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Abstract  

This work is based on the frame of the French ORIGIN project and intended to explore the 
Home Area Network using the most recent Wi-Fi standard at 60 GHz with the goal to present a 
solution for the upcoming days where MultiGbit/s wireless communication will be required. The 
ORIGIN solution is characterized by the complementary action of two technologies: 60 GHz 
Wireless communication and Radio-over-Fiber (RoF) infrastructure. The project pretends to 
propose a real prototype based on RoF transducers and a Multipoint-to-Multipoint architecture 
to cover the entire house. This thesis covers from the single optoelectronic chip devices until the 
system implementation and the final demonstrator. The light source and the photodetector 
choice were very important since it dictated the RoF transducer architecture. Our choice was on 
850 nm multimode devices (GaAs VCSEL and SiGe HPT) which allow relaxed constraints on the 
optical packaging and, therefore, low cost solutions. In terms of performances those devices are 
limited in a few tens of Gigahertz of bandwidth which was the reason for the intermediate 
frequency (IF) architecture. This thesis work addressed the electrical and optical 
interconnection of the optoelectronic chip devices. It explored the integration of hybrid 
amplification stages and passive networks within optoelectronic receivers and emitters. The 
optical packaging issues were addressed through a conventional coupling technique using a ball 
lens first. The die device performances were evaluated and compared with a packaged module in 
terms of frequency response, noise and nonlinearities. Since performances are usually measured 
as link performances we proposed a definition of the Opto-microwave figures of merit, such as 
Opto-microwave gain, noise, nonlinearities and EVM. They are presented and integrated into 
behavioral models, allowing both the individual performances extraction and system design. 
The integration of the RoF module in the system is the final part of this thesis. The 
performances were measured and simulated at each integration step. The final demonstrator 
based on the multipoint-to-multipoint architecture was implemented using an optoelectronic 
central node for the signal repartition and the Green Box for signal controlling. Real-time 
bidirectional transmission between two commercial WirelessHD devices at ~3 Gbit/s was 
validated. In a final section directions to improve VCSEL and SiGe HPT are explored. 25 GHz 
analogue VCSELs are explored with a focus on their dimensions, improved access and the 
potential of a suited matching approach. A novel collective and passive optical coupling 
technology is also proposed for both VCSEL and top illuminated detectors that couple smaller 
and faster devices. 

Keywords: Radio-over-Fiber, VCSEL, HPT, Optical Interconections, Opto-Microwave 
Modelling, 60 GHz wireless comunication. 
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Résumé  

Cette thèse s’inscrit dans le cadre du projet français FUI8-ORIGIN qui vise à développer les 
performances des réseaux domestiques en apportant des solutions sans multi-Gigabits 
faiblement radiatives, économes et pérennes. La solution ORIGIN est caractérisée par l'action 
complémentaire de deux technologies: les communications sans fil 60 GHz et la mise en place 
d’une infrastructure Radio-sur-Fibre (RoF). Cette thèse porte sur le développement des 
composants et modules optoélectroniques (GaAs VCSEL et SiGe HPT) bas couts. Le travail 
implique de couvrir de la puce semi-conducteur au modules et jusqu’au système intégré dans le 
démonstrateur. Les puces sélectionnées sont caractérisées de manière précise en développant 
des bancs de mesures adaptées aux applications analogiques RoF. Des substrats 
d’interconnexions sont développés pour permettre le couplage optique et l’interconnexion 
électrique des puces et ainsi la création de modules. Ce développement est poussé de façon à 
intégrer de façon hybride des étages d’amplification en aval et amont des composants optiques, 
ainsi que des étages d’adaptations passifs. Les performances RoF ont été évaluées et comparées 
en termes de réponse en fréquence, de bruit et de nonlinéarités. Nous avons poursuivi 
l’approche actuelle des grandeurs optique-microondes qui chacune permette d’isoler et 
caractériser la performance individuelle des composants optiques ou optoélectroniques pris 
individuellement. Ces grandeurs sont présentées puis exploitées dans un développement de 
modèle comportemental, permettant à la fois l'extraction des performances individuelles des 
composants et le design de l’ensemble du système. Un dimensionnement complet de 
l’infrastructure RoF pour le démonstrateur est ensuite mené, intégrant et dimensionnant le 
bilan de liaison global à partir modules et cartes réalisés et développés par les partenaires du 
projet. Le module transmetteur Radio-sur-Fibre (TRoF) est ainsi conçu, assemblé et testé. Le 
démonstrateur final basé sur l'architecture multipoint-à-multipoint a été réalisée à l'aide d'un 
nœud central optoélectronique pour la répartition du signal et d’une Green Box permettant le 
contrôle de l’allumage des différentes pièces, et ainsi la rationalisation du rayonnement et de la 
consommation du système. Une transmission bidirectionnelle en temps réel entre deux 
dispositifs de WirelessHD commerciaux à ~3 Gbit/s a été démontrée. Dans une dernière section 
de cette thèse, des directions pour améliorer les lasers à cavité émettant par la surface (VCSEL) 
et les phototransistors SiGe sont explorées. Des VCSEL analogiques avec une bande passante de 
plus de 25 GHz sont développés avec la société Philips ULM Photonics et mesurés. Une nouvelle 
technologie de couplage optique collective et passive est enfin proposée. 

Mots clés : Radio-sur-Fibre, VCSEL, HPT, Interconnexions optiques, Modélisation optique 
microonde, Communications sans fil 60 GHz. 
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This chapter intends to present an overview of the work for this dissertation, exposing the 
subject, describing its objectives and finally gives the presentation of the manuscript structure. 

I.A. Subject and Context 

MultiGbit/s wireless technology and Home Area Network (HAN) will be part of our days in 
the future. The increasing of new services and wireless technologies leads us towards more and 
more data rates reaching Gbit/s. Home services using High Definition (HD) becomes reality in 
our days and one example where multiGbit/s are required. Domestic cloud approach needs to 
be considered with the using of all the services and wireless devices in anyplace in the house 
simultaneously in a ubiquitous manner. 

The conventional, and most popular, Wi-Fi (Wireless Fidelity) based on the standard 
IEEE 802.11 using centimetric-wave frequency band range allows data rates up to 600 Mbit/s. 
Consequently the new solution reaching higher data rates is essential to develop for the future. 
One solution is the use of millimeter-wave frequency band, from 57 to 66 GHz. Different radio 
standards in the millimeter-wave band were already developed and most recently in January 
2013 the IEEE 802.11ad Wi-Fi technology. Higher bandwidth channels are available getting 
data rates up to 7 Gbit/s [16]. At this frequency band, high oxygen absorption leads to short 
range communication of a few meters. This characteristic is very attractive for indoor networks 
in terms of privacy since the signal does not cross walls. Because of the single room coverage, an 
additional network is required to transpose multiGbit/s signal to different rooms. Introducing 
the Radio-over-Fiber (RoF) technology appears very promising for such high data rates. Optical 
fiber has become the most interesting communication channel mainly for the low attenuation 
and its very high frequency bandwidth. The challenge is here on the optoelectronic devices 
where high performances and low costs are fundamental requirements.  

At the end a Wi-Fi 60 GHz for multiGbit/s wireless indoor network based on the RoF 
technology is believed to be one of the future solutions for people’s needs. In 2016 more than 
40 % of the total Wi-Fi market should be using the 60 GHz band frequency [17]. Development 
of a RoF infrastructure is then considered to be crucial in the few upcoming years. 



 

2  Chapter I - Introduction 

2 

I.B. Objectives of the thesis 

This PhD subject is proposed in the frame of a national project dedicated to the 
development of optoelectronics and photonics within the RoF infrastructure domain for Ultra-
WideBand (UWB) and 60 GHz wireless communications. The project name is ORIGIN (Optical 
Radio Infrastructure for Gbit/s Indoor Network). The main objective of our work is the 
technology development of a low cost RoF transceiver for wireless home network at high data 
rates (10 Gbit/s) and the contribution to the whole system design. As we can see in Figure I-1, a 
generic RoF transceiver is composed of simple modules which help us to define our work 
objectives. 

Figure I-1 - Radio-over-Fiber transceiver modules 

The core of the RoF transceiver is composed of active devices in the Electrical-to-Optical 
(E/O) emitter and the Optical-to-Electrical (O/E) receiver. The objectives of this PhD work on 
these modules are:  

 E/O emitter characterization and performance optimization. GaAs-based multimode 
850 nm Vertical Cavity Surface Emitting Laser (VCSEL) is considered for its low cost 
and performances. Some degrees of freedom in their optimization are the layout 
design in the optical window aperture diameter and the bias operation conditions. 
Their measurement results will feed a behavior model that we developed to include 
their frequency response, nonlinearities and noise behavior. 

 O/E receiver characterization and performance optimization. Three photodetectors 
are considered: New Focus InGaAs-based PiN Photodiode used as the reference for 
E/O emitters characterizations; a photo receiver from Finisar with integrated Trans-
Impedance Amplifier (TIA); and finally a home-made SiGe-based 850 nm 
Heterojunction Bipolar Phototransistor (HPT) receiver. The last one will be explored 
by varying the physical layout design, the technology configuration, the optical 
window aperture diameter and the bias operation condition.  

Both E/O and O/E devices have an important impact on the optical link system 
performance where a simulation tool was used to identify their individual influence. A model 
that is compatible with typical microwave system simulator (ADS Agilent for instance) was 
developed together with a new definition of Opto-microwave figures of merit. This model is 
helpful to understand the individual impact of the devices on the system link measurements. An 
experimental setup was developed that produced accurate data measurements of static 
characteristic, dynamic response and noise behavior. All these data was used to model each 
device. Then system measurement (Error-Vector-Magnitude (EVM) for instance) was 
performed that validated system simulation predictions. Models even allowed further device 
parameter extraction. 
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Development of the electrical interfaces was considered for dies integration and was 
optimized in terms of device performances. Passive reactive matching networks were developed 
to reduce the reflection losses and improve the system bandwidth, its gain and noise. SiGe 
Integrated Circuits (IC) design for both sides of the link such as a Power Amplifier (PA) and Low 
Noise Amplifier (LNA) were designed and integrated.  

Optical interface, which provides the light coupling between the E/O emitter and the fiber 
as between the fiber and the O/E detector, was adressed on two fronts: mechanical receptacle 
using a ball lens; optical waveguide based in polymer. The optical waveguide structure design 
and simulations was considered as the integration method. 

Packaging and Integration of the multimode optoelectronic devices are the next objectives: 
from the simple VCSEL die to a Transmitter Optical Sub-Assembly (TOSA) module; from the 
HPT die to a Receiver Optical Sub-Assembly (ROSA) module. Here again, both 
characterizations and simulations were taken into account comparing with die performances 
and reference commercial devices. The final step is the integration of those modules in the RoF 
transducer (TRoF) to be used in the multiGbit/s wireless communication system. The 
integration and system performance characterization of the full system at the scale of a four 
room house were the final objectives in order to do a final demonstrator using real data 
communications. 

I.C. Dissertation Structure 

This manuscript is organized according to the following structure. The current chapter is an 
introduction to this dissertation manuscript.  

 
Chapter II exposes the problematic of the multiGbit/s wireless communication system 

within the Home Area Network context. The state-of-the-art found nowadays will be presented, 
including the general solution proposed by the ORIGIN project using the 60 GHz wireless 
communication through the RoF technology infrastructure. The ORIGIN architecture concept is 
considered exploring the Optical Multipoint-to-Multipoint architecture with either an Electrical 
multiplexing (MME) or Optical multiplexing (MMO) and comparing their advantages and 
drawbacks of the RoF system. Optoelectronic devices will be given a special focus since it is the 
main context of our work with the target of low cost solutions. Basic principles will be 
considered, including the state-of-the-art of such GaAs-based VCSEL and SiGe-based 
Heterojunction Phototransistors technologies. The last point will be the presentation of the 
three Radio-over-Fiber Transducer generations which are predicted by the evolution on the 
optoelectronic device solutions. 

 
Chapter III considers the on wafer VCSEL characterization and the careful preparation of 

experimental setups. A reference photodetector that has a flat frequency and very linear 
behavior is used in order to extract the laser performances. A complete link characterization will 
be considered including static performance, dynamic response, noise behavior and the 
nonlinearities. System performance assessment such as the Spurious Free Dynamic Range 
(SFDR) and EVM with in the context of 60 GHz standards will be considered too. Each 
experimental setup will be presented as the eventual calibration procedures regarding the 
measurement accuracy. 
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In Chapter IV, the impact of individual optoelectronic devices on the optical link system 
performance will be explored. The extraction of the device parameters is important which 
allows the system modeling and optimization. Here the optoelectronic device parameters 
modeling will require the definition of Opto-microwave Figures of Merit that will be presented 
and developed further in this section. A behavioral model for each of the link devices will be 
created using the Symbolically Defined Device (SDD) tool from the ADS software. The model 
simulation will be compared and validated with measurements operated in the previous 
chapter.  

 
Chapter V is dedicated to the final demonstrator developed within the ORIGIN project. The 

first section focuses on the Optical Sub-Assembly modules (TOSA and ROSA) development in 
terms of electrical and optical interconnections. VCSEL and SiGe HPT dies are assembled on an 
interconnecting substrate. RF access and transmission lines are optimized. Passive reactive 
matching networks are prepared and ICs are associated to SiGe HPT to build up a complete 
SiGe based ROSA. The complete VCSEL based TOSA and SiGe based ROSA modules 
performance, are compared to the single die performance. The second section intends to 
evaluate and design the TRoF in terms of the dynamic power budget using 2 configurations – 
SiGe HPT link and Finisar ROSA link. A system link budget is computed and studied to achieve 
the system performance required for different scenarios and architecture topologies. Last 
section presents the final and complete system, including the centimeter-wave Printed Circuit 
Board (PCB), Local Oscillator PCB, power supply boards PCB and the millimeter-wave PCB 
fabricated and assembled with the ORIGIN project partners. A point-to-point link 
communication using 2 TRoFs will be evaluated, optimized and validated by using real live 
multiGbit/s communication data communications. The final step includes the multipoint-to-
multipoint concept using a central node and green box, responsible for the signal distribution 
and energy/radiation saving, respectively. 

 
Chapter VI presents the future developments on the RoF transducers. Two directions are 

pointed: system operating frequency and optical coupling efficiency. The first point explores 
analogue VCSELs performance toward 20 GHz. Through the modification of the layout in terms 
of optical aperture diameter and RF access lines together with the improved vertical stack of 
layers provided by Philips-ULM Photonics. The goal is to study different sizes and be able to 
choose one device to be the candidate for the next generation of TOSA module. The second 
point is optical coupling where the ball lens optical coupling technique will be simulated in 
order to compare with measurements. A proposition of a novel optical coupling technique to 
improve the efficiency results in a collective and passive process will be exposed. Both optical 
coupling techniques are compared. 

 
Last chapter summarizes all the work providing conclusions. It presents, also, the main 

contribution of this work and perspectives addressed for future directions. 
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This chapter presents an overview on the evolution of the wireless network systems with a 
focus on the Wi-Fi technology and the arrival of the last standard based on the 60 GHz. It 
introduces the Radio-over-Fiber (RoF) technology, which can complement the 60 GHz wireless 
communication to overcome the short range communication. Both technologies are exposed 
since they are the core of the ORIGIN project. 

The first section presents the evolution of the broadband wireless network systems with 
special attention on the Ultra-Wideband (UWB) wireless system communication and the 
60 GHz wireless system communication. 

The second section introduces the RoF technology covering both optical transmitters and 
receivers. Fundamental of optical sources and detectors suited for the RoF low cost applications 
are covered with a state-of-the-art analysis of VCSELs and specific SiGe phototransistors that 
could potentially replace standard detectors. 

The last section presents the ORIGIN project in terms of objectives, architecture and 
describes the different RoF generation evolutions that are developed. 
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II.A. Broadband Wireless Networks Evolution 

Wireless communication technology is becoming a very hot topic today. Massive utilization 
is applied in different areas worldwide. Mobile communication is one of the best examples since 
by the end of 2013 the number of mobile subscriptions is expected to be the same as the total 
world population of seven billions people [18]. Wireless data communications for internet 
access is another example where we get a tremendous increase to 39 % of the world population 
connected by the end of 2013 [18]. Wireless Local Area Networks (WLAN) become very popular, 
moving more and more into Home Area Networks (HAN) with the increase of connected 
wireless devices and services.  
Table II.1 - Evolution of the WLAN (IEEE 802.11) Standard at the physical layer (PHY) [19] 

Year Standard Frequency Indoor 
Range Data rate No. 

channels 
Modulation 

Scheme 
Channel 

Bandwidth 

2013 802.11ad 57-66 GHz 10 m 7 Gbit/s 4 16-QAM* 2 GHz 

2012 802.11ac 5GHz 30 m 1.3 Gbit/s 5 256-QAM* 80 MHz 

2006 802.11n 2.4/5 GHz 70 m 600 Mbit/s 22 64-QAM* 20/40 MHz 

2003 802.11g 2.4 GHz 38 m 54 Mbit/s 
11 CCK and 

64-QAM* 

20 MHz 

1999 802.11a 5 GHz 35 m 54 Mbit/s  64-QAM* 20 MHz 

1999 802.11b 2.4 GHz 35 m 11 Mbit/s 11 CCK 20 MHz 

1997 802.11 2.4 GHz 20 m 2 Mbit/s  DSSS 20 MHz 

*OFDM signals 

The most popular and used wireless protocol technology for WLAN products is the Wi-Fi 
(Wireless Fidelity) based on the standard IEEE 802.11. Most of the wireless products available 
on the market are based on this technology and are commonly integrated in laptops and 
Smartphone. High data rates are needed to face the tremendous increase of the connected 
wireless devices and applications such as wireless sensor networks, domotics, teleconferences, 
telemedicine, HD-TV, etc. The IEEE 802.11 standard is continuously being updated since it was 
born in 1997, to satisfy the user data rate demand which increases every year. Table II.1 shows 
the standard evolution in terms of frequency, bandwidth, range distance and data rates. The 
IEEE 802.11n standard is currently widely used based on the 2.4 GHz and 5 GHz unlicensed 
ISM band. Theoretically date rates up to 600 Mbit/s over a 40 MHz bandwidth can be achieved. 
But the users demand for the future HAN, where large increase of wireless devices connected to 
numerous services requires multiGigabit/s to permit a high number of high data rate 
connections simultaneously. The new 802.11ad, 60 GHz Wi-Fi standard that was successfully 
published in January 2013 [20] answers such needs. This standard is based on the combination 
of Multiple-input Multiple-Output (MIMO) technology and of the Orthogonal Frequency-
Division Multiplexing (OFDM) modulation scheme.  

The MIMO technique is a wireless technology based on multiple transmitters and receivers, 
working simultaneously to increase the data transfer at the same time. It is used in modern 
wireless standards, including in IEEE 802.11 (n, ad), 3GPP LTE, and mobile WiMAX systems 
[21]-[23]. MIMO takes advantage of multipath to combine the information from multiple 
signals improving both speed and data integrity.  
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The OFDM is the main modulation currently used in recent standards. It is based on the 
Frequency Division Multiplexing (FDM) and it includes a large number of orthogonal 
subcarriers, each of them uses Quadrature Amplitude Modulation (QAM) or Phased-shift 
Keying (PSK) modulation schemes. Low multipath distortion, high spectral efficiency and 
resiliency to RF interference are the main benefits of OFDM signals. We get high spectral 
efficiency since the spectral spacing between adjacent subcarriers is minimized by using a base 
of orthogonal functions. In other hand, it is more sensitive to time and frequency 
synchronization errors [24]. Another important disadvantage is the high Peak-to-Average 
Power Ratio (PAPR) which is proportional to the number of subcarriers used for OFDM 
systems. Large PAPR of a system makes the implementation of Digital-to-Analog Converter 
(DAC) and Analog-to-Digital Converter (ADC) extremely difficult. The design of RF amplifier 
also becomes increasingly difficult as the PAPR increases. 

Next subsection introduces the Ultra-Wideband and the 60 GHz wireless communications, 
providing an overview of the fundamentals and state-of-the-art. 

II.A.1. Ultra-Wideband (UWB) wireless communications 

Ultra-wideband (UWB) communication is a very attractive technique with interest in both 
academia and industry in the past few years. It has a high bandwidth and was potentially 
intended for indoor short range and high data rates wireless system applications. In 2002, the 
U.S Federal Communications Commission (FCC) amended the Part 15 rules to allow operation 
of devices incorporating UWB technology with 7.5 GHz unlicensed band in the frequency band 
of 3.1-10.6 GHz [25]-[27]. Two main types of UWB technology exist [28]: the UWB multiband 
OFDM (MB-OFDM) and the UWB impulse radio (IR-UWB). The impulse radio UWB is 
characterized by transmitting ultra low power radio signal with very short electrical pulses on 
the order of one nanosecond. The total emitted power over several Gigahertz of bandwidth is a 
fraction of a milliwatt, due to its low Equivalent Isotropically Radiated Power (EIRP) emission 
limit (the power spectral density emission to -41.3 dBm/MHz, means -14 dBm in a band of 
528MHz), an UWB signal “behaves as noise” to other radio systems, which results in a low 
probability of interception and detection. Besides, an UWB signal has excellent multipath 
immunity and less susceptibility to interferences from other radios, due to its wide bandwidth 
nature. Since the information is encoded as short pulses the up and down conversions can be 
omitted. This results in substantial reduction in the use of power consumption and possibility of 
simplifying the complexity of the transceiver architectures. The UWB multiband OFDM is 
characterized by transmitting OFDM symbols successively over several radio bands in order to 
reduce Inter-Symbol Interferences (ISI) and to exploit diversity. Nevertheless, this technique is 
complex and costly compared to IR-UWB.  

Summary of UWB communication advantages is as follows: 
 High Data Rates: up to 500 Mbit/s; 
 Low Power Consumption; 
 Low interference, immunity to multipath propagation; 
 Less complex transceiver hardware and low cost. 
 Summary of Disadvantages: 
 Short range communication, up to 10 m; 
 The spectrum mask is not harmonized worldwide;  
 Constraints on the emitted power. 
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II.A.2. 60 GHz Wireless communications 

Recently the millimeter-wave band for wireless communication technology got a strong 
interest as a solution for the requirements of bandwidth demands which move quickly towards 
the multiGigabit/s wireless communications. Lately different consortiums moved towards the 
60 GHz wireless systems since it is believed to be the future of the broadband wireless network 
exceeding the Gigabit/s. 60 GHz wireless standards have been developed with the dedicated 
ISM band for high data rate Wireless Personal Area Networks (WPANs) like the ECMA-387 [29] 
in 2008 and 802.15.3c [30] in 2009. The 802.15.3c standard was supported by the Wireless 
Gigabit Alliance (WiGig) consortium [31] based on the 60 GHz unlicensed spectrum. The 
internationally available unlicensed spectrum surrounding the 60 GHz carrier frequency got 
particular interest due to its propagation characteristics and the 9 GHz available bandwidth. 
This spectrum is divided into 4 channels of 2.16 GHz as seen in Figure II-1, enabling up to 5-
6 Gbps per channel.  

 
Figure II-1 – IEEE 802.11ad standard Millimeter-wave band spectrum allocation in Europe 

(ISM 60 GHz mm-wave band) 

The standard IEEE 802.11ad announced by WiGig consortium in 2012 came in this 
direction, presenting a maximum throughput of up to 7 Gbit/s [16]. This new generation of 
60 GHz Wi-Fi systems are intended to be massively introduced in the next years, keeping the 
compatibility with the current 2.4 and 5 GHz Wi-Fi solutions. The performance characteristics 
of the all three 60 GHz standards are gathered in Table II.2 below.  

At 60 GHz, signal attenuation is high because of the oxygen absorption peak, which leads to 
a short covered range. Nevertheless, this high attenuation reduces the signal to a level that will 
not interfere with other 60 GHz links operating in the same geographic vicinity. Therefore, 
signals cannot travel far beyond their intended range, which gives another important 
characteristic: high security level communication. Another important parameter is the antenna 
directivity. At such high frequency, highly directional antennas with narrow beam associated to 
low interferences and high security are easily enabled as compared to other frequency signals in 
cm-waveband (2.4 and 5 GHz). Moreover, the small size of the antennas at this frequency leads 
to more compact radio systems that could be integrated in Smartphones or laptops. These radio 
systems are based on OFDM modulation and MIMO antenna systems. 
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Table II.2 - Millimeter-wave band standard parameters 

Parameter 
IEEE 802.15.3c 

HSI mode 
ECMA-387 

Type A 
IEEE 802.11ad 

OFDM PHY 
Occupied bandwidth 1.815 GHz ~1.904 GHz 1.815 GHz 

Sampling rate 2.640 GSa/s 2.592 GSa/s 2.640 GSa/s 

Number of subcarriers 512 

FFT period 193.9 ns 197.53 ns 193.9 ns 

Cyclic Prefix duration 24.24 ns 24.70 ns 48.5 ns 

Cyclic Prefix length 64 64 128 

OFDM symbol duration 218.18 ns 222.23 ns 242.4 ns 

Number of data subcarriers 336 360 336 

Number of pilots subcarriers 16 

Number of DC subcarriers 3 

Number of null subcarriers 141 133 0 

Number of unused subcarriers 16 0 157 

Modulation 
QPSK; 16/64-

QAM, 
QPSK, 16-

QAM 
SQPSK, QPSK, 
16/64-QAM 

 

Beamforming is one technique to provide the best wireless transmission channel between 
the emitter and the receiver. It is important to adjust automatically the radiated beam pattern 
from the emitter according to the receiver position and its environment. Even with a promising 
future on short range wireless application, satisfying the requirements of bandwidth demands, 
there is still a lot of work to do and many challenges to overcome. The high attenuation and 
directional nature of the 60 GHz signal propagation can become a difficulty for some 
applications. Yet beamforming is restricted to fixed equipments due to the size of the antenna 
array and to the transceivers consumption. 

The millimeter-wave band power regulations and available spectrum of different regions of 
the world is given in Table II.3.  

Table II.3 - Worldwide power regulation on the millimeter-wave band [32]-[34] 

Region Unlicensed band Max TX power EIRP (dBm) Antenna Gain 
USA 

57.05-64 GHz 27 dBm 
40/43  

(average)/(peak) 
- 

Canada 

South Korea 57-64 GHz 10 dBm 27  - 

Europe 57-66 GHz 13 dBm 57 (peak) 37 dBi 

Australia 59.04-62.9 GHz 
10 dBm 57 

- 

Japan 59-66 GHz 47dBi (max) 
 

The power regulations are given as the conventional Equivalent Isotropically Radiated 
Power (EIRP). It corresponds to the product (in linear) of transmitter power and the antenna 
gain in a given direction relative to an isotropic antenna of a radio transmitter. The losses 
between the power transmitter and the antenna can be added as well. 

 ( ) ( )OUT
TX antennaEIRP dBi P Losses Gain= − +   Equation Section 2(2.1) 

On this thesis EIRP of 27 dBm is considered as a low level limit since it is the most 
restrictive value founded (South Korean) around the world. Also, we consider the 
IEEE 802.11ad standard in characterization and modeling. 
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II.B. Radio-over-Fiber technology 

Optical fiber communication systems, which include optical fiber transmission channels and 
optoelectronic devices, have been developed worldwide since 1980. The use of optical fiber as a 
transmission channel becomes the solution with the increase of data rates for long and short 
distances. The traditional copper pair cables are still used on the front-end for short distances 
and low data rates, which becomes obsolete for the multiGbit/s operation. Optical Fiber can be 
considered for the future because of its several advantages:  

 Abundant material: Silica is the main material used on the optical fiber and it is 
abundant on Earth and not expensive. The cost mainly comes from the 
manufacturing since it is very small and the refractive index value of the different 
layer needs to be very precise. Also the need to control the purity of silica avoiding 
contaminants, such as OH+ ion. 

 Low transmission attenuation and wide bandwidth: Optical Fiber has a very low 
transmission attenuation, less than 3 dB/Km at 850 nm and 0.2 dB/km at 1550 nm 
compared to 200-500 dB/km for copper and coaxial cables (depending on the 
electrical carrier frequency), and also extremely high bandwidth. 

 Size and weight: because of its few hundreds of microns in diameter (hair-sized), the 
weight is low. This is important compared to the conventional copper cables 
becoming very heavy for certain applications used in aircraft, satellites, ships, etc. 

 Electromagnetic interferences: The optical fiber is immune to electromagnetic 
interference. This characteristic eliminates the crosstalk between transmission lines. 
Hence, it has particular interest in electrically noisy environment. 

 Signal security: Since the signal is well confined within the waveguide core, the 
signal is protected by the optical fiber itself. This makes it very attractive in military 
and governmental applications as well. 

Optical fiber is already massively used for transmission of data from high distances 
intercities or even transatlantic communications. The future is going towards the individual 
home with fiber-to-the-home (FTTH) or fiber-to-the-building (FTTB) topologies. The high 
bandwidth provided by the optical fiber makes it a good choice for: 

-Transmitting broadband signals such as television and radio high-definition broadcasting.  
-Mobile cellular network with Pico-cell approach [35] 
-Aerospace and military applications 
-The more recent wireless LANs exceeding multigigabit/s data rates. 
In a Radio-over-Fiber (RoF) system, the transmitted signal is directly the radio signal, 

including its RF modulated carrier frequency. Both microelectronics and photonics circuits are 
part of the microwave photonics systems. The structure of a RoF system is illustrated in Figure 
II-2.  

RoF can be sub-divided in three categories:  
 RF-over-Fiber: the radio frequency signal (typically higher than 10 GHz) directly 

modulates the optical carrier transmitted over the fiber. Up/down electrical 
conversion circuits are not required, but high speed optoelectronic devices are 
needed (ex: external modulators or directly modulated lasers), which could be a 
challenge in terms of cost and availability at very high frequency. The major 
advantages are the design simplicity and low consumption. 

 IF-over-Fiber: the RF signal is transposed to an Intermediate Frequency (typically 
lower than 10 GHz) before modulating the light. The system becomes more relaxed 
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in terms of the speed of optoelectronic devices and therefore its cost. However, the 
system is more complex with up/down conversion steps, adding extra losses, noise, 
nonlinearities and consumption which can be a challenge. 

 Baseband-over-fiber: the radio baseband IQ modulated signal is kept baseband and 
directly transmitted through the fiber. At the receiver end, the signal is upconverted 
to the RF carrier frequency. 

 

 
Figure II-2 - Radio-over-Fiber technology link. Negative frequencies are not shown. 

The 60 GHz Wi-Fi has a great potential for short distance multiGbit/s wireless 
communications using the concept of micro-cells or Pico-cells inside home. The RoF technology 
can be a solution for connecting all the rooms each other with multiGbit/s data rate operation. 
In this way, RF signals are propagated from different remote radio cells to the different rooms 
of the whole building, using optical links as presented in Figure II-19. 

 
The following sections are dedicated to the VCSEL and SiGe photodetector. The first 

subsection presents the VCSEL as a low cost optical transmitter source to be integrated into the 
RoF system. It covers the basic principles, state-of-the-art, speed limitations and technology 
selected for further study. 

The second subsection introduces the SiGe Heterojunction Phototransistor (HPT) as a 
detector to be integrated into the RoF system. It covers the basic principles, state-of-the-art and 
the technology.  
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II.B.1. VCSEL: a low cost optical transmitter 

Differences between VCSELs and the Edge Emitting lasers (EEL) are shown in Figure II-3. 
The main difference is the optical aperture which is on the top for a VCSEL and on the side edge 
for an EEL. Also an EEL has a longer active layer generating higher optical power. Nevertheless, 
the reduced active layer of the VCSELs induces a lower threshold current and higher speed 
operation. The small lasing cavity of the VCSEL, shown in Figure II-3 a), requires mirrors with 
very high reflectivity (more than 99 %).  

Figure II-3 – Physical structure differences between VCSEL and EEL 

It is clear that VCSELs are more efficient given: low power consumption, single mode 
operation (SM), and high optical efficiency. The main advantage of the EELs is their high optical 
power.  

The VCSELs are more complex semiconductor laser devices than the EEL, however, 
numerous advantages made it the first choice in many applications. As a vertical emission laser, 
it gives the capability of on wafer level testability and 2-D array production which reduces the 
cost. Circular and low divergent optical beam facilitates the alignment and packaging into the 
optical fiber. The low volume of the optical cavity reached also allows a single mode operation 
and high speed operation.  

 
The following parts of the subsection consider the VCSEL: theory and fundamentals of 

operation; lasing conditions, radiation efficiency definition, state-of-the-art, speed limitations; 
selected technology for further investigation. This VCSEL principle work is based on the 
following literature: [37]-[97]. 

II.B.1.1 Theoretical fundamentals 

The conventional structure is detailed further in Figure II-4. Three sections: Top Distributed 
Bragg Reflector (DBR), Bottom DBR and the lasing cavity placed between the 2 mirrors. The 
typical DBR consists of an alternating sequence of high and low refractive layer's index of a 
quarter wavelength thickness. These mirrors provide optical feedback for the standing wave, 
which is amplified inside the active layer along the longitudinal direction. 
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Figure II-4 – VCSEL lasing cavity details: a) material layer structure; b) Energy band 

diagram 

Looking in detail inside the lasing cavity, we distinguish two regions: cladding layers and the 
active layer. In conventional VCSELs a barrier layer is added to the cladding layer as we can see 
in Figure II-4. It is sometimes called as separate-confinement heterostructure layer. The 
cladding and barrier layers achieve electrical and optical confinement as is illustrated in 
electron energy diagram Figure II-4 b). They are both fabricated in the same material, only 
doping is different introducing a difference refractive index. For the active layer different 
configurations can be used. In order to minimize the threshold current density a QW structure 
is used as the active layer instead of a bulk active layer. The advantage is the huge enhancement 
in differential gain, which is directly related to the threshold current density. The drawback is 
the reduction of the longitudinal confinement factor because of the use of Multiple Quantum 
Wells (MQW). To simplify the understanding, the illustration is made with single QW. The 
choice of the different materials of the lasing cavity is very important. A special attention is 
given to the lattice matching and the band gap energy for the reliability and wavelength 
operation, respectively. Common laser materials are GaAs, AlGaAs, InGaAs and InGaAsP 
depending upon the desired lasing wavelength. For operation in the 800 to 900 nm spectrum 
the principal material used is the ternary alloy Ga1-xAlxAs. The ratio x of aluminum arsenide to 
gallium arsenide determines the band gap of the alloy, and so the wavelength of the peak 
emitted radiation. InGaP, AlGaAs, GaAs, InGaAs, and InGaAsP are appropriate materials for 
lasers emitting at 650, 780, 850, 980, and 1300 nm, respectively. The stimulated emission in 
the QW occurs after the population inversion occurs, which is made possible by the carrier 
injection with an external pumping as we can see in the electron diagram.  

II.B.1.2 Lasing Conditions 

The Lasing threshold is the condition at which light amplification equals the total losses 
within the laser cavity. In a Fabry-Perot laser, at the lasing threshold a steady-state oscillation 
takes place and the magnitude and phase of the returned wave must be equal to those of the 
original wave which gives the follow round trip condition [37]: 

 2 ( ) ( 2 )1 z th inL g j L
t bR R e eα β⋅ ⋅ Γ ⋅ − − ⋅ ⋅ ⋅= ⋅ ⋅ ⋅   (2.2) 
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where zΓ  is the longitudinal confinement, thg  is the threshold gain, inα  is the cavity internal 

loss, L  is the total cavity length and 2 nβ π λ=  the phase propagation constant. tR and bR  are 

the top and bottom mirror reflection coefficients, respectively. From the lasing threshold state 
Eq. (2.2) we extract the lasing condition in terms of the amplitude and the phase. The lasing 
amplitude condition can be written as: 

 
1 1ln

2z th T in
t b

g
L R R

α α
 

Γ ⋅ ≥ = −  ⋅ ⋅ 
 (2.3) 

where it gives the minimum cavity gain coefficient, necessary to overcome the total cavity 
losses. The mode which satisfies the Eq. (2.3) reaches threshold first where more than one mode 
can be excited. The round-trip phase condition of longitudinal mode wavelength can be 
obtained from the imaginary part of Eq. (2.2) given by: 

 2 2
2m
m cL m or

n L
β π υ υ ⋅

⋅ ⋅ = ⋅ ⋅ = =
⋅ ⋅

 (2.4) 

where m is an integer and n is the effective refractive index. The longitudinal cavity modes can 
be seen as different optical frequencies in which the light beam forms a standing wave. Figure 
II-5 shows two longitudinal modes corresponding to two standing waves at different 
frequencies. The output beam signal is given by 2 modes travelling in the same direction. 

 
Figure II-5 – Illustration of two longitudinal operation modes propagating inside the 

cavity 

The Fabry-Perot type face emitting laser uses cleaved facets as partial reflecting mirrors 
which can be assumed to be wavelength independent. As such resonance wavelength is only 
determined by the refractive index of laser cavity.  

However on VCSELs, the phase of the DBRs influences the resonance wavelength too. A 
simple expression to estimate the longitudinal mode spacing of the VCSELs (assuming that the 
phase of the mirrors is independent of wavelength) is: 

 
2

2m n L
λλ∆ =
⋅ ⋅

 (2.5) 

If we consider the case of a VCSEL operating at λ=850 nm, L=1.2 µm and n=3.6 we obtain mλ∆

= 84 nm which is of the same order of magnitude as the bandwidth of the optical gain spectrum. 
Therefore, the single longitudinal mode operation is favorable to VCSELs contrary to the edge 
emitting lasers. But it is important to notice that, depending on the lateral size of the VCSEL, 
several transverse modes can oscillate simultaneously.  

Longitudinal modes imply light travelling on the same path but at different speeds, in other 
side, transversal modes got slightly different optical paths as depicted in Figure II-6. The output 
beam signal is given by 2 modes travelling in different directions. Each transverse mode 

Amplifying Medium
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travelling a precise path can also creates different longitudinal modes. The lowest order 
transversal operation mode is the TEM00 corresponding to the beam intensity profile of a 
Gaussian function in the transverse direction of the propagation. This is the most desired mode 
since it propagates with the lowest beam divergence and so can be focused to a very small spot. 

 
Figure II-6 – Illustration of two transversal modes propagating inside the cavity 

The modes are bias dependent and the number of transversal modes can increase with 
higher bias current. The most typical second mode of VCSELs is the TEM11 mode which 
provides a doughnut-shaped beam which can be seen on the Figure II-6 where the angled mode 
is rotationally symmetric.  

II.B.1.3 Radiation Efficiency 

This section takes into account the conventional radiation efficiency figures of merit which 
are commonly found in the literature. The current injection efficiency (or internal quantum 
efficiency) indicate the fraction of injected electrons that is converted into photons through 
radiative recombination. Can be written as: 

 [ ]% rr rr
i

tot rr nr

R Rη
R R R

= =
+

 (2.6) 

where rrR  is the radiative recombination rate (related to the stimulated and spontaneous 
emission - stim sponR R+ ), nrR  is the non-radiative recombination rate and totR  is the total 

recombination rate. Non-radiative recombinations reduce the internal efficiency by reducing 
the internal electron-holes pairs which emit light. The LEDs are lead by spontaneous emission 
where we can neglect stimR . Since sponR  has the same magnitude as the nrR , the iη is 

approximately 50 %. In the case of lasers, as stimulated emission ( ) takes place, the 

internal efficiency goes up to 100 %. 
The differential quantum efficiency is defined as the ratio of the increase in light intensity to 

the increase in injection current. It characterizes the percentage of generated coherent light that 
is available above threshold dη . It is defined as the number of photons emitted outward per 

injected carrier. It is given as: 

 [ ]%d i
Mirror Lossη η
Total Loss

= ⋅  (2.7) 

Including the mirror losses, dη  can be written as: 
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 (2.8) 

A quantity of practical interest is the slope of the light-current (L–I) curve for thI I> . It is 
known as the Slope Efficiency ( LDS ), or responsivity, and is defined as the ratio of the increase 

in light intensity to the increase in injection current given by: 

 opt
LD d

LD

ΔP hWS ηA ΔI q
υ⋅  = = ⋅    (2.9) 

Above the threshold current thI , the output power increases linearly with driving current I   

 [ ] ( )opt d th
hP W η I I
q
υ⋅

= ⋅ ⋅ −  (2.10) 

where h υ⋅ , q  are the photon energy and the electron charge, respectively. Figure II-7 shows an 

illustration of a typical L-I curve represented by the threshold current and by the slope 
efficiency. At low input current the spontaneous radiation occurs in the typical operation region 
of a LED. The stimulated emission dominates in the lasing region, giving a high and constant 
slope efficiency until the saturation region at high current injection, which is related to the 
thermal effects.  

 
Figure II-7 – Typical laser L-I Curve 

Another quantity of practical interest is the shape of the current-voltage (I–V) curve, 
expecting a current-voltage characteristic of the form, for an ideal device:  

 k sV V R I≈ + ⋅  (2.11) 

where sR dV dI=  is the differential series resistance and kV  the Kink voltage which is related to 
the separation of quasi-Fermi energies that can be approximated by kV h qυ= ⋅ . 

A typical laser radiation figure of merit is the wall-plug efficiency equally known as the 
power conversion efficiency. It is defined as the ratio of coherent light output power and 
electrical input power given by 

 [ ]% opt opt
c 2

s k

P P
η

I V I R + I V
= =

⋅ ⋅ ⋅
  (2.12) 

where V  is the voltage and I   the current applied across the laser diode. Substituting the 

Eq. (2.10) into Eq. (2.12) we get: 
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 (2.13) 

cη increases with the decrease of the threshold current and a value higher than 50 % [43]. 

II.B.1.4 State-of-the-Art 

Many industrial companies, universities and research laboratories have focused their 
activities in high speed VCSELs emitting at different wavelengths. Going from shorter 
wavelengths (850, 980, 1100 nm) to longer ones (1300 and 1550 nm) the technology complexity 
increases as well as the cost. Thereby, in the recent years, the shorter wavelength VCSELs 
become a center of a big interest. Thus we will focus our discussion on wavelengths of 850, 980 
and 1100 nm with a special interest in 850 nm VCSEL. 

The 850 nm VCSELs are the most interesting wavelength for LAN applications and will 
surely play an important role in the future optical communications. Different materials for 
active region can be used and have been reported, including GaAs [46] [49] [56]-
[61] [67] [71] [78] [81]-[82], InGaAs [48], [50]-[51] [66]-[69], [87] and InGaAlAs [70]. New 
concepts in order to increase the VCSEL performance, like the modulation bandwidth, have 
been applied, including optical/electrical confinement techniques: oxide aperture [60] [61], 
proton implantation [50]] [59], Photonic Crystals (PhC) [53] [61] and a few years back double 
oxide aperture [66]-[69].  

Bit rates up to 40 Gbit/s have been reached recently [66] [70] [75] using double oxide 
aperture, with an aperture diameter of 6-9 µm and using InGaAs QW (see Table II.4).  

 
Table II.4 – State of the art for three wavelengths: 850, 980 and 1100 nm 

λ(nm) AUTHORS FEATURES ACHIEVEMENTS 

850 P. Westbergh e al. 
2010 [66] 
Chalmers University of 
Technology 

strained InGaAs QW 
shallow etch (top DBR) 
double oxide aperture 

Ith=400 µA for 7 µm device 
23 GHz bandwidth 
40 Gb/s operation @ 8 mA 
Pout=6.4 mW @ 10 mA 

980 Y.-C Chang et al.  
2007 [65] 
University of California 

BCB  
InGaAs QW 
Deep oxidation layers 
Tapered oxide aperture 
Intracavity 
Bottom-emitting 

Ith=144 µA for 3 µm device 
>20 GHz bandwidth 
35 Gb/s operation @4.4 mA 
Pout=3.1 mW @ 7 mA 

1100 T. Anan et al. 
2007 [96] 
NEC Corporation, NR 
Laboratories 
 

Polyimide 
InGaAs QW 
Ion implantation 
Buried tunnel junction 
Optimized active region 

Ith<1 mA for 6 µm devices 
24 GHz bandwidth 
40 Gb/s operation @ 5 mA 

 

In the case of 980 nm VCSELs active region materials can be GaAs [62], [92] or InGaAs 
[45] [47] [52] [54] [65] [73] [74] [86] [89]-[91]. Bit rates up to 35 Gbit/s have been achieved in 
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the last years [65] using tapered-deep-oxide aperture with an aperture diameter of 3 um and 
using InGaAs QW. 

Lastly for 1100 nm VCSEL devices, the material used is InGaAs [55] [63] [72] [76] [96]. Bit 
rates up to 40 Gbit/s have been achieved [96] recently using tapered-deep-oxide aperture with 
an aperture diameter of 5 µm and InGaAs QW.  

The Figure II-8 shows the slope efficiency evolution on the last years focusing on the short 
wavelength operation VCSELS, comparing the active material most used – GaAs and InGaAs. 
Over the years the slope efficiency increased approaching of 1 W/A for both materials. 

 
Figure II-8 – VCSEL slope efficiency as a function of the last years R2-[45], R3-[46], R4-

[47], R5-[48], R8-[51], R15-[58], R19-[62], R23-[66], R24-[67], R26-[69], R48-[91], R50-

[93], R53-[96] 

We can see in Figure II-9 the threshold current evolution in the last years where it decreases 
quickly to values around 500 µA. It can be explained by the decrease on the size of the devices in 
order to reach high speed operation.  

 
Figure II-9 – VCSEL threshold current as function of the last years focusing on the short 

wavelength range. R2-[45], R3-[46], R4-[47], R5-[48], R6-[49], R8-[51], R9-[52], R13-

[56], R15-[58], R16-[59], R17-[60], R24-[67], R25-[68], R30-[73], R38-[81], R46-[89], 

R48-[91], R49-[92], R50[93]  

We can see in Figure II-10 the efficiency evolution as a function of the device size. 
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Figure II-10 – Differential quantum efficiency as a function of the aperture area size.R2-

[45], R5-[48], R22-[65], R30-[73], R31-[74], R38-[81], R45-[88], R47-[90], R49-[92] 

High differential efficiency can be achieved for small aperture sizes typically around 10 µm2 
which means aperture around 1.5 and 3 µm in terms of diameter. These results were expected 
according to Eq.  (2.7), as small aperture diameter means small total internal losses, the total 
losses are lead by the mirror losses giving a high ηd. Single transverse mode operation requires 
oxide aperture smaller than 4 µm diameter [61] [81]. 

The cut-off frequency of the VCSEL response is shown in Figure II-11 as a function of date in 
years. The tendency is to use InGaAs-QW based VCSELs which provide faster devices up to 
23 GHz (at 850 nm).  

 
Figure II-11 – VCSELs cut-off Frequency as a function of the recent years within the short 

wavelength range focus. R2-[45], R3-[46], R4-[47], R5-[48], R6-[49], R8-[51], R13-[56], 

R15-[58], R17-[60], R19-[62], 20-[63], R23-[66], R26-[69], R30-[73], R53-[96] 

As a synthesis, the recent main improvements in VCSEL technology are: 
 The replacement of the GaAs QWs by the strained InGaAs QWs on the active 

material improving the device performances. It increases the differential gain, which 
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enhances the high-speed performances, and it also, suppresses the dislocation 
motion, improving the reliability. 

 Current and optical confinement can vary applying different technology methods: 
oxide aperture, proton-implanted aperture, etched mesa, buried heterostructure and 
photonic crystals. The technology, which shows better results, is the oxide aperture 
with a double oxide layer approach. It decreases the parasitic capacitances allowing 
high modulation bandwidth reaching more than 20 GHz. 

 It was found an evolution on the mirror (DBR) by the replacement of the 
conventional ternary compound AlGaAs/AlGaAs by the binary compound 
AlAs/AlGaAs. It introduces low thermal resistances and, therefore, reduces the self-
heating effect. 

More recently, 2013, a VCSEL operating at 56.1 and 57 Gbps was reported with a 24 GHz 
bandwidth at 850 nm with an aperture diameter of 7 and 8 µm, [97] and [98] respectively.  

II.B.1.5 Speed Limitations 

The purpose of this section is to present and explain in detail the different VCSEL speed 
limitations. The modulation bandwidth of the VCSEL is attributed to intrinsic and extrinsic 
components, as depicted in Figure II-12.  

 
Figure II-12 – VCSEL functions of the device 

The intrinsic laser is defined as the active region in the aperture area where carriers and 
photons interact to each other through absorption and emission phenomenons. The extrinsic 
laser (or parasitics) is defined between the intrinsic laser and driving circuit. We can split into 
the pad and chip parasitics at the metal contacts.  

The overall modulation frequency response is typically given as a 3rd order system: 
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where on the left side a low pass filter represents the electrical parasitics effect on the access 
lines ( Pf  is the parasitic cutoff frequency). On the right, a second order function models the 

optical behavior of the laser: Rf  is the relaxation oscillation frequency and γ  the damping 

factor. 
Considering the intrinsic laser limitations, the modulation response can be approximated to 

a 2nd order system as: 
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From Eq. (2.14), the relaxation oscillation frequency is the natural oscillation frequency 
between carriers and photons in the laser cavity. It is given by [43]: 

 [ ] i gr
R th

a a

η v a1 1f GHz I I
2π q V V

⋅ ⋅
= ⋅ ⋅ − ∝

⋅
,  (2.16) 

where grv , a , aV  are the group velocity, the differential gain and the active region volume, 

respectively. As shown in Eq. (2.16) it is important to get a higher differential gain and to reduce 
the volume of the active region in order to increase the relaxation resonance frequency. Since 
the relaxation oscillation frequency increases with bias current, a figure of merit to evaluate the 
efficiency of an intrinsic laser modulation is the D-factor that evaluates the slope between the 
relaxation oscillation frequency and the bias current: 

 
( )

r

th

fGHzD
mA I - I

  =  
  (2.17) 

Another important parameter which evaluate the device’s overall high speed performance is 
the Modulation Current Efficiency Factor (MCEF): 

 
( )

3dB

th

fGHzMCEF
mA I - I

  =  
  (2.18) 

It is often given to specify the increase of the 3dB cutoff frequency ( 3dBf ) of the modulation 

transfer function. If the parasitics and damping are small enough 3dBf  can be written as  

 3 , 1.55dB Thermal Rf f≈ ⋅   (2.19) 

The damping factor increases proportionally to the square of Rf : 

 2
p RN fγ ∝ ∝   (2.20) 

The proportionality between γ  and 2
Rf  is the K-factor, which determines the intrinsic 

maximum 3dB frequency (neglecting electrical parasitics) 

 3 ,
22dB dampingf
K
π

≈ ⋅   (2.21) 

The extrinsic laser parasitic (resistances and capacitors) limits the modulation bandwidth 
further because of the low pass RC-filter response made with the device intrinsic component 

 ( ) 1

1
P

H f fj
f

=
+ ⋅

  (2.22) 

where Pf  is the electric cut-off frequency. It has been proved that parasitics play a major role in 

modulation bandwidth limitations. That is why it is of great interest to develop an 
optoelectronic model in particular for the electrical access to optimize parasitics effect.  

