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Summary

Diffusion magnetic resonance imaging (dMRI) has been used widely in biological
and medical applications to detect a large range of physiological and pathological
conditions. The image contrast in dMRI of biological tissues comes from the differ-
ing water diffusion characteristics in the imaged tissue at different spatial positions.
The resolution of dMRI is on the order of a millimeter, meaning the dMRI signal
provides averaged information on a volume, called a voxel, whose size is much larger
than cell features, that vary, for example in brain, on the scale of a micrometer.
To understand the relationship between the tissue microstructure inside a voxel and
the dMRI signal, macroscopic models of the dMRI signal have been formulated to
relate the signal to model parameters that represent averaged quantities over the
voxel. In this thesis, we investigated two such macroscopic models. The first is the
Kärger model that assumes a certain form of (macroscopic) multiple compartmen-
tal diffusion and inter-compartment exchange, but is subject to the narrow pulse
restriction on the diffusion-encoding magnetic field gradient pulses. The second is
an ODE model of the multiple compartment magnetizations obtained from math-
ematical homogenization of the Bloch-Torrey equation, that is not subject to the
narrow pulse restriction.
First, we investigated the validity of the two aforementioned macroscopic models
by comparing the dMRI signal given by the Kärger and the ODE models with
the dMRI signal simulated on some relatively complex tissue geometries by solving
the microscopic Bloch-Torrey equation in the presence of permeable biological cell
membranes. We note that the Kärger model is a limit case of the ODE model
where the duration of the diffusion-encoding magnetic field gradient pulses goes
to zero. We concluded that the validity of both macroscopic models is limited to
the case where diffusion in each compartment is effectively Gaussian and where
the inter-compartmental exchange can be accounted for by standard linear kinetic
terms.
Next, assuming that the above conditions on the compartmental diffusion and inter-
compartment exchange are satisfied, we solve the least squares problem associated
with fitting the Kärger and the ODE model parameters to the simulated dMRI
signal obtained by solving the microscopic Bloch-Torrey equation. Among various
effective parameters, we considered the volume fractions of the intra-cellular and
extra-cellular compartments (which may change during cell swelling), membrane
permeability (which may characterize, to some extent, normal or abnormal func-
tioning of cells), average size of cells, inter-cellular distance, as well as apparent
diffusion coefficients. We started by studying the feasibility of the least squares
solution for two groups of relatively simple tissue geometries. For the first group,
in which domains consist of variably sized spherical cells embedded in the extra-
cellular space, we concluded that parameters estimation problem can be robustly
solved, even in the presence of noise. In the second group, we considered parallel
cylindrical cells, which may be covered by a thick membrane layer, and embedded
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in the extra-cellular space. When the diffusion gradient is applied perpendicularly
to the cylinder axis, the parameter estimation problem can be robustly solved, just
as for spherical cells. In the opposite case of the diffusion gradient parallel to the
axis cylinder, one simply probes unrestricted diffusion which contains no informa-
tion about the restricting domain and water exchange between compartments. As
a consequence, the parameter estimation fails in this situation. For an intermediate
gradient direction, the quality of parameter estimation strongly depends on how
much the cellular structure is elongated in the gradient direction. In practice, the
orientation of elongated cells is not know a priori; moreover, biological tissues may
contain elongated structures randomly oriented and also mixed with other (com-
pact) elements (e.g., axons and glial cells). This situation has been numerically
investigated on our most complicated domain in which layers of cylindrical cells in
various directions are mixed with layers of spherical cells. We checked that certain
parameters can still be estimated rather accurately while the other remain inacces-
sible. In future works, the quality of the estimation may be improved by acquiring
signals in various directions and then fitting all these signals to the appropriate ODE
models. In all considered cases, the ODE model provided more accurate estimates
than the Kärger model.
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Chapter 1

Diffusion magnetic resonance
imaging in biological tissues

1.1 Motivation

Diffusion magnetic resonance imaging (dMRI) is a widespread experimental tech-
nique in which the random trajectories of diffusing nuclei are encoded by magnetic
field gradient pulses [1–3]. When the nuclei diffuse inside a heterogeneous medium,
the statistics of the random trajectories is affected by the presence of (possibly
semi-permeable) walls or obstacles. Although these microscopic hindrances are not
visible at the spatial resolution of dMRI, all these geometrical features are sta-
tistically aggregated into the macroscopic dMRI signal. Measuring the signal at
different diffusion times, gradient intensities and directions, one aims to infer the
morphological structure of a sample and to characterize the dynamics of a system.
This is a formidable inverse problem which until now has no complete solution [3].
In spite of this fundamental gap, the non-invasive character of dMRI made this
technique a gold standard in material sciences, neurosciences and medicine, with
numerous applications to mineral samples (e.g., sedimentary rocks in oil industry,
concrete, cements and gypsum in building industry) and biological samples (e.g.,
brain, lungs, bones). For instance, diffusion-weighted brain imaging is daily per-
formed in research and clinical MR scanners, both for detecting pathological regions
and monitoring functional properties of the brain [4–12].
The image contrast in dMRI of biological tissues comes from the differing water
diffusion characteristics in the imaged tissue at different spatial positions. The
resolution of dMRI is on the order of a millimeter, meaning the dMRI signal provides
averaged information on a volume, called a voxel, whose size is much larger than
cell features, that vary, for example in brain, on the scale of a micrometer.
An important medical application of dMRI is the detection of cerebral ischemia
(cell swelling in the brain) a few minutes after stroke [13, 14]. In the brain, dMRI
has been used to detect a wide range of physiological and pathological conditions,
including tumors [15–18], myelination abnormalities [19], connectivity [20], as well
as in functional imaging where recent work has suggested that water dMRI could
also be used to visualize changes in tissue microstructure that might arise during
neuronal activation [21]. Based on the known sensitivity of dMRI to cell size in
tissues [22, 23] and on optical imaging studies that have revealed changes in the
shape (in particular swelling) of neurons and glial cells during brain activation
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[12, 24], the observed findings have been tentatively ascribed to a transient swelling
of cortical cells. For a recent survey, see [6].

1.2 Equations of MRI

The principle of spatial encoding in (water proton) magnetic resonance imaging
(MRI) is the following. Suppose r1, r2, r3 are the axes of a 3D coordinate system.
Water protons have a property called spin, and under the influence of an applied
magnetic field in the r3-direction, will precess about the r3-axis at a frequency
that is proportional to the strength of the applied magnetic field. The constant of
proportionality is called the gyromagnetic ratio and it is γ = 2.675 ·108 rad/s/Tesla
for the water proton. When the applied magnetic field varies linearly in space,
it is called a magnetic field gradient. If we denote the direction and amplitude
of the gradient by q = (q1, q2, q3) and its time profile by h(t), then the complex
transverse magnetization on the r1− r2 plane, M(r, t) := Mr1(r, t) + iMr2(r, t), i is
the imaginary unit, obeys the Bloch Equation [25]:

∂M(r, t)
∂t

= −iγ r · q h(t)M(r, t)− M(r, t)
T2(r) ,

in the rotating frame at the Larmor frequency, where T2(r) is the local spin-spin
relaxation rate. The solution of the above equation is:

M(r, t) = ρ(r) e−t/T2(r) e
−ir·

(
γ q
∫ t

0 h(s)ds
)
,

where ρ(r) is the spin density.
Even though 3D imaging is possible, most often the MRI signal is acquired in 2D,
slice by slice. Suppose r3 ∈ [(l − 1

2)∆r3, (l + 1
2)∆r3] are the limits of the slice of

interest, then the MRI signal acquired is the integral of the magnetization in that
slice:

µ̂l

(
γ (q1, q2)

∫ t

0
h(s)ds

)
=
∫
r1,r2

µl(r1, r2) e
−i(r1,r2)·

(
γ (q1,q2)

∫ t

0 h(s)ds
)
dr1dr2, (1.1)

where

µl(r1, r2) =
(∫ (l+ 1

2 )∆r3

(l− 1
2 )∆r3

ρ(r1, r2, r3) e−t/T2(r1,r2,r3) dr3

)
. (1.2)

For simplicity we have chosen q3 = 0. It is clear from Eq. (1.1) that the MRI signal
is a 2D Fourier transform of µl(r1, r2). By choosing the appropriate set of q1, q2
and h(s) (not discussed here), the Fourier transform can be acquired at a set of 2D
Fourier points. Then the inverse Fourier transform can be performed and sampled
at physical space points to obtain in each voxel Vi,j,l an average value of µl(r1, r2):

µ̄l(i, j) ≈
1

∆r1∆r2

∫
Vi,j,l

µl(r1, r2)dr1 dr2,

10
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that gives the contrast in a MRI image in slice l, where

Vi,j,l :=
[
(i− 1

2)∆r1, (i+ 1
2)∆r1

]
×
[
(j − 1

2)∆r2, (j + 1
2)∆r2

]
×
[
(l − 1

2)∆r3, (l + 1
2)∆r3

]
.

In Eq. (1.2) we can see two widely used contrast mechanisms in MRI, the proton
density and the T2 relaxation.

1.3 Equations of dMRI

Now, in addition to the imaging gradient q and its time profile h(t) described
above, another set of magnetic field gradients can be applied to encode the random
displacement of water molecules. Combining a series of gradient pulses, one can
investigate the self-diffusion properties of the sample even for a uniform initial
distribution. This is the basis of the imaging modality called diffusion MRI.
In detail, we denote the “diffusion-encoding” gradient by g = (g1, g2, g3) and its
time profile f(t). Then we get the Bloch-Torrey equation [26]:

∂M(r, t)
∂t

= −iγ r·q h(t)M(r, t)−M(r, t)
T2(r) −iγ r·g f(t)M(r, t)+∇·(D(r)∇M(r, t)),

where we included the effects of both the imaging gradient q and the diffusion gradi-
ent g. The last term in the above equation describes diffusion (random movement)
of water molecules.

1.3.1 Diffusion-encoding sequences

The diffusion-encoding happens via the application of a series of magnetic field
gradient “pulses”. The term “pulse” means that the magnetic field gradient is
turned on only for a short duration. For example, the standard Pulsed-Gradient
Spin Echo (PGSE) [27] sequence is made of two rectangular pulses of duration δ,
separated by a time interval ∆− δ, and the associated profile f(t) is:

f(t) =


1, t0 ≤ t ≤ t0 + δ,

−1, t0 + ∆ < t ≤ t0 + ∆ + δ,

0, elsewhere,
(1.3)

where t0 is the start of the first pulse with t0 + ∆ > TE/2, TE is the echo time
when the signal is measured. See Fig. 1.1. Note tht the opposite sign of the second
gradient pulse effectively accounts for the intermediate 180◦ rf pulse [1, 2].

11
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Figure 1.1: PGSE rectangle shaped profile, with t0 = 0.

If the rise time of the pulse is not instantaneous then f(t) has a trapezoidal profile:

f(t) =



t−t0
τ , t0 ≤ t ≤ t0 + τ,

1, t0 + τ < t ≤ t0 + δ − τ,
− t−t0−δ

τ , t0 + δ − τ < t ≤ t0 + δ,

− t−t0−∆
τ , t0 + ∆ < t ≤ t0 + ∆ + τ,

−1, t0 + ∆ + τ < t ≤ t0 + ∆ + δ − τ,
t−t0−(∆+δ)

τ , t0 + ∆ + δ − τ < t ≤ t0 + ∆ + δ,

0, otherwise,

(1.4)

where the rise time is τ . See Fig. 1.2.

Figure 1.2: PGSE trapezoidal shaped profile, with t0 = 0.

The oscillating gradient spin echo [28] (OGSE) sine sequence consists of two oscil-
lating sine pulses of duration σ, each containing n periods (hence the frequency is

12
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ω = n2π
σ ), separated by a time interval τ − σ, and the associated profile f(t) is:

f(t) =


sin (ω(t− t0)), t0 < t ≤ t0 + σ,

− sin (ω(t− t0 − τ)), τ + t0 < t ≤ t0 + τ + σ,

0, otherwise,
(1.5)

where τ = TE/2. See Fig. 1.3 for an example with n = 2.

Figure 1.3: OGSE sine profile, each pulse contains 2 periods, with t0 = 0.

1.3.2 Derivation of b-value

Under the assumption that water molecules experience a homogeneous (or homog-
enized) isotropic diffusion environment characterized by the diffusion coefficient
Dhom inside the voxel Vi,j,l, the water molecules at position r0 ∈ Vi,j,l at t0 diffuse
according to the probability density function:

P (r, t) =
exp

(
− ‖r−r0‖2

4Dhom(t−t0)
)

(
4πDhom(t− t0)

) d
2
, d = 3,

where the support of P (r, t) is much smaller than Vi,j,l because the diffusion distance
in a dMRI experiment is much smaller than the size of a voxel. (We have neglected
those r0 that are close to the boundary of Vi,j,l.)
Furthermore, under the assumption that δ � ∆ (the narrow pulse approximation),
the influence of the diffusion-encoding magnetic field gradient pulse on the com-
plex transverse magnetization due to water molecules starting at r0 at t0 can be
described by a gain of the complex phase e−iγg·r0 δ between t0 and t0 + δ. Then,
the magnetization due to water molecules at position r at t0 + ∆ gains a complex
phase eIγg·r δ between t0 + ∆ and t0 + ∆ + δ. Thus, the effect on the dMRI signal,
compared to having no diffusion gradient g, is an attenuation (loss) of the signal:∫

r∈Vi,j,l

exp
(
− ‖r−r0‖2

4Dhom∆
)

(
4πDhom∆

) d
2
eiγg·(r−r0) δ = exp(−γ2δ2‖g‖2Dhom∆),

13
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where the integration domain Vi,j,l was extended to the whole space R3.
If δ is not small compared to ∆, then in fact, the signal attenuation in the voxel
Vi,j,l still can be expressed in mono-exponential form [26]:

S(b, TE) = e−D
hom b,

where the b-value is a weighting factor as defined in [29] and it is

b(g, δ,∆) = γ2‖g‖2δ2 (∆− δ/3) , (1.6)

for the PGSE sequence. The replacement of ∆ by ∆− δ/3 accounts for pulses that
are not narrow.
Including the effect of the diffusion-encoding gradient means that the image contrast
function in Eq. (1.2) becomes:

µl(r1, r2) =
(∫ (l+ 1

2 )∆r3

(l− 1
2 )∆r3

ρ(r1, r2, r3) e−t/T2(r1,r2,r3)e−D
hom(r1,r2,r3) b dr3

)
. (1.7)

The basis of diffusion weighted imaging is that the MRI signal is acquired with a
diffusion gradient g as well as with no diffusion gradient. The first image (after
inverse Fourier transform) is divided by the second image and the log of the ratio is
divided by b get an estimate of Dhom(r1, r2, r3) in each voxel. This estimated value
is called the “Apparent Diffusion Coefficient” (ADC), and serves as the contrast
mechanism.
For simplicity, in the rest of the thesis, the effect of T2 relaxation will be neglected.
To focus on understanding the image contrast function in the physical domain, the
imaging gradients in Bloch-Torrey equation will also be neglected. Hence, for the
remainder of the thesis, we focus on the following simplified form of the Bloch-
Torrey equation:

∂M(r, t)
∂t

= −iγ r · g f(t)M(r, t) +∇ ·
(
D(r)∇M(r, t)

)
. (1.8)

The b-value for a general pulse sequence f(t) can be obtained by solving Eq. (1.8)
on a homogeneous domain and expressing its signal under mono-exponential form.
In [30], V.M. Kenkre et al. used the Fourier transform of M ,

M̂(k, t) =
∫ ∞
−∞

M(x, t) exp
(
−i k x

)
dx,

to obtain the signal in R:

S(t) = M̂

(
γ g

t∫
0

f(s) ds, 0
)

exp
(
−Dγ2g2

t∫
0

du
( t∫
u

f(s) ds
)2
)
. (1.9)

At the echo time TE, for any standard diffusion sequence, the rephasing condition
holds ∫ TE

0
f(t)dt = 0, (1.10)

14



1.4. Simple Gaussian signal model not adequate

so the pre-exponential factor in Eq. (1.9) becomes 1. The b-value is then

b(g) = γ2g2
TE∫
0

du

( TE∫
u

f(s) ds
)2

. (1.11)

To use the solution in Eq. (1.9) there are certain limitations on the initial spin
density, namely, its Fourier transform must exist.
The solution of Eq. (1.8) for uniform initial spin density can be found by the method
of separation of variables [31]. Supposing that the solution M can be written in
separable form:

M(x, t) = S(t) exp (iϕ(x, t)) ,

where the spin phase ϕ(x, t) defined by:

ϕ(x, t) = γ g · x
t∫

0

f(s) ds, (1.12)

we can obtain the signal at any time t > 0:

S(t) = S(0) exp
(
−Dγ2g2

∫ t

0
du

(∫ u

0
f(s)ds

)2
)
, (1.13)

where at the echo time TE, the b-value can be obtained:

b(g) = γ2g2
∫ TE

0
du

(∫ u

0
f(s)ds

)2
. (1.14)

We emphasize that although the formulas (1.11) and (1.14) are different, they co-
incide at the echo time TE where the rephasing condition (1.10) holds.
In the rest of the thesis, we will assume uniform initial spin density in each diffusion
compartment and use the expression (1.14) for the b-value. In particular, for the
trapezoidal PGSE [3]:

b(g, δ,∆) = γ2‖g‖2
[
(δ − τ)2

(
∆− δ − r

3

)
+ τ2

(
τ

5 −
δ

6

)]
. (1.15)

One can see that when the rise time τ becomes 0, the above expression reduces to
Eq. (1.6) of rectangular PGSE. For the sine OGSE in Eq. (1.5) with an integer
number of periods n in each of the two durations σ, the corresponding b-value is:

b(g) = γ2‖g‖2 3σ3

4n2π2 = γ2‖g‖2 3σ
ω2 . (1.16)

1.4 Simple Gaussian signal model not adequate

There is ample experimental evidence that diffusion in brain tissue at diffusion times
relevant to dMRI is not Gaussian: the signal attenuation is not a simple decaying
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exponential in b and the slope of logS(b) at b = 0 is not simply related to the
intrinsic diffusion coefficients of the physical compartments. The reason for this is
that in biological tissue, the diffusion environment seen by water molecules during
the time period of ∆ (tens of milliseconds) is not homogeneous due to the presence
of cells membranes and other heterogeneities. The dMRI signal has been fitted
as multiple compartmental Gaussian [32–35], or by including a kurtosis term to
quantify the non-Gaussianness [36, 37], or by fitting with fractional order diffusion
[38]. Although these phenomenological formulas may accurately fit experimental
data, their reliable interpretation requires further investigation based on theoretical
tools, numerical simulations, and tissue models.

1.5 Theoretical approaches in dMRI

In spite of significant efforts, theoretical understanding of diffusion MRI is still
far from complete. In what follows, we list a number of theoretical approaches
developed for dMRI (see [3] for details).

1. The first theoretical analysis of the dMRI signal for diffusion between parallel
planes (a plate) goes back to Robertson who used the Laplacian eigenfunc-
tions (for this shape, sines and cosines) to get an explicit Gaussian phase
approximation (GPA) for the signal [39]. It is equivalent to keeping the sec-
ond cumulant moment and neglecting the higher-order cumulant moments so
that the signal still exhibits the classical Gaussian dependence on the gradi-
ent, while the dependence on pulse duration and diffusion time through the
second cumulant becomes more intricate. Neuman has extended this analysis
to cylinder and sphere [40]. Later on, the Gaussian phase approximation has
been extensively used for the analysis of dMRI signals in a variety of struc-
tures (see [3]). In particular, the notion of an ADC relies, fundamentally, on
this approximation.

2. Tanner and Stejskal computed the dMRI signal in the simple structures in the
narrow pulse approximation (NPA) [41]. More generally, when the duration
of gradient pulses is infinitely short, the dMRI signal can be expressed as
the Fourier transform of the averaged diffusion propagator, from which some
properties of the geometrical structure can be inferred [1, 2]. The accuracy of
both approximations have been checked by numerical simulations [42–45].

