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Introduction

Ce travail de thèse se divise en deux parties. Le premier chapitre est consacré à la partie modulaire
dans la formule du fibré canonique. Les résultats originaux qui y sont inclus proviennent de [11] et
[12]. Plus précisément, les Sections 1.2 et 1.4 contiennent définitions et résultats généraux sur la
formule du fibré canonique. Les Sections 1.3, 1.5, 1.6 et 1.7 cöıncident avec les Sections 4,3,5 et 6
de [12]. Subsection 1.8.1, 1.8.2 et 1.8.3 sont exactement Subsection 2.2 et Sections 3 et 4 de [11]. Le
deuxième chapitre concerne la décomposition de Zariski sur les variétés lisses de dimension 3.

La formule du fibré canonique
La formule du fibré canonique est un outil important en géométrie algébrique complexe. Elle a été
developpée et améliorée suivant les utilisations qui en ont été faites. Dans son article On compact

analytic surfaces: II [28] de 1963, K. Kodaira s’intéresse à la classification des surfaces algébriques
: il y étudie certaines surfaces algébriques S dotées d’une fibration f : S → C dont la base C est
une courbe lisse et dont la fibre générique est une courbe elliptique. Le fibré canonique d’une telle
surface est donc trivial sur les fibres de f . De plus, l’application f a un nombre fini de fibres
singulières. Kodaira classifie les fibres singulières et démontre, avec Ueno [43], que, si f n’a pas de
fibres multiples, alors

12KS/C ∼ f∗(R+ j∗O(1)),

où R est un diviseur sur C ayant comme support le lieu singulier de f et dont les coefficients ont une
interprétation en termes de la classification des fibres singulières. L’application j est l’application
induite par f sur l’espace de modules des courbes elliptiques. Dans son article Zariski decomposition
and canonical rings of elliptic threefolds [21] Fujita généralise la formule au cas où f peut avoir
des fibres multiples. Kodaira était intéressé par l’étude des surfaces, tandis que Ueno et Fujita
consacrent leur attention à des variétés de dimension trois dotées d’une fibration f : X → Z dont les
fibres sont des courbes elliptiques. La méthode pour étudier de telles variétés est la même : exprimer
le fibré canonique comme tiré en arrière d’une somme de diviseurs sur la base ayant des propriétés
spécifiques.

La classification birationnelle des variétés est un des problèmes dont la solution est le but ultime
de la géometrie algébrique complexe. Fujita et Ueno suivaient la voie indiquée par Iitaka et qui
fait toujours partie de la stratégie pour résoudre le problème. L’idée de Iitaka était de regarder
les systèmes pluricanoniques |mKX | et l’ordre de croissance de leur dimension quand m tend vers
l’infini. Cet ordre de croissance est appelé dimension de Kodaira et a été introduit par Iitaka dans
[22]. La dimension de Kodaira d’une variété X peut prendre les valeurs {−∞, 0, . . . , dimX}. Iitaka
démontre que, si la dimension de Kodaira de X est positive, alors il existe un modèle birationnel X∗

de X qui admet une fibration f : X∗ → Z telle que la dimension de Z est la dimension de Kodaira
de X et la fibre générale de f a dimension de Kodaira zéro (cf. [32, Definition 2.1.36]).

Donc l’étude des variétés algébriques peut être divisée en

vii



viii INTRODUCTION

1. une étude des variétés X de dimension de Kodaira −∞, 0 ou dimX ;

2. une étude des variétés qui sont dotées d’une fibration dont la fibre générale a dimension de
Kodaira zéro.

Les techniques qu’on utilise en géométrie birationnelle et le besoin de considérer aussi des variétés
singulières ou quasi-projectives ont déterminé le passage de variétés à paires (X,B), qui sont la
donnée d’une variété normale X et d’un R-diviseur B tels que KX +B est un diviseur R-Cartier. La
première distinction parmi les paires est faite par l’ordre de croissance des sections de ⌊m(KX +B)⌋,
la log-dimension de Kodaira. On dispose aussi de notions de régularité pour les paires, comme lc et
klt, pour la définition desquelles on renvoie à la Definition 1.2.4.
Si on a une fibration f : X → Z comme dans le point 2. à fibre générale de dimension de Kodaira 0,
alors il existent un diviseur Q-Cartier D sur Z, un diviseur Q-Cartier E sur X et un nombre entier
r > 0 tels que

rKX = f∗D + E

(cf. [18]). Si on pose B = −E/r, alors

f : (X,B) → Z

est un fibration lc-triviale, c’est-à-dire la donnée d’une paire lc (X,B) et d’une fibration f telles que

KX +B ∼Q f∗D

et qui satisfait certaines hypothèses techniques (cf. Definition 1.2.8). L’outil principal pour étudier
les fibrations lc-triviales est la formule du fibré canonique.

La formule du fibré canonique a atteint sa formulation actuelle avec Kawamata qui l’utilise pour
traiter le problème de sous-adjonction. Il est bien connu que, si Y ⊆ X est une hypersurface lisse,
alors

KY ∼ (KX + Y )|Y

et cette formule est appelée formule d’adjonction. Le problème de sous-adjonction consiste à trou-
ver une formule similaire pour Y singulier ou de codimension plus grande que 1. La formule de
sous-adjonction est un ingrédient fondamental dans les preuves par récurrence sur la dimension.
Kawamata démontre dans [27] qu’une telle formule existe quitte à rajouter à KX + B un diviseur
ample arbitrairement petit. Un outil fondamental pour ce résultat est une formule du fibré canonique
écrite d’une façon significative du point de vue des singularités de la paire (X,B) et de la fibration
f . Kawamata observe que, étant donné

f : (X,B) → Z

telle que (KX + B)|F ∼Q 0, où F est la fibre générale de f , on peut écrire KX + B comme tiré en
arrière

KX +B ∼Q f∗(KZ +BZ +MZ).

Le diviseur BZ est appelé discriminant et il est défini par BZ =
∑

(1− γP )P où P varie parmi les
diviseurs premiers de Z et

γP = sup{t ∈ R| (X,B + tf∗(P )) est lc sur P}.
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Pour une définition précise de lc sur une sous-variété de Z on renvoie à la Definition 1.2.5. Le
seuil log canonique γP est une mesure de la singularité de la paire (f−1P,B|f−1P ). Il vaut 1 si la
paire est lc, il est plus petit si elle est plus singulière. Donc SuppBZ peut être interprété comme
le lieu singulier de f vue comme une application d’une paire vers une variété. Dans la formule de
Kodaira, le diviseur BZ cöıncide avec R. Le diviseur MZ , appelé partie modulaire, est Q-Cartier et
nef sur un modèle birationnel de Z par [27, Theorem 2]. Il contient des informations sur la variation
birationnelle des fibres. D’autres résultats importants dans la théorie et ses applications ont été
démontrés autour des années 2000 avec les travaux de F. Ambro et avec l’article [18] de O. Fujino
et S. Mori. Le premier auteur traite le problème de la sous-adjontion et démontre [1, Proposition
3.4] que les singularités de la paire (Z,BZ) sont les mêmes que celles de (X,B). Si (X,B) est klt
(cf. Definition 1.2.4), il prouve [3, Theorem 0.2] qu’il y a un diviseur ∆Z sur Z tel que (Z,∆Z) est
klt et KX +B ∼Q f∗(KZ +∆Z). Dans [18] les auteurs démontrent le résultat suivant.

Théorème 0.0.1 (Theorem 5.2 [18]). Soit (X,∆) une paire klt avec κ(X,∆) = l ≥ 0. Alors il existe
une paire klt (C ′,∆′) de dimension l et avec κ(C ′,∆′) = l, deux e′, e ∈ Z>0 et un isomorphisme
d’anneaux gradués

R(X,KX +∆)(e) ∼= R(C ′,KC′ +∆
′)(e

′)

où
R(X,KX +∆)(e) =

⊕

m∈Z

H0(X, ⌊meKX +∆⌋).

De nos jours, le problème qui guide la recherche sur la formule du fibré canonique est la conjecture
suivante.

EbS(k) 0.0.1 (Effective b-Semiampleness, Semiamplitude birationnelle effective, Conjecture 7.13.3,
[38]). Il existe un nombre entier m = m(d, r) tel que pour toute fibration lc-triviale f : (X,B) → Z
avec d la dimension de la fibre générale, k la dimension de Z et r l’indice de Cartier de la fibre
générale (F,B|F ) il existe un morphisme birationnel ν : Z ′ → Z tel que mMZ′ est sans point base.

Un diviseur de Cartier D sur une variété Z est birationnellement semiample ou b-semiample, s’il
existe un morphisme birationnel µ : Z ′ → Z et un diviseur semiample D′ sur Z ′ tel que µ∗D

′ = D.
On a des réponses partielles à la conjecture EbS, notamment s’il existe un espace de modules pour
les fibres de f (cf. [38, Theorem 8.1], [15] et [16]). Mais même la version faible, où l’on conjecture
juste la “b-semiamplitude” sans aucune condition sur l’entier qui rend la partie modulaire sans
point base, n’a de solution que lorsque MZ est numériquement triviale ([3, Theorem 3.5] et [12,
Theorem 1.3]). La difficulté de la conjecture EbS est bien illustrée par un résultat de X. Jiang, qui
a démontré en [24] que la conjecture EbS implique un énoncé d’uniformité de la fibration de Iitaka
pour toute variété avec dimension de Kodaira positive sous l’hypothèse que les fibres ont un bon
modèle minimal.

Dans ce travail de thèse on démontre plusieurs résultats relatifs à la conjecture EbS. Le premier
concerne le cas où les fibres sont de dimension d = 1 et donne une description des dénominateurs de
MZ .

Théorème 0.0.2 (Theorem 1.6, [11]). 1. Il ne peut pas exister une borne polynomiale en r sur
les dénominateurs de MZ . Précisément, pour tout N , il existe une fibration lc-triviale

f : (X,B) → Z
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telle que dimZ = 1 et pour laquelle V ≥ rN+1 pour tout V tel que VMZ à coefficients entiers.

2. Soit f : (X,B) → Z une fibration lc-triviale dont la fibre générale est une courbe rationnelle.
Alors il existe un entier N(r) qui ne dépend que de r, tel que N(r)MZ à coefficients entiers.
Plus précisément N(r) = r ppcm{l | l ≤ 2r}.

Théorème 0.0.2 cöıncide avec Theorem 1.1.3 et il est démontré en Subsection 1.8.3.
En outre on donne, pour tout r impair, un exemple de fibration lc-triviale tel que si V est le plus
petit entier naturel pour lequel VMZ à coefficients entiers, alors V = N(r)/r. Dans [38, Remark
8.2] les auteurs conjecturaient que l’entier qui rend la partie modulaire sans point base est 12r. Le
théorème 0.0.2 donne un contrexemple à cette conjecture. D’autre part, les dénominateurs de MZ

sont importants dans les applications quand il faut obtenir des résultats effectifs pour les applications
pluricanoniques (cf. [41], [42]).

On démontre aussi le théorème suivant qui affirme que la conjecture EbS peut être réduite au
cas où la base est une courbe.

Théorème 0.0.3 (Theorem 1.2, [12]). EbS(1) implique EbS(k).

Théorème 0.0.3 est Theorem 1.1.4 et sa preuve se trouve dans Section 1.5.
Une approche par récurrence sur la dimension de la base comme celle de théorème 0.0.3 donne aussi
un résultat de semiamplitude effective dans le cas MZ ≡ 0. En effet, on démontre une version
effective de [3, Theorem 3.5].

Théorème 0.0.4 (Theorem 1.3, [12]). Il existe un entier m = m(b) tel que pour toute fibration
klt-triviale f : (X,B) → Z avec

• Z lisse ;

• MZ ≡ 0 ;

• BettidimE′(E′) = b où E′ est un modèle lisse du revêtement E → F associé à l’unique élément
de |r(KF +B|F )|

on a mMZ ∼ 0.

Si la paire (X,B) est lc mais non klt sur le point générique de la base on démontre le théorème
suivant qui généralise [3, Theorem 3.5].

Théorème 0.0.5 (Theorem 1.4, [12]). Soit f : (X,B) → Z une fibration lc-triviale avec Z lisse et
MZ ≡ 0. Alors MZ est un diviseur de torsion.

Théorème 0.0.4 et théorème 0.0.5 sont Theorem 1.1.5 and Theorem 1.1.6 et sont démontrés en
Subsection 1.7.1 et Subsection 1.7.2 respectivement.

La décomposition de Zariski
Soit S une surface projective lisse définie sur C. Soit D un diviseur effectif sur S. En 1962, O.
Zariski démontre (cf. [46]) l’existence de diviseurs P,N tels que
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1. N =
∑

aiNi est effectif, P est nef et D = P +N ;

2. soit N = 0, soit la matrice (Ni ·Nj) est définie négative ;

3. (P ·Ni) = 0 pour tout i.

Une telle décomposition est unique et est appelée la décomposition de Zariski de D.
Fujita en [20] généralise l’énoncé aux diviseurs pseudoeffectifs. De plus, il remarque en [21] que le
diviseur P est l’unique diviseur qui satisfait la propriété suivante :

(α) pour tout modèle birationnel f : X ′ → X et pour tout diviseur nef L sur X ′ tel que f∗L ≤ D
on a f∗L ≤ P .

À cause de l’importance de la décomposition de Zariski sur les surfaces, plusieurs généralisations aux
variétés de dimension supérieure ont été étudiées. La propriété (α) donne lieu à la généralisation
suivante.

Définition 0.0.2 (Definition 6.1, [39]). Soit X une variété projective lisse et D un diviseur pseu-
doeffectif. Une décomposition D = Pf + Nf est appelée une décomposition de Zariski au sens de
Fujita (où décomposition de Fujita-Zariski) si

1. Nf ≥ 0 ;

2. Pf est nef ;

3. pour tout modèle birationnel µ : X ′ → X et pour tout diviseur nef L sur X ′ tel que µ∗L ≤ D
on a µ∗L ≤ Pf .

Il découle de la définition que, s’il existe une décomposition de Fujita-Zariski, alors elle est unique.
L’importance de la décomposition de Fujita-Zariski est bien mise en évidence par les resultats de
Birkar [4] et Birkar-Hu [5] qui ont démontré l’équivalence entre l’existence des modèles log minimaux
des paires et l’existence de la décomposition de Fujita-Zariski pour les diviseurs log canoniques.

Dans [35] Nakayama démontre plusieurs résultats partiels, concernant la décomposition de Zariski
en dimension 3, qui mettent en relation l’existence d’une décomposition sur une courbe Σ (cf. [35,
III.4] pour une définition complète) avec les propriétés de stabilité du fibré conormal de Σ. Plus
précisément, soit D un diviseur pseudoeffectif sur X et Σ une courbe lisse telle que D · Σ < 0. Soit
IΣ l’idéal de Σ dans X. Si le fibré conormal IΣ/I

2
Σ
est semistable, alors il y a une décomposition

ϕ∗D = P +N telle que N ≥ 0 et le diviseur P a intersection positive avec toute courbe incluse dans
le diviseur exceptionnel de

ϕ : BlΣX → X

(cf. [35, Lemma III.4.5]). Si IΣ/I
2
Σ
est instable alors il existe une suite exacte courte (cf. Lemma

2.2.10)
0 → L → IΣ/I

2
Σ → M → 0

telle que degL > degM. Par [35, Lemma III.4.6], si le fibré conormal n’est pas “trop instable”,
notamment si 2 degM ≥ degL, alors il existe un modèle birationnel ϕ : X ′ → X tel que ϕ∗D a une
décomposition de Fujita-Zariski sur Σ. Le théorème suivant pourrait constituer une étape technique
vers un résultat d’existence de la décomposition de Zariski en dimension 3.
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Théorème 0.0.6. Soit X une variété projective lisse de dimension 3. Soit Σ ⊆ X une courbe et
supposons que le fibré conormal

IΣ/I
2
Σ

n’est pas semistable comme fibré vectoriel de rang 2 sur Σ. Alors il existe une suite d’éclatements
ϕ : X̂ → X de courbes lisses non contenues dans Σ telle que, si Σ̂ est la transformée stricte de Σ

dans X̂, alors I
Σ̂
/I2

Σ̂
est semistable.

En réalité, on démontre un énoncé qui est beaucoup plus précis que celui du théorème 0.0.6,
c’est-à-dire théorème 2.3.3, qui affirme que l’on peut aussi contrôler le degré du fibré conormal.



Chapter 1

The moduli part in the canonical

bundle formula

1.1 Introduction

The canonical bundle formula is an important tool in complex algebraic geometry. It was developed
and refined through time following its uses and applications. In one of his fundamental papers on
the classification of compact complex surfaces K. Kodaira studied algebraic surfaces S endowed with
a morphism f : S → C whose base C is a smooth curve and whose generic fiber is an elliptic curve.
The canonical bundle of S is thus trivial on the fibers of f . The map f has a finite number of
singular fibers which are classified by Kodaira. If there are no multiple fibers, Kodaira and Ueno
[43] proved that

12KS/C ∼ f∗(R+ j∗O(1))

where R is a divisor on C supported on the singular locus of f and whose coefficients have an
interpretation in terms of the classification of the singular fibers. The map j is the map induced by
f on the moduli space of elliptic curves. Fujita generalized in [21] the formula to the case where f
can have multiple fibers. Although Kodaira was interested in studying surfaces, whereas Ueno and
Fujita focused their attention to some special threefolds, their method for studying these varieties is
the same: find a fiber space structure for which the canonical bundle of the ambient space is trivial
on the fibers.

