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Abstract

Interphase layer in semi-crystalline polyethyleas been the least known constituent of this
widely used polymer, in terms of the mechanicalpprties. Because of the metastable nature and
nanometric size of the interphase and its intinmagehanical coupling to the neighboring crystal and
amorphous domains, detailed characterization of nischanical properties have eluded any
experimental evaluation. Mechanical characteriratb the interphase layer in polyethylene is the
focus of two major technical chapters of this digg®n. The characterization scenarios are deploye
through applying the micromechanics and continuwgshmanics relationships to the relevant atomistic
simulation data. The third technical chapter death the large, viscoplastic deformation simulation
of an aggregate of polyethylene using a multisdadejogenization analysis.

Elastic characterization of the interphase layémigiemented by applying the relationships of
two distinct micromechanical homogenization techeig to the Monte Carlo molecular simulation
data available for the interlamellar domain. Thenminechanical approaches consist of “Extended
Composite Inclusion Model” and “Double-Inclusion ted”. The atomistic data, on the other hand,
includes the variation of the interlamellar stiffseas well as the amorphous and interphase
thicknesses with temperature for 350-450 K. To enpént this characterization, the temperature
dependence of the amorphous stiffness is also redfjuivhich is established using the relevant
findings from the literature. The interphase s&fa is successfully dissociated form that of the
interlamellar domain using the abovementioned migchanical techniques, whose results match
perfectly. Interestingly and contrary to convendibmaterials, the interphase stiffness lacks the
common feature of positive definiteness, which ¢ates its mechanical instability. Aad hoc
sensitivity analysis is worked out to assess thgairhof the existing uncertainties on the dissediat
results. Moreover, the effective Young’'s modulugh# interphase is evaluated using its dissociated
stiffness, which compares well with the effectimgerlamellar Young’s modulus for highly crystalline
polyethylene, reported in an experimental studyis Batisfactory agreement along with the identical
results produced by the two micromechanical appresaconfirms the new information about the
interphase elastic properties and endorses theopedpdissociation methodology to be applied to
similar problems.

Hyperelastic characterization of the interlameldomain and the interphase layer in
polyethylene is undertaken in the next chapter. Wi@yethylene undergoes large deformations, its
interphase layer together with the amorphous phataves hyperelastically. The proposed hybrid
algorithm consists in applying the constitutiveatigins of an isotropic, compressible, hyperelastic
continuum to the molecular dynamics simulation ssaf a polyethylene stack. Assuming a neo-
Hookean model, the governing equations are deriwvgidg which the hyperelastic parameters for the
central amorphous phase, the interphase layertrandhterlamellar domain are identified with the
help of the optimization notion and a set of noraieg objective functions. The identified
hyperelastic parameters for the interlamellar donzake in good agreement with the ones that have
been estimated experimentally and are frequent uis the literature for the noncrystalline phase.
The specifically developed uncertainty analysisdatés that the shear moduli are identified with a
higher degree of certainty, in contrast to the boi&duli. It is also revealed that the presented
continuum mechanics analysis is able to capture nied#ting, recrystallization and rotation of
crystalline chains that take place during the de&dion. The by-product of this identification arsigy
is the estimation of the evolution of the interghlsundaries that might not be estimated otherwise.

The last chapter is devoted to reexamining theslavigcoplastic deformation of an aggregate
of polyethylene. The novelties of this re-examioatiie in the model adopted for the back stredh@f

iii



noncrystalline phase, in correcting the projectiensor proposed for the modified Taylor approach,
and also in enforcing the inequality constraintat thsed to be neglected in the previous studies.
Properly speaking, in this re-examination, the Gewdel is used for the back stress of the
noncrystalline domain in lieu of the 3-chain model8-chain model that has previously been used.
Additionally, a projection tensor is proposed fdre tmodified Taylor approach which is more
complete that the one available in the literaté@thermore, in the newly developed computer code,
the constraint that the resolved shear stresseadh slip system must not exceed the corresponding
critical shear resistance is respected. And abdlygha outstanding feature of this chapter is the
proposed “optimization-based” methodology whichdalized through defining a set of non-negative
objective functions and finding their minima in theesence of a set of associated constraints.
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General Introduction

General Introduction

POLYETHYLENE is the most applied polyolefin with a globally annual production of
more than 80 million metric tons [1]. Polyethylene belongs to the family of polyolefins,
which constitute the most widely used commodity polymers in the world with a
worldwide production in excess of 120 million tons per year [2]. As compared to, say
polypropylene, which is the next important member of the family of polyolefins, the
volume of production of polyethylene is about twice larger. In everyday life, plastic is the
most commonly used term for polyethylene. Shopping bags, shampoo bottles, children
toys and different parts of irrigation systems are well known examples, whereas bullet
proof vests [3], total knee replacement [4] and total hip arthroplasty [5] are less known
examples of polyethylene applications. Such ubiquitousness is primarily due to its
favorable resistance to physical loads as well as the inertness to most chemicals, which
is offered at an economic price.

[t was the outbreak of World War II that unveiled the significance of polyethylene.
Owing to the huge material demand created in the wake of the war, much of the supply
of polyethylene has been engineered for applications in radar technology, due to its
excellent dielectric properties, and in the second place, in submarine communication
cables [6]. In the aftermath of the war, much of the output of polyethylene in Britain was
mostly directed to injection molded household items, while on the other side of the
ocean it opened its way through packaging industry and film market [6]. Interesting
properties of polyethylene led to the production of new grades and consequently new
range of applications including Tetra Pak® containers for liquid foodstuff, impermeable
sheets in agriculture and construction, thin-walled bottles, water piping, corrosion
resistive tanks, and so forth, thanks to its numerous salient advantages. Nevertheless,
low tensile strength, high flexibility, low softening temperature, tendency to creep, and
environmental stress cracking are some of the basic drawbacks of polyethylene that
have hindered its wider applications.

Potential applications of various grades of polyethylene, though, depend on the
underlying microstructure. Polyethylene of any grade is partly crystalline and partly
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amorphous, hence the epithet “semi-crystalline”. Furthermore, since 1950s there have
been arguments that there exists in this biphase, polymer composite, so to speak, a third
phase with intermediate properties that separates the fully amorphous phase from the
crystalline one. This third phase, called “interphase layer” here and later on, has been
known to be stiffer than the central amorphous phase but had eluded any
characterization attempt. In other words, the mechanical properties of the crystalline
and central amorphous phase have been identified by means of a variety of techniques
during recent decades but the mechanical properties of the interphase layer had
remained unknown due chiefly to its nanometric thickness as well as its intimate
anchorage to the adjacent phases. Neither the state-of-the-art experimental techniques
nor the atomistic simulation approaches, which are known as virtual laboratories, have
been able to provide us with numerical values of the mechanical properties of the
interphase layer. This task has been undertaken for the first time in this thesis where the
elastic and hyperelastic properties of the interphase layer are successfully identified by
employing the relationships from the micromechanics of heterogeneous materials and
continuum mechanics in conjunction with the atomistic simulation data. The
significance of this characterization is better appreciated when one wishes to estimate
the effective properties of any grade of polyethylene, as a heterogeneous solid, which is
a direct function of the constitutive properties of its constituents as well as their volume
fraction.

The focus of the present dissertation is the mechanical characterization of the
interphase layer in polyethylene together with the predication of the effective response
of an aggregate of polyethylene subjected to large deformations, from a multiscale
homogenization point of view. To this end, the microstructure of polyethylene, or
strictly speaking, high density polyethylene is surveyed in the first chapter. A quick
introduction to the chemistry of polyethylene and to the various production processes is
also given, for completeness purposes, followed by a presentation of the most well-
known grades of polyethylene along with some of their features. After a brief discussion
about the crystalline lamella of polyethylene, the non-crystalline phase and in particular
the interphase layer is elaborated in details. A general review of the relevant literature is
also provided in this chapter.

In the second chapter, a combinatory methodology is presented for the elastic
characterization of the interphase layer. The methodology consists in applying two
micromechanical homogenization techniques to Monte Carlo molecular simulation
results available for the noncrystalline domain of polyethylene. The molecular
simulation results include the variation of the tensorial components of the interlamellar
domain together with the variation of the interphase thickness with temperature for the
temperature range 350-450 K. The two homogenization techniques employed here
provide analytical relationships in tensorial form. For the implemented dissociation
analysis, the stiffness tensor of the amorphous phase is also required which is
established based on the findings of different experimental and theoretical studies. The
presented analysis leads to the useful by-results that are as valuable as the main findings

2
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of this chapter. Finally, the dissociated results are indirectly verified using a different
homogenization technique and by comparison with the experimental data from the
literature.

In the third chapter, the hyperelastic characterization analysis of the interphase,
amorphous and interlamellar domains in semi-crystalline polyethylene is presented in
detail. The deployed methodology is again a hybrid one: the governing constitutive
equations of an isotropic, homogeneous, compressible, hyperelastic continuum are
applied to molecular dynamics simulation data of a polyethylene stack. The identified
hyperelastic parameters compare very well with the corresponding values determined
experimentally for the interlamellar domain, indicating successful implementation of the
proposed identification scenario. It is revealed that the presented continuum analysis
can successfully capture the physical phenomena such as melting/re-crystallization that
take place at the crystalline/noncrystalline interface, or the reorientation of the chain
stems in the crystallites that are observed during the molecular simulation. Similar to
the preceding chapter, the hyperelastic characterization analysis is accompanied by
interesting by-results, including the evolution of the amorphous and interlamellar
domains, which are equally valuable.

As a complementary part, the fourth chapter is dedicated to the analytical and
numerical re-examination of the large deformation simulation of an aggregate of
polyethylene. One of the objectives of this chapter is to compare different back stress
models available in the literature that have been proposed for capturing the effect of
molecular alignment of polymer chains in the noncrystalline domain under large
deformations. As another objective, a complete, modified Taylor homogenization
approach, which is specifically adapted for the large deformation simulation of
polyethylene crystallites, is established based on the physical constraint of the
inextensibility of the chain stems in the crystallites. This new approach together with the
Sachs approach is used for the prediction of diagrams of equivalent stress vs. equivalent
strain as well as the pole figures of polyethylene samples under different modes of
deformation. This chapter contains some preliminary results and further results will be
published subsequently.

Finally, chapter five recapitulates the novelties of this study, the contributions made,
and also the conclusions drawn. Several practical suggestions are put forward as well for
the follow-up work. Appended to the end of this dissertation are nine useful appendices
that contain materials relevant to the discussions of the manuscript whose direct
inclusions in the main body could obscure its readability. The most interesting
appendices are Appendix A, which covers the mathematical details of calculating the
orientational (volume) average of a fourth-order tensor, and Appendix E where an
innovative algorithm for calculating the inverse of any fourth-order tensor that
possesses minor symmetry is elaborated.
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The true sign of intelligence is not
knowledge but imagination. (Albert
Einstein- 14 March 1879 - 18 April 1955)
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1 Semi-crystalline polyethylene

1.1 Chemistry of semi-crystalline polyethylene

SEMI-CRYSTALLINE POLYETHYLENE is chemically known as the simplest organic linear
macromolecule, which is produced from ethylene (CH2=CH2), a colorless, flammable gas,
with the IUPAC name “ethene”. Upon polymerization, the double bonds between carbon-

carbon atoms are broken and (—CHz—)n polymer chains are formed. Therefore, in
H

polyethylene, the base monomer is methylene, —(|;—, hence the IUPAC designation
[

A
“poly(methylene)” for the commercially named polyethylene. In a molecular chain the
non-extreme carbon atoms are covalently bonded to each other with a pair of hydrogen
atoms linked to each carbon. Chain ends, however, are terminated by methyl groups.

Different configurations of molecular chains in polyethylene give rise to different
grades of polyethylene. Of various types of polyethylene, the principal varieties are high
density polyethylene (HDPE), low density polyethylene (LDPE) and ultra-high molecular
weight polyethylene (UHMWPE). Should some of the hydrogen atoms in the generic
molecular chain of polyethylene be replaced with polyethylene chains, the resulting
polyethylene is called branched polyethylene or low density polyethylene. The
molecular weight in LDPE is around 25000. In case there are no branches on the
backbone chain, the resulting polyethylene will be linear polyethylene or high density
polyethylene. Low level of branching in HDPE is achievable by an appropriate choice of
catalyst. The molecular weight in HDPEs ranges from 2-5x105. When the molecular
weight varies from 2x106 to 6x10°, a new grade of polyethylene known as ultra-high
molecular weight polyethylene is obtained. The very long chains in UHMWPE are
responsible for its comparatively more efficient load bearing and more favorable
mechanical properties.
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1.2 Production processes of semicrystalline polyethylene

Although there were sporadic reports of the production of polymerized ethylene [7-
9], its commercial importance was not appreciated until 1935 when Perrin developed a
reproducible process for the polymerization of ethylene whose patent was taken out by
the British company of Imperial Chemical Industries [10]. This type of polyethylene was
what we know today as low density polyethylene. The significance of high density
polyethylene, on the other hand, was highlighted by the work of Ziegler and his research
team who worked on a class of catalysts for producing unbranched polyethylene [11].
Phillips technique, developed by Phillips Petroleum researchers who were
contemporary with Ziegler team, is another well-known process for producing high
density polyethylene that was commercialized in 1961 [12]. This last process required
higher pressure and temperature and the resulting product had a slightly higher density.
In the late 50’s, Standard Oil company developed its own process for producing high
density polyethylene but, contrary to two other processes, has not been widely
acknowledged by the market [6].

The primary step of nearly all polyethylene production lines consists of converting
ethane to ethylene. Ethane is separated from natural gas after its exploitation and in a
thermal cracking unit is converted to ethylene under heat and in the presence of
catalyst. Of the numerous polymerization techniques, in one of the most commonly used
ones, the ethylene gas is pumped under pressure and heat into a fluidized reactor bed
containing metallic catalyst particles. Due to the high stability of ethylene, its
polymerization is driven in the presence of appropriate catalysts. The polyethylene
granules deposit at the bottom of the reactor and ethylene gas is recycled from the top of
the reactor. Granulated polyethylene obtained in the form of granular powder is then
ready to be sold as is or melted and extruded as required. It is worth mentioning that
polyethylene is classified as a thermoplastic polymer, meaning that it can be melted and
reshaped a lot of times.

1.3 Microstructure of high density polyethylene

High density polyethylene fills the first rank among other types of polyethylene by
the volume of production per year. Its nearly linear molecular structure contains a low
level of defects which allows for the organization of chains in a regular order. Indeed,
like most other solid, linear macromolecules, polyethylene is neither amorphous nor
fully crystalline, but semi-crystalline; it exhibits a glass transition as well as a melting
point. Upon solidification/cooling from melt, a high fraction of linear chains start getting
packed into regular structures at countless points to form base-centered orthorhombic
crystals [13]. Two schematic illustrations of Figure 1 show the crystalline order
observed in semi-crystalline polyethylene from two different angles.
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Figure 1. Two schematics of relative positioning of polyethylene molecular chains in crystalline
lamellae. Carbon and hydrogen atoms are represented by large dark and small bright bullets [14].

The fine crystalline parts of polyethylene, as illustrated in Figure 2, look like lamellar
branches that have grown radially at many nuclei on which secondary lamellar branches
(twigs) have developed. On the other hand, the noncrystalline/interlamellar part of
polyethylene fills the spaces between the crystalline lamellae. Each group of crystalline
lamellae that appear as radially nucleated branches from a nucleus plus the
noncrystalline parts housed in-between forms a microstructural superstructure called
spherulite (Figure 3A). In fact, as the polyethylene is cooled down, the spherulites start
to appear and grow (Figure 3B) and when they reach each other, they form more or less
flat boundaries. The concept of spherulite in semi-crystalline polymers is the analogue of
grains in polycrystalline materials. The sphrulitic microstructure of polyethylene is well
evident from the micrograph of Figure 3B. Therefore, should polyethylene be viewed as
a heterogeneous solid, its major constituents are crystalline lamellae and
noncrystalline/interlamellar region.

Figure 2. A) An electron micrograph of a chlorosulphonated section of a medium-density
polyethylene with an insert cut through a computer-built spherulite [15], B) Schematic model of
secondary crystalline branches (twigs) grown on a mother crystalline branch [16].