3. Kärger introduced a model with two distinct pools of water molecules that
co-exist and both occupy the whole volume of a voxel, while the exchange
between pools was assumed to be uncorrelated from diffusion and to follow
the standard linear kinetics [46, 47]. This Kärger model has become one of
the major theoretical approximations to account for water exchange in the
dMRI (see below).

4. Mitra et al. investigated the short-time behavior of the dMRI signal and
showed the possibility to extract the surface-to-volume ratio, as well as per-
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meability or surface relaxivity of general porous media [48–51]. In particular,
Latour et al. measured the time-dependent diffusion coefficient in packed ery-
throcytes to estimate the erythrocyte membrane permeability and the surface-
to-volume ratio of the cells [52]. In the opposite long-time limit, the time-
dependent diffusion coefficient allowed one to determine the tortuosity of the
medium [53].

5. Callaghan and co-workers introduced the notion of diffusion diffraction that
can be used to determine the characteristic length scales of a medium accord-
ing to positions of diffraction peaks [54].

6. Stoller et al. analyzed the behavior of the dMRI at large gradients and de-
scribed the so-called localization regime [55]. This theoretical analysis has
been further developed in [3, 56, 57] and experimentally confirmed in [58].

7. Barzykin et al. considered an exchange through the spherical boundary with
the extra-cellular space [59, 60].

8. The Robertson’s idea of representing the dMRI signal onto the basis of Lapla-
cian eigenfunctions has led to development of matrix formalisms [3, 57, 61–66].
First proposed by Caprihan et al. in [61] and one year later reformulated by
Callaghan in a matrix form, this approach has become a power theoretical and
numerical tool for the analysis of dMRI signals (see the review and pedagogical
introduction in [3, 65, 66]). The explicit form of the Laplacian eigenfunctions
in simple structures makes the computation of the dMRI signal very accu-
rate and fast. The method is applicable to any diffusion-encoding sequences
(temporal profile) and arbitrary bounded domain. In spite of this generality,
matrix formalisms are most efficient for simple shapes (which include, e.g., a
class of multilayered structures [67]).

9. Cumulant expansion and kurtosis imaging modality has been actively devel-
oped [3, 37, 68, 69].

10. More recently, Novikov and Kiselev proposed an effective medium theory in
which spatial variations of the diffusion coefficient were related to correlation
functions of heterogeneities of a medium [70].

11. Novikov et al. studied the effect of spatial configurations of permeable mem-
branes onto the time-dependent diffusion coefficient [71] (see also [72]). The
use of a scattering approach and of the renormalization group solution al-
lowed to relate the long-time scaling behavior of the time-dependent diffusion
coefficient to the strong structural fluctuations introduced by permeable mem-
branes.

Some of these general approaches, as well as more specific models relevant to the
brain dMRI, will be discussed below.
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1.6 Numerical methods

In order to verify the above theoretical approaches or to compute the dMRI signal
in complicated structures, one needs to resort to numerical simulations. Roughly
speaking, numerical methods can be split into two groups:

1. Monte Carlo simulations. A probabilistic interpretation of diffusion equa-
tions is employed to represent the original continuous problem as the ex-
pectation of a functional of an appropriate stochastic process. Many random
trajectories of this process are then generated and used to approximate the ex-
pectation and thus the solution. Since there is no discretization, neither of the
domain, nor of boundary conditions, Monte Carlo techniques are flexible and
easy to implement, especially for studying diffusion in complex geometries.
These methods have also been often used in dMRI (e.g., Refs [42, 44, 45, 73–
79]).

2. Finite differences, finite elements, boundary elements, etc. A domain
and/or its boundary are discretized with a regular or adaptive mesh. The orig-
inal continuous problem (partial differential equation) is then replaced by a
set of linear equations to be solved numerically. The solution is obtained at all
mesh nodes at successive time moments. Since the accuracy and efficiency of
these deterministic numerical schemes significantly rely on the discretization,
mesh construction turns out to be the key issue and often a limiting factor,
especially in three dimensions. These methods have been frequently applied
for computing dMRI signals, e.g., [43, 80–84].

1.7 Moments of the dMRI signal

Theoretical analysis of the dMRI signal as a function of the b-value is difficult.
In the narrow pulse (NP) limit, δ � ∆, the following relationship between the
moments of the signal and the diffusion propagator can be derived.
Let P (r, t|r0) be the probability of finding water molecules originally at r0 (t = 0)
in position r at time t, then the signal in the NP limit is:

SNP (‖g‖δγ,∆) =
∫

r0∈R3

ρ(r0)
∫

r∈R3

e−i‖g‖δγ(r−r0)·ugP (r,∆|r0)dr dr0, (1.17)

where ug := g/‖g‖ is the normalized gradient direction, and ρ(r0) is the initial
density. We chose the independent variable in SNP to be ‖g‖δγ because the interior
integral over r0 and r in Eq. (1.17) can be seen as a one-dimensional Fourier
transform, with the Fourier variable being ‖g‖δγ and the spatial variable being
(r− r0) · ug:

SNP (‖g‖δγ,∆) =
∫
R

dk e−ik(‖g‖δγ)
[ ∫
r0∈R3

ρ(r0)
∫

r∈R3

δ̃(k−(r−r0)·ug)P (r,∆|r0)dr dr0

]
,
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where δ̃(x) is the Dirac distribution. This allows one to relate derivatives of the
Fourier transform and the moments of the original function:

i2n
d2nSNP

d (‖g‖δγ)2n (‖g‖δγ,∆) =
∫

r0∈R3

ρ(r0)
∫

r∈R3

e−igδγ(r−r0) ((r− r0) · ug)2n P (r,∆|r0)dr dr0.

In a dMRI experiment, the pulse sequence profile f(t) is most often fixed while g is
varied in amplitude, so we can treat ∆ as a constant and use the new independent
variable b = γ2‖g‖2δ2∆ to obtain:

dnSNP

d bn
(0,∆) = (−1)nn!

(2n)!
1

∆n

∫
r0∈R3

ρ(r0)
∫

r∈R3
((r− r0) · ug)2n P (r,∆|r0)dr dr0.

(1.18)
Thus in the narrow pulse limit, the derivatives of S give the moments of the proba-
bility density function P (r, t|r0), averaged over all starting positions r0. For general
pulse sequences, Eq. (1.18) is not exact.
In general, the first and second derivatives of S can be related to the Apparent
Diffusion Coefficient and the Apparent Diffusion Kurtosis [36, 37] computed in
dMRI:

ADC0 = −d logS
db

(0) = −dS
db

(0), (1.19)

ADK0 = 3d
2 logS
db2

(0)
(
d logS
db

(0)
)−2

= 3d
2S

db2
(0)
(
dS

db
(0)
)−2
− 3, (1.20)

where we denoted the quantities by ADC0 and ADK0, respectively, to emphasize
that the derivatives of logS(b) are taken at b = 0. The ADC0 gives an indica-
tion of the mean squared distance traveled by water molecules, averaged over all
the compartments, and ADK0 gives an indication of the deviation from Gaussian
diffusion.

1.8 Biological tissue dMRI

The signal measured by the MRI scanner is a mean-value measurement in a physical
volume, called a voxel, whose size is much larger than the scale of the microscopic
variations of the cellular structure. The resolution of dMRI is on the order of 1
mm3, meaning the dMRI signal combines the diffusion characteristics of a tissue
volume (voxel) of 1 mm3. This is very large compared to cell features, which vary
from sub-µm (diameter of neurites) to tens of µm (diameter of neuronal bodies,
axons and glial cells) in the brain (see for example, [85]). In other words, dMRI
provides the averaged characteristics of the microscopic structure on a macroscopic
scale. Another important spatial scale to consider for this work is the diffusion
distance, which gives an indication of the displacement of water molecules during
the measured diffusion time. At physically realistic dMRI diffusion times of 10-100
ms, the average diffusion distance is, assuming an average diffusivity of 10−3mm2/s,
between 8-25 µm. Thus, from the diffusion point of view, the cellular structure
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beyond tens of µm from the starting positions of water molecules do not alter their
displacements.
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Chapter 2

Voxel-level signal models
accounting for heterogeneous

domains

2.1 Diffusion models for brain tissue

One of the first analytical models of water diffusion in neural tissue was proposed
by Szafer et al. [86]. Modeling a tissue as a regular lattice of cylinders, they de-
rived approximate expressions for the apparent diffusion coefficients (ADCs) at long
times. Ford and Hackney have implemented a Monte Carlo simulation of water self-
diffusion among permeable cylindrical barriers to calculate the ADC in spinal cord
injury which takes into account the distribution of axon diameters, permeability
and relative axonal volume [80]. The numerical results indicated that both axonal
swelling and cell membrane permeability were important factors contributing to
ADC in traumatic spinal cord injury. Grant et al. reported an experimental ev-
idence of multicomponent diffusion in single neurons [87]. Clark and co-workers
studied experimentally the diffusion time dependence of the water diffusion ten-
sor in the range 8-80 ms and showed no evidence for a change in mean diffusivity,
fractional anisotropy, or in the eigenvalues with diffusion time in healthy human
brain [88]. They concluded that these findings were consistent with a model of
unrestricted, but hindered water diffusion with semi-permeable membranes, likely
originating from the extra-cellular space in which the average extra-cellular sepa-
ration is less than 7 micrometers. Hwang et al. developed a 3D finite difference
approximation of the diffusion equation on synthetic images of neuronal tissues [82].
By exploiting histologic images of neuronal tissues as input model, this method was
proposed to investigate the water diffusion behavior inside biological tissues and
potentially assessing the status of neural injury and regeneration. Assaf et al. con-
sidered infinitely long isolated cylinders to model brain white matter, with two con-
tributions to the dMRI signal coming from hindered diffusion outside cylinders and
restricted diffusion inside cylinders [89] (see also [90, 91]). Kroenke et al. explained
non-monoexponential dMRI signal decay by restricted diffusion in an ensemble of
differently oriented neuronal fibers [92]. Sen and Basser presented a simplified, but
self-consistent modeling framework for predicting the long-time apparent diffusion
coefficients of water parallel and perpendicular to a “pack” of identical thick-walled
(myelinated) cylindrical tubes (axons) arranged periodically in a regular lattice and
immersed in an outer medium [93]. The model of randomly oriented cylinders has
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also been applied for the quantitative analysis of dMRI in lungs [94]. Jespersen
et al. proposed a simplified model of neural cytoarchitecture intended to capture
the essential features important for water diffusion as measured by NMR [95] (see
also [96]). In their model, two contributions to the dMRI signal come from (i) the
dendrites and axons, which are modeled as infinitely long isolated cylinders with
two diffusion coefficients (parallel and perpendicular to the cylindrical axis), and
(ii) water diffusion within and across all other structures (i.e., in extra-cellular space
and glial cells), which is modeled as an isotropic monoexponential diffusion. This
model was confronted to dMRI measurements in a formalin-fixed baboon brain and
shown to be able to provide an estimate of dendrite density. The model predic-
tions of neurite density in rats have been successfully compared to optical myelin
staining intensity and stereological estimation of neurite volume fraction using elec-
tron microscopy [97]. Recently, water diffusion anisotropy measurements have been
directly related to characteristics of neuronal morphology [98]. Budde and Frank
introduced a biophysical model of neurite beading (i.e., focal enlargement and con-
striction) and showed that this mechanism was sufficient to substantially decrease
ADC and thus rationalize experimental findings after ischemic stroke [75]. Some
other theoretical models and concepts of brain dMRI have been reviewed in [99].

2.2 Some mathematical models

There are two spatial scales considered in this thesis, one is the microscopic (mi-
crometer) scale, at which cellular structures are resolved, and the other is the macro-
scopic scale, at which the cell features are averaged over the entire voxel. At the
microscopic scale, we assume that the true cell membranes are spatially neglected
(not resolved).
The microscopic model to be considered in this thesis is the Multiple Compartment
Bloch-Torrey partial differential equation (PDE) [60, 67], which is a generalization
of the Bloch-Torrey equation to heterogeneous domains. The domain of the Multiple
Compartments Bloch-Torrey PDE is a spatial volume on the order of a voxel that
contains the cells and the extra-cellular space. The unknown function of the PDE
represents the complex transverse water proton magnetization due to diffusion-
encoding magnetic field gradient pulses (T2 effects and the imaging gradients are
neglected). The dMRI signal of this PDE model is the integral of the solution of
the PDE over all spatial positions in the voxel at the echo time.
Concerning macroscopic models for the dMRI signal, some of the early ones are
Gaussian models, obtained in the limit of long diffusion time. If the diffusion time
is long enough that all the water molecules experience the same environment, the
macroscopic model is simply described by a single effective diffusion tensor. In the
presence of permeable cell membranes, various analytical formulas for the effective
diffusion tensor for special geometries such as cubes and spheres can be found in
[52, 100, 101]. For general cell shapes, while assuming no contiguous extra-cellular
space, an analytical formula for the effective diffusion tensor can be found in [71],
where the time dependence of the average diffusion distance is considered. In [102]
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the effective diffusion tensor for general cell shapes in the presence of a contiguous
extra-cellular space was formulated based on the solution of a set of Laplace PDEs.
Macroscopic models based on multiple compartment diffusion have also been formu-
lated. For example, in the no-exchange models [93, 95, 103], the cylindrical-shaped
neurites are separated from the surrounding space that form two compartments.
When there is no water exchange between these two compartments, the total dMRI
signal is just the sum of the signals from each of the compartments. We note that in
these no-exchange models, non-Gaussian diffusion can be allowed in each compart-
ment, and this flexibility can potentially result in the applicability of the models at
shorter diffusion times. However, the weakness of the no-exchange models is that
water is assumed to stay (mostly) in a single compartment during the diffusion time.
Even though no-exchange models may be appropriate for the brain white matter,
where the myelin layer around axons prevents significant water exchange between
the axons and the extra-cellular space, it is not clear if the water exchange can be
neglected in the gray matter, where the cell membranes are permeable.
There are two macroscopic models based on multiple diffusion compartments, where
diffusion within each compartment is considered Gaussian.
The first is the Kärger model [47], which was originally developed for micro-porous
crystallites. The Kärger model is obtained by supposing multiple Gaussian diffusion
compartments, each covering the whole space, and the spin exchange between the
compartments being described by standard first-order kinetics exchange. These
assumptions lead to a system of coupled ODEs that describes the time evolution
of the signals in the different compartments. The dMRI signal can be written
explicitly in terms of the model parameters because the ODE system has constant
coefficients. The Kärger model was obtained on the basis of phenomenological
modeling of the experimentally obtained signal curves and is valid under the narrow
pulse assumption, i.e., the duration of the gradient pulse should be short compared
to the diffusion time. The Kärger model has been checked in certain parameter
regimes by comparing its prediction with Monte Carlo simulations [73, 76, 104]. In
particular, Fieremans et al. discussed limitations of the Kärger model [76]. The
Kärger model has been used in biological tissue imaging [73, 105–112] to invert for
model parameters.
Recently, directly from the microscopic Bloch-Torrey PDE defined on a heteroge-
neous domain, a new macroscopic model for the dMRI signal was formulated [113]
using homogenization techniques [114], in particular, by matching asymptotic ex-
pansions of the solution of the Bloch-Torrey PDE in different spatial sub-domains
that are divided from each other by cell membranes. The compartments of this
macroscopic model are then associated to the biological cells and the extra-cellular
space. The dMRI signal is given by the solution of a system of coupled ODEs, sim-
ilar to the Kärger model, but the ODEs have time-dependent coefficients and the
solution needs to be obtained numerically. The main advantage of this new macro-
scopic model is that it is not subject to the narrow pulse restriction, in contrast
to the Kärger model. The gradient pulse can be long in duration and can have a
general temporal profile f(t). However, the new ODE model is subject to the other
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two limitations of the Kärger model, namely, the diffusion in each compartment
should be (approximately) Gaussian, and the exchange time scale is sufficiently dif-
ferent from the diffusion time scale to ensure linear kinetics exchange. See [76] for
a discussion of these two limitations for the Kärger model. The work of [113] can
be thought of as giving a sound mathematical basis to the Kärger model as well as
generalizing it beyond narrow pulse. This chapter aims to validate the ODE model
for some complex geometries.

2.3 The voxel

We will define simplified geometrical models of the brain tissue in a voxel, consisting
of spheres and long cylinders of various orientations embedded in the extra-cellular
space. The spheres represent the neuronal bodies and the glial cells, while the
cylinders represent the neurites. Since the intersection between the neuronal body
and the attached neurites has a small surface area, the exchange between them is
expected to be small, and will be ignored. For the justification of this geometrical
model we refer to [93, 97, 103]. In addition, for simplicity, we assume that the
extra-cellular space is connected so that we can consider it as a single diffusion
compartment.

2.3.1 Periodic extension of the voxel

Let V be the voxel to be simulated. We ignore the effect of the neighboring voxels
on V because the diffusion distance in our simulations, a few tens of µm, is much
smaller than the voxel size (on the order of 1 mm). This allows us to replace the
neighbors of V by the identical copies of itself. This periodic construction has
the advantage of simplifying the boundary conditions to put on the faces of V to
account for the spins that enter and exit V during the simulation time.

2.3.2 (Periodic) representative volume of the voxel

In order to compare the dMRI signal of the microscopic PDE model and the macro-
scopic models we choose a computational domain C that contains a representative
volume of V , the voxel to be simulated. In the three-dimensional simulations that
follow, due to computational limitations, C is much smaller than the voxel. We
will suppose that C is repeated in all three coordinate directions as many times as
necessary to make up V . In order to study long cylindrical cells in three dimensions,
we should construct the cylinders so that they are oriented in such a way that when
C is periodically repeated, the cylinders are not “broken” at the faces of C. Given
that V itself will be periodically repeated, we assume the periodic extension of the
cellular configuration in C as many times as necessary in our simulations.
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2.4 Microscopic multiple compartments Bloch-Torrey
PDE

The microscopic model for the dMRI signal is the multiple compartment Bloch-
Torrey PDE [26, 60]. In the following we do not include the dependence of the
dMRI signal on the imaging gradients and the T2 relaxation in order to simplify
the presentation. It would be easy to include the T2 term in the microscopic model
as well as in the macroscopic models but, as we will show in the numerical results
section, enough complexity is already present in our problem just from the presence
of the cellular membranes, without any T2 effects. For the same reason, we also
make the intrinsic diffusion coefficient the same in all the compartments, denoting
it by D0, the permeability the same on all the membranes, denoting it by κ, and
the spin density the same in all compartments.
Inside the computational domain C, there will be one extra-cellular compartment
Ωe, and sphere compartments, Ωsj , j = 1, · · · , where each Ωsj is a sphere, and the
cylinder compartments, Ωck , k = 1, · · · , where each Ωck is a (part of a long) cylinder.
The union of the compartments is the computational domain C =

⋃
l={e,{sj},{ck}}Ωl.