II.B.1.6 Selected VCSEL Technology 

The VCSEL technology has been selected for this PhD, based on comparative measurements 
since it achieves high bandwidth, high power and linearity together with low Relative Intensity 
Noise (RIN). Philips Technologie GmbH U-L-M Photonics has been chosen (ULM VCSEL). Its 
platform is based on mesa etching and subsequently laterally oxidized current apertures. 
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General details about the ULM VCSEL technology are extracted from white papers [120]-[123] 
available in [119]: 

 The epitaxial structure used for the fabrication consists of high contrast top- and 
bottom AlGaAs DBR, typically built of 32 and 24 layer pairs, respectively.  

 Three GaAs QWs are embedded in Al0.2Ga0.8As barriers.  
 The mesas are formed by wet chemical or dry etching down to the current 

confinement layer. 
 Polyimide passivation is used. 
 Oxide confinement is realized to achieve a double oxide aperture. 
 Applications targeted with a bandwidth in excess of 10 Gbps  

The chip layout of the 250x350 µm² footprint design is shown in Figure II-13. 

 
Figure II-13 – 10 Gbps VCSEL photography from Philips Technologie GmbH ULM 

Photonics: 8µm aperture diameter [119].  

A technology evolution is explored in Chapter VI, based on GaAs active material with 
epitaxial optimization in the direction to reach 20 Gbps applications. 

II.B.2. Heterojunction Bipolar Phototransistor 

Phototransistors are of main interest as photo-detected current can be amplified in the same 
device. Phototransistor has typical base and collector layers larger than the conventional 
transistor to provide an extra access for the optical input. This transistor is then a 3-ports 
heterojunction bipolar phototransistor (HPT) with two electrical ports and one optical access. 
The HPT can use the 3 electrical terminals corresponding to a 3 terminal (3T) operation, or the 
base connection can be left as an open circuit corresponding to a 2 terminal (2T) operation. The 
general structure of an HPT is depicted in Figure II-14. 
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Figure II-14 - HPT: a) basic principle; b) schematic symbol [99]. 

HPTs are well known as high gain optoelectronic devices and as a low cost and compact 
photodetector. But they do not have a very high frequency response, because of the large 
capacitance associated with the base-collector junction. This junction is designed to be relatively 
large in order to pick up sufficient quantities of light. SiGe HPTs offer a solution to balance this 
effect by reducing the RC limitations through a highly doped base, thus enabling the potential of 
a direct integration of a high speed detector directly into a commercial Silicon IC technology. 

II.B.2.1 State-of-the-Art of the SiGe HPTs 

SiGe layers into photodetectors were first meant to detect light at 1300 nm and 1550 nm 
wavelength through the use of multi-quantum-wells (MQW) structures and super-lattices (SLS). 
However, this approach proved inefficient due to critical thickness limitations and low 
quantization effects into the MQW. Structures were essentially photodiodes, but also MQW 
phototransistors. 

First SiGe HPTs were proposed, however on a different basis: to improve the speed of 
silicon detection at 850 nm using single SiGe layer into the base rather than SiGe MQW in the 
base-collector junction. The latter was indeed proved to slow down photodetection mechanism 
as holes and electrons had to flow up and down across quantum wells energy barriers. The first 
experimental appearances of SiGe HPT ocurred in 2003 [101] [102] and then in [99] with 
theoretical developments previously in [103] [99]. It is important to notice that the approach 
follows a convergence scheme between optics and electronics, providing photodetection into 
commercial available SiGe Heterojunction Bipolar Transistor (HBT) technology, named as a 
core technology to the phototransistors. Two other groups joined the move, with either AMS 
SiGe BiCMOS technology [99] or IBM SiGe BiCMOS technology [107]. 

A group in Austria [108] had in parallel a different approach while using SiGe layers of HBT 
to improve the detection of Silicon photodiode in the blue region to provide high speeds into 
blue-ray DVD. Equally, some combinations of different SiGe strain onto SiGe virtual substrate 
were studied in [109] and photodiode-phototransistor structures were proposed in [110]. A 
previous approach was to take benefit of the SiGe epitaxy to form a PiN integrated into a 
BiCMOS process, developing thereafter a trans-impedance amplifier (TIA) combined with 
SiGe/Si monolithically integrated photodiode [111]. 
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Figure II-15 – SiGe HPT: a) Photograph of the top view with a 10x10 µm² optical window 

in the emitter; b) Sketch of the vertical stack. 

ESYCOM experience on SiGe HPTs started in 1999 by Jean-Luc Polleux, [99] [103] [104]. 
First a SiGe HPT was developed into a commercial Bipolar SiGe process from Atmel GmbH 
[101], now named Telefunken GmbH, and the physical modeling was developed in [102]. Those 
HPTs were developed in the SiGe1RF generation of the Atmel GmbH SiGe technology. The HBT 
was made with an abrupt profile of Germanium into the base, as depicted in Figure II-15. This 
permits to have high Germanium content in the 20-25 % range. It was evaluated to be 23 % by 
means of physical simulations. Therefore, the optical absorption in the base is favored, and from 
an electrical point of view, the HBT can be fast even if large in size. This is useful in making 
phototransistors with large optical windows while being fast. 

II.B.2.2 Development on SiGe HPT: approach and technology 

Previous SiGe HPTs were developed into a SiGE1RF technology of Atmel GmbH. This 
technology was limited to 50 GHz fT/fmax. It is important to move forward to integrate 
phototransistor into faster SiGe HBT technology. 

The Telefunken technology evolution (SiGE2RF) exhibits fT and fmax as high as 80 GHz. This 
makes this technology able to provide circuits working above 10GHz and potentially up to 
60 GHz in some configurations [112]. The minimum critical dimension is controlled by the 
emitter width and is a value of 0.8 µm, spacer included. During the process, those spacers are 
removed and the final smallest emitter size is 0.5 µm. 

As in SiGE1RF technology, the Germanium content is high and might be almost flat across 
the base. However, no information is given in detail, as this is key industrial information for the 
company. 

In the frame of our relation with Telefunken, a Non-Disclosure Agreement (NDA) has been 
signed and no information about the detailed process cross-section can be given. It is however 
important to give the general scheme of the cross-section of the HBT which is given in Figure 
II-16: 
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SIGE2RF is a 0.8μm lithography double-poly heterojunction bipolar technology for wireless 
communication and fiber optics. The minimum emitter size is 0.8x1.4 μm2 for vertical npn HBT 
transistors. This technology has two transistor types: one with a selectively implanted collector 
(SIC) and the other one without. The difference between them is the additional mask required 
by the SIC-transistor, influencing the high frequency performances and static characteristics. 
This option allows transition frequency (fT) to reach the 80 GHz value. SIC transistor reaches up 
to 75-80 GHz, while non-SIC transistor reaches 50 GHz only.  

The design of the phototransistors involves using the layers that are used to design a SiGe 
HBT as specified by the Telefunken SiGe2RF design kit. The main concern to fabricate a 
heterojunction bipolar phototransistor (HPT) was the optical injection and the optimization of 
the cut-off frequency. This work was recently continued in Marc ROSALES, PhD in ESYCOM 
laboratory. Four topology approaches were pursued as sketched in Figure II-17, but only one is 
presented here since it is the one chosen because of its opto-microwave performance. 

 
Figure II-17 – SiGe HPT’s schematic cross-section of the “initial” run1 

This topology is designed by extending the emitter and the emitter polysilicon over the 
optical window. This results in an increase of width of the inherent transistor. 

Different technology options could be realized, but, again, for our study, we focus on a 
specific device which is with squared shape (SQ), with extended emitter, base, collector (xEBC) 
and with etched oxide (eO). The nomenclature used from now on is SQxEBC_eO HPT.  

The work on phototransistor at the ESYCOM lab has been carried out by Marc Rosales and 
Julien Schiellein, both PhD students, focusing their work on HPT layout optimization 

 
Figure II-16 – Schematic cross-section of SiGE2RF technology from Telefunken 
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(respectively in SiGe and InGaAs/InP), optoelectronic integrated circuit integration 
development for RoF applications [1], [139] and phase noise signal regeneration, [115]-[116]. 
The SiGe development will continue on with Zerihun Tegegne, PhD student, going towards the 
millimeter-wave operation of the RoF data communications applications.  

 

Figure II-18 - ESYCOM laboratory roadmap 

 
In the case of this work, we are not concerned about SiGe HPT technology development, but 

on its performances which will be described in Chapter III. Together with its integration into the 
ORIGIN RoF system and its system performance evaluation for the first time in Chapter V. 
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II.C. The ORIGIN Project: the ultra high data rate 
Wireless Network in the Home 

The ORIGIN (Optical Radio Infrastructure for Gigabit/s Indoor Network) project was a 
national project dedicated to increasing the data rate and the radio coverage inside the home 
using the combination of the 60 GHz wireless communication technology and RoF technology. 
The concept is shown in Figure II-19 which presents the future wireless communication 
network with different services and devices. A home network concept is created using optical 
fiber infrastructure to interconnect the different rooms of the house each other. Antennas 
collect the wireless signal and feed RoF transceivers to distribute the signal to each room 
simultaneously. At the other end of the fiber, another RoF transceiver (TRoF) converts the 
modulated optical signal and radiates it into the air. 

 
Figure II-19 - ORIGIN project concept illustration 

On one hand, the 60 GHz band communication with high bandwidth availability allows us 
to reach multigigabit/s communication. On the other, the RoF technology permits to transpose 
the 60 GHz wireless signal to different rooms creating a domestic cloud concept, with some 
important characteristics: 

 MultiGigabit/s communication system; 
 Low-Cost; 
 Low radiative electromagnetic technology; 
 Flexible and transparent technology; 
 New revolutionary services toward a domestic cloud; 
 Domestic Cloud. 

The ORIGIN project started in January 2010 for three years and a half and finished in July 
2013. It was composed of different teams of industrial and academic partners, see Figure II-20. 
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Figure II-20 - ORIGIN Partners 

The project is transverse and covers multidisciplinary fields such as: 
 market and players analysis to identify services and applications of interest with the 

goal to create the system specifications;  
 RoF transducer prototype design, characterization and assembling. The 

performances are measured and simulated in the course of this PhD within the 
whole system.  

 A pre-industrial prototype demonstration platform is created and presented here. 
In terms of organization it was based on the teamwork between the different partners who 

were divided into seven sub-projects (SP), as depicted in Figure II-21. 

 

*ESYCOM collaboration 

Figure II-21 – The ORIGIN structure and the Partners location of each sub-project 

This PhD subject was proposed in the frame of the SP4 team, responsible for the 
development of optoelectronic and photonic circuits within the RoF infrastructure domain for 
60 GHz wireless communications and SP6 team, responsible of TRoF integration and system 
evaluation. The project should lead to a final prototype as an eventual future commercial 
solution. 
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II.C.1. ORIGIN architecture 

Two different architectures are considered: the Point-to-Point (P2P), for its simplicity, and 
the Multipoint-to-Multipoint (M2M) since the goal is to create HAN in order to cover the whole 
house. As we can see in Figure II-22, in the M2M concept each radio cell is connected to a TRoF 
in order to expand the coverage distance to the whole house.  

The RoF Transducer nomenclature from now on is “TRoFG<.N>” where G corresponds to 
the TRoF generation (“1”, “2” or “3”) and the “.N” is the TRoF ID number (optional). For 
instance: TRoF2.3 is the TRoF of the second generation with ID number 3 (which can be seen as 
house room number 3). 

 
Figure II-22 - ORIGIN Home Area Network concept 

Consequently, with optical fiber we connect together all rooms, no matter their position 
inside the building in order to create a single equivalent radio cell, as depicted on the right side 
of Figure II-22. Considering the center node two architectures appear: Optical Multipoint-to-
Multipoint with Electrical multiplexing (MME) and Optical multiplexing (MMO). In ORIGIN 
project the RoF transducer is based on the IF-RoF concept, as shown in Figure II-23, where 
both 60 GHz and 5 GHz blocks are integrated. The 60 GHz block has both TX and RX modules 
in order to provide the duplex communication with downlink and uplink paths. The uplink path 
is realized by a low noise amplifier (LNA) as a first amplification stage, followed by a mixer for 
the down conversion. In the download link, an amplification stage with High Power Amplifier 
(HPA) is planned after the up conversion mixer. A filtering stage may be used to remove 
eventual spurious frequencies from the mixer nonlinear operation. The 60 GHz antennas were 
integrated on both mm-wave modules. The 60 GHz block was developed by Telecom Bretagne 
partner (it will be described in Chapter V, section V.B). 
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Figure II-23 – Block diagram of the RoF transducer based on IF-RoF concept 

The 5 GHz IF block does the interface between the optical signal and the 60 GHz signal. The 
E/O conversion is made by a laser diode and the reverse (O/E conversion) by a photodetector. 
The electrical signal from optical-to-electrical conversion is amplified and a cascaded variable 
attenuator controls the power level injected into the mixer on the mm-wave board. In the uplink 
path, the signal coming from the down conversion stage is filtered and controlled by an 
Automatic Gain Control (AGC). The AGC is very important since the wireless device can operate 
at different distances from the RoF transducer.  

The free space losses are given by the following equation: 

 [ ] 0
10

420 log RFd fLosses dB
c

π⋅ ⋅ ⋅ = ⋅  
 

 (2.23) 

where 0d  is the free space propagation distance, RFf  the operation RF frequency and c  is the 
speed of light in a vacuum.  

For the 60 GHz signals and distances between 30 cm (typical minimum distance) and 10 
meters (typical maximum distance) the free-space losses varies from 57.5 dB to 88 dB. That 
corresponds to a high signal power dynamic range up to 31 dB. The AGC amplifier is, thus, 
essential to provide the optimized laser diode input power. This target corresponds to avoid the 
compression gain region for high received power (wireless device close to the RoF transducer) 
and the laser noise effects of low received power.  

The Point-to-Point (P2P) architecture is the simplest and fundamental architecture where 
two radio cells are connected each other by the optical fiber. Figure II-24 represents the direct 
path of the P2P architecture known as optical tunnel providing a direct link between the radio 
emitter and receiver. This architecture is limited to the coverage of 2 rooms. It serves the project 
as a reference system. From the left to the right of Figure II-24 the wireless radio emitter emits 
the 60 GHz wireless signals through free space which is received by the TRoF antenna of the 
first room (TRoF3.1 e.g.). The signal is then amplified, filtered and down converted to an 
intermediate frequency before transmitting through the RoF block. RoF transducer provides the 
radio signals conversion to optical (E/O conversion – TRoF3.1), optical tunnel (optical fiber) 
and, again; conversion to electrical (TRoF3.2 - O/E conversion). The optical signal is recovered 
on the second room amplified and up-converted to 60 GHz where is transmitted by the antenna 
(TRoF3.2). The signal is finally propagated through the free space and recovered by the wireless 
radio receiver.  
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Figure II-24 - Point-to-point RoF architecture based on IF-RoF concept 

In terms of RoF devices a compromise between cost, integration and performances had to 
be found where the RoF link was decided to be based on an IM-DD (Intensity Modulation-
Direct Detection) architecture: On E/O module, direct intensity modulation using laser diode 
(LD); On the O/E modules, direct detection using two device options: a photodiode (PD) or a 
heterojunction bipolar phototransistor (HPT). A multimode fiber operating at 850 nm was 
chosen because of a simplified packaging and an easier alignment of end devices at a lower cost. 
On the other side transverse multimodes of the LD can degrade the SNR. The choice of the 
optoelectronic devices is directly related to Intermediate Frequency (IF) architecture approach 
in which allows relaxed performance and cost.  

 

Figure II-25 - Optical Multipoint-to-Multipoint architecture with Optical multiplexing 

(MMO) 

As depicted in Figure II-25 the MMO architecture is based on an NxN optical splitter 
(between the Transmitter Optical Sub-Assembly (TOSA) for the laser source and the Receiver 
Optical Sub-Assembly (ROSA) for the photodetector). The optical splitter is characterized by its 
optical losses and modal behavior which both can limit the number of communicating rooms. 
This directly influences the optoelectronic device choice in terms of performances and cost. 
Nevertheless, the optical nature of the central node provides low power consumption and full 
transparency to the protocols. Every E/O device of each remote antenna is connected to an 
input of the optical splitter and the O/E device to an output of the optical splitter. This means 
that the transmitted signal is divided between each optical output feeding every antenna.  
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A radio protocol is needed to manage the communication in order to avoid signal collision 
problems. The simplicity of the central node by using only a simple passive optical splitter 
providing transparency can have, however, some challenges: every TOSA emits an optical 
power, even with no data, which can saturate the ROSAs and add noise. The laser simultaneous 
operation will generate laser beating creating spurious on the output spectrum, which may 
deteriorate the SNR. An improvement on the radio protocol was proposed in [113]-[114] to 
avoid this effect which could be considered as collision avoidance. 

In the MME architecture (Figure II-26) the central node is based on an NxN RF splitter. As 
we can see an extra optoelectronic stage conversion is needed for the RF splitter interface. 
However, in this architecture, there is no laser beating phenomenon. 

However, the noise, the nonlinearities and the consumption are increased by the 
introduction of the extra optoelectronic devices. This architecture gives full transparency 
property to the system and do not require the radio protocol for collision avoidance as the laser 
beating problem is solved out. At the end the system can be more relaxed on the optoelectronic 
devices, but the complexity and the cost increase. A trade-off must be found between 
performance, complexity and cost. 

 
Figure II-26 - Optical Multipoint-to-Multipoint architecture with Electrical multiplexing 

(MME) 

II.C.2. RoF transducers evolutions 

The first generation of RoF transducer prototype (TRoF1) was based on commercial low cost 
devices in order to test the ORIGIN concept and to provide a reference for the next generations. 
It is composed of a Vertical Cavity Surface Emitting Laser (VCSEL) as a light source from 
Finisar Company packaged and integrated into a TOSA module. The Finisar TOSA module 
operates at 850 nm and is based on Gallium-Arsenide (GaAs) VCSEL. This is a multimode 
operation laser with low-cost applications target providing LC connector on the optical interface 
and SMA connector on the electrical interface. On the other side the O/E conversion is 
implemented by a ROSA module from the same company. The Finisar ROSA module is based 
on a GaAs PIN photodiode operating at 850 nm wavelength with an integrated Trans-
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Impedance Amplifier (TIA). Both TOSA and ROSA modules were designed for 10 Gbit/s digital 
applications. 

The second generation of RoF transducer prototype (TroF2) is proposed in this thesis to 
improve the system performances by changing the Finisar TOSA module. An ULM Photonics 
GaAs VCSEL is proposed to be the TOSA core using a home-made package in connection with 
INNOPTICS partner. The ULM Photonics VCSEL should improve the system performance in 
terms of frequency response (gain), noise and nonlinearities. On probe characterization is 
performed with the target of link system optimization and to provide information to create a 
model which enables the link system design and optimization. Electrical interface is developed 
for the TOSA module. An interconnection substrate is optimized and considered to interconnect 
the VCSEL. Preliminary optimizations are considered to prepare future matching networks that 
will feed TRoF3. The optical interface is created using a mechanical receptacle based on a ball 
lens optical coupling technique. Both electrical and optical interfaces are developed with 
INNOPTICS partner. 

Last generation (TRoF3), but not least, aims to improve the system from the TRoF2 mainly 
on the photodetector side, replacing the Finisar ROSA module by a home-made SiGe ROSA 
module solution. The ROSA module is based on SiGe Heterojunction Bipolar Phototransistor 
(HPT) technology. The packaging and integration are based on the previous home-made TOSA. 
Improvements are employed to enable matching networks and multi-chip integration to 
optimize the complete SiGe based ROSA. Then the TRoF3 pretends to improve the system 
performances by the low cost solution offered by the SiGe photodetector technology.   
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II.D. Summary and Discussion 

The evolution on the broadband wireless network towards the multiGbit/s data ranges is 
inevitable taking in consideration the increase of wireless devices and the required quality of 
service. The 60 GHz band, allowing four channels with 2 GHz bandwidth, is a potential solution 
with the recent Wi-Fi standardization (IEEE 802.11ad). To leverage the low distance range of 
the 60 GHz propagation, the RoF technology is a suitable solution. At the end the combination 
between 60 GHz wireless and RoF technology is essential to create a home network allowing 
multiGbit/s data rates. These two technologies define the ORIGIN project where a low cost RoF 
transducer (TRoF) is developed for this purpose. The choice of multimode 10 Gbps 
optoelectronic modules operating at 850 nm appears to be the most suitable solution for the low 
range operation at low cost. From the three most important data communication windows, 
850 nm provides a less complex source and a more relaxed packaging of OE/EO devices taking 
into consideration alignment issues. VCSEL technology is a promising solution. When operating 
at a low wavelength range, cut-off frequency up to 23 GHz was found in the literature. On the 
photodetector side operating at the same wavelength the SiGe HPT technology is an interesting 
solution since it provides the perspective of very low cost and high integration capability by 
direct integration of the photodetector and integrated circuits together on Silicon. 

The challenge for the RoF system to distribute the 60 GHz wireless signal into the home 
comes from the noise, bandwidth and linearity of the optoelectronic modules where the IF-RoF 
approach was chosen. Three RoF transducer generations are designed: the TRoF1 which is 
based on commercial TOSA and ROSA modules to be a reference for the next generations; the 
TRoF2 which intends to improve the TOSA module and the TRoF3 which intends to have an 
optimized system (cm and mm chain) and should enable the integration of a SiGe ROSA for the 
first time. The improvements are on the gain and nonlinearities of both TOSA and ROSA with 
low cost. Previous studies from ORIGIN partners in terms of multipoint to multipoint 
architectures reveals the MMO architecture to be simpler, but with difficulties due to multi laser 
operation: ROSA saturation and laser beating. The MME architecture, despite consuming more 
and needing extra optoelectronics modules, reveals subsequently to be the most suitable and 
keep fully independent from the protocol. 
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This chapter investigates on the low cost EO/OE components for the ORIGIN project with 
the topic to look for advanced chip. It is vital to evaluate in depth their performances through 
original setups before to select them for a further integration. Noise and linearity are key points 
for the performances of the RoF system. This study is focused on two technologies of choice: the 
Philips ULM Photonics 850 nm 10 Gbps VCSEL technology, which was selected due to its high 
bandwidth, but also for its first experimental evaluation that reveals its high potential in terms 
of power and linearity; The SiGe HPT which is believed by our team to be a novel technology 
with the promise of a great integration capability on Silicon and interesting analog 
characteristics for RoF applications. The characterization at the die level is important as it will 
be used to feed the model with data and to prepare their integration in an optimized module 
before being integrated into the whole ORIGIN architecture. Results will also feed the state-of-
the-art of those advanced 850 nm EO/OE devices in terms of noise and linearity performances 
within a 60 GHz RoF system. These dies are implemented in packaged modules in the next 
chapters, until their integration into the final system. On wafer optoelectronic device 
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characterization requires experimental bench setups specifically developed to extract accurate 
measurements which are presented here. The optoelectronic devices targets are the 850 nm 
GaAs VCSEL and the 850 nm SiGe HPT which in both cases are measured in an optical link 
configuration. Therefore, references O/E receiver and E/O emitter are required, respectively. 

The first section presents the 850 nm GaAs VCSEL complete characterization which 
includes the experimental bench setups. The reference photodetector is the commercial New 
Focus Photodiode (NFPD) [117]. Measurements will cover the 4 main characteristics: static 
performances (LIV curve, Optical Spectrum), dynamic response (Small-Signal Response), noise 
behavior (Relative Intensity Noise) and nonlinearities (compression gain and intermodulation 
distortion). Finally, two more parameters are measured which are related with all the previous 
ones simultaneously: Spurious Free Dynamic Range (SFDR) and the system performance 
metrics with Error-Vector-Magnitude (EVM). 

The final section intends to present the 850 nm SiGe HPT characterization comparing two 
size structures of a 10x10 µm2 and 30x30 µm2 optical windows. The main focus here is the opto-
microwave frequency response. 

III.A. 850 nm GaAs VCSEL characterization 

The VCSEL technology under study was fabricated by Philips Technologie GmbH U-L-M 
Photonics as introduced in II.B.1.6, Chapter II. 

The diagram of the main experimental bench setup used for all measurements on the 
optical source is given in Figure III-1. On-wafer measurements uses a 100 µm pitch GSG probe 
to bias the VCSEL. The RF modulated signal is applied through a bias tee. The laser output 
beam is coupled to a lens multimode fiber placed in a Lightwave probe. Its position is precisely 
fixed on the wafer with a nanopositioner. A Matlab program was developed to control the 
nanopositioner and optimize the coupling efficiency as a function of the illuminated spot 
window. This optical probe presents a defined angle around 6° between the fiber and the right 
angle of the wafer, in order to avoid parasitic optical cavities [124]. 

 
Figure III-1 – On wafer Measurement bench setup for the laser: a) schematic using an 

850 nm GaAs based VCSEL and a reference photodiode – NFPD; b) photo of the RF and 

optical probing positioned on the VCSEL.  

The fiber length between the optical probe and the detector is a few tens of centimeters 
using 2 connectors FC / PC and two connectors E2000 / APC (APC allows to reduce eventual 
lasing cavity). To detect the emitted light, a reference multimode photodiode was used with a 
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flat frequency response up to 25 GHz and responsivity of 0.222 A/W (New Focus PD 1434) 
[118]. 

The first subsection focuses on the static performances with typical LIV curve measurement 
and the optical spectrum behavior. From both measurements, we are able to extract certain 
parameters such as the radiation efficiency and the thermal behavior. 

The second subsection introduces the dynamic response with small-signal characterization, 
providing the measured S-parameters. Since the New Focus photodiode has a flat response, the 
laser intrinsic parameters are extracted such as the relaxation resonance frequency, parasitic 
frequency and damping factor. 

The third subsection exposes the noise experimental setup, including its calibration 
procedure, and presents the RIN extraction. 

The fourth subsection intends to present the nonlinearities with the definition and 
measurement of the compression gain and the intermodulation distortions. 

The final two subsections consider system global measurements in terms of gain, noise and 
distortion by the Spurious Free Dynamic Range (SFDR) and the system performance metrics 
Error-Vector-Magnitude (EVM). 

III.A.1. Static Performances 

The VCSEL characterization starts typically with the LIV curve providing its DC behavior. 
The operation biasing point is one of the most important parameter which will influence the 
laser characteristics and, therefore, the link system too. It will be optimized in terms of best 
performances regarding the frequency response, noise behavior and nonlinearities. 

 
Figure III-2 – LIV Curve comparing: Directly Coupled to Power Meter (DC2PM) and 

Directly Coupled to Optical Probe (DC2OP) 

Figure III-2 provides the LIV curve of the ULM die VCSEL measured on wafer. We can 
define 3 regions: first region which is until the threshold current is reached around 610 µA; 
second region which is the linear region where the stimulated emission dominates; and the 
third one which shows saturation and compression resulting, mainly, from the thermal effects. 
Two LI curves are presented corresponding to two test configurations, the DC2PM curve and 
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the DC2OP curve, as described hereafter: the VCSEL was biased with the RF probes using a 
Bias-Tee and the optical power was first measured directly by a power meter placed as close as 
possible to the die optical output (~ 1mm). As the sensor of the power meter has a large surface 
(few cm2), and as the divergence of the VCSEL is usually less than 30°, it is expected that 100 % 
of the optical power is measured. This leads to the DC2PM curve (Directly Coupled to the Power 
Meter), shown by the squared symbol in Figure III-2; the circle symbols curve represents the LI 
curve of the VCSEL coupled directly to the optical fiber probe (DC2OP – Directly Coupled to 
Optical Probe). The difference between both curves is due to the limited coupling efficiency to 
the lensed fiber. The maximum optical power is 3.8 mW for the DC2PM configuration, which is 
supposed to be 100 % of the emitted power. It corresponds to 0.52 W/A in terms of slope 
efficiency. In the case of the DC2OP, the losses of misalignment and coupling efficiency reduce 
the maximum optical power to 3 mW and the slope efficiency to 0.42 W/A. We achieved 79 % of 
coupling efficiency with this optical probe. This optical probe was also analyzed in [124] when 
illuminating a photodetector. It is produced by Cascade. It is made up of a MM fiber with a Grin 
lens at the extremity to focus the beam from the fiber to a spot size of typically 30-50 µm at a 
distance of 50 µm from the fiber end. Indeed a 79 % coupling efficiency is high enough for 
further measurements. It could be improved further with control of the alignment angle. Its 
precise evaluation helps to calibrate the following measurements that will need the VCSEL to be 
measured through the pigtailed reference photodiode. However the next static measurements 
are measured by the DCPM method to guarantee the full 100 % coupling for greater simplicity. 

From the IV curve, we can determine the differential series resistance associated to the 
VCSEL as depicted in Figure III-3 a). It is given by the derivate of the VI curve. Typically, this 
parameter should be as small as possible corresponding to a high output power and a high 
efficiency. 

 
Figure III-3 – Static characteristics: a) Series resistance; b) Radiation efficiency – ηc and  ηd 

(DC2PM) 

Figure III-3 b) - depicts the radiation efficiency of the VCSEL extracted from the LIV curve. 
The cross symbol curve is the differential quantum efficiency reaching a maximum of 37 % just 
after the threshold current. In the case of the wall-plug efficiency (circular symbols curve) the 
maximum is 24 %.  

The optical spectrum is then measured as a function of the bias current in Figure III-4. The 
operating wavelength is shown to be around 855 nm as expected for a GaAs based VCSEL with a 
typical transverse multimode behavior that impact the spectrum. A wavelength red-shifting 
could also be observed when the current increases.  
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Figure III-4 – VCSEL Optical spectrum as a function of the wavelength for different bias 

currents (DC2OP) at 20°C room temperature 

This is mainly due to the temperature increase since there is no dissipation structure on the 
die. From these results we can estimate the temperature increasing ratio induced by the drive 
current. The wavelength tuning over the bias current is found to be 0.5 nm/mA (considering the 
mode with higher wavelength). Since the emission wavelength shifts at a rate about 0.07 nm/°C 
on VCSELs with GaAs-based [125], we can estimate that the temperature rises about 71 °C from 
the room temperature (25 to 91°C) at the highest current bias with a rate of 7.1 °C/mA. 

III.A.2. Dynamic Small-signal Response 

We measured the small-signal modulation characteristics under a 40GHz-VNA (Vector 
Network Analyzer). A complete optical link system is measured where the gain (S21) response 
follows the influence of each optoelectronic device, including the eventual optical losses by the 
optical probe, optical fiber and misalignment. The input reflection coefficient (S11) corresponds 
to the laser diode reflection coefficient and the output reflection coefficient (S22), to the 
photodiode one. The photodetector response is crucial to characterize precisely the laser diodes. 
As a reference photodetector we use a New Focus multimode photodiode model 1414-50 with 
the specifications shown in Table III.1. 

Table III.1 – Photodiode: NFPD 1414-50 Specifications [117]-[118] 

 Units 1414-50 
Wavelength nm 800-1630 

Bandwidth (3dB) GHz 25 

Conversion gain V/W 11 

Responsivity (@850 nm) A/W  0.222 

Detector Material  InGaAs 

Output Impedance Ω 50 

NEP pW √ Hz 40 

Saturation Power CW mW 8 

Optical Input  Multimode FC 

Output Connector  K 
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The 1414-50 High Speed Photodetector shows a flat response in both amplitude and phase 
up to 25 GHz and is optimized for frequency-domain applications (Figure III-5). This 
information will simplify the laser frequency response extraction. The high-sensitivity Model 
1414 near-IR photodetectors use 25 µm diameter back-illuminated InGaAs Schottky 
photodiodes with peak responsivity of 0.5 A/W at 1300 nm. The conversion voltage gain with a 
50 Ω load is 11 V/W. It has an FC 50 µm multimode input. Multimode versions have an internal 
GRIN lens for focusing onto the photodetector. 

 
Figure III-5 – New Focus 1414-50 model specifications:  Normalized frequency response up 

to 30 GHz [117]-[118] 

The DC and RF calibration procedures were done previously to remove the cable, 
connectors and RF probes effects. Figure III-6 a) shows the link gain measurement as a function 
of the frequency for different bias currents, and Figure III-6 b) shows the input reflection 
coefficient of the VCSEL. The extraction of individual OM quantities of the VCSEL will be 
developed in Chapter III.  

 
Figure III-6 – Small-signal characteristics of the 10 Gbps ULM VCSEL die with: a) S21 Link 

gain; b) VCSEL reflection coefficient (S11) at 2, 4, 6, 8 and 10 mA 

As we increase the bias current the relaxation oscillation frequency moves towards high 
frequency and the damping factor decreases providing a smooth frequency response. The gain 
slightly decreases when the bias current increases. This can be explained by the shift of the 
operating point to a region where the slope efficiency is reduced. The gain variation goes from —
28 dB to —31 dB with bias current from 2 mA to 10 mA. 

The VCSEL reflection coefficient is provided in Figure III-6 b). We can see the typical 
capacitive behavior of a laser diode where the impedance moves toward the 50 Ohm impedance 
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as the bias increases. This means that the impedance matching is not crucial for high bias 
current and frequencies up to 15 GHz. Still, it might improve the gain and the noise behavior. 

The Figure III-7 shows the normalized frequency response which allows the different 
dynamic parameter extraction, such as the 3dB cutoff frequency (f3dB), relaxation oscillation 
frequency (fR) and damping factor (δ). The cutoff frequency goes up to 12 GHz for 8 and 10 mA.  

 
Figure III-7 – Extracted normalized link gain at 2, 4, 6, 8, 10 mA of the 10 Gbps ULM 

VCSEL. 

A fit to the empirical Eq. (2.14) was done to allow the intrinsic and extrinsic limitation 
parameters extraction from the modulation frequency response (see Chapter II, section 
II.B.1.5). These parameters help us to identify the frequency limitation [125] [126]. They are 
summarized in Table III.2. The K factor is fitted to 0.27 ns corresponding to a large damping 
limited modulation bandwidth of 32.9 GHz induced by the small cavity dimensions. The 
D-factor (Eq. (2.17)) was extracted with a value of 3.966 GHz/√mA which is the rate at which 
the relaxation oscillation frequency increases with the current above the threshold ( thI ). The D 

factor is proportional to the relaxation oscillation frequency and it should be increased to 
improve the high speed performance of the laser.  

Table III.2 –Summary of the extracted dynamic parameters for the10 Gbps ULM VCSEL 

K-factor (ns) 0.27 

D-factor GHz/(mA)1/2 3.97 @ Ibias<5mA 

MCEF GHz/(mA)1/2 5.995 @ Ibias<5mA 

Fp (GHz) 10.9 

F3dB_thermal (GHz) 15.5 

F3dB_damping (GHz) 32.9 

F3dB_max (GHz) 12.31 @Ibias=10mA 
 

The relaxation oscillation frequency is the natural oscillation frequency between the carriers 
and the photons in the laser cavity and can be seen as how fast an intrinsic laser can be 
modulated. The relaxation oscillation frequency is inversely proportional to the square root of 
the active volume (see Eq. (2.16)). Therefore, a decrease of the volume (size) of the VCSEL will 
increase the modulation bandwidth. The MCEF (Eq. (2.18)) which gives the evaluation of the 
device’s overall high-speed performance is 5.995 GHz/√mA. In both results the deviation from 
the linearity at high currents is due to thermal effects.  
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We, therefore, conclude that the modulation bandwidth is limited primarily by extrinsic 
parasitics and then by thermal limitation. Reduction of the parasitic capacitances and 
resistances should increase the bandwidth. Heat dissipation should also improve the bandwidth 
performances. However, this device already exceeds the desired 10 GHz of bandwidth. 

III.A.3. Noise Behavior 

The optical power emitted from the laser diode exhibits intensity, phase and frequency 
fluctuations. The main noise source is the spontaneous emission resulting from the electron 
hole recombinations and from mode partition noises due to the multimode behavior of the 
cavity [127]-[132]. The photons generated by spontaneous emission are based on incoherent 
light, resulting on random phase and amplitude of the photons. Some of those photons will 
coincide with stimulated emission photons and then add small components on the phase and 
amplitude creating the fluctuations.  

This subsection is organized in 4 parts: 
The first part of the subsection presents the theoretical analysis and RIN definition. 
The second part of the subsection introduces the experimental bench setup to perform RIN 

measurement. Here a measurement method is introduced and developed. 
The next part of the subsection presents the calibration of the measuring system and the 

measurement limitations are described. 
Last part of the subsection presents the RIN measurement results of the 10 Gbps GaAs 

VCSEL.  

III.A.3.1 RIN definition 

The noise behavior of the laser is characterized conventionally by the Relative Intensity 
Noise (RIN) which is the main quality indicator of laser devices in terms of intensity stability 
(noise). If we consider the fluctuations on the amplitude of the emitted optical power as written 
by: 

 ( ) ( )opt opt optP t P P tδ= +  Equation Section 3 (3.1) 

The RIN definition, assuming that is white noise (constant for all frequencies), can be 
quantified as  

 
( )2

210 log
opt

opt N

P t
dBRIN Hz P B

δ 
   = ⋅   ⋅ 
 

  (3.2) 

where ( )optP tδ  represents the optical intensity fluctuations (<> denotes the time average), optP  

is average of the optical power and NB  the noise bandwidth (detection system bandwidth over a 

50 Ohm load). Therefore the RIN is the ratio of optical noise relative to the optical signal power. 
Indeed, it can be thought to a type of inverse carrier-to-noise measurement [133].Thus, the 
lowest RIN value corresponds to better laser noise performances.  

Depending on photodetector system, the RIN is detectable if dominant over other noise 
sources such as shot noise of the photodiode and the thermal noise related to all the noise of the 
measuring system. Thus a definition of the RIN in electrical domain is suitable. Taking into 
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account that the RIN is not white noise and that the photodiode output electrical power is 
proportional to the square of the optical power ( 2 2.L ph optR I P∝  ), RIN can be expressed as 

 ( ) ( )
,

LD

elec DC N

N f
RIN f

P B
=

⋅
  (3.3) 

where ( )LDN f  is spectral noise power of the photocurrent related to the laser, ,elec DCP  is the 

average power of the photocurrent ( 2
,ph DCI  multiplied by 50LR = Ω ) and NB  is the noise 

bandwidth (normalization to 1 Hz). 

III.A.3.2 Experimental setup 

Since the output photocurrent from the detector is usually a weak signal, electrical 
microwave amplifiers (LNA) are usually placed after the detector. This amplification should be 
high enough to improve the sensitivity of the ESA. Therefore the RIN is measured using the 
bench setup presented in Figure III-8. The electrical spectrum analyzer (ESA) measures the 
sum of all noise contribution powers at the output of the link, such as 

 ( )[ ] ( ) ( )total LD q thN f W N f N N f= + +   (3.4) 

where LDN  is the laser noise power contribution (related to the RIN), qN  the shot noise power 

from the photodetector and thN  the thermal noise power coming from all electronic devices 

used in the bench, including the ESA, the photodiode and the LNA (all contribution observed in 
the 50Ohm load impedance).  

 

Figure III-8 – Noise bench setup and noise contribution of each device.  

Our RIN measuring technique is known as the subtraction method. It considers all the noise 
sources independently, allowing the subtraction manipulation of the total noise given by 
Eq. (3.4). The contributions all noise (Ntotal) is measured with laser “on”. The thermal noise is 
measured by the output noise when the laser is “off” where it includes the dark photocurrent of 
the detector and all the thermal noise sources of the electronics. The shot noise power spectral 
density (white noise) at the output of the photodiode is calculated from the measured 
photocurrent given by 

 [ ] 2q ph L NN W q I R B= ⋅ ⋅ ⋅ ⋅   (3.5) 

where q is the elementary charge, 50LR = Ω  is the photodiode output load impedance and phI  

is the DC average photocurrent recovered by the bias monitor terminal on photodiode. The RIN 
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is finally obtained by subtracting the thermal noise power and the shot noise power from the 
total noise for each frequency.  

All the electronics following the photodiode produces thermal noise observed in the load 
impedance over the effective noise bandwidth.  

 [ ]th syst NN W F k T B= ⋅ ⋅ ⋅   (3.6) 

where k  is the Boltzmann constant, T  is the absolute temperature in Kelvin and systF  the noise 

factor of the measuring receiving electrical system, given as 

 [ ] 1ESA
syst LNA

LNA

FF linear F
G

−
= +   (3.7) 

where LNAF  is the LNA noise factor, ESAF  is the ESA noise factor and LNAG  is the LNA gain. 

The subtraction of those noise terms must me taken carefully to increase the measurement 
accuracy. It is important to know the frequency response for the total system before noise 
subtractions [133]. Some of the measuring system instruments do not have a flat response over 
the entire bandwidth which leads us to a calibration step (presented in III.A.3.4) crucial to 
compensate these results. The frequency response of the photodector, LNA and the ESA must 
be characterized and included into the RIN measurement results. Also, it is important to 
identify the limitations of the measurement bench setup (presented in III.A.3.3). 

III.A.3.3 Measurement limitations 

Figure III-9 sketches the different noise limitations as a function of the photocurrent. The 
thermal noise contributions with and without LNA are shown to illustrate its improvement on 
the system measurement sensitivity. 

 

Figure III-9 – Noise measurement limits as a function of the receiver photocurrent 

Unfortunately the spectrum analyzer measures all the noise contributions and therefore the 
measurement can be limited by the thermal noise floor or the shot noise expressed on the follow 
equation: 
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 ( ) ( ) ( )
2 2

2 systtotal

ph L ph ph L

N f k T F fqRIN f
I R I I R

 ⋅ ⋅⋅
= − +  ⋅ ⋅ 

  (3.8) 

At low photocurrent the bench is limited by the thermal noise and so the RIN value must be 
higher than the 3rd term of the Eq. (3.8) in order to be determined (region – I in Figure III-9). . 
When the incident optical power on the photodetector becomes large enough, the shot noise 
overcomes the thermal noise and becomes the RIN measurement with a slope of 10 dB per 
decade over the photocurrent (region – II in Figure III-9).  

Our detection system is a thermally limited system since we do not use high optical power 
enough to produce high photocurrent. The shot noise limit (region - II) is not reached. 
Consequently the low RIN limit in our case is —168 dBm/Hz, theoretically, up to few mW of 
optical power. 

III.A.3.4 Measurement calibration  

Before starting the noise measurement, the bench setup (ESA plus pre-amplifier- system) 
must be characterized in terms of gain and noise figure – Gsyst(f) and NFsyst(f). The Y factor 
method was performed to measure the noise figure using a noise source up to 18 GHz 
[134] [135]. Figure III-10 shows the ESA intrinsic noise figure measurement results compared 
with its specification up to 30 GHz. A noise figure higher than 35 dB was measured over the 
frequency range, clearly demonstrating the need of a pre-amplifier to improve its sensibility.  

 

Figure III-10 – Electrical Spectrum Analyzer Noise figure: specifications and measured NF 

The choice of the noise source and the pre-amplifier was made following the two guidelines 
[136]: 

 5LNA
dB dBENR NF dB≥ +   (3.9) 

 1LNA LNA ESA
dB dB dBNF G NF+ ≥ +   (3.10) 

The first guideline is given by Eq. (3.9) which shows the maximum noise figure measurable 
of a DUT when an ideal noise source with a given excess noise ratio (ENR) is used. As the 
available noise source has an ENR equal to 15 dB, we can measure devices presenting NFs lower 
than 10 dB. The second guideline is presented by the Eq. (3.10) and tells us the performances 
required from the pre-amplifier in terms of gain and noise figure compared to the ESA noise 
figure. If we consider the 46 dB ESA noise figure at 22 GHz given by the specifications (Figure 
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III-10), the pre-amplifier gain plus noise figure must be higher than 47 dB to get accurate 
measurement. The amplifier MITEQ Model JS41-00102000-27-10P was, thus, our choice as it 
has a gain of 44 dB and noise figure of 3 dB. It presents also a frequency bandwidth above 
20 GHz [137].  

 

Figure III-11 – Y method: a) Noise measurement system; b) Noise Output power as a function 

of the source temperature 

This choice fills up the requirements only until 18 GHz to keep, as according to Figure 
III-10, the noise figure lower than 46 dB (the ESA NF peak at 16 GHz will appear on our 
measurements as it results to a NF higher than 46 dB). This is also limited by the noise source 
which is valid up to 18 GHz.  

Noise sources are commonly specified by their ENR which is expressed in dB. The 
relationship between noise temperature and ENR is shown in Eq. (3.11). The calibrated ENR 
values supplied by the noise source manufacturer are referenced to T0=290 K 

 [ ] 10
0

10 log hot coldT TENR dB
T

 −
= ⋅  

 
  (3.11) 

The noise power is measured at the DUT output at 2 different temperatures: with room 
temperature noise source (noise source off) at the input (cold source); with a high temperature 
noise source (noise source biased with 28 V) at the input corresponding to the hot source – 
Figure III-11 a). We can determine the LNA gain, GLNA, from the linear equation. The Y-
intercept indicates the noise power Na added by the LNA. The slope of this line is proportional 
to the measurement bandwidth (in Hz), B, and to the Boltzmann’s constant, k (1.38 x 10-23 
Joules/HK).The Y factor can be found by taking the ratio of the measured (linear) noise power 
at the DUT output when the noise source is on and off. 

 hot

cold

NY
N

=   (3.12) 

The Y factor can be used to calculate the noise temperature of the measuring system with 
the following equations [136] 

 0 1
1syst

ENRNa k G B T
Y

 = ⋅ ⋅ ⋅ ⋅ − − 
  (3.13) 

Then 

 0

0 1
syst

syst
syst

Na k G B T ENRF
k G B T Y
+ ⋅ ⋅ ⋅

= =
⋅ ⋅ ⋅ −

  (3.14) 
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1ESA

syst LNA
LNA

FF F
G

−
= +   (3.15) 

Since the LNA used has a high gain, the second term of the Eq. (3.15) is negligible, therefore 
the system noise factor is determine by the LNA. This is the reason to use a pre-amplifier on the 
noise measurement since it reduces the global measuring system noise factor. Figure III-12 
shows the measured power spectral density for the measurement configuration without the pre-
amp (LNA) and with it.  

 
Figure III-12 – ESA Noise floor; ESA plus the pre-amplifier power density and 

Measurement Noise floor versus frequency 

The output noise power density curve when the LNA is used has sufficient gain to remove 
the ESA frequency noise behavior except the peak at around 16 GHz. The measuring system 
sensibility was improved up to —167 dBm/Hz (ESA+LNA (noise floor)).  

Figure III-13 a) shows the system noise figure, NFsyst(f) and the uncertainty of that 
measurement. Noise figure lower than 3 dB and measurement uncertainty lower than 1 dB was 
measured up to 15 GHz. Several factors contribute to noise figure measurement uncertainty: the 
noise figure of the spectrum analyzer; uncertainty of the noise source ENR value and gain of the 
LNA have significant impact; impedance mismatches between noise source and LNA, between 
LNA and spectrum analyzer (during the calibration step). 

 
Figure III-13 – Measurement calibration: a) Noise figure of the system (NFsyst) and the 

uncertainties on the measurement; b) Pre-Amplifier Gain (Gsyst). 

 
 

0 5 10 15 20

-180

-160

-140

-120

-100

-80

-60

Frequency (GHz)

PS
D

 (d
Bm

/H
z)

 

 

kTB Noise Limit

ESA+LNA (Nout) ESA (Nout)

ESA+LNA (Noise Floor)

a) b)

0 3 6 9 12 15 18
0

1

2

3

4

5

Frequency (GHz)

N
F 

an
d 

U
 (d

B)

 

 

NFSYST

Uncertainty (dB)

0 5 10 15 20
0

10

20

30

40

50

S
21

 (d
B)

Freq [GHz]

 

 



 

50  Chapter III - E/O and O/E die characterizations 

50 

III.A.3.5 RIN measurement 

The Figure III-13 b) provides the pre-amplifier gain and frequency response until 20 GHz 
where we can see the gain is constant around 44 dB. Since the ESA gain is considered as 0 dB 
the Gsyst(f) is given by the pre-amplifier gain response. 

 

Figure III-14 – Relative Intensity Noise of ULM Die VCSEL using the NFPD 

Finally the RIN measured on the ULM die VCSEL is presented in Figure III-14 for different 
bias conditions (1, 1.5, 2, 3, 4 and 8 mA). At low bias current curves we see clearly the relaxation 
oscillation frequency peak moving toward high frequencies. For these bias current values close 
to the threshold current the spontaneous emission is the main source of noise and is relatively 
high. As we can see the measurement bench is limited for some RF frequencies by the thermal 
noise, so certain curves are not completed mainly at low input bias currents (measured shot 
noise is —148.2 dB/Hz @ 8 mA). These results are very promising since the RIN is lower than —
140 dB/Hz for the typical operating bias current higher than 4 mA. Indeed, at 8mA the RIN is 
lower than —140 dB/Hz in a range of frequencies between 1 and 6 GHz (despite few oscillations 
probably caused by multimode operation). 

III.A.4. Dynamic Large-Signal Response: P1dB and IP3 

Nonlinear devices exhibit complex behavior when input power is high. This subsection 
presents the dynamic large signal response figures of merit: compression gain point at 1dB 
(P1dB) and the third order intercept point (IP3). The definition is illustrated in Figure III-15: 
P1dB - defines the output level at which the device gain is 1 dB less than the small signal gain, or 
is compressed by 1 dB. The device gain is given by the ratio between the output and input 
signals. The gain is constant at small signal, but increasing the input power, the gain is reduce. 
IP3 - is determined by the third-order intermodulation products generated by a nonlinear 
device. Two tones, closely spaced in frequency, are fed into its input. It is given by the point 
where the extrapolated third order intermodulation distortion level (IMD3) is equal to the 
signal fundamental level (IMD1) (Figure III-15). The extrapolation is made from the region 
where the third order intermodulation follows the third order law (3:1 slope) and in the linear 
region (1:1 slope). This distortion product is usually so close (2f2-f1 and 2f1-f2) to the carrier 
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that it is almost impossible to filter out in a communication system and this can cause 
interference. The IP3 is commonly defined as a figure of merit that characterizes the device’s 
tolerance to several signals that are present simultaneously outside the desired pass band and it 
is closely related to the 1 dB compression point. 

 

Figure III-15 – Plot of the output power versus the input power of a nonlinear system: 

P1dB, IP3 and SFDR definition (BW=1kHz) 

The bench setup to measure both P1dB and IP3 is presented in Figure III-16. On the case of 
the P1dB, the measurement is based on the standard one tone power sweep at the device input 
using an RF generator (1-10 GHz). For the IP3, is based on two-tone intermodulation distortion 
measurement. Two fundamental tones, spaced by Δf=1 MHz, are injected directly on the laser 
creating IMD3 at the output. In both cases, the output signal is recovered by the electrical 
spectrum analyzer which was controlled by a Matlab procedure. The sweep in terms of laser 
biasing, optical losses and frequency are targets on our study using Matlab with a GPIB 
connection to control the different equipments.  

