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Abstract

Keywords: Aerial imagery, LiDAR, 3D building modeling, Quality assessment,
RMSE, Surface indices, Volume indices

Digital photogrammetry and LiDAR can be considered as two of the most impor-
tant technologies that were developed recently in geomatics. Methods and tools for
automatic or semi-automatic generation of 3D city models are developing rapidly,
but the quality assessment of these models and spatial data are rarely addressed.
Study on the evaluation of data/products from photogrammetric or LiDAR are
often confined by visual evaluation of the results or even a simple difference cal-
culations. A comprehensive evaluation in 3D is not trivial. Our goal is to provide
a standard multidimensional approach for assessing the quality of 3D models of
buildings in 1D, 2D and 3D.
The approach that is proposed focuses on the quality indices frequently encoun-
tered in the literature. These indices are similar to those encountered in the evalu-
ation of classifications (errors of omission, commission) and pass through the space
discretization in pixels (2D) or voxels (3D) for measuring the degree of superposi-
tion of 2D or 3D objects. The originality of this approach is built on the fact that
the models used as input are not only limited to raster format, but also extended
to vector format. It seems obvious that models defined in vector format are more
faithful to reality than raster format. However, the confrontation of two vector
models is more difficult, especially when determining the volume corresponding
to the intersection of two models. Experiments in this study were focused on the
evaluation of the quality of 3D models buildings in the city of Strasbourg, created
from photogrammetric data, LiDAR data, or simultaneous combination of these
two data sources.
For 1D assessment, homologous points of two buildings to be compared are ana-
lyzed. Two methods are applied. The first one is done by computing Root Mean
Square Errors (RMSE) based on the deviations between both models (reference
and test), in X, Y and Z directions. Second method is performed by applying the
French legal text (arrêté sur les classes de précision) that is based on the instruc-
tions published in the Official Journal from October 30, 2003. This text concerns
the accuracy classes applicable to categories of survey work.
The 2D evaluation of the geometry of the 3D model is based on the comparison of
surfaces in two building models (reference and test) and through the calculation
of a set of quality indices. These indices involve Boolean operations such as union
and intersection of plane surfaces.
For 3D assessment, building models are considered as one object. Quality of the
buildings is assessed by calculation of volumetric quality indices. The quality in-
dices in 3D are deduced from the 2D quality indices and depend on the degree of
superposition of the test volume and the reference volume. These ind-ices take into
account the volume of the intersection as well as the union volume of two vector
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buildings. The state of the art confirms difficulties in determining the volume of
intersection of two 3D models in vector format. The algorithm that is proposed for
volume of intersection is based on the extraction of vertices of the 3D intersection
shape.
Digital aerial images are available from UltraCam-X, Rollei and Zeiss LMK sen-
sors. LiDAR datasets of the same site are also available. However, a reference
model considered a priori more accurate is needed for each building model to
be evaluated. The reference building models are the models reconstructed from
UltraCam-X. 14 Ground Control Points (GCPs) were measured by GNSS systems
in the test site.
In this thesis, three semi-automatic methods for 3D building reconstruction have
been mentioned and carried out on the same test site. These methods are used
to reconstruct 75 samples of 3D models from aerial images, 26 samples of 3D
models from LiDAR and aerial images, and 8 samples of 3D models from LiDAR
datasets. We assess the 3D vector building models reconstructed previously, by ap-
plying the proposed assessment methods in raster and vector format. The models
reconstructed from aerial images give better results than the models constructed
from other datasets. The models reconstructed from combination of LiDAR and
aerial images give high RMSE in Z-direction. Worse results are obtained for mod-
els reconstructed with LiDAR datasets only.
The statistics of the (2D and 3D) quality indices calculated for assessing the build-
ing models are calculated. These results show that the 3D building models ext-
racted from stereo-pairs are close from each other. Also, the models reconstructed
from LiDAR or combination of LiDAR and aerial images are less accurate than
the models reconstructed from aerial images alone. However, the mean values
of quality indices cannot be considered alone. In order to evaluate the building
reconstruction quality in detail and to analyze the values of the quality indices,
one should check the quality indices for each building separately. Moreover, the
quality indices are affected by the building size. Small buildings generally lead to
bad results.
In conclusion, three semi-automatic methods for 3D building reconstruction have
been mentioned and carried out. The quality evaluation of 3D building models has
been achieved by applying the proposed quality assessment approach in raster and
vector format. These approaches consider the accuracy of the 3D building models
based on the comparison of points in 1D, of surfaces in 2D, and of volumes in 3D.
1D assessment gives an overall idea about the reliability of the reconstructed mod-
els. 2D assessment checks the superimposition of faces, despite its dependency on
the size of the polygons to be compared. 3D assessment compares the buildings
in 3D through the comparison of their volumes of intersection. 3D assessment is
taking into account the direction of errors (shifts in X, Y, and Z or rotations).
This approach is suitable for 3D building vector models created from aerial im-
ages and/or LiDAR datasets. Future researches will focus on the extension of this
approach to complex building models.



Résumé

Mots-clés: Imagerie aérienne, LiDAR, modèles 3D de bâtiments, évaluation de
la qualité, Erreur Moyenne Quadratique, indices de qualité

Les systèmes de photogrammétrie numérique et de balayage laser aéroportés,
étroitement liés aux évolutions technologiques, sont essentiels pour l’acquisition
et l’extraction de l’information géographique en 3D. Les méthodes et les ou-
tils de génération automatique ou semi-automatique de modèles 3D urbains se
développent rapidement, mais l’évaluation de la qualité de ces modèles et des
données spatiales sur lesquelles ils s’appuient n’est que rarement abordée. Les
travaux relatifs à l’évaluation des données/produits photogrammétriques ou laser-
grammétriques se cantonnent souvent à une évaluation visuelle des résultats voire
à un simple calcul d’écarts, une évaluation complète en 3D n’étant pas triviale.
Notre objectif est de proposer une approche multidimensionnelle standard pour
évaluer la qualité des modèles 3D de bâtiments en 1D, 2D et 3D. Elle suppose
toutefois de disposer, pour chaque modèle de bâtiment à évaluer, de son modèle
de référence, considéré comme étant a priori plus précis. Deux méthods sont
présentées pour l’évaluation 1D. La première se base sur l’analyse de l’erreur
moyenne quadratique en X, Y et Z calculée à partir des écarts entre les deux
modèles (référence et test). La deuxième solution s’appuie sur les instructions
parues au Journal Officiel du 30 octobre 2003 et exigent le respect de classes
de précisions. L’approche que nous proposons se penche sur le calcul d’indices
de qualité fréquemment rencontrés dans la littérature. Ces indices rejoignent ceux
rencontrés dans l’évaluation des classifications (erreurs d’omission, de commission)
et passent par la discrétisation de l’espace en pixels (2D) ou en voxels (3D) pour
mesurer le degré de superposition d’objets 2D ou 3D. L’originalité de notre ap-
proche réside dans le fait que les modèles employés en entrée ne se limitent pas au
mode raster, mais s’étendent au mode vecteur. Il semble évident que les modèles
définis en mode vecteur s’avèrent plus fidèles à la réalité qu’en mode raster. En
revanche, la confrontation de deux modèles vectoriels est plus délicate, notamment
lorsqu’il s’agit de calculer le vo-lume correspondant à l’intersection des deux.
L’évaluation 2D de la géométrie du modèle 3D est basée sur la comparaison des
plans des deux modèles de bâtiments (référence et test) et passe par le calcul d’un
ensemble d’indices de qualité. Ces indices font intervenir des opérations booléennes
telles que l’union et l’intersection de surfaces de plans homologues.
Pour l’évaluation 3D, chaque modèle 3D de bâtiment est considéré comme un objet
à part entière. Les indices de qualité, déduits de ceux définis en 2D, se rapportent
dans ce cas au degré de superposition du volume testé et du volume de référence.
Ils prennent en compte le volume de l’intersection ainsi que le volume de l’union
des deux bâtiments.
La zone d’étude qui a permis d’expérimenter notre approche est située sur le
territoire de la ville de Strasbourg. Nous disposons sur cette zone d’images
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aériennes numériques à haute résolution spatiale acquises avec des caméras de
type UltraCam-X (Vexel), Rollei (moyen format) et par une chambre de prise de
vue métrique Zeiss LMK. Des données LiDAR à un seul écho couvrent le même
secteur géographique. Ces données n’ont pas été acquises la même année, mais
permettent toutefois d’être combinées, étant donné que nos objets d’étude sont
des bâtiments 3D présents dans tous les jeux de données. Les modèles 3D des
bâtiments de référence ont été reconstruits par voie photogrammétrique à partir
des images UltraCam-X géoréférencées préalablement à l’aide de 14 points d’appui
mesurés avec un système GNSS.
Les modèles évalués ont été reconstruits en considérant trois approches semi-
automatiques de reconstruction de bâtiments en 3D : l’une s’appuyant exclu-
sivement sur des images aériennes, l’autre exclusivement sur des données Li-
DAR et la troisième sur la combinaison des deux. Nous disposons actuelle-
ment de 75 échantillons de modèles 3D obtenus partir des images aériennes,
26 échantillons de modèles 3D issus à la fois des données LiDAR et des im-
ages aériennes, et 8 échantillons de modèles 3D issus des données LiDAR seules.
L’approche d’évaluation multidimensionnelle décrite précédemment, aussi bien
pour des modèles vectoriels que rasters, a été appliquée à cet important échantillon
de modèles 3D de bâtiments.
Les statistiques sur les indices de qualité 2D et 3D calculés montrent que les
modèles 3D de bâtiments extraits à partir des couples d’images stéréoscopiques
sont cohérents. Les modèles reconstruits à partir des données LiDAR ou de la
combinaison des données LiDAR et des images aériennes sont moins exacts. Cette
imprécision est à rapporter essentiellement à la qualité des données brutes trans-
mises. Cependant, afin d’évaluer la qualité de la reconstruction du bâtiment en
détail et d’analyser les défauts liés à sa géométrie, il faut interpréter les indices de
qualité pour chaque bâtiment séparément. Par ailleurs, les valeurs des indices sont
également affectées par la taille du bâtiment. Ainsi, les indices de qualité calculés
pour des petits bâtiments conduisent généralement à de moins bons résultats.
En conclusion, cette thèse a abouti à l’élaboration d’une approche d’évaluation
multidimensionnelle de bâtiments en 3D, reconstruits à partir de trois méthodes
semi-automatiques. L’approche a été validée pour des modèles vectoriels et rasters.
Notre approche considère l’exactitude des modèles 3D de bâtiments calculée sur
la base de comparaisons de points en 1D, de surfaces en 2D, et de volumes en 3D.
L’évaluation 1D donne une idée globale de la fiabilité des modèles reconstruits en
fournissant une mesure métrique de proximité des points homologues. L’évaluation
2D qualifie le degré de superposition des faces, en dépit de sa sensibilité à la taille
des polygones. Une évaluation 2D satisfaisante ne valide toutefois pas encore le
modèle reconstruit, puisque deux plans parfaitement superposés dans le système
d’axes parallèles au plan sont susceptibles d’être décalés en profondeur. Ce défaut
est révélé dans l’étape de l’évaluation 3D. L’évaluation 3D analyse les bâtiments en
tant qu’objets à part entière en estimant le degré de superposition des volumes à
tester et des volumes de référence. Les futures recherches porteront sur l’extension
de cette approche à la construction de modèles 3D plus complexes de bâtiments.
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Notations

Ar Reference area
At Tested area
ADS Airborne digital sensor
AIC Aerial Industrial Camera
ALS Airborne laser scanner
AT Aerial triangulation
C Security coefficient
CCD Charge-coupled device
CMOS Complementary metal oxide semiconductor
DEM Digital elevation model
DHM Digital height model
DMC Digital mapping camera
DN Digital number
DTM Digital terrain model
EO Exterior orientation
FOV Field of view
GCP Ground control points
GNSS Global Navigation Satellite System
GSD Ground sample distance
IMU Inertial measurement units
INS Inertial navigation systems
JAS Jena airborne scanner
LiDAR Light Detection And Ranging
LPS Leica photogrammetric suite
MD Mean Distance
MP Megapixels
NIR Near Infrared
RMSE Root mean square error
SD Standard deviation
SR Surface of reference
ST Surface of test
RGB Red Green Blue
ρd Detection rate
ρq Quality rate
ρb Branch factor
ρm Miss factor
ρf False alarm rate
ρqw Weighted quality rate
TIN Triangulated irregular network
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UAVs Unmanned Aerial Vehicles
V ρd Volumetric detection rate
V ρq Volumetric quality rate
V ρb Volumetric branch factor
V ρm Volumetric miss factor
V ρf Volumetric false alarm rate
V ρqw Volumetric weighted quality rate
V R Reference volume
V T tested volume
Xc, Yc, Zc Coordinates of centroid
Xref , Yref , Zref Coordinates of reference point
Xtest, Ytest, Ztest Coordinates of test point
[xx] Precision class
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Chapter 1

Introduction

1.1 Motivation

Digital photogrammetry and LiDAR can be considered as two of the most impor-

tant technologies that were developed during the last years in the field of geomatics.

They are essential for quantitative information extraction such as lengths, areas

and volumes. The two technologies, LIDAR and photogrammetry, were treated

by researchers as complementary to each other [Baltsavias, 1999]. Photogramme-

try and LiDAR datasets are used since many years for the 3D reconstruction of

objects such as buildings. Digital airborne cameras are now penetrating the fields

of photogrammetry and remote sensing. It is possible to obtain with this new

generation of airborne cameras different sets of geometric and spectral data with

high geometric and radiometric resolutions.

The 3D city modeling is a real challenge that depends on the data acquisition

and its succeeding processing. This application is not especially new but need

accurate datasets and methods in order to provide good results. The digital pho-

togrammetry development and the use of high resolution digital camera allows to

get accurate models. Airborne Laser Scanners (ALS) have the great potential to

enable with high speed acquisition of 3D data especially in urban areas. Even the

data acquisition seems easy, the subsequent processing steps (filtering, segmenta-

tion, reconstruction) are more or less complex. Development of fully automatic

1
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algorithms providing reliable 3D building models remains an essential challenge,

due to the complexity of urban scenes [Akca et al., 2010]. The complementarity

of photogrammetry and LiDAR datasets are utilized to perform a primitive-based

3D building reconstruction [Zhang et al., 2011]. But, what about the quality of

these reconstructed models? The assessment of the results is a very important

step in the work flow.

In recent years, many authors have given special attention to accuracy assessments

of the 3D building models. Quality assessment is critical and important for 3D

building models production for several reasons. Firstly, it may give important in-

formation about deficiencies of an approach and may take place to help in focusing

a further research activity. Secondly, quality evaluation is needed in order to com-

pare the results of different approaches and to convince the user. Moreover, the

approach can be used in an operational workflow [Schuster and Weidner, 2003].

Furthermore, quality values enable the contractor to check his measurements and

the customer to check the quality of the delivered data with respect to specifica-

tions of contracts. While the general emphasis is to develop methods and tools

for automatic, or semi-automatic generation of city models, the concept of quality

evaluation has also become very important. No standard solutions are available, al-

though city models are being produced worldwide at a fast rate [Akca et al., 2010].

All accuracy assessments include three fundamental steps [Congalton and Kass, 2009]:

- Firstly, designing the accuracy assessment sample. Sampling design plays a

critical role in accuracy assessment;

- Secondly, collecting data for each sample;

- Finally, analyzing the results.

The computation of quality assessment is based on the comparison of these mea-

surements to more accurate datasets which are considered as reference datasets.

Because high quality reference data are difficult to obtain, reference data can be

considered as follows [Meidow and Schuster, 2005]:

1- If the reference data is error-free, absolute quality assessments can be stated.

2- If the reference data is accurate, the quality measures for the test datasets are

an approximation for the qualities.
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3- If both datasets have the same accuracy, the inner accuracy (precision) can be

deduced leading to quality measures from repeated measurements.

Digital mapping camera evolution is one of the important topics that was in-

troduced at the 53rd Photogrammetric Week, held in Stuttgart from 5th to 9th

September 2011. Some of the reported works in this topic are introduced next.

[Cramer, 2011] presented an important question ”Geometry Perfect − Radiome-

try Unknown?”. The importance of standards and calibrations of cameras sensors

were introduced. Also, the development of Unmanned Aerial Vehicles (UAV) was

shown. [Wagner, 2011a] described the Leica ADS80 sensor and the high resolution

mode using RMSE. Also, commercial Leica XPro software has been introduced. It

uses an innovative approach to aerial triangulation and time of processing is much

reduced. [Wagner, 2011b] has introduced the Leica RCD30 medium format cam-

era. The camera provides 60 Megapixels (MP ) image format and it was designed

to acquire multispectral RGB and NIR imagery. [Neumann, 2011] presented de-

tails of the new Z/I’s DMC II. It has 250 MP image format at 5.6 µm pixel

size. The camera is manufactured by DALSA company which is specialized in the

design and manufacture of electronic imaging components. [Gruber et al., 2011]

presented the new version of the UltraCam Eagle with 260 MP at 5.2 µm. It has

4 lens cones for panchromatic images and 4 lens for multispectral images. Bing-

Maps contributions to urban modelling, comprising 3D modelling from aerial and

terrestrial photos were represented. The potential of unmanned aerial vehicles for

mapping has been presented by [Eisenbeiss, 2011], especially helicopter systems.

The advantages as well as the limitations of UAV have been described.

Empirical tests to evaluate different kinds of airborne datasets have been achieved

by a recent project of DGPF (German Society for Photogrammetry, Remote Sens-

ing and Geoinformation). This project was carried out in Vaihingen/Enz test

field nearby Stuttgart, Germany. This project aimed at an independent and com-

prehensive evaluation on the performance of digital airborne cameras, as well as

providing a standard empirical dataset for the next years [Jacobsen et al., 2010]

and [Cramer, 2010]. The main object of DGPF tests was not to compare the

performances of sensors but to evaluate the sensors specific strengths. The test

frame was based on cameras systems DMC, UltraCam-x, quarto digital CAM,

line scanning systems ADS40 and JAS-150 in a comparison with analogue cam-

eras (RMK-Top15). The absolute accuracy RMSE in horizontal component was

about 0.25 pixel related to GSD and about 0.5 pixel for the vertical component.
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In this case the accuracy of reference point based on static GPS observations was

about 1cm for horizontal and 2cm for vertical coordinates.

The previous tests for airborne datasets are achieved using RMSE calculations.

2D and 3D models reconstructed from these kinds of airborne datasets should be

assessed.

Several methods will be presented to evaluate photogrammetry and LiDAR datasets.

Assessment is generally considered at the end of a work and frequently limited to

a visual check. Visual evaluation is used in [Lesparre and Gorte, 2012] for 3D city

models produced with LiDAR data. A multi-dimensional assessment approach has

been developed in this work to evaluate 3D building models.

In 1D assessment, calculation of Root Mean Square Errors (RMSE) for analyzing

the precision of the 3D building is an interesting process. It shows the shifts

between reference and tested models in X, Y and Z directions [Jamet et al., 1995]

and [Cramer, 2010]. [Grussenmeyer et al., 1994] proposed statistical techniques in

order to calculate horizontal and vertical RMSE of restitution for different kind

of objects (point and surface). Usually the corner points of buildings are used

for RMSE computation. Furthermore, in [Zhan et al., 2005], Euclidean distance

between the centres of the mass of an extracted object and the corresponding

object is used to measure positional accuracy. The computation of RMSE based on

homologous nodes, the correspondences form reference to test points are identified

by finding the nearest neighbours of each pair of points. This method is intuitive

and simple, but it assumes that every closest homologous point should correspond

to each other. This assumption can easily fail when the two point sets are not close.

The computation of RMSE between centres of gravity of homologous surfaces

that compose the tested and respectively the reference building is suggested in

[Zeng et al., 2013].

In 2D assessment, because many users are working with 2D features such as roofs

and facades, 2D assessment approaches must be considered. Several methods are

investigated by computing 2D quality indices. Numerous approaches were in-

troduced in the literature. These approaches are applied to models in raster and

vector format. The studies address to evaluate 2D surfaces and 3D building models

which have been produced with aerial imagery data [McGlone and Shufelt, 1994];

[Ragia, 2000]. The evaluation has been achieved by computing specific quality

parameters. These parameters are determined by a topological and geometrical
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analysis. Quality evaluation of 3D building models reconstructed from photogram-

metric data are discussed in [Schuster and Weidner, 2003].

In 3D assessment, considering a building as one object, 3D comparisons seem to

be more appropriate than 2D comparisons. An approach for quantitative quality

evaluation of 3D building models is presented. This approach consists of an evalu-

ation of the building detection such as completeness. This approach is an extend of

the work of [Ragia, 2000]. Evaluation of 3D building models from LiDAR datasets

is presented in [Rutzinger et al., 2009] and [Akca et al., 2010].

A multi-criteria evaluation system for 2D building extraction from remotely sensed

data has been proposed by [Zeng et al., 2013]. Three components have been con-

sidered in the evaluation system. Firstly, the traditional classifications accuracy

such as completeness and correctness have been included. The resemblance be-

tween reference and extracted buildings has been described. Finally, the positional

accuracy is measured by distances computation at feature points such as building’s

centroid.

Related works have been done by the Photogrammetry and Geomatics Group at

INSA-Strasbourg. In the context of assessing the quality of planes detection in a

3D building reconstruction process based on LIDAR data, several solutions have

been suggested [Tarsha-Kurdi et al., 2008]. For evaluating the quality of geometric

facade models reconstructed from TLS data, [Landes et al., 2012a] suggested the

use of quality indices and RMSE calculations.

1.2 Research problems

The entities ”shape” and ”position” can be represented more accurately in vector

than in raster format. The conversion between both data structures is sometimes

necessary. The 1D, 2D or 3D assessment approach allows highlighting the source

of deviations in the tested buildings. Based on literature review, problems are

highlighted regarding to the assessment approaches of 3D building models. This

research is designed to find solutions for the following limitations.

1- In 1D assessment, quality measures such as RMSE cause problems applied to

complex buildings structures especially in point matching.
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2- In 2D assessment, the problem is not fully solved by researchers. In principle,

the quality indices in 2D do not take into account the threshold in third dimension.

3- In 3D assessment, the 3D quality indices are computed only from raster data

structure. Based on the comparison of the test and reference datasets, intersection

or union sets have to be determined. However in the case of volume determinations

these calculations and the corresponding data structures are rather complex and

therefore extensive in terms of implementation [Meidow and Schuster, 2005]. But,

it seems obvious that models defined in vector mode are more faithful to reality

than raster mode as shown in figure 1.1. The confrontation of two vector models

is more difficult, especially when determining the volume corresponding to the

intersection of the two. So, our challenge is to introduce the first experiment of

an algorithm to compute the intersection of area and volume in vector format.

Figure 1.1: Part of a 3D building as point clouds (above) and in raster format
(below) [Hinks et al., 2013]
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1.3 Research objective

With photogrammetric and LiDAR datasets, 3D models of objects can be obtained

using automatic or semi-automatic methods. Methods and tools for automatic or

semi-automatic generation of 3D city models are developing rapidly, but the qual-

ity assessment of these models and of spatial data are rarely addressed. Based

on the limitations mentioned previously, the objectives of this research are to find

solutions in order to assess the accuracy of models reconstructed from digital air-

borne sensors and/or LiDAR datasets. This work will describe and analyze the

assessment approach developed for evaluating these models. The evaluation of

3D building models reconstructed from photogrammetric or LiDAR data is often

confined by visual evaluation or by simple calculation such as difference measure-

ments. Evaluation of 3D building models as one object is not trivial. Our goal is

to provide a multi-dimensional approach for assessing the quality of 3D models of

buildings in 1D, 2D and 3D. The challenge of this work is built on the fact that

the models used as input are not only limited to raster data structure, but are

also extended to the vector data structure. The geometric computations in vector

data structure are more complex, especially when determining the volume corre-

sponding to the intersection of two models. The idea behind the multi-dimensional

approach is to consider:

- 1D (point) accuracy assessment (figure 1.2-a).

- 2D (surface) accuracy assessment (figure 1.2-b).

- 3D (volume) accuracy assessment (figure 1.2-c).
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(a) 1D accuracy assessment (b) 2D accuracy assessment

(c) 3D accuracy assessment

Figure 1.2: Reference (red colour) and tested (blue colour) objects.

1.4 Outline of the thesis

The material of the thesis is presented in six chapters, the main outline of each

can be given as follows:

Chapter 2: Short review about data acquisition

The 3D city modeling is a real challenge that depends on the data acquisition and

its succeeding processing. The quality of the reconstructed building models mainly

depend on the quality of the acquired datasets. The digital airborne sensors devel-

opment and the use of high resolution digital cameras allow to get accurate models.

Developments of these digital sensors allow to improve 3D building modeling. In

this thesis, we use the data from airborne sensors. That’s why this chapter will

give an overview of digital airborne sensor systems, including different types of

camera systems (in particular those used in our study). This chapter introduces

the sensors technology (CCD and CMOS), the concept of digital color imaging,
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and the data acquisition from different types of digital cameras (frame and line).

It also provides a review of image processing steps in photogrammetry. Dense

point clouds of reliable points extracted from digital images is presented. Also, a

review of some reported works for reconstruction of building models is introduced.

Chapter 3: State of the art of accuracy assessment

This chapter contains a literature study over different methods used to assess the

3D data reconstructed from airborne digital sensors. Qualitative and quantitative

assessments are introduced. General information about error and uncertainty def-

initions and error sources in photogrammetry is given.

Chapter 4: Developed approach for accuracy assessment

The multi-dimensional approach for accuracy assessment is introduced. The meth-

ods to calculate areas and volumes in raster and vector format are presented. The

implemented method and the achievement of the study are described based on the

comparison of some objects to accurate reference measurements.

Chapter 5: Application of the approach on multiple datasets

In this chapter the study area and datasets used in the study are presented. After

describing the study area, the datasets, reference and test data are introduced.

Three methods for building model reconstruction are applied on real data. This

chapter, mainly focuses on the results of accuracy evaluation. It is divided in

three sections, (i) the results of the 3D data reconstructed from airborne imagery

data, (ii) the results of the 3D data reconstructed from LiDAR data, and (iii) the

results of the 3D data reconstructed from the combination of airborne imagery

and LiDAR data. Finally, an accuracy evaluation of point clouds reconstructed

from airborne images is carried out.

Chapter 6: Conclusion and perspectives

Finally, the conclusion of the study is completed by some ideas about future stud-

ies.





Chapter 2

Short review about data

acquisition

This chapter will give an overview of digital airborne sensor systems, including

different types of camera systems. Currently, datasets from airborne digital imag-

ing sensors are available on the market. Advantages of digital cameras are widely

understood. In digital technology, there is no photo lab, no scanning, and no

noise from film grain and no cost of duplication [Leberl et al., 2002]. There have

been fundamental changes recently in sensors, platforms and applications. Digital

airborne cameras are now penetrating the fields of photogrammetry and remote

sensing. Due to the last results in research and development in this field as for

instance in detector technology, computing power, memory capacity position and

orientation measurement, it is now possible to generate with this new generation of

airborne cameras different sets of geometric and spectral data with high geometric

and radiometric resolutions.

The benefits of digital cameras over film cameras include better radiometric per-

formance and elimination of film processing and scanning costs. Availability of

image content in digital format enables a highly automated workflow, creating

the possibility of generating photogrammetric products such as orthophotos and

mosaics with little delay between capture and end product. This might allow, for

example, rapid response after a disaster [Lemmens, 2004].

The accuracy of the final 3D model is in close relation with the orientation pro-

cess of the images used to reconstruct this model. It is demonstrated that image

11
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orientation is achievable with satisfactory results in terms of accuracy of the re-

sulting 3D models. This chapter highlights a state-of-the-art review on the data

acquisition and image processing aspects of digital photogrammetric images. An

important contribution to this part is a characterization of the photogrammetric

image acquisition and image product generation systems. Data acquisition in pho-

togrammetry is concerned with obtaining reliable information about the properties

of surfaces and objects. This is accomplished without physical contact with the

objects [Schenk, 2005].

Airborne sensors are the most important photogrammetric instruments. Aerial

cameras can produce sharp images in rapid succession under the adverse conditions

of a moving aircraft. Any error, distortion, or compromise in the clarity of the

image will result in mapping and positioning errors.

In digital photogrammetry, the illumination in the image plane of the camera is not

recorded photographically, but by electronic methods. Digital photogrammetry

has become a mature technology. The use of analytical plotters has been reduced

since digital photogrammetric workstations are more frequently used in modern

photogrammetric production workflow. Such workstations are user-friendly and

their handling is no longer restricted to specialists only. Digital photogrammetry

benefits from a high degree of automation.

A digital image consists of two dimensional matrix elements. Each element is

called a pixel [Kraus, 1993]. The area of each element is related to the spatial

resolution of camera and the ability to identify the objects. Every pixel has a

Digital Number (DN) usually coded from 0 for black to 255 for white in a gray

scale (28 combinations). Also, 216 or 232 combinations exists. Colour images have

three matrices with the same range (image block with 3 layers). The CCD or

CMOS sensor in a digital camera are used for converting lights into electrons.

2.1 Sensors technology

There are several important advances in the two main semi-conductor technolo-

gies, Charge-Coupled Device (CCD) (see figure 2.1-a) and Complementary Metal

Oxide Semiconductor (CMOS) (see figure 2.1-b) that are used in airborne imag-

ing [Petrie and Walker, 2007]. Both solid state devices can convert light into
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electrons that can be easily measured, resulting in a radiometric intensity value

[McGlone, 2004].

(a) charge-coupled device(CCD) (b) complementary metal oxide semi-
conductor(CMOS)

Figure 2.1: CCD and CMOS technology [Petrie and Walker, 2007].

CCD is used in medium-format airborne imaging; a similar transformation has

also taken place in terms of the number of pixels that are now available within

the resulting image. In the case of large-format digital cameras, the majority of

these types use the CCD technology such as in the case of the Microsoft (Vexcel)

UltraCam and Intergraph DMC camera systems.

CMOS is produced in large quantities by the manufacturers and is a relatively

cheap technology. Early, CMOS chips are used for imaging purposes, but the

image quality was poor due to their inferior light sensitivity. Modern CMOS

sensors use a more specialized technology and light sensitivity of the sensors have

rapidly increased in recent years. CMOS devices are now found in airborne digital

cameras.

In case of colour imaging, (blue, red, or green) filters have been placed placed

above the image sensor.

2.2 Digital colour imaging

The quality of an image captured by colour imaging systems depends on sensor

spectral sensitivity. The sensitivity characteristic of sensors is critical to the suc-

cess of imaging applications. The ultimate image quality is judged subjectively by

human visual system.
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Digital technology now enables unparalleled functionality and flexibility in the

capture, processing, exchange, and output of colour images. In order to record

and process colour images, it is essential to understand the mechanisms of colour

vision and the capabilities and limitations of colour imaging devices.

One method of colour imaging sampling is based on applying a red, green, or blue

colour filter directly onto each pixel colour filter placed above the image sensor.

Electronic sensors generally are based on CCD or CMOS technology. Colour filters

allow only specific spectral radiance to pass through.

Other method of colour imaging is to use multiple cameras, each one with different

filters in order to collect the images in different spectral bands. After that, fusion

of the individual spectrally separated images to form the final composite colour

image will take place.

A Third method is the use of beamsplitters to separate the different spectral bands

within a single camera which are combined later to form the final color image. This

device is an optical device placed between the lens and the three separate image

planes.

Sensors technologies are used in airborne digital cameras. With every airborne

camera, the aim is to achieve the best signal to work with data that are possible

to extract the information they contain. In The next section, we consider the

digital airborne cameras and its various technical specifications. The principle of

that is the quality of obtained data is based on these technical specifications.

2.3 Airborne digital cameras

There are many kinds of cameras used in photogrammetry. These types are

changed in properties such as focal length, principal point, fiducial mark po-

sitions, and lens distortion. The first digital aerial cameras were presented to

the photogrammetric community at the 19th Congress of the ISPRS in Ams-

terdam from 16 to 23 July 2000. Z/I imaging (today Intergraph) and LH (to-

day Leica Geosystems) were the two companies responsible for this innovation.

Many companies now manufacture digital aerial cameras. The data from dig-

ital cameras are recorded in digital format. Two main formats are available
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[Petrie and Walker, 2007]. (i) area arrays from frame cameras; and (ii) linear ar-

rays from pushbroom scanners.

2.3.1 Airborne digital frame cameras

Frame format sensors are sequentially exposure of the entire image plane, figure

2.2. Airborne digital frame cameras can be further subdivided into three specific

categories. These categories may be classified as small format, medium format,

and large format imaging systems.The format is based on the size of the image

sensor.

Figure 2.2: Airborne frame images [Sandau, 2009].

- Small format cameras are equipped with sensors up to 16 Megapixels [Li et al., 2008].

Small format camera systems are becoming popular due to their low cost, reason-

able accuracy, and simple implementation [Abd-Elrahman et al., 2001]. In gen-

eral, these cameras are relatively compact, lightweight, and capable of operating

in largely automated modes. Small format of digital airborne sensors are currently

used in the market now. However, it can also be seen that the main emphasis has

been on the production of true color and false colour images for environmental

monitoring and agricultural applications over relatively small areas. In this kind

of sensors, very large numbers of images are needed at any project in comparing

with medium or large format. The small-format cameras produce colour images

using mosaic filters and Bayer interpolation.

- Medium format cameras are equipped with sensors between 16 and 50 Megapix-

els.

Medium format digital systems are used for a wide range. medium format cameras

can joint to with laser scanners systems. The largest providers of airborne medium
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format cameras are the Applanix DSS and the Rollei AIC camera [Grenzdörffer, 2008].

Trimble announced that it has entered into an agreement to acquire the assets of

RolleiMetric in 2008. The Aerial Industrial Camera (AIC) series from Rollei-

Metric is designed for aerial and industrial purposes. The Rollei AIC camera is

shown in figure 2.3. Table 2.1 shows the technical specifications of AIC series from

RolleiMetric.

Figure 2.3: Rollei AIC digital aerial camera [Lemmens, 2008].

Items Specifications
Image format 22 and 39 MP
Pixel size 9 µm for 22 MP and 6.8 µm for 39 MP
Date of Introduction 2004
Focal distance 35 mm to 150 mm
Shutter speed 1/1000 second
Image size 5440x4080 pixels for 22 MP
pixels 7228x5428 for 39 MP
Dimensions of the camera unit 11 x 14 x 15 cm
Weight 0.55 kg without lens

Table 2.1: Technical specifications of Rollei AIC sensor [Lemmens, 2008].

The lately announced medium-format cameras are the Leica RCD30. This type

of camera is presented in [Wagner, 2011b]. This camera is a medium camera that

acquires multispectral RGB and NIR airborne imagery by one camera head. The

Leica RCD30 Series consists of the camera system operator, camera head, and

camera controller as shown in figure 2.4. Table 2.2 shows the technical specifica-

tions of the Leica RCD30.
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Figure 2.4: The Leica RCD30 system operator (left), camera head (middle),
and camera controller (right) [Wagner, 2011b].

Items Specifications
Image format 8956 x 6708 pixels
Pixel size 6 µm
Date of Introduction 2011
Focal distance 50 mm and 80 mm
Dimensions of the camera head Height 147 mm

Diameter 128 mm
Weight of camera head 3.5 kg

Table 2.2: Technical specifications of Leica RCD30 system [Wagner, 2011b].

- Large format cameras are equipped with large sensors with more than 50 Megapix-

els.

UltraCam is the Microsoft/Vexcel lmaging camera family that was introduced in

May 2003 by the first digital aerial camera product UltraCam-D [Gruber et al., 2011].

Vexcel Imaging lunched UltraCam-X in 2006, UltraCam-Xp in 2008, and UltraCam-

XpWA in 2009. The UltraCam cameras are an example of large-format airborne

digital frame camera. As shown in figure 2.5, the UltraCam-X system consists of

the sensor unit, the storage unit and data capture system, the operators interface

panel and two removable data storage units [Gruber et al., 2008]. Table 2.3 shows

the technical specifications of UltaCam-X system.

By May, 2011 the 4th generation of UltraCam Eagle has been introduced, increas-

ing the original swath width from 11,500 pixels to beyond 20,000 [Gruber et al., 2011]

and [Leberl et al., 2012]. The overall weight of the on board equipment has been
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reduced to 75 kg for the UltraCam Eagle. Figure 2.6 shows the UltraCam Eagle

camera and table 2.4 presents the specifications of the camera.

Figure 2.5: UltraCam-X digital aerial camera system [Gruber et al., 2008].

Items Specifications
Date of Introduction 2006
Panchromatic image size 14,430 x 9,420 pixels
Panchromatic physical pixel size 7.2 µm
Physical format of the focal plane 104 mm x 68.4 mm
Panchromatic lens focal distance 100 mm
Lens aperture f= 1/5.6
Angle-of-view cross track 55 degree
Angle-of-view along track 37 degree
Colour image size 4810 x 3140 pixels
Colour lens system focal distance 33 mm
Colour lens aperture f = 1/4.0
Dimensions of the camera unit 45 x 45 x 60 cm
Weight ∼ 55 kg

Table 2.3: Technical specifications of UltraCam-X sensor [Lemmens, 2008].
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Figure 2.6: UltraCam Eagle aerial camera [Gruber et al., 2011].

Items Specifications
Date of Introduction 2011
Panchromatic image size 20,010 x 13,080 pixels
Panchromatic pixel size 5.2 µm
Physical format of the focal plane 104 mm x 68.4 mm
Panchromatic lens focal distance 80 mm
Lens aperture f= 1/5.6
Angle-of-view cross track 55 degree
Angle-of-view along track 37 degree
Colour image size 6,670 x 4,360 pixels
colour pixel size 5.2 µm
Colour lens system focal distance 27 mm
Colour lens aperture f = 1/4.0
Dimensions of the camera unit 43 x 43 x 67 cm
Weight ∼ 75 kg

Table 2.4: Specifications of UltraCam Eagle sensor [Gruber et al., 2011].



Chapter 2. State of the art for data acquisition 20

2.3.2 Airborne digital linear cameras

The first commercial line scanner Airborne Digital Sensor ADS40 was developed by

LH Systems jointly with DLR [Reulke et al., 2000]. Since their first introduction,

linear array CCD cameras have played an important role in the airborne optical

digital sensors market. This kind of camera is introducing a continuous strip image

of the terrain. The angular extent of the image across track is referred to as the

field of view (FOV) of the imagery (figure 2.7).

Figure 2.7: Airborne linear imaging system [Kheiri, 2006].

Figure 2.8: Three-line imaging system (TLS)[Sandau, 2009].
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The three-line scanners (figure 2.8) produce three overlapping strip images that

are acquired simultaneously using forward, nadir and backward pointing linear

arrays, from which 3D stereo models can be formed. Seamless high resolution

images can be obtained with three different viewing directions (forward, nadir,

backward) as shown in figure. As in photographs taken with a matrix camera at

60% forward overlap, 60% of the objects appear in three photographs, creation of

ortho-images from three-line imaging system is possible because these images are

line-projection and less distorted than conventional aerial images. Multi-spectrum

images can be acquired by replacing the filters and sensors as shown before.

