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Caractérisation et applications des écoulements de polymères en
films minces nanoimprimés

Résumé. Cette thèse présente des résultats théoriques et expérimentaux portant
sur des écoulements à l’échelle nanoscopique de polymères fondus. L’étude analytique
et numérique de l’écoulement d’un film de polymère, préalablement nanostructuré
par nanoimpression puis recuit au dessus de sa température de transition vitreuse,
a permis de dégager différentes dynamiques de nivellement selon la topographie ini-
tiale du film. Certaines ont été appliquées à l’élaboration d’éléments optiques par
recuit de nanostructures complexes. Une méthode de mesure de la viscosité New-
tonienne et du temps terminal de relaxation d’un polymère déposé en film mince a
également pu être développée. Enfin, un travail exploratoire portant sur un procédé
de nanoimpression sans épaisseur résiduelle par démouillage est présenté. L’accent a
porté sur le calcul précis de la pression de disjonction dans un milieu stratifié en util-
isant la théorie moderne de Lifshitz basée sur les propriétés optiques des matériaux
en interaction.

Mots clés. Lithographie par nanoimpression, polymères en couche mince, films
ultra-minces, nanorhéologie, fluage, démouillage, pression de disjonction.

Characterization and applications of flowing nanoimprinted thin
polymer films

Abstract. This thesis presents theoretical and experimental work on nanoscale
flows of polymer melts. Different leveling dynamics emerge from the analytical and
numerical study of the reflow of a polymer film that is first nanoimprinted and then
annealed above its glass transition temperature, depending on the initial topography
of the film. These concepts were applied to the manufacturing of optical devices from
the reflow of complex nanostructures. A method to measure the Newtonian viscosity
and the terminal relaxation time of a thin polymer film was also developed. Finally,
an exploratory work on a residual-layer-free nanoimprint process based on dewet-
ting is presented. Emphasis was put on the accurate computation of the disjoining
pressure in stratified media with the modern Lifshitz theory based on the optical
properties of the interacting materials.

Keywords. Nanoimprint lithography, thin polymer films, ultra-thin films, nanorhe-
ology, reflow, dewetting, disjoining pressure.
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Caractérisation et applications
des écoulements de polymères en
films minces nanoimprimés: un
aperçu

Introduction

La nanofabrication

Ces dernières décennies, les nanotechnologies ont ouvert des perspectives nouvelles
dans de nombreux domaines, comme les télécommunications, l’énergie, les matéri-
aux ou la santé. La fabrication à l’échelle moléculaire a incité les chercheurs et les
ingénieurs à aborder les problèmes sous un angle nouveau.

Pour les applications demandant la structuration de surfaces, deux tendances
semblent se dégager à l’heure actuelle: d’un côté la nécessité d’obtenir des résolu-
tions de plus en plus fines. C’est le cas par exemple des substrats pour la spectro-
scopie Raman comportant des motifs métalliques nanométriques.1 D’un autre côté,
des structures de tailles micrométriques, mais de formes complexes tridimension-
nelles, comme les réseaux de microlentilles à la surface de capteurs d’images.2 Pour
répondre à ces nouveaux besoins, des techniques de nanostructuration à bas coût pour
de larges surfaces doivent être développées.

La nanoimpression

Les techniques de lithographie classiques reposent sur le principe suivant (figure 1a):
(i) une résine sensible aux photons (lithographie visible ou UV) ou aux électrons
(lithographie électronique) est couchée sur le substrat à structurer. (ii) Cette couche
est exposée à un flux d’énergie non-uniforme, ce qui induit un contraste chimique
dans la couche. (iii) La résine est sélectivement retirée. Elle forme ainsi un masque
pour la gravure du substrat sous-jacent. Les lithographies classiques en tant que
technologies dominantes de l’industrie des semi-conducteurs ont été poussées à un

1Z. Tian, B. Ren, D. Wu, Journal of Physical Chemistry B 106, 37 (2002), pp. 9463–9483.
2C. Fesenmaier, Y. Huo, P. Catrysse, Optics Express 16, 25 (2008), pp. 20457–20470.
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niveau de performance très élevé. Cependant, le coût des équipements et des procédés
cantonne ces technologies aux étapes de structuration à forte valeur ajoutée.

La nanoimpression est une technique de lithographie qui se différencie de l’ap-
proche précédente par le fait que la structuration est donnée par un contraste to-
pographique plutôt qu’un contraste chimique. Plusieurs variantes existent à l’heure
actuelle, la première étant la nanoimpression dite thermique. Elle fut développée par
Chou et al.3 Les principales étapes sont (figure 1b): (i) un polymère thermo-plastique
est déposé sur le substrat. (ii) un moule nanostructuré est mis en pression contre
cette couche. L’ensemble est porté à une température supérieure à la température de
transition vitreuse du polymère qui devient alors visqueux et est mis en forme par le
moule. (iii) L’ensemble est refroidi. (iv) Le système est démoulé.

Les avantages de la nanoimpression sont nombreux. Nous pouvons citer pour
commencer un coût d’équipement réduit du fait de la simplicité du procédé, et une
bonne performance en matière de résolution (limitée cependant par la résolution du
moule). Mais surtout, la nanoimpression se distingue par la possibilité qu’elle offre
de structurer directement (c’est à dire sans étape de gravure) des matériaux fonc-
tionnels, et de mouler des formes multi-niveaux ou analogiques (par opposition à la
structuration binaire de la lithographie classique).

Problématiques abordées dans la thèse

La nanoimpression développée depuis maintenant deux décennies est un procédé en
voie d’industrialisation. De nombreux problèmes d’ordre industriels mobilisent d’im-
portants efforts de recherches. Parmi ceux-ci, nous pouvons citer l’alignement submi-
cronique du moule sur le substrat, l’uniformité du pressage et de l’épaisseur résidu-
elle, le débit d’impression des machines, etc.

Cependant, des phénomènes d’ordres plus fondamentaux restent à étudier afin de
comprendre et d’exploiter toutes les potentialités de l’impression aux petites échelles.
Le travail effectué dans cette thèse a porté sur une meilleure compréhension des
écoulements à l’échelle nanoscopique de polymères fondus. L’étude analytique et
numérique de l’écoulement d’un film de polymère, préalablement nanostructuré par
nanoimpression puis recuit au dessus de sa température de transition vitreuse, a per-
mis de dégager différentes dynamiques de nivellement selon la topographie initiale
du film. Certaines ont été appliquées à l’élaboration d’éléments optiques par recuit
de nanostructures complexes. Une méthode de mesure de la viscosité Newtonienne
et du temps terminal de relaxation d’un polymère déposé en film mince a également
pu être développée.

Pour finir, nous nous sommes intéressés au démouillage de films ultra-minces. Ce
phénomène permet d’envisager un procédé d’impression sans épaisseur résiduelle.
En plus de réalisations expérimentales, notre travail a porté sur le calcul précis de
la pression de disjonction dans un milieu stratifié en utilisant la théorie moderne de
Lifshitz basée sur les propriétés optiques des matériaux en interaction.

3S. Y. Chou, P. R. Krauss, and P. J. Renstrom. Applied Physics Letters 67, 3114–3116 (1995).
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Substrat

Resine

Moule

(i) Couchage de la résine

(ii) Chaleur et pression

(iii) Refroidissement

(iv) Démoulage

(i) Couchage de la résine

(b) Nanoimpression thermique(a) Lithographie classique

(ii) Exposition

(iii) Développement

photons ou
électrons

Figure 1 – Étapes principales (schéma en coupe) de procédés de lithographie:
(a) lithographie optique ou électronique, comparée à (b) la nanoimpression
thermique.
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Mécanique des fluides pour la nanoimpression

Écoulements à surface libre

Afin d’étudier la dynamique des écoulements de polymères fondus aux petites échelles,
nous nous sommes concentrés sur des écoulements à surface libre. Le substrat sous-
jacent constitue le support imperméable (et indéformable) de l’écoulement. L’interface
entre le fluide et l’air constitue la deuxième condition aux limites. Nous verrons à la
fin de cette partie quelles sont les forces qui gouvernent l’écoulement.

Caractériser des écoulements à de si petites échelles n’est pas aisé. Des tech-
niques performantes ont été développées dans le cadre de la microfluidique. On
peut citer par exemple la micro-PTV (Particle Tracking Velocimetry) ou la micro-PIV
(Particle Image Velocimetry), pour lesquelles des traceurs physiques (billes) ou chim-
iques (solutés fluorescents) entraînés par l’écoulement sont suivis par des procédés
d’imagerie plus ou moins complexes. Cependant dans le cadre de nos systèmes,
ces techniques ne sont pas appliquables car trop invasives. En effet, la taille des
traceurs (quelques dizaines de nanomètres) deviendrait commensurable à l’échelle du
domaine fluide, ou alors un traceur chimique modifierait sensiblement les propriétés
rhéologiques ou surfaciques des matériaux dont on veut caractériser l’écoulement.

La méthode de caractérisation choisie dans notre cas repose quant à elle sur le
suivi de l’interface libre. Si le mouvement de l’interface est mesuré, alors avec un
modèle adapté, nous pouvons remonter au champ de vitesses dans le fluide et à
d’autres grandeurs intéressantes. Certains groupes exploitent un suivi de l’interface
en temps réel, c’est-à-dire effectuent des mesures en continu au cours de l’écoulement.
Leurs méthodes reposent par exemple soit sur de la scattérométrie, de la diffusion de
rayons x, ou alors sur des mesures AFM sur plaque chauffante. De telles mises en œu-
vre expérimentales sont extrêmement délicates ou alors coûteuses, et ne s’appliquent
que pour des topographies de surfaces particulières (motifs périodiques pour les méth-
odes optiques).

Nous avons pour notre part choisi d’exploiter une propriété des polymères qui est
l’existence d’une température de transistion vitreuse, c’est-à-dire une température
en dessous de laquelle le matériau n’est plus visqueux mais solide. Notre méthode de
caractérisation consiste donc en une succession de trempes et de recuits des films, afin
d’accéder à un échantillonnage en temps de notre écoulement. Une fois le matériau
refroidi à température ambiante, nous pouvons alors utiliser les moyens de caractéri-
sation bien maîtrisés du laboratoire (microscopie optique, électronique, pofilométrie,
AFM, etc.).

Nivellement et instabilité: deux phénomènes observés

Que se passe-t-il lors d’un recuit d’un film de polymère nanostructuré? Quelques ex-
périences préliminaires peuvent nous montrer que deux évolutions de topographie
sont possibles. La figure 2 montre un exemple de motif imprimé (le moule est un
réseau de lignes dont la largeur est modulée spatialement) soumis à un recuit. Dans
le premier cas (figure b), l’épaisseur résiduelle est forte (90% de l’épaisseur moyenne)
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(a)

(b)

(c)

Figure 2 – Film de polymère nanostructuré vu au microscope optique. (a)
Impression originale; (b) motif après recuit lorsque l’épaisseur résiduelle est
forte; (c) motif après recuit lorsque l’épaisseur résiduelle est faible.

et est représentée par les parties sombres. On assiste à une disparition des motifs,
les lignes les plus fines ayant totalement flué tandis que les lignes de largeur inter-
médiaire s’estompent progressivement.

Dans le deuxième cas, l’apaisseur résiduelle est faible (10% de l’épaisseur moyen-
ne) et cette fois représentée par les parties claires de l’image (la différence de couleur
par rapport au premier cas est due à la différence d’épaisseur de polymère). On
retrouve l’effacement des motifs fins à droite, en revanche, une forte instabilité s’est
développé à gauche au niveau des motifs les plus larges. Il s’agit du démouillage du
film, c’est-à-dire sa fragmentation en gouttelettes isolées sur le substrat.

Nous pouvons voir sur cet exemple simple qu’il y a une compétition entre le dé-
mouillage du film et son nivellement. Dans la suite, nous allons rentrer plus en
détails dans la physique de ces phénomènes.

Échelles du problème

Les écoulements de liquides visqueux à l’échelle de la nanoimpression sont différents
de ceux dont nous pouvons faire l’expérience à l’échelle humaine. La réduction des
échelles de longueur joue en effet sur deux niveaux:

1. Les forces et leurs effets qui sont habituellement négligeables à l’échelle macro-
scopique deviennent prépondérents aux petites échelles. C’est le cas par exem-
ple des forces de surface en raison de l’inflation du rapport surface sur volume.
C’est aussi le cas des forces intermoléculaires à longue portée, appelées aussi
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forces de van der Waals, dont le rayon d’action est de l’ordre de la centaine de
nanomètre. La condition aux limites de non glissement à une interface imper-
méable, habituelle en mécanique des fluides macroscopique, peut elle aussi être
remise en cause.

2. À cause du confinement de la matière, c’est-à-dire lorsque l’échelle du volume
fluide devient commensurable à la taille moléculaire du constituant, certaines
propriétés du fluide peuvent dépendre de sa géométrie. C’est le cas par exemple
de la viscosité, de la température de transition vitreuse, de la conductivité ther-
mique, etc. Ce phénomène, quoique d’importance crutiale pour la nanoimpres-
sion, n’a pas été étudié dans cette thèse. Il a fait l’objet d’une thèse précédente
au laboratoire.4

Au-delà même de la prise en considération de ces effets de réduction d’échelle, une
question reste ouverte: peut-on légitimement représenter la matière par une ap-
proche continue lorsque le volume de fluide est composé de quelques centaines de
molécules, voire une dizaine si l’on considère une section transversale d’un film nano-
métrique? Dans notre étude, nous avons observé le comportement de films dont les
parties les plus fines étaient de l’ordre de 5 nm (après pressage), à comparer avec une
taille moléculaire de 1 nm (polystyrène 30 kg/mol). Il est apparu qu’une approche
fondée sur l’échelle locale des milieux continus était suffisamment prédictive et ef-
ficace pour modéliser nos systèmes. Nous avons donc privilégié cette approche aux
dépens de celle fondée sur la dynamique moléculaire, plus fastidieuse et restrictive
quant à la géométrie du système étudié.

Équation de Navier-Stokes. Pour un fluide visqueux, la quantité de mouvement
(dans une modélisation eulérienne) obéit à l’équation de Navier-Stokes:

ρ

(
∂v
∂t

+ (v ·∇)v
)

=−∇p+∇·T+ f, (1)

où ρ est la masse volumique, v le champ de vitesses, t le temps, p le champ de pres-
sion, T le tenseur des contraintes visqueuse et éventuellement f la somme des forces
d’action à distance. Voyons maintenant comment évolue l’équation de Navier-Stokes
avec la réduction des échelles de longueur.

Intéressons-nous aux termes de gauche de l’équation (1). Pour un écoulement
faiblement transitoire (par exemple sans vibration acoutique) et à faible nombre de
Reynolds,5 ces termes sont négligeables devant le tenseur des contraintes visqueuses.
Ici, à cause de la réduction d’échelle (autour du micron) et de vitesse (un micron par
seconde), et de l’utilisation de polymères très visqueux (100 Pa.s), le Reynolds est de
10−14. Nous pouvons en conclure que les termes inertiels sont négligeables et pouvons
réécrire l’équation sous la forme suivante, appelée équation de Stokes:

∇p =∇·T+ f. (2)

4T. Leveder, 2009.
5Nombre connu des mécaniciens des fluides, défini par Re = ρVℓ

η , où V et ℓ sont une vitesse et une
longueur caractéristique, et η la viscosité Newtonienne du fluide.
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Intéressons-nous maintenant aux conditions aux limites. À l’interface libre, sous
une approche d’interface infiniment fine (modèle de Gibbs), le saut de pression (pres-
sion de Laplace) s’écrit:

pint − pext = γκ, (3)

où γ est la tension de surface et κ la courbure locale de l’interface. Lorsque la ten-
sion de surface n’est pas homogène, un effet Marangoni peut se produire: l’interface
tire vers les régions à plus forte tension. Dans notre cas, nous n’en observons pas,
pour deux raisons majeures: vues les conditions extrêmes de pureté chimique de nos
polymères,6 il y a peu de chance de trouver des éléments adsorbés à l’interface. Deux-
ièmement, la tension de surface étant sensible à la température, il pourrait y avoir
un effet Marangoni thermique. Or une analyse en ordre de grandeur de la thermique
montre clairement que le film est homogène en température tout au long de son cycle.

Une dernière condition aux limites à vérifier est l’hypothèse de non-glissement
à l’interface avec le substrat. Bien qu’il n’existe pas de consensus dans la littéra-
ture, une longueur de glissement de quelques nanomètres à quelques dizaines de
nanomètres peut être observée pour une interface atomiquement plane comme les
substrats de silicium. Cependant, pour les géométries que nous avons choisies, nous
n’avons pas observé de glissement.

Pour finir, il faut dresser l’inventaire des forces d’action à distance, représentées
par le terme f dans l’équation (1). À l’échelle macroscopique, ce terme est générale-
ment la gravité ou une force électromagnétique. Pour les écoulements microscopiques,
l’influence de la gravité peut être comparée à celle de la tension de surface par le nom-
bre de Bond:

Bo= ρgℓ2

γ
, (4)

où g est l’accélération de la pesanteur et ℓ une longueur caractéristique. Dans notre
cas, Bo ∼ 10−3, ce qui signifie que la gravité ne joue aucun rôle moteur dans l’écoule-
ment.

Nous avons vu qu’une autre force peut intervenir aux échelles nanométriques:
les interactions à longue portée de van der Waals. Ces forces intermoléculaires sont
d’origine électromagnétique. Leur effet à l’échelle des milieux continus se traduit,
dans le cas des films ultra-minces, par l’existence d’une pression de disjonction forte-
ment dépendante de l’épaisseur. Dans le cadre de la théorie d’Hamaker, cette pression
notée Π, s’exprime comme:

Π(h)=− A

6πh3 , (5)

où A est appelée constante d’Hamaker (de l’ordre de 10−20 J) et h l’épaisseur du film.

Rhéologie. Le dernier aspect fondamental des écoulements de polymères fondus
est la rhéologie, c’est-à-dire le comportement à la contrainte du fluide (le terme ∇·T

6Quoiqu’une analyse chimique permettrait de quantifier cette pureté, nous pouvons le vérifier indi-
rectement en mesurant la température de transition vitreuse du polymère. L’expérience montre que
cette température est très sensible aux adjonctions d’impuretés.
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dans l’équation de Stokes). Lorsque la sollicitation du polymère est assez lente (plus
lente que le temps de relaxation du matériau), le fluide peut être traité comme un
fluide Newtonien. La divergence du tenseur des contraintes s’écrit alors:7

∇·T= η∇2v, (6)

où η est un paramètre appelé viscosité Newtonienne. La viscosité est en général
dépendante de la température, et pour les polymères fondus cette dépendance est
extrême: une augmentation de 10°C peut diviser la viscosité par 10. C’est pourquoi
la température est un paramètre important en nanoimpression, tout comme la fine
connaissance de la viscosité du matériau en fonction de celle-ci.

Si maintenant la sollicitation du matériau est plus rapide, un comportement vis-
coélastique est observé. Si le taux de déformation est toutefois faible en amplitude,
une théorie dite de viscoélasticité linéaire peut être employée. On y exprime les don-
nées de l’écoulement dans le domaine fréquentiel et la divergence du tenseur des
contraintes prend la forme:

∇·T(ω)= η(ω)∇2v(ω), (7)

où η(ω) est une viscosité complexe dépendante de la fréquence ω. Par exemple, pour
une fréquence proche de l’inverse du temps terminal de relaxation du polymère, la
viscosité complexe peut s’écrire:

η(ω)= η0

1− iωτt

, (8)

où η0 est la viscosité à fréquence nulle (ou viscosité Newtonienne comme nous l’avons
vu), et τt le temps terminal de relaxation. L’équation (8) est appelée modèle de

Maxwell à un mode.

Écoulements pour une épaisseur résiduelle importante

Dans cette partie nous allons nous intéresser au fluage d’un motif dont l’épaisseur
résiduelle est importante. La particularité topographique d’un tel motif est que son
amplitude (ou profondeur) est faible par rapport à l’épaisseur moyenne du film, ce
que nous allons exploiter grâce à la théorie des ondes capillaires.

Théorie des ondes capillaires

La théorie des ondes capillaires est un modèle physique permettant de décrire l’évolu-
tion d’une interface libre de liquide soumise à une petite déformation. À notre échelle,
nous pouvons spontanément penser aux rides causées à la surface d’un lac par le
vent ou un jet de pierre. Nous avons adapté cette théorie à l’effacement d’un motif
nanométrique.

La figure 3 montre la géométrie d’une zone d’intérêt de fluide, supposée péri-
odique dans les dimensions horizontales. La hauteur locale et instantanée de fluide

7En supposant le fluide incompressible.
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Figure 3 – Géométrie et symboles pour la théorie des ondes capillaires.

est désignée par h(x, y, t). L’amplitude de déformation de l’interface est définie par
h̃ = h−h0, où h0 est l’épaisseur moyenne du film. Avec l’hypothèse h̃ ≪ h0, appelée
hypothèse des petites perturbations, nous pouvons approximer la pression à la hauteur
h par celle en h0:

p(h)≈ p(h0), (9)

et linéariser la pression de disjonction:

Π(h)≈Π(h0)+ ∂Π

∂h
(h0)× h̃. (10)

Avec l’hypothèse additionnelle des faibles pentes (|∇h| ≪ 1), la pression de Laplace
peut aussi être linéarisée:

△p ≈−γ∇2h. (11)

Voyons maintenant comment exploiter ces conditions aux limites pour résoudre
l’écoulement. La première étape est d’exprimer les équations de bilan de masse et
de quantité de mouvement dans le système de coordonnées (k, z,ω). Autrement dit,
la topographie de la surface libre est décomposée en ondes planes (ondes capillaires

de vecteur d’onde k), et la dynamique de l’écoulement est étudiée dans le domaine
fréquentiel (ω), ce qui nous permettra de prendre en compte des écoulement viscoélas-
tiques (cf. équation 8). Ce procédé nous permet de transformer les équations aux
dérivées partielles en équations algébriques. Le détail des calculs n’est pas reporté
ici. Le résultat prend la forme d’une relation de dispersion, c’est à dire une condition
nécessaire qui relie la fréquence de l’onde ω à son vecteur d’onde k via les différents
paramètres physiques et géométriques. Cette relation de dispersion s’exprime par:

iωη(ω)h0

γ
= f (kh0,Ha), (12)
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où f est une fonction sans dimension du vecteur d’onde normalisé k× h0 (avec k =p
k ·k) et d’un nombre sans dimension, Ha, appelé dans cette thèse nombre d’Hamaker,

défini par:

Ha=
h2

0
∂Π
∂h

(h0)

γ
. (13)

Le nombre d’Hamaker permet de quantifier l’influence des forces à longue portée par
rapport à celle de la tension de surface. La fonction f a une expression analytique
assez complexe non reportée ici, mais elle est tracée sur la figure 4. En cas d’un
nombre d’Hamaker négatif, il y a croissance exponentielle de l’onde capillaire pour
les fréquences spatiales plus petites qu’une fréquence critique (divergence de la ligne
pointillée montrée sur la figure 4): c’est le démouillage spinodal. Nous reviendrons
sur ce phénomène.

Noyau de nivellement. La difficulté du problème revient maintenant à résoudre
l’équation de dispersion, c’est-à-dire exprimer ω comme fonction explicite de k. C’est
chose aisée lorsque la fonction rhéologique η(ω) prend une forme simple. Nous allons
voir brièvement deux cas:

CAS NEWTONIEN La viscosité ne dépend pas de la fréquence. On montre que l’évolu-
tion topographique de la surface se met sous la forme:

ĥ(k, t)= ĥ(k,0)×exp
(

− f (kh0,Ha)
Ca

)

︸ ︷︷ ︸

Noyau de nivellement

, (14)

où Ca est un nombre de capillarité défini par:

Ca= ηh0

γt
. (15)

L’exponentielle est appelée noyau de nivellement. Ce noyau joue le rôle
d’un filtre linéaire pour la topographie. En cas de nombe d’Hamaker posi-
tif ou nul, ce filtre peut même être qualifié de passe-bas. La figure 5a
montre la forme du noyau pour différentes valeurs de Ca.
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CAS VISCOÉLASTIQUE MONOMODE La viscosité dépend de la fréquence par la rela-
tion (8) que nous rappelons ici:

η(ω)= η0

1− iωτt

. (16)

L’évolution topographique est alors:

ĥ(k, t)= ĥ(k,0)× exp

(

− 1
Ca
f
+De

)

︸ ︷︷ ︸

Noyau de nivellement

, (17)

avec un nombre sans dimension supplémentaire, le nombre de Déborah,
défini par:

De= τt

t
. (18)

Ce nombre rapporte le temps de relaxation au temps de l’expérience: si le
temps d’expérience est trop long, le caractère élastique devient néglige-
able. Le noyau de nivellement est reporté figure 5b. La particularité de
ce noyau est qu’au lieu de tendre vers zéro pour les hautes fréquences,
il montre une asymptote horizontale vers la valeur exp(−1/De). Nous re-
viendrons sur l’importance de cette propriété pour la rhéométrie des films
minces par fluage de nanostructures.

Application à la nanorhéologie

De nombreuses méthodes ont été développées pour mesurer les propriétés rhéolo-
giques de fluides. On en trouvera de nombreuses références dans le corps de cette
thèse. Le tableau 1 en rapporte les principales ainsi que leurs inconvénients pour la
mesure de propriétés de films minces.
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Table 1 – Méthodes connues de rhéométrie appliquées aux films minces.

methode Limites ou inconvénients

Méthodes macroscopiques (bulk) Grand volume de fluide requis. Seules les

propriétés macroscopiques sont mesurées

Démouillage (nucléation et croissance des

trous)

Difficultés théoriques de la ligne de contact.

Contrainte forte sur le choix des matériaux.

Pointe AFM immergée Connaissance de la forme exacte de la pointe

requise. Dérive en température des

équipements

Diffraction rayons X (dynamique de surface) Méthode couteuse. Traitement numérique

délicat. Motifs périodiques requis.

Présentation de la méthode. La phénoménologie du nivellement que nous avons
présentée dans la sous-section précédente nous a permis de développer dans cette
thèse une méthode de nanorhéologie pour les films de polymère. Cette méthode est
basée sur le concept de noyau de nivellement: si nous pouvons mesurer expérimen-
talement ce noyau, alors nous pouvons accéder aux propriétés rhéologiques de film.
Il y a deux façons de procéder:

1. Le noyau est mesuré comme une fonction du temps, à une longueur d’onde don-
née. Cela demande de suivre l’évolution de motifs périodiques, à l’instar de
travaux déjà effectués au laboratoire.8 C’est une méthode efficace mais qui de-
mande de nombreuses trempes et mesures d’échantillons pour être précise.

2. Le noyau est mesuré comme une fonction des longueurs d’ondes, en comparant
la topographie à deux temps donnés. Cette méthode n’avait jamais été exploitée
auparavant et c’est celle que nous avons retenue. Le développement de motifs
adaptés, riches d’un point de vue spectral (c’est-à-dire présentant à la fois des
petites et des grandes longueurs d’onde), techniquement réalisables en lithogra-
phie, a été nécessaire. Ces motifs ont fait l’objet d’un dépot de brevet.9 Leur
développement est détaillé dans le corps de cette thèse.

La figure 6 présente le déroulement de la méthode: (i) le matériau est déposé en
couche mince, (ii) le motif est imprimé par nanoimpression, (iii) la topographie initiale
est mesurée par AFM, (iv) un fluage à température donnée, pendant un temps donné,
suivi d’une trempe, est effectué, (v) la topographie fluée est mesurée par AFM.

Voyons maintenant deux réalisations expérimentales de cette méthode.

Cas Newtonien. La viscosité d’un film de polystyrène 30 kg/mol d’environ 150 nm
d’épaisseur a pu être mesurée à 120°C à l’aide de la méthode que nous venons de
décrire. La figure 7a rapporte les deux mesures AFM qui ont été effectuées. Ces
mesures sont transformées en termes de fréquences spatiales à l’aide d’un algorithme

8Thèse de T. Leveder, 2009.
9EP 2011/0161960, US 2012/0095705.
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Figure 6 – Méthode de nanorhéologie développée dans cette thèse.

standard de transformée de Fourier (figure 7b). Nous pouvons constater que le spec-
tre du motif recuit voit ses hautes fréquences largement diminuées, ce qui confirme le
caractère passe-bas du fluage. En faisant le rapport du spectre flué sur le spectre ini-
tial, nous obtenons le noyau de nivellement expérimental, représenté sur la figure 7c.
Il ne reste plus qu’à ajuster le modèle Newtonien par la méthode des moindres carrés
en prenant le nombre de capillarité (équation 15) comme paramètre d’optimisation.
Le résultat est ici Ca = 0.062± 0.001. L’épaisseur moyenne est mesurée par ellip-
sométrie, le temps est un paramètre d’expérience, et la valeur de la tension de surface
est prise dans la littérature: nous pouvons donc en déduire la viscosité recherchée, ici
1.0±0.2×106 Pa·s. Une discussion sur la précision de la mesure est développée dans
ce manuscrit.

Nous pouvons répéter la méthode à différentes températures et obtenir la vari-
ation de la viscosité Newtonienne en fonction de la température. Le résultat est
porté sur la figure 8. Comme attendu pour un polymère, la viscosité diminue avec
la température. Cette variation a été largement étudiée et se nomme loi WLF. Les
paramètres de cette loi ont été mesurés par différents groupes et les courbes résul-
tantes sont également tracées. Nous trouvons un bon accord entre nos mesures et
les tendances publiées. Nous remarquons également que même dans le cas d’un film
de 150 nm, la viscosité macroscopique est retrouvée, et nous ne mettons donc pas en
évidence un changement de propriété dû au confinement de la matière.

Cas viscoélastique. L’idée maintenant est d’étudier plus finement ce qu’il advient
des hautes fréquences spatiales lors d’un recuit. Nous avons vu que dans le cas d’un
modèle de Maxwell à un mode, le noyau de nivellement comporte une asymptote
horizontale, ou du moins une inflection de la courbe vers cette asymptote (figure 5b
page xv), traduisant le caractère élastique – le caractère visqueux étant mis en évi-
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à 120°C.
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dence par les basses fréquences. Comme les hautes fréquences fluent plus vite que les
basses fréquences, nous devons effectuer des temps de recuit plus courts pour mettre
en évidence cette élasticité.

Une réalisation expérimentale est présentée sur la figure 9. Nous pouvons voir sur
les mesures AFM de la figure 9a qu’un fluage court (ici 30 s) atténue les motifs haute
fréquence sans les niveler complètement. Une fois encore, le noyau de nivellement
présenté figure 9c est obtenu par le ratio des transformées de Fourier (figure 9b). Un
modèle de nivellement viscoélastique en supposant un fluide de Maxwell à un mode
(équation 17) est ajusté aux points expérimentaux. Il y a cette fois-ci deux paramètres
d’ajustement: le nombre de capillarité comme dans le cas visqueux, et le nombre de
Déborah (équation 18). Ce dernier nous permet de mesurer le temps de relaxation du
fluide, ici nous trouvons τt = 10±2 s.

Afin de mettre en évidence le caractère élastique du fluage, un modèle purement
visqueux est également tracé, et nous constatons qu’il serait incapable de décrire
correctement le fluage des hautes fréquences spatiales.

La méthode de mesure peut être répétée à plusieurs températures afin d’étudier
la thermo-dépendance du temps de relaxation. C’est le sens de la figure 10. En ce qui
concerne la viscosité basse fréquence (η0 de l’équation (8)) tracée sur la figure 10a,
nous retrouvons sans difficulté la viscosité Newtonienne mesurée précédemment avec
des temps de fluage longs.

Intéressons-nous maintenant au temps de relaxation. Dans la modélisation la
plus simple des polymères dits linéaires (chaque molécule est un filament), le temps
de relaxation le plus long, appelé temps terminal, est le rapport de la viscosité basse
fréquence par un module de cisaillement élastique:

τt(T)= η0(T)
Ge(T)

, (19)

avec

Ge(T)= ρ(T)RT

Me

, (20)
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Figure 10 – Mesure de viscoélasticité en fonction de la température, pour un
modèle de Maxwell à un mode.

où ρ est la masse volumique, R la constante des gaz parfaits et Me une masse molaire
dite d’enchevêtrement, dépendante du matériau. Bien que le module Ge dépende de
la température, cette dépendance est de l’ordre de quelques pourcents sur 100°C (la
diminution de la masse volumique compense en partie le facteur T). En comparai-
son avec les variations de plusieurs ordres de grandeur de la viscosité, nous pouvons
dire que Ge est quasi-constant, et donc que la thermo-dépendance du temps de re-
laxation est la même que celle de la viscosité. Pour notre matériau, nous trouvons
Ge ≈ 0.2 MPa. La courbe de la figure 10b est donc la même que celle de la figure 10a
au facteur Ge près, et il est remarquable que ce modèle simple décrive, au moins en
ordre de grandeur, les temps de relaxation mesurés.

En conclusion de cette partie, nous avons développé une méthode de rhéologie
d’un film mince de polymère. Cette méthode, basée sur le fluage d’un motif nanoim-
primé, utilise des équipements courants de salle blanche. Elle permet de mesurer une
très large gamme de viscosité. Elle peut également donner accès au temps de relax-
ation du matériau, ce qui jusqu’alors n’était possible qu’au moyen de méthodes macro-
scopiques. Or le temps de relaxation est une donnée importante pour les procédés de
nanoimpression, afin par exemple d’éviter une relaxation élastique des motifs lors du
démoulage.

Écoulements pour une épaisseur résiduelle faible

Considérons maintenant des écoulements dont l’épaisseur résiduelle est faible. Dans
le cas d’un fluage de motifs, l’hypothèse de faible perturbation de l’interface n’est
plus vérifée, et la théorie des ondes capillaires ne peut plus être appliquée. Nous
allons nous servir d’une autre théorie, couramment utilisée en nanoimpression et en
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Figure 11 – Géométrie en théorie de la lubrification.

microfluidique: la théorie de la lubrification.10

Théorie de la lubrification

Le ploint de départ de la théorie de lubrification est le concept de film mince: une
dimension du domaine fluide, l’épaisseur moyenne notée h0, est beaucoup plus faible
que les autres dimensions, d’ordre de grandeur L (figure 11). La théorie de lubrifica-
tion est à la mécanique des fluides ce que la théorie des plaques est à la mécanique
des solides. Sous cette hypothèse géométrique, le rapport ε = h0/L est très inférieur
à l’unité. Un développement asymptotique au premier ordre en ε des équations de
Stokes et du bilan de masse peut être fait.

Le résultat principal est que le gradient de pression est horizontal, donc que
l’écoulement est principalement parallèle au substrat. Précisément, nous trouvons
que la variation locale d’épaisseur h est donnée par l’équation dite de Reynolds:

∂h

∂t
=∇·

(
h3

3η
∇p

)

︸ ︷︷ ︸

flux

, (21)

où ∇p est le gradient de pression et η la viscosité (nous considérons un écoulement
Newtonien). Dans cette équation, l’accroissement de l’épaisseur est donné par la di-
vergence d’un flux. Ce flux est proportionnel au gradient de pression, mais il est
une fonction non-linéaire de l’épaisseur. Cette non-linéarité rend impossible la ré-
solution analytique de l’écoulement comme nous avions pu le faire précédemment
avec la théorie des ondes capillaires. Cependant cette équation qui ne porte que sur
l’interface et non le volume de fluide, est rapidement résolue numériquement, en par-
ticulier pour les écoulement bi-dimensionnels. Dans ce but, nous avons développé un
code de calcul par une méthode de volumes finis.

Nous considérons par la suite que la viscosité est constante (elle ne dépend pas de
l’épaisseur, aussi faible soit-elle) et que les forces de van der Waals sont négligeables.
Nous pouvons avoir une première approche de la non-linéarité de l’équation (21)

10A. Oron, S. H. Davis, and S. G. Bankoff. Reviews of Modern Physics 69, 931 (1997);
R. V. Craster and O. K. Matar. Reviews of Modern Physics 81, 1131 (2009).
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Figure 12 – Calcul numérique d’un fluage de deux créneaux sur le même
temps; (a) l’épaisseur résiduelle est forte; (b) l’épaisseur résiduelle est faible.

Figure 13 – Principe de fabrication d’une micro-lentielle asphérique par fluage.

en comparant le fluage d’un créneau dans deux cas: avec une épaisseur résiduelle
forte et une épaisseur résiduelle faible. Les résultats numériques sont présentés sur
la figure 12. Nous voyons que dans le premier cas, le créneau se transforme pro-
gressivement en sinusoïde. Nous retrouvons les résultats de la théorie des ondes
capillaires où le fluage est un filtrage passe-bas pour la topograhie: les harmoniques
(hautes fréquences spatiales) fluent beaucoup plus vite et il ne reste que le fonda-
mental de motif. Dans le second cas où l’épaisseur résiduelle est faible, nous trou-
vons un comportement différent: le haut du motif a flué, tandis que le fond a peu
évolué. Nous obtenons une forme qui n’est pas symétrique par rapport à la ligne
d’épaisseur moyenne. Dans la sous-section suivante, nous allons voir comment ex-
ploiter ce phénomène.

Fabrication de formes complexes par fluage

L’idée de départ est la fabrication de formes complexes, par exemple des formes com-
portant des pentes et des courbures, à partir de motifs simples (créneaux ou multi-
niveaux) que l’on fait fluer. La forme de départ joue bien entendu un rôle capital pour
la forme finale. L’originalité de notre approche est la suivante: nous venons de voir
que l’épaisseur résiduelle, lorsqu’elle est faible, est également un paramètre impor-
tant pour la forme finale obtenue. La présence d’une épaisseur résiduelle en nanoim-
pression nous permet ainsi de tirer partie d’une particularité du procédé générale-
ment considérée comme un défaut.
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Figure 14 – Paramètres de lentilles couverts par des fluages de créneaux. (a)
Fluage d’un créneau. (b) Hauteur, largeur et épaisseur résiduelle du créneau
variables. Le coefficient de corrélation R2 est d’autant plus proche de 1 que la
forme approche celle d’une conique.

Illustrons ce concept par un exemple: la fabrication de micro-lentilles asphériques
dont le principe est reporté sur la figure 13. Un créneau est flué et on peut comparer
la forme finale à une conique:

h(x)=
x2

r

1+
√

1− (1+ q) x2

r2

, (22)

avec r le rayon de courbure au sommet et q l’indice de conique (q < −1 pour une
hyperbole, q =−1 pour une parabole, q >−1 pour une ellipse, et q = 0 pour un cercle).
Lorsque q 6= 0, la lentille est dite asphérique (il y a bien entendu d’autres formes
d’asphéricité que les coniques).

Au cours de son fluage, le créneau va parcourir différentes formes de coniques,
avec une corrélation plus ou moins bonne. Ceci est illustré par la figure 14a. Le fluage
démarre en bas du diagramme. La corrélation est très mauvaise. Après un rapide
coude, la corrélation s’améliore, la forme ressemble de plus en plus à une conique.
Le rayon de courbure augmente car le fluage aplati le motif. Puis il y a une dernière
branche en haut du diagramme où l’indice de conique diminue fortement: la forme
est devenue une sinusoïde fortement aplatie.

Il ne reste plus qu’à faire varier les paramètres de la forme initiale: hauteur,
largeur et épaisseur résiduelle, comme représenté sur la figure 14b. Nous pouvons
ainsi avoir accès au domaine des r et q accessibles grâce à cette technique de fabrica-
tion, pour une certaine tolérence de corrélation donnée.
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Démouillage des films ultra-minces

Nous allons maintenant aborder un autre aspect des écoulements à faible épaisseur
résiduelle. Comme nous l’avons vu au début de ce chapitre avec la figure 2c, le dé-
mouillage, c’est-à-dire la rupture de continuité du film, peut se produire pour des
épaisseurs suffisamment faibles. Il peut y avoir démouillage si la pression de dis-
jonction augmente lorsque l’épaisseur du film diminue: si cette pression n’est pas
contre-balancée par la tension de surface, il y a alors un écoulement qui se crée des
zones minces vers les zones épaisses, finissant par dénuder le substrat sous-jacent. Il
s’agit du démouillage spinodal.

Si le démouillage spinodal est possible en théorie, il se peut qu’il ne soit jamais
observé expérimentalement, ou alors que d’autres formes de démouillage intervien-
nent bien avant (comme la nucléation de trous au niveau des poussières ou des zones
d’hétérogénéité). En effet, si nous considérons un film plan soumis à la pression de
disjonction (et à la tension de surface), nous pouvons à l’aide de la théorie des ondes
capillaires, extraire un temps caractéristique de démouillage, de la forme:

τd = 12ηγ

h3 ∂Π
∂h

2 , (23)

où nous rappelons que η désigne la viscosité, γ la tension de surface, h l’épaisseur
du film et Π(h) la pression de disjonction. Nous y reconnaissons les termes opposés
au démouillage: la viscosité et la tension de surface. Comme le facteur ∂Π/∂h est
généralement en 1/h4, le temps caractéristique varie comme h5. Ainsi si un film de
10 nm démouille en une seconde, un film de 100 nm du même matériau mettra plus
d’une journée pour démouiller à la même température.

Le démouillage de films de polystyrène sur substrats de silicium est un sujet large-
ment étudié aujourd’hui. Certains auteurs rapportent par ailleurs une augmentation
du démouillage si le substrat est recouvert d’une couche d’oxyde de silicium.11 Néan-
moins, très peu d’études ont été publiées concernant le démouillage confiné, c’est-
à-dire le démouillage du film lorsque celui-ci est pris en étau entre le substrat et
le moule. Or ce phénomène intervient couramment en nanoimpression.12 La fig-
ure 15 en rapporte quelques images. L’image 15a en microscopie optique montre
un ensemble de motifs (réseaux) imprimé dans un film de polystyrène sur un sub-
strat de silicium recouvert d’une couche d’oxyde. Des digitations, appelées instabil-
ités de Saffman-Taylor, se sont formées en dehors des motifs pendant l’impression.
L’image 15b en est un grossissement. De tels défauts en nanoimpression ont déjà
fait l’objet d’études.13 Cependant, les images c–f sont plus intéressantes en ce qui
nous concerne: nous avons pu observer pour la première fois des digitations dans

11R. Seemann, S. Herminghaus, C. Neto, S. Schlagowski, D. Podzimek, R. Konrad, H. Mantz, and K.
Jacobs. Journal of Physics: Condensed Matter 17, S267–S290 (2005).
H. Zhao, Y. J. Wang, and O. K. C. Tsui. Langmuir 21, 5817–5824 (2005).

12S. Y. Chou, L. Zhuang, and L. Guo. Applied Physics Letters 75, 1004–1006 (1999).
S. Harkema, E. Schäffer, M. D. Morariu, and U. Steiner. Langmuir 19, 9714–9718 (2003).
S. Landis, N. Chaix, C. Gourgon, and T. Leveder. Nanotechnology 19, 125305 (2008).

13H. Schift, L. J. Heyderman, M. A. d. Maur, and J. Gobrecht. Nanotechnology 12, 173–177 (2001).
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(a) Motifs imprimés dans le
polystyrène.

(b) Grossissement d’une instabilité
en dehors du motif.

(c) Digitations formées dans
l’épaisseur résiduelle.

(d) Grossissement (MEB) de
l’épaisseur résiduelle (tranchée A).

(e) Grossissement (MEB) d’une
digitation dans l’épaisseur
résiduelle.

(f) Grossissement (MEB) de
l’épaisseur résiduelle (tranchée B).

Figure 15 – Instabilité de Saffman-Taylor dans un film de polystyrène confiné.
Conditions d’impression: température 180°C, pression 13 bar.
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l’épaisseur résiduelle. La taille caractéristique de ces formes est de l’ordre du micron,
soit beaucoup plus petite que les instabilités observées en dehors des motifs. De façon
étonnante et encore inexpliquée, les instabilités sont plus grandes là où l’épaisseur
résiduelle s’étend sur une grande largeur (tranchée A), et deviennent de plus en plus
petites à mesure que cette largeur diminue (tranchée B). Dans cette configuration ex-
périmentale, aucune instabilité n’a été observée dans des tranchées plus petites que
5 µm.

Théorie de Lifshitz des forces à longue portée. Le contrôle du démouillage
pendant l’impression a deux intérêts technologiques majeurs:

1. Nous pouvons minimiser le démouillage si nous le considérons comme source
de défectivité. C’est le cas par exemple du démouillage en dehors des motifs
imprimés (digitations, ponts capillaires...).

2. Nous pouvons maximiser le démouillage au niveau de l’épaisseur résiduelle.
Nous pouvons ainsi tenter d’obtenir un procédé de nanoimpression pour lequel
l’épaisseur résiduelle est absente ou négligeable.

