Summary

Diffusion magnetic resonance imaging (dMRI) has been used widely in biological and medical applications to detect a large range of physiological and pathological conditions. The image contrast in dMRI of biological tissues comes from the differing water diffusion characteristics in the imaged tissue at different spatial positions. The resolution of dMRI is on the order of a millimeter, meaning the dMRI signal provides averaged information on a volume, called a voxel, whose size is much larger than cell features, that vary, for example in brain, on the scale of a micrometer.

To understand the relationship between the tissue microstructure inside a voxel and the dMRI signal, macroscopic models of the dMRI signal have been formulated to relate the signal to model parameters that represent averaged quantities over the voxel. In this thesis, we investigated two such macroscopic models. The first is the Kärger model that assumes a certain form of (macroscopic) multiple compartmental diffusion and inter-compartment exchange, but is subject to the narrow pulse restriction on the diffusion-encoding magnetic field gradient pulses. The second is an ODE model of the multiple compartment magnetizations obtained from mathematical homogenization of the Bloch-Torrey equation, that is not subject to the narrow pulse restriction.

First, we investigated the validity of the two aforementioned macroscopic models by comparing the dMRI signal given by the Kärger and the ODE models with the dMRI signal simulated on some relatively complex tissue geometries by solving the microscopic Bloch-Torrey equation in the presence of permeable biological cell membranes. We note that the Kärger model is a limit case of the ODE model where the duration of the diffusion-encoding magnetic field gradient pulses goes to zero. We concluded that the validity of both macroscopic models is limited to the case where diffusion in each compartment is effectively Gaussian and where the inter-compartmental exchange can be accounted for by standard linear kinetic terms.

Next, assuming that the above conditions on the compartmental diffusion and intercompartment exchange are satisfied, we solve the least squares problem associated with fitting the Kärger and the ODE model parameters to the simulated dMRI signal obtained by solving the microscopic Bloch-Torrey equation. Among various effective parameters, we considered the volume fractions of the intra-cellular and extra-cellular compartments (which may change during cell swelling), membrane permeability (which may characterize, to some extent, normal or abnormal functioning of cells), average size of cells, inter-cellular distance, as well as apparent diffusion coefficients. We started by studying the feasibility of the least squares solution for two groups of relatively simple tissue geometries. For the first group, in which domains consist of variably sized spherical cells embedded in the extracellular space, we concluded that parameters estimation problem can be robustly solved, even in the presence of noise. In the second group, we considered parallel cylindrical cells, which may be covered by a thick membrane layer, and embedded Contents in the extra-cellular space. When the diffusion gradient is applied perpendicularly to the cylinder axis, the parameter estimation problem can be robustly solved, just as for spherical cells. In the opposite case of the diffusion gradient parallel to the axis cylinder, one simply probes unrestricted diffusion which contains no information about the restricting domain and water exchange between compartments. As a consequence, the parameter estimation fails in this situation. For an intermediate gradient direction, the quality of parameter estimation strongly depends on how much the cellular structure is elongated in the gradient direction. In practice, the orientation of elongated cells is not know a priori; moreover, biological tissues may contain elongated structures randomly oriented and also mixed with other (compact) elements (e.g., axons and glial cells). This situation has been numerically investigated on our most complicated domain in which layers of cylindrical cells in various directions are mixed with layers of spherical cells. We checked that certain parameters can still be estimated rather accurately while the other remain inaccessible. In future works, the quality of the estimation may be improved by acquiring signals in various directions and then fitting all these signals to the appropriate ODE models. In all considered cases, the ODE model provided more accurate estimates than the Kärger model.

Chapter 1

Diffusion magnetic resonance imaging in biological tissues

Motivation

Diffusion magnetic resonance imaging (dMRI) is a widespread experimental technique in which the random trajectories of diffusing nuclei are encoded by magnetic field gradient pulses [1][2][3]. When the nuclei diffuse inside a heterogeneous medium, the statistics of the random trajectories is affected by the presence of (possibly semi-permeable) walls or obstacles. Although these microscopic hindrances are not visible at the spatial resolution of dMRI, all these geometrical features are statistically aggregated into the macroscopic dMRI signal. Measuring the signal at different diffusion times, gradient intensities and directions, one aims to infer the morphological structure of a sample and to characterize the dynamics of a system. This is a formidable inverse problem which until now has no complete solution [3].

In spite of this fundamental gap, the non-invasive character of dMRI made this technique a gold standard in material sciences, neurosciences and medicine, with numerous applications to mineral samples (e.g., sedimentary rocks in oil industry, concrete, cements and gypsum in building industry) and biological samples (e.g., brain, lungs, bones). For instance, diffusion-weighted brain imaging is daily performed in research and clinical MR scanners, both for detecting pathological regions and monitoring functional properties of the brain [4][START_REF] Norris | The effects of microscopic tissue parameters on the diffusion weighted magnetic resonance imaging experiment[END_REF][START_REF] Le Bihan | Diffusion mri at 25: Exploring brain tissue structure and function[END_REF][START_REF] Tuch | Diffusion mri of complex neural architecture[END_REF][START_REF] Cohen | High b-value q-space analyzed diffusion-weighted mrs and mri in neuronal tissues-a technical review[END_REF][START_REF] Beaulieu | The basis of anisotropic water diffusion in the nervous systema technical review[END_REF][START_REF] Bihan | Looking into the functional architecture of the brain with diffusion mri[END_REF][START_REF] Frahm | Advances in functional mri of the human brain[END_REF][START_REF] Lebihan | The 'wet mind': water and functional neuroimaging[END_REF].

The image contrast in dMRI of biological tissues comes from the differing water diffusion characteristics in the imaged tissue at different spatial positions. The resolution of dMRI is on the order of a millimeter, meaning the dMRI signal provides averaged information on a volume, called a voxel, whose size is much larger than cell features, that vary, for example in brain, on the scale of a micrometer.

An important medical application of dMRI is the detection of cerebral ischemia (cell swelling in the brain) a few minutes after stroke [START_REF] Moseley | Diffusion-weighted mr imaging Bibliography of acute stroke: correlation with t2-weighted and magnetic susceptibilityenhanced mr imaging in cats[END_REF][START_REF] Warach | Fast magnetic resonance diffusion-weighted imaging of acute human stroke[END_REF]. In the brain, dMRI has been used to detect a wide range of physiological and pathological conditions, including tumors [START_REF] Schnapauff | Diffusion-weighted echo-planar magnetic resonance imaging for the assessment of tumor cellularity in patients with soft-tissue sarcomas[END_REF][START_REF] Sugahara | Usefulness of diffusion-weighted mri with echo-planar technique in the evaluation of cellularity in gliomas[END_REF][START_REF] Maier | Diffusion imaging of brain tumors[END_REF][START_REF] Tsushima | Magnetic resonance (mr) differential diagnosis of breast tumors using apparent diffusion coefficient (adc) on 1.5-t[END_REF], myelination abnormalities [START_REF] Horsfield | Applications of diffusion-weighted and diffusion tensor mri to white matter diseases, a review[END_REF], connectivity [START_REF] Lazar | Mapping brain anatomical connectivity using white matter tractography[END_REF], as well as in functional imaging where recent work has suggested that water dMRI could also be used to visualize changes in tissue microstructure that might arise during neuronal activation [START_REF] Lebihan | Artifacts and pitfalls in diffusion mri[END_REF]. Based on the known sensitivity of dMRI to cell size in tissues [START_REF] Buckley | Mri measurement of cell volume fraction in the perfused rat hippocampal slice[END_REF][START_REF] Flint | Diffusion weighted magnetic resonance imaging of neuronal activity in the hippocampal slice model[END_REF] and on optical imaging studies that have revealed changes in the shape (in particular swelling) of neurons and glial cells during brain activation Chapter 1. Diffusion magnetic resonance imaging in biological tissues [START_REF] Lebihan | The 'wet mind': water and functional neuroimaging[END_REF][START_REF] Andrew | Imaging cell volume changes and neuronal excitation in the hippocampal slice[END_REF], the observed findings have been tentatively ascribed to a transient swelling of cortical cells. For a recent survey, see [START_REF] Le Bihan | Diffusion mri at 25: Exploring brain tissue structure and function[END_REF].

Equations of MRI

The principle of spatial encoding in (water proton) magnetic resonance imaging (MRI) is the following. Suppose r 1 , r 2 , r 3 are the axes of a 3D coordinate system. Water protons have a property called spin, and under the influence of an applied magnetic field in the r 3 -direction, will precess about the r 3 -axis at a frequency that is proportional to the strength of the applied magnetic field. The constant of proportionality is called the gyromagnetic ratio and it is γ = 2.675 • 10 8 rad/s/Tesla for the water proton. When the applied magnetic field varies linearly in space, it is called a magnetic field gradient. If we denote the direction and amplitude of the gradient by q = (q 1 , q 2 , q 3 ) and its time profile by h(t), then the complex transverse magnetization on the r 1 -r 2 plane, M (r, t) := M r 1 (r, t) + iM r 2 (r, t), i is the imaginary unit, obeys the Bloch Equation [START_REF] Bloch | Nuclear induction[END_REF]:

∂M (r, t) ∂t = -iγ r • q h(t)M (r, t) - M (r, t) T 2 (r) ,
in the rotating frame at the Larmor frequency, where T 2 (r) is the local spin-spin relaxation rate. The solution of the above equation is:

M (r, t) = ρ(r) e -t/T 2 (r) e -ir• γ q t 0 h(s)ds

, where ρ(r) is the spin density.

Even though 3D imaging is possible, most often the MRI signal is acquired in 2D, slice by slice. Suppose r 3 ∈ [(l -1 2 )∆r 3 , (l + 1 2 )∆r 3 ] are the limits of the slice of interest, then the MRI signal acquired is the integral of the magnetization in that slice: μl γ (q 1 , q 2 ) t 0 h(s)ds = r 1 ,r 2 µ l (r 1 , r 2 ) e -i(r 1 ,r 2 )• γ (q 1 ,q 2 ) t 0 h(s)ds dr 1 dr 2 , (1.1) where µ l (r 1 , r 2 ) = (l+ 1 2 )∆r 3 (l-1 2 )∆r 3 ρ(r 1 , r 2 , r 3 ) e -t/T 2 (r 1 ,r 2 ,r 3 ) dr 3 .

(1.2)

For simplicity we have chosen q 3 = 0. It is clear from Eq. (1.1) that the MRI signal is a 2D Fourier transform of µ l (r 1 , r 2 ). By choosing the appropriate set of q 1 , q 2 and h(s) (not discussed here), the Fourier transform can be acquired at a set of 2D Fourier points. Then the inverse Fourier transform can be performed and sampled at physical space points to obtain in each voxel V i,j,l an average value of µ l (r 1 , r 2 ):

μl (i, j) ≈ 1 ∆r 1 ∆r 2 V i,j,l µ l (r 1 , r 2 )dr 1 dr 2 ,

Equations of dMRI

that gives the contrast in a MRI image in slice l, where

V i,j,l := (i - 1 2 )∆r 1 , (i + 1 2 )∆r 1 × (j - 1 2 
)∆r 2 , (j + 1 2 )∆r 2 × (l -1 2 )∆r 3 , (l + 1 2 )∆r 3 .

In Eq. (1.2) we can see two widely used contrast mechanisms in MRI, the proton density and the T 2 relaxation.

Equations of dMRI

Now, in addition to the imaging gradient q and its time profile h(t) described above, another set of magnetic field gradients can be applied to encode the random displacement of water molecules. Combining a series of gradient pulses, one can investigate the self-diffusion properties of the sample even for a uniform initial distribution. This is the basis of the imaging modality called diffusion MRI.

In detail, we denote the "diffusion-encoding" gradient by g = (g 1 , g 2 , g 3 ) and its time profile f (t). Then we get the Bloch-Torrey equation [START_REF] Torrey | Bloch equations with diffusion terms[END_REF]:

∂M (r, t) ∂t = -iγ r•q h(t)M (r, t)- M (r, t) T 2 (r) -iγ r•g f (t)M (r, t)+∇•(D(r)∇M (r, t)),
where we included the effects of both the imaging gradient q and the diffusion gradient g. The last term in the above equation describes diffusion (random movement) of water molecules.

Diffusion-encoding sequences

The diffusion-encoding happens via the application of a series of magnetic field gradient "pulses". The term "pulse" means that the magnetic field gradient is turned on only for a short duration. For example, the standard Pulsed-Gradient Spin Echo (PGSE) [START_REF] Stejskal | Spin diffusion measurements: Spin echoes in the presence of a time-dependent field gradient[END_REF] sequence is made of two rectangular pulses of duration δ, separated by a time interval ∆ -δ, and the associated profile f (t) is:

f (t) =        1, t 0 ≤ t ≤ t 0 + δ, -1, t 0 + ∆ < t ≤ t 0 + ∆ + δ, 0, elsewhere, (1.3) 
where t 0 is the start of the first pulse with t 0 + ∆ > T E/2, TE is the echo time when the signal is measured. See Fig. 1.1. Note tht the opposite sign of the second gradient pulse effectively accounts for the intermediate 180 • rf pulse [1,2]. If the rise time of the pulse is not instantaneous then f (t) has a trapezoidal profile:

f (t) =                              t-t 0 τ , t 0 ≤ t ≤ t 0 + τ, 1, t 0 + τ < t ≤ t 0 + δ -τ, -t-t 0 -δ τ , t 0 + δ -τ < t ≤ t 0 + δ, -t-t 0 -∆ τ , t 0 + ∆ < t ≤ t 0 + ∆ + τ, -1, t 0 + ∆ + τ < t ≤ t 0 + ∆ + δ -τ, t-t 0 -(∆+δ) τ , t 0 + ∆ + δ -τ < t ≤ t 0 + ∆ + δ, 0, otherwise, (1.4) 
where the rise time is τ . See Fig. 1.2. The oscillating gradient spin echo [START_REF] Does | Oscillating gradient measurements of water diffusion in normal and globally ischemic rat brain[END_REF] (OGSE) sine sequence consists of two oscillating sine pulses of duration σ, each containing n periods (hence the frequency is 1.3. Equations of dMRI ω = n 2π σ ), separated by a time interval τ -σ, and the associated profile f (t) is:

f (t) =        sin (ω(t -t 0 )), t 0 < t ≤ t 0 + σ, -sin (ω(t -t 0 -τ )), τ + t 0 < t ≤ t 0 + τ + σ, 0, otherwise, (1.5) 
where τ = T E/2. See Fig. 1.3 for an example with n = 2. 

Derivation of b-value

Under the assumption that water molecules experience a homogeneous (or homogenized) isotropic diffusion environment characterized by the diffusion coefficient D hom inside the voxel V i,j,l , the water molecules at position r 0 ∈ V i,j,l at t 0 diffuse according to the probability density function:

P (r, t) = exp -r-r 0 2 4D hom (t-t 0 ) 4πD hom (t -t 0 ) d 2 , d = 3,
where the support of P (r, t) is much smaller than V i,j,l because the diffusion distance in a dMRI experiment is much smaller than the size of a voxel. (We have neglected those r 0 that are close to the boundary of V i,j,l .) Furthermore, under the assumption that δ ∆ (the narrow pulse approximation), the influence of the diffusion-encoding magnetic field gradient pulse on the complex transverse magnetization due to water molecules starting at r 0 at t 0 can be described by a gain of the complex phase e -iγg•r 0 δ between t 0 and t 0 + δ. Then, the magnetization due to water molecules at position r at t 0 + ∆ gains a complex phase e Iγg•r δ between t 0 + ∆ and t 0 + ∆ + δ. Thus, the effect on the dMRI signal, compared to having no diffusion gradient g, is an attenuation (loss) of the signal:

r∈V i,j,l exp -r-r 0 2 4D hom ∆ 4πD hom ∆ d 2 e iγg•(r-r 0 ) δ = exp(-γ 2 δ 2 g 2 D hom ∆),
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where the integration domain V i,j,l was extended to the whole space R 3 . If δ is not small compared to ∆, then in fact, the signal attenuation in the voxel V i,j,l still can be expressed in mono-exponential form [START_REF] Torrey | Bloch equations with diffusion terms[END_REF]:

S(b, T E) = e -D hom b ,
where the b-value is a weighting factor as defined in [START_REF] Le Bihan | MR imaging of intravoxel incoherent motions: application to diffusion and perfusion in neurologic disorders[END_REF] and it is b(g, δ, ∆) = γ 2 g 2 δ 2 (∆ -δ/3) , (1.6) for the PGSE sequence. The replacement of ∆ by ∆ -δ/3 accounts for pulses that are not narrow.

Including the effect of the diffusion-encoding gradient means that the image contrast function in Eq. (1.2) becomes:

µ l (r 1 , r 2 ) = (l+ 1 2 )∆r 3 (l-1 2 )∆r 3 ρ(r 1 , r 2 , r 3 ) e -t/T 2 (r 1 ,r 2 ,r 3 ) e -D hom (r 1 ,r 2 ,r 3 ) b dr 3 . (1.7)
The basis of diffusion weighted imaging is that the MRI signal is acquired with a diffusion gradient g as well as with no diffusion gradient. The first image (after inverse Fourier transform) is divided by the second image and the log of the ratio is divided by b get an estimate of D hom (r 1 , r 2 , r 3 ) in each voxel. This estimated value is called the "Apparent Diffusion Coefficient" (ADC), and serves as the contrast mechanism.

For simplicity, in the rest of the thesis, the effect of T 2 relaxation will be neglected.

To focus on understanding the image contrast function in the physical domain, the imaging gradients in Bloch-Torrey equation will also be neglected. Hence, for the remainder of the thesis, we focus on the following simplified form of the Bloch-Torrey equation:

∂M (r, t) ∂t = -iγ r • g f (t)M (r, t) + ∇ • D(r)∇M (r, t) . (1.8)
The b-value for a general pulse sequence f (t) can be obtained by solving Eq. (1.8) on a homogeneous domain and expressing its signal under mono-exponential form.

In [START_REF] Kenkre | Simple solutions of the torreybloch equations in the nmr study of molecular diffusion[END_REF], V.M. Kenkre et al. used the Fourier transform of M ,

M (k, t) = ∞ -∞ M (x, t) exp -i k x dx,
to obtain the signal in R:

S(t) = M γ g t 0 f (s) ds, 0 exp -Dγ 2 g 2 t 0 du t u f (s) ds 2 .
(1.9)

At the echo time T E, for any standard diffusion sequence, the rephasing condition holds

T E 0 f (t)dt = 0, (1.10) 

Simple Gaussian signal model not adequate

so the pre-exponential factor in Eq. (1.9) becomes 1. The b-value is then

b(g) = γ 2 g 2 T E 0 du T E u f (s) ds 2 . (1.11)
To use the solution in Eq. (1.9) there are certain limitations on the initial spin density, namely, its Fourier transform must exist.