The ADS camera has eight parallel sensor lines [Roeser et al., 2000], three panchro-

matic lines (forward, nadir, backward), three lines used as Red, Green and Blue

channels and two different NIR channels. Their technical specifications are de-

scribed in table 2.5. Several upgrades have been proposed by Leica since 2000, as

ADS 80 in 2011. The ADS80 pushbroom camera is shown in figure 2.9. These

investment allow to acquire data at higher speeds. The new sensor is smaller and

light weight [Wagner, 2011a]. 145 kg is the total system weight in aircraft, 39

cm in diameter, and 70 cm in hight. In addition, the spectral and radiometric

characteristics have been improved than before.

Items Specifications
Image size 12000 pixels/line
Pixel size 6.5 µm
Panchromatic lens focal distance 62.5 mm
Imaging rate (line/second) 830
Angle-of-view 64 degrees
Forward stereo angle 28 degrees
Backward stereo angle 14 degrees
FB stereo angle 42 degrees
F-number 4.0
Dimensions of the camera unit (cm) Diameter 39, Height 79
Weight 224 kg

Table 2.5: Technical specifications of ADS40 sensor [Lemmens, 2008].
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Figure 2.9: Airborne linear cameras: ADS80 [Wagner, 2011a].

2.4 Principles of image processing in photogram-

metry

The next step, after the images recording is the post processing. The aim of this

process is to establish the position and orientation of the camera at the instant of

exposure. Sensor modeling is the most important process in order to acquire three-

dimensional object space coordinates information from photogrammetric images.

In order to carry out sensor modeling, a number of GCPs (Ground Control Points)

or Global Navigation Satellite System (GNSS) and INS data are needed. Images

can be oriented using two different methods. Firstly, orientation of images using

ground control points that were surveyed on the ground using ordinary surveying

techniques. Secondly, orientation of images using GNSS and INS techniques in

which the position and the attitude of the camera are computed without ground

control.

As mentioned before, the coordinates of a digital image are defined in a pixel

coordinate system. A pixel coordinate system is usually a coordinate system with
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its origin in the upper-left corner of the image, the x-axis pointing to the right, the

y-axis pointing downward, and the units in pixels. The image coordinate system

is defined as 2D system on image plane. The origin of the system is the image

centre. The ground coordinate system is defined as the 3D coordinate system (X,

Y, Z). The image and Ground system are as shown in figure 2.10.

Figure 2.10: Image and ground coordinate systems [Konecny, 2003].

2.4.1 Image Orientation

Image orientation is needed for any task such as the generation of a digital terrain

model, the computation of orthophotos, and the acquisition of data for geographic

information systems. Image orientation relates to the determination of parame-

ters defining particular photogrammetric models for geometric primitives such as

points, lines, and areas from one coordinate system to another one. Image ori-

entation has always been a focus in photogrammetry, in view of its importance

[Heipke, 1996]. There is a geometric relationship between object on the ground

and on images at the time of capture for each photograph. The orientation is the
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procedure where the transformation parameters from one coordinate system to

a second coordinate system are determined. A 2D orientation includes the shift

and rotation of an object along a plane, and a 3D orientation includes the de-

termination of the position and attitude of an object in coordinate systems. In

photogrammetry, the orientations are described as interior and exterior orienta-

tions (relative and absolute orientations). The division to interior and exterior

orientation relates to the camera body, whereas the relative and absolute orien-

tations were introduced aside exterior orientations. Exterior Orientation (EO)

parameters are (X, Y, Z) and (omega, phi, kappa) of image during exposure.

In photogrammetry, EO parameters are derived from Aerial Triangulation (AT).

the computation of EO parameters also may need Ground Control Points (GCP)

which are distributed evenly. The method that EO parameters recorded directly

from GNSS/IMU is called Direct Georeferencing [Rizaldy and Firdaus, 2012].

In the case of digital photogrammetry, interior orientation is primarily used to

transform the image pixel coordinate system or other image coordinate measure-

ment system to the image space coordinate system [Karabork et al., 2004]. The

variables associated with the internal geometry of an digital the aerial camera are

Focal Length, Principal point, and Lens Distortion. The calibration certificates

of the camera manufacturers are including the location of the principal point, the

focal length and the radial symmetric lens distortion.

By exterior orientation, the collinearity condition is fulfilled all along to the object

space. After exterior orientation of at least two images, the coordinated in 3D of

object points and features can be computed. The exterior orientation describes

the location and orientation of the bundle of rays in the object coordinate system

with the 6 parameters: projection center coordinates (X0, Y0, Z0) and the rotations

around the 3 axis (ω, Φ and κ), see figure (2.11). These parameters can be obtained

by direct method or indirect method.

For each GCP measured, there are two corresponding image coordinates (x and y).

Thus, two collinearity equations can be formulated to represent the relationship

between the ground point and the corresponding image measurements.
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Figure 2.11: Elements of exterior orientation [Kraus, 1993].

xa − x0 = −f · m11(XA −X0) +m12(YA − Y0) +m13(ZA − Z0)

m31(XA −X0) +m32(YA − Y0) +m33(ZA − Z0)
(2.1)

ya − y0 = −f · m21(XA −X0) +m22(YA − Y0) +m23(ZA − Z0)

m31(XA −X0) +m32(YA − Y0) +m33(ZA − Z0)
(2.2)

2.4.2 Image matching

One of the practical applications of 3D reconstruction techniques is the automated

generation of Digital Terrain Models (DTMs) from airborne images. DTM gener-

ation by airborne radar images is presented in [Polidori, 1997]. Stereo match-

ing is used for finding corresponding pixels in a pair of images, which allows

3D reconstruction by triangulation, using the known orientation of the cameras

[Hirschmüller, 2011]. This process can be achieved by establishing correspondences

between sequences of 2D images of a scene taken at different times or displacements

or from different perspectives. An effective way to increase the performance of im-

age matching is to increase the number of stereoscopic measurements, which relies

on a large amount of data in order to achieve a high redundancy [Nonin, 2003].



Chapter 2. State of the art for data acquisition 26

Many techniques have been proposed in photogrammetry and, later on, in com-

puter vision. Image matching techniques for DEM computations are well known

and available in commercial software packages. The process of stereo vision com-

prises six steps [Chong et al., 2000]: image acquisition, camera modeling, feature

extraction, image matching, distance determination, and interpolation. Stereo

image matching techniques can be classified into three categories: area-based,

feature-based, and combination of them techniques. Area-based techniques match

intensity levels in the local neighbourhood of a pixel in one image with intensity lev-

els in a corresponding neighbourhood of a pixel in the other image. Feature-based

techniques use higher-level features extracted from the two images as matching

primitives rather than the low-intensity levels of area-based techniques.

In this study, dense point clouds were extracted from UltraCam-X and Rollei-

db44 digital stereo images over Strasbourg City using ERDAS Leica Photogram-

metric Suite (LPS version 2011) and eATE tools. In this work we followed

the classical photogrammetric workflow available in ERDAS LPS environment

[ERDAS Inc., 2011] for the processing of the stereo images and DTM generation

(Figure 2.12). The process of generation of DSM using LPS can be divided into the

following steps: digital image matching, ground point coordinate determination

and DTM construction.
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Figure 2.12: Process of DTM generation using LPS software

First step: Digital image matching

Three techniques are used for automatic image matching as shown before. These

categories are area based matching, feature based matching, and structural match-

ing techniques. Using area based method, digital numbers (DN) in small sub-

arrays from each image are numerically compared to perform the image match.

Cross correlation and least squares correlation techniques are well-known methods

for area-based matching. Features extraction is involved in the feature based and

it is therefore more complicated than the area based method. Feature points are

also commonly referred to as interest points. Poor contrast areas can be avoided

with feature-based matching. Structural matching technique is a combination of
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area based matching and feature based techniques. Typically, the correspond-

ing images are processed to highlight features. These identified features are then

matched by the area based method [Wolf and Dewitt, 2000].

A list of interest or feature points is identified in the image, using an interest

operator. These interest or feature points are described by the centre of a template

window, that having sufficient variation of grey level and good contrast. When

feature points have been successfully identified in the first image, LPS estimates

the approximate position on the neighbouring overlapping image in the block and

searches for the corresponding feature point in an rectangular window around that

approximate position. An interest point on the reference image may have more

than one possible match points on the conjugate images. In such case, the cross-

correlation coefficients are calculated for each correlation window among the search

window. Search window size, correlation window size, and correlation coefficient

limit are three parameters that influence the success and accuracy of the matching

results.

The first parameter that influences the point matching process is the search win-

dow size. The search window size is normally rectangular. X and Y refer to length

and width of rectangle respectively, figure 2.13. The search window size X reflects

the variation of ground elevations for that given window appearing on the surface

of the Earth. The larger the range of ground elevation, the larger the search win-

dow size X. The width of search window Y depends on the geometric accuracy of

the images to be matched. In case of aerial frame camera with accurate triangu-

lation, the width of 3 pixels is sufficient. For images with accurate triangulation

results, the epipolar line can be computed accurately enough. This is important

for image matching since the search space for corresponding feature points.

Figure 2.13: Correlation and search windows



Chapter 2. State of the art for data acquisition 29

Correlation window size is normally square shape, but it may be rectangular.

Since variations caused by ground relief are larger in the epipolar line direction

than across the epipolar line direction, size Y (across epipolar line) can be larger

than size X (along epipolar line) [ERDAS Inc., 2011]. Correlation window defines

the size of window that is used to compute the correlation coefficient between the

points on corresponding overlapping images. If the ground has large variation in

gray level, and colour intensity, a smaller window size can be used.

An important parameter which influences the point matching process is the corre-

lation coefficient limit. This correlation coefficient threshold is used to determine

whether two identified feature points are considered to be a possible match or

not. The correlation limit is compared to the correlation coefficient that has been

computed for two feature points appearing on two frames. These two points are

to be considered as a match, if the correlation coefficient value is larger than the

value of the correlation coefficient limit. A match point that having correlation

coefficient equal to one are considered as correct match whereas zero correlation

coefficient is considered as no match point.

Second step: Ground point coordinate determination

The second step of the DTM extraction process is the computation of the 3D

ground coordinates. After finding the possible match and computing the cross

correlation coefficient, different statistical measures are applied to determine the

final matching points. Row and column pixel coordinates of these final image

points are recorded. From these image points, the 3D coordinates of the ground

feature are computed using collinearity Equations. These 3D coordinates associ-

ated with a mass point are generated by using space forward intersection.These

computed points with known 3D coordinates are used as reference points for sur-

face generation.

Third step: DTM construction

Various types of DTM formats as output are possible in LPS such as raster DTM,

TIN, 3D shape file, ASCII etc. DTM mass points are used to generate DTM in

any format. ASCII file and 3D shape file are simple vector description of the DTM

mass points. A triangulated irregular network (TIN) is a digital representation of

the earth surface. TIN is created from DTM mass points by using the Delaunay

triangulation approach.
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2.5 3D building modeling

3D building models have become one of the most important and attractive prod-

ucts of photogrammetry and LiDAR datasets. The digital photogrammetry de-

velopments and the use of high resolution digital cameras allow to get accurate

models with the image matching technique. Digital images can be used for both

aerial and terrestrial images. Aerial images are used to extract the forms of build-

ings. An advantage of aerial images is that they are widely used in reconstruction

of 3D city models. In addition the textures of roofs are extracted from the same

image. We concentrate our work on aerial images. Airborne LiDAR has become

rather important for generating 3D building models. LiDAR systems collect X, Y,

Z data at predefined intervals. This three-dimensional process allows to use ap-

propriate filters, to separate the point clouds in each building [Prandi et al., 2008].

There are two approaches in acquiring LiDAR data. One is to acquire the LiDAR

datasets from an airborne vehicle. This is commonly used by creating digital sur-

face model (DSM), digital terrain model (DTM), and 3D models such as buildings

and trees. Another approach is to get the LiDAR datasets from the terrestrial

vehicle and extract the complicated geometries like the architectural components.

The complementarity of photogrammetry and LiDAR datasets are utilized to per-

form a primitive-based 3D building reconstruction [Zhang et al., 2011].

Three methods are mainly used for creating 3D building models, and researchers

are trying to develop more efficient and effective methods. These modeling meth-

ods are categorized into: automatic, semi-automatic, and manual. The manual

method is to create all geometries of building models one by one using software

packages such as CAD software that are commercially available. Manual recording

is slow, expensive and requires well trained operators. The objective of automated

data capture and interpretation is the rapid, reliable and accurate provision of

data for data analysis and subsequent decision making. As long as such a fully, or

at least close to fully, automatic process is not available, semi-automatic methods

have to be developed [Ruther et al., 2002].

Fully automatic feature extraction systems until now are limited to specific appli-

cations. Research on automatic city modelling is still a very active area. Auto-

matic city modelling aimed at polyhedral building objects, which mainly reflects

the respective roof shapes and building footprints. Numerous approaches of 3D
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building models from airborne and terrestrial images or laser scans were reviewed

in [Haala and Kada, 2010]. Terrestrial data is essential for building facades. The

visual appearance of building facades is improved using terrestrial images by suit-

able texturing methods. the developments of past and present trends in building

roof reconstruction from elevation data are presented in this research. Footprints

representation have been derived from DEM based on marked point processes

[Ortner et al., 2007]. Combining LiDAR data and aerial images is proposed in

[LI and WU, 2008] for building edge detection.

For the last decade, the automatic 3D reconstruction of building models has

become a topic of interest. Satellite images [Lafarge et al., 2006], aerial images

[Wang et al., 2008], LiDAR datasets [Tarsha-Kurdi et al., 2007]; [Verma et al., 2008];

[Rutzinger et al., 2009], and combination of aerial images with LiDAR datasets

[Zhang et al., 2011]; [Zhang et al., 2012] were used to efficiently obtain 3D infor-

mation on large scales. [Fruh and Zakhor, 2003] combined aerial images, airborne

and terrestrial laser scanner to build 3D city models. [Boulaassal et al., 2011]

combined airborne laser scanner, and terrestrial laser scanner to reconstruct 3D

vector models of buildings.

Research in detection and reconstruction of building model from aerial images has

been made by [Haala and Hahn, 1995]. With the aerial imagery, building roofs

can be reconstructed in 3D. Vertical walls may be added by projecting the roof

points down to an existing Digital Terrain Model (DTM), thereby generating a

complete building model. Other techniques for extracting the vertical walls are

using the 2D ground plane surface [Henricsson, 1997]. The role of color attributes

for automated 3D building reconstruction from multiple color aerial images is

addressed in [Henricsson, 1997].

The method used in our research is introduced in [Amat et al., 2010] and developed

by [Mohamed et al., 2013]. Since the images are oriented, 3D information for the

elements of the building, roof elements, walls, and footprints are necessary. The

aerial images give an advantage to cover wide area such as cities. In addition, roof

models are visible from aerial images. The aerial images processing are including

stereo model processing, digitizing roofs points and 3D points at the ground. Then,

the projection of these points onto the ground plane surface is done in order to

obtain footprints and thus to create the walls (no facade details). Therefore it is

not necessary to digitize the footprints of the buildings. Finally, planes of roofs,
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faces and footprints are reconstructed. The presented reconstruction is based on

the assumption that every solid object can be described by a decomposition of its

boundary and the walls are vertical.

Several approaches have been presented for building extraction from LiDAR datasets.

3D building reconstruction can be represented from original LiDAR point clouds

[Maas and Vosselman, 1999] or from a DSM interpolated from LiDAR point clouds.

Parameters of standard gable roof type building in [Maas and Vosselman, 1999]

were determined by invariant moment analysis. Using a technique based on in-

tersection of planes fitted into triangulated point clouds, models of more complex

building could be determined. Laplacian of Gaussian edge detector was used

by [Wang, 1998] to extract edges from DSM image derived from LiDAR data.

[Tarsha-Kurdi et al., 2007] presents the pertinence and advantages of combining

simultaneously the point clouds and the normalized DSM (nDSM) in the main

steps of a building reconstruction approach. Three main steps were followed at

the proposed approach. First step is to extract the off-terrain mask based on DSM.

Secondly, it combines the point clouds and the DSM for extracting a building mask

from the off-terrain. Finally, based on the previously extracted building mask, the

reconstruction of 3D flat roof models are carried out and analyzed.

Model-driven automatic method for reconstruction of roofs from LiDAR point

clouds is presented in [Henn et al., 2013]. Firstly, based on the segmentation

of footprints into rectangles, Then, roof models from a catalogue of standard

roof types provided by the international standard City-GML are derived. The

RANSAC procedure method is used plane detection.

The method used in our research for 3D building models reconstruction from

airborne images was introduced in [Verma et al., 2008] and has been developed

by [Mohamed et al., 2013]. This semi-automatic reconstruction process comprises

3 steps. Firstly, building point clouds are segmented to separate building roofs.

Then, topological graph is constructed and the roof-topology graph is utilized to

recognize shapes of buildings. Finally, building models are reconstructed with

predefined models.

The two technologies, LiDAR and photogrammetry, are treated by researchers
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as complementary to each other. The combination of both LiDAR and pho-

togrammetry datasets is believed to lead to more accurate and complete prod-

ucts [Baltsavias, 1999]. [Haala and Brenner, 1999] combined multi-spectral im-

agery and laser altimeter data for classification to extraction of buildings, trees

and grass-covered areas. Generating accurate surface models from both datasets

is presented in [Mcintosh and Krupnik, 2002]. [LI and WU, 2008] proposed an

adaptive method of building edge detection by combining LIDAR data and aerial

images. Three steps were followed. Firstly, the objects and ground are separated

by a filter based on morphological gradient. Secondly, the aerial image is smoothed

by Gaussian convolution, and the gradients of the image are calculated. Finally,

the edge buffer areas are created in image space by the edge points of the individual

roof patch. An automatic method of boundary extraction using LiDAR-imagery

fusion is suited to handle diverse building shapes in [Li et al., 2013]. Filtering,

building detection, wall point removal and roof patch detection were four steps to

detect the point clouds in each roof. Then, from airborne imagery, initial building

edges were extracted. Finally, the roof patch and initial edges are integrated by

mathematical morphology to form the final complete building boundaries.

The method used in our research for reconstruction 3D models from both datasets

is introduced in [Zhang et al., 2011], [Zhang et al., 2012], [Zhou et al., 2012] and

[Mohamed et al., 2013]. The researchers have developed a building modelling

methods using these two kinds of data. The proposed method comprises following

steps: (1) recognize primitives from LiDAR point clouds and roughly measured

parameters of primitives as initial values, and (2) select primitives features on the

imagery, and (3) optimize parameters of primitives by the constraints of LiDAR

point clouds and imagery, and (4) represent 3D building model by these optimized

primitives. It only uses the most straightforward features, i.e. planes of LiDAR

point clouds and points of airborne imagery.

2.6 Summary

Literature revealed that recent developments in digital photogrammetry have

greatly increased the applications in the field of photogrammetry. An overview

of the airborne digital imaging sensors and systems has been given to show the
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current state of the technology. In this chapter, the main mathematical princi-

ples used in photogrammetry which allows three-dimensional coordinates to be

extracted from stereo photographs have been reminded. Camera parameters and

ground control points are required for obtaining a photogrammetric solution. In

a bundle adjustment the collinearity conditions for all photographs in a block are

solved simultaneously using least-squares estimation. The quality of data, as well

as the development level of the technology impact the quality of the 3D building

models reconstructed from this data.

3D city models have been utilized in various fields such as 3D maps, urban plan-

ning, and 3D building modeling. As mentioned in this chapter, there are many

different methods of reconstructing 3D building models from photogrammetry

and LIDAR datasets. Researchers are trying to develop more efficient and effec-

tive methods. The modeling approaches are categorized into: automatic, semi-

automatic, and manual ones. However, the various methods may deliver 3D mod-

els of different levels of quality. At this stage, it is the time to investigate the

solutions provided in the literature for assessing the quality of the 3D building

models produced from the photogrammetric data presented in this chapter.



Chapter 3

State of the art of accuracy

assessment

In this part, a review of some reported works in the field of accuracy assessment

applied to the data of digital airborne photogrammetric and LiDAR sensors and

steps of processing will be given.

Because high quality reference datasets are difficult and expensive to obtain, the

sampling design issues encountered in accuracy assessments are similar to those

traditionally addressed by survey sampling methodology: how to choose samples

in a cost-effective and at the same time statistically rigorous manner? Once the

reference datasets are in hand, the next step in accuracy assessments is the anal-

ysis of tested data. The traditional analysis of accuracy assessment begins with

detection of errors in the raw data.

3.1 Accuracy, precision and error

This section covers description terms and basic concepts related with measurement

error, uncertainty, accuracy, and error sources studied in the literature. The terms

of error, uncertainty and accuracy are related concepts and sometimes they are

used interchangeably. However, these three terms have different meanings. Before

data can be used for surveying and mapping projects, for engineering design, or

for use in a geographic information system, they must be processed. One of the

35
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most important aspects is to take into account that exact measurements do not

contain errors.

Error is the difference between a measured value for any quantity and its true

value. Accuracy is the measure of the absolute nearness of a measured quantity to

its true value. Since the true value of a quantity can never be determined, accuracy

is always an unknown [Ghilani and Wolf, 2006]. Accuracy is an issue pertaining

to the quality of data and errors contained in a dataset. Precision refers to the

closeness with which repeated measurements made under similar conditions are

grouped together. High precision neither indicates high accuracy nor high accuracy

implies high precision. But high accuracy and high precision are both expensive to

obtain. Precision is affected only by the random errors in the measuring process

while accuracy is affected by the precision as well as the existence of unknown or

systematic errors. The difference between precision and accuracy is illustrated in

figure 3.1.

Figure 3.1: Simple representation for avoiding confusion between accuracy
and precision (celebrating200years.noaa.gov).

According to theory of errors, all measurements contain errors and the true values

of measurements are unknown. One can discover the existence of measurement

errors in different ways. If the same measurement is repeated several times, one

will normally get different results due to measurement errors. Another way to

discover errors is to check whether the obtained measurement results satisfy some

geometrical or physical relations which probably exist [Huaan, 2010].
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Absolute accuracy has the same meaning as accuracy; absolute accuracy is the

degree to which the position of a tested object conforms to its correct location

according to an accepted coordinate system. In many standards, it is expressed

as a circular error at the 90 or 95 percent probability level for horizontal accuracy

such as in terms of the United States National Map Accuracy Standards (NMAS)

[Congalton and Kass, 2009]. Relative accuracy is the statistical evaluation of all

random errors encountered in comparing one data set with respect to another data

set.

The error in a quantitative attribute can be described as the difference between

reality and our representation of reality, as explained in [Heuvelink, 1998] and

[Heuvelink, 2007]. It includes not only mistakes, or faults but also the statistical

concept of error i.e. variation. Precision and accuracy are ways of describing the

error that can exist in tested data. Once these notions explained, it is the time to

distinguish the the different types of errors.

3.2 Types of errors

In surveying, geodesy and photogrammetry, three types of errors are considered:

systematic errors, gross errors and random errors [Ghilani and Wolf, 2006].

Systematic errors are the errors which follow certain physical or mathematical

models. This kind of error might be constant or variable. If it is constant, it

might be corrected by finding out the numerical value of the correction. If it is

variable, the mathematical model describing it must be determined. In the first

case, it may be called constant error or bias. This kind of errors might occur in

photogrammetry during the interior orientation process. Interior orientation is

carried out with the aim of finding three elements: the calibrated focal length, the

location of the principal point and the parameters of lens distortion.

Gross errors are errors which do not follow certain physical or mathematical mod-

els. The source of these errors is the bad manipulation of the operator or the

malfunctioning of instruments. These errors are usually recognized by their high

residuals and can easily be detected. To avoid or reduce gross errors, one should

take care of all steps of photogrammetric processing. Gross errors may be called

blunders or outliers. Blunders can not be considered as a part of the sample from
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a statistical point of view. For this reason, great care should be taken to avoid

blunders while making observations. Often data or observations are checked on

the basis of a three sigma test (3 σ). In this test, the repeated observations of

the same variable are averaged, and any additional observation which is higher

than three standard deviations from the mean are rejected. A good example of

this kind of error in photogrammetry is the wrong identification of ground control

points and incorrect input of coordinates of points.

Random errors are the errors that remain once the systematic errors and blunders

have been eliminated. They remain despite the control of the user and are present

in all observations. Random errors result from unknown causes. Due to their

unpredictability, random errors cannot be eliminated from observations. They are

assumed to follow the normal or Gaussian distribution. The following statistical

characteristics of a Gaussian distribution are:

- Errors of smaller magnitude occur more often than errors of larger magnitude.

- Positive errors and negative errors with same magnitude occur roughly at equal

frequency.

- Very large errors are extremely unlikely.

- The probability for an error to occur in an interval of confidence can be estimated.

The quality of derived spatial data can be defined as a function of precision,

accuracy and reliability with respect to random, systematic and gross errors, re-

spectively [Cooper and Cross, 1988]. The accuracy of data is significant for most

users and is closely related to the eradication of systematic effects. But these

effects are more difficult to detect and eradicate than random and gross errors.

Calibrating instruments, for example, consumer-grade digital cameras can assist

in minimizing systematic effects. Accounting explicitly for all such effects can be

difficult because of high correlation between calibration parameters. These diffi-

culties justify seeking an alternative approach to minimize such systematic effects.

3.3 Accuracy assessment

Accuracy assessment of photogrammetry outputs is one of the most important

steps in evaluating imaging sensor data. Without an accuracy assessment, the
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output or results are of little value. Since the performance of data acquisition

methods has improved, the quality evaluation of building data in 3D city modeling

has become an important issue. Digital sensor camera systems produce 3D data

and some methods were presented in order to evaluate the output. The accuracy

of the derived data product mainly depends on the accuracy of a model which is

the result of image processing such as the camera calibration, determination of the

camera focal length, principal point shift and the distortion characteristics of the

camera. Furthermore, the method of obtaining the exterior orientation parameters

is essential. The accuracy assessment is usually performed in a qualitative and

a quantitative way. Processing with both statistical and visual methods is the

primary focus in [Podobnikar, 2009]. The methods addressed differ according to

whether they use one or multiple datasets and by their expected outputs. These

techniques may be used one after another. The study classified them into two

complexes (complex 1 and complex 2): techniques using numerical processing and

those using visualization (figure 3.2). As a final result, the datasets (DTM) are

evaluated by statistical or visual methods within the reports.

Figure 3.2: Procedure for quality assessment of a DTM [Podobnikar, 2009].

3.3.1 Qualitative assessment

Qualitative assessment of data relies on visual methods. Quality assessment can

be performed before and/or after processing of data. Before generating the 3D

data, one can estimate the expected quality that might result from the process

and what quality is required with regard to the respected standards. These two
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factors enable regular production and usability of the resulting models. A priori

assessments are based mostly on analyses of the datasets and methods for the 3D

production (such as DTM production), while a posteriori methods are based on

the final output as described in [Podobnikar, 2009].

A special test was conducted to assess the quality and the reliability of the gen-

erated DTM via an airborne laser scanning system by [Al-Bayari et al., 2002]. To

perform this test, an airborne laser scanner aligned with an airborne digital cam-

era was mounted on a Helicopter (TopEye AB system). The test was performed

in Italy and the flying height was about 200 meters. An overlap percentage of 50

% was maintained between two successive images. The digital camera is a Has-

selblad camera with 2Kx3K resolution. An INS/GNSS system is integrated and

used for position and orientation determination. A series of tests were done to

check the DTM quality. The main approach used is based on comparing it to the

DTM generated from the digital aerial photogrammetry with automatic and semi-

automatic matching approaches. Additional comparison is conducted between the

orthophoto created by stereoscopic model and the one created by the laser data

and digital images.

Ideally, an assessment of digital spatial data quality is a comparison of our digital

representation to the known feature on the ground. It includes qualitative as

well as quantitative measures. The achievable qualitative assessment as well as

quantitative assessment are important and should be completed by quantitative

assessment. Quantitative assessment of photogrammetric and LiDAR datasets will

presented next section.

3.3.2 Quantitative assessment

Quantitative assessment of data is more important for 3D data production and

it relies on statistical methods. Estimation and reporting of positional accuracy

for new digital photogrammetric datasets has become an important issue. Any

international standard requires a positional accuracy assessment. Quantitative

assessment involves more than checking the coordinate location of a feature (po-

sitional accuracy). It includes other characteristics such as shape, direction (or

angular measure), distance, area, and topology assessment.
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3.3.2.1 Quantitative assessment using RMSE computation

An analysis of some standard methodologies for positional accuracy assessment of

geographic databases is presented in [Loopez and Spain, 2007]. In this study, some

aspects are taken into account like RMSE or SD (Standard Deviation) statistical

formulation, the size of the control sample, the distribution and typology of the

control elements.

Positional accuracy is the accuracy of the location of a tested point with regard

to the reference one, i.e. its physical location on the ground. Positional accu-

racy based on National Map Accuracy Standards is measured in terms of RMSE

[Congalton and Kass, 2009]. The RMSE is computed as the sum of the square of

the differences (as will be shown in next chapter) between the position of the point

on one data layer and the position of the same point on another data layer (often

the ground or more accurate measurements) [Congalton, 2005].

In the case of point features, the distance between the tested and the reference

source provides a convenient basis for measures of accuracy. Suitable measures

include the root mean square distance, and percentiles of the distance distribu-

tion. The 90th and 95th percentiles are often used as the basis of map accuracy

standards and as measures of accuracy for measurement instruments such as the

GNSS. They are readily interpreted without substantial understanding of statis-

tics. If the distribution of observed positions around the true position is normal or

Gaussian, simple mathematical relationships exist between the percentiles of the

distance distribution and other parameters such as the root mean square distance

and the standard error [Goodchild and Hunter, 1997].

An approach to estimate the positional accuracy of a cadastral dataset derived

from uncontrolled and unrectified aerial photography is presented in [Siriba, 2009].

The positional error according to [Shi and Liu, 2000] is considered as one of the

most important issues in digital spatial datasets. In this study, Positional errors

are brought about by field measurements, digitization and other processing and

can be either systematic or random.

The accuracy of a map prepared by photogrammetric techniques depends on the

accuracy of the ground control points, the ability to identify them on the imagery,

and the scale of aerial photography. In digital photogrammetry context, math-

ematical models exist for estimating the expected standard error in horizontal
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accuracy assessment (X, Y) and vertical accuracy assessment (Z) of the points

[Konecny, 2008].

Some studies were also made to compare the results using the ground measure-

ments. Recently, empirical tests have been applied by the German Society of

Photogrammetry, Remote Sensing and Geoinformation (DGPF) by [Cramer, 2009]

and [Cramer, 2010] on digital airborne cameras evaluation. The main object of

(DGPF) tests is not to compare the performances of sensors first but to evaluate

the sensors specific strengths. The DGPF project presents some findings, mainly

focusing on geometrical topics. The test frame was based on cameras system DMC,

UltraCam-x, quarto digital CAM, line scanning systems ADS40 and JAS-150 in

a comparison with analogue cameras (RMK-Top15). The ground control points

(GCP) are distributed in 7.4 x 4.7 km2 area. The imaging data was acquired

during 10 weeks in 6 different flight days. The flight campaign started at the be-

ginning of July until the middle of September 2008. Additional flights were done

in order to provide a reference for photogrammetrically derived surface models and

multispectral land cover classifications (Leica ALS50 LiDAR, AISA+ and ROSIS

hyper-spectral scanner). The results accuracy in this investigation was very similar

for all sensor systems. RMSE computation is used for to evaluate these airborne

digital cameras. The absolute accuracy RMSE in horizontal component was in the

range of 0.25 pixel related to GSD and in vertical one in the range of 0.5 pixel.

The geometric assessment of ADS40 camera has been tested using RMSE compu-

tations by [Casella et al., 2008] and [Kocaman et al., 2007]. The ADS40 camera

is a commercial example of the airborne three line scanner. Its particular sensor

geometry requires new approaches and a specialization of methods and algorithms

to solve the triangulation problem. The main goals of [Casella et al., 2008] study

have been to investigate the geometric accuracy potential of the ADS40 camera

under different network configurations, with different camera and trajectory mod-

els and different sets of additional parameters for self-calibration. Investigations

have been performed by two independent research groups, that is the Institute of

Geodesy and Photogrammetry (IGP), ETH Zurich, and the Geomatics Labora-

tory of the University of Pavia. The project contained three blocks of images with

2000 m, 4000 m and 6000 m flying heights with ADS40 camera. The test site was

in Italy over the Pavia city. The average ground resolutions were approximately

20 cm, 40 cm, and 60 cm for the three blocks. 50 GCPs have been installed in

the study area. The experimentations were performed with different numbers and
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distributions of GCPs and with and without self-calibration procedures. In addi-

tion, two different trajectory models have been tested at the IGP, ETH Zurich.

Also, direct georeferencing without the use of GCPs has been performed. The

RMSE values, given in pixels, for planimetric and height, obtained with triangu-

lation and self-calibration for the best cases of each block were (0.20 and 0.25 for

2000 m block), (0.20 and 0.30 for 4000 m block), and (0.13 and 0.24 for 6000 m

block). The accuracy results of both groups are consistent and show significant

improvements when self-calibration is performed.

Positional accuracy of airborne systems are not only dependent on the accuracy of

individual components, for example, GNSS and INS. But also, it is dependent on

variables such as the synchronization between different sensors, mounting platform

stability, lens distortion, and weather conditions [Abd-Elrahman et al., 2001]. The

evaluation of geometrical accuracy of 3D buildings produced by using LiDAR data

and airborne imagery at the same time has been performed in [Zhang et al., 2012].

The geometrical construction is evaluated by determining the RMSE computa-

tion of tested points. This error is computed by finding corresponding centres

of gravity of extracted building roofs. The solution of RMSE calculation based

on centers of gravity is suggested by the German Association of Photogrammetry

and Remote Sensing (DGPF) [Cramer, 2010]. Furthermore, in [Zhan et al., 2005],

Euclidean distance between the centres of the mass of an extracted object and the

corresponding object is used to measure positional accuracy. The computation of

RMSE between centres of gravity of homologous surfaces that compose the tested

and respectively the reference building is also suggested in [Zeng et al., 2013].

3.3.2.2 Quantitative assessment using computation of quality indices

A method for quantitative assessments of spatial accuracy and completeness for

linear features is suggested and explored in [Tveite and Langaas, 1999]. The

elements of the Buffer Overlay Statistics (BOS) method is shown in figure 3.3.

The geometric accuracy of a linear feature can be decomposed into two compo-

nents:

- Firstly, positional accuracy can easily be given for well defined points on the

feature (e.g. the end-points). For the rest of the linear feature, it is difficult to

say anything about positional accuracy and to quantify it.
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Figure 3.3: Elements of the BOS method suggested by
[Tveite and Langaas, 1999].

- Secondly, to be able to say something about the accuracy of features, it is useful to

talk about its shape fidelity as compared to a reference line. The shape similarity

should be calculated by finding the superimposing of two line features.

The positional errors of line end-points can not be used to estimate the geometric

accuracy of a line, even though they might give an indication of spatial bias. But

for a large network of lines, the positional errors of these end points can be used as

samples of the positional errors of the lines in the dataset. As such they can provide

an indication of the positional accuracy of the line. A method was proposed in

[Tveite and Langaas, 1999] in order to assess overall measures of accuracy and

completeness of a line dataset relative to another line dataset of better quality

using buffering. The method works by establishing a number of buffers of various

sizes around the lines in both datasets and by comparing them (using overlay and

statistics). The process was iterative. Figure 3.3 has been produced to visualize the

above mentioned aspects of line data quality. The Buffer Overlay Statistics (BOS)

method assumed homogeneous quality for the whole area of both the reference

dataset and the dataset of unknown quality.

A method for quantitative assessments of completeness for 2D surfaces is suggested

in [McKeown et al., 2000] and [McGlone and Shufelt, 1994]. This approach used

well known quality indices, namely the detection rate ρd, the branch factor ρb

and and the quality rate ρq. [McKeown et al., 2000] and [Ragia, 2000] introduced

mainly two approaches for quality evaluation of building models. Based on their
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principle ideas, an approach has been developed in [Schuster and Weidner, 2003],

taking the good aspects into account and combining them. This approach avoids,

in their opinion, the single deficiencies, by using a combination of strategies and

introducing supplementary quality measures. The 2D evaluation of the geometry

of the surfaces is based on the comparison of surface areas in two building models

(reference and test) and through the calculation of a set of quality indices. Figure

3.4 shows the relation between the reference surface area Ar and the tested surface

area At.

Figure 3.4: Relationship between reference area Ar and tested area At.

The first approach has been initiated by [McGlone and Shufelt, 1994] and devel-

oped by [McKeown et al., 2000]. This approach dealt with the evaluation of build-

ing extraction, in addition to other topographic objects like roads. The principle

idea of their approach is to transform the evaluation of building models into the

evaluation of a classification by discretizing the space in pixels (2D). The authors

suggest to use specific quantities, namely the detection rate ρd, the branch factor

ρb and and the quality rate ρq. They are based on surface area comparison of Ar

(area of reference polygon) and At (area of test polygon).

The detection rate ρd (equation 3.1) is the ratio between the intersection area

between two planes and the reference plane. If the rate is close to 1, then the data

will be of good quality.

ρd =
Ar ∩ At
Ar

ρd ∈ [0 : 1] (3.1)



Chapter 3. State of the art of accuracy assessment 46

The quality rate ρq (equation 3.2) is the ratio between the intersection area be-

tween two planes (reference plane and test plane) and the union of two planes. If

the rate close to 1 is then the data will be of good quality.

ρq =
Ar ∩ At
Ar ∪ At

ρq ∈ [0 : 1] (3.2)

The branch factor ρb (equation 3.3) is the the ratio of the part of the reference

polygon which is not included in the polygon under study and the intersection of

the two polygons. The factor is always positive and if the factor is close to zero,

then the data will be of good quality.

ρb =
At \ Ar
Ar ∩ At

ρb ≥ 0 (3.3)

[McGlone and Shufelt, 1994] added the miss factor ρm (equation 3.4). The miss

factor ρm is the ratio between the area of the tested plane that is not included

in the plane intersection area and the intersection area between two planes. The

factor is always positive and if it is close to zero then the tested model will be of

good quality.

ρm =
Ar \ At
Ar ∩ At

ρm ≥ 0 (3.4)

The approach suggested by [Ragia, 2000] evaluates the building detection, the

topology and the metric of building models using the quality rate ρq (equation

3.2) and the false alarm rate. The false alarm rate ρf (equation 3.5) is the ratio

between the area of the reference plane not included in the plane intersection area

and the reference plane. The factor is always positive and if it is close to zero then

the tested model will be of good quality.

ρf =
At \ Ar
Ar

ρf ≥ 0 (3.5)

[Schuster and Weidner, 2003] presented an approach for quantitative and qualita-

tive evaluation of 2D surface models. The evaluation consists of an evaluation of

the building detection, and an evaluation of the building reconstruction.
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Any shift or rotation between the reference and the tested surface models will

affect the intersection area between the surface models. But the same shift for

a small or for a big building will not provide the same factors. The sensitivity

of the previous indices regarding the effect of the building size, building shape,

building shifts, rotations should be analyzed. In order to increase the influence of

larger deviations between the reference and test sets on the quality measure, the

weighted quality rate ρqw has been introduced in [Schuster and Weidner, 2003]

and [Weidner, 2008]. Weighted quality evaluation was followed by distance trans-

formation for each dataset and determination of connected components of the

difference regions. Conversion from vector to raster format is necessary for com-

puting the weighted quality rate ρqw. The calculation of this factor is based

on the distance weighted transformation for each dataset (reference and test), as

illustrated in figure 3.5 and expressed in equation 3.6.