Nous nous sommes intéressés à la seconde application. Nous avons voulu étudier
l’influence d’une couche d’oxyde de silicium pour le démouillage confiné. Jusqu’à
présent, nous avons employé la théorie d’Hamaker pour exprimer la pression de dis-
jonction dans un film mince. Pour une configuration simple à deux interfaces (par
exemple un film supporté par un substrat), la pression dite non-retardée14 est donnée
par l’équation (5) que nous rappelons ici:

Π(h)=− A

6πh3 . (24)

La difficulté se concentre sur l’appréciation de la constante A, et en réalité la théorie
d’Hamaker ne donne pas de méthode satisfaisante pour la calculer.

Revenons un instant sur l’origine des forces à longue portée. Van der Waals les a
découvertes en travaillant sur les gaz à la fin du XIXe siècle, et London en a déterminé
la nature en 1930. Les molécules électriquement neutres s’attirent mutuellement à
cause de la fluctuation de leur nuage électronique, ce qui attribue un moment dipo-
laire instantané à chaque molécule. Même si ce moment dipolaire est nul en moyenne,
l’énergie d’interaction d’une paire de dipôles prend une valeur finie, qui dépend de
la polarisabilité du milieu. Pour obtenir l’interaction résultante entre deux objets
macroscopiques, il reste néanmoins à sommer ces interactions moléculaires. Or la
théorie d’Hamaker les somme paire à paire, en négligeant les interactions plus com-
plexes (réflection sur un troisième dipôle, etc.).

Pour étudier nos systèmes, nous avons préféré utiliser la théorie moderne de Lif-
shitz. Cette théorie donne un moyen pratique de calculer la pression de disjonc-
tion à partir des propriétés optiques des matériaux.15 Nous pouvons l’aborder de

14Il s’agit de l’expression asymptotique de la pression pour un film infinimement mince. L’expression
pour un film d’épaisseur finie est en réalité plus complexe.

15J. N. Israelachvili. Academic Press Inc, 2nd revised edition edition (1991), Chap. 11.
V. A. Parsegian. Cambridge University Press (2005).
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Figure 16 – Les forces à longue portée dans le cadre de la théorie de Lifshitz.

manière très shématique par le diagramme de la figure 16. Le point de départ est
le calcul de la force de Lorentz par unité de volume. Cette force peut être exprimée
comme la somme de deux termes: la divergence d’un tenseur, appelé tenseur des con-

traintes de Maxwell, et un terme transitoire dépendant du vecteur de Poynting, qui
n’intervient pas ici.16 Le tenseur de Maxwell dépend uniquement du champ électro-
magnétique local. Comme nous l’avons vu, ce champ est fluctuant (dipôles fluctuants),
et la physique statistique peut nous donner la densité spectrale de ce champ via le
théorème de fluctuation-dissipation. Ce théorème fait intervenir la partie imaginaire
de la fonction de Green du champ électromagnétique, qui dépend elle-même de la
géométrie et des propriétés optiques du système (propagation du champ électromag-
nétique et réflexions sur les interfaces). Le problème de sommation des interactions,
simplifié dans le cas de la théorie d’Hamaker, est donc ici rigoureusement pris en
compte par le calcul des fonctions de Green.

Influence d’une couche d’oxyde. Revenons au problème qui nous intéresse: nous
voulons savoir si l’ajout d’une couche d’oxyde de silicium sur le substrat permet de fa-
voriser significativement le démouillage de l’épaisseur résiduelle pendant le procédé
d’impression. À l’aide de la théorie de Lifshitz, nous avons donc calculé la pression
de disjonction dans le film de polystyrène, afin d’obtenir le temps caractéristique de
démouillage donné par l’équation (23) page xxv. Le système calculé est représenté
par la figure 17a. Nous fixons une épaisseur pour la couche d’oxyde et calculons le
temps de démouillage en fonction de l’épaisseur de polystyrène.

Le résultat du calcul pour plusieurs couches d’oxyde est tracé figure 17b. Deux
groupes se distinguent sur ce graphe: un premier groupe rassemblant le silicium nu
et le silicium recouvert de sa couche d’oxyde natif. Pour ces deux systèmes, le temps
de démouillage diverge en dessous d’une vingtaine de nanomètres, c’est-à-dire que le
démouillage spinodal ne se produit plus pour des couches de polystyrène trop fines.

16J. D. Jackson. John Wiley & Sons (1998).
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Figure 17 – Effet d’une couche d’oxyde de silicium sur la modélisation du
démouillage pendant un procédé de nanoimpression à 180°C.

En revanche, le deuxième groupe, formé des épaisseurs d’oxyde les plus importantes,
autorise un démouillage confiné des films ultra-minces. Il n’y a cependant pas de dif-
férence notable entre les épaisseurs d’oxyde, la limite étant donnée par une épaisseur
de 11 nm (ligne continue commune aux deux groupes).

Ce calcul nous enseigne qu’une couche d’oxyde plus importante que l’oxyde natif
pourrait avoir une influence favorable sur le démouillage en configuration confinée.
Nous avons mené une série d’expérience afin de confirmer cette propriété.

Une couche de polystyrène (30 kg/mol) a été déposée sur différents substrats de
200 mm de diamètre. Ici nous n’en retiendrons que deux: un substrat standard,
recouvert d’une couche d’oxyde natif de 2 nm, un autre substrat sur lequel une couche
d’oxyde de 53 nm17 a été formée. Nous avons utilisé un moule comprenant des lignes
de 147 nm de profondeur et de largeurs allant de 100 nm à 30 µm. Les impressions
ont été réalisées à 13 bar et 180°C pendant 15 min.

La figure 18 montre les résultats des impressions. Pour chaque échantillon, deux
images en microscopie électronique sont présentées:18 celle de gauche est un con-
traste topographique de la surface (électrons secondaires), celle de droite est un con-
traste chimique (électrons rétrodiffusés, insensibles au chargement électrique de la
surface). Sur les images de droite, chaque nuance de gris représente un matériau
en fonction du numéro atomique de ses constituants. Par exemple, nous voyons sur
la figure 18d de bas en haut: le silicium en gris clair, l’oxyde en gris moyen, et le
polymère en gris foncé. Cette propriété est intéressante pour localiser les zones de
démouillage. Sur la figure 18b, nous pouvons voir que l’épaisseur résiduelle est tou-

17Les épaisseurs sont mesurées par ellipsométrie.
18Nota bene: il s’agit de vues en coupe inclinées, c’est-à-dire que sur la moitié haute de l’image, nous

voyons le dessus de l’échantillon, tandis que sur la moitié basse nous voyons la coupe.
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(a) Oxyde natif (2 nm), contraste
topographique.

(b) Oxyde natif (2 nm), contraste
chimique.

(c) Oxyde 53 nm, contraste
topographique.

(d) Oxyde 53 nm, contraste
chimique.

Figure 18 – Vues au microcope électronique à balayage (coupe inclinée) de deux
impressions: (a)&(b) une sur substrat standard; (c)&(d) l’autre sur substrat
recouvert d’une couche de 53 nm d’oxyde.

jours présente, mais est parsemée de trous. En revanche, sur l’image 18d nous voyons
que l’épaisseur résiduelle est rapportée en gris clair, ce qui suggère le démouillage du
polymère dans cette zone. Néanmoins, la quantité de polymère restante n’a pu être
précisément estimée.

Finalement, cette série d’expériences permet de confirmer l’influence positive
d’une couche d’oxyde épaisse sur le démouillage de l’épaisseur résiduelle pendant
l’impression. D’autres expériences seraient néanmoins nécessaires pour étudier plus
finement la dynamique du démouillage en configuration confinée, et en présence
d’autres matériaux.
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Conclusion et perspectives

Cette thèse s’est attachée à mieux comprendre les écoulements de polymères fondus
pour les procédés de nanoimpression. En ce qui concerne le fluage de nanostructures,
nous avons tiré partie de deux modélisations suivant l’importance de l’épaisseur ré-
siduelle. Le premier modèle présenté dans ce chapitre est une adaptation de la théorie
des ondes capillaires pour les fortes épaisseurs résiduelles. Il s’agit à notre connais-
sance de la première application de cette théorie au fluage de motifs. Un des avan-
tages décisifs de cette modélisation est, outre le fait de fournir des solutions ana-
lytiques (ou semi-analytiques) des écoulements, de pouvoir appréhender des fluides
viscoélastiques. Le second modèle, courant en nanoimpression, est basé sur la théorie
de lubrification. Nous avons pu reparcourir certains points clés de cette modélisation,
comme la différence de vitesse de fluage en fonction de l’épaisseur locale.

Nous avons développé une méthode innovante de nanorhéologie des polymères en
couche mince. Cette méthode, basée sur le fluage de motifs particuliers brevetés, per-
met d’accéder in situ à la viscosité et au temps de relaxation du matériau, qui sont
des données clés pour les procédés de nanoimpression. Une application de cette méth-
ode aux films ultra-minces (moins de 50 nm) serait une perspective intéressante pour
étudier la variation des propriétés rhéologiques due au confinement de la matière.

Nous avons également appliqué le fluage à la fabrication de nanostructures com-
plexes. Les modélisations simples de fluage que nous avons développées nous permet-
tent d’envisager une optimisation rapide du motif initial afin d’approcher au mieux la
forme désirée par fluage. Ceci a par exemple été appliqué à la fabrication de micolen-
tilles asphériques. Cependant, pour les motifs à fort rapport de forme, une modélisa-
tion numérique complète est nécessaire. Il pourrait aussi être intéressant d’exploiter
d’autres forces d’écoulement, comme des forces électrostatiques ou acoustiques.

Enfin nous nous sommes intéressés au démouillage de films ultra-minces dans
le but de développer un procédé de nanoimpression sans épaisseur résiduelle. Nous
avons appliqué la théorie de Lifshitz au calcul de la pression de disjonction dans
le film de polymère. Cette théorie permet de prendre rigoureusement en compte
l’influence d’un empilement de couches à proximité du fluide. Nous avons introduit
le concept d’ingénierie de pression de disjonction par ajout de couches dédiées sur le
moule ou le substrat. Il reste néanmoins beaucoup à faire, tant sur le plan théorique
qu’expérimental, afin de maîtriser parfaitement le démouillage pour un procédé de
nanoimpression sans épaisseur résiduelle.
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Chapter 1

Introduction

1.1 Manufacturing at the nanoscale

Over the past few decades, nanotechnologies have opened new opportunities in vari-
ous fields such as information technologies, energy, chemistry or biology. Manufactur-
ing at the molecular level motivates scientists and engineers to face problems from
new points of view.

Smaller and smaller. In information technologies, the miniaturization of optical
devices has created a new need for micro and nano optical components. For instance,
micro-lenses array can be created at the surface of an imaging sensor in order to bring
new functions at the pixel level (Völkel et al., 2003; Vaillant et al., 2007; Fesenmaier
et al., 2008). In a different field, labs on chip are systems that perform many tasks of
biological analysis along a functionalized surface of small extent, with tiny amounts
of fluid. The applications for health are extremely promising (Becker and Locascio,
2002; Cho et al., 2003; Stone et al., 2004; Mills et al., 2005; Craighead, 2006). Never-
theless their widespread distribution requires the control of a process to manufacture
microfluidic channels and nanoscale functions at low cost.

Surface nanopatterning as a performance booster. It has been demonstrated
that appropriate surface nanopatterning can enhance the efficiency of solar cells
(Zeng et al., 2006; Bermel et al., 2007), or promote photon extraction of LED and
OLED (Schnitzer et al., 1993; Matterson et al., 2001; Möller and Forrest, 2002; Green
et al., 2001). In sensors applications, substrates for Raman spectroscopy with specific
metallic nanostructures on their surface enable a phenomenon called Surface En-
hanced Raman Scattering (SERS). Thanks to this effect, molecules can be detected
even in extremely small concentration (Moskovits, 1985; Tian et al., 2002; Li et al.,
2011). In biology, cell growth substrates, for instance, benefit from new properties of
patterned surfaces for tissue engineering, drug testing, or even neuronal computing.
On a substrate patterned with nanopillars, cell colonies do not spread randomly but
gather at certain places of the pattern, forming organized lines, arrays and clusters
(Kleinfeld et al., 1988; Chen et al., 1997; Lehnert et al., 2004).
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These applications based on large surfaces require low cost, high throughput and
high resolution patterning techniques. Nanoimprint lithography is a promising tech-
nology for such purposes. This manufacturing technology is the framework of the
present thesis.

1.2 Nanoimprint lithography

1.2.1 Nanoimprint processes

NanoImprint Lithography (NIL) is a patterning technique in which a topography is
replicated by pressing a mold (master) into a material. The difference in hardness
between the mold and the imprinted material enables the displacement (or flow) and
the shaping of the latter. It can be realized by heating the material at a temperature
where it becomes relatively viscous, or starting from a viscous material, by hardening
the molded shape with a curing process, or a combination of both. Extensive reviews
on NIL were published by Guo (2004, 2007); Schift (2008); Schift and Kristensen
(2010); Landis (2010), to cite only a few.

The particularity of NIL that distinguishes it from other molding techniques such
as injection, is that the characteristic dimensions of the imprinted patterns scale
down from several micrometers to a few nanometers. At such scales, the patterning
techniques usually employed are the optical photo-lithography or the electron-beam
lithography. The principle of these techniques, here called classical lithography, is
outlined on figure 1.1a on the facing page. (i) A photo-sensitive or electron-sensitive
resist is coated on a substrate. (ii) The film is exposed selectively to an energy beam,
which can be light going through a mask or a deflected electron beam. A chemical
reaction in the exposed areas changes the chemical properties of the resist. (iii) A
chemical cleaning called development reveals the patterning of the film.

Classical lithography, as the driving technology in the semiconductor industry,
has achieved great resolutions and complex manufacturing capabilities. Neverthe-
less, the cost of equipments and processes prevents this technology from spreading
outside high value-added patterning steps. In particular, it makes this technology
less relevant for the applications cited in the previous section.

Thermal NIL. Thermal NIL was first developed by Chou et al. (1995, 1996a,b).
Figure 1.1b presents the main steps of thermal NIL:

1. A thin thermoplastic resist film is coated on a substrate.

2. A patterned mold is pressed against the film and the whole system is heated at
a temperature at which the resist is viscous and can flow. The cavities of the
mold are filled by capillary forces and pressure applied by the mold.

3. The film is cooled down to room temperature at which the resist recovers its
solid-like mechanical behavior.

4. The system is demolded.



1.2 Nanoimprint lithography 3

Figure 1.1 – Main steps (cross-section scheme) of lithography processes in
(a) Classical lithography, compared with (b) Thermal NIL, and (c) UV NIL.



4 1 Introduction

UV NIL. This technique was first developed by Haisma et al. (1996) from Philips
Research Laboratories. Similarly to thermal NIL, this technique consists in molding
a thin resist film. But the change in mechanical properties of the resist is not given
by temperature, but by an ultraviolet light (UV) assisted chemical reaction. The steps
of UV NIL are the following (see Fig. 1.1c):

1. A thin UV-curable resist film is coated on a substrate. The material is usually
viscous at room temperature.

2. A UV-transparent patterned mold is pressed against the resist.

3. The patterned film is cured by UV exposure. The molecules of the resist cross-
link with covalent bonds: they form a hard three-dimensional network.

4. The system is demolded.

Other NIL processes. Many variants of NIL have been proposed, but the aim here
is not to list them exhaustively. For instance, in order to enhance the throughput or
to pattern large surfaces, several techniques have been developed:

FAST-NIL (Fig. 1.2a) is similar to thermal NIL, but is based on the idea that only
the thin resist layer needs to be heated, and not the whole imprint sys-
tem. The flow of the resist (or even of the substrate) is enabled by a
very localized heating, which speeds up the thermal cycles considerably.
The required energy is transferred either by thermal resistances embed-
ded in the mold (Tormen et al., 2008), ultra-sonic waves (Mekaru et al.,
2007; Mayer et al., 2012), or a laser pulse through a transparent mold
(Chou et al., 2002; Xia et al., 2003). These promising techniques are chal-
lenged by physical issues in nanoscale and high temperature gradient
heat transfer, and out-of-equilibrium phenomena.

STEP AND REPEAT (Fig. 1.2b) is a process where the mold is smaller than the surface
to be patterned. The imprint (thermal or UV) process is performed at a
location and the mold is moved to the next area. Alignment and stitching
are the general issues encountered in this process.

ROLL TO PLATE (Fig. 1.2c) makes use of a cylindrical mold that rolls over the resist
layer.

ROLL TO ROLL (Fig. 1.2d) is a process to nanopattern a rolled-up film.

1.2.2 Features and advantages of NIL

The principle of NIL is simple, and thus relatively low-cost. It does not require expen-
sive optical systems or light sources, as in the case of optical lithography. In fact, even
if the mold is expensive to produce, the expense is offset by the capability to produce
as many imprints as needed.
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Figure 1.2 – Some variants of nanoimprint processes for high throughput or
large surface applications: (a) Fast-NIL (local heating of the resist); (b) Step
and repeat; (c) Roll to plate; (d) Roll to roll.

Figure 1.3 – Various types of nanoimprint molds: (a) 2D classical mold (b) 3D
multi-level mold (c) 3D smooth mold (d) Soft mold.

The resolution is not limited by a chemical reaction resolution or a beam size. It
is rather limited by the resolution of the mold itself, and by how intimate the molding
of the material is. In fact, it has been demonstrated by Hua et al. (2004) that the
topography of a single 2-nm molecule could be reproduced.

Another advantage of NIL is the variety of topographies that can be molded. Sev-
eral types are presented in figure 1.3. In addition to the classical two-dimensional
(2D) shapes (Fig. 1.3a), three-dimensional (3D) multi-level (Fig. 1.3b) or smooth (Fig.
1.3c) patterns can be replicated. Besides, when making use of a bendable mold, non-
planar substrates such as polycrystalline materials or rounded surfaces can be pat-
terned (Fig. 1.3d).

Many materials are available for NIL, and their cost is usually lower than high-
resolution photoresists. Moreover, functional materials such as high-index optical, or
conductor polymers can be directly patterned.

1.2.3 Challenges

In spite of the many advantages listed above, NIL has encountered challenges that
are as serious as they are exciting. Here again, the purpose is not to refer to them
thoroughly, but to draw the general issues encountered in this technology.

Issues specific to thermal NIL. When needed, alignment is a major challenge in
thermal NIL. Alignment is the ability to place the patterning of a layer aligned with
respect to a previously patterned underlaying stack. It requires transparent molds
in the short wavelengths, where silicon molds generally used are opaque. Since the
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system is heated for enabling flow of the resist, thermal expansion also plays against
precision displacement and mechanical contact. Thermal expansion of silicon is of
the order of 1 µm/m/K, which represents an expansion of 30 µm for a 200-mm wafer
heated from room temperature to a standard imprint temperature of 170°C. Or equiv-
alently, for the same wafer, a misalignment of 200 nm is induced by a temperature
difference of only one degree Celsius.

Moreover, heating the wafer may damage the previously made structures. If the
thermal cycle is too long, dopants can migrate from their original place, or structures
can reflow.

Issues specific to UV NIL. For UV NIL, the fast process cycles are penalized by
mold cleaning steps and reduced mold lifetime. Indeed, the UV-assisted chemical re-
action happening at the interface between the mold and the UV-resist tend to damage
the anti-sticking coatings of the mold.

A hot topic in UV NIL is also the pattern fidelity of the molding. The cross-linking
reactions induce a shrinkage of the resist which is highly anisotropic and heteroge-
neous. An important effort is put in the development of low-shrinkage materials and
the numerical prediction of the phenomenon.

General challenges. NIL in general is also confronted with the following chal-
lenges. Because NIL is a patterning technique that requires mechanical contact, the
amount of defects in the shaping process, called defectivity, is pointed out as a major
issue. Defects may come from various phenomena. The most spectacular one (be-
cause visible to the naked eye) is particle contamination. If a particle gets trapped
between the mold and the resist, it will induce a severe deformation of the mold
during imprint, and the patterning defect may spread far from the actual particle lo-
cation. Nevertheless, defectivity by particle contamination is likely to be eliminated
with more advanced automatic equipments and foup1 handling.

Other types of defectivity are ill mold filling and capillary defects. They originate
from uncontrolled fluid flows during imprint. The driving force of the flow is indeed
not always the pressure applied by the mold, which is a process parameter, but may
be capillary phenomena. Capillary defects may create unwanted patterns such as
viscous fingering, holes, etc. Friction and propagating cracks occurring during de-
molding can also damage the imprinted patterns, in particular high aspect ratio2

features.
Finally, other challenges involve the residual layer. The residual layer is the resist

layer left under the protrusions of the mold. This aspect is a characteristic difference
between NIL and classical lithography where unwanted resist is completely washed
away at the development step (Fig. 1.1). Figure 1.4 on the facing page is an illustra-
tion of a residual layer issue. In this example, NIL is used to create a lithographic
mask, in other words, the imprinted pattern is to be transferred into the underlay-
ing substrate. Usually, the residual layer is removed (or opened) with a Reactive Ion

1Foup means Front Opening Universal Pod.
2Height over width of the feature.
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Figure 1.4 – Pattern transfer from a nanoimprinted mask with (a) a uniform
residual layer and (b) a non-uniform residual layer.

Etching (RIE) process that is highly anisotropic for that purpose. In an ideal case,
the residual layer is uniform (Fig. 1.4a), and the RIE reduces the resist thickness ver-
tically without damaging the patterns horizontally. Nevertheless, in a realistic case,
the residual may not be uniform (Fig. 1.4b). Indeed, narrow protrusions of the mold
displace the resist more easily than larger ones. Where the residual layer is thicker,
the RIE may not open this layer at all, whereas where it is thinner, the RIE may be-
gin to attack the resist on the sidewalls. The resulting transferred pattern may then
be quite different from the original master.

Important efforts have been put in the control and simulation of the residual layer.
This is a multi-scale, highly-coupled problem between fluid and solid mechanics.

1.2.4 Issues addressed in this work

This thesis presents theoretical and experimental work on nanoscale flows of poly-
mer melts occurring in the framework of nanoimprint lithography. Developments in
microfluidics have brought a good understanding of capillary driven flows. However,
at the nanoscale, in other words for polymer films thinner than about a hundred
nanometers, other effects must be considered, such as disjoining pressure arising
from the long-range van der Waals interactions, or even the deviation of material
properties (viscosity, glass transition temperature) from their bulk value. A better
understanding of these effects is an important step in the development of nanoim-
print technology.
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Reflow of a nanoimprinted pattern. Reflow of nanostructures is a common and
growing manufacturing technique, especially in optical applications where smooth
and curved topographies are needed. This technique is mainly empirical, and the
available models are limited to few geometries and mechanical behavior laws. In this
work, we apply versatile and efficient modeling tools to the reflow of a polymer film
that is first nanoimprinted and then annealed above its glass transition temperature.
Depending on the initial topography of the film, different leveling dynamics emerge
from this analytical and numerical study. Several concepts of reflow, for instance
based on the material viscoelasticity, or the thickness of the residual layer, can be
developed. These concepts are applied to the manufacturing of optical devices from
the reflow of complex nanostructures.

Nanoscale polymer characterization. An accurate knowledge of the mechanical
properties of polymers at the nanoscale is a key step towards realistic simulations of
NIL processes. Relevant physical inputs such as the material viscosity or the elastic
relaxation time are required to produce consistent NIL models. However, a general,
low-cost and fast method is still lacking to measure in situ the mechanical properties
of polymer melts. In this work, we develop such a method based on the leveling
of an especially designed nanoimprinted pattern. The Newtonian viscosity and the
terminal relaxation time of coated polymer films can be measured in a standard NIL
environment.

Dewetting of ultra-thin films. For very thin films, disjoining pressure becomes
the driving force, and can lead to the breakup of the residual layer and the growth
of dry areas on the substrate, a phenomenon referred to as spinodal dewetting. The
current understanding of this phenomenon is limited to several ideal cases, and not
appropriate to NIL where topographies and flows are complex.

If unwanted, dewetting can be a severely damaging phenomenon, and the ability
to control its dynamics would be a key factor to reduce mold filling defectivity in NIL.
On the other hand, a controlled dewetting of the residual layer could open a new
route towards residual-layer-free NIL processes. In this work, an exploratory work
is carried out in that matter. Emphasis is put on the accurate computation of the
disjoining pressure in stratified media with the modern Lifshitz theory based on the
optical properties of the interacting materials. The dewetting of the residual layer
is studied in two configurations: during the imprint and after the imprint during an
annealing step. The disjoining pressure can be tuned by the materials of the substrate
or of the mold in order to promote the dewetting of the residual layer.

1.2.5 Equipments

For this thesis, experiments were carried out in the clean rooms of CEA Grenoble.
Advanced pre-production tools could be used. Nevertheless, the drawback is that
little customization freedom is left to the user.
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Substrates, molds and materials. For substrates we use standard 200-mm (8”)
silicon wafers, that are monocrystalline silicon disks of 750 µm of thickness and
200 mm of diameter. A thin (2 nm) native oxide layer covers the wafer. The molds are
made of the same wafers and are manufactured by e-beam lithography. The surface
of the molds is coated with a fluorinated silane anti-sticking layer.

The materials mainly used in this work are thermoplastic polymers. They are
diluted in a solvent (toluene or anisole) and cast by a rotating process called spin-

coating. Any remaining solvent is expelled by a short annealing. The thickness of
the coated layer depends on the rotation speed and the polymer concentration. With
this technique, highly uniform (variation of the order of the nanometer over the full
wafer) films from several nanometers to several micrometers can be manufactured.

Thermal nanoimprint tool. The imprints were made with a commercial tool EVG
520HE from EV Group, pictured in figure 1.5a. It consists in a press enclosed in a
vacuum chamber. Figure 1.5b represents the stack of a standard imprint process in
this equipment. The vise is composed of two heating and cooling systems, on each
side of the press. On each side, a hard steel plate transfers the pressure of the press
to a soft PTFE layer that can absorb roughness or small defects. This soft layer is
wrapped in a multi-purpose clean room wipe in order to limit contamination. The
mold and the coated wafer are finally sandwiched in the middle of this stack.

The process is controlled by software with feed-back from pressure and temper-
ature sensors. The user can for instance control the vacuum in the chamber, the
temperature of the bottom and top plate (in the limit of the thermal inertia of the
system), the force (in Newtons) applied by the screw, up to 40 kN (about a weight
of 4000 kg, or a pressure of 13 bar on the wafer). Figure 1.6 displays a record of an
imprint monitoring.

Characterization. Characterization of flows at the macroscale is usually done by
optical methods, such as Particle Tracking Velocimetry (PTV), or Particle Image Ve-
locimetry (PIV). The velocity field of the flow can be extracted from images correlation
of moving tracers. These methods cannot be used at the micro and nanoscale because
of limitations due to the diffraction of light. In fact, a down-scale approach of PIV
consists in following submicron fluorescent beads as embedded tracers in the mate-
rial. Nevertheless, the numerous results reported for this technique (Tretheway and
Meinhart, 2002; Oppong et al., 2006; Joseph and Tabeling, 2005) make use of tracers
of 50-nm to 500-nm typical diameter, which is comparable to the thickness of our poly-
mer films. Although 25-nm fluorescent tracers are now available (for the smallest),
this size of bead still makes the method highly invasive for sub-100-nm film flows.

The general method followed in this work is based on the characterization of the
free interface of the flow. Indeed, if the motion of the free interface is known, with
use of an appropriate model, we can extract some information about the flow inside
the fluid. This is called an inverse method. Several techniques have been developed
to monitor the free interface at the nanoscale in real-time. They will be extensively
reviewed in the beginning of chapter 6. In this work, we preferred to benefit from
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(a) Picture of the EVG 520 (open). (b) Imprint stack (not scaled).

Figure 1.5 – Thermal NIL equipment.
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the fact that polymers we used have a solid-like behavior at room temperature. By a
quench (rapid cooling) of the resist, we can then observe a frozen state of the flow. This
allows the observation of the free interface to be made by common microscopy tech-
niques, such as optical and confocal microscopy (resolution down to 200 nm), scan-
ning electron microscopy (a few nanometers) or atomic force microscopy (less than
a nanometer in height, a few nanometers in lateral dimensions). Flows occurring
during the imprint process could only be characterized after cooling and demolding.

1.3 Reading guideline

In addition to this introductory chapter, this manuscript is divided into four parts:

Fluid mechanics for nanoimprint. This part gathers two didactic chapters.
Chapter 2 is devoted to nanoscale fluid mechanics. The fundamental equations are
derived from scaling discussions. Chapter 3 presents polymer melts rheology. Ba-
sic properties are reviewed, as well as thin film properties that are specific to the
nanoimprint field. As these two chapters are mainly intended for non-specialists of
the field, experienced readers would rapidly move on to the next part.

Creeping flows and applications. Chapter 4 presents two theories of nanoscale
free surface flows. The commonly used lubrication theory is reviewed. Nevertheless,
it was found that another model based on capillary wave theory is more appropriate
in some cases. Results that are special achievements of this thesis, for instance on
non-linearity, viscoelasticity, or shear thinning, are also discussed. Chapter 5 is com-
pletely dedicated to the applications of patterned films reflow. Various concepts of
reflow are exposed, many of which are illustrated by experimental implementations.
Chapter 6 presents the reflow of specially designed nanopatterns for characterizing
polymer properties. Viscosity and viscoelasticity can be extracted with the method
presented there.

Tuned instabilities. This part addresses the problem of thin polymer film sta-
bility. Chapter 7 presents the Lifshitz theory for computing the contribution of long-
range van der Waals forces to the disjoining pressure in a thin film. Readers who
are not familiar with van der Waals forces or electrodynamics may find this chap-
ter rather cumbersome. However, a thorough comprehension is not necessary for to
follow this part, and chapter 7 can be skipped in a first approach. Chapter 8 is a re-
view of the dewetting dynamics of thin polymer films. In addition, new observations
of dewetting patterns under confinement are reported. Chapter 9 is a presentation
of exploratory work on a residual-layer-free nanoimprint process based on dewetting
phenomena. Both theoretical calculations and experimental implementations are in-
vestigated.

Conclusion and appendices. Chapter 10 is the closing chapter of this thesis. It
contains a summary of work developed in this thesis. The following appendices report
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the mathematical developments used throughout the manuscript. Commented source
codes of several numerical tools are also reported.
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Chapter 2

Fluid mechanics at the
nanoscale

If, in some cataclysm, all of scientific knowledge were to be destroyed,
and only one sentence passed on to the next generations of creatures,
what statement would contain the most information in the fewest words?
I believe it is the atomic hypothesis (or atomic fact, or whatever you wish
to call it), that all things are made of atoms—little particles that move
around in perpetual motion, attracting each other when they are little
distance apart, but repelling upon being squeezed into one another. In
that one sentence, you will see, there is an enormous amount of informa-
tion about the world, if just a little imagination and thinking are applied.
(Feynman et al., 1963, p. 1-2)

All things are made of atoms—Right from the beginning of his famous Lectures on

Physics, Feynman emphasizes the role of atoms in our current understanding of mat-
ter and how it behaves. In classical fluid mechanics, phenomena are described from
a macroscopic point of view, and matter is thought as a continuous medium, which
is the common experience we have in our everyday life. However, when dealing with
smaller and smaller fluid objects, the atomic nature of matter cannot be ignored any-
more.

A lot of results can still be derived from continuum mechanics, but with care and
awareness of hypotheses and limitations. Do nanoimprint flows fall in this category?
It turned out that the continuum hypothesis could fairly account for what we observed
in the experiments reported in this thesis. That is why, from a heuristic point of view,
we can say that continuum mechanics is relevant to nanoimprint processes, at least
at the (both time and length) scales of the phenomena we studied in this thesis. This
chapter aims at detailing the physical justifications of the continuum hypothesis, and
what the fundamental equations consequently are.
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2.1 Scales of the problem

2.1.1 Intermolecular forces

From a microscopic point of view, as depicted by Feynman’s words, a fluid is a batch
of molecules (each molecule is made of atoms). In a gas, molecules are rather far
apart from one another (≈ 3nm for air at room temperature) and collide like billiards
balls. Whereas in a liquid, the intermolecular distance is of the order of the molecular
size itself (several angstroms), molecules are rather densely packed and slide on one
another. We will consider hereafter only liquids.

What are the properties of molecules in a liquid? First, the position of molecules is
rather random at long range, although there is some correlation at very short range,
that is in the neighborhood of the molecule (Barker and Henderson, 1976). Second,
molecules are constantly moving. The average displacement of molecules is a flow or
a mass flux, and the fluctuating motion is heat. The forces acting between molecules
are called intermolecular forces. They are responsible for the macroscopic properties
of the fluid. They originate from the many-body electromagnetic interactions between
charges (electron clouds and nuclei) of different molecules as well as inside molecules
themselves. Computation of such forces, especially in a liquid of macromolecules, is a
very complex quantum issue. In spite of their common electromagnetic origin, inter-
molecular forces are separated in categories depending on their strength and range,
that is why we talk about forces in the plural. A comprehensive review of intermolec-
ular forces can be found in the book by Israelachvili (1991). Table 2.1 summarizes
the intermolecular forces encountered in our case, and we will develop some of them
below.

Note the microscopic origin of viscosity. An interesting macroscopic property
of fluids is viscosity. If a liquid is given some motion, for example a glass of water
stirred with a spoon, and then is put to rest, after some time the motion vanishes due
to viscosity. Viscosity is responsible for the irreversible dissipation of momentum. But
at the molecular level, mechanical interactions are reversible. Through the enormous
amount of collisions, molecules that have a specific ordered velocity will fall back in a
more probable distribution (Villani, 2001).

Molecular dynamics. If we know the forces between molecules, then it is possible
to simulate the flow at the molecular level by computing the position and velocity of
each molecule, given by Newton’s laws. This is the field of Molecular Dynamics simu-
lations (MD) and its variants. Some aspects of nanoimprint process (Hsu et al., 2005;
Kang et al., 2007; Woo et al., 2009; Yao et al., 2010; Chandross and Grest, 2011; He
et al., 2012, to name a few) or polymer dynamics (Baschnagel and Varnik, 2005; Bar-
rat et al., 2010; Solar et al., 2012) have been studied with MD. However, MD suffers
from severe limitations in our case. As an example, let us take a 10×10×10 cube of
30kg·mol−1 polystyrene molecules, which represents roughly a 37nm-edge cube. The
MD set is a 1000-body problem containing approximately 108 degrees of freedom.
First, the intermolecular forces are not exactly known (because of the many-body
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Table 2.1 – Intermolecular forces in liquids.

Interaction Range (nm) Macroscopic effects

covalent bonds short (0.03−0.1) molecular structure
core repulsion short (0.1−0.4) (in)compressibility,

viscosity, elasticity
van der Waals, dispersion
forces between molecules

short (0.1−1) surface energy,
viscosity, elasticity

hydrophobic interactions short (0.1−1) surface energy,
dewetting

van der Waals, dispersion
forces between large objects

long (1−100) adhesion, spinodal
dewetting, molecular

assemblies

configurational entropy, steric
repulsion in polymer

long (chain length) viscosity, elasticity

quantum problem involved). An approximate pair potential (that is, the potential
between two isolated molecules, often the Lennard-Jones potential) is used instead.
A cut-off distance is also usually introduced in the potential, in order to reduce the
correlation between molecules, so that long-range forces are discarded. And finally,
MD describes the dynamics at short times, at the scale of molecular vibrations, and
in a small volume, thus it is rather difficult to model the imprint and reflow of a full
pattern over several minutes.

An intermediate modeling of fluids between molecular dynamics and continuum
mechanics is the Lattice Boltzmann Method (LBM). The goal of this method is to
compute the local statistical distribution of velocity, and not individual motions of
molecules as in MD, nor average quantities as in continuum mechanics. The velocity
distribution evolves in time by modeling the statistics of collisions. LBM is powerful
when dealing with complex flows such as multiphase flows, wetting dynamics, or
complex boundary conditions. A recent review of LBM applied to microfluidics can
be found in Zhang (2011) (see also Attar and Körner, 2009 for wetting dynamics;
Malaspinas et al., 2010 for polymer flows).

2.1.2 The continuum hypothesis

We want to model our system in terms of average quantities, like mass, momentum,
or heat—we saw that the flow is the average transport of mass, where high spatial
and temporal fluctuations are filtered out. In order to do so, we have to define a
volume and a time of integration. They are as small as possible, but large enough for
the volume to blur the molecular aspect of matter (Fig. 2.1a) and for the time to get
rid of fluctuations at equilibrium1. Those dimensions are actually the resolution of

1Local thermodynamic equilibrium is necessary to define macroscopic quantities like temperature or
pressure.
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(a) Average density as a function
of volume average.

(b) Mean free path illustration.
Left: high Knudsen number flow.
Right: low Knudsen number flow
(diffusive regime).

Figure 2.1 – Limits of continuum hypothesis. Gray dots represent molecules.

continuum mechanics, and regarding fluids, the volume of integration is known as a
fluid particle (Bruus, 2008). How do they compare with the scales of our systems?

We will take care of the time scales later, for now we will focus on length scales. At
the microscopic scale, for the transport of each quantity (mass, momentum, heat), it
is possible to define a carrier, either real (when some particle is the carrier) or virtual.
Then we have to compare the mean free path of the carrier Λ to the finest dimension
of our system ℓ, with use of the Knudsen number Kn:

Kn= Λ

ℓ
. (2.1)

Continuum fluid dynamics is a macroscopic description of the fluid in the limit Kn→ 0
(Fig. 2.1b). For a molecule of air at room temperature, the mean free path is roughly
100nm. In liquids, as molecules are quite densely packed, the mean free path is
rather of the order of intermolecular distance (several angstroms, as we saw earlier).
Then in our systems, for polymer films of several nanometers, the Knudsen number
for mass and momentum, where carriers are the molecules themselves, is Kn ∼ 0.1.
It is clear that we are in a borderline situation. Nevertheless, a molecular modeling
was not necessary to model our observations, that is why a continuum approach is
still relevant in our case.

Now, let us look into heat transport—a thorough introduction to nanoscale heat
transfer can be found in the book by Carminati et al. (2010). The carrier of heat
in opaque condensed matter is a virtual particle called phonon. In crystal lattice,
phonons scatter on defects, grain boundaries, by mutual collision or other mecha-
nisms. Still, in a monocrystalline material such as a silicon wafer, the mean free path
of phonons can be rather large, a few hundred nanometers at room temperature. This
is quite commensurable with the finest protrusions of our nanoimprint molds. So the
macroscopic description of heat diffusion is unlikely to apply in the patterns of the
mold. However, in the polymer melt, the mean free path is again of the order of inter-
molecular distance. So, as in the case of mass and momentum transport, the Knudsen
number is about 0.1. Here again, heat transfer is a borderline case. However, we will
study only systems in thermal equilibrium.
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Returning to the time average, the situation in our case is much simpler. We have
to compare the mean time between collisions of the carrier to our time resolution.
If we are interested in small time scales, smaller than the mean time between colli-
sions, then we are in the field of out-of-equilibrium physics. For a molecule of air at
room temperature, the mean time between collisions 0.2ns. For phonon, an order of
magnitude of the mean time between collisions is the mean free path over the sound
velocity, and for silicon this yields 0.1ns. And for liquids it is expected to be even
smaller. This is far less than our time resolution in classical thermal imprint, where
it is several seconds at best. Note that this may not be the case when using ultra-fast
imprint or laser pulse annealing.

2.1.3 Scaling laws and nanoscale effects

Flows at the micro and nanoscales are different from what we can experience at our
human scale. Small bugs can grab drops of water between their claws without any
container, and some species can even walk on the surface of water. At even smaller
scale, other phenomena appear. When the problem scales down to a few hundreds of
molecular sizes (see figure 2.2), even if matter can be seen as a continuous medium,
physical effects of two kinds come into play (Squires and Quake, 2005):

SCALING EFFECTS Forces and effects that are commonly negligible at the macroscale
become prominent at the nanoscale. Because the ratio of surface over vol-
ume increases in the sample, surface forces, such as surface tension, are
likely to become the driving forces. Other forces, such as long-range van
der Waals forces that are not usually taken into account at the macroscale,
are no longer negligible when the size of the flow compares with the range
of the forces (a hundred nanometers). Slippage may also occur between
the liquid and a solid interface: at a few nanometers, the usual no-slip
boundary condition for the flow may not hold.

CONFINEMENT EFFECTS Volume properties (mechanical properties, viscosity, fusion
temperature, glass transition temperature, heat diffusion...) of the mate-
rial depend on its size. We will see in the next chapter that the viscosity
of a polymer film is a thickness-dependent property, when the thickness
reduces to several molecular lengths.

Note on the term confinement: when the dimensions of the material reduce to several
molecular lengths, we talk about confinement effects. However, we will also use the
expression confined film, which means that the polymer film is sandwiched between
the substrate and the overlaying mold, as opposed to a supported film that is a coated
polymer film with a free interface.

Another feature of tracking flows at the nanoscale is that we can observe pro-
cesses that would be extremely slow at the macroscale. For example, glaciers appear
solid to our common experience, but it is known that some of them slowly deform and
flow. Figure 2.3a is a picture of the Aletsch glacier in the Swiss canton of Valais. It
flows at a velocity at its center of about 200 m per year, that is 6 µm/s. Such a velocity
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Figure 2.2 – Length scales and time scales in nanoimprint.



2.2 Fundamental equations 23

(a) The Aletsch glacier in the Swiss canton of
Valais. (Credit: Dirk Beyer under Creative
Commons)

(b) Pitch Drop
Experiment. (Credit:
John Mainstone,
University of Queensland
under Creative
Commons)

Figure 2.3 – Slow flows at macroscale.

is quite high at the microscale. Another fascinating example is the Pitch Drop Ex-

periment, an experiment that is claimed to be one of the world’s longest experiments
(Edgeworth et al., 1984). It was started by Professor Parnell in 1927 at the Univer-
sity of Queensland (Australia) and is still on today. It consists of a funnel filled with
pitch, an extremely viscous kind of bitumen (see figure 2.3b). While the same funnel
filled with water would empty within a few seconds, only eight drops of pitch have
fallen since the beginning of the experiment. Pitch viscosity was assessed to be about
108 Pa·s, in other words, 100 billion times more viscous than water. In chapter 6, we
will see how we can characterize viscosities of this order of magnitude with nanoscale
flows of only several minutes.

2.2 Fundamental equations

In the previous section, we gave some arguments for using continuum mechanics,
although the dimensions of our systems approach the molecular size. We now review
the well known equation of fluid mechanics. With scaling arguments, we will find
what the driving terms are. We consider a chemically pure fluid.

2.2.1 Incompressible continuity equation

When the velocities are much lower than the velocity of sound in the fluid, then the
fluid can be considered as incompressible. Moreover, in thermal equilibrium, the
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density of the fluid is homogeneous, and the incompressible continuity equation is:

∇·v= 0, (2.2)

where ∇· is the divergence of the velocity field v.

2.2.2 The Stokes equation

In the continuum approach, the transport of momentum is classically described by
the Navier-Stokes equation:

ρ

(
∂v
∂t

+ (v ·∇)v
)

=−∇p+∇·T+ f, (2.3)

where ρ is the fluid density, p the pressure field, T the viscous stress tensor, and f
any external body force field.

A source of beauty and diversity of fluid mechanics lies in the non-linearity of the
term ρ(v · ∇)v in equation (2.3). It is also the source of its mathematical difficulty.
In two dimensions, it has been proven that smooth and globally defined solutions
exist for a given Navier-Stokes problem, nevertheless, in three dimension, it is one of
the famous one-million-dollar problem of the Clay Mathematics Institute! However,
with decreasing size of the fluid domain, decreasing velocities, and increasing fluid
viscosity, this non-linear term can be neglected.2

For a simple Newtonian fluid of viscosity η, the viscous term ∇ ·T is reduced to
η∇2v. The comparison between the inertial terms (left hand side of equation 2.3) and
the viscous term is then given by the Reynolds number:

Re= ρVℓ

η
, (2.4)

where V is a characteristic velocity, and ℓ a characteristic length3 of the fluid domain.
By taking ρ ∼ 103 kg·m−3, V ∼ 10−9 m·s−1, ℓ ∼ 10−6 m and η = 102 Pa·s4, we get Re ∼
10−14. Therefore, in our case, the viscous term prevails and the inertial term can be
neglected. Our systems can be described by the Stokes equation:

∇p =∇·T+ f. (2.5)

Note on high frequency case. If a time-dependent boundary condition is applied
on the fluid, then the time derivative of inertial term is not necessarily negligible, and
the following time-dependent Stokes equation has to be used:

ρ
∂v
∂t

=−∇p+∇·T+ f. (2.6)

This can happen when dealing with acoustic waves, ultra-fast imprint, etc. At high
enough frequencies, the viscoelastic nature of the fluid appears (we will see this in

2But don’t worry, non-linearity will come back with boundary conditions!
3This time, the largest dimension.
4Order of viscosity of polystyrene 30kg·mol−1 at 180°C.
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detail in chapter 3). Then we have to compare the inertial term to the elastic term
through the Cauchy number:

Cy= ρω2ℓ2

G
, (2.7)

where ω is the driving frequency and G the elastic shear modulus. For instance, if we
assume a characteristic time of 1µs (ω ∼ 106 s−1, ultra-fast imprint), ρ ∼ 103 kg·m−3,
G ∼ 1MPa then the flow is still driven by elasticity below ℓ∼ 32µm, but above, inertial
effects occur.

