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Abstract

Current wireless communication systems evolve toward an enhanced reactiv-
ity of Radio Resource Management (RRM) and Fast Link Adaptation (FLA)
protocols in order to jointly optimize the Media Access Control (MAC) and
Physical (PHY) layers. In parallel, multiple antenna technology and ad-
vanced turbo receivers have a large potential to increase the spectral effi-
ciency of future wireless communication system. These two trends, namely,
cross layer optimization and turbo processing, call for the development of
new PHY-layer abstractions (also called performance prediction method)
that can capture the iterative receiver performance per iteration to enable
the smooth introduction of such advanced receivers within FLA and RRM.

The PhD thesis first revisits in detail the architecture of the turbo re-
ceiver, more particularly, the class of iterative Linear Minimum Mean-Square
Error (soft) Interference Cancellation (LMMSE-IC) algorithms. Then, a
semi-analytical performance prediction method is proposed to analyze its
evolution through the stochastic modeling of each of the components. In-
trinsically, the performance prediction method is conditional on the available
Channel State Information at Receiver (CSIR), the type of channel coding
(convolutional code or turbo code), the number of codewords and the type
of Log Likelihood Ratios (LLR) on coded bits fed back from the decoder for
interference reconstruction and cancellation inside the iterative LMMSE-IC
algorithms.

In the second part, closed-loop FLA in coded MIMO systems based on
the proposed PHY-layer abstractions for iterative LMMSE-IC receiver have
been tackled. The proposed link adaptation scheme relies on a low rate feed-
back and operates joint spatial precoder selection (e.g., antenna selection)
and Modulation and Coding Scheme (MCS) selection so as to maximize the
average rate subject to a target block error rate constraint. The cross an-
tenna coding (the transmitter employs a Space-Time Bit-Interleaved Coded
Modulation (STBICM) ) and per antenna coding (Each antenna employs
an independent Bit-Interleaved Coded Modulation(BICM)) cases are both
considered.
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Résumé détaillé

Selon les estimations de I'Union Internationale des Télécommunications (ITU)
[1], le nombre d’abonnements mobiles cellulaires atteint 6,8 milliards en
2013, ce qui correspond & un taux de pénétration global de 96%. Aujour-
d’hui, les gens peuvent communiquer les uns avec les autres facilement que
ce soit vocalement ou par SMS et disposent d’une connexion Internet des
lors qu’ils sont couverts par le réseau de communications mobile.

Les systéemes de premiere génération (1G) ont été développés dans les
années 1980. Ces systemes utilisaient la technologie analogique et ont été
congus uniquement pour le service vocal.

A partir de 1991, les systemes de deuxiéme génération (2G) qui ont
été développés commencaient a utiliser la technologie numérique, comme le
Systeme Mondial de Communications mobiles (GSM) en Europe, la Com-
munication Numérique Personnel (PDC) au Japon et IS- 95 aux Etats-Unis.
Parmi ces systemes, le GSM a été largement accepté et déployé dans la plu-
part des pays et est encore utilisé aujourd’hui. Les systémes 2G ont été
concus pour fournir la voix et le SMS, et également plus tard un service de
données avec GSM Evolution (EDGE). Parmi la famille des systémes 2G,
GSM et PDC ont été basés sur deux techniques différentes. La premiére est
le Fréquence-Division Multiple Access (FDMA) [2] : toute la bande passante
est divisée en de multiples canaux & bande étroite éloignées en fréquence et
de multiples utilisateurs peuvent transmettre simultanément sur plusieurs
canaux a bande étroite. La deuxieme techniques est le Time Division Mul-
tiple Access (TDMA) [2] : plusieurs utilisateurs peuvent transmettre sur un
canal a bande étroite a un instant différent. Systeéme IS-95 était basé sur
le Code-Division Multiple Access (CDMA) [2] : chaque utilisateur transmet
ses signaux sur la totalité de la bande passante et chaque utilisateur est
identifié par un code spécifique.

Les systemes de troisieme génération (3G) incluent deux familles de tech-

nologies : Universal Mobile Telecommunications System (UMTS), publié
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par lorganisme de normalisation de la Third Generation Partnership Pro-
ject (3GPP) en version R99 suivant GSM et CDMA2000 suivant IS-95. Le
systeme UMTS a été largement déployé dans de nombreux pays alors que le
systeme CDMA2000 est principalement déployé en Asie et en Amérique du
Nord. Les systemes 3G amenent une amélioration significative par rapport
aux systemes 2G et visent a fournir des débits de données plus élevés, a
améliorer les services vocaux ainsi que les services de données et les applica-
tions. A la suite de leffort mondial de normalisation, la famille des systemes
3G a été uniformément basée sur la technologie CDMA. UMTS utilise le
CDMA large bande (WCDMA) qui prend en charge des modes de duplex par
séparation temporelle (TDD) et duplex par séparation fréquentielle (FDD).
Une variante de 'UMTS TDD, nommée Time Division Synchronous CDMA
(TD-SCDMA), a été également normalisé par le 3GPP, et est principalement
déployée en Chine.

Par la suite, le UMTS a été renforcé par High Speed Downlink Packet Ac-
cess (HSDPA) et High Speed Uplink Packet Access (HSUPA) dans le 3GPP.
Des modulations d’ordre supérieur sont prises en charge : 16 Quadrature
Amplitude Modulation (16QAM) est introduite dans la liaison descendante
comme une amélioration de la Quadrature Phase Shift Keying (QPSK) de
la version R99 et QPSK est introduite dans la liaison montante comme
complémentaire de Binary Phase Shift Keying (BPSK) de la version R99.
Le méchanisme Adaptatif de Modulation et Codage (AMC) est introduit
afin d’adapter dynamiquement le taux de codage et I'ordre de modulation
aux conditions radio instantanées et aux besoins des utilisateurs. Un nou-
veau mécanisme de réquete automatique de répétition hybride (HARQ) est
ajouté entre les utilisateurs et la station de base afin de réduire la latence
du systeme en cas de perte de paquets.

L’évolution de HSPA, HSPA + (R7, R8) a été congue pour améliorer
le débit de données par l'introduction de nouvelles techniques. Les liaisons
descendante et montante ont commencé a supporter 64QAM et 16QAM,
respectivement. Les systémes de Multiple-Input Multiple-Output(MIMO)
[3], [4] sont également introduits. La technologie MIMO peut étre utilisée
pour augmenter le taux de données [3], [5], [6], [7] (gain de multiplexage
spatial), pour augmenter la robustesse de transmission (gain de diversité
spatiale) ou pour concentrer ’énergie de transmission dans une certaine
direction (précodage ou de formation de faisceaux).

En tant que quatrieme étape remarquable, le Long Term Evolution
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(LTE), publié dans la version R8/9 et bient6t LTE-Advanced (LTE -A),
publié dans la version R10/11, définis par le 3GPP sont largement reconnus
comme les systémes de quatrieme génération (4G) qui ont été caractérisés
par la technologie Orthogonal Frequency - Division Multiplexing (OFDM).
Les avantages de 'OFDM [2] sont multiples, tels que la robustesse aux in-
terférences inter-symboles (ISI) qui dégradent les performances du CDMA,
la flexibilité de déploiement sur différents grande bande qui fait défaut au
CDMA, TPadéquation de transmission MIMO, la gestion et la planification
de large bande, la flexibilité de I'acces multiple, etc. Les sous-porteuses de la
technologie OFDM se chevauchent mais restent orthogonales, ce qui donne
a OFDM uen tres grande efficacité spectrale [8]. LTE-A a choisi pour la
liaison descendante un systeéme Orthogonal Frequency - Division Multiple
Access (OFDMA ) [9] et pour la liaison montante un systeme Single Carrier
Frequency - Division Multiple Access (SC-FDMA) [10] . Le choix différent
pour la liaison descendante et montante vient du ratio puissance créte a
puissance moyenne (PAPR ) [11] relativement élevé d’un signal OFDM qui
n’est pas tolérable pour I’'UE.

LTE-A prend en charge la modulation 64QAM & la fois pour la liaison
montante et descendante. Sur la couche physique (PHY), turbo code [12]
est utilisé pour protéger les données. La coordination simple d’interférence
inter-cellule (ICIC) dans la version R10, transmission/réception MultiPoint
coordonnée (COMP) dans la version R11, ainsi que l'agrégation des por-
teuses sont des techniques importantes qui peuvent encore accroitre 1'ef-
ficacité spectrale. Afin de réaliser I'adaptation de liaison, 'UE remonte
régulierement une information d’état du canal (CSI) a la station de base.
Celles-ci comprennent : un indicateur de la qualité du canal (CQI), un in-
dicateur de la Matrice de Précodage préférée (PMI), un Indicator de rang
(RI) (= nombre de flux spatiaux pris en charge). Certains parametres sont
importants comme le retard de rétroaction, la période de rétroaction et
éventuellement le filtrage de CQL.

Il existe d’autres types de systéme sans fil autres que cellulaire, tels
que les réseaux locaux sans fil (WLAN) [2]. Ceux-ci sont congus pour des
débits beaucoup plus élevés que les systemes cellulaires, mais sont similaires
a une seule cellule d’'un systeme cellulaire. Ils sont principalement congus
pour fournir en couverture a large bande. Les principales normes de réseau
local sans fil sont la famille IEEE 802.11 et le terme Wi-Fi est utilisé comme

synonyme pour le WLAN. Le Wi-Fi prend en charge les modulations d’ordre
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élevé (64QAM et méme 256QAM), MIMO et I'adaptation de liaison. La
couche PHY emploie le code convolutif afin de protéger les données.

Dans l'effort mondial de recherche en cours sur les futurs systemes de
communications sans fil, I’allocation adaptative des ressources, tels que ’heure,
le code, l'espace et la fréquence, basée sur le CSI et les besoins des uti-
lisateurs, est largement reconnue comme un élément clé pour approcher
la capacité des canaux MIMO & large bande sélectifs en fréquence [13]
, [14], [15], [16], [17], [18], [19], [20], [21], [22] , [23]. La gestion de re-
source radio (RRM) traditionnelle et 'adaptation lente de liaison (SLA )
ont été construites sur une interface lien a systeme, dénommeée interface
a valeur moyenne [24], dans laquelle la performance individuelle de liaison
radio est évaluée par des simulations Monte-Carlo moyennant sur les sta-
tistiques de I’évanouissement rapide. Pour que cette approche soit valable,
le délai de RRM et LA doit étre grand par rapport a la dynamique de
I’évanouissement rapide. A I'inverse, les systemes sans fil actuels évoluent
vers une meilleure réactivité des protocoles de RRM et adaptation rapide de
liaison (FLA ) afin d’optimiser conjointement la couche de controle d’acces
de média (MAC) et la couche PHY. Un nouveau type d’interface lien a
systéme, appelé interface de valeur réelle [24], a vu le jour dans lequel RRM
avancée et les mécanismes de la FLA sont congus et optimisés afin d’exploi-
ter les rétroactions de métriques représentant les performances individuelles
instantanées de la liaison radio basée sur des abstractions de la couche PHY
( également appelées méthodes de prédiction de performance).

Les interférences dans les réseaux cellulaires peuvent étre gérées par des
techniques d’évitement des interférences coté de I’émetteur tel que ’ordon-
nancement intelligent [25], [chapitre 6, [2]] , canal de diffusion, codage de
papier sale, précodage sous-optimal ZF, 'alignement d’interférence MIMO
(IA) [26], etc. Cette stratégie d’évitement des interférences a été suivie par
WP1 du projet européen ARTIST4G intitulé ” interference avoidance”. De
cette maniere, un récepteur linéaire d’une faible complexité peut étre suf-
fisant. Cependant, ces techniques d’évitement des interférences exigent des
CSI parfaites et instantanées a I’émetteur (CSIT) qui n’est pas disponible
dans la pratique. Trop de rétroactions de CSIT diminuent 'efficacité spec-
trale du systeme et rendent le systéme peu robustesse. Enfin, 'interférence
ne peut étre évitée qu’a un certain niveau. Par conséquent, les techniques
d’annulation des interférences coté récepteur basées sur certains traitements

du signal avancés complexes sont des complémentaires importants aux tech-
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niques d’évitement des interférences précédentes. Par rapport aux CSIT, le
CSI a récepteur (CSIR ) est toujours disponible en communications mono-
utilisateur MIMO (SU-MIMO) et pour la liaison montante (canaux d’acces
multiple). Pour la liaison descendante, la conversion du canal de diffusion
dans un canal & acces multiple avec les informations de co6té (fourni par
le réseau) au niveau de chaque récepteur est actuellement a I’étude par
I'industrie [27]. Cette derniére stratégie semble plus robuste aux informa-
tions de coté imparfaite que la premiere. En fait, I'idée d’abandonner le
synchronisme et I’orthogonalité dans les systémes sans fil de demain, admet-
tant ainsi des interférences, et de controler ces troubles par une structure
d’émetteur-récepteur adaptée était au coeur de la ARTISTE4G WP2 inti-

)

tulé 7 interférences exploitation ” et est maintenant annoncée par plusieurs
projets européens comme un concept de construction pour la cinquieme
génération (5G) au niveau des couches PHY/MAC.

En parallele, le succes des turbo codes [12] et le principe du turbo [28]
ont inspiré de nouvelle modulations codées qui pouraient potentiellement
atteindre la capacité. De nouvelles architectures de multiplexage spatial et
techniques d’acces multiple non-orthogonales basées sur des codages puis-
sants ont été proposées pour atteindre une efficacité spectrale tres élevée,
dont la pertinence est toutefois subordonnée a un traitement itératif au ni-
veau du récepteur. Ces deux tendances, a savoir, I’optimisation inter couche
et le traitement turbo, demanede le développement de nouvelles abstrac-
tions de la couche PHY qui peuvent capturer les performances du récepteur
itératif par itération conditionnelle sur le CSIR disponible qui permet une
introduction en douceur de ces récepteurs avancés dans FLA et RRM.

Au sujet de la prédiction de la convergence et/ou 'analyse de la per-
formance de décodage itératif, nous avons d’abord distingué les approches
déterministes et les approches stochastiques [29]. Les approches déterministes
traitent le décodage comme un processus déterministe et tentent de ca-
ractériser le comportement du décodeur pour chaque instance du signal regu.
Par exemple, [30] est en mesure de révéler un certain nombre de compor-
tements dynamiques de turbo-décodage, tels que 'existence de points fixes
ainsi que des conditions d’unicité et de stabilité pour les points fixes. Ce-
pendant, la connaissance de 'existence d’un point fixe ne suffit pas, comme
plusieurs points fixes ou méme des cycles limités peuvent exister. En outre,
les conditions de I'unicité et de la stabilité sont spécifiques & chaque bloc de

décodage et sont difficiles a calculer, ce qui signifie qu’ils ne sont pas utiles
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pour prédire les performances d’un turbo-décodeur donné. Basé sur 1'hy-
pothese d’une grande longueur de mots de code (ou de maniére équivalente
grande taille d’entrelacement), les approches stochastiques, elles voient les
signaux d’entrée et de sortie circulant dans le décodeur itératif des proces-
sus aléatoires ergodiques [29] dont les statistiques sont calculables & 'aide
de réalisations (ou instances). En Traitant les rapports de vraisemblance
logarithmique (LLR) de messages binaires comme des variables aléatoires
(RV), I'évolution de la densité (DE) [31,32] est proposée pour analyser la
performance du décodage somme-produit [33] de code Low-Density Parity-
Check (LDPC) [34] sur des canaux d’entrée et de sortie symétriques bi-
naires simples. Cependant, la rigueur mathématique de DE introduit une
complexité élevée parce que cette méthode estime effectivement 1’évolution
de leurs distributions de probabilité (exprimée en forme fermée) par le biais
de simulations numériques.

D’autres approches stochastiques simples existent, elles ont toutes en
commun d’utiliser un parametre statistique unique (par opposition a une dis-
tribution complete de probabilité) pour caractériser les signaux d’entrée et
de sortie concernés par le processus itératif. Les graphiques du transfert d’in-
formation extrinseque (EXIT) ont été lancés par ten Brink, qui le premier les
a présentés dans le cadre du choix d’un mappeur approprié et d’une constel-
lation convenable, dans un schéma de demapping et décodage itératif [35], et
ensuite les a appliqués pour analyser les turbo codes [36,37]. Ils constituent
un outil puissant pour analyser les comportements itératifs, basé sur le suivi
des parametres statistiques. L’évolution de I'information mutuelle moyenne
(AMI) entre les bits d’information (ou codés) et les LLR de sortie post-
décodage BCJR [38] est observée a la place de I’évolution des densités réelles.
Une approximation gaussienne unidimensionnelle simple de 1’évolution de la
densité a été également suggérée par Chung et al. dans [39,40] pour les codes
LDPC. Des idées connexes ont été proposées indépendamment pour analy-
ser les turbo codes [41,42] et la détection multi-utilisateurs et le décodage
itératif [43,44]. Ces approximations gaussiennes se distinguent par le choix
du parametre unidimensionnel qui est choisi pour caractériser une densité,
par exemple, Rapport Signal sur Bruit (SNR) [41,42] ou moyenne [39,40]
sous condition de symétrie et de la propriété de cohérence. Cependant, les
expériences ont montré que ’AMI utilisée dans les EXIT est le parametre
statistique le plus robuste par rapport aux variations des distributions de
probabilité de LLR [45].
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L’utilisation du graphique EXIT pour prédire la performance des récepteurs
turbo sur un systéme multi-utilisateurs et canal MIMO (non-ergodique)
avec évanouissement par bloc et sélectivité fréquentielle révele plusieurs
questions. Si chaque utilisateur utilise un schéma de modulation codée, les
récepteurs turbo sont caractérisés par la circulation itérative de messages
entre d’une part, le détecteur multi-utilisateur (MUD) (en utilisant I'infor-
mation a priori sur des bits codés générés par le décodeur), et d’autre part,
la banque des décodeurs du canal d’entré-souple et de sortie-souple.

La premiere question concerne la contrainte forte de temps qui ne nous
permet pas d’obtenir ’AMI extrinseque au niveau du bit codé pour n’im-
porte quelle réalisation du canal donnée en exécutant une longue simulation.
En conséquence, ’AMI extrinseque de MUD doit étre calculée analytique-
ment ou au moins semi-analytiquement. Il existe une classe de MUD sim-
plifiée (sub-optimale), dénommée détection linéaire par minimisation d’er-
reur quadratique moyenne avec annulation d’interférence (LMMSE -IC),
pour laquelle le calcul des sorties de MUD peut étre réalisé en deux étapes :
une étape de calcul purement analytique du signal sur interférence plus bruit
(SINR), consacré a la détection IC et LMMSE des symboles transmis, et une
autre étape asseuée par le démappeur. Cette étude de doctorat met I'accent
sur cette classe de détection LMMSE -IC [46-49], car c’est une tache dif-
ficille pour une détection (optimale localement) d’étre dérivée comme une
application stricte des regles somme-produits sur le sous-graphe correspon-
dant [33]. Cette ligne de pensée est suivie et développée dans [50-57] (voir
aussi [44,58] pour des solutions alternatives).

Un deuxieéme probleme réside dans le fait que les bits codés sont répartis
sur des symboles qui connaissent différents canaux. C’est la cas pour le
modele du canal MIMO d’évanouissement par bloc [59]. Les caractéristiques
des sorties de MUD doivent étre calculées pour chacun de ces états de canaux
qui servent en tant qu’information a priori pour le calcul des caractéristiques
de sortie des décodeurs du canal. Nous devons compresser ces multiples
sorties extrinseques de MUD (un par état de canal) en une seule afin d’éviter
d’utiliser une Look-Up-Table (LUT) multidimensionnelle pour caractériser
les sorties extrinseques du décodeur dont le stockage ne serait pas abordable.
Le probleme est résolu dans [50-52] en faisant la moyenne de I’AMI, entre la
sortie extrinseque de MUD et les bits codés liés, sur tous les états de canaux
existants.

Fait intéressant, ce second probleme a également été rencontré dans
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un autre domaine de recherche traitant de 1’évaluation adaptative de mo-
dulation/codage au niveau du systéme, dénommé techniques de compres-
sion [60-63]. Les techniques de compression visent a ramener de multiples
SNR instantanés représentant différents états de canal en un seul SNR effec-
tif. Les deux techniques le plus étudiées sont la compression de SNR effectif
via fonction exponentielle (EESM) [64] et la compression de SNR effectif via
information mutuelle (MIESM) [61] ot dans le premier une fonction expo-
nentielle est utilisée comme une mesure de I'information basée sur la borne
de Chernoff alors que dans le second une capacité normalisée du shéma Bit-
Interleaved Coded modulation (BICM) [65] est utilisée comme une mesure de
Iinformation. EESM nécessite généralement des facteurs d’ajustement pour
atteindre une bonne précision pour une MCS donnée. MIESM est beaucoup
moins sensible a des facteurs d’ajustement et sa supériorité a été rapporté
dans un certain nombre de contributions passées [61]. Cette déclaration
semble en ligne avec [49]. Il convient de noter que l'idée de compression
a été redécouverte et formalisée par Yuan et al . dans [56, Assomption V |.

Dans [66], une étude est mise en place sur les méthodes semi-analytiques
rapides et précises pour prédire le taux d’erreur de block (BLER) /taux d’er-
reur binaire (BER) par utilisateur et par itération dans un systéme mul-
tiple -utilisateurs ot chaque utilisateur emploie un Space-time Bit- Inter-
leaved Coded modulation ( STBICM ) construit a partir de code convo-
lutif et ot LMMSE -IC conjoint décodage itératif (en bref LMMSE -IC
itératif) est réalisée au récepteur. Par LMMSE -IC conjoint décodage, on
parle de la détection LMMSE utilisant une information a priori & partir du
décodeur [67] avec I'hypothese inconditionnelle [48,49]. L’hypothese incon-
ditionnelle consiste a moyenner des statistiques au second ordre au cours du
temps, pour rendre le filtre LMMSE indépendant du temps (donc facile a
mettre en oeuvre). Fait intéressant, cette hypotheése n’est la plupart du temps
pas préjudiciable en termes de performances finales [49]. Les abstractions de
la couche PHY décrites dans [66] reposent sur la technique de MIESM au
niveau bit ou symbole. Dans la premiere méthode, les sorties extrinseques
de MUD jusqu’aux décodeurs de canal, voyant la détection LMMSE -IC
et demapping comme un processus conjoint, sont calculées analytiquement.
Cette méthode suit le cadre classique de graphique EXIT et suit ’évolution
de ’AMI définie au niveau du bit codé circulant entre le MUD et la banque
de décodeurs de canal extérieures [65, Section III |, [68, Section V |, [69], [70,

Section I11.B |. Ensuite, avec le déplacement de point de vue, la deuxieme
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méthode voit le demapping et décodage comme un processus conjoint, et
permet de suivre ’évolution de I’AMI définie au niveau du symbole modulé
circulant entre I'interface LMMSE -IC et la banque de démappeur conjoints
les décodeurs de canal [71] est proposée. Ceci permet d’éviter la question
cruciale de paramétrage du demapping . Les deux méthodes donnent des
résultats comparables pour les modulations non-linéaires d’ordre faible. Au
contraire, la second méthode, qui comprend le démappeur a l'intérieur des
LUT se révele plus robuste pour les modulations non linéaires d’ordre élevé,
ce qui démontre sa supériorité .

Cependant, dans la classe de récepteurs de turbo basés sur LMMSE -
IC, on fait souvent la distinction souvent entre ’algorithme basé sur les
ratios logarithmiques de probabilité extrinseque (LEXTPR) ou les ratios
logarithmiques de probabilité a posteriori (LAPPR). Les deux algorithmes
different par le type d’information probabiliste réinjecté par le décodeur pour
la régénération d’interférence et d’annulation souple, a savoir LEXTPR ou
LAPPR sur les bits codés. Les expérimentations empiriques révelent que
I’algorithme itératif basé sur LAPPR peut surpasser de fagon significative
son homologue LEXTPR pour les systemes a antennes multiples ou multi-
utilisateurs trés chargés. Dans de tels scénarios en effet, utiliser LAPPR a
la place de LEXTPR conduit a des estimations de symboles MMSE plus
fiables. Cela est di a l'information supplémentaire glanée dans le proces-
sus d’égalisation/détection, ce qui permet d’annuler plus d’interférences a
chaque itération. Les analyses dans [66] sont correctes pour ’algorithme
itératif basé sur LEXTPR étant donné une taille d’entrelaceur suffisante
grande, mais [66, Hypotheéses A1l & A4 | ne tiennent pas méme avec une
taille d’entrelacement infinie pour I’algorithme itératif basé sur LAPPR. En
raison d’inexactitudes d’hypotheses négligées, la méthode proposée au ni-
veau du symbole se révele trop optimiste pour 'algorithme itératif basé sur
LAPPR. Ce phénomene est d’autant plus évident pour les MCS avec une
modulation d’ordre élevé et un taux de codage élevé. Par conséquent, un
examen attentif des hypothéses fondamentales sous-jacentes a cette famille
de récepteur est nécessaire afin de proposer une amélioration de ’abstrac-
tion de la couche PHY pour l'algorithme basé sur LAPPR, qui est le point
de départ du travail.

Sinon, I'adaptation du lien en boucle fermée dans LTE (LTE-A) implique
une famille de MCS construite a partir de turbo codes. Le turbo-décodeur

contient deux décodeurs BCJR [38] qui échangent I'information probabiliste
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(log domaine). En raison de leur structure particuliére, les turbo codes ne
peuvent pas étre décodés de maniere optimale a ’exception d’une longueur
de bloc tres limitée. Dans la pratique, un décodage itératif est appliqué, ou
Iinformation probabiliste est échangée entre les décodeurs constitutifs. Le
premier décodeur BCJR calcule les LAPPRs sur ses propres bits codés (bits
d’information et parité) en tenant compte de I'information a priori disponible
sur les bits d’information systématiques stockée a partir d’une activation
plus tot (c’est a dire, les plus récents LEXTPRs sur les bits d’information
systématiques fournis par le deuxieme décodeur BCJR). Ensuite, le second
décodeur BCJR est activé et calcule les LAPPRs sur ses propres bits codés
(bits d’information et parité), en tenant compte de 'information a priori
disponible transmise par le premier décodeur BCJR.

LMMSE-IC itératif mixte d’un turbo-décodage donne naissance a une
structure de récepteur complexe avec au moins deux processus itératifs im-
briqués. Certaines similitudes peuvent étre trouvées dans les travaux antérieurs
sur plusieurs codes concaténés et ’analyse de la convergence de leur décodage
itératif [72] [49] [73] [74]. Par conséquent, 'introduction en douceur des
récepteurs de turbo basés sur LMMSE -IC en LTE appelle a de nouvelles
abstractions de la couche PHY a cette situation non trivial.

Lorsque ’hypothese de CSIR parfaite est enlevée, les abstractions de la
couche PHY doivent étre dérivées sous CSIR imparfaite et sous une esti-
mation du canal erronée. Si le nombre de symboles de pilote est suffisant
pour assurer une estimation proche de la perfection, il suffit d’adopter 1'hy-
pothese dite mismatch [75-77] qui postule simplement que Iestimation du
canal assistée de symboles de pilote est parfaite. Dans ce cas, les abstrac-
tions de la couche PHY dérivées sous 'hypothése de CSIR parfaite peuvent
étre utilisées dans la pratique. Toutefois, si le nombre de symboles de pilote
est réduit grace a un systeme avancé d’estimation du canal semi-aveugle
coté du récepteur, I’hypothese mismatch n’est plus valide. En effet, il est
assez connu que faire la détection et I’estimation du canal dans une méme
itération (en utilisant a priori d'un décodage du canal) permet de réduire
considérablement le nombre de signaux de référence pour une performance
donnée [78-81]. Il y a une richesse de la littérature sur le sujet de 'analyse
de performance d’estimation du canal semi-aveugle, [75-77,80,82-84]. Par
exemple, [80] est assez exhaustive en découlant et en comparant différents
MSE d’estimation du canal semi-aveugle, mais seulement se réfere a des

schémas de détection mismatch itératives sans analyse. Alors que, d’autre
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part, [77] considere la détection maximum a posteriori (MAP) itérative avec
I’estimation du canal utilisant seulement les symboles de pilote. Cependant,
la combinaison de la détection LMMSE -IC (en tenant compte des erreurs
d’estimation du canal) et de l'estimation du canal LMMSE semi-aveugle,
n’a jamais été abordée en tant que telle, que ce soit d’une évaluation de la
performance pure ou d’une prédiction.

Une fois les abstractions de la couche PHY sont dérivées avec les récepteurs
de turbo, le pont entre les couches PHY et MAC est construit. La tache sui-
vante est de réaliser ’optimisation inter-couches PHY et MAC, parfois ap-
pelée "I’allocation des ressources en coopération”, qui est actuellement 1'un
des sujets de recherche les plus passionnants dans la conception de systemes
MU-MIMO. Les contributions actuelles limitent souvent leur étude a des
récepteurs linéaires simples (voir, par exemple, [85] et [86] ) ou , s’ils mani-
pulent des structures non-linéaires plus sophistiquées, par exemple, ’annula-
tion d’interférence successive (SIC) [87], idéalisent certaines parties du pro-
cessus de décodage, en supposant généralement des canaux d’entrée continue
avec dictionnaires gaussiens a zéro erreur, et en négligeant la propagation
d’erreur, ce qui conduit & un débit prédit inexact (c’est a dire, trop op-
timiste). Les systemes réels traitent les chaines d’entrée discretes et MCS
non-idéal de longueur finie. Le sujet de cette these de doctorat est de me-
surer I'impact réel des récepteurs de turbo sur la performance au niveau du
lien/systéme.

Les travaux de cette these peuvent étre principalement divisés en deux
parties : les abstractions de la couche PHY pour la classe de récepteur
LMMSE-IC itératif, d’une part, et la nouvelle adaptation du lien en présence
d’un tel récepteur évolué, d’autre part.

