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Introduction

Ce travail de these se divise en deux parties. Le premier chapitre est consacré a la partie modulaire
dans la formule du fibré canonique. Les résultats originaux qui y sont inclus proviennent de [11] et
[12]. Plus précisément, les Sections 1.2 et 1.4 contiennent définitions et résultats généraux sur la
formule du fibré canonique. Les Sections 1.3, 1.5, 1.6 et 1.7 coincident avec les Sections 4,3,5 et 6
de [12]. Subsection 1.8.1, 1.8.2 et 1.8.3 sont exactement Subsection 2.2 et Sections 3 et 4 de [11]. Le
deuxieme chapitre concerne la décomposition de Zariski sur les variétés lisses de dimension 3.

La formule du fibré canonique

La formule du fibré canonique est un outil important en géométrie algébrique complexe. Elle a été
developpée et améliorée suivant les utilisations qui en ont été faites. Dans son article On compact
analytic surfaces: II [28] de 1963, K. Kodaira s’intéresse a la classification des surfaces algébriques
: il y étudie certaines surfaces algébriques S dotées d’une fibration f: S — C dont la base C' est
une courbe lisse et dont la fibre générique est une courbe elliptique. Le fibré canonique d’une telle
surface est donc trivial sur les fibres de f. De plus, 'application f a un nombre fini de fibres
singulieres. Kodaira classifie les fibres singulieres et démontre, avec Ueno [43], que, si f n’a pas de
fibres multiples, alors

12Kg/c ~ f*(R+j"O(1)),

ol R est un diviseur sur C' ayant comme support le lieu singulier de f et dont les coeflicients ont une
interprétation en termes de la classification des fibres singulieres. L’application j est ’application
induite par f sur ’espace de modules des courbes elliptiques. Dans son article Zariski decomposition
and canonical Tings of elliptic threefolds [21] Fujita généralise la formule au cas ou f peut avoir
des fibres multiples. Kodaira était intéressé par ’étude des surfaces, tandis que Ueno et Fujita
consacrent leur attention a des variétés de dimension trois dotées d’une fibration f: X — Z dont les
fibres sont des courbes elliptiques. La méthode pour étudier de telles variétés est la méme : exprimer
le fibré canonique comme tiré en arriere d’'une somme de diviseurs sur la base ayant des propriétés
spécifiques.

La classification birationnelle des variétés est un des problemes dont la solution est le but ultime
de la géometrie algébrique complexe. Fujita et Ueno suivaient la voie indiquée par Ilitaka et qui
fait toujours partie de la stratégie pour résoudre le probleme. L’idée de litaka était de regarder
les systeémes pluricanoniques |mKx| et ordre de croissance de leur dimension quand m tend vers
I'infini. Cet ordre de croissance est appelé dimension de Kodaira et a été introduit par litaka dans
[22]. La dimension de Kodaira d’une variété X peut prendre les valeurs {—00,0,...,dim X }. Titaka
démontre que, si la dimension de Kodaira de X est positive, alors il existe un modele birationnel X*
de X qui admet une fibration f: X* — Z telle que la dimension de Z est la dimension de Kodaira
de X et la fibre générale de f a dimension de Kodaira zéro (cf. [32, Definition 2.1.36]).

Donc I'étude des variétés algébriques peut étre divisée en

vil
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1. une étude des variétés X de dimension de Kodaira —o0,0 ou dim X ;

2. une étude des variétés qui sont dotées d’une fibration dont la fibre générale a dimension de
Kodaira zéro.

Les techniques qu’on utilise en géométrie birationnelle et le besoin de considérer aussi des variétés
singulieres ou quasi-projectives ont déterminé le passage de variétés a paires (X, B), qui sont la
donnée d’une variété normale X et d’un R-diviseur B tels que Kx + B est un diviseur R-Cartier. La
premiere distinction parmi les paires est faite par ordre de croissance des sections de |m(Kx + B)|,
la log-dimension de Kodaira. On dispose aussi de notions de régularité pour les paires, comme lc et
klt, pour la définition desquelles on renvoie a la Definition 1.2.4.

Si on a une fibration f: X — Z comme dans le point 2. a fibre générale de dimension de Kodaira 0,
alors il existent un diviseur Q-Cartier D sur Z, un diviseur Q-Cartier E sur X et un nombre entier
r > 0 tels que

rKx=f"D+FE

(cf. [18]). Sion pose B = —E/r, alors
f+(X,B)—=Z
est un fibration lc-triviale, c’est-a-dire la donnée d’une paire lc (X, B) et d’une fibration f telles que
Kx+Bn~q f'D

et qui satisfait certaines hypotheses techniques (cf. Definition 1.2.8). L’outil principal pour étudier
les fibrations lc-triviales est la formule du fibré canonique.

La formule du fibré canonique a atteint sa formulation actuelle avec Kawamata qui 1'utilise pour
traiter le probléme de sous-adjonction. Il est bien connu que, si Y C X est une hypersurface lisse,
alors

Ky ~(Kx +Y)ly

et cette formule est appelée formule d’adjonction. Le probléme de sous-adjonction consiste a trou-
ver une formule similaire pour Y singulier ou de codimension plus grande que 1. La formule de
sous-adjonction est un ingrédient fondamental dans les preuves par récurrence sur la dimension.
Kawamata démontre dans [27] qu’une telle formule existe quitte & rajouter & Kx + B un diviseur
ample arbitrairement petit. Un outil fondamental pour ce résultat est une formule du fibré canonique
écrite d’une fagon significative du point de vue des singularités de la paire (X, B) et de la fibration
f. Kawamata observe que, étant donné

fi(X,B)> Z

telle que (Kx + B)|r ~qg 0, ot F' est la fibre générale de f, on peut écrire Kx + B comme tiré en
arriere
Kx +B~q f"(Kz + Bz + My).

Le diviseur By est appelé discriminant et il est défini par By = (1 — yp)P ou P varie parmi les
diviseurs premiers de Z et

vp =sup{t € R| (X, B +tf*(P)) est lc sur P}.
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Pour une définition précise de lc sur une sous-variété de Z on renvoie a la Definition 1.2.5. Le
seuil log canonique yp est une mesure de la singularité de la paire (f~1P, B| f-1p). Il vaut 1 si la
paire est lc, il est plus petit si elle est plus singuliere. Donc SuppByz peut étre interprété comme
le lieu singulier de f vue comme une application d’une paire vers une variété. Dans la formule de
Kodaira, le diviseur By coincide avec R. Le diviseur My, appelé partie modulaire, est Q-Cartier et
nef sur un modele birationnel de Z par [27, Theorem 2]. Il contient des informations sur la variation
birationnelle des fibres. D’autres résultats importants dans la théorie et ses applications ont été
démontrés autour des années 2000 avec les travaux de F. Ambro et avec Particle [18] de O. Fujino
et S. Mori. Le premier auteur traite le probleme de la sous-adjontion et démontre [1, Proposition
3.4] que les singularités de la paire (Z, Bz) sont les mémes que celles de (X, B). Si (X, B) est klt
(cf. Definition 1.2.4), il prouve [3, Theorem 0.2] qu’il y a un diviseur Az sur Z tel que (Z, Az) est
kit et Kx + B ~q f*(Kz + Agz). Dans [18] les auteurs démontrent le résultat suivant.

Théoréme 0.0.1 (Theorem 5.2 [18]). Soit (X, A) une paire kit avec k(X,A) =1> 0. Alors il existe
une paire kit (C',A’) de dimension | et avec k(C',A’) = 1, deuzx €',e € Z~o et un isomorphisme
d’anneaux gradués

R(X,Kx + A)© = R(C', Kev + A

ot
R(X,Kx + M) = (P H(X, [meKx + Al).
meZ
De nos jours, le probleme qui guide la recherche sur la formule du fibré canonique est la conjecture
suivante.

EbS(k) 0.0.1 (Effective b-Semiampleness, Semiamplitude birationnelle effective, Conjecture 7.13.3,
[38]). Il existe un nombre entier m = m(d,r) tel que pour toute fibration lc-triviale f: (X,B) — Z
avec d la dimension de la fibre générale, k la dimension de Z et r lindice de Cartier de la fibre
générale (F, B|r) il existe un morphisme birationnel v: Z' — Z tel que mMzy: est sans point base.

Un diviseur de Cartier D sur une variété Z est birationnellement semiample ou b-semiample, s’il
existe un morphisme birationnel p: Z' — Z et un diviseur semiample D’ sur Z’ tel que u, D’ = D.
On a des réponses partielles a la conjecture EbS, notamment s’il existe un espace de modules pour
les fibres de f (cf. [38, Theorem 8.1], [15] et [16]). Mais méme la version faible, ot 'on conjecture
juste la “b-semiamplitude” sans aucune condition sur l’entier qui rend la partie modulaire sans
point base, n’a de solution que lorsque My est numériquement triviale ([3, Theorem 3.5] et [12,
Theorem 1.3]). La difficulté de la conjecture EbS est bien illustrée par un résultat de X. Jiang, qui
a démontré en [24] que la conjecture EbS implique un énoncé d’uniformité de la fibration de Iitaka
pour toute variété avec dimension de Kodaira positive sous I’hypothese que les fibres ont un bon
modele minimal.

Dans ce travail de these on démontre plusieurs résultats relatifs a la conjecture EbS. Le premier
concerne le cas ou les fibres sont de dimension d = 1 et donne une description des dénominateurs de
M.

Théoréme 0.0.2 (Theorem 1.6, [11]). 1. Il ne peut pas exister une borne polynomiale en r sur
les dénominateurs de My. Précisément, pour tout N, il existe une fibration lc-triviale

fi(X,B) > Z
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N+1

telle que dim Z =1 et pour laquelle V > r pour tout V tel que VMyz a coefficients entiers.

2. Soit f: (X,B) — Z une fibration lc-triviale dont la fibre générale est une courbe rationnelle.
Alors il existe un entier N(r) qui ne dépend que de r, tel que N(r)Myz a coefficients entiers.
Plus précisément N(r) = rppem{l|l < 2r}.

Théoreme 0.0.2 coincide avec Theorem 1.1.3 et il est démontré en Subsection 1.8.3.
En outre on donne, pour tout r impair, un exemple de fibration lc-triviale tel que si V est le plus
petit entier naturel pour lequel VM, a coefficients entiers, alors V = N(r)/r. Dans [38, Remark
8.2] les auteurs conjecturaient que l’entier qui rend la partie modulaire sans point base est 12r. Le
théoreme 0.0.2 donne un contrexemple a cette conjecture. D’autre part, les dénominateurs de My
sont importants dans les applications quand il faut obtenir des résultats effectifs pour les applications
pluricanoniques (cf. [41], [42]).

On démontre aussi le théoreme suivant qui affirme que la conjecture EbS peut étre réduite au
cas ou la base est une courbe.

Théoréme 0.0.3 (Theorem 1.2, [12]). EbS(1) implique EbS(k).

Théoreme 0.0.3 est Theorem 1.1.4 et sa preuve se trouve dans Section 1.5.
Une approche par récurrence sur la dimension de la base comme celle de théoreme 0.0.3 donne aussi
un résultat de semiamplitude effective dans le cas Mz = 0. En effet, on démontre une version
effective de [3, Theorem 3.5].

Théoréme 0.0.4 (Theorem 1.3, [12]). Il existe un entier m = m(b) tel que pour toute fibration
klt-triviale f: (X, B) — Z avec

o 7 lisse ;
° MzEO 5

e Bettigim g/ (E') = b ot E' est un modele lisse du revétement E — F associé a l'unique élément
de |r(Kr + B|p)|

on a mMg ~ 0.

Si la paire (X, B) est lc mais non klt sur le point générique de la base on démontre le théoréeme
suivant qui généralise [3, Theorem 3.5].

Théoréme 0.0.5 (Theorem 1.4, [12]). Soit f: (X, B) — Z une fibration lc-triviale avec Z lisse et
Mz =0. Alors Mz est un diviseur de torsion.

Théoreme 0.0.4 et théoreme 0.0.5 sont Theorem 1.1.5 and Theorem 1.1.6 et sont démontrés en
Subsection 1.7.1 et Subsection 1.7.2 respectivement.

La décomposition de Zariski
Soit S une surface projective lisse définie sur C. Soit D un diviseur effectif sur S. En 1962, O.
Zariski démontre (cf. [46]) l'existence de diviseurs P, N tels que
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1. N => a;N; est effectif, P est nefet D =P+ N ;
2. soit N = 0, soit la matrice (N; - N;) est définie négative ;
3. (P - N;) =0 pour tout 1.

Une telle décomposition est unique et est appelée la décomposition de Zariski de D.
Fujita en [20] généralise I’énoncé aux diviseurs pseudoeffectifs. De plus, il remarque en [21] que le
diviseur P est I'unique diviseur qui satisfait la propriété suivante :

() pour tout modele birationnel f: X' — X et pour tout diviseur nef L sur X’ tel que f.L < D
ona f.L <P.

A cause de 'importance de la décomposition de Zariski sur les surfaces, plusieurs généralisations aux
variétés de dimension supérieure ont été étudiées. La propriété () donne lieu & la généralisation
suivante.

Définition 0.0.2 (Definition 6.1, [39]). Soit X une variété projective lisse et D un diviseur pseu-
doeffectif. Une décomposition D = Py + Ny est appelée une décomposition de Zariski au sens de
Fujita (ou décomposition de Fujita-Zariski) si

1. NfZO,‘
2. Py est nef ;

3. pour tout modéle birationnel p: X' — X et pour tout diviseur nef L sur X' tel que p.L < D
on a p L < Py.

Il découle de la définition que, s’il existe une décomposition de Fujita-Zariski, alors elle est unique.
L’importance de la décomposition de Fujita-Zariski est bien mise en évidence par les resultats de
Birkar [4] et Birkar-Hu [5] qui ont démontré 1’équivalence entre 'existence des modeles log minimaux
des paires et I’existence de la décomposition de Fujita-Zariski pour les diviseurs log canoniques.

Dans [35] Nakayama démontre plusieurs résultats partiels, concernant la décomposition de Zariski
en dimension 3, qui mettent en relation l’existence d’une décomposition sur une courbe ¥ (cf. [35,
II1.4] pour une définition complete) avec les propriétés de stabilité du fibré conormal de ¥. Plus
précisément, soit D un diviseur pseudoeffectif sur X et ¥ une courbe lisse telle que D - ¥ < 0. Soit
I5, T'idéal de ¥ dans X. Si le fibré conormal Iy / I% est semistable, alors il y a une décomposition
©*D = P+ N telle que N > 0 et le diviseur P a intersection positive avec toute courbe incluse dans
le diviseur exceptionnel de

@:BlgX - X

(cf. [35, Lemma II1.4.5]). Si Ir/I3 est instable alors il existe une suite exacte courte (cf. Lemma
2.2.10)
0= L—Ig/I2 > M—0

telle que deg £ > deg M. Par [35, Lemma II1.4.6], si le fibré conormal n’est pas “trop instable”,
notamment si 2deg M > deg L, alors il existe un modele birationnel p: X’ — X tel que ©*D a une
décomposition de Fujita-Zariski sur X. Le théoréme suivant pourrait constituer une étape technique
vers un résultat d’existence de la décomposition de Zariski en dimension 3.
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Théoréme 0.0.6. Soit X une variété projective lisse de dimension 3. Soit X2 C X une courbe et

supposons que le fibré conormal
Ix/ 13

n’est pas semistable comme fibré vectoriel de rang 2 sur 3. Alors il existe une suite d’éclatements
p: X — X de courbes lisses non contenues dans X telle que, si % est la transformée stricte de X
dans X, alors IE/I% est semistable.

En réalité, on démontre un énoncé qui est beaucoup plus précis que celui du théoreme 0.0.6,
c’est-a-dire théoreme 2.3.3, qui affirme que 'on peut aussi controler le degré du fibré conormal.



