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1.1 Applications of femtosecond laser pulse 

With the appearance of new ultra-short laser systems, extremely high laser intensities became 

accessible thus allowing laser treatment of practically all materials. As a result, extremely precise 

processing techniques are under development considerably extending the number of the 

corresponding industrial and medical applications [1,2]. Femtosecond laser marking and 

machining are thus used in optics, photonics, counterfeiting, ophthalmology and other fields. 

 The advantage of material processing with femtosecond pulses is most obvious for wide-

gap dielectrics, which are transparent to near infrared and visible laser light. Unlike materials 

such as metals and semiconductors, the possibility of laser machining of dielectric materials is 

not straightforward. Not only can the high peak power of femtosecond pulses turn these 

materials into absorbing targets, but also the involved nonlinear absorption processes may lead to 

a high precision of laser treatment [3]. These effects, together with the associated deterministic 

breakdown thresholds, make femtosecond machining particularly attractive [4,5,6,7] for 

microstructuring. The required ultra-short lasers have become available during last decade with 

the development of several commercial systems, such as Titan:Saphire. The average power of 

these systems is limited, typically not exceeding 10 W, but high enough for numerous industrial 

applications. 

 During last decade, several important features of femtosecond laser ablation (as opposed 

to machining with nanosecond pulses) were underlined [3], as follows 

 (i) it is possible to process transparent materials; 

 (ii) very regular damage patterns as well as a higher reproducibility of structures from 

shot to shot were obtained [8]; 

 (iii) high intensities in the focal region at low average power result in low thermal effects; 

 (iv) the penetration depth of the pulses can be controlled by changing the pulse duration; 

it can be as short as 100 nm [9]; 

 (v) only a small fraction of pulse energy is converted to heat and momentum (small heat-

affected zone or shock-affected zone) [10]. 
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Fig. 1.1. Scanning electron micrographs of fused silica ablated by ultrashort laser pulses [3] with 

a peak fluence of F0, λ = 780 nm, 80 shots. Pulse duration and fluence are (upper left) τp = 3 ps, 

F0 = 19.9 J/cm
2
; (upper right) τp = 220 fs, F0 = 10.7 J/cm

2
; (lower left) τp = 20 fs, 

F0 = 11.1 J/cm
2
; (lower right) τp = 5 fs, F0 = 6.9 J/cm

2
. 

 To qualitatively demonstrate this phenomenon, typical ablation pictures taken from a 

scanning electron microscope are shown in Fig. 1.1 for fused silica. The holes are obtained for 

different pulse durations between 5 fs and 3 ps and machined with 80 pulses from a Ti:Sapphire 

laser system at a repetition rate of 1 kHz. It is obvious that the 5 fs ablation morphology 

(Fig. 1.1, lower right) is much more precise/deterministic than in the case of longer pulses (Fig. 

1.1, upper row). The differences are visible even when compared with the 20 fs pulses (Fig. 1.1, 

lower left). Although the applied fluence is higher for the picosecond pulses, similar damage 

threshold fluence can be observed for all pulse durations. A more stochastic behavior of long-

pulse ablation accounts for the difference in the hole’s edge quality, as will be explained in 

Section 2. 

 For materials such as metals or semiconductors, thermal effects play a role and their 

effect rises with pulse duration. In fact, in these materials free carriers transfer energy to the 

lattice on a time scale of a few ps, after which melting and evaporation occur. By carefully 

choosing the parameter range (wavelength, pulse duration, fluence) for laser processing, one can 

structure these materials with the same high precision using more cost-efficient, longer-pulse, 

laser systems. Another interesting application of high-intensity laser pulses is laser processing of 
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transparent materials in bulk. Not only can decorative accessories be produced in this way, but 

also three-dimensional optical waveguides can be written within such materials [11]. The 

physical mechanisms of the laser-induced permanent modification of the refractive index is not 

completely understood. Structural changes of the atomic network rather than optical breakdown 

are likely to occur [12]. At higher intensities, these material can be also ablated. For instance, 

microfluidic devices can be manufactured by using this technique [13]. 

 Further progress in these areas requires a better understanding of fundamental processes 

involved in the laser interactions. In addition, the success of several international projects 

[French ―Laser Mega Joule‖ project, LMJ (Fig. 1.2), American ―National Ignition Facility‖ 

project, NIF (Fig. 1.3)] involves the development and use of high power laser systems and 

depends on the capacity of careful definition of damage threshold of the optical components. 

 

 

 

Figure 1.2. LMJ experimental chamber. Laser MégaJoule Project, http://www-lmj.cea.fr. 
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Fig. 1.3. NIF experimental chamber. National Ignition Facility Project, http://lasers.llnl.gov. 

 

 These points illustrate the importance of a detailed numerical modeling of laser 

interactions with dielectric materials. In ultra-short laser interaction with dielectric materials, 

particular attention should be paid to such process as laser-induced electronic excitation, 

absorption, and relaxation processes. In fact, upon laser irradiation, seed electrons appear in the 

conduction band of the dielectric materials first due to the photo-ionization process 

[14,15,16,17]. Colliding with a third-body, these electrons are further heated in laser field. When 

the threshold electron energy is reached, electron-impact ionization begins. At the same time, the 

considered laser pulses are so short that the electron sub-system has no time to reach an 

equilibrium state. The resulting optical properties are thus affected and the definition of the 

damage criterion should be revised for such non-equilibrium conditions [18,19,20,21,22]. 



13 

 

§1.2 Theoretical and experimental approaches 

 

A large number of both experimental and theoretical studies were performed to elucidate the 

mechanisms of femtosecond laser interactions with transparent materials and to find a possibility 

of better control over the laser-induced material modifications 

[23,24,2526,27,28,29,30,31,32,33,34,35,36,37,38]. Some of these investigations were focused on 

the effects of non-linear laser propagation in dielectric materials [39,40]. Other studies were 

mostly focused on material ionization and plasma formation [13,41,42,43,44,45,46,47,48,49,50]. 

In particular, such strongly non-linear effects as self-focusing, filamentation, multi-photon and 

tunneling ionization were demonstrated. Several numerical calculations were performed, based 

both on non-linear Schrödinger equation [39,40], and on full Maxwell equations [51]. To 

complete these calculations, material ionization models were developed. In particular, Keldysh 

proposed theoretical treatment of non-linear photo-ionization processes [41,52,53]. In addition, 

such processes as electron-impact ionization, and electron energy relaxation were also 

investigated. Several numerical techniques were used in previous calculations of electronic 

excitation, ranging from quantum mechanics, ab initio [25,54] and solutions of the Boltzmann 

equation by the Monte Carlo method [55,56], numerical solutions by the difference method 

[14,34,57], and the Fokker-Plank approximation [15,50,58,59,60] to the simplified rate equations 

[26,28,35]. These calculations revealed many characteristic features of femtosecond laser 

interactions. In particular, the mechanisms of laser damage and ablation were discussed and 

threshold laser fluences required to induce laser damage or ablation was examined as a function 

of laser parameters [24,26,28,31,32,33,35]. 

 Despite a variety of previous studies, the correct definition of the damage threshold 

remains challenging and unclear both in the experiments and in theoretical models. The proposed 

criteria were often based on simple models disregarding strong deviations from equilibrium that 

typically occur in the electron sub-system upon femtosecond interactions. The non-equilibrium 

electron sub-system was also considered in several papers [14,15]. These calculations provided 

an information about the relaxation time for metal and dielectric materials, as well as about the 

final density of the electrons injected in the conduction band (CB) due to both photo-ionization 

and electron-impact ionization processes. In addition, the role of laser pulse duration in the 

elucidation of the prevailing ionization mechanism was investigated [61]. Recently, a precise 

experimental procedure was proposed [62]. In addition, new theoretical criteria were also 

introduced [35,63,64]. However, many issues are still puzzling. For instance, it is unclear how 

the calculation results depend on the band structure and on laser parameters. In fact, parabolic 

band structure was set in most of previous calculations. Moreover, the density of the created 

electrons in the conduction band (CB) depends strongly on both laser intensity and pulse 

duration. In addition, it is unclear if Drude model is applicable for the calculation of the heating 

of the CB electrons. A detailed investigation of these processes is, therefore, required to better 

understand ultra-short laser interactions with dielectric materials. 

 Strictly speaking, classical continuum models [33] are not suitable for description of the 

ultra-short laser excitation. This fact is a direct consequence of the time and space scales of the 
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processes taking place due to action of the laser irradiation. In fact, both the electron and lattice 

subsystems strongly deviate from the equilibrium states during the laser pulse. Therefore, to 

describe these subsystems on the sub-picosecond time scales we apply a kinetic approach based 

on Boltzmann equation. Furthermore, this approach does not require using high performance 

computer, contrary to the one based on the Kadanoff-Baym equation by Otobe [25]. Our model 

is based on the Kaiser model [14]. The advantages of this method are the following: (i) the 

model has no approximations, such as the one used by Epifanov et al. [59]); (ii) all of the basic 

mechanisms that influence the kinetics and excitation are taken into account (no 

phenomenological models, such as Drude model, are used) [60]; (iii) all necessary data, such as 

parameters of electron-phonon interaction is available for the calculations; and (iv) the proposed 

model has no adjustable parameters. Additionally, we show how to extend Kaiser's approach by 

a more detailed consideration of the mechanisms of photoionization and absorption of laser 

radiation, which are discussed in the Chapter 2. 

 The proposed approach accounts for the non-equilibrium and provides a detailed 

description of the major processes involved in the laser interactions. In particular, we consider 

the photo- and impact- ionization processes, as well as electron-electron, electron-phonon and 

electron-ion collisions. 

 The electron energy distribution and heating of electron subsystems is discussed. The role 

of laser parameters (wavelength, pulse duration, fluence) and material properties (energy gap, 

band structure) is investigated. The thermalization time is calculated and characterizes the non-

equilibrium state as a function of laser pulse duration. A novel thermal criterion is proposed for 

damage definition based on the electron and phonon energies. The calculated damage thresholds 

are compared with recent experimental findings. An analysis of the classical (Drude) model and 

optical breakdown-based criterion is also performed. 
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1.3 Open questions, objectives of the present work and manuscript’s 

organization 

 

Despite a large number of the previous studies, many questions are still open in the field of 

ultrashort laser interactions with dielectric materials. In particular, the following points are 

unclear 

 (i) role of the laser pulse parameters, material properties and different mechanisms 

(Umklapp processes and electron-ion collisions) in the electron heating due to the action of the 

sub-picosecond laser pulses in the wide bandgap dielectrics; 

 (ii) role of the laser pulse parameters, material properties and basic mechanisms 

(photo-ionization, impact- and field-assisted impact- ionization) in the electron generation due to 

the action of the sub-picosecond laser pulses in the wide bandgap dielectrics; 

 (iii) change in the optical properties during the laser pulse in the wide bandgap 

dielectrics; 

 (iv) time thermalization (non-equilibrium problem); 

 (v) difficulty to determine the adequate damage criterion for the sub-picosecond laser 

pulses based on both laser pulse parameters and material properties. 

 To shed light on these puzzling issues, a detailed numerical investigation is required 

based on a rigorous numerical calculations and a comparison with the most accurate 

experimental measurements. In this manuscript, I present the results of my work at the Hubert 

Curien Laboratory that I performed in the frame of my PhD studies at the University Jean 

Monnet/Lyon (2009-2013). The main objectives of this work are the following 

 (i) to investigate all possible heating mechanisms which take place on the fs-time scales 

and to determine the role of each one of them; 

 (ii) to examine all possible generation mechanisms which take place on the fs-second 

time scales and to determine the role of each one of them; 

 (iii) to propose a new adequate definition of the damage criterion based on both laser 

pulse parameters and material properties and to verify it through the comparison with recent 

experiments. 

 For this, I have developed a computer code based on Boltzmann equation. This code has 

been used for a series of calculations that permit me to obtain the results presented in the present 

manuscript. The thesis is organized as follows 

 - After a brief description of the applications and previous studies given in the present 

Introduction (Chapter 1), Chapter 2 is focused on the description of the model. Here, the main 

processes and the corresponding equations are described. In particular, I present the description 
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of the photoionization process, impact ionization process, electron-electron scattering process, 

electron-phonon scattering process (in present/absence of laser wave field), and electron-ion 

scattering process (in present/absence of laser wave field). I would like to note that despite the 

fact that some of the equations were already used in previous studies, I have introduced the 

correct definition of the photoionization collision integral and corresponding rates; the Umklapp 

processes in the electron-phonon collisions and additional and correct phonon modes with 

respect to Kaiser's work [14], the electron-ion collisions, which are new and the importance of 

these term will be demonstrated. 

 - Chapter 3 summarizes the main calculation results. In details, one can find here the 

discussions of (i) the role of laser field amplitude, wavelength and materials properties in the 

photoionization process; (i) the role of laser field amplitude, wavelength, and screening effect in 

the impact ionization process; (iii) the role of the photoionization, electron-phonon, electron-ion 

processes in the electron heating; (iv) optical properties and comparison with classical (Drude) 

model; (v) the non-equilibrium electronic subsystem state; (vi) time observation of the electronic 

excitation/relaxation dynamics and comparison with experimental data. 

 Among the novel and original results my work has demonstrated the following (a) the 

importance of the band structure in the PI processes; (b) the role of laser wavelength in the 

calculation of the mean energy of electron sub-system is clearly shown for the first time; (c) the 

role of the Umklapp processes that are included in both the electron-phonon collisions and in the 

electron-ion collisions to describe correctly the laser energy deposition; (d) the limits of validity 

of Keldysh equation at large laser intensity is underlined; (e) for the first time, I have compared 

free-carrier absorption based on the classical Drude model with the one based on the presented 

quantum mechanical description; (f) the electron thermalization process is examined as a 

function of laser parameters; (g) the confirmation of the time observation of the electronic 

excitation/relaxation dynamics experimental results is demonstrated; (h) the avalanche model is 

analyzed as a function of laser parameters, and a comparison with previous experiments is 

performed. 

 - Chapter 4 is focused on the determination of the damage threshold. This question is 

very important and the answer to it is very puzzling. Previously, several criteria were proposed. 

Here, I propose a new one based on the comparison of the electron energy density with that of 

phonon sub-systems. 

 General conclusion summarizes the main results of my work. I will also emphasize the 

importance of the results including both theoretical and practical aspects. Perspectives are finally 

presented, including both further theoretical development and practical applications. 
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Chapter 2 

Main physical processes occurring 

during ultra-short laser interactions 

with dielectric materials: Modeling 

details 
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§2.1 System of Boltzmann equations 

 The evolution of the electron sub-system is considered by using Boltzmann equation 

(BE). The distribution function of the conduction band electrons in the phase space (r,k) is called 

f. This function depends on the position r, on the wave vector k, and on time t. Then, the 

Boltzmann equation is given by [65,66,67,68,69,70,71] 

,
, , ,

CIcb

t f
f t

t m t
r k

F rk
r k  (2.1) 

where mcb is the effective mass of the free colliding electron, and F(r,t) is the force acting on the 

electron conservative force field. 