Dans la premiere partie, cette these a été en mesure de proposer des
abstractions de la couche PHY semi-analytiques précises, robustes et pra-
tiques pour les systemes MIMO avec le récepteur LMMSE-IC itératif. Les
abstractions de la couche PHY dépendent des hypotheses fondamentales
de la couche PHY et la structure du récepteur, comme la disposition de
la CSIR, le MCS adopté et le type d’information probabiliste sur les bits
codés réinjectée par le décodeur pour la reconstruction d’interférence dans
I’algorithme LMMSE-IC itératif. Ces travaux ouvrent la voie a 'optimi-
sation inter-couches en présence d’un tel récepteur itératif avancé et pour-
raient étre utilisés comme une étape importante pour concevoir de nouveaux

moteurs d’annulation d’interférences pour les réseaux sans fil de prochaine
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génération.

e Chapter 2

Ce chapitre se concentre sur la clarification des hypotheses sous-jacentes
nécessaires pour dériver LMMSE -IC (itératif), la compréhension des
similitudes et des différences entre algorithme itératif basé sur LEXPTR
et LAPPR afin de proposer une abstraction de la couche PHY pour
Palgorithme itératif basé sur LAPPR sous CSIR parfaite. Le MCS
est construit & partir de codes convolutifs. L’abstraction de la couche
PHY pour l'algorithme basé sur LAPPR est plus sophistiquée. Une
procédure de calibration simple, mais efficace, a été proposée, dont le
principe est d’ajuster la variance du symbole (une seule variance est
utilisée pour mesurer la fiabilité des interférences reconstruites basé
sur I’hypothese inconditionnelle) avec un facteur multiplicatif de va-
leur réelle supérieure a un, ce qui a pour effet de réduire artificielle-
ment les SINR qui sont utilisés dans le procédé de prédiction de per-
formance. Le facteur de calibration optimale par MCS est recherché
en minimisant la distance entre les BLERs ( ou BERs ) simulés et
prédits calibrés sur un grand nombre de réalisations de canal a chaque
itération. Simulations exhaustives révelent que le facteur de calibration
dépend du MCS, mais ne varie pas de facon significative par rapport
au nombre d’antennes de transmission et de réception ainsi que les

caractéristiques du canal. Les résultats ont été publiés dans :

— B. Ning, R. Visoz, A.O. Berthet, Extrinsic versus a posteriori pro-
bability based iterative LMMSE-IC algorithms for coded MIMO
communications : Performance and analysis, Proc. IEEE ISWCS,
Paris, France, Aug. 2012.

e Chapter 3

Ce chapitre étudie les abstractions de la couche PHY sous CSIR impar-
faite. Le MCS est construit & partir de codes convolutifs. L’accent est
mis sur la situation lorsque le nombre de symboles de pilote est réduit
et I’hypothese mismatch n’est plus valide. De nouvelles abstractions
de la couche PHY sont dérivées subordonné & la disposition d’infor-
mation a priori seulement, c’est a dire, I'hypotheése match [75-77], qui

sont 'estimation du canal utilisant seulement les symboles de pilote
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et la distribution des canaux a long terme (CDI). Les résultats sur ce

sujet ont été ou seront publiés dans :

— B. Ning, R. Visoz, A.O. Berthet, Semi-Analytical Performance
Prediction Method for Iterative MMSE-IC' Detection and Semi-
blind Channel Estimation, Proc. IEEE VTC Spring, Hungrary,
Budapest, May 2011.

— B. Ning, R. Visoz, A.O. Berthet, Performance analysis of LMMSE-
IC based turbo equalization and semi-blind channel estimation, in

preparation for IEEE Trans. Sig. Proc.

e Chapter 4

Ce chapitre présente les abstractions de la couche PHY compte tenu
de la combinaison de turbo codes et algorithme LMMSE-IC itératif.
On constate que, méme dans le cas simplifié de mapping Gray, trois
LUT a deux entrées sont nécessaires pour caractériser 1’évolution du
démapper joint turbo décodeur. Ceci est en contraste avec [71] [66] ou
le code convolutif est examiné et une LUT univariée est suffisante. Les

résultats a ce sujet ont été publiés dans :

— S. Martinez Lopez, F. Diehm, R. Visoz, B. Ning, Measurement
and Prediction of Turbo-SIC Receiver Performance for LTE, Proc.
IEEE VTC Fall, Québec City, Canada, Sept. 2012.

— un brevet francais, déposé en février 2013.

— Contribution a la normalisation 3GPP : Physical layer abstraction
for turbo-CWIC receivers, R4-134328, Aug. 2013.

— Contribution a la normalisation 3GPP : Physical layer abstraction
for turbo-CWIC receivers, R1-134672, Nov. 2013.

— B. Ning, R. Visoz, A.O. Berthet, Physical Layer Abstraction of
LMMSE-1C based Turbo Receivers for LTE evolution, IEEE GLO-
BECOM, Atlanta, US, Dec. 2013.

e Chapter 5

Dans ce chapitre, les abstractions de la couche PHY pour un systeme
MIMO générique turbo codé par antenne utilisant LMMSE-IC itératif
sont introduites. Comparée au troisieme sujet de cette partie, un nou-

veau degré de liberté est I'ordre de décodage. La performance globale
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du récepteur de turbo dépend de ’ordre de décodage qui doit étre pris

en compte dans les abstractions de la couche PHY.

Dans la deuxieme partie, I’adaptation du lien en boucle fermée dans les
systemes MIMO a été abordée en utilisant des abstractions de la couche
PHY proposées pour le récepteur LMMSE-IC itérative. CSI partielle est
prise en charge a I’émetteur en vertu des rétroactions limitées provenants
des abstractions de la couche PHY et CSI parfaite est supposé au niveau
du récepteur. Les performances prédites et simulées sont comparées dans de
différents scénarios de communication pour mesurer 'impact réel apporté

par les récepteurs de turbo.

e Chapter 6

Ce chapitre aborde la FLA dans le systeme MIMO codé en boucle
fermée utilisant le récepteur LMMSE-IC itératif basé sur LAPPR. Les
systemes MIMO avec MCS construits a partir de turbo code ou code
convolutif sont considérés. Les LUTSs univariés et les facteurs de ca-
libration optimaux pour tous les MCS construits a partir de codes
convolutifs sont obtenus hors ligne. De méme, les LUTs bivariés et les
facteurs de calibration optimaux pour tous les MCS construits a partir
de turbo codes sont obtenus hors ligne. L’adaptation du lien en boucle
fermée effectue une sélection de précodage spatial et de MCS en fonc-
tion des rétroactions limitées. Elle vise a maximiser le débit moyen
soumis a une contrainte d’un BLER cible en supposant le récepteur
LMMSE-IC itératif basé sur LAPPR est utilisé a la destination. Les

résultats a ce sujet ont été publiés dans :

— B. Ning, R. Visoz, A.O. Berthet, Link Adaptation in Closed-Loop
MIMO Systems of LTE with LMMSE-IC based Turbo Receivers,
Proc. IEEE WIMOB, Lyon, France, Oct. 2013.

— B. Ning, R. Visoz, A.O. Berthet, Link Adaptation in Closed-Loop
Coded MIMO Systems with LMMSE-IC based Turbo Receivers,
Proc. IEEE ICNC, Honolulu, Hawaii, US, Feb. 2014.

— B. Ning, R. Visoz, A.O. Berthet, Link adaptation in closed-loop
coded MIMO systems with LMMSE-IC based turbo receivers, in

preparation for IEEE Trans. Wireless Commun.

e Chapter 7
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Ce chapitre aborde le controle de débit par antenne (PARC) en boucle
fermée pour le systeme MIMO turbo codé indépendemment par an-
tenne avec le récepteur LMMSE-IC itératif basé sur LAPPR. Ayant en
main les LUT bivariés et facteurs de calibration optimaux pour tous
les MCS construits a partir de turbo codes, ’algorithme effectue une
sélection conjointe des précodeurs spatials, de 'ordre de décodage et
de la combinaison de MCS. Le but est de maximiser le débit moyen
soumis a une contrainte d’'un BLER cible. Les résultats a ce sujet

seront publiés dans un article de conférence en préparation.

e Chapter 8

Dans ce chapitre, les conclusions et les suggestions pour la poursuite

des travaux sont données.
Les futurs sujets de recherche comprennent plusieurs volets principaux :

e Récepteur itératif plus performant :

Il existe toujours un écart entre les performances des algorithmes
LMMSE-IC itératifs et I'annulation d’interférence parfaite lié a des
scénarios de communication SU-MIMO. La poursuite de I’amélioration
de Defficacité spectrale s’appuie sur un récepteur plus puissant tel que
le récepteur MAP itératif. Nous aimerions proposer une abstraction
de la couche PHY semi-analytique précise, robuste et pratique pour le
récepteur MAP itératif, mais il n’y a pas de SINR a calculer. Inspiré
par l'introduction d’un facteur supérieure a un de calibration sur la
variance pour compenser les inexactitudes des hypotheses pour I’algo-
rithme LMMSE-IC itératif basé sur LAPPR, l’algorithme MAP itératif
peut étre approché par un algorithme LMMSE-IC itératif virtuel basé
sur LEXTPR compensé par un facteur inférieur a un de calibration
sur la variance. Si cette idée est validée, nous sommes en mesure de
proposer un cadre d’abstractions de la couche PHY pour les récepteurs
de turbo.

e Calibration plus agressives en collaboration avec IR-HARQ :

Les facteurs de calibration introduits sont obtenus par la minimisa-
tion de la somme de la distance entre les BLERs simulés et prédits

calibrés sur un grand nombre de réalisations de canal tirées d’un
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modele de canal générique. Du coup, les facteurs de calibration ob-
tenus fonctionnent bien pour la plupart des réalisations de canaux.
En évitant d’affecter des débits de données trop optimistes pour des
conditions radio mauvaises, causant un grand nombre de retransmis-
sions, l'utilisation des facteurs de calibration sacrifie inévitablement
des débits de données sur de bonnes conditions radio. Si nous vou-
lons adopter des facteurs de calibration plus agressifs (plus petits)
pour allouer des débits plus élevés sur de bonnes conditions radio, il
devrait exister des mécanismes pour compenser les attributions pos-
sibles des débits de données trop optimistes sur des conditions radio
mauvaises. Dans cette ligne de pensée, il est nécessaire d’employer
IR-HARQ [88], [89], [90], [91], [92], [93] dans la transmission.

e Adaptation du lien en boucle ouverte :

La partie traitant la FLA dans cette étude de doctorat est basée sur
une rétroaction instantanée et parfaite, et toutes les rétroactions ins-
tantanées peuvent étre traitées par la couche MAC immédiatement.
Toutefois, ces hypotheses ne peuvent pas étre réalistes dans la pra-
tique. Par exemple, les rétroactions ne sont plus fiables lorsque 'UE
se déplace trop rapidement, ou bien une station de base sous la charge
lourde n’est pas en mesure de suivre les rétroactions de chaque UE.
Dans de telles situations, la meilleure stratégie consiste a effectuer une
adaptation du lien en boucle ouverte quelle que soit la rétroaction
instantanée. Avec le passage de boucle fermée en boucle ouverte, le
gain apporté par le récepteur itératif comparé a un récepteur linéaire
classique va augmenter. Par conséquent, il est intéressant de compa-
rer les performances de différents types de récepteurs dans le contexte

d’adaptation de liaison en boucle ouverte.

e Modele de canal plus générique :

L’optimisation inter-couches a été abordée principalement sur les systemes
SU-MIMO. Les futurs sujets comprennent 1’évaluation de la perfor-
mance au niveau du systéme pour la liaison montante/descendante,
ainsi qu’une extension de ce travail a multicellulaire MIMO. Cepen-
dant, nous avons observé que I'optimisation inter-couches commence a
introduire une complexité de calcul tres élevée a la recherche de la so-
lution optimale quand le degré de libertés augmente considérablement.

En raison de la contrainte de complexité, le PARC sélectif est limité
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a la transmission de double mots de code sur un modele de canal
2x2 MIMO d’évanouissement par bloc dans cette étude de doctorat.
L’étape suivante doit étre PARC sélectif pour la transmission de double
mots de code sur un modele de canal 4x4 MIMO d’évanouissement
par bloc. En outre, une exploration intelligente de ’espace de re-
cherche est nécessaire pour réduire la complexité de 'optimisation
de tous les degrés de libertés : mode, antenne, précodage, débit et
ordre de décodage. Nous croyons que les récepteurs itératifs, avec ces
mécanismes de LA et RRM avancés, vont augmenter sensiblement les

débits du systeme.






Chapter 1

Introduction

The purpose of the first chapter is to give an overview of the whole PhD
study. In section 1.1, the evolution and technical preliminaries of wireless
communication systems are described. In section 1.2, the motivations of the
PhD thesis are introduced. In section 1.3, state of the art is presented. In
section 1.4, the contributions of the PhD study and the thesis outline are
listed.

1.1 Evolution of wireless communication systems

As per the estimates of the International Telecommunication Union (ITU)
[1], the number of mobile-cellular subscriptions reaches 6.8 billion in 2013,
corresponding to a global penetration of 96%. Today, people can communi-
cate with each other conveniently by voice, text message and have Internet
connection wherever is covered by the mobile communication network.

The First Generation (1G) systems were developed in the 1980s. These
systems used analogue technology and were designed only for voice service.

From 1991, the Second Generation (2G) systems were developed which
started to use digital technology, such as Global System for Mobile commu-
nications (GSM) in Europe, the Personal Digital Communication (PDC) in
Japan and IS-95 in the USA. Among these systems, the GSM were widely
accepted and deployed in most of countries and are still being used to-
day. The 2G systems were designed to provide voice and text message, and
later also data service by Enhanced Data rates for GSM Evolution (EDGE).
Among the family of 2G systems, GSM and PDC were based on Frequency-
Division Multiple Access (FDMA) [2], i.e., the whole bandwidth is divided

19
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into multiple narrow-band channel far apart in frequency and multiple users
can transmit simultaneously over different narrow-band channels, and Time-
Division Multiple Access (TDMA) [2], i.e., multiple users can transmit over
one narrow-band channel at different time. IS-95 system was based on Code-
Division Multiple Access (CDMA) [2], i.e., each user transmits its signals
over the entire bandwidth and each user is identified by a specific code.

The Third Generation (3G) systems included two families of technology:
Universal Mobile Telephone Service (UMTS), published by the standard-
ization organization of the Third Generation Partnership Project (3GPP)
in Release 99 following GSM, and CDMA2000 following IS-95. The UMTS
system was widely deployed in many countries while CDMA2000 system was
mainly deployed in Asia and North America. 3G systems were a significant
improvement over 2G systems and aimed to provide higher data rates, im-
proved voice capacity as well as data services and applications. As a result
of global standardization effort, the family of 3G systems were uniformly
based on CDMA. UMTS employs the Wideband CDMA (WCDMA) which
supports both Time-Division Duplexing (TDD) and Frequency-Division Du-
plexing (FDD) modes. One variate of TDD UMTS, named Time-Division
Synchronous CDMA (TD-SCDMA), is also normalized by 3GPP which is
mainly deployed in China.

The UMTS was further enhanced by High Speed Downlink Packet Ac-
cess (HSDPA) and High Speed Uplink Packet Access (HSUPA) in 3GPP.
Higher-order modulation are supported: 16 Quadrature Amplitude Modula-
tion (16QAM) is introduced to the downlink as an enhancement of Quadra-
ture Phase Shift Keying (QPSK) of Release 99 and QPSK is introduced
to the uplink as a complementary of Binary Phase Shift Keying (BPSK)
of Release 99. Adaptive Modulation and Coding (AMC) is introduced to
adapt dynamically the modulation order and channel coding rate to the in-
stantaneous radio conditions and user’s requirements. A new retransmission
scheme Hybrid Automatic Repeat reQuest (HARQ) is added between the
users and the base-station to reduce system latency in case of packet loss.

The HSPA evolutions HSPA+ (Release 7, 8) have been designed to fur-
ther improve the data rate by the introductions of new techniques. The
downlink and uplink started to support 64QAM and 16QAM, respectively.
The Multiple-Input Multiple-Output (MIMO) [3], [4] antenna systems are
also introduced. MIMO technology can be used to increase data rate [3],

[5], [6], [7] ( spatial multiplexing gain) , to increase the robustness of trans-
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mission (spatial diversity gain) and to concentrate the transmission energy
to a certain direction (precoding or beamforming).

As the forth remarkable step, the Long Term Evolution (LTE) pub-
lished in Release 8/9 and soon LTE-Advanced (LTE -A) published in Re-
lease 10/11 defined by 3GPP are recognized widely as the Forth Generation
(4G) systems which were characterized by Orthogonal Frequency-Division
Multiplexing (OFDM) technology. The advantages of OFDM [2] are multi-
ples, such as the robustness to Inter-Symbol Interference (ISI) from which
CDMA suffers, flexibility of deployment over different large band to which
CDMA is limited, the adequacy to MIMO transmission, management and
scheduling of wide band, flexibility to multiple access, etc. The subcarri-
ers of OFDM technology are overlapping but orthogonal which make OFDM
highly spectrally efficient [8]. LTE-A has chosen for the downlink the scheme
of Orthogonal Frequency-Division Multiple Access (OFDMA) [9] and for
the uplink the scheme of Single-Carrier Frequency-Division Multiple Access
(SC-FDMA) [10]. The different choice for downlink and uplink comes from
the relatively high Peak-to-Average Power Ratio (PAPR) [11] of an OFDM
signal which is not tolerable for the UE.

LTE-A supports 64QAM at both uplink and downlink. At the Physi-
cal (PHY) layer, turbo code [12] is employed to protect the data. Enhanced
Inter-Cell Interference Coordination (ICIC) in Release 10, Coordinated Mul-
tiPoint (CoMP) transmission/reception in Release 11 as well as Carrier Ag-
gregation are some important techniques that can further increase spectral
efficiency. In order to perform link adaptation, the UE regularly reports a
Channel State Information (CSI) to the base station. These CSI comprise
of: Channel Quality Indicator (CQI), preferred Precoding Matrix Indica-
tor (PMI), Rank Indicator (RI) (= number of spatial streams supported).
Some important parameters are the reporting delay, the reporting period
and possibly CQI filtering.

There are other kinds of wireless system other than cellular, such as
Wireless Local Area Networks (WLAN) [2]. These are designed for much
higher data rates than cellular systems, but are similar to a single cell of a
cellular system. These are mainly designed to provide in-building broadband
coverage. The major standards for WLAN are the IEEE 802.11 family and
the term Wi-Fi is used as a synonym for WLAN. Wi-Fi supports high-order
modulation (64QAM and even 256 QAM), MIMO and link adaptation. The
PHY layer employs convolutional code to protect the data.
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1.2 Motivations of the PhD thesis

Within the ongoing global research effort on future wireless communications
systems, adaptive allocation of time, code, space and frequency resources
based on CSI and users’ requirements is widely recognized as a key feature
to approach the capacity of MIMO broadband frequency-selective channels
[13], [14], [15], [16], [17], [18], [19], [20], [21], [22], [23]. The traditional Radio
Resource Management (RRM) and Slow Link Adaptation (SLA) have been
built on a link-to-system interface, referred to as average value interface [24],
in which the individual radio link performance is evaluated through Monte-
Carlo simulations averaged over the fast fading statistics. For this approach
to be valid the RRM and LA timescales must be large compared to the fast
fading dynamics. On the opposite, current wireless systems evolve toward
an enhanced reactivity of RRM and Fast Link Adaptation (FLA) protocols
in order to jointly optimize the Media Access Control (MAC) and PHY
layers. A new type of link-to-system interface, referred to as actual value
interface [24], has emerged in which advanced RRM and FLA mechanisms
are designed and optimized so as to exploit feedback metrics representative
of the instantaneous individual radio link performance based on PHY-layer
abstractions (also called performance prediction methods).

Interference in cellular networks can be managed by interference avoid-
ance techniques at the transmitter side such as clever scheduling [25], [chap-
ter 6, [2]], broadcast channel, dirty paper coding, suboptimal ZF precoding,
MIMO Interference Alignment (IA) [26], etc. This strategy was followed by
WP1 of the European project ARTISTAG entitled ” Interference Avoidance”.
In this way, low complexity linear receiver can be sufficient. However, these
interference avoidance techniques require perfect and instantaneous CSI at
the Transmitter (CSIT) which, in practice, is not available. Too much CSIT
feedbacks will sacrifice the system spectral efficiency and make the system
lack of robustness. Finally, the interference can be avoided only to a certain
level. Therefore, the interference cancellation techniques at the receiver side
based on some complex advanced signal processing are important comple-
mentary to the previous interference avoidance techniques. Compared to the
CSIT, the Channel State Information at Receiver (CSIR) is always available
in Single-User MIMO (SU-MIMO) communications and uplink communica-
tions (multiple access channel). For downlink, converting the broadcast

channel into some multiple access channel with side information (provided
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by the network) at the level of each receiver is currently under investigation
by the industry [27]. This latter strategy seems more robust to imperfect
side information than the former. In fact, the idea to abandon synchronism
and orthogonality in future wireless systems, thereby admitting some inter-
ference, and to control these impairments by a suitable transceiver structure
was at the core of ARTIST 4G WP2 entitled ” Interference Exploitation” and
is now advertised by several European projects as a building concept for the
Fifth Generation (5G) at the PHY/MAC layers.

In parallel, the success of turbo codes [12] and turbo principle [28] has
inspired new potentially capacity achieving coded modulations. New spatial
multiplexing architectures and non-orthogonal multiple-access techniques
based on powerful coding schemes have been proposed to achieve very high
spectral efficiency, whose relevance is, however, conditional upon iterative
processing at the receiver. These two trends, namely, cross layer optimiza-
tion and turbo processing, call for the development of new PHY-layer ab-
stractions that can capture the iterative receiver performance per iteration
conditional on the available CSIR that enables the smooth introduction of
such advanced receivers within FLA and RRM.

1.3 State of the art

On the subject of predicting the convergence and/or analysing the perfor-
mance of iterative decoding, we first distinguish between deterministic ap-
proaches and stochastic ones [29]. Deterministic approaches treat decoding
as a deterministic process and try to characterise the behavior of the decoder
for each instance of the received signal. For example, [30] is able to reveal
a number of dynamic behaviors of turbo decoding, such as the existence of
fixed points as well as some conditions for the uniqueness and stability of
fixed points. However, knowing the existence of a fixed point is not sufficient,
as multiple fixed points or even limit cycles may exist. Moreover, the con-
ditions for the uniqueness and stability are specific to each decoding block
and difficult to compute, meaning that they are not useful in predicting the
performance of a given turbo decoder.

Based on the assumption of large codeword lengths (or equivalently large
interleaver size), the stochastic approaches, on the other hand, view the
input and output signals circulating within the iterative decoder as ergodic

random processes [29] whose statistics are computable using realizations (or
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instances). Treating Log Likelihood Ratios (LLRs) of exchanged binary
messages as Random Variables (RVs), the Density Evolution (DE) [31, 32]
is proposed for analysing the performance of the sum-product decoding [33]
of Low-Density Parity-Check (LDPC) codes [34] over simple binary-input
output-symmetric channels. However, the mathematical rigorousness of DE
introduces intrinsic high complexity as this method actually estimates the
evolution of their probability distributions (expressed in closed-form) by
means of numerical simulations.

Other simpler stochastic approaches exist which all have in common to
employ a single statistical parameter (as opposed to a complete probabil-
ity distribution) to characterise the input and output signals involved in
the iterative process. EXtrinsic Information Transfer (EXIT) charts, pio-
neered by ten Brink who first introduced them in the context of choosing a
suitable mapper and a suitable constellation in an iterative demapping and
decoding scheme [35] and soon thereafter applied them to analyze turbo
codes [36,37], is a powerful tool to analyze iterative behaviors, based on
single statistical parameter tracking. The evolution of the Average Mu-
tual Information (AMI) between the information (or coded) bits and the
corresponding output LLRs after BCJR decoding [38] is observed instead
of the evolution of the true densities. A simple one-dimensional Gaussian
approximation to the density evolution has also been suggested by Chung
et al. in [39,40] for LDPC codes. Related ideas have been independently
proposed for analysing turbo codes [41,42] and iterative multiuser detection
and decoding [43,44]. These Gaussian approximations differ in the choice
of the one-dimensional parameter which is chosen to characterise a density,
e.g., Signal-to-Noise Ratio (SNR) [41,42] or mean [39,40] under symmetry
condition and consistency property. However, experiments have shown that
the AMI used in EXIT charts is the most robust statistical parameter w.r.t.
the variations of the LLRs probability distributions and consequently the
most faithful one [45].

Introducing EXIT charts to predict the performance of turbo receivers
over a multiuser systems and (non-ergodic) MIMO block fading frequency
selective channel reveals several issues. If each user employs a coded mod-
ulation scheme, the turbo receivers are characterized by iterative message
circulations between the MultiUser Detector (MUD) (using a priori informa-
tion on users’ coded bits generated by the decoder) and the bank of soft-in

soft-out channel decoders.
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The first issue consists in the strong time constraint which does not
allow us to obtain the MUD’s extrinsic AMI at coded bit level for any
given channel realization by running a long simulation. As a consequence,
the MUD’s extrinsic AMI must be computed analytically or at least semi-
analytically. Some simplified (suboptimal) class of MUD, named as Linear
Minimum Mean Square Error Interference Cancellation (LMMSE-IC) MUD
exit for which the calculation can be performed in two steps: one step, purely
analytical computation of Signal-to-Interference-plus-Noise Ratio (SINR),
devoted to IC and LMMSE detection of users’ transmitted symbols and the
other step to demapping. This PhD study focus on this class of LMMSE-IC
detection scheme [46-49], since it is a challenging, if not impossible, task
for a (locally optimum) detection derived as a strict application of the sum-
product rules on the corresponding subgraph [33]. This line of thought is
followed and developed in [50-57] (see also [44,58] for alternatives).

A second issue consists in the fact that the coded bits are spread over
symbols that experience different channel fading states. This situation is
behind the MIMO block fading channel model [59]. The MUD’s EXIT
characteristics should be computed for each of such channel states which
serve as a priori input for the computation of EXIT characteristics of the
user’s channel decoders. We have to compress (map) these multiple MUD’s
extrinsic outputs (one per channel state) to a single one to avoid using
a multidimensional Look-Up-Tables (LUTSs) to characterize the decoder’s
extrinsic outputs whose storage would not be affordable. The problem is
solved in [50-52] by averaging the AMI, between the MUD’s extrinsic output
and the related coded bits, over all existing channel states.

Interestingly, this second problem was also encountered in another re-
search community dealing with adaptive modulation/coding and system-
level evaluation referred to as compression techniques [60-63]. Compression
techniques aim at bringing back the multiple instantaneous SNRs represen-
tative of the different channel states that coded bits may experience into
a single effective SNR. The two most studied compression techniques are
Exponential Effective SNR Mapping (EESM) [64] and Mutual Information
Effective SNR Mapping (MIESM) [61] where in the former an exponential
function is used as an information measure based on Chernoff bound and
in the latter an normalized Bit-Interleaved Coded Modulation(BICM) [65]
constrained capacity is used as an information measure. EESM usually re-

quires fine-tuned adjusting factors to reach good accuracy for a given MCS
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while MIESM is much less sensitive to adjustment factors and its superiority
has been reported in a number of past contributions [61]. This statement
seems in line with [49]. It is worth noticing that the idea of compression has
been rediscovered and formalised by Yuan et al. in [56, Assumption V].

In [66], a study is set up on fast and accurate semi-analytical meth-
ods to predict the Block-Error-Rate (BLER)/Bit-Error-Rate (BER) perfor-
mance per user and per iteration in a Multiple-User (MIMO) MU-MIMO
system where each user employs a Space-Time Bit-Interleaved Coded Modu-
lation (STBICM) constructed out of convolutional code and where iterative
LMMSE-IC joint decoding (in short iterative LMMSE-IC) is performed at
the receiver. By LMMSE-IC joint decoding it is meant LMMSE detection
using a priori information from the decoder [67] together with the uncondi-
tional assumption [48,49]. The unconditional assumption consists of averag-
ing the symbol second order statistics over time, to render the LMMSE filter
time-independent (thus easy to implement). Interestingly, this assumption
is most of the time not detrimental in terms of final performance [49]. The
PHY-layer abstractions described in [66] rely on the MIESM technique at
bit or symbol level. In the first method, the MUD’s extrinsic outputs up
to the users’ channel decoders, seeing LMMSE-IC detection and demap-
ping as a joint process, are analytically computed. This method follows the
classical framework of EXIT charts and tracks the evolution of the AMI de-
fined at coded bit level circulating between the MUD and the bank of outer
channel decoders [65, Section III}, [68, Section V], [69], [70, Section III.B].
Then, shifting in viewpoint and considering user demapping and decoding
as a joint process, an alternative method which tracks the evolution of the
AMI defined at coded modulated symbol level and circulating between the
LMMSE-IC interface and the bank of joint demappers and outer channel
decoders [71] is proposed. This allows to avoid the critical issue of pa-
rameterising the demapping. The two methods give comparable results for
low-order non-linear mapping. On the contrary, the second method, which
includes the demapping inside the LUTs reveals more robust to high-order
non-linear mapping, demonstrating its superiority.

However, within the class of LMMSE-IC based turbo receivers, we often
distinguish between Log Extrinsic Probability Ratios (LEXTPR) based and
Log A Posteriori Probability Ratios (LAPPR) based iterative LMMSE-IC
algorithms. The two algorithms differ by the type of probabilistic informa-

tion fed back by the decoder for soft interference regeneration and cancella-
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tion, namely LEXTPR or LAPPR on coded bits. Empirical evidence reveals
that the LAPPR-based iterative algorithm can significantly outperform its
LEXTPR-based counterpart for highly loaded multiantenna or multiuser
systems. In such scenarios indeed, using LAPPR instead of LEXTPR leads
to more reliable MMSE symbol estimates. This is due to the extra informa-
tion gleaned from the equalization/detection process, which allows to cancel
out more interference at each iteration. The analysis in [66] are correct
for LEXTPR-based iterative algorithm given sufficient large interleaver size
while [66, Assumption Al and A4] never hold even with infinite interleaver
size for LAPPR-based iterative algorithm. Due to the neglected inaccuracies
of assumptions, the symbol-wise method based predicted performance reveal
too optimist compare to simulated performance of LAPPR-based iterative
algorithm. This phenomena is all more evident for MCS with high-order
mapping and high coding rate. Therefore, a careful examination of underly-
ing fundamental assumptions for this family of receiver is necessary so as to
propose an improved PHY-layer abstraction for LAPPR-based algorithm,
which is the point of start of this PhD study.

