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Abstract

In this thesis, we propose a novel framework for knowledge-based segmentation using

high-order Markov Random Fields (MRFs). We represent the shape model as a point

distribution graphical model which encodes pose invariant shape priors through L1 sparse

higher order cliques. Each triplet clique encodes the local shape variation statistics on the

angle measurements which inherit invariance to global transformations (i.e. translation,

rotation and scale). A sparse higher-order graph structure is learned through MRF training

using dual decomposition, producing boosting efficiency while preserving its ability to

represent the shape variation.

We incorporate the prior knowledge in a novel framework for model-based segmenta-

tion. We address the segmentation problem as a maximum a posteriori (MAP) estimation

in a probabilistic framework. A global MRF energy function is defined to jointly com-

bine regional statistics, boundary support as well as shape prior knowledge for estimating

the optimal model parameters (i.e. the positions of the control points). The pose-invariant

priors are encoded in second-order MRF potentials, while regional statistics acting on a

derived image feature space can be exactly factorized using Divergence theorem.

Furthermore, we propose a novel framework for joint model-pixel segmentation to-

wards a more refined segmentation when exact boundary delineation is of interest. A

unified model-based and pixel-driven integrated graphical model is developed to com-

bine both top-down and bottom-up modules simultaneously. The consistency between the

model and the image space is introduced by a model decomposition which associates the

model parts with pixels labeling.

Both of the considered higher-order MRFs are optimized efficiently using state-of-

the-art MRF optimization algorithms. Promising results on computer vision and medical

image applications demonstrate the potential of the proposed segmentation methods.
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Résumé

Nous présentons dans cette thèse une approche nouvelle de la segmentation d’images, avec

des descripteurs a priori utilisant des champs de Markov d’ordre supérieur. Nous représen-

tons le modèle de forme par un graphe de distribution de points qui décrit les informations

a priori des invariants de pose grâce à des cliques L1 discrètes d’ordre supérieur. Chaque

clique de triplet décrit les variations statistiques locales de forme par des mesures d’angle,

ce qui assure l’invariance aux transformations globales (translation, rotation et échelle).

L’apprentissage d’une structure de graphe discret d’ordre supérieur est réalisé grâce à

l’apprentissage d’un champ de Markov aléatoire utilisant une décomposition duale, ce

qui renforce son efficacité tout en préservant sa capacité à rendre compte des variations.

Nous introduisons la connaissance a priori d’une manière innovante pour la segmen-

tation basée sur un modèle. Le problème de la segmentation est ici traité par estimation

statistique d’un maximum a posteriori (MAP). L’optimisation des paramètres de la mod-

élisation - c’est à dire de la position des points de contrôle - est réalisée par le calcul d’une

fonction d’énergie globale de champs de Markov (MRF). On combine ainsi les calculs

statistiques régionaux et le suivi des frontières avec la connaissance a priori de la forme.

Les descripteurs invariants sont estimés par des potentiels de Markov d’ordre 2, tandis

que les caractéristiques régionales sont transposées dans un espace de caractéristiques et

calculées grâce au théorème de la Divergence.

De plus, nous proposons une nouvelle approche pour la segmentation conjointe de

l’image et de sa modélisation ; cette méthode permet d’obtenir une segmentation plus fine

lorsque la délimitation précise d’un objet est recherchée. Un modèle graphique combinant

l’information a priori et les informations de pixel est développé pour réaliser l’unité des

modules "top-down" et "bottom-up". La cohérence entre l’image et sa modélisation est

assurée par une décomposition qui associe les parties du modèle avec la labellisation de

chaque pixel.

Les deux champs de Markov d’ordre supérieur considérés sont optimisés par les al-

gorithmes de l’état de l’art. Les résultats prometteurs dans les domaines de la vision par

ordinateur et de l’imagerie médicale montrent le potentiel de cette méthode appliquée à la

segmentation.
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Chapter 1

Introduction

1.1 Motivation

Due to the significant advances in imaging devices and technologies, digital images play

a more and more important role in our life. An image records a scene of the real world

in a numeric representation that can be stored, transmitted and studied afterwards. The

well known proverb “a picture is worth a thousand words” indicates that an image has a

powerful ability of describing the rich information it carries. In computer vision, images

are used to perform perception tasks such as object detection, tracking and recognition

among others. In the medical field, images are acquired through various modalities such

as Magnetic Resonance Imaging (MRI), Computed Tomography (CT), ultrasound etc. ,

providing an invaluable access to see the interior of human body and allowing physicians

to make more accurate diagnosis. In both domains, extraction of useful information from

images has become the essential task.

Although humans can solve this task naturally and easily (at least in the case of 2D

natural interpretation of scenes), it still remains difficult for a computer to interpret an im-

age automatically. In order to interpret an image or to understand the scene, a fundamental

low to mid-level vision task consists on partitioning the image into a number of meaning-

ful parts, which can provide the clues to answer the questions such as: what and where are

the components of the scene? This leads us to one of the most essential tasks in computer

vision: image segmentation.

Given an image, image segmentation is the process of partitioning the image into mul-

tiple components, so that each component is meaningful (i.e. corresponding to different

objects or natural parts of objects). Since an image is composed of a number of pixels, the

segmentation problem can be treated as a labeling problem which aims to assign each pixel

a label indicating a particular component in the scene. Alternatively, the segmentation task



2 CHAPTER 1. INTRODUCTION

         (a)                                  (b)                                (c)                                     (d)

Figure 1.1: Four-chamber heart segmentation [Zheng 2008].

can be considered as extracting the boundaries between different objects, so that the im-

age is partitioned into meaningful regions according to the boundaries. Fig.1.1 shows an

example of heart segmentation, where (a,b,c) represent three orthogonal cuts from a 3D

cardiac CT volume while (d) shows a reconstructed triangulated model. Four-chamber

heart segmentation shows the extracted boundaries: the left ventricle (LV) endocardium

in green, the LV epicardium in magenta, the left atrium (LA) in cyan, the right ventricle

(RV) in brown and the right atrium (RA) in blue. As soon as the segmentation of an given

image is available, it not only enables the computer to know about the image composition,

but also enables the computer to analyze the qualitative and quantitative properties of the

object of interest based on its segmented region in the image.

Segmentation has been widely applied to various computer vision tasks such as object

detection (i.e. pedestrian detection, localization of objects in satellite images), recognition

(i.e. face recognition), occlusion boundary estimation within motion or stereo systems,

image compression, image editing, or image retrieval. Among these applications, some

tasks (i.e. detection) require the localization of the object of interest which could be repre-

sented by its centroid, while other tasks (i.e. boundary estimation) make use of the image

segmentation. In medical image analysis, accurate segmentation plays a crucial role in

computer-aided diagnosis and therapy. In this context, the aim of segmentation is to delin-

eate anatomical structures. Based on the segmented images, computers are able to visual-

ize structures of interests in 3D, measure the geometric properties of the structures, while

the obtained information can furthermore contribute as the factors for diagnosis and ther-

apy. For example, segmenting the left ventricle is necessary to assess the heart functions

using quantitative indicators such as ejection fraction (EF), myocardium mass (MM), and

stroke volume (SV). Another example is tumor segmentation which not only detects the

tumor inside of human organ, but also allows measuring the size of the tumor and model-

ing its growth through periodic acquisitions and even making predictions of its evolution.
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In brief, image segmentation is now integrated routinely in a multitude of clinical settings

such as study of anatomical structure, localization of pathology, quantification of tissue

volumes, diagnosis/treatment planning and computer-integrated surgery.

As we can see, the accuracy of the segmentation is an absolute necessity in these ap-

plications. The more accurate the segmentation is, the more reliable and the better perfor-

mance the vision or medical analytical task can achieve. In most cases, manual segmenta-

tion by experts can provide the best and the most reliable result, but it is time-consuming

and tedious. Moreover, manual segmentation is subjective to operator variability. These

facts motivate researchers to develop automatic segmentation methods in order to deal

with large datasets, while achieving the accuracy of manual segmentation.

Challenges

Image segmentation remains a difficult task for a computer. The challenge is due to the

huge variability of object shape and the variation in image quality. Regarding shape

variability, we can take the example of segmenting a human body under various poses

(i.e. walking, jumping, sitting) for an individual or for different populations (i.e. tall ones

or short ones). Regarding variations in image quality, we can take the example of med-

ical images. Medical images are often corrupted by noise and sampling artifacts which

are introduced during the acquisition process. Moreover, the low contrast between differ-

ent anatomical structures or the even worse cases when different structures have similar

appearances in the image, can cause considerable difficulties. In particular, classical seg-

mentation techniques which rely on edge detection fail to produce the desired segmenta-

tion results.

In order to deal with these challenges, shape models have been incorporated as priors

for image segmentation where the optimal segmentation map is constrained by the mani-

fold of valid shapes of the object of interest. In this manner, segmentation is more robust

to noise, while using the global shape of the object can also alleviate the ambiguity of

non-visible boundaries between different objects due to similar tissue properties. Shape

models are learned in order to have the ability to describe the shape variations of the same

class of the objects.

To this end, statistical models have been proposed to learn the prior knowledge from

a training set of the shape instances. These models represent the shape variation by linear

or non-linear representations as well as in global or local manner. For example, active

shape model (ASM) / point distribution model (PDM) is one of the most popular statisti-

cal models used in computer vision community, and it has been widely applied to image

segmentation tasks. However, as a linear model, it cannot capture non-linear shape varia-

tions such as an articulated object. On top of that, this global model lacks of the flexibility



4 CHAPTER 1. INTRODUCTION

of control local variations and it requires a large training set to represent the full range

of shape variations in high dimensional space. Thus, non-linear and local shape priors

have the potential to overcome these limitations. However, local or global models require

handling the global transformations (i.e. translation, rotation and scale changes) in an ex-

plicit manner in both training and learning. Statistical model training requires aligning

all the training samples into a common coordinate system before capturing their statis-

tical variations. This alignment process introduces strong bias and requires to explicitly

estimate pose parameters (i.e. position, rotation and scale) of the model in the test image.

Obviously, pose-invariance is one of the desirable properties of statistical shape model.

Given the statistical shape model, segmentation can be formulated as estimating the

model parameters in an observed image, where visual support and shape priors are com-

bined in a cost function. The inference process aiming to determine the optimal solution

is another challenge, since the quality of the solution depends on the optimization algo-

rithm. Among the existing optimization methods, one can cite variational methods and

their derivative-driven minimization for the optimization of continuous objective func-

tions. However, these methods generally converge to local minima, while one has to com-

pute the derivative which restrains their use on differentiable objective functions. On the

other hand, significant advances have been made in discrete Markov random field (MRF)

optimization methods which can achieve global minimum under certain constraints. How-

ever, these methods are based on local interactions, therefore the integration of global

shape priors is not straightforward.

1.2 Thesis Overview

In this thesis, we aim to introduce image segmentation methods which are able to address

the aforementioned challenges. To this end, a prerequisite is to build a statistical model to

represent the shape properties of the object of interest. Such a model should be endowed

with the following properties: (1) global pose-invariance i.e. invariance under translation,

rotation and scale changes, (2) expression of linear and non-linear shape variations in a lo-

cal manner, (3) compactness and easiness of being encoded into segmentation framework.

Then, we want to integrate the shape prior into the automatic segmentation framework,

where accurate result can be obtained by using efficient inference algorithms.

In order to achieve the above objective, we introduce a Markov Random Field (MRF)

shape constrained model for image segmentation. The pose-invariant shape prior is ex-

pressed through a graphical model, where the nodes of the graph correspond to control

points on the object boundary, and the cliques of the graph encode local constraints on

the relative position of points. Towards compactness and computational efficiency, the
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set of optimal cliques representing the observed shape variation is learned from the data.

Based on this graph representation, a probabilistic framework expresses the segmentation

task as a maximum posteriori estimation process towards recovering the optimal model

parameters (i.e. the positions of the control points). The energy function encodes regional

statistics, boundary support as well as shape prior knowledge. Using efficient MRF infer-

ence algorithms, optimal model solution can be obtained and lead to accurate segmenta-

tion. Furthermore, we extent this probabilistic framework for image segmentation through

a unified model-based and pixel-driven integrated graphical model, where both model pa-

rameters and pixel labeling can be solved in a single shot optimization. Integrating both

top-down and bottom-up approaches in a unified framework can achieve a more precise

segmentation result than the individual approaches.

The remainder of this thesis is organized as follows.

• In chapter 2, we review the state of the art of segmentation techniques which are

related to our work, including deformable models, active shape /appearance models,

and graph-based methods. In addition, we describe Markov Random Fields and the

advanced discrete MRF optimization methods.

• In chapter 3, we propose a novel statistical shape model. The shape model is rep-

resented as a point distribution graphical model which encodes pose invariant shape

priors through L1 sparse higher order cliques. In particular, each triplet clique en-

codes the local shape variation statistics on two inner angles. A subset of cliques

from all possible triplet cliques is learned based on MRF learning via dual decom-

position from a training set. The selected cliques construct a sparse graph which can

provide the best possible compromise between the ability to encode the observed

shape variation and compactness.

• In chapter 4, we propose a novel framework for model-based segmentation using

shape priors. We formulate the segmentation problem as a maximum a posteriori

(MAP) estimation in a probabilistic framework. The MRF energy encodes both data

and prior constraints. Prior energy is defined by higher-order potential encoding

the local shape priors, while regional statistics can be exactly factorized into pair-

wise terms (in 2D cases) or second-order terms (in 3D cases) through Divergence

theorem. The considered higher-order MRF is optimized using dual decomposition.

• In chapter 5, we propose a novel framework for joint model-pixel segmentation

through a unified model-based and pixel-driven coupled approach. A shape decom-

position allows the introduction of region-driven image statistics as well as pose-

invariant constraints. Regional triangles are associated with pixel labeling, aiming
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to create consistency between the model and the image space. Furthermore, it pro-

duces the state of the art results of exact boundary delineation through the combined

model-pixel graph.

• In chapter 6, we conclude the thesis by summarizing the contributions as well as

discussing some improvements and directions for future research.



Chapter 2

State of the Art

In this chapter, we review image segmentation techniques, Markov Random Fields (MRFs)

and the associated optimization techniques.

2.1 Segmentation Techniques

Segmentation is the most widely studied topic in computer vision. There are two types

of approaches to deal with this problem: model-free methods (bottom-up fashion) and

knowledge-based methods (top-down fashion). Model-free methods are often based on

clustering, aiming at grouping together pixels with consistent visual properties according

to a certain similarity criterion. Knowledge-driven methods, on the other hand, assume

that the space of admissible solutions is constrained, and they seek a solution that is a

compromise between the one produced from the observations and the one expressed in the

model space.

Popular examples in the context of model-free segmentation refer to the mean-shift

algorithm [Comaniciu 2002], variational formulations such as the Mumford-Shah frame-

work [Mumford 1989] and its level set variant [Chan 2001, Paragios 2002], or graph-based

methods including normalized cuts [Shi 2000], graph-cuts [Boykov 2006] etc. Due to the

lack of assumptions on the geometric form of the object of interest, these methods are free

in terms of admissible solutions, which is a desired property in certain cases but also an un-

desirable one since it can lead to erroneous results due to intensity variability, occlusions,

noise presence, etc.

Knowledge-based methods are either manifold constrained or manifold enhanced. The

former class of methods models geometric variation of the object of interest and then seeks

an instance of this model in the image. Active shape [Cootes 1995] and active appearance

models [Cootes 2001] are popular examples. Manifold enhanced methods aim at mini-
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mizing the distance of the solution from the learned manifold. Active contours/surface

solutions [Staib 1996] are some examples. Both groups of knowledge-based methods in-

herit a severe limitation with respect to pose, since the sought solution should be brought

to the same referential as the ones used in learning. The manifold constrained methods are

rather robust to noise, but it cannot cope with examples not seen during training, while the

manifold enhanced methods is often a compromise (to a certain extent) between model-

free and manifold constrained methods.

There is another type of knowledge-based approaches widely used in medical imaging,

namely atlas-based methods. The underlying idea of this approach is to achieve segmen-

tation by registering an atlas to the target image. The atlas is a reference image associated

with a ground truth segmentation. The segmentation of the target image is obtained by

warping the atlas segmentation based on the deformation field from registration. In this

context, choosing the atlas used as prior for the segmentation is very important. Thus,

multi-atlas segmentation approaches with more sophisticated atlas construction techniques

have been developed to capture shape variations of the object of interest. Since atlas-based

segmentation is highly dependent on registration which is another active topic in computer

vision, we will not discuss this type of approaches in details and we refer the reader to

[Rohlfing 2005].

In the remainder of this section, we will review some popular segmentation methods

including deformable models (i.e. active contours/surfaces and level sets), active shape

models and active appearance models and graph-based methods. These are well studied

topics in the community, and therefore we refer the reader to [McInerney 1996, Jain 1998,

Montagnat 2001] for deformable contours/surfaces methods, [Cremers 2007] for level sets

and variational methods, and [Heimann 2009] for active shape and appearance models.

[Boykov 2006] presents detailed technical description of the basic combinatorial optimiza-

tion for image segmentation via graph cuts.

2.1.1 Deformable Models

Deformable models became a landmark in computer vision and have been widely used

in medical image segmentation since the pioneering publication of [Kass 1988]. Snakes,

active contours, active surfaces are the various names which have been used in the lit-

erature for deformable models. To delineate object boundaries in an image, snakes use

curves or surfaces that deform under the influence of internal forces and external forces.

The internal forces are designed to enforce the smoothness of the curve or surface during

deformation. The external forces are usually derived from the image to drive the curve

or surface towards the desired images features such as strong edges within an image. De-

formable models can be generally divided into two classes, depending on the definition
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(a) (b)

Figure 2.1: Extraction of the inner wall of the left ventricle using active contour models

[Xu 1998].

of the curve and surface: (1) parametric deformable models, also called active contours

and active surfaces, and (2) non-parametric deformable models, also called level set and

geometric deformable models.

Active Contours/Surfaces

Parametric deformable models represent curves and surfaces explicitly during deforma-

tion. Mathematically, a parametric curve is represented by a function f(s) = (x(s), y(s)),
where x, y denote the coordinates and s ∈ [0, 1] is the arc-length parameter. Given an

initialization, the parameterized curve deforms through the spatial domain of an image to

minimize the following energy function:

E(f) = Eint(f) + Eext(f) (2.1)

The internal energy Eint(f) characterizes the tension or the smoothness of the contour. It

consists of a first-order and a second-order continuity terms.

Eint(f) =
1

2

∫ 1

0

w1(s)

∣∣∣∣
∂f

∂s

∣∣∣∣
2

+ w2(s)

∣∣∣∣
∂2f

∂2s

∣∣∣∣
2

ds (2.2)

where function w1(s) controls the tension of the curve and function w2(s) controls its

rigidity. In practice, w1(s) and w2(s) are often set to be constant. The external energy

Eext(f) imposes the image component on the curve.

Eext(f) =

∫ 1

0

Eext(f(s))ds (2.3)
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(a) (b)

Figure 2.2: Left ventricle segmentation using active surface models [McInerney 1995]. (a)

Balloon model. (b) Reconstruction of the left ventricle.

where function Eext(x, y) is derived from the image data and its minima should coincide

with intensity extrema, edges as well as other image features of interest. For example, the

most typical function designed to attract the contour to intensity edges is:

Eext(x, y) = − |∇ (Gσ(x, y) ∗ I(x, y))|2 (2.4)

where ∇ is the gradient operator, Gσ ∗ I denotes the image convolved with a Gaussian

filter whose deviation σ controls the attraction range. We show an example of active

contour models extracting the inner wall of the left ventricle in Figure 2.1, where (a) is an

original 2D MR image while (b) represents the initial contour model in gray and the final

converged result in white. Another example of left ventricle segmentation using active

surface surfaces is shown in Figure 2.2, where (a) embeds a balloon model in the volume

image and (b) shows the reconstruction of the left ventricle.

Parametric deformable models have the following advantages: (1) their ability to cope

with open or closed parametric curves or surfaces, (2) their low computational complexity,

(3) the natural incorporation of a smoothness constraint that provides robustness to noise

and spurious edges, and (4) the ability to integrate prior knowledge. A disadvantage is that

an initial model is needed. In order to reduce sensitivity to initialization, [Cohen 1991]

proposes balloons that use a pressure force to increase the attraction range. Another ap-

proach [Cohen 1993] of extending attraction range is to define the external energy using

a distance map. However, the distance based force can cause difficulties when deforming

a contour or surface into boundary concavities. To address this problem, [Xu 1998] pro-

poses a gradient vector flow (GVF) field which is based on the diffusion of the edge map
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that improved convergence of deforming contours into boundary concavities. However,

the most important limitation of parametric models is the difficulty to deal with topolog-

ical changes such as splitting or merging parts during the deformation, which is a use-

ful property for recovering either multiple objects or an object with unknown topology.

[McInemey 1999, Montagnat 2001] propose topology adaptive deformable surfaces for

volume segmentation using an efficient reparameterization mechanism.

Level Sets

Geometric deformable models [Caselles 1993, Malladi 1995, Kichenassamy 1995] can

handle topological changes of the unknown object to be segmented. These models are

based on curve evolution theory and level set methods [Osher 1988, Sethian 1999, Osher 2003].

The curves and surfaces are represented implicitly as a zero level set function. The curve

evolution is independent of parameterization, thus topological changes can be handled

automatically.

Level sets evolve to fit and track the object boundaries by modifying the underlying

level set function instead of the curve. Given a level set function φ(x, y, t) with the moving

curve f(s, t) as its zero level set, we have

φ(f(s, t), t) = 0 (2.5)

Using the curve evolution theory, if the curve f moves along its normal direction with a

speed V , then the level set function φ satisfies the level set equation:

∂φ

∂t
= V |∇φ| (2.6)

where ∇φ denotes the gradient of φ, and V is called speed function. There are two most

common deformations in curve evolution theory: image-driven and curvature deformation.

The curvature deformation is defined as V = αk, where α is a positive constant and the

curvature k at the zero level set is given k = ∇ · ∇φ

|∇φ| . The main idea of the geometric

deformable models is to couple the speed of deformation with the image data, so that the

evolution of the curve stops at object boundaries.

Geometric deformable models allow the curve evolution equation to be modified in

two ways: changing the speed function and adding additional constraints. [Caselles 1993]

and [Malladi 1995] independently propose a curve evolution coupled with the image data

through a multiplicative stopping term. A problem with this model is that if the object

boundary has gaps, the curve passes the boundary and cannot be pulled back to the correct

boundaries. [Caselles 1997] and [Yezzi Jr 1997] add an additional term in the equation

that allows the curve to be pulled back, and this term behaves like the external force of
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Figure 2.3: Brain segmentation using geometric deformable contours [Siddiqi 1998]. Left

to right and top to bottom: iterations 1, 400, 800, 1200 and 1600.

parametric models. These methods are still sensitive to local minima, since it is based

on the edges (image gradients). An alternative approach is to use image region charac-

teristics. Earlier energy-based segmentation frameworks [Leclerc 1989, Mumford 1989]

define a functional which measures the consistency of the segmented regions. Based

on these framework, many level sets approaches have been developed to combine im-

age region statistics with boundary measurements, such as [Chan 2001, Paragios 2002,

Jehan-Besson 2003, Tsai 2001b].

We show an example of geometric deformable models for brain segmentation in Fig-

ure 2.3. The curve evolution is shown progressively, clearly demonstrating its ability to

change the topology of the curves. While geometric deformable models can handle topo-

logical changes, they may generate shapes that have inconsistent topology with respect to

the object of interest. This is the case when applied to noisy images with significant bound-

ary gaps. Moreover, they are computationally expensive due to the iterative optimization

methods of solving a partial differential equation into the entire image domain, even if

several variants have been introduced to reduce significantly the computational burden.
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2.1.2 Active Shape and Active Appearance Models

Active Shape Models

Active shape model (ASM) [Cootes 1995], is one of the most popular model-based ap-

proaches for medical image segmentation. It can be considered as an extension of de-

formable models when incorporating prior shape information. The shape prior is con-

structed by Point Distribution Model (PDM) which models the shape variations from a

training set. In the PDM, the shape is represented by a set of points distributed on the

boundary. Mathematically, it can be defined by a n× d dimensional vector concatenating

each point’s coordinates, where n is the number of the points and d is the dimension of the

point coordinates. For example, a 2D shape of n points is defined as:

x = (x1, y1, · · · , xn, yn)T (2.7)

Given a training set, each shape is represented by n points referring to the same co-

ordinate system (order) throughout the entire training set. Then, these shapes have to

be aligned into the same coordinates system to filter out the shape variations caused by

translation, rotation and scaling. This procedure is commonly accomplished using the

Generalized Procrustes Analysis [Gower 1975], which minimizes the least squared error

between the points. Once correspondences have been established, a Principal Component

Analysis (PCA) is used to build the statistical shape model. The mean shape of the training

set of N samples is calculated using:

x̄ =
1

N

N∑

i=1

xi (2.8)

A covariance matrix S is computed by:

S =
1

N − 1

N∑

i=1

(xi − x̄)(xi − x̄)T (2.9)

An eigendecomposition of S yields the eigenvectors {Pm}ndm=1 (representing the principle

modes of variation) and the corresponding eigenvalues {λm}ndm=1 ((indicating their impor-

tance in the construction of model). Sorting all modes from largest to smallest variance,

the first k modes are employed to model the observed variability of the training set. Then,

shape instances of this population can be expressed by a linear combination of the k sig-

nificant modes of variation.

x = x̄+Pb (2.10)
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Figure 2.4: First three modes of shape model of 3D liver [Heimann 2009].

where P = (P1, · · · ,Pk) is the matrix of the first k eigenvectors, and b = (b1, · · · , bk)T
is a vector of weights, referred to as the shape parameters. We note that the number k is

significantly smaller than the number of the dimension nd. Varying the parameters b can

generate new examples of the shape. The interval values of b are imposed to constrain

the resulting new shape to be valid. We show an example of point distribution model of

3D liver in Figure 2.4, where the columns from left to right represent the first, the second

and the third largest eigenmodes, and the rows from top to bottom represent the resulting

shapes taking the variation parameter as 3
√
λk and −3

√
λk respectively.

Now given an image, the instance y of the model in the image is defined by a similarity

transform T and the shape parameter vector b.

y = T (x̄+Pb) (2.11)

In order to find both the transform T (also called as pose parameters) and the shape pa-

rameters b, an iterative method is used given an initial model state. At each iteration, a

current model state y is known in the image space. First, an optimal displacement of each

model point is calculated according to image observations. This leads to a vector of a sug-

gested movement of the model dy in the image space. Second, the pose T is adjusted by

a Procrustes match of the model to y + dy, leading to a new transformation T and a new

residual displacements dys. Next, dys is transformed into model space and then projected

into the parameter space to give the optimal parameter updates:

db = PT T̂−1(dys) (2.12)
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where T̂ is equal to T but without the translation part. After updating b, a new model

example is generated and used to update the state of the model in the image. In this

way, only deformations that are similar to the shapes in the training set are allowed. This

procedure is repeated until the changes of pose and shape parameters become insignificant.

