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Abstract 

Interphase layer in semi-crystalline polyethylene has been the least known constituent of this 
widely used polymer, in terms of the mechanical properties. Because of the metastable nature and 
nanometric size of the interphase and its intimate mechanical coupling to the neighboring crystal and 
amorphous domains, detailed characterization of its mechanical properties have eluded any 
experimental evaluation. Mechanical characterization of the interphase layer in polyethylene is the 
focus of two major technical chapters of this dissertation. The characterization scenarios are deployed 
through applying the micromechanics and continuum mechanics relationships to the relevant atomistic 
simulation data. The third technical chapter deals with the large, viscoplastic deformation simulation 
of an aggregate of polyethylene using a multiscale, homogenization analysis.  

Elastic characterization of the interphase layer is implemented by applying the relationships of 
two distinct micromechanical homogenization techniques to the Monte Carlo molecular simulation 
data available for the interlamellar domain. The micromechanical approaches consist of “Extended 
Composite Inclusion Model” and “Double-Inclusion Method”. The atomistic data, on the other hand, 
includes the variation of the interlamellar stiffness as well as the amorphous and interphase 
thicknesses with temperature for 350-450 K. To implement this characterization, the temperature 
dependence of the amorphous stiffness is also required, which is established using the relevant 
findings from the literature. The interphase stiffness is successfully dissociated form that of the 
interlamellar domain using the abovementioned micromechanical techniques, whose results match 
perfectly. Interestingly and contrary to conventional materials, the interphase stiffness lacks the 
common feature of positive definiteness, which indicates its mechanical instability. An ad hoc 
sensitivity analysis is worked out to assess the impact of the existing uncertainties on the dissociated 
results. Moreover, the effective Young’s modulus of the interphase is evaluated using its dissociated 
stiffness, which compares well with the effective interlamellar Young’s modulus for highly crystalline 
polyethylene, reported in an experimental study. This satisfactory agreement along with the identical 
results produced by the two micromechanical approaches confirms the new information about the 
interphase elastic properties and endorses the proposed dissociation methodology to be applied to 
similar problems. 

Hyperelastic characterization of the interlamellar domain and the interphase layer in 
polyethylene is undertaken in the next chapter. When polyethylene undergoes large deformations, its 
interphase layer together with the amorphous phase behaves hyperelastically. The proposed hybrid 
algorithm consists in applying the constitutive relations of an isotropic, compressible, hyperelastic 
continuum to the molecular dynamics simulation results of a polyethylene stack. Assuming a neo-
Hookean model, the governing equations are derived, using which the hyperelastic parameters for the 
central amorphous phase, the interphase layer, and the interlamellar domain are identified with the 
help of the optimization notion and a set of nonnegative objective functions. The identified 
hyperelastic parameters for the interlamellar domain are in good agreement with the ones that have 
been estimated experimentally and are frequently used in the literature for the noncrystalline phase. 
The specifically developed uncertainty analysis indicates that the shear moduli are identified with a 
higher degree of certainty, in contrast to the bulk moduli. It is also revealed that the presented 
continuum mechanics analysis is able to capture the melting, recrystallization and rotation of 
crystalline chains that take place during the deformation. The by-product of this identification analysis 
is the estimation of the evolution of the interphase boundaries that might not be estimated otherwise.  

The last chapter is devoted to reexamining the large, viscoplastic deformation of an aggregate 
of polyethylene. The novelties of this re-examination lie in the model adopted for the back stress of the 
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noncrystalline phase, in correcting the projection tensor proposed for the modified Taylor approach, 
and also in enforcing the inequality constraints that used to be neglected in the previous studies. 
Properly speaking, in this re-examination, the Gent model is used for the back stress of the 
noncrystalline domain in lieu of the 3-chain model or 8-chain model that has previously been used. 
Additionally, a projection tensor is proposed for the modified Taylor approach which is more 
complete that the one available in the literature. Furthermore, in the newly developed computer code, 
the constraint that the resolved shear stresses in each slip system must not exceed the corresponding 
critical shear resistance is respected. And above all, the outstanding feature of this chapter is the 
proposed “optimization-based” methodology which is realized through defining a set of non-negative 
objective functions and finding their minima in the presence of a set of associated constraints.  
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1 2 3, ,λ λ λ  Principal stretches of the deformation gradient tensor 

Lλ  Locking stretch  

chainλ  Root mean square of the principal stretches in a molecular chain 
network model for amorphous polymers 

iΛ   Matrix of coefficients of phase “i” in least squares method 

µ   Shearing modulus of the hyperelastic constitutive law 

υ   Poisson’s ratio 

ξ   crystallinity 

ρ  Density 

σ  Cauchy stress tensor 

am/il/ip
latσ  

Mean lateral stress of the amorphous/interlamellar/interphase 
region averaged over the respective lateral dimension 

ατ  The resolved shear stress on slip system α   

0τ  Shear resistance of the easiest slip system 

ψ  Angle between n  and c  
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0ψ  Threshold value for ψ    

ω  Coefficient of exponential argument of IP  
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General Introduction 
 

POLYETHYLENE is the most applied polyolefin with a globally annual production of 
more than 80 million metric tons [1]. Polyethylene belongs to the family of polyolefins, 
which constitute the most widely used commodity polymers in the world with a 
worldwide production in excess of 120 million tons per year [2]. As compared to, say 
polypropylene, which is the next important member of the family of polyolefins, the 
volume of production of polyethylene is about twice larger. In everyday life, plastic is the 
most commonly used term for polyethylene. Shopping bags, shampoo bottles, children 
toys and different parts of irrigation systems are well known examples, whereas bullet 
proof vests [3], total knee replacement [4] and total hip arthroplasty [5] are less known 
examples of polyethylene applications. Such ubiquitousness is primarily due to its 
favorable resistance to physical loads as well as the inertness to most chemicals, which 
is offered at an economic price.  

It was the outbreak of World War II that unveiled the significance of polyethylene. 
Owing to the huge material demand created in the wake of the war, much of the supply 
of polyethylene has been engineered for applications in radar technology, due to its 
excellent dielectric properties, and in the second place, in submarine communication 
cables [6]. In the aftermath of the war, much of the output of polyethylene in Britain was 
mostly directed to injection molded household items, while on the other side of the 
ocean it opened its way through packaging industry and film market [6]. Interesting 
properties of polyethylene led to the production of new grades and consequently new 
range of applications including Tetra Pak® containers for liquid foodstuff, impermeable 
sheets in agriculture and construction, thin-walled bottles, water piping, corrosion 
resistive tanks, and so forth, thanks to its numerous salient advantages. Nevertheless, 
low tensile strength, high flexibility, low softening temperature, tendency to creep, and 
environmental stress cracking are some of the basic drawbacks of polyethylene that 
have hindered its wider applications.  

Potential applications of various grades of polyethylene, though, depend on the 
underlying microstructure. Polyethylene of any grade is partly crystalline and partly 
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amorphous, hence the epithet “semi-crystalline”. Furthermore, since 1950s there have 
been arguments that there exists in this biphase, polymer composite, so to speak, a third 
phase with intermediate properties that separates the fully amorphous phase from the 
crystalline one. This third phase, called “interphase layer” here and later on, has been 
known to be stiffer than the central amorphous phase but had eluded any 
characterization attempt. In other words, the mechanical properties of the crystalline 
and central amorphous phase have been identified by means of a variety of techniques 
during recent decades but the mechanical properties of the interphase layer had 
remained unknown due chiefly to its nanometric thickness as well as its intimate 
anchorage to the adjacent phases. Neither the state-of-the-art experimental techniques 
nor the atomistic simulation approaches, which are known as virtual laboratories, have 
been able to provide us with numerical values of the mechanical properties of the 
interphase layer. This task has been undertaken for the first time in this thesis where the 
elastic and hyperelastic properties of the interphase layer are successfully identified by 
employing the relationships from the micromechanics of heterogeneous materials and 
continuum mechanics in conjunction with the atomistic simulation data. The 
significance of this characterization is better appreciated when one wishes to estimate 
the effective properties of any grade of polyethylene, as a heterogeneous solid, which is 
a direct function of the constitutive properties of its constituents as well as their volume 
fraction.  

The focus of the present dissertation is the mechanical characterization of the 
interphase layer in polyethylene together with the predication of the effective response 
of an aggregate of polyethylene subjected to large deformations, from a multiscale 
homogenization point of view. To this end, the microstructure of polyethylene, or 
strictly speaking, high density polyethylene is surveyed in the first chapter. A quick 
introduction to the chemistry of polyethylene and to the various production processes is 
also given, for completeness purposes, followed by a presentation of the most well-
known grades of polyethylene along with some of their features. After a brief discussion 
about the crystalline lamella of polyethylene, the non-crystalline phase and in particular 
the interphase layer is elaborated in details. A general review of the relevant literature is 
also provided in this chapter. 

In the second chapter, a combinatory methodology is presented for the elastic 
characterization of the interphase layer. The methodology consists in applying two 
micromechanical homogenization techniques to Monte Carlo molecular simulation 
results available for the noncrystalline domain of polyethylene. The molecular 
simulation results include the variation of the tensorial components of the interlamellar 
domain together with the variation of the interphase thickness with temperature for the 
temperature range 350-450 K. The two homogenization techniques employed here 
provide analytical relationships in tensorial form. For the implemented dissociation 
analysis, the stiffness tensor of the amorphous phase is also required which is 
established based on the findings of different experimental and theoretical studies. The 
presented analysis leads to the useful by-results that are as valuable as the main findings 
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of this chapter. Finally, the dissociated results are indirectly verified using a different 
homogenization technique and by comparison with the experimental data from the 
literature.  

In the third chapter, the hyperelastic characterization analysis of the interphase, 
amorphous and interlamellar domains in semi-crystalline polyethylene is presented in 
detail. The deployed methodology is again a hybrid one: the governing constitutive 
equations of an isotropic, homogeneous, compressible, hyperelastic continuum are 
applied to molecular dynamics simulation data of a polyethylene stack. The identified 
hyperelastic parameters compare very well with the corresponding values determined 
experimentally for the interlamellar domain, indicating successful implementation of the 
proposed identification scenario. It is revealed that the presented continuum analysis 
can successfully capture the physical phenomena such as melting/re-crystallization that 
take place at the crystalline/noncrystalline interface, or the reorientation of the chain 
stems in the crystallites that are observed during the molecular simulation. Similar to 
the preceding chapter, the hyperelastic characterization analysis is accompanied by 
interesting by-results, including the evolution of the amorphous and interlamellar 
domains, which are equally valuable.   

As a complementary part, the fourth chapter is dedicated to the analytical and 
numerical re-examination of the large deformation simulation of an aggregate of 
polyethylene. One of the objectives of this chapter is to compare different back stress 
models available in the literature that have been proposed for capturing the effect of 
molecular alignment of polymer chains in the noncrystalline domain under large 
deformations. As another objective, a complete, modified Taylor homogenization 
approach, which is specifically adapted for the large deformation simulation of 
polyethylene crystallites, is established based on the physical constraint of the 
inextensibility of the chain stems in the crystallites. This new approach together with the 
Sachs approach is used for the prediction of diagrams of equivalent stress vs. equivalent 
strain as well as the pole figures of polyethylene samples under different modes of 
deformation. This chapter contains some preliminary results and further results will be 
published subsequently.  

Finally, chapter five recapitulates the novelties of this study, the contributions made, 
and also the conclusions drawn. Several practical suggestions are put forward as well for 
the follow-up work. Appended to the end of this dissertation are nine useful appendices 
that contain materials relevant to the discussions of the manuscript whose direct 
inclusions in the main body could obscure its readability. The most interesting 
appendices are Appendix A, which covers the mathematical details of calculating the 
orientational (volume) average of a fourth-order tensor, and Appendix E where an 
innovative algorithm for calculating the inverse of any fourth-order tensor that 
possesses minor symmetry is elaborated.  
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1 Semi-crystalline polyethylene  
 

 

 Chemistry of semi-crystalline polyethylene  1.1

SEMI-CRYSTALLINE POLYETHYLENE is chemically known as the simplest organic linear 
macromolecule, which is produced from ethylene (CH2=CH2), a colorless, flammable gas, 
with the IUPAC name “ethene”. Upon polymerization, the double bonds between carbon-
carbon atoms are broken and (―CH2―)n polymer chains are formed. Therefore, in 

polyethylene, the base monomer is methylene, 
H

H

|

|
C− − , hence the IUPAC designation 

“poly(methylene)” for the commercially named polyethylene. In a molecular chain the 
non-extreme carbon atoms are covalently bonded to each other with a pair of hydrogen 
atoms linked to each carbon. Chain ends, however, are terminated by methyl groups.  

Different configurations of molecular chains in polyethylene give rise to different 
grades of polyethylene. Of various types of polyethylene, the principal varieties are high 
density polyethylene (HDPE), low density polyethylene (LDPE) and ultra-high molecular 
weight polyethylene (UHMWPE). Should some of the hydrogen atoms in the generic 
molecular chain of polyethylene be replaced with polyethylene chains, the resulting 
polyethylene is called branched polyethylene or low density polyethylene. The 
molecular weight in LDPE is around 25000. In case there are no branches on the 
backbone chain, the resulting polyethylene will be linear polyethylene or high density 
polyethylene. Low level of branching in HDPE is achievable by an appropriate choice of 
catalyst. The molecular weight in HDPEs ranges from 2-5×105. When the molecular 
weight varies from 2×106 to 6×106, a new grade of polyethylene known as ultra-high 
molecular weight polyethylene is obtained. The very long chains in UHMWPE are 
responsible for its comparatively more efficient load bearing and more favorable 
mechanical properties. 
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  Production processes of semicrystalline polyethylene   1.2

Although there were sporadic reports of the production of polymerized ethylene [7-
9], its commercial importance was not appreciated until 1935 when Perrin developed a 
reproducible process for the polymerization of ethylene whose patent was taken out by 
the British company of Imperial Chemical Industries [10]. This type of polyethylene was 
what we know today as low density polyethylene. The significance of high density 
polyethylene, on the other hand, was highlighted by the work of Ziegler and his research 
team who worked on a class of catalysts for producing unbranched polyethylene [11]. 
Phillips technique, developed by Phillips Petroleum researchers who were 
contemporary with Ziegler team, is another well-known process for producing high 
density polyethylene that was commercialized in 1961 [12]. This last process required 
higher pressure and temperature and the resulting product had a slightly higher density. 
In the late 50’s, Standard Oil company developed its own process for producing high 
density polyethylene but, contrary to two other processes, has not been widely 
acknowledged by the market [6].   

The primary step of nearly all polyethylene production lines consists of converting 
ethane to ethylene. Ethane is separated from natural gas after its exploitation and in a 
thermal cracking unit is converted to ethylene under heat and in the presence of 
catalyst. Of the numerous polymerization techniques, in one of the most commonly used 
ones, the ethylene gas is pumped under pressure and heat into a fluidized reactor bed 
containing metallic catalyst particles. Due to the high stability of ethylene, its 
polymerization is driven in the presence of appropriate catalysts. The polyethylene 
granules deposit at the bottom of the reactor and ethylene gas is recycled from the top of 
the reactor. Granulated polyethylene obtained in the form of granular powder is then 
ready to be sold as is or melted and extruded as required. It is worth mentioning that 
polyethylene is classified as a thermoplastic polymer, meaning that it can be melted and 
reshaped a lot of times.   

 

 Microstructure of high density polyethylene   1.3

High density polyethylene fills the first rank among other types of polyethylene by 
the volume of production per year. Its nearly linear molecular structure contains a low 
level of defects which allows for the organization of chains in a regular order. Indeed, 
like most other solid, linear macromolecules, polyethylene is neither amorphous nor 
fully crystalline, but semi-crystalline; it exhibits a glass transition as well as a melting 
point. Upon solidification/cooling from melt, a high fraction of linear chains start getting 
packed into regular structures at countless points to form base-centered orthorhombic 
crystals [13]. Two schematic illustrations of Figure 1 show the crystalline order 
observed in semi-crystalline polyethylene from two different angles.  



Chapter I- Semi-crystalline polyethylene 

7 
 

 
Figure 1. Two schematics of relative positioning of polyethylene molecular chains in crystalline 

lamellae. Carbon and hydrogen atoms are represented by large dark and small bright bullets [14]. 

The fine crystalline parts of polyethylene, as illustrated in Figure 2, look like lamellar 
branches that have grown radially at many nuclei on which secondary lamellar branches 
(twigs) have developed. On the other hand, the noncrystalline/interlamellar part of 
polyethylene fills the spaces between the crystalline lamellae. Each group of crystalline 
lamellae that appear as radially nucleated branches from a nucleus plus the 
noncrystalline parts housed in-between forms a microstructural superstructure called 
spherulite (Figure 3A). In fact, as the polyethylene is cooled down, the spherulites start 
to appear and grow (Figure 3B) and when they reach each other, they form more or less 
flat boundaries. The concept of spherulite in semi-crystalline polymers is the analogue of 
grains in polycrystalline materials. The sphrulitic microstructure of polyethylene is well 
evident from the micrograph of Figure 3B. Therefore, should polyethylene be viewed as 
a heterogeneous solid, its major constituents are crystalline lamellae and 
noncrystalline/interlamellar region.   

 
 

A B 
Figure 2. A) An electron micrograph of a chlorosulphonated section of a medium-density 

polyethylene with an insert cut through a computer-built spherulite [15], B) Schematic model of 

secondary crystalline branches (twigs) grown on a mother crystalline branch [16]. 
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A B 

Figure 3. A) Simulated fully grown spherulite [16], B) Spherulites, as they start to appear and grow 

in polyethylene [17].   

 

1.3.1 Crystalline lamellae in semicrystalline polyethylene  

Crystallinity of semicrystalline polyethylene depends mainly on the level of 
branching in molecules and cooling conditions. In general, chains with lesser degree of 
defects are potentially more appropriate for higher degree of crystallinity. Additionally, 
if cooling from melt is slow then the chains have enough time for recrystallization while 
in rapid quenching, the time required for most chains to arrange in crystalline order is 
taken away. The degree of crystallinity is directly proportional to the density of 
polyethylene because the packing of noncrystalline zones is looser and less efficient.    

The prevailing lattice structure seen in semicrystalline polyethylene is orthorhombic. 
Bunn was the first who reported the crystalline structure of polyethylene and measured 
its lattice parameters [18]. Figure 1 illustrates the orthorhombic lattice structure of 
polyethylene crystallite along with its lattice parameters. The less stable monoclinic 
structure in mechanically stressed samples [19] as well as the hexagonal structure in 
samples subjected to high pressure and temperature [20] has also been observed. 
Numerous studies have been devoted to investigating the elastic properties of the 
crystalline phase in polyethylene [14, 21-25]. The literature on the crystalline phase in 
polyethylene is quite extensive but since the elasticity of the crystalline phase is not of 
main concern in this work, it is not further examined here.         

 

1.3.2 Noncrystalline domain in semicrystalline polyethylene  

The noncrystalline phase in semicrystalline polyethylene is composed of the loops, 
cilia and bridges, as illustrated in a cartoon in Figure 4. Segments of chains that exit a 
crystallite and enter the same crystallite constitute loops or foldings, segments of chains 
connecting two crystallites are called bridges or tie chains, and loose ends of chains 
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projecting out of crystallites are called cilia or tails. As there is no predefined order 
within the noncrystalline phase, sometimes it is referred to as the amorphous phase in 
the literature. When thought of as a continuum, however, the noncrystalline domain is 
not homogeneous and is in turn composed of two constituents.   

 

 

Figure 4. Schematic illustration of the configuration of chains within the noncrystalline domain. 

Segments corresponding to loops (both ends of segment terminate at the same crystal lamella; 

short dashed lines), bridges (the ends of the segment terminate at different lamellae; dotted lines) 

and tails (one end terminates at a crystal lamella and the other terminates in the noncrystalline 

domain; long dashed lines). 

 

1.3.2.1    Interphase layer in semicrystalline polyethylene  

From a theoretical standpoint, Flory argued that the continuity of polymeric chains 
implies the development of a new order intermediate between the crystalline lamellae 
and the central amorphous phase [26]. He added that the existing order within the 
crystalline lamellae cannot abruptly disappear at the interface of the 
crystalline/noncrystalline interface and the sharp transition from the ordered region 
with orthorhombic symmetry to a disordered region with isotropic symmetry is 
unlikely. He used the term “interphase” to call the layer intermediate between the 
crystallite and the central amorphous phase. Mandelkern et al. [27] presented another 
theoretical argument about the formation of the interphase layer based on the severe 
conformational differences between the ordered and disordered states.  

The presence of the interphase layer as the third constituent in semicrystalline 
polyethylene has experimentally been demonstrated too. A wide range of experimental 
techniques, including broad-line proton NMR [28], high resolution 13C NMR [29, 30], 
electron microscopy [31], small angle neutron scattering [32], dielectric relaxation [33, 
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34], and Raman spectroscopy [35, 36] confirm the significant volumetric contribution of 
the interphase region into the conventional semicrystalline polymers. Mandelkern [37] 
asserts that the difference between the crystallinities measured in density and heat of 
fusion experiments is directly related to the interfacial content. The theoretical and 
experimental studies cited above in concert with many other similar ones led to the 
acknowledgment of the presence of the partially ordered interphase layer as the third 
constituent in semicrystalline polyethylene.  

Most of the relevant studies dedicated to the interphase properties are limited to 
measuring the thickness and volume fraction. Yoon and Flory estimated an average 
thickness of 6-8 Å for the interphase layer [38]. In another theoretical study, Flory et al. 
suggest a thickness of 10-12 Å which they claim is in accord with experimental 
measurements [39]. Mandelkern et al. [40] made use of the technique of Raman internal 
and longitudinal acoustical modes to estimate the thickness of the interphase layer for a 
variety of polyethylene samples. In their simulation study, Kumar and Yoon [41] 
estimated a thickness of 10-30 Å for the interphase layer in polyethylene. In’t Veld et al. 
employed the concept of Gibbs dividing surface in their molecular simulation study and 
reported a thickness of around 15 Å for the interphase layer at 350 K [42].  

Although the existence of the interphase layer has been evidenced and techniques 
have been proposed in the literature for measuring its dimensions, there is a marked 
lack of knowledge about its mechanical properties. Experimental characterization of this 
layer has remained elusive due to the interference of signals from different phases [35, 
43]. The attempts to isolate the noncrystalline phase in polyethylene by preferential 
degradation of the crystallite were unsuccessful due to the reconstruction of the 
material at the interface [44]. The nanometric thickness of the interphase layer as well 
as its thermodynamical metastability act as essential impediments to any experimental 
characterization [42].  

It should be emphasized that, although the role of the interfacial region is important 
as a connector between the two primary phases without which the polyethylene would 
be a very weak substance, there is no distinct boundary between the interphase layer 
and the central amorphous region and they cannot be demarcated by considering a 
sharp line separating them. Sometimes in the literature the designation “amorphous” is 
used to indicate the noncrystalline region housed between crystallites. This way of 
nomination can be misleading as the interlamellar domain is composed of partially 
ordered and fully disordered regions and the ensemble of the two regions is not 
necessarily isotropic. To avoid any confusion, in this dissertation, the term amorphous 
indicates the totally disordered, central region situated between partially ordered 
interphase layers and the ensemble of the two regions is called as “noncrystalline” or 
“interlamellar” domain. 
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 Composite-inclusion model 1.4

In most publications where the effective response of high density polyethylene from 
a macroscopic point of view and using a multiscale homogenization approach has been 
investigated, a double-inclusion model has been proposed as the basic representative 
unit for the reconstruction of the real spherulitic microstructure [45-51]. This basic 
structural element was first proposed by Ahzi et al. [51] to investigate the large 
deformation analysis of semi-crystalline polyethylene. Indeed, this way of 
representation can be justified based on the spherulitic morphology of the undeformed 
semi-crystalline polymers which is observed when crystallized from melt. The radially 
oriented “fins” of each spherulite constitute the building blocks of this mesostructural 
unit in most multiscale studies of semi-crystalline polymers. The schematic of this unit 
element, which is often encountered in the literature, is given in Figure 5: a two-layer 
composite model made of bonding a crystalline layer to a noncrystalline one. As 
depicted in Figure 5, the orientation of each composite inclusion is denoted by n , the 
normal to the hypothetical interface plane separating the two layers. The 
crystallographic c-axis of the crystallite denotes the molecular chain alignment in the 
lamella. It has been demonstrated experimentally and theoretically that the 
misalignment between n  and c  is around 30° in the undeformed samples of 
polyethylene [40, 52]. 

Uniformly random orientational distribution of a sufficiently large number of such 
composite inclusions in space leads to a configuration that is virtually equivalent to the 
macroscopically isotropic polyethylene sample. The higher the number of such building 
blocks is, the closer we get to the real morphology. In practice, however, the CPU time 
demand for such simulations grows dramatically as the number of grains exceeds 
several hundreds. This restriction comes from the solution of a system of coupled-
nonlinear equations with a number of unknowns of (10)O  for each inclusion, due to the 

constitutive law of each phase + their mechanical coupling requirements, and finally 
fulfilling the global compatibility and equilibrium conditions. The associated 
mathematical and numerical details are provided in Chapter 4. 

Finally, it should be noted that the term “multiscale” analysis that is used for the 
numerical modeling and simulation of spherulitic microstructure in semi-crystalline 
polymers is due to the different size scales that are involved. Microscopic scale is 
reserved for the lamellar constituents due to their planar dimensions that reach a few 
micrometers. Any material point within the spherulites is treated on the mesoscopic 
scale, whereas an ensemble of multiple spherulites grouped together imparts to the 
macroscopic scale of the simulations. In a multiscale analysis, the macroscopic behavior 
of an aggregate in linked to the microscopic behavior of individual inclusions through a 
multiscale micromechanical homogenization approach. For want of a universal 
homogenization approach that captures all aspects of interactions between the 
inclusions, numerous approaches have so far been developed and are still being  
 



Chapter I- Semi-crystalline polyethylene 

12 
 

 

 
 

(A) (B) 

 

 
(C) (D) 

                   
(E) 

Figure 5. A) Unit cell model introduced in [46] for multiscale modeling of polyethylene; B) Schematic of 
multiscale modeling of PE introduced in [47]; C) The building block of an aggregate of polyethylene along 
with the representation of local crystalline and convected axes [48]; D) The relative positioning of the 
major constituents of polyethylene microstructure on which the authors in [53] based their atomistic 
model; E) schematic of a spherulite + the composite inclusion model often adopted in the literature [50]. 

 

proposed [48, 50, 51, 54, 55]. Their predictions may differ simply due to different 
underlying assumptions. The differences between some of the well-known available 
approaches are reviewed in Chapter IV where large deformation of an aggregate of 
polyethylene is re-investigated.   
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the mistakes that can be made in a very 

narrow field. (Niels Bohr– 7 October1885 – 
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2 Elastic characterization of the interphase layer 
in semi-crystalline polyethylene 

 

 

 

INTERPHASE LAYER in semi-crystalline polyethylene is the least known constituent 
of this well-known polymer in terms of the mechanical properties. The nanometric size 
of this layer together with the lack of a criterion to precisely define its boundaries, and 
practical impossibility to prepare pure samples of interphase films in the laboratory, due 
to its intimate coupling to the coexisting adjacent phases, are major factors that impede 
its mechanical characterization, experimentally. The scale of the problem suggests 
resorting to atomistic/molecular simulation tools for investigating the mechanical 
properties of this constituent in question.  

At the molecular simulation level, Hütter et al. [52] employed the concept of a sharp 
Gibbs dividing surface in order to define a set of interfacial properties corresponding to 
the interphase. They obtained interfacial stresses and interfacial internal energies, but 
were not able to extract a value for the interfacial tension due to the significant 
contributions from its dependence on interfacial strain. For the interlamellar domain, 
however, the tool has proved effective in estimating the thermoelastic properties of the 
domain.    

 To date, the best attempts to take advantage of the molecular simulation tools 
with the aim of the mechanical characterization of the interlamellar domain in semi-
crystalline polyethylene have been made by Rutledge and co-workers who have 
developed a molecular level simulation capable of capturing the essential features of the 
interlamellar domain [42, 56-58]. They employed the united atom model for simulating 
the interlamellar domain of polyethylene as a representative volume element 
surrounded by rigid crystalline lamellae [42]. Then, they utilized their model to compute 
the elastic properties of this domain over a range of temperatures.   
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  Data provided by the molecular simulations  2.1

Part of the output of the Monte Carlo molecular simulations that is useful for our 
characterization analysis is the part that relates to the interlamellar stiffness 

components, ilC , the interlamellar thickness, ilt , and the interphase thickness, ipt , as a 

function of temperature for the range of 350-450 K. The diagrams of the normal stiffness 

components of ilC  vs. temperature are given in Figure 6. They suggest that all stiffness 

components do not follow the same trend since il
11C  does not show a monotonically 

increasing or decreasing behavior with temperature. The parameters of the quadratic 
curves fitted to the relevant atomistic data are given below. It is underlined that these 
dependences are only valid for 350-450K.  
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Figure 6. Variation of A) 
il
11C ≡�, 

il
22C ≡▲   and 

il
33C ≡ �  B) 

il
12C ≡�, 

il
13C ≡▲   and 

il
23C ≡ � with 

temperature for the temperature range 350-450 K [42].  

The other components of ilC  were not as important as the normal components, in 
addition to the fact that their calculation were computationally expensive. These 
components have been evaluated at the typical temperature 435 K and are taken to be 
constant across the temperature range of interest for the lack of any better estimate. The 
interlamellar stiffness evaluated at the typical temperature 435 K is given below  
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As suggested by the 6×6 matrix form of ilC , the interlamellar domain has a monoclinic 

(or probably higher) symmetry. The likely physical grounds of the observed symmetry 
are discussed in Subsection  2.4. The uncertainty intervals reported for the interlamellar 

stiffness components are 30 MPa for the normal components, 100 MPa for il
44C  and 60 

MPa for the two other shearing stiffnesses [42]. For the non-orthotropic terms, no 
uncertainty interval is reported.  

In addition to the interlamellar stiffness, the interlamellar and interphase 
thicknesses have also been measured at different temperatures (Figure 7A, B). 
According to in ‘t Veld et al. [42], for calculating the interphase thickness, the concept of 

“sharp Gibbs dividing surface” has been employed. The interlamellar thickness, ilt , varies 

almost linearly with temperature whereas the interphase thickness, ipt , can be well 

described using a quadratic estimate.  

 ( )il nm 0.006514440 4.8412561t T= +   ( 3) 

 ( ) 2
ip nm 0.000066433 0.05874344 13.86128t T T= − +   ( 4) 

 

  
A B 

Figure 7. Variation of the thickness of A) interlamellar domain B) interphase layer in semi-

crystalline polyethylene with temperature [42]. 
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For the elastic characterization analysis, the volume fraction of the interphase and 
amorphous regions are also required. These quantities are easily calculable from the 
thickness of both phases as follows  

 il ip ip
am ip

il il

2 2
= , =

t t t

t t
η η

−
  ( 5) 

Indeed, due to the periodic boundary conditions applied on the lateral planes of the 
interlamellar domain, the above relationships between the thicknesses and volume 
fractions are valid. But for implementing the dissociation analysis, the variation of the 

amorphous stiffness, amC , with temperature is also required. This last quantity is 
established based on the relevant findings from the literature, as explained in the 
following Subsection.  

 

 Temperature dependence of the central amorphous stiffness  2.2

Elastic properties of the central amorphous phase in polyethylene have been the 
topic of quite few experimental and theoretical studies (e.g. [59-63]). As for the 
symmetry of this region, it has an isotropic symmetry [40] simply due to its disordered 
structure. In practice, purely crystalline or purely amorphous polyethylene samples 
cannot be prepared in the laboratory [64]. Therefore, the reported values for the elastic 
coefficients of the amorphous phase are based either on the theoretical arguments or on 
the modest extrapolation of corresponding coefficients of different polyethylene 
samples to zero crystallinity.  

Hellwege et al. [60] measured the isothermal compressibility, which is the inverse of 
bulk modulus, for various polyethylene samples. Compared to the elastic modulus, bulk 
modulus shows a weaker sensitivity to the crystallinity. Therefore, extrapolation of this 

quantity provides an acceptable estimate for the central amorphous bulk modulus, amκ . 

The extrapolated value reported for this quantity is am 1800MPaκ =  (op. cit.). Krigas et al. 

[61] conducted numerous tensile tests on different polyethylene specimens at several 
testing machine crosshead speeds less than 1 in/min. They concluded that except for 
low crystallinity samples, the measured Young’s modulus remains independent of the 
strain rate and total strain for small strains. They also observed that the curve-fit of the 
measured Young’s modulus and the one estimated from the plateau modulus intersect at 
the crystallinity of 0.03ξ = . From the intercepts of the two diagrams, they concluded 

that am 3.5 0.5MPaE = ± , for the amorphous Young’s modulus, where in conjunction with 

the bulk modulus reported in [60], the amorphous Poisson’s ratio will be am 0.4994~υ . 

Using the same extrapolation technique, Crist et al. [59] estimated am 2MPaE =  after 

processing their experimental data. Fetters et al. [65] reported the value of 3.8 MPa for 
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the amorphous shear modulus, amG , which is equivalent to a Young’s modulus slightly 

less than 11.4 MPa, given that the associated Poisson’s ratio is too close to 0.5. Janzen 

[62] reported mean values of am 4.1MPaE =  and am 0.4998υ =  after conducting 

laboratory tests on a lot of polyethylene samples.  

From the kinetic theory of rubber elasticity [66], the plateau shear modulus of the 
liquid-like polyethylene is expressed as follows  

 0
N

e

=
RT

G
M

ρ
  ( 6) 

where ρ  is the amorphous phase density, T  the absolute temperature, R  the ideal gas 

constant, and eM  the molecular mass between entanglements. Bédoui et al. [64] and 

Sedighiamiri et al. [67] used this relationship and estimated am 1.5MPaG =  for room 

temperature. They both assumed a mean value of am 3000MPaκ =  to obtain 

am 0.49975υ = . 

 Due to its isotropic symmetry, the amorphous phase needs two independent 
elastic constants for the description of its stiffness tensor. The advantage of working 
with the amorphous Young’s (or shear) modulus and Poisson’s ratio lies in the 

understanding that we have from their temperature dependence behavior. As for amυ , 

the average of the above values is ~ 0.4996 which is already too close to the limiting 
value of 0.5. This closeness to 0.5 is due to the rubbery state of the amorphous phase at 
room temperature which leads to its further approaching this critical value at higher 

temperatures. It is therefore quite rational to assume that amυ  remains nearly constant 

for the temperature range of interest with possibly negligible fluctuations around its 
mean value.        

For amE , the average of the values reported in the previous studies for room 

temperature is ~ 5 MPa, which matches the mean value adopted by Humbert et al. [60] 
for the amorphous phase of polyethylene. According to Eq.( 6) which has been 
introduced in the context of the kinetic theory of rubber elasticity [66], the elastic 
modulus of the amorphous phase is a linear function of temperature in the rubbery 
region. Moreover, using the first and second laws of thermodynamics and based on 
probabilistic discussions, it is demonstrated that the elastic modulus of a single chain in 
an amorphous polymer in the rubbery state is proportional to 

 2

3kT
Nl

  ( 7) 

where k  is the Boltzmann constant and N is the number of links in the chain each 

having an average length l  [68]. It is therefore quite justifiable to assume that amE  is a 
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linear function of temperature over the temperature range of interest where the 
amorphous phase of polyethylene is rubbery [49]. Accordingly, the following linear 

function is adopted for the temperature dependence of amE  for 350K 400KT≤ ≤  

 ( )am 5 MPa
293
T

E =   ( 8) 

Using the above relationship and the constant value am 0.4996υ = , the temperature 

dependent stiffness tensor of the central amorphous phase is built by substituting amE  

from Eq.( 8) and the temperature independent am 0.4996υ =  into the following 

relationship  

 
( )

am am

am am

am 2

2 1 1 2ijkl il jk ik jl ij kl

E υ
υ υ

 
= + + + − 

δ δ δ δ δ δC   ( 9) 

It should be noted that amE  is a weak function of temperature (for instance 

( )am 400K 6.8MPaE ∼ ) and one may take amE  to remain almost constant through the 

entire rubbery zone; this assumption would be consistent with the diagrams of the 
storage modulus vs. temperature for typical amorphous polymers in the rubbery regime. 