The solution of Eq. (1.8) for uniform initial spin density can be found by the method of separation of variables [START_REF] Rohmer | A Bloch-Torrey Equation for Diffusion in a Deforming Media[END_REF]. Supposing that the solution M can be written in separable form:

M (x, t) = S(t) exp (iϕ(x, t)) ,
where the spin phase ϕ(x, t) defined by:

ϕ(x, t) = γ g • x t 0 f (s) ds, (1.12)
we can obtain the signal at any time t > 0:

S(t) = S(0) exp -Dγ 2 g 2 t 0 du u 0 f (s)ds 2 , ( 1.13) 
where at the echo time T E, the b-value can be obtained:

b(g) = γ 2 g 2 T E 0 du u 0 f (s)ds 2 .
(1.14)

We emphasize that although the formulas (1.11) and (1.14) are different, they coincide at the echo time T E where the rephasing condition (1.10) holds.

In the rest of the thesis, we will assume uniform initial spin density in each diffusion compartment and use the expression (1.14) for the b-value. In particular, for the trapezoidal PGSE [3]:

b(g, δ, ∆) = γ 2 g 2 (δ -τ ) 2 ∆ - δ -r 3 + τ 2 τ 5 - δ 6 . (1.15)
One can see that when the rise time τ becomes 0, the above expression reduces to Eq. (1.6) of rectangular PGSE. For the sine OGSE in Eq. (1.5) with an integer number of periods n in each of the two durations σ, the corresponding b-value is:

b(g) = γ 2 g 2 3σ 3 4n 2 π 2 = γ 2 g 2 3σ ω 2 .
(1.16)

Simple Gaussian signal model not adequate

There is ample experimental evidence that diffusion in brain tissue at diffusion times relevant to dMRI is not Gaussian: the signal attenuation is not a simple decaying exponential in b and the slope of log S(b) at b = 0 is not simply related to the intrinsic diffusion coefficients of the physical compartments. The reason for this is that in biological tissue, the diffusion environment seen by water molecules during the time period of ∆ (tens of milliseconds) is not homogeneous due to the presence of cells membranes and other heterogeneities. The dMRI signal has been fitted as multiple compartmental Gaussian [START_REF] Niendorf | Biexponential diffusion attenuation in various states of brain tissue: Implications for diffusion-weighted imaging[END_REF][START_REF] Mulkern | Multi-component apparent diffusion coefficients in human brain 2[END_REF][START_REF] Clark | Water diffusion compartmentation and anisotropy at high b values in the human brain[END_REF][START_REF] Maier | Normal brain and brain tumor: Multicomponent apparent diffusion coefficient line scan imaging1[END_REF], or by including a kurtosis term to quantify the non-Gaussianness [START_REF] Chabert | Diffusion tensor imaging of the human optic nerve using a non-CPMG fast spin echo sequence[END_REF][START_REF] Jensen | Diffusional kurtosis imaging: The quantification of non-Gaussian water diffusion by means of magnetic resonance imaging[END_REF], or by fitting with fractional order diffusion [START_REF] Magin | Anomalous diffusion expressed through fractional order differential operators in the bloch-torrey equation[END_REF]. Although these phenomenological formulas may accurately fit experimental data, their reliable interpretation requires further investigation based on theoretical tools, numerical simulations, and tissue models.

Theoretical approaches in dMRI

In spite of significant efforts, theoretical understanding of diffusion MRI is still far from complete. In what follows, we list a number of theoretical approaches developed for dMRI (see [3] for details).

1. The first theoretical analysis of the dMRI signal for diffusion between parallel planes (a plate) goes back to Robertson who used the Laplacian eigenfunctions (for this shape, sines and cosines) to get an explicit Gaussian phase approximation (GPA) for the signal [START_REF] Robertson | Spin-echo decay of spins diffusing in a bounded region[END_REF]. It is equivalent to keeping the second cumulant moment and neglecting the higher-order cumulant moments so that the signal still exhibits the classical Gaussian dependence on the gradient, while the dependence on pulse duration and diffusion time through the second cumulant becomes more intricate. Neuman has extended this analysis to cylinder and sphere [START_REF] Neuman | Spin echo of spins diffusing in a bounded medium[END_REF]. Later on, the Gaussian phase approximation has been extensively used for the analysis of dMRI signals in a variety of structures (see [3]). In particular, the notion of an ADC relies, fundamentally, on this approximation.

2. Tanner and Stejskal computed the dMRI signal in the simple structures in the narrow pulse approximation (NPA) [START_REF] Tanner | Restricted self-diffusion of protons in colloidal systems by the pulsed-gradient, spin-echo method[END_REF]. More generally, when the duration of gradient pulses is infinitely short, the dMRI signal can be expressed as the Fourier transform of the averaged diffusion propagator, from which some properties of the geometrical structure can be inferred [1,2]. The accuracy of both approximations have been checked by numerical simulations [START_REF] Balinov | The nmr self-diffusion method applied to restricted diffusion. simulation of echo attenuation from molecules in spheres and between planes[END_REF][START_REF] Blees | The effect of finite duration of gradient pulses on the pulsed-fieldgradient nmr method for studying restricted diffusion[END_REF][START_REF] Coy | Pulsed gradient spin echo nuclear magnetic resonance for molecules diffusing between partially reflecting rectangular barriers[END_REF][START_REF] Linse | The validity of the short-gradient-pulse approximation in nmr studies of restricted diffusion. simulations of molecules diffusing between planes, in cylinders and spheres[END_REF].

3. Kärger introduced a model with two distinct pools of water molecules that co-exist and both occupy the whole volume of a voxel, while the exchange between pools was assumed to be uncorrelated from diffusion and to follow the standard linear kinetics [START_REF] Kärger | Nmr self-diffusion studies in heterogeneous systems[END_REF][START_REF] Kärger | Principles and application of selfdiffusion measurements by nuclear magnetic resonance[END_REF]. This Kärger model has become one of the major theoretical approximations to account for water exchange in the dMRI (see below).

4. Mitra et al. investigated the short-time behavior of the dMRI signal and showed the possibility to extract the surface-to-volume ratio, as well as per-
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meability or surface relaxivity of general porous media [START_REF] Mitra | Diffusion propagator as a probe of the structure of porous media[END_REF][START_REF] Mitra | Effects of microgeometry and surface relaxation on nmr pulsed-field-gradient experiments: Simple pore geometries[END_REF][START_REF] Latour | Time-dependent diffusion coefficient of fluids in porous media as a probe of surface-to-volume ratio[END_REF][START_REF] Hurlimann | Restricted diffusion in sedimentary rocks. determination of surface-area-to-volume ratio and surface relaxivity[END_REF]. In particular, Latour et al. measured the time-dependent diffusion coefficient in packed erythrocytes to estimate the erythrocyte membrane permeability and the surfaceto-volume ratio of the cells [START_REF] Latour | Time-dependent diffusion of water in a biological model system[END_REF]. In the opposite long-time limit, the timedependent diffusion coefficient allowed one to determine the tortuosity of the medium [START_REF] Latour | Pore-size distributions and tortuosity in heterogeneous porous media[END_REF].

5. Callaghan and co-workers introduced the notion of diffusion diffraction that can be used to determine the characteristic length scales of a medium according to positions of diffraction peaks [START_REF] Callaghan | Diffraction-like effects in NMR diffusion studies of fluids in porous solids[END_REF].

6. Stoller et al. analyzed the behavior of the dMRI at large gradients and described the so-called localization regime [START_REF] Stoller | Transverse spin relaxation in inhomogeneous magnetic fields[END_REF]. This theoretical analysis has been further developed in [3,[START_REF] De Swiet | Decay of nuclear magnetization by bounded diffusion in a constant field gradient[END_REF][START_REF] Axelrod | Nuclear magnetic resonance spin echoes for restricted diffusion in an inhomogeneous field: Methods and asymptotic regimes[END_REF] and experimentally confirmed in [START_REF] Hurlimann | Spin echoes in a constant gradient and in the presence of simple restriction[END_REF].

7. Barzykin et al. considered an exchange through the spherical boundary with the extra-cellular space [START_REF] Barzykin | Pulsed-field-gradient nmr of diffusive transport through a spherical interface into an external medium containing a relaxation agent[END_REF][START_REF] Price | A model for diffusive transport through a spherical interface probed by pulsed-field gradient NMR[END_REF].

8. The Robertson's idea of representing the dMRI signal onto the basis of Laplacian eigenfunctions has led to development of matrix formalisms [3,[START_REF] Axelrod | Nuclear magnetic resonance spin echoes for restricted diffusion in an inhomogeneous field: Methods and asymptotic regimes[END_REF][START_REF] Caprihan | A multiple-narrow-pulse approximation for restricted diffusion in a time-varying field gradient[END_REF][START_REF] Callaghan | A simple matrix formalism for spin echo analysis of restricted diffusion under generalized gradient waveforms[END_REF][START_REF] Barzykin | Exact solution of the torrey-bloch equation for a spin echo in restricted geometries[END_REF][START_REF] Barzykin | Theory of spin echo in restricted geometries under a stepwise gradient pulse sequence[END_REF][START_REF] Grebenkov | Laplacian eigenfunctions in nmr. i. a numerical tool[END_REF][START_REF] Grebenkov | Laplacian eigenfunctions in nmr. ii. theoretical advances[END_REF].

First proposed by Caprihan et al. in [START_REF] Caprihan | A multiple-narrow-pulse approximation for restricted diffusion in a time-varying field gradient[END_REF] and one year later reformulated by Callaghan in a matrix form, this approach has become a power theoretical and numerical tool for the analysis of dMRI signals (see the review and pedagogical introduction in [3,[START_REF] Grebenkov | Laplacian eigenfunctions in nmr. i. a numerical tool[END_REF][START_REF] Grebenkov | Laplacian eigenfunctions in nmr. ii. theoretical advances[END_REF]). The explicit form of the Laplacian eigenfunctions in simple structures makes the computation of the dMRI signal very accurate and fast. The method is applicable to any diffusion-encoding sequences (temporal profile) and arbitrary bounded domain. In spite of this generality, matrix formalisms are most efficient for simple shapes (which include, e.g., a class of multilayered structures [START_REF] Grebenkov | Pulsed-gradient spin-echo monitoring of restricted diffusion in multilayered structures[END_REF]). 9. Cumulant expansion and kurtosis imaging modality has been actively developed [3,[START_REF] Jensen | Diffusional kurtosis imaging: The quantification of non-Gaussian water diffusion by means of magnetic resonance imaging[END_REF][START_REF] Frøhlich | Effect of impermeable boundaries on diffusion-attenuated mr signal[END_REF][START_REF] Kiselev | The cumulant expansion: an overarching mathematical framework for understanding diffusion nmr[END_REF].

10. More recently, Novikov and Kiselev proposed an effective medium theory in which spatial variations of the diffusion coefficient were related to correlation functions of heterogeneities of a medium [START_REF] Novikov | Effective medium theory of a diffusionweighted signal[END_REF].

11. Novikov et al. studied the effect of spatial configurations of permeable membranes onto the time-dependent diffusion coefficient [START_REF] Novikov | Random walks with barriers[END_REF] (see also [START_REF] Powles | Exact analytic solutions for diffusion impeded by an infinite array of partially permeable barriers[END_REF]). The use of a scattering approach and of the renormalization group solution allowed to relate the long-time scaling behavior of the time-dependent diffusion coefficient to the strong structural fluctuations introduced by permeable membranes.

Some of these general approaches, as well as more specific models relevant to the brain dMRI, will be discussed below.

Numerical methods

In order to verify the above theoretical approaches or to compute the dMRI signal in complicated structures, one needs to resort to numerical simulations. Roughly speaking, numerical methods can be split into two groups:

1. Monte Carlo simulations. A probabilistic interpretation of diffusion equations is employed to represent the original continuous problem as the expectation of a functional of an appropriate stochastic process. Many random trajectories of this process are then generated and used to approximate the expectation and thus the solution. Since there is no discretization, neither of the domain, nor of boundary conditions, Monte Carlo techniques are flexible and easy to implement, especially for studying diffusion in complex geometries. These methods have also been often used in dMRI (e.g., Refs [START_REF] Balinov | The nmr self-diffusion method applied to restricted diffusion. simulation of echo attenuation from molecules in spheres and between planes[END_REF][START_REF] Coy | Pulsed gradient spin echo nuclear magnetic resonance for molecules diffusing between partially reflecting rectangular barriers[END_REF][START_REF] Linse | The validity of the short-gradient-pulse approximation in nmr studies of restricted diffusion. simulations of molecules diffusing between planes, in cylinders and spheres[END_REF][START_REF] Meier | Diffusion in compartmental systems. i. a comparison of an analytical model with simulations[END_REF][START_REF] Grebenkov | Restricted diffusion in a model acinar labyrinth by nmr: theoretical and numerical results[END_REF][START_REF] Budde | Neurite beading is sufficient to decrease the apparent diffusion coefficient after ischemic stroke[END_REF][START_REF] Fieremans | Monte carlo study of a two-compartment exchange model of diffusion[END_REF][START_REF] Grebenkov | A fast random walk algorithm for computing the pulsedgradient spin-echo signal in multiscale porous media[END_REF][START_REF] Grebenkov | A fast random walk algorithm for computing diffusion-weighted nmr signals in multi-scale porous media: a feasibility study for a menger sponge[END_REF][START_REF] Yeh | Diffusion microscopist simulator: A general monte carlo simulation system for diffusion magnetic resonance imaging[END_REF]).

2. Finite differences, finite elements, boundary elements, etc. A domain and/or its boundary are discretized with a regular or adaptive mesh. The original continuous problem (partial differential equation) is then replaced by a set of linear equations to be solved numerically. The solution is obtained at all mesh nodes at successive time moments. Since the accuracy and efficiency of these deterministic numerical schemes significantly rely on the discretization, mesh construction turns out to be the key issue and often a limiting factor, especially in three dimensions. These methods have been frequently applied for computing dMRI signals, e.g., [START_REF] Blees | The effect of finite duration of gradient pulses on the pulsed-fieldgradient nmr method for studying restricted diffusion[END_REF][START_REF] Ford | Numerical model for calculation of apparent diffusion coefficients (adc) in permeable cylindersŮcomparison with measured adc in spinal cord white matter[END_REF][START_REF] Chin | Biexponential diffusion attenuation in the rat spinal cord: computer simulations based on anatomic images of axonal architecture[END_REF][START_REF] Hwang | An image-based finite difference model for simulating restricted diffusion[END_REF][START_REF] Xu | Numerical study of water diffusion in biological tissues using an improved finite difference method[END_REF][START_REF] Nguyen | An efficient finite-elements code to simulate diffusion mri signals in complex tissue geometries[END_REF].

Moments of the dMRI signal

Theoretical analysis of the dMRI signal as a function of the b-value is difficult.

In the narrow pulse (NP) limit, δ ∆, the following relationship between the moments of the signal and the diffusion propagator can be derived.

Let P (r, t|r 0 ) be the probability of finding water molecules originally at r 0 (t = 0) in position r at time t, then the signal in the NP limit is:

S N P ( g δγ, ∆) = r 0 ∈R 3 ρ(r 0 ) r∈R 3
e -i g δγ(r-r 0 )•ug P (r, ∆|r 0 )dr dr 0 , (1.17) where u g := g/ g is the normalized gradient direction, and ρ(r 0 ) is the initial density. We chose the independent variable in S N P to be g δγ because the interior integral over r 0 and r in Eq. (1.17) can be seen as a one-dimensional Fourier transform, with the Fourier variable being g δγ and the spatial variable being (rr 0 ) • u g :

S N P ( g δγ, ∆) = R dk e -ik( g δγ) r 0 ∈R 3 ρ(r 0 ) r∈R 3
δ(k-(r-r 0 )•u g )P (r, ∆|r 0 )dr dr 0 ,

Biological tissue dMRI

where δ(x) is the Dirac distribution. This allows one to relate derivatives of the Fourier transform and the moments of the original function:

i 2n d 2n S N P d ( g δγ) 2n ( g δγ, ∆) = r 0 ∈R 3 ρ(r 0 ) r∈R 3
e -igδγ(r-r 0 ) ((rr 0 ) • u g ) 2n P (r, ∆|r 0 )dr dr 0 .

In a dMRI experiment, the pulse sequence profile f (t) is most often fixed while g is varied in amplitude, so we can treat ∆ as a constant and use the new independent variable b = γ 2 g 2 δ 2 ∆ to obtain:

d n S N P d b n (0, ∆) = (-1) n n! (2n)! 1 ∆ n r 0 ∈R 3 ρ(r 0 ) r∈R 3
((rr 0 ) • u g ) 2n P (r, ∆|r 0 )dr dr 0 .

(1.18) Thus in the narrow pulse limit, the derivatives of S give the moments of the probability density function P (r, t|r 0 ), averaged over all starting positions r 0 . For general pulse sequences, Eq. (1.18) is not exact.

In general, the first and second derivatives of S can be related to the Apparent Diffusion Coefficient and the Apparent Diffusion Kurtosis [START_REF] Chabert | Diffusion tensor imaging of the human optic nerve using a non-CPMG fast spin echo sequence[END_REF][START_REF] Jensen | Diffusional kurtosis imaging: The quantification of non-Gaussian water diffusion by means of magnetic resonance imaging[END_REF] computed in dMRI:

ADC 0 = - d log S db (0) = - dS db (0), (1.19 
)

ADK 0 = 3 d 2 log S db 2 (0) d log S db (0) -2 = 3 d 2 S db 2 (0) dS db (0) -2 -3, (1.20) 
where we denoted the quantities by ADC 0 and ADK 0 , respectively, to emphasize that the derivatives of log S(b) are taken at b = 0. The ADC 0 gives an indication of the mean squared distance traveled by water molecules, averaged over all the compartments, and ADK 0 gives an indication of the deviation from Gaussian diffusion.