Otherwise, closed-loop link adaptation in LTE (LTE-A) involves a fam-
ily of MCS constructed out of powerful turbo codes. The turbo decoder is
made of two BCJR decoders [38] exchanging probabilistic information (log
domain). Due to their particular structure, turbo codes cannot be optimally
decoded except for very limited block length. In practice, a suboptimal iter-
ative decoding is applied, where probabilistic soft information is exchanged
between the constituent decoders. The first BCJR decoder computes the
LAPPRs on its own coded bits (information and parity bits) taking into
account the available a priori information on systematic information bits
stored from an earlier activation (i.e., the most recent LEXTPRs on sys-
tematic information bits delivered by the second BCJR decoder). Then the
second BCJR decoder is activated and computes the LAPPRs on its own
coded bits (information and parity bits) taking into account the available
a priori information transmitted by the first BCJR decoder. Joint iterative
LMMSE-IC and turbo decoding gives rise to a complicated receiver struc-
ture with at least two interwoven iterative processes. Some similarities can
be found in earlier works dealing with multiple concatenated codes and the
convergence analysis of their iterative decoding, see e.g., [72] [49] [73] [74].
Hence, the smooth introduction of LMMSE-IC based turbo equalization

receivers in LTE calls for new PHY-layer abstractions to this non-trivial
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situation.

When the perfect CSIR assumption is removed, the PHY-layer abstrac-
tions should be derived under imperfect CSIR and channel estimation error.
If the number of pilot symbols is sufficient to ensure close to perfect CSI,
then it is sufficient to adopt the so-called mismatched assumption [75-77]
which simply postulates that the initial pilot assisted channel estimate is
noiseless. In that case, PHY-layer abstractions derived under the assump-
tion of perfect CSIR can be used in practice. However, if the number of pilot
symbols are reduced conditional on some advanced semi-blind channel esti-
mation scheme at the receiver side, the mismatched assumption is not valid
anymore. Indeed, it is quite known that performing detection and channel
estimation within a same iteration (using channel decoding a priori) allows
reducing drastically the number of reference signals for a given performance,
see, e.g., [78-81]. There is a wealth of literature on the subject of analyz-
ing semi-blind channel estimation performance, e.g., [?, 75-77, 80, 82, 84].
For instance, [80] is rather exhaustive in deriving and comparing different
semi-blind channel estimate MSEs, but only refer to iterative mismatched
detection schemes without analysis. While, on the other hand, [77] consid-
ers iterative matched Maximum A Posteriori (MAP) detection with pilot
assisted only channel estimation. However, the combination of the matched
LMMSE-IC (taking into account the channel estimation errors) detection
and LMMSE semi-blind channel estimation was never tackled as such either
from a pure performance evaluation or prediction perspective.

Once the PHY-layer abstractions are derived with turbo receiver, the
brigades between PHY and MAC layers are built. The following task is
to realize cross optimization between PHY and MAC layers, sometimes re-
ferred to as cooperative resource allocation which is currently one of the
most exciting research topics in the design of MU-MIMO systems. The
existing contributions often restrict their study to simple linear receivers
(see e.g., [85] and [86]) or, if dealing with more sophisticated non-linear re-
ceiver structures, e.g., Successive Interference Cancellation (SIC) [87], ideal-
ize some parts of the decoding process, typically assuming continuous-input
channels with zero-error Gaussian codebooks, and neglecting error propaga-
tion, which leads to inaccurate (i.e., too optimistic) predicted throughputs.
Real systems though deal with discrete-input channels and non-ideal finite-
length MCS. The subject of this PhD study is to measure the true impact

of turbo receivers on the link/system level performance.
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1.4 Thesis outline

The work of this PhD study can be mainly divided into two parts: PHY-
layer abstractions for the class of iterative LMMSE-IC receiver and new link

adaptation in presence of such advanced receiver.

1.4.1 Part I: PHY-layer abstractions

In the first part, this PhD study has been able to propose accurate, robust
and practical semi-analytical PHY-layer abstractions for MIMO systems em-
ploying iterative LMMSE-IC receiver. The PHY-layer abstractions depend
on PHY layer fundamental assumptions and the receiver structure, such as
the available CSIR, the MCS adopted and the type of LLR on coded bits
fed back from the decoder for interference reconstruction and cancellation
in the iterative LMMSE-IC algorithms. These work pave the way for cross
layer optimization in presence of such advanced iterative receiver and could
be used as a milestone to design new interference cancellation engines for

next-generation wireless networks.

e Chapter 2 This chapter focus the clarification of the underlying as-
sumptions needed for deriving (iterative) LMMSE-IC, the understand-
ing of the similarities and differences between the LEXPTR and LAPPR
based iterative algorithm and finally the proposition of an improved
PHY-layer abstraction for LAPPR based iterative algorithm under
perfect CSIR. The MCS is constructed of convolutional code. The
PHY-layer abstraction for LAPPR-based algorithm is more sophisti-
cated. A simple, yet effective, calibration procedure has been proposed
whose principle is to adjust the soft symbol variance (a single variance
is used to measure the reliability of re-constructed interference based
on the unconditional assumption) with a real-valued multiplicative
factor greater than one which has the effect to artificially reduce the
SINRs that are used in the performance prediction method. The op-
timal calibration factor per MCS is searched by minimizing the error
between the simulated BLER (or BER) and the calibrated predicted
BLER (or BER) over a large number of channel outcomes at each iter-
ation for the BLER range of interest. Exhaustive simulations revealed
that the calibration factor depends on the MCS but does not vary sig-

nificantly w.r.t. the number of transmit and receive antennas as well
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as the channel characteristics. The results have been published in:

— B. Ning, R. Visoz, A.O. Berthet, FEztrinsic versus a posteriori
probability based iterative LMMSE-IC algorithms for coded MIMO
communications: Performance and analysis, Proc. IEEE ISWCS,
Paris, France, Aug. 2012.

e Chapter 3 This chapter investigates the PHY-layer abstractions under
imperfect CSIR. The MCS is constructed of convolutional code. The
emphasis is put on the situation when the number of pilot symbols
are reduced and the mismatched assumption is not valid anymore.
New PHY-layer abstractions are derived conditional on the available a
priori information only, i.e., the so-called matched assumption [75-77],
which are the initial pilot assisted channel estimate and the long-term
Channel Distribution Information (CDI), (such as the channel and
noise probability distribution functions). The results on this subject

have been or will be published in:

— B. Ning, R. Visoz, A.O. Berthet, Semi-Analytical Performance
Prediction Method for Iterative MMSE-IC Detection and Semi-
blind Channel Estimation, Proc. IEEE VTC Spring, Hungrary,
Budapest, May 2011.

— B. Ning, R. Visoz, A.O. Berthet, Performance analysis of LMMSE-
IC based turbo equalization and semi-blind channel estimation, in

preparation for IEEE Trans. Sig. Proc.

e Chapter 4 This chapter presents the PHY-layer abstractions consid-
ering the combination of turbo code and iterative LMMSE-IC algo-
rithm. It is found that, even in the simplified case of Gray mapping,
a bivariate LUT is needed to characterize the evolution of the joint
demapper and turbo decoder embedded within the LMMSE-IC based
turbo equalization. This is in contrast with [71] [66] where simple con-
volutional codes were considered and univariate LUT sufficient. The

results on this subject have been published in:

— S. Martinez Lopez, F. Diehm, R. Visoz, B. Ning, Measurement
and Prediction of Turbo-SIC Receiver Performance for LTE, Proc.
IEEE VTC Fall, Québec City, Canada, Sept. 2012.
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— One french patent, filed date: February 2013.

— Contribution to 3GPP standardization: Physical layer abstrac-
tion for turbo-CWIC receivers, R4-134328, Aug. 2013.

— Contribution to 3GPP standardization: Physical layer abstrac-
tion for turbo-CWIC receivers, R1-134672, Nov. 2013.

— B. Ning, R. Visoz, A.O. Berthet, Physical Layer Abstraction
of LMMSE-IC based Turbo Receivers for LTE evolution, IEEE
GLOBECOM, Atlanta, US, Dec. 2013.

e Chapter 5

In this chapter, PHY-layer abstractions for a generic per-antenna turbo
coded MIMO system employing iterative LMMSE-IC in is introduced.
Compare to the third topic of this part, a new degree of freedom is
the decode ordering. The global turbo receiver performance depends
on the decode ordering which should be taken into account in the

PHY-layer abstractions.

1.4.2 Part II: Link adaptation

In the second part, closed-loop link adaptations in MIMO systems based
on the proposed PHY-layer abstractions for iterative LMMSE-IC receiver
have been tackled. Partial CSI is assumed at the transmitter under limited
feedback derived by the PHY-layer abstractions and perfect CSI is assumed
at the receiver. Link level predicted and simulated performance are com-
pared in different communication scenarios to measure the true impact on

the performance brought by turbo receiver.

e Chapter 6

This chapter tackles FLA in closed-loop coded MIMO systems employ-
ing LAPPR-based iterative LMMSE-IC receiver. Both convolutionally
and turbo coded MIMO systems are considered. Univariate LUTs and
associated optimal calibration factors per MCS constructed out of con-
volutional code are obtained off-line. Bivariate LUTs and associated
optimal calibration factor per MCS constructed out of turbo code are
obtained off-line. Closed-loop link adaptation performs joint spatial
precoder selection and MCS selection based on limited feedback. It

aims to maximize the average rate subject to a target BLER constraint
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assuming LAPPR-based iterative LMMSE-IC at the destination. The

results on this subject have been published in:

— B. Ning, R. Visoz, A.O. Berthet, Link Adaptation in Closed-Loop
MIMO Systems of LTE with LMMSE-IC based Turbo Receivers,
Proc. IEEE WIMOB, Lyon, France, Oct. 2013.

— B. Ning, R. Visoz, A.O. Berthet, Link Adaptation in Closed-Loop
Coded MIMO Systems with LMMSE-IC based Turbo Receivers,
Proc. IEEE ICNC, Honolulu, Hawaii, US, Feb. 2014.

— B. Ning, R. Visoz, A.O. Berthet, Link adaptation in closed-loop
coded MIMO systems with LMMSE-IC based turbo receivers, in

preparation for IEEE Trans. Wireless Commun.

e Chapter 7

The chapter tackles selective Per Antenna Rate Control (PARC) in
closed-loop independent per-antenna turbo coded MIMO systems with
LAPPR-based iterative LMMSE-IC receiver. Having in hand the off-
line obtained bivariate LUTs and optimal calibration factors for each
MCS constructed out of turbo code, the algorithm performs joint se-
lection of spatial precoder, decode ordering and MCS combination so
as to maximize the average rate subject to a target BLER constraint.
The results on this subject will be published in a conference paper in

preparation.

1.4.3 Conclusions

e Chapter 8

In this chapter, conclusions and suggestions for further work are given.
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Chapter 2

PHY-layer abstractions for
convolutionally coded MIMO

systems with iterative
LMMSE-IC

2.1 Introduction

Since more than a decade, iterative detection and decoding algorithms have
received much attention in the literature. Prominent amongst them is the
class of iterative LMMSE-IC algorithms. Within the class of LMMSE-IC
based turbo receivers, we often distinguish between LEXTPR-based and
LAPPR-based iterative LMMSE-IC algorithms. The two algorithms differ
by the type of probabilistic information fed back by the decoder for soft inter-
ference regeneration and cancellation, namely LEXTPR or LAPPR on coded
bits. Empirical evidence reveals that the LAPPR-based iterative LMMSE-
IC algorithm can significantly outperform its LEXTPR-based counterpart
for highly loaded multiantenna or multiuser systems. In such scenarios
indeed, using LAPPR instead of LEXTPR leads to more reliable MMSE
symbol estimates. This is due to the extra information gleaned from the
equalization/detection process, which allows to cancel out more interference
at each iteration [94, Section 4, Fig. 4]. While LMMSE-IC algorithms can

This chapter is partially presented in the paper accepted to IEEE VTC Spring’2012
and the journal paper submitted to the journal IEEE Signal Processing
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be rigorously analysed in terms of the SINR evolution when they are based
on LEXTPRs, this is not the case for LAPPRs. Therefore, the underlying
assumptions needed for the derivation of (iterative) LMMSE-IC algorithm
and its associated SINRs should be emphasized for both LEXTPR-based
and LAPPR-based algorithm.

In parallel, current wireless systems evolve toward an enhanced reactiv-
ity of RRM and FLA in order to jointly optimize the MAC and PHY layers.
Hence, a new type of link-to-system interface, referred to as actual value in-
terface, has emerged in which advanced mechanisms, based on performance
prediction methods [61], are designed so as to improve the feedback met-
rics representative of the instantaneous individual radio link performance.
These two trends, namely, turbo processing and cross-layer optimization,
call for the development of new PHY-layer abstractions that can capture
the evolution of iterative receivers (seen as complex dynamical systems).
This chapter focus on PHY-layer abstractions for such receivers assuming
perfect CSIR in convolutional coded MIMO systems.

2.2 System model

Single-user transmission occurs over a MIMO block Rayleigh fading multi-
path Additive White Gaussian Noise (AWGN) channel with n;, fading block,
n; transmit antennas and n, receiver antennas. Perfect channel state infor-
mation is assumed at the receiver. A STBICM, indexed by v, is used at the
transmitter, specified by a linear binary convolutional code %, of rate r,, a
complex constellation 2, C C of cardinality 2% and a memoryless labeling
rule p,,. We define the rate of the MCS as p, = r,q, (bits/complex dimen-
sion). The encoding process for MCS is detailed. The vector of binary data
(or information bits) u enters an encoder ¢, whose output is the codeword
c € 6, of length n, . = nsniq,. The codeword bits are interleaved by a ran-
dom space time interleaver 7, and reshaped as a integer matrice {Dy};”,
with Dy € Z;‘gVXL . Each integer entry can be decomposed into a sequence
of ¢, bits. A Gray mapping u, transforms each matrix Dj into a complex
matrix S, € 2,*E. 5&””(3) and 3&;(’;) denote the subsets of points in 2,
whose labels have a 0 or a 1 at position j. With a slight abuse of notation,
let {dp.t 1, ;1-":1 denote the set of bits labeling the symbol s34, € Z,. Let
also ,u;]l(s) be the value of the j-th bit in the labeling of any point s € Z,,.
The STBICM is described in Fig. 2.1.
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Figure 2.1: Transmitter model (STBICM)

For the b-th fading block, the n,+1 finite-length impulse response (FIR)

describes the small-scale multipath fading
Hy() = > Hy, 00— 7). (2.1)
7=0

Each tap gain Hy is an n, X n; random matrix whose entries are modeled

as i.i.d. circularly-symmetric complex Gaussian random variables with zero-

2

mean and variance o7 _ under the constraint "7 02 = 1. The discrete-

byt
time vector y;,; € C"" received by the destination at b-th fading block and
time [ =1,..., L, is expressed as
nr
Yo = Z Hy,-sp;1— 7 + Wiy (2.2)
T7=0

with proper boundary conditions. In (2.2), the vectors sp; € 2 are i.i.d.
random vectors (uniform distribution) with E[sy,;] = 0, and E[sb;lsz;l] =1,,
and the vectors wy; € C" are i.i.d. random vectors, circularly-symmetric
Gaussian, with zero-mean and covariance matrix o21,,.

Based on (2.2), the discrete-time baseband equivalent sliding-window

model used for detecting sp,;; in Sy, is given by
Xb;l = Hb§b;l + Wy (2.3)

where

° LSW:L1+L2+1

T T T
® Yy = Yoa-ryo > Yousr,]
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1T T T
® Sy = [sb;llefnT’ e 7Sb;l+L2}

— T T T
* Wiy = Wy rs s Whhr,]
e H, is the suitable Sylvester matrix of dimension Lgyn, X (Lsw+n:)n;.

For a fixed [, index !’ which serves to point a component in the vectors
varies from | — L1 — n; to [ + Lo. The 2-tuple (¢,1’) of indices differs from
the 2-tuple of indices (¢,1) as soon as any of the indices is different. Let
e, denote the unit vector of dimension (Lsw + n.)n; with a 1 at position
(L1 +ns)ng +t.

In LEXTPR-based LMMSE-IC, the set of LEXTPRs {AgDEC(cn)} on
coded bits are used as a priori information. Let {Aa LE}s,,, and {AA>LE}§b;l
be the set of all LEXTPRs on coded bits involved in the labeling of s, ;
and sy, respectively. Let also {AAvLE}§b;l\3b;t,l be the set of all LEXTPRs
on coded bits involved in the labeling of s, ezcept the coded bits involved
in the labeling of sp.;;. In LAPPR-based LMMSE-IC, the set of LAPPRs
{AB prclcn)} on coded bits are used as “a priori” information. In the
sequel, Ap g is used to denote the interleaved LAPPRs (as opposed to the
notation Ay rg).

2.3 Iterative LMMSE-IC

2.3.1 LEXTPR-based LMMSE-IC

2.3.1.1 Interference regeneration and cancellation

Prior to LMMSE estimation of the symbol s ;, we compute the conditional
MMSE estimate of the interference, defined as

igl\t = E[Zb;l‘{AA7LE}§b;l\sb;t,l] (24)

This computation is tractable by making two symplifying assumptions.
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Al-a The pdf Py A4 LB Y sy \ops (§b;l,ﬂb;l) factorizes as

p§b;l:ﬂb;lHAA,LE}%;l\sb;tJ (§b;l7ﬂb;l)

(2.5)
P(svst0)pwy,, (Wo) T ey Psoe v [{AaLets, 0 0)-

A2-a The pmf P(syy y[{AaLE}s,, ) in (2.5) is given by

—1
Plspry {AA LB sy 0 ) 06 €55 105 Crst )M L8 o),

As a matter of fact, the assumptions (Al-a) and (A2-a) hold for an inter-
leaver with sufficient large size. Under (Al-a), the MMSE estimate of the

interference affecting the symbol s, ; is given by
~F E
Xb;l\t = Hb(I(LSW-i-n-r)nt o gtgi)mb;l (2'6)

where mbE;l is the vector made of all estimates mgt,l, =E |spp | {AA’LE}Sb;t/,l’

evaluated under (A2-a). After IC, the new observed vector is Yy~ ifl\ .

2.3.1.2 LMMSE estimation — unconditional case

The optimization problem to solve can be formulated as follows: Find §£t,l =
JET
fo (v, — ifl\t) minimizing the unconditional Mean Square Error (MSE)

E [léftl - sb;t’l|2] defined as

E [Ei [I%ﬁ,z - Sb;t,z|2|{AA,LE}§b;l\sb;t,l}] . (2.7)

The outer expectation in (2.7) renders the (biased) LMMSE filter time-
JE v E-1ly vE vE
invariant given by f;,, =&, &,  where§, =E [ﬁb-t l} with

°E B
& = E |y, — Xb;l\t)szﬂfvl|{AA7LE}§b;l\sb;t,l}
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= =k .
and where E;,, = E [Eb;tvl} with

)

=L B o E
Shitl = E [(zb;l - Xb;l\t)(zb;l - Xb;l\t)T’{AA,LE}%;I\Sb;t,z] :

)

4E
The computation of f;,; is again intractable. However, under (Al-a), &,  and
E ’
Ep;y become §£Jt = hy; = Hye; and Eft = Ebif\tﬂz + 04l gyn, where

Xf\t is the unconditional symbol covariance matrix defined as
E _ . E E E E
Xb;\t - I(LSW+n‘r) ® dlag{vb;l? <o Upi—1s L, Upst415 - - ’Ub;nt}

where Vt' # t, vft/ =K {vft/J} with vlft’,l =K [|5b;t’,l — mbE;t/,l’2|{AAvLE}sb;t’,l:|
evaluated under (A2-a). Using the matrix inversion lemma, we obtain the
filter

1 -1
£y, = =) hy (2.8)
LA nft(l — v(ft) it

where 25 = Ebﬂfﬂl + 0-121)ILSW77»7" and nlft = hg;tzg_lhb;t with
VI =V, — (1 —vf)ee] (2.9)

E _ E PRI o E |2
where vy}, = E [vb;t’l] with vy}, = E []sbml — My *{A A LE} sy, | evaluated

under (A2-a). The corresponding estimate ébE;t’l of sy, can be expressed as
A Ef ~E E E
Shitl = ﬁb;t <Xb;l - Xb;l\t) = Gu;tSbit,l + Cb;t,l (210)

where ggt = ﬁg h,, and Cgt,l is the residual interference plus noise term.
Clearly, let,l in (2.10) is zero-mean and uncorrelated with the useful signal
s, under (Al-a), ie., E[Sb;t,lclfttl] = 0. Under (Al-a) and (A2-a) the vari-
ance of g’ft’l is gft = gft(l — glft) which allows us to define the unconditional
SINR as

E E
gb;t nb;t
Vot = = . (2.11)

- gb;t 1 - nb;tvb;t

A3-a Due to the particular structure of the MCS, the so-called equal vari-
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ance assumption holds, which states that

XbE = UEI(st+nT)nz7Vb- (212)
so that
nl?t
E ;
Vot = ——F- (2.13)

The assumption (A3-a) holds for an interleaver of sufficient large size L, but

forcing it induces no performance degradation.

Ad-a Assuming sufficiently large values of L, v¥ can be replaced by its

empirical mean ¥ given by

ny MmNt

L
1
_E 2 : E
vo= o L /Ub;t,l’ (214)
PR T =1 1=

As a matter of fact, the assumption (A4-a) is part of the baseline assump-
tions of EXIT charts (ergodic regime) [37].

2.3.1.3 Demapping and decoding

The estimate .§£” is used as a decision statistic to compute the LEXTPR
on the g, bits involved in the labeling of s, ;.

Ab5-a In (2.10), the conditional pdf péﬁt,llsm,z@gt,l) is circularly-symmetric
complex Gaussian distributed.

Under (Al-a),(A2-a) and (A5-a) the conditional pdf pégt,llsb;t,l(ggtal)

is J\/’C(ggtsb;t,l,gft). As a result, under (Al-a),(A2-a) and (A5-a), for the
special case of Gray labeling, the LEXTPR AL ,1,,(dpt.;) on labeling bit

dp;t,1,5 1s expressed as

2 seqr® e 10— 9hes /i
s€Z,

E
AE’DEM(db;tJ’j) - *‘§bE;t,lfglEts|2/§lEt <2.15)

e
seﬁ?fu((;)

The set Ag pey of all LEXTPR on labeling bits becomes after deinterleav-
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ing the set AE pec of all log intrinsic probability ratios on coded bits used

as input for the decoder.

A6-a The pdf pA?DECIC(A]IE,DEC) factorizes as

e
PAZ,ote AT ppe) = [ 1 2ar o tenien A DEC(Cn)

n=1

where Ag pec(cn) is the log intrinsic probability ratio on coded bit ¢,. The
assumption (A6-a) allows to simplify the decoding task. It is rightfully
confirmed for an interleaver of finite, but large enough, depth. Under (A6-
a), the decoder computes the LAPPR Ag,DEC(Cn) on coded bit ¢, as

AE (c ) _ Zcé%:cnzl | PAF’DEC@TL)\C,L(AEDEC(CW)) (2 16)
DpEC\n) = S Tk, omten (Fpmc (o)) '
Finally the LEXTPR on coded bit ¢, can be computed as
Ag,DEC(Cn) = Ag,DEC(Cn) - AJE,DEC(CTL) (2.17)

This completes one iteration. The different steps are for LEXTPR based
iterative LMMSE-IC are described in Fig. 2.2.

2.3.2 LAPPR-based LMMSE-IC

For the sake of simplicity, some notation used in this section are similar to

those of the previous section, but refer to different mathematical objects.

2.3.2.1 Interference regeneration and cancellation

Prior to LMMSE estimation of the symbol s;.;;, we compute the conditional
MMSE estimate of the interference, defined as il?l\t =E |y, ,{AD,LE}s, \spi |-

This computation is tractable by making two symplifying assumptions.
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Figure 2.2: LEXTPR-based iterative LMMSE-IC (adapted to STBICM with
convolutional code and Gray labeling)

A1-b The pdf Psy 1wy HAD, LEYsy oy s (§b;l,mb;l) factorizes as

pﬁb?bﬂb?l|{AD’LE}§b;l\5b;t,l (§b,l7 EbJ) =

(2.18)
P(svt,0)Pwy, (Wo) [T 120y P (St {AD LB sy 1)-

A2-b The pmf P(sp;v v [{Ap,LE}s,,, /) in (2.18) is given by

—1
P<3b;t’,l"{AD,LE}sb.t/ z/) X er Hoj (Sb;t/’l/)AD’LE(db§tl’l/v]').

As a matter of fact, the assumptions (A1l-b) and (A2-b) never hold even for
an ideal interleaver of infinite depth. But we can still force them in all sub-
sequent derivations. Under (A1l-b), the MMSE estimate of the interference
affecting the symbol s;.;; is given by

iﬁl\t = Hy(TLgy 4noyme — thz)mgl (2.19)

where mgl is the vector made of all estimates mgt,J, =E |spp | {AD,LE}Sb;t,J,}
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evaluated under (A2-b). After IC, the new observed vector is Yy, gbl_) N

2.3.2.2 LMMSE estimation — unconditional case

The optimization problem to solve can be formulated as follows: Find
§£t7l = fgt (Xb;l_ilﬁl\t) minimizing the unconditional MSE E [\éé?u — Spita]?
defined as

E [D [!§£t,z - Sb;t,z\Q!{AD,LE}gb;l\sb;t,l}] - (2.20)

The outer expectation in (2.20) renders the (biased) LMMSE filter time-
4D =D7'yD <D wD
invariant given by f,, = B, §b.t where §b.t =K [§b.t l} with

€0 = E [(Xb;l N igz\t)sz;t,lHAD,LE}%\Sb;t,z]

= =D .
and where &,, = E {gbml} with

=D oD v D
Eb;t,l =E [(Xb;l - Xb;l\t)(zb;l - Xb;l\t)”{AD’LE}§b;l\sb;t,l:| .

wD v D

The computation of f},; is again intractable. However, under (Al-b), &,
oD ’

and =T become §5t = hb;t = H,e, and 5{% = ﬂbXbD.\tEZ +012L)ILSWnr where

M{?,\t is the unconditional symbol covariance matrix defined as
D _ . D D D D
Vine = Lwgwnn) @ diag{vgy, . v 1, 1053005 -5 Vhin, }
D D . D D |2
where Vt' # t, Uy = E [Ub;t/J} with Vyyr | = E [fsb;t',z — mb;t,ﬂ ’{ADvLE}Sb;t/,l:|

evaluated under (A2-b). Using the matrix inversion lemma, we obtain the
filter

1 5
£, = >y h, (2.21)
L (1= vp) it

where £ = HyVPH] + 0210, and nf, = b}, 5P 'hy, with

VP =VP, - (1—vf)ee! (2.22)
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D _ D o1 D D |2
where v,; = E [’ub;t,l] with vy, = E [|Sb;t,l — mb;u\ ’{ADyLE}Sb;t,I:| evaluated

under (A2-b). The corresponding estimate §£tl of 8,11 can be expressed as
2D Dt ~D D D
Shit,l = ﬁb;t (Xb;l - Xb;l\t) = Gu:Sbit 1 + Cb;t,l (223)

where gé?t = ﬁg h;, and Cé?t,l is the residual interference plus noise term.
Clearly, Cb[;)m in (2.23) is zero-mean and uncorrelated with the useful signal
spy under (Al-b), i.e., E[sb;mgﬁtl] = 0. Under (Al-b) and (A2-b) the vari-
ance of Qf?u is glf?t = glft(l — gé?t) which allows us to define the unconditional

SINR as b b
bit — D D D" .
1 - gb;t 1 - nb;tvb;t

~

A3-b Due to the particular structure of the MCS, the so-called equal vari-

ance assumption holds, which states that

XbD = UDI(LSW—i—nT)ntv vb. (225)
so that
771?15
D .
Yt = T D - (2.26)
L né?tvD

The assumption (A3-b) never holds even for an ideal interleaver of infinite

depth, but forcing it induces no performance degradation.

A4-b Assuming sufficiently large values of L, v can be replaced by its

empirical mean o given by

ny MmNt

> v (2.27)

b=1 t=1 [=1

=L
nyn L

As a matter of fact, the assumption (A4-b) is part of the baseline assump-
tions of EXIT charts (ergodic regime) [37].
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2.3.2.3 Demapping and decoding

The estimate §£’tl is used as a decision statistic to compute the LEXTPR

on the g, bits involved in the labeling of s, ;.

A5-b In (2.23), the conditional pdf Pap, llsb-“(‘ggt,l) is circularly-symmetric
complex Gaussian distributed. -

Under (Al-b),(A2-b) and (A5-b) the conditional pdf p§£t’l\5b;t,z(§£t,l)

is Nc(g,ftsb;“,glﬁ). As a result, under (Al-b),(A2-b) and (A5-b), for the
special case of Gray labeling, the LEXTPR Ag,DEM(db;tJJ) on labeling bit

dpt,1,; is expressed as

Z _‘ng-t l_95t3|2/<bpt
(1) [ ity 5 H
sGJ&”VJ

D
AE’DEM(db;t’l’j) - —188 1 —9L: 812 /s, (2'28)

sec%"u(’(;) €
The set Ag’ pey of all LEXTPR on labeling bits becomes after deinterleav-
ing the set A? pec of all log intrinsic probability ratios on coded bits used

as input for the decoder.