Additionally, the two adopted amorphous elastic constants, namely amυ  and amE , do not 

exhibit substantial changes within the temperature range considered here, to demand 
more precise estimations. Nevertheless, as demonstrated in Subsection  2.5, using an ad 

hoc sensitivity analysis the impact of the possible existing uncertainties in the adopted 
amorphous elastic constants on the generality of the conclusions is evaluated. Based on 
the careful examinations carried out, we believe that the basic conclusions remain 

essentially unaltered if more accurate forms of temperature dependence for amυ  and 

amE  were available. At any rate, the proposed methodology and dissociating tools 

presented herein remain applicable even if other forms of dependence are employed.     

 

 Micromechanical approaches of DIM and ECIM 2.3

Thus far, the temperature-dependent forms for the amorphous and interlamellar 

elastic tensors, namely amC  and ilC , respectively, together with the interphase and 

amorphous volume fractions are known and the only remaining unknown is the 
interphase stiffness. The schematic illustration of Figure 8 gives a brief graphical 
abstract of the problem. If there exists a relationship between all these quantities such 
as the following functional form  

 ( )il am ip

am ip, , , , 0F η η =C C C   ( 10) 
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then the interphase stiffness can be calculated or, as is alternatively referred to in this 
work, dissociated from the interlamellar stiffness. Such a relationship is provided by two 
distinct micromechanical approaches known as Double Inclusion Method (DIM) and 
Extended Composite Inclusion Model (ECIM). 

 

Figure 8. Schematic illustration of the relative positioning of a polyethylene stack along with the 

known and unknown parameters of the presented dissociation analysis.  

 

2.3.1 Double Inclusion Method (DIM)  

Developed by Hori and Nemat-Nasser [69], DIM proposes an Eshelby-based 
formulation for evaluating the homogenized stiffness of an ellipsoidal inclusion 
encapsulating another ellipsoid with the entire double-inclusion being embedded in a 
reference medium. In the Monte Carlo molecular simulations, the periodic boundary 
conditions are imposed in a way that the interlamellar region can be treated as an inner, 
thin, disk-like ellipsoid, namely the core amorphous phase, wrapped by another hollow, 
thin, disk-like ellipsoid, namely the side interphase layers. Therefore, the problem under 
discussion fits the double-inclusion model if the Eshelby tensor of a disk-like ellipsoid 
(i.e. an ellipsoid with a very small aspect ratio) is used. After some mathematical 
manipulation, the DIM relationship for the interphase stiffness is rendered into the 
following form 

( )( ) ( )( )
11

1 11 11 1ip ref ref ref il ref amam

ip ip

1 η
η η

−−− −− −− −∞ ∞ ∞= − − − − − − +
      
           

I C C S I C C S SC C C  ( 11) 

Here, I  represents the fourth order identity tensor and ∞S  stands for the Eshelby 

tensor of a disk-like inclusion inserted in a reference medium whose stiffness is refC . A 
concise summary of the governing equations of this method is brought in Appendix C. 
Further details about the assumptions and derivation procedure of DIM formulations 
are available in the work of Hori and Nemat-Nasser [69]. 
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2.3.2 Extended Composite Inclusion Model (ECIM) 

Formulated first by Ahzi et al. [70, 71] the composite inclusion model (CIM) is an 
attempt to find a compromise between the Voigt and Reuss mixture formulae for a 
layered composite inclusion by introducing strain and stress concentration tensors 
which serve also as weight functions. In this approach, the composite inclusion is made 
by stacking together two layers whose thicknesses are much less than the two other 
dimensions. The weight functions are established through the simultaneous 
enforcement of the continuity of deformation and equilibrium at the interface of the two 
composing layers. Here, the idea is extended to a three-layer composite inclusion, hence 
the designation “extended composite inclusion model” (ECIM). Again, owing to the 
nature of the periodic boundary conditions imposed in molecular simulations, the 
interlamellar region can be thought of as two thin interphase layers with one thin 
amorphous layer inserted in between. With reference to the notation defined in 

Appendix D, the dissociative analogue of Eq.( 10) solved for the unknown ipC  is given by 

either of the following two equivalent equations: 

 
( ) ( ) ( )

( )( )

11 1ip ip il am am

am am

1ip il am am ip

am am

1 or

1

η η

η η

−− −

−

= − −

= − −

 
 

  

C C R

C C Q Q

C R

C
  ( 12) 

where ipR , amR , ipQ  and amQ  are certain weight coefficients which are functions of 

amη , ipC  and amC . For further details on the derivation of the ECIM relationships, see 

Appendix D. 

A quick comparison between the DIM and ECIM relationships reveals that in DIM 

formulation there appear ∞S  and refC  in addition to the other independent variables 

appearing in ECIM relationships. It should be reminded that ∞S  is a function of refC  as 
well as the aspect ratios (or geometry) of the ellipsoidal inclusion. Apart from the 
geometry of the problem, which has been taken into account during the derivation of the 
ECIM formulae, there is no need to resort to the concept of some “reference medium” in 
the ECIM formulation. It is, therefore, anticipated that for this specific case where the 

ellipsoidal inclusion is disk-like, the DIM results will be independent of the choice of refC
. Although it looks too complicated to demonstrate it mathematically due to the 

nonlinear dependence of ∞S  on refC  in addition to the nonlinear dependence of ipC  on 

both ∞S  and refC , it seems to be a true conjecture. Strictly speaking, a large number of 

different refC s were picked as input for Eq. ( 11) and it was observed that the 

dissociated ipC s are exactly identical, indicating the independence of the dissociated ipC  

from refC . In Appendix C, a mathematical demonstration for the simpler case of isotropic 

reference medium is presented. In other words, with two elastic constants refE  and refυ , 

the elastic stiffness tensor of the reference medium is constructed. ∞S  is built using refυ  

and two different stiffness tensor with full anisotropy are assumed for ipC  and amC . The 
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governing equations are eventually solved symbolically using Maple® software where it 

is observed that there is no trace of refE  and refυ  in ipC . Therefore, the equivalence 

between the independent variables of the two dissociative approaches is taken for 
granted. 

 Results and discussion  2.4

For reminding purposes, the general form of the interlamellar stiffness, which is 
adopted from the Monte Carlo molecular simulation study [42], is re-produced below.   

 

il il il
11 12 13
il il il
12 22 23
il il il

il 13 23 33 MPa

0 180 0

0 240 0

0 50 0

0 0 0 0 100 0 200

180 240 50 0 220 60 0

0 0 0 200 0 570 60

C C C

C C C

C C C

 −
 − 
 

=  
± − 

 − − ±
 

− ±  

C   ( 13) 

The entries of the upper left 3×3 submatrix are substituted from the relationships ( 1) 
keeping in mind that their uncertainty interval is 30 MPa± . For the other nonzero 

components, the uncertainty interval of each component is given beside its respective 
mean value. Before explaining the details of the results, it is emphasized that since the 
melting temperature of polyethylene is around 407 K, only the temperature range 350-
400 K is considered for the dissociation analysis.   

The interphase stiffness, ipC , output by the two dissociation approaches, i.e. DIM and 
ECIM, for the typical temperature 370 K are given in Table 1. As explained earlier, DIM 
involves the Eshelby tensor for a disk-shaped inclusion, which must be evaluated 
numerically as it has no closed-form solution in the general case when the reference 
medium is anisotropic. Therefore, in the numerical code developed, a very small positive 
number, say 10-6, has been assigned to the aspect ratio of the disk-like ellipsoid for the 
computation of the Eshelby tensor. It was also observed that due to the recursive nature 
of the ECIM in the dissociation mode (see Appendix D), the method has shown numerical 
divergence despite deploying several stabilizing strategies. Therefore, the following 

numerical alternative was invoked. First, ilC  was symbolically calculated using an 

unknown ipC . As a result, a system of 13 coupled equations with 13 unknowns is thus 
obtained for the solution of which a hybrid optimization algorithm has been employed. 
The two-step, hybrid optimization algorithm consists of combining the Genetic 
Algorithm with another non-linear optimization technique called the Nelder-Mead (or 
simplex search) method [72]. In the first step, a ballpark estimate for the solution is 
found using the Genetic Algorithm which is used as the initial guess for the Nelder-Mead 

method in the second step. The dissociated ipC  attributed to ECIM in Table 1 is the 

result of this combinatory numerical method.  
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A quick comparison reveals that the results of the two micromechanical methods 
agree perfectly. From a practical point of view, however, the ECIM formulation is fairly 
straightforward and simpler than the DIM formulation but is less efficient in the 
dissociation mode. Interestingly, and as discussed in Subsection  2.5, when the non-
orthotropic elements of the interlamellar stiffness are neglected, the combination of the 
dual ECIM formulae ( 12) converges to the solution using the recursive method, which is 
much faster than the hybrid optimization technique. On the contrary, the DIM is very 
fast in both dissociation and homogenization modes although its major drawback is the 
development of the rather complicated numerical code for calculating the Eshelby 
tensor.  

Table 1. Output of the dissociation approaches at the typical temperature 370 K. 

at T=370 K: am 6.31MPaE = , am 2.10MPaG = , am 0.66η = , 
ip 0.34η =  

( )am MPaC   ( )il MPaC (taken from [42]) 

3097.9 3093.7 3093.7 0 0 0 1749.9 1613.6 1092.9 0 -180 0 
3093.7 3097.9 3093.7 0 0 0 1613.6 2569.3 1150 0 -240 0 
3093.7 3093.7 3097.9 0 0 0 1092.9 1150 1249.6 0 50 0 

0 0 0 2.1 0 0 0 0 0 90* 0 -200 
0 0 0 0 2.1 0 -180 -240 50 0 220 0 
0 0 0 0 0 2.1 0 0 0 -200 0 570 

Then: 

( )ip MPaC  output by the DIM  

1972.2 1307.4 427.7 0 3.05 0 
1307.4 3824.3 524.2 0 3.92 0 
427.7 524.2 567.3 0 -0.33 0 

0 0 0 -1.11 0 7.31 
3.05 3.92 -0.33 0 -1.08 0 

0 0 0 7.31 0 320.5 

( )ip
MPaC  output by the ECIM (using the 

hybrid optimization algorithm) 

1972.2 1307.4 427.7 0 3.05 0 
1307.4 3824.3 524.2 0 3.92 0 
427.7 524.2 567.3 0 -0.33 0 

0 0 0 -1.11 0 7.31 
3.05 3.92 -0.33 0 -1.08 0 

0 0 0 7.31 0 320.5 
*This particular shearing stiffness was taken to be 90 MPa, as a safe value instead of its mean value 
reported in the molecular simulation study, for the reasons explained in Subsection  2.4.2. 

 

In the direct/homogenization mode, however, when the dissociated ipC  is used 

in combination with amC  to produce the initial ilC , the ECIM and the DIM produce the 
correct solution quite fast. In view of the details provided in Appendix D, the ECIM 
formulation in the homogenization mode takes the following explicit form 

 
( )

( ) ( )( ) ( )

il ip ip am am

am am

1 1 1il ip ip am am

am am

1 or

1

η η

η η
− − −

= − +

= − +C C C

C C Q C Q

R R
  ( 14) 

and the DIM in the direct mode of two-component homogenization takes the following 
form of mathematical representation 
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( )( ) ( )( )
111 11 1il ref am ref ref ip ref ref

am ipη η
−−− −− −∞ ∞ ∞= + + − + + − −

          
I S C C C S C C C SC C  ( 15) 

Therefore, once ipC , amC  and their volume fractions are known, the ECIM and the DIM 

directly return the solution, namely ilC , in a single step without requiring any 
sophisticated numerical technique. Besides, it should be underlined that the interphase 

stiffness components shown in boldface in Table 1 indicate that ipC  is not positive 

definite. This finding is discussed in depth in the following Subsections.  

Finally, it can be seen that ilC  and ipC  have the same form of symmetry. To 
justify, one may reason that since the central amorphous phase has the highest 
symmetry and the interlamellar region has the second lowest symmetry, it is quite 
anticipated that the interphase layer possesses the same form of symmetry as the 
interlamellar domain does. However, the orthorhombic crystalline structure of 
crystallite takes its known form of orthotropic representation in the material reference 
frame of the crystallite coinciding the abc-frame of the lattice. In the model of in ‘t Veld 
et al. [42] the ab-plane of the lattice makes an angle of ~30° with the crystalline-
noncrystalline interface plane, which coincides the xy-plane [53] (see Figure 5). When 
the crystalline stiffness with its familiar form of representation in the abc-frame is 

rotated into the xyz-frame, it takes a new representation that looks exactly like ilC  in 
terms of zeros and non-zero elements, as described previously by in ‘t Veld et al. [42]. 
For a better comprehension, this fact is illustrated in Figure 9.  
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Figure 9. Visual demonstration of the representation of the crystalline stiffness in its lattice abc-

frame and when rotated to the xyz-frame.  

Therefore, it is very likely that the symmetry of the crystalline stiffness is 

responsible for the induced symmetry in ipC . However, because of the uncertainties 

available in the components of ipC , it is impossible to determine the number of 
independent components of the interphase stiffness and as a result impossible to 
determine the true symmetry of the interphase layer.  
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2.4.1 A probe into the shearing components of ilC   

Due to their critical role in the dissociation analysis, the shearing stiffnesses in ilC  

are examined more carefully. The most critical elements of ilC  are il
44C , with an 

uncertainty of 100 MPa± , and il
55C , with an uncertainty of 60 MPa± . According to the 

sensitivity analyses carried out, the following observations were made:  

• Variation of il
44C  within its uncertainty interval brings about the variation of ip

44C , 
ip
46C  and ip

66C , while the other components of ipC  are robust to this variation.  

• All components of ilC , except for il
44C , were allowed to vary within their interval 

of uncertainty and were observed to affect the value of ip
44C  only in the tenth 

decimal place. Similarly, holding il
55C  fixed and varying the other components of 

ilC  within their uncertainty intervals was observed to affect the value of ip
55C  only 

to the sixth decimal place. It can therefore be concluded that ip
44C / ip

55C  is only 

affected by the uncertainty in the corresponding il
44C / il

55C  and is very robust to 

the uncertainty of the other components of ilC .  

• Variation of il
66C  only varies ip

66C , with the other components of ipC  remaining 

robust to the fluctuations in il
66C . 

Accordingly, the diagrams of ip
44C , ip

46C  and ip
66C  vs. the uncertainty interval of il

44C  for 

several temperatures are plotted in Figure 10, Figure 11 and Figure 12, respectively. As 
is qualitatively evident from the diagrams and as demarcated by vertical dashed lines, 

there are intervals of il
44C  for which the dependent variables become unbounded, which 

is unacceptable. Therefore, these intervals must be excluded from 
il
44100MPa 100MPaC− ≤ ≤ . Specifically, Figure 10, Figure 11 and Figure 12 suggest that 

the imprecise intervals ( )2.2, 4 , ( )2.5,4  and ( )15.5,16−  must be excluded from the initial 

interval of il
44C . Therefore, the rough interval il

4415.5 MPa 16 MPaC− ≤ ≤ , within which 
ip

66
10000MPaC > , is excluded from the initial uncertainty interval of il

44C . On the other hand, 

within [ ]100, 15.5− − , ip
66 4000MPaC > , which might be considered incomparable with the 

shearing components of ilC . Additionally, it looks rather unusual to assume that the 

admissible interval of il
44C  consists of two separate intervals, i.e. [ ] [ ]il

44 100, 15.5 16,100C ∈ − − ∪ . 

Therefore, if one sets the criterion for the admissibility of il
44C  to ip

66 4000MPaC < , then the 

allowable interval of il
44C  shrinks to il

4426.5MPa 100MPaC≤ ≤  since for 

il
4416 MPa < 26.5 MPaC < , ip

66C  takes values less than -4000 MPa. 
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Figure 10. Diagrams of 
ip
44C  vs. 

il
44C . Within the approximate interval ( )2.2,4  delineated by dashed 

lines, 
ip
44C  takes incomparably large value. 

 

 

Figure 11. Diagrams of 
ip
46C  vs. 

il
44C . Within the approximate interval ( )2.5,4  delineated by 

dashed lines, 
ip
46C  takes incomparably large value. 
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Figure 12. Diagrams of 
ip
66C  vs. 

il
44C . Within the approximate interval ( )15.5,16−  delineated by 

dashed lines, 
ip
66C  takes incomparably large value. 

 

The shearing stiffness ip
55C  as a function of il

55C  has a behavior similar to ip
44C  as a 

function of il
44C . In other words, for all temperatures within the range considered, ip

55C  

shows a weak dependence on the uncertainty of il
55C  but is not as robust as it is to the 

uncertainties of the other components of ilC . The common feature between ip
44C  and ip

55C  

is that within the temperature range of interest, they robustly take negative values close 

to zero and exhibit an almost plateau dependence on il
44C  and il

55C , respectively. As 

demonstrated in section  2.5, this property is insensitive to the uncertainties of the 

adopted amorphous elastic constants and the uncertainties of ilC . 

 

2.4.2 Deviation of the interphase stiffness from positive definiteness 

Positive definiteness of the stiffness tensor for stable materials found in nature is 
demonstrated based on the first law of thermodynamics and the positivity of the elastic 
strain energy. If the stiffness tensor is represented in a 6 6×  matrix form, positive 
definiteness requires positivity of the diagonal elements. Here, this requirement is 

violated at least for the interphase stiffness since ip
44C  and ip

55C , although too close to 

zero, robustly take negative values at least in the temperature range 350-400 K. It is 
worth noting that unlike either the crystalline or amorphous phases, the interphase and 
interlamellar domains are not necessarily thermodynamically stable phases that can 
ever exist in the absence of the stabilizing influence of the adjoining crystalline lamellae. 
Thus there is no compelling reason to require their mechanical stability in isolation 
either. Here, in our example, the negative shear stiffnesses are only observed in the 
transversal plane of the interphase layer, whose thickness is ~ 1 nm and plays the role 
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of the transition region between the crystallites and the amorphous phase. Moreover, 
negativity of the shear modulus has been observed earlier for nanoscale domains within 
an amorphous matrix [73]. Other examples of the studies available in the open literature 
on the heterogeneous materials containing at least one component with non-positive 
definite stiffness include [74-78]. Therefore, while one or more constituents in a 
mechanically stable, heterogeneous solid might have non-positive definite stiffness, the 
global stiffness of the entire heterogeneous material is positive definite.  

For the crystalline/noncrystalline interface in semi-crystalline polymers, 
Cammarate and Eby [79], Fisher et al. [80] and Cammarata and Sieradzki [81] report 

negative interface stresses of the order of -0.1 to -0.3 J/m2 for a { }001  surface. In 

reference to these negative stress values, Hütter et al. [52] argue that the fact that the 
interface is under pressure can be attributed to the way the polymer chains exit (or 
enter) the crystal. Therefore, the interphase layer is physically pre-strained. On the 
other hand, pre-strained objects, which contain stored energy, are well-known examples 
in which non-positive definite stiffness may take place [82, 83]. As a result, non-positive 
definite stiffness of the interphase layer is in accord with one’s anticipation in light of 
the earlier studies. Non-positive definite stiffness of the interphase layer means that 
under particular strain fields the associated strain energy of one or more interphase 
layer(s) becomes negative (equivalent to the release of some stored energy). However, 
due to the stabilizing effects of the amorphous and crystalline layers whose stiffness 
tensors are positive definite, the global strain energy of any polyethylene sample that 
exists in isolation becomes positive under any kinematically admissible strain field. In 
other words, since polyethylene samples usually have a uniformly random distribution 
of constituents, they are macroscopically isotropic satisfying the sufficient conditions of 
stability. According to Kochmann [83] if the shear and bulk moduli of an isotropic solid 
are positive the sufficient conditions of stability are met and its strain energy is always 
positive under any nonzero strain field.  

It is also worth noting that although ip
44C  and ip

55C  are negative, they are very close to 

zero in magnitude, compared to the other stiffnesses. The closeness to zero is such that 
they can be assumed independent of both temperature or the corresponding component 

in ilC . But the situation for ip
66C  is totally different (see Figure 12); since within the 

interval of il

4426.5MPa 73MPaC< < , ip
66C  takes incomparably negative values that are at 

least three orders of magnitude larger than ip
44C  or ip

55C  without displaying any 

asymptotic behavior. It should be reminded that negativity of the shear stiffnesses imply 
that upon imposition of positive corresponding shear strains, negative stresses will be 

produced. Then, one may reason that the negligible negativity of ip
44C  or ip

55C  produces 

negligible negative shear stresses, which may be tolerated by the surrounding media. 

However, the negativity of ip
66C  is comparatively so large that, even with relatively small 

positive shear strains, it produces such large negative shear stresses that are not 
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deemed to be balanced by the surrounding media. Additionally, when il
44C  approaches 

the right extreme of its allowable interval, the plateau-like behavior of ip
66C  is observed, 

supporting the speculation that, contrary to ip
44C  and ip

55C , negative values are not 

allowed for ip
66C ; this comparison suggests that the allowable interval for il

44C  should 

shrink to ( ]73,100 . It might also be argued that since ip
44C  and ip

55C  are shearing 

resistances in the planes normal to the interface but ip
66C  is the shearing resistance in the 

plane parallel to the interface, the dissimilarity between their behaviors could be 
expected.  

The sensitivity analysis of ip
66C  has revealed that this shearing stiffness is robust to 

the uncertainties of all components of ilC  except for the uncertainties of il
44C  and il

66C . 

Accordingly, the diagrams of Figure 13 are plotted as follows: at different temperatures 

and across the interval of il
4440MPa 100MPaC< < , il

66C  is varied within its uncertainty 

interval to find the minimum values of ip
66C  at each temperature. In light of the reasoning 

made in the preceding paragraph vis-à-vis the inadmissibility of negative values for ip
66C , 

the admissible interval of il
44C  will be further reduced to il

44 82MPaC > . This is the reason 

why in Table 1 the value of 90 MPa is assigned to il
44C  in lieu of its mean value calculated 

from MC molecular simulations. Consequently, for the rest of the calculations, the mean 

value and the uncertainty interval of il
44C  are, respectively, taken to be 90 MPa and 

(82,100) MPa. It is worth noting that the dissociation analysis has the unintended but 

useful by-product of confining the most uncertain component of ilC . 

 
Figure 13. Diagrams of the minimum values of 

ip
66C  vs. 

il
44C  at different temperatures. The arrow 

indicates the threshold value 
il
44 82MPaC ∼  above which 

ip
66 0C > . 
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2.4.3 Verification of dissociation analysis results 

Crist et al. [59] reported their measurements for different samples of PE, linear 
HPB, 3S HPB and 4S HPB spanning a crystallinity range of 0.35 0.68ξ< < , which they 

were able to describe with a linear fit on a semilogarithmic scale with the correlation 
coefficient of 0.974. Assuming essentially only a two-component model comprising 
crystalline and noncrystalline (which they call amorphous) phases, they argue that in 
semi-crystalline PE, the average Young’s modulus of the noncrystalline phase is nearly 
constant (~ 300 MPa) for 0.7ξ > , but drops appreciably as the crystallinity is lowered 

below 70%. Therein, they proposed the following double-argument dependence for the 
average Young’s modulus of the noncrystalline phase at room temperature  

 ( ) ( )
am

2exp 7.158 0.7
= MPa

300 0.7
E

ξ ξξ
ξ

 ≤
 ≥

  ( 16) 

Given that Crist and co-workers did not consider the presence of a third component, i.e. 
the transitional interphase separating crystallites and the central amorphous phase, it is 

reasonable to equate amE  in their two-component model with ilE . Indeed, ilE  is 

calculable form ilC  which is, according to Eq.( 10), a function of the properties and 
volume fractions of its constituents. Therefore, mathematically speaking 

 ( )ip am

il ip= , ,E f η C C   ( 17) 

which is in agreement with the suggestion made by Crist et al. [59] since ipη , which 

denotes the interphase volume fraction within the interlamellar domain, is in its turn a 
function of the crystallinity. In other words, for an interlamellar region of arbitrary 
thickness one can write  

 ip ip

ip

ip am ip am

2 2

2 + 2 +

V t

V V t t
η = ≃   ( 18) 

where ipt / ipV  denotes the thickness/total volume of each interphase layer in a layered, 

“sandwich” model of the interlamellar domain. There is evidence that the interphase 
thickness is invariant with crystallinity, whereas the amorphous thickness varies to 

accommodate changes in interlamellar separation [38]. Therefore amt  and consequently 

ipη  are functions of crystallinity: 

 ( )ip =hη ξ   ( 19) 

For the hypothetical state of no crystallinity, polyethylene is composed of the pure 
amorphous phase and there is no interphase which means:  
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 ip am ip

PE il am

0 1 1
if 0 then

= =E E E

η η η
ξ

→ ⇒ = − →
→





  ( 20) 

where at room temperature amE  takes values between 2-11.4 MPa, as elaborated in 

Subsection  2.2. On the other hand, at high crystallinities, the amorphous phase 
disappears and the interlamellar domain will be dominated by the interphase layers, 
meaning that  

 
ip am ip

il ip

1 1 0
if 1 then

=E E

η η η
ξ

→ ⇒ = − →
→





  ( 21) 

In summary, by increasing the crystallinity from zero, the interphase layers start to 

appear and the amorphous phase shrinks, implying that ipη  is a positive and 

monotonically increasing function of crystallinity up to some critical crystallinity, crξ . 

Since ipη  cannot exceed unity in the interval of 0 1ξ< <  and eventually it has to go to 

unity as 1ξ → , the most likely dependence form of ipη , which is in accord with the 

observation by Crist et al. [59], is the following:  

ipη  increases monotonically from zero at the hypothetical 0ξ =  to reach a maximum 

at the critical cr
0 0.7 1ξ< <∼  and then plateaus quickly but smoothly such that 

( ) ( )ip cr ip cr>η ξ ξ η ξ≃ . 

Consequently and in light of Eq.( 17), the average Young’s modulus of the 

interlamellar domain, ilE , becomes a function of crystallinity similar to that suggested by 

Crist et al. [59], while the constitutive properties of the constituents, namely ipC  and 
amC , remain essentially independent of crystallinity. In other words, using a two-phase 

sandwich model to represent the interlamellar region in which the constitutive 
properties of the phases are independent of crystallinity, the form of dependence in Eq. 
( 16) proposed by Crist et al. [59] can be justified.  

Finally, to use the empirical Eq.( 16) for verification purposes, one can reason that 

according to Eq.( 21), at high crystallinity il ipE E≃ , and therefore the average Young’s 

modulus of the interphase layer at room temperature must be comparable to that of the 
interlamellar domain at high crystallinity, which is offered by the empirical relationship. 
Following the idea presented by Counts et al. [84], Hill’s estimate [85] is used to find an 

estimate for ipE  from ipC . In the work of Counts et al. [84] the problem of estimating the 

overall shear and Young’s moduli of a polycrystalline BCC Mg-Li, which takes non-
positive definite stiffnesses for some compositions of Mg-Li, is treated similarly. In fact, 
the average elastic moduli from FE and self-consistent analyses that are extrapolated to 
unstable regions agree very well with Hill’s estimate for any composition. Therefore, for 
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estimating the interphase average bulk and shear moduli using Hill’s method, the bulk 

and shear moduli of the Voigt and Reuss approaches, calculable from ipC  and 
1 1

ip − −

C , 

where  indicates the orientational (volume) averaging, are required. Thus, Hill’s 

estimates of the interphase bulk and shear moduli are obtained as follows:  

 
( )

( )

ip-Hill ip-V ip-R

ip-Hill ip-V ip-R

1
= +

2
1

= +
2

G G G

κ κ κ
  ( 22) 

from which the average Young’s modulus of the interphase layer obtained from Hill’s 
estimate reads 

 ip-Hill ip-Hill

ip-Hill

ip-Hill ip-Hill

9
=

3 +

G
E

G

κ
κ

  ( 23) 

In the temperature range studied here, the closest to the room temperature is 350 K at 

which ip-HillE  is calculated to be 347 MPa, which compares well to the plateau value of 

300 MPa proposed by Crist et al. [59], noting that the Young’s modulus of amorphous 
polymers increases with temperature if the polymer is in the rubbery state. 
Furthermore, Ding et al. [86] conducted a molecular simulation study on the Young’s 
modulus change in a semi-crystalline polymer and observed that the Young’s modulus of 
the interlamellar region increases with temperature in the rubbery state. It is therefore 
expected that the analogue of the empirical relation ( 16) at higher temperatures gives 

higher ilE  for the same crystallinity. As a result, ipE  at 350 K ought to be greater than 

300 MPa. Additionally, keeping in mind that the components of ipC  have uncertainty 

intervals inherited from the uncertainties of ilC components, the calculated ip-HillE  will 

definitely have its own uncertainty interval. By means of a simple Monte Carlo analysis 

sampling 109 times the uncertainty space of ilC  and then calculating new ipC s and new 

ip-HillE s at 350 K, the following uncertainty interval for ip-HillE  is obtained: 

 ip-Hill 350K
207 MPa 465MPaE< <   ( 24) 

This result is in accord with our expectation that values higher than 300 MPa fall within 

the uncertainty interval of ip-HillE . It is reiterated that for calculating the mean value of 

ip-HillE  and its uncertainty interval, it was assumed that il
4482MPa 100MPaC< ≤  with a 

mean value of il
44 91MPaC = . For the entire temperature range, the evolution of ip-HillE  

and the bounds of its uncertainty interval are similarly calculated. The plots of these 
evolutions are given in Figure 14. Interestingly, the three diagrams show a 
monotonically increasing trend with temperature in agreement with our anticipation.  



Chapter II- Elastic characterization of the interphase layer in semi-crystalline polyethylene 

 

33 
 

 

Figure 14. Average Young’s modulus of the interphase layer calculated using Hill’s estimate, ip-HillE  

along with the bounds of its uncertainty interval vs. temperature.  

 
Figure 15. Average Young’s modulus of the interlamellar domain estimated using Hill’s estimate, 

il-HillE , and the bounds of its uncertainty interval vs. temperature.   

 

It is also insightful to know how the average Young’s modulus varies with 

temperature for the interlamellar region. The diagrams of il-HillE  along with the bounds 

of its uncertainty interval vs. temperature are displayed in Figure 15. It is evident from 

the diagrams that il-HillE  and its uncertainty bounds increase with temperature. Indeed as 
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explained in most introductory textbooks on the behavior of polymers (see e.g. [68] ), 
this observation is in accord with the common understanding that the elastic modulus of 
amorphous polymers in the rubbery region increases with temperature as the Young’s 
modulus is controlled by the entropy change. 

 

 Sensitivity/uncertainty analysis  2.5

To examine the sensitivity of the non-positive definiteness of the calculated ipC  

within 350 K 400 KT< < , to the uncertainties available in ilC  and amC , the following 

Monte Carlo sensitivity analysis has been carried out. First, the following uncertainty 

intervals were considered for the amorphous Poisson’s ratio, amυ , and the amorphous 

Young’s modulus, amE , for the temperature range 350K-400K. 

 am

am

0.49 0.49999

2MPa 11.4MPaE

υ< <

< <
  ( 25) 

Then in a total of 109 Monte Carlo cycles, at random temperatures, random amE  and amυ  

are sampled from their assigned uncertainty intervals. Accordingly, a random amC  is 
picked from its uncertainty space. Afterwards, at the same random temperature, a 

random ilC  is picked from its uncertainty space based on the uncertainty intervals 

obtained from the MC molecular simulations, except for il
44C  which is picked from 

( ]82,100 . Finally, using the DIM dissociation formulation, the new ipC  and its 

eigenvalues are calculated. By carrying out this sensitivity analysis, none of the 
calculated interphase stiffnesses fulfilled the condition of positive definiteness. Given the 
extremely large number of the Monte Carlo cycles, it is very unlikely that one can find 

some temperature from 350K 400KT< <  and some random amC  and ilC , as described 

above, such that a positive definite ipC  is obtained. Therefore, one can conclude, with a 

high degree of certainty, that the non-positive definiteness of ipC  within 

350K 400KT< <  is an established fact and insensitive to the uncertainties of amC  and 
ilC . It should be noted that for the volume fractions involved in the calculations, no 

uncertainties were reported. However, if there were any, they would be treated similar 
to other uncertainties in the same way as described in the above.    

Furthermore, the uncertainty intervals of the ipC  components originated from 

the uncertainties of the 
ilC  components are calculated via the same Monte Carlo 

procedure: at a given temperature, the uncertainty space of ilC  is sampled 109 times, 
ipC s associated with each temperature are calculated, and finally the bounds of each 

component of ipC  at each temperature are obtained (see Figure 16-Figure 17). Of the 
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tensile components of ipC , ip
33C  is the less sensitive component and ip

11C  is the most 

sensitive component. Additionally, the non-orthotropic elements of ipC  take small 

values close zero and exhibit a weak dependence on temperature.   

 

Figure 16. Uncertainty intervals of normal components of 
ipC  vs. temperature. 

 

Figure 17. Uncertainty intervals of 
ip
12C , 

ip
13C  and 

ip
23C  vs. temperature. 

200

700

1200

1700

2200

2700

3200

3700

4200

4700

350 360 370 380 390 400

B
o

u
n

d
s 

o
f 

u
n

ce
rt

ai
n

ty
 i

n
te

rv
al

s 
o

f 
C

_i
p

(1
,1

),
 C

_i
p

(2
,2

) 
an

d
 C

_i
p

(3
,3

) 
(M

P
a)

Temperature(K)

Max_C_ip(1,1)

Min_C_ip(1,1)

Max_C_ip(2,2)

Min_C_ip(2,2)

Max_C_ip(3,3)

Min_C_ip(3,3)

100

300

500

700

900

1100

1300

1500

1700

1900

350 360 370 380 390 400

B
o

u
n

d
s 

o
f 

u
n

ce
rt

ai
n

ty
 i

n
te

rv
al

s 
o

f 
C

_i
p

(1
,2

),
 C

_i
p

(1
,3

),
 

C
_i

p
(2

,3
) 

(M
P

a)

Temperature (K)

Max_C_ip(1,2)

Min_C_ip(1,2)

Max_C_ip(1,3)

Min_C_ip(1,3)

Max_C_ip(2,3)

Min_C_ip(2,3)



Chapter II- Elastic characterization of the interphase layer in semi-crystalline polyethylene 

 

36 
 

 

Figure 18. Uncertainty intervals of non-orthotropic elements 
ip
15C , 

ip
25C , 

ip
35C  and 

ip
46C  vs. 

temperature. 