Biological tissue dMRI

The signal measured by the MRI scanner is a mean-value measurement in a physical volume, called a voxel, whose size is much larger than the scale of the microscopic variations of the cellular structure. The resolution of dMRI is on the order of 1 mm 3 , meaning the dMRI signal combines the diffusion characteristics of a tissue volume (voxel) of 1 mm 3 . This is very large compared to cell features, which vary from sub-µm (diameter of neurites) to tens of µm (diameter of neuronal bodies, axons and glial cells) in the brain (see for example, [START_REF] Hellwig | A quantitative analysis of the local connectivity between pyramidal neurons in layers 2/3 of the rat visual cortex[END_REF]). In other words, dMRI provides the averaged characteristics of the microscopic structure on a macroscopic scale. Another important spatial scale to consider for this work is the diffusion distance, which gives an indication of the displacement of water molecules during the measured diffusion time. At physically realistic dMRI diffusion times of 10-100 ms, the average diffusion distance is, assuming an average diffusivity of 10 -3 mm 2 /s, between 8-25 µm. Thus, from the diffusion point of view, the cellular structure
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Voxel-level signal models accounting for heterogeneous domains

Diffusion models for brain tissue

One of the first analytical models of water diffusion in neural tissue was proposed by Szafer et al. [START_REF] Szafer | Theoretical model for water diffusion in tissues[END_REF]. Modeling a tissue as a regular lattice of cylinders, they derived approximate expressions for the apparent diffusion coefficients (ADCs) at long times. Ford and Hackney have implemented a Monte Carlo simulation of water selfdiffusion among permeable cylindrical barriers to calculate the ADC in spinal cord injury which takes into account the distribution of axon diameters, permeability and relative axonal volume [START_REF] Ford | Numerical model for calculation of apparent diffusion coefficients (adc) in permeable cylindersŮcomparison with measured adc in spinal cord white matter[END_REF]. The numerical results indicated that both axonal swelling and cell membrane permeability were important factors contributing to ADC in traumatic spinal cord injury. Grant et al. reported an experimental evidence of multicomponent diffusion in single neurons [START_REF] Grant | Mr microscopy of multicomponent diffusion in single neurons[END_REF]. Clark and co-workers studied experimentally the diffusion time dependence of the water diffusion tensor in the range 8-80 ms and showed no evidence for a change in mean diffusivity, fractional anisotropy, or in the eigenvalues with diffusion time in healthy human brain [START_REF] Clark | Diffusion time dependence of the apparent diffusion tensor in healthy human brain and white matter disease[END_REF]. They concluded that these findings were consistent with a model of unrestricted, but hindered water diffusion with semi-permeable membranes, likely originating from the extra-cellular space in which the average extra-cellular separation is less than 7 micrometers. Hwang et al. developed a 3D finite difference approximation of the diffusion equation on synthetic images of neuronal tissues [START_REF] Hwang | An image-based finite difference model for simulating restricted diffusion[END_REF]. By exploiting histologic images of neuronal tissues as input model, this method was proposed to investigate the water diffusion behavior inside biological tissues and potentially assessing the status of neural injury and regeneration. Assaf et al. considered infinitely long isolated cylinders to model brain white matter, with two contributions to the dMRI signal coming from hindered diffusion outside cylinders and restricted diffusion inside cylinders [START_REF] Assaf | New modeling and experimental framework to characterize hindered and restricted water diffusion in brain white matter[END_REF] (see also [START_REF] Alexander | A general framework for experiment design in diffusion mri and its application in measuring direct tissue-microstructure features[END_REF][START_REF] Xu | Quantitative characterization of tissue microstructure with temporal diffusion spectroscopy[END_REF]). Kroenke et al. explained non-monoexponential dMRI signal decay by restricted diffusion in an ensemble of differently oriented neuronal fibers [START_REF] Kroenke | On the nature of the naa diffusion attenuated mr signal in the central nervous system[END_REF]. Sen and Basser presented a simplified, but self-consistent modeling framework for predicting the long-time apparent diffusion coefficients of water parallel and perpendicular to a "pack" of identical thick-walled (myelinated) cylindrical tubes (axons) arranged periodically in a regular lattice and immersed in an outer medium [START_REF] Sen | A model for diffusion in white matter in the brain[END_REF]. The model of randomly oriented cylinders has Chapter 2. Voxel-level signal models accounting for heterogeneous domains also been applied for the quantitative analysis of dMRI in lungs [START_REF] Yablonskiy | Quantitative in Bibliography vivo assessment of lung microstructure at the alveolar level with hyperpolarized 3he diffusion mri[END_REF]. Jespersen et al. proposed a simplified model of neural cytoarchitecture intended to capture the essential features important for water diffusion as measured by NMR [START_REF] Jespersen | Modeling dendrite density from magnetic resonance diffusion measurements[END_REF] (see also [START_REF] Buhl | A simulation framework for diffusion weighted mri in digitalized neurons: Extracting cytoarchitectural parameters using a new theoretical model for diffusion[END_REF]). In their model, two contributions to the dMRI signal come from (i) the dendrites and axons, which are modeled as infinitely long isolated cylinders with two diffusion coefficients (parallel and perpendicular to the cylindrical axis), and (ii) water diffusion within and across all other structures (i.e., in extra-cellular space and glial cells), which is modeled as an isotropic monoexponential diffusion. This model was confronted to dMRI measurements in a formalin-fixed baboon brain and shown to be able to provide an estimate of dendrite density. The model predictions of neurite density in rats have been successfully compared to optical myelin staining intensity and stereological estimation of neurite volume fraction using electron microscopy [START_REF] Jespersen | Neurite density from magnetic resonance diffusion measurements at ultrahigh field: Comparison with light microscopy and electron microscopy[END_REF]. Recently, water diffusion anisotropy measurements have been directly related to characteristics of neuronal morphology [START_REF] Jespersen | Determination of axonal and dendritic orientation distributions within the developing cerebral cortex by diffusion tensor imaging[END_REF]. Budde and Frank introduced a biophysical model of neurite beading (i.e., focal enlargement and constriction) and showed that this mechanism was sufficient to substantially decrease ADC and thus rationalize experimental findings after ischemic stroke [START_REF] Budde | Neurite beading is sufficient to decrease the apparent diffusion coefficient after ischemic stroke[END_REF]. Some other theoretical models and concepts of brain dMRI have been reviewed in [START_REF] Yablonskiy | Theoretical models of the diffusion weighted mr signal[END_REF].

Some mathematical models

There are two spatial scales considered in this thesis, one is the microscopic (micrometer) scale, at which cellular structures are resolved, and the other is the macroscopic scale, at which the cell features are averaged over the entire voxel. At the microscopic scale, we assume that the true cell membranes are spatially neglected (not resolved).

The microscopic model to be considered in this thesis is the Multiple Compartment Bloch-Torrey partial differential equation (PDE) [START_REF] Price | A model for diffusive transport through a spherical interface probed by pulsed-field gradient NMR[END_REF][START_REF] Grebenkov | Pulsed-gradient spin-echo monitoring of restricted diffusion in multilayered structures[END_REF], which is a generalization of the Bloch-Torrey equation to heterogeneous domains. The domain of the Multiple Compartments Bloch-Torrey PDE is a spatial volume on the order of a voxel that contains the cells and the extra-cellular space. The unknown function of the PDE represents the complex transverse water proton magnetization due to diffusionencoding magnetic field gradient pulses (T 2 effects and the imaging gradients are neglected). The dMRI signal of this PDE model is the integral of the solution of the PDE over all spatial positions in the voxel at the echo time.

Concerning macroscopic models for the dMRI signal, some of the early ones are Gaussian models, obtained in the limit of long diffusion time. If the diffusion time is long enough that all the water molecules experience the same environment, the macroscopic model is simply described by a single effective diffusion tensor. In the presence of permeable cell membranes, various analytical formulas for the effective diffusion tensor for special geometries such as cubes and spheres can be found in [START_REF] Latour | Time-dependent diffusion of water in a biological model system[END_REF]100,101]. For general cell shapes, while assuming no contiguous extra-cellular space, an analytical formula for the effective diffusion tensor can be found in [START_REF] Novikov | Random walks with barriers[END_REF],

where the time dependence of the average diffusion distance is considered. In [102]
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the effective diffusion tensor for general cell shapes in the presence of a contiguous extra-cellular space was formulated based on the solution of a set of Laplace PDEs.

Macroscopic models based on multiple compartment diffusion have also been formulated. For example, in the no-exchange models [START_REF] Sen | A model for diffusion in white matter in the brain[END_REF][START_REF] Jespersen | Modeling dendrite density from magnetic resonance diffusion measurements[END_REF]103], the cylindrical-shaped neurites are separated from the surrounding space that form two compartments. When there is no water exchange between these two compartments, the total dMRI signal is just the sum of the signals from each of the compartments. We note that in these no-exchange models, non-Gaussian diffusion can be allowed in each compartment, and this flexibility can potentially result in the applicability of the models at shorter diffusion times. However, the weakness of the no-exchange models is that water is assumed to stay (mostly) in a single compartment during the diffusion time.

Even though no-exchange models may be appropriate for the brain white matter, where the myelin layer around axons prevents significant water exchange between the axons and the extra-cellular space, it is not clear if the water exchange can be neglected in the gray matter, where the cell membranes are permeable.

There are two macroscopic models based on multiple diffusion compartments, where diffusion within each compartment is considered Gaussian.

The first is the Kärger model [START_REF] Kärger | Principles and application of selfdiffusion measurements by nuclear magnetic resonance[END_REF], which was originally developed for micro-porous crystallites. The Kärger model is obtained by supposing multiple Gaussian diffusion compartments, each covering the whole space, and the spin exchange between the compartments being described by standard first-order kinetics exchange. These assumptions lead to a system of coupled ODEs that describes the time evolution of the signals in the different compartments. The dMRI signal can be written explicitly in terms of the model parameters because the ODE system has constant coefficients. The Kärger model was obtained on the basis of phenomenological modeling of the experimentally obtained signal curves and is valid under the narrow pulse assumption, i.e., the duration of the gradient pulse should be short compared to the diffusion time. 

The voxel

We will define simplified geometrical models of the brain tissue in a voxel, consisting of spheres and long cylinders of various orientations embedded in the extra-cellular space. The spheres represent the neuronal bodies and the glial cells, while the cylinders represent the neurites. Since the intersection between the neuronal body and the attached neurites has a small surface area, the exchange between them is expected to be small, and will be ignored. For the justification of this geometrical model we refer to [START_REF] Sen | A model for diffusion in white matter in the brain[END_REF][START_REF] Jespersen | Neurite density from magnetic resonance diffusion measurements at ultrahigh field: Comparison with light microscopy and electron microscopy[END_REF]103]. In addition, for simplicity, we assume that the extra-cellular space is connected so that we can consider it as a single diffusion compartment.

Periodic extension of the voxel

Let V be the voxel to be simulated. We ignore the effect of the neighboring voxels on V because the diffusion distance in our simulations, a few tens of µm, is much smaller than the voxel size (on the order of 1 mm). This allows us to replace the neighbors of V by the identical copies of itself. This periodic construction has the advantage of simplifying the boundary conditions to put on the faces of V to account for the spins that enter and exit V during the simulation time.

(Periodic) representative volume of the voxel

In order to compare the dMRI signal of the microscopic PDE model and the macroscopic models we choose a computational domain C that contains a representative volume of V , the voxel to be simulated. In the three-dimensional simulations that follow, due to computational limitations, C is much smaller than the voxel. We will suppose that C is repeated in all three coordinate directions as many times as necessary to make up V . In order to study long cylindrical cells in three dimensions, we should construct the cylinders so that they are oriented in such a way that when C is periodically repeated, the cylinders are not "broken" at the faces of C. Given that V itself will be periodically repeated, we assume the periodic extension of the cellular configuration in C as many times as necessary in our simulations.

Microscopic multiple compartments Bloch-Torrey PDE

Microscopic multiple compartments Bloch-Torrey PDE

The microscopic model for the dMRI signal is the multiple compartment Bloch-Torrey PDE [START_REF] Torrey | Bloch equations with diffusion terms[END_REF][START_REF] Price | A model for diffusive transport through a spherical interface probed by pulsed-field gradient NMR[END_REF]. In the following we do not include the dependence of the dMRI signal on the imaging gradients and the T 2 relaxation in order to simplify the presentation. It would be easy to include the T 2 term in the microscopic model as well as in the macroscopic models but, as we will show in the numerical results section, enough complexity is already present in our problem just from the presence of the cellular membranes, without any T 2 effects. For the same reason, we also make the intrinsic diffusion coefficient the same in all the compartments, denoting it by D 0 , the permeability the same on all the membranes, denoting it by κ, and the spin density the same in all compartments.

Inside the computational domain C, there will be one extra-cellular compartment Ω e , and sphere compartments, Ω s j , j = 1, • • • , where each Ω s j is a sphere, and the cylinder compartments,

Ω c k , k = 1, • • • , where each Ω c k is a (part of a long) cylinder.
The union of the compartments is the computational domain

C = l={e,{s j },{c k }} Ω l .
When C is periodically repeated, obviously, so are the Ω l 's. Finally, we note that one could also have membrane compartments, consisting of a thick layer of space around the surfaces of the cylinders and the spheres. For the macroscopic models to be discussed later, we can also group all cells with similar diffusion characteristics into a single compartment to simplify things. For example, if we do not want to distinguish between spheres of different radii, then we can define the union of all the spheres as one compartment in the macroscopic model. This redefinition makes no difference for the microscopic PDE model since each sphere is always distinct from the others but it is notationally convenient when we want to compare the PDE model and the macroscopic models compartment by compartment.

The complex transverse water proton magnetization M l (r, t|g) in each compartment Ω l satisfies the Bloch-Torrey PDE [START_REF] Torrey | Bloch equations with diffusion terms[END_REF]:

∂M l (r, t|g) ∂t = -if (t)(γg • r) M l (r, t|g) + ∇ • (D 0 ∇M l (r, t|g)), ∀ l. (2.1)
We recall that the diffusion-encoding gradient is denoted by g = (g 1 , g 2 , g 3 ) and its time profile by f (t), i is the imaginary unit, γ = 2.675 • 10 8 rad/s/Tesla is the gyromagnetic ratio of the water proton.

We supplement the PDE (2.1) with interface conditions where Ω l and Ω n come in contact. We denote the interface between Ω l and Ω n by Γ ln . One interface condition is the continuity of flux:

D 0 ∇M l (y, t|g) • n l (y) = -D 0 (∇M n (y, t|g) • n n (y)) , y ∈ Γ ln , (2.2)
where n l (y) and n n (y) are the outward-point normals to Ω l and Ω n at y, so in fact n l (y) = -n n (y). The second interface condition,

D 0 ∇M l (y, t|g) • n l (y) = κ M l (y, t|g) -M n (y, t|g) , y ∈ Γ ln , ( 2.3) 
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incorporates a permeability coefficient κ across Γ ln and models the ease with which water crosses the interface [START_REF] Grebenkov | Pulsed-gradient spin-echo monitoring of restricted diffusion in multilayered structures[END_REF]. The larger the κ, the easier the passage of water. Now we add the initial condition:

M (r, 0|g) = M 0 , r ∈ Ω l , ∀ l, ( 2.4) 
where we assumed the uniform excitation of the nuclei over the whole voxel, with M 0 being the initial magnetization. Then, same as [START_REF] Xu | Numerical study of water diffusion in biological tissues using an improved finite difference method[END_REF], we assume that the com-

putational domain C = [-L 1 /2, L 1 /2] × [-L 2 /2, L 2 /2] × [-L 3 /2, L 3 /2]
is extended by periodic copies of itself. According to [START_REF] Xu | Numerical study of water diffusion in biological tissues using an improved finite difference method[END_REF], the boundary conditions on ∂C are:

M (r, t|g)| r k =-L k /2 = M (r, t|g)| r k =L k /2 e i θ k (t) , k = 1, 2, 3, (2.5 
)

∂M (r, t|g) ∂r k r k =-L k /2 = ∂M (r, t|g) ∂r k r k =L k /2 e i θ k (t) , k = 1, 2, 3, (2.6) 
for each of the faces perpendicular to the three coordinate axes, where r = (r 1 , r 2 , r 3 ) and g = (g 1 , g 2 , g 3 ), and

θ k (t) = γ g k L k t 0 f (s) ds.
Thus, the complete mathematical problem of the microscopic multiple compartment Bloch-Torrey PDE for a representative geometry contained in the computational box C consists of the PDE (2.1), the interface conditions (2.2, 2.3), the initial condition (2.4), and the boundary conditions (2.5, 2.6).

Compartment magnetizations

Now we define the compartment magnetization, denoted M l , of the PDE model, as the integral of the magnetization in Ω l :

M l P DE (b, t) := r∈Ω l M l (r, t|g) dr, 0 ≤ t ≤ T E, ( 2.7) 
where, following convention, the b-value is defined as:

b(g) = γ 2 g 2 T E 0 du u 0 f (s)ds 2 .
(2.8)

The dMRI signal measured in experiments (without the imaging gradients and T 2 effects) corresponds to

S P DE (b) := l M l P DE (b, T E) = l r∈Ω l M l (r, T E|g) dr. (2.9)
Because C is assumed to be periodically repeated in the voxel V , it is sufficient to take the above integrals of the magnetization over C only becase the signal is the same as if the magnetization is taken over V (and correctly normalized).

Kärger model

We note that the compartment magnetization M l P DE (b, t) defined in Eq. (2.7), though cannot be directly measured by experiments, are meaningful mathematically for all t ≤ T E and all l. By computing the compartment magnetizations we gain insight about the time evolution of the magnetizations in the different compartments and how they mix.

In a dMRI experiment, the T E and sequence f (t) are usually fixed while g is varied in amplitude and/or in direction to obtain the signal at different b-values.

In the rest of the thesis, we will set the initial magnetization to M 0 = 1 |C| , so that

S P DE (b = 0) = 1 and M l P DE (b, t = 0) = |Ω l | |C| := v l ,
where |Ω l | is the volume of Ω l , |C| is the volume of the computational domain, and v l is the volume fraction of Ω l . Then the signal S P DE (b) will be automatically normalized and it is also the signal attenuation.

Kärger model

In the formulation of the Kärger model [START_REF] Kärger | Principles and application of selfdiffusion measurements by nuclear magnetic resonance[END_REF], one starts with a system of PDEs for the concentration, u l (r, t), of water in P Gaussian diffusion compartments: l = 1, • • • , P . The governing equations for diffusion within and the exchange between the compartments are:

∂u 1 (r, t) ∂t = ∇D 1 ∇u 1 (r, t) - u 1 (r, t) w 1 + l=2,••• ,P u l (r, t) τ 1l , . . . ∂u P (r, t) ∂t = ∇D P ∇u P (r, t) - u P (r, t) w P + l=1,••• ,P -1 u l (r, t) τ P l , ( 2.10) 
where r ∈ R 3 , τ lm is the residence time, and D l is the effective diffusion coefficient of compartment l. This formulation implies that each compartment covers all of R 3 , i.e., all the compartments co-exist in the whole space. A physical foundation for this consideration relies on coarse-graining (or homogenization) of the tissue microstructure [START_REF] Fieremans | Monte carlo study of a two-compartment exchange model of diffusion[END_REF].

From the mass conservation, if we assume that the spin density is the same in all the compartments, w 1 , • • • , w P satisfy:

1 w m = 1 v m P l=1, l =m v l τ ml , m = 1, • • • , P, (2.11)
where the volume fractions v l are normalized as

P l=1 v l = 1.
(2.12)
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The PDEs (2.10) are subject to initial conditions:

u l (r, 0) = v l δ(r), l = 1, • • • , P, (2.13) 
where δ(r) is the Dirac delta distribution. We used the notation δ to distinguish it from the width of the gradient pulse δ in the PGSE sequence.

In the Kärger model, the compartment magnetization M l KAR (b, t), arising from compartment l, under the narrow pulse approximation for the PGSE sequence, δ ∆, has the following form:

M l KAR (b, t) = r∈R 3 e iδg•r u l (r, t)dr. (2.14)
We note that the region of integration in Eq. (2.14) is R 3 . Taking the time derivative of M l KAR from Eq. (2.14) and using Green's identity, one gets

dM m KAR (b, t) dt = -   δ 2 γ 2 g T D m g + 1 v m P l=1, l =m v l τ ml   M m KAR (b, t) + P l=1, l =m 1 τ ml M l KAR (b, t), m = 1, • • • , P. (2.15)
It is a system of coupled ODEs, subject to the initial conditions:

M l KAR (b, 0) = v l , l = 1, • • • , P.
(2.16)

The analytical solution of Eqs. (2.15) can be obtained by finding the eigen-decomposition of the underlying P × P matrix.