The birational classification of complex algebraic varieties is one of the big problems whose
solution is the ultimate goal of complex algebraic geometry. Fujita and Ueno followed the philosophy
outlined by Iitaka which is still nowadays part of the main strategy for solving the problem. Iitaka’s
idea was to look at the pluricanonical systems |mKX | and the order of growth of their dimensions
when m goes to infinity. The invariant that carries the information of this order of growth is
called Kodaira dimension and was introduced by Iitaka in [22]. The Kodaira dimension of a variety
X can take the values {−∞, 0, . . . , dimX}. Iitaka proved that, if the Kodaira dimension of X
is non-negative, then there exists a birational model X∗ of X that has a structure of fiber space
f : X∗ → Z such that the dimension of Z is the Kodaira dimension of X and the general fiber has
Kodaira dimension zero (see e.g. [32, Definition 2.1.36]). Thus the study of algebraic varieties is
roughly divided into two parts:

1. the study of varieties of Kodaira dimension −∞, 0 or equal to the dimension;

2. the study of varieties with a structure of fiber space and whose generic fibers have Kodaira
dimension zero.

1



2 CHAPTER 1. THE MODULI PART IN THE CANONICAL BUNDLE FORMULA

The techniques used in birational geometry and the need to consider singular or quasi projective
varieties led to enlarge the category of varieties in order to consider pairs. A pair (X,B) is the data
of a normal variety X and an R-divisor B such that KX +B is an R-Cartier divisor. Thus the first
distinction between pairs is the order of growth of the sections of ⌊m(KX + B)⌋, the log-Kodaira
dimension. There are also notions of regularity for pairs, such as lc or klt, for which we refer to
Definition 1.2.4.

If we have a fibration f : X → Z as in point 2. whose general fiber has Kodaira dimension 0,
then there exist a Q-Cartier divisor D on Z, a Q-Cartier divisor E on X and an integer r > 0 such
that

rKX = f∗D + E.

If we set B = −E/r then f : (X,B) → Z is an lc-trivial fibration, that is, the data of an lc pair
(X,B) and of a fibration f such that

KX +B ∼Q f∗D

satisfying some technical hypotheses (cf. Definition 1.2.8).
The main tool for studying lc-trivial fibrations is the canonical bundle formula.

The canonical bundle formula as it stands is due to Kawamata who used it in order to treat the
subadjunction problem. It is well known that, if Y ⊆ X is a smooth hypersurface, then

KY ∼ (KX + Y )|Y

and the formula is called adjunction formula. The subadjunction problem consists in finding a similar
formula in the case where Y is singular or has codimension greater than one. The subadjunction is
a key tool whenever one tries to argue by induction on the dimension. Kawamata proved in [27] the
existence of such formula up to adding to KX +B a small ample divisor. A fundamental technique
for this result is the canonical bundle formula written in a form that is meaningful in view of the
singularities of the pair (X,B) and the fibration f . Indeed, let

f : (X,B) → Z

be such that (KX +B)|F ∼Q 0. Kawamata observed that

KX +B ∼Q f∗(KZ +BZ +MZ),

where the divisor BZ is called the discriminant and it is defined by BZ =
∑

(1 − γP )P , the sum
being taken over the prime divisors P of X and

γP = sup{t ∈ R| (X,B + tf∗(P )) is lc over P}.

For the precise definition of lc over P see Definition 1.2.5. The log canonical threshold γP is a measure
of the singularity of the pair (f−1P,B|f−1P ). It is 1 when the pair is lc, it smaller when it is more
singular. Thus SuppBZ can be roughly interpreted as the singular locus of f seen as a map whose
source is a pair. In the case of Kodaira’s formula, the divisor BZ coincides with R. The divisor MZ ,
called the moduli part, is a Q-Cartier divisor and it is nef on some birational modification of Z by
[27, Theorem 2]. It carries informations on the birational variation of the fibers.
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A great progress in the theory and its applications was accomplished around 2000 with the
works of F. Ambro, and the paper [18] by O. Fujino and S. Mori. The first author treated the
subadjunction problem and proved [1, Proposition 3.4] that the singularities of the pair (Z,BZ) are
the same as the singularities of (X,B). If (X,B) is klt (cf. Definition 1.2.4 for the definition of
klt), he proved [3, Theorem 0.2] that there exists a divisor ∆Z on Z such that (Z,∆Z) is klt and
KX +B ∼Q f∗(KZ +∆Z). In [18] the authors proved a result that is in line with Iitaka’s program.

Theorem 1.1.1 (Theorem 5.2. [18]). Let (X,∆) be a proper klt pair with κ(X,∆) = l ≥ 0. Then
there exist an l-dimensional klt pair (C ′,∆′) with κ(C ′,∆′) = l, two integers e′, e ∈ Z>0 and an
isomorphism of graded rings

R(X,KX +∆)(e) ∼= R(C ′,KC′ +∆
′)(e

′)

where
R(X,KX +∆)(e) =

⊕

m∈Z

H0(X, ⌊meKX +∆⌋).

The problem that guides the research on the canonical bundle formula is the following difficult
conjecture.

EbS(k) 1.1.2 (Effective b-Semiampleness, Conjecture 7.13.3, [38]). There exists an integer m =
m(d, r) such that for any lc-trivial fibration f : (X,B) → Z with dimension of the generic fiber F
equal to d, dimension of Z equal to k and Cartier index of (F,B|F ) equal to r there exists a birational
morphism ν : Z ′ → Z such that mMZ′ is base-point-free.

The initials EbS stand for Effective b-Semiampleness. A Cartier divisor D on a variety Z is
birationally semiample, or b-semiample, if there exists a birational morphism µ : Z ′ → Z and a
semiample divisor D′ on Z ′ such that µ∗D

′ = D. Conjecture EbS is far from being proved. Even
the weaker version, which predicts that MZ is b-semiample, without any condition on the integer
that makes it base-point-free, has just a partial solution, namely when MZ is numerically trivial ([3,
Theorem 3.5] and [12, Theorem 1.3] for the lc case). There are partial results (see [38, Theorem
8.1], [15] and [16]) when there exists a moduli space for the fibers of f . The difficulty of Conjecture
EbS is well illustrated by a result due by X. Jiang [24] who proved that Conjecture EbS implies a
uniformity statement for the Iitaka fibration of any variety of positive Kodaira dimension under the
assumption that the fibers have a good minimal model.

In this thesis we present several results on the canonical bundle formula. The first deals with fibration
whose fibers are curves and is a study of the denominators of MZ .

Theorem 1.1.3 (Theorem 1.6, [11]). 1. A polynomial global bound on the denominators of MZ

cannot exist. Precisely for any N there exists an lc-trivial fibration

f : (X,B) → Z

such that dimZ = 1 and whose generic fiber is a rational curve such that if V is the smallest
integer such that VMZ has integral coefficients then

V ≥ rN+1.
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2. Let f : (X,B) → Z be an lc-trivial fibration whose generic fiber is a rational curve. Then there
exists an integer N(r) which depends only on r such that N(r)MZ has integral coefficients.
More precisely N(r) = rlcm{l|l ≤ 2r}.

Theorem 1.1.3 is proved in Subsection 1.8.3.
Moreover for any r odd we give an example such that if V is the smallest integer such that VMZ

has integral coefficients then V = N(r)/r. In [38, Remark 8.2] it was conjectured that the effective
constant that makes the moduli part base-point-free is 12r. Theorem 1.1.3 gives a counterexample
to this conjecture. The denominators of MZ are very important in applications in order to obtain
effective results for the pluri-log-canonical maps of pairs with positive Kodaira dimension (see for
instance [41], [42]).

The second result proves that Conjecture EbS can be reduced to the case where the base is a
curve.

Theorem 1.1.4 (Theorem 1.2, [12]). EbS(1) implies EbS(k).

The proof of Theorem 1.1.4 the object of Section 1.5. An inductive approach on the dimension
of the base, as in Theorem 1.1.4, allows us to prove a result of effective semiampleness in the case
MZ ≡ 0. Indeed we are able to prove an effective version of [3, Theorem 3.5].

Theorem 1.1.5 (Theorem 1.3, [12]). There exists an integer m = m(b) such that for any klt-trivial
fibration f : (X,B) → Z with

• Z smooth;

• MZ ≡ 0;

• BettidimE′(E′) = b where E′ is a non-singular model of the cover E → F associated to the
unique element of |r(KF +B|F )|

we have mMZ ∼ 0.

Moreover for the case where the pair (X,B) is lc but not klt on the generic point of the base we
have the following that generalizes [3, Theorem 3.5].

Theorem 1.1.6 (Theorem 1.4, [12]). Let f : (X,B) → Z be an lc-trivial fibration with Z smooth
and MZ ≡ 0. Then MZ is torsion.

The proofs of Theorem 1.1.5 and Theorem 1.1.6 are in Subsection 1.7.1 and Subsection 1.7.2
respectively.

This chapter is organized as follows: Section 1.2 contains som basic notation about the canonical
bundle formula; in Section 1.4 we present a proof of Theorem 1.2.15 (see [8, Chapter 8]) that makes
only use of the theory of variations of Hodge structure instead of variations of mixed Hodge structure.
Sections 1.3, 1.5, 1.6 and 1.7 coincide with Sections 4, 3, 5 and 6 of [12]. Subsections 1.8.1, 1.8.2
and 1.8.3 are Subsection 2.2 and Sections 3 and 4 of [11].
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1.2 Notation, definitions and known results

We will work over C. In the following ≡, ∼ and ∼Q will respectively indicate numerical, linear and
Q-linear equivalence of divisors. The following definitions are taken from [31].

Definition 1.2.1. A pair (X,B) is the data of a normal variety X and a Q-Weil divisor B such
that KX +B is Q-Cartier.

Definition 1.2.2. Let (X,B) be a pair and write B =
∑

biBi. Let ν : Y → X be a birational
morphism, Y smooth. We can write

KY ≡ ν∗(KX +B) +
∑

a(Ei, X,B)Ei.

where Ei ⊆ Y are distinct prime divisors and a(Ei, X,B) ∈ R. Furthermore we adopt the convention
that a nonexceptional divisor E appears in the sum if and only if E = ν−1

∗ Bi for some i and then
with coefficient a(E,X,B) = −bi.
The a(Ei, X,B) are called discrepancies.

Furthermore we adopt the convention that a nonexceptional divisor E appears in the sum if and
only if E = ν−1

∗ Bi for some i and then with coefficient a(E,X,B) = −bi.
The a(Ei, X,B) are called discrepancies.

A divisor E is exceptional over X if there exists a birational morphism ν : Y → X such that
E ⊆ Y is ν-exceptional.

Definition 1.2.3. Let (X,B) be a pair and f : X → Z be a morphism. Let W ∈ Z be an irreducible
subvariety. A log resolution of (X,B) over W is a birational morphism ν : X ′ → X such that for
any x ∈ f−1W the divisor ν∗(KX +B) has simple normal crossings at x.

Definition 1.2.4. We set

discrep(X,B) = inf{a(E,X,B) | E exceptional prime divisor over X}.

A pair (X,B) is defined to be

• klt (kawamata log terminal) if discrep(X,B) > −1 and ⌊B⌋ ≤ 0,

• plt (purely log terminal) if discrep(X,B) > −1,

• lc (log canonical) if discrep(X,B) ≥ −1.

Definition 1.2.5. Let f : (X,B) → Z be a morphism and W ⊆ Z an irreducible subvariety. For an
exceptional divisor E over X we let c(E) be its image in X. We set

discrepW (X,B) = inf{a(E,X,B) | E prime divisor over X, f(c(E)) = W}.

A pair (X,B) is defined to be

• klt over W (kawamata log terminal) if discrepW(X,B) > −1,

• lc over W (log canonical) if discrepW(X,B) ≥ −1.
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Definition 1.2.6. Let (X,B) be a pair. A place for (X,B) is a prime divisor on some birational
model ν : Y → X of X such that a(E,X,B) = −1. The image of E in X is called a center.

Definition 1.2.7. Let (X,B) be a pair and ν : X ′ → X a log resolution of the pair. We set

A(X,B) = KX′ − ν∗(KX +B)

and
A∗(X,B) = A(X,B) +

∑

a(E,X,B)=1

E.

Definition 1.2.8. A klt-trivial (resp. lc-trivial) fibration f : (X,B) → Z consists of a surjective
morphism with connected fibers of normal varieties f : X → Z and of a log pair (X,B) satisfying
the following properties:

1. (X,B) has klt (resp. lc) singularities over the generic point of Z;

2. rank f ′
∗OX(⌈A(X,B)⌉) = 1 (resp. rank f ′

∗OX(⌈A∗(X,B)⌉) = 1) where f ′ = f ◦ ν and ν is a
given log resolution of the pair (X,B);

3. there exists a positive integer r, a rational function ϕ ∈ C(X) and a Q-Cartier divisor D on
Z such that

KX +B +
1

r
(ϕ) = f∗D.

Remark 1.2.9. Condition (2) does not depend on the choice of the log resolution ν. It is verified
for instance if B is effective because

⌈A∗(X,B)⌉ = ⌈KX′ − ν∗(KX +B) +
∑

a(E,X,B)=1

E⌉

is exceptional over X.

Remark 1.2.10. Let f : (X,B) → Z be an lc-trivial fibration. Let µ : X̂ → X be a birational
morphism. Let f̂ = f ◦ ν and let B̂ be the divisor defined by

KX̂ + B̂ = KX +B.

Then f̂ : (X̂, B̂) → Z is again an lc-trivial fibration. Indeed the singularities of (X̂, B̂) are the same
as the singularities of (X,B) and condition (1) in Definition 1.2.8 is verified. A log resolution for
(X̂, B̂) is also a log resolution for (X,B), thus condition (2) is verified. Finally

KX̂ + B̂ +
1

r
(ϕ ◦ µ) = µ∗(KX +B +

1

r
(ϕ)) = f̂∗D

and we are done.

Remark 1.2.11. The smallest possible r that can appear in Definition 1.2.8 is the minimum of the
set

{m ∈ N|m(KX +B)|F ∼ 0}

that is the Cartier index of the fiber. We will always assume that the r that appears in the formula
is the smallest one.
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Definition 1.2.12. Let P ⊆ Z be a prime Weil divisor. The log canonical threshold γP of f∗(P )
with respect to the pair (X,B) is defined as follows. Let Z̄ → Z be a resolution of Z. Let µ : X̄ → X
be the birational morphism obtained as a desingularization of the main component of X ×Z Z̄. Let
f̄ : X̄ → Z̄. Let B̄ be the divisor defined by the relation

KX̄ + B̄ = µ∗(KX +B).

Let P̄ be the strict transform of P in Z̄. Set

γP = sup{t ∈ Q| (X̄, B̄ + tf̄∗(P̄ )) is lc over P̄}.

We define the discriminant of f : (X,B) → Z as

BZ =
∑

P

(1− γP )P. (1.2.1)

Remark 1.2.13 ([27], p.14 [1]). The log canonical threshold γP is a rational number. Indeed,
assume that Z is smooth and let µ : X ′ → X be a log resolution of the pair (X,B + f∗(P )). Let
B′ be the divisor defined by KX′ + B′ = µ∗(KX + B). Then f ◦ µ : (X ′, B′) → Z is an lc-trivial
fibration.

Let P be a prime Weil divisor of Y and set f∗P =
∑

wjQj . Set bj = multQj
B. Then

γP = min
j

1− bj
wj

.

In particular γP is a rational number. We notice also that−B′+µ∗f∗BZ is effective over codimension-
one points: with the same notation as above, over P we have

−B′ + µ∗f∗BZ =
∑

j

[(1− γP )wj − bj ]Qj .

Since γP ≤ (1− bj)/wj for any j, we have

wj − γPwj − bj ≥ wj − 1 ≥ 0.

We remark that, since the above sum is finite, BZ is a Q-Weil divisor.

Definition 1.2.14. Fix ϕ ∈ C(X) such that KX + B + 1
r (ϕ) = f∗D. Then there exists a unique

divisor MZ such that we have

KX +B +
1

r
(ϕ) = f∗(KZ +BZ +MZ) (1.2.2)

where BZ is as in (1.2.1). The Q-Weil divisor MZ is called the moduli part.

We have the two following results.

Theorem 1.2.15 (Theorem 0.2 [2], [8]). Let f : (X,B) → Z be an lc-trivial fibration. Then there
exists a proper birational morphism Z ′ → Z with the following properties:
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(i) KZ′ +BZ′ is a Q-Cartier divisor, and for every proper birational morphism ν : Z ′′ → Z ′

ν∗(KZ′ +BZ′) = KZ′′ +BZ′′ .

(ii) MZ′ is a nef Q-Cartier divisor and for every proper birational morphism ν : Z ′′ → Z ′

ν∗(MZ′) = MZ′′ .

Proposition 1.2.16 (Proposition 5.5 [2]). Let f : (X,B) → Z be an lc-trivial fibration. Let τ : Z ′ →
Z be a generically finite projective morphism from a non-singular variety Z ′. Assume there exists a
simple normal crossing divisor ΣZ′ on Z ′ which contains τ−1ΣZ and the locus where τ is not étale.
Let MZ′ be the moduli part of the induced lc-trivial fibration f ′ : (X ′, B′) → Z ′. Then MZ′ = τ∗MZ .

Theorem 1.2.17 (Inverse of adjunction, Proposition 3.4, [1], see also Theorem 4.5 [18]). Let
f : (X,B) → Z be an lc-trivial fibration. Then (Z,BZ) has klt (lc) singularities in a neighborhood of
a point p ∈ Z if and only if (X,B) has klt (lc) singularities in a neighborhood of f−1p.

The Formula (1.2.2) is called the canonical bundle formula.

1.3 Variation of Hodge structure and covering tricks

1.3.1 Variation of Hodge structure

Let S be C∗ viewed as an R-algebra.

Definition 1.3.1 (2.1.4 [10]). A real Hodge structure is a real vector space V of finite dimension
together with an action of S.
The representation of S on V induces a bigraduation on V , such that V pq = V qp. We say that V
has weight n if V pq = 0 whenever p+ q 0= n.

