 

5.15, the optimal piezoelectric patches thickness is equal to 0.27 mm compared to 0.5 mm 

thickness of the beam.  

As the frequency depends in the boundary conditions used, we should calculate the resonance 

frequency of our piezoelectric robot with the free-free boundary conditions. 

 

5.4.2 Resonance frequency 
In this sub section we will study the influence of the operation mode (one or two modes 

excitation) and piezoelectric patches positions on the resonant frequencies of the robot.  

As the frequency depends in the boundary conditions used, we should calculate the resonance 

frequency of our piezoelectric robot with the free-free boundary conditions (B.C).  This B.C is 

taken during assembly of matrices.  

For one mode excitation, equation 4.8 is used to calculate the resonance frequency. This 

equation is repeated again here below. 

  
([ ] –  [ ]){U} = 0 

5. 10 

For two modes excitation, equation 4.7 should be used. This equation is repeated again below. 
 

([ – [ ]){U}=0 
5. 11 

Figure 5.17 describes geometric parameters of our system. This geometric parameters and 

properties of the system (piezoelectric PZT ceramic and aluminum) are given in Table 5.2. At 

the moment, we are fixing the piezoelectric patches at a given position as shown in Table 5.2 

and we will study the influence of modes of operation (one mode or two modes excitation) to 

the resonance frequencies.   
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Figure 5.17:  Geometric parameters of the system 

                                                 PZT (p)                                 Elastic structure (m) 
Young’s modulus (Pa)                                            /                                               cm = 69  109 
Poison’s ratio                                                               /                                              = 0.33 
Volume density (Kg.m-3)                                       = 7900                                     = 2700 
Relative permittivity                                             = 1282                                       / 
Piezoelectric constant (m.V-1)                              d31 = - 1.3  10-10                             / 
Elastic compliances  (Pa-1)                                   S11 = 1.3  10-11                                / 
S12 = -4.76  10-12                            / 
Max peak to peak electric field(V.mm-1)         Emax =   300                                  / 
Max compressive strength (Pa)                           = 600  106                              / 
 
Length  width  thickness (mm3)                     32 17 0.27                          180  17  0.5 
(lp, lm)  (bp, bm)  (tp, tm) 
Xp1, Xp2(mm)            24,126 

Table 5.2: Geometric parameters and properties the PZT patches and aluminum beam 

Table 5.3 shows simulation results for the 20 first resonant frequencies, cases of one mode 

and two modes excitation at fixed piezoelectric patches positions.  From this table, we can 

consider that, practically there are no change in frequency between the one mode and the two 

modes excitation. So, operation modes do not affect the resonance frequencies of the system.  

 
Mode order  One mode excitation (Hz) Two modes excitation (Hz) 

1    82.7 82.7 
2   250.8   250 
3   534.8   531.4 
4   819.4   816.5 
5    1094    1093.9 
6    1567.7    1565.3 
7    2184.5    2175.9 
8    2741.7    2734.7 
9    3425.3    3423.9 
10    4295.5    4295.3 
11    5023.7    5023 
12    5780.4    5780.3 
13    6860.9    6860.8 
14    7957.9    7957.9 
15    8996    8995.4 
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16    10358    10354 
17    11811    11804 
18    12985    12983 
19    14294    14294 
20    15903    15897 

Table 5.3:  20 First resonant frequencies cases of one mode and two modes excitation at a fixed piezoelectric patches 
positions 

Let us now study the influence of piezoelectric patches position on the resonance frequencies 

of the system.  For this purpose, four positions are taken as we show in Table 5.4 and 

frequencies are calculated using equation 5. 11 (case of two modes excitation).   

Piezoelectric patches positions (mm) PZT (p1 and p2) 
 Position 1: Xp1, Xp2 24,124 (mm) 
Position 2: Xp1, Xp2 14,134 (mm) 
Position 3: Xp1, Xp2 5,143 (mm) 
Position 4: Xp1, Xp2 48,100 (mm) 

Table 5.4:  Four different piezoelectric patches positions are taken to study 

Piezoelectric patches positions are taken very closely to both ends of the beam (position 3), 

near from the middle (position 4) and also in two others positions near from both ends of the 

beam (position 1 & 2). By looking to Table 5.5 below, we can see that at each change in 

position, the resonance frequencies of the system also change.  

Mode order  Xp1=24, Xp2=124 
Position 1 

Xp1=14, Xp2=134 
Position 2 

Xp1=5, Xp2=143 
Position 3 

Xp1=48, Xp2=100 
Position 4 

1 83.4 75.9 68.1 96.3 
2   251.4   233.7   211.9   237.1 
3   531.2   500.4   444.1   422.2 
4   801.6   883.66   785.3   787.3 
5    1080.4    1290.5   1238.4   1154.3 
6    1579.3    1660.6   1760.2   1513.3 
7    2184.6    2138   2289.4   2196.5 
8    2733.6    2781.5   2847.7   2736.3 
9    3448.4    3417.1   3539   3450.2 
10    4293    4051.5   4397.4   4033.6 
11    4952.8    4905   5337.8  5157.9 
12    5753.8    5971.4   6241.2    5941.8 
13    6905.4    6999.1   7121.1    6828.6 
14    7958.1    7949.3   8146.8    7967.2 
15    9028.9    9097.1   9389.3    9146.3 
16    10471    10494   10717    10400 
17    11790    11795   11947    11346 
18    12827    12909  13113    13210 
19 14259    14246  14468    14459 
20 15895    15897   16090  15971 

Table 5.5: Frequency in Hz for different piezoelectric patches positions 
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As conclusion resonance frequencies are calculated here in the case of free-free boundary 

conditions and it was found that changes in operation modes (one mode excitation or two 

modes excitation) do not change resonance frequencies but any change in piezoelectric 

patches position affect the resonance frequencies.   

 

5.4.3 Optimal operating frequency  
Optimal operating frequency is the one that gives the better traveling wave performance at 

fixed piezoelectric patches positions. Then changes in piezoelectric patches position affect the 

resonance frequencies of the system but, are that affect traveling wave performance 

(waveform and transverse displacement)? 

In this sub-section two piezoelectric patches positions will be taken to answer this question.  

Firstly, at each position taken we will study the optimal operating frequency means the better 

traveling wave performance (waveform and transverse displacement). Secondly, a comparison 

between the traveling wave performances for these two positions will lead to answer this 

question. The study will be done in the cases of one mode and two modes excitation. We will 

end up this sub-section by two optimal operating frequencies, one at each position.  Then we 

will see the influence of piezoelectric patches position on the performance of the traveling 

wave and those in the case of one mode and two modes excitation.  So, in the case of one 

mode excitation, two optimal operating frequencies at two different positions will be 

obtained. It is the same in the case of two modes excitation.   

The first step is to study the optimal operating frequency at the first piezoelectric patches 

position and then to compare the performance of the traveling wave obtained at this position 

with the performance of the wave obtained by the optimal operating frequency for the second 

piezoelectric patches position. These two piezoelectric patches position are the position 1 

(Xp1=24 mm, Xp2=124 mm) and position 2 (Xp1=14 mm, Xp2=134 mm) given above in Table 5.4 

and they were chosen to be near from the both ends of the beam. 

It is obvious that, when the waveform obtained at a given frequency is closer to the pure 

traveling waveform, the traveling wave ratio for this wave is higher. And when it is closer to 

the standing waveform, the traveling wave ratio for this wave is lower. The performance of 

the wave is defined in this thesis by the waveform and the transverse displacement because 

transverse displacement affects the speed of the robot. Better traveling wave means higher 

traveling wave ratio and higher transverse displacement. Figure 5.2 presented below will be 

used as references to compare the ratio of the traveling wave created. Figure 5.2 (a) represents 

a pure standing wave (at the left) and a pure traveling wave (at the right) reading in length and 
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time at its normalized colored magnitude. Figure 5.2 (b) is another representation for the pure 

standing (left) and pure traveling (right) wave and it represents normalized magnitude through 

the length of the beam for several times. In Figure 5.2 (c), the representation is for a quarter of 

a period.  

 
 
 
 
 
 
 
 
 
 
 
 

(a) 

 
 
 
 
 
 
 
 
 
 
 
 
 

(b) 

 
 
 
 
 
 
 
 
 
 
 
 
 

(c) 

 
 
 
 

Figure 5.18: Pure standing wave (left) and pure traveling wave (right) 
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This figure will be used as references to compare the ratio of the traveling wave created. The 

optimal operating frequency is that gives the better traveling wave performance. In other 

words, it is the frequency that gives the closest form of a pure traveling wave with higher 

transverse displacement. 

At fixed piezoelectric positions, the optimal operating frequency will be determined by testing 

the traveling wave performance at each frequency until to find the better performance by 

iterative simulations. Let us begin in the case of one mode excitation. 

 

5.4.3.1 Case of one mode excitation  
 

Operation principle of the one mode excitation is reminded here in the Figure 5. 19 below. 

 

 
Figure 5. 19: Operation principle of the one mode excitation  

 

In this case of one mode excitation, equations 5. 5 and 5. 7 will be used to determine the 

traveling wave on the beam. The first step is to determine R and L optimal values at each 

resonance frequency in order to have the better travelling wave performance.  In order to 

obtain a great rate of travelling wave, in other words to avoid the maximum possible wave 

reflexion, R & L must be calculated to obtain the maximum ratio of power dissipated to 

power provided. Ratio of power dissipated  (power consumed by the electrical shunt 

circuit) over power provided  (power consumed by the patch actuator) is given below in 

equation 5.12 

 
  =       

 
 =   
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 =  =     

 
5. 12 

Where p1 is the sensor piezoelectric patch, p2 is the actuator piezoelectric patch,  is the 

resonance frequency and  is the modulus of the complex electric charge . This ratio 

represents the way to have the better traveling wave performance.  

In RL series shunt circuit, the inductor is used to tune the shunt circuit to a resonant frequency 

of interest and the optimal L value is given in equation 5. 13 below. This leaves the shunt 

circuit with the resistive component only, which explains equation 5. 12. An impedance 

matching method is employed then to adjust the resistance in order to have the maximum ratio 

of power dissipated to power provided.  

=  

5. 13 

Where  is the electrical capacitance of the PZT sensor (p1) and it is equal to  .  

When the resistance is varied to get the maximum ratio of power dissipated over power 

provided after the inductor L is tuned, is the L has to be readjusted again? In other word is the 

frequency depends on R? It was demonstrated by Hariri et al in their paper [(Hariri, et al., 

2011)] taken the particular case of a fixed-free beam with two non-collocated piezoelectric 

patches bonded on the beam for damping application, that the frequency depends on the value 

of R only in the case of small values of R compared to jwL and in this case L has to be 

readjusted again to tune the new resonant frequency. In all other cases, the variation of the 

frequency can be considered as negligible. We should note that equation 5. 13 is verified by 

simulation by Hariri et al in their paper [(Hariri, et al., 2011)]. 

At each resonance frequency an iterative simulations is done by varying R until to find its 

optimal value.  

At position 1 (Xp1=24 mm, Xp2=124 mm), simulations show that the seventeenth resonant 

frequency (f17 = 11790 Hz according to Table 5.5) is the optimal operating frequency that 

gives the better traveling wave performance at this position (position 1).  At position 2 

(Xp1=14 mm, Xp2=134 mm), simulations show that the sixteenth resonant frequency (f16 = 

10494 Hz according to Table 5.5) is the optimal operating one. By comparing these two 

positions at their optimal operating frequency, we noted that the traveling wave performance 

(waveform and transverse displacement) in position 1 is better than what we obtained in 
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position 2. Transverse displacement as the contact friction points between beam and the 

support affects the speed of the robot. These results will be verified experimentally in the next 

chapter. 

Let us begin by demonstrating how we determined the optimal operating frequency at each 

position, and then by comparing these two optimal operating frequencies. Simulations are 

done by applying 40 Vpp sinusoidal waves at the actuator patch (p2).  