A6-b The pdf pA?DECIC(AEDEC) factorizes as

(APpEc) = H pARDEC(ancn(A?,DEC(Cn))

n=1

PAD

I,DEC|C

where A? ppc(cn) is the log intrinsic probability ratio on coded bit ¢,. The
assumption (A6-b) allows to simplify the decoding task. It is rightfully
confirmed for an interleaver of finite, but large enough, depth. Under (A6-
b), the decoder computes the LAPPR ABDEC(cn) on coded bit ¢, as

> D
Ece‘g:cnzl HZil pAID (AI,DEC(Cn))

 ppe(en)len

> I1heipap
cECG:cn=0 n=1 AI,DEC(CH)‘cn

(2.29)

D _
Ap pecen) = (AP prc(en))’

Finally the LEXTPR on coded bit ¢, can be computed as

Ag,DEC(cn) = AB,DEC(Cn) - A?DEC(CH) (2.30)
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This completes one iteration. The different steps are for LAPPR based
iterative LMMSE-IC are described in Fig. 2.3

LMMSE-IC

v ! &DALEI_1
L=
D.LE\, |st

|
N
T
MEAN
E : L A s
R
F

—— D’LEn[,:n,
MEAN

E.DEM,, AD AD

LMMSE, , s | LDEC D,DEC
\—T—‘ . o DEC

@T NoSo
i

Figure 2.3: LAPPR-based iterative LMMSE-IC (adapted to STBICM with
convolutional code and Gray labeling)

2.4 PHY-layer abstractions

2.4.1 LEXTPR-based iterative LMMSE-IC

An LMMSE-IC based turbo receiver turns out to be a complicated non-linear
dynamical system. Our objective is to analyze its evolution as iterations
progress. The proposed performance prediction method is semi-analytical
and relies on ten Brink’s stochastic approach of EXIT charts [37] particularly

useful in understanding and measuring the dynamics of turbo processing.

2.4.1.1 Transfer characteristics of LMMSE-IC

The LMMSE-IC part of the receiver ends up with nyxn; independent parallel
channels under (A6-a). Each of them is modeled as a discrete-input AWGN
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channel under (A5-a) whose SNR, given by

E
E nb;t

o = (231)

E —
1 — 08

under (Al-a)-(A4-a), turns out to be a function ¢; of b, t, Hy, 02 and the
input variance . For each such channel, we can compute the average
mutual information (AMI) I LEEb;t between the discrete input sp.;; € 2, and
the output ng;t,l = Spt1 + Eft,l with efw ~ N¢(0, 1/7{3). The value of ILEEb;t
depends on the single parameter ’ylft. Let I EE be the arithmetic mean of the

values {IEEb-t }, ie.,

~ 1 ny Nt
IE, = e, . 2.32
o = 20 2 (2.32)

The AMI 1 LEEM = @b(ylft) is a monotone increasing, thus invertible, function
of the SNR, and depends on the MCS. It is simulated off-line and stored in
a LUT.

2.4.1.2 Transfer characteristics of joint demapping and decoding

The functional module is MCS-dependent and comprises the following steps:
demapping, deinterleaving, BCJR decoder, reinterleaving, and computation
of the mean and variance of transmitted symbols based on LEXTPR on
coded bits (as described before). The generated observed symbols are the
output of a virtual AWGN channel with discrete input in 2, and SNR ~. For
an arbitrary labeling rule, bivariate transfer function is required to stochas-
tically characterize the joint demapper and decoder. With Gray labeling
however, log a priori probability ratios on labeling bits do not intervene in
the computation of the LEXTPR on the labeling bits (see (2.15)) and, hence,
need not be taken into account in the stochastic modeling of the demapper.
Therefore, simpler univariate transfer function is sufficient to stochastically
characterize the joint demapper and BCJR decoder. These functions are
the measured BLER P. = Fpp,(7), the variance v = G?DD,, (7). They
are computed off-line and stored in separate LUTs. It is necessary to em-
phasize that the LUTs are generated with channel use number fixed to ng,
thus are independent with the number of fading block. The algorithm used
to generate the different LUTSs is summarized in Algorithm 1. Note that the
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Algorithm 1
1: Inputs v, ng, ng
2: for v = Ymin t0 Ymaz do
3: for bk =1 to ny, do

4: Channel interleaver random generation: 7

5: Codeword generation: u - ¢ — D — S

6: Virtual AWGN Channel: Generate S s.t. 5160 ~ Ne(sie, 1/7)

7 Demapping: Compute {Ag,DEM(dl;t,lJ)} as (2.15) with ‘§1E;t,l = 51.41
and gﬁt =1

8: Deinterleaving;: Ag,DEM — AEDEC

9: BCJR decoding: Compute {AE,DEC(CW)} and Ag,DEC(Cn)} based
on {A]IE:DEC(Cn)}

10: Update counter block errors

11: Interleaving: AEDEC — AaLE

12: Compute {UEN} using {{Aa.z5}s,,,} — {0}} as (2.14)

13:  end for

14:  Compute P, and v% = n—l{k e oh

15: end for

16: Outputs P. = Fypp, (’7), of = G?DDV (’}/)

LUTs for BER can be generated in the same way.

2.4.1.3 Evolution analysis

It remains to relate the output IZ, of the first transfer function (LMMSE-
IC) and the input SNR of the second transfer function (joint demapping
and decoding) at any iteration. This is done by assuming that I JLEE which
measures the information content of knowledge on coded modulated symbols
{sp:t,1}, averaged over all parallel AWGN channels, is equal to the informa-
tion content of knowledge on coded modulated symbols transmitted over a
single virtual discrete-input (with values in 2;,) AWGN channel with effec-
tive SNR ”yEE given by

1 ny ne
Vg = Ulp) =v! - IJLEEM . (2.33)
L ’

This technique inherited from EXIT charts is widely used in practice and
often referred to as MIESM [61]. In our framework, it relies on all the
defined assumptions (Al-a)-(A6-a) or, equivalently, on (A5-a) and (A6-a)
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for the first iteration. The variance v = G?DD,, (¥E5) is used in (2.12)
under (A4-a) for next iteration. Hence, the evolution of LEXTPR-based
iterative LMMSE-IC can be tracked through the single scalar parameter 7.
The different steps of PHY-layer abstraction for LEXTPR-based iterative
LMMSE-IC are described in Fig. 2.4

{H,}. 000 P
¢1:2 1 zzh | ,w—l
ZE : X : ) Ty 121 p=1 | Y
,ynb,,,:nl IfEW”
O

Figure 2.4: PHY-layer abstraction for LEXTPR-based iterative LMMSE-IC

2.4.2 LAPPR-based iterative LMMSE-IC

To make things even more complicated, some assumptions are not valid
when it is based on LAPPR on coded bits. Our objective is to analyze its

evolution as iterations progress.

2.4.2.1 Transfer characteristics of LMMSE-IC

The LMMSE-IC part of the receiver ends up with ny xn; independent parallel
channels under (A6-b). Each of them is modeled as a discrete-input AWGN
channel under (A5-b) whose SNR, given by

D
’YD o nb;t
bt — D =D
1- Mpet ¥

(2.34)
under (A1-b)-(A4-b), turns out to be a function ¢; of b, t, Hy, 02 and the
input variance v”. For each such channel, we can compute the average
mutual information (AMI) I LDEb-t between the discrete input s, € 2, and
the output gll;?t,l = Sp1 + egu with egtvl ~ Ne(0, I/Vé?t)' The value of I[?Eb;t

depends on the single parameter 'yé?t. Let T EE be the arithmetic mean of the
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values {IEEN }, ie.,

ny ng

1

Iip =
Tpne 34—

1D, (2.35)
1t=1

The AMI 1 LDEb.t = @Z)(yﬁ) is a monotone increasing, thus invertible, function
of the SNR, and depends on the MCS. It is simulated off-line and stored in
a LUT.

2.4.2.2 Transfer characteristics of joint demapping and decoding

The functional module is MCS-dependent and comprises the following steps:
demapping, deinterleaving, BCJR decoder, reinterleaving, and computation
of the mean and variance of transmitted symbols based on LAPPR on coded
bits(as described before). The generated observed symbols are the output
of a virtual AWGN channel with discrete input in 2, and SNR ~. For an
arbitrary labeling rule, trivariate transfer function is required to stochas-
tically characterize the joint demapper and decoder. With Gray labeling
however, log a priori probability ratios on labeling bits do not intervene in
the computation of the LEXTPR on the labeling bits (see (2.28)) and, hence,
need not be taken into account in the stochastic modeling of the demapper.
Therefore, simpler univariate transfer function is sufficient to stochastically
characterize the joint demapper and BCJR decoder. These functions are
the measured BLER P. = Fypp,(7), the variance 2 = G7pp, (7). They
are computed off-line and stored in separate LUTs. It is necessary to em-
phasize that the LUTs are generated with channel use number fixed to ng,
thus are independent with the number of fading block. The algorithm used
to generate the different LUTSs is summarized in Algorithm 2. Note that the
LUTs for BER can be generated in the same way.

2.4.2.3 Evolution analysis

It remains to relate the output 7 of the first transfer function (LMMSE-
IC) and the input SNR of the second transfer function (joint demapping
and decoding) at any iteration. This is done by assuming that I LDE which
measures the information content of knowledge on coded modulated symbols
{sv:t,1}, averaged over all parallel AWGN channels, is equal to the informa-
tion content of knowledge on coded modulated symbols transmitted over a

single virtual discrete-input (with values in 2;,) AWGN channel with effec-
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Algorithm 2
1: Inputs v, ng, ng
2: for v = Ymin t0 Ymaz do
3: for bk =1 to ny, do

4: Channel interleaver random generation: 7

5: Codeword generation: u - ¢ — D — S

6: Virtual AWGN Channel: Generate S s.t. 5160 ~ Ne(sie, 1/7)

7 Demapping: Compute {Ag,DEM(dl;t,lJ)} as (2.15) with ‘§£t,l = 51.41
and gﬁt =1

8: Deinterleaving;: ALEZDEM — A?DEC

9: BCJR decoding: Compute {ABDEC(C”)} and Ag,DEC(Cn)} based
on {AP,DEC(CH)}

10: Update counter block errors

11: Interleaving: AgDEC — Ap.LE

12: Compute {vfw} using {{Ap re}s,,} — {04} as (2.27)

13:  end for

14:  Compute P, and v” = ﬁ e oh

15: end for

16: Outputs P, = Fypp, (7), o° = GF5p (7)

tive SNR ”yLDE given by

1 ny ne
op = Up) = ¢! - ILDEb.t . (2.36)
L ’

This technique inherited from EXIT charts is widely used in practice and
often referred to as MIESM [61]. In our framework, it relies on all the
defined assumptions (Al-b)-(A6-b) or, equivalently, on (A5-b) and (A6-b)
for the first iteration. The variance o = G5, (71) is used in (2.25) under
(A4-b) for next iteration. Hence, the evolution of LAPPR-based iterative
LMMSE-IC can be tracked through the single scalar parameter o2.

2.4.2.4 Calibration

A major drawback of the performance prediction method for LAPPR-based
iterative LMMSE-IC is that the assumptions (A1-b), (A2-b) and (A3-b) do
not hold for LAPPR-based iterative LMMSE-IC. As a consequence, not only
the filters {be} but also the SINRs {fyb[;)t} given by (2.24) are approximated.

The true SINRs, if we could have to access to them, would be smaller. This
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fact explains why the prediction performance method expounded in [66]
yields too optimistic results compared to the true simulated performance.
To solve this problem, we proposed a simple, yet effective, calibration pro-
cedure whose principle is to adjust v with a real-valued factor 5, > 1. More
specifically, v is replaced by C,(v) = min(3,7, 1), which has the effect to
artificially reduce the SINRs that are used in the performance prediction
method. We searched the optimal 8, minimizing the error between the sim-
ulated BLER (or BER) and the calibrated predicted BLER (or BER)over a
large number of channel outcomes at each iteration ¢ > 1 for the BLER range
of interest [0.9,0.01]. The algorithm for generating the link level simulations

for calibration is summarized in Algorithm 3.

Algorithm 3 Algorithm for generating the link level simulations for cali-
bration

1: Inputs v, ng, n,, Ny, nr g, Ay, ng

2: for ch =1 to ng, do

3:  Generate {Hp,}cn

4 for v = Ymin t0 Yimaer do

5 for bk =1 to ny. do

6 Channel interleaver random generation

7 Codeword random generation

8 AWGN random generation

9 Transmission

10: for i =1 to n; do

11: Perform LAPPR-based iterative LMMSE-IC receiver
12: update counter block errors

13: end for

14: end for

15: Compute BLE Rgimu({Hp:r }ens 7,4, v), Vi =1,...,ny
16: vy=7+Ay

17:  end for
18:  Store {Hy.;}cn, v and { BLE Rgimu({Hp.r fen, 7,9, v) 1, Vi = 1,... gy
19: end for

Then the instantaneous predicted BLER are obtained with calibration,
Le., {BLERpred({Hb;T}cha V51, U, ﬁ)},VZ =1,... 7nitavﬁ = ﬂmina oo Bmaz-
A recapitulative diagram of the performance prediction method with cali-

bration is depicted in Fig. 2.5.
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Figure 2.5: PHY-layer abstraction for LAPPR-based iterative LMMSE-IC

The optimal 8 denoted S, is found as follows:

Nech  Ymaxz Mt

By = arg mﬁin Z Z Z D (BLERsimu({Hb;T}cha V5L, V), BLERpred({Hb;T}cha V51, V, 5))
ch=17Y=Ymin 1=2
(2.37)

where n;; is the number of iterations and D(xz,%y) = |logo(z) — logo(y)|?.
Exhaustive simulations revealed that 3, depends on the MCS but does
not vary significantly w.r.t. the number of transmit and receive antennas as

well as the channel characteristics.

2.5 Numerical results

We consider an STBICM with the following parameters: rate-1/2 non-
recursive non-systematic binary convolutional encoder as mother code with
generator polynomials (171,133)s and Quadrature Amplitude Modulation
(QAM) constellation with Gray labeling. The number of channel use ns =
288.

2.5.1 LMDMSE receiver

The mismatches between predicted and simulated performance will accumu-
late following iterations. Accurate prediction at one iteration help obtain
accurate prediction for the next iteration. In [61], the MIESM is shown to be
the most robust and accurate amongst all candidate techniques. The simu-
lation results in [61] are done for LMMSE receiver with interleaver re-drawn
randomly and alters from block to block. However, pure random interleaver

is not optimal for a STBICM transmission. The optimal interleaver should
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be designed to be diagonal-random: nyn:q, nearby coded bits are separated
into npneq, parallel virtual streams, which exploits all the diversity. The
first questions comes: whether MIESM technique is sensible to the change
of interleaver structure?

For this purpose, we evaluate the instantaneous predicted and simu-
lated BER/BLER over 200 channel outcomes. For each channel outcome,
the Monte Carlo simulation is stopped after 100 block errors (a block er-
ror is declared when at least one bit is wrongly detected). Pure-random
or diagonal-random interleaver is drawn and alters from block to block. A
4 x 4 1-block fading channel is chosen for the test. Fig. 2.6 and Fig. 2.7
present the MIESM technique based instantaneous predicted vs. simulated
instantaneous BER/BLER under diagonal structured or pure random inter-
leaver with Quadrature Phase-Shift Keying (QPSK) - 1/2 and 16QAM-1/2,
respectively. These two figures show that MIESM technique based predicted
performance match very well the simulated performance when pure random
interleaver is used (as in [61]), however are, in most of the cases, pessimist
when diagonal random interleaver is used. The solution to help MIESM
predict well the performance with diagonal-random interleaver seems not

exist thus pure random interleaver will be kept in what follows.

2.5.2 Iterative LMMSE-IC

In what follows, the number of iterations is n;; = 4. We consider an STBICM
with the following parameters: rate-1/2 non-recursive non-systematic binary
convolutional encoder with generator polynomials (171, 133)g and 16QAM
constellation with Gray labeling. Coded bits are mapped to 1152 symbols.
For each iteration, the instantaneous simulated BER vs. the predicted ef-
fective SINR over almost 200 channel outcomes is plotted in Fig. 2.8, Fig.
2.10 and Fig. 2.12 (scatter diagrams) for a 4 x 4 MIMO 1-block fading
Rayleigh fading channel. The pure random interleaver is altered randomly
from block to block. For the sake of readability, we only plot the channel
outcomes that reach the BLER region of interest (between 1 and 1072) at
the fourth iteration. For each channel outcome, convergence of Monte-Carlo
simulations is obtained for 100 block errors. To validate the proposed perfor-
mance prediction methods, we also check that the averaged simulated BLER
(over the joint statistics of the MIMO block fading channel and the AWGN)
on a 4 x 4 MIMO 2-block Rayleigh fading channel, is well captured. We
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stop the Monte-Carlo simulations after 800 block errors. The Genie-Aided
(GA) lower bound corresponds to the BLER performance when all sources
of interference are perfectly canceled.

Firstly, we investigate the LEXTPR-based iterative LMMSE-IC algo-
rithm. Fig. 2.8 presents the instantaneous simulated BER vs. the predicted
effective SNR. without calibration. The plotted plain-line curve represents
the predicted BER (which is actually the BER LUT). Obvisouly, the perfor-
mance prediction method does not need calibration. Indeed, the approxima-
tions (Al-a) - (A6-a) are perfectly relevant and valid in this case (i.e., even
for finite N = 4608). Fig. 2.9 confirms that the predicted averaged BLER
performance without calibration matches exactly the simulated BLER per-
formance.

We then move to LAPPR-based itarative LMMSE-IC, whose averaged
BLER performance is 1.5 dB better than its LEXTPR-based counterpart at
BLER 1072 (see. Fig 2.13). Fig. 2.10 depicts the instantaneous simulated
BER vs. the predicted effective SNR, without calibration. Clearly, the pre-
dicted BER is too optimistic for most of the channel outcomes. Calibration
is needed. For this specific MCS, we found 3,,; = 2.6 as shown in Fig. 2.11.
Fig. 2.12 plots the instantaneous simulated BER vs. the predicted effective
SNR with calibration. The accuracy of the performance prediction is greatly

improved. This is also visible on Fig. 2.13.

2.6 Conclusion

In this part, An effort is made to analyze the SINR evolution of LEXTPR-
based LMMSE-IC and LAPPR-based LMMSE-IC algorithms under perfect
CSIR in convolutionally coded MIMO systems. It has been numerically
demonstrated that the performance prediction method described in [71] [66]
is more accurate for LEXTPR-based LMMSE-IC than for LAPPR-based
LMMSE-IC. Indeed, while the underlying assumptions made in the first case
hold in practice, some of them prove to be approximate (and optimistic) in
the second case. To solve this issue, an improved performance prediction
method has been proposed for LAPPR-based LMMSE-IC, based on a simple
calibration procedure whose efficiency has been validated by Monte-Carlo

simulations.
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Figure 2.6: Diagonal random interleaver vs. pure random interleaver: in-
stantaneous MIESM based predicted vs. simulated BER/BLER over 4 x 4
1-block fading channel with QPSK-1/2
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Figure 2.7: Diagonal random interleaver vs. pure random interleaver: in-
stantaneous MIESM based predicted vs. simulated BER/BLER over 4 x 4
1-block fading channel with 16QQAM-1/2
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tion for LEXTPR-based iterative LMMSE-IC algorithm and 16QAM-1/2
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Chapter 3

Extension to imperfect CSIR
and iterative semi-blind
channel estimation

3.1 Introduction

The PHY-ayer abstractions for iterative LMMSE-IC receivers under im-
perfect CSIR in convolutionally coded MIMO systems is the topic of this
chapter. It is important to stress that adopting LEXTPR on coded bits
at the output of soft-in soft-out decoder as a priori information for channel
re-estimation, soft symbol-to-bit demapping and soft interference genera-
tion/cancellation is part of the receiver design basic assumption. Therefore,
the notations are largely simplified. The generalization to LAPPR. on coded
bits based case is quite straightforward.

Under imperfect CSIR, if the number of pilot symbols is sufficient to
ensure close to perfect CSI, then it is sufficient to adopt the so-called mis-
matched assumption which simply postulates that the initial pilot assisted
channel estimate is noiseless [75-77]. In that case, performance prediction
methods derived under the assumption of perfect CSIR can be used in prac-
tice. However, if the number of pilot symbols are reduced conditional on
some advanced semi-blind channel estimation scheme at the receiver side,

the mismatched assumption is not valid anymore. Indeed, it is quite known

This chapter is partially presented in the paper accepted to IEEE VTC Spring’2012
and the journal paper in preparation for IEEE Signal Processing

61
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that performing detection and channel estimation within a same iteration
(using channel decoding a priori) allows reducing drastically the number of
reference signals for a given performance, see, e.g., [78-81]. Therefore, new
prediction methods should be derived conditional on the available a priori
information only, i.e., the so-called matched assumption [75-77], which are
the initial pilot assisted channel estimate and the long-term CDI, (such as
the channel and noise probability distribution functions).

The scope of application of this method in terms of semi-blind channel
estimation algorithms as well as communication context is extremely large
[66]. As a result, for the sake of simplicity and as a first step, only SU-MIMO
frequency selective transmission is considered, modelled by a MIMO block
fading AWGN channel, and semi-blind LMMSE channel re-estimation. The
space time modulation and coding scheme is chosen as a STBICM without
loss of generality. Indeed, the proposed double loop receiver architecture
could be applied to any Space Time Codes provided that they rely on a bit or
symbol interleaver and can be easily extended to a MU-MIMO context [66].

3.2 System model

The transmission occurs on a MIMO block Rayleigh fading AWGN channel
with n; transmit antenna, n, receive antenna and n; independent fading
blocks. The total number ng of channel use for transmission is constant.
Thus each fading block is experienced by Lgs = ns/n, channel uses. A
STBICM, indexed by v, is used at the transmitter, specified by a linear
binary convolutional %, of rate r,, a complex constellation 2, C C of
cardinality 29 with energy equal to 038 and a memoryless labeling rule ,.
We define the rate of the MCS as p, = r,q, (bits/complex dimension).
The encoding process for MCS is detailed. The vector of binary data (or
information bits) u enters an encoder ¢, whose output is the codeword
c € ¢, of length n,. = ngniq,. The codeword bits are interleaved by a
random space time interleaver m, and reshaped as a integer matrice {Dp},*,
with Dy € Z;L;,,X Las  Each integer entry can be decomposed into a sequence
of g, bits. A Gray mapping pu, transforms each matrix Dj into a complex
matrix S, € 2> s, 3&”,}(3-) and ,%”V(j) denote the subsets of points in 2,
whose labels have a 0 or a 1 at position j. With a slight abuse of notation,
let {db;t,l,j}?;1 denote the set of bits labeling the symbol s, € Z,. Let
also ,u;]l(s) be the value of the j-th bit in the labeling of any point s € Z,,.
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Pilot symbols are transmitted before the data symbols whose matrix form

is given as A}® € {—0ys, 0ps " *LPs. The matrix A}” is the same for each

fading block and is built from a Constant Amplitude Zero AutoCorrelation
(CAZAQC) sequence u € {0, 1}1*Lrs [95] such that a’ = oy (2T (;_1) (u) — 1)

where T;(.) denotes the right circular shift operator of i elements. The

transmitter described above is depicted in Fig. 3.1.

QAM

bit/symbol

pilots
Map.

Map.

Map.
S
u c db:i.l.j QAM biti Insert {'sb}

—> Encoder T bit/symbol

QAM
bit/symbol

Figure 3.1: Transmitter model (STBICM with pilot symbol insertion)

It yields the receive base-band model :

where
rX Lps 3 —
° Y%:S — |:y§7817 ’yg;sts] c (Cn X Lp Wlth yf’sl — [yg,sl’l’
the receive samples related to the pilot symbols
* Yy = [yo1,  »YoiLg,) € CFe with yuy = [ypia, -
the receive samples related to the data symbols
° Wgs — [Wg;sl’ ... ,Wg;stS c (C?’LrXLps with WZ‘; — [wisl,P .

YP = H,AP WP
Y,=H;S, + W,

are the noise samples associated to the pilot symbols

Wb — [Wb;17'.. 7Wb;Lds] c (CanLds With Wb,l = I:/U_)b;lJ’..

are the noise samples associated to the data symbols

The b-th fading block channel gain H;, € C"*™

(3.1)

ps T
Yo, ) arTe

)yb;nr,l]T are
ps }T

) wb;nr,l

. 7'wb;71r,l}—r

A1 The entries of {wy;} are i.i.d and follows the pdf Mg (0, Ny). The entries
of the channel gain {H,} are i.i.d and follows the pdf N (0, 07).
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3.3 Double loop receiver architecture

The proposed double loop receiver architecture is described in Fig. 3.2.
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R ESTIMATION : ALE
F [ mean ——
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VAR ST
Ayre Wl
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Figure 3.2: LEXTPR-based double loop receiver architecture with semi-
blind channel estimation (adapted to STBICM with convolutional code and
Gray labeling)

Let ﬁéo) denote the initial pilot assisted channel estimate. The funda-
mentals of iterative LMMSE-IC detection and LMMSE channel (re)estimation

are recalled considering iteration ¢ > 1 in progress. Based on the statistics

soft symbol mean {m,(f;,p =K [sb;t/7l]P(sb;t/7l)]}, symbol variance {vlg,i;}) =
E [|sb;t/,l — mb;t/,l|2|P(sb;t/,l)]} (see Section 3.4) and previous channel estima-
J (4)
b;l\t
of the interference on symbol sy is first derived (see Section 3.6) and is

subtracted to yp;. A unconditional linear estimate §l(le = fl:r. (Yot — y,(jl)\ 2

tion {IA{l(f_l)} (see Section 3.5) computed at iteration i —1, an estimate y

is obtained based on the linear filtering by fj,;. Finally, soft symbol-to-
bit demapping, deinterleaving, soft-in soft-out decoding, interleaving and
soft bit-to-symbol mapping are performed to obtain new estimated {m,(fz, e
{UZE;?',Z} which are used subsequently to derive I/-\Il(j) for next iteration. This

concludes one iteration.
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3.4 Soft bit-to-symbol mapping
Let AgTD%C = {AE DEC(CWZ)} denote the set of all LEXTPR on coded bits
generated by soft in soft-out decoder which is interleaved to become the set
AE; L% = {A AL E(db ¢15)} of all log “a priori” probability ratios on label-
ing bits used for soft symbol mean and variance computation. For ¢ = 1,
since no a priori information exist at the first iteration of detection, we set
(A prc(en) = 0} (AL (dywag) = 0} and {myg), = 0}, {up), = o3}
Let {AEZ LlE sy, and {Afj;%}sb;l be the set of all LEXTPR on coded bits in-
volved in the labeling of s, ; and sy, respectively. Let also {AS’*L%}SM\SMZ
be the set of all LEXTPR on coded bits involved in the labeling of s, except
the coded bits involved in the labeling of sy, ;.
Prior to LMMSE estimation of the symbol s ;, we compute the condi-
tional MMSE estimate of the interference, defined as y,,, = E ybil’{ADvLE}Sb;L\Sb;t,l .
These computations are tractable based on two basic assumptions.
A2 The pdf D,

(i—1) (Sby1, W) factorizes as

b;l»Wb;lHAA LE}Sb l\Sb it

(S5 Wht) = Py (W) P(5156.0) TTrozg Pt adl{AY 22} spr)
(3.2)

i—1
psb;lawb;l ‘{AEZ,LI%}Sb;Z\Sb;t,l

A3 The pmf P(spy l|{AA LE ) in (4.2) is given by

Sb t 1

)
(Sbt'l’{/\lz;}% )O(ez “VJ(Sbt’ A ALE(dbt’lJ) (3.3)

Sb /1

As a matter of fact, assumptions (A2) and (A3) hold with a sufficient large
interleave length in practice for LEXTPR on coded bits. Based on these

two assumptions, we can compute the V¢’ = 1,... n;
(i-1) _
My = Sbt’l’{AALE Sbit! 1
(i—1) 1)
Uppr ™ = ’mbt’l_sbt’l‘ ‘{AALE Spit! 1

In order to reduce the complexity, matrix inversion at each time 1 can be
avoided by adopting the unconditional detection approach which is based

on a unconditional covariance matrix given as

= _ dlag{v - 1), ... ,v(i_l)}

bine

Vi
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(i—-1) (i—1)
where v, = E [”b;t’,l }
A4 Due to the particular structure of the MCS, the so-called equal variance

assumption holds, which states that each variance vé,i; 1) i-1)

is equal to vl
defiened as

Vi = D1, b, (3.4)

The assumption (A4) holds given an interleaver of sufficient large depth,
and forcing it induces no performance degration.
A5 Furthermore, assuming sufficiently large interleaver size, we can replace

v~1 by its empirical mean 701 defined as

Lgs np ny

i 1 i
N = L e 0

=1 b=1t'=1

This yields the final simplified symbol covariance matrix V=1 given as
vl = 5011, (3.6)

As a matter of fact, the assumption (A5) is part of the baseline assumptions
of EXIT charts (ergodic regime) [35]. For the sake of simplicity, we drop
the index b when it is convenient because the derivation is the same for each
fading block b. In a slight abuse of notation, H and H stand either for the
channel state for a given block b or for the set of channel states for all blocks

b=1,---,np depending on the context.

3.5 Channel estimation and a posteriori CDI

3.5.1 Initial pilot assisted channel estimation

The initial pilot assisted channel estimate HO) corresponds to the Maximum

Likelihood (or Least Square) unbiased channel estimate

HO =y, Af(AAN! 3.7
p
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which yields the error model
HO = ¢OH + ¢© (3.8)

with ¢(® = 1. By choosing a CAZAC sequence of length Ly,s > 2ny4, it yields
AAT = Lpsaf,slnt (see [95]). Thus, it comes that the entries of ¥(©) are i.i.d,

circularly-symmetric Gaussian, with zero mean and variance (73)(0) = %328
3.5.2 Joint pilot and data assisted channel estimation
Conditional on the knowledge of the soft estimates §l(i_1) at disposal at the
end of the previous iteration (i > 2, see Fig. 3.2)
YP$ = HAPS + WPs
{ Y — HS(-D £ AW (3.9)

where AW — [Awli™) ... ’AW(L:—SU] and §G- = [m{~Y ... Jh(Lid_sl)]-
Note that
Aw Y =H(s — @) +w. (3.10)

. ) i—1 . (i) .
The covariance matrix of Awl(l ) conditional on 90~ is

B AG-D wist-1) {Awl(iil)ﬁwl(iil)f} = (mofo V4 No) Ly, = (AN V+No)T,,,

H,AA7LE,w|v
(3.11)

where ANO(i_l) = ntafbf)(ifl). By stacking the receive samples associated to

data and pilot symbols, we further extend the matrix model to
Y=us"" 4wl (3.12)

where Y = [y, Y], §" " = [Aps, S<H>] and W) = [wps, AW,

Since the rows of Y are uncorrelated, the LMMSE channel estimation can

be carried out independently on each row h”. The LMMSE filter F(—1) ¢
C(EpstLas)xnt that aims at minimizing Epr W{||y?”F("—1) —h"||?} is given by

(i—-1) _ —rt_ry 7L —rfyr
FOU =By o'y} Ep o{y 0"} (3.13)
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. i 1 _
or, equivalently, F(—1) = EH,W{YTY} EHW{YTH}. Averaging over the
channel statistics and applying the Matrix Inversion Lemma, we obtain

i - qli— i— oi— —1
PO = (o)) S (5 (o) ml VS L

where

. (i .