CHAPTER 1
The moduli part in the canonical
bundle formula

1.1 Introduction

The canonical bundle formula is an important tool in complex algebraic geometry. It was developed
and refined through time following its uses and applications. In one of his fundamental papers on
the classification of compact complex surfaces K. Kodaira studied algebraic surfaces S endowed with
a morphism f: .S — C whose base C' is a smooth curve and whose generic fiber is an elliptic curve.
The canonical bundle of S is thus trivial on the fibers of f. The map f has a finite number of
singular fibers which are classified by Kodaira. If there are no multiple fibers, Kodaira and Ueno
[43] proved that

12Kg/c ~ fF(R+j70(1))

where R is a divisor on C supported on the singular locus of f and whose coefficients have an
interpretation in terms of the classification of the singular fibers. The map j is the map induced by
f on the moduli space of elliptic curves. Fujita generalized in [21] the formula to the case where f
can have multiple fibers. Although Kodaira was interested in studying surfaces, whereas Ueno and
Fujita focused their attention to some special threefolds, their method for studying these varieties is
the same: find a fiber space structure for which the canonical bundle of the ambient space is trivial
on the fibers.

The birational classification of complex algebraic varieties is one of the big problems whose
solution is the ultimate goal of complex algebraic geometry. Fujita and Ueno followed the philosophy
outlined by Iitaka which is still nowadays part of the main strategy for solving the problem. Iitaka’s
idea was to look at the pluricanonical systems |mK x| and the order of growth of their dimensions
when m goes to infinity. The invariant that carries the information of this order of growth is
called Kodaira dimension and was introduced by Iitaka in [22]. The Kodaira dimension of a variety
X can take the values {—00,0,...,dim X}. Iitaka proved that, if the Kodaira dimension of X
is non-negative, then there exists a birational model X* of X that has a structure of fiber space
f: X* — Z such that the dimension of Z is the Kodaira dimension of X and the general fiber has
Kodaira dimension zero (see e.g. [32, Definition 2.1.36]). Thus the study of algebraic varieties is
roughly divided into two parts:

1. the study of varieties of Kodaira dimension —oo, 0 or equal to the dimension;

2. the study of varieties with a structure of fiber space and whose generic fibers have Kodaira
dimension zero.



2 CHAPTER 1. THE MODULI PART IN THE CANONICAL BUNDLE FORMULA

The techniques used in birational geometry and the need to consider singular or quasi projective
varieties led to enlarge the category of varieties in order to consider pairs. A pair (X, B) is the data
of a normal variety X and an R-divisor B such that Kx + B is an R-Cartier divisor. Thus the first
distinction between pairs is the order of growth of the sections of |m(Kx + B)], the log-Kodaira
dimension. There are also notions of regularity for pairs, such as lc or klt, for which we refer to
Definition 1.2.4.

If we have a fibration f: X — Z as in point 2. whose general fiber has Kodaira dimension 0,
then there exist a Q-Cartier divisor D on Z, a Q-Cartier divisor £ on X and an integer r > 0 such
that

rKx = f*D+ E.

If we set B = —E/r then f: (X,B) — Z is an lc-trivial fibration, that is, the data of an lc pair
(X, B) and of a fibration f such that

KX+BNQ f*D

satisfying some technical hypotheses (cf. Definition 1.2.8).
The main tool for studying le-trivial fibrations is the canonical bundle formula.

The canonical bundle formula as it stands is due to Kawamata who used it in order to treat the
subadjunction problem. It is well known that, if Y C X is a smooth hypersurface, then

Ky ~(Kx+Y)ly

and the formula is called adjunction formula. The subadjunction problem consists in finding a similar
formula in the case where Y is singular or has codimension greater than one. The subadjunction is
a key tool whenever one tries to argue by induction on the dimension. Kawamata proved in [27] the
existence of such formula up to adding to Kx + B a small ample divisor. A fundamental technique
for this result is the canonical bundle formula written in a form that is meaningful in view of the
singularities of the pair (X, B) and the fibration f. Indeed, let

fi(X,B) = Z
be such that (Kx + B)|r ~q 0. Kawamata observed that
Kx + B ~q ["(Kz + Bz + M),

where the divisor By is called the discriminant and it is defined by By = > (1 — vyp)P, the sum
being taken over the prime divisors P of X and

vp =sup{t € R| (X, B +tf*(P))islc over P}.

For the precise definition of lc over P see Definition 1.2.5. The log canonical threshold ~p is a measure
of the singularity of the pair (f~1P, B] s-1p). It is 1 when the pair is Ic, it smaller when it is more
singular. Thus SuppBz can be roughly interpreted as the singular locus of f seen as a map whose
source is a pair. In the case of Kodaira’s formula, the divisor Bz coincides with R. The divisor Mz,
called the moduli part, is a Q-Cartier divisor and it is nef on some birational modification of Z by
[27, Theorem 2]. It carries informations on the birational variation of the fibers.
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A great progress in the theory and its applications was accomplished around 2000 with the
works of F. Ambro, and the paper [18] by O. Fujino and S. Mori. The first author treated the
subadjunction problem and proved [1, Proposition 3.4] that the singularities of the pair (Z, Bz) are
the same as the singularities of (X, B). If (X, B) is klt (cf. Definition 1.2.4 for the definition of
klt), he proved [3, Theorem 0.2] that there exists a divisor Az on Z such that (Z, Az) is klt and
Kx + B ~q [*(Kz + Az). In [18] the authors proved a result that is in line with litaka’s program.

Theorem 1.1.1 (Theorem 5.2. [18]). Let (X,A) be a proper kit pair with x(X,A) =1> 0. Then
there exist an l-dimensional kit pair (C',A’) with k(C',A") = 1, two integers €',e € Zso and an
isomorphism of graded rings

R(X,Kx +A)© = R(C' Ko + AN

where
R(X,Kx +A)® = (P H(X, |meKx + A]).
mEZ
The problem that guides the research on the canonical bundle formula is the following difficult
conjecture.

EbS(k) 1.1.2 (Effective b-Semiampleness, Conjecture 7.13.3, [38]). There exists an integer m =
m(d,r) such that for any lc-trivial fibration f: (X, B) — Z with dimension of the generic fiber F'
equal to d, dimension of Z equal to k and Cartier index of (F, B|f) equal to r there exists a birational
morphism v: Z' — Z such that mMyz: is base-point-free.

The initials EbS stand for Effective b-Semiampleness. A Cartier divisor D on a variety Z is
birationally semiample, or b-semiample, if there exists a birational morphism p: Z’ — Z and a
semiample divisor D’ on Z’ such that u,D’" = D. Conjecture EbS is far from being proved. Even
the weaker version, which predicts that My is b-semiample, without any condition on the integer
that makes it base-point-free, has just a partial solution, namely when My is numerically trivial ([3,
Theorem 3.5] and [12, Theorem 1.3] for the lc case). There are partial results (see [38, Theorem
8.1], [15] and [16]) when there exists a moduli space for the fibers of f. The difficulty of Conjecture
EDbS is well illustrated by a result due by X. Jiang [24] who proved that Conjecture EbS implies a
uniformity statement for the Iitaka fibration of any variety of positive Kodaira dimension under the
assumption that the fibers have a good minimal model.

In this thesis we present several results on the canonical bundle formula. The first deals with fibration
whose fibers are curves and is a study of the denominators of M.

Theorem 1.1.3 (Theorem 1.6, [11]). 1. A polynomial global bound on the denominators of My
cannot exist. Precisely for any N there exists an lc-trivial fibration

fi(X,B)> Z

such that dim Z = 1 and whose generic fiber is a rational curve such that if V is the smallest
integer such that V. My has integral coefficients then

V> pNtL
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2. Let f: (X,B) — Z be an lc-trivial fibration whose generic fiber is a rational curve. Then there
exists an integer N(r) which depends only on r such that N(r)My has integral coefficients.
More precisely N(r) = rlem{l|l < 2r}.

Theorem 1.1.3 is proved in Subsection 1.8.3.
Moreover for any r odd we give an example such that if V' is the smallest integer such that VMg
has integral coefficients then V' = N(r)/r. In [38, Remark 8.2] it was conjectured that the effective
constant that makes the moduli part base-point-free is 12r. Theorem 1.1.3 gives a counterexample
to this conjecture. The denominators of My are very important in applications in order to obtain
effective results for the pluri-log-canonical maps of pairs with positive Kodaira dimension (see for
instance [41], [42]).

The second result proves that Conjecture EbS can be reduced to the case where the base is a
curve.

Theorem 1.1.4 (Theorem 1.2, [12]). EbS(1) implies EbS (k).

The proof of Theorem 1.1.4 the object of Section 1.5. An inductive approach on the dimension
of the base, as in Theorem 1.1.4, allows us to prove a result of effective semiampleness in the case
Mz = 0. Indeed we are able to prove an effective version of [3, Theorem 3.5].

Theorem 1.1.5 (Theorem 1.3, [12]). There exists an integer m = m(b) such that for any klt-trivial
fibration f: (X, B) — Z with

e 7 smooth;
o Myz=0;

e Bettigiy, g (E') = b where E' is a non-singular model of the cover E — F associated to the
unique element of |r(Kr + Blr)|

we have mMyz ~ 0.

Moreover for the case where the pair (X, B) is lc but not klt on the generic point of the base we
have the following that generalizes [3, Theorem 3.5].

Theorem 1.1.6 (Theorem 1.4, [12]). Let f: (X,B) — Z be an lc-trivial fibration with Z smooth
and Mz =0. Then My is torsion.

The proofs of Theorem 1.1.5 and Theorem 1.1.6 are in Subsection 1.7.1 and Subsection 1.7.2
respectively.

This chapter is organized as follows: Section 1.2 contains som basic notation about the canonical
bundle formula; in Section 1.4 we present a proof of Theorem 1.2.15 (see [8, Chapter 8]) that makes
only use of the theory of variations of Hodge structure instead of variations of mixed Hodge structure.
Sections 1.3, 1.5, 1.6 and 1.7 coincide with Sections 4, 3, 5 and 6 of [12]. Subsections 1.8.1, 1.8.2
and 1.8.3 are Subsection 2.2 and Sections 3 and 4 of [11].
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1.2 Notation, definitions and known results

We will work over C. In the following =, ~ and ~q will respectively indicate numerical, linear and
Q-linear equivalence of divisors. The following definitions are taken from [31].

Definition 1.2.1. A pair (X, B) is the data of a normal variety X and a Q-Weil divisor B such
that Kx + B is Q-Cartier.

Definition 1.2.2. Let (X, B) be a pair and write B = Y b;B;. Let v: Y — X be a birational
morphism, Y smooth. We can write

Ky =v*(Kx+B)+ Y _a(E;, X,B)E;.

where E; CY are distinct prime divisors and a(E;, X, B) € R. Furthermore we adopt the convention
that a nonexceptional divisor E appears in the sum if and only if E = v;'B; for some i and then
with coefficient a(E, X, B) = —b;.
The a(E;, X, B) are called discrepancies.

Furthermore we adopt the convention that a nonexceptional divisor E appears in the sum if and
only if E = v 1B; for some i and then with coefficient a(E, X, B) = —b;.
The a(E;, X, B) are called discrepancies.

A divisor E is exceptional over X if there exists a birational morphism v:Y — X such that
E CY is v-exceptional.

Definition 1.2.3. Let (X, B) be a pair and f: X — Z be a morphism. Let W € Z be an irreducible
subvariety. A log resolution of (X, B) over W is a birational morphism v: X' — X such that for
any x € f7YW the divisor v*(Kx + B) has simple normal crossings at x.

Definition 1.2.4. We set
discrep(X, B) = inf{a(E, X, B) | E exceptional prime divisor over X }.
A pair (X, B) is defined to be
o kit (kawamata log terminal) if discrep(X,B) > —1 and |B] <0,
o plt (purely log terminal) if discrep(X,B) > —1,
e lc (log canonical) if discrep(X,B) > —1.

Definition 1.2.5. Let f: (X, B) — Z be a morphism and W C Z an irreducible subvariety. For an
exceptional divisor E over X we let ¢(E) be its image in X. We set

discrepy, (X, B) = inf{a(E, X, B) | E prime divisor over X, f(c(E)) = W}.
A pair (X, B) is defined to be
o kit over W (kawamata log terminal) if discrepy (X, B) > —1,

o lc over W (log canonical) if discrepy (X, B) > —1.



6 CHAPTER 1. THE MODULI PART IN THE CANONICAL BUNDLE FORMULA

Definition 1.2.6. Let (X, B) be a pair. A place for (X, B) is a prime divisor on some birational
model v:Y — X of X such that a(E, X, B) = —1. The image of E in X is called a center.

Definition 1.2.7. Let (X, B) be a pair and v: X' — X a log resolution of the pair. We set

and
A(X,B)=AX,B)+ Y E
a(E,X,B)=1
Definition 1.2.8. A kit-trivial (resp. lc-trivial) fibration f: (X, B) — Z consists of a surjective

morphism with connected fibers of normal varieties f: X — Z and of a log pair (X, B) satisfying
the following properties:

1. (X, B) has klt (resp. lc) singularities over the generic point of Z;
2. rank f, Ox([A(X,B)]) =1 (resp. rank f, Ox([A*(X,B)]) = 1) where f' = fov and v is a
given log resolution of the pair (X, B);

3. there exists a positive integer r, a rational function ¢ € C(X) and a Q-Cartier divisor D on
Z such that

1

Remark 1.2.9. Condition (2) does not depend on the choice of the log resolution v. It is verified
for instance if B is effective because

[A*(X,B)] = [Kx —v*(Ex + B)+ ) FE]
a(E,X,B)=1
is exceptional over X.

Remark 1.2.10. Let f: (X,B) — Z be an lc-trivial fibration. Let u: X — X be a birational
morphism. Let f = f ov and let B be the divisor defined by

K4+ B=Kx+B.
Then f: (X,B) — Z is again an le-trivial fibration. Indeed the singularities of (X, B) are the same

as the singularities of (X, B) and condition (1) in Definition 1.2.8 is verified. A log resolution for
(X, B) is also a log resolution for (X, B), thus condition (2) is verified. Finally

.1 . 1 P
Ex+B+ _(pop) =p(Ex+B+_(v)=fD
and we are done.

Remark 1.2.11. The smallest possible r that can appear in Definition 1.2.8 is the minimum of the
set
{m S N]m(KX +B)’F ~ 0}

that is the Cartier index of the fiber. We will always assume that the r that appears in the formula
is the smallest one.
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Definition 1.2.12. Let P C Z be a prime Weil divisor. The log canonical threshold vp of_f*(P)
with respect to the pair (X, B) is defined as follows. Let Z — Z be a resolution of Z. Let p: X — X

be the birational morphism obtained as a desingularization of the main component of X xz Z. Let
f: X = Z. Let B be the divisor defined by the relation

K¢+ B =p*(Kx + B).
Let P be the strict transform of P in Z. Set
vp = sup{t € Q| (X, B +tf*(P))islc over P}.
We define the discriminant of f: (X, B) — Z as
By = Y (1-9p)P. (1.2.1)
P

Remark 1.2.13 ([27], p.14 [1]). The log canonical threshold «p is a rational number. Indeed,
assume that Z is smooth and let p: X’ — X be a log resolution of the pair (X, B + f*(P)). Let
B’ be the divisor defined by Kx/ + B’ = p*(Kx + B). Then fopu: (X',B') — Z is an lc-trivial
fibration.
Let P be a prime Weil divisor of Y and set f*P = Y w;Q;. Set b; = multg. B. Then
1—1b;

Yp = min .
J wj

In particular vp is a rational number. We notice also that —B’+pu* f* By is effective over codimension-
one points: with the same notation as above, over P we have

—B' 4+ p f*Bz =Y _[(1—vyp)w; — b;]Q;.
j

Since vp < (1 — b;)/w; for any j, we have
wj—ﬁ/ij—bj zwj—lz()
We remark that, since the above sum is finite, By is a Q-Weil divisor.

Definition 1.2.14. Fiz ¢ € C(X) such that Kx + B + 2(¢) = f*D. Then there exists a unique
divisor My such that we have

K)(—FB—F%((/D) = f*(KZ—|—Bz+Mz) (1.2.2)

where Bz is as in (1.2.1). The Q-Weil divisor Mz is called the moduli part.

We have the two following results.