Definition 1.3.2 (2.1.10 [10]). A Hodge structure H of weight n is

• a Z-module of finite type HZ;

• a real Hodge structure of weight n on HR = HZ ⊗Z R.

Definition 1.3.3. Let S be a topological space. A local system on S is a sheaf V of Q-vector spaces
on S.

Let now S be a complex manifold.

Definition 1.3.4. Let V → S be a vector bundle. A connection is a morphism

∇ : V → Ω
1
S ⊗ V

that satisfies the Leibniz rule.
The curvature of a connection is ∇ ◦∇ : V → Ω2

S ⊗ V .
A connection is said to be integrable if ∇ ◦∇ = 0.
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By [9, Proposition 2.16] the data of a local system V is equivalent to the data of a vector bundle
V → S together with an integrable connection ∇ and the correspondence is given by associating to
V the vector bundle

V = V⊗O.

Definition 1.3.5. A flat subsystem of a local system V is a sub-local system W of V or equivalently
a subbundle W of V on which the curvature of the connection is zero.

Definition 1.3.6 ((3.1) [40]). A variation of Hodge structure of weight m on S is:

• a local system V on S;

• a flat bilinear form
Q : V × V → C

which is a bilinear form rational on V, where V = V⊗OS;

• a Hodge filtration {Fp}, that is a decreasing filtration of V by holomorphic subbundles such
that for any p we have ∇(Fp) ⊆ Ω1

S ⊗ Fp−1.

Definition 1.3.7 ((3.4) [40]). A variation of mixed Hodge structure on S is:

• a local system V on S;

• a Hodge filtration {Fp} that is a decreasing filtration of V by holomorphic subbundles such that
for any p we have ∇(Fp) ⊆ Ω1

S ⊗ Fp−1;

• a Weight filtration {Wk} that is an increasing filtration of V by local subsystems, or equivalently,
the subsheaf Wk is defined over Q for every k;

Moreover we require that the filtration induced by {Fp} on Wk/Wk−1 determines a variation of
Hodge structure of weight k.

From now on we will be interested in variations of Hodge structure and of mixed Hodge structure
defined on a Zariski open subset Z0 of a projective variety Z. We assume moreover that ΣZ = Z\Z0

is a simple normal crossing divisor.
The following is a fundamental result about the behavior of a variation of Hodge structures on

Z0 near ΣZ . For the definition of monodromy and unipotent monodromy of variations of Hodge
structure and residue of a connection see [37, Definition 10.16, section 11.1.1]

Proposition 1.3.8 (Proposition 5.2(d), [9]). Let V be a variation of Hodge structure on Z0 that has
unipotent monodromies around ΣZ . Let z be a local variable with center in ΣZ . Then

a There exists a unique extension Ṽ of V on Z such that

i every horizontal section of V as a section of Ṽ on Z0 grows at most as

O(log ‖ z ‖k)

for some integer k near ΣZ ;
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ii let V∗ be the dual of V. Every horizontal section of V∗ grows at most as

O(log ‖ z ‖k)

for some integer k near ΣZ .

b Conditions (i) and (ii) are equivalent respectively to conditions (iii) and (iv).

iii The matrix of the connection on V on a local frame for Ṽ has logarithmic poles near ΣZ .

iv Each residue of the connection along each irreducible component of ΣZ is nilpotent.

c Let V1 and V2 be variations of Hodge structure on Z0 that have unipotent monodromies around
ΣZ . Every morphism f : V1 → V2 extends to a morphism Ṽ1 → Ṽ2. Moreover the functor
V 4→ Ṽ is exact and commutes with ⊗, ∧, Hom.

The extension Ṽ is called the canonical extension.

Remark 1.3.9. In the situation of Proposition 1.3.8 the matrix Γ of the connection on V has the
following form

Γ =
∑

Ui
dzi
zi

where Ui is the matrix that represents the nilpotent part of the monodromy around the component
Σi of ΣZ .

Let V , Z be smooth projective varieties and h : V → Z a surjective morphism with connected
fibers. Let Z0 ⊆ Z be the largest Zariski open set where h is smooth and V0 = h−1(Z0). Assume that
ΣZ = Z\Z0 and ΣV = V \V0 are simple normal crossing divisors on Z and V . Set d = dimV −dimZ.
Consider HC = (Rdh∗CV0

)prim, where the subscript prim stands for the primitive part of the coho-
mology. Set H0 = HC ⊗OZ0

, F = h∗ωV/Z and F0 = F ⊗OZ0
. Then HC is a local system over Z0.

Moreover H0 has a descending filtration {Fp}0≤p≤d, the Hodge filtration and F0 = Fd.
There is a canonical way to extend H0 and F0 to locally free sheaves on Z:

Theorem 1.3.10 (Proposition 5.4 [9], Theorem 2.6 [29], [19]). 1. H0 has a canonical extension
to a locally free sheaf on Z.

2. h∗ωV/Z coincides with the canonical extension of the bottom piece of the Hodge filtration.

Let h0 : V0 → Z0 be as before. Let D ⊆ V be a simple normal crossing divisor such that
the restriction h0|D is flat. Assume that D + ΣV has simple normal crossings. Let us denote the
restriction by

h0 : V0\D → Z0.

Thus Rd(h0)∗CV0\D is a local system on Z0 by [40, section 5.2]. Let {Fp} be the Hodge filtration
and let

Wk = (h0)∗Ω
k
V0/Z0

(logD) ∧ Ω
•−k
V0/Z0

(1.3.1)
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be the weight filtration of the complex (h0)∗Ω
•
V0/Z0

(logD). In particular Wk is a complex. We will
adopt the following notation

Wk((h0)∗Ω
s
V0/Z0

(logD)) = (h0)∗Ω
k
V0/Z0

(logD) ∧ Ω
s−k
V0/Z0

.

Let h : V → Z be a morphism such that ΣZ is a simple normal crossing divisor and let τ : Z ′ → Z
be a morphism from a smooth variety Z ′ such that τ−1(ΣZ) is a simple normal crossing divisor. Let
V ′ be a desingularization of the component of V ×Z Z ′ that dominates Z ′.

V ′

h′

!!

"" V

h
!!

Z ′
τ

"" Z.

Assume now that h′ and h are such that Rdh∗CV0
and Rdh′∗CV ′

0
have unipotent monodromies. By

Proposition 1.3.8[c] we have a commutative diagram of sheaves on Z ′

(h′)∗ωV ′/Z′

α

!!

∼ "" (i′)∗(F
′
0) ∩H′

β

!!

τ∗(h)∗ωV/Z
∼ "" τ∗(i)∗(F0) ∩H

where i : Z0 → Z, i′ : Z ′
0 → Z ′ are inclusions, H (resp. H′) is the canonical extension of Rdh∗CV0

(resp. Rdh′∗CV ′

0
), F0 = h∗ωV/Z|Z0

(resp. F ′
0 = h′∗ωV ′/Z′|Z′

0

) and α,β are the pullbacks by τ . If we

have an isomorphism

α : (h′)∗ωV ′/Z′ → τ∗(h)∗ωV/Z

then for any p ∈ Z ′ we have an isomorphism of C-vector spaces

αp : ((h
′)∗ωV ′/Z′)p → (h∗ωV/Z)τ(p).

If τ is a birational automorphism of Z that fixes p, then αp is an element of the linear group of
((h)∗ωV/Z)p. In particular we have the following:

Proposition 1.3.11. Let h : V → Z be a fibration such that Rdh0∗CV0
has unipotent monodromies.

Assume that we have a birational action of a group G on Z given by a homomorphism

G → Bir(Z) = {ν : Z !!" Z| ν is birational}.

Let Gp be the stabilizer of p ∈ Z. Then we have an induced action of Gp on Hp and on (h∗ωV/Z)p
and these actions commute with the inclusion (h∗ωV/Z)p ⊆ Hp.

By [25, Theorem 17] we can assume that Rdh0∗CV0
(or, more generally, a local system that has

quasi-unipotent monodromies) has unipotent monodromies modulo a finite base change by a Galois
morphism. We restate Kawamata’s result in a more precise way that is useful for our purposes.
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Theorem 1.3.12 (Theorem 17, Corollary 18 [25]). Let h : V → Z be an algebraic fiber space. Let
Z0 ⊆ Z be the largest Zariski open set where h is smooth and V0 = h−1(Z0). Assume that ΣZ = Z\Z0

and ΣV = V \V0 are simple normal crossing divisors on Z and V . Set d = dimV − dimZ.
Then there exists a finite surjective morphism τ : Z ′ → Z from a smooth projective algebraic variety
Z ′ such that for a desingularization V ′ of V ×Z Z ′ the morphism h′ : V ′ → Z ′ induced from h is such
that Rdh′0∗CV ′

0
has unipotent monodromies.

Moreover τ is a composition of cyclic coverings τj

τ : Z ′ = Zk+1
τk−→ Zk · · · → Z2

τ1−→ Z1 = Z

where τj is defined by the building data
δjAj ∼ Hj

where Aj is very ample on Zj and Hj has simple normal crossings.

We have the following results by Deligne. We state them in our situation, but they hold in a
more general setting.

Theorem 1.3.13 (Theorem 4.2.6 [10]). The representation of the fundamental group π1(Z0, z) on
the fiber HQ,z is semisimple.

Here we prove a slight modification of [10, Corollary 4.2.8(ii)(b)].

Corollary 1.3.14. Let W be a local subsystem of HC of rank one. Let b = dimH. Let

m(x) = lcm{k| φ(k) ≤ x}

where φ is the Euler function. Then W⊗m(b) is a trivial local system.

Proof. By Theorem 1.3.13 we can write

HC,z =
r

⊕

i=1

Hi

where the Hi are the isotypic components (that is, the components that are direct sum of simple
representations of the same weight). Since dimW = 1, the subspace Wz is contained in one isotypic
component, say H1. We have

H1 = H⊕k
λ ,

where Hλ is a simple component of weight λ. Since Wz is simple, it identifies with one of the factors
Hλ’s and then

k
∧

H1
∼= W⊗k

z .

If χ is the character that determines Wz as a representation then the character χk determines
∧k H1. Let S be the real algebraic group C∗. We have an action of S on H1. Indeed by [10,
Corollary 4.2.8(ii)(a)] for any t ∈ S we have tH1

∼= H1. In particular tH1 and H1 have the same
weight. But since H1 is isotypic, we have tH1 = H1. The vector space Ĥ1 = H1 + H̄1 is real
and S-invariant, thus it is defined by a real Hodge substructure of HR,z. Thus a polarization on H

induces a non-degenerate bilinear form on Ĥ1 that is invariant under the action of π1(Z0, z).
Then, if we set e = dim Ĥ1, we have that (

∧e Ĥ1)
⊗2 is trivial. Since Ĥ1 = H1 + H̄1, there are two

possibilities:
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(a) if H1 is real, the character χ2k is trivial,

(b) or else χ2kχ̄2k is trivial.

In any case |χ| = 1.
The representation of π1(Z0, z) on HC,z comes from a representation on HQ,z and all the conjugate
representations of Wz appear in HC,z. Thus we have at most b = dimH conjugate representations
of Wz.

We proved that for any γ ∈ π1(Z0, z) the number χ(γ) is a complex number of modulus one and
with at most b complex conjugates. Thus χ(γ) is a k-th root of unity, with k ≤ b. If we define

m(b) = lcm{k| φ(k) ≤ b}

where φ is the Euler function, then χm(b) is trivial.

1.3.2 Covering tricks

In order to give an interpretation of the moduli part in terms of variation of Hodge structure we
need to consider an auxiliary log pair (V,BV ) with a fibration h : V → Z.

Let f : X → Z be an lc-trivial fibration. Set ΣZ = SuppBZ and we assume that ΣZ is a simple
normal crossing divisor. Set ΣX = Suppf∗ΣZ and assume that B + ΣX has simple normal crossing
support. We define g : V → X as the desingularization of the covering induced by the field extension

C(X) ⊆ C(X)( r
√
ϕ), (1.3.2)

that is, the desingularization of the normalization of X in C(X)( r
√
ϕ) where ϕ is as in (1.2.2).

Let BV be the divisor defined by the equality KV + BV = g∗(KX + B). Set h = f ◦ g : V → Z.
Then h and f induce the same discriminant and moduli part. Let ΣV be the support of h∗ΣZ and
assume that ΣV +BV has simple normal crossing support.

The Galois group of (1.3.2) is cyclic of order r, then we have an action of

µr = {x ∈ C |xr = 1}

on g∗OV . Then we have also an action of µr on h∗ωV/Z and on h∗ωV/Z(PV ) where PV are the
horizontal places of the pair (V,BV ).

Proposition 1.3.15 (Claim 8.4.5.5, Section 8.10.3 [8]). Let f : X → Z and V → X be as above.
The decomposition in eigensheaves is

h∗ωV/Z =
r−1
⊕

i=0

f∗OX(⌈(1− i)KX/Z − iB + if∗BZ + if∗MZ⌉).

Let PV be the places of (V,BV ) and P the places of (X,B). Then we have

h∗ωV/Z(PV ) =
r−1
⊕

i=0

f∗OX(⌈(1− i)KX/Z − iB + P + if∗BZ + if∗MZ⌉)

and the right-hand side is the eigensheaf decomposition of the left-hand side with respect to the action
of µr.
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Proposition 1.3.16 (Proposition 5.2, [2]). Assume that Rdh0∗CV0
has unipotent monodromies.

Then MZ is an integral divisor and OZ(MZ) is isomorphic to the eigensheaf f∗OX(⌈−B + P +
f∗BZ + f∗MZ⌉) corresponding to a fixed primitive rth root of unity.

1.4 Nefness: generalization to the lc case

This section will be devoted to a proof of Theorem 1.2.15 for a fibration that is lc and not klt over
the generic point of the base. This result is stated in [8, §8]. The key result for the proof is Theorem
1.4.5 that is implied by the very deep results in [15] about variation of mixed Hodge structure (see
also [17, Theorem 3.6]). Here we present a proof that makes use only of the theory of variation of
Hodge structure and follows Ambro’s proof of [2, Theorem 0.2].

Remark 1.4.1. If B′ = B+f∗∆, then f : (X,B′) → Z is an lc-trivial fibration and its discriminant
is BZ +∆.

Let X be a smooth variety, L a line bundle on X and D an integral and not necessarly effective
divisor such that Lr ∼= OX(D). In [8, §8.10.3] it is explained that with this data it is possible to
define a covering of X. Take s a rational section of L and 1D the constant rational section of OX(D).
Then we can define π : X̃ → X as the normalization of X in C(X)( r

√

1D/sr). Moreover we have

π∗OX̃ =
r

⊕

i=0

L−i(⌊iD/r⌋);

π∗ωX̃ =
r

⊕

i=0

ωX ⊗ Li(−⌊iD/r⌋).

The Galois group of the extension C(X) ⊆ C(X)( r
√

1D/sr) acts on π∗OX̃ by r
√

1D/sr 4→ ζ · r
√

1D/sr

where ζ is a primitive r-th root of unity. The eighensheaf corresponding to ζ is L−1(⌊D/r⌋).
Now we take as building data of the covering

L = OX ,

D = −(ϕ) = r(KX/Z +B − f∗(BZ +MZ)),

Lr = OX(D).

Now let B be a divisor such that (X,B) is lc over the generic point of Z. In particular we have

π∗ωX̃/Z =

r−1
⊕

i=0

ωX/Z⊗OX(−⌊i(KX/Z+B−f∗(BZ+MZ))⌋) (1.4.1)

=
r−1
⊕

i=0

OX(KX/Z+⌈−i(KX/Z+B−f∗(BZ+MZ))⌉) (1.4.2)

=
r−1
⊕

i=0

OX(⌈(1− i)KX/Z−iB + if∗BZ + if∗MZ)⌉). (1.4.3)
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We assume that KX +B has simple normal crossing support and call E the sum of all the lc-centers
of (X,B) that dominate Z. Set Ẽ = π∗E, then

π∗(ωX̃/Z ⊗OX̃(Ẽ)) =

r−1
⊕

i=0

OX(⌈(1− i)KX/Z−iB+E + if∗BZ + if∗MZ)⌉).

The eigensheaf of ζ in π∗(ωX̃/Z ⊗OX̃(Ẽ)) is

OX(⌈−B + E + f∗BZ + f∗MZ)⌉).

Let V be a non-singular model of X̃. We have a diagram

X

f
!!

X̃
π##

f̃

$$

V##

h
%%

Z.

Set g : V → X and BV = g∗(KX + B) −KV . In [2, p. 245] are stated the following properties for
h : (V,BV ) → Z:

• The field extension C(V )/C(X) is Galois and its Galois group G is cyclic of order r. There
exists ψ ∈ C(V ) such that ψr = ϕ. A generator of G acts by ψ 4→ ζψ, where ζ is a fixed
primitive r-th root of unity.

• The relative log pair h : (V,BV ) → Z satisfies all properties of an lc-trivial fibration, except
that the rank of h∗OX(⌈A∗(V,BV )⌉) might be bigger than one.

• Both f : (X,B) → Z and h : (V,BV ) → Z induce the same discriminant and moduli part on
Z.

The canonical bundle formula for h : (V,BV ) → Z is

KV +BV + (ψ) = h∗(KZ +BZ +MZ) (1.4.4)

Let EV be the sum of all the centers of (V,BV ).

SNC setting 1.4.2. By [25, pp. 262-263] and [45, p. 334], in order to prove the nefness of the
moduli part, we can suppose the following (cf. [2, p. 245]):

i the varieties X, V , Z are non-singular quasi-projective and there exist simple normal crossing
divisors ΣX , ΣV , ΣZ on X, V and Z respectively such that the morphisms f and h are smooth
over Z\ΣZ and the divisors Σh

X/Z and Σh
V /Z have relative simple normal crossings over Z\ΣZ ;;

ii the morphisms f and h are projective;

iii we have f−1(ΣZ) ⊆ ΣX , f(Σv
X) ⊆ ΣZ and h−1(ΣZ) ⊆ ΣV , h(Σ

v
V ) ⊆ ΣZ .

iv the divisors B, BV and BZ ,MZ are supported by ΣX , ΣV and ΣZ , respectively.
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Lemma 1.4.3. The following properties hold for the above set-up:

1. The group G acts naturally on h∗OV (KV/Z +EV ). The eigensheaf corresponding to the eigen-
value ζ is

L̃ := f∗OX(−B + E + f∗BZ + f∗MZ).