Figure 3.5: Distance weighted transformation for each 2D surface (x is the
pixel element and dmin is the minimum distance between the pixel element and

the tested surface).

ρqw = 1− A

|SR ∩ ST |+ A
ρqw ∈ [0 : 1] (3.6)
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In equation 3.6, SR and ST are the surface of reference and surface to test re-

spectively. A is defined as shown in equation 3.7.

A =
∑

(x∈ST\SR)

w(d(x, SR)) +
∑

(x∈SR\ST )

w(d(x, ST )) (3.7)

In equation 3.7 d(x, SR) and d(x, ST ) are the distance between the pixel x element

and the surface SR and ST . It is given by the function 3.8.

d(x, S) = inf{ρ(x, s) : s ∈ S} (3.8)

Finally, the function 3.9 is the weighted function based on distances calculations.

w(d(x, S)) =
1

4d
d(x, S) (3.9)

4d represents the pixel size of reference and test datasets.

Result assessments for 3D building models are mostly approached in a qualitative

way. In [Meidow and Schuster, 2005] a grid of voxels in 3D has been presented

to compute the volume and overlap voxels of volume. In the case of volume

determinations these calculations and the corresponding data structures are rather

complex and therefore extensive in terms of implementation and debugging. The

suggested voxel-based approach circumvents these problems. The precision of the

quality measures basically depends on the spatial resolution defined by the sizes

of the volume cells. The voxel-based quality measures used have been introduced

in the literature; [Ragia, 2000]. The resulting values of quality rate indices are

decoded in gray level as shown in figure 3.6. A dark gray level means high quality

rates whereas light grey values mean low quality rate indices. A test to compare

the 2D and 3D shows that the quality rates of the 3D evaluation tend to be worse

than those of the 2D evaluation.
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(a) 2D quality rate (b) 3D quality rate

Figure 3.6: Quality rates represented in gray values (dark means high values);
a) in 2D; b) in 3D [Meidow and Schuster, 2005].

3.4 Summary

Accuracy assessment calculations suppose that a reference model should be gained

through an independent and more precise technique. Thus for gaining a reference

model for precision calculations, it is appropriate to work on the same data, but

to use a more precise method for the model creation. Also, the reference model

can be extracted using the same technique but more accurate datasets. The multi-

dimensional assessment approach has been applied to evaluate the building models

produced in 1D, 2D, and 3D. point assessment gives an overall idea about the relia-

bility of the reconstructed models. Surface assessment checks the superimposition

of faces. 3D assessment compares the buildings in 3D through the comparison of

their volumes intersection. The quality indices in 2D and 3D are useful for rough-

ing out the detection quality but it should be completed by statistical computation

such as RMSE.





Chapter 4

Developed approach for accuracy

assessment

This chapter explains the strategies that have been followed to fulfil the aims and

objectives of this research. The way to calculate intersections between lines and

line with plane is presented. First, the proposed accuracy assessment is introduced.

The 1D, 2D or 3D assessment approach allows highlighting the source of deviations

in the tested buildings. The chapter is structured according to the aims and

objectives outlined. This chapter mainly describes the multi-dimensional accuracy

assessment approach developed for assessments in 1D, 2D and 3D.

4.1 Proposed multi-dimensional accuracy assess-

ment approach

Studies on the evaluation of building models from photogrammetry or LiDAR

are often confined by visual evaluation of the results or even a simple difference

calculations like RMSE. A comprehensive evaluation in 3D is not trivial. We

proposed a standard multi-dimensional approach for assessing the quality of 3D

models of buildings in 1D, 2D and 3D. This part describes the 1D, 2D and 3D

model accuracy assessment that will be applied to 3D building models. The inputs

of our approach are reference and test models. The outputs in 1D assessment

are the RMSE in X, Y, Z directions and test the 3D building model by applying

51
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French legal text (arrêté sur les classes de précision). 2D and 3D quality indices are

similar to those encountered in the evaluation of classifications (errors of omission,

commission) and pass through the space discretization in pixels (2D) or voxels (3D)

for measuring the degree of superposition of 2D or 3D objects. The originality of

this approach was built on the fact that the models used as input are not only

limited to raster format, but also extend to the vector format. It seems obvious

that models defined in vector format are more faithful to reality than raster format.

The flow of the proposed multi-dimensional assessment approach is shown in figure

4.1

Figure 4.1: Multi-dimensional approach developed for the assessment of build-
ings reconstructed in 3D.

4.1.1 1D accuracy assessment

1D accuracy assessment can evaluate the output/product by comparing them

points. Two methods are applied to compare two different 3D building models.

The first one is done by computing RMSE errors based on the deviations between

both models, in X, Y and Z directions. Deviations are not only calculated between

homologous nodes, but also between centres of gravity of homologous planes that
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compose the tested and respectively the reference building. Second method con-

sists in applying the French legal text (arrêté sur les classes de précision) that is

based on the instructions published in the Official Journal from October 30, 2003.

This legal text suggests to define the accuracy classes for assessing the quality

of different categories of survey works. It helps to determine if a survey work is

acceptable regarding its quality and the precision requirements.

The RMSE calculation based on homologous nodes requires finding corresponding

points. The correspondences are identified by finding the nearest neighbours of

each pair of points from the reference model among those in the test model. Figure

4.2 shows these correspondences between the reference model (in black) and the

test model (in red).

Figure 4.2: Correspondences between homologous nods in the reference (in
black) and the test (in red) models.

After the identification of matches, the RMSEs are computed in X, Y, and Z

directions according to equations 4.1, 4.2, and 4.3.

RMSEX =

√
1

N
Σ(Xref −Xtest)2 (4.1)

RMSEY =

√
1

N
Σ(Yref − Ytest)2 (4.2)
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RMSEZ =

√
1

N
Σ(Zref − Ztest)2 (4.3)

Where (Xref , Yref , Zref ) are the coordinates of the nods in the reference model

and (Xtest, Ytest, Ztest) are the coordinates of the nods in the test model. N is the

number of points.

This method is intuitive and simple but has practical limitations due to its as-

sumption that every closest point in the reference model has as corresponding

point in the test model. This assumption can easily fail when the two point sets

are not coarse as shown in figure 4.3. In practice, the center of gravity point is

more appropriate because with any distribution of vertices points, there is only

one center of gravity as shown in figure 4.4. So, the RMSEs are computed between

centres of gravity of homologous planes that compose the tested and respectively

the reference building.

Figure 4.3: False corresponding points between the reference and the test
models.
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Figure 4.4: Corresponding centers of gravity points
of reference (in blue) and test models (in red).

The coordinates of the center of gravity of any shape are found by averaging the

X, Y, and Z coordinates of the vertices (see equations 4.4, 4.5, and 4.6). This

formula also delivers the center of gravity of any set of points on the plane. Then,

the RMSE can be calculated using equations 4.1, 4.2, and 4.3.

Xc = (
x1 + x2 + x3 + · · ·+ xN

N
) (4.4)

Yc = (
y1 + y2 + y3 + · · ·+ yN

N
) (4.5)

Zc = (
z1 + z2 + z3 + · · ·+ zN

N
) (4.6)

Where (Xc, Yc, Zc) are the coordinates of the centroid and (xi, yi, zi) the coordi-

nates of the vertices. N is the number of points.

Quality measures like the RMSE cause problems applied to complex buildings

structures especially in the step of point matching.

The second method consists in applying a French legal text published in Octo-

ber 2003 (arrêté sur les classes de précision). The precision classification lies on

three criteria (article 2.3.) to be simultaneously respected: a mean difference in

position, the number of objects passing the first tolerance level, and the system-

atic nonconformity of objects beyond the second tolerance level. The bases of the

legal text and the way to use it in different practical situations are presented in

[Kasser, 2003]. A brief description of this legal text is given in the next paragraphs.
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a- For a sample with N spatial objects, one computes the average difference be-

tween the observed values and the reference values. The mean difference in position

is first subjected to a first tolerance defined in equation 4.7.

[xx]

(
1 +

1

2C2

)
(4.7)

Where C is the security coefficient (coefficient de sécurité). [xx] is the accuracy

class (classe de précision).

b- The second condition at which the sample is subjected corresponds to an upper

limit that only a certain number of points can exceed. This condition is given by

equation 4.8

T = k[xx]

(
1 +

1

2C2

)
(4.8)

Where k is a coefficient depending on the dimension in which the points are checked

(one, two or three dimensions). k is equal to 3.23 (in 1D), 2.42 (in 2D), and 2.11

(in 3D).

The maximum number of points allowed to exceed this threshold is given by:

0.01N + 0.232
√
N (4.9)

Where N is the total number of points forming the sample. When N is less than

5 points, no deviation greater than T is allowed (see table 4.1).

N 1 to 5 to 14 to 45 to 86 to 133 to 185 to 241 to 299 to 360 to
4 13 44 85 132 184 240 298 359 422

N’ 0 1 2 3 4 5 6 7 8 9

Table 4.1: Maximum number of points allowed to exceed first threshold.

N’ is the number of deviations allowed to exceed the threshold T for a sample of

N elements.

c- No deviation is allowed to exceed the second threshold given in equation 4.10.

T = 1.5k[xx]

(
1 +

1

2C2

)
(4.10)
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The explanation of applying these thresholds to multiple datasets is shown in the

next chapter.

4.1.2 2D accuracy assessment

Because many users are working with 2D forms such as roofs and facades, assess-

ment solutions for 2D data must be considered. A method to evaluate 2D surface

models is based on the comparison of 2D surfaces to accurate reference models.

The 3D building models used in this work are decomposed in 2D planes compos-

ing the building. Our approach consists in comparing 2D surface areas from test

models with 2D surfaces of reference models, by applying quality indices. The

summary of these indices is shown in table 4.2. As mentioned in the state of the

art, the quality indices are the detection rate (ρd), quality rate (ρq), miss factor

(ρm), false alarm rate (ρf), branch factor (ρb), and weighted quality indices (ρqw).

Because we use them in a 2D assessment context, we will add the prefix ”surface”

and call them ”surface detection rate”, ”surface quality rate”, ”surface miss fac-

tor”, ”surface false alarm rate”, ”surface branch factor”, and ”surface weighted

quality indices”. These indices are depending on the relations between the inter-

section or union areas of the reference and tested model. Satisfying results are

reached when the values of ρd, ρq, and ρqw are close to 1, and the three others

are close to 0. Surface areas as well as intersection and union computations will

be presented in details in section 4.2.3. These quality indices are applied to roofs,

faces, and footprint surfaces extracted from 3D building models.

We will consider the 2D surface models in raster as well as in vector format,

because both formats have been encountered in the literature. It seems obvious

that models defined in vector format are more faithful to reality than model in

raster format. However, the confrontation of two vector models especially the

calculation of intersection in 3D is more difficult.

The 2D assement based on the calculation of the quality indices of table 4.2 has

been applied to the evaluation of photogrammetric data. This experiment has

been published in [Mohamed and Grussenmeyer, 2011]. More information can be

found in Appendix D. This method is applied for the comparison of 2D objects

to accurate reference measurements. The comparison of data from Rollei medium

format and UltraCam-X cameras has been done.
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Index and equation Explanation

ρd = 1 means that the
calculated polygon is
perfectly superposed to the
reference polygon.

Surface detection rate:
ρd = Ar∩At

Ar

ρd ∈ [0 : 1]

ρq = 1 means that parts
which are common to both
polygons are equal to the
union of the two polygons.

Surface quality rate:
ρq = Ar∩At

Ar∪At

ρq ∈ [0 : 1]

Ratio of the part of the
reference polygon which is
not included in the polygon
under study and the
intersection of the two
polygons.

Surface branch factor:

ρb = At\Ar
Ar∩At

ρb ≥ 0

Ratio of the part of the
polygon being evaluated
which is not included in a
reference polygon and the
intersection of the two
polygons.

Surface miss factor:

ρm = Ar\At
Ar∩At

ρm ≥ 0

Same numerator as
previously, but compared
to the area of the reference
polygon.

Surface false alarm:

ρf = At\Ar
Ar

ρf ≥ 0

The preprocessing consists
of a conversion from vector
to raster followed by
distance transformation for
each data set and
determination of connected
components of the
difference regions.

Surface weighted quality rate:
ρqw = 1− A

|SR∩ST |+A

ρqw ∈ [0 : 1]
A =

∑
(x∈ST\SR)w(d(x, SR))+∑

(x∈SR\ST )w(d(x, ST ))

d(x, S) = inf{ρ(x, s) : s ∈ S}
w(d(x, S)) = 1

4d
d(x, S)

Table 4.2: Quality indices used to evaluate surface areas of polygons.
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The 2D assessment allows to assess the shape of the planes composing a building

by superimposing them to the corresponding plane in the reference. However, it

does not allow to check if the compared planes belong to the same frame. This

can be done in the 3D assessment step.

4.1.3 3D accuracy assessment

Calculating uncertainties in a 3D model is not a trivial task. Considering a build-

ing as one object, volume comparisons seem to be more appropriate than surface

areas comparisons. For assessing buildings in 3D, we developed an algorithm

which allows to compare, in 3D, a test sample with its reference sample. We de-

cided to work with quality indices inspired from the 2D assessment, but adapted

to 3D. These modified quality indices are applied to 3D models in raster and vec-

tor data structure. These volumetric indices are the Volumetric detection rate

(V ρd), Volumetric quality rate (V ρq), Volumetric miss factor (V ρm), Volumetric

false alarm rate (V ρf), Volumetric branch factor (V ρb), and Volumetric weighted

quality indices (V ρqw). These indices take into account the volume of the inter-

section as well as the union volume of two buildings. The computation of volumes

in this work is done as well in raster as in vector format. It seems that models

defined in vector format are more faithful to reality than raster format. However,

raster format has also been taken into account, because it is often suggested in

the literature.

The state of the art confirms difficulties in determining the volume of intersection

of two 3D models in vector format [Meidow and Schuster, 2005]. The algorithm

that is proposed for computing the volume of intersection is based on the extraction

of vertices of the 3D intersection volume.

This work is a continuation of previous researches from our group (Photogramme-

try and Geomatics Group) PAGE at INSA Strasbourg. The Group has already

started a research field dealing with the assessment of planes detection of build-

ing roofs extracted from LIDAR data [Tarsha-Kurdi et al., 2008] and geometric

facade models reconstructed from TLS data [Landes et al., 2012a]. Also, the eval-

uation of characteristic planes extracted from digital airborne images of two sensors

(UltraCam-X and RolleiDB44) can be found in [Mohamed and Grussenmeyer, 2011].
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This approach suggests a volume based comparison between a 3D building model

and an accurate 3D reference model (figure 4.5). This principle is applicable as well

to vector as to raster models. However, the calculation of the intersection shape

requires to distinguish the models reconstructed in raster from those reconstructed

in vector (section 4.2.4).

Figure 4.5: Comparison of 3D building models: volume of reference (VR, in
pink), volume of the model to test (VT, in blue), volume of the intersection

shape (VI, in green).

The volumetric indices developed in this work are explained here.

The modified detection rate V ρd is the ratio between the intersection volume (V I)

between two models and the reference volume (V R). If the rate is close to 1, then

the building model will be of good quality (see equation 4.11).

V ρd =
V R ∩ V T

V R
V ρd ∈ [0 : 1] (4.11)

The modified quality rate V ρq is the ratio between the intersection volume between

both models and the union of two volumes (V R ∪ V T ) (see equation 4.12). If the

rate is close to 1 then the building model will be of good quality.

V ρq =
V R ∩ V T
V R ∪ V T

V ρq ∈ [0 : 1] (4.12)
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The modified branch factor V ρb is the ratio between the volume of the reference

model not included in the volume of intersection (V T \ V R) and the intersection

volume between two models (see equation 4.13). The factor is always positive and

if the factor is close to zero, then the building model will be of good quality.

V ρb =
V T \ V R
V R ∩ V T

V ρb ≥ 0 (4.13)

The modified miss factor V ρm is the ratio between the volume of the tested model

that is not included in volume of intersection (V R \ V T ) and intersection volume

between two models (see equation 4.14). The factor is always positive and if the

factor is close to zero then the building model will be of good quality.

V ρm =
V R \ V T
V R ∩ V T

V ρm ≥ 0 (4.14)

The modified false alarm rate V ρf is the ratio between the volume of the reference

model not included in the intersection volume and the volume of reference (see

equation 4.15). The factor is always positive and if the factor is close to zero then

the building model will be of good quality.

V ρf =
V T \ V R
V R

V ρf ≥ 0 (4.15)

Like it has been done in section 4.1.2 for the 2D assessment steps, for increasing

the influence of larger deviations between the reference and the test models on the

quality evaluation the modified weighted quality rate V ρqw is introduced. This

index requires raster data structure. So, conversion of vector to raster format is

necessary in the preprocessing of the modified weighted quality rate. Voxel (y)

is the form for each assigned building model or building block. Followed by the

distance transformation (dmin) for each dataset and determination of connected

components of the different region, see figure 4.6.

V ρqw = 1− V

|V R ∩ V T |+ V
V ρqw ∈ [0 : 1]. (4.16)

V R and V T are the volume of the reference building and the volume of the test

model respectively. V is defined by:
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Figure 4.6: Distance transformation between 3D reference and test model
(y is the voxel element and dmin is the minimum distance between the voxel

element and the tested model).

V =
∑

(y∈V T\V R)w(d(y, V R)) +
∑

(y∈V R\V T )w(d(y, V T ))

The distances between the voxel element y and the tested model V T are given by

the function:

d(y, V T ) = inf{ρ(y, vt) : vl ∈ V T} (4.17)

and the weighted function based on distances calculation is given by:

w(d(y, V T )) =
1

4d
d(y, V T ) (4.18)

4d represents the voxel size chosen for the reference and the test model.

First experiments based on volumetric quality indices applied to 3D vector building

models are presented in [Landes et al., 2012b]. Also, this approach has been used

for assessing the 3D building models reconstructed from photogrammery, LiDAR,

and combination of them in [Mohamed et al., 2013].
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The application of previously presented quality indices in 2D and 3D needs to

remind several geometric computation.

4.2 Geometric computations

The operation of determining the union and intersection of areas (or volumes)

when two models must be compared is a topic of geometric computation. This

section describes the algorithms leading to calculate union and intersection of

areas/volumes which occur when a model to be assessed is compared to a reference

model. First of all, it is necessary to recall some basic concepts, such as the

definition of points, lines and planes in the 3D space. Appendix E summarizes

some of these definitions. Intersection between line and plane entities are presented

her.

4.2.1 Intersection of two lines in the same plane

A 3D line can be represented by the intersection of two planes or by the connection

of two points. To find the intersection point of two lines, get a view of lines to

ensure that they intersect in a point. A line can be described by two points

(P1, P2) or by a point and a vector (P, V ). In which P is point of the line and V

is the vector of the line.

The expression of 2 lines L1 and L2 in vector algebra is presented in equations

4.19 and 4.20.

L1 = P1 + aV 1 (4.19)

L2 = P2 + bV 2 (4.20)

where P1 is a point which belongs to L1 and P2 to L2. V 1 and V 2 are the

direction vectors for each line.

If we assume that the lines intersect, we can look for the point on L1 that satisfies

the equation for L2. This gives us this equation to solve.



Chapter 4. Developed approach for accuracy assessment 64

P1 + aV 1 = P2 + bV 2 (4.21)

Now rewrite it like this.

aV 1 = (P2− P1) + bV 2 (4.22)

Now take the cross product of each term with V 2. This will make the term with

b dropped out because the cross product of the vector V 2 and it self (V 2XV 2) is

equal to zero.

a(V 1XV 2) = (P2− P1)XV 2 (4.23)

let’s denote

V = cross(V 1, V 2), W = cross((P2− P1), V 2) (4.24)

If the lines intersect at a single point, then the resultant vectors on each side of

this equation must be parallel, and the left side must not be the zero vector. Check

should be applied in order to make sure that it is true. Once one has checked this,

it is possible to solve for a by taking the magnitude of each side and dividing. If

the resultant vectors are parallel, but in opposite directions, then a is the negative

of the ratio of magnitudes. Once a is found (equation 4.29), the intersection point

M1 can be calculated by going back to L1 equation.

a = W/V, M1 = P1 + aV 1 (4.25)

Lets take it with another side,

bV 2 = (P1− P2) + aV 1 (4.26)

Now take the cross product of each side with V 1. This will make the term with a

drop out because the cross product of the vector V 1 and it self (V 1XV 1) is equal

to zero.
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b(V 2XV 1) = (P1− P2)XV 1 (4.27)

let’s denote,

W1 = cross(P1− P2, V 1), W2 = cross(V 2, V 1) (4.28)

Then,

b = W1/W2, M2 = P2 + bV 2 (4.29)

For checking the results, we must check that M1 is equal to M2.

4.2.2 Intersection of a line with a plane

In this section, the problem of intersecting lines and planes is presented. As shown

in Appendix E, the equation of the plane is defined as AX + BY + CY + D = 0

and the normal vector n of the plane is = [A B C]. The intersection of the line

L with the plane ρ (if it exists) is at point. So, the problem is to search about

this point. Also, the line is defined by two points or a point and a direction as

p = P1 + aV . As shown in figure 4.7, the intersection point is a point on the line

and it should also satisfy the plane equation.

Figure 4.7: Intersection of a line with a plane.

Then, we replace by substitute the equation of line at the point of intersection p

in plane equation 4.30.
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A(P1x+ aV x) +B(P1y + aV y) + C(P1z + aV z) +D = 0 (4.30)

And solve for the parameter a:

a =
−(AP1x+BP1y + CP1z +D)

AV x+BV y + CV z
(4.31)

By putting the equation in vector format

a =
−(n.P1 +D)

n.V
(4.32)

Where n.V is the scalar product of the plane normal and the line direction; if this

value is equal to 0, then the line and the plane are parallel. If the line is in the

plane, then there are an infinite number of intersections, and if the ray is not in

the plane, there is no intersections. So, a check should be done first in order to

know if the line and the plane intersect. After computing (a) value, computing

the intersection coordinates point requires simply substituting the computed value

back into the line equation p = P1 + aV .

The multi-dimensional assessment approach developed in 2D and 3D requires to

calculate intersection shapes. For this reason, the concepts used for calculating

surface areas and volumes must be presented. Also the way we calculate the

intersection of polygons in 2D and polyhedron in 3D is detailed. Since buildings

may be reconstructed in raster and in vector format, both cases are considered in

the next sections.

4.2.3 Area computation

4.2.3.1 Raster format (pixel)

Recap of area computation

The most common method used to calculate areas in raster format is to sum the

number of pixels which compose the polygon of interest. This can be done for a

polygon stored as a simple raster or for a vector polygon which is converted into

a grid of pixels.
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To calculate the area using the raster concept the following steps must be consid-

ered:

Step 1: the three steps of plane fitting are applied to the 3D vertices points

as explained in Appendix E; a) input 3D points that are needed to be fitted by

a plane; b) calculate plane parameters containing this data (basis and normal

vector for the plane); c) project this 3D data to the plane. Also, one of the aims

of this step is to transform the coordinates of vertices points from global to local

coordinates system. The aim of this process is to obtain a polygon in 2D space.

Step 2: a pixel-based 2D surface is generated using 2D vertices points of the

polygon. A two dimensional grid is built with a pixel size. The distributions of

pixels in X and Y directions are reconstructed by the following equations:

pixel in X − direction = (Xmax−Xmin)/pixel size (4.33)

pixel in Y − direction = (Y max− Y min)/pixel size (4.34)

Where (Xmin, Y min) and (Xmax, Y max) are the minimum and maximum values

of the coordinates of vertices points. This method of rasterization generates pixels

with the same size in X and Y direction. The choice of the size of the pixel in X

and Y direction is based on the resolution of the input data for building extraction,

the result accuracy of computation and time needed to process this data. In this

experiment, the size of a pixel element has been set to 0.3 m in two directions. At

this stage, the 2D polygon is described by a regular grid as shown in figure 4.8.

Step 3: This step consists in recording the pixels which are inside the 2D

polygon using Matlab built in function (in-polygon). Finally, the surface area of

the polygon is calculated by taking the sum of all pixels located inside the polygon

(equation 4.35).

Area raster polygon = total number of pixels ∗ area of single pixel (4.35)

The rasterization process for a 2D polygon is illustrated in figure 4.8.
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Figure 4.8: Representation of the rasterization process of 2D polygon.

Intersection area calculation

The area of intersection between two polygons (one of them describing the refer-

ence and the other one the test model) is computed after defining the pixels which

belong to the overlapping area. In the same way, the intersection area is obtained

by multiplying the number of pixels located in it, by the area of a pixel. Using

rasterization might lead to a loss or a surplus in the pixels located on the boundary

of the polygon. This affects the computation of the real area. Figure 4.8 shows

the real surface with red colour and the computed surface with green colour.

4.2.3.2 Vector format

Recap of area computation

For the area computation of a polygon described in vector form, the formula based

on Green’s theorem [O’Rourke, J, 1998] is used and given in equation (4.36).

A =
1

2
|Σn

k=1XkYk+1 −Xk+1Yk| (4.36)

Where n is the number of nodes, Xn+1 = X1 and Yn+1 = Y1. X and Y are the

coordinates of vertices points of the polygon numbered in ascending order.

Intersection area computation

An algorithm has been developed for calculating the intersection area of 2 vector

polygons in 2D, which covers all potential cases of intersections. It operates in two

steps: the detection of the points located inside the polygons and the detection of
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line intersections.

Step1: classification of the points located inside the polygons

Let’s consider two vector polygons, drawn in red and black, as shown in figure 4.9-

a. Points 3 and 5 are called ”inside points”. In figure 4.9-b, all points of the red

polygon are classified as inside points, when it is compared to the black polygon.

Matlab built-in function (point-in-polygon) provides a simple and commonly used

technique for inside points detection, and works as follows. Assuming the polygon

is defined by n points in an array P , the algorithm computes the summation of

angles between the query point and every pair of points defining each edge of the

polygon (i.e. the angle is formed by the P [n] point, query point, and P [n + 1]).

If this summation computes to 2π (or near 2π within some tolerance), then the

point is inside the polygon. If the summation computes to zero (or near zero) then

the point is outside the polygon.

Step2: detection of points at the intersection of lines

For example, in figure 4.9a, the point of intersection between line (2, 3) and line

(5, 6) is an ”intersection point” to consider, as well as the intersection point of

lines (4, 3) and (5, 8). However, the intersection between lines (4, 3) and (6,

7) is not an intersection point to consider. That’s why it must be checked if

the intersection point lies on the edges of both polygons. This check is done by

computing the distance between the intersection point and the two end points of

the line. If the maximum of the two distances is shorter than the edge length,

the point of intersection belongs to the edge. Then the resulting intersection area

can be calculated based on the coordinates of its vertices (see equation (4.36)).

The resulting intersection shape can therefore be created by joining the vertices

by segments. Figure 4.9-c gives another example of the detection of intersection

points.

After computing the surface areas, the 2D quality indices can be calculated. In

3D, we have to calculate volumes. This is the topic of the next section.
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Figure 4.9: Intersection area calculation for vector polygons in 2D.

4.2.4 Volume computation

4.2.4.1 Raster format (voxel)

Recap of volume computation

The volume calculation of buildings defined in raster format is easier than in vector

format. A voxel is defined as a pixel in 3D. A voxel-based 3D building model can

be generated based on the 3D vertices points describing the building model. A

three dimensional grid is built with a cell size. The number of voxels in X, Y, and

Z dimension is calculated by the equations 4.37, 4.38, and 4.39.

V oxels in X direction = (Xmax−Xmin)/voxel size (4.37)

V oxels in Y direction = (Y max− Y min)/voxel size (4.38)

V oxels in Z direction = (Zmax− Zmin)/voxel size (4.39)

Where (Xmin, Y min, Zmin) and (Xmax, Y max, Zmax) are the minimum and

maximum values of the coordinates of the vertices points. voxel size represents

the voxel size. Choice of size of voxel in X, Y and Z directions as in 2D is based

on the input data for building extraction, the result accuracy of computation and

the time needed to process this data. In this experiment, the voxel element size

as been set to 0.3 * 0.3 * 0.3 m. Thus, the 3D building is decomposed in voxels,

like a 3D array (figure 4.10). Finally, the volume of each voxel located inside the

building is summed to calculate the total volume (equation 4.40).
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V olume = total number of voxels ∗ volume of single voxel (4.40)

The voxelization process for a 3D building model is illustrated in figure 4.10.

Figure 4.10: Representation of the voxelization process of 3D building.

Intersection volume calculation

The volume of intersection between two 3D models (one of them describing the

reference and the other one the test model) is computed after defining the voxels

which belong to the overlapping volume. In the same way, the intersection volume

is obtained by multiplying the number of voxels located in it, by the volume of a

voxel. Using voxelization might lead to a loss or a surplus in the voxels located on

the boundary of the 3D intersection shape. This affects the computation of the

real volume (figure 4.10).

4.2.4.2 Vector format

Recap of volume computation

In order to compute the volume of 3D objects defined as vector models, one has to

solve two tasks. Firstly, we must determine the convex hull of the given boundary.

Then, we must calculate the volume of the resulting 3D polyhedron.
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A convex hull is the boundary of a closed convex surface (mesh) generated by

applying Delaunay triangulation on the vertices points. In three dimensions, the

convex hull corresponds to a closed polyhedron. Convex hull calculation is a hard

process in computational geometry [Barber et al., 1996]. A large class of algo-

rithms that compute the exact volume of a convex object is based on triangulation

methods [Büeler et al., 2000].

For instance, the result of convex hull calculation for a gable roof building is shown

in figure 4.11-a. The convex hull of a set of points in two or three dimensions is

given by application of a Matlab built-in function (convhulln in 3D) as presented

in equation 4.41. These functions use meshed objects for storing and displaying

polyhedra. The faces of such polyhedra are triangles.

[K V ] = convhulln(x, y, z); (4.41)

K is represented by a boundary triangulated 3D object. Each row of the matrix

K represents a triangle. The volume, V, bounded by the 3D convex hull can

optionally be returned by convhulln.

In a first step, the meshed model is computed. It is defined by the input points.

The sum of the volumes composing the meshed model equals to the volume of the

convex object (figure 4.11-a).
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(a)

(b)

Figure 4.11: Calculation of convex hull (a) and the intersection shape (b).

Intersection volume calculation

The calculation of the volume of intersection between two 3D models reconstructed
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in vector format provides more accurate results than in raster format, but it is

also much more complicated. We propose an algorithm allowing to simplify this

process. It is applicable on basic building shapes, which are assumed to have faces

composed of planes. Our method consists of extracting the vertices of the shape

describing the 3D intersection volume. The flowchart in figure 4.12 shows the main

steps of the developed process.

Figure 4.12: Main steps of the process leading to the calculation of the inter-
section volume of two vector building models.

The process consists of three main steps and is inspired from the process developed

in 2D (section 4.2.3.2).

Step 1: detection of inside points

This step aims at searching about vertices of the reference points located inside

the model to assess. The points that are inside the reference model are located on

the positive side of the plane normals of all of its faces. The result of this process

is shown in Figure 4.11(a) where inside points are in red and outside points in

green color. These inside points represent only a part of the points describing the

3D intersection shape.

Step 2: creation of boundary lines and their intersection with planes

The second group of points describing the intersection shape can be determined

by calculating the intersection of the lines composing the reference model with

all planes that are composing the model to assess. This process can be achieved

firstly by separating the edge lines of each plane of the reference model. Then, the

duplicated lines (for instance a line describing the connection between a roof and a

facade is decomposed into 2 same lines) are cancelled in order to avoid the creation

of duplicates intersection points. After that, the intersections of all lines with all
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planes of the model to assess are calculated. In order to check if the resulting

point is located on the edge line (and not on the extension of the edge line) and

simultaneously belongs to the face of model to assess, two tests must be made.

Firstly, we test if the point is placed on the edge line by distance computation

as shown in section 4.2.3.2. A second test is achieved by looking for the ”points

inside a polygon” in 2D (in the frame of the intersected plane), as explained in

section 4.2.3.2.

Step 3: repetition of steps 1 and 2

Steps 1 and 2 are repeated by replacing the reference model by the model to

assess for the process leading to the edge line creation. Then the intersection

between lines of the model to assess with all the planes of reference model is

performed. Finally, as a result of these steps, the coordinates of vertices of the

intersection shape are determined and the volume of this shape can be calculated.

Figure 4.11(b) shows the intersection shape (filled with red color) obtained by the

intersection of a reference model and a test model.

4.3 Summary

The multi-dimensional approach developed for assessing the accuracy of 3D build-

ing models has been introduced in this chapter. Some principles that help in

geometric computations have been presented. This chapter described also the

algorithms leading to calculate union and intersection of areas/volumes.

In 1D assessment, the solution proposed for assessing of 3D building models as-

sessment are the RMSE calculation in X, Y, Z directions and the application of a

French legal text (arrêté sur les classes de précision).

In 2D, specific surface quality indices have been chosen, which require that 2D

polygons composing the building are compared to their reference polygon. This

requires the calculation of the intersection area of 2D polygons. It has been pre-

sented in this chapter, as well for raster as for vector building models.

The process performed in 2D has inspired the process developed for assessing

buildings in 3D. Therefore, volumetric quality indices have been developed. They
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require to compare two models in 3D. Although some assumptions are made re-

garding the shape of the buildings, the complex calculation of the 3D intersection

shape has been detailed (for vector and raster models). It seems obvious that

models defined in vector format are more faithful to reality than in raster format.

However, the confrontation of two vector models is more difficult, especially when

determining the volume corresponding to the intersection of two models.

The multi-dimensional approach is planned to be applied to 3D building models in

both raster and vector data structure. The application of our multi-dimensional

approach on real datasets will take place in the next chapter.



Chapter 5

Application of the approach on

multiple datasets

In this chapter the study area and datasets used in the study are presented. Also

the results of the processing chain applied on these datasets are detailed. Finally,

the results of the accuracy assessment of the generated 3D models are exposed.

The results of the accuracy evaluation are presented in three sections entitled,

1D assessment, 2D assessment, and 3D assessment. Analysis of the results of

the experiments is achieved and followed by a discussion about the benefits and

drawbacks of the developed approach.

5.1 Test site and data used

This test area is situated in the center of the city of Strasbourg, France. It is

characterized by different kind of building shapes. These buildings can be used

for testing the models extracted from photogrammetry, LiDAR, and combination

of both.

For this test site, multiple datasets are distributed. Digital aerial images from

UltraCam-X (4 images), Rollei (5 images) and frame Zeiss LMK (6 images) have

been acquired on this area. The test area is therefore visible in multiple images.

Table 5.1 shows brief characteristics of the photogrammetric data.

77
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Sensor Ultracam-X RolleiDB44 Zeiss LMK

Acquisition date 2007 2004 1998

Focal length (mm) 100.500 80.553 211.03

Ground resolution (cm) 16 16 24

Pixel size (µm) 7.2 9 30

Flying height (m) 2300 1450 1700

Overlap % 65 60 70

Base (m) 527 265 556

Table 5.1: Brief characteristics of photogrammetric datasets.

Figure 5.1 shows the distribution of large format UltraCam-X images in vertical

strip, frame Zeiss LMK images in horizontal strip, and medium format RolleiDB44

images in horizontal strip. In order to appreciate the high resolution of the airborne

imagery data, examples of reduced format of UltraCam-X, RolleiDB44, and Zeiss

LMK images have already been shown in figures 5.2, 5.3, and 5.4.

Figure 5.1: Distribution of UltraCam-X (large format in vertical strip),
RolleiDB44 (medium format in horizontal strip), and Zeiss LMK images(large

format in horizontal strip).
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Figure 5.2: Reduced format of one image of UltraCam-X camera (Strasbourg
City).
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Figure 5.3: Reduced format of one image of RolleiDB44 camera (Strasbourg
City).
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Figure 5.4: Reduced format of one image of Zeiss LMK camera (Strasbourg
City).

On other hand, Airborne Laserscanner (ALS) dataset of the same zone are pro-

vided. LiDAR data is captured in 2004 with a TopScan / Optech ALTM 1225

system. It covers an area of 4 km long and 1920 m wide with a swath of 640 m.

Table 5.2 shows brief characteristics of the LiDAR data.

Acquisition date 2004
Flying height (m) 1440
Density of points 1.3 points/ m2

Pulse frequency 25 kHz
LiDAR system TopScan / Optech ALTM 1225

Table 5.2: Brief characteristics of the LiDAR datasets.
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5.2 Data collection and image processing results

Three blocks of 15 images from UltraCam-X, RolleiDB44 and Zeiss LMK cameras

are available for the same zone in Strasbourg - France, figure 5.1. A set of 4 images

in one vertical strip, the UltraCam digital camera provides an image format of 9420

pixels (long track) by 14430 pixels (cross track). The pixel size of the images is

7.2 µm while it is 16 cm in object space. A set of 5 images in one strip has been

acquired with the RolleiDB44 medium format digital camera provides an image

format of 4080 pixels (long track) by 4075 pixels (cross track). The pixel size of

the images is 9 µm while it is 16 cm in object space. The Zeiss LMK camera

provides a image format of 7680 pixels (long track) by 7680 pixels (cross track).

The pixel size of the images is 30 µm while it is 24 cm in object space. 14 ground

control points have been measured in 2011 with GNSS systems.

The all images to be used are digital aerial photographs with unknown imaging

orientation parameters. The orientation of the images has been performed using

the KLT software package in order to compute exterior orientation parameters.

The camera information has been taken from the calibration sheet given by the

camera owner. The exterior orientation approximations were achieved by bundle

block adjustment. The RMSE of 14 GCPs in X, Y, Z directions are less than 9

cm.

The standard deviations of exterior orientation parameters from UltraCam-X,

RolleiDB44, and Zeiss-LMK images are presented in tables 5.3, 5.4, and 5.5.

Image No 1 2 3 4

σX0 (m) 0.572 0.556 0.552 0.567

σY 0 (m) 0.818 0.768 0.771 0.820

σZ0 (m) 0.409 0.225 0.169 0.319

σOmega (deg) 0.022 0.020 0.020 0.022

σPhi (deg) 0.015 0.014 0.015 0.015

σKappa (deg) 0.004 0.003 0.003 0.004

Table 5.3: Accuracy of exterior orientation parameters for UltraCam-X
images.
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Image No 1 2 3 4 5

σX0 (m) 2.184 1.362 0.810 0.973 1.988

σY 0 (m) 1.351 1.385 0.956 0.964 1.474

σZ0 (m) 0.229 0.268 0.166 0.188 0.209

σOmega (deg) 0.052 0.054 0.037 0.038 0.057

σPhi (deg) 0.087 0.054 0.031 0.038 0.078

σKappa (deg) 0.012 0.007 0.004 0.005 0.008

Table 5.4: Accuracy of exterior orientation parameters for RolleiDB44 images.

Image No 1 2 3 4 5 6

σX0 (m) 0.256 0.227 0.214 0.214 0.255 0.252

σY 0 (m) 0.176 0.161 0.155 0.155 0.160 0.177

σZ0 (m) 0.189 0.124 0.078 0.080 0.128 0.194

σOmega (deg) 0.005 0.005 0.005 0.005 0.005 0.005

σPhi (deg) 0.008 0.007 0.007 0.007 0.007 0.008

σKappa (deg) 0.002 0.002 0.002 0.002 0.002 0.002

Table 5.5: Accuracy of exterior orientation parameters for Zeiss-LMK images.