 

5.4.3.1.1 Position 1 

For position 1 at the 17th frequency, R & L optimal were determined, and then the traveling 

wave performance was simulated using equation 5. 5 (transient response simulation). Results 

show traveling wave performance are given in Figure 5.20 below. By comparing the figure to 

the pure traveling wave and pure standing wave, we get the traveling wave performance at the 

17th frequency. Figure 5.20 on the top shows a mixture wave between traveling wave and a 

standing wave and it projected on a plane of length (x) in  and time (t) in  of a flexural 

beam at its transverse displacement. The figure on the bottom shows the same wave but in 

another representation. It represents transverse displacement in  through the length of the 

beam in  at each instant. 
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Figure 5.20:  Traveling wave performance at the seventeenth resonant frequency  

From Figure 5.20 as in the case of punctual forces (Langevin piezoelectric transducers), at the 

location of the contact surface between the beam and the patches (position 1), the vibration is 

less progressive than the place near the middle of the beam. Length of piezoelectric patches 

affects the transverse displacement and then affects the traveling wave performance. As we 

are far from piezoelectric patches positions (position 1) near from the middle of the beam, the 

traveling wave performance will be better. More we are near from piezoelectric patches 

positions (near from both ends of the beam), traveling wave performance will be worse. 

The 6th, 12th and the 19th resonant frequencies are taken here to compare them with the 17th 

resonant frequency. That allows justifying the choice of the 17th resonant frequency as the 

optimal one. Table 5.6 below shows R and L optimal values at each considered resonant 

mode. L was obtained by using equation 5. 13 and optimal R values was simulated using 

equation 5. 7 (frequency response simulation). Optimal R values obtained by simulation at 6th, 

12th, 17th and 19th resonant frequencies are shown in Figure 5.21. 

This figure shows the ratio of power dissipated (power consumed by the electrical shunt 

circuit) over power provided (power consumed by the patch actuator) versus resistance values 

at each considered resonant frequency. The values obtained depend on the resonant mode and 

piezoelectric patches positions. Comparing these ratios doesn’t give any conclusion about 
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traveling wave performance at each frequency. To have the performance of the traveling 

waves at each frequency, a transient response simulation should be done.  

FREQUENCY R OPTIMAL L OPTIMAL 
f6   = 1579.3 Hz R6 =  334 Ω L6 = 0.5022H 
f12 = 5753.8 Hz R12 = 8.75 Ω L14= 0.0198H 
f17 = 11790  Hz R17 =  9.75 Ω L17 = 0.009H 
f19 = 14259  Hz R19=  5.5 Ω L19 = 0.0062H 

 

Table 5.6:  R & L optimal Value for series RL connection 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
Figure 5.22 shows traveling wave performances for the 6th, 12th and 19th resonant frequencies. 

At small resonant frequencies, the waveform is closer to a standing wave than to a traveling 

wave, as the case of the 6th resonant frequency. That is explained by the fact that the RL shunt 

circuit is not very efficient to absorb the wave provided by the actuator patch (p2) due to the 

large displacements at small resonant frequencies. In general, transverse displacement 

decreases with frequency but that is not completely true because transverse displacement 

depends also on piezoelectric patches positions. Transverse displacement of the beam is 

Figure 5.21:  Optimal R values at 6th, 12th, 17th and 19th resonant frequencies 
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greater if the numbers of anti-nodes are more than the numbers of nodes at the contact surface 

between piezoelectric patches and the beam. We can see from Figure 5.22 that transverse 

displacement at the 17th resonant frequency is greater than at the 19th resonant one. From 

Figure 5.22 we can note that the 17th resonant frequency is the one that gives the better 

traveling wave performance and therefore it is the optimal one. Figure 5.23 is another 

representation of the traveling wave performance and it represents transverse displacement 

through the length of the beam at each instant at the 6th, 12th and 19th resonant frequencies.  

Same as we have seen in Figure 5.22, the waveform is closer to a standing wave at the 6th 

resonant frequency, traveling wave performance near from the middle of the beam is better 

than we have near from both ends of the beam and at piezoelectric patches positions. 

Transverse displacement at the 17th resonant frequency is greater than at the 19th resonant one. 

From Figure 5.23, the standing wave ratio (SWR) can be estimated.  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5.22: Top view plots of transverse displacement (um) reading in length of the beam (mm) and time (ms) at the 6th, 
12th, 17th and 19th resonant frequencies 
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Frequency f6 f12 f17 f19 

SWR 6.577 3.6445 1.55 2.379 
 

Table 5.7:  Standing wave ratio at the  6th, 12th, 17th and 19th resonant frequencies 

It is an indicator of the amount of wave reflection in a transmission line. It is defined as the 

ratio of the maximum and minimum amplitudes of the transverse displacement induced on the 

beam. The closer to one the less reflection exists, so the better traveling wave ratio.  

SWR=  

5. 14 

Figures show that transverse displacement at 17th resonant frequency is higher than the one at 

12th and 19th resonant frequencies. Transverse displacement as the contact friction points 

affects the speed of the robot. These results will be verified experimentally in the next 

Figure 5.23: Transverse displacement (um) through the length of the beam (mm) at each instant at the 6th, 12th, 17th and 
19th resonant frequencies 
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chapter. At position 1 and after testing all resonant frequencies, the 17th resonant one shows 

the better traveling wave performance comparing to others.  

5.4.3.1.2 Position 2 

For position 2, the 16th resonant frequency was the optimal one that gives the better traveling 

wave performance. Same procedure will be repeated in the following as at position 1. First, 

traveling wave performance at the optimal operating frequency is given separately. Then 

comparison between traveling wave performances are given for the 6th, 10th, 14th, 16th and 18th 

resonant frequencies.  Same explanation as for position 1, Figure 5.24 represents traveling 

wave performance at the optimal operating frequency at this given position.  

Table 5.8 shows R & L optimal values at the 6th, 10th, 14th, 16th and 18th resonant frequencies.  

The same like for position 1, the optimal L value was determined using equation 5. 13 and 

Figure 5.25 shows optimal R values obtained by simulation. Figure 5.26 represents travelling 

wave performances at each considered frequency reading in length (mm) and time (ms) at the 

vibration amplitude of the beam (transverse displacement in µm). Figure 5.27 shows 

travelling wave performance and it represents transverse displacement (µm) through the 

length of the beam (mm) at each instant. This figure helps to calculate the SWR. Table 5.9 

shows standing wave ratio at each considered frequency.  

 



137 
 

 
Figure 5.24: Traveling wave performance at the sixteenth resonant frequency 

 
FREQUENCY R OPTIMAL L OPTIMAL 

f6   = 1660.6 Hz R6 = 194 Ω L6 = 0.4543H 
f10  = 4051.5  Hz R10 = 23.5Ω L10 = 0.0763H 
f14 = 7949.3 Hz R14 = 9.25 Ω L14= 0.0198H 
f16 =  10494 Hz R16 =  23.75 Ω L16 = 0.0114H 
f18 =  12909 Hz R18=  7 Ω L18 = 0.0075H 

 

Table 5.8: R & L optimal values for series RL connection 
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Figure 5.25:  Optimal R values at 6th, 10th, 14th, 16th and 18th 
resonant frequencies 
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Figure 5.26: Top view plots of transverse displacement (um) reading in length of the beam (mm) and time (ms) at the 6th, 
10th, 14th, 16th and 18th resonant frequencies 
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Frequency f6 f10 f14 f16 f18 

SWR 6.056 3.991 2.594 1.843 2.7 
 

Table 5.9: Standing wave ratio at the  6th, 10th, 14th, 16th and 18th resonant frequencies 

Figures show that transverse displacement at 16th resonant frequency is higher than the one at 

14th and 18th resonant frequencies. Transverse displacement as the contact friction points 

affects the speed of the robot. These results will be verified experimentally in the next 

chapter. At position 2 and after testing all resonant frequencies, the 16th resonant one shows 

the better traveling wave performance comparing to others.  

 

5.4.3.1.3 Influence of positions on the performance of the traveling wave  

Here is done a comparison between traveling wave performances at the optimal operating 

frequency for each position. The performance of the 17th resonant frequency at position 1 is 

Figure 5.27: Transverse displacement (um) through the length of the beam (mm) at each instant at the 6th, 10th, 14th, 
16th and 18th resonant frequencies 
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compared with the 16th resonant frequency at position 2. If we watch only the SWR (SWR16 = 

1.843 & SWR17 = 1.55), it is closer to one at the 17th resonant frequency. Therefore traveling 

wave ratio is better at this frequency. We can see clearly from Figure 5.28 below the variation 

of amplitudes near from the middle of the beam for the 16th resonant frequency at position 2 

while the amplitudes for the 17th resonant frequency at position 1 remain constant. It can be 

argued that the waveform is more progressive at the 17th resonant frequency. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5.28: Traveling wave performance for the 17th resonant frequency at position 1 (left) and for the 16th 
resonant frequency at position 2 (right) 
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5.4.3.1.4 Actuator-absorber & Absorber-actuator 

By switching the role of both piezoelectric patches, the motion direction will change. Let us 

verify that by taking equation 5. 5 and replacing the role of patches. Below the equation 5. 5 

in the case where the patch p1 is the actuator patch and the patch p2 is the sensor patch.  

 

 +  +  

 = 

 

5. 15 

Using equation 5. 5 and 5. 15, the direction of motion is represented in the black arrow below 

in the Figure 5.29.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5.29:  Actuator (p2)-absorber (p1) in the left and absorber (p2)-actuator (p1) in the right 
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Figure 5.30 represents the traveling wave performance when the patch p1 is taken as an 

actuator while the patch p2 is open circuited. Figure shows a standing wave on the beam 

which is completely logic when there is no absorption of the reflected wave.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5.4.3.2 Case of two modes excitation  

Operation principle of the two modes excitation is reminded here in the Figure 5.31 below. 

 

 
Figure 5.31: Schematic figure of the two modes excitation 

The principle of two modes excitation is based on the excitation of the two patches, at a 

frequency between two resonance frequencies. Iterative simulations are done at each 

frequency between two successive resonance frequencies for the two piezoelectric patches 

positions. This frequency is taken as the middle of the two successive resonance frequencies. 

Simulations show that the middle of the sixteenth and seventeenth resonance frequencies 

(f16*17 = 11.1 kHz) is the optimal operating frequency at position 1 (Xp1=24 mm, Xp2=124 

mm) and position 2 (Xp1=14 mm, Xp2=134 mm). Then by comparing the performances of the 

Figure 5.30: Wave performance case of an open circuit 
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travelling waves (waveform and transverse displacement) obtained, we noted that the 

performance in position 1 is better than what we obtained in position 2. Transverse 

displacement as the contact friction points affects the speed of the robot. These results will be 

verified experimentally later in the next chapter. Simulation here is easier because there is no 

resistance and inductance calculated, it is enough to calculate the mid frequency between two 

resonance frequencies successive and apply equation 5.8. Simulations are done by applying 

40 Vpp sinusoidal waves at each piezoelectric patch.  

5.4.3.2.1 Position 1 

At position 1, the mid frequency between the 16th and 17th resonance frequencies (f16*17) is the 

one that gives the better traveling wave performance. Results show traveling wave 

performance is given in Figure 5.32 below. By comparing the figure to the pure traveling 

wave and pure standing wave, we get the traveling wave performance at f16*17. As always, at 

the location of the contact surface between the beam and the patches, the vibration is less 

progressive than the place near the middle of the beam. Also, length of piezoelectric patches 

affects the transverse displacement and then affects the traveling wave performance.  
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Figure 5.32: Traveling wave performance at a frequency between f16 & f17 

Here in the following three others frequencies are taken to compare them with f16*17, they are 

given in Table 5.10.  

n fn (Hz) fn+1(Hz) fn*(n+1) = fexcitation(Hz) 
6 1579.3 2184.6 1882 
14    7958.1 9028.9 8493,5 
16    10471 11790 11130,5 
17    11790 12827 12308,5 

 

Table 5.10:  Excitations frequencies 
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Figure 5.33 shows traveling wave performances at these frequencies. It is clear from the 

figure that f16*17 has a good transverse displacement and the better traveling wave 

performance comparing to others. This figure shows also non homogeneity of the wave 

compared to the one mode excitation due to the excitation of two mode shapes at the same 

time. After testing all frequencies, f16*17 shows the better traveling wave performance at 

position 1. 

 

5.4.3.2.2 Position 2 

At position 2, also f16*17 shows the better traveling wave performance and it is represented in 

Figure 5.34 below. Let us take three others frequencies and compare them with f16*17. 

Frequencies are given in Table 5.11. Frequencies are chosen arbitrarily, just to show how we 

obtain the optimum one. It is clear from Figure 5.35 that f16*17 gives the better traveling wave 

performance compared to other. Same as at position 1, the non homogeneity of waves is clear 

in this figures comparing to the one mode excitation. At position 2 and after testing all 

frequencies, f16*17 was the optimal one.  

