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Abstract

Current wireless communication systems evolve toward an enhanced reactiv-
ity of Radio Resource Management (RRM) and Fast Link Adaptation (FLA)
protocols in order to jointly optimize the Media Access Control (MAC) and
Physical (PHY) layers. In parallel, multiple antenna technology and ad-
vanced turbo receivers have a large potential to increase the spectral effi-
ciency of future wireless communication system. These two trends, namely,
cross layer optimization and turbo processing, call for the development of
new PHY-layer abstractions (also called performance prediction method)
that can capture the iterative receiver performance per iteration to enable
the smooth introduction of such advanced receivers within FLA and RRM.

The PhD thesis first revisits in detail the architecture of the turbo re-
ceiver, more particularly, the class of iterative Linear Minimum Mean-Square
Error (soft) Interference Cancellation (LMMSE-IC) algorithms. Then, a
semi-analytical performance prediction method is proposed to analyze its
evolution through the stochastic modeling of each of the components. In-
trinsically, the performance prediction method is conditional on the available
Channel State Information at Receiver (CSIR), the type of channel coding
(convolutional code or turbo code), the number of codewords and the type
of Log Likelihood Ratios (LLR) on coded bits fed back from the decoder for
interference reconstruction and cancellation inside the iterative LMMSE-IC
algorithms.

In the second part, closed-loop FLA in coded MIMO systems based on
the proposed PHY-layer abstractions for iterative LMMSE-IC receiver have
been tackled. The proposed link adaptation scheme relies on a low rate feed-
back and operates joint spatial precoder selection (e.g., antenna selection)
and Modulation and Coding Scheme (MCS) selection so as to maximize the
average rate subject to a target block error rate constraint. The cross an-
tenna coding (the transmitter employs a Space-Time Bit-Interleaved Coded
Modulation (STBICM) ) and per antenna coding (Each antenna employs
an independent Bit-Interleaved Coded Modulation(BICM)) cases are both
considered.
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1 Introduction 19
1.1 Evolution of wireless communication systems . . . . . . . . . 19
1.2 Motivations of the PhD thesis . . . . . . . . . . . . . . . . . . 22
1.3 State of the art . . . . . . . . . . . . . . . . . . . . . . . . . . 23
1.4 Thesis outline . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

1.4.1 Part I: PHY-layer abstractions . . . . . . . . . . . . . 29
1.4.2 Part II: Link adaptation . . . . . . . . . . . . . . . . . 31
1.4.3 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . 32

I PHY-layer abstraction algorithms 33

2 PHY-layer abstractions for convolutionally coded MIMO
systems with iterative LMMSE-IC 35
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
2.2 System model . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
2.3 Iterative LMMSE-IC . . . . . . . . . . . . . . . . . . . . . . . 38

2.3.1 LEXTPR-based LMMSE-IC . . . . . . . . . . . . . . . 38
2.3.1.1 Interference regeneration and cancellation . . 38
2.3.1.2 LMMSE estimation – unconditional case . . 39
2.3.1.3 Demapping and decoding . . . . . . . . . . . 41

2.3.2 LAPPR-based LMMSE-IC . . . . . . . . . . . . . . . 42

vi



TABLE OF CONTENTS

2.3.2.1 Interference regeneration and cancellation . . 42
2.3.2.2 LMMSE estimation – unconditional case . . 44
2.3.2.3 Demapping and decoding . . . . . . . . . . . 46

2.4 PHY-layer abstractions . . . . . . . . . . . . . . . . . . . . . 47
2.4.1 LEXTPR-based iterative LMMSE-IC . . . . . . . . . 47

2.4.1.1 Transfer characteristics of LMMSE-IC . . . . 47
2.4.1.2 Transfer characteristics of joint demapping

and decoding . . . . . . . . . . . . . . . . . . 48
2.4.1.3 Evolution analysis . . . . . . . . . . . . . . . 49

2.4.2 LAPPR-based iterative LMMSE-IC . . . . . . . . . . 50
2.4.2.1 Transfer characteristics of LMMSE-IC . . . . 50
2.4.2.2 Transfer characteristics of joint demapping

and decoding . . . . . . . . . . . . . . . . . . 51
2.4.2.3 Evolution analysis . . . . . . . . . . . . . . . 51
2.4.2.4 Calibration . . . . . . . . . . . . . . . . . . . 52

2.5 Numerical results . . . . . . . . . . . . . . . . . . . . . . . . . 54
2.5.1 LMMSE receiver . . . . . . . . . . . . . . . . . . . . . 54
2.5.2 Iterative LMMSE-IC . . . . . . . . . . . . . . . . . . . 55

2.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3 Extension to imperfect CSIR and iterative semi-blind chan-
nel estimation 61
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
3.2 System model . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
3.3 Double loop receiver architecture . . . . . . . . . . . . . . . . 64
3.4 Soft bit-to-symbol mapping . . . . . . . . . . . . . . . . . . . 65
3.5 Channel estimation and a posteriori CDI . . . . . . . . . . . . 66

3.5.1 Initial pilot assisted channel estimation . . . . . . . . 66
3.5.2 Joint pilot and data assisted channel estimation . . . . 67
3.5.3 A posteriori CDI . . . . . . . . . . . . . . . . . . . . . 69

3.6 Linear IC and data detection . . . . . . . . . . . . . . . . . . 69
3.6.1 Receive base-band model conditional on channel esti-

mation . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
3.6.1.1 Matched receive base-band model . . . . . . 70
3.6.1.2 Mismatched receive base-band model . . . . 71

3.6.2 Linear-IC detection error model . . . . . . . . . . . . . 71
3.6.2.1 Matched SINR model . . . . . . . . . . . . . 71
3.6.2.2 Mismatched SINR model . . . . . . . . . . . 72
3.6.2.3 Exact SINR model . . . . . . . . . . . . . . . 72

3.6.3 LMMSE-IC key equations . . . . . . . . . . . . . . . . 73
3.6.3.1 Matched LMMSE . . . . . . . . . . . . . . . 73
3.6.3.2 Mismatched LMMSE . . . . . . . . . . . . . 74

3.7 Soft symbol-to-bit demapping and decoding . . . . . . . . . . 74
3.7.1 Soft symbol-to-bit demapping . . . . . . . . . . . . . . 74

vii



TABLE OF CONTENTS

3.7.2 Decoding . . . . . . . . . . . . . . . . . . . . . . . . . 75
3.8 PHY-layer abstraction . . . . . . . . . . . . . . . . . . . . . . 76

3.8.1 Proposed algorithm . . . . . . . . . . . . . . . . . . . 76
3.8.2 Corrected SINR issue . . . . . . . . . . . . . . . . . . 77

3.9 Numerical results . . . . . . . . . . . . . . . . . . . . . . . . . 78
3.10 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

4 Extension to turbo coded MIMO systems 90
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
4.2 System model . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

4.2.1 Coding strategy . . . . . . . . . . . . . . . . . . . . . 91
4.2.2 Received signal model . . . . . . . . . . . . . . . . . . 91

4.3 LMMSE-IC based turbo receivers . . . . . . . . . . . . . . . . 92
4.3.1 Interference regeneration and cancellation . . . . . . . 92
4.3.2 LMMSE estimation – unconditional case . . . . . . . . 93
4.3.3 Demapping and decoding . . . . . . . . . . . . . . . . 95
4.3.4 Message-passing schedule for turbo decoding . . . . . 95

4.4 PHY-layer abstraction . . . . . . . . . . . . . . . . . . . . . . 96
4.4.1 Transfer characteristics of LMMSE-IC . . . . . . . . . 97
4.4.2 Transfer characteristics of joint demapping and decoding 97
4.4.3 Evolution analysis . . . . . . . . . . . . . . . . . . . . 99
4.4.4 Calibration . . . . . . . . . . . . . . . . . . . . . . . . 99

4.5 Numerical results . . . . . . . . . . . . . . . . . . . . . . . . . 100
4.5.1 Average predicted vs. simulated BLER . . . . . . . . 101
4.5.2 Instantaneous predicted vs. simulated BLER . . . . . 101

4.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

5 Extension to per-antenna turbo coded MIMO systems 107
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
5.2 System model . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

5.2.1 Coding strategy . . . . . . . . . . . . . . . . . . . . . 107
5.2.2 Received signal model . . . . . . . . . . . . . . . . . . 108
5.2.3 Decoding strategy . . . . . . . . . . . . . . . . . . . . 108

5.3 LMMSE-IC based turbo receivers . . . . . . . . . . . . . . . . 109
5.3.1 Interference regeneration and cancellation . . . . . . . 110
5.3.2 LMMSE estimation – unconditional case . . . . . . . . 111
5.3.3 Demapping and decoding . . . . . . . . . . . . . . . . 113
5.3.4 Message-passing schedule for turbo decoding . . . . . 113

5.4 PHY-layer abstraction . . . . . . . . . . . . . . . . . . . . . . 114
5.4.1 Transfer characteristics of LMMSE-IC . . . . . . . . . 114
5.4.2 Transfer characteristics of joint demapping and decoding115
5.4.3 Evolution analysis . . . . . . . . . . . . . . . . . . . . 115
5.4.4 Calibration . . . . . . . . . . . . . . . . . . . . . . . . 116

5.5 Numerical results . . . . . . . . . . . . . . . . . . . . . . . . . 116

viii



TABLE OF CONTENTS

5.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

II Link adaptation for closed-loop coded MIMO systems
with partial feedback 119

6 Coding across antennas (STBICM) 121
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
6.2 System model . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

6.2.1 Coding strategy . . . . . . . . . . . . . . . . . . . . . 122
6.2.2 Received signal model . . . . . . . . . . . . . . . . . . 123

6.3 LMMSE-IC based turbo receivers . . . . . . . . . . . . . . . . 124
6.4 PHY-layer abstraction . . . . . . . . . . . . . . . . . . . . . . 124
6.5 Link level performance evaluation . . . . . . . . . . . . . . . . 125
6.6 Numerical results . . . . . . . . . . . . . . . . . . . . . . . . . 126

6.6.1 Convolutionally coded MIMO . . . . . . . . . . . . . . 126
6.6.1.1 Open-loop MIMO . . . . . . . . . . . . . . . 127
6.6.1.2 Closed-loop MIMO . . . . . . . . . . . . . . 129

6.6.2 Turbo coded MIMO . . . . . . . . . . . . . . . . . . . 132
6.6.2.1 Open-loop MIMO . . . . . . . . . . . . . . . 132
6.6.2.2 Closed-loop MIMO . . . . . . . . . . . . . . 134

6.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

7 Independent coding per antenna (selective PARC) 144
7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144
7.2 System model . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

7.2.1 Coding strategy . . . . . . . . . . . . . . . . . . . . . 145
7.2.2 Received signal model . . . . . . . . . . . . . . . . . . 146
7.2.3 Decoding strategy . . . . . . . . . . . . . . . . . . . . 146

7.3 LMMSE-IC based turbo receivers . . . . . . . . . . . . . . . . 147
7.4 PHY-layer abstraction . . . . . . . . . . . . . . . . . . . . . . 147
7.5 Link level performance evaluation . . . . . . . . . . . . . . . . 148
7.6 Numerical results . . . . . . . . . . . . . . . . . . . . . . . . . 150

7.6.1 Open-loop MIMO . . . . . . . . . . . . . . . . . . . . 150
7.6.2 Selective PARC . . . . . . . . . . . . . . . . . . . . . . 151

7.6.2.1 LAPPR-based iterative LMMSE-IC . . . . . 151
7.6.2.2 Non-iterative soft SIC . . . . . . . . . . . . . 152

7.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

8 Conclusions 157
8.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157
8.2 Perspectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

Appendix 163

ix



TABLE OF CONTENTS

Bibliography 165

x





List of Figures

2.1 Transmitter model (STBICM) . . . . . . . . . . . . . . . . . . 37
2.2 LEXTPR-based iterative LMMSE-IC (adapted to STBICM

with convolutional code and Gray labeling) . . . . . . . . . . 43
2.3 LAPPR-based iterative LMMSE-IC (adapted to STBICM with

convolutional code and Gray labeling) . . . . . . . . . . . . . 47
2.4 PHY-layer abstraction for LEXTPR-based iterative LMMSE-IC 50
2.5 PHY-layer abstraction for LAPPR-based iterative LMMSE-IC 54
2.6 Diagonal random interleaver vs. pure random interleaver: in-

stantaneous MIESM based predicted vs. simulated BER/BLER
over 4× 4 1-block fading channel with QPSK-1/2 . . . . . . . 57

2.7 Diagonal random interleaver vs. pure random interleaver: in-
stantaneous MIESM based predicted vs. simulated BER/BLER
over 4× 4 1-block fading channel with 16QAM-1/2 . . . . . . 57

2.8 Instantaneous simulated BER vs. predicted effective SNR
without calibration for LEXTPR-based iterative LMMSE-IC
algorithm and 16QAM-1/2 . . . . . . . . . . . . . . . . . . . 58

2.9 Averaged simulated BLER vs. predicted BLER without cal-
ibration for LEXTPR-based iterative LMMSE-IC algorithm
and 16QAM-1/2 . . . . . . . . . . . . . . . . . . . . . . . . . 58

2.10 Instantaneous simulated BER vs. predicted effective SNR
without calibration for LAPPR-based iterative LMMSE-IC
algorithm and 16QAM-1/2 . . . . . . . . . . . . . . . . . . . 59

2.11 Calibration results for LAPPR-based iterative LMMSE-IC
with 16QAM-1/2 . . . . . . . . . . . . . . . . . . . . . . . . . 59

2.12 Instantaneous simulated BER vs. predicted effective SNR
with calibration for LAPPR-based iterative LMMSE-IC al-
gorithm and 16QAM-1/2 . . . . . . . . . . . . . . . . . . . . 60

2.13 Averaged simulated BLER vs. predicted BLER with/without
calibration for LAPPR-based iterative LMMSE-IC algorithm
and 16QAM-1/2 . . . . . . . . . . . . . . . . . . . . . . . . . 60

3.1 Transmitter model (STBICM with pilot symbol insertion) . . 63

xii



3.2 LEXTPR-based double loop receiver architecture with semi-
blind channel estimation (adapted to STBICM with convolu-
tional code and Gray labeling) . . . . . . . . . . . . . . . . . 64

3.3 Simulated BLER comparison between Matched LMMSE with
exact SINR, matched LMMSE with matched SINR and mis-
matched LMMSE with mismatched SINR, QPSK-1/2, σ2

ps =
0.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

3.4 Simulated BLER comparison between Matched LMMSE with
exact SINR, Matched LMMSE with matched SINR and Mis-
matched LMMSE with mismatched SINR, 16QAM-1/2, σ2

ps =
0.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

3.5 Simulated BLER comparison between Matched LMMSE with
exact SINR, Matched LMMSE with matched SINR and Mis-
matched LMMSE with mismatched SINR, QPSK-1/2, σ2

ps =
1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

3.6 Simulated BLER comparison between Matched LMMSE with
exact SINR, Matched LMMSE with matched SINR and Mis-
matched LMMSE with mismatched SINR, 16QAM-1/2, σ2

ps =
1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

3.7 Simulated BLER (Matched LMMSE with matched SINR) vs.
predicted BLER (Matched LMMSE with exact SINR and
Matched LMMSE with corrected SINR), QPSK-1/2, σ2

ps =
0.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

3.8 Simulated BLER (Matched LMMSE filter with matched SINR)
vs. predicted BLER (Matched LMMSE with exact SINR
and Matched LMMSE with corrected SINR), 16QAM-1/2,
σ2
ps = 0.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

3.9 Simulated BLER (Matched LMMSE with matched SINR) vs.
predicted BLER (Matched LMMSE with exact SINR and
Matched LMMSE with corrected SINR), QPSK-1/2, σ2

ps = 1 84
3.10 Simulated BLER (Matched LMMSE with matched SINR)

vs. predicted BLER (Matched LMMSE with exact SINR
and Matched LMMSE with corrected SINR), 16QAM-1/2,
σ2
ps = 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

3.11 Simulated MSE(Matched LMMSE with exact SINR, Matched
LMMSE with matched SINR) vs. predicted MSE (Matched
LMMSE with exact SINR) conditional on initial ε(0), QPSK-
1/2, Eb/N0 = −1dB . . . . . . . . . . . . . . . . . . . . . . . 85

3.12 Simulated BLER(Matched LMMSE with matched SINR) vs.
predicted BLER (Matched LMMSE with exact SINR and
Matched LMMSE with corrected SINR ) conditional on initial
ε(0), QPSK-1/2, Eb/N0 = −1dB . . . . . . . . . . . . . . . . 86



3.13 Simulated MSE(Matched LMMSE with matched SINR) vs.
predicted MSE (Matched LMMSE with exact SINR and Matched
LMMSE with corrected SINR ) conditional on initial ε(0),
QPSK-1/2, Eb/N0 = −1dB . . . . . . . . . . . . . . . . . . . 86

3.14 Simulated BLER(Matched LMMSE with matched SINR) vs.
predicted BLER (Matched LMMSE with exact SINR and
Matched LMMSE with corrected SINR ) conditional on initial
ε(0), QPSK-1/2, Eb/N0 = −1dB . . . . . . . . . . . . . . . . 87

3.15 Simulated MSE(Matched LMMSE with exact SINR, Matched
LMMSE with matched SINR) vs. predicted MSE (Matched
LMMSE with exact SINR) conditional on initial ε(0), 16QAM-
1/2, Eb/N0 = 3dB . . . . . . . . . . . . . . . . . . . . . . . . 87

3.16 Simulated BLER(Matched LMMSE with exact SINR, Matched
LMMSE with matched SINR) vs. predicted BLER (Matched
LMMSE with exact SINR) conditional on initial ε(0), 16QAM-
1/2, Eb/N0 = 3dB . . . . . . . . . . . . . . . . . . . . . . . . 88

3.17 Simulated MSE(Matched LMMSE with matched SINR) vs.
predicted MSE (Matched LMMSE with exact SINR and Matched
LMMSE with corrected SINR ) conditional on initial ε(0),
16QAM-1/2, Eb/N0 = 3dB . . . . . . . . . . . . . . . . . . . 88

3.18 Simulated BLER(Matched LMMSE with matched SINR) vs.
predicted BLER (Matched LMMSE with exact SINR and
Matched LMMSE with corrected SINR ) conditional on initial
ε(0), 16QAM-1/2, Eb/N0 = 3dB . . . . . . . . . . . . . . . . 89

4.1 LAPPR-based iterative LMMSE receiver structure (adapted
to STBICM with turbo code and Gray labeling) . . . . . . . 96

4.2 PHY-layer abstraction for LAPPR-based iterative LMMSE-
IC (with calibration) . . . . . . . . . . . . . . . . . . . . . . . 100

4.3 2D-LUT for FJDD of chosen MCS 16QAM-1/2 . . . . . . . . 102
4.4 Average predicted and simulated BLER vs. SNR (dB) of

proposed LEXTPR-based iterative LMMSE-IC with 16QAM-
1/2 over CH1, simulated BLER of modified LEXTPR-based
scheduling neglecting a priori extrinsic information from the
second BCJR decoder. . . . . . . . . . . . . . . . . . . . . . . 103

4.5 Average predicted and simulated BLER vs. SNR (dB) of
LAPPR based iterative LMMSE-IC with 16QAM-1/2 over
CH1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

4.6 Average predicted and simulated BLER vs. SNR (dB) of
LAPPR based iterative LMMSE-IC with QPSK-1/2 over CH2 104

4.7 Average predicted and simulated BLER vs. SNR (dB) of
LAPPR based iterative LMMSE-IC with 16QAM-1/2 over
CH2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105



4.8 Instantaneous predicted and simulated BLER vs. SINR it1(dB)
of LAPPR based iterative LMMSE-IC with QPSK-1/2 over
CH2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

4.9 Instantaneous predicted and simulated BLER vs. SINR it1(dB)
of LAPPR based iterative LMMSE-IC with 16QAM-1/2 over
CH2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

5.1 Message passing schedule of natural decode ordering . . . . . 109
5.2 Performance prediction method of BICM at antenna t at it-

eration i . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
5.3 Average simulated vs. predicted BLER of LAPPR based

iterative LMMSE-IC with QPSK-1/2 at one antenna and
16QAM-1/2 at the other antenna over 2× 2 MIMO -4 block
fading channel . . . . . . . . . . . . . . . . . . . . . . . . . . 117

5.4 Average simulated vs. predicted BLER of LAPPR based iter-
ative LMMSE-IC with two identical independent 16QAM-1/2
on two antennas over 2× 2 MIMO -4 block fading channel . . 118

6.1 Link adaptation – STBICM with spatial precoding (antenna
selection) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

6.2 LUTs of BER of 12 MCS adapted to 4 transmit antenna . . . 128
6.3 LUTs of BLER for 12 MCS adapted to 4 transmit antenna . 128
6.4 LUTs of symbol variance computed from LAPPR on coded

bits for 12 MCS adapted to 4 transmit antenna . . . . . . . . 129
6.5 Smulated vs. predicted (with calibration) average BLER for

16QAM-2/3 over CH1 . . . . . . . . . . . . . . . . . . . . . . 130
6.6 Smulated vs. predicted (with calibration) average BLER for

16QAM-5/6 over CH1 . . . . . . . . . . . . . . . . . . . . . . 131
6.7 Smulated vs. predicted (with calibration) average BLER for

64QAM-2/3 over CH1 . . . . . . . . . . . . . . . . . . . . . . 132
6.8 Smulated vs. predicted (with calibration) average BLER for

64QAM-5/6 over CH1 . . . . . . . . . . . . . . . . . . . . . . 133
6.9 Average predicted and simulated throughputs (in bpcu) in

closed-loop convolutionally coded MIMO systems vs. SNR
(dB) – CH1, LAPPR-based iterative LMMSE-IC . . . . . . . 134

6.10 Average predicted and simulated throughputs (in bpcu) in
closed-loop convolutionally coded MIMO systems vs. SNR
(dB) – CH2, LAPPR-based iterative LMMSE-IC . . . . . . . 135

6.11 Average predicted and simulated throughputs (in bpcu) with
50 times larger interleaver size in closed-loop convolutionally
coded MIMO systems vs. SNR (dB) – CH2, LAPPR-based
iterative LMMSE-IC . . . . . . . . . . . . . . . . . . . . . . . 136



6.12 Average predicted and simulated throughputs (in bpcu) in
closed-loop convolutionally coded MIMO systems vs. SNR
(dB) – CH2, LEXTPR-based iterative LMMSE-IC . . . . . . 137

6.13 Average predicted and simulated throughputs (in bpcu) with
50 times larger interleaver size in closed-loop convolutional
coded MIMO systems vs. SNR (dB) – CH2, LEXTPR-based
iterative LMMSE-IC . . . . . . . . . . . . . . . . . . . . . . . 138

6.14 Smulated vs. predicted (with calibration) average BLER for
QPSK-5/6 over CH3 . . . . . . . . . . . . . . . . . . . . . . . 139

6.15 Smulated vs. predicted (with calibration) average BLER for
16QAM-1/2 over CH3 . . . . . . . . . . . . . . . . . . . . . . 139

6.16 Smulated vs. predicted (with calibration) average BLER for
16QAM-2/3 over CH3 . . . . . . . . . . . . . . . . . . . . . . 140

6.17 Smulated vs. predicted (with calibration) average BLER for
16QAM-5/6 over CH3 . . . . . . . . . . . . . . . . . . . . . . 140

6.18 Average predicted and simulated throughputs (in bpcu) in
closed-loop turbo coded MIMO systems vs. SNR (dB) – CH1,
LAPPR-based iterative LMMSE-IC . . . . . . . . . . . . . . 141

6.19 Average predicted and simulated throughputs (in bpcu) in
closed-loop turbo coded MIMO systems vs. SNR (dB) – CH3,
LAPPR-based iterative LMMSE-IC . . . . . . . . . . . . . . 142

6.20 Average predicted and simulated throughputs (in bpcu) in
closed-loop turbo coded MIMO systems vs. SNR (dB) – CH4,
LAPPR-based iterative LMMSE-IC . . . . . . . . . . . . . . 143

7.1 Selective PARC with spatial precoding . . . . . . . . . . . . . 146
7.2 Average simulated vs. predicted BLER of LAPPR based iter-

ative LMMSE-IC with two identical independent 16QAM-3/4
on two antennas over 2× 2 MIMO -4 block fading channel . . 151

7.3 Average simulated vs. predicted BLER of LAPPR based iter-
ative LMMSE-IC with two identical independent 64QAM-2/3
on two antennas over 2× 2 MIMO -4 block fading channel . . 152

7.4 Average simulated vs. predicted BLER of LAPPR based iter-
ative LMMSE-IC with two identical independent 64QAM-3/4
on two antennas over 2× 2 MIMO -4 block fading channel . . 153

7.5 Average simulated vs. predicted BLER of LAPPR based iter-
ative LMMSE-IC with two identical independent 64QAM-5/6
on two antennas over 2× 2 MIMO -4 block fading channel . . 154

7.6 Predicted average throughput at iteration 1,2,3,5,8, simulated
average throughput at iteration 1,2,3, the LMMSE reference
and the Genie-Aided IC bound over 2 × 2 MIMO -4 block
fading channel . . . . . . . . . . . . . . . . . . . . . . . . . . 155

7.7 BLER LUTs of 12 MCS with 8 iteration turbo decode . . . . 155
7.8 BER LUTs of 12 MCS with 8 iteration turbo decode . . . . . 156



7.9 Predicted average throughput, simulated average throughput
of soft SIC receiver with 8 iteration decode, the LMMSE ref-
erence and the Genie-Aided IC bound over 2 × 2 MIMO -4
block fading channel . . . . . . . . . . . . . . . . . . . . . . . 156



List of Acronyms

Here is a list of main acronyms used in this document.

1G First Generation
2G Second Generation
3G Third Generation
3GPP Third Generation Partnership Project
4G Forth Generation
5G Fifth Generation
AMC Adaptive Modulation and Coding
AMI Average Mutual Information
AWGN Additive White Gaussian Noise
BER Bit-Error-Rate
BICM Bit-Interleaved Coded Modulation
BLER BLock Error Rate
BPSK Binary Phase-Shift Keying
CAZAC Constant Amplitude Zero AutoCorrelation
CDI Channel Distribution Information
CDMA Code- Division Multiple Access
CoMP Coordinated MultiPoint
CQI Channel Quality Indicator
CRC Cyclic Redundancy Check
CSI Channel State Information
CSIR Channel State Information at the Receiver
CSIT Channel State Information at the Transmitter
DE Density Evolution
EDGE Enhanced Data rates for GSM Evolution
EESM Exponential Effective SNR Mapping
EXIT EXtrinsic Information Transfer
FDD Frequency-Division Duplexing
FDMA Frequency-Division Multiple Access
FLA Fast Link Adaptation
GSM Global System for Mobile communications

xviii



LIST OF ACRONYMS

HARQ Hybrid Automatic Repeat Request
HSDPA High Speed Downlink Packet Access
HSUPA High Speed Uplink Packet Access
IA Interference Alignment
IR Incremental-Redundancy
ISI Inter-Symbol Interference
ITU International Telecommunication Union
ITU-R International Telecommunication Union - Radiocommunication
LAPPR Log A Posteriori Probability Ratios
LEXTPR Log Extrinsic Probability Ratios
LLR Log Likelihood Ratios
LMMSE Linear Minimum Mean Square Error
LMMSE-IC Linear Minimum Mean Square Error-Interference Cancellation
LTE Long Term Evolution
LTE-A Long Term Evolution - Advanced
LUT Look Up Table
MAC Media Access Control
MAP Maximum A Posteriori
MCS Modulation and Coding Scheme
MIESM Mutual Information Effective SNR Mapping
MIMO Multiple-Input Multiple-Output
MSE Mean Square Error
MUD MultiUser Detector
MU-MIMO Multiple-User Multiple-Input Multiple-Output
NRNSC Non-Recursive Non-Systematic Convolutional
OFDM Orthogonal Frequency-Division Multiplexing
OFDMA Orthogonal Frequency-Division Multiple Access
PARC Per Antenna Rate Control
PAPR Peak-to-Average Power Ratio
PDC Personal Digital Communication
PHY Physical
PMI Precoding Matrix Indicator
QAM Quadrature Amplitude Modulation
QPSK Quadrature Phase-Shift Keying
RRM Radio Resource Management
RI Rank Indicator
RSC Recursive Systematic Convolutional
RV Random Variable

xix



LIST OF ACRONYMS

SC-FDMA Single-Carrier Frequency-Division Multiple Access
SIC Successive Interference Cancellation
SINR Signal-to-Interference-plus-Noise Ratio
SLA Slow Link Adaptation
SNR Signal-to-Noise Ratio
STBICM Space-Time Bit-Interleaved Coded Modulation
SU-MIMO Single-User Multiple-Input Multiple-Output
TDD Time- Division Duplexing
TDMA Time- Division Multiple Access
TD-SCDMA Time- Division Synchronous CDMA
UE User Equipment
UMTS Universal Mobile Telephone Service
WLAN Wireless Local Area Networks
w.r.t. with respect to

xx





Notations

Here is a list of main operations and symbols used in this document.

R Set of reals
C Set of complex numbers
x A vector
‖x‖ Euclidean norm of the vector x
X A matrix
xi;j,` or [Xi]j,` The entry (j, `) of the matrix Xi.

xi The ith column of the matrix X.
xj The jth row of the matrix X.
diag(X) Diagonal operator on the square matrix X. diag(p1, p2, · · · , pn) is a diagonal

matrix with the diagonal entries equal to p1, p2, · · · , pn.
In The n-square identity matrix
0n n-tuples of zeros
1n n-tuples of ones
en n-th unit vector
|X | Cardinality of the set X
x ∼ p(x) The random vector x follows the probability distribution function p(x).
x ∼ P (x) The discrete random variable x has a probability mass function P (x).
NC(m, v) The circularly-symmetric complex Gaussian distribution with mean m and

variance v.
NC(µ,Σ) The circularly-symmetric complex Gaussian distribution with mean µ and

covariance matrix Σ.
(·)> Transpose operator
(·)† Complex conjugate transpose / Hermitian operator
(·)−1 Inverse operator
exp(·) Exponential function
log(·) Logarithmic function
E{·} Operator of expected value

xxii





Résumé détaillé

Selon les estimations de l’Union Internationale des Télécommunications (ITU)

[1], le nombre d’abonnements mobiles cellulaires atteint 6,8 milliards en

2013, ce qui correspond à un taux de pénétration global de 96%. Aujour-

d’hui, les gens peuvent communiquer les uns avec les autres facilement que

ce soit vocalement ou par SMS et disposent d’une connexion Internet dès

lors qu’ils sont couverts par le réseau de communications mobile.

Les systèmes de première génération (1G) ont été développés dans les

années 1980. Ces systèmes utilisaient la technologie analogique et ont été

conçus uniquement pour le service vocal.

A partir de 1991, les systèmes de deuxième génération (2G) qui ont

été développés commençaient à utiliser la technologie numérique, comme le

Système Mondial de Communications mobiles (GSM) en Europe, la Com-

munication Numérique Personnel (PDC) au Japon et IS- 95 aux Etats-Unis.

Parmi ces systèmes, le GSM a été largement accepté et déployé dans la plu-

part des pays et est encore utilisé aujourd’hui. Les systèmes 2G ont été

conçus pour fournir la voix et le SMS, et également plus tard un service de

données avec GSM Evolution (EDGE). Parmi la famille des systèmes 2G,

GSM et PDC ont été basés sur deux techniques différentes. La première est

le Fréquence-Division Multiple Access (FDMA) [2] : toute la bande passante

est divisée en de multiples canaux à bande étroite éloignées en fréquence et

de multiples utilisateurs peuvent transmettre simultanément sur plusieurs

canaux à bande étroite. La deuxième techniques est le Time Division Mul-

tiple Access (TDMA) [2] : plusieurs utilisateurs peuvent transmettre sur un

canal à bande étroite à un instant différent. Système IS-95 était basé sur

le Code-Division Multiple Access (CDMA) [2] : chaque utilisateur transmet

ses signaux sur la totalité de la bande passante et chaque utilisateur est

identifié par un code spécifique.

Les systèmes de troisième génération (3G) incluent deux familles de tech-

nologies : Universal Mobile Telecommunications System (UMTS), publié

1
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par l’organisme de normalisation de la Third Generation Partnership Pro-

ject (3GPP) en version R99 suivant GSM et CDMA2000 suivant IS-95. Le

système UMTS a été largement déployé dans de nombreux pays alors que le

système CDMA2000 est principalement déployé en Asie et en Amérique du

Nord. Les systèmes 3G amènent une amélioration significative par rapport

aux systèmes 2G et visent à fournir des débits de données plus élevés, à

améliorer les services vocaux ainsi que les services de données et les applica-

tions. À la suite de l’effort mondial de normalisation, la famille des systèmes

3G a été uniformément basée sur la technologie CDMA. UMTS utilise le

CDMA large bande (WCDMA) qui prend en charge des modes de duplex par

séparation temporelle (TDD) et duplex par séparation fréquentielle (FDD).

Une variante de l’UMTS TDD, nommée Time Division Synchronous CDMA

(TD-SCDMA), a été également normalisé par le 3GPP, et est principalement

déployée en Chine.

Par la suite, le UMTS a été renforcé par High Speed Downlink Packet Ac-

cess (HSDPA) et High Speed Uplink Packet Access (HSUPA) dans le 3GPP.

Des modulations d’ordre supérieur sont prises en charge : 16 Quadrature

Amplitude Modulation (16QAM) est introduite dans la liaison descendante

comme une amélioration de la Quadrature Phase Shift Keying (QPSK) de

la version R99 et QPSK est introduite dans la liaison montante comme

complémentaire de Binary Phase Shift Keying (BPSK) de la version R99.

Le méchanisme Adaptatif de Modulation et Codage (AMC) est introduit

afin d’adapter dynamiquement le taux de codage et l’ordre de modulation

aux conditions radio instantanées et aux besoins des utilisateurs. Un nou-

veau mécanisme de rêquete automatique de répétition hybride (HARQ) est

ajouté entre les utilisateurs et la station de base afin de réduire la latence

du système en cas de perte de paquets.

L’évolution de HSPA, HSPA + (R7, R8) a été conçue pour améliorer

le débit de données par l’introduction de nouvelles techniques. Les liaisons

descendante et montante ont commencé à supporter 64QAM et 16QAM,

respectivement. Les systèmes de Multiple-Input Multiple-Output(MIMO)

[3], [4] sont également introduits. La technologie MIMO peut être utilisée

pour augmenter le taux de données [3], [5], [6], [7] (gain de multiplexage

spatial), pour augmenter la robustesse de transmission (gain de diversité

spatiale) ou pour concentrer l’énergie de transmission dans une certaine

direction (précodage ou de formation de faisceaux).

En tant que quatrième étape remarquable, le Long Term Evolution
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(LTE), publié dans la version R8/9 et bientôt LTE-Advanced (LTE -A),

publié dans la version R10/11, définis par le 3GPP sont largement reconnus

comme les systèmes de quatrième génération (4G) qui ont été caractérisés

par la technologie Orthogonal Frequency - Division Multiplexing (OFDM).

Les avantages de l’OFDM [2] sont multiples, tels que la robustesse aux in-

terférences inter-symboles (ISI) qui dégradent les performances du CDMA,

la flexibilité de déploiement sur différents grande bande qui fait défaut au

CDMA, l’adéquation de transmission MIMO, la gestion et la planification

de large bande, la flexibilité de l’accès multiple, etc. Les sous-porteuses de la

technologie OFDM se chevauchent mais restent orthogonales, ce qui donne

à OFDM uen très grande efficacité spectrale [8]. LTE-A a choisi pour la

liaison descendante un système Orthogonal Frequency - Division Multiple

Access (OFDMA ) [9] et pour la liaison montante un système Single Carrier

Frequency - Division Multiple Access (SC-FDMA) [10] . Le choix différent

pour la liaison descendante et montante vient du ratio puissance crête à

puissance moyenne (PAPR ) [11] relativement élevé d’un signal OFDM qui

n’est pas tolérable pour l’UE.

LTE-A prend en charge la modulation 64QAM à la fois pour la liaison

montante et descendante. Sur la couche physique (PHY), turbo code [12]

est utilisé pour protéger les données. La coordination simple d’interférence

inter-cellule (ICIC) dans la version R10, transmission/réception MultiPoint

coordonnée (COMP) dans la version R11, ainsi que l’agrégation des por-

teuses sont des techniques importantes qui peuvent encore accrôıtre l’ef-

ficacité spectrale. Afin de réaliser l’adaptation de liaison, l’UE remonte

régulièrement une information d’état du canal (CSI) à la station de base.