In order to improve the image appearance, variants of the ASM use different features

going beyond simple reasoning on intensity. [Jiao 2003] uses Gabor wavelets and models

the feature distribution by Gaussian mixture models. [Langs 2006] employs the steerable

features to represent the object appearance. Beside Gaussian mixture models, other non-

linear models are also used for modeling the appearance distribution. [De Bruijne 2003]

proposes a non-parametric appearance model which is trained on both true and false ex-

amples of boundary profiles and the probability of a given image profile being part of

the boundary is obtained using k nearest neighbor (kNN) probability density estimation.

Similarly, [Van Ginneken 2002] uses the non-linear kNN classifier to estimate if the point

is inside or outside of the object. [Li 2004, Li 2005] use Adaboost algorithm to build

appearance models.

Parallel to the feature space, efforts have been made on the ASM search schemes.

[De Bruijne 2004] combines the PDM with a maximum likelihood shape inference, where

the optimal solution can be found using particle filtering in an iterated likelihood weigh-

ing scheme. The use of a large number of hypotheses makes segmentation by shape par-

ticle filtering robust to local maxima and independent of initialization at the expense of

increasing computational cost. [De Bruijne 2005] is the extension work of segmenting

multi-objects using particle filters. Another direction of improving the search scheme

is to incorporate MRF regularization. [Behiels 1999] incorporates a regularization con-

straint penalizing outlier configurations that is minimized using a dynamic programming

algorithm. [Tresadern 2009] proposes a method that combines an MRF-based local shape

model for guided candidate selection with a PCA-based global shape model for regular-

ization. Given a new image, the shape estimation involves an alternating scheme: first an

MRF inference technique selects the best candidates for each point, then they are used to

update the parameters of the global pose and shape model.

Active Appearance Models

Active appearance model (AAM) [Cootes 1998, Cootes 2001] is an extension to ASM,

where the prior model is constructed using shape and appearance information. Similar to

PDM that captures the mean shape and the shape variations, AAM encodes an appearance

model consisting the mean appearance of the object and its variations, thus it can generate

realistic images of the modeled data.

To build a statistical appearance model, each image in the training set is at first warped
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c1 varies by ±2 s.d.s

c2 varies by ±2 s.d.s

Figure 2.5: First two modes of appearance model of full brain cross-section from an MR

image [Cootes 1999a].

so that its control points match the mean shape obtained through the PDM procedure of

the ASM. After intensity normalization on the shape-normalized images, a PCA is applied

to analyze the gray-level variations with a linear model:

g = ḡ +Pgbg (2.13)

where ḡ is the mean normalized gray-level vector, Pg is a matrix consisting of significant

modes and bg is a vector of gray-level parameters. We show an appearance model of

brain images in Figure 2.5, where each row represents a variation mode. As described

previously in the ASM, an instance shape is given as

x = x̄+Psbs (2.14)

where Ps denotes the principal shape variations and bs denotes the shape parameters.
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Then, the shape parameters and the gray-level parameters are combined into a single

vector b = (Wsbs,bg)
T , where Ws is a diagonal matrix of weights taking account of

the units differences between shape and gray-level parameters. Because the shape and

gray-level parameters may have correlations, a further PCA is applied on the vector b

obtained from the training set, yielding a further linear model b = Qc, where Q is a set

of eigenvectors and c is a vector of appearance parameters that control both shape and

gray-level pattern of the model. As a result, the shape model and gray-level model can be

represented by a common parameter vector c:

x = x̄+PsW
−1
s Qsc

g = ḡ +PgQgc
(2.15)

where Q = (Qs,Qg)
T has two submatrixs Qs and Qg corresponding to the shape and

gray-level parameters respectively.

Given an image, an instance of the model in the image is defined by a similarity trans-

form T and the appearance parameter vector c, combined in a unique parameter vector p.

The key idea of AAM search is to adjust the parameters in p so that the difference between

the given image and a synthetic example generated by the appearance model is as small

as possible. The image difference has to be calculated within the same reference frame,

thus the given image with a model presence T (x) is warped to the mean shape and nor-

malized, resulting a texture vector gs. The residual is given by r(p) = gs−gm, where gm

is generated from the appearance model. Since it is difficult to adjust the parameter vector

p to minimize the residual error |r(p)|2 due to its dimensionality, the process to adjust the

model parameters during the image search is learned in advance. A linear model is chosen

for the relationship between the texture residual r(p) and the parameter updates dp :

dp = −Rr(p) (2.16)

where R is the derivative matrix learned from the training set. It can be computed using

multiple multivariate linear regression or using numeric differentiation. After learning the

correction of the model parameters, an iterative algorithm is used to solve the optimization.

To speed up the active appearance model fitting, [Matthews 2004] uses the inverse

compositional image alignment algorithm so that the effects of appearance variation dur-

ing fitting can be precomputed. [Andreopoulos 2008] extends the method to 3D cases

and demonstrates the framework for cardiac MR image analysis. [Donner 2006] intro-

duces a fast AAM search algorithm based on canonical correlation analysis (CCA-AAM)

which efficiently models the dependency between texture residuals and model parameters

during search. Active appearance models remains an active topic where for example, vari-

ants to deal with illumination and viewpoint variation [Gross 2005] as well as occlusions

[Gross 2006] have been introduced.
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2.1.3 Graph-based Methods

Graph-based approaches have been developed in the last decade. It considers the image

segmentation as a graph partition problem, where an image is represented as a weighted

undirected graph G = (V, E). The nodes of the graph V represent the image pixels and

the edges E consist of pairs of nodes, while the weight of each edge w(i, j) is a similarity

measurement between nodes i and j. To group the pixels, a graph partition is sought to

separate the node set V into disjoint sets V1, . . . ,Vm, so that the similarity among the

nodes in the set Vi is high while the similarity across different sets Vi,Vj is low.

Normalized Cuts

[Shi 2000] proposes a graph-theoretic criterion for measuring the goodness of an image

partition, named normalized cut. Assuming a graph partitions into two disjoint sets A,B,

the dissimilarity between the two groups can be computed as total weight of the edges that

have been removed, called the cut between A and B:

cut(A,B) =
∑

i∈A,j∈B
w(i, j) (2.17)

The optimal partition can be considered as the one that minimizes the cut value. However,

using the minimum cut criteria favors cutting small sets of isolated nodes in the graph.

Instead of using the cut value, the normalized cut (Ncut) computes the cut cost as a fraction

of the total edge connections to all the nodes in the graph as disassociation measure:

Ncut(A,B) =
cut(A,B)

assoc(A,V)
+

cut(A,B)

assoc(B,V)
(2.18)

where assoc(A,V) =
∑

i∈A,j∈V w(i, j) is the total connection from the nodes in A to

all nodes in the graph. Using this definition of the disassociation between the groups, the

smallest cuts which isolate a single pixel do not have small Ncut value. Unfortunately,

minimizing the normalized cut is NP-complete. [Shi 2000] embeds the normalized cut

problem in the real-valued domain so that an approximate discrete solution can be found

efficiently. Assuming a graph partitions into two sets A and B, let x be an N -dimensional

indicator vector, where xi = 1 if node i belongs to A, and xi = −1 otherwise. Let

W = [w(i, j)] be an N × N symmetrical matrix, and d = W1 is the row sums of the

matrix W, and D is a diagonal matrix with d on its diagonal. Minimizing the normalized

cut over all possible indicator vectors x is equivalent to:

min
y

yT (D−W)y

yTDy
(2.19)
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where y = (1 + x) − b(1 − x) and yTD1 = 0. The above Rayleigh quotient can be

minimized by solving the generalized eigenvalue system:

(D−W)y = λDy (2.20)

The second smallest eigenvector y of the generalized eigenvalue system is the real valued

solution (an approximation in real-valued domain) to the normalized cut problem. Thus

the proposed normalized cut criterion for graph partition can be computed efficiently by

solving a generalized eigenvalue problem.

In order to accelerate the computation of the normalize cuts, [Sharon 2006] proposes

a segmentation method of weighted aggregation which is derived from algebraic multi-

grid solvers and it consists of fine-to-coarse pixel aggregation. [Alpert 2007] presents a

segmentation approach of probabilistic bottom-up aggregation and cue integration. The

probabilistic approach is integrated into a graph coarsening scheme, providing a complete

hierarchical segmentation of the image.

Graph Cuts

The segmentation problem can be formulated as a classic pixel-based energy function

which encodes boundary measurements and regional statistics such as the continuous ap-

proaches [Mumford 1989], [Chan 2001]. However, the optimization of the continuous

approaches using iterative gradient descent techniques is slow and prone to get trapped

in local minima. [Boykov 2001b] is the first to apply Markov random fields (MRFs) opti-

mization to binary segmentation. The main advantage of their segmentation method is that

it provides the global optimal of segmenting an N-dimensional image using graph cuts.

Their interactive segmentation includes a user indication of certain pixels (seeds) being

part of the object and certain pixels (seeds) being part of the background respectively,

as hard constraints of segmentation. Moreover, the cost function of segmenting the rest

of the image is defined in terms of boundary and regional properties of the segments,

which can be considered as soft constraints of segmentation. The segmentation problem is

equivalent to compute the global minimum of the cost function among all segmentations

that satisfy the hard constraints imposed by a user. The globally optimal segmentation can

be efficiently achieved by powerful graph cut algorithms. To segment a given image, an

undirected graph G = (V , E) is created with two terminals:

V = P ∪ {S, T} (2.21)

We illustrate the graph in Figure 2.6, where the gray nodes are the nodes P corresponding

to image pixels, while the red node is the source node S representing an “object” terminal

and the blue node is the sink node T representing a “background” terminal. The edge set
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Figure 2.6: Graph cuts for N-D image segmentation [Boykov 2001b]. (a) Graph. (b) The

minimum cut.

E consists of two types of undirected edges: n-links and t-links. Each pixel node has two

t-links {p, S} (red edges) and {p, T} (blue edges) connecting to each terminal. Each pair

of connected pixel nodes {p, q} is an n-link (yellow edges) in a neighborhood system N .

E = N
⋃

p∈P
{{p, S}, {p, T}} (2.22)

The edge weights of n-links encode the boundary terms of the cost function, while the

weights of t-links encode the regional terms of the cost function for non-seed pixels or

they are defined as hard constraints for seed pixels. In Figure 2.6, the weight of each edge

is reflected by its thickness. Given the graph G, the image segmentation can be solved

by finding the minimum cut on the graph. The globally optimal minimum cut separating

two terminals can be computed in polynomial time using the new version of “max-flow”

algorithm [Boykov 2004]. Figure 2.6 (b) shows the minimum cost cut (green dashed line)

of the graph in (a).

The binary segmentation framework of [Boykov 2001b] has been extended in differ-

ent directions. For instance, [Rother 2004] proposes a GrabCut algorithm which has made

three improvements: (1) Gaussian Mixture Models (GMM) are used to model the object

and the background in RGB space. (2) An iterative energy minimization scheme is em-

ployed to alternate between estimation and GMM parameter learning until convergence.

(3) The iterative minimization allows a considerably reduced degree of user interaction.
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Figure 2.7: Segmentation via cuts on a directed graph [Kolmogorov 2005].

Specifically, the user interaction involves simply dragging a rectangle loosely around the

object of interest. More recently, [Cui 2008] integrates a local color pattern model and

edge model in the graph-cut framework in order to improve robustness and enhance the

discriminability of the method.

[Kolmogorov 2005] presents an s/t cut on a directed graph which depends on the cut’s

orientation. One of their major contributions is that flux of vector fields is represented as

the directed edge weights and it is integrated into the global optimization of graph cuts,

and thus discrete cut metrics on directed regular grids have a geometric interpretation via

standard continuous concepts of length/area and flux. Figure 2.7 shows an example of a

directed graph, where each pair of the neighboring nodes is associated with two directed

edges (p, q), (q, p) and different weights w(p, q), w(q, p). If a cut separates two neighbor-

ing nodes p and q so that p is connected to the source S and q is connected to the sink T ,

then w(p, q) is considered for the cost of the cut. A comparison of the segmentation re-

sults using indirect graph and directed graph is shown in Figure 2.7 (c,d). [Boykov 2006]

reviews a large number of known extensions of s/t graph cut algorithms for object segmen-

tation.

To overcome the “shrinking bias” problem of graph cut, [Vicente 2008] imposes an

additional connectivity prior on the graph cut segmentation. Several versions of the con-

nectivity constraints are considered, but the corresponding optimizations are all NP-hard.

They propose two optimization methods: (1) a heuristic algorithm, named DijkstraGC

which merges the Dijkstra algorithm and graph cut, and (2) a slow method based on dual

decomposition which provides a lower bound on the problem. Some practical examples

show that DijkstraGC is able to find the global minimum.
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Random Walker

[Grady 2006] introduces the random walker algorithm for multi-label interactive image

segmentation. Given a small number of pixels (seeds) with user-defined labels, the prob-

ability that a random walker starting at each unlabeled pixel first reaches one of the seeds

is calculated. In particular, each unlabeled pixel has a K-dimensional vector while the

i ∈ {1, · · · , K}-th component specifies the probability that a random walker starting at

this location would reach the i-th seed first. Then, each unseeded pixel is assigned to

the label of the most probable seed that the random walker reaches, generating the image

segmentation. Given a graph where the nodes represent the image pixels and the edges rep-

resent the pairs of pixels, each edge is associated with a real-valued weight corresponding

to the likelihood that a random walker crosses that edge. The desired probability of a ran-

dom walker first reaching a seed point equals to the solution of the combinatorial Dirichlet

problem. [Grady 2005] extends random walkers segmentation by incorporating a nonpara-

metric probability density model, so that it can locate disconnected objects and does not

require user-defined labels. [Grady 2008] performs a precomputation of eigenvectors of

the weighed Laplacian matrix of a graph and uses this information to produce a linear-time

approximation of the Random Walker segmentation.

The graph cuts and the random walker algorithms are closely related. [Sinop 2007]

presents a general seeded image segmentation algorithm which can take the form of ei-

ther Graph Cuts or Random Walker algorithms, depending on the choice of the norm by

which the gradient of the potential function is minimized. Using l1 norm, the algorithm is

equivalent to Graph cuts, whereas using l2 norm it leads to the Random Walker algorithm.

[Couprie 2009] also extends a common framework that includes the graph cuts, random

walker and shortest path optimization algorithms. [Singaraju 2009] continues the same di-

rection and explores image segmentation using continuous-valued Markov random fields

(MRFs) with probability distributions following the p-norm of the difference between con-

figurations of neighboring sites. They use integrative reweighted least squares (IRLS)

techniques to find the global minimizer of the proposed cost function chosen 1 < p < 2
so that amenable trade off can be achieved between Graph Cuts and Random Walker.

Incorporating Shape Priors with Graph Cuts

The graph cuts suffers from metrication artifacts and the shrinking bias. The random

walker can overcome these problem, but it is biased towards the location of seeds. More

recent development in graph-based techniques is to incorporate shape priors. Since knowl-

edge about the object shape is used, the resulting segmentation is robust to the shape to be

segmented as well as to the user interaction.

[Slabaugh 2005] presents a graph cuts based image segmentation that incorporates an
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elliptical shape prior. The shape constraint is encoded in the terminal weights as unary

terms of the pixels, and it is defined by a binary mask from the ellipse shape. An iterative

approach is used to update the shape and the graph cut: given an initial ellipse, the shape

mask is generated, and the mean intensities of the pixels inside and outside the mask are

computed. Then the graph cut is applied with the regional terms using the mean intensity

information as well as shape prior terms using shape mask. The result of the graph cut is

used to update the ellipse shape. The process continues until the solution converges.

[Funka-Lea 2006] proposes an automatic segmentation of the entire heart in Computer

Tomography (CT) cardiac scans based on graph cut with automatic determination of seed-

regions. Given a point within the heart, the segmentation is initialized as an ellipsoid

of maximum volume within the heart. An additional “blob” constraint is added to the

graph-cut formulation as Potts interaction. It encourages cuts to produce the shape where

the edges are oriented perpendicular to the direction toward the center of the seed-region.

This simple shape prior information (the heart is a compact blob) prevents segmentation

leaking into the aorta or pulmonary vessels.

[Veksler 2008] imposes a generic shape prior called star on graph cut segmentation,

since a star shape is defined with respect to a center point given by a user. The advantage

of the star shape prior is that it can be directly include in the objective function as length-

based “ballooning” term (a pairwise term of neighboring pixels) that encourages a large

object segment. This alleviates the bias of a graph cut towards short segmentation bound-

aries. Compared to the standard graph cut which requires a number of seeds, this method

only requires a single pixel which is often automatically obtained. Similarly, [Das 2009]

incorporates the compact shape prior in the graph cut segmentation, assuming that the ob-

ject to be segmented can be approximately by several connected roughly collinear compact

pieces. Due to the shape prior, a bias parameter is introduced, allowing them to counteract

the shrinking bias of the graph cut segmentation.

[Freedman 2005] uses a fixed template to represent the shape prior. The template is

specified as a distance function φ whose zero level set corresponds to the template, and the

shape energy can be defined by n links:

Eshape =
∑

(p,q)∈N :xp 6=xq

φ(
p+ q

2
) (2.23)

where each pair of neighboring pixels p, q in the neighborhood system N is penalized

by the distance if they have different labels. This energy constraints the boundary of the

segmented object to lie near the shape template. In order to deal with rigid transformations

of the template, the user input is required to match the template to the data via Procrustes

Method. Once the optimal rigid transformation is computed, a gaussian pyramid of the

image is used. The best segmentation among all the scales is obtained by comparing the
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optimal energies of each pyramid level using the template of the fixed scale. The minimum

cut problem is solved by the maximum flow algorithm.

[Slabaugh 2005] shows how highly variable nonlinear shape priors can be added to

existing iterative graph cut methods. A statistical shape model is learned from the training

set using kernel Principle Component Analysis (KPCA). Given a user-initialized segmen-

tation, the algorithm is operated iteratively. At each iteration, the intensity histograms

of object and background are computed given the segmented regions, while the current

segmentation is used to obtain a projection in the learned shape space. Then these pri-

ors including the shape and histograms are used in a Bayesian formulation to perform

segmentation via the graph cut technique.

[Ali 2007] proposes a graph cut based segmentation approach which combines image

appearance and shape priors. A template image is generated from a set of aligned images,

consisting of three segments: object, background, and shape variability region. They es-

timate the shape variations using a distance probabilistic model which approximates the

distance marginal densities of the object and the background inside the variability region.

To segment a new image, they align it with the training images in order to use the proba-

bilistic template. The shape prior is encoded as terminal weights for each pixel, measuring

how much the pixel labeling disagrees with the shape information.

[Vu 2008] defines the shape prior using a discrete version of the shape distance pro-

posed by [Chan 2005] of level sets framework, and incorporates it as terminal weights of

the graph. A multiphase graph cut framework is proposed to segment multiple objects,

where a pixel is allowed to have multiple labels. Then the shape prior energy is extended

to encompass multiple shape priors. The segmentation is performed in an integrative man-

ner. In each iteration dealing with one object, the shape energy is computed based on the

aligned template, while the data energy is computed to account for the overlap between

objects. A new labeling for this object is obtained by the min-cut solution. This process is

repeated for all the objects until convergence is reached. However, the iterative algorithm

is not guaranteed to converge to the global optimum.

[Schoenemann 2007] presents a globally optimal image segmentation with a transla-

tion invariant elastic shape prior. They compute cycles of minimal ratio in a large graph

representing the product space spanned by the input image and all points of the shape tem-

plate. The specific structure of the graph allows for run-time and memory efficient imple-

mentations. Recently, [Ayed 2009] proposes a discrete kernel density matching energy for

left ventricle segmentation. Given a manual segmentation of the first frame, the algorithm

propagates the segmentation to the other frames using two priors, geometric (distance-

based) one and photometric one, each measuring a distribution similarity between the

segmented region and a model of the first frame. An original first-order approximation of

the Bhattacharyya measure yields a global graph cut optimum in nearly real-time.
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Model-based Methods Using Graph Representation

The above mentioned graph-based segmentation methods use Markov Random Fields to

represent the image labeling, where each node variable of the graph represents a pixel

label assignment. In order to incorporate shape priors, most of the approaches impose

the shape priors through terminal weights. Typically, the shape prior is represented as a

template such as a distance map [Freedman 2005], a probabilistic shape image [Ali 2007]

(statistical shape prior). However, the segmentation approaches which integrate shape

priors in graph cut algorithm are usually implemented in an iterative optimization scheme

in order to couple the shape parameters and the MRF variables. This framework does not

guarantee to achieve global optimum. In addition, the new image has to be aligned to

the same coordinate system of the template. It is an ill-posed problem since the global

pose of the object to be segmented is unknown. Alternatively, there exists another class

of segmentation approaches based on graphical model which combine shape priors in a

top-down fashion.

[Zhang 2004] presents a graph-based method of localizing the articulated human body.

The body contour is represented by a Bayesian graphical model, where the nodes corre-

spond to point positions along the shape contour. The shape priors include both local non-

rigid deformation and rotation motion of the joint, while the image likelihood includes

edge gradient map, foreground/background mask, skin color mask, and appearance con-

sistency constraints. The constructed Bayes model is sparse and chain-like, thus Bayesian

formula can be optimized by efficient spatial inference through Sequential Monte Carlo

sampling methods. However, the specific shape model is not general to other applications.

[Felzenszwalb 2005] describes how to represent and detect generic deformable shapes.

They represent the shape by triangulated polygons which decompose the complex shape

into simple parts. The involved triangles that decompose a polygon without holes are

connected together in a tree structure (called a chordal graph) which yields a discrete

representation closely related to medial axis transform. The polygon model is used to

detect non-rigid objects in new image using boundary information, while the shape prior

is defined by the independent triplets. The detection algorithm can efficiently provide a

global optimal solution to the deformable template matching problem due to the elimina-

tion scheme property of the graph. However, this method does not generalize to higher

dimensions (e.g. 3D cases).

[Seghers 2008] presents a model-based segmentation using graph representations. The

object is represented as a graph where the nodes correspond to the landmarks and the edges

define the landmark dependencies. The shape prior is described as a concatenation of the

local constraints of connected landmarks. The segmentation problem is formulated by a

maximum a posteriori (MAP) criterion, thus the objective function includes an intensity
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energy of each landmark and a local shape energy of each edge. The discretization of the

objective function transforms the segmentation as a labeling problem where one candidate

per landmark needs to be selected. It enables robust optimization techniques such as mean

field annealing and dynamic programming techniques.

[Donner 2010] proposes a framework of localizing an object model as the solution to

the optimal labeling task of a Markov Random Field (MRF). The prior information about

the geometric configuration of landmarks and local appearance features is built by Sparse

Appearance Models. The proposed rotation invariant local descriptors based on Gradient

Vector Flow (GVF) capture local appearance details as well as global structure that allows

stable detection and identification of individual points. The MRF combines costs of non-

rigid deformation and local descriptor feature difference between the target and the model,

and it is solved efficiently in a single optimization step using the max-sum algorithm.

2.2 Markov Random Fields and Optimization

As we have discussed above, a growing number of graph-based approaches have been

developed for image segmentation. One of the main reasons behind their popularity is the

availability of efficient algorithms for Markov Random Field (MRF) inference problem,

which in turn allows for the computation of globally optimal solutions of the MRF energy

functions. In this section, we review the MRFs and the related optimization techniques.

A Markov Random Field is a set of random variables having a Markov property de-

scribed by an undirected graph. Given an undirected graph G = (V , E) which consists

of a set of nodes V and a set of edges E , a set of random variables X = {Xi}i∈V form a

Markov random field with respect to G if they satisfy the local Markov property:

Xi⊥XV\{i}|XNi
(2.24)

which states that a variable Xi∈V is conditionally independent of all other variables given

all it neighbors Ni = {j|{i, j} ∈ E} in the graph G.

A graphical concept called clique is defined as a subset of the nodes c ⊆ V if every

two nodes in this subset c are connected by an edge. A maximal clique is a clique of the

largest possible size in a given graph. Let p(X = x) denote the probability of the random

variables X taken a particular field configuration x. When X forms a Markov random

field with respect to G, the joint density p(x) can be factorized over the maximal cliques

of the graph.

p(x) =
1

Z

∏

c∈C
φc(xc) (2.25)
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where Z is the normalization constant, C is the set of cliques ofG. Each clique c ∈ C con-

sists of the set of variables xc, and it is associated a potential function φc(xc) ≥ 0. MRFs

were introduced to computer vision domain by [Geman 1984] providing a probabilistic

framework where prior knowledge can be integrated as local neighborhood interactions.

In addition, MRF models can be defined over discrete variables such as pixel labels. Thus

the computer vision task can be formulated as a maximum a posteriori (MAP) estimation:

xopt = argmax
x

p(x) (2.26)

According to the Hammersley-Clifford theorem, for a Markov random field, the probabil-

ity p(x) follows a Gibbs distribution:

p(x) =
1

Z
exp{−E(x)} (2.27)

where the MRF energy E(x) can be factorized into the clique potentials:

E(x) =
∑

c∈C
θc(xc) (2.28)

where the MRF potential functions θc(xc) = − log φc(xc) are the negative logarithm of the

ones defined for the probability distribution p(x). Thus the MAP inference is equivalent

to the minimization of the MRF energy E(x).

Pairwise MRFs

The pairwise MRFs are the most widely used form in computer vision, where each clique

includes no more than two variables. The pairwise MRF energy consists of unary poten-

tials on single variable and pairwise potentials on pairs of the variables.

E(x) =
∑

i∈V
θi(xi) +

∑

(i,j)∈E
θij(xi, xj) (2.29)

Considering the labeling problem in discrete case, the unary potentials θi(xi) measure

the cost of assigning the particular label to the node given the observation related to the

node, while the pairwise potentials θij(xi, xj) encode the dependencies of the two labels

corresponding the neighboring nodes.

In computer vision, the pairwise MRFs have been widely represented as grid-like struc-

tures and pictorial structures. In the first case, the nodes of a graph correspond to the

lattices of pixels while the edges correspond to the neighborhood systems (4-connected

or 8-connected) of the pixels. The variable xi of each node represents a physical quantity
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of a specific problem, e.g. a label indicates the class of the pixel in image segmentation

problem. The unary and pairwise potential functions are designed for the specific problem

such as image denoising/restoration [Geman 1984, Greig 1989], and image segmentation

[Boykov 2003, Rother 2004, Boykov 2006]. On the other hand, MRFs of pictorial struc-

tures [Felzenszwalb 2005, Sigal 2006] provide a part-based representation for deformable

objects, where the nodes represent different parts of the object, the edges represent the

interactions of the pair of the parts, and the random variables of the nodes represent a

physical state of the parts.

Higher-order MRFs

More recently, higher-order MRFs haven been studied to model more complex interac-

tions between the random variables. The cliques defined by the higher-order MRFs can

contain more than two nodes and they can not be factorized into lower orders. The higher-

order MRF energy can be written as:

E(x) =
K∑

k=1

∑

c∈Ck
θc(xc) (2.30)

where K determines the order of the MRF, and Ck denotes the set of cliques where each

clique consists of k nodes.

Higher-order models have been applied in image denoising [Roth 2005, Roth 2009]

and image segmentation [Kohli 2009a, Kohli 2009b]. The main advantage of introducing

higher-oder MRFs is that better prior knowledge can be incorporated, since higher order

interactions can capture the intrinsic spatial properties which two variables can not obtain.