When C is periodically repeated, obviously, so are the Ωl’s. Finally, we note that
one could also have membrane compartments, consisting of a thick layer of space
around the surfaces of the cylinders and the spheres. For the macroscopic models to
be discussed later, we can also group all cells with similar diffusion characteristics
into a single compartment to simplify things. For example, if we do not want to
distinguish between spheres of different radii, then we can define the union of all
the spheres as one compartment in the macroscopic model. This redefinition makes
no difference for the microscopic PDE model since each sphere is always distinct
from the others but it is notationally convenient when we want to compare the PDE
model and the macroscopic models compartment by compartment.
The complex transverse water proton magnetizationM l(r, t|g) in each compartment
Ωl satisfies the Bloch-Torrey PDE [26]:

∂M l(r, t|g)
∂t

= −if(t)(γg · r)M l(r, t|g) +∇ · (D0∇M l(r, t|g)), ∀ l. (2.1)

We recall that the diffusion-encoding gradient is denoted by g = (g1, g2, g3) and
its time profile by f(t), i is the imaginary unit, γ = 2.675 · 108 rad/s/Tesla is the
gyromagnetic ratio of the water proton.
We supplement the PDE (2.1) with interface conditions where Ωl and Ωn come in
contact. We denote the interface between Ωl and Ωn by Γln. One interface condition
is the continuity of flux:

D0
(
∇M l(y, t|g) · nl(y)

)
= −D0 (∇Mn(y, t|g) · nn(y)) ,y ∈ Γln, (2.2)

where nl(y) and nn(y) are the outward-point normals to Ωl and Ωn at y, so in fact
nl(y) = −nn(y). The second interface condition,

D0
(
∇M l(y, t|g) · nl(y)

)
= κ

(
M l(y, t|g)−Mn(y, t|g)

)
,y ∈ Γln, (2.3)
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incorporates a permeability coefficient κ across Γln and models the ease with which
water crosses the interface [67]. The larger the κ, the easier the passage of water.
Now we add the initial condition:

M(r, 0|g) = M0, r ∈ Ωl, ∀ l, (2.4)

where we assumed the uniform excitation of the nuclei over the whole voxel, with
M0 being the initial magnetization. Then, same as [83], we assume that the com-
putational domain C = [−L1/2, L1/2]× [−L2/2, L2/2]× [−L3/2, L3/2] is extended
by periodic copies of itself. According to [83], the boundary conditions on ∂C are:

M(r, t|g)|rk=−Lk/2 = M(r, t|g)|rk=Lk/2 e
i θk(t), k = 1, 2, 3, (2.5)

∂M(r, t|g)
∂rk

∣∣∣∣
rk=−Lk/2

= ∂M(r, t|g)
∂rk

∣∣∣∣
rk=Lk/2

ei θk(t), k = 1, 2, 3, (2.6)

for each of the faces perpendicular to the three coordinate axes, where r = (r1, r2, r3)
and g = (g1, g2, g3), and

θk(t) = γ gk Lk

t∫
0

f(s) ds.

Thus, the complete mathematical problem of the microscopic multiple compartment
Bloch-Torrey PDE for a representative geometry contained in the computational
box C consists of the PDE (2.1), the interface conditions (2.2, 2.3), the initial
condition (2.4), and the boundary conditions (2.5, 2.6).

2.5 Compartment magnetizations

Now we define the compartment magnetization, denoted M l, of the PDE model, as
the integral of the magnetization in Ωl:

M
l
PDE(b, t) :=

∫
r∈Ωl

M l(r, t|g) dr, 0 ≤ t ≤ TE, (2.7)

where, following convention, the b-value is defined as:

b(g) = γ2‖g‖2
∫ TE

0
du

(∫ u

0
f(s)ds

)2
. (2.8)

The dMRI signal measured in experiments (without the imaging gradients and T2
effects) corresponds to

SPDE(b) :=
∑
l

M
l
PDE(b, TE) =

∑
l

∫
r∈Ωl

M l(r, TE|g) dr. (2.9)

Because C is assumed to be periodically repeated in the voxel V , it is sufficient to
take the above integrals of the magnetization over C only becase the signal is the
same as if the magnetization is taken over V (and correctly normalized).
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We note that the compartment magnetization M
l
PDE(b, t) defined in Eq. (2.7),

though cannot be directly measured by experiments, are meaningful mathematically
for all t ≤ TE and all l. By computing the compartment magnetizations we gain
insight about the time evolution of the magnetizations in the different compartments
and how they mix.
In a dMRI experiment, the TE and sequence f(t) are usually fixed while g is varied
in amplitude and/or in direction to obtain the signal at different b-values.
In the rest of the thesis, we will set the initial magnetization to M0 = 1

|C| , so that

SPDE(b = 0) = 1 and M l
PDE(b, t = 0) = |Ωl|

|C| := vl, where |Ωl| is the volume of Ωl,
|C| is the volume of the computational domain, and vl is the volume fraction of Ωl.
Then the signal SPDE(b) will be automatically normalized and it is also the signal
attenuation.

2.6 Kärger model

In the formulation of the Kärger model [47], one starts with a system of PDEs for
the concentration, ul(r, t), of water in P Gaussian diffusion compartments: l =
1, · · · , P . The governing equations for diffusion within and the exchange between
the compartments are:

∂u1(r, t)
∂t

= ∇D1∇u1(r, t)− u1(r, t)
w1 +

∑
l=2,··· ,P

ul(r, t)
τ1l ,

...
∂uP (r, t)

∂t
= ∇DP∇uP (r, t)− uP (r, t)

wP
+

∑
l=1,··· ,P−1

ul(r, t)
τPl

,

(2.10)

where r ∈ R3, τ lm is the residence time, and Dl is the effective diffusion coefficient
of compartment l. This formulation implies that each compartment covers all of
R3, i.e., all the compartments co-exist in the whole space. A physical foundation
for this consideration relies on coarse-graining (or homogenization) of the tissue
microstructure [76].
From the mass conservation, if we assume that the spin density is the same in all
the compartments, w1, · · · , wP satisfy:

1
wm

= 1
vm

P∑
l=1, l 6=m

vl

τml
, m = 1, · · · , P, (2.11)

where the volume fractions vl are normalized as

P∑
l=1

vl = 1. (2.12)
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The PDEs (2.10) are subject to initial conditions:

ul(r, 0) = vlδ̃(r), l = 1, · · · , P, (2.13)

where δ̃(r) is the Dirac delta distribution. We used the notation δ̃ to distinguish it
from the width of the gradient pulse δ in the PGSE sequence.

In the Kärger model, the compartment magnetization M
l
KAR(b, t), arising from

compartment l, under the narrow pulse approximation for the PGSE sequence,
δ � ∆, has the following form:

M
l
KAR(b, t) =

∫
r∈R3

eiδg·rul(r, t)dr. (2.14)

We note that the region of integration in Eq. (2.14) is R3. Taking the time derivative
of M l

KAR from Eq. (2.14) and using Green’s identity, one gets

dM
m
KAR(b, t)
dt

=−

δ2γ2gTDmg + 1
vm

P∑
l=1, l 6=m

vl

τml

Mm
KAR(b, t)

+
P∑

l=1, l 6=m

1
τml

M
l
KAR(b, t), m = 1, · · · , P.

(2.15)

It is a system of coupled ODEs, subject to the initial conditions:

M
l
KAR(b, 0) = vl, l = 1, · · · , P. (2.16)

The analytical solution of Eqs. (2.15) can be obtained by finding the eigen-decompo-
sition of the underlying P × P matrix.
For a standard sequence with two rectangular gradient pulses of duration δ, the
diffusion time is t = ∆− δ/3. For this reason, we evaluate the dMRI signal at this
time

SKAR(b) =
P∑
l=1

M
l
KAR(b,∆− δ/3), (2.17)

In the original Kärger model, the pulse duration δ was neglected and the signal
was evaluated at t = ∆. Keeping the term δ/3 improves the quality of the Kärger
model.

2.7 Macroscopic ODE model

The derivation of the macroscopic ODE model [113] starts with the multiple com-
partment Bloch-Torrey PDE (2.1–2.6) and uses periodic homogenization theory,
where the voxel was assumed to be a periodic repetition of a representative volume
C. Periodic homogenization theory was used because it is technically simpler than
the generic (non-periodic) case. The nature of the homogenized model depends on
the scaling chosen for the permeability coefficient with respect to the periodicity
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size. In [113] the scaling was chosen to provide a macroscopic ODE model that
is closest to the Kärger model. The resulting ODE model, being the limit, when
the size of biological cells tends to zero, of the signal of the microscopic model, is
expected to be an approximation of the microscopic PDE model at low membrane
permeability and long diffusion times.
Clearly, biological tissue is not periodic with any period. However, it is known in
some similar contexts (see, for instance, [115, 116] for the case of porous media)
that even for media that are not truly periodic, the homogenized limit obtained
in the periodic case remains formally relevant for describing generic (non-periodic)
cases, i.e., the obtained macroscopic equations for both configurations have the
same analytical form (only the exact values of the coefficients would change).
The macroscopic ODE model obtained in Ref. [113] governs the time evolution of
the compartment magnetizations defined in Eq. (2.7):

dM
m
ODE(b, t)
dt

=−

c(t)γ2gTDmg + 1
vm

P∑
l=1, l 6=m

vl

τmlODE

Mm
ODE(b, t)

+
P∑

l=1, l 6=m

1
τmlODE

M
l
ODE(b, t), m = 1, · · · , P,

(2.18)

where it was proven that if each Ωl ∈ C is connected, then the coefficient in row m
and column l of the ODE system, for all l 6= m, is:

1
τmlODE

:= κ
|Γml|
|Ωl|

, (2.19)

with the relationship:
τ lmODE
τmlODE

= |Ω
m|
|Ωl|

= vm

vl
, (2.20)

where |Γml| is the surface area of the interface between Ωm and Ωl.
We note here that Eq. (2.19) has been used as an estimate of the residence time in
the Kärger model. However, the derivation of the ODE model is only rigorous for
small permeabilities such that Eq. (2.19) holds. The validity of the ODE model,
at least as derived in [113], is not guaranteed if Eq. (2.19) does not hold. Thus, for
us, we take Eq. (2.19) as the definition of 1

τml
ODE

.

The mathematical derivation of the function c(t) from the full multiple compartment
Bloch-Torrey PDE can be found in [113]. Here we use a more intuitive derivation,
by looking at the ODE satisfied by the integral of the solution of the Bloch-Torrey
PDE in a homogeneous medium with the constant diffusion tensor D0. In [30] it
was shown for the general gradient time profile f(t), by the use of the Laplace
transform, the integral of the magnetization satisfies, at any time:

M
hom(b, t) :=

∫
R3
m(r, t|g)dr = exp

(
−gTD0gγ2

∫ t

0
du

(∫ u

0
f(s)ds

)2
)
, 0 ≤ t ≤ TE.
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We note that the above equation is valid for any t ≥ 0, not just at the echo time
TE. Then we define c(t) as:

c(t) :=
−∂M

hom(b,t)
∂t

gTD0gγ2M
hom(b, t)

=
(∫ t

0
f(s)ds

)2
, (2.21)

for any profile f(t).
For the rectangular pulsed gradient spin echo (PGSE) sequence in Eq. (1.3), Eq.
(2.21) implies

c(t) =


(t− t0)2, t0 ≤ t ≤ t0 + δ,

δ2, t0 + δ < t ≤ t0 + ∆,
(t− t0 −∆− δ)2, t0 + ∆ < t ≤ t0 + ∆ + δ.

(2.22)

See Fig. 2.1 for the shape of c(t). In the narrow pulse regime, δ � ∆, we can see
that Eq. (2.22) yields the coefficient δ2 of the Kärger model.

Figure 2.1: The function c(t) for the rectangular PGSE profile, with t0 = 0.

For the trapezoidal gradient shape in Eq. (1.4), it is easy to show that:

c(t) =



( (t−t0)2

2τ )2, t0 ≤ t ≤ t0 + τ,

((t− t0)− 1
2τ)2, t0 + τ < t ≤ t0 + δ − τ,

(− ((t−t0)−δ)2

2τ + δ − τ)2, t0 + δ − τ < t ≤ t0 + δ,

(δ − τ)2, t0 + δ < t ≤ t0 + ∆,
(− ((t−t0)−∆)2

2τ + δ − τ)2, t0 + ∆ < t ≤ t0 + ∆ + τ,

(−(t− t0)− 1
2τ + δ + ∆)2, t0 + ∆ + τ < t ≤ t0 + ∆ + δ − τ,

( ((t−t0)−δ−∆)2

2τ )2, t0 + ∆ + δ − τ < t ≤ t0 + ∆ + δ.

(2.23)

See Fig. 2.2 for the shape of c(t).
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Figure 2.2: The function c(t) for the trapzoidal PGSE profile, with t0 = 0.

For the oscillating sine profile in Eq. (1.5), one gets:

c(t) =


1
ω2 (cos(ω(t− t0))− 1)2, t0 < t ≤ t0 + σ,

1
ω2 (cos(ω(t− t0 − τ))− 1)2, τ + t0 < t ≤ t0 + τ + σ,

0, otherwise.

See Fig. 2.3 for the shape of c(t).

Figure 2.3: The function c(t) for OGSE sine profile, each pulse contains 2 periods, with
t0 = 0.

Now we move to the definitions of the effective diffusion tensors. This is a rather
delicate question because the effective diffusion tensors are much easier to define for
a voxel V that contains many copies of C than for a generic voxel. In the first case,
because all water molecules in V “see” only copies of C, and C is small compared to
the diffusion distance, then the steady-state values of the effective diffusion tensors
can be used. These steady-state quantities can be rigorously defined from the
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solution of three Laplace (state-state) PDEs in C where periodic conditions on
the faces of C are imposed. We will present these steady-state equations shortly.
However, if V is a generic voxel, or in other words, the representative volume C is on
the order of a voxel (hence, V is not periodic), it is not reasonable to suppose that
the steady-state values computed on C with periodic boundary conditions would
be achieved at diffusion times where the diffusion distance is much smaller than C.
In [113], it was shown that if we assume the periodic extension of C = [−L1/2, L1/2]×
[−L2/2, L2/2]× [−L3/2, L3/2] to the voxel where C is small compared to the diffu-
sion distance, the effective diffusion tensorsDm’s are quantities that can be obtained
after solving three steady-state Laplace PDEs. Specifically, for Ωm, it is

D
m
j,k = 1

vm

∫
Ωm

D(r)∇mj(r) · ek dr, j, k = 1, · · · , 3, (2.24)

where ek is the unit vector in the kth direction, and we have to solve 3 steady-state
Laplace equations over C for the unknown functions mj(r):

∇ ·
(
D0∇mj(r)

)
= 0, r ∈ Ωm, (2.25)

subject to impermeable boundary condition on ∂Ωm:

∇mj(y) · n(y) = 0, y ∈ ∂Ωm, (2.26)

and periodic boundary conditions on ∂C:

mj(r)|rk=−Lk/2 = mj(r)|rk=Lk/2 − δj,kLk, k = 1, · · · , 3, (2.27)
∂

∂rk
mj(r)

∣∣∣∣
rk=−Lk/2

= ∂

∂rk
mj(r)

∣∣∣∣
rk=Lk/2

, k = 1, · · · , 3, (2.28)

where δj,k = 1 if k = j, and δj,k = 0, otherwise. We emphasize that functions mj(r)
are independent of the permeability and diffusion gradient. As a consequence,

1. The permeability coefficient does not enter into the definition of Dm. In other
words, the analysis was done around the low permeability limit κ = 0.

2. Dm is a physical characteristic of the cellular geometry, it does not depend
on the diffusion gradient.

It is easy to show that if the periodic extension of Ωm is compact, namely, if Ωm is
a sphere compartment, then its effective diffusion tensor is 0:

D
m = 0. (2.29)

We account for long cylindrical cells by supposing the radius of the cylinder is small,
and setting its effective diffusion tensor to:

D
m = aD0aT , (2.30)
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where a is the normalized (‖a‖ = 1) vector parallel to the axis of the cylinder. We
will construct the computational domain C so that when it is periodically repeated,
the Ωm that corresponds to a cylinder becomes infinitely long along its longitudinal
direction. We note that the expressions (2.19, 2.29, 2.30) have been used in previous
works (for example, in [76]) for the Kärger model.
The initial condition of the ODE model is the same as for the Kärger model, namely,
Eq. (2.16), and the dMRI signal for the ODE model is

SODE(b) =
P∑
l=1

M
l
ODE(b, TE). (2.31)

2.8 Limiting cases

Finally, we note that if there is no exchange (κ = 0) between any of the compart-
ments, the macroscopic dMRI signal is

SNOEX(b) =
P∑

m=1
vm exp

(
−gTDmg
‖g‖2 b

)
, (2.32)

where diffusion is each compartment is still considered as Gaussian. If the exchange
between the compartments are infinitely fast (κ =∞), then the dMRI signal is:

SFASTEX(b) = exp
(
−
(

P∑
m=1

vm
gTDmg
‖g‖2

)
b

)
. (2.33)

The Kärger model and the ODE model are formulated to explain the intermediate
exchange regime that falls between the two extreme cases in Eqs. (2.32, 2.33).
One important property of both the Kärger model and the ODE model is that the
ADC0 is independent of time and of κ:

ADCKAR0 = ADCODE0 = ADCFASTEX0 = ADCNOEX0 =
P∑

m=1
vm

gTDmg
‖g‖2 . (2.34)

Thus, two necessary conditions for the applicability of these macroscopic models
are: (i) the diffusion time should be long enough that the measured ADC0 does not
change (much) with time, and (ii) the cell membrane permeability κ should be low
enough that it does not affect (much) the ADC0.
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Chapter 3

Numerical study of two
macroscopic dMRI signal

models

3.1 Method

We solved the multiple compartment Bloch-Torrey PDE in the computational do-
main C containing different cellular configurations using the finite elements method
described in [84]. We generated the finite elements mesh in the computational do-
main C using the mesh generation platform Salome (http://www.salome-platform.org/).
The computational domain C was chosen to contain a configuration of spheres and
cylinders. The angles of the cylinders were chosen so that when C is periodically
repeated, the cylinders become infinitely long. In the simulations, the extra-cellular
fractions were between 0.31 and 0.51, higher than in brain tissue. Due to compu-
tational limitations of the three-dimensional simulations, C will be much smaller
than a voxel. In all cases, the cellular configurations were constructed so that at the
diffusion times simulated, all the diffusion compartments are (close to) Gaussian.
We set the intrinsic diffusion coefficient in all the compartments to be D0 = 3 ×
10−3mm2/s. The initial magnetization was set to 1

|C| for all the compartments to
normalize the dMRI signals to 1 at b = 0. For simplicity, for both the rectangular
and trapezoidal PGSE sequences, we set t0 = 0 and TE to be immediately after
the diffusion-encoding sequence.
We computed the dMRI signal at 20 b-values between 0 and 4000s/mm2. We will
compare the following 5 models of the dMRI signal:

1. “PDE”: The (microscopic) multiple compartment Bloch-Torrey PDE.

2. “ODE”: The (macroscopic) ODE model.

3. “KAR”: The (macroscopic) Kärger model.

4. “NO EX”: The (macroscopic) No Exchange signal.

5. “FAST EX”: The (macroscopic) Fast Exchange signal.

The signals will be labeled as the above in the figures. We will also plot the compart-
ment magnetizations, M l

PDE(b, t), M l
ODE(b, t) and M

l
KAR(b, t), for the different

compartments as a function of time.
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The simulations were performed on a Dell PRECISION M4700 workstation (In-
tel(R) Core(TM)i7 CPU 3740QM@2.70GB). The solution of the microscopic Bloch-
Torrey PDE took between 4 seconds to 37 minutes, per b-value, depending on the
complexity of the cellular configuration and timing for gradient profile. The mem-
ory usage was between 28Mbytes to 409Mbytes. Table 3.1 shows the details of
simulation time and memory usage. The ODE model was solved using the Matlab
(home built) command “ode45”. The solution of the ODE took a few seconds per
b-value. The memory usage was negligible.

Domain Memory (MB) Computational time
δ = ∆ = 5ms δ = ∆ = 40ms

1 Sphere 36 15 seconds 38 seconds
76 spheres 409 15 minutes 37 minutes

Slanted parallel cylinders 36 15 seconds 37 seconds
3-compartments cylinder 28 4 seconds 10 seconds

Cylinders + spheres 227 8 minutes 22 minutes

Table 3.1: Memory usage and average computational time per b-value to solve the Bloch-
Torrey PDE.