As an insightful examination, let us see what happens to the homogenized 
ilC  if 

the components of 
ipC  beyond orthotropic symmetry are neglected. The omission of 

these elements may look reasonable as their absolute values are at least two orders of 

magnitude lower than the other elements of 
ipC , except for the negative shearing 

stiffnesses. As reflected in Table 2, the newly homogenized 
ilC  is once calculated with a 

ipC  of orthotropic symmetry and again with an orthotropic 
ipC  excluding the small 

negative shearing stiffnesses ip
44C  and ip

55C . The tensile components of the two newly 

calculated effective 
ilC s are identical and close to their corresponding components in 

the initial 
ilC  appearing in Table 1. On the other hand, the non-orthotropic components 

of 
ipC  have no impact on il

44C , a weak impact on il
55C  and a strong impact on il

66C , which 

may be viewed as more evidence for the dissimilarity between ip
66C  and the two other 

shearing components of 
ipC . It is clearly seen that although the small negative shearing 

stiffnesses ip
44C  and ip

55C  may look negligible and unimportant at first glance, they can 

produce corresponding il
44C  and il

55C  that are two to three orders greater in magnitude.   
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Table 2. The effect of negligible terms of 
ipC  on the homogenized 

ilC  

at T=370 K: 
am 6.31MPaE = , 

am 2.1MPaG = , 
am 0.66η = , ip 0.34η =  

( )ip MPaC  (Taken from Table 1 after eliminating nonzero 

terms beyond orthotropic symmetry) 

⇒  

( )il MPaC   

1972.2 1307.4 427.7 0 0 0 1600.5 1414.3 1134.4 0 0 0 
1307.4 3824.3 524.2 0 0 0 1414.3 2304.6 1205.3 0 0 0 
427.7 524.2 567.3 0 0 0 1134.4 1205.3 1238.1 0 0 0 

0 0 0 -1.11 0 0 0 0 0 90 0 0 
0 0 0 0 -1.08 0 0 0 0 0 220.7 0 
0 0 0 0 0 320.5 0 0 0 0 0 109.3 

 

( )ip MPaC  (Taken from Table 1 after eliminating small 

negligible elements) 

⇒  

( )il MPaC   

1972.2 1307.4 427.7 0 0 0 1600.5 1414.3 1134.4 0 0 0 
1307.4 3824.3 524.2 0 0 0 1414.3 2304.6 1205.3 0 0 0 
427.7 524.2 567.3 0 0 0 1134.4 1205.3 1238.1 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 320.5 0 0 0 0 0 109.3 

 

As a last sensitivity check, only the orthotropic part of 
ilC  is preserved and the 

dissociation analysis at the same temperature of 370 K is carried out. Table 3 confirms 

that 
ipC s calculated using the two approaches match perfectly. The tensile elements of 

the newly calculated 
ipC  are still close to their corresponding components of 

ipC , given 

in Table 1 and calculated using a 
ilC  of monoclinic symmetry. Contrary to the situation 

in Table 1, here the ECIM converges to the same solution output by the DIM using the 
numerical recursive method. Indeed, a combination of dual formulae ( 12) is used to 
achieve the convergence. More interestingly, it is observed that the controversial 

shearing stiffnesses ip
44C  and ip

55C  appearing in Table 3 are equal to those appearing in 

Table 1, suggesting that these two shearing stiffnesses are almost independent of the 

non-orthotropic components of 
ilC . The last shearing stiffness, ip

66C , however, exhibits a 

strong dependence on the non-orthotropic components; another dissimilarity which 
might have been expected in advance.  
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Table 3. Impact of nonorthotropic components of 
ilC  on the dissociated 

ipC  

at T=370 K: am 6.31MPaE = , 
am 2.1MPaG = , 

am 0.66η = , ip 0.34η =  

( )am MPaC   ilC  (taken from [42] after eliminating nonorthotropic 
elements) 

3097.9 3093.7 3093.7 0 0 0 1749.9 1613.6 1092.9 0 0 0 

3093.7 3097.9 3093.7 0 0 0 1613.6 2569.3 1150 0 0 0 

3093.7 3093.7 3097.9 0 0 0 1092.9 1150 1249.6 0 0 0 

0 0 0 2.1 0 0 0 0 0 90 0 0 
0 0 0 0 2.1 0 0 0 0 0 220 0 
0 0 0 0 0 2.1 0 0 0 0 0 570 

Then: 

( )ip MPaC  output by the DIM  

2569.8 2074.1 362.03 0 0 0 
2074.1 4807.8 439.96 0 0 0 
362.03 439.96 574.47 0 0 0 

0 0 0 -1.11 0 0 
0 0 0 0 -1.08 0 
0 0 0 0 0 1688.6 

( )ip MPaC  output by the ECIM 

using numerical recursive 
method 

2569.8 2074.1 362.03 0 0 0 
2074.1 4807.8 439.96 0 0 0 
362.03 439.96 574.47 0 0 0 

0 0 0 -1.11 0 0 
0 0 0 0 -1.08 0 
0 0 0 0 0 1688.6 
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Facts are not science — as the dictionary is 

not literature. (Martin H. Fischer – 10 
November 1879 – 19 January 1962). 
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3 Hyperelastic characterization of the interlamellar 
domain and interphase layer in polyethylene 

 

 

 

 

 

HYPERELASTIC characterization of the noncrystalline phase in polyethylene is the main 
objective of this chapter. Inspired by the characterization idea presented in the previous 
chapter, a similar methodology for the hyperelastic characterization of the interlamellar 
domain and interphase layer in high density polyethylene is presented here. 
Hyperelastic behavior of the interlamellar domain and its components, namely the 
interphase and central amorphous phase, is attributed to the rubbery state of this region 

( PE
g 173KT > ). This understanding is in accordance with what is adopted in the 

literature for the large deformation behavior of amorphous polymers in the rubbery 
regime [48, 87, 88]. Indeed, the need for the hyperelastic constitutive properties of the 
interlamellar domain and its constituents is better appreciated in numerical simulation 
of large deformation of semi-crystalline polyethylene [48, 54, 55].  

The basics of the methodology consist in applying the governing equations of the 
hyperelastic continuum to stress-strain data from molecular dynamics simulations of a 
polyethylene stack [89]. Due to its simplicity, efficiency and widespread use, the neo-
Hookean model of rubber elasticity is adopted for the interlamellar domain and its 
constituents [48, 87, 88]. It should be emphasized that although the presented 
methodology is founded on the application of the neo-Hookean model, the identification 
notion does not lose its generality and can be deployed in a similar way with any other 
hyperelastic model such as Yeoh model, Moony-Rivlin model, generalized Gent model, 
Arruda-Boyce model and so forth. [90, 91].  
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 Simulation stack of the molecular dynamics analysis and the 3.1
imposed boundary conditions 

The MD simulation results that are employed here relate to a stack of PE that is 
comprised of two crystalline lamellae plus the interlamellar domain housed between 
them (see Figure 19A). The schematic of the simulated PE stack in its unloaded state 
along with the diagram of the density distribution in the longitudinal direction is 
reproduced from the basic MD study [89] in Figure 19B. It is worth noting that although 
the existence of the interphase layer that separates the core amorphous zone from the 
crystallites has extensively been evidenced, the transition in the cup-shaped density 
diagram again confirms the presence of this third, transitional constituent. Further 
details vis-à-vis the atomistic simulation are provided in the MD study by Lee and 
Rutledge [89].   

 

  
A B 

Figure 19. A) Schematic illustration of a PE stack and the relative positioning of the constituents. 

The arrows indicate the direction of the applied displacement constraints in the MD simulations. 

B) Edited schematic of the simulated PE stack in its unloaded state together with the average 

density distribution along the stack [89].  

 

The initial, unloaded length of the simulation PE stack (i.e. crystalline+noncrystalline 
phases) is 21.63 nm and it is loaded by imposing the longitudinal tensile stretch along 

the z-axis, 1z zλ ε= + , and simultaneous compressive lateral stretches xλ  and yλ . The xyz-

frame is defined as described in Figure 19. The deformation of the stack is recorded in 
800 increments up to the longitudinal strain 0.4917zε =  during which the lateral and 

longitudinal stresses are recorded. This information, i.e. longitudinal stretch and stress 
of the entire stack, zλ  and zzσ , respectively, together with the lateral stress 

distributions, xxσ  and yyσ , constitutes the database for the identification procedure 

deployed in this work. The main objective of this identification practice is the 
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hyperelastic characterization of the amorphous, interphase and interlamellar regions. 
The adopted approach is the minimization of a set of nonnegative objective functions 
that are defined using the assumption that the three domains of interest behave as 
isotropic, compressible, hyperelastic continua.  

 

 Methodology 3.2

The polyethylene element for which the MD simulations have been conducted by Lee 

and Rutledge [89] is subject to a global deformation gradient tensor, stackF . The 
incrementally imposed constraints of the stack during the simulation consists of 
longitudinal stretch of the stack along the z-axis, 1z zλ ε= + , and equal lateral stretches, 

xλ  and yλ . Whereas the interlamellar domain is assumed to be compressible, the lateral 

stretches are adjusted such that the entire stack deforms isochorically, meaning that  

 ( ) 1stack 2

0 0

det det 0 0 1

0 0

x

y x y z

z

λ
λ λ λ λ

λ

−
 
 = = ⇒ = = 
  

F   ( 26) 

Note that according to the simulation constraints, the lateral stretches are identical 
everywhere along the stack whereas the longitudinal stretch zλ  represents the average 

stretch of the entire stack. In other words, at each increment 
1

2
x y zλ λ λ −= =  for all the 

constituents of the stack while their respective longitudinal stretches may differ, i.e. 

il am ipz z z zλ λ λ λ− − −≠ ≠ ≠ . The superscripts or subscripts “il”, “am” and “ip”, used here and 

later on, indicate the interlamellar, amorphous and interphase regions, respectively. 
Accordingly, the deformation gradient tensor of the interlamellar, amorphous and 
interphase domains takes the following generic form    

 

1
2

1
β 2

-β

0 0

0 0

0 0

z

z

z

λ

λ
λ

−

−

 
 
 =
 
 
  

F   ( 27) 

where β replaces “il”, “am” and “ip”. It is worth mentioning that, contrary to zλ , the 

evolution of -βzλ  is a priori unknown and has not been recorded during the simulation. 

Indeed, ilzλ − , amzλ −  and ipzλ −  are treated as unknown functions of zλ  (or equally zε ) and 

are identified along with the hyperelastic coefficients. 
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 Hyperelastic constitutive law 3.3

The constitutive law of a compressible, isotropic, hyperelastic solid following the 
neo-Hookean model reads 

 ( )5
3

1J
J

µ κ′= + −σ B 1  ( 28) 

where σ  is the Cauchy stress, J  represents the determinant of the deformation gradient 

tensor F, ′B  stands for the deviatoric part of the left Cauchy-Green deformation tensor 
T=B FF  , 1 is the second-order identity tensor, and material parameters µ  and κ  

denote shear and bulk moduli, respectively. On the other hand, however, only the 
interlamellar region and its constituents behave hyperelastically and not the crystallites. 
Therefore, the deformation gradient tensor of the interlamellar domain and its 

constituents, βF  where β replaces “il” or “am” or “ip”, must be substituted in Eq.( 28) for 
the identification of their hyperelastic parameters. In the following, the procedure of 
hyperelastic characterization for the central amorphous phase and the interlamellar 
domain is elaborated first. Then the governing relationships of the interphase layer are 
incorporated into the final objective function where the hyperelastic parameters of the 
three domains are identified concurrently.  

Substitution of am/ilF  into Eq.( 28) yields  
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 

  − + + −  
  

  ( 29) 

Obviously, under the current simulation conditions, the shearing strains remain zero 
throughout the loading due to the simulation constraints. Additionally, it is understood 

from Eq.( 29) that the lateral stresses 
am/il
xxσ  and am/il

yyσ  are analytically identical, although 

the MD simulation results do not show such an identity. 

The lateral stresses xxσ  and yyσ  along the simulation stack have been recorded 

with the resolution of 1 Å during each increment. The two distributions at twelve sample 
strain increments are shown in Figure 20. Comparison of the two distributions for all 
800 increments, not shown here, reveals that the two distributions show noticeable 
disagreements for the most part of the loading. For the crystalline domain, the 
disagreement would have quite been expected because of the anisotropy of the 
crystallites. Although the disagreement between the two lateral stresses for the 
amorphous phase is not as strong as it is for the crystalline phase, it does not agree with 
our expectations given its initially isotropic symmetry. In the latter case, the source of 
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Figure 20. Distributions of the lateral stresses 
am
xxσ  and 

am
yyσ  along with the dimensionless order 

parameter P2 of the entire stack at twelve sample increments from MD simulations. 

 

such disagreements might be due to the small size of the initial simulation stack. It 
should however be noted that when talking about the lateral stress of the central 
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amorphous phase or interlamellar region, the mean value of 
am
latσ  and il

latσ , respectively,  

averaged over their respective length is intended. In other words, the evolution of the 
amorphous/interlamellar length (or boundaries) in the z-direction, which is initially 

unknown, is required for calculating the evolution of the mean value of 
am/il
latσ . Strictly 

speaking, at any increment, the current length of each domain in the z-direction is 
required for calculating the average of lateral stress of the domains involved. 

Given the equality of the right hand sides of the first two equations of the system 
of equations ( 29), one of the relationships is obviously trivial. Because of the 
redundancy of one of these relationships, the governing stress-stretch relationships for 
the amorphous/interlamellar region under the given mode of deformation are reduced 
to the following system of two independent equations  

 
( )

( )

5 52 1
3 3 3 3

5 51 2
3 3 3 3

am/il am/il -am/il
lat -am/il -am/il am/il

am/il am/il -am/il
-am/il -am/il am/il

1
3

2
1

3

z
z z z z

z

z
zz z z z z

z

µ λσ λ λ λ λ κ
λ

µ λσ λ λ λ λ κ
λ

−

−

  
= − + −  

  


  = − + − 
 

  ( 30) 

In summary, am/ilµ  and am/ilκ  are hyperelastic (neo-Hookean) parameters that are 

to be identified, 
am/il
zzσ  and zλ  are the normal stress and stretch of the stack in the z-

direction, respectively, which are outputs of the MD simulations, and 
am/il
latσ  is the 

average, lateral, normal stress of the amorphous/interlamellar phase. -am/ilzλ , however, is 

a dependent variable that is an unknown function of zλ  (or equally zε ) and is required 

for evaluating 
am/il
latσ . 

 

 Identification approach  3.4

Attempts were made to take advantage of the distribution of the “order 
parameter”, P2, for extracting the evolution of the amorphous/interlamellar boundaries. 
Calculated by means of the second Legendre polynomial coefficient, P2 is often used to 
quantify the orientational ordering in nematic systems [89]. P2 takes a maximum value 
of 1 for a perfectly uniaxially aligned system, 0 for a randomly oriented system, and -0.5 
for a system with random orientational order in a plane perpendicular to the axis of 
symmetry. This parameter is also shown in Figure 20 at twelve sample increments. The 
lowest part of the P2 distribution belongs to the central amorphous region, the highest 
values of the distribution signify the crystalline lamellae on either side of the simulation 
domain, and the transitional parts are characteristic of the interphase layers. 
Nonetheless, low resolution of data recording (4 Å) used for P2, lack of a universally 
established benchmark founded on P2 for separating different regions, and finally 
melting and recrystallization phenomena that occur at medium strains impede any 
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attempt to rely on this parameter for tracing the evolution of the initial 
amorphous/interlamellar elements.  

After trying several identification algorithms (e.g. taking either xxσ  or yyσ  or 

their arithmetic mean as the true lateral stress for each domain under study with 
boundary evolutions roughly approximated from P2 distributions and lateral stress 
distributions, …), the best scenario that suits the problem at hand is the one in which the 
hyperelastic coefficients of all domains involved along with their respective boundaries 
are identified simultaneously. The details of the implemented identification algorithm 
are as follows.  

The evolutions of the interlamellar/amorphous right and left boundaries, i.e. il-rz , 

am-rz , il-lz  and am-lz , are evidently functions of the longitudinal strain, zε . To clarify 

further, it is worth noting that, as discussed in the foregoing Subsection and in reference 
to the MD simulation conditions, the loading constraints are of displacement type, 

meaning that the longitudinal strain, zε , is imposed incrementally and simultaneously 

with lateral stretches such that: 1 1 1x y zε ε ε= = + − . With such loading conditions, it is 

evident that the independent variable is zε  and normal stresses (i.e. xxσ  , yyσ  and zzσ ) 

or the evolution of hyperelastic domains (i.e. il-rz , am-rz , il-lz  and am-lz ) are all dependent 

variables that are functions of zε . Additionally and mathematically speaking, since 

( )zz 1 zfσ ε= , the second relationship of the system of equations ( 30) suggests that 

( )am/il 2z zfλ ε− =  where in conjunction with the relationships of Eq.( 32), it is deduced that 

for this particular problem and simulation conditions, the interlamellar/amorphous 

right and left boundaries are functions of zε . It should be noted that the right and left 

boundaries of the amorphous and interlamellar domains are not necessarily symmetric 
with respect to the origin, z=0. Therefore, these boundaries are specified with “r” and “l”, 
designating right and left sides, respectively. Various functional forms, including 
polynomial, Fourier expansion, Gaussian expansion, etc., with unknown parameters can 
be assigned to each boundary. Here, a three-argument, polynomial form of dependence 
is adopted for each boundary. For instance, the right boundary of the interlamellar 
domain is described using the following form  

 

2 3
1 2 3 4

2 3
il-r 5 6 7 8

2 3
9 10 11 12

0 0.2165

0.2165 0.3046

0.3046 0.4917

z z z z

z z z z

z z z z

z

α α ε α ε α ε ε
α α ε α ε α ε ε
α α ε α ε α ε ε

 + + + ≤ ≤


= + + + < ≤
 + + + < ≤

  ( 31) 

where iα s are unknown parameters that remain to be identified. Forms of dependence 

similar to relation ( 31) are adopted for am-rz , il-lz  and am-lz  too, leading to a total of 48 

design parameters, iα  . The above form of dependence is easily deduced from the 
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second relationship of Eq.( 30). According to this relation, am/il/ipλ  is a direct function of 

zzσ  which shows two sharp, angle-like corners at 0.2165zε =  and 0.3046zε = , indicating 

that it can be split into three separate parts, each describable with a simple estimate 

such as polynomial. For a better comprehension of this selection, the evolution of zzσ  

obtained from the molecular simulation is given in Figure 21. Since am/ilzλ −  is a direct 

function of zzσ , therefore the amorphous and interlamellar boundaries will naturally 

exhibit similar dependence. This is the reason why a three-argument functional form for 
these boundaries is a more elegant option in lieu of a smooth, single argument one.  

 

Figure 21. Evolution of zzσ  with zε  recorded during the MD simulations [89]. The slope of the 

curve changes sign at the extrema points 0.2165zε =  and 0.3046zε = .     

 

Having adopted the functional forms of il-rz , am-rz , il-lz  and am-lz  with 48 unknown 

parameters, the stretches of the amorphous, interlamellar, and right and left interphase 
domains read as follows  

 am-r am-l il-r am-r am-l il-lil-r il-l
z-am z-il z-ip-r z-ip-l

am-r am-l il-r il-l il-r am-r am-l il-l0 0 0 0 0 0 0 0

, , ,
z z z z z zz z

z z z z z z z z
λ λ λ λ− − −−= = = =

− − − −
 ( 32) 

where 
0

z  indicates the position at the unloaded state. With the above stretches, the 

hyperelastic parameters of the amorphous and interlamellar domains can be calculated 
using the second relationship of Eq.( 30) and a simple least squares technique. 
Expansion of the second relationship of Eq.( 30) for the amorphous and interlamellar 
domains for the 800 increments of loading yields  
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  ( 33) 
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  ( 34) 

Obviously, the above systems of equations do not have solutions for the 
amorphous and interlamellar hyperelastic parameters since the number of independent 
equations is way greater than the number of unknowns. However, to find the best 
estimate for these coefficients, the least squares technique is used. According to the least 
squares technique [92], the best set of hyperelastic parameters for the amorphous and 
interlamellar domains are obtained as follows 

 

( )
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am am

am am
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il il
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am am am am am
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LS LS

, with

, with

Y Err Y

Y Err Y
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κ κ
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−

   = Λ Λ Λ = − Λ   
   

   = Λ Λ Λ = − Λ   
   

  ( 35) 

where am/ilΛ  and Y  are introduced in relationships ( 33) and ( 34) with amErr  and ilErr  

being the errors of the least squares estimates. In the ideal case, these error expressions 
go to zero. In general, however, they must be brought as close to zero as possible. 
Therefore, a multi-objective optimization problem is formulated in which the first and 
second objective functions are defined as the least squares errors of the above 
estimates:  
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 ( ) ( )1 1T T T T
1 am am am am 2 il il il il,OF Y Y OF Y Y

− −
= − Λ Λ Λ Λ = − Λ Λ Λ Λ   ( 36) 

Moreover, the system of equations ( 30) can be similarly developed for both interphase 
layers.   

 

( )

( )

( )5 5 5 52 1 2 1
3 3 3 3 3 3 3 3

5 51 2
3 3 3 3

ip -ip-r ip -ip-lip-r ip-l
lat -ip-r -ip-r ip lat -ip-l -ip-l ip

ip -ip-r ip
-ip-r -ip-r ip

1 1
3 3

,
2 2

1
3 3

z z
z z z z z z z z

z z

z
zz z z z z zz

z

µ λ µ λ
σ λ λ λ λ κ σ λ λ λ λ κ

λ λ
µ λ µ

σ λ λ λ λ κ σ λ
λ

− −

−

    
= − + − = − + −    

    


  = − + − = 
 

( )5 51 2
3 3 3 3 -ip-l

-ip-l -ip-l ip 1z
z z z z

z

λ
λ λ λ κ

λ
−






  − + − 
 

  ( 37) 

Expecting identical constitutive properties for both interphase layers, the second 

relationships of the systems of equations ( 37) imply  z-ip-l z-ip-rλ λ= , where in conjunction 

with the first relationships results in  
ip-l ip-r
lat latσ σ= . Therefore, the third objective function 

is defined as follows 

 
800

3 ip-r ip-l i
i

OF λ λ= −∑   ( 38) 

In addition, the hyperelastic parameters of the interphase layer can be identified like the 
interlamellar and amorphous hyperelastic parameters:  

( )

( )

( )

5 51 2
3 3 3 3

5 51 2
3 3 3 3
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3 3 3 3
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ip

ip

-ip
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1 1

-ip
-ip -ip

2 2

-ip
-ip -ip

800 800

2
1

3

2
1

3

2
1

3

z
z z z z

z
z

z
z z z z

z

z
z z z z

z

µ

κ

λ
λ λ λ λ

λ σ
λ

λ λ λ λ
λ

λ
λ λ λ λ

λ

−

−

−

Λ

  
− −  

  
 

  − −      =       
 

  
− −  

   

⋮ ⋮

��������	�������


( )ip-ls

ip-ls

1T T

ip ip ip

1

2

LS

800

z

zz
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Y

Y
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κ

σ

σ

−
Λ Λ Λ

 
 
   
  ⇒ = 
   
 
  

⋮

��	�


 

 ( 39) 

Similar to the first and second objective functions, the fourth objective function is 
defined as the error of the least squares estimate of Eq.( 39).  

 ( ) 1T T
4 ip ip ip ipOF Y Y

−
= − Λ Λ Λ Λ   ( 40) 

On the other hand, the force equilibrium in the lateral direction requires that  

 ( ) ( ) ( ) ( )ip-r am ip-l il
il-r am-r lat am-r am-l lat am-l il-l lat il-r il-l latz z z z z z z zσ σ σ σ− + − + − = −   ( 41) 
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The average lateral stresses appearing in the above equation are calculable by 
substituting the corresponding hyperelastic parameters into the first relationship of 
Eq.( 30). Therefore, the fifth objective function is constructed as follows 

 

( ) ( )

( ) ( )

( ) ( )

5 52 1
3 3 3 3

5 52 1
3 3 3 3

5 52 1
3 3 3 3

800
ip z-ip

5 am-l am-r il-r il-l z-ip z-ip ip
1

am z-am
am-r am-l z-am z-am am

il z-i
il-r il-l z-il z-il il

1
3

1
3

3

z z
i z

z z
z

z z

OF z z z z

z z

z z

µ λ
λ λ λ λ κ

λ

µ λλ λ λ λ κ
λ

µ λλ λ λ λ κ

−

=

−

−

  
= − + − − + − +  

  

  
− − + − −  

  

− − +

∑

l 1
z i

λ
  

−   
  

  ( 42) 

The sixth objective function is built by requiring that the average lateral stresses of both 
interphase layers, which are calculated by integrating the lateral stress distributions 
from MD simulations, are as close as possible. Mathematically speaking,  

 ( ) ( )
800

ip-r ip-r ip-l ip-l
6 lat-xx lat-yy lat-xx lat-yy

i
i

OF σ σ σ σ= + − +∑   ( 43) 

And finally, the last objective function is defined as follows 

 ( )
800

am am am
7 lat xx / 2yy

i
OF σ σ σ= − +∑   ( 44) 

where am
latσ  denotes the lateral stress of the amorphous phase calculated by substituting 

amµ  and amκ  into the first relationship of the system of equations ( 30), and 

( )am am
xx / 2yyσ σ+  is the arithmetic mean of the amorphous lateral stresses averaged over 

its identified domain. The explanation for this particular selection is provided in 
Subsection  3.6.  

A multi-objective optimization tool is the most suitable approach for finding the 
global minimum of the above problem. In the absence of such a tool, we opted to fusing 
all the objective functions into a single nonnegative objective function as follows         

 tot 1 2 3 4 5 6 7OF OF OF OF OF OF OF OF= + + + + + +   ( 45) 

and the combination of “interior point” and “SQP” algorithms of the constrained 
nonlinear minimization tool of MATLAB® software is used for finding the optimal point. 
The objective functions, however, are usually accompanied by a set of linear and / or 
nonlinear constraints in the form of equalities and / or inequalities. For the problem 
considered here, the following logical constraints are applicable: 
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( ) ( ) ( ) ( )
( ) ( )

am-r am-l il-r il-l0 0 0 0

am/il/ip am/il/ip

am-r am-r am-l am-l il-r il-r il-l il-l0 0 0 0

am-r am-r am-l am-800

3.3nm 3.8nm, 4nm 3.5nm, 4.8nm 5.3nm, 5.5nm 5nm

Max Min

0, 0.2 GPa

Min ,Max , Min ,Max

,

z z z z

z z z z z z z z

z z z z

µ κ
< < − < < − < < − < < −

> >

= = = =

= = ( ) ( )l il-r il-r il-l il-l800 800 800
Max Min, ,z z z z= =

  ( 46) 

The bounds of the amorphous and interlamellar domains at the no loading state are 
determined from the density distribution at the no loading state, Figure 19, as well as 
the distributions of the lateral stress at the very first loading increment. The bounds of 
the extremes of the boundaries come from the diagrams of Subsection  3.6. Minimization 

of totOF  and finding the optimal point is equivalent to the hyperelastic characterization 

of the domains involved as well as approximating the evolutions of the boundaries in 
question. 

 

 Results and discussion 3.5

 Enforcing the continuity between the arguments of il-rz , am-rz , il-lz  and am-lz , as 

introduced in relation ( 31), reduces the number of design parameters, iα s, from 48 to 

40, which is yet rather high and demanding in terms of CPU time for the adopted 
combinatory optimization tool. As another drawback, the optimization tool that is 
employed here shows a strong dependence on the starting point. To circumvent this 
problem, the approximate solution obtained from the Genetic Algorithm optimization 
module after several generations can be used as the starting point. To increase the 
likelihood of the convergence to the global minimum, several initial points are examined 

and final solutions are compared. The set of iα  identified by means of the presented 

methodology are given below to facilitate the reproduction of the relevant curves and 
diagrams: 

 iα , 1,2,...12i =  for the right interlamellar boundary: 

1 2 3 4

5 6 7 8

9 10 11 12

51.8Å, 58.1Å, 44.8Å, 119.5Å, 

55.4Å, 35.0Å, 9.1Å, 4.7 Å, 

30.0Å, 227.2Å, 480.1Å, 437.4Å 

α α α α
α α α α
α α α α

= = = − =
= = = =
= = = − =

 

iα , 13,14,...24i =  for the right amorphous boundary: 

13 14 15 16

17 18 19 20

21 22 23 24

33.0Å, 37.6Å, 28.2Å, 76.0Å, 

31.6Å, 66.8Å, 163.0Å, 215.2Å, 

19.3Å, 145.6Å, 311.3Å, 287.3Å 

α α α α
α α α α
α α α α

= = = − =
= = = − =
= = = − =

 

iα , 25,26,...,36i =  for the left amorphous boundary: 
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25 26 27 28

29 30 31 32

33 34 35 36

36.1Å, 38.5Å, 29.1Å, 62.8Å, 

32.8Å, 87.0Å, 230.8Å, 278.6Å, 

16.2Å, 177.2Å, 350.4Å, 288.4Å 

α α α α
α α α α
α α α α

= − = − = = −
= − = − = = −
= − = − = = −

 

iα , 37,38,..., 48i =  for the left interlamellar boundary: 

37 38 39 40

41 42 43 44

45 46 47 48

54.9Å, 59.3Å, 44.5Å, 97.9Å,

56.9Å, 51.8Å, 31.5Å, 5.3Å,

23.9Å, 277.6Å, 556.7 Å, 463.4Å 

α α α α
α α α α
α α α α

= − = − = = −
= − = − = = −
= − = − = = −

 

The initial length of the hyperelastic elements are calculable form the intercepts of the 
amorphous and interlamellar boundaries. Accordingly, the initial length of the 
interlamellar, amorphous and interphase domain identified in this study are 106.7 Å, 
69.1 Å and 18.8 Å, respectively. 

 Having applied the above explained methodology together with the assumed neo-
Hookean behavior, the hyperelastic parameters of the three domains of interest are 
identified as follows: 

 ipam il

am il ip

35.5MPa32.3MPa 33.4MPa
, ,

2.73GPa 2.73GPa 2.74GPa

µµ µ
κ κ κ

== =  
  = = = 

  ( 47) 

Given that in the neo-Hookean model, the shear parameter is an index of the rigidity of 

the medium, the expectation that am ipµ µ<  is obviously satisfied because the interphase 

layer is known to be stiffer than the central amorphous phase. Furthermore, in the 
existing studies where the hyperelasticity of the noncrystalline domain is incorporated 
into the large deformation formulation of PE, it is assumed that at room temperature 

il 35MPaµ = [48, 87, 88]. Indeed, Sedighiamiri et al. [87] assert that the best fit to 

experimental results is seen when il 35MPaµ = . Keeping in mind that the stiffness of 

amorphous polymers in the rubbery regime weakly increases with temperature, one 
would have expected values slightly higher than 35MPa for the interlamellar domain 
and much higher for the interphase layers. Rerunning MD simulation for a larger PE 
stack might help to fulfill this expectation. Although the bulk modulus is not as 
significant as the shear parameter, the identified bulk moduli are also in agreement with 
the mean values of 2 GPa and 3 GPa used elsewhere [48, 64, 87, 88]. As discussed in 
Subsection  3.6, this last parameter is identified with a lower degree of certainty as 
compared to the shear modulus. 

To evaluate the success of the characterization algorithm in attaining the defined 
goal, that is finding the minimum of the positive objective functions, the boundaries and 
stretches of the left and right interphase layers are plotted in Figure 22 and Figure 23, 
respectively. Evidently, the evolutions of the four boundaries look qualitatively like 
those suggested by the plots of P2 parameter from Figure 12(b) of the underlying MD 
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study [89]. Additionally, if their respective intercepts are subtracted, the pair 
boundaries of the amorphous and interlamellar domains are almost each other’s mirror, 
as one might have anticipated. As another sign of the successful optimization, the 

diagrams of ip-lλ  and ip-rλ  in Figure 23 show excellent agreement. The analytical 

diagram 

 

Figure 22. Evolution of the amorphous and interlamellar boundaries with longitudinal strain. The 

boundaries are identified by minimizing totOF  under the constraints given in relationship ( 46). 

 

 

Figure 23. The evolution of the right and left interphase stretches as defined in Eq.( 32) . The 

analytical curve of ipλ  calculated by substituting the identified ipµ  and ipκ into the second 

relationship of Eq.( 30) agrees well with the two others.  
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of ipλ  too, plotted by substituting the identified ipµ  and ipκ  into the second relationship 

of Eq.( 30) agrees very well with the two other ones. And finally, the evolutions of the 
average lateral stresses integrated over the two interphase layers are plotted in Figure 
24. The two diagrams are in good agreement with slight, acceptable differences at 
medium and large strains that are probably due to the limited size of the simulation 
stack. Moreover, since smooth functional forms have been adopted for probably noisy 

boundaries, naturally a higher level of noise is pushed into the diagrams of ip-l
latσ  and ip-r

latσ
. In other words, the disagreement between the two diagrams of Figure 24  may be 
further attenuated by allowing the boundaries to behave less smoothly. 

 

 

Figure 24. Diagrams of the average lateral stresses of the left and right interphase layers, 

( )ip-r/l ip-r/l0.5 xx yyσ σ+ . Both diagrams are obtained by integrating the distributions of the lateral 

stresses over the identified left and right interphase domains. 

 

Having determined the evolution of the amorphous and interlamellar boundaries, 

the evolution of their respective xxσ  and yyσ  can be found by integrating over the 

appropriate intervals. The diagrams of am/il
xxσ , am/il

yyσ  and their arithmetic mean obtained 

by integration, along with am/il
latσ  curve plotted by substituting the identified am/ilµ  and 

am/ilκ  into the first relationship of Eq.( 30) are superposed in Figure 25 and Figure 26. A 

quick comparison suggests that, as one would have expected, the arithmetic mean of the 
two lateral stresses is a more reliable identification source for hyperelastic 
characterization than the individual lateral stress diagrams. Moreover, the diagrams of 

am/il/ip
xxσ  and am/il/ip

yyσ , which are obtained by integrating xxσ  and yyσ  distributions, start 

unsmoothly at the origin and exhibit an unusual jump to nonzero values immediately 
after being stressed. This behavior is not in accordance with one’s anticipation in 
addition to disagreeing with the corresponding analytical diagrams. Therefore, one can 
conclude that the data associated with the initial parts of the lateral stress distributions 
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is not reliable enough for identification. Whether this disagreement is due to the small 
size of the simulation stack or has other reasons behind, warrants further simulations.  

 

Figure 25. Evolution of am
xxσ , 

am
yyσ  and ( )am am0.5 xx yyσ σ+  obtained by integration over the domain 

confined by the identified amorphous boundaries. The amorphous lateral stress curve calculated 

by substituting the identified amµ  and amκ  into the first relationship of Eq.( 30) is superposed. 

The noisiness of the lateral stress computed by Eq.( 30) can be traced to the simulation data for 

zzσ  which imparts fluctuations to amzλ −  through Eq.( 33). 

 

 

 

Figure 26. Evolution of il
xxσ , 

il
yyσ  and ( )il il0.5 xx yyσ σ+  obtained by integration over the domain 

confined by the identified interlamellar boundaries. The interlamellar lateral stress curve 

calculated by substituting the identified ilµ  and ilκ  into the first relationship of Eq. ( 30) is 

superposed. 

Moreover, the melting phenomenon that has been observed during MD 
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captured by the presented continuum mechanics analysis. To elaborate, it is worth 
recalling that the plasticity of the crystallites produced by slip as well as the deformation 
mode of the entire PE stack is isochoric, while the noncrystalline domain deforms 

compressibly, simply because am/il/ipκ ≠ ∞ . Since the entire stack deforms isochorically, 

the volume change due to the interlamellar domain is compensated either by void 
creation or by phase transformation. The former has been clearly observed in a separate 
MD simulation carried out under a faster mode of deformation and the latter has taken 
place in the deformation mode under survey [89]. Therefore, melting and/or 
recrystallization at the crystalline and noncrystalline interface should take place to 
accommodate the imposed volume conservation constraints.  