7
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Figure 3. A) Simulated fully grown spherulite [16], B) Spherulites, as they start to appear and grow
in polyethylene [17].

1.3.1 Crystalline lamellae in semicrystalline polyethylene

Crystallinity of semicrystalline polyethylene depends mainly on the level of
branching in molecules and cooling conditions. In general, chains with lesser degree of
defects are potentially more appropriate for higher degree of crystallinity. Additionally,
if cooling from melt is slow then the chains have enough time for recrystallization while
in rapid quenching, the time required for most chains to arrange in crystalline order is
taken away. The degree of crystallinity is directly proportional to the density of
polyethylene because the packing of noncrystalline zones is looser and less efficient.

The prevailing lattice structure seen in semicrystalline polyethylene is orthorhombic.
Bunn was the first who reported the crystalline structure of polyethylene and measured
its lattice parameters [18]. Figure 1 illustrates the orthorhombic lattice structure of
polyethylene crystallite along with its lattice parameters. The less stable monoclinic
structure in mechanically stressed samples [19] as well as the hexagonal structure in
samples subjected to high pressure and temperature [20] has also been observed.
Numerous studies have been devoted to investigating the elastic properties of the
crystalline phase in polyethylene [14, 21-25]. The literature on the crystalline phase in
polyethylene is quite extensive but since the elasticity of the crystalline phase is not of
main concern in this work, it is not further examined here.

1.3.2 Noncrystalline domain in semicrystalline polyethylene

The noncrystalline phase in semicrystalline polyethylene is composed of the loops,
cilia and bridges, as illustrated in a cartoon in Figure 4. Segments of chains that exit a
crystallite and enter the same crystallite constitute loops or foldings, segments of chains
connecting two crystallites are called bridges or tie chains, and loose ends of chains

8



Chapter I- Semi-crystalline polyethylene

projecting out of crystallites are called cilia or tails. As there is no predefined order
within the noncrystalline phase, sometimes it is referred to as the amorphous phase in
the literature. When thought of as a continuum, however, the noncrystalline domain is
not homogeneous and is in turn composed of two constituents.
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Figure 4. Schematic illustration of the configuration of chains within the noncrystalline domain.
Segments corresponding to loops (both ends of segment terminate at the same crystal lamella;
short dashed lines), bridges (the ends of the segment terminate at different lamellae; dotted lines)
and tails (one end terminates at a crystal lamella and the other terminates in the noncrystalline
domain; long dashed lines).
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1.3.2.1 Interphase layer in semicrystalline polyethylene

From a theoretical standpoint, Flory argued that the continuity of polymeric chains
implies the development of a new order intermediate between the crystalline lamellae
and the central amorphous phase [26]. He added that the existing order within the
crystalline lamellae cannot abruptly disappear at the interface of the
crystalline/noncrystalline interface and the sharp transition from the ordered region
with orthorhombic symmetry to a disordered region with isotropic symmetry is
unlikely. He used the term “interphase” to call the layer intermediate between the
crystallite and the central amorphous phase. Mandelkern et al. [27] presented another
theoretical argument about the formation of the interphase layer based on the severe
conformational differences between the ordered and disordered states.

The presence of the interphase layer as the third constituent in semicrystalline
polyethylene has experimentally been demonstrated too. A wide range of experimental
techniques, including broad-line proton NMR [28], high resolution 13C NMR [29, 30],
electron microscopy [31], small angle neutron scattering [32], dielectric relaxation [33,

9
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34], and Raman spectroscopy [35, 36] confirm the significant volumetric contribution of
the interphase region into the conventional semicrystalline polymers. Mandelkern [37]
asserts that the difference between the crystallinities measured in density and heat of
fusion experiments is directly related to the interfacial content. The theoretical and
experimental studies cited above in concert with many other similar ones led to the
acknowledgment of the presence of the partially ordered interphase layer as the third
constituent in semicrystalline polyethylene.

Most of the relevant studies dedicated to the interphase properties are limited to
measuring the thickness and volume fraction. Yoon and Flory estimated an average
thickness of 6-8 A for the interphase layer [38]. In another theoretical study, Flory et al.
suggest a thickness of 10-12 A which they claim is in accord with experimental
measurements [39]. Mandelkern et al. [40] made use of the technique of Raman internal
and longitudinal acoustical modes to estimate the thickness of the interphase layer for a
variety of polyethylene samples. In their simulation study, Kumar and Yoon [41]
estimated a thickness of 10-30 A for the interphase layer in polyethylene. In’t Veld et al.
employed the concept of Gibbs dividing surface in their molecular simulation study and
reported a thickness of around 15 A for the interphase layer at 350 K [42].

Although the existence of the interphase layer has been evidenced and techniques
have been proposed in the literature for measuring its dimensions, there is a marked
lack of knowledge about its mechanical properties. Experimental characterization of this
layer has remained elusive due to the interference of signals from different phases [35,
43]. The attempts to isolate the noncrystalline phase in polyethylene by preferential
degradation of the crystallite were unsuccessful due to the reconstruction of the
material at the interface [44]. The nanometric thickness of the interphase layer as well
as its thermodynamical metastability act as essential impediments to any experimental
characterization [42].

It should be emphasized that, although the role of the interfacial region is important
as a connector between the two primary phases without which the polyethylene would
be a very weak substance, there is no distinct boundary between the interphase layer
and the central amorphous region and they cannot be demarcated by considering a
sharp line separating them. Sometimes in the literature the designation “amorphous” is
used to indicate the noncrystalline region housed between crystallites. This way of
nomination can be misleading as the interlamellar domain is composed of partially
ordered and fully disordered regions and the ensemble of the two regions is not
necessarily isotropic. To avoid any confusion, in this dissertation, the term amorphous
indicates the totally disordered, central region situated between partially ordered
interphase layers and the ensemble of the two regions is called as “noncrystalline” or
“interlamellar” domain.

10
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1.4 Composite-inclusion model

In most publications where the effective response of high density polyethylene from
a macroscopic point of view and using a multiscale homogenization approach has been
investigated, a double-inclusion model has been proposed as the basic representative
unit for the reconstruction of the real spherulitic microstructure [45-51]. This basic
structural element was first proposed by Ahzi et al. [51] to investigate the large
deformation analysis of semi-crystalline polyethylene. Indeed, this way of
representation can be justified based on the spherulitic morphology of the undeformed
semi-crystalline polymers which is observed when crystallized from melt. The radially
oriented “fins” of each spherulite constitute the building blocks of this mesostructural
unit in most multiscale studies of semi-crystalline polymers. The schematic of this unit
element, which is often encountered in the literature, is given in Figure 5: a two-layer
composite model made of bonding a crystalline layer to a noncrystalline one. As
depicted in Figure 5, the orientation of each composite inclusion is denoted by n, the
normal to the hypothetical interface plane separating the two layers. The
crystallographic c-axis of the crystallite denotes the molecular chain alignment in the
lamella. It has been demonstrated experimentally and theoretically that the
misalignment between N and C is around 30° in the undeformed samples of
polyethylene [40, 52].

Uniformly random orientational distribution of a sufficiently large number of such
composite inclusions in space leads to a configuration that is virtually equivalent to the
macroscopically isotropic polyethylene sample. The higher the number of such building
blocks is, the closer we get to the real morphology. In practice, however, the CPU time
demand for such simulations grows dramatically as the number of grains exceeds
several hundreds. This restriction comes from the solution of a system of coupled-
nonlinear equations with a number of unknowns of O(10) for each inclusion, due to the

constitutive law of each phase + their mechanical coupling requirements, and finally
fulfilling the global compatibility and equilibrium conditions. The associated
mathematical and numerical details are provided in Chapter 4.

Finally, it should be noted that the term “multiscale” analysis that is used for the
numerical modeling and simulation of spherulitic microstructure in semi-crystalline
polymers is due to the different size scales that are involved. Microscopic scale is
reserved for the lamellar constituents due to their planar dimensions that reach a few
micrometers. Any material point within the spherulites is treated on the mesoscopic
scale, whereas an ensemble of multiple spherulites grouped together imparts to the
macroscopic scale of the simulations. In a multiscale analysis, the macroscopic behavior
of an aggregate in linked to the microscopic behavior of individual inclusions through a
multiscale micromechanical homogenization approach. For want of a universal
homogenization approach that captures all aspects of interactions between the
inclusions, numerous approaches have so far been developed and are still being

11
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Figure 5. A) Unit cell model introduced in [46] for multiscale nodeling of polyethylene; B) Schematic of
multiscale modeling of PE introduced in [47]; C) Tte building block of an aggregate of polyethylene ahg
with the representation of local crystalline and cavected axes [48]; D) The relative positioning ofhie
major constituents of polyethylene microstructure @ which the authors in [53] based their atomistic
model; E) schematic of a spherulite + the composiiaclusion model often adopted in the literature [B].

proposed [48, 50, 51, 54, 55]. Their predictions may differ simply due to different
underlying assumptions. The differences between some of the well-known available
approaches are reviewed in Chapter IV where large deformation of an aggregate of
polyethylene is re-investigated.
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An expert is a person who has made all
the mistakes that can be made in a very
narrow field. (Niels Bohr- 7 October1885 -
18 November 1962)
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2 Elastic characterization of the interphase layer
In semi-crystalline polyethylene

INTERPHASE LAYER in semi-crystalline polyethylene is the least known constituent
of this well-known polymer in terms of the mechanical properties. The nanometric size
of this layer together with the lack of a criterion to precisely define its boundaries, and
practical impossibility to prepare pure samples of interphase films in the laboratory, due
to its intimate coupling to the coexisting adjacent phases, are major factors that impede
its mechanical characterization, experimentally. The scale of the problem suggests
resorting to atomistic/molecular simulation tools for investigating the mechanical
properties of this constituent in question.

At the molecular simulation level, Hiitter et al. [52] employed the concept of a sharp
Gibbs dividing surface in order to define a set of interfacial properties corresponding to
the interphase. They obtained interfacial stresses and interfacial internal energies, but
were not able to extract a value for the interfacial tension due to the significant
contributions from its dependence on interfacial strain. For the interlamellar domain,
however, the tool has proved effective in estimating the thermoelastic properties of the
domain.

To date, the best attempts to take advantage of the molecular simulation tools
with the aim of the mechanical characterization of the interlamellar domain in semi-
crystalline polyethylene have been made by Rutledge and co-workers who have
developed a molecular level simulation capable of capturing the essential features of the
interlamellar domain [42, 56-58]. They employed the united atom model for simulating
the interlamellar domain of polyethylene as a representative volume element
surrounded by rigid crystalline lamellae [42]. Then, they utilized their model to compute
the elastic properties of this domain over a range of temperatures.

14
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2.1 Data provided by the molecular simulations

Part of the output of the Monte Carlo molecular simulations that is useful for our
characterization analysis is the part that relates to the interlamellar stiffness

components, C', the interlamellar thickness, t;, and the interphase thickness, tip, as a

function of temperature for the range of 350-450 K. The diagrams of the normal stiffness
components of C' vs. temperature are given in Figure 6. They suggest that all stiffness
components do not follow the same trend since C/, does not show a monotonically

increasing or decreasing behavior with temperature. The parameters of the quadratic
curves fitted to the relevant atomistic data are given below. It is underlined that these
dependences are only valid for 350-450K.

C,(MPa)=-0.09279%* + 71.1145%5 11858.952
C,,(MPa) = 0.0367251° - 38.28730% 11707.889
C;;(MPa) = 0.0274658° — 27.549099  7682.7703 (1)
C.,(MPa) = 0.0561410° - 51.4931%# 12980.304
C,;(MPa) = 0.0268965° -~ 26.068502 711305
C\;(MPa) = 0.0521528° - 45.990307% 10969.641
3 % ' ) k
25 ?"‘?.‘ - L8 r[
= T N = 16} % :
% 2 L O ~a_ | %
= b B 14y L
ST % .............. [T TR . QO %\\ IRREN B
1.5¢ ) bl ‘W . 12+ :g‘::i\ """" [
\}\*i --& 1 L N T
1 R S RS Sl
D St SO 0.8 A
360 380 400 420 440 360 380 400 420 440
T(K) T(K)
A B

Figure 6. Variation of A) C/,=m,C),=A and C}, =4 B)C,=m,C,=A and C), = ¢ with
temperature for the temperature range 350-450 K [42].

The other components of C' were not as important as the normal components, in
addition to the fact that their calculation were computationally expensive. These
components have been evaluated at the typical temperature 435 K and are taken to be
constant across the temperature range of interest for the lack of any better estimate. The
interlamellar stiffness evaluated at the typical temperature 435 K is given below
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As suggested by the 6x6 matrix form of C", the interlamellar domain has a monoclinic
(or probably higher) symmetry. The likely physical grounds of the observed symmetry
are discussed in Subsection 2.4. The uncertainty intervals reported for the interlamellar

stiffness components are 30 MPa for the normal components, 100 MPa for C}, and 60

MPa for the two other shearing stiffnesses [42]. For the non-orthotropic terms, no
uncertainty interval is reported.

In addition to the interlamellar stiffness, the interlamellar and interphase
thicknesses have also been measured at different temperatures (Figure 7A, B).

According to in ‘t Veld et al. [42], for calculating the interphase thickness, the concept of
“sharp Gibbs dividing surface” has been employed. The interlamellar thickness, t;, varies
almost linearly with temperature whereas the interphase thickness, t,, can be well

described using a quadratic estimate.

t, (nm) = 0.00651444D+ 4.8412561 (3)
t, (nm) = 0.000066433° ~ 0.058743A4 13.86128 (4)
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Figure 7. Variation of the thickness of A) interlamellar domain B) interphase layer in semi-
crystalline polyethylene with temperature [42].
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For the elastic characterization analysis, the volume fraction of the interphase and
amorphous regions are also required. These quantities are easily calculable from the
thickness of both phases as follows

tiI _Ztip lp
Mam™= » M=
tiI P EI

(5)

Indeed, due to the periodic boundary conditions applied on the lateral planes of the
interlamellar domain, the above relationships between the thicknesses and volume
fractions are valid. But for implementing the dissociation analysis, the variation of the
amorphous stiffness, C*", with temperature is also required. This last quantity is
established based on the relevant findings from the literature, as explained in the
following Subsection.

2.2 Temperature dependence of the central amorphous stiffness

Elastic properties of the central amorphous phase in polyethylene have been the
topic of quite few experimental and theoretical studies (e.g. [59-63]). As for the
symmetry of this region, it has an isotropic symmetry [40] simply due to its disordered
structure. In practice, purely crystalline or purely amorphous polyethylene samples
cannot be prepared in the laboratory [64]. Therefore, the reported values for the elastic
coefficients of the amorphous phase are based either on the theoretical arguments or on
the modest extrapolation of corresponding coefficients of different polyethylene
samples to zero crystallinity.

Hellwege et al. [60] measured the isothermal compressibility, which is the inverse of
bulk modulus, for various polyethylene samples. Compared to the elastic modulus, bulk
modulus shows a weaker sensitivity to the crystallinity. Therefore, extrapolation of this

quantity provides an acceptable estimate for the central amorphous bulk modulus, K.
The extrapolated value reported for this quantity is &, =1800MPa(op. cit.). Krigas et al.

[61] conducted numerous tensile tests on different polyethylene specimens at several
testing machine crosshead speeds less than 1 in/min. They concluded that except for
low crystallinity samples, the measured Young’s modulus remains independent of the
strain rate and total strain for small strains. They also observed that the curve-fit of the
measured Young's modulus and the one estimated from the plateau modulus intersect at
the crystallinity of { =0.03. From the intercepts of the two diagrams, they concluded

that E,,=3.5+ 0.5MP3 for the amorphous Young’s modulus, where in conjunction with
the bulk modulus reported in [60], the amorphous Poisson’s ratio will be U, , ~0.4994

Using the same extrapolation technique, Crist et al. [59] estimated E,, =2MPaafter

processing their experimental data. Fetters et al. [65] reported the value of 3.8 MPa for
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the amorphous shear modulus, G,;;, which is equivalent to a Young’s modulus slightly
less than 11.4 MPa, given that the associated Poisson’s ratio is too close to 0.5. Janzen
[62] reported mean values of E, =4.1MPa and u,,=0.499¢ after conducting

laboratory tests on a lot of polyethylene samples.