Celles-ci comprennent : un indicateur de la qualité du canal (CQI), un in-

dicateur de la Matrice de Précodage préférée (PMI), un Indicator de rang

(RI) (= nombre de flux spatiaux pris en charge). Certains paramètres sont

importants comme le retard de rétroaction, la période de rétroaction et

éventuellement le filtrage de CQI.

Il existe d’autres types de système sans fil autres que cellulaire, tels

que les réseaux locaux sans fil (WLAN) [2]. Ceux-ci sont conçus pour des

débits beaucoup plus élevés que les systèmes cellulaires, mais sont similaires

à une seule cellule d’un système cellulaire. Ils sont principalement conçus

pour fournir en couverture à large bande. Les principales normes de réseau

local sans fil sont la famille IEEE 802.11 et le terme Wi-Fi est utilisé comme

synonyme pour le WLAN. Le Wi-Fi prend en charge les modulations d’ordre
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élevé (64QAM et même 256QAM), MIMO et l’adaptation de liaison. La

couche PHY emploie le code convolutif afin de protéger les données.

Dans l’effort mondial de recherche en cours sur les futurs systèmes de

communications sans fil, l’allocation adaptative des ressources, tels que l’heure,

le code, l’espace et la fréquence, basée sur le CSI et les besoins des uti-

lisateurs, est largement reconnue comme un élément clé pour approcher

la capacité des canaux MIMO à large bande sélectifs en fréquence [13]

, [14], [15], [16], [17], [18], [19], [20], [21], [22] , [23]. La gestion de re-

source radio (RRM) traditionnelle et l’adaptation lente de liaison (SLA )

ont été construites sur une interface lien à système, dénommée interface

à valeur moyenne [24], dans laquelle la performance individuelle de liaison

radio est évaluée par des simulations Monte-Carlo moyennant sur les sta-

tistiques de l’évanouissement rapide. Pour que cette approche soit valable,

le délai de RRM et LA doit être grand par rapport à la dynamique de

l’évanouissement rapide. A l’inverse, les systèmes sans fil actuels évoluent

vers une meilleure réactivité des protocoles de RRM et adaptation rapide de

liaison (FLA ) afin d’optimiser conjointement la couche de contrôle d’accès

de média (MAC) et la couche PHY. Un nouveau type d’interface lien à

système, appelé interface de valeur réelle [24], a vu le jour dans lequel RRM

avancée et les mécanismes de la FLA sont conçus et optimisés afin d’exploi-

ter les rétroactions de métriques représentant les performances individuelles

instantanées de la liaison radio basée sur des abstractions de la couche PHY

( également appelées méthodes de prédiction de performance).

Les interférences dans les réseaux cellulaires peuvent être gérées par des

techniques d’évitement des interférences côté de l’émetteur tel que l’ordon-

nancement intelligent [25], [chapitre 6, [2]] , canal de diffusion, codage de

papier sale, précodage sous-optimal ZF, l’alignement d’interférence MIMO

(IA) [26], etc. Cette stratégie d’évitement des interférences a été suivie par

WP1 du projet européen ARTIST4G intitulé ”interference avoidance”. De

cette manière, un récepteur linéaire d’une faible complexité peut être suf-

fisant. Cependant, ces techniques d’évitement des interférences exigent des

CSI parfaites et instantanées à l’émetteur (CSIT) qui n’est pas disponible

dans la pratique. Trop de rétroactions de CSIT diminuent l’efficacité spec-

trale du système et rendent le système peu robustesse. Enfin, l’interférence

ne peut être évitée qu’à un certain niveau. Par conséquent, les techniques

d’annulation des interférences côté récepteur basées sur certains traitements

du signal avancés complexes sont des complémentaires importants aux tech-
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niques d’évitement des interférences précédentes. Par rapport aux CSIT, le

CSI à récepteur (CSIR ) est toujours disponible en communications mono-

utilisateur MIMO (SU-MIMO) et pour la liaison montante (canaux d’accès

multiple). Pour la liaison descendante, la conversion du canal de diffusion

dans un canal à accès multiple avec les informations de côté (fourni par

le réseau) au niveau de chaque récepteur est actuellement à l’étude par

l’industrie [27]. Cette dernière stratégie semble plus robuste aux informa-

tions de côté imparfaite que la première. En fait, l’idée d’abandonner le

synchronisme et l’orthogonalité dans les systèmes sans fil de demain, admet-

tant ainsi des interférences, et de contrôler ces troubles par une structure

d’émetteur-récepteur adaptée était au coeur de la ARTISTE4G WP2 inti-

tulé ”interférences exploitation ” et est maintenant annoncée par plusieurs

projets européens comme un concept de construction pour la cinquième

génération (5G) au niveau des couches PHY/MAC.

En parallèle, le succès des turbo codes [12] et le principe du turbo [28]

ont inspiré de nouvelle modulations codées qui pouraient potentiellement

atteindre la capacité. De nouvelles architectures de multiplexage spatial et

techniques d’accès multiple non-orthogonales basées sur des codages puis-

sants ont été proposées pour atteindre une efficacité spectrale très élevée,

dont la pertinence est toutefois subordonnée à un traitement itératif au ni-

veau du récepteur. Ces deux tendances, à savoir, l’optimisation inter couche

et le traitement turbo, demanede le développement de nouvelles abstrac-

tions de la couche PHY qui peuvent capturer les performances du récepteur

itératif par itération conditionnelle sur le CSIR disponible qui permet une

introduction en douceur de ces récepteurs avancés dans FLA et RRM.

Au sujet de la prédiction de la convergence et/ou l’analyse de la per-

formance de décodage itératif, nous avons d’abord distingué les approches

déterministes et les approches stochastiques [29]. Les approches déterministes

traitent le décodage comme un processus déterministe et tentent de ca-

ractériser le comportement du décodeur pour chaque instance du signal reçu.

Par exemple, [30] est en mesure de révéler un certain nombre de compor-

tements dynamiques de turbo-décodage, tels que l’existence de points fixes

ainsi que des conditions d’unicité et de stabilité pour les points fixes. Ce-

pendant, la connaissance de l’existence d’un point fixe ne suffit pas, comme

plusieurs points fixes ou même des cycles limités peuvent exister. En outre,

les conditions de l’unicité et de la stabilité sont spécifiques à chaque bloc de

décodage et sont difficiles à calculer, ce qui signifie qu’ils ne sont pas utiles
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pour prédire les performances d’un turbo-décodeur donné. Basé sur l’hy-

pothèse d’une grande longueur de mots de code (ou de manière équivalente

grande taille d’entrelacement), les approches stochastiques, elles voient les

signaux d’entrée et de sortie circulant dans le décodeur itératif des proces-

sus aléatoires ergodiques [29] dont les statistiques sont calculables à l’aide

de réalisations (ou instances). En Traitant les rapports de vraisemblance

logarithmique (LLR) de messages binaires comme des variables aléatoires

(RV), l’évolution de la densité (DE) [31, 32] est proposée pour analyser la

performance du décodage somme-produit [33] de code Low-Density Parity-

Check (LDPC) [34] sur des canaux d’entrée et de sortie symétriques bi-

naires simples. Cependant, la rigueur mathématique de DE introduit une

complexité élevée parce que cette méthode estime effectivement l’évolution

de leurs distributions de probabilité (exprimée en forme fermée) par le biais

de simulations numériques.

D’autres approches stochastiques simples existent, elles ont toutes en

commun d’utiliser un paramètre statistique unique (par opposition à une dis-

tribution complète de probabilité) pour caractériser les signaux d’entrée et

de sortie concernés par le processus itératif. Les graphiques du transfert d’in-

formation extrinsèque (EXIT) ont été lancés par ten Brink, qui le premier les

a présentés dans le cadre du choix d’un mappeur approprié et d’une constel-

lation convenable, dans un schéma de demapping et décodage itératif [35], et

ensuite les a appliqués pour analyser les turbo codes [36,37]. Ils constituent

un outil puissant pour analyser les comportements itératifs, basé sur le suivi

des paramètres statistiques. L’évolution de l’information mutuelle moyenne

(AMI) entre les bits d’information (ou codés) et les LLR de sortie post-

décodage BCJR [38] est observée à la place de l’évolution des densités réelles.

Une approximation gaussienne unidimensionnelle simple de l’évolution de la

densité a été également suggérée par Chung et al. dans [39,40] pour les codes

LDPC. Des idées connexes ont été proposées indépendamment pour analy-

ser les turbo codes [41, 42] et la détection multi-utilisateurs et le décodage

itératif [43, 44]. Ces approximations gaussiennes se distinguent par le choix

du paramètre unidimensionnel qui est choisi pour caractériser une densité,

par exemple, Rapport Signal sur Bruit (SNR) [41, 42] ou moyenne [39, 40]

sous condition de symétrie et de la propriété de cohérence. Cependant, les

expériences ont montré que l’AMI utilisée dans les EXIT est le paramètre

statistique le plus robuste par rapport aux variations des distributions de

probabilité de LLR [45].
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L’utilisation du graphique EXIT pour prédire la performance des récepteurs

turbo sur un système multi-utilisateurs et canal MIMO (non-ergodique)

avec évanouissement par bloc et sélectivité fréquentielle révèle plusieurs

questions. Si chaque utilisateur utilise un schéma de modulation codée, les

récepteurs turbo sont caractérisés par la circulation itérative de messages

entre d’une part, le détecteur multi-utilisateur (MUD) (en utilisant l’infor-

mation a priori sur des bits codés générés par le décodeur), et d’autre part,

la banque des décodeurs du canal d’entré-souple et de sortie-souple.

La première question concerne la contrainte forte de temps qui ne nous

permet pas d’obtenir l’AMI extrinsèque au niveau du bit codé pour n’im-

porte quelle réalisation du canal donnée en exécutant une longue simulation.

En conséquence, l’AMI extrinsèque de MUD doit être calculée analytique-

ment ou au moins semi-analytiquement. Il existe une classe de MUD sim-

plifiée (sub-optimale), dénommée détection linéaire par minimisation d’er-

reur quadratique moyenne avec annulation d’interférence (LMMSE -IC),

pour laquelle le calcul des sorties de MUD peut être réalisé en deux étapes :

une étape de calcul purement analytique du signal sur interférence plus bruit

(SINR), consacré à la détection IC et LMMSE des symboles transmis, et une

autre étape asseuée par le démappeur. Cette étude de doctorat met l’accent

sur cette classe de détection LMMSE -IC [46–49], car c’est une tâche dif-

ficille pour une détection (optimale localement) d’être dérivée comme une

application stricte des règles somme-produits sur le sous-graphe correspon-

dant [33]. Cette ligne de pensée est suivie et développée dans [50–57] (voir

aussi [44, 58] pour des solutions alternatives).

Un deuxième problème réside dans le fait que les bits codés sont répartis

sur des symboles qui connaissent différents canaux. C’est la cas pour le

modèle du canal MIMO d’évanouissement par bloc [59]. Les caractéristiques

des sorties de MUD doivent être calculées pour chacun de ces états de canaux

qui servent en tant qu’information a priori pour le calcul des caractéristiques

de sortie des décodeurs du canal. Nous devons compresser ces multiples

sorties extrinsèques de MUD (un par état de canal) en une seule afin d’éviter

d’utiliser une Look-Up-Table (LUT) multidimensionnelle pour caractériser

les sorties extrinsèques du décodeur dont le stockage ne serait pas abordable.

Le problème est résolu dans [50–52] en faisant la moyenne de l’AMI, entre la

sortie extrinsèque de MUD et les bits codés liés, sur tous les états de canaux

existants.

Fait intéressant, ce second problème a également été rencontré dans
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un autre domaine de recherche traitant de l’évaluation adaptative de mo-

dulation/codage au niveau du système, dénommé techniques de compres-

sion [60–63]. Les techniques de compression visent à ramener de multiples

SNR instantanés représentant différents états de canal en un seul SNR effec-

tif. Les deux techniques le plus étudiées sont la compression de SNR effectif

via fonction exponentielle (EESM) [64] et la compression de SNR effectif via

information mutuelle (MIESM) [61] où dans le premier une fonction expo-

nentielle est utilisée comme une mesure de l’information basée sur la borne

de Chernoff alors que dans le second une capacité normalisée du shéma Bit-

Interleaved Coded modulation (BICM) [65] est utilisée comme une mesure de

l’information. EESM nécessite généralement des facteurs d’ajustement pour

atteindre une bonne précision pour une MCS donnée. MIESM est beaucoup

moins sensible à des facteurs d’ajustement et sa supériorité a été rapporté

dans un certain nombre de contributions passées [61]. Cette déclaration

semble en ligne avec [49]. Il convient de noter que l’idée de compression

a été redécouverte et formalisée par Yuan et al . dans [56, Assomption V ].

Dans [66], une étude est mise en place sur les méthodes semi-analytiques

rapides et précises pour prédire le taux d’erreur de block (BLER)/taux d’er-

reur binaire (BER) par utilisateur et par itération dans un système mul-

tiple -utilisateurs où chaque utilisateur emploie un Space-time Bit- Inter-

leaved Coded modulation ( STBICM ) construit à partir de code convo-

lutif et où LMMSE -IC conjoint décodage itératif (en bref LMMSE -IC

itératif) est réalisée au récepteur. Par LMMSE -IC conjoint décodage, on

parle de la détection LMMSE utilisant une information a priori à partir du

décodeur [67] avec l’hypothèse inconditionnelle [48, 49]. L’hypothèse incon-

ditionnelle consiste à moyenner des statistiques au second ordre au cours du

temps, pour rendre le filtre LMMSE indépendant du temps (donc facile à

mettre en oeuvre). Fait intéressant, cette hypothèse n’est la plupart du temps

pas préjudiciable en termes de performances finales [49]. Les abstractions de

la couche PHY décrites dans [66] reposent sur la technique de MIESM au

niveau bit ou symbole. Dans la première méthode, les sorties extrinsèques

de MUD jusqu’aux décodeurs de canal, voyant la détection LMMSE -IC

et demapping comme un processus conjoint, sont calculées analytiquement.

Cette méthode suit le cadre classique de graphique EXIT et suit l’évolution

de l’AMI définie au niveau du bit codé circulant entre le MUD et la banque

de décodeurs de canal extérieures [65, Section III ], [68, Section V ], [69], [70,

Section III.B ]. Ensuite, avec le déplacement de point de vue, la deuxième
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méthode voit le demapping et décodage comme un processus conjoint, et

permet de suivre l’évolution de l’AMI définie au niveau du symbole modulé

circulant entre l’interface LMMSE -IC et la banque de démappeur conjoints

les décodeurs de canal [71] est proposée. Ceci permet d’éviter la question

cruciale de paramétrage du demapping . Les deux méthodes donnent des

résultats comparables pour les modulations non-linéaires d’ordre faible. Au

contraire, la second méthode, qui comprend le démappeur à l’intérieur des

LUT se révèle plus robuste pour les modulations non linéaires d’ordre élevé,

ce qui démontre sa supériorité .

Cependant, dans la classe de récepteurs de turbo basés sur LMMSE -

IC, on fait souvent la distinction souvent entre l’algorithme basé sur les

ratios logarithmiques de probabilité extrinsèque (LEXTPR) ou les ratios

logarithmiques de probabilité a posteriori (LAPPR). Les deux algorithmes

diffèrent par le type d’information probabiliste réinjecté par le décodeur pour

la régénération d’interférence et d’annulation souple, à savoir LEXTPR ou

LAPPR sur les bits codés. Les expérimentations empiriques révèlent que

l’algorithme itératif basé sur LAPPR peut surpasser de façon significative

son homologue LEXTPR pour les systèmes à antennes multiples ou multi-

utilisateurs très chargés. Dans de tels scénarios en effet, utiliser LAPPR à

la place de LEXTPR conduit à des estimations de symboles MMSE plus

fiables. Cela est dû à l’information supplémentaire glanée dans le proces-

sus d’égalisation/détection, ce qui permet d’annuler plus d’interférences à

chaque itération. Les analyses dans [66] sont correctes pour l’algorithme

itératif basé sur LEXTPR étant donné une taille d’entrelaceur suffisante

grande, mais [66, Hypothèses A1 à A4 ] ne tiennent pas même avec une

taille d’entrelacement infinie pour l’algorithme itératif basé sur LAPPR. En

raison d’inexactitudes d’hypothèses négligées, la méthode proposée au ni-

veau du symbole se révèle trop optimiste pour l’algorithme itératif basé sur

LAPPR. Ce phénomène est d’autant plus évident pour les MCS avec une

modulation d’ordre élevé et un taux de codage élevé. Par conséquent, un

examen attentif des hypothèses fondamentales sous-jacentes à cette famille

de récepteur est nécessaire afin de proposer une amélioration de l’abstrac-

tion de la couche PHY pour l’algorithme basé sur LAPPR, qui est le point

de départ du travail.

Sinon, l’adaptation du lien en boucle fermée dans LTE (LTE-A) implique

une famille de MCS construite à partir de turbo codes. Le turbo-décodeur

contient deux décodeurs BCJR [38] qui échangent l’information probabiliste
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(log domaine). En raison de leur structure particulière, les turbo codes ne

peuvent pas être décodés de manière optimale à l’exception d’une longueur

de bloc très limitée. Dans la pratique, un décodage itératif est appliqué, où

l’information probabiliste est échangée entre les décodeurs constitutifs. Le

premier décodeur BCJR calcule les LAPPRs sur ses propres bits codés (bits

d’information et parité) en tenant compte de l’information a priori disponible

sur les bits d’information systématiques stockée à partir d’une activation

plus tôt (c’est à dire, les plus récents LEXTPRs sur les bits d’information

systématiques fournis par le deuxième décodeur BCJR). Ensuite, le second

décodeur BCJR est activé et calcule les LAPPRs sur ses propres bits codés

(bits d’information et parité), en tenant compte de l’information a priori

disponible transmise par le premier décodeur BCJR.

LMMSE-IC itératif mixte d’un turbo-décodage donne naissance à une

structure de récepteur complexe avec au moins deux processus itératifs im-

briqués. Certaines similitudes peuvent être trouvées dans les travaux antérieurs

sur plusieurs codes concaténés et l’analyse de la convergence de leur décodage

itératif [72] [49] [73] [74]. Par conséquent, l’introduction en douceur des

récepteurs de turbo basés sur LMMSE -IC en LTE appelle à de nouvelles

abstractions de la couche PHY à cette situation non trivial.

Lorsque l’hypothèse de CSIR parfaite est enlevée, les abstractions de la

couche PHY doivent être dérivées sous CSIR imparfaite et sous une esti-

mation du canal erronée. Si le nombre de symboles de pilote est suffisant

pour assurer une estimation proche de la perfection, il suffit d’adopter l’hy-

pothèse dite mismatch [75–77] qui postule simplement que l’estimation du

canal assistée de symboles de pilote est parfaite. Dans ce cas, les abstrac-

tions de la couche PHY dérivées sous l’hypothèse de CSIR parfaite peuvent

être utilisées dans la pratique. Toutefois, si le nombre de symboles de pilote

est réduit grace à un système avancé d’estimation du canal semi-aveugle

côté du récepteur, l’hypothèse mismatch n’est plus valide. En effet, il est

assez connu que faire la détection et l’estimation du canal dans une même

itération (en utilisant a priori d’un décodage du canal) permet de réduire

considérablement le nombre de signaux de référence pour une performance

donnée [78–81]. Il y a une richesse de la littérature sur le sujet de l’analyse

de performance d’estimation du canal semi-aveugle, [75–77, 80, 82–84]. Par

exemple, [80] est assez exhaustive en découlant et en comparant différents

MSE d’estimation du canal semi-aveugle, mais seulement se réfère à des

schémas de détection mismatch itératives sans analyse. Alors que, d’autre
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part, [77] considère la détection maximum a posteriori (MAP) itérative avec

l’estimation du canal utilisant seulement les symboles de pilote. Cependant,

la combinaison de la détection LMMSE -IC (en tenant compte des erreurs

d’estimation du canal) et de l’estimation du canal LMMSE semi-aveugle,

n’a jamais été abordée en tant que telle, que ce soit d’une évaluation de la

performance pure ou d’une prédiction.

Une fois les abstractions de la couche PHY sont dérivées avec les récepteurs

de turbo, le pont entre les couches PHY et MAC est construit. La tâche sui-

vante est de réaliser l’optimisation inter-couches PHY et MAC, parfois ap-

pelée ”l’allocation des ressources en coopération”, qui est actuellement l’un

des sujets de recherche les plus passionnants dans la conception de systèmes

MU-MIMO. Les contributions actuelles limitent souvent leur étude à des

récepteurs linéaires simples (voir, par exemple, [85] et [86] ) ou , s’ils mani-

pulent des structures non-linéaires plus sophistiquées, par exemple, l’annula-

tion d’interférence successive (SIC) [87], idéalisent certaines parties du pro-

cessus de décodage, en supposant généralement des canaux d’entrée continue

avec dictionnaires gaussiens à zéro erreur, et en négligeant la propagation

d’erreur, ce qui conduit à un débit prédit inexact (c’est à dire, trop op-

timiste). Les systèmes réels traitent les châınes d’entrée discrètes et MCS

non-idéal de longueur finie. Le sujet de cette thèse de doctorat est de me-

surer l’impact réel des récepteurs de turbo sur la performance au niveau du

lien/système.

Les travaux de cette thèse peuvent être principalement divisés en deux

parties : les abstractions de la couche PHY pour la classe de récepteur

LMMSE-IC itératif, d’une part, et la nouvelle adaptation du lien en présence

d’un tel récepteur évolué, d’autre part.

Dans la première partie, cette thèse a été en mesure de proposer des

abstractions de la couche PHY semi-analytiques précises, robustes et pra-

tiques pour les systèmes MIMO avec le récepteur LMMSE-IC itératif. Les

abstractions de la couche PHY dépendent des hypothèses fondamentales

de la couche PHY et la structure du récepteur, comme la disposition de

la CSIR, le MCS adopté et le type d’information probabiliste sur les bits

codés réinjectée par le décodeur pour la reconstruction d’interférence dans

l’algorithme LMMSE-IC itératif. Ces travaux ouvrent la voie à l’optimi-

sation inter-couches en présence d’un tel récepteur itératif avancé et pour-

raient être utilisés comme une étape importante pour concevoir de nouveaux

moteurs d’annulation d’interférences pour les réseaux sans fil de prochaine
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génération.

• Chapter 2

Ce chapitre se concentre sur la clarification des hypothèses sous-jacentes

nécessaires pour dériver LMMSE -IC (itératif), la compréhension des

similitudes et des différences entre algorithme itératif basé sur LEXPTR

et LAPPR afin de proposer une abstraction de la couche PHY pour

l’algorithme itératif basé sur LAPPR sous CSIR parfaite. Le MCS

est construit à partir de codes convolutifs. L’abstraction de la couche

PHY pour l’algorithme basé sur LAPPR est plus sophistiquée. Une

procédure de calibration simple, mais efficace, a été proposée, dont le

principe est d’ajuster la variance du symbole (une seule variance est

utilisée pour mesurer la fiabilité des interférences reconstruites basé

sur l’hypothèse inconditionnelle) avec un facteur multiplicatif de va-

leur réelle supérieure à un, ce qui a pour effet de réduire artificielle-

ment les SINR qui sont utilisés dans le procédé de prédiction de per-

formance. Le facteur de calibration optimale par MCS est recherché

en minimisant la distance entre les BLERs ( ou BERs ) simulés et

prédits calibrés sur un grand nombre de réalisations de canal à chaque

itération. Simulations exhaustives révèlent que le facteur de calibration

dépend du MCS, mais ne varie pas de façon significative par rapport

au nombre d’antennes de transmission et de réception ainsi que les

caractéristiques du canal. Les résultats ont été publiés dans :

– B. Ning, R. Visoz, A.O. Berthet, Extrinsic versus a posteriori pro-

bability based iterative LMMSE-IC algorithms for coded MIMO

communications : Performance and analysis, Proc. IEEE ISWCS,

Paris, France, Aug. 2012.

• Chapter 3

Ce chapitre étudie les abstractions de la couche PHY sous CSIR impar-

faite. Le MCS est construit à partir de codes convolutifs. L’accent est

mis sur la situation lorsque le nombre de symboles de pilote est réduit

et l’hypothèse mismatch n’est plus valide. De nouvelles abstractions

de la couche PHY sont dérivées subordonné à la disposition d’infor-

mation a priori seulement, c’est à dire, l’hypothèse match [75–77], qui

sont l’estimation du canal utilisant seulement les symboles de pilote
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et la distribution des canaux à long terme (CDI). Les résultats sur ce

sujet ont été ou seront publiés dans :

– B. Ning, R. Visoz, A.O. Berthet, Semi-Analytical Performance

Prediction Method for Iterative MMSE-IC Detection and Semi-

blind Channel Estimation, Proc. IEEE VTC Spring, Hungrary,

Budapest, May 2011.

– B. Ning, R. Visoz, A.O. Berthet, Performance analysis of LMMSE-

IC based turbo equalization and semi-blind channel estimation, in

preparation for IEEE Trans. Sig. Proc.

• Chapter 4

Ce chapitre présente les abstractions de la couche PHY compte tenu

de la combinaison de turbo codes et algorithme LMMSE-IC itératif.

On constate que, même dans le cas simplifié de mapping Gray, trois

LUT à deux entrées sont nécessaires pour caractériser l’évolution du

démapper joint turbo décodeur. Ceci est en contraste avec [71] [66] où

le code convolutif est examiné et une LUT univariée est suffisante. Les

résultats à ce sujet ont été publiés dans :

– S. Martinez Lopez, F. Diehm, R. Visoz, B. Ning, Measurement

and Prediction of Turbo-SIC Receiver Performance for LTE, Proc.

IEEE VTC Fall, Québec City, Canada, Sept. 2012.

– un brevet français, déposé en février 2013.

– Contribution à la normalisation 3GPP : Physical layer abstraction

for turbo-CWIC receivers, R4-134328, Aug. 2013.

– Contribution à la normalisation 3GPP : Physical layer abstraction

for turbo-CWIC receivers, R1-134672, Nov. 2013.

– B. Ning, R. Visoz, A.O. Berthet, Physical Layer Abstraction of

LMMSE-IC based Turbo Receivers for LTE evolution, IEEE GLO-

BECOM, Atlanta, US, Dec. 2013.

• Chapter 5

Dans ce chapitre, les abstractions de la couche PHY pour un système

MIMO générique turbo codé par antenne utilisant LMMSE-IC itératif

sont introduites. Comparée au troisième sujet de cette partie, un nou-

veau degré de liberté est l’ordre de décodage. La performance globale
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du récepteur de turbo dépend de l’ordre de décodage qui doit être pris

en compte dans les abstractions de la couche PHY.

Dans la deuxième partie, l’adaptation du lien en boucle fermée dans les

systèmes MIMO a été abordée en utilisant des abstractions de la couche

PHY proposées pour le récepteur LMMSE-IC itérative. CSI partielle est

prise en charge à l’émetteur en vertu des rétroactions limitées provenants

des abstractions de la couche PHY et CSI parfaite est supposé au niveau

du récepteur. Les performances prédites et simulées sont comparées dans de

différents scénarios de communication pour mesurer l’impact réel apporté

par les récepteurs de turbo.

• Chapter 6

Ce chapitre aborde la FLA dans le système MIMO codé en boucle

fermée utilisant le récepteur LMMSE-IC itératif basé sur LAPPR. Les

systèmes MIMO avec MCS construits à partir de turbo code ou code

convolutif sont considérés. Les LUTs univariés et les facteurs de ca-

libration optimaux pour tous les MCS construits à partir de codes

convolutifs sont obtenus hors ligne. De même, les LUTs bivariés et les

facteurs de calibration optimaux pour tous les MCS construits à partir

de turbo codes sont obtenus hors ligne. L’adaptation du lien en boucle

fermée effectue une sélection de précodage spatial et de MCS en fonc-

tion des rétroactions limitées. Elle vise à maximiser le débit moyen

soumis à une contrainte d’un BLER cible en supposant le récepteur

LMMSE-IC itératif basé sur LAPPR est utilisé à la destination. Les

résultats à ce sujet ont été publiés dans :

– B. Ning, R. Visoz, A.O. Berthet, Link Adaptation in Closed-Loop

MIMO Systems of LTE with LMMSE-IC based Turbo Receivers,

Proc. IEEE WIMOB, Lyon, France, Oct. 2013.

– B. Ning, R. Visoz, A.O. Berthet, Link Adaptation in Closed-Loop

Coded MIMO Systems with LMMSE-IC based Turbo Receivers,

Proc. IEEE ICNC, Honolulu, Hawaii, US, Feb. 2014.

– B. Ning, R. Visoz, A.O. Berthet, Link adaptation in closed-loop

coded MIMO systems with LMMSE-IC based turbo receivers, in

preparation for IEEE Trans. Wireless Commun.

• Chapter 7
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Ce chapitre aborde le controle de débit par antenne (PARC) en boucle

fermée pour le système MIMO turbo codé indépendemment par an-

tenne avec le récepteur LMMSE-IC itératif basé sur LAPPR. Ayant en

main les LUT bivariés et facteurs de calibration optimaux pour tous

les MCS construits à partir de turbo codes, l’algorithme effectue une

sélection conjointe des précodeurs spatials, de l’ordre de décodage et

de la combinaison de MCS. Le but est de maximiser le débit moyen

soumis à une contrainte d’un BLER cible. Les résultats à ce sujet

seront publiés dans un article de conférence en préparation.

• Chapter 8

Dans ce chapitre, les conclusions et les suggestions pour la poursuite

des travaux sont données.

Les futurs sujets de recherche comprennent plusieurs volets principaux :

• Récepteur itératif plus performant :

Il existe toujours un écart entre les performances des algorithmes

LMMSE-IC itératifs et l’annulation d’interférence parfaite lié à des

scénarios de communication SU-MIMO. La poursuite de l’amélioration

de l’efficacité spectrale s’appuie sur un récepteur plus puissant tel que

le récepteur MAP itératif. Nous aimerions proposer une abstraction

de la couche PHY semi-analytique précise, robuste et pratique pour le

récepteur MAP itératif, mais il n’y a pas de SINR à calculer. Inspiré

par l’introduction d’un facteur supérieure à un de calibration sur la

variance pour compenser les inexactitudes des hypothèses pour l’algo-

rithme LMMSE-IC itératif basé sur LAPPR, l’algorithme MAP itératif

peut être approché par un algorithme LMMSE-IC itératif virtuel basé

sur LEXTPR compensé par un facteur inférieur à un de calibration

sur la variance. Si cette idée est validée, nous sommes en mesure de

proposer un cadre d’abstractions de la couche PHY pour les récepteurs

de turbo.

• Calibration plus agressives en collaboration avec IR-HARQ :

Les facteurs de calibration introduits sont obtenus par la minimisa-

tion de la somme de la distance entre les BLERs simulés et prédits

calibrés sur un grand nombre de réalisations de canal tirées d’un
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modèle de canal générique. Du coup, les facteurs de calibration ob-

tenus fonctionnent bien pour la plupart des réalisations de canaux.

En évitant d’affecter des débits de données trop optimistes pour des

conditions radio mauvaises, causant un grand nombre de retransmis-

sions, l’utilisation des facteurs de calibration sacrifie inévitablement

des débits de données sur de bonnes conditions radio. Si nous vou-

lons adopter des facteurs de calibration plus agressifs (plus petits)

pour allouer des débits plus élevés sur de bonnes conditions radio, il

devrait exister des mécanismes pour compenser les attributions pos-

sibles des débits de données trop optimistes sur des conditions radio

mauvaises. Dans cette ligne de pensée, il est nécessaire d’employer

IR-HARQ [88], [89], [90], [91], [92], [93] dans la transmission.

• Adaptation du lien en boucle ouverte :

La partie traitant la FLA dans cette étude de doctorat est basée sur

une rétroaction instantanée et parfaite, et toutes les rétroactions ins-

tantanées peuvent être traitées par la couche MAC immédiatement.

Toutefois, ces hypothèses ne peuvent pas être réalistes dans la pra-

tique. Par exemple, les rétroactions ne sont plus fiables lorsque l’UE

se déplace trop rapidement, ou bien une station de base sous la charge

lourde n’est pas en mesure de suivre les rétroactions de chaque UE.

Dans de telles situations, la meilleure stratégie consiste à effectuer une

adaptation du lien en boucle ouverte quelle que soit la rétroaction

instantanée. Avec le passage de boucle fermée en boucle ouverte, le

gain apporté par le récepteur itératif comparé à un récepteur linéaire

classique va augmenter. Par conséquent, il est intéressant de compa-

rer les performances de différents types de récepteurs dans le contexte

d’adaptation de liaison en boucle ouverte.

• Modèle de canal plus générique :

L’optimisation inter-couches a été abordée principalement sur les systèmes

SU-MIMO. Les futurs sujets comprennent l’évaluation de la perfor-

mance au niveau du système pour la liaison montante/descendante,

ainsi qu’une extension de ce travail à multicellulaire MIMO. Cepen-

dant, nous avons observé que l’optimisation inter-couches commence à

introduire une complexité de calcul très élevée à la recherche de la so-

lution optimale quand le degré de libertés augmente considérablement.

En raison de la contrainte de complexité, le PARC sélectif est limité
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à la transmission de double mots de code sur un modèle de canal

2x2 MIMO d’évanouissement par bloc dans cette étude de doctorat.

L’étape suivante doit être PARC sélectif pour la transmission de double

mots de code sur un modèle de canal 4x4 MIMO d’évanouissement

par bloc. En outre, une exploration intelligente de l’espace de re-

cherche est nécessaire pour réduire la complexité de l’optimisation

de tous les degrés de libertés : mode, antenne, précodage, débit et

ordre de décodage. Nous croyons que les récepteurs itératifs, avec ces

mécanismes de LA et RRM avancés, vont augmenter sensiblement les

débits du système.





Chapter 1

Introduction

The purpose of the first chapter is to give an overview of the whole PhD

study. In section 1.1, the evolution and technical preliminaries of wireless

communication systems are described. In section 1.2, the motivations of the

PhD thesis are introduced. In section 1.3, state of the art is presented. In

section 1.4, the contributions of the PhD study and the thesis outline are

listed.

1.1 Evolution of wireless communication systems

As per the estimates of the International Telecommunication Union (ITU)

[1], the number of mobile-cellular subscriptions reaches 6.8 billion in 2013,

corresponding to a global penetration of 96%. Today, people can communi-

cate with each other conveniently by voice, text message and have Internet

connection wherever is covered by the mobile communication network.

The First Generation (1G) systems were developed in the 1980s. These

systems used analogue technology and were designed only for voice service.

From 1991, the Second Generation (2G) systems were developed which

started to use digital technology, such as Global System for Mobile commu-

nications (GSM) in Europe, the Personal Digital Communication (PDC) in

Japan and IS-95 in the USA. Among these systems, the GSM were widely

accepted and deployed in most of countries and are still being used to-

day. The 2G systems were designed to provide voice and text message, and

later also data service by Enhanced Data rates for GSM Evolution (EDGE).

Among the family of 2G systems, GSM and PDC were based on Frequency-

Division Multiple Access (FDMA) [2], i.e., the whole bandwidth is divided

19
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into multiple narrow-band channel far apart in frequency and multiple users

can transmit simultaneously over different narrow-band channels, and Time-

Division Multiple Access (TDMA) [2], i.e., multiple users can transmit over

one narrow-band channel at different time. IS-95 system was based on Code-

Division Multiple Access (CDMA) [2], i.e., each user transmits its signals

over the entire bandwidth and each user is identified by a specific code.

The Third Generation (3G) systems included two families of technology:

Universal Mobile Telephone Service (UMTS), published by the standard-

ization organization of the Third Generation Partnership Project (3GPP)

in Release 99 following GSM, and CDMA2000 following IS-95. The UMTS

system was widely deployed in many countries while CDMA2000 system was

mainly deployed in Asia and North America. 3G systems were a significant

improvement over 2G systems and aimed to provide higher data rates, im-

proved voice capacity as well as data services and applications. As a result

of global standardization effort, the family of 3G systems were uniformly

based on CDMA. UMTS employs the Wideband CDMA (WCDMA) which

supports both Time-Division Duplexing (TDD) and Frequency-Division Du-

plexing (FDD) modes. One variate of TDD UMTS, named Time-Division

Synchronous CDMA (TD-SCDMA), is also normalized by 3GPP which is

mainly deployed in China.

