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General Introduction

This chapter defines the problematic issue treated in this thesis and indicates the objective to achieve. It sets the main requirements and specifications that fixe the research scope and limitation, and informs on the essential contribution of the thesis. It also gives an idea on the organization of this manuscript.

Motivation and Problem Statement

As a MEMS application, micromanipulation is a field which has the particularity of being very sensitive to noise. To reach the desired force/position accuracy in the gripping of micrometric objects, the development of advanced control methods is necessary. The latter often results in control laws, filters, and algorithms which are executed in real-time on platforms that are in total disproportion with the dimensions of the manipulator tool (micro-gripper) and the micro-objects manipulated. They are bulky and expensive, and have the huge drawback of preventing any embedded or mobile utilisation (portability). Therefore, the hardware integration of these control laws and all related problems is quite worthwhile, and constitutes a real challenge.

With a sound experience in micromanipulation, and being aware of the hardware integration as an ineluctable future step, the Automatic Control and Micro-Mechatronic Systems (AS2M) department of FEMTO-ST Institute, Besançon, initiated in 2010 a new research project called embedded electronics for MEMS. This project has been elaborated in conjunction with the Microelectronics and Nanotechnology Division (DMN) of CDTA, Algiers, joining their complementary skills together for the same objective. It is within the framework of this collaboration project CDTA/FEMTO-ST that the present thesis has evolved.

The most commonly used platform for micromanipulation setups is composed of a PC (with Matlab/Simulink or Labview software for instance) connected to a processor (dSPACE compatible for instance) for the real-time control, incorporating a sophisticated floating-point arithmetic unit with a high precision and large dynamic range. One intermediate step toward portability will be to substitute the calculation unit used for the real-time calculation by an FPGA board, wherein only the control algorithm is embedded [1]. The ideal solution would be to incorporate the whole electronics (control, power, signal conditioning, and conversion) into a low-power ASIC [2], directly connected to the microgripper (Fig. 1.1). Such a solution provides 100% autonomy, but its implementation requires varied and multidisciplinary skills.

Objective of the Thesis

The replacement of the dSPACE unit by an FPGA control board will primarily arise the problem of stability. The latter is due to the inaccuracies of calculations caused by the use of an approximate representation of real numbers (Fixed-point) with a reduced precision and dynamic range. The fixedpoint representation is dictated in this specific case by implementation considerations. Not only it is much easier to implement, but also leads to more computational speed and less power consumption and logic resources, in comparison to floating-point representation.

More precisely, the use of fixed-point instead of floating-point will exaggerate the quantification and rounding effects on the transfer function of the system (disturbance of the pole-zero position). This effect is assimilated to an additional source of noise (white noise) which is added to the already existing environmental noise. Consequently, the biggest challenge is to ensure satisfactory control performances with a minimum hardware (minimum word sizing of the controller structure). This problematic issue is well known under the name of optimal realizations of digital Finite-Word-Length (FWL) controllers. It involves optimizations in control theory and binary arithmetic.

The objective of the thesis is the development of a new binary arithmetic adapted to the FWL problem, enabling an easy generation of minimum word-size controller-structures with

acceptable control performances.

Requirements and Specifications

The hardware integration of FWL controllers is a vast problematic issue. In order to define the research scope and limitation of the thesis, a number of requirements and specifications are established. They are summarized as follows:

• Only linear controllers are considered. This includes both the Linear Time-Invariant (LTI) and Time-Variant (LTV) controllers;

• Only binary arithmetic is used as a mean of optimization. Are not considered the optimization methods based on the utilization of sparse and insensitive matrices with minimization of transfer-function or pole-zero disturbance.

• A new fixed-point binary arithmetic is to be proposed. It must be:

-Fast to cope with the high dynamics of MEMS;

-Power efficient for an embedded control;

-Highly scalable for an easy adjustment of the control performances;

-Predictable to provide a more-or-less precise idea on the speed and logic resources before the implementation. This feature is very useful to the automatic synthesis of linear controllers.

• Use of the same word size and the same fixed-point position in the word for all the coefficients and variables involved. Are not addressed issues related to the order of sum-of-product operations, nor those pertaining to different rounding modes (truncation, to-the-nearest, etc.). Source : [2] • To target a wide range of applications, the arithmetic optimization is undertaken at the algorithmic level, and not at the architectural level;

• Because only LTI and LTV controllers are concerned, the main arithmetic functions involved are:

-Single and Multiple Coefficient Multiplication (SCM and MCM); -Variable operand multiplication;

-Multi-precision multiplication.

• As the optimization effort is deployed at algorithmic level, there is a need to explore a large number of alternative algorithms in order to select the best one. Therefore, reconfigurable circuits (FPGA) stand in this case as the most appropriate option of integration. FPGA allows a fast prototyping;

• Although FPGA serves for the validation of the developed algorithms, HDL code must be fully compliant to the standard IP design-reuse methodology. This means also that the HDL-RTL code will be 100% technology independent, offering the possibility to be mapped both on FPGA and ASIC using a digital standard-cell-library of a given technology foundry. This measure guarantees a systematic reuse of the same code for any future ASIC integration.

• Arithmetic optimization results are applied to PID and LQG controllers with Kalman's filter. These two linear controllers were used in a previous work [3] to control the FTG-100 microgripper (www.femtools.com) on a dSPACE platform.

Contribution of the Thesis

We have investigated and compared four binary arithmetics: CSD, DBNS, RNS, and Radix-2 

L

, it seems relatively the most liable arithmetic to fulfil the above-set requirements. We have circumvented the limitation of Radix-2 r by a recursive construction of higher radices based on a combination of lower radices. This technique has enabled to develop:

• A new heuristic (RADIX-2 r ) for SCM. It has the major advantage of being 100% predictable in maximum number of additions (upper-bound), in average number of additions, and in number of cascaded adders (adder-depth) forming the critical path. Furthermore, its computational complexity is linearly proportional to the constant bit size (N), which means that it has no limitation with regard to N. Despite the big number of existing heuristics, none of them is predictable, not even partially. Besides, most of them exhibit a polynomial runtime complexity O(N α ) with α ≥ 3, and some of them show even an exponential O(2 N ) complexity. Only CSD is linear and predictable. But the latter is largely superseded by RADIX-2 r which requires 18% less additions for a 64-bit constant.

• A new fully predictable heuristic (RADIX-2 r

) for MCM with a computational complexity O(N×M), where M is the number of constants. Compared to the standard CSD for (N,M)= [START_REF] Själander | Multiplication Acceleration Through Twin Precision[END_REF]10), a saving of 53% is obtained. The saving increases as the product N×M increases.

• A series of new high-radix multiplication algorithms with variable operands. They have the merit of being fast, energy efficient, highly-scalable, and predictable. Contrary to existing Radix-2 r algorithms where the highest value of r is limited to 16, the proposed algorithms have no limitation with regard to r. Theoretically, the higher the radix, the shorter the critical path (faster).

• A new mathematical formalism which enables to derive the optimal high-radix multiplication algorithm from a given combination of low-radix multiplication algorithms. The idea has been physically validated on FPGA.

• A series of new multi-precision multiplication algorithms, offering the possibility to run simultaneously several small-size multiplications on the same N×N-bit multiplication array.

The proposed algorithms have the superiority over exiting ones to support a generic partitioning of the array. This results in a higher computational throughput with reduced power consumption.

• The currently best known analytically-proved bounds (Upper-bound, Adder-depth, Average) with the exact number of additions for SCM and MCM.

Organization of the Thesis

Except the introduction and conclusion, the remainder of the manuscript is structured in five chapters.

Because of the intended applications, corresponding informations are given in chapter 2. We first start with micromanipulation as a MEMS application. We describe its specificities and requirements. This is followed by the state-of-the-art of embedded control-electronics for MEMS. We review the basic digital solutions and discuss the pros and cons of each option. At the end, we present an overview of the different optimization techniques applied to FWL controllers.

In chapter 3 we deal with the binary arithmetic. First, the mostly used number formats, fixed-point and floating-point, are introduced and compared to one another with regard to the precision and dynamic range. We then introduce the most commonly used number representation systems. We insist more particularly on the two arithmetic operations (+, ×) required by linear systems.

Chapter 4 is devoted to the operation of multiplication by a constant. A range of the most frequently cited algorithms are presented, followed by the introduction of a new heuristic called RADIX-2 r . A detailed description of the latter is given, accompanied with a discussion on the experimental results.

The same is done in chapter 5 for the variable-operand multiplication. We first describe the most advanced high-radix multiplication algorithms, and then we introduce a series of new high-radix algorithms and show how to extract the optimal one. Next, we discuss the experimental results. The same presentation scheme is applied to multi-precision multiplication.

In chapter 6, we apply the results of research developed in the previous chapters on the PID and LQG controllers with Kalman's filter.

Finally, we provide some concluding remarks on the accomplished work. We comment its strengths and weaknesses, and propose a roadmap for the continuation of the project of embedded electronics for MEMS.

Chapter 2 Problem Background

In this chapter, we first define the application context of the thesis and then give the state-of-the-art of each topic involved. We describe the main characteristics of the micromanipulation domain as a MEMS application, followed by a survey of hardware integration solutions adapted to the embedded control. We examine the solution space with regard to the MEMS requirements and select, wherever possible, the best option that leads to an optimized implementation of the controller. The selection is carried out depending on the control-bandwidth, the power consumption, and the precision of calculation.

Application Context

MEMS (Micro-Electro-Mechanical Systems) technology dates back to the discovery of the piezoresistive effect in silicon and germanium at Bell Labs in early 1950s [1]. It combines lithographically formed mechanical-structures with electrical elements to create physical systems that operate on the scale of microns. A MEMS is defined as a system of micrometric dimension (less than 100 µm) incorporating at least two of the following features: sensor, signal processing electronics, actuator, power or transmission. Over the last 60 years, an impressive variety of MEMS devices were developed, constantly pushing the boundaries of physics, mechanics, electronics, and control theory.

Microrobotics is one of the MEMS applications. It is the field of miniature robotics, in particular mobile robots with characteristic dimensions less than 1mm. Microrobots [2] and Micromanipulators [3] are two outstanding examples of MEMS devices, dedicated to work in the micro-world. At this scale, the systems should have accuracy and resolution that are better than one micron.

The AS2M department of FEMTO-ST is specialized in micromanipulation/microassembly applications. For their setups, researchers use bulky equipments (typically standard PC and additional electronic cards) to control the developed micromanipulators. This constraining environment makes any mobile utilisation difficult. One of the smallest components of the micromanipulator is the endeffector. In most cases, this is a micro-gripper. It becomes really interesting if the microgripper can be easily changed for the adaptation to a new task. Therefore, the solution is to integrate the control electronics within the MEMS part to obtain some sort of a "plug-and-play" micro-gripper. However, the implementation of this solution requires advanced skills in hardware integration. For such a purpose, a collaboration project between FEMTO-ST and CDTA has been established in 2010. It aims at exploring and proposing appropriate solutions for the hardware integration of the control part of the micro-gripper. The present thesis is a part of this collaboration project.

However, controlling structures at the scale of micron is not only challenging from the modeling and control-law point-of-view, but also computationally challenging [4], mainly for three reasons:

• These miniature devices are capable of extremely fast movements, requiring very high control bandwidth to ensure their stability. For instance, in [3] a micro-gripper with two degrees of freedom piezocantilevers is proposed (Fig. 2.1a). It is dedicated to applications where both high performance and high dexterity are required. Such a micro-gripper presents a strong coupling between the two axes. In addition, it is very oscillating and strongly nonlinear (hysteresis and creep). All these problems are compensated using additional control/filtering techniques that require more computational time. Thus, the stability is guaranteed only if enough computational power is provided. To give an order of magnitude, the dynamic of the piezocantilever is typically controlled with a sampling time of 20µs (Fig. 2.1b).

• With small physical sizes and high resolution come low tolerance to error, and therefore a need for a high computational control precision. For instance, in micromanipulation and microassembly, fixing a micro-lens at the tip of an optical fiber with 1µm of relative positioning error or 0.4µrad of orientation error, may cause a loss of 50% of the light flux [3].