For a standard sequence with two rectangular gradient pulses of duration δ, the diffusion time is t = ∆ -δ/3. For this reason, we evaluate the dMRI signal at this time

S KAR (b) = P l=1 M l KAR (b, ∆ -δ/3), ( 2.17) 
In the original Kärger model, the pulse duration δ was neglected and the signal was evaluated at t = ∆. Keeping the term δ/3 improves the quality of the Kärger model.

Macroscopic ODE model

The derivation of the macroscopic ODE model [113] starts with the multiple compartment Bloch-Torrey PDE (2.1-2.6) and uses periodic homogenization theory, where the voxel was assumed to be a periodic repetition of a representative volume C. Periodic homogenization theory was used because it is technically simpler than the generic (non-periodic) case. The nature of the homogenized model depends on the scaling chosen for the permeability coefficient with respect to the periodicity
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size. In [113] the scaling was chosen to provide a macroscopic ODE model that is closest to the Kärger model. The resulting ODE model, being the limit, when the size of biological cells tends to zero, of the signal of the microscopic model, is expected to be an approximation of the microscopic PDE model at low membrane permeability and long diffusion times.

Clearly, biological tissue is not periodic with any period. However, it is known in some similar contexts (see, for instance, [115,116] for the case of porous media) that even for media that are not truly periodic, the homogenized limit obtained in the periodic case remains formally relevant for describing generic (non-periodic) cases, i.e., the obtained macroscopic equations for both configurations have the same analytical form (only the exact values of the coefficients would change).

The macroscopic ODE model obtained in Ref. [113] governs the time evolution of the compartment magnetizations defined in Eq. (2.7):

dM m ODE (b, t) dt = -   c(t)γ 2 g T D m g + 1 v m P l=1, l =m v l τ ml ODE   M m ODE (b, t) + P l=1, l =m 1 τ ml ODE M l ODE (b, t), m = 1, • • • , P, (2.18)
where it was proven that if each Ω l ∈ C is connected, then the coefficient in row m and column l of the ODE system, for all l = m, is:

1 τ ml ODE := κ |Γ ml | |Ω l | , ( 2.19) 
with the relationship:

τ lm ODE τ ml ODE = |Ω m | |Ω l | = v m v l , ( 2.20) 
where |Γ ml | is the surface area of the interface between Ω m and Ω l .

We note here that Eq. ( 2 The mathematical derivation of the function c(t) from the full multiple compartment Bloch-Torrey PDE can be found in [113]. Here we use a more intuitive derivation, by looking at the ODE satisfied by the integral of the solution of the Bloch-Torrey PDE in a homogeneous medium with the constant diffusion tensor D 0 . In [START_REF] Kenkre | Simple solutions of the torreybloch equations in the nmr study of molecular diffusion[END_REF] it was shown for the general gradient time profile f (t), by the use of the Laplace transform, the integral of the magnetization satisfies, at any time:

M hom (b, t) := R 3 m(r, t|g)dr = exp -g T D 0 gγ 2 t 0 du u 0 f (s)ds 2 , 0 ≤ t ≤ T E.

Chapter 2. Voxel-level signal models accounting for heterogeneous domains

We note that the above equation is valid for any t ≥ 0, not just at the echo time T E. Then we define c(t) as:

c(t) := -∂M hom (b,t) ∂t g T D 0 gγ 2 M hom (b, t) = t 0 f (s)ds 2 , ( 2.21) 
for any profile f (t).

For the rectangular pulsed gradient spin echo (PGSE) sequence in Eq. (1.3), Eq.

(2.21) implies

c(t) =        (t -t 0 ) 2 , t 0 ≤ t ≤ t 0 + δ, δ 2 , t 0 + δ < t ≤ t 0 + ∆, (t -t 0 -∆ -δ) 2 , t 0 + ∆ < t ≤ t 0 + ∆ + δ. (2.22)
See Fig. 2.1 for the shape of c(t). In the narrow pulse regime, δ ∆, we can see that Eq. (2.22) yields the coefficient δ 2 of the Kärger model. For the trapezoidal gradient shape in Eq. (1.4), it is easy to show that:

c(t) =                              ( (t-t 0 ) 2 2τ ) 2 , t 0 ≤ t ≤ t 0 + τ, ((t -t 0 ) -1 2 τ ) 2 , t 0 + τ < t ≤ t 0 + δ -τ, (-((t-t 0 )-δ) 2 2τ + δ -τ ) 2 , t 0 + δ -τ < t ≤ t 0 + δ, (δ -τ ) 2 , t 0 + δ < t ≤ t 0 + ∆, (-((t-t 0 )-∆) 2 2τ + δ -τ ) 2 , t 0 + ∆ < t ≤ t 0 + ∆ + τ, (-(t -t 0 ) -1 2 τ + δ + ∆) 2 , t 0 + ∆ + τ < t ≤ t 0 + ∆ + δ -τ, ( ((t-t 0 )-δ-∆) 2 2τ ) 2 , t 0 + ∆ + δ -τ < t ≤ t 0 + ∆ + δ.
(2.23) See Fig. 2.2 for the shape of c(t). For the oscillating sine profile in Eq. (1.5), one gets:

Macroscopic ODE model

c(t) =            1 ω 2 (cos(ω(t -t 0 )) -1) 2 , t 0 < t ≤ t 0 + σ, 1 ω 2 (cos(ω(t -t 0 -τ )) -1) 2 , τ + t 0 < t ≤ t 0 + τ + σ, 0, otherwise.
See Fig. 2.3 for the shape of c(t). Now we move to the definitions of the effective diffusion tensors. This is a rather delicate question because the effective diffusion tensors are much easier to define for a voxel V that contains many copies of C than for a generic voxel. In the first case, because all water molecules in V "see" only copies of C, and C is small compared to the diffusion distance, then the steady-state values of the effective diffusion tensors can be used. These steady-state quantities can be rigorously defined from the Chapter 2. Voxel-level signal models accounting for heterogeneous domains solution of three Laplace (state-state) PDEs in C where periodic conditions on the faces of C are imposed. We will present these steady-state equations shortly. However, if V is a generic voxel, or in other words, the representative volume C is on the order of a voxel (hence, V is not periodic), it is not reasonable to suppose that the steady-state values computed on C with periodic boundary conditions would be achieved at diffusion times where the diffusion distance is much smaller than C.

In [113], it was shown that if we assume the periodic extension of

C = [-L 1 /2, L 1 /2]× [-L 2 /2, L 2 /2] × [-L 3 /2, L 3 /2]
to the voxel where C is small compared to the diffusion distance, the effective diffusion tensors D m 's are quantities that can be obtained after solving three steady-state Laplace PDEs. Specifically, for Ω m , it is

D m j,k = 1 v m Ω m D(r)∇m j (r) • e k dr, j, k = 1, • • • , 3, (2.24) 
where e k is the unit vector in the k th direction, and we have to solve 3 steady-state Laplace equations over C for the unknown functions m j (r):

∇ • D 0 ∇m j (r) = 0, r ∈ Ω m , ( 2.25) 
subject to impermeable boundary condition on ∂Ω m :

∇m j (y) • n(y) = 0, y ∈ ∂Ω m , ( 2.26) 
and periodic boundary conditions on ∂C:

m j (r)| r k =-L k /2 = m j (r)| r k =L k /2 -δ j,k L k , k = 1, • • • , 3, (2.27) 

∂ ∂r k

m j (r)

r k =-L k /2 = ∂ ∂r k m j (r) r k =L k /2 , k = 1, • • • , 3, (2.28) 
where δ j,k = 1 if k = j, and δ j,k = 0, otherwise. We emphasize that functions m j (r) are independent of the permeability and diffusion gradient. As a consequence, 1. The permeability coefficient does not enter into the definition of D m . In other words, the analysis was done around the low permeability limit κ = 0.

D

m is a physical characteristic of the cellular geometry, it does not depend on the diffusion gradient.

It is easy to show that if the periodic extension of Ω m is compact, namely, if Ω m is a sphere compartment, then its effective diffusion tensor is 0:

D m = 0. (2.29)
We account for long cylindrical cells by supposing the radius of the cylinder is small, and setting its effective diffusion tensor to:

D m = aD 0 a T , (2.30)

Limiting cases

where a is the normalized ( a = 1) vector parallel to the axis of the cylinder. We will construct the computational domain C so that when it is periodically repeated, the Ω m that corresponds to a cylinder becomes infinitely long along its longitudinal direction. We note that the expressions (2.19, 2.29, 2.30) have been used in previous works (for example, in [START_REF] Fieremans | Monte carlo study of a two-compartment exchange model of diffusion[END_REF]) for the Kärger model.

The initial condition of the ODE model is the same as for the Kärger model, namely, Eq. (2.16), and the dMRI signal for the ODE model is

S ODE (b) = P l=1 M l ODE (b, T E).
(2.31)

Limiting cases

Finally, we note that if there is no exchange (κ = 0) between any of the compartments, the macroscopic dMRI signal is

S N OEX (b) = P m=1 v m exp - g T D m g g 2 b , (2.32) 
where diffusion is each compartment is still considered as Gaussian. If the exchange between the compartments are infinitely fast (κ = ∞), then the dMRI signal is:

S F AST EX (b) = exp - P m=1 v m g T D m g g 2 b .
(2.33)

The Kärger model and the ODE model are formulated to explain the intermediate exchange regime that falls between the two extreme cases in Eqs. (2.32, 2.33).

One important property of both the Kärger model and the ODE model is that the ADC 0 is independent of time and of κ:

ADC KAR 0 = ADC ODE 0 = ADC F AST EX 0 = ADC N OEX 0 = P m=1 v m g T D m g g 2 . (2.34)
Thus, two necessary conditions for the applicability of these macroscopic models are: (i) the diffusion time should be long enough that the measured ADC 0 does not change (much) with time, and (ii) the cell membrane permeability κ should be low enough that it does not affect (much) the ADC 0 .

Chapter 3

Numerical study of two macroscopic dMRI signal models

Method

We solved the multiple compartment Bloch-Torrey PDE in the computational domain C containing different cellular configurations using the finite elements method described in [START_REF] Nguyen | An efficient finite-elements code to simulate diffusion mri signals in complex tissue geometries[END_REF]. We generated the finite elements mesh in the computational domain C using the mesh generation platform Salome (http://www.salome-platform.org/). The computational domain C was chosen to contain a configuration of spheres and cylinders. The angles of the cylinders were chosen so that when C is periodically repeated, the cylinders become infinitely long. In the simulations, the extra-cellular fractions were between 0.31 and 0.51, higher than in brain tissue. Due to computational limitations of the three-dimensional simulations, C will be much smaller than a voxel. In all cases, the cellular configurations were constructed so that at the diffusion times simulated, all the diffusion compartments are (close to) Gaussian.

We set the intrinsic diffusion coefficient in all the compartments to be D 0 = 3 × 10 -3 mm 2 /s. The initial magnetization was set to 1 |C| for all the compartments to normalize the dMRI signals to 1 at b = 0. For simplicity, for both the rectangular and trapezoidal PGSE sequences, we set t 0 = 0 and T E to be immediately after the diffusion-encoding sequence.

We computed the dMRI signal at 20 b-values between 0 and 4000s/mm 2 . We will compare the following 5 models of the dMRI signal:

1. "PDE": The (microscopic) multiple compartment Bloch-Torrey PDE.

"ODE":

The (macroscopic) ODE model. 
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The simulations were performed on a Dell PRECISION M4700 workstation (Intel(R) Core(TM)i7 CPU 3740QM@2.70GB). The solution of the microscopic Bloch-Torrey PDE took between 4 seconds to 37 minutes, per b-value, depending on the complexity of the cellular configuration and timing for gradient profile. The memory usage was between 28Mbytes to 409Mbytes. Table 3 

Numerical study

In this section, we will first illustrate the properties of the ODE model on a simple cellular configuration where C contains a single sphere as we vary the gradient pulse shape, the diffusion time, the cell permeability, and the cell radius. Then we put more complex three-dimensional cellular configurations inside C where C has side lengths varying between 5 -15µm.

Periodic lattice of spheres

We study the properties of the ODE model using a simple geometry of a periodic lattice of spheres. The computational domain is C = [-2.5µm, 2.5µm] 3 . Inside C we placed one sphere of radius R s = 2.45µm. The finite elements mesh for C is shown in Fig. 3.2(a). The gradient direction is g = [1, 0, 0].

This domain contains two compartments: the extra-cellular compartment Ω e and the sphere compartment Ω s . The corresponding volume fractions are v e = 0.51 and v s = 0.49. The surface area between the two compartments is |Γ se | = 75µm 2 . The effective diffusion coefficient of Ω s is D s = 0 because the sphere is compact. We computed the effective diffusion tensor of Ω e according to Eq. (2.24) to be:

D e =   
2.32 0.00 0.00 0.00 2.32 0.00 0.00 0.00 2.32

   × 10 -3 mm 2 /s.
We remind that the effective diffusion tensor describes the asymptotic behavior at (infinitely) long times.

Residence time

Now we verify the analytical formula of the residence time in Eq. (2.19) for the periodic lattice of spheres (Fig. 

. (3.2)
To prevent the denominator of (3.2) from being zero, we choose an initial condition for the Bloch-Torrey PDE that is not the equilibrium solution. For example, setting f it (t) is very close to τ es . At the higher permeability κ = 1×10 -4 m/s, there is a small difference between τ es f it (t) and τ es , the relative difference being about 4%. 

M (r, 0|g) = 1, r ∈ Ω s , (3.3) M (r, 0|g) = 0, r ∈ Ω e , ( 3 

Compartment magnetization

We set the cell permeability to κ = 10 We also apply a gradient sequence of OGSE sine without gap time between two pulses and with one period in each pulse, each period lasting 40ms. See Fig. 3.4(a) for the profile of f (t). 
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Numerical study

Membrane permeability

Next, we consider the effect of membrane permeability. Chapter 3. Numerical study of two macroscopic dMRI signal models

Cell size

Now we double the radius of the sphere to R s = 4.9µm as well as double the size of the computational domain, to C = [-5µm, 5µm] 3 . This keeps the same volume fractions, v e = 0.51, v s = 0.49, but halves the surface-to-volume ratio. For this domain, we computed

D e =   
2.32 0.00 0.00 0.00 2.32 0.00 0.00 0.00 2.32

   × 10 -3 .
This is exactly the same as the D e of the domain with R s = 2.45µm, computed previously.

We set κ = 10 -5 m/s and show that the ODE model is less accurate for the domain with R s = 4.9µm (Fig. 3.7(b)) compared to the domain with R s = 2.45µm (Fig. 3.7(a)). The gradient sequences are PGSE, with δ = ∆ = 40ms and δ = ∆ = 80ms.

This can be explained by the fact that at R s = 4.9µm, the diffusion distance for water molecules inside the spheres is not yet zero in the range of times considered. To illustrate this argument, we computed the time-dependent ADC 0 for each compartment by setting κ = 0m/s and solving the Bloch-Torrey PDE for many PGSE sequences, with δ = 1ms, and ∆ varying from 10ms to 160ms. We show the ADC 0 as a function of ∆ for water inside Ω e (Fig. 3.7(c)). The ADC 0 approaches the steady-state value of 2.32 × 10 -3 mm 2 /s quickly for both sphere radii. On the other hand, if we consider water inside the sphere, Ω s , we see in Fig. 3.7(d) that the ADC 0 for R s = 2.45µm is much closer to its theoretical steady-state value of D s = 0 than that for R s = 4.9µm, on [0ms, 160ms], the range of diffusion times considered. This means that when R s = 4.9µm, the average diffusion distance for water molecules inside the sphere still varies a lot as a function of time and Ω s cannot be considered a Gaussian diffusion compartment. 

Numerical study

Simulation on complex geometries

Domain containing spheres of various sizes

We constructed the domain shown in The approximation is exact when all the spheres have the same radii. In the domain shown in Fig. 3.8(a), each sphere is compact, effective diffusion tensor for each of them can be considered as 0 from Eq. (2.29), and this consideration holds for their joint intra-cellular compartment. We also computed D e by solving Eq. (2.24):

D e =   
2.20 0.00 0.00 0.00 2.25 0.00 0.00 0.00 2.24

   × 10 -3 mm 2 /s.
We see in Fig. 3.8(b) that using two-compartment ODE model still gives a good approximation to the signal of the full PDE if we use the average surface-to-volume ratio of the 76 spheres. 

Domain containing parallel cylinders

In order to test whether the ODE model works properly for anisotropic diffusion, we construct a domain containing slanted cylinders that all lie parallel to the x -yplane, make an angle π/3 with the x-axis, and have the radius R c = 2.35µm (Fig. 1.70 0.00 0.00 0.00 1.70 0.00 0.00 0.00 3.00

   × 10 -3 mm 2 /s.
We would like to know whether the membrane compartment can be detected in the dMRI signal. For this purpose, we construct a second computational domain C, with two compartments: a combined cylinder and membrane compartment, Ω m+c , with infinite permeability between Ω m and Ω c (|Ω m+c | = 18.8µm 3 ), and the same extra-cellular compartment Ω e as for the three-compartment domain. In the twocompartment domain, there is only one surface Γ e(m+c) (|Γ e(m+c) | = 15.4µm 2 ).

For permeability κ me = 10 -5 m/s, Fig. 

Numerical study

Domain containing cylinders of different orientations and spheres

Finally, we constructed a domain of 5 layers of cylinders lying parallel to the x -y plane and 4 layers of spherical cells all embedded in the extra-cellular space, see Fig 3.11(a). The five layers of cylindrical cells contain parallel cylinders that are oriented at 0, 26.5, 45, 63.5 and 90 degrees, respectively, from the x-axis (cylinder radius R c = 1.0µm). The 4 layers of 16 spherical cells (sphere radius R s = 1.375µm) are inserted between the 5 layers of cylindrical cells. When the spheres overlapped with cylinders, the latter have been (slightly) deformed. This deformation allowed to reduce the volume fraction of the extra-cellular space. Note also that some spheres and cylinders have joint interfaces. Although the cylinders were slighlty deformed, we could still use Eq. (2.30) for computing the effective diffusion tensor.

In summary, we consider this domain to have 7 compartments: the extra-cellular space (Ω e ), the compartment of the 4 layers of 16 spherical cells (Ω s ), and 5 compartments consisting of the cylinders with the same orientation (Ω c 1 , • • • , Ω c 5 ). In each layer of cylinders, the orientations of the cylinders are the same. One can note that the compartment combination for spheres can be done similarly to previous examples because of their compact shapes. On the other hand, despite of having very similar shapes and surface-over-volume ratios, the effective diffusion tensors of 5 layers of cylinders are not the same. So their compartment combination is not applicable, and one need to consider each layer separately.