 

Figure III-16 – P1dB/IP3 Bench setup. 

On both measurements the final measurement is dependent on both E/O and O/E devices 
and here the use of an optical attenuator is crucial to separate the nonlinearity behavior of the 
emitter from the receiver. Figure III-17 shows the typical behavior of the link nonlinearities as a 
function of the optical losses. The evolution of the input P1dB (and the IIP3) as the optical 
losses increases provides the information of which device is dictating the nonlinearities. If the 
input P1dB (same behavior for IIP3) increases with the increase of the optical losses, we are in 
the photodiode nonlinearity region. On the other hand, if not increases with the increase of the 
optical losses, we are in the laser nonlinearity region.  
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Figure III-17 - IIP3 and IP1dB of the link system in function of the optical losses. 

The measurements on the input P1dB were then performed as a function of the frequency 
(up to 10 GHz) and of the supplied bias current, see Figure III-18 a). The input P1dB goes up to 
9 dBm for a 10 mA bias current at 4 GHz. As we increase the bias current the optical power 
increases and the VCSEL can handle more power. It is interesting to observe that the 
compression point follows the shape of the VCSEL small-signal response in terms of frequency 
and thus confirming the VCSEL is indeed the limiting device in our VCSEL-reference 
photodiode link. The input IP3 measure is presented in Figure III-18 b) using 1 MHz in 
frequency difference between the tones. The same shape as the compression gain is observed. 
The measurements are limited to 6 GHz due to the characteristics of our generators. We 
achieved an input IP3 up to 15 dBm for 10 mA bias current and at 4 GHz.  

 

Figure III-18 – Die Nonlinearities of the link between the die VCSEL and the NFPD: a) 1dB 

Input compression gain; b) Input IP3  

As we increase the bias current the IP1dB and IIP3 performance are even better until it 
reaches the saturation region of the LI curve. An important design guideline conclusion is also 
that we should avoid the relaxation oscillation frequency at low bias current as it results in 
strong nonlinearities.  

Optical losses were thus added between the laser and the photodiode. The results are shown 
in Figure III-19. This figure shows that the input P1dB and the input IP3 are constant as we 
increase the optical losses, for bias current of 8 mA and center frequency of 3 GHz. This 
demonstrates that clearly the nonlinearity is due to the laser and not by the photodiode.  
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Figure III-19 – Die Nonlinearities of the link between the die VCSEL and the NFPD as a 

function of the optical losses at 8 mA and 3 GHz.  

As the ORIGIN project intermediate frequency is 5 GHz with approximately 2 GHz 
bandwidth (4-6 GHz), laser biasing lower than 4 mA should be avoided to get rid of the 
influence of the nonlinearities and of the relaxation oscillation frequency as well. This proves 
the importance to design an optical link system below the laser diode relaxation oscillation 
frequency to avoid strong distortion. 

III.A.5. Spurious Free Dynamic Range - SFDR 

Spurious Free Dynamic Range (SFDR) is typically used for system characterization relating 
simultaneously the noise and intermodulation distortion limitations. It is determined by the 
output power range defined between output powers at fundamental and at the third order 
intermodulation distortion (IMD3) input power point that produces an IMD3 equal to the noise 
as defined in [138]. This definition is illustrated in Figure III-15, and leads to the following 
equation: 

 
2

3 2 3
3

OUT
NOISESFDR dB Hz OIP N   ⋅ = −   

  (3.16) 

where 3OIP  is the link output 3rd order intercept point and OUT
NOISEN  is the output spectral noise 

density in 1Hz, defined as  

 OUT
NOISEN kT NF G= + +   (3.17) 

where k, T, NF and G are the Boltzmann constant, operational temperature, link noise figure 
and link gain, respectively. This definition provides an SFDR for the optical link as a whole. The 
next chapter will introduce a novel definition to isolate the SFDR contributions of the individual 
EO/OE devices. However, as this measurement is carried out using a highly linear reference 
photodiode in a dominant RIN link, the SFDR link is supposed to give a good indication of the 
VCSEL dynamic range.  

The SFDR measurement results are shown in Figure III-20 as a function of the frequency 
(up to 6 GHz) and of the laser bias current. The SFDR is higher than 91 dB.Hz2/3 and goes up to 
98.8 dB.Hz2/3 at 10 mA around 4 GHz. The SFDR is mainly limited by the laser noise (RIN) and 
nonlinearities (IP3). This figure also shows that the best operating frequency is between 3-
5 GHz with biasing currents between 7-10 mA in order to benefit from the larger dynamic. 
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Increasing the relaxation frequency could enlarge this frequency band, thus some work on 
reducing parasitics and improving the thermal dissipation should be pursued. Reducing the 
optical coupling losses would also be beneficial in order to increase further the overall SFDR. 

 
Figure III-20 – Die Nonlinearities of the link between the die VCSEL and the NFPD: SFDR 

III.A.6. Error Vector Magnitude - EVM 

One important figure of merit which characterizes the performances of a data transmission 
system is the Error vector Magnitude (EVM). EVM measurement defines the transmission of 
digital modulated signals such as Phased-shift Keying (PSK) or Quadrature Amplitude 
Modulation (QAM). Basically EVM compares the constellation between the received symbols 
and the ideal transmitted ones, depending upon the modulation scheme, as sketched in Figure 
III-21. 

Mathematically EVM is the ratio of the error vector power to the reference vector power: 
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Figure III-21 – EVM definition: a) 16-QAM constellation; b) EVM representation  
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The EVM measurement bench setup was performed using an Arbitrary Waveform 
Generator (AWG) with 12 bits resolution, 12 GSa/s sample rate and an analog bandwidth of 
5 GHz (Agilent M8190A). An IF-OFDM signal is generated with QPSK modulation subcarriers 
working at 3.08 Gbit/s according to the IEEE 802.15.3c standard, HSI mode (see Table II.2, 
Chapter II). In terms of frequency response the AWG is limited up to 5 GHz analogue frequency 
by the datasheet specifications. Since we are using a signal with a bandwidth of 1.815 GHz we 
are limited to approximately 4 GHz in terms of the IF center frequency band. If we want to 
generate an IF-OFDM signal with a centered frequency up to 4 GHz we can use directly the 
AWG. But if we want to generate a signal centered at 5 GHz (main interest of our system) we 
need to generate an In-phase (I) and a Quadrature (Q) baseband signals with the AWG and then 
to transpose it externally, as depicted in Figure III-22. The I and Q signals are transposed to the 
IF by mixing them with an RF oscillator divided into two paths with a quadrature phase shift 
(90°). The signal is then combined to create the desired IF-OFDM signal which can be written 
as 

 0 0( ) cos(2 ) sin(2 )s t I f t Q f tπ π= × ⋅ ⋅ + × ⋅ ⋅  (3.19) 

where 0f  is the IF (5 GHz). The received signal is then analyzed with an oscilloscope.  

 

Figure III-22 – EVM bench setup using external frequency transposition: IF-OFDM 

signal with a QPSK modulation scheme  

The signal is presented in Figure III-23 a) in time domain for QPSK modulation and Zero Pad 
Suffix (ZPS) as inter-symbol spacing. The ZPS consists in placing zeros between adjacent 
symbols with the goal to provide guard times and synchronization. The dynamic at the output is 
given by a 40 dB power range controlled by a wideband LNA and an RF variable attenuator. 
Powers from —30 dBm up to +10 dBm can be achieved. The output signal was captured using a 
Digital Storage Oscilloscope (DSO), with 13 GHz bandwidth and 40 GSa/s speed (Agilent 
DSO81004B). The EVM is then calculated with Matlab. An extra amplification after the device 
under test may be used to improve the oscilloscope sensitivity. 
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Figure III-23 – Generated IF-OFDM signal in time and frequency domains measured 

with the Agilent DSO81004B oscilloscope  

The 5 GHz local oscillator level (Figure III-23 b)) is controlled and adjusted by adding a DC 
component to the baseband signals using a bias tee as depicted in Figure III-22. Inthis way, we 
avoid the possible saturation of the device under test. However the LO level has to remain above 
the others subcarriers to be detected and demodulated properly. 

The nonlinearities are typically quantified by the IP3 and P1dB on analog characterization. 
In digital characterization, the nonlinearities are given by the Average Power ( avgP ) and the 

Peak to Average Power Ratio (PAPR) both given by 

 [ ] ( )2

10 logavg
in

mean voltage
P dBm

Z

 
 = ⋅
 
 

 (3.20) 

 [ ]
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2

max
10 log 10 logpeak

RMS

voltagepower
PAPR dB

power mean voltage

    = ⋅ = ⋅       

 (3.21) 

where Zin is the input impedance and voltage is the voltage signal as captured by the 
oscilloscope. 

In practice the EVM measurement compares the constellation of the received symbol with 
nearest ideal symbol and not the originally sent. The EVM equation is, then, given by 

[ ] ( ) ( )( )2 2* *

1 1 1

1 1p s dscN N N

ijk ijk ijk ijk
i j kp avg s dsc

EVM linear I I Q Q
N P N N= = =

  
 = − + −  ⋅ ⋅   
∑ ∑ ∑  (3.22)

where: 

 Np is the number of captured frames; 
 Ns is the number of symbols per frame; 
 Ndsc is the number of data subcarriers per OFDM symbol; 
 Pavg is the average power of the constellation; 
 Iijk,Qijk is the complex coordinates of the nearest constellation point for the jth measured 
symbol in the kth subcarrier of the ith frame; 

I*ijk, Q*ijk is the complex coordinates of the jth measured symbol in the kth subcarrier of the ith 
frame. 
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Since the OFDM symbols generated on this bench are based on a pseudo random sequence 
without a frame structure, Eq. (3.22) is reduced to the root term. Figure III-24 a) shows the 
constellation results after demodulation and b) the measured EVM for the Back-to-Back 
configuration, the input power varying from —50 dBm to 10 dBm. We can see that the EVM is 
stable at 9 % for a [-30 dBm to 10 dBm] power dynamic range. If the input power gets lower 
than —30 dBm, we reach the sensitivity of the oscilloscope (1 mV/division) and EVM increases 
because of the receiver noise. 

 

Figure III-24 – Back-to-back configuration for IF=5 GHz: a) constellation diagram of 

the QPSK modulation signal; b) EVM as a function of the input power 

Now if we use 3 GHz as centered frequency without external transposition we got the results 
presented in Figure III-25. As expected the EVM is reduced to 6 % since we remove all the 
transposition system which add extra noises and distortion to the measurement. With these 
results we are ready to make accurate measurements for different centered frequencies with or 
without external transposition.  

 

Figure III-25 – Back-to-back configuration for IF=3 GHz: a) constellation diagram of 

the QPSK modulation signal; b) EVM as a function of the input power 

The EVM measurement as a function of the input RF power is presented in Figure III-26 for 
different laser bias conditions (a) and different optical losses (b). These measurements were 
performed at a center frequency of 3 GHz.  

The typical EVM curve shape can be explained by the relationship between the EVM and 
SNR [172], [151] 
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 [ ]
[ ]
1EVM linear

SNR linear
=   (3.23) 

At low input power the SNR ratio is limited by the noise and at high input power is signal 
distortion instead. 

At 2 mA, we are very close to the threshold current getting a high RIN and compressing at 
low input power and then a high EVM value concludes that this bias current should be avoided, 
as expected.  

 
Figure III-26 – EVM of the link between the die VCSEL and the NFPD as a function of the 

input RF power: a) sweeping the laser bias current; b) sweeping the optical losses (at 

8 mA) 

From 4 to 10 mA, at low input power the EVM increases with the bias. That can be 
explained by the increase of the optical emitted power getting noise and saturation effects on 
the photodiode. For higher input RF powers the EVM decreases with the laser bias increase as 
we improve the linearity of the laser. We get better results for high bias current since the laser 
IP1dB is higher (Figure III-18). The laser bias current operation point reveals to be, as expected, 
a very important parameter to be optimized: 8 mA is considered the best choice on the 10 Gbps 
systems. This can be explained by the position on the LI curve: not close to the threshold 
current which could mean high RIN and lower compression point; not close to the saturation 
region which could reduce the optical microwave gain and add more nonlinearities.  

At 8mA we find approximately a 35 dB dynamic range with an EVM degradation lower than 
20 %, which can be interesting on the wireless technology system coupled to a RoF 
infrastructure. Indeed, the wireless device can be positioned at different distances from the 
fixed antenna, requiring a high power dynamic range (ex: 20 dB from 1 to 10 meters).  

Figure III-26 b) shows the EVM as a function of the input RF power for different optical 
losses with a fixed 8 mA biasing laser current. At low input power the EVM increases because of 
the thermal noise added by the photodiode and the amplifier placed on the receiver. The 
dynamic range is reduced since the noise contribution increases and the nonlinearity keep the 
same. Optical losses pretend to reduce the photodiode input power to avoid saturation effects 
which is not applicable in this case since the NFPD is very linear. Indeed, the EVM has the same 
behavior at high input RF power whatever the optical losses are. This is the limit set by the 
VCSEL it self. 
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III.A.7. Mapping: Scanning Near Field Optical Microscopy 

An extra measure was performed to map the VCSEL surface with the help of the optical 
probe (DC2OP) controlled by a nanopositioner providing the scan on the x- and y-positions. The 
emitted optical power was measured with a power meter as a function of the position (x and y) 
using a 8 mA laser biasing current, as depicted in Figure III-27. Indeed, not only along the 
spatial x and y position, but also for three heights from the VCSEL position: ΔZ=0, ΔZ=50 µm 
and ΔZ=100 µm. The first measurement performed with a height of ΔZ=0 above the surface, 
corresponds to the maximum of coupling efficiency from the lensed fiber to the VCSEL. This 
distance is typically in the range of 50 µm from the VCSEL surface according to its datasheet 
and a direct visual inspection through a 45° mirror. Although, the power is lower than the one 
measured on the LIV curve shown before in a similar DC2OP setup. A maximum of 2.31 mW 
instead of 3 mW (Figure III-2) is measured here. Indeed, the coupling efficiency is 61 % in this 
case. This can be explained by a different alignment (gel-pak probing) or temperature condition.  

 
Figure III-27 – VCSEL mapping along the spatial x, y position for different position in terms 

of Z (transversal to the VCSEL optical power emitted plane) 8 mA 

Same measurements have been performed at a ΔZ=50 and ΔZ=100 µm in order to verify the 
beam shape evolution and extract the beam divergence (target for future work). The laser 
mapping is important for the waveguide simulation and laser beam modeling, which will be 
needed in Chapter VI. 
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III.A.8. Synthesis 

A complete link characterization was performed using 10 Gbps ULM GaAs VCSEL Die and a 
reference commercial photodetector, summarized in Table III.3. The coupling efficiency using 
an optical probe on the top of the VCSEL was estimated to be 79 % which depends strongly on 
the alignment condition. The VCSEL shows an interesting slope efficiency up to 0.52 W/A, 
considering 100 % coupling efficiency (DC2PM). Thermal effects were found to be important at 
high injection bias currents resulting in optical power saturation and, therefore, lower slope 
efficiency. In terms of frequency response characterization, the link results have shown link gain 
around —30 dB with a 3dB cut-off frequency up to 12.3 GHz. Comparing to the state-of-the-art 
on 850 nm GaAs-based VCSELs we found the modulation bandwidth maximum around 17 GHz 
in [56] [67] but with a constant control temperature chuck (20-25°C). Indeed, in [67] the 
temperature is compared between 25 and 85°C where the cut-off frequency is reduces from 
16.5 GHz to 13.4 GHz. 

Table III.3 –Summary of the extracted parameters for the10 Gbps ULM GaAs VCSEL 

Measurement Parameter Units Value Condition 

DC 

pmax mW 3.8 Ibias=10 mA 

Ith µA 610 - 

SLD W/A 0.52 

Maximum value ηd % 37 

ηc % 24 

λ vs. bias nm/mA 0.5 
From the spectrum shifting 

T vs. bias °C/mA 7.1 

RF 

Link gain dB -31 Ibias=10 mA, 79% coupling 
efficiency and RPD=0.222 A/W f3dB GHz 12.31 

MCEF GHz/(mA)1/2 5.995  

NOISE RIN dB/Hz <-140 Ibias>Ith*6.5 and freq [1-5 GHz] 

Nonlinearity 
IP1dB dBm up to 9 Ibias=10mA and 4 GHz 

IIP3 dBm up to 15 Ibias=10mA and 4 GHz 

System 

SFDR dB.Hz2/3 up to 98.8 Ibias=10mA and 4 GHz 

EVM dynamic dB 35 
Ibias=8 mA with 20 % degradation 

from the B2B 
 

Two important parameters that could be optimized to increase the link performances are 
the coupling efficiency (79 % measured) and the thermal dissipation. Nonlinear characterization 
setup was developed based on a highly linear reference photodiode from New Focus, thus 
enabling the extraction of the VCSEL nonlinearities within the VCSEL-reference photodiode 
link. The SFDR shows good results (up to 98.8 dB.Hz2/3) for a bias current higher than 6 mA 
and a frequency between 3GHz and 4GHz. The compression gain agrees with these results since 
the input compression point is up to of 9 dBm at 4 GHz. The last system measurement based on 
the EVM as a function of the bias current helps to estimate the optimum laser bias current to be 
8mA, providing 35 dB power dynamic range with an EVM degradation of 20 %.  
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III.B. 850 nm SiGe HPT on wafer characterization 

This section concentrates on the 850 nm SiGe HPT characterization. A ULM TOSA module 
which integrates an 8 µm aperture diameter 850 nm GaAs VCSEL presented in the previous 
section was used as the reference laser for the HPT characterization. We will cover the static 
performances in terms of Ic-Vce curves and Gummel plots in order to compare both 10x10 µm² 
and 30x30 µm² structures. RF and finally opto-microwave characterization are done in order to 
select the best device that is to be packaged and used in the final system. 

Figure III-28 represents the on-wafer characterization setup used for the photodetectors 
(PDs and HPTs). RF probes are placed on the base and collector accesses of the HPT to bias the 
transistor and collect the output signal. The base is 50 Ohm loaded and the collector is 
connected to port 2 of the VNA. Port1 is connected to the reference directly modulated by the 
VNA RF signal. Its emitted light is injected through the fiber into the optical probe that 
illuminates the optical window of the HPT. The optical coupling between the optical probe and 
the HPT was analyzed in depth in [124]. It is the same with the one of the VCSEL bench setups 
from the previous section. The coupling was optimized controlling the illuminated spot as a 
function of the measured photocurrent. 

The SiGe HPT is based on the SiGE2RF technology from Telefunken GmbH, and was 
presented in Chapter II, section II.B.2.2. 

III.B.1. Static Performances in dark conditions 

Static electrical measurements were performed using a semiconductor analyzer B1500 from 
Agilent feeding voltage and current bias to the phototransistors through bias tees included into 
the VNA. Therefore, the same measurement bench is used for both static and dynamic 
measurements. 

Phototransistors are here analyzed as electrical devices under dark conditions. They are 
biased in a common emitter configuration. Both static collector current curves versus Vce and 
Gummel plots are extracted. 

 
Figure III-28 – On wafer Measurement bench setup: a) Bench schematic for a 10x10 µm² 

size HPT and a reference 850 nm TOSA; b) Photo of the RF and optical probing placed on 

the HPT. 
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Responses depend deeply on the surface size of the phototransistor. We therefore focus on 
the 10x10 µm² and 30x30 µm2 squared window sizes. Initial measurements have shown that 
those HPT exhibited the highest opto-microwave link gain [139]. Figure III-29 shows the static 
response curves of the HPT (Ic-Vce) with 10x10 µm2 on a) and 30x30 µm2 on b). The 
measurements were made by sweeping the collector – emitter voltage Vce from 0 to 3 volts at 
different base currents Ib from 10 nA to 101 µA. 

 
Figure III-29 – Ic versus Vce curve for the HPT with Squared shape, extended emitter, 

base, collector and with etch oxide (SQxEBC_eO): a) 10x10 µm2; b) 30x30 µm2. Both 

with Ib sweeping from 10 nA to 101 µA 

The plot shows that the HPT structure has a turn “on” voltage Von of 0 V. This is a common 
characteristic of SiGe HBTs. The static characteristic curves also show the quasi saturation 
region, wherein the measured collector current has a smooth transition between the saturation 
region and the active region (10x10 µm2 devices present higher collector resistance). This is due 
to the increase of collector resistance at high currents and low voltages. The breakdown voltage 
effect starts above 3.5 V according to [139]. 

The Gummel Plot of the shows the collector current Ic and the base current Ib versus the 
base emitter voltage on a semi-logarithmic scale, with Vbc kept constant (typically 0 V). This 
reflects the quality of the emitter base junction at a constant Vbc. Some parameters can be 
extracted from the Gummel plot, such as the ideality factors, series resistances and leakage 
currents. Figure III-30 shows the Gummel plot of the HPT at Vbc=0 V. The Vbe/Vce values are 
swept from 0 V to 1.1 V. Ic can reach up to 20 mA and more. 
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Figure III-30 – Gummel Plot at Vbc=0 comparing both 10 µm and 30 µm devices size 

(dark conditions). 

Figure III-31 shows the extracted Beta plotted as a function of - Beta is defined to be Ic/Ib. 
The figure shows that the maximum Beta is around 500 for a 10 µm squared device and 700 for 
a 30 µm one.  

 
Figure III-31 – Gummel plot for the HPT: a) 10x10 µm2 ; b) 30x30  µm2 

III.B.2. RF response 

Considering first the RF response the modulated port 1 of the VNA is connected to the HPT 
base and the port 2 to the collector. Figure III-32 shows the transistor electrical gain (E/E S21) 
for both sizes. The 10x10 µm2 HPT has, as expected, a lower gain (up to 19 dB) and a faster 
electrical RF frequency response (electrical 3dB cut-off frequency up to 1.62 GHz). The 
30x30 µm2 HPT has a higher gain (up to 26 dB) and lower cutoff frequency (up to 400 MHz) 
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Figure III-32 – E/E S21 of both device 10 µm and 30 µm SiGe HPT 

The reflection coefficients (Input-base and Output-collector) in Smith diagram 
representation is shown in Figure III-33 (frequency up to 10 GHz), showing a better matching 
to 50 Ohm at high frequency. 

 
Figure III-33 – E/E Reflection Coefficients: S11 and S22 

III.B.3. Opto-RF response 

The Opto-microwave link response measurements (O/E S21) were made using a set of dies 
designed with the base terminal to be loaded to 50 Ohms through an integrated bias-T as 
depicted in Figure III-34. The fabrication revealed to be defective, making impossible actually to 
bias the base. We finally measure a 2T-HPT (two-terminal-HPT) configuration. 

Due to constraints in the ROSA integration, only this die could be assembled. We thus still 
work with it and analyze it carefully hereafter. 
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Figure III-34 – 10SQxEBC_EO HPT: a) Layout; b) Photo with an integrated 50 Ω and 

bias-tee on the base. 

The reference light source is the 8 µm aperture size ULM VCSEL integrated into a TOSA 
module. Its electrical and optical interconnection development is presented in Chapter V, 
section V.A.2.1, as its performance results. Comparison between both 10 µm and 30 µm HPT 
devices and the NFPD are presented in Figure III-35. An optical attenuator with 0 dB (~2 dB IL) 
was used between the TOSA module and the different 3 detectors. The 2T-HPT is biased at the 
Vce=2.5 V. At low frequency the 30x30 µm2 HPT has higher gain since it has more electrical 
gain and a higher optical window providing less optical losses (higher coupling efficiency). The 
10x10 µm2 HPT has lower gain (and more optical losses) but it presents a faster response. The 
O/E gain of the smallest structure is 7 dB higher in the operating frequency at 5 GHz than the 
30x30 µm2 HPT. A higher opto-microwave gain at the system operation frequency was our main 
criteria to select this HPT structure used in the SiGe ROSA module. The reference curve in the 
figure was the NFPD (RPD = 0.222 A/W) measure using an optical attenuator at 0 dB (IL=2 dB) 
and lighted by the ULM TOSA module. The 2T-HPT responsivity is estimated to be 2.38 A/W 
(DC) for the 30x30 µm2 structure and 1.45 A/W (DC)  on the 10x10 µm2 size structure. It 
includes the coupling losses from the lensed optical fiber (~70%). The 10x10 µm2 2T-HPT 
provides higher responsivity (opto-microwave gain) even up to 2 GHz. 

 
Figure III-35 – Opto-microwave link gain (O/E S21) measurements comparing the 

reference (using the NFPD and optical attenuator) with 10x10 µm2 and the 30x30 µm2 

2T-HPT under Vce=2.5 V 

The final choice was put in the 10SQxEBC_eO HPT configuration. It shows, indeed, a better 
gain (responsivity) at 5 GHz (0.034 A/W) even through its optical coupling efficiency to the 
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fiber is lower. A similar coupling efficiency is also expected from its packaging into the ROSA 
module, which will be developed in Chapter V. 

III.B.4. Synthesis 

The static and RF performances of the SiGe HPT were measured comparing both 10 µm and 
30 µm squared structures. As expected the smaller structure is faster, but the larger one has a 
higher E/E gain. A 2T-HPT configuration was then analyzed. The O/E response showed that the 
30x30 µm2 SiGe HPT has a low 3dB cutoff frequency (<400MHz) but with higher opto-
microwave gain which is related to the detector window size. On the other hand the 10x10 µm2 
shows a faster response with a higher 3dB cut-off frequency (1.62 GHz) but with a lower gain 
related to the small optical window. However, the OM gain at 5 GHz (ORIGIN intermediate 
frequency operation) becomes 7 dB higher in the case of the 10x10 µm2 2T-HPT compared to 
the 30x30 µm2 as a result of a greater cut-off frequency x responsivity product. This makes the 
10x10 µm2 2T-HPT to be selected for a further packaging and integration into a ROSA module, 
despite some optical coupling losses which would need further improvements. The electrical 
gain of this device is about 500. Its electrical transition frequency is about 35 GHz as measured 
in [139]. An integrated bias-tee and 50 Ohm base load were included with the device. However, 
due to some defaults in the layout, the base was kept on. The device behavior, however, appears 
performing sufficiently well at this stage. 
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III.C. Summary and discussion 

This chapter presented the characterization of optoelectronic devices at the die level that 
will feed the packaged module development for the next chapters.  

The first section has shown the complete characterization of a RoF link composed by the 
8 µm aperture diameter GaAs VCSEL and the reference New Focus photodiode. Two important 
parameters that strongly influence the link performances are the coupling efficiency (79 % 
measured) and the thermal dissipation. The SFDR have shown a good results up to 99 dB.Hz2/3 
with best biasing of 8 mA with frequency around 4 GHz. Complementary we measured a 35 dB 
power dynamic range with an EVM degradation of 20 % compared to the B2B. 

Two different size structures of 2T-HPTs were chosen to be candidates for the packaging 
and integration into a ROSA module in the ORIGIN system – squared 10 and 30 µm. Both were 
characterized using a reference laser source. A trade-off has been taken in terms of speed 
and coupling efficiency. The choice was made based on the link gain at 5 GHz where the 
10 µm squared 2T-HPT reveals to be 7 dB better than the 30 µm squared one despite lower 
responsivity and coupling efficiency. It exhibits a DC responsivity of 1.45 A/W and 0.034 A/W 
at 5 GHz, including the coupling losses from the lensed optical fiber (~70%). 

This chapter was also especially useful to develop all those noise and nonlinear 
characterization bench setups that will subsequently allow modeling, design and 
characterizations in the further chapters. 
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In Chapter III, we showed that the individual device performance (laser or the photodiode) 
can be occulted on the system link measurements. The extraction of each individual block will 
help to study the link system performance and to identify the critical characteristics of each 
device. This chapter intends to overcome this problematic by the definition and simulation of 
novel opto-microwave figures of merit covering the three main analog characteristics: frequency 
response, noise and nonlinearity behaviors. 

The first section proposes a definition of the opto-microwave figures of merit which allows 
the individual optoelectronic devices representation as an equivalent electrical two-port 
network. Opto-microwave gain and noise figures of merit are reminded, while novel opto-
microwave nonlinear characteristics are given. 
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The second section presents flexible opto-microwave behavioral models for each RoF block: 
laser diode, optical fiber and photodetector. The models are implemented in a microwave RF 
electrical simulator such as Agilent Advanced Design Software (ADS).  

The final section intends to extract the individual performances from the link measurements 
using the defined opto-microwave figures of merit implemented on the behavioral models. The 
performance comparison between different RoF system configurations is presented. The figures 
of merits simulated on ADS helped to solve out the opto-microwave figures for each individual 
block. The simulator is especially useful for the extraction of individual EVM characteristics 
which would be more difficult with a pure analytic approach. 

IV.A. Opto-Microwave Figures of Merit definition 

This section proposes the definition of the opto-microwave figures of merit. This topic has 
been target of interest over the years, usually limited to the gain and noise definitions. 
Definitions for analogue optical links have been presented mainly by C.H. Cox and E.I. 
Ackerman. [152]-[160] and followed by other authors such as Haus [161], Baney [162], Tucker 
[163] and Frigyes [164]. The ESYCOM photonic-microwave team, presented as well a definition 
of what we call quantum efficiency based definition of gain and noise figure as described in 
[165], [141]. We here develop, however, a responsivity based definitions that are expected to 
best fit to the experimental nature of the opto-microwave signals. This approach was initiated in 
[99]-[102], [140] and more recently in [115], [2], [3]. 

IV.A.1. Equivalent Opto-Microwave Power - POM 

The first consideration to take into account is the nature of the modulated optical signal 
which is composed of static and dynamic components. The RF signal (signal information) is 
transferred onto the envelope of the optical signal and it is the core of our definition. 

 
Figure IV-1 – RoF link OM equivalent model with indicudual two-port network devices: 

laser diode, optical fiber and photodiode 

In fact, we apply the microwave approach to the propagation of the envelope modulation 
signal where we define an equivalent optical current ( optI ) as proportional to the optical power: 

 1opt C opt opt
AI P PWα= ⋅ = ⋅  Equation Section 4 (4.1) 

where Cα  is the conversion coefficient of the optical power to electrical current ( Cα  is 

considered equal to 1 A/W). Basically the optical power is represented by an electrical current 
(‘optical’) given by the photocurrent measured from a reference ideal photodetector with 
responsivity of 1 A/W (unity).  
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The equivalent opto-microwave power is essential to the definition of all following opto-
microwave figures of merit. This quantity defines an equivalence to the optical power as an 
electrical power generated by a virtual probe, which is a theoretical photodetector loaded to 50 
Ohms and having a responsivity of 1 A/W (unity). This equivalence has the advantage to allow 
the individual optoelectronic devices representation as an equivalent electrical two-port 
network, easily usable in RF simulator such as Agilent ADS, but also on which all microwave 
notions and concept can be transferred to. It is also easily related to the experimental conditions 
through a simple normalization procedure. 

Figure IV-1 shows the equivalent model for all the modules of a typical optical link: laser 
diode, optical fiber and photodiode. Each block is defined as a two-port network block cascaded 
to others with no reflections and feedback on the propagated RoF signal. 
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The measurement of the optical signal at any point of the link, such as the output of the 
laser, with the virtual probe, i.e. the 1 A/W reference photodiode, allows us to get the equivalent 
opto-microwave power defined in the Eq. (4.2). 

IV.A.2. Opto-Microwave Gain - GOM 

The opto-microwave gain, starting by the photodiode, is defined as the ratio between the 
output electrical power and the equivalent input opto-microwave (Eq.(4.2)) power.  
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 (4.3) 

where PDR  is the photodiode responsivity. A particular interesting case is a configuration 

where the photodiode is followed by a Trans-impedance Amplifier (TIA) as used in the 1st and 
2nd TRoF module generations. In this case the opto-microwave gain is given by: 
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  (4.4) 

where TZ  is the typical trans-impedance gain (V/A). 

 
Doing the same equivalence into the laser, we get  
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where LDS  is the Laser Diode Slope Efficiency.  

 
For an optical fiber, we consider FBA  as the related optical losses with the attenuation on 

the RoF signal included (due to modal or monochromatic dispersion [140]). Then the final opto-
microwave gain for the link, assuming of a photodiode without TIA integration, is given by: 
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 ( )2OM
LINK LD FB PDG S A R= ⋅ ⋅  (4.6) 

where the laser and the photodiode are considered perfectly matched to 50 Ohm.  
 
If we consider a more general case where there is a mismatch on the both devices, the opto-

microwave S-parameters could be involved as defined in [99] [140]. The opto-microwave gain 
for the complete optical link then becomes: 
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where SΓ  and LΓ  are the source and load reflection coefficients, respectively on the laser and 

photoreceiver output.  

IV.A.2.1 Literature comparison 

Figure IV-2 compares the different gain definitions of optical links from the literature: 
Cox et al. definition [152] is based on the proportionality of the emitted optical power by the 
laser to the squared root of the RF input power and considers the RF output power given by the 
detected photocurrent being proportional to the square of the optical power. Those 
proportionalities are related to each individual device efficiency. Therefore the gain is defined as 
small signal efficiency; 
Ackerman proposed a new definition [158] given by an “effective” gain with the goal to define 
the noise figure of a cascade optical link. Therefore, he proposed to remove the square-law 
nature of the modulation and detection processes;  
In our case [2], [3] we propose a gain between homogeneous quantities and maintain the fact 
that the optical beam behaves as a current. Through a proper definition of the equivalent opto-
microwave power, and further definition of the noise figure, we also achieve the noise figure 
composition target by Ackerman. 
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Figure IV-2 – Individual gain definition from literature compared to our definition: 

Cox - individual small-signal efficiencies; Ackerman - effective gain. 

IV.A.3. Opto-Microwave Noise Figure - NFOM 

The noise definition of individual devices leads to identification of each device 
corresponding noise source.  

The laser and photodiode noise factor can be determined by typical Signal-to-Noise (SNR) 
power ratio between the OM input and the OM output, given by: 
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Our definition imposes to consider the noise at each optical side, to be the noise density of 
the equivalent opto-microwave power. It also imposes to consider the input noise reference 
signal as the thermal noise power density at a room temperature of 290 K. Thus the Opto-
Microwave Noise Factor can be given by: 
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Where ,
OM
LD PDN  corresponds to the opto-microwave noise spectral power density added by 

the laser or the photodiode. Since the laser noise source is related to the RIN, we can define a 
noise spectral power density added by the laser as: 
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Concerning the photodiode, two noise sources are identified, first the shot noise produced 
by the quantum nature of the photons received by the detector second the thermal noise. The 
shot noise is directly proportional to the incident optical power, conventionally defined by 
Eq. (3.5) in Chapter III, section III.A.3. The second noise source is the thermal noise which it is 
not dependent on the optical power and which is constant with frequency, reason why it can be 
subtracted easily to the total noise. The thermal noise on the photodiode is typically quantified 
with the Noise Equivalent Power (NEP) which is the optical input power needed to produce an 
additional output power identical to that noise. It is given by: 

 [ ] _1 th PD
N

PD L

N
NEP W B

R R
= ⋅   (4.12) 

where _th PDN  is the photodiode thermal noise. At the end, taking into account both noise 

sources, the photodiode opto-microwave noise factor is given by: 
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If we consider the particular case of the photodiode followed by a TIA, the opto-microwave 

noise factor is then given as: 
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Where GTIA is the TIA gain, _out noiseV  is the TIA output noise voltage. Replacing the 

transimpedance amplifier gain and the output voltage noise we get 
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Where the eqI  is the noise current equivalent at the input of the TIA. 

 
Finally, as each part of the opto-microwave link considers the same input reference noise, 

i.e. the thermal noise power density k T⋅ , the Friis equation is now applicable to compute the 

complete link opto-microwave noise factor: 
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In our definition we consider the optical fiber as a noiseless element ( 1OM
FBF = ) but it still 

has an important contribution to the final noise factor with the gain ( FBA ) as expressed by the 

Friis formula. Replacing equations (4.11) and (4.13) in (4.16), we get: 
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IV.A.3.1 Literature comparison 

Our definition differs from other authors cited previously where they define all the noise 
contributions, including the laser, at the output of the photodiode. That means they will not use 
the optical power ( optP ) but the photocurrent measured at the photodiode output which 

depends on the responsivity.  
Ackerman [158] provided a definition which is based on the Friis relationship as well. The 

main difference with our model is that he considers the noise figure of the optical fiber as 
1OM OM

FB FBNF G= .  

In the case of Cox et al. [152] definition do not take into account the electrical thermal noise 
at the photodetector end and is not compatible with Friss.  

Haus [161] has proposed a revised definition for the noise figure of an optical amplifier 
based of the optical signal-to-noise power ratios as given by optical field power spectra at the 
input and output of the optical amplifier instead of the detected electrical signal to noise power. 
He also explicitly uses the thermal noise power as the input reference which makes it consistent 
with standard electrical noise figure definition. 

Baney [162] and Tucker [163] focused their work on the noise figure of the optical 
amplifiers. Their noise figure formulation is based on a general description of the SNR 
degradation of intensity modulated signals: 
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  (4.18) 

Where the SNRin is measured without the optical amplifier and is a fixed reference. And 
SNRout gives the degradation when the optical amplifier is inserted in the measurement. An 
important characteristic is that they considered the input noise reference signal to be a shot-
noise limited input reference instead of the typical definition used in electrical circuits where 
the input reference signal is based on thermal noise. Indeed, the optical amplifiers are low noise 
components and using thermal noise at the input could mask the noise produced by the 
amplifier. They provide two methods of optical noise figure measurement: using optical 
spectrum analyzer or using electrical spectrum analyzer. They recall also that the noise factor 
contributed by the passive element (i.e. optical fiber) is zero 0OM

FBNF = . 

A summary of the main differences between the different approaches is presented in Table 
IV.1. Our approach is characterized by: It is applicable to each individual parts of the link; it 
considers thermal input reference; it is compatible with Friis formula; the passive optical 
elements are noiseless.  
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Table IV.1 – Noise figure definitions founded in literature 

 Ref. Configuration Input reference  Friis NFFB Features 

Cox et al. [152] link thermal noise no - opto-microwave link 

Ackerman [158] individual thermal noise yes 1/GFB opto-microwave link 

Tucker et al. [162]  individual shot-noise-limited yes 0 optical amplifier 

Haus [161] - thermal noise yes - optical amplifier 

Frigyes et al. [164] link thermal noise - 0 opto-microwave link 

Our work [2] [3] individual thermal noise yes 0 opto-microwave link 
 

IV.A.4. Opto-Microwave Nonlinearities 

We proposed to develop in this section the opto-microwave figures of merit that describe the 
nonlinearities of each device: we thus simply extend the gain compression at 1 dB (P1dB) and 
the 3rd order intercept point (IP3) into the opto-microwave domain. Both pure microwave 
definitions were presented in Chapter III, subsection III.A.4. The related opto-microwave 
definition (P1dBOM , IP3OM and SFDROM) are presented in Figure IV-3.  

They are based on the representation of signal levels in the opto-microwave equivalent 
powers, both on the input and output of each device. 

 

Figure IV-3 – Plot of the Opto-Microwave output power versus the Opto-Microwave 

input power of a nonlinear system: P1dBOM, IP3OM and SFDROM definition 

Those definitions are detailed further in the following subsections. 

IV.A.4.1 Opto-Microwave Gain Compression Point – P1dBOM 

The Opto-Microwave Gain Compression Point is defined by the opto-microwave output 
level at which the device gain is 1 dB less than the small signal opto-microwave gain, or is 
compressed by 1 dB (Figure IV-3). We are interested to analyze the link compression gain 
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expression as a function of the different individual devices using a typical cascade microwave 
link definition. The input 1dB compression point of the link gain can be expressed as a function 
of the laser, optical losses and photodiode gain and considering individual opto-microwave 

compression points ( )1 , 1 OM
LD PDIP dB IP dB  according to the microwave composition law given 

by [166] 

 
11 1 10 log 1

1

OM OM
LINK LD FB LD
dBm LD OM

PD

G G IP dBIP dB IP dB
IP dB

 ⋅ ⋅
= − ⋅ + 

 
  (4.19) 

With 2OM
FB FBG A= . 

Conventionally two cases can be considered: 
1 1 1OM OM OM

PD LD FB LDIP dB G G IP dB>> ⋅ ⋅   (4.20) 

2 1 1OM OM OM
PD LD FB LDIP dB G G IP dB<< ⋅ ⋅   (4.21) 

Case 1 corresponds to the link input compression point dictated by the laser: 
 1 1LINK

dBm LDIP dB IP dB⇒ ≈   (4.22) 

and case 2 corresponds to the link input compression point dictated by the photodiode: 

 
11

OM
LINK PD
dBm OM OM

LD FB

IP dBIP dB
G G

⇒ ≈
⋅

  (4.23) 

Eq. (4.19) then helps to retrieve the typical behavior of the compression of the complete 
optical link as a function of the optical attenuation. This behavior is sketched in Figure IV-4. On 

the left, for low input losses ( OM
FBG ), the linearity increases showing that we are on the 

photodiode nonlinearity limitation region. For high input loss the linearity does not change, we 
are on the laser nonlinearity region.  

 
Figure IV-4 - IIP3 and IP1dB of the link system as a function of the optical losses. 

Now the same consideration can be done in terms of the link compression point at the 
output. The composition law is now given by: 

 
111 1 10 log 1
1

LINK PD
dBm PD OM OM OM

FB PD LD

OP dBOP dB OP dB
G G OP dB

 
= − ⋅ + ⋅ ⋅ 

  (4.24) 

If we consider the case (1), it comes out that: 

 1 1OM OM OM
PD FB PD LDOP dB G G OP dB>> ⋅ ⋅   (4.25) 

Then, this means that the system OP1dB is limited by the laser.  

 1 1LINK OM OM OM
dBm FB PD LDOP dB G G OP dB⇒ ≈ ⋅ ⋅   (4.26) 

Now if considering the situation of the case (2)  
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 1 1OM OM OM
PD FB PD LDOP dB G G OP dB<< ⋅ ⋅   (4.27) 

Then, this means that the OP1dB from the photodiode limits the system.  
 1 1LINK

dBm PDOP dB OP dB⇒ ≈   (4.28) 

By changing the optical losses ( OM
FBG ) between the laser and the photodiode we can verify 

the influence of each device on the gain compression. 
From this new 1 OMIP dB  and 1 OMOP dB  definitions, it is then possible to better 

characterize the laser and photodiode devices. Indeed, the 1 OMOP dB  of the laser is useful to 
include the value of the laser slope efficiency. Indeed having a large 1IP dB  and a small slope 

efficiency may not be worth, while giving the value of the 1 OMOP dB  gives a clear answer.  

IV.A.4.2 Opto-Microwave 3rd Order Intercept Point – IP3OM 

Opto-microwave 3rd order intercept point is given by the point where the extrapolated opto-
microwave third order intermodulation distortion level (IMD3OM) is equal to the opto-
microwave signal fundamental level (IMD1OM) (Figure IV-3). Microwave composition laws [166] 
can easily be transferred to the new IP3OM definition. The input 3rd order intercept point (IIP3) 
in dBm for an optical system is thus given by: 

 
33 3 10 log 1

3

OM OM
LINK FB LD LD
dBm LD OM

PD

G G IIPIIP IIP
IIP

 ⋅ ⋅
= − ⋅ + 

 
  (4.29) 

If we consider the two extreme situations: 
1 3 3 3 3OM OM OM LINK

PD FB LD LD dBm LDIIP G G IIP then IIP IIP>> ⋅ ⋅ ≈   (4.30) 

2 
33 3 3

OM
OM OM OM LINK PD
PD FB LD LD dBm OM OM

FB LD

IIPIIP G G IIP then IIP
G G

<< ⋅ ⋅ ≈
⋅

  (4.31) 

From these equations and taking into account 3 3OIP IIP Gain= + , we can express the 

OIP3 by: 

 
313 3 10 log 1
3

LINK PD
dBm PD OM OM OM

FB PD LD

OIPOIP OIP
G G OIP

 
= − ⋅ + ⋅ ⋅ 

  (4.32) 

We can also consider the 2 cases: when OIP3 is limited by the laser 
 3 3 3 3OM OM OM LINK OM OM OM

PD FB PD LD dBm FB PD LDOIP G G OIP then OIP G G OIP>> ⋅ ⋅ ≈ ⋅ ⋅   (4.33) 

or by the photodiode 
 3 3 3 3OM OM OM LINK

PD FB PD LD dBm PDOIP G G OIP then OIP OIP<< ⋅ ⋅ ≈   (4.34) 

Same considerations can me made using nonlinearity evolution presented in Figure IV-4 in 
terms of the IIP3. 

IV.A.5. Opto-Microwave Spurious Free Dynamic Range – 
SFDROM 

The SFDR is typically used for system characterization relating the noise, the frequency 
response and the intermodulation distortions. The Opto-microwave SFDR proposed is defined 
as the opto-microwave output power range defined between opto-microwave output powers at 
the fundamental and at the third order intermodulation distortion (IMD3OM) when input power 
produces an IMD3OM equal to the opto-microwave noise (Figure IV-3): 
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2

3
, ,

2 3
3

OM OM OUT
LD PD LD PD NOISESFDR dB Hz OIP N   ⋅ = −   

  (4.35) 

where 3OMOIP  is the Opto-microwave output 3rd order intercept point and OUT
NOISEN  is the opto-

microwave output spectral noise density in 1Hz, defined as: 
 , ,

OUT OM OM
NOISE LD PD LD PDN k T NF G= ⋅ + +   (4.36) 

where k , T , OMNF  and OMG  is the Boltzmann constant, operational temperature, opto-

microwave noise figure and opto-microwave gain, respectively. 

IV.A.6. Opto-Microwave Error-Vector-Magnitude – EVMOM 

EVMOM compares the constellation between the received complex equivalent OM symbols 
and the ideal transmitted ones, depending upon the modulation scheme, as sketched in Figure 
IV-5 (applicable also the photodiode side). Mathematically EVMOM is the ratio of the OM error 
vector power to the reference vector power: 

 [ ]
OM

error vector
OM

reference

P
EVM linear

P
=   (4.37) 

Finally we can also define an individual Opto-Microwave SNR which can be directly 
related to the Opto-Microwave EVM by: 

 [ ]
[ ],

,

1OM
LD PD OM

LD PD

EVM linear
SNR linear

=   (4.38) 

It is important to take into account that the input SNR of each optoelectronic device 
considers the reference noise to be the thermal noise at a room temperature of 290 K. 

 
Figure IV-5 – Definition of Opto-Microwave EVM: a) Laser OM model representation; b) 

16-QAM OM constellation 

IV.A.7. Synthesis 

The definition of the opto-microwave figures of merit was presented and compared to other 
authors. It covered the frequency response by defining an OM gain, the noise behavior by the 
OM NF and the nonlinearities by both OM P1dB and OM IP3. The definition is based on 
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conventional microwave formulation which was complemented by an equivalent OM power 
approach. This is to say the extension of microwave tools in the opto-microwave domain. Two 
more OM figures of merit (OM SFDR and OM EVM) are used for the system performance 
characterization where each component is individually evaluated in the opto-microwave 
domain. 
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IV.B. Opto-Microwave Behavioral Model 

This section we propose an optical microwave behavioral model based on symbolically 
defined device (SDD) developed by Agilent ADS. The concept is to use a black box in which 
mathematical equations can be implemented to specify the relationships between input and 
output currents and voltages as we can see in Figure IV-9. The use of SDD has a particular 
interest to simulate large and small signal behaviors of a nonlinear device. It enables a simple, 
fast way to develop and modify complex models and simulation results can be compared to 
measured data. A SDD with n ports is described by n equations between the n port currents and 
the n port voltages specified in time domain. The time derivative and integration are also 
available. In the example of Figure IV-6, we use an explicit representation: currents at the ports 
1 and 2 are specified as a function of the port voltages. In this example, the current at port 1 is 
calculated by dividing the voltage at port 1 by 50 Ohm.  

 
Figure IV-6 – Symbolically Defined device (SDD) example: model of an amplifier.  

The current at port 2 is the same, but a nonlinear behavior is defined using a tangent 
hyperbolic function. The weighting (H [2]) function is a simple low pass filter of 1st order. 

We decided to implement one SDD for each component of the RoF system (see Figure IV-7): 
Laser, photodiode and optical fiber. Our main focus is on the Laser (LD) and the photodiode 
(PD) models defined by the user input variables (measured in Chapter III) that contribute to the 
opto-microwave figures of merit. The optical fiber model is characterized only by optical losses 
(misalignment and connectors). 

Figure IV-7 shows the behavioral model of the link system with 3 main blocks: Laser on the 
left; optical attenuation on the center and the photodiode on the right. This link model 

SDD2P
SDDNP7

H[2]=1/(1+j*omega*tau)
I[2,2]= -(Vs*tanh(A*ve/Vs))/50
I[1,2]=_v1/50

 
Figure IV-7 - RoF Behavior models developed in Agilent ADS. 
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simulates the link between an ULM VCSEL die connected to the NFPD photodiode. All the 
measurements done previously, feeds the model with the different parameters as shown in the 
figure. The optical fiber model helps to fit the model to the measurements by providing the 
optical losses from the fiber and from eventual misalignments not necessarily well-known in 
advance. The model focused on one bias operation current of 8mA, which the most interesting 
bias point for the final system (see Chapter III). 

Optoelectronic devices modeling for Radio-Over-Fiber link system simulation is very 
important to help us to predict their behavior and to optimize the system performances. The 
figures of merit were introduced in Chapter III (link characterization) and developed in section 
IV.A by the opto-microwave definition. The Figure IV-8 illustrates our modeling approach by 
defining an individual behavioral model to each block in order to understand the global 
performances given by the link measurements.  

Modeling nonlinear systems is a topic of high interest during the last years, mainly on the 
RF power amplifiers. System modeling in general can include equivalent circuit modeling or 
behavioral modeling. A good knowledge of the circuit and component levels is required for 
equivalent circuit modeling. On the other hand, behavioral modeling does not require details at 
the component level. Basically the system behavior is implemented using a mathematical 
equation that linked the input to the output signals. Non-linear behavioral system models can 
be separated into three types: memory-less, quasi memory-less and models with memory [142]. 
Memory-less models consider only AM/AM conversions and a constant phase. In the case of the 
quasi memory-less models, the amplitude (AM/AM) and the phase (AM/PM) distortions are 
taken into account. Memory effects imply that the system output signal depends not only on the 
current input signal, but also on the precedent past signal. The main source of memory 
phenomenon is thermal effects and can be observed by the asymmetries in lower and upper 
sidebands and bandwidth dependent variations in the magnitude of IMD products. The Non-
linear Memory-less and Quasi-Memory-less Models used are typically: Rapp Model [143], Saleh 
model [144], Ghorbani model [145], Hyperbolic Tangent Model [142] (the last will target on this 
work for its simplicity). In the case of non-linear Models with Memory, the most widely used 
are: Volterra Series [149]-[151], Wiener Model [149], Hammerstein Model [146], parallel 
Hammerstein Model [147] and Memory Polynomial Model [148] . 