2. Assume that h : V → Z is semistable in codimension one. Then MZ is an integral divisor, L̃
is semipositive and L̃ = OZ(MZ) · ψ.

Proof. Since (ϕ) has SNC support, the variety X̃ has canonical singularities and

h∗OV (KV/Z + EV ) = f∗π∗(ωX̃/Z ⊗OX̃(Ẽ)).

The action on h∗OV (KV/Z +EV ) is induced by the one on π∗(ωX̃/Z ⊗OX̃(Ẽ)), thus the eigensheaf
of ζ is

L̃ = f∗OX(⌈−B + E + f∗BZ + f∗MZ)⌉).
This completes the proof of item (1).
We claim that there exists an open set Z† ⊆ Z such that the codimension of Z\Z† is at least two,
such that (−BV + h∗BZ)|h−1Z† supports no fibers and (−BV + EV + h∗BZ)|h−1Z† is effective and
supports no fibers. Indeed, since h is semistable, using the same notation as in the Remark 1.2.13,
there exists j0 such that γp = 1− bj0 (here wj = 1 for any j).
Then 1− γp − bj0 = 0 and −BV + h∗BZ does not contain the fiber of p. Since EV is horizontal, the
same reasoning holds for −BV + EV + h∗BZ .
For the effectivity, from Formula (1.4.4) we deduce that the coefficients of (BV )

h are integral, thus
they are either 1 or negative. Then (−BV +EV +h∗BZ)

h = (−BV +EV )
h is effective. The effectivity

of (−BV +EV + h∗BZ)
v = (−BV + h∗BZ)

v = follows from [27], [1, p. 14]. Let H be a general fiber
of h. By restricting Formula (1.4.4) to H we get

(ψ|H) +KH + EV |H = −(BV − EV )|H ≥ 0.

This implies that there exists an open subset U ⊆ Z such that ((ψ) + KV/Z + EV )|U ≥ 0 and ψ

is a rational section of h∗O(KV/Z + EV ). Moreover, since by the action of G we have ψ 4→ ζψ,

the function ψ is a rational section of L̃ the eigensheaf of ζ. The sheaf L̃ has rank one because for
general y ∈ Z we have L̃y

∼= H0(F, ⌈−B + E + f∗BZ + f∗MZ)⌉|F ) = H0(F, ⌈−B + E⌉|F ) and the
last one is a rank one C-vector space by the hypothesis (2) in the definition of lc-trivial fibration.
Thus we can consider L̃ as a subsheaf of C(X)ψ.
We prove now that L̃|Z†

= OZ(MZ)ψ|Z†
.

Since (−BV +EV + h∗BZ)|h−1(Z†) is effective and h∗MZ −BV +EV + h∗BZ = KV/Z +EV we have

h∗OV (MZ)|h−1(Z†) ⊆ OV (KV/Z + EV )|h−1(Z†)

and
h∗h

∗OV (MZ)|Z† ⊆ h∗OV (KV/Z + EV )|Z† .

Now let a ∈ k(Z) such that h∗a +KV/Z + EV ≥ 0. Since (−BV + EV + h∗BZ)|h−1(Z†) contains no
fibers we have h∗a+ h∗MZ ≥ 0, thus h∗OV (KV/Z + EV )|Z† ⊆ h∗h

∗OV (MZ)|Z† . Then

h∗OV (KV/Z + EV )|Z† = h∗h
∗OV (MZ)|Z† .
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By considering the action of G, we obtain the equality between the eigensheaves of ζ.
Since Z† ⊆ Z is such that Z\Z† has codimension at least two, we have L̃∗∗ = OZ(MZ)ψ. The sheaf
h∗OV (KV/Z+EV ) is locally free and by the Theorem 4.16 in [7] it is semipositive. Since L̃ is a direct

summand of h∗OV (KV/Z +EV ) it is also locally free and semipositive. From the local freeness of L̃

follows the equality L̃ = OZ(MZ)ψ.
Now we prove that MZ is an integral divisor.
Since (−BV + h∗BZ)|h−1(Z†) contains no fibers and Z† is big, (−BV + h∗BZ) contains no fibers over
codimension-one points. Hence for any prime Weil divisor P ⊆ Z there exists a prime Weil divisor
Q ⊆ X such that h(Q) = P and multQ(−BV +h∗BZ) = 0. From the canonical bundle formula 1.4.4
we have

multQh
∗MZ = multQ(KV/Z + (ψ)) ∈ Z.

Moreover we have multPMZ ·multQh
∗P = multQh

∗MZ . The fact that the morphism h is semistable
in codimension one implies that multQh

∗P = 1, thus multPMZ = multQh
∗MZ ∈ Z.

Lemma 1.4.4 (Theorem 4.3 [2]). We use the same notation as 1.4.2. There exists a finite Galois
cover τ : Z ′ → Z from a non-singular variety Z ′ which admits a simple normal crossing divisor
supporting τ−1(ΣZ) and the locus where τ is not étale, and such that h′ : V ′ → Z ′ is semistable in
codimension one for some set-up (V ′, BV ′) → (X ′, BX′) → Z ′ induced by base change.

The following theorem is a generalization of Theorem 4.4 in [2]. It was proven in [14] by using
variation of mixed Hodge structure. Here we give a proof based on variation of Hodge structure.

Theorem 1.4.5. Let f : X → Z be a surjective morhpism, let Di be a reduced and irreducible divisor
such that f(Di) = Z. Set D =

∑N
i=1Di. Assume that

• we are in the SNC setting 1.4.2;

• the monodromies of Rif0∗CX0\D0
are unipotent for any i where Z0 = Z\ΣZ , X0 = f−1Z0,

D0 = D ∩X0, f0 = f |X0\D0
.

Let ρ : Z ′ → Z be a projective morphism from a non-singular variety Z ′ such that ρ−1ΣZ is a simple
normal crossings divisor. Let X ′ → (X × Z ′)main be a resolution of the component of X × Z ′ which
dominates Z ′, and let f ′ : X ′ → Z ′ be the induced fiber space:

X ′

f ′

!!

"" X

f
!!

Z ′
ρ

"" Z.

Then for any i ≥ 0 there exists a natural isomorphism ρ∗Rif∗ωX/Z(D) ∼= Rif ′
∗ωX′/Z′(D′), where D′

is the strict transform of D, which extends the base change isomorphism over Z\ΣZ .

First we have to state and prove some preliminary result.

Proposition 1.4.6. Let f : X → Z be a surjective morphism. Assume that we are in the SNC
setting 1.4.2. Let Z0 be Z\ΣZ , let X0 be f−1Z0 and f = f |X0

. Assume that the local systems
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Rif0∗CX0 have unipotent monodromies around ΣZ for any i. Let ρ : Z ′ → Z and X ′ be a projective
morphism from a non-singular variety Z ′ such that ρ−1ΣZ is a simple normal crossings divisor.
Let X ′ → (X × Z ′)main be a resolution of the component of X × Z ′ which dominates Z ′, and let
f ′ : X ′ → Z ′ be the induced fiber space. Then for any i ≥ 0 there exists a natural isomorphism
ρ∗Rif∗ωX/Z

∼= Rif ′
∗ωX′/Z′.

Proof. Set ΣZ′ = ρ−1ΣZ , Z
′
0 = Z ′\ΣZ′ , X ′

0 = f ′−1Z ′
0 and f ′

0 = f ′|X′

0
. The locally free sheaves

H
(i)
0 = Rm+if0∗CX0

and H
′(i)
0 = Rm+if ′

0∗CX′

0
are the underlying spaces of variation of Hodge

structure of weight m− i. In [29, Thm 2.6, p. 176], is proven that

Rif∗ωX/Z
∼= uFb(Rm+if∗CX0

) ∀i ≥ 0

Rif ′
∗ωX′/Z′

∼= uFb(Rm+if ′
∗CX′

0
) ∀i ≥ 0

where uFb denotes the upper canonical extension of the bottom part of the Hodge filtration. Since

H
(i)
0 has unipotent local monodromies, the upper canonical extensions coincide with the canonical

extensions. Moreover, by the unipotent monodromies assumption, the canonical extension is com-
patible with base change by [26, Prop 1, p. 4]. Hence by unicity of the extension the isomorphism
ρ∗Rif0∗ωX0/Z0

∼= Rif ′
0∗ωX′

0
/Z′

0
induces an isomorphism ρ∗Rif∗ωX/Z

∼= Rif ′
∗ωX′/Z′ .

Proof of Theorem 1.4.5. Let N be the number of irreducible components of D. We prove the state-
ment by double induction on N and on the dimension d of the fiber.

If N = 0 or d = 0 the result follows from Proposition 1.4.6. Suppose N > 0 and consider the
exact sequence

0 → OX(D2) → OX(D) → OD1
(D) → 0 (1.4.5)

where D̃ =
∑N

i=2Di. Set D̃
′ =

∑N
i=2D

′
i and

Ai = ρ∗Rif∗ωX/Z(D̃) Bi = ρ∗Rif∗ωX/Z(D) Ci = ρ∗Rif∗ωD1/Z(D̃)

A′
i = Rif ′

∗ωX′/Z′(D̃′) B′
i = Rif ′

∗ωX′/Z′(D′) C ′
i = Rif ′

∗ωD′

1
/Z′(D̃′).

We have a commutative diagram with exact lines

Ci−1

α

!!

"" Ai

β

!!

"" Bi

γ

!!

"" Ci

δ
!!

"" Ai+1

ε

!!

C ′
i−1

"" A′
i

"" B′
i

"" C ′
i

"" A′
i+1.

The morphisms β and ε are isomorphisms by the inductive hypothesis on N . The morphisms α and
δ are isomorphisms by the inductive hypothesis on d. Then, by the snake lemma, also γ is also an
isomorphism.

Lemma 1.4.7. Let γ : Z ′ → Z be a generically finite projective morphism from a non-singular
variety Z ′. Assume there exists a simple normal crossing divisor ΣZ′ on Z ′ which contains γ−1ΣZ

and the locus where γ is not étale. Let MZ′ be the moduli part of the induced set-up (V ′, BV ′) →
(X ′, BX′) → Z ′. Then γ∗(MZ) = MZ′.
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Proof. The proof is exactly the same as that of [2, p. 248]. We just replace γ∗h∗OV (KV/Z) with
γ∗h∗OV (KV/Z + E) and h′∗OV ′(KV ′/Z′) with h′∗OV ′(KV ′/Z′ + E′).
Step 1 Assume V/Z and V ′/Z ′ are semistable in codimension one. In particular, MZ and MZ′ are
integral divisors. Since h is semistable in codimension one, Theorem 1.4.5 implies

γ∗h∗OV (KV/Z + E) ∼= h′∗OV ′(KV ′/Z′ + E′)

This isomorphism is natural, hence compatible with the action of the Galois group G. We have
an induced isomorphism of eigensheaves corresponding to ζ, γ∗OZ(MZ) ∼= OZ′(MZ′). Therefore
γ∗MZ −MZ′ is linearly trivial, and is exceptional over Z . Thus γ∗MZ = MZ′ .
Step 2 By [2, Theorem 4.3, p. 240] and [2, Theorem 4.1, p. 242], we can construct a commutative
diagram

Z̄

τ

!!

γ′

"" Z̄ ′

τ ′

!!

Z γ
"" Z ′.

as in [2, Remark 4.2, p. 241], so that V̄ /Z̄ is semistable in codimension one for an induced set-up
(V̄ , BV̄ ) !!" (X̄, BX̄) !!" Z̄. By [2, Theorem 4.3, p. 240] and [2, Theorem 4.1, p. 242], we replace Z ′

by a finite covering so that V̄ ′/Z̄ ′ is semistable in codimension one for an induced set-up (V̄ ′, BV̄ ′) !!"
(X̄ ′, BX̄′) !!" Z̄ ′. By Step 1, we have MZ̄′ = γ′∗(MZ̄′). Since τ and τ ′ are finite coverings, Lemma
1.2.16 implies τ∗(MZ) = MZ̄ and τ ′∗(MZ′) = MZ̄′ . Therefore τ ′∗(MZ′ −γ∗(MZ)) = 0, which implies
MZ′ = γ∗(MZ).

Theorem 1.4.8. Let f : (X,B) → Z be an lc-trivial fibration. Then there exists a proper birational
morphism Z ′ → Z with the following properties:

(i) KZ′ +BZ′ is a Q-Cartier divisor;

(ii) MZ′ is a nef Q-Cartier divisor and for every proper birational morphism ν : Z ′′ → Z ′

ν∗(MZ′) = MZ′′

where BZ′, MZ′ and MZ′′ are the discriminant and the moduli parts of the lc-trivial fibrations induced
by the base change

X ′′

!!

"" X ′

!!

"" X

f
!!

Z ′′
ν

"" Z ′ "" Z.

Proof. The proof follows the same lines as in [2, p. 249].
We can suppose that we are in a SNC setting,

(V ′, BV ) → (X ′, B) → Z ′.
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• We prove that for any birational morphism µ : Z ′ → Z we have µ∗MZ′ = MZ′′ (we use Lemma
1.4.7). This proves the first point of the theorem.

• By Lemma 1.4.4 there exists a finite morphism τ : Z̄ ′ → Z ′ such that h̄′ : V̄ ′ → Z̄ ′ is semistable
in codimension one.

• By Lemma 1.4.3, the divisor MZ̄′ is integral and semipositive.

• Since τ is finite we can apply Lemma 1.2.16 and have τ∗MZ′ = MZ̄′ .

• Again since τ is finite and MZ̄′ is nef, MZ′ is also nef.

1.5 Reduction theorems

This section is devoted to the proof of Theorem 1.1.4. Throughout this part we will assume that
the bases of the lc-trivial fibrations are smooth projective varieties.

Lemma 1.5.1. Let f : (X,B) → Z be an lc-trivial fibration. Then there exists a hyperplane section
H ⊆ Z such that, if f |XH

: (XH , B|XH
) → H is the induced lc-trivial fibration, where XH = f−1H,

we have BZ |H = BH and MZ |H = MH .

Proof. By the Bertini theorem, since Z is smooth, we can find a smooth hyperplane section H ⊆ Z
such that the pair (X,B + f−1(H) + γP f

∗P ) is lc for any prime Weil divisor P ⊆ Z and (X,B +
f−1(H) + tf∗P ) is plt for any P ⊆ Z prime divisor and for any t < γP . Let P be any prime Weil
divisor in Z. Set

XH = f−1(H); BXH
= B|XH

; PH = P ∩H.

The restriction fH : (XH , BXH
) → H is again an lc-trivial fibration. The canonical bundle formula

for fH is

KXH
+BXH

+
1

r
(ψ) = f∗

H(KH +BH +MH).

By [30, Theorem 7.5] the pair (XH , BXH
+ γP f

∗
HPH) is lc for any PH ⊆ H prime divisor and

(XH , BXH
+ tf∗

HPH) is klt for any PH ⊆ H prime divisor and for any t < γP . Moreover let P such
that PH is a component of P |H . Assume that we can compute the log canonical threshold over P on
a component Qi0 of f∗P . Then the coefficient of BXH

+γP f
∗
HPH along the components of Qi0 |XH

is
1. Thus the log canonical threshold of f∗

HPH with respect to (XH , BH) is equal to the log canonical
threshold of f∗P with respect to (X,B) and we have BZ |H = BH .

If we write the canonical bundle formula for f , we have

KX +B +
1

r
(ϕ) = f∗(KZ +BZ +MZ).

If we sum f∗H on both sides of the equality, restrict to f−1H = XH and apply the adjunction
formula, we obtain

KXH
+BXH

+
1

r
(ϕ|XH

) = f∗
H(KH +BZ |H +MZ |H).

Since we have BZ |H = BH , we must also have MZ |H = MH .



1.5. REDUCTION THEOREMS 21

Lemma 1.5.1 is the main tool in order to prove by induction Theorem 1.1.4.

Proposition 1.5.2. Conjecture EbS(1) implies that for any lc-trivial fibration f : X → Z we have

codim(Bs|mMZ |) ≥ 2

where m = m(d, r) is as in Conjecture EbS(1).

Proof. We prove the statement by induction on k = dimZ. The case dimZ = 1 follows from EbS(1).
Suppose then that the statement is true for an lc-trivial fibration whose base has dimension k − 1
and let f : X → Z be an lc-trivial fibration with dimZ = k > 1. Then we have

|mMZ | = |M |+ Fix

where Fix is the fixed part of the linear system and codim(Bs|M |) ≥ 2. Let H be a hyperplane
section as in Lemma 1.5.1, such that H −mMZ is ample. By the Kodaira vanishing theorem

h0(Z,mMZ −H) = h1(Z,mMZ −H) = 0

and the restriction induces an isomorphism

H0(Z,mMZ) ∼= H0(H,mMZ |H) ∼= H0(H,mMH).

Then if we write
|mMZ ||H = |M ||H + Fix|H
|mMH | = |L|+ fix

where fix is the fixed component of the linear system |mMH |, we have fix ⊇ Fix|H . And since by
inductive hypothesis fix = 0 also Fix|H = 0 and then Fix = 0.

Corollary 1.5.3. Conjecture EbS(1) implies that for any lc-trivial fibration f : X → Z we have
h0(Z,mMZ) ≥ 2, unless MZ is torsion, where m is as in EbS(1).

Proof. By Proposition 1.5.2 there must be at least two sections, unless MZ is torsion.