3.2 Numerical study

In this section, we will first illustrate the properties of the ODE model on a simple
cellular configuration where C contains a single sphere as we vary the gradient pulse
shape, the diffusion time, the cell permeability, and the cell radius. Then we put
more complex three-dimensional cellular configurations inside C where C has side
lengths varying between 5− 15µm.
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3.2.1 Periodic lattice of spheres

We study the properties of the ODE model using a simple geometry of a periodic
lattice of spheres. The computational domain is C = [−2.5µm, 2.5µm]3. Inside C
we placed one sphere of radius Rs = 2.45µm. The finite elements mesh for C is
shown in Fig. 3.2(a). The gradient direction is g = [1, 0, 0].
This domain contains two compartments: the extra-cellular compartment Ωe and
the sphere compartment Ωs. The corresponding volume fractions are ve = 0.51 and
vs = 0.49. The surface area between the two compartments is |Γse| = 75µm2. The
effective diffusion coefficient of Ωs is Ds = 0 because the sphere is compact. We
computed the effective diffusion tensor of Ωe according to Eq. (2.24) to be:

De =

 2.32 0.00 0.00
0.00 2.32 0.00
0.00 0.00 2.32

× 10−3mm2/s.

We remind that the effective diffusion tensor describes the asymptotic behavior at
(infinitely) long times.

3.2.1.1 Residence time

Now we verify the analytical formula of the residence time in Eq. (2.19) for the
periodic lattice of spheres (Fig. 3.2(a)) by solving the Bloch-Torrey PDE with zero
gradient, g = 0, in other words, the diffusion equation, to obtain the compartment
magnetizations M e

PDE(0, t) and M s
PDE(0, t) at different times: t ∈ [0, 20]ms. If the

compartment magnetizations can be approximated by an ODE model of the form
given in (2.18), then necessarily:

dM
e
PDE(0, t)
dt

≈− 1
τ se

M
e
PDE(0, t) + 1

τ es
M

s
PDE(0, t),

dM
s
PDE(0, t)
dt

≈− 1
τ es

M
s
PDE(0, t) + 1

τ se
M

e
PDE(0, t).

(3.1)

Using the relation (2.20), we can obtain the best fit τ es at t:

τ esfit(t) :=
ve

vsM
e
PDE(0, t)−M s

PDE(0, t)
dM

s
P DE(0,t)
dt

. (3.2)

To prevent the denominator of (3.2) from being zero, we choose an initial condition
for the Bloch-Torrey PDE that is not the equilibrium solution. For example, setting

M(r, 0|g) = 1, r ∈ Ωs, (3.3)
M(r, 0|g) = 0, r ∈ Ωe, (3.4)

would suffice.
Now we compare the analytical approximation τ es in Eq. (2.19) with τ esfit(t) in
Eq. (3.2). We solved the PDE using the intrinsic diffusion coefficient D0 = 3 ×
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10−3mm2/s and two different values of permeability: κ = 1×10−5m/s (Fig. 3.1(a))
and κ = 1 × 10−4m/s (Fig. 3.1(b)), corresponding to two values of the residence
time: τ es = 81ms and τ es = 8.1ms, respectively. One can see on both Fig. 3.1(a)
and Fig. 3.1(b) that τ esfit(t) is a constant for t ∈ [0, 20]ms. At the lower permeability
κ = 1 × 10−5m/s, τ esfit(t) is very close to τ es. At the higher permeability κ =
1×10−4m/s, there is a small difference between τ esfit(t) and τ es, the relative difference
being about 4%.

(a) κ = 1 × 10−5m/s. (b) κ = 1 × 10−4m/s.

Figure 3.1: Verification for the residence time τes at two permeabilities (a) κ = 1 ×
10−5m/s, (b) κ = 1× 10−4m/s.

3.2.1.2 Compartment magnetization

We set the cell permeability to κ = 10−5m/s. Applying a PGSE sequence with
δ = 40ms, ∆ = 40ms, we see that the SODE(b) is very close to SPDE(b), whereas
SKAR(b) is further away (Fig. 3.2(b)). We also show the compartment magnetiza-
tions in Ωe and Ωs from t = 0ms to t = 80ms at b = 2000s/mm2 (Fig. 3.2(c) and
Fig. 3.2(d)). We see thatM e

ODE(2000, t) andM s
ODE(2000, t) follow the time evolu-

tion ofM e
PDE(2000, t) andM s

PDE(2000, t), whereas the Kärger model compartment
magnetizations M e

KAR(2000, t) and M s
KAR(2000, t) do not.

Next we apply a gradient sequence with two trapezoidal pulses, each pulse lasting
40ms. See Fig. 3.3(a) for the profile of f(t). Figure 3.3(c) presents the dMRI
signals, SPDE(b) and SODE(b), while Fig. 3.3(e) shows the sum of the compartment
magnetizations,M e

PDE(2000, t)+M s
PDE(2000, t),M e

ODE(2000, t)+M s
ODE(2000, t),

as a function of time, at b = 2000s/mm2. Then we apply a gradient sequence with
four trapezoidal pulses, each pulse lasting 20 ms. See Fig. 3.3(b) for the profile of
f(t), while the signal and compartment magnetizations are shown in Fig. 3.3(d)
and Fig. 3.3(f), respectively. These results for κ10−5m/s (relatively slow exchange)
indicate that the ODE model correctly reproduces the time evolution of the water
proton magnetization in different compartments over the entire time course of the
gradient sequence, even for complicated gradient shapes.
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(a) Finite elements mesh of C. (b) S(b).

(c) Me(2000, t). (d) Ms(2000, t).

Figure 3.2: (a) Finite elements mesh of C; (b) DMRI signals: SP DE(b), SODE(b),
SNOEX(b), SF AST EX(b); (c) Compartment magnetization in the extra-cellular compart-
ment at b = 2000s/mm2: Me

P DE(2000, t), Me

ODE(2000, t); (d) Compartment magnetiza-
tion in the sphere at b = 2000s/mm2: Ms

P DE(2000, t), Ms

ODE(2000, t). Cell radius 2.45µm,
κ = 10−5m/s. PGSE sequence with δ = ∆ = 40ms.

We also apply a gradient sequence of OGSE sine without gap time between two
pulses and with one period in each pulse, each period lasting 40ms. See Fig.
3.4(a) for the profile of f(t). Figure 3.4(c) presents the dMRI signals, SPDE(b)
and SODE(b), while Fig. 3.4(e) shows the sum of the compartment magnetiza-
tions, M e

PDE(2000, t) + M
s
PDE(2000, t), M e

ODE(2000, t) + M
s
ODE(2000, t), at b =

2000s/mm2. Then we also apply a gradient sequence of OGSE sine with two pe-
riods in each pulse, each period lasting 20 ms. See Fig. 3.3(b) for the profile of
f(t). Figures 3.3(d) and 3.3(f) show similar results to that of trapezoidal shape
sequences.
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(a) Trapezoidal profile (b) Repeated trapezoidal profile

(c) S(b) (d) S(b)

(e) Me(2000, t) +M
s(2000, t). (f) Me(2000, t) +M

s(2000, t).

Figure 3.3: The domain is a periodic lattice of spheres, Rs = 2.45µm, κ = 10−5m/s. Top:
the gradient profiles: (a) two pulses δ = ∆ = 40ms, τ = δ/3, (b) four pulses δ = ∆ =
20ms, τ = δ/3. Middle: the dMRI signal, SP DE(b), SODE(b), as a function of b-value.
Bottom: the sums of the compartment magnetizations Me

P DE(2000, t) + M
s

P DE(2000, t),
M

e

ODE(2000, t) +M
s

ODE(2000, t), as a function of time at b = 2000s/mm2.
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(a) OGSE sine profile: 1 period in each pulse. (b) OGSE sine profile: 2 periods in each pulse.

(c) S(b). (d) S(b).

(e) Me(2000, t) +M
s(2000, t). (f) Me(2000, t) +M

s(2000, t).

Figure 3.4: The domain is a periodic lattice of spheres, Rs = 2.45µm, κ = 10−5m/s. Top:
the gradient profiles. Middle: the dMRI signal, SP DE(b), SODE(b), SKAR(b), as a func-
tion of b-value. Bottom: the sums of the compartment magnetizations Me

P DE(2000, t) +
M

s

P DE(2000, t), Me

ODE(2000, t) +M
s

ODE(2000, t) as a function of time at b = 2000s/mm2.
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3.2.1.3 Diffusion time

Now we consider the convergence of the ODE model to the PDE model. Comparing
a short diffusion time PGSE sequence with δ = ∆ = 10ms (Fig. 3.5(a)) to a long
diffusion time PGSE sequence with δ = ∆ = 40ms (Fig. 3.5(b)), we see that
SODE(b) becomes closer to SPDE(b) as the diffusion time increases.

(a) PGSE, δ = 10ms, ∆ = 10ms.

(b) PGSE, δ = 40ms, ∆ = 40ms.

Figure 3.5: The domain is a periodic lattice of spheres, Rs = 2.45µm, κ = 10−5m/s.
SODE(b) is closer to SP DE(b) for longer diffusion time.
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3.2.1.4 Membrane permeability

Next, we consider the effect of membrane permeability. Figure 3.6 shows SPDE(b)
and SODE(b) of the spherical cell domain for different permeabilities: κ = 10−5m/s,
κ = 2.5×10−5m/s, κ = 5×10−5m/s, with two PGSE sequences: δ = ∆ = 10ms and
δ = ∆ = 80ms. We can see that at lower permeabilities (Fig. 3.6(a) and 3.6(b)),
SODE(b) is closer to SPDE(b) for longer diffusion time. In contrast, at higher
permeability (Fig. 3.6(c)), the distance between SODE(b) and SPDE(b) does not
become smaller. This is expected because of stronger mixing between compartments
at higher permeabilities.

(a) κ = 1 × 10−5m/s.

(b) κ = 2.5 × 10−5m/s. (c) κ = 5 × 10−5m/s.

Figure 3.6: The domain is a periodic lattice of spheres, Rs = 2.45µm. The gradient
sequence is PGSE with δ = 10ms, ∆ = 10ms and δ = 80ms, ∆ = 80ms. The accuracy of
the ODE model (as compared to the PDE model) improves as the diffusion time increases,
if the permeability is low.
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3.2.1.5 Cell size

Now we double the radius of the sphere to Rs = 4.9µm as well as double the size
of the computational domain, to C = [−5µm, 5µm]3. This keeps the same volume
fractions, ve = 0.51, vs = 0.49, but halves the surface-to-volume ratio. For this
domain, we computed

De =

 2.32 0.00 0.00
0.00 2.32 0.00
0.00 0.00 2.32

× 10−3.

This is exactly the same as the De of the domain with Rs = 2.45µm, computed
previously.
We set κ = 10−5m/s and show that the ODE model is less accurate for the domain
with Rs = 4.9µm (Fig. 3.7(b)) compared to the domain with Rs = 2.45µm (Fig.
3.7(a)). The gradient sequences are PGSE, with δ = ∆ = 40ms and δ = ∆ = 80ms.
This can be explained by the fact that at Rs = 4.9µm, the diffusion distance for
water molecules inside the spheres is not yet zero in the range of times consid-
ered. To illustrate this argument, we computed the time-dependent ADC0 for each
compartment by setting κ = 0m/s and solving the Bloch-Torrey PDE for many
PGSE sequences, with δ = 1ms, and ∆ varying from 10ms to 160ms. We show the
ADC0 as a function of ∆ for water inside Ωe (Fig. 3.7(c)). The ADC0 approaches
the steady-state value of 2.32 × 10−3mm2/s quickly for both sphere radii. On the
other hand, if we consider water inside the sphere, Ωs, we see in Fig. 3.7(d) that
the ADC0 for Rs = 2.45µm is much closer to its theoretical steady-state value of
D
s = 0 than that for Rs = 4.9µm, on [0ms, 160ms], the range of diffusion times

considered. This means that when Rs = 4.9µm, the average diffusion distance for
water molecules inside the sphere still varies a lot as a function of time and Ωs

cannot be considered a Gaussian diffusion compartment.
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(a) Rs = 2.45µm, κ = 10−5m/s. (b) Rs = 4.9µm, κ = 10−5m/s.

(c) ADC0 in Ωe, κ = 0m/s, δ = 1ms. (d) ADC0 in Ωs, κ = 0m/s, δ = 1ms.

Figure 3.7: Two periodic lattices of spheres, with Rs = 2.45µm and Rs = 4.9µm, κ =
10−5m/s. SP DE(b) and SODE(b) for the PGSE sequence with δ = ∆ = 40ms and δ =
∆ = 80ms are shown in (a) and (b). Setting κ = 0m/s, we also computed the ADC0
corresponding to many PGSE sequences, with δ = 1ms, and ∆ varying from 10ms to 160ms,
for the extra-cellular space Ωe (c) and for the intra-cellular space Ωs (d). One can see that
while the extra-cellular space Ωe can be considered a Gaussian diffusion compartment for
both sphere sizes (look at the scale of the y-axis), the sphere compartment Ωs cannot
be considered a Gaussian diffusion compartment when R = 4.9µm because the ADC0 is
changing a lot with diffusion time on [0ms, 160ms].

3.2.2 Simulation on complex geometries

3.2.2.1 Domain containing spheres of various sizes

We constructed the domain shown in Fig. 3.8(a) containing 76 spherical cells with
a range of radii between 0.6− 2.55µm. The spheres were put randomly in the com-
putational domain is C = [−5µm, 5µm]3 in a way to ensure no overlap. Formally,
one has 76 different spherical compartments, each with its volume fraction and
surface-to-volume ratio. However, it is convenient to combine 76 spheres to form
a single compartment Ωs. The extra-cellular space forms the second compartment
Ωe. The corresponding volume fractions are vs = 0.65 and ve = 0.35. The surface
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Chapter 3. Numerical study of two macroscopic dMRI signal models

to volume ratio is |Γse|/|Ωs| = 1.85µm−1. Here we assume that |Γse|/|Ωs| gives a
good approximation of the average surface-to-volume ratios of all the 76 spheres.
The approximation is exact when all the spheres have the same radii. In the domain
shown in Fig. 3.8(a), each sphere is compact, effective diffusion tensor for each of
them can be considered as 0 from Eq. (2.29), and this consideration holds for their
joint intra-cellular compartment. We also computed De by solving Eq. (2.24):

De =

 2.20 0.00 0.00
0.00 2.25 0.00
0.00 0.00 2.24

× 10−3mm2/s.

We see in Fig. 3.8(b) that using two-compartment ODE model still gives a good
approximation to the signal of the full PDE if we use the average surface-to-volume
ratio of the 76 spheres.

(a) Finite elements mesh of C. (b) DMRI signals.

Figure 3.8: (a) The computational domain C = [−5µm, 5µm]3 contains 76 spheres with
radii 0.6 − 2.55µm. The volume fractions of the spheres and of the extra-cellular space
are vs = 0.65 and ve = 0.35, respectively. The membrane permeability is set to κ =
10−5m/s. (b) The dMRI signals: SP DE(b), SODE(b), SKAR(b), SNOEX(b), SF AST EX(b).
The gradient sequence is PGSE with δ = ∆ = 25ms.

3.2.2.2 Domain containing parallel cylinders

In order to test whether the ODE model works properly for anisotropic diffusion,
we construct a domain containing slanted cylinders that all lie parallel to the x−y-
plane, make an angle π/3 with the x-axis, and have the radius Rc = 2.35µm (Fig.
3.9(a)). The computational domain is C = [−2.89, 2.89]× [−2.5, 2.5]× [−5, 5]µm3.
This domain is split into two compartments: the compartment Ωc of all the cylinders
(with vc = 0.69), and the extra-cellular space Ωe (with ve = 0.31). The volumes
and surface areas are |Ωe| = 91µm3, |Ωc| = 198µm3, and |Γce| = 170µm2. We
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computed from Eq. (2.30):

Dc =

 0.75 0.00 1.30
0.00 0.00 0.00
1.30 0.00 2.25

× 10−3mm2/s,

and from Eq. (2.24):

De =

 1.88 0.00 0.65
0.00 2.52 0.00
0.65 0.00 2.63

× 10−3mm2/s.

We set κ = 10−5m/s and δ = ∆ = 80ms for the PGSE sequence. Three gradient
directions (parallel, perpendicular and 45 degrees from axes of the cylinders) are
considered. We show in Fig. 3.9(b) that SPDE(b) and SODE(b) are close in all three
gradient directions.

(a) Left: mesh of C. Right: periodic extension.

(b) DMRI signals.

Figure 3.9: In (a), left: finite elements mesh of C = [−2.89, 2.89]×[−2.5, 2.5]×[−5, 5]µm3,
right: when periodically extended, the cylinders are infinitely long. In (b): SP DE(b) and
SODE(b) when κ = 10−5m/s. The gradient directions are g1 = (0.5, 0, 0.87) and g2 =
(0.87, 0,−0.5), correspondingly parallel and perpendicular to the axis of cylinders, and
g3 = (0.97, 0, 0.26), lying in the middle of g1 and g2. The sequence is PGSE, with δ = ∆ =
80ms.
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3.2.2.3 Domain containing cylinders with thick membrane layer

Next, we constructed a domain with a cell membrane compartment (Fig. 3.10(a)).
The computational domain C = [−2.75, 2.75]2 × [−0.5, 0.5]µm3 contains a cylinder
(Rc = 2.0µm) with a thick membrane (thickness h = 0.45µm) outside it. We
consider C to be made up of three compartments: the extra-cellular space Ωe

(|Ωe| = 11.5µm3), the membrane compartment Ωm (|Ωm| = 6.3µm3), and the
cylinder compartment Ωc (|Ωc| = 12.5µm3), with the corresponding interfaces Γem
(|Γem| = 15.4µm2) and Γmc (|Γmc| = 12.5µm2) (|Γec| = 0, obviously). We know D

c

and Dm from Eqs. (2.30, 2.29). We also computed

De =

 1.70 0.00 0.00
0.00 1.70 0.00
0.00 0.00 3.00

× 10−3mm2/s.

We would like to know whether the membrane compartment can be detected in the
dMRI signal. For this purpose, we construct a second computational domain C,
with two compartments: a combined cylinder and membrane compartment, Ωm+c,
with infinite permeability between Ωm and Ωc (|Ωm+c| = 18.8µm3), and the same
extra-cellular compartment Ωe as for the three-compartment domain. In the two-
compartment domain, there is only one surface Γe(m+c) (|Γe(m+c)| = 15.4µm2).
For permeability κme = 10−5m/s, Fig. 3.10(b) shows SPDE(b) and SODE(b) in the
gradient direction perpendicular with the cylinder axis for both domains. SPDE(b)
and SODE(b) are close to each other in both cases. The difference between the
signals from the two domains can be seen in Fig. 3.10(b) but it is not clear whether
the difference is large enough to be useful in detecting the membrane compartment
in experimental settings.

(a) Two and three compartment do-
mains.

(b) DMRI signals.