The tables 5.3, 5.4, and 5.5 show that the results SD of exterior orientation pa-

rameters for RolleiDB44 are worse than those of the UltraCam-X block and Zeiss-

LMK. The higher accuracy corresponds to blocks with high overlaps where the

lower accuracy is formed for blocks with lower overlaps. So, a large image over-

lap provides a strong block geometry. This positively influences the accuracy of

exterior orientation parameters as proved in [Cramer, 2001].

5.3 Preparation of the reference and test models

5.3.1 Preparation of the reference models

The 3D reference buildings model have been reconstructed based on the pho-

togrammetric processing of images acquired with UltraCam-X stereopairs because

of their high quality compared to the other datasets. The pixel size is 7.2 µm.

After relative and absolute orientation of the images, the RMSE of 14 GCPs is less

than 9 cm. The method of building models extraction will be explained in section

5.3.2. Figure 5.5 shows the 3D building models reconstructed from UltraCam-X

images. Once the reference buldings models are reconstructed, they are used to

test buildings reconstructed with other datasets and with several reconstruction
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algorithms. The data used for creating the test models are :

- Airborne images from Zeiss LMK,

- LiDAR data only,

- Combination of airborne images from UltraCam and LiDAR data.

Figure 5.5: Reference 3D building models reconstructed from UltraCam-X
images.

5.3.2 3D building models reconstructed from digital im-

ages

3D building modeling in the city using the technology of photogrammetry is

one of the most important topics in photogrammetry. There are many differ-

ent methods of 3D building modeling and many different applications for 3D city

models. Some active works in the photogrammetric, remote sensing and com-

puter vision communities are focused on the 3D building modeling approaches

[Hammoudi and Dornaika, 2011]. There are two main approaches for constructing

buildings in 3D: raster based and vector based approaches. In raster approaches,
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the buildings are represented by uniform grids with (location and height) asso-

ciated attributes. In vector approaches, the buildings are represented by linear

features such as lines and surfaces.

The vector format for describing 3D geometry is considered to be more appropriate

for urban areas modeling than the raster representation. 3D information for the

elements of the building, roof elements, walls, and footprints are necessary for

the modeling of a building. The aerial images give the advantage to cover wide

areas at the scale of a city. In addition, roof models are visible from aerial images.

However, architectural details such as windows, door or balconies may not be

visible in aerial images [Amat et al., 2010]. The geometry of objects (roofs, walls,

and footprints) can be extracted from multiple images. The flowchart of the semi-

automatic approach developed for reconstructing a building based on stereo-images

and used in this work is depicted in figure 5.6.

The first step of building reconstruction is roof digitizing. Then, the projection

of these points onto the ground is done in order to obtain footprints. Finally,

planes of faces are reconstructed. The manual work in this method is the points

digitizing. Then the projection of roof points onto the ground for defining the wall

is done automatically. The reconstruction approach is based on the assumption

that:

(a) every solid object can be described by a decomposition of its boundaries;

(b) the walls are vertical and reach either the ground or another surface of the

constructed model.

Figure 5.6: Flowchart of 3D building modeling from aerial images.

In this work, we restrict our building models to simple polyhedral models, as

illustrated in figure 5.7.
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Figure 5.7: Example of a 3D building model reconstructed from aerial images.

Figure 5.8 shows the results of 75 samples of building models reconstructed in the

test site, by using this semi-automatic solution. The reconstructed buildings in

the test site have three types of roofs (flat, hip and gable roof).
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Figure 5.8: A part of an aerial UltraCam-X image (above) over Strasbourg city
and 3D building reconstruction results from UltraCam-X stereopairs (below).
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5.3.3 3D buiding models reconstructed from combination

of LiDAR and airborne imagery datasets

Another way to create 3D buildings in photogrammetry consists in combining the

airborne UltraCam-X images and LiDAR datasets. The semi-automatic method

has been developed by [Zhang et al., 2011] is based on the complementarities of

airborne LiDAR and airborne imagery (UltraCam-X). This work results from the

cooperation of our group with Wuming Zhang, Key Laboratory of Remote Sensing

Science, School of Geography, Beijing Normal University, in Beijing, China. The

approach consists in 4 steps as shown in figure 5.9.

Figure 5.9: Flowchart of the reconstruction process using LiDAR data and
aerial images [Zhang et al., 2011].
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It works as follows:

1- Extraction of primitives rand estimation of initial parameters;

With the help of airborne imagery and LiDAR point clouds of the same area, the

building is decomposed into several primitives. Then the primitives parameters are

measured manually on LiDAR point clouds and airborne imagery, such as length,

width, height, and orientation. The parameter values can be used as fixed values

(constraints) or initial values in the following optimization procedure.

2- Selection of features primitives on the imagery;

Corners are selected on the airborne imagery, and planes are selected in the LiDAR

point clouds. These features will be used as observed values in the following

optimization procedure.

3- Optimisation of the values of the primitive parameters by constraints;

Based on the type and parameters of primitives, the 3D coordinates of the features

primitives, such as 3D coordinates of the corners, can be calculated. They will be

used as computed values in the next optimization procedure.

4- Representation of 3D building models based on optimized primitives;

When a 3D building model has correct shape and is located in the correct place

in 3D space, then 3D building can be represented by these primitives with the

optimized parameters.

This method has been applied to 26 building of the test site. Figure 5.10 shows

the results of their 3D reconstruction.
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Figure 5.10: 3D building reconstruction combination of LiDAR and airborne
images.

5.3.4 3D building models reconstructed from LiDAR dataset

In this part, a model-driven building reconstruction method using airborne LiDAR

data is presented. This method has been carried out by Yong Xiao from the

Chinese Academy of Sciences (China). This semi-automatic reconstruction process

comprises 3 steps.

1- At first, building points are segmented in order to isolate building roofs (see

figure 5.11-a);

2- Then, a topological graph is constructed for the roof to recognize shapes of

buildings. More details are given in [Verma et al., 2008];

3- Once simple roof types are determined, building models are reconstructed with

predefined models. Outlines of the buildings are first estimated with the minimum

area bounding rectangle while the other key vertices and segments are obtained

through the roof-topology graph.
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Figure 5.11 shows the result of roof reconstruction in figure 5.11-a and 3D building

reconstruction in figure 5.11-b.

Figure 5.11: 3D building reconstruction from LiDAR data; a) Roof recon-
struction; b) 3D building reconstruction

The three methods presented in the three previous sections have been used to

reconstruct 75 samples of 3D models from aerial images, 26 samples of 3D models

from LiDAR and aerial images, and 8 samples of 3D models from LiDAR datasets.

In the next part, we assess the 3D reconstructed building models, by applying the

proposed multi-dimensional assessment approach.

5.4 Assessment of building models

In this section, results of accuracy assessments are presented after application of

the proposed multi-dimensional assessment approach.
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5.4.1 1D accuracy assessment

5.4.1.1 Using RMSE computations

The calculation of RMSE for analyzing the precision of the complete 3D building

is an interesting solution. RMSE is computed based on the deviations between

reference and test models, in X, Y and Z-directions. Deviations are calculated

between homologous nodes, as well as between centers of gravity of homologous

planes that compose the tested and respectively the reference building. As already

mentioned in section 5.3.1, the reference building models are the models recon-

structed from UltraCam-X. Table 5.6 and 5.7 present the RMSE results obtained

for nodes describing the buildings reconstructed with the three kinds of datasets

(exclusively aerial images; exclusively LiDAR data; combination of both). The

RMSE obtained for the datasets in both methods (nodes and centers of gravity)

are approximately the same. Only the RMSE in X-direction for the models re-

constructed from LiDAR datasets is not the same. Tables in appendix A show

the RMSE for each building model obtained by considering homologous nodes and

centers of gravity of homologous planes.

3D building models RMSE (m) SD (m)
based on X Y Z X Y Z

Airborne images [75 samples] 0.25 0.32 0.51 0.12 0.18 0.25
Combination of airborne images 0.66 0.69 1.18 0.39 0.56 0.24

and LiDAR datasets [26 samples]
LiDAR dataset [8 samples] 0.97 1.10 1.13 0.39 0.14 0.10

Table 5.6: RMSE results based on homologous nodes.

3D building models RMSE (m) SD (m)
based on X Y Z X Y Z

Airborne images [75 samples] 0,21 0.26 0.50 0.16 0.26 0.43
Combination of airborne images 0.50 0.48 0.94 0.30 0.29 0.26

and LiDAR datasets [26 samples]
LiDAR dataset [8 samples] 0.64 0.99 1.00 0.34 0.17 0.09

Table 5.7: RMSE results based on gravity centers of homologous planes.
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The models reconstructed from aerial images give better results than the other

datasets. The models reconstructed from combination of LiDAR and aerial im-

ages give high RMSE in Z-direction. Worse results are obtained for models recon-

structed with LiDAR data only. If we consider these results and the reconstruction

methods presented for creating 3D buildings, we would be tempted to say that the

technique used to create the buildings from Zeiss LMK images only is the most

effective. However the error budget is not only composed of errors due to the re-

construction algorithm, but also of errors coming from the raw data. For instance,

low point clouds density and errors due to the georeferencing of the LIDAR and

the imagery data affect also the final results.

5.4.1.2 Using the French legal text published in 2003 (arrêté sur les

classes de précision)

Another way to test the reconstructed models consists in applying the French

legal text (arrêté sur les classes de précision) published in the Official Journal

from October 30, 2003. This legal text gives instructions about accuracy classes

applicable to several categories of survey works. In the case of surveying points

assessments, we must calculate deviation between the points to check and the

reference points (equation 5.1).

e =
√

(Xref −Xtest)2 + (Yref − Ytest)2 + (Zref − Ztest)2 (5.1)

Where (Xref , Yref , Zref ) are the coordinates of the reference points and (Xtest, Ytest, Ztest)

are the coordinates of the test points. Then calculate the mean difference is cal-

culated (EmoyPos) in equation 5.2.

Emoypos =
1

N

N∑
i=1

ei (5.2)

Where N is the number of points in the sample.

Choice of parameters for the application of the standard model (modèle

standard).

To calculate the threshold allowing to validate or not the reconstructed models,

one must choose a few parameters:
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- An accuracy class (called ”classe de précision”). We take here [xx] = 0.50 m

(according to the characteristic of input data),

- A security coefficient (coefficient de sécurité) C, which corresponds to the min-

imum ratio of accuracy classes of references and test datasets. Here we take the

value C = 1 as mentioned in chapter 4. It means that the control points (nodes

of the reference models) have been observed with the same precision as the test

points (nodes of the test models).

- A factor k, which is equal to 2.11 as given by table.1 of the legal text (Article 5,

page. 18547) for an assessment of 3D points (X,Y,Z coordinates).

Calculation of thresholds with the standard model (”modéle standard”)

- First threshold

The average difference in position should stay under:

0.50
(
1 + 1

2∗12
)

= 0.75 m

- Second threshold

The second threshold at which the sample is compared corresponds to an upper

limit that only a certain number of points N ′ is allowed to exceed:

2.11 ∗ 0.50
(
1 + 1

2∗12
)

= 1.58 m

- Third threshold

This threshold value is never exceeded and is the same formula as above, increased

by a factor of 1.5.

1.5 ∗ 2.11 ∗ 0.50
(
1 + 1

2∗12
)

= 2.37 m

By comparing these thresholds with the 75 buildings reconstructed from airborne

imagery datasets (Zeiss LMK), we can find that 48 buildings of these reconstructed
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buildings are validated. While the models reconstructed from LiDAR and combi-

nation of LiDAR with imagery datasets (UltraCam-X) are not acceptable regard-

ing the required ”precision class” (classe de précision). This is due to the quality

of the raw data, since both datasets containing imagery data seem to provide bet-

ter results than the dataset based on LiDAR data exclusively. However, further

assessment analysis is necessary. This is done in the next sections.

5.4.2 2D accuracy assessment

As explained in chapter 4, the 2D assessment consists in evaluating surface areas

of planes composing the 3D building model. For that, the test planes are com-

pared to reference planes and quality indices are calculated based on their surface

areas. These quality indices are applied to all building models reconstructed in

our work. The reference surface models are the surfaces of buildings reconstructed

from UltraCam-X.

5.4.2.1 Models reconstructed from airborne imagery dataset

The results of the quality indices calculated for surface samples in building models

(75 samples) reconstructed from Zeiss LMK dataset are shown in figure 5.12. The

graphs present on the Y-axis the quality indices and on the X-axis the volume of

the building. Figure 5.12 to figure 5.14 show that small buildings provide worse

quality indices.

Table 5.8 summarizes the statistics of quality indices computed according to chap-

ter 4 and applied to 75 samples of reconstructed building models of airborne im-

agery datasets. It shows the quality indices in each study case for both raster and

vector format. The mean values of ρd and ρq are about 0.9, while ρqw is higher

than 0.6 and the other three indices are close to zero. This means that the gen-

eral evaluation of the 2D surface of building models extracted from stereopairs are

closed from each other. The mean values of quality indices can not be considered

alone. Because, in order to evaluate each building, one should check the quality

factor values of each building model separately. Moreover, surface quality indices

are affected by the building size as shown in figures 5.12 to figure 5.14. In raster
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format, the running time of the program depends on the size of the building and

the chosen pixel size for rasterizing the polygon describing the face under study.

3D building models Model ρd ρq ρb ρm ρf ρqw
based on format [SD] [SD] [SD] [SD] [SD] [SD]

Airborne images Vector 0.938 0.891 0.089 0.085 0.062 -
[75 samples] [0.043] [0.060] [0.132] [0.119] [0.051]

Raster 0.943 0.899 0.064 0.064 0.061 0.697
[0.042] [0.056] [0.050] [0.056] [0.062] [0.078]

Table 5.8: Statistics of 2D quality indices obtained for buildings reconstructed
from airborne imagery dataset.
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(a) Raster format

(b) Vector format

Figure 5.12: Quality indices used for 2D assessment and calculated for models
obtained from airborne imagery dataset; a) for raster models; b) for vector

models.
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5.4.2.2 Models reconstructed from combination of LiDAR and imagery

datasets

Figure 5.13 shows the results of the quality analysis of surface samples recon-

structed from combination of LiDAR and imagery (UltraCam-X) datasets.

Table 5.9 summarizes the mean values of quality indices in raster and vector format

of 26 samples of buildings reconstructed from combination of airborne imagery and

LiDAR datasets. The mean values of ρd and ρq are around 0.8. ρqw is higher

than 0.5 and the other three indices are higher than 0.1. These results are worse

than the results obtained for the assessment of models reconstructed from airborne

imagery dataset exclusively. This justifies the high RMSE values obtained in Z

direction for that dataset (see table 5.6).

3D building models Model ρd ρq ρb ρm ρf ρqw
based on format [SD] [SD] [SD] [SD] [SD] [SD]

Combination of Vector 0.867 0.788 0.177 0.154 0.120 -
images and [0.057] [0.079] [0.105] [0.121] [0.092]

LiDAR datasets Raster 0.878 0.802 0.157 0.134 0.109 0.558
[26 samples] [0.053] [0.073] [0.094] [0.102] [0.085] [0.124]

Table 5.9: Statistics of 2D quality indices obtained for buildings reconstructed
from combination of imagery and LiDAR datasets.
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(a) Raster format

(b) Vector format

Figure 5.13: Quality indices used for 2D assessment and calculated for models
obtained from combination of LiDAR and imagery datasets; a) for raster models;

b) for vector models.
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5.4.2.3 Models reconstructed from LiDAR dataset

The results of the quality analysis of surface samples reconstructed from LiDAR

dataset are shown in figure 5.14.

Table 5.10 summarizes the mean values of quality indices of 8 samples of recon-

structed building models of LiDAR dataset in raster and vector format. The mean

value of ρd is around 0.8 and 0.7 for ρq. ρqw is higher than 0.5 and the other three

indices are around 0.2. These results are worse than the results obtained for the

assessment of models reconstructed from airborne imagery dataset exclusively and

combination of both airborne imagery and LiDAR datasets. This justifies the high

RMSE values obtained in Y and Z directions for that dataset (see Table 5.6). Ta-

bles B.3 and B.6 in appendix B show the surface quality indices calculated for

every building of the 8 buildings under study, separately.

3D building models Model ρd ρq ρb ρm ρf ρqw
based on format [SD] [SD] [SD] [SD] [SD] [SD]

Vector 0.840 0.711 0.219 0.250 0.189 -
LiDAR dataset [0.064] [0.054] [0.109] [0.053] [0.035]

[8 samples] Raster 0.841 0.713 0.217 0.249 0.197 0.494
[0.065] [0.055] [0.110] [0.053] [0.034] [0.063]

Table 5.10: Statistics of 2D quality indices obtained for buildings recon-
structed from LiDAR dataset.
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(a) Raster format

(b) Vector format

Figure 5.14: Quality indices used for 2D assessment and calculated for models
obtained from LiDAR dataset; a) for raster models; b) for vector models.
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5.4.2.4 Models created from image matching

In this section, the data from RolleiDB44 medium format and UltraCam-X cam-

eras are compared. Digital aerial images from Ultracam-X (4 images) and RolleiDB44

(5 images) of the same sites over Strasbourg City are available. Our approach fo-

cuses on characteristic planes extracted from both datasets. The reference dataset

has been created from UltraCam-X stereopairs. Ground Control Points are mea-

sured by GNSS systems in specific places, in order to distribute them appropriately

in the area of interest.

A 3D orientation process includes the determination of the position and attitude

of an object. In photogrammetry, the orientations are described as interior and ex-

terior orientations. Interior orientation defines the internal geometry of a camera

or sensor as it existed at the time of image capture. Lens distortion deteriorates

the positional accuracy of image points located on the image plane. 3D ground

coordinates have been generated afterwards by photogrammetric matching algo-

rithms.

As a result of that, the 3D ground coordinates have been calculated at any point

in an overlapped area zone of images in the block. LPS software systems is used

to compute the DSM composed of cells of 0.2 m in X and Y. Figure 5.15 and 5.16

show the 3D point clouds created from UltraCam-X and RolleiDB44 images. The

difference between the two results are due to the change in sensors types and flight

parameters.

Design of plane samples

The present section describes the 2D accuracy assessment of 3D photogrammetric

data. A segmentation has been performed on the 3D matched point clouds in

order to isolate points describing planes. Principal Component Analysis (PCA)

is the method used to calculate the parameters of the optimal plane. PCA is a

useful statistical technique that reduces a set of data by performing a covariance

analysis between factors [Borcard et al., 2011]. PCA is suitable for datasets of

multiple dimensions, for example in our case a set of point clouds created from

a digital sensor. Figure 5.17 shows how the plane fitting has been realized based

on the point clouds. Seven samples are chosen in order to achieve this study.

Table 5.11 shows the Mean Distance (MD) in computing medium planes from

(UltraCam-X and RolleiDB44) data and number of the used points in order to
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Figure 5.15: 3D point clouds produced from UltraCam-X image (1,976,578
points).

Figure 5.16: 3D point clouds produced from Rollei image (746,475 points).

create plane parameters. The computed distances are lying between 0.09 m and

0.23 m in UltraCam-X samples and between 0.37 m and 0.86 m in Rollei samples.

By analysing this table, it is possible to compare planes created from two blocks.

Although the plane samples are chosen on the same feature, the MD is higher in

Rollei block.

Results of the assessment

The approach developed in this work and detailed in chapter 4 has been applied

on these 7 samples in order to evaluate their quality in 2D. In order to achieve
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Figure 5.17: Fitting plane from 3d dataset
[Mohamed and Grussenmeyer, 2011].

Mean Distance calculation (m)
Plane For UltraCam-X For Rollei

No [Number of points] [Number of points]

1 0.23 [114] 0.56 [117]

2 0.13 [179] 0.45 [78]

3 0.21 [525] 0.48 [142]

4 0.21 [623] 0.64 [402]

5 0.13 [91] 0.86 [124]

6 0.10 [297] 0.37 [191]

7 0.21 [162] 0.75 [134]

Table 5.11: Mean Distances calculated for (MD) in computing medium plane

this process, an algorithm has been developed in Matlab for the computing of the

quality indices. Table 5.12 presents the results of the comparison. Reference data

are the planes created with the UltraCam-X data. The values of two indices (ρd

and ρq) are close to 1 and the other three indices are close to zero. This means

that the geometry of planes extracted from both datasets is of good quality.

The accuracy of the points clouds obtained through image matching is largely

influenced by the geometric configuration (base-to-height ratio B/H). Large B/H

ratios entail increased dissimilarity of base and match images. The main rea-

sons are changes in perspective and in illumination. As a consequence, image
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Plane ρd ρq ρb ρm ρf

1 0.9624 0.7503 0.0390 0.2937 0.2827

2 0.9491 0.8439 0.0536 0.1313 0.1246

3 0.9512 0.9436 0.0513 0.0084 0.0080

4 0.9111 0.8176 0.0976 0.1256 0.1144

5 0.9991 0.9112 0.0009 0.0966 0.0965

6 0.8801 0.8552 0.1363 0.0330 0.0291

7 0.9548 0.8954 0.0474 0.0694 0.0663

Table 5.12: 2D quality indices calculated for planes extracted from point
clouds.

matching performs worse and the number of successfully matched points is small

[Rothermel and Haala, 2011]. The expected height accuracies σZ based on the

ratio B/H for two sensors is shown in equation 5.3 [Kraus, 1993].

σZ =
Z2

c.B
· σpξ (5.3)

Where c is the focal length of the camera and σpξ is the accuracy of the parallax.

It is assumed that σpξ is given according to the accuracies obtained for each block

after bundle adjustment. For UltraCam-X block, σpξ is 2 µm and for RolleiDB44

block is 13 µm. σZ for UltraCam-X equal to 0.20 m and for RolleiDB44 equal to

1.28 m.

On the other hand, one can compute the error estimation based on the orthog-

onal distance between the reference surfaces (UltraCam-X) and tested surfaces

(RolleiDB44). Table 5.13 shows the mean distance between planes created from

UltraCam-X and RolleiDB44 at the same plane (reference and test). The values of

MD between planes are not far from the expected errors in Z deducted from B/H

ratio (equation 5.3) and MD was computed for medium planes from two blocks.
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Plane MD between
No two planes (m)

1 1.72

2 1.15

3 1.79

4 1.93

5 1.12

6 1.00

7 1.18

Table 5.13: Mean distance calculation between two planes.

2D quality indices allow to assess the surface shape that composing the building

model by superimposing them to the corresponding surface in the reference. The

3D quality indices can asses building model as one object. The results of quality

indices have been applied to photogrammetric and LiDAR datasets will be shown

next section.

5.4.3 3D accuracy assessment

The approach developed for assessing reconstructed buildings in 3D is based on

the comparison of volumes. The principle has been explained in chapter 4.

5.4.3.1 Models reconstructed from airborne imagery dataset

The results of the quality analysis of surface 3D building models (75 samples)

reconstructed exclusively from Zeiss LMK datasests are shown in figure 5.19.

Table 5.14 summarizes the statistics obtained for the indices computed according

to chapter 4 and applied to 75 samples of buildings reconstructed from airborne

imagery datasets. The 3D quality indices have been calculated for the models

reconstructed in vector as well as in raster format. The mean values of V ρd and

V ρq are around 0.9. V ρqw is higher than 0.8 and the other three indices are

close to zero. This means that the general evaluation of the 3D building models

extracted from stereopairs are close to each other as shown in figure 5.18. Figure

5.18 presents 8 of the 75 samples of building models reconstructed in the test site

(in yellow colour) as well as the corresponding reference (in red). One can see

clearly that both reference and test models are close to each other.
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Figure 5.18: Reference and test model obtained from aerial images (8 of 75
buildings).

As already mentioned for the 2D assessment, the mean values of volume quality

indices can not be considered alone. Because, in order to evaluate each building,

one should check the result values of each building model separately. Moreover,

volume metrics are affected by the building size as shown in figures 5.19 to 5.23. In

raster format, the running time of the function depends on the size of the building

model and the chosen voxel size for voxelizing the 3D model. Further analysis

of advantages and drawbacks provided by raster and vector formats is made in

section 5.5.

3D building models Model V ρd V ρq V ρb V ρm V ρf V ρqw
based on format [SD] [SD] [SD] [SD] [SD] [SD]

Airborne images Vector 0.943 0.895 0.063 0.058 0.054 -
[75 samples] [0.041] [0.054] [0.054] [0.041] [0.036]

Raster 0.917 0.853 0.095 0.088 0.079 0.827
[0.056] [0.077] [0.083] [0.061] [0.049] [0.060]

Table 5.14: Statistics of 3D quality indices obtained for buildings recon-
structed from airborne images.
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(a) Raster format

(b) Vector format

Figure 5.19: Quality indices used for 3D assessment and calculated for models
obtained from airborne images; a) for raster models; b) for vector models.
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5.4.3.2 Models reconstructed from combination of LiDAR and air-

borne imagery datasets

Figure 5.21 shows the results of the quality analysis of 3D building models recon-

structed from combination of LiDAR and images (UltraCam-X).

Table 5.15 summarizes the mean values of quality rates in raster and vector format

of 26 samples of buildings reconstructed from combination of airborne imagery and

LiDAE datasets. In vector format, the mean values of volume quality indices of

V ρd and V ρq are around 0.8 and the other three indices are around 0.1. In raster

format, the mean values of volume quality indices of V ρd is 0.8 and V ρq is around

0.7. V ρqw is higher than 0.7 and the other three indices are higher than 0.1. These

results are worse than those obtained for the models reconstructed from airborne

imagery datasets. This justifies the high RMSE values obtained in Z direction for

that dataset, see table 5.6 and figure 5.20. Figure 5.20 shows 8 of 26 samples of

reconstructed buildings (in green) and their reference buildings (in red). One can

see that there are shift in Z-direction between reference and test model.

Figure 5.20: Models obtained from combination of aerial images and LiDAR
datasets (8 of 26 buildings).
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3D building models Model V ρd V ρq V ρb V ρm V ρf V ρqw
based on format [SD] [SD] [SD] [SD] [SD] [SD]

Combination of Vector 0.875 0.809 0.148 0.102 0.089 -
images and [0.057] [0.082] [0.079] [0.101] [0.089]

LiDAR datasets Raster 0.846 0.753 0.188 0.155 0.130 0.691
[26 samples] [0.054] [0.079] [0.082] [0.112] [0.094] [0.089]

Table 5.15: Statistics of 3D quality indices obtained for buildings recon-
structed from combination of images and LiDAR datasets.
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(a) Raster format

(b) Vector format

Figure 5.21: Quality indices used for 3D assessment and calculated for models
obtained from combination of LiDAR and images; a) for raster models; b) for

vector models.
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5.4.3.3 Models reconstructed from LiDAR dataset

The results of the quality analysis of 3D building models reconstructed from Li-

DAR datasets are shown in the figure 5.23. The graphs present on the Y-axis the

quality indices and on the X-axis the volume of the building. Figure 5.19 to figure

5.23 show that small buildings with worse quality indices.

Table 5.16 summarizes the mean values of quality rates in raster and vector format

of 8 samples of building models reconstructed from LiDAR datasets. In vector

format, the mean values of volume quality indices of V ρd and V ρq are around 0.8

and the other three indices are higher than 0.1. In raster format, the mean values

of volume quality indices of V ρd is 0.8 and V ρq is around 0.6. V ρqw is around

0.6 and the other three indices are higher than 0.2. These results are worse than

those obtained for the models reconstructed from airborne images datasets and

combination of both images and LiDAR datasets. This justifies the high RMSE

values obtained in Y and Z directions for that dataset, see table 5.6 and figure

5.22. Figure 5.22 shows the results of 8 samples of building reconstruction from

LiDAR data in the in cyan colour and reference model in red colour. One can see

that there are shift in Y and Z-direction between reference and test model.
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Figure 5.22: Models obtained from LiDAR datasets.

All tests applied on a sample of building reveals that a systematic error affects the

Z coordinates of the LiDAR data used here. This vertical shift has already been

observed in table 5.6. Moreover it has been observed in a study where combination

of airborne laser scanner and terrestrial laser scanner data have been combined

[Boulaassal et al., 2011].

The volume calculated for every building is explained and presented in tables A.1,

A.2, and A.3 in Appendix A. The volumetric quality indices for each building

separately are shown in tables C.1 to C.6 in Appendix C.

3D building models Model V ρd V ρq V ρb V ρm V ρf V ρqw
based on format [SD] [SD] [SD] [SD] [SD] [SD]

Vector 0.885 0.791 0.136 0.136 0.120 -
LiDAR dataset [0.070] [0.067] [0.093] [0.043] [0.039]

[8 samples] Raster 0.824 0.686 0.225 0.246 0.201 0.609
[0.082] [0.072] [0.125] [0.040] [0.023] [0.075]

Table 5.16: Statistics of 3D quality indices obtained for buildings recon-
structed from LiDAR dataset.
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The 2D and 3D quality indices have been used to assess the 75 samples of 3D

models from airborne images, 26 samples of 3D models from LiDAR and aerial

images, and 8 samples of 3D models from LiDAR datasets. In the next section,

we will make a comparison between 2D and 3D assessment.
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(a) Raster format

(b) Vector format

Figure 5.23: Quality indices used for 3D assessment and calculated for models
obtained from LiDAR datasets; a) for raster models; b) for vector models.
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5.4.4 Comparison between 2D and 3D assessments

Statistical tests can be used for comparing two standard deviations and to see

if they are significantly different. The statistical F-test is applied in order to

compare the results of using quality indices in 2D and 3D. The test is applied

to the building models reconstructed from airborne images. Since the sample is

composed of 75 buildings, the degrees of freedom (samplesize− 1 = 74) and the

confidence level = 95 %, we obtain the critical value Fcrit = 1.47. The ratio of

variances of samples is tested in this part (between raster and vector format). For

that, it can be concluded that there is a significant change between using 2D and

3D for all indices except V ρm in raster data structure. In vector data structure,

there is no significant change between using 2D and 3D for V ρd and V ρq. For

other indices in vector based assessment, there is a significant change between

using 2D and 3D assessment. Table 5.17 shows the effect of raster and vector

data structure on the quality indices obtained for the 2D assessment and the 3D

assessment.

Data structure significant unsignificant
Raster All indices except V ρm V ρm
Vector V ρb , V ρm and V ρf V ρd and V ρq

Table 5.17: Results of statistical F-test applied between quality indices
calculated for the 2D and 3D assessments.

In general, the results of 3D quality assessment are not the same as in 2D assess-

ment. There may be close values in results of some indices. The 3D assessment

takes into account the threshold between 2D surfaces, this justifies the differences

between 2D and 3D assessments. It is clearly shown on the results of the quality

indices obtained for the assessment of the models extracted from LiDAR datasets.

A short discussion about raster and vector models will be given in next section

based on the work of 2D and 3D assessment of 3D building models.
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5.5 Discussion about raster and vectors models

Vector and raster models are both important in many applications. Spatial data

can be stored using either vector or raster data structure. The use of both data

structures depends on the techniques used to collect the data. In this part, the

two data structures are compared to see the differences between them. Each

type of model format has its strengths; therefore, it’s interesting to use both.

An important difference between these two data structures is noticeable in the

visualization of the data. In general, vector data structure produces smaller file

sizes than raster image [Polidori, 2011] because a raster data structure needs high

capacity for all pixels while vector representation of the same area can be reduced

to a list of point coordinates related by primitives (points, lines, and surfaces). In

the case of digital terrain models, for example, vector format is particularly efficient

when the terrain is homogeneous regarding the relief. This can be extended to

urban areas. A 3D model of a city generates bigger files when represented in voxels

than in vector shapes. Besides the size issue, to handle vector data is easier than

raster data. It is described by fewer items and it is more flexible to be adjusted

for different scales. For example, a projection system in mapping application has

a good performance in vector models.

Vector data may be converted easily into raster data. In contrast, the conversion

from raster to vector data is still difficult to solve without loss of information. The

conversion between both data structures is sometimes necessary, as for example

in the production of maps [Taie et al., 2011]. The entities ”shape” and ”position”

can be represented more accurately in vector data structure than in raster data

structure. Table 5.18 summarizes, though a comparison between raster and vector

data structure, the main advantages of each structure, based on several comparison

items.
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Items Raster Vector
Models creation Fast Variety from 2D and 3D

Data representation By pixel (in 2D) Represented without
or voxel (in 3D) generalization

Structure of data Simple Complex
(grid) (points, lines, surfaces)

Volume of data Large small
Representation of Difficult Easy

linear features
Areas and Less accurate High accurate

volumes calculation
Analysis of data Good and usually Algorithms or
and processing easy to program functions are complex

Time processing High Less than a second
in this research

(2D and 3D assessment)

Table 5.18: Comparison between raster and vector based on modeling of
buildings.

Furthermore, the same statistical F-test can be applied in order to compare the

results of raster and vector data structure. The test is applied to the building

models reconstructed from airborne images. Since the sample is composed of 75

buildings, the degrees of freedom (samplesize− 1 = 74) and the confidence level

= 95 %, we obtain the critical value Fcrit = 1.47. The ratio of sample variances is

tested in this part (between raster and vector format). It can be concluded that

there is no significant change between using raster and vector for ρd and ρq. For

the other quality indices calculated in the 2D assessment, there is a significant

change between using raster and vector data structure. The same test is applied

in 3D. The parameters of the test are the same as in 2D. Also, the ratio of sample

variances will be tested regarding raster and vector formats. For that, it can be

concluded that there is a significant change between using raster and vector data

structure for all volumetric quality indices. Table 5.19 shows the effect of raster

and vector data structure on the result quality indices calculated for the 2D and

the 3D assessment.
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2D or 3D assessments significant unsignificant
2D ρb - ρm - ρf ρd and ρq
3D all indices -

Table 5.19: Results of statistical F-test applied between raster and vector
data structure.





Chapter 6

Conclusion and perspectives

Aim of this research project was to introduce an approach in order to evaluate

3D building models resulting from the processing of photogrammetric and LiDAR

datasets. Currently, the users of 3D models have no tool for evaluating the quality

of the models they are working on. Purpose of this work was to analyze existing

methods and to provide a solution allowing a thorough examination of the quality

of a 3D model. In this study, 3D building models have been created from the

processing of aerial images, LiDAR dataset and from the combination of both. The

airborne imagery data were Zeiss LMK images, UltraCam-X images and LiDAR

point clouds.

For assessing a 3D model, several factors must be taken into account: the data

quality, the processing chain quality, and the final 3D building. In this context,

various achievements were gained.

Digital aerial cameras can provide highly overlapping airborne imagery. This is

asset for automatic image matching especially for surfaces with relatively little

texture. The base over height ratio is a factor which impacts also the final accuracy

of the building reconstruction. It means that the quality of the 3D building created

from stereo-image processing is largely influenced by the geometric configuration of

the acquisition (base-to-height ratio) and the image matching step. The matching

algorithm developed in LPS software is well known for its high accuracy and

reliability. Also, the errors coming from a low point clouds density, or errors due

to the georeferencing of the LiDAR are factors which impact the final accuracy of

the building reconstruction.

121
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In this thesis, three semi-automatic methods for 3D building reconstruction in

vector format have been mentioned and carried out on data covering the same test

site. These methods have been selected because they are suggested in the literature

and they allow the processing of the photogrammetric data and/or LiDAR data.

In order to guaranty a complete and thorough assessment of individual buildings,

we developed a multi-dimensional assessment approach.

Multi-dimensional approach means that the assessment is divided into an assess-

ment performed in the first dimension (1D), second dimension (2D), and third

dimension (3D). This approach requires reference buildings, that is to say build-

ings which are more accurate than the test models. The assessment is based on

the comparison of the test model with the corresponding reference model.

1D assessment gives an overall idea about the reliability of the reconstructed

model. It is based on the calculation of RMSE (in easting, northing, and height)

of differences between corresponding vertices that describe the building. It has

been shown that the use of center of gravity of the building faces and roofs avoids

a lot of mistakes in the assessment process. The application of the 1D assessment

on a large sample of buildings created with multiple datasets and reconstruction

processes revealed that a systematic error affects the Z coordinates of the LiDAR

data used here. This vertical shift has already been observed in a previous study

where the same LiDAR data have been used.

In order to ensure that the deviations observed between the test model and its

reference are tolerable, the order of accuracy classes published in the Official Jour-

nal in 2003 (arrêté sur les classes de précision) has been applied. It provides a

standard model allowing to check if the deviations observed enter in the required

precision class. By taking a precision class of [0.50 m] only 49 of the 75 test models

reconstructed from airborne imagery datasets (Zeiss LMK images) and compared

to their reference (UltraCam-X) are acceptable. The models created from LiDAR

only and from combination of LiDAR with imagery datasets (UltraCam-X) are not

accepted. This may be explained by the high shifts in Z-direction coming from

LiDAR. This error must be corrected for the whole dataset before reconstructing

the building from this dataset.

2D assessment consists in qualifying the superimposition of planar surfaces. It is

particularly appropriate for the accuracy assessment of 2D features such as roofs
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and facades. A method for 2D quality evaluation has already been suggested in

the literature. It is based on the comparison between reference and test planes

and provides quality indices. The method is applicable for planes in raster and

vector format, as it has been shown in this work. The available photogrammetric

and LiDAR datasets have therefore been used for extracting planes. The method

is based on estimating the degree of superposition between the surface area of

two planes (reference and test). From a computational perspective, the faces of

the building are of satisfying quality if the values of ρd, ρq, and ρqw are close to

1, and the values of ρb, ρm, and ρf are close to 0. The main drawback of these

quality indices is that they are affected by the size of the surface areas. For a same

deviation, a large surface area will provide better quality indices than a small area.

By applying statistical F-test to compare between raster and vector data structure

in 2D, the results of quality indices were not the same for ρb, ρm and ρf using

raster and vector format with 95% confidence level. While they were the same for

ρd and ρq indices.

Therefore, the 2D quality indices give an indication about the degree of similarity

of surfaces. They are not sufficient for assessing the geometric position of the

elements of the building model and should be supplemented by statistical criteria

such as deviations and RMSE.

Two surface areas of building facade (test polygon compared reference polygon)

might be superimposing correctly in the frame of the facade, but not in depth,

that’s why an assessment in the third dimension must also be performed.

For assessing entire 3D building models, quality indices based on volume ratios

have been considered. We call them ”volumetric quality indices”, as counterpart to

the 2D quality indices. Although the quality indices suggested in the literature are

intended to be used with raster models, this work consider them mainly with vector

models. Indeed, vector model buildings are more faithful to reality than raster

models. The reason why the vector format is rarely addressed in the literature

is given by the complexity of the intersection shape. The 3D assessment consists

in comparing a test building to a reference building in 3D. It means that the

whole building is considered as one object and not as several planes (as in the

2D assessment) or vertices (as in the 1D assessment). This work introduces an

algorithm developed for determining the intersection shape of two vector building

models. It leads to the calculation of the intersection volume. A visual check
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remains very important in the developed processing chain and more particularly

in the step of intersection shape calculation. The 3D assessment also takes into

account the direction of errors (shifts in X, Y, and Z or rotations). The developed

approach should be improved regarding shape characteristics of the buildings.

By applying statistical F-test to compare between raster and vector data structure

in 3D, the results of quality indices were not identical for all indices using raster

and vector format with 95% confidence level. By applying statistical F-test to

compare between 2D and 3D assessment in vector data structure, the results of

quality indices were not identical for all indices except for ρb and ρq with 95%

confidence level. The 3D assessment has also been applied on raster building

models. The quality indices do not give the same results for all indices except ρm

with 95% confidence level.