For example, [Kwon 2008] uses a third-order spatial prior for image registration, while

[Glocker 2010] uses higher-order potentials in optical flow formulation. Global models

which include interaction of all the nodes, have been proposed with related inference al-

gorithm. [Vicente 2008], [Nowozin 2009] and [Delong 2012] are some examples.

Conditional Random Fields

Conditional Random Field (CRF) was introduced by [Lafferty 2001] for text modeling,

and then introduced to computer vision domain by [Kumar 2003]. The difference between

MRF and CRF is that the latter models a posterior distribution p(X|D) where X denotes a

set of latent variables and D denotes a set of observed variables. It can be interpreted as an

MRF globally conditioned on the observed data D. The conditional distribution p(X|D)
is also a Gibbs distribution and it can be written as:

p(x|D) =
1

Z(D)
exp{−E(x,D)} (2.31)
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where the CRF energy takes the following form:

E(x,D) =
∑

c∈C
θc(xc,D) (2.32)

One of the main advantages of using CRF is that it provides the ability of modifying the

prior model based on the observed data. For example, [Boykov 2001b] uses this idea for

interactive segmentation. They modulate the smoothness weights by the intensity gradi-

ents, leading to a conditional random filed (CRF). [Blake 2004, Rother 2004] are some

other examples for image segmentation. In addition to relating smoothness terms with the

observed data, [Kumar 2003] proposes Discriminative Random Fields (DRF), where the

unary MRF data term θi(xi, di) is modified by a neighborhood function over the data as

θi(xi,D). [Kumar 2006] also mentions that CRFs and DRFs are easier to learn the model

parameters than MRFs.

Despite the differences in the probabilistic explanation and for the purpose of conve-

nience, we use the term MRF to refer to the generative MRF including CRF and DRF in the

following context. One of the main challenges of using MRF models is to develop efficient

inference algorithms. Now We review the most widely used MRF inference techniques.

2.2.1 Graph Cuts

Graph cuts is a large family of MRF inference algorithms based on solving one or more

min-cut or max-flow problems [Boykov 2001a, Boykov 2006]. [Greig 1989] was the first

to use a s/t graph cut to perform the exact minimization of a binary MRF in polynomial

time. Basically, in the min-cut graph, the nodes in an MRF are connected to two additional

terminal nodes (i.e. source node s and sink node t) which represent two classes of the

binary labeling. Each edge in the graph is associated with non-negative capacity or a

weight. To optimize the MRF energy is equivalent to find the minimum cut between the

terminal nodes.

[Ford 1962] proves that the solution of the min-cut problem is equivalent to the solution

of finding the maximum flow from the source s to the sink t via the capacitated edges. The

min-cut/max-flow problem can be solved in polynomial time with augmenting paths meth-

ods [Ford 1962] and push-relabel methods [Goldberg 1988]. [Boykov 2004] presents a

modified augmenting paths algorithm which can obtain the best results. [Kolmogorov 2004]

demonstrates that the global optimum of the energy can be guaranteed by using graph cuts

if the MRF energy function is submodular. Considering a binary case, the energy of a

pairwise discrete MRF is submodular if each pairwise potential θij satisfies:

θij(0, 0) + θij(1, 1) ≤ θij(0, 1) + θij(1, 0), (i, j) ∈ E (2.33)
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However in many vision problems, the energy functions can not satisfy the submodular

condition, and the minimization problem remains NP-hard. [Kolmogorov 2007] reviews

the quadratic pseudo-boolean optimization (QPBO) algorithm [Hammer 1984] which can

achieve a partial optimal labeling for Arbitrary functions (with both submodular and non-

submoddular terms). To construct the graph, besides the two terminal nodes, each pixel

p ∈ V corresponds to two nodes p and p̄. Ideally, the variable xp̄ should be the negation of

xp, i.e. xp̄ = 1−xp. The important observation is that the new energy of variables {xp, xp̄}
is submodular, and thus can be minimized in polynomial time using min-cut/max-flow.

The partial labeling x is determined as follows:

xp =





0 if p ∈ S, p̄ ∈ T

1 if p ∈ T, p̄ ∈ S

∅ otherwise

(2.34)

where ∅ means that the node is unlabeled. If the constraints that nodes p and p̄ belong to

different sets of the cut are enforced, then a global minimum of the energy can be obtained,

otherwise a part of an optimal solution is found. Later, [Boros 2006] and [Rother 2007]

present two different techniques in order to extend QPBO to achieve a complete solution.

Graph cut techniques have been extended in order to deal with multi-label MRFs

problems. [Boykov 2001a] presents two algorithms α-expansion and α-β-swap for multi-

dimensional energy minimization that uses graph cut iteratively. In contrast to standard

moves which allow only one node variable to change its label at a time, α-expansion and

α-β-swap moves allow a large number of pixels to change their labels simultaneously. In

particular, given a label α, an α-expansion move allows any set of nodes to change their

labels to α. Given two different labels α and β, an α-β-swap move defines that some

pixels which were labeled α are now labeled β, and some pixels which were labeled β
are now labeled α. The expansion algorithm finds a labeling within a known factor of the

global minimum, while the swap algorithm can handle more general energy functions. Ap-

proximate solution to the NP-hard minimization problem can be achieved with guaranteed

optimality bounds. More recently, [Komodakis 2008b, Rother 2007] provide approximate

solution for more general energy functions, while [Kohli 2005, Juan 2006, Alahari 2010]

propose efficient algorithms for dynamic MRFs.

2.2.2 Linear Programming Relaxation

Over the last years, significant progress in MRF optimization has been made by making

use of linear programming (LP) relaxation of the MRF energies which was first introduced

by [Shlezinger 1976]. In this context, the MRF optimization problem can be equivalently
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formulated as a linear integer program as follows:

min
∑

p∈V

∑

a∈L
θp(a)xp(a) +

∑

(p,q)∈E

∑

a,b∈L
θpq(a, b)xpq(a, b) (2.35)

s.t.
∑

a

xp(a) = 1, ∀p ∈ V (2.36)

∑

a

xpq(a, b) = xq(b), ∀b ∈ L, (p, q) ∈ E (2.37)

∑

b

xpq(a, b) = xp(a), ∀a ∈ L, (p, q) ∈ E (2.38)

xp(·), xpq(·, ·) ∈ {0, 1} (2.39)

where two types of binary indicator variables xp(·) and xpq(·) are introduced to linearize

the MRF energy function. The unary variable xp indicates which label is assigned to

the MRF node p, i.e. xp(a) = 1 indicating label a is assigned to p. Similarly, the pair-

wise variable xpq indicates which pair of labels is assigned to the pair of nodes (p, q),
i.e. xpq(a, b) = 1 indicating label a is assigned to p and b is assigned to q. In order to

be equivalent to the MRF formulation, the constraints on the binary variables have been

added. The constraints in Eq.(2.36) make sure that only one label can be assigned to each

node, while the constraints in Eq.(2.37, 2.38) enforce consistency between the unary and

the pairwise variables so that if xp(a) = xq(b) = 1, then we have xpq(a, b) = 1 as well.

However, the above integer LP problem is NP-hard in general. The LP relaxation is formed

by replacing the integer constraints in Eq.(2.39) with linear constraints:

xp(·), xpq(·, ·) ≥ 0 (2.40)

This relaxation can provide a good approximation to the integer LP problem, thus an

approximately optimal solution to the MRF estimation problem can be obtained by solv-

ing the LP relaxation. However, general-purpose LP solvers can not handle large prob-

lems in computer vision. To this end, a number of approaches have been proposed to

solve the dual problem of the LP relaxation which can provide a lower bound on the

optimal solution of the primal problem. These approaches solve the LP problem by

maximizing the lower bound provided by the dual. For example, one can cite the max-

sum diffusion [Werner 2007], tree-reweighted message passing (TRW) [Wainwright 2005,

Kolmogorov 2006], dual decomposition [Komodakis 2007a, Komodakis 2011b]. Although

the algorithms based on LP relaxation generate excellent results for some vision problems,

this is not guaranteed in all cases. More recently, researches have studied tightening of the

LP relaxation [Sontag 2007, Komodakis 2008a, Schraudolph 2010] which produce tighter

bounds of the original MRF inference at the expense of additional computational cost.
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Primal-Dual Schema

[Komodakis 2007b] introduces the primal-dual schema (a powerful tool for deriving ap-

proximation algorithms to problems of integer LP) for MRF optimization. The primal-

dual schema aims to find a pair (x,y) of primal and dual solutions such that the corre-

sponding primal-dual gap is small enough (e.g. the ratio between the two costs is smaller

than a factor f ), then it is guaranteed that the primal solution x is an f -approximation to

the unknown optimal solution of the original integer LP problem. The primal variables

x = {xp}p∈V denote the labels assigned to the MRF nodes. The dual to the LP relaxation

of integer program can be written as follows:

max
∑

p∈V
yp (2.41)

s.t. yp ≤ min
a∈L

hp(a) (2.42)

ypq(a) + yqp(b) ≤ θpq(a, b), ∀(p, q) ∈ E , (a, b) ∈ L × L (2.43)

where the dual variables are called balance variables ypq(·) and height variables hp(·).
Variables ypq(a), yqp(a) are conjugate, i.e. yqp(·) ≡ −ypq(·). The height variables hp(·) are

given by hp(·) ≡ θp(·) +
∑

q:(p,q)∈E ypq(·), thus only the vector y = {ypq} is needed for

specifying a dual solution.

Basically, the primal-dual algorithm for MRF optimization is an iterative procedure,

where the pairs of integral-primal, dual solution (xk,yk) are iteratively updated until the

elements of the last pair (x,y) satisfy the chosen relaxed complementary slackness condi-

tions as follows:

hp(xp) = min
a∈L

hp(a), ∀p ∈ V (2.44)

ypq(xp) + yqp(xq) = θpq(xp, xq), ∀(p, q) ∈ E (2.45)

ypq(a) + yqp(b) ≤ 2θmax, ∀(p, q) ∈ E , (a, b) ∈ L × L (2.46)

If the above conditions hold true, then the solution x defines an f -approximation to the

optimal MRF energy, where f = 2 θmax

θmin

1. Given the initialization of (x,y), the primal-

dual pair of solutions is updated in each iteration of a label c ∈ L. This update reduces to

solving a max-flow problem for a certain capacitated graph Gc and its construction depends

on the current primal-dual pair of solutions (xk,yk). In particular, the directed graph Gc

consists of the internal nodes and two external nodes (i.e. the source s and the sink t). The

interior edges are responsible for updating the balance variables, while the exterior edges

are in charge of updating the height variables.

1θmax ≡ maxa 6=b θpq(a, b), θmin ≡ mina 6=b θpq(a, b)
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In fact, the complexity of the primal-dual method largely depends on the complexity

of the max-flow problem (determined by the exterior edges and their capacities), which

in turn depends on the number of augmenting paths per max-flow. [Komodakis 2007b]

proposes an efficient primal-dual method called Fast-PD. It makes use of the pair of primal

and dual solutions from the previous iteration in order to reduce the number of augmenting

paths for the next iteration. In particular, the primal-dual gap is an approximate upper

bound on the number of such paths and they manage to reduce this gap throughout the

iterations, thus resulting a significant speed up on the MRF optimization. In addition, Fast-

PD can provide good optimality properties: if θpq(·, ·) is a metric, Fast-PD is as powerful

as α-expansion with the same solution but at least 3-9 times faster. If the pairwise function

θpq(·, ·) is a non-metric, it still guarantees an almost optimal solution.

Tree-reweighted Message Passing

[Wainwright 2005] introduces the tree-reweighted max-product message passing (TRW)

algorithms which connect the message passing algorithm to the LP relaxation of the integer

program. It is motivated by tying to optimize the LP relaxation problem by maximizing

the dual of the LP. The basic idea is to use a convex combination of tree-structured dis-

tributions to obtain an upper bound on the optimal value of the original problem in terms

of the combined optimal values of the tree problems. They prove that any such bound

is tight if and only if the trees share a common configuration which must be the optimal

for the original problem. Under a certain condition called tree agreement, fixed points of

the tree-reweighted max-product updates correspond to dual-optimal solution of the tree-

relaxed linear program, thus they guarantee to give a MAP solution. However, the TRW

algorithms do not guarantee the convergence as well as the increase of the lower bound.

[Kolmogorov 2006] proposes a modification of the TRW algorithms called sequential

tree-reweighted message passing (TRW-S). Similar to the TRW algorithms, it is formu-

lated by maximizing a lower bound on the energy:

max
θ∈A,

∑
T∈T

ρT θT≡θ̄
Φρ(θ) (2.47)

where T is a collection of trees in the graph G. For a tree T ∈ T , ρT is some distribution

of non-zero probability, while θT is the energy parameter. By concatenating all the tree

vectors, a vector θ is formed and it must belong to the constraint set A. The known param-

eter θ̄ = {{θp(·)}, {θpq(·, ·)}} represents the potentials of the original MRF. The concave

function Φρ(θ) is a lower bound on the optimal value of the MRF if
∑

T∈T ρ
T θT = θ̄.

The TRW-S algorithms consist of reparameterization and averaging operations as same as

the TRW algorithms. The difference is that TRW-S algorithms update the messages θT
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in a sequential order rather than a parallel order as in the TRW algorithms. Their main

contribution is that the value of the bound is guaranteed not to decrease. They provide

the weak tree agreement (WTA) condition which characterizes the local maximum of the

bound with respect to TRW algorithms. They prove that the algorithm has a subsequence

converging to a vector satisfying the WTA condition. If a vector satisfies the WTA con-

dition, then it maximizes the lower bound (the lower bound will not increase). They also

show that their algorithm requires half as much memory compared to traditional message

passing approaches. However, WTA is not guaranteed to give the global maximum of

the lower bound, and the convergence is still not guaranteed. Nevertheless, in some spe-

cific cases when the original MRF is binary and submodular, the fixed points of TRW-S

correspond to the global maximum of the dual problem.

Dual Decomposition

[Komodakis 2007a, Komodakis 2011b] propose a new message-passing scheme for MRF

optimization based on Dual Decomposition (DD) technique. Unlike the existing message-

passing methods, it can provably solve the dual LP (i.e. maximize the lower bound) and it

behaves better theoretical properties than the TRW methods.

The basic idea of this method is to decompose the original MRF optimization problem

(NP-hard) which is defined on the graph G into a set of easier MRF subproblems where

each of them is defined on a tree T ⊂ G. Given a set of subtrees T covering all the nodes

and edges of graph G, each tree T ∈ T is associated with a vector of MRF parameters θT

and a vector of MRF variables xT . The Lagrangian dual of the original MRF problem is

defined as:

max
{λT }∈Λ

g({λT}) =
∑

T∈T
gT (λT ) (2.48)

where the introduced Lagrange multipliers λT are constrained to the feasible set Λ, and

each function gT (·) is defined as:

gT (λT ) = min
xT

E(θT + λT ,xT )

s.t. xT ∈ X T
(2.49)

which is equivalent to the task of minimizing the MRF energy E(·, ·) over a tree T , i.e. a

much easier problem. In this manner the dual problem is decomposed into solvable sub-

problems. The problem in Eq.(2.48) is called a master problem, and the subproblems in

Eq.(2.49) are called slave problems. In order to optimize the master, they use the pro-

jected subgradient method where the solutions of the master and the slaves are combined

in a principled way. In fact, the optimization can be considered as an iterative “message
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passing” between the master problem and the slave problems. In each iteration, the slave

problems are solved according to the current MRF potentials, then the solutions of the

slaves (messages) are sent to the master problem in order to update the MRF potentials.

The resulting elegant MRF optimization framework carries great flexibility and gen-

erality. They show that by appropriately choosing the subproblems, it allows to design

powerful MAP estimation algorithms. As a result, they can derive algorithms which (1)

generalize and extend state-of-the-art message-passing methods while providing better

theoretical properties, (2) optimize much tighter LP relaxation associated to an MRF prob-

lem, and (3) take advantage of the structure of any particular class of MRF, thus allowing

to use fast inference techniques i.e. graph-cut based method.
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Chapter 3

Statistical Shape Model

In this chapter, we introduce a pose invariant shape model which is represented as a high-

order graph. The triplet cliques encode the local shape variation statistics while inheriting

invariance to global transformations. The shape manifold is constructed through L1 sparse

higher-order graph structure which is learned through dual decomposition from a training

set, while preserving the ability to describe shape variability as well as being compact.

3.1 Introduction

The shape of an object is a geometrical description of the object boundary and it plays an

important role in computer vision tasks such as recognition, segmentation and tracking.

In the context of image interpretation, a priori knowledge of the object of interest (color,

texture, shape) is very useful in distinguishing the object from the background. In par-

ticular, incorporating the shape information of the object in the segmentation task shows

significant advantages of improving accuracy and robustness of the algorithms, when the

appearance features of the object in the image alone are not sufficient due to noise, back-

ground clutter or partial object occlusions. Therefore, it is very necessary and critical to

build a shape model which represents the prior shape knowledge of the object class, and it

should be easily incorporated in solving the vision tasks.

Shape prior modeling is a very challenging task due to shape variability of the object

of interest. A simple way to represent shape prior is to use a shape template which is

a typical shape example of the object of interest. However, it is not specific to describe

the object class with considerable natural variability. For example, the shape of human

organ shows both inter-individual variability (differences within populations) and intra-

individual variability (differences of the same subject in tests taken at different time or in

different conditions). In order to construct a reliable shape model with information about
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the common variation of the object class, a straight direction is to gather these information

by statistical means from a number of observations of the object (as many as possible),

which leads to statistical shape models (SSMs).

3.1.1 Previous Work

Statistical shape modeling is a well-studied problem. Generally, it consists of two critical

components:

• A mathematical definition of the shape representation for statistic analysis.

• Constructing a statistical model that describes the observed shape variations from a

training set.

With respect to the shape representation, point-based or landmark-based representation

[Cootes 1995, Cootes 2001], implicit representations [Cremers 2007], superquadric model

[Metaxas 1993], medial model [Pizer 1999], Fourier surface [Staib 1996] are some exam-

ples. Based on the shape representation, the statistical model can be represented either by

a mean shape and the principal modes of variations or by a probability density function.

The most popular method used in the first case is principal component analysis (PCA)

[Jolliffe 2002] which approximates the shape by a linear combination of largest modes

of variations. In the second cases, Gaussian probability density function [Rousson 2002],

Gaussian mixture models [Cootes 1999b], kernel density [Cremers 2006a] as well as man-

ifold learning [Etyngier 2007] have been employed.

One of the most well-known methods in the area of statistical shape modeling is the

Active Shape Model (ASM) [Cootes 1995]. This approach models the shape variations in

a Point Distribution Model (PDM) which is learned in the following steps: (1) Given a

training set, each shape sample is represented by a number of points with correspondences

across the training set; (2) An alignment of the training shapes in a common reference

frame using Procrustes Analysis [Dryden 1998] has to be performed in order to eliminate

pose variations. (3) The mean shape of all aligned training samples can be computed and

the variation modes with respect to the mean shape are computed by principal component

analysis (PCA). (4) At last, the shape model is represented by a linear combination of the

largest modes of variation. Using bounded coefficient parameters, new shape instances

can be generated to remain into the allowable shape domain (ASD) in order to look like

the ones in the training set. Successfully applied to various types of shapes (faces, hands,

organs), PDM has became a standard in statistical shape modeling in particular in the

context of medical image segmentation.

The PCA based shape modeling method can be applied to not only point-based repre-

sentation, but also other shape descriptions. [Székely 1996] used Fourier parametrization
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of the object surface [Staib 1996] and applied principal component analysis (PCA) in the

Fourier coefficient space. Closely, [Kelemen 1999] expanded surface representation into

series of spherical harmonics (SPHARMs) and calculated shape eigenmodes in the shape

parameter space as well. [Davatzikos 2003] used wavelet transform of the object con-

tour and built a hierarchical shape model via PCA on the coefficients in each band, and

[Nain 2007, Yu 2007] used spherical wavelets to extend this approach to 3D cases.

Implicit shape representation given by the level set framework is another popular

choice in shape representation, where the contour of the object is embedded as the zero

level set of a higher dimensional surface. The embedding function is often chosen as

signed distance maps. [Leventon 2000] represented each training shape as a signed dis-

tance map sampled at regular intervals and performed PCA on the signed distance maps

to build the shape model. [Tsai 2001a] also applied PCA to a collection of signed distance

representations of the training set and optimized the shape parameters directly in segmen-

tation process. Based on this global statistical representation, [Rousson 2002] considered

a more challenging shape model that accounts for local variation as well. A common criti-

cism of performing PCA on signed distance maps is that it can lead to invalid shapes since

distance maps do not form a linear space. [Pohl 2006] addressed this problem by embed-

ding the signed distance map manifold into the linear LogOdds vector space and applying

PCA on the latter space.

Given the richness of the literature in statistical shape modeling, we strongly recom-

mend the recent review [Heimann 2009] of statistical shape models for 3D medical image

segmentation. We also refer the reader to [Cremers 2007] for a review of statistical ap-

proaches to level set segmentation. In this thesis, we represent shape using point-based

representation as same as Point Distribution Model (PDM), since it is straight to do the

statistics as well as to infer the shape instance in an observed image.

Drawbacks of PDM

One drawback of the Point Distribution Model (PDM) is that it models the shape varia-

tions in a global way since each mode of variation influences all the variables of shape at

the same time. This global effect limits shape model to have the flexibility of controlling

local variations which is a desired property in shape analysis or diagnostic purposes. In

order to obtain variation modes which only affect a limited number of local landmarks, the

Orthomax method employed by [Stegmann 2006] rotates the PCA modes to increase spar-

sity while maintaining the orthogonality of components. Another solution is Sparse PCA

[Sjostrand 2007] which obtains the sparse modes and produces near-orthogonal compo-

nents. Independent component analysis (ICA) [Hyvärinen 2000] does not assume a Gaus-

sian distribution and delivers statistically independent projections without orthogonality
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criteria. These non-PCA methods however provide no natural ordering for the variation

modes thus different techniques have to be employed.

Another practical issue in PDM is that it is problematic to represent the full range

of shape variations in high dimensional space from a small training set. The size of

the training set is always relatively small since the available images and their required

manual segmentation are not easy to obtain especially in 3D cases, while the maximum

number of eigenmodes can not exceed the number of the training examples minus one.

[Cootes 1996] addressed this problem by introducing additional synthetic variance and

covariance directly to the covariance matrix and coupling the movements of the neighbor-

ing points along the boundary. Another approach to solve this problem is to divide the

shape model into smaller parts whose variations can be captured with less training sam-

ples. [Davatzikos 2003] represented a hierarchical shape model in terms of its wavelet

transform, while the lower bands of the transform correspond to global shape characteris-

tics and the higher bands to the local ones.

Moreover, PCA as a linear model, cannot adequately model non-linear shape variations

such as bending and shape variations of an articulated object. [Cootes 1999b] estimates

the probability density function of the distribution of shapes as a mixture of Gaussians to

deal with this problem. Kernel Principal Component Analysis (KPCA) [Schölkopf 1998]

introduces a non-linear mapping of the data to a feature shape and PCA is performed in the

feature space, and it was applied by [Twining 2001] to the task of constructing non-linear

ASMs. KPCA has become popular for implicit shape representation [Cremers 2003] since

it solves the problem that signed distance maps do not form a linear vector space. Manifold

learning is also used to model non-linear shape prior. For example, [Etyngier 2007] mod-

eled a category of shapes as a shape prior manifold using Diffusion maps which generate

a mapping from the original shape space into a low-dimensional space.

In addition, the shape models such as PDM are not pose-invariant since they are mod-

eled in a common coordinate frame. In this context, an estimation of the global pose

parameters (translation, rotation and scale) of the shape is required in both training and in-

ference stages. Such a process introduces a strong statistical bias on the segmentation task,

and at the same time it makes the applicability of the model problematic when referring to

diseased subjects. Furthermore, since the shape inference which involves the global pose

estimation is often operated in a local search, these methods require the initialization to be

very close to the ground truth.

Related Work

[Cootes 1992] developed a shape model using Chord Length Distribution (CLD) represen-

tation. Given a training set, each shape example is represented by a vector which contains



3.1. INTRODUCTION 41

the distances between all pairs of points, and then a PCA is applied to model the varia-

tions of the chord lengths. A new shape can be generated by varying the parameters which

change the distances. This shape model is invariant to the object orientation since it relies

on internal distances, and it can model bending objects while the linear PDM fails. How-

ever the inference of the shape is more complex from distances rather than from points.

Instead of building one single global shape model, [Seghers 2008] built the shape prior

from a concatenation of local statistical shape models. This method is based on graph

representations where a vertex corresponds to a landmarks and an edge defines the local

interaction between a pair of neighboring landmarks using their mahalanobis distance.

Such a shape model inherits invariant properties with respect to the translation and rotation

changes of the global shape, but both training and testing images still have to be registered

and resampled to the reference image to filter out the scaling effect. More importantly,

considering only the constraints on neighboring landmarks does not guarantee of learning

the underlying shape manifold.

[Besbes 2009] built the shape model as an incomplete graph that consists of intra and

inter-cluster connections representing the inter-dependencies of control points, after clus-

tering the control points according to their behavior within the training set. The interaction

between a pair of control points is represented by the distribution of the normalized dis-

tance which is the Euclidean distance of the two points normalized by the scale of the

object. This normalized distance representation is similarity-invariant and is available for

the training set. However, it can not to be encoded in a pairwise term in the MRF inference

since it requires the scale of the object which is determined by all the control points. Based

on an interactive searching scheme, they approximate the global scale as the scale of the

obtained shape at the previous iteration of the shape evolution. Thus, the scale-invariant

property may not hold when the estimated scale is not close to the actual scale.

[Wang 2010] introduced a pose-invariant shape model where the prior manifold is con-

structed through the accumulation of local constraints on triplet cliques. Instead of using

pair distance normalized by the global scale, each local interaction is represented by two

normalized pair distances in the triplet clique, while the normalizing factor is the sum of

the three pair distances of the clique. This representation is invariant with respect to trans-

lations, rotations and scales, and it can be exactly encoded in a higher-order MRF frame-

work. Unfortunately, a fully connected graph which consists all possible triplet cliques

leads to the inherited computational complexity and makes this method impractical.

3.1.2 Our Proposed Method

In this thesis, we propose a novel statistical shape model which can address the limitations

of the existing approaches. We adopt a point distribution graphical model which encodes
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pose invariant shape priors through L1 sparse higher order cliques. The second-order

potentials encode the local shape variation statistics, while the subset of cliques from all

possible second-order cliques is learned through dual decomposition from a training set.

This is to provide the best possible reconstruction of the observed shape variation, while

being as compact as possible. We summarize the advantages of our model as follows:

• We propose a model that is pose invariant, efficient to learn and perform inference

on, and does not suffer from bad local minima issues at test time.

• Such a model, unlike most active shape ones, does not need to align neither training

samples nor testing shape in a common coordinate frame.

• Due to imposing pose invariance through the use of local interactions (non-linear

model), this allows the model to have the flexibility and thus generalization with

respect to unseen shapes.

• Our statistical modeling on local interactions can capture shape variations from a

small training set.