 Spatial effects can be neglected if laser field is homogeneous in space. Furthermore, the 

effect of the field is taken into account directly in the collision integrals [72,73,74]. Then, the 

equation takes the following form 

,
CI

d f
f t

dt t
k . (2.2.1) 

 Because electrons interact with phonons, additional equations for the phonon subsystem 

should be added. The model also assumes a local homogeneous space with respect to the 

phonons. An analogy with the equation (2.2.1) results in a Boltzmann equation for the phonons. 

Here, the electron distribution function f(k,t) is replaced by the ,g tq , where the index β 

denotes the phonon mode, q is the phonon wave vector. Thus, the equations for the phonon 

modes are 

,
CI

gd
g t

dt t
q . (2.2.2) 

 Completing the BE equations by the initial conditions, we obtain the following system of 

equations to be solved 

0

,0

,

, 0

,

, 0

CI

CI

d f
f t

dt t

f t f

gd
g t

dt t

g t g

k

k k

q

q q

. (2.3) 

 The collision terms, 
CI

f

t
 and 

CI

g

t
 are composed of separate collision integrals 

describing the individual scattering processes. In what follows, we present them in more detail.
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2.1.1 Main physical processes 

Figure 2.1. General schematics of excitation/relaxation processes in an insulator [75]. 

 

Since we consider femtosecond time scales (Fig. 2.1), the following electron scattering processes 

are taken into account in our model 

(i) Photoionization collision integral (pi) 

The photoionization collision term describes the electron transitions from the valence band to the 

conduction band under the action of the laser irradiation. 

(ii) Electron-electron collision integral (e-e) 

The electron-electron collision term describes the collisions between two electrons in the 

conduction band. 

(iii) Electron-phonon collision integral (e-ph) 

The electron-phonon collision term describes the collisions between conduction band electrons 

and phonons. The electron can emit and absorb the phonons. 
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(iv) Electron-phonon-photon collision integral (Index: e-ph-pht) 

The electron-phonon-photon collision term describes collisions between conduction band 

electrons and phonons in external laser field. The electrons emit and absorb photons and 

occupation numbers of electrons and phonons change due to these collisions. 

(v) Electron-ion-photon collision integral (Index: e-ion-pht) 

The electron-ion-photon collision term describes collisions between conduction band electrons 

and ions in external laser field. The electrons emit and absorb photons due to these collisions, but 

the ion state does not change. 

(vi) Impact ionization collision integral (Index: imp) 

The impact ionization collision term describes collisions between two electrons, from conduction 

band and valence band. The conduction band electron transfers energy to the valence band 

electron and the valence band electron transits to the conduction band in result of this process. 

 The spatial dependency is neglected. Thus, the electron occupancy of f and the phonon 

occupancy of g  are calculated in a point, and no transport processes is considered here. 

 The occupation numbers and the momentum space of the electron and phonon wave 

vector are set to be isotropic. Thus, the occupations (distribution functions) depend only on the 

absolute value of the wave vectors and not on their directions. Then, the momentum space is 

replaced by the energy space to describe the electronic subsystem. We obtain the system of 

coupled non-linear integro-differential equations 
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0

,0

,

, 0

,

, 0

pi e e imp e ph pht e ion pht

ph e pht

df t f f f f f

dt t t t t t

f t f

dg q t g

dt t

g q t g q

. (2.4) 

 

The expression containing the electron-phonon collision integral, 
e ph

f

t
, as a special case for 

the electron-phonon-photon collision integral, 
e ph pht

f

t
, is used. Similarly, the phonon-electron 

collision integral, 

ph e

g

t
, is included in the phonon-electron-photon collision integral, 

ph e pht

g

t
, as we explain below. 

2.1.2 Applicability 

 We note that Fermi's Golden Rule [22,57,70] is used in the calculation of collision 

integrals [14,76,77,78], so that the first step is to identify the scattering potential. Then, the 

corresponding matrix elements are evaluated. Below we provide the details of matrix element 

calculations based on Bloch and Volkov-Bloch wave functions 

[17,19,41,73,74,68,70,71,79,80,81,82,83]. Additional explanation can be find in Appendix A. 
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§2.2 Photoionization process 

The transition probability of an electrons from the valence band to the conduction band caused 

by the laser field was studied by Keldysh [41]. 

 

 

Fig. 2.2. Schematics of the photoionization in a two-band model. The laser field excites an 

electron from the valence (v) to the conduction band (c), creating a non-equilibrium electron 

distribution. 

 

2.2.1 Fundamentals 

The key issue in the Keldysh's approach is a choice of the electronic functions for the initial and 

final states. For this, Volkov-Bloch functions are taken as follows [80] 

, ,

,

0

, exp  - 

t

c v c v

c vt t

i
t u t d

p p
r r p r p , (2.5) 

with a time-dependent quasi-momentum vector modified by the external field 

 - sin
e

t tbE
p p , (2.6) 

where the field depends on time as cost tbE E ; c is the conduction band and v is the 

valence band, and 
,c v

t
u

p
r  is a periodic Bloch function of the coordinates, with a period equal to 

the period of the crystal lattice. 
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 Thus, the difference between Keldysh approach and the usual perturbation theory lies 

only in the fact that the probability calculation of transition is not to a stationary final state, but to 

the state (2.5) that already takes exact account of the main effect of the electric field — the 

acceleration of the electron. The matrix element (averaged over wave period) of the transition 

between the states (2.5) was taken into account only in the first order of perturbation theory and 

the corresponding expression follows as 

2
0

1
exp

2 1

u

cv cv

C

vi
L V u dv du

v

p
p p , (2.7) 

and the matrix element of the optical transition from the valence to the conduction band is 

determined in the following fashion 

0

* 3c v

cvV i u e u dp b p pp r E r r , (2.8) 

where Ω0 is the volume of elementary cell. 

2.2.2 Photoionization rate 

The PI rate can be presented as 
max

,

pi

n

pi pi n

n l

W W . The term pin l  corresponds to the process 

occurring due to the transition of a valence band electron absorbing minimum necessary number 

of photons [to satisfy the energy law, v cnk k ] to the conduction band. The terms 

with pin l  correspond to the process where the valence band electron absorbs energy above the 

necessary one. However, the electron energy in final state is limited, because the process occurs 

in the first Brillouin zone. That is, the electron energy in final state cannot overcome the 

Brillouin band-edge energy, 
max,pi n BZ , which is a significant difference from the situation in 

gases, where the electrons can go to infinity and have energy significantly more a few eV. Thus, 

there is a limited number of additional absorbed photons, therefore n is limited by nmax, that is 

maxn n , where max

2 BZ
pin l . If the photon energy, , is much smaller than the 

Brillouin band-edge energy, 
BZ

, then nmax is a huge number, and we can approximate nmax by 

infinity as Keldysh proposed. However, in visible region the photon energy is about 1 eV, and 

BZ
 is a few eV, therefore that is important to take into account the limitation of n. 

 The PI rate depends on band structure (BS). Therefore we compare two high-usage 

dispersion laws of band structure in semiconductors/dielectrics. 

 In case Kane BS corresponding PI rate per unit of volume is given by [41] 
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3 2

2 2

,

2 1

2
, exp

9

Kr
pi n n pi

K Em
W s Q x l

E
 (2.9) 

and the function ,K

nQ x , which varies slowly compared with an exponential function, is of the 

form 

22 2

1 1 1 1

, exp
2 2

K

n pi

K E n x
Q x n l

K E K E
, (2.10) 

where r

b

m

eE
 is the master parameter, 

1
2

1

1
, 

2
21

, 1

2

2
E  is the 

effective ionization potential, x , 1pil x  (the symbol [x] denoted the integer part of 

the number x); the functions K and E are the complete elliptical integrals of the first and second 

kind (Appendix A),  is the Dowson's integral (Appendix A). In the Keldysh's equations there is 

a few misprints. I completely preformed calculations to eliminate defects (Appendix G). The 

same procedure was performed by Gruzdev [82]. 

 In case of parabolic BS, the corresponding rate per unit of volume is given by [84] 

3 2 2

, 2

2
, exp 2 Arsh 2 2

8 1 4

Pr
pi n n pi

m
W s Q x l x  

and, as previously, the similar function ,P

nQ x is of the form 

, 1 2 exp 2 Arsh 2P

n piQ x n x n l , 

(2.11) 

where 
2

1
1

4
 is the effective ionization potential, 

21 1 1 2 ; Arsh is the 

arc-hyperbolic sine function (Appendix A). Upon some corrections of several misprints in Ref. 

Gruzdev [84]. The equations coincided accurately with the numeric multiplier (Appendix G). 

 

2.2.3 Photoionization collision integral 

The corresponding collision integral can be written as follows 

2

2

2
, 1

, 1

pi v v c

pi rr

rr v c v

f
M f f n

t

M f f

k

k k k k k k

k k k k k k

 (2.12) 
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where ,, ,pi piM M
k k

k k k k  corresponds to the direct photo-ionization matrix element, 

and ,, ,rr rrM M
k k

k k k k  corresponds to the radiative recombination matrix element. 

 Taking into account that 
22

rr piM M  [22], and 

max2 2

,, ,
pi

n

pi pi n

n l

M Mk k k k , (2.13) 

the expression for the photo-ionization collision integrals is given by 

max 2

,

2
, 1

pi

n

pi n v v c

n lpi

f
M f f n

t
k k k k k k . (2.14) 

 By assuming that the electron occupation numbers in the conduction and valence bands 

are isotropic in momentum space, the final collision integral for photon-ionization can be written 

as follows 

max 2

,

2
1

pi

n

pi n v v v

n lpi

f
M f f n

t
, 

c
. (2.15) 

 In the case of parabolic BS, the corresponding matrix element is given by (Appendix E) 

,

2 3
2 ,

, ,2

,

2

2 2
pi n

pi n

pi n

cb r pi n

W
M

m m
, where ,

r
pi n

cb

m
n

m
. (2.16) 

Using eq. (2.16), the eq. (2.15) can be written as follow 

max
4

,

,3

,

2
1

2pi

n
pi n

v v pi n

n lpi cb pi n

Wf
f f

t m
. (2.17) 

 In the case of Kane BS, the corresponding matrix element is given by 

,

2 3
2 ,

, ,3

,
2 pi n

pi n

pi n

r pi n

W
M

m
, where ,

1

2
pi n n . (2.18) 

Using eq. (2.18) the eq. (2.15) can be written as follows 

max
4

,

,3

,

2
1

4pi

n
pi n

v v pi n

n lpi r pi n

Wf
f f

t m
. (2.19) 
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§2.3 Electron-electron scattering process 

2.3.1 Fundamentals 

The electron gas in an insulator can be regarded as a plasma with fixed positive charges. 

Therefore, two electrons at r and r' interact through the screened Coulomb interaction potential 

Ve-e [22,57,70,71] 

2

0

0

exp
4

e e

e
V q r r

r rò
, (2.20) 

where e is the elementary charge, 
0ò  is the electric permittivity of vacuum constant. The 

parameter 
0 01q  is the screening parameter. In the first approximation, the Debye screening 

length can be used for the screening parameter/length [22,68,70] 

2 2
2 2 0

0 0 2

0 0

23

2 3

e e

B e e

n e n e
q

k T n e

ò

ò ò
, (2.21) 

where kB is Boltzmann constant, ne is the density of electrons in the conduction band. Te is the 

electron temperature in the equilibrium. Because the electron distribution is non-equilibrium so 

that the temperature is not defined, it is better to use the original definition for this parameter as 

follows 

2 3 2
2

0 2 3

002 2

cb
fe m

q d
ò

, (2.22) 

or use Te as a fitting parameter. 

 The matrix element of an electron-electron collision per volume V = NΩ0 [22,57,70,71] 

2 1 3

22

2 1 3 2 1 3

2
2

,2 2
0 0 1 2 0

, ; , , ,

1

e e e eM c c V c c

e

N q
k k k k g

k k k k k k k k

k kò

, (2.23) 

where k1 and k3 are the wave vectors of the two electrons before the collision; k2 and k are the 

wave vectors after the collision, g is a reciprocal lattice vector used for the Umklapp processes 

( 0g  ), which is neglected here. Here, only normal processes with g = 0 are considered. 
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2.3.2 Electron-electron scattering rate 

The electron-electron scattering rate is given by the following expression 

1 2

23 2

1 2 1 224 2 2
0 0

1 1
, ,

2 e e

cb
e e e e e

D

m e d
n F d d

k qò
, (2.24) 

with 

1 2 1 2, 1e eF f f , (2.25) 

where 
3 1 2

; 22 /cbk k m ; 1 3 1 3 2 2, ,e eD k k k k k k k k  is 

the integration region. 

2.3.3 Electron-electron collision integral 

The first perturbation theory is applied for the calculation of the collision integral. In our model, 

the electron-electron collision integral (for normal processes with g = 0) is expressed as follows 

2

, ,

2

, ; , , , ,

e e

e e e e

f

t

M
1 2 3

1 2 3 1 2 3 3 2 1

k k k

k k k k k k k k k k k k

 (2.26) 

with 

, , , 1 1

1 1

e e f f f f

f f f f

1 2 3 3 2 1

1 3 2

k k k k k k k k

k k k k
. (2.27) 

 In Eqs. (2.26-27) the calculations by k1, k2 and k3 are required. Here, according to the 

procedure presented in Appendix H, only a two-dimensional integral is solved as follows 

1 2

23 2

1 2 3 1 224 2 2
0 0

1 1
, , ,

2 e e

cb
e e

e e D

f m e d
d d

t k qò
 (2.28) 

with 

1 2 3 3 2 1

1 3 2

, , , 1 1

1 1

e e f f f f

f f f f
, (2.29) 

where 213  ; 22 /cbk m ; 1 3 1 3 2 2, ,e eD k k k k k k k k  is the 

integration region. 
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§2.4 Impact ionization process 

The impact ionization term describes collisions between two electrons, where one electron is 

initially in the conduction band and the second one is in the valence band. As a result of the 

collision, valence band electron passes to the conduction band (ionization). The conduction band 

electron transfers energy to the valence band electron and the valence band electron and should 

be energetic enough to overcome the ionization barrier. 