The multi-dimensional approach developed in this work is suitable for assessing

3D building models (in 1D, 2D, and 3D) reconstructed from photogrammetric and

LiDAR datasets. Whatever the processing chain, this approach focuses on the

quality of the final product. It has been developed for assessing vector models, as

they better reflect the reality than raster models, but it can also be applied on

raster models.

The error budget affecting the final 3D building model is not only composed of

errors due to the reconstruction algorithm, but also of errors coming from the raw

data, like for instance a low point clouds density, errors due to the georeferencing

of the considered data, due to the shape of the produced buildings. The developed

multi-dimensional assessment approach allows to detect the sources of errors, or

at least, to make assumptions about their sources.

Future researches will focus on the extension of this approach to more complex

building models, since it has been limited in this work to buildings with flat,

slope, gable, hip, and pyramid roofs. The potential of the approach for assessing

3D models of other features like trees, for instance, is also an interesting topic.



Appendix A

Volumes and RMSE of building

models

The 3D reference building models have been reconstructed based on the pho-

togrammetric processing of images acquired with UltraCam-X stereopairs. In this

part, volumes of reference (V R), of test (V T ), and of intersection (V I) building

model are shown. These volumes are in raster and vector data structure. These

reference models are used in three tests. The first test, table A.1, is applied for 75

of 3D building models reconstruction based on the photogrammetric processing of

images acquired with Zeiss-LMK stereopairs. Second test, table A.2, is applied to

26 building models reconstruction based on the combination of both photogram-

metric and LiDAR datasets . The third test, A.3, is applied for 8 building models

reconstruction based on the LiDAR processing. RMSEs are computed based on

the deviations between both models (reference and test) in each test, in X, Y and

Z directions. Tables A.4, A.5, and A.6 present the RMSE results from correspond-

ing vertices of each test. Tables A.7, A.8, and A.9 present the RMSE results from

gravity centers of homologous planes of each test.
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Model Vector data structure Raster data structure
ID VI (m3) VT (m3) VR (m3) VI (m3) VT (m3) VR (m3)
1 4276.444 4610.851 4309.365 4163.674 4520.515 4237.214
2 3078.834 3182.204 3222.063 2986.650 3113.631 3152.934
3 3306.440 3703.864 3496.358 3302.852 3615.412 3407.427
4 4520.418 4741.505 4902.071 4415.306 4656.879 4823.060
5 2762.050 2941.004 2967.645 2619.175 2859.034 2881.049
6 4152.392 4392.801 4217.995 3965.985 4272.408 4113.702
7 4186.011 4313.750 4433.102 4064.504 4178.799 4313.137
8 947.553 1146.843 1006.305 892.377 1093.873 964.368
9 14683.664 15313.493 15179.923 14484.087 15118.141 15008.850
10 3331.064 3590.438 3424.094 3217.397 3530.052 3349.179
11 3205.330 3359.161 3692.371 3132.617 3287.111 3631.680
12 5434.013 5669.180 5559.952 5332.338 5595.264 5486.008
13 11590.245 12029.613 12018.377 11396.992 11872.836 11879.005
14 4806.323 5115.047 4900.544 4697.712 5037.422 4819.586
15 2333.369 2571.906 2409.583 2265.908 2524.253 2361.838
16 2295.352 2568.127 2517.923 2212.389 2506.329 2460.784
17 1740.484 1855.669 1910.986 1697.440 1814.395 1869.939
18 3289.375 3561.789 3637.390 3251.740 3488.481 3559.856
19 4906.431 5132.815 5041.404 4803.516 5059.724 4965.939
20 5766.730 6451.285 5952.467 5684.733 6353.586 5873.841
21 4689.722 4766.653 4844.373 4606.380 4689.374 4775.724
22 402.737 430.920 457.199 378.148 412.182 437.593
23 480.611 604.136 571.230 454.437 584.901 551.407
24 7085.779 7376.255 7431.684 6853.882 7186.612 7252.582
25 4260.782 4506.176 4616.969 4082.071 4336.452 4452.543
26 4311.383 4454.179 4584.849 4117.693 4276.116 4419.531
27 16864.263 17429.262 17642.169 16522.645 17113.045 17356.086
28 19916.806 20534.193 20299.172 19518.426 20236.176 20011.783
29 7755.995 8153.796 8204.808 7423.866 7907.436 7956.486
30 9800.007 10158.199 10497.731 9457.943 9842.882 10158.736
31 8919.581 9211.430 9097.811 8791.357 9065.524 8938.057
32 9887.785 10132.406 10097.651 9654.854 9935.618 9872.397
33 5970.233 6222.817 6173.950 5816.583 6087.078 6032.718
34 3908.737 4000.379 3959.723 3739.594 3866.922 3825.882
35 7171.103 7500.549 7371.508 6840.220 7314.966 7166.232
36 5029.093 5278.854 5252.812 4778.167 5103.522 5070.762
37 5766.582 5972.830 6059.972 5694.561 5876.235 5955.781
38 5955.562 6118.192 6195.963 5808.685 5983.794 6064.245
39 37022.513 38101.990 37786.661 35889.556 37563.035 37234.971
40 19034.619 19853.284 19553.928 18181.103 19548.193 19031.652
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Model Vector data structure Raster data structure
ID VI (m3) VT (m3) VR (m3) VI (m3) VT (m3) VR (m3)
41 3774.001 3901.527 4114.781 3582.648 3798.306 3976.826
42 3240.513 3445.602 3334.260 3132.972 3372.651 3248.105
43 4778.802 4864.039 5084.092 4671.301 4752.909 4963.338
44 3194.359 3309.329 3425.470 3106.044 3233.781 3328.182
45 554.113 582.216 664.113 522.450 545.629 621.689
46 7568.001 7776.488 7793.294 7426.705 7637.688 7671.762
47 31666.991 32172.373 33387.216 31247.222 31796.721 33136.781
48 27496.132 28034.074 28887.711 27287.762 27804.632 28684.215
49 31875.992 32302.357 32868.835 31637.146 31932.050 32595.471
50 934.047 1053.849 1069.899 855.319 991.120 1028.718
51 741.368 812.023 1026.811 639.391 753.178 965.988
52 988.704 1109.214 1067.624 900.765 1042.542 1030.572
53 9769.921 9989.591 11063.866 9548.780 9788.144 10831.613
54 10081.651 10736.518 10832.636 9772.799 10504.121 10596.865
55 26829.521 28022.390 27836.545 26392.136 27697.869 27476.217
56 26911.810 28049.474 27971.303 26510.121 27740.673 27655.601
57 9628.137 10554.991 9986.561 9161.095 10353.609 9634.459
58 42338.722 44173.912 43607.948 41847.538 43812.702 43213.185
59 40279.261 40906.448 42321.600 39822.835 40620.537 41959.728
60 7064.492 7466.088 7413.663 6727.297 7256.524 7179.439
61 5042.323 5281.870 5413.442 4799.457 5143.689 5244.075
62 7165.744 7385.436 7505.580 6895.044 7201.507 7313.436
63 5132.599 5300.939 5443.764 4741.402 5114.592 5256.936
64 13672.049 14252.188 14170.994 13201.286 13831.551 13909.968
65 19173.324 20386.840 19977.822 18710.528 20010.623 19716.125
66 6989.490 7273.080 7588.240 6768.900 7066.566 7427.875
67 6530.079 6846.231 6871.494 6307.141 6675.826 6708.307
68 12637.037 13135.530 13390.523 12306.379 12865.887 13176.706
69 1073.821 1185.739 1159.577 969.417 1122.763 1086.133
70 2599.702 2831.145 2815.123 2458.854 2714.508 2705.990
71 1140.658 1186.195 1249.664 1068.570 1118.803 1187.748
72 6452.795 7007.581 6790.963 6184.373 6870.884 6637.158
73 11180.103 12039.204 12015.341 10920.753 11832.282 11834.366
74 6613.393 7210.791 6893.315 6301.229 7040.417 6728.594
75 14397.964 15168.419 14838.722 13956.314 14847.224 14595.251

Table A.1: Volumes of buildings reconstructed from UltraCam-X and Zeiss-
LMK.
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Model Vector data structure Raster data structure
ID VI (m3) VT (m3) VR (m3) VI (m3) VT (m3) VR (m3)
7 3534.070 4122.997 4433.102 3491.618 4229.550 4313.137
8 902.252 1127.301 1006.305 785.961 1111.779 964.368
9 14306.383 14626.482 15179.923 13675.928 14522.229 15008.850
10 3072.418 4448.069 3424.094 2955.528 4414.162 3349.179
11 3056.093 3455.715 3692.371 2861.784 3420.180 3631.680
12 5058.829 6452.939 5559.952 4852.319 6408.423 5486.008
13 10993.629 11955.274 12018.377 10559.552 11702.174 11879.005
14 4365.993 4763.483 4900.544 4103.874 4718.785 4819.586
15 2107.458 2250.742 2409.583 1905.104 2159.417 2310.417
18 1640.824 1979.017 1910.986 1622.295 1946.957 1869.939
20 4658.023 5077.537 5041.404 4415.004 4976.073 4965.939
22 4261.049 4374.572 4844.373 4074.440 4324.356 4775.724
23 343.484 407.859 457.199 300.442 389.362 437.593
24 6382.993 6726.212 7431.684 5973.588 6410.925 7252.582
25 3793.206 4081.798 4616.969 3605.373 4044.402 4452.543
26 3478.432 3742.834 4584.849 3355.272 3740.454 4419.531
27 16205.096 17001.910 17642.169 15961.320 17121.573 17356.086
28 17391.650 18996.168 20299.172 18447.165 19274.062 20011.783
29 7662.695 7893.681 8204.808 6530.850 7697.425 7956.486
30 9512.172 9806.616 10497.731 8560.026 9507.865 10158.736
31 8332.223 8621.330 9097.811 7886.056 8363.718 8938.057
32 9256.716 9570.823 10097.651 8412.907 9427.716 9872.397
33 5125.754 5288.618 6173.950 4979.853 5291.015 6032.718
34 3109.592 3173.794 3959.723 3004.785 3290.418 3825.882
35 6925.619 7173.667 7371.508 6262.303 6963.030 7166.232
36 4981.485 5191.954 5252.812 4571.275 5060.929 5070.762

Table A.2: Volumes of buildings reconstructed from UltraCam-X and combi-
nation of of UltraCam-X with LiDAR.

Model Vector data structure Raster data structure
ID VI (m3) VT (m3) VR (m3) VI (m3) VT (m3) VR (m3)
24 6000.770 7130.548 7431.684 5413.032 6985.175 7252.582
25 3684.300 4630.308 4616.969 3566.187 4613.067 4452.543
26 3603.807 3958.857 4584.849 3150.549 3945.236 4419.531
27 16268.022 18596.357 17642.169 15618.074 18505.760 17356.086
28 19401.712 22548.501 20299.172 18301.716 22490.343 20011.783
29 8336.889 9563.437 9097.811 7904.511 9527.045 8938.057
31 5704.991 6664.102 6173.950 5359.531 6635.002 6032.718
32 3226.103 3652.095 3959.723 2839.531 3629.610 3825.882

Table A.3: Volumes of buildings reconstructed from UltraCam-X and LiDAR.
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Model ID RMSE-X (m) RMSE-Y (m) RMSE-Z (m) Total (m)
1 0.52 0.23 0.51 0.77
2 0.24 0.35 0.28 0.51
3 0.13 0.25 0.30 0.41
4 0.54 0.53 0.29 0.81
5 0.18 0.50 0.36 0.64
6 0.17 0.25 0.40 0.51
7 0.23 0.38 0.26 0.51
8 0.43 0.72 0.30 0.89
9 0.19 0.37 0.31 0.52
10 0.20 0.48 0.21 0.56
11 0.48 0.78 0.85 1.25
12 0.11 0.31 0.27 0.43
13 0.30 0.29 0.24 0.48
14 0.17 0.39 0.34 0.54
15 0.32 0.37 0.54 0.72
16 0.19 1.14 0.57 1.29
17 0.30 0.59 0.50 0.83
18 0.30 0.60 0.25 0.72
19 0.21 0.32 0.45 0.60
20 0.56 0.74 0.57 1.09
21 0.18 0.21 0.30 0.41
22 0.27 0.21 0.29 0.45
23 0.19 0.60 0.40 0.75
24 0.08 0.26 0.54 0.60
25 0.34 0.20 0.49 0.63
26 0.22 0.25 0.34 0.47
27 0.40 0.18 0.52 0.68
28 0.24 0.10 0.42 0.49
29 0.19 0.32 0.52 0.64
30 0.30 0.21 0.30 0.47
31 0.16 0.15 0.35 0.41
32 0.18 0.10 0.29 0.36
33 0.27 0.14 0.34 0.46
34 0.22 0.11 0.14 0.28
35 0.34 0.12 0.38 0.53
36 0.29 0.15 0.38 0.50
37 0.41 0.18 0.72 0.85
38 0.43 0.22 0.13 0.50
39 0.12 0.34 0.27 0.45
40 0.23 0.43 0.23 0.54
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Model ID RMSE-X (m) RMSE-Y (m) RMSE-Z (m) Total (m)
41 0.32 0.41 0.23 0.57
42 0.10 0.33 0.43 0.55
43 0.25 0.26 0.40 0.54
44 0.14 0.33 0.42 0.55
45 0.42 0.35 0.42 0.69
46 0.13 0.38 0.20 0.45
47 0.31 0.26 0.49 0.63
48 0.23 0.23 0.43 0.55
49 0.14 0.34 0.18 0.41
50 0.16 0.26 0.52 0.61
51 0.55 0.21 0.44 0.73
52 0.12 0.19 0.41 0.47
53 0.45 0.39 0.96 1.13
54 0.36 0.22 1.11 1.19
55 0.19 0.22 0.98 1.03
56 0.17 0.27 0.94 0.99
57 0.27 0.37 1.04 1.13
58 0.21 0.15 0.90 0.93
59 0.23 0.25 0.79 0.86
60 0.08 0.22 0.80 0.83
61 0.16 0.38 0.78 0.88
62 0.12 0.13 0.74 0.76
63 0.13 0.29 0.71 0.78
64 0.08 0.19 0.65 0.68
65 0.21 0.30 0.77 0.86
66 0.35 0.33 0.47 0.67
67 0.30 0.18 0.55 0.65
68 0.33 0.36 0.58 0.76
69 0.25 0.22 0.72 0.79
70 0.20 0.17 0.62 0.67
71 0.18 0.15 0.44 0.50
72 0.44 0.34 0.85 1.01
73 0.42 0.36 0.98 1.13
74 0.14 0.40 0.99 1.08
75 0.11 0.10 0.80 0.81

Table A.4: RMSE computed from corresponding vertices for aerial images.



Appendix A. Volumes and RMSE of building models 131

Model ID RMSE-X (m) RMSE-Y (m) RMSE-Z (m) Total (m)
7 1.38 2.05 0.87 2.62
8 0.83 0.68 1.49 1.83
9 0.45 0.34 1.02 1.16
10 1.16 1.79 1.10 2.40
11 1.15 0.80 1.85 2.32
12 1.33 1.78 1.14 2.50
13 0.84 0.55 0.91 1.36
14 0.85 0.70 1.73 2.05
15 0.73 0.48 1.09 1.40
18 1.54 2.04 1.06 2.77
20 0.77 0.45 0.83 1.22
22 0.82 0.62 1.03 1.45
23 0.59 0.49 1.40 1.60
24 0.53 0.49 1.23 1.43
25 0.43 0.27 1.19 1.30
26 0.36 0.38 1.21 1.31
27 0.19 0.27 0.98 1.03
28 0.30 0.29 1.07 1.15
29 0.42 0.84 1.29 1.60
30 0.41 0.46 1.03 1.20
31 0.32 0.28 1.17 1.25
32 0.25 0.44 1.20 1.31
33 0.44 0.46 1.09 1.26
34 0.33 0.44 1.15 1.27
35 0.27 0.36 1.28 1.36
36 0.37 0.28 1.28 1.36

Table A.5: RMSE computed from corresponding vertices for combination of
aerial images and LiDAR datasets.

Model ID RMSE-X (m) RMSE-Y (m) RMSE-Z (m) Total (m)
24 1.74 1.31 1.21 2.49
25 1.01 1.00 1.19 1.85
26 0.92 1.17 1.20 1.92
27 0.64 0.96 1.05 1.57
28 1.19 1.20 1.04 1.98
29 0.55 1.07 1.06 1.60
31 0.65 0.92 1.00 1.50
32 1.03 1.20 1.25 2.01

Table A.6: RMSE computed from corresponding vertices for LiDAR dataset.
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Model ID RMSE-X (m) RMSE-Y (m) RMSE-Z (m) Total (m)
1 0.25 0.15 0.35 0.46
2 0.16 0.13 0.17 0.26
3 0.08 0.19 0.20 0.28
4 0.40 0.53 0.17 0.69
5 0.11 0.37 0.12 0.41
6 0.08 0.13 0.19 0.25
7 0.17 0.32 0.16 0.39
8 0.22 0.69 0.17 0.74
9 0.14 0.35 0.23 0.44
10 0.12 0.43 0.21 0.49
11 0.22 0.68 0.67 0.98
12 0.05 0.20 0.26 0.34
13 0.28 0.24 0.19 0.42
14 0.11 0.32 0.24 0.41
15 0.18 0.35 0.28 0.48
16 0.29 1.30 0.26 1.36
17 0.92 2.10 0.33 2.31
18 0.16 0.54 0.11 0.57
19 0.16 0.30 0.33 0.48
20 0.29 0.61 0.36 0.76
21 0.07 0.15 0.16 0.23
22 0.20 0.17 0.25 0.36
23 0.09 0.58 0.20 0.62
24 0.03 0.19 0.49 0.53
25 0.29 0.10 0.45 0.54
26 0.06 0.11 0.19 0.23
27 0.36 0.13 0.43 0.57
28 0.19 0.05 0.36 0.41
29 0.17 0.24 0.47 0.55
30 0.18 0.09 0.24 0.32
31 0.07 0.06 0.20 0.22
32 0.15 0.05 0.14 0.22
33 0.23 0.08 0.32 0.41
34 0.17 0.04 0.13 0.22
35 0.29 0.05 0.34 0.46
36 0.27 0.15 0.32 0.44
37 0.29 0.09 0.48 0.57
38 0.31 0.11 0.06 0.33
39 0.06 0.33 0.13 0.36
40 0.15 0.37 0.07 0.40
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Model ID RMSE-X (m) RMSE-Y (m) RMSE-Z (m) Total (m)
41 0.13 0.35 0.11 0.39
42 0.04 0.28 0.33 0.43
43 0.11 0.26 0.21 0.35
44 0.06 0.31 0.29 0.43
45 0.23 0.34 0.21 0.46
46 0.07 0.34 0.11 0.37
47 0.24 0.25 0.29 0.46
48 0.18 0.22 0.25 0.38
49 0.07 0.29 0.05 0.30
50 0.16 0.25 0.49 0.57
51 0.89 0.14 0.43 1.00
52 0.11 0.17 0.40 0.44
53 0.20 0.36 0.79 0.89
54 0.33 0.21 1.09 1.16
55 0.17 0.22 0.97 1.01
56 0.17 0.25 0.92 0.96
57 0.17 0.21 0.88 0.92
58 0.19 0.08 0.88 0.90
59 0.11 0.15 0.69 0.71
60 0.03 0.21 0.79 0.81
61 0.12 0.35 0.76 0.85
62 0.08 0.10 0.68 0.69
63 0.04 0.27 0.67 0.72
64 0.04 0.15 0.63 0.65
65 0.14 0.22 0.72 0.77
66 0.30 0.20 0.43 0.56
67 0.23 0.14 0.54 0.60
68 0.23 0.25 0.59 0.68
69 0.08 0.20 0.70 0.74
70 0.14 0.16 0.62 0.66
71 0.11 0.13 0.39 0.42
72 0.21 0.33 0.83 0.91
73 0.26 0.35 0.97 1.06
74 0.10 0.38 0.96 1.04
75 0.04 0.06 0.79 0.79

Table A.7: RMSE computed from gravity centers of homologous planes for
aerial images.
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Model ID RMSE-X (m) RMSE-Y (m) RMSE-Z (m) Total (m)
7 0.45 0.28 0.44 0.69
8 0.74 0.43 1.37 1.61
9 0.44 0.30 0.92 1.06
10 0.95 0.67 1.01 1.54
11 1.08 0.76 1.43 1.95
12 1.15 1.39 0.89 2.01
13 0.82 0.54 0.91 1.34
14 0.78 0.65 1.21 1.58
15 0.59 0.42 1.00 1.23
18 0.74 1.11 0.72 1.52
20 0.76 0.39 0.76 1.14
22 0.67 0.58 0.90 1.26
23 0.57 0.48 1.31 1.50
24 0.39 0.25 0.86 0.98
25 0.24 0.14 0.83 0.88
26 0.22 0.18 0.87 0.92
27 0.13 0.24 0.66 0.72
28 0.26 0.58 0.77 1.00
29 0.31 0.81 1.27 1.53
30 0.33 0.46 1.00 1.15
31 0.22 0.23 0.56 0.64
32 0.25 0.44 1.05 1.16
33 0.26 0.25 0.71 0.80
34 0.14 0.20 0.66 0.70
35 0.27 0.35 1.21 1.28
36 0.34 0.28 1.14 1.22

Table A.8: RMSE computed from gravity centers of homologous planes for
combination of airborne imagery and LiDAR datasets.

Model ID RMSE-X (m) RMSE-Y (m) RMSE-Z (m) Total (m)
24 1.34 1.28 1.16 2.19
25 0.86 0.86 1.09 1.64
26 0.70 1.12 1.07 1.70
27 0.29 0.83 0.94 1.28
28 0.58 1.00 0.93 1.48
29 0.29 0.96 0.94 1.38
31 0.46 0.79 0.91 1.29
32 0.64 1.05 0.98 1.57

Table A.9: RMSE computed from gravity centers of homologous planes for
LiDAR dataset.



Appendix B

Surface quality indices

In this part, surface quality indices of building models are shown. These quality

indices are in raster and vector data structure. The surface quality indices are

results of three tests. The first test, table B.1 and table B.4, is applied for 75 3D

building models have been reconstructed based on the photogrammetric processing

in vector and raster data structure. The second test, table B.2 and B.5, is applied

to 26 3D building models have been reconstructed based on the combination of

both. Third test, table B.3 and table B.6, is applied for 8 3D building models have

been reconstructed based on the LiDAR processing.
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Model ID ρd ρq ρb ρm ρf
1 0.929 0.855 0.088 0.102 0.091
2 0.934 0.877 0.079 0.082 0.071
3 0.948 0.877 0.059 0.104 0.093
4 0.927 0.889 0.080 0.048 0.044
5 0.906 0.848 0.112 0.076 0.068
6 0.958 0.887 0.047 0.091 0.084
7 0.889 0.831 0.132 0.088 0.076
8 0.959 0.846 0.043 0.141 0.136
9 0.978 0.953 0.022 0.028 0.027
10 0.981 0.935 0.019 0.052 0.051
11 0.769 0.717 0.095 0.068 0.136
12 0.984 0.955 0.017 0.030 0.030
13 0.976 0.954 0.024 0.025 0.024
14 0.952 0.890 0.053 0.081 0.074
15 0.814 0.708 0.050 0.066 0.242
16 0.860 0.724 0.249 0.485 0.306
17 0.913 0.848 0.098 0.089 0.080
18 0.833 0.761 0.403 0.222 0.121
19 0.915 0.865 0.112 0.087 0.069
20 0.903 0.766 0.121 0.272 0.222
21 0.958 0.924 0.046 0.043 0.039
22 0.919 0.881 0.089 0.047 0.043
23 0.888 0.783 0.142 0.193 0.156
24 0.946 0.908 0.059 0.048 0.044
25 0.933 0.883 0.076 0.068 0.061
26 0.938 0.904 0.068 0.043 0.039
27 0.943 0.910 0.064 0.044 0.040
28 0.977 0.947 0.025 0.033 0.032
29 0.962 0.931 0.040 0.035 0.033
30 0.943 0.912 0.062 0.040 0.037
31 0.980 0.950 0.021 0.033 0.032
32 0.971 0.936 0.031 0.041 0.039
33 0.950 0.909 0.055 0.050 0.046
34 0.975 0.949 0.026 0.029 0.028
35 0.982 0.953 0.019 0.031 0.030
36 0.971 0.942 0.030 0.033 0.032
37 0.936 0.858 0.075 0.144 0.120
38 0.960 0.930 0.043 0.036 0.034
39 0.980 0.956 0.021 0.026 0.026
40 0.963 0.932 0.040 0.036 0.034
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Model ID ρd ρq ρb ρm ρf
41 0.913 0.887 0.098 0.035 0.031
42 0.942 0.884 0.066 0.077 0.070
43 0.940 0.918 0.065 0.025 0.024
44 0.918 0.881 0.092 0.047 0.042
45 0.846 0.785 0.189 0.104 0.085
46 0.962 0.926 0.041 0.043 0.041
47 0.950 0.924 0.053 0.031 0.029
48 0.962 0.943 0.041 0.023 0.021
49 0.936 0.905 0.080 0.060 0.046
50 0.950 0.884 0.053 0.080 0.076
51 0.817 0.776 0.251 0.064 0.052
52 0.950 0.884 0.053 0.080 0.076
53 0.920 0.908 0.087 0.015 0.014
54 0.953 0.917 0.049 0.042 0.040
55 0.976 0.949 0.025 0.029 0.028
56 0.974 0.949 0.026 0.028 0.027
57 0.958 0.865 0.045 0.147 0.135
58 0.980 0.952 0.021 0.029 0.029
59 0.968 0.958 0.034 0.010 0.010
60 0.968 0.935 0.033 0.037 0.036
61 0.954 0.926 0.049 0.031 0.030
62 0.958 0.930 0.044 0.032 0.031
63 0.960 0.938 0.042 0.024 0.023
64 0.976 0.950 0.025 0.028 0.027
65 0.972 0.934 0.029 0.043 0.042
66 0.921 0.885 0.088 0.051 0.044
67 0.937 0.895 0.071 0.054 0.049
68 0.935 0.891 0.073 0.065 0.057
69 0.890 0.807 0.131 0.123 0.107
70 0.905 0.836 0.111 0.097 0.085
71 0.920 0.882 0.088 0.050 0.045
72 0.937 0.869 0.071 0.094 0.085
73 0.951 0.905 0.053 0.054 0.051
74 0.971 0.918 0.030 0.061 0.059
75 0.980 0.947 0.021 0.037 0.036

Table B.1: 2D quality indices based on vector models reconstructed from
airborne imagery.
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Model ID ρd ρq ρb ρm ρf
7 0.973 0.880 0.028 0.109 0.107
8 0.863 0.706 0.164 0.262 0.225
9 0.939 0.906 0.065 0.040 0.037
10 0.917 0.720 0.091 0.308 0.286
11 0.754 0.660 0.468 0.295 0.165
12 0.921 0.780 0.086 0.206 0.190
13 0.928 0.868 0.078 0.075 0.069
14 0.814 0.717 0.276 0.227 0.158
15 0.813 0.728 0.291 0.231 0.146
18 0.825 0.625 0.230 0.562 0.436
20 0.863 0.771 0.171 0.157 0.128
22 0.773 0.698 0.379 0.255 0.145
23 0.781 0.681 0.284 0.198 0.151
24 0.859 0.815 0.174 0.069 0.057
25 0.863 0.819 0.165 0.074 0.060
26 0.823 0.780 0.240 0.090 0.064
27 0.888 0.825 0.138 0.116 0.092
28 0.892 0.845 0.124 0.069 0.060
29 0.889 0.821 0.127 0.098 0.086
30 0.809 0.718 0.280 0.228 0.156
31 0.913 0.885 0.100 0.035 0.032
32 0.889 0.815 0.127 0.108 0.094
33 0.847 0.820 0.187 0.042 0.034
34 0.846 0.824 0.189 0.035 0.028
35 0.932 0.888 0.073 0.054 0.050
36 0.937 0.888 0.068 0.059 0.056

Table B.2: 2D quality indices based on vector building models reconstructed
from integration of airborne imagery and LiDAR datasets.

Model ID ρd ρq ρb ρm ρf
24 0.773 0.653 0.357 0.310 0.206
25 0.807 0.680 0.274 0.321 0.221
26 0.746 0.651 0.366 0.230 0.158
27 0.866 0.755 0.178 0.188 0.154
28 0.915 0.753 0.096 0.270 0.248
29 0.895 0.760 0.124 0.209 0.186
31 0.904 0.774 0.109 0.190 0.172
32 0.810 0.663 0.245 0.285 0.235

Table B.3: 2D quality indices based on vector building models reconstructed
from LiDAR dataset.
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Model ID ρd ρq ρb ρm ρf ρqw
1 0.937 0.870 0.079 0.093 0.083 0.627
2 0.959 0.919 0.043 0.048 0.046 0.712
3 0.948 0.877 0.059 0.104 0.092 0.733
4 0.927 0.889 0.080 0.048 0.044 0.693
5 0.913 0.862 0.103 0.067 0.060 0.689
6 0.987 0.935 0.014 0.056 0.056 0.603
7 0.896 0.843 0.124 0.081 0.069 0.689
8 0.959 0.846 0.043 0.141 0.136 0.604
9 0.979 0.953 0.021 0.028 0.027 0.733
10 0.982 0.935 0.018 0.052 0.051 0.799
11 0.837 0.790 0.228 0.093 0.067 0.577
12 0.984 0.956 0.016 0.030 0.030 0.854
13 0.977 0.954 0.024 0.024 0.024 0.776
14 0.966 0.915 0.037 0.065 0.060 0.753
15 0.939 0.849 0.076 0.136 0.118 0.657
16 0.911 0.768 0.103 0.297 0.255 0.578
17 0.751 0.702 0.123 0.112 0.433 0.520
18 0.859 0.791 0.231 0.127 0.097 0.569
19 0.933 0.891 0.081 0.059 0.051 0.688
20 0.903 0.766 0.121 0.272 0.222 0.540
21 0.958 0.924 0.046 0.043 0.039 0.683
22 0.920 0.882 0.088 0.047 0.043 0.781
23 0.927 0.834 0.084 0.130 0.117 0.594
24 0.955 0.924 0.049 0.038 0.036 0.752
25 0.933 0.884 0.076 0.068 0.061 0.703
26 0.950 0.925 0.054 0.029 0.027 0.825
27 0.944 0.911 0.063 0.044 0.039 0.730
28 0.977 0.948 0.024 0.032 0.031 0.738
29 0.962 0.932 0.040 0.034 0.033 0.706
30 0.955 0.932 0.048 0.028 0.026 0.769
31 0.983 0.955 0.018 0.030 0.030 0.800
32 0.975 0.943 0.027 0.038 0.036 0.783
33 0.950 0.910 0.054 0.049 0.046 0.754
34 0.975 0.949 0.026 0.029 0.028 0.811
35 0.982 0.954 0.018 0.030 0.030 0.709
36 0.972 0.943 0.029 0.032 0.031 0.723
37 0.936 0.858 0.075 0.144 0.120 0.703
38 0.960 0.930 0.042 0.036 0.034 0.771
39 0.987 0.968 0.014 0.020 0.019 0.672
40 0.962 0.930 0.041 0.037 0.035 0.675
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Model ID ρd ρq ρb ρm ρf ρqw
41 0.913 0.887 0.098 0.035 0.031 0.712
42 0.950 0.897 0.055 0.066 0.061 0.780
43 0.940 0.918 0.065 0.025 0.024 0.766
44 0.883 0.824 0.171 0.271 0.154 0.643
45 0.860 0.804 0.167 0.083 0.071 0.633
46 0.968 0.937 0.034 0.036 0.035 0.819
47 0.954 0.932 0.049 0.027 0.025 0.750
48 0.961 0.942 0.041 0.023 0.022 0.759
49 0.966 0.952 0.036 0.016 0.016 0.754
50 0.915 0.852 0.095 0.083 0.075 0.658
51 0.817 0.776 0.251 0.063 0.052 0.455
52 0.950 0.884 0.053 0.080 0.075 0.653
53 0.921 0.908 0.087 0.015 0.014 0.800
54 0.954 0.918 0.048 0.042 0.040 0.684
55 0.977 0.950 0.024 0.028 0.028 0.669
56 0.975 0.949 0.026 0.027 0.027 0.571
57 0.958 0.865 0.045 0.147 0.135 0.573
58 0.980 0.953 0.021 0.029 0.028 0.642
59 0.968 0.959 0.033 0.009 0.009 0.673
60 0.969 0.936 0.032 0.037 0.036 0.723
61 0.954 0.927 0.048 0.031 0.029 0.684
62 0.970 0.951 0.031 0.021 0.020 0.593
63 0.961 0.939 0.041 0.024 0.023 0.640
64 0.976 0.952 0.025 0.027 0.026 0.679
65 0.973 0.935 0.028 0.042 0.041 0.725
66 0.922 0.886 0.088 0.050 0.044 0.763
67 0.944 0.908 0.060 0.045 0.042 0.798
68 0.935 0.892 0.072 0.065 0.057 0.748
69 0.890 0.807 0.131 0.123 0.107 0.642
70 0.905 0.837 0.110 0.096 0.085 0.680
71 0.920 0.882 0.088 0.050 0.045 0.645
72 0.964 0.912 0.038 0.060 0.058 0.707
73 0.951 0.906 0.052 0.052 0.050 0.732
74 0.972 0.918 0.029 0.061 0.059 0.710
75 0.981 0.949 0.020 0.035 0.034 0.701

Table B.4: 2D quality indices based on raster building models reconstructed
from airborne imagery.
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Model ID ρd ρq ρb ρm ρf ρqw
7 0.973 0.880 0.028 0.109 0.107 0.607
8 0.863 0.706 0.164 0.261 0.224 0.370
9 0.939 0.907 0.065 0.039 0.037 0.755
10 0.918 0.720 0.091 0.308 0.286 0.330
11 0.754 0.661 0.468 0.294 0.165 0.357
12 0.921 0.780 0.086 0.206 0.189 0.482
13 0.928 0.869 0.077 0.075 0.069 0.618
14 0.827 0.732 0.239 0.193 0.145 0.411
15 0.813 0.728 0.291 0.231 0.146 0.439
18 0.883 0.683 0.139 0.423 0.379 0.395
20 0.885 0.803 0.138 0.125 0.106 0.639
22 0.832 0.772 0.224 0.115 0.086 0.471
23 0.781 0.682 0.283 0.198 0.151 0.446
24 0.860 0.817 0.173 0.069 0.057 0.591
25 0.864 0.820 0.164 0.074 0.060 0.623
26 0.839 0.803 0.200 0.059 0.048 0.629
27 0.937 0.900 0.068 0.047 0.043 0.733
28 0.898 0.854 0.117 0.063 0.055 0.631
29 0.891 0.824 0.125 0.096 0.084 0.518
30 0.854 0.784 0.207 0.158 0.111 0.640
31 0.913 0.886 0.099 0.035 0.032 0.736
32 0.890 0.817 0.126 0.107 0.094 0.705
33 0.848 0.821 0.186 0.042 0.034 0.655
34 0.846 0.824 0.188 0.035 0.028 0.589
35 0.933 0.890 0.072 0.053 0.049 0.565
36 0.937 0.888 0.067 0.059 0.055 0.570

Table B.5: 2D quality indices based on raster building models reconstructed
from combination of airborne imagery and LiDAR datasets.

Model ID ρd ρq ρb ρm ρf ρqw
24 0.774 0.654 0.357 0.310 0.206 0.401
25 0.808 0.680 0.273 0.321 0.221 0.479
26 0.747 0.652 0.365 0.229 0.158 0.450
27 0.867 0.756 0.177 0.188 0.154 0.573
28 0.922 0.762 0.086 0.259 0.240 0.498
29 0.895 0.761 0.123 0.209 0.186 0.552
31 0.904 0.774 0.108 0.190 0.172 0.561
32 0.810 0.663 0.245 0.284 0.235 0.439

Table B.6: 2D quality indices based on raster building models reconstructed
from LiDAR dataset.





Appendix C

Volume quality indices

In this part, volume quality indices of building models are shown. These quality

indices are in raster and vector data structure. The volume quality indices are

results of three tests. The first test, table C.1 and table C.4, is applied for 75 3D

building models have been reconstructed based on the photogrammetric processing

in vector and raster data structure. The second test, table C.2 and C.5, is applied

to 26 3D building models have been reconstructed based on the combination of

both. Third test, table C.3 and table C.6, is applied for 8 3D building models

have been reconstructed based on the LiDAR processing.
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Model ID V ρd V ρq V ρb V ρm V ρf
1 0.992 0.921 0.008 0.078 0.078
2 0.956 0.926 0.047 0.034 0.032
3 0.946 0.849 0.057 0.120 0.114
4 0.922 0.882 0.084 0.049 0.045
5 0.931 0.878 0.074 0.065 0.060
6 0.984 0.931 0.016 0.058 0.057
7 0.944 0.918 0.059 0.031 0.029
8 0.942 0.786 0.062 0.210 0.198
9 0.967 0.929 0.034 0.043 0.041
10 0.973 0.904 0.028 0.078 0.076
11 0.868 0.833 0.152 0.048 0.042
12 0.977 0.938 0.023 0.043 0.042
13 0.964 0.930 0.037 0.038 0.037
14 0.981 0.923 0.020 0.064 0.063
15 0.968 0.881 0.033 0.102 0.099
16 0.912 0.823 0.097 0.119 0.108
17 0.911 0.859 0.098 0.066 0.060
18 0.904 0.841 0.106 0.083 0.075
19 0.973 0.931 0.028 0.046 0.045
20 0.969 0.869 0.032 0.119 0.115
21 0.968 0.953 0.033 0.016 0.016
22 0.881 0.830 0.135 0.070 0.062
23 0.841 0.692 0.189 0.257 0.216
24 0.953 0.918 0.049 0.041 0.039
25 0.923 0.876 0.084 0.058 0.053
26 0.940 0.912 0.063 0.033 0.031
27 0.956 0.926 0.046 0.034 0.032
28 0.981 0.952 0.019 0.031 0.030
29 0.945 0.902 0.058 0.051 0.048
30 0.934 0.903 0.071 0.037 0.034
31 0.980 0.950 0.020 0.033 0.032
32 0.979 0.956 0.021 0.025 0.024
33 0.967 0.929 0.034 0.042 0.041
34 0.987 0.965 0.013 0.023 0.023
35 0.973 0.931 0.028 0.046 0.045
36 0.957 0.914 0.044 0.050 0.048
37 0.952 0.920 0.051 0.036 0.034
38 0.961 0.937 0.040 0.027 0.026
39 0.980 0.953 0.021 0.029 0.029
40 0.973 0.934 0.027 0.043 0.042
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Model ID V ρd V ρq V ρb V ρm V ρf
41 0.917 0.890 0.090 0.034 0.031
42 0.972 0.916 0.029 0.063 0.062
43 0.940 0.924 0.064 0.018 0.017
44 0.933 0.902 0.072 0.036 0.034
45 0.834 0.800 0.199 0.051 0.042
46 0.971 0.946 0.030 0.028 0.027
47 0.948 0.934 0.054 0.016 0.015
48 0.952 0.934 0.051 0.020 0.019
49 0.970 0.957 0.031 0.013 0.013
50 0.873 0.785 0.145 0.128 0.112
51 0.722 0.676 0.385 0.095 0.069
52 0.926 0.832 0.080 0.122 0.113
53 0.883 0.866 0.132 0.022 0.020
54 0.931 0.878 0.074 0.065 0.060
55 0.964 0.924 0.038 0.044 0.043
56 0.962 0.925 0.039 0.042 0.041
57 0.964 0.882 0.037 0.096 0.093
58 0.971 0.932 0.030 0.043 0.042
59 0.952 0.938 0.051 0.016 0.015
60 0.953 0.904 0.049 0.057 0.054
61 0.931 0.892 0.074 0.048 0.044
62 0.955 0.928 0.047 0.031 0.029
63 0.943 0.915 0.061 0.033 0.031
64 0.965 0.927 0.036 0.042 0.041
65 0.960 0.905 0.042 0.063 0.061
66 0.921 0.888 0.086 0.041 0.037
67 0.950 0.909 0.052 0.048 0.046
68 0.944 0.910 0.060 0.039 0.037
69 0.926 0.845 0.080 0.104 0.097
70 0.923 0.853 0.083 0.089 0.082
71 0.913 0.881 0.096 0.040 0.036
72 0.950 0.878 0.052 0.086 0.082
73 0.930 0.868 0.075 0.077 0.072
74 0.959 0.883 0.042 0.090 0.087
75 0.970 0.922 0.031 0.054 0.052

Table C.1: 3D quality indices based on vector building models reconstructed
from airborne imagery.
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Model ID V ρd V ρq V ρb V ρm V ρf
7 0.797 0.704 0.254 0.167 0.133
8 0.897 0.733 0.115 0.249 0.224
9 0.942 0.923 0.061 0.022 0.021
10 0.897 0.640 0.114 0.448 0.402
11 0.828 0.747 0.208 0.131 0.108
12 0.910 0.727 0.099 0.276 0.251
13 0.915 0.847 0.093 0.087 0.080
14 0.891 0.824 0.122 0.091 0.081
15 0.875 0.826 0.143 0.068 0.059
18 0.859 0.730 0.165 0.206 0.177
20 0.924 0.853 0.082 0.090 0.083
22 0.880 0.859 0.137 0.027 0.023
23 0.751 0.659 0.331 0.187 0.141
24 0.859 0.821 0.164 0.054 0.046
25 0.822 0.773 0.217 0.076 0.063
26 0.759 0.717 0.318 0.076 0.058
27 0.919 0.879 0.089 0.049 0.045
28 0.857 0.794 0.167 0.092 0.079
29 0.934 0.908 0.071 0.030 0.028
30 0.906 0.881 0.104 0.031 0.028
31 0.916 0.888 0.092 0.035 0.032
32 0.917 0.889 0.091 0.034 0.031
33 0.830 0.809 0.204 0.032 0.026
34 0.785 0.773 0.273 0.021 0.016
35 0.940 0.909 0.064 0.036 0.034
36 0.948 0.912 0.054 0.042 0.040

Table C.2: 3D quality indices based on vector building models reconstructed
from combination of airborne imagery and LiDAR datasets.