Proof of Theorem 1.1.4. We treat first the torsion case. We prove by induction on the dimension
of the base of the lc-trivial fibration that there exists a nonzero integer m = m(d, r) such that
mMZ

∼= OZ . If the dimension of the base equals one then it follows from Conjecture EbS(1).
Assume then that f : X → Z is an lc-trivial fibration with dimZ = k > 1 and MZ is torsion, that
is, there exists an integer a such that aMZ ∼ 0.

Let H be a hyperplane section such that MZ |H = MH , as in Lemma 1.5.1, and such that
H −mMZ is an ample divisor. Since MZ |H = MH , also MH is torsion because

OH
∼= OZ |H ∼= OH(aMZ) ∼= OH(aMH).

By the Kodaira vanishing theorem, since H−mMZ is an ample divisor and dimZ = k > 1, we have

H0(Z,mMZ) ∼= H0(H,mMH).
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By the inductive hypothesis mMH is trivial, hence h0(H,mMH) = 1. Thus also h0(Z,mMZ) = 1
and mMZ ∼ 0.
Then we assume that MZ is not torsion and we prove the statement by induction on the dimension
of the base of the lc-trivial fibration. The one-dimensional case is exactly Conjecture EbS(1).
Suppose then that the statement is true for all the lc-trivial fibrations whose base has dimension
k−1 and let f : X → Z be an lc-trivial fibration with dimZ = k. Let Z ′ → Z be the birational model
given by Theorem 1.2.15(ii). We prove that mMZ′ is base-point-free. Let ν : Ẑ → Z ′ be a resolution
of the linear system |mMZ′ |. Then ν∗|mMZ′ | = |Mob|+Fix where |Mob| is a base-point-free linear
system and Fix is the fixed part. We have

ν∗|mMZ′ | = |ν∗(mMZ′)| = |mMẐ |.

Since by Proposition 1.5.2 we have codim(Bs|mMẐ |) ≥ 2, it follows that Fix = 0 and |mMZ′ | is
base-point-free.

Remark 1.5.4. By considering as in Proposition 1.5.2 the long exact sequence associated with

0 → OZ(mMZ −H) → OZ(mMZ) → OH(mMZ |H) → 0

for a hyperplane section H as in Lemma 1.5.1, it is possible to also prove an inductive result on
effective non-vanishing. That is, the existence of an integerm = m(d, r) such thatH0(Z,mMZ) 0=
0 for all lc-trivial fibrations f : (X,B) → Z with dimZ = 1 implies the same result for lc-fibrations
with dimZ = k ≥ 1 (and with same dimension of the fibers and Cartier index).

1.6 Bounding the denominators of the moduli part

Conjecture EbS 1.1.2 implies in particular the existence of an integer N = N(d, r) such that for
any f : (X,B) → Z lc-trivial fibration with fibers of dimension d and Cartier index of (F,B|F ) equal
to r the divisor NMZ has integral coefficients. The result was proved in [41, Theorem 3.2] when
the fiber is a rational curve. In Section 1.8 we find, by a different method, an effective bound for
the denominators of MZ in the case of general fiber isomorphic to P1 that is considerably smaller
than the one in [41]. For the reader’s convenience we present here an argument, due to Todorov [41,
Theorem 3.2], valid in the general case.

Theorem 1.6.1. Let b be a non-negative integer. There exists an integer m = m(b) such that for
any klt-trivial fibration f : (X,B) → Z with BettidimE′(E′) = b where E′ is a non-singular model
of the cover of a general fiber of f , E → F associated to the unique element of |r(KF + B|F )| the
divisor mMZ has integral coefficients.

We begin by reducing the problem to the case where the base Z is a curve.

Proposition 1.6.2. If Theorem 1.6.1 holds for all fibrations whose bases have dimension one then
Theorem 1.6.1 holds for fibrations whose bases have dimension k ≥ 1.

Proof. We prove the statement by induction on k = dimZ. If k = 1, it follows from the hypothesis.
Assume the statement holds for fibrations over bases of dimension k− 1 and we consider f : X → Z
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with dimZ = k. Let H be a hyperplane section of Z as in Lemma 1.5.1. We have thus MZ |H =
MH . Since H is ample, it meets each component of MZ and we can choose it such that it meets
transversally the components of MZ . It follows that NMZ has integral coefficients if and only if
NMH does, and we are done by inductive hypothesis.

Proof of Theorem 1.6.1. By Proposition 1.6.2 we can assume that dimZ = 1.
Consider a finite base change as in Theorem 1.3.12

τ : Z ′ → Z.

If h′ : V ′ → Z ′ is the induced morphism then Rdh′∗CV ′

0
has unipotent monodromies. The covering τ

is Galois and let G be its Galois group. Then we have an action of G on Z ′

G → Bir(Z ′) = Aut(Z ′). (1.6.1)

By abuse of notation we will denote by g both an element of G and its image in Aut(Z ′).
Let p′ ∈ Z ′ be a point and let e be the ramification order of τ at p′. Let Gp′ be the stabilizer of

p′ with respect to the action (1.6.1). Set µe = {x ∈ C |xe = 1}.
There exists an analytic open set p′ ∈ U ⊆ Z ′ and a local coordinate z on U centered in p′ such that
for any g ∈ Gp′ there exists x ∈ µe such that

g|U : U −→ U
z 4−→ xz.

This induces a natural homomorphism
Gp′ → µe.

Then the actions of Gp′ given by Proposition 1.3.11 factorize through actions of µe:

Φ : µe → GL((Rdh′∗CV ′)p′),

Ψ : µe → GL((h′∗ωV ′/Z′)p′)

which commute with the inclusion (h′∗ωV ′/Z′)p′ ⊆ (Rdh′∗CV ′)p′ , that is, such that for any ζ ∈ µe the
restriction of Φ(ζ) to (h′∗ωV ′/Z′)p′ equals Ψ(ζ).
Thus on

(h′∗ωV ′/Z′)p′ =
r−1
⊕

i=0

f∗OX(⌈(1− i)KX/Z − iB + if∗BZ + if∗MZ⌉)

we have two actions:

• one by the group µe that acts on ϕ by a multiplication by an e-th root of unity,

• one by the group µr that acts on r
√
ϕ by a multiplication by an r-th root of unity.

Then there is a µr ⋊ µe-action on (h′∗ωV ′/Z′)p′ and we can define a µl-action on (h′∗ωV ′/Z′)p′ where
l = er/(e, r). Since µr ⊆ µl and this second group is commutative, the action of µl preserves the
eigensheaves with respect to the action of µr. By Proposition 1.3.16, the divisor MZ′ is an eigensheaf
with respect to the action of µr. Then µl acts on the stalk OZ′(MZ′)⊗ Cp′ by a character χp′ .
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If for every p′ and for every character χp′ the order of χp′ divides an integer N then

NMZ = (τ∗O(NMZ′))G

because by Proposition 1.2.16 we have MZ′ = τ∗MZ . Thus NMZ is a Cartier divisor.
Let H′ be the canonical extension of the sheaf (Rd(h′0)∗C)prim ⊗ OZ′

0
to Z ′, where d is the

dimension of the fiber of h′, the subscript prim stands for the primitive part of the cohomology
and h′0 : V

′
0 → Z ′

0 is the restriction to the smooth locus. The Hodge filtration also extends and its
bottom piece is h′∗OV ′(KV ′/Z′). Then all the characters that are conjugate to χp′ must appear as
subrepresentations of H′

p′ (see also [10, Corollary 4.2.8(ii)(b)] or Corollary 1.3.14).
If χp′ acts by a primitive k-th root of unity, then its conjugate subrepresentations are φ(k) where

φ is the Euler function. This bounds k because then φ(l) ≤ Bd, where Bd = hd(E′,C) is the d-th
Betti number.
Set m(x) = lcm{k |φ(k) ≤ x}. Then m(Bd)MZ has integral coefficients.

1.7 The case MZ ≡ 0

In this section Z will always be a smooth projective variety.

1.7.1 KLT-trivial fibrations with numerically trivial moduli part

The goal of this subsection is the proof of Theorem 1.1.5. As in Theorem 1.1.4 the problem can be
reduced to the case where the base is a curve.

Proposition 1.7.1. Let b be a non-negative integer. Assume that there exists an integer m = m(b)
such that for any klt-trivial fibration f : (X,B) → Z with

• dimZ = 1;

• MZ ≡ 0;

• BettidimE′(E′) = b where E′ is a non-singular model of the cover E → F associated to the
unique element of |r(KF +B|F )|;

we have mMZ ∼ 0.
Then the same holds for bases Z of arbitrary dimension.

Proof. We proceed by induction on dimZ = k. The base of induction is the hypothesis of the
theorem.
Let us assume the statement holds for bases of dimension k − 1 and prove it for a klt-fibration
f : (X,B) → Z with dimZ = k. Let H be a hyperplane section, given by Lemma 1.5.1, such that
MZ |H = MH . Let m be the integer given by the inductive hypothesis. Since MZ ≡ 0 the divisor
H −mMZ is ample. By taking the long exact sequence associated to

0 → OZ(mMZ −H) → OZ(mMZ) → OH(mMZ |H) → 0

we obtain H0(Z,mMZ) ∼= H0(H,mMH) because H i(Z,mMZ − H) = 0 for any i < dimZ. Then
H0(Z,mMZ) ∼= C, which implies mMZ ∼ 0.
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Proof of Theorem 1.1.5. By Proposition 1.7.1, it is sufficient to prove the statement when the base
Z is a curve.

Let us write the canonical bundle formula for f :

KX +B +
1

r
(ϕ) = f∗(KZ +BZ +MZ).

Let V be a smooth model of the normalization of X in C(X)( r
√
ϕ). Let h : V → Z be the induced

morphism and let Z0 be the open set where h is smooth. Let V0 = h−1Z0 and h0 = h|V0
.

(i) Let us suppose that Rdh0∗CV0
has unipotent monodromies. We argue as in [2], Theorems 4.5

and 0.1.
The line bundle OZ0

(MZ) is a direct summand in h0∗ωV0/Z0
(see [2, Lemma 5.2]) and since

degMZ = 0 by [19] it defines a local subsystem of the variation of Hodge structure Rdh0∗CV0
.

By Corollary 1.3.14, applied to HC = Rdh0∗CV0
and W = OZ0

(MZ), there exists m such that
OZ0

(mMZ) is a trivial local system where

m = m(b) = lcm{k|φ(k) ≤ b}

with φ the Euler function and b = hd(E′,C). Since Rdh0∗CV0
has unipotent monodromies, the

canonical extension commutes with the tensor product, thus the isomorphism OZ0
(mMZ) ∼=

OZ0
extends to

OZ(mMZ) ∼= OZ .

(ii) Unipotent reduction: Consider a finite base change as in Proposition 1.3.12

τ : Z ′ → Z

such that Rdh′∗CV ′

0
has unipotent monodromies, where h′ : V ′ → Z ′ is the induced morphism.

We have τ = τk ◦ · · · ◦ τ1 where

τ : Z ′ = Zk+1
τk−→ Zk → · · · → Z2

τ1−→ Z1 = Z.

The morphism τj is a cyclic covering defined by building data

δjAj ∼ Hj ,

where Aj is a very ample divisor on Zj . We know by case (i) that m(b)MZ′ ∼ 0. By Theorem
1.6.1 m(b)MZk

is a Cartier divisor. We have thus the following isomorphisms:

C ∼= H0(Zk+1,m(b)MZk+1
) ∼= H0(Zk+1, τ

∗m(b)MZk
) ∼= H0(Zk,m(b)MZk

⊗ τ∗OZk+1
).

The second isomorphism is by Proposition 1.2.16 and the third follows from the projection
formula. From the general theory of cyclic covers we have an isomorphism

τ∗OZk+1

∼=
δk−1
⊕

l=0

OZk+1
(−lAk).
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Then we obtain

H0(Zk+1,m(b)MZk+1
) ∼=

δk−1
⊕

l=0

H0(Zk,m(b)MZk
− lAk).

Since MZ ≡ 0, the divisor m(b)MZk
− lAk has negative degree on Zk for any l > 0, thus

C ∼= H0(Zk+1,m(b)MZk+1
) ∼= H0(Zk,m(b)MZk

)

and m(b)MZk
∼ 0 We can conclude by induction on k.

Remark 1.7.2. Note that the same proof as in point (ii) of the proof of Theorem 1.1.5 implies
a statement on Effective non-vanishing (see also Remark 1.5.4). Indeed let τ : Z ′ → Z be as
in Proposition 1.3.12. Assume that H0(Z ′,m(b)MZ′) 0= 0. Then the reasoning above implies that
H0(Z,m(b)MZ) 0= 0.

1.7.2 LC-trivial fibrations with numerically trivial moduli part

In this section we prove Theorem 1.1.6. Let f : (X,B) → Z be an lc-trivial fibration. Let V be a
smooth model of the normalization of X in C(X)( r

√
ϕ), let g : V → X be induced morphism and let

BV = g∗(KX + B) −KV . Assume moreover that (V,BV ) is log smooth and let PV be the divisor
given by the sum of the components E of BV of coefficient one and such that h(E) = Z. Let
h = f ◦ g and let Z0 be the open set where h is smooth. Let V0 = h−1Z0 and h0 = h|V0

. Let d be
the dimension of the generic fiber.

By [40, §5], Rdh0∗CV0\PV
is the support of a variation of mixed Hodge structure on Z0,

(Rdh0∗CV0\PV
, {Fp}, {Wk})

Such that the bottom piece of the Hodge filtration {Fp} is

Fd = h0∗ωV0/Z0
(PV ).

We recall that, by the definition of variation of mixed Hodge structure, the filtration induced by
{Fp} on Wk/Wk−1 determines a variation of Hodge structure of weight k on Z0. Moreover the
weight filtration on Fb is the weight filtration defined in (1.3.1)

Wk((h0)∗ωV0/Z0
(PV )) = (h0)∗Ω

k
V0/Z0

(logD) ∧ Ω
d−k
V0/Z0

.

In order to prove Theorem 1.1.6, we prove that OZ0
(MZ) is a subsystem of a variation of Hodge

structure related to the variation of mixed Hodge structure on Rdh0∗CV0\PV
. We start with the

following two results.

Proposition 1.7.3. Assume that for any lc-trivial fibration f : (X,B) → Z with

• dimZ = 1;
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• MZ ≡ 0;

there exists an integer m such that mMZ ∼ 0.

Then the same conclusion holds for bases Z of arbitrary dimension.

Proof. The proof follows the same lines as the proof of Proposition 1.7.1.

Lemma 1.7.4 (Lemma 21, [25]). Let L be an invertible sheaf over a non-singular projective curve
C, let C0 be an open subset of C and let h be a metric on L|C0

. Let p be a point of C\C0 and let t
be a local parameter of C centered at p. We assume that for a uniformizing section v of L we have
h(v, v) = O(t−2αp | log t|βp) for some real numbers αp,βp. Then

degC L =
i

2π

∫

C0

Θ+
∑

p∈C\C0

αp

where Θ is the curvature associated to h.

The following is a generalization of [3, Prop 3.4].

Proposition 1.7.5. Let V and Z be smooth projective varieties. Let h : V → Z be a fibration and
let ΣZ be a simple normal crossing divisor such that

• h is smooth over Z0 = Z\ΣZ ,

• Wl/Wl−1 has unipotent monodromies, where {Wk} is the weight filtration.

Let L be an invertible sheaf such that L|Z0
is a direct summand of Wl/Wl−1 for some l. Assume

that L ≡ 0. Then L|Z0
is a local subsystem of Wl/Wl−1.

Proof. Since Wl/Wl−1 is a geometric variation of Hodge structure, there is on it a flat bilinear form
Q and thus a metric and a metric connection. Then L|Z0

has an induced hermitian metric h, a
metric connection and a curvature Θ. To prove that L|Z0

defines a flat subsystem of Wl/Wl−1 it is
sufficient to prove that the induced metric connection is flat, i.e. that Θ = 0.
The relation between the matrix Γ of the connection and the matrix H that represents the metric is
Γ = H̄−1∂H̄. By Remark 1.3.9, the order near p of the elements of Γ is O(|t|−1| log t|βp). Let v be
a uniformizing section of L. Then the order of h(v, v) near p is O(| log t|βp). Let C ⊆ Z be a curve
such that C ∩Z0 0= ∅. Let ν : Ĉ → C be its normalization and C0 = C ∩Z0. We apply Lemma 1.7.4
and we obtain

degC L =
i

2π

∫

ν−1C0

ν∗Θ.

Since L is numerically zero, we obtain

∫

ν−1C0

ν∗Θ = 0

for every C and therefore Θ = 0.
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Let us recall that we are working with a cyclic covering V → X of degree r and that the Galois
group of the field extension C(X) ⊆ C(V ) is the group of r-th roots of unity that we denote by µr.
Moreover we have an induced action of µr on the sheaves of relative differentials. Let PV be the
divisor given by the sum of the components E of BV of coefficient one and such that h(E) = Z.

Lemma 1.7.6. The action of µr on (h0)∗ωV0/Z0
(PV ) preserves the weight filtration

{Wk((h0)∗ωV0/Z0
(PV ))}.

Proof. A generator of µr determines a birational map σ : V !!" V . Consider a resolution of σ

V1

σ1

!!

σ2

&&

V σ
"" V.

Let V1,0 ⊆ V be the locus where h ◦ σ1 is smooth. Let us consider the weight filtrations on
Ω•
V0/Z0

(logPV ) and on Ω•
V1,0/Z0

(logPV1
) where

PV1
= Supp(σ−1

2 PV ).

The morphism σ2 induces, for any m, the following:

σ∗
2 : Ω

m
V0/Z0

(logPV ) → Ω
m
V1,0/Z0

(logPV1
).