2.2.3 Energy transport

Heat transport in an opaque fluid free of internal heat source, is described by the
equation:

∂

∂t
ρcpT

︸ ︷︷ ︸

variation of internal energy

+ ∇·ρcpTv
︸ ︷︷ ︸

heat convection

= K∇2T
︸ ︷︷ ︸

heat conduction

+ T :∇v
︸ ︷︷ ︸

viscous dissipation

−
(
∂ lnρ

∂ lnT

)

p

∂p

∂t
︸ ︷︷ ︸

enthalpic contribution

,

(2.8)
where cp is the heat capacity at constant pressure, T is the temperature, and K is
the thermal conductivity, assuming cp and K are constant.5 Whether heat transfer
is driven by conduction (heat exchange without mass flux, K∇2T term) or convection
(transport of hot matter, ∇·ρcpTv term) is given by the Péclet number:

Pe=
cpρℓV

K
, (2.9)

where ℓ is again a characteristic length, and V a characteristic velocity. The in-
equality Pe ≪ 1 means that heat transfer by conduction is much faster than heat
transfer by convection. For polystyrene, we have roughly cp ≈ 2kJ·kg−1·K−1 and
K ≈ 0.2W·m−1·K−1, which yields, assuming the same values for ρ, ℓ and V as for
the Reynolds number computation, a Péclet number: Pe ∼ 10−8. Therefore, in our
polymer films, heat transfer will be driven by conduction.

Now we can ask if heat produced by viscous dissipation (T : ∇v) is significant
compared to heat brought by conduction. The comparison is made with use of the
Brinkman number:6

Br= ηV 2

KT
, (2.10)

where T is the temperature of the substrate. By taking η ∼ 108 Pa·s, T ∼ 400K, K

and V as above, we get: Br ∼ 10−12, which means that heat generated by viscous

5In fact, for polystyrene, their variation between Tg and Tg +100 is less than 10%, which has to be
compared to the factor 106 for viscosity.

6In a one-dimensional approach, if we imagine a film of thickness ℓ, with the boundary conditions
T(0)= T(ℓ)= T0, then the temperature profile T(z) at long times would be:

T(z)
T0

= 1+Br×
(

z

ℓ
− z2

ℓ2

)
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shear is negligible. This is caused by the extremely low characteristic speed that
counterbalances high viscosity. It may not be generally the case, such as in polymer
extrusion where velocities and shear are much higher.

Finally let us consider the enthalpic term −
(

∂ lnρ/∂ lnT
)

p ∂p/∂t. For an ideal gas,
−(∂ lnρ/ ∂ lnT)p = 1, and we know that heat is produced by compressing the gas
(∂p/∂t > 0). For polystyrene at 500 K, it is of the order of 3 (we will see an expres-
sion of ρ(T) in the next chapter), which is not far from unity. Regarding the pressure,
it can be given by the Laplace pressure (which we will introduce below): γ/ℓ with γ

the surface tension. Besides, we will see in chapter 4 that the characteristic leveling
time for high frequency shapes is of the order of ηℓ/γ. The comparison of the enthalpic
term with the conduction term yields:7

γ2

KTη
∼ 10−7, (2.11)

with γ∼ 0.03 N·m−1, T = 500 K and η∼ 102 Pa·s, which means that heat produced by
variation of pressure will immediately dissipate through thermal conduction in the
fluid.

With the scaling discussion we presented so far, we can deduce that heat transfers
in our fluids at the small scale and in solids at the macroscale are quite similar. It is
of diffusive nature, and the equation of heat can be recast as follows:

∂

∂t
ρcpT = K∇2T. (2.12)

2.2.4 The isothermal hypothesis

Now, if we consider a flat thin film of thickness ℓ, and if we assume that temperature
is homogeneous at one boundary of the film, then from equation (2.12), the character-
istic time τd of thermal diffusion in the film is:

τd =
ρcpℓ

2

K
. (2.13)

For a 100nm-thick polystyrene film, τd ∼ 0.1µs, whereas for a 750µm-thick silicon8

wafer, τd ∼ 10ms. This characteristic time has to be compared to the characteristic
time of heat transfer at boundaries. This ratio is called the Biot number:

Bi= Hℓ

K
, (2.14)

where H is the heat transfer coefficient per unit of surface related to the (linearized)
transfer phenomenon. In the limit Bi → 0 corresponding to an infinitely fast conduc-
tion, the temperature inside the material can be considered as homogeneous. The
temperature variations are then imposed by boundary conditions.

7To our knowledge, the dimensionless quantity does not have a traditional name.
8For silicon: K = 148W·m−1·K−1, cp = 700J·kg−1·K−1, and ρ = 2330kg·m−3.
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(a) Zero-thickness interface (Gibbs
model).

(b) Microscopic origin of surface
energy.

Figure 2.4 – Gibbs interface and surface energy.

If we assume that a silicon wafer is put on a chuck with a thermal contact of the
order H ∼ 100W·m−2·K−1, then Bi = 10−3, and consequently the temperature is ho-
mogeneous inside the wafer. In case of an exchange by free convection and radiation
between the polymer film and air at room temperature, H is of the same order of
magnitude,9 H ∼ 6W·m−2·K−1 (Taine and Petit, 1993).Consequently, Bi= 10−6, which
means that the temperatures inside both the polymer film and the wafer are homo-
geneous.

This is why we will consider that temperature in our films is homogeneous, an
assumption that we call the isothermal hypothesis.

2.2.5 Boundary conditions

Now that we have reviewed the equations governing the inside of the fluid, let us focus
on the boundary conditions. First, we need to define what an interface is. Figure 2.4a
is a sketch of what a real (frozen) interface looks like: there is a transition zone
between one medium (the fluid) and the other (here, vacuum). If we extend the bulk
density of each medium up to a mathematical surface (dotted line), we define what
is called a Gibbs interface that has a zero thickness. The difference between the real
transition and the virtual step creates excess quantities that come into play for the
modeling of the system. Although we deal with nanoscale flows, this model is still
relevant because the transition zone doesn’t exceed the molecular length in our case.

Surface tension. One consequence of surface excess quantity is surface tension.
Molecules that are at the free surface have less interacting neighbors (see figure 2.4b):
they are in a higher state of energy. The fluid tends to minimize this excess energy
by minimizing the extent of the free surface. The resulting effect is a pressure jump

9For radiative transfer, it is given by the linearized Stefan-Bolzmann law: H = 4σT3
ext with σ =

5.67×10−8 SI units.
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Figure 2.5 – Couette flow with various slip conditions. β is the slip length.

at the interface, called the Laplace pressure:

pinside − poutside = γκ, (2.15)

with γ the surface tension or interfacial energy, and κ the local curvature of the inter-
face.

If surface tension is not homogeneous on the surface, then a force called the
Marangoni effect appears tangentially to the interface. We will not consider it in
our case, because of the isothermal hypothesis (surface tension depends on temper-
ature) and because there is no chemical gradient (adsorbed substances alter surface
tension).

Slip length. For macroscopic flows, the classical boundary condition for the velocity
on an impermeable solid is the no-slip condition: the fluid velocity of the fluid equals
that of the solid. If the solid is at rest, then the fluid velocity is zero at the boundary.
However, for nanoscopic flows, a slip can occur between the fluid and the solid (Boc-
quet and Barrat, 2007). This phenomenon is often modeled by a so-called Navier slip

condition (Navier, 1822). The tangential velocity is proportional to the shear stress
at the interface. For Newtonian fluids, this leads to the condition:

v‖ =β
∂v‖
∂z

, (2.16)

with v‖ the tangential velocity, β the slip length, and ∂v‖
∂z

the normal derivative of
the tangential velocity. The slip length β is illustrated in figure 2.5. In this figure,
the velocity field of a Couette flow is shown with three different slip conditions. With
a no-slip condition, the velocity vanishes at the solid interface (figure 2.5a). With a
partial slip condition, the velocity is finite at the interface, and virtually vanishes at
a distance β from the interface (figure 2.5b). With a perfect slip condition, we get
a plug flow (figure 2.5c). Typical dimensions of the slip length range from several
nanometers to several micrometers (Neto et al., 2005). Nevertheless, we could not see
any effect of a non-zero slip length in our experiments.

Surface roughness. Interfaces are not perfectly flat, as depicted in figure 2.6a.
Roughness can be quantified by the root mean square deviation of the interface, ex-
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(a) Interface model for a planar
polymer film.
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(b) Roughness measurements of an
air-polystyrene interface at various
temperatures.

Figure 2.6 – Roughness of interfaces.

pressed as follows:

〈h〉RMS =

√

1
L

ˆ L

0
(h(x)−h0)2 dx, (2.17)

where h(x) is the local position of the interface and h0 its mean value. For a free inter-
face, thermal motion causes the roughening of the interface. According to statistical
physics (Mecke, 2001), the thermal roughening at temperature T should be:

〈h〉RMS =
√

C
kBT

2πγ
, with C = ln

2πℓcap

a
, (2.18)

where kB is the Boltzmann constant, γ the surface tension, ℓcap the capillary length
as we will see below, of the order of the millimeter, and a the molecular size.

Several polystyrene samples were heated at a definite temperature and then
rapidly quenched at room temperature. An AFM measurement of each sample could
give the roughness of the interface. Results are reported on figure 2.6b. A typical
roughness of 0.3 nm is found. We could think that the surface should be more rough
with increasing temperature because the Brownian motion gets stronger. However,
this difference is weak, and actually falls inside the measurement uncertainty. The
roughness of a silicon wafer is 0.16nm. Compared with the dimensions of the flow
(about ten to several hundreds of nanometers), interfaces can be modeled by (locally)
flat interfaces.

2.2.6 Driving forces

The flow is driven by forces acting as boundary conditions, such as surface tension,
or by body forces (noted f in the Stokes equation 2.5). From a top down approach,
one might wonder whether gravity as a body force plays a role in microscale flows. A
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typical result of microfluidics is that it does not. If we compute the ratio of the gravity
force over surface tension, we get the Bond number:

Bo= ρgℓ2

γ
, (2.19)

where g is the gravity acceleration. With ℓ ∼ 100µm, we get Bo ∼ 10−3, hence negli-
gible gravity. In fact, it is useful to compute what is called the capillary length ℓcap,
given by:

ℓcap =
√

γ

ρg
. (2.20)

Gravity plays a role only at length scales greater than the capillary length. In our
case, ℓcap ∼ 2mm.

The force field f could be an electrodynamic force. Treatments of thin film flows
under electric field have been done by Schäffer et al. (2000, 2001); Wu et al. (2010).
Although this is an interesting issue, we chose to apply no electrodynamic field and
to focus on the classical nanoimprint process.

The last forces of interest are the van der Waals forces. If we go back to inter-
molecular forces of table 2.1 on page 19, we see that there are long-range dispersion
forces between ensembles of molecules. In a thin film, it is assumed that van der
Waals force f can be expressed by the gradient of a pressure, f =−∇Π, with Π called
the disjoining pressure. This concept was first introduced by Derjaguin (1936). His
idea was to sum all the interactions at play in the film and express the result as a
pressure difference between the film and a bulk of the same material (Fig. 2.7). The
computation of Π is a delicate issue, to which chapter 7 is devoted. Here we begin
with the common expression for a film of thickness h:

Π(h)=− A

6πh3 , (2.21)

where A is the Hamaker constant that depends on the materials (both film and sur-
rounding materials). A typical order of magnitude for A is 10×10−21 J, which gives a
pressure of 1 bar for a film thickness of 3 nm. The interesting property of A is that it
can be either positive or negative. A negative Hamaker constant means that pressure
in thinner parts of the film is higher, which can lead to the rupture of the film. This
process is called spinodal dewetting. For flows with a free interface, we will see in
chapter 4 a proper way to quantify the competition between surface tension and van
der Waals forces, through the dimensionless Hamaker number.

2.3 Conclusion

In this chapter, we saw that continuum mechanics can be relevant to model flows
at sub-micron scales, provided that scaled-down equations and specific driving forces
are used. Table 2.2 on the next page collects the values of hydrodynamic and thermal
dimensionless numbers for thermal nanoimprint.
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Figure 2.7 – Concept of disjoining pressure (Π).

Table 2.2 – Hydrodynamic and thermal dimensionless numbers in classical
thermal nanoimprint.

Number Symbol Meaning Eq. Value Consequence

Knudsen Kn mean free path
typical length (2.1) 10−1 continuum hypothesis

Reynolds Re inertial forces
viscous forces (2.4) 10−14 negligible inertia

Cauchy Cy inertial forces
elastic forces (2.7) 10−21 negligible inertia

Péclet Pe heat convection
heat diffusion (2.9) 10−8 negligible convection

Brinkman Br viscous heat
heat diffusion (2.10) 10−12 negligible viscous heat

Biot Bi surface heat transfer
diffusion (2.14) 10−3 homogeneous temp.

Bond Bo gravity
surface tension (2.19) 10−3 negligible gravity

Hamaker Ha van der Waals forces
surface tension (4.11) < 10−2 see chapter 4
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Chapter 3

Polymer melts rheology

3.1 Introduction

Polymers are large molecules made of repeating elementary units joined together
by covalent bonds, forming chains. For some polymers called branched polymers,

branches are grafted to the main chain. However, in this thesis, we study only linear

polymers, in other words, polymers made of a single chain.
Many kinds of polymers are commonly employed in nanoimprint. The family of

polymer mainly used in this thesis is polystyrene (PS), of the chemical diagram:

PS is a standard polymer that has been extensively studied both theoretically and
experimentally.

In the next sections, we will see how polymers (and polystyrene in particular)
are characterized in term of molecular weights, dimensions, mechanical and energy
properties.

3.2 Basic properties of polymers

3.2.1 Molecular weight

In a real synthesized polymer, the degree of polymerization of each molecule, that is
the number of repeating unit making a chain, is not exactly the same. Consequently,
all the molecules are not of the same molecular weight, but there is instead a dis-
tribution around an average molecular weight. There are commonly two types of
averages:

1. The number-average molecular weight:

Mn =
∑

Ni ×Mi
∑

Ni

, (3.1)
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Figure 3.1 – An example of a random walk chain. REE is the end-to-end
distance.

with Ni the number of molecules of molecular weight Mi.

2. The weight-average molecular weight:

Mw =
∑

Ni ×M2
i

∑
Ni ×Mi

. (3.2)

In this thesis, as well as the majority of literature, Mw is employed to charac-
terize the molecular weight of a material.

One quantity characterizing the distribution around the average molecular weight is
the PolyDispersity Index (PDI) defined by:

PDI= Mw

Mn

. (3.3)

The PDI has a value equal or greater than unity1. The closer it is to 1 (monodisperse

material), the more narrow is the distribution. The PDI is one of the parameters that
have a significant impact on the material properties, especially on viscosity. It should
be noted that the variations of basics properties for large PDI are far from being fully
understood (Bicerano, 2002).

3.2.2 Dimensions

The shape of polymer chains has been well modeled by random walk topology (Fig. 3.1).
In this theory, the orientations of the bonds between each repeating unit are com-
pletely uncorrelated (random). If there is no additional constraint, the mean distance
from one end of the chain to the other end, called the end-to-end distance, is:

REE = ℓ
p

N, (3.4)

with ℓ the length of a repeating unit and N the degree of polymerization. Now, if
we constrain the orientation of the bonds into a certain solid angle, the expression

1This property comes from the double inequality:

(∑

Ni Mi

)2 ≤
∑

N2
i M2

i ≤
(∑

Ni

)(∑

Ni M2
i

)

.
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remains, but with an effective elementary length ℓe in place of ℓ. Moreover, if the
chain cannot cross itself, the theory yields (Jones, 2002):

REE = ℓeNδ, (3.5)

with δ> 0.5. For polystyrene, we used in this thesis the following empirical formula
(in SI units) as a function of the molecular weight (Zhou and Yan, 1996; Leveder,
2009):

REE(Mw)= 6.598×10−11M0.5106
w . (3.6)

In some cases, the radius of gyration RG is preferred to characterize the size of poly-
mers. It is defined as the mean distance of each element from the center of gravity
of the chain. It is however straightforward to move from one quantity to the other by
use of the property: R2

G
= R2

EE
/6.

3.2.3 Glass transition temperature

Glass is an amorphous state of solid matter. When glass is heated above a temper-
ature called the glass transition temperature, noted Tg, it becomes viscous and can
flow. A phase transition from a glassy state to a fluid state is characterized by dis-
continuity in the thermal expansion coefficient or specific heat,2 and a continuous
change in volume or viscosity. On the contrary, a freezing or crystallization transition
leads to discontinuity in these latter properties—for instance, there is discontinuity
in volume and viscosity between solid ice and liquid water at 0°C.

For polystyrene, Tg ≈ 100°C. The practical aspect of the glass transistion temper-
ature is that it is the temperature above which the material has to be heated in order
to be shaped by injection molding or imprint. The higher the temperature is above
Tg, the less viscous the polymer becomes. The dependence of viscosity on tempera-
ture will be discussed in section 3.3.3. The understanding of Tg at the molecular level
is an issue beyond the scope of this thesis. Recent advances in that field are reported
in the review by Berthier and Biroli (2011).

Dependence on the molecular weight. The glass transition temperature de-
pends weakly on molecular weight, except for very small Mw. The common expression
for this dependence was first proposed by Fox and Flory (1950), as a function of Mn:
Tg = T∞

g −Kg/Mn with T∞
g the glass transition temperature for infinite Mn and Kg a

fitting parameter. We can write this expression as a function of Mw:

Tg(Mw)= T∞
g −

Kg ×PDI

Mw

. (3.7)

Table 3.1 gives the parameters of the latter equation for polystyrene from various
authors. It yields Tg

2These discontinuities are used to actually measure Tg, for example by ellipsometry or differential
scanning calorimetry.
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Table 3.1 – Parameters of the Fox-Flory correction for polystyrene.

Reference T∞
g (K) Kg (kg·mol−1)

Fox and Flory (1950) 373 170
Bicerano (2002) 382 200

Singh et al. (2004) 366 113
Kim et al. (2007b) 382 100
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Figure 3.2 – Experimental test of the temperature dependence of density
(Eq. 3.8) for polystyrene 30kg·mol−1.

3.2.4 Density

Regarding the density of polystyrene for T > Tg, the work of Fox and Loshaek (1955a)
is frequently cited. They accounted for the thermal and molar dependence with the
following empirical formula (in S.I. units):

1
ρ
= 7.67×10−4 +5.5×10−7T +6.43×10−8 T

Mw

. (3.8)

This expression yields, for polystyrene 30kg·mol−1 at Tg: ρ = 1028kg·m−3.
The temperature dependence of equation 3.8 can be experimentally checked by

ellipsometry measurements, as reported on figure 3.2. The thickness of a polystyrene
film (Mw = 30kg·mol−1) can be measured at various temperatures (Fig. 3.2a). Given
the large difference in thermal expansion between the silicon wafer (≈ 3×10−6 K−1)
and the polystyrene film (≈ 6×10−4 K−1), we can assume that the film expands only
along its thickness. Then the product of the thickness by density (mass of polymer
per unit of surface) should be a constant. This is verified by figure 3.2b, where the
product h×ρ is a constant within 0.5%.
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Table 3.2 – Polymers used in this thesis.

Polymer Short name Mw
a PDIa REE

b Tg
c γd

(kg·mol-1) (nm) (K) (mN·m-1)
Polystyrene PS 30k 30 1.06 1.3 373±1 32±3
Polystyrene PS 130k 130 1.06 3.0 375±1 32±3

aSupplier data.
bFrom Eq. (3.6).
cMeasured from previous studies by Leveder (2009).
dSee Sec. 3.2.5.

3.2.5 Surface tension

The surface tension of polystyrene melts varies with both molecular weight and tem-
perature. In a review by Dee and Sauer (1998), a power law of M2/3

n and a linear
decrease with temperature is reported. However, this variation is small—in con-
trast with the variation of viscosity—for entangled polystyrene and for the range of
temperature investigated in this thesis (120°C to 180°C). Typical values (extrapo-
lated for our molecular weights from tabulated data by Bicerano, 2002) are γ@120°C =
33.3mN·m−1 and γ@180°C = 29.0mN·m−1 for PS 30k, and γ@120°C = 34.8mN·m−1 and
γ@180°C = 30.4mN·m−1 for PS 130k. As we do not know the exact thermal dependency,
it is reasonable to take a constant value γ= 32±3mN·m−1 for both molecular weights.

3.2.6 Polymers used in this thesis

Commercially available polystyrene from Sigma-Aldrich was used for this thesis. Ta-
ble 3.2 summarizes the properties of the material we used.

3.3 Bulk viscosity and viscoelasticity

3.3.1 Linear theory of viscoelastic fluids

From the previous chapter, we saw that one of the terms in the equation of motion is
the divergence of the viscous stress tensor, written ∇·T. The closure of the momentum
equation by an expression of stresses as a function of strains or strain rates is an
issue dealt with by a devoted scientific field called rheology. An extensive study of
rheological models for polymers as well as experimental results can be found in the
book by Ferry (1980). Here we report only basic ideas we will need for the following
chapters.

A simple shear is a deformation of a material element where one face slides par-
allel to the opposite one (figure 3.3 on the next page). At small shear strains, a solid
may behave like an ideal Hooke’s spring: the stress σt is proportional to the strain γ,
and the coefficient of proportionality is called the shear modulus:

σt =Gγ. (3.9)



40 3 Polymer melts rheology

Figure 3.3 – Schematic of a simple shear strain.

On the other hand, at small strain rates, a fluid may behave like an ideal Newton’s
fluid. The stress is proportional to the strain rate, and in the case of an incompressible
fluid, it takes the form:

σt = ηγ̇, (3.10)

where η is called the dynamic viscosity.
Now, at both small strains and strain rates, a realistic fluid material, such as a

polymer melt, stores a part of the mechanical energy and dissipates the remaining
part into heat (see equation 2.8 on page 25). If a stress is instantaneously applied on
such material, it flows but also store some elastic energy. If the stress stops, the elas-
tic energy is relaxed by shape deformation, which can be harmful for nanoimprinted
patterns for example. Another way to consider viscoelastic fluids is the following: if
an oscillating shear stress of frequency ω is applied on the fluid, the strain is not in
quadrature phase (+π/2), as it would be for a Newtonian fluid. It is neither in phase,
like a Hookean spring. In fact, both the phase and the proportionality coefficient de-
pend on the frequency of the oscillation. We can define a complex viscosity, written
η(ω) (note: in references, it is also written η∗):

σt(ω)= η(ω)γ̇(ω). (3.11)

Transposed in the time domain, the stress would be a convolution of the history of
strain rate with a viscosity kernel. Note: in literature, the complex shear modulus
G(ω) is more commonly employed than the complex viscosity. However, it is straight-
forward to move from one expression to another with the relation G(ω)=−iωη(ω).3

For example, the shear behavior can be modeled by a spring of elasticity G put
serially with a dashpot of viscosity η. For a stress σt, the total strain is the sum of the
elastic strain σt/G plus the viscous strain −σt/iωη. If we note τ= η/G the relaxation
time, we get: σt/γ=−iωη/(1− iωτ). In terms of strain rates, we finally get:

η(ω)= η

1− iωτ
. (3.12)

This viscoelastic model is called the Maxwell model. Table 3.3 summarizes the most
common linear models used in literature. Specific models for polymers are presented
below in paragraph 3.3.4.

3Note that the sign of the iω factor depends on the sign convention for the Fourier transform.
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Table 3.3 – Summary of most common linear rheology models.

Name Diagram η(ω)

Hookean solid
G

−iω

Newtonian fluid η

Maxwell
monomode

η

1− iωτ

Maxwell
multimode

∑ ηn

1− iωτn

Continuous
spectrum

-
ˆ

η(x)
1− iωτ(x)

dx

Kelvin-Voigt η+ i
G

ω

Cole-Cole -
η

1+ (−iωτ)β
β ∈]0,1]
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Figure 3.4 – Shear thinning behavior of polystyrene.

With linear viscoelasticity, the divergence of viscous stress tensor in frequency
domain can be recast in the handy form:4

∇·T= η(ω)∇2v(ω),

where ∇2v is the Laplacian of the velocity field.

3.3.2 Shear-thinning

For a finite (and especially large) strain rate, the linear relation of equation (3.11)
does not always hold, and non-linear stress-strain relations such as power laws or
Carreau-Yasuda models are required (Carreau, 1972; Yasuda et al., 1981). The crit-
ical strain rate at which non-linear behaviors appear is an intrinsic property of the
material and usually depends on temperature. A critical shear rate can be estimated
for PS 130k with a shear-rate-dependent viscosity model plotted on figure 3.4, which
is the following Carreau-Yasuda function:

η(γ̇)= η0

(

1+
(
γ̇

γ̇0

)a) n−1
a

, (3.13)

where η0 is the zero-shear viscosity, a and n are fitting parameters of the model (for
PS 130k, a = 0.93 and n = 0.49), and γ̇0 the critical shear rate (γ̇0 = 0.1 s−1 at 140°C).
Below γ̇0, the viscosity is weakly dependent on the shear rate: it is the linear regime.
Above γ̇0, the viscosity decreases with increasing shear rate: it is the shear thinning
regime.

3.3.3 Zero-shear viscosity: the WLF law

In this subsection, we present the standard laws for the thermal and molecular
weight dependence of zero-shear viscosity. The zero-shear viscosity is the viscosity
for vanishing shear strain. A remarkable property is that there are no cross terms

4Again, for incompressible fluids.
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between the mass dependence and the temperature dependence, in other words, those
two variables can be studied separately, provided that we use the relative tempera-
ture T −Tg(Mw). In the following section, we will see that viscosity also depends on
the thickness of the film, for thicknesses of a few molecular lengths.

Dependence on molecular weight. Contrary to the glass transition temperature,
viscosity depends strongly on the molecular weight. Two regimes separated by a crit-
ical mass Mc are reported: for Mw < Mc, viscosity is proportional to Mw, and for
Mw > Mc, viscosity is proportional to M3.4

w (Fox and Loshaek, 1955b; Colby et al.,
1987). The value 3.4 of the exponent is rather independent of the material (Bicerano,
2002) and can be explained by the theory of reptation (Jones, 2002). However, the crit-
ical molecular weight Mc is an intrinsic property of a polymer and depends on the re-
peating unit. For polystyrene, the commonly accepted value is Mc ≈ 31−38kg·mol−1.

Dependence on temperature. In the previous section, we saw that the glass tran-
sition temperature was the key parameter for the viscous properties of polymers. In
the range Tg < T < 1.2Tg (in K) —that is, for polystyrene, between about 100°C and
180°C— the polymer is in a highly viscous, rubbery state. Empirical formulas can
be found in the book by Bicerano (2002, p. 506) for temperatures greater than 1.2Tg.
Still, as we didn’t reach temperatures greater than about 180°C in our processes, we
will now focus on viscosity models for T < 1.2Tg.

The starting point is the common concept of free volume (Jones, 2002). In this the-
ory, the motion of the chains is made possible by the space (free volume) left between
the molecules. The free volume f is assumed to expand linearly with temperature, so
that at a given temperature and for a given molecular weight, it is:

f (T, Mw)= fg +α f

(

T −Tg(Mw)
)

, (3.14)

with fg the free volume at Tg, and α f the expansion coefficient of the free volume.
In early works, Vogel (1921), Fox and Flory (1948) and Doolittle (1951) proposed a

relationship for viscosity of the form η(T)= A exp(B/ f (T, Mw)), where A is a function
of Mw and B is assumed to be constant. It can be recast in what is now called the
Vogel-Fulcher model:

η(T, Mw)= A(Mw)exp
(

B

α f (T −T∞(Mw))

)

, (3.15)

with T∞(Mw) = Tg(Mw)− fg/α f , and where viscosity diverges for T → T∞. With the
molecular-weight dependence seen in the previous paragraph, we can write:

η(T, Mw)= Ac

(
Mw

Mc

)a

exp
(

B

α f (T −T∞(Mw))

)

, (3.16)

with a = 1 for Mw < Mc and a = 3.4 for Mw > Mc. In a recent review, Kim et al.

(2007b) gathered an important amount of published experimental measurements of
polystyrene viscosity, for various molecular weights and temperatures. The fitted
values are reported on table 3.4 as well as results from other authors.
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Table 3.4 – Parameters of the Vogel-Fulcher model for polystyrene.

Reference B/α f Mc T∞(Mc) Ac

(K) (kg·mol-1) (°C) (Pa·s)
Kim et al. (2007b) 2083 38 48 a 7.1×10−5 b

Majeste et al. (1998) 1620±50 35 48 c 3.1×10−4 c

Plazek (1965) 1442 d Not available 52 e 1.8×10−2 f

aComputed from value given in table II and formula (6)
bComputed from Eq. (18) and (19).
cComputed from value at 3.5 kg/mol.
dComputed from α f = fg/c2 = 5.9K−1 and B = 0.85.
eComputed from T∞ = Tg − c2, not Mw-dependent.
fAssuming Mc = 35 kg/mol.

Table 3.5 – Parameters of the WLF model for polystyrene.

Reference Ts c1 c2 ηs@35kg·mol−1

(°C) (K) (Pa·s)

Williams et al. (1955) Tg +50 8.8 101.6 not available
Plazek (1965) Tg 13.3 47.5 not available

Li et al. (2005) a 150 7.88 111.3 9.8×103 b

Leveder (2009) Tg +50 11.0±0.2 101±1 8.1×103

Measured in this thesis (Chap. 6) Tg +50 12.6±0.1 101±1 1.1±0.2×104

aBulk values.
bComputed from the viscosity at 123kg·mol−1

Another formally equivalent way to express the thermal dependence of viscosity
at a given molecular weight is as follows. Williams, Landel, and Ferry (1955) proposed
an expression for the normalized viscosity, now called the WLF model:

η(T)
ηs

= exp
(

−c1
T −Ts

c2 +T −Ts

)

, (3.17)

where Ts is an arbitrary reference temperature, ηs = η(Ts), and c1 and c2 are fitting
parameters depending on Ts and on the material. It should be noted that Ts must be
defined relatively to Tg(Mw), for example Ts = Tg +50K, in order to keep the correct
Mw dependence. Values of c1 and c2 from literature are reported in table 3.5. The
relations between the Vogel-Fulcher and the WLF parameters are:

c1 =
B

α f (Ts −T∞)
and c2 = Ts −T∞. (3.18)
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3.3.4 Linear viscoelasticity of polymers: the theory of reptation

We briefly mentioned that the reptation motion of polymer chains was responsible
for the 3.4 exponent in the Mw dependence of viscosity (for Mw > Mc). Reptation is
a type of motion where a chain can move only inside a virtual tube that accounts
for the restrictive presence of the other chains. It was proposed for polymer motion
by Edwards (1967), de Gennes (1971) and Doi and Edwards (1978) [for a review, see
Doi and Takimoto (2003)]. Above Tg, the molecular entanglement of polymer chains
gives to the material the particular property to behave like an elastic solid for short
time scales and a viscous fluid for long time scales. On the basis of that theory, if
we assume a simple Maxwell model for viscoelasticity (see table 3.3) it is possible to
show that the shear modulus Ge, called the plateau modulus, is given by:

Ge =
ρRT

Me

, (3.19)

where ρ is the density, R is the gas constant, T the temperature and Me the aver-
age molecular mass between entanglements (Jones, 2002). Unfortunately, Me is not
precisely known, but an accepted order of magnitude is Me ≈ ½Mc. The associated
relaxation time is called the terminal relaxation time, and is:

τt =
η0

Ge

, (3.20)

where η0 is the zero-shear viscosity. The terminal time is of really practical impor-
tance. For reflow experiment, formally it is the time needed to reach a steady state
flow under constant stress, in other words, it is during this time that elastic effects
are present. For imprint processes, it is the time needed for internal stresses to re-
lax. In chapter 6, we will present a method to measure an order of magnitude of the
terminal time.

Because ρ decreases with temperature, the product ρ×T depends weakly on T.
With use of Eq. (3.8), we get: Ge(Tg) = 0.21MPa and Ge(Tg + 100) = 0.24MPa for
polystyrene 30kg·mol−1. As a consequence, τ follows approximately the same depen-
dence on temperature that we saw previously for viscosity.

Plazek and O’Rourke (1971) measured the viscoelastic properties of polystyrene
for molecular weights ranging from 1.1kg·mol−1 to 800kg·mol−1. In their experi-
ments, a torque is applied on a polystyrene cylinder whose creep relaxation is mea-
sured. For molecular weight above Me, a shear modulus of a few MPa is found. More-
over, there is no dependence on temperature above Tg +10°C.

In a recent review, Majeste et al. (1998) proposed a more complex rheological
model for polystyrene. In the entangled regime, they added the contributions of dif-
ferent relaxation mechanisms. However, for low shear frequencies, the following term
prevails:

η(ω)= ρRT

Me

ˆ 1

0

τ(x)
1− iωτ(x)

dx, τ(x)=







Nx4

16 τC for 0< x < 2νp
N(

x− νp
N

)2
τC for 2νp

N
< x < 1

(3.21)



46 3 Polymer melts rheology

with

τC =
ζ0R2

EE
N2

e N2

π2kBT
, (3.22)

where ζ0 is the monomeric friction coefficient, REE the radius of gyration, N is the
degree of polymerization, Ne is the average number of repeat units between entan-
glement, kB the Boltzmann constant and ν an adjustable parameter. It is a Maxwell
model with a continuous spectrum, accounting for the different relaxation times in
the reptation process as well as tube length fluctuations. If ν = 0, it corresponds to
a pure reptation. In this case, we have a simple relation between η0 and τC, in the
limit ω→ 0:

η0 =
GeτC

3
, (3.23)

and the model can be recast in:

η(ω)=
ˆ 1

0

3η0x2

1− iωτC x2 dx. (3.24)

The latter model is then a 2-parameters model (like the Maxwell model) if we set
ν= 0. A variable ν can be introduced as an additional fitting parameter.

For classical thermal nanoimprint, time scales of reptation are enough to have a
fair understanding of the polymer behavior. However, for ultra-fast imprints, it could
be relevant to take into account faster relaxation processes (Majeste et al., 1998).

3.4 Thin films properties

When the dimensions of the material go down to a few molecular lengths, effects
of the granular consistency of matter appear. The variation of mechanical properties
are important for process modeling, as thicknesses of a few nanometers are commonly
reached in nanoimprint processes. In this section, we focus on the properties of thin
polymer films. For a review in different configurations, such as polymers in nanopores
or composite materials, see the work of Alcoutlabi and McKenna (2005).

3.4.1 Thickness-dependent glass transition temperature

With the development of miniaturization of polymer films, many authors have re-
ported a variable Tg with variable thicknesses of supported films. Keddie et al. (1994)
made the first quantitative analysis and proposed a phenomenological law for Tg as
a function of thickness h:

Tg(h)= Tbulk
g

[

1−
(
ξ

h

)δ
]

, (3.25)

with Tbulk
g the glass transition temperature of the bulk, ξ= 3.2±0.6nm a character-

istic length and δ = 1.8±0.2 an adjustable parameter. The authors reported a very
weak dependence for ξ on molecular weight, in particular much weaker than that
of the chain length REE (∼

√

Mw, see Eq. (3.6) on page 37). Later works supported
these observations (Fukao and Miyamoto, 2000; Ellison and Torkelson, 2003; Merabia
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et al., 2004; Yang et al., 2010, 2011; and for a review of earlier works, see Forrest and
Dalnoki-Veress, 2001). Contrary to others, Singh et al. (2004) found a Mw-dependence
for ξ, of the order of REE. Herminghaus et al. (2001); Kim et al. (2001b,a) proposed
another model of the form:

Tg(h)=
Tbulk

g

1+ ξ
h

, (3.26)

where ξ is of the order of the monomer length (7−10 Å).
Several models have been proposed to explain this reduction of Tg: 2-, 3-layers or

continuous gradient of mobility or relaxation times, anisotropy of chain conformation,
etc. The fundamental understanding of this variation in Tg is beyond the scope of this
thesis. However, from a practical point of view, we note that the role of the free surface
and of the underlying substrate were rapidly emphasized. Carrying out experiments
on free standing films, a linear variations for thickness below a critical thickness hc

was found (de Gennes, 2000; Dalnoki-Veress et al., 2001; Frick et al., 2003):

Tg(h)= Tbulk
g +α(h−hc) for h < hc, (3.27)

where this time hc is strongly dependent on Mw. On the other hand, Sharp and
Forrest (2003) found no reduction of Tg for metal-coated films, and if the coating is
removed, the reduction of Tg is recovered, showing the importance of the free inter-
face.

We notice that there were also contradicting reports of increase in Tg by Wallace
et al. (1995) for supported films, or no Mw dependence for free standing films by Ge
et al. (2000).

3.4.2 Thickness-dependent viscosity

What is important from a process point of view is the rheological behavior of the
polymer and its variation with h (and possibly Mw). Is viscosity reduced in thin
films? Does this reduction hold when the film is confined by the mold? Is the WLF
model still relevant?

Using X-ray photon correlation spectroscopy, Kim et al. (2003, 2007a); Li et al.

(2005); Yang et al. (2009) studied the variation of viscosity with film thickness. Mas-
son and Green (2002); Bodiguel and Fretigny (2006, 2007) measured the viscosity of
thin polystyrene films by monitoring the nucleation and growth of dewetting holes.
Similarly to the reduction of Tg, the former proposed a law of the form:

η(h)= ηbulk

[

1−K

(
ξ

h

)δ
]

, (3.28)

with ξ = 3.2nm, δ = 1.8 (same values reported by Keddie et al. (1994)), and a fitting
parameter K = 35. Nevertheless, neither the dependence on molecular weight nor
the dependence on temperature was studied and the authors were skeptical about
the use of a WLF model for thin films. On the other hand, Bodiguel and Fretigny
(2006, 2007) developed a model where viscosity varies inside the film. They performed
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their experiments on liquid substrate and assumed a z-dependent viscosity near the
interface:

η(z)

ηbulk
= 1−exp

[

−
(

z

RG

)β
]

, 0< z < h

2
, (3.29)

where β is a fitting parameter. The length scale here is the dimension of a chain
(equivalently RG or REE). The observed viscosity is then the mean viscosity over the
whole thickness of the film:

η(h)= ηbulk 2
h

ˆ h/2

0

(

1−exp

[

−
(

z

RG

)β
])

dz. (3.30)

They confirmed that a Vogel-Fulcher law fairly describes the temperature depen-
dence, with bulk values for B/α f and T∞ (see Eq. (3.15) on page 43), but with h-
dependent A.

Leveder (2009); Leveder et al. (2010) showed that it is possible to model the thick-
ness dependence of viscosity with use of an extended WLF model (xWLF) built as
follows. The length scale of the phenomenon is REE, and we define the normalized
thickness h∗ by:

h∗(Mw)= h

REE(Mw)
. (3.31)

The glass transition temperature is assumed to be a function of h∗ with the expres-
sion reported by Singh et al. (2004):5

Tg(h∗, Mw)= Tbulk
g (Mw)

(

1−α

(
1

h∗(Mw)

)δ
)

, (3.32)

with α = 0.968, δ = 1.78 and Tbulk
g is the molecular-weight-dependent Tg for bulk

material. Now, if we define the reference temperature Ts(h∗, Mw) = Tg(h∗, Mw)+
constant, then the xWLF model is:

η(T,h∗, Mw)

ηbulk
s (Mw)

= exp

(

−cbulk
1

T −Ts(h∗, Mw)

cbulk
2 +T −Ts(h∗, Mw)

)

. (3.33)

The strength of Leveder’s approach is that the reduction of η with h is recovered with
no fitting parameter, provided that an expression of Tg(h∗) is known. This idea was
also suggested by Yang et al. (2009) who were able to describe their observation of
reduced viscosity by inserting Herminghaus et al. (2001) expression for thickness-
dependent Tg (Eq. 3.26) in a Vogel-Fulcher model.

In addition, Leveder measured Tg(h∗) for a confined film, that is, a film sand-
wiched between two silicon plates. Tg was found to increase with decreasing h∗

and the behavior is well modeled by Eq. (3.32) with the parameters: α=−0.968 and

5From our point of view, an interesting feature in Singh’s ellipsometry experiments is that multiple
angles were used in order to decorrelate the variations of specific volume and those of the optical index
with temperature, resulting in a more accurate assessment of Tg.
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δ= 1.41. By inserting this Tg(h∗) function into the xWLF model, viscosity increases
with decreasing thickness. This increased viscosity was experimentally measured by
nanoimprint experiments, and data were consistent with the xWLF model presented
above (Leveder, 2009, p. 173).
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Chapter 4

The supported thin film
equations of creeping flow

One straightforward way to simulate the flow is to numerically solve the Stokes equa-
tion in the fluid domain with appropriate boundary conditions. Nowadays this can be
done in reasonable time with a desktop computer for usual patterns (up to several
micrometers), and we will see some implementation in the last section of this chap-
ter. Sometimes, for particularly harsh topologies, numerical computation cannot be
avoided. However, the simulation at the wafer scale is still a matter of heavy sci-
entific computing, and above all, the physical understanding of capillary phenomena
can only be comprehended by working through the equations. After how much time is
an annealed pattern leveled by surface tension? What is the characteristic period of
dewetting? What is the influence of viscosity? It is possible to answer these questions
with the asymptotic (in other words, approximate) models presented below, based on
lubrication theory and capillary wave theory.

Although the theoretical developments can be found in numerous books (see for
example Bruus, 2008), they are reported here for a didactic purpose, along with fun-
damental hypotheses specific to nanoimprint processes. In both cases, the approach
is the same: we start from the transient Stokes equation describing the flow at low
Reynolds number, presented in chapter 2. Then, depending on geometrical assump-
tions, an asymptotic model for the time-dependent thickness of the film is found. In
the capillary wave theory, an analytical solution can be expressed as a function of
rheological properties. But first, let us see the fundamental hypotheses common for
both models.

4.1 Fundamental hypotheses

We consider a fluid film supported by a flat impermeable solid substrate at rest
(Fig. 4.1 on the next page). We assume that the shape of the film is periodic in
both directions x and y, and we consider only an elementary unit of dimensions
Lx ×L y. The mean thickness over this surface is h0. With mass conservation and
isothermal hypothesis, h0 does not depend on time. The instantaneous local thick-
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Figure 4.1 – Geometry and symbols.

ness of the film is written h(x, y, t), and its variation relative to the mean thickness
is h̃(x, y, t) = h(x, y, t)− h0. The origin for the height z is taken at the surface of the
solid. The horizontal part of the velocity field v = (vx,vy,vz) is the vector u = (vx,vy).
For readability, we write f ′ the z-derivative of a function f (not to be confused with
the real part of a quantity).

In chapter 2, we already went through fundamental considerations, and argued
that the Stokes equation (Eq. 2.5) is relevant for modeling flows at the nanoscale. We
also saw that the boundary conditions are:

1. For the liquid-substrate interface at rest: impermeability,

vz = 0, (4.1)

and Navier slip,
u(z = 0)=βu′(z = 0), (4.2)

with β the slip length. The value β = 0 implies a classical no-slip boundary
condition.

2. For the free liquid surface: Laplace pressure depends on the local curvature of
the interface, κ, that can be written:

κ=∇H ·






∇H h
√

1+ (∇H h)2




 , (4.3)

where ∇H is the horizontal differential operator
(

∂
∂x

, ∂
∂y

)

. With the hypothesis of

small slopes, |∇h|2 ≪ 1, the curvature is κ≈∇2h. We will discuss this approxi-
mation in section 4.5.
We saw in chapter 2 that van der Waals forces could be present as a force field,
f=−∇Π, with Π called the disjoining pressure. If Π depends only on h(x, y) (and
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not on z), then it is equivalent to take the disjoining pressure into account either
as a field −∇Π inside the fluid domain, or as a pressure Π(h) at the free inter-
face. For simplicity in computation, the latter option is preferred, and finally
the normal boundary condition at the free interface is the sum of the Laplace
pressure and the disjoining pressure:

p(z = h(x, y))−σzz =−γ∇2h+Π(h). (4.4)

Moreover, since there is no tangential stress externally applied upon the liquid
surface, the last boundary condition writes as:

σt(z = h(x, y))= 0. (4.5)

Regarding the assumption on the disjoining pressure, we will see in chapter 7 that Π
is a function of h(x, y) only, provided that the global shape of the deformed interface is
large compared to the thickness of the film. If it is not the case, in other words if the
wavelength of the deformation is high, we can ask whether the disjoining pressure
is enhanced compared to a flat interface. If the deformation is small in amplitude,
results from computations of Casimir forces between corrugated plates show that the
force is rather weaker. In that case, Laplace pressure is more likely to be the driving
force of the flow. As we will consider only films in either the first configuration (long
waves) or the second one (small amplitudes), then the assumption Π=Π(h) is rather
relevant.