Model ID V ρd V ρq V ρb V ρm V ρf
24 0.746 0.613 0.340 0.290 0.217
25 0.801 0.648 0.249 0.294 0.235
26 0.713 0.604 0.403 0.252 0.180
27 0.900 0.772 0.111 0.185 0.166
28 0.915 0.756 0.093 0.229 0.209
29 0.884 0.748 0.131 0.205 0.182
31 0.888 0.733 0.126 0.238 0.211
32 0.742 0.615 0.347 0.278 0.207

Table C.3: 3D quality indices based on vector building models reconstructed
from LiDAR datasets.
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Model ID V ρd V ρq V ρb V ρm V ρf V ρqw
1 0.976 0.897 0.025 0.091 0.088 0.862
2 0.934 0.888 0.071 0.056 0.052 0.865
3 0.957 0.865 0.045 0.111 0.107 0.864
4 0.908 0.861 0.101 0.060 0.055 0.834
5 0.913 0.858 0.095 0.071 0.064 0.840
6 0.948 0.870 0.055 0.094 0.089 0.869
7 0.942 0.918 0.061 0.028 0.026 0.869
8 0.925 0.765 0.081 0.226 0.209 0.791
9 0.961 0.919 0.041 0.048 0.046 0.866
10 0.961 0.879 0.041 0.097 0.093 0.855
11 0.863 0.827 0.159 0.049 0.043 0.801
12 0.972 0.928 0.029 0.049 0.048 0.879
13 0.956 0.912 0.046 0.051 0.049 0.867
14 0.975 0.911 0.026 0.072 0.070 0.871
15 0.959 0.865 0.042 0.114 0.109 0.853
16 0.899 0.803 0.112 0.133 0.119 0.791
17 0.908 0.854 0.102 0.069 0.063 0.835
18 0.913 0.856 0.095 0.073 0.067 0.837
19 0.967 0.920 0.034 0.053 0.052 0.875
20 0.963 0.863 0.039 0.120 0.116 0.811
21 0.965 0.948 0.037 0.018 0.017 0.885
22 0.864 0.802 0.157 0.090 0.078 0.832
23 0.824 0.666 0.213 0.287 0.237 0.733
24 0.937 0.889 0.067 0.057 0.053 0.854
25 0.908 0.851 0.101 0.074 0.067 0.831
26 0.920 0.880 0.086 0.050 0.046 0.844
27 0.938 0.893 0.066 0.054 0.050 0.859
28 0.966 0.923 0.035 0.048 0.047 0.874
29 0.907 0.840 0.103 0.087 0.079 0.839
30 0.938 0.910 0.066 0.033 0.031 0.866
31 0.980 0.948 0.021 0.034 0.034 0.884
32 0.975 0.946 0.025 0.031 0.030 0.879
33 0.960 0.917 0.041 0.049 0.047 0.871
34 0.969 0.929 0.032 0.044 0.043 0.884
35 0.939 0.861 0.065 0.096 0.091 0.862
36 0.924 0.860 0.082 0.081 0.075 0.852
37 0.951 0.919 0.052 0.036 0.034 0.870
38 0.958 0.929 0.044 0.032 0.030 0.875
39 0.941 0.871 0.062 0.086 0.081 0.856
40 0.943 0.865 0.060 0.096 0.090 0.856
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Model ID V ρd V ρq V ρb V ρm V ρf V ρqw
41 0.878 0.811 0.139 0.094 0.083 0.818
42 0.958 0.891 0.044 0.079 0.075 0.849
43 0.938 0.917 0.066 0.024 0.023 0.857
44 0.913 0.867 0.096 0.058 0.053 0.844
45 0.822 0.780 0.217 0.065 0.053 0.783
46 0.961 0.932 0.040 0.032 0.031 0.863
47 0.937 0.917 0.068 0.023 0.022 0.848
48 0.948 0.930 0.055 0.021 0.020 0.861
49 0.967 0.956 0.034 0.012 0.012 0.873
50 0.745 0.607 0.341 0.306 0.228 0.671
51 0.615 0.530 0.625 0.262 0.161 0.462
52 0.844 0.728 0.185 0.188 0.159 0.751
53 0.873 0.856 0.146 0.022 0.019 0.792
54 0.908 0.830 0.101 0.104 0.094 0.797
55 0.946 0.890 0.057 0.067 0.063 0.836
56 0.941 0.886 0.063 0.066 0.062 0.843
57 0.925 0.799 0.081 0.170 0.158 0.795
58 0.954 0.903 0.048 0.059 0.056 0.847
59 0.931 0.898 0.074 0.040 0.037 0.850
60 0.898 0.807 0.113 0.126 0.114 0.799
61 0.871 0.778 0.148 0.137 0.119 0.779
62 0.901 0.836 0.110 0.087 0.078 0.822
63 0.846 0.769 0.181 0.119 0.100 0.771
64 0.919 0.863 0.088 0.071 0.065 0.833
65 0.920 0.841 0.087 0.102 0.094 0.811
66 0.900 0.858 0.111 0.054 0.049 0.819
67 0.922 0.855 0.085 0.085 0.078 0.825
68 0.926 0.885 0.080 0.050 0.047 0.833
69 0.843 0.710 0.187 0.221 0.186 0.734
70 0.882 0.789 0.134 0.134 0.118 0.788
71 0.847 0.764 0.180 0.130 0.110 0.786
72 0.890 0.765 0.123 0.183 0.163 0.782
73 0.900 0.821 0.112 0.106 0.095 0.768
74 0.892 0.769 0.121 0.180 0.160 0.762
75 0.924 0.848 0.083 0.096 0.089 0.829

Table C.4: 3D quality indices based on raster building models reconstructed
from airborne imagery datasets.
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Model ID V ρd V ρq V ρb V ρm V ρf V ρqw
7 0.810 0.691 0.235 0.211 0.171 0.595
8 0.815 0.609 0.227 0.415 0.338 0.549
9 0.911 0.863 0.097 0.062 0.056 0.808
10 0.882 0.615 0.133 0.494 0.436 0.511
11 0.788 0.683 0.269 0.195 0.154 0.607
12 0.884 0.689 0.131 0.321 0.284 0.545
13 0.889 0.811 0.125 0.108 0.096 0.758
14 0.851 0.755 0.174 0.150 0.128 0.698
15 0.840 0.765 0.190 0.117 0.098 0.726
18 0.868 0.739 0.153 0.200 0.174 0.699
20 0.889 0.799 0.125 0.127 0.113 0.754
22 0.853 0.811 0.172 0.061 0.052 0.763
23 0.687 0.571 0.456 0.296 0.203 0.562
24 0.824 0.777 0.214 0.073 0.060 0.709
25 0.810 0.737 0.235 0.122 0.099 0.680
26 0.759 0.698 0.317 0.115 0.087 0.603
27 0.920 0.862 0.087 0.073 0.067 0.798
28 0.922 0.885 0.085 0.045 0.041 0.823
29 0.821 0.716 0.218 0.179 0.147 0.633
30 0.843 0.771 0.187 0.111 0.093 0.713
31 0.882 0.838 0.133 0.061 0.053 0.779
32 0.852 0.773 0.173 0.121 0.103 0.717
33 0.825 0.785 0.211 0.062 0.052 0.743
34 0.785 0.731 0.273 0.095 0.075 0.669
35 0.874 0.796 0.144 0.112 0.098 0.764
36 0.901 0.822 0.109 0.107 0.097 0.767

Table C.5: 3D quality indices based on raster building models reconstructed
from combination of airborne imagery and LiDAR datasets.

Model ID V ρd V ρq V ρb V ρm V ρf V ρqw
24 0.746 0.613 0.340 0.290 0.217 0.513
25 0.801 0.648 0.249 0.294 0.235 0.583
26 0.713 0.604 0.403 0.252 0.180 0.531
27 0.900 0.772 0.111 0.185 0.166 0.695
28 0.915 0.756 0.093 0.229 0.209 0.654
29 0.884 0.748 0.131 0.205 0.182 0.683
31 0.888 0.733 0.126 0.238 0.211 0.672
32 0.742 0.615 0.347 0.278 0.207 0.543

Table C.6: 3D quality indices based on raster building models reconstructed
from LiDAR dataset.
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ABSTRACT:

Accuracy assessment of photogrammetry output is one of the most important steps in evaluating imaging sensor data. Without an
accuracy assessment, the output or results are of little value. As the performance of data acquisition methods improves, the quality
evaluation of building data in 3D city modeling has become an important issue. A simple method to evaluate photogrammetric data is
based on the comparison of 3D objects to accurate reference measurements. In this paper we report on the comparison of such data
from Rollei medium format and UltraCam-X cameras. Our approach is focused on characteristic planes extracted from both datasets.
In a first step, the reference dataset has been created from UltraCam-X stereopairs. Ground Control Points (GCPs) were measured
by GNNS systems in the city of Strasbourg. The calculation of the exterior orientation parameters using a photogrammetric bundle
adjustment was carried out from those GCPs. 3D ground coordinates have been generated afterwards by photogrammetric matching
algorithms. Secondly, the data to be assessed have been created from Rollei medium format images in the same way. For the plane
accuracy estimation, samples of planes based on characteristic points have been processed from both cameras. UltraCam-X digital
images deliver the reference data. Quality has been assessed by calculating a set of indices of our photogrammetric data. Some of these
indices are the detection rate, quality rate, miss factor, false alarm rate, and branch factor. These factors are depending on the relations
between the intersection or union areas for the reference and tested data.

1 INTRODUCTION

Originally, the term photogrammetry, according to the Ameri-
can Society for Photogrammetry and Remote Sensing is the art,
science and technology of obtaining reliable information about
physical objects and the environment through processes of record-
ing. Photogrammetry has dealt for many years with the 3D recon-
struction of objects from one or more images. It provides accurate
sensor calibration and object modeling using analog or digital
images. Several commercial software packages are available for
image processing and 3D modeling. There are many applications
for photogrammetry such as mapping production, land surveying,
extraction of Digital Elevation Model (DTM) and Orthorectifica-
tion. These applications are not especially new but need accurate
data and methods in order to obtain good results. Quality evalu-
ation is important for several reasons. Firstly, it may give impor-
tant information about deficiencies of an approach and may take
place to help in focusing a further research activity. Secondly,
quality evaluation is needed in order to compare the results of
the different approaches and to convince a user, that an approach
can be used in an operational workflow (Schuster and Weidner,
2003).

Much research has been carried out on accuracy assessment for
Imagery data. (Grussenmeyer et al., 1994) proposed statistical
techniques in order to calculate root mean square errors by point
and line based assessment. Also, (Grussenmeyer, 1994) intro-
duced a methodology to assess the photogrammetric data statisti-
cally. Recently, empirical tests have been applied by the German
Society of Photogrammetry, Remote Sensing and Geoinforma-
tion (DGPF) on Digital Airborne Cameras Evaluation (Cramer,
2009 and Cramer, 2010). Evaluation of digital photogrammetric
cameras by the generation of Digital Elevation Models (DEM)
and the comparisons were carried out from ground truth and air-
borne Lidar measurements (Haala et al., 2010). All accuracy as-

sessment include three fundamental steps (Congalton, 2009):
-Firstly, design the accuracy assessment sample. Sampling de-
sign plays a critical role in accuracy assessment;
-Secondly, collecting data for each sample;
-Finally, analyzing the results.

Because high quality reference data are difficult and expensive
to obtain, the sampling design issues encountered in accuracy as-
sessment are similar to those traditionally addressed by survey
sampling methodology: how to choose sample in a cost-effective
and at the same time statistically rigorous manner? Application
of basic sampling designs such as simple random, stratified ran-
dom, systematic and cluster have been summarized in various ac-
curacy assessment papers (Congalton, 2009). Once the reference
data are in hand, the next step in accuracy assessment is anal-
ysis of these data. The traditional analysis of accuracy assess-
ment begins with detection of errors in the raw data. In this field
three approaches for quality evaluation of building models, two
of them, namely (McKeown et al., 2000 and Ragia, 2000). Based
on their principle ideas, a third approach was developed, taking
the good aspects and combining them and introducing alternated
quality measurements in (Schuster and Weidner, 2003). While
the general emphasis has been to develop methods and tools for
automatic, or semi-automatic generation of city models, the con-
cept of quality evaluation has also become very important. No
standard solutions are available as yet, although city models are
being produced worldwide at a fast rate (Akca et al., 2010).

2 AIM AND OBJECTIVES

Our research into accuracy assessment of 3D data aims at study-
ing the accuracy assessment of photogrammetry outputs. A sim-
ple method to evaluate photogrammetric data is based on the
comparison of 3D objects to accurate reference measurements.



Our approach is focused on characteristic planes extracted from
UltraCam and Rollei camera datasets.

3 THEORY

3.1 Processing of Images

A 3-D orientation process includes the determination of the po-
sition and attitude of an object in both coordinate systems. In
photogrammetry, the orientations are described as interior and
exterior orientations, or as relative and absolute orientations. In-
terior orientation defines the internal geometry of a camera or
sensor as it existed at the time of image capture. Lens distortion
deteriorates the positional accuracy of image points located on
the image plane. Two types of lens distortion exist: radial and
tangential lens distortion. Lens distortion occurs when light rays
passing through the lens are bent, thereby changing directions and
intersecting the image plane at positions deviant from the norm
(ERDAS IMAGINE Version 2011). Exterior orientation defines
the position (X0, Y 0, Z0) and angular orientation (omega, phi,
kappa) of the camera that captured an image. Bundle block ad-
justment uses the collinearity condition as the basis for formu-
lating the relationship between image space and ground space.
For one GCP measured in two overlapping areas, the collinearity
equations are.

xa1−x0 = −f ·m11(XA −X01) + · ·+m13(ZA − Z01)

m31(XA −X01) + · ·+m33(ZA − Z01)
(1)

ya1−y0 = −f ·m21(XA −X01) + · ·+m23(ZA − Z01)

m31(XA −X01) + · ·+m33(ZA − Z01)
(2)

xa2−x0 = −f ·m
′
11(XA −X02) + · ·+m

′
13(ZA − Z02)

m
′
31(XA −X02) + · ·+m′

33(ZA − Z02)
(3)

ya2−y0 = −f ·m
′
21(XA −X02) + · ·+m

′
23(ZA − Z02)

m
′
31(XA −X02) + · ·+m′

33(ZA − Z02)
(4)

Where xa, ya are image coordinates of point a in images 1 and
2. X,Y, Z are given in the ground coordinate system, m,m

′
are

the parameters of rotation matrix of images 1 and 2, f is a focal
length and x0, y0 are the image coordinates of principal point.

3.2 Quality Assessment Indices

As mentioned before, the output or results are of little value with-
out an accuracy assessment. The importance of describing the
quality of the data enables the contractor to verify measurements
and the end users to check the quality of the data with respect to
the specifications of the contracts (Schuster and Weidner, 2003).
In this section we present some indices that enable the giving of
a judgment about the quality of photogrammetric data. As pre-
sented in the introduction, there are several approaches for qual-
ity evaluation. Here, we can show a summary for these indices in
equations 5 to 9 and more details are given in (McKeown et al.,
2000; Ragia, 2000; Schuster and Weidner, 2003). Figure 1 shows
the relation between the reference surface area (Ar) and the tested
surface area (At).

Figure 1: Relationship between reference area (Ar) and tested
area (At).

The detection rate (pd) is the ratio between the intersection area
between two planes and the reference plane. If the rate is close to
1, then the data will be of good quality.

pd =
Ar ∩At
Ar

pd ∈ [0 : 1] (5)

The branch factor (pb) is the ratio between the area of the refer-
ence plane not included in the plane intersection and intersection
area between two planes. The factor is always positive and if the
factor is close to zero, then the data will be of good quality.

pb =
At \Ar
Ar ∩At pb ≥ 0. (6)

The miss factor (pm) is the ratio between the area of the tested
plane that is not included in plane intersection and intersection
area between two planes. The factor always positive and if the
factor is close to zero then the data will be of good quality.

pm =
Ar \At
Ar ∩At pm ≥ 0. (7)

The quality rate (pq) is the ratio between the intersection area
between two planes and the union of two planes. If the rate is
close to 1 is then the data will be of good quality.

pd =
Ar ∩At
Ar ∪At pq ∈ [0 : 1] (8)

The false alarm rate (pf) is the ratio between the area of the refer-
ence plane not included in the plane intersection and the reference
plane. The factor is always positive and if the factor is close to
zero then the data will be of good quality.

pf =
At \Ar
Ar

pf ≥ 0. (9)

4 EXPERIMENTAL WORK AND RESULTS

4.1 The Study Site and the Data Used

The study areas of this research are located in the city of Stras-
bourg, France. Digital aerial images from Ultracam-X (four im-
ages) and Rollei (five images) of the same sites were available.
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The Leica Photogrammetry Suite (LPS) and KLT software are
used for image processing and Matlab is used for computing qual-
ity indices. Table.1 shows brief characteristics of the photogram-
metric data.

Sensor Ultracam-X RolleiDB44
Acquisition date 2007 2004

Focal length (mm) 100.500 80.553
GSD (cm) 16 16

Pixel size (µm) 7.2 9
Flying height (m) 2300 1450

Overlap % 65 60
Base (m) 527 265

Table 1: Brief Characteristics about Photogrammetric Data.

4.2 Acquisition of Images and Image Processing

A block of 4 images was acquired with the UltraCam digital
camera, providing an image format of 9420 pixels long track by
14430 pixels cross track. The pixel size of the images is 7.2µm
while in object space it is 16 cm. 9 ground control points were
measured with GNNS systems. Also, a set of 5 images in one
strip was acquired with the Rollei medium format digital cam-
era, providing an image format of 4080 pixels long track by 4075
pixels cross track. The pixel size of the images is 9µm while
in object space it is 16 cm. 9 ground control points were mea-
sured with GNNS systems. Figure 2 shows the distribution of
UltraCam-X images surround with large rectangles and Rollei
images surround with small rectangles.

Figure 2: Block of UltraCam-X and Rollei digital images.

The images to be used are digital aerial photographs from the
UltraCam and Rollei sensors with unknown imaging orientation
parameters. The orientation of the images have to be performed
using the Leica Photogrammetry Suite (LPS) and KLT software
in order to compute exterior orientation parameters. In our ap-
plication, the camera information was taken from the calibration
sheet given by the camera owner. The exterior orientation ap-
proximations were achieved with bundle block adjustment. The

final results of standard deviation for exterior orientation param-
eters from UltraCam-X and Rollei digital images are presented in
Table 2, 3, 4 and 5. The image point standard deviation was 0.3
pixel for the UltraCam and 1.33 pixel for Rollei camera.

Image No 1 2 3 4
σX0 (m) 0.535 0.533 0.533 0.538
σY 0 (m) 0.594 0.589 0.591 0.601
σZ0 (m) 0.339 0.202 0.136 0.22

σOMEGA (deg) 0.016 0.016 0.016 0.016
σPHI (deg) 0.014 0.014 0.014 0.014

σKAPPA (deg) 0.003 0.003 0.003 0.003

Table 2: Accuracy of exterior orientation parameters for
UltraCam-X using KLT software package.

Image No 1 2 3 4
σX0 (m) 0.524 0.521 0.521 0.526
σY 0 (m) 0.552 0.542 0.544 0.600
σZ0 (m) 0.314 0.187 0.124 0.200

σOMEGA (deg) 0.015 0.014 0.014 0.015
σPHI (deg) 0.017 0.014 0.014 0.014

σKAPPA (deg) 0.003 0.003 0.003 0.003

Table 3: Accuracy of exterior orientation parameters for
UltraCam-X using LPS software package.

Image No 1 2 3 4 5
σX0 (m) 6.316 3.147 2.383 3.341 5.748
σY 0 (m) 5.652 5.104 3.866 4.048 4.018
σZ0 (m) 1.981 0.777 0.554 0.587 0.564

σOMEGA (deg) 0.222 0.201 0.151 0.158 0.157
σPHI (deg) 0.251 0.123 0.092 0.130 0.224

σKAPPA (deg) 0.025 0.016 0.012 0.014 0.023

Table 4: Accuracy of exterior orientation parameters for Rollei
using KLT software package.

Image No 1 2 3 4 5
σX0 (m) 5,353 3.608 2.989 3.696 4.835
σY 0 (m) 6,339 5.962 5.394 5.527 5.925
σZ0 (m) 1,636 1.087 0.810 0.697 0.765

σOMEGA (deg) 0.247 0.233 0.211 0.216 0.231
σPHI (deg) 0.207 0.140 0.115 0.144 0.188

σKAPPA (deg) 0.027 0.019 0.014 0.017 0.023

Table 5: Accuracy of exterior orientation parameters for Rollei
using LPS software package.

The previous four tables show that for the same block, the accu-
racy results are approximately the same by using LPS and KLT
software package. For UltraCam-X block, the accuracy in X and
Y direction are about 0.5 m and between 0.1 to 0.35 m in Z direc-
tion. The accuracies of rotation angles are less than 0.017 degree.
On other side, for Rollei block, the accuracy in X and Y direc-
tion are about 5 m and between 0.5 to 1.9 m in Z direction. The
accuracies of rotation angles are less than 0.25 degree.

A bundle solution is computed including the exterior orientation
parameters of each image in a block as well as the X, Y, and Z
coordinates of the tie points and adjusted GCPs. Block triangula-
tion is the process of defining the mathematical relationship be-
tween the images contained within a block, the camera or sensor
model, and the ground coordinates. Figure 3 and 4 represent with
any pair of columns (KLT and LPS software), the residuals of the
nine control points used in this process of X, Y, and Z directions
for two blocks. The points identification are in horizontal axis

155



and the residuals in meters are in vertical one. It is also apparent
that there is a higher residual in one point of each project in com-
parison with other points while other points are close together. Of
course, these residuals depend on the qualification and precision
of the GCPs.

(a) Residuals of GCPs in X-direction

(b) Residuals of GCPs in Y-direction

(c) Residuals of GCPs in Z-direction

Figure 3: Residuals of GCPs for UltraCam-X block.

(a) Residuals of GCPs in X-direction

(b) Residuals of GCPs in Y-direction

(c) Residuals of GCPs in Z-direction

Figure 4: Residuals of GCPs for Rollei block.

The expected height accuracies σZ based on base (B) over height
above ground ratio (Z) for two sensors is shown from equation
10 (Kraus and Waldhausl, 1993).

σZ =
Z2

c.B
· σpξ (10)

Where c is the focal length of camera and σpξ is the accuracy of
parallax.

By assuming that σpξ is given according to the accuracies for
each block after bundle adjustment. For UltraCam-X block, σpξ

is 2 µm and for Rollei block is 13 µm. Then σZ for UltraCam-X
equal to 0.2 m and for Rollei equal to 1.28 m.

After the bundle adjustment, the process of the object surfaces
have been carried out. As a result of that, the 3D ground coor-
dinates have been calculated at any point in an overlapped area
in the block. Within the test, LPS software systems was used to
compute the Digital Surface Model (DSM) with grids 0.2 m cell
size in two direction for each block. To evaluate the matching
quality while avoiding the influence of interpolation processes
3D point clouds will use in quality and quantity tests. Figure 5
and 6 show the 3D data sets created from UltraCam and Rollei
images. The difference between two results are due to the change
in sensors types and and flight parameters.

Figure 5: 3D data set created from UltraCam-X image.

Figure 6: 3D data set created from Rollei image.

4.3 Design of Plane Samples

The present research describes the plane based accuracy assess-
ment of 3D photogrammetric data. A selection of planes has been
defined by segmentation of plane samples from the matched 3D
points. Then, Principal Component Analysis (PCA) is the method
used to calculate the parameters of the optimal plane. PCA is a
useful statistical technique that reduces set of data dimensional-
ity by performing a covariance analysis between factors. It is
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suitable for data sets in multiple dimensions, for example in our
case a set of data is the point cloud created from a digital sen-
sor. Figure 7 shows how the plane fitting has been done from
set of point cloud. Seven samples are chosen in order to achieve
this study. Table 6 shows the Mean Distance (MD) in computing
medium planes from UltraCam-X and Rollei data and number of
points are used in order to create plane parameters. This distances
are computed between 0.09 m and 0.23 m in UltraCam samples
and between 0.37 m and 0.86 m in Rollei samples. By regard-
ing to this table, we can compare between planes created from
two blocks. Although the plane samples are chosen to the same
object, the MD is higher in Rollei block even if samples contain
the same number of points approximately used in creating plane
parameters.

Figure 7: Fitting Plane from 3d data set.

Plane MD for UltraCam-X (m) MD for Rollei (m)
No [Number of points] [Number of points]
1 0.227 [114] 0.556 [117]
2 0.133 [179] 0.448 [78]
3 0.207 [525] 0.477 [142]
4 0.205 [623] 0.642 [402]
5 0.134 [91] 0.863 [124]
6 0.098 [297] 0.365 [191]
7 0.209 [162] 0.748 [134]

Table 6: Mean Distance (MD) in computing medium plane

4.4 Results of Assessment

The approach for quality evaluation was applied to seven samples
of planes which were chosen from UltraCam and Rollei data after
images processing. In order to achieve this process, the Matlab
toolbox was programmed to compute the quality indices. Table
7 presents results of these quality indices estimated from plane
comparisons. The quality indices give an indication about the
quality of data. The values of two indices (pd and pq) are close
to one and the other three indices are close to zero. This means
that the characteristic of planes extracted from both datasets are
closed with a good quality.

On the other hand, one can compute the error estimation based
on the orthogonal distance between the plane surface of data ex-
tracted from UltraCam-X (Ar) and Rollei (At). Table 8 shows the
mean distance between plane created from UltraCam and Rollei
to the same location. The values of MD between planes are not far
from the expected errors in Z deducted from base over height ra-
tio (equation 10) and MD was computed for medium plane from
two blocks.

Plane pd pq pb pm pf
1 0.9624 0.7503 0.0390 0.2937 0.2827
2 0.9491 0.8439 0.0536 0.1313 0.1246
3 0.9512 0.9436 0.0513 0.0084 0.0080
4 0.9111 0.8176 0.0976 0.1256 0.1144
5 0.9991 0.9112 0.0009 0.0966 0.0965
6 0.8801 0.8552 0.1363 0.0330 0.0291
7 0.9548 0.8954 0.0474 0.0694 0.0663

Table 7: Quality indices estimated from plane samples.

Plane MD between
No two planes (m)
1 1.716
2 1.151
3 1.794
4 1.929
5 1.123
6 0.997
7 1.179

Table 8: Error estimation of surface area.

5 CONCLUSIONS

In this paper we have presented a simple approach towards plane-
based accuracy assessment of 3D data in aerial photogrammetry.
This approach considers the accuracy of the 3D data based on the
comparison between planes created from UltraCam-X and Rollei
digital cameras. Very similar results have been obtained from the
bundle adjustement of the two blocks using LPS and KLT soft-
ware packages. In photogrammetry, the base over height ratio
is a factor relied on the result elevation accuracy. The indices
computed between reference and tested areas are interesting indi-
cators to evaluate the degree of similarity of objects, beside quan-
titave assessment. Finaly, our future researches will concentrate
in 3D model accuracy assessment.

REFERENCES

References from Journals

Akca, D., Freeman, M., Sargent, I. and Gruen, A., 2010. Quality
assessment of 3d building data. The Photogrammetric Record
Vol. 25 (132), pp. 339-355.

Grussenmeyer, P., Hottier, P and Abbas, I., 1994. Le contrôle
topographique d’une carte ou d’une base de données constituées
par voie photogrammétrique. Journal of the French Association
of Topography, XYZ No 59, pp. 39-45.

Haala, N., Hastedt, H., Wolf, K., Ressl, C., and Baltrusch, S.,
2010. Digital photogrammetric camera evaluation - Generation
of digital elevation models. Photogrammetrie Fernerkundung
Geoinformation, Vol.2, pp. 99-115.

McKeown, D., Bulwinkle, T., Cochran, S., Harvey,W., McGlone,
C. and Shufelt, J., 2000. Performance evaluation for automatic
feature extraction. IAPRS International Archives of Photogram-
metry and Remote Sensing, Vol.33, pp. 379-394.

References from Conferences

Cramer, M., 2009. Digital airborne camera performance - The
DGPF Test. In: 52nd Photogrammetric Week, September 7-11,
2009, pp. 51-68. Stuttgart.

157



Cramer, M., 2010. The DGPF-test on digital airborne camera
evaluation - overview and test design. Photogrammetrie Fern-
erkundung Geoinformation, pp. 73-82. Stuttgart.

Ragia, L., 2000. A quality model for spatial objects. In: ISPRS
Congress International Archives of Photogrammetry and Remote
Sensing. Vol. XXXIII, Part B4. pp. 855-862. Amsterdam.

Schuster, H. and Weidner, U., 2003. A new approach towards
quantitative quality evaluation of 3D building models. ISPRS
com IV, Workshop (Challenges in Geospatial Analysis, Integra-
tion and Visualization II), Stuttgart, Germany, pp. 156-163.

References from Book

Congalton, G. and Kass, G., 2009. Assessing the accuracy of
remotely sensed data: Principles and pratices. 2nd, Taylor and
Francis Group, 183 pages.

Kraus, K. and Waldhausl, P., 1993. Photogrammetry: Funda-
mentals and standard processes. 4nd, Vol. 1 Ferd. Dummlers,
397 pages.

References from Thesis

Grussenmeyer, P., 1994. Contrôle Géométrique de la Saisie en
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ABSTRACT:

Airborne LiDAR data and optical imagery are two datasets used for 3D building reconstruction. In this paper, the
complementarities of these two datasets are utilized to perform a primitive-based 3D building reconstruction. The proposed
method comprises following steps: (1) recognize primitives from LiDAR point cloud and roughly measure primitives’ parameters
as initial values, and (2) select primitives’ features on the imagery, and (3) optimize primitives’ parameters by the constraints of
LiDAR point cloud and imagery, and (4) represent 3D building model by these optimized primitives. Compared with other model-
based or CSG-based methods, the proposed method is simpler. It only uses the most straightforward features, i.e. planes of LiDAR
point cloud and points of optical imagery. The experimental result shows this primitive-based method can accurately reconstruct
3D building model. And it can tightly integrate LiDAR point cloud and optical imagery, that is to say, all primitives’ parameters
are optimized with all constraints in one step.

*  Corresponding author.

1. INTRODUCTION

3D reconstruction of buildings is an important approach to
obtain the 3D structure information of buildings, and has been
widely used in the applications of telecommunication, urban
planning, environmental simulation, cartography, tourism, and
mobile navigation systems. It has been the major topic of
photogrammetry, remote sensing, computer vision, pattern
recognition, surveying and mapping. Traditionally,
photogrammetry is the primary approach for deriving geo-
spatial information through the use of multiple optical images.
Optical imagery has sharp and clear edges, so the 3D
information derived from photogrammetric measurements
consists of accurate metric and rich descriptive object
information (Mikhail et al., 2001). But it is hard to obtain
dense 3D points on the building’s surface because of the
matching problem at the homogeneous or occluded places. Also
because of matching problem, it is hard to generate 3D
building model automatically by photogrammetry (Schenk and
Csatho, 2002).

Since it was introduced in the 1980s, as a promising method,
Light Detection And Ranging (LiDAR) technology is used in
the applications of acquiring digital elevation data. Because
LiDAR technology is fully automated for generating digital
elevation data, many researchers have paid attention to the
technology and its applications (Ackermann, 1999; Arefi, 2009;
Habib et al., 2004; Mayer et al., 2008; Rottensteiner and
Briese, 2002; Zhang and Li, 2006). Although LiDAR point
cloud has dense 3D points, these points are irregularly spaced,
and don’t have accurate information regarding breaklines such

as building boundaries. Thus, the reconstructed 3D building’s
model is not very accurate (the accuracy depends on the points
density), not only the shape but also the position of the
building. Obviously, to generate a more accurate 3D building
model using LiDAR point cloud, the help of other datasets with
accurate boundaries is necessary.

Both ground plan and optical imagery satisfy this requirement.
Compared with ground plan, optical imagery has the
advantages of easy availability and up-to-date state. A variety
of research has been conducted using LiDAR point cloud and
optical imagery, whatever data-driven or model-driven
approaches (Habib, 2009; Kim, 2008; Tarsha-Kurdi et al.,
2007b; Wang, 2008). The existing methods have some
drawbacks. Firstly, most of these methods use edges as the
features to connect LiDAR point cloud and optical imagery, the
data processing procedure is complex due to the edge detection,
filtering, combination and other operations. Secondly, the
LiDAR point cloud and optical imagery are often processed
respectively, and then the results are combined simply.

In this paper, using airborne LiDAR data and optical imagery,
a primitive-based 3D building reconstruction method is
proposed to overcome the problems mentioned above. Two
datasets are tightly integrated, and the accurate 3D building
model can be acquired by the straightforward and simple
features. The organization of this paper is as follows. In section
2, the proposed primitive-based method is described in detail,
including motivation, workflow, and explanation of some
crucial steps. Section 3 is the result of the preliminary
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experiment and some discussions. Finally, we draw the
conclusion and identify the work of near future.

2. METHODOLOGY

2.1 Selection of Reconstruction Method and Features

In this section, two crucial points will be explained, i.e., the
selection of method and features for building 3D reconstruction.

There are two reasons for the selection of primitive-based
method to reconstruct 3D building model.

Firstly, LiDAR point cloud has dense 3D points, but these
points are irregularly spaced, and don’t have accurate
information regarding breaklines such as building boundaries.
On the contrary, optical imagery has sharp and clear edges, but
it is hard to obtain dense 3D points on the building’s surface.
In order to reconstruct 3D building model by integration of
LiDAR point cloud and optical imagery, the selected object
must have clear edges and dense surface points at the same
time. Obviously, primitives, for example, box, gable-roof and
hip-roof can satisfy this requirement. Suitable primitives will
“glue” LiDAR point cloud and optical imagery.

Secondly, from the point view of computation, primitive-based
representation of 3D building model has less parameters. For
example, to represent a box, 3 parameters (width, length and
height) are used to represent the shape; together with 3
parameters for position and 3 parameters for orientation, totally
9 parameters are enough to determine the shape and locate the
box in 3D space. So the solution can be calculated easily and
robustly.

For the selection of features, it is crucial because it affects the
complexity of the process and the accuracy of the reconstructed
3D building model. As we have seen, LiDAR point cloud and
optical imagery have different characteristics, so different
features will be selected for these two datasets. The features
should be as straightforward and simple as possible, so that
they can be easily located and accurately measured. Plane is
the feature that we selected for LiDAR point cloud, and corner
is the feature that we selected for optical imagery. Using these
straightforward and simple features, the computational
procedure is simplified, and the result can be obtained
precisely and robustly.

Because of above reasons, we select primitive-based method to
reconstruct 3D building model, and plane feature for LiDAR
point cloud and corner feature for optical imagery. In this paper,
only two kinds of primitives are studied, i.e., box and hip-roof.

2.2 Workflow

Fig. 1 shows the workflow of this primitive-based 3D building
reconstruction method. The numbers denote the order of
processing.

Figure 1.  Flowchart of the proposed method

1. Recognize primitives and measure initial
parameters. With the help of optical imagery and
LiDAR point cloud, the building is decomposed into
several primitives. Then the primitive’s parameters
are measured roughly on LiDAR point cloud and
optical imagery, such as length, width, height,
orientation and translation of the primitive. These
measurements can be used as fixed values
(constraints) or initial values in the following bundle
adjustment procedure.

2. Extract features. Corners are detected/selected on
the optical imagery, and planes are detected/selected
in the LiDAR point cloud. These features will be
used as observed values/observations in the following
bundle adjustment procedure.

3. Compute features. Based on the type and
parameters of primitives, the 3D coordinates of the
primitives’ features, such as corners, can be
calculated. They will be used as model/computed
values in the following bundle adjustment procedure.

4. Optimize parameters (bundle adjustment). Using
Collinearity Equation and 3D Plane Equation as
mathematical models, a cost function can be
established. The inputs of this cost function are
observed values, model values, and initial values
above. When the bundle adjustment procedure is
finished, the optimized/refined primitives’
parameters will be outputted.

Finally, 3D building can be represented by these primitives
with the optimized parameters.