=0 = B{WT W) = diag (n, NoL,,, ne (No + ANSO)I,)
(3.15)

After some lengthy derivation given in Appendix A, the resulting (biased)

LMMSE channel estimation error model can be expressed as

HOD = -V 4+ w6 (3.16)
where ) ) (ie1) N
(i
B 2 2 _p-1)__ N Ny (3.17)
Lypsois + Las(og, — 0 ) - +

ANSTV4Ny O

and the entries of (1 has zero mean and variance ai(i,l) given as

L..o2 + L o2 — {](ifl) No
N PsYps ds( ds )ANél_l)+No
0

U?N—U _ (3.18)

2
2 2 _ ~(i—1 No No
(Lpsaps + Las(03, o ))ANéi_l)-i-No + 0%)

A6 1In (3.16), The entries of @~ arei.i.d and follows the pdf N (0, ai(i_l))
with U?p(i,l) given in (3.18).

Assumption A6 over ¥(—1) contains two aspects: Firstly, single ‘73,(1’71)
can evaluate its variance which comes from assumption A2, A3 A4 and A5.
Secondly, its Gaussian distribution is more valid when the soft symbol es-
timates are reliable such that the variance ANéifl) = ntaif)(i_l) < Ny or
equivalently, 70-D < N, /nto%. Clearly, the MSE for each channel compo-
nent is

No
E{lhye — BV 12) = ! . (3.19)
Lps02s + Las(05, — U(Z_l))ﬁ + %3
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Note that this derivation is new. The closest state of the art can be found
in [80], however, its MSE analyses are always based on an a posteriori com-
bining of the pilot assisted channel estimate and data aided estimate [80, eq.
(12)] while eq. (3.12) allows a joint pilot and data semi-blind LMMSE ap-

proach.

3.5.3 A posteriori CDI

From Assumption Al and Assumption A6, it is clear that H and HED
are jointly Gaussian conditional on 9~ . Therefore, the distribution
p(H[H) can be easily obtained [75] [76]. It yields, Vi > 1,

H = o~ DHD + AHD (3.20)

where 1
i-1) _ g Vol

(
a =—
gti=o? +

> (3.21)
O pti-1)

and the entries of AH(™D are i.i.d, circularly-symmetric Gaussian, with

. 2 . 3
zero mean and variance o A pi-1 glven as

2 2
2 B ThI y(i-1)
O-AH(i_l) - g(i_l)

. (3.22)
fo ol

3.6 Linear IC and data detection

After the channel estimation step, available CSI are: channel estimate (3.8),
(3.16) and a posteriori CDI (3.20). The fact that the real channel is never
known and the receiver needs to detect symbols implies that we should see
the channel observations as the output of a feasible base-band model other
than non-feasible base-band model (3.1). Depending on using how much
available CSI, two choices exist: a matched receiver base-band model using
both channel estimate and conditional channel distribution or a mismatched

receiver base-band model using only channel estimate.
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3.6.1 Receive base-band model conditional on channel esti-

mation

3.6.1.1 Matched receive base-band model

If we use both channel estimate and conditional CDI, an interesting matched
receive base-band model can be obtained Vi > 1, as [75-77]

yi = Hs +w
= o"VHO Vg 4+ AH Vs, + w,
= HO Vs 4 ¢V (3.23)

where H(-1) = a(i_l)ﬁ(i_l), Cl(ifl) — AHG Vg, + w;. The covariance ma-
trix of C(i_l) is
1

i— i— i—1)t i—
z(g Y = ]EH|If1(z‘f1) { l( 1)Cl( Y } = NO(l +5( 1)):["7‘ (3‘24)

with, using (3.17), (3.18) and (3.22),

(i—1) nto—?ls (3 25)
€ = . .
~ (i N N
LPS%QJS + Lds(afls — ot 1))nto§ﬁ(i_()1)+No + 072(:
Note that in [75, Appendix I| an alternative derivation is proposed relying
on the joint Gaussianity of y4s; and HED. From (3.23), IC make sense now
without the knowledge of H and the interference ?l(@ over s;; with matched

receive base-band model is generated as
~( e (i=1) fn (i—1 i—1
yio = HO D@m=l Vey) (3.26)

with €, = [0,---,1---,0]" which has a 1 in position ¢.
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3.6.1.2 Mismatched receive base-band model

A further simplified mismatched receive base-band model uses only channel

estimate by assuming H(O~Y = H [?] which yields

yi = HO Vs + w, (3.27)

From (3.27), the interference ?l(@ over s;; with mismatched receive base-

band model is generated as

~(0) _ E(io1) e (i1 i1
yl(\l — H( 1)(ml( )—mg,l )et) (3.28)

3.6.2 Linear-IC detection error model

IC and linear filtering by ft(i) € C"™*! make sense now without the knowledge
of H. Indeed, it yields the symbol estimates

i i)t ~(i
=ty - 1) (3.29)

Working with matched receive base-band model (3.23) yields matched SINR
model and working with feasible mismatched receive base-band model (3.27)
yields mismatched SINR model.

3.6.2.1 Matched SINR model

Working with feasible model (3.23), (3.29) becomes

i i)~ (i— ~ (4
80 = £ n{ Vs + i), (3.30)

where (] = £ [ (s~ )+ ¢§ V) with B = HOD (I-ere]).

We define the matched SINR &t(i) (ft(i)) as follows

N 2 R 2
R
= (3.31)

_ ~(i))2 o2
EH’S’W|H(F1)75(¢—1> {|nt,l ‘ ﬁi’l)
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The denominator is now averaged over H conditional on HO—1 and is given

)T (=1 gy (i—1) gy (i—1)T i—1 i
azyl} = ft() {v( l)Hgt )Hit ) —i—Eé )}ft() (3.32)

where Eg_l) is given in (3.24).

3.6.2.2 Mismatched SINR model

Working with feasible model (3.27), (3.29) becomes
a9 = g0 RN, 1 AL, (3.33)

where fzgzl) = flt(i)Jr [ﬁ&it—l)(sl - rhl(i_l)) + wyl, ﬁgit_l) = ﬁ(i_l)(I - etei). The

mismatched SINR ﬁt(i)(ft(i)) is given as

Dt (i—1) |2 A1) |2

o R o2, R o2,

() = O — : (3.34)
B, g g {19171} )

The denominator is now given by

D [ =D GE—-1) 5 G—1)T i
o2 = £ {at-Va( VA + Not, £ (3.35)

3.6.2.3 Exact SINR model

Note that both matched (3.31) and mismatched (3.34) SINR model devel-
oped above are feasible (approximated) SINR model in practice without
perfect knowledge of channel H. Clearly, the exact SINR model depends
on H. From (3.23), (3.29) and assuming perfect knowledge of H, we can
compute the exact SINR in matched receive base-band model

)

i)t cr(i—1) - (i— i)f i
= £ sy + Hys — B Vm Y 4 owy) = £ sy + 0l (3.36)

\t
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where Hy, = H(I,, — etel ), nizl) models the residual interference and noise.

The exact SINR of (3.36) is equal to

NOLEE

(i) /() e ] 9as
v (F7) = 2 (3.37)
”tzz

s

where,
i)t (i1 i—1)\ -7
Ufliil) = ft( ) O'gsH\tHJ{t + Hst )(058 — 1))H§t )
-y (-DT (-1 — i
_H\t(o-gs - U( 1))H§t ) - H{t )(035 - U(z 1))H{t} ft( )
O N, (3.38)

Note that this exact SINR model (3.37) in matched receive base-band model
exploits all available CSI before data transmission for feasible receive base-
band model and also unavailable CSI for SINR computation, thus it presents
the upper bound. For this reason, the exact SINR model in mismatched
receive base-band model is less interesting. However, this exact SINR model
(3.36), (3.37) and (3.38) can not be exploited to compute the filter f;. Again,
we need resort to the matched SINR (3.30), (3.31) and (3.32) or mismatched
SINR (3.33), (3.34) and (3.35) to compute the filter.

3.6.3 LMMSE-IC key equations

3.6.3.1 Matched LMMSE

The matched LMMSE filter f't(i) aims at maximizing the matched SINR ﬁ,fi)
(3.31) which yields, using the the Matrix Inversion Lemma,

. Nl N~ N~ ; -1
£ = ORI (@u—nH(z—l)H(z—lﬂ + gg—1>> (3.39)
where
. O’2
n® = ds (3.40)
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and
1~

> ~G—-DV (=)= (i—1)T i—1)\ i—1
B =h{Y (30 ACIACY 2 ) R,
From (3.30), (3.31) and (3.32), the matched SINR based on matched LMMSE
becomes 1)
() 50 £, h'"
WE) = S BIREE (3.41)
1-£f" h
Remark that the exact SINR based on matched LMMSE filter can be ob-
tained by adopting f't(l) in (3.36), (3.37) and (3.38).

3.6.3.2 Mismatched LMMSE

The mismatched LMMSE filter ft(i) aims at maximizing the mismatched
SINR ﬁt(i) (3.34). We do not give the mathematical formulas of f't(i) since it
can be obtained from f?t(i) by forcing 0\21/(1.,1) =0and ¢V = 1. From (3.33),
(3.34) and (3.35), the mismatched SINR based on mismatched LMMSE filter

becomes ) i)
OV £, h'"
WED) = = (3.42)
1-f" h

3.7 Soft symbol-to-bit demapping and decoding

3.7.1 Soft symbol-to-bit demapping

The estimate §£Zl)

is used as a decision statistic to compute the LEXTPR
on the g, bits involved in the labeling of s;;. It is explained for any linear
filter ft(i)T and do not precise it to be the matchel LMMSE filter (3.39) or
mismatched LMMSE filter.

AT Given any linear filter ft(i)T,

e the pdf p§£23|5tl(§§fl)) = Nc(ft(i)Tﬂj(ﬁi_l)st,la 0.2(1_)) in (330)
115t t,1

)T

e the pdf pgyhs“(éﬁf} ) = Ne(f' 0 Vs, ), 02,) in (3.33)
> ’ l

Ty,

o and the pdf p.  (5(1)) = Ne(E sy, 0%, in (3.36).
t,115t, ’ LN
Soft symbol-to-bit demapping is performed based on Assumption A7.
Adopting the matched SINR model, the log extrinsic probability ratio for
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each digit AﬁE) peM(Ttg) after soft demapping is computed as

() (¢(2) ~(7)
2eseiin; H(9)=1 P { T )’Wst?l — s+ g
’ t t

_ i—1
Hu,jl‘/ (S)Ag,Lg(dtvlJ’)

A%?DEM(dUJ) =In

(3.43)
For the special case of Gray labeling, the {AA LE( 10,7 ) 1 ; have little

impact on the value of ASE) per (Tie) and can be neglected which yields

Eerinzyom o] @ gtz o

A pis(thia) =In Dy 1 =)
1 1 (2 o 2
Zse%:yﬁ(s):o exp{ ’Yt (ft )|f(z)T (z 1) St S‘
(3.44)
The soft symbol-to-bit demapping adopting the mismatched SINR model
or exact SINR model follows the same principle, we just need to replace
5087), b in (3.43), (3.44) by 37 (), BV and 4P (£7), by, re-
spectively.

3.7.2 Decoding

The set A%) pey Of all LEXTPR on labeling bits after demapping becomes

after deinterleaving the set Agi)D g of all log intrinsic probability ratios on
coded bits used as input for the decoder.

A8 The pdf p, (A(Ii)DEC) factorizes as
1,D )

ecle
Nu,c

, (@)
PappeieM080) = T ag eeaMpC ()

where A(Ii)D po(cn) is the log intrinsic probability ratio on coded bit ¢,. The
assumption (A8) allows to simplify the decoding task. It is rightfully con-
firmed for an interleaver of finite, but large enough, depth. Under (A8), the

ZSG%V:M;;(S):O exp { 7151) (f( ))|f(i)ffll(i—1)§1£?l) - 5|2 + Zj’;éj ©
’ t t

-1
i (s)A

(i—1)
A,LE

(de )

|
|
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decoder computes the LAPPR A%) pec(cn) on coded bit ¢, as

nu,c (i)
Zceﬁg:cnzl [1,27 pA(Ii>DEC(C7‘)|C” AI,DEC(C"))

AD () = _ . 3.45
D’DEC( ) Zce‘g:cn:() Hnif pA(i) (cn)le A(IZ,)DEC(C")) ( )
I,DEC\"n/Itn
Finally the LEXTPR, on coded bit ¢, can be computed as
AR ppc(en) = AR ppo(en) = Af prelen) (3.46)

3.8 PHY-layer abstraction

As a FLA metric (or conditional BLER given the initial channel estimate),

we are interested in computing

BLER" (H©) = Eyy 1) 00 {BLER) (H, H(-D)}
- Eﬁ(i—l) |ﬁ(0) {]EH|I/-\I("—1)7I/—\I(0) {BLER(Z) (H, H(l_l))}}
= Ege o Baao (BLER® (H, Hi-))}

with respect to the chosen MCS and average SNR. Clearly, the BLER(®) (H, ﬁ(ifl))
need to be predicted per iteration ¢ based on the m; x n; exact SINRs
%fi)(ft(i)). As a result, we adopt the prediction method described in [66]
which is built on the MIESM compression of the n; x n; multiple parallel
SINRs to a single effective SNR or equivalently AMI. The correspondence
between SNR and AMI is usually stored in a LUT I'(.). This effective SNR
(respectively AMI) is then used to read pre-simulated MCS dependent LUT's

that outputs the 5 (for the next iteration) and the BLER (these LUTs are
denoted in the following by Gypp(.) and Fypp(.), respectively).

3.8.1 Proposed algorithm

In this Section, we describe (in the context of FLA and for a given MCS)
the proposed semi-analytical performance prediction method for iterative
LMMSE-IC detection and semi-blind channel estimation algorithm. As
mentioned above, it is partly built on the MIESM prediction method de-
scribed in [66]. However, the obtained predicted BLER per iteration must
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be averaged on the conditional pdfs p(H|/H®)) and p(HE~D|H©®). Since we
were able to derive their closed-form expression in Section 3.5, it is possible
to performed the averaging by an intertwined Monte Carlo approach as de-
tailed in Algorithm 4. Note that ACC(i) is simply an intermediate variable

to average the BLER on Ny channel outcomes at iteration i.

Algorithm 4 Algorithm of performance prediction in the context of FLA
for a given HO)
for SNRs do
Init 70 = 02, ACC(i) = 0 for i = 1---ny
for n=1to Ny do
Draw H from p (H]I/-\I(O)>
for i = 1 to n;; iterations do R
Step 1 Compute the ny x ny SINRs according to o~ H-D H
Step 2 Read from the AMI LUT the assomated nb x ny AMlIs
Step 3 Compress the AMI: I = nt > Zt p’
Step 4 Read from the LUTs the BLER( %) and the symbol variance
5®: BLER® = F;pp(I¥) and 50) = G pp(I)
Step 5 Draw H® from p( \H g >
Step 6 Update ACC(i) = ACC(i) + BLER®

end for
end for
BLER" (SNR,H©) = 2520
end for

Based on the proposed Algorithm 4, the SLA metric or average BLER
comes naturally as
BLER =~ = Eg {BLER" (H)}
with respect to the distribution of HO whoses entries are i.i.d and follows
the pdf Mg (0,1 + ai(o)).

3.8.2 Corrected SINR issue

The accuracy of the prediction strategy under imperfect CSIR for LEXTPR
based iterative LMMSE-IC detection joint semi-blind channel estimation
can be impacted by channel estimation error. The fact that the performance
prediction method uses Matched LMMSE with exact SINR while the receiver
uses Matched LMMSE with matched SINR (or mismatched SINR) can yield

discrepancy between predicted and simulated performance depending on
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the channel estimate error. When the channel estimation is good enough,
the prediction method should work accurately since the difference between
exact SINR and matched SINR model is relatively small. When the channel
estimation is not good enough, the prediction method will be optimist to
a certain level since the difference between exact SINR model and matched
SINR model becomes relatively high. The solution, arbitrary but efficient, is
to make the the exact SINR smaller in the prediction method. The corrected
SINR 'y;(i)(ft(i)) based on (3.36) is given as
10 . ‘ft(i)fhtrags
7 () = Pyt (3.47)
2N SN
with
o2y = o3t (b — B ) (b — B )Y (3.48)

Ty

Note that ‘72'@) represents the channel estimation error. When channel
LN

)

estimate E?‘l is close the real channel hy, 02/@ can be neglected.
LN

3.9 Numerical results

Let us consider a STBICM with the following parameters: Rate—% binary
Non-Recursive Non-Systematic Convolutional (NRNSC) code with genera-
tor polynomials (133, 171)g, pseudo-random interleaver and QPSK or 16QAM
constellation with Gray labeling. A 1-Block (n, = 1) 4 x 4 MIMO memory-
less flat Rayleigh channel is selected for all simulations. We fix 0,21 =1 and
afl . = 1. The total number of channel use Lgs is fixed to 288 which implies
that each codeword will always be mapped to 1152 symbols. Thus, when
using QPSK constellation, each codeword contains n. = 2048 coded bits.
When using 16QQAM constellation, each codeword contains n, = 4096 coded
bits. The CAZAC sequence u is given in hexadecimal form as 68195F with
length L,s = 24 (here, L,s > 2n; ensuring that AAT = LpsagsIm). The
number of iteration of the double loop receiver is limited to five, i.e., n;y = 5
(which ensures convergence in practice) and the number of channel realiza-
tions is set to Ny = 5000 for the prediction of SLA metrics, or average
BLER.

Firstly, we investigate pure simulation performance for Matched LMMSE
with exact SINR, Matched LMMSE with matched SINR and Mismatched
LMMSE with mismatched SINR. Obviously, the gain brought by the Matched
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LMMSE filter compare to its mismatched counterpart is all the more im-
portant when
(O C A
LpsU;%s + Ny

is larger. That is why, we assign a very low power ags = 0.1 and a normal
power o*%s = 1 for comparison. Fig. 3.3 presents the simulation perfor-
mance with o3, = 0.1 under QPSK (from e =0.7191 at Ey/Ny = —5dB
to € = 1.3712 at E,/Ny = 3dB) from which we can observe that, at
BLER=0.01, iteration 5, Matched LMMSE with matched SINR outper-
forms always Mismatched LMMSE with mismatched SINR with a gain about
2.5dB and it is only about 0.7dB away from the optimal matched LMMSE
with exact SINR. Fig. 3.4 shows the simulation performance with O'gs =0.1
under 16QAM (from € = 1.3204 at E,/Ny = —1dB to ¢ = 1.6327
at Ey/Nop = 10dB) from which we can observe that, at BLER=0.01, it-
eration 5, Matched LMMSE with matched SINR outperforms Mismatched
LMMSE with mismatched SINR with a gain about 3dB and it is only about
0.7dB away from the optimal matched LMMSE with exact SINR. Fig. 3.5
and Fig. 3.6 show the simulation performance with 012)5 = 1 under QPSK
(from €©) = 0.1473 at E,/Ng = —5dB to € = 0.1613 at E,/Ny = 1dB)
and 16QAM (from € = 0.1624 at E,/Ny = —5dB to ¢ = 0.1660 at
Ey/No = 7dB) respectively from which we can see that there are nearly
no difference in terms of performance for the three approaches because the
channel estimates are good enough (¢(°) << 1). Thus we can conclude that
matched LMMSE with matched SINR approach outperforms always the
mismatched LMMSE with mismatched SINR approach and keeps always a
good approximation for the matched LMMSE with exact SINR. Thus, we fo-
cus on the performance prediction method for double loop receiver adopting
Matched LMMSE with matched SINR approach in what follows.

Secondly, we evaluate the proposed performance prediction methods us-
ing Matched LMMSE with exact SINR or corrected SINR. Fig. 3.7 and
Fig. 3.8 present the simulated performance vs. predicted performance using
exact SINR and corrected SINR with 012,3 = 0.1 for QPSK and 16QAM re-
spectively. No surprisingly, we can see that the predicted performance with
exact SINR is somehow optimist compare to the simulated performance with
matched SINR at this case because the channel estimation is not very good.
And this effect can be compensated by predicting with corrected SINR. Fig.
3.9 and Fig. 3.10 show the simulated performance vs. predicted perfor-
mance using exact SINR and corrected SINR with O'gs = 1 for QPSK and
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16QAM respectively. Since the channel estimation becomes good enough,
both the predicted performance with exact SINR and corrected SINR match
extremely well the simulated performance with matched SINR.

The previous approach shows the result for different ¢© by fixing ogs
while changing SNR (Ny). We can also generate different ¢(*) by fixing SNR
(Np) while changing O‘I%S,
and predicted performance in this way in the next step. Fig. 3.11 / Fig.
3.12 show the simulated MSE/BLER (Matched LMMSE with exact SINR
and Matched LMMSE with matched SINR) vs. the predicted MSE/BLER
(Matched LMMSE with exact SINR) for QPSK, E,/Nyo = —1dB. From
these two figures, we can see that 1), again, Matched LMMSE with ex-
act SINR outperforms always Matched LMMSE with matched SINR for all
simulated €(?). 2), the predicted performance (matched LMMSE with ex-
act SINR) becomes even optimist for simulated performance with matched
LMMSE with exact SINR when ¢ > 2 which implies that the Gaussian
Approximation A6 becomes less valid. Furthermore, Fig. 3.13 / Fig. 3.14
show the simulated MSE/BLER (matched LMMSE with matched SINR)
and the predicted MSE/BLER (Matched LMMSE with exact SINR and
Matched LMMSE with corrected SINR) under QPSK, E,/Ny = —1dB and
¢ < 2 (A6 is more valid) from which we can see that the corrected SINR
can give satisfied predicted results.

We move to 16QAM. Fig. 3.15 / Fig. 3.16 show the simulated MSE/BLER
(Matched LMMSE with exact SINR and Matched LMMSE with matched
SINR) and the predicted MSE/BLER (Matched LMMSE with exact SINR)
for 16QAM, E,/Ny = 3dB. From these two figures, we can see that 1), the
matched LMMSE with exact SINR outperforms always matched LMMSE
with matched SINR for all simulated ¢©). 2), Interestingly, when e > 2
which implies that the Gaussian Approximation A6 becomes less valid, the
predicted performance (matched LMMSE with exact SINR) becomes just
slightly optimist compare to the simulated performance (matched LMMSE
with exact SINR) even €(?) increases to 30. Thus, Fig. 3.17 / Fig. 3.18 show
the simulated MSE/BLER (Matched LMMSE with matched SINR) and the
predicted MSE/BLER (Matched LMMSE with exact SINR and Matched
LMMSE with corrected SINR) under 16QAM, Ej/Ny = 3dB and ¢© < 30

from which we can see that the corrected SINR can give satisfied predicted

and we can compare the simulated performance

results.
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3.10 Conclusion

In this part, a novel semi-analytical performance prediction method is pro-
posed for LEXTPR-based iterative LMMSE-IC detection and semi-blind
channel estimation in convolutionally coded MIMO systems. The proposed
method extends existing MIESM link-to-system approach to the context of
imperfect channel state information and semi-blind channel estimation at
the receiver side. It allows computing the average BLER conditional on an
initial pilot assisted channel estimation and long term channel distribution
information. It heavily relies on Gaussian approximation on the LMMSE-IC
and channel estimation error models whose second order statistics are gov-
erned by the SINRs and the channel estimate MSE, respectively. Simulation
in the context of SU-MIMO frequency selective transmission, modelled by
a discrete input MIMO memoryless block fading Rayleigh channel, demon-
strates the validity of the proposed approach.

10
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©
g =
< 10
—— Simulation: Mat. LMMSE w. exact SINR
---Simulation: Mat. LMMSE w. mat. SINR
A i Simulation: Mis. LMMSE w. mis. SINR
10 :
-5 0 5
Eb/No(dB)

Figure 3.3: Simulated BLER comparison between Matched LMMSE with ex-
act SINR, matched LMMSE with matched SINR and mismatched LMMSE
with mismatched SINR, QPSK-1/2, o2, = 0.1
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Figure 3.4: Simulated BLER comparison between Matched LMMSE with ex-

act SINR, Matched LMMSE with matched SINR and Mismatched LMMSE
with mismatched SINR, 16QAM-1/2, o2, = 0.1
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Figure 3.5: Simulated BLER comparison between Matched LMMSE with ex-

act SINR, Matched LMMSE with matched SINR and Mismatched LMMSE
with mismatched SINR, QPSK-1/2, 01275 =1
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Figure 3.6: Simulated BLER comparison between Matched LMMSE with ex-

act SINR, Matched LMMSE with matched SINR and Mismatched LMMSE
with mismatched SINR, 16QAM-1/2, UI%S =1
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Figure 3.7: Simulated BLER (Matched LMMSE with matched SINR) vs.
predicted BLER (Matched LMMSE with exact SINR and Matched LMMSE
with corrected SINR), QPSK-1/2, o2, = 0.1
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Figure 3.8: Simulated BLER (Matched LMMSE filter with matched SINR)
vs. predicted BLER (Matched LMMSE with exact SINR and Matched
LMMSE with corrected SINR), 16QAM-1/2, o7, = 0.1
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o= Prediction: Mat. LMMSE w. exact SINR
s -3-Prediction: Mat. LMMSE w. corrected SINR

10°
5 -4 -3 -2 1 0 1
E,/N(dB)

Figure 3.9: Simulated BLER (Matched LMMSE with matched SINR) vs.
predicted BLER (Matched LMMSE with exact SINR and Matched LMMSE
with corrected SINR), QPSK-1/2, 02, = 1
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Figure 3.10: Simulated BLER (Matched LMMSE with matched SINR) vs.
predicted BLER (Matched LMMSE with exact SINR and Matched LMMSE
with corrected SINR), 16QAM-1/2, o2, = 1
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Figure 3.11: Simulated MSE(Matched LMMSE with exact SINR, Matched
LMMSE with matched SINR) vs. predicted MSE (Matched LMMSE with
exact SINR) conditional on initial ¢®), QPSK-1/2, E,/Ny = —1dB
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Figure 3.12: Simulated BLER(Matched LMMSE with matched SINR) vs.
predicted BLER (Matched LMMSE with exact SINR and Matched LMMSE
with corrected SINR ) conditional on initial €(?), QPSK-1/2, Ey/Ny = —1dB
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Figure 3.13: Simulated MSE(Matched LMMSE with matched SINR) vs.
predicted MSE (Matched LMMSE with exact SINR and Matched LMMSE
with corrected SINR ) conditional on initial ¢(?), QPSK-1/2, E,/Ny = —1dB
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Figure 3.14: Simulated BLER(Matched LMMSE with matched SINR) vs.
predicted BLER (Matched LMMSE with exact SINR and Matched LMMSE
with corrected SINR ) conditional on initial €(?), QPSK-1/2, Ey/Ny = —1dB

Average MSE

" —— Simulation: Mat. LMMSE w. exact SINR
10 F| === Simulation: Mat. LMMSE w. mat. SINR E
--e- Prediction: Mat. LMMSE w. exact SINR '

GA bound

10" 10° 10™

£©

Figure 3.15: Simulated MSE(Matched LMMSE with exact SINR, Matched
LMMSE with matched SINR) vs. predicted MSE (Matched LMMSE with
exact SINR) conditional on initial ¢(?), 16QAM-1/2, Ej,/Ny = 3dB
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Figure 3.16: Simulated BLER (Matched LMMSE with exact SINR, Matched
LMMSE with matched SINR) vs. predicted BLER (Matched LMMSE with
exact SINR) conditional on initial €(®), 16QAM-1/2, E,/Ny = 3dB
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Figure 3.17: Simulated MSE(Matched LMMSE with matched SINR) vs.
predicted MSE (Matched LMMSE with exact SINR and Matched LMMSE
with corrected SINR ) conditional on initial €(?), 16QAM-1/2, Ej,/Ny = 3dB
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Figure 3.18: Simulated BLER(Matched LMMSE with matched SINR) vs.
predicted BLER (Matched LMMSE with exact SINR and Matched LMMSE
with corrected SINR ) conditional on initial €(?), 16QAM-1/2, Ey/Ny = 3dB



Chapter 4

Extension to turbo coded
MIMO systems

4.1 Introduction

To make things even more complicated, closed-loop link adaptation in LTE-
A involves a family of MCS constructed out of powerful turbo codes. In
practice, a suboptimal iterative decoding is applied. Hence, the smooth in-
troduction of LMMSE-IC based turbo equalization receivers in LTE calls for
a new PHY-layer abstraction to this non-trivial situation. Progress in this
research area is of uttermost importance for the design and real capability
evaluation of next generation wireless systems in presence of advanced turbo
receiver.

A novel stochastic modeling of the whole turbo receiver will be proposed
using EXIT charts (and variants) [37] in this chapter. The approach is in-
spired from earlier works dealing with multiple concatenated codes and the
convergence analysis of their iterative decoding (see e.g., [72] [49] [73] [74]).
As the core of the contribution, it is found that, even in the simplified case
of Gray mapping, a bivariate information transfer function is needed to
characterize the evolution of the joint demapper and turbo decoder embed-
ded within the LMMSE-IC based turbo equalization. This is in contrast

with [71] [66] where simple convolutional codes were considered and univari-

This chapter is partially presented in the paper accepted to IEEE GLOBECOM’2013,
one patent and two contributions of 3GPP

90
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ate information transfer functions sufficient.