From the kinetic theory of rubber elasticity [66], the plateau shear modulus of the
liquid-like polyethylene is expressed as follows
PRT

Gy=r— 6
V= (6)

where p is the amorphous phase density, T the absolute temperature, R the ideal gas
constant, and M, the molecular mass between entanglements. Bédoui et al. [64] and
Sedighiamiri et al. [67] used this relationship and estimated G,,, =1.5MPa for room
temperature. They both assumed a mean value of A,,=3000MP¢ to obtain

U, =0.4997¢

Due to its isotropic symmetry, the amorphous phase needs two independent
elastic constants for the description of its stiffness tensor. The advantage of working
with the amorphous Young’'s (or shear) modulus and Poisson’s ratio lies in the

understanding that we have from their temperature dependence behavior. As for U,,,

the average of the above values is ~ 0.4996 which is already too close to the limiting
value of 0.5. This closeness to 0.5 is due to the rubbery state of the amorphous phase at
room temperature which leads to its further approaching this critical value at higher

temperatures. It is therefore quite rational to assume that U, remains nearly constant

for the temperature range of interest with possibly negligible fluctuations around its
mean value.

For E

am’
temperature is ~ 5 MPa, which matches the mean value adopted by Humbert et al. [60]
for the amorphous phase of polyethylene. According to Eq.( 6) which has been
introduced in the context of the kinetic theory of rubber elasticity [66], the elastic
modulus of the amorphous phase is a linear function of temperature in the rubbery

the average of the values reported in the previous studies for room

region. Moreover, using the first and second laws of thermodynamics and based on
probabilistic discussions, it is demonstrated that the elastic modulus of a single chain in
an amorphous polymer in the rubbery state is proportional to

3KT

NIZ (7)

where k is the Boltzmann constant and N is the number of links in the chain each

having an average length | [68]. It is therefore quite justifiable to assume that E  is a
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linear function of temperature over the temperature range of interest where the
amorphous phase of polyethylene is rubbery [49]. Accordingly, the following linear

function is adopted for the temperature dependence of E,, for 350K<T < 400K

T
E..= 52—93( MPa) (8)

Using the above relationship and the constant value v, =0.4996, the temperature
dependent stiffness tensor of the central amorphous phase is built by substituting E,,

from Eq.( 8) and the temperature independent ¢, =0.4996 into the following

relationship

Eam

Ciu :m

20
(6”61« +6ik6jl +ﬁ6ij6kl] ( 9)

am

It should be noted that E is a weak function of temperature (for instance
E.n(400K) ~ 6.8MPg) and one may take E,, to remain almost constant through the

entire rubbery zone; this assumption would be consistent with the diagrams of the
storage modulus vs. temperature for typical amorphous polymers in the rubbery regime.
Additionally, the two adopted amorphous elastic constants, namely U, and E,, do not

exhibit substantial changes within the temperature range considered here, to demand
more precise estimations. Nevertheless, as demonstrated in Subsection 2.5, using an ad
hoc sensitivity analysis the impact of the possible existing uncertainties in the adopted
amorphous elastic constants on the generality of the conclusions is evaluated. Based on
the careful examinations carried out, we believe that the basic conclusions remain

essentially unaltered if more accurate forms of temperature dependence for U, and
E,, were available. At any rate, the proposed methodology and dissociating tools

presented herein remain applicable even if other forms of dependence are employed.

2.3 Micromechanical approaches of DIM and ECIM

Thus far, the temperature-dependent forms for the amorphous and interlamellar
elastic tensors, namely C*" and C', respectively, together with the interphase and

amorphous volume fractions are known and the only remaining unknown is the
interphase stiffness. The schematic illustration of Figure 8 gives a brief graphical
abstract of the problem. If there exists a relationship between all these quantities such
as the following functional form

= (Cil ’Cam ’Cip M 7,7ip) =0 ( 10)
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then the interphase stiffness can be calculated or, as is alternatively referred to in this
work, dissociated from the interlamellar stiffness. Such a relationship is provided by two
distinct micromechanical approaches known as Double Inclusion Method (DIM) and
Extended Composite Inclusion Model (ECIM).

,\\\\\‘\\\\\‘\\ Crystallite

Interphase
C® (1) ="
Interlamellar/ P ,’ by (T)=v
Noncrystalline . . = 7 | central
region ‘~ 7 amorphous
< & .- phase
Cil (T) _y . " \ C (/ ) =7
- 7 \n 1, (1)=v
L (T) =v |' ':._ “ | Interphase
2 £\ i ; Cip('l'):?
Iip (T)=v

RN

Figure 8. Schematic illustration of the relative positioning of a polyethylene stack along with the
known and unknown parameters of the presented dissociation analysis.

2.3.1 Double Inclusion Method (DIM)

Developed by Hori and Nemat-Nasser [69], DIM proposes an Eshelby-based
formulation for evaluating the homogenized stiffness of an ellipsoidal inclusion
encapsulating another ellipsoid with the entire double-inclusion being embedded in a
reference medium. In the Monte Carlo molecular simulations, the periodic boundary
conditions are imposed in a way that the interlamellar region can be treated as an inner,
thin, disk-like ellipsoid, namely the core amorphous phase, wrapped by another hollow,
thin, disk-like ellipsoid, namely the side interphase layers. Therefore, the problem under
discussion fits the double-inclusion model if the Eshelby tensor of a disk-like ellipsoid
(i.e. an ellipsoid with a very small aspect ratio) is used. After some mathematical
manipulation, the DIM relationship for the interphase stiffness is rendered into the
following form

-1
-1

Cr=C*-C* E{(I—(Cm‘)'lc“)_l—sw] —%ﬂ”‘[(]—(ﬁ“)%ﬂﬂ—SWH_:S‘” (11)

Here, I represents the fourth order identity tensor and S stands for the Eshelby
tensor of a disk-like inclusion inserted in a reference medium whose stiffness is C*'. A
concise summary of the governing equations of this method is brought in Appendix C.
Further details about the assumptions and derivation procedure of DIM formulations
are available in the work of Hori and Nemat-Nasser [69].
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2.3.2 Extended Composite Inclusion Model (ECIM)

Formulated first by Ahzi et al. [70, 71] the composite inclusion model (CIM) is an
attempt to find a compromise between the Voigt and Reuss mixture formulae for a
layered composite inclusion by introducing strain and stress concentration tensors
which serve also as weight functions. In this approach, the composite inclusion is made
by stacking together two layers whose thicknesses are much less than the two other
dimensions. The weight functions are established through the simultaneous
enforcement of the continuity of deformation and equilibrium at the interface of the two
composing layers. Here, the idea is extended to a three-layer composite inclusion, hence
the designation “extended composite inclusion model” (ECIM). Again, owing to the
nature of the periodic boundary conditions imposed in molecular simulations, the
interlamellar region can be thought of as two thin interphase layers with one thin
amorphous layer inserted in between. With reference to the notation defined in
Appendix D, the dissociative analogue of Eq.( 10) solved for the unknown C” is given by
either of the following two equivalent equations:

C =(1-n,)R*[(C') -n(Cm) R or

C"=[C" -7, )((1-7.,)2")"

(12)

where RP, R®™ Qip and Q #™ are certain weight coefficients which are functions of
Nam,» C* and C*". For further details on the derivation of the ECIM relationships, see
Appendix D.

A quick comparison between the DIM and ECIM relationships reveals that in DIM
formulation there appear S” and C™ in addition to the other independent variables
appearing in ECIM relationships. It should be reminded that S is a function of C* as
well as the aspect ratios (or geometry) of the ellipsoidal inclusion. Apart from the
geometry of the problem, which has been taken into account during the derivation of the
ECIM formulae, there is no need to resort to the concept of some “reference medium” in
the ECIM formulation. It is, therefore, anticipated that for this specific case where the

ellipsoidal inclusion is disk-like, the DIM results will be independent of the choice of C'™
. Although it looks too complicated to demonstrate it mathematically due to the
nonlinear dependence of S* on C™ in addition to the nonlinear dependence of C* on
both S* and C'™, it seems to be a true conjecture. Strictly speaking, a large number of
different C™*'s were picked as input for Eq. ( 11) and it was observed that the
dissociated C" s are exactly identical, indicating the independence of the dissociated C*
from C™.In Appendix C, a mathematical demonstration for the simpler case of isotropic
and y,

reference medium is presented. In other words, with two elastic constants E of »

ref
the elastic stiffness tensor of the reference medium is constructed. S is built using v,

and two different stiffness tensor with full anisotropy are assumed for C* and C*". The

21



Chapter II- Elastic characterization of the interphase layer in semi-crystalline polyethylene

governing equations are eventually solved symbolically using Maple® software where it
is observed that there is no trace of E, and v, in C”. Therefore, the equivalence

between the independent variables of the two dissociative approaches is taken for
granted.

2.4 Results and discussion

For reminding purposes, the general form of the interlamellar stiffness, which is
adopted from the Monte Carlo molecular simulation study [42], is re-produced below.

¢l c, c, o ~180 0 |
c, C, C, o0 —-240 0
¢ G G Ca 0500 (13)
0 0 0 0+100 0 - 200
-180 -240 50 0  22& 60 0
0 0 0 -200 0 57& 6

The entries of the upper left 3x3 submatrix are substituted from the relationships ( 1)
keeping in mind that their uncertainty interval is +£30MPa For the other nonzero

components, the uncertainty interval of each component is given beside its respective
mean value. Before explaining the details of the results, it is emphasized that since the
melting temperature of polyethylene is around 407 K, only the temperature range 350-
400 K is considered for the dissociation analysis.

The interphase stiffness, C*, output by the two dissociation approaches, i.e. DIM and
ECIM, for the typical temperature 370 K are given in Table 1. As explained earlier, DIM
involves the Eshelby tensor for a disk-shaped inclusion, which must be evaluated
numerically as it has no closed-form solution in the general case when the reference
medium is anisotropic. Therefore, in the numerical code developed, a very small positive
number, say 106, has been assigned to the aspect ratio of the disk-like ellipsoid for the
computation of the Eshelby tensor. It was also observed that due to the recursive nature
of the ECIM in the dissociation mode (see Appendix D), the method has shown numerical
divergence despite deploying several stabilizing strategies. Therefore, the following
numerical alternative was invoked. First, C' was symbolically calculated using an
unknown C®. As a result, a system of 13 coupled equations with 13 unknowns is thus
obtained for the solution of which a hybrid optimization algorithm has been employed.
The two-step, hybrid optimization algorithm consists of combining the Genetic
Algorithm with another non-linear optimization technique called the Nelder-Mead (or
simplex search) method [72]. In the first step, a ballpark estimate for the solution is
found using the Genetic Algorithm which is used as the initial guess for the Nelder-Mead
method in the second step. The dissociated C* attributed to ECIM in Table 1 is the
result of this combinatory numerical method.
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A quick comparison reveals that the results of the two micromechanical methods
agree perfectly. From a practical point of view, however, the ECIM formulation is fairly
straightforward and simpler than the DIM formulation but is less efficient in the
dissociation mode. Interestingly, and as discussed in Subsection 2.5, when the non-
orthotropic elements of the interlamellar stiffness are neglected, the combination of the
dual ECIM formulae ( 12) converges to the solution using the recursive method, which is
much faster than the hybrid optimization technique. On the contrary, the DIM is very
fast in both dissociation and homogenization modes although its major drawback is the
development of the rather complicated numerical code for calculating the Eshelby
tensor.

Table 1. Output of the dissociation approaches at the typical temperature 370 K.

at T=370K: E,,,=6.31MPg, G,,,=2.10MP¢, 17,,,=0.66, n,=0.34
Cam(MPa) C' (MPa) (taken from [42])
30979 3093.7 3093.7 O 0 0 17499 1613.6 1092.9 0 -180 0
3093.7 30979 3093.7 O 0 0 1613.6 2569.3 1150 0 -240 0
3093.7 3093.7 30979 O 0 0 10929 1150 1249.6 0 50 0
0 0 0 21 0 0 0 0 0 90" 0 -200
0 0 0 0 21 0 -180 -240 50 0 220 0
0 0 0 0 0 2.1 0 0 0 -200 0 570
Then:
1972.2 13074 427.7 0 3.05 0
1307.4 3824.3 524.2 0 3.92 0
ip 427.7 524.2 567.3 0 -0.33 0
C" (MPa) output by the DIM 0 0 0 111 0 731
3.05 3.92 -0.33 0 -1.08 0
0 0 0 7.31 0 320.5
1972.2 13074  427.7 0 3.05 0
. 1307.4 38243 524.2 0 3.92 0
C" (MPa) output by the ECIM (using the 427.7 5242  567.3 0 -0.33 0
hybrid optimization algorithm) 0 0 0 -1.11 0 7.31
3.05 3.92 -0.33 0 -1.08 0
0 0 0 7.31 0 320.5
*This particular shearing stiffness was taken to be 90 MPa, as a safe value instead of its mean value
reported in the molecular simulation study, for the reasons explained in Subsection 2.4.2.

In the direct/homogenization mode, however, when the dissociated C" is used

in combination with C*" to produce the initial C", the ECIM and the DIM produce the
correct solution quite fast. In view of the details provided in Appendix D, the ECIM
formulation in the homogenization mode takes the following explicit form

Cil - (1_I7am) Cinip +/73mcamQam or

14
(Cil ) — (1_,7am)(cip )*1 Rip +,7am(cam )*1Ram ( )

and the DIM in the direct mode of two-component homogenization takes the following
form of mathematical representation
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C = [ 7 {[,;am (sw +(c —C'e‘)’lc*')_l 1, (5“ +(cr-c*)'c 'ef)_T —5“’)1] (15)

Therefore, once C”, C*™ and their volume fractions are known, the ECIM and the DIM

directly return the solution, namely C', in a single step without requiring any
sophisticated numerical technique. Besides, it should be underlined that the interphase
stiffness components shown in boldface in Table 1 indicate that C* is not positive
definite. This finding is discussed in depth in the following Subsections.

Finally, it can be seen that C' and C” have the same form of symmetry. To
justify, one may reason that since the central amorphous phase has the highest
symmetry and the interlamellar region has the second lowest symmetry, it is quite
anticipated that the interphase layer possesses the same form of symmetry as the
interlamellar domain does. However, the orthorhombic crystalline structure of
crystallite takes its known form of orthotropic representation in the material reference
frame of the crystallite coinciding the abc-frame of the lattice. In the model of in ‘t Veld
et al. [42] the ab-plane of the lattice makes an angle of ~30° with the crystalline-
noncrystalline interface plane, which coincides the xy-plane [53] (see Figure 5). When
the crystalline stiffness with its familiar form of representation in the abc-frame is
rotated into the xyz-frame, it takes a new representation that looks exactly like C" in
terms of zeros and non-zero elements, as described previously by in ‘t Veld et al. [42].
For a better comprehension, this fact is illustrated in Figure 9.

C, C, Cb, 0 0 0] o« N 'C, C, C; 0 Cis O]
C, Cb, Chy O 0 O '\&/v“ l . Cu Cp Cp 0 Cy% O
Cy Cip Gy O 0 0| from » to Y :> Cy Cp C 0 Cy O
o 0 0C, 0 O O 0 0 C, 0 C
0O 0 0 0C, O C, C, Cs 0 Cy O
0 0 0 0 0 Cgl 0 0 0 C; 0 Cy

Figure 9. Visual demonstration of the representation of the crystalline stiffness in its lattice abc-
frame and when rotated to the xyz-frame.

Therefore, it is very likely that the symmetry of the crystalline stiffness is
responsible for the induced symmetry in C®. However, because of the uncertainties
available in the components of C”, it is impossible to determine the number of

independent components of the interphase stiffness and as a result impossible to
determine the true symmetry of the interphase layer.
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2.4.1 A probe into the shearing components of C"

Due to their critical role in the dissociation analysis, the shearing stiffnesses in C"
are examined more carefully. The most critical elements of C' are CL, with an

uncertainty of +100 MPa, and CQS, with an uncertainty of +60MPa. According to the
sensitivity analyses carried out, the following observations were made:

* Variation of CL within its uncertainty interval brings about the variation of Cj&,
CL% and Cé%, while the other components of C" are robust to this variation.