For the 7 compartments, the volumes are: 

|Ω e | = 383µm 3 , |Ω s | = 167µm 3 , |Ω c 1 | = 46µm 3 , |Ω c 2 | = 47µm 3 , |Ω c 3 | = 55µm 3 , |Ω c 4 | = 47µm

Discussion

Discussion

We have shown by the numerical simulations that if the voxel is made up of spatial sub-domains that are separated from each other by low permeability membranes and if diffusion in the sub-domains are (close to) Gaussian (i.e., the condition of good equilibration in each compartment is satisfied), then the macroscopic ODE model of the dMRI signal (and the Kärger model, if the gradient profile is narrow pulse) is a good approximation to the microscopic Bloch-Torrey PDE model. However, for a generic voxel, spatial variations within the diffusion compartments are expected on the length scale of the voxel. For example, we would expect that the effective diffusion tensor of the tortuous extra-cellular space would not, in general, be constant over the entire voxel, exhibiting spatial variations on smaller length scales. However, the insight gained by the ODE model can still be important. In [113] the ODE model was derived by explicitly taking into account the discontinuity in the magnetization across the cell membranes and using different expansions of the PDE solution in each compartment, matching them via the interface conditions. A way to formulate better macroscopic models for "realistic" tissues is to account for the "smooth" spatial variations in the diffusivity within each compartment, for example, by expanding around a mean effective diffusivity as was done in [START_REF] Novikov | Effective medium theory of a diffusionweighted signal[END_REF]. However, this expansion should not be taken for the entire voxel because the magnetization is sharply varying in a large portion of the voxel, i.e., on the biological cell membranes.

Conclusions

A macroscopic ODE model governing the time evolution of the integrals of the water proton magnetization in compartments defined as spatial sub-domains of the imaging voxel was recently formulated from the microscopic heterogeneous domain Bloch-Torrey PDE. We conducted a numerical validation of this ODE model for complex geometries containing spheres and cylinders of various sizes and orientations. We illustrated by numerical simulations that this new ODE model was a good approximation to the dMRI signal of the full PDE model for general gradient pulse shapes when the diffusion in all the compartments is approximately Gaussian and the mutual exchange between them is slow. When the narrow gradient pulse assumption is not satisfied, the ODE model offers a much better approximation of the full PDE signal than the Kärger model. More work remains to be done to improve the macroscopic models to make them applicable to brain dMRI.

Chapter 4

Parameters estimation using macroscopic dMRI signal models

In diffusion MRI, water motion inside a biological tissue is monitored in order to characterize the tissue microstructure at micrometer-order length scales. Varying gradients and diffusion times, one acquires the macroscopic signal which aggregates statistically averaged information about the domain at the millimeter scale. Inferring the microstructure from the macroscopic signal is a formidable inverse problem.

In spite of considerable research over the last 50 years, this problem remains very poorly understood (see [3] and the bibliography in Chapter 1).

The complexity of brain tissue does not allow the extraction of the whole microstructure. In turn, one focuses on estimating some effective parameters of the tissue whose changes can afterwards be related to physiological or pathological modifications. Among such effective parameters, one often considers volume fractions of the intra-cellular and extra-cellular spaces (which may change during cell swelling), membrane permeability (which may characterize, to some extent, normal or abnormal functioning of cells), average size of cells, as well as effective diffusion coefficients. In this chapter, we consider the parameters estimation problem by using macroscopic dMRI signal models.

Instead of experimental data we will use synthetically generated data. This will allow us to clarify some relations between the microstructure and the dMRI signals, and to check the influence of various parameters on the stability and the quality of the parameters estimation.

In the first step, we choose a model microstructure and produce synthetic dMRI signals by solving numerically the microscopic Bloch-Torrey equation on this domain at a set of b-values. This signal is considered as an input to the parameters estimation problem. In the second step, we fit this signal at the set of b-values using the macroscopic Kärger and the ODE models to extract model parameters.

If there are P compartments, the full set of macroscopic model parameters are:

• the volume fractions of the compartments: {v m } 1≤m≤P ;

• the effective diffusion coefficients in a prescribed gradient direction g that we define as: {D m g = u g T D m u g } 1≤m≤P ;

• the residence time for molecules in the compartment l before exchanging to Chapter 4. Parameters estimation using macroscopic dMRI signal models the compartment m: {τ ml } 1≤l,m≤P, l =m , where

τ ml ≡ 1 κ |Ω l | |Γ ml | ;
We label this full set of model parameters by:

U f ull ≡ v m , D m g , τ lm 1≤l,m≤P, l =m .
In practice, we solved the least squares problems to be explained below for the parameters 1 τ lm instead of τ lm , but for the ease of notation, we will list τ lm as the searched-for parameter, instead of, more correctly, its reciprocal.

The total number of parameters in U f ull is

Z f ull ≡ U f ull = 2P + P (P -1)/2 -1.
For example:

P = 2 → Z f ull = 4, P = 3 → Z f ull = 8, P = 4 → Z f ull = 13.

If one needs the full effective diffusion tensors D

m , m = 1, • • • , P instead of just the effective diffusion coefficients in a given direction, D m g , m = 1, • • • , P , then there would be an additional 5P parameters.

Because of the high number of model parameters as the number of compartments increases, for some problems, we will consider the parameters estimation problem under the simplifying assumption that a subset of U f ull is known. In this case, we will specify the subset of parameters to be estimated, U, and the set of parameters whose values will be set to known values: U known . Together, they make the full set of macroscopic model parameters:

U f ull = U known ∪ U.
For the set of parameters to be estimated, U, to define the parameter estimation problem, we denote the ODE signal by S ODE (b, U known , U), and the Kärger signal by S KAR (b, U known , U).

In the following, we will suppose that the dMRI signal is "exactly" the output of the Bloch-Torrey PDE: S P DE (b), and the macroscopic parameters of the heterogeneous domain of the PDE model to be the "true" ones, labelled U f ull true . Even if we use the true parameters, there will be modeling errors associated with approximating S P DE (b) by S ODE (b k , U f ull true , ∅) or S KAR (b k , U f ull true , ∅). We denote the

The least squares problem

relative difference between the signals of the PDE model and the ODE and Kärger models using the true macroscopic parameters by:

R mod ODE ≡ 1 n b n b k=1 S P DE (b k ) -S ODE (b k , U f ull true , ∅) S P DE (b k ) 2 , ( 4.1) 
and

R mod KAR ≡ 1 n b n b k=1 S P DE (b k ) -S KAR (b k , U f ull true , ∅) S P DE (b k ) 2 , (4.2)
where n b is the number of b-values. The above expressions can be considered residuals of the functionals.

In addition, we assume that there will be experimental noise:

(S P DE ) noi (b) = S P DE (b) + N (b). (4.3)
For simplicity we will only consider Gaussian noise. More precisely, for each b-value, we add directly a random Gaussian variable with mean 0 and standard deviation σ:

N (b) = N b (0, σ 2 ). (4.4)

The least squares problem

The least squares problems we solve are the following:

min U n b k=1 S P DE (b k ) + N (b k ) -S ODE (b k , U known , U) S P DE (b k ) + N (b k ) 2 (4.5) or min U n b k=1 S P DE (b k ) + N (b k ) -S KAR (b k , U known , U) S P DE (b k ) + N (b k ) 2 . (4.6)
Here one aims to minimize the relative difference between numerical points and fitting function, instead of the absolute difference. This choice allows one to "equilibrate" contributions from large signals at small b-values and from small signal at large b-values. Other functionals can also be considered.

Two inherent constraints on the model parameters are already given in Eq. (2.20) and Eq. (2.12). Physical arguments imply the other constraints:

τ lm τ ml = v m v l , P l=1 v l = 1, 0 < D m g ≤ D 0 , ∀ g = 1, if Ω m is not compact, D m = 0, if Ω m is compact, 0 ≤ v m ≤ 1, 0 ≤ τ lm . ( 4 

.7) models

We set the following limits on the data in order to solve the parameter estimation problem:

0 < b k ≤ 4000(s/mm 2 ), 0.1 < S P DE (b k ),
for all k. We will use the notation

U min ODE and U min KAR
for the solution of the minimalization problems in Eq. (4.5) and Eq. (4.6), respectively.

We denote the residuals of the minimalization problems for a parameter set U by

R ODE (U) ≡ 1 n b n b k=1 S P DE (b k ) + N (b k ) -S ODE (b k , U known , U) S P DE (b k ) + N (b k ) 2 (4.8)
and

R KAR (U) ≡ 1 n b n b k=1 S P DE (b k ) + N (b k ) -S KAR (b k , U known , U) S P DE (b k ) + N (b k ) 2 .
(4.9)

The residuals of the least squares solutions will therefore be R ODE (U min ODE ) and R KAR (U min ODE ). In summary, we use the following procedure to solve the least square problem: Algorithm 1 Algorithm of parameter estimations using macroscopic models 

Least squares problem on a 3-parameters set

We solve the least squares problems in Eq. (4.5) and Eq. (4.6) for the following set of three macroscopic model parameters:

U = v s , D e g , τ es ,
where τ es ≡ |Ω s | κ|Γ es | . Because the sphere is compact, we consider the effective longtime diffusion coefficient of Ω s to be D s = 0, which means:

U known = {D s g = 0}.
The constraints from Eq. (4.7) are:

τ es τ se = v s v e , v e + v s = 1, 0 < D e g ≤ D 0 , D s g = 0, because Ω s is compact, 0 ≤ v m ≤ 1, 0 ≤ τ es . (4.11)
The signal data at 20 b-value from 0 to 4000s/mm 2 (listed previously) are obtained by solving the Bloch-Torrey PDE for the PGSE sequence: δ = ∆ = 40ms in gradient direction g = [1, 0, 0]. We also note that diffusion on this domain could be considered as isotropic. The cell radius is R s = 2.45µm, the inter-cell distance is L = 5µm, which corresponds to the cell volume fraction v s = 0.49. The intrinsic diffusion coefficient is D 0 = 3 × 10 -3 mm 2 /s. An intermediate membrane permeability of κ = 10 -5 m/s was chosen. The true model parameters are:

U true = v s = 0.49, D e g = 2.32 × 10 -3 mm 2 /s, τ es = 81ms .
The initial guess of the least squares problem is:

U 0 = c v , D 0 2 , c τ τ es true τ se true 2(τ es true + τ se true ) = 1.2 × 10 -5 c τ ,
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where c v is a random number (of a uniform distribution) between 0 and 1, c τ is between 0.1 and 10. For this domain, we did not see any difference of parameter estimation results when c v and c τ are varied.

We present U min ODE and U min KAR in Table 4.1. Because δ = ∆ = 40ms does not satisfy the narrow pulse assumption, the Kärger model is not a good approximation of the full PDE model, whereas the ODE model is a better approximation. The modeling errors are R mod ODE = 2.6% and R mod KAR = 14.0%, respectively. We see U min ODE is close to U true for all three estimated parameters, whereas U min KAR is not a good approximation of U true . In particular, the S KAR (b, U known , U) and the S ODE (b, U known , U) have a larger ADK 0 than S P DE (b) (see Fig. 3.2(b)), leading to the under-estimation of τ es : τ es KAR = 33ms < τ es ODE = 70ms < τ es true = 81ms. The residuals of the least squares solutions are R ODE (U min ODE ) = 0.02% and R KAR (U min KAR ) = 0.2%, respectively. Then we set κ = 5 × 10 -5 m/s and show the results in the second row of Table 4 

Contour plots of 2-parameters sets

Now we study the sensitivity of the solution of the least squares problems with respect to the various macroscopic model parameters. For this purpose, we use contour plots of R ODE (U) and R KAR (U) as we move in U parameter space.

On the contour plots, we study two parameters at a time, leaving the remaining parameters at their known values. First we set

U = v s , D e g , U known = {τ es = τ es true }, (4.12) 
where τ es true = 81ms and make plots of R ODE (U) and R KAR (U) in the first row of Fig. We note the values of U min ODE and U min KAR above are slightly different from the values given in Table 4.1 because we set τ es to a known value and only minimize on a 2-parameters set.

We see in Fig 

Effect of permeability

First we study the effect of membrane permeability on the parameters estimation problem for the ODE model only.

We show in Fig. 4.2 the contour plots of U for the two choices of 2-parameters sets defined in Eq. (4.12) and Eq. We can see that at higher permeability, the contours of unknowns tend to stretch out, which can cause problems in solving the least squares problem in Eq. (4.5). Chapter 4. Parameters estimation using macroscopic dMRI signal models

Effect of diffusion time

Now we study the effect of diffusion time on the parameters estimation problem for the ODE and Kärger models by changing times δ and ∆ of the PGSE sequence. We use the following three sequences:

1. short diffusion time: δ = 10ms, ∆ = 10ms;

2. long diffusion time in the narrow-pulse regime: δ = 10ms, ∆ = 70ms;

3. long diffusion time beyond the narrow-pulse regime: δ = ∆ = 40ms.

One can see in Fig. 4.3 the contour plots for the choice of the 2-parameters set defined in Eq. (4.12). At the short diffusion time δ = 10ms, ∆ = 10ms, both U min ODE and U min KAR are far from U true with specific points for two 2-parameter sets:

1. Finally, at the long diffusion time beyond the narrow-pulse regime δ = ∆ = 40ms, as discussed above, U min ODE is close to U true whereas U min KAR is far from U true . One can see in Fig. 4.4 the contour plots for the choice of the 2-parameters set defined in Eq. (4.13) and the conclusions are similar. 

Domain containing periodic lattice of spheres of the same size

Effects of cell size

Here we study the effect of cell size on the ODE model parameters estimation.

In details, we compare two sizes of cells:

1. cell radius R s = 2.45µm with cell distance L = 5µm;

2. cell radius R s = 4.9µm with cell distance L = 10µm.

This choice makes both computational domains to have the same volume fraction of the spherical cells compartment v s = 0.49 and also preserves the effective diffusion coefficient of the extra-cellular compartment: D e g = 2.32 × 10 -3 . (We will discuss in detail the relationship between v s and D e g in Sect. 4.7.) In turn, the domain containing the spherical cells R s = 4.9µm with cell distance L = 10µm with double geometrical length gives double residence time: τ es = 162ms. In summary, for R s = 4.9µm and L = 10µm, the true 3-parameters set is:

U true = v s = 0.49, D e g = 2.32 × 10 -3 mm 2 /s, τ es = 162ms . We make the contour plots for different PGSE sequences: We see that the modeling errors are much larger at the larger radius. It takes a very long diffusion time, for example δ = ∆ = 80ms, to get U min ODE to be closer to U true . .

Domain containing periodic lattice of spheres of the same size

Periodic lattice of spherical cells of different sizes

For the domain shown in Fig. 3.8(a), which contains many spherical cells of different sizes, we study the parameters estimation problem for different membrane permeabilities and investigate the effect of noisy signals. There are two compartments: Ω e , the extra-cellular compartment, and Ω s containing all 76 spherical cells with different radii between 0.6 -2.55µm. The corresponding volume fractions of this domain are v s = 0.65 and v e = 0.35.

Least squares problem on 3-parameters set

The least squares problems we solve remain Eq. (4.5) and Eq. (4.6). The 3-parameters set to be estimated is:

U = v s , D e g , τ es , ( 4.14) 
where τ es ≡ |Ω s | κ|Γ es | . The constraints are: U true = v s = 0.65, D e g = 2.20 × 10 -3 mm 2 /s, τ es = τ es true . where τ es true is given in Table 4.2 for each permeability. We also use the same initial guesses of the least squares problem as for the domain containing periodic lattice of spheres:

τ es τ se = v s v e , v e + v s = 1, 0 < D e g ≤ D 0 , D s = 0, because Ω s is compact, 0 ≤ v m ≤
U 0 = c v , D 0 2 , c τ τ es true τ se true 2(τ es true + τ se true )
, where c v is a random number (of a uniform distribution) between 0 and 1, c τ is between 0.1 and 10. For this domain, we also did not see any difference of parameter estimation results when c v and c τ are varied.

Table 4.2 contains parameters estimation results for:

κ = 10 -6 m/s (δ = ∆ = 100ms), κ = 2.5 × 10 -6 m/s (δ = ∆ = 80ms), κ = 5 × 10 -6 m/s (δ = ∆ = 50ms), κ = 10 -5 m/s (δ = ∆ = 30ms), κ = 2.5×10 -5 m/s (δ = ∆ = 20ms), κ = 5×10 -5 m/s (δ = ∆ = 10ms), κ = 10 -4 m/s (δ = ∆ = 5ms).
In this likely anisotropic diffusion domain, all of these signals were obtained using the same gradient direction g = (1, 0, 0) and are considered without noise. We can see that the results of the ODE model are always much better than that of the Kärger model. It is necessary to emphasize that for these examples the narrow pulse assumption does not hold because δ is not small compared to ∆. For low permeability (κ = 10 -6 m/s, κ = 2.5 × 10 -6 m/s) and intermediate permeability (κ = 5 × 10 -6 m/s, κ = 10 -5 m/s, κ = 2.5×10 -5 m/s), the estimated parameters are very good. At high permeability (κ = 5×10 -5 m/s, κ = 10 -5 m/s), the macroscopic models are not good approximations of Chapter 4. Parameters estimation using macroscopic dMRI signal models the full PDE model, as can be seen by the large modeling errors, thus the parameters estimation results are not as accurate. For instance, for κ = 5 × 10 -5 m/s, the modeling error for the ODE model is 7.6%, and the estimated parameters are still reasonable. But at very high permeability κ = 10 -4 m/s, the estimated parameters are very inaccurate due to the large modeling error, 20% in this case. Chapter 4. Parameters estimation using macroscopic dMRI signal models

κ (m/s) -PGSE (ms) Parameter U true U min ODE U min KAR κ = 1 × 10 -6 m/s δ = 100ms ∆ = 100ms v s 0.

Effect of noisy signal

Now we add N realizations of random noise to the signal at the n b b-values: The results show that larger noise requires more b-values to reduce the error of parameter estimations. In fact, one can see on Table 4.3 that using more b-values not only decreases the relative standard deviation of all parameter estimations but also moves the average estimation of parameters closer to the true values for both small noise σ = 0.01 and large noise σ = 0.03. 4.12) and Eq. (4.13). Because the parameters estimation problems are posed only on 2-parameters sets we were able to solve the least squares problems in shorter computational time than when the full 3-parameters set is to be estimated. Hence, we give results for N = 1000 samples of noisy signals (whereas in Table 4.3 only N = 100 samples of noisy signals were used). Importantly, we plot in Fig. 4.10 the convex hulls of:

(S P DE ) noi i (b k ) = S P DE (b k ) + N i b k (0, σ 2 ), k = 1, • • • , n b , i = 1, • • • , N,
U min ODE noi i i=1,••• ,N =1000 and U min KAR noi i i=1,••• ,N =1000 .
We also show results of parameters estimation while using three previous sets 

Domain containing parallel cylinders with thick membrane layer

Domain containing parallel cylinders with thick membrane layer

We come to the domain shown in Fig. 3.10(a), which contains a cylindrical cell (R c = 2.0µm) with a thick membrane layer (thickness h = 0.45µm) outside it. There are three compartments: the extra-cellular compartment Ω e , the intra-cellular compartment of the cylinder Ω c and the membrane compartment Ω m . Their volume fractions are respectively v e = 0.38, v c = 0.41 and v m = 0.21.