4.2 Lubrication theory: long wave approximation

The starting point for lubrication theory is the concept of thin film, in other words,
one dimension of the fluid domain called thickness is much smaller than the other
dimensions. It is the counterpart of plate theory in solid mechanics. Lubrication
theory was first developed by Reynolds (1886). It was originally intended to model
the flow of a lubricant between moving parts of a mechanism, hence its name. An
extensive study of lubrication theory applied to capillary driven thin film flows can
be found in the seminal review by Oron et al. (1997), later completed by Craster and
Matar (2009).

4.2.1 The Reynolds equation

If L is the horizontal extension of the fluid domain, let ε= 2πh0/L be the lubrication
ratio. In terms of wavevector, if k = 2π/L, then ε= k×h0. In lubrication theory, ε≪ 1,
equivalently L ≫ h0, or even k ≪ 1/h0, this is why this theory is also sometimes called
long wave approximation. A detailed mathematical treatment of the path from the
Stokes equation to the Reynolds equation can be found in Cimatti (1983); Bayada and
Chambat (1986). Here we report the main concepts.

If we assume ε≪ 1, then it is possible to develop the continuity and Stokes equa-
tions according to a regular perturbation in powers of ε. The first order term can then



58 4 The supported thin film equations of creeping flow

be computed. This is carried out in appendix A. The main result of lubrication theory
is that pressure does not depend on height, it is only a function of (x, y). The velocity
field is therefore mainly parallel to the substrate, except for normal motion responsi-
ble for the height variation of the free interface. From a mass balance, we find that
the local temporal variation of the thickness is the divergence of a flux. This flux is
proportional to the local pressure gradient and is a rather complicated function of the
thickness:

∂h

∂t
=∇H ·

(
h2(h+3β)

3η(h)
∇H p

)

, (4.6)

where ∇H is the horizontal differential operator—for readability, the suffix H is not
written hereafter—p is the local pressure, and η(h) is the (possibly thickness-depen-
dent) fluid viscosity. The equation above is called the Reynolds equation for supported
thin films.

Let us now focus on the pressure field. As already mentioned above, it is given
by the Laplace pressure and the disjoining pressure. With the result that p does not
depend on z, it is consistent to disregard the normal viscous stress, σzz, so that the
pressure field takes the form:

p(x, y)=−γ∇2h+Π(h). (4.7)

If we assume that surface tension does not depend on thickness, with use of the
Reynolds equation (4.6), we get:

∂h

∂t
+∇·

[
h2(h+3β)

3η(h)

(

γ∇3h− ∂Π

∂h
∇h

)]

= 0, (4.8)

with the writing convention ∇3 = ∇
(

∇2)

. We now see that the flux is a sum of two
terms, one driven by surface tension and the other one driven by the disjoining pres-
sure. Depending on the sign of ∂Π/∂h, those two terms will compete or collaborate.
This equation has been extensively considered in literature to model the spinodal
dewetting of thin films, or the leveling of patterns.

4.2.2 Smoothing or not smoothing

The effect of surface tension is to reduce the free interface of the film to a minimum
state of energy, in other words, to minimize the surface area. That is why under
annealing, sharp edges tend to smooth and protrusions are leveled. However, the
smoothing may not occur because of the disjoining pressure. Figure 4.2 on the facing
page shows two Atomic Force Microscopy (AFM) measurements of a nanoimprinted
polystyrene film. The initial profile is made of lines of various wavelength. After
annealing, the area of smaller wavelength (right area) is leveled to a large extent,
whereas the large wavelengths (left area) lead to the dewetting of the film.

4.2.3 Governing dimensionless numbers

The linear stability analysis below will give us the characteristic time of the leveling.
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Figure 4.2 – AFM profiles of a nanoimprinted polystyrene film, before and after
annealing.

Linear stability analysis. We assume an invariance of the geometry along the
y-axis, which implies a 2D flow. We study the evolution of a small deformation of
the surface: h(t) = h0 + h̃(t)cos(k× x) with h̃ ≪ h0. We also assume β ≪ h0 (no-slip
boundary condition) and η = η(h0) (constant viscosity). Keeping only the first order
terms in h̃, equation (4.8) yields:

∂h̃

∂t
+

1+ Ha
ε2

τ
h̃(t)= 0, (4.9)

with ε= k×h0 as defined above, τ the characteristic time:

τ= 3η

γh3
0k4

, (4.10)

and Ha the dimensionless Hamaker number:

Ha=
h2

0
∂Π
∂h

(h0)

γ
. (4.11)

Note that Ha may be either positive or negative, depending on the sign of ∂Π
∂h

.The
Hamaker number quantifies the ratio of the disjoining pressure over the Laplace
pressure. If |Ha| ≪ ε2, the Laplace pressure prevails and the van der Waals forces
can be neglected. We will see that it is often the case in our experimental setup. In
that case, the small perturbation h̃ exponentially decreases with the characteristic
time τ, and we can define a capillary number of the experiment:

Ca= τ

t
= 3η

γh3
0k4t

. (4.12)

The capillary number quantifies the effect of viscous forces versus surface tension. If
Ca≫ 1, the viscous stress overcomes the surface tension drive, and almost no flow is
observed.

Let us go back to the Hamaker number. If we now assume that |Ha| ∼ ε2, then the
disjoining pressure may be taken into account. Moreover, if Ha < 0, then the film is
known to be unstable, as we saw on figure 4.2, and in our case, the small perturbation
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Figure 4.3 – Hamaker number for a supported polystyrene film on silicon oxide
substrate. The thick line is the result of the Lifshitz theory, the thin line is the
Hamaker approximation: Ha= A/(2πh2

0γ) with A =−2.2×10−21 J fitted from the
Lifshitz theory.

h̃ exponentially increases if Ha<−ε2. We leave the question of how fast the increase
is to chapter 8. For now, we only discuss whether the disjoining pressure is significant
for the flow.

How can we compute Ha? We will see this issue in detail in chapter 7, but for now
we can obtain an order of magnitude of Ha by making use of the Hamaker theory for
the disjoining pressure (Israelachvili, 1991). In this theory, Π(h) is of the form:

Π(h)= −A

6πh3 , (4.13)

with A the Hamaker constant, typically ranging from ±1 to ±10×10−21 J. The unit
of the Hamaker constant is sometimes the zepta Joule: 1zJ = 10−21 J. Thus, from
equation (4.11), the Hamaker number is given by:

Ha= A

2πh2
0γ

. (4.14)

Figure 4.3 is a plot of the negative Hamaker number for a supported polystyrene
film on a silicon oxide substrate (unstable film). The Hamaker number defined by
equation (4.11) is computed from the full Lifshitz theory (Chap. 7), and compared to
the Hamaker number approximated by equation (4.14). The result is that, first, the
Hamaker approximation gives a fairly good order of magnitude of Ha, at least for
films below 100nm. Second, Ha is small, mainly because of the strength of van der
Waals forces compared to surface tension of our materials, so that in our experimental
setup, Ha is very unlikely to exceed unity.
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Figure 4.4 – Simulated reflow of a square profile (x+ = x
L
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h0

) during

t+ = t
τ
= 0.1.

4.2.4 Some effects of non-linearity

We developed a finite-volume method to solve the non-linear lubrication equation.
Details are reported in appendix B on page 189. For now, we assume a constant
viscosity and surface tension and neglect disjoining pressure. In addition, we assume
a 2D flow, as in the previous subsection. In terms of dimensionless quantities: t+ = t/τ
(Eq. 4.10), x+ = x/L and h+ = h/h0, equation (4.8) can be recast in:

∂h+

∂t+
+ 1

(2π)4 × ∂

∂x+

(

h+3 ∂
3h+

∂x+3

)

= 0. (4.15)

Two-tier reflow. One of the effects of non-linearity in equation (4.15) is what we
call in this thesis two-tier reflow. We already saw that the time evolution of the
thickness is caused by the divergence of a flux. If we try to analyze the non-linearity
at least qualitatively, we can say that this flux is of the order of the thickness to the
power of three (h+3). So, in thin areas (h+ < 1) , the flow is largely hindered by the
substrate, whereas in thicker areas (h+ > 1) the flow is made easier. The resulting
effect is that protrusions are deformed and flow faster at the top than at the bottom.

This effect is particularly amplified if thin areas (residual layer) are much thinner
than the mean thickness of the film, as we can see in figure 4.4. We simulated the
reflow of a square profile during t+ = 0.1, for two initial topologies. The first one is a
square profile with a rather large (relative) residual layer (Fig. 4.4a). After t+ = 0.1,
we can see that the shape is almost sinusoidal. The second topology is a square profile
with this time a thin residual layer (Fig. 4.4b). In this case, after the same time of
reflow, the top of the protrusions are rounded, but the bottom shows little evolution.
For practical applications, such as for microlens arrays (see chapter 5 on page 81), it
may be interesting to have the top of the features smoothed while the bottom is still
sharp.
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Figure 4.5 – Simulated reflow of a sinusoidal profile during t+ = 5.

Generation of high order modes. Let us follow the reflow of a sinusoidal shape,
as depicted in figure 4.5. Before the reflow, the shape is formed by a single mode,
called the fundamental, of half amplitude h̃+ = 0.8. Because of two-tier reflow, the
bottom of the sinusoid flows more slowly than the top (Fig. 4.5a). the sinusoid is
distorted, and clearly other modes of high order (harmonics) appear at the beginning
of the reflow. However, at long times, these harmonics vanish and a pure sinusoid
is recovered, until the film becomes flat. If we perform a Fourier analysis of the
shape during the reflow, we can extract the amplitude of the fundamental and the
harmonics. On figure 4.5b, the fundamental starts at h̃+ and decrease with time. A
straight line in this semi-log plot means that the decrease is exponential, and for the
fundamental at long time it is exp

(

−t+
)

.
Is it possible to extract information about harmonics by working on the lubri-

cation equation (4.15)? First, we recall that the characteristic time depends on the
wavevector to the power of four (Eq. 4.10). So, the first harmonic (2×fundamental)
should decrease much faster, as exp

(

−16t+
)

. In addition, it turns out that for a small
amplitude of the fundamental, the problem is weakly non-linear, and we can extract
some information about how fast the first harmonic increases. This treatment is done
in appendix A, section A.2.2 on page 180. This increase is in exp

(

14t+
)

, which is
rapidly hindered by the exp

(

−16t+
)

decrease. Maximum amplitude is about 0.14h̃+2

and is reached at t+ = ln8/18≈ 0.1. The solution is plotted on figure 4.5b (dotted line,
“Analytic”). Although it does dot perfectly fit the simulated harmonic,1 it gives a cor-
rect order of magnitude of the maximum amplitude, and the exp

(

−16t+
)

decrease is
recovered.

1The fit is much better for h+ < 0.4, but for the purpose of this section, we study highly non-linear
cases.
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Delay. Let us go back to the fundamental mode of the shape. We found with the lin-
ear stability analysis above that for long times it exponentially decreases in exp

(

−t+
)

.
Now, until this asymptotic regime is reached, the variation of the fundamental mode
is not trivial, as we can see on figure 4.6a on the preceding page, and of course de-
pends on the full initial shape. This aspect was studied by Keunings and Bousfield
(1987). It can be of practical interest to know the time after which the asymptotic
regime is reached, in other words the time after which the lubrication equation can
be linearized. We can describe the long-time asymptote by exp

(

−t++θ
)

where θ is a
shift factor. Figure 4.6b shows simulated values of θ for two initial shapes (sinusoid
and square profiles), along with the function 57

64 h̃+2 obtained from the mathematical
development of section A.2.2 on page 180. There are no significant differences be-
tween a square and a sinusoidal shape. Besides, the analytic shift fairly accounts for
computed value over a large range of amplitude h̃+.

We also define the time ξ, called delay, beyond which the amplitude of the funda-
mental is closer than a definite distance to its linear asymptote. Figure 4.6c reports
the delay for criteria of 5% and 1%. Here again, no significant difference is found
between the two topologies. Remarkably, there is no delay below h̃+ = 0.25 for the 5%
criterion. This means that, for this degree of accuracy, if we consider for example a
100nm polymer film, the reflow of patterns that are up to 50nm deep can be modeled
by a linear approach. In other words, the linear description is very robust, and we
will take advantage of this property in chapter 6.

4.3 Capillary wave theory: small deformation approxi-
mation

On the one hand, the Reynolds equation is efficient to model the flow whose free inter-
face is highly deformed in amplitude (h̃ ∼ h0), but on the other hand, the lubrication
hypothesis sets the wavelength of the shape still large compared to the thickness
(L ≫ h0). With this limitation, the Reynolds equation cannot be used when the wave-
length of the interface is of same order of magnitude as the thickness or less, such
as in the case of thick films or when accounting for the behavior of high frequency
harmonics of the free interface. The aim of this section is to solve the equations of
the flow regardless of the lubrication hypothesis, but in the limit of small deformed
interface (h̃ ≪ h0).

Watching ripples caused by a stone or by the wind blowing aon the water’s sur-
face is a common experience. The waves can travel (sometimes over thousands of
kilometers) thanks to gravity and inertia and their phase speed depends on their
wavelength. Regarding capillary waves at the microscopic scale, the picture is the
same, except that the driving forces are different. First quantitative developments
applied to thin films come from the paint industry. Orchard (1963) derived the con-
ditions for brush marks to relax before the paint dries. More recent developments in
microfluidics were done by Jäckle (1998); Henle and Levine (2007).
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4.3.1 Dispersion relation

In the frequency domain, we recall the linear Stokes equation for small Cauchy num-
bers (see Eq. 2.5 on page 24):

∇p(ω)= η(ω)∇2v(ω). (4.16)

We describe below a method to solve the flow from a linear perturbation method.
We begin with transforming the flat coordinates (x, y) into the Fourier domain k =
(kx,ky), the height coordinate z is left in the real space. For example, the velocity field
becomes: v(x, y, z) → v̂(kx,ky, z). Each variable depends then on kx, ky, z and ω, but
for simplicity most of these dependences are not written. Under this transformation,
we have for the continuity equation:

k · û= iv̂′z, (4.17)

and for the equation of motion:

i p̂

η(ω)
k=−k2û+ û′′, (4.18)

p̂′

η(ω)
=−k2v̂z + v̂′′z , (4.19)

where k =
p

k2. We now focus on boundary conditions. At the bottom of the fluid, we
have the Navier slip and non-penetration boundary condition:

û(z = 0)=βû′(z = 0), (4.20)

v̂z(z = 0)= 0, (4.21)

According to the normal component of the jump momentum balance (JMB), the pres-
sure at the liquid interface is again given by the sum of two contributions: surface
tension and the van der Waals forces (disjoining pressure), linearized in h0:

p̂(z = h0)− σ̂zz =
(

γk2 + ∂Π

∂h
(h0)

)

ĥ(k,ω). (4.22)

Moreover, as no external shear stress is supposed to apply along the interface, we can
write the tangential component of the JMB as:

η(ω)(iv̂zk+ û′)z=h0 = 0. (4.23)

In addition, as a linearized kinematic condition at the fluid-air interface, the vertical
velocity equals the growth rate of the thickness:

− iωĥ(k,ω)= v̂z(h0). (4.24)

Finally, we say that there is no stress applied on the material at the time before the
reflow (t < 0), in other words there is no residual elastic stress caused by the imprint.
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Figure 4.7 – Function f (kh0,Ha,β), plotted for various Hamaker numbers and
slip lengths.

All the elements are set to solve the equation of motion. This calculation is carried
out in appendix A, section A.3. We finally get the dispersion relation between the
wavevector k and the complex frequency ω:

iωη(ω)h0

γ
= f (kh0,Ha,β). (4.25)

where f is a dimensionless function of the normalized wavevector kh0, of the dimen-
sionless Hamaker number as defined above (Eq. 4.11), and of the slip length β:

f (kh0,Ha,β)=
kh0 sinhcoshkh0 −k2h2

0 +2kh0kβsinh2 kh0

2cosh2 kh0 +2k2h2
0 +4kβ (kh0 +sinhcoshkh0)

(

1+ Ha

k2h2
0

)

. (4.26)

Plots of f for various values of β/h0 and Ha are reported in figure 4.7.
The problem is now to find an explicit expression of ω as a function of k.

4.3.2 Viscous flows

If the material is a Newtonian fluid (η(ω)=constant), the relation dispersion has only
one root on the imaginary axis, which means that all the modes are purely damped
(i.e. they do not propagate). The decay time τ(k) for each mode of wavevector k is:

iω= 1
τ(k)

= γ f (kh0,Ha,β)
ηh0

. (4.27)

From this result, we can write the evolution of the thickness back in the time domain.
Each spatial mode follows an exponential decrease with a wavevector-dependent char-
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acteristic time:2

ĥ(k, t)= ĥ(k,0)×exp
(

− t

τ(k)

)

. (4.28)

Here again, as in lubrication theory, we see that a negative Hamaker number can
cause instability in the film, provided that the term Ha/k2h2

0 is smaller than −1. If
this occurs, the decay time τ becomes negative: it is a growth characteristic time. Fea-
tures whose wavevectors are smaller than kc =

√

|Ha|/h0 tend to grow exponentially,
leading to the rupture of the film.

Finally returning to figure 4.7b, we see that a large relative slip length, β/h0,
leads to a larger value of f for small wavevectors (large shapes). Consequently, the
reflow is indeed faster (lower τ) if slip occurs at the interface with the substrate. We
will see in section 4.4.1 below, that the flow at the bottom interface is negligible for
high wavevectors, that is why slip has no influence in the range kh0 > 1.

Kernel function. The latter equation (4.28) shows that, for Ha Ê 0, the reflow of
the film is equivalent to a low-pass Fourier spatial filter. The exponential decrease
exp(−t/τ(k)) is called the kernel function of the reflow, and is given by the physical
parameters of the problem. Equation (4.28) can be recast in:

ĥ(k, t)= ĥ(k,0)×exp
(

− f (kh0,Ha,β)
Ca

)

, (4.29)

with the capillary number Ca defined by:

Ca= ηh0

γt
. (4.30)

Note that this definition differs from Eq. (4.12) since this capillary number does not
depend on the wavevector k.

When the slip as well as van der Waals forces are not significant, the decay time
has two known asymptotic regimes. It is therefore important to take both regimes
into account with the full dispersion relation (4.25) if we want to describe a wide
range of spatial frequencies.

Thin film regime. When kh0 ≪ 1, we have τk ∼ 3η/γh3
0k4 and the result of lu-

brication theory that we saw in the previous section is recovered (see Eq. 4.10). This

2We have:

h(k, t)=
ˆ

dω
2π

ĥ(k,ω)exp(−iωt) ,

h(k,0)=
ˆ

dω
2π

ĥ(k,ω).

Equation (4.27) gives:

h(k, t)=
ˆ

dω
2π

ĥ(k,ω) exp
(

− t

τ(k)

)

︸ ︷︷ ︸

notω-dependent

= h(k,0)exp
(

− t

τ(k)

)

.
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scaling of the decay time regarding both k and h0 was experimentally verified by Lev-
eder et al. (2010). In order to predict the flow, the power law for the thickness requires
h0 to be measured with great accuracy. Thin films with slip boundary condition were
theoretically studied by Kargupta et al. (2003).

Thick film regime. On the other hand, when kh0 ≫ 1, we find τk ∼ 2η/γk which
is the dispersion relation for bulk flows reported by Harden et al. (1991); Hamdorf
and Johannsmann (2000). Note that in that case with h0 →∞, the decay time does
not depend on the thickness of the film. We will take advantage of this property in
chapter 5 to predict the reflow of patterns made in a film without a uniform thickness.

4.3.3 Viscoelastic flows

The great advantage of capillary wave theory is the fact that it allows us to use any
linear viscoelastic function as an input in the dispersion relation. What happens
when the fluid is viscoelastic? From a physical point of view, we saw in chapter 3 that
viscoelastic effects appear for high frequency shear rates, or equivalently at small
time scales. Precisely, for supported films, the higher the wavevector of the shape,
the faster the decay. Thus viscoelastic effects are likely to appear during the reflow of
smallest features.

If the material is a viscoelastic Maxwell fluid, the frequency-dependent viscosity
is:

η(ω)= η0

1− iωτt

, (4.31)

with η0 the zero-frequency viscosity and τt the relaxation time of the material (termi-
nal time for a polymer melt). From the dispersion relation we get:

τ(k)= ηh0

γ f (kh0)
+τt, (4.32)

and we can express the theoretical damping function with:

ĥ(k, t)= ĥ(k,0)×exp

(

− 1
Ca
f
+De

)

, (4.33)

where the dimensionless parameters are the capillary number as defined above in
equation (4.30), and the Deborah number:

De= τt

t
. (4.34)

Since function f (kh0) vanishes for small k (large shapes), De is negligible compared to
the Ca/ f factor, thus the material behaves like a Newtonian fluid. However for large k

(details, sharp edges, and so on), the kernel tends towards an horizontal asymptote of
value exp(−1/De). All high frequencies have then approximately the same damping
dynamics (Fig 4.8a on the facing page, kh0 > 4). The critical wavelength λe below
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Figure 4.8 – Viscoelastic flow.

which elastic behavior may appear is when De and Ca/ f are comparable in size, in
other words, for:

f

(
2πh0

λe

)

= η0h0

γτt

. (4.35)

The asymptotic expressions are:

λe ∼







π
γ

Ge
thick film regime,

2π
(
γh3

0
3Ge

) 1
4

thin film regime,
(4.36)

where Ge = η0/τt is the plateau modulus already encountered in chapter 3. This is an
interesting result: the critical wavelength depends neither on time nor on tempera-
ture. For polystyrene, λe is plotted on figure 4.8b.

Although λe does not depend on time, we have to keep in mind that after a certain
time of reflow, all features smaller than λe will have completely vanished and even-
tually no elastic effect will be observed. This time is of course of the order of τt, but
say, for our measurement instruments, a mode will be considered as flattened for a
relative decrease of 95%. For the λe-mode, this leads to t ∼ 6τt. So reflow experiments
with an elastic effect should be shorter than 6τt.

Reptation model. Reversing the dispersion relation is not always straightforward.
For example, in a reptation model, the viscoelastic function is given by an integral.
From equation (3.24) on page 46 and the dispersion relation (4.25), we get:

ˆ 1

0

3x2

τ
t
−Dex2 dx = f

Ca
, (4.37)
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where Ca is the capillary number relative to the zero-shear viscosity and De is the
Deborah number relative to the characteristic time of reptation: De = τC/t. The nu-
merical computation of τ as a function of k is presented in appendix A, section A.3.2
on page 183. We will use this method in chapter 6.

4.4 Shear thinning criteria

In this section, we consider a Newtonian fluid, and a no-slip boundary condition at
the solid interface. We address the issue of shear thinning. We saw in the previous
chapter that the linear stress-strain rate relation holds only for small strain rates.
The theory developed in this chapter give us tools to compute the shear rate in a
supported flowing film and eventually assess whether shear thinning occurs.

4.4.1 Streamlines

Before we investigate shear rate in a flowing film, let us consider streamlines. Stream-
lines are curves drawn at a given time, that are tangent to the velocity vectors. The
method to plot such curves is presented in appendix A, section A.3.3. With stream-
lines, we can see the influence of an obstacle (here, the underlying substrate) on the
flow. Figure 4.9 on the next page gathers plots of streamlines and shear rate in flow-
ing sinusoidal films. Three cases are studied:

1. Thin film regime (Fig. 4.9a bottom, kh0 = 0.5): the streamlines are deeply influ-
enced by the bottom interface, the flow is almost parallel to the substrate in a
large area.

2. Intermediate (Fig. 4.9a middle, kh0 = 3): streamlines begins to stretched verti-
cally. The substrate has still an influence on the bottom streamlines.

3. Thick film regime (Fig. 4.9a top, kh0 = 10): the substrate has no influence on
the streamlines, there is almost no flow in the bottom area of the film.

4.4.2 Shear rate for a sinusoid

We want to compare the maximum shear rate in the film, |γ̇|max, to a critical shear
rate, γ̇0, above which non-linear rheology takes place. The linear rheology hypothesis
holds for:

|γ̇|max < γ̇0. (4.38)

We consider a sinusoidal profile: h(x)= h0 + h̃coskx with kh0 ≪ 1. For now, h̃ may be
large, that is, of the order of h0. In lubrication theory, it is possible to compute the
shear rate in the film, given the free surface h(x). This mathematical development
is reported in appendix A, section A.3.4 on page 185. The results for the maximum
shear rate are:

1. γ̇max is located on the bottom interface.
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Figure 4.9 – Streamlines and shear rate for a sinusoidal film with various
thickness (from top to bottom: kh0 = 10, 3, 0.5) in capillary wave theory.
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2. γ̇max is weakly non-linear in h̃.

3. The non-linearity can be accounted for by an upper bound for γ̇max:

γ̇max < 1.3
γh̃k3h0

η
. (4.39)

In particular, the factor 1.3 tends towards unity in the limit h̃ → 0.

If we assume now that h̃ ≪ h0, but kh0 is unconstrained, developments of capillary
wave theory can be used (see section A.3.4). Figure 4.9b on the previous page shows
the shear rate inside a sinusoidal film of various thickness (various kh0). In the thin
film regime (Fig. 4.9b bottom, kh0 = 0.5), the shear rate is concentrated near the
substrate. In the thick film regime (Fig. 4.9b top, kh0 = 10), the shear rate is locate
near the free interface. For the intermediate case (Fig. 4.9b middle, kh0 = 3), a mix of
the two regimes is found.

In addition to these particular examples, we used capillary wave theory to com-
pute the maximum shear rate for a sinusoidal film of various kh0. It turns out that
the maximum shear rate can be expressed by:

γ̇max =
γ

η
h̃k2

Γ̇(kh0), (4.40)

where Γ̇(kh0) is a dimensionless function of the normalized wavevector kh0 (see equa-
tion A.72 on page 186). Figure 4.10 show Γ̇ computed at various kh0. Obviously, Γ̇ has
two asymptotic regimes. When kh0 → 0 (thin film regime), then the maximum shear
rate is reached at the bottom interface, and lubrication theory gives Γ̇(kh0) = kh0

(Eq. 4.39). When kh0 →∞ (thick film regime), the maximum shear rate is reached
just under the free surface (at kz ≈ kh0 −1) and yields Γ̇ = e−1. In the latter case,
the maximum shear rate does not depend on the thickness anymore but only on the
wavevector, as we saw for the viscous characteristic time of reflow. Between the two
asymptotic regime, there is a transition zone that has a non-trivial evolution (see
Fig. 4.9b middle). The maximum is Γ̇ = 0.46 at kh0 = 1.2. From equation (4.40) it is
possible to define the following criterion for the Newtonian behavior:

h̃k2 < 2.17
γ̇0η

γ
. (4.41)

An interesting property of polymers is that the product γ̇0η depends weakly on tem-
perature (in the range Tg toTg+100°C), exactly as we saw in the previous section for
the plateau modulus of viscoelastic flows (section 4.3.3 on page 68). Consequently, the
shear thinning threshold is only a function of the topography.

4.4.3 Shear rate in a nanoimprinted film

In the previous paragraph, we saw that it is possible to define a Newtonian behavior
criterion as a function of the material parameters and the wavevector of the sinu-
soidal profile. However, it is not possible to extend this approach to crenelated pro-
files, more commonly used in nanoimprint. Indeed, the maximum shear rate is found
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Figure 4.10 – Maximum shear rate factor Γ̇ as a function of the normalized
wavevector kh0.

to become infinite as the shape tends toward a perfect square signal, even if the ap-
proximate Laplace pressure γk2 is replaced by the exact pressure (Fourier transform
of the curvature, Eq. 4.3). The reason is the following. The Fourier series of our
square film is:

h(x)= h0 +
4h̃

π

∞∑

n=0

(−1)n cos[(2n+1)kx]
2n+1

, (4.42)

which means that each mode mk (odd m) has a relative amplitude of 1/m. Now, if we
go back to the case of a sinusoidal profile, we find a wavevector dependence for the
maximum shear rate of k2 (Eq. 4.41). So for a given mode mk of the square profile,
the maximum shear rate is proportional to m2/m = m, which grows to infinity with
m. So the maximum shear rate is driven by the highest order of the shape.

Obviously, for realistic nanoimprinted profiles, the maximum shear rate is finite,
for two main reasons. First, from an experimental point of view, nanoimprinted pro-
files are not perfectly sharp. Second, from a theoretical point of view, wavelengths
smaller than the molecular length cannot be described by a continuum approach. In
fact, we can compute the shear rate (in capillary wave theory) in a realistic film from
an AFM measurement. The shear rate is normalized in the following way (see equa-
tion A.70 on page 186):

γ̇+ = γ̇
η

γ
(in m−1), (4.43)

and the criterion for the Newtonian behavior reduces to:

∣
∣γ̇+

∣
∣< γ̇0η

γ
. (4.44)

This equation has to be compared to what we found in the case of a sinusoidal shape
(equation 4.41). Here again, like in the sinusoidal case, the shear thinning threshold
does not depend on temperature.

Figure 4.11 on the next page shows an example of shear rate computation for
an annealed nanoimprinted film. The free interface was measured by AFM at room
temperature. Figure 4.11a is a map of the normalized shear rate |γ̇+| (in log scale). γ̇+
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Figure 4.11 – Shear rate computation in an annealed nanoimprinted film.

is higher near the walls of the lines (Fig. 4.11b). The computation gives γ̇+max = 1.9×
107 m−1. This value has to be compared to γ̇0η/γ ∼ 6×106 m−1. Obviously, the shear
thinning threshold is likely to be crossed. However, from this simple comparison, we
cannot say whether the effect is significant. If we consider the distribution of γ̇+, as
plotted on figure 4.11c, we can compute that more than 98% of the film stays under
the threshold. That is why, in this particular example, we can say that the film will
keep a Newtonian behavior to a large extent.

4.5 Comparison with full Stokes equation

In capillary wave theory, there are two main assumptions: small deformations, h̃ ≪
h0, and small slopes, h̃ ≪ λ. In lubrication theory, small slopes are assumed as well.
In section 4.2.4, we saw the effect of high deformation, but still under the assumption
of small slopes. What happens when this assumption is not valid any more? What are
the legitimate domains of our asymptotic models? To investigate these questions, we
used a numerical tool developed in our group for surface tension driven flows, called
NanoNem (Teyssedre and Gilormini, 2012).
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Figure 4.12 – Leveling delay for high aspect ratios.

4.5.1 Leveling delay

Let us begin with an example. We consider a film with a sinusoidal shape, as depicted
on figure 4.12a on this page. The deformation of the interface, h̃, is relatively small,
compared to the mean thickness, h0: h̃/h0 = 0.1. However, the maximum slope is
rather important, and is of the order of unity. The reflow of this pattern was simulated
in NanoNem, using the mesh of figure 4.12a. The result is shown on figure 4.12b (not
in 1:1 ratio). For each time step, we can compute the first order term of the spatial
Fourier transform of the pattern. Figure 4.12c presents the evolution of this term
during reflow, normalized by its initial value. The simulated data is plotted along
with the decreasing exponential function from capillary wave theory (see Eq. 4.28 on
page 67). We can note two observations:

1. It takes more time for the pattern to flow in the simulation than the expected
dynamics in capillary wave theory. This can be understood by the following
remark. Where the slope is not small, then Laplace pressure is not any more
proportional to the second derivative of the thickness, h′′, but to the exact ex-
pression of the local curvature, h′′×(1+h′2)−3/2. The exact expression is smaller
than its approximation by h′′. The result is that in capillary wave theory, the
Laplace pressure is always overestimated. Hence a faster dynamics is found in
this case than the one found in the complete simulation.

2. After some time, the simulation exhibits an asymptotic regime parallel to the
capillary wave dynamics. It is the same situation as in section 4.2.4 where
we studied the leveling delay in lubrication theory. During reflow, the pattern
height decreases, therefore the slopes also decrease and finally the require-
ments for capillary wave regime are reached. Note that the agreement between
the asymptotic regime of the simulation and capillary wave dynamics is also a
way to validate the numerical tool (Gilormini and Teyssedre, 2012).
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Figure 4.13 – Reflow experiment (polystyrene 30 kg·mol−1 at 120°C during
5 min) and comparison with NanoNem simulation and capillary wave theory.

Other simulations need to be carried out in order to quantify the impact of large
slopes on the leveling dynamics, as we did in section 4.2.4 for large deformations.

4.5.2 Kernel function

In the previous paragraph, we considered the reflow of a single spatial frequency. We
can also simulate the reflow of a complex pattern to see the global effects of large
slopes. Figure 4.13 is a reflow experiment of a spatially modulated pattern where
large slopes are encountered at the walls of the initial pattern. The polymer film is
patterned with a thermal nanoimprint process and the shape of the film is measured
by atomic force microscopy (AFM) before and after annealing. We will see this ex-
periment in more detail in chapter 6. For now, we focus on the pattern leveling. In
a previous section, we saw that the reflow in capillary wave theory is mathemati-
cally equivalent to a low-pass spatial filter (see Eq. 4.28 on page 67). Here, we can see
this effect on figure 4.13a: smallest features (right side) have completely disappeared,
while larger patterns (left side) have only been rounded. The simulation of this reflow
process with NanoNem fits the measurement data very well.

We can compute the Fourier transforms of the initial and annealed profiles. The
ratio of these transforms gives the kernel function of the reflow (see Eq. 4.29), plotted
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on figure 4.13b. We can notice that the smooth kernel function of capillary wave
theory fits the experimental data very well—again, we will see the consequences in
detail in chapter 6. Besides, the NanoNem simulation fits the experimental data as
well. Nevertheless, this simulation alone cannot account for the scatter between the
experimental data and capillary wave modeling. In other words, in spite of large
slopes at some localized parts of the initial pattern, capillary wave theory is relevant
to model this reflow experiment.

4.6 Conclusion

In this chapter, we saw how we can model the flow of a supported liquid film by
making use of asymptotic models. As a conclusion, table 4.1 on the following page
shows the various topographies that can describe a patterned film, along with the
corresponding relevant model. The next two chapters are devoted to various imple-
mentations of supported flowing films.
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Table 4.1 – Supported film topography and corresponding relevant model.

Deformation
ratio

Aspect
ratio

Diagram
Solving
method

Distinctive
features

h̃

h0
≪ 1

h̃

λ
≪ 1

Capillary
Wave

Theory

– No mesh
(Fourier
transform)
– Viscoelastic
– 3D

h̃

λ
& 1 Full Stokes

(NanoNem)

– Mesh of fluid
domain and
interface
– Complex
boundary
conditions
– Not yet 3D

h̃

h0
∼ 1

h̃

λ
& 1

h̃

λ
≪ 1

Lubrication
Theory

– Mesh of
interface only
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Chapter 5

Partial reflow with residual
layer for complex shapes
manufacturing

5.1 General purposes

Many applications in optics, micro-electro-mechanical devices or microfluidics,
require three dimensional (3D) nanostructures that are difficult or expensive to con-
struct with standard nanolithography techniques. Although particular etching pro-
cesses or numerous lithography steps can be employed for manufacturing 3D nanoim-
print molds, other methods are needed to realize fast and cost-effective complex shap-
ing.

Techniques for manufacturing 3D shapes with a reflow step already exist. In the
field of optical devices, microlenses have been fabricated using reflow for more than
two decades (Popovic et al., 1988; Daly et al., 1990; Audran et al., 2010). Generally, a
cylinder or a line of photoresit is created on a substrate and heated until it forms a
more or less spherical shape, as depicted on figure 5.1a (for a review of microlenses
manufacturing, see O’Neill and Sheridan, 2002; Ottevaere et al., 2006). Various to-
pographies can be created with this technique combined with capillary instabilities,
as reported by Chae et al. (2011); Schift et al. (2011); Grilli et al. (2011). Other ex-
ample of optical devices are linear optical filters fabricated by Emadi et al. (2009)
consisting of very small angle tapers. Grooves are developed in a photoresist film,
and the density of the grooves varies from one side of the filter to the other. Un-
der annealing, the pattern is smoothed resulting in a small angle slope (Fig. 5.1b).
Finally, higher aspect ratio features can be made by grayscale lithography, as demon-
strated by Schleunitz and Schift (2011). In this technique, the local thickness of the
developed resist depends on the exposure dose. A final reflow step produces smooth
slopes (Fig. 5.1c).

All these techniques have a point in common: the lack of residual layer. In this
case the reflow is not only driven by surface tension, but also by triple contact line
tension (or contact angle) that strongly depends on the underlying substrate. The aim
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Figure 5.1 – Various manufacturing techniques based on reflow.

of this chapter is to present some concepts of reflow with a non-zero residual layer, in
other words when no contact line takes part in the dynamics of the reflow. By doing
so, we can apply the theoretical results of chapter 4 where we explored the dynamics
of a supported fluid film.

5.2 Reflow with a large residual layer

In this section, we will focus on the reflow of patterns that are imprinted with a large
residual layer. The idea is to develop some concepts or methods for designing complex
shapes based on the results of capillary wave theory we developed in chapter 4. We
saw that this robust asymptotic model is relevant to a 5% precision for pattern depth
up to 50% of the mean thickness (isodense patterns and small aspect ratios), in other
words, if the residual layer is at least 1.5 times thicker than the imprinted depth.1

In such cases, the reflow of nanoimprinted films can be described as a low-pass
spatial filter that depends on time and physical parameter (surface tension, viscosity
or viscoelasticity, mean thickness...). For a time t of reflow, each Fourier component of
the profile is damped by a factor exp(−t/τ), with τ a characteristic time depending on
the wavelength of the component. We saw that there are two characteristic times for
the leveling of a wavelength λ depending on how λ compares to the thickness of the
film: τ ∼ 3η/γh3

0k4 if kh0 ≪ 1, with η the Newtonian viscosity, γ the surface tension,
h0 the mean thickness, and k = 2π/λ, we called this dynamics the thin film regime;

1This means that, for this degree of accuracy, if we consider for example 50-nm-deep isodense pat-
terns, the reflow can be modeled by a linear approach for a residual layer greater than 75 nm.
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Figure 5.2 – Reflow of a spatially modulated isodense patterns.

and τ ∼ 2η/γk if kh0 ≫ 1, called the thick film (or bulk) regime. The intermediary
dynamics is fully described by the function f defined by equation (4.26) on page 66. If
we take the viscoelastic behavior of the polymer into account, the dynamics is again
different, but we leave that issue to paragraph 5.2.4.

5.2.1 Reflow of spatially modulated isodense patterns

First, we consider what we call spatially modulated isodense patterns. A pattern is
isodense if the area of the bottom of the shape (area under the protrusions of the
mold) equals, at least locally, the area of the top of the shape (area of the cavities
of the mold). For example, a pattern made of 100-nm-width lines with a space of
100 nm between the lines is isodense. Now, if we have a profile combining side by
side isodense patterns of different characteristic lengths (or periods), then we talk of
spatially modulated patterns.

Envelope of reflow. We can define a pattern shape m(x) of length L, of depth 2m̃

by the modulation function:

m(x)= m̃×sign
[

cos
(ˆ x

0
k(ξ)dξ

)]

(5.1)

where k(ξ) is the local wavevector (see figure 5.2, top graph). Note that if k(ξ) = k1

(the pattern is periodical), then m(x) = m̃× sign[cosk1x]. The choice of the function
k(ξ) depends on the wished properties of the reflowed profile. First, we can define the
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envelope of reflow. If we assume that k(ξ) varies slowly with ξ (we will see in chapter 6
that there is an experimental lower bound though), in other words ∂k

∂ξ
≪ k2, then it is

possible to show that the reflow of a local period has the same dynamics as a regular
pattern of the same period (see appendix A, section A.3.5 on page 187. The envelope of

reflow is then the amplitude evolution of the local fundamental of the pattern, a(x, t),
defined by:

a(x, t)= h0 +
4m̃

π
exp

(

− t

τ (k(x))

)

(5.2)

where τ(k) is the characteristic time found in capillary wave theory, defined by equa-
tion (4.27) on page 66. The factor 4/π accounts for the ratio of the fundamental mode
by the depth of the profile in the Fourier transform of a square pattern.

We can then define the reflow front, as the coordinate xφ for which the relative
decrease of the envelope is exp(−φ). We assume for the whole pattern that k(x)×h0 ≪
1 (thin film dynamics), then the characteristic leveling time is τ∼ 3η/γh3

0k4. In other
words, at the reflow front, since the damping factor is exp

(

−t/τ(xφ)
)

, we have the
property:

φ=
tγh3

0k(xφ)4

3η
(5.3)

We are now able to extract k(x) functions with interesting properties for the reflow.

ENHANCED VISUAL CONTRAST between reflowed areas (high frequencies) and slower
dynamics areas (low frequencies) is achieved by keeping constant the
growth rate of the envelope at the reflow front, which is the quantity:

∂a

∂x
(xφ)=−16h̃φe−φ

π
×

∂k
∂x

k(xφ)
. (5.4)

This is realized if k follows an exponential variation, for example:

k(x)= kmax

(
kmin

kmax

) x
L

. (5.5)

CONSTANT SPEED of the reflow front is achieved by a function of the form:

k(x)= kmax

( x

L

)− 1
4

. (5.6)

Indeed, in that case the reflow front takes the expression:

xφ =
γh3

0k4
maxL

3η
× t (5.7)

which has a constant time derivative.

CONSTANT PEAK-TO-PEAK DIFFERENCE (see figure 5.2) is to the first order:

λ(xα)
∂a

∂x
(xα)=−32h̃φe−φ×

∂k
∂x

k(xφ)2 =Constant, (5.8)

which means that 1/k is a linear function of x:
1

k(x)
= 1

kmax
+

(
1

kmin
− 1

kmax

)
x

L
(5.9)
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Figure 5.3 – Illustration of a non-isodense pattern.

Examples. An implementation of this kind of reflow for the rheological properties
measurements of thin films is presented in chapter 6.

5.2.2 Reflow of non-isodense patterns

The next concept of reflow is the reflow of patterns with opposite properties to the
previous section. Here the pattern is periodic (there is a characteristic period λ), but
the repeating units can vary in density. Such a pattern is described on figure 5.3. We
follow the idea of Emadi et al. (2009) presented in figure 5.1c, but in the presence of a
residual layer and with specific constraints of nanoimprint.

After annealing, the local thickness should be proportional to the density of the
pattern ̺, from hr for residual layer with no shape (density of zero) to hr+hd, (density
of 1) with hd the depth of the mold:

h(x)≈ hr +̺(x)hd, (5.10)

with surface tension smoothing the transitions from one density to the other (Fig. 5.3c).
The time of the reflow should be the leveling time of an element (period λ), but smaller
than the leveling time of the global targeted shape.

Constraints. Besides the issue of a non-uniform residual layer for imprints with
variable density on the same mold, we can find some limitation on the shapes that
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could be made with this method of reflow. The minimal non-zero density ̺min is
given by the maximal achievable aspect ratio R, defined by the ratio of the feature
height over its width. Indeed, a smaller and smaller density is realized by a more and
more narrow line, but at constant mold depth, this line would overtake the maximal
achievable aspect ratio. The relation is:

̺min > hd

Rλ
. (5.11)

Now if we want to create a linear slope of angle α, and say we need N elementary
units to make it, an evenly spaced density function would imply ̺min = 1

N
. For small

α, α≈ hd

Nλ
. Combining with the previous criterion, we get:

α< R

N2 . (5.12)

With realistic values of R = 2 and N = 10, we get α< 1°. Consequently, this method of
reflow is unlikely to produce strong slopes or high aspect ratio features with accuracy.

5.2.3 Reflow of 3D shapes

Reflow in the thick film regime. One of the issues of reflow in the thin film
regime is that the rate of smoothing strongly depends on the local thickness (factor
h3

0), as depicted on figure 5.4 on the facing page. If the residual layer is not homoge-
neous, this means that patterns with a smaller residual layer (thus smaller h0) will
not flow as fast as patterns with a larger residual layer (Fig. 5.4a). To circumvent this
difficulty, the idea is to perform the reflow in the thick film regime, where the charac-
teristic leveling time does not depend on the thickness (Fig. 5.4b). This is particularly
interesting if the topology of the mold makes it difficult to achieve a uniform residual
layer, or if the underlying substrate is not planar.