• Last but not least, a sparse graph structure achieved from Markov Random Field

(MRF) learning eliminates the redundancy in the model, thus boosting efficiency

while preserving its ability to represent the data.

The remaining of the chapter is organized as follows. In Section 3.2, we introduce a

pose invariant shape model which is formulated in a Markov Random Field (MRF) where

triplets of points encode the local shape variations statistics while inheriting invariance to

global transformations. Section 3.3 presents a compact representation of the shape priors

where the L1 sparse higher-order graph is learned through dual decomposition from a

training set, while preserving the ability to describe shape variability. Experimental results

are presented in Section 3.4.

3.2 Pose Invariant Shape Model

3.2.1 Point-based Representation

The first fundamental decision in statistical shape model is the choice of shape represen-

tation. In this thesis, we use a point-based representation since it is straight-forward and

easy to do statistics on points in order to learn their behavior. As Point Distribution Mod-

els (PDM), the shape of the object of interest is represented by a number of points which

are distributed on the shape boundary. For example, Figure 3.1(a) shows a point-based
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(a) (b)

Figure 3.1: Point-based model of 3D myocardium. (a) Distribution of the control points.

(b) Triangle mesh.

model of 3D myocardium where the involved control points are marked as blue dots. In

this manner, a shape instance X can be described by a set of boundary points:

X = {x1, · · · ,xn} (3.1)

where n denotes the number of the points, V = {1, · · · , n} denotes the point set, and

xi∈V denotes the coordinates of the i-th point. The involved points are often referred as

landmarks in Statistical Shape Model (SSM) literature, although they are not obliged to be

located at salient feature points as the common definition for anatomic landmarks. We also

call them control points to avoid confusion. As soon as the positions of the control points

are known, the shape boundary can be approximately reconstructed using connectivity

information between neighboring points, forming a closed curve for 2D shapes (e.g. see

Figure 3.2) or a triangle mesh for 3D shapes (e.g. see Figure 3.1(b), where the control

points are modeled as vertices in the mesh).

Point Correspondences

Based on the shape representation, a training set of K shape instances {X1, · · · ,XK} is

necessary to build the statistical shape model, where each sample is represented with n
control points, i.e. Xk = {xk

1, · · · ,xk
n}, ∀k ∈ {1, · · · , K}. A very important requirement

of point correspondences has to be guaranteed on the training set, which requires that the

n control points in each sample should be located in a consistent manner. In particular,
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(b)

Figure 3.2: Landmark labeling on two samples of 2D lung with point correspondences.

∀i ∈ V , the i-th landmark in each sample {x1
i , · · · ,xK

i } should correspond to the same

location on the shape. For instance, in Figure 3.2 two shape samples (a) and (b) are used to

show the point correspondences, where the control points with the same index in different

samples are located at the same position of the shape. In practice, the correspondences

can be obtained through manually labeling the control points for each training sample, or

labeling a shape instance at first and then deducing the control points of the other instances

in the training set through registration between the labeled one and non-labeled ones.

3.2.2 Statistical Shape Prior

Given a training set, we aim to learn the intrinsic geometric prior of a class of shape.

Mathematician and statistician David George Kendall [Kendall 1984] defined "shape" in-

formally as all the geometrical information that remains when location, scale and rotational

effects are filtered out from an object. In this context, a crucial requirement of a statistical

shape model is to be pose invariant, i.e. invariant to translation, rotation and scale changes

of the object. Shape variations induced by these global transformations should be excluded

from the modeling.

Most statistical shape models such as Active Shape Models (ASMs) involve an align-

ment process to filter out translation, rotation and scale change effects. All the training
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Figure 3.3: Local interactions of the shape. (a) Connections by pairs of control points. (b)

Connections by triplets of control points.

samples (as well as the testing shapes) have to be aligned in a common coordinate frame.

Such a process introduces strong statistical bias, and at the same time it makes the appli-

cability of the model problematic when referring to diseased subjects.

In this section, we propose a statistical shape model which is pose-invariant, thus it

does not need shape alignment. The global shape constraint is expressed as a combination

of local interactions. In the following, two types of local interactions based on a subset of

control points are going to be studied.

E ={(i, j)|i, j ∈ V and i 6= j}
C ={(i, j, k)|i, j, k ∈ V and i 6= j 6= k} (3.2)

where E denotes a set of all possible pairs of control points, and C denotes a set of all

possible triplets of control points on the shape. We show the two types of interactions in

Figure 3.3 with a simple model which contains 4 control points. The pairwise set E is

represented by the edges linking every two points in (a); the triplet set C is represented by

a group of ellipses, where each ellipse surrounds three control points.

Now we describe the shape probability p(X) in terms of co-occurrence probabilities,

according to the pioneering works of [Cremers 2006b] and [Seghers 2008]. Based on

product rule, the joint probability of n control points can be written as:

p(x1, · · · ,xn) = p(x1) p(x2, · · · ,xn|x1)

= p(x1) p(x2|x1) p(x3, · · · ,xn|x1,x2)

= p(x1) p(x2|x1) p(x3|x1,x2) · · · p(xn|x1 · · · ,xn−1)

(3.3)
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Two assumptions are considered for shape prior. First, we assume ∀i ∈ V a constant p(xi)
since the shape prior should be invariant to translations. This assumption also gives the

equivalence of the conditional probabilities for each pair (i, j) ∈ E .

p(xi|xj) = p(xj|xi) ∝ p(xi,xj) (3.4)

Second, the control points are only dependent within a certain order of interaction, e.g. for

pairwise interaction, the co-occurrence probability function of two control points does not

depend on a third point.

p(xi,xj|xk) ≈ p(xi,xj), ∀k 6= i, j (3.5)

Under the above assumptions, Eq.(3.3) can be simplified by choosing one particular de-

composition of the joint probability as follows.

p(x1, · · · ,xn) ∝
n−1∏

i=1

p(xi,xi+1) (3.6)

On the right side of the equation, a number of n − 1 pairs are considered to cover all

the control points without generating loops, composing a structure named spanning tree.

We can perform the same simplification to all possible spanning trees of n control points.

Multiplying all these equations, we have:

p(x1, · · · ,xn)
Γ ∝

∏

(i,j)∈E
p(xi,xj)

ν (3.7)

where Γ is the number of all possible spanning trees on the control point set, and ν denotes

the number of times each pair appears in the overall product. Obviously, each pair in a

complete graph has the same number of appearances. Since one spanning tree includes

n − 1 pairwise factors, all the spanning trees have (n − 1) · Γ factors. Meanwhile on

the right side, the number of all possible pairs is
n(n−1)

2
, the total pairs include

n(n−1)
2

· ν
factors, then we have the relation Γ = n

2
ν. Therefore, Eq.(3.7) can be simplified as:

p(x1, · · · ,xn) ∝
∏

(i,j)∈E
p(xi,xj)

2

n (3.8)

Similarly, assuming that the co-occurrence of any triplet of control points does not

depend on a fourth point, the shape probability can be estimated by the product of proba-

bilities of all possible triplets.

p(x1, · · · ,xn) ∝
∏

(i,j,k)∈C
p(xi,xj,xk)

γ (3.9)

where the constant γ denotes the number n − 2 of triplets included in one decomposition

divided by the number C(n, 3) of all possible triplets, thus we have γ = 6
n(n−1)

.
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Figure 3.4: Pairwise interaction representation: chord length. Left: a shape instance.

Right: a similarity transformation of the shape.

Probabilities of Pairs

Let us consider a pair (i, j) ∈ E of control points, the constraint between the two points

(xi,xj) can be described by their chord length, i.e. Euclidean distance dij between the two

points (see Figure 3.4).

p(xi,xj) = pij(dij) = pij(‖xi − xj‖) (3.10)

This chord length representation is invariant to shape changes with respect to position

and orientation, but it is variant with the scale of the shape. Figure 3.4 shows a shape

instance (left) and a similarity transformation (right), where we can see that the chord

length changes due to the scaling effect. The global scale of a shape instance can be

estimated by the average distance over all pair distances, d̄ = 2
n·(n−1)

∑
(i,j)∈E ‖xi − xj‖.

In order to be invariant to the scale changes as well, the Euclidean distance between two

points (xi,xj) is divided by the global scale d̄, thus producing a normalized distance d̂ij .

p(xi,xj) = pij(d̂ij) = pij(
‖xi − xj‖

d̄
) (3.11)

Given K shape samples, for each pair (i, j) ∈ E , a set of normalized distance samples

{d̂1ij, · · · , d̂Kij } can be calculated. Then the possibility density distribution pij(d̂ij) can be

learned using a standard probabilistic model. However, although being scale invariant,
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Figure 3.5: Pose invariant representation of triplet interaction: inner angles. Left: a shape

instance. Right: a similarity transformation of the shape.

pij(d̂ij) is actually a posteriori probability. It is based on the condition that the global

shape scale d̄ is known, which is the case for training samples but is not the case for shape

inference step unless a global scale estimation is performed in advance. Therefore, co-

occurrence probabilities of pairs are neither pose invariant referring to the pair distance dij
nor feasible in shape inference process referring to the normalized distance d̂ij .

Probabilities of Triplets

Now we consider higher-order cliques - triplets - to introduce a pose-invariant representa-

tion. For a triplet clique c = (i, j, k) ∈ C, considering the control points xc = (xi,xj,xk)
as end points, three line segments {xixj,xixk,xjxk} are composed, producing three an-

gles {αc = ∠xjxixk, βc = ∠xixjxk, θc = ∠xixkxj} between every two segments. The

geometric shape of triplet c can be defined by its two inner angles (αc, βc) (see Figure 3.5).

pc(xi,xj ,xk) = pc(αc, βc) (3.12)

where the inner angles (αc, βc) are given as follows, and the third angle θc is a linear

combination of the two, i.e. θc = 180◦ − αc − βc.

αc = arccos
−−→xixj · −−→xixk

‖xixj‖ ‖xixk‖
, βc = arccos

−−→xjxk · −−→xjxi

‖xjxk‖ ‖xjxi‖
(3.13)
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This representation of triplet of control points is invariant to global pose (i.e. translation,

rotation, scale) of the shape of the object. As we can see in Figure 3.5, the angle informa-

tion defined by a triplet is unchangeable under similarity transformation.

Given a training set of K shape samples, for each triplet c ∈ C has K instances

{(α1
c , β

1
c ), · · · , (αK

c , β
K
c )}. Then, the probability density distributions pc(αc, βc) of triplet

c are learned using a standard probabilistic model, such as a Gaussian distribution N .

pc(αc, βc) = N (αc, βc|µc,Σc) (3.14)

where µc and Σc are the mean and the variance matrix learned from the training set.

Without loss of generality, both simple and complex distribution models can be used to

learn the statistics.

3.2.3 Shape Inference

To this end, our pose invariant shape model M = (V , C,P) is built. It consists of a set V
of control points, a set of triplets C and the statistical shape prior P = {pc(αc, βc)|c ∈ C}
which is constructed through the accumulation of triplet constraints based on Eq.(3.12).

Based on this representation, the shape model can be easily encoded in an MRF model

towards efficient optimization.

Now we perform the shape inference problem as a higher-order Markov Random

Fields (MRF) formulation. Let G = (V , C) denote a hypergraph with a node set V and a

clique set C. We associate a control point to a node i ∈ V and a triplet of control points

to a second-order clique c ∈ C. Let Xi denote the latent variable (i.e. the coordinates of

control point) of node i, and Ui denotes the candidate space for the variable Xi. The shape

inference problem is transformed into estimating an optimal configuration X = (xi)i∈V of

all the nodes over shape candidate space U =
∏

i∈V Ui.

Xopt = argmin
X∈U

E(X) (3.15)

where the MRF energy E(X) is formulated as the negative log of the shape probability

p(X) defined in Eq.(3.9). Thus the energy E(X) can be calculated as the sum of higher-

order terms defined on the triplet clique set C.

E(X) = −log p(X) =
∑

c∈C
hc(xc) (3.16)

where for each c ∈ C the second-order potential hc(xc) is defined by the co-occurrence

probability of three control points which can be represented by the inner angles according

to Eq.(3.12). The probability distribution pc(αc, βc) is learned from the training set.

hc(xc) = −log pc(xc) = −log pc(αc, βc) (3.17)
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Figure 3.6: Model search space. Left: Two local candidate spaces of a node using two

scales. Middle: the candidate space of a node at iteration t. Right: the candidate space of

a node at iteration t+ 1.

To overcome the exhausting size of the search space, we adopt a coarse-to-fine iterative

search strategy to recover the optimal shape configuration. For each node variable Xi, its

candidate space Ui is iteratively determined by three factors: a sampling system N (e.g. a

grid pattern), a neighborhood scale S and the current configuration xi. For example, on

the left of Figure 3.6, a node variableXi is represented by a red dot, two neighborhoods by

scales S1, S2 around its current position xi are draw in blue and green, the candidate space

Ui is composed by the sample positions (blue dots or green dots) in the neighborhood,

including its current position (red dot). In other words, the candidate space Ui can be

considered as a transformation of a sampling system N by a translation to xi and by a

scaling S.

Given an initialization of the shape X0, the candidate space U is determined according

to a sampling pattern N and an initial scale S0 of the neighborhood. By searching over the

candidate space, an optimal solution Xopt of the MRF formulation in Eq.(3.15) is obtained.

The optimal shape will be taken as the initialization for the next iteration, also resulting

a new candidate space. We start from a large search scale S0 at the beginning so that

the model can evolve to an approximate optimal shape by big displacements. When no

better solution than the current configuration can be recovered in the search space, then

we reduce the scale S of the candidate space by a rate r in order to refine the shape by

smaller displacements. The iterative process ends until a threshold scale Smin. In particular

for each node, an optimal position is recovered among its candidates at t-th iteration (see

Figure 3.6 middle, the red dot represents the current position, while the arrow points to the

optimal solution which is among the candidates marked by blue dots). Then the control

point is moved to the optimal position, along with a local candidate space for the next
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Algorithm 3.1 A coarse-to-fine local search strategy.

Input:

An initial shape X = X0; A sampling system N ; An initial scale S = S0; A scale

threshold smin; A scale rate r.
Iteration:

1: while S > smin do

2: ∀i ∈ V ,Ui = {S ∗ N + xi};

3: Optimize MRF to get Xopt;

4: if Xopt = X then

5: S = S ∗ r;
6: end if

7: X = Xopt;

8: end while

optimization (see Figure 3.6 right). This iterative process allows evolving the shape in a

coarse-to-fine manner with respect to the dynamic candidate space, thus producing a valid

shape instance at the end. We show the search framework in Algorithm 3.1.

Based on such a MRF representation, we can apply a dual-decomposition optimization

framework [Komodakis 2007a, Komodakis 2011b] to perform the inference of the pro-

posed higher-order MRF, which does not suffer from bad local minima issues at test time.

So far, we propose a shape model that is pose invariant, efficient to perform inference on.

Such a model, unlike most active shape ones, does not need to align either training sam-

ples or testing shape in a common coordinate frame, meanwhile no global scale parameter

estimation in the inference step is needed. Our shape model encodes global consistency

as well as local variations. It can capture shape variations even with a small number of

training examples.

However, the main limitation of this shape model is the inherited computational com-

plexity that is proportional to the excessive number of higher order cliques. Thus we need

to investigate a compact manner to encode prior knowledge that requires the smallest pos-

sible number of triplet cliques without altering the ability to express the shape manifold.

Furthermore, assuming independence between all cliques may not always hold since there

can be strong correlation between them at least at local scale. Last but not least, the signif-

icance of the different triplets towards capturing the observed deformations of the training

set is not the same.
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3.3 L1 Sparse Graphic Model

In this section, we work on a compact representation of shape prior model while preserving

the ability to describe shape variability. We parameterize1 the MRF energy (3.16) by

introducing an additional vector of parameters w = {wc|c ∈ C} containing one component

wc per clique c.

E(X;w) =
∑

c∈C
wchc(xc) (3.18)

where hc(xc) is defined in Eq.(3.17). Based on the above formulation, a clique c is associ-

ated with a contribution weight wc such that clique c can be ignored if the corresponding

element is zero, i.e. , if it holds wc = 0. Therefore, the role of the introduced vector w is

essentially to select which of the cliques are going to be retained in our shape prior model.

3.3.1 Max-Margin Learning

To estimate this vector w, we use an MRF training procedure [Komodakis 2011a] during

which we impose a sparsity-enforcing prior on vector w in order to eliminate as many

redundant cliques as possible. Let {Xk}Kk=1 be the training set of shape instances. A max-

margin learning formulation [Taskar 2004] is employed for computing w, in which case

we minimize the following regularized empirical loss:

min
w

λ||w||1 +
K∑

k=1

ξk (3.19)

subject to the constraints:

E(Xk;w) ≤ E(X;w)−∆(X,Xk) + ξk, k ∈ {1, · · · , K} (3.20)

In the above expression (3.19), the term λ||w||1 is a sparsity inducing L1-norm regularizer,

and a slack variable ξk denotes the loss with respect to a training example Xk for the

defined MRF. Ideally the slack variable should be equal to zero, however in general, it will

hold ξk > 0 and we must adjust the parameter vector w in order that the sum of the slack

variables in the training set takes a minimal value.

The constraint (3.20) expresses the fact that we seek a parameter vector w such that the

MRF energy of a ground truth shape E(Xk;w) should be smaller than the MRF energy

of any other shape E(X;w) by at least a margin ∆(X,Xk), where ∆(X,X′) represents a

1With a slight abuse of notation, symbols E(X) and E(X;w) will hereafter be used interchangeably for

denoting the energy of an MRF.
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dissimilarity measure between two solutions X and X′. This constrained learning problem

is equivalent to an unconstrained one, when the loss function ξk is given as hinge loss:

ξk(X
k;w) = E(Xk;w)−min

X

(
E(X;w)−∆(X,Xk)

)
(3.21)

There are two main challenges that we need to deal with in this case: (i) The MRF that

we wish to train contains high-order terms, (ii) The learning must take into account the fact

that, if Xk is a ground truth shape, then any transformed shape instance T (Xk) under a

similarity transformation T is an equally good solution and should not be penalized during

training, i.e. it should hold ∆(X, T (X)) = 0.

To deal with (ii), we choose the dissimilarity function ∆(X,X′) that decomposes into

the following higher-order terms:

∆(X,X′) =
∑

c∈C
δc(xc,x

′
c) (3.22)

where the term δc(xc,x
′
c) equals 0 if two triplets of points xc and x′

c are similar, and

equals 1 otherwise. The similarity property of triplets can be defined using the angle

representation (3.13) which is invariant to similarity transformation, i.e. if αc = α′
c and

βc = β′
c, then xc and x′

c are similar.

We define a new MRF energy Ek associated with k-th sample.

Ek(X;w) =
∑

c∈C
gkc (xc;wc), g

k
c (xc;wc) = wchc(xc)− δc(xc,x

k
c ) (3.23)

Then, the slack variable ξk can be reformulated as follows:

ξk(X
k;w) = Ek(Xk;w)−min

X
Ek(X;w) (3.24)

which indicates the fact that the slack variable ξk equals to zero only if the minimum

MRF energy Ek is obtained when the optimal solution is the ground truth shape Xk or its

transformed shape T (Xk) under a similarity transformation T . Now we have to deal with

the minimization problem of the regularized empirical loss (3.19). Using the definition of

the loss function ξk (3.24), our objective function thus becomes equal to:

min
w

λ||w||1 +
K∑

k=1

(
Ek(Xk;w)−min

X
Ek(X;w)

)
(3.25)
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3.3.2 MRF Learning via Dual Decomposition

However, to minimize the above function is generally intractable due to the appearance of

the minimum of the energy function Ek(X;w) which contains higher-order potentials in

our case. To deal with this challenge, we make use of the recently proposed dual decom-

position framework for MRF optimization [Komodakis 2007a, Komodakis 2011b] which

provides a general and flexible method for deriving and solving tight dual relaxations.

In dual decomposition framework, the original graph G = {V , C} is decomposed into

a set of sub-graphs Gi = {Vi, Ci} such that their union covers all the nodes and cliques

in the original graph, i.e. V = ∪Vi and C = ∪Ci. The original minimization problem

on graph G (called the master) is then decomposed into a set of easier sub-problems on

sub-graph Gi (called the slaves), as shown in Figure 3.7. In general, the original MRF

energy on graph G can be defined with unary potentials φ and higher-order potentials ϕ,

while each slave MRFs on graph Gi are defined with their own unary potentials θi and the

inherited higher-order potentials ϕ from the master MRF.

Master: MRFG(φ, ϕ) = min
X

∑

p∈V
φ(xp) +

∑

c∈C
ϕ(xc)

Slave: MRFGi
(θi, ϕ) = min

{xp∈Vi
}

∑

p∈Vi

θi(xp) +
∑

c∈Ci
ϕ(xc)

(3.26)

where the slave unary potentials should satisfy:

∑

i∈Ip
θi(xp) = φ(xp), p ∈ V (3.27)

We denote Ip as the set of indices of those sub-graphs which contain the node p, i.e. Ip =
{i|p ∈ Vi}. This above equation makes sure that for each node p in the graph G, the sum

of the unary potentials of the slaves which include the node p is equal to its unary potential

of the master MRF. Because the sum of the minimum energies of the slaves always pro-

vides a lower bound to the minimum energy of the master MRF, i.e.
∑

i MRFGi
(θi, ϕ) ≤

MRFG(φ, ϕ), the dual relaxation of the master problem can be achieved through maximiz-

ing the sum of the minimum energies of the slaves by adjusting the slave unary variables

θi = {θi(xp)|p ∈ Vi}.

MRFG(φ, ϕ) ≈ Dual{Gi}(φ, ϕ) = max
{θi}

∑

i

MRFGi
(θi, ϕ) (3.28)

where {θi} are the dual variables and they should satisfy the constraints (3.27).
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Figure 3.7: MRF optimization via dual decomposition [Komodakis 2007a].

Now we replace the minimum of the MRF energy in Eq.(3.25) with the dual relaxation:

min
X

Ek(X;w) ≈ Dual{Gi}(φ, ϕ) = max
{θk

i }

∑

i

MRFk
Gi
(θki , ϕ

k) (3.29)

where we denote the slave problem on sub-graph Gi as MRFk
Gi

with respect to the k-th

sample. According to Eq.(3.23), the master energy in our case consists only higher-order

potentials (i.e. ϕk = gk) and no unary potentials (i.e. φ = 0), and thus the slave unary

potentials should satisfy
∑

i∈Ikp θ
k
i (xp) = 0 according to Eq.(3.27). The slave problem on

sub-graph Gi can be written as:

MRFk
Gi
(θki , g

k) = min
XGi

Ek
Gi
(XGi

;wGi
) (3.30)

where the slave MRF energy Ek
Gi

is defined as:

Ek
Gi
(XGi

;wGi
) =

∑

p∈Vi

θki (xp) +
∑

c∈Ci
gkc (xc) (3.31)

The master MRF energy of k-th training sample Ek(Xk;w) is equal to the sum of the

slave MRF energies due to the constraints (3.27).

Ek(Xk;w) =
∑

i

Ek
Gi
(Xk

Gi
;wGi

) (3.32)

As a result, the loss function ξk (3.24) with respect to the k-th sample can be reformu-
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Figure 3.8: Decomposition of the graph.

lated using the slave terms:

ξk ≈
∑

i

Ek
Gi
(Xk

Gi
;wGi

)−max
{θk

i }

∑

i

min
XGi

Ek
Gi
(XGi

;wGi
)

= min
{θk

i }

∑

i

(
Ek

Gi
(Xk

Gi
;wGi

)−min
XGi

Ek
Gi
(XGi

;wGi
)
)

= min
{θk

i }

∑

i

Lk
Gi
(Xk

Gi
,θk

i ;wGi
)

(3.33)

where Lk
Gi

denotes the loss function of k-th sample with respect to the sub-graph Gi. To

this end, the objective function (3.25) which we want to minimize is equal to:

min
w,{θk

i }
λ||w||1 +

∑

k

∑

i

Lk
Gi
(Xk

Gi
,θk

i ;wGi
) (3.34)

As can be seen, such a framework essentially manages to reduce the task of training a

complex high-order model on the graph G, i.e. minimizing the regularized empirical loss

(3.25) to the much easier task of training in parallel a series of slave MRFs defined on

sub-graphs of G. The only restriction that must be obeyed by these sub-graphs is that (i)

their union should cover the original graph G, and (ii) one should be able to minimize the

energy of the so-called loss-augmented slave MRFs defined on these subgraphs.

In our case, we choose one sub-graph corresponding to each clique c = {o, p, q} ∈ C
of graph G. Now the slave energy on the sub-graph (i.e. clique c) could be given as:

Ek
c (xc,θ

k
c ;wc) = θkc (xo) + θkc (xp) + θkc (xq) + wchc(xc)− δ(xc,x

k
c ) (3.35)
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Then the minimum of the slave energies minxc
Ek

c is easier to solve since there are only

three variables to optimize. We redefine the loss function of k-th sample with respect to a

clique c.

Lk
c (x

k
c ,θ

k
c ;wc) = Ek

c (x
k
c ,θ

k
c ;wc)−min

xc

Ek
c (xc,θ

k
c ;wc) (3.36)

Therefore, the objective function in our case becomes:

min
w,{θk

c }
λ||w||1 +

∑

k

∑

c

Lk
c (x

k
c ,θ

k
c ;wc)

s.t.
∑

c∈Cp

θkc (xp) = 0
(3.37)

where c ∈ C denotes a triplet clique on the graph G, and the set Cp denotes the triplet

cliques which contain the node p ∈ V .

3.3.3 Projected Subgradient Algorithm

Now we adopt a projected subgradient algorithm to minimize the above objective function

(3.37). The subgradient method is a simple algorithm for minimizing a non-differentiable

convex function. Suppose f : Rn → R is convex, to minimize f , the subgradient method

use iteration:

x(t+1) = x(t) − αt · g(t) (3.38)

where x(t) is the t-th iteration, g(t) is any subgradient of f at x(t), and αt > 0 is the t-th
step size. One extension of the subgradient method is the projected subgradient method,

which solves the constrained convex optimization problem:

minimize f(x) subject to x ∈ Ω (3.39)

where Ω is a convex set. The projected subgradient method is given by

x(t+1) = P (x(t) − αt · g(t)) (3.40)

where P is Euclidean projection on Ω, and g(t) is any subgradient of f at x(t).
In our case to minimize the objective function (3.37), the variables w, {θk

c } should be

updated at each iteration as follows.

w(t+1) = w(t) − αt · dw(t)

θk,(t+1)
c = P (θk,(t)

c − αt · dθk,(t)
c )

(3.41)
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where dw,{dθk
c } denote the components of a subgradient of the objective function, P (·)

denotes the projection onto the set Ω = {{θk
c }|

∑
c∈Cp

θkc (xp) = 0, ∀p ∈ V}. The step size

αt is taken the non-summable diminishing step lengths.

αt =
γt

‖{dw, dθk
c }‖

(3.42)

where γt > 0 is a positive multiplier used for t-th iteration and it satisfies limt→∞ γt = 0
and

∑∞
t=0 γt = ∞.