The occurrence of such phenomena changes the current length of the 
hyperelastic element in addition to the elongation produced by the mechanical loading. 
In the adopted constitutive law, however, the elongation due to the mechanical loading 
is concerned and there is no need to take into account the change in the size of the 
hyperelastic element due to melting. Properly speaking, the logic of the problem and 

governing equations necessitates that am/il/ipzλ −  appearing in the constitutive law relates 

to the same element that is initially marked out as the hyperelastic element without any 
mass exchange through their boundaries. Keeping this in mind, if melting occurs during 
the loading and part of the crystallites near the interface transforms into the 
noncrystalline phase, then the real, new interlamellar boundaries will be due to the 
stretching of the interlamellar domain engendered by loading plus the change in size 
due to the phase transformation. For characterization purposes and for the governing 
equations to remain valid, the change in length due to the phase transformation, if any, 
must be excluded from the evolution of the boundaries. For the problem examined in 
this study, the dominant phenomenon is melting; therefore there is no need to revise the 
initial length of the hyperelastic elements. Additionally, through a clear mathematical 
expression of the physics of the problem and defining relevant objective functions along 
with logical constraints, the need for reading the current position of the 
amorphous/interlamellar boundaries at each loading increment is avoided and these 
boundaries are identified along with the hyperelastic coefficients.  

Another phenomenon captured by the presented continuum mechanics analysis 
is the rotation of the crystalline chains. In the basic MD simulation, the crystalline stems, 
which are initially oriented at ~ 30° with respect to the interface normal, start to rotate 
with loading to get aligned with the applied stress. This rotation continues up to 

0.21zε ∼ , by which point the chains are fully aligned with the deformation direction.  

The fully aligned state continues up to 0.3zε ∼ , at which point the chain segments revert 

to their initial tilted state, albeit imperfectly. The stretch diagrams of the three domains 
along with the affine stretch line which are superposed in Figure 27 clearly show this 
phenomenon. Keeping in mind that in the absence of any phase transformation, the 
following relationship holds 
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 il z-il cr z-cr ip z-ip am z-am cr z-crat each increment: zλ η λ η λ η λ η λ η λ= + = + +   ( 48) 

where cr/il/am/ipzη −  indicates the initial volume fraction of the associated phase, one expects 

that the stretch of the least rigid phase will be higher than zλ . In comparison with the 

crystalline phase, the amorphous/interlamellar domain is more compliant, but the 

diagrams of Figure 27 suggests that z-crλ , z-amλ  and z-ipλ  have almost the same 

contribution up to ~ 0.21zε . Without resorting to the details of the MD observations and 

given the higher rigidity of the crystallites, the likeliest mechanism responsible for such 
a level of contribution from the crystalline phase is the rotation of the crystalline chains 

and their alignment in the direction of the applied stress. For 0.21 0.3zε< < , the 

contribution of il/am/ipzλ −  becomes still lower. The associated part of the stretch diagrams 

agrees well with the MD observation where melting takes place at the crystalline-
noncrystalline interface within this straining interval. In other words, with the rotation 

mechanism being exhausted at ~ 0.21zε , the likeliest mechanism that contributes 

substantially to the overall stretch of the stack and lowers the contribution of il/am/ipzλ −  is 

the melting of the crystalline phase. One may reason that looser packing and 
consequently lower density of the newly added, noncrystalline portion relative to the 
previously crystalline phase makes the melting phenomenon equivalent to a local 

dilatation which is responsible for lowering the contribution of il/am/ipzλ − . After ~ 0.3zε , 

the slope of the il/am/ipzλ −  diagrams becomes steeper indicative of a rise in the 

contribution of the stretch from the corresponding phases. This part of the diagrams is 
consistent with the reversion of the chain stems from the aligned state to the slant state, 
due possibly to the interlamellar shear that develops at this stage [93].  

 

Figure 27. Evolution of amλ , ilλ  and ipλ  with zε . The three stretches evolve very closely.  zλ  of the 

entire stack is superposed for comparison. 
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 Sensitivity analysis 3.6

In this section, first the authenticity of the arithmetic mean of the two lateral 

stresses within the amorphous interval, i.e. ( )am am am
lat 0.5 xx yyσ σ σ= + , for hyperelastic 

characterization is investigated. Then an analysis is conducted to examine the level of 
certainty of the identified hyperelastic coefficients.  

The density distribution at no loading state and lateral stress distributions at the 
very first loading increment can be utilized for locating the centers of the interphase 
layers. Two straight lines representing the average density values of the crystallites and 
the central amorphous phase are drawn (Figure 19) whose median intersects the 
density distribution at -45 Å and 43 Å. Moreover, the lateral stress distributions at the 
very first increment of loading have two picks at -45 Å and 43 Å (Figure 28A). It can 
therefore be concluded that the centers of the left and right interphase layers are located 
at -45 Å and 43 Å. Given that the interphase thickness varies from 10-20 Å [39, 42], the 
left and right ends of the interlamellar and amorphous domains are bounded to [-55..-
50] Å, [48..53] Å, [-40..-35] Å and [33..38] Å, respectively. Therefore, as illustrated in 
Figure 28B, the shortest and longest amorphous intervals are confined to [-35..33] Å and 
[-40..38] Å, respectively. Similarly for the interlamellar domain, the shortest and longest 
intervals are confined to [-50..48] Å and [-55..53] Å, respectively. Assuming affine stretch 

evolutions for both amorphous and interlamellar regions, i.e. am il -stack 1z zλ λ λ ε= = = + , 

the evolution of the shortest/longest amorphous/interlamellar interval is obtainable. 

The diagrams of am/il
xxσ , am/il

yyσ  and ( )am/il am/il am/il
lat 0.5 xx yyσ σ σ= +  averaged over the shortest and 

longest intervals are given in Figure 29 and Figure 30, respectively. In conjunction with 
the diagrams of Figure 25 and Figure 26, it is concluded that the diagrams of 

( )am/il am/il am/il
lat 0.5 xx yyσ σ σ= +  are closer to the typical analytical diagrams of the lateral stress 

distribution. On the other hand, it is evident that the amorphous lateral stresses show a 
weak dependence on the integration interval as compared to the interlamellar lateral 

stresses. This is the reason why the seventh objective function, 7OF , is defined 

accordingly.  

To evaluate the certainty of the identified hyperelastic parameters, the analytical 
diagrams of the lateral stress distribution for typical values of hyperelastic coefficients 
are plotted in Figure 31. In other words, typical shear and bulk moduli are substituted in 

the second relationship of the system of equations ( 30) and am/ilzλ −  is calculated 

numerically. Then am/ilzλ − , am/ilµ  and am/ilκ  are fed into the first relationship of the system 

of equations ( 30) to calculate the associated lateral stress distribution. It can be seen 
that when 0.3GPaκ >  or 5MPaµ < , the lateral stress distribution diagrams show a 

weak sensitivity and as such, the identified coefficient has a lower degree of certainty. 
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The identified shear moduli for the three hyperelastic domains of interest are greater 
than 30 MPa whereas the identified bulk moduli are around 2.7 GPa. Therefore, it can be 
asserted that the shear moduli are identified with a high degree of certainty whereas the 
identified bulk moduli have a lower degree of certainty. 

 

  
A B 

Figure 28. A) Lateral stress distribution along the PE stack at the first increment of loading. The 

picks of the distribution denote the centers of the interphase layers. B) The shortest and longest 

amorphous and interlamellar intervals at the first loading increment which is assumed to be valid 

for the no-loading state. 

 

 

Figure 29. Evolution of the average lateral stress distributions am
xxσ , am

yyσ  and ( )am am am
lat 0.5 xx yyσ σ σ= +  

of the amorphous phase. The averages are calculated by integrating over the evolutions of the 

shortest and longest amorphous intervals. 
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Figure 30. Evolution of the average lateral stress distributions 
il
xxσ , 

il
yyσ  and ( )il il il

lat 0.5 xx yyσ σ σ= +  

of the interlamellar domain. The averages are calculated by integrating over the evolutions of the 

shortest and longest interlamellar intervals.  

 

  
(A) (B) 

Figure 31. Analytical diagrams of lateral stress distribution plotted using typical coefficients in 

system of equations ( 30) for a hyperelastic element. (A) The shear modulus is fixed at 25 MPa and 

the sensitivity of latσ  to bulk modulus is examined. (B) The bulk modulus is fixed at 1 GPa and the 

sensitivity of latσ  to shear modulus is examined. 
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4 Large, viscoplastic deformation of semi-
crystalline polyethylene 

 

 Introduction  4.1

PLASTICITY of semicrystalline polyethylene has been extensively investigated both 
experimentally [94-100] and theoretically [48, 50, 54, 101-103]. The interest in the 
subject has been prompted by the daily increase in the structural applications of 
semicrystalline polymers, notably semi-crystalline polyethylene. Large plastic 
deformations in semi-crystalline polymers usually lead to the development of high 
anisotropy and preferential texturing simply due to their semi-crystalline 
microstructure. This new texturing and anisotropy may particularly take place during 
their forming processes where large strains are involved. The new anisotropies achieved 
in this way are sometimes quite desirable. Semi-crystalline polymers that are processed 
into fibers and ribbons with excellent mechanical performance in preferred directions 
are examples of desirable anisotropies. 

The significance of the concept of semi-crystallinity is better appreciated when 
one notices that a purely amorphous polyethylene would be a soft, viscous substance 
and on the other side, a purely crystalline polyethylene sample would be extremely 
fragile. The polyethylene samples are, virtually, composites of both phases. The 
proportion of the constituents, their relative arrangements, and the level of connectivity 
between them decide the effective mechanical properties of the polyethylene sample.  
The end-use property of the semi-crystalline polyethylene depends on the interplay 
between the crystalline and noncrystalline domains. Properly speaking, the mechanical 
performance of semi-crystalline polyethylene is a function of the underlying 
microstructure. The most important microstructural features include crystallinity, initial 
crystallographic texture and molecular orientation. There are numerous experimental 
techniques available in the literature on the quantification of the crystallinity in 
polyethylene samples [104, 105]. Concerning the orientation of the chain axis of each 

inclusion, Ic , and its lamella normal, In , they can be experimentally traced by means of 
WAXS pole figures and 2D SAXS, respectively [106]. The molecular orientation of the 
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noncrystalline domain, on the other hand, can be found by virtue of WAXS 
measurements in conjunction with pole figure technique and separation of the 
scattering produced by the crystalline and amorphous components [107].       

Experimental studies on the plasticity of semi-crystalline polymers have by and 
large explored the topic from the perspective of the morphological changes, the 
identification of deformation mechanisms, and the characterization of deformation 
resistances. The plastic deformation of semicrystalline polymers is in principle of 
crystallographic nature although being very complicated when considered on the scale 
of crystallite dimensions and from the viewpoint of interplay between the crystalline-
noncrystalline phases. The mechanisms involved in the plasticity of semicrystalline 
polymers have been comprehensively reviewed by Bowden and Young [97], Haudin [98] 
and Galeski [108], among many others. Of the existing semicrsytalline polymers, the 
data for the high density polyethylene is quite abundant basically owing to its simple 
molecular structure and ease of preparing samples with high degree of crystallinity. 
Single crystal state of high density polyethylene has been approximated by Bartczak et 
al. [99] with bulk samples compressed under plane strain state in a channel die. Large 
deformation of high density polyethylene has also been experimentally investigated 
under a variety of deformation modes including uniaxial tension and compression [100, 
109] as well as simple shear [110, 111]. The distinguishing feature of the plasticity in 
semi-crystalline polymers is the inextensibility of chain segments in the crystallites. 
Indeed, the folded chain structure of the crystalline phase constrains the arbitrary 
plastic deformation of crystallites. This means that there are less than five independent 
slip systems to accommodate arbitrary plastic deformation. This understanding needs to 
be taken into account when analyzing the plasticity of semi-crystalline polymers 
numerically.  

In the available numerical studies that have dealt with the simulation of the 
plastic deformation and texture evolution in semi-crystalline polyethylene, the principal 
differences lie in the localization law and the constitutive laws adopted for each 
component. In this study, for the localization law, use is made of the complete version of 
modified Taylor approach proposed by Ahzi et al. [51] together with Sachs approach. On 
the other hand, the viscoplastic constitutive law adopted for the crystalline phase is no 
different from what is chosen for this phase in most of the relevant studies. For the 
noncrystalline phase, however, three different statistical mechanics constitutive laws, 
viz. 3-chain model, 8-chain model and Gent model, are adopted to model the back stress 
and final results in terms of the number of rigid links required for each model are 
compared. As an objective, this chapter aims to determine which model requires a more 
realistic value for the number of rigid links.  

In this reexamination, the stress-strain response and texture evolution of an 
aggregate of polyethylene subjected to finite strains is revisited. For simplification 
purposes, the elasticity and pressure sensitivity of the phases are neglected and it is 
assumed that each phase exhibits a viscoplastic behavior. As another simplifying 



Chapter IV- Large, viscoplastic deformation of semi-crystalline polyethylene 
 

65 
 

assumption, the interphase layer and central amorphous domain are treated as a single 
unified domain. This assumption reduces the complexity level of developing the 
associated code without any appreciable compromise in the accuracy of the results. 
However, in case the hyperelastic properties of each of these domains are provided 
separately, the homogenized hyperelastic properties of the entire noncrystalline domain 
can be identified using the ideas of Chapter III, and then plugged into the governing 
equations. 

 

 Constitutive laws 4.2

The constitutive laws adopted for the crystalline and noncrystalline phases are 
identical with those presented in [51]. The linear elasticity and pressure sensitivity of 
the components is neglected and their finite deformation is assumed to be strain rate-
dependent.   

4.2.1 Viscoplasticity of the crystalline phase 

The plastic mechanisms of deformation in polyethylene crystallites are 
crystallographic slip, twinning and stress-induced martensitic transformations. Of these 
mechanisms, the deformation due to slip is dominant, which is considered to be the only 
driving mechanism in this work. For the large deformation of crystalline phase in HDPE, 
the viscoplastic power law relationship correlates the microscopic strain rate and the 
resolved shear stress. Following the previous similar studies [51, 54, 112-114], the 
following rate-dependent constitutive law is adopted for the crystallites 

 
1

0

cn

g g

α α
α

α α
τ τγ γ

−

=ɺ ɺ   ( 49) 

where 0γɺ  is a reference strain rate, ατ  ( )gα≤  is the resolved shear stress on system α , 

cn  is a non-linear rate exponent and gα  is the shear resistance of slip system α , which 

is given in Table 4 in front of each slip system. As discussed in chapter I, the dominant 
crystalline structure of high density polyethylene is orthorhombic with the lattice 
parameters a=7.4 Å, b=4.93 Å and c=2.54 Å, where c is the crystallographic axis 
coinciding the chain direction. Experimental results indicate that there exist four 
linearly independent slip systems in the orthorhombic crystal structure of HDPE, 
summarized in Table 4. The slip system strength, on the other hand, may evolve with 
deformation as follows  

 
1

K

g hα αβ β

β
γ

=

=∑ ɺɺ   ( 50) 
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where hαβ  are the components of the matrix of hardening moduli. Since the thin 
crystalline lamellae cannot retain dislocations, the strain hardening is neglected. 

Additionally, the shear resistances, gα , are assumed to remain constant with the 

ongoing deformation.    

Table 4. Slip systems of the crystallite in high density polyethylene along with their respective slip 

resistances adopted from [48, 50, 55]. 

Type of slip Slip system Normalized shear 
strength 

Chain slip 
( )
( )
{ }

100 001

010 001

110 001

  

  

  

 

1.0

2.5

2.5

 

Transverse slip 

( )
( )
{ }

100 010

010 100

110 110

  

    

1.66

2.5

2.2

 

 

4.2.2 Viscoplasticity of the noncrystalline phase  

Similar to the crystalline phase, a power law relationship is assumed between the 
local shear rate and its corresponding shear stress. This power law is an approximation 
of the exponential law proposed by Argon [115] for the glassy state of amorphous 
polymers. The simple viscoplastic power law relationship correlating the plastic shear 

rate, ilγɺ , and the effective shear stress of the rubbery noncrystalline phase, ilτ , in semi-

crystalline polyethylene reads 

 

il
il

il
0

il 0

n

a

τγ γ
τ

 
=  

 
ɺ ɺ   ( 51) 

In the above relationship, iln  and 0γɺ  denotes the rate exponent and the reference strain 

rate,respectively, which are set equal to their counterparts in the crystalline phase, for 
simplicity and without loss of any generality. As such, the symbol n  is chosen to 

represent the rate exponent of both phases, that is il cn n n= = . If 0τ  is set to represent 

the shear resistance of the easiest slip system in the crystalline phase, the dimensionless 

coefficient ila  can be adjusted such that the product il 0a τ  equals the reference shear 

strength of the amorphous domain.  

Application of the mechanical loading to the molecular chains in the 
noncrystalline region make them start getting aligned in the direction of the maximum 
stretch leading to anisotropy in the resistance of the noncrystalline domain to plastic 
deformation. To take this effect into account when deriving the tensorial constitutive 
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law, a back stress tensor, ilH , is introduced into the flow rule, following Boyce et al. 
[116]. This term is responsible for including the changes that the alignment of the 
molecular chains brings about in the plastic resistance of the interlamellar zone [51]. 

Letting ilD  and ilS  denote the strain rate tensor and deviatoric Cauchy stress tensor of 
the noncrystalline domain, respectively, the driving stress created in the noncrystalline 

domain is defined as il il−S H . Therefore, the resolved shear stress, ilτ , is defined as the 

norm of the driving stress:  

 ( )( )il il il il il1

2 ij ij ij ijS H S Hτ = − −   ( 52) 

Substitution into Eq.( 51), the tensorial form of the associated constitutive law reads as 
follows:  

 

1il il il il
il

0
0 0

n

a a
γ

τ τ

−
− −= S H S H

D ɺ   ( 53) 

The form of the back stress model, ilH , is defined according to the chain network model 
adopted for the interlamellar domain.  

 

4.2.3 Back stress models 

In modeling rubber elastic materials, there exist two perspectives: statistical 
mechanics (or micromechanically motivated) treatment and invariant-based or stretch-
based continuum mechanics treatment. The phenomenological (or continuum-based) 
models which are based on the invariants of the left Cauchy-Green deformation tensor, 
lack a direct physical linkage to the underlying mechanisms of deformation. Of such 
models, one can mention Mooney, Rivlin, Valanis and Landel, Yeoh, and so forth [66, 
117]. The most sophisticated one belongs to Ogden [118] who proposes the following 
strain energy density function  

 ( )1 2 3 3n n nn

n n

G
W α α αλ λ λ

α
= + + −∑   ( 54) 

where nG  and nα  are fitting parameters and may take on any value including non-

integers. The sum in Eq.( 54) is expanded as needed to achieve a reasonable fit to the 

data. According to Twizell and Ogden [119], stability of Eq.( 54) requires 0n nG α > . 

Additionally, Arruda and Boyce [120] argue that the Ogden model is an empirical 
relationship that requires more than one experiment to obtain the number of 
coefficients required for capturing the state of deformation dependence.  
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Although the phenomenological models have merits and are frequently used in 
investigating rubber deformation problems, many of them fail in successful description 
of the rubber response under deformation modes other than uniaxial tension, without 
changing the model parameters. In other cases, the models are either mathematically 
complicated or the number of required parameters is unreasonably high. Therefore, 
models of molecular chain network sound to be a better alternative. In the Gaussian 
statistics approach, as the first statistical mechanics attempt developed for describing 
the force-deformation relationship in a polymeric network, it is assumed that the chains 
never near their fully stretched length, lN , where N  is the number of statistical rigid 
links of equal length l  in the chain between chemical crosslinks [66]. The “rigid link” is 
considered to be that segment of the real chain that undergoes rigid body motion when 
the rubber material is deformed. The rigid link may consist of one or more monomers, 
depending on the rubber material under study. The strain energy density function 
proposed by the Gaussian statistics approach is of the following form  

 ( )2 2 2
r 1 2 3 r

1
3 ,

2
W C C qkTλ λ λ= + + − =   ( 55) 

where iλ s are the applied stretches and the rubbery modulus rC  is a function of the 

chain density, q , Boltzmann’s constant, k , and absolute temperature, T . The stress-

stretch relationship is obtained by differentiating the strain energy with respect to the 
stretch. In an incompressible rubber, the principal stresses can be obtained from the 
work of deformation as follows  

 
d

di i
i

W
pσ λ

λ
= −   ( 56) 

where iλ  are principal stretches and the pressure term may be determined from the 

boundary conditions. The energy function ( 55) is derived with the assumption that the 
current length of the chain, r, remains well below the fully stretched length of the chain, 
Nl . At large deformations, i.e. / 0.4r Nl > , the depart from the Gaussian model becomes 

more evident and the non-Gaussian nature of the chain stretch prevails [121].    

The subsequent modified versions of chain statistics were an effort to allow for 
larger stretches than are afforded by the Gaussian statistics. A good review of these 
models are provided in [66]. The parameters that all these models have in common are 

the rubbery modulus, rC , and the chain locking stretch, Lλ . The chain locking stretch is 

the chain stretch at which its full extensibility limit is reached. From the statistical 

discussions, the initial chain length is found from random walk statistics as Nl  where 

in conjunction with the fully extended length, Nl , yields  

 
L

Nl
N

N l
λ = =   ( 57) 
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The mathematical models of molecular chain network in polymers are based on 
Langevin chain statistics. Kuhn and Grün [122] used this theory and derived the 
following formulation for the work of deformation due to the stretching of unstretched 
chains:  

 1 1 1chain chain chain chainln ln sinh
r r r r

W kTNq Tc
Nl Nl Nl Nl

− − −          ′= + − −                  
L L L   ( 58) 

where q is the chain density, c′  is a combination of constants, and 1−
L  denotes the 

inverse Langenvin function. For further details on the inverse Langevin function, cf. 
Appendix I. 

Wang and Guth made use of the Langevin statistics to present their three-chain 
model [123]. In this model, the representative cubic unit cell is made of three chains, as 
is schematically illustrated in Figure 32. This model assumes that the faces of the cube 
element are aligned with the principal stretch space during deformation. The stress-
stretch relationship in the three-chain model is given by   

 1
r L

L

1

3
i

i iC p
λσ λ λ
λ

−  
= − 

 
L   ( 59) 

Although this model captures a small state of deformation dependence of the behavior at 
small stretches, it yields nearly identical predictions for all deformation modes at large 
stretches [121]. The results of this model are controlled by the contribution of chains 
that lie along the maximum principal stretches. Therefore it cannot be a good 
representative of the network response because it samples only the chains that lie along 
the principal stretch directions. The failure of this model to capture the state of 
deformation dependence lies in the absence of a cooperative nature of network chain 
deformation apart from the imposition of incompressibility conditions. This drawback 
was the major motivation for the introduction of the eight-chain model where the chains 
deform more cooperatively.    

 

Figure 32. A cubic unit cell of three-chain model in the (a) undeformed, (b) uniaxial tension, and 

(c) biaxial tension configuration.  
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In the eight-chain model proposed by Arruda and Boyce [120], it is assumed that 
the molecular network of any amorphous polymer can be represented by a model of 
eight chains, as illustrated in Figure 33. These eight molecular chains are attached to 
each corner of a cube at one end and join up at the center of the cube at the other end. 
This model requires an initial modulus and a “limiting chain extensibility” as the only 
parameters for describing the network. These two parameters are linked to the physics 
of molecular chains that contribute to the deformation.   

 
Figure 33. A cubic unit cell of eight-chain model in the (a) undeformed, (b) uniaxial tension, and (c) 

biaxial tension configuration. 

 
 

Due to the symmetry of the chain structure, the interior junction point remains in 
the center of the cube throughout the deformation and the stretch of each chain 
becomes the root mean square of the principal stretches 

 
2 2 2

1 2 3
chain

0 3

r

r

λ λ λλ + += =   ( 60) 

The strain energy function of this model is given by  

 1 1 1chain chain chain chain
r ln ln sinhW C N

N N N N

λ λ λ λ− − −         = + −                   
L L L   ( 61) 

where in conjunction with relationship ( 57) results in the following relation for 
principal Cauchy stresses 

 
2

8ch 1 chain
r

chain

1

3
i

i

N
C p

N

λ λσ
λ

−  = − 
 

L   ( 62) 

Later on, Gent proposed the following empirical and less sophisticated relation for 
W  [124]:  

 r 1ln 1
2

m

m

C J J
W

J

 
= − − 

 
  ( 63) 



Chapter IV- Large, viscoplastic deformation of semi-crystalline polyethylene 
 

71 
 

Here, mJ  denotes the maximum value of 2 2 2
1 1 2 3 3J λ λ λ= + + − , at which the extension 

capacity of the rubber is exhausted. The associated Cauchy stress formulation is 
rendered into the following simpler form after substitution into relation ( 56)   

 Gent 2m
r

m 1
i i

J
C p

J J
σ λ= −

−
  ( 64) 

As compared to its predecessors, Gent model is known to be more successful. The 
results of the three models are compared in Subsection  4.6.  

 

 Composite inclusion  4.3

Following the leading work by Ahzi and co-workers [51, 70] and many others later, 
the composite inclusion model is used for modeling the crystalline and noncrystalline 
phase as a single inclusion. For modeling purposes, the crystalline and noncrystalline 
phases are thought as plate-like components perfectly bonded to one another. In the 
undeformed state, the crystalline-noncrystalline composite inclusions in HDPE are 
arranged, as described in Chapter I, in a spherulitic morphology. This initial 
configuration of polyethylene composite inclusions can be well approximated by the 
random distribution of composite inclusions in an aggregate of HDPE. This underlying 
assumption defines the basis of the initial texture considered in the subsequent 
simulations for investigating the finite deformation and texture evolution of HDPE 
aggregates under different modes of deformation.   

The generalized form of the composite inclusion idea, i.e. the Extended Composite 
Inclusion Model, is described in Appendix E, where the effective stiffness of a three-layer 
inclusion is derived as a function of the stiffness and volume fraction of its constituents. 
As explained therein, in composite inclusion model, the compatibility and equilibrium at 
the interface ought to be fulfilled. Enforcement of compatibility requires the continuity 
of velocity across the crystalline-amorphous interface. This continuity condition means 

that if 0x  denotes an arbitrary vector lying in the interface plane such that I
0 0=in x , the 

interface compatibility condition can be expressed as  

 ( )Cr il
0− =L L 0x   ( 65) 

Let I
ie  denote the orthonormal basis fixed to inclusion I, with I

3e  being co-directional 

with the normal to the interface of the two phases, In . In this basis, the compatibility 

conditions in conjunction with the incompressibility conditions for both phases, 
necessitates that the following continuity equalities for the strain rate and spin 
components hold 
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 I Cr ilD D Dαβ αβ αβ= =   ( 66) 

 I Cr il
33 33 33D D D= =   ( 67) 

 I Cr il
12 12 12W W W= =   ( 68) 

In Eq.( 66) the indices , 1,2α β = . On the other hand, for the tensors of strain rate and 

spin, the average theorem requires that   

 ( )I il Cr
il il1η η= + −D D D   ( 69) 

 ( )I il Cr
il il1η η= + −W W W   ( 70) 

where in conjunction with relation ( 65) lead to the following relationships for the 
remaining components of strain rate and spin tensors that do not appear in Eqs.( 66)-
( 68) 

 ( )I il Cr
3 il 3 il 31D D Dα α αη η= + −   ( 71) 

 ( )Cr I Cr il
3 3 il 3 3W W D Dα α α αη= − −   ( 72) 

 ( ) ( )il I Cr il
3 3 il 3 31W W D Dα α α αη= + − −   ( 73) 

The force equilibrium at the interface necessitates the following equalities between 

the two corresponding components of deviatoric stresses in the I
je  basis 

 I Cr il
3 3 3S S Sα α α= =   ( 74) 

The other components of the deviatoric stresses are correlated through the average 
theorem relation 

 ( )I il Cr
il il1η η= + −S S S   ( 75) 

It is worth noting that for the normal component of the interface traction, it can be 
equilibrated by assuming that any jump in the normal component of the deviatoric 
stress is balanced by a corresponding jump in the pressure, that is 

 il il cr cr
33 33S p S p− = −   ( 76) 

where ilp  and crp  are the pressure available in the amorphous layer and crystalline 

lamella, respectively. Fortunately, the above pressure components do not appear in the 
solution algorithm because of the pressure insensitivity of the constitutive laws adopted 
for the phases involved.  
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 Localization/interaction law  4.4

In any inhomogeneous aggregate, the local stress and strain of each inclusion is 
correlated to the global stress and strain of the aggregate through establishing a 
localization (or interaction) relationship. Proposing such a relationship has been the 
subject of numerous studies in crystal plasticity and mechanics of heterogeneous 
materials. Since finding the exact solution with all conditions of local compatibility and 
equilibrium for all grains being satisfied is impossible, approximate approaches have 
been proposed. The simplest and most well-known ones are Sachs model [125] and 
Taylor model [126]. In Sachs model, the local and global equilibrium are satisfied simply 
by assuming uniform stress everywhere. Global compatibility is enforced as a global 
volume average while local compatibility may be violated. Sachs approach in plasticity of 
inhomogeneous materials is the analogue of Reuss approach in elasticity of 
inhomogeneous composites.  

The analogue of Voigt scheme in large deformation plasticity is Taylor approach 
which assumes that the plastic strain is identical everywhere in the polycrystal and 
equal to the macroscopic strain [126]. According to the assumptions of this approach, 
the conditions of local and global compatibility are fulfilled whereas the equilibrium at 
the grain boundaries is not generally satisfied. Molinari et al. [127] argue that in 
predicting the texture evolution, Taylor approach has often proved successful for metals 
with FCC and BCC Bravais lattices. This success is attributed to the close deformation 
resistances of the available slip systems [54]. Modified versions of Taylor approach have 
been proposed in the context of crystalline slip to investigate different slip resistances in 
different slip systems and to assess the strain rate sensitivity of slip systems [112, 128], 
or to include the effects of elastic deformations as well as the hardening in the slip [114]. 
As the principal disadvantage, such models fail to capture the effects of grain geometry 
and orientation.  

Due to its relatively better success in predicting the texture evolution in semi-
crystalline polyethylene, a modified version of Taylor approach is employed here as the 
localization law. Introduced first by Ahzi et al. [51], their modified Taylor approach 
addresses the case when ψ , the angle between crystalline chain segments and normal to 

the crystalline-noncrystalline interface, falls below a threshold value, 0ψ . In other 

words, in normally prepared polyethylene samples, ψ  takes values around 30°. This 

configuration is supported by the molecular simulation study by Gautam et al. [58] 
which provides a thermodynamic explanation for the frequent observation that the 

crystalline-noncrystalline interface is parallel to { }201  plane. However, during the 

deformation and as the texture evolves, the angle ψ  in some grains might approach 0°. 

Since the deformation of the crystallites in the chain direction remains inextensible, 
original Taylor approach yields unrealistic predictions for grains in which ψ  is close to 
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zero. To address such grains, Ahzi et al. [51] proposed a modification to relax the strain 

rate component imposed in In  direction while conserving the global compatibility 
conditions. However, it is mathematically demonstrated that this modification is not 
complete and further modifications are required to include the case when ψ  approaches 

the right angle.  

 

4.4.1 Mathematical formulation of Modified Taylor 

To formulate the modified Taylor approach of this work, let L  denote the global 

macroscopic velocity gradient of the aggregate. The traceless, second-order tensor L  
can be uniquely and additively decomposed into two symmetric and skew-symmetric 
tensors as follows 

 ( ) ( )T T1 1

2 2
= + + − = +L L L L L D W   ( 77) 

where symmetric D  is the macroscopic deformation rate tensor and the skew-

symmetric W  denotes the macroscopic spin tensor. The assumption of Taylor approach 
requires that the deformation rate tensor for all inclusions are identical and equal to the 

macroscopic one, D . But we know that depending on the relative orientation of the 
chain segments in each crystalline lamella and its associated normal vector to the 

crystalline-noncrystalline interface, the imposed D  might be impossible. Therefore, one 

needs to modify the portion of D  that is allotted to such inclusions, hence the 

designation “Modified Taylor approach”. Let us denote this share of D  for inclusion “i” 

by I
iDɶ  which is the closest projection of the initial D  such that the violation of the 

kinematic constraints of inclusion “i” is avoided. To further clarify, let us assume, 
without loss of generality, that the convected coordinates system of inclusion “i”, which 
is attached to the interface of this inclusion and indicates its orientation, is obtainable by 
simply rotating the abc-axes of the crystallite in the counterclockwise direction about b-

axis by angle iψ . In this way, the c-axis of the crystallite, which indicates the direction of 

the chain stems, take the following representation in the convected coordinates system: 

 [ ]T

i isin 0 cosψ ψ=c   ( 78) 

As explained by Parks and Ahzi [54], the inextensibility of the chain stems in the 
crystallites is equivalent to  

 Cr
i 0D C =i   ( 79) 

where Cr
iD  denotes the rate deformation tensor of the crystallite in inclusion “i” and C  

is a second-order tensor defined as the dyadic product of c, that is ⊗C = c c . Expansion 
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of the left-hand side of Eq.( 79) in inclusion axes by substitution from ( 78) and ( 66) 
gives 

 

i i i

i i i i

i i i

i i i i

I I Cr2
i i i 11 12 13

cr I I Cr
12 22 23
Cr Cr I2

i i i 13 23 33

cr I Cr I2 2
11 i 13 i i 33 i

sin 0 sin cos

0 0 0 ,

sin cos 0 cos

sin 2 sin cos cos 0

D D D

D D D

D D D

D D D

ψ ψ ψ

ψ ψ ψ

ψ ψ ψ ψ

  
  = = ⇒  
  

   

+ + =

C D

D C =

ɶ ɶ

ɶ ɶ

ɶ

ɶ ɶi

  ( 80) 

According to the above relationship, when i 0ψ → , iI
33Dɶ  must go to zero otherwise a 

mathematical error will be produced. Similarly, when i 90ψ → � , iI
11Dɶ  must go to zero 

otherwise it would not be possible to impose the inextensibility condition. Accordingly, 

the projection tensor iIP  that projects D  for inclusion “i” to produce I
iDɶ  is a function of 

iψ  and should be constructed such that the two aforementioned limit conditions are 

satisfied. Thus the following three-argument mathematical representation is proposed 

for iIP : 

 i

i i
i

I i i
i

0

90

otherwise

ψ
ψ

 − ⊗ →
= − ⊗ →



N N

X X �

I

P I

I

  ( 81) 

In the above projection rule, i i i 1

3
= ⊗ −N In n  represents the deviatoric part of the 

dyadic product of the normal to inclusion “i”, and similarly, i i i
1 1

1

3
= ⊗ −X Ie e  represents 

the deviatoric part of the dyadic product of i
1e  which is the unit vector of the inclusion 

axes, co-planar with ia , ic  and in . For numerical programming, however, a definite 
numerical value is needed to replace the concept of mathematical limit appearing in the 
previous relationship. To this end, the proposed projection is re-written in the following 
form 

 i

i i
i 0

I i i
i 090

otherwise

ψ ψ
ψ ψ

 ⊗ <
= ⊗ > −



N N

X X �

I -

P I -

I

  ( 82) 

where 0ψ  is a small angle close to 0°. Ahzi et al. [51] proposed 15° as the threshold 

value, after running a large number of simulations. It should be mentioned that, as 
explained in [51, 54], the global compatibility requirement leads to the following 
normalization 

 i i
1I I I −

=D Dɶ P P   ( 83) 
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where 
1I −

P  denotes the reciprocal of the orientational averaging carried out over all 

IP . Using the modification introduced in ( 83), the global compatibility, i.e. I =D Dɶ ,  is 

satisfied. Additionally, with some mathematical manipulation, the three-argument 
fourth-order tensor proposed in ( 82) for calculating the local deformation rate tensor 
for inclusion “i” can be reduced to a single argument projection as follows  

 iI i i i ii i

0 0

903 3
exp exp

2 2

m m
ψ ψω ω
ψ ψ

      −
   = − − ⊗ − − ⊗            

N N X X
�

P I   ( 84) 

where for computational purposes 1ω≫  and m  is of the order of 50.  