 

2.4.1 Fundamentals 

The impact ionization is reverse to the Auger recombination process [71,78]. This process is not 

considered in the collision integrals because the probability of Auger is much smaller than the 

probability of the impact ionization for dielectric materials [22,68]. The screened Coulomb 

potential Ve-e is used as the interaction potential (see Section 2.3). The effect of the band change 

of the collided electrons is taken into account in the matrix element of the electron-electron 

collision. This is done with the help of the overlap integral I(k2,k3). Thus, the matrix element for 

impact ionization is given by a combination of the matrix element for screened electron-electron 

interaction and the probability for a band transition for Normal processes (g = 0) and Umklapp 

processes (g ≠ 0) [14,71,76,77] 

2 1 3

22

2 1 3 2 1 3

2
2

2 3

,2 2
0 0 2 3 0

, ; , , ,

,

imp e eM c c V c v

Ie

N q
k k k k g

k k k k k k k k

k k

k kò

, (2.30) 

where the overlap integral is written as 

2
2 2

2 3 2 3

0

1 1
,

2 vb

I
m m

k k k k . (2.31) 

 It should be noted that the conduction electron has an additional energy due to the action 

of ponderomotive laser field. Therefore this effect was taken into account by replacing the 

energy gap Δ by the effective energy gap  [see eq. (2.8) and eq. (2.10)] in the overlap integral, 

eq. (2.31). 
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2.4.2 Impact ionization rate 

The impact ionization rate in our model is given by the following expression 

1 2

2 22 2

3 2

0 0

2

1 2 1 22
2 2

0

1 1
, , 1

22

,

imp

vb cb
imp e

imp

K

e m m
n

m k

d
F d d

q

ò

 (2.32) 

with 

1 2 3 1 2, 1 1imp v cF f f f , (2.33) 

where 
1 1 2 3 2 3, ,c c

impK k k k k k k k k  is the integration region. 

 

2.4.3 Impact ionization collision integral 

In our model, only so-called ―normal‖ processes are considered (quasi-free electrons in two-band 

approximation). In this case, the impact ionization collision integral (for normal processes with 

g = 0) is 

1 2 3

2

1 3 2 1 3 2 1 3 2

, ,
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1 3 2 1 3 2 1 3 2
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M

M

M

k k k

k k k k k k k k k k k k

k k k k k k k k k k k k

k k k k k k k k k k k k

 (2.34) 

with 

1 3 2 1 3 2, , , 1 1a a

imp vf f f fk k k k k k k k , 

1 3 2 1 3 2, , , 1 1a a

imp vf f f fk k k k k k k k , 

3 1 2 3 1 2, , , 1 1c c

imp vf f f fk k k k k k k k . 

(2.35) 
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 Similarly to the calculations of the electron-electron processes, the calculations by k1, k2 

and k3 in eq. (2.34) can be reduced to the two-dimensional integral 

1 2

1 2

2 22 2

3 2

0 0

2

1 3 2 1 22
2 2

0

2

3 1 2 1 22
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1 1
1

22
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K K
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K

f e m m

t m k

d
f f f f d d

q

d
f f f f d d

q

ò

, (2.36) 

where 22 icbii mkk ; 
~

213 cbvba mm  and 
~

213 cbvbc mm  

are the electron kinetic energies follow from energy conservation. 

 The integration regions of the impact ionization collision integral, eq. (2.36), are given by 

1 1 2 3 2 3, ,a a

aK k k k k k k k k ; 

3 3 1 2 1 2, ,a a

bK k k k k k k k k ; 

1 1 2 3 2 3, ,c c

cK k k k k k k k k . 

(2.37) 
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§2.5 Electron-phonon scattering process (in present/absence of laser wave 

field) 

Free electrons oscillate in the laser field and can absorb energy only when a collision with third 

body occurs in this oscillation. For instance, an oscillating electron collides with a phonon 

absorbing or emitting its momentum. 

 

2.5.1 Fundamentals 

Here we involve laser field directly in the collision integral. There are a few ways to obtain the 

corresponding expressions for the probability and for the matrix element [72,73,74]. In 

particular, in Epshtein [72], the kinetic equation for the electrons was first derived in a strong 

electromagnetic field. In addition, Mel'nikov [73] (brief discussion) and Furuse et al. [74] 

provided the corresponding values derived with the help of a systematic method suggested by 

Keldysh [41]. 

 The electron-phonon interaction's type depends on the materials. Since the insulators are 

usually ionic (ionic-covalent) materials, the polar electron-phonon interaction is one of the 

dominant processes in the interaction of the electrons with the lattice. The interaction is due to 

the coupling between the electron and the dipole field associated with the Longitudinal Optical 

(LO) phonons of the crystal; the weaker field associated to the Transverse Optical (TO) phonons 

being of negligible importance. 

 The LO-phonons are coupled to the electrons. Fröhlich Hamiltonian [85,86,87] is used to 

describe the collision between free electrons and polar phonons. The corresponding matrix 

element follows as 

1

22

, 1 1 ,

2
2

1

,2

0 0

, ;

; , 1 1 1

2 2 2

e ph LO e ph LO
M V

Ge
g

N q
k k q g

k q k k q k

k q k
q

ò

. (2.38) 

 

 Previously it was shown that the non-polar electron-phonon interaction have to be 

considered too. The non-polar interaction is treated within the deformation potential 

approximation [86,87]. Electrons can interact with acoustic and optical phonons (in SiO2, only 

the TO-phonons [88]). Therefore, the corresponding matrix elements are 
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1
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 Using a spherical-band model, the matrix elements, at which an electron of wave vector 

of magnitude k scatters with each phonon of type β [the average by polarization (index j) is taken 

into account for acoustic mode] is written as 
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2
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q

k q k q

q

ò
, (2.41) 

where S q , G  and 
TO

 are acoustical and optical coupling constants, respectively. 

ACS q iC q , where CAC is the acoustic deformation potential; 
2 1 1

2
G ,  and 

 are the high frequency (optical) dielectric constant and low frequency (static) dielectric 

constant of β-th LO-mode, respectively; 
TO

 is the optical deformation potential; acoustic 

frequency, AC q , is given by 

, 0

,

s BZ

AC

s BZ BZ

v q q q
q

v q q q
, 

BZq  is the Brillouin band-edge wave vector; vs is the mean speed of sound, 
3 2 1

LA TA

s s sv v v
; 

22 cbk k m ; ρ is density of target in [kg·m
-3

]; q , if 0  (see 

Appendix F). 
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 According to Epshtein [72], the corresponding e-ph-pht matrix element is expressed as 

2 2
2

, , 1 , 1, ; , ;e ph pht e ph

l lM J Mk q k Aq k q k , (2.42) 

where 
2

cb

e

m

b
E

A , Jl is the Bessel function of integer order, 0, 1, 2,...l  (Appendix A). 

The index l stands for the number of photons being absorbed (l > 0) or emitted (l < 0) in one 

collision process. A multiplier 
2

lJ Aq  is responsible for the probability of such a collision. The 

term with l = 0 provides the part of the pure electron-phonon interactions, that is without 

absorption/emission, however, with account of laser field. When the laser field is absent, 
2

0 0 1J bE  and 
2

0 0 0lJ bE , then the matrix element, eq. (2.42), reduces to the usual 

electron-phonon matrix element, eq. (2.41). 

 

2.5.2 Electron-phonon-photon scattering rate 

In our model, the electron-phonon-photon scattering rate is given by following expression 

, ,

2
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, , 3

1 1 1
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with 
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where 

1

2 2

0

l lJ J Aq dAq  is the average over polarization and the integration region 

, ,

e ph pht

lD  is given by 
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. (2.45) 
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 The corresponding expression of the pure electron-phonon interactions follows as 

,

2

, 3

1 1 1
,

2 2 2e ph

e ph cb

D

m
T K q g q qdq

k
, (2.46) 

where the integration region ,

e phD  is given by 

2

2

1 2
1

2

cb

k q

m
q q

kq

. (2.47) 

 

2.5.3 Electron-phonon collision integral 

In the developed model, the electron-phonon collision integral is 

2
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f
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f g f g l

f g f g l
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Aq q

k q q k q k q k q
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. (2.48) 

 For homogenous and isotropic crystal, and, since we do not consider a definite 

polarization of laser light, averaging over all directions of the electric laser field by defining 
1

2 2

0

l lJ J Aq dAq , the three-dimensional collision integral which represents light 

absorption by free electrons can be reduced to one-dimension, given by the following expression 

[14,76] 
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(2.49) 

with 

,

1 1 1 1
, 1 1

2 2 2 2

e ph q f f g q f f g q ,
 

(2.50) 
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where  lq . 

The integration regions , ,

e ph pht

lD  of the electron-phonon-photon collision integral, 

eq. (2.49), is given by 

2

2

1 2
1

2

cb

l q

m
l q q

kq

, (2.51) 

where ,...2,1,0l ; 0,1,2,3 ; 22 cbk k m , 0 . 

Note: q , . 

 Phonons do not absorb laser energy. They are, however, indirectly affected by laser 

irradiation through their interaction with photon-absorbing electrons. Accounting for this fact, an 

analogous equation is obtained for the phonon-electron interactions 

2
22
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l

lph e pht

ph e

g
J K

t

l
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Aq q

k q k q k q

 (2.52) 

with 

, 1 1 1ph e f f g f f gk q k q k q k k q q . (2.53) 

 As previously, the three-dimensional phonon-electron collision integral can be presented 

as one-dimensional one as follows 

,

2
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1
,

2
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ph ecb
l

lph e pht D

g m
K q J q d

t q
Aq  (2.54) 

with 

, 1 1 1ph e q f f g q f f g q
, (2.55) 

where ql  , and the integration region, ,lD  of the phonon-electron-photon 

collision integral eq. (2.54) is given by 

ql

kqkkq


. (2.56) 
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 The solution to the system eq. (2.56) is given by 

ql

ql
q

m
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q
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2
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24

1
. (2.57) 
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§2.6 Electron-ion scattering process (in presence/absence of laser field) 

With increasing the density of free electrons, the number of the ionized atoms (ion centers) is 

raised too. The created free electrons can thus absorb laser energy due to collision with the ions 

in addition to other collisional processes. 

 

2.6.1 Fundamentals 

Having identified the perturbing potential for ionized impurity scattering (the screened Coulomb 

potential Ve-e in Section 2.3) and taking into account that momentum of ion centers is much 

larger than electron momentum, we evaluated the matrix element of an electron-ion collisions 

[22,77] 
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(2.58) 

where k' - k = Δk, G = 1. 

 Similarly to electron-phonon-photon collision, the corresponding e-ion-pht matrix 

element can be expressed as 

2 22; ;e ion pht

l l e iM J Mk k AΔk k k . (2.59) 

 

2.6.2 Electron-ion scattering rate 

In our model, the corresponding rate of electron-ion-photon interactions is 
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where i
i e

N
n n

V
 is the density of ions; 
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 is the matrix element of 

transition, and the integration region is given by 
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2.6.3 Electron-ion collision integral 

The electron-ion collision integral is given in the form by 

222
, ,i l e i e i

le ion pht

f
N J M l

t Δk

AΔk k k k k k k  (2.62) 

with 

, 1 1e i f f f fk k k k k k , (2.63) 

where k k Δk . 

 Using the assumption of a homogenous and isotropic crystal, and, because we do not 

consider laser polarization, an averaging over all directions of the electric laser field can be 

performed, so that the three-dimensional electron-ion collision integral can be presented as one-

dimensional one as follows 
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 (2.64) 

with 

0 0 0, 1 1e i f f f f , (2.65) 

where 
0 l , 

2 2

2 cb

k

m
, and the integration region is given by 

0

1
1 1, 0

2
lD l . (2.66) 

 If l = 0, then 
0

 and , 0e i , that is pure electron-ion collisions do not 

contribute anything. 
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Chapter 3 

Results and discussions 
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In this chapter, I have analyzed the mechanisms and physical processes involved in the ultra-

short laser interactions with dielectric materials. The main objectives of this study are to 

demonstrate the role of laser parameters (laser pulse duration, wavelength, intensity) and 

material properties (band gap, effective mass, speed of sound, etc) in the process of laser 

damage. To check the validity of our model, it is also very important to compare our calculation 

results with both previous models and with experiments. 

 Here, the effects of model parameters on the final calculation results will be investigated. 

This study will provide a better inside in the considered physical processes as well as will allow 

fixing the correct parameters for the following comparison with experimental findings. Based on 

this study, we will be able to propose directly or indirectly material properties that can be 

measured in experiments. The attention is first focused on the electron kinetics. Therefore, first 

of all, we will consider parameters of the electronic subsystem and the influence of laser 

parameters (fluence, wavelength, pulse duration) on them. Then, the processes are analyzed, 

which are responsible for the changing of the number of conduction band electrons in our 

system. In particular, photo- and impact ionization processes are examined. The dependency of 

these processes on the corresponding parameters of laser pulse and material properties are 

investigated. 

 

§3.1 Photoionization process 

The primary free electrons appear in the system due to the photoionization process. First, we are 

interested by a value, which characterizes the intensity of this process, that is the photoionization 

rate in a unit volume. We perform an analysis of this value and its dependency on material and 

laser pulse parameters. 

 

3.1.1 Role of laser field amplitude 

First, all material parameters are fixed and photoionization rates is considered as a 

functions of laser field amplitude (that can be easily transferred to the peak intensity). 
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Fig. 3.1. Photoionization rate as a function of laser field amplitude for different dispersion laws 

of the band structure. Red curve is the Kane BS [see eq. (2.9)]; black curve is parabolic BS [see 

eq. (2.11)]. The results are obtained for the following parameters: reduced mass, mr = 0.5 m0; 

laser wavelength, λ = 800 nm; energy gap, Δ = 9 eV. 

 

 Fig. 3.1 reveals that the behavior of the photoionization rate is similar for both BS laws. 

The rates grow with the increase in laser field amplitude. The oscillations in photoionization rate 

take place in both cases. They are caused by the deficit of energy, which means that with 

increasing laser field amplitude the electron energy in the field of laser wave increases and this 

process leads to the decrease in the probability of the photoionization process. When the energy 

conservation law cannot be satisfied [see eq. (2.12)], the minimum number of photons [see 

definition, eq. (2.10)] jumps up. Figure 3.1 clearly shows that in cases of Kane BS and parabolic 

BS the oscillations take place for different values of laser field. This difference is the main 

deviation in comparison of Kane BS and parabolic BS. One should mention that in Keldysh 

approach, the oscillation may not be observed because the electron-hole attraction was neglected. 

Therefore, for calculation it is be better to apply the ranges of laser field where the 

photoionization rate behaves monotonically. 