• The reality is that most of the MEMS devices are embedded in autonomous equipments which are bound by power and size constraints. This dictates the use of power-efficient solutions in control and in the implementation of the controller as well. A typical example is the mm 3 robots [2], called I-SWARM. It is a real autonomous mobile micro-robot; powered by solar cells, equipped with a locomotion unit for moving, an infra-red unit for communication, and a contact tip for detecting near objects. The whole is managed by a low-power ASIC, which is in fact a real system-on-chip (SoC) solution.

Consequently, in addition to an advanced modeling and control, high-speed, low-power, and high precision of calculation are mandatory for the MEMS control. In the case of an embedded control, which is the purpose of this thesis, the precision of calculation becomes even a more severe constraint, harder to satisfy without compromising speed and power. This is essentially due to the utilization of fixed-point numbers which are an approximation of real numbers. The fixed-point format is dictated in embedded applications for its high-speed and low-power features.

Obviously, this thesis does not have the pretention to address all issues related to embedded control for MEMS. Such a complex and substantial problem would require a series of complementary works. The objective is rather restricted only to the determination of a suitable binary arithmetic that conciliates into a good compromise speed, power, and precision, while preserving satisfactory control performances.

Because micromanipulation is the MEMS application domain to which the proposed arithmetic is applied, a brief summary of its characteristics is given hereafter for a better understanding of the real control challenges. 

Micromanipulation as a MEMS application

Micromanipluation addresses the problem of gripping, handling, moving, and placing objects of micrometric sizes. During the last decade, the need for micromanipulation systems (Fig. 2.1) with micro/nanometers accuracy and fast dynamics has been growing rapidly [5]. Such systems occur in applications including:

• Manipulation of biological elements in medicine and biotechnology (micro-organisms, cells, DNA, etc.).;

• Assembly of micromechanical rigid parts (micro sprocket wheels, optical micro lens, hybrid circuits, etc. );

• Micro/ Nano-sensors for environnemental monitoring;

• Metrology and nanometer resolution imaging (AFM and SEM);

• Study of micro-world phenomena, such as adhesion forces.

Before exposing the major problems pertaining to the microworld, it is useful to have a precise idea on the order of magnitude in size and weight of the physical entities manipulated (Fig. 2.2 and 2.3).

Force and position measurements are very important to perform micromanipulation and microassembly tasks. Small components are often fragile (e.g. biological cells) and may be damaged or destroyed if they are grasped without force control.

Working in the micro/nano-world involves displacements from nanometers to tens of microns [6].

Because of this precision requirement, environmental conditions could generate noise and disturbance that are in the same range as the desired displacements (very low signal/noise ratio). These environmental conditions include: thermal variation; vibration; air-flow; and humidity.

In fact the forces that come into play at the micro level are different from those at the macro level. This is due to what is commonly called the scale effect [7]. Indeed, when the size becomes small enough, the surface effects become dominant over the volume effects. Gravity, which is often relied on in control and assembly of macro systems, plays only a minimal role at the micro level. Instead, the dominant forces are (Fig. 2.4):

• Electrostatic forces (F elec ) generated by tribo-electrification and charge transfer during the contact;

• Surface-tension forces (F tens ) between the two contacting elements, related to the level of humidity;

• Van der Waal's forces (F Vdw , atomic forces).

There is also another kind of problems related to uncertainties. It is interesting to note that because of adhesion forces, that still remain difficult to control, the equations of the dynamics and kinematics of the micro-objects are subject to uncertainties, so that the movements are unpredictable. The uncertainties are also due to the limited performances of the sensors. To handle a micro-object, the required accuracy is the tenth of the size of the micro-object in the worst case, and the resolution is equal to 1/n times of the precision (n>1). At present, propose force and position sensors with such a performance and a suitable size remains a challenge [8]. Precise position sensors already exist, such as interferometers, but their size is not suitable (bulky).

Another problem of the scale-effect is the inability to directly use the human sight sense in the microworld. A microscope-camera system is often used to monitor micromanipulation tasks. Fully automated or remotely operated, these systems are equipped with a micromanipulation screen, enabling the human operator to intervene [9].

The specific complexities of the microworld (adhesive forces) added to the lack of appropriate sensors is a real challenge that is far from being mastered [6]. The capture and release by a microgripper of "sticky" parts (Fig. 2.5) is a hard problematic issue [6] [7][10] [11] [12].

Because of all these difficulties, the design of micromanipulation systems (Microgrippers) must offer the best performance in terms of accuracy and resolution. As to their use, it must reproduce as FIGURE 2.4 -Amplitude of the forces in the microworld for a microsphere of radius r (F g : -; F tens : --; F Vdw : -.-; F elec : ... ). accurately as possible the user commands. In order to respond to this double requirement, there is an increasing resort to use:

• Smart materials such as piezoceramics [5][6] [13], magnetostrictive, shape memory, electroactive polymer, are used to develop microactuators, microrobots, micromanipulators and Microsystems;

• Robust control techniques (both in theory and implementation) based on closed-loop feedback [14][15] combined with advanced filtering techniques [8].

Embedded Control-Electronics for MEMS

The literature on the control issue of MEMS/NEMS systems is so extensive, but all proposed solutions fall into two distinct categories:

• Analog controllers: that is, implementing the controller as an active analog feedback circuit.

Used to be the primary method of implementing controllers before digital systems of sufficient performance became widely and cheaply available. This type of controllers presents numerous challenges since analog systems are more difficult to design (requiring careful control of all active components), implement (especially in modern low-cost processes optimized for digital systems), and maintain (there is not possibility of "patching" the system).

Furthermore, the physical complexity of modern mechanical devices may require modal control that cannot be implemented by a single analog controller [4].

• Digital controllers: due to the above shortcomings of analog controllers and aided by the fulgurous progress in semiconductor technology (transistor size shrinking) [16], tightly integrated solutions that combine high-performance power of digital processing with accurate sensors are used (closed-loop control).

To provide stable and robust control, a digital control system must be able to measure the process variables and set actuator output command within a fixed period of time (loop-cycle time). However, recent experience of MEMS/NEMS developers [4] has shown that the state-space representation [17] [18] is being extensively applied across a wide variety of MEMS devices for two reasons:

• Its relative ease in determining stable control equations;

• It forms the basis for many more complex control techniques;

• Its recursive behaviour is suitable for a digital implementation.

Hereafter, are the discrete state-space equations for LTI and LTV, respectively: 

k u B k x A k x ⋅ + ⋅ = +1 ( ) ( ) ( ) k u D k x C k y ⋅ + ⋅ = (2.1) Explicit discrete time-variant ( ) ( ) ( ) ( ) ( ) k u k B k x k A k x ⋅ + ⋅ = +1 ( ) ( ) ( ) ( ) ( ) k u k D k x k C k y ⋅ + ⋅ = (2.2)
where:

( ) ⋅ x is called the "state vector", ( )

; t x n ℜ ∈ ( ) ⋅
y is called the "output vector", ( )

; t y q ℜ ∈ ( ) ⋅
u is called the "input (or control) vector", ( )

; t u p ℜ ∈ ( ) ⋅ A is the "state (or system) matrix", ( ) [ ] ; n n A dim × = ⋅ ( ) ⋅ B is the "input matrix", ( ) [ ] ; p n B dim × = ⋅ ( ) ⋅ C is the "output matrix", ( ) [ ] ; n q C dim × = ⋅ ( ) ⋅ D is the "feedthrough (or feedforward) matrix", ( ) [ ] . p q D dim × = ⋅ .
A depth in-sight into state-space equations reveals that the computation pattern is mainly based upon:

• Matrix Multiplications (MMs), which involve the use of the elementary but time-critical multiplyand-accumulate (MAC) operation [19][20] in the case of LTV systems, and SCM/MCM in the case of LTI systems;

• And a limited movement of data between temporary storage elements (load/store of data from/in memory and registers).

The computational overhead is maximal when digital controller is performing these operations, more especially when it is performing MMs. Hence the sampling-rate (performance) is limited by the rate at which the device performs these computations. However, the high potential of parallelism inherent in MM suggests that significant performance improvements can be achieved [21] [22] by providing increased architectural parallelism.

The number of elementary scalar operations (MAC, SCM/MCM) involved depends on the control complexity, based on:

• The number of state variables that fixes the dimension of the matrices;

• The number of I/O required;

• And, the density of the matrices (the use of sparse and insensitive matrices wherever possible considerably reduces the computation complexity);

With time constants several orders of magnitude faster than their non-MEMS counterparts, many MEMS devices require control-bandwidth and accuracy exceeding the ability of conventional digital solutions [4]. On the other side, for autonomy purposes and size constraints [2], many MEMS devices dictate the use of low-power consumption solutions. There is a trade-off between performance and power consumption that is quite critical.

The important question that arises at this stage is: with a plethora of available solutions for digital embedded control [23] [24][25] [26][27] [28], which one fits the best MEMS application requirements? This question can be quickly answered for the most part by looking to the pros and cons of existing solutions with respect to the above-mentioned severe antagonistic constraints (high performance & low power consumption), but the ultimate solution must be tightly tailored to the application case according to the intended objectives.

Review of the Basic Digital Solutions for Embedded Control

The current state-of-the-art [24][16] of embedded solutions offers mainly four possibilities based on the use of:

• Commercial Off-The-Shelf (COTS) electronics components. This includes general purpose microprocessors and microcontrollers;

• Digital-Signal-Processors (DSPs) such as the TMS320C55x [29] and TMS320C64x [30], which are respectively the lowest power and the highest performance DSP available [15];

• Field-Programmable-Gate-Array (FPGAs) such as Xilinx's [START_REF] Kuang | Modified Booth Multipliers with a Regular Partial Product Array[END_REF] and Altera's [START_REF] Kang | A Simple High-Speed Multiplier Design[END_REF] FPGAs;

• Application-Specific-Integrated-Circuits (ASICs) which are chips designed from scratch according to a given technology foundry (e.g. TSMC 90 nm) .

Let us examine in detail the pros and cons of each solution, focusing more particularly on the MEMS control requirements.

Commercial Off-The-Shelf (COTS) Electronics Components

The common measure of control system performance and robustness is jitter, which is a measure of the variation of the actual loop cycle-time from the desired loop cycle-time. However, the nondeterminism in the execution of microprocessors makes static timing boundaries difficult to determine and limits reliable bandwidth. This is mainly due to three reasons:

• In a general purpose microprocessor, the processor resources are held up while it is busy performing the MAC operations and the speed or the sampling rate is decided by the latency of these instructions;

• Additionally, priority interrupts and bus contention contribute to the nondeterminism encountered in typical microprocessors or microcontrollers [24][27].

• Worse enough, in general-purpose operating systems (OS) such as Windows (Ex: PC based control platform) where the microprocessor is programmed to handle multiple asynchronous tasks, the jitter becomes exaggeratedly unbounded (random) so closed-loop control system stability cannot be guaranteed [33]. Processor-based control systems with real-time operating systems (RTOS) are commonly able to guarantee control-loop jitter of less than 100 microseconds.

Digital Signal Processors (DSPs)

DSP are mainly differentiated from general purpose microprocessors by additional parallelism [24][25]. For instance, the TMS320C64x is a VLIW architecture with eight execution units, including four multipliers and four ALUs [30]. Using its eight execution units, the processor can execute up to eight 32-bit instructions in a single clock cycle (up to 1GHz), allowing it to achieve a high level of parallelism. The TMS320C64x is able to perform four 16-bit multiplications in parallel. All execution units in the TMS320C64x have a throughput of one cycle and latencies from one to several cycles depending on the instruction.

To date, for sound/image/video applications, conventional DSPs have provided more than adequate bandwidth, with consistent performance gains from feature scaling [16] and added architectural parallelism. However, for this new class of control applications (MEMS), the latencies that are inherent to many DSP architectures limit the achievable control bandwidth which refers to the throughput of the controller as each state-space time step is dependent on the last. The latency becomes then a critical aspect. Further, MEMS systems, by nature, are small in size and complexity, resulting in simple control computations that must be performed at very high rates [34]. For small control systems, the benefits of added parallelism in high performance DSPs fails to mitigate the complexity and performance overhead of the architecture. In other words, DSP architecture is oversized for MEMS applications.

Besides, as control complexity scales, the computational advantage is outweighed by the cost of moving data between local register files and main memory, which induces an exponential fall off in control bandwidth [25]. It is important to note that computation complexity grows quadratically with control complexity due to the n 2 multiplications in a matrix multiply. This has also a negative effect on power consumption which nearly reaches 1 amp in the case of TMS320C64x, making it impractical for use in small embedded systems.