* All components of C", except for CL, were allowed to vary within their interval
of uncertainty and were observed to affect the value of Cj& only in the tenth
decimal place. Similarly, holding CQS fixed and varying the other components of
C" within their uncertainty intervals was observed to affect the value of Cé’; only
to the sixth decimal place. It can therefore be concluded that C‘i& / Cé% is only
affected by the uncertainty in the corresponding Cﬂ4/Cg5 and is very robust to
the uncertainty of the other components of C".

* Variation of Cgﬁ only varies Cé%, with the other components of C* remaining

robust to the fluctuations in CgG.

Accordingly, the diagrams of CJ;, C2 and C¥, vs. the uncertainty interval of C), for

several temperatures are plotted in Figure 10, Figure 11 and Figure 12, respectively. As
is qualitatively evident from the diagrams and as demarcated by vertical dashed lines,

there are intervals of C}, for which the dependent variables become unbounded, which

is unacceptable. Therefore, these intervals must be excluded from
-100MPa< C}, < 100MP. Specifically, Figure 10, Figure 11 and Figure 12 suggest that

the imprecise intervals (2.2,4), (2.5,4) and (-15.5,1§ must be excluded from the initial
interval of CL. Therefore, the rough interval -15.5MPa< C!, < 16 MP;, within which
Cip

within [—100,— 15.$, ng >4000MPg, which might be considered incomparable with the

>10000MPs, is excluded from the initial uncertainty interval of CL. On the other hand,

shearing components of c'. Additionally, it looks rather unusual to assume that the

admissible interval of C,, consists of two separate intervals, i.e. C., 0[-100,-15.30[ 16,1¢k.

6

Therefore, if one sets the criterion for the admissibility of Cj, to ‘Cg" <4000 MP¢, then the

allowable interval of C,, shrinks to 26.5MPa<Cl,< 100MP. since for

16 MPa<C}, < 26.5MP; CP takes values less than -4000 MPa.
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Figure 10. Diagrams of Ci& Vs. CL. Within the approximate interval (2.2, 4) delineated by dashed

lines, Cj& takes incomparably large value.
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Figure 12. Diagrams of CiG% VS. CL. Within the approximate interval (—15.5, 1@ delineated by

dashed lines, Cé% takes incomparably large value.

The shearing stiffness C as a function of C; has a behavior similar to C}, as a
function of C},. In other words, for all temperatures within the range considered, C2

shows a weak dependence on the uncertainty of C.. but is not as robust as it is to the

uncertainties of the other components of C'. The common feature between CF and C&
is that within the temperature range of interest, they robustly take negative values close
to zero and exhibit an almost plateau dependence on C,, and C,, respectively. As
demonstrated in section 2.5, this property is insensitive to the uncertainties of the
adopted amorphous elastic constants and the uncertainties of C".

2.4.2 Deviation of the interphase stiffness from positive definiteness

Positive definiteness of the stiffness tensor for stable materials found in nature is
demonstrated based on the first law of thermodynamics and the positivity of the elastic
strain energy. If the stiffness tensor is represented in a 6x6 matrix form, positive
definiteness requires positivity of the diagonal elements. Here, this requirement is

violated at least for the interphase stiffness since C), and C, although too close to

zero, robustly take negative values at least in the temperature range 350-400 K. It is
worth noting that unlike either the crystalline or amorphous phases, the interphase and
interlamellar domains are not necessarily thermodynamically stable phases that can
ever exist in the absence of the stabilizing influence of the adjoining crystalline lamellae.
Thus there is no compelling reason to require their mechanical stability in isolation
either. Here, in our example, the negative shear stiffnesses are only observed in the
transversal plane of the interphase layer, whose thickness is ~ 1 nm and plays the role
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of the transition region between the crystallites and the amorphous phase. Moreover,
negativity of the shear modulus has been observed earlier for nanoscale domains within
an amorphous matrix [73]. Other examples of the studies available in the open literature
on the heterogeneous materials containing at least one component with non-positive
definite stiffness include [74-78]. Therefore, while one or more constituents in a
mechanically stable, heterogeneous solid might have non-positive definite stiffness, the
global stiffness of the entire heterogeneous material is positive definite.

For the crystalline/noncrystalline interface in semi-crystalline polymers,
Cammarate and Eby [79], Fisher et al. [80] and Cammarata and Sieradzki [81] report

negative interface stresses of the order of -0.1 to -0.3 J/m? for a {00} surface. In

reference to these negative stress values, Hiitter et al. [52] argue that the fact that the
interface is under pressure can be attributed to the way the polymer chains exit (or
enter) the crystal. Therefore, the interphase layer is physically pre-strained. On the
other hand, pre-strained objects, which contain stored energy, are well-known examples
in which non-positive definite stiffness may take place [82, 83]. As a result, non-positive
definite stiffness of the interphase layer is in accord with one’s anticipation in light of
the earlier studies. Non-positive definite stiffness of the interphase layer means that
under particular strain fields the associated strain energy of one or more interphase
layer(s) becomes negative (equivalent to the release of some stored energy). However,
due to the stabilizing effects of the amorphous and crystalline layers whose stiffness
tensors are positive definite, the global strain energy of any polyethylene sample that
exists in isolation becomes positive under any kinematically admissible strain field. In
other words, since polyethylene samples usually have a uniformly random distribution
of constituents, they are macroscopically isotropic satisfying the sufficient conditions of
stability. According to Kochmann [83] if the shear and bulk moduli of an isotropic solid
are positive the sufficient conditions of stability are met and its strain energy is always
positive under any nonzero strain field.

It is also worth noting that although Cj& and Cg‘; are negative, they are very close to

zero in magnitude, compared to the other stiffnesses. The closeness to zero is such that
they can be assumed independent of both temperature or the corresponding component

in C'. But the situation for Cépe is totally different (see Figure 12); since within the
interval of 26.5MPa<C;, < 73MP;, C?, takes incomparably negative values that are at

least three orders of magnitude larger than Cj& or Cg‘; without displaying any

asymptotic behavior. It should be reminded that negativity of the shear stiffnesses imply
that upon imposition of positive corresponding shear strains, negative stresses will be

produced. Then, one may reason that the negligible negativity of Cj& or Cé‘; produces

negligible negative shear stresses, which may be tolerated by the surrounding media.
However, the negativity of ng is comparatively so large that, even with relatively small

positive shear strains, it produces such large negative shear stresses that are not
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deemed to be balanced by the surrounding media. Additionally, when CL approaches
the right extreme of its allowable interval, the plateau-like behavior of CY is observed,
supporting the speculation that, contrary to Ci& and Cé’;, negative values are not
allowed for C2; this comparison suggests that the allowable interval for C,, should
shrink to (73,10(}. It might also be argued that since C}, and CJ, are shearing

resistances in the planes normal to the interface but C", is the shearing resistance in the

plane parallel to the interface, the dissimilarity between their behaviors could be
expected.

The sensitivity analysis of Cg‘; has revealed that this shearing stiffness is robust to

the uncertainties of all components of C' except for the uncertainties of C,, and Cj,.
Accordingly, the diagrams of Figure 13 are plotted as follows: at different temperatures
and across the interval of 40MPa<Cl, < 100MP, C{; is varied within its uncertainty

interval to find the minimum values of Cé% at each temperature. In light of the reasoning
made in the preceding paragraph vis-a-vis the inadmissibility of negative values for Cé%,
the admissible interval of C,, will be further reduced to C, >82MPa. This is the reason

why in Table 1 the value of 90 MPa is assigned to C,, in lieu of its mean value calculated
from MC molecular simulations. Consequently, for the rest of the calculations, the mean
value and the uncertainty interval of CL are, respectively, taken to be 90 MPa and
(82,100) MPa. It is worth noting that the dissociation analysis has the unintended but

useful by-product of confining the most uncertain component of C.
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Figure 13. Diagrams of the minimum values of C; vs. C4'1|4 at different temperatures. The arrow

indicates the threshold value C!, ~ 82 MPaabove which C{, >0.
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2.4.3 Verification of dissociation analysis results

Crist et al. [59] reported their measurements for different samples of PE, linear
HPB, 3S HPB and 4S HPB spanning a crystallinity range of 0.35< ¢ < 0.6, which they

were able to describe with a linear fit on a semilogarithmic scale with the correlation
coefficient of 0.974. Assuming essentially only a two-component model comprising
crystalline and noncrystalline (which they call amorphous) phases, they argue that in
semi-crystalline PE, the average Young’s modulus of the noncrystalline phase is nearly
constant (~ 300 MPa) for ¢ >0.7, but drops appreciably as the crystallinity is lowered

below 70%. Therein, they proposed the following double-argument dependence for the
average Young’s modulus of the noncrystalline phase at room temperature

— | 2exp(7.159) £< 0.7
Ea"“(‘z)_{soo Y (16)

Given that Crist and co-workers did not consider the presence of a third component, i.e.
the transitional interphase separating crystallites and the central amorphous phase, it is

reasonable to equate E,_ in their two-component model with E,. Indeed, E, is

calculable form C" which is, according to Eq.( 10), a function of the properties and
volume fractions of its constituents. Therefore, mathematically speaking

E,=f (7,.C".C"") (17)

which is in agreement with the suggestion made by Crist et al. [59] since 77,, which

denotes the interphase volume fraction within the interlamellar domain, is in its turn a
function of the crystallinity. In other words, for an interlamellar region of arbitrary
thickness one can write

7Y 2
=k T 18
T N, A4 (18)

ip  ~am

where t,/V, denotes the thickness/total volume of each interphase layer in a layered,

“sandwich” model of the interlamellar domain. There is evidence that the interphase
thickness is invariant with crystallinity, whereas the amorphous thickness varies to

accommodate changes in interlamellar separation [38]. Therefore t,, and consequently

1, are functions of crystallinity:

1,=h(¢) (19)

For the hypothetical state of no crystallinity, polyethylene is composed of the pure
amorphous phase and there is no interphase which means:
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. 0
if -0 then {_ _ (20)

where at room temperature E, takes values between 2-11.4 MPa, as elaborated in

Subsection 2.2. On the other hand, at high crystallinities, the amorphous phase
disappears and the interlamellar domain will be dominated by the interphase layers,
meaning that

if -1 (21)

,7ip - 1 = ,7am :1_,7ip - 0
then
EiI :Ep

In summary, by increasing the crystallinity from zero, the interphase layers start to
appear and the amorphous phase shrinks, implying that 77, is a positive and

monotonically increasing function of crystallinity up to some critical crystallinity, &_.
Since /7, cannot exceed unity in the interval of 0<{<land eventually it has to go to
unity as £ -1, the most likely dependence form of 77, which is in accord with the

observation by Crist et al. [59], is the following:

1}, increases monotonically from zero at the hypothetical ¢ =0 to reach a maximum

at the critical 0<¢, ~0.7<1and then plateaus quickly but smoothly such that

/7ip (£>£cr) :,7ip (Ecr) '

Consequently and in light of Eq.( 17), the average Young's modulus of the
interlamellar domain, E,, becomes a function of crystallinity similar to that suggested by

Crist et al. [59], while the constitutive properties of the constituents, namely C” and
C®", remain essentially independent of crystallinity. In other words, using a two-phase
sandwich model to represent the interlamellar region in which the constitutive
properties of the phases are independent of crystallinity, the form of dependence in Eq.
( 16) proposed by Crist et al. [59] can be justified.

Finally, to use the empirical Eq.( 16) for verification purposes, one can reason that
according to Eq.( 21), at high crystallinity Eﬂ :Ep, and therefore the average Young's

modulus of the interphase layer at room temperature must be comparable to that of the
interlamellar domain at high crystallinity, which is offered by the empirical relationship.
Following the idea presented by Counts et al. [84], Hill’s estimate [85] is used to find an

estimate for Ep from C" . In the work of Counts et al. [84] the problem of estimating the

overall shear and Young's moduli of a polycrystalline BCC Mg-Li, which takes non-
positive definite stiffnesses for some compositions of Mg-Li, is treated similarly. In fact,
the average elastic moduli from FE and self-consistent analyses that are extrapolated to
unstable regions agree very well with Hill’s estimate for any composition. Therefore, for
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estimating the interphase average bulk and shear moduli using Hill’'s method, the bulk
. L1\ 1
and shear moduli of the Voigt and Reuss approaches, calculable from <C'p> and <C'p > ,

where< > indicates the orientational (volume) averaging, are required. Thus, Hill’s

estimates of the interphase bulk and shear moduli are obtained as follows:

Kipsi :é(l?ip'v thow )

(22)
_ 1,  _
Gip-HiII :E ((';Ip-V +G|p»R )

from which the average Young’s modulus of the interphase layer obtained from Hill’s
estimate reads

= gl?i - iIIG -Hill

Eip-HiIl =# ( 23)

ip-Hill Ip-Hill

In the temperature range studied here, the closest to the room temperature is 350 K at
which Ep_Hi,, is calculated to be 347 MPa, which compares well to the plateau value of

300 MPa proposed by Crist et al. [59], noting that the Young’s modulus of amorphous
polymers increases with temperature if the polymer is in the rubbery state.
Furthermore, Ding et al. [86] conducted a molecular simulation study on the Young's
modulus change in a semi-crystalline polymer and observed that the Young’s modulus of
the interlamellar region increases with temperature in the rubbery state. It is therefore
expected that the analogue of the empirical relation ( 16) at higher temperatures gives

higher El for the same crystallinity. As a result, Ep at 350 K ought to be greater than

300 MPa. Additionally, keeping in mind that the components of C” have uncertainty
intervals inherited from the uncertainties of C' components, the calculated Ep_Hm will
definitely have its own uncertainty interval. By means of a simple Monte Carlo analysis
sampling 10° times the uncertainty space of C' and then calculating new C ®s and new

B s at 350 K, the following uncertainty interval for B, is obtained:

207 MPa< E

ip-Hill |350K

< 465MP; (24)

This result is in accord with our expectation that values higher than 300 MPa fall within

the uncertainty interval of Ep_Hi" . It is reiterated that for calculating the mean value of

Eip_Hi" and its uncertainty interval, it was assumed that 82MPa<C,, < 100MP with a

mean value of Cj, =91MPa. For the entire temperature range, the evolution of Elp-HiII

and the bounds of its uncertainty interval are similarly calculated. The plots of these
evolutions are given in Figure 14. Interestingly, the three diagrams show a
monotonically increasing trend with temperature in agreement with our anticipation.
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Figure 14. Average Young’'s modulus of the interphase layer calculated using Hill’s estimate, Ep_Hi"

along with the bounds of its uncertainty interval vs. temperature.
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Figure 15. Average Young's modulus of the interlamellar domain estimated using Hill’s estimate,

E, . » and the bounds of its uncertainty interval vs. temperature.

It is also insightful to know how the average Young's modulus varies with
temperature for the interlamellar region. The diagrams of E,,,, along with the bounds
of its uncertainty interval vs. temperature are displayed in Figure 15. It is evident from

the diagrams that E,,,, and its uncertainty bounds increase with temperature. Indeed as
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explained in most introductory textbooks on the behavior of polymers (see e.g. [68] ),
this observation is in accord with the common understanding that the elastic modulus of
amorphous polymers in the rubbery region increases with temperature as the Young's
modulus is controlled by the entropy change.