 Now we choose one of the parameters of the electronic structure, the reduced mass to 

analyze the behavior of the photoionization rate. We fix all the parameters of the laser field, 

(wavelength, laser field amplitude, pulse width), as well as the energy gap, to present the reduced 

mass dependency on the photoionization rate. 
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Fig. 3.2. Photoionization rate as a function of reduced mass for different dispersion laws of the 

band structure. Red curve is the Kane BS [see eq. (2.9)]; black curve is parabolic BS [see 

eq. (2.11)]. The results are obtained for the following parameters: laser field amplitude, 

Eb = 100 MV/cm; laser wavelength, λ = 800 nm; energy gap, Δ = 9 eV. 

 

 Fig. 3.2 demonstrates that a variation in reduced mass leads to a significant change in the 

photoionization rate. As in the previous case (Fig. 3.1), the behavior of the photoionization rate 

is similar for both BS laws. For both dispersion laws we can see rate reduction with the increase 

in the value of the reduced mass. It is well known that more massive body is more inertial. By 

using this physical analogy it is easy to understand the reason of the observed dependency. The 

probability of photoionization process grows exponentially with the energy of the final state, that 

is exp . With increasing reduced mass, the energy of the final state decreases [see 

Eqs. (2.10,11)], because lighter carriers in the laser field have larger energy than more massive 

ones at the same amplitude of the laser field. Thus the reduced mass is responsible for the 

―inertia‖ of the photoionization process. 

 

3.1.2 Role of laser wavelength 

 To analyze laser wavelength dependency of the photoionization rate one should fix 

material parameters and vary laser wavelength. 
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Fig. 3.3.1. Photoionization rate as a function of laser wavelength for different dispersion laws of 

the band structure. Red curve is the Kane BS [see eq. (2.9)]; black curve is parabolic BS [see 

eq. (2.11)]. The results are obtained for the following parameters: laser field amplitude, 

Eb = 100 MV/cm; reduced mass, mr = 0.5 m0; energy gap, Δ = 9 eV. 

 

Figure 3.3.1 shows that with increasing laser wavelength, the photoionization rate 

decreases for both dispersion laws. The decay in the rate takes place by, in fact, the same reason 

and has no monotone behavior due to the oscillation as in the previous case. Furthermore such 

behavior can be expected due to the following fact. As one well knows, longer wavelength 

corresponds to smaller photon energy. With decreasing photon energy the minimum number of 

photons [see Eqs. (2.10,11)] rises up. Therefore, to transfer an electron from the valence band to 

the conduction band one needs to absorb more photons in case of larger wavelength, whereas 

this effect decreases the probability of the photoionization process. 

Note in the Figures 3.1, 3.2, 3.3.1 that the photoionization probability for Kane BS is 

higher than for parabolic BS case. This effect can be explained by the fact that the electron 

energy of the final state in the parabolic BS case is always larger than the energy in Kane BS 

case. Therefore, the absorbed energy and effective ionization potential are larger in parabolic 

case. However, greater ionization potential corresponds to a lower probability. 

 For better understanding of the role of laser wavelength in photoionization process, we 

perform a comparison of field-dependence of photoionization rate for two different values of 

laser wavelength. Here, Kane band structure model is chosen in calculations. 



44 

 

 

0 100 200 300 400 500

1E30

1E31

1E32

1E33

1E34

1E35

1E36

1E37

1E38

1E39

1E40

1E41

1E42

1E43

W
p

i 
[s

e
c

-1
m

-3
]

Field [MV/cm]

 800 nm

 400 nm

 

 

 

 

Fig. 3.3.2. Photoionization rate (Kane BS) [see eq. (2.9)] as a function of laser field amplitude 

for different values of laser wavelength. Red curve is λ = 400 nm; black curve is λ = 800 nm. 

The results are obtained for the following parameters: reduced mass, mr = 0.5 m0; energy gap, 

Δ = 9 eV. 

 

 Figure 3.3.2 clearly shows that the oscillations of the photoionization rate are less regular 

for smaller laser wavelength. This fact can be explained by energy conservation law. That is, for 

smaller laser wavelength, in a wide range of laser field amplitude, the conservation law can be 

satisfied without changing the minimum number of photons, lpi. In other words, the energy 

equivalent of one photon is enough for smaller values of laser wavelength to balance the energy 

of electron gained due to the ponderomotive force of laser field. This effect occurs in a wide 

range of laser field amplitudes because of the energy conservation law. 

 

3.1.3 Structure of above-threshold ionization 

Thus, the photoionization rate behaves non-monotonically, so that the oscillations take place. 

Now, we analyze the dependency of each n-th term of series of general equation for the 

photoionization rate, Eqs. (2.9-10), to demonstrate another aspects and the nature of oscillations. 

N-th term of the series corresponds to the transitional process of an electron from the valence 

band to the conduction band with the absorption of lpi+n photons of laser pulse, where lpi is 
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minimum number of photons, which a bound electron has to absorb to be transferred to the 

conduction band. 

 

0 50 100 150 200 250 300 350 400 450 500

1E30

1E31

1E32

1E33

1E34

1E35

1E36

1E37

1E38

1E39

1E40

1E41

1E42

1E43
P

h
o

to
io

n
iz

a
ti

o
n

 r
a

te
 W

p
i 
[s

e
c

-1
m

-3
]

Field [MV/cm]

 n = l
pi

 n = l
pi
+1

 n = l
pi
+2

 Total

 

 

 

Fig. 3.4.1. N-th term of photoionization rate as a function of laser field amplitude for Kane band 

[see eq. (2.9)]structure model. The results are obtained for the following parameters: laser 

wavelength, λ = 800 nm; reduced mass, mr = 0.5 m0; energy gap, Δ = 9 eV. 
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Fig. 3.4.2. Ratio of n-th term to total photoionization rate as a function of laser field amplitude 

for Kane BS [see eq. (2.9)]. The results are obtained for the following parameters: laser 

wavelength, λ = 800 nm; reduced mass, mr = 0.5 m0; energy gap, Δ = 9 eV. 

 Figures 3.4.1-2 clearly demonstrate that the term, which corresponds to the process with 

n = 0 (that is the process where a bound electron absorbs minimum number of photons, lpi) 

makes a major contribution to the total photoionization rate. Whereas the terms corresponding to 

processes with n > 0 begin to play a valuable role for larger laser fields. In addition, one can 

mention in the figures that when the term with n = 0 tend to decrease because of the energy 

conservation law that cannot be satisfied for certain lpi, in contrast, the terms with n > 0 tend to 

growth. The growth of the terms with n > 0, however, does not balance the reduction of the main 

term, n = 0. Therefore, the behavior of total rate is non-monotonic and we can see oscillations. It 

should underline that this statement is true only in the scope of Keldysh approach, where the 

electron-hole attraction was neglected. 

 It should be noted that with the increase in laser field amplitude the oscillation amplitude 

decreases. This happens because the contributions for all the terms become comparable with 

each other (Fig. 3.4.2) in the tunnel regime at high laser field amplitude, γ << 1. Thus, when the 

main term tends to drop down, other terms compensate this reduction by their growth. As a 

result, oscillations become more negligible. Figure 3.1 clearly shows this fact in case of 

parabolic band structure model. 

 

3.1.4 Extreme cases (regimes) of photoionization process 

 The Keldysh parameter, γ [see eq. (2.10)] determines either multi-photon ionization or 

tunneling takes place. It is important to study the photoionization regimes corresponding to 
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different ranges of this parameter. In previous chapter we briefly discussed the multiphoton and 

tunneling regimes. Previously, asymptotic expressions were used in the calculations, for 

simplicity. However, the application of these expression requires a more detail consideration. 

That is why, here we will present the calculated, photoionization rates based on the total 

expression [see Eqs. (G.7,9)] and compare the results with that obtained for two asymptotic 

cases, multiphoton [see eq. (G.12)] and tunnel [see eq. (40) [41]] regime, respectively. 
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Fig. 3.5. Photoionization rate as a function of laser field amplitude for Kane band structure 

model. Red curve is asymptotic equation for multiphoton regime [eq. (G.12), App. G]; blue 

curve is asymptotic equation for tunnel regime [see eq. (40) [41]]; black curve is total 

photoionization rate. The results are obtained for the following parameters: laser wavelength, 

λ = 800 nm; reduced mass, mr = 0.5 m0; energy gap, Δ = 9 eV. 

 

 Figure 3.5 reveals a difference between the two regimes. One can see that for the range of 

laser field corresponding to γ ~ 1, asymptotic expressions do not provide correct results. We will 

first discuss the applicability of the multiphoton regime. For this, we will present the ratio of 

asymptotic expression obtained for multiphoton regime to the total rate expression. 

 



48 

 

0 25 50 75 100 125

0,01

0,1

1

10

ra
ti

o

Field [MV/cm]

 K-MPI

 Corr K-MPI

 

 

 

Fig. 3.6.1. Ratio of the asymptotic expression for the multiphoton regime to the total rate 

expression as a function of laser field amplitude for Kane BS model. Black curve is Keldysh 

asymptotic expression [eq. (G.11), App. G], red curve is correct Keldysh asymptotic expression 

[eq. (G.12), App. G]. The results are obtained for the following parameters: laser wavelength, 

λ = 800 nm; reduced mass, mr = 0.5 m0; energy gap, Δ = 9 eV. 

 

 One can see in Figure 3.6.1 that the asymptotic expression corresponding to the original 

paper [41] and the correct asymptotic expression are different. For small laser field amplitude 

where γ >> 1 black curve corresponded to the original paper starting from the value smaller than 

unity and the black curve overestimates photoionization rate in the range of the first oscillation. 

This result is due to the misprints in original paper (this fact also was mentioned by Gruzdev 

[82]). One can see in Figure 3.6.1 only a small range where asymptotic expression gives correct 

result namely between 0 and 60 MV/cm. The maximum deviation of the asymptotic expression 

from the total rate expression can be observed when the jump of minimum number of photons, lpi 

occurs. Also this result is in agreement with the previously mentioned reasons . In particular, the 

asymptotic expression for the multiphoton regime corresponds to the contribution of zero-th term 

(n = 0), whereas in the vicinity of the jump other terms of series, with n > 0, begin to play an 

important role (Figures 3.4.1-2). 
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Fig. 3.6.2. Ratio of asymptotic expression for multiphoton regime to total rate expression as a 

function of laser field amplitude for different dispersion laws of the band structure. Red curve is 

the Kane BS model [correct expression, eq. (G.12), App. G]; black curve is parabolic BS model. 

The results are obtained for the following parameters: laser wavelength, λ = 800 nm; reduced 

mass, mr = 0.5 m0; energy gap, Δ = 9 eV. 

 

 From the performed analysis of the figure 3.6.2, we note that the ratio is similar for 

different dispersion laws of band structure. Because the effect of ponderomotive force is 

negligible at small laser field amplitude, one cannot see any inherent difference. This result 

means that the energy conservation law is satisfied for the same value of the electron 

momentum. With increasing laser field amplitude, the shape of the band structure begins to play 

a more important role. The effect of a ponderomotive force is considerable at high laser field. As 

a result, the values of mean electron-hole energy will differ strongly at higher laser field 

amplitude for different dispersion law of band structure. In addition, the applicability of photo-

ionization rate for both dispersion laws has similar range of laser field. This result is confirmed 

by the agreement between the applicability ranges of the mathematical expansions of special 

functions, which were applied to derive asymptotic expressions. It should be noted that using 

asymptotic expression outside of the range of applicability leads to significant deviation from 

total rate expression for both dispersion laws of band structure. 

In the original paper [41], it was assumed that the energy of a single photon energy is 

much less than the depth of the conduction band, i.e., 
max1 1BZ n . Therefore, the 

asymptotic expression for the tunneling regime was obtained by replacing the sum by an integral. 

However, the energy of the photon in the visible range ~ 1 eV, whereas the typical depth of the 
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conduction band < 5 eV, that is, nmax ~ 1. Thus, we have no right to replace the sum by an 

integral, and use the asymptotic expression obtained by Keldysh for the tunneling regime in the 

visible range, because it can lead to incorrect results. Some authors use in the parameter γ ~ 1 

cross-link the two asymptotic expressions, this should also be treated with caution. Moreover, in 

tunnel regime, the effective ionization potential is not described by the asymptotic for the 

multiphoton regime and should be applied following the correct expansion for this case: 1, 

2 2 b reE m
 (Kane BS case). 
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§3.2 Impact ionization process 

The impact ionization process depends on many physical parameters, characterizing both the 

matter and the laser pulse, which are discussed below. 
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Fig. 3.7. The impact ionization rate [see eq. (2.32)] as a function of electron energy. The results 

are obtained for the following parameters: reduced mass, mr = 0.5 m0; energy gap, Δ = 9 eV; 

electron density, ne = 2.5 × 10
27

 m
-3

. 

 

 Here, we demonstrate a general behavior of the impact ionization rate as a function of 

electron energy for the certain electron density in the absence of laser field. The figure clearly 

shows that impact ionization process take place only for the electrons with energy above the 

threshold energy, and rapidly grows with further energy increase. The threshold energy is 

determined by momentum and energy conservation laws, and given by follow expression 

1 2

1
th , where 

cb vbm m : (i) mcb << mvb, th ; (ii) mcb = mvb, 1.5th
; (iii) 

mvb << mcb, 2th
. 
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3.2.1 Role of laser field amplitude and wavelength 
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Fig. 3.8. Impact ionization scattering rate [see eq. (2.32)] as a function of electron energy for 

different values of laser field amplitude. The results are obtained for the following parameters: 

laser wavelength, λ = 800 nm; reduced mass, mr = 0.5 m0; energy gap, Δ = 9 eV; electron 

density, ne = 2.5 × 10
27

 m
-3

. 

 

 Figure 3.8 shows that the probability of impact ionization decreases with increasing 

amplitude of the field, due to the fact that the probability is inversely proportional to the effective 

ionization potential, 1imp  [see Eq. (2.32)], while its value increases with the increase of the 

field amplitude. The threshold energy also increases, therefore moves to the region of higher 

energy. The increase of wavelength leads to the same situation in behavior of the rate due to the 

same reason: (i) 1, 
2 2

24

b

r

e E

m
; (ii) 1, 

2 b reE m
 (Kane BS). 

We have considered the case where electrons have energy above the threshold. However, 

it is possible to decrease the threshold due to a participation of the photons in the process, that is 

photon-assisted impact-ionization process. This issue was analyzed by Strekalov [89], Mednis 

and Fain [90]. To estimate the contribution of impact-ionization with photon participation we 

calculated the ratio of the ionization probability with two-photon absorption to the probability 

without absorption (in this case, the expression is the simplest form) [89]. For the range of laser 

field 50-150 MV/cm and wavelength 800 nm, the calculation is 

2 2
2 14 15

1 3

0, 1
10 10

0, 0 8

if b
l

if r

W n l e E
J

W n l m
. Thus, we obtained that the photon-assisted 

probability is significantly smaller than usual process, therefore it can be neglected. 
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 Recently, the hypothesis of "cold avalanche" was proposed [91,92]. Dominating of the 

photon-assisted impact-ionization process above the photo-ionization process was concluded. 