Theorem 1.2.15 (Theorem 0.2 [2], [8]). Let f: (X,B) — Z be an lc-trivial fibration. Then there
exists a proper birational morphism Z' — Z with the following properties:
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(i) Kz + Bz is a Q-Cartier divisor, and for every proper birational morphism v: Z" — 7'

V*(KZ/ + BZ’) = Kz + Byn.

(il) Mz is a nef Q-Cartier divisor and for every proper birational morphism v: Z" — 7'

V*(MZ/) = MZ”-

Proposition 1.2.16 (Proposition 5.5 [2]). Let f: (X, B) — Z be an lc-trivial fibration. Let 7: Z' —
Z be a generically finite projective morphism from a non-singular variety Z'. Assume there exists a

simple normal crossing divisor X, on Z' which contains T~ %5 and the locus where T is not étale.
Let Mgz be the moduli part of the induced le-trivial fibration f': (X', B") — Z'. Then Mz = 7" M.

Theorem 1.2.17 (Inverse of adjunction, Proposition 3.4, [1], see also Theorem 4.5 [18]). Let
f:(X,B) = Z be an lc-trivial fibration. Then (Z, Bz) has kit (lc) singularities in a neighborhood of
a point p € Z if and only if (X, B) has kit (lc) singularities in a neighborhood of f~1p.

The Formula (1.2.2) is called the canonical bundle formula.

1.3 Variation of Hodge structure and covering tricks
1.3.1 Variation of Hodge structure
Let S be C* viewed as an R-algebra.

Definition 1.3.1 (2.1.4 [10]). A real Hodge structure is a real vector space V of finite dimension
together with an action of S.

The representation of S on V induces a bigraduation on V', such that VP4 = V. We say that V
has weight n if VP4 = 0 whenever p + q # n.

Definition 1.3.2 (2.1.10 [10]). A Hodge structure H of weight n is
e a Z-module of finite type Hy;
e q real Hodge structure of weight n on Hr = Hz ®z R.

Definition 1.3.3. Let S be a topological space. A local system on S is a sheaf V of Q-vector spaces
on S.

Let now S be a complex manifold.
Definition 1.3.4. Let V — S be a vector bundle. A connection is a morphism
V:V=QLeV

that satisfies the Leibniz rule.
The curvature of a connection is VoV:V — Q% V.
A connection is said to be integrable if VoV = 0.
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By [9, Proposition 2.16] the data of a local system V is equivalent to the data of a vector bundle
YV — S together with an integrable connection V and the correspondence is given by associating to
V the vector bundle
V=V®O0.

Definition 1.3.5. A flat subsystem of a local system V is a sub-local system W of V or equivalently
a subbundle W of V on which the curvature of the connection is zero.

Definition 1.3.6 ((3.1) [40]). A wariation of Hodge structure of weight m on S is:
e q local system V on S;

e a flat bilinear form
Q:VxV—=C

which is a bilinear form rational on V, where V =V ® Og;

e a Hodge filtration {FP}, that is a decreasing filtration of V by holomorphic subbundles such
that for any p we have V(FP) C QL @ FP~1.

Definition 1.3.7 ((3.4) [40]). A wariation of mized Hodge structure on S is:
e q local system V on S;

e a Hodge filtration {FP} that is a decreasing filtration of V by holomorphic subbundles such that
for any p we have V(FP) C QL @ FP~L;

o a Weight filtration {W;} that is an increasing filtration of V by local subsystems, or equivalently,
the subsheaf Wy, is defined over Q for every k;

Moreover we require that the filtration induced by {FP} on Wy /Wi_1 determines a variation of
Hodge structure of weight k.

From now on we will be interested in variations of Hodge structure and of mixed Hodge structure
defined on a Zariski open subset Zj of a projective variety Z. We assume moreover that ¥ = Z\ Z,
is a simple normal crossing divisor.

The following is a fundamental result about the behavior of a variation of Hodge structures on
Zy near Yz. For the definition of monodromy and unipotent monodromy of variations of Hodge
structure and residue of a connection see [37, Definition 10.16, section 11.1.1]

Proposition 1.3.8 (Proposition 5.2(d), [9]). Let V be a variation of Hodge structure on Zy that has
unipotent monodromies around Xz. Let z be a local variable with center in ¥Xz. Then

a There exists a unique extension ¥V of V on Z such that
i every horizontal section of V as a section off) on Zy grows at most as
k
O(log || = [I*)

for some integer k near Xz,
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ii let V* be the dual of V. Every horizontal section of V* grows at most as
O(log || = |[*)
for some integer k near X .
b Conditions (i) and (ii) are equivalent respectively to conditions (iii) and (iv).

iii The matriz of the connection onV on a local frame for V has logarithmic poles near 3.

iv Each residue of the connection along each irreducible component of ¥z is nilpotent.

¢ Let Vi and Va be variations of Hodge structure on Zy that have unipotent monodromies around
Yz. FEvery morphism f: YV, — Vo extends to a morphism Vi — Va. Moreover the functor
YV —V is exact and commutes with ®, A, Hom.

The extension V is called the canonical extension.

Remark 1.3.9. In the situation of Proposition 1.3.8 the matrix I' of the connection on V has the
following form

2
where U; is the matrix that represents the nilpotent part of the monodromy around the component
Ei of X 7.

Let V, Z be smooth projective varieties and h: V — Z a surjective morphism with connected
fibers. Let Zy C Z be the largest Zariski open set where h is smooth and Vo = h™(Zy). Assume that
Yz = Z\Zp and Xy = V\V} are simple normal crossing divisors on Z and V. Set d = dim V —dim Z.
Consider H¢ = (Rh.Cyj, ) prim, Where the subscript prim stands for the primitive part of the coho-
mology. Set Ho = Hce ® Ogz,, F = hwwyyz and Fo = F ® Og,. Then Hc is a local system over Z.
Moreover Hg has a descending filtration {F?}o<p<4, the Hodge filtration and Foy = F d,

There is a canonical way to extend Hg and Fy to locally free sheaves on Z:

Theorem 1.3.10 (Proposition 5.4 [9], Theorem 2.6 [29], [19]). 1. Ho has a canonical extension
to a locally free sheaf on Z.

2. hywyz coincides with the canonical extension of the bottom piece of the Hodge filtration.

Let ho: Vo — Zp be as before. Let D C V be a simple normal crossing divisor such that
the restriction hg|p is flat. Assume that D + Xy has simple normal crossings. Let us denote the
restriction by

ho: Vo\D — Zj.

Thus Rd(ho)*(CVO\D is a local system on Zy by [40, section 5.2]. Let {FP} be the Hodge filtration
and let

Wi = (ho)«S2y, .z, (log D) A Q'VO*/’“ZO (1.3.1)
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be the weight filtration of the complex (hq).£2y, 17 (log D). In particular Wy is a complex. We will
adopt the following notation

Wi((h0) 2 7, (108 D)) = (ho)u %y, (08 D) A Q5

Let h: V — Z be a morphism such that X7 is a simple normal crossing divisor and let 7: Z' — Z
be a morphism from a smooth variety Z’ such that 7=(3) is a simple normal crossing divisor. Let
V' be a desingularization of the component of V' xz Z’ that dominates Z’.

Vi—sV

J

Z/?Z

Assume now that b’ and h are such that R?h,Cy, and Rdh;CVO/ have unipotent monodromies. By
Proposition 1.3.8[c] we have a commutative diagram of sheaves on Z’

(1)swyr 7 —= (i")(F'0) N H'

| i
7 (h)swyz —= (1) (Fo) N H
where i: Zy — Z, i': Zly — Z' are inclusions, H (resp. H') is the canonical extension of R%h.Cy;
(resp. Rdh;(CVO/), Fo = hwwyyz), (vesp. F'o = hiwyr/z1,,) and a, B are the pullbacks by 7. If we
0
have an isomorphism
o (h/)*wv//zl — T*(h>*wV/Z

then for any p € Z’ we have an isomorphism of C-vector spaces
ap: (W)swyr)z0)p = (Rawy)z)r(p)-

If 7 is a birational automorphism of Z that fixes p, then «, is an element of the linear group of
((h)«wy/z)p- In particular we have the following:

Proposition 1.3.11. Let h: V — Z be a fibration such that Rdho*(CVO has unipotent monodromsies.
Assume that we have a birational action of a group G on Z given by a homomorphism

G — Bir(Z) = {v: Z --» Z|visbirational}.

Let Gy be the stabilizer of p € Z. Then we have an induced action of Gy, on Hy, and on (h.wy/z)p
and these actions commute with the inclusion (hwwyz)p C Hp.

By [25, Theorem 17] we can assume that RdhO*CVO (or, more generally, a local system that has
quasi-unipotent monodromies) has unipotent monodromies modulo a finite base change by a Galois
morphism. We restate Kawamata’s result in a more precise way that is useful for our purposes.
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Theorem 1.3.12 (Theorem 17, Corollary 18 [25]). Let h: V. — Z be an algebraic fiber space. Let
Zo C Z be the largest Zariski open set where h is smooth and Vo = h™'(Zy). Assume that Xz = Z\ Z
and Xy = V\Vy are simple normal crossing divisors on Z and V. Set d = dimV — dim Z.
Then there exists a finite surjective morphism 7: Z' — Z from a smooth projective algebraic variety
7' such that for a desingularization V' of V x z Z' the morphism h': V' — Z' induced from h is such
that Rdhg*CVO/ has unipotent monodromies.

Moreover T is a composition of cyclic coverings T;

T2 =T Ly Ty 2 =27
where 7; 1s defined by the building data
where Aj is very ample on Z; and H; has simple normal crossings.

We have the following results by Deligne. We state them in our situation, but they hold in a
more general setting.

Theorem 1.3.13 (Theorem 4.2.6 [10]). The representation of the fundamental group m1(Zo,z) on
the fiber Ho,. is semisimple.

Here we prove a slight modification of [10, Corollary 4.2.8(ii)(b)].
Corollary 1.3.14. Let W be a local subsystem of He of rank one. Let b = dimH. Let

m(z) = lem{k| ¢(k) < z}
where ¢ is the Euler function. Then W&™®) is a trivial local system.

Proof. By Theorem 1.3.13 we can write

HC,Z = é H;
=1

where the H; are the isotypic components (that is, the components that are direct sum of simple
representations of the same weight). Since dim W = 1, the subspace W, is contained in one isotypic
component, say Hi. We have

My =HYE,
where H is a simple component of weight A. Since W, is simple, it identifies with one of the factors
H,’s and then

k
/\7’[1 = W;X)k.

If x is the character that determines W, as a representation then the character y* determines
/\k Hi. Let S be the real algebraic group C*. We have an action of S on H;. Indeed by [10,
Corollary 4.2.8(ii)(a)] for any t € S we have tH; = H;. In particular tH; and #; have the same
weight. But since H; is isotypic, we have tHy = Hi. The vector space 3':[1 = M1 + H; is real
and S-invariant, thus it is defined by a real Hodge substructure of Hg .. Thus a polarization on H
induces a non-degenerate bilinear form on 7:[1 that is invariant under the action of m(Zy, 2).

Then, if we set e = dim 7;, we have that (A\° 7:[1)®2 is trivial. Since H1 = H; + H1, there are two
possibilities:
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(a) if H; is real, the character x2* is trivial,

(b) or else x?*¥?* is trivial.

In any case |x| = 1.
The representation of m1(Zp, z) on Hc , comes from a representation on Hg . and all the conjugate
representations of W, appear in Hc .. Thus we have at most b = dim H conjugate representations
of W,.

We proved that for any v € 71(Zy, z) the number () is a complex number of modulus one and
with at most b complex conjugates. Thus x(v) is a k-th root of unity, with k£ < b. If we define

m(b) = lem{k| o(k) < b}

where ¢ is the Euler function, then x™®) is trivial. O

1.3.2 Covering tricks

In order to give an interpretation of the moduli part in terms of variation of Hodge structure we
need to consider an auxiliary log pair (V, By) with a fibration h: V — Z.

Let f: X — Z be an lc-trivial fibration. Set ¥z = SuppByz and we assume that ¥ is a simple
normal crossing divisor. Set X x = Suppf*>z and assume that B 4+ ¥ x has simple normal crossing
support. We define g: V' — X as the desingularization of the covering induced by the field extension

C(X) € CX) (o), (1.3.2)

that is, the desingularization of the normalization of X in C(X)(y/®) where ¢ is as in (1.2.2).
Let By be the divisor defined by the equality Ky + By = ¢*(Kx + B). Set h = fog: V — Z.
Then h and f induce the same discriminant and moduli part. Let ¥y be the support of h*¥ 7 and
assume that 3y + By has simple normal crossing support.

The Galois group of (1.3.2) is cyclic of order r, then we have an action of

pr ={zeClz" =1}
on g.Oy. Then we have also an action of p, on h.wy,z and on h*wV/Z(PV) where Py are the
horizontal places of the pair (V, By).

Proposition 1.3.15 (Claim 8.4.5.5, Section 8.10.3 [8]). Let f: X — Z and V — X be as above.
The decomposition in eigensheaves is

r—1

hawyyz = @ £:0x([(1 = )Kx 7 — iB +if* Bz + if*Mz]).
i=0
Let Py be the places of (V,By) and P the places of (X, B). Then we have
r—1
hawyyz(Py) = @D £.Ox([(1 = i)Kx 7 — iB+ P+ if*By +if*My])
i=0

and the right-hand side is the eigensheaf decomposition of the left-hand side with respect to the action
of pur-
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Proposition 1.3.16 (Proposition 5.2, [2]). Assume that R%hg.Cy, has unipotent monodromies.
Then My is an integral divisor and Oz(My) is isomorphic to the eigensheaf f.Ox(|[—B + P +
f*Bz + f*Mz]) corresponding to a fized primitive rth root of unity.

1.4 Nefness: generalization to the lc case

This section will be devoted to a proof of Theorem 1.2.15 for a fibration that is lc and not klt over
the generic point of the base. This result is stated in [8, §8]. The key result for the proof is Theorem
1.4.5 that is implied by the very deep results in [15] about variation of mixed Hodge structure (see
also [17, Theorem 3.6]). Here we present a proof that makes use only of the theory of variation of
Hodge structure and follows Ambro’s proof of [2, Theorem 0.2].

Remark 1.4.1. If B’ = B+ f*A, then f: (X, B’) — Z is an lc-trivial fibration and its discriminant
is By + A.

Let X be a smooth variety, L a line bundle on X and D an integral and not necessarly effective
divisor such that L" = Ox (D). In [8, §8.10.3] it is explained that with this data it is possible to
define a covering of X. Take s a rational section of L and 1p the constant rational section of Ox (D).
Then we can define 7: X — X as the normalization of X in C(X)({/1p/s"). Moreover we have

w05 = @L ([iD/r]);
Tewg = @wX@)LZ |[iD/r]).

The Galois group of the extension C(X) C C(X)(1/1p/s") acts on m.O by {/1p/s" + (-/1p/s"
where ( is a primitive r-th root of unity. The eighensheaf corresponding to ¢ is L='(|D/r]).
Now we take as building data of the covering

L = OX?
D = —(¢)=r(Kx)z+B— f"(Bz+ Mz)),
L" = Ox(D).

Now let B be a divisor such that (X, B) is lc over the generic point of Z. In particular we have

mwg;y = Puwxz@0x(—i(Kx/z+B—[*(Bz+Mz))]) (1.4.1)
=0
r—1
= P Ox(Kxjz+[~i(Kxjz+B—f*(Bz+Mz))]) (1.4.2)
=0
r—1
= Pox[(1—i)Kx)z—iB+if By +if My)]). (1.4.3)
=0
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We assume that K'x + B has simple normal crossing support and call £ the sum of all the lc-centers
of (X, B) that dominate Z. Set E = n*E, then

r—1
me(wg,y © O3 (E) = P Ox([(1 = i) Kx/z—iB+E +if* Bz +if*Mz)]),
=0

The eigensheaf of ¢ in 7, (WX/Z ® OX(E)) is
Ox([-B+ E+ f*Bz + [*Mz)]).

Let V be a non-singular model of X. We have a diagram

X< X<~V
f

fl/h

Z.