4.2 System model

We consider a single-user transmission over a MIMO block Rayleigh fading
AWGN channel with n; fading blocks, n; transmit and n, receive antennas.
Perfect channel state information is assumed at the receiver. The total
number ng of channel uses available for transmission is fixed and the number

of channel uses per fading block is given as L = ng/ny.

4.2.1 Coding strategy

A STBICM is used at the transmitter, specified by a linear binary turbo
code €6, of rate r,, a complex constellation Z; C C of cardinality 2% and a
memoryless labeling rule p,. We define the rate of the MCS v as p, = r,q,
(bits/complex dimension). The encoding process for MCS v is detailed.
The vector of binary data (or information bits) u enters a turbo encoder ¢,
whose output is the codeword ¢ € €, of length n., = nsniq,. The codeword
bits are interleaved by a random space time interleaver m, and reshaped as
a integer matrice {Dy},;*; with D; € ZZZVXL . Each integer entry can be
decomposed into a sequence of g, bits. A Gray mapping p, transforms each
matrix Dy into a complex matrix Sy € %J”XL. %V(g) and %VS}) denote the
subsets of points in 2, whose labels have a 0 or a 1 at position j. With
a slight abuse of notation, let {d;, ; ;1-”:1 denote the set of bits labeling
the symbol s34, € 2. Let also M;;(s) be the value of the j-th bit in the
labeling of any point s € Z,,.

4.2.2 Received signal model

Let Hy € C"*™ denotes the channel for the b-th fading block. The discrete-
time vector yp,; € C" received at the destination for the b-th fading block

and time [ = 1,..., L is expressed as
Vo = Hpspy + wyy (4.1)

In (4.1), the vectors sp; € 2, are i.i.d. random vectors with E[sy;] = 0y,

and E[sb;lsz_l] = I,,, and the vectors wy; € C" are ii.d. random vec-
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tors, circularly-symmetric Gaussian, with zero-mean and covariance matrix

2
oL,

4.3 LMMSE-IC based turbo receivers

We focus on the LAPPR-based iterative LMMSE-IC algorithms for the
mathematical derivation part. In LAPPR-based iterative LMMSE-IC, the
set Ap prc of all LAPPR on coded bits becomes after interleaving the set
Ap, g of all log “a priori” probability ratios on labeling bits used for (soft)
interference regeneration and cancellation, although LAPPR contain “ob-
servation”. Let {Ap rr}s,,, and {Ap rr}s,, be the set of all LAPPR on
coded bits involved in the labeling of s34, and sy, respectively. Let also
{ADvLE}Sb;l\Sb;t,l be the set of all LAPPR on coded bits involved in the la-
beling of s, except the coded bits involved in the labeling of sp.;;. Since
the different steps described hereinafter are identical for each iteration of

the receiver, the iteration index is dropped.

4.3.1 Interference regeneration and cancellation

Prior to LMMSE estimation of the symbol s;.;;, we compute the conditional
MMSE estimate of the interference, defined as y;,, = E |:yb§l|{AD7LE}Sb;l\3b;t,l] .
This computation is intractable for useful signal components and noise sam-
ples are of course no more independent conditional on {Ap , E}Sb;l\sb; - To
solve this issue, we make two symplifying assumptions.

Sp- b
A1 The pdf pg,,,. (Sb, Wpy) factorizes as

Wi [{AD, LEY sy \spy

psb;l’Wb;ll{AD'LE}Sb;l\sb;t,l (Sb;l,wb;l) e

P(spit,0)Pwyy (Wot) [T 20 P(sor i {AD,LEY s, 10 ,)-
A2 The pmf P(syi[{Ap,LE}s,, ,) in (4.2) is given by

P(sp 1 ) o o2 Hoj (Soar DAD LE(dyyr 1 5)

{Ap,.LE}s,

As a matter of fact, the assumptions (A1) and (A2) never hold even for
an ideal interleaver of infinite depth. But we can still force them in all
subsequent derivations. Under (A1), the MMSE estimate of the interference
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affecting the symbol s;.;; is given by
Vone = Hy(In, — ece])my, (4.3)

where my,; is the vector made of all estimates my,r; = E [Sb;t’,l H{AD,LE}s,.,
evaluated under (A2). After IC, the new observed vector is yu,; — ¥u;\¢-

4.3.2 LMMSE estimation — unconditional case

The optimization problem to solve can be formulated as follows: Find 8p,;; =
£f
bt

E [|§b;t,l — sb;t,l|2] defined as

(Yo — Ypy\¢) minimizing the unconditional mean square error (MSE)

E [E [\éb;t,l - Sb;t,l|2\{AD,LE}sb;l\sb;t,l}} : (4.4)

The outer expectation in (4.4) renders the (biased) LMMSE filter time-
invariant given by f'b;t = é;tléb;t where éb;t =E [ébml} with

€b;t,l =K {(Yb;l - S’b;l\t)SZ;t,zHAD,LE}sb;l\sb;tJ
and where éb;t =E {éb;fql} with

E [(Yb;l — ¥Youne) (Yo — yb;l\t)T|{AD1LE}Sb;l\5b;t,l:| :

[1]c
g
«H-

Il

The computation of f'b;t is again intractable. However, under (A1), éb;t and
éb;t become &, = hy; = Hpe; and Ep; = Hbe;\tHZ + 021, where Vi

is the unconditional symbol covariance matrix defined as

Vb;\t = diag{vb;lv <oy Ubst—1, 17 Vbit4+1y - - - 7vb;nt}

2| {AD,LE}SM/J

evaluated under (A2). Using the matrix inversion lemma, we obtain the filter

where Vt' # t, vppy = E [Ub;t/J] with vy ) = E [|5b;t/7l — M)

fb;t Z[jlhb;t (45)

- 1+ nb;t(l - vb;t)
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where X = HbeH;; + UiInT and ny,; = hz.tﬁglhb;t with
Vi =V — (1- Ub;t)etezr (4.6)

where vy, = E [vp,] with vy = E Usb;t’l - mb;t,l\ZHAD,LE}sbN] evaluated

under (A2). The corresponding estimate 35 ; of s34 can be expressed as

Spitl = fzj;t(}’b;l = Yoi\t) = GostSitg + Costl (4.7)

where gp; = f;thb;t and (p,; is the residual interference plus noise term.
Clearly, (p; in (4.7) is zero-mean and uncorrelated with the useful signal
sy under (Al), ie., E[sb;t,lgg‘;“] = 0. Under (A1) and (A2) the variance
of Cprt 18 Spit = Gt (1 — gpyt). Thus, we can define the unconditional SINR
under (Al) and (A2) as

_ gb;t _ nb;t
1- 9uit 1- Tlb;t Ubst

it (4.8)

In practical implementation, we make several assumptions over the covari-
ance matrices Vy,.
A3 Due to the particular structure of the MCS, the so-called equal variance

assumption holds, which states that

V, = oI, Vb. (4.9)

A4 v can be replaced by its empirical mean v

ny ny L

b= WIHL SN o (4.10)

b=1 t=1 I=1

assuming sufficiently large L. Actually, the ergodic regime assumption (A4)
is part of the baseline assumptions of EXIT charts [37]. The assumption
(A3) never holds even for an ideal interleaver of infinite depth, but forcing

it induces no performance degradation.
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4.3.3 Demapping and decoding

The estimate 3y, is used as a decision statistic to compute the LEXTPR
on the g, bits involved in the labeling of s, ;.

A5 In (4.7), the conditional pdf pg, , /s, , (86;t,1) is circularly-symmetric com-
plex Gaussian distributed.

Under (A1), (A2) and (A5) the conditional pdf ps, , s, (36:t.1)

is Nc(gbitSet i, Sbt)- As a result, under (A1),(A2), and (A5), for the special
case of Gray labeling, the LEXTPR Ag pga(dey, ;) on labeling bit dp.; ;
is expressed as

Zseﬁﬁ’y(’lj) e—\§b;t,z—gb;t5|2/§b;z

5 2
e_‘sb;t,l_gb;tsl /Cb;t
Zse%fy(g)

Ag.peEM(dbt ;) = (4.11)

4.3.4 Message-passing schedule for turbo decoding

The set Ag pea of all LEXTPR on labeling bits becomes after deinterleav-
ing the set Ar pgc of all log intrinsic probability ratios on coded bits used
as input for the decoder.

A6 The pdf pa; pclc(ArpEC) factorizes as

Ne,v

pAI,DEC|C(AI7DEC> = HpAI,DEC(Cn)|Cn (AI,DEC(CH))

n=1

where A7 ppc(cy) is the log intrinsic probability ratio on coded bit ¢,,. The
assumption (A6) allows to simplify the decoding task. It is rightfully con-
firmed for an interleaver of finite, but large enough, depth. The turbo de-
coder is made of two BCJR decoders [38] exchanging probabilistic informa-
tion (log domain). The first BCJR decoder computes the LAPPRs on its own
coded bits (information and parity bits) taking into account the available a
priori information Ay ppc = {Aa,pEc(us)} on systematic information bits
stored from an earlier activation (i.e., the most recent LEXTPRs on sys-
tematic information bits delivered by the second BCJR decoder). Then the
second BCJR decoder is activated and computes the LAPPRs on its own
coded bits (information and parity bits) taking into account the available a
priori information transmitted by the first BCJR decoder. The best sched-

ule we have found is the following: one pass of equalizer followed by one
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pass of first BCJR decoder followed by one pass of second BCJR decoder.
This completes one global iteration of the turbo receiver. Such a message-
passing schedule provides much better results than the conventional one, i.e.,
a single pass of equalizer followed by an arbitrary number of turbo decoder
iterations. The performance degradation which comes from not using the
extrinsic information available from the second BCJR decoder as an input of
the first BCJR decoder as in [96] might be substantial, especially for low rate
MCS, or slightly modified message-passing schedules with several internal
iterations within the turbo decoder per global iteration. The different steps

of the algorithm are summarized in Fig. 4.1 for the 1-block fading case.

LMMSE-IC

b ST

\‘ﬂwm—iz_|

r——— | E-DEM, [
DEMAP TURBO-DEC

-
e

Figure 4.1: LAPPR-based iterative LMMSE receiver structure (adapted to
STBICM with turbo code and Gray labeling)

4.4 PHY-layer abstraction

The proposed performance prediction method is semi-analytical and relies
on ten Brink’s stochastic approach of EXIT charts [37] particularly useful

in understanding and measuring the dynamics of turbo processing.
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4.4.1 Transfer characteristics of LMMSE-IC

The LMMSE-IC part of the receiver ends up with np x n; independent

parallel channels under (A6). Each of them is modeled as a discrete-input
AWGN channel under (A5) whose SNR, given by

Mot

= — 4.12
1- Ub;t?_} ( )

Vot

2 and the

w

under (Al)-(A4), turns out to be a function ¢ of b, t, Hy, o
input variance ¥. For each such channel, we can compute the AMI I LEy,
between the discrete input sy ; € 2, and the output Sp.;; = sp.¢ 1 +€p; With
el ~ Ne(0,1/7;¢). The value of Irg,, depends on the single parameter
Vot Let I be the arithmetic mean of the values {ILEb;t}7 ie.,

ny ng

- 1
Itg = ILE,,- 4.1
LE = o Z Z LBy, (4.13)

b=1 t=1

The AMI I}, , = 1y (7;) is a monotone increasing, thus invertible, function
of the SNR, and depends on the MCS index v. It is simulated off-line and
stored in a LUT.

4.4.2 Transfer characteristics of joint demapping and decod-
ing
The functional module is MCS-dependent and comprises the following steps:
demapping, deinterleaving, turbo decoding (one pass of the first BCJR de-
coder followed by one pass of the second BCJR decoder), reinterleaving, and
computation of the mean and variance of transmitted symbols from LAPPR
on coded bits(as described before). The generated observed symbols are the
output of a virtual AWGN channel with discrete input in 2, and SNR ~.
Let ¢ppsk(7y) be the Binary Phase-Shift Keying (BPSK) mutual informa-
tion for a (real) AWGN channel whose associated SNR is 7. The a priori
information {A4 ppc(un)}, measured by mutual information I4, are gen-
erated as Ag ppo(un) = N((2u, — 1)ma,0%) where 04 = dppgr(1a),
ma = 0%4/2 [37]. For an arbitrary labeling rule, trivariate transfer func-
tion is required to stochastically characterize the joint demapper and turbo

decoder. With Gray labeling however, log a priori probability ratios on
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labeling bits do not intervene in the computation of the LEXTPR on the
labeling bits (see (4.11)) and, hence, need not be taken into account in the
stochastic modeling of the demapper. Therefore, simpler bivariate trans-
fer function is sufficient to stochastically characterize the joint demapper
and turbo decoder for the latter proceeds iteratively. This is the major
difference with previous work. These functions are the measured BLER
P. = Fipp,(v,14), the variance v = Gypp,(7,14), and the mutual in-
formation Ip = Typp,(7,14). They are computed off-line and stored in
separate LUTs. It is necessary to emphasize that the LUTs are generated
with channel use number fixed to ng, thus are independent with the num-
ber of fading block. The algorithm used to generate the different LUTs is

summarized in Algorithm 5.

Algorithm 5
1: Inputs v, ns, ng
2: for v = Ymin t0 Ymaz do
3: forIy=0to1do

4: 0% = Wppor(1a), ma = c%/2

5: for bk = 1 to ny, do

6: Channel interleaver random generation: m,

7 Codeword generation: u - c — D — S

8: Virtual AWGN Channel: Generate S s.t. 5100 ~ Ne(si, 1/7)

9: Demapping: Compute {Ag pram(dit;)} as (4.11) with 51,4 =
81,00 and g =1

10: Deinterleaving: Ag penm — Ar,pEC

11: Generate {Aa prc(un)} with Ax pre(un) = N((2uy,—1)ma, o%)

12: Turbo decoding: Compute {Ap ppc(cn)} and Ag prc(un)}
based on {A; prc(cn)} and {Aa prc(un)}

13: Update counter block errors

14: Interleaving: Ap prc — Ap.LE

15: Update histograms Hp o and Hy

16: Compute {vi;;} using {{Ap,LE}s,,,} — {Usk} as (4.10)

17: end for

18: Compute P,, v = n%,k ek | Uy, and I using pdfs PAglo and pa 1

19:  end for

20: end for

21: Outputs P, = FJDDV(’Y, IA), v = GJDDV(’)/,IA), and Ip =

Tipp, (7, 1a)
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4.4.3 Evolution analysis

It remains to relate the output Irp of the first transfer function (LMMSE-
IC) and the input SNR of the second transfer function (joint demapping
and decoding) at any iteration. This is done by assuming that Iz which
measures the information content of knowledge on coded modulated symbols
{sp:t1}, averaged over all parallel AWGN channels, is equal to the informa-
tion content of knowledge on coded modulated symbols transmitted over a
single virtual discrete-input (with values in 2;,) AWGN channel with effec-
tive SNR 4 given by

_ 1 ny Nt
ﬁ/LE - 'll)y_l(ILE) = 17[);1 (nbnt ZZILEb;t> . (414)

b=1 t=1

This technique inherited from EXIT charts is widely used in practice and
often referred to as MIESM [61]. In our framework, it relies on all the
defined assumptions (A1)-(A6) or, equivalently, on (A5) and (A6) for the
first iteration. The variance v = G jpp, (YLE, L4) is used in (4.9) under (A4)
for next iteration. Hence, the evolution of LAPPR-based iterative LMMSE-

IC can be tracked through the single scalar parameter v.

4.4.4 Calibration

A major drawback of this performance prediction method is that the as-
sumptions (Al), (A2) and (A3) do not hold for LAPPR-based iterative
LMMSE-IC. As a consequence, not only the filters {f;.;} but also the SINRs
{Vb:t} given by (4.8) are approximated. The true SINRs, if we could have to
access to them, would be smaller. This fact explains why the prediction per-
formance method expounded in [66] yields too optimistic results compared
to the true simulated performance. To solve this problem, we proposed
in [97] a simple, yet effective, calibration procedure whose principle is to
adjust v with a real-valued factor 5, > 1. More specifically, v is replaced by
Cy(v) = min(5,v, 1), which has the effect to artificially reduce the SINRs
that are used in the performance prediction method. We searched the opti-
mal 5, minimizing the average relative error between the simulated BLER
and the calibrated predicted BLER over a large number of channel outcomes
at each iteration ¢ > 1 for the BLER range of interest [0.9,0.01]. In order to

ensure that the calibration factor cope with a large distribution of channel
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outcomes (or SINR distribution per block), we draw each channel outcome
from a 4x4 MIMO 4-block Rayleigh fading AWGN channel. Exhaustive
simulations revealed that [, depends on the MCS but does not vary signif-
icantly w.r.t. the number of transmit and receive antennas as well as the
channel characteristics. The calibration procedures can be found in Section
2.4.2.4. A recapitulative diagram of the method is depicted in Fig. 4.2 for
the 1-block fading case.

,)éil) 7@

P
7(i) - I F -
Al s
= h—1 i
— ] Y I g.)DEC
= [(1)
A.DEC

5(7) =

G op, |—{CALIB)

Figure 4.2: PHY-layer abstraction for LAPPR-based iterative LMMSE-IC
(with calibration)

4.5 Numerical results

The proposed PHY-layer abstraction is tested over two types of channels:
4 x 4 MIMO flat channel (i.e., np = 1) and 2 x 2 MIMO 4-block fading
channel (i.e., ny = 4), referred to as CH1 and CH2, respectively. The MCS
are built from turbo code based on two 8-state rate-1/2 Recursive Systematic
Convolutional (RSC) encoders with generator matrix G = [1,go/g1] where
go = [1011] and g; = [1101] and QAM modulation (with Gray labeling).
When LEXTPR-based iterative LMMSE-IC is performed at the destination,
no calibration is needed because assumptions (A1)—(A6) are rigorously valid.
When LAPPR-based iterative LMMSE-IC is performed at the destination,
a channel-independent calibration factor is introduced to compensate for
assumption inaccuracies. The optimal calibration factors for QPSK-1/2
and 16QQAM-1/2 are 1.7 and 3.3, respectively. The total number of channel
uses available for transmission is ng = 2040. Generally, 5 iterations are

enough to ensure the convergence in practice. Fig. 4.3 depicts the 2D-LUT
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P. = Fjpp(v,14) for the 1I6QAM-1/2.

4.5.1 Average predicted vs. simulated BLER

First, average simulated and predicted BLER are compared over several
SNR. For each SNR, we evaluated the average simulated BLER by Monte
Carlo simulation which is stopped after 800 block errors. The predicted
BLER is evaluated over 10000 channel outcomes. The genie-aided inter-
ference cancellation (Genie-Aided IC) curve is used as a lower bound on
BLER. From Fig. 4.4, we observe that the simulated and predicted BLER
of LEXTPR-based iterative LMMSE-IC coincide perfectly for 16QAM-1/2
over CH1. Furthermore, the performance degradation coming from no using
the extrinsic information available from the second BCJR decoder is aroud
3dB at BLER=0.1 of the 5-th iteration. From Fig. 4.5, we observe that the
simulated and predicted (with calibration) BLER of LAPPR-based iterative
LMMSE-IC reveal a very good match for 16QAM-1/2 over CH1 which con-
firms the robustness and effectiveness of the proposed calibration procedure.
The superiority of LAPPR-based iterative LMMSE-IC over LEXTPR-based
iterative LMMSE-IC is obvious from these two curves, and is even more ap-
parent for higher spectral efficiencies. The simulated and predicted results
for QPSK - 1/2 and 16QAM - 1/2 over CH2 of LAPPR-based iterative
LMMSE-IC are shown in Fig. 4.6 and Fig. 4.7, respectively. Again, we ob-
serve that the average predicted BLER match exactly the average simulated

ones at every iterations.

4.5.2 Instantaneous predicted vs. simulated BLER

The instantaneous (conditional on a given channel outcome) simulated and
predicted BLER for a large number of channel outcomes gives further in-
sights into the accuracy of our prediction method. We generate randomly
200 channels over several SNR. For each channel outcome, the simulation
is activated only if its instantaneous predicted BLER is between 0.9 and
0.01 at the considered iteration. This helps to capture the region of interest
[0.9, 0.01] for all iterations. For each channel outcome, Monte Carlo simu-
lation is stopped after 100 block errors. Then the predicted and simulated
instantaneous BLER of this channel are plotted versus the effective SINR

of the first iteration in the same figure. The results of iteration 1,2 and 5
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and channel models (e.g., MIMO

)

CHAPTER 4

for QPSK - 1/2 and 16QAM - 1/2 over CH2 are shown in Fig. 4.8 and Fig.
4.9, respectively. We observe that the instantaneous predicted BLER match

quite exactly the instantaneous simulated ones at all iterations.
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A stochastic modeling of the whole turbo receiver based on EXIT charts
(and variants) has been proposed. Its effectiveness has been demonstrated
through Monte Carlo simulations in a variety of transmission scenarios. The
approach can be easily extended to other types of compound codes (e.g., se-
block fading) or used to predict convergence thresholds for a given channel
outcome. More importantly, the approach may constitute the core of ad-
vanced link adaptation and RRM procedures in closed-loop coded MIMO

systems employing LMMSE-IC based turbo receivers.

rially concatenated codes, LDPC codes
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Figure 4.4: Average predicted and simulated BLER vs. SNR (dB) of pro-
posed LEXTPR-based iterative LMMSE-IC with 16QAM-1/2 over CHI,
simulated BLER, of modified LEXTPR-based scheduling neglecting a priori

extrinsic information from the second BCJR decoder.
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Figure 4.8: Instantaneous predicted and simulated BLER vs. SINR it1(dB)
of LAPPR based iterative LMMSE-IC with QPSK-1/2 over CH2
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Figure 4.9: Instantaneous predicted and simulated BLER vs. SINR it1(dB)
of LAPPR based iterative LMMSE-IC with 16QAM-1/2 over CH2



Chapter 5

Extension to per-antenna
turbo coded MIMO systems

5.1 Introduction

In 4G wireless mobile standards (e.g., LTE-A), multiple codewords are al-
lowed to be transmitted. Therefore, PHY-layer abstraction with turbo re-
ceivers in independent per-antenna turbo coded MIMO systems are investi-

gated in this chapter.

5.2 System model

We consider a transmission over a MIMO block Rayleigh fading AWGN
channel with n; fading blocks, n; transmit and n, receive antennas. Each
transmit antenna transmits an independent BICM. No CSI is assumed at the
transmitter and perfect CSI is assumed at the receiver. The total number ng
of channel uses available for transmission is fixed and the number of channel

uses per fading block is given as L = ng/ny.

5.2.1 Coding strategy

An MCS indexed by 1y is a BICM transmitted over the t-th transmit an-
tenna, specified by a turbo code %, and a complex constellation Z,, C C of
cardinality 29+ and a memoryless labeling rule u,,. The encoding process is
detailed for a certain antenna t € {1,...,n:}. The vector of binary data (or

information bits) u; enters a turbo encoder ¢,, whose output is the code-

107
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word ¢; € €, of length n.,, = nsq,,. The codeword bits are interleaved by a
random time interleaver 7, and reshaped as a collection of integer matrices
{Dp,},t, with Dy, € Z;qﬁf Each integer entry can be decomposed into
a sequence of g, bits. A Gray mapping p,, transforms each matrix Dy,
into a complex matrix Sy € %ylth . ,%”V(t?])» and ,%”V(tl’; denote the subsets
of points in Z,, whose labels have a 0 or a 1 at position j. With a slight
abuse of notation, let {dp ; }?21 denote the set of bits labeling the symbol
Spitg € 2o, Let also ,u;ij(s) be the value of the j-th bit in the labeling of

any point s € Z,,.

5.2.2 Received signal model

The discrete-time vector yp; € C"" received by the destination at b-th fading

block and time [ = 1,..., L, is the same as expressed in (4.1) in chapter 4.

where In (5.1) the vectors sp; € 2" are i.i.d. random vectors (uniform
distribution) with E[sy;] = 0,, and E[sb;ls;l] = IL,,, and the vectors wy,; €
C"™ are i.i.d. random vectors, circularly-symmetric Gaussian, with zero-

mean and covariance matrix o2 I, .

5.2.3 Decoding strategy

The global performance of the turbo receiver depends on the decode or-
dering. The number of possible decode orderings is [[}X;¢. A decode
ordering indexed by k can be seen as a one-to-one correspondence {t —
ke, :t=1,...,n;} where t is the antenna index and k;, is its decode or-
der index. After the ns;-th decode, one global iteration completes. This
decode ordering is repeated iteratively. The natural decode ordering is
{kii=t:t=1,...,n9}.

Furthermore, the turbo decoder is made of two BCJR decoders [38] ex-
changing probabilistic information (log domain). The first BCJR decoder
computes the LAPPRs on its own coded bits (information and parity bits)
taking into account the available a priori information on systematic informa-
tion bits stored from an earlier activation (i.e., the most recent LEXTPRs on
systematic information bits delivered by the second BCJR decoder). Then
the second BCJR decoder is activated and computes the LAPPRs on its
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own coded bits (information and parity bits) taking into account the avail-
able a priori information transmitted by the first BCJR decoder. The global
schedule is described here: First, one global iteration follows the chosen de-
code ordering. Second, the detection and decoding process at each antenna
comprises of one pass of equalizer followed by one pass of first BCJR decoder
followed by one pass of second BCJR decoder. Such a global message-passing
schedule provides much better global results than the conventional one, i.e.,
a single pass of joint equalizer followed by an arbitrary number of turbo de-
coder iterations. The message-passing schedule of natural decode ordering

is summarized in Fig. 5.1.

iteration 1 iteration 2

%| LMMSE H DEC1 H DEC2 LMMSE |—)| DEC1 H DEC2 }7
antenna I
Interference Interference
update update
LMMSE |—)| DEC1 |—)| DEC2 }7

Interference
update
LMMSE |—)| DEC1 |—>| DEC2

Interference
update

Channel
outcome |

ég

antenna 1

antenna 2

9@9| LMMSE |—>| DEC1 H DEC2

antenna n,
Interference
update

Figure 5.1: Message passing schedule of natural decode ordering

¢

antenna n,

@
i

LT j— LT
¢

5.3 LMMSE-IC based turbo receivers

Empirical evidence reveals that the LAPPR-based iterative LMMSE-IC al-
gorithm can significantly outperform its LEXTPR-based counterpart for
highly loaded multiantenna or multiuser systems. As a consequence, we
intentionally focus on this particular class.

For the sake of readability, the detection and decoding process of the t-th
antenna (codeword) t € {1,2,...,n:} is detailed at a certain global itera-
tion ¢. This is necessary and sufficient because the detection and decoding
process is the same for every antennas. Considering the decode ordering x,
the antenna t’ with ky , < ki, have already been decoded at the current
iteration i and the antenna t’ with ky ,, > k¢, will be decoded after the t-th
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antenna. Therefore, the updated sets of LAPPR on coded bits are A(Di_];l;ct

(i) t
and {A [ DEC/}t,:Lt,# where

i — 7 if kt’,n < kt,,@
Tl — 1 if ke > ke

These sets of LAPPR on coded bits become after interleaving the sets
A%TLI gt and {A%’f'g Et/}gtzl,t/ 4t of all log “a priori” probability ratios on la-
beling bits used for (soft) interference regeneration and cancellation, al-
though LAPPR contain “observation”. Let {A(DZ Ll &)y, De the set of all
LAPPR on coded bits involved in the labeling of s;;; at the current iter-
ation. Let {A%),LE}Sb;z be the set of all LAPPR on coded bits involved in

the labeling of sy, in the current iteration. Therefore, {Ag) I E}sb;l contains

i—1 [ n 7
{{AD L}J Shit,l? {{ADtLE Shiet }t,t:u,#}. Let also {Asj),LE}sb;l\sb;t’l be the set
of all LAPPR on coded bits involved in the labeling of sy, except the coded

bits involved in the labeling of sy, i.e. {{A[l)“LE}sb T S

5.3.1 Interference regeneration and cancellation

Prior to LMMSE estimation of the symbol s;.;;, we compute the conditional

MMSE estimate of the interference, defined as S’Z(:l)\t =E |:yb?l‘{Ag),LE}Sb;l\Sb;t,l] .

This computation is intractable for useful signal components and noise sam-
ples are of course no more independent conditional on {A%) LEYsyi\spes 1O
solve this issue, we make two symplifying assumptions.

A1 The pdf p (Sb, Wpy) factorizes as

Sp;1, Wbl |{A(DZ)’LE }Sb;l \Sb;t,l

i Sp:1, Wp1) =
psb;l7wb;l|{A(Dl)’LE}sb;l\sb;t‘l ( b b b l)

, (5.2)
P(Sb;t,l)pwt);l (Wb;l) Ht’;ét (Sb it l‘{ADZtLE Spit! z)

A2 The pmf P(spy l|{AD ip ) in (5.2) is given by

Sbit! 1

_1 (41)
i) 2ok ,'(Sb;t’,l)AD LE(db /1 )
(Sbt l|{ADtLE Sbt/ )0(6 JFvd ¥

As a matter of fact, the assumptions (Al) and (A2) never hold even for

an ideal interleaver of infinite depth. But we can still force them in all
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subsequent derivations. Under (A1), the MMSE estimate of the interference
affecting the symbol s;.;; is given by

g = Hy(1,, etet)ml?l) (5.3)

where ml(jl) is the vector made of all estimates ml(;;ﬁ )l =E |sp 1

DLE 5bt’l:|

evaluated under (A2). After IC, the new observed vector is yp,; — yl(ﬂ)\ .