 
Figure IV-8 – RoF block model with corresponding Opto-microwave Figures of merit. 
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IV.B.1. Laser diode behavioral model 

The laser model is represented in Figure IV-10. The output opto-microwave current is 

 opt
opt in LD

C

I
P I S

α
= = ⋅   (4.39) 

It also introduces the unidirectional path of the optoelectronic devices where the current 
source is given by 2 optI⋅  and a 50 Ohm load which produces a perfect match without optical 

reflections.  

 
Figure IV-10 – Laser equivalent two-port network with optical output access 

The large signal behavior was implemented into the model by introducing the tangent 
hyperbolic [142] function on the optI  definition as  

 tanh in
opt S

S

G II I
I

 ⋅
= ⋅  

 
,  (4.40) 

where G  is the gain in the linear region (Eq. (4.5)), inI  the input current and SI  the limit value 

of the output signal which provides the saturation effect. The last parameter on the opto-
microwave gain is the frequency response of all devices. The laser frequency response ( )H f  is 

commonly represented by Eq. (2.14) given in Chapter II, section II.B.1.5. 
The noise sources of the laser were identified in the section IV.A.3 and are implemented into 

the laser model through noise voltage sources given in µV Hz . The laser noise figure 

implementation requires 3 parameters founded in Eq. (4.11) presented in section IV.A.3: the 
optical power, the RIN value and the slope efficiency (in Figure IV-7). The RIN quantity was 
implemented using the conventional frequency response given by [131] 

2.IoptR0
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(ZLD)
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Figure IV-9 – Two-Ports Network model representation: SDD 
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⋅ +
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where A and B are device-dependent constants. The laser noise behavior was implemented on 
the laser model by the typical RIN parameter including its frequency response.  

IV.B.2. Photodiode behavioral model 

The photodiode model is represented in Figure IV-11. The output photocurrent of the 
photodetector is 

 PD opt
out ph PD opt

C

R I
I I R P

α
⋅

= = ⋅ =   (4.42) 

The optical access input is given by the 50 Ohm ( 0R ) resistance which introduces the notion 

of the equivalent opto-microwave power ( )OMP . It, also, introduces the unidirectional path 

with a perfect match without optical reflections. The OM gain given by Eq. (4.3) is implemented 
using the hyperbolic tangent given by the Eq. (4.40) as the nonlinearities. The photodiode 
frequency response, typically flat up to the cut-off frequency, was implemented with a 1st order 
low pass filter with 25 GHz cutoff frequency.  

 
Figure IV-11 – Photodiode equivalent two-port network with optical input access 

An important parameter to take into consideration is the photodiode output impedance 
where it can include a 50 Ohm resistive matching (New Focus PD) which will reduce the OM 
gain by 6dB since the output current is divided by two when the PD is loaded to 50 Ohm.  

The noise on the photodiode model was implemented by the given photocurrent which gives 
the shot noise plus the NEP parameter responsible for the thermal noise (all this variables are 
founded Eq. (4.13)). A noise voltage source was used for this purpose as well. 

IV.B.3. Opto-microwave gain simulation 

The simulation of this subsection considers the optical link presented on the Chapter III and 
composed of the 8 µm aperture diameter ULM VCSEL and the New Focus reference 
photodiode. The calculated link gain based on the Eq. (4.6) (section IV.A.2) was fitted using 
measurement values for the slope efficiency (SLD=0.31 W/A) and the responsivity 
(RPD=0.222 A/W) and the fiber coupling efficiency implemented by the parameter ‘A’ (see 
Figure IV-7). The coupling losses reveal to be 0.55 dB which corresponds to 88 % coupling from 
the initial total power (DC2PM). 
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10
0.22210 log 0.31 0.88 30.42

OM
LINKG dB dB= ⋅ ⋅ ⋅ = −   (4.43) 

The responsivity divided by two is explained by the output 50 Ohm resistive matching 
providing a division of the output current on the presence of a typical measurement equipment 
(RL=50 Ohm). The alignment on this measurement was better than the measurement on the LI 
curve (79 %) since we got better coupling efficiency. 

Figure IV-12 shows the simulation of the different blocks of the system and the measured 
link gain. The photodiode frequency response, typically flat up to the cut-off frequency, was 
implemented with a 1st order low pass filter with 25 GHz cutoff frequency. The laser frequency 
response, given by the intrinsic parameters ( Rf , Pf  and γ  founded in Figure IV-7), was 

extracted from the link gain measurement, considering the low-pass filter of the photodiode. 
The laser reflection coefficients were considered too by including the real measured laser S11 on 
the model. The photodiode output was considered perfectly matched since it is a commercial 
device with 50 Ohm output resistive impedance matching.  

 
Figure IV-12 – Opto-microwave Gain extraction from measurement: ULM VCSEL biased at 

8 mA followed by the New Focus Photodiode (Considering 88 % coupling efficiency of the 

lensed optical probe)  

The OM gain definition was presented and simulated successfully including the frequency 
response of each device. Link OM gain extraction revealed, as expected from the DC 
responsivities, a higher laser OM gain of around —10 dB compared to approximately —18 dB of 
the photodiode OM gain including the —6 dB losses due to the two parallel resistances (see 
Table IV.2). 

IV.B.4. Opto-microwave noise figure simulation 

Both modules contributions are presented in Figure IV-13 compared to the measurement. 
The LD noise figure measurement is computed by the RIN measurement with laser bias current 
at 8 mA given in Figure III-14, Chapter III. As expected, we can see that the main noise source is 
coming from the laser related to the RIN. We can observe a good agreement between the 
simulation and the measurement, except at low and high frequencies. 
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Figure IV-13 – Opto-microwave NF extraction: ULM VCSEL biased at 8 mA followed by 

New Focus Photodiode (considering 88 % coupling efficiency of the lensed optical probe) 

At high frequency (higher than 18 GHz) the measurement setup is not valid according to the 
calibration analysis done previously, see section III.A.3. At low frequency the difference comes 
from the RIN frequency response, Eq. (4.41), which does not take into account the low 
frequency noise behavior. This could also come from other low frequency noise sources from the 
test bench, which are not modeled. 

The final laser OM NF is around 35dB ± 5dB. Even if the laser noise is dominant we can see 
also that the noise contribution of the New Focus PD (OM NF of around 22 dB), will be of 
importance for high optical transmission losses or long distance (link) if optical losses are larger 
than 20 dB. 

IV.B.5. Opto-microwave nonlinearities simulation 

Because of the simplicity of the hyperbolic tangent, the parameters P1dB or IP3 are easily 
implemented. The disadvantage is that the sharpness of the transition between the linear region 
and the saturation one is fixed by the gain value. Basically, this means that the difference 
between the IP3 and P1dB power points is theoretically around 10 dB. The value obtained on 
simulations will be higher than 20 dB. This limitation is shown in Figure IV-14 (left) where the 
compression point was implemented to fit the measurement, but the sharpness is much 
smoother on the model simulation. 

 
Figure IV-14 – Model nonlinearity behavior: compression gain (left) and IP3 (right) 

characteristics at 5 GHz and 8mA of laser bias current (considering 70 % coupling efficiency 

of the lensed optical probe). 

0 5 10 15 20
0

10

20

30

40

50

60

Frequency (dB)

N
F 

(d
B

)
LD NFOM (S)

LD NFOM (M)

PD NFOM (S/M)

-20 -10 0 10
-100

-80

-60

-40

-20

Pin (dBm)

P
ou

t (
dB

m
)

 

 

IMD1 Measure
IMD3 Measure
IMD1 Fit
IMD1 Simulation
IMD3 Simulation
IMD3 Fit

-20 -15 -10 -5 0 5
-40

-35

-30

-25

Pin (dBm)

G
O

M
 (d

B
)

 

 
GOM measure
fit
GOM simulation



Opto-Microwave Behavioral Model  87 

87 

The OM nonlinearities were implemented in the model using the nonlinear behavior of the 
hyperbolic tangent function. We got a good agreement with the measurement despite a 
saturation sharpness smoother than the real measurement. 

IV.B.6. Opto-microwave Spurious Free Dynamic Range 
simulation 

We have now the SFDR defined at each optoelectronic device, allowing the simulation and 
comparison between each block. The nonlinearities were added in the model with the P1dB/IP3 
parameters. The OMSFDR  of each block was extracted as depicted in Figure IV-15. As expected 

the laser is the limiting device. We observe an OMSFDR  for the NF photodiode of 

117.5 dB.Hz2/3 which is much above the value of the VCSEL value (~100 dB.Hz2/3) at 5 GHz. The 
NF photodiode is thus proved to be very linear, only the VCSEL would limit the nonlinearity of 
the system as expected from Chapter III. 

 
Figure IV-15 – Opto-microwave SFDR extraction (considering 88 % coupling efficiency of 

the lensed optical probe) 

The link SFDR is simulated with a reasonably good agreement with the measurements. It is 
important to remark the divergence at low frequency because of the noise frequency response 
implemented into the model does not take into account the low frequency behavior, as depicted 
in Figure IV-13. The individual simulation results show as expected, that the laser is the main 
limitation device. 

IV.B.7. Opto-microwave Error-Vector-Magnitude simulation 

In terms of EVM a co-simulation was used using Matlab and ADS (Figure IV-16): Matlab 
generates the signal to be injected at the input of the DUT behavioral model of ADS software; 
we import the voltage data in function of the time from Matlab and injecting to a voltage source 
to be used as an input in the behavioral model in ADS; at the end we recover the model output 
signal and go back to Matlab to do the demodulation and compute the EVM. 
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Figure IV-16 – EVM co simulation procedure using Matlab and ADS 

The EVM simulation as a function of the input RF power compared with the measurement 
is presented in Figure IV-17. In Figure a) the measurement was fitted by tuning the RIN 
parameter at the low input RF signal where the EVM curve is dictated by the noise behavior. 
The RIN was tuned from -130 dB/Hz down to -160 dB/Hz with a step of 5 dB getting the 
optimum value of -147.5 dB/Hz where we get the best agreement with the measurement in 
terms of EVM. This value fits with the RIN curve measured at 8 mA given in Figure III-14. As 
we can see the RIN is dominant down to -155 dB/Hz where the influence of the PD becomes 
relevant. Complementary in Figure b) we fix the laser parameters, including the RIN 
(-147.5 dB/Hz at 3 GHz), and tune the optical losses having a good agreement with 
measurement. The optical losses matched with the photocurrent monitored at the time of the 
EVM measurement. The optical losses extracted here include all the losses from the total output 
laser optical power to the input photodiode optical window. We fit the EVM curve with 1.26 dB 
optical losses which represent 75 % coupling efficiency from the total emitted power of the laser. 
This is consistent with the typical coupling losses from the die to the optical probe. OMEVM  

measurement then proves a very precise tool to investigate the performances of each parts.  

 
Figure IV-17 – EVM model simulation as a function of the input RF power of the link system 

using the laser diode and the NFPD at 8 mA and 3 GHz: a) Model fitted with tuning the RIN 

parameter; b) Measurement fitting with different optical losses 

As we fit the link measurement, the individual Opto-microwave EVM was extracted for 
each device. The simulations are presented in Figure IV-18 for one bias (8 mA) and one center 
frequency (3 GHz). Here we see, as expected, the laser opto-microwave EVM is very close to 
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the link EVM with the only difference at low input power as the optical losses contribute as 
well to the link noise figure. 

 
Figure IV-18 – Opto-microwave EVM extraction for 8mA at 3 GHz and 1.26 dB optical 

losses 

The photodiode is very linear and low noise, but still, we can see the noise effect at low input 
power. From the EVM measurement, we can extract the different individual figures of merit by 
fitting the simulation. At high RF power, the LD nonlinearities effect appears clearly on the 
EVM. The simulation of the hyperbolic tangent can also be seen. 

IV.B.8. Synthesis 

The defined opto-microwave figures of merit were implemented into behavioral models. It 
covered the frequency response by defining an OM gain, the noise behavior by the OM NF and 
the nonlinearities by both OM P1dB and OM IP3. The behavioral model was fitted to the 
measurements done previously. The simulation results got a good agreement with link 
measurement and the individual performance simulations were successfully extracted and 
validated. The large-signal behavior limitations from the hyperbolic tangent function were 
identified, with however a 1st order approximation in sufficient agreement with the 
measurements. Two more OM figures of merit (OM SFDR and OM EVM) which typically are 
used for link system characterization were simulated individually with good agreement with 
measurements, validating once again our model definition. The final model simulation for the 
OM EVM parameter allowed us to adjust the model identifying eventual variable optimization 
such as the RIN and optical losses. Therefore, even with only the system EVM measurement, we 
are able to extract precisely the figures of merit such as OM NF, OM P1dB, OM IP3, OM Gain 
and OM SFDR. 
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IV.C. Performance of different RoF devices extracted 
from link measurements 

This section uses the previous results on the opto-microwave figures of merit and 
behavioral models in order to simulate the different RoF system generations, extracting the 
individual performance of each device and identifying the eventual critical points. 

The first subsection considers the reference RoF link using the 8 µm aperture diameter 
ULM VCSEL and the New Focus Photodiode which corresponds to the characterization done in 
the previous chapter and to the OM figures of merit simulation from the previous section IV.B. 
The main critical device is the VCSEL since the New Focus PD is very linear. It then allows the 
extraction of all the performances of the laser. Therefore the laser becomes the reference for the 
next RoF system characterizations and parameter extraction. 

The second subsection intends to extract the individual performance of the RoF devices 
from the second TRoF module generation which is composed by the 8 µm aperture diameter 
ULM VCSEL (performances extracted in previous section) integrated into a TOSA module and 
the Finisar ROSA module. Since the laser was the reference, we can now extract the Finisar 
ROSA module performance and, this time, make it as the reference for the next RoF system 
configuration and its related device parameter extractions. 

The last subsection, then takes into account the RoF system of the first generation 
composed of the Finisar TOSA module and the reference Finisar ROSA module whose 
characteristics were extracted before. 
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IV.C.1. RoF link reference: ULM VCSEL plus New Focus 
Photodiode 

Table IV.2 presents the complete individual parameter extraction, covering all the figures of 
merit defined previously with the standard ULM VCSEL die and the reference NF photodiode. 
All those parameters were used in our model. Most of them were measured and some were 
fitted for an 8 mA bias current at a 3 GHz operating frequency. The simulation results in Figure 
IV-18 correspond to the parameters given in Table IV.2. The optical microwave gain on each 
device was extracted, including the coupling efficiency. From the previous conclusion, we know 
that the link performance in terms of linearity are dictated by the laser. Therefore the PD 
linearity value was fixed at IP1dBOM=15 dBm corresponding to the worst case. 
Table IV.2 – Opto-microwave parameters extraction from 10 Gbps ULM Photonics VCSEL 

die and reference photodiode (NFPD). Values for 8 mA and frequency of 3 GHz 

 Laser Optical Losses Photodiode Link 

SLD ,RPD 0.31 (W/A) 75 % 0.222 (A/W) - 

Popt (mW) 3.40 3 - - 

RIN (dB/Hz) -147.5 - - - 

Iph (mA) - - 0.565 - 

GOM (dB) -10.17 -2.5 -19.1* -31.8 

IP1dBOM (dBm) 6 - 15** 6(IP1dBLD) 

OP1dBOM (dBm) -4.17 - -4.09** -25.8(IP1dBLD+GOM,LINK) 

IIP3OM (dBm) 12.6 - 23** 12.6 (IIP3LD) 

OIP3OM (dBm) 2.43 - 3.91** -19.2 (IIP3LD+GOM,LINK) 

NFOM (dB) 34.3 0 21.03** 36.9 

SFDROM (dB.Hz2/3) 101.5  117.3** 99.9 
*including 50Ohm resistance matching 

**worst case scenario 

The noise behavior, mainly influenced by the RIN, was fitted by the EVM measurement as 
we can see in Figure IV-17. The computation on the SFDR was done showing 101.5 dB.Hz2/3 on 
the laser, much lower than the photodiode taking into account the linearity and the low noise of 
the PD. This extraction allows us to calibrate our laser model which now can be used on 
different photodetectors. 

IV.C.2. RoF2: ULM TOSA plus Finisar ROSA 

The Figure IV-19 shows the simulation and the measurement comparison of the link EVM 
composed of the ULM VCSEL TOSA and the ROSA Finisar. The simulation shows a good fit 
with the measurement taking into account a quite small deviation only caused by the limit of the 
hyperbolic tangent nonlinear model function. Clearly the power dynamic range is strongly 
reduced by the nonlinearities of the photodetector which includes an integrated TIA. 
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Figure IV-19 – EVM measured and simulated results for RoF2 configuration (ULM TOSA 

followed by the Finisar ROSA) including 9.1 dB optical losses 

The Table IV.3 presents the complete individual parameter extraction, covering all the 
figures of merit that best fit the measurement. In terms of the laser performances we used the 
extracted VCSEL performances given in Table IV.2 because the ULM TOSA performances are 
similar to the ULM VCSEL die. The main difference is the OM gain, which is adjusted by the 
optical losses value. The measured link performances were fitted tuning the optical losses to 
achieve the correspondent photocurrent and the transimpedance gain to match the total gain. 
Comparing the photodetector Finisar to the reference NFPD we remark the high opto-
microwave gain (~ 45 dB difference) and the low opto-microwave compression point of —
41.2 dBm. The high gain results in a very low opto-microwave noise figure, but the low IP1dBOM 
and IIP3OM imply a low link SFDR of 88 dB.Hz2/3. It also requires the insertion of high optical 
losses to avoid the saturation and push the photodetector nonlinearities toward higher values. 
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Table IV.3 – Opto-microwave parameters extraction from 10 Gbps ULM Photonics VCSEL 

TOSA and Finisar ROSA. Values for 8 mA and frequency of 3 GHz 

 Laser Optical Losses Finisar ROSA Link 

SLD ,RPD 0.31 (W/A) 12.3 % 0.5 (A/W) - 

Popt (mW) 3.4  - - 

ZT (V/A)   2000  

RIN (dB/Hz) -147.5 - - - 

Ieq (pA)   10  

Iph (mA) - - 0.21 - 

GOM (dB) -10.17 -18.2 25.6 -2.2 

IP1dB (dBm) 6 - -41.2 -14.3(IP1dBPD+GOM,FB+LD) 

OP1dB (dBm) -4.17 - -15.6 -17.3 

IIP3OM (dBm) 12.6 - -32 -3.96 (IIP3PD+GOM,FB+LD) 

OIP3OM (dBm) 2.43 - -6.4 -6.16  

NFOM (dB) 34.3 0 8.5 37.9 

SFDROM (dB.Hz2/3) 101.5  89 88.1 
 

IV.C.3. RoF1: Finisar TOSA plus Finisar ROSA 

From the previous results we have now a calibrated Finisar ROSA model that can be 
implemented in the simulator to different laser sources. Therefore, we integrate the model for 
the Finisar TOSA with the goal to simulate the first RoF generation. The TOSA model is based 
on the ULM VCSEL model where we introduce the different parameters from Table IV.2 and 
Table IV.3. The link measured EVM compared to the simulation is presented in Figure IV-20 
and the parameter extraction in Table IV.4. 

 
Figure IV-20 – EVM measured and simulated results for RoF1 configuration (Finisar TOSA 

followed by the Finisar ROSA) including 0.4 dB optical losses 
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As we are using the Finisar ROSA module, the strong nonlinearities given by the 
photodetector degrade the link. As we can see in Figure IV-19 and Figure IV-20, similar EVM 
curves are obtained for an RF power higher than -15 dBm for both RoF2 and RoF1. In the 
Finisar TOSA followed by the Finisar ROSA (RoF1) there are no optical losses inserted since the 
Finisar TOSA module has a very low slope efficiency and optical power emission. 

These extracted results show that the TOSA Finisar has a very low opto-microwave gain 
corresponding to the low slope efficiency, but 4 dB better NFOM from the lower RIN than the 
ULM VCSEL TOSA, with NFOM of 30.7 dB and RIN of -153 dB/Hz. The Finisar ROSA presents 
some slight variations as compared to Table IV.3. This may attributed to the measurement 
conditions and because the Finisar ROSA modules were different between the two 
measurements. However the values are very close together. 

Table IV.4 – Opto-microwave parameters extraction from Finisar TOSA and Finisar ROSA 

modules. Values for 8 mA and frequency of 3 GHz 

 Laser Optical Losses Finisar ROSA Link 

SLD ,RPD 0.05 (W/A) 91.2 % 0.5 (A/W) - 

Popt (mW) 0.68  - - 

ZT (V/A)   2000  

RIN (dB/Hz) -153.7 - - - 

Ieq (pA)   10  

Iph (mA) - - 0.31 - 

GOM (dB) -26.1 -0.8 25.6 -0.9 

IP1dB 4 - -42.2 -15.2(IP1dBPD+GOM,FB+LD) 

OP1dB -23 - -16.6 -17.54 

IIP3OM (dBm) 10 - -33.4 -6.1 (IIP3PD+GOM,FB+LD) 

OIP3OM (dBm) 2.43 - -7.4 -2.7  

NFOM (dB) 30.7 0 8.5 36.9 

SFDROM (dB.Hz2/3) 102.6  88.4 87.3 
 

IV.C.4. Synthesis 

The RoF of first (RoF1) and second (RoF2) generations were modeled and simulated with 
the corresponding individual performances extraction. The main critical parameters were 
identified in all RoF system configurations. 

The link reference using the NFPD (very linear) allowed us to identify the ULM VCSEL 
performance and to extract the corresponding individual parameters such as the GOM of —
10.17 dB, OP1dBOM of —4.17 dBm, OIP3OM of 2.43 dBm, NFOM of 34.3 dB and finally an SFDR of 
101.5 dB.Hz2/3. Although, the NFPD is a very linear device we were able to evaluate that its 
IP1dBOM is 15 dBm (OP1dB is -4.09 dB).  

Finisar ROSA characteristics were then extracted from the same approach using RoF2 
configuration. We adjust the transimpedance to fit the link measurement corresponding to a 
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GOM of +25.6 dB. NFOM was found to be equal to 8.5 dB and IP1dBOM to —41 dBm which is the 
most critical point of this device. The strong nonlinearities behavior of the Finisar ROSA limits 
its SFDR to 89 dB.Hz2/3. If we compare the reference link with RoF2 link: 
Finisar ROSA provides a high OM Gain mainly attributed to the integrated TIA. Nevertheless, it 
needs extra optical losses to compensate for its strong nonlinearities which still limit its OM 
SFDR of 12 dB compared to the ULM VCSEL. 
The noise figure is similar for the 2 links, mainly due to the laser OM NF. 
 

The first generation RoF configuration was then simulated successfully from the Finisar 
ROSA calibrated model. The Finisar TOSA shows a GOM gain decrease on one hand and a NFOM 
improvement on the other. It presents an OM SFDR similar to the ULM VCSEL one (slightly 
better) of 1 dB. 

Finally, we conclude that the photodetector (Finisar ROSA) limits the RoF1 and RoF2 by its 
strong nonlinearities. That is why RoF3 will be designed using ULM VCSEL and an HPT 
photoreceiver in order to improve the system performance as an SFDR increase 88 dB.Hz2/3 up 
to 100 dB.Hz2/3.  

Table IV.5 presents an evaluation of all RoF configurations in terms of gain, noise figure, 
nonlinearities and SFDR linking together the three previous characteristics. RoF3 performance 
are estimated from the SiGe HPT on-wafer measurements given in Chapter III, section III.B. 
The SiGe HPT performances extraction and modeling could be the target for future work.  

Table IV.5 – Summary on the all RoF configurations 

 RoF reference RoF1 RoF2 RoF3* 

Gain  -31.8 -0.9 -2.2 -45 

Optical losses 0 0 -18.2 0 

NF  36.9 36.9 37.9 -46 

Nonlinearities 6  -14.3 6 

SFDR  99.9 87.3 88.1 89.3 

*estimated values 
In terms of gain, the TIA from the Finisar ROSA module gives advantage on the RoF1 and 

RoF2 compared to the reference RoF (using the NFPD) and to the RoF3. As the ULM laser has a 
higher OM gain compared to the Finisar TOSA, RoF2 is better in gain than RoF1. This gain 
advantage is wasted in the noise figure because of the necessary high optical losses needed to 
improve the nonlinearities and avoid the DC optical saturation of the Finisar ROSA revealing a 
low SFDR. The reference RoF, using the NFPD, has the best SFDR because of the good linearity 
of the photodiode which implies no need to add optical losses. At the end RoF1 and RoF3 have 
similar SFDR despite a lower gain on RoF3 thanks to a better linearity. However, the RoF3 is a 
potential solution for the ORIGIN project since it can integrate an amplifier to improve the gain 
and NF and therefore the SFDR. Improvements should clearly be put on the gain of the SiGe 
HPT (see Chapter VI) 
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IV.D. Summary and Discussion 

A new approach to the definition of the Opto-microwave figures of merit for each individual 
optoelectronic device was proposed. The goal was to understand the global performances in 
terms of the influence of each block. Optical Microwave Gain (GOM), Optical Microwave Noise 
Figure (NFOM), Optical Microwave compression Point (P1dBOM), Optical Microwave Third-
Order Intercept Point (IIP3OM), Optical Microwave Spurious-free dynamic range (SFDROM) and 
finally Opto-microwave Error Vector Magnitude (EVMOM) definition was proposed and 
evaluated for each individual device.  

The optical microwave definition allowed the representation of each device as an equivalent 
electrical two-port network, where an RF simulator as Agilent ADS could be used. Therefore a 
behavioral model was proposed and implemented using a SDD based model where the opto-
microwave figures of merit could be simulated and compared with the measurements. The 
model presents good results. Its main limitation is the nonlinear behavior, that was modeled 
using a hyperbolic tangent and has to be further optimized. Even so, the model provides a good 
fit with EVM measurements where the RIN and the optical losses were tuned and fitted 
accurately. Therefore, the developed model not only gives the possibility to include the different 
measured figures of merit, but it also can extract the different individual device parameters 
from the link measurements. The simulation of the ULM VCSEL die was then fitted with the 
link measurements using the reference NFPD (RoF reference). GOM of 10.17 dB, OP1dBOM 
of -4.17 dBm and OIP3OM of 2.43 dBm were extracted. The NFOM was measured to be 34.3 dB 
imposing an SFDR of 101.5 dB.Hz2/3. Using this calibrated model, we were able to extract the 
TOSA and Finisar ROSA devices and therefore to understand their influence on the system 
operation. The Finisar ROSA (RoF1 and RoF2) limits the link system performances by its strong 
nonlinearities but has high gain. On RoF3, the link SFDR is forecasted to be increased by a 
value of 12 dB.  
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The ORIGIN project tackles to assemble a full demonstrator with 4 rooms connected. The 
demonstrator uses 60 GHz modules developed by Telecom Bretagne, centimetric boards 
fabricated by IETR Nantes, and novel TOSA and ROSA modules that will be developed on the 
basis of ULM VCSELs and SiGe HPT. Our contribution, which is the topic of this chapter, is the 



 

98  Chapter V - Final Demonstrator 

98 

assembling and test of these TOSA ROSA modules, and the design of the system power budget 
to precise the chain for the centimetric boards. 

The first section provides the development of home-made Optical Sub-Assembly modules 
for the 8µm aperture diameter 10 Gbps ULM GaAs VCSEL and the 10x10 µm2 window SiGe 
HPT integrated with LNA post-amplification stages: both electronic interconnection and optical 
packaging are developed. The implementation of the optical interconnection is based on a ball 
lens technique supported by a mechanical receptacle. The electrical interface is developed 
through the design of transmission lines, the implementation of electrical matching network 
and active IC integration, using interconnection glass substrates. The performances of the dies 
and the TOSA/ROSA modules are compared in order to evaluate the performances evolution in 
terms of thermal dissipation, coupling efficiency and frequency behavior. 

The second section provides a study on the power link budget to design the complete 
system. The Point-to-Point architecture and the Multipoint-to-Multipoint architectures 
(electrical and optical) are considered. Each block is considered in terms of gain and noise, 
identifying eventual critical points on the comparison for both RoF transducers generations 
(second and third ones). 

The last section implements the final demonstrator using a communication between 2 
rooms based on optical Multipoint-to-Multipoint architecture with electrical multiplexing 
(MME) using a 4x4 central node and the signal controlling box. The RoF transducer generations 
are compared until the final demonstrator, using a real HD video transmission through two 
60 GHz wireless commercial modules with data rate of 3 Gbps. 

V.A. Optical Sub-Assembly Modules 

The implementation of the Optical Sub-Assembly (OSA) is very important, since it provides 
a support for the optoelectronic die in terms of thermal dissipation, electrical interfaces and 
optical coupling. All these characteristics will strongly influence the module performances and, 
therefore, the final system results. This section presents the development of the two following 
optoelectronic devices: a Transmitter OSA module based on the 8 µm aperture diameter 
10 Gbps ULM GaAs VCSEL; a Receiver OSA module based on the 10x10 µm2 window SiGe HPT. 

The ORIGIN solution for the interconnection of the optoelectronic devices is represented in 
Figure V-1. This solution provides a packaging and integration solution for light source devices, 
to form the Transmitter Optical Sub-Assembly (TOSA), and for photodetectors, to form the 
Receiver Optical Sub-Assembly (ROSA). It is developed by INNOPTICS. We contributed in the 
design of electrical interconnections and the characteristics. 

 
Figure V-1 – 3D illustration of the electrical and optical interconnections in TOSA and 

ROSA modules: a) top view; b) bottom view 
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A mechanical receptacle provides the optical coupling between the optical fiber (MMF) and 
the optoelectronic device. The fiber-receptacle interface is a standard LC/PC connector, 
providing the passive alignment. The receptacle is glued on a transparent substrate made from 
either Glass or Sapphire with a thickness of 500 µm. The substrate provides, on its up side, the 
support for the mechanical receptacle and, on its back side, the RF transmission lines 
connecting electrically the active device or any other subsystem (matching network, Integrated 
Circuit (IC), etc.) to the flex PCB output connectors. The interconnection substrate needs to be 
transparent at the optical wavelength to provide low optical losses. It also needs to have good 
electrical properties and good thermal dissipating characteristics. The thermal dissipation is 
important mainly for the laser device to which a variation of temperature changes its properties 
drastically. The RF lines will provide the connection of the optoelectronic die (VCSEL or HPT) 
with any other electrical related ICs. Theirs RF characteristic impedance must be matched to 
the die input impedance in order to minimize reflection losses. The use of a passive matching 
network is thus prepared. Integrated circuits and optoelectronic dies are mounted on the 
substrate through a thermo-compression technique. Finally the substrate is mounted on a 
flexible printed circuit board (flex-PCB) to provide the external electrical connections (e.g.: SMA 
connector). The flex PCB is a well known solution, largely used for optoelectronic packaging 
modules. 

The first subsection presents the optical interconnection technique implemented equally on 
TOSA and ROSA modules. 

The second subsection presents the electrical interconnections developed for the 
transmitter and the receiver optoelectronic devices. Transmission lines are optimized through 
electromagnetic simulations and fit to experimental results. A passive reactive matching 
network is considered in the RF transmission line design to improve the reflection losses. 

V.A.1. Optical Interconnections 

The optical coupling elaborated by INNOPTICS, subcontractor in ORIGIN project, is based 
on the mechanical receptacle, depicted in Figure V-2. This technique is compatible with both, 
the source (VCSEL) and the photodetector (HPT). The optical coupling is operated by a 
Sapphire ball lens placed inside the receptacle to focus the beam emitted from the fiber or the 
VCSEL, to the detector or the fiber, respectively. The selected ball lens diameter is 1000 µm. 
The VCSEL aperture is 8 µm in diameter. The HPT optical window is 10 µm large. 
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Figure V-2 – Mechanical receptacle structure for the TOSA and ROSA modules. 

The distance (d) between the ferrule and the ball lens varies dynamically in order to 
optimize the coupling efficiency for different optoelectronic device beam profiles. It was fixed to 
1160 µm for both TOSA and ROSA modules, maximizing the optical coupling efficiency. The 
light emitted by the VCSEL (or received by the HPT) travels through a small air gap, due to the 
bump making the electrical contact connection. These connections are made through thermo-
compression. A gap of 30 µm is estimated, as depicted in Figure V-2 (zoom section). The 
distance between the ball lens and the optoelectronic chip is imposed by the thickness of the 
interconnection substrate (500 µm) and the thickness of the bump interconnection. The 
mechanical receptacle is glued onto the optical transparent substrate and is centered on the 
OE/EO module using an active alignment that measures either the optical power from the 
TOSA or the photocurrent detected by the ROSA. The UV curing polymerization process is the 
final step to provide a solid and durable module. 

V.A.2. Electrical Interconnections 

In this subsection both E/O emitter and O/E receiver are considered with specific 
developments for each one because of the different intrinsic characteristics of the VCSEL and 
the HPT. The RF transmission lines are designed and simulated taking into account the die 
integration, the impedance matching (using SMT elements) and the IC integration.  

The first part develops the electrical interconnection on the optoelectronic transmitter 
device using the 8 µm aperture diameter 10 Gbps ULM GaAs VCSEL. We design an 
interconnection substrate with access lines and passive matching circuits including SMT 
devices. The material of the substrate is either glass or sapphire. Two RF designs with two 
matching network approaches are explored and simulated using an electromagnetic simulator 
(ADS Momentum). This simulation calculates precisely the impedance loaded in the VCSEL 
input, and can determine the specific matching network. Finally, the TOSA performances are 
compared with previous results of the die characterization. Comparisons between simulations 
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and measurement results are performed using the two approaches on the impedance matching 
design. 

The second part presents the electrical interconnection of the 10x10 µm2 window SiGe HPT 
receiver to realize the Receiver Optical Sub-Assembly module (ROSA). The same principle for 
the interconnection substrate is used here for the integration of two RF amplifiers together with 
the HPT (3 dies mounted on the substrate). 

V.A.2.1 Transmitter modules 

The RF transmission line design is important to integrate the VCSEL with the appropriate 
impedance matching. This interconnection substrate and the metal from its transmission lines 
are also very important on the thermal dissipation. 

We designed, simulated, implemented and measured two structures to provide the electrical 
interconnection of the VCSEL. The first structure has a simple RF transmission line (Figure 
V-3) with a 50 Ω characteristic impedance connected to the VCSEL input. Figure V-3 a) shows 
the structure that was designed to be compatible with an array of 5 connected VCSELs, where 
only the half way RF line is used for one VCSEL. 

 
Figure V-3 – RF transmission line simple design structures for the VCSEL electrical 

connections in the form of a simple 50 Ω line: a) transmission line design; b) equivalent 

schematic design 

The VCSEL was flip-chipped and mounted on the top of the substrate using a bump thermal 
compression process. The emitted light from the VCSEL goes through the transparent substrate 
and is coupled to the optical fiber through the optical receptacle described previously.  

The second structure is presented in Figure V-4 in which the VCSEL performance is 
improved by adding a reactive impedance matching network as a π -network.  
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Figure V-4 – RF transmission line design structure of the VCSEL electrical connections in 

the form of a π -network: a) transmission line design; b) equivalent schematic design. 

The SMT1 device (Surface Mounted Technology) used in this network must be an inductive 
element to allow the VCSEL DC biasing. The SMT numbers 2 and 3 must be capacitive elements 
for the same reasons. These two RF transmission designs were fabricated on two different 
optical transparent substrates with a 500 µm-thickness: Glass and Sapphire. The TOSA based 
on these two RF transmission line structures had the label ‘TOSA XXn’: the first ‘X’ letter goes 
for the substrate used; the second one for the RF line design; last one for the device number. 
Therefore, two options could be chosen for the substrate: letter ‘S’ for Sapphire substrate; letter 
‘G’ for Glass substrate. Two options could be chosen for the RF lines: letter ‘S’ for Simple design 
with a 50 Ohm transmission line; letter ‘P’ for the matching π -network. So we could have the 

following combinations: TOSA SSn; TOSA GSn; TOSA SPn; TOSA GPn. 

 
Figure V-5 – CPW line structure: a) technology; b) photo of 3 transmission lines on wafer 

Both interconnection structures are based on coplanar waveguide technology (CPW line) as 
depicted in Figure V-5. The first guess of the characteristic impedance was simulated by using 
the lineCal tool which can be found in the Agilent ADS software. The parameters used on the 
simulator can be found in Table V.1 for both materials, Glass and Sapphire. The conductor 
metallization used is gold (Au) with thickness around 1.5 µm. The main differences between 
both substrates are a dielectric constant higher for the Sapphire material and a loss tangent 
higher for the Glass substrate. The RF operating frequency is 5.18 GHz, corresponding to the 
intermediate frequency value used in the ORIGIN architecture. The simple 50 Ω transmission 
lines were designed with three different lengths, as depicted in Figure V-5 b). Those 
transmission lines were designed, implemented and measured in order to adjust experimentally 
the simulation parameters, using momentum simulator, to fit the measurements. 
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Table V.1 – Glass and Sapphire substrate electrical parameters: (ADS-I) theoretical from 

[167], (ADS-II) modified to fit the experimental results 

 Glass (SiO2) Sapphire (Al2O3)  
ADS-I ADS-II ADS-I ADS-II 

Substrate thickness H (µm) 500 500 

RF Lines Material Au  Au 

Metal thickness (µm) 1 1 0.5 

Dielectric constant 3.8 3.5 9.3 9 

Loss tangent 15e-4 1e-4 

Refractive index (~850 nm) 1.54 1.76 
 

Momentum simulator provided by the Agilent ADS software was used to determine 
precisely the transmission line response. The 1200µm-length transmission line measurement is 
presented in Figure V-6 for both substrates: glass and sapphire. The line dimensions are 50 µm 
in width with a 22 µm gap for both substrates. 

Figure V-6 – 50Ω RF transmission lines measured s-parameters (W=50 µm and G=22 µm) 

The transmission lines present low insertion losses until 10 GHz, with losses below 0.3 dB 
(thus 0.25 dB/mm). The sapphire substrate exhibits, however an improvement with losses 
0.125 dB/mm at 10 GHz. At 5 GHz the transmission losses are around 0.1dB for both substrates, 
the reflection coefficient is 8 dB higher for glass substrate because of its permittivity value and 
the consequently characteristic impedance value. The sapphire substrate is the best choice for 
transmission lines operating at high frequency. Nevertheless, as the system operating frequency 
is 5 GHz, the glass substrate is an acceptable solution at lower cost and easier manufacturability.  

From these measurements, the characteristic impedance of those lines was extracted, 
following the conventional symmetrical two-port network approach [1][168] [169] using the 
S-parameters measurements. The RF lines were measured and fitted with ADS momentum 
simulator changing the substrate parameters set from ADS-I to ADS-II (Table V.1). These 
modifications on the simulation substrate parameters are: the dielectric constant was reduced 
to 9 and the metal thickness (T) to 0.5 µm on the Sapphire substrate; the dielectric constant was 
reduced to 3.5 and the metal thickness (T) was unchanged and kept to 1 µm for the glass 
substrate (Table V.1). The characteristic impedance (Zc) measured and simulated are shown in 
Figure V-7 for both a) Sapphire substrate and b) Glass substrate. Finally, simulation of the 
Sapphire substrate best fits with measurements than Glass substrate does. However, a good 
accuracy is found in both cases with a difference below 5%. 
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This model calibration of our substrate and transmission lines allows to simulate the 
complete structure of an interconnecting substrate. Figure V-8 c) shows the complete TOSA 
module. Figure V-8 a) presents the zoom on the electrical contact between the VCSEL and the 
RF transmission lines (visible thanks to the optical transparent substrate). The SMT 
components mounted on the transmission lines, and the VCSEL die, are shown in Figure V-8 b).  

The TOSA module integrates both optical and electrical interconnections. A model 
integrating the electrical interconnections was done in order to simulate and optimize the SMT 
elements on the matching network. 

V.A.2.1.1  TOSA Performance 

We present, in this section, the comparison between the die and the home-made TOSA 
module characteristics. The comparison focuses on the static behavior (LI curve and optical 
spectrum), dynamic response small-signal and finally system performance metrics (EVM). 

 
 
 
 
 

 
Figure V-7 – Characteristic impedance (real and imaginary) simulation and measurement 

as a function of the frequency: a) Sapphire substrate (Zc~58 Ω); b) Glass substrate 

(Zc~85 Ω) 

 
Figure V-8 – TOSA integration and packaging developments: a) ULM 10 Gbps VCSEL 

contact into the RF transmission lines using thermal compression process; b) final 

electrical interconnection development using the pi design structure; c) top view with 

optical mechanical receptacle mounted on the flex. 
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a) Static behavior 

Figure V-9 provides the LI curves comparison between the 10 Gbps VCSEL die studied in 
Chapter III and the complete TOSA module as presented previously. The die is represented by 
the same two curves as given in Figure III-2: the total emitted power (DC2PM) and the power 
measured through the optical probe (DC2OP). The TOSA module is implemented with a 
Sapphire substrate and with a simple RF line design (SS3). Comparing the total emitted power 
from the die and from the module, we can extract the optical losses and deduce the coupling 
efficiency, which is then 67 % at 8mA. TOSA made from a glass substrate (GSn) is not shown 
here as its static performances revealed similar as the one on Sapphire. Compared to the optical 
coupling for a lensed fiber (DC2PM coupling efficiency of 79 %), the INNOPTICS optical 
coupling technique detailed previously, thus reveals to be a good coupling technology taking 
into account the light path and the different interfaces from the laser to the fiber (see Figure 
V-2). The threshold current increases from 610 µA for the die to 730 µA for the TOSA module. 
This 20 % variation can be explained by the variations from die to die, as it was not the same die 
in the module as in the on-probe measurements.  

 
Figure V-9 – LI curves comparison between the die and the TOSA SS3 module 

From the LI curve, we observe, as expected, that the thermal dissipation is better for the 
TOSA module: an increase of the bias current implies a linear LI curve up to 10 mA which 
means a constant slope efficiency, even for high injection current. The TOSA SS3 optical 
spectrum is shown in Figure V-10 with a central wavelength emission at around 853 nm. It 
shows a spectrum which is again typical from a longitudinal multimode VCSEL. The red shift in 
wavelength as we increase the bias current is lower than the one measured on the die because of 
the better thermal dissipation improvement. Indeed, the wavelength tuning over the bias 
current is equal to 0.237 nm/mA compared to 0.5 nm/mA for the die (Figure III-4). 
Considering again the GaAs-based VCSELs temperature increasing ratio, we can estimate that 
the temperature rises about 27.1 °C, from the room temperature, at the highest bias of 10 mA, 
with a rate of 2.71 °C/mA. This value is twice smaller as compared to the isolated die 
(5.9 °C/mA).  
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Figure V-10 – Optical Spectrum of the TOSA SS3 module as a function of the 

wavelength for different bias currents 

 
b) Dynamic response 

Figure V-11 a) shows the dynamic small-signal response of the TOSA module: measured (M) 
and simulated (S) results, compared to the die measurement (full line). The TOSA 
characterization was performed using a test board that includes biasing circuit fabricated on a 
PCB. The same New Focus photodetector was used as a reference in each case. Two main 
differences are then observed in the measurements: a) the gain amplitude is reduced with the 
TOSA module because of the coupling efficiency reduction and due to the increase in input 
reflection coefficient at higher frequencies; b) the frequency response of the TOSA module is 
affected by the RF response of the test board where SMT components and RF lines increase the 
RF losses. 

 
Figure V-11 – Dynamic small-signal response of the VCSEL die and of the TOSA SS3 

module for 8 mA bias current using the NFPD as a reference photodetector: a) Gain; b) 

Input reflection coefficient 

The TOSA module was simulated with ADS and momentum (behavioral model in Chapter 
IV). A fine tuning of the optical coupling ratio injected into the simulation brings to a new value 
of 60 % of coupling efficiency, compared to the 67 % value extracted from the LI curve. This can 
be explained by the extra losses due to test board. At high frequency the simulation does not fit 
entirely in the measurement.  
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c) Input compression gain point 

Figure V-12 shows the opto-microwave input gain compression point at 1 dB of the TOSA 
SS3 module as a function of the frequency and of the bias current. The same behavior is found 
here as compared to the die measurements (Figure III-18): As we increase the bias current the 
optical power increases and the VCSEL can handle more power. The compression point in terms 
of frequency shows the same behavior as frequency response shape which means, and confirms, 
that we are in the presence of the laser IP1dBOM and not of the detector one. The opto-
microwave input compression point goes up to 12 dBm for a 10 mA bias current for frequency 
between 4 and 8 GHz 

 
Figure V-12 – TOSA SS3 module opto-microwave (OM) input compression gain 

Compared to the die results, we find an improvement not only on the value (3 dB better) but 
also on the frequency range (flatness for bias current higher than 8 mA in the frequency range 4 
to 8 GHz). This improvement in linearity is supposed to be mainly due to a more linear LI curve 
as resulting from a better thermal dissipation. 

c) System performance metrics 
We consider here the performance of the link between the TOSA and the New Focus 

reference photodetector to transmit one channel of the IEEE 802.15.3c standard, in HSI mode 
at 3.08 Gbps and QPSK modulation. The resulting EVM measurements are shown in Figure 
V-13 where the TOSA module EVM degradation is compared to the Back-to-Back (B2B) 
performance of the bench for two center frequencies (3 and 5 GHz). The die performances at 
3 GHz are also shown. 

 
Figure V-13 –  EVM measurement of the link between the TOSA SS3 module and the 

NFPD as a function of the input RF power compared with the DIE at 8mA 
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The power dynamic range of the TOSA with a maximum of 20 % EVM degradation for the 

QPSK modulation scheme (from the B2B) is 29.3 dB at 3 GHz as compared to a value of 35 dB 
for the die performances at the same frequency. At low input power, the EVM is identical 
because of the same noise sources, but at high input power, the TOSA modules present higher 
nonlinearities, contrary of what was expected from the LI curve and from the measured input 
compression point. The measurement differences might be explained from the degradation of 
the bandwidth of the system and from phase distortion, due to electrical interconnection and 
test board mainly. Also for so large bandwidth (3 Gbps) the dynamic responses are quite 
different for die and TOSA. 

The dynamic range at 5 GHz is 3 dB better than at 3 GHz. This is consistent with a reduction 
of the IP3 at higher frequency. 

V.A.2.1.2 A Step toward making a TOSA with a matching network 

The approach of this section was to proceed with a first guess design of a matching network, 
prior to the knowledge of the interconnection electrical characteristics and thus prior to the RF 
model fit to the experimental data. The target was thus mainly to get some data to feed further 
the simulations and to check the validity of our model on the influence of the impedance on the 
VCSEL. These results will be used further in Chapter VI, with a real matching circuit. The TOSA 
SP4 module based on the π network structure and using Sapphire substrate (SP), see Figure 

V-4, was used with SMT elements that are respectively equal to: SMT1 - 3.4 nH; SMT2 – open 
circuit; SMT3 – 3.7 pF. The inductor SMT manufacture is [170] and the capacitor is [171] (the 
design kits imported into the ADS simulator are available on the respective websites). That was 
our first guess to match the laser input impedance without having yet an accurate model, and 
using directly the measured die impedance without taking into account the impact of the 
interconnection substrate. The simulation condition was those described for the die simulation 
as taken from Chapter IV, see Figure IV-12. The final measurements of the SP4 module are then 
shown in Figure V-14. They are then compared to a retro simulation of the system with the new 
model developed in section V.A.2, then now taken into account all the interconnections and 
access influences. The difference is the gain magnitude with optical losses that were tuned to fit 
the measurement (2.5 dB) which means a coupling efficiency of 56 %. As we can see the 
matching network does not work at 5 GHz and therefore the SMT values were absolutely not the 
right guess. Indeed the transmission line platform has an important impact on the impedance 
presented to the laser input as was expected. Even so, it gives the possibility to calibrate our 
model in order to fit to the measurement. The test card behavior was neglected in the 
simulations. This can explain the variation in high frequency. The SMT elements model can give 
certain uncertainties, especially, at high frequency above their resonant frequency. 
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Figure V-14 – Frequency responses using TOSA SP4 and the reference NFPD: a) S21 

measure (full line) and simulation (◦); b) S11 measurements (full line) and simulation 

(◦) (2.5 dB optical losses – 56 % CE) 

The conclusion of these results is that at the end a good fit that validates again our model 
even for the π matching interconnection substrate with the introduction of SMT elements up to 

5 GHz. With this proven accuracy of the model, we can now re-simulate and re-optimize the 
SMT component values to provide the best performances at 5 GHz. 

V.A.2.1.3 TOSAs link performances using a Finisar ROSA 

photodetector 

Measurement using the Finisar ROSA was performed and allowed the validation of the 
developed model. As the input saturation optical power of the Finisar ROSA is 1 mW and the 
ULM TOSA module output optical power can reach up to 3 mW, we used an extra 5 dB optical 
attenuator to avoid its saturation. Figure V-15 shows the comparison between the measurement 
and simulation of the sapphire TOSA (SS) module followed by a Finisar ROSA. The fit between 
simulations and measurements needs to consider a 7.2 dB optical loss, achieving a 60 % 
coupling efficiency of the TOSA module. The high link gain (+5 dB) is related to the high opto-
microwave gain of the Finisar ROSA where an integrated TIA (ZT=2000 Ω) is used (see Table 
IV.3). 

 
Figure V-15 – TOSA SS3 module S-parameters using the ROSA Finisar: a) S21 measure 

and simulation; b) S11 measure and simulation (5+2.2 dB optical losses – 60 % CE) 
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The gain fits properly as shown in Figure V-15 and is similar to the previous TOSA+NFPD 
link. The reflection does not fit so well, however, as the test board was not included in our 
simulation. 

The analysis was also performed with the TOSA module including a matching network. This 
is shown in Figure V-16. A good fit of the model is also reported. The test board still plays a role 
which is not taken into account in our model. 

 
Figure V-16 – TOSA SP4 module S-parameters using the ROSA Finisar: a) S21 measure 

and simulation; b) S11 measure and simulation (5+2.3 dB optical losses – 60 % CE) 

The high link gain has the same explanation as before, since we are using the Finisar ROSA 
with an integrated TIA. 