Least squares problem on 4-parameters set

We choose the following 4-parameters set for the least squares problem in Eq. (4.5) and Eq. (4.6): 

U = v c ,
τ ij τ ji = v j v i , ∀i, j = e, m, c, v e + v c + v m = 1, 0 < D e g ≤ D 0 , D m = D c = 0, because Ω m , Ω c are compact in the gradient direction (2D compact), 0 ≤ v e , v m , v c ≤ 1, 0 ≤ τ em ≤ τ cm . ( 4.16) 
Expecting that the surface between the extra-cellular compartment and the membrane, and the surface between the cylindrical compartment and the membrane, scale proportionally with the volume, we add one more constraint:

|Γ cm | |Γ em | 2 = |Ω c | |Ω c | + |Ω m | .
This constraint is equivalent to:

τ em τ cm 2 = v c v c + v m .
(4.17)

The true model four-parameters set for this domain are:

U = v c = 0.41, D e g = 1
.70 × 10 -3 mm 2 /s, τ em = 41ms, τ cm = 50ms . The initial guesses of the least squares problem are:

U 0 = c v , D 0 2 , c τ 1 τ em true , c τ 2 τ cm true ,
where c v are varied in [0, 1], c τ 1 and c τ 2 are varied in [0, 2] to obtain different initial guesses.

For this domain, we did not see a significant difference in the parameters estimation results for v s when c v varied but we did notice that the estimated τ em and τ cm models changed when c τ 1 and c τ 2 varied. Thus, we varied c τ 1 and c τ 2 randomly to obtain 10 different initial guesses:

U 0 i (i = 1, • • • , 10
). Then we compared the residuals of the solution of the least squares problem from the Matlab routine resulting from these 10 initial guesses and picked the one with the smallest residual as our estimated parameters set. 

Contour plots on 2-parameters sets

Now we make contour plots of 2-parameters sets to further investigate the properties of the parameters estimation problem for this domain. We fix two parameters at their true values and consider two remaining parameters as unknowns.

First we will study the 2-parameters set: U = v c , D e g , U known = {τ em = τ em true , τ cm = τ cm true } , (4.18) where τ em true = 41ms, τ cm true = 50ms. And then we will study the 2-parameters set: The contours show that we can easily get a good approximation for v s and D e g by using the ODE model because its U min ODE is very close to U true , while U min KAR is not close to U true . However, we can see clearly from 

U = {τ em , τ cm } , U known = v c = v c

Domain containing slanted parallel cylinders

In the previous section, the gradient direction was set perpendicular to the cylinder axis in order to probe restricted diffusion in the cross-sectional plane. This allowed us to deal with isotropic diffusion. The next step consists in considering anisotropic diffusion on the domain shown in Fig. 3.9(a), which contains slanted cylinders that all lie parallel to the x -y-plane, make an angle π/3 with the x-axis, and have a radius R c = 2.35µm. This is also equivalent to setting the gradient in an intermediate direction between the cylinder axis and the cross-sectional plane.

For the sake of simplicity, we consider only two compartments: the extra-cellular compartment Ω e , and the intra-cellular compartment Ω c of cylinders (i.e., there is no membrane compartment). Their volume fractions are v e = 0.31 and v c = 0.69, respectively.

In order to describe anisotropic diffusion in the long time limit, one needs to introduce two effective diffusion tensors, D e and D c , for both compartments.

Each diffusion tensor has to 6 unknown parameters so that one formally gets the following 14-parameters set for the least squares problem:

U = v c , D e , D c , τ ec ,
where

τ ec ≡ |Ω c | κ|Γ ec | .
One also needs at least 6 different gradient directions to estimate the effective diffusion tensors. The constraints for this domain are:

τ ec τ ce = v c v e , v e + v c = 1, 0 < D c ij , D e ik ≤ D 0 , ∀i, j = 1, • • • , 3, 0 ≤ v e , v s ≤ 1, 0 ≤ τ ec . (4.20)
A numerical solution of this optimization problem for 14 unknowns may be highly unstable. In order to investigate the stability of this problem, we focus on the contour plots on 2-parameters sets. For this purpose, we fix three gradient directions, 1. g 1 = (0.5, 0, 0.87): parallel to the axis of cylinders, 2. g 2 = (0.87, 0, -0.5): perpendicular to the axis of cylinders, accurate because of the finite diffusion time (i.e., the infinite diffusion limit is not reached). In turn, the estimation of D e g is quite accurate. Finally, for the intermediate gradient direction g 3 , one faces the same problem as for the first case g 1 but to a lesser extent. Although Fig. 4.12(e) suggests that the estimates of D c g and D e g from the ODE and Kärger models are close to their true values, the contour plots are strongly stretched in the vertical direction. It means that an estimate of D e g may be highly unstable and biased by noise. As earlier for the first case g 1 , the estimation of τ ec is impossible as no minimum is present on Fig. 4.12(f). Although the estimates of v c from both the ODE and Kärger models are close to its true value, the presence of noise may strongly alter this procedure.

We conclude that parameters estimation for both the ODE and Kärger models in the case of anisotropic diffusion is much more challenging than for the isotropic case. In fact, one needs to carefully choose gradient directions in order to get stable estimates. In general, the situation is even more complex as highly extended structures (like cylinders here, e.g., axons) may be randomly oriented and well mixed with compact structures (e.g., glial cells). We consider an example of such situation in the next section. Because of the complex structure of the domain, we simplify the problem by assuming that we already knew the orientations of all 5 layers: 0, 26.5, 45, 63.5 and 90 degrees, respectively, from the x-axis, which means that we knew all their diffusion coefficients D c k g , k = 1, • • • , 5 by using Eq. (2.30). The constraints are:

τ lm τ ml = v m v l , l, m = e, s, c, v e + v s + 5v c = 1, 0 < D e g ≤ D 0 , D s = 0, because Ω s is compact, D c k g = (D c k g ) true , k = 1, • • • , 5 0 ≤ v e , v s ≤ 1, 0 ≤ τ sc , τ ec , τ es . (4.23)
In order to investigate the stability of the parameters estimation procedure, we consider three choices of 2-parameters sets: U = v e , D e g , U = {v s , τ sc } , U = {τ ec , τ es } , where three gradient directions were used for D e g : g 1 = (1, 0, 0), g 2 = (1, 0, 1) and g 3 = (1, 1, 1). For each choice, the remaining parameters U known are set at their true values. Since the present domain is truly anisotropic (without a selected direction as it was the case for slanted parallel cylinders), the contours for three gradient directions are very similar. In the contour plots of v e and D e g (the first column, Fig. 4.13(a), 4.13(d), 4.13(g)), one can see that these two parameters can be estimated. The quality of the estimation slightly depends on the gradient direction. In practice, one can acquire signals in different directions and then combine them to get more accurate estimates. As usual, the ODE model provides more accurate estimates than the Kärger model. On the contrary, the contour plots of v s and τ sc (second column) and contour plots of τ ec and τ es (third column) exhibit very stretched patterns and no distinguishable minima. As a consequence, the estimation of the parameters τ sc (the vertical axis in the second column) and τ ec (the horizontal axis in the third column) is impossible. The absence of a well localized minimum does not allow to conclude, from these plots, about the stability of estimates of the other parameters v s and τ es . This conclusion is not surprising. For instance, the residence time τ ec characterizes the exchange between the cylindrical and extracellular compartments. When the gradient direction is close to the cylinder axis, the signal does not contain enough information about the exchange, as we discussed earlier. Similarly, the residence time τ sc that characterizes the exchange between deformed cylinders and spheres across their common interface is not accessible. models .9% , (e) 6.7%, (f) 6.0%, (g) 12.9%, (h) 0.8%, (i) 7.5%.

Conclusions and further improvements

Conclusions and further improvements

Our analysis of the parameters estimation problem in the previous sections has revealed advantages and limitations of this approach. On the one hand, it seems to be possible to estimate a number of physiologically relevant parameters for "simple" tissues composed of not too elongated constituents. Among these parameters are the volume fractions, the apparent diffusion coefficient in the extra-cellular space, and the residence time which is related to the membrane permeability and surfaceto-volume ratio. Clearly, these parameters can only represent averaged properties of the tissue. Nevertheless, a reliable experimental determination of these parameters has always presented a great challenge. We showed on simplified examples a possibility of solving the parameters estimation problem. Most importantly, we analyzed the stability features of this problem. In particular, we studied the robustness of the estimates against various biological and physical parameters (e.g., permeability, sequence timing, the range and number of b-values), as well as the robustness against noise. The ODE model always provided more accurate and stable estimates than the Kärger model. This study suggests a promising perspective for estimating many important parameters from dMRI signals.

At the same time, we analyzed the parameters estimation problem for more complicated domains which contain very elongated constitutes (infinite cylinders). As expected, if the gradient is precisely aligned with the cylinder axis, one deals with unrestricted diffusion so that no information on the exchange can be extracted. But the quality of parameters estimation is dramatically reduced even for intermediate gradient directions. In other words, one needs to apply the gradient in (almost) perpendicular direction to ensure accurate estimates. This is a natural limitation of the parameters estimation procedure because biological tissues may contain elongated structures randomly oriented and also mixed with other (compact) elements (e.g., axons and glial cells). The quality of the parameters estimation may potentially be improved by acquiring signals in various directions and then fitting all these signals to the appropriate ODE models.

Another interesting perspective for future investigation consists in including additional constraints to the optimization problem. These constraints may account for some relationships between model parameters. In order to illustrate this point, we will get a relationship between v c and D e g by performing simulations in simple shapes. Another simple analytical relationship exists between v c and τ es .

We first examine the relationship between v c and D e g for two simple domains, namely, periodic lattices of two-dimensional cells of circular (Fig. 4.14(a)) and square (Fig. 4.14(b)) shapes. This is also equivalent to consider aligned cylinders (as shown in Fig. 3.10(a)) and apply the gradient perpendicularly to the cylinder axis. For each shape, we varied the cell radius R For each of these domains, we computed D e g by solving steady-state Laplace equation (2.25) (the intrinsic diffusion coefficient was set to D 0 = 3 × 10 -3 mm 2 /s). The obtained values of D e g are plotted versus the corresponding volume fraction v c in Fig. 4.14. In this way, we obtain numerically the relationship between D e g on v c . One can see that this relationship turns out to be a curve, despite the fact that the values of D e g come from different R c and L c . We conclude that with fixed D 0 , the effective diffusion coefficient D e g of the extra-cellular compartment depends almost exclusively on v c although this dependence is different for each shape. Now we consider the relationship between v c and τ es . For circular cells, one has

v c = π(R c ) 2 (L c ) 2 ; τ ec = |Ω c | |Γ ec |κ = R c 2κ ;
from which

τ ec = √ v c L 2 √ πκ . (4.25)
Similarly, one gets for square shapes:

τ ec = √ v c L 4κ . ( 4.26) 
These formulas show that, in addition to v c and κ, one needs to know the cell distance L to identify the value of τ ec . 

Conclusions and future directions Conclusions

This thesis has been focused on the relationship between the tissue microstructure and the macroscopic dMRI signal. Inferring tissue parameters from experimentally measured signals is considered as the "Holy Grail" of diffusion MRI. In spite of a long standing history of intensive research in this field, many aspects of this inverse problem remain poorly understood. We proposed and tested an approximate solution to this problem, in which the dMRI signal is first approximated by an appropriate macrosopic model and then the effective parameters of this model are estimated.

We investigated two macroscopic models of the dMRI signal. The first is the Kärger model that assumes a certain form of (macroscopic) multiple compartmental diffusion and inter-compartment exchange, but is subject to the narrow pulse restriction on the diffusion-encoding magnetic field gradient pulses. The second is an ODE model of the multiple compartment magnetizations obtained from mathematical homogenization of the Bloch-Torrey equation, that is not subject to the narrow pulse restriction. In both models, the dMRI signal has been related to model parameters that represent averaged quantities over the voxel.

First, we investigated the validity of these macroscopic models by comparing the dMRI signal given by the Kärger and the ODE models with the dMRI signal simulated on some relatively complex tissue geometries by solving the microscopic Bloch-Torrey equation in the presence of semi-permeable biological cell membranes. We note that the Kärger model is a limit case of the ODE model where the duration of the diffusion-encoding magnetic field gradient pulses goes to zero. We concluded that the validity of both macroscopic models is limited to the case where diffusion in each compartment is effectively Gaussian and where the inter-compartmental exchange can be accounted for by standard first-order kinetic terms.

Second, assuming that the above conditions on the compartmental diffusion and inter-compartment exchange are satisfied, we solved the least squares problem associated with fitting the Kärger and the ODE model parameters to the simulated dMRI signal obtained by solving the microscopic Bloch-Torrey equation. Among various effective parameters, we considered the volume fractions of the intra-cellular and extra-cellular compartments (which may change during cell swelling), membrane permeability (which may characterize, to some extent, normal or abnormal functioning of cells), average size of cells, inter-cellular distance, as well as apparent diffusion coefficients. We started by studying the feasibility of the least squares solution for two groups of relatively simple tissue geometries. For the first group, in which domains consist of identical or variably-sized spherical cells embedded in Chapter 4. Parameters estimation using macroscopic dMRI signal models the extra-cellular space, we concluded that parameters estimation problem can be robustly solved, even in the presence of noise. In the second group, we considered parallel cylindrical cells, which may be covered by a thick membrane layer, and embedded in the extra-cellular space. When the diffusion gradient is applied perpendicularly to the cylinder axis, the parameter estimation problem can be robustly solved, just as for spherical cells. In the opposite case of the diffusion gradient parallel to the axis cylinder, one simply probes unrestricted diffusion which contains no information about the restricting domain and water exchange between compartments. As a consequence, the parameter estimation fails in this situation. For an intermediate gradient direction, the quality of parameter estimation strongly depends on how much the cellular structure is elongated in the gradient direction.

In practice, the orientation of elongated cells is not know a priori; moreover, biological tissues may contain elongated structures randomly oriented and also mixed with other (compact) elements (e.g., axons and glial cells). This situation has been numerically investigated on our most complicated domain in which layers of cylindrical cells in various directions are mixed with layers of spherical cells. We checked that certain parameters can still be estimated rather accurately while the other remain inaccessible. In all considered cases, the ODE model provided more accurate estimates than the Kärger model.

Future directions

In this thesis, we have shown by numerical simulations that if the voxel is made up of spatial sub-domains that are separated from each other by low permeability membranes and if diffusion in the sub-domains are (close to) Gaussian, then the macroscopic ODE model of the dMRI signal (and the Kärger model, if the gradient profile is narrow pulse) is a good approximation to the microscopic Bloch-Torrey PDE model. However, for a generic voxel, it is expected that there would be spatial variations within the diffusion compartments on the length scale of the voxel. For example, we would expect that the extra-cellular space, being tortuous, would not, in general, be able to be described by a constant effective diffusion tensor on the length scale of the entire voxel. Nevertheless, it is still important to use the insight gained by the macroscopic models studied in this thesis, in particular, the ODE model that was derived by explicitly taking into account the discontinuity in the magnetization across the biological cell membranes. Specifically, the ODE model was derived using different expansions of the PDE solution in each compartment, matching them via the interface conditions.

A number of practical improvements can be suggested as perspectives. When the tissue is composed of elongated structures (e.g., axons), the parameters estimation fails if the gradient is close to the axis of these structures. The quality of the parameters estimation can be improved by acquiring signals in various directions and then fitting all these signals to the appropriate ODE models. To some extent, this is similar to acquisition of effective diffusion tensors for anisotropic diffusion when one needs many gradient directions to get accurate results. Another promising perspec-

Conclusions and further improvements

tive consists in studying relationships between different parameters of the model. For instance, the effective diffusion coefficient in the extra-cellular compartment and the residence times can be explicitly related to volume fractions, at least for simple shapes. Accounting for such relations as additional constraints in the least square problem would improve the parameters estimation by reducing the search region in the parameters space. Yet another possibility is to go beyond effective diffusion coefficients by considering higher-order cumulants such as the effective diffusion kurtosis. This quantity appears in front of the second-order term in the Taylor series expansion of the logarithm of the dMRI signal over b-values. It has been already argued that the kurtosis may be more sensitive to certain microstructure alterations. However, theoretical understanding of the relationship between the kurtosis and the tissue microstructure is still poor. Finding relations between the kurtosis and model parameters and their inclusion into the least square estimation present an interesting perspective of the present study. 
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 43 would suffice. Now we compare the analytical approximation τ es in Eq.(2.19) with τ es f it (t) in Eq. (3.2). We solved the PDE using the intrinsic diffusion coefficient D 0 = 3 × Numerical study of two macroscopic dMRI signal models 10 -3 mm 2 /s and two different values of permeability: κ = 1 × 10 -5 m/s (Fig. 3.1(a)) and κ = 1 × 10 -4 m/s (Fig. 3.1(b)), corresponding to two values of the residence time: τ es = 81ms and τ es = 8.1ms, respectively. One can see on both Fig. 3.1(a) and Fig. 3.1(b) that τ es f it (t) is a constant for t ∈ [0, 20]ms. At the lower permeability κ = 1 × 10 -5 m/s, τ es

  (a) κ = 1 × 10 -5 m/s. (b) κ = 1 × 10 -4 m/s.
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  -5 m/s. Applying a PGSE sequence with δ = 40ms, ∆ = 40ms, we see that the S ODE (b) is very close to S P DE (b), whereas S KAR (b) is further away (Fig. 3.2(b)). We also show the compartment magnetizations in Ω e and Ω s from t = 0ms to t = 80ms at b = 2000s/mm 2 (Fig. 3.2(c) and Fig. 3.2(d)). We see that M e ODE (2000, t) and M s ODE (2000, t) follow the time evolution of M e P DE (2000, t) and M s P DE (2000, t), whereas the Kärger model compartment magnetizations M e KAR (2000, t) and M s KAR (2000, t) do not. Next we apply a gradient sequence with two trapezoidal pulses, each pulse lasting 40ms. See Fig. 3.3(a) for the profile of f (t).
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 3 3(c) presents the dMRI signals, S P DE (b) and S ODE (b), while Fig. 3.3(e) shows the sum of the compartment magnetizations, M e P DE (2000, t)+M s P DE (2000, t), M e ODE (2000, t)+M s ODE (2000, t), as a function of time, at b = 2000s/mm 2 . Then we apply a gradient sequence with four trapezoidal pulses, each pulse lasting 20 ms. See Fig. 3.3(b) for the profile of f (t), while the signal and compartment magnetizations are shown in Fig. 3.3(d) and Fig. 3.3(f), respectively. These results for κ10 -5 m/s (relatively slow exchange) indicate that the ODE model correctly reproduces the time evolution of the water proton magnetization in different compartments over the entire time course of the gradient sequence, even for complicated gradient shapes.
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 32 Figure 3.2: (a) Finite elements mesh of C; (b) DMRI signals: S P DE (b), S ODE (b), S N OEX (b), S F AST EX (b); (c) Compartment magnetization in the extra-cellular compartment at b = 2000s/mm 2 : M e P DE (2000, t), M e ODE (2000, t); (d) Compartment magnetization in the sphere at b = 2000s/mm 2 : M s P DE (2000, t), M s ODE (2000, t). Cell radius 2.45µm, κ = 10 -5 m/s. PGSE sequence with δ = ∆ = 40ms.
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 3 4(c) presents the dMRI signals, S P DE (b) and S ODE (b), while Fig. 3.4(e) shows the sum of the compartment magnetizations, M e P DE (2000, t) + M s P DE (2000, t), M e ODE (2000, t) + M s ODE (2000, t), at b = 2000s/mm 2 . Then we also apply a gradient sequence of OGSE sine with two periods in each pulse, each period lasting 20 ms. See Fig. 3.3(b) for the profile of f (t). Figures 3.3(d) and 3.3(f) show similar results to that of trapezoidal shape sequences.