For MEMS control requirements, a good DSP evaluation study based on control bandwidth / power consumption versus control complexity is given in [4].

Field Programmable Gate Arrays (FPGA)

FPGAs belong to the class of user programmable digital devices called Programmable Logic Devices (PLDs, in contrast to ASICs). A PLD is an integrated circuit that enables the user to configure it in many ways, enabling the implementation of various digital logic functions, of varying sizes and complexities. For instance, Xilinx's XC4VSX55 FPGA comprises an array of 128x48 Configurable Logic Blocs (CLBs), 512 18bit-MACs, 320 18Kb-Block-RAMs and 640 I/Os [START_REF] Kuang | Modified Booth Multipliers with a Regular Partial Product Array[END_REF]. Some FPGAs, like XC4VFX family, include up to 2 PowerPC Processors, which are real System-on-Chip (SoC) platforms.

One of the fundamental differences between FPGAs and DSPs is the number of MACs included [25], which is respectively 512 for XC4VSX55 FPGA and only 4 for TMS320C64 DSP [28]. In the case of 512 tap filter computation, 512 MAC operations per simple are involved. So what takes 128 (512/4) clock cycles for DSP can be completed in a single clock cycle for FPGA. In fact the reality is lower than this, as data has to be pulled in and out of memories; a number of additional clock cycles are required either for FPGA or DSP. Nevertheless, this example shows the most important feature of FPGA parallelism.

Because of the inherent parallelism of FPGA architecture, many independent control loops can run at different deterministic rates without relying on shared resources that might slow down their responsiveness as in the case of COTS solutions. Hence, the jitter for FPGA-based control loops depends only on the accuracy of the FPGA clock source. It typically ranges in the order of picoseconds. Furthermore, since there are enough resources for parallelization, the control loop rate is limited only by the sensors, actuators, and I/O modules [24]. This is an outstanding contrast to COTS and DSPs control systems, where the processing performance was typically the limiting factor.

As comparative example, the Proportional-Integral-Derivative (PID) control algorithm, commonly used for regulating analog processes such as temperature and pressure, executes in just 300 nanoseconds (3.33 MHz) on FPGA (according to 2006 benchmarks), whereas it executes at the rate of 2.75 KHz on typical COTS processor [24].

Recent trends in FPGA based control are:

• Dynamic reconfigurability: In the recent years, the specifications for control systems have grown to include a certain degree of intelligence. They vary from specifications requiring certain amount of fault tolerance to operating under varying operating conditions [35]. These systems must also be capable of intelligent sensor selection, remote monitoring and operation and must be capable of implementing sophisticated control algorithms that require adaptation. By systematically partitioning the system; functionality requiring large amounts of reconfiguration can be given such kind of resources on an FPGA; thereby ensuring that the above mentioned objectives are met. This is especially useful in certain kinds of fault tolerant systems. Suppose the system detects the occurrence of a fault; then a new configuration can be loaded (either partially or fully) so that the fault is taken care of (either remedied or bypassed) and the control system performance is not affected.

• Hardware/software Co-design: this is an evolving aspect of FPGA based control. An application of this particular approach in the area of Model Predictive Control (MPC) is illustrated in [36]. Hardware software co-design is a new paradigm in which a microprocessor/microcontroller is embedded in an FPGA. Control algorithms that require a large number of computationally involved operations like matrix manipulations cannot be effectively implemented on a single microprocessor based set up, as the microprocessor gets bogged down while performing these operations. It is in this regard that the parallel architecture of the FPGA can be exploited to develop a matrix coprocessor for performing these computations; while the general purpose microprocessor that was embedded in the chip can be used to perform other operations. This is more efficient and still retains its system on chip nature due to the fact that the processor and the FPGA come together, bundled on single chip.

Application Specific Integrated Circuits (ASIC)

Today, the reality is that control systems for MEMS are bound by three antagonistic constraints: power, size and performance. Contrary to DSPs and FPGAs, ASIC is the unique solution capable to cope with such a difficulty.

By rethinking the architectural choices (efficiently separated and optimized decision part and datapath, both tightly tailored to the application case), it is possible to create control systems with reasonable power margins, negligible area overhead and adequate bandwidth. This can be well illustrated by two recent practical ASIC cases:

• A general purpose solution in [4];

• And a specific purpose solution in [2].

In [4], a general purpose scalable closed-loop-feedback control architecture was developed, based on 90 nm CMOS TSMC technology. This ASIC solution provides higher bandwidth and lower power than respectively state-of-the-art DSP TMS320C64x and TMS320C55x. The maximum clock frequency of the architecture is 1.2 GHz and is limited by a latency of 6-stage data-path. It shows potential for a wide range of applications, supporting control bandwidths as high as 40 MHz in small systems and well over 200 KHz in large control systems whereas none of TMS320C64x family is capable of 100 KHz bandwidth. With 16 MACs included, the chip size does not exceed 1mm 2 and requires less power than TMS320C64x. And with 8 MACs included, it requires less than more than 50% power than TMS320C55x.

In [2], an ASIC specifically dedicated for a real autonomous microrobot is described. The ASIC is a real SoC as it incorporates on the same silicon all necessary electronics required by an autonomous device: power electronics, buffers, ADCs, DACs, control and data-path units, analog transducers and an oscillator. As the microrobot is powered by solar cells delivering a limited energy of 1mW@1.4V and 500µW@3.6V, special care has been devoted to power consumption, such as:

• Use of 0.13 µm ultra low leakage SiGe CMOS technology;

• Use of ultra low leakage SRAM memories;

• Incorporate wherever possible low power design techniques such as:

-clock gating: disable those circuits that are not operative; -power gating: turn off those modules that are not operative; -dynamic frequency scaling (DFS) which adjusts the clock frequency of the processor as a function of the workload;

• Use of event driven mode to woke up the processor once one of the peripherals finishes its task.

The whole ASIC electronic is mapped onto monolithic silicon surface of 3x3 mm 2 , which can be rated at a maximum clock frequency of 12 MHz. The total leakage power consumption can be managed between 300 to 700 µW approximately.

Through these two recent illustrative examples, it's made clear that ASIC solution is the approach that by far offers better results in terms of speed, area and power than non-ASICs solutions (Table 2.1). However, the main drawback is that the chip has to be designed from scratch with its inherent risks, developing time and higher costs. As an intermediate solution, FPGA can be effectively used for So far, we have shown that ASIC and FPGA are the most appropriate mediums for MEMS control, independently of the effective implementation that requires important optimizations involving both control theory and binary arithmetic. This point is treated in the next section.

Overview of Finite-Word-Length (FWL) Controller Optimizations

The objective is twofold: we need to achieve an optimal ASIC/FPGA implementation of the controller without degrading control performances. To reach such a goal, a double expertise is required in hardware design and control system. But usually, hardware designers do not master control system design, and control system experts do not have the required skills to implement and evaluate the controllers using ASIC/FPGAs [37] [38]. The only promising solution is a complete automation of the whole FWL-design-flow, starting from the performance specifications of the controller up to the generation of a synthesizable HDL code (VHDL or Verilog). Such a consistent work is being undertaken within a French ANR project called DEFIS (Design of Fixed-Point Embedded Systems) [39].

Definition of the FWL Effect

To satisfy the constraints (area, energy consumption, execution time) inherent to embedded systems, fixed-point arithmetic is widely used and preferred. However, Fixed-point arithmetic is employed as an approximation of real numbers (floating-point), with a fixed bit-length of the word used to represent data. This limitation leads to performance degradation (FWL effect) mainly due to:

• Quantization of coefficients (parametric errors) which is achieved by first rounding each coefficient to the nearest value based on the available word length before implementation of the system.

• And roundoff errors (signal quantization) which consists of rounding every internal signal at each time instant k to the nearest available quantization level. Besides, addition operations and especially multiplication operations produce results that require a longer word length for accurate representation. Each result is rounded in some manner at the least-significant bit and truncated or limited at the most-significant bit. The subsequently cumulated error during the computation process is assimilated to a numeric noise.

If any internal signal exceeds the available dynamic range, then arithmetic overflow occurs. The usual practice is then to employ saturation arithmetic whereby the particular offending variable is set to the maximum allowable magnitude. Overflow can cause significant distortion and/or instability such as signal clipping and limit-cycles. Thus, the internal signals must be scaled so as to appropriately restrict the occurrence of overflow.

In fact, the FWL effect is more-or-less exaggerated depending on:

• The structure of the realization used (I/O relationship, levels of parallelism, etc)

• As well as on the way the computations are performed (number of bits, different/unique fixed point position, rounding/truncation, etc).

The floating-point to fixed-point conversion is split into two steps. Firstly, the number of bits for the integer part is determined after the dynamic range evaluation. This number of bits must be minimized while ensuring that no overflow or a limited number of overflows occurs. Secondly, the number of bits for the fractional part is gradually increased till acceptable control performances are obtained. As a result, the limited number of bits used to code the data generates an error (FWL effect) between the infinite precision and finite precision values. This error can be estimated and controlled using some stability measures [40][41] [42], such as:

• Deviation of the Transfer function ;

• Deviation of the pole-zero position ;

• Deviation with regard to the mould, etc.

In hardware implementation, the word-length defines the size (w) of the data-path in the architecture. Thus, reducing the word-length leads to a more compact structure of the controller.

However, more substantial optimizations can be achieved using state-space models based on sparse and insensitive matrices, as illustrated hereafter.

Control-Theory Based Optimization

It is well-known that there exists an infinite set of state-space representations to represent a given LTI controller. These representations are equivalent in infinite precision since they yield the same input-output relationship. However, when a controller is implemented in fixed point arithmetic, it has to be represented with a finite word length (FWL) which leads to a deterioration of the numerical properties of the realization. Hence, the equivalent realizations are no more equivalent in finite precision. One realization may be better suited for implementation than another.

One state-space form of particular interest to hardware implementation is the sparse and insensitive form. The latter has the major advantage of:

• • •
• Containing many trivial elements of 0, 1 or -1 which reduces the number of elementary scalar operations (MAC, SCM/MCM). This form is particularly important for high-order controllers (large matrix sizes) as it requires much less hardware and power than the original state-space representation.

• • •

• Being least sensitive to quantization effects which allows it to be more coarsely quantized with smaller word lengths than a form that is more sensitive to these effects. Thus, of all possible forms, the insensitive form can be implemented with minimal word length for decreasing hardware requirements.

It is known that canonical controller realisations have sparse structures but may not have the required FWL stability robustness [40]. This posed a complex problem in the past of finding sparse controller realisations with good FWL closed-loop stability characteristics. But because this issue is of utmost importance to embedded systems, extensive studies have been undertaken and many solutions have been proposed [43] [44]. The theory behind the determination of sparse and insensitive realisations with stability measure goes beyond the scope of this thesis. Nevertheless, the hardware benefit of using sparse and insensitive matrices is illustrated by the following example given in [45].

(2.3) (2.4) (2.5)

Illustrative Example

In [45], the motion of a cantilevered aluminium beam is controlled in a closed loop using an FPGA board. The beam is 54.0 cm long, 1.27 cm wide, and 0.318 cm thick; two PZT elements symmetrically mounted at the beam's base provide bending-moment type actuation 4.2 cm from the clamped end, while PZT elements centered at 7.7 cm and 29.0 cm from the clamped end sense strain. Actuator placement approached the point of maximum strain, while the placement of two sensors resulted in an observable system. Fig. 2.6 summarizes the mechanical configuration of the cantilever beam with one input and two outputs.

The discrete time state-space representation of the controller in floating-point notation is given by Eq. 2.3. This realization is certainly not unique, nor guaranteed to be problem free or minimal in a real hardware implementation with limited word length. Therefore the scaled balanced real Schur/Givens transform was applied resulting in a sparse and insensitive system. The result is given by Eq. 2.4.