5.3.2 LMDMSE estimation — unconditional case
o(3)

The optimization problem to solve can be formulated as follows: Find 5, ;, =
f( ot (Yo — yl()fl)\t) minimizing the unconditional MSE E [\sl(le — sptg]?| de-
ﬁned as

E [E (155, = suesPHAS L edoysne || - (5.4)

The outer expectation in (5. ) renders the (biased) LMMSE filter time-
V1
it

% < (2) .
it € where &) =E[&),] with

invariant given by fb(,lt) =&y,

2 (%) o (i ” i
fb;t,z =E {(Yb;l - yl();l)\t)sb;t,zHASJ),LE}SZ,;,\SZ,;,&J

and where égg =E |:él()ll)f,li| with
bt = [(Yb;l - }v’l(:l)\t)(Yb;l - ?éfl)\t)T!{A%),LE}sb;l\s,,ﬁy,

The computation of féi) is again intractable. However, under (A1), él(,lz and
_.l(,z become Ebt hy.;, = Hye; and ._.1(72 H Vl() it (i) + 021, where Vl() {t
is the unconditional symbol covariance matrix deﬁned as

(it-1) (it+1) (int)}

(i)
Vb,\t dlag{vb s U 1 L Uy s Upy

)
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where Vt' # t, v,(f;,') =E [vé ;,')l] with Uz();i;/,?z =E ||spe ) — ml(:zﬁ al? \{A%tLE}sb v

evaluated under (A2). Using the matrix inversion lemma, we obtain the filter

where El()) H, V(z)HJr + 02 oI, and n(l) hz,tﬁ)l(f)_lhb;t with
i i i—1
Vi) = Vi, — (1=, V)ere] (5.6)

i1 . i—1 i—1
where Ul();t ) = E[ IEtl )} with Ulg;t,l) = E [|5btl _mbtl)‘ HADL])E

4(®)

evaluated under (A2). The corresponding estimate 8p.11 Of spi¢1 can be ex-

Sb;t,l

pressed as

NG f :

31(7:1)?,1 fb(,zt) (Y — yt(> l)\t) glg) b;t,l+cl§:2,z (5.7)
where gé? = fé,zt) hy; and CIE-Zt) ; is the residual interference plus noise term.

Clearly, CISQJ in (5.7) is zero-mean and uncorrelated with the useful signal
Spy under (Al), ie. E[sbtldﬁ] = 0. Under (A1) and (A2) the variance
of Cbtl is glgt) = gézz(l gézz) Thus, we can define the unconditional SINR
under (Al) and (A2) as

(4) (@)
G) bt st
Tost = 1— 0 — 1 — p®,G-1" (5.8)
ot Mot Vbt

In practical implementation, we make several assumptions over the covari-
ance matrices Vl(f).
A3 Due to the particular structure of the MCS, the so-called equal variance

assumption holds, which states that

V[EZ) =V = diag{fUYl Uigz 1)7 ) nztnt)} vb. (5.9)
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A4 vt(i_l) and {U(Zt/ ) 4t can be replaced by their empirical means de-
fined as
(i-1) L SAS- )
_(i—1 i—1
(% )
(i) L XAN- )
—(2yr Tyt /
vy, = — vy 50V £t
t nbL — ZZ; bit' )l

assuming sufficiently large L. Actually, the ergodic regime assumption (A4)
is part of the baseline assumptions of EXIT charts [37]. The assumption
(A3) never holds even for an ideal interleaver of infinite depth, but forcing it

induces no performance degradation. Finally the covariance matrix becomes

VO = diag{a\™, ..., o™V, .. 5y (5.10)

5.3.3 Demapping and decoding

The estimate §l(fgl is used as a decision statistic to compute the LEXTPR

on the g, bits involved in the labeling of s ;.

A5 In (5.7), the conditional pdf P 1, l(égf_z ;) is circularly-symmetric com-
bit,115bst, 1

plex Gaussian distributed.

Under (A1), (A2) and (AS5) the conditional pdf p,c | ()
Sb;t,l Sbst, [hd}

is NC(Q{SQ%;MK{S?)- As a result, under (A1),(A2), and (A5), for the special
case of Gray labeling, the LEXTPR A%?DEM(db;tle) on labeling bit dp.; ;

is expressed as

| btl gbt5| /g()
Z e
62”(1)

A(E?DEM(dbtl ) = - 2@ (5.11)
© € |sbtl gbts| /<
seEX

vty

5.3.4 Message-passing schedule for turbo decoding

The set A%) pey, Of all LEXTPR on labeling bits becomes after deinterleav-

ing the set A?D rc, of all log intrinsic probability ratios on coded bits used

as input for the decoder.
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(i) :
A6 The pdf pA(IZ;)DECt‘C(AI’DECt) factorizes as

Ne,vy

NG 1 DECt H Dy (Agl,)DEC(ctm))

I,DEC | IDECCt"‘ct"

where A?D EC(Ct,n) is the log intrinsic probability ratio on n-th coded bit ¢;
of the t-th codeword. The assumption (A6) allows to simplify the decoding
task. It is rightfully confirmed for an interleaver of finite, but large enough,
depth. The decoding consists of one pass of first BCJR decoder followed
by one pass of second BCJR decoder. This completes the decode task for

antenna t.

5.4 PHY-layer abstraction

The global performance evolution analysis should follow the chosen message-
passing schedule (Fig. 5.1 exemplifies the natural ordering). The PHY-
layer abstraction follows the one described in chapter 4 derived for STBICM
transmission. Again, we details the prediction method for the t-th antenna

at the iteration i.

5.4.1 Transfer characteristics of LM MSE-IC

The LMMSE-IC part for the t-th antenna ends up with n; independent
parallel channels under (A6). Each of them is modeled as a discrete-input

AWGN channel under (A5) whose SNR, given by

Yot = ) G=1) (5.12)
t

under (A1)-(A4), turns out to be a function ¢; of b, t, Hy, 02 and the input

variance @gifl). For each such channel, we can compute the AMI Igl)ﬂw

between the discrete input s ; € 2, and the output 5,()2l = Sb;t,l‘f’f[(jzl with

ent1 ~ Nc(0, 1/71512) The value of I}gb;t depends on the single parameter
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%Ezg Let fé%t be the arithmetic mean of the values {Ié%b-t}’ ie.,

=(i 1<
I = ~ I, (5.13)
b1

The AMI Ig};b;t =y, (71522) is a monotone increasing, thus invertible, func-
tion of the SNR, and depends on the MCS index 4. It is simulated off-line
and stored in a LUT.

5.4.2 Transfer characteristics of joint demapping and decod-
ing
The functional module is MCS-dependent and comprises the following steps:
demapping, deinterleaving, turbo decoding (one pass of the first BCJR de-
coder followed by one pass of the second BCJR decoder), reinterleaving,
and computation of the mean and variance of transmitted symbols based on
LAPPR on coded bits (as described before). The algorithm used to gener-
ate the different LUTs (BLER P., = Fipp,, (7, 1a,pEC), the variance vy =

Gpb,, (7, 1a,pEC), and the mutual information Ig, = Tipp,, (v, 1a,pEC))

is summarized in Algorithm 5.

5.4.3 Evolution analysis

It remains to relate the output I_é%t of the first transfer function (LMMSE-
IC) and the input SNR of the second transfer function (joint demapping
and decoding) at any iteration. This is done by assuming that I_g%; which
measures the information content of knowledge on coded modulated symbols
{sp:t,1}, averaged over all parallel AWGN channels, is equal to the informa-
tion content of knowledge on coded modulated symbols transmitted over
a single virtual discrete-input (with values in 2,,) AWGN channel with
effective SNR f’yg}gt given by

=y (I = v (: 18, ) (5.14)

b=1
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This technique inherited from EXIT charts is widely used in practice and

often referred to as MIESM. In our framework, it relies on all the defined

assumptions (A1)-(A6) or, equivalently, on (A5) and (A6) for the first it-

eration. The variance @t(i) = Gypp,, (W(LQE,IX)DEC) is used in (5.10) under

(A4) for other antennas to be detected and decoded. Hence, the evolution of

LAPPR-based iterative LMMSE-IC can be tracked through the single scalar
(4)

parameter v; ’.

5.4.4 Calibration

A major drawback of this performance prediction method is that the as-
sumptions (Al), (A2) and (A3) do not hold for LAPPR-based iterative
LMMSE-IC. As explained before in chapter 2 and chapter 4, a simple, yet
effective, calibration procedure has been proposed which have the effect to
artificially reduce the SINRs that are used in the performance prediction
method. Finally, a recapitulative diagram of the method is depicted in Fig.

5.2 for t-th antenna at i-th iteration.

Figure 5.2: Performance prediction method of BICM at antenna t at itera-
tion i

5.5 Numerical results

The proposed physical layer abstraction method is tested over a 2x2 MIMO
4-block flat fading Rayleigh channel. The MCS are built from the LTE
turbo-code based on two 8-state rate-1/2 recursive systematic convolutional
(RSC) encoders with generator matrix G = [1; g1/g0] where g0 = [1011] and
gl = [1101] and QAM modulations (Gray labeling). LAPPR based iterative
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LMMSE-IC is performed at the destination. The natural decode ordering is
considered here. The schedule is: one pass of equalizer followed by one pass
of first BCJR decoder followed by one pass of second BCJR decoder. This
completes one global iteration of the turbo receiver. We witnessed that 5
iterations are generally enough to ensure the convergence in practice.

The average Ej is the same for two antennas. Average simulated and
predicted BLER over open-loop MIMO are shown for several SNR. For each
SNR, we evaluated the average simulated BLER by Monte Carlo simulation
which is stopped after 1000 block errors for both codewords. The predicted
BLER is evaluated over 10000 channel realizations. Fig. 5.3 shows the
results for two different MCS on two antennas: antenna 1 QPSK-1/2 (pre-
diction with calibration factor 1.7) and antenna 2 16Q AM-1/2 (prediction
with calibration factor 3.3). Fig. 5.4 shows the results for two identical
independent 16QAM-1/2 (prediction with calibration factor 3.3)on two an-
tennas. We observe that the average predicted BLER match exactly the

average simulated ones at every iterations.

Average BLER

——User 1: it1, 2, 3, 5 - Simulation R
----User 1:it1, 2, 3, 5 - Prediction A
User 2:it1, 2, 3, 5 - Simulation
-¥- User 2:itl, 2, 3, 5 - Prediction 3
10-3 L L L L
-4 -2 0 2 4 6
E,/N,(dB)

Figure 5.3: Average simulated vs. predicted BLER of LAPPR based iter-
ative LMMSE-IC with QPSK-1/2 at one antenna and 16QAM-1/2 at the
other antenna over 2 x 2 MIMO -4 block fading channel
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Figure 5.4: Average simulated vs. predicted BLER of LAPPR based itera-
tive LMMSE-IC with two identical independent 16QAM-1/2 on two anten-
nas over 2 x 2 MIMO -4 block fading channel

5.6 Conclusion

In this chapter, we have investigated the PHY-layer abstractions in inde-
pendent per-antenna turbo coded MIMO systems with iterative LMMSE-
IC receiver. Each antenna transmit an independent BICM. The topic is a
generalization of previous chapter 4. The proposed PHY-layer abstractions
have been validated by Monte-Carlo simulations with different communica-
tion scenarios. The following step is to investigate link adaptation strategies
in presence of such receiver and proposed PHY-layer abstractions.
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Chapter 6

Coding across antennas
(STBICM)

6.1 Introduction

Cross optimization between PHY and MAC layers, sometimes referred to as
cooperative resource allocation, is currently one of the most exciting research
topics in the design of MU-MIMO systems. One reason may be that the
computational complexity of the problem to solve represents a formidable
challenge in terms of mathematical modeling and implementation. In order
to build bridges between PHY and MAC layers, it is mandatory that the
link-level metrics be accurately modeled and effectively taken into account
in higher-level decision-making mechanisms. Only a limited amount of con-
tributions address this issue and, when they do it, most often restrict their
study to simple linear receivers (see e.g., [85] and [86]) or, if dealing with
more sophisticated non-linear receiver structures, e.g., Cyclic Redundancy
Check (CRC) - based SIC [87], idealize some parts of the decoding pro-
cess, typically assuming continuous-input channels with zero-error Gaussian
codebooks, and neglecting error propagation, which leads to inaccurate (i.e.,
too optimistic) predicted throughputs.

Real systems though deal with discrete-input channels and non-ideal

finite-length MCS. Besides, in the light of the substantial improvement they

This chapter is partially presented in the papers accepted to IEEE ICNC’2014, IEEE
WIMOB’2013 and a journal paper in preparation
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can bring in terms of system throughput or performance compared to con-
ventional receivers (i.e., linear receivers or non-linear SIC receivers), itera-
tive (turbo) LMMSE-IC should become an integral part of the assumptions
made on the PHY layer (see e.g., [71] [66] and the references therein). The
primarily subject of this chapter is to measure the true impact of this family
of iterative “turbo” receivers on the link level performance. The evolution of
this family of iterative receiver is analyzed building upon previous work on
advanced PHY layer modeling and the calibration enhancement. We show
how to incorporate the fine stochastic modeling of such receivers into the

joint decision-making mechanisms involved in link adaptation.

6.2 System model

We consider a single-user transmission over a MIMO block Rayleigh fading
multipath AWGN channel with n; fading blocks, n; transmit and n, receive
antennas. Partial state information is assumed at the transmitter through
a low rate feedback. Perfect channel state information is assumed at the
receiver. The total number ng of channel uses available for transmission is

fixed and the number of channel uses per fading block is given as L = ng/np.

6.2.1 Coding strategy

Under limited feedback, only a finite number of transmission schemes are
available at the transmitter side, i.e., a finite set of MCS and a finite set
of spatial precoders. Let M be the set of MCS indices and P the set of
spatial precoders. An MCS indexed by v € M is a STBICM, specified by
a convolutional or turbo code %, of rate r, and a complex constellation
Z, C C of cardinality 29 and a memoryless labeling rule p,. We define
the rate of the MCS v as p, = r,q, (bits/complex dimension). By con-
vention, MCS are indexed in increasing order of the rates, i.e., the MCS
no. 1 has the lowest rate, and the MCS no. |M]| the highest. Antenna
selection is used as a simple form of spatial precoding. A spatial precoder

indexed by 6 € P selects n; 9 < n; antennas and is specified by a precod-

ing matrix ®¢. If {d1,...,0,,,} is the index set of selected antennas, then
By = 1/ /mugles,, .- 7e§"t9] where eg, is the ns-dimensional vector with

1 at position d; and 0 elsewhere. The encoding process for MCS v and

precoder 6 is detailed. The vector of binary data (or information bits) u
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enters a turbo encoder ¢, whose output is the codeword ¢ € %, of length
Newo = NsNypqy. The codeword bits are interleaved by a random space time
interleaver mg, and reshaped as a collection of integer matrices {Dy},,
with Dy € Z;;;,GXL. Each integer entry can be decomposed into a sequence
of ¢, bits. A Gray mapping u, transforms each matrix Dj into a complex
matrix S, € %ynt’QXL, which is finally precoded as X, = ®S;, € Cn*L,
%VS?) and %V(;) denote the subsets of points in 2, whose labels have a 0
or a 1 at position j. With a slight abuse of notation, let {dp. ; }?”:1 denote
the set of bits labeling the symbol sp¢; € 2. Let also u;;(s) be the value
of the j-th bit in the labeling of any point s € Z,. STBICM with spatial

precoding is depicted in Fig.6.1.

Vappig |5 <z
1 Mapping 2
i 4 4 ¢

— S
MCS index Precoder index L_adaptation

Figure 6.1: Link adaptation — STBICM with spatial precoding (antenna
selection)

6.2.2 Received signal model

Transmission occurs over a MIMO block Rayleigh fading multipath AWGN
channel. For the b-th fading block, the n, + 1 finite-length impulse response
(FIR) describes the small-scale multipath fading

Hy(l) = > Hy, 60— 7). (6.1)
=0

Each tap gain Hy,; is an n, x n; random matrix whose entries are modeled
as i.i.d. circularly-symmetric complex Gaussian random variables with zero-
mean and variance JS;T under the constraint ) 7, O'a,r = 1. Let Hyp(l)
be the precoded channel FIR. In Ivib;g(l), HZ;T = H,.,®y denotes the 7-th
precoded channel tap. The discrete-time vector y;; € C"" received by the
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destination at b-th fading block and time [ = 1,..., L, is expressed as

nr
You = > Hf sy + Wiy (6.2)
7=0

with proper boundary conditions. In (6.2), the vectors sp; € 2,7 are i.1.d.

random vectors (uniform distribution) with E[sy,] = 0,,, and E[Sb;lsz,l] =
I, ,, and the vectors wp; € C" are i.i.d. random vectors, circularly-

symmetric Gaussian, with zero-mean and covariance matrix 021, .

6.3 LMMSE-IC based turbo receivers

Empirical evidence reveals that the LAPPR-based iterative LMMSE-IC al-
gorithm can significantly outperform its LEXTPR-based counterpart for
highly loaded multiantenna or multiuser systems. As a consequence, we
intentionally focus on this particular class.

The LAPPR-based iterative LMMSE-IC receiver architecture under con-
volutional coded MIMO transmission is described in Fig. 2.3. The different
steps of such iterative LMMSE-IC receivers can be found in chapter 2 and
are not re-written in this chapter.

The LAPPR-based iterative LMMSE-IC receiver architecture under turbo
coded MIMO transmission is described in Fig. 4.1 for the 1-block fad-
ing case. The different steps of such iterative LMMSE-IC receivers can be
found in chapter 4 and are not re-written in this chapter. For the turbo
coded case, the best schedule we have found is the following: one pass of
equalizer followed by one pass of first BCJR decoder followed by one pass
of second BCJR decoder. This completes one global iteration of the turbo

receiver.

6.4 PHY-layer abstraction

The proposed performance prediction method is semi-analytical and relies
on ten Brink’s stochastic approach of EXIT charts [37] particularly useful in
understanding and measuring the dynamics of turbo processing. The PHY-

layer abstractions can be found for convolutional coded in chapter 2 (Fig
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2.5)and for turbo code case in chapter 4 (Fig 4.2), respectively. There is no

need to be repeated in this chapter.

6.5 Link level performance evaluation

Closed-loop link adaptation performs joint spatial precoder selection (an-
tenna selection) and MCS selection. It aims at mazimizing the average
rate subject to a target BLER constraint assuming LAPPR-based iterative
LMMSE-IC at the destination. The number of iterations n;; depends on the
destination computational capacity.
For a given SNR  and a given channel outcome {Hy}, the optimization

problem to solve can be formulated as follows:

Find R*(v,{Hp}, nit) = maxyeq 1t gpv

subject to (1, Co

where

e w = {0,v} is a particular system configuration in €2, the set of all

possible spatial precoder and MCS indices.

. Pe(n“)(w) is the predicted BLER at iteration n; for a given system

configuration w.
o C1:np < min(ng,n,)
e C2: Pe("“)(w) <e.

In practice, retransmission is activated where one block error is detected.
Assuming ARQ Type-I retransmission algorithm and retransmissions within
the coherence time of the channel, the predicted throughput is defined as

T (7, {Hb}, i) = R* (3, {Hy }, mir) (1 = P9 (w¥)) (6.3)

where w* = {0*,v*} = argmax,cqntgp,. For comparison, the simulated
BLER P"*) (w*) and the simulated throughput T7%, (v, {H}, ni) defined

e,sim

Ty (v {Hu Yo i) = R* (7, {Hp},mar) (1 — P73 (w*)) (6.4)

are obtained via Monte Carlo simulation. Then, we evaluate the average pre-
dicted rate R*(vy,nit) = E[R*(vy, {Hp}, nit)], the average predicted through-
put T*(y,ni) = E[T*(v, {Hp},n;;)] and the average simulated throughput
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T*

sim

An exhaustive search is described in Algorithm 6.

(v,ni) = E[T

sim

(7, {Hp}, nit)| where expectation is w.r.t. pyg,y ({Hp}).

Algorithm 6
1: Input v, ng
2: Init R*=0,T*=0, T%,,
3: for ch =1 to n., do
4: Init R* =0

=0

5. Draw channel H

6: for #=1to|P|do

7: Create (precoded) channel Hy
8: for v =1 to |IM| do

9: Compute Ry, = ngpp,

10: if Ry, > R* then

11 Run evolution analysis to get Pe(n“)(w)
12: if Pe(n“) < ¢ then

13: R* <+ Ry,

14: else

15: break (save complexity!)
16: end if

17: end if

18: end for

19:  end for
20:  R*« R*+ R*, T* « T* + R*(1 — P (w*))
21:  Run Monte Carlo simulation to get P\ (w*)

e,sim

20 T Doy + RY(1 = P (w0))
23: end for B B -
24: Outputs R*(v,ni) = nR—Ch, T*(y,nq) = %, and T%, (v,ni) = nszhm

6.6 Numerical results

Multiple channel models are simulated in this section. Therefore, all these

channel models are reported in the following Table 6.1.

6.6.1 Convolutionally coded MIMO

The set of MCS constructed out of convolutional code and optimal calibrat-
ing factors are reported in Table 6.2. The LUTs of BER, BLER and symbol
variance derived from LAPPR on coded bits are plotted in Fig. 6.2, Fig. 6.3
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index | MIMO | ny | n, power profile

CH1 | 4x4 | 1] 0 oig=1

CH2 | 4x4 | 1 | 3 | {0l 07,079,013} = {0.8669,0.1170,0.0158,0.0003}
CH3 4x4 410 0550:1,%:1,...,%

CH4 4x4 1|3 01, =025Vr=0,...,n,

Table 6.1: Set of channel models for numerical simulations

and Fig. 6.4, respectively. They are based on 64-state rate-1/3 or rate-1/2
(punctured) non-recursive non-systematic convolutional (NRNSC) encoders
and QAM modulations (Gray labeling). We choose ns = 288.

index v | type encoder | r, | constellation | q, | p, By
1 NRNSC 1/3 QPSK 2 1067 | 1.0
2 NRNSC 1/2 QPSK 2 | 1.00 | 1.5
3 NRNSC 2/3 QPSK 2 | 1.33 | 2.0
4 NRNSC 3/4 QPSK 2 | 1.50 | 2.3
5 NRNSC 5/6 QPSK 2 | 1.67 | 2.8
6 NRNSC 1/2 16QAM 4 1200 25
7 NRNSC 2/3 16QAM 4 1267 4.8
8 NRNSC 3/4 16QAM 4 |3.00 | 6.0
9 NRNSC 5/6 16QAM 4 1333 6.5
10 NRNSC 2/3 64QAM 6 | 4.00 | 8.0
11 NRNSC 3/4 64QAM 6 | 450 | 9.5
12 NRNSC 5/6 64QAM 6 | 5.00 | 10.0

Table 6.2: Set of MCS based on convolutional code and optimal calibrating
factors

6.6.1.1 Open-loop MIMO

First, average simulated and predicted BLER are compared over several
SNR over CH1 ny is fixed to 288 which yields L = 288. For each SNR, we
evaluated the average simulated BLER by Monte Carlo simulation which is
stopped after 800 block errors. The predicted BLER is evaluated over 10000
channel outcomes. The simulated and predicted (with calibration factors
reported in Table 6.2) results for 16QAM-2/3, 16QAM-5/6, 64QAM-2/3
and 64QAM-5/6 are shown in Fig. 6.5, Fig. 6.6, Fig. 6.7 and Fig. 6.8,
respectively. For all MCS, the predicted average BLERs match very well
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Figure 6.4: LUTs of symbol variance computed from LAPPR on coded bits
for 12 MCS adapted to 4 transmit antenna

the simulated ones for each MCS at different iterations which confirm the

accuracies and reliabilities of chosen calibration factors per MCS.

6.6.1.2 Closed-loop MIMO

Second, the closed-loop link adaptation procedure is tested for two types
of channels: CH1 and CH2 (exponential decreasing ISI power profile) as
reported in Table 6.1. The target BLER is ¢ = 10~

Firstly, LAPPR-based iterative LMMSE-IC is performed at the desti-
nation. The length of the sliding window (in CH2) is Lgy = 33 with
L1 = Ly = 16. For each SNR, we evaluated the average predicted and sim-
ulated throughputs over n.;, = 1000 channel outcomes. For each channel
outcome, Monte Carlo simulation is stopped after 100 block errors. The
results are shown in Fig. 6.9 and Fig. 6.10 for CH1 and CH2, respec-
tively. For CH1, we observe that the average predicted throughput matches
exactly the average simulated throughput and increases dramatically as it-
erations progress. The Genie-aided IC curve corresponds to the ideal case

where interference is completely canceled (upper bound). The average rate
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Figure 6.5: Smulated vs. predicted (with calibration) average BLER for
16QAM-2/3 over CH1

at first iteration demonstrates that we should adaptively allocate higher
rates (as proposed in this chapter) to exploit the full turbo receiver po-
tential. For CH2, the situation is different. Indeed, the average simulated
throughput becomes much worse than the average predicted throughput at
the first iteration and high SNR. This may be surprising that the simulated
throughput is not monotonically increasing at the first iteration. However,
in closed-loop system, good simulated results can be obtained only if the
precoder and MCS selections are appropriate, neither too optimist nor too
pessimist. After careful examination of all assumptions, the non-validity of
(A6-b, chapter 2) in the simulation is identified to be responsible for this
phenomenon: The chosen value ng = 288 is too small at this situation for
high-order high-rate MCS. Larger interleaver sizes or less residual interfer-
ence (during the course of iterations) can help to reduce the discrepancy
between average predicted and simulated throughputs. This is obviously
seen in Fig. 6.10 where the average predicted throughput starts matching
very well the average simulated throughput at third and fifth iterations. To
resolve the problem of insufficient interleaver size, we keep the ng = 288

for each codeword while 50 codewords are interleaved by a single interleaver
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Figure 6.6: Smulated vs. predicted (with calibration) average BLER for
16QAM-5/6 over CH1

with 50 times larger size. The results are potted in Fig. 6.11 where accurate
match between the predicted and simulated throughput can be obtained.

We then analyzed LEXTPR-based iterative LMMSE-IC over CH2. The
set of MCS, sliding window size, number of channel uses per codeword
keep the same. New necessary LUTs are generated for the LEXTPR-based
LMMSE-IC. In this case, no calibration is needed since the assumptions
(Al-a - A3-a, chapter 2) are valid. In the finite size regime (288 c.u.) the
predicted and simulated throughput do not match for all iterations as shown
in Fig. 6.12. Indeed, the residual interference after LEXTPR based interfer-
ence subtraction keeps high having (A6-a, chapter 2) not valid even for the
subsequent iterations. This demonstrates the superiority of LAPPR-based
iterative LMMSE-IC as shown in Fig. 6.10. For the infinite size regime (50
times larger interleaver size as before), the results are shown in Fig. 6.13
where the predicted throughputs match accurately the simulated through-
puts at every iterations (no calibration is applied). Comparing Fig. 6.13
and Fig. 6.11, the performance at the fifth iteration of LEXTPR-based
LMMSE-IC is close to the performance at the third iteration of LAPPR-
based LMMSE-IC.
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Figure 6.7: Smulated vs. predicted (with calibration) average BLER for
64QAM-2/3 over CH1

6.6.2 Turbo coded MIMO

The set of MCS constructed out of turbo code and optimal calibrating factors
are reported in Table 6.3. Turbo codes are based on two 8-state rate-1/2
recursive systematic convolutional (RSC) encoders with generator matrix
G = [1,91/90] where go = [1011] and ¢g; = [1101] and QAM modulations
(Gray labeling). LAPPR-based iterative LMMSE-IC is performed at the
destination. ng is fixed to 2040.

6.6.2.1 Open-loop MIMO

First, average simulated and predicted BLER are compared over several
SNR over a general CH3 as reported in Table 6.1. ny is fixed to 2040 which
yields L = 510. For each SNR, we evaluated the average simulated BLER
by Monte Carlo simulation which is stopped after 800 block errors. The
predicted BLER is evaluated over 10000 channel outcomes. The simulated
and predicted (with calibration factors reported in Table 6.3) results for
QPSK-5/6, 16QAM-1/2, 16QAM-2/3 and 16QAM-5/6 are shown in Fig.
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index v | r, | constellation | q, | pu By
1 1/3 QPSK 2 1 0.67 | 1.7
2 1/2 QPSK 2 | 1.00 | 2.0
3 2/3 QPSK 2 |1 1.33 | 2.5
4 3/4 QPSK 2 | 1.50 | 2.7
5 5/6 QPSK 2 | 1.67 | 3.7
6 1/2 16QAM 4 1200 3.3
7 2/3 16QAM 4 | 267 6.5
8 3/4 16QAM 4 |3.00 | 9.5
9 5/6 16QAM 4 13331170

Table 6.3: Set of MCS based on turbo code and optimal calibrating factors

6.14, Fig. 6.15, Fig. 6.16 and Fig. 6.17, respectively. For all MCS, the
predicted average BLERs match very well the simulated ones for each MCS

at different iterations which confirm the accuracies and reliabilities of chosen

calibration factors per MCS.
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Figure 6.9: Average predicted and simulated throughputs (in bpcu) in
closed-loop convolutionally coded MIMO systems vs. SNR (dB) — CHI,
LAPPR-based iterative LMMSE-IC

6.6.2.2 Closed-loop MIMO

Second, the closed-loop link adaptation for turbo coded MIMO systems is
tested for three types of channels, CH1, CH3 and CH4 as reported in Table
6.1. ng is fixed to 2040 which yields L = 2040 for CH1 and CH4, and L = 510
for CH3. The target BLER is ¢ = 10~!. The set of MCS and optimal
calibrating factors are reported in Table 6.3. The maximum number of bits
per channel use (bpcu) is 13.33. The length of the sliding window (for CH4)
is Lgw = 33 with Ly = Ly = 16. For each SNR, we evaluated the average
predicted and simulated throughputs over n., = 1000 channel outcomes.
For each channel outcome, the Monte Carlo simulation is stopped after 100
block errors. The results for CH1, CH3, and CH4 are shown in Fig. 6.18,
Fig. 6.19, and Fig. 6.20, respectively. For all channels, we observe that
the average predicted throughputs match perfectly the average simulated
ones at every iteration which proves the effectiveness of the performance
prediction method. We also note that throughputs increase dramatically as

iterations progress.
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Figure 6.10: Average predicted and simulated throughputs (in bpcu) in
closed-loop convolutionally coded MIMO systems vs. SNR (dB) — CH2,
LAPPR-based iterative LMMSE-IC

6.7 Conclusion

In this chapter, the problem of link adaptation for closed-loop coded MIMO
systems employing LMMSE-IC based turbo receivers has been addressed.
For the convolutional coded case, Monte Carlo simulations under limited
feedback show a significant gain of around 3 and 4dB compare to the clas-
sical LMMSE receiver conditional on a data rate of 12 bits per channel use,
for a 4x4 MIMO frequency flat and frequency selective channel, respectively.
Moreover, they also confirm that using LAPPR rather than LEXTPR on
coded bits for soft interference regeneration and cancellation yields faster
convergence of the iterative process and better final performance (both for fi-
nite and infinite interleaver length regimes). For the turbo coded case, based
on a PHY-layer abstraction of the whole turbo receiver, the link-level pre-
dicted and simulated performance for three communication scenarios have

been shown.
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Figure 6.13: Average predicted and simulated throughputs (in bpcu) with
50 times larger interleaver size in closed-loop convolutional coded MIMO
systems vs. SNR (dB) — CH2, LEXTPR-based iterative LMMSE-IC
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Figure 6.15: Smulated vs. predicted (with calibration) average BLER for
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16QAM-2/3 over CH3

Average BLER

—— Simulation

--=-- Prediction

10 I L L L

2 4 6 8 10 12
Eb/NO(dB)

Figure 6.17: Smulated vs. predicted (with calibration) average BLER for
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Figure 6.18: Average predicted and simulated throughputs (in bpcu) in
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Figure 6.19: Average predicted and simulated throughputs (in bpcu) in
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Figure 6.20: Average predicted and simulated throughputs (in bpcu) in
closed-loop turbo coded MIMO systems vs. SNR (dB) — CH4, LAPPR-
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Chapter 7

Independent coding per
antenna (selective PARC)

7.1 Introduction

Employing the proposed PHY-layer abstraction, the link adaptation in closed-
loop turbo coded MIMO systems has been firstly investigated in [98] which
is limited to STBICM scheme, i.e., single codeword transmission. In 4G
wireless mobile standards (e.g., LTE-A), however, multiple codewords are
allowed to be transmitted. Therefore, selective PARC [99] with turbo re-
ceivers are investigated in this chapter where the best subset of transmit
antennas are selected and each antenna transmits an independent MCS con-
structed out of powerful turbo code. We formulate the task of joint selection
of spatial precoder (the best subsets of antennas), decode ordering and per
antenna rate as a discrete optimization problem and detail an exhaustive

search procedure to accurately predict the average link level performance.