However, in fact, the previous results were totally ignored, furthermore, the comparison with 

another theories was not discussed. Therefore, we just mentioned these results without 

accounting of the conclusion. 

 

3.2.2 Screening and free electrons 

 During the laser pulse, the density of free electrons increases significantly with time, and 

this effect causes a change in the properties of electron interactions. First, with increasing in the 

electron density, the impact-ionization rate increases too, and imp en . However, the further 

increase in the electron density leads to the decay in the screening parameter, λ0 [see definition, 

eq. (2.21)]. The smaller is this value, the smaller is the number of electrons that can interact with 

a given electron. As a result, this effect decreases the probability of the impact ionization 

process, and 1/imp en . We demonstrate this effect below, in Figure 3.9. 
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Fig. 3.9. Impact ionization scattering rate [see eq. (2.32)] per unit volume as a function of 

electron density for different values of mean electron energy. The results are obtained for the 

following parameters: laser wavelength, λ = 800 nm; laser field, Eb = 100 MV/cm; reduced 

mass, mr = 0.5 m0; energy gap, Δ = 9 eV (SiO2); SiO2 elementary cell volume, Ω0 ≈ 100 Å
3
. 

 

 A comparison of the photo- and impact-ionization rates per unit volume (Figures 3.1 and 

3.9, respectively) shows that probabilities are comparable, however, the impact-ionization occurs 

when the electrons have enough energy. Therefore, we discuss the electron heating process in the 

next section. 
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§3.3 Electron heating 

The energy transfer from the laser pulse to the target takes place with the participation of the 

electronic subsystem. There is a number of channels to transfer laser energy. It was established 

that seed electrons appear through photoionization. As a result, electrons are injected in the 

conduction band with the energy of about 1 eV. A further increase in electron energy in the 

conduction band occurs due to the absorption of photons through collision with a third-body. 

These electron transitions are called intraband transitions. In fact, it is impossible to change 

electron energy without changing the momentum. Therefore, to absorb energy, electron should 

collide with a third-body. Thus, we evaluate the roles of various laser parameters and channels 

(electron-phonon/ion) in the electron heating. 

 

3.3.1 Heating through the photoionization process 

The energy conservation law, 
v cn , is justified due to the direct electron transition from 

the valence band to conduction band. Using the Kane BS and that 
v c

, the electron 

energy in conduction band is ,

1

2
pi n n , where 

maxpil n n . Previously we have 

established that the term corresponded n = lpi gives the major contribution. Then, the energy of 

photo-electron is 
1

2
pi pil . Let us analyze the spectrum of photo-electrons as a 

function of laser parameters. 
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Fig. 3.10. lpi (see section 2.1) as a function of laser field amplitude. Black curve is the Kane band 

structure model; red curve is parabolic band structure model. The results are obtained for the 

following parameters: laser wavelength, λ = 800 nm; reduced mass, mr = 0.5 m0; energy gap, 

Δ = 9 eV. 
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Fig. 3.11. εpi (see section 2.2) as a function of laser field amplitude for the Kane band structure 

model. The results are obtained for the following parameters: laser wavelength, λ = 800 nm; 

reduced mass, mr = 0.5 m0; energy gap, Δ = 9 eV. 

 

 Figure 3.10 demonstrates the step-like behavior of lpi, which results from the definition of 

lpi. There is a difference between the curves because the BS affects ponderomotive effect of the 

laser field. However, this happens only for high field. In addition, these steps are too wide, so 

that the energy of photoelectron keeps the same value between the steps, and the energy changes 

only when lpi changes (see Fig. 3.11). Thus, the spectrum of photoelectrons is delta-function and 

disposition of energy has stick-slip nature. In the same time the photoionization rate changes 

significantly with increasing of laser field. 

 Figure 3.11 clearly shows the range of photoelectron energy. In addition, the range of the 

required values of laser field is located within the scope of the Keldysh's equation applicability 

( pi BZ ). The energy of electrons is 0.5-1.0 eV for such fields. A comparison of the 

photoelectron energy with the energy required for the impact ionization, 2th
, where 

, yields that the energy of the photoelectrons is too small for impact ionization. In fact, this 

contribution of the ponderomotive effect of laser to the energy of photoelectrons was 

underestimated in previous paper [14,34,76,77]. 

 

3.3.2 Heating through electron-phonon/ion process 

A series of calculations is performed for quartz with laser wavelengths 400 nm (see Figures 

3.12-13, 15) and 800 nm (see Figure 3.14). 
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 First, we consider laser energy absorption taking into account only the e-ph-pht with 

Normal-processes. Figure 3.12 demonstrates the mean electron kinetic energy as a function of 

laser field amplitude for different laser pulse durations. One can see, that the value of mean 

energy in field-dependency is larger for longer laser pulses. For pulses up to 35 fs, a very weak 

dependency on the field can be observed. During such short times laser field cannot significantly 

influence the process of energy absorption by free electrons. The free electron absorption rate is 

smaller in collisions with phonons than the electron generation rate due to photoionization 

process. Therefore, many conduction band electrons can be created, but only a small part of them 

absorbs enough energy at short pulse durations. With the increase of pulse duration, a significant 

part of the generated electrons absorbs laser energy. This result leads to a much stronger 

dependency of the mean electron kinetic energy on the field amplitude. Particularly, for longer 

pulses with temporal width > 35 fs, the dependency on the field is stronger. Also, at each pulse 

duration a maximum of the dependency can be revealed. The presence of this maximum will be 

discussed below. In addition, it should be noted that for dielectric targets with approximately the 

same energy gap, the excess energy density will be higher for the material that has higher 

electron-phonon collisions rate. 
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Fig. 3.12. Mean electron kinetic energy as a function of laser field amplitude for different laser 

pulse durations [e-ph (Normal-processes)]. The calculation parameters are laser wavelength, 

λ = 400 nm, energy gap, Δ = 9 eV (SiO2). 

 

 Thus, we take into account the absorption through electron-phonon collisions 

(N-processes) in addition to the absorption due to photoionization process. Figure 3.12 clearly 

shows that the value of the mean energy is still too small to for the impact-ionization process. In 

laser energy absorption by conduction band electrons through the collisions with phonon, the 

Umklapp processes take place along with normal processes. Furthermore, with the increase in 

material ionization, the ion centers appear. Therefore, we involve these process in our 

calculations (section 2.6). 
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Fig. 3.13. Mean electron kinetic energy as a function of laser field amplitude for different laser 

pulse durations [e-ph (Normal+Umklapp) and e-ion processes]. The calculation parameters are 

laser wavelength, λ = 400 nm, energy gap, Δ = 9 eV (SiO2). 

100 125 150 175

1,5

2,0

2,5

3,0

3,5

4,0

4,5

5,0

5,5

6,0

6,5

7,0

7,5

8,0

8,5

800 nm

M
e

a
n

 e
n

e
rg

y
 [

e
V

]

Field [MV/cm]

 25 fs

 50 fs

 75 fs

 100 fs

 

 

 

Fig. 3.14. Mean electron kinetic energy as a function of laser field amplitude for different laser 

pulse durations [e-ph (Normal+Umklapp) and e-ion processes]. The calculation parameters are 

laser wavelength, λ = 800 nm, energy gap, Δ = 9 eV (SiO2). 

 The calculations results obtained by including these processes are presented in Figures 

3.13-14 (400 nm and 800 nm, respectively). These results indicate that electron-phonon 

Umklapp- and electron-ion processes contributions are ~15-25 % and ~90-110 %, respectively. 

Despite considerable contributions, the mean energy is still not high enough for the 

impact-ionization process. Consequently, this energy is insufficient to trigger the avalanche 

through the electron impact ionization, that confirms recent double pump-probe experimental 
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results by Guizard et al. [93]. The previous experimental results [40,49,94] are also in 

contradiction with the avalanche models that have been deduced from OBT (optical breakdown 

threshold) measurements as a function of the laser pulse duration [9,23,26,95]. 

Moreover, the long-wave (low energy) photons are more easily absorbed by conduction band 

electrons than short-wave (high energy) photons, as we observe from the comparison of results 

for the different wavelengths. This result can be explained by the fact that during the absorption 

of more energetic photon by free electron, the momentum change of the electron is larger than in 

the case of low-energy photon absorption, while the probability of the process is lower. 

 The field-dependent ratio of the absorbed to the incident energy is presented in 

Figure 3.15. We see that the amount of the absorbed energy grows faster with the field and 

slower with pulse duration. This effect is due to the fact that the energy lost to promote valence 

electrons to the conduction band is much larger than the energy absorbed by free electrons 

because the photoionization rate is higher than the absorption rate due to e-ion-pht and e-ph-pht 

collisions. Interestingly, the Figure 3.15 shows that the most efficient energy absorption takes 

place at pulse durations of 100 fs and field amplitude of 150 MV/cm (corresponding to pulse 

peak intensity 6.25×10
13

 W/cm
2
). At this laser pulse duration and field amplitude, the density of 

conduction electrons reaches the certain value [close to critical density, ncr, and determined from 

the definition of the screening parameter in electron-electron/ion interaction potential, see 

Eqs. (2.21-22)], only at the end of the pulse, and, thus, the free electrons can absorb effectively 

laser energy during practically all the pulse. Further field increase leads to decay of the ratio, 

because the laser energy absorption by free electrons decreases due to laser field effect in 

e-ion-pht [see eq. (2.59)] and e-ph-pht [see eq. (2.43)] collisions (see Figure 3.24), and screening 

effect in e-ion-pht collisions. One can see, the same behavior was demonstrated in the 

Figures 3.12-13. 
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Fig. 3.15. Field-dependent ratio of the absorbed to the incident energy. The calculations are 

performed for laser wavelength; λ = 400 nm; energy gap, Δ = 9 eV (SiO2). 
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§3.4 Heating process and optical properties: QM versus Classical (Drude) 

When laser radiation passes through a medium, some part of it is always absorbed. This effect is 

described by a complex refractive index [96] 

n̂ iκ , (3.1) 

where n̂e  is the real part, and ˆκ nm  is the imaginary part of the refractive index, 

respectively. 

 The complex wave number ˆ2k n  and complex refractive index n̂  can be 

substituted into the plane monochromatic wave expression as follows 

ˆ2

2 2

, [ ] [ ]

[ ] [ ]

i kz t i nz t

i iκ z t i kz tκz

z t e e

e e e

b b b

b b

E E E

E E

e e

e e
. (3.2) 

 Here, we see that the exponential decay is proportional ~ κ , as expected from the Beer–

Lambert law [97]. Because intensity is proportional to the square of the electric field, the 

absorption coefficient is 

2
abs κ

c
, (3.3) 

and the Beer–Lambert law in the bulk is 

bulk
abs bulk

dI
I

dz
 (3.4) 

with 

2

0bulkI c tbEò . (3.5) 

 On the other side, the complex refractive index can be defined through the dielectric 

function as 

n̂ ò , (3.6) 

and the dielectric function can be presented as follows 

r iiò ò ò , (3.7) 

where 
rò òe  is the real part and 

iò òm  is the imaginary part, respectively. 
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 A conversion between the complex refractive index and the dielectric function is done by 

2 2 22 r r iò ò ò   

2 2

2

r r i=
ò ò ò

, 

2 2 22 r r iκ ò ò ò   

2 2

2

r r iκ =
ò ò ò

, 

2 iκ =ò . 

(3.8) 

 Reflectivity can be calculated from the refractive index and the incidence angle by using 

Fresnel equations, which for normal incidence are reduced to [98] 

2

2

ˆ 1

ˆ 1

n
R

n
  

2 2

2 2

1

1

κ
R

κ
. (3.9) 

 In the case of normal incidence the relation between Ivac and Ibulk is 

1bulk vacI t R I t , where 
2 2

0 0 0vacI t t c t0 0E Eò ò . Then using eq. (3.5) 

we obtain the relation for the field amplitudes in the bulk and vacuum 

2 21 R
t t

b 0
E E . (3.10) 

 With the help of the Beer–Lambert law and using the relation, e bulkdQ dI

dt dz
, we obtains 

the rate of energy absorption per unit volume 

e
abs bulk

dQ
I

dt
. (3.11) 

 We assume a monochromatic wave, cost tb bE E , therefore the squared field 

amplitude averaged over wave period is 
2

2

2

bE
t

b
E . Then, from Eqs. (3.3), (3.5), (3.8), and 

(3.11), the absorbed energy rate per unit volume through the dielectric function is 

2 2

0 02

2 2

e b bdQ κ c E E
2κ

dt c

ò ò
  

2

0

2

e b
i

dQ E

dt

ò
ò . (3.12) 

 The spatial dispersion can be neglected due to the that fact characteristic parameter is too 

small, 
0 1k  ("cold plasma" [99]), therefore the dielectric function only is as a function of 

frequency, that is, 0,kò ò . 
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 Previously, Drude model was often applied to describe the heating process and optical 

properties during the laser pulse. According to this model [99,100], the acceleration of electron is 

considered classically, and the electron velocity in alternating field is 

cb eff

e t
t

m i

bE
r , here i tt eb bE E , (3.13) 

where 
eff

 is the effective collision rate. According to the Matthiessen's rule [57], this rate is 

often set as an adjustable parameter, 
1 1 1

...eff

eff e ph e ion

. 

 Then the mean electron energy rate can be simply written as 

2 2

2 22

effb

cb eff

d e E
e t t

dt m
br E . (3.14) 

 Thus, using eq. (3.14), and taking into account that energy density of free electrons is 

e eQ n , the absorbed energy rate per unit volume can be expressed as 

2

0

2 22

effDr b e

cr eff

dQ E n

dt n

ò
, where 

2

0

2

cb
cr

m
n

e

ò
. (3.15) 

 To obtain the expression for the imaginary part of the dielectric function we should 

substitute Eq. (3.15) in Eq. (3.12), then we calculate the real part using of the Kramers-Kronig 

relations [98] 

1
. . i

r g v p d
ò

ò ò . (3.16) 

1
. .

r g

i v p d
ò ò

ò . (3.17) 

Here, 1 1 1g g e vn nò ò  is the static dielectric constant of exited matter [33], and v.p. 

denotes the Cauchy principal value. 