The UMTS was further enhanced by High Speed Downlink Packet Ac-

cess (HSDPA) and High Speed Uplink Packet Access (HSUPA) in 3GPP.

Higher-order modulation are supported: 16 Quadrature Amplitude Modula-

tion (16QAM) is introduced to the downlink as an enhancement of Quadra-

ture Phase Shift Keying (QPSK) of Release 99 and QPSK is introduced

to the uplink as a complementary of Binary Phase Shift Keying (BPSK)

of Release 99. Adaptive Modulation and Coding (AMC) is introduced to

adapt dynamically the modulation order and channel coding rate to the in-

stantaneous radio conditions and user’s requirements. A new retransmission

scheme Hybrid Automatic Repeat reQuest (HARQ) is added between the

users and the base-station to reduce system latency in case of packet loss.

The HSPA evolutions HSPA+ (Release 7, 8) have been designed to fur-

ther improve the data rate by the introductions of new techniques. The

downlink and uplink started to support 64QAM and 16QAM, respectively.

The Multiple-Input Multiple-Output (MIMO) [3], [4] antenna systems are

also introduced. MIMO technology can be used to increase data rate [3],

[5], [6], [7] ( spatial multiplexing gain) , to increase the robustness of trans-
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mission (spatial diversity gain) and to concentrate the transmission energy

to a certain direction (precoding or beamforming).

As the forth remarkable step, the Long Term Evolution (LTE) pub-

lished in Release 8/9 and soon LTE-Advanced (LTE -A) published in Re-

lease 10/11 defined by 3GPP are recognized widely as the Forth Generation

(4G) systems which were characterized by Orthogonal Frequency-Division

Multiplexing (OFDM) technology. The advantages of OFDM [2] are multi-

ples, such as the robustness to Inter-Symbol Interference (ISI) from which

CDMA suffers, flexibility of deployment over different large band to which

CDMA is limited, the adequacy to MIMO transmission, management and

scheduling of wide band, flexibility to multiple access, etc. The subcarri-

ers of OFDM technology are overlapping but orthogonal which make OFDM

highly spectrally efficient [8]. LTE-A has chosen for the downlink the scheme

of Orthogonal Frequency-Division Multiple Access (OFDMA) [9] and for

the uplink the scheme of Single-Carrier Frequency-Division Multiple Access

(SC-FDMA) [10]. The different choice for downlink and uplink comes from

the relatively high Peak-to-Average Power Ratio (PAPR) [11] of an OFDM

signal which is not tolerable for the UE.

LTE-A supports 64QAM at both uplink and downlink. At the Physi-

cal (PHY) layer, turbo code [12] is employed to protect the data. Enhanced

Inter-Cell Interference Coordination (ICIC) in Release 10, Coordinated Mul-

tiPoint (CoMP) transmission/reception in Release 11 as well as Carrier Ag-

gregation are some important techniques that can further increase spectral

efficiency. In order to perform link adaptation, the UE regularly reports a

Channel State Information (CSI) to the base station. These CSI comprise

of: Channel Quality Indicator (CQI), preferred Precoding Matrix Indica-

tor (PMI), Rank Indicator (RI) (= number of spatial streams supported).

Some important parameters are the reporting delay, the reporting period

and possibly CQI filtering.

There are other kinds of wireless system other than cellular, such as

Wireless Local Area Networks (WLAN) [2]. These are designed for much

higher data rates than cellular systems, but are similar to a single cell of a

cellular system. These are mainly designed to provide in-building broadband

coverage. The major standards for WLAN are the IEEE 802.11 family and

the term Wi-Fi is used as a synonym for WLAN. Wi-Fi supports high-order

modulation (64QAM and even 256QAM), MIMO and link adaptation. The

PHY layer employs convolutional code to protect the data.
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1.2 Motivations of the PhD thesis

Within the ongoing global research effort on future wireless communications

systems, adaptive allocation of time, code, space and frequency resources

based on CSI and users’ requirements is widely recognized as a key feature

to approach the capacity of MIMO broadband frequency-selective channels

[13], [14], [15], [16], [17], [18], [19], [20], [21], [22], [23]. The traditional Radio

Resource Management (RRM) and Slow Link Adaptation (SLA) have been

built on a link-to-system interface, referred to as average value interface [24],

in which the individual radio link performance is evaluated through Monte-

Carlo simulations averaged over the fast fading statistics. For this approach

to be valid the RRM and LA timescales must be large compared to the fast

fading dynamics. On the opposite, current wireless systems evolve toward

an enhanced reactivity of RRM and Fast Link Adaptation (FLA) protocols

in order to jointly optimize the Media Access Control (MAC) and PHY

layers. A new type of link-to-system interface, referred to as actual value

interface [24], has emerged in which advanced RRM and FLA mechanisms

are designed and optimized so as to exploit feedback metrics representative

of the instantaneous individual radio link performance based on PHY-layer

abstractions (also called performance prediction methods).

Interference in cellular networks can be managed by interference avoid-

ance techniques at the transmitter side such as clever scheduling [25], [chap-

ter 6, [2]], broadcast channel, dirty paper coding, suboptimal ZF precoding,

MIMO Interference Alignment (IA) [26], etc. This strategy was followed by

WP1 of the European project ARTIST4G entitled ”Interference Avoidance”.

In this way, low complexity linear receiver can be sufficient. However, these

interference avoidance techniques require perfect and instantaneous CSI at

the Transmitter (CSIT) which, in practice, is not available. Too much CSIT

feedbacks will sacrifice the system spectral efficiency and make the system

lack of robustness. Finally, the interference can be avoided only to a certain

level. Therefore, the interference cancellation techniques at the receiver side

based on some complex advanced signal processing are important comple-

mentary to the previous interference avoidance techniques. Compared to the

CSIT, the Channel State Information at Receiver (CSIR) is always available

in Single-User MIMO (SU-MIMO) communications and uplink communica-

tions (multiple access channel). For downlink, converting the broadcast

channel into some multiple access channel with side information (provided
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by the network) at the level of each receiver is currently under investigation

by the industry [27]. This latter strategy seems more robust to imperfect

side information than the former. In fact, the idea to abandon synchronism

and orthogonality in future wireless systems, thereby admitting some inter-

ference, and to control these impairments by a suitable transceiver structure

was at the core of ARTIST 4G WP2 entitled ”Interference Exploitation” and

is now advertised by several European projects as a building concept for the

Fifth Generation (5G) at the PHY/MAC layers.

In parallel, the success of turbo codes [12] and turbo principle [28] has

inspired new potentially capacity achieving coded modulations. New spatial

multiplexing architectures and non-orthogonal multiple-access techniques

based on powerful coding schemes have been proposed to achieve very high

spectral efficiency, whose relevance is, however, conditional upon iterative

processing at the receiver. These two trends, namely, cross layer optimiza-

tion and turbo processing, call for the development of new PHY-layer ab-

stractions that can capture the iterative receiver performance per iteration

conditional on the available CSIR that enables the smooth introduction of

such advanced receivers within FLA and RRM.

1.3 State of the art

On the subject of predicting the convergence and/or analysing the perfor-

mance of iterative decoding, we first distinguish between deterministic ap-

proaches and stochastic ones [29]. Deterministic approaches treat decoding

as a deterministic process and try to characterise the behavior of the decoder

for each instance of the received signal. For example, [30] is able to reveal

a number of dynamic behaviors of turbo decoding, such as the existence of

fixed points as well as some conditions for the uniqueness and stability of

fixed points. However, knowing the existence of a fixed point is not sufficient,

as multiple fixed points or even limit cycles may exist. Moreover, the con-

ditions for the uniqueness and stability are specific to each decoding block

and difficult to compute, meaning that they are not useful in predicting the

performance of a given turbo decoder.

Based on the assumption of large codeword lengths (or equivalently large

interleaver size), the stochastic approaches, on the other hand, view the

input and output signals circulating within the iterative decoder as ergodic

random processes [29] whose statistics are computable using realizations (or
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instances). Treating Log Likelihood Ratios (LLRs) of exchanged binary

messages as Random Variables (RVs), the Density Evolution (DE) [31, 32]

is proposed for analysing the performance of the sum-product decoding [33]

of Low-Density Parity-Check (LDPC) codes [34] over simple binary-input

output-symmetric channels. However, the mathematical rigorousness of DE

introduces intrinsic high complexity as this method actually estimates the

evolution of their probability distributions (expressed in closed-form) by

means of numerical simulations.

Other simpler stochastic approaches exist which all have in common to

employ a single statistical parameter (as opposed to a complete probabil-

ity distribution) to characterise the input and output signals involved in

the iterative process. EXtrinsic Information Transfer (EXIT) charts, pio-

neered by ten Brink who first introduced them in the context of choosing a

suitable mapper and a suitable constellation in an iterative demapping and

decoding scheme [35] and soon thereafter applied them to analyze turbo

codes [36, 37], is a powerful tool to analyze iterative behaviors, based on

single statistical parameter tracking. The evolution of the Average Mu-

tual Information (AMI) between the information (or coded) bits and the

corresponding output LLRs after BCJR decoding [38] is observed instead

of the evolution of the true densities. A simple one-dimensional Gaussian

approximation to the density evolution has also been suggested by Chung

et al. in [39, 40] for LDPC codes. Related ideas have been independently

proposed for analysing turbo codes [41,42] and iterative multiuser detection

and decoding [43, 44]. These Gaussian approximations differ in the choice

of the one-dimensional parameter which is chosen to characterise a density,

e.g., Signal-to-Noise Ratio (SNR) [41, 42] or mean [39, 40] under symmetry

condition and consistency property. However, experiments have shown that

the AMI used in EXIT charts is the most robust statistical parameter w.r.t.

the variations of the LLRs probability distributions and consequently the

most faithful one [45].

Introducing EXIT charts to predict the performance of turbo receivers

over a multiuser systems and (non-ergodic) MIMO block fading frequency

selective channel reveals several issues. If each user employs a coded mod-

ulation scheme, the turbo receivers are characterized by iterative message

circulations between the MultiUser Detector (MUD) (using a priori informa-

tion on users’ coded bits generated by the decoder) and the bank of soft-in

soft-out channel decoders.
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The first issue consists in the strong time constraint which does not

allow us to obtain the MUD’s extrinsic AMI at coded bit level for any

given channel realization by running a long simulation. As a consequence,

the MUD’s extrinsic AMI must be computed analytically or at least semi-

analytically. Some simplified (suboptimal) class of MUD, named as Linear

Minimum Mean Square Error Interference Cancellation (LMMSE-IC) MUD

exit for which the calculation can be performed in two steps: one step, purely

analytical computation of Signal-to-Interference-plus-Noise Ratio (SINR),

devoted to IC and LMMSE detection of users’ transmitted symbols and the

other step to demapping. This PhD study focus on this class of LMMSE-IC

detection scheme [46–49], since it is a challenging, if not impossible, task

for a (locally optimum) detection derived as a strict application of the sum-

product rules on the corresponding subgraph [33]. This line of thought is

followed and developed in [50–57] (see also [44,58] for alternatives).

A second issue consists in the fact that the coded bits are spread over

symbols that experience different channel fading states. This situation is

behind the MIMO block fading channel model [59]. The MUD’s EXIT

characteristics should be computed for each of such channel states which

serve as a priori input for the computation of EXIT characteristics of the

user’s channel decoders. We have to compress (map) these multiple MUD’s

extrinsic outputs (one per channel state) to a single one to avoid using

a multidimensional Look-Up-Tables (LUTs) to characterize the decoder’s

extrinsic outputs whose storage would not be affordable. The problem is

solved in [50–52] by averaging the AMI, between the MUD’s extrinsic output

and the related coded bits, over all existing channel states.

Interestingly, this second problem was also encountered in another re-

search community dealing with adaptive modulation/coding and system-

level evaluation referred to as compression techniques [60–63]. Compression

techniques aim at bringing back the multiple instantaneous SNRs represen-

tative of the different channel states that coded bits may experience into

a single effective SNR. The two most studied compression techniques are

Exponential Effective SNR Mapping (EESM) [64] and Mutual Information

Effective SNR Mapping (MIESM) [61] where in the former an exponential

function is used as an information measure based on Chernoff bound and

in the latter an normalized Bit-Interleaved Coded Modulation(BICM) [65]

constrained capacity is used as an information measure. EESM usually re-

quires fine-tuned adjusting factors to reach good accuracy for a given MCS
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while MIESM is much less sensitive to adjustment factors and its superiority

has been reported in a number of past contributions [61]. This statement

seems in line with [49]. It is worth noticing that the idea of compression has

been rediscovered and formalised by Yuan et al. in [56, Assumption V].

In [66], a study is set up on fast and accurate semi-analytical meth-

ods to predict the Block-Error-Rate (BLER)/Bit-Error-Rate (BER) perfor-

mance per user and per iteration in a Multiple-User (MIMO) MU-MIMO

system where each user employs a Space-Time Bit-Interleaved Coded Modu-

lation (STBICM) constructed out of convolutional code and where iterative

LMMSE-IC joint decoding (in short iterative LMMSE-IC) is performed at

the receiver. By LMMSE-IC joint decoding it is meant LMMSE detection

using a priori information from the decoder [67] together with the uncondi-

tional assumption [48,49]. The unconditional assumption consists of averag-

ing the symbol second order statistics over time, to render the LMMSE filter

time-independent (thus easy to implement). Interestingly, this assumption

is most of the time not detrimental in terms of final performance [49]. The

PHY-layer abstractions described in [66] rely on the MIESM technique at

bit or symbol level. In the first method, the MUD’s extrinsic outputs up

to the users’ channel decoders, seeing LMMSE-IC detection and demap-

ping as a joint process, are analytically computed. This method follows the

classical framework of EXIT charts and tracks the evolution of the AMI de-

fined at coded bit level circulating between the MUD and the bank of outer

channel decoders [65, Section III], [68, Section V], [69], [70, Section III.B].

Then, shifting in viewpoint and considering user demapping and decoding

as a joint process, an alternative method which tracks the evolution of the

AMI defined at coded modulated symbol level and circulating between the

LMMSE-IC interface and the bank of joint demappers and outer channel

decoders [71] is proposed. This allows to avoid the critical issue of pa-

rameterising the demapping. The two methods give comparable results for

low-order non-linear mapping. On the contrary, the second method, which

includes the demapping inside the LUTs reveals more robust to high-order

non-linear mapping, demonstrating its superiority.

However, within the class of LMMSE-IC based turbo receivers, we often

distinguish between Log Extrinsic Probability Ratios (LEXTPR) based and

Log A Posteriori Probability Ratios (LAPPR) based iterative LMMSE-IC

algorithms. The two algorithms differ by the type of probabilistic informa-

tion fed back by the decoder for soft interference regeneration and cancella-
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tion, namely LEXTPR or LAPPR on coded bits. Empirical evidence reveals

that the LAPPR-based iterative algorithm can significantly outperform its

LEXTPR-based counterpart for highly loaded multiantenna or multiuser

systems. In such scenarios indeed, using LAPPR instead of LEXTPR leads

to more reliable MMSE symbol estimates. This is due to the extra informa-

tion gleaned from the equalization/detection process, which allows to cancel

out more interference at each iteration. The analysis in [66] are correct

for LEXTPR-based iterative algorithm given sufficient large interleaver size

while [66, Assumption A1 and A4] never hold even with infinite interleaver

size for LAPPR-based iterative algorithm. Due to the neglected inaccuracies

of assumptions, the symbol-wise method based predicted performance reveal

too optimist compare to simulated performance of LAPPR-based iterative

algorithm. This phenomena is all more evident for MCS with high-order

mapping and high coding rate. Therefore, a careful examination of underly-

ing fundamental assumptions for this family of receiver is necessary so as to

propose an improved PHY-layer abstraction for LAPPR-based algorithm,

which is the point of start of this PhD study.

Otherwise, closed-loop link adaptation in LTE (LTE-A) involves a fam-

ily of MCS constructed out of powerful turbo codes. The turbo decoder is

made of two BCJR decoders [38] exchanging probabilistic information (log

domain). Due to their particular structure, turbo codes cannot be optimally

decoded except for very limited block length. In practice, a suboptimal iter-

ative decoding is applied, where probabilistic soft information is exchanged

between the constituent decoders. The first BCJR decoder computes the

LAPPRs on its own coded bits (information and parity bits) taking into

account the available a priori information on systematic information bits

stored from an earlier activation (i.e., the most recent LEXTPRs on sys-

tematic information bits delivered by the second BCJR decoder). Then the

second BCJR decoder is activated and computes the LAPPRs on its own

coded bits (information and parity bits) taking into account the available

a priori information transmitted by the first BCJR decoder. Joint iterative

LMMSE-IC and turbo decoding gives rise to a complicated receiver struc-

ture with at least two interwoven iterative processes. Some similarities can

be found in earlier works dealing with multiple concatenated codes and the

convergence analysis of their iterative decoding, see e.g., [72] [49] [73] [74].

Hence, the smooth introduction of LMMSE-IC based turbo equalization

receivers in LTE calls for new PHY-layer abstractions to this non-trivial
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situation.

When the perfect CSIR assumption is removed, the PHY-layer abstrac-

tions should be derived under imperfect CSIR and channel estimation error.

If the number of pilot symbols is sufficient to ensure close to perfect CSI,

then it is sufficient to adopt the so-called mismatched assumption [75–77]

which simply postulates that the initial pilot assisted channel estimate is

noiseless. In that case, PHY-layer abstractions derived under the assump-

tion of perfect CSIR can be used in practice. However, if the number of pilot

symbols are reduced conditional on some advanced semi-blind channel esti-

mation scheme at the receiver side, the mismatched assumption is not valid

anymore. Indeed, it is quite known that performing detection and channel

estimation within a same iteration (using channel decoding a priori) allows

reducing drastically the number of reference signals for a given performance,

see, e.g., [78–81]. There is a wealth of literature on the subject of analyz-

ing semi-blind channel estimation performance, e.g., [?, 75–77, 80, 82, 84].

For instance, [80] is rather exhaustive in deriving and comparing different

semi-blind channel estimate MSEs, but only refer to iterative mismatched

detection schemes without analysis. While, on the other hand, [77] consid-

ers iterative matched Maximum A Posteriori (MAP) detection with pilot

assisted only channel estimation. However, the combination of the matched

LMMSE-IC (taking into account the channel estimation errors) detection

and LMMSE semi-blind channel estimation was never tackled as such either

from a pure performance evaluation or prediction perspective.

Once the PHY-layer abstractions are derived with turbo receiver, the

brigades between PHY and MAC layers are built. The following task is

to realize cross optimization between PHY and MAC layers, sometimes re-

ferred to as cooperative resource allocation which is currently one of the

most exciting research topics in the design of MU-MIMO systems. The

existing contributions often restrict their study to simple linear receivers

(see e.g., [85] and [86]) or, if dealing with more sophisticated non-linear re-

ceiver structures, e.g., Successive Interference Cancellation (SIC) [87], ideal-

ize some parts of the decoding process, typically assuming continuous-input

channels with zero-error Gaussian codebooks, and neglecting error propaga-

tion, which leads to inaccurate (i.e., too optimistic) predicted throughputs.

Real systems though deal with discrete-input channels and non-ideal finite-

length MCS. The subject of this PhD study is to measure the true impact

of turbo receivers on the link/system level performance.
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1.4 Thesis outline

The work of this PhD study can be mainly divided into two parts: PHY-

layer abstractions for the class of iterative LMMSE-IC receiver and new link

adaptation in presence of such advanced receiver.

1.4.1 Part I: PHY-layer abstractions

In the first part, this PhD study has been able to propose accurate, robust

and practical semi-analytical PHY-layer abstractions for MIMO systems em-

ploying iterative LMMSE-IC receiver. The PHY-layer abstractions depend

on PHY layer fundamental assumptions and the receiver structure, such as

the available CSIR, the MCS adopted and the type of LLR on coded bits

fed back from the decoder for interference reconstruction and cancellation

in the iterative LMMSE-IC algorithms. These work pave the way for cross

layer optimization in presence of such advanced iterative receiver and could

be used as a milestone to design new interference cancellation engines for

next-generation wireless networks.

• Chapter 2 This chapter focus the clarification of the underlying as-

sumptions needed for deriving (iterative) LMMSE-IC, the understand-

ing of the similarities and differences between the LEXPTR and LAPPR

based iterative algorithm and finally the proposition of an improved

PHY-layer abstraction for LAPPR based iterative algorithm under

perfect CSIR. The MCS is constructed of convolutional code. The

PHY-layer abstraction for LAPPR-based algorithm is more sophisti-

cated. A simple, yet effective, calibration procedure has been proposed

whose principle is to adjust the soft symbol variance (a single variance

is used to measure the reliability of re-constructed interference based

on the unconditional assumption) with a real-valued multiplicative

factor greater than one which has the effect to artificially reduce the

SINRs that are used in the performance prediction method. The op-

timal calibration factor per MCS is searched by minimizing the error

between the simulated BLER (or BER) and the calibrated predicted

BLER (or BER) over a large number of channel outcomes at each iter-

ation for the BLER range of interest. Exhaustive simulations revealed

that the calibration factor depends on the MCS but does not vary sig-

nificantly w.r.t. the number of transmit and receive antennas as well
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as the channel characteristics. The results have been published in:

– B. Ning, R. Visoz, A.O. Berthet, Extrinsic versus a posteriori

probability based iterative LMMSE-IC algorithms for coded MIMO

communications: Performance and analysis, Proc. IEEE ISWCS,

Paris, France, Aug. 2012.

• Chapter 3 This chapter investigates the PHY-layer abstractions under

imperfect CSIR. The MCS is constructed of convolutional code. The

emphasis is put on the situation when the number of pilot symbols

are reduced and the mismatched assumption is not valid anymore.

New PHY-layer abstractions are derived conditional on the available a

priori information only, i.e., the so-called matched assumption [75–77],

which are the initial pilot assisted channel estimate and the long-term

Channel Distribution Information (CDI), (such as the channel and

noise probability distribution functions). The results on this subject

have been or will be published in:

– B. Ning, R. Visoz, A.O. Berthet, Semi-Analytical Performance

Prediction Method for Iterative MMSE-IC Detection and Semi-

blind Channel Estimation, Proc. IEEE VTC Spring, Hungrary,

Budapest, May 2011.

– B. Ning, R. Visoz, A.O. Berthet, Performance analysis of LMMSE-

IC based turbo equalization and semi-blind channel estimation, in

preparation for IEEE Trans. Sig. Proc.

• Chapter 4 This chapter presents the PHY-layer abstractions consid-

ering the combination of turbo code and iterative LMMSE-IC algo-

rithm. It is found that, even in the simplified case of Gray mapping,

a bivariate LUT is needed to characterize the evolution of the joint

demapper and turbo decoder embedded within the LMMSE-IC based

turbo equalization. This is in contrast with [71] [66] where simple con-

volutional codes were considered and univariate LUT sufficient. The

results on this subject have been published in:

– S. Martinez Lopez, F. Diehm, R. Visoz, B. Ning, Measurement

and Prediction of Turbo-SIC Receiver Performance for LTE, Proc.

IEEE VTC Fall, Québec City, Canada, Sept. 2012.
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– One french patent, filed date: February 2013.

– Contribution to 3GPP standardization: Physical layer abstrac-

tion for turbo-CWIC receivers, R4-134328, Aug. 2013.

– Contribution to 3GPP standardization: Physical layer abstrac-

tion for turbo-CWIC receivers, R1-134672, Nov. 2013.

– B. Ning, R. Visoz, A.O. Berthet, Physical Layer Abstraction

of LMMSE-IC based Turbo Receivers for LTE evolution, IEEE

GLOBECOM, Atlanta, US, Dec. 2013.

• Chapter 5

In this chapter, PHY-layer abstractions for a generic per-antenna turbo

coded MIMO system employing iterative LMMSE-IC in is introduced.

Compare to the third topic of this part, a new degree of freedom is

the decode ordering. The global turbo receiver performance depends

on the decode ordering which should be taken into account in the

PHY-layer abstractions.

1.4.2 Part II: Link adaptation

In the second part, closed-loop link adaptations in MIMO systems based

on the proposed PHY-layer abstractions for iterative LMMSE-IC receiver

have been tackled. Partial CSI is assumed at the transmitter under limited

feedback derived by the PHY-layer abstractions and perfect CSI is assumed

at the receiver. Link level predicted and simulated performance are com-

pared in different communication scenarios to measure the true impact on

the performance brought by turbo receiver.

• Chapter 6

This chapter tackles FLA in closed-loop coded MIMO systems employ-

ing LAPPR-based iterative LMMSE-IC receiver. Both convolutionally

and turbo coded MIMO systems are considered. Univariate LUTs and

associated optimal calibration factors per MCS constructed out of con-

volutional code are obtained off-line. Bivariate LUTs and associated

optimal calibration factor per MCS constructed out of turbo code are

obtained off-line. Closed-loop link adaptation performs joint spatial

precoder selection and MCS selection based on limited feedback. It

aims to maximize the average rate subject to a target BLER constraint
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assuming LAPPR-based iterative LMMSE-IC at the destination. The

results on this subject have been published in:

– B. Ning, R. Visoz, A.O. Berthet, Link Adaptation in Closed-Loop

MIMO Systems of LTE with LMMSE-IC based Turbo Receivers,

Proc. IEEE WIMOB, Lyon, France, Oct. 2013.

– B. Ning, R. Visoz, A.O. Berthet, Link Adaptation in Closed-Loop

Coded MIMO Systems with LMMSE-IC based Turbo Receivers,

Proc. IEEE ICNC, Honolulu, Hawaii, US, Feb. 2014.

– B. Ning, R. Visoz, A.O. Berthet, Link adaptation in closed-loop

coded MIMO systems with LMMSE-IC based turbo receivers, in

preparation for IEEE Trans. Wireless Commun.

• Chapter 7

The chapter tackles selective Per Antenna Rate Control (PARC) in

closed-loop independent per-antenna turbo coded MIMO systems with

LAPPR-based iterative LMMSE-IC receiver. Having in hand the off-

line obtained bivariate LUTs and optimal calibration factors for each

MCS constructed out of turbo code, the algorithm performs joint se-

lection of spatial precoder, decode ordering and MCS combination so

as to maximize the average rate subject to a target BLER constraint.

The results on this subject will be published in a conference paper in

preparation.

1.4.3 Conclusions

• Chapter 8

In this chapter, conclusions and suggestions for further work are given.



Part I

PHY-layer abstraction

algorithms
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Chapter 2

PHY-layer abstractions for
convolutionally coded MIMO
systems with iterative
LMMSE-IC

2.1 Introduction

Since more than a decade, iterative detection and decoding algorithms have

received much attention in the literature. Prominent amongst them is the

class of iterative LMMSE-IC algorithms. Within the class of LMMSE-IC

based turbo receivers, we often distinguish between LEXTPR-based and

LAPPR-based iterative LMMSE-IC algorithms. The two algorithms differ

by the type of probabilistic information fed back by the decoder for soft inter-

ference regeneration and cancellation, namely LEXTPR or LAPPR on coded

bits. Empirical evidence reveals that the LAPPR-based iterative LMMSE-

IC algorithm can significantly outperform its LEXTPR-based counterpart

for highly loaded multiantenna or multiuser systems. In such scenarios

indeed, using LAPPR instead of LEXTPR leads to more reliable MMSE

symbol estimates. This is due to the extra information gleaned from the

equalization/detection process, which allows to cancel out more interference

at each iteration [94, Section 4, Fig. 4]. While LMMSE-IC algorithms can

This chapter is partially presented in the paper accepted to IEEE VTC Spring’2012
and the journal paper submitted to the journal IEEE Signal Processing
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be rigorously analysed in terms of the SINR evolution when they are based

on LEXTPRs, this is not the case for LAPPRs. Therefore, the underlying

assumptions needed for the derivation of (iterative) LMMSE-IC algorithm

and its associated SINRs should be emphasized for both LEXTPR-based

and LAPPR-based algorithm.

In parallel, current wireless systems evolve toward an enhanced reactiv-

ity of RRM and FLA in order to jointly optimize the MAC and PHY layers.

Hence, a new type of link-to-system interface, referred to as actual value in-

terface, has emerged in which advanced mechanisms, based on performance

prediction methods [61], are designed so as to improve the feedback met-

rics representative of the instantaneous individual radio link performance.

These two trends, namely, turbo processing and cross-layer optimization,

call for the development of new PHY-layer abstractions that can capture

the evolution of iterative receivers (seen as complex dynamical systems).

This chapter focus on PHY-layer abstractions for such receivers assuming

perfect CSIR in convolutional coded MIMO systems.

2.2 System model

Single-user transmission occurs over a MIMO block Rayleigh fading multi-

path Additive White Gaussian Noise (AWGN) channel with nb fading block,

nt transmit antennas and nr receiver antennas. Perfect channel state infor-

mation is assumed at the receiver. A STBICM, indexed by ν, is used at the

transmitter, specified by a linear binary convolutional code Cν of rate rν , a

complex constellation Xν ⊂ C of cardinality 2qν and a memoryless labeling

rule µν . We define the rate of the MCS as ρν = rνqν (bits/complex dimen-

sion). The encoding process for MCS is detailed. The vector of binary data

(or information bits) u enters an encoder ϕν whose output is the codeword

c ∈ Cν of length nν,c = nsntqν . The codeword bits are interleaved by a ran-

dom space time interleaver πν and reshaped as a integer matrice {Db}nbb=1

with Db ∈ Znt×L2qν . Each integer entry can be decomposed into a sequence

of qν bits. A Gray mapping µν transforms each matrix Db into a complex

matrix Sb ∈ X nt×L
ν . X

(0)
ν,j and X

(1)
ν,j denote the subsets of points in Xν

whose labels have a 0 or a 1 at position j. With a slight abuse of notation,

let {db;t,l,j}qνj=1 denote the set of bits labeling the symbol sb;t,l ∈ Xν . Let

also µ−1
ν,j (s) be the value of the j-th bit in the labeling of any point s ∈Xν .

The STBICM is described in Fig. 2.1.
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Encoder 
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bit/symbol  

Map. 

…
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bit/symbol  

Map. 

QAM  
bit/symbol  

Map. 

Figure 2.1: Transmitter model (STBICM)

For the b-th fading block, the nτ +1 finite-length impulse response (FIR)

describes the small-scale multipath fading

Hb(l) =

nτ∑
τ=0

Hb;τδ(l − τ). (2.1)

Each tap gain Hb;τ is an nr × nt random matrix whose entries are modeled

as i.i.d. circularly-symmetric complex Gaussian random variables with zero-

mean and variance σ2
b;τ under the constraint

∑nτ
τ=0 σ

2
b;τ = 1. The discrete-

time vector yb;l ∈ Cnr received by the destination at b-th fading block and

time l = 1, . . . , L, is expressed as

yb;l =

nτ∑
τ=0

Hb;τsb;l−τ + wb;l (2.2)

with proper boundary conditions. In (2.2), the vectors sb;l ∈ X nt
ν are i.i.d.

random vectors (uniform distribution) with E[sb;l] = 0nt and E[sb;ls
†
b;l] = Int ,

and the vectors wb;l ∈ Cnr are i.i.d. random vectors, circularly-symmetric

Gaussian, with zero-mean and covariance matrix σ2
wInr .

Based on (2.2), the discrete-time baseband equivalent sliding-window

model used for detecting sb;t,l in Sb is given by

y
b;l

= Hbsb;l + wb;l (2.3)

where

• LSW = L1 + L2 + 1

• y
b;l

= [y>b;l−L1
, . . . ,y>b;l+L2

]>
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• sb;l = [s>b;l−L1−nτ , . . . , s
>
b;l+L2

]>

• wb;l = [w>b;l−L1
, . . . ,w>b;l+L2

]>

• Hb is the suitable Sylvester matrix of dimension LSWnr×(LSW+nτ )nt.

For a fixed l, index l′ which serves to point a component in the vectors

varies from l − L1 − nτ to l + L2. The 2-tuple (t′, l′) of indices differs from

the 2-tuple of indices (t, l) as soon as any of the indices is different. Let

et denote the unit vector of dimension (LSW + nτ )nt with a 1 at position

(L1 + nτ )nt + t.

In LEXTPR-based LMMSE-IC, the set of LEXTPRs {ΛEE,DEC(cn)} on

coded bits are used as a priori information. Let {ΛA,LE}sb;t,l and {ΛA,LE}sb;l
be the set of all LEXTPRs on coded bits involved in the labeling of sb;t,l

and sb;l, respectively. Let also {ΛA,LE}sb;l\sb;t,l be the set of all LEXTPRs

on coded bits involved in the labeling of sb;l except the coded bits involved

in the labeling of sb;t,l. In LAPPR-based LMMSE-IC, the set of LAPPRs

{ΛDD,DEC(cn)} on coded bits are used as “a priori” information. In the

sequel, ΛD,LE is used to denote the interleaved LAPPRs (as opposed to the

notation ΛA,LE).

2.3 Iterative LMMSE-IC

2.3.1 LEXTPR-based LMMSE-IC

2.3.1.1 Interference regeneration and cancellation

Prior to LMMSE estimation of the symbol sb;t,l, we compute the conditional

MMSE estimate of the interference, defined as

y̆E
b;l\t = E[y

b;l
|{ΛA,LE}sb;l\sb;t,l ] (2.4)

This computation is tractable by making two symplifying assumptions.
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A1-a The pdf psb;l,wb;l|{ΛA,LE}sb;l\sb;t,l

(
sb;l,wb;l

)
factorizes as

psb;l,wb;l|{ΛA,LE}sb;l\sb;t,l

(
sb;l,wb;l

)
=

P (sb;t,l)pwb;l
(wb;l)

∏
(t′,l′)6=(t,l) P (sb;t′,l′ |{ΛA,LE}sb;t′,l′ ).

(2.5)

A2-a The pmf P (sb;t′,l′ |{ΛA,LE}sb;t′,l′ ) in (2.5) is given by

P (sb;t′,l′ |{ΛA,LE}sb;t′,l′ ) ∝ e
∑
j µ
−1
ν,j(sb;t′,l′ )ΛA,LE(db;t′,l′,j).

As a matter of fact, the assumptions (A1-a) and (A2-a) hold for an inter-

leaver with sufficient large size. Under (A1-a), the MMSE estimate of the

interference affecting the symbol sb;t,l is given by

ỹE
b;l\t = Hb(I(LSW+nτ )nt − ete

†
t)m

E
b;l (2.6)

where mE
b;l is the vector made of all estimatesmE

b;t′,l′ = E
[
sb;t′,l′ |{ΛA,LE}sb;t′,l′

]
evaluated under (A2-a). After IC, the new observed vector is y

b;l
− ỹE

b;l\t.

2.3.1.2 LMMSE estimation – unconditional case

The optimization problem to solve can be formulated as follows: Find s̆Eb;t,l =

f̆
E†

b;t (yb;l − y̆E
b;l\t) minimizing the unconditional Mean Square Error (MSE)

E
[
|s̆Eb;t,l − sb;t,l|2

]
defined as

E
[
E
[
|s̆Eb;t,l − sb;t,l|2|{ΛA,LE}sb;l\sb;t,l

]]
. (2.7)

The outer expectation in (2.7) renders the (biased) LMMSE filter time-

invariant given by f̆
E

b;t = Ξ̆
E−1

b;t ξ̆
E

b;t
where ξ̆

E

b;t
= E

[
ξ̆
E

b;t,l

]
with

ξ̆
E

b;t,l
= E

[
(y
b;l
− y̆E

b;l\t)s
∗
b;t,l|{ΛA,LE}sb;l\sb;t,l

]
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and where Ξ̆
E
b;t = E

[
Ξ̆
E
b;t,l

]
with

Ξ̆
E
b;t,l = E

[
(y
b;l
− y̆E

b;l\t)(yb;l − y̆E
b;l\t)

†|{ΛA,LE}sb;l\sb;t,l
]
.