V.A.2.1.4 Synthesis 

The TOSA module was fully developed, from its electrical interconnections to its coupling 
and packaging. The ball lens coupling technique was implemented and integrated on a 
mechanical receptacle. The optical coupling efficiency of the TOSA module was measured up to 
67 %. The electrical interfaces were developed with the aim of die and impedance matching 
integration on a transparent substrate through thermo-compression technique. The final result 
shows a good thermal dissipation, providing a linear optical power even at high current biasing. 
The RF transmission lines were tested and simulated. Test structures enable to build an efficient 
model. It will serve in next chapter to improve those electrical interconnections designs. 
Especially to reconsider the potential of a matching network. The power dynamic range of the 
TOSA module with 20 % EVM degradation (in relation to the B2B) is 29.3 dB at 5 GHz 
compared to a value of 35 dB from the die EVM. The simulations are in good agreement with 
measurements for two different photodetectors, validating our model approach. 

V.A.2.2 Receiver module 

We desire to integrate in this section a SiGe HPT followed by LNA into a ROSA module, to 
realize a complete and efficient photoreceiver module in the ORIGIN final demonstrator. The 
electrical connections of the receiver are based on the same electrical interconnection substrate 
approach than in the TOSA module case. We decide to implement the lines on Glass substrate, 
instead of Sapphire, because it was not found relevant differences in terms of frequency 
response. Moreover, Glass substrate has lower cost and easier implementation. 
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The first part of this section is devoted to the design and implementation of the ROSA 
circuits, with two LNA stages included to increase the module opto-microwave gain and to fit 
with the 2 GHz bandwidth requirement at the center frequency of 5 GHz. Specific LNA IC is 
designed and fabricated using a SiGe Technology from Telefunken. This IC is characterized and 
then associated with a SiGe HPT through hybrid integration. 

The second part presents the integration of those chips, their assembling in a ROSA module 
and its final characteristics. Evaluated performances are the static characteristic, the dynamic 
response (small-signal) and the system performance metrics (EVM)  

V.A.2.2.1 Hybrid OE-IC design 

The low gain of the link using the SiGe HPT requires the need of adding a Low Noise 
Amplification stage. For the LNA design, SIGE2RF process of Telefunken Semiconductor 
Technology was used. More information about this technology can be found in Chapter II, 
section II.B.2.2. 

For the LNA topology, a cascode structure is used in order to enlarge the bandwidth (Figure 
V-17): an input common emitter transistor drives an output common base transistor. It 
eliminates the Miller effect and thus contributes to a much higher bandwidth, as the Miller 
effect increases the base to collector capacitance leading to a limitation of the bandwidth. The 
cascode structure also improves input-output isolation since there is no direct coupling from the 
output to the input. The complete electrical schematic is presented in Figure V-17: T1 and T2 
transistors are size optimized to give the best performances in terms of noise and gain at the 
operating frequencies. The choice was a SIC transistor technology (details in Chapter II, section 
II.B.2.2) with an emitter width of 0.5 µm and an emitter length of 30 µm.  

 
Figure V-17 – Schematic of the LNA proposed to be integrated on the ROSA SiGe 

The resistive shunt feedback technique was applied to provide the circuit stability with R3. 
This resistor helps to stabilize the transistor, but also affects the other performances: High 
values of R3 increase the gain at high frequencies (extending the bandwidth) and decrease the 
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noise figure. But those high values increase the S22 parameter leading to some difficulties for 
matching over the bandwidth. The grounded capacitor C2 mainly affects the gain bandwidth 
and improves its flatness. The parallel resistor R2 decreases the output reflection. The resistor 
R1 fixes the bias current of T2 base and provides RF choke. The capacitors C1 and C3 work as 
bypass and DC block, respectively. The series inductor L1 works as RF choke and interferes on 
the output reflections. Finally the input and output matching networks match the circuit on a 
2 GHz bandwidth at 5 GHz. 

 
Figure V-18 – LNA circuit: a) Layout; b) Photo 

Figure V-18 shows the LNA layout on Cadence software and its die photo. The 
characterization was made with RF (GSG) and DC probes with 200 µm pitch. The simulated and 
measured static performances are presented in Table V.2. The measured currents are slightly 
lower compared to simulation (Icc of 7.9 mA instead of 10.3 mA). This difference can be 
explained by the thermal effects and the parasitic resistances on the layout lines which were not 
taken into account.  

Table V.2 – LNA simulated and measured static parameters 

  Simulation Measure 

Vb2 (V) 2.5 2.5 

Ib2 (µA) 22 19 

Vcc (V) 4 4 

Icc (mA) 10.3 7.9 

Consumption(mW) 41.3 31.6 
 

The RF characterization results (full line) compared to simulation ones (◦) is provided in 
Figure V-19 (VNA power equal to -30 dBm to avoid gain compression). The maximum 
measured gain is equal to 10.3 dB, which is 5 dB lower than in simulation. It could be attributed 
to higher losses in the technology, not so well taken into account in the simulation or the 
difference in technology process. The center frequency shift of the gain response is relatively 
small (500 MHz) and could be attributed to a mismatched input or output which is maximum at 
a frequency higher than 5 GHz. 
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Figure V-19 – LNA frequency response characterization (full line) and simulation (◦) 

In Figure V-20, the simulated input reflection coefficient (S11) is found to match perfectly 
the measurements (◦) where the best value is obtained at a frequency of 5.5 GHz, corresponding 
to a shift of 500 MHz from the center frequency. Optimization of the matching input could 
decrease this shift. Differences between the simulation and the measurement mainly appear on 
the output reflection coefficient (S22) that is still, however, below -5 dB in the bandwidth of 
interest (4-6 GHz) as -10 dB is the goal to be reached for reflection coefficient. 

 
Figure V-20 –LNA frequency reflection coefficient characterization (full line ) and 

simulation (◦) 

A summary of the LNA characteristics is presented in Table V.3 comparing simulation and 
measurement results. RF and distortion performances (gain, P1dB and IP3) are affected by the 
same effects of the parasitics and thermal issues that reduced the gain. Even if improved 
performances could be achieved with a more complex matching network and with more precise 
simulations that would include the layout parasitics, the LNA is proved operational.  
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Table V.3 – LNA simulation and measurements of RF characteristics at 5.18 GHz 

 Simulation Measurements

S21 (dB) 15.3 10.3 

IP1dB (dBm) -15 -12 

IIP3 (dBm) -4.5 NA 

NF (dB) 4 NA 
 

The hybrid ROSA module was designed to integrate 2 cascaded LNAs to provide a 20 dB 
gain after the SiGe HPT, as depicted in Figure V-21 a). Thus, the module is expected to provide 
a -25 dB opto-microwave gain. A parallel inductor is placed between the two LNA to improve 
their matching. Figure V-21 b) shows two curves: the simulation using real measurements (S2P 
files, extracted from the VNA, imported into the ADS simulator) of the 2 LNA cascaded-stages; 
and the second one is the same simulation but it includes an inductor1 (◦) between the 2 LNAs 
data measurements. The goal of the inductor is to match both LNAs shifting center frequency to 
5 GHz required for the system operation on the ORIGIN project. Taken into account the 
compression gain on the cascaded-stages, the input compression point of the first stage 
is -22 dBm. Considering ULM TOSA input compression point of +10 dBm and link gain lower 
than -40 dB over the band of interest, the integrated ICs saturation is avoided.  

 
Figure V-21 – 2 cascades LNA are used on the ROSA SiGe: a) electrical schematic; b) 

comparison between simulation of the data measurements with (full line) and without (◦) the 

inductor. 

To complete the ROSA integration, two more SMT components were added to provide the 
bias on the HPT collector and the matching network between the HPT output and the 
amplification input (Figure V-22). 

                                                
1 The inductor and capacitor SMT manufactures are [170] and [171], respectively (the design kits 
imported into the ADS simulator are available on the respective websites) 
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Figure V-22 – Complete electrical interconnection in the ROSA module 

Figure V-23 shows a view of the interconnection substrate layout, viewed through the glass 
material, with the SiGe HPT die on the left side and the two LNA dies on the right side. Bias 
interconnections and matching SMT components are included. 

 
Figure V-23 – Electrical interconnection of the SiGe ROSA view from the top of the 

module (through the glass substrate) 

Finally, the glass interconnection substrate is mounted on the flex PCB and an optical 
package with its mechanical receptacle is assembled as in the case of the TOSA module. Figure 
V-24 shows the photo a) from the bottom view and b) from the top view. The dies are mounted 
through thermo-compression while SMT devices were fixed using conductive glue.  

 
Figure V-24 – SiGe ROSA final integration and packaging: a) bottom view with electrical 

interconnections; b) Top view with optical mechanical receptacle mounted on the flex 
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The optical mechanical receptacle is shifted to the border of the glass substrate as showing 
in Figure V-24 b) as the SiGe HPT is not centered on the interconnection substrate in order to 
keep its size compatible to other TOSA interconnection substrate sizes. 

V.A.2.2.2 SiGe ROSA Performances 

a) Static and dynamic characteristics 

The DC photocurrent of the SiGe ROSA is measured at the output of the SiGe HPT. It is 
presented in Figure V-25 as a function of the TOSA SS1 module (the reference on the SiGe 
ROSA characterization) output. Although, is important to take into account that the IL curve 
presented considers the SiGe ROSA module and not the SiGe die i.e. it includes the optical 
coupling efficiency due to the INNOPTICS optical packaging.  

 
Figure V-25 – IL curve of the SiGe ROSA module. 

The SiGe ROSA module responsivity is measured to be up to 5.6 A/W at low input optical 
power and reduces down to 0.8 A/W at 2.7 mW (8 mA TOSA SS1 biasing). This large reduction 
on the responsivity can be explained by lower coupling efficiency of the ball lens coupling 
technique for high laser bias current injection and consequently higher light divergence. Figure 
V-26 shows the frequency response of the SiGe ROSA photodetector compared with the NFPD 
reference photodetector when the reference TOSA SS1 is used. We can notice the amplification 
stage influence at 5 GHz, providing a final link gain of -30 dB, which is 5 dB higher than the 
NFPD link gain. Considering this difference and knowing the opto-microwave gain of the NFPD 
(-19.1 dB extracted in Chapter IV), the OM gain of the SiGe ROSA module is -14.1 dB. 
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Figure V-26 – Measurement of the frequency response using TOSA SS1 as a reference 

laser: photodetector NFPD ref; ROSA SiGe 

Figure V-27 presents the comparison between measurements and simulations of various 
parts of the module. The simulations presented are actually dataset measurements (S2P file of 
the measured link TOSA SS1 module followed by the SiGe HPT die (full line); S2P file of 
measured LNA) imported into the ADS software and simulated in different configurations: link 
TOSA SS1 – SiGe HPT followed 2 LNA (including the inductor between them – see Figure V-21) 
with (□) and without (◦) matching network (consisting of 2 SMT elements presented in Figure 
V-22). Comparing these two last curves we see the improvement on the flatness over the 2 GHz 
bandwidth of interest by the inclusion of the matching network. Comparing link of the TOSA 
SS1 module followed by the SiGe ROSA module in terms of measurement (x) and simulation 
(□), it appears that the matching networks with 2 GHz bandwidth centered at 5 GHz is not 
efficient. Indeed, we have around 10 dB ripple on the desired frequency bandwidth which can be 
a problem for the system operation. The reasons are probably the parasitic effects and the 
behavior of the SMT elements. The SiGe ROSA module measurement gain is 5 dB lower at its 
maximum compared to simulated one (it includes the measurement dataset file of TOSA 
module followed by an optical attenuator (IL=2 dB) and the HPT die given in Chapter III, 
section III.B and Figure III-35). By adding the optical losses to the 5 dB measure difference we 
got an opto-microwave reduction of 9 dB, which can be explained by the SiGe ROSA optical 
packaging. Therefore, we can estimate the coupling efficiency of the SiGe ROSA module to be 
35.4 %. This result shows that the ball lens optical coupling technique is less efficient on the 
downlink light path where the light is coupled from the MMF into the 10x10 µm2 detectors. 
Indeed, in terms of uplink light path between the 8 µm aperture diameter VCSEL and the MMF 
fiber within the ULM TOSA module we measured 60 % coupling efficiency. 

We have measured an OM gain of -14.1 dB and now we know that from this value, 9 dB is 
from the optical coupling. Therefore the actual OM gain of the SiGe ROSA without the optical 
losses is -5.1 dB. Take into account the 20 dB measured gain added by the LNAs we extract the 
OM gain of the SiGe HPT to be -25 dB. Finally, it gives a SiGe HPT responsivity of 0.056 A/W 
around 5 GHz. 
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Figure V-27 – SiGe ROSA comparisons between simulation and measurements: x – 

Measurement of a TOSA SS1 followed by the SiGe ROSA; Δ – Measurement of a TOSA SS1 

followed by the NFPD; full line – Measurement of a TOSA SS1 followed by the 

10SQxEBC_eO SiGe HPT; ◦ -Simulation of a TOSA SS1 followed by the SiGe ROSA link 

without matching network; □ – Simulation of a TOSA SS1 followed by the SiGe ROSA with 

matching network 

b) System performance 

The EVM measurement was performed at 5 GHz and the results are presented in Figure 
V-28. The minimum EVM is increased drastically compared to the NFPD link (13 to 25 %). One 
of the causes is the HPT added noise (shot noise related to phI  and thermal noise) which is 

much higher than in the NFPD case. Another reason is the unflatness frequency response of the 
SiGe ROSA, for which the gain changes from -40 dB to -30 dB in the channel band. The linearity 
limit proves to be the TOSA contribution only. However, a 25 % EVM is demonstrated at 0 dBm 
input power which is an error free transmission after Cyclic Redundancy Check (CRC) 
compensation. This is a first promising result that could be improved by further optimizations, 
both on the HPT and LNA stage design. 

 
Figure V-28 – EVM curve of the TOSA plus SiGe ROSA comparing with the NFPD at an IF 

of 5 GHz 
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In terms of the nonlinearities, the SiGe ROSA reveals to be very linear. We can see this at 
high input power where the EVM has the same shape as the ULM TOSA using the NFPD which 
means that the nonlinearities are fixed by the ULM TOSA module. Four directions should be 
taken into account to improve the overall HPT ROSA performance: 

 Gain and flatness improvement: IC with a 30 dB-gain and matching network on a 
2 GHz-bandwidth around 5 GHz would be desired for the detector; 

 Coupling efficiency improvement: Vertical Optical Waveguides (introduced in 
Chapter VI) technique could be an interesting method of packaging to improve the 
35.4 % coupling efficiency achieved with the ball lens technique; 

 Connecting the base of the HPT, to move from a 2T-HPT to a 3T-HPT; 
 Noise study and improvement: here the size and shape of the HPT is important. As 

well the HPT base load connection was not properly considered and should be 
optimized in terms of gain and noise. A model of the HPT which includes the noise is 
an important direction take for further improvement. Indeed, the SiGe ROSA EVM 
curve presented in Figure V-28 could be a basis for parameters extraction by using 
the method presented in Chapter IV as we did for the Finisar ROSA. 

V.A.3. Synthesis 

The section V.A intended to develop the optoelectronic modules to be integrated into the 
RoF transducer, starting from the single chip (VCSEL and HPT) to the packaged modules. The 
evolution was done successfully on the optical and electrical side. The optical interconnections 
were implemented using a ball lens coupling technique integrated into a mechanical receptacle. 
The electrical interconnections included an impedance matching optimization taking into 
account the HPT-LNA interface and LNA-LNA interface. 

The ULM TOSA module development included two versions in terms of impedance 
matching presented to the VCSEL input. In all cases the coupling efficiency was found to be 
60 % compared to the VCSEL die. The home-made TOSA module represents a good EVM result, 
which allows the E/O device to be integrated on the RoF transducer (minimum 3 % EVM 
degradation from the B2B). 

A SiGe ROSA module based on the 10 µm squared SiGe HPT was realized. An 
interconnection substrate was designed and fabricated to include a SiGe HPT and two LNAs, 
together with a passive matching network.  

LNAs were fabricated in the SIGE2RF process of Telefunken Semiconductor. Its opto-
microwave gain was extracted to be equal to -5.1 dB at the 5 GHz operating frequency without 
considering the optical coupling losses.  

However, the gain over the 2 GHz bandwidth exhibits a strong ripple of 10 dB, revealing the 
need to improve the matching network. The coupling efficiency was measured to be 35.4 %, 
which represents a point to be improved, too. 

Although the need for improvements on the IC, matching network and optical coupling, we 
measured a minimum EVM of 25 %, which represents a degradation of 16 % compared to Back-
to-Back measurement from the test bench. This degradation could be mainly attributed to the 
photoreceiver that must be improved by optimizing its design. Also, a complete study on the 
HPT noise must be achieved, but this was not the purpose of this work. Although, for a first 
prototype, this result can be seen as very promising as it shows an error free transmission of a 
3.08 Gbps IEEE 802.15.3c HSI signal at 5 GHz, after CRC correction. 
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V.B. System Power Budget Design 

Home-made TOSA and ROSA can be integrated into the transducers and used on the 
system demonstrator. The purpose of this section is to build up the system architecture and to 
define its link budget. The study will focus on the gain, the noise and the nonlinearities of each 
block of the system considering three architectures: Point-to-Point (P2P optical tunnel); Optical 
Multipoint-to-Multipoint architecture with Electrical multiplexing (MME) and Optical 
Multipoint-to-Multipoint architecture with Optical multiplexing (MMO). We focus this section 
on the final demonstrator which will integrate the TRoF3. However, it is important to compare 
the RoF22 and the RoF33 links, so it has to be compatible with either the Finisar ROSA or the 
SiGe ROSA developed in the previous section.  

Table V.4 shows the summary of the intended architecture configuration in terms of: 
architecture study, wireless-hop distance scenario; RoF configurations. 

Table V.4 – Summary of the architecture study configurations 

Architecture Hop Scenario TOSA ROSA 

P2P 
1m 
5m 
10m 

ULM 
Finisar 

SiGe 

M2M 

Electrical 
1m 
5m 
10m 

ULM 
Finisar 

SiGe 

Optical  
1m 
5m 
10m 

ULM 
Finisar 

SiGe 
 

The first subsection will present the P2P architecture and considers the three distances of 
the air hop: 1, 5 and 10 meters. All the electronics are designed around the RoF element which 
provides the power range limitation. The system budget considers the gain, its compression and 
noise in order to optimize the link and find eventual critical points. The results found in this 
subsection are important and are considered as a reference for the next architectures.  

The second section considers the MME architecture of the TRoF3 considering both RoF2 
and RoF3 cases. It includes the definition of the central node for the electrical multiplexing of 
the 4 rooms.  

The last subsection presents the MMO architecture budget design of the TRoF3 considering 
both RoF2 and RoF3 cases. 

V.B.1. Point-to-Point architecture (Optical Tunneling): P2P 

The point-to-point architecture, presented in Chapter II represents the simplest ORIGIN 
approach (Figure V-29). Here we considered two wireless-hops between the radio emitter and 
the radio receiver (both distances equal to d). To determine the system power budget, the 

                                                
2 RoF2 – ULM VCSEL home-made TOSA followed by Finisar ROSA (PiN plus TIA) 

3 RoF3 – ULM VCSEL home-made TOSA followed by SiGe HPT home-made ROSA (HPT plus 2 LNA) 
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maximum EIRP is defined to be 27 dBm on the radio emitter (see subsection II.A.2 in Table 
II.3). Although, to keep margin and to fit with 60 GHz commercial chips, available, we put the 
limit to a maximum EIRP of 20 dBm. 

 
Figure V-29 – The point-to-point RoF architecture illustration based on the IF-RoF concept 

Three important characteristics must be considered for each system module (mm, cm and 
RoF parts): frequency response, noise behavior and nonlinearities. The system is divided 
according to the two data flows: downlink between the radio emitter and the RoF part and the 
uplink between the RoF and the Radio receiver. In the downlink, the mm-signal signal is 
amplified, filtered and down converted to the intermediate frequency through the mm-RX 
block. Then (cm-TX block) this IF signal is amplified, filtered and powered controlled by an 
AGC to provide the optimum power at the input of the RoF link (cm-mm block).The Uplink 
starts with the cm-RX which recovers the signal from the RoF photoreceiver and provides the 
signal to the mm-TX block input after filtering and power regulation by an IF variable 
attenuator and LNA. Finally the mm-TX block up-converts the signal to the mm frequency, 
filters and amplifies it. The final ORIGIN prototype was proposed to use 12 dBi horn antennas 
at 60 GHz developed by Telecom Bretagne.  

The first step is to compute the power delivered from the antenna which feeds the mm LNA 
(Pmm,in). The three scenarios were considered in terms of distance d between the radio emitter 
and the TRoF antenna: 1, 5 and 10 meters. The results are presented in Table V.5, where the free 
space losses are calculated using Eq. (2.23) presented previously. 
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Table V.5 – Downlink Power budget  

EIRP Distance 
(d) 

Free space 
losses 

Power from 
the antenna 

Pmm,in 

TRoF RF Gain 
(GmmxGcm) PRoF,in* 

27 dBm 

1m  68 dB -29 dBm 
+9 dB 
+27 dB 
+31 dB 

-20 dBm (min) 
-2 dBm (opt) 
+2 dBm (max) 

5m 82 dB -43 dBm 
+23 dB 
+41 dB 
+45 dB 

-20 dBm (min) 
-2 dBm (opt) 
+2 dBm (max) 

10m 88 dB  -49 dBm 
+29 dB 
+47 dB 
+51 dB 

-20 dBm (min) 
-2 dBm (opt) 
+2 dBm (max) 

*Extracted from Figure V-30 

The RoF input power (PRoF,in) is determined to optimize the EVM performances of the RoF 
link (Chapter IV; section IV.C.2; Figure IV-19). Figure V-30 presents the EVM curves as a 
function of the input RF power (PRoF,in) for different optical losses. With an optical attenuation 
increase, the non-linearity of the photodetector is rejected toward higher values of input power. 
From this curve, it can be inferred that a maximum input RF power of 2 dBm should be injected 
into the laser in order to keep EVM below 25% (when optical losses are equal to 15 dB). With the 
maximum input RF power of 2 dBm and 22 dB dynamic range measured, in order to keep below 
25%, the optimum PRoF,in range is then determined to be from -20 dBm to +2 dBm. 

 
Figure V-30 – EVM curves versus input RF power within an optical link realized with 

RoF2: an ULM TOSA, an optical attenuator and a Finisar ROSA. The TOSA is biased at 

6 mA. The optical attenuator varies from 5 to 15 dB. The VCSEL non-linearity limit to the 

EVM curve is inferred and sketched with a dashed bold line. 

The input compression point of the ULM TOSA was measured to be +10 dBm at 5 GHz with 
an 8 mA biasing, according to Figure V-12. The input power backoff is, therefore, 8 dB if we 
consider the maximum input power on the system of +2 dBm. 

We find three important parameters which will influence all the components of the system: 
the 20 dB dynamic power range on the mm-RX power (Pmm,in from -29 to -49 dBm) imposed by 
the 1-10 m range and the 20 dBm EIRP; the RoF input dynamic power range which is fixed by 
the optoelectronic components behavior; the fixed desired RoF output power which needs to be 
controlled in order to provide the desired EIRP on the second room of the uplink (Pmm,out + 12 
dB=+20 dBm).  
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The following subsections intend to separate the behavior of the downlink and uplink paths 
from the system link: 
Downlink path: the mm-RX block plus the cm-TX block from the receiving 60 GHz antenna 
until the input of the RoF block. It includes the antenna and the TOSA module, the last one is 
identical for both RoF2 and RoF3: home-made ULM TOSA. 
Uplink path: the cm-RX block plus the mm-TX block from the output RoF block until the 
transmitting 60 GHz antenna. It includes the antenna and ROSA module. In this case, two 
configurations are taken into account depending upon the RoF generation: RoF2 is the Finisar 
ROSA and the in RoF3 the SiGe ROSA. Eventual optical losses can be considered.  

V.B.1.1 Downlink path study 

The cm-TX block is compatible with both RoF generations and is presented in Figure V-31. 
Two switches allow us to turn on and off (25 dB isolation) the IF transmission by controlling the 
input RF power and the DC bias of the TOSA module. An LNA and an HPA amplify the signal 
and feed it into the ULM TOSA module. The AGC has a 30 dB dynamic range which helps to fix 
the input power of the VCSEL whatever the free space communication distances (1 to 10 
meters). AN RF bandpass filter isolates the signal in the desired bandwidth (centered at 5 GHz 
with 2 GHz bandwidth). The overall cm-TX block dynamic gain ranges from 8.7 dB to 38.7 dB, 
due to the dynamic of the AGC (30 dB). 

 
Figure V-31 – Block diagram representing the cm-TX on the downlink path designed by 

IETR partner. 

The mm-RX block schematic is detailed in Figure V-32. It is basically a MMIC down-
converter from Gotmic4 made up of a multiplier, a mixer and a LNA. The conversion gain of the 
mm-RX block is 10 dB and its noise figure is around 8 dB.  

                                                
4 RXQ060A01 available in www.gotmic.se 
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Figure V-32 – The mm-RX block diagram designed by Telecom Bretagne partner. 

The 60 GHz part is fixed and defined by what was possible to assemble from ICs available 
from the market. They were assembled by Telecom Bretagne partner. 

Table V.6 shows electrical specifications of the downlink blocks. They are presented in 
Figure V-29 from the radio emitter to the RoF module. They include the mm-wave antenna, 
mm-RX block, cm-TX block and the TOSA module, representing the first half part of the P2P 
link system. This table template gives the bases of the following architecture link budget study. 

The first row shows the different cascaded device elements which correspond to the signal 
path from the 60 GHz antenna to the ULM TOSA module. The first column presents the key 
parameters of each device: input power (Pin), gain (Gain), output power (Pout), Input 
compression point (P1dB,in) and finally noise figure (NF). The minimum and maximum values 
of the power correspond to the 2 extreme scenarios presented in Table V.5 (1 and 10 meters of 
the wireless-hop). Consequently, gain value could be minimum, nominal and maximum, 
corresponding to the Automatic Gain Control device (AGC) with a gain range of 30 dB, plus 
2 dB of Insertion Loss (IL). The noise figure is deduced from the Friis equation, which allows 
the influence evaluation of each block onto the system. The ULM TOSA module OM figures of 
merit are extracted from Table IV.2, Chapter IV, where the OM gain includes the 60 % coupling 
efficiency. We assume that the TOSA behavior at 3 GHz is equal to the one at 5 GHz. Table V.6 
indicates that to achieve the power constraint previously described in V.B.1 introduction, the 
cm-part need to be composed of two LNA of 14 dB and an HPA of 28 dB (2x14 dB) as is 
available off-the-shelf. This component was designed and assembled by IETR Nantes within the 
project, according to the budget evaluation that we performed.  

 We identify two critical points (yellow highlighted values in Table V.6): the signal 
compression point of the down-converter when we consider the worst case for the free space 
distance d of 1 meter (the input power on the mm down-converter (-32 dBm) is close to its input 
gain compression point (-30 dBm)); the AGC input power which is -10.6 dBm when its input 
gain compression point is -4 dBm.  

LNA

×4mm-RX Chip

RX
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57-64 GHz
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module
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Table V.6 – P2P on TRoF3: downlink path (mm-RX, cm-TX blocks and TOSA) 

  

mm-RX block cm-TX block TOSA 

Antenna 

in 
Transitions 

Down- 

 converter  
 LNA   

 Switch  

+ filter 
AGC   HPA   ULM 

Pin,max (dBm) 
- 

-29,0 -32,0 -22,0 -8,0 -10,6 -32,6 -4,6 

Pin,min (dBm) -49,0 -52,0 -42,0 -28,0 -30,6 -32,6 -4,6 

Gain, min (dB) 

12,0 -3,0 10,0 14,0 -2,6 

-32,0 

28,0 -14,6 Gain, nominal (dB) -22,0 

Gain,max (dB) -2,0 

Pout,max (dBm) -29,0 -32,0 -22,0 -8,0 -10,6 -32,6 -4,6 -19,2

Pout,min (dBm) -49,0 -52,0 -42,0 -28,0 -30,6 -32,6 -4,6 -19,2

P1dB,in (dBm) - - -30,0 0,0 - -4,0 0,0 10,0 

NF (dB) 

- 

3,0 8,0 3,0 2,6 22,0 3,0 34,3 

NF per section (dB) 

11,0 3,1 32,4 34,3 

11,0 21,1 

15,8 
 

Therefore, the desired back-off of 8 dB on the gain compression is not achieved on these two 
devices where the mm down converter reveals to be the most critical module at this distance 
scenario (1m). Another point to take into account is the input power on the ULM TOSA 
(-4.6 dBm), blue highlighted in Table V.6, regulated and fixed by the AGC. Its gain value is then 
changed to -2 dB for a distance of 1 m. Therefore, the input power range of the ULM TOSA 
module can vary from —14.6 dBm (if the AGC gain is regulated to [-32;-12] dB) to -4.6 dBm (if 
AGC gain regulated to [-22;-2] dB as shown in Table V.6, green highlighted). In order to achieve 
the maximum acceptable input power on the ULM TOSA is +2 dBm, the High Power Amplifier 
gain of 28 dB should be increased by 5.4 dB. However, only 14 dB stages were available. 

Since we consider the noise contribution per section we can see that the final link noise of 
15.8 dB of the downlink path is influenced mainly by the mm-RX block, with a NF of 11 dB. 

V.B.1.2 Uplink path study 

The cm-RX block must be compatible with both the expected 2 RoF generations (either 
Finisar or SiGe ROSA). Its design is presented in Figure V-33. Two switches control the RF and 
the DC feeds on the ROSA. The ROSA module output signal is amplified by two 14 dB LNAs. 
The power delivered into the TX-mm module is then controlled by a variable attenuator (30 dB 
dynamic range) to avoid an eventual saturation. AN RF bandpass filter is implemented to 
isolate the signal in the desired bandwidth (centered at 5 GHz with 2 GHz bandwidth). The 
global dynamic gain range of the cm-RX module varies from -6.2 dB to 23.8 dB.  
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Figure V-33 – Block diagram representing the cm-wave board on the uplink path 

(compatible with both Finisar and SiGe ROSAs). 

The mm-TX block schematic is detailed in Figure V-34. It is designed with a MMIC up-
converter5 followed by a band pass filter and a High Power Amplifier6 (HPA). The up-converter 
transposes the IF input signal to 60 GHz using a 4x multiplier, mixer and amplifier. A Band 
pass filter is used for LO signal suppression on the final RF output and the signal is then 
amplified to achieve the EIRP targeted. This was designed and assembled by Telecom Bretagne. 

 
Figure V-34 – The mm-TX block diagram. 

The mm-TX block is fixed without any modifications possible in contrary to the cm board 
that can be optimized according to our RoF budgeting. As expected, the 2 generations of RoFs 
(2 and 3), lead to different results because of the difference of the ROSA module. The following 
parts of the subsection present the uplink path for each RoF configuration distinctively. 

a) TRoF3: integrating the RoF2  
As in Table V.6, Table V.7 shows electrical specifications of every block presented in Figure 

V-29 from the RoF part to the radio emitter. This uplink includes the Finisar ROSA module, cm-
RX block, mm-TX block and mm antenna. The OM figures of merit of the Finisar ROSA were 
extracted in Chapter IV (Table IV.3) and we assume equal values at 3 and 5 GHz. The most 

                                                
5 TXQ060A01 available in www.gotmic.se 

6 HMC-ABH241 available in www.hittite.com 

×4
mm-TX Chip

TX

OL

-4 dB

58-65 GHz
57-64 GHz

PA PA

G=10 dB
NF=8 dB

cm-RX
module

13.82 GHz

G=24 dB
NF=3 dB



 

128  Chapter V - Final Demonstrator 

128 

critical parameter is the Finisar ROSA OM input compression point of -41 dBm (yellow 
highlighted). Clearly, considering the ULM TOSA input power and its corresponding OM gain, 
high optical losses are required (higher than 11 dB) to prevent the ROSA nonlinearities. Indeed, 
15 dB of optical losses would have been better by the given margin. Nevertheless, if 15 dB optical 
losses are added to avoid saturation of the ROSA module, its gain (32 dB) is then ‘wasted’ by 
these optical losses corresponding to +30 dB equivalent electrical losses. To use lower optical 
losses (a minimum of 5 dB is required to avoid optical saturation) we have to reduce the ULM 
TOSA input power. As the minimum is -14.6 dBm (AGC limitation), 10 dB optical losses are 
necessary. Therefore the optical losses, which optimize the OM input power on the Finisar 
TOSA, vary from 10 to 15 dB. The Variable Attenuator (Vatt - green highlighted) plays an 
important role to be adjusted as a function of the ULM TOSA input signal and the optical losses 
to maintain an EIRP of 20 dBm.  

Table V.7 – P2P with TRoF3: uplink path (RoF2, cm-RX block, mm-TX block and mm antenna) 

budget 

  

Opt. L. ROSA cm-RX block mm-TX block  

15 dB  
Finisar RF  

Switch 
Vatt  LNA1   Filter  LNA2 

Up- 

Convert. 
HPA 

Filter+ 

Transit. 

Antenna 

 Out 
 EIRP 

PD TIA 

Pin,max -19,2 -49,2 -55,2 -23,2 -24,1 -52,4 -38,4 -40,0 -26,0 -16,0 12,0 8,0 

20,0 

Pin,min -19,2 -49,2 -55,2 -23,2 -24,1 -52,4 -38,4 -40,0 -26,0 -16,0 12,0 8,0 

Gnom -30,0 -6,0 32,0 -0,9 -28,3 14,0 -1,6 14,0 10,0 28,0 -4,0 12,0 

Pout,max -49,2 -55,2 -23,2 -24,1 -52,4 -38,4 -40,0 -26,0 -16,0 12,0 8,0

  

Pout,min -49,2 -55,2 -23,2 -24,1 -52,4 -38,4 -40,0 -26,0 -16,0 12,0 8,0

IP1dB 

- 

-41,0 - -4,0 0,0 - 0,0 -10,0 -7,0 - 

NF  8,5 0,9 28,3 3,0 1,6 3,0 8,0 3,0 4,0 

NF per 

section 

8,5 29,2 3,2 8,1 

33,1 3,2 

36,3 
 

The noise figure of the uplink (36.3 dB) is mainly due to the attenuator level which is placed 
at the 1st stage (NF of 29.2 dB). To reduce the noise contribution we must reduce the attenuation 
value from the Vatt. However, this reduction will require (in order to maintain the EIRP): either 
to decrease the AGC gain, reducing the ULM TOSA input power further or/and to increase 
optical losses. However, the improvement expected from the Vatt attenuation reduction. The 
removal of one LNA would have been useful to save up to 14 dB on the NF. 

The final global system (considering both downlink and uplink paths) gain and noise is 
37 dB and 26.9 dB, respectively, without considering the antennas gain. The mm-RX block still 
contribute by 11 dB to this global NF, the cm+TOSA by 4.8 dB and the ROSA+cm part by almost 
10 dB. 

 
The main critical points of the P2P architecture based on this RoF2 generation are: 

The mm down-converter linearity and its compression for short distance of free space 
communication (1m). 
The ULM TOSA module input power range of 10 dB from a maximum power of -4.6 dBm (AGC 
of -2 to -22 dB) to a minimum -14.6 dBm (AGC from -12 to -32 dB). 
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The Finisar ROSA module with its OM compression input point of -41 dBm requiring optical 
losses from 10 to 15 dB. 

 

b) TRoF3: integrating the RoF3 
The TRoF3 uplink path budget where the photoreceiver is now the home-made SiGe ROSA 

module is presented in Table V.8. The OM gain of the SiGe ROSA (-14.1 dB) was extracted in 
section V.A.2.2. The SiGe HPT gain includes the -9 dB opto-microwave gain related to the 
optical coupling efficiency. In this configuration we can see that there is no inclusion of an 
optical attenuator as opposed to the RoF2 case since the SiGe ROSA is very linear. From Table 
V.8, it appears that the same architecture as before fits to the power and gain requirements. The 
EIRP is assured by the -18.2 dB (green highlighted) attenuation from the Vatt. Once again, the 
second LNA appears to be in excess. Thus it could have been removed and the Vatt attenuation 
reduced. The noise contribution from the SiGe ROSA is given by an approximation considering 
the sum of the noise of the electrical transistor, known from its modeled NF through the 
Telefunken design kit, and of the shot noise induced by the measured DC photocurrent  (around 
4 mA from Figure V-25).  

It is clear that the noise contribution here is the weakness of SiGe ROSA module (yellow 
highlighted) compared to the Finisar ROSA module. We found the NF of the uplink path 15 dB 
higher compared to the RoF2 (36.3 dB). 

The global system gain (considering both downlink and uplink paths) and noise figure are, 
respectively, 37 dB and 37.1 dB, respectively, without considering the antennas gain. 

Table V.8 – P2P with TRoF3: uplink path (RoF3, cm-RX block, mm-TX block and mm 

antenna) 

  

ROSA cm-RX block mm-TX block  

SiGe RF  

Switch 
Vatt  LNA1 Filter LNA2 

Up- 

converter 
HPA 

Filter + 

Transit. 

Antenna 

 Out 
EIRP 

HPT LNAIC LNAIC 

Pin,max -19,2 -59,2 -49,2 -39,2 -40,1 -52,4 -38,4 -40,0 -26,0 -16,0 12,0 8,0 

20,0 

Pin,min  -19,2 -59,2 -49,2 -39,2 -40,1 -52,4 -38,4 -40,0 -26,0 -16,0 12,0 8,0 

Gmin  

-34,1 10,0 10,0 -0,9 -18,2 14,0 -1,6 14,0 10,0 28,0 -4,0 12,0 Gnom 

Gmax 

Pout,max -53,3 -43,3 -33,3 -34,2 -52,4 -38,4 -40,0 -26,0 -16,0 12,0 8,0

- 

Pout,min -53,3 -43,3 -33,3 -34,2 -52,4 -38,4 -40,0 -26,0 -16,0 12,0 8,0

IP1dB -* -12,0 -12,0 - -4,0 0,0 - 0,0 -10,0 -7,0 - 

NF 46,1 3,0 3,0 0,9 18,2 3,0 1,6 3,0 8,0 3,0 4,0 

NF per 

section 

46,4 19,1 3,2 8,1 

46,6 3,2 

46,8 

*higher than IP1dBLDxGLD 

The main critical points on the P2P architecture based on the third generation are: 
No optical losses needed, but the SiGe ROSA OM gain is too low and this impact on the link 
noise figure. 
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The Vatt adjusted to -18.2 dB, which, as previously, suggest that we can remove one of the cm 
LNA (14 dB gain) and re-adjust it to -4.2dB (-18 dB+14 dB). Although, this will not have a large 
impact on the overall noise since the uplink noise figure is dictated by the SiGe HPT (37.1 to 
36.7). 
The mm down-converter linearity is a limiting factor for short distances in the air gap with a 
2 dB backoff.  

V.B.1.3 Synthesis 

This subsection presented the power link design of the P2P architecture, considering the 
third generation RoF transducers (TRoF3) compatible with both RoF2 and RoF3 links. Simplex 
communication architecture was considered by the downlink and uplink paths. 

The downlink path was identical for both RoF2 and RoF3 based on the home-made ULM 
TOSA module. The two extreme scenarios for the free space communication (1 and 10 meters) 
were explored. It revealed two points needing a special attention: the gain compression of the 
down-converter at 1 meter and short distances; the choice is the optimum power at the input of 
the ULM VCSEL which can be chosen from -14.6 dBm to 4.6 dBm and maintained fixed by the 
AGC. 

The uplink path presents differences depending upon the chosen ROSA module in the two 
RoF link cases: RoF2, based on the Finisar ROSA module, requires high additional optical 
losses to avoid the ROSA nonlinearities. The, TIA gain is ‘wasted’ by the optical loss. The RoF3 
based on the SiGe ROSA module does not need additional optical losses, but is characterized by 
a lower OM gain, which, at the end, corresponds to the same overall link gain. It is also 
responsible of a high noise figure revealing a link noise figure increase of 10.2 dB compared to 
the RoF2 case. Although, one of the two cm LNAs should be removed to improve noise 
performances of both RoF2 and RoF3. Indeed, that will make the global system noise figure of 
17.7 dB and 36.7 dB for the RoF2 and RoF3, respectively, which will correspond to a 19 dB 
improvement on the RoF2.   

Based on this results and illustrations, the following subsections will focus on the link 
budget of the optical multipoint-to-multipoint architecture. We consider both electrical and 
optical multiplexing (MME and MMO) for the TRoF3 (compatible with RoF2 and RoF3 as 
previously). 
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V.B.2. Optical Multipoint-to-Multipoint architecture with 
Electrical multiplexing 

The MME architecture presented in Chapter II is shown as a block diagram in Figure V-35. 
We consider a simplex communication link. The first part is a TRoF3.1 block (mm-RX, cm-TX 
and TOSA modules – presented in Table V.6) placed after a wireless hop. The TRoF3.1 block is 
followed by a central node which implements the electrical multiplexing from 1 room to the 4 
rooms, through a 4x4 RF splitter. The signal from the fiber is detected, splitted and then 
reemitted. The central node is then made up of a cm-RX, a 4x4 RF splitter, a cm-TX and a 
TOSA. Then the central node is followed by TRoF3.2 (ROSA, cm-RX and the mm-TX modules– 
presented in Table V.7) before a second wireless hop. In this subsection we will focus, precisely, 
on the central node design for the TRoF3, considering again the compatibility for both RoF2 
and RoF3. In both cases the starting points of this study are, as in the P2P 
architecture: -4.6 dBm optimum input power on the ULM TOSA for both RoF2 and RoF3; 15 dB 
optical losses when the Finisar ROSA is used; no additional optical losses when SiGe ROSA is 
used. The cm-RX block for TRoF3 modules and for the central node must be the same, so as to 
minimize the number of different boards to be fabricated by IETR Nantes. However, the impact 
of the choice to use 2 LNAs rather than 1 only, as suggested previously, will be analyzed as well. 

 
Figure V-35 - Optical Multipoint-to-Multipoint architecture with Electrical multiplexing 

(MME) 

The first part of the subsection presents the central node based on the RoF2 link. 
The next part of the subsection considers the central node based on the RoF3. 

V.B.2.1 Central node based on RoF2 

The link budget of the central node based on RoF2 is presented in Table V.9. The input 
power on the ULM TOSA is fixed to -4.6 dBm (blue highlighted). The variable attenuator Vatt 
should be low in order to reduce the noise contribution (green highlighted), nevertheless, it s 
attenuation has to be increased in order to avoid the saturation of the AGC component (yellow 
highlighted). To achieve -4.6 dBm at the input of the TOSA, the AGC and the variable attenuator 
are then set to be fixed with a gain of -22 dB and -17.3 dB, respectively. 

These conditions give a global noise figure of 27.3 dB and an overall gain of 37 dB, 
considering both downlink (Table V.6) and uplink paths (Table V.7). Once again, the removal of 
one LNA rather than two would have been usefull in order to regulate again the Vatt to -3.3 dB 
(-17.3 dB + 14 dB) and obtain an overall noise of 19.2 dB (improvement of 8.1 dB).  

 

Electrical Central node TRoF3.2TRoF3.1

mm-RX mm-TXcm-TXcm-RXcm-TX cm-RX4x4 RF
SplitterRoF RoF
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Table V.9 – Electrical Central Node budget for the MME with Finisar ROSA solution (RoF2)  

  

Opt. L ROSA cm-RX block Coupler cm-TX block TOSA 

15 dB  
Finisar RF  

Switch 
Vatt LNA Filter  LNA 4x4  LNA 

RF  

Switch 

AGC 

(IL_2dB) 
HPA ULM 

PD TIA 

Pin,max -19,2 -49,2 -55,2 -23,2 -24,1 -41,4 -27,4 -29,0 -15,0 -22,0 -8,0 -10,6 -32,6 -4,6 

Pin,min -19,2 -49,2 -55,2 -23,2 -24,1 -41,4 -27,4 -29,0 -15,0 -22,0 -8,0 -10,6 -32,6 -4,6 

Gain, min 

-30,0 -6,0 32,0 -0,9 -17,3 14,0 -1,6 14,0 -7,0 14,0 -2,6 -22,0 28,0 -14,6 Gnom 

Gmax 

Pout,max -49,2 -55,2 -23,2 -24,1 -41,4 -27,4 -29,0 -15,0 -22,0 -8,0 -10,6 -32,6 -4,6 -19,2

Pout,min -49,2 -55,2 -23,2 -24,1 -41,4 -27,4 -29,0 -15,0 -22,0 -8,0 -10,6 -32,6 -4,6 -19,2

IP1dB 

- 

-41,0 - -4,0 0,0 - 0,0 - 0,0 - -4,0 0,0 10,0 

NF 8,5 0,9 17,3 3,0 1,6 3,0 7,0 3,0 2,6 22,0 3,0 34,3 

NF per 

section 

8,5 18,2 3,2 7,0 3,1 25,0 34,3 

22,3 3,2 10,1 29,9 

25,4 25,7 

26,9 
 

V.B.2.2 Central node based on RoF3 

Comparing with RoF2, the Vatt is now reduced to its minimum attenuation to fit with the 
lower OM gain of the ROSA. Vatt (green highlighted) equaled to -8.6 dB respects the AGC 
backoff of 8 dB. The global system gain, considering both downlink (Table V.6) and uplink 
paths (Table V.8), is the same 37 dB and the noise figure is 45.3 dB, 18 dB higher than for RoF2. 
If one 14 dB LNA only is considered, the Vatt can be re-adjust to its minimum of -2 dB. However 
the overall noise improvement is negligible since the main contribution comes from the SiGe 
HPT.  
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Table V.10 – Electrical Central Node budget for the MME with SiGe ROSA solution (RoF3) 

  

ROSA cm-RX lock Coupler cm-TX block TOSA 

SiGe RF  

Switch 
Vatt LNA Filter  LNA 4x4 LNA Switch AGC HPA ULM 

HPT LNAIC LNAIC 

Pin,max -19,2 -53,3 -43,3 -33,3 -34,2 -42,8 -28,8 -30,4 -16,4 -23,4 -9,4 -12,0 -32,6 -4,6 

Pin,min -19,2 -53,3 -43,3 -33,3 -34,2 -42,8 -28,8 -30,4 -16,4 -23,4 -9,4 -12,0 -32,6 -4,6 

Gain, min 

-34,1 10,0 10,0 -0,9 -8,6 14,0 -1,6 14,0 -7,0 14,0 -2,6 -20,6 28,0 -14,6 Gnom 

Gmax 

Pout,max -53,3 -43,3 -33,3 -34,2 -42,8 -28,8 -30,4 -16,4 -23,4 -9,4 -12,0 -32,6 -4,6 -19,2

Pout,min -53,3 -43,3 -33,3 -34,2 -42,8 -28,8 -30,4 -16,4 -23,4 -9,4 -12,0 -32,6 -4,6 -19,2

IP1dB - -12,0 -12,0 - -4,0 0,0 - 0,0 - 0,0 - -4,0 0,0 10,0 

NF 46,1 3,0 3,0 0,9 8,6 3,0 1,6 3,0 7,0 3,0 2,6 20,6 3,0 34,3 

NF per  

section 

46,4 9,5 3,2 7,0 3,1 23,6 34,3 

46,4 3,2 10,1 28,5 

46,5 24,3 

46,5 
 

V.B.3. Optical Multipoint-to-Multipoint architecture with 
Optical multiplexing 

The MMO architecture presented in Chapter II is shown as a block diagram in Figure V-36. 
It is simpler than the MME architecture because the central node is reduced to a simple 4x4 
optical splitter.  

 
Figure V-36 - Optical Multipoint-to-Multipoint architecture with Optical multiplexing 

(MMO) 

Table V.11 shows the characteristics of the central node (optical splitter) for both RoF link 
cases (RoF2 and RoF3) considering the same downlink path as given in Table V.6.  

Optical Central node TRoF3.2TRoF3.1

mm-RX mm-TXcm-TX cm-RX4x4 Optical SplitterRoF RoF
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Table V.11 – Central Node of the MMO architecture for both RoF2 and RoF3 

  
Coupler 

4x4 

Pin,max (dBm) -19,2 

Pin,min (dBm) -19,2 

Gain, min (dB) 

-12,0 Gain, nom (dB) 

Gain,max (dB) 

Pout,max (dBm) -31,2 

Pout,min (dBm) -31,2 
 

Because of the 6 dB intrinsic losses of the optical splitter, the optical losses of the uplink in 
RoF2 are reduced to 10 dB (Table V.12). The EIRP is guaranteed by regulating the Vatt 
to -26.3 dB (green highlighted). The overall system gain (considering both downlink (Table V.6) 
and uplink paths (Table V.12)) is 37 dB and the noise figure is 27 dB. If we remove one LNA of 
14 dB we can reduce the overall noise down to 18.3 dB. 

Table V.12 – Uplink path budget of the MMO architecture using the RoF2 

  
10 dB 

 ATT. 

Finisar ROSA RF  

Switch 

Vatt 

(IL_2dB) 
LNA1 Filter LNA2 

Up- 

converter 
HPA 

Filter + 

 transitions 

Antenna  

Out 
EIRP 

PD TIA 

Pin,max -31,2 -51,2 -57,2 -25,2 -26,1 -52,4 -38,4 -40,0 -26,0 -16,0 12,0 8,0 

20,0 

Pin,min -31,2 -51,2 -57,2 -25,2 -26,1 -52,4 -38,4 -40,0 -26,0 -16,0 12,0 8,0 

Gmin 

-20,0 -6,0 32,0 -0,9 -26,3 14,0 -1,6 14,0 10,0 28,0 -4,0 12,0 Gnom 

Gmax 

Pout,max -51,2 -57,2 -25,2 -26,1 -52,4 -38,4 -40,0 -26,0 -16,0 12,0 8,0

  

Pout,min -51,2 -57,2 -25,2 -26,1 -52,4 -38,4 -40,0 -26,0 -16,0 12,0 8,0

IP1dB 

  

-41,0   -4,0 0,0   0,0 -10,0 -7,0   

NF 8,5 0,9 26,3 3,0 1,6 3,0 8,0 3,0 4,0 

NF per  

section 

8,5 27,2 3,2 8,1 

21,4 3,2 

24,5 
 

In the case of the RoF3 (Table V.13), the Vatt is regulated to -6.2 dB (green highlighted). The 
overall system gain, considering both downlink (Table V.6) and uplink paths (Table V.13), is 
37 dB and the noise figure is 48.6 dB. In this configuration removing a LNA would reduce the 
EIRP down to 10 dBm. 
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Table V.13 – Uplink path budget on the MMO architecture using the RoF3 

  
SiGe ROSA RF  

Switch 

Vatt 

(IL_2dB) 
LNA Filter  LNA 

Up- 

converter 
HPA 

Filter +  

transitions 

Antenna  

Out 
EIRP  

SiGe HPT LNAIC LNAIC 

Pin,max -31,2 -65,3 -55,3 -45,3 -46,2 -52,4 -38,4 -40,0 -26,0 -16,0 12,0 8,0 

20,0 

Pin,min -31,2 -65,3 -55,3 -45,3 -46,2 -52,4 -38,4 -40,0 -26,0 -16,0 12,0 8,0 

Gmin 

-34,1 10,0 10,0 -0,9 -6,2 14,0 -1,6 14,0 10,0 28,0 -4,0 12,0 Gnom 

Gmax 

Pout,max -65,3 -55,3 -45,3 -46,2 -52,4 -38,4 -40,0 -26,0 -16,0 12,0 8,0

- 

Pout,min -65,3 -55,3 -45,3 -46,2 -52,4 -38,4 -40,0 -26,0 -16,0 12,0 8,0

IP1dB - -12,0 -12,0 - -4,0 0,0 - 0,0 -10,0 -7,0 - 

NF 46,1 3,0 3,0 0,9 6,2 3,0 1,6 3,0 8,0 3,0 4,0 

NF per 

section 

46,4 7,1 3,2 8,1 

46,4 3,2 

46,4 
 

When the RoF2 is compared with RoF3 on MMO architecture configuration we remark that 
we have the same overall system gain but the overall noise figure has a difference of 21.6 dB 
manly coming from the SiGe ROSA module. 