We want to prove that σ2 preserves the weight filtration. Since σ2 is a composition of blow-ups of
smooth centers it is sufficient to prove the property for one blow-up.
Let z1, . . . , zn be a system of coordinates on U ⊆ V0 such that

PV ∩ U = {z1 · . . . · zk = 0}.

Then

σ∗
2

(

dz1
z1

∧ · · · ∧ dzh
zh

∧ dzh+1 ∧ · · · ∧ dzn

)

= σ∗
2

(

dz1
z1

)

∧ · · ·∧ σ∗
2

(

dzh
zh

)

∧ σ∗
2(dzh+1)∧ · · ·∧ σ∗

2(dzn).

Let C be the center of the blow-up, let zi be one of the coordinates. There are two cases

(i) locally C is contained in the zero locus of zi;

(ii) C is not contained in the zero locus of zi.

In case (i), let t be an equation of the exceptional divisor and let z′i be an equation of the strict
transform of zi. Then σ∗

2(dzi) = d(z′i · t) = t · dz′i + z′i · dt and

σ∗
2

(

dzi
zi

)

=
t · dz′i + z′i · dt

z′it
=

dz′i
z′i

+
dt

t
.

In case (ii), we simply have

σ∗
2(dzi) = dz′i and σ∗

2

dzi
zi

=
dz′i
z′i

.

Finally, the morphism σ1 acts by pushforward and that does not increase the number of poles.
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Proof of Theorem 1.1.6. By Proposition 1.7.3 we can assume that the base Z is a curve.
Let us suppose that Wk/Wk−1 has unipotent monodromies for every k. Since by Lemma 1.7.6 the
action of µr preserves the weight filtration

{Wk((h0)∗ωV0/Z0
(PV ))}

on V , then for any k the sheaf

Wk((h0)∗ωV0/Z0
(logPV )) = h∗(Ω

k
V0/Z0

(logPV ) ∧ Ω
n−k
V0/Z0

)

decomposes as sum of eigensheaves. In particular, since OZ(MZ) is an eigensheaf of rank one of
h∗ωV/Z(PV ), there exist l such that OZ(MZ)|Z0

⊆ Wl and OZ(MZ)|Z0
0⊆ Wl−1. Thus there exists V

containing Wl−1 such that Wl = OZ(MZ)|Z0
⊕ V. By Proposition 1.7.5 thus OZ(MZ)|Z0

defines a

local subsystem of Wl/Wl−1. By Corollary 1.3.14 we have OZ(MZ)|
m(h)
Z0

∼ OZ with h = rkWl/Wl−1.
Since if the monodromies are unipotent the canonical extension commutes with tensor product, we
have OZ(MZ)

m(h) ∼ OZ .
The general situation, when Wk/Wk−1 has non unipotent monodromies for some k, can be

reduced to the unipotent situation. We take a covering τ : Z ′ → Z such that on Z ′ we have unipotent
monodromies. Then m(h)MZ′ ∼ 0 and since MZ′ = τ∗MZ we have deg τ ·m(h)MZ ∼ 0.

Remark 1.7.7. It follows from the proof that it is possible to bound the torsion index of OZ(MZ)
in terms of the rank of Wl/Wl−1. This rank is for instance less or equal than hd(E\PE ,C) where
ρ : E → F is a smooth model of the covering of F induced by |r(KF +B|F )| and PE are the places
of the pair (E,BE) obtained by ρ∗(KF +B|F ) = KE +BE . It would be useful to determine exactly
the l such that OZ(MZ) is a subline bundle of Wl/Wl−1 in order to have a bound that is easier to
compute.

1.8 Bounds on the denominators when the fiber is a rational curve

1.8.1 A useful result on blow-ups on surfaces

Let X be a smooth surface. Let δ : X̂ → X be a sequence of blow-ups, δ = εh ◦ · · · ◦ ε1 and denote
by pi the point blown-up by εi. In what follows by abuse of notation we will denote by Ei the
exceptional curve of εi as well as its birational transform in further blow-ups. In what follows we
will suppose that in Exc(δ) there is just one (−1)-curve. Since the exceptional curve Eh of εh
is a (−1)-curve it is the only (−1)-curve of Exc(δ). Suppose that the first point p1 that is blown-up
belongs to a smooth curve F . We will denote by F̃ the strict transform of F by εi ◦ · · · ◦ ε1 for each
i.

Lemma 1.8.1. Let f : (X,B) → Z be an lc-trivial fibration such that f : X → Z is a P1-bundle on
a smooth curve Z and suppose that B = (2/d)D where D is a reduced divisor such that D · F = d.
Suppose moreover that there is a point p ∈ Z such that D is tangent to F = f∗p at a smooth point
q of D with contact of order l ∈ [d/2, d). Then the log canonical threshold

γ := γp = sup{t ∈ R| ((X,B), tf∗p) is lc over p}
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has the following expression

γ = 1 +
1

l
− 2

d
.

Proof. A log resolution for the pair (X, 2/dD+γpF ) over p is a sequence of blow ups δ = εl ◦ · · · ◦ ε1
such that ε1 blows up q and for any i ∈ {2, . . . , l} the morphism εi is the blow up of the point
F̃ ∩ Ei−1. A picture of the (l − 1)-th step is

F̃

D̃

El−1

✬

✫
# # E1

Then

δ∗D = D̃ +

l
∑

j=1

jEj ,

δ∗(
2

d
D) =

2

d
D̃ +

2

d

l
∑

j=1

jEj ,

and

δ∗KX = KX̃ +

l
∑

j=1

jEj .

By Remark 1.2.13 γ is computed by

γ = min{1, min
i∈{1...l}

{1 +
1

i
− 2

d
}}

= min{1, 1 +
1

l
− 2

d
}

we obtain

γ = 1 +
1

l
− 2

d
.

1.8.2 Local results

In this section we will always be in the situation where the fibers have dimension 1. In this case, if
B = 0 the condition that KF is torsion implies the generic fiber is an elliptic curve. If B 0= 0 then
F has to be a rational curve and the second condition in the definition of the lc-trivial fibrations
implies that the horizontal part of B is effective.

Thanks to the following lemma, studying the denominators of MZ is the same thing as studying
the denominators of BZ .
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Lemma 1.8.2. Let Z be a smooth projective variety. Let f : (X,B) → Z be an lc-trivial fibration
whose general fiber is P1. Then for all I ∈ N the divisor IrBZ has integral coefficients if and only if
IrMZ has integral coefficients.

Proof. By cutting with sufficiently general hyperplane sections we can assume that dimZ = 1.
We write the canonical bundle formula for f : (X,B) → Z:

KX +B +
1

r
(ϕ) = f∗(KZ +BZ +MZ).

Let ν : X̂ → X be a desingularization of X, let B̂ be the divisor defined by

KX̂ + B̂ = ν∗(KX +B)

and f̂ = f ◦ ν. Then f̂ : (X̂, B̂) → Z is lc-trivial by Remark 1.2.10 and has the same discriminant
as f . Moreover it has the same moduli part, since

KX̂ + B̂ +
1

r
(ϕ) = ν∗(KX +B) +

1

r
(ϕ) = f̂∗(KZ +BZ +MZ).

The surface X̂ is smooth and X̂ → Z has generic fiber P1 hence there exists a birational morphism
defined over Z

X̂

f̂
!!

"" X ′

f ′

$$

Z

where f ′ : X ′ → Z is a P1-fibration. It follows that each fiber of f̂ has an irreducible component
with coefficient one. Then the statement follows from the equality

r(KX̂ + B̂) + (ϕ) = rf̂∗(KZ +BZ +MZ).

Indeed the divisor

r(KX̂ + B̂) + (ϕ)− rf̂∗KZ

is integral, then so is rf̂∗(BZ +MZ). Let p ∈ Z be a point, let G be a component of the fiber f̂∗p
with coefficient 1. Then

coeffG(rf̂
∗(BZ +MZ)) = rcoeffp(BZ +MZ) ∈ Z.

It follows that rIcoeffp(BZ) is an integer if and only if rIcoeffp(MZ) is.

Theorem 1.8.3. Let f : (X,B) → Z be an lc-trivial fibration such that X is a smooth projective
surface, Z is a smooth projective curve and f : X → Z is a P1-bundle. Let p ∈ Z be a point and γ

be the log canonical threshold of f∗p with respect to (X,B). Then there is a constant m ≤ 2r2 such
that mγ is an integer. Such an m is of the form lr where l ≤ 2r.
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Proof. The pair (X,B + γF ) is lc and not klt, that is, it has an lc center. There are now two cases.
The center has dimension one.
If the center has dimension one, then it is the whole fiber because all the fibers are irreducible. In
this case we have

1 = multF (B + γF ) = multF (B) + γ

and since rmultF (B) ∈ Z also rγ ∈ Z.
The center has dimension zero.
Step 1 Take ν : X ′ → X a log resolution of (X,B+ γF ). Notice that the fiber over p is a tree of P1.
Since (X,B+γF ) is lc and not klt, one of the components of ν∗f∗p is a place for the pair (X,B+γF ),
that is, the coefficient of the divisor

ν∗(KX +B + γF )−KX̂

along it is one. Write ν as a composition of blow-ups, set ν = εN ◦ · · · ◦ ε1 and let k be the minimum
of the indices such that the exceptional curve Ek of εk is a place for (X,B + γF ). Let η be the
composition εk ◦ · · · ◦ ε1 : X1 → X. We have:

X ′

ν

!!

''

X1

η

((

X

If the only η-exceptional (−1)-curve in X1 is Ek then we set X̂ = X1 and δ := η. Otherwise, if there
is another (−1)-curve, by the Castelnuovo’s theorem we can contract it in a smooth way:

X ′

ν

!!

''

X1

!!

X2

((

X

This process ends because in X ′ there were finitely many ν-exceptional curves. Then we obtain a
smooth surface X̂ such that the only (−1)-curve in X is P . Set δ : X̂ → X. Modulo renumbering
the indices we can assume that δ = εh ◦ · · · ◦ ε1.



1.8. BOUNDS ON THE DENOMINATORS WHEN THE FIBER IS A RATIONAL CURVE 33

Step 2 We have obtained X̂ smooth with a diagram

X ′

ν

!!

&&

X̂

δ

$$

X

where there is only one δ-exceptional (−1)-curve that is a place for the pair (X,B + γF ). Let pi be
the point blown up by εi. Let B̃j

i be the strict transform of the component Bi of B at the step j
and B̃j be the strict transform of B. By abuse of notation we will denote by F̃ the strict transform
of F by every εi and by Ei the exceptional curve of εi as well as its strict transform in the further
blow-ups. Notice that Eh is the unique place. In what follows we will adopt the following notation:

B =
∑

biBi;

δ∗KX = KX̂ −
∑

eiEi; δ∗B = B̃ +
∑

αiEi; δ∗F = F̃ +
∑

aiEi.

Here B̃ and F̃ denote the strict transform of B and F . Since bi ∈ 1/rZ for any i, we have

αi ∈ 1

r
Z for any i. (1.8.1)

Since Eh is a place, we have

1 = multEh
(δ∗(KX +B + γF )−KX̂) = −eh + αh + γah.

Since eh is an integer and αh ∈ 1/rZ, if we prove that ah ≤ 2r we are done. By the minimality
of δ there exists a component B1 of B such that the strict transform B̃h

1 of B1 meets Eh, that is,
B̃h

1 · Eh > 0. Then

2r ≥ B1 · F = δ∗B1 · δ
∗F = B̃h

1 · δ∗F = B̃h
1 · (F̃ +

∑

aiEi)

≥ ahB̃
h
1 · Eh ≥ ah.

We can finally prove the main local result.

Theorem 1.8.4. Let X and Z be smooth projective varieties. Let f : (X,B) → Z be an lc-trivial
fibration whose generic fiber is P1. Let BZ =

∑

βiPi be the discriminant. Then for every i there
exists li ≤ 2r such that rliβi ∈ Z.

Proof. The statement in dimension 2 follows from Theorem 1.8.3 and [2, Lemma 2.6]. Indeed if
X → Z is a fibration whose general fiber is a P1 and X is smooth, then by the general theory of
smooth surfaces there exists a birational morphism σ : X → X ′ where X ′ is a P1-bundle. More
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precisely X ′ is a relatively minimal model of X that is unique if the genus of Z is positive.
The general result follows from the one in dimension 2 by induction on the dimension of the base.
Suppose now that the statement is true in dimension n−1 and let X → Z be a fibration of dimension
n. The set

S =

{

P ⊆Z prime divisor such that the log canonical

threshold of f∗P with respect to (X,B) is different from 1

}

is a finite set.
We fix then P ∈ S. By the Bertini theorem, since Z is smooth, we can find a hyperplane section
H ⊆ Z such that

1. H is smooth;

2. H intersects P transversally;

3. H does not contain any intersection P ∩ P ′ where P ′ ∈ S\{P}.

Set

XH = f−1(H); fH = f |XH
; BH = B|XH

; PH = P ∩H.

The restriction fH : (XH , BH) → H is again an lc-trivial fibration. By [30, Theorem 7.5] the pair
(XH , BH+tf∗

HPH) is lc if and only if the pair (X,B+XH+tf∗P ) is lc and the pair (XH , BH+tf∗
HPH)

is klt if and only if the pair (X,B +XH + tf∗P ) is plt. Hence the log canonical threshold of f∗
HPH

with respect to (XH , BH) is equal to the log canonical threshold of f∗P with respect to (X,B) and
the theorem follows from the inductive hypothesis.

Notice that even if in many cases m = r is sufficient for mMZ to have integral coefficients there
exist cases in which a greater coefficient is needed.

Example 1.8.5. Let X = P1 × P1 and let π : X → P1 be the first projection. Let t be a coordinate
on the first copy of P1 and let [x : y] be homogeneous coordinates on the second copy of P1. Set

D = {tyd − xlyd−l − xd = 0}

and let D̄ be the Zariski closure of D in X. Let q be the point (0, [0 : 1]) ∈ D.
Consider the pair (X, 2/dD̄). Then we have deg(KX + 2/dD̄)|F = 0 and there exists a rational
function ϕ such that we can write

KX + 2/dD̄ +
1

r
(ϕ) = f∗(KP1 +BP1 +MP1)

where r = d if d is odd and r = d/2 if d is even. We want to compute now the coefficient of the
divisor BP1 at the point t = 0. Its coefficient is 1 − γ where γ is the log canonical threshold of
((X, 2/dD̄), F ). A log resolution for the pair (X, 2/dD̄) over the point t = 0 is given by δ : X̂ → X
such that δ = εl ◦ . . . ◦ ε1 is a composition of l blow-ups. Let Ei be the exceptional curve of εi. Then
ε1 blows up q and for any i ≥ 2 the morphism εi blows up the intersection of the strict transform of
F and Ei−1. At the (l − 1)-th step the picture is as follows
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F̃

D̃

El−1

✬

✫
# # E1

We call δ : X̂ → X this composition of blow-ups. We have

δ∗KX = KX̂ −
l

∑

i=1

iEi δ∗D̄ = D̃ +

l
∑

i=1

iEi δ∗F = F̃ +

l
∑

i=1

iEi,

where by abuse of notation we denote by Ei the exceptional divisor of the i-th blow-up as well as
its strict transforms after the following blow-ups. Thus

δ∗(KX + 2/dD̄ + γF ) = KX̂ + 2/dD̃ + γF̃ +
l

∑

i=1

i(−1 + γ + 2/d)Ei.

By Lemma 1.8.1 we have

γ = 1 +
1

l
− 2

d
.

To prove that the bound stated in Theorem 1.8.3 is not far from being sharp, we take d even
such that d/2 is odd and l = d− 1. Then r = d/2 and

γ = 1− 2l − d

ld
= 1− 2(2r − 1)− 2r

2r2 − r
= 1− 2(2r − 1)− 2r

2r2 − r
= 1− 2(r − 1)

(2r − 1)r
.

Since 2(r−1) and (2r−1)r are coprime, the smallest integerm such thatmγ is integral ism = 2r2−r.
Notice that for any r ≥ 7 we have 2r2 − r > 12r, thus the example gives a counterexample to the
Prokhorov and Shokurov expectation.

For any algebraic curve C we can obtain, by performing a base change, an example of lc-trivial
fibration whose base is C and such that 12rMC is not an integral divisor.
Let C be an algebraic curve. There exists a finite morphism τ : C → P1 and modulo composing τ

with an automorphism of P1 we can assume that the support of the ramification divisor on P1 is
disjoint from the support of BP1 . We have the following commutative diagram

C × P1 T ""

f

!!

X

π
!!

C
τ "" P1

where f is the first projection. Let B = T ∗(2/dD̄).
Then we are done if we consider f : (C × P1, B) → C.

1.8.3 Global results

Lemma 1.8.6. Let f : X → Z be a P1-bundle on a smooth curve Z. Let D ⊆ X be a reduced divisor
such that f |D : D → Z is a ramified covering of degree d with at least N ramification points p1, . . . , pN
that are smooth points for D. Suppose that d is even. Suppose moreover that the ramification indices
l1, . . . , lN at p1, . . . , pN satisfy the following properties:
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1. 2li ≥ d for any i;

2. li and lj are coprime for any i 0= j;

3. li and d are coprime for any i.

Then

(i) the fibration

f : (X, 2/dD) → Z

is an lc-trivial fibration, in particular there exists a rational function ϕ such that

KX +
2

d
D +

1

r
(ϕ) = f∗(KZ +MZ +BZ).

(ii) The Cartier index of the fiber is r = d/2.

(iii) Let V be the smallest integer such that VMZ has integral coefficients.
Then V ≥ rN+1.

Proof. The first part of the statement follows easily from the fact the degree of (KX + 2/dD)|F is
0. The Cartier index of the fiber is

r = min{m|m(KX + 2/dD)|F is a Cartier divisor}.