The computation of f̆
E

b;t is again intractable. However, under (A1-a), ξ̆
E

b;t
and

Ξ̆
E
b;t become ξE

b;t
= hb;t = Hbet and ΞE

b;t = HbV
E
b;\tH

†
b + σ2

wILSWnr where

VE
b;\t is the unconditional symbol covariance matrix defined as

VE
b;\t = I(LSW+nτ ) ⊗ diag{vEb;1, . . . , vEb;t−1, 1, v

E
b;t+1, . . . , v

E
b;nt}

where ∀t′ 6= t, vEb;t′ = E
[
vEb;t′,l

]
with vEb;t′,l = E

[
|sb;t′,l −mE

b;t′,l|2|{ΛA,LE}sb;t′,l
]

evaluated under (A2-a). Using the matrix inversion lemma, we obtain the

filter

fEb;t =
1

1 + ηEb;t(1− vEb;t)
ΣE−1

b hb;t (2.8)

where ΣE
b = HbV

E
b H†b + σ2

wILSWnr and ηEb;t = h†b;tΣ
E−1

b hb;t with

VE
b = VE

b;\t − (1− vEb;t)ete
†
t (2.9)

where vEb;t = E
[
vEb;t,l

]
with vEb;t,l = E

[
|sb;t,l −mE

b;t,l|2|{ΛA,LE}sb;t,l
]

evaluated

under (A2-a). The corresponding estimate ŝEb;t,l of sb;t,l can be expressed as

ŝEb;t,l = fE
†

b;t (yb;l − ỹE
b;l\t) = gEb;tsb;t,l + ζEb;t,l (2.10)

where gEb;t = fE
†

b;thb;t and ζEb;t,l is the residual interference plus noise term.

Clearly, ζEb;t,l in (2.10) is zero-mean and uncorrelated with the useful signal

sb;t,l under (A1-a), i.e., E[sb;t,lζ
E∗
b;t,l] = 0. Under (A1-a) and (A2-a) the vari-

ance of ζEb;t,l is ςEb;t = gEb;t(1− gEb;t) which allows us to define the unconditional

SINR as

γEb;t =
gEb;t

1− gEb;t
=

ηEb;t

1− ηEb;tvEb;t
. (2.11)

A3-a Due to the particular structure of the MCS, the so-called equal vari-
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ance assumption holds, which states that

VE
b = vEI(LSW+nτ )nt , ∀b. (2.12)

so that

γEb;t =
ηEb;t

1− ηEb;tvE
. (2.13)

The assumption (A3-a) holds for an interleaver of sufficient large size L, but

forcing it induces no performance degradation.

A4-a Assuming sufficiently large values of L, vE can be replaced by its

empirical mean v̄E given by

v̄E =
1

nbntL

nb∑
b=1

nt∑
t=1

L∑
l=1

vEb;t,l. (2.14)

As a matter of fact, the assumption (A4-a) is part of the baseline assump-

tions of EXIT charts (ergodic regime) [37].

2.3.1.3 Demapping and decoding

The estimate ŝEb;t,l is used as a decision statistic to compute the LEXTPR

on the qν bits involved in the labeling of sb;t,l.

A5-a In (2.10), the conditional pdf pŝEb;t,l|sb;t,l
(ŝEb;t,l) is circularly-symmetric

complex Gaussian distributed.

Under (A1-a),(A2-a) and (A5-a) the conditional pdf pŝEb;t,l|sb;t,l
(ŝEb;t,l)

is NC(gEb;tsb;t,l, ς
E
b;t). As a result, under (A1-a),(A2-a) and (A5-a), for the

special case of Gray labeling, the LEXTPR ΛEE,DEM (db;t,l,j) on labeling bit

db;t,l,j is expressed as

ΛEE,DEM (db;t,l,j) =

∑
s∈X

(1)
ν,j

e−|ŝ
E
b;t,l−g

E
b;ts|

2/ςEb;t∑
s∈X

(0)
ν,j

e−|ŝ
E
b;t,l−g

E
b;ts|2/ς

E
b;t

(2.15)

The set ΛE
E,DEM of all LEXTPR on labeling bits becomes after deinterleav-
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ing the set ΛE
I,DEC of all log intrinsic probability ratios on coded bits used

as input for the decoder.

A6-a The pdf pΛE
I,DEC |c

(ΛE
I,DEC) factorizes as

pΛE
I,DEC |c

(ΛE
I,DEC) =

nc∏
n=1

pΛEI,DEC(cn)|cn(ΛEI,DEC(cn))

where ΛEI,DEC(cn) is the log intrinsic probability ratio on coded bit cn. The

assumption (A6-a) allows to simplify the decoding task. It is rightfully

confirmed for an interleaver of finite, but large enough, depth. Under (A6-

a), the decoder computes the LAPPR ΛED,DEC(cn) on coded bit cn as

ΛED,DEC(cn) =

∑
c∈C :cn=1

∏nc
n=1 pΛE

I,DEC
(cn)|cn

(ΛEI,DEC(cn))∑
c∈C :cn=0

∏nc
n=1 pΛE

I,DEC
(cn)|cn

(ΛEI,DEC(cn))
. (2.16)

Finally the LEXTPR on coded bit cn can be computed as

ΛEE,DEC(cn) = ΛED,DEC(cn)− ΛEI,DEC(cn) (2.17)

This completes one iteration. The different steps are for LEXTPR based

iterative LMMSE-IC are described in Fig. 2.2.

2.3.2 LAPPR-based LMMSE-IC

For the sake of simplicity, some notation used in this section are similar to

those of the previous section, but refer to different mathematical objects.

2.3.2.1 Interference regeneration and cancellation

Prior to LMMSE estimation of the symbol sb;t,l, we compute the conditional

MMSE estimate of the interference, defined as y̆D
b;l\t = E

[
y
b;l
|{ΛD,LE}sb;l\sb;t,l

]
.

This computation is tractable by making two symplifying assumptions.
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Figure 2.2: LEXTPR-based iterative LMMSE-IC (adapted to STBICM with
convolutional code and Gray labeling)

A1-b The pdf psb;l,wb;l|{ΛD,LE}sb;l\sb;t,l

(
sb;l,wb;l

)
factorizes as

psb;l,wb;l|{ΛD,LE}sb;l\sb;t,l

(
sb;l,wb;l

)
=

P (sb;t,l)pwb;l
(wb;l)

∏
(t′,l′)6=(t,l) P (sb;t′,l′ |{ΛD,LE}sb;t′,l′ ).

(2.18)

A2-b The pmf P (sb;t′,l′ |{ΛD,LE}sb;t′,l′ ) in (2.18) is given by

P (sb;t′,l′ |{ΛD,LE}sb;t′,l′ ) ∝ e
∑
j µ
−1
ν,j(sb;t′,l′ )ΛD,LE(db;t′,l′,j).

As a matter of fact, the assumptions (A1-b) and (A2-b) never hold even for

an ideal interleaver of infinite depth. But we can still force them in all sub-

sequent derivations. Under (A1-b), the MMSE estimate of the interference

affecting the symbol sb;t,l is given by

ỹD
b;l\t = Hb(I(LSW+nτ )nt − ete

†
t)m

D
b;l (2.19)

where mD
b;l is the vector made of all estimatesmD

b;t′,l′ = E
[
sb;t′,l′ |{ΛD,LE}sb;t′,l′

]
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evaluated under (A2-b). After IC, the new observed vector is y
b;l
− ỹD

b;l\t.

2.3.2.2 LMMSE estimation – unconditional case

The optimization problem to solve can be formulated as follows: Find

s̆Db;t,l = f̆
D†

b;t (y
b;l
−y̆D

b;l\t) minimizing the unconditional MSE E
[
|s̆Db;t,l − sb;t,l|2

]
defined as

E
[
D
[
|s̆Db;t,l − sb;t,l|2|{ΛD,LE}sb;l\sb;t,l

]]
. (2.20)

The outer expectation in (2.20) renders the (biased) LMMSE filter time-

invariant given by f̆
D

b;t = Ξ̆
D−1

b;t ξ̆
D

b;t
where ξ̆

D

b;t
= E

[
ξ̆
D

b;t,l

]
with

ξ̆
D

b;t,l
= E

[
(y
b;l
− y̆D

b;l\t)s
∗
b;t,l|{ΛD,LE}sb;l\sb;t,l

]

and where Ξ̆
D
b;t = E

[
Ξ̆
D
b;t,l

]
with

Ξ̆
D
b;t,l = E

[
(y
b;l
− y̆D

b;l\t)(yb;l − y̆D
b;l\t)

†|{ΛD,LE}sb;l\sb;t,l
]
.

The computation of f̆
D

b;t is again intractable. However, under (A1-b), ξ̆
D

b;t

and Ξ̆
D
b;t become ξD

b;t
= hb;t = Hbet and ΞD

b;t = HbV
D
b;\tH

†
b+σ2

wILSWnr where

VD
b;\t is the unconditional symbol covariance matrix defined as

VD
b;\t = I(LSW+nτ ) ⊗ diag{vDb;1, . . . , vDb;t−1, 1, v

D
b;t+1, . . . , v

D
b;nt}

where ∀t′ 6= t, vDb;t′ = E
[
vDb;t′,l

]
with vDb;t′,l = E

[
|sb;t′,l −mD

b;t′,l|2|{ΛD,LE}sb;t′,l
]

evaluated under (A2-b). Using the matrix inversion lemma, we obtain the

filter

fDb;t =
1

1 + ηDb;t(1− vDb;t)
ΣD−1

b hb;t (2.21)

where ΣD
b = HbV

D
b H†b + σ2

wILSWnr and ηDb;t = h†b;tΣ
D−1

b hb;t with

VD
b = VD

b;\t − (1− vDb;t)ete
†
t (2.22)
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where vDb;t = E
[
vDb;t,l

]
with vDb;t,l = E

[
|sb;t,l −mD

b;t,l|2|{ΛD,LE}sb;t,l
]

evaluated

under (A2-b). The corresponding estimate ŝDb;t,l of sb;t,l can be expressed as

ŝDb;t,l = fD
†

b;t (y
b;l
− ỹD

b;l\t) = gDb;tsb;t,l + ζDb;t,l (2.23)

where gDb;t = fD
†

b;t hb;t and ζDb;t,l is the residual interference plus noise term.

Clearly, ζDb;t,l in (2.23) is zero-mean and uncorrelated with the useful signal

sb;t,l under (A1-b), i.e., E[sb;t,lζ
D∗
b;t,l] = 0. Under (A1-b) and (A2-b) the vari-

ance of ζDb;t,l is ςDb;t = gDb;t(1− gDb;t) which allows us to define the unconditional

SINR as

γDb;t =
gDb;t

1− gDb;t
=

ηDb;t

1− ηDb;tvDb;t
. (2.24)

A3-b Due to the particular structure of the MCS, the so-called equal vari-

ance assumption holds, which states that

VD
b = vDI(LSW+nτ )nt ,∀b. (2.25)

so that

γDb;t =
ηDb;t

1− ηDb;tvD
. (2.26)

The assumption (A3-b) never holds even for an ideal interleaver of infinite

depth, but forcing it induces no performance degradation.

A4-b Assuming sufficiently large values of L, vD can be replaced by its

empirical mean v̄D given by

v̄D =
1

nbntL

nb∑
b=1

nt∑
t=1

L∑
l=1

vDb;t,l. (2.27)

As a matter of fact, the assumption (A4-b) is part of the baseline assump-

tions of EXIT charts (ergodic regime) [37].
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2.3.2.3 Demapping and decoding

The estimate ŝDb;t,l is used as a decision statistic to compute the LEXTPR

on the qν bits involved in the labeling of sb;t,l.

A5-b In (2.23), the conditional pdf pŝDb;t,l|sb;t,l
(ŝDb;t,l) is circularly-symmetric

complex Gaussian distributed.

Under (A1-b),(A2-b) and (A5-b) the conditional pdf pŝDb;t,l|sb;t,l
(ŝDb;t,l)

is NC(gDb;tsb;t,l, ς
D
b;t). As a result, under (A1-b),(A2-b) and (A5-b), for the

special case of Gray labeling, the LEXTPR ΛDE,DEM (db;t,l,j) on labeling bit

db;t,l,j is expressed as

ΛDE,DEM (db;t,l,j) =

∑
s∈X

(1)
ν,j

e−|ŝ
D
b;t,l−g

D
b;ts|

2/ςDb;t∑
s∈X

(0)
ν,j

e−|ŝ
D
b;t,l−g

D
b;ts|2/ς

D
b;t

(2.28)

The set ΛD
E,DEM of all LEXTPR on labeling bits becomes after deinterleav-

ing the set ΛD
I,DEC of all log intrinsic probability ratios on coded bits used

as input for the decoder.

A6-b The pdf pΛD
I,DEC |c

(ΛD
I,DEC) factorizes as

pΛD
I,DEC |c

(ΛD
I,DEC) =

nc∏
n=1

pΛDI,DEC(cn)|cn(ΛDI,DEC(cn))

where ΛDI,DEC(cn) is the log intrinsic probability ratio on coded bit cn. The

assumption (A6-b) allows to simplify the decoding task. It is rightfully

confirmed for an interleaver of finite, but large enough, depth. Under (A6-

b), the decoder computes the LAPPR ΛDD,DEC(cn) on coded bit cn as

ΛDD,DEC(cn) =

∑
c∈C :cn=1

∏nc
n=1 pΛD

I,DEC
(cn)|cn

(ΛDI,DEC(cn))∑
c∈C :cn=0

∏nc
n=1 pΛD

I,DEC
(cn)|cn

(ΛDI,DEC(cn))
. (2.29)

Finally the LEXTPR on coded bit cn can be computed as

ΛDE,DEC(cn) = ΛDD,DEC(cn)− ΛDI,DEC(cn) (2.30)
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This completes one iteration. The different steps are for LAPPR based

iterative LMMSE-IC are described in Fig. 2.3
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Figure 2.3: LAPPR-based iterative LMMSE-IC (adapted to STBICM with
convolutional code and Gray labeling)

2.4 PHY-layer abstractions

2.4.1 LEXTPR-based iterative LMMSE-IC

An LMMSE-IC based turbo receiver turns out to be a complicated non-linear

dynamical system. Our objective is to analyze its evolution as iterations

progress. The proposed performance prediction method is semi-analytical

and relies on ten Brink’s stochastic approach of EXIT charts [37] particularly

useful in understanding and measuring the dynamics of turbo processing.

2.4.1.1 Transfer characteristics of LMMSE-IC

The LMMSE-IC part of the receiver ends up with nb×nt independent parallel

channels under (A6-a). Each of them is modeled as a discrete-input AWGN



CHAPTER 2 48

channel under (A5-a) whose SNR, given by

γEb;t =
ηEb;t

1− ηEb;tv̄E
(2.31)

under (A1-a)-(A4-a), turns out to be a function φt of b, t, Hb, σ
2
w and the

input variance v̄E . For each such channel, we can compute the average

mutual information (AMI) IELEb;t between the discrete input sb;t,l ∈Xν and

the output s̃Eb;t,l = sb;t,l + εEb;t,l with εEb;t,l ∼ NC(0, 1/γEb;t). The value of IELEb;t
depends on the single parameter γEb;t. Let ĪELE be the arithmetic mean of the

values {IELEb;t}, i.e.,

ĪELE =
1

nbnt

nb∑
b=1

nt∑
t=1

IELEb;t . (2.32)

The AMI IELEb;t = ψ(γEb;t) is a monotone increasing, thus invertible, function

of the SNR, and depends on the MCS. It is simulated off-line and stored in

a LUT.

2.4.1.2 Transfer characteristics of joint demapping and decoding

The functional module is MCS-dependent and comprises the following steps:

demapping, deinterleaving, BCJR decoder, reinterleaving, and computation

of the mean and variance of transmitted symbols based on LEXTPR on

coded bits (as described before). The generated observed symbols are the

output of a virtual AWGN channel with discrete input in Xν and SNR γ. For

an arbitrary labeling rule, bivariate transfer function is required to stochas-

tically characterize the joint demapper and decoder. With Gray labeling

however, log a priori probability ratios on labeling bits do not intervene in

the computation of the LEXTPR on the labeling bits (see (2.15)) and, hence,

need not be taken into account in the stochastic modeling of the demapper.

Therefore, simpler univariate transfer function is sufficient to stochastically

characterize the joint demapper and BCJR decoder. These functions are

the measured BLER Pe = FJDDν (γ), the variance v̄E = GEJDDν (γ). They

are computed off-line and stored in separate LUTs. It is necessary to em-

phasize that the LUTs are generated with channel use number fixed to ns,

thus are independent with the number of fading block. The algorithm used

to generate the different LUTs is summarized in Algorithm 1. Note that the
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Algorithm 1

1: Inputs ν, nt, ns
2: for γ = γmin to γmax do
3: for bk = 1 to nbk do
4: Channel interleaver random generation: π
5: Codeword generation: u→ c→ D→ S
6: Virtual AWGN Channel: Generate S̃ s.t. s̃1;t,l ∼ NC(s1;t,l, 1/γ)
7: Demapping: Compute {ΛEE,DEM (d1;t,l,j)} as (2.15) with ŝE1;t,l = s̃1;t,l

and gE1;t = 1

8: Deinterleaving: ΛE
E,DEM → ΛE

I,DEC

9: BCJR decoding: Compute {ΛED,DEC(cn)} and ΛEE,DEC(cn)} based

on {ΛEI,DEC(cn)}
10: Update counter block errors
11: Interleaving: ΛE

E,DEC → ΛA,LE

12: Compute {vE1;t,l} using {{ΛA,LE}s1;t,l
} → {v̄Ebk} as (2.14)

13: end for
14: Compute Pe and v̄E = 1

nbk

∑nbk
bk=1 v̄

E
bk

15: end for
16: Outputs Pe = FJDDν (γ), v̄E = GEJDDν (γ)

LUTs for BER can be generated in the same way.

2.4.1.3 Evolution analysis

It remains to relate the output ĪELE of the first transfer function (LMMSE-

IC) and the input SNR of the second transfer function (joint demapping

and decoding) at any iteration. This is done by assuming that ĪELE which

measures the information content of knowledge on coded modulated symbols

{sb;t,l}, averaged over all parallel AWGN channels, is equal to the informa-

tion content of knowledge on coded modulated symbols transmitted over a

single virtual discrete-input (with values in Xν) AWGN channel with effec-

tive SNR γ̄ELE given by

γ̄ELE = ψ−1(ĪELE) = ψ−1

(
1

nbnt

nb∑
b=1

nt∑
t=1

IELEb;t

)
. (2.33)

This technique inherited from EXIT charts is widely used in practice and

often referred to as MIESM [61]. In our framework, it relies on all the

defined assumptions (A1-a)-(A6-a) or, equivalently, on (A5-a) and (A6-a)
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for the first iteration. The variance v̄ = GEJDDν (γ̄ELE) is used in (2.12)

under (A4-a) for next iteration. Hence, the evolution of LEXTPR-based

iterative LMMSE-IC can be tracked through the single scalar parameter v̄E .

The different steps of PHY-layer abstraction for LEXTPR-based iterative

LMMSE-IC are described in Fig. 2.4
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Figure 2.4: PHY-layer abstraction for LEXTPR-based iterative LMMSE-IC

2.4.2 LAPPR-based iterative LMMSE-IC

To make things even more complicated, some assumptions are not valid

when it is based on LAPPR on coded bits. Our objective is to analyze its

evolution as iterations progress.

2.4.2.1 Transfer characteristics of LMMSE-IC

The LMMSE-IC part of the receiver ends up with nb×nt independent parallel

channels under (A6-b). Each of them is modeled as a discrete-input AWGN

channel under (A5-b) whose SNR, given by

γDb;t =
ηDb;t

1− ηDb;tv̄D
(2.34)

under (A1-b)-(A4-b), turns out to be a function φt of b, t, Hb, σ
2
w and the

input variance v̄D. For each such channel, we can compute the average

mutual information (AMI) IDLEb;t between the discrete input sb;t,l ∈Xν and

the output s̃Db;t,l = sb;t,l + εDb;t,l with εDb;t,l ∼ NC(0, 1/γDb;t). The value of IDLEb;t
depends on the single parameter γDb;t. Let ĪDLE be the arithmetic mean of the
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values {IDLEb;t}, i.e.,

ĪDLE =
1

nbnt

nb∑
b=1

nt∑
t=1

IDLEb;t . (2.35)

The AMI IDLEb;t = ψ(γDb;t) is a monotone increasing, thus invertible, function

of the SNR, and depends on the MCS. It is simulated off-line and stored in

a LUT.

2.4.2.2 Transfer characteristics of joint demapping and decoding

The functional module is MCS-dependent and comprises the following steps:

demapping, deinterleaving, BCJR decoder, reinterleaving, and computation

of the mean and variance of transmitted symbols based on LAPPR on coded

bits(as described before). The generated observed symbols are the output

of a virtual AWGN channel with discrete input in Xν and SNR γ. For an

arbitrary labeling rule, trivariate transfer function is required to stochas-

tically characterize the joint demapper and decoder. With Gray labeling

however, log a priori probability ratios on labeling bits do not intervene in

the computation of the LEXTPR on the labeling bits (see (2.28)) and, hence,

need not be taken into account in the stochastic modeling of the demapper.

Therefore, simpler univariate transfer function is sufficient to stochastically

characterize the joint demapper and BCJR decoder. These functions are

the measured BLER Pe = FJDDν (γ), the variance v̄D = GDJDDν (γ). They

are computed off-line and stored in separate LUTs. It is necessary to em-

phasize that the LUTs are generated with channel use number fixed to ns,

thus are independent with the number of fading block. The algorithm used

to generate the different LUTs is summarized in Algorithm 2. Note that the

LUTs for BER can be generated in the same way.

2.4.2.3 Evolution analysis

It remains to relate the output ĪDLE of the first transfer function (LMMSE-

IC) and the input SNR of the second transfer function (joint demapping

and decoding) at any iteration. This is done by assuming that ĪDLE which

measures the information content of knowledge on coded modulated symbols

{sb;t,l}, averaged over all parallel AWGN channels, is equal to the informa-

tion content of knowledge on coded modulated symbols transmitted over a

single virtual discrete-input (with values in Xν) AWGN channel with effec-
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Algorithm 2

1: Inputs ν, nt, ns
2: for γ = γmin to γmax do
3: for bk = 1 to nbk do
4: Channel interleaver random generation: π
5: Codeword generation: u→ c→ D→ S
6: Virtual AWGN Channel: Generate S̃ s.t. s̃1;t,l ∼ NC(s1;t,l, 1/γ)
7: Demapping: Compute {ΛDE,DEM (d1;t,l,j)} as (2.15) with ŝD1;t,l = s̃1;t,l

and gD1;t = 1

8: Deinterleaving: ΛD
E,DEM → ΛD

I,DEC

9: BCJR decoding: Compute {ΛDD,DEC(cn)} and ΛDE,DEC(cn)} based

on {ΛDI,DEC(cn)}
10: Update counter block errors
11: Interleaving: ΛD

E,DEC → ΛD,LE

12: Compute {vD1;t,l} using {{ΛD,LE}s1;t,l
} → {v̄Dbk} as (2.27)

13: end for
14: Compute Pe and v̄D = 1

nbk

∑nbk
bk=1 v̄

D
bk

15: end for
16: Outputs Pe = FJDDν (γ), v̄D = GDJDDν (γ)

tive SNR γ̄DLE given by

γ̄DLE = ψ−1(ĪDLE) = ψ−1

(
1

nbnt

nb∑
b=1

nt∑
t=1

IDLEb;t

)
. (2.36)

This technique inherited from EXIT charts is widely used in practice and

often referred to as MIESM [61]. In our framework, it relies on all the

defined assumptions (A1-b)-(A6-b) or, equivalently, on (A5-b) and (A6-b)

for the first iteration. The variance v̄ = GDJDDν (γ̄DLE) is used in (2.25) under

(A4-b) for next iteration. Hence, the evolution of LAPPR-based iterative

LMMSE-IC can be tracked through the single scalar parameter v̄D.

2.4.2.4 Calibration

A major drawback of the performance prediction method for LAPPR-based

iterative LMMSE-IC is that the assumptions (A1-b), (A2-b) and (A3-b) do

not hold for LAPPR-based iterative LMMSE-IC. As a consequence, not only

the filters {fDb;t} but also the SINRs {γDb;t} given by (2.24) are approximated.

The true SINRs, if we could have to access to them, would be smaller. This
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fact explains why the prediction performance method expounded in [66]

yields too optimistic results compared to the true simulated performance.

To solve this problem, we proposed a simple, yet effective, calibration pro-

cedure whose principle is to adjust v̄ with a real-valued factor βν ≥ 1. More

specifically, v̄ is replaced by Cν(v̄) = min(βν v̄, 1), which has the effect to

artificially reduce the SINRs that are used in the performance prediction

method. We searched the optimal βν minimizing the error between the sim-

ulated BLER (or BER) and the calibrated predicted BLER (or BER)over a

large number of channel outcomes at each iteration i > 1 for the BLER range

of interest [0.9, 0.01]. The algorithm for generating the link level simulations

for calibration is summarized in Algorithm 3.

Algorithm 3 Algorithm for generating the link level simulations for cali-
bration
1: Inputs ν, nt, nr, nb, nτ ns, ∆γ, nit
2: for ch = 1 to nch do
3: Generate {Hb;τ}ch
4: for γ = γmin to γmax do
5: for bk = 1 to nbk do
6: Channel interleaver random generation
7: Codeword random generation
8: AWGN random generation
9: Transmission

10: for i = 1 to nit do
11: Perform LAPPR-based iterative LMMSE-IC receiver
12: update counter block errors
13: end for
14: end for
15: Compute BLERsimu({Hb;τ}ch, γ, i, ν),∀i = 1, . . . , nit
16: γ = γ + ∆γ
17: end for
18: Store {Hb;τ}ch, γ and {BLERsimu({Hb;τ}ch, γ, i, ν)},∀i = 1, . . . , nit
19: end for

Then the instantaneous predicted BLER are obtained with calibration,

i.e., {BLERpred({Hb;τ}ch, γ, i, ν, β)},∀i = 1, . . . , nit, ∀β = βmin, . . . , βmax.

A recapitulative diagram of the performance prediction method with cali-

bration is depicted in Fig. 2.5.
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Figure 2.5: PHY-layer abstraction for LAPPR-based iterative LMMSE-IC

The optimal β denoted βν is found as follows:

βν = arg min
β

nch∑
ch=1

γmax∑
γ=γmin

nit∑
i=2

D (BLERsimu({Hb;τ}ch, γ, i, ν), BLERpred({Hb;τ}ch, γ, i, ν, β))

(2.37)

where nit is the number of iterations and D(x, y) = | log10(x)− log10(y)|2.

Exhaustive simulations revealed that βν depends on the MCS but does

not vary significantly w.r.t. the number of transmit and receive antennas as

well as the channel characteristics.

2.5 Numerical results

We consider an STBICM with the following parameters: rate-1/2 non-

recursive non-systematic binary convolutional encoder as mother code with

generator polynomials (171, 133)8 and Quadrature Amplitude Modulation

(QAM) constellation with Gray labeling. The number of channel use ns =

288.

2.5.1 LMMSE receiver

The mismatches between predicted and simulated performance will accumu-

late following iterations. Accurate prediction at one iteration help obtain

accurate prediction for the next iteration. In [61], the MIESM is shown to be

the most robust and accurate amongst all candidate techniques. The simu-

lation results in [61] are done for LMMSE receiver with interleaver re-drawn

randomly and alters from block to block. However, pure random interleaver

is not optimal for a STBICM transmission. The optimal interleaver should
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be designed to be diagonal-random: nbntqν nearby coded bits are separated

into nbntqν parallel virtual streams, which exploits all the diversity. The

first questions comes: whether MIESM technique is sensible to the change

of interleaver structure?

For this purpose, we evaluate the instantaneous predicted and simu-

lated BER/BLER over 200 channel outcomes. For each channel outcome,

the Monte Carlo simulation is stopped after 100 block errors (a block er-

ror is declared when at least one bit is wrongly detected). Pure-random

or diagonal-random interleaver is drawn and alters from block to block. A

4 × 4 1-block fading channel is chosen for the test. Fig. 2.6 and Fig. 2.7

present the MIESM technique based instantaneous predicted vs. simulated

instantaneous BER/BLER under diagonal structured or pure random inter-

leaver with Quadrature Phase-Shift Keying (QPSK) - 1/2 and 16QAM-1/2,

respectively. These two figures show that MIESM technique based predicted

performance match very well the simulated performance when pure random

interleaver is used (as in [61]), however are, in most of the cases, pessimist

when diagonal random interleaver is used. The solution to help MIESM

predict well the performance with diagonal-random interleaver seems not

exist thus pure random interleaver will be kept in what follows.

2.5.2 Iterative LMMSE-IC

In what follows, the number of iterations is nit = 4. We consider an STBICM

with the following parameters: rate-1/2 non-recursive non-systematic binary

convolutional encoder with generator polynomials (171, 133)8 and 16QAM

constellation with Gray labeling. Coded bits are mapped to 1152 symbols.

For each iteration, the instantaneous simulated BER vs. the predicted ef-

fective SINR over almost 200 channel outcomes is plotted in Fig. 2.8, Fig.

2.10 and Fig. 2.12 (scatter diagrams) for a 4 × 4 MIMO 1-block fading

Rayleigh fading channel. The pure random interleaver is altered randomly

from block to block. For the sake of readability, we only plot the channel

outcomes that reach the BLER region of interest (between 1 and 10−2) at

the fourth iteration. For each channel outcome, convergence of Monte-Carlo

simulations is obtained for 100 block errors. To validate the proposed perfor-

mance prediction methods, we also check that the averaged simulated BLER

(over the joint statistics of the MIMO block fading channel and the AWGN)

on a 4 × 4 MIMO 2-block Rayleigh fading channel, is well captured. We
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stop the Monte-Carlo simulations after 800 block errors. The Genie-Aided

(GA) lower bound corresponds to the BLER performance when all sources

of interference are perfectly canceled.

Firstly, we investigate the LEXTPR-based iterative LMMSE-IC algo-

rithm. Fig. 2.8 presents the instantaneous simulated BER vs. the predicted

effective SNR without calibration. The plotted plain-line curve represents

the predicted BER (which is actually the BER LUT). Obvisouly, the perfor-

mance prediction method does not need calibration. Indeed, the approxima-

tions (A1-a) - (A6-a) are perfectly relevant and valid in this case (i.e., even

for finite N = 4608). Fig. 2.9 confirms that the predicted averaged BLER

performance without calibration matches exactly the simulated BLER per-

formance.

We then move to LAPPR-based itarative LMMSE-IC, whose averaged

BLER performance is 1.5 dB better than its LEXTPR-based counterpart at

BLER 10−2 (see. Fig 2.13). Fig. 2.10 depicts the instantaneous simulated

BER vs. the predicted effective SNR without calibration. Clearly, the pre-

dicted BER is too optimistic for most of the channel outcomes. Calibration

is needed. For this specific MCS, we found βopt = 2.6 as shown in Fig. 2.11.

Fig. 2.12 plots the instantaneous simulated BER vs. the predicted effective

SNR with calibration. The accuracy of the performance prediction is greatly

improved. This is also visible on Fig. 2.13.

2.6 Conclusion

In this part, An effort is made to analyze the SINR evolution of LEXTPR-

based LMMSE-IC and LAPPR-based LMMSE-IC algorithms under perfect

CSIR in convolutionally coded MIMO systems. It has been numerically

demonstrated that the performance prediction method described in [71] [66]

is more accurate for LEXTPR-based LMMSE-IC than for LAPPR-based

LMMSE-IC. Indeed, while the underlying assumptions made in the first case

hold in practice, some of them prove to be approximate (and optimistic) in

the second case. To solve this issue, an improved performance prediction

method has been proposed for LAPPR-based LMMSE-IC, based on a simple

calibration procedure whose efficiency has been validated by Monte-Carlo

simulations.
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Figure 2.6: Diagonal random interleaver vs. pure random interleaver: in-
stantaneous MIESM based predicted vs. simulated BER/BLER over 4 × 4
1-block fading channel with QPSK-1/2
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Figure 2.8: Instantaneous simulated BER vs. predicted effective SNR
without calibration for LEXTPR-based iterative LMMSE-IC algorithm and
16QAM-1/2
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Figure 2.9: Averaged simulated BLER vs. predicted BLER without calibra-
tion for LEXTPR-based iterative LMMSE-IC algorithm and 16QAM-1/2
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Figure 2.10: Instantaneous simulated BER vs. predicted effective SNR
without calibration for LAPPR-based iterative LMMSE-IC algorithm and
16QAM-1/2
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Figure 2.12: Instantaneous simulated BER vs. predicted effective SNR with
calibration for LAPPR-based iterative LMMSE-IC algorithm and 16QAM-
1/2
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Chapter 3

Extension to imperfect CSIR
and iterative semi-blind
channel estimation

3.1 Introduction

The PHY-ayer abstractions for iterative LMMSE-IC receivers under im-

perfect CSIR in convolutionally coded MIMO systems is the topic of this

chapter. It is important to stress that adopting LEXTPR on coded bits

at the output of soft-in soft-out decoder as a priori information for channel

re-estimation, soft symbol-to-bit demapping and soft interference genera-

tion/cancellation is part of the receiver design basic assumption. Therefore,

the notations are largely simplified. The generalization to LAPPR on coded

bits based case is quite straightforward.

Under imperfect CSIR, if the number of pilot symbols is sufficient to

ensure close to perfect CSI, then it is sufficient to adopt the so-called mis-

matched assumption which simply postulates that the initial pilot assisted

channel estimate is noiseless [75–77]. In that case, performance prediction

methods derived under the assumption of perfect CSIR can be used in prac-

tice. However, if the number of pilot symbols are reduced conditional on

some advanced semi-blind channel estimation scheme at the receiver side,

the mismatched assumption is not valid anymore. Indeed, it is quite known

This chapter is partially presented in the paper accepted to IEEE VTC Spring’2012
and the journal paper in preparation for IEEE Signal Processing
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that performing detection and channel estimation within a same iteration

(using channel decoding a priori) allows reducing drastically the number of

reference signals for a given performance, see, e.g., [78–81]. Therefore, new

prediction methods should be derived conditional on the available a priori

information only, i.e., the so-called matched assumption [75–77], which are

the initial pilot assisted channel estimate and the long-term CDI, (such as

the channel and noise probability distribution functions).

The scope of application of this method in terms of semi-blind channel

estimation algorithms as well as communication context is extremely large

[66]. As a result, for the sake of simplicity and as a first step, only SU-MIMO

frequency selective transmission is considered, modelled by a MIMO block

fading AWGN channel, and semi-blind LMMSE channel re-estimation. The

space time modulation and coding scheme is chosen as a STBICM without

loss of generality. Indeed, the proposed double loop receiver architecture

could be applied to any Space Time Codes provided that they rely on a bit or

symbol interleaver and can be easily extended to a MU-MIMO context [66].

3.2 System model

The transmission occurs on a MIMO block Rayleigh fading AWGN channel

with nt transmit antenna, nr receive antenna and nb independent fading

blocks. The total number ns of channel use for transmission is constant.

Thus each fading block is experienced by Lds = ns/nb channel uses. A

STBICM, indexed by ν, is used at the transmitter, specified by a linear

binary convolutional Cν of rate rν , a complex constellation Xν ⊂ C of

cardinality 2qν with energy equal to σ2
ds and a memoryless labeling rule µν .

We define the rate of the MCS as ρν = rνqν (bits/complex dimension).

The encoding process for MCS is detailed. The vector of binary data (or

information bits) u enters an encoder ϕν whose output is the codeword

c ∈ Cν of length nν,c = nsntqν . The codeword bits are interleaved by a

random space time interleaver πν and reshaped as a integer matrice {Db}nbb=1

with Db ∈ Znt×Lds2qν . Each integer entry can be decomposed into a sequence

of qν bits. A Gray mapping µν transforms each matrix Db into a complex

matrix Sb ∈ X nt×Lds
ν . X

(0)
ν,j and X

(1)
ν,j denote the subsets of points in Xν

whose labels have a 0 or a 1 at position j. With a slight abuse of notation,

let {db;t,l,j}qνj=1 denote the set of bits labeling the symbol sb;t,l ∈ Xν . Let

also µ−1
ν,j (s) be the value of the j-th bit in the labeling of any point s ∈Xν .
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Pilot symbols are transmitted before the data symbols whose matrix form

is given as Aps
b ∈ {−σps, σps}

nt×Lps . The matrix Aps
b is the same for each

fading block and is built from a Constant Amplitude Zero AutoCorrelation

(CAZAC) sequence u ∈ {0, 1}1×Lps [95] such that at = σps
(
2T(t−1) (u)− 1

)
where Ti(.) denotes the right circular shift operator of i elements. The

transmitter described above is depicted in Fig. 3.1.