Figure 5.33: Traveling wave performances at different frequencies 
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Figure 5.34: Traveling wave performance at a frequency between f16 & f17 
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n fn (Hz) fn+1(Hz) fn*(n+1) = fexcitation(Hz) 
11 5337.8 6241.2 5789,5 
15 9097.1 10494 9795,5 
16 10494 11795 11144,5 
18 12909 14246 13577,5 

 

Table 5.11: Excitations frequencies 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5.4.3.2.3 Influence of positions on the performance of the traveling wave  

To evaluate influence of patches position on the performance of the traveling wave, a 

comparison between traveling wave performances at the optimal operating frequency for each 

position is done. f16*17 was the optimal operating frequency for both positions. Here below in 

Figure 5.36, we can see again the representation of the traveling wave at each position to be 

able to compare the performance.  

 

 

Figure 5.35: Traveling wave performances for different frequencies 
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Both waves show good traveling wave with larger displacements at position 1. It means that 

the position 1 leads to a higher robot speed. These results will be verified experimentally in 

the next chapter.  

 

5.4.3.2.4 Two modes excitation functionality  

As we said in the operation principle for this mode, this principle is based on the excitation of 

the two patches, at a frequency between two resonance frequencies. If we excite the two 

patches at the resonance frequency, two progressive waves with the same amplitude 

propagating in opposite directions cancel each other, resulting in standing wave on the beam. 

This result is shown in Figure 5.37 when we excited the two patches located at position 1 at 

the 17th resonant frequency at 40Vpp sinusoidal voltage with 90  phase difference.   

 

 

Figure 5.36: Traveling wave performances at position 1 (left) and position 2 (right) 
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It was demonstrated in [(Kim, Park, & Jeong, 2009)] that traveling wave for linear travelling 

wave ultrasonic motors changes direction according to the excitation frequency. This result 

can be shown also in our case of application. Take the case of robot 1 corresponding to 

piezoelectric patches located at position 1 and apply 40Vpp sinusoidal voltage at frequencies 

given in Table 5.12 below.  Results obtained are given in Figure 5.38. Direction of wave is 

represented by the black line. From figure we can deduce that wave change direction 

according to the excitation frequency.  

n fn (Hz) fn+1(Hz) fn*(n+1) = 
fexcitation(Hz) 

Wave 
propagation 

direction 
14    7958.1 9028.9 8493,5  
15    9028.9 10471 9750  
16    10471 11790 11130,5  
17    11790 12827 12308,5  

Table 5.12: Wave propagation direction for different frequencies 

 

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5.37:  Traveling wave performance at the 17th resonant frequency 
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Now, to verify the influence of phase let us apply two sin waves at the two patches without 

phase difference at f16*17. The result is shown in Figure 5.39. Figure 5.39 shows a standing 

wave instead of a traveling wave and it confirms what we have shown in the operating 

principle of this mode. When φ equal to 0°, a standing wave is obtained and when φ equal to 

90° (sin and cosine signals are applied), the traveling wave reaches its maximal speed.  

 

 

 

 

 

 

 

 

 

 

 

5.5 Conclusion and discussion  
An aluminum beam was chosen with its given dimensions (180 mm × 17 mm × 0.5 mm). 

Piezoelectric patches dimensions were studied and they were chosen as the following (32 mm 

× 17 mm × 0.27 mm). Two piezoelectric patches positions near from the beam ends were 

studied for the one mode and the two modes excitation. Position 1 is given by the following 

(Xp1=24 mm, Xp2=124 mm) and position 2 is given by the following (Xp1=14 mm, Xp2=134 

mm).  Position 1 is shown the best performance in both one mode and two modes excitation.  

According to Table 5.13, performances of waves can be given in descending order as the 

Figure 5.38: Traveling wave direction for different frequencies 

Figure 5.39: Traveling wave performance without phase difference at f16*17 
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following: two modes excitation position 1, two modes excitation position 2, one mode 

excitation position 1 and one mode excitation position 2.  In two modes excitation, we excite 

the two patches at a frequency between two resonances mode while in one mode excitation, 

one patch is excited at the resonance frequency and the other is used to absorb displacement 

in order to avoid wave reflection. That explains why the transverse displacements in two 

modes excitation are more important than in the case of one mode excitation even if in one 

mode excitation we excite at the resonance frequency. Wave propagation through the beam in 

two modes excitation is less homogeneous than in the case of one mode excitation. Figures 

show that amplitude has the same level near from the middle of the beam in case of one mode 

excitation while it is a little different with respect to time in the other case. 

One mode excitation 

(1) Position 1 at f17 (2) Position 2 at f16 

  
Two modes excitation 

(3) Position 1 at f16*17 (4) Position 2 at f16*17 

  
 

Table 5.13: Optimal traveling wave performances for both modes at each position 
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The phase velocity for each case is extracted from figures in Table 5.13 and given by the 

following:   = 238 m/s,  = 218 m/s,  = 234 m/s and  = 232 m/s. The phase 

velocity can be determined analytically by  = , where f is the applied frequency and  is 

the wave length. That explains the values obtained for the phase velocity. We may note that, 

higher velocity doesn’t mean better traveling wave performance because performance of wave 

depends on the waveform and transverse displacement.  

Two robots should be manufactured later in the next chapter. Robot 1 corresponds to position 

1 and robot 2 corresponds to position 2. An extra series RL shunt circuit must be connected to 

one of these two piezoelectric patches in the case of one mode excitation. For robot 1, the 

series RL circuit has been calculated and it is given by the following at the 17th resonant 

frequency (R17 = 9.75 Ω, L17 = 9 mH).  For robot 2, the series RL circuit has been calculated 

and it is given by the following at the 16th resonant frequency (R16 = 23.75 Ω, L16 = 11.4 mH). 

Next chapter will be dedicated to robots manufacture processes, experimental validation of 

the beam robots, robots characterization and significance and benefits for this robot compared 

to other piezoelectric robots and traveling wave ultrasonic motors.   
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5.6 Appendix 
1. free-free boundary conditions  

  (A.1.1) 

 

   (A.1.2) 

 

2. Static and dynamic optimal thickness  

2.1 unimorph piezoelectric actuator 

 
 
 
 
 
 
                                                Piezoelectric layer 
                                                                Elastic layer 
                                                         Poling  
                                                    Electric field 
 
 
 
 
 
 
 
 
 
 
 

 
 

Static (left) and dynamic (right) transverse displacement at the free end of the unimorph piezoelectric actuator 

 

The above curves show transverse displacement at the free end versus piezoelectric thickness 

in static (at the left) and dynamic (at the right) operations. In dynamic, transverse 

displacement is calculated at the first resonnant mode. Figure shows that the optimal 

piezoelectric thickness is the same in static and dynamic operations. Calculation is done for 
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this unimorph using the analytical code given by Hariri et al in [ (Hariri, Bernard, & Razek, 

2011)] for this unimorph.  

 

 
2.2 Two piezoelectric patches bonded on thin beam 

                                       
          
 
 
 
 
 
 
 
 
        Fixed-free boundary conditions (B.C.)              Free-free B.C. for dynamic operation 
                      for static operation 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
 
 

Static and dynamic transverse displacement at the free end versus piezoelectric thickness  
 
 
Same as the unimorph case, in dynamic (right side figure) transverse displacement is 

calculated at the first resonant frequency. Figure shows that the optimal piezoelectric 

thickness is the same in static and dynamic operations.  

 
2.3 Conclusion and discussion 

 
We can draw from these two examples that the optimum thickness of the piezoelectric patch 

is the same in static and dynamic operation. So later in the case of a plate with piezoelectric 
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patches, we will start from this conclusion and work directly in static to determine the optimal 

thickness. 

The purpose of these examples was to demonstrate that the optimal thickness is the same in 

static and dynamic, that is why the dimensions and properties of materials used are not given. 

Note that the unimorph piezoelectric actuator and the system with two piezoelectric patches 

presented here do not have the same size or same materials properties. 
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6.1 Introduction  

As we now know, the piezoelectric beam robot is composed of a 180 × 17 × 0.5 mm 

aluminum beam and two non-collocated piezoelectric 32 × 17 × 0.27 mm patches bonded on 

the beam.  Two robots will be manufactured and tested in this chapter. Robot 1 corresponds to 

the case where the two piezoelectric patches are located at Xp1=24 mm and Xp2=124 mm 

from one beam end (position 1) and Robot 2 corresponds to the case where the two 

piezoelectric patches are located at Xp1=14 mm and Xp2=134 mm from one beam end 

(position 2). Then electronic circuits to supply piezoelectric actuators will be designed and RL 

shunt circuits for piezoelectric sensor will be realized. After fabrication processes, an 

experimental test will be done to verify theoretical results given in the last chapter. Robots 

speed versus applied voltage and versus embedded masses will be measured on a smooth 

glass flat surface; robots speed for different mechanical loads will be measured also. At the 

end a comparison between our robots and existing similar robots reviewed in the introduction 

of the last chapter and some linear traveling wave ultrasonic motors will be done.  

6.2 Fabrication  

The fabrication process is quite easy. All what we need is a glue to bond the piezoelectric 

patches on the beam at their specific positions. The glue used was Araldite 2013, it is a two 

component epoxy paste adhesive provided by Huntsman International LLC and it was chosen 

because it resists in water for water future applications. 

The piezoelectric patches (NCE41) were purchased from Noliac, Inc, Denmark and they were 

chosen as wrap around electrode (WAE) shapes to be able to connect the two electrodes as 

shows Figure 6.1.  

 

Figure 6.1 : Wrap around electrode (WAE) piezoelectric patch provided by Noliac, Inc 
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The last step to finish the manufacturing process is to bond each piezoelectric patch at its 

given position. Figure 6.2 presents the two prototypes robots.  

 

Figure 6.2 : Robot 1 where piezoelectric patches are located at position 1 & Robot 2 where piezoelectric patches are 
located at position 2 

Two setups will be made for these robots. The first setup is the one mode excitation, when 

one patch is supplied by a sinusoidal signal coming from a function generator via a power 

amplifier used to amplify the signal provided by the function generator; the second patch is 

connected to a series RL circuit as shown Figure 6.3.  

 

Figure 6.3 :  Configuration of the one mode excitation 

Robot 2 

Robot 1 
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The second setup is the two modes excitation when the two piezoelectric patches are supplied 

by sinusoidal signals with phase difference of  via two power amplifiers used to amplify the 

signal provided by the function generator and a phase shifter used to provide a phase shift 

between input and output signal as shown in Figure 6.4. 

 

Figure 6.4 : configuration of the two modes excitation                              

The next step is the experimental realization of these two configurations, i.e. the choice of the 

power amplifier required, the realization of the phase shifter and the RL series connections. 

Note that at small frequencies, high inductance values is needed (equation 5.13: Lopt = 

1/(Cpw2)). Therefore a special synthetic variable inductance will be used.  

6.3 Electronic and electric circuits design and realization  

Let us begin by the choice of the power amplifier. Two essential criteria are needed to choose 

it, the maximum applied voltage to the piezoelectric patches and the maximum consumed 

current. 300Vmm-1 is the maximum peak to peak electric field beyond which the piezoelectric 

material (NCE41) depolarizes. For a 0.27 mm of thickness patch, maximum peak to peak 

applied voltage is equal to 81 Vpp. Therefore, maximum applied voltage was chosen equal to 

30 V, taking 10 V precaution to not depolarize the piezoelectric material and ensure that 

linear regime is remained. The maximum consumed current of the piezoelectric patch is 

approximated by taking the electrical equivalent circuit for the piezoelectric patch as a 
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capacitor (Cp). Therefore Iload = , where  is the capacitance of the 

piezoelectric patch,  is the maximum voltage applied and  is the maximum applied 

frequency.  is determined in chapter 4 and it is equal to 22 nF,  is equal to 30 V and 

 was chosen for experimental purpose equal to 35 kHz in order to be able to measure 

high frequencies. This gives Iload equal to 145 mA. In practice, the output current of the power 

amplifier should be taken at least 10 times the load current to avoid the destruction of the 

sinusoidal signal applied to the piezoelectric patch. The chosen power amplifier OPA549 is a 

Texas Instruments verifying these conditions.  

A phase shifter is designed to work between 1 and 35 kHz. The circuit is formed by a 

capacitor, resistances and an operational amplifier (TL082). The phase is shifted by varying a 

resistance between two ends corresponding to the operating area (between 1 and 35 kHz). 