Figure 3.10: C = [−2.75, 2.75]2 × [−0.5, 0.5]µm3, cylinder radius Rc = 2.0µm, membrane
thickness h = 0.45µm. In (a), finite elements meshes, left: two-compartment domain (Ωe

and Ωc+m), right: three-compartment domain (Ωe and Ωc and Ωm). In (b). SP DE(b)
and SODE(b) of the three-compartment domain and the two-compartment domain, with
κ = 10−5m/s, subject to PGSE δ = ∆ = 80ms, in the gradient direction g = (1, 0, 0),
perpendicular with the axis of cylinder.
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3.2.2.4 Domain containing cylinders of different orientations and spheres

Finally, we constructed a domain of 5 layers of cylinders lying parallel to the x− y
plane and 4 layers of spherical cells all embedded in the extra-cellular space, see
Fig 3.11(a). The five layers of cylindrical cells contain parallel cylinders that are
oriented at 0, 26.5, 45, 63.5 and 90 degrees, respectively, from the x-axis (cylinder
radius Rc = 1.0µm). The 4 layers of 16 spherical cells (sphere radius Rs = 1.375µm)
are inserted between the 5 layers of cylindrical cells. When the spheres overlapped
with cylinders, the latter have been (slightly) deformed. This deformation allowed
to reduce the volume fraction of the extra-cellular space. Note also that some
spheres and cylinders have joint interfaces. Although the cylinders were slighlty
deformed, we could still use Eq. (2.30) for computing the effective diffusion tensor.
In summary, we consider this domain to have 7 compartments: the extra-cellular
space (Ωe), the compartment of the 4 layers of 16 spherical cells (Ωs), and 5 com-
partments consisting of the cylinders with the same orientation (Ωc1 , · · · ,Ωc5). In
each layer of cylinders, the orientations of the cylinders are the same. One can note
that the compartment combination for spheres can be done similarly to previous
examples because of their compact shapes. On the other hand, despite of having
very similar shapes and surface-over-volume ratios, the effective diffusion tensors of
5 layers of cylinders are not the same. So their compartment combination is not
applicable, and one need to consider each layer separately.
For the 7 compartments, the volumes are: |Ωe| = 383µm3, |Ωs| = 167µm3, |Ωc1 | =
46µm3, |Ωc2 | = 47µm3, |Ωc3 | = 55µm3, |Ωc4 | = 47µm3 and |Ωc5 | = 46µm3. The
surface areas are: |Γes| = 291µm2, |Γec1 | = 93µm2, |Γec2 | = 85µm2, |Γec3 | =
98µm2, |Γec4 | = 85µm2, |Γec5 | = 93µm2, |Γsc1 | = 0, |Γsc2 | = 21µm2, |Γsc3 | =
37µm2, |Γsc4 | = 21µm2, |Γsc5 | = 0. The cellular permeability for both cylinders and
spheres is set to κ = 10−5m/s. The computational domain is C = [−3.75, 3.75] ×
[−7.03, 7.03] × [−3.75, 3.75]µm3. The computed effective extra-cellular diffusion
tensor is:

De =

 2.29 0.00 0.11
0.00 2.05 0.00
0.11 0.00 2.29

× 10−3mm2/s.

We computed SPDE(b) and SODE(b) in three gradient directions: g1 = (1, 0, 0),
g2 = (1, 0, 1), and g3 = (1, 1, 1), for the PGSE sequence with δ = ∆ = 40ms. Figure
3.11(b) shows that the ODE and the PDE signals are almost indistinguishable.
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(a) Finite elements mesh of C.

(b) DMRI signals

Figure 3.11: (a) Finite elements mesh of C containing 5 layers of cylinders and 4 layers of
spheres. In each layer, the cylinders have the same orientation. (b) SP DE(b) and SODE(b).
The cell membrane permeability is κ = 10−5m/s. The gradient directions are g1 = (1, 0, 0),
g2 = (1, 0, 1), and g3 = (1, 1, 1). The pulse sequence is PGSE, with δ = ∆ = 40ms.
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3.3 Discussion

We have shown by the numerical simulations that if the voxel is made up of spatial
sub-domains that are separated from each other by low permeability membranes
and if diffusion in the sub-domains are (close to) Gaussian (i.e., the condition of
good equilibration in each compartment is satisfied), then the macroscopic ODE
model of the dMRI signal (and the Kärger model, if the gradient profile is narrow
pulse) is a good approximation to the microscopic Bloch-Torrey PDE model. How-
ever, for a generic voxel, spatial variations within the diffusion compartments are
expected on the length scale of the voxel. For example, we would expect that the
effective diffusion tensor of the tortuous extra-cellular space would not, in general,
be constant over the entire voxel, exhibiting spatial variations on smaller length
scales. However, the insight gained by the ODE model can still be important. In
[113] the ODE model was derived by explicitly taking into account the discontinu-
ity in the magnetization across the cell membranes and using different expansions
of the PDE solution in each compartment, matching them via the interface con-
ditions. A way to formulate better macroscopic models for “realistic” tissues is to
account for the “smooth” spatial variations in the diffusivity within each compart-
ment, for example, by expanding around a mean effective diffusivity as was done
in [70]. However, this expansion should not be taken for the entire voxel because
the magnetization is sharply varying in a large portion of the voxel, i.e., on the
biological cell membranes.

3.4 Conclusions

A macroscopic ODE model governing the time evolution of the integrals of the wa-
ter proton magnetization in compartments defined as spatial sub-domains of the
imaging voxel was recently formulated from the microscopic heterogeneous domain
Bloch-Torrey PDE. We conducted a numerical validation of this ODE model for
complex geometries containing spheres and cylinders of various sizes and orienta-
tions. We illustrated by numerical simulations that this new ODE model was a
good approximation to the dMRI signal of the full PDE model for general gradient
pulse shapes when the diffusion in all the compartments is approximately Gaussian
and the mutual exchange between them is slow. When the narrow gradient pulse
assumption is not satisfied, the ODE model offers a much better approximation
of the full PDE signal than the Kärger model. More work remains to be done to
improve the macroscopic models to make them applicable to brain dMRI.
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Chapter 4

Parameters estimation using
macroscopic dMRI signal

models

In diffusion MRI, water motion inside a biological tissue is monitored in order to
characterize the tissue microstructure at micrometer-order length scales. Varying
gradients and diffusion times, one acquires the macroscopic signal which aggregates
statistically averaged information about the domain at the millimeter scale. Infer-
ring the microstructure from the macroscopic signal is a formidable inverse problem.
In spite of considerable research over the last 50 years, this problem remains very
poorly understood (see [3] and the bibliography in Chapter 1).
The complexity of brain tissue does not allow the extraction of the whole microstruc-
ture. In turn, one focuses on estimating some effective parameters of the tissue
whose changes can afterwards be related to physiological or pathological modifi-
cations. Among such effective parameters, one often considers volume fractions of
the intra-cellular and extra-cellular spaces (which may change during cell swelling),
membrane permeability (which may characterize, to some extent, normal or abnor-
mal functioning of cells), average size of cells, as well as effective diffusion coeffi-
cients. In this chapter, we consider the parameters estimation problem by using
macroscopic dMRI signal models.
Instead of experimental data we will use synthetically generated data. This will
allow us to clarify some relations between the microstructure and the dMRI signals,
and to check the influence of various parameters on the stability and the quality of
the parameters estimation.
In the first step, we choose a model microstructure and produce synthetic dMRI
signals by solving numerically the microscopic Bloch-Torrey equation on this do-
main at a set of b-values. This signal is considered as an input to the parameters
estimation problem. In the second step, we fit this signal at the set of b-values
using the macroscopic Kärger and the ODE models to extract model parameters.
If there are P compartments, the full set of macroscopic model parameters are:

• the volume fractions of the compartments: {vm}1≤m≤P ;

• the effective diffusion coefficients in a prescribed gradient direction g that we
define as: {Dm

g = ug
TD

mug}1≤m≤P ;

• the residence time for molecules in the compartment l before exchanging to
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the compartment m:
{τml}1≤l,m≤P, l 6=m, where τml ≡ 1

κ
|Ωl|
|Γml| ;

We label this full set of model parameters by:

Ufull ≡
{
vm, Dm

g , τ
lm
}

1≤l,m≤P, l 6=m
.

In practice, we solved the least squares problems to be explained below for the
parameters 1

τ lm instead of τ lm, but for the ease of notation, we will list τ lm as the
searched-for parameter, instead of, more correctly, its reciprocal.
The total number of parameters in Ufull is

Zfull ≡
∣∣∣Ufull∣∣∣ = 2P + P (P − 1)/2− 1.

For example:

P = 2→ Zfull = 4,
P = 3→ Zfull = 8,
P = 4→ Zfull = 13.

If one needs the full effective diffusion tensors Dm
,m = 1, · · · , P instead of just the

effective diffusion coefficients in a given direction, Dm
g ,m = 1, · · · , P , then there

would be an additional 5P parameters.
Because of the high number of model parameters as the number of compartments
increases, for some problems, we will consider the parameters estimation problem
under the simplifying assumption that a subset of Ufull is known. In this case, we
will specify the subset of parameters to be estimated, U , and the set of parameters
whose values will be set to known values: Uknown. Together, they make the full set
of macroscopic model parameters:

Ufull = Uknown ∪ U .

For the set of parameters to be estimated, U , to define the parameter estimation
problem, we denote the ODE signal by

SODE(b,Uknown,U),

and the Kärger signal by
SKAR(b,Uknown,U).

In the following, we will suppose that the dMRI signal is “exactly” the output of the
Bloch-Torrey PDE: SPDE(b), and the macroscopic parameters of the heterogeneous
domain of the PDE model to be the “true” ones, labelled Ufulltrue.
Even if we use the true parameters, there will be modeling errors associated with
approximating SPDE(b) by SODE(bk,Ufulltrue, ∅) or SKAR(bk,Ufulltrue, ∅). We denote the
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relative difference between the signals of the PDE model and the ODE and Kärger
models using the true macroscopic parameters by:

RmodODE ≡

√√√√ 1
nb

nb∑
k=1

∣∣∣∣∣SPDE(bk)− SODE(bk,Ufulltrue, ∅)
SPDE(bk)

∣∣∣∣∣
2

, (4.1)

and

RmodKAR ≡

√√√√ 1
nb

nb∑
k=1

∣∣∣∣∣SPDE(bk)− SKAR(bk,Ufulltrue, ∅)
SPDE(bk)

∣∣∣∣∣
2

, (4.2)

where nb is the number of b-values. The above expressions can be considered resid-
uals of the functionals.
In addition, we assume that there will be experimental noise:

(SPDE)noi (b) = SPDE(b) +N (b). (4.3)

For simplicity we will only consider Gaussian noise. More precisely, for each b-value,
we add directly a random Gaussian variable with mean 0 and standard deviation
σ:

N (b) = Nb(0, σ2). (4.4)

4.1 The least squares problem

The least squares problems we solve are the following:

min
U

nb∑
k=1

∣∣∣∣∣SPDE(bk) +N (bk)− SODE(bk,Uknown,U)
SPDE(bk) +N (bk)

∣∣∣∣∣
2

(4.5)

or

min
U

nb∑
k=1

∣∣∣∣∣SPDE(bk) +N (bk)− SKAR(bk,Uknown,U)
SPDE(bk) +N (bk)

∣∣∣∣∣
2

. (4.6)

Here one aims to minimize the relative difference between numerical points and
fitting function, instead of the absolute difference. This choice allows one to “equi-
librate” contributions from large signals at small b-values and from small signal at
large b-values. Other functionals can also be considered.
Two inherent constraints on the model parameters are already given in Eq. (2.20)
and Eq. (2.12). Physical arguments imply the other constraints:

τ lm

τml
= vm

vl
,

P∑
l=1

vl = 1,

0 < Dm
g ≤ D0, ∀‖g‖ = 1, if Ωm is not compact,

D
m = 0, if Ωm is compact,

0 ≤ vm ≤ 1,
0 ≤ τ lm.

(4.7)
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We set the following limits on the data in order to solve the parameter estimation
problem:

0 < bk ≤ 4000(s/mm2),
0.1 < SPDE(bk),

for all k. We will use the notation

UminODE

and
UminKAR

for the solution of the minimalization problems in Eq. (4.5) and Eq. (4.6), respec-
tively.
We denote the residuals of the minimalization problems for a parameter set U by

RODE(U) ≡

√√√√ 1
nb

nb∑
k=1

∣∣∣∣∣SPDE(bk) +N (bk)− SODE(bk,Uknown,U)
SPDE(bk) +N (bk)

∣∣∣∣∣
2

(4.8)

and

RKAR(U) ≡

√√√√ 1
nb

nb∑
k=1

∣∣∣∣∣SPDE(bk) +N (bk)− SKAR(bk,Uknown,U)
SPDE(bk) +N (bk)

∣∣∣∣∣
2

. (4.9)

The residuals of the least squares solutions will therefore be RODE(UminODE) and
RKAR(UminODE).
In summary, we use the following procedure to solve the least square problem:

Algorithm 1 Algorithm of parameter estimations using macroscopic models
1: Solve the Bloch-Torrey equation Eq. (2.1) with interface condition in Eqs. (2.2,

2.3) and boundary conditions (2.5, 2.6), and get the signal attenuation SPDE(bk)
at b = b1, · · · , bnb

.
2: Solve the least squares problems (4.5) and (4.6) with constraints (4.7) (and

additional constraints if exist); we used the Matlab function lsqnonlin, in which
both the residual and the estimated parameters tolerances were set at 10−12.

3: Solve the system of ODEs to obtain SODE(bk,Uknown,U) for each bk; in Matlab
we set the tolerance for the home built function ode45 to 10−8.

Unless otherwise noted, the default number of b-values used is nb = 20, with

b = [0, 50, 100, 200, 300, 500, 750, 1000, 1250, 1500, 1750,
2000, 2250, 2500, 2750, 3000, 3250, 3500, 3750, 4000]× s/mm2.

(4.10)
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4.2 Domain containing periodic lattice of spheres of the
same size

First we consider a simple domain of a periodic lattice of spheres of the same size
(see Fig. 3.2(a) for the computational domain C). There are two compartments:
the extra-cellular compartment Ωe and the spherical cells compartment Ωs. The
cell radius is Rs, the inter-cell distance is L. The cellular volume fraction is vs. In
this section, we consider the signal attenuation without noise, i.e, N (bk) = 0, k =
1, · · · , nb in Eq. (4.5) and Eq. (4.6).

4.2.1 Least squares problem on a 3-parameters set

We solve the least squares problems in Eq. (4.5) and Eq. (4.6) for the following set
of three macroscopic model parameters:

U =
{
vs, De

g, τ
es
}
,

where τ es ≡ |Ωs|
κ|Γes| . Because the sphere is compact, we consider the effective long-

time diffusion coefficient of Ωs to be Ds = 0, which means:

Uknown = {Ds
g = 0}.

The constraints from Eq. (4.7) are:

τ es

τ se
= vs

ve
,

ve + vs = 1,
0 < De

g ≤ D0,

Ds
g = 0, because Ωs is compact,

0 ≤ vm ≤ 1,
0 ≤ τ es.

(4.11)

The signal data at 20 b-value from 0 to 4000s/mm2 (listed previously) are obtained
by solving the Bloch-Torrey PDE for the PGSE sequence: δ = ∆ = 40ms in
gradient direction g = [1, 0, 0]. We also note that diffusion on this domain could be
considered as isotropic. The cell radius is Rs = 2.45µm, the inter-cell distance is L =
5µm, which corresponds to the cell volume fraction vs = 0.49. The intrinsic diffusion
coefficient is D0 = 3 × 10−3mm2/s. An intermediate membrane permeability of
κ = 10−5m/s was chosen. The true model parameters are:

Utrue =
{
vs = 0.49, De

g = 2.32× 10−3mm2/s, τ es = 81ms
}
.

The initial guess of the least squares problem is:

U0 =
{
cv,

D0

2 , cτ
τ estrueτ

se
true

2(τ estrue + τ setrue)
= 1.2× 10−5cτ

}
,
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where cv is a random number (of a uniform distribution) between 0 and 1, cτ is
between 0.1 and 10. For this domain, we did not see any difference of parameter
estimation results when cv and cτ are varied.
We present UminODE and UminKAR in Table 4.1. Because δ = ∆ = 40ms does not satisfy
the narrow pulse assumption, the Kärger model is not a good approximation of the
full PDE model, whereas the ODE model is a better approximation. The modeling
errors are RmodODE = 2.6% and RmodKAR = 14.0%, respectively. We see UminODE is close to
Utrue for all three estimated parameters, whereas UminKAR is not a good approximation
of Utrue. In particular, the SKAR(b,Uknown,U) and the SODE(b,Uknown,U) have a
larger ADK0 than SPDE(b) (see Fig. 3.2(b)), leading to the under-estimation of τ es:
τ esKAR = 33ms < τ esODE = 70ms < τ estrue = 81ms. The residuals of the least squares
solutions are RODE(UminODE) = 0.02% and RKAR(UminKAR) = 0.2%, respectively.
Then we set κ = 5× 10−5m/s and show the results in the second row of Table 4.1.
We see the modeling errors have increased significantly in this higher permeability
case: RmodODE = 11.7% and RmodKAR = 41.0%. However, the results of parameter
estimation UminODE are still good in comparison to Utrue, especially for vs and τ es.
But from the results of UminKAR, one can see that parameter estimation using Kärger
model does not work well.

κ - PGSE Parameter U true UminODE UminKAR

κ = 1× 10−5m/s
δ = 40ms
∆ = 40ms

vs 0.49 0.50 0.56
τ es (ms) 81 70 33

De
g (×10−3mm2/s) 2.32 2.38 3.00

R(Umin) 0.1% 0.5%
Rmod 2.6% 14.0%

κ = 5× 10−5m/s
δ = 40ms
∆ = 40ms

vs 0.49 0.47 0.57
τ es (ms) 16 15 8

De
g (×10−3mm2/s) 2.32 2.44 2.83

R(Umin) 0.02% 0.3%
Rmod 11.7% 41.0%

Table 4.1: Results of parameter estimations for the domain containing periodic lattice of
spherical cells (Fig. 3.2(a)), Rs = 2.45µm, L = 5µm. PGSE sequence with δ = ∆ = 40ms
in gradient direction g = [1, 0, 0] with D0 = 3× 10−3mm2/s.

4.2.2 Contour plots of 2-parameters sets

Now we study the sensitivity of the solution of the least squares problems with
respect to the various macroscopic model parameters. For this purpose, we use
contour plots of RODE(U) and RKAR(U) as we move in U parameter space.
On the contour plots, we study two parameters at a time, leaving the remaining
parameters at their known values. First we set

U =
{
vs, De

g

}
, Uknown = {τ es = τ estrue}, (4.12)
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where τ estrue = 81ms and make plots of RODE(U) and RKAR(U) in the first row of
Fig. 4.1. Three specific points of interest on the contour plots are:

1. Utrue = {vs = 0.49, De
g = 2.32× 10−3mm2/s};

2. UminODE = {vs = 0.47, De
g = 2.23× 10−3mm2/s};

3. UminKAR = {vs = 0.40, De
g = 1.85× 10−3mm2/s}.

We note the values of UminODE and UminKAR above are slightly different from the values
given in Table 4.1 because we set τ es to a known value and only minimize on a
2-parameters set.
We see in Fig. 4.1(a) that UminODE is close to Utrue and in Fig. 4.1(b) that UminKAR is
far from Utrue.
Now we set

U = {vs, τ es} , Uknown =
{
De

g =
(
De

g

)
true

}
, (4.13)

where
(
De

g

)
true

= 2.3× 10−3mm2/s and make plots of RODE(U) and RKAR(U) in
the second row of Fig. 4.1. Three specific points of interest on the contour plots
are:

1. Utrue = {vs = 0.49, τ es = 81ms};

2. UminODE = {vs = 0.48, τ es = 74ms};

3. UminKAR = {vs = 0.50, τ es = 41ms}.

We see in Fig. 4.1(c) that both estimated parameters of UminODE are close to Utrue
and in Fig. 4.1(d) that the estimated τ es of UminKAR is far from Utrue.
Next we study the effect on the parameters estimation problem of various geomet-
rical properties and signal acquisition choices. In detail, one by one, we will study
the effect of permeability, diffusion time, range and number of b-values and cell size.
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(a) ODE model. (b) Kärger model.

(c) ODE model. (d) Kärger model.

Figure 4.1: Contour plots of the residuals RODE(U) and RKAR(U). First τes is fixed
at the true value, while

{
vs, De

g
}
are estimated (a,b). Then De

g is fixed at the true value,
while {vs, τes} are estimated (c,d). PGSE with δ = ∆ = 40ms, nb = 20.
Rmod: (a,c) 2.6%, (b,d) 14%;
RODE(Umin

ODE)): (a,b) 0.5%, (c,d) 0.2%; RKAR(Umin
KAR): (a,b) 1.6%, (c,d) 0.6%.