V.B.4. Synthesis 

The architecture link system was designed and optimized taken into account the power 
transmitted by each block considering the gain, nonlinearities and Noise Figure. We were able 
to use successfully the OM figures of merit extracted in Chapter IV for the TOSA/ROSA 
modules. The summary of the obtained results for the 3 architectures (P2P, MME and MMO) 
are presented in Table V.14. The last generation of TRoF modules for the ORIGIN project 
(TRoF3) compatible with the ULM TOSA+ Finisar ROSA RoF link (RoF2) and the ULM TOSA + 
SiGe ROSA RoF link (RoF3) were then defined. 

Table V.14 – Architecture link budget summary with the overall gain and noise figure 

(considering both downlink and uplink paths) 

TRoF3  
P2P MME MMO 

RoF2 RoF3 RoF2 RoF3 RoF2 RoF3 

Gain (dB) 37 

NF (dB) (*) 26.9 (17.7) 37.1 (36.7) 27.3 (19.2) 45.3 (45.2) 27 (18.3) 48.6 (48.6**) 
*Configuration with only one LNA instead of two inside the cm-RX block with constant 20 dBm EIRP 

**Configuration with only one LNA instead of two inside the cm-RX block with EIRP of 10 dBm 

The cm-wave and mm-wave modules are compatible with both RoF generations. The 
reemitted EIRP was regulated to 20 dBm for both architectures. The removal of one LNA in the 
cm-RX block has a big impact when the RoF2 module is used with an improvement of around 
10 dB in the noise figure. Although when the RoF3 module is used, the improvement is 
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negligible because of the low gain of the SiGe HPT, which mainly impacts the noise. The MMO 
architecture using the RoF3 and only one LNA would impose a reduction of the EIRP down to 
10 dBm. We can estimate an important improvement by developing further the optical coupling 
of the SiGe HPT which was considered -9 dB in our computations. Its noise must be developed 
further too, especially using a 3T-HPT rather than 2R-HPT as was the case here. 

The MMO architecture reveals to be a good option with RoF2 given system performance 
equivalent to the MME ones. Indeed, we achieve the best performances in term of noise figure 
down to 18.3 dB in the configuration of only one LNA in the cm-RX block. Although, during the 
ORIGIN project the MMO architecture revealed few disadvantages: multiple lasers working 
simultaneously create optical heterodyning interferences i.e. optical beating between the 
different laser optical wavelengths; furthermore as all lasers are simultaneously on, they might 
increase their RIN impact on the system and the shot noise induced by the sum of all DC optical 
powers on the photodetectors; Last, since we are using lasers with multimode operation, the 
optical splitter must be well balanced. To overcome those problems the lasers operation could 
be controlled by the medium access protocol. 
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V.C. The Final Demonstrator Performances 

This section focuses on the integration of the TRoF modules (TRoF3) into the final 
demonstrator. The integration is made step by step, analyzing performance to understand the 
influence of each part of the system: the RoF transducer (optoelectronic devices, cm-wave 
circuit board, mm-wave circuit board, power supply circuit board, LO circuit board) and the 
architecture (signal controlling).  

The first subsection intends to present the comparison of the optical link performance 
metrics (EVM) using the 3 RoF generations. The study takes into account the TOSA bias 
condition and the optical losses in order to optimize the performances on both E/O and O/E 
devices. 

The second subsection shows the integration of the different circuit boards within the TRoF 
transducer. Each board is presented with its performances in order to evaluate the system 
performance degradation. 

The final subsection presents the final demonstrator with corresponding performance 
characterization.  

V.C.1. RoF Systems Comparison: The optical link 

The performances of the 3 RoF generations are presented. Comparison based on the EVM 
measurement allows us to optimize different intrinsic and extrinsic parameters such as the laser 
bias condition, input RF power and optical losses. 

Before analyzing the results, some principles need to be considered such as the relationship 
between the EVM and SNR given by Eq. (3.23) in Chapter IV. This equation explains the typical 
shape of the EVM curve as a function of the input RF power that can be related directly to the 
SNR evolution. For the SNR analysis, we need to take into account the 3 main noise 
components see Eq. (4.17), and their evolution with optical losses: 
When the RIN is the dominant noise: for a fixed input RF power the EVM keeps constant with 
an increase of the optical losses, indeed for 1 dB optical loss, both the RIN and the signal OM 
power decrease by 2 dB keeping the same SNR (one dB optical losses means 2 dB electrical 
losses) 
 When the shot noise is dominant: for a fixed input RF power the EVM increases as we increase 
the optical losses since. In each 1 dB of optical losses added, the signal OM power decrease by 
2 dB and the shot noise power reduces 1 dB. Therefore, the SNR reduces 1 dB.  
When the thermal noise is dominant on the link: for the same input RF power the EVM 
increases as we increase the optical losses since it only affects the signal power while the noise 
level is constant. 

V.C.1.1 Finisar TOSA and Finisar ROSA – TRoF1 

The Opto-microwave link between the Finisar TOSA and Finisar ROSA is considered here. 
It defines the so called RoF1 link, which feeds the TRoF1 architecture. 

Figure V-37 presents the EVM measurement results using RoF1 modules. In Figure V-37 a) 
the EVM is shown as a function of the input RF power for different TOSA bias currents 
(2:2:10 mA). It includes the initial calibration with Back-to-Back (B2B) measurement (~6 %).  
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Figure V-37 – Finisar TOSA plus Finisar ROSA (RoF1) EVM measurement at IF of 3 GHz: a) 

EVM curve as a function of the input RF power for different bias currents; b) Dynamic 

range, at 25 % of EVM and minimum EVM evolution, as a function of the bias condition. 

The analysis of those results can be separated into 2 regions: low input power and high 
input power.  

Low Input Power Region: Noise influence 
 From 2 mA to 4 mA the EVM decreases, which can be explained by the TOSA RIN, which 
decreases with an increase in bias current (Figure III-14). 
 From 4 mA to 10 mA the EVM increases since the optical power emitted from the TOSA 
increases, adding additional noise from the photodiode (shot noise). 

High Input Power Region: Nonlinearities influence 
We notice the decrease of the EVM as we increase the bias current. It is expected from the 
increase of the TOSA linearity.  

An important parameter to be extracted is the power dynamic range, see Figure V-37 b), 
dictated by the noise and nonlinearities of the link system. At low bias current we are limited by 
the TOSA performances, noise and nonlinearities, which give a low power dynamic range. As 
the bias current increases, the dynamic range increase up to 18 dB by the reduction on the RIN 
and the linearity improvement of the VCSEL, getting a minimum EVM of 12 % at 4 mA. After 
6 mA the dynamic range reduces since the noise and nonlinearities of the ROSA increases. With 
these results we decide to use 6 mA to bias the TOSA.  

As the bias current is optimized, the next step is the introduction of optical losses to 
improve the ROSA performances by regulating its input power (nonlinearities pushed toward 
higher values of input power). Figure V-38 shows the results of the EVM curve for different 
ROSA optical input powers. The TOSA bias current is fixed at 6 mA. If we consider a low input 
RF power fixing a 20 % of EVM for instance, we remark that the input RF power needs to be 
increased by approximately twice the added optical losses to get the same EVM. It suggests that 
the thermal noise is dominant (from the TIA). In the case of the high input RF power injection: 
as we increase the optical losses the EVM decreases since the ROSA nonlinearity is rejected 
toward higher values until the TOSA saturates with its nonlinearities. 
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Figure V-38 – Finisar TOSA plus Finisar ROSA (RoF1) EVM measurement at IF of 3 GHz 

(6 mA): a) EVM curve as a function of the input RF power for different Optical losses; b) 

Dynamic range, at 25 % of EVM and minimum EVM evolution, as a function of the optical 

losses. 

Figure V-38 b) shows the power dynamic range evolution with the increase of the optical 
losses. At low optical losses we are limited by the thermal noise and nonlinearities of the ROSA. 
The increase of the optical losses increases the dynamic range up to 19.8 dB by improving the 
linearity on the ROSA. Although, for high optical losses (>5 dB) the noise level decreases the 
dynamic range. 

V.C.1.2 ULM TOSA plus Finisar ROSA – TRoF2/3 

The Opto-microwave link between the ULM TOSA and Finisar ROSA is considered here. It 
defines the so called RoF2 link, which feeds the TRoF2 and eventually final TRoF3 
architectures. 

The same measurements were done with RoF2 where the TOSA Finisar was replaced by the 
home-made ULM TOSA module. Figure V-39 presents the results on EVM measurement. In 
Figure V-39 a), the EVM is shown as a function of input RF power for different TOSA bias 
currents (2:2:10 mA). 
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Figure V-39 – ULM TOSA plus Finisar ROSA (RoF2) EVM measurement at IF of 3 GHz: a) 

EVM curve as a function of the input RF power for different bias current; b) Dynamic 

range, at 25 % of EVM and minimum EVM evolution, as a function of the bias condition. 

The same analysis made previously for TRoF1 applies here. The shot noise is dominant at 
low input RF power where the EVM increases as the photodiode input increases with the TOSA 
bias current. At high input RF power, the EVM decreases as the TOSA linearity improves until 
the ROSA saturation is limiting for bias current higher than 6 mA. Figure V-39 b) shows the 
increase of the power dynamic range up to 18.7 dB and then saturation limit of the ROSA 
(>6 mA). As previously, the minimum EVM is achieved simultaneously to the maximization of 
the power dynamic range, down to 12.8 % with bias current between 4 and 6 mA.  

The EVM is also evaluated as a function of the optical losses, as shown in Figure V-40. For 
comparison purposes between RoF1 and RoF2 the bias current was fixed to 6 mA. 

 
Figure V-40 – ULM TOSA plus Finisar ROSA (RoF2) EVM measurement at IF of 3 GHz 

(6 mA): a) EVM curve as a function of the input RF power for different Optical losses; b) 

Dynamic range, at 25 % of EVM and minimum EVM evolution, as a function of the optical 

losses. 

Optical losses increase provides shift of the EVM curves towards higher RF input power. 
This proves that the ULM TOSA is more linear than the Finisar TOSA, thus increasing the 
dynamic range with the optical losses, as depicted in Figure V-40 b). We express some 
imprecision on the optical losses values in this specific Figure V-40 case (due to uncalibrated 
measured that was solved later on). 
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More measurements were done at an IF of 5 GHz in order to be in the context of the 
ORIGIN project. The ULM TOSA was biased at 8 mA because of its better linearity performance 
(see Chapter III). Figure V-41 shows similar results illustrating better proportionality between 
the optical losses and the EVM curve shifting. As the bias current is 8 mA, the optical losses 
used are higher.  

 

Figure V-41 – ULM TOSA plus Finisar ROSA (RoF2) EVM measurement at IF of 5 GHz 

(8 mA): a) EVM curve as a function of the input RF power for different Optical losses; b) 

Dynamic range, at 25 % of EVM and minimum EVM evolution, as a function of the optical 

losses. 

Since we are doing an external converter to generate the 5 GHz signal the back-to-back 
EVM was slightly deteriorated to around 9 %, instead of 6 %. This explains as well the increase 
of the minimum EVM for each curve. 

V.C.1.3 ULM TOSA plus SiGe ROSA – TRoF3 

The Opto-microwave link between the ULM TOSA and SiGe ROSA is considered here. It 
defines the so called RoF3 link, which feeds the TRoF3 architecture. 

The third RoF configuration, considers an ULM TOSA and a SiGe 2T-HPT based ROSA, 
which was in section V.A. The EVM curve was presented in Figure V-28. The results have shown 
a minimum EVM of 16 % degradation when compared to the B2B measurement. These results 
give us a good indication for a future development and study, but it will not be integrated in the 
system transducer as a mechanical failure happened. 

V.C.1.4 Synthesis 

The three RoF configuration system performances were presented and compared as a 
function of the input RF power, bias condition and optical losses. Indeed, those three 
parameters were optimized. The main drawback of the first generation (RoF1) was the 
nonlinearities on both TOSA and Finisar ROSA modules. The nonlinearities of the TOSA were 
improved by replacing the Finisar TOSA by the home-made ULM TOSA module (RoF2). The 
drawback of this generation (RoF2) is its higher optical output power and responsivity 
compared to the Finisar TOSA, which excites the nonlinearities of the Finisar ROSA, reducing 
the SNR. Consequently, high optical losses are required. The third (RoF3) generation tried to 
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override this situation but also to propose an higher integration by replacing the Finisar ROSA 
module by a much linear SiGe ROSA module. The first results of the SiGe ROSA show that it is a 
promising candidate, but 3 main improvement goals must be considered: moving toward a 3T-
HPT solution, IC optimization design, better electrical matching network and finally a better 
optical coupling efficiency. The final RoF Transducer (TRoF3) will integrate the ULM TOSA and 
Finisar ROSA modules (RoF2) only due to mechanical failure. 

V.C.2. Integration of the RoF Transducer module: P2P 
communication 

This subsection presents the four electrical circuit boards integrated in the RoF transducer: 
the centimeter-wave circuit board; the LO circuit board; the power supply circuit board and the 
millimeter-wave circuit board. The system evaluation will be done in terms of EVM. The last 
part presents the integration of the four circuit boards into the final RoF transducer. It will be 
used in the final demonstrator where a Point-to-Point communication will be demonstrated. 

V.C.2.1 The centimeter-wave circuit boards 

The centimeter wave board was design previously through the link budget study. It was 
fabricated by IETR Nantes partner. Figure V-42 shows a picture of the final cm circuit PCB 
board. 

 
Figure V-42 – The centimeter-wave circuit board picture, from IETR ORIGIN partner: a) 

TOSA and ROSA integration into the cm circuit board; b) cm circuit PCB board 

Figure V-43 shows the experimental setup that is used for the characterization and the 
optimization tuning of the cm-TX (downlink - Figure V-31) and the cm-RX (uplink - Figure 
V-33) circuit boards. The first goal is to regulate and optimize both the Variable Attenuator and 
the AGC in order to achieve optimal values identified in previous section V.B.1. The second goal 
is to analyze the cm-RX-TX system board in terms of the EVM degradation compared to the 
RoF block.  
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Figure V-43 – Block diagram representing the cm-wave system board experimental test 

setup for both cm blocks individually: a) uplink using the ULM TOSA as the reference; 

b) downlink using the Finisar ROSA as the reference.  

The cm-TX and the cm-RX were characterized and optimized separately:  
cm-TX block – presented in Figure V-43 b). This cm-TX includes a TOSA and cm-board. A 
second Finisar ROSA, previously characterized, is used as a reference detector to probe the 
opto-microwave signal generated by this cm-TX block and to fully characterize it. The procedure 
is to determine the overall gain and deduce the TOSA input power since we know the gain of 
each block. Then the TOSA input power can be regulated by adjusting the AGC.  
cm-RX block – presented in Figure V-43 a). This cm-RX includes a ROSA and cm-board. A 
second ULM TOSA, previously characterized, is used as a reference light source to generate the 
opto-microwave signal into this cm-RX block and to fully characterize it. The cm-TX output 
power (mm-RX input) is regulated by adjusting the Variable Attenuator. 

Considering the proposed free space distance scenarios (1 and 10 m) the input power range 
on the cm-TX block varies from -42 dBm to -22 dBm (see Table V.6). The EVM results are 
presented in Figure V-44 as a function of the input RF power. Figure V-44 a) shows the uplink 
(ULM TOSA reference followed by the cm-RX) results for two different optical losses of 10 and 
15 dB. The input RF power is applied directly to the ULM TOSA reference. Two curves are 
traced for each optical loss showing the comparison between RoF only and the cm board 
connected to the RoF link. An increase of the noise level is expected due to all the electronic 
devices. That assumption appears on the EVM measurement with an increase in low input RF 
power, typically around 3 % more when 10 dB optical losses are used. It is, however, an increase 
of 7-8 % when 15 dB optical losses are used. Figure V-44 b) shows the downlink (cm-TX 
followed by the Finisar ROSA reference) results for both 10 and 15 dB optical losses where the 
input power is applied at the input of the cm-TX board. The input RF power varies from -42 
to -22 dBm (equivalent 1 and 10 meters conditions) as previously. Indeed, we started 
at -50 dBm which represents a distance higher than 10 meters.  
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Figure V-44 – EVM curve as a function of the input RF power comparing the EVM 

degradation when the cm board is integrated (RoF2 & cm-TX/RX) or not (RoF2 only) 

with both 10 and 15 dB optical losses: a) Uplink; b) Downlink 

Here, as expected, the EVM shape is flat for low input power because of the compensation 
performed by the AGC on the RF power feeding the TOSA. For high input power we reach the 
ROSA saturation limit where 15 dB optical losses are required to fix the input power to -20 dBm 
corresponding to 1 meter distance. The back-to-Back measurement basically shows the 
limitation of the Oscilloscope for low input power where the EVM increases in power lower 
than -30 dBm. Since the input power delivered from the test bench setup into the oscilloscope is 
usually higher than -30 dBm to probe the real conditions for the demonstrator (-23 dBm at the 
ROSA output and -26 dBm at the cm-TX board output - Table V.7), the B2B is kept within the 
8 % region. 

 
Figure V-45 – Both cm TX and RX board calibration: a) block diagram representing the 

cm-wave circuit board experimental test setup for both cm blocks at the same time; b) 

EVM as a function of the input RF power for two complete TRoF without the mm circuit 

board. 
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Final measurement considers both downlink and uplink linked together see Figure V-45 a). 
It considers the cm-RX block, TOSA module, optical losses, ROSA module and cm-TX block. 
The Figure V-45 b) shows the EVM results for two different TRoFs. Indeed, the uplink side was 
directly connected to the downlink of each TRoF module. The EVM for both TRoF is around 
16 % across the whole targeted input RF power range (-50 to -20 dBm). These results provide a 
good expectation for the final demonstrator result. Comparison between two TRoF3 samples 
(TRoF3.2 and TRoF3.4) shows that they all have similar characteristics (low variation). 

V.C.2.2 The LO and power supply circuit boards 

The Local Oscillator (LO) circuit board generates the signal used on the mm modules for the 
conversion frequency. The LO frequency is 13.82 GHz with ±0. 5ppm stability, which meets the 
specifications of the WirelessHD (±1. 5ppm). This was designed and assembled by IETR Nantes 

 
Figure V-46 – LO circuit board, from IETR ORIGIN partner. 

Finally, the second channel of the unlicensed mm band, centered at 60.48 GHz, is then 
converted to an IF of: 

 60.48 4 13.82 5.20IF GHz GHz GHz= − × =  Equation Section 5 (5.1) 

 

The power supply circuit board creates the different bias levels required by the TRoF, i.e. cm 
board, LO board, mm board and ROSA/ROSA. These levels are generated from a 48 V input 
voltage provided by the hybrid copper-fiber cables that feed the TRoF module (PoE). The RF 
power control regulation at the input of the TOSA and the output of the ROSA is made on this 
board by controlling the gain of the variable attenuator and the AGC. 
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Figure V-47 – Power Supply circuit board, from IETR ORIGIN partner. 

It also includes the switching interface which enables the management of the optical 
infrastructure by turning ‘on’ and ‘off’ the different cm circuit boards. This control is made by 
sending two monitoring signals to each TRoF through the copper quad of the hybrid cable: one 
quad for the TOSA; the second one for the ROSA. The implementation is characterized by the 
presence (turn on) or absence (turn off) of an RF carrier signal at 10 MHz.  

V.C.2.3 The millimeter-wave circuit board 

Each TRoF contains two millimeter-wave modules, one for the transmission (mm-TX block) 
and another one for the reception (mm-RX block). Their purpose is to capture the 60 GHz 
signals and down-convert it to the IF (mm-RX bock), and up-convert the IF signal to 60 GHz 
(mm-TX block). Figure V-48 shows the complete mm module including the electronics and the 
bias board supply. They were designed and assembled by Telecom Bretagne partner. 

 
Figure V-48 – The millimeter –wave circuit module, from Télécom Bretagne ORIGIN 

partner. 

The RF boards, fabricated on a Rogers RO4003 substrate, are assembled on a metal carrier 
and confined in an individual metal package with an mm power supply board installed. The 
total mm-TX block gain conversion was measured to be 3 dB, which corresponds to a 27 dB 
lower than expected. Improvements must be done for the future generations. 
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The last element is the horn antenna which was fabricated using metal coated foam with a 
permittivity close to the air. After machining, the foam is covered with silver paint to metalize 
the antenna walls (Figure V-49). This concept has performances nearly as good as commercial 
available metal horn antennas (about 0.1dB additional losses), while the cost is only about one 
tenth of the metal ones. 

The antenna gain is 10 dB with aperture angles of 43° in the E-plane and 57° for the H-
plane. This technology is simple and low cost where different gain antennas were manufactured. 
This was done by Telecom Bretagne. 

V.C.2.4 Final TRoF assembling 

The final step is the integration of the mm modules into the RoF transducer, as depicted in 
Figure V-50. And now we are ready to perform a free-space point-to-point communication and 
measure the EVM degradation using a complete path. 

 
Figure V-50 –TRoF photograph. 

The EVM calibration needs the integration of the 60 GHz signal transposition as depicted in 
Figure V-51. The EIRP was regulated by the variable attenuator to be +27.6 dBm (standard) 
close to real 60 GHz commercial devices (27 dBm). The free space communication distance was 
fixed to be the intermediate distance of our scenarios, 5m. After an optimization of the different 
parameters we achieved an EVM of 10.7 % on the B2B measurement with mm signal 
transposition (—24 dBm at the oscilloscope input).  

 
Figure V-49 –The horn antenna, from Télécom Bretagne: a) 3D schematic; b) photo. 
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Figure V-51 – EVM bench setup integrating the 60 GHz transmission signal. 

Figure V-52 shows the P2P architecture block diagram using two complete TRoFs with two 
free space communications. 

 
Figure V-52 – Bidirectional P2P block diagram using two TRoF modules. 

A test system was mounted at ORANGE, Lannion (France) to test a point to point 
communication using two complete TRoFs. The EVM test setup was placed in two different 
rooms with no direct view. The two TRoFs were mounted with 12 dBi antennas. The first free 
space communication was from a distance of 5.2 meters between the EVM bench setup (signal 
generation) and the first TRoF3.2. The signal was then transmitted trough 2 meters of optical 
fiber (adding the15 dB optical losses) to a second room (TRoF3.4) and re-emitted with 3 meters 
of free space to the EVM receiver setup bench.  

The initial cm board gain calibration was re-adjusted to compensate the mm module low 
gain (see V.C.2.3). The measured spectrum showed some parasitics at some frequencies which 
were shifting near the wanted signal. The EVM was measured continuously and the cm gain 
boards were optimized in live. The mm modules were optimized and we measured EVM down 
to 25 %, but still with an average of around 30 %. 

We made a second test measurement by removing the mm-TX module of the second room 
(TRoF3.4) connecting it directly to the oscilloscope getting EVM stable of 17 %. Therefore, we 
can conclude that the mm-TX low gain is the main cause of the deterioration on the EVM 
measurement where the only solution was to increase the input power on the mm-TX module 
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from gain regulation on the cm boards. In this way we can compensate the mm-TX low gain. 
However, the constraint now is the saturation problems that are difficult to control. 

Even so, a real-time transmission between two commercial (Gefen) WirelessHD devices was 
realized, as described in Figure V-53. An uncompressed 1080i video from a Blu-ray player was 
displayed on an HD screen validating the feasibility of the RoF architecture. Indeed, taking a 
simple 16:9 picture in 1080p coded with 24 bits per pixel (i.e. RGB color coded over 8 bits) at 
60 Hz requires a data speed of 

 (16 9 1080) 1080 60 24
2.986

pixels pixels refresh bits pixelHD video data rates H V f D

Gbit s

= × × ×

= × × × ×
=

  (5.2) 

where, 
- pixelsH  is the number of vertical lines (horizontal resolution) 

- pixelsV  is the number of horizontal lines (vertical resolution) 

- refreshf  is the number of frames per second 

- bits pixelD  is the number of bits coding per pixel 

The WirelessHD devices from Gefen transmits an EIRP of 27 dBm and has a receiver 
sensitivity of —65 dBm. The emitted radio signals are centered in the second channel of the 
millimeter-wave band (see Figure II-1).  

 
Figure V-53 – Real-time HD video transmission between two commercial WirelessHD 

devices from Gefen: P2P 

 
The downlink channel, at high data rate for video transmission, is called High Rate Physical 

layer (HRP), whereas the uplink channel, at a low data rate for monitoring, is called Low Rate 
Physical layer (LRP), both represented in Figure V-53.  

The Gefen WirelessHD products are characterized by an HRP with PHY data rate equal to 
2.856 Gbit/s. The LRP with PHY data rate of 40 Mbit/s. The system was running smoothly even 
with measured EVM of 30 %, probably because of the error code correction which is intrinsic to 
the standard. 

V.C.2.5 Synthesis 

The four circuit boards were presented and integrated into the final RoF Transducer to be 
used on the system demonstration implementation. The cm-wave circuit board has shown good 
results in term of the EVM with 6 % of degradation (from the B2B reference) over the whole 
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input RF power range when 15 dB optical losses were used. Both LO and power supply circuit 
boards have shown good results in terms of IF operation signal generation, biasing condition 
platform and signal controlling. The mm-wave circuit board was presented with both 
transmission and reception modules including the mm antennas. The P2P link (optical tunnel) 
was implemented using two TRoFs which were composed by the implementation of the 
previous 4 circuit boards. We measured 14.3 % EVM degradation from the B2B using two free 
space communications with 3 and 5.2 meters. Complementary the transmission of a real HD 
movie transmission (using Gefen commercial modules) was demonstrated successfully at 
~3 Gbit/s. We observed the limitation from the mm-TX modules due to failure in its gain 
(20 dB loss). However, a 16 % EVM was demonstrated for a two-hop scenario until the input of 
the mm-TX, which a successful achievement in terms of performances. The mm-TX modules 
added an extra 14 % to the EVM, achieving an overall 30 % EVM including the two hops. This 
proved to be compensated in the 3 Gbit/s transmission by the CRC implementation in the Gefen 
commercial modules.  
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V.C.3. Final MME demonstrator 

Finally, this subsection implements the full architecture approach and signal controlling to 
achieve the final demonstrator with multi-room communication. 

The MMO architecture uses multiple lasers simultaneously, which results in the high noise 
(RIN and shot noise) and the presence of the optical heterodyning interferences. This problem 
can be avoided with an optical access management by controlling the activation of each laser 
and photodetector on the different rooms. This is also avoided in the MME architecture. Two 
important characteristics come out along this optical access management, however, that can 
benefit both the MME and MMO architectures: minimization of the Electro-Magnetic-Fields 
(EMF) exposures by turning off the TRoF where they are not needed; minimization of the power 
consumption of the system by reducing the number of TRoF operation. A solution to optical 
management access consists of reading the MAC radio layer information which provides the 
communication parameters as the source and destination stations [113] [114]. Here 
Beamforming (BF) is a technique which can be introduced providing an optimized channel 
communication. The radio demodulation is necessary to recover information such as device 
activation information and the BF information. This implementation is not possible due to the 
fact that the IEEE 802.11ad radio chipsets are not available today. However, a solution is 
proposed to overcome it with a Graphic User Interface (GUI) and a ‘Green Box’ that allow a 
manual control of activated room by the user. The GUI gives the users the option to choose two 
rooms in their house for a P2P communication, for instances a broadcast of an HD movie. In the 
case of the Green Box, it generates the controlling signals responsible for the laser and 
photodiode activation. The unused lasers can be turned off removing the optical heterodyning 
detections (MMO case) and the unused photodiodes as well reducing the EMF radiations 
(reason for the ‘Green’ name attribution). The Green Box plays the role of the interface between 
the GUI and the RoF transducers: it receives the user information and creates the electrical 
signal for the TRoF activation. The final demonstrator is sketched in Figure V-54 here below. 

 
Figure V-54 – Real-time HD video transmission between two commercial WirelessHD devices from Gefen: 

MME 

The final demonstrator pretended to recreate a real demonstration using an MME 
architecture between 2 rooms (capable up to 4 rooms). The GUI and the Green Box were part of 
the demonstration. The TRoFs were placed at 2 meters from the Gefen emitter and receptor 
with 12 dBi antennas in each module. The optical losses were reduced to 10 dB to compensate 
the mm-TX board low gain. The demonstration was a success with a transmission of an HD 
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movie even with certain restriction is terms of distance and the position (angle) of the TRoF 
compared to the Gefen. A high radiating coupling through the two antennas between the mm-
TX and mm-RX modules was detected. An improvise isolation was placed between both 
antennas and a quality improvement was found.  

Photo of the demonstrator are given here below, with the TRoF and hybrid cable installed in 
the walls. 

 

 
Figure V-55 – ORIGIN Final demonstrator 

A video of the demonstrator can be found in [175]. 
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V.D. Summary and Conclusion 

In this chapter we have shown the development of the optoelectronic modules (ROSA and 
TOSA) from the single chip (VCSEL and HPT) to the packaged modules, and their integrated 
into the RoF transducer used in the ORIGIN system. Those modules are the final RoF 
generation and were successfully designed and fabricated through the development in both 
electrical and optical interconnections. The optical coupling using a ball lens technique shows a 
coupling efficiency of 60 and 40 % for the home-made TOSA and ROSA, respectively. The TOSA 
was fabricated using an 8 µm aperture diameter 10 Gbps ULM VCSEL at 850 nm. The ROSA 
was fabricated using a 10x10 µm2 SiGe 2T-HPT with two 10 dB LNA associated. ULM TOSA and 
SiGe ROSA performances were measured showing 3 and 16 % EVM degradation compared to 
the B2B, respectively. Although, the promising results of the SiGe ROSA require further 
optimization. Perspectives are to use a 3T-HPT, to improve the -9 dB coupling efficiency and to 
improve the frequency flatness through an improved integration and matching with LNA ICs. 
This section also prepares the interconnection substrate for a further matching of the VCSEL, as 
will be discussed in Chapter VI. 

The second section presented the link system power design for the final TRoF3 which 
considered the gain, noise and nonlinearities of each device of the system including: RoF, cm 
circuit boards, mm circuits boards and the antennas. The system architectures were taken into 
account with the optical tunnel (P2P) and the multipoint-to-multipoint (MME and MMO) 
architectures with special attention to the compatibility for both the Finisar ROSA (RoF2) and 
SiGe ROSA (RoF3). The critical points were identified and solutions proposed. The MMO 
architecture reveals to be an eventual future option with further development to be solved: 
multiple lasers working simultaneously create optical heterodyning interferences i.e. optical 
beating between the different laser optical wavelengths; furthermore as all lasers are 
simultaneously on, they might increase their RIN impact on the system and the shot noise 
induced by the sum of all DC optical powers on the photodetectors; Last, since we are using 
lasers with multimode operation, the optical splitter must be well balanced also. To overcome 
those problems the lasers operation could be controlled by the access to the media. The cm-
board integrates two 14 dB LNA. The MME, MMO and P2P architectures are designed to 
provide a 37 dB gain. MME and MMO architectures prove to have similar noise figure down to 
18 dB with only one LNA with the Finisar ROSA and up to 45 dB with the 2T-HPT ROSA. 

The last section presented the integration of the TOSA and ROSA modules into the RoF 
Transducer (TRoF) for the final demonstrator. Performances were evaluated from each part of 
the system with special attention to the RoF module and cm circuit board power final 
experimental adjustments. Performances optimization was regulated in terms of the input RF 
power, bias condition and optical losses. The RoF1 revealed strong nonlinearities on both 
Finisar TOSA and ROSA modules. The evolution toward RoF2 implemented the home-made 
ULM TOSA module which solved the Finisar TOSA limitation on its linearities. Although, in 
order to improve the linearity of the remaining Finisar ROSA, 5-15 dB optical losses are 
required. The final RoF evolution (RoF3) implemented the home-made SiGe ROSA module and 
so improves the receiver nonlinearities. The first results were promising, but four main 
improvements must be considered: IC design, electrical matching network, 3T-HPT operation 
and finally the optical coupling efficiency. Therefore the TRoF3 was implemented using the 
RoF2. 

Integration of the four circuit boards into the final RoF Transducer was presented. The cm-
wave circuit board has shown good results in term of the EVM with a maximum of 7 % 
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degradation over the whole input RF power range. 15 dB optical losses were used to accomplish 
the power requirement and avoid eventual Finisar ROSA saturation. Both LO and power supply 
circuit boards were presented and integrated. The final module was the mm-wave circuit board 
for both transmission and reception path including the mm antennas. The complete TRoF3 was 
tested within the P2P link (optical tunnel) architecture, integrating the previous boards. We 
measured 14.3 % EVM degradation using two free space communications with 3 and 5.2 meters. 
The mm-TX module was found to be the weakness of the system for its low gain as a loss of 
20 dB was found with respect to the gain expectation. However, a 16 % EVM was demonstrated 
for a two-hop scenario until the input of the mm-TX, which a successful achievement in terms 
of performances. The mm-TX modules added an extra 14 % to the EVM, achieving an overall 
30 % EVM including the two hops. This proved to be compensated in the 3 Gbit/s transmission 
by the CRC implementation in the Gefen commercial modules.  

The final step was the implementation of the MME architecture and signal controlling to 
achieve the final demonstrator with multi-room communication. The demonstration between 
the two rooms was successful using the home-made GUI and the Breen Box. A successful 
transmission of a real 2.8 Gbps HD movie using Gefen commercial modules was realized.  
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From all the work presented in the last chapters, two main topics are identified to be 
limiting the link performances and to need further development for future RoF transducers: the 
system operating frequency limited by the optoelectronic device bandwidth and the optical 
packaging coupling efficiency. This chapter pretends to explore these two directions.  

The first section intends to focus on the operating frequency considered until now of around 
5 GHz, which revealed to be adjusted for 10 Gbps optoelectronic devices. Analogue VCSELs 
performance towards 20 GHz are considered through the modification of the layout in terms of 
optical aperture diameter and RF access lines together with the improved vertical stack of layers 
provided by Philips-ULM Photonics. From this study, we should be able to choose one device to 
be the candidate for the next of TOSA generation. 

The second section covers the problematic of the optical coupling with a simulation of the 
ball lens technique and a proposition of a new optical coupling technique to improve the 
efficiency results in a collective and passive process. Both techniques are compared. 
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VI.A. Toward 20 GHz analogue VCSELs and beyond  

The layout design of VCSEL devices is very important since it influences all the 
performances, including the frequency modulation and the transverse mode shape. We have 
performed two main improvements on the device layout: in the electrical interconnections with 
the goal to maintain the impedance up to the pads and to improve the thermal dissipation; in 
the lateral dimension through a variation of the optical aperture diameter with the goal to 
investigate the performance and the coupling efficiency as a function of the optical window size. 
The VCSELs were fabricated by Philips / ULM Photonics (see Chapter II, section II.B.1.6) where 
the technology is based on GaAs active material with epitaxial optimization in order to reach 
20 Gbps applications. 

We start to present the static characteristics of the device as a function of the optical 
aperture diameter by the LI curves where the different DC parameters are extracted. The 
following subsection presents the laser input impedance study with RF access transmission 
lines de-embedding using three one-port de-embedding methods. The next subsection presents 
the extracted laser opto-microwave gain and the frequency response behavior as a function of 
the device size. Both DC and RF responses lead to a trade-off between the different simulated 
performance that allow us to select a specific size of VCSEL that is completely characterized and 
that is developed further to be integrated into a TOSA including a matching network.  

 
Figure VI-1 – 20 Gbps VCSEL layout structure (8 µm diameter size) 

The representation of the 20 Gbps VCSELs is presented in Figure VI-1 including a photo on 
the right side. The layout modifications compared to the 10 Gbps ULM VCSEL are the RF access 
coplanar transmission lines and the diameter size of the optical aperture with a range of 2-
20 µm. The metalized surface of the ground plane is also increased to improve the thermal 
radiative and conductive dissipation. 

VI.A.1. Static performances as a function of the VCSEL size 

The LI curves using the DC2PM (directly to the power meter) measurement configuration 
as a function of the aperture diameter is shown in Figure VI-2: smallest devices are gathered on 
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the left (2, 3, 4 and 5 µm diameters) and largest ones on the right (6, 8, 10, 12 and 20 µm 
diameters). The DC2PM technique, as described in previous chapters, allows to collect the total 
power emitted from the VCSEL. The bias current is intentionally limited on the smallest 
structures to avoid saturation (thermal roll-over) and consequently device damage. VCSEL 
devices with aperture diameter of 6, 8, 10 and 12 µm were biased up to 10 mA but did not 
achieve the maximum output power for VCSEL size above 8 µm.  

 
Figure VI-2 – Static characteristics presented as an LI curve (DC2PM) for different VCSEL 

optical aperture sizes: a) 2, 3, 4, 5 µm; b) 6, 8, 10, 12 and 20 µm. 

The static parameters are then extracted and presented in Table VI.1 and compared to the 
8 µm standard 10 Gbps die VCSEL (Chapter III). These parameters are the threshold current 
(Ith), threshold current density (Jth), threshold voltage (Vth), maximum optical output power 
(Pmax), slope efficiency (SLD), differential quantum efficiency (ηd) and differential resistance 
(Rd). The SLD, ηd and Rd where computed at 50 % of the maximum optical output power.  

Table VI.1 – Static VCSEL extracted parameters as a function of the diameter optical 

aperture diameter in a DC2PM measurement configuration 

Size Ith  Jth  Vth  Pmax  /(Bias) SLD* ηd*  Rd*  
Unity   µm  µA KA/cm2 V mW/(mA) W/A  % Ω 

2 123 3.915 1.8 0.21/(2.78) 0.1 7 400 

3 165 2.334 1.68 1/(4.78) 0.3 23 137 

4 170 1.353 1.66 1.85/(6.2) 0.5 34 94 

5 328 1.67 1.64 3/(8) 0.58 40 93 

6 410 1.45 1.64 3.28/(9.4) 0.61 41.8 73 

8* (standard) 610 1.214 1.55 >3.83/(10) 0.63 43.3 70 

8 613 1.220 1.68 >5.35/(10) 0.63 43.3 73 

10 817 1.040 1.65 >6.11/(10) 0.75 51 62 

12 1225 1.083 1.66 >6.5/(10) 0.8 55 57 

20 2858 0.910 1.66 >11.1/(20) 0.76 51.6 30 

*at 50 % of maximum power 

 
As expected the threshold current and the output power decrease as the VCSEL size 

decreases down to 123 µA and 0.21 mW for the smallest size, respectively. As the surface 
enlarges, more current is required to fulfill the lasing condition, up to Ith=2.858 mA at 20 µm of 
aperture diameter. This will have an important impact on the dynamic characteristics. The Jth 
is, however (Figure VI-3), stable around 1 kA/cm2 except for the smallest size where it increases 
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up to 4 kA/cm2 which can be explained by the high differential resistance and current leakage. 
The low differential resistance is shown to be inversely proportional to the area of the Ohmic 
contact. 

 
Figure VI-3 – Threshold current and threshold current density as a function of the VCSEL 

aperture size. 

As the VCSEL size is reduced, the optical output power is lowered, resulting in a low slope 
efficiency, as depicted in Figure VI-4. This can be explained by the high cavity losses and/or the 
light divergence effect inducing a lower optical coupling to the power meter. At 2 µm aperture 
diameter the slope efficiency is 0.1 W/A at 50 % of the maximum output power. On the other 
side the slope efficiency is improved up to 0.8 W/A for 12 µm VCSEL, giving a differential 
quantum efficiency of 55 %. 

 
Figure VI-4 – Slope Efficiency as a function of the VCSEL optical aperture size. 

At 20 µm aperture diameter VCSEL, the slope efficiency falls slightly which could be 
attributed to the current crowding. The 8 µm VCSEL is similar in performance to the standard 
8 µm 10 Gbps VCSEL. However, the saturation is reduced in the modified version, which may 
be provided by the better thermal dissipation. 

VI.A.2. De-embedding of RF access lines 

On the same wafer of the fabricated modified VCSELs, open, short and thru lines were 
added using the same dimension sizes (Figure VI-5). These structures were designed and 
implemented in order to extract and understand the RF access transmission line influence on 
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the VCSEL input impedance. The VCSEL targeted for de-embedding study is the 8 µm optical 
aperture diameter. 

 
Figure VI-5 – Dummy test structures on probe test station (GSG - 100 µm pitch): Photos of 

thru, open and short lines  

Three one-port de-embedding methods are based on the measurement of ‘open’ and ‘short’ 
lines reflections coefficient. Two methods [173] rely on the parasitic structure representation. 
The “open-short” (OS) configuration in Figure VI-6 a) as 

 
11 1 1

, ( ) ( )LD OS M open short openy y y z y
−− − − = − − −   Equation Section 6 (6.1) 

and the “short-open” (SO) configuration in Figure VI-6 b) given by 
 1 1 1 1

, ( ) ( )LD SO M short open shorty y z y z− − − −= − − − .  (6.2) 

The last method, Figure VI-6 c), is based on the generic S-parameters representation and 
the assumption of the symmetry on the RF access line (SL), S11=S22 [174]. The reflection 
coefficient of the laser diode is given by 

 2
M

LD
M

A
A A B

− Γ
Γ =

− ⋅Γ −
  (6.3) 

Where  

 , ,

, ,2
M OPEN M SHORT

M OPEN M SHORT

A
Γ + Γ

=
+ Γ − Γ

  (6.4) 

 ,( ) (1 )M OPENB A A= Γ − ⋅ −   (6.5) 

 
Figure VI-6 – One-Port De-embedding methods equivalent circuit: a) – Open-Short (OS); 

b) - Short-Open (SO); c) – Symmetrical Line (SL) 

The final extracting results on the laser input reflection coefficient using the 3 de-
embedding methods are presented in Figure VI-7. The symmetrical line method presents results 
with less dispersion at high frequency compared to the OS and SO methods. S11 of the 8 µm 
aperture diameter modified VCSEL presents very good results with reflection losses lower than 
—15 dB over the frequency range (impedance presented on the pad), presenting an 
improvement on the input impedance compared to the de-embedded result (input impedance at 
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the optical window). Comparing this measurement result with the 8 µm aperture diameter ULM 
standard we see an improvement of 10 dB at 10 GHz. 

 
Figure VI-7 – 8 µm aperture diameter 20 Gbps VCSEL (8 mA) input reflection coefficient 

comparison between the three extraction methods: a) S11 magnitude compared to the 

measured 8 µm aperture diameter ULM 10 Gbps VCSEL (8 mA); b) Smith chart. 

VI.A.3. Dynamic response as a function of the VCSEL size 

The OM gain frequency responses are presented in Figure VI-8 for different aperture size 
diameters: smallest ones on the left; largest ones on the right. At 24 GHz we note the influence 
of the reference photodiode (see NFPD frequency response in Figure III-5) that can be seen as a 
bench setup limitation on the very high-speed frequency lasers. The extracted opto-microwave 
gain includes the losses due to the coupling coefficient of the VCSEL to the multimode lensed 
fiber. Thus, it differs even at low frequency from the DC slope efficiency, extracted from a 
measurement with the large detector of the power meter. 

 
Figure VI-8 – VCSEL OM gain frequency response extraction (DC2OP) for different VCSEL 

aperture diameters and correspondent bias current in the linear region of the LI curve: a) 

2, 3, 4, 5 µm; b) 6, 8, 10, 12 and 20 µm. 
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The dynamic characteristics are given in Table VI.2 for the different VCSEL diameter sizes 
in terms of the OM laser gain before resonance, extracted from the link measurement, and the 
cut-off frequency using the reference NFPD.  

Table VI.2 – Dynamic VCSEL Parameters extracted using the reference NFPD (DC2OP) 

Size OM Gain* Ibias Jbias f3dB  
 µm dB mA kA/cm2 (GHz) 

2 -36 2 15.9 >25 

3 -21.8 2 7.07 >24.3 

4 -18.1 3 5.97 23.7 

5 -13.26 4 5.09 21.6 

6 -12.08 5 4.42 21.29 

8* (Standard) -10.17 8 3.98 12.31 

8 -10.8 8 3.98 20.2 

10 -7.8 10 3.18 19.5 

12 -7.3 10 2.21 17.2 

20 -13.43 20 1.59 14.4 

*including the optical probe optical coupling losses (alignment and insertion losses – 
1 dB measured for the 8 µm diameter size) 

The cut-off frequency, as expected, increases with the VCSEL size decrease (the active 
volume reduced). It reaches up to more than 25 GHz with a size of 2 µm aperture. However, the 
measurement may also be limited by the photodector, as its response is flat up to 25 GHz only. 
At such an aperture size, the VCSEL has very low opto-microwave gain, i.e. low slope efficiency. 
The OM gain increases with size, corresponding to the increase of the laser slope efficiency 
making this device less attractive. However, with a 20 µm aperture diameter VCSEL, the 
coupling efficiency is reduced because of the large difference between the emitted light spot and 
the fiber lens diameter. When we compare the 10 µm with 20 µm aperture size in terms of slope 
efficiency, they are equally which means that they should have the same OM gain. However 
5.6 dB OM gain difference can be attributed to the increase coupling losses of the 20 µm size 
compared to the 10 µm aperture diameter. Therefore, adding the -1 dB OM gain of the optical 
losses founded on the 8 µm aperture diameter VCSEL (assumption that is the same for the 
10 µm size VCSEL) we can estimate the total optical coupling losses of 6.6 dB corresponding to 
47 % optical coupling efficiency for the largest VCSEL device. The cut-off frequency is reduced 
to 14 GHz for the larger aperture size. So a compromise between the size and the dynamic 
performances must be done depending on the targeted application (Figure VI-9).  
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Figure VI-9 – Cut-off frequency (◦) and OM laser gain (+) as a function of the optical 

aperture size. 

The smallest devices are very fast, but with low gain and induce tremendous challenges on 
the optical packaging and on the optical alignment precision. The largest devices facilitate the 
light coupling, providing higher gain, but increasing the consumption and decreasing the cut-off 
frequency. The VCSEL device bias condition is important also. It was demonstrated that 
operating at current densities below 10 kA/cm2 ensures a viable device reliability and long-term 
stability based on industry certification specifications [176] [177]. In our case, only the smallest 
device (2 µm) does not fulfill this guideline.  

VI.A.4. Synthesis 

Static and RF characterizations were done as a function of the VCSEL optical aperture 
diameter in order to understand the VCSEL performances in terms of the layout size. A trade-off 
must be done between of speed, size and OM gain. The RF access transmission lines designed 
proved to be efficient, maintain the impedance up to the pad improving the reflection losses 
lower than -15 dB up to 20 GHz. For the future 20 GHz RoF applications and beyond, the 
VCSEL size diameter must be lower than 8 µm. The two smallest devices (2 and 3 µm) present a 
low slope efficiency (lower than 0.5 W/A) and high coupling losses revealing a very low OM 
gain. Therefore, only 3 device candidates: 4, 5 and 6 µm aperture diameters are eligible. Here 
the choice is between the fastest device and the one which has the highest coupling efficiency. 
The 4 µm aperture diameter is preferred for two main reasons: first its high-speed performance, 
with almost 24 GHz cut-off frequency; and its higher input reflection that could be optimized 
adding a passive reactive matching network. Therefore, the choice criteria were the fastest and 
with best potential performances after integration and optical coupling.  

VI.A.5. Focused study on the 4 µm aperture diameter VCSEL  

The VCSEL device with a diameter of 4 µm was chosen to be the next candidate for the 
future ORIGIN TOSA generation. The measurements include the static and RF characteristics 
and provide the noise behavior and nonlinearities (after extraction of the photodiode parameter 
extracted). Finally, we simulate the influence of a passive matching network at the device input 
feeding. 

VI.A.5.1 Static Performances 

Figure VI-10 a) shows the LIV curve and the slope efficiency as a function of the bias current 
of a VCSEL with 4 µm optical aperture diameter. The saturation is now around 4 mA with the 
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power up to 1.85 mW as seen in Figure VI-2. Comparing with standard 8 µm aperture diameter 
VCSEL, the power is half reduced as its aperture size. The slope efficiency as a function of the 
bias current has a maximum value of 0.55 W/A at bias current slightly above threshold. 
Increasing the bias current, SLD reduces progressively because of the thermal and divergence 
effects (Figure VI-10 b)).  

 
Figure VI-10 – Static characteristics of the 4 µm aperture diameter VCSEL using DC2OP 

measurement configuration: a) LIV Curves; b) Slope efficiency (SLD) as a function of the 

bias current. 

VI.A.5.2 Dynamic Small-Signal response 

The laser OM gain (-18.1 dB) is 8 dB lower than the standard 8 µm aperture diameter ULM 
VCSEL (-10.1 dB), as depicted in Figure VI-11 a). These results can be explained by higher losses 
on the optical coupling, lower slope efficiency and higher input mismatch. A bias current 
increase reduces the OM Gain slope efficiency mainly by thermal effects. We detect a strong 
relaxation oscillation frequency effect on the frequency response at 1 mA and for higher bias 
current, the response is flat. A frequency bandwidth up to 24 GHz is achieved. The input 
reflection coefficient shown in Figure VI-11 b) is not near the Smith chart center, corresponding 
to the matching impedance. 

 
Figure VI-11 – Frequency response of the 4 µm aperture diameter VCSEL using NFPD 

as a reference photodiode: a) laser OM gain as a function of the frequency; b) Input 

reflection coefficient - S11 (for different bias currents: 1, 2, 3, 4, 5 and 6 mA) 
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VI.A.5.3 Noise Behavior 

The RIN measurement for different bias currents is shown in Figure VI-12. For currents 
higher than 4 mA the RIN is lower than -140 dB/Hz at a frequency above 6 GHz, which can be 
interesting for analogue applications. At low frequency, oscillations on the noise curve increase 
from 1 mA to 2 mA and then reduce as we increase the bias current. This can be explained by 
the laser multimodes behavior as a function of the bias current. In any case we can predict that 
the best performances are achieved at a frequency above 6 GHz for 4 µm aperture, and 4 GHz 
for 8 µm aperture diameter standard 10 Gbps VCSEL. 