Power amplifiers schematic circuit and phase shifter schematic circuit with the printed circuit 

board (PCB) are given in the appendix for more details.                                                

Synthetic inductor was preferred in the experimental realization to verify the existence of the 

traveling wave at low frequencies. Taking the example of the 6th resonance mode for robot 1 

(f6 = 1579.3 Hz), the optimal L value according to equation 5.13 (Lopt = 1/(Cpw2)) is equal to 

461 mH.  This value can only be synthesized using active electronic circuit which is 

synthesized using resistances, a capacitance and two operational amplifiers. Schematic circuit 

for the synthetic inductor and its PCB (printed circuit board) are presented in the appendix. 

Voltages generated across piezoelectric patch experimentally are always less than a half of the 

applied voltage at the other piezoelectric patch (< 15 V) in our case of application (robots are 

free at both ends). Therefore the TL082 poses no problem in this case and it was chosen for 

the two operational amplifiers needed to realize the inductor. The synthetic inductor is 

designed to work between 1mH and 9500 H corresponding to an operating frequency area 

between 11 Hz and 35 kHz. The resulting circuit will act as an inductor L = k(R)C, where k is 

a mathematical function of R and C is a capacitance. k values must be varied between two 

limits corresponding to the desired inductors values. By varying resistances (k(R)), we should 

be careful to avoid saturation of internal nodes of the inductor. More details about the 

synthetic inductor and its PCB can be found in the appendix.  
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6.4 Experimental validation  

After realizing the electronic circuits needed to move the robots, in this sub-section we will 

verify experimentally the performances of waves. Experimental implementation of the one 

mode and two modes excitation is shown in Figure 6.5 and Figure 6.6 respectively. In Figure 

6.5, a power amplifier is used to amplify the signal supplied by the signal generator to the first 

piezoelectric patch, and then a series RL circuit with synthetic inductor is connected to the 

second piezoelectric patch. In Figure 6.6, power amplifiers are used to amplify signal 

provided by the signal generator to the piezoelectric patches.  

 

Figure 6.5:  Robot structure for the one mode excitation operating principle (1: power amplifier, 2: robot body, 3: series 

RL synthetic inductor) 

 

Figure 6.6: Robot structure for the two modes excitation operating principle (1: Power amplifiers, 2: robot body) 

1 

2 

3 

1 

2 
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It was shown by simulation that the two modes excitation (2ME) gives better traveling waves 

performances than one mode excitation (1ME) but, it has the inconvenient of instability in the 

traveling wave. Also, simulations show that performance of traveling waves at position 1 

seems better than that at position 2. Therefore, in a decreasing order of traveling wave 

performances (waveform and transverse displacement), we obtain: 2ME robot1, 2ME robot 2, 

1ME robot 1 and 1ME robot 2. Experimentally velocity of robots should be classified in the 

same order.   

Experimentally in one mode excitation, a large change in the optimal resistance with respect 

to the optimal inductive reactance and vice versa leads to stop the robot; a small change of 

optimal resistance with respect to the optimal inductive reactance and vice versa affects the 

speed of the robot. The robot was more sensitive to changes in the inductive reactance than in 

the resistance. Table 6.1 shows a comparison between simulation and experiment for 

resistance value, inductance value and optimal operating frequency for the one mode 

excitation. In the case of two mode excitation, simulations show that the optimal operating 

frequency is between 10.5 kHz (sixth resonant frequency) and 11.8 kHz (seventh resonant 

frequency) for both robots (robot 1 & robot 2). Experimentally, the optimal operating 

frequency is equal to 11.3 kHz for robot 1 and 10.7 kHz for robot 2.  

 Robot 1 Robot 2 

 By simulation Experimentally By simulation Experimentally 

fopt(kHz) 11.79 11.6 10.49 10.2 

Lopt(mH) 9 8.2 11.4 9.7 

Ropt(Ω) 9.75 Btw 5 & 15 23.75 Btw 10 & 30 
 

Table 6.1: Simulation and experimental comparison for the one mode excitation 

Speeds of robots are given at its optimal values with 20V amplitude in Table 6.2. Speeds are 

tested at least three times in each case and it was noted that no major changes in the speed 

values for each test. In the next sub-section; we will study experimentally robot speed for 

different applied voltages, influence of embedded mass on the robot speed and speed versus 

mechanical load for different applied voltages.  
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 Operating principle Robot 1 Robot 2 

Speed of robot 

(mm/s) 

2ME 90.6 70.3 

1ME 48.76 35.37 
 

Table 6.2 Robots speeds at 20 V amplitude 

 

6.5 Robot characterization  

Maximum applied voltage was chosen equal to 30V according to the maximum peak to peak 

electric field beyond which the piezoelectric material (NCE41) depolarize. All measurements 

here are taken for robot 1 for the one mode and two modes excitation at its optimal values 

obtained experimentally. Robot 1 is taken because it shows better performances in the two 

modes of operation (1ME & 2ME).  

Speed as a function of voltage, speed as a function of embedded masses and speed as a 

function of dragged load are important in mobiles robotics applications. That is why; they 

have been measured to characterize our robot.   

We measured first the robot speed on a smooth glass flat surface for different applied 

voltages. Figure 6.7 shows that robot speed varies linearly with the applied voltage. It also 

shows that speed of robot in the case of 2ME is higher than the 1ME. This result is in 

agreement with the simulation. At 30V amplitude robot 1 reaches 80.19 mm/s in the 1ME and 

131.5 mm/s in the 2ME according to Figure 6.7.  

After having shown the influence of the applied voltage on the velocity of the robot, we will 

see the influence of embedded masses on the velocity as shown in Figure 6.8 at 30V 

amplitude in the two modes operating principle. Figure 6.9 shows that the variation is linear 

between embedded masses and velocity. It also shows that the slope is greater in the case of 

two modes excitation. It means that when we increase the mass, velocity decreases much 

more in the case of 2ME than the case of 1ME. Actually that is due to the instability of wave 

in the case of two modes excitation as shown by simulation in chapter 5, Figure 5.33.  

To determine the nominal operating point of the robot, we measured robot speed versus a 

mechanical load at a given applied voltage. For this aim, this mechanical load is considered to 

be the weight of the robot on an inclined plane (Figure 6.10) and it is given in the following 

equation:  
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Figure 6.7:  Robot speed versus applied voltage on a smooth glass flat surface for the one mode and two modes 
excitation 

  

 

Figure 6.8: Embedded mass on the robot body 
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Figure 6.9: Robot speed versus embedded mass on a smooth glace flat surface for the one mode and two modes 
excitation 

 

 

Figure 6.10:  Robot speed measured on an inclined plane 
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F = M g  at zero speed (friction force is equal to zero). Where M is the mass of the 

robot and it is equal to 5.2 g (beam, piezoelectric patches and adhesive masses), g is the 

gravitation force and  is the inclination angle.  

We have measured the robot speed for different positions of the inclined plane (different 

mechanical load). Figure 6.11 shows robot speed versus mechanical load for different applied 

voltages, where it becomes easy to determine the nominal operating point of the robot. At the 

same voltage, the maximum mass pulled is higher in the case of one mode excitation than the 

case of two modes excitation. In case of two modes excitation, this robot can provide 432 W  

at its nominal operating point (7.2 mN, 60 mm/s) and it can provide 360 W at its nominal 

operating point (9 mN, 40 mm/s) in the case of one mode excitation. 

 

Figure 6.11: Speed versus dragged load for different voltage for the one mode and two modes excitation 
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6.6 Significance and benefits  

In this sub-section we will compare the 1ME robot 1 and the 2ME robot 1 with others linear 

traveling wave piezoelectric motors having nearly the same structure [(Jeong, et al., 2007), 

(Loh, et al., 2000), (Roh, et al., 2001), (Suybangdum, et al., 2009)] and with the only one 

robot having almost the same structure but based on the ultrasonic standing wave principle, 

therefore it is using legs to create the motion of the robot [(Son, et al., 2006)].  Standing wave 

type linear piezoelectric motors using teeth to create slider motion have common points with 

the mentioned standing wave robot but are not presented here. This comparison is based 

mainly on the device structure and dimension, operating frequency, applied voltage and 

speed. The major drawbacks of piezoelectric actuators are high drive voltage and small 

deformations, so the applied voltage and speed are taken as criteria in this comparison. Table 

6.3 shows a comparison between the 1ME robot 1, the 2ME robot 1, some linear traveling 

wave piezoelectric motors having nearly the same structure and the only one robot having 

almost the same structure. 

Description Research 
group  Year Devise structure 

& dimensions  
Operating 
frequency 

Applied 
voltage Speed 

1ME 
traveling 

wave 
piezoelectri

c beam 
robot 

(1ME robot 
1) [(Hariri, 

et al., 
2012)] 

France, 
Laboratoire de 

Génie 
Electrique de 
Paris (LGEP) 

2012 

An aluminum 
beam 

(180×17×0.5mm) 
with 2 non-
collocated 

piezoelectric 
patches 

(32×17×0.27mm) 
bonded on it and 
Series RL shunt 
circuit (R= 10Ω 
& L= 8.2 mH) 

11.6 kHz 30V 

81.19 
mm/s on a 

glass 
surface  

2ME 
traveling 

wave 
piezoelectri

c beam 
robot 

(2ME robot 
1) [(Hariri, 

et al., 
2012)] 

France, 
Laboratoire de 

Génie 
Electrique de 
Paris (LGEP) 

2012 

An aluminum 
beam 

(180×17×0.5mm) 
with 2 non-
collocated 

piezoelectric 
patches 

(32×17×0.27mm) 
bonded on it 

11.3 kHz 30V 

131.5 
mm/s on a 

glass 
surface  

 

 



171 
 

Description Research 
group  Year Devise structure 

& dimensions  
Operating 
frequency 

Applied 
voltage Speed 

An object 
transport 
system 
using 

flexural 
ultrasonic 

progressive 
waves 

generated 
by two 
mode 

excitation 
[(Loh, et al., 

2000)] 

USA, 
Department of 

mechanical 
aerospace 

engineering, 
North Carolina 

State 
University 

2000 

An aluminum 
beam 

(500×11×3.1mm)
, two aluminum 
horns and two 

Langevin 
transducers 

 

27 kHz 400V 

96 mm/s 
with no 

additional 
mass on 
the slider 

(30g 
slider 

weight) 
 

Design and 
fabrication 
of a new 
traveling 

wave-type 
ultrasonic 

linear motor 
[(Roh, et al., 

2001)] 

Korea, School 
of mechanical 
engineering, 

department of 
sensor 

engineering 
and school of 
computer and 
communicatio

n 

2001 

A aluminum 
stator 

(75×8×1mm), 
two piezoelectric 

ceramic plates 
(75×8×0.5mm) 
bonded on the 

stator and silicon 
rubber layer 
(75×8×5mm) 

 

23.5kHz 100V 

400mm/s 
when 

operating 
with a 

load mass 
of 100g. 

The speed 
is 

improved 
to 1200 
mm/s by 

equipping 
the motor 
with teeth 
that were 
5mm long  

An 
ultrasonic 
standing-

wave-
actuated 

nano-
positionning 

walking 
robot [(Son, 

et al., 
2006)] 

USA, 
Department of 

mechanical 
engineering 

Carnegie 
Mellon 

University 
 

2006 

A stainless steel 
beam (30×5×0.3 

mm) & 
piezoelectric 
beam with  5 

insulation gaps 
(30×6×0.508 

mm) 
 

14.2 kHz 
(forward 

motion) & 
24.7 kHz 

(backward 
motion) 

 10V 

58.6 
mm/s 

(forward 
motion) 
& 33.7 
mm/s 

(backwar
d motion) 

on a 
silicon 
wafer 
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Description Research 
group  Year 

Devise 
structure & 
dimensions  

Operating 
frequency 

Applied 
voltage Speed 

 
A study on an 

object 
transport 

system using 
ultrasonic 

wave 
excitation 

[(Jeong, et al., 
2007)] 

 
Korea, USA 
Department 

of 
mechanical 
engineering, 

Chosun 
University, 

and 
department 

of 
mechanical 
aerospace 

engineering, 
North 

Carolina 
State 

University 
 

 
2007 

 
An aluminum 

beam 
(350×14×3 
mm) two 
aluminum 
horns and 

two Langevin 
transducers 

 

 
25.5 kHz 

 
500V 

 
82.94 mm/s 
(transporting 
20g object) 

 

Dual 
piezoelectric 
actuators for 
the traveling 

wave 
ultrasonic 

linear motor 
[(Suybangdum, 

et al., 2009)] 

Thailand, 
Department 

of 
mechanical 
engineering, 

faculty of 
engineering 

and the 
national 

metal and 
materials 

technology 
center 

 

2009 

Brass beam 
(85×6×1 mm) 

with 
rectangular 

teeth (2×6×3 
mm), two 

piezoelectric 
actuators 

(10×6×0.5) 
bonded on 
the bottom 

surface near 
both ends of 
the stator and 
two damping 

materials. 
 