2.5 Sensitivity/uncertainty analysis

To examine the sensitivity of the non-positive definiteness of the calculated C®
within 350K <T < 400K, to the uncertainties available in C" and C®", the following
Monte Carlo sensitivity analysis has been carried out. First, the following uncertainty

intervals were considered for the amorphous Poisson’s ratio, ¢

m» and the amorphous

Young’s modulus, E,__, for the temperature range 350K-400K.

am’

0.49<y,, < 0.49999

(25)
2MPa<E, < 11.4MPa

Then in a total of 10° Monte Carlo cycles, at random temperatures, random E_ and v,
are sampled from their assigned uncertainty intervals. Accordingly, a random C®" is
picked from its uncertainty space. Afterwards, at the same random temperature, a
random C" is picked from its uncertainty space based on the uncertainty intervals

obtained from the MC molecular simulations, except for C,, which is picked from
(82,10(}. Finally, using the DIM dissociation formulation, the new C " and its

eigenvalues are calculated. By carrying out this sensitivity analysis, none of the
calculated interphase stiffnesses fulfilled the condition of positive definiteness. Given the
extremely large number of the Monte Carlo cycles, it is very unlikely that one can find

some temperature from 350K<T < 400K and some random C®" and C", as described
above, such that a positive definite C ' is obtained. Therefore, one can conclude, with a
high degree of certainty, that the non-positive definiteness of C™ within
350K <T < 400K is an established fact and insensitive to the uncertainties of C*" and
C". It should be noted that for the volume fractions involved in the calculations, no

uncertainties were reported. However, if there were any, they would be treated similar
to other uncertainties in the same way as described in the above.

Furthermore, the uncertainty intervals of the C® components originated from

the uncertainties of the C' components are calculated via the same Monte Carlo
procedure: at a given temperature, the uncertainty space of C" is sampled 10° times,
C " s associated with each temperature are calculated, and finally the bounds of each

component of C® at each temperature are obtained (see Figure 16-Figure 17). Of the
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tensile components of C*, CP is the less sensitive component and C/, is the most

sensitive component. Additionally, the non-orthotropic elements of C* take small
values close zero and exhibit a weak dependence on temperature.
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1900
1700 \M‘ M
1500
1300 —+—Max_C_ip(1.,2)

—a—Min_C_ip(1,2)

-
[N
o
o

A C—irnf1-2)
T VaxX_C_1pP(L,0)

——Min_C_ip(1,3)

[<e]
o
o

—»—Max_C_ip(2,3)

500

—e— Min_C_ip(2.3)

300

Bounds of uncertainty intervals of C_ip(1,2), C_ip(1,3),
C_ip(2,3) (MPa)

100 r r r r 1
350 360 370 380 390 400
Temperature (K)

Figure 17. Uncertainty intervals of C},, C and C), vs. temperature.

35



Chapter II- Elastic characterization of the interphase layer in semi-crystalline polyethylene

—e—Max_C_ip(1,5)

9 —s—Min_C_ip(1,5)
—a— Max_C_ip(2,5)

8 —%—Min_C_ip(2,5)
—*— Max_C_ip(3,5)

7 S— —e— Min_C_ip(3,5)
T e Max_C_ip(4,6)

6 Min_C_ip(4,6)

Bounds of uncertainty intervals of C_ip(1,5), C_ip(2,5), C_ip(3,5), C_ip(4,6)

[+
&4
=3
L o o
3
2
1
Temperature(K)
0 $ $ $ $ J
3%6 *360* 370 - 0

-1
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temperature.
As an insightful examination, let us see what happens to the homogenized C'if

the components of (O beyond orthotropic symmetry are neglected. The omission of
these elements may look reasonable as their absolute values are at least two orders of

magnitude lower than the other elements of CP, except for the negative shearing
stiffnesses. As reflected in Table 2, the newly homogenized (" is once calculated with a
CP of orthotropic symmetry and again with an orthotropic C" excluding the small
negative shearing stiffnesses Cj& and Cg‘; The tensile components of the two newly
calculated effective C"'s are identical and close to their corresponding components in
the initial C" appearing in Table 1. On the other hand, the non-orthotropic components
of C® have no impact on C.,, a weak impact on C.. and a strong impact on Cg, which
may be viewed as more evidence for the dissimilarity between C® and the two other
shearing components of CP . 1tis clearly seen that although the small negative shearing
stiffnesses Ci& and Cg‘; may look negligible and unimportant at first glance, they can

produce corresponding CL and Cé's that are two to three orders greater in magnitude.
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i il
Table 2. The effect of negligible terms of C'p on the homogenized C’I

at7=370K: E, =6.31MP¢ G, =2.1MPa 17,, =0.66, 73, =0.34

al

ip iminati .
C (MPa) (Taken from Table 1 after eliminating nonzero C” (MPa)
terms beyond orthotropic symmetry)
1972.2 13074 4277 0 0 0 1600.5 14143 11344 0 0 0
1307.4 38243  524.2 0 0 0 = 1414.3 2304.6 1205.3 0 0 0
427.7 524.2 567.3 0 0 0 11344 12053 1238.1 0 0 0
0 0 0 -1.11 0 0 0 0 0 90 0 0
0 0 0 0 -1.08 0 0 0 0 0 220.7 0
0 0 0 0 0 320.5 0 0 0 0 0 109.3
i . ]
C (MPa) (Taken from Table 1 after eliminating small C,| (MPa)
negligible elements)
1972.2 1307.4  427.7 0 0 0 1600.5 14143 11344 0 0 0
1307.4 38243  524.2 0 0 0 = 1414.3 2304.6 1205.3 0 0 0
427.7 524.2 567.3 0 0 0 11344 12053 1238.1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 320.5 0 0 0 0 0 109.3

As a last sensitivity check, only the orthotropic part of C'is preserved and the
dissociation analysis at the same temperature of 370 K is carried out. Table 3 confirms

that C* s calculated using the two approaches match perfectly. The tensile elements of
the newly calculated C™ are still close to their corresponding components of CP, given

in Table 1 and calculated using a C" of monoclinic symmetry. Contrary to the situation
in Table 1, here the ECIM converges to the same solution output by the DIM using the
numerical recursive method. Indeed, a combination of dual formulae ( 12) is used to
achieve the convergence. More interestingly, it is observed that the controversial

shearing stiffnesses Cj& and cg‘; appearing in Table 3 are equal to those appearing in
Table 1, suggesting that these two shearing stiffnesses are almost independent of the
non-orthotropic components of C'. The last shearing stiffness, Cépe, however, exhibits a

strong dependence on the non-orthotropic components; another dissimilarity which
might have been expected in advance.
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| .
Table 3. Impact of nonorthotropic components of C'I on the dissociated Clp

atr=370k: E, =6.31MP¢, G, =2.1MPa. 77,,, =0.66, 77, =0.34

Cam(MPa) Cll (taken from [42] after eliminating nonorthotropic
elements)
3097.9 3093.7 3093.7 0 0 0 1749.9 1613.6 10929 0 0 0
3093.7 30979 3093.7 0 0 0 1613.6 2569.3 1150 0 0 0
3093.7 3093.7 3097.9 0 0 0 1092.9 1150 1249.6 0 0 0
0 0 0 2.1 0 0 0 0 0 90 0 0
0 0 0 0 2.1 0 0 0 0 0 220 0
0 0 0 0 0 1 0 0 0 0 0 570
Then:
2569.8 2074.1 362.03 0 0 0
2074.1 4807.8 439.96 0 0 0
i 362.03 439.96 574.47 0 0 0
Ccr (MPa) output by the DIM 5 o o 111 0 0
0 0 0 0 -1.08 0
0 0 0 0 0 1688.6
2569.8 2074.1 362.03 0 0 0
i 2074.1 4807.8 439.96 0 0 0
C* (MPa) output by the ECIM 362.03 439.96 574.47 0 0 0
using numerical recursive 0 0 0 -1.11 0 0
method 0 0 0 0 -1.08 0
0 0 0 0 0 1688.6
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Facts are not science — as the dictionary is
not literature. (Martin H. Fischer - 10
November 1879 - 19 January 1962).
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3 Hyperelastic characterization of the interlamellar
domain and interphase layer in polyethylene

HYPERELASTIC characterization of the noncrystalline phase in polyethylene is the main
objective of this chapter. Inspired by the characterization idea presented in the previous
chapter, a similar methodology for the hyperelastic characterization of the interlamellar
domain and interphase layer in high density polyethylene is presented here.
Hyperelastic behavior of the interlamellar domain and its components, namely the
interphase and central amorphous phase, is attributed to the rubbery state of this region

(TgPE>l73K). This understanding is in accordance with what is adopted in the

literature for the large deformation behavior of amorphous polymers in the rubbery
regime [48, 87, 88]. Indeed, the need for the hyperelastic constitutive properties of the
interlamellar domain and its constituents is better appreciated in numerical simulation
of large deformation of semi-crystalline polyethylene [48, 54, 55].

The basics of the methodology consist in applying the governing equations of the
hyperelastic continuum to stress-strain data from molecular dynamics simulations of a
polyethylene stack [89]. Due to its simplicity, efficiency and widespread use, the neo-
Hookean model of rubber elasticity is adopted for the interlamellar domain and its
constituents [48, 87, 88]. It should be emphasized that although the presented
methodology is founded on the application of the neo-Hookean model, the identification
notion does not lose its generality and can be deployed in a similar way with any other
hyperelastic model such as Yeoh model, Moony-Rivlin model, generalized Gent model,
Arruda-Boyce model and so forth. [90, 91].
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3.1 Simulation stack of the molecular dynamics analysis and the
imposed boundary conditions

The MD simulation results that are employed here relate to a stack of PE that is
comprised of two crystalline lamellae plus the interlamellar domain housed between
them (see Figure 19A). The schematic of the simulated PE stack in its unloaded state
along with the diagram of the density distribution in the longitudinal direction is
reproduced from the basic MD study [89] in Figure 19B. It is worth noting that although
the existence of the interphase layer that separates the core amorphous zone from the
crystallites has extensively been evidenced, the transition in the cup-shaped density
diagram again confirms the presence of this third, transitional constituent. Further
details vis-a-vis the atomistic simulation are provided in the MD study by Lee and
Rutledge [89].
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Figure 19. A) Schematic illustration of a PE stack and the relative positioning of the constituents.
The arrows indicate the direction of the applied displacement constraints in the MD simulations.
B) Edited schematic of the simulated PE stack in its unloaded state together with the average
density distribution along the stack [89].

The initial, unloaded length of the simulation PE stack (i.e. crystalline+noncrystalline
phases) is 21.63 nm and it is loaded by imposing the longitudinal tensile stretch along
the z-axis, 4, =1+¢,, and simultaneous compressive lateral stretches A, and A, . The xyz-

frame is defined as described in Figure 19. The deformation of the stack is recorded in
800 increments up to the longitudinal strain &, =0.4917during which the lateral and

longitudinal stresses are recorded. This information, i.e. longitudinal stretch and stress
of the entire stack, A, and o, , respectively, together with the Ilateral stress

distributions, o,, and g,,, constitutes the database for the identification procedure

deployed in this work. The main objective of this identification practice is the
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hyperelastic characterization of the amorphous, interphase and interlamellar regions.
The adopted approach is the minimization of a set of nonnegative objective functions
that are defined using the assumption that the three domains of interest behave as
isotropic, compressible, hyperelastic continua.

3.2 Methodology

The polyethylene element for which the MD simulations have been conducted by Lee

and Rutledge [89] is subject to a global deformation gradient tensor, F***. The
incrementally imposed constraints of the stack during the simulation consists of
longitudinal stretch of the stack along the z-axis, A, =1+ ¢,, and equal lateral stretches,

A, and /1y. Whereas the interlamellar domain is assumed to be compressible, the lateral

stretches are adjusted such that the entire stack deforms isochorically, meaning that

A 0 0
det(Fstack) =det 0 /]y oO=1 = Ax = Ay :Az_% ( 26)
0 0 4

Note that according to the simulation constraints, the lateral stretches are identical
everywhere along the stack whereas the longitudinal stretch A, represents the average

stretch of the entire stack. In other words, at each increment A, = A = /12_% for all the

constituents of the stack while their respective longitudinal stretches may differ, i.e.
Ayt Aam 2 A, £ 4, The superscripts or subscripts “il”, “am” and “ip”, used here and
later on, indicate the interlamellar, amorphous and interphase regions, respectively.

Accordingly, the deformation gradient tensor of the interlamellar, amorphous and
interphase domains takes the following generic form

A7 00
F=l 0 A7 o0 (27)
0o 0 A,

where B replacesil”, “am” and “ip”. It is worth mentioning that, contrary to A,, the
evolution of A, is a priori unknown and has not been recorded during the simulation.

Indeed, 4, , A, ,, and A, are treated as unknown functions of A, (or equally ¢,) and

z=il? “7z-am

are identified along with the hyperelastic coefficients.
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3.3 Hyperelastic constitutive law

The constitutive law of a compressible, isotropic, hyperelastic solid following the
neo-Hookean model reads

o=LLB +i(3-1)1 (28)
3

where ¢ is the Cauchy stress, J represents the determinant of the deformation gradient
tensor F, B’ stands for the deviatoric part of the left Cauchy-Green deformation tensor
B=FF',1is the second-order identity tensor, and material parameters / and K
denote shear and bulk moduli, respectively. On the other hand, however, only the
interlamellar region and its constituents behave hyperelastically and not the crystallites.
Therefore, the deformation gradient tensor of the interlamellar domain and its
constituents, F* where f replaces “il” or “am” or “ip”, must be substituted in Eq.( 28) for
the identification of their hyperelastic parameters. In the following, the procedure of
hyperelastic characterization for the central amorphous phase and the interlamellar
domain is elaborated first. Then the governing relationships of the interphase layer are
incorporated into the final objective function where the hyperelastic parameters of the
three domains are identified concurrently.

Substitution of F*™ into Eq.( 28) yields

-3 i_ :uaml'l 2173 313 A -amfil _
ll'lz=1m/il/1z—21m/il/1z3 l 2/123Az-21m/il + /123/123-am/il + Kam/il . I 1
; 3 A,
O.am|
XX
amiil | _ -3 2 Mo 295 EPE /]z-am/n _ ( 29)
JW - ll'lam/il/1z-§1m/il/1z3 3 2/123/]z-glm/il + /]zaAza-am/il + Kam/il /1 1
a.amlil z
z
1 5 _ Hai 233 33 Apamil _
/'Ie\m/iIA;—am/il/‘z3 3 2Az3/12-gmlil + AZBA;—amIiI + Kam/il A l
z

Obviously, under the current simulation conditions, the shearing strains remain zero
throughout the loading due to the simulation constraints. Additionally, it is understood

from Eq.( 29) that the lateral stresses 0;"1/" and U;a,yw" are analytically identical, although

the MD simulation results do not show such an identity.

The lateral stresses 0, and O,, along the simulation stack have been recorded

with the resolution of 1 A during each increment. The two distributions at twelve sample
strain increments are shown in Figure 20. Comparison of the two distributions for all
800 increments, not shown here, reveals that the two distributions show noticeable
disagreements for the most part of the loading. For the crystalline domain, the
disagreement would have quite been expected because of the anisotropy of the
crystallites. Although the disagreement between the two lateral stresses for the
amorphous phase is not as strong as it is for the crystalline phase, it does not agree with
our expectations given its initially isotropic symmetry. In the latter case, the source of
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Figure 20. Distributions of the lateral stresses U,, and O, along with the dimensionless order

parameter P2 of the entire stack at twelve sample increments from MD simulations.

such disagreements might be due to the small size of the initial simulation stack. It
should however be noted that when talking about the lateral stress of the central
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amorphous phase or interlamellar region, the mean value of 0?;" and Ulie'“, respectively,

averaged over their respective length is intended. In other words, the evolution of the
amorphous/interlamellar length (or boundaries) in the z-direction, which is initially

. . . : i .
unknown, is required for calculating the evolution of the mean value of Ogn/ " Strictly

speaking, at any increment, the current length of each domain in the z-direction is
required for calculating the average of lateral stress of the domains involved.