Set g: V — X and By = ¢*(Kx + B) — Ky. In [2, p. 245] are stated the following properties for
h: (V,By) — Z:

e The field extension C(V')/C(X) is Galois and its Galois group G is cyclic of order r. There
exists ¢ € C(V) such that ¥" = ¢. A generator of G acts by 1 — (v, where ( is a fixed
primitive r-th root of unity.

e The relative log pair h: (V, By) — Z satisfies all properties of an le-trivial fibration, except
that the rank of h,Ox ([A*(V, By)]) might be bigger than one.

e Both f: (X,B) — Z and h: (V,By) — Z induce the same discriminant and moduli part on
Z.

The canonical bundle formula for h: (V, By) — Z is
Kv+Bv+(T,Z)) = h*(Kz+Bz—|—Mz) (1.4.4)
Let Ey be the sum of all the centers of (V, By).

SNC setting 1.4.2. By [25, pp. 262-263] and [45, p. 334], in order to prove the nefness of the
moduli part, we can suppose the following (cf. [2, p. 245]):

i the varieties X, V, Z are non-singular quasi-projective and there exist simple normal crossing
divisors X x, Xy, Xz on X, V and Z respectively such that the morphisms f and h are smooth
over Z\Xz and the divisors $% /Z and Z{} /Z have relative simple normal crossings over Z\X. z;;

ii the morphisms f and h are projective;
iii we have f71(Z7) C Zx, f(%) C £z and h™1(Zz) C Ty, h(ZY) C 5.

iv the divisors B, By and Bz ,My are supported by X x, ¥y and X, respectively.
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Lemma 1.4.3. The following properties hold for the above set-up:

1. The group G acts naturally on h.Oy(Ky,; + Ev). The eigensheaf corresponding to the eigen-
value C is 3
L:=f,Ox(—=B+E+ f*Bz + f*Mz).

2. Assume that h: V — Z is semistable in codimension one. Then My is an integral divisor, L
is semipositive and L = Oz(Mz) - 1.

Proof. Since (¢) has SNC support, the variety X has canonical singularities and
hOv(Kyz + Ev) = fim(wg,; ® O (E)).

The action on h.Oy (Ky,z + Ey) is induced by the one on . (WX/Z ® OX(E’)), thus the eigensheaf
of ¢ is
L=fOx([-B+E+ f*Bz+ f*Mz)]).

This completes the proof of item (1).

We claim that there exists an open set ZT C Z such that the codimension of Z\Z' is at least two,
such that (—By + h*Byz)|;-1+ supports no fibers and (—By + Ey + h*Byz)|,-1,+ is effective and
supports no fibers. Indeed, since h is semistable, using the same notation as in the Remark 1.2.13,
there exists jo such that v, =1 —bj, (here w; =1 for any j).

Then 1 -y, — bj, = 0 and —By + h*Bz does not contain the fiber of p. Since Ey is horizontal, the
same reasoning holds for —By + Ey + h*By.

For the effectivity, from Formula (1.4.4) we deduce that the coefficients of (By)" are integral, thus
they are either 1 or negative. Then (—By 4+ Ey +h*Bz)" = (—=By + Ey)" is effective. The effectivity
of (=By + Ey + h*Byz)" = (—By + h*Bgz)" = follows from [27], [1, p. 14]. Let H be a general fiber
of h. By restricting Formula (1.4.4) to H we get

(Y|r) + Ky + Ev|g = —(By — Ev)|u > 0.

This implies that there exists an open subset U C Z such that ((¢) + Ky/z + Ev)|y > 0 and ¢
is a rational section of h.O(Ky,; + Ey). Moreover, since by the action of G' we have ¢ — (1),
the function 1 is a rational section of £ the eigensheaf of ¢. The sheaf £ has rank one because for
general y € Z we have £, = HY(F,[~B+ E + f*Bz + f*My)||r) = H°(F,[~B + E]|r) and the
last one is a rank one C-vector space by the hypothesis (2) in the definition of lc-trivial fibration.
Thus we can consider £ as a subsheaf of C(X ).

We prove now that Z\ZT = O0z(Mz)Y|z,-

Since (—By + Ey + h*BZ)’hfl(ZT) is effective and h*Mz — By + Ey + h*Bz = Ky/z + Ey we have

h*Ov(Mz)|p-1(zty € Ov(Kvz + Ev) -1zt

and
hih*Ov (Mz)| 7zt € hiOv(Ky iz + Ev)| zt-

Now let a € k(Z) such that h*a + Ky,z + Ev > 0. Since (—By + Ey + h*Bz)|,-1(zt) contains no
fibers we have h*a + h*My > 0, thus h*(’)v(KV/Z + Ev)|zt C heh*Oy(Mz)|zi. Then

hOv(Kvyz + Ev)|zt = hih*Ov(Mz))| 71
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By considering the action of G, we obtain the equality between the eigensheaves of (.
Since Z; C Z is such that Z\Z; has codimension at least two, we have £** = Oz(Mz)v. The sheaf
h*OV(K\//Z + Ey) is locally free and by the Theorem 4.16 in [7] it is semipositive. Since L is a direct
summand of h.Oy (Ky,; + Ey) it is also locally free and semipositive. From the local freeness of L
follows the equality £ = Oy (Mz).
Now we prove that My is an integral divisor.
Since (—By + h*Bz)|j,-1(zt) contains no fibers and Z1 is big, (—By + h* Bz) contains no fibers over
codimension-one points. Hence for any prime Weil divisor P C Z there exists a prime Weil divisor
@ € X such that h(Q) = P and multg(—By +h*Bz) = 0. From the canonical bundle formula 1.4.4
we have

multgh*Mz = muth(KV/Z + (v)) € Z.

Moreover we have multp Mz - multgh* P = multgh*Mz. The fact that the morphism A is semistable
in codimension one implies that multgh*P = 1, thus multp My = multgh* My € Z. O

Lemma 1.4.4 (Theorem 4.3 [2]). We use the same notation as 1.4.2. There exists a finite Galois
cover 7: Z' — Z from a non-singular variety Z' which admits a simple normal crossing divisor
supporting T~ 1(Xz) and the locus where T is not étale, and such that h': V' — Z' is semistable in
codimension one for some set-up (V', By/) — (X', Bx:) — Z' induced by base change.

The following theorem is a generalization of Theorem 4.4 in [2]. It was proven in [14] by using
variation of mixed Hodge structure. Here we give a proof based on variation of Hodge structure.

Theorem 1.4.5. Let f: X — Z be a surjective morhpism, let D; be a reduced and irreducible divisor
such that f(D;) = Z. Set D = Zf\il D;. Assume that

e we are in the SNC setting 1.4.2;

e the monodromies of Rifo*(CXO\DO are unipotent for any i where Zo = Z\Xz, Xo = f~'Zo,
Dy =DnXy, fO = f‘XO\DO'

Let p: Z' = Z be a projective morphism from a non-singular variety Z' such that p~'¥ 7 is a simple
normal crossings divisor. Let X' — (X X Z')main be a resolution of the component of X x Z' which
dominates Z', and let f': X' — Z' be the induced fiber space:

X —X

17

!/
Then for any i > 0 there exists a natural isomorphism p*Rif*wX/Z(D) = Rifin//Z/(D’), where D'
is the strict transform of D, which extends the base change isomorphism over Z\Yz.
First we have to state and prove some preliminary result.

Proposition 1.4.6. Let f: X — Z be a surjective morphism. Assume that we are in the SNC
setting 1.4.2. Let Zy be Z\Xz, let Xo be f~1Zy and f = f|x,. Assume that the local systems
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R f0.C xo have unipotent monodromies around ¥z for anyi. Let p: Z' — Z and X' be a projective
morphism from a non-singular variety Z' such that p~'Xz is a simple normal crossings divisor.
Let X' — (X X Z')main be a resolution of the component of X x Z' which dominates Z', and let
1 X' — Z' be the induced fiber space. Then for any i > 0 there erists a natural isomorphism

PR fuwx )z = R flwx )z
Proof. Set Sy = p~ ¥y, Z) = Z\Sy, X\ = f71Z}) and f} = f/|X6' The locally free sheaves
H(()i) = R™f,,Cx, and H(l](i) = Rmt f(’)*(CX(/) are the underlying spaces of variation of Hodge
structure of weight m — . In [29, Thm 2.6, p. 176], is proven that

R fawx/z = “FP(R™ f.Cx,) Vi >0

R flwyrz = “FO(R™ fiCx;) Vi>0

where “F? denotes the upper canonical extension of the bottom part of the Hodge filtration. Since
Héz) has unipotent local monodromies, the upper canonical extensions coincide with the canonical
extensions. Moreover, by the unipotent monodromies assumption, the canonical extension is com-
patible with base change by [26, Prop 1, p. 4]. Hence by unicity of the extension the isomorphism
PR foiwxy )z, = Rifé*wxé/zé induces an isomorphism p*R' fuwx 7 = R’ flwx: 7.

O

Proof of Theorem 1.4.5. Let N be the number of irreducible components of D. We prove the state-
ment by double induction on N and on the dimension d of the fiber.

If N =0 or d =0 the result follows from Proposition 1.4.6. Suppose N > 0 and consider the
exact sequence

0 — Ox(D2) - Ox(D) — Op,(D) — 0 (1.4.5)
where D =SV, D;. Set D' = SN, D} and
A = p*Ri fawx/z(D) B; = p*R fuwx/z(D) Ci=p*R' fuwp,;7(D)
A} = R flwx7(D') B} =R flwxz(D') Cl= R flwpz(D).

We have a commutative diagram with exact lines

Ci—1 A; B; C; A1
S S A
Ci 4 A B; C; Ay

The morphisms 8 and ¢ are isomorphisms by the inductive hypothesis on N. The morphisms a and
0 are isomorphisms by the inductive hypothesis on d. Then, by the snake lemma, also ~ is also an
isomorphism. O

Lemma 1.4.7. Let v: Z' — Z be a generically finite projective morphism from a non-singular
variety Z'. Assume there exists a simple normal crossing divisor Xz on Z' which contains v~ '3z
and the locus where v is not étale. Let My be the moduli part of the induced set-up (V', Byr) —
(X,,BX/) — Z'. Then ’)/*(Mz) = MZ’-



1.4. NEFNESS: GENERALIZATION TO THE LC CASE 19

Proof. The proof is exactly the same as that of [2, p. 248]. We just replace v*h.Oy (Ky,z) with
V*h*OV(KV/Z + E) and h;OV’(KV’/Z’) Wlth h;OV’(KV’/Z’ + E,)

Step 1 Assume V/Z and V'/Z' are semistable in codimension one. In particular, Mz and My are
integral divisors. Since h is semistable in codimension one, Theorem 1.4.5 implies

VhiOv(Kyz + E) =2 W,Ovi(Kyiyz + E)

This isomorphism is natural, hence compatible with the action of the Galois group G. We have
an induced isomorphism of eigensheaves corresponding to (, v*Oz(Myz) = Oz (My). Therefore
Y*Myz — My is linearly trivial, and is exceptional over Z . Thus v*Myz = M.

Step 2 By [2, Theorem 4.3, p. 240] and [2, Theorem 4.1, p. 242], we can construct a commutative
diagram

~

e /

I\
N

7_/

3
-
-~

N
N

—_—
2

as in [2, Remark 4.2, p. 241], so that V/Z is semistable in codimension one for an induced set-up
(V,By) --» (X, Bg) --» Z. By [2, Theorem 4.3, p. 240] and [2, Theorem 4.1, p. 242], we replace Z'
by a finite covering so that V//Z’ is semistable in codimension one for an induced set-up (V', Byz/) --»
(X', Bg/) --+ Z'. By Step 1, we have Mz = v™*(Mj,). Since 7 and 7' are finite coverings, Lemma
1.2.16 implies 7*(Myz) = Mz and 7*(Mz/) = My,. Therefore 7/*(Mz —~*(Mz)) = 0, which implies
MZ’ = ’y*(Mz).

O

Theorem 1.4.8. Let f: (X, B) — Z be an lc-trivial fibration. Then there exists a proper birational
morphism Z' — Z with the following properties:

(i) Kz + Bz is a Q-Cartier divisor;
(il) Mz is a nef Q-Cartier divisor and for every proper birational morphism v: Z" — Z'

V*(MZ/) = MZ”

where By, My and Mz are the discriminant and the moduli parts of the lc-trivial fibrations induced
by the base change
X// - - X/ . X

L

Z”?Z’H—Z.

Proof. The proof follows the same lines as in [2, p. 249].
We can suppose that we are in a SNC setting,

(V'.By) = (X',B) — 7.
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e We prove that for any birational morphism p: Z’ — Z we have u*Myz = Mzn (we use Lemma
1.4.7). This proves the first point of the theorem.

By Lemma 1.4.4 there exists a finite morphism 7: Z’ — Z’ such that h': V' — Z’ is semistable
in codimension one.

By Lemma 1.4.3, the divisor M is integral and semipositive.

Since 7 is finite we can apply Lemma 1.2.16 and have 7*Myz = M.

e Again since 7 is finite and M/ is nef, My is also nef.

1.5 Reduction theorems

This section is devoted to the proof of Theorem 1.1.4. Throughout this part we will assume that
the bases of the lc-trivial fibrations are smooth projective varieties.

Lemma 1.5.1. Let f: (X, B) — Z be an lc-trivial fibration. Then there exists a hyperplane section
H C Z such that, if f|x,: (Xg, Blx,) — H is the induced lc-trivial fibration, where Xy = f~'H,
we have Bz|g = By and Myz|g = Mpy.

Proof. By the Bertini theorem, since Z is smooth, we can find a smooth hyperplane section H C Z
such that the pair (X, B + f~1(H) + ypf*P) is lc for any prime Weil divisor P C Z and (X, B +
f~Y(H) +tf*P) is plt for any P C Z prime divisor and for any ¢ < yp. Let P be any prime Weil
divisor in Z. Set

Xy = fY(H); Bx, =Bl|x,; Py=PnH.

The restriction fg: (Xg, Bx, ) — H is again an lc-trivial fibration. The canonical bundle formula
for fg is

1 *
Kx, + Bx,, + ;(W = fi(Kuy + By + Mp).

By [30, Theorem 7.5] the pair (Xg, Bx, + vpfj;Pr) is lc for any Py C H prime divisor and
(X, Bxy +tff;Pu) is kit for any Py C H prime divisor and for any ¢t < yp. Moreover let P such
that Pp is a component of P|g. Assume that we can compute the log canonical threshold over P on
a component Q;, of f*P. Then the coefficient of Bx,, +~p fj;Pu along the components of Q;,|x,, is
1. Thus the log canonical threshold of f}; Py with respect to (X, By) is equal to the log canonical
threshold of f*P with respect to (X, B) and we have Bz|g = By.

If we write the canonical bundle formula for f, we have

KX + B+ %(cp) = f*(KZ +BZ +Mz).

If we sum f*H on both sides of the equality, restrict to f~'H = X and apply the adjunction
formula, we obtain

1 *
(¢lxy) = fa(Kg + Bz|u + Mz|g).

Since we have Bz|g = By, we must also have My |y = Mpy. d
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Lemma 1.5.1 is the main tool in order to prove by induction Theorem 1.1.4.

Proposition 1.5.2. Conjecture EbS(1) implies that for any lc-trivial fibration f: X — Z we have
codim(Bs|mMz|) > 2
where m = m(d,r) is as in Conjecture EbS(1).

Proof. We prove the statement by induction on k¥ = dim Z. The case dim Z = 1 follows from EbS(1).
Suppose then that the statement is true for an lc-trivial fibration whose base has dimension k£ — 1
and let f: X — Z be an lc-trivial fibration with dim Z = k > 1. Then we have

|mMyz| = |M| 4+ Fix

where Fix is the fixed part of the linear system and codim(Bs|M|) > 2. Let H be a hyperplane
section as in Lemma 1.5.1, such that H — mMy is ample. By the Kodaira vanishing theorem

W(Z,mMy — H) = h'(Z,mMy — H) =0
and the restriction induces an isomorphism
H°(Z,mMyz) = H°(H,mMz|g) = H°(H,mMj).
Then if we write
mMz||g = |M| g+ Fix|y
|mMpg| = |L|+ fix

where fix is the fixed component of the linear system |mMp|, we have fix O Fix|y. And since by
inductive hypothesis fix = 0 also Fix|y = 0 and then Fix = 0. O

Corollary 1.5.3. Conjecture EbS(1) implies that for any lc-trivial fibration f: X — Z we have
hO(Z,mMz) > 2, unless Mz is torsion, where m is as in EbS(1).