28.2 Hz 45V 

143.8 mm/s 
at a preload 

of 95g 
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Description Research 
group  Year 

Devise 
structure & 
dimensions  

Operating 
frequency 

Applied 
voltage Speed 

1 ME 
traveling 

wave 
piezoelectric 

pump 
[(Hernandez, 

2010)] 

France, 
Laboratoire 

de Génie 
Electrique de 
Paris (LGEP) 

2010 

An aluminum 
beam 

(160×30×2.6 
mm),two 
aluminum 
horns, two 
Langevin 

transducers 
and a parallel 

RL shunt 
circuit 

(R=1502Ω & 
L=5.12 mH) 

 
 

28 kHz 15V 80mm/s 

2 ME 
traveling 

wave 
piezoelectric 

pump 
[(Hernandez, 

2010)] 

France, 
Laboratoire 

de Génie 
Electrique de 
Paris (LGEP) 

2010 

An aluminum 
beam 

(160×30×2.6 
mm),two 
aluminum 

horns and two 
Langevin 

transducers  
 
 

28 kHz  15V 80mm/s 

 

Table 6.3 : Piezoelectric devices comparison 

Devices in Table 6.3 can be seen in different ways. According to their structures, it can be 

classified into: beam, two Langevin transducers [(Hernandez, 2010), (Jeong, et al., 2007), 

(Loh, et al., 2000)]; unimorph and bimorph piezoelectric actuators with insulations gaps 

[(Roh, et al., 2001), (Son, et al., 2006)]; and beam with two non-collocated piezoelectric 

patches bonded on the beam [(Suybangdum, et al., 2009), (Hariri, et al., 2012),(Hariri, et al., 

2012)]. According to their operation principles, these devices can be classified into: one mode 

excitation traveling wave [(Hernandez, 2010), (Hariri, et al., 2012)]; two modes excitation 

traveling wave [(Hernandez, 2010), (Hariri, et al., 2012), (Jeong, et al., 2007), (Loh, et al., 

2000)]; two standing waves combined to generate a traveling wave [(Roh, et al., 2001)]; and 

two standing waves for bidirectional motion (each wave for one direction) [(Son, et al., 

2006)]. And according to their applications into: an object transport system [(Jeong, et al., 

2007), (Loh, et al., 2000), (Roh, et al., 2001), (Suybangdum, et al., 2009)]; pumping 



174 
 

[(Hernandez, 2010)] and robotics [(Son, et al., 2006), (Hariri, et al., 2012), (Hariri, et al., 

2012)].  

In one side everything is related, speed depends on the applied voltage; frequency depends on 

dimensions and materials used, also the speed depends on device weight (slider, with or 

without embedded electronics). In the other hand each design depends in the requested 

specification. Sometime the frequency can be the issue and we build our design based on this, 

as did Hernandez in his thesis [ (Hernandez, 2010)]. Sometime dimensions can be the issue 

and we build our system based on that, as we did in this thesis (dimensions of the beam were 

given). It could be also the speed or the applied voltage.  

We will not compare specifications and characteristics for each device relative to the others, 

because each device has been designed by responding to a given specification. But in general 

point of view, our robot shows an easy manufacturing process because of its simple structure. 

Two piezoelectric patches bonded on a beam and that is all. No legs, no teeth are needed, also 

no Langevin transducers, horns and screws. Also it is easier to miniaturize compared to the 

others.  

The optimal working frequency is a consequence of a given system, even if it was given and 

the design was based on it. So we will not look at the frequencies of these devices but, a 

vision of the set of dimensions, applied voltage & speed is important. Basing on that, our 

robot shows good performance compared to the others, especially because it doesn’t use any 

amplification like teeth or legs.  

6.7 Conclusion of this chapter  

Two prototypes were fabricated and described in this chapter, robot 1 and robot 2. They were 

tested experimentally in one mode and two modes excitation in order to validate our 

simulation results given in the last chapter. Robot 1 that shows better speed was chosen to 

characterize it. Speed versus applied voltage, speed versus embedded mass and speed versus 

mechanical force were measured. After characterization, robot 1 is compared with other 

devices having some common points. Robot 1 has an optimal operating frequency equal to 

11.3 kHz, travelling at 131.5 mm/s at 30V amplitude without embedded mass in the case of 

two modes excitation.  At the same voltage, this robot can provide 432 W (7.2 mN, 60 

mm/s). It has an optimal operating frequency equals to 11.6 kHz, travelling at 81.19 mm/s at 
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30V amplitude without embedded mass in the case of one mode excitation.  At the same 

voltage, this robot can provide 360 W at its nominal operating point (9 mN, 40 mm/s).  
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6.8 Appendix  
1. Power amplifiers and phase shifter circuits 

Schematic circuit for the power amplifier 

 

 

 

 

 

 

 

Schematic circuit for phase shifter 

 

 

 

 

 

 

 

 

 

Phase shifter transfer function:  =   where  

Gain of the phase shifter:  =1 

Phase of the phase shifter: arg( ) = π – 2 arctan( ) 

Below are the schematic figure and the PCB for the phase shifter and power amplifiers used 

in our experimental test case of beam robots.   

 

1.5 kΩ 

 15 kΩ 

TL082 

 - 

+ 

22 kΩ 

 

0.22 F 

 R 

 

22 kΩ 

 - 

 + 
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Schematic figure for the phase shifter and power amplifiers 

 

PCB (printed circuit board) for the phase shifter and power amplifiers 
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2. Synthetic inductor circuit 

 
Grounded inductor given in [ (Reza Moheimani, et al., 2006)] 

 

 

 

 

 

 

 

 

 

 

The equivalent impedance observed at the terminals of this synthetic inductor is:  

 

Allowing  to be a capacitor, C, and replacing other impedances with resistors, the resulting 
circuit will act as an inductor L = kC, where  .Below is the circuit test board used 

in our experimental tests.  

Circuit test board for the synthetic inductor 
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7. 1    Introduction 
As said in the forward of this thesis, the aim of this work is to create a traveling wave on a 

thin plate to move it with multi degrees of freedom using piezoelectric patches (Figure 7.1). 

Creation of a traveling wave on a thin beam was presented on chapter 5 and chapter 6 (Figure 

7.2). Two operation principles are presented and used to move the thin beam using two 

piezoelectric patches, the one mode excitation and the two modes excitation. The optimal 

design and the fabrication process were also presented in these chapters.  

 

 
Figure 7.1: One piezoelectric patch bonded on thin plate 

 

 
 
 
 
                             
 
 
 
 
 
 
 
 
                                                   Piezoelectric patches  
            Elastic beam  
                                                                                               Traveling wave 
                                  Motion direction 
 

 

 

The creation of a traveling wave on thin plate using piezoelectric patches (Figure 7.1) has not 

been presented yet. Actually the aim of our work, this traveling wave piezoelectric plate robot 

Figure 7.2: Schematic diagram of the traveling wave piezoelectric beam robot. 3D view on the top and side view 
on the bottom 
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will not be presented in this manuscript. The dimensions, design, fabrication processes, 

simulation and experimental results have been filed for a patent.  

This chapter is entitled overview and I mean by that all other applications could be done using 

our developed finite element model. First, we will present the possibility to design 

piezoelectric transformers using our developed finite element model and a prototype will be 

presented for this purpose. Second, a damping vibration of thin beam and plate will be 

presented using our developed model and will be verified experimentally. Third active control 

of flexible structure will be reviewed shortly, then the active control principal using our finite 

element model is presented by transforming our finite element model into modal space, then 

into state space equation and at the end of this section transfer functions will be determined. 

Next, detecting damage in structure by the use of piezoelectric materials is presented and 

some papers will be cited. We will then talk about the necessity of an optimization topology 

such as stochastic algorithms in the case of complex structures, some papers will be taken as 

examples. Finally analytical models versus our finite element model will be presented by 

citing some analytical papers for thin structures with piezoelectric patches; also an electrical 

analogy will be given from our finite element model. So we will be able to represent any thin 

structure with piezoelectric patches actuators/sensors by an electrical equivalent circuit. . 

Electrical analogy is given in literature by using analytical models. This electrical analogy is 

also cited.  

7. 2    Piezoelectric transformers  
 
Two piezoelectric patches bonded on a plate when one piezoelectric patch is used as actuator 

while the other is used as sensor can be formed a piezoelectric transformer. A prototype is 

given in Figure 7.3 while the patch actuator is powered by a sinusoidal voltage of 20V 

amplitude and the patch sensor is left open circuited. Properties and geometric parameters for 

this prototype are given in Table 7.1. 

 
Figure 7.3: Piezoelectric transformers 



184 
 

                                                 PZT (p)                                 Elastic structure (m) 
Young’s modulus (Pa)                                            /                                         Em 
Poison’s ratio                                                               /                                               
Volume density (Kg.m-3)                                       = 7900                                       
Relative permittivity                                             = 1282                                       / 
Piezoelectric constant (m.V-1)                              d31 = - 1.3  10-10                             / 
Elastic compliances  (Pa-1)                                   S11 = 1.3  10-11                                / 
                                                                              S12 = -4.76  10-12                            / 
Max peak to peak electric field(V.mm-1)         Emax =   300                                  / 
Max compressive strength (Pa)                           = 600  106                              / 
Length  width  thickness (mm3)                     32 17 0.27                          100  60  0.5 
(lp, lm)  (bp, bm)  (tp, tm) 
Xp1, Xp2, yp  (mm)                                            10,58,21.5 
 

Table 7.1: Properties and geometry of the system 

By using equation 4.12 of chapter 4, which is repeated below, the output voltage can be 

determined.  

=  

7. 1 

 

Simulations and experimental results are shown in Table 7.2 at a sinusoidal voltage of 20V 

for different frequencies. Noting that the prototype is not optimized for a given application, 

however our model can be used for optimal design by responding to desired specifications. 

This work is presented in [ (Hariri, et al., 2012)]. 

 

Frequency (Hz) 
Vin (volt) 

Vout (volt) 

Simulation Experimental Simulation Experimental 

f1 = 48.32 f1 = 43.5 20 2.1 2 

f3 = 300 f3 = 271 20 4.1 4 

f5 = 841 f5 = 905 20 14.2 14.5 

f10 = 1906 f10 = 1855 20 29.05 29 

f14 = 2778 f14 = 2750 20 12.09 12 
Table 7.2: Simulations and experimental results for the piezoelectric transformer 
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7. 3    Damping vibration of thin beams and plates 
Two systems are used to study in this section. The first one is a fixed-free thin beam with two 

piezoelectric batches bonded on it, the patch 1 (p1) near from the fixed end plays the role of a 

source of vibration and it is actuated by a sinusoidal voltage at the fourth resonance frequency 

( = 486.85 Hz) and the role of the patch 2 (p2) near from the free end is to damp this 

vibration at the tip of the beam where three impedances (R, series RL and parallel RL) are 

connected successively at p2 (Figure 7.4).  

 
Figure 7.4: Geometric parameters of the beam with non-collocated PZT actuator/sensor and RL shunt circuits bonded to 

sensor face 

These kinds of circuits (R, series RL and parallel RL) are known in the literature by the single 

mode damping [ (Reza Moheimani, et al., 2006)] because they are able to suppress the 

vibration for one single frequency i.e. for each frequency there is an optimal electric circuit. 

We are taken, the fourth resonant mode of vibration at frequency = 486.85 Hz to determine 

optimal values of the electrical circuits. The process stills the same for any other frequency.  

The second system taken is a fixed-free thin plate with two piezoelectric patches bonded on it. 

In this system the patch 2 (p2) near from the free end is used as a source of vibration when a 

20 volt sinusoidal voltage is applied and the patch 1 (p1) near from the fixed end is connected 

to a 50kΩ shunt resistance (Figure 7.5).  

 

  Create 
vibrations  

Damp the 
vibrations 
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The idea behind this configuration was to see if damping near from the fixed end where there 

are large strains and small displacements can be more effective than near from the free end 

where there are large displacements and small strains. For this purpose, displacements at the 

tip of the plate are compared in the case of 50kΩ resistance shunt circuit and in the case of an 

open circuit. No optimal resistance is determined for this system. Optimal R, optimal series 

RL and optimal parallel RL values are determined below in the case of thin beam; in the case 

of plate we can flow the same process.  