Given the equality of the right hand sides of the first two equations of the system
of equations ( 29), one of the relationships is obviously trivial. Because of the
redundancy of one of these relationships, the governing stress-stretch relationships for
the amorphous/interlamellar region under the given mode of deformation are reduced
to the following system of two independent equations

5]:;“/" = % (AZ%AZ_-%am/iI - Az%/]z%-am/il) + Kam/il[/lzjlm/iI _l]

z

(30)

z 7 z-amlil

szm/" - 2 ( /]Zé Azé_am/" L )+ Ko - -1
3 A

z

In summary, . and K, are hyperelastic (neo-Hookean) parameters that are
: e il :
to be identified, O?Z"v' and A, are the normal stress and stretch of the stack in the z-

: : . : . . —amil .

direction, respectively, which are outputs of the MD simulations, and USIW "is the
average, lateral, normal stress of the amorphous/interlamellar phase. /L_am,", however, is
a dependent variable that is an unknown function of A, (or equally &,) and is required

for evaluating 5;” "

3.4 Identification approach

Attempts were made to take advantage of the distribution of the “order
parameter”, P2, for extracting the evolution of the amorphous/interlamellar boundaries.
Calculated by means of the second Legendre polynomial coefficient, P2 is often used to
quantify the orientational ordering in nematic systems [89]. P2 takes a maximum value
of 1 for a perfectly uniaxially aligned system, 0 for a randomly oriented system, and -0.5
for a system with random orientational order in a plane perpendicular to the axis of
symmetry. This parameter is also shown in Figure 20 at twelve sample increments. The
lowest part of the P2 distribution belongs to the central amorphous region, the highest
values of the distribution signify the crystalline lamellae on either side of the simulation
domain, and the transitional parts are characteristic of the interphase layers.
Nonetheless, low resolution of data recording (4 A) used for P2, lack of a universally
established benchmark founded on P2 for separating different regions, and finally
melting and recrystallization phenomena that occur at medium strains impede any
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attempt to rely on this parameter for tracing the evolution of the initial
amorphous/interlamellar elements.

After trying several identification algorithms (e.g. taking either O, or g, or

their arithmetic mean as the true lateral stress for each domain under study with
boundary evolutions roughly approximated from P2 distributions and lateral stress
distributions, ...), the best scenario that suits the problem at hand is the one in which the
hyperelastic coefficients of all domains involved along with their respective boundaries
are identified simultaneously. The details of the implemented identification algorithm
are as follows.

The evolutions of the interlamellar/amorphous right and left boundaries, i.e. Z,,

Z.» Z, and Z,, are evidently functions of the longitudinal strain, £&,. To clarify

further, it is worth noting that, as discussed in the foregoing Subsection and in reference
to the MD simulation conditions, the loading constraints are of displacement type,

meaning that the longitudinal strain, &,, is imposed incrementally and simultaneously
with lateral stretches such that: £, = ¢, :]/ 1+ &, —1. With such loading conditions, it is
evident that the independent variable is £, and normal stresses (i.e. 7, , 0,, and 0,,)

or the evolution of hyperelastic domains (i.e. Z,, Z,,, Z, and Z,,,) are all dependent
variables that are functions of £,. Additionally and mathematically speaking, since
g, = fl(Ez), the second relationship of the system of equations ( 30) suggests that

Ao = 5 (82) where in conjunction with the relationships of Eq.( 32), it is deduced that

for this particular problem and simulation conditions, the interlamellar/amorphous
right and left boundaries are functions of &,. It should be noted that the right and left

boundaries of the amorphous and interlamellar domains are not necessarily symmetric
with respect to the origin, z=0. Therefore, these boundaries are specified with “r” and “”,
designating right and left sides, respectively. Various functional forms, including
polynomial, Fourier expansion, Gaussian expansion, etc., with unknown parameters can
be assigned to each boundary. Here, a three-argument, polynomial form of dependence
is adopted for each boundary. For instance, the right boundary of the interlamellar
domain is described using the following form

a,+a,E,+a g’ +a g’ 0<¢,<0.2165
Z, S0+ OE, + ALE +AE) 0.2165< £, < 0.304 (31)
A +a, 8, +a,£°+a,£,° 0.3046< g, < 0.491

where @;s are unknown parameters that remain to be identified. Forms of dependence

similar to relation ( 31) are adopted for Z,,, Z,, and Z,,, too, leading to a total of 48

design parameters, a, . The above form of dependence is easily deduced from the
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second relationship of Eq.( 30). According to this relation, /me,ip is a direct function of

0, which shows two sharp, angle-like corners at £, =0.216E and &, =0.304¢€, indicating
that it can be split into three separate parts, each describable with a simple estimate
such as polynomial. For a better comprehension of this selection, the evolution of T,

obtained from the molecular simulation is given in Figure 21. Since A is a direct

z—aml/il

function of 0,,, therefore the amorphous and interlamellar boundaries will naturally

exhibit similar dependence. This is the reason why a three-argument functional form for
these boundaries is a more elegant option in lieu of a smooth, single argument one.
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Figure 21. Evolution of g,, with £, recorded during the MD simulations [89]. The slope of the

curve changes sign at the extrema points £, =0.216Sand &, = 0.304¢.

Having adopted the functional forms of Z,,, Z,,, Z, and Z,,, with 48 unknown

parameters, the stretches of the amorphous, interlamellar, and right and left interphase
domains read as follows

/] - Zam—r B Zam—l /] =__ qr T Z|I -r le — ;I—r B ém—r A — Zam 1 i ( 32)

z-am | -7 ] vzl | | z ip-r z-ipl T
Am—r 0 am-lg |I -r |I |

;I—r|0_ém—r|0’ aml| _Z|II|

where Zlo indicates the position at the unloaded state. With the above stretches, the

hyperelastic parameters of the amorphous and interlamellar domains can be calculated
using the second relationship of Eq.( 30) and a simple least squares technique.
Expansion of the second relationship of Eq.( 30) for the amorphous and interlamellar
domains for the 800 increments of loading yields
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2 2 __5 /]
e P N
3 1 /12 1 B ]
g
2 z 2 |k : (33)
E(Asxl;am —A2A; m) (—/]Z'am —1} v
i 800 AZ 800
Aam
2 -and] (o]
1 z B T
. o
) I R [
2 z 2 K B : ( 34)
E(/]g/‘}” _Az%/lz_i) (%_]} Y
i 800 z 800

Obviously, the above systems of equations do not have solutions for the
amorphous and interlamellar hyperelastic parameters since the number of independent
equations is way greater than the number of unknowns. However, to find the best
estimate for these coefficients, the least squares technique is used. According to the least
squares technique [92], the best set of hyperelastic parameters for the amorphous and

Y /\ a.% }
Kam S

Al

where A_,; and Y are introduced in relationships ( 33) and ( 34) with Err,, and Err,

being the errors of the least squares estimates. In the ideal case, these error expressions
go to zero. In general, however, they must be brought as close to zero as possible.
Therefore, a multi-objective optimization problem is formulated in which the first and
second objective functions are defined as the least squares errors of the above

K

am

{” a"“} =(ALAW) ALY, with Err =
LS (35)

Kil

{”"} =(NA)AY,  with Erp =
LS

estimates:
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(36)

OF, = -A (L) AT OF 2 A (N0 ) ATY

Moreover, the system of equations ( 30) can be similarly developed for both interphase
layers.

. o 2 .5 1 /1 . . 2 s s 1 A )
0_-||apt_r :%(/123/1 > _/16/13" - )+Kip( o _1] 0_-I|§t_I :_(/]25/12—?;34 _Azéﬂiipq) +/(ip[ Zip- —1]

277 z-ipr z 77 z-ipr

ZJTRT A, ’ 2y (51 2o A,
o = Hip (/]é/]é — A7 )+/(_p[ il —1j g, = Fip (/]3/]3_- LA _-3_I)+K ( zipl —1j
z 3 i A z 3 z7z-ip z7'z-ip ip
(37)
Expecting identical constitutive properties for both interphase layers, the second
relationships of the systems of equations ( 37) imply Az_ip_| = Az_ip_r, where in conjunction

. , . . . =ipl _ =ip- . S .
with the first relationships results in 0:;7 —012;. Therefore, the third objective function

is defined as follows

800

OF, = Z‘Aip_r - ;nip_,\i (38)

In addition, the hyperelastic parameters of the interphase layer can be identified like the
interlamellar and amorphous hyperelastic parameters:

2

Y

2w (e |
3 ' ’ ! JZZ|1
2 1 2.5 /]z-i
Some-aind), (%) Pl oo o ] <un)
: Ky : Ko ) s
. . s A _Jﬂ|soo_
Peip _q ——
800 (/]Z j

(39)

Similar to the first and second objective functions, the fourth objective function is
defined as the error of the least squares estimate of Eq.( 39).

OF, = ‘Y ~Ay (ATA,) ALY (40)
On the other hand, the force equilibrium in the lateral direction requires that
- _ ol i

(2 = Zene) Ol *+(Zanr— Zan) O H(Zani™ Z0) Ol = (20~ 201) O (41)
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The average lateral stresses appearing in the above equation are calculable by
substituting the corresponding hyperelastic parameters into the first relationship of
Eq.( 30). Therefore, the fifth objective function is constructed as follows

OFS = % (Zam—l - Zam—r+ ZiI—r - ZiI—I)|:% (/]z%/‘z_?p _/]z%/‘jz—ip) + Kip(/‘;-ip _1j:| +
i=1 z

(o) B A 2 [P (42)

z

(Zil-r — 4, )[% (/]z%/]z_n% _/12—5343 )+/ﬁ (% _1D

z

The sixth objective function is built by requiring that the average lateral stresses of both
interphase layers, which are calculated by integrating the lateral stress distributions
from MD simulations, are as close as possible. Mathematically speaking,

OF, = 3 |(ts, + %, ) - (k. + %1, (43)

And finally, the last objective function is defined as follows

800

OF, :Z

o ~(amm+a)i2 (44)

where g denotes the lateral stress of the amorphous phase calculated by substituting
M., and K, into the first relationship of the system of equations ( 30), and
(ﬁfxm + 5;‘/”‘)/ 2 is the arithmetic mean of the amorphous lateral stresses averaged over

its identified domain. The explanation for this particular selection is provided in
Subsection 3.6.

A multi-objective optimization tool is the most suitable approach for finding the
global minimum of the above problem. In the absence of such a tool, we opted to fusing
all the objective functions into a single nonnegative objective function as follows

OF,, =OF, +OF, +0OF,;+OF ,+OF .+ OF .+ OF, (45)
and the combination of “interior point” and “SQP” algorithms of the constrained
nonlinear minimization tool of MATLAB® software is used for finding the optimal point.
The objective functions, however, are usually accompanied by a set of linear and / or
nonlinear constraints in the form of equalities and / or inequalities. For the problem
considered here, the following logical constraints are applicable:
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Horwivip > 0, K >0.2 GPa

am/illip

33nm<z, | < 38nm- 4nmz, | <- 3.5nm, 4.8nmay, | < 53nm, 550q| <- 5(%6)

Min (Z) = Zadg s MAX(Z ) = Z ol - Min(z,) = 2, . Max(z,)) = z, |,

MaX( Zune) = Zamdgon MiN (Zamd = Z amlne» MAX(Z1 ) = 2 | 400 MiN (21 ) = 24 | oo
The bounds of the amorphous and interlamellar domains at the no loading state are
determined from the density distribution at the no loading state, Figure 19, as well as
the distributions of the lateral stress at the very first loading increment. The bounds of

the extremes of the boundaries come from the diagrams of Subsection 3.6. Minimization
of OF

o and finding the optimal point is equivalent to the hyperelastic characterization

of the domains involved as well as approximating the evolutions of the boundaries in
question.

3.5 Results and discussion

Enforcing the continuity between the arguments of 7, Z,,, Z, and Z,,,, as

introduced in relation ( 31), reduces the number of design parameters, 4;s, from 48 to

40, which is yet rather high and demanding in terms of CPU time for the adopted
combinatory optimization tool. As another drawback, the optimization tool that is
employed here shows a strong dependence on the starting point. To circumvent this
problem, the approximate solution obtained from the Genetic Algorithm optimization
module after several generations can be used as the starting point. To increase the
likelihood of the convergence to the global minimum, several initial points are examined

and final solutions are compared. The set of @; identified by means of the presented

methodology are given below to facilitate the reproduction of the relevant curves and
diagrams:

a;,i1=12,..12for the right interlamellar boundary:

a,=51.8A,a,=58.1A0,=- 44.8Ag,= 119.5A,
a, =55.4A,a,=35.0Aa,= 9.1Ap,= 4.7A,
a,=30.0A,a,,= 227.2Ra,, =- 480.1Aq,,= 437.4A

a;, 1 =13,14,...24for the right amorphous boundary:

a,,=33.0A,a,=376Aa,=-282Ag, = 76.0A,
a,,=31.6A,0,=66.8Aa,,=- 163.0Aq ,,= 215.2A,
a, =19.3A,a,,= 1456 Aa,,=- 311.3Ax,,= 287.3A

a;, 1 =25,26,...,36for the left amorphous boundary:
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a,,=-36.1A,a,,=-385Aa,,= 29.1Aq ,,=- 62.8A,
a,, =—32.8A a,,=-87.0Aa,,= 230.8Ag,=- 278.6A,
a,=-16.2A a,=-177.2Aa, = 350.4Aq =- 288.4/

a;, 1=37,38,..., 4t for the left interlamellar boundary:

a,,=-54.9A,a,,=-59.3A0,,= 445Aa ,,=— 97.9A,
a,=-56.9A a,=-51.8Aa,,= 31.5Aa,,=- 5.3A,
a,=-23.9A,a0,,=-277.6Aa,,= 556.7Aq ,,=— 463.4/

The initial length of the hyperelastic elements are calculable form the intercepts of the
amorphous and interlamellar boundaries. Accordingly, the initial length of the
interlamellar, amorphous and interphase domain identified in this study are 106.7 A,
69.1 A and 18.8 A, respectively.

Having applied the above explained methodology together with the assumed neo-
Hookean behavior, the hyperelastic parameters of the three domains of interest are
identified as follows:

, , (47)
Ky =2.73GPa Kk, = 2.73GPa Kk, = 2.74Gl

p

{,uam:BZ.SMPa {M|:33.4MPa {/Jip=35.5MPe

Given that in the neo-Hookean model, the shear parameter is an index of the rigidity of
the medium, the expectation that £, <, is obviously satisfied because the interphase

layer is known to be stiffer than the central amorphous phase. Furthermore, in the
existing studies where the hyperelasticity of the noncrystalline domain is incorporated
into the large deformation formulation of PE, it is assumed that at room temperature

M, =35MPa[48, 87, 88]. Indeed, Sedighiamiri et al. [87] assert that the best fit to

experimental results is seen when £ =35MPa. Keeping in mind that the stiffness of

amorphous polymers in the rubbery regime weakly increases with temperature, one
would have expected values slightly higher than 35MPa for the interlamellar domain
and much higher for the interphase layers. Rerunning MD simulation for a larger PE
stack might help to fulfill this expectation. Although the bulk modulus is not as
significant as the shear parameter, the identified bulk moduli are also in agreement with
the mean values of 2 GPa and 3 GPa used elsewhere [48, 64, 87, 88]. As discussed in
Subsection 3.6, this last parameter is identified with a lower degree of certainty as
compared to the shear modulus.

To evaluate the success of the characterization algorithm in attaining the defined
goal, that is finding the minimum of the positive objective functions, the boundaries and
stretches of the left and right interphase layers are plotted in Figure 22 and Figure 23,
respectively. Evidently, the evolutions of the four boundaries look qualitatively like
those suggested by the plots of P2 parameter from Figure 12(b) of the underlying MD
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study [89]. Additionally, if their respective intercepts are subtracted, the pair
boundaries of the amorphous and interlamellar domains are almost each other’s mirror,
as one might have anticipated. As another sign of the successful optimization, the

in Figure 23 show excellent agreement. The analytical

diagrams of A, and A,
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Figure 22. Evolution of the amorphous and interlamellar boundaries with longitudinal strain. The
(]:mt under the constraints given in relationship ( 46).

boundaries are identified by minimizing
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Figure 23. The evolution of the right and left interphase stretches as defined in Eq.( 32) . The
analytical curve of /1ip calculated by substituting the identified £/, and K| into the second

relationship of Eq.( 30) agrees well with the two others.
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of A, too, plotted by substituting the identified £, and &, into the second relationship

of Eq.( 30) agrees very well with the two other ones. And finally, the evolutions of the
average lateral stresses integrated over the two interphase layers are plotted in Figure
24. The two diagrams are in good agreement with slight, acceptable differences at
medium and large strains that are probably due to the limited size of the simulation

stack. Moreover, since smooth functional forms have been adopted for probably noisy

_‘p_r

boundaries, naturally a higher level of noise is pushed into the diagrams of &' and &."