Simulation of the new controller was performed to obtain the minimal word length required while still maintaining closed loop performance. Quantization to eight bits yielded acceptable results. Eq. 2.5

shows the final quantized implementable form using one sign bit and seven fractional bits. This simulation accounts for finite-word-length effects of the digital implementation including coefficient quantization, operator noise, and overflow. The resulting implementation after quantization, , yielded a sparsity of 7 out of n 2 +np+nq =16+8+4=28 for a fully populated form. This yielded a 25% sparsity level. Source: [45] A 100% full state space realization comprises n 2 +np+nq multiplications and n 2 +np+nq-(2n+q) additions (based on Eq. 2.1 and 2.2). In digital hardware, adder area scales linearly O(w) with word length (w), and multiplier area scales quadratically O(w 2 ). Zeros in the state space matrices remove multiply operations altogether, while a shorter word length affects the whole system area. We might be tempted to think that sparsity reduces area more than word length. This is not true. In [45], there is an example which shows the opposite. In any case, the determination of a sparse and insensitive form is the first step in the hardware optimization process of an LTI controller. The second step consists in optimizing the remaining array of multipliers based on the binary arithmetic.

Up to now, we have been dealing with LTI controllers only. As for LTV controllers, the determination of the minimum word length is the only possible optimization, given that all matrices are variable (A(k),

B(k), C(k), D(k)).

But since the array of n 2 +np+nq multipliers is constructed using the same multiplier instance, the hardware optimization of the latter leads to a global optimization of the whole array. By optimization, we mean the minimization of the computational delay, logic resources, and power consumption. Because the computational model of LTV state-space involves matrix/vector multiplications mainly, further improvements of the computation latency can be achieved using efficient matrix multiplication architectures [21] [22].

Binary-Arithmetic Based Optimization

Multiplication by a Constant

In LTI controllers (Eq. 2.1), multiplication by a constant (e.g. a ij ×x i ) is the most important scalar operation involved in the computational pattern. To be efficiently handled the implementation must be multiplierless, that is, using exclusively additions, subtractions, and shifts [46]. This is illustrated as follows. In Eq. 2. 

a 12 = 0.0001101 = 13×2 -7 = (2 3 +2 2 +1)×2 -7 ; a 22 = 0.1100011 = 99×2 -7 = (2 6 +2 5 +2+1)×2 -7 .
Hence, according to Eq. 2.1 the multiplication of a 12 and a 22 by their common variable x 2 gives:

M 1 =a 12 ×x 2 =( x 2 ×2 3 + x 2 ×2 2 + x 2 )×2 -7 ; M 2 =a 22 ×x 2 =( x 2 ×2 6 + x 2 ×2 5 + x 2 ×2+ x 2 )×2 -7 .
M 1 and M 2 require 2 and 3 additions, respectively. Thus, a total of 5 additions is needed. The number of additions can be minimized using for instance the exhaustive algorithm MAG [47]. Using MAG, a 12 and a 22 are written as follows:

a 12 = [2 4 -(2 2 -1)]×2 -7 ; a 22 = (u×2 5 +u)×2 -7 with u=2 2 -1.
Hence, M 1 and M 2 become:

M 1 =a 12 ×x 2 =[ x 2 ×2 4 -( x 2 ×2 2 -x 2 )]×2 -7 ; M 2 =a 22 ×x 2 = (u×2 5 +u)×2 -7 with u= x 2 ×2 2 -x 2 .
The computation order of M 1 and M 2 is well illustrated in Fig. 2.7. Thus, the optimal numbers of additions for M 1 and M 2 are 2 and 2 additions, respectively. With a total of 4 additions, we saved only 1 addition. We assume that addition and subtraction have the same area/speed cost, and that shift is costless since it can be realized without any gates using hard wiring. x 2 No further optimization is possible for a 12 and a 22 unless they are considered together, exploiting the fact that they are sharing the same variable (x 2 ). RAG-n [48] is one of the exhaustive algorithms capable of performing a multiple optimization. Applied simultaneously to a 12 and a 22 , it gives: 4 -u]×2 -7 and a 22 = (u×2 5 +u)×2 -7 with u=2 2 -1

M 1 ×2 7 M 2 ×2 7
a 12 = [2
The combined optimization is illustrated in Fig. 2.8. In this case the total number of additions is 3, achieving a saving of (5-3)/5=40% over the first naive approach.

Single/Multiple Constant Multiplication (SCM/MCM) is the name given in literature to the problem of performing separate and combined multiplications, respectively. The computational complexity of SCM/MCM is conjectured to be NP-hard. Therefore, since the solution space to explore is so huge, one has to use heuristics. The exhaustive algorithms such as MAG and RAG-n are limited to small constants due to their exponential runtime and huge memory storage needed. 
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The classification of the heuristics with regard to the compression performance is based on the published results, and remains valid up to 32 bits. Beyond that limit, we have no idea about the behavior of the proposed heuristics since they are not predictable (except CSD).

Multiplication by a Variable

As for LTV controllers (Eq. 2.2), variable-operand multiplication is the most important building block.

Its optimization ineluctably leads to the optimization of the whole controller.

Although multiplication has been the focus of considerable optimization efforts over the last decades, it still remains a critical problematic issue because of its relatively:

• High signal propagation delay;

• High power dissipation;

• And large area requirement.

The continuous refinement of the mostly-used design paradigm based on modified Booth algorithm [START_REF] Macsorley | High-Speed Arithmetic in Binary Computers[END_REF] combined to a reduction tree (Carry-Save-Adder array, Dadda, HPM, etc) has reached saturation. In [START_REF] Lamberti | Reducing the Computation Time in (Short Bit-Width) Two's Complement Multiplier[END_REF] and [START_REF] Kuang | Modified Booth Multipliers with a Regular Partial Product Array[END_REF] for instance, only slight improvements are achieved. Both proposals reduce the partial product number from n/2+1 to n/2 using different circuit optimization techniques of the critical path (n is the operand size). Source: [START_REF] Själander | Multiplication Acceleration Through Twin Precision[END_REF] Theoretically, only the signed multibit recoding multiplication algorithm (Fig. 2.9) [START_REF] Sam | A Generalized Multibit Recoding of Two's Complement Binary Numbers and its Proof with Application in Multiplier Implementation[END_REF] is capable of a drastic reduction (n/r) of the partial product number, given that r+1 is the number of bits of the multiplier that are simultaneously treated (1≤r≤N). Unfortunately, this algorithm requires the precomputation of a number of odd multiples of the multiplicand (until (2 r-1 -1).X) that scales linearly with r.

The large number of odd multiples not only requires a considerable amount of multiplexers to perform the necessary complex recoding into PPG, but dramatically increases the routing density as well.

Therefore, a reverse effect occurs that offsets speed and power benefits of the compression factor (n/r). This is the main reason why the multibit recoding algorithm was abandoned. In practice, most of industry commercial designs do not exceed r=3 (radix 8). Only the most recent Intel processors such as Itanium-Poulson [START_REF] Rieldlinger | A 32 nm 3.1 Billion Transistor 12-Wide-Issue Itanium Processor for Mission-Critical Servers[END_REF] use radix-16.

In research, the highest radix algorithms are proposed in the works of Seidel [START_REF] Seidel | Secondary Radix Recodings for Higher Radix Multipliers[END_REF] and Dimitrov [START_REF] Dimitrov | Area Efficient Multipliers Based on Multiple-Radix Representations[END_REF]. Both works rely upon advanced arithmetic to determine minimal number bases that are representatives of the digits resulting from larger multibit recoding. The objective is to eliminate information redundancy inside r+1 bit-length slices for a more compact PPG. This is achievable as long as no, or just very few odd multiples are required.

In [START_REF] Seidel | Secondary Radix Recodings for Higher Radix Multipliers[END_REF], Seidel has introduced a secondary recoding of digits issued from an initial multibit recoding for 5≤r≤16. The recoding scheme is based on balanced complete residue system. Though it significantly reduces the number of partial products (n/r for 5≤r≤ 16), it requires some odd multiples for r≥8. While in [START_REF] Dimitrov | Area Efficient Multipliers Based on Multiple-Radix Representations[END_REF] Dimitrov has proposed a new recoding scheme based on a double base number system for 6≤r≤11. The algorithm is limited to unsigned multiplication and requires a larger number of odd multiples though.

Multi-Precision Multiplication

When choosing a multiplier for a digital system, the bitwidth of the multiplier is required to be at least as wide as the largest operand of the applications that are to be executed on that digital system. The bitwidth of the multiplier is, therefore, often much larger than the data represented inside the operands, which leads to unnecessarily high power dissipation and unnecessary long delay. This resource waste could partially be remedied by having several multipliers, each with a specific bitwidth, and use the particular multiplier with the smallest bitwidth that is large enough to accommodate the current multiplication. Such a scheme (Fig. 2.10) would assure that a multiplication would be computed on a multiplier that has been optimized in terms of power and delay for that specific bitwidth.

An array of multiplication that can be portioned in several sub-multiplications to be executed in parallel is referred to in literature as a multi-precision multiplication (MPM) array. Such an array is useful in the case of integration of a number of controllers with different bitwidths of the input signals.

A big number of multi-precision arrays have been proposed. They are summarized in [START_REF] Själander | Multiplication Acceleration Through Twin Precision[END_REF] [START_REF] Kuang | Design of Power-Efficient Configurable Booth Multiplier[END_REF].

Unfortunately, the proposed solutions are either restricted to unsigned multiplication, or they do not take power consumption into consideration, or they are not flexible enough.

Conclusion

From control implementation issues in microrobotics we have defined the problems related to the integration of controllers for MEMS applications. This would not have been possible without a good understanding of MEMS requirements, namely, a severe control precision, a high control bandwidth, and low power consumption. These requirements have been identified through the study of a typical MEMS application, that is, the micromanipulation. Afterwards, we have explored the different digital technology-solutions suitable to MEMS control. We have shown that ASIC/FPGA stand as the most appropriate options.

Next, a special attention has been devoted to the implementation and especially to the optimization of digital controllers, as it constitutes the core of this thesis. We have shown that the hardware optimization approach depends on the type of the controller, LTI or LTV. In the case of LTI controller, two complementary optimization steps are necessary. Firstly, the determination of the sparse and insensitive form of the state-space model leads to a significant reduction of the logic resources.

Secondly, the resulting state-space form is once more optimized using SCM/MCM heuristics, which leads to another substantial reduction in hardware resources. As for LTV controller, the only possible hardware optimization involves the optimization of the multiplier module (MAC) as it is the main building-block of LTV controllers. In addition, a special type of multiplier, called multi-precision multiplier (MPM), has been introduced. It has the merit to considerably reduce power consumption in the case of integration of several controllers. Among all discussed issues, we have more particularly insisted on the binary arithmetic which is the focal point of this thesis. We have established the state-of-the-art of SCM/MCM, MAC, and MPM. These three items are the key foundations behind any effective contribution to the hardware optimization of linear controllers.

Chapter 3

The Binary Arithmetic

This chapter covers the fundamentals of the binary arithmetic. We first introduce the two mostly used number formats in computer arithmetic: fixed-point and floating-point formats. They are confronted to one another with regard to the provided precision and dynamic range. Afterwards, we review the main number representation systems based upon fixed-point format. These include the canonical-signed-digit representation, the double-base number system, the residue number system, and the radix-2 r number system. In each number system, addition and multiplication functions are carefully investigated as they are the most important arithmetic operations involved in the hardware implementation of linear systems.

Introduction to the Binary Arithmetic

In binary arithmetic, numbers are represented using two symbols: typically 0 and 1. Thus, binary numbers are seen as a string of 0's and 1's, where the use of a 0/1 symbol corresponds to the dual On/Off position of the basic electronic component (Transistor) used to build up complex components.

The transistor acts as a switch that either allows a presence of an electrical current (1), or an absence of an electrical current (0). We only use binary because we currently do not have the technology to create "switches" that can reliably hold more than two possible states. Such switches are theoretically possible at a quantum level, but quantum computers are not on sale for the time being.

In mathematical numeral systems, the symbols are called digits, and the number of symbols is called the base or radix. Binary numbers are expressed in radix-2, while for example decimal numbers are represented in radix-10 since ten digits are used (0,1,...,9). The notation commonly used to represent numbers is: (x) y , where x is a number expressed in the base y. For example, (10) 10 represents the number ten in the decimal system; (10) 2 represents the number two in the binary system. In hardware design, the numeral systems such as octal (radix-8), hexadecimal (radix-16), etc., serve only to facilitate the manipulation of long chains of 0's and 1's. The ultimate effective implementation is realized in binary (radix-2).

Binary arithmetic is a mathematical field mainly concerned with:

• The study of number representation systems in order to eliminate logic-redundancy in the recoding. In other words, the determination of smaller numeric bases that represent binary numbers with a minimal number of digits;

• The search for algorithms that efficiently performs arithmetic operations (-, +,×, /, , a n , etc) based on a given number representation system;

• The exploration of the best implementation techniques when the target computational device is a DSP, a FPGA, or an ASIC.