Encoder 

QAM  
bit/symbol  

Map. 

Insert 
 pilots …

 

u c ; , ,b t l jd ; ,b t ls
{ }bs

QAM  
bit/symbol  

Map. 

QAM  
bit/symbol  

Map. 

Figure 3.1: Transmitter model (STBICM with pilot symbol insertion)

It yields the receive base-band model :

{
Yps
b = HbA

ps
b + Wps

b

Yb = HbSb + Wb
(3.1)

where

• Yps
b =

[
ypsb;1, · · · ,y

ps
b;Lps

]
∈ Cnr×Lps with ypsb;l = [ypsb;1,l, · · · , y

ps
b;nr,l

]> are

the receive samples related to the pilot symbols

• Yb = [yb;1, · · · ,yb;Lds ] ∈ Cnr×Lds with yb;l = [yb;1,l, · · · , yb;nr,l]> are

the receive samples related to the data symbols

• Wps
b =

[
wps
b;1, · · · ,w

ps
b;Lps

]
∈ Cnr×Lps with wps

b;l = [wpsb;1,l, · · · , w
ps
b;nr,l

]>

are the noise samples associated to the pilot symbols

• Wb = [wb;1, · · · ,wb;Lds ] ∈ Cnr×Lds with wb;l = [wb;1,l, · · · , wb;nr,l]>

are the noise samples associated to the data symbols

• The b-th fading block channel gain Hb ∈ Cnr×nt

A1 The entries of {wb;l} are i.i.d and follows the pdf NC(0, N0). The entries

of the channel gain {Hb} are i.i.d and follows the pdf NC(0, σ2
h).
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3.3 Double loop receiver architecture

The proposed double loop receiver architecture is described in Fig. 3.2.

{ }dsbY
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1;2,ALE

;, n nb t
A LE
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- 
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CHANNEL 
  

ESTIMATION
 

{ }psbY

ST 
 π 

ST 
 π 

Figure 3.2: LEXTPR-based double loop receiver architecture with semi-
blind channel estimation (adapted to STBICM with convolutional code and
Gray labeling)

Let Ĥ
(0)
b denote the initial pilot assisted channel estimate. The funda-

mentals of iterative LMMSE-IC detection and LMMSE channel (re)estimation

are recalled considering iteration i ≥ 1 in progress. Based on the statistics

soft symbol mean {m(i−1)
b;t′,l = E

[
sb;t′,l|P (sb;t′,l)

]
}, symbol variance {v(i−1)

b;t′,l =

E
[
|sb;t′,l −mb;t′,l|2|P (sb;t′,l)

]
} (see Section 3.4) and previous channel estima-

tion {Ĥ(i−1)
b } (see Section 3.5) computed at iteration i−1, an estimate ỹ

(i)
b;l\t

of the interference on symbol sb;t,l is first derived (see Section 3.6) and is

subtracted to yb;l. A unconditional linear estimate ŝ
(i)
b;t,l = f †b;t(yb;l − ỹ

(i)
b;l\t)

is obtained based on the linear filtering by fb;t. Finally, soft symbol-to-

bit demapping, deinterleaving, soft-in soft-out decoding, interleaving and

soft bit-to-symbol mapping are performed to obtain new estimated {m(i)
b;t′,l},

{v(i)
b;t′,l} which are used subsequently to derive Ĥ

(i)
b for next iteration. This

concludes one iteration.
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3.4 Soft bit-to-symbol mapping

Let Λ
(i−1)
E,DEC = {Λ(i−1)

E,DEC(cν,n)} denote the set of all LEXTPR on coded bits

generated by soft-in soft-out decoder which is interleaved to become the set

Λ
(i−1)
A,LE = {Λ(i−1)

A,LE(db;t′,l,j)} of all log “a priori” probability ratios on label-

ing bits used for soft symbol mean and variance computation. For i = 1,

since no a priori information exist at the first iteration of detection, we set

{Λ(0)
E,DEC(cn) = 0}, {Λ(0)

A,LE(db;t′,l,j) = 0} and {m(0)
b;t′,l = 0}, {v(0)

b;t′,l = σ2
ds}.

Let {Λ(i−1)
A,LE}sb;t,l and {Λ(i−1)

A,LE}sb;l be the set of all LEXTPR on coded bits in-

volved in the labeling of sb;t,l and sb;l, respectively. Let also {Λ(i−1)
A,LE}sb;l\sb;t,l

be the set of all LEXTPR on coded bits involved in the labeling of sb;l except

the coded bits involved in the labeling of sb;t,l.

Prior to LMMSE estimation of the symbol sb;t,l, we compute the condi-

tional MMSE estimate of the interference, defined as y̌b;l\t = E
[
yb;l|{ΛD,LE}sb;l\sb;t,l

]
.

These computations are tractable based on two basic assumptions.

A2 The pdf p
sb;l,wb;l|{Λ

(i−1)
A,LE}sb;l\sb;t,l

(sb;l,wb;l) factorizes as

p
sb;l,wb;l|{Λ

(i−1)
A,LE}sb;l\sb;t,l

(sb;l,wb;l) = pwb;l
(wb;l)P (sb;t,l)

∏
t′ 6=t P (sb;t′,l|{Λ

(i−1)
A,LE}sb;t′,l)

(3.2)

A3 The pmf P (sb;t′,l|{Λ
(i−1)
A,LE}sb;t′,l) in (4.2) is given by

P (sb;t′,l|{Λ
(i−1)
A,LE}sb;t′,l) ∝ e

∑
j µ
−1
ν,j(sb;t′,l)Λ

(i−1)
A,LE(db;t′,l,j) (3.3)

As a matter of fact, assumptions (A2) and (A3) hold with a sufficient large

interleave length in practice for LEXTPR on coded bits. Based on these

two assumptions, we can compute the ∀t′ = 1, . . . , nt m
(i−1)
b;t′,l = E

[
sb;t′,l|{Λ

(i−1)
A,LE}sb;t′,l

]
v

(i−1)
b;t′,l = E

[
|mb;t′,l − sb;t′,l|2|{Λ

(i−1)
A,LE}sb;t′,l

]
In order to reduce the complexity, matrix inversion at each time l can be

avoided by adopting the unconditional detection approach which is based

on a unconditional covariance matrix given as

V
(i−1)
b = diag{v(i−1)

b;1 , . . . , v
(i−1)
b;nt
}
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where v
(i−1)
b;t′ = E

[
v

(i−1)
b;t′,l

]
.

A4 Due to the particular structure of the MCS, the so-called equal variance

assumption holds, which states that each variance v
(i−1)
b;t′ is equal to v(i−1)

defiened as

V
(i−1)
b = v(i−1)Int ,∀b. (3.4)

The assumption (A4) holds given an interleaver of sufficient large depth,

and forcing it induces no performance degration.

A5 Furthermore, assuming sufficiently large interleaver size, we can replace

v(i−1) by its empirical mean ṽ(i−1) defined as

ṽ(i−1) =
1

Ldsnbnt

Lds∑
l=1

nb∑
b=1

nt∑
t′=1

v
(i−1)
b;t′,l (3.5)

This yields the final simplified symbol covariance matrix Ṽ(i−1) given as

Ṽ(i−1) = ṽ(i−1)Int (3.6)

As a matter of fact, the assumption (A5) is part of the baseline assumptions

of EXIT charts (ergodic regime) [35]. For the sake of simplicity, we drop

the index b when it is convenient because the derivation is the same for each

fading block b. In a slight abuse of notation, H and Ĥ stand either for the

channel state for a given block b or for the set of channel states for all blocks

b = 1, · · · , nb depending on the context.

3.5 Channel estimation and a posteriori CDI

3.5.1 Initial pilot assisted channel estimation

The initial pilot assisted channel estimate Ĥ(0) corresponds to the Maximum

Likelihood (or Least Square) unbiased channel estimate

Ĥ(0) = YpsA
†(AA†)−1 (3.7)



CHAPTER 3 67

which yields the error model

Ĥ(0) = g(0)H + Ψ(0) (3.8)

with g(0) = 1. By choosing a CAZAC sequence of length Lps ≥ 2nt, it yields

AA† = Lpsσ
2
psInt (see [95]). Thus, it comes that the entries of Ψ(0) are i.i.d,

circularly-symmetric Gaussian, with zero mean and variance σ2
ψ(0) = N0

Lpsσ2
ps

.

3.5.2 Joint pilot and data assisted channel estimation

Conditional on the knowledge of the soft estimates s̃
(i−1)
l at disposal at the

end of the previous iteration (i ≥ 2, see Fig. 3.2)

{
Yps = HAps + Wps

Y = HS̃(i−1) +4W̃(i−1) (3.9)

where4W̃(i−1) = [4w
(i−1)
1 , · · · ,4w

(i−1)
Lds

] and S̃(i−1) = [m̃
(i−1)
1 , · · · , m̃(i−1)

Lds
].

Note that

4w
(i−1)
l = H(sl − m̃

(i−1)
l ) + wl. (3.10)

The covariance matrix of 4w
(i−1)
l conditional on ṽ(i−1) is

E
H,Λ

(i−1)
A,LE ,w|ṽ(i−1)

{
4w

(i−1)
l 4w

(i−1)†

l

}
= (ntσ

2
hṽ

(i−1)+N0)Inr = (4N (i−1)
0 +N0)Inr

(3.11)

where 4N (i−1)
0 = ntσ

2
hṽ

(i−1). By stacking the receive samples associated to

data and pilot symbols, we further extend the matrix model to

Y = HS
(i−1)

+ W
(i−1)

(3.12)

where Y = [Yps,Y], S
(i−1)

=
[
Aps, S̃(i−1)

]
and W

(i−1)
=
[
Wps,4W̃(i−1)

]
.

Since the rows of Y are uncorrelated, the LMMSE channel estimation can

be carried out independently on each row hr. The LMMSE filter F(i−1) ∈
C(Lps+Lds)×nt that aims at minimizing Eh

r
,w{||y

rF(i−1) − hr||2} is given by

F(i−1) = Eh
r
,w{y

r†yr}
−1

Eh
r
,w{y

r†hr} (3.13)
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or, equivalently, F(i−1) = EH,w{Y
†
Y}
−1

EH,w{Y
†
H}. Averaging over the

channel statistics and applying the Matrix Inversion Lemma, we obtain

F(i−1) = (nrσ
2
h)Σ

(i−1)−1

w S
(i−1)†

(
S

(i−1)
(nrσ

2
h)Σ

(i−1)−1

w S
(i−1)†

+ Int

)−1

(3.14)

where

Σ
(i−1)
w = E{W(i−1)†

W
(i−1)} = diag

(
nrN0ILps , nr(N0 +4N (i−1)

0 )ILds

)
.

(3.15)

After some lengthy derivation given in Appendix A, the resulting (biased)

LMMSE channel estimation error model can be expressed as

Ĥ(i−1) = g(i−1)H + Ψ(i−1) (3.16)

where

g(i−1) =
Lpsσ

2
ps + Lds(σ

2
ds − ṽ(i−1)) N0

4N(i−1)
0 +N0

Lpsσ2
ps + Lds(σ

2
ds − ṽ(i−1)) N0

4N(i−1)
0 +N0

+ N0

σ2
h

(3.17)

and the entries of Ψ(i−1) has zero mean and variance σ2
ψ(i−1) given as

σ2
ψ(i−1) = N0

Lpsσ
2
ps + Lds(σ

2
ds − ṽ(i−1)) N0

4N(i−1)
0 +N0(

Lpsσ2
ps + Lds(σ

2
ds − ṽ(i−1)) N0

4N(i−1)
0 +N0

+ N0

σ2
h

)2 . (3.18)

A6 In (3.16), The entries of Ψ(i−1) are i.i.d and follows the pdfNC(0, σ2
ψ(i−1))

with σ2
ψ(i−1) given in (3.18).

Assumption A6 over Ψ(i−1) contains two aspects: Firstly, single σ2
ψ(i−1)

can evaluate its variance which comes from assumption A2, A3 A4 and A5.

Secondly, its Gaussian distribution is more valid when the soft symbol es-

timates are reliable such that the variance 4N (i−1)
0 = ntσ

2
hṽ

(i−1) < N0 or

equivalently, ṽ(i−1) < N0/ntσ
2
h. Clearly, the MSE for each channel compo-

nent is

E{|hr,t − ĥ(i−1)
r,t |2} =

N0

Lpsσ2
ps + Lds(σ

2
ds − ṽ(i−1)) N0

4N(i−1)
0 +N0

+ N0

σ2
h

. (3.19)
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Note that this derivation is new. The closest state of the art can be found

in [80], however, its MSE analyses are always based on an a posteriori com-

bining of the pilot assisted channel estimate and data aided estimate [80, eq.

(12)] while eq. (3.12) allows a joint pilot and data semi-blind LMMSE ap-

proach.

3.5.3 A posteriori CDI

From Assumption A1 and Assumption A6, it is clear that H and Ĥ(i−1)

are jointly Gaussian conditional on ṽ(i−1) . Therefore, the distribution

p(H|Ĥ(i−1)) can be easily obtained [75] [76]. It yields, ∀i ≥ 1,

H = α(i−1)Ĥ(i−1) +4H(i−1) (3.20)

where

α(i−1) =
g(i−1)σ2

h

g(i−1)2σ2
h + σ2

ψ(i−1)

(3.21)

and the entries of 4H(i−1) are i.i.d, circularly-symmetric Gaussian, with

zero mean and variance σ2
4H(i−1) given as

σ2
4H(i−1) =

σ2
hσ

2
ψ(i−1)

g(i−1)2σ2
h + σ2

ψ(i−1)

. (3.22)

3.6 Linear IC and data detection

After the channel estimation step, available CSI are: channel estimate (3.8),

(3.16) and a posteriori CDI (3.20). The fact that the real channel is never

known and the receiver needs to detect symbols implies that we should see

the channel observations as the output of a feasible base-band model other

than non-feasible base-band model (3.1). Depending on using how much

available CSI, two choices exist: a matched receiver base-band model using

both channel estimate and conditional channel distribution or a mismatched

receiver base-band model using only channel estimate.
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3.6.1 Receive base-band model conditional on channel esti-

mation

3.6.1.1 Matched receive base-band model

If we use both channel estimate and conditional CDI, an interesting matched

receive base-band model can be obtained ∀i ≥ 1, as [75–77]

yl = Hsl + wl

= α(i−1)Ĥ(i−1)sl +4H(i−1)sl + wl

= H̃(i−1)sl + ζ
(i−1)
l (3.23)

where H̃(i−1) = α(i−1)Ĥ(i−1), ζ
(i−1)
l = 4H(i−1)sl + wl. The covariance ma-

trix of ζ
(i−1)
l is

Σ
(i−1)
ζ = E

H|Ĥ(i−1)

{
ζ

(i−1)
l ζ

(i−1)†

l

}
= N0(1 + ε(i−1))Inr (3.24)

with, using (3.17), (3.18) and (3.22),

ε(i−1) =
ntσ

2
ds

Lpsσ2
ps + Lds(σ

2
ds − ṽ(i−1)) N0

ntσ2
hṽ

(i−1)+N0
+ N0

σ2
h

. (3.25)

Note that in [75, Appendix I] an alternative derivation is proposed relying

on the joint Gaussianity of yds,l and Ĥ(i−1). From (3.23), IC make sense now

without the knowledge of H and the interference ỹ
(i)
l\t over st,l with matched

receive base-band model is generated as

ỹ
(i)
l\t = H̃(i−1)(m̃

(i−1)
l −m(i−1)

t,l et) (3.26)

with et = [0, · · · , 1 · · · , 0]> which has a 1 in position t.
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3.6.1.2 Mismatched receive base-band model

A further simplified mismatched receive base-band model uses only channel

estimate by assuming Ĥ(i−1) = H [?] which yields

yl = Ĥ(i−1)sl + wl (3.27)

From (3.27), the interference ỹ
(i)
l\t over st,l with mismatched receive base-

band model is generated as

ỹ
(i)
l\t = Ĥ(i−1)(m̃

(i−1)
l −m(i−1)

t,l et) (3.28)

3.6.2 Linear-IC detection error model

IC and linear filtering by f
(i)
t ∈ Cnr×1 make sense now without the knowledge

of H. Indeed, it yields the symbol estimates

ŝ
(i)
t,l = f

(i)†

t (yl − ỹ
(i)
l\t) (3.29)

Working with matched receive base-band model (3.23) yields matched SINR

model and working with feasible mismatched receive base-band model (3.27)

yields mismatched SINR model.

3.6.2.1 Matched SINR model

Working with feasible model (3.23), (3.29) becomes

ŝ
(i)
t,l = f

(i)†

t h̃
(i−1)
t st,l + ñ

(i)
t,l . (3.30)

where ñ
(i)
t,l = f

(i)†

t [H̃
(i−1)
\t (sl−m̃

(i−1)
l )+ζ

(i−1)
ds,l ] with H̃

(i−1)
\t = H̃(i−1)(I−ete

†
t).

We define the matched SINR γ̃
(i)
t (f

(i)
t ) as follows

γ̃
(i)
t (f

(i)
t ) =

∣∣∣f (i)†

t h̃
(i−1)
t

∣∣∣2 σ2
ds

E
H,s,w|H̃(i−1),ṽ(i−1)

{
|ñ(i)
t,l |2

} =

∣∣∣f (i)†

t h̃
(i−1)
t

∣∣∣2 σ2
ds

σ2

ñ
(i)
t,l

. (3.31)
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The denominator is now averaged over H conditional on H̃(i−1) and is given

by

σ2

ñ
(i)
t,l

= f
(i)†

t

{
ṽ(i−1)H̃

(i−1)
\t H̃

(i−1)†

\t + Σ
(i−1)
ζ

}
f

(i)
t (3.32)

where Σ
(i−1)
ζ is given in (3.24).

3.6.2.2 Mismatched SINR model

Working with feasible model (3.27), (3.29) becomes

ŝ
(i)
t,l = f

(i)†

t ĥ
(i−1)
t st,l + n̂

(i)
t,l . (3.33)

where n̂
(i)
t,l = f

(i)†

t [Ĥ
(i−1)
\t (sl − m̃

(i−1)
l ) + wl], Ĥ

(i−1)
\t = Ĥ(i−1)(I− ete

†
t). The

mismatched SINR γ̂
(i)
t (f

(i)
t ) is given as

γ̂
(i)
t (f

(i)
t ) =

∣∣∣f (i)†

t ĥ
(i−1)
t

∣∣∣2 σ2
ds

E
s,w|Ĥ(i−1),ṽ(i−1)

{
|n̂(i)
t,l |2

} =

∣∣∣f (i)†

t ĥ
(i−1)
t

∣∣∣2 σ2
ds

σ2

n̂
(i)
t,l

. (3.34)

The denominator is now given by

σ2

n̂
(i)
t,l

= f
(i)†

t

{
ṽ(i−1)Ĥ

(i−1)
\t Ĥ

(i−1)†

\t +N0Inr

}
f

(i)
t (3.35)

3.6.2.3 Exact SINR model

Note that both matched (3.31) and mismatched (3.34) SINR model devel-

oped above are feasible (approximated) SINR model in practice without

perfect knowledge of channel H. Clearly, the exact SINR model depends

on H. From (3.23), (3.29) and assuming perfect knowledge of H, we can

compute the exact SINR in matched receive base-band model

ŝ
(i)
t,l = f

(i)†

t [htst,l + H\tsl − H̃
(i−1)
\t m̃

(i−1)
l + wl] = f

(i)†

t htst,l + n
(i)
t,l . (3.36)
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where H\t = H(Int − ete
†
t), n

(i)
t,l models the residual interference and noise.

The exact SINR of (3.36) is equal to

γ
(i)
t (f

(i)
t ) =

∣∣∣f (i)†

t ht

∣∣∣2 σ2
ds

σ2

n
(i)
t,l

. (3.37)

where,

σ2

n
(i)
t,l

= f
(i)†

t

[
σ2
dsH\tH

†
\t + H̃

(i−1)
\t (σ2

ds − v(i−1))H̃
(i−1)†

\t

−H\t(σ
2
ds − v(i−1))H̃

(i−1)†

\t − H̃
(i−1)
\t (σ2

ds − v(i−1))H†\t

]
f

(i)
t

+f
(i)†

t N0f
(i)
t . (3.38)

Note that this exact SINR model (3.37) in matched receive base-band model

exploits all available CSI before data transmission for feasible receive base-

band model and also unavailable CSI for SINR computation, thus it presents

the upper bound. For this reason, the exact SINR model in mismatched

receive base-band model is less interesting. However, this exact SINR model

(3.36), (3.37) and (3.38) can not be exploited to compute the filter ft. Again,

we need resort to the matched SINR (3.30), (3.31) and (3.32) or mismatched

SINR (3.33), (3.34) and (3.35) to compute the filter.

3.6.3 LMMSE-IC key equations

3.6.3.1 Matched LMMSE

The matched LMMSE filter f̃
(i)
t aims at maximizing the matched SINR γ̃

(i)
t

(3.31) which yields, using the the Matrix Inversion Lemma,

f̃
(i)†

t = η(i)h̃
(i−1)†

t

(
ṽ(i−1)H̃(i−1)H̃(i−1)† + Σ

(i−1)
ζ

)−1
(3.39)

where

η(i) =
σ2
ds

1 + β̃t
(i) (

σ2
ds − ṽ(i−1)

) (3.40)
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and

β̃
(i)
t = h̃

(i−1)†

t

(
ṽ(i−1)H̃(i−1)H̃(i−1)† + Σ

(i−1)
ζ

)−1
h̃

(i−1)
t .

From (3.30), (3.31) and (3.32), the matched SINR based on matched LMMSE

becomes

γ̃
(i)
t (f̃

(i)
t ) =

f̃
(i)†

t h̃
(i−1)
t

1− f̃
(i)†

t h̃
(i−1)
t

. (3.41)

Remark that the exact SINR based on matched LMMSE filter can be ob-

tained by adopting f̃
(i)
t in (3.36), (3.37) and (3.38).

3.6.3.2 Mismatched LMMSE

The mismatched LMMSE filter f̂
(i)
t aims at maximizing the mismatched

SINR γ̂
(i)
t (3.34). We do not give the mathematical formulas of f̂

(i)
t since it

can be obtained from f̃
(i)
t by forcing σ2

Ψ(i−1) = 0 and g(i−1) = 1. From (3.33),

(3.34) and (3.35), the mismatched SINR based on mismatched LMMSE filter

becomes

γ̂
(i)
t (f̂

(i)
t ) =

f̂
(i)†

t ĥ
(i−1)
t

1− f̂
(i)†

t ĥ
(i−1)
t

. (3.42)

3.7 Soft symbol-to-bit demapping and decoding

3.7.1 Soft symbol-to-bit demapping

The estimate ŝ
(i)
t,l is used as a decision statistic to compute the LEXTPR

on the qν bits involved in the labeling of st,l. It is explained for any linear

filter f
(i)†

t and do not precise it to be the matchel LMMSE filter (3.39) or

mismatched LMMSE filter.

A7 Given any linear filter f
(i)†

t ,

• the pdf p
ŝ
(i)
t,l |st,l

(ŝ
(i)
t,l ) = NC(f

(i)†

t h̃
(i−1)
t st,l, σ

2

ñ
(i)
t,l

) in (3.30)

• the pdf p
ŝ
(i)
t,l |st,l

(ŝ
(i)
t,l ) = NC(f

(i)†

t ĥ
(i−1)
t st,l, σ

2

n̂
(i)
t,l

) in (3.33)

• and the pdf p
ŝ
(i)
t,l |st,l

(ŝ
(i)
t,l ) = NC(f

(i)†

t htst,l, σ
2

n
(i)
t,l

) in (3.36).

Soft symbol-to-bit demapping is performed based on Assumption A7.

Adopting the matched SINR model, the log extrinsic probability ratio for
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each digit Λ
(i)
E,DEM (xt,l,q) after soft demapping is computed as

Λ
(i)
E,DEM (dt,l,j) = ln

∑
s∈Xν :µ−1

ν,j(s)=1 exp

{
−γ̃(i)

t (f
(i)
t )| 1

f
(i)†
t h̃

(i−1)
t

ŝ
(i)
t,l − s|

2 +
∑

j′ 6=j µ
−1
ν,j′

(s)Λ
(i−1)
A,LE(dt,l,j′)

}
∑

s∈Xν :µ−1
ν,j(s)=0 exp

{
−γ̃(i)

t (f
(i)
t )| 1

f
(i)†
t h̃

(i−1)
t

ŝ
(i)
t,l − s|2 +

∑
j′ 6=j µ

−1
ν,j′

(s)Λ
(i−1)
A,LE(dt,l,j′)

}
(3.43)

For the special case of Gray labeling, the {Λ(i−1)
A,LE(dt,l,j′ )}j′ 6=j have little

impact on the value of Λ
(i)
E,DEM (xt,l,q) and can be neglected which yields

Λ
(i)
E,DEM (dt,l,q) = ln

∑
s∈Xν :µ−1

ν,j(s)=1 exp

{
−γ̃(i)

t (f
(i)
t )| 1

f
(i)†
t h̃

(i−1)
t

ŝ
(i)
t,l − s|

2

}
∑

s∈Xν :µ−1
ν,j(s)=0 exp

{
−γ̃(i)

t (f
(i)
t )| 1

f
(i)†
t h̃

(i−1)
t

ŝ
(i)
t,l − s|2

}
(3.44)

The soft symbol-to-bit demapping adopting the mismatched SINR model

or exact SINR model follows the same principle, we just need to replace

γ̃
(i)
t (f

(i)
t ), h̃

(i−1)
t in (3.43), (3.44) by γ̂

(i)
t (f

(i)
t ), ĥ

(i−1)
t and γ

(i)
t (f

(i)
t ), ht, re-

spectively.

3.7.2 Decoding

The set Λ
(i)
E,DEM of all LEXTPR on labeling bits after demapping becomes

after deinterleaving the set Λ
(i)
I,DEC of all log intrinsic probability ratios on

coded bits used as input for the decoder.

A8 The pdf p
Λ

(i)
I,DEC |c

(Λ
(i)
I,DEC) factorizes as

p
Λ

(i)
I,DEC |c

(Λ
(i)
I,DEC) =

nν,c∏
n=1

p
Λ

(i)
I,DEC(cn)|cn

(Λ
(i)
I,DEC(cn))

where Λ
(i)
I,DEC(cn) is the log intrinsic probability ratio on coded bit cn. The

assumption (A8) allows to simplify the decoding task. It is rightfully con-

firmed for an interleaver of finite, but large enough, depth. Under (A8), the
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decoder computes the LAPPR Λ
(i)
D,DEC(cn) on coded bit cn as

Λ
(i)
D,DEC(cn) =

∑
c∈C :cn=1

∏nν,c
n=1 pΛ

(i)
I,DEC

(cn)|cn
(Λ

(i)
I,DEC(cn))∑

c∈C :cn=0

∏nν,c
n=1 pΛ

(i)
I,DEC

(cn)|cn
(Λ

(i)
I,DEC(cn))

(3.45)

Finally the LEXTPR on coded bit cn can be computed as

Λ
(i)
E,DEC(cn) = Λ

(i)
D,DEC(cn)− Λ

(i)
I,DEC(cn) (3.46)

3.8 PHY-layer abstraction

As a FLA metric (or conditional BLER given the initial channel estimate),

we are interested in computing

BLER
(i)

(Ĥ(0)) = E
H,Ĥ(i−1)|Ĥ(0){BLER(i)(H, Ĥ(i−1))}

= E
Ĥ(i−1)|Ĥ(0){EH|Ĥ(i−1),Ĥ(0){BLER(i)(H, Ĥ(i−1))}}

= E
Ĥ(i−1)|Ĥ(0){EH|Ĥ(0){BLER(i)(H, Ĥ(i−1))}}

with respect to the chosen MCS and average SNR. Clearly, the BLER(i)(H, Ĥ(i−1))

need to be predicted per iteration i based on the nb × nt exact SINRs

γ
(i)
t (f

(i)
t ). As a result, we adopt the prediction method described in [66]

which is built on the MIESM compression of the nb × nt multiple parallel

SINRs to a single effective SNR or equivalently AMI. The correspondence

between SNR and AMI is usually stored in a LUT Γ(.). This effective SNR

(respectively AMI) is then used to read pre-simulated MCS dependent LUTs

that outputs the ṽ(i) (for the next iteration) and the BLER (these LUTs are

denoted in the following by GJDD(.) and FJDD(.), respectively).

3.8.1 Proposed algorithm

In this Section, we describe (in the context of FLA and for a given MCS)

the proposed semi-analytical performance prediction method for iterative

LMMSE-IC detection and semi-blind channel estimation algorithm. As

mentioned above, it is partly built on the MIESM prediction method de-

scribed in [66]. However, the obtained predicted BLER per iteration must
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be averaged on the conditional pdfs p(H|Ĥ(0)) and p(Ĥ(i−1)|H(0)). Since we

were able to derive their closed-form expression in Section 3.5, it is possible

to performed the averaging by an intertwined Monte Carlo approach as de-

tailed in Algorithm 4. Note that ACC(i) is simply an intermediate variable

to average the BLER on NH channel outcomes at iteration i.

Algorithm 4 Algorithm of performance prediction in the context of FLA
for a given Ĥ(0)

for SNRs do
Init ṽ(0) = σ2

ds, ACC(i) = 0 for i = 1 · · ·nit
for n = 1 to NH do

Draw H from p
(
H|Ĥ(0)

)
for i = 1 to nit iterations do

Step 1 Compute the nb×nt SINRs according to ṽ(i−1), Ĥ(i−1), H
Step 2 Read from the AMI LUT the associated nb × nt AMIs

Step 3 Compress the AMI: I
(i)
in = 1

nbnt

∑
b

∑
t I

(i)
p,t

Step 4 Read from the LUTs the BLER(i) and the symbol variance

ṽ(i): BLER(i) = FJDD(I
(i)
in ) and ṽ(i) = GJDD(I

(i)
in )

Step 5 Draw Ĥ(i) from p
(
Ĥ(i)|H, ṽ(i)

)
Step 6 Update ACC(i) = ACC(i) + BLER(i)

end for
end for
BLER

(i)
(

SNR, Ĥ(0)
)

= ACC(i)
NH

end for

Based on the proposed Algorithm 4, the SLA metric or average BLER

comes naturally as

BLER
(i)

= E
Ĥ(0){BLER

(i)
(Ĥ(0))}

with respect to the distribution of Ĥ(0) whoses entries are i.i.d and follows

the pdf NC(0, 1 + σ2
ψ(0)).

3.8.2 Corrected SINR issue

The accuracy of the prediction strategy under imperfect CSIR for LEXTPR

based iterative LMMSE-IC detection joint semi-blind channel estimation

can be impacted by channel estimation error. The fact that the performance

prediction method uses Matched LMMSE with exact SINR while the receiver

uses Matched LMMSE with matched SINR (or mismatched SINR) can yield

discrepancy between predicted and simulated performance depending on
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the channel estimate error. When the channel estimation is good enough,

the prediction method should work accurately since the difference between

exact SINR and matched SINR model is relatively small. When the channel

estimation is not good enough, the prediction method will be optimist to

a certain level since the difference between exact SINR model and matched

SINR model becomes relatively high. The solution, arbitrary but efficient, is

to make the the exact SINR smaller in the prediction method. The corrected

SINR γ
′(i)
t (f

(i)
t ) based on (3.36) is given as

γ
′(i)
t (f

(i)
t ) =

∣∣∣f (i)†

t ht

∣∣∣2 σ2
ds

σ2

n
(i)
t,l

+ σ2

n
′(i)
t,l

. (3.47)

with

σ2

n
′(i)
t,l

= σ2
dsf

(i)†

t (ht − h̃
(i−1)
t )(ht − h̃

(i−1)
t )†f

(i)
t (3.48)

Note that σ2

n
′(i)
t,l

represents the channel estimation error. When channel

estimate h̃
(i−1)
t is close the real channel ht, σ

2

n
′(i)
t,l

can be neglected.

3.9 Numerical results

Let us consider a STBICM with the following parameters: Rate-1
2 binary

Non-Recursive Non-Systematic Convolutional (NRNSC) code with genera-

tor polynomials (133, 171)8, pseudo-random interleaver and QPSK or 16QAM

constellation with Gray labeling. A 1-Block (nb = 1) 4× 4 MIMO memory-

less flat Rayleigh channel is selected for all simulations. We fix σ2
h = 1 and

σ2
ds = 1. The total number of channel use Lds is fixed to 288 which implies

that each codeword will always be mapped to 1152 symbols. Thus, when

using QPSK constellation, each codeword contains nc = 2048 coded bits.

When using 16QAM constellation, each codeword contains nc = 4096 coded

bits. The CAZAC sequence u is given in hexadecimal form as 68195E with

length Lps = 24 (here, Lps > 2nt ensuring that AA† = Lpsσ
2
psInt). The

number of iteration of the double loop receiver is limited to five, i.e., nit = 5

(which ensures convergence in practice) and the number of channel realiza-

tions is set to NH = 5000 for the prediction of SLA metrics, or average

BLER.

Firstly, we investigate pure simulation performance for Matched LMMSE

with exact SINR, Matched LMMSE with matched SINR and Mismatched

LMMSE with mismatched SINR. Obviously, the gain brought by the Matched
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LMMSE filter compare to its mismatched counterpart is all the more im-

portant when

ε(0) =
nt

Lpsσ2
ps +N0

is larger. That is why, we assign a very low power σ2
ps = 0.1 and a normal

power σ2
ps = 1 for comparison. Fig. 3.3 presents the simulation perfor-

mance with σ2
ps = 0.1 under QPSK (from ε(0) = 0.7191 at Eb/N0 = −5dB

to ε(0) = 1.3712 at Eb/N0 = 3dB) from which we can observe that, at

BLER=0.01, iteration 5, Matched LMMSE with matched SINR outper-

forms always Mismatched LMMSE with mismatched SINR with a gain about

2.5dB and it is only about 0.7dB away from the optimal matched LMMSE

with exact SINR. Fig. 3.4 shows the simulation performance with σ2
ps = 0.1

under 16QAM (from ε(0) = 1.3204 at Eb/N0 = −1dB to ε(0) = 1.6327

at Eb/N0 = 10dB) from which we can observe that, at BLER=0.01, it-

eration 5, Matched LMMSE with matched SINR outperforms Mismatched

LMMSE with mismatched SINR with a gain about 3dB and it is only about

0.7dB away from the optimal matched LMMSE with exact SINR. Fig. 3.5

and Fig. 3.6 show the simulation performance with σ2
ps = 1 under QPSK

(from ε(0) = 0.1473 at Eb/N0 = −5dB to ε(0) = 0.1613 at Eb/N0 = 1dB)

and 16QAM (from ε(0) = 0.1624 at Eb/N0 = −5dB to ε(0) = 0.1660 at

Eb/N0 = 7dB) respectively from which we can see that there are nearly

no difference in terms of performance for the three approaches because the

channel estimates are good enough (ε(0) << 1). Thus we can conclude that

matched LMMSE with matched SINR approach outperforms always the

mismatched LMMSE with mismatched SINR approach and keeps always a

good approximation for the matched LMMSE with exact SINR. Thus, we fo-

cus on the performance prediction method for double loop receiver adopting

Matched LMMSE with matched SINR approach in what follows.

Secondly, we evaluate the proposed performance prediction methods us-

ing Matched LMMSE with exact SINR or corrected SINR. Fig. 3.7 and

Fig. 3.8 present the simulated performance vs. predicted performance using

exact SINR and corrected SINR with σ2
ps = 0.1 for QPSK and 16QAM re-

spectively. No surprisingly, we can see that the predicted performance with

exact SINR is somehow optimist compare to the simulated performance with

matched SINR at this case because the channel estimation is not very good.

And this effect can be compensated by predicting with corrected SINR. Fig.

3.9 and Fig. 3.10 show the simulated performance vs. predicted perfor-

mance using exact SINR and corrected SINR with σ2
ps = 1 for QPSK and
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16QAM respectively. Since the channel estimation becomes good enough,

both the predicted performance with exact SINR and corrected SINR match

extremely well the simulated performance with matched SINR.