. In other words, the disagreement between the two diagrams of Figure 24 may be
further attenuated by allowing the boundaries to behave less smoothly.

sigma_lat_ip_r (MPa)

sigma_lat_ip_| (MPa)

Longitudinal strain (g,)

0.4 0.5

Interphase lateral stress (MPa)

-50

Figure 24. Diagrams of the average lateral stresses of the left and right interphase layers,
O.S(ﬁﬁ'rll +51£,'r/|). Both diagrams are obtained by integrating the distributions of the lateral

stresses over the identified left and right interphase domains.

Having determined the evolution of the amorphous and interlamellar boundaries,

the evolution of their respective 0,, and 0,, can be found by integrating over the

appropriate intervals. The diagrams of 5;[“’”, 53;1/” and their arithmetic mean obtained

—aml/il

by integration, along with 0, curve plotted by substituting the identified (4, and

K,y into the first relationship of Eq.( 30) are superposed in Figure 25 and Figure 26. A

quick comparison suggests that, as one would have expected, the arithmetic mean of the
two lateral stresses is a more reliable identification source for hyperelastic
characterization than the individual lateral stress diagrams. Moreover, the diagrams of

—aml/illip

g

« and Ejym/ip, which are obtained by integrating 0, and 0, distributions, start
unsmoothly at the origin and exhibit an unusual jump to nonzero values immediately
after being stressed. This behavior is not in accordance with one’s anticipation in
addition to disagreeing with the corresponding analytical diagrams. Therefore, one can

conclude that the data associated with the initial parts of the lateral stress distributions
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is not reliable enough for identification. Whether this disagreement is due to the small
size of the simulation stack or has other reasons behind, warrants further simulations.
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Figure 25. Evolution of g2", 53;” and O.5(c7§xm+5;ym) obtained by integration over the domain

confined by the identified amorphous boundaries. The amorphous lateral stress curve calculated
by substituting the identified L/, and K, into the first relationship of Eq.( 30) is superposed.
The noisiness of the lateral stress computed by Eq.( 30) can be traced to the simulation data for
0,, which imparts fluctuations to /]Z_am through Eq.( 33).
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Figure 26. Evolution of aﬂx, 5-3y and 0.5((72X +(7‘>',y) obtained by integration over the domain

confined by the identified interlamellar boundaries. The interlamellar lateral stress curve
calculated by substituting the identified [/ and K into the first relationship of Eq. ( 30) is

superposed.

Moreover, the melting phenomenon that has been observed during MD
simulations at the interface of the crystalline-noncrystalline region is successfully
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captured by the presented continuum mechanics analysis. To elaborate, it is worth
recalling that the plasticity of the crystallites produced by slip as well as the deformation
mode of the entire PE stack is isochoric, while the noncrystalline domain deforms

compressibly, simply because K # oo, Since the entire stack deforms isochorically,

am/illip
the volume change due to the interlamellar domain is compensated either by void
creation or by phase transformation. The former has been clearly observed in a separate
MD simulation carried out under a faster mode of deformation and the latter has taken
place in the deformation mode under survey [89]. Therefore, melting and/or
recrystallization at the crystalline and noncrystalline interface should take place to
accommodate the imposed volume conservation constraints.

The occurrence of such phenomena changes the current length of the
hyperelastic element in addition to the elongation produced by the mechanical loading.
In the adopted constitutive law, however, the elongation due to the mechanical loading
is concerned and there is no need to take into account the change in the size of the
hyperelastic element due to melting. Properly speaking, the logic of the problem and

governing equations necessitates that /12_am,i|,ip appearing in the constitutive law relates

to the same element that is initially marked out as the hyperelastic element without any
mass exchange through their boundaries. Keeping this in mind, if melting occurs during
the loading and part of the crystallites near the interface transforms into the
noncrystalline phase, then the real, new interlamellar boundaries will be due to the
stretching of the interlamellar domain engendered by loading plus the change in size
due to the phase transformation. For characterization purposes and for the governing
equations to remain valid, the change in length due to the phase transformation, if any,
must be excluded from the evolution of the boundaries. For the problem examined in
this study, the dominant phenomenon is melting; therefore there is no need to revise the
initial length of the hyperelastic elements. Additionally, through a clear mathematical
expression of the physics of the problem and defining relevant objective functions along
with logical constraints, the need for reading the current position of the
amorphous/interlamellar boundaries at each loading increment is avoided and these
boundaries are identified along with the hyperelastic coefficients.

Another phenomenon captured by the presented continuum mechanics analysis
is the rotation of the crystalline chains. In the basic MD simulation, the crystalline stems,
which are initially oriented at ~ 30° with respect to the interface normal, start to rotate
with loading to get aligned with the applied stress. This rotation continues up to

&, ~0.21, by which point the chains are fully aligned with the deformation direction.

The fully aligned state continues up to &, ~0.3, at which point the chain segments revert

to their initial tilted state, albeit imperfectly. The stretch diagrams of the three domains
along with the affine stretch line which are superposed in Figure 27 clearly show this
phenomenon. Keeping in mind that in the absence of any phase transformation, the
following relationship holds
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ateach increment/]z :,7il/‘z-il +/7cr Az-cr :”ipAz-ip +/7arrﬂ z-am+/7 c(] z-C ( 48)
where 77, s, indicates the initial volume fraction of the associated phase, one expects

that the stretch of the least rigid phase will be higher than AZ In comparison with the
crystalline phase, the amorphous/interlamellar domain is more compliant, but the

diagrams of Figure 27 suggests that /]Hr, A, and /‘Z_ip have almost the same

contribution up to &, ~ 0.21 Without resorting to the details of the MD observations and

given the higher rigidity of the crystallites, the likeliest mechanism responsible for such
a level of contribution from the crystalline phase is the rotation of the crystalline chains

and their alignment in the direction of the applied stress. For 0.21<¢&,< 0.5, the

contribution of A becomes still lower. The associated part of the stretch diagrams

z-illam/ip
agrees well with the MD observation where melting takes place at the crystalline-
noncrystalline interface within this straining interval. In other words, with the rotation
mechanism being exhausted at &£, ~0.2], the likeliest mechanism that contributes

substantially to the overall stretch of the stack and lowers the contribution of A is

z-illam/ip
the melting of the crystalline phase. One may reason that looser packing and
consequently lower density of the newly added, noncrystalline portion relative to the
previously crystalline phase makes the melting phenomenon equivalent to a local

dilatation which is responsible for lowering the contribution of A After £,~ 0.3,

z-illam/ip *

the slope of the A diagrams becomes steeper indicative of a rise in the

z-illam/ip
contribution of the stretch from the corresponding phases. This part of the diagrams is
consistent with the reversion of the chain stems from the aligned state to the slant state,
due possibly to the interlamellar shear that develops at this stage [93].
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3.6 Sensitivity analysis

In this section, first the authenticity of the arithmetic mean of the two lateral

stresses within the amorphous interval, i.e. @2?20.5(5;m+5y3m), for hyperelastic

characterization is investigated. Then an analysis is conducted to examine the level of
certainty of the identified hyperelastic coefficients.

The density distribution at no loading state and lateral stress distributions at the
very first loading increment can be utilized for locating the centers of the interphase
layers. Two straight lines representing the average density values of the crystallites and
the central amorphous phase are drawn (Figure 19) whose median intersects the
density distribution at -45 A and 43 A. Moreover, the lateral stress distributions at the
very first increment of loading have two picks at -45 A and 43 A (Figure 28A). It can
therefore be concluded that the centers of the left and right interphase layers are located
at -45 A and 43 A. Given that the interphase thickness varies from 10-20 A [39, 42], the
left and right ends of the interlamellar and amorphous domains are bounded to [-55..-
50] A, [48..53] A, [-40..-35] A and [33..38] A, respectively. Therefore, as illustrated in
Figure 28B, the shortest and longest amorphous intervals are confined to [-35..33] A and
[-40..38] A, respectively. Similarly for the interlamellar domain, the shortest and longest
intervals are confined to [-50..48] A and [-55..53] A, respectively. Assuming affine stretch
evolutions for both amorphous and interlamellar regions, i.e. A, =A, =4, . =1+&,,
the evolution of the shortest/longest amorphous/interlamellar interval is obtainable.

The diagrams of 02", " and 2™ = 0.5(5;'“/” + 5;”"") averaged over the shortest and
longest intervals are given in Figure 29 and Figure 30, respectively. In conjunction with
the diagrams of Figure 25 and Figure 26, it is concluded that the diagrams of
g = 0.5(5;”‘/” + 5;”"") are closer to the typical analytical diagrams of the lateral stress
distribution. On the other hand, it is evident that the amorphous lateral stresses show a
weak dependence on the integration interval as compared to the interlamellar lateral
stresses. This is the reason why the seventh objective function, OF,, is defined

accordingly.

To evaluate the certainty of the identified hyperelastic parameters, the analytical
diagrams of the lateral stress distribution for typical values of hyperelastic coefficients
are plotted in Figure 31. In other words, typical shear and bulk moduli are substituted in

the second relationship of the system of equations ( 30) and A, ., is calculated
numerically. Then A, ., M and K, are fed into the first relationship of the system

of equations ( 30) to calculate the associated lateral stress distribution. It can be seen
that when « >0.3GPaor i <5MPa, the lateral stress distribution diagrams show a

weak sensitivity and as such, the identified coefficient has a lower degree of certainty.
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The identified shear moduli for the three hyperelastic domains of interest are greater
than 30 MPa whereas the identified bulk moduli are around 2.7 GPa. Therefore, it can be
asserted that the shear moduli are identified with a high degree of certainty whereas the
identified bulk moduli have a lower degree of certainty.
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Research is what I'm doing when I don't know
what I'm doing. (Wernher Von Braun- 23 March
1912 - 16 June 1977)
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4 Large, viscoplastic deformation of semi-
crystalline polyethylene

4.1 Introduction

PLASTICITY of semicrystalline polyethylene has been extensively investigated both
experimentally [94-100] and theoretically [48, 50, 54, 101-103]. The interest in the
subject has been prompted by the daily increase in the structural applications of
semicrystalline polymers, notably semi-crystalline polyethylene. Large plastic
deformations in semi-crystalline polymers usually lead to the development of high
anisotropy and preferential texturing simply due to their semi-crystalline
microstructure. This new texturing and anisotropy may particularly take place during
their forming processes where large strains are involved. The new anisotropies achieved
in this way are sometimes quite desirable. Semi-crystalline polymers that are processed
into fibers and ribbons with excellent mechanical performance in preferred directions
are examples of desirable anisotropies.

The significance of the concept of semi-crystallinity is better appreciated when
one notices that a purely amorphous polyethylene would be a soft, viscous substance
and on the other side, a purely crystalline polyethylene sample would be extremely
fragile. The polyethylene samples are, virtually, composites of both phases. The
proportion of the constituents, their relative arrangements, and the level of connectivity
between them decide the effective mechanical properties of the polyethylene sample.
The end-use property of the semi-crystalline polyethylene depends on the interplay
between the crystalline and noncrystalline domains. Properly speaking, the mechanical
performance of semi-crystalline polyethylene is a function of the underlying
microstructure. The most important microstructural features include crystallinity, initial
crystallographic texture and molecular orientation. There are numerous experimental
techniques available in the literature on the quantification of the crystallinity in
polyethylene samples [104, 105]. Concerning the orientation of the chain axis of each
inclusion, ¢', and its lamella normal, n', they can be experimentally traced by means of
WAXS pole figures and 2D SAXS, respectively [106]. The molecular orientation of the
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noncrystalline domain, on the other hand, can be found by virtue of WAXS
measurements in conjunction with pole figure technique and separation of the
scattering produced by the crystalline and amorphous components [107].

Experimental studies on the plasticity of semi-crystalline polymers have by and
large explored the topic from the perspective of the morphological changes, the
identification of deformation mechanisms, and the characterization of deformation
resistances. The plastic deformation of semicrystalline polymers is in principle of
crystallographic nature although being very complicated when considered on the scale
of crystallite dimensions and from the viewpoint of interplay between the crystalline-
noncrystalline phases. The mechanisms involved in the plasticity of semicrystalline
polymers have been comprehensively reviewed by Bowden and Young [97], Haudin [98]
and Galeski [108], among many others. Of the existing semicrsytalline polymers, the
data for the high density polyethylene is quite abundant basically owing to its simple
molecular structure and ease of preparing samples with high degree of crystallinity.
Single crystal state of high density polyethylene has been approximated by Bartczak et
al. [99] with bulk samples compressed under plane strain state in a channel die. Large
deformation of high density polyethylene has also been experimentally investigated
under a variety of deformation modes including uniaxial tension and compression [100,
109] as well as simple shear [110, 111]. The distinguishing feature of the plasticity in
semi-crystalline polymers is the inextensibility of chain segments in the crystallites.
Indeed, the folded chain structure of the crystalline phase constrains the arbitrary
plastic deformation of crystallites. This means that there are less than five independent
slip systems to accommodate arbitrary plastic deformation. This understanding needs to
be taken into account when analyzing the plasticity of semi-crystalline polymers
numerically.

In the available numerical studies that have dealt with the simulation of the
plastic deformation and texture evolution in semi-crystalline polyethylene, the principal
differences lie in the localization law and the constitutive laws adopted for each
component. In this study, for the localization law, use is made of the complete version of
modified Taylor approach proposed by Ahzi et al. [51] together with Sachs approach. On
the other hand, the viscoplastic constitutive law adopted for the crystalline phase is no
different from what is chosen for this phase in most of the relevant studies. For the
noncrystalline phase, however, three different statistical mechanics constitutive laws,
viz. 3-chain model, 8-chain model and Gent model, are adopted to model the back stress
and final results in terms of the number of rigid links required for each model are
compared. As an objective, this chapter aims to determine which model requires a more
realistic value for the number of rigid links.

In this reexamination, the stress-strain response and texture evolution of an
aggregate of polyethylene subjected to finite strains is revisited. For simplification
purposes, the elasticity and pressure sensitivity of the phases are neglected and it is
assumed that each phase exhibits a viscoplastic behavior. As another simplifying
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assumption, the interphase layer and central amorphous domain are treated as a single
unified domain. This assumption reduces the complexity level of developing the
associated code without any appreciable compromise in the accuracy of the results.
However, in case the hyperelastic properties of each of these domains are provided
separately, the homogenized hyperelastic properties of the entire noncrystalline domain
can be identified using the ideas of Chapter III, and then plugged into the governing
equations.

4.2 Constitutive laws

The constitutive laws adopted for the crystalline and noncrystalline phases are
identical with those presented in [51]. The linear elasticity and pressure sensitivity of
the components is neglected and their finite deformation is assumed to be strain rate-
dependent.

4.2.1 Viscoplasticity of the crystalline phase

The plastic mechanisms of deformation in polyethylene crystallites are
crystallographic slip, twinning and stress-induced martensitic transformations. Of these
mechanisms, the deformation due to slip is dominant, which is considered to be the only
driving mechanism in this work. For the large deformation of crystalline phase in HDPE,
the viscoplastic power law relationship correlates the microscopic strain rate and the
resolved shear stress. Following the previous similar studies [51, 54, 112-114], the
following rate-dependent constitutive law is adopted for the crystallites

n°-1
. LT |r
ya:yo_a

g

T

- (49)
g

where ) is a reference strain rate, 7° (s g”) is the resolved shear stress on system @,

n° is a non-linear rate exponent and g“ is the shear resistance of slip system a, which

is given in Table 4 in front of each slip system. As discussed in chapter I, the dominant
crystalline structure of high density polyethylene is orthorhombic with the lattice
parameters a=7.4 A, b=4.93 A and c=2.54 A, where c is the crystallographic axis
coinciding the chain direction. Experimental results indicate that there exist four
linearly independent slip systems in the orthorhombic crystal structure of HDPE,
summarized in Table 4. The slip system strength, on the other hand, may evolve with
deformation as follows

g° = > |y (50)
B=1
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where h are the components of the matrix of hardening moduli. Since the thin
crystalline lamellae cannot retain dislocations, the strain hardening is neglected.

Additionally, the shear resistances, g°, are assumed to remain constant with the

ongoing deformation.