There exist different types of binary arithmetic. The characteristics of each arithmetic are fundamentally conditioned by the format used to represent numbers. The mostly used arithmetics are: floating-point arithmetic and fixed-point arithmetic. The implementations and optimizations undertaken within each arithmetic are drastically different [1]. The choice of the arithmetic to be used is mainly dictated by the desired precision and the dynamic range of the application.

Furthermore, the complexity level of the arithmetic is determined by the required operations. The latter basically depend on the kind of the system treated: linear system or nonlinear system. A linear system is a mathematical model based on linear operations (-, +, ×, /). Linear systems typically exhibit features and properties that are much simpler and easier to understand and manipulate than the more general nonlinear case which require complex operations, such as polynomial or trigonometric functions.

Number Representation Formats

Representing an infinite, continuous set of real numbers with a finite set of machine numbers is not a straightforward task. Clever compromises must be found between some non-compatible requirements. Among the diverse requirements, the most desirable ones are [2]:

• Speed: In computation-intensive applications, as in digital control or DSP, computation-time is a critical factor that limits the whole system performance;

• Precision: Even if speed is important, getting inaccurate results faster may be worse than getting the correct results later;

• Range: We may need to represent large as well as tiny numbers;

• Portability: A program written on a given machine must run with no modifications on different machines;

• Ease of use and implementation: If a given arithmetic is too arcane, almost nobody will use it.

Various number formats exist [3]. The most commonly used formats are summarized as follows:

• Fixed-point number format: Offers a limited range and/or precision, but easy to implement. Very convenient for high-speed and low-power applications. It handles integer numbers

{ } N N I x ,..., - = ∈
as well as rational numbers of the form f a x 2 / = ("binary" rational), I a ∈ , and f is a positive integer.

• Floating-point number format: This is the most common approach. It offers a wide dynamic range and a high precision to accommodate extremely large and small numbers, respectively.

However, it is relatively difficult to implement. It handles numbers of the form E b x × , where x is a rational number, b is an integer base, and E is an integer exponent.

• Logarithmic number format: Represents numbers by their signs and logarithms. Attractive for applications needing low precision and wide dynamic range.

• Rational number format: Approximates a real value by the ratio of two integers. Leads to difficult arithmetic operations.

We limit ourselves to the fixed-point and floating-point representations.

Fixed-Point Format

Numbers in the fixed-point format are represented by an ordered n-tuple. Each of the elements of the n-tuple is called a digit, and the n-tuple is called a digit-vector [1]. We begin with the representation of nonnegative integers, followed by the representation of signed integers.

Representation of Nonnegative Integers

The digit-vector that represents the integer x is denoted by ( )

0 1 2 1 , , . . . , , x x x x x n n - - = . ( 3.1) 
Note that we use a zero-origin, leftward-increasing indexing. The number system to represent x consists of the following elements:

• The number of digits n. is the digit set for the conventional decimal number system with cardinality 10.

• A rule of interpretation. This rule corresponds to a mapping between the set of digit-vector values and the set of integers.

The set of integers, each represented by a digit-vector with n digits, is a finite set with at most

i n i D K 1 0 - = ∏ =
different elements since this is the maximum number of different digit-vectors. For example, in a conventional decimal system a digit-vector of six digits can represent a million values. Sets that have been found generally useful to perform basic arithmetic operations include, for example, all integers from 0 to K-1.

The number systems most frequently used are weighted systems. Their representation mapping is:

∑ - = × = 1 0 n i i i w x x , ( 3.2) 
where ( )

0 1 2 1 , , . . . , , w w w w w n n - - = is the weight-vector.
A radix number system is a weighted number system in which the weight-vector is related to the radix-vector ( ) ( )

1 1 ; 1 1 1 0 - ≤ ≤ × = = - - n i r w w w i i i . (3.3)
This is equivalent to:

j i j i r w w 1 0 0 ; 1 - = ∏ = = . ( 3.4) 
Radix number systems are classified according to the radix-vector into fixed-radix and mixed-radix systems. In a fixed-radix system all elements of the radix-vector have the same value r (the radix).

Consequently, the weight-vector is

( ) 1 , , . . . , , 2 2 1 r r r r w n n - - = , ( 3.5) 
and the digit-sets are

D i =D ( ) 1 1 - ≤ ≤ n i , ( 3.6) 
and

∑ - = × = 1 0 n i i i r x x . ( 3.7) 
The most frequently used radices are powers-of-two, such as 2 (binary), 4 (quaternary), 8 (octal), 16

(hexadecimal), and so on. The corresponding range of x represented with n radix-r digits is: A digit set D i such that i i r D > produces a redundant system allowing more than one representation of a value; for example, in the { } 1 , 0 , 1 -binary system the vectors (0,0,1,1,1,1,0) and (0,1,0,0,0,-1,0) both represent the integer "thirty" (Table 3.1). An exception to this rule is the canonical systems that yield minimum number of digits for each value of x varying from 0 to 1 -n r . Canonical systems are nonredundant even if i i r D > . An example of such systems is the well-known Canonical Signed Digit (CSD) representation, used in designing the vast majority of LTI systems [4].

1 0 - ≤ ≤ n r x . ( 3 
A system with fixed positive radix r and nonredundant set of digit values is called a radix-r conventional number system. These are by far the most commonly used number systems. TABLE 3.1 -Representation of the integer "thirty" in different number systems.

Number system Digit vector

Conventional radix-2 system (binary) (0011110) 2

Conventional radix-3 system (0001010) 3

Conventional radix-4 system (0000132) 4

Conventional radix-10 system (0000030) 10

Redundant Radix-2 system with digit set

} 1 , 0 , 1 1 { = - (0011110) 2 ( ) 2 0 1 01000
For the implementation of arithmetic algorithm in (binary) digital systems, it is necessary to represent the digit-vectors by bit-vectors. This is done by defining a code for a digit and mapping the digit-vector by mapping each digit according to this code. In the binary (conventional) number system, the code is direct: the binary-digit values 0 and 1 are represented by the binary-variable values 0 and 1, respectively. For higher power-of-two radices, the most common code is the binary code, in which a digit d is represented by a bit vector ( )

0 1 2 1 . . . d d d d k k - - of ( ) r k 2 log = bits, such that: i k i i d d 2 1 0 × = ∑ - = .
(3.9)

The use of this code for each digit results in a bit vector for x that is the same for any power-of-two radix, the only difference being the way the bits are grouped to form a digit. In the binary case, each bit corresponds to a digit, while in the radix-r case, groups of ( )

r 2 log
bits form a digit. Therefore, conversion from a bit-vector in a radix-2 representation to a radix-r representation and vice-versa is trivial. For example, the bit-vector

x = (110001011101) 2 = ([110] [001] [011] [101]) 8 (3.10) = ([1100] [0101] [1101]) H
corresponds to the octal digit-vector (6135) 8 and the hexadecimal digit-vector (C5D) H . The fact that bitvectors are identical permits the use of some binary algorithms to perform operations on integers represented in these higher radices.

Representation of Signed Integers

In the previous section we presented the representation of nonnegative integers. We now extend the discussion to the representation of signed integers (positive and negative). Two representations are by far the most common:

• The sign-and-magnitude (SM) representation: In SM, a signed integer x is represented by a pair (x s ,x m ), where x s is the sign and x m is the magnitude (positive integer). The two values of the sign (+,-) are represented by a binary variable, where traditionally "0" corresponds to + and "1" to -. The magnitude can be represented by any system for the representation of positive integers. If a conventional radix-r system is used, the range of signed integers, for n digits in the representation of the magnitude, is 0≤x m ≤r n -1. Note that zero has two representations: x s =0, x m =0 (positive zero) and x s =1, x m =0 (negative zero).

• The true-and-complement (TC) representation: In this system, there is no separation between the representation of the sign and the representation of the magnitude, but the whole signed integer is represented by a positive integer. The representations of positive integers are called true forms, and those of negative integers, complement forms. While TC is expressed in the general case by radix-r, we consider only the special case of radix-2, called the two's complement representation. The latter is described hereafter in details.

In the two's complement representation, a signed integer (bit-vector) x with n digits is represented as follows:

∑ - = - - × + × - = 2 0 1 1 2 2 n i i i n n x x x . (3.11)
In converting a bit-vector to a value, we use the fact that the most significant bit (x n-1 ) of x has a negative weight, while the remaining bits have positive weights. For example, ( )

5 1 2 8 16 11011 - = + + + - → = x
. The two's complement representation (Eq. 3.11) has the following properties:

• The representation of zero is unique. Zero is obtained when all digits are set to zero.

• The range of numbers is not symmetrical since

1 2 - - = n x is representable but 1 2 - = n x is not. That is, the range is [ ] 1 2 , 2 1 1 - - - - n n .

Fixed-Point Arithmetic of Two's Complement Numbers

Before describing the arithmetic operations, we need first to formalize the representation of numbers in fixed-point format [5]. Let β be the number of digits (bits) of a signed number (bit-vector) x, and γ the number of digits of the fractional part of x (Fig. 3.1). Let α be the number of digits of the integer part (α=β-γ). Finally, To convert a real number x to FPR, we proceed as follows. β is a given value since it must be equal to the bit-width of the data-path. The number of bits of the integer part is given by:

  2 log 2 + = x x α , ( 3.13) 
with   a is the floor function that rounds a to the nearest integer lower than or equal to x. Hence, we determine the fractional part as

x x x α β γ - =
, and the FPR of x is given by: ( )

x x x x FPR γ α β , , = . ± 2 β-γ-2
... ... ...

Signed integer part Fractional part β α γ

Conversely, note that in fixed-point representation, x is represented by the integer N x such as:

[ ] x x N x γ 2 × = , (3.14)
where [ ] a is the function that rounds a to the nearest integer. Thus, x is approximated by

x x N x γ - × = 2 † . ( 3.15) 
Multiplication and addition are the two mostly used operations in linear systems. In fixed-point format, they are handled as follows.

Multiplication

Let us consider the operation and( )

y x z × = , with ( ) x x x γ α β , ,
y y y γ α β , ,
. z FPR is given by: ( )

y x y x y x z FPR γ γ α α β β + + + = , , , (3.16) 
and the multiplication operation is realized by The general case (limited precision) where dp op W = β is given by:

y x z N N N × ← . In
y x op y x op z FPR α α β α α β + - + = , , , (3.17 
( ) ( )      = - + - = + + = op z y x op z y x z β β α α β γ α α α 1 max 1 max , ( 3.20) 
and the addition operation is realized by ( ) ( ) 

y y x x z s N s N N >> × >> ← , ( 3 

Overflow Detection

In the two's complement representation, an overflow occurs when the operands are of the same sign and the result of the addition represents an integer of opposite sign. Since the sign is determined by the most significant bit (x n-1 ), the overflow detection is specified by the following switching expression:

(

) ( )

1 1 1 1 1 1 - - - - - - × × + × × = n n n n n n z y x z y x AVF . (3.22)

Floating-Point Format

As indicated earlier, a floating-point representation is used to represent real numbers. Since, as in fixed-point representation, the floating-point representation is encoded in a finite number of bits, it is possible to represent only a finite subset of the infinite set of real numbers. For a specific floating-point system, a real number that is exactly represented in the system is called a floating-point number. The rest of the real numbers either fall outside the range of the representation (overflow and underflow) or are represented by floating-point numbers that have a value that approximates the real number. The process of approximation is called roundoff (or rounding) and produces a roundoff error.

A floating-point number x is represented by a triple (S x , M x , E x ), such that:

( )

x x E x S b M x × × - = 1 , (3.23)
where b is a constant called the base; E x is a signed integer exponent; M x is the significand (also called the mantissa); and

{ } 1 , 0 ∈ x S
is the sign of the significand.