Proof. By Proposition 1.5.2 there must be at least two sections, unless My is torsion. O

Proof of Theorem 1.1.4. We treat first the torsion case. We prove by induction on the dimension
of the base of the lc-trivial fibration that there exists a nonzero integer m = m(d,r) such that
mMyz = Oy. If the dimension of the base equals one then it follows from Conjecture EbS(1).
Assume then that f: X — Z is an le-trivial fibration with dim Z = k£ > 1 and My is torsion, that
is, there exists an integer a such that aMyz ~ 0.

Let H be a hyperplane section such that Myz|gy = My, as in Lemma 1.5.1, and such that
H — mMjy is an ample divisor. Since Mz|g = My, also My is torsion because

Oy = O0z|lg =2 Og(aMyz) = Og(aMpy).
By the Kodaira vanishing theorem, since H —mM is an ample divisor and dim Z = k > 1, we have

HY(Z,mMy) = H°(H,mMjp).
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By the inductive hypothesis mMp is trivial, hence h®(H, mMpy) = 1. Thus also h%(Z, mMyz) = 1
and mMz ~ 0.

Then we assume that Mz is not torsion and we prove the statement by induction on the dimension
of the base of the lc-trivial fibration. The one-dimensional case is exactly Conjecture EbS(1).
Suppose then that the statement is true for all the lc-trivial fibrations whose base has dimension
k—1andlet f: X — Z be an lc-trivial fibration with dim Z = k. Let Z’ — Z be the birational model
given by Theorem 1.2.15(ii). We prove that mMy: is base-point-free. Let v: Z — Z' be a resolution
of the linear system |mMy/|. Then v*|mMzyz/| = |Mob| + Fix where |[Mob| is a base-point-free linear
system and Fix is the fixed part. We have

1/*|mMZ/\ = ‘I/*(mMZ/)| = ‘mMz‘

Since by Proposition 1.5.2 we have codim(Bs|mM|) > 2, it follows that Fix = 0 and [mMz| is
base-point-free. O

Remark 1.5.4. By considering as in Proposition 1.5.2 the long exact sequence associated with
0— Oz(mMz — H) — Oz(mMz) — OH(mleH) —0

for a hyperplane section H as in Lemma 1.5.1, it is possible to also prove an inductive result on
effective non-vanishing. That is, the existence of an integer m = m(d, r) such that H*(Z, mMz) #
0 for all le-trivial fibrations f: (X, B) — Z with dim Z = 1 implies the same result for lc-fibrations
with dim Z = k > 1 (and with same dimension of the fibers and Cartier index).

1.6 Bounding the denominators of the moduli part

Conjecture EbS 1.1.2 implies in particular the existence of an integer N = N(d,r) such that for
any f: (X, B) — Z lc-trivial fibration with fibers of dimension d and Cartier index of (F, B|r) equal
to r the divisor NMy has integral coefficients. The result was proved in [41, Theorem 3.2] when
the fiber is a rational curve. In Section 1.8 we find, by a different method, an effective bound for
the denominators of My in the case of general fiber isomorphic to P! that is considerably smaller
than the one in [41]. For the reader’s convenience we present here an argument, due to Todorov [41,
Theorem 3.2], valid in the general case.

Theorem 1.6.1. Let b be a non-negative integer. There exists an integer m = m(b) such that for
any klt-trivial fibration f: (X, B) — Z with Bettigy g(E') = b where E' is a non-singular model
of the cover of a general fiber of f, E — F associated to the unique element of |r(Kp + B|p)| the
divisor mMyz has integral coefficients.

We begin by reducing the problem to the case where the base Z is a curve.

Proposition 1.6.2. If Theorem 1.6.1 holds for all fibrations whose bases have dimension one then
Theorem 1.6.1 holds for fibrations whose bases have dimension k > 1.

Proof. We prove the statement by induction on & = dim Z. If k = 1, it follows from the hypothesis.
Assume the statement holds for fibrations over bases of dimension k — 1 and we consider f: X — Z
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with dim Z = k. Let H be a hyperplane section of Z as in Lemma 1.5.1. We have thus Mz|g =
Myp;. Since H is ample, it meets each component of Mz and we can choose it such that it meets
transversally the components of My. It follows that NMz has integral coefficients if and only if
N Mpg does, and we are done by inductive hypothesis. O

Proof of Theorem 1.6.1. By Proposition 1.6.2 we can assume that dim Z = 1.
Consider a finite base change as in Theorem 1.3.12

7' = 7.

If W': V' — Z' is the induced morphism then Rdhfk(CVO/ has unipotent monodromies. The covering 7
is Galois and let G be its Galois group. Then we have an action of G on Z’

G — Bir(Z') = Aut(Z). (1.6.1)

By abuse of notation we will denote by g both an element of G and its image in Aut(Z’).

Let p’ € Z' be a point and let e be the ramification order of 7 at p’. Let G}y be the stabilizer of
p’ with respect to the action (1.6.1). Set . = {z € C|a® = 1}.
There exists an analytic open set p’ € U C Z’ and a local coordinate z on U centered in p’ such that
for any g € G,y there exists x € ji. such that

gv: U — U
z — x2.

This induces a natural homomorphism
Gp/ — Me-

Then the actions of Gy given by Proposition 1.3.11 factorize through actions of fi:
®: pe — GL((RH,Cyr)y),
U i, — GL(Wvr) 7))
which commute with the inclusion (hlwy,z/)y C (RAR,Cy),y, that is, such that for any ¢ € p. the

restriction of ®(¢) to (hiwy/z/)y equals ¥(().

Thus on
r—1

(Bwviyz)y = @D £0x([(1 = i)Kx)z — iB+if* By +if*My])
=0

we have two actions:
e one by the group p. that acts on ¢ by a multiplication by an e-th root of unity,
e one by the group p, that acts on /¢ by a multiplication by an r-th root of unity.

Then there is a , X pe-action on (hwy: /Z/)p/ and we can define a py-action on (Al wy: /Z/)p’ where
[ =er/(e,r). Since p, C py and this second group is commutative, the action of y; preserves the
eigensheaves with respect to the action of u,.. By Proposition 1.3.16, the divisor M is an eigensheaf
with respect to the action of p,. Then py; acts on the stalk Oz/(Mz) ® Cp by a character x,y.
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If for every p’ and for every character x,s the order of x,s divides an integer N then
NMy = (1.O(NMz3 )¢

because by Proposition 1.2.16 we have My = 7*My;. Thus NM is a Cartier divisor.

Let H' be the canonical extension of the sheaf (R%(h{).C)prim ® Oy to Z', where d is the
dimension of the fiber of A/, the subscript prim stands for the primitive part of the cohomology
and hy: Vj — Z{ is the restriction to the smooth locus. The Hodge filtration also extends and its
bottom piece is h\, Oy (Ky: /z')- Then all the characters that are conjugate to x,s must appear as
subrepresentations of #, (see also [10, Corollary 4.2.8(ii)(b)] or Corollary 1.3.14).

If x,» acts by a primitive k-th root of unity, then its conjugate subrepresentations are ¢(k) where
¢ is the Euler function. This bounds k& because then ¢(I) < By, where By = h%(E’',C) is the d-th
Betti number.

Set m(x) = lem{k | ¢(k) < z}. Then m(By)Mz has integral coefficients. O

1.7 The case Mz =0

In this section Z will always be a smooth projective variety.

1.7.1 KLT-trivial fibrations with numerically trivial moduli part

The goal of this subsection is the proof of Theorem 1.1.5. As in Theorem 1.1.4 the problem can be
reduced to the case where the base is a curve.

Proposition 1.7.1. Let b be a non-negative integer. Assume that there exists an integer m = m(b)
such that for any klt-trivial fibration f: (X, B) — Z with

e dimZ =1;
o MZ EO,‘

e Bettigiy g (E') = b where E' is a non-singular model of the cover E — F associated to the
unique element of |r(Kr + Blr)|;

we have mMy ~ 0.
Then the same holds for bases Z of arbitrary dimension.

Proof. We proceed by induction on dim Z = k. The base of induction is the hypothesis of the
theorem.

Let us assume the statement holds for bases of dimension k& — 1 and prove it for a klt-fibration
f:(X,B) — Z with dim Z = k. Let H be a hyperplane section, given by Lemma 1.5.1, such that
Mgz|g = Mpy. Let m be the integer given by the inductive hypothesis. Since My = 0 the divisor
H — mMj is ample. By taking the long exact sequence associated to

0— Oz(mMZ — H) — Oz(mMz) — OH(mleH) —0

we obtain H(Z,mMz) = H°(H,mMp) because H'(Z,mMy — H) = 0 for any i < dim Z. Then
H®(Z,mMy) = C, which implies mM ~ 0. O
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Proof of Theorem 1.1.5. By Proposition 1.7.1, it is sufficient to prove the statement when the base
Z is a curve.
Let us write the canonical bundle formula for f:

1 *
Kx—i-B—F;((p):f (Kz+Bz+Mz).

Let V' be a smooth model of the normalization of X in C(X)(y/¥). Let h: V' — Z be the induced
morphism and let Z; be the open set where h is smooth. Let Vy = h~1Zy and hg = hlv,-

(i) Let us suppose that R%hg,Cy;, has unipotent monodromies. We argue as in [2], Theorems 4.5
and 0.1.
The line bundle Oz,(Mz) is a direct summand in ho.wy; /7, (see [2, Lemma 5.2]) and since

degMz = 0 by [19] it defines a local subsystem of the variation of Hodge structure R%ho,Crys.
By Corollary 1.3.14, applied to H¢ = R%ho.Cy, and W = Oz,(Myz), there exists m such that
Oz,(mMz) is a trivial local system where

m = m(b) = lem{k|o(k) < b}

with ¢ the Euler function and b = h%(E’,C). Since RdhO*(CVO has unipotent monodromies, the
canonical extension commutes with the tensor product, thus the isomorphism Oz, (mMz) =

Oz, extends to
Oz(mMz) = Oz.

(ii) Unipotent reduction: Consider a finite base change as in Proposition 1.3.12

A

such that Rdhfk(CVO/ has unipotent monodromies, where h': V' — Z’ is the induced morphism.
We have 7 = 7, 0 - - - 0 71 where

T2 =1 B Ty Ty 2y = 2.
The morphism 7; is a cyclic covering defined by building data
(sjAj ~ Hj,

where A; is a very ample divisor on Z;. We know by case (i) that m(b)Mz ~ 0. By Theorem
1.6.1 m(b)Mz, is a Cartier divisor. We have thus the following isomorphisms:

C= HO(ZIH—D m(b)MZk+1) = HO(Zk—H’ T*m(b)MZk) = HO(Z:’% m(b)MZk & T*OZk+1)'
The second isomorphism is by Proposition 1.2.16 and the third follows from the projection
formula. From the general theory of cyclic covers we have an isomorphism

5—1

T*OZIH—I = @ OZk+1(_lAk)‘
=0
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Then we obtain

Sp—1
HO<Zk+17m(b)MZk+1) = @ HO(Zkvm(b)MZk - lAk)
=0

Since Mz = 0, the divisor m(b)M, — lAj, has negative degree on Z, for any [ > 0, thus
C = H(Zgy1,m(b)Mz,,,) = H(Zy, m(b)Mz,)
and m(b)Mz, ~ 0 We can conclude by induction on k.
O

Remark 1.7.2. Note that the same proof as in point (ii) of the proof of Theorem 1.1.5 implies
a statement on Effective non-vanishing (see also Remark 1.5.4). Indeed let 7: Z' — Z be as
in Proposition 1.3.12. Assume that H(Z',m(b)Myz/) # 0. Then the reasoning above implies that
H®(Z, m(b)Mz) # 0.

1.7.2 LC-trivial fibrations with numerically trivial moduli part

In this section we prove Theorem 1.1.6. Let f: (X, B) — Z be an lc-trivial fibration. Let V be a
smooth model of the normalization of X in C(X)(y/®), let g: V' — X be induced morphism and let
By = g*(Kx + B) — Ky. Assume moreover that (V, By ) is log smooth and let Py be the divisor
given by the sum of the components E of By of coefficient one and such that h(F) = Z. Let
h = fog and let Zy be the open set where h is smooth. Let Vo = h™1Zy and hg = h|y,. Let d be
the dimension of the generic fiber.

By [40, §5], RdhO*(CVO\pV is the support of a variation of mixed Hodge structure on Zj,

(R0« Cyy\ py - {F2 3 AW })
Such that the bottom piece of the Hodge filtration {FP} is
Fh = hoswvyy 7, (Py).

We recall that, by the definition of variation of mixed Hodge structure, the filtration induced by
{FP} on Wy /Wi_1 determines a variation of Hodge structure of weight & on Z;. Moreover the
weight filtration on F? is the weight filtration defined in (1.3.1)

Wi ((ho)swvy 2o (Pv)) = (ho)s 2y, 7, (log D) A Q.

In order to prove Theorem 1.1.6, we prove that Oz, (Mz) is a subsystem of a variation of Hodge
structure related to the variation of mixed Hodge structure on Rdho*(CVO\ p,- We start with the
following two results.

Proposition 1.7.3. Assume that for any lc-trivial fibration f: (X, B) — Z with

e dimZ =1;
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L] MzEO;

there exists an integer m such that mMyz ~ 0.
Then the same conclusion holds for bases Z of arbitrary dimension.

Proof. The proof follows the same lines as the proof of Proposition 1.7.1. O

Lemma 1.7.4 (Lemma 21, [25]). Let L be an invertible sheaf over a non-singular projective curve
C, let Cy be an open subset of C' and let h be a metric on L|c,. Let p be a point of C\Cp and let t
be a local parameter of C centered at p. We assume that for a uniformizing section v of L we have
h(v,v) = O(t~2%r|logt|%) for some real numbers v, B,. Then

where © s the curvature associated to h.
The following is a generalization of [3, Prop 3.4].

Proposition 1.7.5. Let V and Z be smooth projective varieties. Let h: V — Z be a fibration and
let Xz be a simple normal crossing divisor such that

e h is smooth over Zy = Z\Xz,
o Wi /W,_1 has unipotent monodromies, where {Wy} is the weight filtration.

Let L be an invertible sheaf such that L|z, is a direct summand of Wi/Wi_1 for some l. Assume
that L =0. Then L|z, is a local subsystem of Wi /W;_1.

Proof. Since W;/W)_1 is a geometric variation of Hodge structure, there is on it a flat bilinear form
@ and thus a metric and a metric connection. Then L]z, has an induced hermitian metric h, a
metric connection and a curvature ©. To prove that L]z, defines a flat subsystem of W;/W,_; it is
sufficient to prove that the induced metric connection is flat, i.e. that © = 0.

The relation between the matrix I' of the connection and the matrix H that represents the metric is
I' = H~'0H. By Remark 1.3.9, the order near p of the elements of I' is O(|t|™!|logt|’?). Let v be
a uniformizing section of £. Then the order of h(v,v) near p is O(|logt|’). Let C C Z be a curve
such that C'NZy # 0. Let v: C — C be its normalization and Cy = C'N Zy. We apply Lemma 1.7.4

and we obtain )
7
d L= — *O.
e

Since £ is numerically zero, we obtain
/ r'e =0
v—1Cy

for every C and therefore © = 0. UJ
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Let us recall that we are working with a cyclic covering V' — X of degree r and that the Galois
group of the field extension C(X) C C(V) is the group of r-th roots of unity that we denote by p,.
Moreover we have an induced action of u, on the sheaves of relative differentials. Let Py be the
divisor given by the sum of the components E of By of coefficient one and such that h(E) = Z.