  (a) Trapezoidal profile (b) Repeated trapezoidal profile (c) S(b) (d) S(b) (e) M e (2000, t) + M s (2000, t). (f) M e (2000, t) + M s (2000, t).

Figure 3 . 3 :

 33 Figure 3.3: The domain is a periodic lattice of spheres, R s = 2.45µm, κ = 10 -5 m/s. Top: the gradient profiles: (a) two pulses δ = ∆ = 40ms, τ = δ/3, (b) four pulses δ = ∆ = 20ms, τ = δ/3. Middle: the dMRI signal, S P DE (b), S ODE (b), as a function of b-value. Bottom: the sums of the compartment magnetizations M e P DE (2000, t) + M s P DE (2000, t), M e ODE (2000, t) + Ms ODE (2000, t), as a function of time at b = 2000s/mm 2 .

  (a) OGSE sine profile: 1 period in each pulse. (b) OGSE sine profile: 2 periods in each pulse. (c) S(b). (d) S(b).(e) M e (2000, t) + M s (2000, t). (f) M e (2000, t) + M s (2000, t).

Figure 3 . 4 :Chapter 3 . Numerical study of two macroscopic dMRI signal models 3 . 2 . 1 . 3

 3433213 Figure 3.4: The domain is a periodic lattice of spheres, R s = 2.45µm, κ = 10 -5 m/s. Top: the gradient profiles. Middle: the dMRI signal, S P DE (b), S ODE (b), S KAR (b), as a function of b-value. Bottom: the sums of the compartment magnetizations M e P DE (2000, t) + M s P DE (2000, t), M e ODE (2000, t) + M s ODE (2000, t) as a function of time at b = 2000s/mm 2 .

  (a) PGSE, δ = 10ms, ∆ = 10ms. (b) PGSE, δ = 40ms, ∆ = 40ms.

Figure 3 . 5 :

 35 Figure 3.5: The domain is a periodic lattice of spheres, R s = 2.45µm, κ = 10 -5 m/s. S ODE (b) is closer to S P DE (b) for longer diffusion time.

Figure 3 .

 3 6 shows S P DE (b) and S ODE (b) of the spherical cell domain for different permeabilities: κ = 10 -5 m/s, κ = 2.5×10 -5 m/s, κ = 5×10 -5 m/s, with two PGSE sequences: δ = ∆ = 10ms and δ = ∆ = 80ms. We can see that at lower permeabilities (Fig. 3.6(a) and 3.6(b)), S ODE (b) is closer to S P DE (b) for longer diffusion time. In contrast, at higher permeability (Fig. 3.6(c)), the distance between S ODE (b) and S P DE (b) does not become smaller. This is expected because of stronger mixing between compartments at higher permeabilities.

(a) κ = 1 ×

 1 10 -5 m/s. (b) κ = 2.5 × 10 -5 m/s. (c) κ = 5 × 10 -5 m/s.

Figure 3 . 6 :

 36 Figure 3.6: The domain is a periodic lattice of spheres, R s = 2.45µm. The gradient sequence is PGSE with δ = 10ms, ∆ = 10ms and δ = 80ms, ∆ = 80ms. The accuracy of the ODE model (as compared to the PDE model) improves as the diffusion time increases, if the permeability is low.

  (a) R s = 2.45µm, κ = 10 -5 m/s. (b) R s = 4.9µm, κ = 10 -5 m/s. (c) ADC0 in Ω e , κ = 0m/s, δ = 1ms. (d) ADC0 in Ω s , κ = 0m/s, δ = 1ms.

Figure 3 . 7 :

 37 Figure 3.7: Two periodic lattices of spheres, with R s = 2.45µm and R s = 4.9µm, κ = 10 -5 m/s. S P DE (b) and S ODE (b) for the PGSE sequence with δ = ∆ = 40ms and δ = ∆ = 80ms are shown in (a) and (b).Setting κ = 0m/s, we also computed the ADC 0 corresponding to many PGSE sequences, with δ = 1ms, and ∆ varying from 10ms to 160ms, for the extra-cellular space Ω e (c) and for the intra-cellular space Ω s (d). One can see that while the extra-cellular space Ω e can be considered a Gaussian diffusion compartment for both sphere sizes (look at the scale of the y-axis), the sphere compartment Ω s cannot be considered a Gaussian diffusion compartment when R = 4.9µm because the ADC 0 is changing a lot with diffusion time on [0ms, 160ms].

Fig. 3 .

 3 8(a) containing 76 spherical cells with a range of radii between 0.6 -2.55µm. The spheres were put randomly in the computational domain is C = [-5µm, 5µm] 3 in a way to ensure no overlap. Formally, one has 76 different spherical compartments, each with its volume fraction and surface-to-volume ratio. However, it is convenient to combine 76 spheres to form a single compartment Ω s . The extra-cellular space forms the second compartment Ω e . The corresponding volume fractions are v s = 0.65 and v e = 0.35. The surface to volume ratio is |Γ se |/|Ω s | = 1.85µm -1 . Here we assume that |Γ se |/|Ω s | gives a good approximation of the average surface-to-volume ratios of all the 76 spheres.

  (a) Finite elements mesh of C. (b) DMRI signals.

Figure 3 . 8 :

 38 Figure 3.8: (a) The computational domain C = [-5µm, 5µm] 3 contains 76 spheres with radii 0.6 -2.55µm. The volume fractions of the spheres and of the extra-cellular space are v s = 0.65 and v e = 0.35, respectively. The membrane permeability is set to κ = 10 -5 m/s. (b) The dMRI signals: S P DE (b), S ODE (b), S KAR (b), S N OEX (b), S F AST EX (b). The gradient sequence is PGSE with δ = ∆ = 25ms.

3 . 9 10 - 3

 39103 (a)). The computational domain is C = [-2.89, 2.89] × [-2.5, 2.5] × [-5, 5]µm 3 . This domain is split into two compartments: the compartment Ω c of all the cylinders (with v c = 0.69), and the extra-cellular space Ω e (with v e = 0.31). The volumes and surface areas are |Ω e | = 91µm 3 , |Ω c | = 198µm 3 , and |Γ ce | = 170µm 2 . We mm 2 /s. We set κ = 10 -5 m/s and δ = ∆ = 80ms for the PGSE sequence. Three gradient directions (parallel, perpendicular and 45 degrees from axes of the cylinders) are considered. We show in Fig. 3.9(b) that S P DE (b) and S ODE (b) are close in all three gradient directions.

  (a) Left: mesh of C. Right: periodic extension. (b) DMRI signals.

Figure 3 . 9 :Chapter 3 . Numerical study of two macroscopic dMRI signal models 3 . 2 . 2 . 3

 3933223 Figure 3.9: In (a), left: finite elements mesh of C = [-2.89, 2.89]×[-2.5, 2.5]×[-5, 5]µm 3 , right: when periodically extended, the cylinders are infinitely long. In (b): S P DE (b) and S ODE (b) when κ = 10 -5 m/s. The gradient directions are g 1 = (0.5, 0, 0.87) and g 2 = (0.87, 0, -0.5), correspondingly parallel and perpendicular to the axis of cylinders, and g 3 = (0.97, 0, 0.26), lying in the middle of g 1 and g 2 . The sequence is PGSE, with δ = ∆ = 80ms.

  3.10(b) shows S P DE (b) and S ODE (b) in the gradient direction perpendicular with the cylinder axis for both domains. S P DE (b) and S ODE (b) are close to each other in both cases. The difference between the signals from the two domains can be seen in Fig. 3.10(b) but it is not clear whether the difference is large enough to be useful in detecting the membrane compartment in experimental settings.

Figure 3 . 10 :

 310 Figure 3.10: C = [-2.75, 2.75] 2 × [-0.5, 0.5]µm 3 , cylinder radius R c = 2.0µm, membrane thickness h = 0.45µm. In (a), finite elements meshes, left: two-compartment domain (Ω e and Ω c+m ), right: three-compartment domain (Ω e and Ω c and Ω m ). In (b). S P DE (b) and S ODE (b) of the three-compartment domain and the two-compartment domain, with κ = 10 -5 m/s, subject to PGSE δ = ∆ = 80ms, in the gradient direction g = (1, 0, 0), perpendicular with the axis of cylinder.

3 and |Ω c 5 |× 10 - 3

 5103 = 46µm3 . The surface areas are:|Γ es | = 291µm 2 , |Γ ec 1 | = 93µm 2 , |Γ ec 2 | = 85µm 2 , |Γ ec 3 | = 98µm 2 , |Γ ec 4 | = 85µm 2 , |Γ ec 5 | = 93µm 2 , |Γ sc 1 | = 0, |Γ sc 2 | = 21µm 2 , |Γ sc 3 | = 37µm 2 , |Γ sc 4 | = 21µm 2 ,|Γ sc 5 | = 0. The cellular permeability for both cylinders and spheres is set to κ = 10 -5 m/s. The computational domain is C = [-3.75, 3.75] × [-7.03, 7.03] × [-3.75, 3.75] µm 3 . The computed effective extra-cellular diffusion tensor is: mm 2 /s. We computed S P DE (b) and S ODE (b) in three gradient directions: g 1 = (1, 0, 0), g 2 = (1, 0, 1), and g 3 = (1, 1, 1), for the PGSE sequence with δ = ∆ = 40ms.Figure 3.11(b) shows that the ODE and the PDE signals are almost indistinguishable.

( a )

 a Finite elements mesh of C. (b) DMRI signals

Figure 3 . 11 :

 311 Figure 3.11: (a) Finite elements mesh of C containing 5 layers of cylinders and 4 layers of spheres. In each layer, the cylinders have the same orientation. (b) S P DE (b) and S ODE (b). The cell membrane permeability is κ = 10 -5 m/s. The gradient directions are g 1 = (1, 0, 0), g 2 = (1, 0, 1), and g 3 = (1, 1, 1). The pulse sequence is PGSE, with δ = ∆ = 40ms.
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 1234242 Solve the Bloch-Torrey equation Eq. (2.1) with interface condition in Eqs. (2.2, 2.3) and boundary conditions (2.5, 2.6), and get the signal attenuation S P DE (b k ) at b = b 1 , • • • , b n b . Solve the least squares problems (4.5) and (4.6) with constraints (4.7) (and additional constraints if exist); we used the Matlab function lsqnonlin, in which both the residual and the estimated parameters tolerances were set at 10 -12 . Solve the system of ODEs to obtain S ODE (b k , U known , U) for each b k ; in Matlab we set the tolerance for the home built function ode45 to 10 -8 . Unless otherwise noted, the default number of b-values used is n b = 20, with b = [0, 50, 100, 200, 300, 500, 750, 1000, 1250, 1500, 1750, 2000, 2250, 2500, 2750, 3000, 3250, 3500, 3750, 4000] × s/mm 2 . (4.10) Domain containing periodic lattice of spheres of the same size First we consider a simple domain of a periodic lattice of spheres of the same size (see Fig. 3.2(a) for the computational domain C). There are two compartments: the extra-cellular compartment Ω e and the spherical cells compartment Ω s . The cell radius is R s , the inter-cell distance is L. The cellular volume fraction is v s . In this section, we consider the signal attenuation without noise, i.e, N (b k ) = 0, k = 1, • • • , n b in Eq. (4.5) and Eq. (4.6).

Fig. 3 .

 3 2(a)), R s = 2.45µm, L = 5µm. PGSE sequence with δ = ∆ = 40ms in gradient direction g = [1, 0, 0] with D 0 = 3 × 10 -3 mm 2 /s.

4 . 1 .

 41 Three specific points of interest on the contour plots are: 1. U true = {v s = 0.49, D e g = 2.32 × 10 -3 mm 2 /s}; 2. U min ODE = {v s = 0.47, D e g = 2.23 × 10 -3 mm 2 /s}; 3. U min KAR = {v s = 0.40, D e g = 1.85 × 10 -3 mm 2 /s}.

= 2 . 3 ×

 23 . 4.1(a) that U min ODE is close to U true and in Fig. 4.1(b) that U min KAR is far from U true . Now we set U = {v s , τ es } , U known = D e g = D e 10 -3 mm 2 /s and make plots of R ODE (U) and R KAR (U) in the second row of Fig. 4.1. Three specific points of interest on the contour plots are: 1. U true = {v s = 0.49, τ es = 81ms}; 2. U min ODE = {v s = 0.48, τ es = 74ms}; 3. U min KAR = {v s = 0.50, τ es = 41ms}. We see in Fig. 4.1(c) that both estimated parameters of U min ODE are close to U true and in Fig. 4.1(d) that the estimated τ es of U min KAR is far from U true . Next we study the effect on the parameters estimation problem of various geometrical properties and signal acquisition choices. In detail, one by one, we will study the effect of permeability, diffusion time, range and number of b-values and cell size. models (a) ODE model. (b) Kärger model. (c) ODE model. (d) Kärger model.

Figure 4 . 1 :

 41 Figure 4.1: Contour plots of the residuals R ODE (U) and R KAR (U). First τ es is fixed at the true value, while v s , D e g are estimated (a,b). Then D e g is fixed at the true value, while {v s , τ es } are estimated (c,d). PGSE with δ = ∆ = 40ms, n b = 20. R mod : (a,c) 2.6%, (b,d) 14%; R ODE (U min ODE )): (a,b) 0.5%, (c,d) 0.2%; R KAR (U min KAR ): (a,b) 1.6%, (c,d) 0.6%.

( 4 . 4 . 2 .

 442 13) for κ = 1 × 10 -5 m/s and κ = 5 × 10 -5 m/s. With κ = 5 × 10 -5 m/s, specific points of interest on the contour plots for first 2-parameters set on Fig. 4.2(b) are: • U true = {v s = 0.49, D e g = 2.32 × 10 -3 mm 2 /s}; • U min ODE = {0.41, 2.15 × 10 -3 mm 2 /s}; U min KAR = {0.30, 1.96 × 10 -3 mm 2 /s}; and for second 2-parameters set on Fig. 4.2(d) are: Domain containing periodic lattice of spheres of the same size • U true = {v s = 0.49, τ es = 16ms}; • U min ODE = {0.44, 16ms}; U min KAR = {0.44, 10ms}.

(a) κ = 1 ×

 1 10 -5 m/s. (b) κ = 5 × 10 -5 m/s. (c) κ = 1 × 10 -5 m/s. (d) κ = 5 × 10 -5 m/s.

Figure 4 . 2 :

 42 Figure 4.2: Contour plot of ODE model. Periodic lattice of spheres, cell radius R s = 2.45µm, inter-cell distance L = 5µm. PGSE sequence: δ = 40ms, ∆ = 40ms, n b = 20. R mod : (a,c) 2.6%, (b,d) 11.7%; R ODE (U min ODE ): (a) 0.5%, (b) 0.4%, (c) 0.2% (d) 1.1%; R KAR (U min KAR ): (a) 1.6%, (b) 6.1%, (c) 0.6% (d) 1.9%.

2 .

 2 Figures 4.3(a) and 4.3(b): U true = {v s = 0.49, D e g = 2.32 × 10 -3 mm 2 /s}; U min ODE = {0.43, 1.92 × 10 -3 mm 2 /s}; U min KAR = {0.41, 1.77 × 10 -3 mm 2 /s}; 2. Figures 4.4(a) and 4.4(b): U true = {v s = 0.49, τ es = 16ms}; U min ODE = {0.52, 28ms}; U min KAR = {0.52, 16ms}; At the long diffusion time in the narrow-pulse regime δ = 10ms, ∆ = 70ms, both U min ODE and U min KAR are close to U true for both two 2-parameter sets: 1. Figures 4.3(c) and 4.3(d): U true = {v s = 0.49, D e g = 2.32 × 10 -3 mm 2 /s}; U min ODE = {0.47, 2.22 × 10 -3 mm 2 /s}; U min KAR = {0.46, 2.22 × 10 -3 mm 2 /s}. Figures 4.4(c) and 4.4(d): U true = {v s = 0.49, τ es = 16ms}; U min ODE = {0.48, 77ms}; U min KAR = {0.48, 76ms}.

  (a) ODE model, PGSE δ = 10ms, ∆ = 10ms. (b) Kärger model, PGSE δ = 10ms, ∆ = 10ms. (c) ODE model, PGSE δ = 10ms, ∆ = 70ms. (d) Kärger model, PGSE δ = 10ms, ∆ = 70ms. (e) ODE model, PGSE δ = 40ms, ∆ = 40ms. (f) Kärger model, PGSE δ = 40ms, ∆ = 40ms.

Figure 4 . 3 :

 43 Figure 4.3: Contour plot of ODE model and Kärger model. Periodic lattice of spheres, cell radius R s = 2.45µm, inter-cell distance L = 5µm. PGSE sequence, n b = 20. R mod : (a) 8.4%, (b) 11.6%, (c) 2.4%, (d) 2.8% , (e) 2.6%, (f) 14%; R ODE (U min ODE ): (a,b) 2.3%, (c,d) 0.3%, (e,f) 0.5%; R KAR (U min KAR ): (a,b) 2.5%, (c,d) 0.3%, (e,f) 1.6%.

Figure 4 . 4 :

 44 Figure 4.4: Contour plot of ODE model and Kärger model. Periodic lattice of spheres, cell radius R s = 2.45µm, inter-cell distance L = 5µm. PGSE sequence, n b = 20. R mod : (a) 8.4%, (b) 11.6%, (c) 2.4%, (d) 2.8% , (e) 2.6%, (f) 14%; R ODE (U min ODE ): (a,b) 1.2%, (c,d) 0.2%, (e,f) 0.2%; R KAR (U min KAR ): (a,b) 1.5%, (c,d) 0.2%, (e,f) 0.6%.

Figure 4 . 5 :

 45 Figure 4.5: Domain containing periodic lattice of spheres shown in Fig. 3.2(a), cell radius 2.45µm, cell distance 5µm, contour plot of ODE model with PGSE profile δ = 40ms, ∆ = 40ms, n b = 20 b-values in range (a) [0, 1000s/mm 2 ], (b) [0, 2000s/mm 2 ], (c) [0, 1000s/mm 2 ]. R mod : (a,b) 0.8%, (c,d) 1.5%, (e,f) 2.6%; R ODE (U min ODE ): (a) 0.1%, (b) 0.1%, (c) 0.1%, (d) 0.2% , (e) 0.5%, (f) 0.2%; R KAR (U min KAR ): (a) 0.1%, (b) 0.1%, (c) 0.4%, (d) 0.3% , (e) 1.6%, (f) 0.6%.