Dynamic Range

The objective of using floating-point representation is to increase the dynamic range, with respect to a fixed-point representation. This dynamic range is defined as the ratio between the largest and the smallest nonzero and positive number that can be represented [1]. For a fixed-point representation using n radix-r digits for the magnitude, the dynamic range is:

1 - = n fxpt r DR . (3.24)
In contrast, for the floating-point representation:

min max min max E E ftpt b M b M DR × × = . (3.25)
For instance, if the n digits are partitioned so that m digits are used for the significand and n-m digits for the exponent, and b=r, we get:

( ) ( ) 1 1 - - × - = m n r m ftpt r r DR . ( 3.26) 
As an example, if n=32, m=24, and r=2, the corresponding dynamic ranges are:

9 32 10 3 . 4 1 2 × ≈ - = fxpt DR ; ( ) 83 1 2 24 10 7 . 9 2 1 2 8 × ≈ × - = - ftpt DR .
A large dynamic range is required in many applications to avoid overflows and underflows. If the dynamic range of the fixed-point representation is not sufficient, complicated operations have to be included in the program. Thus, a floating-point system is preferable in such applications.

Precision

In numerical analysis, errors are very often expressed in terms of relative errors. And yet, when we want to express infinitesimal errors, it is more adequate and frequently more accurate to express errors in terms of what we would intuitively define as the weight of the last bit of the significand (Fig. 3.3). To make that notion clearer, the term ulp (acronym for unit in the last place) is used. Several slightly different definitions of ulp exist in the literature. We cite hereafter the two most frequent ones: "ulp(x) is the gap between the two floating-point numbers nearest to x, even if x is one of them." "ulp(x) is the distance between the closest straddling floating-point numbers a and b (i.e., those with a≤x≤ b and a≠b), assuming that the exponent range is not upper-bounded."

All ulp definitions coincide as long as x is not extremely close to a power of the radix. They have complex properties that differ to a small extent. However, a deep understanding of these complex properties is necessary for anyone who wants to prove exact tight bounds on the errors of infinitesimal computations. This issue goes beyond the scope of this thesis. Readers interested to study the precision of floating-point arithmetic are referred to [2].

Devoting more digits to the exponent part widens the number representation range but reduces the precision. There is a trade-off between the range and precision that is quite critical. Generally, to improve the precision without much altering the range, the integer part in the significand is eliminated to the benefit of the fractional part, that is, we take f=m.

Contrary to the fixed-point representation where the gap between consecutive numbers is constant (2 -f ), in floating-point representation the number distribution within the dynamic range is not uniform.

Smaller numbers are denser, and larger numbers are sparser. Fig. 3.4 shows the number distribution pattern and the various subranges in floating-point representations. In particular, it includes the three special or singular values -∞, 0, and +∞ and depicts the meanings of overflow and underflow.

Overflow occurs when a result is less than -max or greater than max. Underflow, on the other hand, occurs for results in the range (-min, 0) or (0, min).

In floating-point representation, the code assignment patterns are different, leading to different ranges and error characteristics. For the same range of representable values, floating-point tends to be better than fixed-point in terms of average relative-representation-error, even though the absolute representation error increases as the values get larger [3].

Though floating point representation provides greater dynamic range and better precision than fixed point, it is far more expensive to implement. Most embedded system applications tolerate a certain degree of inaccuracy and use the much simpler fixed-point notation to increase throughput and decrease area, delay, and energy.

Illustrative Example

The two representation formats in IEEE standard for radix-2 (binary) floating-point numbers, formally known as "ANSI/IEEE Std 754-1988," are depicted in Fig. 3.5. The short, or single-precision, format is 32 bits wide, whereas the long, or double-precision, version requires 64 bits. The two formats Source: [3] significand is in the range [1,2), with its single whole bit, which is always 1, removed and only the fractional part shown. The notation "23+1" or "52+1" for the width of the significand is meant to explain the role of the hidden bit, which does contribute to the precision without taking space. Table 3.2 summarizes the most important features of the IEEE standard floating-point representation formats.

In the 32-bit format, the largest and smallest numbers are ±3.4×10 38 and ±1.2×10 -38 , respectively.

The represented values are unequally spaced between these two extremes, such that the gap between any two numbers is about 10 -7 times smaller than the value of the numbers. This is important because it places large gaps between large numbers, but small gaps between small numbers (ditto for 64-bit format). Ordinary number

E + bias ∈ [1, 254] E ∈ [-126,127] represents 1.f ×2 E E + bias ∈ [1, 2046] E ∈ [-1022,1023] represents 1.f ×2 E min (±) 2 -126 ≈ 1.2×10 -38 2 -1022 ≈ 2.2×10 -308 max (±) ≈ 2 128 ≈ 3.4×10 38 ≈ 2 1024 ≈ 1.8×10 308 

Number Representation Systems

We have deliberately separated number representation formats from number representation systems. The latter rely on the former to create sophisticated arithmetic algorithms. Number systems are developed in order to enable a reduction of the complexity of the arithmetic operations. The reason is that in most applications, the computational complexity of algorithms crucially depends upon the number of zeros of the input data in the corresponding number system. Because each number system exhibits specific numerical properties, the arithmetic operations are handled differently.

32-bit

Only number systems based on fixed-point format are concerned in this thesis. In the previous section, we developed through Eq. 3.1 to 3.10 the general case of radix theory. This includes: fixed/mixed radix system; redundant/nonredundant number representation; and canonical/noncanonical number representation. These notions are the fundamentals of number systems.

Canonical Signed Digit (CSD)

CSD is the canonical form of the signed digit (SD) representation developed by Avizienis [6] in 1961. SD is a redundant fixed-radix (r=2) representation defined as follows:

∑ - = × = 1 0 2 n i i i x x with } 1 , 0 , 1 { = ∈ D x i . (3.27)
The digit x i is a ternary digit, sometimes called trit. It requires two bits to represent it, but the major benefit of SD is that addition/subtraction can be made without carry-propagation, accelerating therefore the operations, especially for large operand addition/subtraction.

In SD, the integer "seven", for example, has several representations:

( ) 7 1 2 4 0111 2 = + + = ; ( ) 7 1 2 8 1 1 10 2 = + - = ; ( ) 7 1 2 4 8 11 1 1 2 = + + - = ; ( ) 7 1 8 1 100 2 = - = .
The rational number "5/8", for exemple; can be written differently:

( ) ( ) ( ) ( ) 2 2 2 2 1 1 0 . 1 1 1 1 . 1 01 1 . 1 101 . 0 625 . 0 8 5 = = = = = .
One conversion method from two's complement notation to SD representation is to use Booth encoding (Table 3.3). For example, the two's complement value 7=(0111) 2 , is converted to SD through the steps described in Fig. 3.6.

A signed-digit representation with minimum number of non-zero digits is called a minimum signeddigit (MSD) representation. In general, there are several MSD representations. One particular MSD representation can be obtained by constraining two adjacent digits to not be both non-zero, that is,

0 1 = × + i i x x
. This particular MSD representation is called canonical signed digit (CSD) 

0 1 1 1 0 1 1 0 0 Always add "0" ( ) 2 =8-1=7 1 0 0 1
Y j Y j-1 Digit 0 0 0 0 1 1 1 0 1 1 1 0
representation. The CSD representation is unique and therefore not redundant. Reconsidering the example given above, the CSD representation for the numbers "7" and "5/8" are ( ) 

. 1 0 1 1 ; 01 1 1 ⇒ ⇒
Using the CSD format on a n-bit value, the number of non-zero digits is bounded by (n+1)/2, and it tends asymptotically to an average value of (n/3)+(1/9). Compared to the traditional binary representation that requires n/2 digits on the average, CSD allows a saving of 33% in non-zero digits. This means that in constant multiplication ( ) X C × , 33% less additions/subtractions are required, which leads to much compact implementations of LTI systems [4]. This is the reason why CSD is so popular.

Despite the fact that CSD minimizes the number of nonzero digits for the constant representation, it is far from being optimal. It is possible to decompose the n-bit value to further reduce the number of operations. This can be achieved using more complex number systems.

Double Base Number System (DBNS)

DBNS arithmetic was developed by Dimitrov in 1999 [7]. In DBNS, an integer x is expressed using bases 2 and 3, as follows:

j i j i j i d x 3 2 , , × × = ∑ with } 1 , 0 { , = ∈ D d j i .
(3.28)

For example, the integer x=(10599) 10 is written in DBNS as follows:

x = (3 2 ×2 8 )+(3×2 5 )+(3 0 ×2 13 )+(3 0 ×2 3 ) -(3 0 ×2 0 )= (10599) 10 .
According to Eq. 3.2 and 3.3, DBNS is a weighted system, but not a radix system. DBNS representation is highly redundant; it is set clear from Eq. 3.28 that the traditional binary system is a special case (j=0) of DBNS. The canonical DBN representation (CDBNR) that expresses a given integer as a sum of minimal number of 2-integers ( )

j i 3 2 ×
is very complex to determine (NPcomplete problem). Thus, arithmetic operations in this number system do not guarantee that the results are obtained in the minimal form. The author proposed a minimization heuristic called the greedy algorithm with the input as a positive integer x; and an output of 2-integers, a i , such that

x a i i =

∑

. The algorithm finds the largest 2-integer, w, smaller than or equal to x, and recursively applies the same for x-w until reaching zero. The greedy algorithm terminates after

( ) ( ) ( ) ( ) x x O log log / log
steps. The representation obtained by the greedy algorithm is called nearcanonical DBNR (NCDBNR).

The mechanism of finding the NCDBNR plays a crucial role in performing basic arithmetic operations. NCDBNR form is further minimized by reducing adjacent non-zero digits based on a number of reduction rules given hereafter. The resulting form is called addition-ready DBNR (ARDBNR).

Basic ARDBNR reduction rules

One can use a geometrical interpretation, with orthogonal dimensions for each of the bases, to represent numbers in the DBNR. Nonzero DBNR digits are shown as black squares (active cells). This interpretation allows demonstrating simple identities on special combinations of active cells that provide a transformation of a DBNR to an ARDBNR. For example, Fig. 

j i j i j i 3 2 3 2 3 2 2 1 × = × + × + +
, to remove consecutive active cells lying in one row.

Advanced ARDBNR reduction rules

A generalized solution for the reduction can be applied using the purely exponential Diophantine equation:

l l k k n m n m n m j i j i j i 3 2 . . . 3 2 3 2 3 2 . . . 3 2 3 2 2 2 1 1 2 2 1 1 × + + × + × = × + + × + × with l<k. (3.28)
The problem of solving such Diophantine equations has been a subject of investigation over the last two decades, although some interesting results were obtained in the 30s and 40s. The reality is that only some special cases for k and l are considered. For example, using k =2 and l=1, following theorem can be proved: Theorem 3.1 -The Diophantine equation x+y=z, where GCD(x,y,z)=1 and x, y, and z are 6-integers, that is, x, y, z have the form

6 5 4 3 2 1 13 11 7 5 3 2 n n n n n n × × × × × , with n i ≥0 and { } 6 , 5 , 4 , 3 , 2 , 1 ∈ i , has
exactly 545 solutions.

Refer to [7] for the proof. For DBNS, n 3 =n 4 =n 5 =n 6 =0, and the only solutions of x+y=z are (1, 2, 3), (1,3,4), and (1,8,9). Therefore, these represent the only three cases where we can replace two active Source: [7] cells with one. For k =3 and l=1, an interesting possibility for reducing the active cells follows from the solution of the Pillai's equation [7]:

d c b a 3 3 2 2 ± = ± . (3.29)
Pillai was able to solve all of the above four equations, excluding the equation

d c b a 3 3 2 2 - = -
on which he conjectured that the only solutions are (3, 1, 2, 1), (5,3,3,1), and (8,4,5,1). For DBNS, only the two following equations are relevant:

d c b a 3 3 2 2 + = - ; (3.30) d c b a 3 3 2 2 - = + . (3.31)
The solutions of Eq. 3.30 are (2, 1, 0, 0), (3, 1, 1, 1), (5, 1, 1, 3), (3, 2, 1, 0), (5, 2, 0, 3), (4, 2, 1, 2), and (8, 2, 5, 3), while Eq. 3.31 has only one solution (0, 0, 1, 0). The total number of solutions of the equation x+y+z=t, GCD(x,y,z,t)=1, in 2-integers is 27 [7].

Addition

Let x and y be two integers in the CDBNR. We note that if x and y contain the element j i 3 2 × , then the element j i 3 2 1 × + does not exist. Therefore, addition can be computed by simply overlaying the corresponding DBNS maps; there will be no overlapping active cells. In order to prepare for another addition, we ideally perform a reduction into minimal form. In practice, we only require an ARDBNR and the symbolic substitution methods described in the previous section can be effectively used.