But since F is a smooth rational curve this is

r = min{m|m(KX + 2/dD)|F has integral coefficients} =
d

2

and the second part of the statement is proved. In order to prove the third part of the statement we
remark that since D is smooth at pi and f |D ramifies at pi the only possibility is that D is tangent
to F at pi with order of tangency exactly li.
Then we can apply Lemma 1.8.1 and by Equation (1.8.1) an expression for γ is

γ = 1 +
1

li
− 2

d
.

Since li and d are coprime, lid divides V for any i. Again since li and lj are coprime for any i 0= j

l1 · . . . · lN · d | V.

Since li ≥ d/2 = r for any i we have

V ≥ l1 · . . . · lN · d ≥ 2rN+1.
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Proof of Theorem 1.1.3 (1). Let N be a positive integer and f : X → Z be a P1-bundle on a smooth
rational curve. Let U ⊆ Z be an open set that trivializes the P1-bundle and such that we have a
local holomorphic coordinate t on it. Take d, l1, . . . , lN ∈ N be such that

l0 := 0 < l1 < · · · < lN < lN+1 := d

and such that they verify conditions (1)(2)(3) of Lemma 1.8.6. Let o1, . . . , oN be distinct points in
U . Let [u : v] be the coordinates on the fiber and x = u/v the local coordinate on the open set
{v 0= 0}. Let D be the Zariski closure in X of

D0 =

{

N+1
∑

k=1

(

(xlk−1 + · · ·+ xlk−1)

N
∏

i=k

(t− oi)

)}

.

The restriction of D to the fiber over oi is the zero locus of a polynomial of the form

hi(x) = xliqi(x)

such that x does not divide qi. Notice that D is smooth at the points pi = (0, oi) because the
derivative with respect to t of the polynomial that defines D0 is nonzero at those points. This
insures that D is tangent to the fiber f∗oi with multiplicity exactly li and then that

f |D : D → Z

has ramification index exactly li at pi. The fibration f : (X, 2/dD) → Z satisfies all the hypotheses of
Lemma 1.8.6. Therefore if V is the minimum positive integer such that VMZ has integral coefficients
we have V ≥ rN+1.

Proof of Theorem 1.1.3 (2). Let BZ =
∑

βiPi be the discriminant divisor. Let V be the minimum
integer such that V BZ has integral coefficients. If we write βi = ui/vi with ui, vi ∈ N and coprime,
it is clear that V = lcm{vi}. By Theorem 1.8.4 vi divides lir for some li ≤ 2r. Then

V = lcm{vi} | lcm{lir}.

Moreover
lcm{lir} | rlcm{l|l ≤ 2r}

Thus V divides N(r) = rlcm{l|l ≤ 2r} and we are done.

The bound of Theorem 1.1.3 is not far from being sharp thanks to the following example.

Example 1.8.7. Let r be an odd integer. For a prime integer q set

s(q) = max{s | qs ≤ 2r}.

Notice that
N(r)

r
= lcm{l|l ≤ 2r} =

∏

qs(q).

Set
h(q) = max{h | r ≤ 2hqs(q) ≤ 2r}
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and set
{l1 < . . . < lN} = {2h(q)qs(q)| q < 2r, q prime},

l0 = 0, lN+1 = d = 2r.

Let r =
∏

qk(q) be the decomposition of r into prime factors and remark that s(q) ≥ k(q) for any
prime integer q. Let X = P1 × P1 and let π : X → P1 be the first projection. Consider the divisor
D̄ defined as the Zariski closure of

D0 =

{

N+1
∑

k=1

(

(xlk−1 + . . .+ xlk−1)

N
∏

i=k

(t− oi)

)}

.

Consider now B = 1/rD̄. The fibration f : (X,B) → P1 is lc-trivial. Let V be the minimum integer
such that VMZ has integral coefficients.

Then for each i ∈ {1, . . . , N} by Lemma 1.8.1 we have the following expression for γi:

γi = 1− 2li − d

lid
= 1 +

r − li
lir

.

For every q there exists i ∈ {1, . . . , N} such that li = 2h(q)qs(q). Assume q 0= 2. Since r is odd

gcd{2h(q)qs(q), r} = qk(q),

then

γi = 1− li − r

lir
= 1 +

r/qk(q) − 2h(q)qs(q)−k(q)

2h(q)qs(q)−k(q)r
.

We show now that r/qk(q) − 2h(q)qs(q)−k(q) and 2h(q)qs(q)−k(q)r are coprime. Notice that

2h(q)qs(q)−k(q)r = 2h(q) · qs(q)
∏

q′ *=q

q′k(q
′)

is the decomposition into prime factors. Since r/qk(q) is not divisible by q,

r/qk(q) − 2h(q)qs(q)−k(q) 0= 0(mod q).

Let q′ be a prime integer such that q′ 0= q and q′ | r, then

r/qk(q) − 2h(q)qs(q)−k(q) = −2h(q)qs(q)−k(q) 0= 0(mod q′).

Then for any q such that q ≤ 2r we have

qs(q)−s′(q)r|V

which implies that
lcm{qs(q)−s′(q)r}|V for all q 0= 2.

If q = 2, let li be such that li = 2s(2). Then

γi = 1− li − r

lir
= 1 +

r − 2s(2)

2s(2)r
.
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Since r is odd, r − 2s(2) and 2s(2)r are coprime. Thus

2s(2) | V.

Since

2s(2) · lcm{qs(q)−s′(q)r} =
N(r)

r

we are done.
Let C be an algebraic curve. By performing a base change as in Example 1.8.5 we can ob-

tain an example of lc-trivial fibration with base C such that the minimum integer that clears the
denominators of MC is N(r)/r.
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Chapter 2

On the Fujita-Zariski decomposition

on threefolds

2.1 Introduction

Let S be a smooth projective surface defined over C. Let D be an effective divisor on S. In 1962 O.
Zariski proved in [46] the existence of two divisors P,N such that

1. N =
∑

aiNi is effective, P is nef and D = P +N ;

2. either N = 0 or the matrix (Ni ·Nj) is negative definite;

3. (P ·Ni) = 0 for any i.

Such a decomposition is unique and is called the Zariski decomposition of D.
Fujita in [20] generalized the statement to pseudoeffective divisors. Moreover he noticed in [21] that
the divisor P is the unique divisor that satisfies the following property:

(α) for any birational model f : X ′ → X and any nef divisor L on X ′ such that f∗L ≤ D we have
f∗L ≤ P .

Due to the importance of the Zariski decomposition on surfaces, several generalizations to higher
dimensional varieties were studied. A very nice survey that collects the different definitions and
their main properties is [39]. The property (α) gives rise to the following generalization.

Definition 2.1.1 (Definition 6.1, [39]). Let X be a smooth complex projective variety and D a
pseudoeffective divisor. A decomposition D = Pf +Nf is called a Zariski decomposition in the Fujita
sense (or simply Fujita-Zariski decomposition) if

1. Nf ≥ 0;

2. Pf is nef;

3. for any birational model µ : X ′ → X and any nef divisor L on X ′ such that µ∗L ≤ D we have
µ∗L ≤ Pf .

It follows from the definition that, if a Fujita-Zariski decomposition exists, then it is unique (see
Remark 2.2.1).

The importance of the Fujita-Zariski decomposition is very well illustrated by the results by
Birkar [4] and Birkar-Hu [5] who proved the equivalence between the existence of log minimal model

41
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for pairs and the existence of the Fujita-Zariski decomposition for log canonical divisors. We refer
to [4, Theorem 1.5] and [5, Theorem 1.2] for the precise statements.

In [35] several partial results were proved on the Zariski decomposition in dimension 3 that corre-
lated the existence of the Fujita-Zariski decomposition over a curve Σ (see [35, III.4] for a complete
definition) to the stability of the conormal bundle of Σ. More precisely, let D be a pseudoeffective
divisor on X and Σ a smooth curve such that D ·Σ < 0. Let IΣ be the ideal defining Σ in X. If the
conormal bundle IΣ/I

2
Σ
is semistable, then, Nakayama proved (cf. [35, Lemma III.4.5]) the existence

of a decomposition ϕ∗D = P +N such that N ≥ 0 and the divisor P has positive intersection with
every curve of the exceptional divisor of

ϕ : BlΣX → X.

If IΣ/I
2
Σ
is unstable then, again by Nakayama (cf. Lemma 2.2.10), there exists a short exact sequence

0 → L → IΣ/I
2
Σ → M → 0

such that degL > degM. By [35, Lemma III.4.6] if the conormal bundle is not “too unstable”,
namely if 2 degM ≥ degL, then there exists a birational model ϕ : X ′ → X such that ϕ∗D has a
Fujita-Zariski decomposition over Σ. Therefore the study of the semistability properties of the conor-
mal bundle of a curve in a threefold plays an important role in the theory of Zariski decomposition.
With this respect a key intermediate technical step is the following.

Theorem 2.1.2. Let X be a smooth complex projective variety of dimension 3. Let Σ ⊆ X be a
smooth curve and assume that the conormal bundle

IΣ/I
2
Σ

is not semistable as a vector bundle of rank two on Σ. Then there exists a sequence of blow-ups
ϕ : X̂ → X along smooth curves not contained in Σ such that, if Σ̂ is the strict transform of Σ in
X̂, then I

Σ̂
/I2

Σ̂
is semistable.

Actually, we will prove a statement that is much more precise than Theorem 2.1.2, namely
Theorem 2.3.3, which also gives a control over the degree of the conormal bundle. Such a control
over the degree of the conormal bundle could be useful for instance in order to apply results as [35,
Lemma III.4.5] where the coefficients of a certain Zariski decomposition over Σ is computed in terms
of deg IΣ/I

2
Σ
.

We will then show that Theorem 2.3.3 leads to the existence of a birational model ϕ : X̃ → X and
a decomposition ϕ∗D = P +N such that N ≥ 0 and such that P has some positivity properties on
the exceptional locus of ϕ.

This chapter is organized as follows: Section 2.2 collects some preliminary definitions and results
about the Fujita-Zariski decomposition, the σ-decomposition and the semistability of vector bundles
on curves. Section 2.3 is devoted to the proof of Theorem 2.3.3, with which we make the conormal
bundle of a curve semistable and of degree arbitrarly big.

2.2 Preliminaries

In this section we collect some definitions and basic facts about the Fujita-Zariski decomposition
and the σ-decomposition. Moreover we state various results on curves that will be used later.
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2.2.1 Fujita-Zariski decomposition and σ-decomposition

Remark 2.2.1. It follows from the definition that, if a Fujita-Zariski decomposition exists, then it
is unique. Indeed, if D = P ′

f +N ′
f is another Fujita-Zariski decomposition, then, from the property

(3) of the definition applied to the two decompositions D = P ′
f +N ′

f and D = Pf +Nf , we obtain
Pf ≤ P ′

f and P ′
f ≤ Pf .

In [35] we have the following definitions. Let us denote by |B|num the set of effective R-divisors
∆ numerically equivalent to B.

Definition 2.2.2 (Definition III.1.1, [35]). Let D be a pseudoeffective divisor of a smooth projective
variety. Let Γ be a prime divisor and A an ample divisor. We define

σΓ(D) = lim
ε → 0
ε > 0

inf{multΓ∆ | ∆ ∈ |D + εA|num}.

The limit does not depend on the choice of the ample divisor A by [35, Lemma III.1.5] and thus
it depends only on the numerical equivalence class of D. Moreover, by [35, Corollary III.1.11] there
is only a finite number of prime divisors Γ satisfying σΓ(D) > 0. Thus the expression

∑

Γ

σΓ(D)Γ

defines a divisor.

Definition 2.2.3 (Definition III.1.12, [35]). Let D be a pseudoeffective divisor of a smooth projective
variety. We define

Nσ(D) =
∑

σΓ(D)Γ and Pσ(D) = D −Nσ(D).

The decomposition D = Pσ(D) +Nσ(D) is called the σ-decomposition of D.

Definition 2.2.4 (Definition III.1.16, [35]). The σ-decomposition D = Pσ(D)+Nσ(D) for a pseudo-
effective R-divisor is called the Zariski decomposition in Nakayama’s sense (or simply the Nakayama-
Zariski decomposition) if Pσ(D) is nef.

Remark 2.2.5. By [35, Proposition III.1.14, Remark III.1.17(2)], if the Nakayama-Zariski decom-
position exists then it is the Fujita-Zariski decomposition. The converse is not known.

Definition 2.2.6. Let D be a pseudoeffective divisor. The diminished base locus of D is defined as
follows

B−(D) =
⋃

A ample

B(D +A) where B(D +A) =
⋂

{Supp(D +A)|∆ ≥ 0,∆ ∼R D +A}.

Remark 2.2.7. If D is a pseudoeffective divisor that has birationally a Nakayama-Zariski decom-
position then its diminished base locus is closed. Indeed let f : Y → X be a birational model such
that f∗D = Pσ(f

∗D) +Nσ(f
∗D) is a Nakayama-Zariski decomposition. Then

B−(f
∗D) =

⋃

A

B(Nσ(f
∗D) + Pσ(f

∗D) +A)
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and, since Pσ(f
∗D) +A is ample,

B(Nσ(f
∗D) + Pσ(f

∗D) +A) ⊆ SuppNσ(f
∗D)

for any A, showing that B−(f
∗D) ⊆ SuppNσ(f

∗D). The other containment follows from the defini-
tions of σ-decomposition and diminished base locus. Then B−(f

∗D) = SuppNσ(f
∗D) is closed and

so is B−(D) because by [33, Proposition 2.5]

f(B−(f
∗D)) = B−(D).

Remark 2.2.8. If D admits birationally a Nakayama-Zariski decomposition, then the diminished
base locus of Pσ(D) is the union of a finite number of subvarieties of codimension at least two.
Indeed it follows easily from the definitions and from [13, Proposition 1.19] that the diminished base
locus of the positive part B−(Pσ(D)) does not have any component of codimension one. Moreover,
if there exists a birational model µ : X̃ → X such that µ∗Pσ(D) has a Fujita-Zariski decomposition
on X̃

µ∗Pσ(D) = P̄ + N̄ ,

then the decomposition

µ∗D = P̄ + N̄ + µ∗Nσ(D)

gives a Fujita-Zariski decomposition for µ∗D on X̃.

2.2.2 Useful results on curves

Definition 2.2.9. A vector bundle E on a smooth projective curve is said to be semistable if for any
vector bundle 0 0= F ⊆ E the following inequality is true

deg detF

rankF
≤ deg detE

rankE
.

Lemma 2.2.10 (Lemma 1.1, [36]). Let E be a vector bundle of rank two on a smooth compact curve
C.

1. If E is a semistable vector bundle then there exist no curves Γ on the ruled surface PC(E) with
Γ2 < 0.

2. If E is unstable, then there exists a unique (up to isomorphisms) exact sequence

0 → L → E → M → 0 (2.2.1)

which satisfies the following two conditions:

• L and M are invertible sheaves on C,

• degL > degM.

Remark 2.2.11. The sequence 2.2.1 is the Harder-Narashiman filtration and L is the maximal
destabilizing subsheaf.
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Definition 2.2.12. The sequence (2.2.1) is called the characteristic exact sequence of E. We set
δ(E) = degL−degM. If E = IC/I

2
C is the conormal bundle of a smooth curve in a smooth threefold,

then we adopt the notation δ(C) = δ(IC/I
2
C).

The following lemma is probably well known to experts. Since we could not find a reference in
the literature, we put a proof here for the reader’s convenience.

Lemma 2.2.13. Let X be a smooth variety of dimension 3.

1. Let C ⊆ X be a curve. Then there exists a birational morphism η : W → X, composition of
blow-ups along smooth curves, such that

η−1C = C̃ ∪
⋃

i

Gi

where C̃ is the strict transform of C and it is smooth and Gi is a smooth curve for any i.

2. Let Cj, for j = 1, . . . , l, be smooth curves in X. Then there exists a birational morphism
η : W → X, composition of blow-ups along smooth curves, such that

η−1(C1 ∪ . . . ∪ Cl) =
⋃

i

Gi

where Gi is a smooth curve for any i and for any j1 0= j2 the curves Gj1 ∩ Gj2 intersect
transversally in at most one point.

Proof. (1) If C is smooth there is nothing to prove. Then assume that C is singular. Let p ∈ C be
a singular point. In a local analytic neighborhood U of p we can write C as a union of irreducible
components

C = C1 ∪ . . . ∪ Ck.

We first reduce to the case where Ci is smooth at p for every i. Let C ′ be one of the Ci. Modulo
shrinking U , we can assume that it is isomorphic to an open neighborhood of the origin in C3 and
by [23, Theorem 2.26] we can find a map

γ : C → C ′

0 4→ p

that is injective and such that the derivative of γ is nonzero for any t 0= 0. If we write the expansion
of each component of γ as a Laurent series we have

γ(t) =
(

tl,
∑

ait
mi ,

∑

bit
ni

)

.

We can assume that the first component is monomial by composing with a suitable biholomorphism
of the source C. We can also assume that

l ≤ m1 ≤ n1.

The injectivity of γ implies that l, the mi and the ni are coprime. The order of γ at zero is the
minimum of the orders of the three components. We prove by induction on the order that we can
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desingularize C ′ with blow-ups of smooth curves.
If l = 1 then C ′ is smooth.
Assume that l > 1. Since l, the mi and the ni are coprime, there exists an exponent mi or ni that
is not divisible by l. Without loss of generality we can assume that the smaller of such exponents is
one of the mi. Then there exists a biholomorphism of the target C3 of the form

Ψ(x, y, z) = (x, y − p1(x), z)

with the following properties: p1 is a polynomial and

Ψ ◦ γ(t) =
(

tl,
∑

ait
m′

i ,
∑

bit
ni

)

= (tl, tm
′

1u(t), tn1v(t))

where l does not divide m′
1 and u and v are invertible functions. Let

X̃ → X

be the blowing up of a smooth curve Γ such that Γ has the same tangent direction at p as {x = y =
0} ⊆ U . Then a parametrization for the strict transform of C ′ is

γ̃(t) = (tl, tm
′

1
−lu(t), tn1v(t)).