4.2.3 Effect of permeability

First we study the effect of membrane permeability on the parameters estimation
problem for the ODE model only.
We show in Fig. 4.2 the contour plots of U for the two choices of 2-parameters sets
defined in Eq. (4.12) and Eq. (4.13) for κ = 1 × 10−5m/s and κ = 5 × 10−5m/s.
With κ = 5 × 10−5m/s, specific points of interest on the contour plots for first
2-parameters set on Fig. 4.2(b) are:

• Utrue = {vs = 0.49, De
g = 2.32× 10−3mm2/s};

• UminODE = {0.41, 2.15× 10−3mm2/s}; UminKAR = {0.30, 1.96× 10−3mm2/s};

and for second 2-parameters set on Fig. 4.2(d) are:
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• Utrue = {vs = 0.49, τ es = 16ms};

• UminODE = {0.44, 16ms}; UminKAR = {0.44, 10ms}.

We can see that at higher permeability, the contours of unknowns tend to stretch
out, which can cause problems in solving the least squares problem in Eq. (4.5).

(a) κ = 1 × 10−5m/s. (b) κ = 5 × 10−5m/s.

(c) κ = 1 × 10−5m/s. (d) κ = 5 × 10−5m/s.

Figure 4.2: Contour plot of ODE model. Periodic lattice of spheres, cell radius Rs =
2.45µm, inter-cell distance L = 5µm. PGSE sequence: δ = 40ms, ∆ = 40ms, nb = 20.
Rmod: (a,c) 2.6%, (b,d) 11.7%;
RODE(Umin

ODE): (a) 0.5%, (b) 0.4%, (c) 0.2% (d) 1.1%;
RKAR(Umin

KAR): (a) 1.6%, (b) 6.1%, (c) 0.6% (d) 1.9%.
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4.2.4 Effect of diffusion time

Now we study the effect of diffusion time on the parameters estimation problem for
the ODE and Kärger models by changing times δ and ∆ of the PGSE sequence.
We use the following three sequences:

1. short diffusion time: δ = 10ms, ∆ = 10ms;

2. long diffusion time in the narrow-pulse regime: δ = 10ms, ∆ = 70ms;

3. long diffusion time beyond the narrow-pulse regime: δ = ∆ = 40ms.

One can see in Fig. 4.3 the contour plots for the choice of the 2-parameters set
defined in Eq. (4.12). At the short diffusion time δ = 10ms, ∆ = 10ms, both UminODE

and UminKAR are far from Utrue with specific points for two 2-parameter sets:

1. Figures 4.3(a) and 4.3(b): Utrue = {vs = 0.49, De
g = 2.32× 10−3mm2/s};

UminODE = {0.43, 1.92× 10−3mm2/s}; UminKAR = {0.41, 1.77× 10−3mm2/s};

2. Figures 4.4(a) and 4.4(b): Utrue = {vs = 0.49, τ es = 16ms};
UminODE = {0.52, 28ms}; UminKAR = {0.52, 16ms};

At the long diffusion time in the narrow-pulse regime δ = 10ms, ∆ = 70ms, both
UminODE and UminKAR are close to Utrue for both two 2-parameter sets:

1. Figures 4.3(c) and 4.3(d): Utrue = {vs = 0.49, De
g = 2.32× 10−3mm2/s};

UminODE = {0.47, 2.22× 10−3mm2/s}; UminKAR = {0.46, 2.22× 10−3mm2/s}.

2. Figures 4.4(c) and 4.4(d): Utrue = {vs = 0.49, τ es = 16ms};
UminODE = {0.48, 77ms}; UminKAR = {0.48, 76ms}.

Finally, at the long diffusion time beyond the narrow-pulse regime δ = ∆ = 40ms,
as discussed above, UminODE is close to Utrue whereas UminKAR is far from Utrue. One can
see in Fig. 4.4 the contour plots for the choice of the 2-parameters set defined in
Eq. (4.13) and the conclusions are similar.

62



4.2. Domain containing periodic lattice of spheres of the same size

(a) ODE model, PGSE δ = 10ms, ∆ = 10ms. (b) Kärger model, PGSE δ = 10ms, ∆ = 10ms.

(c) ODE model, PGSE δ = 10ms, ∆ = 70ms. (d) Kärger model, PGSE δ = 10ms, ∆ = 70ms.

(e) ODE model, PGSE δ = 40ms, ∆ = 40ms. (f) Kärger model, PGSE δ = 40ms, ∆ = 40ms.

Figure 4.3: Contour plot of ODE model and Kärger model. Periodic lattice of spheres,
cell radius Rs = 2.45µm, inter-cell distance L = 5µm. PGSE sequence, nb = 20.
Rmod: (a) 8.4%, (b) 11.6%, (c) 2.4%, (d) 2.8% , (e) 2.6%, (f) 14%;
RODE(Umin

ODE): (a,b) 2.3%, (c,d) 0.3%, (e,f) 0.5%;
RKAR(Umin

KAR): (a,b) 2.5%, (c,d) 0.3%, (e,f) 1.6%.
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(a) ODE model, PGSE δ = 10ms, ∆ = 10ms (b) Kärger model, PGSE δ = 10ms, ∆ = 10ms.

(c) ODE model, PGSE δ = 10ms, ∆ = 70ms. (d) Kärger model, PGSE δ = 10ms, ∆ = 70ms.

(e) ODE model, PGSE δ = 40ms, ∆ = 40ms. (f) Kärger model, PGSE δ = 40ms, ∆ = 40ms.

Figure 4.4: Contour plot of ODE model and Kärger model. Periodic lattice of spheres,
cell radius Rs = 2.45µm, inter-cell distance L = 5µm. PGSE sequence, nb = 20.
Rmod: (a) 8.4%, (b) 11.6%, (c) 2.4%, (d) 2.8% , (e) 2.6%, (f) 14%;
RODE(Umin

ODE): (a,b) 1.2%, (c,d) 0.2%, (e,f) 0.2%;
RKAR(Umin

KAR): (a,b) 1.5%, (c,d) 0.2%, (e,f) 0.6%.
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4.2.5 Effects of b-values

Here we consider the effect of the choice of the number and magnitude of the b-values
which are used to fit the signal.
First, we keep the same number of b-values nb = 20 but use different ranges for
them:

1. [0, 1000s/mm2]:
b = [0, 20, 50, 100, 150, 200, 250, 300, 350, 400, 450,

500, 550, 600, 650, 700, 750, 800, 900, 1000]× s/mm2.

2. [0, 2000s/mm2]:
b = [0, 100, 200, 300, 400, 500, 600, 700, 800, 900, 1000,

1100, 1200, 1300, 1400, 1500, 1600, 1700, 1800, 2000]× s/mm2.

3. [0, 4000s/mm2]: see Eq. (4.10).

Figure 4.5 shows the contour plots for the two choices of 2-parameters sets defined
in Eq. (4.12) and Eq. (4.13). The specific points for two 2-parameter sets of range
[0, 1000s/mm2]:

1. Figure 4.5(a): Utrue = {vs = 0.49, De
g = 2.32× 10−3mm2/s};

UminODE = {0.48, 2.31× 10−3mm2/s}; UminKAR = {0.43, 2.11× 10−3mm2/s}.

2. Figure 4.5(b): Utrue = {vs = 0.49, τ es = 81ms};
UminODE = {0.48, 86ms}; UminKAR = {0.48, 53ms}.

and range [0, 2000s/mm2]:

1. Figure 4.5(c): Utrue = {vs = 0.49, De
g = 2.32× 10−3mm2/s};

UminODE = {0.48, 2.31× 10−3mm2/s}; UminKAR = {0.42, 2.04× 10−3mm2/s}.

2. Figure 4.5(d): Utrue = {vs = 0.49, τ es = 81ms};
UminODE = {0.48, 74ms}; UminKAR = {0.48, 47ms}.

One can see that although the estimations UminODE for all three ranges are close to each
other and close to Utrue, smaller range of b-value tends to stretch out the contour
plot at every level, which means the parameters estimation problem is more difficult
to solve.
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(a) b-values in [0, 1000s/mm2]. (b) b-values in [0, 1000s/mm2].

(c) b-values in [0, 2000s/mm2]. (d) b-values in [0, 2000s/mm2].

(e) b-values in [0, 4000s/mm2]. (f) b-values in [0, 4000s/mm2].

Figure 4.5: Domain containing periodic lattice of spheres shown in Fig. 3.2(a), cell
radius 2.45µm, cell distance 5µm, contour plot of ODE model with PGSE profile δ =
40ms, ∆ = 40ms, nb = 20 b-values in range (a) [0, 1000s/mm2], (b) [0, 2000s/mm2], (c)
[0, 1000s/mm2].
Rmod: (a,b) 0.8%, (c,d) 1.5%, (e,f) 2.6%;
RODE(Umin

ODE): (a) 0.1%, (b) 0.1%, (c) 0.1%, (d) 0.2% , (e) 0.5%, (f) 0.2%;
RKAR(Umin

KAR): (a) 0.1%, (b) 0.1%, (c) 0.4%, (d) 0.3% , (e) 1.6%, (f) 0.6%.
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Next we fix the range of b-values to [0, 4000s/mm2] and use different numbers of
b-values:

1. nb = 10:
b = [0, 250, 500, 1000, 1500, 2000, 2500, 3000, 3500, 4000]× s/mm2.

2. nb = 20: see Eq. (4.10).

3. nb = 40:
b = [0, 20, 50, 100, 200, 300, 400, 500, 600, 700, 800, 900, 1000, 1100, 1200, 1300,

1400, 1500, 1600, 1700, 1800, 1900, 2000, 2100, 2200, 2300, 2400, 2500,
2600, 2700, 2800, 2900, 3000, 3100, 3200, 3300, 3400, 3600, 3800, 4000]× s/mm2.

On Fig. 4.6, the specific points for two 2-parameter sets of nb = 10:

1. Figure 4.6(a): Utrue = {vs = 0.49, De
g = 2.32× 10−3mm2/s};

UminODE = {0.47, 2.23× 10−3mm2/s}; UminKAR = {0.40, 1.85× 10−3mm2/s}.

2. Figure 4.6(b): Utrue = {vs = 0.49, τ es = 81ms};
UminODE = {0.48, 74ms}; UminKAR = {0.50, 41ms}.

and nb = 40:

1. Figure 4.6(e): Utrue = {vs = 0.49, De
g = 2.32× 10−3mm2/s};

UminODE = {0.47, 2.23× 10−3mm2/s}; UminKAR = {0.40, 1.85× 10−3mm2/s}.

2. Figure 4.6(f): Utrue = {vs = 0.49, τ es = 81ms};
UminODE = {0.48, 74ms}; UminKAR = {0.50, 41ms}.

Despite of using different numbers of b-values, not only the UminODE for different nb
are close to each other and close to Utrue, but their contour plots are also very
similar for both choices of 2-parameters sets. This shows that for the signal without
noise, the number of b-values which cover a fixed range has a small effect on the
ODE and Kärger models parameter estimations.
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(a) nb = 10. (b) nb = 10.

(c) nb = 20. (d) nb = 20.

(e) nb = 40. (f) nb = 40.

Figure 4.6: Domain containing periodic lattice of spheres in shown Fig. 3.2(a), cell radius
2.45µm, cell distance 5µm, contour plot of ODE model with PGSE profile δ = 40ms,
∆ = 40ms, fixed range b-value in [0, 4000s/mm2] with different numbers (a) nb = 10 (b)
nb = 20 (c) nb = 40.
Rmod: (a,b) 2.2%, (c,d) 2.6%, (e,f) 2.4%;
RODE(Umin

ODE): (a) 0.4%, (b) 0.2%, (c) 0.5%, (d) 0.2% , (e) 0.4%, (f) 0.2%;
RKAR(Umin

KAR): (a) 1.4%, (b) 0.6%, (c) 1.6%, (d) 0.6% , (e) 1.5%, (f) 0.6%.

68



4.2. Domain containing periodic lattice of spheres of the same size

4.2.6 Effects of cell size

Here we study the effect of cell size on the ODE model parameters estimation.
In details, we compare two sizes of cells:

1. cell radius Rs = 2.45µm with cell distance L = 5µm;

2. cell radius Rs = 4.9µm with cell distance L = 10µm.

This choice makes both computational domains to have the same volume fraction of
the spherical cells compartment vs = 0.49 and also preserves the effective diffusion
coefficient of the extra-cellular compartment: De

g = 2.32 × 10−3. (We will discuss
in detail the relationship between vs and De

g in Sect. 4.7.) In turn, the domain
containing the spherical cells Rs = 4.9µm with cell distance L = 10µm with double
geometrical length gives double residence time: τ es = 162ms. In summary, for
Rs = 4.9µm and L = 10µm, the true 3-parameters set is:

Utrue =
{
vs = 0.49, De

g = 2.32× 10−3mm2/s, τ es = 162ms
}
.

We make the contour plots for different PGSE sequences:

1. short diffusion time: δ = 10ms, ∆ = 10ms;

2. long diffusion time: δ = ∆ = 40ms;

3. very long diffusion time: δ = ∆ = 80ms.

Figures 4.7 and 4.8 show the contour plots for the two choices of 2-parameters sets
defined in Eq. (4.12) and Eq. (4.13), respectively. On Fig. 4.7, the specific points of
Utrue and UminODE for first 2-parameters set are:

• Rs = 2.45µm, L = 5µm and Rs = 4.9µm, L = 10µm:
Utrue = {vs = 0.49, De

g = 2.32× 10−3mm2/s}.

• δ = 10ms, ∆ = 10ms:
Rs = 2.45µm, L = 5µm (Fig. 4.7(a)): UminODE = {0.43, 1.92× 10−3mm2/s}.
Rs = 4.9µm, L = 10µm (Fig. 4.7(b)): UminODE = {0.30, 1.65× 10−3mm2/s}.

• δ = 40ms, ∆ = 40ms:
Rs = 2.45µm, L = 5µm (Fig. 4.7(c)): UminODE = {0.47, 2.23× 10−3mm2/s};
Rs = 4.9µm, L = 10µm (Fig. 4.7(d)): UminODE = {0.41, 1.85× 10−3mm2/s}.

• δ = 80ms, ∆ = 80ms:
Rs = 2.45µm, L = 5µm (Fig. 4.7(e)): UminODE = {0.47, 2.27× 10−3mm2/s};
Rs = 4.9µm, L = 10µm (Fig. 4.7(f)): UminODE = {0.44, 2.12× 10−3mm2/s}.
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and for second 2-parameters set are:

• Rs = 2.45µm, L = 5µm: Utrue = {vs = 0.49, τ es = 81ms};
Rs = 4.9µm, L = 10µm: Utrue = {vs = 0.49, τ es = 162ms}.

• δ = 10ms, ∆ = 10ms:
Rs = 2.45µm, L = 5µm (Fig. 4.8(a)): UminODE = {0.52, 28ms};
Rs = 4.9µm, L = 10µm (Fig. 4.8(b)): UminODE = {0.61, 6ms}.

• δ = 40ms, ∆ = 40ms:
Rs = 2.45µm, L = 5µm (Fig. 4.8(c)): UminODE = {0.48, 74ms};
Rs = 4.9µm, L = 10µm (Fig. 4.8(d)): UminODE = {0.51, 83ms}.

• δ = 80ms, ∆ = 80ms:
Rs = 2.45µm, L = 5µm (Fig. 4.8(e)): UminODE = {0.48, 78ms};
Rs = 4.9µm, L = 10µm (Fig. 4.8(f)): UminODE = {0.48, 134ms}.

We see that the modeling errors are much larger at the larger radius. It takes a
very long diffusion time, for example δ = ∆ = 80ms, to get UminODE to be closer to
Utrue.
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(a) Rs = 2.45µm: δ = 10ms, ∆ = 10ms. (b) Rs = 4.9µm: δ = 10ms, ∆ = 10ms.

(c) Rs = 2.45µm: δ = 40ms, ∆ = 40ms. (d) Rs = 4.9µm: δ = 40ms, ∆ = 40ms.

(e) Rs = 2.45µm: δ = 80ms, ∆ = 80ms. (f) Rs = 4.9µm: δ = 80ms, ∆ = 80ms.

Figure 4.7: Domain containing periodic lattice of spheres shown in Fig. 3.2(a). Contour
plot of ODE model with respect to vs and De

g, nb = 20.
Rmod: (a) 8.4%, (b) 59.7%, (c) 2.6%, (d) 10.1% , (e) 2.2%, (f) 5.7%;
RODE(Umin

ODE): (a) 2.3%, (b) 15.6%, (c) 0.5%, (d) 2.2% , (e) 0.4%, (f) 1.0%;
RKAR(Umin

KAR): (a) 2.5%, (b) 16.7%, (c) 1.6%, (d) 2.7% , (e) 2.0%, (f) 2.0%.
.
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(a) Rs = 2.45µm, δ = 10ms, ∆ = 10ms. (b) Rs = 4.9µm: δ = 10ms, ∆ = 10ms.

(c) Rs = 2.45µm: δ = 40ms, ∆ = 40ms. (d) Rs = 4.9µm: δ = 40ms, ∆ = 40ms.

(e) Rs = 2.45µm: δ = 80ms, ∆ = 80ms. (f) Rs = 4.9µm: δ = 80ms, ∆ = 80ms.

Figure 4.8: Domain containing periodic lattice of spheres shown in Fig. 3.2(a). Contour
plot of ODE model with respect to vs and τes, nb = 20.
Rmod: (a) 8.4%, (b) 59.7%, (c) 2.6%, (d) 10.1% , (e) 2.2%, (f) 5.7%;
RODE(Umin

ODE): (a) 1.2%, (b) 5.5%, (c) 0.2%, (d) 1.2% , (e) 0.2%, (f) 0.5%;
RKAR(Umin

KAR): (a) 1.5%, (b) 6.8%, (c) 0.6%, (d) 1.6% , (e) 0.7%, (f) 1.0%.
.
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4.3 Periodic lattice of spherical cells of different sizes

For the domain shown in Fig. 3.8(a), which contains many spherical cells of dif-
ferent sizes, we study the parameters estimation problem for different membrane
permeabilities and investigate the effect of noisy signals. There are two compart-
ments: Ωe, the extra-cellular compartment, and Ωs containing all 76 spherical cells
with different radii between 0.6 − 2.55µm. The corresponding volume fractions of
this domain are vs = 0.65 and ve = 0.35.

4.3.1 Least squares problem on 3-parameters set

The least squares problems we solve remain Eq. (4.5) and Eq. (4.6). The 3-parameters
set to be estimated is:

U =
{
vs, De

g, τ
es
}
, (4.14)

where τ es ≡ |Ωs|
κ|Γes| . The constraints are:

τ es

τ se
= vs

ve
,

ve + vs = 1,
0 < De

g ≤ D0,

D
s = 0, because Ωs is compact,

0 ≤ vm ≤ 1 and 0 ≤ τ es.
The true model three-parameters set for this domain are:

Utrue =
{
vs = 0.65, De

g = 2.20× 10−3mm2/s, τ es = τ estrue

}
.

where τ estrue is given in Table 4.2 for each permeability. We also use the same initial
guesses of the least squares problem as for the domain containing periodic lattice
of spheres:

U0 =
{
cv,

D0

2 , cτ
τ estrueτ

se
true

2(τ estrue + τ setrue)

}
,

where cv is a random number (of a uniform distribution) between 0 and 1, cτ is
between 0.1 and 10. For this domain, we also did not see any difference of parameter
estimation results when cv and cτ are varied.
Table 4.2 contains parameters estimation results for: κ = 10−6m/s (δ = ∆ =
100ms), κ = 2.5 × 10−6m/s (δ = ∆ = 80ms), κ = 5 × 10−6m/s (δ = ∆ = 50ms),
κ = 10−5m/s (δ = ∆ = 30ms), κ = 2.5×10−5m/s (δ = ∆ = 20ms), κ = 5×10−5m/s
(δ = ∆ = 10ms), κ = 10−4m/s (δ = ∆ = 5ms). In this likely anisotropic diffusion
domain, all of these signals were obtained using the same gradient direction g =
(1, 0, 0) and are considered without noise. We can see that the results of the ODE
model are always much better than that of the Kärger model. It is necessary
to emphasize that for these examples the narrow pulse assumption does not hold
because δ is not small compared to ∆. For low permeability (κ = 10−6m/s, κ =
2.5×10−6m/s) and intermediate permeability (κ = 5×10−6m/s, κ = 10−5m/s, κ =
2.5×10−5m/s), the estimated parameters are very good. At high permeability (κ =
5×10−5m/s, κ = 10−5m/s), the macroscopic models are not good approximations of
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the full PDE model, as can be seen by the large modeling errors, thus the parameters
estimation results are not as accurate. For instance, for κ = 5 × 10−5m/s, the
modeling error for the ODE model is 7.6%, and the estimated parameters are still
reasonable. But at very high permeability κ = 10−4m/s, the estimated parameters
are very inaccurate due to the large modeling error, 20% in this case.