In the following paragraphs, the detail of each step will be
depicted. A building consisting of several hip-roof primitives is
used as an example to facilitate the understanding. Fig. 2 is the
LiDAR point cloud of this building, and Fig. 3 is the
corresponding optical image. They are a part of an
experimental data of Strasbourg, France. This experiment was
carried out in September, 2004. In this experiment, LiDAR
sensor is Optech ALTM 1225, flight height is 1440m, and
point density is 1.3 points/m2; camera sensor is Vexel
UltraCamX, flight height is 2330m, and GSD (Ground Sample
Distance) is 15cm.
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Figure 2.  LiDAR point cloud

Figure 3.  Optical image

2.3 Recognize Primitives and Measure Initial Parameters

2.3.1 Hip-roof Primitive:  The primitive mainly used in
this example is hip-roof primitive, which is shown in Fig. 4.
The coordinates framework and the parameters are labelled. It
can be seen that 6 parameters are used to define the shape of
this hip-roof primitive. Further more, another 6 parameters
define how a primitive is placed in 3D space, 3 for position
and 3 for orientation.

Figure 4.  Hip-roof primitive

2.3.2 Recognize Primitives:  In order to carry out the
primitive-based 3D building reconstruction, a building must be
decomposed into several primitives. It is hard to perform this
task all by computers. At current stage, the recognition of
primitives is done in interactive mode. The decomposition is
not unique, it depends on the operator. After analyzing both
LiDAR point cloud (see Fig. 2) and optical image (see Fig. 3),
this building can be decomposed into 5 hip-roof and 1 box
primitives.

2.3.3 Measure Initial Parameters:   When  the  way  of
decomposition is determined, the parameters of each primitive
should be measured. Height parameters can only be derived
from LiDAR point cloud. Plane parameters, such as length,
width and primary orientation of the building can be obtained
from LiDAR point cloud or optical imagery. The parameters
related with relative displacement and rotation to the adjacent
primitive should also be determined.

As mentioned earlier, the measured parameters will be used as
initial values and will be optimized in the following bundle
adjustment procedure. It doesn’t need to measure these
parameters accurately. So the process can be simplified and the
efficiency will be high.

2.4 Extract Features

Corners are detected/selected on the optical imagery. All
visible vertexes are measured; the pixel coordinates of x and y
directions are recorded. Every vertex has a unique ID; the
bigger numbers in Fig. 3 are these IDs. The pixel coordinates
of these corners will be used as the observed values of
Collinearity Equation and contribute to the cost function.

Planes are detected/selected in the LiDAR point cloud. In Fig.
3, these planes are labelled with smaller numbers. Every plane
has a unique ID, and the plane equation is calculated using all
3D points that form this plane. These 3D plane equations will
be used as constraints and contribute to the cost function.

2.5 Compute Features

Based on the type and parameters of primitives, the 3D
coordinates of the primitives’ features, such as corners, can be
calculated. For example, in Fig. 4, the bottom four corners’
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coordinates are (0,0,-height), (length,0,-height), (length,width,-
height) and (0,width,-height). They will be used as
model/computed values in the following bundle adjustment
procedure. Certainly, before these model values are substituted
into equations, the coordinates must be transformed from the
primitive’s local coordinates system to the global coordinates
system. This can be done by 3D rigid body transformation
using a serial of translation and rotation parameters of
primitives.

2.6 Optimize Parameters (Bundle Adjustment)

On the basis of previous preparation works, all primitives’
parameters can be optimized by a bundle adjustment procedure.
To achieve this goal, an important thing is to construct a
simple and effective cost function.

Our idea is straightforward and simple. When a 3D building
model has correct shape and is located in the correct place in
3D space, two conditions will be satisfied. Firstly, the back-
projections of primitive’s vertexes (computed features) on the
optical image should perfectly superpose on the measured
corners (extracted features). Secondly, the primitive’s vertexes
should be exactly on the planes which are formed by LiDAR
point cloud.

Two mathematical models, i.e., Collinearity Equation and 3D
Plane Equation are used to represent these two conditions
respectively. And the cost function is established based on
these two mathematical models. The inputs of this cost
function are observed values, model values, and initial values
above. The cost function can be optimized by bundle
adjustment technique. When the bundle adjustment procedure
is finished, the optimized/refined primitives’ parameters will
be outputted.

So far, 3D building can be represented by these primitives with
the optimized parameters. The experimental result will be
shown and some discussions will be made in the next section.

3. EXPERIMENTAL RESULT AND DISCUSSION

3.1 Experimental Result

Fig. 5 shows the reconstructed 3D building model of the
example data. The wireframes of the model are overlaid on the
original LiDAR point cloud. It can be seen that they are fitted
very well.

Figure 5.  Reconstructed 3D building model

Because there are no surveyed data of this building, we use
another way to verify the effectiveness of the proposed
primitive-based 3D building reconstruction method. As shown
in Fig. 6, the wireframes of both initial model and optimized
model are back projected to the optical image, which is used to
reconstruct this building. They are represented by yellow lines
and white lines. The region circled in Fig. 6 is zoomed and
shown in Fig. 7. Obviously, the initial polygons diverge from
the real building’s edges. While, the optimized polygons fit the
real building’s edges very well.

As shown in Fig. 3, there are totally 27 vertexes. The distances
of the vertexes in the initial model and the optimized model
compared to the imagery are computed. The result is shown in
Tab. 1. It can be seen, the mean value and standard deviation
are improved in both x and y directions after optimization
procedure.

mean
value/pixel

standard
deviation/pixel

x -23.74 17.29Initial model
y -10.00 15.12
x -0.04 1.65Optimized model
y 0.17 1.90

Table 1.  Statistics of distances of vertexes

Figure 6.  Wireframes of initial model and optimized model
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Figure 7.  Zoom view of circled region of Fig. 6

In this experiment, only one image (Fig. 6) is used. In order to
reinforce the effectiveness of proposed method, the optimized
model is also back projected to another image (Fig. 8), which
covers this building but is not used during the reconstruction
procedure. The optimized polygons fit the real building’s edges
very well too.

Figure 8.  Wireframes of optimized model on the image which
doesn’t involve in optimization procedure

3.2 Discussion

From this preliminary experiment, it can be seen that the
proposed method can utilize the complementarity of imagery
and LiDAR point cloud, and a model is established as soon as
the cost function is solved. This is only the first step, perhaps
the reconstructed model is not very accurate, because:

1. The 3D parameters and 2D features were measured
roughly by manual work.

2. The actual building doesn’t exactly coincide with the
used simple model.

3. At present, only one image is used during
optimization procedure.

Besides, there exist some deficient places.
1. The accuracy of the reconstructed model is only

verified semi-quantificationally.
2. Only two simple primitives are used, i.e., box and

hip-roof.
3. There are many manual works. For example,

extraction of 2D corner features and 3D plane
features, selection of primitives and measurement of
the initial parameters of these primitives.

4. Not all images covering the studied building are used
during the data processing procedure.

5. Only the data of one separated building was studied
and processed.

To make the proposed method more automated and to apply
this method to a wide urban area, there are some places
needing improvement in subsequent research.

1. To represent more complex buildings, more
primitives such as cylinder and sphere will be
considered, and boolean operations of primitives will
be used.

2. To improve the accuracy and the efficiency, instead
of current manual work, either specific human-
interactive software (Brenner, 1999) or some
automatic algorithms will be developed, for example,
extracting features from LiDAR point cloud and
optical imagery (Tarsha-Kurdi et al., 2007a),
recognizing types of primitives and obtaining the
initial parameters of primitives.

3. To apply to a wide urban area where a lot of
buildings in it, some in-depth topics will be studied,
i.e., building detection, extraction and segmentation
from LiDAR point cloud and optical imagery (Hu,
2003; Tarsha-Kurdi et al., 2006).

4. CONCLUSIONS AND FUTURE WORK

Airborne LiDAR data and optical imagery are two datasets
used for 3D building reconstruction. In this paper, the
complementarities of these two datasets are utilized to perform
a primitive-based 3D building reconstruction. The preliminary
experimental result demonstrates the feasibility of the
proposed 3D building reconstruction method.

The proposed primitive-based method is a kind of model-based
method, so it has the following merits as other model-based
methods.
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1. For buildings with regular shapes, it can increase
efficiency than point-by-point measurement.

2. The operator only needs to select primitives and
approximately measure parameters as initial values,
while the labor-consuming precise measurement is
carried out by computer.

3. The inner constraints guarantees the geometric nature
unchanged after reconstructing.

4. It is possible to reconstruct the whole building even if
a part of it is occluded.

Beyond that, the proposed primitive-based method in this
paper is simpler, because it only uses the most straightforward
features, i.e. planes of LiDAR point cloud and points of optical
imagery. Further more, it can tightly integrate LiDAR point
cloud and optical imagery, that is to say, all primitives’
parameters are optimized with all constraints in one step.

The following researches will be carried out in the near future.
1. All images covering the reconstructed building will

be used to improve the accuracy and integrality of the
reconstructed 3D model.

2. The corner features will be extracted more precisely
from the optical imagery, so that they can be used to
improve and validate the accuracy of reconstructed
3D model.

3. The result will be validated quantificationally or by
in-situ data.
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ABSTRACT: 

1. INTRODUCTION 

Airborne LiDAR data and optical imagery are two data sources used for 3D building reconstruction. The 

researchers have developed a variety of modelling method using these two kinds of data. According to 

different data sources, these methods can be divided into three categories: photography measuring using 

digital images only; building reconstruction using LiDAR points only; building reconstruction by integration 

of LiDAR data and optical imagery. These methods are different in precision, complexity, efficiency and so 

on. So a qualitative comparison for the three modeling methods is needed. In this paper, we firstly 

reconstructed the buildings in the test site using the above three kinds of data sources. And then, we 

compared the results quantitatively. We adopted the primitive-based building reconstruction method to 

reconstruct the buildings using the two types of data (W. Zhang, 2011).  

The organization of this paper is as follows. In section 2, the building reconstruction methods are described 

in detail, and the methods used to compare the results are also introduced in this section. Section 3 is the 

result of the comparison and some discussions. Finally, we draw the conclusion. 

 

2. METHODOLOGY 

2.1 Introduction to data sources 

        
Fig. 1.  LiDAR point cloud                                         Fig. 2.  Optical image 

Fig. 1 is the LiDAR point cloud of this building, and Fig. 2 is the corresponding optical image. They are a 

part of an experimental data of Strasbourg, France. This experiment was carried out in September, 2004. In 

this experiment, LiDAR sensor is Optech ALTM 1225, flight height is 1440m, and point density is 1.3 
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points/m2; camera sensor is Vexel UltraCamX, flight height is 2330m, and GSD (Ground Sample Distance) 

is 15cm. 

2.2 Methods of modelling  

2.2.1 Image-based modelling 

The development of photography measurement technology provides us a wide range and non-contact 

location measuring method. In this paper, three aerial photographs of the test area are available and their 

internal and external orientation elements are known. We respectively used two and three photos to intersect 

the building corners’ coordinates. The pixel coordinates of the corners were measured manually and the 

measurement accuracy was on sub-pixel level.  

2.2.2 Point-cloud-based modelling  

Light Detection and Ranging (LiDAR) technology is used in the applications of acquiring digital elevation 

data. To improve the accuracy of the building outline and location, people often intersect the planes to get a 

line or a point. The steps include extraction of the points which are part of the same plane, and then fitted to 

obtain the plane equation. Then line equations or point coordinates will be calculated by solving the 

equations. LiDAR points used in this paper covered the roofs and there were only a few points on the side 

walls. For corners of the buildings, if three or more planes were available, we used multiple planes to 

intersect the points; if no enough available planes, we firstly fitted lines using the points at the edges and 

then intersected points using these lines. 

2.2.3 Primitive-based modelling  

LiDAR point cloud has dense 3D points, but these points are irregularly spaced, and don’t have accurate 

information regarding breaklines such as building boundaries. On the contrary, optical imagery has sharp and 

clear edges, but it is hard to obtain dense 3D points on the building’s surface. The two data sources have 

obvious complementary and some scholars are working on the joint reconstruction using both of the two data 

sources. W. Zhang, who used primitive-based method to achieve the joint between the two data sources, 

initially proved to be effective and accurate. In this paper, this method was used to reconstruct.  

2.3 Methods of comparison 

2.3.1 Comparison between each other 

Using the three modelling methods, we obtained three models of the test area. These models can be regarded 

as constituted by 20 corner points. In order to analyse the results of the models, we made pairwise 

comparisons between these three sets of point coordinates. Firstly, we did subtraction between the point 

coordinates respectively to obtain the errors. Then we calculated the mean and variance of these errors. 

These two parameters can reflect the modelling accuracy. 

2.3.2 Comparison between pixels 

 

According to principles of photogrammetry, the pixel coordinates can be obtained by the back-projection 

using the points from each model. These three sets of pixel coordinates should be the same and should match 

those measured on the images manually. In fact there were differences between these pixel coordinates.  

It was assumed that the pixel coordinates measured manually were more accurate and could be regarded as a 

standard. Firstly, we did subtraction between the pixel coordinates of back-projection and the pixel 

166



 

coordinates measured manually. The errors could be attained by this subtraction. Then the mean and variance 

of these errors were calculated. 

 

3. RESULT AND DISCUSSION 

3.1 Result of comparison between each other  

Table1 depicts the mean value and standard deviation of the differences between each two models. It shows 

the differences between point-cloud-based modelling and others are larger. It also can be seen that the 

differences of Z are larger and less intent than that of X or Y. This can be complained by previous studies 

that the horizontal accuracy of photography measurement is significantly higher than the elevation accuracy. 

 LiDAR only & Both image and 

LiDAR 

Image only & LiDAR only Image only & Both image and 

LiDAR 

 Mean  value 

(mile) 
std Mean  value 

(mile) 
std Mean  value 

(mile) 
std 

X 0.4551 0.4737 0.4528 0.4895 0.1144 0.0752 

Y 0.4585 0.3829 0.3622 0.3845 0.1667 0.1231 

Z 0.6310 0.3296 0.7636 0.5315 0.6304 0.5049 
Table1 Mean value and standard deviation of the differences between each two models 

 

3.2 Result of comparison between pixels 

   
Fig. 3.  Differences of pixels            Fig. 4.  Back-projection of the three models         Fig. 5.  Zoom view of circled region of Fig. 4 

Fig. 3 is the plot of result of comparison between pixels. It depicts the differences of image-based modelling 

and primitive-based modelling are less than 4 pixels, while the differences of point-cloud-based modelling 

can reach 13 pixels.  

 mean value/pixel standard deviation/pixel 

Image only 
x 1.2203 0.8602 

y 1.1981 0.4805 

LiDAR only 
x 2.4175 2.6590 

y 3.6713 3.0033 

Both image and LiDAR 
x 0.8989 0.6576 

y 1.1789 0.8131 
Table2 Mean value and standard deviation of the differences between pixels 

As shown in Fig. 4, the wireframes of the three models are back projected to the optical image, which is used 

to reconstruct this building. The accuracy of each model can be seen in Fig .5 more clearly (green lines stand 

for point-cloud-based modelling; blue lines stand for image-based modelling; red lines stand for 

primitive-based modelling). Table2 can show the same result by using mean value and standard deviation. 
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Compared with other two models, the mean value and standard deviation of primitive-based modelling are 

improved in both x and y directions. It also can be seen that the green wireframes are shrivelled compared 

with the true profiles of buildings. This is caused by the missing of LiDAR points on the edges. These errors 

depend on point density of LiDAR. 

 

4. CONCLUSIONS AND FUTURE WORK 

In this paper, we reconstructed the buildings based on three kinds of data sources and compared the results 

quantitatively. The results of this comparison show: (1) Modelling by integration of point cloud and optical 

imagery is superior to point-cloud-based modelling in the accuracy (2) For image-based modelling, the 

horizontal accuracy is higher than the elevation one (3) The accuracy of point-cloud-based modelling is 

different from point to point and the models are shrivelled compared with the true profiles of buildings. (4) 

Primitive-based modelling is a desirable method to combine the advantages of the two types of data. 

To a certain extent, the methods of comparison used in this paper can express the accuracy of modelling. But 

this is only the first step, there are some places needing improvement in subsequent research: 

1. To select the most advanced methods of modelling to compare. 

2. To represent more complex buildings, and to involve more points for comparison. 

3. To obtain more accurate coordinates to serve as the reference.  
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ABSTRACT: 

 

This paper suggests the use of specific methods for assessing the geometry of 3D building models, by considering models extracted 

automatically from terrestrial laser scanning (TLS) data and aerial laser scanning (ALS) data. Well known quality factors have been 

applied for assessing roofs and façades separately. A projection into 2D makes sense in this case, because currently, 3D models or 

point clouds of façades are often projected into 2D for generating 2D façade maps, as required in the building trades. For assessing 

roofs in 3D, error maps have been suggested especially for analysing the spatial distribution of plane adjustment errors which might 

affect the final reconstructed 3D model. For assessing 3D building vector models as one object, first experiments based on 

volumetric quality factors are presented. This approach is based on ratios inspired from quality factors that have already proven 

themselves in the literature for comparing surface areas. The volumes considered here are computed on vector models (faceted 

solids) and not voxels. Further investigations are necessary on the one hand, for testing the sensitivity of these factors. On the other 

hand, the approach must be completed by criteria allowing the detection of shape differences, independently of the building volume. 

 

 

1. INTRODUCTION 

Whether airborne or terrestrial, laser scanners have the great 

potential to enable with high speed the acquisition of 3D data 

especially in urban areas. If data acquisition seems easy, the 

subsequent processing steps (filtering, segmentation, 

reconstruction) are more or less complex. Development of fully 

automatic algorithms providing reliable 3D building models 

remains an important challenge, due to the complexity of urban 

scenes (Akca et al., 2008). Nowadays, no process is able to 

provide with laser data a 3D city model or even a 3D building in 

a complete automatic way. Achieving a result is a first 

important step, but it should be completed by quality 

assessments. Result assessments for 3D building models are 

mostly approached in a qualitative visual way. For surveyors, 

quantitative assessments are essential. Nevertheless, calculating 

uncertainties in a 3D model is not a trivial task.  

Unfortunately, 3D is not yet generalized to the building trades. 

Many surveyors working with laser scanners are forced to 

degrade the data into 2D drawings, because the contractors are 

used to work with 2D maps. Therefore 2D assessment 

approaches must be considered. For assessing 3D models, 

statistical criteria and error maps have been used. Finally, for 

assessing the entire 3D building, quality factors based on 

volume calculations are suggested. 

 

 

2. RELATED WORKS 

While the general emphasis has been to develop methods and 

tools for automatic or semi-automatic generation of city models, 

the concept of quality evaluation has also become very 

important. Assessment is generally considered at the end of a 

work and frequently limited to a visual check. A few papers 

address the topic of quality assessment of 3D building models 

produced with aerial imagery or LIDAR data (McGlone and 

Shufelt, 1994; Ragia, 2000; Rutzinger et al., 2009, Akca et al., 

2008, Schuster and Weidner, 2003, etc.). Although city models 

are being produced worldwide at a very fast rate, there is a 

certain lack of standardization regarding the evaluation 

techniques (Akca et al., 2010; Rutzinger et al., 2009). The rigor 

of an assessment method is often depending on the ground truth 

available or on the contractor’s specifications. Visual inspection 

is the minimum required.  

The topic of assessment of models produced with TLS data is 

also a current issue. The quality of the data provided by this 

increasingly used technology has been analyzed in several 

papers (Baltsavias, 1999; Reshetyuk, 2006; Lichti, 2010) in 

order to assess the a priori accuracy of points composing a point 

cloud.  

Approaches leading to 3D models by ALS or TLS generally 

imply several processing steps, which might contribute to the 

final error budget. However, when public authorities order the 

modeling of a city or individual buildings, they are limited to 

the evaluation of the submitted models. For this reason, only the 

uncertainties occurring in the reconstruction step will be 

considered in this paper. More details about the assessment of 

intermediate results like segmentation results obtained with 

terrestrial or aerial laser scanner data can be found in (Landes et 

al., 2012, Tarsha-Kurdi, 2008). 

The purpose of this work is to propose solutions for the 

geometric assessment of 3D vector models obtained by 

processing of ALS and TLS data. Several methods are 

investigated. 2D quality factors and errors metrics like RMSE 

are produced, as suggested in Rutzinger et al. (2009) or 

Schuster and Weidner (2003). Also less common indicators, like 

error maps or volumetric quality factors are suggested. These 

assessment approaches will be illustrated on 3D building 

facades obtained from TLS data, and on 3D building roofs 

obtained from LIDAR data acquired in Strasbourg, France.  

Every accuracy assessment study includes three fundamental 

steps (Congalton, 2009): firstly, design the accuracy assessment 

sample; secondly, collecting data for each sample, and finally, 

analyzing the results.  
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It is useful to remind the distinction between accuracy and 

precision, because both concepts are sometimes mixed up in the 

literature. Accuracy calculations suppose that a reference model 

(ground truth) is gained through an independent and more 

precise surveying technique than the laser scanning technique. 

Precision describes the way the points are distributed around the 

most probable value of the observation or result. Thus for 

gaining a reference model for precision calculations, it is 

appropriate to work on the same data, but to use a more precise 

method for the model creation (generally manual). 

 

 

3. ASSESSMENT OF RECONSTRUCTED 3D 

BUILDING MODELS 

An interesting study towards quantitative quality evaluation of 

building models has been achieved in Schuster and Weidner 

(2003). They refer to approaches developed in (McKeown et al. 

2000) and (Ragia, 2000) generally for 2D pixel based analysis. 

Also Song and Haithcoat (2005) suggest the use of surface area 

based indicators. These indicators are originally coming from 

remote sensing classification assessments (confusion matrix).  

But they can also be applied on vector polygons, which surface 

area will be compared to surface areas of reference polygons.  

Since point clouds acquired on façades are still too often 

“degraded” into 2D maps, these factors have been selected for 

helping to assess 2D building façade models. Also for the 

assessment of roof models extracted from LIDAR data, these 

factors provide interesting results. 
 

3.1 Assessment of façade and roof models in 2D 

The roofs and façades are produced through as 3D vector data. 

As mentioned above, several quality factors expressed as ratios 

have been selected in the literature and calculated on the basis 

of surface areas of vector polygons. Table 1 reminds their 

expression where SR means the surface area of the reference 

vector polygon and ST the surface area of the polygon to be 

tested.  
 

Quality factor Explanation 

 

   
     

  
 

 

         

Detection rate: it is the ratio between the 
intersection area between two planes and the 

reference plane. ρd = 1 means that the 

calculated polygon is perfectly superposed to 
the reference polygon.  

 

   
     

     
 

 

         

Quality rate: it is the ratio between the 

intersection area between two planes and the 
union of two planes. ρq = 1 means that both 

polygons are perfectly superposed. 

 

   
     

     
 

 

     

Branch factor: it is the ratio of the part of the 

reference polygon which is not included in the 
polygon under study and the intersection of the 

two polygons.  

 

   
     

     
 

 

     

Miss factor: Ratio of the part of the polygon 
being evaluated which is not included in a 

reference polygon and the intersection of the 

two polygons.  

 

   
     

  
 

 

     

False alarm rate: it is the ratio of the part of the 

reference polygon which is not included in the 

polygon under study compared to the area of 
the reference polygon.  

Table 1.  Quality factors used to evaluate surface areas of 

polygons in vector models  

The main difficulty consists into defining an adequate reference 

model. Satisfying results are reached when the value of ρd and 

ρq is close to 1, and the three others are close to 0.  

 

3.1.1 Roofs assessment:  A complete processing chain 

leading to 3D building models based exclusively on LIDAR 

data has been developed in (Tarsha-Kurdi et al., 2008). One 

algorithm of this chain deals with the reconstruction of roofs 

and provides automatically 3D vector models of roofs. The 

reference model chosen for assessment is a stereorestituted 

vector map of roofs. Roofs are composed of planes, edges and 

nodes. The point cloud used presents a low point density (1.3 

points/m²), and covers the center of Strasbourg where 16 

buildings with different levels of complexity have been chosen 

(Figure 2). The accuracy analysis of these samples based on the 

quality factors provides mean values higher than 0.83 for ρd and 

ρq, and lower than 0.13 for ρb, ρm, ρf (Tarsha-Kurdi et al., 

2008). These good values confirm the efficiency of the 

algorithm. Obviously, the point cloud characteristics (density, 

accuracy, noise), and the complexity of the roof impact the final 

result. 

 

 

 
 

 
 

Figure 2. (a) Aerial image of a test site in Strasbourg; (b) vector 

model of building roofs obtained (b) by photogrammetric 

stereorestitution (reference) and (c) by automated approach 

(Tarsha-Kurdi et al., 2008).  

 

Two types of errors may cause bad rates for the quality factors. 

If small objects on the roof (antennas, chimneys, windows) 

cannot be modeled due to the low point density, they affect the 

roof plane equation. They appear in the global error budget like 

systematic errors. Since the reference roof models have been 

produced with independent photogrammetric data, also errors 

stemming from geocoding uncertainties might distort the plane 

(b) 

(c) 

(a) 
100 m 

North 

m 
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equations of the roofs and therefore their contours in the 2D 

plane.  

When LIDAR is not able to capture points on building façades, 

a reconstruction of the buildings by combination of TLS and 

ALS data is required (Boulaassal et al., 2011). At this stage the 

assessment must be continued on façades. 

 

3.1.2 Façades assessment: The building façades 

reconstruction based on TLS data can be assessed by comparing 

a survey map with the vector model projected on a plane. A 

complete processing chain leading to 3D geometric façade 

models has been developed in (Boulaassal et al., 2009) and 

assessed in (Landes et al., 2012). For illustration purpose, an 

old building in the center of Strasbourg has been scanned by 

TLS (Leica C10) with 1 point every cm after registration of 

three point clouds (Figure 3). It has been chosen for its 

architecture and because a 3D elevation map produced by 

stereorestitution was available (Figure 4). 

 

      
 

Figure 3. Scanned façade of a complex architectural building (a) 

and extracted contours (b) 

 

After segmentation in planes, the contour points of the main 

façade plane have been extracted (Figure 3b) and adjusted in 

order to produce a vector model of the façade. A few polygons 

from the restituted model have been chosen for the contours 

evaluation (Figure 4).  

 

 
Figure 4. Restituted map (in black) with assessment contours (in 

red). Extracted contour points appear in magenta. 

 

Sample 

No. 

ST 

(m²) 

SR 

(m²) 
  
    

ρd  ρq ρb  ρm  ρf  

1 19,36 18,31 17,96 0,93 0,89 0,07 0,01 0,01 

2 1,75 1,72 1,66 0,95 0,90 0,05 0,03 0,03 

3 5,81 5,65 5,51 0,95 0,92 0,05 0,02 0,02 

4 38,26 37,55 37,62 0,98 0,97 0,02 0,00 0,00 

5 18,62 17,94 18,12 0,97 0,95 0,03 0,01 0,01 

mean    0,96 0,93 0,05 0,02 0,02 

 

Table 5. Quality factors calculated for 5 polygons extracted in 

the façade. 

 

Then the quality factors ρd, ρq, ρb, ρm, and ρf have been 

calculated for 5 windows, of various sizes, and showing visually 

the highest differences with the reference (Table 5). The quality 

factors are very satisfying and confirm the quality of the 

produced 2D vector map. However, they do not quantify the 

geometric accuracy of the reconstructed façade elements.  

To complete the assessment, errors metrics like the calculation 

of deviations and RMSE are relevant. Here, the 3D deviations 

between the 5 reference contours and the calculated contours 

reach 6 to 20 cm depending on the window, i.e. 12 cm in 

average. The RMS error of all the Euclidian distances in 3D 

reaches 14 cm, which could be better given the technology 

involved. A visual inspection enables to understand these 

results. Given that the calculated contours are based on the point 

cloud, they cannot describe the parts of the façade which are 

hidden when scanned from a terrestrial point of view (see the 

shadows at the bottom of windows in Figure 6). Therefore, a 

visual assessment is essential for justifying the sometimes low 

geometric accuracy.   

 

  
 

Figure 6. Impact of shadows on the reconstruction of the façade. 

(a)  Reference vector model in red and extracted contour points 

in magenta before vectorization; (b) colorized TLS point cloud. 

 

As a summary, for 2D analyses, the quality factors are useful 

for roughing out the detection quality, although they imply the 

definition of thresholds. However, they are not sufficient for 

assessing the geometric position of the vectors and must be 

supplemented by statistical criteria like deviations and RMSE.  

 

3.2 Assessment of 3D models 

This section considers the assessment of 3D models of roofs 

and finally of the entire building. 

 

3D roofs assessment: Rottensteiner (2003) suggests the 

analysis of Root Mean Square Errors (RMSE) for analyzing the 

precision of the complete 3D building. RMSE are interesting to 

analyze, especially when plane adjustments are carried out, as it 

is the case for roofs. However, RMSE describe only the 

dispersion of points around an average value but not their 

spatial distribution, which is assumed to be Gaussian. For this 

reason, a method is proposed for completing the assessment of 

the 3D roof vector model previously converted into raster 

format. It is based on the calculation of the distance between 

each point of the cloud and the mean plane to which it is 

assigned. 

(a) (b) 

(a) 

(b) 
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An image called ‘error map’ is produced for every plane 

entering into the model. A pixel value of zero means that the 

model coincides with the point cloud. Several buildings 

acquired with high density (7 points/m²) by ALS over an 

industrial area have been modeled. Subsequently errors maps 

have been calculated. Figure 7 presents an example of a 

building of simple geometry. As deduced from in the error map, 

more than 90 % of the points are located in +/- 0.25 m around 

the adjusted roof plane. Since a large amount of pixels is close 

to zero, it can be affirmed that the results are precise but not 

necessarily accurate since the reference model is derived from 

the same data as the those used for reconstruction.  

The building roof shown in Figure 8 is of complex architecture 

and has been extracted from ALS data with lower density (1.3 

point/m²). Since the small roof details cannot be detected in that 

case, they enter in the plane calculation like points describing 

actually the roof. This influences inevitably the building error 

map, in which only 60% of points are located in the interval +/-

30cm around the plane. Consequently, the roof plane equations 

are unrealistic and the 3D building model contains visual 

distortions. Therefore, the error map is helpful for improving 

the calculation of the roof plane models and consequently the 

3D building model. More details can be found in (Tarsha-Kurdi, 

2008). 

 

 

 

 

 

 

 

 

 
Figure 7. Color coded error map (left) for a 2D roof model 

(right) of a simple building (Hermanni site) 

 

 

 

 

 

 

 

 

 
 

Figure 8. Automatic building modeling of a complex building 

(Strasbourg site). From left to right: aerial image, error map, 

complete (distorted) 3D building model.    

 

The same principle can be applied for assessing the accuracy 

(instead of the precision) of the roof plane extraction. This 

means having a reliable reference, which is validated as exact 

(ground truth). In this case, a difference image between label 

images could be carried out and pixel-based performance 

metrics can be adopted (Rutzinger et al., 2009).  

 

3.2.2 Entire 3D building assessment: Considering a building 

as one object, volume comparisons seem to be rather 

appropriate than surface areas comparisons. Volume 

comparisons between reference building and modeled building 

cannot be considered alone, because volume metrics are 

affected by the building size. Thus, in presence of a majority of 

small buildings, object-based performance metrics like the 

volume metric may lead to high error rates (McKeown, 2000; 

Rutzinger et al., 2009). A new approach aiming to evaluate 3D 

buildings is experimented here. The quality factors used in 

section 3.1 and also applied in (Mohamed and Grussenmeyer, 

2011) for plane-based accuracy assessment in photogrammetry, 

have been extended to the assessment of 3D volumes. It 

suggests a volume based comparison between a 3D building 

vector model and an accurate 3D reference model (Figure 9). 

The volumes are not computed on voxels but on solids obtained 

by meshing the vector models. The “volumetric” quality factors 

used for the assessment express the relationships between the 

volume of the modeled building and the volume of its reference. 

They take into account the volume of their intersection as well 

as the volume of their union. Figure 9a illustrates the volume of 

the reference model (VR), volume of the tested model (VT) and 

the volume of intersection (VI). Table 10 details the volumetric 

quality factors. Satisfying results are reached when the value of 

Vρd and Vρq is close to 1, and the three others are close to 0. 

 

 

 

 
 

 

Figure 9. (a) Relationship between reference model (VR) and 

tested model (VT), with           ; (b) superimposition of 

the reference model (in red) and the extracted model for the 

building No. 2 (in blue).  

 

For this first experiment, a 3D building model has been 

extracted by processing of low density LIDAR data (1.3 

point/m²). The 3D reference building model has been created 

based on the photogrammetric processing of images acquired 

with UltraCam-X stereopairs. The pixel size on the ground is 

about 16 cm. An accuracy of about 16 cm in X, Y and 25 cm in 

Z can be estimated for a point digitized in the stereopairs. It is 

satisfactory, considering that the accuracy of the LIDAR point 

clouds used here is lower (around 30 to 40 cm in X, Y, Z). 

Building No. 2 in Figure 2 has been chosen and compared to its 

reference. The building is about 10m large, 82 long and 22 high. 

Figure 9b presents the tested model in blue and the reference 

model in red. 

The resulting volumes and quality factors for the building under 

study are presented in Table 11.The values obtained for the 

quality factors show that     and      are higher than 0.8 and 

the other three factors are close to zero. This means that the 3D 

building models extracted from both LIDAR and from 

stereopairs are closed from each other. Since the 

photogrammetric model is more accurate, the model provided 

by LIDAR data processing is therefore validated. 

This example is interesting, because it shows the interest to 

undertake an analysis of the entire model in 3D. By applying the 

assessment on surface areas (see section 3.1) for each side of the 

building, the results would obviously be much better (values 

higher than 0.93 for    for example) because projected in 2D, 

the planes overlap very well. Thus, a 2D analysis alone would 

overestimate the quality of the model.  

 

(a) (b) 

10 m 
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Table 10. Volumetric quality factors for assessing 3D building 

vector models 

 

 Volume (m3) 

Building                
18368,79 No.2 20063,31 20299,17 

Volumetric  quality factors 
                    

 0,905 0,835 0,105 0,092 0,083 

 

Table 11. Volumes of tested and reference buildings and 

volumetric quality factors for a building. 

 

 

This volume based approach has the advantage to be easy to 

apply, and to be data and process independent; it requires only 

reference datasets. A drawback is the necessity for the user to 

set a threshold for describing the level of concordance between 

models. As mentioned in (McKeown, 2000), the metrics should 

not be tunable via thresholds, because they introduce a 

subjective element into evaluation.  

Moreover, the quality factors might be favorable although the 

building shape is not validated. Figure 9b clearly shows that a 

vertical shift affects the model to be tested. Any shift or rotation 

between the reference and the tested model will affect the 

intersection volume between the models. But the same shift for 

a small or for a big building will not provide the same factors. 

The sensitivity of the approach regarding the effect of the 

building size, building shape, building shifts, rotations must be 

analyzed. 

However, it becomes clear that the calculation of volume ratios 

for assessing the quality of 3D building modeling is not 

sufficient.  

For taking into account the shifts, a RMSE is computed based 

on the deviations between both models, in X, Y and Z 

directions. Deviations are not calculated between homologous 

nodes, but between centers of gravity of homologous planes that 

compose the tested and respectively the reference building. This 

choice has been made, because it is not trivial –for our 

knowledge- to automatically find corresponding vertices to 

compute the RMSE between the vertices of two vector 

buildings in 3D. Table 12 presents the RMSE results obtained 

for the building under study. The value of RMSE in X-direction 

is about 0.4 m while the RMSE in Y-direction is 0.5 m and 1 m 

for Z-direction. 

 

Building 

ID 

RMSE(m) on plane gravity centers 

RMSE_X RMSE_Y RMSE_Z 

No. 2 0,41 0,51 1,09 

 

Table 12. RMSE values obtained for the planes of the building 

No. 2 

 

The error budget affecting the final product is not only 

composed of errors due to the reconstruction algorithm, but also 

of errors coming from a low point cloud density, errors due to 

the georeferencing of the LIDAR and the aerial data, due to the 

shape of the produced buildings, etc. Several tests applied on a 

large sample of building reveals that a systematic error affects 

the Z coordinates of the LIDAR data used here. This vertical 

shift has already been observed in a study where LIDAR data 

have been combined to TLS data (Boulaassal et al., 2011). Once 

detected, this error must be corrected for the whole dataset 

before starting again the assessment.  

At this stage, further investigations regarding the completeness 

of the assessment approach as a combination of quality factors 

and statistical criteria are necessary. As underlined in 

(Rutzinger et al., 2009), there is no single optimum evaluation 

technique and the combination of several evaluation methods is 

advised. Regarding the setting of thresholds for the volumetric 

quality factors and the RMSE values, a standard model inspired 

from a national order helping the contractors checking the 

quality of subcontracted work is under study.  

 

 

4. CONCLUSION 

Currently, no standard has been defined to assess 3D models 

and which automatically assess whether a 3D model is 

acceptable or not. This paper presents the assessment of 3D 

vector models of façades, roofs and complete buildings, using 

several approaches. Of course, visual inspection cannot be 

avoided. For assessing façades or roofs outlines in 2D, quality 

factors already suggested in the literature have been applied. For 

assessing 3D vectors, statistical criteria like RMSE are 

somewhat restrictive and that’s why they have been 

supplemented by error maps. For assessing entire 3D building 

models, quality factors based on volume ratios have been 

considered and completed by RMSE considerations. This 

approach must be further investigated regarding shape 

characteristics of the buildings.  

Our future researches will also focus on the study of a standard 

assessment model, helping the end user to make a judgment on 

the level of accuracy provided by the building models with 

respect to their requirements. Finally, the main difficulty of 

assessment approaches is to create sufficient high quality 

reference data at low cost.  
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Quality factor Explanation 

     
     

  
      

       
                    

 Volumetric detection rate: it is the ratio 

between the volume of intersection of the 

two buildings and the volume of the 

reference building.  Vρd close to 1 means 
that the calculated model is perfectly 

superposed to the reference building.  

     
     

     
           

          
 

Volumetric quality rate: it is the ratio 
between the parts which are common to 

both volumes and the union of the two 

volumes. 
 

     
       

     
             

      

 

Volumetric branch factor: it is the ratio of 

the part of the reference building volume 
which is not included in the building 

volume under study and the intersection 

of the two volumes.  

     
       

     
            

       

 

Volumetric miss factor: it is the ratio of 

the part of the volume being evaluated 
which is not included in the reference 

volume and the intersection of the two 

volumes.  

     
       

  
         

      

 

Volumetric false alarm rate: it is the ratio 

of the part of the reference volume which 

is not included in the volume under study 
compared to the volume of the reference 

polygon. 
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ABSTRACT:

The production of 3D city models requires the reconstruction of individual 3D building models. As the performance of data acquisition
methods improves, the quality evaluation of building models in 3D has become an important issue. The main objective of the presented
work is to introduce a multi-dimensional approach for assessing the quality of 3D building vector models. This approach performs
assessments in 1D, 2D and 3D by comparing calculated building models to their reference. For 1D assessment, homologous points
in two buildings to be compared are analyzed. For 2D assessment, homologous planes enter in the evaluation process. Quality of the
planes under study is assessed by calculating a set of indices in vector format. For 3D assessment, building models are considered as
one object. Quality of the buildings is assessed by calculation of vector volumetric quality factors. These factors require the not trivial
calculation of vector intersection volumes which calculation is presented in the paper. Intersection volume is defined by superimposing
the building model to be tested with the reference one. The multi-dimensional vector assessment approach has been applied to evaluate
the building models produced with three different reconstruction processes created from different types of datasets. The datasets are
obtained by photogrammetry (UltraCam-X and Zeiss LMK cameras), by LiDAR, and also by integration of photogrammetric and
LiDAR datasets. The 1D, 2D or 3D assessment approach allows highlighting the source of deviations in the tested buildings. The error
budget affecting the final product is not only composed of errors due to the reconstruction algorithm. Also errors due to the quality of
the raw data, the processing of LiDAR data, of aerial data and the shape of the produced buildings should be considered.