Let
m′

1 = l · q + r

be the result of the euclidean division of m′
1 by l. If we blow-up q times a curve of local equation

{x = y = 0},

a parametrization for the strict transform of C ′ is

˜̃γ(t) = (tl, tru(t), tn1v(t)).

The order of ˜̃γ at the singular point is thus r < l. Then we apply the inductive hypothesis and we
conclude.
We separate the irreducible components. Now we can assume that Ci is smooth in p for every i. Let
C1 and C2 be two irreducible components and let τi be the tangent of Ci at p.
If τ1 and τ2 are not colinear then we blow-up along a curve Γ whose tangent does not lie in the plane
generated by τ1 and τ2. If C̃i is the strict transform of Ci then

C̃1 ∩ C̃2 = ∅.

If C1 and C2 have the same tangent direction then we can find two parametrizations of the following
form:

γ1 : C → C1

t 4→ (t, 0, 0)

of C1 and
γ2 : C → C1

t 4→ (tw1(t), t
mw2(t), t

nw3(t))
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of C2 where wi is an invertible function and 1 ≤ m ≤ n. Since C2 has the same tangent direction
as C1, we have m > 1. We prove by induction on m that we can separate C1 and C2. We blow-up
along a curve whose tangent direction at p is the same as the tangent direction of is

{x = y = 0} ⊆ U

and we obtain

X̃ → X.

Parametrizations for the strict transforms C̃1 and C̃2 are

γ̃1 : C → C1

t 4→ (t, 0, 0)

for C̃1 and
γ2 : C → C1

t 4→ (tw1(t), t
m−1w′

2(t), t
nw3(t))

for C̃2 where w′
2 = w2/w1. Then we conclude by inductive hypothesis. We notice that the preimage

of the singular point p in X̃ is a curve of local equation {x = z = 0}. Thus it meets C̃1 and C̃2

transversally.
(2) The proof of this second item follows the same line as the proof of the first. The statement is
proved by blowing-up generic smooth curves through Cj1 ∩ Cj2 .

2.3 Making the conormal bundle semistable

Lemma 2.3.1. Let X be a smooth complex projective variety of dimension 3. Let Σ ⊆ X be an
irreducible smooth curve. Let

0 → A → IΣ/I
2
Σ → B → 0

be a short exact sequence where A and B are line bundles. Let Γ be a smooth curve that meets Σ

transversally in one point p and such that the composition

Ap → (IΣ/I
2
Σ)p → ΩX,p → ΩΓ,p

is nonzero. Let ϕ : X1 → X be the blow-up of Γ and let Σ1 be the strict transform of Σ. Then the
conormal bundle of Σ1 has a presentation

0 → Ã → IΣ1
/I2Σ1

→ B̃ → 0 (2.3.1)

where Ã = ϕ∗A, deg IΣ1
/I2

Σ
= deg IΣ/I

2
Σ1

+ 1 and deg B̃ = degB + 1.

Proof. We have the following short exact sequence of sheaves on X1

0 "" ϕ∗ΩX
Φ "" ΩX1

"" ΩX1/X
"" 0.
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The morphism of sheaves Φ is an isomorphism over X\Γ.
Since Σ ⊆ X is a smooth curve, we have the following exact sequence

0 → IΣ/I
2
Σ → ΩX ⊗OΣ → ΩΣ → 0. (2.3.2)

Analogously for Σ1 ⊆ X1, the strict transform of Σ, we have

0 → IΣ1
/I2Σ1

→ ΩX1
⊗OΣ1

→ ΩΣ1
→ 0. (2.3.3)

The restriction of the blow-up ϕ : Σ1 → Σ is an isomorphism. Then, sequence (2.3.2) pulls back to
an exact sequence of vector bundles on Σ1

0 → ϕ∗IΣ/I
2
Σ → ϕ∗

ΩX ⊗OΣ1
→ ϕ∗

ΩΣ → 0. (2.3.4)

We claim that
Φ(ϕ∗(IΣ/I

2
Σ)) ⊆ IΣ1

/I2Σ1
.

Indeed we have the following commutative diagram with exact columns

0

!!

0

!!

ϕ∗(IΣ/I
2
Σ
)

!!

IΣ1
/I2

Σ1

!!

0 "" ϕ∗ΩX ⊗OΣ1

α

!!

Φ "" ΩX1
⊗OΣ1

β

!!

"" ΩX1/X ⊗OΣ1
"" 0

ϕ∗ΩΣ

!!

∼= "" ΩΣ1

!!

0 0.

Since the diagram commutes, we have Φ(kerα) ⊆ kerβ, and the claim is proved.
Moreover the sheaf ΩX1/X ⊗OΣ1

is the skyscreaper sheaf supported on p,

ΩX1/X ⊗OΣ1
∼= Cp.

Thus we have

0 → ϕ∗(IΣ/I
2
Σ)

Φ−→ IΣ1
/I2Σ1

→ Cp → 0. (2.3.5)

By sequence (2.3.5) we have

deg IΣ1
/I2Σ1

= deg IΣ/I
2
Σ + 1. (2.3.6)

The morphism Φ has the property that

Φ|ϕ∗A is injective. (2.3.7)
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Indeed Φ is an isomorphism over Σ\{p} and, if we consider the stalk over p, on ϕ∗Ap it is nonzero
by hypothesis. The sheaf defined by Ã := Φ(ϕ∗A) is a sub vector bundle of rank one of IΣ1

/I2
Σ1
.

Set B̃ for the quotient, so that we have

0 → Ã → IΣ1
/I2Σ1

→ B̃ → 0.

The condition on the degree of B̃ follows from the choice of Ã and from (2.3.6).

Lemma 2.3.2. Let X be a smooth complex projective variety of dimension 3. Let Σ ⊆ X be an
irreducible smooth curve. Assume that the conormal bundle of Σ is unstable and that δ(Σ) = 1,
where δ(Σ) is defined in Definition 2.2.12. Let

0 → L → IΣ/I
2
Σ → M → 0 (2.3.8)

be the characteristic exact sequence. Let ϕ : X1 → X be the blow-up of a smooth curve Γ as in
Lemma 2.3.1 for the sequence (2.3.8). Let Σ1 be the strict transform of Σ in X1. Then the conormal
bundle of Σ1 is semistable.

Proof. Let
0 → L̃ → IΣ1

/I2Σ1
→ M̃ → 0

be the sequence given by Lemma 2.3.1. Then deg L̃ = degM̃. Assume that that IΣ1
/I2

Σ1
is unstable,

so by Lemma 2.2.10(2) we have the characteristic sequence

0 → L′ → IΣ1
/I2Σ1

→ M′ → 0 (2.3.9)

and, by definition of characteristic sequence, degL′ > degM′. Consider now the morphism of sheaves
χ : L̃ → M′ given by the composition of the injective arrow of (2.3.1) and the surjective arrow of
(2.3.9). If χ is identically zero, then L̃ ∼= L′, which is a contradiction because then also M̃ ∼= M′,
but degL = degM and degL′ > degM′. Then χ is nonzero, which implies the inequalities

degL′ > degM′ ≥ deg L̃ = degM̃.

But this leads again to a contradiction because

degL′ + degM′ = deg(detIΣ1
/I2Σ1

) = deg L̃+ deg M̃.

Therefore, if δ(Σ) = 1, the conormal bundle IΣ1
/I2

Σ1
is semistable.

Theorem 2.3.3. Let X be a smooth complex projective variety of dimension 3. Let Σ ⊆ X be an
irreducible smooth curve and N an integer. Then there exists a birational model ϕ : X̂ → X given
by a sequence of blow-ups along smooth curves not contained in Σ with the following properties. Let
Σ̂ be the strict transform of Σ in X̂.

1. The degree of I
Σ̂
/I2

Σ̂
is at least N .

2. The vector bundle I
Σ̂
/I2

Σ̂
is semistable.
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3. ϕ−1Σ = Σ̂ ∪⋃n
i=1 F

s
i ∪⋃m

i=1 F
d
i is a chain of curves and

⋃n
i=1 F

s
i and

⋃m
i=1 F

d
i are chains of

smooth rational curves. These two chains both intersect Σ̂ in one point.

Proof. (1) Write the conormal bundle as extension of two vector bundles of rank one.

0 → A → IΣ/I
2
Σ → B → 0.

Let Γ1 be a smooth curve as in Lemma 2.3.1. Let ψ1 : X1 → X be the blow up of Γ1. If Σ1 is the
strict transform of Σ, then deg IΣ1

/I2
Σ1

= IΣ/I
2
Σ
+ 1. Let E1 be the exceptional divisor of ψ1. It

is easy to verify that a section Γ2 of E1 → Γ1 meeting Σ1 verifies the hypothesis of Lemma 2.3.1.
Then we blow-up Γ2. We continue this process until we reach degree N .
(2) Assume that we already have the condition on the degree of the conormal bundle of Σ. If IΣ/I

2
Σ

is unstable, consider its characteristic sequence

0 → L → IΣ/I
2
Σ → M → 0. (2.3.10)

We apply Lemma 2.3.1 to sequence (2.3.10): we blow-up a curve Γ1 and we obtain ϕ1 : X1 → X.
Let E1 be the exceptional divisor of ϕ1. Then, as in item (1), we blow-up a section Γ2 of E1 → Γ1

meeting Σ and we repeat this process n = δ(Σ) times. We obtain X̂ → X. Let Σ̂ be the strict
transform of Σ in X̂. We prove that the conormal bundle of Σ̂ is semistable by induction on n. Let
us first suppose that δ(Σ) = 1. Then it follows from Lemma 2.3.2. Assume that δ(Σ) > 1. It is
sufficient to prove that δ(Σ1) = δ(Σ)− 1. By Lemma 2.2.10(2), the sequence

0 → ϕ∗
1L → IΣ1

/I2Σ1
→ M̃ → 0

given by Lemma 2.3.1 is the characteristic exact sequence of Σ1. Since, again by Lemma 2.3.1,
deg M̃ = degM+1, we have that δ(Σ1) = δ(Σ)− 1. We remark that at each step the degree of the
conormal sheaf grows by one:

deg IΣ1
/I2Σ1

= deg IΣ/I
2
Σ + 1

so item (1) is preserved.
(3) Let F d

i be the intersection of the preimage of Σ with the i-th exceptional divisor of the blow-ups
made in order to reach degree N . Let F s

i be the intersection of the preimage of Σ with the i-th
exceptional divisor of the blow-ups made in order to reach semistability (see Figure 2.1). Then both
F d
i and F s

i are rational curves because they are contained in fibers of the respective blow-ups. It
follows from the construction that the F s

i and the F d
i form two chains of rational curves.

Remark 2.3.4. Theorem 2.1.2 is exactly Theorem 2.3.3(2).

Remark 2.3.5. Notice that we cannot perform the blow-ups needed to achieve Theorem 2.3.3(2)
before those needed to achieve item (1). Indeed, after item (1) the conormal bundle could not be
semistable anymore, even if it had this property before starting the process. On the other hand, the
“semistabilization” naturally increases the degree of the conormal bundle.

If we do not assume that Σ is smooth we have the following.
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Figure 2.1:
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Corollary 2.3.6. Let X be a smooth complex projective variety of dimension 3. Let Σ ⊆ X be
an irreducible curve and N an integer. Then there exists a birational model ϕ : X̂ → X given by a
sequence of blow-ups along smooth curves not contained in Σ with the following properties. Let Σ̂ be
the strict transform of Σ in X̂.

1. ϕ−1Σ = Σ̂ ∪⋃n
i=1 Fi where Σ̂ is smooth and Fi is a smooth rational curve for any i.

2. The degree of I
Σ̂
/I2

Σ̂
is at least N .

3. The vector bundle I
Σ̂
/I2

Σ̂
is semistable.

Proof. By Lemma 2.2.13 there exists a birational morphism η : W → X such that

η−1
Σ = Σ̃ ∪

⋃

Gi

where Σ̃ is the strict transform of Σ and is smooth and Gi is a smooth rational curve for any i. By
Theorem 2.3.3 there exists µ : X̂ → W that satisfies properties (2) and (3). Moreover

µ−1η−1
Σ = Σ̂ ∪

⋃

Gi ∪
n
⋃

i=1

F s
i ∪

m
⋃

i=1

F d
i

is the union of the strict transform of Σ and some smooth rational curves.

Since in our process of making the conormal bundle semistable we are creating new curves, it
should be useful to control also their conormal bundles. This is done by the following two results.

Lemma 2.3.7. Let X be a smooth variety of dimension three, let F ⊆ X be a smooth rational curve.
Let

IF /I
2
F = O(a)⊕O(b)

be the conormal bundle of F in X and suppose that a > b. Let ϕ : X1 → X be a blow-up given by
Lemma 2.3.1 for the sequence

0 → O(a) → IF /I
2
F → O(b) → 0.

Let F1 be the strict transform of F in X1. Then

IF1
/I2F1

= O(a)⊕O(b+ 1).

Proof. Since F1 is a rational curve, we have

IF1
/I2F1

= O(a′)⊕O(b′)

for some integers a′, b′. By Lemma 2.3.1 a′+ b′ = a+ b+1. By the proof of Theorem 2.3.3, we know
that a′ − b′ = a− b− 1, leaving as the only possibility a′ = a and b′ = b+ 1.
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Proposition 2.3.8. Notation as in Theorem 2.3.3. The conormal bundle of F s
i , and respectively of

the F d
i , is isomorphic to

IF s
i
/I2F s

i
=

{

O ⊕O(1) i = n
O ⊕O(2) i < n,

and

IF d
i
/I2

F d
i

=

{

O ⊕O(1) i = m
O ⊕O(2) i < m.

Proof. We prove the statement for the curves F s
i , the proof for the F d

i being completely analogous.
Let

Xn
ϕn

"" Xn−1
ϕn−1

"" . . .
ϕ2 "" X1

ϕ1 "" X

be the sequence of blow-ups performed in order to achieve semistability. By abuse of notation we
denote by F s

i the curve in Xi as well as its strict transform in Xj for any j > i and in X̂. If i = n,
then F s

n is the fiber of a blow-up and the statement a well-known fact. If i < n, then F s
i ⊆ Xi

has conormal bundle O ⊕O(1). By Lemma 2.3.7, its strict transform in Xi+1 has conormal bundle
O ⊕O(2). Then the statement follows because ϕj is an isomorphism on F s

i for any j > i+ 1.

The diminished base locus depends only on the numerical equivalence class of D by [13, Propo-
sition 1.19]. Arguing as in Nakayama [35, Lemma III.4.5] we prove the following.

Corollary 2.3.9. Let X be a smooth projective threefold. Let D be a pseudoeffective divisor such
that B−(D) does not have any component of dimension two. Let Σ be a smooth curve such that
D · Σ < 0. Then for any point p ∈ Σ there exists a birational morphism µ : X̃ → X such that

1. µ(Exc(µ)) = Σ

2. for any curve C ⊆ Exc(µ) we have Pσ(µ
∗D) · C ≥ unless µ(C) = p.

Proof. Let ϕ : X̂ → X be a birational morphism, that exists by Theorem 3.3, such that I
Σ̂
/I2

Σ̂
is

semistable, where Σ̂ is the strict transform of Σ in X. We have

B−(ϕ
∗D) ∩ Exc(ϕ) = Σ̂ ∪

⋃

F s
i .

We can chose ϕ in Theorem 3.3 such that ϕ(Exc(ϕ)) ∩ Σ̂ = {p}. Let ε : X̃ → X̂ be the blow-up of
Σ̂ and let E be the exceptional divisor of ε. Set µ = ε ◦ ϕ. The intersection of the diminished base
locus with Exc(µ) is

B−(µ
∗D) ∩ Exc(µ) = E ∪

⋃

F̃ s
i ,

where F̃ s
i is the strict transform of F s

i in X̃. By [35, Proposition III.1.14] the restriction Pσ(µ
∗D)|E

is pseudoeffective. Since by [34, Theorem 3.1] any pseudoeffective divisor on E is nef, for any curve
C ⊆ E we have Pσ(µ

∗D) · C ≥ 0. Thus for any curve C ⊆ Exc(µ), we have Pσ(µ
∗D) · C ≥ 0 unless

C is one of the F s
i and, if C = F s

i for some i, then µ(C) = p.

Corollary 2.3.10. Let X be a smooth projective threefold. Let D be a pseudoeffective divisor such
that B−(D) does not have any component of dimension two. Let Σ be a curve such that D · Σ < 0.
Then for any point p ∈ Σ\Sing(Σ) there exists a birational morphism µ : X̃ → X such that
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1. µ(Exc(µ)) = Σ

2. for any curve C ⊆ Exc(µ) we have Pσ(µ
∗D) · C ≥ unless µ(C) ⊆ {p} ∪ Sing(Σ).

Proof. By Lemma 2.2.13 there exists a birational morphism η : W → X such that

η−1
Σ = Σ̃ ∪

⋃

i

Gi

such that Σ̃ is smooth and Gi is a rational curve for any i. By Corollary 2.3.9 there exists a
birational morphism µ : X̃ → W such that µ(Exc(µ)) = Σ̃ and for any curve C ⊆ Exc(µ) we have
Pσ(µ

∗η∗D) ·C ≥ 0 unless if µ(C) = p. Thus, if C ⊆ µ−1η−1Σ is a curve, we have Pσ(µ
∗η∗D) ·C ≥ 0

unless if η(µ(C)) = p or C is the strict transform in X̃ of one of the Gi. If C is the strict transform
in X̃ of one of the Gi, then η(µ(C)) ⊆ Sing(Σ).
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Gabriele, Clélia, Giulio, Stefano e tutti gli altri incontrati in giro per il mondo matematico.
Grazie a Paolo, a cui dedico i versi del poeta: “Ripenso al tuo sorriso, ed è per me un’acqua limpida/
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