 
Figure VI-12 – 4 µm VCSEL RIN response as a function of the frequency for different 

bias currents: 1, 2, 3, 4 and 6 mA 

VI.A.5.4 Dynamic Large-Signal Response - Nonlinearities 

The Figure VI-13 a) gives the OM input compression gain power point measurement of the 
laser. The measurement was performed up to 20 GHz with a variable bias current from 1 mA to 
3 mA. We can observe that the VCSEL can handle high power up to 11 dBm for bias currents 
higher than 3 mA and frequency higher than 7 GHz. Currents lower than 2 mA should be 
avoided on all frequency range as the relaxation oscillation frequency limits the device linearity. 
Operation frequency lower than 4 GHz should be avoided for bias current lower than 3 mA since 
the compression point is affected, probably related by the same reasons. 
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Figure VI-13 – VCSEL nonlinearities: a) Input gain compression as a function of the 

frequency for different bias currents; b) Input IP3 as a function of the frequency for 

different bias currents 

The Figure VI-13 b) shows the input OM IP3 of the laser in the frequency range [4-18 GHz]. 
The bandwidth is defined by the specifications of the RF combiner of the test setup and the RF 
generator limits. A maximum OM IIP3 value up to 14 dBm was reached at 4 GHz with 4 mA. 
The IP3 results follow the P1dB shape: A bias current increase improves the input power point 
and the linearity, too.  

 

Figure VI-14 – VCSEL OM SFDR as a function of the frequency for different bias 

currents 

The OM SFDR was computed and is presented in Figure VI-14 as a function of the bias 
current (2-4 mA) and the frequency (4-18 GHz). An increase of the bias current improves SFDR 
up to 94 dB.Hz2/3. Compared to the standard 8 µm aperture diameter ULM 10 Gbps VCSEL 
(Figure III-18 and Figure III-20) the obtained IIP3, IP1dB and SFDR are 3 to 4 dB lower, but for 
frequencies higher and bias current much lower, which corresponds to lower consumption.  

VI.A.5.5 Electrical interconnection matching 

The difference between the VCSEL OM gain under 50 Ω and its available OM gain is given 
in Figure VI-15 as a function of the frequency. The 4 µm aperture diameter VCSEL is compared 
with other sizes: 2, 6, 8 µm. The 8 µm VCSEL is compared to the standard 10 Gbps. As we 
decrease the size we increase the improvement from available gain of the VCSEL input. This 
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curve shows that for a 2 µm VCSEL, one can improve the OM gain of the VCSEL by 4 dB up to 
10 GHz with a matching network.   

 

 

Figure VI-15 – Available improvement to the OM gain of the modified VCSELs as a 

function of the frequency for different aperture diameter (bias conditions given in 

Table VI.2). The standard 10Gbps VCSELs is also measured.  

Comparing both devices of 8 µm we see clearly an improvement on the 20 Gbps modified 
VCSEL in terms of the input impedance at high frequency, which thus do not require any 
matching network to be improved. This is given mainly by the optimized stack layer by ULM 
Photonics and the access transmission line modification, as discussed previously. The 4 µm size 
VCSEL shows around 2 dB of available gain improvement, over the whole frequency range. We 
will try to achieve this gain improvement by using the pi interconnection structure, presented in 
Chapter V, section V.A.2. The matching network is designed with SMT components that are 
limited by their Self-Oscillation Frequency. Devices with an SFR of 15 GHz are selected. 
Therefore the center frequency is fixed to 10 GHz, corresponding to twice the previous 
operation frequency. A pi-network structure used in the simulation is: SMT1- 0.3 nH; SMT2 – 
0.7 pF; SMT3 – 0.6 pH. 
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Figure VI-16 – Frequency response using the 4 µm aperture diameter VCSEL and the 

reference photodiode: a) Link gain Δ – raw measurement without matching network, ◦ 

- simulation with matching network., x – Maximum Available Gain (considering only 

the VCSEL port); b) Reflection coefficient with and without matching. 

The results are presented in Figure VI-16 showing the matching network simulation 
compared to the raw 50 Ω measurement (without matching). Figure VI-16 a) compares the link 
gain, using the reference photodiode, for both configurations (with and without matching 
network) and presents the maximum available gain from the link with matching the VCSEL. 
The available gain shows a potential improvement by 2 dB compared to the raw VCSEL gain. 
However, the simulated matched structure fails to achieve this improvement. This is explained 
by the RF platform transmission lines and the SMT components losses. The wideband matching 
is difficult even using a π-network structure. Another difficulty is the inductor and the capacitor 
configuration which cannot be changed because of the biasing input. Although, the available 
gain proves that we can improve the VCSEL gain by 2 dB, another method must be used to 
achieve such a matching. For instance by using integrated matching circuits.  

VI.A.5.6 Synthesis 

Complete characterization was performed from the static to the nonlinearity performances 
on the 4 µm aperture diameter VCSEL. It presents a slope efficiency up to 0.3 W/A at 3 mA, that 
allows good dynamic performances such as OM gain with equal to -18.1 dB and a 3dB cut-off 
frequency of 24 GHz. Comparing to the state-of-the-art on 850 nm GaAs-based VCSELs we 
found modulation bandwidth equal to the fastest VCSEL [98] found in the literature with 
InGaAs-based quantum wells and aperture size of 8µm (bit rates up to 57 Gbit/s in B2B 
configuration with no effort for temperature control as well but with Anti-Reflection coated lens 
package to improve the coupling into the fiber). We though believe on the great potential of our 
4 µm aperture diameter 850 nm VCSEL GaAs-based. Indeed, our results, clearly, could be 
improved applying better thermal dissipation and increasing the coupling efficiency. RIN 
measurement shows laser potential above 6 GHz with a noise lower than -140 dB/Hz for a bias 
current higher than 3 mA. In terms of laser nonlinearities, the opto-microwave input P1dB was 
measured up to 10 dBm and the opto-microwave input IP3 up to 14 dBm. From these results we 
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found an opto-microwave SFDR up to 94 dB.Hz2/3. Regarding the input reflection coefficient, 
we proved that we can improve the VCSEL gain by 2 dB, but another method must be used to 
match this device, for instance by using integrated circuits.  

The 4 µm aperture diameter VCSEL was proved to be an interesting candidate with a lot of 
potential of the 20 GHz analogue applications and 3 main directions for improvement can be 
pursued: better thermal dissipation management; increased coupling efficiency; electrical 
matching improvement. 
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VI.B. Optical coupling techniques for optoelectronic 
devices 

The optical interface structure has two main challenges: to maximize the coupling efficiency 
and to improve the misalignment tolerance. Of course the cost and the time of production are 
important too. Typically, optical packaging techniques use an active alignment procedure where 
the optoelectronic device is turned on. It can be very precise (~1 µm) but with some constraints 
in terms of packaging time and the necessity to realize a test setup with contact connections to 
bias the device. Another method is the passive alignment technique (pick-and-place) where 
there is no need to turn on the optoelectronic device, but in this case all the physical dimensions 
and position must be known. The alignment precision is lower than the active method 
(~10 µm). The advantages are the realization time and eventually the collective production 
possible onto an entire wafer, but yet for large VCSEL, multimode and coupling efficiencies 
below 70 %. 

An important parameter of the optical interface is the coupling efficiency, which requires 
simulation and optimization. The simulation of light propagation in arbitrary waveguide 
structures is the first step to understand the light transmission effect on those structures. The 
simulation not only gives a start point in evaluating the performances before the fabrication, but 
it also allows parameter optimization. Unfortunately, the simulation is performed in a quasi-
ideal environment, so it is very difficult to take into account all parameters and effects. Another 
drawback is the simulation time, which imposes certain approximations. Therefore the effective 
implementation and characterization of the structure are included, when possible, to validate 
the simulation results. 

We are interested to study and simulate two optical coupling techniques: the ball lens 
optical coupling technique (home-made TOSA and ROSA) and an innovative technique that we 
proposed based on the vertical optical waveguide. Both techniques can either couple the VCSEL 
or the photodetector to a MM fiber.  

 
The first subsection presents the simulation method which is based on the Beam 

Propagation Method where the simulation criteria and limitation conditions are exposed. The 
second subsection will work out the ball lens technique developed by the ORIGIN partner 
INNOPTICS. It is simulated to couple a photodetector using different sizes, and is compared to 
data extracted from measurements.  

 
The last subsection presents the proposed innovative technique that is patented [15]. It 

targets to couple a compact photodetector to a MM fiber or a MM fiber to a VCSEL using a 
passive and collective coupling method. Its capability to couple them to a SM fiber will not be 
discussed here. 

VI.B.1. Beam Propagation Method 

The performed simulations are based on the Beam Propagation Method (BPM) which 
approximates the exact wave equation for a monochromatic propagation to compute how light 
propagates on a certain medium. We used BeamPROPTM which is a simulation engine from 
RSoft Photonics Suite and which is based on advanced Finite-Difference BPM approach. This 
technique uses finite difference methods (FDM) to solve the well-known parabolic or paraxial 
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approximation of the Helmholtz equations. BPM has been one of the most popular approaches 
used in the modeling and simulation of electromagnetic wave propagation in guided-wave 
optoelectronics and fiber-optic devices [178]-[182]. 

VI.B.1.1 Basic principals 

A simulation of the light wave propagation in an arbitrary medium can be done rigorously 
by solving Maxwell’s equations. However, solving these equations analytically is particularly 
difficult. Finding the exact analytical solutions for wave propagation in waveguide structures 
can be done only for a limited number of simple structures such as step-index slab waveguides 
and fibers. For more sophisticated structures, which cannot be solved analytically, numerical 
treatments may be feasible where a simplification of Maxwell’s equation is needed to have an 
efficient and fast solution. One simplification is to use the well-known simplified version of 
Maxwell’s equations with certain assumptions - the Helmholtz equations.  

With assumptions that we are using a homogeneous medium, lossless dielectric medium, 
linear medium, isotropic medium and j te ω  time dependence, the Maxwell’s equations are 

given, in terms of the electric field E and magnetic field H, by: 

 0
HE j
t

ωµ ∂
∇× = −

∂

r
 (6.6) 

 2
0

EH j n
t

ωε ∂
∇× =

∂

rr
  (6.7) 

and 

 ( )2 0n E∇ ⋅ =   (6.8) 

 0H∇⋅ =   (6.9) 

with 0ε  and 0µ  being the permittivity and permeability of the vacuum, respectively. The n=n(x, 

y, z) is the refractive index of the medium.  
By taking the curl of Eq. (6.6) and using Eq. (6.7), we obtain the vectorial wave equation for 

the electric field, or the magnetic field, as follows: 

 2 2 0E n k E ∇× ∇ × − = 
r r r r

  (6.10) 

where 0 0k ω ε µ=  is the wave number in free-space. By using the identity given by 

 ( ) 2f f f ∇× ∇ × = ∇ ∇ ⋅ − ∇ ⋅ 
r r rr r r r r

  (6.11) 

The Eq. (6.10) can be written by 

 ( )2 2 2E n k E E∇ ⋅ + = ∇ ∇ ⋅
r r r r r r

  (6.12) 

If we consider the transverse component (t) of the electrical field we can write 

 2 2 2 z
t t t t t t

EE n k E E
z

 ∂
∇ ⋅ + = ∇ ∇ ⋅ + ∂ 

rr r r r r r
  (6.13) 

 
 
Furthermore, using Eq. (6.8) 
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If the refractive index varies slowly along z , then the ( )2
zn z E∂ ∂

r
 may be neglected.  

Thus from Eq. (6.14) we obtain the equation for uniform (or z-invariant) structures as 
follows: 

 ( )2
2

1z
t t

E n E
z n

∂
≈ − ∇ ⋅

∂

r r r
  (6.15) 

And finally by substituting Eq. (6.15) into Eq. (6.13), we obtain the vectorial Helmholtz 
equation based on the transverse electrical field: 

 ( )2 2 2 2
2

1
t t t t t t t tE n k E E n E

n
 ∇ ⋅ + = ∇ ∇ ⋅ − ∇ ⋅ 
 

r r r r r r r r
  (6.16) 

If we assume the restrictions of a scalar field (i.e. neglecting polarization effects) and 
paraxiality (i.e. propagation restricted to a narrow range of angles), the wave Eq. (6.16) for 
monochromatic waves can be written by the scalar Helmholtz equation [178]: 

 
2 2 2

2 2
2 2 2 ( , , ) 0k n x y z

x y z
φ φ φ φ∂ ∂ ∂

+ + + =
∂ ∂ ∂

  (6.17) 

Where the scalar electric field is written as ( , , , ) ( , , ) j tE x y z t x y z e ωφ= .The geometry of 

the problem is given by the refractive index distribution given by n(x, y, z). 
 
After some mathematical rearrangements we can find the basic BPM equation representing 

a parabolic partial differential equation that is integrated forward in z using the finite-
difference approach (FD-BPM) [178]. 

VI.B.1.2 Method Limitations 

The assumptions made on the previous BPM approach lead to 3 main limitations which 
were developed on the BeamPROP simulator given by:  

 Removing paraxiality: the paraxiality restriction on the BPM was relaxed on 
BeamPROP through the use of extensions that have been referred to as wide-angle 
BPM [178] [186]-[189].The essential idea behind this approach is to reduce the 

paraxial limitations by incorporating the effect of the 2 2u z∂ ∂  term that was 

neglected in the derivation of the basic BPM. 
 Including polarization: the BeamPROP includes Polarization effects by recognizing 

that the electric field E is a vector, and starting the derivation from the vector wave 
equation rather than the scalar Helmholtz equation [178] [190] [191]. 

 Handling Reflections: the BPM approach described previously can not account for 
backward reflections since the one-way wave equation on which it is based does not 
admit both positive and negative traveling waves. BeamPROP has a bidirectional 
BPM algorithm as described in [178] [192] which considers coupled forward and 
backward traveling waves, and can account for reflection phenomenon, including 
resonant effects as found in grating structures. 
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VI.B.1.3 Optical coupling simulation conditions 

Our goal is to simulate a simple coupling efficiency between a MMF fiber and various 
coupling structures. The shape and the dimensions of the coupling structure are to be optimized 
to maximize the power transmitted from the fiber to the optoelectronic device (HPT 
photodetector) or on the other way round from the VCSEL to the fiber. 

BeamPROP Simulation conditions are: 
Since the BeamPROP solves for the electromagnetic fields within a given structure within a 
computational domain on a spatial grid, it is important to define this grid properly to ensure 
correct results. It is critical to perform a convergence study on the X, Y and Z grid sizes to 
optimize the tradeoff between speed and accuracy. To perform this convergence study, we used 
the scanning capabilities of MOST, RSoft’s scanning and optimization tool. The scan results 
show, as expected, that as the grid size decrease the results converge to a particular solution. 
The grid size for X, Y and z was chosen to be 0.125 µm providing a good compromise between 
convergence and simulation time.  
Another parameter defined was the boundary conditions which defines how the field behaves at 
the boundaries of the selected domain. By default, we used the option Full Transparent 
Boundary Conditions (TBC). This type of boundary is designed to let radiation pass through the 
boundary without reflection back into the simulation domain.  
BeamPROP includes many options that control how polarization is handled, including scalar 
calculations, TE, TM, quasi-TE, quasi-TM, semi-vector, and full-vector options. To get the most 
accurate results we decided to use the full vectorial method which recognizes that the electric 
field E is a vector, and starting the derivation from the vector wave equation rather than the 
scalar Helmholtz equation. On the polarization field side, we used TE which determines the 
polarization of the major component used in the beam propagation calculation (Ex). 
The definition of the launch field is another important parameter which defines the initial 
condition for the simulation. The launch field can be seen as the input excitation mainly 
characterized by the desired field profile. The goal is to provide the fiber modes coming out of 
the 50 µm core MMF. Therefore two options were targeted: use the fundamental mode and 
another using all the modes of the fiber, equally distributed, to study the multimode behavior. 
The input field is a superposition of all fiber (3D) modes supported by the input component 
with equal power in each mode and a random phase for each mode.  
Monitoring and analysis of simulation results are the last consideration on the simulation 
settings setup. Since we want to analyze the optical power in a particular region, pathways 
monitors definition is needed BeamPROP calculates the steady-state optical field throughout an 
entire design file. It is frequently useful to analyze this field in standard physical quantities such 
as the optical power in a particular region of the circuit or the power traveling in a particular 
mode. Pathway monitors are what makes these types of measurements possible. Results are 
given as a function of the propagation direction Z and are measured along a pathway. Monitors 
can be used to measure the power in the propagating field via overlap integrals or power 
integrals, measure the phase of a propagating field relative to a test field, and measure other 
output such as spot size. We used the option ‘partial power’ which computes the power in the 
simulated field via a power integral at the current Z position. The width/height and shape of the 
integration area can be set manually by the settings which we define to be a 10x10 µm2, 
20x20 µm2 and 30x30 µm2 (same as the HPT shape). It computes the total power traveling 
within the coupling structure. 
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The default fiber parameters are given in Table VI.3 as extracted from typical the manufacturing 
companies. 

Table VI.3 – Fiber intrinsic parameters 

FIBER MMF SMF  

Core ( µm) 50 9 

Cladding 
( µm) 

125 125 

ncore 1.491 1.4700 

ncladding 1.481 1.4664 

Δn (%) 1 0.36 

NA (°) 0.2 (11.5) 0.14 (8.5) 

Att. (dB/Km) <2.5 <0.7 
 

The polymer used for the taper simulation is SU-8 with refractive index of 1.584 at 850 nm 
[193]. This polymer was selected to its transparency at 850 nm wavelength, with low optical 
losses (0.6 dB/cm) and its thermal conductivity (0.3*1e-6 W/ (µm*K)). SU-8 is a well known 
material, commonly used in laser coupling [194]-[201]. 

VI.B.2. Ball lens coupling technique 

The ball lens coupling technique developed by the project partner INNOPTICS was 
presented in Chapter V on the subsection V.A.1 where the mechanical receptacle structure is 
shown in Figure V-2. To simplify we decide to simulate only the ROSA module optical coupling 
from the MM fiber to the photodetector. The Figure VI-17 shows the correspondent light path 
within the mechanical receptacle where the light goes from the MM fiber, on the bottom, to the 
ball lens and the substrate until reaches the detector at the top. The air gaps are considered and 
the distance between the MM fiber (ferrule) and the ball lens is optimized.  

 
Figure VI-17 – Light path of the ROSA module using the ball lens coupling technique 

At the top we consider 3 detector window sizes as discussed previously with 10x10 µm2, 
20x20 µm2 and 30x30 µm2 areas. 
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The Figure VI-18 shows the coupling efficiency of the ball lens coupling method as a 
function of the distance between the ball and the MMF for different detector sizes (using the 
fundamental mode). A distance of 1160 µm was implemented on the mechanical receptacle by 
INNOPTICS. This distance provides an efficiency of 40 % when using an HPT size of 10x10 µm2, 
according to our simulations, which are thus in good correlation with measurements in Chapter 
V, section V.A.2.2.  

 
Figure VI-18 – INNOPTICS coupling technique: simulation in terms of power coupling 

efficiency on the 3 photodetector sizes (10x10, 20x20 and 30x30 µm2) 

The 20x20 µm2 size simulation has a coupling efficiency of 67 % at 1160 µm distance 
providing a 4.5 dB improvement in the coupling power efficiency as compared to 10x10 µm2 
device. For the 30x30 µm2 the results are slightly the same as the 20x20 µm2 with a 68 % 
coupling efficiency at 1160 µm distance. The variations between the 10, 20 and 30 squared HPT 
in terms of coupling efficiency allow us to conclude that for an eventual future solution using 
this packaging technique and the same laser source (same optical beam condition), the best 
HPT size is of 20x20 µm2. The drawback when using this HPT size comes from its frequency 
response gain at 5 GHz, which is 3.5 dB lower than the 10 µm squared HPT. The coupling 
efficiency improvement compared to the 10x10 µm2 HPT is of a factor of 1.675, thus 4.48 dB at 
the electrical output. Therefore, the overall gain in the coupling efficiency appears partially 
wasted even if still positive. 

VI.B.3. Collective and passive optical coupling technique 

Contrary to the mechanical receptacle ball lens technique, we propose an intermediate 
optical coupling structure to enable low optical losses and good tolerance to misalignment 
where there is no need to turn on the device. This structure is based on polymer (SU-8 for 
instances) which can be collectively produced by photolithography over an entire wafer. Passive 
coupling alignment is the target between optoelectronic devices such as VCSELs or 
phototodetectors and the optical fiber (MM/SM) or other optical waveguides. This structure 
comprises a tapered waveguide consisting of a transparent material with a refractive index 
higher than the air (and close to the one of the fiber) allowing to couple the light between the 
VCSEL surface (or the photodetector) and the optical fiber. This structure also includes an 
anchoring system that allows to maintain the waveguide in position and to leave an open space 
for the electrical connections to the VCSEL or the photodetector. The originality of the structure 

0 500 1000 1500 2000
0

20

40

60

80

100

Distance ball-Fiber (µm)

P
ow

er
 C

ou
pl

in
g 

E
ffi

ci
en

cy
 (%

)
INNOPTICS

 

 
10x10 µm2

20x20 µm2

30x30 µm2

1160µm



Optical coupling techniques for optoelectronic devices  175 

175 

is to dispose of materials / air interfaces in the light path to guide and reduce the opening of the 
output optical beam that theoretically allows better coupling angle performance.  

The coupling structure is presented in Figure VI-19 where three main parts can be found: 
The vertical taper waveguide 12 assures the optical coupling between the optoelectronic devices 
3 and the fiber core 2. 
The anchoring system 15 of the coupling structure. 
The holder arms 152 supporting the waveguide 12 to anchoring system 15. 

As the element 2 is an optical fiber, the coupling structure 1 can be completed by a fiber 
supporting and alignment structure 17.  

 
Figure VI-19 – Schematic structure of the system coupling: – profile view 

The mechanical receptacle based on the ball lens gives us a reference coupling efficiency of 
40 % on the ROSA module when a SiGe HPT is used with 10 µm squared size. In the case of the 
TOSA module the reference is 60 % when 8 µm aperture diameter GaAs VCSEL was used. For 
all the results achieved on the TOSA side, we can say that the challenging here goes for the 
optical coupling on the photodetector side (ROSA). 

The coupling structure is acting as an optical waveguide taper using a polymer with variable 
sizes and shapes depending on the optoelectronic device size and light properties. Two different 
configurations are considered in the following: Optical coupling between a VCSEL with 8 µm 
optical aperture diameter and a MMF with 50 µm core size; Optical coupling between the MMF 
with 50 µm core size and a photodetector (HPT) with 10 µm squared optical window. The 
complete coupling system could be designed collectively on the substrate of the optoelectronic 
devices, allowing an integrated and packaged system (Figure VI-20). Coupling to a single mode 
fiber with 9 µm core diameter size is a direction of further work.  
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Figure VI-20 – Illustration a collective production of the coupling structure on VCSEL 2D 

array. 

The Figure VI-20 shows the electrical interconnection illustration on wafer with an array of 
VCSELs. The coupling structure 1 and the anchoring system 15 will not superpose the electrical 
contact, zone 32, of the optoelectronic device to package. The electrodes are outside the 
anchoring zone by electrical contact stretching (transmission lines and pads) or by anchoring 
structure optimization as represented in the illustration. 

VI.B.3.1 Coupling simulation for a 10x10 µm2 detector and a MM 
fiber 

We focus, in this section, on the simulation and optimization of the coupling structures 
between a 10x10 µm2 detector and a MMF. Intuitively, we consider a truncated conic shape with 
a circular or squared cross section as sketched in Figure VI-21.  

 
Figure VI-21 – BeamPROP waveguide taper design: Taper shape: a) Circular taper; b) 

Squared shape  

The monitor created, so that the coupling can be measured, is a 10x10 µm2 window which 
defines a squared cross-section within which the optical power is computed. This value tries to 
approach the real 10x10 µm2 squared HPT which is our focus here. The results are shown in 
Figure VI-22, it can be seen that the total power being guided in the waveguide is about 22 % of 
the incident power at the waveguide input (Z=0) and increases to 79 % at Z=20 µm. 

1
35

32
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Figure VI-22 – Example of the propagation field during simulation as a function of the 

length (Z=20 µm)  

The conic shape should provide us a robust coupling on the alignment rate efficiency. Two 
considerations were made in terms of the output shape: Figure VI-21 a) - circular to match with 
the optical fiber; Figure VI-21 b) - squared shape to match with the HPT shape. The cone base is 
in contact with the core of the fiber. The truncated side of the cone is in contact with the 
detector. We consider a fixed dimension for it of 10 µm size, while we vary the dimensions of the 
base and the cone height. Figure VI-23 shows the simulation results on the power coupling 
efficiency using circular section with the base width varying from 10 to 35 µm and with the 
length from 20 to 35 µm. The simulation dimension ranges were adapted to the process 
technology available.  

 
Figure VI-23 – Waveguide simulation as a function of the cone base width and length 

using circular taper shape: a) fundamental mode simulation; b) multimode simulation 

(all modes)  

Figure VI-23 a) shows the simulation results considering only the fundamental mode of the 
fiber. The coupling efficiency could range above 90 %, and is above the 80% for a large range of 
values. One specific set includes a height and width of 25 µm each. Figure VI-23 b) shows the 
results where all modes of the fiber are distributed equally. The coupling efficiency is lower and 
goes up to 54.3 %. It is above 40 % with a width of 30 µm and height of 25 µm, e.g.  



 

178  Chapter VI – Optoelectronic Device Next Generation Developments 

178 

The results using the squared taper shape are presented in Figure VI-24 using the 
fundamental mode a) and the multimode operation b). The results are slightly better in both 
cases. 

 
Figure VI-24 – Waveguide simulation as a function of the cone base width and the length 

using squared taper shape: a) fundamental mode simulation; b) multimode simulation 

(all modes) 

From those results we decided to choose the length of 25 µm and base width of 25 µm 
(width_in) to simulate the fiber-waveguide misalignment coupling. Those values were chosen 
considering the process technology possibilities. The results are presented in Figure VI-25 for 
both shapes and launch field types (fundamental mode or all modes equally distributed) shifting 
the MMF position from —40 µm to +40 µm to the nominal position. The squared taper shows, 
as expected, better results on the fundamental mode with 83 % as compared to 79 % with 
circular shape exactly positioned in the middle where the fiber is completely aligned with the 
taper. The shape of the simulation curve using all the modes, shows that most of the modes 
propagate in the border of the 50 µm fiber core. 

 
Figure VI-25 – Fiber to Waveguide alignment simulation as a function of the y fiber 

position: a) circular taper shape; b) squared taper shape (base width and length equal to 

25 µm) 

These results indicate a tolerance to misalignment up to ± 20 µm in all injection conditions, 
thus ensuring the technique to be passive. 
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VI.B.3.2 Coupling simulation for a 8 µm diameter VCSEL and 
SM/MM fiber 

This section focuses on the coupling of a high speed 8 µm aperture diameter VCSEL to a SM 
or MM fiber. The first step was to recreate the VCSEL output modes which correspond to the 
divergence angle of the beam. To simplify our work we simulate only the fundamental mode 
represented by 8 µm-diameter Gaussian beam with a 25° divergence (1/e2) given by a typical 
VCSEL, as depicted in Figure VI-26. This option was implemented by a launch field Gaussian 
type, corresponding to an input Gaussian field as: 

 
( )

22
22( , )

yx
baf x y e e

 −−  
 = ⋅   (6.18) 

where a=w/2, b=h/2, and w and h are the 1/e width/height of the Gaussian function which are 
set to 1.45 µm. These dimensions were optimized to recreate the 25° of divergence (1/e2). By 
default, the Gaussian field is launched from the waist, but an offset of 10 µm was introduced, as 
depicted in Figure VI-26 a). The last 2 µm were implemented with a gold (au) ring with 8 µm 
diameter, which pretended to recreate the VCSEL output interface, as depicted in Figure II-13. 
The Figure VI-26 b) represents the transverse field at Z=10 µm corresponding to the VCSEL 
output fundamental mode with 8 µm aperture diameter. 

 
Figure VI-26 – Output VCSEL fundamental transverse mode simulation (8 µm aperture 

diameter and divergence of 25°): a) lateral view; b) top view (Z=10 µm) 

With some trigonometric equations, we can demonstrate that 86 % of the beam intensity 
emitted from the VCSEL surface is injected in the MMF if it is placed at 45 µm from the surface, 
as depicted in Figure VI-27.  

 
Figure VI-27 – Output Gaussian beam propagation width 25° divergence 
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The optical power emitted by a VCSEL was measured on wafer using a lens optical probe 

positioned at approximately 50 µm from the surface. We measured 79 % coupling efficiency, 
which is quite close to the simulated value. The mode shape measured given in Figure III-27 
was imported into the simulator to compare with the mode created by the simulation. Figure 
VI-28 shows the measurement (VCSEL mapping) compared to the simulation, both were done 
at 50 µm height (Z) from the VCSEL surface. 

 
Figure VI-28 – Output VCSEL transverse mode: a) Simulation at Z=60 µm (10+50 µm); 

b) Measurement at Z=50 µm height (see Chapter III section III.A.7) 

It shows good agreement between them with slight difference in the VCSEL beam shape, the 
measurement shape is more elliptical. This measurement results can be imported into the 
simulator providing more accurate simulation results (further work). 

The waveguide structure, connecting the output VCSEL surface to the MMF input, used for 
simulation was a simple cylinder with 10 µm-diameter using the SU-8 polymer. 

 
Figure VI-29 – Power coupling simulation results as a function of the propagation 

direction length (Z) 

Figure VI-29 shows the total power being guided inside the waveguide. At 30 µm of the 
cylinder surface, about 96% is founded from what was launched. In addition, at the same 
distance (Z=30 µm) about 88 % of the optical field is in the waveguide fundamental mode. 
Along the propagation, the fundamental mode diverges and higher propagation modes are 
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excited which explains the difference between the simulated total power and the fundamental 
mode. 

VI.B.4. Synthesis 

We developed a novel optical coupling structure, under patent, to collectively and passively, 
couple small and high speed optoelectronic devices (VCSEL and HPT) to a MM fiber. SM fibers 
were also partially considered. 

A simulator based on the DF-BPM method was presented using commercial software 
(BeamPROP). The method was explained and its limitation indicated the solutions proposed by 
the software. Our goal here was to simulate the coupling efficiency in a fast and accurate way. 
The method allowed us to simulate the ball lens optical coupling technique developed by the 
partner INNOPTICS used to package Philips ULM VCSEL in the previous chapters. The result 
presents a 40 % coupling efficiency between the MM fiber and the 10 µm squared photodetector 
which are in good agreement with measured optical losses on the SiGe ROSA. This validates the 
simulation approach. 

This section, thus proposed our novel vertical optical waveguide structure, to increase the 
optical coupling efficiency of such small optoelectronic devices and to provide a passive and 
collective coupling over an entire wafer. The vertical optical waveguide is supported by an 
anchoring system and is patent pending. The simulation shows 83 % coupling efficiency 
between the MMF and 10 µm squared detector using a taper waveguide of SU-8 material with a 
length of 25 µm, base width (fiber side) of 25 µm and truncated case width (detector side) of 
10 µm. The alignment simulation shows 50 % coupling efficiency dropping for ± 20 µm lateral 
displacement. 

The VCSEL to MM fiber have shown even higher optical coupling efficiency with values in 
excess to 88 % compared to a 60 % value using the ball lens technique. 
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VI.C. Summary and Conclusion 

This chapter presented the evolution on the optoelectronic devices exploring two directions: 
the laser diode performance improvement as a function of the layout; the optical coupling 
techniques.  

The modifications on the VCSEL were done in terms of access RF transmission lines and on 
the optical aperture diameter from 2 µm up to 20 µm. Comparing the 8 µm aperture diameter 
ULM standard 10 Gbps VCSEL and the new 20 Gbps version with same size, the cut-off 
frequency goes from 12.3 GHz to 20.5 GHz which reveals the intrinsic technology improvement 
made by Philips-ULM Photonics. Clearly a trade-off between the speed and OM gain must be 
done taking into account the device size. The smallest devices are very fast but with low gain. 
Moreover, they are more difficult to be coupled which can be a challenge where the optical 
alignment precision becomes extremely important. On the other hand, larger devices facilitate 
the light coupling, providing higher link gain, but increase the consumption and decrease the 
modulation speed. The VCSEL choice to be integrated in the next generation TOSA was set on 
the 4 µm aperture diameter VCSEL because of its measured 24 GHz bandwidth and its good 
linearity and its prediction for further enhancement in its thermal dissipation, better optical 
coupling and mismatching improvement. Measured on wafer, it shows a cut-off frequency of 
24 GHz and an OM gain of —18.1 dB (i.e. slope efficiency of 0.13 W/A). Complementary, 
interesting performances were found on the RIN (<-140 dB/Hz) and on the nonlinearities: 
input P1dBOM up to 10 dBm; input IP3OM up to 14 dBm and an SFDROM of 94 dB.Hz2/3. The best 
performances were found with biasing higher than 3 mA and modulation frequency higher than 
6 GHz. 

The second direction to take into account is the optical device packaging where two 
techniques were simulated: the ball lens technique used in the home-made TOSA and ROSA; 
and a new collective and passive optical coupling technique. The ball lens technique simulations 
took into account the following parameters: 500 µm sapphire substrate, a diameter of the 
Sapphire ball lens and a free space between the ball and the ferrule of 1000 µm each. Simulation 
agrees with the optimum distance of 1160 µm to be used between the ball lens and the ferrule in 
terms of the optical coupling efficiency. The simulation using the 10 µm squared detector shows 
a coupling efficiency of 40 % for this distance which fits with the real measurement. Using the 
20 µm and 30 µm squared detectors we got around 68 % coupling. These results reveal that the 
20 µm squared HPT could be a good compromise, using this ball lens technique, in terms of 
coupling efficiency and OM gain at 5 GHz.  

A new solution for the optical packaging was proposed based on a collective and passive 
optical coupling through a vertical waveguide. The core of the solution is an optical waveguide 
in a taper shape to provide the best coupling. The optical waveguides are integrated on an 
anchoring platform which holds the taper and provides the passive alignment plus the contact 
to the fiber. This structure is patent pending. Our simulation focused on the taper size and 
shape study considering an HPT device of 10 µm square layout. The simulation does not only 
take into account the fundamental mode propagated in the multimode fiber (MMF) but also its 
multimode behavior considering all the modes equally distributed. Neither one nor the other 
represents a real case, but it gives the range of what can be expected on the coupling efficiency. 
The squared taper shape, using the same size dimensions study, gives a slightly better result 
compared to the circular taper either from the fundamental simulation (83 %) or from the 
multimode simulation (60 %). From the results where we varied the cone base width and the 
height, with the truncated base width fixed at 10 µm we decided to choose 25 µm for both 
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dimensions providing an average of 80 % optimum coupling efficiency on the fundamental 
mode. Misalignment tolerance was then simulated and evaluated to be of up to ± 20 µm at half 
the power, for both fundamental mode injection and all mode equilibrated excitation. 

The simulation of coupling efficiency between the VCSEL and the optical waveguide was 
considered too. Such structure was also studied and optimized to couple an 8 µm aperture 
diameter VCSEL to a multimode fiber. Its height should be 30 µm with a cylinder shape of 
10 µm in width. The structure thus reaches a coupling efficiency as high as 96 %. Therefore, 
here we have proposed an innovate low cost passive and collective optical coupling technique 
which the simulation reveals interesting in terms of coupling efficiency on small optoelectronic 
devices. 
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 - Conclusions and Chapter VII
Perspectives 

1) Conclusions: 
In this final chapter, the final conclusions and perspectives of this PhD work are 

enlightened. First we start with an overview of the main conclusion of each developed chapter. 
Second, the main contributions of this work are synthesized. And, finally few directions are 
presented in terms of perspectives. 

 
Chapter II 

 Chapter II presented the evolution of the broadband wireless network toward the 
multiGbit/s communications. It explored the different technologies used in our days with 
special interest in the 60 GHz band frequency wireless communication technology. The 60 GHz 
Wi-Fi technology based on the IEEE 802.11ad answer the question of the multiGbit/s short 
range communication (indoor) with an issue of limited coverage due to the air and walls 
absorption. This issue (single room communication) is proposed in the ORIGIN project to be 
overcome by the Radio-over-Fiber (RoF) technology allowing the multi-room network 
communication. Both 60 GHz wireless and RoF technologies, got a particular interest since they 
are the core of the ORIGIN project introduced here. The ORIGIN project intended to explore 
both technologies to provide multiGbit/s indoor communication with multi-room 
communication based on domestic cloud approach. The goal was to develop a complete system 
based on RoF transducers and multipoint-to-multipoint architecture. The RoF technology was 
presented by fundamental principles and state-of-the-art with focus on multimode 10 Gbps 
optoelectronic device technologies operating at 850 nm: VCSEL and HPT. The reason of the 
choice was the compromise between the performances and flexibility in terms of integration and 
packaging resulting in a low cost solution. This choice affected directly the transducer approach 
which was decided to be based on the intermediate frequency operation. Three RoF transducers 
generations with the main differences in the optoelectronic devices were presented: the first 
uses pure commercial devices, the second a hybrid solution between commercial and home-
made devices and the last implements both home-made devices. The point-to-point (optical 
tunneling) and multipoint-to-multipoint architectures were presented and compared exposing 
its advantages and disadvantages. This chapter introduced the multiGbit/s domestic cloud 
problematic with its corresponding state-of-the-art.  

Chapter III 
Chapter III presented the die performance measurements on both VCSEL and HPT 

technologies. The experimental bench setups were developed and implemented for both E/O 
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and O/E devices, and its corresponding reference (NFPD and ULM TOSA), covering main 
characteristics: static performances, dynamic small-signal response, noise behavior and 
nonlinearities. The system performance metrics with Error-Vector-Magnitude was considered 
as well. The RoF performance characterization of the link made by the standard multimode 
10 Gbps 850 nm VCSEL die with 8 µm aperture diameter and the reference commercial New 
Focus Photodiode were presented. Two important parameters that strongly influence the link 
performances are the coupling efficiency and the thermal dissipation. The performance 
characterization allowed us to optimize the VCSEL bias current and frequency operation 
(8-10 mA and frequency around 4 GHz). The link was measured with an SFDR of 99 dB.Hz2/3, a 
minimum EVM degradation from back-to-back setup of 1 %, and a power dynamic range of 
35 dB at an EVM degradation of 20 %. This link characterization led us to the importance of 
individual optoelectronic block performances extraction. In the case of 850 nm SiGe HPT 
characterization, two layout structures were characterized in order to choose the candidate to be 
integrated into a packaged module: 10x10 µm2 and 30x30 µm2 optical windows. The 
characterization was made using a ULM 10 Gbps TOSA module as a reference. A compromise 
between size and performances had to be made: small structures are faster devices but with low 
coupling efficiency. The main focus here is the opto-microwave frequency response at 5 GHz, 
dictating the smallest structure choice with 7 dB higher gain than the 30x30 µm2 with a value of 
1.45 A/W responsivity in DC and 0.034 A/W at 5 GHz (including optical losses to a MM fiber). 
Both VCSEL and HPT dies were characterized in a link configuration. 

 
Chapter IV 

Chapter IV presented the definition and simulation of opto-microwave figures of merit 
covering the three main analog characteristics: frequency response, noise and the 
nonlinearities. Indeed, we proposed a definition of the opto-microwave figures of merit which 
allowed the individual optoelectronic devices representation as an equivalent electrical two-port 
network. Optical Microwave Gain (GOM), Optical Microwave Noise Figure (NFOM), Optical 
Microwave compression Point (P1dBOM), Optical Microwave Third-Order Intercept Point 
(IIP3OM), Optical Microwave Spurious-free dynamic range (SFDROM) and finally Opto-
microwave Error Vector Magnitude (EVMOM) definition were presented for each individual 
device. Each block of the RoF system was considered in a flexible opto-microwave behavioral 
model implemented on a microwave RF electrical simulator. The model was successfully 
implemented, simulated and validated, with measurement comparisons, using different RoF 
system configuration. The model allowed, not only to simulate the full RoF system and identify 
the critical point, but also to help to extract system parameters for each individual components 
from the EVM measurements. 

 
Chapter V 

Chapter V presented the implementation of the VCSEL and SiGe 2T-HPT die into ROSA and 
TOSA modules to target their final integration into the ORIGIN demonstrator. Both VCSEL and 
HPT die were integrated and packaged into module with the development in terms of electrical 
and optical interconnections. The optical packaging was based on a ball lens technique. The 
electrical connections were developed as well using a transparent substrate. RF transmission 
lines were designed for both VCSEL and 2T-HPT dies and the chip die integration was 
developed by thermo-compression technique. Active IC and passive reactive electrical matching 
network were also considered. The optical coupling using the ball lens technique shows a 
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coupling efficiency of 60 % and 35 % for the home-made TOSA and ROSA, respectively. Good 
results were found in terms of thermal dissipation for the VCSEL. EVM performances were 
measured showing 3 % and 16 % EVM degradation compared to the B2B, respectively for the 
VCSEL TOSA and the 2T-HPT ROSA. Although, the SiGe ROSA shows first promising results, it 
requires further optimization especially on the optical coupling efficiency and on the base 
connection to move from 2T-HPT to a 3T-HPT configuration. The power link budget study to 
design the complete system was presented. The system architectures were taken into account 
with the optical tunnel (P2P) and the multipoint-to-multipoint (MME and MMO) architectures 
with special attention to the compatibility for both Finisar ROSA (RoF2 configuration) and SiGe 
ROSA (RoF3 configuration). The critical points were identified and solutions proposed. The 
MMO architecture reveals to be an eventual future option with further questions to answer: 
optical beating and saturation. The final demonstrator was finally implemented using a 
communication between 2 rooms based on an optical Multipoint-to-Multipoint architecture 
with electrical multiplexing (MME) using a 4x4 multiplexing central node and a signal 
controlling device implementation. A 16 % EVM was demonstrated for a two-hop scenario until 
the input of the mm-TX, which is a successful achievement in terms of performances. The mm-
TX modules added an extra 14 % to the EVM, achieving an overall 30 % EVM including the two 
hops. This proved to be compensated in the 3 Gbit/s transmission by the CRC implementation 
in the Gefen commercial modules.   

The demonstration between the two rooms was successful using the home-made GUI and 
the Green Box by a real HD video communication using two 60 GHz wireless commercial 
modules with data rate of 3 Gbps. 

 
Chapter VI 

The final Chapter VI explored two future RoF transducers evolutions: the system operating 
frequency limited by the optoelectronic devices and the optical packaging coupling efficiency. 
Analogue VCSELs performances toward 20 GHz IF were considered through the modification of 
the layout in terms of optical aperture diameter and RF access lines together with the improved 
vertical layers stack from ULM Photonics. Comparing the 8 µm aperture diameter ULM 
standard 10 Gbps VCSEL and the new 20 Gbps version with same size the cut-off frequency 
goes from 12.3 GHz to 20.5 GHz. The cut-off frequency of the modified VCSELs varies from 
14 GHz to more than 25 GHz with the size of the VCSEL. Clearly a trade-off between the speed 
and OM gain must be done taking into account the device size. The smallest devices are very fast 
but have low gain and are more difficult to be coupled which can be a challenge where the 
optical alignment precision becomes extremely important. On the other hand, larger devices 
facilitate the light coupling, providing higher link gain, but increase the consumption and 
decrease the modulation speed. The VCSEL with aperture diameter of 4 µm was chosen and 
performances characterized. Its bias condition and frequency operation were optimized. It 
shows a cut off frequency of 24 GHz and an OM gain of —18.1 dB i.e. responsivity of 0.13 W/A. 
Complementary, interesting performances were found on the noise (<-140 dB/Hz) and on the 
nonlinearities: input P1dBOM up to 10 dBm; input IP3OM up to 14 dBm and an SFDROM of 
94 dB.Hz2/3. The best performances were found with biasing higher than 3 mA and modulation 
frequency higher than 6 GHz. The second direction was the optical packaging of optoelectronic 
devices where two techniques were simulated: the ball lens technique, used in the home-made 
TOSA and ROSA; and a new collective and passive optical coupling technique. The new 
proposed solution for the optical packaging is based on a collective and passive optical coupling 
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through a vertical waveguide. The optical waveguides are integrated on an anchoring platform 
which holds the taper and provides the passive alignment plus the contact to the fiber. This 
proposed technique in patent pending. From the results where we varied the cone base width 
and the height, with the truncated base width fixed at 10 µm we decide to choose 25 µm for both 
dimensions providing an 80 % optimum coupling efficiency to a 10 µm detector. This a 6 dB OM 
gain improvement compared to the ball lens technique used on SiGe HPT. Misalignment 
tolerance was then simulated and evaluated to be of up to ± 20 µm at half the power. The 
simulation of coupling efficiency between the VCSEL and the optical waveguide was considered 
too. Such structure was also studied and optimized to couple an 8 µm aperture diameter VCSEL 
to a multimode fiber. Its height should be 30 µm with a cylinder shape of 10 µm in width. The 
structure thus reaches a coupling efficiency as high as 96 %. Therefore, here we have proposed 
an innovate low cost passive and collective optical coupling technique which the simulation 
revealed interesting in terms of coupling efficiency on small optoelectronic devices. 

 
2) Novelty of the work: 

The overview of this work is defined within the title: Technological development and system 
integration of VCSELs and SiGe HPT receivers for 60 GHz low cost Radio-over-Fiber 
applications. 

 
The main contributions of this work are presented as the following topics: 

 Optoelectronic experimental setups development and implementation: it covered 
the static performances, dynamic small-signal response, noise behavior and 
nonlinearities. System performance metrics were implemented too, based on OFDM 
signal according to the existing 60 GHz wireless standards. 

 Die performances optimization study: the measurement was successfully performed, 
resulting in optimizing on the bias condition, structure layout and frequency 
operation, especially for RoF applications. 

 Extension of Opto-microwave figures of merit: definition of the Optical Microwave 
Gain (GOM), Optical Microwave Noise Figure (NFOM), Optical Microwave 
compression Point (P1dBOM), Optical Microwave Third-Order Intercept Point 
(IIP3OM), Optical Microwave Spurious-free dynamic range (SFDROM) and finally 
Opto-microwave Error Vector Magnitude (EVMOM) of each individual device. 

 Novel Opto-microwave behavioral model: implementation into a microwave RF 
electrical simulator. Based on an equivalent electrical two-port network it allows the 
simulation, extraction and design of the RoF devices and system opto-microwave 
figures of merit. 

 System power budget design and link optimization in terms of gain, noise and 
nonlinearities. This work allows to study the different optical link configurations 
with different sources and detectors. It was made in an original and simple way as a 
direct application of the OM figures. 

 First time that a 2T-HPT was introduced in a RoF system and its EVM characterized. 
 Next generation developments solutions 
 A contribution was given on the improvement of VCSEL speeds, through their 

bandwidth towards 25 GHz VCSEL with ULM Photonics, their matching and their 
thermal dissipation, altogether with the concern of monitoring their RoF 
performances. 
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 An innovative optical coupling technique was proposed that is expected to lower the 
tradeoff between size, i.e. speed performance, and coupling efficiency, thus between 
performances and cost. 

3) Perspectives: 
The perspectives of this work are presented on the following two main topics.  
First the RoF module developments:  

The TOSA and ROSA modules evolution: the transducer technology based on the IF of 5 GHz is 
given by the low cost optoelectronic devices. One direction to take is to increase this frequency 
which means using faster optoelectronic devices, ideally operating in the wireless center 
frequency to provide a direct transmission in order to make a simpler and compact system. In 
terms of optoelectronic device the speed is inversely proportional to the size. Small die 
structures for the VCSEL and the HPT will increase its frequency response. We present VCSELs 
with cut-off frequency up to more than 25 GHz for small structures (<4 µm). HPT structure with 
size lower than 10x10 µm2 could be studied with even different technology modification to 
achieve higher frequencies too. Such small structures (VCSEL and HPT) are faster, but 
characterized by a low OM gain mainly due to low coupling efficiencies (not only however). 
Therefore the TOSA/ROSA module implementation plays an even bigger role: the active IC 
further development and integration is an option in order to design and implement a Power 
Amplifier (PA) on the VCSEL input and LNA on the HPT output. Using the same SiGe 
technology an integrated matching network could be used to optimize the reflection losses 
between the active IC and optoelectronic device on both sides. Moving from 2T-HPT toward 3T-
HPT will be important as well. During this thesis an HBT was integrated with a VCSEL using the 
emitter connector into the VCSEL cathode. The results of this configuration need to be explored 
in future work. The optical interconnection is an important task to develop for such small 
structures where the ball lens technique proves to be insufficient. The development of our new 
coupling technique is a solution which can solve this problem. 
Modeling further improvement: A better nonlinear equation would be needed instead of the 
hyperbolic tangent. Also the implementation of the test board effects in the model could be 
usefull. 

 
Second, in terms of the system integration and development: 
Further development with special attention on the mm-TX and mm-RX modules: the mm-TX 
module was found to be the critical block with gain 27 dB lower than what was expected. 
Therefore, the improvement must be taken into account of its performances and further 
integration too.  We could envisage a further integration into SiGe technology. This activity is 
actually on going. 
The antennas coupling between both mm-TX and mm-RX modules are another point to be 
improved which will influence the system performance. In fact, the location of the transducer in 
relation to the wireless emitter/receptor had a great impact on system performance. The 
improvement can be in the antenna design or on the transducer location.  
Optical access management could be the solution to implement the M2M architecture with 
automatic radiation exposure control. 
Further developments are needed, taking advantages of previous VCSEL improvements, to 
transmit the four 2 GHz channel of the 60 GHz standards.  
The RoF architecture must also move to the integration of multiple services including 1 Gbps 
Ethernet, RTV phone, satellite TV and 2.4/5 GHz Wi-Fi signals over the same hybrid cable. 
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Finally, our theoretical work on the novel proposed vertical waveguide based optical 
coupling technique is currently under a maturation project development for industrial transfer 
and licensing. 

 
 



 

 

191 

Appendix 

A.1 – Link OM beahvioral Model 

Figure A.1-1 shows the Opto-microwave behavioral model of the complete RoF link in the 
Microwave simulator enviorament (ADS). Two links are represented where the first on the top 
represents the ULM die VCSEL and the reference the photodetector (New Focus PD). As we can 
see a 36 dB Low Noise Amplifier7 (NF=3dB) is used at the end of the link to avoid the 
oscilloscope sensitivity (see section III.A.6). The second one replaces the NFPD by the Finisar 
ROSA integrating a TIA, which removes the need of the LNA in the measurement bench setup 
and simulation.  