7.2 System model

We consider a transmission over a MIMO block Rayleigh fading AWGN
channel with n; fading blocks, n; transmit and n, receive antennas. Each
transmit antenna transmits an independent MCS. Partial state information

is assumed at the transmitter through a low rate feedback. Perfect channel

This chapter will be partially presented in a conference paper in preparation
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state information is assumed at the receiver. The total number ng of channel
uses available for transmission is fixed and the number of channel uses per

fading block is given as L = ng/np.

7.2.1 Coding strategy

Under limited feedback, only a finite number of transmission schemes are
available at the transmitter side, i.e., a finite set of spatial precoders and a
finite set of MCS. Let P be the set of available spatial precoders. Antenna
selection is used as a simple form of spatial precoding. A spatial precoder

indexed by 6 € P selects n; 9 < n; antennas and is specified by a precoding

matrix ®g. If {61,...,0p,,} is the index set of selected antennas, then
by =1/ /nrgles,,- - 1 €5, 6] where e;, is the ns;-dimensional vector with 1

at position d; and 0 elsewhere. Let M be the set of available MCS indices.
An MCS indexed by vy € M is a BICM transmitted over the t-th transmit
antenna, specified by a turbo code %, of rate r,, and a complex constellation
Z,, C Cof cardinality 2%+ and a memoryless labeling rule y,,. We define the
rate of the MCS v, as p,, = 71,4y, (bits/complex dimension). By convention,
MCS are indexed in increasing order of the rates, i.e., the MCS no. 1 has the
lowest rate, and the MCS no. |M| the highest. Under the spatial precoder
indexed by 6, there are |M|™¢ MCS combinations to be allocated over n; g
antennas. The MCS combination is indexed by x with possible values among
1,...,|M|™¢. By convention, y = 1 corresponds to the MCS combination
{vy = 13120 and x = |M|™¢ corresponds to the MCS combination {r; =
|/\/l\}:if The encoding process under spatial precoder # is detailed for a
certain selected antenna t € {d1,...,0p,,}. The vector of binary data (or
information bits) u; enters a turbo encoder ¢,, whose output is the codeword
c; € 6, of length n.,, = nsq,,. The codeword bits are interleaved by a
random time interleaver m,, and reshaped as a collection of integer matrices
{Dy;},2, with Dy, € Zéqﬁf. Each integer entry can be decomposed into
a sequence of g, bits. A Gray mapping p,, transforms each matrix Dy,
into a complex matrix Sy € %yltXL . %u(:,)])' and %V(;; denote the subsets
of points in Z,, whose labels have a 0 or a 1 at position j. With a slight
abuse of notation, let {db;t,l,j}?21 denote the set of bits labeling the symbol
Sp1 € Zu,. Let also u;t}j(s) be the value of the j-th bit in the labeling of any
point s € Z,,. Selective PARC with spatial precoding (antenna selection)
is depicted in Fig.7.1.
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Figure 7.1: Selective PARC with spatial precoding

7.2.2 Received signal model

Let ﬂg = H,®y denotes the precoded channel for the b-th fading block. The
discrete-time vector y;; € C" received by the destination at b-th fading

block and time [ =1, ..., L, is expressed as
Yo = I:Igsb;l + W (7.1)
In (7.1), the vectors spy € 2, are i.i.d. random vectors (uniform distri-

bution) with E[sy;] =0

are i.i.d. random vectors, circularly-symmetric Gaussian, with zero-mean

nee and E[sb;lsz;l] =1I,,,, and the vectors wy,; € C"

and covariance matrix 021, .

7.2.3 Decoding strategy

Under spatial precoder indexed by 0, n;p codewords are received. The
global performance of the turbo receiver depends on the decode ordering.
Let Wy be the set of available decode orderings under spatial precoder 6
with [Wy| = [[;2{¢. A decode ordering indexed by k € Wj can be seen
as a one-to-one correspondance {t — ki, :t = 1,...,n.9} where t is the
antenna index and ki, is its decode order index. After the n;¢-th decode,
one global iteration completes. This decode ordering is repeated iteratively.
By convention, the decode ordering indexed by 1 correspond to the natural
decode ordering {k;1 =t:t =1,...,n.9}. This natural ordering may be
not the optimal ordering which maximizes the throughput subject to the
block error rate constraint.

Furthermore, the turbo decoder is made of two BCJR decoders [38] ex-
changing probabilistic information (log domain). The first BCJR decoder
computes the LAPPRs on its own coded bits (information and parity bits)
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taking into account the available a priori information on systematic informa-
tion bits stored from an earlier activation (i.e., the most recent LEXTPRs on
systematic information bits delivered by the second BCJR decoder). Then
the second BCJR decoder is activated and computes the LAPPRs on its own
coded bits (information and parity bits) taking into account the available
a priori information transmitted by the first BCJR decoder. The optimal
global schedule is described here. First, the best subset of antennas should
be selected. Second, one global iteration follows the optimal decode order-
ing. Third, the detection and decoding process at each antenna comprises of
one pass of equalizer followed by one pass of first BCJR decoder followed by
one pass of second BCJR decoder. Such a global message-passing schedule
provides much better global results than the conventional one, i.e., a single
pass of joint equalizer followed by an arbitrary number of turbo decoder iter-
ations. The message-passing schedule without antenna selection considering

the natural decode ordering is summarized in Fig. 5.1.

7.3 LMMSE-IC based turbo receivers

Empirical evidence reveals that the LAPPR-based iterative LMMSE-IC al-
gorithm can significantly outperform its LEXTPR-based counterpart for
highly loaded multiantenna or multiuser systems. As a consequence, we
intentionally focus on this particular class. For each BICM, the different
steps comprising the interference regeneration and cancellation, LMMSE

estimation, demapping and decoding can be found in chapter 5.

7.4 PHY-layer abstraction

The PHY-layer abstraction follows the one described in in chapter 5. The
performance evolution analysis should follow the chosen message-passing
schedule (Fig. 5.1 exemplifies the natural ordering). A recapitulative di-
agram of the method can be found in Fig. 5.2 for t-th antenna at i-th

iteration.
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7.5 Link level performance evaluation

Selective PARC performs joint selection of spatial precoder (the best subset
of antennas), decode ordering and MCS combination. It aims at mazimizing
the average rate subject to a target BLER constraint assuming LAPPR-
based iterative LMMSE-IC at the destination. The number of iterations n;
depends on the destination computational capacity.

For a given SNR v and a given channel outcome {H}}, the optimization
problem to solve can be formulated as follows:

Find R*(77 {Hb}a nit) = maXy,e Z?;f Py
subject to (1, Cs

where

e w = {0,k,x} is a particular system configuration in 2, the set of all

possible spatial precoder, decode ordering and MCS indices.

o {Pt(””)(w)}?;f are the predicted BLER of all n; g antennas at iteration

ng for a given system configuration w.
e Cl:np < min(ng,n,).
o« 02: {P"(w) <e}ty.

In practice, retransmission is activated where one block error is detected.
Assuming ARQ Type-I retransmission algorithm and retransmissions within

the coherence time of the channel, the predicted throughput is defined as

nt.0

T*(y, {(Hp},nie) = > pup (1 — P (w*)) (7.2)
t=1

where w* = {0*, k*, x*} is the optimal selection. For comparison, the simu-
lated BLER {P(n“) (W) }12 and the simulated throughput T% (v, {Hp}, nir)

t,s1m
defined as
nt.0

T b i) = 3 oz (1= P (@) (7.3)
t=1

are obtained via Monte Carlo simulation. Then, we evaluate the average pre-
dicted rate R*(y,n;y) = E[R*(vy, {Hp},nit)], the average predicted through-
put T*(y,ni) = E[T*(v, {Hp},n;;)] and the average simulated throughput
T (v, na) = BT,

An exhaustive search procedure is described in Algorithm 7.

(7, {Hp}, nit)] where expectation is w.r.t. pyg,y ({Hp}).
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Algorithm 7

1: Input v, ng
2. Init R* =0, T*=0,T* =0
3: for ch =1 to n., do

sm

4 Init R*=0,T* =0

5. Draw channel {H;}

6: for =1 to|P|do

7 Create (precoded) channel {Hjg}

8: for kK =1 to Wy| do

9: The evolution analysis ordering is fixed by k.
10: for x =1 to |IM|"¢ do

11: Compute Rg . = 1ot pu,

12: if Ry > R* then

13: Run evolution analysis to get {Pt(n“)(w)}?if
14: if {P"") <}"? then

15: R* < Ry y s

T 35 pu (1~ P(w)

16: else

17: break (save complexity!)

18: end if

19: end if
20: end for
21: end for
22:  end for
23:  R* + R* + R*,

T« T*+T*

24:  Run Monte Carlo simulation to get Pt(,Zii;i(W*)
% Thy T+ S 0y (1= Bl ()
26: end for

— % — Tk - T*
27: Outputs R*(v,ni) = & T*(y,ny) = %7 and T, (7, ni) = 2=
Nch ch ch

Tk
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7.6 Numerical results

A 2 x 2 MIMO 4-block Rayleigh fading AWGN channel (i.e., n, = 4) is
chosen for simulations. ns is fixed to 4080 which yields L = 1020. Turbo
codes are based on two 8-state rate-1/2 RSC encoders with generator matrix
G = [1,91/90] where go = [1011] and g; = [1101] and QAM modulations
(Gray labeling). LAPPR-based iterative LMMSE-IC is performed at the
destination. The target BLER is ¢ = 10~!. We witnessed that 5 iterations
are generally enough to ensure the convergence in practice. The MCS family

as well as their associated calibration factor are reported in Table 7.1.

index v | r, | constellation | q, | py By
1 1/3 QPSK 2 1067 | 1.7
2 1/2 QPSK 2 | 1.00| 2.0
3 2/3 QPSK 2 1133 25
4 3/4 QPSK 2 | 1.50 | 2.7
5 5/6 QPSK 2 | 167 | 3.7
6 1/2 16QAM 4 1200 3.3
7 2/3 16QAM 4 1267 6.5
8 3/4 16QAM 4 13.001 9.5
9 5/6 16QAM 4 1333]17.0
10 2/3 64QAM 4 | 4.00 | 12.0
11 3/4 64QAM 4 | 4.50 | 22.0
12 5/6 64QAM 4 1 5.00 | 34.0

Table 7.1: Set of MCS and optimal calibrating factors

7.6.1 Open-loop MIMO

First, we test open loop spatial multiplexing in which the MCS at every
antenna is fixed. The natural decode ordering is considered here. The
average Ej, is the same for two antennas. Average simulated an predicted
BLER over open loop MIMO are shown for several SNR. For each SNR, we
evaluated the average simulated BLER by Monte Carlo simulation which is
stopped after 1000 block errors for both codewords. The predicted BLER
is evaluated over 10000 channel realizations.

The results for two identical independent MCS fixed on two antenna are
plotted in Fig 7.2, Fig 7.3, Fig 7.4 and Fig 7.5 for 16QAM-3/4, 64QAM-2/3,
64QAM-3/4 and 64QAM-5/6, respectively. We observe that the average pre-
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dicted BLER match exactly the average simulated ones at every iterations

which confirm the accuracies and reliabilities of chosen calibration factors
per MCS.
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Figure 7.2: Average simulated vs. predicted BLER of LAPPR based itera-
tive LMMSE-IC with two identical independent 16QAM-3/4 on two anten-
nas over 2 X 2 MIMO -4 block fading channel

7.6.2 Selective PARC

Second, we consider a selective PARC system based on the turbo-encoded
family. At each SNR, the average predicted throughput is evaluated over
1000 channel realizations. For each channel realization, Monte Carlo simula-
tion is stopped after 100 block errors. The LMMSE benchmark corresponds
to the one pass of joint LMMSE followed by 8 iterations of turbo-decoding.

The Genie-Aided bound corresponds to perfect interference cancellation.

7.6.2.1 LAPPR-based iterative LMMSE-IC

The receiver is the described turbo-SIC receiver with one pass of DEC1
followed by one pass of DEC2 in the turbo decoder. The link adaptation
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Figure 7.3: Average simulated vs. predicted BLER of LAPPR based itera-
tive LMMSE-IC with two identical independent 64QAM-2/3 on two anten-
nas over 2 x 2 MIMO -4 block fading channel

algorithm is the one described in Algorithm 7.

The results are plotted in Fig. 7.6. We observe that the predicted
throughput match accurately the simulated throughput at every iterations.
An exciting gain around 3dB is observed at 8 bpcu between iteration 8 and
the LMMSE reference.

7.6.2.2 Non-iterative soft SIC

The receiver is a slightly modified schedule: the non-iterative soft SIC re-
ceiver with eight turbo decoding iterations. The link adaptation algorithm
is the one described in Algorithm 7. The MCS family as well as their associ-
ated calibration factor are the same as reported in Table 7.1. The LUTSs of
BLER and BER for these MCS with 8 iterations turbo decodings are plotted
in Fig. 7.7 and Fig. 7.8, respectively. The results are plotted in Fig. 7.9.
We observe that the predicted throughput match accurately the simulated
throughput in which an exciting gain is also observed.
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Figure 7.4: Average simulated vs. predicted BLER of LAPPR based itera-
tive LMMSE-IC with two identical independent 64QAM-3/4 on two anten-
nas over 2 x 2 MIMO -4 block fading channel

7.7 Conclusion

In this chapter, we have investigated the selective PARC in closed-loop
MIMO systems with iterative LMMSE-IC (Turbo SIC) receiver and non-
iterative soft SIC receiver. Each antenna transmits an independent BICM.
The algorithm performs joint selection of spatial precoder (the best subset
of antennas), decode ordering and MCS combination so as to mazimize the
average rate subject to a target BLER constraint. This is enabled by a
novel semi-analytical PHY-layer abstraction whose accuracy and robustness
are confirmed by the analysis and simulation results. A very exciting gain
compare to the conventional LMMSE receiver is observed. Several future
research works exist. First, the existing CRC-based SIC receiver will be
simulated for comparison soon. Second, selective PARC in closed-loop con-
volutionally coded MIMO systems are to be tackled combing chapter 5 and
chapter 6. Third, the generalization the whole framework of selective PARC
to a more generalized MU-MIMO channel system and finally the multi-cell
multiuser MIMO systems is necessary.
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Figure 7.5: Average simulated vs. predicted BLER of LAPPR based itera-
tive LMMSE-IC with two identical independent 64QAM-5/6 on two anten-
nas over 2 X 2 MIMO -4 block fading channel
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Figure 7.6: Predicted average throughput at iteration 1,2,3,5,8, simulated
average throughput at iteration 1,2,3, the LMMSE reference and the Genie-
Aided IC bound over 2 x 2 MIMO -4 block fading channel

BLER

1071

10°

——qopsk13 | |
—— QPSK-1/2 ‘
—+— QPSK-2/3 |
—— QPSK-3/4

—e— QPSK-5/6 \
——— 16QAM-1/2| |
—— 16QAM-2/3| |
—— 16QAM-3/4| |
—<— 16QAM-5/6
——— 64QAM-2/3
——— B4QAM-3/4

—+— 64QAM-5/6

Figure 7.7: BLER LUTSs of 12 MCS with 8 iteration turbo decode

-5 0

5 10 15
snr(dB)



CHAPTER 7 156

——— QPSK-1/3
—— QPSK-1/2 | \
10"k | —+— QPSK-2/3 \ \ \
—— QPSK-3/4 \ | ¥
—&— QPSK-5/6 [ \
10°L | — 16QAM-1/2 ‘
—— 16QAM-2/3 ‘
—+— 16QAM-3/4 i
L[| —<—16QAM-5/6
10 Bl —— 64QAM-2/3
—~ 64QAM-3/4
-~ 64QAM-5/6
8 ] | |
5 0 5 10 15
snr(dB)

Figure 7.8: BER LUTSs of 12 MCS with 8 iteration turbo decode
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Figure 7.9: Predicted average throughput, simulated average throughput of
soft SIC receiver with 8 iteration decode, the LMMSE reference and the
Genie-Aided IC bound over 2 x 2 MIMO -4 block fading channel
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Conclusions

The purpose of the last chapter is to conclude and give perspectives for

future research.

8.1 Summary

Multiple antenna technology and advanced turbo receivers have a large po-
tential to increase the spectral efficiency of future wireless communication
system. PHY-layer abstractions for a particular class of turbo receivers, i.e.,
iterative LMMSE-IC algorithms and link adaptation in presence of such
advanced receivers are the core contributions of this PHD study.

This PhD study has been able to propose accurate, robust and practical
semi-analytical PHY-layer abstractions for MIMO systems employing iter-
ative LMMSE-IC receivers. For this issue, multiple PHY layer fundamental
assumptions are investigated, such as the available CSIR, the MCS adopted
and the type of LLR on coded bits fed back from the decoder for interference
reconstruction and cancellation inside the iterative LMMSE-IC algorithm.

These work could be used as a milestone to design new interference
cancellation engines for next-generation wireless networks. Closed-loop link
adaptations in MIMO systems based on the proposed PHY-layer abstrac-
tions for iterative LMMSE-IC receivers have been tackled. Partial CSI is
assumed at the transmitter under limited feedback derived by the PHY-
layer abstractions and perfect CSI is assumed at the receiver. Link level
predicted and simulated performance are compared in different communica-
tion scenarios to measure the true impact on the performance brought by

turbo receiver.

157
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e In the second chapter, PHY-layer abstractions have been proposed for
convolutionally coded MIMO systems employing iterative LMMSE-IC
receiver under perfect CSIR. The PHY layer abstractions are able to
analyze and predict the iterative receiver performance per iteration.
The underlying assumptions for this family of turbo receiver are clari-
fied after careful examinations. Indeed, under perfect CSIR, while the
underlying assumptions hold in practice for LEXTPR-based iterative
LMMSE-IC, some of them prove to be approximate (and optimistic)
in the second case. To solve this problem, an improved PHY-layer
abstraction has been proposed for LAPPR-based iterative LMMSE-
IC by introducing a calibration procedure whose efficiency has been
validated by Monte-Carlo simulations. These work help to understand

thoroughly the turbo receiver’s behaviors.

e In the third chapter, PHY-layer abstractions have been proposed for
convolutionally coded MIMO systems employing iterative LMMSE-
IC receiver under imperfect CSIR. The emphasis is put on the sit-
uation when the number of pilot symbols are reduced and we can
no longer neglect the channel estimation errors. Under imperfect
CSIR, a novel semi-analytical PHY-layer abstraction has been pro-
posed for LEXTPR-based iterative LMMSE-IC detection joint decod-
ing and semi-blind channel estimation by extending the existing ap-
proach derived under perfect CSIR. It allows computing the average
BLER conditional on an initial pilot assisted channel estimation and
long term channel distribution information. It heavily relies on Gaus-
sian approximation on the LMMSE-IC and channel estimation error
models whose second order statistics are governed by the SINRs and
the channel estimate MSE, respectively. Simulation in the context of
SU-MIMO frequency selective transmission, modeled by a discrete in-
put MIMO memoryless block fading Rayleigh channel, demonstrates
the validity of the proposed approach.

e In the forth chapter, novel semi-analytical PHY-layer abstractions
have been proposed for turbo coded MIMO systems employing it-
erative LMMSE-IC receiver under perfect CSIR. This works enables
the introduction of iterative LMMSE-IC receivers in LTE. A stochas-
tic modeling of the whole turbo receiver based on EXIT charts (and

variants) has been proposed and its effectiveness have been demon-
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strated through Monte Carlo simulations in a variety of transmission
scenarios. As the core of the contribution, it is found that, even in
the simplified case of Gray mapping, a bivariate LUT is needed to
characterize the evolution of the joint demapper and turbo decoder
embedded within the iterative LMMSE-IC. This is in contrast with
existing PHY-layer abstraction where simple convolutional codes were
considered and univariate LUT sufficient. The approach can be easily
extended to other types of compound codes (e.g., serially concatenated
codes, LDPC codes). Therefore, the approach may constitute the core
of link adaptation and RRM procedures in closed-loop turbo coded
MIMO systems employing iterative LMMSE-IC receivers in LTE-A.

e In the fifth chapter, PHY-layer abstractions for a generic per-antenna
turbo coded MIMO system employing iterative LMMSE-IC have been
proposed. Compare to the third topic of this part, a new degree of
freedom is the decode ordering. The global turbo receiver performance
depends on the decode ordering which should be taken into account
in the PHY-layer abstractions. The proposed PHY-layer abstractions
have been validated by Monte-Carlo simulations with different com-

munication scenarios

e In the sixth chapter, the problem of link adaptation in closed-loop
coded MIMO systems employing LAPPR- based iterative LMMSE-IC
receiver has been tackled. Partial CSI is assumed at the transmitter
under limited feedback derived by the PHY-layer abstraction and per-
fect CSI is assumed at the receiver. Univariate LUTs and associated
optimal calibration factors per MCS constructed out of convolutional
code are obtained off-line. Bivariate LUTs and associated optimal cal-
ibration factors per MCS constructed out of turbo code are obtained
off-line. Closed-loop link adaptation performs joint spatial precoder
selection (i.e., antenna selection) and MCS selection. It aims to max-
imize the average rate subject to a target BLER constraint assum-
ing LAPPR-based iterative LMMSE-IC at the destination. For the
convolutional coded case, Monte Carlo simulations show a significant
gain compare to the classical LMMSE receiver over different channel
models. Moreover, they also confirm that using LAPPR rather than
LEXTPR on coded bits for soft interference regeneration and cancel-

lation yields faster convergence of the iterative process and better final



CHAPTER 8 160

performance (both for finite and infinite interleaver length regimes).
For the turbo-coded case, based on the proposed PHY-layer abstrac-
tion of the whole turbo receiver, we have shown the link-level predicted

and simulated performance for three communication scenarios.

e In the seventh chapter, the selective PARC in closed-loop turbo coded
MIMO systems with LAPPR-based iterative LMMSE-IC receiver has
been investigated. Bivariate LUTs and associated optimal calibration
factors per MCS constructed out of turbo code are obtained off-line.
The algorithm performs joint selection of spatial precoder (the best
subset of antennas), decode ordering and MCS combination so as to
maximize the average rate subject to a target BLER constraint. This is
enabled by the semi-analytical PHY-layer abstraction proposed before
whose accuracy and robustness are confirmed again by the analysis
and simulation results. A very exciting gain of iterative LMMSE-
1C receiver compared to the conventional LMMSE receiver has been

observed.

8.2 Perspectives
Future research topics include several mains aspects.

e More performant iterative receiver: There is still a gap between the
performances of iterative LMMSE-IC algorithms and the perfect in-
terference cancellation bound in SU-MIMO communication scenarios.
Further improvement of spectral efficiency relies on more powerful re-
ceiver such as iterative MAP receiver. We would like to propose an
accurate, robust and practical semi-analytical PHY-layer abstraction
for iterative MAP receiver, however there are no SINRs to be com-
puted. Inspired by the introduction of a calibration factor (greater
than one) over the symbol variance to compensate the assumption in-
accuracies for LAPPR-based iterative LMMSE-IC, the iterative MAP
algorithm might be approximated by a virtual LEXTPR-based iter-
ative LMMSE-IC compensated by a calibration factor (smaller than
one) over the symbol variance. If this ides is validated, we are able to

propose a framework of PHY-layer abstractions for turbo receivers.
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e More aggressive calibrations in conjunction with Incremental-Redundancy
Hybrid Automatic Repeat reQuest (IR-HARQ): The introduced cal-
ibration factors for LAPPR-based iterative LMMSE-IC algorithm are
obtained by minimizing the sum distance between the simulated and
calibrated predicted BLER (or BER) over large number of channel
realizations drawn from a generic channel distribution model. In this
ways, the obtained calibration factors work well in most of channel
realizations. By avoiding to allocate too optimist data rate for bad
radio conditions which results in a lot of retransmissions, the usage of
calibration factors inevitably sacrifices the data rate over good radio
conditions. If we want to adopt more aggressive (smaller) calibration
factors to allocate higher rate over good radio conditions, there should
exist some mechanisms to compensate the possible allocations of too
optimist data rate over bad radio conditions. In this line of thought,
there is a need to employ IR- HARQ [88], [89], [90], [91], [92], [93] in

the transmission.

e Open-loop link adaptation: The part of FLA in this PhD study is
based on ideal instantaneous and perfect feedback and all instanta-
neous feedbacks can be treated by MAC layer immediately. However,
these may be not realistic in practice. For example, the feedbacks
become no longer reliable when the UE is moving too fast, or a base-
station under heavy load is not able to follow the feedbacks of ev-
ery UE. In such situations, a better strategy is to perform open-loop
link adaptation regardless the instantaneous feedback. Shifting from
closed-loop to open-loop link adaptation, the gain brought by iterative
receiver compare to conventional linear receiver will increase. There-
fore, it is of interest to compare the performance of different types of

receiver in the context of open-loop link adaptation.

e More generic channel model: Cross layer optimization has been tack-
led mainly over SU-MIMO systems. Future topics include uplink and
downlink system level performance evaluation, as well as an exten-
sion of this work to multicell MIMO. However, we have observed that
cross layer optimization starts introducing a very high computational
complexity to search the optimal solution as the degree of freedoms
increase greatly. Due to the complexity constraint, selected PARC is

limited to dual codeword transmission over a 2x2 MIMO block fading
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channel model in this PhD study. The following step should be selec-
tive PARC for dual codeword transmission over a 4x4 MIMO block
fading channel model. Furthermore, a smart exploration of the search
space is required to lower the complexity of optimizing all the degree
of freedoms: user, antenna, precoding, rate, ordering and eventually
the frequency and power. We believe that iterative receivers in con-
junction with such advanced LA and RRM mechanisms will increase

substantially the system throughputs.



Appendix

The objective of this appendix is to derive the statistics of the biased
LMMSE channel estimation error model from the first iteration. For the
sake of notation simplicity, we will remove the iteration superscript (7) in

the following, since the derivation is the same for all iteration ¢ > 1

H=YF = (HS + W)F = HSF + WF = HG + ¥
where
_ 4 _ -1
G = S(Ro?)S-'S' (S(Ra,%)zgsT n Im) . (1)

We develop further

2
Oh

~ _ 2
S(RA)EL'ST = (A S|(Ro)E AP 8] = Thararty Th
0 0 0

It is important to remember here that the MSE estimates m;; are built from
LEXTPR and, thus, Assumption A2 and A3 hold for infinite size interleaver.
As aresult, for a sufficiently large Ly, as well as interleaver size and invoking

ergodicity, we have

Lgs

E{mtmll} = Lqs Z mt,lmI/J = 5t,t/Lds(U§5 — ) (3)
I=1

where &; ¢ is equal to 1 iff ¢ = ¢’ or 0 otherwise. From this last observation,

we can further simplified (2) as
%

2
_ 1=t o -
S(Ro$)E'S" = Lyso2, L1, + Las(03, — v)mIm

ps NO
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which, finally, yields

~ N
LPSUIQ’S + Lds(o'ﬁs - /U) NO“F&NO
G= 2 2 - No No Int = gInt' (4)
Lpsgps + Lds(gds - U) No+ANg + g

Finally, the channel estimation error model can be expressed as

~

H=gH+ v (5)

On the other hand, since the channel estimation is carried out row by row,

the second order statistics of W is given by the covariance of one of its row

Y7, ie.,
» - E rt oy pimssrt=r _ 1 T 2
pr = {v" "} = FE{W'W}F = RF SuF = oyl (6)

with ) ) N
7 0
Lpsaps + LdS(st - U) No+A Ny

2 2 N, N )2
_ N 0 1Vo
(Lpsaps =+ Lds(ads 0) NotANg T ‘7;2L>

(7)
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