 

 Tips and remarks on implementation issues  4.5

 As was discussed earlier, a macroscopically isotropic aggregate of polyethylene is 
assumed to be composed of a large number of composite inclusions that are uniformly 
randomly scattered in space. Such a scattering is equivalent to a uniformly random 
distribution of the inclusions’ orientation. For such a distribution, one needs a uniformly 
random distribution of Euler angles for either the initial texture or the initial 
morphology. Here, we opted to create an initial random texture and let the morphology 
distribution be a function of the texture. The initial distribution of Euler angles for the 
texture is created as follows: 

 

[ ]
( ) [ ]

[ ]

1

2 where 0..1

cos where 1..1

2 where 0..1

w w

u u

v v

α π

β
γ π

−

= ∈

= ∈ −

= ∈

  ( 85) 

The notation used here for Euler angles is similar to the one adopted in Appendix A and 
the same convention is respected for setting up the transformation tensor. If for 

inclusion “i” the angle straddling its c and n  is denoted by iψ , then the transformation 

tensor from the I
je  basis of the inclusion to aggregate axes, ib , is obtained as follows 

 

( ) ( )

( ) ( )

cos 0 sin

: with 0 1 0

sin 0 cos

i i

i i i i

i i

ψ ψ

ψ ψ

 
 = =  
 − 

b a r r   ( 86) 

where ia  is the transformation tensor from the crystalline axes of inclusion “i” to 

macroscopic axes. It should be noted that iψ  is measured from c to n  in the clockwise 

direction.  
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Moreover, the numerical codes for the implemented schemes have been developed in 
MATLAB®. This programming language is selected because of its powerful optimization 
tool. In other words, the codes are engineered from a system identification perspective 
at different levels. The constitutive equations for each phase in each inclusion together 
with the equations of local compatibility and equilibrium are solved by defining a set of 
relevant nonnegative objective functions and then finding their minima using the 
optimization toolbox of MATLAB®. The requirement for the global compatibility and 
equilibrium, on the other hand, is also satisfied by finding the minima of a new set of 
appropriately defined nonnegative objective functions. The advantage of using the 
optimization tools lies in its capability to find the sought for minima in the presence of 
constraints, if any, no matter what their nature is. In this example, the most important 
constraint is imposed on the resolved shear stress of every slip system which is required 
to remain less than or equal to its corresponding shear resistance. Finally, the issues 
concerning the texture and morphology updating are treated as explained in earlier 
studies such as ref. [55].     

 

 Results and discussion  4.6

The diagrams of eq

3
:

2
σ = S S vs. eqε  for various sets of parameters are plotted in 

the following figures. The material parameters associated with each set of diagrams are 
given below the figures. All variables and parameters of stress dimension are 

normalized to 0τ . Similarly all variables and parameters of strain rate dimension are 

normalized to 0γɺ  to simplify numerical computations.   

The diagrams of Figure 34 suggest that in comparison with two other models and 
with identical parameters, Gent model shows a better agreement with experimental 
data, albeit using a fairly large number of rigid links. It is reiterated that a model that 
requires a lower N  to agree with experimental data is rated as an acceptable and 
successful model. In the remaining diagrams, Gent model is preferred to other models 
for calculating the back stress because of its finer predictions. In Figure 35, the back 
stress follows Gent model and the number of rigid links is fixed at 50N = . These 
diagrams indicate that the locking strain is a strong function of N  and almost 
insensitive to other parameters. On the other hand, the intercept of the curves or, strictly 
speaking, the effective yield stress of the aggregate, shows a strong dependence on the 

viscoplastic resistance of the interlamellar domain, ila , the rate exponent, n , as well as 

the imposed dimensionless strain rate, eq

0

D

γɺ
. The diagrams of Figure 36 in conjunction 

with the above diagrams suggest that r

0

0.1 0.2
C

τ
< <  is a more appropriate choice and 
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helps to adjust the convexity of the curves. Moreover, with 200N ∼  the locking strain is 

more effectively accommodated.  

 

 

Figure 34. The stress-strain curves plotted using different back stress models. These diagrams are 

stiffer than G’sell’s experimental data with the adopted model parameters: 

il

il
0

1.2
g

a
τ

= = , 

r

0

0.2
C

τ
= , 400N = , 0 15ψ = �

, 0 8MPaτ = .  

The pole figures for { }002  and { }200  planes after 100% straining are given in Figure 

37. Pole figures are informative, rather qualitatively than quantitatively, vis-à-vis the 
trend of the texture evolution. These particular planes have preferentially been selected 
to trace the evolution of chain axis ( −c axis) and a plane with normal perpendicular to 

−c axis. In this regard, the pole figures suggest that under tensile loading, { }200  poles 

migrate away from the tensile direction while { }002  poles ( −c axis) rotate to get aligned 

with the tensile loading direction.  
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Figure 35. Stress-strain diagrams with Gent model at fixed 50N =  and 
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Figure 36. Stress-strain diagrams with Gent model for back stress at fixed 100N = .  
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Figure 37. Pole figures of { }002  and { }200  planes after 100% strain under uniaxial tension. The 

direction perpendicular to the plane is the tensile direction. 

 

It is worth noticing that the above diagrams are all output of simple tensile straining 
and similar diagrams associated with other modes of deformations, such as shear and 
compression, are required to enable a more accurate calibration of the model 
parameters and also a more comprehensive evaluation of the presented formulation and 
the proposed methodology. For a complete parameter study, as a valuable objective, one 
needs to run a large number of simulations with various model parameters including n , 

ila , N , rC  and 0ψ  for different rates of straining and under different modes of 

deformation. This job is the subject of a future study. 
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After climbing a great hill, one only finds that 

there are many more hills to climb. (Nelson 
Mandela 18 July 1918 – 5 December 2013) 
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Conclusions and Suggestions 

 

MECHANICAL CHARACTERIZATION of the interphase layer has been the primary objective 
of this dissertation, which has successfully been implemented for the first time in this 
work. This accomplishment has been realized by way of a mechanistic look at the 
atomistic data available for a polyethylene stack.  

Chapter II clearly demonstrates that when experimental techniques or even 
atomistic simulation tools are unable to provide us with information about the elastic 
properties of a constituent in a heterogeneous solid, a hybrid approach can effectively be 
the answer to the question. The hybrid approach consisted of applying the relationships 
from micromechanical homogenization techniques of DIM and ECIM to Monte Carlo 
molecular simulation data for the interlamellar domain of polyethylene. Elementary 
knowledge about the simulation conditions, viz. the boundary conditions of the 
simulation element, has been a must for adopting the appropriate micromechanical 
technique. Perfect agreement between the results of DIM and ECIM indicates that the 
problem can be viewed from different perspectives depending on the physics of the 
problem at hand. To elaborate, due to the periodic boundary conditions applied to 
lateral planes of the simulation element, the interlamellar domain was thought of either 
as an ellipsoidal inclusion embedded into another hollow ellipsoidal inclusion (tailored 
for DIM formulation), or as a rectangular layer housed between two other rectangular 
layers at both sides (tailored for ECIM). Successful application of the homogenization 
relationships for the elastic characterization of the interphase layer shows that, in 
addition to the primary function of homogenization approaches, they can be used in the 
reverse mode for dissociation purposes too, when needed.  

As an essential step to carry out the dissociation analysis, the stiffness tensor of the 
central amorphous phase as a function of temperature was required. Since pure 
amorphous samples of polyethylene cannot be prepared in today laboratories to 
evaluate their mechanical properties, the stiffness tensor in question was established 
based on the theoretical arguments for amorphous polymers as well as the relevant 
experimental findings. The experimental measurements for different grades of 
polyethylene with different crystallinities were exploited by extrapolation to zero 
crystallinity for estimating the amorphous elastic properties. Of the amorphous elastic 
constants, Young’s modulus and Poisson’s ratio were selected for setting up the 
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temperature dependent stiffness tensor because their response to temperature for 350-
400 K was easily deducible in light of the theoretical arguments.  

In the eventual dissociated interphase stiffness, shearing components in planes 

normal to the interface, i.e. ip
44C  and ip

55C , robustly took small but negative values, leading 

to the non-positive definiteness of the interphase stiffness tensor, at least for the 
temperature range of interest. We believe that this non-positive definiteness was a valid 
outcome whose origin lay in the fact that the interphase is a transitional domain whose 
existence is always accompanied by neighboring crystalline and amorphous phases that 
mechanically stabilize the interphase. After running a specific sensitivity analysis, we 
ascertained that the non-positive definiteness of the interphase stiffness was insensitive 
to the uncertainties of the adopted amorphous elastic constants and to the uncertainties 
of the interlamellar domain, for the temperature range 350-400 K. This finding was 
consistent with negative stresses observed at the crystalline-noncrystalline interface of 
semi-crystalline polymers that were reported elsewhere. There were arguments that 
this negativity was an indicator of the pre-strained state of the interphase layer, 
attributed to the way the polymer chains exit the crystals. It was also observed that, 

contrary to the two other shearing stiffnesses, ip
66C  shows a different behavior, due 

possibly to its resistance in the plane parallel to the interface.  

As a valuable by-result, the dissociation analysis has had the favorable advantage of 

constraining the most uncertain component of the initial interlamellar stiffness, il
44C . 

This particular component was the most uncertain one with an uncertainty interval 
100MPa±  which was shrunk to 10 MPa±  in the course of the analysis. As another 

finding, it has been revealed that for dissociation purposes, DIM works perfectly without 
posing any numerical problems while ECIM is prone to numerical divergence problems 
if the recursive method is employed. However, for both techniques and regardless of 
their level of nonlinearity, re-definition of the solution as the global minimum of one (or 
a set of) nonnegative objective function(s) is a reliable numerical method that will 
definitely lead to the solution.  

Finally, using the adopted two-component sandwich model, a plausible explanation 
has been suggested for an empirical relationship that describes the interlamellar 
average Young’s modulus as a function of crystallinity. In the explanation provided, the 
constitutive properties of the composing phases are invariant with crystallinity while 
only the volume fractions vary with crystallinity. On the other hand, since the interphase 
layer is the dominant phase in the interlamellar region at high crystallinities, the average 
Young’s modulus of the interphase should be comparable to that of the interlamellar 
domain at high crystallinities. Without taking the effect of uncertainties into account, 
Hill’s estimate of the interphase average Young’s modulus at 350 K is 347 MPa. This 
mean value compares well with the experimentally determined 300 MPa in addition to 
being consistent with the established fact that the elastic modulus of a rubbery 
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amorphous polymer increases with temperature. This good agreement serves as a 
yardstick for the verification of the tailored methodology and the dissociation results. 

Chapter III successfully dealt with the hyperelastic characterization of the 
interlamellar domain and its constituents in polyethylene, again using a hybrid 
approach: the governing equations of a hyperelastic, compressible, isotropic, neo-
Hookean solid were applied to the molecular dynamics simulation data of a polyethylene 
stack run at 350 K and under volume conserving mode of deformation. For carrying out 
the characterization scenario, we had to introduce the evolution of the amorphous and 
interlamellar boundaries using a series of unknown coefficients as auxiliary variables, 
which are identified along with the hyperelastic parameters. Solution finding was 
rendered into finding the global minimum of a set of nonnegative objective functions in 
the presence of a set of constraints.     

The identified shear moduli of three domains of interest agreed well with the 
experimentally determined shear modulus for the noncrystalline domain. Using an ad 

hoc sensitivity analysis it was demonstrated that the bulk moduli were identified with a 
higher degree of uncertainty in comparison with the shear moduli. It was also revealed 
that although the lateral stress distributions disagree over a wide range of strains, their 
arithmetic mean was a more reliable source for identification purposes. The small size of 
the initial simulation stack was speculated to be responsible for the disagreement 
observed. 

Although the deployed characterization analysis concerned the noncrystalline 
domain, it successfully justified the melting and recrystallization at the crystalline-
noncrystalline interface as well as the rotation of crystalline chains that took place 
within the crystallites during the deformation. Additionally, with the implemented 
identification idea, there was not only no need to have any information about the 
evolution of the initial hyperelastic elements beforehand, but the identification of the 
boundaries involved was the by-product of the presented methodology. Moreover, it 
was also concluded that the initial part of the lateral stress diagrams were not accurate 
enough for the identification purposes and, as a general conclusion, the larger the 
straining interval is the more reliable the identification scenario is carried out. And 
above all, the presented analysis can be viewed as a useful complementary study to the 
original molecular dynamics work that can be followed for similar problems. 

Chapter IV was devoted to re-considering the viscoplastic response of an aggregate 
of polyethylene with the emphasis on the modified Taylor approach. It was 
demonstrated that mathematical expression of the inextensibility constraint for chain 
stems in crystallites can help to propose a complete projection tensor for the modified 
Taylor approach, which can be followed for cases of higher constraints. Besides, among 
the available back stress models, although 8-chain model and Gent model are 
mathematically close, Gent model is favored because of its simpler mathematical 
representation and lower computational cost. The substantial difficulty with 8-chain 
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model and its predecessor, 3-chain model, is calculating the inverse Langevin function, 
for which there is no closed-form solution to date, and approximate solutions are used 
instead. From a more global point of view, the constitutive law for the viscoplastic 
response of the noncrystalline phase needs modifications on the basis of either 
phenomenological aspects or theoretical arguments. As compared to the modified 
Taylor approach, Sachs approach was less successful. However, although Sachs and 
Taylor approaches are known as lower bound and upper bound approaches, they can 
serve as benchmarks for evaluating the success of new interaction laws. Moreover, their 
estimates for the yield stress can be exploited for finding Hill’s estimate for the yield 
stress, which is expected to be close to the true one.  

The common feature of presented methodologies in the foregoing technical chapters, 
which is more or less highlighted where appropriate, is the “system identification” 
perspective that was employed for implementing the methodologies: after selecting the 
appropriate mathematical model that suits the physics of the problem in question, the 
“parameter identification” or strictly speaking, the “characterization”, is carried out by 
finding the global minimum of a single nonnegative objective function or a series of 
nonnegative objective functions in the presence of a set of rational constraints. This 
global minimum finding is realized using the appropriate optimization tool. On the other 
hand, the nonnegative objective functions are defined in accordance with the physics of 
the problem and its mathematical representation. From a more general point of view, 
this system identification perspective is so powerful that can be applied to a wide range 
of problems from scientific research sphere to engineering applications.  

 

Suggestions for the follow-up work: 

• Monte Carlo molecular simulations should be re-run at lower temperatures and 
with a larger number of united atoms to lower the uncertainty intervals. For the 
thermo-elastic analysis, all interlamellar stiffness components should be 
computed at various temperatures and finally a more accurate interphase 
stiffness will be obtained by re-carrying out the dissociation algorithm presented 
in Chapter II. 

• A framework should be developed for following the response of heterogeneous 
materials containing a non-positive definite stiffness in particular after the 
release of the stored energy in pre-strained phases. 

•  Molecular dynamics simulations should be re-run for a larger initial stack, under 
a variety of deformation modes and up to larger strains to enable applying the 
governing equations of an anisotropic, compressible, hyperelastic continuum and 
subsequently conducting a similar hyperelastic characterization scheme.   
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• The viscoplastic constitutive law for the noncrystalline phase should be revised 
based on the phenomenological observations or theoretical arguments available 
for amorphous polymers.  

• Appropriate molecular dynamics ensembles should be designed for identifying 
the parameters of new viscoplastic laws and back stress models for the 
noncrystalline phase, in a reliable manner.  

• Necessary modifications should be made to the crystalline constitutive law for 
higher strain rates. Additionally, since at higher strain rates, cavities are created 
inside polyethylene, the interaction law should be modified accordingly to take 
the effects of cavitation into account.  
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Equation Section (Next) 

Appendix A – Euler angles and orientational averaging of fourth-order 

tensors  

Euler angles are a classical means whereby the relative spatial orientation of a 
Cartesian coordinate system with respect to another Cartesian coordinate system is 
defined by way of a series of rotations. As illustrated in Figure A 1, the rotational 
transformation between two sets of axes is described by means of their relative Eulerian 
angles. In other words, every directional configuration in space is attainable by 
performing three successive rotations, each around only one axis; this is equivalent to 
saying that every rotation matrix can be represented as the product of three simpler 
rotation matrices.  

 

Figure A 1. Relative orientation of two frames along with the Representation of Euler angles. Fixed 

frame is indicated in blue and lower case letters xyz and the rotated frame in red and upper case 

letters XYZ. Line of nodes, N, is indicated in green.  

If the axes of the fixed reference frame is represented in small letters x,y,z and the 
rotated frame in capital letters X,Y,Z, then the line of nodes, N, is defined by the 
intersection of the xy- and XY-plane which is perpendicular to the z- and Z-axis. Among 
the quite a few possible conventions for defining the Euler angles, the one demonstrated 
in Figure A 1 is quite popular. According to this convention ϕ  (or α ) is the angle 

between the x-axis and the node line N, θ (or β ) is the angle spanning the z- and Z-axis, 

and finally ψ  or γ  is the angle measured from the node line to the X-axis. Because 

different conventions may be defined and employed by different authors, any use of 
Euler angles must be accompanied by their definition. It should be underlined that Euler 
angles between two sets of coordinate axes are defined when the handedness of the two 
frames is identical.    

Positive direction of Euler angles in the adopted convention is counterclockwise. To 
measure the Euler angles, one needs to apply counterclockwise rotations , ,ϕ θ ψ  on a 

hypothetical frame that is initially coincident with the fixed frame to obtain the new 
orientation. Angle θ ranges from 0 to π  and the two other angles vary from 0 to 2π . 
Accordingly, except for the singular states where the xy- and XY-plane coincide, Euler 
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angles between two sets of coordinate axes are uniquely determined. When the z- and Z-
axis are co-directional, 0θ =  and only the sum ϕ ψ+  can be determined uniquely. 

Similarly, when the z- and Z-axis are in the opposite directions, θ π=  and only the 
difference ϕ ψ−  can be determined uniquely. In these two last cases, also known as 

gimbal lock, none of the angles ,ϕ ψ  are individually identifiable.       

In light of the above definitions and concepts, the new representation of any vector 
in the rotated frame is obtained simply by pre-multiplying its vectorial representation in 
the fixed frame by the three following rotation matrices  

 

cos sin 0 1 0 0 cos sin 0

a1= sin cos 0 , a2 = 0 cos sin , a3 = sin cos 0

0 0 1 0 sin cos 0 0 1

ϕ ϕ ψ ψ
ϕ ϕ θ θ ψ ψ

θ θ

     
     − −     
     −     

  (A1) 

The three above rotation matrices may be collected in a single rotation matrix as follows  

 

cos sin 0 1 0 0 cos sin 0

sin cos 0 0 cos sin sin cos 0

0 0 1 0 -sin cos 0 0 1

cos cos sin sin cos cos sin sin cos cos sin sin

sin cos sin cos cos sin sin cos cos cos cos sin

ψ ψ ϕ ϕ
ψ ψ θ θ ϕ ϕ

θ θ
ψ ϕ ϕ ψ θ ψ ϕ ψ θ ϕ ψ θ
ψ ϕ ϕ ψ θ ψ ϕ ψ θ ϕ ψ

     
     = − − =     
          

− +
− − − +

a

sin sin sin cos cos

θ
θ ϕ θ ϕ θ

 
 
 
 − 

  (A2) 

Therefore, for the transformation of any vector from the fixed frame into the rotated 
one, the vector needs to be pre-multiplied by the above matrix. On the other side, for the 
reverse transformation, the rotated vector needs to be pre-multiplied by the inverse of 
the above matrix to find its representation in the fixed frame 

1

cos cos sin sin cos cos cos sin sin cos sin sin

cos sin cos sin cos sin sin cos cos cos sin cos

sin sin cos sin cos

ψ ϕ ϕ ψ θ ψ θ ϕ ψ ϕ ϕ θ
θ ψ ϕ ϕ ψ ψ ϕ ψ θ ϕ θ ϕ

θ ψ ψ θ θ

−

− − − 
 = + − + − 
  

a  (A3) 

Thus in the continuum mechanics notation, we have  

 i ij j
′ = av v   (A4) 

where v  represents a vector in the fixed frame and ′v  is the same vector represented in 
the rotated frame. Since a second order tensor is the dyadic product of two vectors, the 
rotation of any second order tensor, B , from one frame into another is expressed as 
following 

 ij ip jq pq′ =B a a B   (A5) 
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The transformation of an arbitrary fourth-order tensor, C , form one frame into another 

is defined likewise  

 ijkl ip jq km ln pqmn=′ a a a aC C   (A6) 

One of the major applications of the last two relationships is in the orientational 
averaging of tensorial quantities frequently encountered in the area of heterogeneous 
materials. In many practical applications in the field of heterogeneous materials, the 
composing phases have a uniform size distribution and are randomly distributed in 
space. In such a case, instead of transforming the property tensor of individual particles 
to the reference frame followed by weighting them with their respective volume fraction 
and then adding them up, one just needs to perform an orientational averaging on the 
transformational expression of the property tensor. Given that the volume element in 

Euler angles space is 
2

1
sin

8
d d dθ θ φ ψ

π
, the orientational averaging of an arbitrary 

fourth-order tensor, C , is calculated as follows  

 
2π π 2π

ijkl ijkl im jn kp lq mnpq2
0 0 0

1
sin

8π
d d dθ θ φ ψ= = ∫ ∫ ∫ a a a aC C C   (A7) 

In the above relation, the overscore and the angle brackets denote the average of the 
quantity in question. The above integration can be expanded as follows: 

Because a fourth-order tensor in the general case has 81 nonzero components, each 

component in the transformed tensor, ijkl′C , consists of the sum of 81 terms which is the 

expanded form of im jn kp lq mnpqa a a aC . Therefore, if the transformed components are all 

collected in a column vector, ijkl 81 1
 

×
  ′C , then the product of a square 81×81 matrix, 

rs im jn kp lq 81 81×
 =  a a a aA , and another column vector containing the elements of the initial 

tensor, mnpq 81 1
 

×
  C , would be a simpler representation of relationship (A6). 

rs im jn kp lq 81 81×
 =  a a a aA  contains the coefficients of the transformation tensor with the 

same sort order of Eq.(A7) , and mnpq 81 1
 

×
  C  is built similar to ijkl 81 1

 
×

  ′C . With this new 

representation, all needed for calculating ijkl
81 1

 
×

 
 C , is to carry out the integration (A7) 

over the coefficient matrix[ ]rs 81 81×
A  and then multiplying the results by mnpq 81 1

 
×

  C . 

Assuming that the elements of ijkl 81 1
 

×
  ′C  and mnpq 81 1

 
×

  C  are sorted as follows    

 
[ ]

[ ]

T

ijkl 1111 1112 1113 1121 2111 2112 3332 333381×1

T

mnpq 1111 1112 1113 1121 2111 2112 3332 333381×1

 =

 =

C C C C C C C C

C C C C C C C C

′ ′ ′ ′ ′ ′ ′ ′  

  

′ ⋯ ⋯

⋯ ⋯

C

C
  (A8) 
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then the coefficient matrix [ ]rs 81 81×
A  will be constructed as below 

 ( ) ( ) ( )
( ) ( ) ( )

mnpq 81 81 ijkl81 1 81 1

mnpq ijkl

r 27 m-1 9 n -1 3 p -1 q
where

s 27 i -1 9 j-1 3 k -1 l

or

rsr s

×× ×

= + + +

= + + +

   =   


   =    



′

′

C C

C C

A

A
  (A9) 

By carrying out the integration operation (A7) on rsA , the averaging matrix, [ ]81 81
Avg

× , 

is obtained.  

 

[ ]

[ ] ( ) ( ) ( )
( ) ( ) ( )

mnpq ijkl81 81 81 181 1

mnpq ijkl

r 27 m -1 9 n -1 3 p -1 q
where

s 27 i -1 9 j -1 3 k -1 l

Avg or

Avg
rs sr

× ××

= + + +

= + + +

   =   

   =    

C C

C C
  (A10) 

Performing the integration reveals that only 21 columns and 21 rows of [ ]81 81
Avg

×  are 

nonzero which shows that when the orientational distribution is uniformly random, only 
21 elements of the initial fourth-order tensor C  contribute to the final averaging.  

 

1111

1122

1133

1212

1221

1313

1331

2112

2121

2211

2222

2233

2323

2332

3113

3131

3223

3232

3311

3322

3333

6 2 2 2 2 2 2 2 2 2 6 2 2 2 2 2 2 2 2 2 6

2 4 4

1

30

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

 
  − 
 
 
 
 
 
 
 
 
 
 
 
 
  = 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

1 1 1 1 1 1 4 2 4 1 1 1 1 1 1 4 4 2

2 4 4 1 1 1 1 1 1 4 2 4 1 1 1 1 1 1 4 4 2

2 1 1 4 1 4 1 1 4 1 2 1 4 1 1 4 1 4 1 1 2

2 1 1 1 4 1 4 4 1 1 2 1 1 4 4 1 4 1 1 1 2

2 1 1 4 1 4 1 1 4 1 2 1 4 1 1 4 1 4 1 1 2

2 1 1 1 4 1 4 4 1 1 2 1 1 4 4 1 4 1 1 1 2

2 1 1

− − − − − − − − − − −
− − − − − − − − − − − −

− − − − − − − − − − − −
− − − − − − − − − − − −
− − − − − − − − − − − −
− − − − − − − − − − − −
− − −1 4 1 4 4 1 1 2 1 1 4 4 1 4 1 1 1 2

2 1 1 4 1 4 1 1 4 1 2 1 4 1 1 4 1 4 1 1 2

2 4 4 1 1 1 1 1 1 4 2 4 1 1 1 1 1 1 4 4 2

6 2 2 2 2 2 2 2 2 2 6 2 2 2 2 2 2 2 2 2 6

2 4 4 1 1 1 1 1 1 4 2 4 1 1 1 1 1 1 4 4 2

2 1 1 4 1 4 1 1 4 1 2 1 4 1 1 4 1 4 1 1 2

2 1 1 1 4 1 4 4 1 1 2 1

− − − − − − − − −
− − − − − − − − − − − −

− − − − − − − − − − − −

− − − − − − − − − − − −
− − − − − − − − − − − −
− − − − − − − −1 4 4 1 4 1 1 1 2

2 1 1 1 4 1 4 4 1 1 2 1 1 4 4 1 4 1 1 1 2

2 1 1 4 1 4 1 1 4 1 2 1 4 1 1 4 1 4 1 1 2

2 1 1 1 4 1 4 4 1 1 2 1 1 4 4 1 4 1 1 1 2

2 1 1 4 1 4 1 1 4 1 2 1 4 1 1 4 1 4 1 1 2

2 4 4 1 1 1 1 1 1 4 2 4 1 1 1 1 1 1 4 4 2

2 4 4 1 1 1 1 1 1 4 2 4 1 1

− − − −
− − − − − − − − − − − −
− − − − − − − − − − − −
− − − − − − − − − − − −
− − − − − − − − − − − −

− − − − − − − − − − − −
− − − − − − − −

1111

1122

1133

1212

1221

1313

1331

2112

2121

2211

2222

2233

2323

2332

3113

3131

3223

3232

3311

3322

3

C

1 1 1 1 4 4 2

6 2 2 2 2 2 2 2 2 2 6 2 2 2 2 2 2 2 2 2 6

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 − − − − 
   333

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

 (A11) 

Thus the rest of the elements of ijkl  C  missing on the left hand side of (A11) are 0. 

However, the majority of fourth-order tensors encountered in practice have, at least, 
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minor symmetry as the lowest symmetry. Mathematically speaking, the fourth-order 

tensor C  has minor symmetry if    

 ijkl jikl ijlk jilk= = =C C C C    (A12) 

Therefore, assuming that the fourth-order tensor C  in Eq.(A11) has minor symmetry, 
the following equalities hold  

 
1212 1221 2121 2112

1313 1331 3131 3113

2323 2332 3232 3223

= = =

= = =

= = =

C C C C

C C C C

C C C C

  (A13) 

The immediate conclusion of the above equalities is the reduction of (A11) to the 
following form      

 

1111

1122

1133

1212

1313

2211

2222

2233

2323

3311

3322

3333

6 2 2 8 8 2 6 2 8 2 2 6

2 4 4 4 4 4 2 4 4 4 4 2

2 4 4 4 4 4 2 4 4 4 4 2

2 1 1 6 6 1 2 1 6 1 1 2

2 1 1 6 6 1 2 1 6 1 1 2

2 4 4 4 4 4 2 4 4 4 4 21

6 2 2 8 830

C

C

C

C

C

C

C

C

C

C

C

C

 
  − − − 
  − − −
 

− − − − − − 
  − − − − − −
 

− − −  = 
 
 
 
 
 
 
 
  

1111

1122

1133

1212

1313

2211

2222

2233

2323

3311

3322

3333

2 6 2 8 2 2 6

2 4 4 4 4 4 2 4 4 4 4 2

2 1 1 6 6 1 2 1 6 1 1 2

2 4 4 4 4 4 2 4 4 4 4 2

2 4 4 4 4 4 2 4 4 4 4 2

6 2 2 8 8 2 6 2 8 2 2 6

C

C

C

C

C

C

C

C

C

C

C

C

  
 
 
 
 
 
 
 
 
 
 

− − −  
 − − − − − −
 
 − − −
 − − −  
   



















  (A14) 

Careful examination of the coefficient matrix appearing on the right hand side of the 
above relationship indicates that the first, seventh and twelfth rows are identical, the 
second, third, sixth, eighth, tenth and eleventh rows are identical and finally the fourth, 
fifth and ninth rows are identical. This means that the corresponding components of the 
abovementioned sets in the left hand side vector are equal too. In other words,   
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1111

1122

1133

1212

1313
1111 2222 3333

2211
1122 1133 2211 2233 3311 3322

2222
1212 1313 2323

2233

2323

3311

3322

3333

= = 6 2 2 8 8 2 6 2 8 2 2 6
1

= = = = = 2 4 4 4 4 4 2 4 4 4 4 2
30

= = 2 1 1 6 6 1 2 1 6 1 1 2

C

C

C

C

C
C C C

C
C C C C C C

C
C C C

C

C

C

C

C



   
   = − − −   
   − − − − − −  




 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

  (A15) 

Upon a more careful examination of (A15) it can be seen that the rows of the coefficient 
matrix are not independent and the second row can be reproduced simply by 
subtracting twice the third row from the first row. Therefore, relation (A15) is further 
simplified as below  

1111

1122

1133

1212

1313

22111111 2222 3333

22221212 1313 2323

2233

2323

3311

3322

3333

1122 1133 2211

6 2 2 8 8 2 6 2 8 2 2 6= = 1

2 1 1 6 6 1 2 1 6 1 1 230= =

and = = =

C

C

C

C

C

CC C C

CC C C

C

C

C

C

C

C C C C

 
 
 
 
 
 
 
 

     =     − − − − − −    
 
 
 
 
 
 
  

2233 3311 3322 1111 1212= = = -2C C C C

 (A16) 

Consequently, assuming that C  is the stiffness tensor of a material, then Eq.(A16) 
confirms that the final averaged tensor has isotropic symmetry with solely two 
independent coefficients ; a fact that agrees with our initial intuition.   

The foregoing arguments are valid if the orientational distribution of heterogeneities 
is uniform. In case the distribution of the fourth-order constitutive property is not 
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uniformly random, the integrand of Eq. (A7) is multiplied by some orientational 

distribution function ( ), ,φ θ ψΦ , yielding   

 

( )

( )

2π π 2π

im jn kp lq mnpq

0 0 0
ijkl ijkl 2π π 2π

0 0 0

, , sin

=

, , sin

d d d

d d d

φ θ ψ θ ψ θ φ

φ θ ψ θ ψ θ φ

Φ
=

Φ

∫ ∫ ∫

∫ ∫ ∫

a a a a C
C C   (A17) 
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Equation Section (Next) 

Appendix B- Eshelby problem and Eshelby tensor 

J.D Eshelby is known as the first micromechanician who shaped and analytically 
solved the problem of the stress and strain induced in a defect confined in an infinite 
homogeneous medium when the defect is in the form of an ellipsoidal inhomogeneity 
and undergoes a free stress strain [129]. In Eshelby problem, the substantial concept of 
eigen strain also known as transformation strain or polarized strain is often 
encountered. Indeed, eigen strain is a generic designation for such free stress strains 
engendered by thermal expansions, initially induced deformations, phase 
transformations, misfittings etc.  In the elasticity of eigen strains, there is no need to look 
for the specific origin of the eigen strain; it can be due to any fictitious source which 
suits the equivalent inclusion problem [130].     

Let us assume that the ellipsoidal domain Λ  in an elastic solid is subjected to the 

arbitrary deformation ∗ε that would be a stressless deformation if were not bounded by 
the surrounding body. To start with, it is assumed that Λ  and the host medium have 
identical constitutive properties. Because of the confining effect of the surrounding 
medium, stress fields are created inside and outside Λ . The emphasis on the ellipsoidal 
shape of Λ comes from the mathematical proof established by Eshelby that 
demonstrates that the induced stress and strain in Λ are uniform if Λ is ellipsoidal. 
Additionally, the ellipsoidal morphology is comprehensive enough to cover various 
geometries of inclusions and reinforcements often seen in heterogeneous materials. 
Assuming infinitesimal deformations, the resulting strain reads   

 ij ij ij+or∗ ∗= + =e eε ε ε ε   (B1) 

where e and ε stands for the created elastic strain and perturbed strain, respectively. 
The compatibility conditions for the final strain necessitates  

 ( )ij i,j j,i

1
+

2
=ε u u   (B2) 

where u  is the associated displacement field vector. The created elastic strain, however, 
is linked to the induced stress by virtue of Hooke’s law:    

 ( ) ( )* *
ij ijkl kl ijkl kl kl ijkl k,l kl- -= = =σ e ε ε εC C C u   (B3) 

where C  represents the stiffness tensor of the medium. It should be noted that in the 
last relationship, the symmetry of the stiffness tensor is exploited. In the absence of any 
kind of body forces, the static equilibrium requires  

 ij,j 0=σ   (B4) 
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The free boundary conditions are mathematically expressed as  

 ij j 0=σ n   (B5) 

where n  is the unit normal to the outer boundary of the medium. Substitution from (B3) 

into (B4) and (B5) results in  

 *
ijkl k,lj ijkl kl,j= εC Cu   (B6) 

 *
ijkl k,l j ijkl kl j= εC Cu n n   (B7) 

It can be seen from Eq.(B6) that *
ijkl kl,j- εC  acts as a body force because the equilibrium 

equation is rendered to ijkl k,lj i-=C u χ  in the presence of the body force χ  and zero eigen 

strain. Similarly, *
ijkl kl jεC n  acts as a surface traction on the outer boundary. Therefore, 

one can say that the elastic displacement filed created by *
ε  in a free body is identical 

with the one created by the body force *
ijkl kl,j- εC  and the surface traction *

ijkl kl jεC n .      

The best and most famous solution method used for the differential equation 
(B6) to find u  is fundamental solution or the Green function technique. The Green 
function of the above differential equation, G, is defined as follows  

 ( ) ( )mnpq pk,qn mk=- δ′ ′G δC x - x x - x   (B8) 

where ( )δ ′x - x  is the Dirac delta function and mkδ  is the Kronecker delta. Solution of 

the above differential equation returns G whose substitution into the following integral 
yields u .    