Let us define ( ) ) ( ) ( )

j i I x ,
j i I AND j i I j i I y x z , , , 1 = + ; (3.32) ( ) ( ) ( ) j i I XOR j i I j i I y x z , , , = . (3.33) Note, using the ARDBNR, if ( ) ( ) 1 , , = = j i I j i I x x , then ( ) ( ) 0 , 1 , 1 = + = + j i I j i I x x
and, therefore, addition can be accomplished using a symbolic substitution technique. To reduce this result, it is sufficient to use the following rules (see Fig. 3.7):

(

) ( ) ( )

j i I AND j i I j i I z z z , 1 , 1 , + = + ; (3.34) ( ) ( ) ( ) 1 , , , 2 + = + j i I AND j i I j i I z z z . (3.35)
As an example of performing addition, let us consider the addition of the numbers 88 and 123 using the proposed technique. The representation of the numbers is NCDBNR, obtained via the greedy algorithm. For the number, 88, the NCDBNR gives 88 = 81 + 6 + 1 (three active cells), while the CDBNR consists of only two active cells (88 = 72 + 16 = 64 +24). The addition operation is presented in Fig. 3.8. The example is selected so that the application of the reduction rules, based on the solution of Eq. 3.32, gives a result which is not optimal. In fact, 211 requires 3 ones in the CDBNR;

one of them could be found using more sophisticated substitution rules:

( ) ( ) ( ) ( ) ( ) 1 , 1 1 , , , 1 , 3 + 
+ + = + + j i I AND j i I AND j i I j i I AND j i I z z z z z ; (3.36) ( ) ( ) ( ) ( ) 3 , 1 1 , , 1 , 5 + + + + = + j i I AND j i I AND j i I j i I z z z z .
(3.37)

Multiplication

Let x and y be integers, represented by DBNS maps in the CDBNR. The CDBNR of their product, z,

is an n-tuple of the elements { } y x y x z z j j i i j i + + × = × 3 2 3 2
, where the { } It is clear that the multiplication process simply corresponds to 2D shifts and DBNS additions in an equivalent way to that performed using binary arithmetic. The promise here, however, is that the number of operations is considerably reduced based on the sparseness of the representation. Let us consider the multiplication of the numbers 79 and 107, represented via their DBNS maps as shown in Fig. 3.9. The final reduced forms of the product can be found by using two specific solutions of the Pillai's equation 3.29:

( ) ( ) ( ) ( ) j i I AND j i I AND j i I j i I z z z z , 6 , 4 , 4 , + + = + ; (3.38) ( ) ( ) ( ) ( ) j i I AND j i I AND j i I j i I z z z z , 4 2 , , 1 3 , + + + = + . (3.39)
The representation of the multiplication result is shown in Fig. 3.9(a), and the ARDBNR reduction, using rules 3.38 and 3.39, in Fig. 3.9(b).

Residue Number System (RNS)

The concept of RNS dates back 1500 years ago in China [3]. In RNS, a number x is represented by the vector of its residues with respect to k prime moduli Source: [7] x i of x with respect to the ith modulus m i is similar to a digit, and the entire k-residue representation of x can be viewed as a k-digit number. Notationally, we write

0 1 2 1 m m m m k k > > ⋅ ⋅ ⋅ > > - - . The residue
( ) ( ) 0 1 2 1 | | | | 0 1 2 1 | | | | m m m m RNS k k k k x x x x x ⋅ ⋅ ⋅ - - - - ⋅ ⋅ ⋅ = ; i m i i x m x x = = mod with { } 1 ,..., 2 , 1 , 0 - ∈ m x i . (3.40)
The vector of moduli, ( )

0 1 2 1 | | | | m m m m RNS k k ⋅ ⋅ ⋅ - -
, can be deleted from the subscript when we have agreed on a default set. The product M of the k prime moduli is the number of different representable values in the RNS and is known as its dynamic range:

0 1 2 1 m m m m M k k × × ⋅ ⋅ ⋅ × × = - - . (3.41)
For example,

840 3 5 7 8 = × × × = M
is the total number of distinct values that are representable in ( )

3 | 5 | 7 | 8 = RNS . Because of the equality i i m m x M x - = - , (3.42) 
the 840 available values can be used to represent numbers from 0 up to 839, or from -420 up to +419, or any other interval of 840 consecutive integers. In effect, negative numbers are represented using a complement system with the complementation constant M. Here are some example numbers in RNS representation is not redundant within the interval chosen of 840 consecutive integers. Given the RNS representation of x, the representation of -x can be found by complementing each of the digits x i with respect to its modulus m i (0 digits are left unchanged). Thus, given that 21=(5

RNS(8 | 7 | 5 | 3): (0 | 0 | 0 | 0) RNS Represents 0 or 840 or . . . (1 | 1 | 1 | 1) RNS Represents 1 or 84 1 or . . . ( 2 
| 0 | 1 | 0) RNS , we find: -21=(8-5 | 0 | 5-1 | 0) RNS =(3|0|4|0) RNS .
In practice, each residue must be represented or encoded in binary. For our RNS example, such a representation would require 11 bits (Fig. 3.10). To determine the number representation efficiency of our 4-modulus RNS, we note that 840 different values are being represented using 11 bits, compared to 2048 values possible with binary representation. Thus, the representational efficiency is 840/2048=41%.

Addition and Multiplication

As noted earlier, the sign of an RNS number can be changed by independently complementing each of its digits with respect to its modulus. Similarly, addition, subtraction, and multiplication can be performed by independently operating on each digit. The following examples for RNS (8 | 7 | 5 | 3) illustrate the addition, subtraction, and multiplication processes, respectively:

(5 | 5 | 0 | 2) RNS Represents x=+5 ( 7 | 6 | 4 | 2) RNS Represents y=-1 (4 | 4 | 4 | 1) RNS x+y: 4 7 5 8 = + , 4 6 5 7 = + , etc. ( 6 | 6 | 1 | 0) RNS x-y: 6 7 5 8 = - , 6 6 5 7 = - , etc. (3 | 2 | 0 | 1) RNS x×y: 3 7 5 8 = × , 2 6 5 7 = × , etc.
The speed and simplicity are the primary advantages of RNS arithmetic. In the case of addition, for example, carry propagation is limited to within a single residue (a few bits). Thus, RNS representation pretty much solves the carry propagation problem. As for multiplication, a 4 x 4 multiplier (e.g.), is considerably more than four times simpler than a 16 x 16 multiplier, besides being much faster. In fact, since the residues are small (say, 6 bits wide), it is quite feasible to implement addition, subtraction, and multiplication by direct table lookup. With 6-bit residues, say, each operation requires a 4K x 6 table. Thus, excluding division, a complete arithmetic unit module for one 6-bit residue can be implemented with 9 KB of memory.

Unfortunately, however, what we gain in terms of the speed and simplicity of addition, subtraction, and multiplication can be more than nullified by the complexity of division and the difficulty of certain auxiliary operations such as sign test, magnitude comparison, and overflow detection.

Choosing the RNS Moduli

The set of the moduli chosen for RNS affects both the representational efficiency and the complexity of arithmetic algorithms. In general, we try to make the moduli as small as possible, since it is the magnitude of the largest modulus m k-1 that dictates the speed of arithmetic operations (carry- propagation). We also often try to make all the moduli comparable in magnitude to the largest one, since with the computation speed already dictated by m k-1 , there is usually no advantage in fragmenting the design through the use of very small moduli.

We illustrate the process of selecting the RNS moduli through two examples. Let us assume that we want to represent unsigned integers in the range 0 to (100000) 10 requiring 17 bits with standard binary representation. A simple strategy is to select appropriate prime numbers in sequence until the dynamic range M becomes adequate. For (100000) 10 , it gives:

(17 | 13 | 11 | 7 | 3 | 2 ) RNS ; M=(102102) 10 .
With binary encoding of the six residues, the number of bits needed for encoding each number is: 5+4+4+3+2+1=19 bits. However, speed and cost do not just depend on the widths of the residues but also on the moduli chosen. Note that power-of-2 moduli simplify the required arithmetic operations, so that, for example, the modulus 16 might be better than the smaller modulus 13. Moduli of the form 2 a -1 are also desirable and referred to as low-cost moduli [3]. Hence, we are motivated to restrict the moduli to a power of 2 and odd numbers of the form 2 a -1. It is proved that the numbers 2 a -1 and 2 b -1 are relatively prime if and only if a and b are relatively prime. Thus, any list of relatively prime numbers

0 1 2 a a a k > > ⋅ ⋅ ⋅ > - can be the basis of the following k-modulus RNS ( ) 1 - 2 | 1 - 2 | | 1 - 2 | 2 0 1 2 2 a a a a k k RNS ⋅ ⋅ ⋅ - -
for which the widest residues are a k-2 -bit numbers. Note that to maximize the dynamic range with a given residue width, the even modulus is chosen to be as large as possible. Applying this strategy to our desired RNS with the target range [0, 100000], leads to the following result:

( ) ( ) 7 | 15 | 31 | 32 1 - 2 | 1 - 2 | 1 - 2 | 2 3 4 5 5

RNS RNS =

; M=104160.

The derived RNS requires 5+5+4+3=17 bits for representing each number, with the largest residues being 5 bits wide. In this case, the representational efficiency is close to 100% and no bit is wasted.

Radix-2 r Number System

The radix-2 r representation was developed by Sam in 1990 [8]. In radix-2 r , a n-bit two's complement number, x, is written as follows:

( ) rj r rj r r rj r r n j rj rj rj rj x x x x x x x 2 2 2 2 2 2 1 1 2 2 1 ) / ( 0 2 2 1 1 0 1 × - + ⋅ ⋅ ⋅ + + + + = - + - - + - - = + + - ∑ rj r n j j Q 2 1 ) / ( 0 × = ∑ - = with } 2 , 1 2 , , 1 , 0 , 1 , , 1 2 , 2 { 1 1 1 1 - - - - - - ⋅ ⋅ ⋅ - ⋅ ⋅ ⋅ + - - = ∈ r r r r j D Q , ( 3.43) 
where

0 1 = - x and * Ν ∈ r
. For simplicity purposes and without loss of generality, we assume that r is a divider of N. In Eq. 3.43, the two's complement representation of x is split into n/r two's complement slices ( j Q ), each of r+1 bit length. Each pair of two contiguous slices has one overlapping bit.

In fact, SD representation (Eq. 3.27) is a special case of radix-2 r representation (Eq. 3.43) for r=1.

The sign of the term j Q is given by the bit x rj+r-1 , and

j k j m Q j × = 2 , with { } 1 2 1 0 - ∈ r , ... , , , k j and ( ) { } 0 2 U r j OM m ∈ , where ( ) { } 1 2 ..., , 5 , 3 , 1 2 1 - = - r r OM . ( ) r OM 2 is the set of odd positive digits in radix- 2 r recoding, with ( ) 2 2 2 - = r r OM . To 0 = j Q corresponds m j =0.
Finally, x can be expressed as follows:

( ) ( ) j r rj k rj r n j j x m x + - = × × - = ∑ - + 2 1 1 / 0 1 . (3.44)

Illustrative Example

In order to express x=(10599) 10 in radix-2 r , a two's complement representation of x is necessary, which is (010100101100111) 2 . Thus, in two's complement notation, the constant size is equal to n=15.

Let us choose r=4. As 15 is not a multiple of 4, the sign-bit (0 in this case) is extended by one position so as n=16. For C=10599, Eq. 3.43 and 3.44 become respectively: . Fig. 3.11 depicts the four Q j terms. To determine the unknown values c 4j+3 , m j , and k j , the radix-2 4 look-up table (Table 3.4) is indexed by Q j terms. Referring to Table 3.4, the triplets (c 4j+3 , m j , k j ) corresponding to Q 0 , Q 1 , Q 2 , and Q 3 are (0,7,0), (0,3,1), (1,7,0), and (0,3,0), respectively.