 
Figure A.1-1 - Radio-over-Fiber transceiver modules 

The signal generator is real data measured in the Back-to-Back configuration, because we 
intend to approximate the simulation to the real measurement. Indeed the good agreement in 
the fit was only possible with this method since the noise contribution of the AWG and 
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oscilloscope can not be neglected (6% at IF=3 GHz). The simulator engine performed was 
Circuit Envelope since it adds physical analog/RF performances to system simulation with 
digitally modulated signals. It combines time- and frequency domain representation which 
allows a fast and complete analysis of complex signals. The output signal is simulated in 50 Ω 
load impedance and extracted to a datafile to be, afterwords, imported into Matlab 
enviorement. The signal demodulation and EVM computation is performaed on Matlab. 

A.1.1– Laser OM beahvioral Model 

The laser behavior mode is presented in the Figure A.1-2 which is divided in 3 blocks: Noise 
voltage source (V_Noise), 1-Port S-parameter file (S1P) and the symbolically defined device 
(SDD3P).  

The SDD block implements the Figure IV-10 introducing the hyperbolic tangent (Eq. (4.40)) 
to implement the OM gain and the nonlinearities (P1dBOM and IP3OM). It introduces also adds 
the frequency response of the laser Eq. (2.14) in H[2]. The OM laser noise factor identified in 
Chapter IV (Eq. (4.11)) is introduced by the rms noise voltage including the noise frequency 
response given by Eq. (4.41). The reflection coefficient measurement (S11) was implemented by 
the S1P block. 

 
Figure A.1-2 – Laser OM behavioral model implementation 

A.1.2– Photodiode OM beahvioral Model 

The photodiodeOM behavioral model is presented in Figure A.1-3 where we identified 
exactly the same concept of the laser OM model. We neglect the photodiode output reflection 
coefficient since we were using commercial photodetector with 50 Ω matched output. As we can 
see in H[2] parameter the frequency response of the PD is a simple low pass filter (25GHz 3dB 
cutoff frequency for the NFPD). 
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Figure A.1-3 – Photodiode OM behavioral model implementation 

A.1.3– Fiber OM beahvioral Model 

 
Finally the optical fiber OM beahvioral model is presented in Figure A.1-4. We can see that 

the nether noise and nonlinearities are implemented. Input and output perfectly 50 Ω matched 
SDD where the OM equivalence is implemented. 

 

 
Figure A.1-4 – Fiber OM behavioral model implementation 

A.1.4– Finisar ROSA OM beahvioral Model 

Figure A.1-4 shows the OM behavioral model implemented for the Finisar ROSA which 
includes the TIA. The photodiode model in the left is exactly the same approach in A.1.3. The 
TIA is implemented by a current-controlled voltage source (CCVS) adding the transimpedance 
gain (V/A) with 50 Ω output impedance. The TIA SDD block implements the frequency 
response by a variable order (N) low pass filter. 
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Figure A.1-4 – Finisar ROSA OM behavioral model implementation 
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R.1 - Résumé general 

Les technologies de communication sans fil sont devenues indispensables dans la vie de 
chacun ses dernières années. Elles offrent des services croissants innovants et une mobilité 
accrue, de la communication mobile aux réseaux locaux. Cette thèse s’inscrit dans le cadre du 
projet français FUI8-ORIGIN qui vise à développer les performances des réseaux domestiques 
en apportant des solutions sans multi-Gigabits faiblement radiatives, économes et pérennes. La 
solution ORIGIN est caractérisée par l'action complémentaire de deux technologies: les 
communications sans fil 60 GHz, avec notamment la création récente en Janvier 2013 de la 
nouvelle norme WiFi 60GHz, et la mise en place d’une infrastructure Radio-sur-Fibre (RoF) 
afin d’étendre la propagation de ses signaux radio fortement atténués par l’atmosphère et les 
murs, au sein de l’ensemble de la maison.  

Le projet a une visée pré-compétitive et doit se doter d’un véritable prototype à l’échelle 1:1. 
Il couvrira ainsi 4 pièces d’une maison standard. Basé sur des transducteurs RoF et une 
architecture multipoint à multipoint pour couvrir les différentes pièces d’une maison, il doit 
mettre en jeu des dispositifs bas couts et performants permettant la transmission des signaux 
60GHz eu travers de la liaison optique à dégradation minimale, respectant les contraintes de la 
norme.  

Cette thèse porte sur le développement des composants et modules optoélectroniques bas 
couts, permettant d’assurer ces contraintes. Le travail implique de couvrir de la puce semi-
conducteur au modules et jusqu’au système intégré dans le démonstrateur.  

Le choix de la source LASER et du photodétecteur est très important car il impose 
l'architecture de transducteur RoF. Notre choix s'est porté sur dispositifs multimode à 850nm 
(GaAs VCSEL et SiGe HPT) qui sont compatibles avec les normalisations existantes des réseaux 
fibres dans la maison, et permettent des contraintes relâchées sur le couplage optique qui 
garantissent l’accès à des solutions bas cout. En termes de performances, ces dispositifs sont 
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limités à quelques dizaines de Gigahertz en bande passante, ce qui nécessite d’envisager une 
architecture à fréquence intermédiaire (IF). 

Les puces sélectionnées sont caractérisées de manière précise en développant des bancs de 
mesures adaptées aux applications analogiques RoF. Des substrats d’interconnexions sont 
développés pour permettre le couplage optique et l’interconnexion électrique des puces et ainsi 
la création de modules de type Transmitter Optical Sub-Assemblies (TOSA) ou Receiver Optical 
Sub-Assemblies (ROSA). Ce développement est poussé de façon à intégrer de façon hybride des 
étages d’amplification en aval et amont des composants optiques, ainsi que des étages 
d’adaptations passifs. Les questions de couplage optique ont été traitées par une technique de 
couplage classique en utilisant d'abord une lentille sphérique.  

Les performances RoF ont été évaluées et comparées en termes de réponse en fréquence, de 
bruit et de non-linéarités. Nous avons poursuivi l’approche actuelle des grandeurs optique-
microondes, telles que le gain et le facteur de bruit, et l’avons étendu aux non-linéarités en 
définissant les points de compression à 1dB optique-microondes (IP1dB,OM et OP1dB,OM), les 
points d’interception d’ordre trois optique-microondes (IIP3OM et OIP3OM), et la grandeur 
système d’erreur vectorielle d’amplitude optique-microonde (EVMOM), qui chacune permette 
d’isoler et caractériser la performance individuelle des composants optiques ou opto-
électroniques pris individuellement. 

Ces grandeurs sont présentées puis exploitées dans un développement de modèle 
comportemental, permettant à la fois l'extraction des performances individuelles des 
composants et le design de l’ensemble du système.  

Un dimensionnement complet de l’infrastructure Radio-sur-Fibre pour le démonstrateur est 
ensuite mené, intégrant et dimensionnant le bilan de liaison global à partir modules et cartes 
réalisés et développés par les partenaires du projet. Le module transmetteur Radio-sur-Fibre 
(TRoF) est ainsi conçu, assemblé et testé. Les performances du module ont été mesurées et 
simulées à chaque étape de la procédure d’intégration. Le démonstrateur final basé sur 
l'architecture multipoint-à-multipoint a été réalisée à l'aide d'un nœud central optoélectronique 
pour la répartition du signal et d’une Green Box permettant le contrôle de l’allumage des 
différentes pièces, et ainsi la rationalisation du rayonnement et de la consommation du système. 
Une transmission bidirectionnelle en temps réel entre deux dispositifs de WirelessHD 
commerciaux à ~3 Gbit/s a été démontrée. 

Dans une dernière section de cette thèse, des directions pour améliorer les lasers à cavité 
émettant par la surface (VCSEL) et les phototransistors SiGe sont explorées. Des VCSEL 
analogiques avec une bande passante de plus de 25 GHz sont développés avec la société Philips 
ULM Photonics et mesurés. Notre action s’est concentrée sur les dimensions latérales de la 
structure, en bénéficiant des améliorations des couches verticale de la part de ULM Photonics. 
Outre les dimensions du VCSEL propre, ce travail a aussi visé l'amélioration des lignes d’accès 
pour permettre à la fois une meilleure dissipation thermique et une meilleure adaptation 
réactive du VCSEL à son électronique amont. Une nouvelle technologie de couplage optique 
collective et passive est enfin proposée. Originale et brevetée à l’occasion de ce travail, elle 
permet le couplage optique vertical à la fibre optique multimode et monomode de dispositifs 
optoélectroniques de petites tailles, inférieurs à 10µm, ainsi permettant simultanément de 
réduire les pertes de couplage, d’augmenter la fréquence de fonctionnement des composants 
couplés en réduisant leur dimensions, et de réduire le cout et le temps de réalisation du 
couplage.  
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R.2 - Introduction generale 

Ce chapitre d’introduction générale a pour but de donner une vue générale des motivations 
des travaux de cette thèse, d'exposer le sujet et d’en décrire les objectifs. 

R.2.1 - Contexte 

La technologie sans fil à MultiGbit/s pour les réseaux local domestique (HAN) est un 
développement actuel qui fera partie du futur de chacun. Le développement de nouveaux 
services et de technologies sans fil innovantes nous mène vers de plus en plus de débits pour 
atteindre le besoin et la capacité du Gigabit par seconde. Les services à haute définition (HD) 
deviennent la réalité de nos jours et un exemple où le multiGbit/s est déjà nécessaire. Filaire par 
le câble HDMI il devient sans fils avec les normes et produits commerciaux WirelessHD. Une 
approche de cloud domestique doit être considérée dans ces évolutions avec l’accès à l’ensemble 
des services et appareils sans fil dans n'importe quel endroit dans la maison en même temps de 
manière ubiquitaire.  

Cependant, le classique et le plus populaire Wi-Fi (Wireless-Fidelity) basé sur la norme 
IEEE 802.11, en utilisant la bande de fréquence centimétrique, permet des débits jusqu'à 600 
Mbit/s. Une solution consiste en l'utilisation d'ondes dans la bande millimétrique, de 57GHz à 
66GHz. Différentes normes dans cette bande ont été déjà élaborées, dont plus récemment en 
Janvier 2013, la technologie Wi-Fi IEEE 802.11ad, qui permet d’obtenir des débits de données 
jusqu'à 7 Gbit/s [16]. A cette bande de fréquences, l'absorption par l'oxygène est élevée, ce qui se 
traduit par une portée de communication, courte, de quelques mètres seulement (~10m). Cette 
caractéristique est très intéressante pour les réseaux domestiques en termes de sécurité de 
donnée, car le signal ne traverse pas les murs, reste ainsi limité généralement à une pièce et 
garantit ainsi de ne pas être reçu à l’extérieur du bâtiment restant ainsi confidentiel. 
Néanmoins, en raison de cette couverture restreinte, un réseau supplémentaire est nécessaire 
pour distribuer le signal haut débit à l’ensemble des pièces de la maison. Ici, l’inclusion de la 
technologie Radio-sur-Fibre semble très prometteuse, afin de proposer une solution bas cout, 
performantes et pérenne car capable de s’adapter aux évolutions futures de la technologie, le 
câble n’ayant intrinsèquement que peu de limitation de bande passante.  

Le défi porte ici sur les dispositifs optoélectroniques de terminaison où des performances 
élevées et de faibles coûts sont des exigences fondamentales.  

Sur une prospective d’intérêt du marché, notre proposition de connexion Wi-Fi 60 GHz au 
travers d’un réseau sans fil domestique multiGbit/s à infrastructure optique (RoF) est considéré 
comme l'une des solutions d'avenir pour l’habitat. En 2016, plus de 40% du marché total Wi-Fi 
devrait utiliser la bande de fréquence de 60 GHz, d’après une analyse proposée en juin 2012, 
[17]. Même si un retard d’un an a décalé la publication de la norme de Janvier 2012 à Janvier 
2013, le développement des infrastructures RoF pour ce besoin est considéré comme essentiel 
dans les quelques années à venir. 

R.2.2 - Objectifs de la thèse 

Ce sujet de thèse est proposé dans le cadre d'un projet national consacré au développement 
de l'optoélectronique et de la photonique dans le domaine de l'infrastructure RoF pour des 
communications sans fil à 60 GHz. Le nom du projet est ORIGIN - Optical Radio Infrastructure 
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for Gbit/s Indoor Network. Le principal objectif de notre travail est le développement 
technologique des transducteurs RoF à bas coût pour le réseau domestique sans fil à des débits 
de données élevés (10 Gbit/s) et la participation à l'ensemble de la conception du système. 
Comme nous pouvons le voir dans la figure ci-dessous, un transducteur RoF générique composé 
de modules simples nous aident à définir nos objectifs de travail. 

Modules transducteur Radio-sur-Fibre 

Le cœur du transducteur RoF est composé de dispositifs actifs pour l'émetteur électrique-
optique (E/O), et pour le récepteur optique-électrique (O/E). Les objectifs de ce travail de thèse 
sur ces modules sont les suivants:  

 La caractérisation d'émetteur E/O et l'optimisation des performances. Des VCSEL GaAs 
multimode 850 nm sont considérés pour leur faible coût et leurs bonnes performances. 
Quelques degrés de liberté dans leur optimisation de design (layout) nous ont été 
permis, en termes de diamètre d'ouverture de la fenêtre optique et d’accès électriques. 
Leurs résultats de mesure seront introduits dans un modèle comportemental que nous 
avons développé pour inclure leurs réponses en fréquence, leurs non-linéarités et leur 
comportement en bruit. 

 Caractérisation du récepteur O/E et optimisation des performances. Trois 
photodétecteurs sont considérés : Une photodiode de laboratoire New Focus de type 
PiN InGaAs, utilisée comme référence pour la caradctérisation des émetteurs E/O; un 
photorécepteur Finisar avec amplificateur trans-impédance intégré (TIA); et enfin un 
module photorécepteur basé sur des phototransistors bipolaires à hétérojonction (HPT) 
SiGe développé dans notre laboratoire. Ce dernier sera étudié en fonction de ses 
dimensions latérales, de sa configuration technologique et de ses conditions de 
polarisation et de connexions. 

Les deux dispositifs, E/O et O/E, ont un impact important sur les performances de la liaison 
optique. Un outil de simulation est exploité pour prendre en compte l'influence individuelle de 
chacun de ces composants sur la liaison globale. Un modèle comportemental compatible avec 
des simulateurs conventionnels de système microondes (dans notre cas ADS Agilent) sera 
développé simultanément avec une nouvelle définition des grandeurs Optique-microondes. Ce 
modèle est utile de comprendre l'impact individuel de chaque dispositif sur les mesures de la 
liaison de système. Le développement du banc de mesures sera pris en compte pour obtenir des 
données précises en termes de caractéristiques statiques, dynamiques, non-linéaires et de bruit. 
Toutes ces données seront utilisées pour la modélisation comportementale de chaque dispositif. 
Des mesures système (EVM) seront effectuées et pourront valider les simulations système 
réalisées. Les modèles se montreront même capables de permettre d'extraire et d’affiner les 
paramètres individuels de chaque dispositif. 
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Le développement des interfaces électriques sera considéré pour l'intégration des puces et 
sera optimisé en termes de performances de transmission et réflexions en fonction de la 
fréquence. Des réseaux d'adaptation réactifs passifs seront développés pour réduire les pertes 
de réflexion et d'améliorer le gain du système et le rapport signal à bruit. Des circuits intégrés 
(IC) SiGe sont conçus pour alimenter les VCSEL en amont de la liaison par un amplificateur de 
puissance (PA) d’amplifier le signal reçu en aval de celle-ci par un amplificateur à faible bruit 
(LNA). Ces circuits sont conçus et intégrés. 

L’interface optique, qui permet le couplage de la lumière entre l'émetteur E/O et la fibre, 
entre la fibre et le détecteur O/E, sera sur deux fronts : une solution à base de réceptacle 
mécanique portant une lentille sphérique; une solution à guide d'onde optique en polymère de 
type taper. La conception et la simulation des structures de guide d'ondes optiques seront 
considérées comme la méthode d'intégration. 

Le Packaging et l'intégration des dispositifs optoélectroniques multimodes sont les 
prochains suivants: de la simple puce VCSEL jusqu’au module TOSA; de la puce HPT jusqu’au 
module ROSA. Là encore, des caractérisations et simulations seront effectuées pour chaque 
dispositif, avec notamment la comparaison des performances entre la puce et le résultat de sa 
mise en boitier. La dernière étape est l'intégration de ces modules dans le transducteur RoF 
(TRoF) qui sera utilisé dans le système de communication sans fil multi-Gigabit. L'intégration et 
la caractérisation des performances du système à l'échelle d'une maison de quatre pièces sont 
les objectifs finaux afin d’implémenter un démonstrateur à taille réelle. 

R.3 - RoF dans le réseau sans fils domestique : le Project 
ORIGIN 

Ce chapitre II présente l’état de l’art et la problématique des systèmes des communications 
sans fil à multiGbit/s dans le contexte des réseaux domestiques (HAN). Le contexte du projet 
d’ORIGIN y est présenté. Il fournit également un état de l’art, particulièrement sur les VCSEL 
de manière générale, et sur les phototransistors bipolaires à hétérojonction (HPT) SiGe/Si de 
manière particulière, car ces éléments constituent le cadre principal de notre travail au sein du 
projet avec l'objectif de mettre en place des solutions optoélectroniques faible coût. 

L'évolution du réseau sans fil à large bande vers les communications multiGbit/s est 
étudiée, démontrant un intérêt particulier pour les technologies de communication sans fil à 
60 GHz, avec les normes ECMA-387, IEEE802.15.3c et dernièrement la norme Wi-Fi 60 GHz, 
IEEE 802.11ad. Cette dernière norme est porteuse d’un développement important. Elle répond à 
la question d’un réseau local de communication courte distance (indoor) à multiGbit/s. 
Néanmoins la bande de fréquence s’accompagne d’une question de la limitation de portée en 
raison de l'absorption de l'air et des murs. Une solution à cette question (communication limité 
à une seule pièce) est proposée par le projet ORIGIN pour étendre la couverture radio par le 
biais d’une architecture RoF permettant ainsi la communication entre plusieurs pièces (figure 
ci-dessous). 
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Illustration du concept du projet ORIGIN  

Le projet ORIGIN  propose d’explorer les deux technologies pour fournir une 
communication indoor à multiGbit/s et multi-pièces permettant ainsi l'approche de cloud 
domestique. L'objectif est de développer un système complet basé sur des transducteurs RoF et 
sur une architecture multipoint-à-multipoint. La technologie RoF y est présentée par les 
principes fondamentaux et l'état de l'art concentré en les technologies de dispositifs 
optoélectroniques multimode fonctionnant à 850 nm pour des applications 10 Gbps: VCSEL et 
HPT. La raison de ce choix tient dans le compromis entre performances et flexibilité en termes 
d'intégration et couplage optique pour obtenir une solution bas coût.  

Ce choix oblige à l’utilisation d’une fréquence intermédiaire dans le module trasnducteur 
Radio-sur-Fibre (TRoF). Trois générations de transducteurs TRoF sont prévus dans la stratégie 
du projet ORIGIN : la première utilise des dispositifs commerciaux purs; la seconde, une 
solution hybride entre dispositifs commerciaux et dispositifs développés en laboratoire ; et la 
troisième vise à exploiter l’ensemble des développements technologiques, à la fois sur l’émetteur 
optique VCSEL et le récepteur optique SiGe. L’architecture point-à-point (tunnel optique) qui 
est une étape à la validation du système et l’architecture multipoint-à-multipoint cible sont 
présentées. 

Le concept d'architecture d’ORIGIN est considéré en explorant l'architecture multipoint à 
multipoint optique avec soit un multiplexage électrique (MME) ou le multiplexage optique 
(MMO). Les solutions MME et MMO sont comparées en termes d’avantages et d’inconvénients. 

R.4 - Caractérisation de puce E/O et O/E 

Ce chapitre III traite de la caractérisation sous pointes des VCSEL et HPT sous formes de 
puces. Il intègre le montage minutieux des bancs de mesures adaptés aux applications RoF. Un 
photodétecteur de référence (pour le cas VCSEL), qui a une réponse en fréquence très plate et 
un comportement linéaire, est utilisé pour extraire les performances du laser. Une 
caractérisation complète de différents liens optiques est menée en termes de performances 
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statiques, réponse fréquentielle, de comportement en bruit et de non-linéarités comme le 
Spurious Free Dynamic Range (SFDR). Les performances EVM du système dans le contexte des 
normes de 60 GHz, sont également considérés. Chaque banc de mesure est présenté ainsi que 
les procédures de calibration attenantes et la prise en compte de la précision de mesure, pour le 
banc de mesure de RIN. 

 
Les bancs de mesures ont permis la caractérisation notamment de VCSEL 10Gbps fournis 

par Philips ULM Photonics mesurés au travers d’une photodiode de laboratoire NewFocus, 
utilisée comme référence, de très grande linéarité et de fréquence à 3dB supérieure à 25GHz. Le 
banc sous pointe est décrit dans la figure ci-dessous : 

 
Banc de mesure sous pointes pour la puce VCSEL: a) schématique avec un 850 nm GaAs 

based VCSEL et la photodiode référence; b) photo du couplage en RF et optique sur le 

VCSEL.   

Les VCSEL Philips ULM Photonics 10Gbps fonctionnent à 850 nm avec une fenêtre optique 
de 8 µm de diamètre. Deux paramètres importants qui influent fortement les performances de 
liaison sont le taux de couplage optique et la dissipation thermique du VCSEL. La puissance 
optique maximale rencontrée est de 3,8mW avec une responsivité de 0,52A/W, en considérant 
un couplage optique d’environ 100%. Le VCSEL présente un spectre optique caractéristique 
d’un comportement multimode transverse. La déviation du spectre de longueur d’onde pour la 
puce nue sous pointes en l’absence de dissipateur thermique est 0,5 nm/mA, indiquant un 
échauffement de la puce à 91°C pour un courant de 10mA et une température ambiante de 20°C. 

Les mesures dynamiques ont démontrées une bande passante de 12,3GHz à 10mA, une 
déviation du spectre de longueur d’onde de 0,5 nm/mA, un MCEF de 5,995 GHz/√mA et un 
RIN inférieur à -140 dB/Hz de 1GHZ à 6GHz pour des courants de polarisation supérieurs à 
8mA. Les mesures réalisées ont également permis d'optimiser le courant de polarisation du 
VCSEL (8 à 10mA) et de sélectionner sa fréquence de fonctionnement optimale (autour de 
4 GHz) pour l’application Radio-sur-Fibre visée. La liaison RoF élémentaire (VCSEL + 
photodiode NewFocus) a été mesurée avec un IP1dB de 15dBm, un IP3 de 12dBm, un SFDR de 
99 dB.Hz2/3 à 5GHz, pour un courant de polarisation 10mA. Un minimum de dégradation 
EVM par rapport à la mesure Back-to-Back de 1 % est obtenu avec une dynamique de puissance 
de 35 dB pour une dégradation de l'EVM de moins de 20 %, correspondant à la transmission 
d’un canal de 2GHz en norme IEEE802.15.3C mode HSI transposé à la fréquence intermédiaire 
de 5GHz. 

 
Dans le cas de la caractérisation de HPT SiGe 850 nm (figure ci-dessous), deux structures 

ont été caractérisées afin de sélectionner la structure qui sera intégrée et couplée dans un 
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module packagé de type ROSA pour le démonstrateur. Il s’agit de phototransistors SiGe de 
fenêtres optiques de 10x10 µm2 et de 30x30 µm2, dont l’émetteur la base et le collecteur sont 
tous soumis à l’éclairement du signal optique. Un module TOSA équipé en interne d’un VCSEL 
10 Gbps précédemment testé a été utilisé comme référence.  

Il est démontré qu’un compromis entre la taille et les performances doit être fait. Les petites 
structures sont des dispositifs plus rapides mais avec présentent un taux de couplage optique 
plus faible. Afin de pouvoir être intégrée par la suite dans le démonstrateur ORIGIN, et par 
souci de disponibilité, une solution de HPT, dite 2T-HPT, sans connexion de la base est 
sélectionnée. Le projet ORIGIN fixe la fréquence intermédiaire à 5GHz. A cette fréquence, il 
apparait que la structure de 10x10µm² présente un gain de 7 dB plus élevé que le 30x30 µm2 
avec une responsivité de 1,45 A/W en DC et de 0,034 A/W à 5 GHz (pertes de couplage optique 
à la sonde optique multimode inclues). 

 R.5 - Design de la liaison Radio-sur-Fibre 

Ce chapitre IV porte sur le dimensionnement de liaisons Radio-sur-Fibre au sens général et 
la mise en place des outils nécessaires. L’accent est porté sur la bonne description de l’impact  
des performances individuelles des composants optoélectroniques et optiques sur le système 
complet. 

La modélisation de dispositifs optoélectroniques pour les applications Radio-sur-Fibre 
nécessite la définition de grandeurs optique-microondes. Celles-ci sont présentées et élargie à 
l’ensemble des grandeurs non-linéaires et systèmes appropriées. Un modèle comportemental 
est également développé en utilisant l’outil Symbolically Defined Device (SDD) du logiciel ADS, 
pour permettre une analyse plus complète.  

 
Les grandeurs optique-microondes développées couvrent les trois caractéristiques 

analogiques principales: la réponse en fréquence, le bruit et les non-linéarités. Ces grandeurs 
sont définies en s’appuyant sur une représentation individuelle de chaque composant, 
microonde, optique ou optoélectronique. La notion de puissance équivalente optique-
microonde et la notion de puissance de bruit optique-microondes équivalentes, en tout point 

 
Banc de mesure sous pointes pour la puce HPT: a) schématique avec un HPT et la 

référence 850 nm TOSA; b) photo du couplage en RF et optique sur le HPT. 
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d’une liaison, est rappelée. Elle permet ainsi une représentation en quadripôle électrique 
équivalent sur lesquels l’ensemble des notions microondes peuvent s’appliquer. Les notions de 
gain optique-microonde (GOM), facteur de bruit optique-microondes (NFOM) sont rappelées. 
Les définitions de point de compression optique-microonde (P1dBOM), point d’interception 
d’ordre trois optique-microonde (IP3OM), plage dynamique sans parasite optique-microonde 
(SFDROM) et enfin vecteur d’erreur d’amplitude optique-microonde (EVMOM) sont été 
présentés. Elles sont notamment appliquées aux VCSEL et aux photorécepteurs étudiés. 

 
Chaque bloc du système RoF est ensuite considéré dans un modèle comportemental 

optique-microonde flexible, mis en œuvre sur le logiciel de simulation circuit et système 
électriques (Agilent ADS). Le modèle a été exécuté avec succès. Les simulations sont validées 
par comparaison aux mesures, ceci dans différentes configurations et différentes combinaisons 
de composants RoF. Le modèle a permis, non seulement de simuler le système RoF complet et 
identifier les points critiques, mais s’est montré capable de permettre l’extraction fine des 
paramètres individuels de chacun des composants, notamment à partir des mesures uniques 
d’EVM. Une illustration de ce modèle et des caractéristiques qui l’alimentent est fournie sur la 
figure ci-dessous : 

 

 
Illustration du modèle de chaque block RoF avec les grandeurs Opto-microonde 

correspondantes. 

 R.6 - Démonstrateur Final 

Le chapitre V est consacré au dimensionnement et à la réalisation du démonstrateur final 
développé dans le projet ORIGIN. 

 
La première partie porte sur le développement des modules packagés (TOSA et ROSA), avec 

le développement d’un substrat d’interconnexion transparent, Verre ou Saphir, pour la 
réalisation du couplage optique et des prises de connexions électriques. Les puces de VCSEL et 
des puces de 2T-HPT SiGe sont montés sur celui-ci. Le couplage optique est réalisé à l’aide 
d’une lentille sphérique d’un millimètre de diamètre montée dans une ferrule mécanique. Cette 
solution présente un coefficient de couplage de 60% pour les VCSEL 10Gbps de Philips ULM 
Photonics et de 35% pour le 2T-HPT de 10µm. Les lignes d'accès et de transmission sont 
optimisées. De bons résultats ont été trouvés en termes de dissipation thermique pour le VCSEL 
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avec une dérive spectrale réduite de 0,237 nm/mA et une température maximale de puce de 
47,1°C seulement à 10mA de courant de polarisation. 

Des réseaux d'adaptation, réactifs et passifs, sont préparés. Quoique non performants dans 
leur réalisation première, la bonne confrontation des simulations aux mesures lors d’un retro-
engineering nous permettent de disposer d’un outil fiable pour de prochaines réalisations, 
notamment conduites au chapitre suivant. Des circuits intégrés SiGe sont également associés au 
2T-HPT de façon à construire un module ROSA SiGe complet de gain suffisant. Les 
performances du module TOSA complète (basé sur le VCSEL ULM) et du module ROSA (basé 
sur le HPT SiGe), sont comparés aux performances des puces qui ont été mesuré dans le 
chapitre III. Les modules TOSA présentent de très bonnes performances EVM, avec une 
dégradation maximale de 3 % par rapport à la mesure EVM back-to-back. Les modules ROSA 
ont caractérisés. Ils présentent une de dégradation d’EVM de 16 %. Il s’agit d’une première au 
niveau international. Quoiqu’importante, il s’agit d’un résultat encourageant qui bénéficiera 
certainement des évolutions d’un 2T-HPT vers un 3T-HPT, d’une amélioration du couplage 
optique et d’un meilleur respect de la largeur de bande du canal par une intégration plus 
poussée du réseau d’adaptation. 

 
La deuxième partie s’attache au dimensionnement des transducteurs TRoF en termes de 

budget de puissance sous deux configurations distinctes : l’une comprenant un ROSA 
commercial Finisar (configuration RoF2), l’autre comprenant le module à base de 2T-HPT SiGe 
en tant que ROSA (configuration RoF3). Le système est dimensionné pour atteindre la 
performance requise pour la transmission de signaux 802.15.3c, à savoir une PIRE de 20dBm 
maximum de réémission (c’est-à-dire 7dB en dessous des maximum autorisés), un canal de 
2GHz centré autour de 60,48GHz (canal n°2) et une variation de la portée entre 1m et 5m pour 
chaque pièce. Le point fixe de la puissance d’entrée du VCSEL est sélectionné sur la base des 
données expérimentales. Cette puissance est de -4,6dBm. La réalisation de ce budget de liaison 
est mené grâce aux formules de compositions des gains optique-microondes (multiplication des 
gains) et des facteurs de bruit optique-microondes (formule de Friis vérifiée). L’architecture 
élémentaire point-à-point, dite tunnel optique, (P2P) et les architectures multipoint-à-
multipoint (MME et MMO) sont traitées. Les points critiques sont identifiés et des solutions 
proposées. L'architecture de MMO se révèle être une option très intéressante pour le futur mais 
relève quelques questions à résoudre: celui du battement optique entre les lasers et celui de la 
saturation de la puissance optique reçue par les photodétecteurs. L’architecture MME est 
privilégiée pour le démonstrateur. 

 
La dernière partie présente le système complet, tel qu’il est intégré dans le démonstrateur 

final. Il comprend la carte centimétrique, la carte de l'oscillateur local, la carte d'alimentation et 
la carte millimétrique. Chacune de ces parties, fabriquée et assemblée par les différents 
partenaires du projet ORIGIN, y est décrite. Les résultats expérimentaux principaux y sont 
donnés. Il ressort un bon respect de l’ensemble des contraintes de dimensionnement, hormis un 
défaut du module de transmission 60GHz qui présente un défaut de 20dB de gain par rapport 
aux spécifications. 

La liaison de communication point-à-point avec deux transducteurs est cependant une 
réussite. Après optimisation et réglage des cartes, une transmission de données réelles Wireless 
HDMI multiGbit/s 3Gbps est effectuée avec succès. La dernière étape comprend la notion de 
communication multipoint-à-multipoint en utilisant le nœud central et la gestion des signaux 
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d’alimentation par la Green Box, responsable de la distribution du signal et la rationalisation de 
la consommation et du rayonnement.  

Le démonstrateur final est finalement mis en œuvre (voir figure ci-dessous) en utilisant une 
communication entre deux chambres à partir d'une architecture multipoint-à-multipoint 
optique par multiplexage électrique (MME) à l'aide d'un nœud central de multiplexage 4x4 et 
un signal de commande pour les transducteurs. Un EVM de 16 % a été démontrée pour un 
scénario à deux chambres jusqu'à l'entrée du block mm-TX, qui représente une réalisation 
réussie en termes de performances. Les modules mm-TX, qui présentent un défaut de 20dB de 
gain, ajoutent un supplément de 14 % pour l'EVM, amenant à l’obtention d’un EVM globale de 
30 %, comprenant les deux sauts (hop) et les défauts du banc de tests.  

Les erreurs induites par cet EVM se sont avérées être compensée dans la transmission haut 
débit (~3 Gbit/s) par l’application de la correction d’erreur implémenté dans les modules 
commerciaux Gefen, proposant ainsi une intégration réelle réussie. 

 
Démonstrateur final du projet ORIGIN organisé à France Telecom (Lannion) 

 
 

R.7 - Développements des dispositifs optoélectronique 
pour la prochaine génération 

Le chapitre VI présente les développements menés pour préparer les évolutions futures des 
transducteurs RoF. Deux orientations sont pointées: l’augmentation intrinsèque de la fréquence 
de fonctionnement des composants et l’amélioration du taux de couplage optique pour de 
petites structures. 

 
Notre contribution sur l’augmentation de performances des VCSEL dits analogiques, 

portent la montée en fréquence au-delà de 20 GHz grâce à la modification de leur dessin de 
masques (voir figure ci-dessous), en termes de diamètre d'ouverture de la fenêtre optique, et de 
l’amélioration de leurs lignes d'accès RF, conjointement aux optimisations de couches verticales 
menées par Philips ULM Photonics. 
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Layout de structure VCSEL à 20 Gbps (8 µm de diamètre) 

 Une bande passante de 20,5 GHz est démontrée pour un VCSEL de 8µm de diamètre. Elle 
varie de 14 GHz à plus de 25 GHz pour un diamètre d’ouverture optique entre 20 µm et 2 µm. 
Un compromis entre bande passante et gain optique-microonde doit être alors réalisé, en 
considérant que la réduction de taille augmente la fréquence de coupure, mais augmente la 
divergence du faisceau et rends donc plus difficile le couplage optique, réduisant ainsi le gain 
optique-microonde résultant. D’un autre côté, les dispositifs de plus grandes tailles facilitent le 
couplage de la lumière, donne un gain plus élevé à la liaison, mais augmentent la consommation 
et diminuent la fréquence de modulation. Le VCSEL à diamètre d'ouverture de 4 µm a été 
sélectionné et caractérisé de manière plus complète. Il montre une fréquence de coupure de 
24 GHz, un gain optique-microonde de -18,1 dB, ce qui correspond à une responsivité de 
0.13 W/A par couplage à une fibre optique lentillée multimode de 28µm de waist à 50µm de 
distance. Des performances intéressantes ont été trouvées en terme de bruit avec un niveau 
inférieur à -140 dB/Hz sur toute la plage de fréquence pour 6mA de courant de polarisation, et 
en terme de non-linéarité avec un IP1dBOM de +10 dBm un IIP3OM de +14 dBm et un 
SFDROM de 94 dB.Hz2/3, pour 4mA de courant de polarisation. Ces niveaux sont comparables 
à ceux des VCSEL ULM Photonics standard 10Gbps malgré la réduction de dimension par un 
facteur 2 sur le diamètre (4 sur la surface). Les meilleures performances ont été obtenues pour 
des courants de polarisation supérieurs à 3 mA (mesure réalisées jusque 4mA) et une fréquence 
de modulation supérieure à 6 GHz.  

L’impact d’un réseau d’adaptation réactif a été exploré, démontrant un potentiel 
d’accroissement du gain de 4dB. Sa réalisation apparait cependant délicate par les pertes 
induites par ses composants. Une intégration monolithique s’avère nécessaire. 

 
Notre contribution sur l’amélioration du taux de couplage optique permet de coupler des 

structures de plus petites tailles et donc intrinsèquement plus rapide. Cela concerne les VCSEL 
précédemment étudiés, mais aussi les phototransistors SiGe étudiés dans une autre thèse. Une 
nouvelle technique de couplage optique est proposée. Elle s’appuie sur une structure de guidage 
optique vertical, à base de structure polymère, pour confiner la lumière dans la transition entre 
le composant optique et la fibre. Cette technique fait l’objet du dépôt d’un brevet. Les 
simulations exploitées pour son dimensionnement sont appliquées dans un premier temps à la 
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technique à base de lentilles saphirs sphériques exploitée au chapitre V. Une bonne 
correspondance à la mesure est obtenue dans différentes configurations et valide notre 
approche. La nouvelle solution proposée (figure ci-dessous) est basée sur un couplage optique 
collectif et passif. Les guides d'onde optique verticaux sont intégrés sur une plateforme 
d'ancrage qui maintient le cône et fournit l'alignement passif en plus du contact à la fibre. 

 
Système de couplage optique proposé 

Des analyses de variation de dimensions, pour une largeur de base tronquée fixée à 10 µm 
indique un dimensionnement optimal et compact pour un grand diamètre de 25 µm et une 
hauteur de cône de 25µm. Ce dimensionnement permet le couplage d’une fibre multimode à un 
détecteur de 10 µm de côté avec un coefficient de couplage optimal de 80 %. Ceci correspond 
une amélioration de 6 dB sur le gain OM par rapport à la technique de la lentille sphérique 
utilisée sur le SiGe HPT. L’analyse de tolérance sur l'alignement a été simulée et évaluée à ± 
20 µm à la moitié de la puissance.  

La simulation de taux du couplage entre un VCSEL de 8µm d’ouverture optique et une fibre 
optique multimode a été évaluée également. Une structure cylindrique de guide de 10µm de 
large et 30µm de hauteur permet d’obtenir un coefficient de couplage aussi élevée que 96 %. 

Ces résultats de simulation, confortés par une validation préliminaire du simulateur et des 
modèles, permettent d’envisager des améliorations notables sur les modules ROSA et TOSA en 
garantissant une réduction du cout et du temps d’alignement. Ils font l’objet d’un dépôt de 
brevet et d’un projet de maturation financé par la SATT IdFInnov. 

R.8 - Conclusions et Perspectives 

Ce dernier chapitre résume les travaux et fournit des conclusions générales. Il présente, 
également, la contribution principale de ce travail et les perspectives adressée pour les 
orientations futures.  

 
En termes d’avancée et de nouveauté, les principales contributions de ce travail sont : 

 La mise en place et le développement et implémentation de bancs de mesure 
avancés pour les composants et applications optique-microondes au sein du 
laboratoire : la mesure du RIN est réalisée de manière simple et fiable, les 
nonlinéarités sont mesurées et extraites séparément pour chaque composant, des 
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mesures systèmes sont traitées par le biais de la mesure d’EVM sur la base des 
spécifications et normes 60GHz. 

 Une extension de grandeur optique-microondes a été apportée amenant à un jeu 
complet d’outils pour la caractérisation individuelle des composants. Les formules 
de composition classiques des microondes sont respectées : gain optique-
microonde(GOM), facteur de bruit optique-microondes (NFOM), point de 
compression optique-microonde entrée et sortie (P1dBOM), point d’interception 
d’ordre trois optique-microonde entrée et sortie (IP3OM), plage dynamique sans 
parasite optique-microonde (SFDROM) et enfin vecteur d’erreur en amplitude 
optique-microonde (EVMOM).  

 Des modèles comportementaux sont mises en place exploitant ces grandeurs 
optique-microondes. Ils sont exploités pour mieux comprendre l’impact des 
performances de chaque composant, mais permet aussi une extraction fine des 
paramètres à partir des mesures EVM. 

 Un système RoF de distribution de signaux 60GHz dans la maison est démontré en 
démonstrateur taille réelle pour la première fois au niveau international à partir de 
VCSEL.  

 Pour la première fois au niveau international, un HPT SiGe, sous configuration 2T-
HPT, a été intégré dans une liaison RoF large-bande. Il présente une dégradation 
d’EVM de 16% sur un signal de type IEEE802.15.3c 

 Des VCSEL analogiques, c’est-à-dire à haute performance optique-microonde en 
linéarité, bande passante et bruit, ont été développés avec des performances 
records : bande passante de 25GHz avec un IP1dBOM de +10dB et un SFDROM de 
94 dB.Hz2/3. 

 Une technique innovante de couplage optique passif et collectif a été proposée avec 
des taux de couplage proche de 96% entre un VCSEL de 8µm de diamètre et une 
fibre optique multimode, et proche de 80% pour un photodétecteur de 10µm de côté 
et une fibre multimode également. Ceci devrait réduire le compromis entre taille, 
donc performances fréquentielles, et taux de couplage, soit donc entre performances 
et coût. 

 
 
Les perspectives de ce travail sont présentées sur les deux thèmes principaux suivants. 
 
Dans un premier axe de perspectives, la poursuite du développement des composants opto-

électroniques et modules RoF et l’amélioration de leurs performances peut se réalisé sur les six 
plans suivants: 

 
 La technologie IF-RoF à une fréquence intermédiaire de 5 GHz est imposée par le 

projet pour rester compatible avec les dispositifs optoélectroniques bas coût 
existants dans le commerce (exemple des TOSA/ROSA Finisar). Cette valeur de IF 
limite la bande passante possible pour la transmission. Un seul canal parmi les 
quatre disponibles dans les standards 60GHz est transmis. Une direction à prendre 
est d'augmenter cette fréquence intermédiaire, ce qui signifie d’utiliser des 
dispositifs optoélectroniques plus rapide. Cette augmentation permettra de 
transmettre un nombre croissant de canaux. Idéalement il serait visé d’atteindre un 
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schéma RoF sans nécessité de fréquence intermédiaire, ce qui économiserait les 
étages de conversion et les non-linéarités et facteurs de bruit associés, qui restent les 
points critiques. En termes de dispositif optoélectronique, la vitesse est inversement 
proportionnelle à la taille. Réduire les dimensions des VCSEL et des HPT devraient 
permettre d’augmenter leur réponse en fréquence, au moins dans une certaine 
limite. Ces petites structures (VCSEL et HPT) sont plus rapides, mais caractérisées 
par un faible gain OM principalement en raison du faible taux de couplage (pas 
seulement toutefois). 

 Des solutions résident également dans la mise en œuvre du packaging et des 
interconnexions électriques et optiques avancées. Celles-ci permettront  une 
intégration plus poussée avec une maitrise des contraintes d’adaptation soit à 
l’amplificateur de puissance (PA) sur l'entrée de VCSEL soit à un LNA à la sortie du 
HPT. En utilisant la même technologie SiGe, les circuits actifs et les réseaux 
d'adaptation intégrés pourraient être utilisé pour optimiser les pertes de réflexion 
entre le circuit et le dispositif optoélectronique. 

 Des solutions côté du phototransistor proprement dit sont également à envisager, 
notamment en réalisant le passage d’un 2T-HPT vers un 3T-HPT, avec l’objectif 
également de réduire le bruit et d’augmenter le gain du composant. . 

 Au cours de cette thèse un HBT a été associé à un VCSEL en utilisant le connecteur 
d'émetteur dans la cathode du VCSEL. Les résultats de cette configuration doivent 
être explorés dans les travaux futurs. 

 L'interconnexion optique est une tâche importante pour mettre au point de telles 
petites structures où la technique de la lentille sphérique se révèle insuffisant. Le 
développement de notre nouvelle technique de couplage est une solution qui permet 
de résoudre ce problème. Il doit être envisagé de la démontrer expérimentalement 
et de pousser ces performances pour la réduction des dimensions du composant 
opto-électronique. 

 Amélioration de la modélisation comportementale: Une meilleure modélisation de 
la composante non linéaire des dispositifs opto-électroniques serait nécessaire au 
lieu de la tangente hyperbolique. Aussi la mise en œuvre des effets des cartes de test 
dans le modèle pourrait être utile. 

 
Un deuxième axe de perspectives réside dans le développement du système et de 

l’architecture complète: 
 L’intégration globale doit être poursuivie, pour rendre compact et plus intégré le 

système TRoF complet. Les modules MM-TX et MM-RX sont critiques. Le module 
mm-TX a été jugée le plus critique avec un gain de 27 dB inférieur à ce qui était 
prévu. Par conséquent, l'amélioration doit être prise en compte de ses performances 
et une plus grande intégration aussi. Nous pourrions envisager une poursuite 
d’intégration dans la technologie SiGe . Des briques de bases ont été initiées.. 

 Le couplage entre les deux antennes et les modules mm-TX et mm-RX est un autre 
point d’amélioration qui va influencer les performances du système. L'amélioration 
peut être dans la conception de l'antenne. 

 La gestion de l'accès optique pourrait être une solution à mettre en œuvre dans 
l'architecture M2M avec contrôle automatique de l'exposition aux rayonnements. 
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 D'autres développements sont nécessaires, en tenant compte des avantages de 
l'amélioration de VCSEL présentés dans cette thèse, pour transmettre le quatre 
canaux de 2 GHz de la norme 60 GHz. 

 L'architecture RoF doit également évoluer et se compléter de façon à intégrer 
plusieurs services, y compris la transmission 1 Gbps Ethernet, la téléphonie RTC, les 
signaux de télévision par satellite et les signaux Wi-Fi 2.4/5 GHz sur le même câble 
hybride. 

 
Enfin, il est à noter que notre travail théorique sur la nouvelle technique de couplage 
optique que nous proposons fait l’objet d’un projet de maturation pour le transfert 
industriel et la valorisation. Un brevet a été déposé préalablement. 
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Abstract 

This work is based on the frame of the French ORIGIN project and intended to explore the Home Area 
Network using the most recent Wi-Fi standard at 60 GHz with the goal to present a solution for the 
upcoming days where MultiGbit/s wireless communication will be required. The ORIGIN solution is 
characterized by the complementary action of two technologies: 60 GHz Wireless communication and 
Radio-over-Fiber (RoF) infrastructure. The project pretends to propose a real prototype based on RoF 
transducers and a Multipoint-to-Multipoint architecture to cover the entire house. This thesis covers from 
the single optoelectronic chip devices until the system implementation and the final demonstrator. The 
light source and the photodetector choice were very important since it dictated the RoF transducer 
architecture. Our choice was on 850 nm multimode devices (GaAs VCSEL and SiGe HPT) which allow 
relaxed constraints on the optical packaging and, therefore, low cost solutions. In terms of performances 
those devices are limited in a few tens of Gigahertz of bandwidth which was the reason for the 
intermediate frequency (IF) architecture. This thesis work addressed the electrical and optical 
interconnection of the optoelectronic chip devices. It explored the integration of hybrid amplification 
stages and passive networks within optoelectronic receivers and emitters. The optical packaging issues 
were addressed through a conventional coupling technique using a ball lens first. The die device 
performances were evaluated and compared with a packaged module in terms of frequency response, noise 
and nonlinearities. Since performances are usually measured as link performances we proposed a 
definition of the Opto-microwave figures of merit, such as Opto-microwave gain, noise, nonlinearities and 
EVM. They are presented and integrated into behavioral models, allowing both the individual 
performances extraction and system design. The integration of the RoF module in the system is the final 
part of this thesis. The performances were measured and simulated at each integration step. The final 
demonstrator based on the multipoint-to-multipoint architecture was implemented using an 
optoelectronic central node for the signal repartition and the Green Box for signal controlling. Real-time 
bidirectional transmission between two commercial WirelessHD devices at ~3 Gbit/s was validated. In a 
final section directions to improve VCSEL and SiGe HPT are explored. 25 GHz analogue VCSELs are 
explored with a focus on their dimensions, improved access and the potential of a suited matching 
approach. A novel collective and passive optical coupling technology is also proposed for both VCSEL and 
top illuminated detectors that couple smaller and faster devices. 

Keywords: Radio-over-Fiber, VCSEL, HPT, Optical Interconections, Opto-Microwave Modelling, 
60 GHz wireless comunication. 

 

Résumé: 

Cette thèse s’inscrit dans le cadre du projet français FUI8-ORIGIN qui vise à développer les 
performances des réseaux domestiques en apportant des solutions sans multi-Gigabits faiblement 
radiatives, économes et pérennes. La solution ORIGIN est caractérisée par l'action complémentaire de 
deux technologies: les communications sans fil 60 GHz et la mise en place d’une infrastructure Radio-sur-
Fibre (RoF). Cette thèse porte sur le développement des composants et modules optoélectroniques (GaAs 
VCSEL et SiGe HPT) bas couts. Le travail implique de couvrir de la puce semi-conducteur au modules et 
jusqu’au système intégré dans le démonstrateur. Les puces sélectionnées sont caractérisées de manière 
précise en développant des bancs de mesures adaptées aux applications analogiques RoF. Des substrats 
d’interconnexions sont développés pour permettre le couplage optique et l’interconnexion électrique des 
puces et ainsi la création de modules. Ce développement est poussé de façon à intégrer de façon hybride 
des étages d’amplification en aval et amont des composants optiques, ainsi que des étages d’adaptations 
passifs. Les performances RoF ont été évaluées et comparées en termes de réponse en fréquence, de bruit 
et de nonlinéarités. Nous avons poursuivi l’approche actuelle des grandeurs optique-microondes qui 
chacune permette d’isoler et caractériser la performance individuelle des composants optiques ou 
optoélectroniques pris individuellement. Ces grandeurs sont présentées puis exploitées dans un 
développement de modèle comportemental, permettant à la fois l'extraction des performances 
individuelles des composants et le design de l’ensemble du système. Un dimensionnement complet de 
l’infrastructure RoF pour le démonstrateur est ensuite mené, intégrant et dimensionnant le bilan de liaison 
global à partir modules et cartes réalisés et développés par les partenaires du projet. Le module 
transmetteur Radio-sur-Fibre (TRoF) est ainsi conçu, assemblé et testé. Le démonstrateur final basé sur 
l'architecture multipoint-à-multipoint a été réalisée à l'aide d'un nœud central optoélectronique pour la 
répartition du signal et d’une Green Box permettant le contrôle de l’allumage des différentes pièces, et 
ainsi la rationalisation du rayonnement et de la consommation du système. Une transmission 
bidirectionnelle en temps réel entre deux dispositifs de WirelessHD commerciaux à ~3 Gbit/s a été 
démontrée. Dans une dernière section de cette thèse, des directions pour améliorer les lasers à cavité 
émettant par la surface (VCSEL) et les phototransistors SiGe sont explorées. Des VCSEL analogiques avec 
une bande passante de plus de 25 GHz sont développés avec la société Philips ULM Photonics et mesurés. 
Une nouvelle technologie de couplage optique collective et passive est enfin proposée. 

Mots clés : Radio-sur-Fibre, VCSEL, HPT, Interconnexions optiques, Modélisation optique microonde, 
Communications sans fil 60 GHz. 