We implemented this concept of reflow both numerically and experimentally on
3D pyramids. The pyramids have a 9 µm square base and a height of 15 µm. The
longest characteristic period is thus the diagonal 12.7 µm. In the experiments, the
residual layer ranged from to 15 µm to 23 µm, so the product k×h0 > 7, which ensure
that the reflow dynamics is in the thick film regime.

A simulation in capillary wave theory (see appendix C) of the reflow of a pyramid
with a 20 µm residual layer is presented on figure 5.5 on page 88. The graphs on
the left are 3D views of the free interface of the fluid, while the plots on the right
are contour lines of the same interface. Under annealing, the initial sharp pyramid
(Fig. 5.5a) becomes a smoothed bump (Fig. 5.5d). The leveling of the height can be
clearly seen on the 3D views. An interesting point in this example is that we can also
see on the contour plots the horizontal smoothing of the pyramid. In other words, the
topology goes from a square shape to a more circular shape.

SEM images of reflow experiments are presented on figure 5.6. The pyramids
were imprinted in SU-8 resist using a silicon mold. Samples were then heated at
70°C during various times and rapidly cooled down at room temperature.
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Figure 5.4 – Reflow of a pattern with a non-uniform residual layer in two cases:
(a) thick film regime where the reflow dynamics depends strongly on the
residual layer: the reflow is not homogeneous; (b) thin film regime where the
reflow dynamics does not depend on the residual layer: the reflow is
homogeneous.
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(c) After 10 min at 70°C.
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Figure 5.5 – Simulated 3D reflow of a pyramid.
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(a) Initial pattern. (b) After 2 min at 70°C.

(c) After 10 min at 70°C. (d) After 20 min at 70°C.

Figure 5.6 – Experimental reflow of nanoimprinted pyramids made of SU-8
resist, with residual layers ranging from to 15 µm to 23 µm.
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Figure 5.7 – Concept of elastic reflow of a pattern. The profile after annealing
(b) is a homothetic reduction of the initial profile (a), provided that the period
of the pattern is smaller than the elastic period.
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Figure 5.8 – AFM profiles of a nanoimprinted NEB 22 film that was annealed
at 100°C during 60 s.

5.2.4 Elastic reflow

The last concept of reflow with a large residual layer we would like to present is what
we call in this thesis the elastic reflow. Here, we take into account the viscoelastic
behavior of the polymer. The reflow time t is of the order of the terminal relaxation
time τt. In that case, we saw in section 4.3.3 on page 68 of chapter 4 that the modes
with a wavelength smaller than a characteristic elastic wavelength λe (Eq. 4.36) are
all damped by approximately the same factor exp(−t/τt). The consequence of this
fact is that high order features of the shape (smaller than λe) undergo a homothetic
reduction of a factor exp(−t/τt), as depicted on figure 5.7.

Elastic reflow for cross-linked polymers was qualitatively observed in a previous
study carried out in our group. An example can be seen on figure 5.8, where a reflow
experiment of a nanoimprinted film is reported. The material used is a commercial
e-beam lithography resist named NEB 22. We can see that, after annealing, in spite
of a decrease in height, the tops of the lines are still flat, while a Newtonian reflow
would have rounded them. Nevertheless, a quantitative analysis is still lacking to
validate this concept of reflow.
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5.3 Reflow with a thin residual layer

5.3.1 Concept

Let us now focus on the reflow if the residual layer is thin compared to the amplitude
of the imprinted shapes. In chapter 4, section 4.2.4, we saw that the fluid moves
with more difficulty in thin areas (residual layer) than in thick areas. Consequently
protrusions are deformed and flow faster at the top than at the bottom. We illustrated
this fact in figure 4.4b on page 61 with the reflow of a square profile: after a certain
time of annealing, the top of the square is perfectly rounded while the bottom still
has sharp angles. We can benefit from this non-linearity to manufacture interesting
objects such as microlenses, as we will see in the next paragraph.

5.3.2 Aspherical lens

We focus on a class of lenses for which the cross section is mathematically described
by a conic:

h(x)=
x2

r

1+
√

1− (1+ q) x2

r2

(5.13)

with r the curvature at the top of the lens and q the conic parameter: if q = 0 the lens
is spherical, q >−1 it is elliptic, q =−1 parabolic, and q <−1 hyperbolic. Those latter
kinds of lenses (q 6= 0) are called aspherical lenses.

We simulated the production of aspherical lenses using our 2D code for the nu-
merical resolution of lubrication theory (see appendix B). Two kinds of patterns were
reflowed, as presented on figure 5.9 on the following page: rectangular shapes or
spaced pyramids, with a fixed period of 15 µm. During annealing, the reflowed shape
is fitted to equation (5.13) in order to extract q and r, as well as the correlation coef-
ficient R2. Thus, the reflow of one pattern defines a trajectory in the space (q, r,R2).
The trajectories for various heights, residual layers and densities are presented on
figure 5.10 on the next page. Several conclusions can be drawn:

1. The global shape of a trajectory is made of two parts:

(a) a first complex curve, generally with increasing r and increasing q. This
corresponds to the non-linear stage of the reflow. It strongly depends on
the initial pattern.

(b) a second nearly linear curve with slowly increasing r and rapidly decreas-
ing q. This correspond to the last stage of reflow when the pattern is a
small amplitude sinusoid, for both rectangular and sinusoidal initial pat-
terns.

2. The correlation is much better (R2 close to 1) at the beginning of reflow in the
case of pyramids, but only hyperbolic lenses are likely to be made (q <−1). The
conic parameters can be tuned by the initial shape of the pyramid (angle) and
the reflow time.
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Figure 5.9 – 3-parameter functions: the residual layer hr, the height of the
profile hd and the length of the base hb.
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Figure 5.10 – Conic parameters extracted from the simulated reflow of various
initial shapes. −→ reflow time

3. The correlation at the beginning of reflow is poorer in the case of the reflow of
rectangular shapes, but elliptic lenses could be achieved.

Reflow experiments were carried out on pyramidal shapes with a thin residual
layer. The pyramids were imprinted in SU-8 resist using a silicon mold. Samples
were then heated at 65°C during various times and rapidly cooled down at room
temperature. Figure 5.11 on the facing page presents SEM images of the experiments.
The profiles of the reflowed patterns were then extracted and conic parameters q

and r were computed. The resulting plot (q, r) is traced on figure 5.12 along with a
simulation that uses the same starting shape, as already done above. It turns out
that the global bent shape is recovered, but the curvature r is more pronounced in
the experimental measurements. We think that this discrepancy is mainly due to the
fact that we simulated a 2D flow (x, z) whereas the real flow is clearly in 3D (x, y, z).
Moreover, lubrication theory may fail at describing the reflow of not so small aspect
ratio pyramids.
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(a) Initial pyramid (hr = 94 nm). (b) After 1 min at 65°C

(c) After 2.5 min at 65°C (d) After 10 min at 65°C

Figure 5.11 – Experimental reflow of nanoimprinted pyramids made of SU-8
resist, with a thin residual layer (hr = 94 nm).
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Figure 5.12 – Conic parameters plot from the reflow experiment (3D) compared
to simulation (2D).
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Figure 5.13 – Inverse reflow optimization. The target function (a semi circle) is
approached with a pyramidal function.

5.3.3 Inverse reflow programing

The difficulty here is to choose the best initial profile to obtain the desired shape after
reflow. We cannot directly process from the final shape and play the reflow backward,
because the reflow erase information (high frequencies) as time goes by. So we need
to guess what the initial shape may be, and try to optimize it. This is what we call
inverse reflow programing. An optimization algorithm is of the following kind (for the
numerical implementation, see appendix B.3 on page 192):

1. Define a target shape (for example a semi-circle, see figure 5.13)

2. Start with a parametrized shape (for example, a pyramid defined by its height,
the length of its base, and the residual layer of the imprint, see figure 5.9)

3. Reflow the test shape until complete leveling, find the reflow duration at which
the correlation with the target shape is maximum. The correlation can disre-
gard some part of the profile, for example the extrema (in our example, only the
profile between 0.1 µm and 0.9 µm).

4. Optimize parameters with a simplex algorithm.

Because many local minima seem to exist, the initial guess is really important to find
a convincing shape. Finding the global minimum of a function is a complex issue
beyond the scope of this thesis, and a dedicated software could be worthily employed
here.

5.4 Conclusion

In this chapter, we explored several ways of manufacturing complex polymer shapes
with use of reflow. We benefited from the theoretical results of chapter 4 to develop
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different approaches of reflow, depending on the residual layer and the initially im-
printed patterns. These concepts are summarized in table 5.1. We also presented
some experimental implementations of reflow. From our point of view, reflow is a
promising technique to achieve complex shapes with the help of a robust and predic-
tive model.

Table 5.1 – Summary of concepts of reflow

Name Description Implementation

Modulated patterns With a thick residual layer, high
frequency features flow faster than
low frequency features.

Rheology (see
chap. 6)

Non-isodense patterns With a thick residual layer, the
reflow is performed until individual
features are leveled but keeping the
general shape that depends on the
local density of the initial pattern.

Slopes with small
aspect ratios

Thick film reflow With a thick residual layer, the
wavelength of the shapes is smaller
than the mean thickness: the reflow
is homogeneous even though the
residual layer is not uniform.

Reflow on
non-planar
substrates

Elastic reflow With a thick residual layer, the
wavelength of the shapes is smaller
than the elastic wavelength, and
the time of reflow is smaller than
the elastic relaxation time of the
polymer: the reflow is homothetic.

Reduction of
aspect ratio

Non-linear reflow With a thin residual layer, the tops
of features are rounded while the
bottoms remain sharp.

Microlenses
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Chapter 6

Characterization of annealed
nanoimprinted patterns applied
to thin polymer films rheology

Note: This chapter is constructed from previously published articles.1

6.1 Introduction

6.1.1 State of the art

Nowadays, numerous methods are available to engineers and physicists for charac-
terizing the rheological properties of fluids at the macroscopic scale.2 Among others:

ROTATIONAL METHODS consist of a probe such as a cylinder, a cone, a plate, or a
sphere, rotating at a definite speed and immersed in the fluid. The rheo-
logical properties are computed from the measurement of the torque gen-
erated by viscous shear.

VIBRATING METHODS are quite similar to the latter, except that the motion of the
probe is oscillating. This method is more relevant for viscoelastic mea-
surements

CAPILLARY METHODS consist of the flow of a fluid from a reservoir through a thin
pipe. The fluid viscosity is measured from the time it takes for the reser-
voir to empty.

1Etienne Rognin, Stefan Landis, and Laurent Davoust. Viscosity measurements of thin polymer
films from reflow of spatially modulated nanoimprinted patterns. Physical Review E 84, 041805 (2011).

Etienne Rognin, Stefan Landis, and Laurent Davoust. Viscoelastic properties measurements of thin
polymer films from reflow of nanoimprinted patterns. Journal of Vacuum Science & Technology B:

Microelectronics and Nanometer Structures 30, 011602 (2012).
2For example, see
ATS RheoSystems www.atsrheosystems.com,
Malvern Instruments www.malverninstruments.fr.
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However, these methods require a rather important amount of fluid, which can be
prohibitive in terms of cost. Moreover, it is not possible to perform measurements on
films thinner than about ten micrometers. In order to circumvent these limits, other
methods have been suggested for measurements at the nanoscale:

DEWETTING METHOD is based on the nucleation and growth rate of holes in a dewet-
ting polymer film (Redon et al., 1991; Masson and Green, 2002; Li et al.,
2005; Bodiguel and Fretigny, 2006; Gabriele et al., 2006). Although this
approach yields consistent results, it also raises both theoretical and ex-
perimental issues. The dynamics of a moving contact line is indeed largely
simplified (Ren and E, 2007). Moreover, a limited range of film thick-
ness and substrate material can be used in order to observe the expected
dewetting dynamics.

IMMERSED TIP METHOD measures the resistance of the flow around an immersed
Atomic Force Microscope (AFM) tip (Mechler et al., 2004; Feibelman, 2006;
Major et al., 2006; Svintsov et al., 2007; Papi et al., 2008; Moeller, 2009;
Zhang et al., 2010). Conceptually, this method is a scale-down of macro-
scopic vibrating methods. However, only mechanical properties at high
frequency can be measured and the accuracy of the method depends to a
large extent on an exact knowledge of the tip shape.

SURFACE DYNAMICS METHODS focus on the relaxation dynamics of a surface topog-
raphy. In this case, we can distinguish between methods where the topog-
raphy is induced by thermal fluctuations (Kim et al., 2003; Li et al., 2005;
Jiang et al., 2007; Yang et al., 2009; Pottier et al., 2011) or imprinted by
a mold, using common nanoimprint techniques (Hamdorf and Johanns-
mann, 2000; Darhuber et al., 2001; Jones et al., 2006; Ding et al., 2007,
2008). The dynamics is probed using x-ray photon correlation microscopy,
or more generally by light scattering techniques. In this approach, atten-
tion is given to the time evolution of the fundamental spatial frequency
of the shape, and viscoelastic properties are determined from the mea-
sured relaxation time. In many cases, neither the exact topology nor the
thermal dependence of the optical index of the material are known, and
a delicate data processing is needed.

In this chapter, we present a method to measure the viscoelastic properties of a thin
polymer film from the reflow of nanoimprinted patterns. We focus our efforts on the
accurate spatial determination of the film surface, rather than on its temporal evolu-
tion, and we extend the method developed in our group by Leveder et al. (2007, 2008,
2010).

6.1.2 Overview of our method

The main steps of our method are drawn in figure 6.1 on the next page. The material
(polymer) is spin-coated onto a silicon substrate (a) and the thickness of the film is



6.1 Introduction 99

Figure 6.1 – Main steps of the viscosity measurement method.

measured by ellipsometry. We begin with imprinting the film by thermal nanoimprint
(b), using a specially designed mold that will be described hereafter. After demolding
at room temperature, a first measurement of the imprinted profile is done by AFM3

(c). The film is then heated at a definite temperature above the glass transition tem-
perature (Tg) during a definite time (d). The film is then rapidly cooled down and the
reflowed profile is again measured by AFM (e). Spectral densities of the profiles are
computed using standard Fourier transform algorithms, and the sought viscosity is
a fitting parameter of an evolution model for the spectral density of the topography,
described in the next section.

At temperatures above Tg, the film becomes viscous and begins to flow. At the
submicron scale and for highly viscous fluids, both gravity and inertia are negligible:
the flow is only driven by surface tension and in some cases van der Waals forces
(see chapter 2). The film reaches a steady state when the surface energy of the free
interface is minimum. In other words, if no dewetting occurs, then the film becomes
completely flat. During the reflow process, the shape of the interface evolves with
the balance between the surface tension which tends to smooth the bumps and pro-
trusions, and the viscous shear which damps the flow. Locally, the more curved the
interface is, the higher the pressure is inside the fluid: short length features of high
curvature are the first elements to disappear. Moreover, long length general shapes
flatten out more slowly because the fluid must flow over longer distances under high
shear and smaller pressure gradient. These local behaviors produce a large scale con-
sequence of the reflow which is a low-pass filtering of the topology of the film. We
take advantage precisely of this spatial filtering to extract the viscoelastic properties
of the material.

3Other methods to measure the topology of thin films, such as colorimetry (Bodiguel, 2006, p. 215) or
confocal microscopy, are not covered in this thesis.



100 6 Characterization of annealed nanoimprinted patterns applied to [...] rheology

6.2 Reflow of spatially modulated patterns

6.2.1 Model

We assume that the deviation of the free surface, noted h̃, from the mean thickness
value, noted h0, is small, in other words that h̃ ≪ h0. Under this assumption we
can use the results of capillary wave theory for supported thin films, presented in
chapter 4. In particular, we recall that each Fourier component ĥ(k) of the interface
is damped with a wavevector-dependent relaxation time τ(k):

ĥ(k, t)= ĥ(k,0)×exp
(

− t

τ(k)

)

. (6.1)

The relaxation time τ= 1/iω is constrained by the dispersion relation:

iωη(ω)h0

γ
= f (kh0,Ha,β), (6.2)

where η(ω) is the frequency-dependent complex viscosity, γ is the surface tension,
and f is a dimensionless function (Eq. 4.26 on page 66) of the normalized wavevector
k×h0, the Hamaker number (Eq. 4.11 on page 59) and the slip length β (Eq. 4.2 on
page 56).

Equation (6.1) shows that the reflow of the film is equivalent to a low-pass Fourier
spatial filter, for which we gave a physical explanation in the previous section. The
filter kernel exp(−t/τ(k)) is given by the physical parameters of the problem. Con-
sequently, there are two ways to measure the kernel function and then extract the
viscoelastic properties. The first one, extensively used by previous authors (see the
paragraph on SURFACE DYNAMICS METHODS presented in the introducing section),
is to follow the amplitude h(k1, t) of the surface for a given mode k1, as a function
of time t. This is done with periodical patterns, focusing on the decrease of the fun-
damental frequency. An exponential decrease is found, and the model is fitted to
that data. This is straightforward if there is a real-time analysis, such as scatterom-
etry. Nevertheless, along with the issues raised in the introduction section of this
chapter, an additional experimental problem occurs. The steep variation of the de-
cay time with respect to the wavevector and the mean thickness limits the viscosity
measurement to a range of a single decade, using a given pattern and thickness, and
assuming reasonable experimental times. Multiple patterns are therefore needed to
cover a wide range of viscosity and viscoelastic properties. Another issue is the fact
that one measurement flattens the topology, hence several samples have to be used
in order to perform measurements at different temperatures.

The other way to obtain the kernel function is to measure the decay of all the
modes for a given time ta of annealing, in other words, to measure h(k,0) and h(k, ta)
as a function of wavevector k. We also recall from chapter 4 that elastic effects will
come into play for high spatial frequencies, whereas viscosity drives the low order
modes. Thus, if we can measure the kernel function for both low and high wavevec-
tors, then viscous and elastic properties are likely to be derived at the same time. In
order to realize this effectively, we need a topology with a rich spectral density but



6.2 Reflow of spatially modulated patterns 101

short enough to be measured by a single AFM or profilometer scan. We present below
a patented approach to designing a mold with such a profile.

6.2.2 Pattern design

We can define a pattern shape m(x) of length L, of depth 2m̃ by the modulation func-
tion:

m(x)= m̃×sign
[

cos
(ˆ x

0
k(ξ)dξ

)]

, (6.3)

where k(ξ) is the local wavevector. Note that if k(ξ) = k1 (the pattern is periodical),
then m(x)= m̃×sign[cosk1x]. The choice of the function k(ξ) is essential to determine
the spectral density. We already studied the reflow of such modulated patterns in
chapter 5). Here, we give examples of relevant local wavevector functions.

UNIFORM SPECTRAL DENSITY gives the same weight to low and high frequencies
through the Fourier transform. Its expression is given by the linear func-
tion:

k(ξ)= kmax + (kmin −kmax)× ξ

L
, (6.4)

where kmin and kmax are, respectively, the minimum and the maximum
local wavevectors. This type of profile is particularly relevant if the mea-
surements are performed by AFM or profilometer.

In case of optical measurement methods, other function k(ξ) can be useful:

ENHANCED VISUAL CONTRAST between reflowed areas (high frequencies) and slower
dynamics areas (low frequencies) is achieved by:

k(ξ)= kmax

(
kmin

kmax

) ξ
L

. (6.5)

CONSTANT SPEED

k(ξ)= kmax

(
ξ

L

)− 1
4

. (6.6)

CONSTANT PEAK-TO-PEAK DIFFERENCE

1
k(ξ)

= 1
kmax

+
(

1
kmin

− 1
kmax

)
ξ

L
. (6.7)

6.2.3 Mold fabrication

The general method to design a mold is the following (see figure 6.2 for an example of
implementation):

1. Setting of the pattern length L, for example L = 40µm (AFM scans).

2. Setting of the function k(ξ), for instance according to equation (6.5).
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Figure 6.2 – SEM image of a 40µm pattern of a mold manufactured with
e-beam lithography.

3. Setting of kmin and kmax, or equivalently λmin and λmax with λ= 2π/k. For this
step:

(a) λmax as a function of λmin, for example λmax = 10λmin.

(b) λmin is imposed by the lithography technique employed to make the mold.
Indeed, for a first period λ1 = λmin, the difference with the next one λ2

should be close to λmin times the growth rate of λ. Whether λ1 and λ2 will
be different depends on the following criterion:

λmin ×
∂λ

∂ξ
(λmin)Ê 2δ, (6.8)

with δ the resolution of the lithography (δ∼ 5nm for e-beam lithography).
The factor 2 comes from the fact that the line width is half of the period.
For our example, we find: λmin = 417nm.

6.3 Experimental viscosity measurements

6.3.1 Experiments

Experiments were carried out on polystyrene samples. The following paragraphs
cover many aspects of the experimental process. The first one is dedicated to the ma-
terials properties and preparation. The second and third paragraphs go through the
imprint and reflow of the samples. The last one is a comment on the AFM measure-
ments. Results are finally presented in the next subsection.

Materials. Low molecular weights (Mw = 30kg·mol−1 and Mw = 130kg·mol−1) mo-
nodisperse (Mw/Mn < 1.06) polystyrene (PS 30k and PS 130k) solution was spin-
coated onto 8inch silicon substrates. Prior to coating PS, substrates were rinsed with
a hydroxylamine/aminethoxyethanol (60%-40%) bath during 600s at 343K, and a
O2/N2H2 (2150sccm/240sccm) plasma during 180s at 543K was performed in order to
obtain a homogeneous 4 nm-thick SiOx layer. Thicknesses of coated polystyrene films
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Figure 6.3 – Evolution of the local mean thickness (h0) during imprint: (a)
short imprint times, only local flow takes place, the mean thickness equals the
coated thickness (the pattern is iso-dense); (b) intermediate state; (c) long
imprint time, long-range flow occurred to spread the material.

were 150±1nm (measured by ellipsometry). In chapter 3, we reviewed the properties
of polystyrene and reported those of PS 30k and PS 130k in table 3.2 on page 39.

Imprint. The imprints of the patterns were made at 13 bars of pressure and at
temperature Tg + 80°C where the elastic stress relaxes quickly (measured by disk
rheometry to be less than 1s) in comparison to the imprint time (which was at least
30min). The uniformity of the residual layer is ensured because first, the depth of the
pattern is small compared with the initial thickness of the film, second, the pattern
is locally iso-dense (no large scale flow of mass), and third, the total length of the
pattern (40µm) is small compared to the thickness of the mold (750µm) so that no
bending of the mold occurred (Landis et al., 2006). Demolding was performed at room
temperature.

The local mean thickness is between the initial coated thickness (150nm) and the
initial thickness minus half of the mold depth (125nm), as it is sketched on figure 6.3.
We assume that long-range flow occurs during the imprint time, so that the local
mean thickness is close to the latter case. Keeping a reasonable uncertainty range:
h0 = 135±10 nm.

Heating and quench. The model we previously described requires that the poly-
mer film changes instantaneously from a glassy solid state below Tg to a fluid state
at a fixed temperature above Tg. From an experimental point of view, this cannot be
strictly achieved because of thermal inertia of the sample. However, we can choose
the total reflow duration so that the duration of the unsteady state can be neglected,
at the cost of an appropriate error estimate on the final viscosity measurement.

In our experiments, the heating of the sample was done with a hot plate with 1°C
precision. The energy is transferred to the sample through the contact surface. The
quench, i.e. the rapid cooling, was performed by using a cooling plate thermalized
at room temperature. Given that the sample is thin (no significant heat flux at the
edges) and that the flux through both sides are homogeneous, this quench is a one-
dimensional thermal transfer through the thickness of the sample. In chapter 2, we
saw that it was reasonable to assume an homogeneous temperature inside the film
(Biot number, Eq. 2.14 on page 26). The cooling (or heating) of the sample is then
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driven by the fastest transfer phenomenon.4 It turns out to be the thermal contact
with the plate, of characteristic time τ ∼ 1s, therefore the sample reaches a steady
state within a few seconds at most. According to this scaling analysis, if we choose
a reflow duration of at least 5min, it is reasonable to consider that the transition is
instantaneous.

AFM measurements. For the AFM measurements we used Nanosensors™ AR5-
NCHR tips in tapping mode. These tips have high aspect ratios (7:1) and low radii
(< 15nm). The typical resonance frequency was 330kHz.

All AFM measurements are done at room temperature, thus there is essentially
no issue of temperature drift. It is however well-known that tip geometry induces a
distortion in the measured image (Keller, 1991; Hahlweg et al., 2009). This effect is a
non-linear convolution which can have a direct influence on the spectral density, and
finally on the viscosity measurement. The mathematical treatment of a nonlinear
deconvolution is not straightforward and requires an accurate knowledge of the tip
shape. Without special equipment dedicated to this issue it is thus of importance to
minimize such convolution. In our case, this is ensured by the low aspect ratio of the
imprinted profiles, which means that the tip can fully enter the trenches and that
the shadows induced by the steep steps are negligible. It is also possible to perform a
brief reflow just after demolding in order to soften the edges of the profile, and thus
reduce or suppress the tip convolution. This new state may be therefore used as the
initial one.

6.3.2 Results and discussion

Figure 6.4 on the facing page shows an example of a viscosity measurement done
with the method described above. A 150nm-thick PS 30k was annealed at 120°C
for 5min. The AFM measurements reported on figure 6.4a emphasize the low-pass
filtering behavior of the reflow, since the high frequency part of the profile completely
vanished after annealing, which is confirmed by the Fourier transforms plotted on
figure 6.4b. The ratio of Fourier transforms of both profile plotted on figure 6.4c gives
the experimental kernel function. The error bars are drawn assuming a 1 nm RMS
Gaussian noise for each AFM measurement. The large uncertainty area for the high
order modes accounts for the fact that no information can be extracted from features
which have completely flowed. From the data points it is then possible to compute
the capillary number:

Ca= ηh0

γt
, (6.9)

4Assuming a linear heat transfer on one side of the sample, an energy balance would give for the
silicon substrate (we neglect the thermal inertia of the polymer film):

τ
∂T

∂t
= Tplate −T with τ=

ρcpℓ

H

where ρ is the density of the silicon, cp its specific heat, ℓ = 750µm the wafer thickness and H the
coefficient of the linearized heat transfer.
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(a) AFM measurements of an imprinted pattern before and after annealing.
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Figure 6.4 – Viscosity measurement example for PS 30k at 120°C.
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(see Eq. 4.30 on page 67) as a fitting parameter of the theoretical kernel function:

ĥ(k, t)

ĥ(k,0)
= exp

(

− f (kh0)
Ca

)

. (6.10)

Viscosity is readily obtained with the knowledge of the other physical parameters
(Tab. 3.2 on page 39).

Accuracy of the method. Let’s now make several remarks about the accuracy of
the method. The number Ca is given with a relative error σCa = 2% which comes
from the residuals of the fitting. The uncertainty of the other parameters is, in our
experiments (see previous section), σh0 = 7% for the mean thickness, σγ = 9% for the
surface tension, σt = 1% for the duration of the reflow. The way the uncertainty of
the mean thickness influences the final result is not straightforward since it plays a
role both in the fitting (through f (kh0)) and in the number Ca. Still, it is possible to
estimate an upper bound of this error by recalling the fact that the dynamics of the
film is independent of its thickness for high order modes (kh0 ≫ 1) and varies as h3

0
for low order modes (thin film regime). Keeping the most significant dependency, we
can finally write:

ση =
√

σ2
Ca +σ2

γ+σ2
t + (3σh0)2 = 23%, (6.11)

The uncertainty is mainly due to surface tension and mean thickness estimates. For
example, it could be worth using a dedicated equipment to accurately measure surface
tension. Although uncertainty seems rather high, our method should fairly give an
order of magnitude for viscosity, which is what we are interested in from a process
point of view. To conclude on this particular example, the result of the fit for PS 30k
at 120°C is η= 1.0±0.2×106 Pa·s.

Temperature dependence. Finally, the viscosity of polymer melts can be extracted
using the previously described technique at various temperatures (Tab. 6.1). Viscos-
ity results for PS 30k and 130k between 120°C and 180°C are reported on figure 6.5
on the next page. The reference curves are obtained from Plazek (1965); Majeste
et al. (1998); Li et al. (2005); Kim et al. (2007); Leveder (2009) (see chapter 3, tables
3.4 and 3.5 on page 44). In spite of the large scattering of reference curves,5 good
agreement can be seen with our viscosity measurements.

The WLF law was fitted to our data and parameters c1 = 12.6±0.1, c2 = 101±1K
and ηs@35kg·mol−1 = 1.1±0.2×104 Pa·s were found. These results also confirm that the
deviation of flow properties encountered for thickness below ten nanometers does not
occur here, since we obtained the properties of the bulk materials.

6.4 Experimental viscoelastic measurements

In the previous section, we saw that it is possible to measure the viscosity of polystyrene
by looking at how fast low spatial frequencies flow. We will now see that it is also

5This is traditionally explained by differences in preparation of samples, rheology methods, or poly-
dispersity index.
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Table 6.1 – Reflow time and results for samples of PS 30k and PS 130k

Temperature (°C) Reflow time (min) Fitted Ca (±2%)

PS 30k PS 130k PS 30k PS 130k

120 10 60 6.6×10−3 4.9×10−1

130 5 60 3.4×10−3 1.5×10−2

140 2 40 1.1×10−3 8.2×10−3

150 1 10 7.5×10−4 5.5×10−3

160 1 10 1.2×10−4 1.8×10−3

170 1 10 5.7×10−5 5.7×10−4

180 - 10 - 2.0×10−4
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(b) Results for PS 130k

Figure 6.5 – Viscosity measurements for polystyrene of two molecular weights.
The experimental points are plotted along with reference curves.
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possible to extract some information about elasticity by looking at high frequencies.
However, these high frequencies should not completely flow in order to keep an ac-
ceptable signal-to-noise ratio (see error bars in figure 6.4c). That is why viscoelastic
measurements require quicker reflow times.

6.4.1 Models

In section 3.3.4 on page 45 of chapter 4, we found that the theoretical kernel function
of the reflow was, in the case of a Maxwell fluid:

ĥ(k, t)= ĥ(k,0)×exp

(

− 1
Ca

f (kh0) +De

)

, (6.12)

with Ca the capillary number related to the zero-shear viscosity and

De= τt

t
, (6.13)

the ratio of the terminal relaxation time over the reflow time, called the Deborah

number. We also saw that we could use a reptation model that is a kind of Maxwell
model with a continuous spectrum, although we cannot in that case find an analytical
kernel function (see Eq. 4.37 on page 69). The numbers Ca and De will then be our
fitting parameters for the experimental data.

6.4.2 Single temperature example

We used 205nm-thick PS 130k samples. Figure 6.6 on the next page gives an example
of a reflow experiment at 140°C for 30s. The reflow time is quite short in order
to prevent the complete flow of high frequencies (Fig. 6.6a). Contrary to viscosity
measurements in the previous section, high order modes of the Fourier transforms
will be used to extract elastic properties (Fig. 6.6b). High frequencies come from both
small pitch lines (below about kh0 ≈ 6) but also high orders of the Fourier components
of square signals.

Unfortunately, if we directly compute the experimental kernel, a large scattering
is found in the high frequencies, as shown on figure 6.7a. In order to reduce the
scattering of data, the Fourier spectra are smoothed with use of a convolution with a
blurring vector,6 and a smoother kernel is found (Fig. 6.7b).

Now, we can fit our models to the experimental points, as done in figure 6.8 on
page 110. From this experiment, we can see that a viscoelastic Maxwell model is more
relevant to describe the flow than a purely viscous model. Especially at high spatial
frequencies, a viscous kernel is exponentially decreasing (straight line in a semi-log
plot), whereas a viscoelastic kernel tends towards a horizontal asymptote. Theoreti-
cally, elastic effects should appear for kh0 & 2.5 (see equation 4.36 on page 69), and we
see that it reflects the experimental data. The result of the fitting is Ca= 0.9±0.2 and
De = 0.36±0.08. In the next paragraph, we will see the results in terms of viscosity
and relaxation time.

6This is a very common filtering method in data processing. Here we used a rather narrow blurring
vector: [0.05 0.1 0.15 0.4 0.15 0.1 0.05]



6.4 Experimental viscoelastic measurements 109

80
100
120
140
160
180
200
220

0 5 10 15 20 25 30 35 40

T
h

ic
k

n
e
ss

h
[n

m
]

x-coordinate [µm]

Initial profile
Profile after annealing

(a) AFM measurements of an imprinted pattern before and after annealing.
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Figure 6.6 – Viscoelastic reflow experiment with PS 130k at 140°C for 30s.
Contrary to viscosity measurements, high order modes (b) will be used to
extract elastic properties.
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treatment, (b) from smoothed Fourier spectra.



110 6 Characterization of annealed nanoimprinted patterns applied to [...] rheology

0.01

0.1

1

0 2 4 6 8 10 12

K
e
rn

e
l

ĥ
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Table 6.2 – Reflow times and viscoelastic fits.

Temp. (°C) Reflow time (s) fitted Ca fitted De

Maxwell Reptation Maxwell Reptation

110 600 0.86 1.4 0.30 0.40
120 300 1.3 2.0 0.30 0.41
130 60 1.0 1.8 0.28 0.38
140 30 0.78 0.73 0.42 0.54
150 30 0.076 0.30 0.23 0.27

6.4.3 Temperature dependence

The method was used to measure the viscoelastic properties of PS 130k at various
temperatures. Experimental sets and fitting results are reported on table 6.2. Physi-
cal parameters are reported on figure 6.9. Zero-shear viscosity (Fig 6.9a) is consistent
with the WLF model we found in the previous section, confirming the robustness of
the rheology method.

We now focus on the relaxation times of figure 6.9b. In chapter 3, we saw that the
terminal relaxation time could be expressed by:

τt(T)= η0(T)
Ge

, (6.14)

with η0 the zero-shear viscosity and Ge the elastic plateau modulus given by equa-
tion (3.19) on page 45, which has a negligible dependence on temperature with respect
to the variations of η0. The curve in figure 6.9b is then the zero-shear viscosity model
(Fig. 6.9) divided by Ge ≈ 0.2MPa. It is remarkable to recover the same order of mag-
nitude, in spite of the scattering of data. The large discrepancy with experimental
data for low temperatures suggests that the observed relaxation time at these tem-
peratures may not be the terminal time but a relaxation time (or a combination of
times) associated with faster dynamics.

6.4.4 Maxwell versus reptation model

In the previous paragraph, we found that there are no significant difference between
the Maxwell model and the reptation model in terms of measured viscosity and re-
laxation time. However, if we look at figure 6.10 on the next page which is the experi-
mental kernel for the reflow at 150°C, we see that data is more closely fitted with the
reptation model, because the latter reaches its asymptote faster, although remaining
discrepancy near kh0 ∼ 2 suggests that an even more relevant model is required.

6.5 Conclusion and outlooks

In this chapter, we presented a method to measure the viscoelastic properties of poly-
mer thin films from the reflow of nanoimprinted patterns. We made use of a complete
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Figure 6.9 – Viscoelasticity measurements for PS 130k at several
temperatures. (a) Experimental viscosity (points) and the WLF model (line)
with the parameters found in the previous section. (b) Relaxation time (points)
and the theoretical terminal time (line).
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and accurate model for the spectral density evolution of the topology. Contrary to
previous similar approaches, emphasis was put on the spatial description rather than
the temporal decay of the patterns. With this model, we could develop relevant stamp
designs with spatially modulated patterns to optimize experimental measurements
and to ensure fruitful data processing. Our approach was then successfully applied
to measure viscosity of PS 30k and PS 130k, and the viscoelastic properties of PS
130k. The measured relaxation time is of practical importance for imprint processes:
it is the time needed for internal stresses to relax. Our method does not require ded-
icated equipment since it makes use of imprint tools and AFM. It is then a fast and
cost-effective method to measure the rheological properties of polymer thin films.

The question remaining now, is whether it is possible to measure other physical
quantities like slip lengths or disjoining pressures. In the case of periodical patterns
leveling, this issue has been partially addressed by Gilormini and Teyssedre (2012)
for the former, and Seemann et al. (2001); Steiner (2005) for the latter. It is clear
that the first step is to decorrelate the slip length and disjoining pressure from the
rheological properties. We saw in chapter 4 that high spatial frequencies are not
affected by those two quantities (Fig. 4.7 on page 66), whereas slip and van der Waals
forces strongly affect the flow of low frequencies. So in theory, it should be possible
to measure other physical parameters with the technique presented in this chapter.
The experimental implementation is left to future studies.
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Chapter 7

Disjoining pressure
and the modern theory
of van der Waals forces

In the previous parts, we mentioned the existence of a disjoining pressure responsible
for the spontaneous rupture of thin films. In the absence of electrostatic forces, the
intermolecular driving interactions are forces called long-range van der Waals forces,
named after the Dutch scientist Johannes Diderik van der Waals. So far we employed
a common approximation of the disjoining pressure in A/6πh3, with A the Hamaker
constant, and h the thickness of the film. In this chapter, we will see that in fact A is
a constant only for infinitely thin films, and is rather a function of h for finite films.
The modern theory of van der Waals forces gives a practical method to compute the
disjoining pressure from the optical properties of the materials in planar multilayer
geometries, although its extension to arbitrary geometries is still a challenge today.

The reference book in that field has been for a long time the work by Israelachvili
(1991, Chap. 11). A more practical and thorough approach is provided by the recent
book of Parsegian (2005), although the present chapter is inspired to a large extent
by the work of Mulet (2003, Chap. 6). Finally, the most advanced improvements in
long-range forces understanding can be found in the review by French et al. (2010).

7.1 Studied geometries

Two configurations are encountered in our experimental setup, as depicted on fig-
ure 7.1 on the next page. The first one is called the supported film: a polymer film lies
on a silicon substrate. We can add layers between the substrate and the film in order
to tune the properties of the disjoining pressure. The second configuration is called
the confined film: the film is sandwiched between the substrate and the mold. Here
again we can add intermediate layers on the substrate or on the mold. Usually, there
is also an anti-sticking layer covering the mold.

For such geometries, it is clear that in areas far from the edges of the protrusions
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Figure 7.1 – Experimental geometries.

(much farther than the characteristic thickness), the system can be studied as a pla-
nar stratified medium, at least at initial times (circles in figure 7.1). We also have to
keep in mind that the theory described in this chapter is a macroscopic theory, thus
the thickness of layers should be at least of several molecular lengths (Ninham, 1980).
Finally, we do not take into account the motion of the interface or the fluid velocity:
we consider a quasi-static system.1

7.2 Long-range van der Waals forces

The ideal gas law (the product of the pressure by the volume of the gas is constant
at a given temperature) was already known since the middle of the eighteenth cen-
tury when, in his PhD thesis of 1873, van der Waals found that the behavior of real
gas near the liquefaction point was more accurately described by taking into account
an attractive interaction between the molecules of the gas. The nature of this inter-
action was later determined by London (1930) under the name of dispersion forces.
Electrically neutral molecules attract each other because of the fluctuations of their
electronic cloud, which generates an instantaneous dipole moment at each molecule.

7.2.1 Pair interaction between molecules

We can easily derive the interaction potential between two molecules of type 1 and
2, as depicted on figure 7.2a on the facing page. In this simplified approach,2 the
first fluctuating dipole P1 generates an electric field E1 proportional to P1r−3 at large
distance (we compute long-range interactions) and for an infinite speed of light. E1

1In fact, the motion of the interacting materials only plays a role when the velocities approach the
speed of light. In that case, a dissipative force called Casimir friction appears (Kardar and Golestanian,
1999; Zurita-Sánchez et al., 2004; Volokitin and Persson, 2007, 2008).

2A more rigorous computation has to be done in the framework of quantum mechanics. We can have
an insight of what happens in a quantum approach in an article by Feynman (1939). Citing his own
words, “the negative charge distribution of each atom has its center of gravity moved slightly toward
the other. It is not the interaction of these dipoles which leads to van der Waals’ force, but rather the
attraction of each nucleus for the distorted charge distribution of its own electrons [...].”
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(a) Interaction between two
fluctuating dipoles at distance r.

(b) Pairwise summation of
microscopic interactions.

Figure 7.2 – Van der Waals force and Hamaker’s theory.

induces a dipole P2 at a second molecule. This second dipole is proportional to the
electric field: P2 ∝ E1, and generates a field E2 back to the first dipole. This latter
field is again proportional to P2r−3, so eventually E2 ∝ P1r−6. The interaction energy
between the two dipoles is then proportional to P2

1 r−6. Consequently, even if the
average of P1 is zero, the average of P2

1 is not, and the energy has a finite value of the
form:

w =− C

r6 , (7.1)

where C is a constant related to the polarizability of the interacting molecules.

7.2.2 Hamaker’s theory

How can we compute van der Waals forces between macroscopic bodies? Hugo Christi-
aan Hamaker (1937) gave a first answer based on the concept of pairwise summation.

The idea is the following.
We try to compute the macroscopic interaction between a flat film of thickness h

having a density ρ1 of molecules #1 per unit of volume, and a semi-infinite substrate
of density ρ2 of molecules #2 (Fig. 7.2b). We will assume that the total interaction is
the sum of all pair interactions as describe above, in other words, that two molecules
of the same type do not interact, and that many-body interactions (interactions be-
tween three or more molecules) are not significant. This assumption is called pairwise

summation, or additivity of van der Waals forces, and will be discussed later. We con-
sider a small volume dV of fluid at distance z from the substrate. The interaction of
this volume with the substrate is:

dW =−Cρ1ρ2

ˆ ∞

z

2π
r(1−cosθ)

r6 rdr

=−πCρ1ρ2

6z3 .
(7.2)

So the total interaction per unit of surface should be found by integrating over the
whole thickness:

W =
ˆ h

0
−πCρ1ρ2

6z3 dz, (7.3)
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but this expression yields an infinite energy. This is a common issue in dispersion
force computation. To extract a finite energy, we have to recall that the interaction
should be zero for a bulk film, in other words, when h → ∞. So we can formally
subtract this energy to equation (7.3), and find:

W =
ˆ ∞

h

πCρ1ρ2

6z3 dz = πCρ1ρ2

12h2 . (7.4)

If the disjoining pressure is defined by

Π(h)=−∂W

∂h
, (7.5)

then we recover the well-known disjoining pressure of the form:

Π(h)=− A

6πh3 , (7.6)

where the Hamaker constant is defined by A =−π2Cρ1ρ2.
Although the h−3 dependence of the disjoining pressure, which was experimen-

tally observed, was an important success, Hamaker’s theory failed at predicting the
constant A, especially for dense phases. The reason is that pairwise summation com-
pletely neglects many-body effects (Ninham and Parsegian, 1970a; Podgornik et al.,
2006). A more quantitatively robust theory was needed, and it was essentially devel-
oped by Evgeny Mikhailovich Lifshitz in the second half of the twentieth century.

7.2.3 Lifshitz’ theory and the fluctuating sources

In a quantum approach, Casimir (1948) discovered that two perfectly reflecting metal-
lic plates in vacuum attract each other, a phenomenon later referred as the Casimir

effect. This force surprisingly arises out of the quantized fluctuating electromagnetic
field between the plates. Casimir forces in real materials were later derived in a
different framework by Lifshitz and Kosevich (1955); Lifshitz (1956). Lifshitz de-
veloped a theory based on classical electrodynamics, where fluctuating sources are
introduced in Maxwell equations. At a given frequency and at a given location, the
more absorbent the material is, the more significant the fluctuation. This property
is an important result of statistical mechanics, called the fluctuation-dissipation the-

orem. Lifshitz employed complex dielectric functions that can represent metals as
well as dielectrics, the absorption being related to the imaginary part of the dielectric
function. The next step of the theory is that the fluctuating sources interact through
an electromagnetic field. The power of Lifshitz theory is that the many-body inter-
actions are all taken into account in the computation of this electromagnetic field.
This field can be analytically derived in simple geometries such as planar media. The
modern theory of van der Waals forces was finally presented in Dzyaloshinskii et al.

(1961). Boyer (1968) eventually proved that the quantum approach of Casimir and
the classical fluctuating approach of Lifshitz were equivalent.