Our objective function is non-differentiable due to the term minxc
Ek

c (xc,θ
k
c ;wc) in-

cluded in the definition of lossLk
c (3.36). In order to compute a subgradient of the objective

function, first we have to compute a subgradient for minxc
Ek

c (xc,θ
k
c ;wc). A subgradient

of this term is given by the vector ∇Ek
c (x̂

k
c ,θ

k
c ;wc), where x̂k

c is a minimizer of the slave

MRF on a clique c. The vector has the following components:

dwc =
∂Ek

c (x̂
k
c ,θ

k
c ;wc)

∂wc

= hc(x̂
k
c )

dθkc (xp) =
[
x̂k
p = xp

] (3.43)

where [·] equals 1 if the expression in square brackets is satisfied, and 0 otherwise.Then,

the components dw and {dθk
c } of the total subgradient of the objective function are given

by:

dw = λ∇(‖w‖1) +
∑

k,c

(
hc(x

k
c )− hc(x̂

k
c )
)

dθkc (xp) =
[
xk
p = xp

]
−

[
x̂k
p = xp

] (3.44)

When updating the slave unary potentials {θk
c }, we have to make sure that the resulting

variables are projected on to the feasible set Ω. This projection is equivalent to subtracting

the average vector
∑

c∈Cp θ
k
c (xp)/ |Cp| from each vector θkc (xp) such that the sum remains

equal to zero as required by the constraints, where |Cp| denotes the number of cliques

which contains the node p. Based on the above, the variables θkc are updated at each

iteration as follows:

θkc (xp)
(t+1) = θkc (xp)

(t) − αt ·
( [

xk
p = xp

]
−

∑
c∈Cp

[
x̂k
p = xp

]

|Cp|
)

(3.45)

In this manner, given a training set {Xk}Kk=1, we can update the parameter vector w

and slave unary potentials θkc (xp) at each iteration until the objective function converges.

The projected subgradient learning algorithm is shown in Algorithm 3.2. In addition,
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Algorithm 3.2 Projected subgradient learning algorithm.

Input:

A training set of K shape samples {Xk}Kk=1; a graph G = (V , C); high-order feature

functions {hc(·)}.

∀k, c, initialize θk
c = 0.

Iteration:

repeat

// Optimize slave MRFs

∀k, c, compute minimizer x̂k
c of slave MRF on clique c of k-th sample;

// Update w

compute dw according to Eq.(3.44);

update w(t+1) = w(t) − αt · dw(t);

// Update θk
c

∀k, c, p, update θkc (xp)
(t+1) using Eq.(3.45);

until convergence

all known convergence rate results for subgradient methods carry over to our case. The

correctness of the algorithm is guaranteed by the following general theorem according to

the subgradient methods:

Theorem 1. if multipliers αt ≥ 0 satisfy limt→∞ αt = 0 and
∑∞

t=0 αt = ∞, then the

proposed algorithm converges to an optimal solution of problem (3.37).

To summarize the above MRF learning method, the original problem of training a

complex high-order MRF on the graph G = (V , C) is reduced to the training in parallel a

series of easy-to-handle slave MRFs on sub-graph {Gi = (Vi, Ci)} by applying the dual

decomposition method. We choose the decomposition {Gi = Gc} so that each sub-graph

contains a high-order clique c ∈ C, i.e. Vc = {p|p ∈ c} and Cc = c. Thus it is not difficult

to find the minimizer of the slave MRF, while it is a NP-hard to find the minimizer of the

original MRF. In our case, the high-order clique c contains three nodes, so in each slave

MRF energy we have three unary potentials θc and one high-order potential.

Then, the projected subgradient method is used to do the optimization. On one hand

(in the local view), we adjust the parameter wc for each slave so that the minimizer of each

slave MRF x̂c should be coincide with the ground truth solution xk
c . On the other hand

(in the global view), we modify the unary potentials θc so that the minimizers of different

slaves MRF agree on a common solution for each node, while the sum of the slave unary

potentials of the same node should be equal to its unary potential of the original MRF.
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To this end, we can achieve from a training set a proper vector w to parameterize

the high-order potentials in MRF formulation (3.18), in order to better describe the shape

modeling problem. Due to the sparsity regularizer, a large number of the cliques will be

endowed with zero-value weight, i.e. wc = 0. By eliminating those cliques which do no

contribution in the MRF formulation, we obtain a sparse structure with no redundancy.

In practice, one can use a certain threshold to select the useful cliques. Thus, the sparse

graph G = (V ,F) is composed by the cliques whose corresponding weights are above the

threshold t, i.e. F = {c|wc > t, c ∈ C}, while the number of the cliques in the graph G is

much smaller than in the complete graph G, i.e. |F| << |C|.

3.4 Experimental Validation

We validated the proposed shape model for both 2D and 3D shapes, in the medical and

non-medical settings. The tests are done in three steps:

• The control point set of each shape example is known, and local statistics of all

triplets are learned from the training set.

• MRF learning which imposes sparsity of the graph is used to estimate a parameter

vector w, and the cliques with the largest components are remained in constructing

shape prior.

• Shape prior is applied in the inference to recover the mean shape.

3.4.1 2D Hand Dataset

Our 2D hand training set consists of 20 right hand examples. A number of 23 control

points are manually labeled on each training sample with point correspondences across

the training set. Figure 3.9 shows the landmark annotation on an example in (a) and the

point distributions of the training set in (b). A fully connected higher-order graph consists

of a number of 1771 triplet cliques and each clique is represented by its two inner angles

(α, β). Figure 3.10 shows the training set of a clique (including point 19, 20 and 21) in

angle representation in (a), and a probability density function obtained by fitting Gaussian

model to the training set (where red/blue indicates large/small probability) in (b).

In MRF training procedure, we set the regularization weight λ = 1 and the step size

αt =
0.01√
1+t

at iteration t. Figure 3.11 (a) shows how the learning objective function varies

during training (the converge time is 1 minute), while the estimated components of vector

w are shown in (b), and a number of 100 selected cliques with the largest coefficient

parameters above the threshold (red line) are considered, producing a sparse graph for the



3.4. EXPERIMENTAL VALIDATION 61

01

02

03

04
05

06

07

08

09

10

1112

1314

1516

1718

1920

2122

23

(a) (b)

Figure 3.9: Point-based model of 2D hand. (a) Landmark labeling of an example. (b) The

training set.

shape prior. Figure 3.12, from left to right, shows the cliques corresponding to the largest

20, 50 and 100 components of parameter vector w. We can see that the obtained sparse

graph (with 100 selected cliques) can cover the full range of the shape, while the finger

tip points are included by more cliques than the points on the palm, which is reasonable

because the finger movements cause more variations.

Then we apply the resulting shape prior in a shape inference where an optimal shape

is recovered with the minimal MRF energy. This optimal shape can be considered as the

mean shape of the object of interest when there is only shape prior term to define the

MRF energy. The results with two initializations (in red) are shown in Figure 3.13, which

shows the performance of our shape prior. Moreover, the speed of the shape inference

with our sparse graph is much faster than the complete graph. For example, the test in

Figure 3.13(b) using 100 cliques takes about 20 seconds to recover the mean shape, while

the shape prior with complete graph (1771 cliques) takes more than 4 minutes.

3.4.2 2D Left Ventricle Dataset

The 2D left ventricle (LV) training set consists of 78 samples from 2 subjects. A number

of 40 control points are manually labeled, 24 points are on the epicardium boundary (outer

contour of the myocardium muscle) and 16 points are on the endocardium boundary (inner

contour of the myocardium muscle) respectively. In Figure 3.14, (a) shows the point dis-

tribution of an example and (b) shows the training set. The control points on epicardium

are shown in blue, while and the points on endocardium are shown in red. This training set



62 CHAPTER 3. STATISTICAL SHAPE MODEL

0 5 10 15 20
80

85

90

95

100

α

β

(a)

0 5 10 15 20
80

85

90

95

100

α
β

(b)

Figure 3.10: Learning statistics of a clique. (a) The training set represented by angles. (b)

The learned Gaussian distribution.

0 10 20 30 40 50 60 70 80
0

500

1000

1500

2000

2500

Time (Second)

O
b
je

c
ti
v
e
 F

u
n
c
ti
o
n

(a)

0 200 400 600 800 1000 1200 1400 1600 1800
0

0.5

1

1.5

2

2.5
x 10

−3

parameters

(b)

Figure 3.11: MRF learning with hand dataset. (a) Primal objective function during train-

ing. (b) Learned parameters w.
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(a) 20 cliques (b) 50 cliques (c) 100 cliques

Figure 3.12: Cliques with the largest component values of the parameter vector w.

(a) (b)

Figure 3.13: Hand shape prior applied to two initializations.



64 CHAPTER 3. STATISTICAL SHAPE MODEL

01
02

03

04

05

06

07

08

09

10

11
12 13

14

15

16

17

18

19

20

21

22

2324

25

26

27

28

29

30

31
32 33

34
35

36

37

38

39
40

(a) (b)

Figure 3.14: Point-based model of 2D LV. (a) Landmark labeling of an example. (b) The

training set.

exhibits the shape changes with respect to the global pose. The fully connected graph with

a number of 9880 triplet cliques is fed to the MRF learning. We show the learning result

in Figure 3.15 with the regularization weight λ = 1 and the step size αt =
0.1√
1+t

at itera-

tion t, where (a) shows the objective function in 18 minutes and (b) shows the estimated

parameters of all the cliques. A number of 500 cliques with the largest parameters are

chosen in the sparse graph. We apply the obtained shape prior in an MRF inference where

the optimal solution is the mean shape. Figure 3.16 shows the results using two different

initializations, the initial point positions are marked in red and the optimized positions are

marked in blue, while the blue circle indicates the first point in the model and the red circle

indicates the last point. The result in Figure 3.16 (b) takes 30 seconds, while the inference

with all the 9880 cliques takes more than 16 minutes.

3.4.3 3D Left Ventricle Dataset

The 3D LV dataset consists of 20 3D Computed Tomography (CT) cardiac volumes and

their segmentations of the left ventricle are manually done on the dataset. Randomly cho-

sen one example, a number of 88 control points are manually labeled on the myocardium

surface from the segmentation. Then a registration step is applied to estimate the corre-

spondences of the control points in the other images, which generates the training set of

the shape samples. The point-based model of the left ventricle is shown in Figure 3.1. The

complete graph consists of 109736 triplet cliques. We show the learning result in Figure
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Figure 3.15: MRF learning with 2D heart dataset. (a) Primal objective function during

training. (b) Learned parameters w.
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Figure 3.16: 2D LV shape prior applied to two initializations.
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Figure 3.17: MRF learning with 3D LV dataset. (a) Primal objective function during

training. (b) Learned parameters w.

3.17 with the regularization weight λ = 1 and the step size αt =
0.1√
1+t

at iteration t, and

a number of 1000 cliques with the largest parameters are selected to construct the spare

graph. To test the learned shape manifold, we minimize the MRF energy defined by the

shape prior terms. Figure 3.18 shows the shape deformation from an initialization where

all the control points are set to the origin of coordinates, (a)-(d) shows the result after

20,40,60,80 iterations respectively. The optimization process for this initialization takes

10 minutes using the 1000 cliques, while the complete graph with 109736 cliques takes

hours for the inference.

3.5 Conclusion

We represent the shape model as a point-based graphical model, where each node in the

graph corresponds to a control point on the shape boundary, while each clique corresponds

to the dependencies of local control points. Choosing the clique size as three, the local

spacial constraint of the three points is modeled by the statistics on the angle measure-

ment which inherits invariance to global transformations. The shape manifold is con-

structed through the L1 sparse higher-order graph, accumulating the local constraints. The

sparse graph consists of a subset of cliques from all possible second-order cliques, and

it is learned through MRF training using dual decomposition. The pose-invariant shape

prior through sparse higher-order graph can be easily encoded in a higher-order Markov

Random Field.
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(a) Iteration 20 (b) Iteration 40

(c) Iteration 60 (d) Iteration 80

Figure 3.18: Minimization MRF energy using shape prior of the left ventricle.



68 CHAPTER 3. STATISTICAL SHAPE MODEL



Chapter 4

Model-based Segmentation with Shape

Priors

In this chapter, we incorporate the prior knowledge in a novel framework for model-based

segmentation. We address the segmentation problem as a maximum a posteriori (MAP)

estimation in a probabilistic framework. A global MRF energy function is defined to

jointly combine regional statistics, boundary support as well as shape prior knowledge

for estimating the optimal model. The considered framework is optimized using dual

decomposition and applied in 2D and 3D object segmentation with promising result.

4.1 Introduction

The main idea of knowledge-based segmentation is to combine the image information

with prior knowledge learned from a training set in order to find the object boundaries,

therefore it can cope with occlusions, non-discriminative visual support and noise.

Early approaches adopted snake-based formulations and sought to impose constraints

on the interpolation coefficients of the basis functions [Kass 1988]. Active shape models

[Cootes 1995] and their visual variance have been a fundamental step towards model-

ing globally shape variations through principal component analysis on a set of training

examples, and they used the associated sub-space for manifold-constrained segmenta-

tion. Level set methods have been also endowed with priors either including simple aver-

age models [Chen 2002], subspaces [Rousson 2008] or to certain extend pose invariance

[Cremers 2006a].

The graph-theoretic approaches were also considered in knowledge-based segmenta-

tion. In [Freedman 2005], shape constraints were used iteratively to modify the graph

potentials towards imposing prior knowledge by the means of mean shape. Direct mod-
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eling of prior knowledge within graphs have been presented either using global priors

within the random walker algorithm [Grady 2006] or through modeling the segmentation

over the optimization of a graph corresponding to the point distribution model. For exam-

ple, prior knowledge was modeled through statistical definition of the pairwise constraints

in [Seghers 2008, Besbes 2009]. Unfortunately these methods were not pose invariant

(i.e. invariant to translation, rotation and scale of the global shape) and could not model

properly data support. This problem was partially addressed in [Wang 2010] through a

fully connected complex graph with computational complexity being the main bottleneck.

We also mention that our work is related to the deformable image registration approach

[Glocker 2009, Glocker 2011, Zikic 2010] which is based on Markov Random Fields and

integrates prior knowledge on the deformation through a set of control points.

In this chapter, we propose a model-based segmentation using higher-order Markov

Random Field. We develop a global approach to jointly encode the regional statistics,

boundary support, as well as prior knowledges within a probabilistic framework. The

pose-invariant priors are encoded by second-order MRF potentials. The regional statics

is exactly factorized into pairwise or second-order terms using Divergence theorem. The

proposed segmentation method is robust to noise, partial object occlusions and initializa-

tions. It is efficient and does not suffer from bad local minima issues using developed

MRF optimization algorithms. Hand-pose segmentation and left ventricle segmentation

are used as examples to demonstrate the potential of the method.

The remaining of the chapter is organized as follows. In Section 4.2, we introduce the

probabilistic framework for model-based segmentation. Section 4.3 describes the image

supports including regional statistics and boundary supports and Section 4.4 defines the

Markov Random Filed formulation. Experimental validation is shown in Section 4.5 while

Section 4.6 concludes the chapter.

4.2 Probabilistic Framework

We consider the segmentation task as extracting the boundaries between object and back-

ground in the observed image (e.g. see Figure 4.1), where the object boundaries can be

constrained by prior knowledge about the object shape. The method of integrating the

shape priors into image segmentation has the advantage of being robust to image noise,

object occlusions and complicated background, thus producing reliable segmentation.

In this context, our aim is to estimate an optimal object boundary which is modeled

by the learned manifold while being consistent with the visual measurements in an ob-

served image. We formulate the segmentation problem as a maximum a posteriori (MAP)

estimation in a probabilistic framework. To be specific, given an image I, we estimate the
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(a) A tagged cardiac MRI (b) Manual segmentation

Figure 4.1: Left ventricle segmentation.

optimal solution Xopt (object boundaries) by maximizing the posterior probability over the

model space.

Xopt = argmax
X

p(X|I) (4.1)

where p(X|I) denotes the posterior distribution over the unknown X given the image I.

According to Bayes’ Rule, the posterior distribution can be obtained by:

p(X|I) = p(I|X)p(X)

p(I)
(4.2)

• p(I|X) is the conditional probability, or the likelihood of the image I given a partic-

ular model state X.

• p(X) is the prior distribution over the unknown X.

• p(I) is a normalizing constant used to make the p(X|I) distribution integrate to 1.

Taking the negative logarithm of both sides of Eq.(4.2), we have

− log p(X|I) = − log p(I|X)− log p(X) + C (4.3)

which is the negative posterior log likelihood. Since the image I is a fixed observation, the

constant log p(I) can be dropped during the optimization. The Bayesian framework has

two advantages:
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1. The conditional probability p(I|X) of an observation given a model state is often

easier to model than the posterior distribution.

2. The prior distribution p(X) allows to introduce prior knowledge in order to produce

reliable estimates and to cope with low-level information.

The maximum a posteriori (MAP) estimation (4.1) of the most likely solution X given

the image I is equivalent to minimize the negative posterior log likelihood which can be

considered as an energy E(X, I) of the model X and the image I.

Xopt = argmin
X

E(X, I)

E(X, I) = Edata(X, I) + Eprior(X)
(4.4)

where the energy E(X, I) is the sum of the data energy and the prior energy:

• The data energy Edata(X, I) = − log p(I|X) measures the negative logarithm of the

likelihood of the observed image I given the model state X. This term attracts the

model to locate on the desired image features (e.g. the object boundary).

• The prior energy Eprior(X) = − log p(X) measures the negative logarithm of the

likelihood of the shape configuration. This term imposes the constraint on the geo-

metric shape of the model in order to produce a valid shape.

4.3 Image Support

The data energy Edata(X, I), also called as image support, attracts the model to the desired

object boundary in terms of image visual properties. To model the image-based attraction,

there are two typical image supports: boundary-based and region-based measurements,

which are widely used to determine the data likelihood given a configuration of the model.

These two image supports are based on the assumption that the populations (objects and

background) have their own proper feature (i.e. intensity, color, texture) properties which

are used to distinguish from each other in the image.

In order to facilitate the presentation, let us consider the bi-modal case where there are

two populations in the image, i.e. object and background. We define the related notations:

• Let X = {x1, · · · ,xn} denote the boundary points of the object of interest (e.g. see

the blue circles in Figure 4.2 (a)), where xi indicates the position of i-th point.

• Let B(X) denote the model boundary (see the blue contour in Figure 4.2 (a)) which

connects the model points, forming a closed curve in 2D case or a closed surface in

3D case.
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(a) Model boundary B(X) (b) Image partition Ω(X)

Figure 4.2: Image measurements of a hand model.

• Let Ω(X) = {Ωobj(X),Ωbck(X)} be the image partition with two non-overlapping

regions according to the model. For example in Figure 4.2 (b), the object region

Ωobj(X) and background region Ωbck(X) are shown in red and blue respectively.

We also assume that some prior knowledge regarding the expected properties of the

object region, the background region and the boundary between them is available.

• Let pb denote the boundary probability, which measures how likely a pixel being

located on the real boundary between object and background.

• Let pobj and pbck denote the region probabilities, which measure the likelihood of a

pixel being part of object and being part of background respectively.

4.3.1 Boundary-based Module

Boundary-based support characterizes the discontinuity properties between different re-

gions. It encourages the model boundary to be located on the real boundary between

object and background in the image. Given the model boundary B(X), and we assume

that the pixels which belong to the model boundary are independent. Then the boundary-

based data likelihood can be considered as the product of the boundary probabilities of the

pixels on the model boundary being the real boundary. Equivalently, the negative log of

the conditional probability is the sum of the negative log of the boundary probability of

each pixel on the boundary.
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In the continuous representation, the boundary-based energy is defined as an integra-

tion of the negative log of the boundary probabilities along the model boundary.

E
(1)
B (X, I) =

∮

B(x)

G
(1)
B (x(s), y(s))ds

E
(2)
B (X, I) =

{

B(x)

G
(2)
B (x(s), y(s), z(s))ds

(4.5)

where the function GB denotes the negative logarithm of the boundary probability pb, and

E
(1)
B and E

(2)
B are the boundary energies in 2D and 3D cases respectively.

pB(I|X) =
∏

i∈B(X)

pb(i)

− log pB(I|X) =
∑

i∈B(X)

− log pb(i)
(4.6)

where i is a pixel/voxel on the model boundary B(X) and pb(i) denotes the probability of

the pixel/voxel i being a real boundary.

Given an image I, the boundary function GB determines a value for each position

inside the image, such that if the position is highly likely to be on the real boundary, the

value is small, otherwise the value is large. In practice, the widely used way to generate

the boundary image GB is to use the gradient information of the image (e.g. see the scalar

field in Figure 4.3 (b): white represents higher value and black represents lower value)

because the boundaries between different regions usually exhibit high gradient values. For

example, the boundary function GB can be defined directly as the image gradients or a

smoothed version of the image Laplacian:

GB = −‖∇I‖2 or −
∣∣(Gσ ∗ ∇2I

)∣∣2 (4.7)

where Gσ is a Gaussian of standard deviation σ.

Alternatively, the boundary function GB can be considered as a distance map to the

edges. It is acquired by two steps: (1) We apply an edge detector (i.e. Sobel operator)

on the observed image to detect the edges. For example, Figure 4.3 (c) shows the edges

in the original grayscale image (a) using Sobel operator, and the output is a binary image

where the pixels on the edges are assigned to 1 (in white), otherwise they are assigned

to 0 (in black). (2) Then we use distance transform of the edge response to generate the

distance map. Figure 4.3 (d) shows a distance transform of the binary image of edges. The

resulting distance map is shown in a colormap where the higher values are represented in

red, and the lower values are represented in blue. The scale value of each pixel equals to
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(a) Original image (b) Image gradient

(c) Edges in the image
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Figure 4.3: Boundary-based information.

its distance to the nearest edge. Thus if the pixel is close to the edges, the function returns

a small value.

To minimize the boundary-based energy means that the model boundary is attracted

by strong edges corresponding to pixels with local-maxima image gradient values. The

edge-based information is easy to implement with low computational cost, but it makes

the model sensitive to noise and spurious edges. For this reason, it requires to initialize the

model close to the real object boundary in order to avoid getting trapped in local minima.

4.3.2 Region-based Module

Region-based energy captures the homogeneity properties of different populations ob-

served in the image. It encourages the model boundary producing the image partition
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which is consistent with the statistics properties of the object and the background. A

given model boundary B(X) partitions the image domain into object region Ωobj(X) and

background region Ωbck(X). Assuming that there is no correlation between the regions

labeling, the region-based likelihood can be computed as follows.

pR(I|X) = p(I|Ωobj(X)) p(I|Ωbck(X)) (4.8)

where p(I|Ωobj(X)) and p(I|Ωobj(X)) are the posterior probabilities given the object region

Ωobj(X) and the background region Ωbck(X) respectively.

Furthermore, assuming that the pixels within each region are independent, the region

probability can be computed by the product of the pixel probabilities. In this context, the

a posteriori probability of a image partition Ω(X) is determined by:

pR(I|X) =
∏

i∈Ωobj(X)

pobj(Ii)
∏

i∈Ωbck(X)

pbck(Ii) (4.9)

where Ii denotes the observed image feature (e.g. intensity, RGB values or a feature vec-

tor) of the pixel/voxel i, while pobj and pbck are the appearance distribution models of the

object and the background respectively. If a pixel/voxel i is in the object region Ωobj(X),
we calculate the probability of the pixel i being the region, otherwise we calculate the

probability of the pixel i being the background. As a result, the regional likelihood en-

courages that the object region Ωobj(X) covers the pixels that exhibit the object properties,

and background region Ωbck(X) covers the pixels that exhibit the background properties.

Now taking the negative logarithm of the above equation, we have:

− log pR(I|X) =
∑

i∈Ωobj(X)

− log pobj(Ii) +
∑

i∈Ωbck(X)

− log pbck(Ii)

=
∑

i∈Ωobj(X)

− log
pobj(Ii)

pbck(Ii)
+
∑

i∈Ω
− log pbck(Ii)

=
∑

i∈Ωobj(X)

− log
pobj(Ii)

pbck(Ii)
+ constant

(4.10)

The regional energy is originally defined as the sum of the regional likelihood of different

populations. Since the sum of the likelihood of the background over the entire image

domain Ω = Ωobj(X) ∪ Ωbck(X) is a constant value (which will not change during the

optimization), it can be ignored in the regional energy. Thus the regional support can be

simplified by the integration over only the object region.

In brief, the region-based energy is defined by the integration over the object region

Ωobj(X) which is determined by the model X. For a pixel/voxel i inside the object region:
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• Compute pobj(Ii) and pbck(Ii) which are the probabilities of the pixel/voxel being the

object and being the background respectively.

• If pobj(Ii) > pbck(Ii) which means the pixel/voxel is more likely being the object,

then the integral function returns a negative value i.e. − log
pobj(Ii)

pbck(Ii)
< 0.

• If pobj(Ii) < pbck(Ii) which means the pixel/voxel is more likely being the back-

ground, then the integral function returns a positive penalty i.e. − log
pobj(Ii)

pbck(Ii)
> 0.

In this manner, the region-based energy encourages the object model to contain as many

object pixels (which are more likely being the object) as possible, and as less background

pixels (which are more likely being the background) as possible. The region-based energy

in continuous representation is given as follows:

E
(1)
R (X, I) =

x

Ωobj(X)

− log
pobj(I(x, y))

pbck(I(x, y))
dxdy

E
(2)
R (X, I) =

y

Ωobj(X)

− log
pobj(I(x, y, z))

pbck(I(x, y, z))
dxdydz

(4.11)

where E
(1)
R and E

(2)
R are the regional energies of 2D and 3D cases respectively. A spatial

position is represented by its coordinates, i.e. (x, y) or (x, y, z) in 2D or 3D cases.

The region-based support uses the homogeneity properties of the image regions to mea-

sure how well the model is fitted to the observed image. Given the model X, all the pixels

or voxels inside the model boundary are considered in the measurement (global image in-

formation), while boundary-based support only takes into account the pixels/voxels on the

model boundary (local image information). Thus the regional energy exhibits less local

minima than the boundary energy which relies on gradient information along the bound-

ary, and it can make the segmentation less sensitive to noise and initializations. However,

the regional support is based on the assumption that different populations can be well dis-

tinguished by their appearances in the image. If different objects are not separable in the

appearance space, the regional cue will misguide the segmentation. Regarding this fact, it

is a critical issue to model the appearance of different objects properly.

4.3.3 Appearance Models

In this subsection, we describe how to model the appearance of different classes of objects

(e.g. the probability density functions pobj and pbck), using a set of training images. The
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appearance attributes (i.e. intensity, color, texture) of the object of interest are the most sig-

nificant visual evidences in computer vision and image processing tasks. The appearance

knowledge of the object class is very essential to facilitate the task of object detection,

although the image cues are sensitive to noise, partial object occlusions and complicated

background. Modeling the object appearance consists of two components:

• Choosing a proper representation of the appearance features describing the object at-

tributes. The selected features should allow a good discrimination between different

classes.

• Learning a discriminative model in order to estimate the class identity or the proba-

bility of the new sample.