 ( ) ( )*
i jlmn mn ij,l d

∞

−∞

′ ′ ′= − ∫ ε GCu x x - x x   (B9) 

Re-substitution of u  into (B2) gives the perturbation strain    

 ( ) ( ){ }*
ij klmn mn ik,lj jk,li

1

2
d

∞

−∞

′ ′ ′= − +∫ε ε G GC x - x x - x x   (B10) 

 Closed-form solution for the components of the Green function tensor in the 
general case where the medium is anisotropic does not exist. But a relevant tensor that 
is more important than the above Green tensor is the Eshelby tensor and is defined as 
follows  

 e *
ij ijkl kl=ε εS   (B11) 
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It can be shown that for the general case where the medium is anisotropic, the 
components of the Eshelby tensor are calculable as follows [131]  

 ( ) ( ){ }
1 2

e
ijkl mnkl 3 imjn jmin

1 0

1

8π
d d

π

ζ ω
+

−

= +∫ ∫S C H Hξ ξ   (B12) 

where  

( ) ( )
( )

( ) ( )

ij
ijkl k l

2 2i
i 1 3 2 3

i

mnl m1 n2 l3 ij ikl jmn km ln ik ijkl j l

= ; = 1- cos ; = 1- sin ;

1
= ; ξ ; =

2

D

a

D

ζ ζ ω ζ ζ ω

=

=

N

K K K N K K K

H

C

ξ
ξ ξ ξ

ξ

ζ
ξ

ξ ξ ξe e e

 (B13) 

In the above relationship, ijke  is the third-order alternating tensor also known as 

Levi-Civita symbol or permutation symbol and ia  are half-diameters of the ellipsoid. 

Like Green function tensor, the components of the Eshelby tensor have no closed-form 
solution and in practice, computer codes are developed to calculate their numerical 
values [131]. For specific cases where either the symmetry of the reference medium or 
the geometry of the ellipsoidal inclusion is simplified, closed-form solutions for the 
nonzero components of the Eshelby tensor are available.     

Case B-1: If the reference medium is isotropic and 1 2 3a a a≠ ≠  : 

 

( ) ( )

( ) ( )

( ) ( )

( ) ( ) ( )

e 2 0
1111 1 11 1

0 0

e 2 0
1122 2 12 1

0 0

e 2 0
1133 3 13 1

0 0

2 2
e 01 2
1212 12 1 2

0 0

1-23
= + ,

8π 1- 8π 1-

1-21
= - ,

8π 1- 8π 1-

1-21
= - ,

8π 1-υ 8π 1-

1-2+
= + +

16π 1- 16π 1-

S a I I

S a I I

S a I I

a a
S I I I

υ
υ υ

υ
υ υ

υ
υ

υ
υ υ

  (B14) 

The remaining nonzero elements of the Eshelby tensor are calculable similarly by cyclic 
permutation of indices and using the minor symmetry property of the Eshelby tensor. In 

the above relationships, 0υ  is the Poisson’s ratio of the reference medium and the 

integrals 1I  and 3I  are expressed as follows      
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( )
( ) ( ){ } ( )

( )
2 2

2 1 31 2 3 1 2 3
1 32 2 2 2 2 2 2 2

1 31 2 1 3 2 3 1 3

-4π 4π
= , - , ,  = - ,

- - - -

a a aa a a a a a
I F k E k I E k

a aa a a a a a a a
θ θ θ

  
 
  

  (B15) 

where  

 

( ) ( ) 2 2

2 2
0 0

2 2 2
-1 3 1 2

1 2 32 2 2
1 1 3

, = , , = 1- sin
1- sin

-
=sin 1- , = , > >

-

dw
F k E k k wdw

k w

a a a
k a a a

a a a

θ θ

θ θ

θ

∫ ∫
  (B16) 

To calculate the remaining integral values, the following identities are utilized.   

 

1 2 3

11 12 13 2
1

2 2 2
1 11 2 12 3 13 1

2 1
12 2 2

1 2

+ + =4π,

4π
3 + + = ,

3 + + =3 ,

-
=

-

I I I

I I I
a

a I a I a I I

I I
I

a a

  (B17) 

Case B-2: If the reference medium is isotropic and 1 2 3=a a a≠  (oblate or prolate 

inclusions): 

 

( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( )

2 2
e
1111 0 02 2

0

2
e e
2222 3333 02 2

0 0

2
e e
2233 3322 02 2

0

2
e e
2211 3311 2

0 0

1 3 -1 3
= 1-2 + - 1-2 +

2 1- -1 -1

1 1 9
= = + 1-2 -

8 1- -1 4 1- 4 -1

1 3
= = - 1-2 +

4 1- 2 -1 4 -1

1 1
= =- -

2 1- -1 4 1-

S

S S

S S

S S

τ τυ υ ϕ
υ τ τ

τ υ ϕ
υ τ υ τ

τ υ ϕ
υ τ τ

τ
υ τ υ

  
  

  

 
 
 
 

  
  

  
  

( ) ( )

( ) ( ) ( )

( )
( )

2

0 2

2
e e
1122 1133 0 02 2

0

2
e e
2323 3232 02 2

0

22
e e
1212 1313 0 02 2

0

3
1-2 -

-1

1 3
= =- 1-2 + - 1-2 +

2 1- -1 2 -1

1 3
= = + 1-2 -

4 1- 2 -1 4 -1

3 +11 +1 1
= = 1-2 - - 1-2 -

4 1- -1 2 -1

S S

S S

S S

τυ ϕ
τ

τυ υ ϕ
υ τ τ

τ υ ϕ
υ τ τ

ττυ υ
υ τ τ

 
 
 

  
  

  
  

  
  

  
  

 
 
 
 

ϕ
 
 
 
 

  (B18) 
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where 3

1

=
a

a
τ  and  

 
( )

( )

( )
( )

1
2 12

3
2 2

1
1 2 2

3
2 2

-1 cosh if 1
-1

cosh - 1- if 1
1-

τ τ τ τ τ
τ

ϕ
τ τ τ τ τ
τ

−

−

  − >   
= 

  <   


  (B19) 

In two previous relationships, 3a  is assumed to lie along the 3-axis. 

Case B-3: If the reference medium is isotropic and τ → ∞  (long, narrow, cylindrical 
inclusions): 

 

( )

( )

( )

e e e
3333 3311 3322

e e 0
1111 2222

0

e e 0
1122 2211

0

e e 0
1133 2233

0

e e
3131 3232

= = =0

5- 4
= =

8 1-

4 -1
= =

8 1-

3- 4
= =

8 1-

1
= =

4

S S S

S S

S S

S S

S S

υ
υ

υ
υ
υ
υ

  (B20) 

Case B-4: If the reference medium is isotropic and 0τ →  (thin, disk-like inclusions): 

 

e
3333

e e 0
3311 3322

0

e e
3131 3232

=1

= =
1-

1
= =

2

S

S S

S S

υ
υ

  (B21) 

 

Case B-5: If the reference medium is isotropic and 1 2 3=a a a=  (spherical inclusions): 

 

( )

( )

( )

e e e 0
1111 2222 3333

0

e e e 0
1122 2233 3311

0

e e e 0
1212 2323 3131

0

7 -5
= = =

15 1-

5 -1
= = =

15 1-

4 -5
= = =

15 1-

S S S

S S S

S S S

υ
υ

υ
υ
υ
υ

  (B22) 
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Equation Section (Next) 

Appendix C- Double inclusion method tailored for dissociating the 

interphase stiffness  

Double-inclusion model (as the authors in [69] named it) is an attempt to present 
a mean-field methodology to calculate the effective stiffness of an ellipsoidal inclusion 
enclosing another ellipsoid, with the entire inclusion being contained in a reference 
medium, as illustrated in Fig C 1. The underlying assumptions together with the 
technical details and derivation procedure are available op. cit. Here, the final derived 
relationship regarding the overall stiffness of the two-phase inclusion is adopted and 
adapted for our specific application.  

 

Fig C 1. Schematic illustration of the double-inclusion problem. There are a very inner ellipsoidal 

inclusion, indicated by “Ω”, and a covering ellipsoidal inclusion, indicated by “Γ”. The entire 

double-inclusion, indicated by “DI”, is inserted in a reference medium, indicated by “ref”.   

According to Hori and Nemat-Nasser [69] the effective stiffness of the double-

inclusion, DIC , is obtained as follows  

 ( )( )( ) 1DI ref DI DI DI DI −
= + − +C C I S I H I S H   (C1) 

where  

 

( )

( )

( )

( )
( )

DI

11

1 2 1

11

1 1 2

11 1 ref ref

12 2 ref ref

DI

1

1 1

1 1

DI

η η

η η
η η

η η
η η

η

Ω Γ

−−
Ω Ω Ω Ω

−−
Γ Ω Ω Ω

−

−

Ω

= + −

    = − + + ∆ − ∆ + − ∆ +    − −     

    = − ∆ + + − ∆ + − ∆ +    − −     

= −

= −

∆ = −
Ω=

H H H

H S E S S S E S S E

H S S E S S E S S E

E C C C

E C C C

S S S

  (C2) 

Ω 

Γ 

ref 

DI 
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In the above relations, I  is the fourth order identity tensor, ΩS  and RS  stand for the 

Eshelby tensor of the inner inclusion and the entire double inclusion, respectively, refC  
denotes the stiffness of the reference medium, the superscripts DI , Ω  and Γ  represent, 
respectively, the entire double inclusion, the inner inclusion, and the cover of the inner 

inclusion, which equals DI − Ω . 1C  and 2C  stand for the stiffness of the inner inclusion 
and the outer cover, respectively, and η  is the volume ratio of the inner inclusion to the 

entire double inclusion, which is equivalent to the interlamellar region in our problem. 
Since in the MC simulations of the interlamellar region, periodic boundary conditions 
are imposed on the lateral faces, one can assume that the double-inclusion and the inner 
inclusion are thin, penny-shaped disks. By analogy, the interphase layers are 

represented by the outer cover of the double-inclusion problem, i.e. 2 ip=C C , and the 

amorphous phase by the inner encapsulated inclusion, i.e. 1 am=C C . The coaxiality of the 

inclusions leads to   

 DI 0Ω∆ = − =S S S   (C3) 

and upon substitution, DI il=C C  is simplified to the following relationship  

( )( ) ( )( )
111 11 1il ref am ref ref ip ref ref

am ipη η
−−− −− −∞ ∞ ∞= + + − + + − −

          
I S C C C S C C C SC C  

 (C4) 

When the above relationship is solved for ipC , we obtain  

 

( )( ) ( )( )
11

1 11 11 1ip ref ref ref il ref amam

ip ip

1 η
η η

−−− −− −− −∞ ∞ ∞= − − − − − − +
      
           

I C C S I C C S SC C C  (C5) 

The most serious practical difficulty faced in utilizing Eqs.(C4) and (C5) is the evaluation 

of Eshelby tensor, ∞S , whose computation is demanding since the reference medium is 
not isotropic and as a result there is no closed-form solution for its non-zero 
components. An efficient numerical algorithm for computing the Esheby tensor of any 
ellipsoidal inclusion embedded in a reference medium of the general anisotropic 
symmetry can be found in [131].  

Before wrapping up this appendix, it should be noted that in the last two 

relationships, ipC  and ilC  depend on the stiffness of the selected reference medium. 
Interestingly, we observed that in the case of the aligned, disk-like inclusions, the 
effective stiffness of the double-inclusion is independent of the choice of the reference 
stiffness. Mathematical demonstration of this observation looks very difficult due to the 

nonlinear dependence of ΩS  on refC , on one hand, and the nonlinear dependence of ilC  

on both, on the other hand. Therefore, any arbitrary refC , can be substituted in the above 
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relationships and the result will be independent of it. Although, the mathematical 

demonstration of the above statement for the general case of anisotropic refC  looks 
intimidating, for the simpler case of isotropic reference medium the demonstration is 

easier and rather straightforward. For the isotropic reference medium, refC  and ∞S  are 

represented as follows in the 6×6 matrix format:   

 

( ) ( ) ( )
( )

( )

ref

ref ref ref

ref ref ref

ref ref refref

refref ref

ref

ref

1 0 0 0

1 0 0 0

1 0 0 0

0 0 0 1 2 2 0 01 1 2

0 0 0 0 1 2 2 0

0 0 0 0 0 1 2 2

E

υ υ υ
υ υ υ
υ υ υ

υυ υ
υ

υ

− 
 − 
 −

=  −+ −  
 −
 

−  

C  

 (C6) 

 
ref ref

ref ref

0 0 0 0 0 0

0 0 0 0 0 0

1 0 0 0
1 1

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 0

υ υ
υ υ∞

 
 
 
 
 − −=  
 
 
 
  

S   (C7) 

where refE  and refυ  are, respectively, Young’s modulus and Poisson’s ratio of the 

reference medium. For the Eshelby tensor of a disk-like inclusion, the relationships of 
Eq.(B21) have been used and for the 6×6 matrix representation, either of the matrices of 

the left hand side of Eq.(E10) can be employed. Interphase layer and amorphous phase 
are assumed to have full anisotropic symmetry, that is 

 

am

am am am am am am
11 12 13 14 15 16
am am am am am am
12 22 23 24 25 26
am am am am am am
13 23 33 34 35 36
am am am am am am
14 24 34 44 45 46
am am am am am am
15 25 35 45 55 56
am am am am am am
16 26 36 46 56 66

C C C C C C

C C C C C C

C C C C C C

C C C C C C

C C C C C C

C C C C C C

 
 
 
 

=  



 

C ip

ip ip ip ip ip ip
11 12 13 14 15 16
ip ip ip ip ip ip
12 22 23 24 25 26
ip ip ip ip ip ip
13 23 33 34 35 36
ip ip ip ip ip ip
14 24 34 44 45 46
ip ip ip ip ip ip
15 25 35 45 55 56
ip ip ip ip ip ip
16 26 36 46 56 66

,

C C C C C C

C C C C C C

C C C C C C

C C C C C C

C C C C C C

C C C C C C

 




= 
 
 
 
 

C










 (C8) 

To show the independence of ilC  from the choice of isotropic refC , one needs to 
substitute the above values into relationship (C4) and simplify the result. In the final 

simplified relationship, there must be no trace of either refE  or refυ . The mathematical 

operations involved cannot be worked out manually and symbolic calculation software 
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are indispensable. Here, Maple® has been chosen as the symbolic calculation aid. 
However, the abovementioned substitutions and the subsequent symbolic calculations 
are still too heavy for Maple®. Therefore, prior to substitution, relationship (C4) is 
reformulated as follows:   

 
( ) ( )

( )( ) ( )( )

1 1

1 1

1 1
il ref 1 ref ref ref

1 11 1ref am ref ref ip ref
am ipwhere η η

− −

− −

− −
− ∞ ∞

− −− −∞ ∞

= + − + −   =
      

= + − + + −

C U S C C U I S C UC

U S C C C S C C C
  (C9) 

This new form of representation is simpler to handle for symbolic calculation software. 
The following short code has been written in Maple® environment that takes care the 
above operations. 

 
 

 



Appendix C- Double inclusion method tailored for dissociating the interphase stiffness 

 

103 
 

 

 



Appendix C- Double inclusion method tailored for dissociating the interphase stiffness 

 

104 
 

 

Due to the volume of calculations involved in simplifying ilC , each component of ilC  is 

simplified separately. The simplified expressions for each component of ilC  are so long 
that take several pages, and this is the reason they are not given here. However, in the 

simplified expressions for each component of ilC  there is no trace of refE  and refυ  which 

shows the independence of ilC  from refC , when amC , ipC  and amη  are known. Similarly, 

it can be concluded that when the inclusions of the double-inclusion problem are thin 

and disk-like, ipC  is independent of refC  if ilC , amC  and amη  are known.  
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Equation Section (Next) 

Appendix D - Extended Composite Inclusion Model 

 

The original version of the composite inclusion model (CIM) was an effort to 
attain a more realistic estimation of the effective stiffness of a two-layer composite 
inclusion than those suggested by the Voigt and Reuss models [70, 71]. In light of the 
notion presented therein, this approach is extended to calculate the effective 
stiffness/compliance of a three-layer composite inclusion. The assumptions made here 
are exactly similar to those discussed in the above-cited references: average theorems 
are implied; linear elasticity for each phase as well as the entire composite inclusion is 
assumed; the stress/strain in each phase is correlated with the stress/strain of the 
entire inclusion through initially unknown weight functions /R Q ; and finally, the 

uniformity of stress and strain in each phase is assumed.  

The schematic of a three-layer composite inclusion is depicted in Fig D 1. From 

the average theorems, the average stress and strain of this composite inclusion, I
σ  and 

I
ε , are expressed as 

 I 1 2 3
1 2 3η η η= + +σ σ σ σ   (D1) 

 I 1 2 3
1 2 3η η η= + +ε ε ε ε   (D2) 

where iη , i
σ  and i

ε  stand for the volume fraction, average stress and average strain of 

the ith layer/phase, respectively, with i 1,2,3= . Let us assume that the governing linear 

elastic constitutive law for each phase follows as  

 ( ) 1i i i i i i i ior with
−

= = =ε σ σ ε CS C S   (D3) 

where iS  and iC  are, respectively, the compliance and stiffness of the ith phase. If the 
effective compliance and stiffness of the three-layer inclusion are defined as coefficients 

correlating I
σ  and I

ε  as follows: 

 ( ) 1I I I I I I I Ior with
−

= = =ε σ σ ε CS C S   (D4) 

then substitution of (D3) and (D4) into (D1) and (D2) yields  

 I 1 1 2 2 3 3

1 2 3
η η η= + +C C Q C Q C Q   (D5) 

 I 1 1 2 2 3 3

1 2 3
η η η= + +S S R S R S R   (D6) 
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where the weight functions iQ  and iR , also called strain and stress concentrations, 

respectively, are defined as 

 i i I=ε εQ   (D7) 

 i i I=σ σR   (D8) 

 

Fig D 1 Schematic of a three-layer composite inclusion along with the relative orientation 

of the selected reference frame.  

 

Therefore, once the stress or strain concentrations are determined, the effective 
stiffness/compliance of the composite inclusion is calculable. An important auxiliary 
assumption of CIM that is not explicitly stated in [70, 71] but is invoked implicitly is that 
the stress and strain in each phase are assumed to be uniform. This assumption, in 
conjunction with the enforcement of the equilibrium conditions at the two interfaces, 
gives rise to 

 1 2 3 I
β β β β= = =σ σ σ σ   (D9) 

where β 3,4,5= . In Eq.(D9) the Voigt contracted notation is used. Additionally,  in 

agreement with the convention adopted in [42, 70, 71], the interfaces are parallel to the 
12-plane, consequently the 3-axis is normal to the interfaces (see Fig D 1). Substitution 
of (D9) into (D8) leads to  

 i i I I i

β βj j β βj βj= = → =σ σ σ δR R   (D10) 

where δ  denotes the extended Kronecker delta. Compatibility conditions at the 
interfaces along with the assumption of uniformity of strains in each phase require that 
if α 1, 2,6=  then 

 1 2 3 I
α α α α= = =ε ε ε ε   (D11) 
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or equally  

 1 1 2 2 3 3

αj j αj j αj j= =σ σ σS S S   (D12) 

where in combination with (D1) results in 

 
( )1 1 2 I 1 3

αj j αj j 1 j 3 j

2

1 1 2 1 2 3 2 I

2 αj j 1 αj j 3 αj j αj j

1
η η

η

η η η

= − −

+ + =

σ σ σ σ

σ σ σ σ

S S

S S S S

  (D13) 

Further decomposition of (D13) gives 

 
( ) ( ) ( )

( ) ( )
1 1 1 1 2 1 2 1 2 3 2 3 2 I

2 αα α αβ β 1 αα α αβ β 3 αα α αβ β αj j

1 2 1 1 2 1 2 3 2 3 2 I

2 αα 1 αα α 2 αβ 1 αβ β 3 αα α 3 αβ β αj j

η η η

η η η η η η

′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′

′ ′ ′ ′ ′ ′ ′ ′ ′ ′

+ + + + + =

+ + + + + =

σ σ σ σ σ σ σ

σ σ σ σ σ

S S S S S S

S S S S

S

S S S
  (D14) 

where α =1,2,6′  and β 3, 4,5′ = . To eliminate 3
α ′σ  from Eq.(D14), Eqs.(D2) and (D3) are 

exploited to obtain  

 
( ) ( )( )

1 1 1 1 3 3 3 3

αα α αβ β αα α αβ β

13 3 1 1 1 3 1

α αα αα α αβ αβ β

′ ′ ′ ′ ′ ′ ′ ′

−

′ ′ ′ ′ ′ ′ ′

+ = +

= + −

σ σ σ σ

σ σ σS S S S

S S S S
  (D15) 

Simultaneous use of Eqs.(D14) and (D15) yields   

 

( ) ( )
( ) ( ) ( )

( )( ) ( ) ( )( )

1 2 1 1 2 2 1

2 αα 1 αα α 2 αβ 1 αβ 3 αβ β

1 12 3 1 1 2 3 1 3 1

3 αα αα αα α 3 αα αα αβ αβ β

1 11 2 2 3 1 1 1 2 2 2 3 1 3 1 2

2 αα 1 αα 3 αα αα αα α 2 αβ 1 αβ 3 αβ 3 αα αα αβ αβ β αj

η η η η η

η η

η η η η η η η

′ ′ ′ ′ ′ ′ ′

− −

′ ′ ′ ′ ′ ′ ′ ′ ′

− −

′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′

+ + + + +

+ − =

+ + + + + + − =

σ σ

σ σ

σ σ

S S S S S

S S S S S S S

S S S S S S S S S S S S S I

jσ

 (D16) 

or equally 

 

( )( ) ( ) ( )( )
( )( ) ( ) ( )( )

1 11 2 2 3 1 1 1 2 2 2 3 1 3 1 2 I

2 αα 1 αα 3 αα αα αα α 2 αβ 1 αβ 3 αβ 3 αα αα αβ αβ β αj j

11 11 1 2 2 3 1 2 1 2 2 2 3 1 3

2 αα 1 αα 3 αα αα αα αj 2 αβ 1 αβ 3 αβ 3 αα αα αβ αβ βα

η η η η η η η

η η η η η η η

− −

′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′

−− −

′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′

+ + + + + + − =

= + + − + + + −

σ σ σ

σ δ

S S S S S S S S S S S S

S S S S S S S S S S S S S

S

I

j j
 
  

σ

  (D17) 

Accordingly, 

 

( )( ) ( ) ( )( )11 11 1 2 2 3 1 2 1 2 2 2 3 1 3

αj 2 αα 1 αα 3 αα αα αα αj 2 αβ 1 αβ 3 αβ 3 αα αα αβ αβ β jη η η η η η η
−− −

′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′= + + − + + + − 
  

δS S S S S S S S S S S S SR

  (D18) 
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In a similar way, the two other stress concentrations are obtained as follows  

 

( )( ) ( ) ( )( )11 12 2 1 1 3 2 1 2 1 1 1 3 2 3

αj 1 αα 2 αα 3 αα αα αα αj 1 αβ 2 αβ 3 αβ 3 αα αα αβ αβ β jη η η η η η η
−− −

′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′= + + − + + + − 
  

δS S S S S S S S S S S S SR

  (D19) 

 

( )( ) ( ) ( )( )11 13 3 2 2 1 3 2 3 2 2 2 1 3 1

αj 2 αα 3 αα 1 αα αα αα αj 2 αβ 3 αβ 1 αβ 1 αα αα αβ αβ β jη η η η η η η
−− −

′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′= + + − + + + − 
  

δS S S S S S S S S S S S SR

  (D20) 

The elements of the six-by-six stress concentrations are now determined and can be 
substituted in Eq.(D6) for the calculation of the effective compliance. A similar 
procedure can be followed for the derivation of the strain concentrations, leading to 

  

 i

αj αj= δQ   (D21) 

 

( ) ( ) ( ) ( )
11 11 2 1 2 3 1 2 1 2 2 3 1 3

βj 1 ββ 2 ββ 3 ββ ββ ββ ββ βj 2 βα βα 3 ββ ββ βα βα αjη η η η η
−− −

′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′= + + − − + −    
     

δ δC C C C C C C C C C C CQ  

 (D22) 

 

( ) ( ) ( ) ( )
11 12 1 2 1 3 2 1 2 1 1 3 2 3

βj 2 ββ 1 ββ 3 ββ ββ ββ ββ βj 1 βα βα 3 ββ ββ βα βα αjη η η η η
−− −

′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′= + + − − + −    
     

δ δC C C C C C C C C C C CQ  

 (D23) 

 

( ) ( ) ( ) ( )
11 13 2 3 2 1 3 2 3 2 2 1 3 1

βj 3 ββ 2 ββ 1 ββ ββ ββ ββ βj 2 βα βα 1 ββ ββ βα βα αjη η η η η
−− −

′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′= + + − − + −    
     

δ δC C C C C C C C C C C CQ  

 (D24) 

It is worth mentioning that Gueguen et al. [132] made an attempt to derive similar 
relationships for the stress and strain concentrations but made errors and ended up 
with erroneous relationships.  

In our example of the interlamellar region, the properties of phase 1 and phase 3 are 
identical as they represent the side interphase layers. Therefore, Eq. (D6) is rewritten as 
follows: 

 ( ) ( ) ( )1 1 1I I 1 1 2 2

1 22η η
− − −

= = +C C CS R R   (D25) 
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In the above equation, the unknown is 
1 ip=C C . On the other hand, 1R  and 2R  are non-

linear tensorial functions of 
1C , 

2 am=C C  as well as the associated volume fractions. 

Rearrangement of (D25) gives 

 
( ) ( )

( ) ( ) ( )

11 11 1 I 2 2

1 2

11 1ip ip il am am

am am

2 or

1

η η

η η

−− −

−− −

= −

= − −

 
 

 
 

C C R

C C R

C R

C R
  (D26) 

Similar treatment of Eq.(D5) leads to the following relationship 

 ( )( ) 1ip il am am ip
am am1η η

−
 = − − C C C Q Q   (D27) 

Obviously, Eqs. (D26) and (D27) have the familiar form of  

 ( )= XX f   (D28) 

where f  is a non-linear tensorial function of X . Apart from the arguments around the 

existence and uniqueness of the solution for Eq.(D26) or (D27), which are beyond the 
scope of this survey, the very first solution method which looks to suit the equation at 

hand is the numerical recursive method. In other words, some initial ip

initial
C  is inserted 

into the right hand side of Eq. (D26) or (D27) whose result is fed into itself as many 
times as required until a certain convergence criterion is satisfied. For the problem 

examined in this study, it was observed that when ilC  is of orthotropic symmetry, 
Eq.(D28) converges to the solution using the recursive method while convergence 

problems are very likely when ilC  has monoclinic symmetry. In the latter case, 
optimization techniques are more promising alternatives. To this end, a nonnegative 
cost function is defined such that its optimization parameters correspond to the 

elements of X  and its objective is minimizing the norm of ( )− XX f . 
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Equation Section (Next) 

Appendix E- Finding the inverse of a fourth-order tensor with minor 
symmetry  

In many micromechanical relationships, there appears the inverse of fourth-
order tensors such as the Eshelby tensor or the stiffness tensor. In this appendix, a 
numerical technique is presented that helps to find the inverse of fourth-order tensors 
that possess minor symmetry is presented. This algorithm is founded on a specific 
representation of fourth-order tensors in a 9×9 matrix format as well as the definition of 
the fourth-order identity tensor.  

The elements of an arbitrary fourth-order tensor ijklS  may be represented as 

follows in a 9×9 matrix format  

 

1111 1112 1113 1121 1122 1123 1131 1132 1133

1211 1212 1213 1221 1222 1223 1231 1232 1233

1311 1312 1313 1321 1322 1323 1331 1332 1333

2111 2112 2113 2121 2122 2123 2131 2132 2133

2211 2212 2213 2221

S S S S S S S S S

S S S S S S S S S

S S S S S S S S S

S S S S S S S S S

S S S S 2222 2223 2231 2232 2233

2311 2312 2313 2321 2322 2323 2331 2332 2333

3111 3112 3113 3121 3122 3123 3131 3132 3133

3211 3212 3213 3221 3222 3223 3231 3232 3233

3311 3312 3313 3321 3322 3323 3331 3332

S S S S S

S S S S S S S S S

S S S S S S S S S

S S S S S S S S S

S S S S S S S S 3333S

 
 
 
 
 
 
 
 
 
 
 
 
 
 

  (E1) 

It is underlined that the above matrix representation is quite subjective. The above 
representation is easy to reproduce and serves as a useful means to our objective which 
is finding the inverse of a fourth-order tensor. Another advantage of the above 
representation is that instead of tensorial product of two fourth-order tensors, their 
matrix forms can be multiplied like two ordinary matrices.  

By definition, if there exists some fourth-order tensor ijklJ  such that    

 ijkl klmn ijkl klmn ijmn= = ==SJ S J JS J S I   (E2) 

then J  is the inverse of S  and vice versa. In the above relationship, ijmnI  stands for the 

fourth-order identity tensor and is defined as ( )ijmn im jn jm in

1
= δ δ +δ δ

2
I . Matrix expansion 

of the above relationship is as follows  
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1111 1112 1113 1121 1122 1123 1131 1132 1133

1211 1212 1213 1221 1222 1223 1231 1232 1233

1311 1312 1313 1321 1322 1323 1331 1332 1333

2111 2112 2113 2121 2122 2123 2131 2132 2133

2211 2212 2213 2221

S S S S S S S S S

S S S S S S S S S

S S S S S S S S S

S S S S S S S S S

S S S S 2222 2223 2231 2232 2233

2311 2312 2313 2321 2322 2323 2331 2332 2333

3111 3112 3113 3121 3122 3123 3131 3132 3133

3211 3212 3213 3221 3222 3223 3231 3232 3233

3311 3312 3313 3321 3322 3323 3331 3332

S S S S S

S S S S S S S S S

S S S S S S S S S

S S S S S S S S S

S S S S S S S S

1111 1112 1113 1121 1122 1123 1131 1132 1133

1211 1212 1213 1221 1222 1223 1231 1232 1233

1311 1312 1313 1321 1322 1323 1331 1332 1333

2111 2112 2113 2121 2122 2123

3333

J J J J J J J J J

J J J J J J J J J

J J J J J J J J J

J J J J J J J

S

×

 
 
 
 
 
 
 
 
 
 
 
 
 
 

2131 2132 2133

2211 2212 2213 2221 2222 2223 2231 2232 2233

2311 2312 2313 2321 2322 2323 2331 2332 2333

3111 3112 3113 3121 3122 3123 3131 3132 3133

3211 3212 3213 3221 3222 3223 3231 3232 3233

3311

J J

J J J J J J J J J

J J J J J J J J J

J J J J J J J J J

J J J J J J J J J

J J3312 3313 3321 3322 3323 3331 3332 3333J J J J J J J

 
 
 
 
 
 
 
 
 
 
 
 
 
 

  

 

1 0 0 0 0 0 0 0 0

0 0.5 0 0.5 0 0 0 0 0

0 0 0.5 0 0 0 0.5 0 0

0 0.5 0 0.5 0 0 0 0 0

0 0 0 0 1 0 0 0 0

0 0 0 0 0 0.5 0 0.5 0

0 0 0.5 0 0 0 0.5 0 0

0 0 0 0 0 0.5 0 0.5 0

0 0 0 0 0 0 0 0 1

 
 
 
 
 
 
 =
 
 
 
 
 
 
 

  (E3) 

If the initial fourth-order tensor S  has no symmetry and its rows and columns are 
independent then pre-multiplication of the right-hand side of (E3) by the inverse of the 

matrix form of S yields the matrix form of 1−S . However, most fourth-order tensors in 
micromechanics have at least minor symmetry which means that the second 
row/column is identical with the fourth row/column, the third row/column is identical 
with the seventh row/column, and finally the sixth row/column is identical with the 

eighth row/column; consequently the matrix form of S  is not invertible. Nevertheless, 

the property of minor symmetry of S  can be exploited to eliminate the redundant 

elements and reduce the dimension of matrix form of S  from 9×9 to 6×6.            