Lifshitz and his colleagues were able not only to overcome the non-additivity prob-
lem of Hamaker’s theory, but they provided a very practical way of computing the
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Figure 7.3 – Effect of complex refractive index n = n′+ in′′ on a plane wave.

forces: through the optical properties of materials. Lifshitz theory has been employed
to compute the disjoining pressure in various situations (Ninham and Parsegian,
1970b; Ninham et al., 1970; Donners et al., 1977; Correa and Saramago, 2004). Has
the modern theory been confirmed by experiment? A review of experimental mea-
surements of Casimir forces can be found in Klimchitskaya et al. (2009). In spite of
improving results (up to 5% agreement), it seems that the accurate computation of
forces in realistic cases—non-planar media, corrugated surfaces (Emig et al., 2003),
unknown optical indices—is still a challenge to take up.

7.3 Dielectric functions

7.3.1 Macroscopic optical properties of materials

The accurate description of the optical properties of interacting media is a key factor
to the computation of van der Waals forces. At a given angular frequency of light ω,
the complex refractive index n of a material is the sum of a real part n′ related to the
velocity of propagation, and an imaginary part n′′, related to the absorption of light
(figure 7.3):

n(ω)= n′(ω)+ in′′(ω). (7.7)

In electrodynamics framework, the dielectric function, ǫ defined by ǫ = n2 is more
commonly employed:

ǫ= ǫ′+ iǫ′′ = n′2 −n′′2 +2in′n′′. (7.8)

A standard material presents an absorption spectrum similar to the one sketched on
figure 7.4 on the next page. The loss in the infrared part corresponds to interactions
with the vibrations of the bonds between molecules, whereas the loss in the ultraviolet
part is due to the electronic transitions of the atoms or molecules. It turns out that it
is this latter part that mostly account for van der Waals forces.

The imaginary part of the dielectric functions of various materials are reported
on figure 7.5. The data is from Palik (1998) regarding silicon, silicon dioxide and
water, and from Parsegian (2005) regarding polystyrene. In addition, the ultraviolet
spectrum of polystyrene was studied by French et al. (2007). According to the authors,
the first peak near 6 eV is due to the bounding of the aromatic rings, whereas the
second bump above 10 eV is generated by the bounding of the carbon backbone.
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Figure 7.4 – Schema of the imaginary part of the dielectric function ǫ′′(ω) of
common materials, represented with different scales: energy (ħω), wavelength
(2πc/ω) and frequency (ω/2π).
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Figure 7.5 – Imaginary part of the dielectric function for various materials in
the visible and ultraviolet spectrum. Sources: Si, SiO2 and water from Palik
(1998), polystyrene from Parsegian (2005).
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Figure 7.6 – Temperature dependence of the dielectric function for polystyrene
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7.3.2 Experimental measurements and temperature dependence

Using ellipsometry, we measured the optical index of polystyrene (molecular weight
30 kg·mol−1) on the range 1.5 eV to 6.5 eV. Unfortunately, it was not possible to go
over 6.5 eV with our equipment. The measurements were made at different temper-
atures. Results are reported on figure 7.6. Figure 7.6a shows the imaginary part of
the dielectric function over the absorption range. The thick line is the reference index
from Parsegian (2005). The thin lines are our measurements, each line corresponding
to one temperature.

The effect of temperature is analyzed in the second graph 7.6b. At a given fre-
quency ω, the temperature dependence of the dielectric function of a material can be
modeled by the Clausius-Mossotti law:

ǫ(T,ω)−1
ǫ(T,ω)+2

= ρ(T)A(ω), (7.9)

where ρ(T) is the temperature-dependent density and A(ω) is a complex function
related to the polarizability of the material. The meaning of this equation can be seen
if density goes to zero: then the dielectric function is 1, as it is for vacuum. ǫ′′ and
A′′ normalized by their value at 100°C are plotted on figure 7.6b. The first noticeable
element is that ǫ′′ depends weakly on temperature: the mean deviation is roughly 10%
over a range of 80°C. We will see in section 7.5.3 if this dependence has a significant
impact on van der Waals forces. The second element is that A′′ seems to be constant,
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at least above 110°C, as suggested by the Clausius-Mossotti law. Nevertheless, we
cannot firmly conclude because of the large scattering of data.

7.4 Computation of van der Waals forces

Now that we have seen the optical properties of materials, we can proceed to the com-
putation of the van der Waals forces. There are actually several equivalent methods
to derive the forces. In this thesis, we used the same framework as in Henkel et al.

(2000, 2002, 2004); Mulet (2003); Joulain et al. (2005). The method can be summa-
rized as:

1. The instantaneous force is expressed in terms of the squared amplitude of the
local electromagnetic field (Eq. 7.11).

2. The net force is assumed to be an ensemble average of the fluctuating force. The
average fluctuating electromagnetic field can be expressed in terms of correla-
tions of the field in the frequency space (Eq. 7.14).

3. The fluctuation-dissipation theorem gives the spectrum of the correlations in
terms of imaginary parts of Green functions (Eq. 7.15).

4. The force is obtained by integrating the found distribution over the whole spec-
trum (Eq. 7.23).

5. The integration on the ω axis is found to be difficult numerically because of
strong oscillations of the force distribution for thick films. The force distribu-
tion is expanded to the complex plane ω+ iξ and the integral over ω reduces
to the sum of rapidly decreasing terms by use of the Cauchy’s residue theorem
(Eq. 7.29).

7.4.1 Maxwell stress tensor

From Maxwell’s equations, it is possible to express the instantaneous electromagnetic
force per unit of volume f(t), also known as the Lorentz force, as the divergence of a
tensor minus a term proportional to the time derivative of the Poynting vector (Jack-
son, 1998; Ninham and Daicic, 1998; Pitaevskii, 2005, 2009; Raabe and Welsch, 2005,
2006a,b):

f(t)=∇·M−ǫ0
∂

∂t
(E×B) , (7.10)

where ǫ0 is the vacuum permittivity, E the electric field, B the magnetic field, and M

the Maxwell stress tensor, defined by:

M= ǫ0EE+µ−1
0 BB− 1

2

(

ǫ0E2 +µ−1
0 B2)

1, (7.11)

with µ0 the vacuum permeability. We also recall the useful relation:

ǫ0µ0 =
1
c2 , (7.12)
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with c the speed of light.
We see that the local stress is defined by the local electromagnetic field. The

tensor product EE can be expressed as the convolution of the Fourier transforms of
the electric field:3

E(t)E(t)= 1
4π2

ˆ

ω

ˆ

ω′
E(ω)E(ω′)e−i(ω+ω′)t dωdω′

= 1
4π2

ˆ

ω

ˆ

ω′
E(ω)E∗(ω′)e−i(ω−ω′)t dωdω′.

(7.13)

Under the assumption of ergodicity, we can express the average force as the ensemble
average of the fluctuations:

〈E(t)E(t)〉 = 1
4π2

ˆ

ω

ˆ

ω′

〈

E(ω)E∗(ω′)
〉

e−i(ω−ω′)t dωdω′. (7.14)

In statistical mechanics, the fluctuation-dissipation theorem can give the cross
spectral correlation

〈

E(ω)E∗(ω′)
〉

for a medium at homogeneous temperature T (See
for example Joulain et al., 2005):

〈ǫ0E(t)E(t)〉 = ǫ0

4π2

ˆ

ω

ˆ

ω′
2πδ(ω−ω′)µ0ħω2 coth

( ħω
2kBT

)

G
′′(r,r,ω)e−i(ω−ω′)t dωdω′

= 1
πc2

ˆ +∞

−∞
ωΘ(ω,T)G′′(r,r,ω)dω,

(7.15)
with δ the Dirac delta function, G′′ the imaginary part of the electric Green tensor
defined below and Θ(ω,T) the energy function derived from quantum mechanics:

Θ(ω)= ħω
2

coth
( ħω

2kBT

)

, (7.16)

with ħ the reduced Plank constant and kB the Boltzmann constant. The electric
Green’s tensor G(r,r′) is the solution of the wave equation with a point source located
at r′:

∇×∇×G(r,r′)−k2
0ǫ(r)G(r,r′)= δ(r−r′)1, (7.17)

so that the electric field at r is given by the current distribution j(r′):

E(r)= iωµ0

Ñ

G(r,r′)j(r′)d3r′. (7.18)

The notation G
′′(r,r,ω) is only formal, since in general the Green function has a sin-

gularity in r′ → r. It is often stated that this issue is solved by removing the contribu-
tion of the homogeneous Green tensor—the Green tensor of an infinite homogeneous
medium—to the full Green tensor. However, in the case of a thin film, the singularity
remains near the interfaces. In fact, exactly as in the pairwise summation (Eq. 7.3),

3With use of the property f (−ω)= f ∗(ω) if f (t) is a real function, where ∗ denotes the complex conju-
gate.
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we must remove the contribution of the infinite thickness case. Removing the di-
verging terms is the main issue in computing the van der Waals forces in arbitrary
geometries, since there is no standard normalization method (we will come back to
this in the conclusion of this chapter). Moreover, the physical meaning of infinite
terms in Casimir-Lifshitz theory is the subject of controversies still living today.

Returning to the computation of the stress, for the fluctuations of the magnetic
field, we have:

〈

µ−1
0 B(t)B(t)

〉

=−1
π

ˆ +∞

−∞
ω−1

Θ(ω)H′′(r,r,ω)dω, (7.19)

where H is the double curl of G, such that for a constant vector x, ∇r×(∇r′×(GT(r,r′)x))T =
Hx. Finally, let us consider the term ∂

∂t (E×B) in the Lorentz force (7.10). Because of
the time derivative, this term introduces a (ω−ω′)δ(ω−ω′) factor that is always zero.

The final expression of the Maxwell stress tensor is:

M(r)=
ˆ +∞

−∞

Θ(ω,T)
πω

L(r,ω)dω, (7.20)

where

L=K
′′− TrK′′

2
1, (7.21)

and

K(r,ω)= ω2

c2 G(r,r,ω)−H(r,r,ω). (7.22)

Or equivalently, the stress tensor is the integral over positive frequencies of the prod-
uct of two terms:

M(r)=
ˆ +∞

0
L(r,ω)
︸ ︷︷ ︸

geometry factor

coth
( ħω

2kBT

) ħdω
π

︸ ︷︷ ︸

energy factor

. (7.23)

7.4.2 The issue of oscillating distribution

Formally, we could stop here and use equation (7.23) to compute the force. This was
done by several authors (Henkel et al., 2000, 2002, 2004; Mulet, 2003; Joulain et al.,
2005) who interpret the interaction ω-distribution in terms of attractive or repulsive
modes. Following their example, we computed the disjoining pressure distribution
in a 10 nm-thick polystyrene film on a silicon substrate at 100°C (see appendix D).
Results are reported on figure 7.7 on the facing page. The geometry factor L(ω) is
the strongest in the ultraviolet range, in fact where the absorption of the media is
significant (Fig. 7.7a). The energy factor ħ

π
coth

(
ħω

2kBT

)

is almost constant above 1 eV.
If we consider the final pressure distribution (Fig. 7.7b), we see indeed that some
part of the distribution below 10 eV is positive, whereas some other part is negative
between 10 eV and 20 eV.

Unfortunately, for thicker films, the distribution becomes strongly oscillating, as
reported on figure 7.8. Because of these oscillations, the distribution becomes increas-
ingly hard to integrate numerically. That is why a mathematical method has to be
applied to compute the total force efficiently.
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7.4.3 Integration in the complex plane

This method consists of expanding the pressure distribution in the complex plane and
computing the integral over the ω frequencies as the sum of the residues of the dis-
tribution. Dielectric functions are given (and measured) in the positive and real axis
ω, but for computation purpose, it is possible to expand these functions on the upper
half complex plane of the variable s = ω+ iξ. In references, iξ is called imaginary

frequency, although it is rather a characteristic decay time than a frequency. This
transformation is possible given the Kramers-Kronig relations: we assume that ǫ is a
function of the complex variable s, and has no singularity on the upper half plane.4

Let s0 = ω0 + iξ0 be a complex number with ξ0 > 0. The function ǫ(s)−1/s− s0 has a
pole in s0, so the Cauchy’s residue theorem gives:5

‰

ǫ(s)−1
s− s0

= 2πi (ǫ(s0)−1), (7.24)

with an appropriate path integration. For the integration, we choose the real axis
because we can have experimental access to these values:

ǫ(s0)= 1+ 1
π

P

ˆ +∞

0

ωǫ′′(ω)− is0
(

ǫ′(ω)−1
)

ω2 − s2
0

dω, (7.25)

with the property ǫ(−ω) = ǫ∗(ω). We will see that the dielectric function will have to
be evaluated on the imaginary axis. In that case it takes the simple form:

ǫ(iξ0)= 1+ 2
π

ˆ +∞

0

ωǫ′′(ω)

ω2 +ξ2
0

dω. (7.26)

It turns out that ǫ(iξ) is a smooth decreasing function taking real values, as we can
see on figure 7.9 on the next page.

Now, what are the poles of the pressure distribution? If we consider the energy
factor of equation 7.23, on the imaginary axis, we see that:

coth
( ħiξ

2kBT

)

=−i cot
( ħξ

2kBT

)

, (7.27)

which has poles at evenly spaced frequencies called the Matsubara frequencies:

ξn = 2πkBT

ħ
×n, n = 1. . .∞. (7.28)

The residue of each pole is 2kBT/ħ.6 By integration around all the upper half complex
plane, as presented on figure 7.10, the Cauchy’s residue theorem for the pressure
distribution yields:

M(r)=
ˆ +∞

−∞

ħ
2π

coth
( ħiξ

2kBT

)

L(r,ω)dω=
∑ ′2kBT L(r, iξn), (7.29)

4This property is a consequence of causality, see Jackson (1998) or any reference book about electro-
dynamics.

5Cauchy’s residue theorem only applies to functions that vanish at infinity, which is not the case for
the dielectric function, ǫ, but which is the case for the susceptibility, ǫ−1.

6It can be recovered from the asymptotic development of the cotangent function: cot x = x−1 − x/3−
x3/45− . . .
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function of thickness in a polystyrene film supported on a silicon substrate.

with the usual writing convention
∑ ′xn = x0

2 +∑∞
1 xn. The first pole (n = 0) is taken

half-value because it lays on the integration axis. Instead of integrating along ħdω
energies (oscillating function), we sum kBT energies (smooth and rapidly decreasing
terms).

7.5 Exact solution for planar geometry

The last step is to compute the Green functions in L. This is a common problem of
classical electrodynamics. For planar geometries it can be done analytically (Paulus
et al., 2000; Mulet, 2003) with use of the mathematical tools developed by Sipe (1987).
The result is reported in appendix D.

7.5.1 Retarded regime

Keeping the same example system, we computed the disjoining pressure in a sup-
ported polystyrene film with thickness ranging from 1 nm to 1 µm. Results are re-
ported on figure 7.11. In addition, we can plot the Hamaker coefficient (it is no longer
a constant) defined by:

A(h)=−6πh3
Π(h), (7.30)

as done on figure 7.11b. We can see that even for this simple geometry, the Hamaker
coefficient is not a constant nor a simple power law, but strongly decreases above
10 nm. This phenomenon is called retardation. The physical explanation is that,
due to the finite speed of light, the interaction between media at a large distance is
weakened. However, the Hamaker constant can be defined as the asymptotic limit for
infinitely thin films. This limit value is called the non-retarded Hamaker constant.
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Table 7.1 – Computation of the non-retarded Hamaker constant and
comparison with literature values.

System Non-retarded Hamaker constant (|A|, 10−21 J)

This thesis Israelachvili (1991) Parsegian (2005)

PS | vacuum | PS 81 66 79
PS | water | PS 4.1 9.5−14 13

water | vacuum | water 53 37 55.1
SiC | vacuum | SiC 242 440 -

quartz | vacuum | quartz 78 65 66
quartz | water | quartz 3.0 8.3 1.6

gold | vacuum | gold 361 300−500 200−400
gold | water | gold 194 400 90−300

7.5.2 Comparison with literature values

We computed the non-retarded Hamaker constant in various systems, using optical
indices from our own database. Results are reported on table 7.1 along with values
from Israelachvili (1991) and Parsegian (2005). A good agreement with reference
values was found.

7.5.3 Anisothermal force and temperature dependence

If the temperature is not homogeneous in the system, but assuming a local ther-
modynamic equilibrium (we can define a local temperature), then the fluctuation-
dissipation theorem does not take the form of equation (7.15) any more. Instead, the
fluctuations of the field at a location r depend on the temperature distribution T(r′)
of the whole system. The fluctuation-dissipation theorem yields (Mulet, 2003):

〈ǫ0E(r, t)E(r, t)〉 = 1
πc4

ˆ

dω
Ñ

d3r′ω3
Θ(ω,T(r′))

∣
∣G(r,r′,ω)

∣
∣2 ǫ′′(r′,T(r′),ω). (7.31)

In particular, the fluctuation is stronger in areas of higher temperature, due to the
factor Θ(T). However, the effect is significant only if temperature varies within the
range of the force itself, which is less than a micrometer. Such high temperature
gradients are not encountered in our case, as we saw in chapter 2.

We can still analyze the temperature dependence of the disjoining pressure in a
film of homogeneous temperature. From equation (7.29), the temperature appears
explicitly in the kBT factor and in the frequencies ξn of summation. We also saw in
a previous section that the dielectric functions depend on temperature, so the Green
functions may also implicitly depend on temperature. If we first consider the ex-
plicit dependence for increasing temperature, we can take the example of a 10 nm
polystyrene film coated in a silicon wafer. Computation results at 100°C and 200°C
are reported on figure 7.12 on page 135. Assuming that optical properties do not de-
pend on temperature (we take the value at room temperature), we can see that there
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is a competition between the kBT factor which increases pressure, and the ξn which
realize a sparser sampling of the Green functions (Fig. 7.12a). However, it seems
that these effects tend to cancel each other out when the total disjoining pressure is
computed (Fig. 7.12b). The final difference between the two pressures is less than
0.5%.

Let us assume now that the dielectric function of polystyrene follows a Clausius-
Mossotti relation (Eq. 7.9). When we compare the spectrum at 200°C computed with
the dielectric function at room temperature to the spectrum at 200°C computed with
the dielectric function corrected with the appropriate Clausius-Mossotti factor, then
again the difference is barely visible (Fig. 7.12c and 7.12d). The total pressure differ-
ence is less than 2%, which is clearly negligible compared to the dramatic variation
of viscosity over this range of temperature.

In conclusion, we can reasonably assume that van der Waals forces do not depend
on temperature, for a given geometry. Temperature may affect van der Waals forces
indirectly, for example by modifying the geometry through thermal expansion.

7.6 Approximation for long-wave topology

What happens for film with a deformed interface? If the wavelength of the deforma-
tion is large compared to the range of the force, then a zero-order approximation is
to assume that the disjoining pressure at a given thickness h(x) is the same as the
pressure for an infinite planar film of thickness h(x). This is called the Derjaguin

approximation, or proximity force theorem, after Derjaguin (1936) (see figure 7.13).
Note that the amplitude of the perturbation can be large. This approximation is the
equivalent of the lubrication theory we saw in previous chapters.

Using pairwise summation, Dai et al. (2008) derived a second order term as a func-
tion of the first and second derivatives of the thickness, but the zero-order Derjaguin
approximation is already enough for practical applications.

7.7 Conclusion and open problems

In this chapter, we presented a method to compute the long-range van der Waals
forces in a thin film. The modern theory makes use of the optical properties of the
interacting materials and the Green functions for the propagation of the electromag-
netic waves. Since the theory was first presented by Lifshitz more than fifty years
ago, many challenging issues still remain.

For instance, the problem of computing van der Waals forces in arbitrary geome-
tries is still unsolved. Mostly this is done within the Derjaguin approximation (see
the numerous examples in Parsegian, 2005). Still, at first sight, the approach seems
quite straightforward: we could use one of the already existing software to compute
numerically the Green functions, since this is a classical problem in electrodynam-
ics. The problem comes from the infinite terms that appear in the calculation. Re-
member that in the case of a thin film, we had to remove the infinite contribution
for an infinitely thick film—in other words, the disjoining pressure is zero in a bulk
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Figure 7.12 – Computation of the disjoining pressure in a 10 nm supported
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Figure 7.13 – Derjaguin approximation.
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fluid. We can do it formally inside the analytical calculation. But in the case of a
numerical computation, no standard normalization method has been proposed yet.
Some authors recently published numerical methods to compute the Casimir force
between objects of arbitrary shape (Golestanian, 2005; Rodriguez et al., 2007, 2011;
Veble and Podgornik, 2007; Xiong et al., 2010; Johnson, 2010). Nevertheless, in their
approaches, the force is integrated over the full objects which have to be at a finite
distance from one another. For instance, it is not possible to compute the interaction
of a fluid particle (localized point) with its complete environment, including its very
neighbors.

A numerical method to compute the disjoining pressure in arbitrary geometries
would be of great interest. For instance, it could be used to compute the disjoining
pressure inside a capillary bridge, or near a triple line contact, not to mention the
applications in chemistry or biology.
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Chapter 8

Dewetting dynamics

If one tries to spread a film of water onto a clean glass plate (or on the surface of
glasses for instance), the result will not be a uniform film, unless it is thick enough1

to be stabilized by gravity. The film beaks up instead, and water gathers into more or
less numerous droplets. The rupture of the fluid film is called dewetting. In fact, we
should talk about the rupture of the macroscopic film, because a thin molecular layer
can remain on the substrate, as we will see below.

The stability of fluid films has been an active field of research regarding funda-
mental issues, such as intermolecular forces, as well as applications, such as indus-
trial coatings processes, thin film patterning, or even the study of tear films between
the eye and a contact lens. Extensive reports on dewetting can be found in the re-
views by Bonn et al. (2009); Xue and Han (2011). In this chapter, we briefly present
the main concepts of the dewetting of a thin film and discuss some particular aspects
related to nanoimprint.

8.1 Main concepts

Spreading coefficient. As in the previous chapter, we consider the two configura-
tions depicted in figure 8.1 on the next page: a film laying on a substrate, and a film
confined between a substrate and a nanoimprint mold, the latter being often coated
with an anti-sticking layer. In the case of a supported film, the spreading coefficient,
S, is defined by:

S = γSub −
(

γSub-PS +γPS
)

, (8.1)

where γSub, γPS and γSub-PS are the interfacial energies2 of, respectively, the substrate
with air, PS with air and the substrate with PS. If S < 0, then the substrate covered by
a macroscopic PS film (Fig. 8.1a i) is in a higher state of energy than the dry substrate
(Fig. 8.1a iii), and dewetting can occur. In the opposite case S > 0, the PS film is in a
stable configuration. In the case of a film confined between the mold and a substrate,

1Thicker than the capillary length we introduced in chapter 2: about 3 mm in this case.
2We saw in chapter 2 that the higher state of energy of molecules at interfaces is responsible for an

energy per unit of surface or equivalently a tension (force) per unit of length.
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Figure 8.1 – Interfaces in two kinds of situations: (a) a supported film; (b) a
confined film.

the spreading coefficient would be:

S = γSub +γAS −
(

γSub-PS +γAS-PS
)

, (8.2)

where γAS and γAS-PS are the interfacial energies of, respectively, the anti-sticking
(mold) with air, and the anti-sticking with PS.

Spinodal dewetting. Still, for sub-micrometer thin films, discussing the sign of the
spreading coefficient appears to be incomplete. Indeed, in the previous chapter, we
saw the role of long-range intermolecular interactions for the presence of a disjoining
pressure. Assuming a thickness h of the film smaller than the capillary length, the
free energy G of the film per unit of surface should write:

G(h)=W(h)+γSub-PS +γPS, (8.3)

with W the contribution of the intermolecular interactions (both short-range and
long-range) vanishing for thick films (W(∞) = 0). In order to realize G(0) = γSub and
G(∞)= γSub-PS +γPS, the intermolecular energy should have the property W(0)= S.

We also mentioned in chapter 4 that the film is unstable if the disjoining pres-
sure is a decreasing function of thickness, or, when the Hamaker approximation is
employed, if the Hamaker constant A is negative. In the latter case, for a thickness
that is large compared to the molecular length, the free energy of the film takes the
form:

G(h)= A

12πh2 +γSub-PS +γPS. (8.4)
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Figure 8.2 – Free energy of a supported polystyrene film, assuming a negative
spreading coefficient (S < 0) and a negative Hamaker constant (A < 0), for
thicknesses small enough to neglect gravity.

Now, let us consider the diagram plotted on figure 8.2. The dotted line corresponds to
equation (8.4), which does not hold in short-range interactions area. Two processes of
dewetting are represented:

1. If the film is thin enough, the free energy will be lowered by a spontaneous
rupture due to long-range forces. This process is called spinodal dewetting (Vrij
and Overbeek, 1968).

2. If the film is thicker, long-range force may be extremely weak and spinodal
dewetting, although possible, extremely slow. But dewetting can still occur by
the nucleation of holes in the film. However, nucleation phenomena require
excess energy corresponding to the creation of additional free interface during
the film deformation. Consequently, the film has to gain some energy in order
to jump this energy barrier (Herminghaus and Brochard, 2006). This excess
energy can be provided by thermal fluctuations or by defects such as dust, par-
ticles, or heterogeneous density.

We see that there are several situations that can exist, depending on the sign of
the spreading coefficient and the shape of the W function. Some of them are reported
on figure 8.3 on the next page, assuming a monotonic shape for the long-range forces:

(a) S < 0 and A < 0 is the situation described above: spinodal dewetting can occur,
leading to partial wetting of the substrate.

(b) S > 0 and A < 0 Dewetting of the macroscopic film can occur, but a molecular film
will remain.
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Figure 8.3 – Forms of the free energy of the film, assuming negligible gravity.
(a) Partial wetting with dry areas; (b) Partial wetting with microscopic
precursor film (c) Frustrated wetting (d) Complete wetting.

(c) S < 0 and A > 0 Dewetting can occur but only through nucleation. This situation
is called frustrated wetting (Thiele et al., 2001).

(d) S > 0 and A > 0 The film is stable and spreads completely on the substrate. This
is called complete wetting.

Of course, many other situations are possible because the form of W(h) can be more
complicated, for example if the substrate is stratified.

8.2 Supported dewetting

8.2.1 Morphology

The dewetting of a polystyrene film on various substrates has been an experimen-
tal test case, probably because technologies for coating nanometric polymer films on
wafers and characterization means have reached a mature state (Redon et al., 1991;
Reiter, 1993, 1992, 1998; Reiter et al., 1999; Stange et al., 1997; Karapanagiotis et al.,
2001). Using a statistical characterization of dewetting experiments, Meredith et al.

(2000) identified three regimes for the dewetting of polystyrene on a silicon substrate,
as depicted on figure 8.4 on the facing page:
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Figure 8.4 – Schematic view of the three regimes of dewetting polystyrene.
Left: spinodal dewetting, the interface is highly deformed. Middle: thermal
nucleation, the holes appear regularly and their positions are correlated.
Right: heterogeneous nucleation, the holes are all present at the beginning of
the dewetting process, and their position are uncorrelated.

1. For thin films (h < 33 nm), the interface is highly deformed, this is the spinodal
regime.

2. For intermediate films (33 nm < h < 55 nm), holes appear regularly in the film
and their positions are correlated: this is the thermal nucleation regime. The
thermal fluctuation of the interface creates local depressions that promote the
rupture of the film. It can be viewed as a localized spinodal dewetting.

3. For thicker films (h > 55 nm), holes are all formed at the beginning of the dewet-
ting process, and their positions are uncorrelated: this is the heterogeneous
nucleation regime. Their presence is explained by defects in the film.

Complementary theoretical and experimental studies brought a finer understanding
of the processes, regarding viscoelastic behavior (Saulnier et al., 2002; Gabriele et al.,
2006) or hole forming (Thiele, 2003; Tsui et al., 2003; Bertrand et al., 2009, 2010).

In addition, Seemann et al. (2001a,b, 2005) were able to reconstruct the free en-
ergy as a function of thickness on the base of the morphology of the dewetting film.
Steiner (2005) also proposed to use the morphology of dewetting patterns as a general
thickness-dependent force3 measurement method. To see what role physical param-
eters play in the dynamics of dewetting, a stability analysis is done in the following
subsection.

3Such as long-range intermolecular or electrostatic forces.
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8.2.2 Growth rate in capillary wave theory

Using capillary wave theory, it is possible to extract the driving growth rate of sup-
ported dewetting (Oron et al., 1997; Craster and Matar, 2009, p. 1165). Let us go
back to the characteristic leveling time of a capillary wave of wavevector k (Eq. 4.27
on page 66), for a film of thickness h0:

τ(k)= ηh0

γ f (kh0,Ha,β)
. (8.5)

We already mentioned in chapter 55 that a negative Hamaker number can cause
instability in the film (a negative leveling time being a growth rate). Features whose
wavevectors are smaller than kc =

√

|Ha|/h0 tend to grow exponentially, leading to
the rupture of the film, while high frequency features are leveled (exponentially) by
surface tension.4 However, in the destabilizing process, the wavevector for which
the growth rate is the fastest will dominate, yielding a characteristic length in the
dewetted patterns. The characteristic time has a minimum in:

kd = 1
h0

√

|Ha|
2

, (8.6)

yielding a characteristic length:

λd = h0

√

8π2

|Ha|
. (8.7)

Assuming a thin film dynamics (kdh0 ≪ 1),5 the fastest growing time is then:

τd = 12ηh0

γ
(

1+3 β
h0

)

Ha2
, (8.8)

or, in terms of the Hamaker constant,6 assuming a no-slip condition (β= 0):

τd =
48π2h5

0γη

A2 (8.9)

The dewetting time τd has to be compared to the time of the experiment. Although
a system could be unstable (negative Hamaker number), if τd is much larger than
the experimental time, no spinodal dewetting can be observed. We recover in equa-
tion (8.9) the physical parameters driving the instability: the Hamaker constant low-
ers the dewetting time whereas the thickness, surface tension and viscosity hinder

4We recall that the Hamaker number quantifies the competition between the long-range van der
Waals forces and surface tension.

5In practice, the thin film dynamics assumption is fairly reasonable (kdh0 ≪ 0.1), mainly because
Ha≪ 1.

6See Eq. (4.14) on page 60:

Ha = A

2πh2
0γ

.
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Figure 8.5 – Characteristic time of spinodal dewetting for PS 30k at 180°C
coated on a silicon dioxide substrate.

the dynamics. In particular, we see the dramatic increase of the term h5
0 as the thick-

ness increases: that is why spinodal dewetting is observed only for very thin films,
whereas the nucleation of holes is the prevailing dynamics for thicker films.

Figure 8.5 is an illustration of this property. The plot of the characteristic time
of spinodal dewetting for polystyrene 30 kg·mol−1 at 180°C supported on a silicon
dioxide substrate shows that although the characteristic time is of the order of the
minute for nanometric films, it blows up for thicker films. Fetzer et al. (2007) reported
a dewetting dynamics faster than expected, which was explained by the influence of
thermal fluctuation in the flow. We can also take into account the reduction of viscos-
ity for very thin supported films we saw in chapter 3, as reported by equation (3.33)
on page 48. This reduction also leads to a shorter dewetting characteristic time, and
could contribute to accelerate the dynamics. However, accurate quantitative experi-
mental studies are still needed to draw a conclusion on that subject.

8.2.3 Dewetting structured film

Until here, we focused only on the dewetting of planar films on planar homogeneous
substrates. Although the patterns produced by the spinodal dewetting of a planar
film can exhibit a characteristic length (Eq. 8.7), the position of the final droplets is
not controlled. Still, the dynamics of dewetting is largely influenced by the initial
shape of the polymer sample as well as of the substrate.

For example, a line of fluid on a non-wetting substrate undergoes a Plateau-
Rayleigh instability that breaks the line into droplets. Recent experiments have been
done at nanoscale by Schift et al. (2011); Schleunitz et al. (2010) and it was shown
that the resulting droplets can be organized by an initial modulation of the line. In
another experiment, Luo et al. (2004) patterned a PS film using soft nanoimprint with
a PDMS mold consisting in arrays of squares and rectangles (5 µm by 5 µm for the
smallest). During annealing, they observed that the film dewets in a regular array
of droplets of various dimensions governed by the imprinted pattern. Dewetting ex-
periments on chemically or topologically patterned substrate were done by Kao et al.

(2006); Kargupta and Sharma (2002); Mukherjee et al. (2008).
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Figure 8.6 – Instability of a residual layer.

Let us turn our attention to the case of an imprinted pattern with a residual layer
hr. If the residual layer is thin, the global stability analysis of the previous subsection
is not relevant any more. We can still make a local stability analysis considering a
planar film of thickness hr, as depicted on figure 8.6. This approach is valid only if
the resulting characteristic instability wavelength λd is smaller than the extension
of the residual layer area. In the case of a 5 nm PS film on a glass substrate (negative
Hamaker number), we find7 λd = 1.7 µm. If the extension of the residual layer is
smaller than λd, a full non-linear stability analysis has to be performed.

Now, because of the leveling of the global topology due to surface tension, the
residual layer increases if no dewetting occurs in time. Reflow simulations8 of square
profiles with a small residual layer, reported on figure 8.7 on the facing page, show
that the value of the residual layer is almost constant within a duration of about τ,
τ being the characteristic reflow time of the global shape (Eq. 8.5). For dewetting
to take place, the characteristic time of local dewetting (related to the thickness hr)
has to be smaller than the characteristic time of leveling of the global structure (of
fundamental wavevector k, related to the mean thickness h0), in other words:

τd

τ
= 4

hrh3
0k4

Ha(hr)2 ≈ 16π2γ
2h5

rh3
0k4

A2 < 1. (8.10)

In this particular example, we find τd/τ = 0.9, which is a borderline case. However,
this ratio decreases strongly if the residual layer is lowered a little or the size of the
profile widened (decreasing k).

7With Ha=−6.6×10−4, figure 4.3 on page 60.
8See appendix B on page 189.
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Figure 8.7 – Simulation of the evolution of the residual layer in a flowing film
not subject to dewetting.

8.3 Confined dewetting

8.3.1 State of the art

Although many studies have been published on the dewetting of supported films, few
authors have reported observations on confined dewetting of nanometric films. In
the next chapter, we will see that several methods have been presented to achieve
nanoimprints with negligible residual layers, but the way the polymer clears under
the protrusions is still unknown to a large extent. Kim and Lee (2003) presented an
experimental method to dewet locally a polystyrene film (thickness around 100 nm)
by indenting the film with PDMS tips. Nevertheless, this setup is different from the
one investigated in this thesis: first, a tip is a sharp object while we use planar molds,
and second, PDMS is soft compared to silicon, and the tip may crush into the film,
changing the flow dynamics as we will see in the next chapter.

Other interesting results were obtained by Chou et al. (1999); Harkema et al.

(2003); Landis et al. (2008). They observed that a plate approaching a fluid poly-
mer film can attract the material to form pillars. This phenomenon named capillary

bridge, appears only under definite circumstances (thickness of the polymer film, dis-
tance between the polymer and the top plate...). Verma et al. (2006) simulated the
instability dynamics and showed that numerous patterns can be obtained depending
on the ratio of the polymer thickness and the interstitial gap, and long-range inter-
molecular interactions. However, what happens in the absence of an interstitial gap,
in other words, when the space between the two plates is filled by the polymer, as
shown on picture 8.1b (i), remains unclear.
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8.3.2 Evolution of the dewetted area.

Although we do not exactly know what mechanism allows the initial formation of
dewetting areas under confinement, we can put forth hypotheses on how the dry areas
grow. Schift et al. (2001) reported that if some air is trapped between the polymer
and the mold during nanoimprint, and if the imprint pressure is suddenly released,
the dramatically expanding air bubbles form finger-like fractals, as those we can see
in figure 8.8b on the next page. This phenomenon, referred to as Saffman-Taylor
instability (Bensimon et al., 1986; Sharon et al., 2003), happens when a low viscosity
fluid pushes against a more viscous fluid. The driving parameters are the ratio of
viscosities, surface tension and the fluid velocity. Depending on these parameters,
the fingers will be more or less narrow, and more or less ramified. In the case of an
exploding air bubble, the fingering is due to the high velocity of the gas. However, we
believe that a similar behavior can be obtained with low velocity but high viscosity,
because velocity and viscosity act in the same way (Bensimon et al., 1986, Eq. 1.7).
In our case, it is not air that pushes against the polymer (imprints are made under
vacuum), but it is rather the polymer that clears the confined area under capillary
and long-range pressure. This could happen in a similar way to how fingers appear
on holes in dewetting supported films which reach a critical radius (Thiele, 2003).

Images in figure 8.8 report such dewetting finger-like patterns. Image 8.8a shows
an imprinted pattern in a PS film on a silicon substrate covered by silicon oxide. Mil-
limetric Saffman-Taylor shapes formed during the nanoimprint process. Image 8.8b
is a magnification of one of these shapes. More interesting are images 8.8c–f: we
could observed Saffman-Taylor instability occurring in the residual layer. The shapes
are much smaller than the instability outside the imprinted patterns. Surprisingly,
they are bigger where the residual layer extends in a large area, and get smaller and
denser as the period of the imprinted pattern decreases. No Saffman-Taylor instabil-
ity was observed for residual trenches narrower than about 5 µm.

8.3.3 Conclusion

In this chapter, we reviewed the mechanisms of the dewetting of a thin polymer film.
We made connections with the previous chapters to extract a characteristic of spin-
odal dewetting when surface tension tends to level the patterns. The next chapter
concludes this part with attempts to tune the dewetting of residual layers in nanoim-
print lithography. Indeed, new residual-layer-free nanoimprint processes can be con-
sidered with controlled dewetting.
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(a) Imprinted patterns in
polystyrene.

(b) Magnification of an instability
outside the patterns.

(c) Fingers formed in the residual
layer.

(d) Magnification (SEM) of the
residual layer (trench A).

(e) Magnification on fingers formed
in the residual layer.

(f) Magnification (SEM) of the
residual layer (trench B).

Figure 8.8 – Saffman-Taylor instability in a confined polystyrene film. Imprint
conditions were: temperature 180°C, pressure 13 bar.
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Chapter 9

Towards tuned dewetting for
residual-layer-free nanoimprint

As stated in the introduction of this thesis, the presence of a residual layer in the
NanoImprint Lithography (NIL) process is at the root of many issues when nanoim-
print is used to manufacture lithographic masks. An additional step (usually re-
active ion etching) is required to remove the residual layer, jeopardizing the cost-
effectiveness and throughput of NIL technology. Several attempts have been made
to develop imprint processes without residual layer. In this chapter, we explore new
residual-layer-free processes based on the dewetting of the residual layer.

We saw in the previous chapter that for very thin films, disjoining pressure be-
comes the driving force, and can lead to the breakup of the residual layer and the
growth of dry areas on the substrate, a phenomenon referred to as spinodal dewet-
ting. In this chapter, we will see how the disjoining pressure can be tuned by changing
the materials of the substrate or of the mold.

9.1 Disjoining pressure engineering

9.1.1 Disjoining pressure in stratified media

It is rather straightforward to compute the disjoining pressure in a planar stratified
medium based on expression (D.2) in appendix D. In this expression, the disjoining
pressure is given as a function of the Fresnel equations of the interfaces, in other
words, as a function of the reflective property of the interfaces. If we add some lay-
ers, we just need to modify these coefficients in order to take into account the new
interfaces.1 In optics, it is known that the influence of a coating layer on reflection is
negligible when the thickness of this layer vanishes. On the contrary, if the coating
layer is thick enough, the reflection properties are those of the coating material in a
bulk form.

The disjoining pressure in a stratified medium behaves in a similar way, as ske-
tched on figure 9.1. We imagine a layer between the polymer film and the silicon

1Such coefficients are sometimes called Fabry-Perot coefficients
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Figure 9.1 – Effect of a coating layer on the disjoining pressure, depending on
its relative thickness. Top: if the polymer layer is much thicker than the coating
layer, then the latter is negligible. Bottom: if the coating layer is much thicker
than the polymer layer, then the effect of the underlying substrate is negligible.

substrate. If the polymer layer is much thicker than the coating layer, then the latter
is negligible. On the contrary, if the coating layer is much thicker than the poly-
mer layer, then the effect of the underlying substrate is negligible, and the polymer
interacts only with the coating layer.

The idea is then to tune the disjoining pressure by choosing appropriate coating
layers. In this chapter, we focus on the effect of a silicon oxide layer.

9.1.2 Role of silicon oxide

A native oxide layer forms on the surface of a silicon wafer in air. Its thickness
is around 2 nm. Thicker oxide layers can be obtained through a reaction with an
oxygen plasma. The role of a silicon oxide layer on the dewetting of a supported
polystyrene film has already been emphasized by Seemann et al. (2001, 2005); Zhao
et al. (2005). The authors observed that a thicker oxide layer enhances the spinodal
dewetting of the film. Here, we computed the disjoining pressure using our own di-
electric data for silicon, silicon dioxide and anti-sticking, and data from Parsegian
(2005) for polystyrene (see chapter 7 and appendix D). The molecular weight of the
polystyrene for viscosity data is assumed to be Mw = 30 kg·mol−1.

Supported dewetting. Figure 9.2 on the facing page presents the effects of a sili-
con oxide layer covering a silicon substrate on the disjoining pressure in a supported
polystyrene film, as sketched in figure 9.2a. The disjoining pressure is plotted on fig-
ure 9.2b. The pressure is negative and increases for a silicon substrate without oxide
(stable polystyrene film), and strictly positive and decreasing for thick oxide layers
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(a) Supported configuration.
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Figure 9.2 – Effects of a silicon dioxide layer covering a silicon substrate on the
disjoining pressure in a polystyrene film (Mw = 30 kg·mol−1) computed from the
Lifshitz theory.
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(unstable polystyrene film). Layers of thicknesses 11 nm and 53 nm can hardly be
distinguished from the bulk oxide substrate. Silicon substrate with a native oxide
layer has an intermediary shape: the disjoining pressure is first decreasing and then
increasing, which should lead to an unstable film for a thickness lower than about
1.5 nm, and stability for thicker films. Here we already encounter a limit of our
model. Indeed, we saw in chapter 8 that spinodal dewetting could be observed for
thicknesses up to about 30 nm in various published research, and at least for 5-nm
films in our experiments. This inaccuracy may come from inappropriate dielectric
data for polystyrene, as we saw for example in figure 7.6a on page 125 of chapter 7,
where the dielectric data of Parsegian (2005) mismatch our own measurements below
5.5 eV.

The Hamaker coefficient is plotted on figure 9.2c for reference, but the relevant in-
formation here is the characteristic time of spinodal dewetting2 plotted on figure 9.2c.
In this graph, we can see around 1.5 nm that thick oxide layers can accelerate dewet-
ting by a factor 10 to 100, as it was qualitatively observed by Seemann et al. (2001,
2005); Zhao et al. (2005).

Confined dewetting. Figure 9.3 on the facing page presents the same previously
discussed functions but in a confined configuration. The thicknesses of the anti-
sticking layer and the underlying oxide layer was measured by ellipsometry. We must
emphasize a strong assumption in our model: we were not able to measure the op-
tical properties of the anti-sticking layer above 6.5 eV. Still, absorption peaks above
6.5 eV can play an important role in the disjoining pressure (Fig 7.5 on page 124 in
chapter 7). That is why theoretical results presented here should be interpreted with
care.

Let us focus directly on figure 9.3d. Here, the characteristic time of spinodal
dewetting dramatically increases with decreasing thickness below 2 nm: this is the
effect of increasing viscosity in confined configuration. Now, we see that there are two
groups of curves: for bulk silicon substrate and native oxide, the film might be stable
below about 20 nm, whereas for thicker oxide layers, the film might be unstable. It is
also remarkable that no difference can be really made between those thick oxide lay-
ers below 10 nm. These computations suggest that a thick oxide layer could promote
the dewetting of the residual layer during the imprint process.

The next two sections present expriments of both supported and confined dewet-
ting of the residual layer.

2It is computed from the disjoining pressure using equations (8.8) on page 144 (characteristic time)
and (3.33) on page 48 (thickness-dependent viscosity).
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(a) Confined configuration.
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Figure 9.3 – Effects of a silicon dioxide layer covering a silicon substrate on the
disjoining pressure in a confined polystyrene film (Mw = 30 kg·mol−1) computed
from the Lifshitz theory.



158 9 Towards tuned dewetting for residual-layer-free nanoimprint

��� ��� ��� ���

Figure 9.4 – Manufacturing process of metallic nanostructures: (a)
Nanoimprinted polymer pattern; (b) Dewetting under annealing; (c) Metal
deposition; (d) Lift-off of the polymer.

9.2 Supported dewetting experiments of the residual
layer

9.2.1 Concept

In the previous chapter, section 8.2.3 on the dewetting of structured film, we saw that
a nanoimprinted film can level or dewet depending on its initial topography. The idea
here is to trigger the dewetting of the residual layer, while preventing the pattern
from a complete reflow.