Regarding the appearance features, the intensity or color of the pixel (same for voxel) is

the direct representation, since each pixel is associated with an intensity value or the color

at that location. The intensity or color information of the pixel is wildly used to determine

the class of the pixel when assuming that the different classes of objects are obviously

different in their intensities. However, the information with only pixel intensity at the

examined location is often not inadequate to decide if a certain class of object occurs. For

example, Figure 4.4 shows a tagged MR cardiac image where a certain pattern of texture

occurs. The edges of the original image in Figure 4.4 (c) generate misleading information

of real boundary. Moreover, the pixel intensity information is not enough to distinguish

the object and the background. Figure 4.4 (d) shows the intensity distribution of the object

pixels (in red) and the distribution of the background pixels (in blue) based on ground truth

segmentation 4.4 (b), however these two distributions are heavily overlapped.

In this case, we need to use the information of a neighborhood of the pixel in order to

make the right decision. In particular, it is very necessary when the object class exhibits

texture patterns, which makes the appearance modeling more challenging. In the context

of computer vision, textures are defined as repeating patterns of local variation of pixel

intensities, which means texture features cannot be defined by one single pixel, but by its

neighborhood.

Gabor Features

In order to extract the texture features from an image, we employ a multi-resolution rep-

resentation based on Gabor filters [Manjunath 1996]. Gabor features have been used in

various image analysis applications such as texture classification and segmentation. It is

motivated by the fact that a set of Gabor filters with different frequencies and orientations

are very helpful to characterize the underlying texture information.
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(a) Original image (b) Ground truth segmentation (c) Edges
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Figure 4.4: Image appearance of a tagged cardiac MRI.

Gabor filter is essentially a Gaussian filter modulated by a sinusoid. A 2D Gabor

function g(x, y) and its Fourier transform G(u, v) can be written as:

g(x, y) =
1

2πσxσy
exp

[
− 1

2

(x2
σ2
x

+
y2

σ2
y

)
+ 2πjWx

]

G(u, v) = exp
[
− 1

2

((u−W )2

σ2
u

+
v2

σ2
v

)] (4.12)

where σu = 1
2πσx

and σv =
1

2πσy
. The parameters σx and σy characterize the spatial extent

and frequency bandwidth of the Gaussian filter, and the parameter W sets the frequency

of the sinusoid. Let g(x, y) be the mother function of the Gabor filter family, a set of
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Gabor functions gm,n(x, y), referred to as Gabor wavelets, can be generated by dilations

and rotations of g(x, y) to form a complete but non-orthogonal basis set.

gm,n(x, y) = a−mg(x′, y′)

x′ = a−m(x cos θn + y sin θn)

y′ = a−m(−x sin θn + y cos θn)

(4.13)

where a > 1 and θn = nπ
K

, m = {0, 1, · · · , S − 1} and n = {0, 1, · · · , K − 1}. The

parameter S is the number of scales and the parameter K is the number of orientations.

Given an image I(x, y), the image response of the Gabor wavelet gm,n is defined as:

Jm,n(x, y) = I(x, y) ∗ gm,n(x, y)

=
∑

k

∑

l

I(k, l)gm,n(x− k, y − l) (4.14)

where ∗ denotes the convolution operation. Given the parameters S and K, the image I
has a number of S ·K Gabor transforms. For example, Figure 4.5 shows the Gabor trans-

forms of the image in Figure 4.4 (a), given the scale parameter S = 3 and the orientation

parameter K = 4. Each image response of the Gabor wavelet gm,n (shown in a colormap

where blue/red represents the small/large value) captures the texture properties according

to the certain scale and orientation. For each pixel (x, y) in the image, the responses of all

the Gabor wavelets at this location can be concatenated to one feature vector J(x, y) that

describes the texture appearance:

J(x, y) = (J0,0(x, y), · · · , Jm,n(x, y), · · · , JS−1,K−1(x, y))
T (4.15)

To extract the texture features in 3D images, we use the method in [Zhan 2003] which

approximates the complete set of 3D Gabor features by using two banks of 2D Gabor filters

located at the orthogonal planes in order to save computation time. Moreover, [Han 2007]

introduced a rotation-invariant and a scale-invariant Gabor representations, where each

representation only requires few summations over the filter responses of the conventional

Gabor filter family.

In general, various appearance features can be integrated into one feature vector which

is aD-dimensional vector of numerical features that represent the object. Given an original

image I , each pixel i of the image can be represented by its feature vector:

I(i) = (I0(i), · · · , · · · , ID−1(i))
T (4.16)

where the component Ik(i) can be a particular appearance attribute property, such as the

intensity of the pixel, the intensity of a neighboring pixel, the gradient, and the texture
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m = 0, n = 0, 1, 2, 3

m = 1, n = 0, 1, 2, 3

m = 2, n = 0, 1, 2, 3

Figure 4.5: Gabor features with 3 scales and 4 orientations.

feature. In our experiments, we used a patch of intensities centered at the pixel and the

Gabor features to compose the feature vector of the pixel.

Based on the feature representation, a learning phase is performed to find the appear-

ance feature models of different classes objects. The feature models should have the power

to discriminate between different classes given the observed features. We discuss two su-

pervised learning techniques for this purpose: Gaussian Mixture Model and AdaBoost

learning algorithm.

Gaussian Mixture Model

A Gaussian Mixture Model (GMM) is a parametric probability density function repre-

sented as a linear combination of Gaussian component densities. By choosing a sufficient

number of Gaussians, and by estimating their means and covariances as well as the coef-

ficients, the mixture of Gaussians is able to capture the distribution of a dataset. Given a
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Figure 4.6: A Gaussian mixture model using 3 components in 3D space [Bishop 2006].

set of training images and their corresponding ground truth segmentation (i.e. labeling the

image pixels into L classes), each class ci∈L is associated with a number N of appearance

samples {f ji }j=1:N , where f denotes a feature vector of the pixel. We model each class

ci∈L by using a Gaussian Mixture Model of K components of Gaussian densities. The

probability of a feature vector f belonging to class ci is given by:

p(f |ci) =
K∑

k=1

πi
kN (f |µi

k,Σ
i
k) (4.17)

where each Gaussian density N (f |µi
k,Σ

i
k) is defined by its own mean µi

k and covariance

matrix Σi
k. The parameters πi

k are the mixing coefficients, and they satisfy that 0 ≤ πi
k ≤ 1

and
∑K

k=1 π
i
k = 1. The number of the components is fixed, often chosen as K = 3 in prac-

tice. Figure 4.6 illustrates a Gaussian mixture of 3 components. The 3 components are

represented by their contours of constant density in red, blue and green with the mixing co-

efficients in (a), while contours of the probability density and a surface plot of the mixture

distribution are shown in (b) and (c).

For each class ci∈L, the mean µi = {µi
1, · · · , µi

K}, covariance matrix Σi = {Σi
1, · · · ,Σi

K}
and the mixing coefficients πi = {πi

1, · · · , πi
K} are estimated by using Expectation Maxi-

mization algorithm [Bishop 2006], which uses integrative optimization techniques to max-

imizing the log of the likelihood functions:

log p(f1i , · · · , fNi |πi,µi,Σi) =
N∑

n=1

log
{ K∑

k=1

πi
kN (fni |µi

k,Σ
i
k)
}

(4.18)

Therefore, we obtain a probability density function p(f |ci) for each class ci from its

training data. Given a new observed data (e.g. a pixel described by a feature vector f ), we
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can compute the probability of the element being the class ci. When two classes (i.e. object

and background) are considered in the image, we denote pobj and pobj being the Gaussian

Mixture Models of the object and the background respectively.

Boosting

Boosting was proposed in the machine learning literature [Freund 1995], and “boosting”

describes a procedure of combining multiple “weak” classifiers to produce a powerful

“committee” whose performance can be significantly better than any weak classifier. We

describe the most widely used version of the boosting algorithm called AdaBoost algo-

rithm [Freund 1996], short for adaptive boosting. AdaBoost trains the base classifiers in

sequence, and each new classifier adjusts the weights associated with each data point ac-

cording the performance of the previous classifiers. After all the weak classifiers have

been trained, the algorithm constructs a strong classifier which is a linear combination of

the weak classifiers balanced by their weights.

Considering a two-class classification setting, the training data is composed by N
input feature vectors {x1, · · · ,xN} and their corresponding ground truth binary labels

{y1, · · · , yN} where yi=1:N ∈ {−1, 1}. Each data point is associated with a weight wi=1:N

which is initially set equally to 1
N

. The learning is an iterative process and each iteration

stage has three steps: (1) Choosing a new weak binary classifier ht, using training data

by minimizing the weighted error function; (2) Computing the error ǫt with respect to the

distribution of {w(t)
i }, and then using it to define the weight αt of the weak classifier ht; (3)

Adjusting the weights of the samples according to the performance of the previous classi-

fier ht, so that the misclassified samples by the weak classifier ht are given larger weight

in training the next classifier in the sequence. The new weights are normalized by Zt in

order to keep a distribution. After the desired number T of training rounds, the final model

is built by combining the weighted weak classifiers, and the function sign constraints the

output of the classifier to be either −1 or +1. The learning process of AdaBoost algorithm

is illustrated in Algorithm 4.1.

This version of AdaBoost algorithm is also called Discrete AdaBoost because the weak

classifier ht(x) ∈ {−1,+1} produces a binary classification. A generalized version of

AdaBoost called Real AdaBoost [Schapire 1999] appeared to improve the boosting algo-

rithms. The weak learner returns a class probability estimates pt(x) ∈ [0, 1], and the

final classifier is defined as the sum of half the logit-transform of the probability estimate

corresponding to each weak classifier. From a statistical perspective [Freund 2000], the

AdaBoost algorithms can be interpreted as fitting an additive logistic regression model

H(x) =
∑T

t=1 ht(x) by minimizing an exponential criterion J(H):

J(H) = E(exp{−yH(x)}) (4.19)
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Algorithm 4.1 AdaBoost.

Input: A training set with labeled pairs {(x1, y1), · · · , (xN , yN )}.

Initialize the weights of the samples: ∀i ∈ {1, · · · , N},w
(1)
i = 1

N
.

for t = 1 to T do

(1) Fit the classifier ht(x) ∈ {−1,+1} using the weights {w(t)
i } on the training data.

(2) Compute the error ǫt and the weight αt of the weak classifier ht:

ǫt =
N∑

i=1

w
(t)
i [(ht(xi) 6= yi)]

αt = ln
(1− ǫt

ǫt

)

(3) Update the weights of the samples.

w
(t+1)
i =

1

Zt

w
(t)
i exp

{
αt [(ht(xi) 6= yi)]

}

end for

return the final classifier H(x):

H(x) = sign
( T∑

t=1

αtht(x)
)

where E(·) represents the expectation. The function J(H) is proved to be optimized at:

H(x) =
1

2
log

P (y = 1|x)
P (y = −1|x) (4.20)

As a result, we obtain the relations between the classifier and the posterior or conditional

class probabilities which we are interested in and we want to use for modeling the appear-

ance features of different classes:

P (y = 1|x) = eH(x)

e−H(x) + eH(x)

P (y = −1|x) = e−H(x)

e−H(x) + eH(x)

(4.21)

A modified version of the Real AdaBoost algorithm, named Gentle AdaBoost algo-

rithm was proposed in [Freund 2000], using Newton steps for minimizing J(H). Given

an imperfect Ht(x), an update Ht(x) + ht(x) is proposed to optimize the exponential
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Algorithm 4.2 Gentle AdaBoost.

Input: A training set with labeled pairs {(x1, y1), · · · , (xN , yN )}.

Initialize the weights of the samples: ∀i ∈ {1, · · · , N},w
(1)
i = 1

N
, and H1(x) = 0.

for t = 1 to T do

(1) Fit the regression function ht(x) by weighted least-squares of yi to xi with weights

{w(t)
i }.

(2) Update Ht+1(x) = Ht(x) + ht(x)

(3) Update w
(t+1)
i = 1

Zt
w

(t)
i exp{−yiht(xi)}

end for

return the final classifier:

sign(H(x)) = sign
( T∑

t=1

ht(x)
)

criterion (the population version) with respect to ht(x) in each iteration.

J(Ht(x) + ht(x)) = E(exp{−y(Ht(x) + ht(x))}) (4.22)

The update ht(x) is given by the estimates of the weighted class probabilities:

ht(x) = Pw(y = 1|x)− Pw(y = −1|x) (4.23)

This update ht(x) produces the values in the range [−1, 1], while the update ht(x) =
1
2
log Pw(y=1|X)

Pw(y=−1|X)
used in the Real AdaBoost algorithm can be numerically unstable be-

cause of the log-ratios. This modification makes the Gentle AdaBoost outperform the

Real AdaBoost in practice. The Gentle AdaBoost algorithm is illustrated in Algorithm

4.2. The boosting with multiple classes is discussed in [Freund 2000].

Figure 4.7 illustrates how the AdaBoost algorithm is useful in appearance modeling.

First, the strong classifier
∑T

t=1 ht(x) is learned from a training set where each data point

is represented by a feature vector and its ground truth labeling is available. Then, we apply

the obtained classifier on a test image (a) and the image response is shown in (b). Each

pixel is labeled with a signed value, positive value (shown in red) representing the class

of object and negative value (shown in blue) representing the class of background. The

absolute value represents the scores of being the corresponding class, e.g. higher score

is shown in dark color and lower score is shown in light color. The binary output H(x)
is shown in (c) (white/black represents the object/background), and the ground truth is

outlined by blue contours in order to compare with the classification result. As we can see,

the AdaBoost algorithm can provide reliable models for different classes.
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Figure 4.7: Appearance modeling using Gentle AdaBoost classifier.

4.4 Markov Random Fields Formulation

Now we implement the above probabilistic framework within a higher-order Markov Ran-

dom Fields (MRF) formulation, so that we can employ the recent developed MRF infer-

ence algorithms to achieve a good optimum with a very fast speed.

The Markov Random Filed describes a set of random variables and their dependencies

by a graph. Let G = (V ,D) denote a hypergraph which consists of a set V of nodes and a

set D of cliques (e.g. see Figure 4.8 bottom).

• The node set V represents the point-based model, where each node corresponds to

the variable of a control point (i.e. the position of the control point).

• The clique set D represents the local interactions between the nodes (random vari-

ables), where each clique consists of a subset of the nodes.

In particular, the clique set D = E ∪ F is composed by two types of cliques in the graph:

• The set E represents the boundary cliques (e.g. see Figure 4.8 right). It defines the

connectivity information of the control points in order to recover the boundary of the

model. In 2D cases, each clique represents a line segment determined by two end

points on the closed curve, while in 3D cases each clique represents a triangulated

face of the mesh which are determined by three points.

• The set F represents the prior cliques (e.g. see Figure 4.8 left). It expresses the prior

knowledge of the shape, where each clique represents the local interactions of three

control points.

With respect to the graph G, let xi∈V denote the random variable (i.e. the coordinates

of point i) of each node, and X = (xi)i∈V indexed by V denotes all the node variables of
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Figure 4.8: The relation between the object model (top) and the graphic model (bottom).

the MRF. Now we formulate the probabilistic framework of the segmentation problem in

Eq.(4.4) as an MRF energy minimization.

Xopt = argmin
X

E(X)

E(X) = Edata(X) + Eprior(X)
(4.24)

where the MRF energy E(X) integrates both visual support and shape prior constraints.

Furthermore, the MRF energy E(X) is a factorization of higher-order terms of the hyper-

graph, while the data energy Edata(X) is defined on the boundary clique set E and the prior

energy Eprior(X) is defined on the prior clique set F .

4.4.1 Regional Energy

As we stated before, the regional energy takes into account the homogeneity properties

of the entire inner region of the shape model in an observed image I. Given a shape

configuration X = X , the image domain Ω is partitioned into the object region Ωobj(X =
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(a) Image partition
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Figure 4.9: Regional energy.

X) and the background region Ωbck(X = X). In Figure 4.9, the object region and the

background region are shownin red and blue respectively. We denote the function f(·) as

the likelihood − log
pobj(I(·))
pbck(I(·)) (e.g. see Figure 4.9 (b)), while pobj, pbck are the appearance

distribution models of object and background. The regional energy (4.11) is computed as

an integral of likelihood over the object region:

E
(1)
R (X) =

x

Ωobj(X)

f(x, y)dxdy

E
(2)
R (X) =

y

Ωobj(X)

f(x, y, z)dxdydz
(4.25)

where E
(1)
R and E

(2)
R denote the regional energies in 2D and 3D cases respectively. Given

the coordinates of a point position in space i.e. (x, y) or (x, y, z), the likelihood function

f(x, y) or f(x, y, z) gives a negative cost if the probability of this position being the object

is larger than its probability being the background, otherwise it gives a positive cost. The

regional energy can be interpreted in Figure 4.9: denoting A for the binary image of image

partition (a), and B for the image likelihood (b), then the image (c) can be computed by

C(x, y) = A(x, y) · B(x, y). As the result, the regional energy equals to the sum of the

values of all the pixels in the image (c) i.e. ER =
∑

iC(i). Since the lower the value of

the pixel in C, the higher probability of the pixel being the object, the regional energy

encourages to include as many likely object pixel as possible.

However, all the variables of the model are required in the above definition in order

to determine the region of interest, while in a Markov random field we assume the local

dependencies of the variables (i.e. the variables are dependent only if they are included in

the same clique.) As a consequence, the above equation of the regional energy can not

be directly encoded in the MRF formulation. To deal with this difficulty, we propose the
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Figure 4.10: A 2D example using Divergence Theorem. (a-d) Line integrals around the

closed curve. (e) Double integral over the bounded region.

exact factorization of the regional energy term (4.25) into higher order potentials in MRFs

by using Divergence Theorem.

Factorization of 2D Cases

To understand the factorization method, let us first consider the situation in 2D cases. In

mathematics, the 2D version of Divergence Theorem (equivalent to Green’s Theorem)

states the equivalence between a line integral around a simple closed curve and a double

integral over the bounded plane region:

x

D
(∇ · F)dA =

∮

C
(F · n)ds (4.26)

Let C be a positively oriented simple closed curve in a plane, and let D be the region

bounded by C, where the path of integration along C is counterclockwise. The two-

dimensional vector field F = (Fx, Fy) is defined on an open region containing D, where

∇·F = ∂Fx

∂x
+ ∂Fy

∂y
is the divergence on F, and n is the outward-pointing unit normal vector
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on the boundary. Figure 4.10 illustrates the 2D Divergence Theorem with an example of a

quadrangle region ABCD. The line integrals along each segment of the curve are shown

in (a-d), where the outward-pointing normal n is shown with a blue arrow. Each compo-

nent of the line integral equals to a double integral over the region shown in red or blue,

where red represents the equivalent integral over that region is positive since F · n > 0
and blue represents the integral over the region is negative since F ·n < 0. The sum of the

line integrals along the segments {AB,BC,CD,DA} equals the double integral over the

bounded region ABCD shown in (e).

Now we associate the divergence theorem with the computation of regional energy

E
(1)
R (4.25). In this context, the closed curve C is the boundary of the shape model B(X),

and the bounded region is the inner region of the model Ωobj(X). Let f(x, y) denote the

integral function over the region Ωobj(X) on the left side of the equation:

E
(1)
R =

x

Ωobj(X)

f(x, y)dxdy =

∮

B(X)

(F · n)ds (4.27)

Let us choose Fy = 0, according to the divergence theorem, the function f(x, y) = ∂Fx

∂x
is

the derivative of the function Fx with respect to x, thus we can compute the line integral

function Fx as follows:

Fx(x, y) =

∫ x

0

f(t, y)dt =

∫ x

0

− log
pobj(I(t, y))

pbck(I(t, y))
dt (4.28)

where t denotes the variable. We interpret the physical meaning of Fx(x, y) as follows, if

we consider the likelihood function f(x, y) over the image domain as an image (e.g. see

Figure 4.11 (a)) by assuming the probabilities are all equal outside the image, then the

function Fx(x, y) over the image domain corresponds to the related integral image with

respect to the x axis (e.g. see Figure 4.11 (b)). Moreover, we denote G
(1)
R (x, y) as the

integral function along the curve:

G
(1)
R (x, y) = F · n = Fx(x, y)nx(x, y) (4.29)

where nx is the component of the outward pointing unit normal n = (nx, ny) of the bound-

ary B(X) corresponding to the x axis.

Furthermore, the line integral around the closed curve in Eq.(4.27) can be factorized

into the integrals along the segments of the curve which are determined by two end points.

Thus, the regional energy in 2D cases can be encoded with pairwise potentials computed

by line integrals as follows:

E
(1)
R (X) =

∑

(i,j)∈E

∫

xixj

G
(1)
R (x(s), y(s))ds (4.30)
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Figure 4.11: Computation of regional energy using Divergence theorem. (a) Image likeli-

hood f . (b) Function Fx.

where the boundary clique set E consists of pairs of the node variables in the graph G.

In particular, each pair (i, j) ∈ E represents a segment of two control points {xi,xj}
connected with a direction such that all the segments compose a closed curve in counter-

clockwise. The unit normal n of the directed segment can be computed as: n = idy
ds
− jdx

ds
.

Thus the regional energy can be written as:

E
(1)
R (X) =

∑

(i,j)∈E

∫ xj

xi

Fx(x(y), y)dy (4.31)

Factorization of 3D Cases

Now we extend the method to 3D cases. In 3D space, the divergence theorem states that

the outward flux of a vector field through a closed surface is equal to the volume integral

of the divergence over the region inside the surface.
y

V

(∇ · F)dV =
{

S

(F · n)ds (4.32)

Suppose V is a 3D volume which is compact and has piecewise smooth boundary S (also

indicated with ∂V = S), where F is a continuously differentiable vector field defined on a

neighborhood of V and n is the outward pointing unit normal field of the boundary S. In

other words, the left side of the equation is a volume integral over the volume V and the

right side is the surface integral over the boundary S of the volume. The boundary S has

to satisfy the conditions: (1) it is a closed surface and (2) it is the generally the boundary

of the volume V oriented by outward-pointing normals.

Next, we associate the 3D divergence theorem with the computation of the regional

energyE
(2)
R (4.25). The volume V in 3D space corresponds to the inner region of the model
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Ωobj(X) and the closed boundary S corresponds to the surface boundary of the model

B(X). Let the likelihood f(x, y, z) = ∇ · F denote the divergence of the differentiable

vector filed F = (Fx, Fy, Fz), the regional energy which involves volume integral can be

transformed into surface integral:

E
(2)
R (X) =

y

Ωobj(X)

f(x, y, z)dxdydz =
{

B(X)

(F · n)ds (4.33)

Let us choose Fx = Fy = 0, we have the relation between the scale-valued function

f(x, y, z) and Fz(x, y, z):

Fz(x, y, z) =

∫ z

0

f(x, y, t)dt =

∫ z

0

− log
pobj(I(x, y, t))

pbck(I(x, y, t))
dt (4.34)

where t denotes the variable. We interpret the physical meaning of Fz(x, y, z) as follows:

if we consider the likelihood function f(x, y, z) over the image domain as an image by as-

suming the probabilities are all equal outside the image, then the function Fz(x, y, z) over

the image domain corresponds to the integral image with respect to the z axis. Moreover,

we use G
(2)
R (x, y, z) to denote the surface integral function in Eq.(4.33).

G
(2)
R (x, y, z) = F · n = Fz(x, y, z)nz(x, y, z) (4.35)

where nz is the component of the outward pointing unit normal n = (nx, ny, nz) of the

boundary B(X) corresponding to the z axis.

Furthermore, since the boundary surface S is represented by a triangulated meshB(X)
in our case, then the surface integral (4.33) over the closed surface of the volume can be

factorized into the integrals over each triangle face of the mesh:

E
(2)
R (X) =

∑

c∈E

x

xc

G
(2)
R (x(s), y(s), z(s))ds (4.36)

where the boundary clique set E consists of triplets of control points which compose the

triangulated mesh. In particular, a triplet clique c = (i, j, k) ∈ E represents a triangulated

face xc = {xi,xj,xk} oriented by the outward-pointing normal n which can be computed

by the cross product of two vectors n = xixj × xjxk.

4.4.2 Boundary Energy

Boundary-based energy uses the discontinuity properties between different regions. It is

defined as the integral of the appearance discontinuities along the model boundary B(X)
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in Eq.(4.5). Since the model boundary is composed by a set of segments of a closed curve

in 2D cases or a set of triangulated faces of a mesh in 3D cases, the integral along the

model boundary can be decomposed into higher-order terms:

E
(1)
B (X) =

∑

c∈E

∫

xc

G
(1)
B (x(s), y(s))ds

E
(2)
B (X) =

∑

c∈E

x

xc

G
(2)
B (x(s), y(s), z(s))ds

(4.37)

where the energy E
(1)
B of 2D cases are expressed by pairwise terms and the energy E

(2)
B

of 3D cases are expressed by second-order terms (using triplet cliques). The discontinuity

function GB represents a distance map to the edges over the image domain. In particular,

the discontinuity function GB labels each position in the image space with a non-negative

real value as the distance of this position to its nearest edge.

4.4.3 Shape Prior Energy

The shape prior energy Eprior(X) imposes the geometric constraints of the model in order

to produce a valid shape. Based on our sparse graphic shape prior which is modeled by

local interactions, the prior energy can be encoded using higher order potentials.

Eprior(X) =
∑

c∈F
−wc · log pc(αc(xc), βc(xc)) (4.38)

where F consists of a set of triplet cliques. Each clique c ∈ F is associated with a weight

wc and the probability density pc of two inner angles from learning.

4.4.4 Higher-order MRF Inference

To this end, the total MRF energy (4.4) is a summary of the data energy Edata(X) and the

prior energy Eprior(X):

E(X) =
∑

c∈E
ψ(xc) +

∑

c∈F
φ(xc) (4.39)

where ψ and φ encode respectively the data potential and the prior potential:





ψ(1)(xc) =
∫
xc

(
λ1 ·G(1)

R (s) + λ2 ·G(1)
B (s)

)
ds

ψ(2)(xc) =
s

xc

(
λ1 ·G(2)

R (s) + λ2 ·G(2)
B (s)

)
ds

φ(xc) = −wc · log pc(αc(xc), βc(xc))

(4.40)
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Note that ψ(1) and ψ(2) denote the data potentials of 2D and 3D cases respectively, λ1 > 0
and λ2 > 0 being two weight coefficients.

Given the MRF energy in Eq.(4.39) and Eq.(4.40), we adopt a dual-decomposition op-

timization framework [Komodakis 2007a] to perform the Maximum a Posteriori (MAP)

inference for the proposed higher-order MRF. The dual-decomposition strategy is consid-

ered to be the state-of-the-art for MAP-MRF inference, in particular when dealing with

higher-order MRFs. Based on such a framework, we decompose the original problem

(which is difficult to solve directly) into a set of factor trees [Wang 2010] which can be

solved very efficiently within polynomial time using max-product belief propagation al-

gorithm [Bishop 2006]. A projected subgradient method [Komodakis 2007a] is employed

to combine the solutions of the sub-problems in order to obtain the solution of the original

problem.

4.5 Experimental Validation

We validate the proposed method in both 2D and 3D segmentation. Manual segmentations

on the database are available and are considered as ground truth for both learning and

validation purposes. An iterative scheme is employed to search for the optimal model

instance in the test image. Given an initialized model, the label space of each node is

composed by a set of displacements of the current position. The model is updated by the

optimal displacements in each iteration, while the displacement set is adapted to a coarse

to fine setting during the model deformation. The experiments (programmed in C++) were

run on a 2.8GHz, Quad Core, 12GB RAM computer.