The previous approach shows the result for different ε(0) by fixing σ2
ps

while changing SNR (N0). We can also generate different ε(0) by fixing SNR

(N0) while changing σ2
ps, and we can compare the simulated performance

and predicted performance in this way in the next step. Fig. 3.11 / Fig.

3.12 show the simulated MSE/BLER (Matched LMMSE with exact SINR

and Matched LMMSE with matched SINR) vs. the predicted MSE/BLER

(Matched LMMSE with exact SINR) for QPSK, Eb/N0 = −1dB. From

these two figures, we can see that 1), again, Matched LMMSE with ex-

act SINR outperforms always Matched LMMSE with matched SINR for all

simulated ε(0). 2), the predicted performance (matched LMMSE with ex-

act SINR) becomes even optimist for simulated performance with matched

LMMSE with exact SINR when ε(0) > 2 which implies that the Gaussian

Approximation A6 becomes less valid. Furthermore, Fig. 3.13 / Fig. 3.14

show the simulated MSE/BLER (matched LMMSE with matched SINR)

and the predicted MSE/BLER (Matched LMMSE with exact SINR and

Matched LMMSE with corrected SINR) under QPSK, Eb/N0 = −1dB and

ε(0) ≤ 2 (A6 is more valid) from which we can see that the corrected SINR

can give satisfied predicted results.

We move to 16QAM. Fig. 3.15 / Fig. 3.16 show the simulated MSE/BLER

(Matched LMMSE with exact SINR and Matched LMMSE with matched

SINR) and the predicted MSE/BLER (Matched LMMSE with exact SINR)

for 16QAM, Eb/N0 = 3dB. From these two figures, we can see that 1), the

matched LMMSE with exact SINR outperforms always matched LMMSE

with matched SINR for all simulated ε(0). 2), Interestingly, when ε(0) > 2

which implies that the Gaussian Approximation A6 becomes less valid, the

predicted performance (matched LMMSE with exact SINR) becomes just

slightly optimist compare to the simulated performance (matched LMMSE

with exact SINR) even ε(0) increases to 30. Thus, Fig. 3.17 / Fig. 3.18 show

the simulated MSE/BLER (Matched LMMSE with matched SINR) and the

predicted MSE/BLER (Matched LMMSE with exact SINR and Matched

LMMSE with corrected SINR) under 16QAM, Eb/N0 = 3dB and ε(0) ≤ 30

from which we can see that the corrected SINR can give satisfied predicted

results.
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3.10 Conclusion

In this part, a novel semi-analytical performance prediction method is pro-

posed for LEXTPR-based iterative LMMSE-IC detection and semi-blind

channel estimation in convolutionally coded MIMO systems. The proposed

method extends existing MIESM link-to-system approach to the context of

imperfect channel state information and semi-blind channel estimation at

the receiver side. It allows computing the average BLER conditional on an

initial pilot assisted channel estimation and long term channel distribution

information. It heavily relies on Gaussian approximation on the LMMSE-IC

and channel estimation error models whose second order statistics are gov-

erned by the SINRs and the channel estimate MSE, respectively. Simulation

in the context of SU-MIMO frequency selective transmission, modelled by

a discrete input MIMO memoryless block fading Rayleigh channel, demon-

strates the validity of the proposed approach.
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Figure 3.10: Simulated BLER (Matched LMMSE with matched SINR) vs.
predicted BLER (Matched LMMSE with exact SINR and Matched LMMSE
with corrected SINR), 16QAM-1/2, σ2

ps = 1

10
-1

10
0

10
-4

10
-3

10
-2

10
-1

10
0

MSE it.1

A
ve

ra
ge

 M
S

E

Simulation:  Mat. LMMSE w. exact SINR
Simulation: Mat. LMMSE w. mat. SINR
Prediction: Mat. LMMSE w. exact SINR
GA bound

Figure 3.11: Simulated MSE(Matched LMMSE with exact SINR, Matched
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exact SINR) conditional on initial ε(0), QPSK-1/2, Eb/N0 = −1dB
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Figure 3.12: Simulated BLER(Matched LMMSE with matched SINR) vs.
predicted BLER (Matched LMMSE with exact SINR and Matched LMMSE
with corrected SINR ) conditional on initial ε(0), QPSK-1/2, Eb/N0 = −1dB
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Figure 3.13: Simulated MSE(Matched LMMSE with matched SINR) vs.
predicted MSE (Matched LMMSE with exact SINR and Matched LMMSE
with corrected SINR ) conditional on initial ε(0), QPSK-1/2, Eb/N0 = −1dB
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Figure 3.14: Simulated BLER(Matched LMMSE with matched SINR) vs.
predicted BLER (Matched LMMSE with exact SINR and Matched LMMSE
with corrected SINR ) conditional on initial ε(0), QPSK-1/2, Eb/N0 = −1dB
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Figure 3.15: Simulated MSE(Matched LMMSE with exact SINR, Matched
LMMSE with matched SINR) vs. predicted MSE (Matched LMMSE with
exact SINR) conditional on initial ε(0), 16QAM-1/2, Eb/N0 = 3dB
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Figure 3.16: Simulated BLER(Matched LMMSE with exact SINR, Matched
LMMSE with matched SINR) vs. predicted BLER (Matched LMMSE with
exact SINR) conditional on initial ε(0), 16QAM-1/2, Eb/N0 = 3dB
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Figure 3.17: Simulated MSE(Matched LMMSE with matched SINR) vs.
predicted MSE (Matched LMMSE with exact SINR and Matched LMMSE
with corrected SINR ) conditional on initial ε(0), 16QAM-1/2, Eb/N0 = 3dB
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Figure 3.18: Simulated BLER(Matched LMMSE with matched SINR) vs.
predicted BLER (Matched LMMSE with exact SINR and Matched LMMSE
with corrected SINR ) conditional on initial ε(0), 16QAM-1/2, Eb/N0 = 3dB



Chapter 4

Extension to turbo coded
MIMO systems

4.1 Introduction

To make things even more complicated, closed-loop link adaptation in LTE-

A involves a family of MCS constructed out of powerful turbo codes. In

practice, a suboptimal iterative decoding is applied. Hence, the smooth in-

troduction of LMMSE-IC based turbo equalization receivers in LTE calls for

a new PHY-layer abstraction to this non-trivial situation. Progress in this

research area is of uttermost importance for the design and real capability

evaluation of next generation wireless systems in presence of advanced turbo

receiver.

A novel stochastic modeling of the whole turbo receiver will be proposed

using EXIT charts (and variants) [37] in this chapter. The approach is in-

spired from earlier works dealing with multiple concatenated codes and the

convergence analysis of their iterative decoding (see e.g., [72] [49] [73] [74]).

As the core of the contribution, it is found that, even in the simplified case

of Gray mapping, a bivariate information transfer function is needed to

characterize the evolution of the joint demapper and turbo decoder embed-

ded within the LMMSE-IC based turbo equalization. This is in contrast

with [71] [66] where simple convolutional codes were considered and univari-

This chapter is partially presented in the paper accepted to IEEE GLOBECOM’2013,
one patent and two contributions of 3GPP

90



CHAPTER 4 91

ate information transfer functions sufficient.

4.2 System model

We consider a single-user transmission over a MIMO block Rayleigh fading

AWGN channel with nb fading blocks, nt transmit and nr receive antennas.

Perfect channel state information is assumed at the receiver. The total

number ns of channel uses available for transmission is fixed and the number

of channel uses per fading block is given as L = ns/nb.

4.2.1 Coding strategy

A STBICM is used at the transmitter, specified by a linear binary turbo

code Cν of rate rν , a complex constellation Xν ⊂ C of cardinality 2qν and a

memoryless labeling rule µν . We define the rate of the MCS ν as ρν = rνqν

(bits/complex dimension). The encoding process for MCS ν is detailed.

The vector of binary data (or information bits) u enters a turbo encoder ϕν

whose output is the codeword c ∈ Cν of length nc,ν = nsntqν . The codeword

bits are interleaved by a random space time interleaver πν and reshaped as

a integer matrice {Db}nbb=1 with Db ∈ Znt×L2qν . Each integer entry can be

decomposed into a sequence of qν bits. A Gray mapping µν transforms each

matrix Db into a complex matrix Sb ∈ X nt×L
ν . X

(0)
ν,j and X

(1)
ν,j denote the

subsets of points in Xν whose labels have a 0 or a 1 at position j. With

a slight abuse of notation, let {db;t,l,j}qνj=1 denote the set of bits labeling

the symbol sb;t,l ∈ Xν . Let also µ−1
ν,j (s) be the value of the j-th bit in the

labeling of any point s ∈Xν .

4.2.2 Received signal model

Let Hb ∈ Cnr×nt denotes the channel for the b-th fading block. The discrete-

time vector yb;l ∈ Cnr received at the destination for the b-th fading block

and time l = 1, . . . , L is expressed as

yb;l = Hbsb;l + wb;l (4.1)

In (4.1), the vectors sb;l ∈ X nt
ν are i.i.d. random vectors with E[sb;l] = 0nt

and E[sb;ls
†
b;l] = Int , and the vectors wb;l ∈ Cnr are i.i.d. random vec-
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tors, circularly-symmetric Gaussian, with zero-mean and covariance matrix

σ2
wInr .

4.3 LMMSE-IC based turbo receivers

We focus on the LAPPR-based iterative LMMSE-IC algorithms for the

mathematical derivation part. In LAPPR-based iterative LMMSE-IC, the

set ΛD,DEC of all LAPPR on coded bits becomes after interleaving the set

ΛD,LE of all log “a priori” probability ratios on labeling bits used for (soft)

interference regeneration and cancellation, although LAPPR contain “ob-

servation”. Let {ΛD,LE}sb;t,l and {ΛD,LE}sb;l be the set of all LAPPR on

coded bits involved in the labeling of sb;t,l and sb;l, respectively. Let also

{ΛD,LE}sb;l\sb;t,l be the set of all LAPPR on coded bits involved in the la-

beling of sb;l except the coded bits involved in the labeling of sb;t,l. Since

the different steps described hereinafter are identical for each iteration of

the receiver, the iteration index is dropped.

4.3.1 Interference regeneration and cancellation

Prior to LMMSE estimation of the symbol sb;t,l, we compute the conditional

MMSE estimate of the interference, defined as y̆b;l\t = E
[
yb;l|{ΛD,LE}sb;l\sb;t,l

]
.

This computation is intractable for useful signal components and noise sam-

ples are of course no more independent conditional on {ΛD,LE}sb;l\sb;t,l . To

solve this issue, we make two symplifying assumptions.

A1 The pdf psb;l,wb;l|{ΛD,LE}sb;l\sb;t,l
(sb;l,wb;l) factorizes as

psb;l,wb;l|{ΛD,LE}sb;l\sb;t,l
(sb;l,wb;l) =

P (sb;t,l)pwb;l
(wb;l)

∏
t′ 6=t P (sb;t′,l|{ΛD,LE}sb;t′,l).

(4.2)

A2 The pmf P (sb;t′,l|{ΛD,LE}sb;t′,l) in (4.2) is given by

P (sb;t′,l|{ΛD,LE}sb;t′,l) ∝ e
∑
j µ
−1
ν,j(sb;t′,l)ΛD,LE(db;t′,l,j).

As a matter of fact, the assumptions (A1) and (A2) never hold even for

an ideal interleaver of infinite depth. But we can still force them in all

subsequent derivations. Under (A1), the MMSE estimate of the interference
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affecting the symbol sb;t,l is given by

ỹb;l\t = Hb(Int − ete
†
t)mb;l (4.3)

where mb;l is the vector made of all estimatesmb;t′,l = E
[
sb;t′,l|{ΛD,LE}sb;t′,l

]
evaluated under (A2). After IC, the new observed vector is yb;l − ỹb;l\t.

4.3.2 LMMSE estimation – unconditional case

The optimization problem to solve can be formulated as follows: Find s̆b;t,l =

f̆ †b;t(yb;l − y̆b;l\t) minimizing the unconditional mean square error (MSE)

E
[
|s̆b;t,l − sb;t,l|2

]
defined as

E
[
E
[
|s̆b;t,l − sb;t,l|2|{ΛD,LE}sb;l\sb;t,l

]]
. (4.4)

The outer expectation in (4.4) renders the (biased) LMMSE filter time-

invariant given by f̆b;t = Ξ̆
−1
b;t ξ̆b;t where ξ̆b;t = E

[
ξ̆b;t,l

]
with

ξ̆b;t,l = E
[
(yb;l − y̆b;l\t)s

∗
b;t,l|{ΛD,LE}sb;l\sb;t,l

]

and where Ξ̆b;t = E
[
Ξ̆b;t,l

]
with

Ξ̆b;t,l = E
[
(yb;l − y̆b;l\t)(yb;l − y̆b;l\t)

†|{ΛD,LE}sb;l\sb;t,l
]
.

The computation of f̆b;t is again intractable. However, under (A1), ξ̆b;t and

Ξ̆b;t become ξb;t = hb;t = Hbet and Ξb;t = HbVb;\tH
†
b + σ2

wInr where Vb;\t

is the unconditional symbol covariance matrix defined as

Vb;\t = diag{vb;1, . . . , vb;t−1, 1, vb;t+1, . . . , vb;nt}

where ∀t′ 6= t, vb;t′ = E
[
vb;t′,l

]
with vb;t′,l = E

[
|sb;t′,l −mb;t′,l|2|{ΛD,LE}sb;t′,l

]
evaluated under (A2). Using the matrix inversion lemma, we obtain the filter

fb;t =
1

1 + ηb;t(1− vb;t)
Σ−1
b hb;t (4.5)
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where Σb = HbVbH
†
b + σ2

wInr and ηb;t = h†b;tΣ
−1
b hb;t with

Vb = Vb;\t − (1− vb;t)ete†t (4.6)

where vb;t = E [vb;t,l] with vb;t,l = E
[
|sb;t,l −mb;t,l|2|{ΛD,LE}sb;t,l

]
evaluated

under (A2). The corresponding estimate ŝb;t,l of sb;t,l can be expressed as

ŝb;t,l = f †b;t(yb;l − ỹb;l\t) = gb;tsb;t,l + ζb;t,l (4.7)

where gb;t = f †b;thb;t and ζb;t,l is the residual interference plus noise term.

Clearly, ζb;t,l in (4.7) is zero-mean and uncorrelated with the useful signal

sb;t,l under (A1), i.e., E[sb;t,lζ
∗
b;t,l] = 0. Under (A1) and (A2) the variance

of ζb;t,l is ςb;t = gb;t(1 − gb;t). Thus, we can define the unconditional SINR

under (A1) and (A2) as

γb;t =
gb;t

1− gb;t
=

ηb;t
1− ηb;tvb;t

. (4.8)

In practical implementation, we make several assumptions over the covari-

ance matrices Vb.

A3 Due to the particular structure of the MCS, the so-called equal variance

assumption holds, which states that

Vb = vInt∀b. (4.9)

A4 v can be replaced by its empirical mean v̄

v̄ =
1

nbntL

nb∑
b=1

nt∑
t=1

L∑
l=1

vb;t,l. (4.10)

assuming sufficiently large L. Actually, the ergodic regime assumption (A4)

is part of the baseline assumptions of EXIT charts [37]. The assumption

(A3) never holds even for an ideal interleaver of infinite depth, but forcing

it induces no performance degradation.



CHAPTER 4 95

4.3.3 Demapping and decoding

The estimate ŝb;t,l is used as a decision statistic to compute the LEXTPR

on the qν bits involved in the labeling of sb;t,l.

A5 In (4.7), the conditional pdf pŝb;t,l|sb;t,l(ŝb;t,l) is circularly-symmetric com-

plex Gaussian distributed.

Under (A1), (A2) and (A5) the conditional pdf pŝb;t,l|sb;t,l(ŝb;t,l)

is NC(gb;tsb;t,l, ςb;t). As a result, under (A1),(A2), and (A5), for the special

case of Gray labeling, the LEXTPR ΛE,DEM (db;t,l,j) on labeling bit db;t,l,j

is expressed as

ΛE,DEM (db;t,l,j) =

∑
s∈X

(1)
ν,j

e−|ŝb;t,l−gb;ts|
2/ςb;t∑

s∈X
(0)
ν,j

e−|ŝb;t,l−gb;ts|
2/ςb;t

(4.11)

4.3.4 Message-passing schedule for turbo decoding

The set ΛE,DEM of all LEXTPR on labeling bits becomes after deinterleav-

ing the set ΛI,DEC of all log intrinsic probability ratios on coded bits used

as input for the decoder.

A6 The pdf pΛI,DEC |c(ΛI,DEC) factorizes as

pΛI,DEC |c(ΛI,DEC) =

nc,ν∏
n=1

pΛI,DEC(cn)|cn(ΛI,DEC(cn))

where ΛI,DEC(cn) is the log intrinsic probability ratio on coded bit cn. The

assumption (A6) allows to simplify the decoding task. It is rightfully con-

firmed for an interleaver of finite, but large enough, depth. The turbo de-

coder is made of two BCJR decoders [38] exchanging probabilistic informa-

tion (log domain). The first BCJR decoder computes the LAPPRs on its own

coded bits (information and parity bits) taking into account the available a

priori information ΛA,DEC = {ΛA,DEC(un)} on systematic information bits

stored from an earlier activation (i.e., the most recent LEXTPRs on sys-

tematic information bits delivered by the second BCJR decoder). Then the

second BCJR decoder is activated and computes the LAPPRs on its own

coded bits (information and parity bits) taking into account the available a

priori information transmitted by the first BCJR decoder. The best sched-

ule we have found is the following: one pass of equalizer followed by one



CHAPTER 4 96

pass of first BCJR decoder followed by one pass of second BCJR decoder.

This completes one global iteration of the turbo receiver. Such a message-

passing schedule provides much better results than the conventional one, i.e.,

a single pass of equalizer followed by an arbitrary number of turbo decoder

iterations. The performance degradation which comes from not using the

extrinsic information available from the second BCJR decoder as an input of

the first BCJR decoder as in [96] might be substantial, especially for low rate

MCS, or slightly modified message-passing schedules with several internal

iterations within the turbo decoder per global iteration. The different steps

of the algorithm are summarized in Fig. 4.1 for the 1-block fading case.
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Figure 4.1: LAPPR-based iterative LMMSE receiver structure (adapted to
STBICM with turbo code and Gray labeling)

4.4 PHY-layer abstraction

The proposed performance prediction method is semi-analytical and relies

on ten Brink’s stochastic approach of EXIT charts [37] particularly useful

in understanding and measuring the dynamics of turbo processing.
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4.4.1 Transfer characteristics of LMMSE-IC

The LMMSE-IC part of the receiver ends up with nb × nt independent

parallel channels under (A6). Each of them is modeled as a discrete-input

AWGN channel under (A5) whose SNR, given by

γb;t =
ηb;t

1− ηb;tv̄
(4.12)

under (A1)-(A4), turns out to be a function φt of b, t, Hb, σ
2
w and the

input variance v̄. For each such channel, we can compute the AMI ILEb;t
between the discrete input sb;t,l ∈Xν and the output s̃b;t,l = sb;t,l+εb;t,l with

εb;t,l ∼ NC(0, 1/γb;t). The value of ILEb;t depends on the single parameter

γb;t. Let ĪLE be the arithmetic mean of the values {ILEb;t}, i.e.,

ĪLE =
1

nbnt

nb∑
b=1

nt∑
t=1

ILEb;t . (4.13)

The AMI ILEb;t = ψν(γb;t) is a monotone increasing, thus invertible, function

of the SNR, and depends on the MCS index ν. It is simulated off-line and

stored in a LUT.

4.4.2 Transfer characteristics of joint demapping and decod-

ing

The functional module is MCS-dependent and comprises the following steps:

demapping, deinterleaving, turbo decoding (one pass of the first BCJR de-

coder followed by one pass of the second BCJR decoder), reinterleaving, and

computation of the mean and variance of transmitted symbols from LAPPR

on coded bits(as described before). The generated observed symbols are the

output of a virtual AWGN channel with discrete input in Xν and SNR γ.

Let ψBPSK(γ) be the Binary Phase-Shift Keying (BPSK) mutual informa-

tion for a (real) AWGN channel whose associated SNR is γ. The a priori

information {ΛA,DEC(un)}, measured by mutual information IA, are gen-

erated as ΛA,DEC(un) = N ((2un − 1)mA, σ
2
A) where σ2

A = 4ψ−1
BPSK(IA),

mA = σ2
A/2 [37]. For an arbitrary labeling rule, trivariate transfer func-

tion is required to stochastically characterize the joint demapper and turbo

decoder. With Gray labeling however, log a priori probability ratios on
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labeling bits do not intervene in the computation of the LEXTPR on the

labeling bits (see (4.11)) and, hence, need not be taken into account in the

stochastic modeling of the demapper. Therefore, simpler bivariate trans-

fer function is sufficient to stochastically characterize the joint demapper

and turbo decoder for the latter proceeds iteratively. This is the major

difference with previous work. These functions are the measured BLER

Pe = FJDDν (γ, IA), the variance v̄ = GJDDν (γ, IA), and the mutual in-

formation IE = TJDDν (γ, IA). They are computed off-line and stored in

separate LUTs. It is necessary to emphasize that the LUTs are generated

with channel use number fixed to ns, thus are independent with the num-

ber of fading block. The algorithm used to generate the different LUTs is

summarized in Algorithm 5.

Algorithm 5

1: Inputs ν, nt, ns
2: for γ = γmin to γmax do
3: for IA = 0 to 1 do
4: σ2

A = 4ψ−1
BPSK(IA), mA = σ2

A/2
5: for bk = 1 to nbk do
6: Channel interleaver random generation: πν
7: Codeword generation: u→ c→ D→ S
8: Virtual AWGN Channel: Generate S̃ s.t. s̃1;t,l ∼ NC(s1;t,l, 1/γ)
9: Demapping: Compute {ΛE,DEM (d1;t,l,j)} as (4.11) with ŝ1;t,l =

s̃1;t,l and g1;t = 1
10: Deinterleaving: ΛE,DEM → ΛI,DEC

11: Generate {ΛA,DEC(un)} with ΛA,DEC(un) = N ((2un−1)mA, σ
2
A)

12: Turbo decoding: Compute {ΛD,DEC(cn)} and ΛE,DEC(un)}
based on {ΛI,DEC(cn)} and {ΛA,DEC(un)}

13: Update counter block errors
14: Interleaving: ΛD,DEC → ΛD,LE

15: Update histograms HΛE |0 and HΛE |1
16: Compute {v1;t,l} using {{ΛD,LE}s1;t,l

} → {v̄bk} as (4.10)
17: end for
18: Compute Pe, v̄ = 1

nbk

∑nbk
bk=1 v̄bk and IE using pdfs pΛE |0 and pΛE |1

19: end for
20: end for
21: Outputs Pe = FJDDν (γ, IA), v̄ = GJDDν (γ, IA), and IE =

TJDDν (γ, IA)
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4.4.3 Evolution analysis

It remains to relate the output ĪLE of the first transfer function (LMMSE-

IC) and the input SNR of the second transfer function (joint demapping

and decoding) at any iteration. This is done by assuming that ĪLE which

measures the information content of knowledge on coded modulated symbols

{sb;t,l}, averaged over all parallel AWGN channels, is equal to the informa-

tion content of knowledge on coded modulated symbols transmitted over a

single virtual discrete-input (with values in Xν) AWGN channel with effec-

tive SNR γ̄LE given by

γ̄LE = ψ−1
ν (ĪLE) = ψ−1

ν

(
1

nbnt

nb∑
b=1

nt∑
t=1

ILEb;t

)
. (4.14)

This technique inherited from EXIT charts is widely used in practice and

often referred to as MIESM [61]. In our framework, it relies on all the

defined assumptions (A1)-(A6) or, equivalently, on (A5) and (A6) for the

first iteration. The variance v̄ = GJDDν (γ̄LE , IA) is used in (4.9) under (A4)

for next iteration. Hence, the evolution of LAPPR-based iterative LMMSE-

IC can be tracked through the single scalar parameter v̄.

4.4.4 Calibration

A major drawback of this performance prediction method is that the as-

sumptions (A1), (A2) and (A3) do not hold for LAPPR-based iterative

LMMSE-IC. As a consequence, not only the filters {fb;t} but also the SINRs

{γb;t} given by (4.8) are approximated. The true SINRs, if we could have to

access to them, would be smaller. This fact explains why the prediction per-

formance method expounded in [66] yields too optimistic results compared

to the true simulated performance. To solve this problem, we proposed

in [97] a simple, yet effective, calibration procedure whose principle is to

adjust v̄ with a real-valued factor βν ≥ 1. More specifically, v̄ is replaced by

Cν(v̄) = min(βν v̄, 1), which has the effect to artificially reduce the SINRs

that are used in the performance prediction method. We searched the opti-

mal βν minimizing the average relative error between the simulated BLER

and the calibrated predicted BLER over a large number of channel outcomes

at each iteration i > 1 for the BLER range of interest [0.9, 0.01]. In order to

ensure that the calibration factor cope with a large distribution of channel
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outcomes (or SINR distribution per block), we draw each channel outcome

from a 4x4 MIMO 4-block Rayleigh fading AWGN channel. Exhaustive

simulations revealed that βν depends on the MCS but does not vary signif-

icantly w.r.t. the number of transmit and receive antennas as well as the

channel characteristics. The calibration procedures can be found in Section

2.4.2.4. A recapitulative diagram of the method is depicted in Fig. 4.2 for

the 1-block fading case.
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Figure 4.2: PHY-layer abstraction for LAPPR-based iterative LMMSE-IC
(with calibration)

4.5 Numerical results

The proposed PHY-layer abstraction is tested over two types of channels:

4 × 4 MIMO flat channel (i.e., nb = 1) and 2 × 2 MIMO 4-block fading

channel (i.e., nb = 4), referred to as CH1 and CH2, respectively. The MCS

are built from turbo code based on two 8-state rate-1/2 Recursive Systematic

Convolutional (RSC) encoders with generator matrix G = [1,g0/g1] where

g0 = [1011] and g1 = [1101] and QAM modulation (with Gray labeling).

When LEXTPR-based iterative LMMSE-IC is performed at the destination,

no calibration is needed because assumptions (A1)–(A6) are rigorously valid.

When LAPPR-based iterative LMMSE-IC is performed at the destination,

a channel-independent calibration factor is introduced to compensate for

assumption inaccuracies. The optimal calibration factors for QPSK-1/2

and 16QAM-1/2 are 1.7 and 3.3, respectively. The total number of channel

uses available for transmission is ns = 2040. Generally, 5 iterations are

enough to ensure the convergence in practice. Fig. 4.3 depicts the 2D-LUT
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Pe = FJDD(γ, IA) for the 16QAM-1/2.

4.5.1 Average predicted vs. simulated BLER

First, average simulated and predicted BLER are compared over several

SNR. For each SNR, we evaluated the average simulated BLER by Monte

Carlo simulation which is stopped after 800 block errors. The predicted

BLER is evaluated over 10000 channel outcomes. The genie-aided inter-

ference cancellation (Genie-Aided IC) curve is used as a lower bound on

BLER. From Fig. 4.4, we observe that the simulated and predicted BLER

of LEXTPR-based iterative LMMSE-IC coincide perfectly for 16QAM-1/2

over CH1. Furthermore, the performance degradation coming from no using

the extrinsic information available from the second BCJR decoder is aroud

3dB at BLER=0.1 of the 5-th iteration. From Fig. 4.5, we observe that the

simulated and predicted (with calibration) BLER of LAPPR-based iterative

LMMSE-IC reveal a very good match for 16QAM-1/2 over CH1 which con-

firms the robustness and effectiveness of the proposed calibration procedure.

The superiority of LAPPR-based iterative LMMSE-IC over LEXTPR-based

iterative LMMSE-IC is obvious from these two curves, and is even more ap-

parent for higher spectral efficiencies. The simulated and predicted results

for QPSK - 1/2 and 16QAM - 1/2 over CH2 of LAPPR-based iterative

LMMSE-IC are shown in Fig. 4.6 and Fig. 4.7, respectively. Again, we ob-

serve that the average predicted BLER match exactly the average simulated

ones at every iterations.

4.5.2 Instantaneous predicted vs. simulated BLER

The instantaneous (conditional on a given channel outcome) simulated and

predicted BLER for a large number of channel outcomes gives further in-

sights into the accuracy of our prediction method. We generate randomly

200 channels over several SNR. For each channel outcome, the simulation

is activated only if its instantaneous predicted BLER is between 0.9 and

0.01 at the considered iteration. This helps to capture the region of interest

[0.9, 0.01] for all iterations. For each channel outcome, Monte Carlo simu-

lation is stopped after 100 block errors. Then the predicted and simulated

instantaneous BLER of this channel are plotted versus the effective SINR

of the first iteration in the same figure. The results of iteration 1,2 and 5
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for QPSK - 1/2 and 16QAM - 1/2 over CH2 are shown in Fig. 4.8 and Fig.

4.9, respectively. We observe that the instantaneous predicted BLER match

quite exactly the instantaneous simulated ones at all iterations.

Figure 4.3: 2D-LUT for FJDD of chosen MCS 16QAM-1/2

4.6 Conclusion

This chapter has addressed the issue of abstracting LMMSE-IC based turbo

receivers assuming powerful turbo coded modulations at the transmitter.

A stochastic modeling of the whole turbo receiver based on EXIT charts

(and variants) has been proposed. Its effectiveness has been demonstrated

through Monte Carlo simulations in a variety of transmission scenarios. The

approach can be easily extended to other types of compound codes (e.g., se-

rially concatenated codes, LDPC codes) and channel models (e.g., MIMO

block fading) or used to predict convergence thresholds for a given channel

outcome. More importantly, the approach may constitute the core of ad-

vanced link adaptation and RRM procedures in closed-loop coded MIMO

systems employing LMMSE-IC based turbo receivers.
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Figure 4.8: Instantaneous predicted and simulated BLER vs. SINR it1(dB)
of LAPPR based iterative LMMSE-IC with QPSK-1/2 over CH2
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Figure 4.9: Instantaneous predicted and simulated BLER vs. SINR it1(dB)
of LAPPR based iterative LMMSE-IC with 16QAM-1/2 over CH2



Chapter 5

Extension to per-antenna
turbo coded MIMO systems

5.1 Introduction

In 4G wireless mobile standards (e.g., LTE-A), multiple codewords are al-

lowed to be transmitted. Therefore, PHY-layer abstraction with turbo re-

ceivers in independent per-antenna turbo coded MIMO systems are investi-

gated in this chapter.

5.2 System model

We consider a transmission over a MIMO block Rayleigh fading AWGN

channel with nb fading blocks, nt transmit and nr receive antennas. Each

transmit antenna transmits an independent BICM. No CSI is assumed at the

transmitter and perfect CSI is assumed at the receiver. The total number ns

of channel uses available for transmission is fixed and the number of channel

uses per fading block is given as L = ns/nb.

5.2.1 Coding strategy

An MCS indexed by νt is a BICM transmitted over the t-th transmit an-

tenna, specified by a turbo code Cνt and a complex constellation Xνt ⊂ C of

cardinality 2qνt and a memoryless labeling rule µνt . The encoding process is

detailed for a certain antenna t ∈ {1, . . . , nt}. The vector of binary data (or

information bits) ut enters a turbo encoder ϕνt whose output is the code-

107
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word ct ∈ Cνt of length nc,νt = nsqνt . The codeword bits are interleaved by a

random time interleaver πνt and reshaped as a collection of integer matrices

{Db;t}nbb=1 with Db;t ∈ Z1×L
2qνt

. Each integer entry can be decomposed into

a sequence of qνt bits. A Gray mapping µνt transforms each matrix Db;t

into a complex matrix Sb;t ∈ X 1×L
νt . X

(0)
νt,j

and X
(1)
νt,j

denote the subsets

of points in Xνt whose labels have a 0 or a 1 at position j. With a slight

abuse of notation, let {db;t,l,j}
qνt
j=1 denote the set of bits labeling the symbol

sb;t,l ∈ Xνt . Let also µ−1
νt,j

(s) be the value of the j-th bit in the labeling of

any point s ∈Xνt .

5.2.2 Received signal model

The discrete-time vector yb;l ∈ Cnr received by the destination at b-th fading

block and time l = 1, . . . , L, is the same as expressed in (4.1) in chapter 4.

yb;l = Ȟbsb;l + wb;l (5.1)

where In (5.1) the vectors sb;l ∈ X nt
ν are i.i.d. random vectors (uniform

distribution) with E[sb;l] = 0nt and E[sb;ls
†
b;l] = Int , and the vectors wb;l ∈

Cnr are i.i.d. random vectors, circularly-symmetric Gaussian, with zero-

mean and covariance matrix σ2
wInr .

5.2.3 Decoding strategy

The global performance of the turbo receiver depends on the decode or-

dering. The number of possible decode orderings is
∏nt
t=1 t. A decode

ordering indexed by κ can be seen as a one-to-one correspondence {t →
kt,κ : t = 1, . . . , nt} where t is the antenna index and kt,κ is its decode or-

der index. After the nt-th decode, one global iteration completes. This

decode ordering is repeated iteratively. The natural decode ordering is

{kt,1 = t : t = 1, . . . , nt,θ}.
Furthermore, the turbo decoder is made of two BCJR decoders [38] ex-

changing probabilistic information (log domain). The first BCJR decoder

computes the LAPPRs on its own coded bits (information and parity bits)

taking into account the available a priori information on systematic informa-

tion bits stored from an earlier activation (i.e., the most recent LEXTPRs on

systematic information bits delivered by the second BCJR decoder). Then

the second BCJR decoder is activated and computes the LAPPRs on its
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own coded bits (information and parity bits) taking into account the avail-

able a priori information transmitted by the first BCJR decoder. The global

schedule is described here: First, one global iteration follows the chosen de-

code ordering. Second, the detection and decoding process at each antenna

comprises of one pass of equalizer followed by one pass of first BCJR decoder

followed by one pass of second BCJR decoder. Such a global message-passing

schedule provides much better global results than the conventional one, i.e.,

a single pass of joint equalizer followed by an arbitrary number of turbo de-

coder iterations. The message-passing schedule of natural decode ordering

is summarized in Fig. 5.1.
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iteration 2 
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antenna nt 

 

…
 

…
 

Figure 5.1: Message passing schedule of natural decode ordering

5.3 LMMSE-IC based turbo receivers

Empirical evidence reveals that the LAPPR-based iterative LMMSE-IC al-

gorithm can significantly outperform its LEXTPR-based counterpart for

highly loaded multiantenna or multiuser systems. As a consequence, we

intentionally focus on this particular class.

For the sake of readability, the detection and decoding process of the t-th

antenna (codeword) t ∈ {1, 2, . . . , nt} is detailed at a certain global itera-

tion i. This is necessary and sufficient because the detection and decoding

process is the same for every antennas. Considering the decode ordering κ,

the antenna t’ with kt′,κ < kt,κ have already been decoded at the current

iteration i and the antenna t’ with kt′,κ > kt,κ will be decoded after the t-th
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antenna. Therefore, the updated sets of LAPPR on coded bits are Λ
(i−1)
D,DECt

and {Λ(it′ )
D,DECt′

}ntt′=1,t′ 6=t where

it′ =

{
i if kt′,κ < kt,κ
i− 1 if kt′,κ > kt,κ

These sets of LAPPR on coded bits become after interleaving the sets

Λ
(i−1)
D,LEt

and {Λ(it′ )
D,LEt′

}ntt′=1,t′ 6=t of all log “a priori” probability ratios on la-

beling bits used for (soft) interference regeneration and cancellation, al-

though LAPPR contain “observation”. Let {Λ(i−1)
D,LE}sb;t,l be the set of all

LAPPR on coded bits involved in the labeling of sb;t,l at the current iter-

ation. Let {Λ(i)
D,LE}sb;l be the set of all LAPPR on coded bits involved in

the labeling of sb;l in the current iteration. Therefore, {Λ(i)
D,LE}sb;l contains{

{Λ(i−1)
D,LE}sb;t,l , {{Λ

(it′ )
D,LE}sb;t′,l}

nt
t′=1,t′ 6=t

}
. Let also {Λ(i)

D,LE}sb;l\sb;t,l be the set

of all LAPPR on coded bits involved in the labeling of sb;l except the coded

bits involved in the labeling of sb;t,l, i.e., {{Λ(it′ )
D,LE}sb;t′,l}

nt
t′=1,t′ 6=t .