Regarding the disjoining pressure, it needs to be destabilizing for the residual
layer, but stabilizing for the rest of the pattern. As a matter of fact, this latter prop-
erty is not really important, because dewetting vanishes (as h5) for thicker films. The
contrast is even stronger if we take into account the reduction of viscosity, since the
polymer in the residual layer will flow more rapidly (low viscosity) than in the rest of
the pattern (high viscosity). We saw in the previous section that a native oxide layer
is already a good promoter for dewetting, and the following experiments were carried
out on that kind of substrate.

9.2.2 Manufacturing of metallic nanostructures

To implement this approach, we manufactured metallic nanostructures on silicon
substrates with a native oxide layer. The process is the following (figure 9.4):

(a) A pattern is nanoimprinted in polymer layer (here polystyrene 30 kg/mol)
with a small residual layer. We used a 45-nm-deep mold with lines of
pitches ranging from 100 nm to 30 µm. The residual layer was assessed
to be of 5 nm.

(b) The wafer is then heated above the glass transition temperature of the
polymer. The thinnest parts of the polymer breakup, leading to the for-
mation of a mask.

(c) A metallic layer is coated on the wafer (here an Al-Ti alloy).

(d) The polymer is dissolved in a solvent, leaving only metal in dewetted
surfaces. This step is called lift-off.
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(a) (b) (c) (d) (e) (f) (g)

Figure 9.5 – Steps in the manufacturing of metallic lines, optical microscopy
(scale bar 15 µm). (a) Initial polymer pattern; (b) after annealing at
150°C during 4 min; (c) 8 min; (d) 16 min; (e) 32 min; (f) After metal deposition
(Al-Ti); (g) After lift-off in toluene.
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Figure 9.6 – Metallic lines after lift-off.

Optical images of the manufacturing process are collected in figure 9.5 on the
previous page. Image (b)–(e) are pictures of the dewetting process. For the wider
lines (bottom), dewetting occured. The triple contact lines (edge of the dewetted areas)
have a sharp contrast. We can also see that strong scratches appear as the dewetting
time increases. The triple contact line follows those scratches, severely damaging the
imprinted pattern, even causing its breakup. The dewetting dynamics is different
for smaller lines. Surface tension overcomes dewetting and smooth the pattern, as
we can see by the bluring effect of the annealing. However, some localized dewetted
holes have formed, and are visible as metallic dots on picture (g).

Scanning Electron Beam (SEM) images of the metallic lines are presented on fig-
ure 9.6. The smallest regular lines have a width of about 1 µm. Note that this is
close to the value of the critical dewetting wavelength found in section 8.2.3 of the
previous chapter, which was of 1.7 µm on a glass substrate. Other smaller lines could
be observed but the defectivity dramatically increases.

9.2.3 Conclusion and outlooks

The simple experiments presented above show that it is possible to manufacture
metallic nanostructures by making use of the dewetting of the residual layer, in spite
of many remaining issues. Surface roughness and surface properties influence the
dewetting dynamics to a large extent. The smoothing effect of surface tension makes
it difficult to form the thinnest features. Residual layer thickness homogeneity is also
a key factor, as areas with a thicker residual layer will smooth more rapidly. Finally,
for the evolution and coalescence of dry areas, it is important to have an accurate
nanoscale description of the triple contact line, which is still a delicate issue today.
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9.3 Dewetting experiments of the residual layer during
imprint

9.3.1 Residual-layer-free nanoimprint: state of the art

Several attempts have been made to develop imprint processes without residual layer.
The most straightforward one is probably to imprint the polymer and keep the pres-
sure in order to expel the excess of fluid, until the residual layer vanishes. Although
this method can be relevant in the case of very low viscosity resists, such as in UV-
NIL (Lee, 2005; Lee and Jung, 2005), the time for the polymer to escape from the
wafer is prohibitive in a common thermal NIL setup.

Other approaches are presented in figure 9.7a–c on the following page. In figure
9.7a, a process called reversal imprint (or inking) consists in filling the cavities of the
mold, pressing the mold to the substrate and then demolding (Kao and Hong, 2011;
Park and Cheng, 2009; Finn et al., 2012). Another process presented in figure 9.7b,
mainly developed by Bogdanski et al. (2006); Yang et al. (2009); Mayer et al. (2010) is
called partial cavity filling. In this approach, the polymer is not coated thick enough
to completely fill the cavities of the mold. During the process, a high pressure is thus
continuously applied on the residual layer which reduces to a negligible thickness.
Nevertheless, imprinted patterns are often damaged by capillary defects and un-
wanted dewetted areas can appear. A last concept is sketched in figure 9.7c. In
this approach, a soft mold is used to imprint the polymer and clear the residual layer
(Yoon et al., 2004; Choi et al., 2009). The mold has to have sharp (Kim and Lee, 2003)
or rounded (Yoon et al., 2011) protrusions in order to push the polymer away as the
mold crushes against the substrate. Theoretical studies of the dewetting of a thin
polymer film in this configuration (a hard substrate and a bendable mold) were also
reported by Martin and Brochard-Wyart (1998); Martin et al. (2001). An example of
this promising technique carried out in our group can be found in figure 9.8 on the
next page. Here, SU-8 resist was imprinted by soft mold made of PDMS pyramids.

In this thesis, we investigated the concept presented in figure 9.7d. The amount
of coated polymer is just enough to fill the mold, while targeting the smallest residual
layer, as in classical NIL. The novelty of our approach is based on the addition of a
layer covering the substrate. The overlaying material is chosen in order to promote
the dewetting of the residual layer during the imprint process.

9.3.2 Complete filling with silicone oxide layers: experiments

To implement this approach, 142 nm of polystyrene (molecular weight 30 kg/mol) was
coated on various 8-inch silicon substrates covered by a silicon oxide layer ranging
from 2 nm (native oxide) to 532 nm. Table 9.1 reports the five different types of
substrates, named from A to E. We used a 147-nm-deep mold with lines of pitches
ranging from 100 nm to 30 µm. Imprints were made at 13 bars and 180°C during 15
min.

An overview of imprint results is given by figure 9.9. For each wafer, a series of
images were taken in order to assess roughly the quality of the imprint. Surprisingly,
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Figure 9.7 – Strategies for residual-layer-free nanoimprint processes: (a)
Reversal imprinting; (b) Partial cavity filling; (c) Sharp soft mold; (d) Promoted
dewetting.

Figure 9.8 – Cross-sectional SEM image of a residual-layer-free nanoimprint of
SU-8 resist. The mold is made of a soft PDMS pyramids.

Table 9.1 – Different types of silicon substrates covered by a silicon oxide layer.

Substrate type Oxide layer thickness

A 2 nm (native)
B 11 nm
C 53 nm
D 105 nm
E 532 nm
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wafers D and E (thickest oxide layers) exhibit strong capillary instabilities, whereas
the computation of the disjoining pressure (Fig. 9.3d) showed no difference between
bulk oxide and thicknesses of 11 nm and 53 nm.

Magnified optical images, such as those reported on figure 9.10 on page 165 for
wafer E, present some patterns where no difference can be made between areas where
we should have some residual layer and areas that dewetted by capillary defects.
Indeed, a difference in thickness should imply a difference in color, and yet those
areas have the same purple color. Fine characterization with SEM (figure 9.11 on
page 165) tends to confirm that dewetting indeed occurred under the protrusions of
the mold. In these top-view images, the same topography is found at the residual
layer and at the bottom of dewetting finger-like patterns. However, the roughness
of dewetted areas suggests that specks of polymer (probably of molecular size) still
remain on the substrate.

Other SEM characterizations were performed and figures from 9.12 to 9.16 show
tilted cross-section views of imprinted patterns. For each wafer, two images are pre-
sented: at the left side is a topographical image (secondary electrons) and at the right
side is a chemical contrast image (selective back-scattered electrons, not sensitive to
charging). On the latter images, each shade of gray represents a material (depending
on the atomic numbers of its components). For example, we can clearly see on fig-
ure 9.16 the oxide layer in a darker gray than the silicon underneath. This property
is interesting to localize the dewetted areas. Polystyrene is indeed pictured in very
dark gray. On figure 9.12 (wafer with native oxide), we can see that the residual layer
is still present, but display some holes, which might be a kind of dewetting through
hole nucleation. On the contrary, on figures 9.13 to 9.16, the residual layer is captured
in a lighter gray, which suggest that the polymer dewetted. However, the quantity of
the remaining polymer could not be precisely assessed.

If we go back to section 9.1.2 where we presented numerical computations of the
disjoining pressure. We found in figure 9.3d that a native oxide layer was not enough
to promote the spinodal dewetting of a confined film. Moreover, an oxide layer of
only 11 nm could make possible such dewetting. It is quite remarkable that these
experiments tend to confirm the theoretical results .
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Figure 9.9 – Images (optical microscopy, scale bar 5 mm) of
nanoimprinted patterns on substrates A to E. Images are all taken on the same
wafer for each type of substrate.
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Figure 9.10 – Optical images of imprinted patterns and capillary defects,
substrate E (532 nm). The same color is found for the residual layer and the
dewetted areas.

Figure 9.11 – SEM top views of imprinted lines (left) and capillary defects
(middle and right), substrate D (105 nm). A high surface roughness is found at
both the bottom of the lines and of the dewetted fingers

Figure 9.12 – SEM tilted views of an imprinted line on substrate A (native
oxide). Left: topographical contrast; right: chemical contrast.
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Figure 9.13 – SEM tilted views of an imprinted line on substrate B (11 nm).
Left: topographical contrast; right: chemical contrast.

Figure 9.14 – SEM tilted views of an imprinted line on substrate C (53 nm).
Left: topographical contrast; right: chemical contrast.

Figure 9.15 – SEM tilted views of an imprinted line on substrate D (105 nm).
Left: topographical contrast; right: chemical contrast.
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Figure 9.16 – SEM tilted views of an imprinted line on substrate E (532 nm).
Left: topographical contrast; right: chemical contrast.
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Figure 9.17 – Effects of various materials on the disjoining pressure in a
confined polystyrene film.

9.3.3 Other materials: simulations

In order to see if other material could be relevant in this study, we computed the
disjoining pressure in various cases. We tried several materials such as amorphous
carbon (αC) on silicon, silicon on silicon oxide (SOI), gold (Au) on silicon, titanium
dioxide (TiO2) and silicon carbide (SiC). Each material was used either as a substrate
with a silicon mold (with anti-sticking layer), or as the material of the mold itself
(without anti-sticking layer) in pair with a silicon substrate (with native oxide).

It turned out that according to the theory, none of the above material yields a
dewetting substrate when used with a silicon mold. On the other hand, if they are
used as a mold without anti-sticking layer, dewetting can occur (except for SOI), as
reported on figure 9.17a. Dewetting is even faster than in the case we explored before,
since the lower characteristic time is found to be about 1 s for a silicon mold covered
with a 10-nm gold film, while it was 1 hour in the previous cases (figure 9.3).

However, it should be stressed that the anti-sticking layer seems to play a decisive
role. Indeed, we saw above that a silicon oxide substrate with a silicon mold promotes
dewetting (figure 9.17b-i). But we calculated that an oxide mold with a silicon sub-
strate yields a stable polystyrene film (figure 9.17b-ii). Experiments are needed to
confirm this property. In the end, without any accurate data about the anti-sticking
layer, the computation of the disjoining pressure should be interpreted with care.

9.3.4 Conclusion and outlooks

We carried out dewetting experiments of confined films during a nanoimprint pro-
cess. In good agreement with theoretical calculations, the experiments revealed that
a thick silicon oxide layer is a good promoting material for the dewetting of the resid-
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ual layer. However, the thickest layers produced large capillary instabilities, dam-
aging the imprint quality. From a theoretical point of view, a better dielectric model
of the anti-sticking layer, for example by use of ultraviolet synchrotron spectroscopy
measurements, could strengthen the computation of the disjoining pressure. Other
issues remain unclear, such as the confined dewetting dynamics, the influence of short
range forces, and the dynamics of molecular-thick films.

On the other hand, the concepts developed in this chapter can be used to prevent
unwanted dewetting by choosing appropriate materials.
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Chapter 10

Conclusion

Nanoimprint lithography may be one of the few industrial processes where flows at
the nano—or at least submicron—scale play a decisive role. New tools have to be
developed for engineers to design molds, find new materials and optimize processes.
In this thesis, we tried to contribute to a better understanding of various aspects of
such nanoscale flows.

Reflow of a nanoimprinted pattern. For describing flows of nanoimprinted pat-
terns with a thick residual layer and small aspect ratios, we implemented a versa-
tile analytical model called capillary wave theory. With this model, we are able to
correctly depict the leveling of an arbitrary (injective) shape, and in particular high
spatial frequencies that are overlooked in lubrication models. The other major advan-
tage of capillary wave theory is that any linear behavior law for the material can be
used. Not only Newtonian behavior, but also linear viscoelastic laws, from the simple
Maxwell model to integral reptation theory, can be an input of the model.

On the other hand, when the residual layer is thin compared to the amplitude
of the patterns, or for large aspect ratios, lubrication theory or complete simulation
is needed. We analyzed some aspects of non-linearity involved, and in particular
the effect of residual layer thickness. From our analysis we could determine several
key factors to accurately manufacture shapes with an annealing step. For large as-
pect ratios though, a complete numerical simulation is required, but few cases were
addressed in the present work. It should also be interesting to make use of other
features such as highly viscoelastic materials or new driving (acoustic, electrostatic,
etc.) forces for the flow. Complementary studies with both numerical approaches and
experiments would certainly enrich our know-how about reflow processes.

Nanoscale polymer characterization. We also implemented capillary wave the-
ory to develop a polymer characterization method based on the reflow of spatially
modulated patterns. The Newtonian viscosity and the terminal relaxation time of
thin polymer films could be measured in a standard NIL environment. Although
there is always room for improvement, we can reasonably state that we developed a
robust method to characterize several hundred nanometers polymer films in situ.
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However, characterization of sub-hundred-nanometer films is very delicate with
this technique, for two reasons. First, when decreasing the film thickness, one has
to decrease the pattern amplitude in order to keep the linear behavior of the reflow.
Patterns of several nanometers then have to be used, and signal-to-noise ratio, rough-
ness, or imprint defects begins to seriously interfere in the method. Second, ultra-thin
polymer films are transparent. Most work is done blind, and for example it is then
practically very difficult to place an AFM cantilever on the right pattern. To what
extent is the WLF law still relevant for ultra-thin films? Could surface tension be a
function of thickness, too? Can we measure the disjoining pressure inside the film? It
is clear that the experimental extension of our method to ultra-thin films is necessary
to tackle these fundamental issues.

Dewetting of ultra-thin films. In order to compute the disjoining pressure in our
polymer films, we implemented the modern theory of Lifshitz that describes long-
range van der Waals forces in continuous matter. This theory makes use of the optical
properties of the interacting materials and the Green functions for the propagation
of electromagnetic waves. In that matter, we could benefit from the resources of our
optronics department and develop a state-of-the-art multilayer code. With this nu-
merical tool, disjoining pressure engineering can be achieved, that is, the disjoining
pressure tuning as a function of the material stack.

According to simulations, the spinodal dewetting of a polystyrene film can be en-
hanced by adding a silicon oxide layer on the silicon substrate. This property was
known for supported thin films, but had never been reported for confined geometries.
Confined dewetting experiments were also carried out and indeed tend to support this
result. Nevertheless, a complete model for the dewetting mechanism in this confined
geometry is required if we want to go further and answer fundamental questions,
such as where and how free surface is created, or whether finger-like patterns always
appear.

From a numerical point of view, a real breakthrough would be to develop a numer-
ical method to compute the disjoining pressure in arbitrary geometries. No doubt that
future efforts will be put in this cross-disciplinary subject, where fluctuating electro-
dynamics meets fluid mechanics. At least it is necessary in order to keep continuum
mechanics relevant at these scales.

As a conclusion, we would like to present in the following table, a synthesis of
the various achievements presented in this thesis. For each item, the state of the art
or starting point, then the results achieved in our particular conditions, and finally
some opportunity for prospective work, are presented.
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Reflow of a nanoimprinted pattern

Before Achieved Prospective work

Analytical model:
lubrication theory only

Capillary wave theory
implemented. Small and
high spatial frequencies

correctly described.
Simulation tools for both

lubrication theory and
capillary wave theory.

Integration of other forces,
such as acoustic waves or

electrostatic forces.

Linearized lubrication
theory

Non-linear effects studied
Reflow of very high aspect

ratio features

Newtonian case
Viscoelastic case,

shear thinning criteria

Implementation of a
thickness-dependent

viscosity in numerical
methods.

Empirical applications of
reflow with triple contact

lines

Several concepts of reflow
with residual layer,

depending on the relative
thickness of this residual

layer.
Inverse reflow programing

Viscoelastic reflow
experiments.

Reflow of various 3D
shapes.

Nanoscale polymer characterization

Before Achieved Prospective work

Rheological measurements
with periodic patterns.

Relevant spatially
modulated patterns.

Use of 3D patterns.

Newtonian viscosity Viscoelasticity

Slip length, disjoining
pressure measurement.

Ultra-thin films
characterization to confirm

the applicability of WLF
law.

AFM characterization (No particular change)
optical characterization

such as confocal microscopy
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Dewetting of ultra-thin films

Before Achieved Prospective work

Non-retarded Hamaker
theory

Lifshitz theory based on
optical properties

implemented.
State-of-the-art simulation

tool for stratified media.

Numerical tool for
arbitrary geometries.

Optical properties
measurements in UV with

synchrotronic light (for
polymers and anti-sticking

layers).

Temperature not discussed.

Disjoining pressure
theoretically weakly

dependent on temperature
for a system in thermal

equilibrium. Optical
properties at room

temperature can be used.

Investigate the disjoining
pressure gradient due to

high temperature
gradients.

Stability discussed in terms
of the sign of the Hamaker

constant.

Stability discussed in term
of the characteristic

dewetting time (more
practical).

Computation of the
characteristic time for the

nucleation of holes

Experimental supported
dewetting.

Experimental confined
dewetting. Sub-micron

Saffman-Taylor
instabilities observed.

Quantitative
characterization of

microscopic Saffman-Taylor
instabilities

Theoretical effect of silicon
oxide layer for supported

dewetting.

Theoretical effect of silicon
oxide layer and other

materials for both confined
and supported dewetting.

Measurements and
integration of surface

energies and short-range
forces.

Experimental effect of
silicon oxide layer for
supported dewetting.

Experimental effect of
silicon oxide layer films.

Experimental effects of
other materials.



Appendix A

Mathematical treatments for the
supported thin film equations of
creeping flow

This appendix gathers the mathematical developments of chapter 4. We consider the
flow depicted in figure 4.1 on page 56, with the notations and boundary conditions of
section 4.1 on page 55.

A.1 Fourier transform

A.1.1 Fourier transform of an integrable function

In this thesis, we use the following definitions for the direct and inverse Fourier trans-
forms of an integrable function:

ŝ(k,ω)=
Ï+∞

−∞
d2x
ˆ +∞

−∞
dt s(x, t)exp(−ik ·x+ iωt) , (A.1)

s(x, t)=
Ï+∞

−∞

d2k
4π2

ˆ +∞

−∞

dω
2π

ŝ(k,ω)exp(ik ·x− iωt) . (A.2)

Consequently, the time derivative writes:

ˆ[
∂s

∂t

]

=−iωŝ,

And for spatial gradients:
ˆ[∇xs]= ikŝ.
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A.2 Lubrication theory

A.2.1 Derivation of the Reynolds equation

The Reynolds equation gives the evolution of the thickness h as a function of the
pressure gradient. The growth rate of the thickness, ∂h

∂t
, is simply the instantaneous

vertical velocity at the free surface, vz(h). So we need to solve the velocity field of the
flow. The following derivation of the Reynolds equation with basic assumptions can
be found in numerous books (see for example Bruus, 2008), but here we will derive
an expression for non-homogeneous viscosity and Navier slip boundary condition.

We begin with the Stokes equation of flow for incompressible Newtonian fluids:

∇p = η∇2v+2D∇η, (A.3)

where D is the strain rate tensor:

Di j =
1
2

(
∂vi

∂x j

+
∂v j

∂xi

)

.

Note that if viscosity η is a constant, then ∇η = 0 and equation (2.5) on page 24 is
recovered. We assume that η is a known function of z (and possibly x) only (Newtonian
fluid). For writing simplicity, we will consider a 2D flow in the plane (x, z), although
the extension to the 3D case entails no additional difficulty. With x+ = x/L and z+ =
z/h0, the Stokes equation can be recast in the form:

ε2L
∂p

∂x+
= ηε2 ∂

2vx

∂x+2 +4π2η
∂2vx

∂z+2 +2ε2 ∂η

∂x+
× ∂vx

∂x+
+2πε

∂η

∂z+
× ∂vz

∂x+
+4π2 ∂η

∂z+
× ∂vx

∂z+
,

ε2πL
∂p

∂z+
= ηε2 ∂

2vz

∂x+2 +4π2η
∂2vz

∂z+2 +ε2 ∂η

∂x+
× ∂vz

∂x+
+2πε

∂η

∂x+
× ∂vx

∂z+
+8π2 ∂η

∂z+
× ∂vz

∂z+
,

(A.4)
where we defined the lubrication ratio ε by ε= 2πh0/L. By writing the pressure and
velocity as asymptotic expansions:

p = 1
ε2 p−2 +

1
ε

p−1 + p0 + . . . ,

v=v0 +εv1 +ε2v2 + . . . ,
(A.5)

we get the first order equations in ε:

L
∂p−2

∂x+
= 4π2

(

η
∂2vx0

∂z+2 + ∂η

∂z+
× ∂vx0

∂z+

)

,

∂p−2

∂z+
= 0,

(A.6)

and the following order equations, for example the second order, but which are not
used here:

L
∂p−1

∂x+
= 4π2

(

η
∂2vx1

∂z+2 + ∂η

∂z+
× ∂vx1

∂z+

)

+2π
∂η

∂z+
× ∂vz0

∂x+
,

L
∂p−1

∂z+
= 2π

(

η
∂2vz1

∂z+2 +2
∂η

∂z+
× ∂vz1

∂z+

)

. . .

(A.7)
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If we bring the first order equation back to the real coordinates (x, z), we finally get:

∂p

∂x
= ∂

∂z

(

η
∂vx

∂z

)

, (A.8)

∂p

∂z
= 0. (A.9)

The first interesting result is that pressure does not depend on z. It is thus possible
to integrate equation (A.8) along the z-coordinate:

η(z)v′x(z)= z
∂p

∂x
+C. (A.10)

The no tangential stress condition at the free interface implies v′x(h)= 0, which leads
to:

v′x(z)= ∂p

∂x
× z−h

η(z)
. (A.11)

Integrating a second time yields:

vx(z)= vx(0)+ ∂p

∂x

ˆ z

0

ζ−h

η(ζ)
dζ. (A.12)

The Navier slip condition at the bottom interface sets vx(0)=βv′x(0) (β= 0 corresponds
to a non-slip condition):

vx(z)=−∂p

∂x

(

β
h

η(z = 0)
+
ˆ z

0

h−ζ

η(ζ)
dζ

)

. (A.13)

Now that we have an expression for vx, we can get vz(h) by integrating the mass
balance:

vz(h)= dh

dt
= ∂h

∂t
+ ∂h

∂x
vx(h)=−

ˆ h

0

∂vx

∂x
dz. (A.14)

Formally, the equation above is enough to describe the evolution of h. However, it is
preferred to switch the derivative and the sum sign, in other words, to express the
growth rate of h as the derivative of a total flux:

∂h

∂t
=−∂h

∂x
vx(h)− ∂

∂x

ˆ h

0
vxdz+ ∂h

∂x
vx(h). (A.15)

The last term appears because the upper bound of the integral along z depends on x.
Nevertheless, we see that it cancels out with the first term. Finally we get:

∂h

∂t
= ∂

∂x

[(

β
h2

η(z = 0)
+
ˆ h

0

ˆ z

0

h−ζ

η(ζ)
dζdz

)

× ∂p

∂x

]

. (A.16)

If the viscosity is constant, or depends only on the local thickness h, this equation
reduces to:

∂h

∂t
= ∂

∂x

(
h2(h+3β)

3η(h)
× ∂p

∂x

)

. (A.17)
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A.2.2 Harmonics generation in lubrication theory

We consider the non-linear dimensionless lubrication equation:

∂h+

∂t+
+ 1

(2π)4 × ∂

∂x+

(

h+3 ∂
3h+

∂x+3

)

= 0, (A.18)

and assume that a solution is given by:

h+(x+, t+)= 1+ f1(t+)cos2πx++ f2(t+)cos4πx+, (A.19)

with f1(0) = a0 > 0 and f2(0) = 0: the shape is sinusoidal at t+ = 0. The aim of this
paragraph is to extract some information about f2(t+), in other words to see what
happens to the first harmonics of the shape. By trigonometric linearization,1 we get:

h+3

(2π)3 × ∂3h+

∂x+3 =
[

f1

(

1+ 3
4

f 2
1 + 9

8
f 2
2 − 3

2
f2

)

+8 f2

(
1
4

f 3
1 + 3

2
f1 +

3
8

f1 f 2
2

)]

sin2πx+ (A.20)

+
[

f1

(
1
4

f 3
1 + 3

2
f1 +

3
8

f1 f 2
2

)

+8 f2

(

1+ 3
8

f 2
1 f2 +

3
2

f 2
1 + 3

4
f 2
2

)]

sin4πx+

+ . . .

Neglecting higher modes, the lubrication equation gives coupled evolution equations
for f1 and f2:

f ′1 + f1 +
3
4

f 3
1 + 21

2
f1 f2 +

3
2

f1 f 2
2 +2 f 3

1 f2 +
21
8

f1 f 3
2 = 0, (A.21)

f ′2 +16 f2 +12 f 3
2 + 1

2
f 4
1 +3 f 2

1 + 27
4

f 2
1 f 2

2 +24 f2 f 2
1 = 0. (A.22)

When f2 is not too big, the governing equation for f1 is then:

f ′1 + f1 +
3
4

f 3
1 = 0, (A.23)

and again if we neglect the f 3
1 term (we are interested in the weakly non-linear prob-

lem), then:
f1(t+)= a0e−t+ . (A.24)

The equation for f2 with a source term (the increase of f2 is fed by f1) is:

f ′2 +16 f2 +3 f 2
1 = 0, (A.25)

which is solved in:

f2(t+)= e−16t+
[

f2(0)+
3a2

0

14

(

1−e14t+
)
]

. (A.26)

1The open source software Maxima was used. See http://maxima.sourceforge.net/.
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This is the first order evolution of the second mode. We will assume that f2(0)= 0 (as
it is the case for a square signal or a sinusoid). We see that f2 is of order 2 in a0. We
can write the order of the terms of equation (A.21):

f ′1
︸︷︷︸

1

+ f1
︸︷︷︸

1

+ 3
4

f 3
1

︸︷︷︸

3

+ 21
2

f1 f2
︸ ︷︷ ︸

3

+ 9
8

f1 f 2
2

︸ ︷︷ ︸

5

+2 f 3
1 f2

︸ ︷︷ ︸

5

+3 f1 f 3
2

︸ ︷︷ ︸

7

= 0. (A.27)

So the third order evolution equation for f1 is:

f ′1 + f1 +
3
4

f 3
1 + f1

9
4

a2
0e−16t+

(

1−e14t+
)

= 0. (A.28)

In order to keep the equation linear, we assume: f 3
1 = f1 × a2

0e−2t+ . The solution of
equation (A.28) is:

f1(t+)= a0 exp
[

−t++a2
0

3
4

(

1−e−2t+
)

−a2
0

9
64

(

1−e−16t+
)]

. (A.29)

The first mode f1 decreases with a characteristic speed t+, but this decrease is delayed
by a source arriving as 2t+ and vanishing as 16t+ (like the second mode where it
comes from). For t+ → ∞, if we note θ the shift between f1 and its linear decrease
(a0e−t+):

θ = 57
64

a2
0. (A.30)

This function is plotted on figure 4.6b on page 63.

A.3 Capillary wave theory

A.3.1 Derivation of the dispersion relation

The goal of this paragraph is to derive the dispersion relation of a leveling supported
film (Eq. 4.25 on page 66). We first compute (4.19)′− ik(4.19) and get:

−k2û′+ û′′′+ ik2v̂zk− iv̂′′zk= 0. (A.31)

We take the scalar product by k and then mass conservation yields:

v̂′′′′z −2k2v̂′′z +k4v̂z = 0. (A.32)

This equation is directly solved in:

v̂z(z)= P1(z)coshkz+P2(z)sinhkz, (A.33)

where P1 and P2 are unknown polynomials of degree one (ie. linear functions):

P1(z)≡ A1 +B1z and P2(z)≡ A2 +B2z, (A.34)
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and where we have four unknown constants A1, B1, A2 and B2. We use the property
P ′′

1 = P ′′
2 = 0 to write:

v̂′z = (B1 +kP2)coshkz+ (B2 +kP1)sinhkz, (A.35)

v̂′′z = (2kB2 +k2P1)coshkz+ (2kB1 +k2P2)sinhkz, (A.36)

v̂′′′z = (3k2B1 +k3P2)coshkz+ (3k2B2 +k3P1)sinhkz. (A.37)

Constants A1, B1, A2 and B2 are found with the boundary conditions. The imperme-
ability and Navier slip conditions at the bottom interface (z = 0) implies v̂z(0)= 0 and
v̂′z(0)=βv̂′′z (0) (from a mass balance), so that:

A1 = 0 and A2 = 2βB2 −
B1

k
. (A.38)

We use this result to rewrite P1 and P2 at z = h0:

P1(h0)= B1h0 and P2(h0)=−B1

k
+B2(h0 +2β). (A.39)

The tangential stress (proportional to û′+ ikv̂z, and consequently to v̂′′z + k2v̂z, mass
balance again) must vanish at the interface:

(kh0B1 +B2)coshkh0 +
(

kh0 +2kβ
)

B2 sinhkh0 = 0. (A.40)

We are now able to write B2 as a function of B1:

B2 =− kh0 coshkh0

coshkh0 +
(

kh0 +2kβ
)

sinhkh0
B1. (A.41)

We now use the normal stress balance at the interface:

p̂(h0)−2η(ω)v̂′z(h0)=
(

γk2 + ∂Π

∂h
(h0)

)

ĥ(k,ω), (A.42)

and get

B1 =
(

γk2 + ∂Π
∂h

(h0)
)

ĥ

2η
×

coshkh0 +
(

kh0 +2kβ
)

sinhkh0

cosh2 kh0 +k2h2
0 +2kβ (kh0 +sinhcoshkh0)

, (A.43)

and

B2 =
(

γk2 + ∂Π
∂h

(h0)
)

ĥ

2η
× −kh0 coshkh0

cosh2 kh0 +k2h2
0 +2kβ (kh0 +sinhcoshkh0)

. (A.44)

Since constants A1, B1, A2 and B2 are now known, it is possible to express the pres-
sure or velocity field as functions of the physical parameters. The final step is to recall
that the growth rate of h is the vertical velocity near h0:

− iωĥ = v̂z(h0), (A.45)
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which directly leads to the dispersion relation we were looking for:

iωη(ω)h0

γ
= f (kh0,Ha,β), (A.46)

with:

f (kh0,Ha,β)=
kh0 sinhcoshkh0 −k2h2

0 +2kh0kβsinh2 kh0

2cosh2 kh0 +2k2h2
0 +4kβ (kh0 +sinhcoshkh0)

(

1+ Ha

k2h2
0

)

, (A.47)

and

Ha=
h2

0
∂Π
∂h

(h0)

γ
. (A.48)

For computation purpose, this function is numerically more efficient in the form:

f (kh0,Ha,β)=
kh0 tanhkh0 −

(
kh0

coshkh0

)2
+2 β

h0
(kh0 tanhkh0)2

2+2
(

kh0
coshkh0

)2
+4 β

h0

(
kh0

coshkh0

)2
+4 β

h0
kh0 tanhkh0

(

1+ Ha

k2h2
0

)

. (A.49)

A.3.2 Solving integral dispersion relation

Let φ be the progress of the flow:

φ= t

τ
=− ln

(

ĥ(k, t)

ĥ(k,0)

)

. (A.50)

In the case of a pure reptation model, the dispersion relation gives:

ˆ 1

0

3x2

1
φ
−Dex2

dx = f (kh0)
Ca

. (A.51)

The issue is to find φ as a function of the physical parameters Ca and De, and the
mode kh0. If we differentiate the relation dispersion with respect to k+ = kh0, we get
a non-linear differential equation for φ:2

∂φ

∂k+X (φ)= 1
Ca

× ∂ f

∂k+ , (A.52)

where X is a function of φ derived from integration by parts:

X (φ)= 6
φ2

(

De
1
φ
−De

−
√

φDe×arctanh
(√

φDe
)
)

. (A.53)

If we now try to numerically solve the latter differential equation, we may define:

∂φ

∂k+ ≡ φn+1 −φn

δk+ , (A.54)

2Richard Feynman would say: “Try to differentiate under the integral sign”.
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and
∂ f

∂k+ ≡ fn+1 − fn

δk+ . (A.55)

In a direct numerical integration scheme, we have an expression of φn+1 as a function
of φn:

φn+1 =φn +
fn+1 − fn

CaX (φn)
, (A.56)

where both δk+ cancel out. Now, we must find φ0. From mass conservation, we know
that the mean thickness h0 does not depend on time, and thus the progress of the
flow for k = 0 is zero: φ0 = 0. However, the function X (φ) is ill-defined in 0. An
asymptotic expansion of X (φ) in the limit φ→ 0 (which means at very small times)
gives X (0) = 4De2. We can now compute an expression of φ as a function of the
wavevector. An implementation of this method is found in figure 6.10 on page 112.
See also the numerical implementation in section C.5.2 on page 202.

A.3.3 Streamlines

At a given time, streamlines are curves that are always parallel to the velocity field.
They give the direction of the flow. One way to compute streamlines is to plot them
as contour lines of a potential function, noted Φ(x, z). This function should have the
following properties:

1. ∇Φ should be perpendicular to v, and for example ∇Φ∝ (vz,−vx).

2. The flow between two contour lines should be constant: the narrower the lines,
the steeper the flow.

If we define Φ as a primitive in z of vx:

Φ(x, z)=
ˆ z

0
vx(x,ζ)dζ, (A.57)

then mass balance and no-slip boundary condition give ∇Φ= (−vz,vx). So the stream-
lines are indeed parallel to the flow. The second condition is also true, and the proof is
the following. We want to compute the flux through a curve drawn from one contour
line of value Φ1 to another one of value Φ2. First, since the divergence of the veloc-
ity is zero, the divergence theorem allows us to chose any curve between those two
contour lines (the flux is constant along a tube). Let us chose a parametric curve L(t)
parallel to ∇Φ, going from L(t1) = (x1, z1) to L(t2) = (x2, z2). The normal vector along
the curve is n= (−∂z

∂t
, ∂x
∂t

)/|L′|, the value of ∇Φ in terms of v gives:

ˆ t2

t1

v ·ndt =
ˆ t2

t1

−∇Φ · L′

|L′|
dt =Φ1 −Φ2. (A.58)

That is why for equally spaced contour lines (constant Φn −Φn+1), the total flow is
constant between two contour lines.
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Lubrication case. If we know the thickness h(x) at a given time, then we can
compute the velocity vx(x, z) from equation (A.13) on page 179. This can be done
analytically for simple profiles h, or at least numerically with no specific difficulty.

Small perturbations case. In Fourier space (k, z), we can express Φ̂ in terms of v̂z

with use of the mass balance and no-slip boundary condition:

Φ̂(k, z)=
ˆ z

0
i
v̂′z
k

(k,ζ)dζ= i
v̂z

k
, (A.59)

and then:

Φ̂(k, z)= i
γĥ

2η
×

(kz+kzkh0 tanhkh0) coshkz
coshkh0

− (1+kzkh0 +kh0 tanhkh0) sinhkz
coshkh0

1+
(

kh0
coshkh0

)2 .

(A.60)
Consequently we can directly compute streamlines for any thickness function ĥ.
Streamlines are computed in the rectangle domain of length L and height h0, but
for presentation purpose, they are stretched to the physical fluid domain {L,h(x)}.

A.3.4 Shear rate

In this subsection, we compute the shear rate γ̇ = ∂vx

∂z
+ ∂vz

∂x
inside a flowing film (no

van der Waals forces and no slip condition) in order to extract the maximum shear
rate and thus a criterion for the Newtonian behavior validity.

Lubrication case. For a sinusoidal profile: h(x) = h0 + h̃coskx with kh0 ≪ 1. We
can compute:

∂vx

∂z
=−γ

η
k3h̃sinkx

(

z−h0 − h̃coskx
)

. (A.61)

By integrating the mass balance, we get:

vz =
γ

η
k4h̃

[
z3

6
coskx+ z2

2

(

h̃sin2−h̃cos2−h0
)
]

. (A.62)

So:

∂vz

∂x
= γ

η
k5h̃

[

− z3

6
sinkx+2z2h̃sincoskx

]

, (A.63)

and finally:

γ̇(x, z)= γ

η
k3h̃

[(

h0 − z− z3

6
k2

)

sinkx+
(

2z2h̃k2 + h̃
)

sincoskx

]

. (A.64)

If we write the latter expression in terms of dimensionless quantities x+ = kx, z+ =
z/h0, k+ = kh0:

γ̇(x+, z+)= γ

η
k3h̃h0

[(

1− z+− z+3

6
k+2

)

sin x++
(

2z+2k+2 +1
) h̃

2h0
sin2x+

]

. (A.65)
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with making use of cos=
√

1−sin2, it is possible to show that the maximum is at the
bottom boundary (z+ = 0), in:

x+max = arccos








√

1+8
(

h̃
h0

)2
−1

4 h̃
h0








. (A.66)

Although the expression of x+max seems rather complicated, the maximum shear rate
is surprisingly weakly non-linear in h̃. In fact it is bounded by:

γh0h̃k3

η
< γ̇max <

γh0h̃k3

η
× 3

3
2

4
︸︷︷︸

1.3

. (A.67)

Hence the criterion for a sinus profile in lubrication theory:

γ̇0 > 1.3
γh0h̃k3

η
. (A.68)

Small perturbations case. In capillary wave theory, the result is straightforward.
In Fourier space:

ˆ̇γ= v̂′x + ikv̂z = i
v̂′′z
k

+ ikv̂z, (A.69)

which leads to:

ˆ̇γ(k, z)= γĥ

η
ik2

((kz−kh0)+kzkh0 tanhkh0) coshkz
coshkh0

−kh0kz sinhkz
coshkh0

1+
(

kh0
coshkh0

)2 . (A.70)

So the shear rate spectrum is expressed as a function of the Fourier components of
h. For a sinusoidal shape (single wavevector k), the maximum shear rate can be
expressed by:

γ̇max =
γ

η
h̃k2

Γ̇(kh0), (A.71)

where Γ̇(kh0) is:

Γ̇(kh0)= max
0ÉzÉh0




k2

((kz−kh0)+kzkh0 tanhkh0) coshkz
coshkh0

−kh0kz sinhkz
coshkh0

1+
(

kh0
coshkh0

)2




 . (A.72)

Generally, it is impossible to compute the maximum shear rate on the base of the
Fourier components, but we rather need to compute the inverse transform first. This
is how it is done for arbitrary geometries (figure 4.11 on page 74).
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A.3.5 Reflow of spatially modulated patterns

We consider an imprinted film h(x, t) of length L, of pattern depth 2m̃ described by
the initial modulation function:

h(x,0)= h0 + m̃×sign
[

cos
(ˆ x

0
k(ξ)dξ

)]

(A.73)

where k(ξ) is the local wavevector. Assuming that the flow occurs in the thin film
regime, the thickness follows the equation:

∂h

∂t
+
γh3

0

3η
× ∂4h

∂x4 = 0. (A.74)

In the case of a periodic pattern of wavevector k1, the solution, after all high order
frequencies have vanished, would be an exponentially decreasing sinusoid:

h(x, t)= h0 +
4m̃

π
cos(k1x)exp

(

− t

τ1

)

, (A.75)

where the factor 4/π accounts for the ratio of the fundamental mode by the depth of
the profile in the Fourier transform of a square pattern, and with the characteristic
leveling time:

τ1 =
3η

γh3
0k4

1

. (A.76)

Now, let us assume that in the case of a spatially modulated pattern, the reflow of a
local period could have the same dynamics as a regular pattern of the same period, in
other words, that the pattern evolution could be:

h(x,0)= h0 +
4m̃

π
×cos

(ˆ x

0
k(ξ)dξ

)

×exp
(

− t

τ(x)

)

, (A.77)

with the local characteristic time:

τ(x)= 3η

γh3
0k(x)4

. (A.78)

The function defined in equation (A.77) does not necessarily follows equation (A.74).
In fact, extra terms appear due to the modulation of the pattern. For the first spatial
derivative, one gets:

∂h

∂x
= 4m̃

π
exp

(

− t

τ(x)

)

×







−k(x)sin

(ˆ x

0
k(ξ)dξ

)

+
t ∂τ
∂x

τ2 cos
(ˆ x

0
k(ξ)dξ

)

︸ ︷︷ ︸

additional term








. (A.79)

If we assume:
t| ∂τ

∂x
|

τ2 ≪ k, (A.80)
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then the additional term can be neglected, and the second derivative yields:

∂h

∂x
= 4m̃

π
exp

(

− t

τ(x)

)

×









−k(x)2 cos
(ˆ x

0
k(ξ)dξ

)

−
(

∂k

∂x
+k

t ∂τ
∂x

τ2

)

sin
(ˆ x

0
k(ξ)dξ

)

︸ ︷︷ ︸

additional term









.

(A.81)
Again, in order to neglect the additional term, we assume:

∣
∣
∣
∣

∂k

∂x

∣
∣
∣
∣≪ k2. (A.82)

If we proceed the same way up to the fourth derivative, we obtain again condi-
tions (A.80) and (A.82) so that the reflow equation (A.74) is valid.

Assumption (A.82) is easy to identify: it depends only on the topography of the
pattern. In practical application, we can get without difficulty |∂k

∂x
|/k2 < 10−3. Regard-

ing assumption (A.80), it can be recast in:

t

τ
×

∣
∣
∣
∂k
∂x

∣
∣
∣

k2 ≪ 1. (A.83)

For a given pattern, it is then an assumption on the time of reflow. Indeed, considering
a local point of the pattern, if the reflow time is too long, fluid from neighbor parts
can flow up to this point and influence its dynamics. However, if the time of interest
is near t ∼ τ, then this assumption is fulfilled whenever assumption (A.82) is true.

References

See chapter 4.



Appendix B

Numerical integration of the
lubrication equation

In this appendix, we present a numerical method to solve the lubrication equation.

B.1 Numerical scheme

We consider a 2D flowing film described by the non-linear lubrication equation:

∂h

∂t
+ ∂

∂x

(
γ

3η
h3 ∂

3h

∂x3

)

= 0 (B.1)

with t the time, h(x, t) the local instantaneous thickness, γ the surface tension and
η the (homogeneous) viscosity. This equation is a continuity equation of fourth or-
der. The stability criterion in the case of a direct integration scheme requires a time
increment of:

δt.
3η
γ
δx4 (B.2)

where δx is the space increment. If we need a resolution of δx ∼ 10 nm, with η ∼
106 Pa·s and γ∼ 30 mN·m−1 we get:

δt ∼ 10−24 s, (B.3)

which makes a direct integration scheme inappropriate in our case, since the reflow
durations are typically of several minutes. This is why the numerical integration is
done with an implicit scheme.

We used the scheme of Ha et al. (2008). In this scheme, the free interface is
meshed with a constant and uniform mesh of N points. We assume that the function
h is periodic over a length L = N δx. We define (see figure B.1 on the following page):

Un
j = 1

δx

ˆ x
j+ 1

2

x
j− 1

2

h(x,nδt)dx. (B.4)
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Figure B.1 – Quantization of the interface with periodic boundary condition.

Given the structure of the lubrication equation (B.1), we define a mass flux:

φ(h)= γ

3η
h3 ∂

3h

∂x3 , (B.5)

so that equation (B.1) becomes:
∂h

∂t
=−∂φ

∂x
. (B.6)

Now, if un+1
j+ 1

2

is the temporal average of h(x j+ 1
2
) over [nδt, (n+1)δt]:

un+1
j+ 1

2
= 1

δt

ˆ (n+1)δt

nδt

h(x j+ 1
2
, t)dt, (B.7)

integration equation (B.6) over [x j− 1
2
, x j+ 1

2
]× [nδt, (n+1)δt], the spatial averages U j

have the following relation:

Un+1
j =Un

j −
δt

δx

(

φ(un+1
j+ 1

2
)−φ(un+1

j− 1
2
)
)

. (B.8)

The final step is to choose a finite difference approximation forφ. following Ha et al.