4.5.1 2D Hand Segmentation

Our 2D hand dataset consists of 40 right hand examples with different poses and move-

ments between the fingers. The shape model consists of 23 control points, and a number

of 100 cliques with the largest parameters to represent the shape prior.

Some segmentation results of our knowledge-based method are shown in Fig.4.15,

where the red solid contours represent our results and the yellow dashed contours represent

the initializations. As can be seen, our results are robust to the noise, partial occlusions and

complicated background. For example, in the second row where the fingers are partially

self-occluded, our method shows the ability to deal with the shapes which have not been

seen during training. In the third row, the same images from the first row are artificially

added with Gaussian noise and black obstructions, while we deal with these cases with

a larger weight of the prior energy, which is also the reason why a part of sleeve is mis-
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Figure 4.12: Dice coefficients of 2D hand segmentation.

labeled as the hand in the second image. The fourth row shows our results on a set of video

images with complicated background.

For both quantitative and comparison purposes, we compare our method with Active

Shape Model (ASM) using dice coefficient in Fig.4.12. Dice coefficient is a statistical

measurement used for comparing the similarity between two samples and it is formulated

as:

s =
2 |A ∩ B|
|A|+ |A| (4.41)

where A and B are two segmentation solutions in our case. |A| is the number of the

object pixels in segmentation A, and |A ∩ B| is the number of the common object pixels

in both segmentations. The value of dice coefficient s is in [0, 1] range, and the higher

value indicates that the two solutions are more similar. We compute the dice coefficient of

our segmentation result and the ground truth, and the dice coefficient of ASM result and

the ground truth. In each box of Fig.4.12, the central mark in red is the median, the edges

of the box are the 25th and 75th percentiles. It verified that our method is more similar to

the ground truth than ASM result. Moreover, benefit from the sparse graphic shape prior,

our segmentation takes 20 seconds per image while the one using complete graph takes

more than 4 minutes.

4.5.2 2D Left Ventricle Segmentation

We validate our method on a dataset which consists of 60 tagged cardiac MR images. Stan-

dard of reference was available, consisting of annotations of epicardium and endocardium

boundaries provided by experts. These MR images were acquired by a 3-T Siemens MR

imaging system equipped with a high-performance gradient system (maximum amplitude:



96 CHAPTER 4. MODEL-BASED SEGMENTATION WITH SHAPE PRIORS

40 mT/m; minimum rise: slew rate 200 mT.m−1/s) using a 32-channel phased-array car-

diac coil. Images were acquired in the short axis plane at basal, mild and apical ven-

tricular levels. An ECG-triggered segmented k-space fast gradient echo sequence with

spatial modulation of magnetization was performed with the following parameters: grid

tag spacing: 8 mm; echo time=2.54 ms; repetition time=48 ms; number of frames: 20-

25 (depending of heart rate); pixel size:1.8 × 1.4 × 7 mm; bandwidth 446 Hz/pixel; flip

angle: 10o; acquisition time: 19 seconds (during one breathhold).

We performed a leave-one-out cross validation on the whole dataset. The computa-

tional time of segmenting an image is 0.781 second on the average. For all the images in

the dataset, we used the same parameters and the same initialization. Segmentation results

on test images from different sequences of different patients are presented in Fig.4.16,

which shows that our shape model can represent well the contraction of myocardium dur-

ing the cardiac cycle and can deal with different scales of the myocardium boundaries.

Furthermore, Fig.4.16 (b) shows the results obtained with different initializations (shown

in green contours) with respect to the location and scale on the same test image. The con-

sistent results demonstrate the robustness of our method with respect to the initialization.

For both quantitative evaluation and comparison purposes, we present in Fig.4.13 the

distributions of the Dice coefficients of the segmentation results of the endocardium (re-

gion bounded by the inner contour), the epicardium (region bounded by outer contour)

and the myocardium (region bounded by both contours), respectively. Each sub-figure of

Fig.4.13 contains three boxes which present the Dice coefficients obtained by our method,

the method of [Besbes 2009] and standard ASM method, respectively. Note that a higher

Dice coefficient implies a better segmentation performance. Therefore, the obtained Dice

coefficients demonstrate that our segmentation approach performs significantly better than

the other two methods. In particular, the better performance with respect to [Besbes 2009]

demonstrates the power of the exact factorization of the regional data likelihood.

4.5.3 3D Left Ventricle Segmentation

A dataset of 20 3D CT cardiac images is used to validate the proposed method in 3D

segmentation application. The point-based model consists of 88 control points both on the

myocardium surface as well as the atrium surface. The coarse triangulated mesh consists

of 172 triangle faces. A number of 1000 triplet cliques are selected from the MRF learning

to encode the shape prior. Regarding the image support, a feature vector is used for each

voxel instead of intensity values. The feature vector consists of patches of intensities and

Gabor features. Then the learning is performed using an Adaboost classifier for the object

and the background, and we apply the classifier responses to obtain a likelihood image for

the test image.
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Figure 4.13: Dice coefficients of 2D left ventricle segmentation.
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Figure 4.14: Dice coefficients of 3D left ventricle segmentation.

We perform a leave-one-out cross-validation on the dataset. Some results are shown in

Fig.4.17 where the yellow contours represent our results, while the green contours repre-

sent the results of ASM models. As can be observed, our model exhibits better accuracy on

the boundary (the first two columns) and robustness to the papillary muscles in the blood

pool (the last column). Fig.4.14 presents the Dice coefficients obtained by our method

with sparse graph, our method with complete graph [Xiang 2012], the Random Walks

algorithm [Grady 2006] and ASM [Cootes 1995]. Although the performance of our previ-

ous method with complete graph is competitive to the one with sparse graph, it introduces

a higher computational complexity (linear to the number of cliques in the graph) and takes

hours to segment one volume. On the contrary, our recent method is more efficient with

decreased computation complexity in both energy computation and optimization process,
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and it takes about 15 minutes per volume.

4.6 Conclusion

In this chapter we have studied the problem of knowledge-based object segmentation. We

develop a global approach to jointly encode the regional statistics, boundary support, as

well as prior knowledges within a probabilistic framework. The pose-invariant priors are

encoded by second-order MRF potentials. The regional statistics is exactly factorized into

pairwise or second-order terms using Divergence theorem. The proposed segmentation

method is robust to noise, partial object occlusions and initializations. It is efficient and

does not suffer from bad local minima issues using developed MRF optimization algo-

rithms.
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(a) Our results on standard images.

(b) Our results on images with artificial noise and occlusions.

(c) Our results on video images with cluttered background.

Figure 4.15: 2D hand segmentation results.
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(a) Different test images using the same initialization.

(b) Same test image with different initializations.

Figure 4.16: 2D left ventricle segmentation results.
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(a) Our results

(b) ASM results

Figure 4.17: 3D left ventricle segmentation results on cardiac CT volumes.
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Chapter 5

Joint Model-Pixel Segmentation

In the previous chapter, we have proposed a top-down approach for class-specific segmen-

tation. The model-based segmentation is formulated as estimating the object boundary

model in the observed image, combining the prior knowledge regarding the object shape

as well as the image cues. In this chapter, we are going to integrate both top-down and

bottom-up approaches in a unified framework towards a more refined segmentation, esti-

mating the pixel-level labeling and the model localization simultaneously.

5.1 Introduction

The earlier segmentation approaches can be generally classified into two types: (1) Bottom-

up ones which label each image pixel as object or background using low-level information;

(2) Top-down ones which delineate the object boundary based on high-level information

of the object class. The latter ones have gained increasing popularity since they are able to

incorporate prior knowledge and thus are robust to low-level variations. However, the seg-

mentation performance of the top-down approaches is highly dependent on the choice of

the model representation which defines the boundary of the object of interest. For instance,

the point-based model is widely chosen for the convenience to study the statistics of the

shape, but due to its discrete representation, it produces the piecewise linear boundary of

the object and thus generates segmentation errors in the local boundary area. These coarse

segmentation and missing details can not be accepted in many applications (e.g. medical

image applications). In Fig.5.1, we show an example of brain extraction where the ex-

act delineation of the object boundary is necessary. In the segmentation, blue voxels are

correctly segmented compared to the gold standard, while green voxels are false positives

and red voxels are false negatives. Obviously, a top-down model is not capable to capture

all the details on the brain surface, otherwise the complexity of the model is significantly



104 CHAPTER 5. JOINT MODEL-PIXEL SEGMENTATION

(a) Segmentation on a sagittal slice (b) 3D rendering

Figure 5.1: Brain extraction [Eskildsen 2012].

increasing with respect to the boundary details. In fact, this issue can be refined by bottom-

up approaches using low-level cues. Based on the above, a natural direction to improve

the existing approaches is to combine both top-down and bottom-up cues in a principled

manner for class-specific segmentation problem. In Fig.5.2 given the input image (a), we

show the examples of bottom-up segmentation in (b) and top-down segmentation in (c),

where bottom-up results can detect salient image discontinuities and the top-down results

can capture the spatial relationships between the object parts.

Over the past decade, many efforts have been made in combining top-down and bottom-

up segmentation. Kumar et al. propose an OBJ CUT method [Kumar 2005] which com-

bines an Markov Random Field (representing bottom-up information) and the Layered

Pictorial Structures (LPS) [Kumar 2004] (representing top-down information) for segmen-

tation, while the former biases the segmentation to follow image discontinuities and the

latter provides the prior knowledge of the object shape. An EM framework is used to solve

this combined method: (1) in E step, LPS model is matched to the given image and a num-

ber of samples each corresponding to a probable pose of the object are obtained; (2) in M

step, given the model samples, the segmentation can be obtained using a single graph cut.

Bray et al. propose a POSE CUT method [Bray 2006] for combining object segmen-

tation and pose estimation of a human body simultaneously. Similar to the OBJ CUT

method, they also include the shape prior in a Markov Random Field (MRF) for object

segmentation, while instead of learning exemplars of the object as in the former method,

they use a simple articulated stick-man model as the pose-specific shape prior. Given an

image, the optimization of the pose-specific MRF with respect to segmentation measures

the quality of a pose, then the pose inference is formulated as minimizing this cost function
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Input Bottom-up Top-down

(a) (b) (c)

Figure 5.2: Bottom-up and top-down segmentation [Borenstein 2008]. (a) Input image.

(b) Bottom-up segmentation at three scale. (c) Top-down segmentation.

over all pose parameters using dynamic graph cuts.

Levin and Weiss propose a Conditional Random Fields (CRF) framework [Levin 2006]

to learn combined low-level and high-level cues from segmented images. The simultane-

ous learning procedure yields a novel fragment selection algorithm, which allows them to

efficiently learn models with a smaller number of fragments, whereas pure top-down algo-

rithms often requires hundreds of fragments to represent the top-down model. Then given

a new image, a combination of a low-level term and a local class-dependent term regarding

the learned fragments is used to define the CRF energy towards image segmentation.

However, these above methods combine top-down with bottom-up processing in a

strictly feed-forward manner to produce segmentation. Borenstein and Ullman propose an

intertwined scheme for segmentation and recognition [Borenstein 2008]. The top-down

part [Borenstein 2002, Borenstein 2004] learns a bank of fragments and their automatic

labeling to represent a class. Given a novel image, the stored fragments are first used to

recognize the object and to create a complete cover of the object shape, then the resulting

top-down segmentation is integrated with multi-scale hierarchical bottom-up segmentation

to better delineate the object boundaries.

Wang et al. propose a unified graphical-model framework for simultaneous segmenta-

tion, ordering and multi-object tracking [Wang 2009]. A single pairwise Markov Random

Field (MRF) is used to jointly estimate all variables of interest with respect to both pixel-

level (pixel class label and pixel depth) and object-level (model parameters and object

depth), while interaction between these variables are expressed as cost terms in the MRF.

The contribution of this approach is its single-shot optimization MRF framework for joint

segmentation, depth ordering and tracking with occlusion handling. However, they use

a simple rectangle representation to model the object and no prior knowledge about the

object shape is included, thus the resulting segmentation is less accurate especially when
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dealing with the objects with large deformations.

Packer et al. combine a contour-based LOOPS model [Heitz 2009] (top-down module)

with the CRF-based segmentation (bottom-up module) to form a coherent energy function

over both model parameters and pixel labels [Packer 2010]. The energy function includes

the terms for each separate task with an interaction term that encourages the contour and

pixel-level segmentation to agree. Specifically, they introduce landmark-segment masks

which are learned to capture outline detail of each part of the object, in order to connect

the model landmarks and the local pixel labels. An efficient method is proposed for joint

inference which can avoid local minima found in each task separately.

There are two main limitations among the existing methods: (1) The combined prob-

lem is addressed within an alternating minimization approach where no guarantees on the

optimality properties of the obtained solution could be satisfied. (2) The object model

is either simple or does not include statistic priors on the global shape. The method in

[Heitz 2009] solves the both problems, but they only consider a subset of the image pixels

in the unified energy, thus a post-processing step is necessary to label all the pixels.

In this chapter, we propose a novel framework for image segmentation through a uni-

fied model-based and pixel-driven integrated graphical model, similar to [Heitz 2009].

Prior knowledge of the object shape is expressed through the deformation of a discrete

model that consists of decomposing the shape of interest into a set of higher order cliques

(triplets). Such decomposition allows the introduction of region-driven image statistics as

well as pose-invariant (i.e. translation, rotation and scale) constraints whose accumulation

introduces global deformation constraints on the model. Regional triangles are associ-

ated with pixels labeling which aims to create consistency between the model and the

image space. The proposed pose-invariant framework simultaneously solves the problem

in both model space and image space. It is achieved by the definition of an objective

function aiming to: (i) assign labels to image pixels in order to maximize the image likeli-

hood [Boykov 2006], (ii) deform a point-based model in order to maximize the geometric

likelihood of the model as well as the model-to-image likelihood (our model-based seg-

mentation which is introduced in the previous chapter), (iii) impose consistency between

the two label spaces. The resulting higher order graphical model formulation is solved by

using a state of the art message passing algorithm [Kolmogorov 2006]. Promising results

on a challenging clinical setting demonstrate the potentials of our method.

The remainder of the chapter proceeds as follows. We first present the probabilistic

framework in Section 5.2. Based on the shape representation in Section 5.3, the Markov

Random Field formulation is defined in Section 5.4. Experimental validation is shown in

Section 5.5 while Section 5.6 concludes the chapter.
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5.2 Probabilistic Framework

In this section, we propose a framework to combine both model-based and pixel-based

segmentation. The aim is to simultaneously deform the shape model in an observed image

and label the image pixels to object/background using an interconnected graphical model.

Model-based segmentation aims to partition the image domain by searching for an

optimal model configuration to best compromise between data-attraction and shape-fitness

with the prior. It can be formulated as a maximization of the posterior probability (MAP)

in a probabilistic framework. Given an image I, let us denote X for the model variables

and dom(X) for the model space, then the model variables can be optimized by:

Xopt = arg max
X∈dom(X)

p(X|I) (5.1)

Using Bayes’ rule, the posterior distribution p(X|I) is proportional to the product of

p(I|X) and p(X) since p(I) is a normalizing constant.

p(X|I) = p(X, I)

p(I)
∝ p(X, I) = p(I|X) · p(X) (5.2)

The conditional distribution p(I|X) encodes the data likelihood of an observing image I

given a particular model configuration X, and the probability distribution p(X) encodes

the prior knowledge of the model X regarding the object shape. A model-based segmen-

tation approach has been discussed with details in the previous chapter.

Pixel-based segmentation aims to group the pixels which are consistent in the appear-

ance (e.g. intensity, color or texture) by assigning a label to each pixel in the image, so that

the pixels which belong to the same object should be assigned with the same label. Let

us denote Y as a vector of which each component represents a label variable of a pixel,

and dom(Y) is denoted as the image labeling space. The pixel-based segmentation can be

formulated as an MAP estimation of labeling Y over the labeling space dom(Y):

Yopt = arg max
Y∈dom(Y)

p(Y|I) (5.3)

Similarly, the posterior distribution p(Y|I) can be expressed by two terms p(I|Y) and

p(Y) using Bayes’ rule.

p(Y|I) ∝ p(Y, I) = p(I|Y) · p(Y) (5.4)

The conditional distribution p(I|Y) encodes the data likelihood of the image I given a

particular image labeling configuration Y, and the distribution p(Y) encodes the prior of

the pixel labels (i.e. dependencies of neighboring pixels).
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Now we couple the model estimation and the pixel labeling tasks, and we formulate

the segmentation problem within a joint MAP estimation, seeing that each separate task

can be viewed as a MAP estimation problem. Given an image I, the model parameters X

and the image labeling Y are optimized at the same time:

(X,Y)opt = arg max
(X,Y)

p(X,Y|I) (5.5)

The posterior distribution p(X,Y|I) is a Gibbs distribution which can be written as:

p(X,Y|I) ∝ p(X,Y, I) =
1

Z
· exp{−E(X,Y, I)} (5.6)

where Z is a normalizing constant known as the partition function, and E(X,Y, I) is an

energy function of the configuration X,Y and the observed image I, which can be defined

as the sum of the model-based energy, the pixel-based energy and the interaction energy:

E(X,Y, I) = E(1)(X, I) + E(2)(Y, I) + E(3)(X,Y) (5.7)

The model-based energy E(1) and the pixel-based energy E(2) can be inherited from the

separate module, while the interaction energy E(3) is introduced as the key to couple the

model fitting and image labeling in the joint framework. This energy function E(X,Y, I)
will be served as the objective function in the Markov Random Fields formulation, and the

definitions of each energy term will be given in Section 5.4.

5.3 Shape Representation

Before we address the Markov Random Fields formulation of the joint model-pixel seg-

mentation problem, we introduce a shape decomposition based on our model represen-

tation in Chapter 3. It is the key to combine the two tasks at the same time, since the

shape decomposition brings the access to produce the interaction between model-based

segmentation and pixel-based segmentation.

5.3.1 Shape Decomposition

As we described before, we represent the object of interest as a point-based model X =
{x1, · · · ,xn} with n control points lying on the boundary, where xi∈{1,··· ,n} denotes the

coordinates of point i. For example, we show the point-based model of the left ventricle

in a tagged cardiac image in Fig.5.3 (a), where the control points are marked in green and

the reconstructed object contour by connecting the control points are shown in yellow.
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(a) Point-based model (b) Model triangulation

Figure 5.3: Shape representation of 2D left ventricle.

Based on the point representation, we introduce a shape decomposition which partitions

the object region into a number of triangle parts. The shape decomposition should satisfy

the following conditions:

• Each component is composed of three control points, and its corresponding triangle

region should be a part of the object region.

• These triangle regions should not overlap.

• The union of all the triangle regions covers the entire object region.

For example, we show a shape decomposition of the left ventricle model in Fig.5.3 (b),

where each triangle part is represented in a unique color. In this example, we simply

define the shape decomposition manually. Without loss of generality, such shape decom-

position or polygon triangulation can be applied to any shape (heart, liver etc. ) which can

be represented as a polygonal area. It can be achieved automatically by shape decompo-

sition algorithms (i.e. [Latecki 1999, De Berg 2000]). As a result of model triangulation,

it produces a set of cliques where each clique consists of three points. We call the re-

sulting clique set A as data cliques since they are used for calculating the image support.

Using model triangulation can facilitate factorizing the regional-driven energy as well as

introducing pixel and model interactions.
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5.3.2 Shape Priors

Moreover, a set of prior cliques are considered to encode the local interactions of the model

with respect to the shape priors. In Chapter 3, we proposed the L1 sparse graphic model

through MRF learning to obtain the set of prior cliques, whereas each clique encodes the

dependencies of a triplet of points by two inner angles. Alternatively, we present another

choice of the shape prior construction from a different perspective. It comes from the

context of shape decomposition where the object is divided into several components, then

the shape of the object can be described by these components themselves and the spatial

relations between these components.

Based on the model triangulation, each component of the object is represented as a

triangle area. Considering a triplet clique a = (o, p, q) ∈ A, the triangle shape xa =
{(O,P,Q)|O = xo, P = xp, Q = xq} can be represented in a pose-invariant manner

using two inner angles (αa, βa):

αa = arccos

−→
OP · −→OQ

‖OP‖ ‖OQ‖ , βa = arccos

−→
PO · −→PQ

‖PO‖ ‖PQ‖ (5.8)

Given a training set X = {X1, · · · ,XK} composed of K object shapes where the con-

trol points have the same correspondence, for ∀a ∈ A, we have a set of samples Xa =
{x1

a, · · · ,xK
a } with respect to its triangle shape. A statistical model can be used to learn

the probability density distributions pa(α, β) of the inner angles of triplet a. For example,

we can use Gaussian distribution N as statistical model, and the meanµa and the variance

matrix Σa are learned from the training set, then the probability distribution of the object

component can be written as:

pa(α, β) = N (α, β|µa,Σa), a ∈ A (5.9)

Now let us consider the spatial relations between the components. Assuming two

components are independent of a third one, we model the constraints between the object

components by pairs of components. Taken any two different components a, b ∈ A of

the object (i.e. two triplet cliques), we denote xa = {O,P,Q} and xb = {O′, P ′, Q′}
as the two corresponding triangles, while we make sure that the triplets (i.e. the order of

O,P,Q) are oriented in the counter-clockwise direction. There are three situations of the

two triplet cliques: they share (i) two common points, i.e. |a ∩ b| = 2; (ii) one common

point, i.e. |a ∩ b| = 1; (iii) no common points, i.e. |a ∩ b| = 0. We illustrate the three

cases of any triplet pair in Fig.5.4. The dependencies of a pair of triple cliques can be

defined as follows: (i) When there exists two common points, no more constraints need to

be added since the spacial information is already included by the angles in both separate

component; (ii) When there exists one common point, one angle θ determined by the two
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Figure 5.4: Dependencies of triplet pair. (a) With 2 common points. (b) With 1 common

point. (c) No common points.

clique is needed to measure the spatial constraint of the two components (see Fig.5.4 (b));

(iii) When there are no common points, two angles are required to measure the spatial

relation of the two components (see Fig.5.4 (c)). We mention that the angle measurements

are invariant to the global pose of the object (i.e. translation, rotation and scale). As a

result, no shape alignments to the same referential are needed for both training samples

and testing shapes. Specifically, the pose-invariant dependencies of two component can be

written as:





(P = Q′)&&(Q = P ′) (i)

O = O′, θ = arccos

−→
OQ · −−→O′P ′

‖OQ‖ ‖O′P ′‖ (ii)

α = arccos

−−→
OO′ · −−→PP ′

‖OO′‖ ‖PP ′‖ , β = arccos

−−→
OO′ · −−→QQ′

‖OO′‖ ‖QQ′‖ (iii)

(5.10)

In other words, a pair of triangle components may contain four, five or six control

points, according to three spatial relations respectively. Since we already defined the prior

for each triangle shape, we only need the angles defined by the pairs to describe the pair

constraints. We denote B as a set of cliques where each clique consists of five control

points corresponding to all possible component pairs of case (ii), while C denotes a set

of cliques where each clique consists of six control points corresponding to all possible

component pairs of case (iii). Similarly to the prior for a single triplet, given a training set,

we learn the probability density distributions of the angles pb∈B(θ), pc∈C(α, β) in order to

model the dependencies of the component pairs in a statistical manner.

To this end, the pose-invariant prior model is constructed by two types of priors: priors



112 CHAPTER 5. JOINT MODEL-PIXEL SEGMENTATION

of single triangle components and priors of pairs of triangle components. The global

shape probability distribution p(X) of the unknown model variables X is defined as the

accumulation of the local interactions.

p(X) =
1

Z ′

∏

a∈A
pa(α(xa), β(xa))

∏

b∈B
pb(θ(xb))

∏

c∈C
pc(α(xc), β(xc)) (5.11)

As we defined before, A denotes the triplet cliques produced by model triangulation, B
denotes all possible cliques produced by pairs of components including five control points,

and C denotes all possible cliques produced by pairs of components including six control

points. The corresponding probability density distributions pa, pb and pc are learned from

a training set, and Z ′ is a normalizing constant.

Now we summarize the shape representation as follows:

• Let A denote the data cliques which decompose the object model X into a number

of triangle components.

• Let Cm = {A,B, C} denote the prior cliques, including the triplet components and

the related pairs of components.

• Let p(X) ∝ ∏
k∈Cm pk(xk) denote the shape priors based on local interactions,

where if k ∈ A, pk = pa; if k ∈ B, pk = pb and if k ∈ C, pk = pc.

This representation of the shape model introduces the concept of the object components

(or object parts), and it models the shape priors by the prior of the single components and

the spatial dependencies of the pairs of components. It brings two significant advantages:

(1) The data cliques can facilitate the computation of the regional energy regarding to

model to image likelihood as well as provide the pixel and model interactions. (2) The

prior cliques defined by the components and their spatial dependencies produce a graph

with less number of cliques, compared to the complete graph with all triplets of the control

points. We suppose that the model has n control points, and it can be decomposed into m
parts, usually we have m < n. In order to construct the pose-invariant priors, a number

of all possible triplets C3
n is required without the MRF learning as described in Chapter 3,

while the number of all possible component pairs is C2
m. Building the shape prior based

on the components rather than the single points can capture the shape properties without

redundancies.

5.4 Markov Random Fields Formulation

Now we address the segmentation problem of joint model estimation and pixel labeling

within a higher order Markov Random Field (MRF) formulation. The proposed graph
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Figure 5.5: MRF graphical model for coupling the model space and the labeling space.

model G consists of:

• The model-based sub-graph Gm = {Vm, Cm} consists of a set Vm = {1, · · · , n} of

model nodes (associated with n points in shape model) and a set of cliques Cm used

in model-based segmentation independently.

• The pixel-based sub-graph Gp = {Vp, Cp} consists of a set Vp = {1, · · · , k} of pixel

nodes (associated with k pixels in the image) and a set of cliques Cp introduced by

pixel-based segmentation.

• The two sub-graphs are connected by a set of cliques Cint, where both model nodes

and pixel nodes are included in each clique.

We illustrate the proposed graph structure in Fig.5.5: (1) The yellow upper part represents

the model-based sub-graph Gm, while the red nodes represent the model nodes Vm and

the pink circles represent the local interactions Cm of the model. (2) The green lower

part represents the pixel-based graph Gp, the blue nodes represent the pixel nodes Vp and

the dashed lines represent the local dependencies Cp of the pixel nodes. (3) Last but not

least, the solid lines represent the interactions Cint between the model nodes and the pixel

nodes connecting the two separated sub-graphs. To sum up, we can express the whole

graph model G = {Vm ∪ Vp, Cm ∪ Cp ∪ Cint} with two types of nodes and three types of

cliques. The definitions of each item will be given later.

Concerning a model node i ∈ Vm, let Xi denote the latent random variable which indi-

cates the coordinates of the associated control point. The variable Xi can take a particular

configuration xi from its candidate space Ui. Theoretically, the variable Xi can take any
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position in the image, but in practice, the candidate space is considered as a small subset

of all pixel positions. Let X = {xi}i∈Vm
denote a model configuration consisting of all

the model node variables over the image labeling space U =
∏

i∈Vm
Ui.