5.3.1 Interference regeneration and cancellation

Prior to LMMSE estimation of the symbol sb;t,l, we compute the conditional

MMSE estimate of the interference, defined as y̆
(i)
b;l\t = E

[
yb;l|{Λ

(i)
D,LE}sb;l\sb;t,l

]
.

This computation is intractable for useful signal components and noise sam-

ples are of course no more independent conditional on {Λ(i)
D,LE}sb;l\sb;t,l . To

solve this issue, we make two symplifying assumptions.

A1 The pdf p
sb;l,wb;l|{Λ

(i)
D,LE}sb;l\sb;t,l

(sb;l,wb;l) factorizes as

p
sb;l,wb;l|{Λ

(i)
D,LE}sb;l\sb;t,l

(sb;l,wb;l) =

P (sb;t,l)pwb;l
(wb;l)

∏
t′ 6=t P (sb;t′,l|{Λ

(it′ )
D,LE}sb;t′,l).

(5.2)

A2 The pmf P (sb;t′,l|{Λ
(it′ )
D,LE}sb;t′,l) in (5.2) is given by

P (sb;t′,l|{Λ
(it′ )
D,LE}sb;t′,l) ∝ e

∑
j µ
−1
νt′ ,j

(sb;t′,l)Λ
(it′ )
D,LE(db;t′,l,j).

As a matter of fact, the assumptions (A1) and (A2) never hold even for

an ideal interleaver of infinite depth. But we can still force them in all
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subsequent derivations. Under (A1), the MMSE estimate of the interference

affecting the symbol sb;t,l is given by

ỹ
(i)
b;l\t = Hb(Int − ete

†
t)m

(i)
b;l (5.3)

where m
(i)
b;l is the vector made of all estimatesm

(it′ )
b;t′,l = E

[
sb;t′,l|{Λ

(it′ )
D,LE}sb;t′,l

]
evaluated under (A2). After IC, the new observed vector is yb;l − ỹ

(i)
b;l\t.

5.3.2 LMMSE estimation – unconditional case

The optimization problem to solve can be formulated as follows: Find s̆
(i)
b;t,l =

f̆
(i)†

b;t (yb;l − y̆
(i)
b;l\t) minimizing the unconditional MSE E

[
|s̆(i)
b;t,l − sb;t,l|

2
]

de-

fined as

E
[
E
[
|s̆(i)
b;t,l − sb;t,l|

2|{Λ(i)
D,LE}sb;l\sb;t,l

]]
. (5.4)

The outer expectation in (5.4) renders the (biased) LMMSE filter time-

invariant given by f̆
(i)
b;t = Ξ̆

(i)−1

b;t ξ̆
(i)

b;t where ξ̆
(i)

b;t = E
[
ξ̆

(i)

b;t,l

]
with

ξ̆
(i)

b;t,l = E
[
(yb;l − y̆

(i)
b;l\t)s

∗
b;t,l|{Λ

(i)
D,LE}sb;l\sb;t,l

]

and where Ξ̆
(i)
b;t = E

[
Ξ̆

(i)
b;t,l

]
with

Ξ̆
(i)
b;t,l = E

[
(yb;l − y̆

(i)
b;l\t)(yb;l − y̆

(i)
b;l\t)

†|{Λ(i)
D,LE}sb;l\sb;t,l

]
.

The computation of f̆
(i)
b;t is again intractable. However, under (A1), ξ̆

(i)

b;t and

Ξ̆
(i)
b;t become ξ

(i)
b;t = hb;t = Hbet and Ξ

(i)
b;t = HbV

(i)
b;\tH

(i)†

b +σ2
wInr where V

(i)
b;\t

is the unconditional symbol covariance matrix defined as

V
(i)
b;\t = diag{v(i1)

b;1 , . . . , v
(it−1)
b;t−1 , 1, v

(it+1)
b;t+1 , . . . , v

(int )
b;nt
}
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where ∀t′ 6= t, v
(it′ )
b;t′ = E

[
v

(it′ )
b;t′,l

]
with v

(it′ )
b;t′,l = E

[
|sb;t′,l −m

(it′ )
b;t′,l|

2|{Λ(it′ )
D,LE}sb;t′,l

]
evaluated under (A2). Using the matrix inversion lemma, we obtain the filter

f
(i)
b;t =

1

1 + η
(i)
b;t (1− v

(i−1)
b;t )

Σ
(i)−1

b hb;t (5.5)

where Σ
(i)
b = HbV

(i)
b H†b + σ2

wInr and η
(i)
b;t = h†b;tΣ

(i)−1

b hb;t with

V
(i)
b = V

(i)
b;\t − (1− v(i−1)

b;t )ete
†
t (5.6)

where v
(i−1)
b;t = E

[
v

(i−1)
b;t,l

]
with v

(i−1)
b;t,l = E

[
|sb;t,l −m

(i−1)
b;t,l |

2|{Λ(i−1)
D,LE}sb;t,l

]
evaluated under (A2). The corresponding estimate ŝ

(i)
b;t,l of sb;t,l can be ex-

pressed as

ŝ
(i)
b;t,l = f

(i)†

b;t (yb;l − ỹ
(i)
b;l\t) = g

(i)
b;tsb;t,l + ζ

(i)
b;t,l (5.7)

where g
(i)
b;t = f

(i)†

b;t hb;t and ζ
(i)
b;t,l is the residual interference plus noise term.

Clearly, ζ
(i)
b;t,l in (5.7) is zero-mean and uncorrelated with the useful signal

sb;t,l under (A1), i.e., E[sb;t,lζ
(i)∗

b;t,l ] = 0. Under (A1) and (A2) the variance

of ζ
(i)
b;t,l is ς

(i)
b;t = g

(i)
b;t (1 − g

(i)
b;t ). Thus, we can define the unconditional SINR

under (A1) and (A2) as

γ
(i)
b;t =

g
(i)
b;t

1− g(i)
b;t

=
η

(i)
b;t

1− η(i)
b;tv

(i−1)
b;t

. (5.8)

In practical implementation, we make several assumptions over the covari-

ance matrices V
(i)
b .

A3 Due to the particular structure of the MCS, the so-called equal variance

assumption holds, which states that

V
(i)
b = V(i) = diag{v(i1)

1 , . . . , v
(i−1)
t , . . . , v

(int )
nt }, ∀b. (5.9)
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A4 v
(i−1)
t and {v(it′ )

t′ }
nt
t′=1,t′ 6=t can be replaced by their empirical means de-

fined as

v̄
(i−1)
t =

1

nbL

nb∑
b=1

L∑
l=1

v
(i−1)
b;t,l ,

v̄
(it′ )
t′ =

1

nbL

nb∑
b=1

L∑
l=1

v
(it′ )
b;t′,l, ∀t

′ 6= t.

assuming sufficiently large L. Actually, the ergodic regime assumption (A4)

is part of the baseline assumptions of EXIT charts [37]. The assumption

(A3) never holds even for an ideal interleaver of infinite depth, but forcing it

induces no performance degradation. Finally the covariance matrix becomes

V̄(i) = diag{v̄(i1)
1 , . . . , v̄

(i−1)
t , . . . , v̄

(int )
nt } (5.10)

5.3.3 Demapping and decoding

The estimate ŝ
(i)
b;t,l is used as a decision statistic to compute the LEXTPR

on the qνt bits involved in the labeling of sb;t,l.

A5 In (5.7), the conditional pdf p
ŝ
(i)
b;t,l|sb;t,l

(ŝ
(i)
b;t,l) is circularly-symmetric com-

plex Gaussian distributed.

Under (A1), (A2) and (A5) the conditional pdf p
ŝ
(i)
b;t,l|sb;t,l

(ŝ
(i)
b;t,l)

is NC(g
(i)
b;tsb;t,l, ς

(i)
b;t ). As a result, under (A1),(A2), and (A5), for the special

case of Gray labeling, the LEXTPR Λ
(i)
E,DEM (db;t,l,j) on labeling bit db;t,l,j

is expressed as

Λ
(i)
E,DEM (db;t,l,j) =

∑
s∈X

(1)
νt,j

e−|ŝ
(i)
b;t,l−gb;ts|

2/ς
(i)
b;t∑

s∈X
(0)
νt,j

e−|ŝ
(i)
b;t,l−gb;ts|2/ς

(i)
b;t

(5.11)

5.3.4 Message-passing schedule for turbo decoding

The set Λ
(i)
E,DEMt

of all LEXTPR on labeling bits becomes after deinterleav-

ing the set Λ
(i)
I,DECt

of all log intrinsic probability ratios on coded bits used

as input for the decoder.
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A6 The pdf p
Λ

(i)
I,DECt

|c(Λ
(i)
I,DECt

) factorizes as

p
Λ

(i)
I,DECt

|ct
(Λ

(i)
I,DECt

) =

nc,νt∏
n=1

p
Λ

(i)
I,DEC(ct,n)|ct,n

(Λ
(i)
I,DEC(ct,n))

where Λ
(i)
I,DEC(ct,n) is the log intrinsic probability ratio on n-th coded bit ct,n

of the t-th codeword. The assumption (A6) allows to simplify the decoding

task. It is rightfully confirmed for an interleaver of finite, but large enough,

depth. The decoding consists of one pass of first BCJR decoder followed

by one pass of second BCJR decoder. This completes the decode task for

antenna t.

5.4 PHY-layer abstraction

The global performance evolution analysis should follow the chosen message-

passing schedule (Fig. 5.1 exemplifies the natural ordering). The PHY-

layer abstraction follows the one described in chapter 4 derived for STBICM

transmission. Again, we details the prediction method for the t-th antenna

at the iteration i.

5.4.1 Transfer characteristics of LMMSE-IC

The LMMSE-IC part for the t-th antenna ends up with nb independent

parallel channels under (A6). Each of them is modeled as a discrete-input

AWGN channel under (A5) whose SNR, given by

γ
(i)
b;t =

η
(i)
b;t

1− η(i)
b;t v̄

(i−1)
t

(5.12)

under (A1)-(A4), turns out to be a function φt of b, t, Hb, σ
2
w and the input

variance v̄
(i−1)
t . For each such channel, we can compute the AMI I

(i)
LEb;t

between the discrete input sb;t,l ∈Xνt and the output s̃
(i)
b;t,l = sb;t,l+ε

(i)
b;t,l with

εb;t,l ∼ NC(0, 1/γ
(i)
b;t ). The value of I

(i)
LEb;t

depends on the single parameter
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γ
(i)
b;t . Let Ī

(i)
LEt

be the arithmetic mean of the values {I(i)
LEb;t
}, i.e.,

Ī
(i)
LEt

=
1

nb

nb∑
b=1

I
(i)
LEb;t

. (5.13)

The AMI I
(i)
LEb;t

= ψνt(γ
(i)
b;t ) is a monotone increasing, thus invertible, func-

tion of the SNR, and depends on the MCS index νt. It is simulated off-line

and stored in a LUT.

5.4.2 Transfer characteristics of joint demapping and decod-

ing

The functional module is MCS-dependent and comprises the following steps:

demapping, deinterleaving, turbo decoding (one pass of the first BCJR de-

coder followed by one pass of the second BCJR decoder), reinterleaving,

and computation of the mean and variance of transmitted symbols based on

LAPPR on coded bits (as described before). The algorithm used to gener-

ate the different LUTs (BLER Pet = FJDDνt (γ, IA,DEC), the variance v̄t =

GJDDνt (γ, IA,DEC), and the mutual information IEt = TJDDνt (γ, IA,DEC))

is summarized in Algorithm 5.

5.4.3 Evolution analysis

It remains to relate the output Ī
(i)
LEt

of the first transfer function (LMMSE-

IC) and the input SNR of the second transfer function (joint demapping

and decoding) at any iteration. This is done by assuming that Ī
(i)
LE which

measures the information content of knowledge on coded modulated symbols

{sb;t,l}, averaged over all parallel AWGN channels, is equal to the informa-

tion content of knowledge on coded modulated symbols transmitted over

a single virtual discrete-input (with values in Xνt) AWGN channel with

effective SNR γ̄
(i)
LEt

given by

γ̄
(i)
LEt

= ψ−1
νt (Ī

(i)
LEt

) = ψ−1
νt

(
1

nb

nb∑
b=1

I
(i)
LEb;t

)
. (5.14)
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This technique inherited from EXIT charts is widely used in practice and

often referred to as MIESM. In our framework, it relies on all the defined

assumptions (A1)-(A6) or, equivalently, on (A5) and (A6) for the first it-

eration. The variance v̄
(i)
t = GJDDνt (γ̄

(i)
LE , I

(i)
A,DEC) is used in (5.10) under

(A4) for other antennas to be detected and decoded. Hence, the evolution of

LAPPR-based iterative LMMSE-IC can be tracked through the single scalar

parameter v̄
(i)
t .

5.4.4 Calibration

A major drawback of this performance prediction method is that the as-

sumptions (A1), (A2) and (A3) do not hold for LAPPR-based iterative

LMMSE-IC. As explained before in chapter 2 and chapter 4, a simple, yet

effective, calibration procedure has been proposed which have the effect to

artificially reduce the SINRs that are used in the performance prediction

method. Finally, a recapitulative diagram of the method is depicted in Fig.

5.2 for t-th antenna at i-th iteration.
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Figure 5.2: Performance prediction method of BICM at antenna t at itera-
tion i

5.5 Numerical results

The proposed physical layer abstraction method is tested over a 2x2 MIMO

4-block flat fading Rayleigh channel. The MCS are built from the LTE

turbo-code based on two 8-state rate-1/2 recursive systematic convolutional

(RSC) encoders with generator matrix G = [1; g1/g0] where g0 = [1011] and

g1 = [1101] and QAM modulations (Gray labeling). LAPPR based iterative
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LMMSE-IC is performed at the destination. The natural decode ordering is

considered here. The schedule is: one pass of equalizer followed by one pass

of first BCJR decoder followed by one pass of second BCJR decoder. This

completes one global iteration of the turbo receiver. We witnessed that 5

iterations are generally enough to ensure the convergence in practice.

The average Eb is the same for two antennas. Average simulated and

predicted BLER over open-loop MIMO are shown for several SNR. For each

SNR, we evaluated the average simulated BLER by Monte Carlo simulation

which is stopped after 1000 block errors for both codewords. The predicted

BLER is evaluated over 10000 channel realizations. Fig. 5.3 shows the

results for two different MCS on two antennas: antenna 1 QPSK-1/2 (pre-

diction with calibration factor 1.7) and antenna 2 16QAM-1/2 (prediction

with calibration factor 3.3). Fig. 5.4 shows the results for two identical

independent 16QAM-1/2 (prediction with calibration factor 3.3)on two an-

tennas. We observe that the average predicted BLER match exactly the

average simulated ones at every iterations.
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User 2: it1, 2, 3, 5 - Simulation
User 2: it1, 2, 3, 5 - Prediction

Figure 5.3: Average simulated vs. predicted BLER of LAPPR based iter-
ative LMMSE-IC with QPSK-1/2 at one antenna and 16QAM-1/2 at the
other antenna over 2× 2 MIMO -4 block fading channel
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Figure 5.4: Average simulated vs. predicted BLER of LAPPR based itera-
tive LMMSE-IC with two identical independent 16QAM-1/2 on two anten-
nas over 2× 2 MIMO -4 block fading channel

5.6 Conclusion

In this chapter, we have investigated the PHY-layer abstractions in inde-

pendent per-antenna turbo coded MIMO systems with iterative LMMSE-

IC receiver. Each antenna transmit an independent BICM. The topic is a

generalization of previous chapter 4. The proposed PHY-layer abstractions

have been validated by Monte-Carlo simulations with different communica-

tion scenarios. The following step is to investigate link adaptation strategies

in presence of such receiver and proposed PHY-layer abstractions.



Part II

Link adaptation for

closed-loop coded MIMO

systems with partial feedback

119





Chapter 6

Coding across antennas
(STBICM)

6.1 Introduction

Cross optimization between PHY and MAC layers, sometimes referred to as

cooperative resource allocation, is currently one of the most exciting research

topics in the design of MU-MIMO systems. One reason may be that the

computational complexity of the problem to solve represents a formidable

challenge in terms of mathematical modeling and implementation. In order

to build bridges between PHY and MAC layers, it is mandatory that the

link-level metrics be accurately modeled and effectively taken into account

in higher-level decision-making mechanisms. Only a limited amount of con-

tributions address this issue and, when they do it, most often restrict their

study to simple linear receivers (see e.g., [85] and [86]) or, if dealing with

more sophisticated non-linear receiver structures, e.g., Cyclic Redundancy

Check (CRC) - based SIC [87], idealize some parts of the decoding pro-

cess, typically assuming continuous-input channels with zero-error Gaussian

codebooks, and neglecting error propagation, which leads to inaccurate (i.e.,

too optimistic) predicted throughputs.

Real systems though deal with discrete-input channels and non-ideal

finite-length MCS. Besides, in the light of the substantial improvement they

This chapter is partially presented in the papers accepted to IEEE ICNC’2014, IEEE
WIMOB’2013 and a journal paper in preparation
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can bring in terms of system throughput or performance compared to con-

ventional receivers (i.e., linear receivers or non-linear SIC receivers), itera-

tive (turbo) LMMSE-IC should become an integral part of the assumptions

made on the PHY layer (see e.g., [71] [66] and the references therein). The

primarily subject of this chapter is to measure the true impact of this family

of iterative “turbo” receivers on the link level performance. The evolution of

this family of iterative receiver is analyzed building upon previous work on

advanced PHY layer modeling and the calibration enhancement. We show

how to incorporate the fine stochastic modeling of such receivers into the

joint decision-making mechanisms involved in link adaptation.

6.2 System model

We consider a single-user transmission over a MIMO block Rayleigh fading

multipath AWGN channel with nb fading blocks, nt transmit and nr receive

antennas. Partial state information is assumed at the transmitter through

a low rate feedback. Perfect channel state information is assumed at the

receiver. The total number ns of channel uses available for transmission is

fixed and the number of channel uses per fading block is given as L = ns/nb.

6.2.1 Coding strategy

Under limited feedback, only a finite number of transmission schemes are

available at the transmitter side, i.e., a finite set of MCS and a finite set

of spatial precoders. Let M be the set of MCS indices and P the set of

spatial precoders. An MCS indexed by ν ∈ M is a STBICM, specified by

a convolutional or turbo code Cν of rate rν and a complex constellation

Xν ⊂ C of cardinality 2qν and a memoryless labeling rule µν . We define

the rate of the MCS ν as ρν = rνqν (bits/complex dimension). By con-

vention, MCS are indexed in increasing order of the rates, i.e., the MCS

no. 1 has the lowest rate, and the MCS no. |M| the highest. Antenna

selection is used as a simple form of spatial precoding. A spatial precoder

indexed by θ ∈ P selects nt,θ ≤ nt antennas and is specified by a precod-

ing matrix Φθ. If {δ1, . . . , δnt,θ} is the index set of selected antennas, then

Φθ = 1/
√
nt,θ[eδ1 , . . . , eδnt,θ ] where eδt is the nt-dimensional vector with

1 at position δt and 0 elsewhere. The encoding process for MCS ν and

precoder θ is detailed. The vector of binary data (or information bits) u
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enters a turbo encoder ϕν whose output is the codeword c ∈ Cν of length

nc,ν,θ = nsnt,θqν . The codeword bits are interleaved by a random space time

interleaver πθ,ν and reshaped as a collection of integer matrices {Db}nbb=1

with Db ∈ Znt,θ×L2qν . Each integer entry can be decomposed into a sequence

of qν bits. A Gray mapping µν transforms each matrix Db into a complex

matrix Sb ∈ X
nt,θ×L
ν , which is finally precoded as Xb = ΦθSb ∈ Cnt×L.

X
(0)
ν,j and X

(1)
ν,j denote the subsets of points in Xν whose labels have a 0

or a 1 at position j. With a slight abuse of notation, let {db;t,l,j}qνj=1 denote

the set of bits labeling the symbol sb;t,l ∈ Xν . Let also µ−1
ν,j (s) be the value

of the j-th bit in the labeling of any point s ∈ Xν . STBICM with spatial

precoding is depicted in Fig.6.1.
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Mapping 

Mapping 
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Link  
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Channel 
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Figure 6.1: Link adaptation – STBICM with spatial precoding (antenna
selection)

6.2.2 Received signal model

Transmission occurs over a MIMO block Rayleigh fading multipath AWGN

channel. For the b-th fading block, the nτ +1 finite-length impulse response

(FIR) describes the small-scale multipath fading

Hb(l) =

nτ∑
τ=0

Hb;τδ(l − τ). (6.1)

Each tap gain Hb;τ is an nr × nt random matrix whose entries are modeled

as i.i.d. circularly-symmetric complex Gaussian random variables with zero-

mean and variance σ2
b;τ under the constraint

∑nτ
τ=0 σ

2
b;τ = 1. Let Ȟb;θ(l)

be the precoded channel FIR. In Ȟb;θ(l), Ȟθ
b;τ = Hb;τΦθ denotes the τ -th

precoded channel tap. The discrete-time vector yb;l ∈ Cnr received by the
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destination at b-th fading block and time l = 1, . . . , L, is expressed as

yb;l =

nτ∑
τ=0

Ȟθ
b;τsb;l−τ + wb;l (6.2)

with proper boundary conditions. In (6.2), the vectors sb;l ∈X
nt,θ
ν are i.i.d.

random vectors (uniform distribution) with E[sb;l] = 0nt,θ and E[sb;ls
†
b;l] =

Int,θ , and the vectors wb;l ∈ Cnr are i.i.d. random vectors, circularly-

symmetric Gaussian, with zero-mean and covariance matrix σ2
wInr .

6.3 LMMSE-IC based turbo receivers

Empirical evidence reveals that the LAPPR-based iterative LMMSE-IC al-

gorithm can significantly outperform its LEXTPR-based counterpart for

highly loaded multiantenna or multiuser systems. As a consequence, we

intentionally focus on this particular class.

The LAPPR-based iterative LMMSE-IC receiver architecture under con-

volutional coded MIMO transmission is described in Fig. 2.3. The different

steps of such iterative LMMSE-IC receivers can be found in chapter 2 and

are not re-written in this chapter.

The LAPPR-based iterative LMMSE-IC receiver architecture under turbo

coded MIMO transmission is described in Fig. 4.1 for the 1-block fad-

ing case. The different steps of such iterative LMMSE-IC receivers can be

found in chapter 4 and are not re-written in this chapter. For the turbo

coded case, the best schedule we have found is the following: one pass of

equalizer followed by one pass of first BCJR decoder followed by one pass

of second BCJR decoder. This completes one global iteration of the turbo

receiver.

6.4 PHY-layer abstraction

The proposed performance prediction method is semi-analytical and relies

on ten Brink’s stochastic approach of EXIT charts [37] particularly useful in

understanding and measuring the dynamics of turbo processing. The PHY-

layer abstractions can be found for convolutional coded in chapter 2 (Fig
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2.5)and for turbo code case in chapter 4 (Fig 4.2), respectively. There is no

need to be repeated in this chapter.

6.5 Link level performance evaluation

Closed-loop link adaptation performs joint spatial precoder selection (an-

tenna selection) and MCS selection. It aims at maximizing the average

rate subject to a target BLER constraint assuming LAPPR-based iterative

LMMSE-IC at the destination. The number of iterations nit depends on the

destination computational capacity.

For a given SNR γ and a given channel outcome {Hb}, the optimization

problem to solve can be formulated as follows:

Find R?(γ, {Hb}, nit) = maxω∈Ω nt,θρν
subject to C1, C2

where

• ω = {θ, ν} is a particular system configuration in Ω, the set of all

possible spatial precoder and MCS indices.

• P (nit)
e (ω) is the predicted BLER at iteration nit for a given system

configuration ω.

• C1 : nt,θ ≤ min(nt, nr)

• C2 : P
(nit)
e (ω) ≤ ε.

In practice, retransmission is activated where one block error is detected.

Assuming ARQ Type-I retransmission algorithm and retransmissions within

the coherence time of the channel, the predicted throughput is defined as

T ?(γ, {Hb}, nit) = R?(γ, {Hb}, nit)(1− P (nit)
e (ω?)) (6.3)

where ω? = {θ?, ν?} = arg maxω∈Ω nt,θρν . For comparison, the simulated

BLER P
(nit)
e,sim(ω?) and the simulated throughput T ?sim(γ, {Hb}, nit) defined

as

T ?sim(γ, {Hb}, nit) = R?(γ, {Hb}, nit)(1− P
(nit)
e,sim(ω?)) (6.4)

are obtained via Monte Carlo simulation. Then, we evaluate the average pre-

dicted rate R̄?(γ, nit) = E[R?(γ, {Hb}, nit)], the average predicted through-

put T̄ ?(γ, nit) = E[T ?(γ, {Hb}, nit)] and the average simulated throughput
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T̄ ?sim(γ, nit) = E[T ?sim(γ, {Hb}, nit)] where expectation is w.r.t. p{Hb}({Hb}).
An exhaustive search is described in Algorithm 6.

Algorithm 6

1: Input γ, nit
2: Init R̄? = 0, T̄ ? = 0, T̄ ?sim = 0
3: for ch = 1 to nch do
4: Init R? = 0
5: Draw channel H
6: for θ = 1 to |P| do
7: Create (precoded) channel Hθ

8: for ν = 1 to |M| do
9: Compute Rθ,ν = nt,θρν

10: if Rθ,ν > R? then

11: Run evolution analysis to get P
(nit)
e (ω)

12: if P
(nit)
e ≤ ε then

13: R? ← Rθ,ν
14: else
15: break (save complexity!)
16: end if
17: end if
18: end for
19: end for
20: R̄? ← R̄? +R?, T̄ ? ← T̄ ? +R?(1− P (nit)

e (ω?))

21: Run Monte Carlo simulation to get P
(nit)
e,sim(ω?)

22: T̄ ?sim ← T̄ ?sim +R?(1− P (nit)
e,sim(ω?))

23: end for
24: Outputs R̄?(γ, nit) = R̄?

nch
, T̄ ?(γ, nit) = T̄ ?

nch
, and T̄ ?sim(γ, nit) =

T̄ ?sim
nch

6.6 Numerical results

Multiple channel models are simulated in this section. Therefore, all these

channel models are reported in the following Table 6.1.

6.6.1 Convolutionally coded MIMO

The set of MCS constructed out of convolutional code and optimal calibrat-

ing factors are reported in Table 6.2. The LUTs of BER, BLER and symbol

variance derived from LAPPR on coded bits are plotted in Fig. 6.2, Fig. 6.3



CHAPTER 6 127

index MIMO nb nτ power profile

CH1 4x4 1 0 σ2
1;0 = 1

CH2 4x4 1 3 {σ2
1;0, σ

2
1;1, σ

2
1;2, σ

2
1;3} = {0.8669, 0.1170, 0.0158, 0.0003}

CH3 4x4 4 0 σ2
b;0 = 1, ∀b = 1, . . . , nb

CH4 4x4 1 3 σ2
1;τ = 0.25,∀τ = 0, . . . , nτ

Table 6.1: Set of channel models for numerical simulations

and Fig. 6.4, respectively. They are based on 64-state rate-1/3 or rate-1/2

(punctured) non-recursive non-systematic convolutional (NRNSC) encoders

and QAM modulations (Gray labeling). We choose ns = 288.

index ν type encoder rν constellation qν ρν βν
1 NRNSC 1/3 QPSK 2 0.67 1.0
2 NRNSC 1/2 QPSK 2 1.00 1.5
3 NRNSC 2/3 QPSK 2 1.33 2.0
4 NRNSC 3/4 QPSK 2 1.50 2.3
5 NRNSC 5/6 QPSK 2 1.67 2.8
6 NRNSC 1/2 16QAM 4 2.00 2.5
7 NRNSC 2/3 16QAM 4 2.67 4.8
8 NRNSC 3/4 16QAM 4 3.00 6.0
9 NRNSC 5/6 16QAM 4 3.33 6.5
10 NRNSC 2/3 64QAM 6 4.00 8.0
11 NRNSC 3/4 64QAM 6 4.50 9.5
12 NRNSC 5/6 64QAM 6 5.00 10.0

Table 6.2: Set of MCS based on convolutional code and optimal calibrating
factors

6.6.1.1 Open-loop MIMO

First, average simulated and predicted BLER are compared over several

SNR over CH1 ns is fixed to 288 which yields L = 288. For each SNR, we

evaluated the average simulated BLER by Monte Carlo simulation which is

stopped after 800 block errors. The predicted BLER is evaluated over 10000

channel outcomes. The simulated and predicted (with calibration factors

reported in Table 6.2) results for 16QAM-2/3, 16QAM-5/6, 64QAM-2/3

and 64QAM-5/6 are shown in Fig. 6.5, Fig. 6.6, Fig. 6.7 and Fig. 6.8,

respectively. For all MCS, the predicted average BLERs match very well
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Figure 6.2: LUTs of BER of 12 MCS adapted to 4 transmit antenna
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Figure 6.3: LUTs of BLER for 12 MCS adapted to 4 transmit antenna
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Figure 6.4: LUTs of symbol variance computed from LAPPR on coded bits
for 12 MCS adapted to 4 transmit antenna

the simulated ones for each MCS at different iterations which confirm the

accuracies and reliabilities of chosen calibration factors per MCS.

6.6.1.2 Closed-loop MIMO

Second, the closed-loop link adaptation procedure is tested for two types

of channels: CH1 and CH2 (exponential decreasing ISI power profile) as

reported in Table 6.1. The target BLER is ε = 10−1.

Firstly, LAPPR-based iterative LMMSE-IC is performed at the desti-

nation. The length of the sliding window (in CH2) is LSW = 33 with

L1 = L2 = 16. For each SNR, we evaluated the average predicted and sim-

ulated throughputs over nch = 1000 channel outcomes. For each channel

outcome, Monte Carlo simulation is stopped after 100 block errors. The

results are shown in Fig. 6.9 and Fig. 6.10 for CH1 and CH2, respec-

tively. For CH1, we observe that the average predicted throughput matches

exactly the average simulated throughput and increases dramatically as it-

erations progress. The Genie-aided IC curve corresponds to the ideal case

where interference is completely canceled (upper bound). The average rate
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Figure 6.5: Smulated vs. predicted (with calibration) average BLER for
16QAM-2/3 over CH1

at first iteration demonstrates that we should adaptively allocate higher

rates (as proposed in this chapter) to exploit the full turbo receiver po-

tential. For CH2, the situation is different. Indeed, the average simulated

throughput becomes much worse than the average predicted throughput at

the first iteration and high SNR. This may be surprising that the simulated

throughput is not monotonically increasing at the first iteration. However,

in closed-loop system, good simulated results can be obtained only if the

precoder and MCS selections are appropriate, neither too optimist nor too

pessimist. After careful examination of all assumptions, the non-validity of

(A6-b, chapter 2) in the simulation is identified to be responsible for this

phenomenon: The chosen value ns = 288 is too small at this situation for

high-order high-rate MCS. Larger interleaver sizes or less residual interfer-

ence (during the course of iterations) can help to reduce the discrepancy

between average predicted and simulated throughputs. This is obviously

seen in Fig. 6.10 where the average predicted throughput starts matching

very well the average simulated throughput at third and fifth iterations. To

resolve the problem of insufficient interleaver size, we keep the ns = 288

for each codeword while 50 codewords are interleaved by a single interleaver
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Figure 6.6: Smulated vs. predicted (with calibration) average BLER for
16QAM-5/6 over CH1

with 50 times larger size. The results are potted in Fig. 6.11 where accurate

match between the predicted and simulated throughput can be obtained.

We then analyzed LEXTPR-based iterative LMMSE-IC over CH2. The

set of MCS, sliding window size, number of channel uses per codeword

keep the same. New necessary LUTs are generated for the LEXTPR-based

LMMSE-IC. In this case, no calibration is needed since the assumptions

(A1-a - A3-a, chapter 2) are valid. In the finite size regime (288 c.u.) the

predicted and simulated throughput do not match for all iterations as shown

in Fig. 6.12. Indeed, the residual interference after LEXTPR based interfer-

ence subtraction keeps high having (A6-a, chapter 2) not valid even for the

subsequent iterations. This demonstrates the superiority of LAPPR-based

iterative LMMSE-IC as shown in Fig. 6.10. For the infinite size regime (50

times larger interleaver size as before), the results are shown in Fig. 6.13

where the predicted throughputs match accurately the simulated through-

puts at every iterations (no calibration is applied). Comparing Fig. 6.13

and Fig. 6.11, the performance at the fifth iteration of LEXTPR-based

LMMSE-IC is close to the performance at the third iteration of LAPPR-

based LMMSE-IC.
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Figure 6.7: Smulated vs. predicted (with calibration) average BLER for
64QAM-2/3 over CH1

6.6.2 Turbo coded MIMO

The set of MCS constructed out of turbo code and optimal calibrating factors

are reported in Table 6.3. Turbo codes are based on two 8-state rate-1/2

recursive systematic convolutional (RSC) encoders with generator matrix

G = [1, g1/g0] where g0 = [1011] and g1 = [1101] and QAM modulations

(Gray labeling). LAPPR-based iterative LMMSE-IC is performed at the

destination. ns is fixed to 2040.

6.6.2.1 Open-loop MIMO

First, average simulated and predicted BLER are compared over several

SNR over a general CH3 as reported in Table 6.1. ns is fixed to 2040 which

yields L = 510. For each SNR, we evaluated the average simulated BLER

by Monte Carlo simulation which is stopped after 800 block errors. The

predicted BLER is evaluated over 10000 channel outcomes. The simulated

and predicted (with calibration factors reported in Table 6.3) results for

QPSK-5/6, 16QAM-1/2, 16QAM-2/3 and 16QAM-5/6 are shown in Fig.
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Figure 6.8: Smulated vs. predicted (with calibration) average BLER for
64QAM-5/6 over CH1

index ν rν constellation qν ρν βν
1 1/3 QPSK 2 0.67 1.7
2 1/2 QPSK 2 1.00 2.0
3 2/3 QPSK 2 1.33 2.5
4 3/4 QPSK 2 1.50 2.7
5 5/6 QPSK 2 1.67 3.7
6 1/2 16QAM 4 2.00 3.3
7 2/3 16QAM 4 2.67 6.5
8 3/4 16QAM 4 3.00 9.5
9 5/6 16QAM 4 3.33 17.0

Table 6.3: Set of MCS based on turbo code and optimal calibrating factors

6.14, Fig. 6.15, Fig. 6.16 and Fig. 6.17, respectively. For all MCS, the

predicted average BLERs match very well the simulated ones for each MCS

at different iterations which confirm the accuracies and reliabilities of chosen

calibration factors per MCS.
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Figure 6.9: Average predicted and simulated throughputs (in bpcu) in
closed-loop convolutionally coded MIMO systems vs. SNR (dB) – CH1,
LAPPR-based iterative LMMSE-IC

6.6.2.2 Closed-loop MIMO

Second, the closed-loop link adaptation for turbo coded MIMO systems is

tested for three types of channels, CH1, CH3 and CH4 as reported in Table

6.1. ns is fixed to 2040 which yields L = 2040 for CH1 and CH4, and L = 510

for CH3. The target BLER is ε = 10−1. The set of MCS and optimal

calibrating factors are reported in Table 6.3. The maximum number of bits

per channel use (bpcu) is 13.33. The length of the sliding window (for CH4)

is LSW = 33 with L1 = L2 = 16. For each SNR, we evaluated the average

predicted and simulated throughputs over nch = 1000 channel outcomes.

For each channel outcome, the Monte Carlo simulation is stopped after 100

block errors. The results for CH1, CH3, and CH4 are shown in Fig. 6.18,

Fig. 6.19, and Fig. 6.20, respectively. For all channels, we observe that

the average predicted throughputs match perfectly the average simulated

ones at every iteration which proves the effectiveness of the performance

prediction method. We also note that throughputs increase dramatically as

iterations progress.
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Figure 6.10: Average predicted and simulated throughputs (in bpcu) in
closed-loop convolutionally coded MIMO systems vs. SNR (dB) – CH2,
LAPPR-based iterative LMMSE-IC

6.7 Conclusion

In this chapter, the problem of link adaptation for closed-loop coded MIMO

systems employing LMMSE-IC based turbo receivers has been addressed.

For the convolutional coded case, Monte Carlo simulations under limited

feedback show a significant gain of around 3 and 4dB compare to the clas-

sical LMMSE receiver conditional on a data rate of 12 bits per channel use,

for a 4x4 MIMO frequency flat and frequency selective channel, respectively.