 As a result, the corresponding expressions are given by 

2

2 2

Dr e
r g

cr eff

n

n
ò ò , (3.18) 

2 2

effDr e
i

cr eff

n

n
ò . (3.19) 
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 By using Eqs. (3.18-19), we obtain the well-known expression for the Drude dielectric 

function 

e
Dr g

cr eff

n

n i
ò ò . (3.20) 

 We note that often electrons cannot be considered classically [see Eqs. (3.25-26)]. The 

Drude model, furthermore does not take into account the absorption due to photo-ionization. 

Therefore, we perform a comparison of the Drude model with the quantum mechanical approach 

as follows. 

 According to our model, the absorbed energy rate per unit volume is 

e pi e ph pht e ion phtQ Q Q Q , where, 
dQ

Q
dt

, (3.21) 

where corresponding contributions are given by 

pi e pi piQ n l , 
pi pi eW n , 

e ion pht

e ion pht e l

l

Q n l , 

e ph pht

e ph pht e l

l

Q n l , 
, ,

,

e ph pht e ph pht

l l
. 

(3.22) 

 By using Eqs. (3.12), (3.21-3.22), we obtain the imaginary part of the dielectric function 

QM pi e ion pht e ph pht

i i i iò ò ò ò , (3.23) 

where the corresponding contributions are given by the following expressions 

2

0

2
,pi e

i pi pi b

b

n
l E

E
ò

ò
, , ,pi b pi b eE W E n , 

2

0

2
,  ,  ,e ion pht e ion phte

b

lb

ei l

n
l n E

E
ò

ò
, 

2

0

,,,  
2e ph pht e ph phte

i l

lb

b

n
l T

E
Eò

ò
. 

(3.24) 

 By using Kramers-Kronig relations and the definitions of the scattering rates 

[Eqs. (G.7,9), (2.60), (2.43)] we calculate the real and imaginary parts of dielectric function and 

corresponding optical properties according quantum mechanical approach. Then, these values 

are compared with the results of Drude model. 
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Fig. 3.16. Ratio of the laser field amplitude in the bulk to the laser field amplitude in the vacuum 

[eq. (3.10)] as a function of electron density. The calculation parameters are laser wavelength, 

λ = 800 nm; field amplitude, E0 = 180 MV/cm; mean electron energy, <ε> = 5 eV; energy gap, 

Δ = 9 eV (SiO2), and lattice temperature, T = 300 K. 
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Fig. 3.17. Reflectivity [see eq. (3.9)] as a function of electron density. The calculation 

parameters are laser wavelength, λ = 800 nm; field amplitude, E0 = 180 MV/cm; mean electron 

energy, <ε> = 5 eV; energy gap, Δ = 9 eV (SiO2), and lattice temperature, T = 300 K. 
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Fig. 3.18. The real part of the dielectric function as a function of electron density. The 

calculation parameters are laser wavelength, λ = 800 nm; field amplitude, E0 = 180 MV/cm; 

mean electron energy, <ε> = 5 eV; energy gap, Δ = 9 eV (SiO2), and lattice temperature, 

T = 300 K. 

 

 

0 5,00E+027 1,00E+028 1,50E+028 2,00E+028

0

1

 Drude, 
eff

 = 0.3x

 Drude, 
eff

 = 5x  

 QM

Im
 (

)

n
e
 [m

-3
]

 

 

 

Fig. 3.19. The imaginary part of the dielectric function as a function of electron density. The 

calculation parameters are laser wavelength, λ = 800 nm; field amplitude, E0 = 180 MV/cm; 

mean electron energy, <ε> = 5 eV; energy gap, Δ = 9 eV (SiO2), and lattice temperature, 

T = 300 K. 

 



65 

 

0 5,00E+027 1,00E+028 1,50E+028 2,00E+028

0,4

0,6

0,8

1,0

1,2

1,4

1,6

1,8  Drude, 
eff

 = 0.3x  

 Drude, 
eff

 = 3x  

 QM

n
e
 [m

-3
]

0,4

0,6

0,8

1,0

1,2

1,4

1,6

1,8

 

 

 

Fig. 3.20. The real part of the refractive index [see eq. (3.8)] as a function of electron density. 

The calculation parameters are laser wavelength, λ = 800 nm; field amplitude, E0 = 180 MV/cm; 

mean electron energy, <ε> = 5 eV; energy gap, Δ = 9 eV (SiO2), and lattice temperature, 

T = 300 K. 
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Fig. 3.21. The imaginary part of the refractive index [see eq. (3.8)] as a function of electron 

density. The calculation parameters are laser wavelength, λ = 800 nm; field amplitude, 

E0 = 180 MV/cm; mean electron energy, <ε> = 5 eV; energy gap, Δ = 9 eV (SiO2), and lattice 

temperature, T = 300 K. 
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 We thus observe a significant deviation between the classical (Drude) and Quantum 

Mechanical approaches when collision frequency is smaller than laser frequency. However, we 

obtain similar results when the adjustable rate is larger than laser frequency, that is, is located in 

the non-physical region. 

 According to the classical model, the electron energy changes in a single scattering event 

under the action of a field. This change is, by order of magnitude, equal to 
b cbeE p m . It was 

shown, that Drude's formula turns out to be valid when any of the following conditions is 

satisfied [101,102]. The absorbed energy should be much higher than the photon energy 

b

cb

eE p

m
. (3.25) 

The momentum change due to absorption should be much smaller the momentum 

beE
p . (3.26) 

If one of these conditions is justified, then the system c be described classically. 

 In the considered case, both condition are not justified. Therefore, Drude model predicts 

incorrect results unless unphysical value of collision frequency are used. To understand why for 

the non-physical value of adjustable parameter the result is more satisfied we should consider the 

Drude expression for the energy rate in detail. This rate can be expressed as 

2 2 2

2 2 22

b
eff

cb eff

e E

m
  PL L eff , (3.27) 

where the factor 
2

2 2
PL

eff

 determines the relative part of the absorbed ponderomotive 

energy, 
2 2

22

b
L

cb

e E

m
. 

 Accounting the photoionization energy in the Drude model, the energy rate is  

Ppi pi L L efft . (3.28) 

Then, the energy as a function of pulse duration follows as 

0

0

PL L eff eff dt , where ,0 pipi . (3.29) 

 In the quantum mechanical case, the corresponding values are given by 
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e ion pht e ph pht

pi pi l l

l

t l , where 1pi pi
. (3.30) 

and the energy as a function of pulse duration 

0

0

e ion pht e ph pht

l l

l

l dt , where ,0 pipi . (3.31) 

 Figure 3.22 clearly shows that the Drude model overestimates the absorbed energy. 

Essentially, it happens by two reasons. First, the ponderomotive energy is higher than photon 

energy for the typical experimental intensity value, see figure 3.23 (our case, 
L

 ~ 3 eV, and 

 = 1.5 eV). Second is connected with the fact that the probability of absorption is taken into 

account classically. When the collision rate is much smaller than the laser frequency, 2 2

eff , 

then the energy 
L

 is totally absorbed in result of each collision, that is, PL
 → 1. For the 

simplicity, the collision rate in quantum case can be expressed as 
/

/Pe ph ion pht QM

l l e ph ion , 

where PQM

l
 [see Eqs. (2.42-43), (2.59-60)] is the field factor (an analog of PL

). In Figure 3.24, 

one can see that probability of processes with participation of photons (absorption) is less than 

the clear processes. Furthermore, the probability of clear processes decreases with the increase of 

laser field, whereas the factor PL
 equals unity in the classical case as pointed above. 

 If the collision rate is higher than the laser frequency, 
eff

, then the absorbed energy 

is smaller than 
L

, because of the factor PL
 < 1. Since, the value 

L
 is defined by average over 

the wave period therefore, naturally, if collision time less than wave period, the energy 
L

 

cannot be totally absorbed by CB electron, only the part, PL L L
 is absorbed by an electron in 

single scattering event. Thus, the increase of the effective collision rate decreases the absorbed 

energy, as our calculated results show based on Drude model for the effective collision rate 

eff . 
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Fig. 3.22. The mean electron kinetic energy [see Eqs. (3.29, 31)] as a function of the pulse 

duration. The calculation parameters are laser wavelength, λ = 800 nm; field amplitude, 

E0 = 180 MV/cm; energy gap, Δ = 9 eV (SiO2); lattice temperature, T = 300 K. 
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Fig. 3.23. The ponderomotive energy [see eq. (3.27)] as a function of laser field amplitude for 

the laser wavelength, λ = 800 nm. 
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Fig. 3.24. The field factor [see eq. (2.44)] as a function of laser field. The calculation parameters 

are laser wavelength, λ = 800 nm; wave number in the e-ph/ion-pht collisions, q/Δk = qBZ/ΔkBZ. 

 

 Note that for metals, the energy of electron is near the Fermi level, that is, the electron 

momentum is large. At the same time, the field is significantly smaller than that in an insulator, 

and, consequently, the momentum change due to absorption is too small. Therefore, the second 

condition is justified, and the Drude's model agrees with the experimental results for simple 

metals, where other factors, such as a complicated band structure takes no place, the "cold 

plasma" approximation can be applied. 

 In many experiments, pump-probe set-ups are used for the investigation of the fast 

electronic processes. It should be noted, that Drude model is valid for the probe pulse due to the 

second condition, whereas it is invalid for the pump pulse. In fact, when Drude model is used for 

pump pulses, this leads to a strong electron overheating, that significantly influences the optical 

properties (propagation of the pump pulse) during the laser pump pulse. Consequently, incorrect 

laser energy deposition is obtained. 
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§3.5 Nonequilibrium state of electronic and phonon subsystems 

 

We investigated the electron energy distribution (electron distribution function, or DF). The 

calculated DFs are shown in the Figure 3.25. One can see that right after the photoionization 

(first pick at the left in the Figure) and absorption (oscillations are caused by absorption of 

photons by free electrons scattering with phonons), the distribution is far from the equilibrium 

Fermi function. It takes from around 30 to 50 fs to reach equilibrium at laser pulse duration of 

100 fs and laser intensity of 6.25×10
13

 W/cm
2
. 
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Fig. 3.25. Calculated electron energy distributions at different instants of time. The calculation 

parameters are laser wavelength, λ = 400 nm, energy gap Δ = 9 eV (SiO2), and laser intensity 

I0 = 6.25×10
13

 W/cm
2
. 
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Fig. 3.26. Thermalization time as a function of pulse duration. The calculation parameters are 

laser wavelength, λ = 400 nm; energy gap, Δ = 9 eV, and laser intensity I0 = 6.25×10
13

 W/cm
2
. 

 

 Previously, the non-equilibrium of the electrons state was shown. To characterize the 

electron thermalization process (energy relaxation process) we investigated the dependency of 

the thermalization time on laser pulse duration. To calculate the thermalization time we analyzed 

the entropy behavior of electrons after the end of the pulse. Thermalization occurs when the 

value of entropy reaches the maximum. The dependency of the thermalization time on the pulse 

duration is presented in the figure 3.26. One can see that a maximum of the thermalization time 

can be observed when the pulse duration, τ, equals 55 fs. This behavior can be explained as 

follows. When the density of free electrons is small, the collision rates of absorption and 

photoionization, which are responsible for the disordering, is larger than the rate of the 

electron-electron (e-e) collisions, which are responsible for the thermalization. With increasing 

laser pulse duration (keeping the same laser field, or intensity), the electron density increases, 

and the e-e collisions become more frequent. Furthermore, partial thermalization occurs during 

the laser pulse. As a result, electrons reach more rapidly the equilibrium state when laser pulses 

are longer. 

 The frequency of the e-e collisions that is responsible for thermalization as shown in 

Figure 3.27. Both electron energy and the number density of conduction band electrons affect 

these collisions. Interestingly, with the rise in the mean electron energy, the frequency of the e-e 

collisions decreases. This effect can be attributed to the local screening effect, as one can see 

from the expression for q0, Eq. (2.21). When the mean electron energy is small and the number 

density of the created conduction electrons, ne, increases, the e-e collision density decays. On the 

contrary, at larger mean electron energy, the frequency of the e-e collisions rises with ne. 
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Fig. 3.27. Electron-electron collision rate [see eq. (2.24)] as a function of the conduction band 

electron’s number density for several different values of the mean electron energy. 
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§3.6 Time-resolved study of the ultrafast electron excitation/relaxation 

 Previously, pump-probe techniques were successfully used to study the dynamics of 

conduction electrons in dielectrics [49,103,104]. Here, we compare our results with the results 

obtained by this technique. 

 One of the first results was obtained by Audebert et al. [103]. The principle of this 

experiment is based on interferences in the frequency domain. The target is probed with two 

collinear femtosecond pulses separated by a fixed time delay Δt. The high intensity pump pulse 

excites the solid between the first pulse (reference) and the second one (probe). It results in a 

change Δ  =  - 1 in the refractive index of the dielectric material ( 1 refractive index of the 

non-excited solid), which leads to a change ΔΦ ( ) in the relative phase of the reference 

and the probe. Thus, a measurable shift of the spectral fringes is obtained. The phase shift can be 

measured as a function of time by changing the delay between the pump pulse and the probe 

pulses; the absorption of the probe pulse is obtained simultaneously by measuring the fringe 

contrast directly on the interference pattern. The experimental setup is shown in Fig. 3.28. 

 

 

Fig. 3.28. Principle of the experiment. M: mirror; BS: beam splitter; S: sample; SL: slit; SP: 

spectrometer; 1,3: probe pulses; 2: pump pulse; Ll: imaging lens, L2: focusing lens. The black 

area represents the interaction region imaged on the slit SL by L1. The corresponding light rays 

are symbolized by the dashed lines. 

 Because the probe pulse is of small intensity, therefore 
r iò ò  then 

2 21 8r i rò ò ò  

and 
2

iò . However, the energy absorption rate is e iQ ò  [eq. (3.12)], and, according to 

the Drude model, the imaginary part of the dielectric function is 
Dr

i e effnò  [eq. (3.15)], then 

phase shift is 
2

e effn . That is, the change, ΔΦ occurs due to the change of electron 

density and the collision frequency. The collision frequency is a function of the electron mean 

energy, electron density and lattice temperature, , , , ,eff e e ph e ion en T T n . 

The decrease of electron density occurs due to Auger processes and STE (Self-Trapped Exciton) 

mechanism (when electron has low energy, less 1 eV), 
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, , ,e e Auger e STE en n n n n n . To identify the mechanism which is responsible 

for the behavior of phase shift and probe-free carrier absorption we should explore their behavior 

with time. 

 According to our calculation (Fig. 3.14), the mean energy is in the range between 5 and 

10 eV. In Figure 3.31, we can see that the Auger scattering rate is too small, < 10
12

-10
13

 sec
-1

, in 

this energy range for the interesting electron density domain, 10
21

-10
22

 cm
-3

. Therefore, the 

Auger rate cannot significantly influence electron density unless the electron energy is above 

5 eV. Furthermore, this process is negligible if the electron density is than smaller 10
21

 cm
-3

. 