Table 4. Slip systems of the crystallite in high density polyethylene along with their respective slip
resistances adopted from [48, 50, 55].

Type of slip Slip system Normalized shear
strength

100)[ 001] 1.0
010)[ 001 25

(

{(110} [ 001 2:5
(100)[ 010 1.66
(
{

Chain slip

2.5
010)( 100
)[100 .

Transverse slip

110(119

4.2.2 Viscoplasticity of the noncrystalline phase

Similar to the crystalline phase, a power law relationship is assumed between the
local shear rate and its corresponding shear stress. This power law is an approximation
of the exponential law proposed by Argon [115] for the glassy state of amorphous
polymers. The simple viscoplastic power law relationship correlating the plastic shear
rate, V' , and the effective shear stress of the rubbery noncrystalline phase, ", in semi-
crystalline polyethylene reads

_ 7 '
V' = (—j (51)
& 1o

In the above relationship, n" and J;, denotes the rate exponent and the reference strain

rate,respectively, which are set equal to their counterparts in the crystalline phase, for
simplicity and without loss of any generality. As such, the symbol n is chosen to

represent the rate exponent of both phases, that is n' =n° =n. If7, is set to represent

the shear resistance of the easiest slip system in the crystalline phase, the dimensionless
coefficient @, can be adjusted such that the product g7, equals the reference shear

strength of the amorphous domain.
Application of the mechanical loading to the molecular chains in the
noncrystalline region make them start getting aligned in the direction of the maximum

stretch leading to anisotropy in the resistance of the noncrystalline domain to plastic
deformation. To take this effect into account when deriving the tensorial constitutive
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law, a back stress tensor,H", is introduced into the flow rule, following Boyce et al.
[116]. This term is responsible for including the changes that the alignment of the
molecular chains brings about in the plastic resistance of the interlamellar zone [51].
Letting D' and S' denote the strain rate tensor and deviatoric Cauchy stress tensor of
the noncrystalline domain, respectively, the driving stress created in the noncrystalline
domain is defined as S' — H' . Therefore, the resolved shear stress, 7", is defined as the
norm of the driving stress:

r”:\/l( -H (8 -H,) (52)

2

Substitution into Eq.( 51), the tensorial form of the associated constitutive law reads as
follows:

S-H[d-H["

ar, | ar, |

Dil :;'/0

(53)

The form of the back stress model, H" , is defined according to the chain network model
adopted for the interlamellar domain.

4.2.3 Back stress models

In modeling rubber elastic materials, there exist two perspectives: statistical
mechanics (or micromechanically motivated) treatment and invariant-based or stretch-
based continuum mechanics treatment. The phenomenological (or continuum-based)
models which are based on the invariants of the left Cauchy-Green deformation tensor,
lack a direct physical linkage to the underlying mechanisms of deformation. Of such
models, one can mention Mooney, Rivlin, Valanis and Landel, Yeoh, and so forth [66,
117]. The most sophisticated one belongs to Ogden [118] who proposes the following
strain energy density function

W = Z (/1“ + A9+ A5 -3) (54)

where G, and @, are fitting parameters and may take on any value including non-

integers. The sum in Eq.( 54) is expanded as needed to achieve a reasonable fit to the
data. According to Twizell and Ogden [119], stability of Eq.( 54) requires G,&, >0.
Additionally, Arruda and Boyce [120] argue that the Ogden model is an empirical

relationship that requires more than one experiment to obtain the number of
coefficients required for capturing the state of deformation dependence.
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Although the phenomenological models have merits and are frequently used in
investigating rubber deformation problems, many of them fail in successful description
of the rubber response under deformation modes other than uniaxial tension, without
changing the model parameters. In other cases, the models are either mathematically
complicated or the number of required parameters is unreasonably high. Therefore,
models of molecular chain network sound to be a better alternative. In the Gaussian
statistics approach, as the first statistical mechanics attempt developed for describing
the force-deformation relationship in a polymeric network, it is assumed that the chains
never near their fully stretched length, IN, where N is the number of statistical rigid
links of equal length | in the chain between chemical crosslinks [66]. The “rigid link” is
considered to be that segment of the real chain that undergoes rigid body motion when
the rubber material is deformed. The rigid link may consist of one or more monomers,
depending on the rubber material under study. The strain energy density function
proposed by the Gaussian statistics approach is of the following form

w:%c,(/\f+/1§+/132—3), C,=qkT (55)

where A's are the applied stretches and the rubbery modulus G is a function of the

chain density, (, Boltzmann’s constant, k, and absolute temperature, T. The stress-

stretch relationship is obtained by differentiating the strain energy with respect to the
stretch. In an incompressible rubber, the principal stresses can be obtained from the
work of deformation as follows

dw

g =A——- 56
AW P (56)

where A are principal stretches and the pressure term may be determined from the

boundary conditions. The energy function ( 55) is derived with the assumption that the
current length of the chain, I', remains well below the fully stretched length of the chain,
NI. At large deformations, i.e. r / Nl > 0.4, the depart from the Gaussian model becomes
more evident and the non-Gaussian nature of the chain stretch prevails [121].

The subsequent modified versions of chain statistics were an effort to allow for
larger stretches than are afforded by the Gaussian statistics. A good review of these
models are provided in [66]. The parameters that all these models have in common are

the rubbery modulus, G, and the chain locking stretch, A . The chain locking stretch is
the chain stretch at which its full extensibility limit is reached. From the statistical

discussions, the initial chain length is found from random walk statistics as \/Nl where
in conjunction with the fully extended length, NI, yields

AL:—Z N (57)
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The mathematical models of molecular chain network in polymers are based on
Langevin chain statistics. Kuhn and Griin [122] used this theory and derived the
following formulation for the work of deformation due to the stretching of unstretched

W = kTNq lehain $—1|:rchain:|+|n z—l[ﬂn} -In Sinhz—l[mﬂ i (58)
NI NI NI NI

where g is the chain density, C is a combination of constants, and ¥ denotes the

chains:

inverse Langenvin function. For further details on the inverse Langevin function, cf.
Appendix I.

Wang and Guth made use of the Langevin statistics to present their three-chain
model [123]. In this model, the representative cubic unit cell is made of three chains, as
is schematically illustrated in Figure 32. This model assumes that the faces of the cube
element are aligned with the principal stretch space during deformation. The stress-
stretch relationship in the three-chain model is given by

1 A
0, =-CAAL™ 2 |- 59
I 3 r L {/]} p ( )

L

Although this model captures a small state of deformation dependence of the behavior at
small stretches, it yields nearly identical predictions for all deformation modes at large
stretches [121]. The results of this model are controlled by the contribution of chains
that lie along the maximum principal stretches. Therefore it cannot be a good
representative of the network response because it samples only the chains that lie along
the principal stretch directions. The failure of this model to capture the state of
deformation dependence lies in the absence of a cooperative nature of network chain
deformation apart from the imposition of incompressibility conditions. This drawback
was the major motivation for the introduction of the eight-chain model where the chains
deform more cooperatively.

(a) (b) (c)

Figure 32. A cubic unit cell of three-chain model in the (a) undeformed, (b) uniaxial tension, and
(c) biaxial tension configuration.
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In the eight-chain model proposed by Arruda and Boyce [120], it is assumed that
the molecular network of any amorphous polymer can be represented by a model of
eight chains, as illustrated in Figure 33. These eight molecular chains are attached to
each corner of a cube at one end and join up at the center of the cube at the other end.
This model requires an initial modulus and a “limiting chain extensibility” as the only
parameters for describing the network. These two parameters are linked to the physics
of molecular chains that contribute to the deformation.

(a) (b) ©) B
AL
(==
%
D

©g

Figure 33. A cubic unit cell of eight-chain model in the (a) undeformed, (b) uniaxial tension, and (c)
biaxial tension configuration.

Due to the symmetry of the chain structure, the interior junction point remains in
the center of the cube throughout the deformation and the stretch of each chain
becomes the root mean square of the principal stretches

2 2 2
/]chain = L = M ( 60)
o \ 3

The strain energy function of this model is given by

W=CN (f}“ﬁ” X{i‘;ﬁ”} +In (X{%"D ~In (sinh%{%@} (61)

where in conjunction with relationship ( 57) results in the following relation for

principal Cauchy stresses

2
0.i8ch :}Cr \/N/L g—l( Achainj -p ( 62)
372 IN

Later on, Gent proposed the following empirical and less sophisticated relation for
W [124]:

chain

W:—%In(l—j—lJ (63)
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Here, J_ denotes the maximum value of J, =A?+A2+A2-3, at which the extension

capacity of the rubber is exhausted. The associated Cauchy stress formulation is
rendered into the following simpler form after substitution into relation ( 56)
‘Jm

oM =C —"—A%- 64
! 3 -3 p (64)

m

As compared to its predecessors, Gent model is known to be more successful. The
results of the three models are compared in Subsection 4.6.

4.3 Composite inclusion

Following the leading work by Ahzi and co-workers [51, 70] and many others later,
the composite inclusion model is used for modeling the crystalline and noncrystalline
phase as a single inclusion. For modeling purposes, the crystalline and noncrystalline
phases are thought as plate-like components perfectly bonded to one another. In the
undeformed state, the crystalline-noncrystalline composite inclusions in HDPE are
arranged, as described in Chapter I, in a spherulitic morphology. This initial
configuration of polyethylene composite inclusions can be well approximated by the
random distribution of composite inclusions in an aggregate of HDPE. This underlying
assumption defines the basis of the initial texture considered in the subsequent
simulations for investigating the finite deformation and texture evolution of HDPE
aggregates under different modes of deformation.

The generalized form of the composite inclusion idea, i.e. the Extended Composite
Inclusion Model, is described in Appendix E, where the effective stiffness of a three-layer
inclusion is derived as a function of the stiffness and volume fraction of its constituents.
As explained therein, in composite inclusion model, the compatibility and equilibrium at
the interface ought to be fulfilled. Enforcement of compatibility requires the continuity
of velocity across the crystalline-amorphous interface. This continuity condition means

that if X, denotes an arbitrary vector lying in the interface plane such that n'sx, =0, the

interface compatibility condition can be expressed as
(LS -L")x, =0 ( 65)

Let € denote the orthonormal basis fixed to inclusion I, with €, being co-directional

with the normal to the interface of the two phases, n'. In this basis, the compatibility

conditions in conjunction with the incompressibility conditions for both phases,
necessitates that the following continuity equalities for the strain rate and spin
components hold
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Das =D = D(izlfﬂ (66)
Dl — DCI‘ — Dil 67

33— M3z — Va3 (67)
W, =W =W, (68)

In Eq.( 66) the indices a,=1,2. On the other hand, for the tensors of strain rate and

spin, the average theorem requires that
D' =p,D' +(1_,7il )Dcr (69)
W' =,W" +(1-7 )W® (70)

where in conjunction with relation ( 65) lead to the following relationships for the
remaining components of strain rate and spin tensors that do not appear in Egs.( 66)-
(68)

Déa =1 Diiila +(1_’7i| ) D3C¢; (71)
\Nair :Wsla _’7i|(Dscar_Dga) (72)
W, =W, +(1-77,)(DS; - D4, ) (73)

The force equilibrium at the interface necessitates the following equalities between

the two corresponding components of deviatoric stresses in the ej' basis
S =S5= S (74)

The other components of the deviatoric stresses are correlated through the average
theorem relation

S=nS+(1-n)8 (75)

It is worth noting that for the normal component of the interface traction, it can be
equilibrated by assuming that any jump in the normal component of the deviatoric
stress is balanced by a corresponding jump in the pressure, that is

Sj‘als_ p' = SL— P (76)

where piI and p are the pressure available in the amorphous layer and crystalline

lamella, respectively. Fortunately, the above pressure components do not appear in the
solution algorithm because of the pressure insensitivity of the constitutive laws adopted
for the phases involved.
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4.4 Localization/interaction law

In any inhomogeneous aggregate, the local stress and strain of each inclusion is
correlated to the global stress and strain of the aggregate through establishing a
localization (or interaction) relationship. Proposing such a relationship has been the
subject of numerous studies in crystal plasticity and mechanics of heterogeneous
materials. Since finding the exact solution with all conditions of local compatibility and
equilibrium for all grains being satisfied is impossible, approximate approaches have
been proposed. The simplest and most well-known ones are Sachs model [125] and
Taylor model [126]. In Sachs model, the local and global equilibrium are satisfied simply
by assuming uniform stress everywhere. Global compatibility is enforced as a global
volume average while local compatibility may be violated. Sachs approach in plasticity of
inhomogeneous materials is the analogue of Reuss approach in elasticity of
inhomogeneous composites.

The analogue of Voigt scheme in large deformation plasticity is Taylor approach
which assumes that the plastic strain is identical everywhere in the polycrystal and
equal to the macroscopic strain [126]. According to the assumptions of this approach,
the conditions of local and global compatibility are fulfilled whereas the equilibrium at
the grain boundaries is not generally satisfied. Molinari et al. [127] argue that in
predicting the texture evolution, Taylor approach has often proved successful for metals
with FCC and BCC Bravais lattices. This success is attributed to the close deformation
resistances of the available slip systems [54]. Modified versions of Taylor approach have
been proposed in the context of crystalline slip to investigate different slip resistances in
different slip systems and to assess the strain rate sensitivity of slip systems [112, 128],
or to include the effects of elastic deformations as well as the hardening in the slip [114].
As the principal disadvantage, such models fail to capture the effects of grain geometry
and orientation.

Due to its relatively better success in predicting the texture evolution in semi-
crystalline polyethylene, a modified version of Taylor approach is employed here as the
localization law. Introduced first by Ahzi et al. [51], their modified Taylor approach
addresses the case when ¢/, the angle between crystalline chain segments and normal to

the crystalline-noncrystalline interface, falls below a threshold value, ¢,. In other
words, in normally prepared polyethylene samples, {/ takes values around 30°. This

configuration is supported by the molecular simulation study by Gautam et al. [58]
which provides a thermodynamic explanation for the frequent observation that the

crystalline-noncrystalline interface is parallel to{ZOf} plane. However, during the

deformation and as the texture evolves, the angle ¢ in some grains might approach 0°.

Since the deformation of the crystallites in the chain direction remains inextensible,
original Taylor approach yields unrealistic predictions for grains in which ¢ is close to
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zero. To address such grains, Ahzi et al. [51] proposed a modification to relax the strain
rate component imposed in n' direction while conserving the global compatibility
conditions. However, it is mathematically demonstrated that this modification is not
complete and further modifications are required to include the case when ¢ approaches

the right angle.

4.4.1 Mathematical formulation of Modified Taylor

To formulate the modified Taylor approach of this work, let L denote the global

macroscopic velocity gradient of the aggregate. The traceless, second-order tensor L
can be uniquely and additively decomposed into two symmetric and skew-symmetric
tensors as follows

E:%(E+|__T)+%t{”)@_w_ (77)

where symmetric D is the macroscopic deformation rate tensor and the skew-
symmetric W denotes the macroscopic spin tensor. The assumption of Taylor approach
requires that the deformation rate tensor for all inclusions are identical and equal to the

macroscopic one, D. But we know that depending on the relative orientation of the

chain segments in each crystalline lamella and its associated normal vector to the
crystalline-noncrystalline interface, the imposed D might be impossible. Therefore, one
needs to modify the portion of D that is allotted to such inclusions, hence the
designation “Modified Taylor approach”. Let us denote this share of D for inclusion “i”
by f)i' which is the closest projection of the initial D such that the violation of the

“u:=n

kinematic constraints of inclusion “i” is avoided. To further clarify, let us assume,
without loss of generality, that the convected coordinates system of inclusion “i”, which
is attached to the interface of this inclusion and indicates its orientation, is obtainable by
simply rotating the abc-axes of the crystallite in the counterclockwise direction about b-

axis by angle . . In this way, the c-axis of the crystallite, which indicates the direction of

the chain stems, take the following representation in the convected coordinates system:
. T
c=[sing, 0 cow] (78)

As explained by Parks and Ahzi [54], the inextensibility of the chain stems in the
crystallites is equivalent to

D7.C=0 (79)

where D{" denotes the rate deformation tensor of the crystallite in inclusion “i” and C

is a second-order tensor defi