κ (m/s) - PGSE (ms) Parameter U true UminODE UminKAR

κ = 1× 10−6m/s
δ = 100ms
∆ = 100ms

vs 0.65 0.65 0.67
τ es (ms) 540 522 254

De
g (×10−3mm2/s) 2.20 2.21 2.37

R(Umin) 0.02% 0.09%
Rmod 0.09% 3.4%

κ = 2.5× 10−6m/s
δ = 80ms
∆ = 80ms

vs 0.65 0.65 0.69
τ es (ms) 216 217 104

De
g (×10−3mm2/s) 2.20 2.20 2.57

R(Umin) 0.02% 0.14%
Rmod 0.76% 6.0%

κ = 5× 10−6m/s
δ = 50ms
∆ = 50ms

vs 0.65 0.65 0.71
τ es (ms) 108 108 51

De
g (×10−3mm2/s) 2.20 2.22 2.74

R(Umin) 0.03% 0.17%
Rmod 0.2% 7.6%

κ = 1× 10−5m/s
δ = 30ms
∆ = 30ms

vs 0.65 0.65 0.73
τ es (ms) 54 53 25

De
g (×10−3mm2/s) 2.20 2.26 3.00

R(Umin) 0.05% 0.2%
Rmod 0.9% 9.5%

κ = 2.5× 10−5m/s
δ = 20ms
∆ = 20ms

vs 0.65 0.64 0.73
τ es (ms) 22 21 10

De
g (×10−3mm2/s) 2.20 2.29 3.00

R(Umin) 0.06% 0.3%
Rmod 2.6% 15.0%

κ = 5× 10−5m/s
δ = 10ms
∆ = 10ms

vs 0.65 0.66 0.76
τ es (ms) 11 9 5

De
g (×10−3mm2/s) 2.20 2.53 3.00

R(Umin) 1.5% 5.6%
Rmod 7.6% 21.1%

κ = 1× 10−4m/s
δ = 5ms
∆ = 5ms

vs 0.65 0.68 0.69
τ es (ms) 5 4 2

De
g (×10−3mm2/s) 2.20 3.00 3.00

R(Umin) 4.2% 11%
Rmod 20% 36%

Table 4.2: Parameters estimation results for the domain containing periodic lattice of
spherical cells of different sizes shown in Fig. 3.8(a), with different permeabilites.
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4.3.2 Contour plots of 2-parameters sets

We also show in Fig. 4.9 the contour plots for the two choices of 2-parameters sets
defined in Eq. (4.12) and Eq. (4.13). The specific points for two 2-parameter sets
are:

1. Figures 4.9(a) and 4.9(b): Utrue = {vs = 0.65, De
g = 2.20× 10−3mm2/s};

UminODE = {0.64, 2.21× 10−3mm2/s}; UminKAR = {0.53, 1.50× 10−3mm2/s}.

2. Figures 4.9(c) and 4.9(d): Utrue = {vs = 0.65, τ es = 54ms};
UminODE = {0.64, 53ms}; UminKAR = {0.64, 32ms}.

Once again, these contour plots show that UminODE are very close to Utrue while UminKAR

are not.

(a) ODE model. (b) Kärger model.

(c) ODE model. (d) Kärger model.

Figure 4.9: Domain containing spherical cells of different sizes, κ = 10−5m/s, PGSE
profile δ = ∆ = 30ms, contour plots of ODE model and Kärger model.
Rmod: (a,c) 0.9%, (b,d) 9.5%;
RODE(Umin

ODE)): (a,b) 0.2%, (c,d) 0.2%;RKAR(Umin
KAR): (a,b) 0.9%, (c,d) 0.4%.
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4.3.3 Effect of noisy signal

Now we add N realizations of random noise to the signal at the nb b-values:
(SPDE)noii (bk) = SPDE(bk) +N i

bk
(0, σ2), k = 1, · · · , nb, i = 1, · · · , N, (4.15)

to get N samples of the noisy signal (SPDE)noii . The 3-parameters set for the
parameters estimation problem remains that from Eq. (4.14).
We define the solution of the least squares problem subject to the noisy signal
(SPDE)noii by (

UminODE

)noi
i

and (
UminKAR

)noi
i

.

The average of estimated parameters for the N realizations of the noisy signal is
defined as (

UminODE

)noi
ave
≡ 1
N

N∑
i=1

(
UminODE

)noi
i

and (
UminKAR

)noi
ave
≡ 1
N

N∑
i=1

(
UminKAR

)noi
i

.

We also give a measure of the relative standard deviations of
(
UminODE

)noi
i and

(
UminKAR

)noi
i :

σODE ≡

√√√√√ 1
N

N∑
i=1

∣∣∣∣∣
(
UminODE

)noi
i −

(
UminODE

)noi
ave(

UminODE

)noi
ave

∣∣∣∣∣
2

and

σKAR ≡

√√√√√ 1
N

N∑
i=1

∣∣∣∣∣
(
UminKAR

)noi
i −

(
UminKAR

)noi
ave(

UminKAR

)noi
ave

∣∣∣∣∣
2

.

Table 4.3 shows the results of N = 100 realizations of noisy signals for two levels
of noise: σ = 0.01, σ = 0.03 and three different numbers of b-values: nb = 25,
nb = 100 and nb = 400. For each case, b-values are varied on a uniform grid of
[0, 4000]s/mm2.
The results show that larger noise requires more b-values to reduce the error of
parameter estimations. In fact, one can see on Table 4.3 that using more b-values
not only decreases the relative standard deviation of all parameter estimations but
also moves the average estimation of parameters closer to the true values for both
small noise σ = 0.01 and large noise σ = 0.03.
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σ noise nb Parameter σaveODE σaveKAR Utrue
(
UminODE

)noi (
UminKAR

)noi

0.01

25
vs 7% 10% 0.65 0.65 0.69

τ es(ms) 21% 51% 54 47 29
De(×10−3mm2/s) 16% 26% 2.2 2.3 2.7

100
vs 4% 11% 0.65 0.65 0.72

τ es(ms) 7% 52% 54 52 25
De(×10−3mm2/s) 9.5% 30% 2.2 2.3 2.8

400
vs 2% 11% 0.65 0.65 0.72

τ es(ms) 5% 53% 54 52 25
De(×10−3mm2/s) 6% 32% 2.2 2.3 2.9

0.03

25
vs 12% 13% 0.65 0.64 0.67

τ es(ms) 45% 66% 54 67 44
De(×10−3mm2/s) 28% 30% 2.2 2.2 2.3

100
vs 9% 11% 0.65 0.66 0.69

τ es(ms) 25% 48% 54 57 30
De(×10−3mm2/s) 24% 28% 2.2 2.4 2.7

400
vs 6% 10% 0.65 0.65 0.69

τ es(ms) 13% 50% 54 54 29
De(×10−3mm2/s) 14% 26% 2.2 2.3 2.7

Table 4.3: Relative errors of U for the domain shown in Fig. 3.8(a) from N = 100
samples of Gaussian noises N (0, 0.01) and N (0, 0.03), κ = 10−5m/s, PGSE sequence with
δ = ∆ = 30ms.
Rmod: (a,b,c,d,e,f) 0.9%.

Figure 4.10 shows the contour plots of RODE(U) for two choices of 2-parameters
sets defined in Eq. (4.12) and Eq. (4.13). Because the parameters estimation prob-
lems are posed only on 2-parameters sets we were able to solve the least squares
problems in shorter computational time than when the full 3-parameters set is to be
estimated. Hence, we give results for N = 1000 samples of noisy signals (whereas
in Table 4.3 only N = 100 samples of noisy signals were used). Importantly, we
plot in Fig. 4.10 the convex hulls of:{(

UminODE

)noi
i

}
i=1,··· ,N=1000

and {(
UminKAR

)noi
i

}
i=1,··· ,N=1000

.

We also show results of parameters estimation while using three previous sets of
b-values with different numbers: nb = 25, nb = 100 and nb = 400. One can see
that with more b-values, each convex hull shrinks to the corresponding true least
squares solution without noise and this position is very close to Utrue.
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(a) nb = 25. (b) nb = 25.

(c) nb = 100. (d) nb = 100.

(e) nb = 400. (f) nb = 400.

Figure 4.10: Domain containing spherical cells of different sizes: κ = 10−5m/s, PGSE
with δ = ∆ = 30ms, convex hulls of 1000 samples of noisy signal with two noise levels:
σ1 = 0.01 and σ2 = 0.03, contour plot of ODE model with respect to vs and De

g (a,c,e) and
vs and τes (b,d,f).
Rmod: (a,b,c,d,e,f) 0.9%.
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4.4 Domain containing parallel cylinders with thick mem-
brane layer

We come to the domain shown in Fig. 3.10(a), which contains a cylindrical cell
(Rc = 2.0µm) with a thick membrane layer (thickness h = 0.45µm) outside it. There
are three compartments: the extra-cellular compartment Ωe, the intra-cellular com-
partment of the cylinder Ωc and the membrane compartment Ωm. Their volume
fractions are respectively ve = 0.38, vc = 0.41 and vm = 0.21.

4.4.1 Least squares problem on 4-parameters set

We choose the following 4-parameters set for the least squares problem in Eq. (4.5)
and Eq. (4.6):

U =
{
vc, De

g, τ
em, τ cm

}
,

where τ em ≡ |Ωm|
κ|Γem| and τ

cm ≡ |Ωm|
κ|Γcm| . The constraints are:

τ ij

τ ji
= vj

vi
,∀i, j = e,m, c,

ve + vc + vm = 1,
0 < De

g ≤ D0,

D
m = D

c = 0, because Ωm,Ωc are compact
in the gradient direction (2D compact),

0 ≤ ve, vm, vc ≤ 1,
0 ≤ τ em ≤ τ cm.

(4.16)

Expecting that the surface between the extra-cellular compartment and the mem-
brane, and the surface between the cylindrical compartment and the membrane,
scale proportionally with the volume, we add one more constraint:( |Γcm|

|Γem|

)2
= |Ωc|
|Ωc|+ |Ωm|

.

This constraint is equivalent to:(
τ em

τ cm

)2
= vc

vc + vm
. (4.17)

The true model four-parameters set for this domain are:

U =
{
vc = 0.41, De

g = 1.70× 10−3mm2/s, τ em = 41ms, τ cm = 50ms
}
.

The initial guesses of the least squares problem are:

U0 =
{
cv,

D0

2 , cτ1τ
em
true, cτ2τ

cm
true

}
,

where cv are varied in [0, 1], cτ1 and cτ2 are varied in [0, 2] to obtain different initial
guesses.
For this domain, we did not see a significant difference in the parameters estimation
results for vs when cv varied but we did notice that the estimated τ em and τ cm
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changed when cτ1 and cτ2 varied. Thus, we varied cτ1 and cτ2 randomly to obtain 10
different initial guesses: U0

i (i = 1, · · · , 10). Then we compared the residuals of the
solution of the least squares problem from the Matlab routine resulting from these
10 initial guesses and picked the one with the smallest residual as our estimated
parameters set.
Table 4.4 summarizes the parameter estimations results. The estimated values for
vc and De

g are good. In turn, the estimated values for τ em and τ cm are less accurate
but their ratio is still close to the true values due to condition in Eq. (4.17).

κ - PGSE Parameter U true (UminODE) (UminKAR)

κ = 1× 10−5m/s
δ = 80ms
∆ = 80ms

vc 0.412 0.431 0.320
τ em (ms) 41 33 35
τ cm (ms) 50 40 50

De
g (×10−3mm2/s) 1.70 1.79 1.87

R(Umin) 0.00% 0.05%
Rmod 1.8% 6.7%

Table 4.4: Estimated macroscopic model parameters for the domain containing parallel
cylinders with thick membrane, κ = 1× 10−5m/s, PGSE profile with δ = ∆ = 80ms.

4.4.2 Contour plots on 2-parameters sets

Now we make contour plots of 2-parameters sets to further investigate the properties
of the parameters estimation problem for this domain. We fix two parameters at
their true values and consider two remaining parameters as unknowns.
First we will study the 2-parameters set:

U =
{
vc, De

g

}
, Uknown = {τ em = τ emtrue, τ

cm = τ cmtrue} , (4.18)
where τ emtrue = 41ms, τ cmtrue = 50ms. And then we will study the 2-parameters set:

U = {τ em, τ cm} , Uknown =
{
vc = vctrue, D

e
g =

(
De

g

)
true

}
, (4.19)

where vctrue = 0.41 and
(
De

g

)
true

= 1.7× 10−3mm2/s.

Figure 4.11 presents the contour plots for both choices of U above and the specific
points for two 2-parameter sets:

1. Figures 4.11(a) and 4.11(b): Utrue = {vc = 0.41, De
g = 1.70× 10−3mm2/s};

UminODE = {0.40, 1.69× 10−3mm2/s}; UminKAR = {0.36, 1.38× 10−3mm2/s}.

2. Figures 4.11(c) and 4.11(d): Utrue = {τ em = 41ms, τ cm = 50ms};
UminODE = {38ms, 46ms}; UminKAR = {39ms, 45ms}.

The contours show that we can easily get a good approximation for vs and De
g by

using the ODE model because its UminODE is very close to Utrue, while UminKAR is not
close to Utrue. However, we can see clearly from Fig. 4.11(c) and Fig. 4.11(d) that
it is very difficult to estimate τ em and τ cm because the contours stretch very long
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along the lines describing the true ratio between τ em and τ cm. This explains why
we could not get good estimates of τ em and τ cm when we solved the least squares
problem on the 4-parameters set previously.

(a) ODE model. (b) Kärger model.

(c) ODE model. (d) Kärger model.

Figure 4.11: Domain containing parallel cylinders with thick membrane, κ = 10−5m/s,
PGSE profile with δ = ∆ = 80ms (a,b) vs and De

g, (c,d) τem and τ cm.
Rmod: (a,c) 1.8%, (b,d) 6.7%;
RODE(Umin

ODE)): (a,b) 1.3%, (c,d) 0.1%; RKAR(Umin
KAR): (a,b) 3.9%, (c,d) 2.3%.
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4.5 Domain containing slanted parallel cylinders

In the previous section, the gradient direction was set perpendicular to the cylinder
axis in order to probe restricted diffusion in the cross-sectional plane. This allowed
us to deal with isotropic diffusion. The next step consists in considering anisotropic
diffusion on the domain shown in Fig. 3.9(a), which contains slanted cylinders
that all lie parallel to the x − y-plane, make an angle π/3 with the x-axis, and
have a radius Rc = 2.35µm. This is also equivalent to setting the gradient in
an intermediate direction between the cylinder axis and the cross-sectional plane.
For the sake of simplicity, we consider only two compartments: the extra-cellular
compartment Ωe, and the intra-cellular compartment Ωc of cylinders (i.e., there is
no membrane compartment). Their volume fractions are ve = 0.31 and vc = 0.69,
respectively.
In order to describe anisotropic diffusion in the long time limit, one needs to intro-
duce two effective diffusion tensors, De and Dc, for both compartments.
Each diffusion tensor has to 6 unknown parameters so that one formally gets the
following 14-parameters set for the least squares problem:

U =
{
vc, D

e
, D

c
, τ ec

}
,

where τ ec ≡ |Ωc|
κ|Γec| . One also needs at least 6 different gradient directions to estimate

the effective diffusion tensors. The constraints for this domain are:
τ ec

τ ce
= vc

ve
,

ve + vc = 1,
0 < D

c
ij , D

e
ik ≤ D0, ∀i, j = 1, · · · , 3,

0 ≤ ve, vs ≤ 1,
0 ≤ τ ec.

(4.20)

A numerical solution of this optimization problem for 14 unknowns may be highly
unstable. In order to investigate the stability of this problem, we focus on the con-
tour plots on 2-parameters sets. For this purpose, we fix three gradient directions,

1. g1 = (0.5, 0, 0.87): parallel to the axis of cylinders,

2. g2 = (0.87, 0,−0.5): perpendicular to the axis of cylinders,

3. g3 = (0.97, 0, 0.26): lying in the middle of g1 and g2,

and consider the effective diffusion tensors De and Dc projected onto these direc-
tions. In order words, we will estimate the effective diffusion coefficients Dc

g and
De

g as previously.
We consider two choices of a 2-parameters set. The first choice is

U =
{
Dc

g, D
e
g

}
, Uknown = {vc = vctrue, τ

ec = τ ectrue} , (4.21)
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where vctrue = 0.69, τ ectrue = 116ms, while the second choice is
U = {vc, τ es} , Uknown =

{
Dc

g =
(
Dc

g

)
true

, De
g =

(
De

g

)
true

}
, (4.22)

where
(
Dc

g

)
true

and
(
De

g

)
true

are their true values for three prescribed gradient
directions g. The remaining parameters are set at their true values.
Figure 4.12 shows the contour plots for both choices of U above in three different
gradient directions [their signals are shown in Fig. 3.9(b)]. One can notice the
following specific points for the first 2-parameters set:

1. g1 = (0.5, 0, 0.87) (Fig. 4.12(a)):
Utrue = {Dc

g = 3.00× 10−3mm2/s, De
g = 3.00× 10−3mm2/s};

UminODE = {3.04× 10−3mm2/s, 2.98× 10−3mm2/s};
UminKAR = {2.98× 10−3mm2/s, 3.01× 10−3mm2/s}.

2. g2 = (0.87, 0,−0.5) (Fig. 4.12(c)):
Utrue = {Dc

g = 0.00× 10−3mm2/s, De
g = 1.52× 10−3mm2/s};

UminODE = {0.02×10−3mm2/s, 1.56×10−3mm2/s}; UminKAR = {0.06×10−3mm2/s, 1.49×
10−3mm2/s}.

3. g3 = (0.97, 0, 0.26) (Fig. 4.12(e)):
Utrue = {Dc

g = 1.51× 10−3mm2/s, De
g = 2.27× 10−3mm2/s};

UminODE = {1.51× 10−3mm2/s, 2.26× 10−3mm2/s};
UminKAR = {1.54× 10−3mm2/s, 2.21× 10−3mm2/s}.

and for the second 2-parameters set:

1. g1 = (0.5, 0, 0.87) (Fig. 4.12(b)): Utrue = {vs = 0.69, τ es = 116ms};
UminODE = {0.50, 148ms}; UminKAR = {0.50, 200ms}.

2. g2 = (0.87, 0,−0.5) (Fig. 4.12(d)): Utrue = {vs = 0.69, τ es = 116ms};
UminODE = {0.67, 104ms}; UminKAR = {0.67, 62ms}.

3. g3 = (0.97, 0, 0.26) (Fig. 4.12(f)): Utrue = {vs = 0.69, τ es = 116ms};
UminODE = {0.68, 154ms}; UminKAR = {0.68, 98ms}.