Lemma 1.7.6. The action of ju on (ho)swy, z,(Pv) preserves the weight filtration
Wi ((ho)swvy )z, (Pv))}-

Proof. A generator of u, determines a birational map o: V --» V. Consider a resolution of o

i

N\
o1

V*E>V

Let V1o € V be the locus where h o o1 is smooth. Let us consider the weight filtrations on
Q{/O/Zo(log Py) and on Q;/I,O/ZO (log Py;) where

Py, = Supp(oy ' Py).
The morphism o9 induces, for any m, the following:

05 Q%/Zo(log Py) — Q%O/Zo(log Py,).

We want to prove that oy preserves the weight filtration. Since o9 is a composition of blow-ups of
smooth centers it is sufficient to prove the property for one blow-up.

Let z1,..., 2, be a system of coordinates on U C Vj such that
PyNU={z"-... -z =0}
Then
o (‘ZA...ACZ‘M%HA...M%) g <d§11) Ao Ao (‘Z’l) A3 (dznan) Ao Aod(dzn).

Let C be the center of the blow-up, let z; be one of the coordinates. There are two cases

(i) locally C is contained in the zero locus of z;
(ii) C is not contained in the zero locus of z;.

In case (i), let t be an equation of the exceptional divisor and let z, be an equation of the strict
transform of z;. Then o5(dz;) = d(z] -t) =t -dz, + 2} - dt and

(2

*(d,zi>_t-dzz’~+zg~dt_alz§+cht

P /

2t 2 t

Zi
In case (ii), we simply have
dz;  dz]
03(dz;) = dz; and 05— = —L.
Z; i

Finally, the morphism o7 acts by pushforward and that does not increase the number of poles. [
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Proof of Theorem 1.1.6. By Proposition 1.7.3 we can assume that the base Z is a curve.
Let us suppose that Wy, /W)_1 has unipotent monodromies for every k. Since by Lemma 1.7.6 the
action of u, preserves the weight filtration

Wi ((ho)«wvy )z, (Pv)) }

on V, then for any k the sheaf
Wi((ho)swvy 2, (10g Py)) = Iz, (log Pyr) A F )

decomposes as sum of eigensheaves. In particular, since Oz(Myz) is an eigensheaf of rank one of
hawyz(Py), there exist [ such that Oz(Mz)|z, € W; and Oz(Mz)|z, € Wi—1. Thus there exists V
containing W,_; such that W, = Oz(Mz)|z, © V. By Proposition 1.7.5 thus Oz(Myz)|z, defines a
local subsystem of W;/W_;. By Corollary 1.3.14 we have O (Mz)[") ~ Oz with h = tkW,/W;_;.
Since if the monodromies are unipotent the canonical extension commutes with tensor product, we
have Oz(Mz)m(h) ~ Oz.

The general situation, when Wy /W_1 has non unipotent monodromies for some k, can be
reduced to the unipotent situation. We take a covering 7: Z’ — Z such that on Z’ we have unipotent
monodromies. Then m(h)Myz ~ 0 and since Mz = 7*My we have deg 7 - m(h)Mz ~ 0. O

Remark 1.7.7. It follows from the proof that it is possible to bound the torsion index of Oz(Myz)
in terms of the rank of W;/W,_;. This rank is for instance less or equal than h?(E\Pg,C) where
p: E — F is a smooth model of the covering of F' induced by |r(Kr + B|r)| and Pg are the places
of the pair (E, BF) obtained by p*(Kr + B|r) = Kg + BF. It would be useful to determine exactly
the [ such that Oz(Myz) is a subline bundle of W;/W,_; in order to have a bound that is easier to
compute.

1.8 Bounds on the denominators when the fiber is a rational curve

1.8.1 A useful result on blow-ups on surfaces

Let X be a smooth surface. Let §: X — X be a sequence of blow-ups, 6 = ¢, o ---0e1 and denote
by p; the point blown-up by ¢;. In what follows by abuse of notation we will denote by F; the
exceptional curve of €; as well as its birational transform in further blow-ups. In what follows we
will suppose that in Exc(d) there is just one (—1)-curve. Since the exceptional curve Ej, of e
is a (—1)-curve it is the only (—1)-curve of Exc(d). Suppose that the first point p; that is blown-up
belongs to a smooth curve F. We will denote by F the strict transform of F by ;0 --- o for each
i.

Lemma 1.8.1. Let f: (X, B) — Z be an lc-trivial fibration such that f: X — Z is a P'-bundle on
a smooth curve Z and suppose that B = (2/d)D where D is a reduced divisor such that D - F = d.
Suppose moreover that there is a point p € Z such that D is tangent to F' = f*p at a smooth point
q of D with contact of order | € [d/2,d). Then the log canonical threshold

v 1=, = sup{t € R| (X, B),tf*p) is lc over p}
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has the following expression
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1 2

y=1+4--2.

Proof. A log resolution for the pair (X, 2/dD +~,F) over p is a sequence of blow ups 6 = g0 -
such that 1 blows up ¢ and for any i € {2,...,

FNE;_i. A picture of the (I — 1)-th step is

E_ o Eq
D
F
Then

0*D =

2

(=

(d

and

I d
-0€q
[} the morphism ¢; is the blow up of the point

FEx=Kg+) jE;.

By Remark 1.2.13 ~ is computed by

Jj=1

1 2
v = min{l, min {1+7-7H
1 2
— inf1.1+--2
min{1, —|—l d}
we obtain
12
TEATI T

1.8.2 Local results

In this section we will always be in the situation where the fibers have dimension 1. In this case, if
B = 0 the condition that K is torsion implies the generic fiber is an elliptic curve. If B # 0 then
F has to be a rational curve and the second condition in the definition of the lc-trivial fibrations
implies that the horizontal part of B is effective.

Thanks to the following lemma, studying the denominators of My is the same thing as studying

the denominators of By.
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Lemma 1.8.2. Let Z be a smooth projective variety. Let f: (X,B) — Z be an lc-trivial fibration
whose general fiber is P1. Then for all I € N the divisor IrBy has integral coefficients if and only if
IrMyz has integral coefficients.

Proof. By cutting with sufficiently general hyperplane sections we can assume that dim Z = 1.
We write the canonical bundle formula for f: (X, B) — Z:

1 .
KX‘*'B‘F;((P):f (Kz + Bz + My).

Let v: X — X be a desingularization of X, let B be the divisor defined by
Ky +B=v"(Kx + B)

and f = fov. Then f: (X, B) — Z i8 le-trivial by Remark 1.2.10 and has the same discriminant
as f. Moreover it has the same moduli part, since

® 1 * 1 £k
KX+B+;(¢)=1/ (KX+B)+;(¢):f (Kz + Bz + My).

The surface X is smooth and X — Z has generic fiber P! hence there exists a birational morphism
defined over Z

X— =X

|7

Z

where f': X' — Z is a Pl-fibration. It follows that each fiber of f has an irreducible component
with coefficient one. Then the statement follows from the equality

T(KX + B) + (4,0)

Tf*(KZ + Bz + Mz).

Indeed the divisor
T‘(KX +B) + ((,0) —’I“f*KZ
is integral, then so is r f* (Bz + Mz). Let p € Z be a point, let G be a component of the fiber f*p
with coefficient 1. Then
coeffa(rf*(By + My)) = rcoeff ,(Bz + My) € Z.
It follows that rIcoeff,(Bz) is an integer if and only if rIcoeff,(Mz) is. O

Theorem 1.8.3. Let f: (X,B) — Z be an lc-trivial fibration such that X is a smooth projective
surface, Z is a smooth projective curve and f: X — Z is a P'-bundle. Let p € Z be a point and
be the log canonical threshold of f*p with respect to (X, B). Then there is a constant m < 2r? such
that m~y is an integer. Such an m is of the form lr where | < 2r.
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Proof. The pair (X, B+ ~F) is lc and not klt, that is, it has an lc center. There are now two cases.
The center has dimension one.

If the center has dimension one, then it is the whole fiber because all the fibers are irreducible. In
this case we have

1 = multp(B +vF) = multp(B) + v

and since rmulty(B) € Z also ry € Z.

The center has dimension zero.

Step 1 Take v: X’ — X a log resolution of (X, B+ vF). Notice that the fiber over p is a tree of P!
Since (X, B4+~F) is Ic and not klt, one of the components of v* f*p is a place for the pair (X, B++F),
that is, the coefficient of the divisor

V*(KX—FB-F’)/F)—KX

along it is one. Write v as a composition of blow-ups, set v = ey o---0e1 and let k be the minimum
of the indices such that the exceptional curve Ej of ¢ is a place for (X, B + vF). Let n be the
composition g o---o0e1: X7 — X. We have:

X/

AN
e

X

If the only n-exceptional (—1)-curve in X is Fj then we set X =X, and §:= 1. Otherwise, if there
is another (—1)-curve, by the Castelnuovo’s theorem we can contract it in a smooth way:

X/
X1
Xs

This process ends because in X’ there were finitely many v-exceptional curves. Then we obtain a
smooth surface X such that the only (—1)-curve in X is P. Set §: X — X. Modulo renumbering
the indices we can assume that § = e, 0---0¢7.
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Step 2 We have obtained X smooth with a diagram

where there is only one d-exceptional (—1)-curve that is a place for the pair (X, B 4+ ~vF'). Let p; be
the point blown up by ¢;. Let Bf be the strict transform of the component B; of B at the step j
and B’ be the strict transform of B. By abuse of notation we will denote by F the strict transform
of F' by every ¢; and by FE; the exceptional curve of ¢; as well as its strict transform in the further
blow-ups. Notice that Ej, is the unique place. In what follows we will adopt the following notation:

B = bB;
Here B and F' denote the strict transform of B and F. Since b; € 1/rZ for any i, we have
1 .
o € —Z forany i. (1.8.1)
r
Since FEj, is a place, we have
1 = multg, (0°(Kx + B++F) — K¢) = —ep + ap + yap.
Since ey, is an integer and «p € 1/rZ, if we prove that ap < 2r we are done. By the minimality
of § there exists a component B; of B such that the strict transform B{L of By meets Ej, that is,

B{‘ - Ep > 0. Then

2r

v

By -F=8B,-6"F =Bl 0"F =B} (F+)_ aE)

> ahé? - By > ay,.

We can finally prove the main local result.

Theorem 1.8.4. Let X and Z be smooth projective varieties. Let f: (X,B) — Z be an lc-trivial
fibration whose generic fiber is P'. Let By = Y. 3;P; be the discriminant. Then for every i there
exists l; < 2r such that rl;8; € Z.

Proof. The statement in dimension 2 follows from Theorem 1.8.3 and [2, Lemma 2.6]. Indeed if
X — Z is a fibration whose general fiber is a P! and X is smooth, then by the general theory of
smooth surfaces there exists a birational morphism o: X — X’ where X’ is a P-bundle. More
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precisely X’ is a relatively minimal model of X that is unique if the genus of Z is positive.

The general result follows from the one in dimension 2 by induction on the dimension of the base.
Suppose now that the statement is true in dimension n—1 and let X — Z be a fibration of dimension
n. The set

P C Z prime divisor such that the log canonical
threshold of f*P with respect to (X,B) is different from 1

is a finite set.
We fix then P € S. By the Bertini theorem, since Z is smooth, we can find a hyperplane section
H C Z such that

1. H is smooth;
2. H intersects P transversally;
3. H does not contain any intersection P N P’ where P’ € S\{P}.

Set
Xp=f""H); fu=flxu; Bu=Blx,; Pu=PnNH.

The restriction fr: (Xg,Bg) — H is again an lc-trivial fibration. By [30, Theorem 7.5] the pair
(Xm, Ba+tfj; Pr) is Ic if and only if the pair (X, B+Xg+tf*P) is lc and the pair (Xg, Bu+tf}; Pr)
is kIt if and only if the pair (X, B + Xy +tf*P) is plt. Hence the log canonical threshold of f}; Py
with respect to (Xg, Bp) is equal to the log canonical threshold of f*P with respect to (X, B) and
the theorem follows from the inductive hypothesis. O

Notice that even if in many cases m = r is sufficient for mMyz to have integral coefficients there
exist cases in which a greater coefficient is needed.

Example 1.8.5. Let X = P! x P! and let 7: X — P! be the first projection. Let t be a coordinate
on the first copy of P! and let [z : y] be homogeneous coordinates on the second copy of P!. Set

D = {tyd _ xlydfl _ {L'd — 0}

and let D be the Zariski closure of D in X. Let q be the point (0,[0: 1]) € D.
Consider the pair (X,2/dD). Then we have deg(Kx + 2/dD)|r = 0 and there exists a rational
function ¢ such that we can write

_ 1
Kx +2/dD + ;(@) = [*(Kp1 + Bp1 + Mp1)

where r = d if d is odd and r = d/2 if d is even. We want to compute now the coefficient of the
divisor Bpi at the point t = 0. Its coefficient is 1 — v where + is the log canonical threshold of
((X,2/dD), F). A log resolution for the pair (X,2/dD) over the point t = 0 is given by §: X — X
such that § = g;0...0¢e7 is a composition of [ blow-ups. Let E; be the exceptional curve of ;. Then
€1 blows up g and for any ¢ > 2 the morphism &; blows up the intersection of the strict transform of
F and FE;_;. At the (I — 1)-th step the picture is as follows
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Ey

F

We call §: X — X this composition of blow-ups. We have

l l l
0'Kx=Kg—)» iE; 0*D=D+)Y iE; §"F=F+) iE,
i=1 =1 =1
where by abuse of notation we denote by F; the exceptional divisor of the i-th blow-up as well as
its strict transforms after the following blow-ups. Thus

l
0*(Kx +2/dD +~F) = K¢ +2/dD +~vF + ) " i(=1+ v+ 2/d)E;.
i=1

By Lemma 1.8.1 we have
1 2

vy=1+ 1T
To prove that the bound stated in Theorem 1.8.3 is not far from being sharp, we take d even
such that d/2 is odd and | = d — 1. Then r = d/2 and
7:1_2l—al:1_2(2r—1)—2r:1_2(27”—1)—27”:1_ 2(7”—1).
ld 2r2 —r 2r2 —r (2r —1)r
Since 2(r—1) and (2r—1)r are coprime, the smallest integer m such that msy is integral is m = 2r2 —r.
Notice that for any r > 7 we have 2r2 — r > 12r, thus the example gives a counterexample to the
Prokhorov and Shokurov expectation.
For any algebraic curve C' we can obtain, by performing a base change, an example of lc-trivial
fibration whose base is C' and such that 12rM¢ is not an integral divisor.
Let C be an algebraic curve. There exists a finite morphism 7: C — P! and modulo composing 7
with an automorphism of P! we can assume that the support of the ramification divisor on P! is
disjoint from the support of Bpi. We have the following commutative diagram

CxpP' L o x
ok
C—L >P!

where f is the first projection. Let B = T*(2/dD).
Then we are done if we consider f: (C x P!, B) — C.

1.8.3 Global results

Lemma 1.8.6. Let f: X — Z be a P'-bundle on a smooth curve Z. Let D C X be a reduced divisor
such that flp: D — Z is a ramified covering of degree d with at least N ramification points p1,...,pN
that are smooth points for D. Suppose that d is even. Suppose moreover that the ramification indices
li,...,In at p1,...,pN satisfy the following properties:
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1. 2l; > d for any i;

2. l; and l; are coprime for any i # j;

3. l; and d are coprime for any i.
Then

(i) the fibration
f:(X,2/dD) — Z

s an le-trivial fibration, in particular there exists a rational function ¢ such that

2

1
“D+—(¢) = *(Kz + My + Ba).

Kx +

(ii) The Cartier indez of the fiber is r = d /2.

(iii) Let V be the smallest integer such that V My has integral coefficients.
Then V > rN+1,

Proof. The first part of the statement follows easily from the fact the degree of (Kx + 2/dD)|f is
0. The Cartier index of the fiber is

r = min{m|m(Kx + 2/dD)|F is a Cartier divisor}.
But since F' is a smooth rational curve this is
d
r = min{m|m(Kx + 2/dD)|r has integral coefficients} = 3

and the second part of the statement is proved. In order to prove the third part of the statement we
remark that since D is smooth at p; and f|p ramifies at p; the only possibility is that D is tangent
to I’ at p; with order of tangency exactly [;.