Properties and geometric parameters for these two systems presented in Figure 7.4 and Figure 

7.5 are given in Table 7.3.  

 

 

 

 

y 

x 

z 

Resistance 
50kΩ 

 

 

Figure 7.5: Geometric parameters of the plate with non-collocated PZT actuator/sensor and R shunt 
circuits bonded to sensor face 
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                                                 PZT (p)                                 Elastic structure (m) 
Young’s modulus (Pa)                                            /                                               cm = 69  109 
Poison’s ratio                                                               /                                              = 0.33 
Volume density (Kg.m-3)                                       = 7900                                     = 2700 
Relative permittivity                                             = 1282                                       / 
Piezoelectric constant (m.V-1)                              d31 = - 1.3  10-10                             / 
Elastic compliances  (Pa-1)                                   S11 = 1.3  10-11                                / 
                                                                              S12 = -4.76  10-12                            / 
Max peak to peak electric field(V.mm-1)         Emax =   300                                  / 
Max compressive strength (Pa)                           = 600  106                              / 
         Plate dimensions 
Length  width  thickness (mm3)                     32 17 0.27                          100  60  0.5 
(lp, lm)  (bp, bm)  (tp, tm) 
       Beam dimensions 
Length  width  thickness (mm3)                     32 17 0.27                          180  17  0.5 
(lp, lm)  (bp, bm)  (tp, tm) 
Piezo positions case of beam 
               Xp1, Xp2(mm)            24,126  
Piezo positions case of plate 
               Xp1, Xp2,Yp(mm)            10,58,21.5  

 

Table 7.3: Properties and geometry of the system 

By using equation 7. 2, R, series RL and parallel RL optimal values are determined in the case 

of the beam where p1 is used as actuator and p2 is connected to the shunt circuit.  

=  

7. 2 

Where  is the electrical impedance of the circuit and is written as 

 =  

Where w is the frequency of the applied electric field , L and R are the inductance and 

the resistance of the electrical circuit connected to the piezoelectric patch number two (p2).  

Figure 7.6 shows displacement comparison between open circuit, optimal resistance shunt 

circuit, optimal RL shunt circuit in both series and parallel connections obtained by Hariri et 

al. in their paper [ (Hariri, et al., 2011)]. The vibration suppression performance is evaluated 
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based on amplitude of the displacement. The best performance is obtained for minimal 

displacement. According to Figure 7.6, the optimal RL parallel shunt circuit shows a 

performance slightly better than the RL series shunt circuit.  

 
Figure 7.6: Performance comparison between shunt circuits 

 

Figure 7.7 and Figure 7.8 show how the frequency depends on the value of R only in the case 

of small values of R compared to jwL in the case of series RL circuit and only in the case of 

large values of R compared to jwL in the case of parallel RL circuit. These results are given 

by Hariri et al in [ (Hariri, et al., 2011)]. In this case L has to be readjusted again to tune the 

new resonant frequency. In all other cases, the variation of the frequency can be considered as 

negligible. 



189 
 

 
Figure 7.7:  Optimal R value for series connection 

 
Figure 7.8: Optimal R value for parallel connection 
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Returning to the second system, the voltage obtained at the patch 1 (p1) with 50kΩ resistance 

shunt circuit (near from the fixed end) is compared with the case of an open circuit 

determined above in section “piezoelectric transformers’’ Table 7.2.  Simulation results are 

given in Table 7.4 and are obtained using equation 7. 3.   

=  

7. 3 

Frequency Open circuit ( 2D FE model) Resistance circuit ( 2D FE model) 
f1 2.1 V 0.53 V 
f3 4.1 V 3.41 V 
f5 14.2 V 12.9 V 

f10 29.05 V 28.8 V 
f14 12.09 V 11.8 V 

 

Table 7.4:  Voltages obtained by simulation case of resistance shunt circuit 

An experimental setup shown in Figure 7.9 is used to verify the simulation results obtained in 

Table 7.4.  

 
 

Figure 7.9: Experimental setup case of resistance shunt circuit 

Function Generator 

Power amplifier 
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Experimental results are given in Table 7.5. These results are given by Hariri et al. in their 

paper [ (Hariri, et al., 2012)]. 

Frequency Open circuit (experimentally) Resistance circuit (experimentally) 
f1 2 V 0.5 V 
f3 4 V 3.4 V 
f5 14.5 V 12.5 V 

f10 29 V 28.8 V 
f14 12 V 11.8 V 

 

Table 7.5: Voltages obtained experimentally case of resistance shunt circuit 

Displacements at the tip of the plate were measured experimentally and shown a good ratio of 

damping. Actually, these results are not recorded during the experimental measurements. But 

by seeing Table 7.5, we can note decreases in voltage for different applied frequencies, which 

means decreases in strains near from the fixed end of the beam. Also Figure 7.6 gives an idea 

about the damping efficiency of a resistance compared to RL circuits and without forgetting 

that this resistance was chosen arbitrary and was not optimized. An optimization process can 

be done by following the same procedure as the case of beam.  

It should be noted that the problem of piezoelectric shunt damping can be interpreted as a 

feedback control problem and vice versa [ (Reza Moheimani, et al., 2006)].  

 
7. 4    Active control of flexible structures  

Our model can be used to control the structure by transforming the finite element model in 

nodal variables into modal model and then into state space. Therefore our system is 

represented by the state space equation. Then controller can be designed to reject external 

disturbances for example (no useful vibrations) or in order to maintain a desired shape [ 

(Amitesh Punhani, 2008), (Yasin, et al., 2010)]. Particularly in our case, controller can be 

designed to control the vibration of the beam/plate in order to damp it or to generate a 

traveling wave instead of the passive circuits use.  Kermani et al. in their paper [ (Kermani, et 

al., 2003)] designed an LQR feedback controller on a simple cantilever beam using the state 

space equation in order to suppress the vibration at the end of the beam and they studied the 

influence of length and position of piezoelectric patch to the control efficiency.  But that is not 

the only method, sometimes controller can be added directly to the finite element equation 

without transforming it into state space equation [ (Liu, et al., 1999)]. Liu et al in their paper 

used a simple gain feedback control where the lower order modes which are predominant are 

considered in their vibration suppression problems, they incorporate the gain controller 

directly in the damping matrix of the finite element equation and they studied also the 
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influence of piezoelectric sensors/actuators position of on plate response using their gain 

controller. Actually, when we are interested in control, we can experimentally identify our 

system by using the black box system identification technique [ (Reza Moheimani, et al., 

2006)].  The books ‘’piezoelectric transducers for vibration control and damping’’ [ (Reza 

Moheimani, et al., 2006)] and ‘’piezoelectric based vibration control from macro to micro-

nano scale systems’’ [ (Jalili, 2009)] include a big review for interested readers in vibration 

control of structure.  Also a review on static and dynamic shape control of structures by 

piezoelectric actuation is given by Irschik in his paper [ (Irschik, 2002)]. 

A schematic diagram for active control using two non-collocated piezoelectric patches for a 

flexible structure subjected to unnecessary disturbance is shown in Figure 7.10.  

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
Figure 7.10: A schematic diagram for active control using two-non-collocated patches for a flexible structure subjected to 

unnecessary disturbance                           

 

This figure is taken in the case of a beam structure but nothing changes if it was taken in the 

case of a plate structure.  

Our finite element model in nodal variables for piezoelectric patches bonded on thin structure 

(beam and plate) is given by equation 3.58. Equation 3.58 can be rewritten as below, where 

‘’pa’’ for patches actuators, ‘’ps’’ for patches sensors and  is the body applied forces.  

  + +  =  

7. 4 
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Then this equation can be rewritten as follows 

 
7. 5 

 
 

7. 6 

Where  = [ ] is the modified stiffness. 

Where  is the sensor equation and  is the dynamic equation of motion 

Equations  can be written into modal space as 

 +  +  = [ ] 
7. 7 

And equation (  as the following 

 +  
7. 8 

q is a new variable derived by the following model transformation:  = , where  is a 

modal matrix consisting of n natural modes of the system and can be expressed as 

 = [ ]  

Where each column of this matrix equation is the eigen vector corresponding to each of the 

eigen values,  is  transposed, Ω is the matrix of the natural frequency and it is defined as  

 

Where  is the ith natural frequency of the system and  is the diagonal modal damping 

matrix with the generic term , where  is the modal damping ratio.  

Interested readers refer to [ (Yasin, et al., 2010), (Alazard, et al., 2000)], for more details 

about how we obtained these equations (equations 7. 7 & 7. 8).  Also, the calculation of the 

transfer functions based on the modal decomposition (equations 7. 7 & 7. 8) is a well known 

technique in dynamic analysis of structures; some examples are given in [ (De boe, 2003)]. 

The transfer functions are widely used in control of structures. 

The system equation ( ) can be written in terms of the state space as follows 

 =  
7. 9 

,  , ,   

And the output equation that relates the sensor voltage generated over piezoelectric patches to 

the state vector x is expressed as 
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7. 10 

Where  

 ,   

 

As we said above, another very useful representation of the system to design controller is the 

transfer function representation and it is derived from the system equation in modal space 

( ).  Two transfer functions are given by the following, GUEa that represents the 

vector of applied actuator electric fields E3pa(s) = [E3pa1 (s), …. , E3pan(s)] for n actuator to the 

beam deflection um(s) (transverse displacement) and GEsEa that relating the electric fields 

applied to the piezoelectric actuators E3pa(s) = [E3pa1 (s), …. , E3pan(s)] to the electric fields 

measured at the piezoelectric sensors E3ps(s) = [E3ps1 (s), …. , E3psn(s)] for n sensor (Figure 

7.11). The following transfer functions are determined in the case of no applied forces 

( ).   

 

                                                              

                          

                                                  

 

                                                               

                          
                                                 Figure 7.11: Schematic blocks of transfer functions 

 

Applying the Laplace transform to (equations ), assuming zero initial conditions, we obtain:  

GUEa(s) =  =    [ ] 

7. 11 

The transfer function at the specified position k is given by 

 =   [ ] 

7. 12 

where  = [ ],  is associated with the number of the coordinate of the 

position k.  

GUEa 

E3pa1 
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GEsEa(s) =  = [ ]  [ ] 

7. 13 

Taken the particular case of two piezoelectric patches where patch p1 functions as actuator 

and patch p2 functions as sensor then 

GEs2Ea1(s) =  = [ ]  [ ] 

7. 14 

7. 5    Piezoelectric patches damage detection  
Thanks to their electromechanical conversion ability, the piezoelectric transducers are used to 

detect damage in structures. Two approaches are used; in the first approach, piezoelectric 

patches are used as actuators and sensors while in the second approach all patches are used as 

sensors.  

Highlighting a structural damage in the first approach is possible by measuring the Lamb 

waves [ (Lemistre, et al., 2000)] or the electrical impedance spectrum [ (Chaudhry, et al., 

1994)] as shown in Figure 7.12.  A variation of the propagation characteristics of the Lamb 

wave or a change in the electrical impedance spectrum comparing with a healthy structure 

indicates the presence of damage.  The two piezoelectric patches are used to create lamb 

waves, measure its characteristic and the electrical impedance spectrum.  

Note that, damage in the structure is introduced by reducing the stiffness associated on a mesh 

of the structure. 

 
 

 
Figure 7.12: Damage detection using two piezoelectric transducers 
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In the second approach all piezoelectric patches are used as sensors to collocate data needed 

in this approach (Figure 7.13). 

 
 

 
 

The same as the first approach, the damage should be introduced in the model, and then a 

comparison with a healthy structure will be done. To detect damage using this approach (all 

patches are sensors) two techniques are used. The first is the minimization of errors in 

constitutive equations technique (MECE) and the second is a statistical approach by the 

principal component analysis (PCA). Examples about how to use these two techniques in 

structures by the use of piezoelectric materials can be found in thesis of Pascal de Boe (De 

boe, 2003). Detecting damage in structure by the use of piezoelectric materials is also 

presented in many papers in literature. The following three papers are taken as examples [ (Li, 

et al., 2012), (Qu, et al., 2006), (Yan, et al., 2002)]. 