1 INTRODUCTION

Photogrammetric and LiDAR data are used since many years for
the 3D reconstruction of objects such as buildings. These ap-
plications need accurate data and methods in order to produce
good results. Quality assessment is critical for 3D data produc-
tion and is important for several reasons. Firstly, it may give im-
portant information about deficiencies of an approach and may
take place to help in focusing a further research activity. Sec-
ondly, accuracy evaluation is needed in order to compare the re-
sults of the different approaches and to convince a user (Schuster
and Weidner, 2003). Several methods were presented in order to
evaluate photogrammetric and LiDAR datasets. Calculation of
Root Mean Square Errors (RMSE) for analyzing the precision of
the complete 3D building is an interesting process. It shows the
shifts between reference and test models in X, Y and Z direc-
tions. (Grussenmeyer et al., 1994) proposed statistical techniques
in order to calculate RMSE by point and line based assessment.
Several approaches using quality factors for quality evaluation of
building models were introduced ((McKeown et al., 2000), (Ra-
gia, 2000)). Based on these, a further approach was developed,
which introduced alternative quality measurements (Schuster and
Weidner, 2003).
All accuracy assessments processes include three fundamental
steps (Congalton and Kass, 2009). Firstly, the accuracy assess-
ment sample should be designed. The sampling design issues
are similar to those traditionally addressed by survey sampling
methodology: how to choose sample in a cost-effective and at
the same time statistically rigorous manner? Application of ba-
sic sampling designs such as simple random, stratified random,
systematic and cluster have been summarized in (Congalton and
Kass, 2009). Secondly, data must be collected for each sam-
ple; and finally, results must be analyzed. Because high qual-
ity reference data are difficult and expensive to obtain, reference

model may be considered as error-free, more accurate than the
test model, or with the same accuracy as the test model (Meidow
and Schuster, 2005). Once the reference data are available, the
assessment process can start.
Related works were done by the Photogrammetry and Geomatics
Group at INSA-Strasbourg. In the context of assessing the quality
of planes detection in a 3D building reconstruction process based
on LIDAR data, several solutions have been suggested (Tarsha-
Kurdi et al., 2008). For evaluating the quality of geometric facade
models reconstructed from TLS data, (Landes et al., 2012a) sug-
gested the use of quality factors and RMSE calculations. Also,
the evaluation of characteristic planes extracted from digital air-
borne sensors have been published in (Mohamed and Grussen-
meyer, 2011). A new approach has been proposed for assessing
3D building models based on vector volumetric quality factors
(Landes et al., 2012b). The main objective of the presented work
is to introduce a multi-dimensional approach for evaluating the
quality of 3D building models reconstruction. The approach used
in this research is vector based.

2 ASSESSMENT OF 3D BUILDING MODELS

2.1 1D assessment

Point accuracy assessment allows to evaluate fully 3D geometry
datasets by comparing points to points (Rottensteiner and Briese,
2002). Calculations are performed to compare two different 3D
building models. This is done by computing RMSE based on the
deviations between both models (reference and test), in X, Y and
Z directions. Deviations are not calculated between homologous
nodes, but between centers of gravity of homologous planes that
compose the tested and respectively the reference building.
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2.2 2D assessment

Our method to evaluate 2D data is based on the comparison of
3D planes of two building models (reference and test) by calcu-
lating a set of indices. This approach uses well known quantities,
as mentioned in (McKeown et al., 2000), (McGlone and Shufelt,
1994), (Ragia, 2000), (Schuster and Weidner, 2003) and (Lan-
des et al., 2012b). These indices are namely the detection rate
(ρd), the branch factor (ρb), the quality rate (ρq), miss factor
(ρm), and false alarm rate (ρf) as summarized in Table 1. The
principle idea of these indices is based on the relation between
the reference surface area (Ar) and the tested surface area (At) as
shown in Figure 1(a).

Figure 1: Relationship between reference and tested models in
2D (a) and 3D (b).

Quality factor Explanation
Detection rate: it is the ratio between the

ρd = Ar∩At
Ar

intersection area between two planes and the
ρd ∈ [0 : 1] reference plane. ρd = 1 means that the

calculated polygon is perfectly superposed
Quality rate: it is the ratio between the

ρq = Ar∩At
Ar∪At

intersection area between two planes and the
ρq ∈ [0 : 1] union of two planes. ρq = 1 means that both

polygons are perfectly superposed.
Branch factor: it is the ratio of the part of the

ρb = At\Ar
Ar∩At

reference polygon which is not included
pb ≥ 0 in the polygon under study and the

intersection of the two polygons.
Miss factor: Ratio of the part of the polygon

ρm = Ar\At
Ar∩At

being evaluated which is not included in a
ρm ≥ 0 reference polygon and the intersection

of the two polygons.
False alarm rate: it is the ratio of the part of

ρf = At\Ar
Ar

reference polygon which is not included
ρf ≥ 0 in the polygon under study compared to

the area of the reference polygon.

Table 1: Quality indices based on surface areas ratios.

2.3 3D assessment

Considering a building as one object to be evaluated, volume
comparisons are rather appropriate than surface areas compar-
isons. Therefore, the quality of buildings is assessed by the cal-
culation of volumetric quality factors. The quality factors in 3D
are deduced from the 2D quality factors and depend on ratios of
volumes. These factors take into account the volume of the in-
tersection as well as the union volume of two vector buildings.
A first experiment has been introduced in (Landes et al., 2012b).
The principle idea of these indices is based on the relation be-
tween the reference volume (V r) and the tested volume (V t) as
shown in Figure 1(b).

Equations in Table 2 detail the volumetric quality factors. Satis-
fying results are reached when the value of V ρd and V ρq is close
to 1, and the three others are close to 0.

Quality factor Explanation
Volumetric detection rate: it is the ratio

V ρd = V r∩V t
V r

between the volume of intersection of
V ρd ∈ [0 : 1] the two buildings and the volume

of the reference building.
Volumetric quality rate: it is the ratio

V ρq = V r∩V t
V r∪V t

between the parts which are common to
V ρq ∈ [0 : 1] both volumes and the union of

two volumes.
Volumetric branch factor: it is the ratio

V ρb = V t\V r
V r∩V t

of the part of reference building volume
V ρb ≥ 0 which is not included in the building

volume under study and the
intersection of two volumes.

Volumetric miss factor: it is the ratio of
V ρm = V r\V t

V r∩V t
the part of the volume being evaluated

V ρm ≥ 0 which is not included in reference
volume and the intersection of

two volumes.
Volumetric false alarm rate: it is the ratio

V pf = V t\V r
V r

of the part of reference volume which
V ρf ≥ 0 is not included in volume under study

compared to the volume of reference
polygon.

Table 2: Quality indices based on volume ratios.

3 GEOMETRIC COMPUTATIONS

The operation of determining the union and intersection of areas
(or volumes) when two models must be compared is a topic of ge-
ometric computation. This section describes the algorithms lead-
ing to calculate union and intersection of areas/volumes which
come into consideration when a model to be assessed is com-
pared to a reference model. First of all the areas and volumes of
the models under study must be calculated.

3.1 Surface area computation

For the area computation in vector form, we use the formula
based on Green’s theorem (O’Rourke, J, 1998) and given in Equa-
tion (1).

A =
1

2
|Σn

k=1XkYk+1 −Xk+1Yk| (1)

Where n is the number of vertices, Xn+1 = X1 and Yn+1 = Y1.
X and Y are the coordinates of vertices points of the polygon
numbered in ascending order.

3.2 Intersection area computation

The operation of determining the intersection area of two vector
polygons is performed in two steps: the detection of the points lo-
cated inside the polygons and the detection of lines intersections.

Step1: classification of the points located inside the polygons
As shown in Figure 2(a), points 3 and 5 are ”inside points”. In
Figure 2(b), all points of the red polygon are classified as inside
points. Matlab built-in function uses a simple and commonly
used technique for point-in-polygon detection, and works as fol-
lows. Assuming the polygon is defined by n points in an array
P , this algorithm computes the summation of angles between the
query point and every pair of points defining each edge of the
polygon (i.e. the angle is formed by the P [n] point, query point,
and P [n + 1]). If this summation computes to 2π (or near 2π
within some tolerance), then the point is inside the polygon. If
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the summation computes to zero (or near zero) then the point is
outside the polygon.

Step2: detection of points at the intersection between lines
For example, in Figure 2(a), the point of intersection between
line (2, 3) and line (5, 6) is a ”point of intersection” to consider,
as well as the intersection point of lines (4, 3) and (5, 8). How-
ever, the intersection between lines (4, 3) and (6, 7) is not an
intersection point to consider. That’s why it must be checked if
the intersection point lies on the edges of both polygons. This
check is done by computing the distance between the intersection
point and the two points of the line. If the maximum of the two
distances is shorter than the edge length, the point of intersection
belongs to the edge. Then the resulting intersection shape can be
calculated based on the coordinates of its vertices (see Equation
(1)).

Figure 2: Intersection area calculation for vector polygons in 2D.

3.3 Volume calculation

In order to compute the volume of 3D objects, one has to solve
two tasks; firstly determine the convex hull of the given bound-
ary, then, calculate the volume of the resulting 3D polyhedron.
Convex hull is the boundary of a closed convex surface gener-
ated by applying Delaunay triangulation on the corner points. In
three dimensions, the convex hull corresponds to a closed polyhe-
dron. Convex hull calculation is a hard process in computational
geometry (Barber et al., 1996). A large class of algorithms that
compute the exact volume of a convex object is based on trian-
gulation methods (Büeler et al., 1997). The result of convex hull
calculation for a gable roof building is shown in Figure 3(a). The
convex hull of a set of points in two or three dimensions is given
by Matlab built-in function (convhull in 2D or convhulln in 3D)
as presented in Equation (2). These functions use meshed objects
for storing and displaying polyhedra. The faces of such polyhedra
are triangles.

[K V ] = convhulln(x, y, z); (2)

In 3D, the boundary of the convex hull, K, is represented by a tri-
angulated 3D object. It is a set of triangular facets in face-vertex
format that is indexed with respect to the point array. Each row
of the matrix K represents a triangle. The volume, V, bounded by
the 3D convex hull can optionally be returned by convhulln.

In a first step, the meshed model is computed. It is defined by
the input points. The sum of the volumes composing the meshed
model equals to the volume of the convex object.

3.4 Intersection volume calculation

The calculation of volume of intersection between two 3D mod-
els in vector format is more accurate than in raster format, but
also much more complicated. We propose an algorithm allowing
to simplify this process. Our method consists of extracting the
vertices of 3D intersection volumes. The flowchart in Figure 4
shows the process of intersection volume calculation.

Figure 3: Calculation of convex hull(a) and intersection volume
(b).

Figure 4: Flowchart of the method of intersection volume calcu-
lation.

The following steps are performed:
Step 1: detection of inside points
Extraction of the first group of points is defined by searching
about vertices of the reference points located inside the model
to assess. This can be done by applying the function ”convhulln”
to the points of the model to assess. The points that are inside
the reference model are located on the positive side of the plane
normals of all of the faces. The result of this process is shown in
Figure 3(a) where inside points are in red and outside points in
green color.

Step 2: creation of boundary lines and their intersection with
planes
The second group of points describing the intersection shape can
be determined by calculating the intersection of the lines com-
posing the reference model with all planes that are composing
the model to assess. This process can be achieved firstly by sepa-
rating the edge lines of each plane of the reference model. Then,
the duplicated lines are cancelled in order to avoid repeating the
same process. After that, the intersections of all lines with all
planes of the model to assess are calculated. In order to check if
the resulting point is located on the edge line (and not on the ex-
tension of the edge line) and simultaneously belongs to the face
of model to assess, two tests should be made. Firstly, we test
if the point is placed on the edge line by distance computation as
shown in section 3.2. A second test is achieved by looking for the
”points inside a polygon” in 2D (in the frame of the intersected
plane), as explained in section 3.2.

Step 3: repetition of steps 1 and 2
Steps 1 and 2 are repeated by replacing the reference model by
the model to assess for the process leading to edge line creation.
Then the intersection between lines of the model to assess with
all the planes of reference model is performed. Finally, as a re-
sult of these steps, the coordinates of vertices of the intersection
shape are determined and the volume of this shape can be calcu-
lated. Figure 3(b) shows the intersection shape (filled with red
color) obtained by the intersection of a reference model and a test
model.
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4 3D BUILDINGS RECONSTRUCTION

In this paper, three methods for 3D buildings reconstruction are
presented.

4.1 Test site and datasets

The study area is located in the city of Strasbourg, France. Dig-
ital aerial images from UltraCam-X (4 images) and frame Zeiss
LMK (6 images) of the same area were available. Table 3 shows
characteristics of the photogrammetric data. Moreover, LiDAR
data of the same are has been captured in 2004 (Table 4).

Sensor Ultracam-X Zeiss LMK
Acquisition date 2007 1998

Focal length (mm) 100.500 211.03
Ground Sampling 16 24

Distance (cm)
Pixel size (µm) 7.2 30

Image format 9420 7680
(pixels) by 14430 by 7680

Flying height (m) 2300 1700
Overlap % 65 70
Base (m) 527 556

Table 3: Characteristics of photogrammetric datasets.

LiDAR system TopScan / Optech ALTM 1225
Acquisition date 2004

Flying height (m) 1440
Density of points 1.3 points/ m2

Table 4: Characteristics of the LiDAR datasets.

14 ground control points were measured by GNSS. The digital
aerial photographs have unknown imaging orientation parame-
ters. Using bundle block adjustment, the exterior orientation pa-
rameters of the images have been calculated by KLT software. In
our application, the camera information was taken from the cali-
bration sheet given by the camera owner.
3D reference buildings models have been created based on the
photogrammetric processing of images acquired with UltraCam-
X stereo-pairs. After relative and absolute orientation of the im-
ages, an accuracy of about 16 cm in X,Y and 25 cm in Z can be es-
timated for a point digitized in the stereo-pairs. It is satisfactory,
considering that the accuracy of the LIDAR point clouds used
here is lower (around 30 to 40 cm in X, Y, Z). So, it has been de-
cided that the 3D buildings from UltraCam-X stereo-pairs will be
used as references for assessing the 3D buildings reconstructed a)
from Zeiss LMK stereo-pairs (75 buildings), b) from LiDAR data
(8 buildings), and c) from integration of LiDAR and UltraCam-
X stereo-pairs (26 buildings). For illustration purposes, only 8
buildings are shown in Figure 7. The reconstructed buildings in
the test site have three types of roofs: flat, hip and gable roofs.

4.2 3D models from aerial images

The geometry of objects (roofs, walls, and footprints) are ex-
tracted from multiple images. The flowchart of the semi-automatic
approach is depicted in Figure 5. The first step of building recon-
struction is roof digitizing. Then, the projection of these points
onto the ground is done in order to obtain footprints and thus to
create the walls. Finally, planes of faces and footprints are cre-
ated.

The reconstruction approach is based on the assumption that: (a)
every solid object can be described by a decomposition of its
boundaries; (b) the walls are vertical and reach either the ground

Figure 5: Flowchart of 3D building modeling from aerial images.

or another surface of the constructed model. The wall faces can
be constructed using the outlines of the roofs (no facade details).
Therefore it is not necessary to digitize the footprints of the build-
ings. In this work, we restrict our study to simple polyhedral
models. Figure 7(b) presents 8 of the 75 samples of building
models reconstructed in the test site (in yellow colour) as well as
the corresponding reference (in red).

4.3 3D models from LiDAR and aerial images

The semi-automatic method proposed by (Zhang et al., 2011) is
based on the complementarities of airborne LiDAR and optical
imagery (UltraCam-X). It consists of 4 steps (Figure 6).

Firstly, the building is decomposed into several primitives. The
primitives parameters are measured manually on LiDAR and aerial
imagery, such as length, width, height, orientation and translation
of the primitive. These measurements can be used as constraints
or initial values in the following optimization procedure. Sec-
ondly, features primitives are selected on the imagery. Corners
are detected on the optical imagery, and planes are selected in the
LiDAR point cloud. These features are used as observations in
the following optimization procedure. Thirdly, the algorithm op-
timizes primitives parameters by the constraints of LiDAR point
cloud and imagery. Based on the type and parameters of primi-
tives, the 3D coordinates of the features primitives, such as cor-
ners, can be calculated. These 3D coordinates will be used as
computed values in the next iteration. Finally, 3D building mod-
els are produced.

Figure 6: Flowchart of the reconstruction process using LiDAR
data and aerial images (Zhang et al., 2011).

This method has been applied to 26 building models of the test
site. Figure 7(c) shows 8 of 26 samples of reconstructed buildings
(in green) and their reference buildings (in red).

4.4 3D models from LiDAR datasets

In this part, a model-driven building reconstruction method using
airborne LiDAR data is presented. This method has been car-
ried out by Yong Xiao from the Chinese Academy of Sciences
(China). This semi-automatic reconstruction process comprises 3
steps.
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(a) Part of the models under study

(b) Models obtained from aerial images (8 of 75 buildings).

(c) Models obtained from aerial images and LiDAR datasets (8 of 26).

(d) Models obtained from LiDAR datasets.

Figure 7: Reference and tested building models.

At first, the point cloud covering the building is segmented to
isolate building roofs. Then, a topological graph is constructed

to recognize the shape of the buildings. Finally, once simple roof
types are determined, building models are reconstructed with pre-
defined models. Outlines of the buildings are first estimated with
the minimum area bounding rectangle while the other key ver-
tices and segments are obtained through the roof-topology graph.
More details are given in (Verma et al., 2008). Figure 7(d) shows
the results. The buildings reconstructed from LiDAR datasets are
in cyan colour and their reference in red.

5 ASSESSMENT RESULTS

In this section, we assess the 3D vector building models recon-
structed previously, by applying the multi-dimensional assess-
ment approach suggested in section 2.

5.1 1D assessment

The reference building models are the models reconstructed from
UltraCam-X (see section 4.2). Deviations are calculated between
centers of gravity of homologous planes that compose the tested
and respectively the reference building. Table 5 presents the RMSE
results obtained. The models reconstructed from aerial images
give better results than the other methods. The models recon-
structed from integration of LiDAR and aerial images give high
RMSE in Z-direction. Worse results are obtained for models re-
constructed with LiDAR data only. The error budget is not only
composed of errors due to the reconstruction algorithm, but also
of errors coming from the raw data. For instance, low point cloud
density and errors due to the georeferencing of the LIDAR and
the optical data affect the final results.

Reconstruction RMSE (m)
from X Y Z

Aerial images [75 buildings] 0.21 0.26 0.50
Integration of aerial images and 0.50 0.48 0.94
LiDAR datasets [26 buildings]

LiDAR dataset only [8 buildings] 0.64 0.99 1.00

Table 5: RMSE calculated on gravity centers of homologous
planes.

5.2 2D assessment

The statistics of the 2D quality indices calculated for assessing
the faces of the building models are summarized in Table 6. For
models created from aerial images, the mean values of ρd and ρq
are about 0.9 and the other three indices are close to 0. The worse
values obtained for the other models are explained by the high
RMSE in Y and/or Z-directions (Table 5). This means that the 3D
surface of building models extracted from stereo-pairs are close
from each other. Also, the models reconstructed from LiDAR
or integration of LiDAR and aerial images are less accurate than
the models reconstructed from aerial images alone. However, the
mean values of quality indices can not be considered alone. In
order to evaluate the building reconstruction quality in detail and
to analyze the values of the 2D quality factors, one should check
the quality indices for each building separately. Moreover, sur-
face metrics are affected by the building size. Small buildings
generally lead to bad results regarding the 2D quality indices.

Reconstruction ρd ρq ρb ρm ρf
from

Aerial images 0.938 0.891 0.089 0.085 0.062
Images & LiDAR 0.867 0.788 0.177 0.154 0.120

LiDAR only 0.840 0.711 0.219 0.250 0.189

Table 6: 2D quality indices.
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5.3 3D assessment

The results of the quality analysis based on volumetric quality
factors are shown in Table 7. The mean values of V ρd and V ρq
are about 0.9, while the other three indices are close to 0 for 75
models of aerial images. The mean values of volume quality in-
dices, V ρd and V ρq are about 0.8. The other three indices are
about 0.1 for 8 models created from LiDAR datasets and 26 mod-
els of integration of optical and LiDAR datasets. This means that
the models reconstructed from aerial images are more accurate
than the other models.

Reconstruction V ρd V ρq V ρb V ρm V ρf
from

Aerial images 0.943 0.895 0.063 0.058 0.054
Images & LiDAR 0.875 0.809 0.148 0.102 0.089

LiDAR only 0.885 0.791 0.136 0.136 0.120

Table 7: 3D quality indices.

The 3D assessment provides more information than the 2D as-
sessment, because it takes into account the shift which might ex-
ist in the third dimension between the two 2D surfaces. This oc-
curs for the quality indices obtained for the models reconstructed
from the LiDAR dataset. All tests applied on the building models
reveal that a systematic error affects the Z coordinates of the LI-
DAR data used here. This vertical shift has already been observed
in a study where ALS and TLS data were combined (Boulaassal
et al., 2011).

6 CONCLUSIONS AND FUTURE WORK

In this paper, three semi-automatic methods for 3D building re-
construction in vector format have been mentioned and carried
out on the same test site. The quality evaluation of these models
has been achieved by applying the proposed multi-dimensional
quality assessment approach. This approach considers the accu-
racy of the 3D building models based on the comparison of points
in 1D, of surfaces in 2D, and of volumes in 3D. 1D assessment
gives an overall idea about the reliability of the reconstructed
models. 2D assessment checks the superimposition of faces, de-
spite its dependency on the size of the polygons to be compared.
3D assessment compares the buildings in 3D through the com-
parison of their volumes intersection. It is appropriate for de-
tecting the direction of errors (shifts in X, Y, and Z or rotations).
This multi-dimensional approach is suitable for 3D building vec-
tor models created from aerial images and/or LiDAR datasets.
Future researches will focus on the extension of this approach to
more complex building models. In this context, it will be focused
on the benefits of using raster assessment approaches.
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Appendix E

Definition of Points, lines, and

planes in space

E.1 Points in space

Point P is described in the 3D space by 3 real numbers, indicating the positions of

the perpendicular projections from the point to three fixed, perpendicular, grad-

uated lines, called the axes. If the coordinates are denoted X, Y, and Z in that

order, the axes are called the x-axis, etc., and P = (X, Y, Z). Often the X-axis

is imagined to be horizontal and pointing roughly toward the viewer (out of the

page), the Y-axis also horizontal and pointing more or less to the right, and the

Z-axis vertical, pointing up. The system is called right-handed if it can be rotated

so the three axes are in this position. The point X = 0, Y = 0, Z = 0 is the

origin, where the three axes intersect. Point P as shown in figure E.1, it has the

coordinates (X, Y, Z).

E.2 Lines in space

Line is a series of points that extended in two opposite directions without end. A

line segment is a part of a line that is bounded by two distinct end points and con-

tains every point on the line between its end points. In coordinate geometry, lines

in a Cartesian plane can be described algebraically by linear equations and linear

functions. In three dimensions, a line is described by a parametric representation

(see equation E.1):
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Figure E.1: Point P in space.

X = x0 + at Y = y0 + bt Z = z0 + ct. (E.1)

Where X, Y, and Z are all functions of the independent variable t. x0, y0, and z0

are the initial values of each respective variable or (x0, y0, z0) is any point on the

line. a, b, and c are related to the slope of the line, such that the vector (a, b, c) is

parallel to the line.

Take a line BP in the 3D space as shown in figure E.2. This line connects B and

P and defines the direction B to P.

Figure E.2: Line in space from point B to point P.
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E.3 Planes in space

A plane has a length, a width, but no height (two-dimensional), and extends

infinitely on all sides. Planes are thought of as flat surfaces without thickness

(figure E.3). A plane is made up of an infinite amount of lines. Coordinate of

planes are two-dimensional graphs that use ordered pairs to define the position of

points. In three dimensions, a plane is described by a parametric equation E.2

Ax+By + Cz +D = 0 (E.2)

Where A,B,C,D are plane parameters. D represents the minimum distance from

the plane to the origin.

Figure E.3: Plane in 3D.

E.4 Plane fitting

This section recall some concepts about fitting a plane through some data in three

dimensions (X, Y, Z) Figure E.4 shows the process of plane fitting. Principal

Components Analysis (PCA) can be used to fit a linear regression that minimizes

the perpendicular distances from the data to the fitted model.

There are three steps to consider in the process of plane fitting; a) input 3D points

that are needed to be fitted; b) calculate plane parameters containing this data

(basis and normal vector for the plane); c) project this 3D data to the plane.
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Figure E.4: Projection of points on the fitted plane.

The first two coordinates of the principal component scores give the projection

of each point onto the plane, in the coordinate system of the plane. To get the

coordinates of the fitted points in terms of the original coordinate system, each

PC coefficient vector must be multiplied by the corresponding score. The residuals

are the distances between the points and the fitted plane.



Appendix F

Arrêté du 30 octobre 2003

Cet arrêté a été publicé au journal official du 30 octobre 2003

(http://www.legifrance.gouv.fr/).
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Evaluation de la qualité des modèles 3D de bâtiments 

en photogrammétrie numérique aérienne 

Mostafa MOHAMED 

Résumé des travaux en français 

1. Introduction

Les systèmes de photogrammétrie numérique et de balayage laser aéroportés, étroitement 

liées aux évolutions technologiques, sont essentiels pour l’acquisition et l’extraction de 

l’information géographique en 3D. Les méthodes et les outils de génération automatique 

ou semi-automatique de modèles 3D urbains se développent rapidement, mais l’évaluation 

de la qualité de ces modèles et des données spatiales sur lesquelles ils s’appuient n’est que 

rarement abordée. Les travaux relatifs à l’évaluation des données/produits 

photogrammétriques ou lasergrammétriques se cantonnent souvent à une évaluation 

visuelle des résultats voire à un simple calcul d’écarts, une évaluation complète en 3D 

n’étant pas triviale. Cette thèse s’intéresse plus particulièrement à la qualité des modèles 

3D de bâtiments restitués ou extraits à partir d’images aériennes ou de nuages de points. 

Un bâtiment peut être décrit soit par un ensemble de points caractérisant les extrémités des 

lignes directrices, soit par des lignes, par des surfaces ou encore par des volumes.  

Figure 1. Acquisition des données et modélisation 
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Notre objectif est de proposer une approche multidimensionnelle standard pour évaluer la 

qualité des modèles 3D de bâtiments en 1D, 2D et 3D. Elle suppose toutefois de disposer, 

pour chaque modèle de bâtiment à évaluer, de son modèle de référence, considéré comme 

étant a priori plus précis.  

 

Figure 2. Evaluation de modèles 3D de bâtiments (modèle de référence et modèle testé) 

 

 

Figure 3. Approche multi-dimensionnelle pour l’évaluation de la qualité  

développée dans la thèse 
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L’approche que nous proposons se penche sur le calcul d’indices de qualité fréquemment 

rencontrés dans la littérature. Ces indices rejoignent ceux rencontrés dans l’évaluation des 

classifications (erreurs d’omission, de commission) et passent par la discrétisation de 

l’espace en pixels (2D) ou en voxels (3D) pour mesurer le degré de superposition d’objets 

2D ou 3D. L’originalité de notre approche réside dans le fait que les modèles employés en 

entrée ne se limitent pas au mode raster, mais s’étendent au mode vecteur. Il semble 

évident que les modèles définis en mode vecteur s’avèrent plus fidèles à la réalité qu’en 

mode raster. En revanche, la confrontation de deux modèles vectoriels est plus délicate, 

notamment lorsqu’il s’agit de calculer le volume correspondant à l’intersection des deux. 

Les expérimentations menées dans cette étude se concentrent sur l’évaluation de la qualité 

des modèles 3D de bâtiments à Strasbourg, créés à partir de relevés photogrammétriques, 

lasergrammétriques ou de l’intégration simultanée de ces deux sources de données. 

2. Evaluation 1D 
 

L'évaluation 1D de la géométrie du modèle 3D consiste à comparer le bâtiment à tester au 

bâtiment de référence, en s’appuyant sur le calcul des écarts entre points homologues. Les 

points considérés caractérisent la forme du bâtiment (coins de bâtiment, faitières…). Deux 

solutions sont présentées pour l'évaluation 1D. La première se base sur l’analyse de l’erreur 

moyenne quadratique en X, Y et Z calculée à partir des écarts entre les deux modèles 

(référence et test). Ils sont ensuite confrontés à une tolérance fixée par l’utilisateur ou le 

cahier des charges. La deuxième solution s’appuie sur les instructions parues au Journal 

Officiel du 30 octobre 2003 et exigeant le respect de classes de précisions. On entend par 

écarts, aussi bien ceux calculés entre les nœuds homologues que ceux calculés entre les 

centres de gravité des plans homologues composant le bâtiment.  

 

Figure 4a 
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Figure 4b 

 

Figure 4a et 4b. Calculs des Erreurs Moyennes Quadratiques (RMSE) pour l’évaluation 1D  

 

Cette méthode est simple et intuitive, mais présente des limites. Si les calculs d’écarts sont 

automatisables, il réside toutefois la difficulté, dans un jeu de données particulièrement 

bruité, de garantir l’exacte correspondance entre les points du modèle 3D et ceux de sa 

référence. La proximité des points n’est pas un critère suffisant pour les apparier, en 

particulier si les deux ensembles de points sont mal géoréférencés. Dans la pratique, le 

calcul du centre de gravité soulève moins d’ambiguïtés, car quelle que soit la distribution 

des points, il n'y a qu'un seul centre de gravité par face. Nous privilégierons donc, pour 

l’évaluation à 1D, la prise en compte de l'erreur moyenne quadratique sur les distances 

entre le centre de gravité de chaque plan composant le bâtiment testé et celui de son plan 

homologue dans le bâtiment de référence. 

3. Evaluation 2D 
 

L’évaluation 2D de la géométrie du modèle 3D est basée sur la comparaison des plans des 

deux modèles de bâtiments (référence et test) et passe par le calcul d'un ensemble d'indices 

de qualité. Ces indices font intervenir des opérations booléennes telles que l'union et 

l’intersection de surfaces de plans homologues.  
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Figure 5. Superposition des surfaces de référence et de test 

 

 

Figure 6. Indices de qualité pour l’évaluation 2D  
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Figure 7. Interprétation des indices de qualité pour l’évaluation 2D  

 

En mode raster, le calcul de la surface d’un plan 3D s’opère en trois étapes : a) le plan 

moyen est calculé à partir des points 3D du nuage le décrivant, b) la surface 2D est générée 

en mode raster en projetant les sommets du polygone sur le plan décrit précédemment, c) 

les pixels se trouvant à l'intérieur du polygone 2D sont identifiés puis comptabilisés pour 

arriver au calcul de la superficie totale. Le calcul de la surface d’intersection entre le 

polygone testé et son homologue de référence s’effectue à partir des pixels communs aux 

deux surfaces. En mode vecteur, le calcul de la surface d’un plan s’appuie sur le théorème 

de Green, faisant intervenir les coordonnées des sommets du polygone en 2D.  

 

 

Figure 8. Calculs des surfaces pour l’évaluation 2D  

 

 L'opération consistant à déterminer la zone d'intersection de deux polygones s’effectue 

quant à elle en deux étapes : a) la détection des points situés à l'intérieur des polygones, 

suivi de b) la détection des points d’intersection entre lignes. Pour ces derniers, il faudra 

s’assurer qu’ils se trouvent sur le contour des deux polygones et non pas sur l’extension de 

lignes formant contour. La surface de la zone d'intersection peut ensuite être calculée à 

partir des coordonnées 2D des sommets. 

4. Evaluation 3D 
 

Pour l'évaluation 3D, chaque modèle 3D de bâtiment est considéré comme un objet à part 

entière.  
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Figure 9. Mode d’obtention de modèles 3D à partir de données LiDAR aéroportée et 

terrestre 

 

Les indices de qualité, déduits de ceux définis en 2D, se rapportent dans ce cas au degré de 

superposition du volume testé et du volume de référence. Ils prennent en compte le volume 

de l'intersection ainsi que le volume de l'union de deux bâtiments. En mode raster, La 

méthode utilisée pour calculer le volume d’un objet consiste à additionner le nombre de 

voxels qui composent le modèle 3D.  

 

 

Figure 10. Interprétation des indices de qualité pour l’évaluation 3D 

 

Le volume de l'intersection se calcule aisément en comptabilisant les voxels communs aux 

deux modèles comparés. En mode vecteur, ces calculs sont moins triviaux. On détermine 

tout d’abord l’enveloppe convexe formée par les sommets des modèles pour calculer le 

volume de chaque bâtiment. L’état de l’art confirme les difficultés liées à la détermination 
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du volume d'intersection des deux modèles 3D en mode vecteur. L’algorithme que nous 

proposons repose sur l'extraction des sommets du polyèdre 3D d’intersection. Comme pour 

le calcul menant à la surface d’intersection de deux polygones, il est nécessaire de 

distinguer deux groupes de points : a) les points situés à l’intérieur des volumes des 

bâtiments, en l’occurrence les sommets du volume de référence se trouvant à l'intérieur du 

modèle testé ; b) les points situés à l'intersection des lignes (arêtes) composant le modèle 

de référence avec tous les plans du modèle testé. Dans l’itération suivante, cette détection 

de points est effectuée en  permutant modèle de référence et modèle à tester. Au final 

seront détectés aussi bien les sommets de bâtiments situés à l’intérieur d’un volume que les 

points d’intersection entre plans et arêtes. L’ensemble de ces points caractérise le polyèdre 

3D d’intersection dont il ne reste qu’à calculer le volume. A ce stade, les éléments 

indispensables à la détermination des indices de qualité en 3D sont réunis. 

 

 

Figure 11. Calculs des volumes pour l’évaluation 3D 

 

5. Résultats 
 

La zone d’étude qui a permis d’expérimenter notre approche est située sur le territoire de la 

ville de Strasbourg. Nous disposons sur cette zone d’images aériennes numériques à haute 

résolution spatiale acquises par des caméras de type UltraCam-X (Vexel), Rollei (moyen 

format) et par une chambre de prise de vue métrique Zeiss LMK. Des données LiDAR à un 

seul écho couvrent le même secteur géographique. Ces données n’ont pas été acquises la 



210 

 

même année, mais permettent toutefois d’être combinées, étant donné que nos objets 

d’étude sont des bâtiments 3D présents dans tous les jeux de données.  

 

Figure 12. Description des données testées dans le cadre de la thèse 

Les modèles 3D des bâtiments de référence ont été reconstruits par voie 

photogrammétrique à partir des images UltraCam-X géoréférencées préalablement à l’aide 

de 14 points d’appui mesurés avec un système GNSS. Les modèles à évaluer ont été 

reconstruits en considérant trois approches semi-automatiques de reconstruction de 

bâtiments en 3D : l’une s’appuyant exclusivement sur des images aériennes, l’autre 

exclusivement sur des données LiDAR et la troisième sur la combinaison des deux (figure 

1).  
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Figure 13. Etapes de restitution des bâtiments par voie photogrammétrique 

Nous disposons actuellement de 75 échantillons de modèles 3D obtenus à partir des images 

aériennes, 26 échantillons de modèles 3D issus à la fois des données LiDAR et des images 

aériennes, et 8 échantillons de modèles 3D issus des données LiDAR seules.  

 

Figure 14. Exemples de modèles 3D obtenus par photogrammétrie et LiDAR comparés à 

une référence 

L’approche d’évaluation multidimensionnelle décrite précédemment, aussi bien pour des 

modèles vectoriels que rasters, a été appliquée à cet important échantillon de modèles 3D 

de bâtiments. Nous constatons que les modèles reconstruits à partir des images aériennes 

fournissent de meilleurs résultats, aussi bien d’un point de vue qualitatif que quantitatif, 

que ceux reconstruits à partir des nuages de points issus du LiDAR. Un écart altimétrique 

significatif entre les modèles issus des données LiDAR et ceux issus des images a été mis 

en évidence. 
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Figure 15. Valeurs moyennes des erreurs moyennes quadratiques obtenues à partir des 

centres de gravité des plans homologues (évaluation 1D) 

 

Figure 16. Exemples de résultats d’évaluation 2D pour des modèles issus de 

photogrammétrie aérienne 

 



213 

 

Figure 17. Résultats de l’évaluation2D. En vert, les résultats satisfaisants pour les modèles 

issus d’images aériennes. En rouge, les mauvais résultats pour les modèles issus des 

données LiDAR. 

 

Figure 18. Résultats de l’évaluation3D. En vert, les résultats satisfaisants pour les modèles 

issus d’images aériennes. En rouge, les mauvais résultats pour les modèles issus des 

données LiDAR. 

Les statistiques sur les indices de qualité 2D et 3D calculés montrent que les modèles 3D 

de bâtiments extraits à partir des couples d’images stéréoscopiques sont cohérents. Les 

modèles reconstruits à partir du LiDAR ou  de l'intégration du LiDAR et des images 

aériennes sont moins exacts. Cette imprécision est à rapporter essentiellement à la qualité 

des données brutes transmises. Cependant, les valeurs des indices de qualité ne peuvent 

être considérées uniquement sous forme moyennée. Afin d'évaluer la qualité de la 

reconstruction du bâtiment en détail et d'analyser les défauts liés à sa géométrie, il faut 

interpréter les indices de qualité pour chaque bâtiment séparément. Par ailleurs, les valeurs 

des indices sont également affectées par la taille du bâtiment. Ainsi, les indices de qualité 

calculés pour des petits bâtiments conduisent généralement à de moins bons résultats.  
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Figure 19. Comparaison des critères relatifs à la modélisation des bâtiments en modes 

vecteur et raster 

6. Conclusion 

Cette thèse a abouti à l’élaboration d’une approche d’évaluation multidimensionnelle de 

bâtiments en 3D reconstruits à partir de trois méthodes semi-automatiques. L’approche a 

été validée pour des modèles vectoriels et rasters. Notre approche considère l’exactitude 

des modèles 3D de bâtiments calculée sur la base de comparaisons de points en 1D, de 

surfaces en 2D, et de volumes en 3D. L’évaluation 1D donne une idée globale de la 

fiabilité des modèles reconstruits en fournissant une mesure métrique de proximité des 

centres de gravité. L’évaluation 2D qualifie le degré de superposition des faces, en dépit de 

sa sensibilité à la taille des polygones. Une évaluation 2D satisfaisante ne valide toutefois 

pas encore le modèle reconstruit, puisque deux plans parfaitement superposés dans le 

système d’axes parallèle au plan sont susceptibles d’être décalés en profondeur. Ce défaut 

est révélé dans l’étape de l’évaluation 3D. L’évaluation 3D analyse les bâtiments en tant 

qu’objets à part entière en estimant le degré de superposition des volumes à tester et des 

volumes de référence. L’approche proposée dans cette thèse est adaptée et opérationnelle 

pour des modèles vectoriels et rasters de bâtiments 3D simplifiés. Les futures recherches 

porteront sur l'extension de cette approche à la construction de modèles 3D plus complexes 

de bâtiments. 
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