Then we can apply Lemma 1.8.1 and by Equation (1.8.1) an expression for + is

_141_2
TEATL T d

Since [; and d are coprime, [;d divides V for any 4. Again since /; and [; are coprime for any i # j
ly ..oy -d| V.
Since [; > d/2 = r for any ¢ we have

V>l .y -d>2rNtL
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Proof of Theorem 1.1.3 (1). Let N be a positive integer and f: X — Z be a P!-bundle on a smooth
rational curve. Let U C Z be an open set that trivializes the P'-bundle and such that we have a
local holomorphic coordinate ¢ on it. Take d,ly,...,ly € N be such that

lo:=0<ll<"'<lN<lN+1I=d

and such that they verify conditions (1)(2)(3) of Lemma 1.8.6. Let o1, ...,on be distinct points in
U. Let [u : v] be the coordinates on the fiber and x = w/v the local coordinate on the open set
{v # 0}. Let D be the Zariski closure in X of

N+1 N
Dy = {Z ((:clkl gl H(t - oi)> } .
k=1 i=k
The restriction of D to the fiber over o; is the zero locus of a polynomial of the form
hi(x) = 2lig(xz)

such that x does not divide ¢;. Notice that D is smooth at the points p; = (0,0;) because the
derivative with respect to ¢ of the polynomial that defines Dy is nonzero at those points. This
insures that D is tangent to the fiber f*o; with multiplicity exactly I; and then that

f‘D:D—)Z

has ramification index exactly [; at p;. The fibration f: (X,2/dD) — Z satisfies all the hypotheses of
Lemma 1.8.6. Therefore if V is the minimum positive integer such that V Mz has integral coefficients
we have V > rN+L O

Proof of Theorem 1.1.3 (2). Let Bz = ) 5;P; be the discriminant divisor. Let V' be the minimum
integer such that V Bz has integral coefficients. If we write 3; = u;/v; with u;,v; € N and coprime,
it is clear that V' = lem{v;}. By Theorem 1.8.4 v; divides l;r for some [; < 2r. Then

V = lem{v;} | lem{l;r}.

Moreover
lem{l;r} | rlem{i|l < 2r}

Thus V divides N(r) = rlem{l|l < 2r} and we are done. O
The bound of Theorem 1.1.3 is not far from being sharp thanks to the following example.
Example 1.8.7. Let r be an odd integer. For a prime integer ¢ set
s(q) = max{s | ¢° < 2r}.

Notice that

N(r)
=1 <o} = | | 5(q)
. em{l|l < 2r} q

Set
h(q) = max{h | r < 2"¢* < 27}
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and set
{h<...<Iy}= {Qh(q)qs(q)| q < 2r, q prime},
lo=0,Iy+1 =d=2r.
Let » = []¢*@ be the decomposition of r into prime factors and remark that s(q) > k(g) for any

prime integer ¢. Let X = P! x P! and let 7: X — P! be the first projection. Consider the divisor
D defined as the Zariski closure of

N+1 N
Do = {Z ((zlkl +.o+a - oi)> } .

k=1 i=k

Consider now B = 1/rD. The fibration f: (X, B) — P! is lc-trivial. Let V be the minimum integer
such that V Mz has integral coefficients.
Then for each i € {1,..., N} by Lemma 1.8.1 we have the following expression for ~;:

2[2' — d T — li
7 lid +

liT .
For every ¢ there exists i € {1,..., N} such that [; = 2MMa) ¢5(0) - Assume ¢ # 2. Since r is odd

ged {20 1} = ¢+,

then
I —r r /@) — 2Ma)gs(a)—k(a)
=l T T T @ k@),
We show now that r/qk(q) — 2M@)gs(@)—k(a) and 2h(q)qs(‘5’)*k(q)r are coprime. Notice that
2/a) g5()=k(a)). — oh(a) H ¢*@)
q'#q

is the decomposition into prime factors. Since r/ qk(Q) is not divisible by g,
74/qk( — 2Ma) g5(@)—h(a) £ 0(mod q).
Let ¢’ be a prime integer such that ¢’ # ¢ and ¢’ | r, then
r/q"@) — oM@) gs(@)=k(a) — _ghla) gs( 9 £ 0(mod ¢).
Then for any ¢ such that ¢ < 2r we have
Rl CU 7

which implies that
lem{q*@ =" Dy} |Vior all ¢ # 2.

If ¢ = 2, let I; be such that [; = 25, Then

yi=1— 2
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Since r is odd,  — 252 and 25@¢ are coprime. Thus
25(2) ‘ V.

Since
N(r)

r

we are done.

Let C be an algebraic curve. By performing a base change as in Example 1.8.5 we can ob-
tain an example of lc-trivial fibration with base C' such that the minimum integer that clears the
denominators of M¢ is N(r)/r.
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CHAPTER 2
On the Fujita-Zariski decomposition
on threefolds

2.1 Introduction

Let S be a smooth projective surface defined over C. Let D be an effective divisor on S. In 1962 O.
Zariski proved in [46] the existence of two divisors P, N such that

1. N => a;N; is effective, P is nef and D = P + N;
2. either N = 0 or the matrix (NN; - N;) is negative definite;
3. (P-N;) =0 for any i.

Such a decomposition is unique and is called the Zariski decomposition of D.
Fujita in [20] generalized the statement to pseudoeffective divisors. Moreover he noticed in [21] that
the divisor P is the unique divisor that satisfies the following property:

(«) for any birational model f: X’ — X and any nef divisor L on X’ such that f.L < D we have
f.L<P.

Due to the importance of the Zariski decomposition on surfaces, several generalizations to higher
dimensional varieties were studied. A very nice survey that collects the different definitions and
their main properties is [39]. The property («) gives rise to the following generalization.

Definition 2.1.1 (Definition 6.1, [39]). Let X be a smooth complex projective variety and D a
pseudoeffective divisor. A decomposition D = Py+ Ny is called a Zariski decomposition in the Fujita
sense (or simply Fujita-Zariski decomposition) if

1. Nf > 0,‘
2. Py is nef;

3. for any birational model p: X' — X and any nef divisor L on X' such that u.L < D we have
pxL < Py

It follows from the definition that, if a Fujita-Zariski decomposition exists, then it is unique (see
Remark 2.2.1).

The importance of the Fujita-Zariski decomposition is very well illustrated by the results by
Birkar [4] and Birkar-Hu [5] who proved the equivalence between the existence of log minimal model

41
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for pairs and the existence of the Fujita-Zariski decomposition for log canonical divisors. We refer
to [4, Theorem 1.5] and [5, Theorem 1.2] for the precise statements.

In [35] several partial results were proved on the Zariski decomposition in dimension 3 that corre-
lated the existence of the Fujita-Zariski decomposition over a curve ¥ (see [35, II1.4] for a complete
definition) to the stability of the conormal bundle of ¥. More precisely, let D be a pseudoeffective
divisor on X and ¥ a smooth curve such that D -¥ < 0. Let Iy be the ideal defining ¥ in X. If the
conormal bundle Iy /I2 is semistable, then, Nakayama proved (cf. [35, Lemma II1.4.5]) the existence
of a decomposition ¢*D = P + N such that N > 0 and the divisor P has positive intersection with
every curve of the exceptional divisor of

p: Blg X — X.
If I/ I % is unstable then, again by Nakayama (cf. Lemma 2.2.10), there exists a short exact sequence
0= L—Ig/IE > M—=0

such that deg £ > deg M. By [35, Lemma II1.4.6] if the conormal bundle is not “too unstable”,
namely if 2deg M > deg £, then there exists a birational model ¢: X’ — X such that ¢*D has a
Fujita-Zariski decomposition over Y. Therefore the study of the semistability properties of the conor-
mal bundle of a curve in a threefold plays an important role in the theory of Zariski decomposition.
With this respect a key intermediate technical step is the following.

Theorem 2.1.2. Let X be a smooth complex projective variety of dimension 3. Let ¥ C X be a
smooth curve and assume that the conormal bundle

Is/13

is mot semistable as a vector bundle of rank two on X. Then there exists a sequence of blow-ups
p: X = X along smooth curves not contained in X such that, if ¥ is the strict transform of 3 in
X, then Ig/]% is semistable.

Actually, we will prove a statement that is much more precise than Theorem 2.1.2, namely
Theorem 2.3.3, which also gives a control over the degree of the conormal bundle. Such a control
over the degree of the conormal bundle could be useful for instance in order to apply results as [35,
Lemma IT1.4.5] where the coefficients of a certain Zariski decomposition over ¥ is computed in terms
of deg I/ IZ.

We will then show that Theorem 2.3.3 leads to the existence of a birational model p: X — X and
a decomposition ¢*D = P + N such that NV > 0 and such that P has some positivity properties on
the exceptional locus of .

This chapter is organized as follows: Section 2.2 collects some preliminary definitions and results
about the Fujita-Zariski decomposition, the o-decomposition and the semistability of vector bundles
on curves. Section 2.3 is devoted to the proof of Theorem 2.3.3, with which we make the conormal
bundle of a curve semistable and of degree arbitrarly big.

2.2 Preliminaries

In this section we collect some definitions and basic facts about the Fujita-Zariski decomposition
and the o-decomposition. Moreover we state various results on curves that will be used later.



2.2. PRELIMINARIES 43

2.2.1 Fujita-Zariski decomposition and o-decomposition

Remark 2.2.1. It follows from the definition that, if a Fujita-Zariski decomposition exists, then it
is unique. Indeed, if D = P]/c + N ]’c is another Fujita-Zariski decomposition, then, from the property
(3) of the definition applied to the two decompositions D = PJ/(' + N JQ and D = Py + Ny, we obtain
Pf < P]/c and P]/c < Pf.

In [35] we have the following definitions. Let us denote by |B|,um the set of effective R-divisors
A numerically equivalent to B.

Definition 2.2.2 (Definition I11.1.1, [35]). Let D be a pseudoeffective divisor of a smooth projective
variety. Let T' be a prime divisor and A an ample divisor. We define

or(D)=lim inf{multrA | A € |D + cA|yum}-
e—0
e>0

The limit does not depend on the choice of the ample divisor A by [35, Lemma II1.1.5] and thus
it depends only on the numerical equivalence class of D. Moreover, by [35, Corollary I11.1.11] there
is only a finite number of prime divisors I' satisfying op(D) > 0. Thus the expression

> or(D)T
T

defines a divisor.

Definition 2.2.3 (Definition I11.1.12, [35]). Let D be a pseudoeffective divisor of a smooth projective
variety. We define
Ny(D) =) op(D)I' and P,(D)=D — N,(D).

The decomposition D = Py(D) 4+ N,(D) is called the o-decomposition of D.

Definition 2.2.4 (Definition I11.1.16, [35]). The o-decomposition D = Py(D)+ N (D) for a pseudo-
effective R-divisor is called the Zariski decomposition in Nakayama’s sense (or simply the Nakayama-
Zariski decomposition) if P,(D) is nef.

Remark 2.2.5. By [35, Proposition III.1.14, Remark I11.1.17(2)], if the Nakayama-Zariski decom-
position exists then it is the Fujita-Zariski decomposition. The converse is not known.

Definition 2.2.6. Let D be a pseudoeffective divisor. The diminished base locus of D is defined as
follows

B (D)= [ B(D+A) where B(D+ A)=(){Supp(D + A)|A >0,A ~g D+ A}.
A ample

Remark 2.2.7. If D is a pseudoeffective divisor that has birationally a Nakayama-Zariski decom-
position then its diminished base locus is closed. Indeed let f: Y — X be a birational model such
that f*D = P,(f*D) + N,(f*D) is a Nakayama-Zariski decomposition. Then

B_(f*D) = |JB(No(f*D) + P»(f*D) + A)
A
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and, since P,(f*D) + A is ample,
B(No(f*D) + Po(f*D) + A) € SuppNy(f*D)

for any A, showing that B_(f*D) C SuppN,(f*D). The other containment follows from the defini-
tions of o-decomposition and diminished base locus. Then B_(f*D) = SuppN,(f*D) is closed and
so is B_(D) because by [33, Proposition 2.5

f(B_(f'D)) = B_(D).

Remark 2.2.8. If D admits birationally a Nakayama-Zariski decomposition, then the diminished
base locus of P,(D) is the union of a finite number of subvarieties of codimension at least two.
Indeed it follows easily from the definitions and from [13, Proposition 1.19] that the diminished base
locus of the positive part B_(P,(D)) does not have any component of codimension one. Moreover,
if there exists a birational model x: X — X such that p*P, (D) has a Fujita-Zariski decomposition
on X

H*PU(D):‘P—’_Na

then the decomposition
W'D =P+ N+ pu"NyD)

gives a Fujita-Zariski decomposition for p*D on X.

2.2.2 Useful results on curves

Definition 2.2.9. A vector bundle £ on a smooth projective curve is said to be semistable if for any
vector bundle 0 # F C & the following inequality is true

deg detF < deg det&
rankF — rankf

Lemma 2.2.10 (Lemma 1.1, [36]). Let £ be a vector bundle of rank two on a smooth compact curve

C.

1. If € is a semistable vector bundle then there exist no curves I' on the ruled surface Po(E) with
2 <o.

2. If £ is unstable, then there exists a unique (up to isomorphisms) exact sequence

O0=+L—=>E—-M=0 (2.2.1)

which satisfies the following two conditions:

e L and M are invertible sheaves on C,
e deg L > deg M.

Remark 2.2.11. The sequence 2.2.1 is the Harder-Narashiman filtration and £ is the maximal
destabilizing subsheaf.
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Definition 2.2.12. The sequence (2.2.1) is called the characteristic exact sequence of £. We set
5(€) = deg L—deg M. If€ = Ic /1% is the conormal bundle of a smooth curve in a smooth threefold,
then we adopt the notation 6(C) = §(1c/13).

The following lemma is probably well known to experts. Since we could not find a reference in
the literature, we put a proof here for the reader’s convenience.

Lemma 2.2.13. Let X be a smooth variety of dimension 3.

1. Let C C X be a curve. Then there exists a birational morphism n: W — X, composition of
blow-ups along smooth curves, such that

n'c=Ccul G

where C is the strict transform of C and it is smooth and G; is a smooth curve for any i.

2. Let Cj, for j = 1,...,1, be smooth curves in X. Then there exists a birational morphism
n: W — X, composition of blow-ups along smooth curves, such that

U_l(clU...UCl):UGi

where G; is a smooth curve for any i and for any j1 # ja the curves Gj N Gj, intersect
transversally in at most one point.

Proof. (1) If C' is smooth there is nothing to prove. Then assume that C' is singular. Let p € C' be
a singular point. In a local analytic neighborhood U of p we can write C as a union of irreducible
components

C=C1U...UCk.

We first reduce to the case where C; is smooth at p for every i. Let C’ be one of the C;. Modulo
shrinking U, we can assume that it is isomorphic to an open neighborhood of the origin in C* and
by [23, Theorem 2.26] we can find a map

v:C — ('
0 — p

that is injective and such that the derivative of -y is nonzero for any ¢ # 0. If we write the expansion
of each component of v as a Laurent series we have

y(t) = (tl, > ait™, bit”i) :

We can assume that the first component is monomial by composing with a suitable biholomorphism
of the source C. We can also assume that

1 <mi <nq.

The injectivity of + implies that [, the m; and the n; are coprime. The order of + at zero is the
minimum of the orders of the three components. We prove by induction on the order that we can
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desingularize C’ with blow-ups of smooth curves.

If [ =1 then C’ is smooth.