Minor symmetry property of S  implies that ijkl jikl ijlk jilk= = =S S S S . But the fourth-

order identity tensor I  has the same property of minor symmetry which entails that J  

has minor symmetry as well, i.e. ijkl jikl ijlk jilk= = =J J J J . Therefore, eliminating the duplicate 

rows of the matrix forms of S and duplicate columns of the matrix form of J , simplifies 

the relationship (E3) to the following simpler form  
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1111 1112 1113 1121 1122 1123 1131 1132 1133

1211 1212 1213 1221 1222 1223 1231 1232 1233

2211 2212 2213 2221 2222 2223 2231 2232 2233

2311 2312 2313 2321 2322 2323 2331 2332 2333

3111 3112 3113 3121

S S S S S S S S S

S S S S S S S S S

S S S S S S S S S

S S S S S S S S S

S S S S

1111 1112 1122 1123 1131 1133

1211 1212 1222 1223 1231 1233

1311 1312 1322 1323 1331 1333

2111 2112 2

3122 3123 3131 3132 3133

3311 3312 3313 3321 3322 3323 3331 3332 3333

J J J J J J

J J J J J J

J J J J J J

J J J

S S S S S

S S S S S S S S S

 
 
 
 
 
 
 
 
 
 
 
 
 
 

122 2123 2131 2133

2211 2212 2222 2223 2231 2233

2311 2312 2322 2323 2331 2333

3111 3112 3122 3123 3131 3133

3211 3212 3222 3223 3231 3233

3311 3312 3322 3323 3331 3333

J J J

J J J J J J

J J J J J J

J J J J J J

J J J J J J

J J J J J J

 
 
 
 
 
 
 
 
 
 
 
 
 
 

  

 

1 0 0 0 0 0

0 0.5 0 0 0 0

0 0 1 0 0 0

0 0 0 0.5 0 0

0 0 0 0 0.5 0

0 0 0 0 0 1

 
 
 
 
 
 
 =
 
 
 
 
 
 
 

  (E4) 

or equally  

1111 1112 1113 1121 1122 1123 1131 1132 1133

1211 1212 1213 1221 1222 1223 1231 1232 1233

2211 2212 2213 2221 2222 2223 2231 2232 2233

2311 2312 2313 2321 2322 2323 2331 2332 2333

3111 3112 3113 3121

S S S S S S S S S

S S S S S S S S S

S S S S S S S S S

S S S S S S S S S

S S S S

1111 1112 1122 1123 1131 1133

1211 1212 1222 1223 1231 1233

1311 1312 1322 1323 1331 1333

2111 2112 2122 212

3122 3123 3131 3132 3133

3311 3312 3313 3321 3322 3323 3331 3332 3333

J J J J J J

J J J J J J

J J J J J J

J J J J

S S S S S

S S S S S S S S S

 
 
 
 

× 
 
 
 
  

3 2131 2133

2211 2212 2222 2223 2231 2233

2311 2312 2322 2323 2331 2333

3111 3112 3122 3123 3131 3133

3211 3212 3222 3223 3231 3233

3311 3312 3322 3323 3331 3333

J J

J J J J J J

J J J J J J

J J J J J J

J J J J J J

J J J J J J

 
 
 
 
 
 
 
 
 
 
 
 
 
 

  

 

1 0 0 0 0 0

0 0.5 0 0 0 0

0 0 1 0 0 0

0 0 0 0.5 0 0

0 0 0 0 0.5 0

0 0 0 0 0 1

 
 
 
 

=  
 
 
 
 

  (E5) 
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But the duplicate columns in the matrix form of S  and duplicate rows in the matrix form 
of J  have not been eliminated. To have a clearer image of the way these two features 

are exploitable, the product of the second row of the matrix form of S  and the first 
column of the matrix form of J  is expanded as follows 

 12** **11 1211 1111 1212 1211 1213 1311 1221 2111 1222 2211 1223 2311 1231 3111

1232 3211 1233 3311 1211 1111 1222 2211 1233 3311 1223 2311 1231 3111 1212 12112 2 2

S J S J S J S J S J S J S J S J

S J S J S J S J S J S J S J S J

× = + + + + + +
+ + = + + + + +

  (E6) 

Expansion of the other rows and columns of the two matrices on the left hand side of 
(E5), their simplification and recollection leads to the following simpler representation 

 

1111 1112 1122 1123 1131 1133

1211 1212 1222 1223 1231 1233

2211 2212 2222 2223 2231 2233

2311 2312 2322 2323 2331 2333

3111 3112 3122 3123 3131 3133

3311 3312 3322 3323 3331 3333

2 2 2

2 2 2

2 2 2

2 2 2

2 2 2

2 2 2

S S S S S S

S S S S S S

S S S S S S

S S S S S S

S S S S S S

S S S S S S





1111 1112 1122 1123 1131 1133

1211 1212 1222 1223 1231 1233

2211 2212 2222 2223 2231 2233

2311 2312 2322 2323 2331 2333

3111 3112 3122 3123 3131 3133

3311 3312 3322 3323 3331 3333

J J J J J J

J J J J J J

J J J J J J

J J J J J J

J J J J J J

J J J J J J

 
 
 
 

× 
 
 
 
 

1 0 0 0 0 0

0 0.5 0 0 0 0

0 0 1 0 0 0

0 0 0 0.5 0 0

0 0 0 0 0.5 0

0 0 0 0 0 1


 
 
 
 
 
 
 
  

 
 
 
 

=  
 
 
 
 

  (E7) 

Some trivial swap of columns/rows in the first/second matrix on the left hand side of 
the above relationship yields    

 

1111 1122 1133 1123 1113 1112

2211 2222 2233 2223 2213 2212

3311 3322 3333 3323 3313 3312

2311 2322 2333 2323 2313 2312

1311 1322 1333 1323 1313 1312

1211 1222 1233 1223 1213 1212

2 2 2

2 2 2

2 2 2

2 2 2

2 2 2

2 2 2

S S S S S S

S S S S S S

S S S S S S

S S S S S S

S S S S S S

S S S S S S





1111 1122 1133 1123 1113 1112

2211 2222 2233 2223 2213 2212

3311 3322 3333 3323 3313 3312

2311 2322 2333 2323 2313 2312

1311 1322 1333 1323 1313 1312

1211 1222 1233 1223 1213 1212

J J J J J J

J J J J J J

J J J J J J

J J J J J J

J J J J J J

J J J J J J

 
 
 
 

× 
 
 
 
 

1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 0.5 0 0

0 0 0 0 0.5 0

0 0 0 0 0 0.5


 
 
 
 
 
 
 
  

 
 
 
 

=  
 
 
 
 

  (E8) 
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For easier recall, the previous relationship can be rewritten in the following form  

1111 1122 1133 1123 1113 1112

2211 2222 2233 2223 2213 2212

3311 3322 3333 3323 3313 3312

2311 2322 2333 2323 2313 2312

1311 1322 1333 1323 1313 1312

1211 1222 1233 1223 121

2 2 2

2 2 2

2 2 2

2 2 2 4 4 4

2 2 2 4 4 4

2 2 2 4 4

S S S S S S

S S S S S S

S S S S S S

S S S S S S

S S S S S S

S S S S S

1111 1122 1133 1123 1113 1112

2211 2222 2233 2223 2213 2212

3311 3322 3333 3323 3313 3312

2311 2322 2333 2323 2313 2312

1311 1322 1333 1323 1313 1312

3 1212 1211 1222 1233 1223 14

J J J J J J

J J J J J J

J J J J J J

J J J J J J

J J J J J J

S J J J J J

 
 
 
 

× 
 
 
 
   213 1212J

 
 
 
 

= 
 
 
 
  

 

 

1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

 
 
 
 

=  
 
 
 
 

  (E9) 

or 

1111 1122 1133 1123 1113 1112

2211 2222 2233 2223 2213 2212

3311 3322 3333 3323 3313 3312

2311 2322 2333 2323 2313 2312

1311 1322 1333 1323 1313 1312

1211 1222 1233 1223 1213 1212

2 2 2

2 2 2

2 2 2

2 2 2

2 2 2

2 2 2

S S S S S S

S S S S S S

S S S S S S

S S S S S S

S S S S S S

S S S S S S





1111 1122 1133 1123 1113 1112

2211 2222 2233 2223 2213 2212

3311 3322 3333 3323 3313 3312

2311 2322 2333 2323 2313 2312

1311 1322 1333 1323 1313 1312

1211 1222 1233

2 2 2

2 2 2

2 2 2

2 2 2

2 2 2

2

J J J J J J

J J J J J J

J J J J J J

J J J J J J

J J J J J J

J J J


 
 
 

× 
 
 
 
  1223 1213 12122 2J J J

 
 
 
 

= 
 
 
 
  

 

 

1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

 
 
 
 

=  
 
 
 
 

  (E10) 

Given the modification made on the 9×9 matrix forms of S  and J  which have 

minor symmetry, the reduced forms of 6×6 matrices have independent rows and 
columns meaning that they are invertible. Therefore, once the inverse of any fourth-
order tensor that has minor symmetry is sought, one needs to form either of the square 
matrices on the left hand side of (E10) as demonstrated and calculate its inverse. Using 
the calculated inverse and taking the coefficient 2 of some elements into account, 36 
independent elements of the looked for inverse tensor become readily available.    
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Equation Section (Next) 

Appendix F- Voigt notation and the 6×6 matrix form of stiffness and 
compliance tensors  

As demonstrated in Appendix C, the fourth-order tensors having minor symmetry 
can be represented as 6×6 square matrices after eliminating their repeated elements. 
According to Voigt notation convention, the following indexing system can be used as a 
more convenient alternative for representing the entries of a second-order tensor, such 
as stress or strain tensors, or fourth-order tensors, such as stiffness or compliance 
tensors.  

 

11 1 23 or 32 4

22 2 13 or  31 5

33 3 12 or 21 6

→ →
→ →
→ →

  (F1) 

The following example of the Hooke’s law explains how to use this convention. If the 
components of the stiffness tensor are collected in a 9×9 square matrix as demonstrated 
in Appendix C then the stress and strain components take the following sorting order in 
a column vector.   

 

11 1111 1112 1113 1121 1122 1123 1131 1132 1133

12 1211 1212 1213 1221 1222 1223 1231 1232 1233

13 1311 1312 1313 1321 1322 1323 1331 1332 1333

21 2111 211

22

23

31

32

33

C C C C C C C C C

C C C C C C C C C

C C C C C C C C C

C C

σ
σ
σ
σ
σ
σ
σ
σ
σ

 
 
 
 
 
 
  =
 
 
 
 
 
 
 

2 2113 2121 2122 2123 2131 2132 2133

2211 2212 2213 2221 2222 2223 2231 2232 2233

2311 2312 2313 2321 2322 2323 2331 2332 2333

3111 3112 3113 3121 3122 3123 3131 3132 3133

3211 3212 3213 3221 3222 322

C C C C C C C

C C C C C C C C C

C C C C C C C C C

C C C C C C C C C

C C C C C C

11

12

13

21

22

23

31

3 3231 3232 3233 32

3311 3312 3313 3321 3322 3323 3331 3332 3333 33

C C C

C C C C C C C C C

ε
ε
ε
ε
ε
ε
ε
ε
ε

   
   
   
   
   
   
   
   
   
   
   
   
   
   

  (F2) 

Similar to the arguments given in Appendix C, the symmetry of the stress tensor 
together with the symmetry of the stiffness allows for simplifying the above equation to 
the following form  
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11 1111 1112 1113 1121 1122 1123 1131 1132 1133

12 1211 1212 1213 1221 1222 1223 1231 1232 1233

13 1311 1312 1313 1321 1322 1323 1331 1332 1333

22 2211 2212 2213 2221 2222

23

33

C C C C C C C C C

C C C C C C C C C

C C C C C C C C C

C C C C C C

σ
σ
σ
σ
σ
σ

 
 
 
 

= 
 
 
 
  

11

12

13

21

22
2223 2231 2232 2233

23
2311 2312 2313 2321 2322 2323 2331 2332 2333

31
3311 3312 3313 3321 3322 3323 3331 3332 3333

32

33

C C C

C C C C C C C C C

C C C C C C C C C

ε
ε
ε
ε
ε
ε
ε
ε
ε

 
 
  
  
  
  
  
  
  
  
   
 
 
 

  (F3) 

The following expansion helps to better understand the following simplification of 
Eq.(F3). Expansion of the second row in (F3) yields  

 

12 1211 11 1212 12 1213 13 1221 21 1222 22 1223 23 1231 31 1232 32 1233 33

1211 11 1222 22 1233 33 1223 23 1213 13 1212 122 2 2

C C C C C C C C C

C C C C C C

σ ε ε ε ε ε ε ε ε ε
ε ε ε ε ε ε

= + + + + + + + +
= + + + + +

  (F4) 

The coefficients “2” in the above expansion appear due to the symmetry of the strain 
tensor as well as the minor symmetry of the stiffness tensor. Similar expansions lead to 
the following simpler form of representation 

 

1111 1122 1133 1123 1113 111211

2211 2222 2233 2223 2213 221222

3311 3322 3333 3323 3313 331233

2311 2322 2333 2323 2313 231223

1311 1322 1333 1323 1313 131213

1211 122212

C C C C C C

C C C C C C

C C C C C C

C C C C C C

C C C C C C

C C C

σ
σ
σ
σ
σ
σ

 
 
 
 

= 
 
 
 
  

11

22

33

23

13

1233 1223 1213 1212 12

2

2

2C C C

ε
ε
ε
ε
ε
ε

   
   
   
   
   
   
   
   

     

  (F5) 

Although the coefficients “2” in the strain vector can be assigned to the corresponding 
elements of the stiffness matrix, in the continuum mechanics literature they appear in 
the strain vector. Performing the Voigt notation for the relationship (F5), we have  
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1 111 11

2 222 22

3 333 33

4 423 23

5 513 13

6 612 12

1111 1122 1133 1123 1113 1112

2211 2222 2233 2223 22

, ,
2

2

2

C C C C C C

C C C C C

σ εσ ε
σ εσ ε
σ εσ ε
σ εσ ε
σ εσ ε
σ εσ ε

      
      
      
      

= =      
      
      
      

            

11 12 13 14 15 16

13 2212 21 22 23 24 25 26

3311 3322 3333 3323 3313 3312 31 32 33 34 35

2311 2322 2333 2323 2313 2312

1311 1322 1333 1323 1313 1312

1211 1222 1233 1223 1213 1212

C C C C C C

C C C C C C C

C C C C C C C C C C C C

C C C C C C

C C C C C C

C C C C C C

 
 
 
 

= 
 
 
 
  

36

41 42 43 44 45 46

51 52 53 54 55 56

61 62 63 64 65 66

C C C C C C

C C C C C C

C C C C C C

 
 
 
 
 
 
 
 
  

  (F6) 

In other words, Hooke’s law in Voigt notation takes the following widely known 
representation  

 

1 11 12 13 14 15 16 1

2 21 22 23 24 25 26 2

3 31 32 33 34 35 36 3

4 41 42 43 44 45 46 4

5 51 52 53 54 55 56 5

6 61 62 63 64 65 66 6

C C C C C C

C C C C C C

C C C C C C

C C C C C C

C C C C C C

C C C C C C

σ ε
σ ε
σ ε
σ ε
σ ε
σ ε

     
     
     
     

=     
     
     
     
          

  (F7) 

Similarly, it can be demonstrated that the other form of Hooke’s law, which is expressed 
using the compliance tensor, takes the following representation 

1 111 11

2 222 22

3 333 33

4 423 23

5 513 13

6 612 12

1111 1122 1133 1123 1113 1112

2211 2222 2233 2223

,
2

2

2

2 2 2

2

S S S S S S

S S S S

σ εσ ε
σ εσ ε
σ εσ ε
σ εσ ε
σ εσ ε
σ εσ ε

      
      
      
      

= =      
      
      
      

            

11 12 13 14 15 16

2213 2212 21 22 2

3311 3322 3333 3323 3313 3312

2311 2322 2333 2323 2313 2312

1311 1322 1333 1323 1313 1312

1211 1222 1233 1223 1213 1212

2 2

2 2 2

2 2 2 4 4 4

2 2 2 4 4 4

2 2 2 4 4 4

S S S S S S

S S S S S

S S S S S S

S S S S S S

S S S S S S

S S S S S S

 
 
 
 

= 
 
 
 
  

3 24 25 26

31 32 33 34 35 36

41 42 43 44 45 46

51 52 53 54 55 56

61 62 63 64 65 66

S S S

S S S S S S

S S S S S S

S S S S S S

S S S S S S

 
 
 
 
 
 
 
 
  

 (F8) 
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This last equivalence is evident in light of the discussions of Appendix C and in particular 
from relationship (E9) because the stiffness and compliance tensors are each other’s 
inverse in the matrix form as they are in the tensorial form.  

In the literature, the stiffness and compliance tensors are often reported in 6×6 
matrix format instead of reporting all of their 81 elements. Besides, when 6×6 matrix 
forms of compliance and stiffness tensors of a material are expressed in their material 
reference frame, the type of available symmetry can be visually recognized. To establish 
a direct link between the stiffness/compliance of some material and its elastic constants 
the following simple algorithm can be used. For a fully anisotropic material, the 6×6 
matrix form of the compliance tensor takes the following form as a function of the elastic 
constants  

 

23,1 31,1 12,13121

1 2 3 1 1 1

23,2 31,2 12,23212

1 2 3 2 2 2

23,3 31,3 12,331 23

1 2 3 3 3 3

23,1 23,2 23,3 23,31 23,12

1 2 3 23 23 23

31,1 31,2 31,3 23,31 31,12

1 2 3 23 31 31

12,

1
- -

1
- -

1
- -

1

1

g g g

E E E E E E

g g g

E E E E E E

g g g

E E E E E E

g g g

E E E G G G

g g g

E E E G G G

g

υυ

υυ

υ υ

κ κ

κ κ

=S

1 12,2 12,3 23,12 31,12

1 2 3 23 31 12

1g g

E E E G G G

κ κ

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

  (F9) 

Eα , αβυ , Gαβ , ,gαβ γ , ,αβ γζκ  stand for elastic muduli, Poisson’s ratios, shear moduli, shear-

extension coupling coefficients, and Chentsov coefficients, respectively [133]. Therefore, 
once such coefficients are available for a material, its compliance matrix is easily 
constructed from which its stiffness tensor can be readily calculated. On the contrary, if 
the stiffness matrix of a solid in its material reference frame is known, from its inverse 
and using the definition (F9), the associated elastic constants are determined.  

It is worth noting that the major symmetry property of stiffness and compliance 
tensors is manifested in the symmetry of their 6×6 matrix formats. This means that the 
stiffness and compliance matrix of any material is necessarily symmetric irrespective of 
the degree of its material symmetry and this is equivalent to saying that every stiffness 
or compliance tensor possesses at most 21 independent components.  
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Equation Section (Next) 

Appendix G- Crystalline structures and material symmetries  

As discussed is Appendix D, the stiffness tensor of any material, as its constitutive 
property, has at most 21 nonzero independent components. Depending on the existing 
material symmetry, the number of independent stiffness elements may be less than 21. 
In linear elasticity of anisotropic solids, the arguments about material symmetry have 
been shaped based on the crystallographic considerations. In crystallography there exist 
14 Bravis lattices which fall into seven lattice systems. On the other hand, it has been 
demonstrated that linear elastic symmetries do not exceed eight symmetries [134]. Of 
the available symmetries, if the isotropic one is excluded, each lattice system 
corresponds a unique linear elastic symmetry. Strictly speaking, there is a one-to-one 
correspondence between the set of lattice systems and the existing material symmetries 
in linear elasticity. 

In triclinic lattice system, the three primitive vectors are of unequal length and 
they are not orthogonal to one another. This system has the lowest symmetry among 3D 
crystal systems. In linear elasticity, the lowest symmetry takes place when there is no 
plane of symmetry which means that independent of the selected reference frame, the 
stiffness tensor has 21 independent components. Since there is no preferred reference 
frame, it can undergo arbitrary orthogonal rotations. Therefore, one can find three 
appropriate Euler angles such that in the rotated reference frame, three out of 21 
independent stiffness components becomes null. Subtracting the three Euler angles 
equivalent to the three nulled components, the stiffness tensor of a triclinic material will 
have 18 nonzero, independent components.  

The next crystal system is the monoclinic lattice system where the basis vectors 
are of difference length and the crystal unit looks like a rectangular prism with 
parallelogram base. Corresponding to the monoclinic lattice system, the next lowest 
symmetry is monoclinic symmetry where there only exists a single material symmetry 
plane. In this case, it can be shown that not more than 13 stiffness components are 
nonzero if one of the planes of the reference frame coincide the symmetry plane. But 
again, the reference frame is indifferent with respect to the rotation about the normal to 
the symmetry plane. Therefore, one can find an appropriate rotation angle for the new 
reference frame where one of the 13 independent components becomes null and the 
independent, nonzero components of the stiffness tensor reduce to 12. It can be shown 
that if 12-plane of the reference frame coincide the symmetry plane, then the stiffness 
tensor take the following general form of matrix representation  
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11 12 13 16

21 22 23 26

31 32 33 36

44 45

54 55

61 62 63 66

0 0

0 0

0 0

0 0 0 0

0 0 0 0

0 0

C C C C

C C C C

C C C C

C C

C C

C C C C

 
 
 
 
 
 
 
 
  

  (G1) 

On the other hand, if the symmetry plane is 23-plane, then the stiffness matrix will 
assume the following configuration  

 

11 12 13 14

21 22 23 24

31 32 33 34

41 42 43 44

55 56

65 66

0 0

0 0

0 0

0 0

0 0 0 0

0 0 0 0

C C C C

C C C C

C C C C

C C C C

C C

C C

 
 
 
 
 
 
 
 
  

  (G2) 

And finally, if the symmetry plane is 13-plane of the reference frame, then the stiffness 
matrix takes the following representation  

 

11 12 13 15

21 22 23 25

31 32 33 35

44 56

51 52 53 55

56 66

0 0

0 0

0 0

0 0 0 0

0 0

0 0 0 0

C C C C

C C C C

C C C C

C C

C C C C

C C

 
 
 
 
 
 
 
 
  

  (G3) 

When the three basis vectors have nonidentical lengths but are mutually 
perpendicular, the crystal lattice is called orthorhombic and the associated linear elastic 
symmetry is orthotropic. In such a lattice system, there exist two symmetry planes that 
are perpendicular to one another which results in a third symmetry plane that is 
perpendicular to the first two planes. It can be demonstrated that the stiffness tensor 
expressed in the reference frame made by the normals of the symmetry planes, has the 
following general matrix form  

 

11 12 13

21 22 23

31 32 33

44

55

66

0 0 0

0 0 0

0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

C C C

C C C

C C C

C

C

C

 
 
 
 
 
 
 
 
  

  (G4) 
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The next lattice system is tetragonal or square cuboid where two of the basis 
vectors are equi-length but the third vector has a different length. Similar to the 
orthorhombic lattice system, the vectors are mutually orthogonal. Tin, zirconium and 
magnesium chloride are examples of crystalline materials with tetragonal crystal 
system. The material symmetry in such solids is tetragonal where the normals to four 
symmetry planes lie in the fifth symmetry plane and this last symmetry plane is divided 
into eight equal sectors by the first four symmetry planes. If the 1- and 2-axis of the 
reference frame are each co-directional with one of the normals to the first four 
symmetry planes, then the stiffness tensor takes the following matrix form  

 

11 12 13

11 13

33

44

44

66

0 0 0

0 0 0

0 0 0

Sym. 0 0

0

C C C

C C

C

C

C

C

 
 
 
 
 
 
 
 
  

  (G5) 

The next lattice system is trigonal where the three primitive vectors have 
identical lengths and make equal, non-orthogonal angles with one another. The 
associated material symmetry is trigonal: the normals to the three symmetry planes are 
coplanar and lie at equal angles of 120° relative to each other. If the 3-axis of the 
reference frame is normal to the plane containing the normals to the symmetry planes 
and one of the other axes of the reference frame is codirectional with one of the normals 
of the symmetry planes, then the stiffness tensor takes the following matrix form   

 

( )

11 12 13 15

11 13 15

33

44 15

44

11 12

0 0

0 - 0

0 0 0

0 -

Sym. 0

1
-

2

C C C C

C C C

C

C C

C

C C

 
 
 
 
 
 
 
 
 
  

  (G6) 

Hexagonal crystal system is the six crystal system whose crystalline unit looks 
like a prism with regular hexagonal base. In this crystal system, two of the basis vectors 
have the same length making an angle of 120° with each other and the third vector is 
normal to the first two. Zinc, magnesium, cobalt, cadmium and alumina are examples of 
solids with hexagonal crystal system. The corresponding material symmetry is 
hexagonal which is sometimes referred to as plane isotropy. In this symmetry, there 
exist an infinite number of symmetry planes such that one of them contains the normals 
to the rest of the symmetry planes. If the 12-plane of the reference frame coincide the 
unique symmetry plane that is orthogonal to all other planes, then the stiffness tensor 
takes the following matrix form 
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( )

11 12 13

11 13

33

44

44

11 12

0 0 0

0 0 0

0 0 0

0 0

Sym. 0

1
-

2

C C C

C C

C

C

C

C C

 
 
 
 
 
 
 
 
 
  

  (G7) 

Finally, the last crystal system is cubic which is the simplest one. In the cubic 
crystal system, all the basis vectors are of equal length and are orthogonal to each other. 
Aluminum, copper, silver and iron are examples of solids with cubic crystal system. The 
material symmetry associated with such materials is cubic symmetry with nine 
symmetry planes. If three of the normals to these symmetry planes are co-directional 
with 1-, 2- and 3-axis of the reference frame, then the other normals are aligned with the 
diagonals of the planes orthogonal to the first three normals. In this case the stiffness 
tensor has the following matrix form  

 

11 12 12

11 12

11

44

44

44

0 0 0

0 0 0

0 0 0

0 0

Sym. 0

C C C

C C

C

C

C

C

 
 
 
 
 
 
 
 
  

  (G8) 

For isotropic symmetry which is the simplest material symmetry, there is no 
corresponding crystal system. Every plane in the space is the plane of symmetry and the 
stiffness tensor in any reference frame has two independent constants and takes the 
following general matrix form of representation  

 ( )

( )

( )

11 12 12

11 12

11

11 12

11 12

11 12

0 0 0

0 0 0

0 0 0

1
- 0 0

2
1

Sym. - 0
2

1
-

2

C C C

C C

C

C C

C C

C C

 
 
 
 
 
 
 
 
 
 
 
 
 

  (G9) 

For isotropic symmetry, there is no preferred reference frame and the representation of 
the stiffness matrix is independent of the adopted reference frame. This is equivalent to 
saying that the stiffness tensor is insensitive to the rotation of the reference frame and 
to the orientational averaging operation.  
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It is underlined that although the notion of material symmetry in linear elasticity 
is traditionally linked to the crystal systems, the concept of elastic symmetries is 
generalizable to noncrystalline materials, such as biological tissues, geological samples 
or synthetic materials, which may behave anisotropically. Strictly speaking, in linear 
elasticity it has been demonstrated that the available symmetries for both crystalline 
and noncrystalline media are restricted to the eight aforementioned material 
symmetries [134, 135]. On the other hand, save for the isotropic symmetry, visual 
recognition of the existing symmetry from the stiffness matrix is impossible unless it is 
expressed in its proper material reference frame. Several algorithms have been 
proposed in the literature whose objective is to determine the type of symmetry of any 
given stiffness matrix, regardless of the reference frame in which they have been 
expressed (e.g. [135, 136]).      
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Equation Section (Next) 

Appendix H- Positive definiteness of stiffness and the theorems of upper 
bound and lower bound 

Using the first law of thermodynamics, it can be shown that in an infinitesimal, 

linear elastic, adiabatic deformation, the strain energy density function, 0W , is expressed 

as follows  

 0

1

2 p pq qW = ε εC   (H1) 

Strain vector ε  and stiffness tensor C  are defined according to the Voigt notation 
convention discussed in Appendix D and summation over dummy indices is implied. 
Mechanical stability necessitates that when the material is unloaded from any linearly 
elastic loading, it retrieves its initially unloaded configuration. This understanding is 
equivalent to saying that the minimum state of energy of any material is its unloaded 
state and the strain energy function of any material is always positive. Therefore, if the 
strain vector is nonzero, the following inequality always holds  

 q 0p pq >ε εC   (H2) 

Additionally, from linear algebra we know that the real, square matrix n nD ×  is positive 

definite if and only if for any nonzero vector 1n×a  the following inequality is always true  

 T 0D >a a   (H3) 

where the superscript T  denotes the transpose. Comparison of the two recent 
inequalities suggest that the stiffness matrix of any material that can be found in 
isolation in nature is positive definite. Again from algebra, the inverse of any positive 
definite matrix is positive definite which leads to the positive definiteness of the 
compliance matrix. Additionally, in linear algebra it is demonstrated that the eigen 
values of any symmetric, positive definite matrix are all positive. For compliance and 
stiffness matrices, this last proposition is equivalent to the positivity of all diagonal 
elements in any reference frame. In the following paragraphs, the positive definiteness 
of the stiffness and compliance matrices are exploited to demonstrate that the overall 
stiffnesses estimated by the Voigt and Reuss techniques produce upper bound and lower 
bound of the effective stiffness of any nonhomogeneous material, respectively.  

Assuming that the stress and strain induced in a nonhomogeneous body 
subjected to external loading X  are σ  and ε , respectively, if n  denotes the outward 
normal to the external surface of the medium, ϒ , then  

 
jij i= onϒσ n Χ   (H4)  
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If the strains are confined to the linear elastic range, we will also have 

 
ij ijkl ij

ij ijkl ij

=

=

σ ε

ε σ

C

S
  (H5) 

where C  and S  stand for the effective stiffness and compliance of the heterogeneous 

medium. If the true stress and strain fields are respectively denoted by ijσ  and ijε , the 

following equalities are valid   

 0
ij ij ij i,j i i

V V

dΩ= dΩ= dΑ
ϒ

∫ ∫ ∫σ ε σ u Χ u   (H6) 

In the above relationship, V is the integration volume, dΩ  is the volume element, 0
iu  is 

the displacement vector over ϒ . Similar equalities can be developed for ijσ  and ijε    

 0
ij ij ij i,j i i

V V

dΩ= dΩ= dΑ
ϒ

∫ ∫ ∫σ ε σ u Χ u   (H7) 

Given that ijσ  and ijε  are constant and that the rightmost sides of the two last 

relationships are identical, therefore  

 ij ij ij ij

V

1
= dΩ

V ∫
σ ε σ ε   (H8) 

The interpretation of this last equality is that the volume average of the strain energy 
equals the inner product of the average stress and average strain tensors. Now the 
auxiliary variables 0

ijσ  and 0
ijε  are defined as follows  

 
0
ij ijkl ij

0
ij ijkl ij

=

=

σ ε

ε σ

C

S
  (H9) 

Moreover, for the stress and strain fields of the heterogeneous medium we have 

 
ij ijkl kl

ij ijkl kl

=

=

σ ε

ε σ

C

S
  (H10) 

The following equalities can be derived from the combination of the two above 
relationships 

 
0

ij ij ij ij

0
ij ij ij ij

=

=

σ ε σ ε

σ ε σ ε
  (H11) 
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and consequently  

 
( )( ) ( )
( )( ) ( )

0 0
ij ij ij ij ij ij ij ij ij ij ij

0 0
ij ij ij ij ij ij ij ij ij ij ij

+ - - = +2 -

+ - - = +2 -

σ ε σ σ ε ε σ ε ε ε σ

σ ε σ σ ε ε σ ε σ σ ε
  (H12) 

The second terms on the left hand side of both relationships of (H12) are positive as 

they can be decomposed into ( )( )ijkl kl kl ij ij- -C ε ε ε ε  and ( )( )ijkl kl kl ij ij- -S σ σ σ σ  which are 

always positive due to the positive definiteness of the stiffness and compliance matrices. 
Moreover, volume integration over the second terms of the right hand sides of the two 
last equalities vanishes since  

 

( ) ( )

( ) ( )

0 0
ij ij ij i i i

V

0
ij ij ij i i i

V

- dΩ= - dA=0

- dΩ= - dA 0

ϒ

ϒ

=

∫ ∫

∫ ∫

ε ε σ

σ σ ε

Χ u u

Χ Χ u

  (H13) 

Therefore, the following inequalities are readily evident   

 

0
ij ij ij ij

V

0
ij ij ij ij

V

V dΩ

V dΩ

≤

≤

∫

∫

σ ε ε σ

σ ε σ ε

  (H14) 

By substitution from (H5) and (H9) it is concluded that  

 
ijkl ijkl

V

ijkl ijkl

V

1
dΩ

V

1
dΩ

V

≤

≤

∫

∫

C C

S S

  (H15) 

The first inequality suggests that every individual element of the overall stiffness tensor 
estimated by Voigt method is greater than or equal to the corresponding element in the 
true effective stiffness tensor. Similarly, the second inequality suggests that every 
individual element of the true effective compliance is less than or equal to the 
corresponding element in the effective compliance estimated by Reuss method. Given 
that the compliance and stiffness tensors are mutually inverse, a better interpretation of 
these last two inequalities is that Voigt and Reuss estimates of the effective stiffness of 
any heterogeneous material yield the upper and lower bounds of the real effective 
stiffness.  
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Equation Section (Next) 

Appendix I- Constitutive law of an isotropic, homogeneous, hyperelastic 
solid   

A hyperelastic material is, by definition, a solid whose stress-strain relationship is 
derivable from an elastic potential energy that is necessarily a strain energy density 
function. Hyperelastic or Green elastic materials, which are typically characterized by 
low stiffness and large yield strain, are a subgroup of Cauchy elastic materials. The 
stress-strain response in hyperelastic materials is usually nonlinear and isotropic.  

The Clausius-Duhem inequality for an isothermal process necessitates that in a 
hyperelastic material, the second Piola-Kirchhoff stress tensor, Y , has the following 

relationship with the strain energy density function of the material, W , and the 

deformation gradient tensor, F :  

 1 W− ∂=
∂

Y F
F

  (I1) 

In terms of the Cauchy stress tensor, the constitutive law of a homogeneous, 
compressible, hyperelastic material reads  

 
1 tW

J

∂=
∂

σ F
F

  (I2) 

where J  is the Jacobian of deformation. On the other hand, it can be shown that in an 
isotropically hyperelastic material, the strain energy density function can be uniquely 
expressed as a symmetric function of the principal stretches or equivalently as a 
function of the principal invariants of the left Cauchy-Green deformation tensor, 

tB = FF  [137]. Mathematically speaking,  

 
( ) ( ) ( )1 2 3 1 2 3

2 2 2 2 2 2 2 2 2 2 2 2 2
1 1 2 3 2 1 2 2 3 3 1 3 1 2 3

ˆ , , , ,

with: , ,

W W W I I I

I I I J

λ λ λ

λ λ λ λ λ λ λ λ λ λ λ λ

= =

= + + = + + = =

F ɶ
  (I3) 

By using the chain rule, the constitutive relationship for an isotropic, homogeneous, 
compressible, hyperelastic material takes the following mathematical representation  

 2
1 3

1 2 2 33

2
2

W W W W
I I

I I I II

  ∂ ∂ ∂ ∂= + − +  ∂ ∂ ∂ ∂  
σ B B 1

ɶ ɶ ɶ ɶ
  (I4) 

A variety of empirical and phenomenological strain energy functions have to date been 
proposed. Valuable, comparative reviews on the commonly used models are available in 
[121, 138-140].  
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For pressure insensitive, hyperelastic materials, a constant pressure term, p , is 

added to the right hand side of the relationship for the Cauchy stress to make it 
deviatoric. In other words, the normal Cauchy stress components in the principal axes is 
expressed as follows 

 i i
i

W
pσ λ

λ
∂= −
∂

  (I5) 

Since the viscoplastic deformation of the noncrystalline domain in polyethylene is 
assumed to be pressure insensitive, the back stress term that appears in its constitutive 
law must be pressure insensitive, or equally deviatoric, as well. According to the 
relationships of Subsection  4.2.3 from Chapter IV, for 3-chain back stress model, we will 
have 

3ch 1

1 1 1 31 2
1 2 3

1 1 1 31 2
1 2 3

1
or

3

1 1 1
0

3 3 3

1

9

i
i r i

r r r

r

C N p
N

C N p C N p C N p
N N N

p C N
N N N

λσ λ

λλ λλ λ λ

λλ λλ λ λ

−

− − −

− − −

 = − 
 

     − + − + − =     
     

      
⇒ = + +      

      

L

L L L

L L L

 (I6) 

Therefore, the normal stress of deviatoric, Cauchy stress tensor in principal axes as a 
function of principal stretches takes the following representation according to 3-chain 
model: 

3ch 1 1 1 1 31 2
1 2 3

1
3

3
i

i r iC N
N N NN

λ λλ λσ λ λ λ λ− − − −         = − + +         
         

L L L L  (I7) 

Similarly for 8-chain back stress model one can write 

2
chain

2
8ch 1 chain

r
chain

22 2
1 1 1chain chain 3 chain1 2

r r r
chain chain chain

1 2 2 2chain
r 1 2 3

chain
3

1
or

3

1 1 1
0

3 3 3

1

9

i
i

N
C p

N

NN N
C p C p C p

N N N

N
p C

N
λ

λ λσ
λ

λ λ λ λλ λ
λ λ λ

λ λ λ λ
λ

−

− − −

−

 = − 
 

     − + − + − =     
     

 
 = + + ⇒  

 ���	��


L

L L L

L
1 2chain

r chain
chain

1

3

N
p C

N

λ λ
λ

−  =  
 

L

 (I8) 

Therefore, the diagonal components of the deviatoric, Cauchy stress in principal axes 
and from the 8-chain model have the following form of representation  

 
( )2 2

chain8ch 1 chain

chain

1

3
i

i r

N
C

N

λ λ λσ
λ

−
−  =  

 
L   (I9) 
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Similarly for Gent back stress model, we can write 

( )
( ) ( )

Gent 2 2 2m
r r r 22

m 1 chainchain

2 2 2
r 1 r 2 r 32 2 2

chain chain chain

2
r chain2

chain

3 1 1

3 1 3 1

1 1 1
0

1

i i i i

NJ N
C p C p C p

J J NN

N N N
C p C p C p

N N N

N
p C

N

σ λ λ λ
λλ

λ λ λ
λ λ λ

λ
λ

− −= − = − = −
− −− − −

− − −− + − + − = ⇒
− − −

−=
−

  (I10) 

Therefore, for the normal components of deviatoric, Cauchy stress tensor from Gent 
back stress model, we obtain 

 ( )Gent 2 2
r chain 2

chain

1
i i

N
C

N
σ λ λ

λ
−= −

−
  (I11) 

It should be noted that in deriving the relationships for 8-chain and Gent back stress 

models, a new variable called “current chain stretch”, 
2 2 2

1 2 3
chain 3

λ λ λλ + += , is defined 

and exploited. Additionally, in deriving Gent back stress relationship, mJ  denotes the 

limit value of 2 2 2
1 1 2 3 3J λ λ λ= + + − . This material property is correlated to N  according 

to the following equation   

 ( )m 3 1J N= −   (I12) 

which is easily established by equating the locking chain stretch with N .  

Remarks on the inverse Langevin function 1−
L   

The distinguishing feature of 3-chain and 8-chain models is the inverse Langevin 
function which is indispensable to them whereas Gent model is free from this 
expression. Mathematically, Langevin function is defined as  

 ( ) ( ) 1
cothy x x

x
= = −L   (I13) 

Langevin inverse, however, has no closed form solution and rational functions by Cohen 
[141], Puso [142] and Treloar [66] have been proposed, based on Padé approximation.  