 
7. 6    Optimization topology  

As we have seen in chapter 5, a deterministic optimization is done to obtain the optimal 

dimensions of piezoelectric patches, material used for the beam, optimal piezoelectric patches 

positions, and optimal operating frequency. Of course, not forgetting the load coupled on the 

patch piezoelectric sensor. The power consumed by the load depends on the load itself, on the 

piezoelectric patches actuators/sensors positions, on frequency, also piezoelectric patches 

dimensions.  

Deterministic algorithm is not convenient when we are studying optimization for complex 

structures (case of plate for example with many piezoelectric patches actuators/sensors with 

different load coupled), computation time becomes longer when we scan all the space. Some 

stochastic algorithms based on finite element analysis are proposed in literatures. For 

example, Moita et al. [ (Moita, et al., 2006)] proposed an algorithm to design laminated 

structures using piezoelectric materials; Nakasone et al. [ (Nakasone, et al., 2008)] proposed 

an optimization topology to design piezoelectric sensors, actuators and energy harvesting 

devices. Hadjigeorgiou et al. [ (Hadjigeorgiou, et al., 2006)] proposed a genetic optimization 

Figure 7.13: Plate with non-collocated piezoelectric sensors 
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for a beam with piezoelectric actuation to determine the optimal values for the location of the 

piezo-actuators, the optimal voltages for shape control and damage identification. Finite 

element method based design and optimization methodology for piezoelectric ultrasonic 

motors is given in [ (Flueckiger, et al., 2010)]. Vibration control of smart hull structure with 

optimally placed piezoelectric actuators is studied in [ (Sohn, et al., 2011)] using the finite 

element method.  An optimization approach to optimal placement of collocated piezoelectric 

actuators and sensors on a thin plate is given in [ (Halim, et al., 2001)].  

7. 7    Analytical model versus finite element model  
Two configurations are taken for our system in the case of beam structure, the one mode and 

the two modes excitation. Schematic figures for these two models are given again below 

 

 
 
 
 

Figure 7.14: System 1: one mode excitation 

 
 
 
  
 
                      

Figure 7.15: System 2: two modes excitation 

The transfer functions obtained in section 7.4 using our developed finite element model allow 
us to represent these two systems by the blocks below, where each block corresponds to a 
known transfer function.  
 

                                                              

                          

                                                                       And  

 

                                                              

                          

                                               

 

                                                              

                          
                                                 Figure 7.16: Blocks diagrams for system one and two  

System 1  
E3pa Um 

             System 2  E3pa2 

E3pa1 

Um 

 

System 1  
E3pa E3ps 

 

PZT actuator  PZT sensor  

PZT actuator  PZT actuator  

E3pa 

E3pa 

E3ps 

 

E3pa 



198 
 

An electrical representation for the flexural vibration of a beam is proposed in [(Hernandez, 

2010), (Sashida, et al., 1993)], their representation consists of considering the beam as an 

electrical transmission line. A transmission line is identified by its characteristic impedance 

which is the ratio of the voltage over the current for a signal anywhere along it. Similarly for 

the beam, it is possible to find a relationship between the forces and velocities at any point on 

it, giving in this manner the acoustic characteristic impedance for a flexural vibration of a 

beam. It was used by Hernandez [ (Hernandez, 2010)] that  =   where  is the wave 

number of the beam, Y is the Young modulus, I is the moment of inertia and w is the applied 

frequency.  

Applying this technique to the system 1, an electrical equivalent model for the system 1 can 

be constructed as shown in Figure 7.17.  

 
Figure 7.17:  An electrical equivalent circuit for the system 1 

The piezoelectric equivalent model shown in Figure 7.17 can be simplified to the static 

capacitor of the piezoelectric patch or it can be considered as Lumped or Mason model [ 

(Hernandez, 2010)].   

In order to obtain a traveling wave on the beam, Zload should be designed to absorb the 

traveling wave generated by the PZT actuator. This can be ensured by making the equivalent 

impedance of the electrical model of the piezoelectric patch and the load impedance equal to 

the beam impedance. This is known in the theory of transmission lines by the impedance 

matching. So, this technique is helpful for determining Zload. This method can be used also to 

determine analytically the transverse displacement on the beam. The equivalent electrical 

circuit case of a plate is more complicated. 

The modal expansion method is used also in the literature to compute analytically the 

transverse displacement on the beam. This method is applied to linear traveling wave 

ultrasonic motors using two Langevin transducers [(Jeong, et al., 2007), (Loh, et al., 2000), 

(Hernandez, et al., 2010)].   We should note that all these papers report analytically the case of 
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two modes excitation, the case of one mode excitation when a passive electrical circuit is 

attached to one transducer is not reported analytically yet using the modal expansion method. 

When using this method, they assumed that the transducer actuator acts on the beam as a 

sinusoidal longitudinal force, which is not true in our systems because piezoelectric actuator 

patch acts on the beam as bending moments at the two ends of the patch [ (Jalili, 2009), (Reza 

Moheimani, et al., 2006)].  

Hariri et al. in their paper [ (Hariri, et al., 2011)] developed an analytical model for a 

unimorph piezoelectric actuator given in Figure 7.18. This model can be extended to represent 

analytically the system 1 and 2 given above in Figure 7.14 & Figure 7.15. 

 

 
 
 
 
 
 
                                                Piezoelectric layer 
                                                                Elastic layer 
                                                         Poling  
                                                    Electric field 
 

Figure 7.18: Unimorph piezoelectric actuator 

The equation of motion found for this unimorph piezoelectric actuator was the following:  

                                          +   = Feq               

7.15 

This equation is equivalent to the dynamic beam equation with  is the equivalent 

flexural rigidity,  is the equivalent mass per unit length and Feq  the equivalent applied 

force all along the actuator.  

Damping factor is added into the equation of motion, and with free-free boundary conditions, 

the transverse displacement of the actuator is given by 

 

w(x,t) = sin( ) 

7. 16 

More details can be found in [ (Hariri, et al., 2011)].  

The same unimorph system is taken in [ (Chung, et al., 2009)] and it is extended for a 

piezoelectric fan for flapping wing application (Figure 7.19).  
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Figure 7.19: The scheme of a piezoelectric fan consisting of three sections. The piezoelectric material exists in the section 

II only [ (Chung, et al., 2009)] 

 

This system is solved by dividing it into sections; each section is solved individually and 

connected to the next section via boundaries conditions. At these points (where there are 

changes of sections), we must have the same transverse displacement, the same slope, the 

same bending moment and the same shear force. After solving each section and applying 

boundaries conditions, 12 constant unknowns and 12 equations are obtained. Details can be 

found in [ (Chung, et al., 2009)].  

Their study was limited to the computation of the resonance frequencies and not extended to 

dynamic equation. In fact, solving these equations is very heavy and not convenient; it takes a 

lot of calculation time.  

As a result, extension this work to our case of study (two piezoelectric patches are used, then 

20 equations should be solved) was not done. Finite element model shows the best way for 

our systems.  

Actually instead of separating the solution into unimorph sections and beam section, Reza 

Moheimani et al. in their book [ (Reza Moheimani, et al., 2006)] proposed to take the entire 

system and then to use unit step functions to take into account the spatial placement of 

piezoelectric patches. Reza Moheimani et al. are studied analytically the dynamic equation of 

a beam with a number of collocated piezoelectric actuator/sensor pairs. This work can be 

extended analytically to the case of non-collocated piezoelectric patches. Transfer functions 

obtained in their analytical model are similar to that presented in section 7.4 in this chapter 

using our finite element model with the difference that our model is for asymmetric structures 

when only piezoelectric patches are bonded in non-collocated way.  

The advantage of our finite element model is that the transfer functions obtained in section 7.4 

using our finite element model takes the same form in the case of thin plate structure as well 

as in the case of thin beam structure. The analytical work presented in the book of Moheimani 
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et al. [ (Reza Moheimani, et al., 2006)] using unit step functions to take into account the 

spatial placement of piezoelectric patches in the case of a beam is extended by Li et al. in their 

paper [ (Li, et al., 2005)] and Punhani in his PhD thesis [(Amitesh Punhani, 2008)] to the case 

of thin plate with two collocated piezoelectric actuator patches. Actually, their studies were 

limited in the case of two collocated piezoelectric actuator patches, no sensor patches are 

considered in their analytical models. Also, it is difficult to generalize the work for n 

collocated piezoelectric actuator/sensor pairs in the case of thin plate as did Moheimani et al. [ 

(Reza Moheimani, et al., 2006)] in their book in the case of thin beam.  

In our finite element model, n non-collocated piezoelectric actuator/sensor patches bonded on 

a thin bean and a thin plate are considered.  

Using analytical equations for rectangular unimorph beam, Yang et al. in their paper [ (Yang, 

et al., 2009)] presented an analogy between the mechanical and electrical domains of this 

piezoelectric coupling system and they presented this rectangular unimorph beam coupled 

with a load as two-port network as shown Figure 7.20. 

 

 

 
Figure 7.20 : Two-port network for rectangular unimorph beam 

The same analogy is obtained basing in our finite element model by comparing equations 

 repeated again below. This analogy is shown in Table 7.6. 

 +  +  = [ ] 

 +  

Equivalent circuit parameter for the ith 

mode 
Mechanical counterparts 

Electrical charge:  Modal coordinate:   

Current:  Modal velocity:  

Resistance:    

Capacitance:  1/  

Inductance:    

Voltage source:  [ ] 

Ideal transformer ratio :  Mechanoelectrical coupling:  

Table 7.6: Analogy between electrical and mechanical domains 

 
Two-port Network Load 
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Then an electrical representation of our system is obtained as shown Figure 7.21.  

The (N+M)-port network represents electrical impedances network.  

 

 

 

 
Figure 7.21: (N+M) port-network for thin plates with non-collocated piezoelectric patches actuators/senssors 

 

Where Va(t) = [Va1 (t), …. , VaN(t)],  Ia(t) = [Ia1 (t), …. , IaN(t)], Vs(t) = [Vs1 (t), …. , VsM(t)] 

and Is(t) = [Is1 (t), …. , IsM(t)].  

The question now is: could we represent our system by (N+M+L+K)-port network 

mechanical and electrical impedances using our finite element model as shown in Figure 

7.22? 

 

 

 

 

 

 

 
Figure 7.22: (N+M+L+K)-port network mechanical and electrical impedances 

Where F is a mechanical effort vector and U is a mechanical flow vector. 

 = [ ],  = [ ],  = 

[ ] and  = [ ].  

This question still without answer in this manuscript is forwarded for perspective and future 

work. Two particular cases for 5-port network are taken in [ (Li, et al., 2005), (Cho, et al., 

2000)] using analytical models.  

The system studied by Cho et al. is given in the Figure 7.23 and Figure 7.24. This system can 

be represented by 5-port network.  

The system studied by Li et al. is given in Figure 7.25.  

 

 
(N+M)-port Network Load   

  

 
 

(N+M+L+K)-port 
Network 

Using FEA 

Electrical Load   

  

Mechanical Load 
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Figure 7.23: Flows and efforts of the piezoelectric bimorph beam [(Cho, et al., 2000)] 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 7.25:  Models for the bending activation of dual 2D piezoelectric actuators: (a) dual piezoelectric 2D actuators 
producing line bending moments; (b) dual piezoelectric 2D actuators producing area bending moments [ (Li, et al., 2005)] 

 

Figure 7.24: Equivalent electric circuit of the piezoelectric bimorph [ (Cho, et al., 2000)] 
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Their electrical equivalent network can be represented by the block diagram shown in Figure 7.26 

where 5-port network composed of one electrical impedance and mechanical impedances.  

 

 
Figure 7.26: Electric network for 2D force actuator; (b) five-port equivalent electric network for 2D bending actuators[ (Li, 

et al., 2005)] 

 
Hence to resume, finite element simulation offers more generality in modeling especially in 

the case of complex structures, i.e. many patches on a thin plate instead of two patches for 

example, also a thin plate with non-collocated patches is more complicated to model 

analytically compared with thin plate with collocated ones. Also this finite element model can 

be used and implemented in many applications as integrating loads to piezoelectric sensors, 

generating control algorithm, in optimization topology, detecting damage in structures,…. 

Without forgetting, the finite element model is necessary in the case of complex thin structure 

such as presented in the figure.  
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Figure 7.27: Non-collocated piezoelectric patches bonded on structures 
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Conclusion and perspectives 

At the beginning, in the forward of this thesis we told that the objective of this work was to 

answer the following two questions:  

Is it possible using piezoelectric materials to move a mimetic Manta ray (Manta ray shape is 

considered as a thin plate) with multi degree of freedom on the earth by generating a traveling 

wave motion on a thin plate? 