These contour plots provide useful information about the stability and quality of
parameters estimation. For the parallel gradient direction g1, diffusion is fast along
the cylinder axis so that it is easy to estimate Dc

g and De
g (Fig. 4.12(a)) but

impossible to estimate vc and τ es (Fig. 4.12(b)). In fact, the contour plots on Fig.
4.12(b) do not exhibit a distinguishable minimum. This is not surprising because
the exchange between two compartments happens in the cross-sectional plane, while
the signal probes diffusion along the cylinder axis.
For the perpendicular gradient direction g2, diffusion is fast in the extra-cellular
compartment and could be considered effectively zero in the compact intra-cellular
compartment. As a consequence, the UminODE are close to Utrue for both 2-parameters
set. The estimation of Dc

g (whose true value is zero in the long-time limit) is not
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accurate because of the finite diffusion time (i.e., the infinite diffusion limit is not
reached). In turn, the estimation of De

g is quite accurate.
Finally, for the intermediate gradient direction g3, one faces the same problem as
for the first case g1 but to a lesser extent. Although Fig. 4.12(e) suggests that the
estimates of Dc

g and De
g from the ODE and Kärger models are close to their true

values, the contour plots are strongly stretched in the vertical direction. It means
that an estimate of De

g may be highly unstable and biased by noise. As earlier for
the first case g1, the estimation of τ ec is impossible as no minimum is present on
Fig. 4.12(f). Although the estimates of vc from both the ODE and Kärger models
are close to its true value, the presence of noise may strongly alter this procedure.
We conclude that parameters estimation for both the ODE and Kärger models in
the case of anisotropic diffusion is much more challenging than for the isotropic
case. In fact, one needs to carefully choose gradient directions in order to get
stable estimates. In general, the situation is even more complex as highly extended
structures (like cylinders here, e.g., axons) may be randomly oriented and well
mixed with compact structures (e.g., glial cells). We consider an example of such
situation in the next section.
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(a) g1 = (0.5, 0, 0.87). (b) g1 = (0.5, 0, 0.87).

(c) g2 = (0.87, 0,−0.5). (d) g2 = (0.87, 0,−0.5).

(e) g3 = (0.97, 0, 0.26). (f) g3 = (0.97, 0, 0.26).

Figure 4.12: Domain containing slanted parallel cylinders, κ = 10−5m/s, PGSE with
δ = ∆ = 80ms, contour plots for the ODE model.
Rmod: (a,b) 0.8%, (c,d) 3.8% , (e,f) 0.2%;
RODE(Umin

ODE): (a) 0.01%, (b) 0.57%, (c) 0.16%, (d) 0.17% , (e) 0.05%, (f) 0.05%;
RKAR(Umin

KAR): (a) 0.01%, (b) 0.57%, (c) 0.14%, (d) 0.35% , (e) 0.05%, (f) 0.05%.
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4.6 Domain containing spheres and deformed cylinders

Finally, we test the parameters estimation technique on our most complicated
domain containing 5 layers of deformed cylinders (cylinder radius Rc = 1.0µm)
lying parallel to the x − y plane and 4 layers of spherical cells (sphere radius
Rs = 1.375µm) all embedded in the extra-cellular space as shown in Fig. 3.11(a).
This domain can be considered as having 7 compartments: the extra-cellular space
(Ωe), the compartment formed by the union of 4 layers of 16 spherical cells (Ωs), and
5 compartments consisting of the cylinders with the same orientation (Ωc1 , · · · ,Ωc5).
In each layer of cylinders, the orientations of the cylinders are the same. Their
volume fractions are ve = 0.48, vs = 0.21, and we consider that all cylinder lay-
ers have the same average volume fraction vck = vc = 0.06 (k = 1, · · · , 5), the
same residence times of exchanging with extra-cellular compartment τ eck = τ ec =
53ms (k = 1, · · · , 5), and the same residence times of exchanging with sphere com-
partment τ sck = τ sc = 307ms (k = 1, · · · , 5). The intrinsic diffusion coefficient is
D0 = 3 × 10−3mm2/s, permeability is κ = 1 × 10−5m/s, we use PGSE sequences
with δ = ∆ = 40ms for all gradient directions.
Because of the complex structure of the domain, we simplify the problem by assum-
ing that we already knew the orientations of all 5 layers: 0, 26.5, 45, 63.5 and 90
degrees, respectively, from the x-axis, which means that we knew all their diffusion
coefficients Dckg , k = 1, · · · , 5 by using Eq. (2.30). The constraints are:

τ lm

τml
= vm

vl
, l,m = e, s, c,

ve + vs + 5vc = 1,
0 < De

g ≤ D0,

D
s = 0, because Ωs is compact,

Dck
g = (Dck

g )true, k = 1, · · · , 5
0 ≤ ve, vs ≤ 1,
0 ≤ τ sc, τ ec, τ es.

(4.23)

In order to investigate the stability of the parameters estimation procedure, we
consider three choices of 2-parameters sets:

U =
{
ve, De

g

}
,

U = {vs, τ sc} ,
U = {τ ec, τ es} ,

where three gradient directions were used for De
g: g1 = (1, 0, 0), g2 = (1, 0, 1) and

g3 = (1, 1, 1). For each choice, the remaining parameters Uknown are set at their
true values.
Figure 4.13 shows the contour plot for all three 2-parameters sets in three gradient
directions. One can notice the following specific points for first 2-parameters choice:

1. g1 = (1, 0, 0)(Fig. 4.13(a)): Utrue = {ve = 0.48, De
g = 2.29× 10−3mm2/s};

UminODE = {0.52, 2.22× 10−3mm2/s}; UminKAR = {0.69, 2.00× 10−3mm2/s};
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2. g2 = (1, 0, 1)(Fig. 4.13(d)): Utrue = {ve = 0.48, De
g = 2.42× 10−3mm2/s};

UminODE = {0.39, 2.46× 10−3mm2/s}; UminKAR = {0.30, 3.00× 10−3mm2/s};

3. g3 = (1, 1, 1)(Fig. 4.13(g)): Utrue = {ve = 0.48, De
g = 2.30× 10−3mm2/s};

UminODE = {0.39, 2.50× 10−3mm2/s}; UminKAR = {0.34, 3.00× 10−3mm2/s};

Next, specific points for the second 2-parameters choice:

1. g1 = (1, 0, 0)(Fig. 4.13(b)): Utrue = {vs = 0.21, τ sc = 307ms};
UminODE = {0.21, 175ms}; UminKAR = {0.19, 100ms}.

2. g2 = (1, 0, 1)(Fig. 4.13(e)): Utrue = {vs = 0.21, τ sc = 307ms};
UminODE = {0.21, 222ms}; UminKAR = {0.19, 107ms}.

3. g3 = (1, 1, 1)(Fig. 4.13(h)): Utrue = {vs = 0.21, τ sc = 307ms};
UminODE = {0.21, 208ms}; UminKAR = {0.19, 100ms}.

And specific points for the third 2-parameters choice:

1. g1 = (1, 0, 0)(Fig. 4.13(c)): Utrue = {τ ec = 53ms, τ es = 57ms};
UminODE = {81ms, 46ms}; UminKAR = {38ms, 30ms}.

2. g2 = (1, 0, 1)(Fig. 4.13(f)): Utrue = {τ ec = 53ms, τ es = 57ms};
UminODE = {28ms, 54ms}; UminKAR = {25ms, 30ms}.

3. g3 = (1, 1, 1)(Fig. 4.13(i)): Utrue = {τ ec = 53ms, τ es = 57ms};
UminODE = {85ms, 52ms}; UminKAR = {31ms, 30ms}.

Since the present domain is truly anisotropic (without a selected direction as it was
the case for slanted parallel cylinders), the contours for three gradient directions
are very similar. In the contour plots of ve and De

g (the first column, Fig. 4.13(a),
4.13(d), 4.13(g)), one can see that these two parameters can be estimated. The
quality of the estimation slightly depends on the gradient direction. In practice,
one can acquire signals in different directions and then combine them to get more
accurate estimates. As usual, the ODE model provides more accurate estimates
than the Kärger model. On the contrary, the contour plots of vs and τ sc (second
column) and contour plots of τ ec and τ es (third column) exhibit very stretched
patterns and no distinguishable minima. As a consequence, the estimation of the
parameters τ sc (the vertical axis in the second column) and τ ec (the horizontal
axis in the third column) is impossible. The absence of a well localized minimum
does not allow to conclude, from these plots, about the stability of estimates of the
other parameters vs and τ es. This conclusion is not surprising. For instance, the
residence time τ ec characterizes the exchange between the cylindrical and extra-
cellular compartments. When the gradient direction is close to the cylinder axis,
the signal does not contain enough information about the exchange, as we discussed
earlier. Similarly, the residence time τ sc that characterizes the exchange between
deformed cylinders and spheres across their common interface is not accessible.
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(a) g = (1, 0, 0). (b) g = (1, 0, 0). (c) g = (1, 0, 0).

(d) g = (0.71, 0, 0.71). (e) g = (0.71, 0, 0.71). (f) g = (0.71, 0, 0.71).

(g) g = (0.58, 0.58, 0.58). (h) g = (0.58, 0.58, 0.58) (i) g = (0.58, 0.58, 0.58)

Figure 4.13: Spherical and cylindrical cells, κ = 10−5m/s, PGSE with δ = ∆ = 40ms:
(a,d,g) ve and De

g, (b,e,h) vs and τsc, (c,f,i) τec and τes.
Rmod: (a,b,c) 0.4%, (d,e,f) 1.5%, (g,h,i) 1.8%
RODE(Umin

ODE): (a) 0.1%, (b) 0.06%, (c) 0.09%, (d) 0.2% , (e) 0.2%, (f) 0.2%, (g) 0.3%, (h)
0.2%, (i) 0.2%;
RKAR(Umin

KAR): (a) 0.5%, (b) 0.4%, (c) 1.1%, (d) 10.9% , (e) 6.7%, (f) 6.0%, (g) 12.9%, (h)
0.8%, (i) 7.5%.
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4.7 Conclusions and further improvements

Our analysis of the parameters estimation problem in the previous sections has re-
vealed advantages and limitations of this approach. On the one hand, it seems to be
possible to estimate a number of physiologically relevant parameters for “simple”
tissues composed of not too elongated constituents. Among these parameters are
the volume fractions, the apparent diffusion coefficient in the extra-cellular space,
and the residence time which is related to the membrane permeability and surface-
to-volume ratio. Clearly, these parameters can only represent averaged properties
of the tissue. Nevertheless, a reliable experimental determination of these param-
eters has always presented a great challenge. We showed on simplified examples
a possibility of solving the parameters estimation problem. Most importantly, we
analyzed the stability features of this problem. In particular, we studied the ro-
bustness of the estimates against various biological and physical parameters (e.g.,
permeability, sequence timing, the range and number of b-values), as well as the
robustness against noise. The ODE model always provided more accurate and sta-
ble estimates than the Kärger model. This study suggests a promising perspective
for estimating many important parameters from dMRI signals.
At the same time, we analyzed the parameters estimation problem for more com-
plicated domains which contain very elongated constitutes (infinite cylinders). As
expected, if the gradient is precisely aligned with the cylinder axis, one deals with
unrestricted diffusion so that no information on the exchange can be extracted. But
the quality of parameters estimation is dramatically reduced even for intermediate
gradient directions. In other words, one needs to apply the gradient in (almost) per-
pendicular direction to ensure accurate estimates. This is a natural limitation of the
parameters estimation procedure because biological tissues may contain elongated
structures randomly oriented and also mixed with other (compact) elements (e.g.,
axons and glial cells). The quality of the parameters estimation may potentially be
improved by acquiring signals in various directions and then fitting all these signals
to the appropriate ODE models.
Another interesting perspective for future investigation consists in including ad-
ditional constraints to the optimization problem. These constraints may account
for some relationships between model parameters. In order to illustrate this point,
we will get a relationship between vc and De

g by performing simulations in simple
shapes. Another simple analytical relationship exists between vc and τ es.
We first examine the relationship between vc and De

g for two simple domains,
namely, periodic lattices of two-dimensional cells of circular (Fig. 4.14(a)) and
square (Fig. 4.14(b)) shapes. This is also equivalent to consider aligned cylinders
(as shown in Fig. 3.10(a)) and apply the gradient perpendicularly to the cylinder
axis. For each shape, we varied the cell radius Rc and the inter-cellular distance Lc
in the following ranges:

Rc ∈ [2.3 : 0.01 : 2.6], Lc ∈ [5.3 : 0.01 : 5.7]. (4.24)
As a result, we produced 31 × 41 = 1271 domains, for both circular and square
shapes. The volume fraction of the extra-cellular compartment vc varied in the
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range [0.5, 0.75] for the circular shape and in the range [0.65, 0.97] for the square
shape.

(a) Disk. (b) Square.

Figure 4.14: Circular (a) and square (b) shapes of two-dimensional cells which are formed
into periodic lattices.

For each of these domains, we computed De
g by solving steady-state Laplace equa-

tion (2.25) (the intrinsic diffusion coefficient was set to D0 = 3× 10−3mm2/s). The
obtained values of De

g are plotted versus the corresponding volume fraction vc in
Fig. 4.14. In this way, we obtain numerically the relationship between De

g on vc.
One can see that this relationship turns out to be a curve, despite the fact that the
values of De

g come from different Rc and Lc. We conclude that with fixed D0, the
effective diffusion coefficient De

g of the extra-cellular compartment depends almost
exclusively on vc although this dependence is different for each shape.
Now we consider the relationship between vc and τ es. For circular cells, one has

vc = π(Rc)2

(Lc)2 ; τ ec = |Ωc|
|Γec|κ = Rc

2κ ;
from which

τ ec =
√
vcL

2
√
πκ
. (4.25)

Similarly, one gets for square shapes:

τ ec =
√
vcL

4κ . (4.26)

These formulas show that, in addition to vc and κ, one needs to know the cell
distance L to identify the value of τ ec.
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Figure 4.15: Relationship between vc and De
g obtained by numerical solution of the

steady-state Laplace equations for circular and square shapes.

Adding these supplementary constraints means finding the minimum of the contour
plots in Fig. 4.16 along the constraint curve. As a consequence, one can get much
better parameter estimations because the distance from the least squares solution
with additional constraints (called (UminODE)add) to U true is smaller than the distance
from UminODE to U true, as one can see both in Fig. 4.16(a) for the set {vc, De

g}, and
in Fig. 4.16(b) for the set {vc, τ es}. This example illustrates that further analy-
sis of relationships between unknown model parameters may significantly improve
parameters estimations using macroscopic models.

(a) vc and De
g. (b) vc and τes.

Figure 4.16: Contour plot of the ODE model for circular shapes with respect to vc and
De

g (a), and vc and τes (b).
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Conclusions

This thesis has been focused on the relationship between the tissue microstructure
and the macroscopic dMRI signal. Inferring tissue parameters from experimentally
measured signals is considered as the “Holy Grail” of diffusion MRI. In spite of
a long standing history of intensive research in this field, many aspects of this
inverse problem remain poorly understood. We proposed and tested an approximate
solution to this problem, in which the dMRI signal is first approximated by an
appropriate macrosopic model and then the effective parameters of this model are
estimated.
We investigated two macroscopic models of the dMRI signal. The first is the Kärger
model that assumes a certain form of (macroscopic) multiple compartmental diffu-
sion and inter-compartment exchange, but is subject to the narrow pulse restriction
on the diffusion-encoding magnetic field gradient pulses. The second is an ODE
model of the multiple compartment magnetizations obtained from mathematical
homogenization of the Bloch-Torrey equation, that is not subject to the narrow
pulse restriction. In both models, the dMRI signal has been related to model pa-
rameters that represent averaged quantities over the voxel.
First, we investigated the validity of these macroscopic models by comparing the
dMRI signal given by the Kärger and the ODE models with the dMRI signal simu-
lated on some relatively complex tissue geometries by solving the microscopic Bloch-
Torrey equation in the presence of semi-permeable biological cell membranes. We
note that the Kärger model is a limit case of the ODE model where the duration
of the diffusion-encoding magnetic field gradient pulses goes to zero. We concluded
that the validity of both macroscopic models is limited to the case where diffusion
in each compartment is effectively Gaussian and where the inter-compartmental
exchange can be accounted for by standard first-order kinetic terms.
Second, assuming that the above conditions on the compartmental diffusion and
inter-compartment exchange are satisfied, we solved the least squares problem as-
sociated with fitting the Kärger and the ODE model parameters to the simulated
dMRI signal obtained by solving the microscopic Bloch-Torrey equation. Among
various effective parameters, we considered the volume fractions of the intra-cellular
and extra-cellular compartments (which may change during cell swelling), mem-
brane permeability (which may characterize, to some extent, normal or abnormal
functioning of cells), average size of cells, inter-cellular distance, as well as apparent
diffusion coefficients. We started by studying the feasibility of the least squares
solution for two groups of relatively simple tissue geometries. For the first group,
in which domains consist of identical or variably-sized spherical cells embedded in
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the extra-cellular space, we concluded that parameters estimation problem can be
robustly solved, even in the presence of noise. In the second group, we considered
parallel cylindrical cells, which may be covered by a thick membrane layer, and
embedded in the extra-cellular space. When the diffusion gradient is applied per-
pendicularly to the cylinder axis, the parameter estimation problem can be robustly
solved, just as for spherical cells. In the opposite case of the diffusion gradient par-
allel to the axis cylinder, one simply probes unrestricted diffusion which contains
no information about the restricting domain and water exchange between compart-
ments. As a consequence, the parameter estimation fails in this situation. For an
intermediate gradient direction, the quality of parameter estimation strongly de-
pends on how much the cellular structure is elongated in the gradient direction.
In practice, the orientation of elongated cells is not know a priori; moreover, bio-
logical tissues may contain elongated structures randomly oriented and also mixed
with other (compact) elements (e.g., axons and glial cells). This situation has been
numerically investigated on our most complicated domain in which layers of cylin-
drical cells in various directions are mixed with layers of spherical cells. We checked
that certain parameters can still be estimated rather accurately while the other re-
main inaccessible. In all considered cases, the ODE model provided more accurate
estimates than the Kärger model.

Future directions

In this thesis, we have shown by numerical simulations that if the voxel is made
up of spatial sub-domains that are separated from each other by low permeability
membranes and if diffusion in the sub-domains are (close to) Gaussian, then the
macroscopic ODE model of the dMRI signal (and the Kärger model, if the gradient
profile is narrow pulse) is a good approximation to the microscopic Bloch-Torrey
PDE model. However, for a generic voxel, it is expected that there would be spatial
variations within the diffusion compartments on the length scale of the voxel. For
example, we would expect that the extra-cellular space, being tortuous, would not,
in general, be able to be described by a constant effective diffusion tensor on the
length scale of the entire voxel. Nevertheless, it is still important to use the insight
gained by the macroscopic models studied in this thesis, in particular, the ODE
model that was derived by explicitly taking into account the discontinuity in the
magnetization across the biological cell membranes. Specifically, the ODE model
was derived using different expansions of the PDE solution in each compartment,
matching them via the interface conditions.
A number of practical improvements can be suggested as perspectives. When the
tissue is composed of elongated structures (e.g., axons), the parameters estimation
fails if the gradient is close to the axis of these structures. The quality of the pa-
rameters estimation can be improved by acquiring signals in various directions and
then fitting all these signals to the appropriate ODE models. To some extent, this is
similar to acquisition of effective diffusion tensors for anisotropic diffusion when one
needs many gradient directions to get accurate results. Another promising perspec-
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tive consists in studying relationships between different parameters of the model.
For instance, the effective diffusion coefficient in the extra-cellular compartment
and the residence times can be explicitly related to volume fractions, at least for
simple shapes. Accounting for such relations as additional constraints in the least
square problem would improve the parameters estimation by reducing the search
region in the parameters space. Yet another possibility is to go beyond effective
diffusion coefficients by considering higher-order cumulants such as the effective
diffusion kurtosis. This quantity appears in front of the second-order term in the
Taylor series expansion of the logarithm of the dMRI signal over b-values. It has
been already argued that the kurtosis may be more sensitive to certain microstruc-
ture alterations. However, theoretical understanding of the relationship between the
kurtosis and the tissue microstructure is still poor. Finding relations between the
kurtosis and model parameters and their inclusion into the least square estimation
present an interesting perspective of the present study.
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