Thus we have two possibilities to describe the results of Figures 3.29 and 3.30: (a) decreasing 

electron density due to STE; (b) decreasing the effective collision frequency. In fact, the STE 

formation takes place only if the electron energy is lower than 1 eV, because high energy 

electrons cannot be localized. These electrons need to decrease their energy before an STE can 

be formed. 

 To analyze the behavior of the e-ph scattering rate as function of electron energy 

(Fig. 3.32), the rate decreases with the decrease in the electron energy. Thus, because of the 

energy transfer from the CB electrons to lattice, the absorption decreases too. Moreover, 

according to our calculations, the time required to reach energy of ~1 eV is about 0.8 ps. Also, it 

can be estimated as follows, ph eff t , where 
ph

 = 0.1-0.2 eV (Appendix F), 

eff  ≈ 10
14

 sec
-1

 (Fig. 3.32), and  = 5-10 eV (Fig. 3.14). This time defines the delay when the 

trapping processes are playing an important role. 

 

 

Fig. 3.29. Phase shift as a function of time for α-SiO2 and a-SiO2. Solid line: exponential fit, with 

a time decay of 150 fs. Pump intensity of 2.7×10
13

 W/cm
2
 (90 fs). 
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Fig. 3.30. Probe-free carrier absorption as a function of time for α-SiO2 and a-SiO2. Solid line: 

exponential fit with a time decay of 200 fs. Pump intensity of 2.7×10
13

 W/cm
2
 (90 fs). 

 

0,00E+000 5,00E+027 1,00E+028 1,50E+028 2,00E+028 2,50E+028

100000

1000000

1E7

1E8

1E9

1E10

1E11

1E12

1E13

1E14

A
u

g
e

r [
1

/s
e

c
]

n
e
 [1/m

3
]

 5 eV

 7 eV

 10 eV

 

 

 

Fig. 3.31. Auger scattering rate (Appendix I) as a function of electron density for different values 

of mean electron energy. The results are obtained for the following parameters: reduced mass, 

mr = 0.5 m0; energy gap, Δ = 9 eV. 
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Fig. 3.32. Electron-phonon (acoustic) collision frequency [see eq. (2.46)] as a function of the 

electron mean energy (lattice temperature, T = 300 K). 

 

 Furthermore, Quéré et al. [49] presented a femtosecond time-resolved study of the 

evolution of the laser-excited carrier density with the laser intensity. In Figure 3.33, the evolution 

of ΔΦ∞ with the incident peak intensity is displayed, where ΔΦ∞ is the phase shift, ΔΦ(t) for 

large enough delays after the pump pulse (see the inset in the fig. 3.33). Authors show, that at 

higher intensities, a saturation of ΔΦ∞(I) is observed compared to the power law I
6
 (n = 6 

corresponds to the MPI for the SiO2). The OBT (optical breakdown threshold) falls within this 

saturation range. On the contrary, if the optical breakdown is associated with an electronic 

avalanche, a strong increase in the electronic density compared to this power law should be 

expected upon the OBT. This fact indicates that no electronic avalanche occurs, in agreement 

with our conclusion in the section 3.3.2. 

 To identify the electronic excitation mechanisms, it is necessary to understand why the 

saturation of ΔΦ∞(I) occurs. It was proposed [49], that at high laser intensity, the attenuation of 

the pump beam can be very strong at the probed length, for two reasons. First, each creation of 

an electron-hole pair by multiphoton absorption annihilates n photons. Second, once sufficient 

number of the electrons are injected in the CB, the solid acquires a metallic character. It can 

absorb pump photons through free-carrier absorption (Joule heating). These absorption processes 

both depend strongly and non-linearly on laser intensity. In the case of free-carrier absorption, 

this dependency is due to the proportionality to the density of excited carriers. As a consequence, 

as the intensity increases, they prevent more and more efficiently the penetration of the pump 

beam in the solid, which is thus more and more inhomogeneously excited. However, this is not a 

single reason. In previous section we demonstrated (Fig. 3.13-15, 3.24) the saturation due to the 

field and electron density effects, that completes the explanation of Quéré et al.[49]. 
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Fig. 3.33. Circles: evolution of ΔΦ∞ with the incident peak intensity of a 790 nm, 60 fs pump 

pulse. Open circle: OBT at 60 fs. Full line: I
6
 law. Insets: temporal evolution of ΔΦ. The arrow 

indicates the typical delays at which ΔΦ∞ was measured. 
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Chapter 4 

On the damage criterion 
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A correct definition of laser damage criterion is a challenging task. Previously, the criterion of 

optical breakdown (OB) was used based for the definition of the so-called ―critical electron 

density‖ as follows from 
. .o b

e crn n , . . 2 2

0

o b

cr cbn m eò  [32,105]. This simple criterion is 

borrowed from the DC damage investigations and was used for the AC damage later. Firstly, it 

was applied to the process of gas breakdown [106], because if the plasma frequency equals the 

laser frequency, then total screening is observed. To connect these measurements with the 

electronic excitation mechanisms, it is postulated that breakdown occurs when the excitation 

density reaches a critical value . .o b

crn  independent of the pulse duration τ. The measurements in 

solids show that this assumption is not valid [40,49,94]. The exact law for damage as a function 

of ne and τ must be determined based on a mechanism, through which the excitation leads to the 

solid damage. 

 In solids, both electron energy and material properties are completely disregarded in this 

definition. Moreover, a situation is possible when the critical density is reached at the end of the 

pulse but the density of free electrons with enough energy to ionize other neutral 

atoms/molecules is not high enough to support avalanche and thus further grow of electron 

density does not practically happen. It should be noted that only extensive bond breaking could 

guarantee laser damage, rather than OB itself. 

Therefore, based on our calculations, we can propose a more relevant definition of the 

electron density required for damage. For this, we propose to compare the total energy of free 

electrons per unit volume (electron energy density, eQ t ) in the end of the laser pulse, t , 

with kinetic energy of lattice at melting temperature, ph mQ T  

2e ph mQ Q T , (4.1) 

where 
3

3

1
,

2
e totQ t k f t k d k  is the total energy density of free electrons in J/m

3
; 

tot k k , 3

3

1
,

2
phQ T q g q T d q  is the energy density of lattice in 

J/m
3
. Also, to calculate the energy density of lattice at melting temperature, we just suppose that 

the phonon system is at equilibrium and use the Bose-Einstein distribution for the phonon 

subsystem. 

 Therefore, the electron energy density can be presented as 
e e totQ n , where 

tot . Then we obtain the following condition of thermal criterion 
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th

e crn n , 
2 ph mth

cr

tot

Q T
n . (4.2) 

Note, that material properties are taken into account in this criterion. 

 For wide-gap dielectrics and for short pulses when photo-ionized electrons have no time 

to absorb addition energy, i.e. tot pil , and by using simple expression for the 

3 2ph m B m atQ T k T V , we can rewrite our condition as following 

th

e crn n , 
3th B m

cr

at pi

k T
n

V l
, (4.3) 

where Vat is the mean volume of atom. 

 Since, we revealed that the role of the impact ionization process is negligible, that is 

,e pi bn t W E t , to calculate roughly the energy density per unit volume for long pulses 

can be applied the equations from (3.22), and then the energy density in quasi-equilibrium terms 

(due to long pulses) is 

0

t

e pi e ion pht e ph phtQ t Q t Q t Q t dt . (4.4) 

 To check the validity of this criterion we perform a comparison with the previous 

experiment findings (Figure 4.1) [62]. It should underline that in the calculations we compared 

the energy density for electron and phonon sub-systems. 

 The results show a good agreement with the experimental data of Sanner et al. [62] for 

the pulse duration region longer than from 50 to 70 fs. Also, the figure clearly shows that using 

parabolic model for the photoionization rate agrees better with experiments than Kane band 

structure model. 

 However, for shorter laser pulses, the presented theoretical description of laser excitation 

and absorption processes is incomplete, which explains the observed discrepancy. In the range 

< 50 fs of laser pulse duration, the laser field amplitude is so high that the Keldysh approach 

cannot be applied to consider correctly the photo-ionization. This pulse duration is too short that, 

in fact, the intraband processes (electron-phonon/ion-photon) cannot significantly contribute to 

absorption, despite that the taking into account of the multiphoton electron heating with respect 
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to one-photon of Kaiser et al. [14] decreases the threshold field in this range. Evidently, it is not 

possible to make up for the lacking order of magnitude considering only electron—phonon/ion 

scattering. Thus a necessity arises to search for other electron heating channels that would 

provide a higher rate of energy accumulation, and improve the theory of photo-ionization, or for 

a non-electronic damage mechanism, or for another damage criteria. Probably, the role of 

interband processes [107] in conduction band is underestimated in this case. 
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Fig. 4.1. Calculated and measured damage thresholds are shown. The black dash and red dash-

dot curves correspond to the optical breakdown criterion and thermal criterion for Kane BS, 

respectively. The green dash-dot-dot curve corresponds to the thermal criterion for Parabolic BS. 

The blue dash curve shows the results of experiments by Sanner et al. [62]. Here, laser 

wavelength, λ = 800 nm; energy gap, Δ = 9 eV (SiO2). 
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Chapter 5 

General conclusions 
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In this manuscript I have presented the results of my work at Hubert Curien Laboratory that I 

have performed during 2009-2013. In particular, I have investigated ultra-short laser interactions 

with dielectric materials. For this, I have developed a compete model of femtosecond-laser 

interaction with dielectric materials. The main objective of this work have been a better 

understanding of the mechanisms involved in laser interaction and a definition of damage 

threshold for optical components used in ultra-powerful laser systems. Further development of 

laser applications should benefit from this study. 

 I have presented a numerical analysis of the physical mechanisms involved in ultra-short 

laser interactions with dielectric materials. The developed model accounts for the absence of 

equilibrium in electron and phonon subsystems. All collisional processes involved in both 

electronic excitation and relaxation processes are taken into account. 

 The calculations are performed for quartz. The obtained results demonstrate that the 

electron thermalization time depends on laser parameters, such as pulse duration and laser 

fluence. These results have been attributed to the difference in free electron densities that are 

reached. The frequency of electron-electron collisions are presented as a function of the electron 

number density and mean energy. 

 Then, I have investigated the rates of photo- and electron impact- ionization processes. 

The calculation results are compared for two different band structures: (i) Kane’s model and (ii) 

parabolic band structure. In both cases oscillations are observed when laser field increases. The 

rates calculated based on Kane’s model are found to be higher than that calculated for parabolic 

BS. 

 For typical laser fields used in experiments, comparable frequencies have been obtained 

for both photo- and impact ionization processes. However, the role of impact- and field-assisted 

impact- ionization is negligible for pulse duration < 100 fs and laser intensity < 10
14

 W/cm
2
, that 

confirms the experimental results [40,49,93,94]. 

 In addition, free electron absorption is examined. For higher laser fields, the limits of the 

validity of Keldysh model have been demonstrated because of the transitions beyond the first 

Brillouin zone. 

 Furthermore, I have compared laser energy absorption calculated by our model with that 

obtained from a classical Drude model. It has been demonstrated that Drude model overestimates 

this absorption. With the decrease in the effective collision frequency, the deviation between the 

results rises. This deviation is attributed to the role of laser field inside the dielectric material that 

affects the involved collisions. In addition, the role of the local screening effect depending on the 

free electron density and laser field are shown to be affected on the electron mean energy. This 

effect is demonstrated in the investigation of laser absorption efficiency as a function of laser 

parameters. 
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 The calculated time-scales of the electronic excitation/relaxation process agree with the 

experimental results [49]. In addition, our model confirms the conclusion [103] about the phase 

shift saturation with intensity. 

 Finally, laser damage criteria have been examined. The criterion based on the optical 

breakdown (OB) yields the critical density of about one percent from the total amount of 

valence-band electrons. This criterion, however, contains no information about electron energy 

nor about the bond breaking process. Therefore, a more precise criterion is proposed that 

provides more correct values for the damage threshold [62]. 
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Perspectives 
 

 The presented study has many perspectives, both theoretical and practical. First of all, a 

more detailed analysis can be performed for a more realistic band structure. Thus, from 

theoretical point of view, the performed studies can be extended by including the multiple band 

structure to describe correctly the electron-phonon/electron collisions. Then, for the multiple BS, 

I propose to consider the direct transition of the electrons between different conduction bands 

(interband transitions). 

 The photoionization process also needs more analysis. Based on the analytical 

calculations, it is possible to further improve the calculation of the PI rate. Furthermore, the 

accuracy of the PI rate calculations will be improved by including the electron-hole interaction 

(excitonic effect). 

 In addition, it will be important to compare the results obtained for different laser 

polarizations (for instance, linear and circular). There are several experiments (e.g. the time-

resolved and double pump-probe technique by Guizard et al. [93]) that demonstrate the role of 

self-trapped excitons. It is therefore imperative to consider the photoionization through the self-

trapped exciton level and the photoionization from the self-trapped exciton level to the 

conduction band. 

 The practical perspectives are also numerous. In particular, the developed model can be 

used for further development of ultra-powerful laser system based on a better evaluation of the 

material damage thresholds. Then, the precision of laser micromachining can be improved. The 

development of optical components, such as polarizers, gratings, mirrors, etc can also benefit 

from the presented study. In particular, the developed model can be used to study optical 

properties as non ab initio methods, therefore it does not require the high-performance 

calculation. This is particularly important for the description of pump-probe technique 

experiments. 

 Finally, such processes as electron diffusion, lattice structural modifications and 

propagation should be included to evaluate the size of the damaged area. 
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Appendix A. Validity 

In what follows we define the validity limits of the Boltzmann equation. First of all, this equation 

describes correctly the system of particles if the smallest scattering time, 
min

 is larger or 

comparable with the time step, t  (0.1-0.5 fs) used in the calculations. The largest collision 

frequency that determines the shortest collision time is the electron-electron collision time. 

The first condition is therefore 

mint . (A.1) 

 The second condition is connected with the largest collision time. In fact, the total 

calculation time (laser pulse duration, 
p

) should be much longer than the effective collision 

time 

p eff
. (A.2) 

 Now, we define the values of 
min

 ≈ 1 fs and eff  ≈ 5-10 fs; 

min/ min/ , ,eff e e e ph e ioneff . We use the typical pulse durations 50-300 fs to justify this 

condition. 

In addition, all scattering times should be larger than the uncertainty time of the ―mean‖ 

electron. Hence, we can rewrite the third condition as following 

sc
, (A.3) 

where  is the time uncertainty, and , ,sc e e e ph e ion  is a scattering time. 