Is this robot can be extended based on the same prototype as in earth to create displacement 

on liquid (undulatory propulsion) and air environments like Manta ray fishes? 

We are at the conclusion and no answers given for instant. All what we said is that: no 

information about the traveling wave piezoelectric plate robot because the concept has been 

filled for a patent. In other words that means, a traveling wave generated on a thin plate using 

distributed piezoelectric patches can move the plate in multi degree of freedom. For the 

second question, we should wait for the perspective in the next part of this chapter.  

In the conclusion we will talk first about the beam traveling wave piezoelectric robot, then 

about the originality of this work and the last part of my conclusion is to present my work 

during these three years as a brief history. Then the perspectives of my work are proposed at 

the end.  

 

1. Conclusion  
In this manuscript, we presented the design procedure of a traveling wave beam piezoelectric 

robot and its realization. Being given dimensions of the beam (180 mm × 17 mm × 0.5 mm), 

we opted the following piezoelectric patches dimensions (32 mm × 17 mm × 0.27 mm) at 

these optimal positions (Xp1=24 mm, Xp2=124 mm). Two operating principles are studied 

and tested for this robot. The first one is called ‘’one mode excitation: 1ME’’, for this 

operation principle robot shows a velocity of 81.19 mm/s at 30V sinusoidal wave amplitude at 

11.6 kHz without embedded mass and a nominal operating point of (9 mN, 40 mm/s) that 

corresponds to 360 W power provided. The second one is called ’two modes excitation: 

2ME’’, for this operation principle robot shows a velocity of 131.5 mm/s at 30V sinusoidal 

wave amplitude at 11.3 kHz without embedded mass and a nominal operating point of (7.2 

mN, 60 mm/s) corresponds to 432 W power provided.  The two modes excitation shows 

higher velocity compared to the one mode, however the one mode is better in terms of 

homogeneity, which is because in the one mode excitation we excite at the resonance 
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frequency while we excite between two resonance frequencies in the two modes excitation. 

Let us talk now about the originality of this work. 

What is it the originality of this work? Is that to demonstrate the generating of a traveling 

wave using the 1ME or the 2ME principle? Actually, the theory for the 1ME was 

demonstrated in 1993 by Sashida et al. [(Sashida, et al., 1993)] even before in 1985 by 

Kuribayashi et al [ (Kuribayashi, et al., 1985)] and for the two modes excitation, Loh et al. 

[(Loh, et al., 2000)], they were introduced it in 2000. Also the generation of a traveling wave 

on a beam using these two operation principles is validated experimentally by Hernandez 

[(Hernandez, 2010)] in his PhD thesis at our laboratory. He used these two principles to 

generate the traveling wave on the beam for micro pumping application and his work has been 

patented.  The concept of our system is different. In our case the generated traveling wave 

should move the entire system (robot application) and not just a slider lied on it. The 

originality was in the concept design proposed for this system. Our robot as we know is the 

first one in the literature that moves using two piezoelectric patches bonded on the same face 

of a beam structure. So the originality was in this original concept design. Behind this easy 

manufacture, a complicated optimal design hides. The aim of my work was to find this 

optimal design in order to create a traveling wave able to move the entire system (2 patches 

bonded on the beam), then to validate and prove it experimentally. What is more in the case of 

plate, it is that not only the concept design is new but also the operation principle ideas are 

new too. We still talking about the originality in this work, 2D finite element modeling for 

thin structures with collocated piezoelectric patches (symmetric structures) was done in the 

literature but, for asymmetric structures (thin structures with non-collocated piezoelectric 

patches actuator/sensor), we are the first that proposed a 2D finite element modeling for such 

structures thanks to the determination of the neutral plane for this asymmetric structure. 

Solving this kind of structure in 2D can saves time, especially if an optimal design is required. 

In the next paragraph I would like to introduce my work in these three years PhD as a brief 

history.  

First I began by a bibliographic research on animal locomotion [ (Biewener, 2003)] in the 

three medium displacements (earth, water & air) and on piezoelectric miniature robots 

existing in literature [ (Hariri, et al., 2010), refers to chapter 1]. After seeing that there are no 

robots having the same structure as that we have proposed, we began working on our idea. 

The original idea was to artfully paste piezoelectric patches on a thin plate whose oscillations 

(induced by the piezoelectric actuation) recreate movement for the terrestrial environment. 

The proposed system forced me to do another bibliography search on all similar structures 
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(intelligent systems using piezoelectric material) as unimorph beams, bimorph beams, 

piezoelectric integrated beams, beams with piezoelectric patches (collocated or non-

collocated), plates systems with piezoelectric patches, circular plates, etc.  We found that 

there are many intelligent systems using piezoelectric materials in literature for applications 

such as damping vibrations, energy harvesting, detecting damage in structures [refers to 

chapter 7] and a few traveling wave ultrasonic motors [ (Suybangdum, et al., 2009)]. Different 

ways are used to describe these systems, such as analytical models, equivalent circuit models 

(beam, plate) [refers to chapter 7] and finite element models [refers to chapter 3]. To have an 

optimal design for a given application, models were combined with optimization techniques 

(deterministic or stochastic technique) [refers to chapter 7]. We discussed in chapter 7 why 

the finite element model was our choice to describe our system. Also this decision was taken 

because a 1D finite element model for a beam with collocated piezoelectric patches for 

damping application was made by Romain CORCOLLE during his internship on MASTER 2 

at the laboratory, so we did not begin from zero.  Then the decision was taken to divide our 

work into two parts, traveling wave piezoelectric beam robot and traveling wave piezoelectric 

plate robot. Starting with modeling the two cases of study (beam and plate models), and 

comparing models with commercial finite element software (COMSOL 3.5a). After validation 

process, an optimal design was done using the modeling strategy developed in this thesis, then 

experimental prototypes were fabricated, and models were compared again with experimental 

results, as we have seen in chapter 4. I did not mention it before but, it is good to know that 

our developed finite element models have the advantage to have one dimension less than 

existing commercial finite element software; e.g. a beam with piezoelectric patches 

(collocated or non-collocated) is modeled in 2D using commercial finite element software but 

it can be modeled in 1D using our developed finite element model, idem in the case of plate 

with piezoelectric patches (collocated or non collocated) is modeled in 3D using commercial 

finite element software but it can be modeled in 2D using our developed finite element model. 

After an optimal design study in order to generate the traveling wave on the beam [refers to 

chapter 5], beam prototypes were tested and results are given in chapter 6. Plate prototype, 

simulations and experimental results were filled to a patent.    

 

 

 

 

 



211 
 

2. Perspectives  
In the perspectives, we will propose a future state of the art for intelligent systems using 

piezoelectric materials; we will talk about how we can improve our finite element model to 

describe in a better way our robot, about how we can increase the degrees of freedom of our 

robot, also about how we can improve the efficiency of the robot by using other passive 

circuits, and a feedback control is proposed as perspectives to increase the autonomy of the 

robot. At the end a prototype is proposed for aquatic and terrestrial displacement.  Then we 

will try to answer the question of miniaturization.  

Actually, it is necessary to mention the fact that in the literature no historical research about 

intelligent systems using piezoelectric materials has been developed. Literature lacks in state 

of the art for smart structures incorporating piezoelectric materials and how they are classified 

in chronological order. It is a good idea to make a classification that studies the evolution of 

these systems integrating piezoelectric materials depending on the year.  

As we have seen in chapter 6, robot characterization (speed as a function of voltage, speed as 

a function of embedded masses and speed as a function of mechanical load) is given only 

experimentally;  as a matter of fact  in our developed model there is no interaction between 

the robot and its environment (solid substrate in our case). The contact friction between the 

robot and the solid substrate can be modeled, and then the speed of the robot can be simulated 

and compared to the obtained experimental value. Here below are some papers studying 

systems with friction interaction using analytical or finite element models [ (Meziane, et al., 

2010), (Stavroulakis, et al., 1999), (Hurmuzlua, et al., 2004), (Khoei, et al., 2006), (Wriggers, 

1969), (Pop, et al., 2011), (Juang, et al., 2009), (Duan, et al., 2007), (Denkowski, et al., 2011), 

(Mazeika, et al., 2012)]. Masses can also be integrated in our finite element model; an 

example is given in [ (Rofooei, et al., 2009)]. Modeling the contact between the robot and its 

environment allows studying the affect of the environment to the resonance frequencies and 

displacements of the system.  

A multi degrees of freedom (MDOF) system can be made from our presented traveling wave 

piezoelectric beam robot as shown in figure below.  Cross combination can be made also. 

Other types of thin structures with or without holes can be used. A rotational and elliptical 

motion can be made for example by using cylindrical thin structures with piezoelectric 

patches.  
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A two parallel traveling wave piezoelectric beam robots for MDOF application 

 
 
The efficiency of the robot can be improved when we get better traveling wave ratio on the 

beam, it means when we have more wave absorption. RL shunt circuit was chosen due to the 

simplicity of its modeling and physical implementation, but other passive and semi active 

techniques show better absorption [ (Badel, 2006)] and therefore allow to work at lower 

frequency.    

An idea to increase autonomy of the robot i.e. to have low power consumption is to inject 

power provided by the PZT sensor patch to the PZT actuator patch by using a feedback 

control instead of using a passive shunt circuit. It was demonstrated by Eielsen et al [ 

(Eielsen, et al., 2010)] that an RL series shunt circuit can act as an output feedback controller.   

This method is high cost, low stability and more complex compared to RL shunt circuit.  

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 

A schematic diagram using feedback controller to increase autonomy of the robot                            
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The figure below is a combination between the beam piezoelectric robot studied in this thesis 

and the plate piezoelectric robot which was submitted for a patent. This design is proposed for 

aquatic and terrestrial locomotion.  

 

 
 

A schematic design for an aquatic and terrestrial robot 

 

High displacement is needed in aquatic medium to move the robot; this displacement can be 

achieved using the first resonance frequency of these four fixed-free beams robots by 

applying it at the piezoelectric patches near from the fixed end. These for beams should act as 

legs to achieve the walking locomotion technique (phase difference applied at each patch near 

from the fixed end [refers to chapter 1]), and therefore a displacement in the aquatic medium. 

The plate structure is the robot body in the aquatic medium and it should be designed to carry 

the weight of the beams. Material for the plate has not to be the same as beams. Materials 

should be chosen according to frequency and displacement as in the case of terrestrial 

locomotion (graphs below [refers to chapter 5]) but, also the mass density should be chosen 

taking into account the mass density of water if the robot is designed for water use for 

example. Resonance frequencies of the system in water are affected by the water around, 

therefore the fluid dynamic equations must be added to our finite element model. That was 

not the case in terrestrial locomotion; the contact between robot and the solid support in 

terrestrial medium do not affect the resonance frequencies of the system.  

 

 

 
 

 

 

 

 

 

 

Figure 5.15 and 5.16 taken from chapter 5 
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Hence to conclude this paragraph, beam robots are responsible for motion in the aquatic 

medium and that is without using the second patches near from free ends. These patches come 

to help the robot body in terrestrial locomotion in the case where more speed is needed.  

Optimal dimensions should be studied again in the case of aquatic medium and a compromise 

must be made if they are different from the terrestrial case. Also better material for terrestrial 

locomotion (aluminum [2700 kg/m3]) among the three others presented in graphs above is not 

the best one for aquatic locomotion (referring to graphs below, acrylic [1400 kg/m3]  is 

better). We may note that these graphs do not take into account the effect of the water into 

displacements and frequencies; therefore these graphs did not reflect the optimal material and 

piezoelectric thickness in the water case. Other materials like glass, tungsten, diamond, 

titanium and magnesium can be also studied. Fiber material has usually lower mass density 

than the material itself and it is recommended to be used in aquatic and air mediums.  

The same structure can be used to fly also. Other idea to amplify much more the displacement 

is to use the MFC, NASA piezocomposite actuator shown in figures below. 

 

 
The Macro Fiber Composite (MFC) actuator. Left: A demonstration of the flexibility of the actuator. Right: Layers of the 

actuator. [ (Bilgen, 2007)] 

  
Fabricated micro air vehicle using MFC actuator [ (Bilgen, 2007)] 
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Our designed and fabricated system is a prototype to validate the motion but this robot can be 

easily miniaturized and the developed equations remain applicable if we are over micrometer 

dimensions. Examples of miniaturized systems having same structures can be found in [ 

(Jalili, 2009), (Senturia, 2002)]. 
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