Similarly, concerning a pixel node i ∈ Vp, let Yi denote the latent random variable

which indicates the label of the associated pixel. The variable Yi can take a particular

value yi from the label space L (same for each pixel node). We define the pixel label space

L = {0, · · · m}, where m is the number of triangle parts produced by the clique set A
as defined in the last section. The non-zero value yi ∈ {1, · · · ,m} indicates a particular

part of the object, while zero value yi = 0 indicates the background. Thus each pixel in

the image can be assigned to either a part of the object or background. Let Y = {yi}i∈Vp

denote an image labeling configuration consisting of all the pixel node variables over the

label space L = Lk.

Now given an image I, the segmentation problem is formulated as the estimation of

optimal model configuration X over model space U and optimal labeling configuration Y

over labeling space L simultaneously.

(X,Y)opt = arg min
X∈U ,Y∈L

E(X,Y, I) (5.12)

where the MRF energy E(X,Y, I) consists of the model-based energy E(1), the pixel-

based energy E(2) and the interaction-based energy E(3):

E(X,Y, I) = E(1)(X, I) + E(2)(Y, I) + E(3)(X,Y) (5.13)

where the definition of each energy term are given as follows respectively.

5.4.1 Model-based Energy

The model-based segmentation seeks for the optimal model parameters in order to make

a compromise between the observed image and the shape prior constraints. According to

Eq.(5.2), this energy is composed of a data term and a prior term.

− log p(X, I) = − log p(I|X)− log p(X) (5.14)

The data term − log p(I|X) encodes the image likelihood given a model configuration,

while the prior term − log p(X) encodes spatial constraints of a model configuration with

respect to the shape prior manifold.

We define the data term using the region-based criterion which captures the homo-

geneity properties of the different populations (i.e. object and background). As we have
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(a) Test image (b) Likelihood map

Figure 5.6: Model-based data potential of a regional triplet.

described in Eq.(4.30) in Chapter 4, the region-based energy can be written as:

− log p(I|X) =
∑

i∈Ωobj(X)

− log
pobj(Ii)

pbck(Ii)
(5.15)

where Ωobj(X) is the object region determined by the model configuration X, and pobj, pbck

are the appearance distribution models of object and background learned from a training

set. This regional energy encourages the model to be located at the positions where its

inner region covers as many object pixels as possible. Based on the model triangulation,

the object region is decomposed into a set of triangle parts, thus the regional term can be

factorized into higher order potentials Φ(1) on data triplet set A which was introduced in

Section 5.3.

− log p(I|X) =
∑

a∈A
Φ(1)(xa), Φ

(1)(xa) =
∑

i∈Ω(xa)

− log
pobj(Ii)

pbck(Ii)
(5.16)

where data potential Φ(1) encodes the image likelihood over the triangle area Ω(xa). For

a regional triplet a, the configuration of triplet xa determines a triangle area Ω(xa) in

the image domain (shown by red triangle in Fig.5.6). The data potential Φ(1)(xa) is the

integral of the pixel likelihood function (show in Fig.5.6 (b) where blue/red represents

the smallest/largest value) over the triangle region Ω(xa). It can be computed efficiently

using Divergence theorem which transforms the region integral into line integrals as we

described in Chapter 4.

The prior term constrains the model configuration to remain in the allowable shape

domain. It is formulated by the prior probability p(X) defined in Eq.(5.11), and it is
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factorized into potentials Ψ(1) defined on prior clique set Cm.

− log p(X) =
∑

k∈Cm
Ψ(1)(xk), Ψ

(1)(xk) = − log pk(xk) (5.17)

where prior clique set Cm includes triplet cliques A which represent the object parts,

fourth-order cliques B and fifth-order cliques C which represent the pairs of the parts.

The distribution probabilities pk are learned from training, where if k ∈ A, pk = pa; if

k ∈ B, pk = pb and if k ∈ C, pk = pc according to Eq.(5.11).

To sum up the two terms, we formulate the model-based energy E(1)(X, I) as follows:

E(1)(X, I) = λ1 ·
∑

a∈A
Φ(1)(xa) + λ2 ·

∑

k∈Cm
Ψ(1)(xk) (5.18)

where λ1, λ2 are the weights of data term and prior term respectively. The data clique set

A is used to define the data term, and the prior clique set Cm is used to define the prior

term. We also denote Cm as the model-based interactions, since A ⊂ Cm is a subset of it.

5.4.2 Pixel-based Energy

Pixel-based segmentation assigns a label variable yi for each image pixel i to be either

part of the object or background. [Boykov 2001b] and [Shotton 2006] are some popular

examples of pixel-based segmentation. According to Eq.(5.4), the energy over the pixel

assignments consists of a data term and a prior term.

− log p(Y, I) = − log p(I|Y)− log p(Y) (5.19)

The data term − log p(I|Y) encodes the image likelihood given a full assignment to

all pixels. Assuming the label variables are independent, it can be computed as the sum of

individual penalties for assigning pixel i to object or background:

− log p(I|Y) = − log
∏

i∈Vp

p(Ii|yi) =
∑

i∈Vp

Φ(2)(yi) (5.20)

where the unary likelihood potential is the emission model which is given by:

Φ(2)(yi) =

{
− log pbck(Ii) if yi = 0
− log pobj(Ii) otherwise

(5.21)

where label yi = 0 assigns the pixel i as background, otherwise non-zero value assigns

the pixel i as object. As shown in Fig.5.7 (a), the label variable yi (blue nodes) is only
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Figure 5.7: Pixel-based segmentation. (a) Graph. (b) Prior pairs using 8-connected neigh-

borhood.

dependent on the corresponding pixel data Ii (yellow square), i.e. intensity, color or fea-

ture vector. We denote pbck and pobj as the appearance distribution model of object and

background respectively. Given an observed pixel, it measures how likely it belongs to

object/background. As we mentioned in Chapter 4, the appearance model can be repre-

sented as mixtures of Gaussians (GMM), or it can be represented as boosted classifiers

whose output predicts whether and how likely the pixel is object. Both methods can be

learned from a training set.

The prior term encourages the consistency of the pixel labels within a neighborhood

system (e.g. 8-connected) which is defined by a pairwise clique set Cp.

− log p(Y) = − log
∏

(i,j)∈Cp

p(yi, yj) =
∑

(i,j)∈Cp

Ψ(2)(yi, yj) (5.22)

The clique set Cp consists of the pairs (edges in Fig.5.7 (b)) of the pixel nodes (nodes in

Fig.5.7). Given a pixel node (red node in (b)), the 8-connected neighborhood consists the

pairs (red edges) to the nearest 8 neighbors. The prior potential takes the form of an Ising

model:

Ψ(2)(yi, yj) =

{
0 if yi = yj
γ otherwise

(5.23)

The potential constraints the neighboring pixel i and pixel j to have the same label, where

γ is a penalizing parameter. Alternatively, the pairwise potential can take the form of a

contrast sensitive Potts model, encouraging neighboring pixels with similar appearance

to have the same label. It can be achieved by simply replacing the constant parameter γ
by the function γ(i, j) which measures the difference in the appearance between the two
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neighboring pixels:

γ(i, j) = exp
(
− ‖Ii − Ij‖2

2σ2

)
· 1

dist(i, j)
(5.24)

where ‖·‖2 is the appearance difference between the two pixels, σ2 is the mean such dis-

tance across all neighboring pixels in the image, and dist(i, j) is the spatial distance of the

two pixels. γ(i, j) is large when pixels i, j are similar and close to zero when two pixels

are different in appearance, while γ(i, j) also decreases as a function of distance between

pixel i and j. Now the pixel-based energy E(2)(Y, I) can be formulated as:

E(2)(Y, I) = λ3 ·
∑

i∈Vp

Φ(2)(yi) + λ4 ·
∑

(i,j)∈Cp

Ψ(2)(yi, yj) (5.25)

where λ3, λ4 are the weights of the unary potentials and the pairwise potentials respec-

tively. The cliques Cp over the pixel nodes Vp is defined by a neighborhood (i.e. 8-

connected) system.

5.4.3 Interaction-based Energy

The interaction energy is the key of propagating information between shape model and

pixel labels in both ways, and thus producing segmentation which outperforms the in-

dependent methods. The consistency between model space and labeling space can be

interpreted as follows. Given a shape model instance X,

• Pixels far from the model boundary have less uncertainty of the labeling, i.e. if the

pixel is inside the boundary, it should be labeled as object, otherwise it should be

labeled as background.

• Pixels close to the model boundary have more uncertainty of the labeling, i.e. whether

the pixel should be labeled as object or background, it depends on the data.

It is because that since the model (top-down cue) is an approximation of object shape, it

is adequate to provide the location of the object, but it misses the details along the actual

boundary. For example, let us represent the object shape with an extremely simple model

such as a bounding box (often used for object detection). We are quite sure about the class

of the pixels far from the box (inside is object, and outside is background), but we are less

sure about whether the pixels close to the box edges are belong to object or background.

Based on this observation, we can define the confidence of the pixel labeling being object

or background as a signed distance dist(i,X) from the pixel i to the model boundary.

dist(i,X) =

{
−minxaxb∈B(X) d(i,xaxb) if i is inside

minxaxb∈B(X) d(i,xaxb) if i is outside
(5.26)
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where xaxb is a line segment specified by two points xa,xb on the model boundary B(X),
d(i,xaxb) denotes the distance between the pixel i and the line segment xaxb. The distance

dist(i,X) is negative when the pixel i is inside the model boundary, otherwise it is positive.

To combine model estimation and pixel labeling, [Kumar 2005] defines an energy term

using the signed distance map:

E(X,Y) =
∑

i∈Vp

Φ(yi|X) (5.27)

where Φ(yi|X) is a function of the pixel’s distance dist(i,X) and the pixel label yi. Due to

the fact that the signed distance map can be calculated only when all the states of the shape

variables X are given, the optimization the model-based and the pixel-based segmentation

is performed in an interleaved way : (1) Given an estimate of Y, they sample the model X;

(2) Given the distribution of X, they optimize Y. However, this minimization procedure

does not provide any guarantee on the optimality properties of the obtained solution, and it

does not fully exploit both top-down and bottom-up information. In this context, we prefer

to optimize both model variables and pixel labels in a single shot framework, while using

the information propagated from each other. The problem is the distance map (which links

the model space and pixel space) depends on the global shape model. If we can transform

the interactions between the global model and single pixel label into the interactions be-

tween the local shape and single pixel, the joint optimization problem in both model and

pixel space can be solved in a single shot framework.

We introduce a new interaction-based energy that encourages the consistency between

the model-based segmentation and the pixel-based segmentation. Instead of connecting

each pixel label with the entire model variables, we consider the interaction between each

pixel label with each model part which is defined by the model triangulation. Thus the

model-pixel interaction energy is defined by:

E(3)(X,Y) =
∑

(i,a)∈Cint

Φ(3)(yi,xa) (5.28)

The interaction clique set Cint = {(i, a)|i ∈ Vp, a ∈ A} connects every pixel with every

regional triangle (triplet of model points). The third-order potential Φ(3) penalizes a pixel

label conditioned on a regional triplet.

Φ(3)(yi,xa) =





− [i ∈ Ω(xa)] dist(i,xa) if yi = la
− [i ∈ R(xa)] dist(i,xa) if yi = 0
0 otherwise

(5.29)

• Let la ∈ {1, · · · ,m} denote a known label of the triplet a, which means that the

triangle xa is indexed as la in the object, while m is the total number of the object

parts.
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Figure 5.8: Interaction between a pixel label and a triplet.

• Let dist(i,xa) denote the distance of pixel i related the triangle xa. Particularly,

the absolute distance is defined as the minimum distance of the pixel i to the model

edges of the triangle, while the model edges are the segments on the object model

boundary.

• Let R(xa) denote a subset of the region outside of the triangle xa. Assuming the

triangle is oriented in counter-clockwise, the point falling into region R(xa) should

satisfy that it is on the right side of the model edges as well as on the left side of the

non-model edges.

This potential expresses the relation between a pixel i and a triplet a: (1) If the pixel i is

inside the triangle region Ω(xa), then assigning the pixel label yi to the triplet label la is

encouraged by the distance dist(i,xa). (2) If the pixel i is located in R(xa) (the back-

ground region close to the triangle xa), then the pixel label assignment to the background

label yi = 0 is encouraged by the distance dist(i,xa).
We show an example composed of two parts a, b (shown in yellow and blue respec-

tively) in Fig.5.8, and we define la = 1, lb = 2. Considering a pixel and the triplet part

a, (1) If the pixel (e.g. point p1) is inside of the triangle Ω(xa) (yellow region), the cost

of assigning the pixel label to triplet part a (i.e. yi = 1) is the negative of the distance

(e.g. dist(i,xa) = min{d(i,x1x2), d(i,x2x3)}). (2) If the pixel (e.g. point p3) is inside the

regionR(xa) (gray region), the cost of assigning the pixel label to background (i.e. yi = 0)

is the negative distance dist(i,xa). Considering all pairs of pixel and triplet, the interac-

tion potentials are obtained in the table below, where all the pixels can be divided into four

cases such as p1, p2, p3, p4. In fact for any pixel i, let Φ(yi,X) = Φ(yi,xa) + Φ(yi,xb)
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denote the sum of the potentials of this pixel and all triplets, which has the analogical inter-

pretation as Φ(yi,X) used in Eq.(5.27). The minimized Φ(yi,X) over the pixel label yi is

the approximate distance of the pixel to the model, while the optimal pixel label indicates

the class (positive values represent object, zero value represents background).

yi = 0 yi = 1 yi = 2

i = p1
xa 0 −dist(i,xa) 0

xb 0 0 0

i = p2
xa 0 0 0

xb 0 0 −dist(i,xb)

i = p3
xa −dist(i,xa) 0 0

xb 0 0 0

i = p4
xa 0 0 0

xb −dist(i,xb) 0 0

Table 5.1: The potentials of pixel label and triplet.

So far, all energy terms with respect to model-based, pixel-based and model-pixel

module are defined in Eq.(5.18, 5.25, 5.28). Hence, the proposed higher order MRF energy

(5.13)) can be written as follows:

E(X,Y, I) =λ1
∑

a∈A
Φ(1)(xa) + λ2

∑

c∈Cm
Ψ(1)(xc)

+λ3
∑

i∈Vp

Φ(2)(yi) + λ4
∑

(i,j)∈Cp

Ψ(2)(yi, yj)

+
∑

(i,a)∈Cint

Φ(3)(yi,xa)

(5.30)

where λ1, λ2, λ3, λ4 are the weights for the different energy terms.

To search for an optimal model configuration, an iterative strategy is used. Given an

initial position, a set of displacements of the model node is chosen as its label space;

it is adapted with a coarse-to-fine setting during the iterations. For higher-order MAP-

MRF inference, some efficient state of the art methods such as the TRW-S algorithms

[Kolmogorov 2006] and Dual decomposition [Komodakis 2011b] are available. In our

case, we project our higher order MRF into a pairwise MRF and employ the TRW-S

[Kolmogorov 2006] inference algorithms to optimize the above MRF energy of X and

Y. It is achieved by reducing a triplet (3 control points) to a model node in the graphi-

cal model, while adding the constraints that the same point (involved in related triplets)

should coincide. In this manner, all the triplet-related energies become unary terms; the



122 CHAPTER 5. JOINT MODEL-PIXEL SEGMENTATION

other higher order energies become pairwise terms, while the energy function definitions

remain the same.

5.5 Experimental Validation

A dataset of 40 2D tagged cardiac Magnetic Resonance (MR) images is used to validate

our method. The segmentation ground truth of the dataset is provided by experts, and it

is employed for both training and validation. With regard to the shape model, 20 control

points and 20 regional triplets are defined manually. For each original image, a prelimi-

nary step of object detection is performed to extract a sub-image with 100 × 100 pixels

which contains the object instance. This object detection can be obtained from a top-down

segmentation, or we manually choose the location of the sub-image. Then we apply the

model-pixel combined segmentation on the sub-image. In order to deal with image appear-

ance properties, we consider Gabor features to represent the texture pattern of the tagged

MR images. Using a training set, Adaboost algorithm is used to learn to the classifier of

object/background in order to model the image appearance model. We performed a leave-

one-out cross validation on the whole dataset. The experiments were run on a 2.8GHz,

12GB Ram computer and our segmentation took a couple of seconds per image.

Some final visual results of two test images are presented in Fig.5.9. The first column

is our results in both model space X and label space Y. In the upper sub-figure, the

yellow contours represent the model localization results, while in the lower sub-figure

the pixels labeled as object are shown in gray level as the original intensities and the

pixels labeled as background are shown in black. The second column shows the results

of independent model-based module (using only energy E(1)) and pixel-based module

(using only energy E(2)) respectively. Similarly, the upper sub-figure shows the model

results with blue contours and the lower sub-figure represents the pixel-based segmentation

results. The third column compares our results with the ground truth. In the upper sub-

figure, the ground truth of the object contours is shown as green contours. The lower

sub-figure shows the difference image between our labeling result and the ground truth,

where the gray pixels are correct labeled, the white/black pixels are wrongly labeled as

object/background. Fig.5.10 zooms in the area bounded by red box shown in the third

column. The yellow contours in the left images represent the model results of joint model-

pixel method, and the blue contours in the middles images represent the model results of

independent model-based module, and the right images show the ground truth mask in red.

From the above results, we can see that the model-pixel combined method provides

better segmentation performance than only pixel-based or model-based method. The only

pixel-based method is sensitive to the complicated background and noise. The only model-
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(a) Example 1

(b) Example 2

Figure 5.9: Segmentation results of 2 test images. The columns from left to right are our

results, only model/pixel-based results, ground truth/comparison.
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(1) Example 1

(2) Example 2

Figure 5.10: Zoom effects of 2 test images. The columns from left to right are the model

results of the combined method, the independent model-based results, ground truth.

Figure 5.11: Both model localization and pixel labeling results.

Figure 5.12: An intermediate iteration. From left to right: original image, likelihood in

color map, labeling, difference map between current result and ground truth.
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Figure 5.13: Comparisons on dice coefficients.

based results are globally correct, but do not give accurate segmentation around the bound-

ary locally (e.g. see the zoom in effects in Fig.5.10). Our integrated framework can over-

come this defect, showing flexibility of having local deviations as well as producing pixel-

wise labeling result at the same time. Furthermore, our method also deals well with the

varying scales of the object (e.g. the scale of the inner contour shows large variability) due

to the pose-invariant shape prior.

We also mention that our pixel-based model using multi-class labels. Fig.5.11 shows

the image labeling results in a color map, where each color represents one label for one

triangle part of the object. The multi-label segmentation can provide more information of

the local parts of the object.

Fig.5.12 shows an intermediate iteration of a test image. Although the current model

localization at this iteration (yellow contour) is not close to ground truth, the model-pixel

combined labeling result (the third image) benefits from both model and pixel labeling

information and produces better performance than independent segmentation. This also

illustrates that the hybrid method is robust to initialization (red contour).

For both quantitative evaluation and comparison purposes, we present the boxes from

left to right in Fig.5.13, representing the Dice coefficient distributions obtained respec-

tively by (1) our hybrid method, (2) model-based method 1 (using only model mod-

ule), (3) model-based method 2 [Besbes 2009], (4) standard Active Shape Model (ASM)

[Cootes 1995] and (5) pixel-base method (using only pixel module). Noted that a higher

Dice coefficient implies a better segmentation result, Fig. 5.13 highlights the better perfor-

mance of our method compared with the previous methods. The following table shows the

statistical values of the dice coefficient distributions of each method. One can note that,
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although the performance of only model-based model is competitive on statistic figures,

the hybrid method outputs much more delicate visual performance.

Method mean std

our method 0.8882 0.0263

model-based 1 0.8709 0.0298

model-based 2 0.7966 0.0761

ASM 0.7439 0.0710

pixel-based 0.6560 0.0781

Table 5.2: The statistical parameters of dice coefficient distributions.

5.6 Conclusion

In this chapter we propose a novel approach to address jointly model/image-based segmen-

tation using a higher order graphical model. The proposed formulation can easily encode

regional support, meanwhile being able to account for shape variability unseen during

training. Furthermore, it produces states of the art results in particular when exact bound-

ary delineation is of interest through the combined model-pixel graph. To the best of our

knowledge, this is the first method that recovers a consistent solution between the model

and the image space in a single shot optimization framework, while being pose-invariant.



Chapter 6

Conclusion

In this thesis, we propose novel knowledge-based object segmentation approaches which

incorporate shape priors within higher-order Markov Random Fields. It is motivated by the

observation that using high-level information, i.e. prior knowledge regarding the geometric

properties of the class of objects, can make the segmentation robust to the disturbance in

low-level information, i.e. noise, non-discriminative visual support and occlusions. In this

thesis, we address the knowledge-based segmentation task by solving two major concerns:

(1) How to build a statistical shape model? (2) How to incorporate the prior knowledge in

the segmentation framework?

6.1 Contributions

We represent the shape model as a point-based graphical model, where each node in the

graph corresponds to a control point on the shape boundary, while each clique in the graph

corresponds to the dependencies of a subset of the control points. In particular, choosing

the clique size as three i.e. each clique consists of three different nodes, the local spatial

constraint of the three related control points is modeled by the statistics on the angle mea-

surement which inherits invariance to global transformations (i.e. translation, rotation and

scale). The shape manifold is constructed through the L1 sparse higher-order graph, ac-

cumulating the local constraints. The sparse graph consists of a subset of cliques from all

possible second-order cliques, and it is learned through MRF training using dual decom-

position. The pose-invariant shape prior through sparse higher-order graph can be easily

encoded in a higher-order Markov Random Field.

In order to incorporate the prior knowledge in the segmentation, we propose a model-

based segmentation method. It is formulated as estimating the object boundary model in

the observed image, combining the prior knowledge as well as the image support. We
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address the segmentation as a maximum a posteriori (MAP) estimation, since the proba-

bilistic framework has the advantage to include a statistical prior model over the solution

space. In particular, the model estimation is formulated as minimizing an energy func-

tion over the model parameters (i.e. the positions of the control points) solutions, and the

regional statistics, boundary support as well as prior knowledge are encoded through a

global formulation. We embed this framework in a Markov Random Filed, since efficient

discrete MRF optimization algorithms have been developed and they can provide optimal

or sub optimality guarantees. The shape prior is expressed by the second-order MRF po-

tentials where each potential encodes the local statistical prior. The boundary support and

regional statistics are integrated by the pairwise or second-order potentials on the model

boundary cliques (pairwise cliques in 2D cases, and second-order cliques in 3D cases).

The use of Divergence theorem provides an exact calculation of regional statistics acting

on the image or a derived feature space. The considered framework is optimized using dual

decomposition and used towards 2D and 3D object segmentation with promising result.

Furthermore, we propose a novel framework for joint model-pixel segmentation, in or-

der to integrate both top-down and bottom-up approaches in a unified framework towards

a more refined segmentation. The proposed framework simultaneously solves the problem

in both model space and image space. The graphical model consists of both model nodes

(positions of control points) and pixel nodes (labels of pixels), and model-interaction,

pixel-interaction, and model-pixel interaction. In particular, a model decomposition asso-

ciates the model parts with pixels labeling which aims to create consistency between the

model and the image space. The proposed objective function aims to: (i) assign labels to

image pixels in order to maximize the image likelihood, (ii) deform a point-based model

in order to maximize the geometric likelihood of the model as well as the model-to-image

likelihood, (iii) impose consistency between the two label spaces. The resulting higher

order graphical model formulation is solved by using a state of the art message passing al-

gorithm. The promising results on a challenging clinical setting demonstrate the potentials

of our method.

To sum up, the main contributions of this thesis are the following:

• We propose a pose-invariant statistical shape model. It can capture linear and non-

linear shape variations of a class of objects. The local model has much greater

flexibility than global models, and it is able to account for shape variability unseen

during training. It can be learned from a small training set. A sparse graph structure

achieved from Markov Random Field learning has boosting efficiency while pre-

serving its ability to represent the variations. It does not need aligning the shapes in

a common coordinate frame.

• We propose a model-based segmentation using higher-order Markov Random Field.
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We develop a global approach to jointly encode the regional statistics, boundary

support, as well as prior knowledges within a probabilistic framework. The pose-

invariant priors are encoded by second-order MRF potentials. The regional statics

is exactly factorized into pairwise or second-order terms using Divergence theorem.

The proposed segmentation method is robust to noise, partial object occlusions and

initializations. It is efficient and does not suffer from bad local minima issues using

developed MRF optimization algorithms.

• We propose a novel approach to address jointly model/image-based segmentation

using a higher order graphical model. It produces states of the art results through

the combined model-pixel graph, in particular when exact boundary delineation is

of interest. To the best of our knowledge, this is the first method that recovers a con-

sistent solution between the model and the image space in a single shot optimization

framework, while being pose-invariant.

6.2 Future Work

Regarding our shape model, we capture a sparse graph structure using MRF learning using

dual decomposition. In particular, we associate each triplet clique in the complete graph

with a weight parameter, and we learn the weight parameters by using MRF learning. Then

we use a threshold to choose a number of cliques who have the weight value larger than

the threshold, and these selected clique compose the sparse graph. However, the threshold

is manually defined and it can influence the strength of resulting shape model. In some

cases, the sparsity is not guaranteed by the L1 norm. More investigation and analysis have

to be studied on the sparse graph construction.

Spatio-temporal shape modeling is another natural extension to account for the tem-

poral nature of the object in segmentation and tracking (3D+time). It is of great interest

when studying the dynamic anatomical structures in many applications especially in medi-

cal image analysis. The spatio-temporal shape can be modeled in a global way by principle

component analysis (PCA) as in active shape models, but we are more interested in ex-

tending the shape model using the graph representation where temporal connectivities will

be introduced so that it can have local flexibility.

Moreover, although our shape model can naturally deal with partial occlusion, but

it is not designed for objects with overlapping parts. We believe that a part-based rep-

resentation is more suitable for variations in articulated objects and it can account for

self-occlusions.

In our segmentation framework, the exact region statistics are encoded as the image

support. However, to computer the regional terms in 3D cases involves complex com-
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putation and it is slow, since all the pixels inside of the model boundary have to been

considered. Integrating anatomical landmark extraction in the segmentation can improve

the accuracy and efficiency. The landmark extraction based on geometric information is

known to be robust to the initial conditions, and it also can reduce the candidate space for

each control point, thus boosting the segmentation speed. Efficient/intelligent sampling

of the search space is another important direction that could burden computational com-

plexity, while providing more accurate solutions. The use of marginals as suggested in

[Glocker 2008] is under consideration.

To extend our model-pixel segmentation method to 3D cases is another future research

direction. The current method is now limited in 2D cases because the shape triangulation

which associates the model parts and pixel labels can be only applied in 2D. Finding a way

to produce consistence between the model space and the labeling space in 3D can largely

exploit the bottom-up and top-down approaches at the same time, which is especially

profitable in medical images where 3D images are widely used.

Last but not least, the objective function which we formulate for knowledge-based seg-

mentation consists of many different terms i.e. boundary terms, regional terms, prior terms,

and the weight parameters of these terms which control the contribution of each modular

are usually manually adjusted. It is not controllable to find the best parameters when the

number of the terms are increasing. MRF learning could be a natural path towards learn-

ing these parameters from a training set and it could greatly enhance performance of the

method.
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