Assume that [ > 1. Since [, the m; and the n; are coprime, there exists an exponent m; or n; that
is not divisible by I. Without loss of generality we can assume that the smaller of such exponents is
one of the m;. Then there exists a biholomorphism of the target C of the form

\Ij(x’yv Z) = (:L'ay —Pl(fﬁ), Z)

with the following properties: p; is a polynomial and

ony(t) = (tl, > ait™)> bit”i> = (', t™u(t), " o(t))
where [ does not divide m/ and u and v are invertible functions. Let
XX
be the blowing up of a smooth curve I' such that I" has the same tangent direction at p as {z =y =
0} C U. Then a parametrization for the strict transform of C’ is

A(t) = (™ u(t), 1o (t)).
Let
my=1-q+r

be the result of the euclidean division of m} by I. If we blow-up ¢ times a curve of local equation

a parametrization for the strict transform of C’ is

(t) = (1 tTu(t), (" o(t)).

The order of 4 at the singular point is thus < I. Then we apply the inductive hypothesis and we
conclude.

We separate the irreducible components. Now we can assume that C; is smooth in p for every ¢. Let
C1 and (s be two irreducible components and let 7; be the tangent of C; at p.

If 71 and 79 are not colinear then we blow-up along a curve I' whose tangent does not lie in the plane
generated by 71 and . If C’Z is the strict transform of C; then

01002:0

If C1 and C5 have the same tangent direction then we can find two parametrizations of the following
form:

:C — 4
t — (t0,0)
of C'1 and
’)/Q:C — Cl

t o (twr (), Mwa(t), trws(t))
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of Cy where w; is an invertible function and 1 < m < n. Since C5 has the same tangent direction
as C'1, we have m > 1. We prove by induction on m that we can separate C; and Cy. We blow-up
along a curve whose tangent direction at p is the same as the tangent direction of is

{z=y=0tCU

and we obtain )
X — X.

Parametrizations for the strict transforms C’l and C’g are

’~}/1:(C — Cl
t — (¢0,0)

for C’l and
72:(C — Cl
t o (twi (), 1™ twh(t), thws(t))

for Cy where wh = wo /wi. Then we conclude by inductive hypothesis. We notice that the preimage
of the singular point p in X is a curve of local equation {z = z = 0}. Thus it meets C; and C
transversally.

(2) The proof of this second item follows the same line as the proof of the first. The statement is
proved by blowing-up generic smooth curves through C;, N Cj,. Ul

2.3 Making the conormal bundle semistable

Lemma 2.3.1. Let X be a smooth complex projective variety of dimension 3. Let > C X be an
irreducible smooth curve. Let

0 A= Ig/Id - B—0

be a short exact sequence where A and B are line bundles. Let T' be a smooth curve that meets 3
transversally in one point p and such that the composition

.Ap — (Ig/[%)p — QXJ) — Qp’p

is nonzero. Let p: X1 — X be the blow-up of I' and let 321 be the strict transform of 3. Then the
conormal bundle of X1 has a presentation

0> A—Is, /I3, - B—0 (2.3.1)
where A = ¢* A, deg I, J1E = degIE/I%1 +1 and deg B = deg B + 1.
Proof. We have the following short exact sequence of sheaves on X3

P

0 — " Qx Qx, Qx,/x —=0.
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The morphism of sheaves ® is an isomorphism over X\I.
Since ¥ C X is a smooth curve, we have the following exact sequence
0— Ig/I3 — Qx @ Ox — Qs — 0. (2.3.2)
Analogously for 31 C X7, the strict transform of X, we have
0— In, /I3, = Qx, ® Ox, — Qx, — 0. (2.3.3)

The restriction of the blow-up ¢: 31 — 3 is an isomorphism. Then, sequence (2.3.2) pulls back to
an exact sequence of vector bundles on ¥

0= *Is /I3 — o*Qx ® Os, — ©*Qx — 0. (2.3.4)

We claim that
(p*(Ix/13)) C In, /13, .

Indeed we have the following commutative diagram with exact columns
0 0

o (Is/13) Is, /13,

0 —¢*Qx ® Ox, —=Qx, ® O, —Qx,/x ®0n;, —=0

@ B
0 Qs = O,
0 0.

Since the diagram commutes, we have ®(kera)) C kerf, and the claim is proved.
Moreover the sheaf Qx, /x ® Oy, is the skyscreaper sheaf supported on p,

Qx,/x ®O0x, 2Cp.
Thus we have
0— " (In/I3) = Iy, /I3, = C, — 0. (2.3.5)
By sequence (2.3.5) we have
deg Iy, /I3, = deg Is /I3 + 1. (2.3.6)
The morphism & has the property that

|+ 4 is injective. (2.3.7)
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Indeed @ is an isomorphism over Z\{p} and, if we consider the stalk over p, on ¢*A, it is nonzero
by hypothesis. The sheaf defined by A := ®(¢*A) is a sub vector bundle of rank one of Iy, /I%l.

Set B for the quotient, so that we have
0 A— I, /I3 — B —0.
The condition on the degree of B follows from the choice of A and from (2.3.6). O

Lemma 2.3.2. Let X be a smooth complex projective variety of dimension 8. Let ¥ C X be an
irreducible smooth curve. Assume that the conormal bundle of ¥ is unstable and that 6(3) = 1,
where §(X) is defined in Definition 2.2.12. Let

0= L—=Ig/IE > M—=0 (2.3.8)

be the characteristic exact sequence. Let p: X1 — X be the blow-up of a smooth curve I' as in
Lemma 2.3.1 for the sequence (2.3.8). Let 31 be the strict transform of ¥ in X1. Then the conormal
bundle of %1 is semistable.

Proof. Let ) )
0L —In,/IE, - M—0

be the sequence given by Lemma 2.3.1. Then deg L= deg M. Assume that that 121/1'%1 is unstable,
so by Lemma 2.2.10(2) we have the characteristic sequence

0L — I, /IE, > M —0 (2.3.9)

and, by definition of characteristic sequence, deg L > deg M’. Consider now the morphism of sheaves
x: L — M’ given by the composition of the injective arrow of (2.3.1) and the surjective arrow of
(2.3.9). If y is identically zero, then £ = [/, which is a contradiction because then also M = M/,
but deg £ = deg M and deg L > deg M’. Then Y is nonzero, which implies the inequalities

deg £' > deg M' > deg L = deg M.
But this leads again to a contradiction because
deg L' + deg M = deg(detlgl/fgl) = deg £ + deg M.

Therefore, if 6(X) = 1, the conormal bundle I, / I%l is semistable.
O

Theorem 2.3.3. Let X be a smooth complex projective variety of dimension 3. Let ¥ C X be an
irreducible smooth curve and N an integer. Then there exists a birational model ¢: X X given
by a sequence of blow-ups along smooth curves not contained in ¥ with the following properties. Let
3 be the strict transform of ¥ in X.

1. The degree of Iﬁ/—’% is at least N.

2. The vector bundle IS/I% s semistable.
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3. o 'Y =X Ul FFUUl, FP s a chain of curves and \J}_, Ff and U, F? are chains of
smooth rational curves. These two chains both intersect ¥ in one point.

Proof. (1) Write the conormal bundle as extension of two vector bundles of rank one.
0> A—Ig/I2 - B—0.

Let I'1 be a smooth curve as in Lemma 2.3.1. Let ¢1: X7 — X be the blow up of I'y. If X7 is the
strict transform of ¥, then deg 121/1%1 = Iy/I% + 1. Let E; be the exceptional divisor of 1. It
is easy to verify that a section I'y of ;1 — I'y meeting 3 verifies the hypothesis of Lemma 2.3.1.
Then we blow-up I'y. We continue this process until we reach degree N.

(2) Assume that we already have the condition on the degree of the conormal bundle of 3. If Iy, /I3
is unstable, consider its characteristic sequence

0= L —Ig/I2 - M—0. (2.3.10)

We apply Lemma 2.3.1 to sequence (2.3.10): we blow-up a curve I'; and we obtain ¢;: X7 — X.
Let Eq be the exceptional divisor of 1. Then, as in item (1), we blow-up a section I'y of E; — T’y
meeting 3 and we repeat this process n = §(X) times. We obtain X — X. Let ¥ be the strict
transform of ¥ in X. We prove that the conormal bundle of 3 is semistable by induction on n. Let
us first suppose that §(3) = 1. Then it follows from Lemma 2.3.2. Assume that 6(X) > 1. It is
sufficient to prove that 6(2;) = §(X) — 1. By Lemma 2.2.10(2), the sequence

0= @iL = I, [IE, - M —0

given by Lemma 2.3.1 is the characteristic exact sequence of ;. Since, again by Lemma 2.3.1,
deg M = deg M + 1, we have that §(X;) = §(X) — 1. We remark that at each step the degree of the
conormal sheaf grows by one:

deg Iy, /I3, = deg Iv/IZ + 1

so item (1) is preserved.

(3) Let Fid be the intersection of the preimage of 3 with the i-th exceptional divisor of the blow-ups
made in order to reach degree N. Let F be the intersection of the preimage of ¥ with the i-th
exceptional divisor of the blow-ups made in order to reach semistability (see Figure 2.1). Then both
Fid and F; are rational curves because they are contained in fibers of the respective blow-ups. It
follows from the construction that the F* and the F¢ form two chains of rational curves.

O

Remark 2.3.4. Theorem 2.1.2 is exactly Theorem 2.3.3(2).

Remark 2.3.5. Notice that we cannot perform the blow-ups needed to achieve Theorem 2.3.3(2)
before those needed to achieve item (1). Indeed, after item (1) the conormal bundle could not be
semistable anymore, even if it had this property before starting the process. On the other hand, the
“semistabilization” naturally increases the degree of the conormal bundle.

If we do not assume that 3 is smooth we have the following.
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Corollary 2.3.6. Let X be a smooth complex projective variety of dimension 3. Let ¥ C X be
an irreducible curve and N an integer. Then there exists a birational model p: XX given by a
sequence of blow-ups along smooth curves not contained in X with the following properties. Let S be
the strict transform of ¥ in X.

1. ple =3U Ui, Fi where S is smooth and Fj is a smooth rational curve for any i.

2. The degree of IE/-@ is at least N.

3. The vector bundle IE/I% s semistable.

Proof. By Lemma 2.2.13 there exists a birational morphism n: W — X such that
77712 =XU U G;

where ¥ is the strict transform of & and is smooth and G; is a smooth rational curve for any i. By
Theorem 2.3.3 there exists p: X — W that satisfies properties (2) and (3). Moreover

n m
p ity = f]UUG,-U UFfU UFZ»d
=1 =1

is the union of the strict transform of ¥ and some smooth rational curves. O

Since in our process of making the conormal bundle semistable we are creating new curves, it
should be useful to control also their conormal bundles. This is done by the following two results.

Lemma 2.3.7. Let X be a smooth variety of dimension three, let F C X be a smooth rational curve.
Let

Ip/I% = O(a) ® O(b)

be the conormal bundle of F' in X and suppose that a > b. Let p: X1 — X be a blow-up given by
Lemma 2.3.1 for the sequence

0— O(a) = Ip/I% — O(b) — 0.
Let Iy be the strict transform of F in X1. Then
Ip /I3 = O(a) ® O(b+1).
Proof. Since F} is a rational curve, we have
I [T}, = O(d) & O(V)

for some integers a/,b'. By Lemma 2.3.1 a’ +b' = a+ b+ 1. By the proof of Theorem 2.3.3, we know
that @’ — b = a — b — 1, leaving as the only possibility a’ = a and ¥/ = b+ 1. O



2.3. MAKING THE CONORMAL BUNDLE SEMISTABLE 53

Proposition 2.3.8. Notation as in Theorem 2.53.3. The conormal bundle of F?, and respectively of
the Fid, s 1somorphic to
Od0O(1) i=n
2
Lee [r; = { 0&02) i<n,
and W
O 0(1) i=m
2
Trg/Tpa = { 00 0@2) i<m.

Proof. We prove the statement for the curves F’, the proof for the Fl-d being completely analogous.
Let

[72) Pn—1 P2 P1
Xy — Xy 1 s L. X3 X

be the sequence of blow-ups performed in order to achieve semistability. By abuse of notation we
denote by F;’ the curve in X; as well as its strict transform in X; for any j > ¢ and in X. Ifi= n,
then F}; is the fiber of a blow-up and the statement a well-known fact. If 7 < n, then F? C X;
has conormal bundle O @ O(1). By Lemma 2.3.7, its strict transform in X, has conormal bundle
O @ O(2). Then the statement follows because ¢; is an isomorphism on F} for any j >i+1. O

The diminished base locus depends only on the numerical equivalence class of D by [13, Propo-
sition 1.19]. Arguing as in Nakayama [35, Lemma II1.4.5] we prove the following.

Corollary 2.3.9. Let X be a smooth projective threefold. Let D be a pseudoeffective divisor such
that B_(D) does not have any component of dimension two. Let ¥ be a smooth curve such that
D -¥ < 0. Then for any point p € 3 there exists a birational morphism p: X — X such that

1. p(Exe(p) =
2. for any curve C C Exc(u) we have Py(u*D) - C > unless u(C) = p.

Proof. Let : X — X be a birational morphism, that exists by Theorem 3.3, such that I/ I% is

semistable, where 3 is the strict transform of ¥ in X. We have
B_(¢*D) NExc(p) = 2 U U F;.

We can chose ¢ in Theorem 3.3 such that p(Exc(p)) NS = {p}. Let e: X — X be the blow-up of
3 and let E be the exceptional divisor of €. Set y = £ o . The intersection of the diminished base
locus with Exc(u) is

B_(u*D)NExc(u) =EU Uﬁf,

where F* is the strict transform of F in X. By [35, Proposition II1.1.14] the restriction P,(u*D)|g
is pseudoeffective. Since by [34, Theorem 3.1] any pseudoeffective divisor on FE is nef, for any curve
C C E we have P;(u*D) - C > 0. Thus for any curve C' C Exc(u), we have P,(u*D) - C > 0 unless
C is one of the F? and, if C' = F? for some 4, then p(C) = p. O

Corollary 2.3.10. Let X be a smooth projective threefold. Let D be a pseudoeffective divisor such
that B_(D) does not have any component of dimension two. Let 3 be a curve such that D -3 < 0.
Then for any point p € X\Sing(X) there exists a birational morphism p: X — X such that
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1. p(Exc(p)) =X
2. for any curve C C Exc(u) we have Py(u*D) - C > unless u(C) C {p} U Sing(X).

Proof. By Lemma 2.2.13 there exists a birational morphism 7: W — X such that

n_lzinUGi
%

such that ¥ is smooth and G; is a rational curve for any i. By Corollary 2.3.9 there exists a
birational morphism p: X — W such that u(Exc(y)) = ¥ and for any curve C' C Exc(u) we have
P,(u*n*D)-C > 0 unless if 4(C) = p. Thus, if C C p~'n~1'% is a curve, we have P, (u*n*D)-C >0
unless if (u(C)) = p or C is the strict transform in X of one of the G;. If C'is the strict transform
in X of one of the Gy, then n(u(C)) C Sing(X%). O
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La formule du fibré canonique et la décomposition de Fujita-Zariski sont deux outils trés
importants en géométrie birationnelle. La formule du fibré canonique pour une fibration
f:(X,B) — Z consiste a écrire Kx + B comme le tiré en arriere de K, + Bz + Mz ou
Ky est le diviseur canonique, Bz contient des informations sur les fibres singuliéres
et M, est appelé partie modulaire. Il a été conjecturé gu’il existe une modification
birationnelle 7z’ de Z telle que My est semiample sur Z/, ou My est la partie mo-
dulaire induite par le changement de base. Un diviseur pseudoeffectif D admet une
décomposition de Fujita-Zariski s’il existent un diviseur nef P et un diviseur effectif N tels
que D = P+ N et P est "le plus grand diviseur nef" avec la propriété que D — P est effectif.

INSTITUT DE RECHERCHE MATHEMATIQUE AVANCEE
UMR 7501

Université de Strasbourg et CNRS

7 Rue René Descartes

67 084 STRASBOURG CEDEX

Tél. 03 68 8501 29
Fax 036885 03 28

@
4
=
=
S
E
b
<)
P
s
2
a
<
o
&
-

www-irma.u-strasbg.fr
~ irma@math.unistra.fr

UNIVERSITE DE-STRASBOURG

—d

|IAMA

Institut de Recherche
Mathématique Avancée

IRMA 2013/005
ISSN 0755-3390 http ://tel.archives-ouvertes.fr/tel-00861470