 

( )

( )

( )

2
1

2

1
3

1
2 4 6

3
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1

3
ByPuso :

1

3
ByTreloar :
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y
y y

y

y
y

y

y
y

y y y
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−

−

−≈
−

≈
−

≈
− − −

L

L

L

  (I14) 
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Before comparing the abovementioned estimates, one should notice that since Langevin 

function is an odd function, its inverse is an odd function too, i.e. ( ) ( )y y− = −L L  ⇒  

( ) ( )1 1y y− −− = −L L . Therefore, if an acceptable estimate for the positive half domain is 

found, the negative half can be determined simply by multiplying the positive solution 
by -1. Keeping this in mind, the following rational function is proposed for estimating 
the inverse Langevin function for positive y : 

 ( ) ( )1
3 2

880.2

461.6 345.7 201.5 317.1

y y
y

y y y
− +

≈
− + − +

L   (I15) 

To compare the four estimates considered here, their diagrams together with that 

produced by exact numerical solution of ( )1 y−
L  are superposed in Figure I 1 for 

positive half domain, only. Since visual inspection might be misleading, the absolute 
values of the errors produced by the estimates and evaluated at 9800 discrete points 

from [ ]0..0.98  interval are given below. A quick comparison suggests that the estimate 

proposed in this work is way more successful than the other estimates. It is again 
reiterated that estimate (I15) is only valid for 0y ≥  and for 0y < , one needs to calculate 

( )1 y−− −L , although the applications discussed in this dissertation are confined to 

positive arguments for 1−
L . 
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  (I16) 

The interested reader may consult reference [143] for discussions about how to build 

the Taylor series expansion for ( )1 y−
L  although the use of Taylor series expansion is 

discouraged because it is not only numerically expensive but also prone to creating 
instability problems.  

And finally, the arguments about the equivalence of 8-chain model and Gent 
model can be easily examined by equating the right hand sides of Eqs.(I9) and (I10). This 
assumption leads to    

 1 chain
2

chain chain

1 1

3

N N

NN

λ
λ λ

− −  =  − 
L   (I17) 
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Figure I 1. Comparison of different estimates proposed for 
1−

L  with the exact numerical solution 

for the positive half domain.  

Now substitute the auxiliary variable chainy
N

λ=  in (I17) to obtain 

 ( )
1

1
2

1
3

1
Ny y
y

− −
=

−
L   (I18) 

The above relationship suggests that ( )1 y−
L  is also a function of N , which does not 

appear as its argument! Because such a conclusion is not logically admissible, therefore 
the initial assumption is false and 8-chain model is not equivalent to Gent model. 
However, the disagreement between them is not considerable. This argument can be 

verified by replacing 1−
L  in 8-chain model with, say, Cohen estimate. After some 

mathematical manipulation, we obtain  

( ) ( ) ( )
2 2

1 chain chain chain

8ch 2 2 2 2 2 2r r
chain chain r chain2 2

chain chain chain

3
3

3 3
1

i i i i

NC CN N C
N

N N

λ λ λ

σ λ λ λ λ λ λλ λ λ

−  
− − 

 = − ≈ − = −
−−

L

 (I19) 

It can be seen that except for the numerator of the fractional expressions in Eqs.(I10) 
and (I19), the two relationships are identical. Therefore, the disagreement between the 
results of the two models is expected to be very small.  
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Résumé  

Dans ce travail de thèse, la caractérisation élastique et hyperélastique de l’interphase dans le 

polyéthylène a été abordée, suivi par le réexamen de la simulation en grande déformation viscoplastique 

d’un agrégat de polyéthylène. La caractérisation élastique de l’interphase est mise en œuvre en 

appliquant deux approches micromécaniques distinctes à partir des données disponibles de la simulation 

moléculaire de type Monte Carlo pour la zone interlamellaire. Ces approches micromécaniques sont 

d’une part le modèle étendu d’un composite avec inclusion, et d’autre part la méthode de double 

inclusion. Après avoir établi le tenseur de rigidité de la phase amorphe en fonction de la température, le 

tenseur de rigidité de l’interphase est dissocié de celui de la zone interlamellaire en utilisant les deux 

approches mentionnées ci-dessus. Les résultats de celles-ci s’accordent parfaitement. Il a été mis en 

évidence qu’à l’inverse des matériaux conventionnels, le tenseur de rigidité de l’interphase n’est pas 

défini positif. Cette caractéristique indique l’instabilité mécanique de l’interphase. Une analyse de 

sensibilité ad hoc est faite afin d’évaluer l’impact des incertitudes des éléments du tenseur de rigidité 

interlamellaire sur celui de l’interphase. Par ailleurs, le module d’élasticité effectif de l’interphase estimé 

à partir de son tenseur de rigidité est comparable à celui de la phase interlamellaire dans le polyéthylène 

à haute cristallinité, module évalué expérimentalement. Cette similarité, ainsi que les résultats identiques 

des deux approches micromécaniques, confirment les nouvelles informations obtenues sur les propriétés 

élastiques de l’interphase et incitent à appliquer la méthodologie proposée à des problèmes similaires. 

La caractérisation hyperélastique du domaine interlamellaire et de la couche d’interphase est ensuite 

élaborée. Quand le polyéthylène est soumis à de grandes déformations, l’interphase et la phase amorphe 

centrale se comportent de façon hyperélastique. L’algorithme hybride proposé consiste à appliquer la loi 

de comportement d’un milieu continu isotrope, compressible et hyperélastique aux résultats de la 

simulation de la dynamique moléculaire d’un élément unitaire de polyéthylène. En supposant un modèle 

néo-Hookéen, les équations caractéristiques sont obtenues et permettent l’identification des paramètres 

hyperélastiques pour la phase amorphe centrale, l’interphase et la zone interlamellaire, à l’aide de la 

notion d’optimisation d’un ensemble de fonctions coûts non négatives. Les paramètres hyperélastiques 

identifiés pour la zone interlamellaire sont en bon accord avec ceux qui ont été estimés 

expérimentalement. L’analyse d’incertitude a mis en évidence que l’incertitude des modules de 

cisaillement est moins importante que celle des modules de compressibilité. Il a été constaté que les 

phénomènes de fusion, recristallisation, et rotation des chaînes cristallines qui ont lieu durant la 

déformation peuvent être identifiées. L’évolution des frontières de l’interphase avec la déformation est 

le résultat secondaire de cette analyse d’identification.     

La fin du travail est dédiée à la simulation numérique de la grande déformation viscoplastique d’un 

agrégat de polyéthylène avec ces nouveaux apports. Le modèle adopté pour la contrainte de rappel, le 

tenseur de projection proposé pour l’approche modifiée de Taylor, et l’imposition des inégalités liées à la 

loi de comportement des lamelles cristallines qui auparavant avaient été laissées de côté, font parties des 

contributions apportées. Concrètement, dans les relations développées, le modèle de Gent est employé 

pour la contrainte de rappel du domaine non cristallin, à la place du modèle 3-chaînes ou 8-chaînes. En 

outre, un tenseur de projection pour l’approche modifié de Taylor est proposé, qui est plus complet que 

son prédécesseur. De plus, dans le code numérique relatif à cette méthodologie, la borne supérieure de 

la contrainte de cisaillement de chaque système de glissement est respectée. Cette idée est mise en 

œuvre grâce à une optimisation multiniveau réalisée via la définition d’un ensemble de fonctions coûts 

non négatives pour chaque inclusion ainsi que pour l’agrégat entier.  
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1- Introduction  

Le polyéthylène est le polymère thermoplastique le plus répandu, le plus connu et le plus 

utilisé dans le monde. Les sacs plastiques, les bouteilles de shampoing, les jouets d’enfants, divers 

composants des systèmes d’irrigation sont des exemples bien connus tandis que les gilets pare-

balles [1], les arthroplasties complètes de la hanche et du genou sont des exemples moins connus 

des applications du polyéthylène [2, 3]. Les Propriétés intéressantes du polyéthylène ont conduit à 

une large gamme d'applications. La bonne résistance à des chargements ainsi que la grande inertie 

chimique offertes, le tout à un prix économique font parties de ses meilleurs avantages.  

Les applications potentielles de diverses nuances de polyéthylène dépendent de sa 

microstructure sous-jacente. Tous les types de polyéthylène sont, d’un point de vue microstructural, 

partiellement cristallins et partiellement non cristallins, d’où le qualificatif de « semi-cristallin ». 

Cependant, la partie non cristalline n’est pas monolithique et est constituée de deux composants : la 

phase amorphe centrale et la couche d’interphase qui rattache cette dernière à la lamelle cristalline. 

D’un point de vue théorique, Flory [4] a montré que la continuité des chaînes polymériques suggère 

le développement d’un nouvel ordre intermédiaire entre celui des cristallites et celui de la phase 

amorphe centrale. Il suggéra que l’ordre existant dans les cristallites ne pouvait pas disparaître 

subitement à l’interface des phases cristalline – non cristalline car la transition brutale d’une région 

ordonnée à une région désordonnée est impossible.  

La présence de la couche d’interphase en tant que composant du polyéthylène a aussi été 

expérimentalement démontrée. Une large gamme de techniques expérimentales, y compris la RMN 

protonique [5], la RMN 
13

C de haute résolution [6, 7], la microscopie électronique [8], la diffusion de 

neutrons à petit angle  [9], la relaxation diélectrique [10, 11] et la diffusion Raman [12, 13] 

confirment la contribution volumique importante de la région d’interphase dans les polymères semi 

cristallins. Mandelkern [14] maintient que la différence entre les cristallinités mesurées dans 

l’expérience de la fusion de chaleur et celle de densité est directement liée au contenu de 

l’interphase.   

La plupart des études dédiées aux propriétés de l’interphase se limitent uniquement aux 

caractéristiques géométriques et à la fraction volumique. Bien que l’interphase soit plus raide que la 

phase amorphe centrale, elle a bien échappé à toutes les tentatives de caractérisation mécanique. 

Concrètement, les propriétés mécaniques des phases cristalline et amorphe ont été identifiées par 

divers moyens au cours des dernières décennies, mais celles de l’interphase sont restées inconnues 

essentiellement à cause de son épaisseur nanométrique ainsi qu’en raison de son ancrage étroit 

avec les phases adjacentes. La tâche de la caractérisation mécanique de l’interphase a été entreprise 

pour la première fois dans ce travail. Dans ce but, nous avons développé deux approches 

micromécaniques adaptées à la problématique de la caractérisation élastique de cette interphase. 

Ensuite, ces relations sont appliquées aux données de la simulation Monte Carlo moléculaire sur le 

tenseur de rigidité pour la zone interlamellaire. Le tenseur de rigidité de la phase amorphe centrale 

est alors requis. Il est établi à partir des résultats expérimentaux et fondés sur des arguments 

théoriques. Dans la partie suivante, la caractérisation hyperélastique de la zone interlamellaire et ses 

composants, c.à.d. la phase amorphe centrale et l’interphase, est mise en œuvre en appliquant les 

équations d’un milieu continu hyperélastique, isotrope et compressible aux données de la 
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dynamique moléculaire pour un élément représentatif du polyéthylène. Dans la dernière section, le 

problème de la simulation numérique de la grande déformation viscoplastique d’un agrégat de 

polyéthylène est revisité.  

 

2- Caractérisation élastique de l’interphase dans le polyéthylène semi cristallin 

Les positions relatives des cristallites, des interphases et de la phase amorphe centrale sont 

illustrées sur le schéma d’un élément représentatif du polyéthylène dans la Figure 1. L’objectif de 

cette section est la caractérisation élastique de l’interphase. L’analyse de l’identification élastique de 

l’interphase dans le polyéthylène est fondée, d’une part, sur les données de la simulation Monte 

Carlo moléculaire qui était destinée au calcul du tenseur de rigidité de la zone interlamellaire 
il

C . Ce 

dernier ainsi que l’épaisseur de la zone interlamellaire, notée ilt , et celle de l’interphase, notée ipt , 

ont été calculés pour l’intervalle de température de 350 K à 450 K. Les détails de cette étude 

atomistique ainsi que ceux des calculs des 
il

C , ilt  et ipt  sont fournis dans l’article publié en 2006 par 

In ‘t Veld et al [15].  

 
Figure 1 : Illustration schématique du positionnement relatif d'un élément de polyéthylène avec les paramètres connus 

et inconnus de l'analyse de dissociation. 

 

Les diagrammes de la variation des composants de 
il

C  avec la température sont donnés sur la 

Figure 2. Pour les éléments restants, les valeurs calculées à la température de 435 K sont adoptées, 

faute d’avoir l’accès à de meilleures approximations. Le tenseur de rigidité interlamellaire évalué à la 

température de 435 K est donné ci-dessous. La forme de ce tenseur suggère l’existence d’une 

symétrie monoclinique, ou peut-être d’une symétrie plus haute. Les causes éventuelles de cette 

observation sont expliquées dans la suite.     
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A B 

Figure 2 : Variation de A) 
il
11C ≡ �, 

il
22C ≡▲   and 

il
33C ≡ �  B) 

il
12C ≡�, 

il
13C ≡▲   and 

il
23C ≡ � avec la 

température pour l'intervalle de 350 K à 450 K. 

 

 ( )il

1540 1210 830 0 180 0

1210 2020 870 0 240 0

830 870 900 0 50 0
435K MPa

0 0 0 0 0 200

180 240 50 0 220 0

0 0 0 200 0 570

− 
 − 
 

=  − 
 − −
 

− 

∼
C   (FR.1) 

Pour l’analyse de dissociation en question, la fraction volumique de chaque composant de la région 

interlamellaire est requise. Elle est calculée par le biais des relations suivantes :  

 
il ip ip

am ip
il il

2 2
= , =

t t t

t t
η η

−
  (FR.2) 

En outre, le tenseur de rigidité de la phase amorphe, noté 
am

C , est aussi nécessaire pour l’analyse 

de dissociation. Ce dernier est construit avec les deux constantes élastiques indépendantes de cette 

phase, en raison de sa symétrie isotrope. Dans ce but, le module élastique et le coefficient de 

Poisson de la phase amorphe, amE  et amυ  respectivement, sont déterminés sur la base de diverses 

études expérimentales [16-19]. A la température ambiante, les valeurs moyennes choisies pour amE  

et amυ  sont 5 MPa et 0.4996, respectivement. Dans le régime caoutchoutique, en augmentant la 

température, amυ  demeure quasiment constant puisqu’il est déjà très proche de sa valeur critique, 

i.e. 0.5. Pourtant, amE  augmente légèrement avec la température, comme il est généralement 

admis pour les polymères caoutchoutique [20]. Donc, la variation suivante de amE  avec la 

température est adoptée. 

 ( )am 5 MPa
293
T

E =   (FR.3) 
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En remplaçant amυ  et amE  dans l’équation suivante, 
am

C  est construit :  

 ( )
am am

am am

am 2

2 1 1 2ijkl il jk ik jl ij kl

E υ
υ υ

 
= + + + − 

δ δ δ δ δ δC   (FR.4) 

Maintenant que 
il

C , 
am

C , amη et ipη sont connus, ils peuvent être remplacés dans les relations des 

approches du modèle étendu d’inclusion composite (ECIM) et dans la méthode de double inclusions 

(DIM), qui se trouvent ci-dessous. 

 ( ) ( ) ( )
11 1ip ip il am am

am am1 η η
−− −

= − − 
 
C C RC R   (FR.5) 

 ( )( ) ( )( )
11

1 11 11 1ip ref ref ref il ref amam

ip ip

1 η
η η

−−− −− −− −∞ ∞ ∞= − − − − − − +
      
           

I C C S I C C S SC C C  

 (FR.6) 

Dans la première relation, i.e. celle de ECIM , 
ip

R  et 
am

R  s’appellent les coefficients de 

concentration de contrainte. Dans la deuxième relation, i.e. celle de DIM, I  représente le tenseur 

d’identité d’ordre quatre, 
∞

S  représente le tenseur d’Eshelby d’une inclusion discoïde et fine, et 

ref
C  indique le tenseur de rigidité du milieu de référence contenant la double inclusion. Les 

hypothèses détaillées de ces deux approches sont fournies dans les annexes C et D du mémoire.      

Le tenseur de l’interphase, noté 
ip

C , produit par les approches DIM et ECIM pour la 

température type de 370 K est présenté dans le Tableau 1. Les valeurs négatives diagonales de 
ip

C  

indiquent son état non défini positif. Il a été mis en évidence que ces deux valeurs négatives sont 

robustes aux incertitudes de 
il

C  et à celles de 
am

C  et donc l’interphase est mécaniquement 

instable. En outre, la comparaison rapide entre les deux 
ip

C  montre que les résultats des deux 

approches s’accordent parfaitement. Par ailleurs, la symétrie matérielle de l’interphase ressemble à 

celle de la zone interlamellaire. Puisque la symétrie matérielle de la phase amorphe centrale est 

isotrope et celle de la phase cristalline est orthotrope, on pourrait attendre que la symétrie de la 

phase cristalline contribue à la symétrie de l’interphase. Pour vérifier cette hypothèse, la forme 

générique du tenseur de rigidité de la phase cristalline, est transférée de son référentiel matériel au 

référentiel adopté pour l’analyse de la dissociation. Les deux référentiels en question sont 

schématiquement représentés sur la Figure 3. Il est constaté que la forme monoclinique obtenue 

après la transformation du tenseur de rigidité de la phase cristalline est identique avec celle de la 

zone interlamellaire et de l’interphase.   
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Tableau 1 : Résultats des approches de dissociation dans la température type de 370 K. 

A T=370 K: am 6.31MPaE = , am 2.10 MPaG = , am 0.66η = , 
ip 0.34η =  

( )am MPaC   ( )il MPaC (pris de ref. [15]) 

3097.9 3093.7 3093.7 0 0 0 1749.9 1613.6 1092.9 0 -180 0 

3093.7 3097.9 3093.7 0 0 0 1613.6 2569.3 1150 0 -240 0 

3093.7 3093.7 3097.9 0 0 0 1092.9 1150 1249.6 0 50 0 

0 0 0 2.1 0 0 0 0 0 90
* 

0 -200 

0 0 0 0 2.1 0 -180 -240 50 0 220 0 

0 0 0 0 0 2.1 0 0 0 -200 0 570 

Ensuite: 

( )ip MPaC  obtenu par DIM  

1972.2 1307.4 427.7 0 3.05 0 

1307.4 3824.3 524.2 0 3.92 0 

427.7 524.2 567.3 0 -0.33 0 

0 0 0 -1.11 0 7.31 

3.05 3.92 -0.33 0 -1.08 0 

0 0 0 7.31 0 320.5 

( )ip
MPaC  obtenu par ECIM  

1972.2 1307.4 427.7 0 3.05 0 

1307.4 3824.3 524.2 0 3.92 0 

427.7 524.2 567.3 0 -0.33 0 

0 0 0 -1.11 0 7.31 

3.05 3.92 -0.33 0 -1.08 0 

0 0 0 7.31 0 320.5 
*
Cette rigidité de cisaillement a été réglée à 90 MPa,  au lieu de sa valeur moyenne rapportée dans l'étude de 

la simulation moléculaire, pour des raisons expliquées ultérieurement. 
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Figure 3 : La forme du tenseur de rigidité de la phase cristalline dans son référentiel matériel, abc, ainsi que dans le 

référentiel de l’analyse, xyz. 

 

Aux fins de vérification des résultats de cette analyse, une relation empirique proposée par 

Crist et ses collègues [18] sur le module élastique effectif du domaine interlamellaire, ilE , est 

exploitée ici. Cette relation suggère que le module élastique interlamellaire pour la haute cristallinité 

atteint sa valeur asymptotique de 300 MPa.  

 ( ) ( )
il

2exp 7.158 0.7
= MPa

300 0.7
E

ξ ξξ
ξ

 ≤
 ≥

  (FR.7) 
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Dans le polyéthylène à haute cristallinité, le domaine interlamellaire est dominé par l’interphase et 

donc ip ilE E≃ . Le module élastique de l’interphase peut être estimé en utilisant l’approximation de 

Hill comme suit. 

 
ip-Hill ip-Hill

ip-Hill

ip-Hill ip-Hill

9
=

3 +

G
E

G

κ
κ

  (FR.8) 

où  

 

( )

( )

ip-Hill ip-V ip-R

ip-Hill ip-V ip-R

1
= +

2
1

= +
2

G G G

κ κ κ
  (FR.9) 

En calculant la moyenne volumique de 
ip

C  à 350 K, qui est la température la plus proche de la 

température ambiante pour ensuite la remplacer dans les relations ci-dessus, on obtient 

ip-Hill 347MPaE = . Cette estimation est en bon accord avec la valeur asymptotique de 300 MPa 

proposée dans la référence [18]. De plus, si les incertitudes de 
il

C  sont prises en compte, l’intervalle 

de ip-HillE  est déterminé comme suit:  

 ip-Hill 350K
207 MPa 465MPaE< <   (FR.10) 

Ce résultat confirme la méthodologie proposée pour l’analyse de dissociation.  

 

3- Caractérisation hyperélastique du domaine interlamellaire et pour l’interphase 

dans le polyéthylène  

L’objectif de cette section consiste en la caractérisation hyperélastique du domaine 

interlamellaire et de ses composants. L’approche adoptée consiste à appliquer les équations d’un 

milieu hyperélastique, isotrope et compressible aux données de la simulation de dynamique 

moléculaire disponible pour un élément unitaire de polyéthylène. Les détails de cette simulation 

atomistique, faite pour la température de 350 K, sont disponibles dans le travail de Lee et Rutledge 

[21]. Le schéma de ce dernier ainsi que les conditions aux limites sont illustrés sur la Figure 4. La 

distribution de la densité le long de l’élément avant d’imposer le chargement montre qu’il y a une 

transition entre la phase amorphe centrale et les cristallites. Cette transition est encore une preuve 

de l’existence de l’interphase dans la zone non cristalline.    

 



Extrait Français du Mémoire 

 

147 

 

  
A B 

Figure 4 A) : Illustration schématique de l’élément unitaire de polyéthylène et du positionnement relatif des 
constituants. Les flèches indiquent la direction des déplacements appliqués dans la simulation atomistique. B) Schéma 
de l’élément unitaire de polyéthylène simulé dans son état non chargé, avec la distribution de la densité moyenne le 

long de l’élément. 

Pour développer les équations caractéristiques des zones hyperélastiques, données ci-

dessous, leur tenseur de déformation respectif en liaison avec le modèle néo-Hookéen est remplacé 

dans la loi de comportement des milieux hyperélastiques.  

 

( )

( )

5 52 1
3 3 3 3

5 51 2
3 3 3 3

am/il am/il -am/il
lat -am/il -am/il am/il

am/il am/il -am/il
-am/il -am/il am/il

1
3

2
1

3

z
z z z z

z

z
zz z z z z

z

µ λσ λ λ λ λ κ
λ

µ λσ λ λ λ λ κ
λ

−

−

  
= − + −  

  


  = − + − 
 

  (FR.11) 

où 
am/il
latσ , 

am/il
zzσ  sont respectivement la contrainte normale, moyenne et latérale, et la contrainte 

normale et longitudinale de la phase amorphe / du domaine interlamellaire. am/ilµ  et am/ilκ  sont 

respectivement le module de cisaillement et le module de compressibilité. 1z zλ ε= +  est 

l’allongement longitudinal de l’ensemble de l’élément et -am/ilzλ  signifie l’allongement latéral de la 

phase amorphe / du domaine interlamellaire.  

L’approche d’identification des paramètres hyperélastiques des domaines concernés est 

fondée sur la définition d’un ensemble de fonctions coûts non négatives qui viennent de la physique 

du problème. Pour la mise en œuvre de cette idée, les frontières des deux interphases sont 

introduites comme les variables auxiliaires. Finalement, en employant un outil d’optimisation 

globale, le minimum global des fonctions coûts est trouvé et permet de déterminer les meilleurs 

paramètres hyperélastiques. 

 
ipam il

am il ip

35.5MPa32.3MPa 33.4MPa
, ,

2.73GPa 2.73GPa 2.74GPa

µµ µ
κ κ κ

== =  
  = = = 

  (FR.12) 
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Etant donné que dans le modèle néo-Hookéen, le module de cisaillement représente la rigidité du 

milieu, l’inégalité am ipµ µ<  est évidemment satisfaite parce que la couche d’interphase est 

reconnue plus rigide que la phase amorphe centrale. De plus, dans certaines études incorporant 

l’hyperélasticité du domaine interlamellaire dans la formulation de grande déformation du 

polyéthylène, il est supposé que il 35MPaµ =  [22-24]. Bien que le module de compréssibilié ne 

soit pas aussi important que le module de cisaillement, les modules de compressibilié identifiés sont 

en accord avec les valeurs moyennes de 2 GPa et 3 GPa reportés ailleurs [22, 24-26].   

Pour évaluer le succès de l’algorithme proposé, les diagrammes des frontières de deux 

interphases ainsi que leur allongement sont représentés sur la figure 5. Par ailleurs, les diagrammes 

des contraintes normales et latérales de la zone interlamellaire et celles de la zone amorphe centrale 

sont tracés sur la figure 6. La similarité entre la courbe de la moyenne arithmétique des deux 

contraintes normales latérales et la courbe analytique, plaide pour la validité de la méthodologie 

présentée. Finalement, une analyse de l’incertitude, destinée à déterminer le niveau d’incertitude 

des paramètres identifiés, est effectuée. Cette analyse a mis en lumière que l’incertitude des 

modules de cisaillement identifiés est moins importante que celle des modules de compressibilité.   

 

Figure 5 : Evolution de la frontière droite et gauche de la zone amorphe et interlamellaire avec la déformation 
longitudinale.  
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A B 

Figure 6 : Evolution de am/il
xxσ , 

am/il
yyσ  et ( )am/il am/il0.5 xx yyσ σ+  obtenue par l’intégration sur le domaine restreint par 

les frontières identifiées A) de la phase amorphe, et B) de la zone interlamellaire.  

 

 

4- Grande déformation viscoplastique du polyéthylène  

Dans cette section, la grande déformation viscoplastique du polyéthylène est revisitée. Pour 

réaliser ce réexamen, l’élément unitaire de l’inclusion composite à deux couches, illustré sur la 

Figure 7, est utilisé. L’une des couches représente la cristallite et l’autre correspond à la zone 

interlamellaire, aussi appelé non cristalline. La continuité du champ de déplacement et l’équilibre de 

force à l’interface des deux couches sont imposés. L’imposition de ceux dernières conditions en 

liaison avec le théorème de la moyenne amènent aux formulations suivantes :  

 

Figure 7 : Élément unitaire de l’inclusion composite à deux couches employé pour étudier la déformation viscoplastique 
du polyéthylène.  
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  (FR.13) 

Les tenseurs d’ordre deux D , W  et S  indiquent respectivement la vitesse de déformation, la 

vitesse de rotation, et la contrainte déviatorique. En outre, les indices prennent les valeurs :

, 1, 2α β = . La dispersion aléatoire spatiale d’un grand nombre de ces inclusions mène à une 

configuration qui virtuellement équivaut à un échantillon macroscopiquement isotrope du 

polyéthylène. 

La loi de comportement adoptée pour chaque phase est identique avec celle choisie dans les 

publications similaires [22, 27]. L’élasticité des phases et leur sensibilité à la pression sont négligées. 

D’après des articles similaires [28], la loi de comportement des cristallites est supposée dépendante 

de la vitesse de déformation, 
αγɺ , comme suit : 

 

1

0

n

g g

α α
α

α α
τ τγ γ

−

=ɺ ɺ   (FR.14) 

avec 0γɺ  la vitesse de déformation de référence, 
ατ  la contrainte de cisaillement résolue du système 

de glissement α , n  exposant de vitesse de déformation, et gα
 la résistance de cisaillement du 

système de glissement α . Une loi simple de puissance viscoplastique pour le tenseur de la vitesse de 

cisaillement plastique, 
ilD , s’écrit comme suit : 

 

1il il il il
il

0
0 0

n

a a
γ

τ τ

−
− −= S H S H

D ɺ   (FR.15) 

Dans la relation ci-dessus 
ilH  et 

ilS  sont respectivement le tenseur de contrainte de rappel et le 

tenseur de la contrainte déviatorique de la zone interlamellaire. Les trois modèles qui s’utilisent 

pour la contrainte de rappel sont les modèles 3-chaînes, 8-chaînes, et de Gent [29].   

 
3ch 1 1 1 1 31 2

1 2 3
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3
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i r iC N
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 ( )Gent 2 2
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λ
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−
  (FR.18) 

Pour la loi d’interaction, la loi modifiée de Taylor est exploitée. L’hypothèse sous-jacente de 

cette loi consiste en l’uniformité complète de la déformation du matériau hétérogène. L’état 

inextensible des chaînes polymériques dans les cristallites exige la modification suivante  

 
Cr
i 0D C =i   (FR.19) 

La simplification de l’inextensibilité susmentionnée peut s’exprimer comme un tenseur de projection 

d’ordre quatre, iIP , qui est multiplié à la vitesse de déformation de l’agrégat. Ce tenseur-là qui est 

plus complet que son prédécesseur [28], peut s’exprimer comme suit après des manipulations 

mathématiques.  

 iI i i i ii i

0 0

903 3
exp exp

2 2

m m
ψ ψω ω
ψ ψ

      −
   = − − ⊗ − − ⊗            

N N X X
�

P I   (FR.20) 

iψ  représente l’angle entre la direction des chaînes et la direction perpendiculaire à l’interface 

cristalline-non cristalline dans l’inclusion ‘‘i’’, et 0ψ  est sa valeur de seuil. i i i 1

3
= ⊗ −N In n  

représente la partie déviatorique du produit dyadique de la normale de l’inclusion ‘‘i’’, et 

pareillement 
i i i

1 1

1

3
= ⊗ −X Ie e  est la partie déviatorique du produit dyadique du vecteur unitaire 

dans la direction ‘‘1’’. 1ω≫  et m  font parties des paramètres du modèles. Le positionnement 

schématique des chaînes polymériques ainsi que les référentiels employés sont illustrés sur la Figure 

8.     

 

Figure 8 : Schéma du positionnement des chaînes polymériques de la cristallite et  référentiels employés dans l’analyse 
de grande déformation d’un agrégat de polyéthylène.  

Les diagrammes de eq

3
:

2
σ = S S  pour divers ensembles de paramètres sont tracés sur la 

Figure 9 et la Figure 10. Les valeurs avec dimension de contrainte sont normalisées à 0τ . 

Pareillement, les variables avec la dimension de la vitesse de déformation sont normalisées a 0γɺ  
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pour simplifier les calculs. La Figure 9 suggère que, avec les mêmes paramètres, le modèle de Gent 

montre une meilleure concordance avec les données expérimentales par rapport aux autres 

modèles. Pour cette raison, pour les diagrammes de la Figure 10, le modèle de Gent est employé 

pour la contrainte de rappel. Il a aussi été constaté que la déformation de serrage de l’agrégat 

dépend fortement de N , le nombre moyen des segments rigides entre les enchevêtrements, et est 

pratiquement indépendant des autres paramètres. De plus, la résistance d’écoulement effective de 

l’agrégat montre une forte dépendance à la résistance viscoplastique de la phase non cristalline ila , 

exposant de vitesse de déformation, ainsi que la vitesse de déformation appliquée, 
eq

0

D

γɺ
. En outre, il 

a été mis en évidence que [ ]0.1..0.2  est un intervalle plus approprié pour r

0

C

τ
.    

 

 

Figure 9 : Les courbes de contrainte- déformation tracées pour divers modèles de la contrainte de rappel. Ces courbes 

avec les paramètres 

il

il
0

1.2
g

a
τ

= = , 
r

0

0.2
C

τ
= , 400N = , 0 15ψ = �

, 0 8MPaτ =  sont plus raides que les 

données expérimentales de G’sell [30, 31]. 

 

Les figures de pôles pour les plan { }002  et { }200  après 100% de déformation sont données 

sur la Figure 11. Ces deux plans sont choisis pour suivre l’évolution de la direction des chaînes des 

cristallites, l’axe des c, et aussi une direction perpendiculaire aux axes des c. A cet égard, les figures 

de pôles suggèrent que sous une charge de traction, les pôles { }200  s’éloignent de la direction du 

chargement tandis que les pôles { }002  tournent pour s’aligner avec la direction du chargement.  

0

2

4

6

8

10

12

14

0 0.5 1 1.5 2

σ
_e

q
/τ

_0

ε_eq

s_eq _experimental (G'sell)

σ_eq (3-CH, N=400)

σ_eq (F-N, N=400)

σ_eq (Gent, N=400)



Extrait Français du Mémoire 

 

153 

 

 

Figure 10 : Courbes de contrainte-déformation avec le modèle de Gent. 50N =  et 
eq

0

1
D

γ
=

ɺ
. La courbe verte claire: 
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Figure 11 : Figues de pôles des plans { }002  et { }200  après 100 pour cent de déformation sous un chargement de 

traction uniaxiale. La direction de la traction est perpendiculaire au plan de feuille. 
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Résumé 

Dans ce travail, la caractérisation mécanique de l’interphase entre les zones amorphes et cristallines dans le 
polyéthylène a été abordée. La caractérisation élastique est effectuée en appliquant deux approches 
micromécaniques à partir des données de la simulation moléculaire pour la zone interlamellaire. Ces approches 
micromécaniques sont d’une part le modèle étendu d’inclusion composite, et d’autre part la méthode de double 
inclusion. Les résultats des deux approches s’accordent parfaitement. Il a été mis en évidence que le tenseur de 
rigidité de l’interphase n’est pas défini positif, l’interphase est donc mécaniquement instable. La comparaison 
avec les résultats expérimentaux valide la méthodologie proposée. Pour la caractérisation hyperélastique, 
l’algorithme hybride proposé consiste à appliquer la loi de comportement d’un milieu continu isotrope, 
compressible et hyperélastique aux résultats de la simulation de la dynamique moléculaire d’un élément 
unitaire de polyéthylène. La notion d’optimisation d’un ensemble de fonctions coûts non négatives est l’idée 
clé de cette partie. Les paramètres hyperélastiques identifiés sont en bon accord avec ceux qui ont été estimés 
expérimentalement. L’évolution des frontières de l’interphase avec la déformation est le second résultat de 
cette analyse. La fin du travail est dédiée à la simulation numérique de la grande déformation viscoplastique 
d’un agrégat de polyéthylène. Le modèle de Gent adopté pour la contrainte de rappel, le tenseur de projection 
proposé pour l’approche modifiée de Taylor, et l’optimisation multiniveau font parties des contributions 
apportées. 

Mots-clés : polyéthylène semi cristallin, interphase, micromécanique, caractérisation mécanique, analyse 
d’incertitude, optimisation des fonctions coûts, comportement viscoplastique, contrainte de rappel, loi 
d’interaction. 

 
 
 

Abstract 

Elastic characterization of the interphase layer in polyethylene is implemented by applying the relationships of 
two micromechanical approaches, “Extended Composite Inclusion Model” and “Double-Inclusion Method”, to 
the Monte Carlo molecular simulation data for the interlamellar domain. The results of the two approaches 
match perfectly. The interphase stiffness lacks the common feature of positive definiteness, which indicates its 
mechanical instability. Comparison with experimental results endorses the proposed methodology. For the 
hyperelastic characterization of the interlamellar domain and the interphase layer, the proposed hybrid 
algorithm consists in applying the constitutive equations of an isotropic, compressible, hyperelastic continuum 
to the molecular dynamics simulation results of a polyethylene stack. Evolution of the interphase boundaries 
are introduced as auxiliary variables and the notion of minimizing a set of nonnegative objective functions is 
employed for parameter identification. The identified hyperelastic parameters for the interlamellar domain are 
in good agreement with the ones that have been estimated experimentally. Finally, the large, viscoplastic 
deformation of an aggregate of polyethylene is reexamined. The Gent model adopted for the back stress of the 
noncrystalline phase, correcting the projection tensor for the modified Taylor approach, and the idea of 
multilevel optimization are among the contributions made. 

Keywords: semicrystalline polyethylene, interphase layer, micromechanics, mechanical characterization, 
uncertainty analysis, optimization of cost functions, Viscoplasticity, back stress, localization law.  