(2008):

Φ
n

j+ 1
2
= δx3φ(un

j+ 1
2
)= γ

3η
·
(

Un
j+1 +Un

j

2

)3
(

Un
j+2 −3Un

j+1 +3Un
j −Un

j−1

)

(B.9)

Hence the implicit numerical scheme:

Un+1
j =Un

j −
δt

δx4

(

Φ
n+1
j+ 1

2
−Φ

n+1
j− 1

2

)

(B.10)

B.2 Octave/Matlab Script

1 %% I n i t i a l i z i n g
2

3 % Matlab terminal i n i t i a l i z a t i o n
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4 c lear a l l
5 c lose a l l
6 c l c
7 t i c
8

9 % Parameters
10  ! = 2"−9; % (m) x pace
11 #! = 1000; % Number of points
12 $ =  !*#! ; % (m) Total length
13 ! =  ! * ( 0 :#!−1) ' ; % x vector
14 #% = 1000; % Number of time i t e ra t i on
15 %&'( = 1"−10; % Minimal dimensionless time
16 %&)! = 1"−5; % Duration of flow ( dimensionless time )
17 %*+,(-%. = %&'( * (%&)! / %&'( ) . ^ ( ( 0 : #% ) ' / #% ) ;
18  % = d i f f (%*+,(-%. ) ; % Vector o f durations ( l ogsca le )
19 % = cumsum( % ) ; % Dimensionless time vector
20

21 % Starting shape
22 /0 = 40"−9; % (m) Mean thickness
23 eps = 0 . 8 ; % Perturbation rat i o
24 / = /0*( 1 + eps* cos (2* pi / $*! ) ) ;
25

26 %% Main loop
27

28 % Conditioning c o e f f i c i e n t s
29

30 +,12 = − % *$^4 / ( 2 * pi ) ^4 /8 /  !^4 / /0^3;
31

32 % Time loop
33 f o r (=[1 :#% ]
34 30 = / ;
35 40 = ,(1- ( s i ze (30 ) ) ;
36

37 % Non−l inear solver (Newton−Raphson method )
38 while sum(40 .^2 )>10^−8
39 % Jacobian matrix
40 5)+,6'1( = spal loc (#! , #! ) ;
41

42 f o r 7=[1 :#! ]
43 3&& = / (&, (7−3,#! ) +1) ;
44 3& = / (&, (7−2,#! ) +1) ;
45 3 = / (7 ) ;
46 38 = / (&, (7 , #! ) +1) ;
47 388 = / (&, (7+1 ,#! ) +1) ;
48

49 5)+,6'1( (7 , &, (7−3,#! ) +1) = +,12 (( ) * (3+3& ) ^3;
50 5)+,6'1( (7 , &, (7−2,#! ) +1) = +,12 (( ) * ( −(38+3 ) ^3 −3*(3+3& ) ^2 *(←-

38−3*3+3*3&−3&& ) −3*(3+3& ) ^3 ) ;
51 5)+,6'1( (7 , 7 ) = −1++,12 (( ) *3*( (38+3 ) ^2 *(388−3*38+3*3−3& ) −(3+←-

3& ) ^2 *(38−3*3+3*3&−3&& ) +(38+3 ) ^3 +(3+3& ) ^3 ) ;
52 5)+,6'1( (7 , &, (7 , #! ) +1) = +,12 (( ) * ( −(3+3& ) ^3 −3*(38+3 ) ^2 *(388←-

−3*38+3*3−3& ) −3*(38+3 ) ^3 ) ;
53 5)+,6'1( (7 , &, (7+1 ,#! ) +1) = +,12 (( ) * (3+38 ) ^3;
54

55 % Second term
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56  ! (" , 1 ) = #! (" )−# + $%&' (( ) * ( (#)+# ) ^3 *(#))−3*#)+3*#−#* ) −(#+#*←-

) ^3 *(#)−3*#+3*#*−#** ) ) ;
57 end
58

59 % System solving . The inverse of the Jacobian i s automatically ←-

computed by Octave / Matlab .
60 +, = − -.$%/0&( \  ! ;
61

62 % Increment
63 1 = 1 + +, ;
64

65 end
66 end
67

68 %% Output
69

70 %23 = 1%,4$.3 (5 , 1 ) ;
71 save "561 . 353 " %23

72

73 toc

B.3 Inverse reflow programing

In this section, we will see an example of code that uses the non-linear solver pre-
sented above in order to optimize some parameters.

B.3.1 Cost function

This function computes the complete reflow of the input shape, finds the time when
the annealed shape is the closest to the target, and returns this optimal distance.

1 function 7083.($& = 92/,0$.30%('9%: (5 , 160(03 , 163.,;&3 , 8),&.7 , <3 )
2

3 <5 = (2*&9 (5 ) ; % −
4 % temps min et max ( ajust to s t a b i l i t y )
5 3*0( = 1=−8;
6 3*.5 = 5;
7 % vecteur temps de construction , éche l le log
8 36$%(83, = 3*0( * (3*.5 / 3*0( ) . ^ ( ( 0 : <3 ) ' / <3 ) ;
9 73 = d i f f (36$%(83, ) ;

10 % vecteur temps
11 3 = cumsum(73 ) ;
12

13 *7083.($& = zeros ( s i ze (3 ) ) ;
14

15 % Conditioning c o e f f i c i e n t s
16

17 $%&' = −73 *>^4 / ( 2 * pi ) ^4 /8 / 75^4 / 1!^3;
18

19 % Time loop
20 f o r (=[1 :<3 ]
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21  ! = " ;
22 #! = $%&' ( s i ze ( ! ) ) ;
23

24 % Non−l inear solver (Newton−Raphson method )
25 while sum(#! .^2 )>10^−8
26 % Jacobian matrix
27 ()*$+,&% = spal loc (-. , -. ) ;
28

29 f o r /=[1 :-. ]
30  00 = " (0$1 (/−3,-. ) +1) ;
31  0 = " (0$1 (/−2,-. ) +1) ;
32  = " (/ ) ;
33  2 = " (0$1 (/ , -. ) +1) ;
34  22 = " (0$1 (/+1 ,-. ) +1) ;
35

36 ()*$+,&% (/ , 0$1 (/−3,-. ) +1) = *$&3 (% ) * ( + 0 ) ^3;
37 ()*$+,&% (/ , 0$1 (/−2,-. ) +1) = *$&3 (% ) * ( −( 2+ ) ^3 −3*( + 0 ) ^2←-

*( 2−3* +3* 0− 00 ) −3*( + 0 ) ^3 ) ;
38 ()*$+,&% (/ , / ) = −1+*$&3 (% ) *3*( ( 2+ ) ^2 *( 22−3* 2+3* − 0 ) ←-

−( + 0 ) ^2 *( 2−3* +3* 0− 00 ) +( 2+ ) ^3 +( + 0 ) ^3 ) ;
39 ()*$+,&% (/ , 0$1 (/ , -. ) +1) = *$&3 (% ) * ( −( + 0 ) ^3 −3*( 2+ ) ^2 *(←-

 22−3* 2+3* − 0 ) −3*( 2+ ) ^3 ) ;
40 ()*$+,&% (/ , 0$1 (/+1 ,-. ) +1) = *$&3 (% ) * ( + 2 ) ^3;
41

42 % Second term
43 #! (/ , 1 ) =  ! (/ )− + *$&3 (% ) * ( ( 2+ ) ^3 *( 22−3* 2+3* − 0 ) −(←-

 + 0 ) ^3 *( 2−3* +3* 0− 00 ) ) ;
44 end
45

46 % System solving . The inverse of the Jacobian i s automatically ←-

computed by Octave / Matlab .
47 45 = − ()*$+,&% \ #! ;
48

49 % Increment
50 " = " + 45 ;
51

52 % Computation of the cost
53 1" = d i f f (" ( f l o o r (-.*(1−'25&)1 ) / 2 ) +1: f l o o r (-.*(1+'25&)1 ) / 2 ) ) ) ;
54 1"6) = d i f f ("76)58&6 ( f l o o r (-.*(1−'25&)1 ) / 2 ) +1: f l o o r (-.*(1+'25&)1 )←-

/ 2 ) ) ) ;
55 %mdistance (n ) = norm(dh−dhta ) ^2/norm(dh ) / norm( dhta ) ;
56 01,'6)%*& (% ) = norm(1"−1"6) ) / norm(1"6) ) ;
57

58 end
59 end
60

61 % Return
62 [1,'6)%*& , ,75&39$: ] = min(01,'6)%*& ) ;
63 675&39$: = 6 (,75&39$: ) ;
64 %disp ( t_ref low )
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B.3.2 Main script

1 %% I n i t i a l i z i n g
2 c lear a l l
3 c lose a l l
4 c l c
5 t i c
6

7 %% Paramters
8 % x pace
9  ! = 10"−9; % [m]

10 % t o t a l length
11 # = 1"−6; % [m]
12 % vecteur x
13 ! = ( ! :  ! : # ) ' ;
14 % number of points
15 $! = %&'() (! ) ; % −
16

17 %% Target shape ( sphere )
18 *+,-.+/(- = 0"−9;
19 *,-.+/(- = *+,-.+/(- + sqrt (#^2/4 − (#/2−! ) .^2) ;
20

21 %% Parameters to f i t
22

23 % Density of the p r o f i l e
24  (%01-2 = 0 . 6 ;
25 % Depth of the mold
26 *- = 724"−9;
27 % Residual layer
28 *+ = 10"−9;
29 % Minimum residual layer ( prevents s ingular i ty )
30 *+'1% = 10"−9;
31

32 % Dual unconstrained parameters ( Matlab can only f i t unconstrained parameters←-

, and our parameters are constrained )
33 & = atanh (2* (%01-2−1) ;
34 &*- = sqrt (*- ) ;
35 &*+ = sqrt (*+−*+'1% ) ;
36

37 %% Starting shape
38

39 % Cost function
40 340- =  (!"# ) $%&'()*+(,-.$,/ (# , (-(+012*)"324'*5(3 (# , [ ( 1 + tanh (!"# ( 1 ) ) ) / 2 ; !"#←-

( 2 ) ^2;!"# ( 3 ) ^2+6'5(- ] ) ,60+*'7"+ ,0 .8 ,1000) ;
41 '"1 = .5(-1"*')6 (),1+ , [ %3 ; %6+ ; %6' ] , ,2+(51"+ ( ' Display ' , ' i t e r ' , ' FunValCheck ' , '←-

on ' , ' TolFun ' ,18−14, ' TolX ' ,18−6) ) ;
42

43 %% Result display
44

45 disp ( (1+ tanh ('"1 ( 1 ) ) ) / 2 )
46 disp ('"1 ( 2 ) ^2)
47 disp ('"1 ( 3 ) ^2+6'5(- )
48
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49  !"#"$ = "#"$!%&'()*&+,'-"* (. , [ ( 1 + tanh (,)% ( 1 ) ) ) / 2 ; ,)% ( 2 ) ^2;,)% ( 3 ) ^2+ ,-"# ] ) ;
50 $!,)/012 = $!034,"('$"1#/012 (. ,  !"#"$ ,  !$',5)$ ,0 .9 ,1000) ;
51  !,)/012 = *3,'$"1#!034,"('$"1#/012 (. ,  !"#"$ , $!,)/012 ) ;
52

53 f igure ( 2 )
54 plot (. ,  !$',5)$ , ' r ' ) ;
55 hold 1#

56 plot (. ,  !"#"$ , ' k ' ) ;
57 hold 1#

58 plot (. ,  !,)/012 , ' b ' ) ;
59 hold 1//

60 axis )63'0

61

62 13$ = [.  !$',5)$  !"#"$  !,)/012 ] ;
63 save *"%$,"43$"1# . $.$ 13$ −789::
64 toc
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Appendix C

Flow simulation and rheological
properties fitting in capillary
wave theory

C.1 Main concept

We saw in chapter 4 that the reflow in capillary wave theory is equivalent to a linear
low-pass filtering of the topography. The main concept for the simulation of such flow
is then a simple signal processing based on Fourier transforms:

1. Acquisition or definition of the initial shape;

2. Fourier transform of the initial shape;

3. Computation of the kernel of reflow, based of material properties and physical
paramters (time, thickness...);

4. Multiplication of the Fourier transform of the shape by the kernel;

5. Computation of the inverse Fourier transform to get the shape after reflow.

C.2 Preliminary functions

C.2.1 Assumptions on geometry signals

The Fourier transforms require to work on evenly spaced, non-redundant signals.
The following function loads a profile from a text file named  !"#$%&#, in which x-
coordinates are of unit '()$!*, and z, +()$!* all in SI unit. The profile is interpolated
on the base of an x-vector of pace ,'.

1 function [ , ! ] = "#$%&'(#)&'*"+ ('*"+,$)+ ,  &-,*. , !&-,*. , % )
2 /$" = load ('*"+,$)+ ) ;
3 0&.)1 = length (/$" ( : , 1 ) ) ;
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4  =  !"#$%*&'( ( 1 ,1 ) : ) :  !"#$%*&'( (*!%+, , 1 ) ;
5 * = length ( ) ;
6 % Interpolat ion ( suppress redundancy and adds missing points )
7 -!%+, = interp1 ( !"#$% * &'( ( : , 1 ) , -!"#$% * &'( ( : , 2 ) ,  , ' l inear ' ) ;
8 % Security
9 -!%+, (* ) = -!"#$% * &'( (*!%+, , 2 ) ;

10 - = -!%+, ' ;

C.2.2 rfft: Fast Fourier transform of a real signal

The following function computes the fast Fourier transform (FFT) of the real input z

of length N. The output is a complex vector of length  !"#((N +1)/2). Note: When
the DFT is computed for purely real input, the output is Hermite-symmetric, i.e.
the negative frequency terms are just the complex conjugates of the corresponding
positive-frequency terms (ẑ(−k)= ẑ(k)∗), and the negative-frequency terms are there-
fore redundant.

1 function -!.//% = .//% (- )
2 -!//% = f f t (- ) ;
3 -!.//% = -!//% ( 1 : c e i l ( ( #"+0( (-!//% ) +1) / 2 ) ) ;

C.2.3 irfft: inverse of rfft

The following function computes the inverse Fourier transform of a signal $%&''(, so
that "&''()&''()$**+$. The output is a vector of length N. The real function is here
to prevent non-zero imaginary part due to computation noise.

1 function - = $.//% (-!.//% , * )
2 -!.//%!, = f l ipud (-!.//% ) ;
3 -!//% = &0.%1'% (-!.//% , conj (-!.//%!, (+2) (*+1 , 2) +1: length (-!.//% ) −1) ) ) ;
4 - =real ( i f f t (-!//% ) ) ;

C.2.4 wavevector

The following function computes the normalized wavevectors k× h0, where k is the
vector of wavevectors associated to the FFT of $, and h0 is the mean of $.

1 function 34 = 5'&0&01%2. ( , - )
2 46 = mean(- ) ;
3 30 = 2* pi / ) ;
4 )3 = 30 / #"+0( ( ) ;
5 34 = 46*)3 * [ 0 : c e i l ( ( #"+0( ( ) +1) / 2 ) −1] ' ;
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C.2.5 f

The following function computes the dispersion function f (kh0,Ha, β
h0

) in the disper-
sion relation, where kh0 is the normalized wavevector, Ha the Hamaker number and
β/h0 the normalized Navier slip length. The formula is written in order to avoid
infinite numbers ( ! ) when "#→∞.

f

(

kh0,Ha,
β

h0

)

=
kh0 tanhkh0 −

(
kh0

coshkh0

)2
+2 β

h0
(kh0 tanhkh0)2

2+2
(

kh0
coshkh0

)2
+4 β

h0

(
kh0

coshkh0

)2
+4 β

h0
kh0 tanhkh0

(

1+ Ha

k2h2
0

)

(C.1)

1 function  !" = # ($% , %&'&$! , (")* )
2  !" = ($%*tanh ($% ) − ($% . / cosh ($% ) ) .^2 + 2*(")**($%*tanh ($% ) ) ) . / ( 2 + 2 * (←-

$% . / cosh ($% ) ) .^2) + 4*(")**($% . / cosh ($% ) ) .^2 + 4*(")**$%*tanh ($% ) ) ←-

. * (1+%&'&$! . / $% .^2 ) ;
3  !" ( 1 ) = 0 ;

C.3 Simulating a 2D flow

As an example, we will simulate the viscous reflow of a square profile.

1 %% I n i t i a l i z i n g
2 c lear a l l
3 c lose a l l
4 c l c
5 t i c
6

7 %% I n i t i a l geometry
8 +, = 10-−9;
9 . = 1-−6;

10 , = ( 0 : +, : . ) ' ;
11 %/ = 100-−9;
12 %0)1)2 = %/ * (1 + 20-−9*sign ( cos (2* pi *, / . ) ) ) ;
13

14 %% Flow simulation
15

16 % Capil lary number desired
17 3& = 1;
18

19 % Fourier transform
20 %0)1)20##2 =  ##2 (%0)1)2 ) ;
21 % Wavevector
22 $%/ = 4&5!5!627 (, , %0)1)2 ) ;
23 % Kernel for a Newtonian reflow
24 8! = exp(−# ($%/ , 0 , 0 ) / 3& ) ;
25 % Reflow
26 %0#"0##2 = %0)1)20##2 . *8! ;
27 % Back in real space
28 %0#" = ) ##2 ( %0#"0##2 , 19'!" (, ) ) ;
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29

30 %% Result display
31

32 f igure ( 1 )
33 plot ( , !"#$#% )
34 hold &$

35 plot ( , !"!' , ' k ' )
36 hold &((

37

38 toc

C.4 Simulating a 3D flow

As an example, we will simulate the viscous reflow of a pyramid.

1 c lear a l l
2 c lose a l l
3 c l c
4 t i c
5

6 % Capil lary number of the flow ( progress of the flow )
7 )* = 10;
8

9 % Geometry z
10 % ht { /\
11 % { ____ / \____
12 % hr { |−b−|
13 % { ____________
14 % |−−−− L −−−−|
15

16 + = 9,−6;
17 !% = 14,−6;
18 - = 9,−6;
19 !. = 20,−6;
20 / = 40,−9;
21  = (−+ / 2 : / : + / 2 ) ' ;
22 0 = $123' ( ) ;
23

24 [4 , 5 ] = meshgrid ( ,  ) ;
25 6'&78 = !%+!. − 2*!% / - * abs (4 ) ;
26 6'&79 = !%+!. − 2*!% / - * abs (5 ) ;
27 : = min(6'&78 , 6'&79 ) ;
28 : = max(!.*&$36 (0 , 0 ) ,: ) ;
29

30 % Wavectors array
31 ;! = <*=3=3>%&. ( , mean(mean(: ) ) )
32 [?4 , ?5 ] = meshgrid (;! , ;! ) ;
33 ?0 = sqrt (?4 .^2+?5 .^2 ) ; % Norm
34

35 % 2D FFT transform
36 :"((% = f f t 2 (: ) ;
37
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38 % 2D dispersion fac tor
39  !" = #$ / 2 . * ( tanh (#$ )−#$ . / cosh (#$ ) .^2) . / ( 1 + #$ . ^ 2 . / cosh (#$ ) .^2) ;
40  !" ( 1 ,1 ) = 0 ;
41  !"%&% = min(  !" , '( ')*(+% ( f l ipud ( !" ) , [1 0 ] ) ) ;
42  !"%&% = min(  !"%&% , '( ')*(+% ( rot90 ( !" , 2 ) , [1 1 ] ) ) ;
43  !"%&% = min(  !"%&% , '( ')*(+% ( f l i p l r ( !" ) , [0 1 ] ) ) ;
44

45 % Simulation of the flow
46 ,-++%-+" = ,-++% . * exp(− !"%&% / ./ ) ;
47 ,-+" = abs ( i f f t 2 (,-++%-+" ) ) ;
48

49 toc

C.5 Fitting rheological properties

C.5.1 Viscoelastic single mode Maxwell model

The following function fits the rhological paramters  ! (capillary number) and "#

(Deborah number) to experimental profiles. $%&'(&) is the initial profile, $%*'(*) is
the profile after annealing.

1 function [./ , 0! ] = !1% /'%-'/2(""/ 3-%/4-)5&&%* (16 , ,6 , 17 , ,7 )
2 % Spectral analysis
3 ,6- ++% = abs ( ++% (,6 ) ) ;
4 *6 = mean(,6 ) ;
5 8*6 = 9/:!:!'%& (16 , *6 ) ;
6 ,7- ++% = abs ( ++% (,7 ) ) ;
7 *7 = mean(,7 ) ;
8 8*7 = 9/:!:!'%& (17 , *7 ) ;
9 ,7- ++%-%2 = interp1 (8*7 , ,7- ++% , 8*6 , ' l inear ' ,0 ) ;

10 % Smooth the spectra
11 +/'-'&;: = conv (,7- ++%-%2 , [ 0 . 0 5 0.1 0.15 0.4 0.15 0.1 0 .05 ] , ' same ' ) . / ←-

conv (,6- ++% , [ 0 . 0 5 0.1 0.15 0.4 0.15 0.1 0 .05 ] , ' same ' ) ;
12 <()2! )(&; = <()2! )(&;- !"/%(&; (8*6 , 0 , 0) ;
13

14 % Fit
15  !) = +5(;)!/ '* (= (:!1 )'&)% (:!1 , <()2! )(&; , +/'-'&;: ) , [ 1 , 1 ] ) ;
16 ./ =  !) ( 1 ) ;
17 0! =  !) ( 2 ) ;
18

19 function ' = '&)% (:!1 , <()2! )(&; , +/'-'&;: )
20 % Progression of the flow
21 f i l t e r = exp(−<()2! )(&; . / ( :!1 ( 1 ) +<()2! )(&;*:!1 ( 2 ) ) ) ;
22 ' = sum( ( f i l t e r − +/'-'&;: ) .^2) ;
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C.5.2 Cost function for a reptation model

See section A.3.2 on page 183.

1 function  =  !"# ($%& , '(")%*"(!+ , ,- . !+$ )
2 /- = $%& ( 1 ) ;
3 0% = $%& ( 2 ) ;
4

5 % Progress of flow
6 )1( = zeros ( s i ze ('(")%*"(!+ ) ) ;
7 23 = 4*0%^2;
8

9 % Integration
10 f o r + = 2:+45%6 ('(")%*"(!+ )
11 % precursor
12 )1() = )1( (+−1) ;
13 i f +==2
14 2 = 23 ;
15 e lse
16 2 = 6/)1()^2*(0% / ( 1 / )1()−0% )−sqrt (0%*)1() ) *atanh ( sqrt (0%*)1()←-

) ) ) ;
17 end
18 )1( (+ ) = )1() + ('(")%*"(!+ (+ )−'(")%*"(!+ (+−1) ) / 2 / /- ;
19 end
20

21 f i l t e r = exp(−)1( ) ;
22  = sum( ( f i l t e r − ,- . !+$ ) .^2) ;



Appendix D

Numerical computation of the
disjoining pressure

D.1 Optical data

For the computation of the disjoining pressure in Lifshitz theory, we used optical data
from our own database regarding silicon, silicon oxide and metals. For polystyrene,
we use data from Parsegian (2005). In this model, Lorentz resonant-damped oscilla-
tors are used. The dielectric function takes the form:

ǫ(ω)= 1+
∑

j

f jω
2
0 j

ω2 −ω2
0 j
− iγ jω

, (D.1)

where f j, ω0 j, and γ j are fitting parameters, reported in table D.1.

D.2 Disjoining pressure formula

We consider a planar film of thickness h (medium #3, dielectric function ǫ3), sand-
wiched between two semi-infinte media (#1 and #2, dielectric function ǫ1 and ǫ2). The
disjoining pressure Π, in this film is Mulet (2003, Chap. 6):

Table D.1 – Dielectric data. Polystyrene data from Parsegian (2005),
anti-sticking data from ellipsometry measurements.

f jω
2
0 j

ω0 j (eV) γ j (eV)

Polystyrene
14.6 6.35 0.65
96.9 14.0 5.0
44.4 11.0 3.5
136.9 20.1 11.5

Anti-sticking
117.8 12.2 2.5
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Π(h)=
∞∑

n=1

kBTξ3
n

πc3

ˆ ∞

1
κγ3

(

Rs +Rp
)

dκ (D.2)

with kB the Boltzmann constant, T the temperature, ξn the Matsubara frequency of
order n (Eq. 7.28 on page 130), c the speed of light, Rs and Rp given by:

Rs,p =
r

s,p
32 r

s,p
31 exp

(

−2hκ0γ3
)

1− r
s,p
32 r

s,p
31 exp

(

−2hκ0γ3
) , (D.3)

where

κ0 =
ξn

c
, (D.4)

and
rs

i j =
γi −γ j

γi +γ j

, r
p

i j
=

ǫ jγi −ǫiγ j

ǫ jγi +ǫiγ j

, (D.5)

are the Fresnel equations for polarization s and p, functions of the normalized wavevec-
tors

γi =
√

ǫi −1+κ2. (D.6)

Note that the term for n = 0 is zero.

D.3 Matlab/Octave scripts

D.3.1 Dielectric functions from spectroscopic data

Example of file (data for silicon):

 !" ! #

$%$$&''' '%$$(()' '%'*'+''

,'%*-'''' '%$$&-'' '%'*,*''

,'%-,'''' '%$$$-&' '%'*,$''

,,%'('''' ,%''*.'' '%'*))''

,,%-$'''' ,%''(''' '%''*.('

,,%$*'''' ,%',)*'' '%''*-+'

,*%,+'''' ,%'*.,'' '%''*+''

,*%.''''' ,%')*''' '%'',-.'

,*%+''''' ,%').''' '%'','*'

%%%

1 function  !"#$%& = '#( !"#$%&()*%+()#$ ('# , )#$ !,-. )
2 % converts a lambda−n−k f i l e into epsi lon at Matsubara imaginary frequencies
3 % Speed of l i g h t [m/ s ]
4 / = 299792458;
5 %
6 0 = load ()#$ !,-. ) ;
7 [1%+ , + , & ] = 2&#32 (2* pi */ . / 0 ( : , 1 ) *10^9) ;
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8  !"#$%& = %& " ( s i ze ('# ) ) ;
9 f o r #=1: length ('# )

10 ( !" = (%) . * 2 . ** () , 2 ) . ** () , 3 ) . / ( (%) .^2 + '# (# ) .^2) ;
11  !"#$%& (# ) = 1 + 2/ pi * trapz ((%) , ( !" ) ;
12 end

D.3.2 Green function for a simple set of 3 media

1 function + = '#,-.  &,/#&0 .123 ",4%5$2#&,6527 ('# ,  !"#$%&8 ,  !"#$%&/ ,  !"#$%&9 ,←-

7 )
2 % Normalized Casimir stress as found in Joulain et al .
3 % Uses an adaptive Gauss−Kronrod quadrature
4

5 % Integrate with adaptive Gauss−Kronrod quadrature
6 + = 6527-: (; (: )#&0 -. (: , '# ,  !"#$%&8 ,  !"#$%&/ ,  !"#$%&9 , 7 ) ,1 ,10^5) ;
7 function +: = #&0 -. (<:2!!2 , '# ,  !"#$%&8 ,  !"#$%&/ ,  !"#$%&9 , 7 )
8 % Function to integrate
9 % Speed of l i g h t [m/ s ]

10 3 = 299792458;
11 := = '# / 3 ;
12 % Normalized gammas
13 -2))28 = sqrt (  !"#$%&8 −1 + <:2!!2 .^2 ) ;
14 -2))29 = sqrt (  !"#$%&9 −1 + <:2!!2 .^2 ) ;
15 -2))2/ = sqrt (  !"#$%&/ −1 + <:2!!2 .^2 ) ;
16 % ref l ex ion fac tors
17 .98" = (-2))29 − -2))28 ) . / ( -2))29 + -2))28 ) ;
18 .98! = ( !"#$%&8 . * -2))29 −  !"#$%&9 . * -2))28 ) . . .
19 . / (  !"#$%&8 . * -2))29 +  !"#$%&9 . * -2))28 ) ;
20 .9/" = (-2))29 − -2))2/ ) . / ( -2))29 + -2))2/ ) ;
21 .9/! = ( !"#$%&/ . * -2))29 −  !"#$%&9 . * -2))2/ ) . . .
22 . / (  !"#$%&/ . * -2))29 +  !"#$%&9 . * -2))2/ ) ;
23 % Symetrized Fabry−Perot ' s fac tors
24 >" = .9/" . *.98" . * exp(−2*7*:= . * -2))29 ) . / ( 1 − .98" . *.9/" . * exp(−2*7*:=←-

. * -2))29 ) ) ;
25 >! = .9/! . *.98! . * exp(−2*7*:= . * -2))29 ) . / ( 1 − .98! . *.9/! . * exp(−2*7*:=←-

. * -2))29 ) ) ;
26 % Final resul t
27 +: = <:2!!2 . * -2))29 . * ( >" + >! ) ;

D.3.3 Green function for 5 media

1 function + = '#,-.  &,?#&0 .123 ",4%5$2#&,6527 ('# ,  !"#$%&8 ,  !"#$%&/ ,  !"#$%&9 ,←-

 !"#$%&@ ,  !"#$%&? ,  !"#$%&A , 7 ,  , 1 , - )
2 % Normalized Casimir stress as found in Joulain et al .
3 % Uses an adaptive Gauss−Kronrod quadrature
4 % Case with
5 % 1
6 % −−z=d+f
7 % 5
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8 % −−z=d
9 % 3 Thin fi lm

10 % −−z=0
11 % 6
12 % −−z=−g
13 % 4
14 % −−z=−g−e
15 % 2
16

17  = !"#$%& (' (& )()*+%, (& , -( , +./(01)2 , +./(01)3 , +./(01)4 , +./(01)5 , +./(01)6 ,←-

+./(01)7 , $ , + , 8 , % ) ,1 ,10^5) ;
18 function  & = ()*+%, (9&#..# , -( , +./(01)2 , +./(01)3 , +./(01)4 , +./(01)5 ,←-

+./(01)6 , +./(01)7 , $ , + , 8 , % )
19 % Speed of l i g h t [m/ s ]
20 : = 299792458;
21 &; = -( / : ;
22 % Normalized gammas
23 %#<<#2 = sqrt ( +./(01)2 −1 + 9&#..# .^2 ) ;
24 %#<<#6 = sqrt ( +./(01)6 −1 + 9&#..# .^2 ) ;
25 %#<<#4 = sqrt ( +./(01)4 −1 + 9&#..# .^2 ) ;
26 %#<<#3 = sqrt ( +./(01)3 −1 + 9&#..# .^2 ) ;
27 %#<<#5 = sqrt ( +./(01)5 −1 + 9&#..# .^2 ) ;
28 %#<<#7 = sqrt ( +./(01)7 −1 + 9&#..# .^2 ) ;
29 % l o c a l re f l ex ion fac tors
30 ,47/ = (%#<<#4 − %#<<#7 ) . / ( %#<<#4 + %#<<#7 ) ;
31 ,47. = (+./(01)7*%#<<#4 − +./(01)4*%#<<#7 ) . . .
32 . / ( +./(01)7 . * %#<<#4 + +./(01)4 . * %#<<#7 ) ;
33 ,75/ = (%#<<#7 − %#<<#5 ) . / ( %#<<#7 + %#<<#5 ) ;
34 ,75. = (+./(01)5*%#<<#7 − +./(01)7*%#<<#5 ) . . .
35 . / ( +./(01)5 . * %#<<#7 + +./(01)7 . * %#<<#5 ) ;
36 ,53/ = (%#<<#5 − %#<<#3 ) . / ( %#<<#5 + %#<<#3 ) ;
37 ,53. = (+./(01)3*%#<<#5 − +./(01)5*%#<<#3 ) . . .
38 . / ( +./(01)3 . * %#<<#5 + +./(01)5 . * %#<<#3 ) ;
39 ,46/ = (%#<<#4 − %#<<#6 ) . / ( %#<<#4 + %#<<#6 ) ;
40 ,46. = (+./(01)6 . * %#<<#4 − +./(01)4 . * %#<<#6 ) . . .
41 . / ( +./(01)6 . * %#<<#4 + +./(01)4 . * %#<<#6 ) ;
42 ,62/ = (%#<<#6 − %#<<#2 ) . / ( %#<<#6 + %#<<#2 ) ;
43 ,62. = (+./(01)2 . * %#<<#6 − +./(01)6 . * %#<<#2 ) . . .
44 . / ( +./(01)2 . * %#<<#6 + +./(01)6 . * %#<<#2 ) ;
45 % equivalent re f l ex i on fac tors
46 ,73/ = (,75/ + ,53/ . * exp(−2*%#<<#5 . *&;*+ ) ) . / ( 1 + ,75/ . *,53/ . * exp(−2*←-

%#<<#5 . *&;*+ ) ) ;
47 ,73. = (,75. + ,53. . * exp(−2*%#<<#5 . *&;*+ ) ) . / ( 1 + ,75. . *,53. . * exp(−2*←-

%#<<#5 . *&;*+ ) ) ;
48 ,43/ = (,47/ + ,73/ . * exp(−2*%#<<#5 . *&;*% ) ) . / ( 1 + ,47/ . *,73/ . * exp(−2*←-

%#<<#5 . *&;*% ) ) ;
49 ,43. = (,47. + ,73. . * exp(−2*%#<<#5 . *&;*% ) ) . / ( 1 + ,47. . *,73. . * exp(−2*←-

%#<<#5 . *&;*% ) ) ;
50 ,42/ = (,46/ + ,62/ . * exp(−2*%#<<#6 . *&;*8 ) ) . / ( 1 + ,46/ . *,62/ . * exp(−2*←-

%#<<#6 . *&;*8 ) ) ;
51 ,42. = (,46. + ,62. . * exp(−2*%#<<#6 . *&;*8 ) ) . / ( 1 + ,46. . *,62. . * exp(−2*←-

%#<<#6 . *&;*8 ) ) ;
52 % Symetrized Fabry−Perot ' s fac tors
53 =/ = ,43/ . *,42/ . * exp(−2*$*&; . * %#<<#4 ) . / ( 1 − ,42/ . *,43/ . * exp(−2*$*&;←-

. * %#<<#4 ) ) ;
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54  ! = "#$! . *"#%! . * exp(−2*&*'( . * )*++*# ) . / ( 1 − "#%! . *"#$! . * exp(−2*&*'(←-

. * )*++*# ) ) ;
55 % f i n a l resul t
56 ,' = -'*!!* . * )*++*# . * (  . +  ! ) ;

D.3.4 Main function

1 c lear a l l
2 c lose a l l
3 c l c
4 t i c
5 %% Fundamental constants
6 % −−−−−−−−−−−−−−−−−−−−−
7 %
8 % Speed of l i g h t [m/ s ]
9 / = 299792458;

10 % Normalized Planck ' s constant [m2. kg / s ]
11 01*" = 1.0545716282−34;
12 % Boltzmann constant [m2. kg / s2 /K]
13 '3 = 1.38065042−23;
14 % Temperature [K]
15 4 = 453;
16

17 %% External functions
18 % −−−−−−−−−−−−−−−−−−
19 % Media :
20 % 1
21 % −−z=d+f
22 % 5
23 % −−z=d
24 % 3 Thin fi lm −−−> Computation of Hamaker Constant
25 % −−z=0
26 % 6
27 % −−z=−g
28 % 4
29 % −−z=−g−e
30 % 2
31 %
32 % D i e l e c t r i c function for medium 1 ( top medium, =ones ( s ize ( omega ) ) f or ←-

vaccuum )
33 5!.% = 6 (78 ) 7895!.8:;<9=";+9=8:5 (78 , ' . . / indices / Si_Palik_Esrf . txt ' ) ;
34 % D i e l e c t r i c function for medium 5 ( coating )
35 5!.> = 6 (78 ) 7895!.8:;<9=";+9=8:5 (78 , ' . . / indices / SiO2 ( amorphe ) _palik . txt ' ) ;
36 % Thickness of medium 5
37 = = 8.22−9;
38 % D i e l e c t r i c function for medium 3 ( thin fi lm )
39 5!.# = 6 (78 ) 7895!.8:;<9;./8::*?;" (78 , 'PS ' ) ;
40 % D i e l e c t r i c function for medium 6 ( coating )
41 5!.@ = 6 (78 ) 7895!.8:;<9=";+9=8:5 (78 , ' . . / indices / Au_palik . txt ' ) ;
42 % Thickness of the coating
43 ) = 22−9;
44 % D i e l e c t r i c function for medium 4 ( coating )
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45  !"# = $ (%& ) %&' !"&()*'+,)-'+&( (%& , ' . . / indices / SiO2 ( amorphe ) _palik . txt ' ) ;
46 % Thickness of the coating
47  = 1.6.−9;
48 % D i e l e c t r i c function for medium 2 ( substrate )
49  !"/ = $ (%& ) %&' !"&()*'+,)-'+&( (%& , ' . . / indices / Si_Palik_Esrf . txt ' ) ;
50

51 %% Computation parameters
52 % −−−−−−−−−−−−−−−−−−−−−−
53 %
54 % Number of Matsubara frequencies
55 *'%& = 2*10^3;
56 % Vector of x is
57 0%& = 2* pi *12*3 / 456, * ( 0 : *'%&−1) ' ;
58 %=Thickness of the f i lm=
59 % number of computations for d
60 *'7 = 40;
61 % minimal distance from the inter faces
62 7'-&* = 1.−9;
63 7'-6% = 1.−6;
64 07 = (7'-&* *(7'-6% / 7'-&* ) . ^ ( ( 0 : *'7−1) ' / ( *'7−1) ) ) ;
65

66 % Di f f e r ent ia l parameter
67 77 = 1.−11;
68

69 %% Epsilon matrices
70  !"&()*8 =  !"8 (0%& ) ;
71  !"&()*9 =  !"9 (0%& ) ;
72  !"&()*: =  !": (0%& ) ;
73  !"&()*; =  !"; (0%& ) ;
74  !"&()*# =  !"# (0%& ) ;
75  !"&()*/ =  !"/ (0%& ) ;
76 f igure ( 1 )
77 semilogx (0%& ,  !"&()*8 , ' b . ' )
78 hold )*

79 semilogx (0%& ,  !"&()*9 , 'm. ' )
80 hold )*

81 semilogx (0%& ,  !"&()*: , ' r . ' )
82 hold )*

83 semilogx (0%& ,  !"&()*; , ' b . ' )
84 hold )*

85 semilogx (0%& ,  !"&()*# , ' k . ' )
86 hold )*

87 semilogx (0%& ,  !"&()*/ , ' g . ' )
88 hold )++

89

90 %% Declaration of outputs
91 3<)=(6&* = zeros (*'7 , *'%& ) ;
92 3<)=(6&*8 = zeros (*'7 , *'%& ) ;
93 3<)=(6&*>*? = zeros (*'7 , 1 ) ;
94 3<)=(6&*>*?8 = zeros (*'7 , 1 ) ;
95

96 .* ,@AB6C? = 12*3 . *0%& . ^ 3 / ( pi *C^3) ;
97

98 %% Main loop
99 % −−−−−−−−−
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100 %
101 f o r  = 1:!"#
102 disp ( )
103 f o r ! = 1:!"$%
104 & = $%"'())!"*%!+)(,-.)/"0123-%!"42-# (5$% (! ) , . . .
105 )6/%31!7 (! ) ,)6/%31!8 (! ) ,)6/%31!9 (! ) ,)6/%31!: (! ) ,)6/%31!* (! ) ,←-

)6/%31!; (! ) ,5# ( ) ,) , , , ' ) ;
106 <=123-%! ( , ! ) = & . * >!)('?@-.+ (! ) ;
107 &7 = $%"'())!"*%!+)(,-.)/"0123-%!"42-# (5$% (! ) , . . .
108 )6/%31!7 (! ) ,)6/%31!8 (! ) ,)6/%31!9 (! ) ,)6/%31!: (! ) ,)6/%31!* (! ) ,←-

)6/%31!; (! ) ,5# ( )+## , ) , , , ' ) ;
109 <=123-%!7 ( , ! ) = &7 . * >!)('?@-.+ (! ) ;
110 end
111 <=123-%!A!+ ( ) = sum(<=123-%! ( , : ) ) − 1/2* <=123-%! ( , 1 ) ;
112 <=123-%!A!+7 ( ) = sum(<=123-%!7 ( , : ) ) − 1/2* <=123-%!7 ( , 1 ) ;
113 end
114

115 % Casimir stress as a function of d
116 f igure ( 2 )
117 l og log (5#*1>B , <=123-%!A!+ )
118

119 % Casimir stress d is t r ibut ion
120 f igure ( 3 )
121 surface (5$% /1 .5193>7* , 5# , log10 ( abs (<=123-%! ) +1>−9) , ' LineStyle ' , ' none ' )
122 xlabel ( { ' Xi (eV) ' } ) ;
123 ylabel ( { ' d (m) ' } ) ;
124

125 % Hamaker constant
126 C = −<=123-%!A!+*6* pi . *5# . ^3 ;
127 % Di f f e r ent i a l Hamaker constant
128 D%D = (<=123-%!A!+7 − <=123-%!A!+ ) / ## ;
129 CE = D%D . *5# .^4*2* pi ;
130

131 f igure ( 5 )
132 semilogx (5# , C , ' LineWidth ' ,2 , ' Color ' , [ 0 . 8 0.8 0 . 8 ] , . . .
133 ' DisplayName ' , ' Direct ' ) ;
134 hold 1!

135 semilogx (5# , CE , ' Marker ' , ' . ' , ' LineWidth ' , 1 , . . .
136 ' Color ' ,[0.0784313725490196 0.168627450980392 0.549019607843137] , . . .
137 ' DisplayName ' , ' D i f f e ren t ia l ' ) ;
138 hold 1,,

139 % Create xlabel
140 xlabel ( { ' d (m) ' } ) ;
141 % Create ylabel
142 ylabel ( { 'A ( J ) ' } ) ;
143 % Create t i t l e
144 t i t l e ( { 'Hamaker c o e f f i c i e n t ' } ) ;
145

146 toc

References

See chapter 7.
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anti-sticking, 138

Biot number, 26
body force, 24
Bond number, 29
Brinkman number, 25

capillary
bridge, 145
length, 29, 138

capillary wave theory, 141
Cauchy number, 24
Cauchy’s residue theorem, 128
Clausius-Mossotti law, 123
continuity equation, 23
continuum

fluid dynamics, 20
hypothesis, 17

degree of polymerization, 34
density, 24, 36
dewetting, 137

characteristic length/mode, 142
characteristic time, 142
confined, 144
spinodal, 30, 139, 140
supported, 140

disjoining pressure, 30

end-to-end distance, 34

Fluctuation-dissipation theorem, 125
fluid, 18

particle, 19
Fox-Flory correction, 36
free energy, 138

glass transition temperature, 35

Green’s tensor, 125

Hamaker
constant, 30, 138
number, 30, 142

heat
capacity, 25
characteristic time of heat transfer,

26
conduction, 25
convection, 25
diffusion, 26
equation, 25

imaginary frequency, see also Matsubara
frequencies

instability
Plateau-Rayleigh, 143
Saffman-Taylor, 145
spinodal, 142

interfacial energy, see surface tension
intermolecular forces, 18
isothermal hypothesis, 27

Knudsen number, 20
Kramers-Kronig relations, 128

Lattice Boltzmann Method, 19
Lorentz force, 124

Marangoni effect, 27
Matsubara frequencies, 128
Maxwell

model, 38
Maxwell stress tensor, 124
mean free path, 20
mean time between collisions, 20
molecular
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aspect of matter, 19
weight, 33

Molecular Dynamics, 18
monodisperse, 34

nanoimprint, 17
Navier-Stokes equation, 24
Newtonian fluid, 24, 38
nucleation

heterogeneous, 141
hole, 139
thermal, 140

Péclet number, 25
partial cavity filling, 159
phonon, 20
plateau modulus, 43
polydispersity index, 34
polymer, 33
polystyrene, 33
pressure

field, 24

radius of gyration, 35
random walk, 34
reptation (theory of), 41
residual layer

dewetting, 143
reversal imprint, 159
Reynolds number, 24
rheology, 37

shear
modulus, 37

spreading coefficient, 137
Stokes equation, see also momentum equa-

tion
time dependent, 24

surface
roughness, 28
tension, 37, 137

temperature, 25
terminal relaxation time, 43
thermal conductivity, 25

van der Waals forces, 30
velocity

field, 23
viscoelasticity, 40
viscosity, 24, 38

complex, 38
thickness-dependent, 45
zero-shear, 40

viscous
dissipation, 25
stress tensor, 24, 37

Vogel-Fulcher model, 41

wetting, 139
WLF model, 42

extended, 46