Figure 4 . 6 :

 46 Figure 4.6: Domain containing periodic lattice of spheres in shown Fig. 3.2(a), cell radius 2.45µm, cell distance 5µm, contour plot of ODE model with PGSE profile δ = 40ms, ∆ = 40ms, fixed range b-value in [0, 4000s/mm 2 ] with different numbers (a) n b = 10 (b) n b = 20 (c) n b = 40. R mod : (a,b) 2.2%, (c,d) 2.6%, (e,f) 2.4%; R ODE (U min ODE ): (a) 0.4%, (b) 0.2%, (c) 0.5%, (d) 0.2% , (e) 0.4%, (f) 0.2%; R KAR (U min KAR ): (a) 1.4%, (b) 0.6%, (c) 1.6%, (d) 0.6% , (e) 1.5%, (f) 0.6%.

1 .

 1 short diffusion time: δ = 10ms, ∆ = 10ms; 2. long diffusion time: δ = ∆ = 40ms; 3. very long diffusion time: δ = ∆ = 80ms.

Figures 4 .

 4 Figures 4.7 and 4.8 show the contour plots for the two choices of 2-parameters sets defined in Eq. (4.12) and Eq. (4.13), respectively. On Fig. 4.7, the specific points of U true and U min ODE for first 2-parameters set are:

  (a) R s = 2.45µm: δ = 10ms, ∆ = 10ms. (b) R s = 4.9µm: δ = 10ms, ∆ = 10ms. (c) R s = 2.45µm: δ = 40ms, ∆ = 40ms. (d) R s = 4.9µm: δ = 40ms, ∆ = 40ms. (e) R s = 2.45µm: δ = 80ms, ∆ = 80ms. (f) R s = 4.9µm: δ = 80ms, ∆ = 80ms.

Figure 4 . 7 :

 47 Figure 4.7: Domain containing periodic lattice of spheres shown in Fig. 3.2(a). Contour plot of ODE model with respect to v s and D e g , n b = 20. R mod : (a) 8.4%, (b) 59.7%, (c) 2.6%, (d) 10.1% , (e) 2.2%, (f) 5.7%; R ODE (U min ODE ): (a) 2.3%, (b) 15.6%, (c) 0.5%, (d) 2.2% , (e) 0.4%, (f) 1.0%; R KAR (U min KAR ): (a) 2.5%, (b) 16.7%, (c) 1.6%, (d) 2.7% , (e) 2.0%, (f) 2.0%..

Figure 4 . 8 :

 48 Figure 4.8: Domain containing periodic lattice of spheres shown in Fig. 3.2(a). Contour plot of ODE model with respect to v s and τ es , n b = 20. R mod : (a) 8.4%, (b) 59.7%, (c) 2.6%, (d) 10.1% , (e) 2.2%, (f) 5.7%; R ODE (U min ODE ): (a) 1.2%, (b) 5.5%, (c) 0.2%, (d) 1.2% , (e) 0.2%, (f) 0.5%; R KAR (U min KAR ): (a) 1.5%, (b) 6.8%, (c) 0.6%, (d) 1.6% , (e) 0.7%, (f) 1.0%.

  1 and 0 ≤ τ es . The true model three-parameters set for this domain are:

.. 2 .

 2 (4.15) to get N samples of the noisy signal (S P DE ) noi i . The 3-parameters set for the parameters estimation problem remains that from Eq. (4.14).We define the solution of the least squares problem subject to the noisy signal (S P DE ) The average of estimated parameters for the N realizations of the noisy signal is defined asWe also give a measure of the relative standard deviations of U Table4.3 shows the results of N = 100 realizations of noisy signals for two levels of noise: σ = 0.01, σ = 0.03 and three different numbers of b-values: n b = 25, n b = 100 and n b = 400. For each case, b-values are varied on a uniform grid of [0, 4000]s/mm 2 .

Fig. 3 .

 3 8(a) from N = 100 samples of Gaussian noises N (0, 0.01) and N (0, 0.03), κ = 10 -5 m/s, PGSE sequence with δ = ∆ = 30ms. R mod : (a,b,c,d,e,f) 0.9%.

Figure 4 .

 4 Figure 4.10 shows the contour plots of R ODE (U) for two choices of 2-parameters sets defined in Eq. (4.12) and Eq. (4.13). Because the parameters estimation problems are posed only on 2-parameters sets we were able to solve the least squares problems in shorter computational time than when the full 3-parameters set is to be estimated. Hence, we give results for N = 1000 samples of noisy signals (whereas in Table4.3 only N = 100 samples of noisy signals were used). Importantly, we plot in Fig.4.10 the convex hulls of:

  of b-values with different numbers: n b = 25, n b = 100 and n b = 400. One can see that with more b-values, each convex hull shrinks to the corresponding true least squares solution without noise and this position is very close to U true . models (a) n b = 25. (b) n b = 25. (c) n b = 100. (d) n b = 100. (e) n b = 400. (f) n b = 400.

Figure 4 . 10 :

 410 Figure 4.10: Domain containing spherical cells of different sizes: κ = 10 -5 m/s, PGSE with δ = ∆ = 30ms, convex hulls of 1000 samples of noisy signal with two noise levels: σ 1 = 0.01 and σ 2 = 0.03, contour plot of ODE model with respect to v s and D e g (a,c,e) and v s and τ es (b,d,f). R mod : (a,b,c,d,e,f) 0.9%.

= 1 . 7 ×

 17 10 -3 mm 2 /s.

Figure 4 . 2 .

 42 Figure 4.11 presents the contour plots for both choices of U above and the specific points for two 2-parameter sets:

Fig. 4 .

 4 11(c) and Fig.4.11(d) that it is very difficult to estimate τ em and τ cm because the contours stretch very long Chapter 4. Parameters estimation using macroscopic dMRI signal models

3. g 3 =

 3 (0.97, 0, 0.26): lying in the middle of g 1 and g 2 , and consider the effective diffusion tensors D e and D c projected onto these directions. In order words, we will estimate the effective diffusion coefficients D c g and D e g as previously. We consider two choices of a 2-parameters set. The first choice is U = D c g , D e g , U known = {v c = v c true , τ ec = τ ec true } , (4.21) models

  (a) g1 = (0.5, 0, 0.87).(b) g1 = (0.5, 0, 0.87).(c) g2 = (0.87, 0, -0.5).(d) g2 = (0.87, 0, -0.5).(e) g3 = (0.97, 0, 0.26).(f) g3 = (0.97, 0, 0.26).

Figure 4 . 12 :Chapter 4 . Parameters estimation using macroscopic dMRI signal models 4 . 6

 412446 Figure 4.12: Domain containing slanted parallel cylinders, κ = 10 -5 m/s, PGSE with δ = ∆ = 80ms, contour plots for the ODE model. R mod : (a,b) 0.8%, (c,d) 3.8% , (e,f) 0.2%; R ODE (U min ODE ): (a) 0.01%, (b) 0.57%, (c) 0.16%, (d) 0.17% , (e) 0.05%, (f) 0.05%; R KAR (U min KAR ): (a) 0.01%, (b) 0.57%, (c) 0.14%, (d) 0.35% , (e) 0.05%, (f) 0.05%.

Figure 4 . 4 . 6 .

 446 Figure 4.13 shows the contour plot for all three 2-parameters sets in three gradient directions. One can notice the following specific points for first 2-parameters choice:

Figure 4 . 13 :

 413 Figure 4.13: Spherical and cylindrical cells, κ = 10 -5 m/s, PGSE with δ = ∆ = 40ms: (a,d,g) v e and D e g , (b,e,h) v s and τ sc , (c,f,i) τ ec and τ es . R mod : (a,b,c) 0.4%, (d,e,f) 1.5%, (g,h,i) 1.8% R ODE (U min ODE ): (a) 0.1%, (b) 0.06%, (c) 0.09%, (d) 0.2% , (e) 0.2%, (f) 0.2%, (g) 0.3%, (h) 0.2%, (i) 0.2%; R KAR (U min KAR ): (a) 0.5%, (b) 0.4%, (c) 1.1%, (d) 10.9% , (e) 6.7%, (f) 6.0%, (g) 12.9%, (h) 0.8%, (i) 7.5%.

  c and the inter-cellular distance L c in the following ranges: R c ∈ [2.3 : 0.01 : 2.6], L c ∈ [5.3 : 0.01 : 5.7]. (4.24) As a result, we produced 31 × 41 = 1271 domains, for both circular and square shapes. The volume fraction of the extra-cellular compartment v c varied in the models range [0.5, 0.75] for the circular shape and in the range [0.65, 0.97] for the square shape.

Figure 4 . 14 :

 414 Figure 4.14: Circular (a) and square (b) shapes of two-dimensional cells which are formed into periodic lattices.

Figure 4 . 15 :

 415 Figure 4.15: Relationship between v c and D e g obtained by numerical solution of the steady-state Laplace equations for circular and square shapes.

  (a) v c and D e g . (b) v c and τ es .

Figure 4 . 16 :

 416 Figure 4.16: Contour plot of the ODE model for circular shapes with respect to v c and D e g (a), and v c and τ es (b).
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Voxel-level signal models accounting for heterogeneous domains two

  The dMRI signal is given by the solution of a system of coupled ODEs, similar to the Kärger model, but the ODEs have time-dependent coefficients and the solution needs to be obtained numerically. The main advantage of this new macro-limitations of the Kärger model, namely, the diffusion in each compartment should be (approximately) Gaussian, and the exchange time scale is sufficiently different from the diffusion time scale to ensure linear kinetics exchange. See[START_REF] Fieremans | Monte carlo study of a two-compartment exchange model of diffusion[END_REF] for a discussion of these two limitations for the Kärger model. The work of [113] can be thought of as giving a sound mathematical basis to the Kärger model as well as generalizing it beyond narrow pulse. This chapter aims to validate the ODE model for some complex geometries.

	The Kärger model has been checked in certain parameter
	regimes by comparing its prediction with Monte Carlo simulations [73, 76, 104]. In
	particular, Fieremans et al. discussed limitations of the Kärger model [76]. The
	Kärger model has been used in biological tissue imaging [73, 105-112] to invert for
	model parameters.
	Recently, directly from the microscopic Bloch-Torrey PDE defined on a heteroge-
	neous domain, a new macroscopic model for the dMRI signal was formulated [113]
	using homogenization techniques [114], in particular, by matching asymptotic ex-
	pansions of the solution of the Bloch-Torrey PDE in different spatial sub-domains
	that are divided from each other by cell membranes. The compartments of this
	macroscopic model are then associated to the biological cells and the extra-cellular
	space.

scopic model is that it is not subject to the narrow pulse restriction, in contrast to the Kärger model. The gradient pulse can be long in duration and can have a general temporal profile f (t). However, the new ODE model is subject to the other Chapter 2.

  .19) has been used as an estimate of the residence time in the Kärger model. However, the derivation of the ODE model is only rigorous for small permeabilities such that Eq. (2.19) holds. The validity of the ODE model, at least as derived in [113], is not guaranteed if Eq. (2.19) does not hold. Thus, for us, we take Eq. (2.19) as the definition of 1

	ODE τ ml	.

Table 3 .

 3 .1 shows the details of simulation time and memory usage. The ODE model was solved using the Matlab (home built) command "ode45". The solution of the ODE took a few seconds per b-value. The memory usage was negligible.

	Domain	Memory (MB)	Computational time δ = ∆ = 5ms δ = ∆ = 40ms
	1 Sphere	36	15 seconds	38 seconds
	76 spheres	409	15 minutes	37 minutes
	Slanted parallel cylinders	36	15 seconds	37 seconds
	3-compartments cylinder	28	4 seconds	10 seconds
	Cylinders + spheres	227	8 minutes	22 minutes

1: Memory usage and average computational time per b-value to solve the Bloch-Torrey PDE.

  If the compartment magnetizations can be approximated by an ODE model of the form given in (2.18), then necessarily:

	dM dM	e P DE (0, t) dt s P DE (0, t) dt	≈ -≈ -	1 τ se M 1 τ es M	e P DE (0, t) + s P DE (0, t) +	1 τ es M τ se M 1	s P DE (0, t),	(3.1)
	Using the relation (2.20), we can obtain the best fit τ es at t:
		τ es f it (t) :=	v e v s M	e P DE (0, t) -M dM s P DE (0,t)	s P DE (0, t)
							dt	

3.2(a)) by solving the Bloch-Torrey PDE with zero gradient, g = 0, in other words, the diffusion equation, to obtain the compartment magnetizations M e P DE (0, t) and M s P DE (0, t) at different times: t ∈ [0, 20]ms. e P DE (0, t).

  .1. We see the modeling errors have increased significantly in this higher permeability case: R mod ODE = 11.7% and R mod KAR = 41.0%. However, the results of parameter estimation U min ODE are still good in comparison to U true , especially for v s and τ es . But from the results of U min KAR , one can see that parameter estimation using Kärger model does not work well.

	κ -PGSE	Parameter v s	U true U min ODE 0.49 0.50	U min KAR 0.56
	κ = 1 × 10 -5 m/s	τ es (ms)	81	70	33
	δ = 40ms	D e g (×10 -3 mm 2 /s) 2.32	2.38	3.00
	∆ = 40ms	R(U min )		0.1%	0.5%
		R mod		2.6% 14.0%
		v s	0.49	0.47	0.57
	κ = 5 × 10 -5 m/s	τ es (ms)	16	15	8
	δ = 40ms	D e g (×10 -3 mm 2 /s) 2.32	2.44	2.83
	∆ = 40ms	R(U min )		0.02% 0.3%
		R mod		11.7% 41.0%

Table 4 . 1 :

 41 Results of parameter estimations for the domain containing periodic lattice of spherical cells (

Table 4 . 2 :

 42 Parameters estimation results for the domain containing periodic lattice of spherical cells of different sizes shown in Fig. 3.8(a), with different permeabilites.

4.3. Periodic lattice of spherical cells of different sizes

  

	σ noise n b	Parameter v s	σ ave ODE 7%	σ ave KAR 10%	U true 0.65	U min ODE 0.65	noi	U min KAR 0.69	noi
		25	τ es (ms)	21%	51%	54	47		29
			D e (×10 -3 mm 2 /s) 16%	26%	2.2	2.3		2.7
			v s	4%	11%	0.65	0.65		0.72
	0.01	100	τ es (ms)	7%	52%	54	52		25
			D e (×10 -3 mm 2 /s) 9.5%	30%	2.2	2.3		2.8
			v s	2%	11%	0.65	0.65		0.72
		400	τ es (ms)	5%	53%	54	52		25
			D e (×10 -3 mm 2 /s)	6%	32%	2.2	2.3		2.9
			v s	12%	13%	0.65	0.64		0.67
		25	τ es (ms)	45%	66%	54	67		44
			D e (×10 -3 mm 2 /s) 28%	30%	2.2	2.2		2.3
			v s	9%	11%	0.65	0.66		0.69
	0.03	100	τ es (ms)	25%	48%	54	57		30
			D e (×10 -3 mm 2 /s) 24%	28%	2.2	2.4		2.7
			v s	6%	10%	0.65	0.65		0.69
		400	τ es (ms)	13%	50%	54	54		29
			D e (×10 -3 mm 2 /s) 14%	26%	2.2	2.3		2.7

Table 4 . 3 :

 43 Relative errors of U for the domain shown in

  D e g , τ em , τ cm , where τ em ≡ |Ω m | κ|Γ em | and τ cm ≡ |Ω m | κ|Γ cm | . The constraints are:

Table 4 .

 4 4 summarizes the parameter estimations results. The estimated values for v c and D e g are good. In turn, the estimated values for τ em and τ cm are less accurate but their ratio is still close to the true values due to condition in Eq. (4.17).

	κ -PGSE	Parameter v c	U true (U min ODE ) (U min KAR ) 0.412 0.431 0.320
	κ = 1 × 10 -5 m/s δ = 80ms ∆ = 80ms	τ em (ms) τ cm (ms) g (×10 -3 mm 2 /s) 1.70 41 50 D e R(U min )	33 40 1.79 0.00%	35 50 1.87 0.05%
		R mod		1.8%	6.7%

Table 4 . 4 :

 44 Estimated macroscopic model parameters for the domain containing parallel cylinders with thick membrane, κ = 1 × 10 -5 m/s, PGSE profile with δ = ∆ = 80ms.
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(a) ODE model, PGSE δ = 10ms, ∆ = 10ms (b) Kärger model, PGSE δ = 10ms, ∆ = 10ms. (c) ODE model, PGSE δ = 10ms, ∆ = 70ms. (d) Kärger model, PGSE δ = 10ms, ∆ = 70ms. (e) ODE model, PGSE δ = 40ms, ∆ = 40ms. (f) Kärger model, PGSE δ = 40ms, ∆ = 40ms.

Domain containing periodic lattice of spheres of the same size

Effects of b-values

Here we consider the effect of the choice of the number and magnitude of the b-values which are used to fit the signal. 2. [0, 2000s/mm 2 ]: b = [0, 100, 200, 300, 400, 500, 600, 700, 800, 900, 1000, 1100, 1200, 1300, 1400, 1500, 1600, 1700, 1800, 2000] × s/mm 2 .

3. [0, 4000s/mm 2 ]: see Eq. (4.10).

Figure 4.5 shows the contour plots for the two choices of 2-parameters sets defined in Eq. (4.12) and Eq. (4.13). The specific points for two 2-parameter sets of range [0, 1000s/mm 2 ]:

1. One can see that although the estimations U min ODE for all three ranges are close to each other and close to U true , smaller range of b-value tends to stretch out the contour plot at every level, which means the parameters estimation problem is more difficult to solve.

Domain containing periodic lattice of spheres of the same size

Next we fix the range of b-values to [0, 4000s/mm 2 ] and use different numbers of b-values: Despite of using different numbers of b-values, not only the U min ODE for different n b are close to each other and close to U true , but their contour plots are also very similar for both choices of 2-parameters sets. This shows that for the signal without noise, the number of b-values which cover a fixed range has a small effect on the ODE and Kärger models parameter estimations.

Periodic lattice of spherical cells of different sizes

Contour plots of 2-parameters sets

We also show in Fig. 4.9 the contour plots for the two choices of 2-parameters sets defined in Eq. (4.12) and Eq. (4.13). The specific points for two 2-parameter sets are:

1. Figures 4.9 

Domain containing parallel cylinders with thick membrane layer

along the lines describing the true ratio between τ em and τ cm . This explains why we could not get good estimates of τ em and τ cm when we solved the least squares problem on the 4-parameters set previously. 1. g 1 = (0.5, 0, 0.87) (Fig. 4.12(a)):

2. g 2 = (0.87, 0, -0.5) (Fig. 4.12(c)): These contour plots provide useful information about the stability and quality of parameters estimation. For the parallel gradient direction g 1 , diffusion is fast along the cylinder axis so that it is easy to estimate D c g and D e g (Fig. 4.12(a)) but impossible to estimate v c and τ es (Fig. 4.12(b)). In fact, the contour plots on Fig. 4.12(b) do not exhibit a distinguishable minimum. This is not surprising because the exchange between two compartments happens in the cross-sectional plane, while the signal probes diffusion along the cylinder axis.

For the perpendicular gradient direction g 2 , diffusion is fast in the extra-cellular compartment and could be considered effectively zero in the compact intra-cellular compartment. As a consequence, the U min ODE are close to U true for both 2-parameters set. The estimation of D c g (whose true value is zero in the long-time limit) is not 
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