Moreover, they also confirm that using LAPPR rather than LEXTPR on

coded bits for soft interference regeneration and cancellation yields faster

convergence of the iterative process and better final performance (both for fi-

nite and infinite interleaver length regimes). For the turbo coded case, based

on a PHY-layer abstraction of the whole turbo receiver, the link-level pre-

dicted and simulated performance for three communication scenarios have

been shown.



0 5 10 15 20 25 30
0

2

4

6

8

10

12

14

16

18

20

SNR(dB)

T
hr

ou
gh

pu
t (

bp
cu

)

Antenna selection - constraint BLER ≤ 10%

Prediction it1
Simulation it1
Prediction it3
Simulation it3
Prediction it5
Simulation it5
Genie-Aided IC bound
Average rate it1

Figure 6.11: Average predicted and simulated throughputs (in bpcu) with
50 times larger interleaver size in closed-loop convolutionally coded MIMO
systems vs. SNR (dB) – CH2, LAPPR-based iterative LMMSE-IC



CHAPTER 6 137

0 5 10 15 20 25 30
0

2

4

6

8

10

12

14

16

18

20

SNR(dB)

T
hr

ou
gh

pu
t (

bp
cu

)

Antenna selection - constraint BLER ≤ 10%

Prediction it1
Simulation it1
Prediction it3
Simulation it3
Prediction it5
Simulation it5
Genie-aided IC

Figure 6.12: Average predicted and simulated throughputs (in bpcu) in
closed-loop convolutionally coded MIMO systems vs. SNR (dB) – CH2,
LEXTPR-based iterative LMMSE-IC



CHAPTER 6 138

0 5 10 15 20 25 30
0

2

4

6

8

10

12

14

16

18

20

SNR(dB)

T
hr

ou
gh

pu
t (

bp
cu

)

Antenna selection - constraint BLER ≤ 10%

Prediction it1
Simulation it1
Prediction it3
Simulation it3
Prediction it5
Simulation it5
Genie-Aided IC bound
Average rate it1

Figure 6.13: Average predicted and simulated throughputs (in bpcu) with
50 times larger interleaver size in closed-loop convolutional coded MIMO
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Figure 6.14: Smulated vs. predicted (with calibration) average BLER for
QPSK-5/6 over CH3
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Figure 6.15: Smulated vs. predicted (with calibration) average BLER for
16QAM-1/2 over CH3
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Figure 6.16: Smulated vs. predicted (with calibration) average BLER for
16QAM-2/3 over CH3
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Figure 6.17: Smulated vs. predicted (with calibration) average BLER for
16QAM-5/6 over CH3
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Figure 6.19: Average predicted and simulated throughputs (in bpcu) in
closed-loop turbo coded MIMO systems vs. SNR (dB) – CH3, LAPPR-
based iterative LMMSE-IC



CHAPTER 6 143

0 5 10 15 20
0

2

4

6

8

10

12

SNR(dB)

T
hr

ou
gh

pu
t (

bp
cu

)

Antenna selection - constraint BLER ≤ 10%

Prediction it1
Simulation it1
Prediction it3
Simulation it3
Prediction it5
Simulation it5

Figure 6.20: Average predicted and simulated throughputs (in bpcu) in
closed-loop turbo coded MIMO systems vs. SNR (dB) – CH4, LAPPR-
based iterative LMMSE-IC



Chapter 7

Independent coding per
antenna (selective PARC)

7.1 Introduction

Employing the proposed PHY-layer abstraction, the link adaptation in closed-

loop turbo coded MIMO systems has been firstly investigated in [98] which

is limited to STBICM scheme, i.e., single codeword transmission. In 4G

wireless mobile standards (e.g., LTE-A), however, multiple codewords are

allowed to be transmitted. Therefore, selective PARC [99] with turbo re-

ceivers are investigated in this chapter where the best subset of transmit

antennas are selected and each antenna transmits an independent MCS con-

structed out of powerful turbo code. We formulate the task of joint selection

of spatial precoder (the best subsets of antennas), decode ordering and per

antenna rate as a discrete optimization problem and detail an exhaustive

search procedure to accurately predict the average link level performance.

7.2 System model

We consider a transmission over a MIMO block Rayleigh fading AWGN

channel with nb fading blocks, nt transmit and nr receive antennas. Each

transmit antenna transmits an independent MCS. Partial state information

is assumed at the transmitter through a low rate feedback. Perfect channel

This chapter will be partially presented in a conference paper in preparation
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state information is assumed at the receiver. The total number ns of channel

uses available for transmission is fixed and the number of channel uses per

fading block is given as L = ns/nb.

7.2.1 Coding strategy

Under limited feedback, only a finite number of transmission schemes are

available at the transmitter side, i.e., a finite set of spatial precoders and a

finite set of MCS. Let P be the set of available spatial precoders. Antenna

selection is used as a simple form of spatial precoding. A spatial precoder

indexed by θ ∈ P selects nt,θ ≤ nt antennas and is specified by a precoding

matrix Φθ. If {δ1, . . . , δnt,θ} is the index set of selected antennas, then

Φθ = 1/
√
nt,θ[eδ1 , . . . , eδnt,θ ] where eδt is the nt-dimensional vector with 1

at position δt and 0 elsewhere. Let M be the set of available MCS indices.

An MCS indexed by νt ∈ M is a BICM transmitted over the t-th transmit

antenna, specified by a turbo code Cνt of rate rνt and a complex constellation

Xνt ⊂ C of cardinality 2qνt and a memoryless labeling rule µνt . We define the

rate of the MCS νt as ρνt = rνtqνt (bits/complex dimension). By convention,

MCS are indexed in increasing order of the rates, i.e., the MCS no. 1 has the

lowest rate, and the MCS no. |M| the highest. Under the spatial precoder

indexed by θ, there are |M|nt,θ MCS combinations to be allocated over nt,θ

antennas. The MCS combination is indexed by χ with possible values among

1, . . . , |M|nt,θ . By convention, χ = 1 corresponds to the MCS combination

{νt = 1}nt,θt=1 and χ = |M|nt,θ corresponds to the MCS combination {νt =

|M|}nt,θt=1 . The encoding process under spatial precoder θ is detailed for a

certain selected antenna t ∈ {δ1, . . . , δnt,θ}. The vector of binary data (or

information bits) ut enters a turbo encoder ϕνt whose output is the codeword

ct ∈ Cνt of length nc,νt = nsqνt . The codeword bits are interleaved by a

random time interleaver πνt and reshaped as a collection of integer matrices

{Db;t}nbb=1 with Db;t ∈ Z1×L
2qνt

. Each integer entry can be decomposed into

a sequence of qνt bits. A Gray mapping µνt transforms each matrix Db;t

into a complex matrix Sb;t ∈ X 1×L
νt . X

(0)
νt,j

and X
(1)
νt,j

denote the subsets

of points in Xνt whose labels have a 0 or a 1 at position j. With a slight

abuse of notation, let {db;t,l,j}
qνt
j=1 denote the set of bits labeling the symbol

sb;t,l ∈Xνt . Let also µ−1
νt,j

(s) be the value of the j-th bit in the labeling of any

point s ∈ Xνt . Selective PARC with spatial precoding (antenna selection)

is depicted in Fig.7.1.
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Figure 7.1: Selective PARC with spatial precoding

7.2.2 Received signal model

Let Ȟθ
b = HbΦθ denotes the precoded channel for the b-th fading block. The

discrete-time vector yb;l ∈ Cnr received by the destination at b-th fading

block and time l = 1, . . . , L, is expressed as

yb;l = Ȟθ
bsb;l + wb;l (7.1)

In (7.1), the vectors sb;l ∈ X
nt,θ
ν are i.i.d. random vectors (uniform distri-

bution) with E[sb;l] = 0nt,θ and E[sb;ls
†
b;l] = Int,θ , and the vectors wb;l ∈ Cnr

are i.i.d. random vectors, circularly-symmetric Gaussian, with zero-mean

and covariance matrix σ2
wInr .

7.2.3 Decoding strategy

Under spatial precoder indexed by θ, nt,θ codewords are received. The

global performance of the turbo receiver depends on the decode ordering.

Let Wθ be the set of available decode orderings under spatial precoder θ

with |Wθ| =
∏nt,θ
t=1 t. A decode ordering indexed by κ ∈ Wθ can be seen

as a one-to-one correspondance {t → kt,κ : t = 1, . . . , nt,θ} where t is the

antenna index and kt,κ is its decode order index. After the nt,θ-th decode,

one global iteration completes. This decode ordering is repeated iteratively.

By convention, the decode ordering indexed by 1 correspond to the natural

decode ordering {kt,1 = t : t = 1, . . . , nt,θ}. This natural ordering may be

not the optimal ordering which maximizes the throughput subject to the

block error rate constraint.

Furthermore, the turbo decoder is made of two BCJR decoders [38] ex-

changing probabilistic information (log domain). The first BCJR decoder

computes the LAPPRs on its own coded bits (information and parity bits)
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taking into account the available a priori information on systematic informa-

tion bits stored from an earlier activation (i.e., the most recent LEXTPRs on

systematic information bits delivered by the second BCJR decoder). Then

the second BCJR decoder is activated and computes the LAPPRs on its own

coded bits (information and parity bits) taking into account the available

a priori information transmitted by the first BCJR decoder. The optimal

global schedule is described here. First, the best subset of antennas should

be selected. Second, one global iteration follows the optimal decode order-

ing. Third, the detection and decoding process at each antenna comprises of

one pass of equalizer followed by one pass of first BCJR decoder followed by

one pass of second BCJR decoder. Such a global message-passing schedule

provides much better global results than the conventional one, i.e., a single

pass of joint equalizer followed by an arbitrary number of turbo decoder iter-

ations. The message-passing schedule without antenna selection considering

the natural decode ordering is summarized in Fig. 5.1.

7.3 LMMSE-IC based turbo receivers

Empirical evidence reveals that the LAPPR-based iterative LMMSE-IC al-

gorithm can significantly outperform its LEXTPR-based counterpart for

highly loaded multiantenna or multiuser systems. As a consequence, we

intentionally focus on this particular class. For each BICM, the different

steps comprising the interference regeneration and cancellation, LMMSE

estimation, demapping and decoding can be found in chapter 5.

7.4 PHY-layer abstraction

The PHY-layer abstraction follows the one described in in chapter 5. The

performance evolution analysis should follow the chosen message-passing

schedule (Fig. 5.1 exemplifies the natural ordering). A recapitulative di-

agram of the method can be found in Fig. 5.2 for t-th antenna at i-th

iteration.



CHAPTER 7 148

7.5 Link level performance evaluation

Selective PARC performs joint selection of spatial precoder (the best subset

of antennas), decode ordering and MCS combination. It aims at maximizing

the average rate subject to a target BLER constraint assuming LAPPR-

based iterative LMMSE-IC at the destination. The number of iterations nit

depends on the destination computational capacity.

For a given SNR γ and a given channel outcome {Hb}, the optimization

problem to solve can be formulated as follows:

Find R?(γ, {Hb}, nit) = maxω∈Ω
∑nt,θ

t=1 ρνt
subject to C1, C2

where

• ω = {θ, κ, χ} is a particular system configuration in Ω, the set of all

possible spatial precoder, decode ordering and MCS indices.

• {P (nit)
t (ω)}nt,θt=1 are the predicted BLER of all nt,θ antennas at iteration

nit for a given system configuration ω.

• C1 : nt,θ ≤ min(nt, nr).

• C2 : {P (nit)
t (ω) ≤ ε}nt,θt=1 .

In practice, retransmission is activated where one block error is detected.

Assuming ARQ Type-I retransmission algorithm and retransmissions within

the coherence time of the channel, the predicted throughput is defined as

T ?(γ, {Hb}, nit) =

nt,θ∑
t=1

ρν?t (1− P (nit)
t (ω?)) (7.2)

where ω? = {θ?, κ?, χ?} is the optimal selection. For comparison, the simu-

lated BLER {P (nit)
t,sim(ω?)}nt,θ?t=1 and the simulated throughput T ?sim(γ, {Hb}, nit)

defined as

T ?sim(γ, {Hb}, nit) =

nt,θ∑
t=1

ρν?t (1− P (nit)
t,simu(ω?)) (7.3)

are obtained via Monte Carlo simulation. Then, we evaluate the average pre-

dicted rate R̄?(γ, nit) = E[R?(γ, {Hb}, nit)], the average predicted through-

put T̄ ?(γ, nit) = E[T ?(γ, {Hb}, nit)] and the average simulated throughput

T̄ ?sim(γ, nit) = E[T ?sim(γ, {Hb}, nit)] where expectation is w.r.t. p{Hb}({Hb}).
An exhaustive search procedure is described in Algorithm 7.
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Algorithm 7

1: Input γ, nit
2: Init R̄? = 0, T̄ ? = 0, T̄ ?sim = 0
3: for ch = 1 to nch do
4: Init R? = 0, T ? = 0
5: Draw channel {Hb}
6: for θ = 1 to |P| do
7: Create (precoded) channel {Ȟb;θ}
8: for κ = 1 to |Wθ| do
9: The evolution analysis ordering is fixed by κ.

10: for χ = 1 to |M|nt,θ do
11: Compute Rθ,κ,χ =

∑nt,θ
t=1 ρνt

12: if Rθ,χ,κ > R? then

13: Run evolution analysis to get {P (nit)
t (ω)}nt,θt=1

14: if {P (nit)
t ≤ ε}nt,θt=1 then

15: R? ← Rθ,χ,κ,

T ? ←
∑nt,θ

t=1 ρνt(1− P
(nit)
t (ω))

16: else
17: break (save complexity!)
18: end if
19: end if
20: end for
21: end for
22: end for
23: R̄? ← R̄? +R?,

T̄ ? ← T̄ ? + T ?

24: Run Monte Carlo simulation to get P
(nit)
t,sim(ω?)

25: T̄ ?sim ← T̄ ?sim +
∑nt,θ?

t=1 ρν?t (1− P (nit)
t,sim(ω?))

26: end for
27: Outputs R̄?(γ, nit) = R̄?

nch
, T̄ ?(γ, nit) = T̄ ?

nch
, and T̄ ?sim(γ, nit) =

T̄ ?sim
nch
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7.6 Numerical results

A 2 × 2 MIMO 4-block Rayleigh fading AWGN channel (i.e., nb = 4) is

chosen for simulations. ns is fixed to 4080 which yields L = 1020. Turbo

codes are based on two 8-state rate-1/2 RSC encoders with generator matrix

G = [1, g1/g0] where g0 = [1011] and g1 = [1101] and QAM modulations

(Gray labeling). LAPPR-based iterative LMMSE-IC is performed at the

destination. The target BLER is ε = 10−1. We witnessed that 5 iterations

are generally enough to ensure the convergence in practice. The MCS family

as well as their associated calibration factor are reported in Table 7.1.

index ν rν constellation qν ρν βν
1 1/3 QPSK 2 0.67 1.7
2 1/2 QPSK 2 1.00 2.0
3 2/3 QPSK 2 1.33 2.5
4 3/4 QPSK 2 1.50 2.7
5 5/6 QPSK 2 1.67 3.7
6 1/2 16QAM 4 2.00 3.3
7 2/3 16QAM 4 2.67 6.5
8 3/4 16QAM 4 3.00 9.5
9 5/6 16QAM 4 3.33 17.0
10 2/3 64QAM 4 4.00 12.0
11 3/4 64QAM 4 4.50 22.0
12 5/6 64QAM 4 5.00 34.0

Table 7.1: Set of MCS and optimal calibrating factors

7.6.1 Open-loop MIMO

First, we test open loop spatial multiplexing in which the MCS at every

antenna is fixed. The natural decode ordering is considered here. The

average Eb is the same for two antennas. Average simulated an predicted

BLER over open loop MIMO are shown for several SNR. For each SNR, we

evaluated the average simulated BLER by Monte Carlo simulation which is

stopped after 1000 block errors for both codewords. The predicted BLER

is evaluated over 10000 channel realizations.

The results for two identical independent MCS fixed on two antenna are

plotted in Fig 7.2, Fig 7.3, Fig 7.4 and Fig 7.5 for 16QAM-3/4, 64QAM-2/3,

64QAM-3/4 and 64QAM-5/6, respectively. We observe that the average pre-
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dicted BLER match exactly the average simulated ones at every iterations

which confirm the accuracies and reliabilities of chosen calibration factors

per MCS.
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User 1: it1,2,5 - Prediction
User 2: it1,2,5 - Simulation
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Figure 7.2: Average simulated vs. predicted BLER of LAPPR based itera-
tive LMMSE-IC with two identical independent 16QAM-3/4 on two anten-
nas over 2× 2 MIMO -4 block fading channel

7.6.2 Selective PARC

Second, we consider a selective PARC system based on the turbo-encoded

family. At each SNR, the average predicted throughput is evaluated over

1000 channel realizations. For each channel realization, Monte Carlo simula-

tion is stopped after 100 block errors. The LMMSE benchmark corresponds

to the one pass of joint LMMSE followed by 8 iterations of turbo-decoding.

The Genie-Aided bound corresponds to perfect interference cancellation.

7.6.2.1 LAPPR-based iterative LMMSE-IC

The receiver is the described turbo-SIC receiver with one pass of DEC1

followed by one pass of DEC2 in the turbo decoder. The link adaptation



CHAPTER 7 152

6 8 10 12 14 16
10-3

10-2

10-1

100

E
b
/N

0
(dB)

A
ve

ra
ge

 B
LE

R

User 1: it1,2,5 - Simulation 
User 1: it1,2,5 - Prediction
User 2: it1,2,5 - Simulation
User 2: it1,2,5 - Prediction

Figure 7.3: Average simulated vs. predicted BLER of LAPPR based itera-
tive LMMSE-IC with two identical independent 64QAM-2/3 on two anten-
nas over 2× 2 MIMO -4 block fading channel

algorithm is the one described in Algorithm 7.

The results are plotted in Fig. 7.6. We observe that the predicted

throughput match accurately the simulated throughput at every iterations.

An exciting gain around 3dB is observed at 8 bpcu between iteration 8 and

the LMMSE reference.

7.6.2.2 Non-iterative soft SIC

The receiver is a slightly modified schedule: the non-iterative soft SIC re-

ceiver with eight turbo decoding iterations. The link adaptation algorithm

is the one described in Algorithm 7. The MCS family as well as their associ-

ated calibration factor are the same as reported in Table 7.1. The LUTs of

BLER and BER for these MCS with 8 iterations turbo decodings are plotted

in Fig. 7.7 and Fig. 7.8, respectively. The results are plotted in Fig. 7.9.

We observe that the predicted throughput match accurately the simulated

throughput in which an exciting gain is also observed.
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Figure 7.4: Average simulated vs. predicted BLER of LAPPR based itera-
tive LMMSE-IC with two identical independent 64QAM-3/4 on two anten-
nas over 2× 2 MIMO -4 block fading channel

7.7 Conclusion

In this chapter, we have investigated the selective PARC in closed-loop

MIMO systems with iterative LMMSE-IC (Turbo SIC) receiver and non-

iterative soft SIC receiver. Each antenna transmits an independent BICM.

The algorithm performs joint selection of spatial precoder (the best subset

of antennas), decode ordering and MCS combination so as to maximize the

average rate subject to a target BLER constraint. This is enabled by a

novel semi-analytical PHY-layer abstraction whose accuracy and robustness

are confirmed by the analysis and simulation results. A very exciting gain

compare to the conventional LMMSE receiver is observed. Several future

research works exist. First, the existing CRC-based SIC receiver will be

simulated for comparison soon. Second, selective PARC in closed-loop con-

volutionally coded MIMO systems are to be tackled combing chapter 5 and

chapter 6. Third, the generalization the whole framework of selective PARC

to a more generalized MU-MIMO channel system and finally the multi-cell

multiuser MIMO systems is necessary.
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Figure 7.5: Average simulated vs. predicted BLER of LAPPR based itera-
tive LMMSE-IC with two identical independent 64QAM-5/6 on two anten-
nas over 2× 2 MIMO -4 block fading channel
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Figure 7.8: BER LUTs of 12 MCS with 8 iteration turbo decode
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Conclusions

The purpose of the last chapter is to conclude and give perspectives for

future research.

8.1 Summary

Multiple antenna technology and advanced turbo receivers have a large po-

tential to increase the spectral efficiency of future wireless communication

system. PHY-layer abstractions for a particular class of turbo receivers, i.e.,

iterative LMMSE-IC algorithms and link adaptation in presence of such

advanced receivers are the core contributions of this PHD study.

This PhD study has been able to propose accurate, robust and practical

semi-analytical PHY-layer abstractions for MIMO systems employing iter-

ative LMMSE-IC receivers. For this issue, multiple PHY layer fundamental

assumptions are investigated, such as the available CSIR, the MCS adopted

and the type of LLR on coded bits fed back from the decoder for interference

reconstruction and cancellation inside the iterative LMMSE-IC algorithm.

These work could be used as a milestone to design new interference

cancellation engines for next-generation wireless networks. Closed-loop link

adaptations in MIMO systems based on the proposed PHY-layer abstrac-

tions for iterative LMMSE-IC receivers have been tackled. Partial CSI is

assumed at the transmitter under limited feedback derived by the PHY-

layer abstractions and perfect CSI is assumed at the receiver. Link level

predicted and simulated performance are compared in different communica-

tion scenarios to measure the true impact on the performance brought by

turbo receiver.

157
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• In the second chapter, PHY-layer abstractions have been proposed for

convolutionally coded MIMO systems employing iterative LMMSE-IC

receiver under perfect CSIR. The PHY layer abstractions are able to

analyze and predict the iterative receiver performance per iteration.

The underlying assumptions for this family of turbo receiver are clari-

fied after careful examinations. Indeed, under perfect CSIR, while the

underlying assumptions hold in practice for LEXTPR-based iterative

LMMSE-IC, some of them prove to be approximate (and optimistic)

in the second case. To solve this problem, an improved PHY-layer

abstraction has been proposed for LAPPR-based iterative LMMSE-

IC by introducing a calibration procedure whose efficiency has been

validated by Monte-Carlo simulations. These work help to understand

thoroughly the turbo receiver’s behaviors.

• In the third chapter, PHY-layer abstractions have been proposed for

convolutionally coded MIMO systems employing iterative LMMSE-

IC receiver under imperfect CSIR. The emphasis is put on the sit-

uation when the number of pilot symbols are reduced and we can

no longer neglect the channel estimation errors. Under imperfect

CSIR, a novel semi-analytical PHY-layer abstraction has been pro-

posed for LEXTPR-based iterative LMMSE-IC detection joint decod-

ing and semi-blind channel estimation by extending the existing ap-

proach derived under perfect CSIR. It allows computing the average

BLER conditional on an initial pilot assisted channel estimation and

long term channel distribution information. It heavily relies on Gaus-

sian approximation on the LMMSE-IC and channel estimation error

models whose second order statistics are governed by the SINRs and

the channel estimate MSE, respectively. Simulation in the context of

SU-MIMO frequency selective transmission, modeled by a discrete in-

put MIMO memoryless block fading Rayleigh channel, demonstrates

the validity of the proposed approach.

• In the forth chapter, novel semi-analytical PHY-layer abstractions

have been proposed for turbo coded MIMO systems employing it-

erative LMMSE-IC receiver under perfect CSIR. This works enables

the introduction of iterative LMMSE-IC receivers in LTE. A stochas-

tic modeling of the whole turbo receiver based on EXIT charts (and

variants) has been proposed and its effectiveness have been demon-
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strated through Monte Carlo simulations in a variety of transmission

scenarios. As the core of the contribution, it is found that, even in

the simplified case of Gray mapping, a bivariate LUT is needed to

characterize the evolution of the joint demapper and turbo decoder

embedded within the iterative LMMSE-IC. This is in contrast with

existing PHY-layer abstraction where simple convolutional codes were

considered and univariate LUT sufficient. The approach can be easily

extended to other types of compound codes (e.g., serially concatenated

codes, LDPC codes). Therefore, the approach may constitute the core

of link adaptation and RRM procedures in closed-loop turbo coded

MIMO systems employing iterative LMMSE-IC receivers in LTE-A.

• In the fifth chapter, PHY-layer abstractions for a generic per-antenna

turbo coded MIMO system employing iterative LMMSE-IC have been

proposed. Compare to the third topic of this part, a new degree of

freedom is the decode ordering. The global turbo receiver performance

depends on the decode ordering which should be taken into account

in the PHY-layer abstractions. The proposed PHY-layer abstractions

have been validated by Monte-Carlo simulations with different com-

munication scenarios

• In the sixth chapter, the problem of link adaptation in closed-loop

coded MIMO systems employing LAPPR- based iterative LMMSE-IC

receiver has been tackled. Partial CSI is assumed at the transmitter

under limited feedback derived by the PHY-layer abstraction and per-

fect CSI is assumed at the receiver. Univariate LUTs and associated

optimal calibration factors per MCS constructed out of convolutional

code are obtained off-line. Bivariate LUTs and associated optimal cal-

ibration factors per MCS constructed out of turbo code are obtained

off-line. Closed-loop link adaptation performs joint spatial precoder

selection (i.e., antenna selection) and MCS selection. It aims to max-

imize the average rate subject to a target BLER constraint assum-

ing LAPPR-based iterative LMMSE-IC at the destination. For the

convolutional coded case, Monte Carlo simulations show a significant

gain compare to the classical LMMSE receiver over different channel

models. Moreover, they also confirm that using LAPPR rather than

LEXTPR on coded bits for soft interference regeneration and cancel-

lation yields faster convergence of the iterative process and better final
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performance (both for finite and infinite interleaver length regimes).

For the turbo-coded case, based on the proposed PHY-layer abstrac-

tion of the whole turbo receiver, we have shown the link-level predicted

and simulated performance for three communication scenarios.

• In the seventh chapter, the selective PARC in closed-loop turbo coded

MIMO systems with LAPPR-based iterative LMMSE-IC receiver has

been investigated. Bivariate LUTs and associated optimal calibration

factors per MCS constructed out of turbo code are obtained off-line.

The algorithm performs joint selection of spatial precoder (the best

subset of antennas), decode ordering and MCS combination so as to

maximize the average rate subject to a target BLER constraint. This is

enabled by the semi-analytical PHY-layer abstraction proposed before

whose accuracy and robustness are confirmed again by the analysis

and simulation results. A very exciting gain of iterative LMMSE-

IC receiver compared to the conventional LMMSE receiver has been

observed.

8.2 Perspectives

Future research topics include several mains aspects.

• More performant iterative receiver: There is still a gap between the

performances of iterative LMMSE-IC algorithms and the perfect in-

terference cancellation bound in SU-MIMO communication scenarios.

Further improvement of spectral efficiency relies on more powerful re-

ceiver such as iterative MAP receiver. We would like to propose an

accurate, robust and practical semi-analytical PHY-layer abstraction

for iterative MAP receiver, however there are no SINRs to be com-

puted. Inspired by the introduction of a calibration factor (greater

than one) over the symbol variance to compensate the assumption in-

accuracies for LAPPR-based iterative LMMSE-IC, the iterative MAP

algorithm might be approximated by a virtual LEXTPR-based iter-

ative LMMSE-IC compensated by a calibration factor (smaller than

one) over the symbol variance. If this ides is validated, we are able to

propose a framework of PHY-layer abstractions for turbo receivers.



CHAPTER 8 161

• More aggressive calibrations in conjunction with Incremental-Redundancy

Hybrid Automatic Repeat reQuest (IR-HARQ): The introduced cal-

ibration factors for LAPPR-based iterative LMMSE-IC algorithm are

obtained by minimizing the sum distance between the simulated and

calibrated predicted BLER (or BER) over large number of channel

realizations drawn from a generic channel distribution model. In this

ways, the obtained calibration factors work well in most of channel

realizations. By avoiding to allocate too optimist data rate for bad

radio conditions which results in a lot of retransmissions, the usage of

calibration factors inevitably sacrifices the data rate over good radio

conditions. If we want to adopt more aggressive (smaller) calibration

factors to allocate higher rate over good radio conditions, there should

exist some mechanisms to compensate the possible allocations of too

optimist data rate over bad radio conditions. In this line of thought,

there is a need to employ IR- HARQ [88], [89], [90], [91], [92], [93] in

the transmission.

• Open-loop link adaptation: The part of FLA in this PhD study is

based on ideal instantaneous and perfect feedback and all instanta-

neous feedbacks can be treated by MAC layer immediately. However,

these may be not realistic in practice. For example, the feedbacks

become no longer reliable when the UE is moving too fast, or a base-

station under heavy load is not able to follow the feedbacks of ev-

ery UE. In such situations, a better strategy is to perform open-loop

link adaptation regardless the instantaneous feedback. Shifting from

closed-loop to open-loop link adaptation, the gain brought by iterative

receiver compare to conventional linear receiver will increase. There-

fore, it is of interest to compare the performance of different types of

receiver in the context of open-loop link adaptation.

• More generic channel model: Cross layer optimization has been tack-

led mainly over SU-MIMO systems. Future topics include uplink and

downlink system level performance evaluation, as well as an exten-

sion of this work to multicell MIMO. However, we have observed that

cross layer optimization starts introducing a very high computational

complexity to search the optimal solution as the degree of freedoms

increase greatly. Due to the complexity constraint, selected PARC is

limited to dual codeword transmission over a 2x2 MIMO block fading
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channel model in this PhD study. The following step should be selec-

tive PARC for dual codeword transmission over a 4x4 MIMO block

fading channel model. Furthermore, a smart exploration of the search

space is required to lower the complexity of optimizing all the degree

of freedoms: user, antenna, precoding, rate, ordering and eventually

the frequency and power. We believe that iterative receivers in con-

junction with such advanced LA and RRM mechanisms will increase

substantially the system throughputs.



Appendix

The objective of this appendix is to derive the statistics of the biased

LMMSE channel estimation error model from the first iteration. For the

sake of notation simplicity, we will remove the iteration superscript (i) in

the following, since the derivation is the same for all iteration i ≥ 1

Ĥ = YF = (HS + W)F = HSF + WF = HG + Ψ

where

G = S(Rσ2
h)Σ−1

w S
†
(
S(Rσ2

h)Σ−1
w S

†
+ Int

)−1
. (1)

We develop further

S(Rσ2
h)Σ−1

w S
†

= [Aps, S̃](Rσ2
h)Σ−1

w [Aps, S̃]† =
σ2
h

N0
ApsAps† +

σ2
h

N0 +4N0
S̃S̃†.(2)

It is important to remember here that the MSE estimates mt,l are built from

LEXTPR and, thus, Assumption A2 and A3 hold for infinite size interleaver.

As a result, for a sufficiently large Lds as well as interleaver size and invoking

ergodicity, we have

E{mtm
†
t′} = Lds

Lds∑
l=1

mt,lm
†
t′,l = δt,t′Lds(σ

2
ds − ṽ) (3)

where δt,t′ is equal to 1 iff t = t′ or 0 otherwise. From this last observation,

we can further simplified (2) as

S(Rσ2
h)Σ−1

w S
†

= Lpsσ
2
ps

σ2
h

N0
Int + Lds(σ

2
ds − ṽ)

σ2
h

N0 +4N0
Int
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which, finally, yields

G =
Lpsσ

2
ps + Lds(σ

2
ds − ṽ) N0

N0+4N0

Lpsσ2
ps + Lds(σ

2
ds − ṽ) N0

N0+4N0
+ N0

σ2
h

Int = gInt . (4)

Finally, the channel estimation error model can be expressed as

Ĥ = gH +ψ (5)

On the other hand, since the channel estimation is carried out row by row,

the second order statistics of Ψ is given by the covariance of one of its row

ψr, i.e.,

Σψr = E{ψr†ψr} = F†E{wr†wr}F =
1

R
F†ΣwF = σ2

ΨInt (6)

with

σ2
Ψ = N0

Lpsσ
2
ps + Lds(σ

2
ds − ṽ) N0

N0+4N0(
Lpsσ2

ps + Lds(σ
2
ds − ṽ) N0

N0+4N0
+ N0

σ2
h

)2 . (7)
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[49] M. Tüchler, R. Koetter, and A. Singer, “Turbo equalization: Principles

and new results,” IEEE Trans. Commun., vol. 50, no. 5, pp. 754–767,

May 2002.



BIBLIOGRAPHY 170

[50] N. Elhelw, C. Hermosilla, and L. Szczecinski, “Analytical evaluation

of turbo multiuser detection algorithms,” in Proc. Canadian Conf. on

Electrical and Computer Engineering, vol. 3, Montreal, Canada, May

2004, pp. 1405–1408.

[51] C. Hermosilla and L. Szczecinski, “Performance evaluation of lin-

ear turbo receivers using analytical EXIT functions,” in Proc. IEEE

PIMRC’04, vol. 2, Barcelona, Spain, Sep. 2004, pp. 1307–1311.

[52] ——, “Performance evaluation of linear turbo receivers using analyt-

ical extrinsic information transfer functions,” EURASIP Journal on

Applied Signal Processing, vol. 6, pp. 892–905, 2005.

[53] K. Narayanan, X. Wang, and G. Yue, “Estimating the PDF of the SIC-

MMSE equalizer output and its applications in designing LDPC codes

with turbo-equalization,” IEEE Trans. Wireless Commun., vol. 4, no. 1,

pp. 278–287, Jan. 2005.

[54] K. Kansanen and T. Matsumoto, “An Analytical Method for MMSE

MIMO Turbo Equalizer EXIT Chart Computation,” IEEE Trans. Wire-

less Commun., vol. 6, no. 1, pp. 59–63, Jan. 2007.

[55] V. Ramon, C. Herzet, and L. Vandendorpe, “A semi-analytical method

for predicting the performance and convergence behavior of a multiuser

turbo-equalizer/demapper,” IEEE Trans. Signal Process., vol. 55, no. 3,

pp. 1104–1117, Mar. 2007.

[56] X. Yuan, Q. Guo, X. Wang, and L. Ping, “Evolution analysis of low-

cost iterative equalization in coded linear systems with cyclic prefixes,”

IEEE J. Sel. Areas Commun., vol. 26, no. 2, pp. 301–310, Feb. 2008.

[57] L. Ping, J. Tong, X. Yuan, and Q. Guo, “Performance analysis of multi-

ary systems with iterative linear minimum-mean-square-error detec-

tion,” in Proc. 5th International Symposium on Turbo Codes (ISTC’08),

Lausanne, Switzerland, Sep. 2008, pp. 192–197.



BIBLIOGRAPHY 171

[58] M. Moher, “An iterative multiuser detection decoder for near-capacity

communications,” IEEE Trans. Commun., vol. 46, no. 7, pp. 870–880,

Jul. 1998.

[59] R. Knopp and P. Humblet, “On coding for block fading channels,” IEEE

Trans. Inf. Theory, vol. 46, no. 1, pp. 189–205, Jan. 2000.

[60] J. Cheng, “Coding performance of various type-I HARQ schemes with

BICM,” in Proc. IEEE ISIT’04, Chicago, USA, Jun./Jul. 2004, pp.

319–319.

[61] K. Brueninghaus, D. Astely, T. Sälzer, S. Visuri, A. Alexiou, S. Karger,

and G. A. Seraji, “Link performance models for system level simulations

of broadband radio access systems,” in Proc. IEEE PIMRC’05, vol. 4,

Berlin, Germany, Sep. 2005, pp. 2306–2311.

[62] L. Wan, S. Tsai, and M. Almgren, “A fading-insensitive performance

metric for a unified link quality model,” in Proc. IEEE WCNC’06, vol. 4,

Las Vegas, USA, Apr. 2006, pp. 2110–2114.

[63] S. Stiglmayr, M. Bossert, and E. Costa, “Adaptive coding and modu-

lation in OFDM systems using BICM and rate-compatible punctured

codes,” in Proc. European Wireless Conference, Paris, France, Apr.

2007.

[64] N. Network, “OFDM Exponential Effective SIR Mapping Validation,

EESM simulation results,” in 3GPP, Tech. Rep. R1- 040089, Jan. 2004.

[65] G. Caire, G. Taricco, and E. Biglieri, “Bit-interleaved coded modula-

tion,” IEEE Trans. Inf. Theory, vol. 44, no. 3, pp. 927–946, may 1998.

[66] R. Visoz, A. O. Berthet, and M. Lalam, “Semi-Analytical Performance

Prediction Methods for Iterative MMSE-IC Multiuser MIMO Joint De-

coding,” IEEE Trans. Commun., vol. 58, no. 9, pp. 2576–2589, Sep.

2010.
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