The initial electron energy is above 1 eV due to photoionization process. Therefore, 

0.6sc
 fs. This condition is satisfied in the case of quartz. 

The absorption or emission of a phonon by free electrons is the result of one e-ph/ion 

collision. To absorb or emit one phonon, an electron should spend time larger or comparable 

with phonon period. In other words, the electron is in the phonon field, and the electron needs to 

spend more phonon period time to absorb a phonon. Therefore, the e-ph collision scattering rate 

should be smaller than the phonon frequency. That is the 4
th

 condition 

ph e ph . (A.4) 

This condition also is satisfied. 

In the case of laser energy absorption, the e-ion-pht, and e-ph-pht collisions should satisfy 

the following 5
th

 condition 

,LF e ion pht e ph pht , (A.5) 

where 
LF

 is the wave period of the applied laser field. The wavelength of 800 nm corresponds 

to 
LF

 ≈ 0.4 fs. This condition also is satisfied. 
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Appendix B. Special functions 

 

To calculate the matrix element in the electron-electron collision integral we use the following 

expression 

0

2 3 2 22 2
0 0 00

1
arctan

2

dk k kq
Const

q q k qk q
. (B.1) 

 To calculate the matrix element in the impact ionization collision integral we use the 

following expression 

2

2 2 22 2
0 0 00

1 1
arctan

2

k dk k k
Const

q q k qk q
. (B.2) 

 The complete elliptic integral of the first kind is 

2 1

2 2 2 2 2
0 01 sin 1 1

d dx
K k

k x k x
. (B.3) 

 The complete elliptic integral of the second kind is 

2 1 2 2
2 2

2
0 0

1
1 sin

1

k x
E k k d dx

x
. (B.4) 

 The Dowson's integral is expressed as 

2 2

0

exp

z

z y z dy . (B.5) 

 The Bessel function of integer order can be calculated as 

0

1
cos sinnJ x n x d . (B.6) 

 The relation of the Bessel functions for the positive and negative order is 

1
n

n nJ x J x . (B.7) 

 The arc-hyperbolic sine function is 

2Arsh ln 1x x x . 
(B.8) 
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Appendix C. Delta-function approximation 

To calculate the photoionization collision integral we use the following approximation of Delta-

function 

2 2

0
0

0 0

1 1
lim exp lim exp

def x x x
x x x , (C.1) 

where the parameter α is responsible for the height and width of the Delta-function. This 

parameter is the order of the integration step h. 
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Appendix D. Integration and derivation schemes 

To calculate the collision integrals we use the Trapezium method 

1

1

2
2

b n

i

ia

h
f x dx f a f x f b , (D.1) 

where 
ix a ih  and 

b a
h

n
. 

 The integration step h is chosen according to the scales of the observed physical 

processes in the system eq. (2.5). 

 For n >> 1, two-dimension integral can be calculated as 

2

0 0

, ,

b b n n

i k

i ka a

f x y dxdy h f x y . (D.2) 

 To solve the deferential equation we applied the Euler scheme 

1, ,
,i i

i

f x t f x t
x t

t
, (D.3) 

where 
1i it t t . 



90 

 

Appendix E. Photo-ionization matrix element derivation 

The density rate equals the photoionization rate per unit volume, that is 

3 2

3 3

0

1 1
4

2 2
pi pi

pi pi

f f
n W d k k dk

t t
. (E.1) 

Momentum integration is replaced by energy integration as 

3

2

0

21

4

cb

pi

pi

m f
W d

t
. (E.2) 

Substitution of the collision integral (Parabolic band-structure) eq. (2.15) in eq. (E.2) leads to the 

following expression 

3

2

, ,2

0

21 2
1

4

cb r
pi pi n v v pi n

n cb

m m
W M f f d

m
 (E.3) 

In the initial time 1v vf  and 0f , respectively. Then eq. (E.3) can be calculated as 

3

2

, ,2

22 1

4

cb r
pi pi n pi n

n cb

m m
W M

m
 (E.4) 

and with help of ,pi pi n

n

W W  

,

2 3
2 ,

, ,2

,

2

2 2
pi n

pi n

pi n

cb r pi n

W
M

m m
. (E.5) 
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Appendix F. Reference data of target properties (SiO2) 

 
Calculation parameters, where LO stands for longitudinal optical phonons, TO represents 

transversal optical phonon mode, and 
1 1

, 0 ; is the high frequency (optical) 

and  is low frequency (static) dielectric constant of β-th LO mode, respectively. 

 

 

 

Notation Value Unit Ref. 

c light speed 2.998×10
8
 m·sec

-1
 [108,109] 

e elementary charge 1.602×10
-19

 Q [108,109] 

m0 free electron mass 0.911×10
-30

 kg [108,109] 

ħ Planck constant 1.055×10
-34

 J·sec [108,109] 

kB Boltzmann constant 1.380×10
-23

 J·K
-1

 [108,109] 

0ò  electric permittivity of vacuum 8.854×10
-12

 F·m
-1

 [108,109] 

Δ energy gap (SiO2) 9.0 eV [108,109] 

CAC acoustic deformation potential (SiO2) 3.5 eV [110] 

mcb conduction band electron mass (SiO2) 0.911×10
-30

 kg - 

mvb valence band electron mass (SiO2) 0.911×10
-30

 kg - 

TO
 optic deformation potential (SiO2) 2.0×10

9
 eV·cm

-1
 [110] 

1
 - // - (SiO2) 0.063 - [110] 

2
 - // - (SiO2) 0.143 - [110] 

vs speed of sound (SiO2) 4500 m·sec
-1

 [108,109] 

kBZ Brillouin zone edge vector (SiO2) 1.239×10
10

 m
-1

 [110] 

ρ target density (SiO2) 2650 kg·m
-3

 [108,109] 

n0 initial electron density (SiO2) 10
14

 m
-3

 [110] 

ω1 LO1 frequency (SiO2) 95.706×10
12

 sec
-1

 [110] 

ω2 LO2 frequency (SiO2) 232.429×10
12

 sec
-1

 [110] 

ωTO TO frequency corresponded LO1 mode (SiO2) 269.406×10
12

 sec
-1

 [110] 

T0 initial temperature of electron/phonon gas 300 K - 
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Appendix G. Photo-ionization rate expressions 

Parabolic band structure 

The expression of photo-ionization rate for parabolic band structure is [84] 

3 2 2

2

2 2
, exp 2 Arsh 2 2

9 1 4

G Gr
pi pi

m
W s Q x l x . (G.1) 

The factor 1/9 is connected with the saddle-point contribution and corresponds to the Kane BS 

whereas in the parabolic BS the saddle-point contribution is 1/16, therefore the correct 

expression is given by 

3 2 2

2

2
, exp 2 Arsh 2 2

8 1 4

G Gr
pi pi

m
W s Q x l x  (G.2) 

with 

max

0

, 1 exp 2 Arsh 2 2
n

G

pi

n

Q x n l x n , (G.3) 

where 

r

b

m

eE
; 

2

1
1

4
; x ; 1pil x ; 

21 1 1 2 . (G.4) 

 The asymptotic expression of the PI rate (MPI regime) is given by [82] 

3 2

2 2

2 1 1
2 exp 2 1

9 4 8

pil

G r
mpi pi pi

m
W s l x l x . (G.5) 

 More accurate calculation gives the similar expression but with insignificant distinctions 

3 2

2 2

2 2 2

2 1 1
1 1 2

8 8 8

1 1 1
exp 2 1 1

4 2 8

pi

piG r
mpi pi

l

pi

lm
W s l x

l x

. (G.6) 
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Kane band structure 

The expression of photo-ionization rate for Kane band structure is [41] 

3 2

2 2

2 1

2
, exp

9

K Kr
pi pi

K Em
W s Q x l

E
 (G.7) 

with 

2 2 2

01 1 1 1

2 2
, exp

2 2

piK

n

l x nK E
Q x n

K E K E
. (G.8) 

 However, the argument of the Dowson's integral consists misprint, but the argument of 

the Dowson's integral is correct in the corresponding MPI asymptotic expression. Also, it was 

independently from us mentioned by Gruzdev [82]. Then, taking into account this fact and the 

upper limitation to n (discussed in the section 2), we have the following correct expression 

max

22 2

01 1 1 1

, exp
2 2

n
piK

n

l x nK E
Q x n

K E K E
, (G.9) 

where 

r

b

m

eE
; 

1

2

2
E ; x ; 1pil x ; 

1
2

1

1
; 

2
21

. (G.10) 

 The corresponding asymptotic expression (MPI regime) is [41] 

3 2

2 2

2 1 1
2 exp 2 1

9 4 16

pil

K r
mpi pi pi

m
W s l x l . (G.11) 

 More accurate calculation gives the similar expression but with insignificant distinctions 

in pre-exponential factor 

3 2

2 2 2

2 7 1 1
1 2 exp 2 1

9 8 4 16

pil

K r
mpi pi pi

m
W s l x l . (G.12) 

And the effective ionization potential is 

2 2

24

b

r

e E

m
. (G.13) 



94 

 

Appendix H. Electron-electron collision integral 

The sum by k3 is simply performed through the conservation momentum law (see Eq. 2.23) and 

then Eq. (2.26) is given by 

2

,

2
, , , ,e e

e e

f
M

t
1 2

2 1 2 3 3 2 1

k k

k k k k k k k k k k , (H.1) 

where 
3 1 2

k k k k . 

 We use the following expression to replace the sum by integral 

3
2

V
d

k k

k . (H.2) 

 Then the collision integral eq. (H.2) is 

2

2

3

2
,

2

, , ,

e e

e e

f V
d d M

t
1 2

1 2 2

k k

1 2 3 3 2 1

k k k k

k k k k k k k k

. (H.3) 

 To simplify next calculation we introduce the following notations: 

2

3

2

(2 )

V
C , and since the 

2
2

2

2 2
0 0 0

1
,e e

e
M

N q
2

2

k k
k kò

, therefore 

2 2

,e e e eM M2k k κ , where 
2

κ k k  and 
2 2

e e e eM Mκ .
 

 We replace wave vector dependency to absolute value of that due to assumption of 

isotropic parabolic band. Then, with account of the new notations the Eq. (H.3) is given by 

2

3 2 1e e

e e

f
C d d M

t
1 2

1 2

k k

k k  (H.4) 

with 

1 2 3, , , , , ,k k k k1 2 3k k k k , (H.5) 

where 
2 2

2

i
i i

cb

k
k

m
k i . 

 The integration by 
1
 and 

2
 is performed as follows 
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22 2

1 1 1 1 1 3 2 1 2 2 2 2 2

22 2 2

1 1 1 3 2 1 2 2 2

sin sin

2 cos cos

e e

e e

e e

f
C k dk d d M k dk d d

t

C k dk d M k dk d

 (H.6) 

 The next step is integration by 
1cos . To perform this action the energy in argument of 

the delta-function corresponded the energy conservation law is replaced by the equation through 

the wave vector. Also we replace deferential 
1cosd  by expression through the wave vector with 

help of momentum conservation low, and the corresponding derivation is 

2 3 1 3 1
κ k k k k k κ k . Then 2 2 2

3 1 1 1 3 3 1 12 cos 2 2 cosk k k k dk k d  and 

3 3
1

1

cos
k dk

d
k

. 

 Because 
2 2 2

3 1
1

1

cos
2

k k

k
 and 

11 cos 1, the integration domain is 

2 2 2

3 1

1

1 1
2

k k

k
. 

 Solution of this inequality with respect to  gives 

1 3 1 3,k k k k . (H.7) 

 Thus, the corresponding derivation is 

2 2 2 2 2 2 2 2
22 2 2 3 2 1 3 3

1 1 2 2 2

1

2 2 2

3 1 222 2 2 3 3
1 1 2 2 2 2

3 1

2
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 To perform integration by 
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 Solution of this inequality with respect to  gives 

2 2,k k k k . (H.9) 

 Thus, the corresponding integration derivation is 
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 (H.10) 

 In result of previous steps we have two conditions for  which are given by eq. (H.7) and 

eq. (H.9). Intersection of these sets gives integration region, 

1 3 1 3 2 2, ,e eD k k k k k k k k . 

 In Eq. (H.10) we replace the momentum integration by energy integration. Then we can 

rewrite the electron-electron collision integral eq. (2.26) in terms of energy, and the expression is 

represented as eq. (2.28). 



97 

 

Appendix I. Auger scattering rate 

The Auger scattering rate in our model is given by the following expression 

1 2

2 22 2

3 2

0 0

2

1 2 1 22
2 2

0

1 1
, 1

22

,

Auger

vb cb
Auger e

Auger

K

e m m
n

m k

d
F d d

q

ò

 (I.1) 

with 

1 2 2 3 1

2 3 1

, 1 1

1

Auger v c

c

F f f f

f f f
, (I.2) 

where 
1 1 2 3 2 3, ,c c

AugerK k k k k k k k k  is the integration region. 
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Abstract 

With the appearance of new ultra-short laser systems, extremely high laser 

intensities became accessible thus allowing laser treatment of practically all 

materials. As a result, extremely precise processing techniques are under 

development considerably extending the number of the corresponding industrial 

and medical applications. Further progress in this field requires a better 

understanding of fundamental processes involved in the laser interactions. In 

addition, the success of several national and international involving the 

development and use of high power laser systems depends on the capacity of 

careful definition of damage threshold of their optical components. These points 

illustrate the importance of a detailed numerical modeling of laser interactions with 

dielectric materials. 

 Under laser irradiation, seed electrons appear in the conduction band of 

dielectric materials due to photo-ionization process. Colliding with a third-body, 

these electrons are further heated in laser field. When the threshold electron energy 

is reached, electron-impact ionization begins. At the same time, the considered 

laser pulses are so short that electron sub-system has no time to reach an 

equilibrium state. The resulting optical properties are affected and the definition of 

the damage criterion should be revised. The proposed approach accounts for the 

non-equilibrium and provides a detailed description of all the involved processes. 

In particular, we consider the photo- and impact-ionization processes, as well as 

electron-electron, electron-phonon and electron-ion collisions. The electron energy 

distribution and heating of electronic and phonon subsystems is discussed. The role 

of laser parameters (wavelength, pulse duration, fluence) and material properties 

(energy gap, band structure) is investigated. The thermalization time is calculated 

and characterizes the non-equilibrium state as a function of laser pulse duration. A 

novel thermal criterion is proposed for damage definition based on the electron and 

phonon energies. The calculated damage thresholds are compared with recent 

experimental findings. An analysis of other criteria (classical optical breakdown 

and thermal) is also performed. 