∑ = × =
Consequently, we can write:

x = (3×2 12 )-(7×2 8 )+(3×2 5 )+(7×2 0 )= (10599) 10 . TABLE 3.4 -Radix-2 4 look-up table. Q j x 4j+3 x 4j+2 x 4j+1 x 4j x 4j-1 m j k j 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 1 0 1 0 0 0 0 1 1 1 1 0 0 1 0 0 1 1 0 0 1 0 1 3 0 0 0 1 1 0 3 0 0 0 1 1 1 1 2 0 1 0 0 0 1 2 0 1 0 0 1 5 0 0 1 0 1 0 5 0 0 1 0 1 1 3 1 0 1 1 0 0 3 1 0 1 1 0 1 7 0 0 1 1 1 0 7 0 0 1 1 1 1 1 3 1 0 0 0 0 1 3 1 0 0 0 1 7 0 1 0 0 1 0 7 0 1 0 0 1 1 3 1 1 0 1 0 0 3 1 0 0 1 0 1 0 0 1 0 1 1 0 0 Q 0 =7 Q 1 =3×2 1 Q 2 = -7 Q 3 =3 x15 x14 x13 x12 x11 x10 x9 x8 x7 x6 x5 x4 x3 x2 x1 x0 x-1 x 16+1 bits 4+1 bits Q j 0 4 1 8 2 12 3 2 2 2 Q Q Q Q x + × + × + × = x 3 , x 7 , x 11 , x 15 are sign bits ; FIGURE 3.11 -Partitioning of (10599) 10 in radix-2 4 . 1 0 1 0 1 5 0 1 0 1 1 0 5 0 1 0 1 1 1 1 2 1 1 0 0 0 1 2 1 1 0 0 1 3 0 1 1 0 1 0 3 0 1 1 0 1 1 1 1 1 1 1 0 0 1 1 1 1 1 0 1 1 0 1 1 1 1 0 1 0 1 1 1 1 1 0 0 Note that for radix-2 4 , { } 3 2 1 0 , , , k j ∈ , and { } 7 5 3 1 0 , , , , m j ∈ 3.3.4.1 Canonical Radix-2 r Representation
Radix-2 r is a redundant representation since further simplifications are possible:

( ) ( ) ( ) ⋅ ⋅ ⋅ ± + ⋅ ⋅ ⋅ = ⋅ ⋅ ⋅ ± - + ⋅ ⋅ ⋅ - + - + + 1 1 1 r rj r rj j r 2 2 2 (3.45) ( ) ( ) ( ) ⋅ ⋅ ⋅ ± - ⋅ ⋅ ⋅ = ⋅ ⋅ ⋅ ± + - ⋅ ⋅ ⋅ - + - + + 1 1 1 r rj r rj j r 2 2 2 (3.46)
These two simplifications occur in Eq. 3.44 in case two consecutive terms with opposite signs, Q j and Q j+1 , exhibit (m j ,k j ) pairs of the form (1, r-1) and (1,0), respectively. Whether Eq. 3.45 and 3.46 are the unique simplifications that can be performed in radix-2 r needs a mathematical proof. In any case, the minimal form does exist, but the canonical form (unique) remains an open research problem.

Comparison of the Number Systems

So far, we have summarized the main arithmetic features of the Binary, SD, CSD, DBNS, RNS, and Radix-2 r number systems. It is premature at this stage to comment their hardware features without an effective implementation of a given arithmetic function. Instead, we only try to give an approximate idea through the expression of the value, x = (10599) 10 , in different number systems. The comparison is based on the number of digits required by each number system (Table 3.5). Generally, the lower the number of digits, the less hardware resources are required, and the more speed is achieved. 

x = 2 13 +2 11 +2 8 +2 6 +2 5 +2 2 +2 1 +2 0 8 SD x =2 13 +2 12 -2 11 +2 9 -2 8 +2 7 -2 5 +2 3 -2 0 9 CSD x = 2 13 +2 11 +2 9 -2 7 -2 5 +2 3 -2 0 7 DBNS x = (3 2 ×2 8 )+(3×2 5 )+(3 0 ×2 13 )+(3 0 ×2 3 ) -(3 0 ×2 0 ) 5+2=7 RNS x is represented by (7 | 28 | 9 ) RNS(32 | 31 | 15) 3+3+2=8 Radix-2 r x = (3×2 12 )-(7×2 8 )+(3×2 5 )+(7×2 0 )

4+2=6

Note that in DBNS and Radix-2 r , the terms 3 2 , 3, and 7 are considered as extra-digits.

As already mentioned at the beginning of this chapter, the objective of a number system is the maximum absorption of logic-redundancy in the representation of numbers. This will lead to fewer digits, and therefore to fewer hardware resources and more speed. This absorption process may be simple such in the case of CSD, or very complicated such in the case of DBNS and RNS systems. Depending on the type of arithmetic function to be implemented, the absorption process is carried out either in software or in hardware. For example, in the constant multiplication (C×X), the reduction process is realized in software, while in the variable multiplication (Y×X), it is implemented in hardware.

Consequently, the benefit of reducing the number of digits may be outweighed by the absorption effort, requiring too much computational-time (software), or too many hardware resources (Table 3.6). This issue will be carefully studied in the two subsequent chapters, based on effective software/hardware implementations. 

C A C DBNS Yes No - U* E C B RNS Yes Yes Mixed U* F D [3] D Radix-2 r Yes Yes Fixed U* D B A
A-F: A, the best; F, the worst. U: Unknown. *: the existence of the canonical form has to be proved.

Conclusion

The binary arithmetic is a vast topic. That is why we have deliberately restricted our review to the main ideas and essential concepts directly involved in the design of FWL linear systems. We focused more particularly on the fixed-point arithmetic and the main number systems relying on it. Special care has been devoted to the addition and multiplication operations as they are the two main buildingblocks of any linear-system architecture.

In the binary arithmetic, the theory is tightly related to the design aspect. Some solutions are theoretically very attractive, but inefficient when it comes to the hardware implementation. A typical example is the RNS arithmetic. We could be fascinated by the speed and simplicity of addition and multiplication in RNS, but when considering the necessary conversions from binary to RNS and viceversa, we are rapidly discouraged by the extra-amount of hardware needed. Being aware of such misleading choices due to an anterior experience in arithmetic design, we have given priority to simplicity and ease-of-use over potentially-efficient but difficult-to-implement solutions.

It is well-known that CSD arithmetic is employed in designing the vast majority of linear systems (controllers and DSP). As radix-2 r is the generalization of SD arithmetic (r=1) and more likely the generalization also of CSD (the mathematical proof is missing for the time being), it could lead to higher speed and less logic resources than CSD since r bits are processed simultaneously. However, the major drawback of radix-2 r is that 2 r-2 odd-numbers are necessary, which outweighs the speed and area benefits. Consequently, the odd-numbers in radix-2 r arithmetic constitute a research-lock that deserves a special attention. This issue is deeply investigated in the subsequent chapters.

Chapter 4

Multiplication by a Constant

This chapter addresses the problem of hardware optimization of linear-time-invariant (LTI) systems. It provides a thorough discussion of the issues surrounding the multiplication by a constant, focusing mainly on the single/multiple constant multiplication (SCM/MCM). We formalize the SCM/MCM problem, and present a list of the most common solutions. We then introduce a new fully predictable SCM/MCM heuristic, accompanied with its upper-bound, average, and adder-depth complexities. Further optimizations of the proposed heuristic are also provided and compared to existing ones.

Optimizations of LTI Systems

A linear system is a mathematical model based on linear operations. Linear operations adhere to two properties, namely additivity and homogeneity. Given two vectors x and y, and a scalar c, these properties are formally described as:

• Additivity: ) ( ) ( ) ( y f x f y x f + = + ; ( 4.1) 
• Homogeneity:

) ( ) ( x f c x c f × = × . (4.2)
Another way to state this is that for vectors x n and scalars c n the following equality holds:

) ( ) ( ) ( ) ( 2 2 1 1 2 2 1 1 n n n n x f c x f c x f c x c x c x c f × + ⋅ ⋅ ⋅ + × + × = × + ⋅ ⋅ ⋅ + × + × . ( 4.3) 
Linear systems have roles as mathematical abstractions or models of computation in many applications, including mainly: automatic control theory, signal processing, and telecommunications. The primary focus of this chapter is on control theory; however, the techniques are applicable across any application that computes linear systems.

Formulation of LTI Systems

Based on equation (4.3), an LTI system is formalized as follows. If X and Y are input and output vectors, respectively, and C is a transformation matrix, the LTI system can be written as

            ×             =             n mn m m n n m X X X C C C C C C C C C Y Y Y M K M M M M K K M 2 1 2 1 2 22 21 1 12 11 2 1 . (4.4)
The transformation matrix C is an m×n matrix, where C ij represents the (i,j) constant. An output signal Y i is the product of the ith row of the transformation matrix C and the n input samples of X:

j n j ij j X C Y × = ∑ =1 . (4.5)
In Chapter 2, the state-space representation has been retained as the control computational-model to be optimized. Note that the explicit state-space LTI Eq. 2.1 is not more than a concatenation of four Y=C×X operations given by Eq. 4.4. As illustrative example, we have already provided the discrete time state-space representation of a cantilever controller (Fig. 2.6 and Eq. 2.3).

Single-Constant Multiplication (SCM)

The constant multiplication problem first emerged in the 1970s for implementing constant multiplication in software. Many microprocessors at the time (such as Intel's 8008) did not have multipliers, so multiplication had to be done with additions, subtractions, and shifts. Even when the multiply instruction first became available in software, it would typically take more clock cycles to execute than an addition, subtraction, or shift, thus solving the constant multiplication problem could lead to a reduction in execution time. Today, with high throughput pipelined multipliers, solving the constant multiplication problem provides no benefit in software.

Conversely, the whole benefit is rather in hardware implementation. The idea is to propose algorithms which run in software, but the solutions that these algorithms produce enable one to efficiently implement constant coefficient multiplication in hardware. Given a set of constant coefficients, the proposed algorithms search for good hardware realizations.

In the whole Eq. 4.4, SCM addresses only the problem of multiplication of one variable (X j ) by one constant (C ij ). To be efficiently handled, the hardware implementation of C ij ×X j must be multiplierless, that is, using exclusively additions, subtractions, and shifts. The shift operation is "free" in a hardware implementation (it only involves rewiring), therefore, only the number of additions and subtractions is important. We assume that additions and subtractions have the same area/speed cost, which is a quite reasonable assumption in hardware design. Careful decomposition into shifts and additions leads to tremendous benefits with respect to execution time, area, throughput, and power/energy. Actually, the computational complexity of SCM still seems to be unknown. It is only conjectured (no proof) to be NP-Hard [1]. But because the solution-space to explore is so huge, one has to use heuristics to minimize the number of additions.

Illustrative Examples

Let us perform for instance j X × 45

. While the solution space allows many possibilities, only four solutions are presented:

( ) 

j j j j j j X X X X X X + × + × + × = × = × 2 3
× - × - - × = × - = × - = × j j j j j j j X X X X X X X ; (4.7) ( ) j j j j j j X X X X X X + × - × - × = × = × 2 4 6 2 2 2 2 01 1 0 1 10 45 ; (4.8) U U X j + × = × 2 2 45 with j j X X U + × = 3 2 . ( 4.9) 
Eq. 4.6 is the most straightforward method for single-constant multiplication. It transforms the constant C ij into its binary representation, converts the 1s into shifts based on their positions, and sums the shifted values. For C ij =45, Eq. 4.6 requires three additions and three shift operations. The number of additions using the binary representation is one less than the number of "1" instances.

Another method (Eq. 4.7) uses shifts and subtractions by translating the "0" values into shift operations while subtracting them from the constant of the same length consisting of only 1s. The constant 45 requires six bits and the corresponding six-bit constant of all 1s (111111) is 63. The term ( ) 6 2

j j X X - ×
represents the number 63 and the following two terms, The CSD representation (Eq. 4.8) encodes a constant number using the minimal number of nonzero digits. Therefore, when transforming a constant multiplication into a sequence of shifts and additions, the CSD representation yields the minimum number of additions. But in this special case (C ij =45), does not provide any benefit over Eq. 4.6 and 4.7.

Eq. 4.9 allows to obtain the minimal number of addition for C ij =45. The reduction in additions comes from the sharing of the term

j X U × = 9
. This is well illustrated by Fig. 4.1b, where the grey nodes indicate a shift operation, and the red ones denote addition. The total number of operations is two additions. Note that several solutions with 2 additions might exist (Fig. 4.1a, 4.1b, and 4.1c).

The objective of SCM heuristic is to provide optimal solutions in a reasonable computational time.

Predictability is another important feature of SCM heuristic. Depending on the constant bit-size, it allows to know in advance (before implementation) the maximum number of additions (area) and the maximum number of additions forming the critical path (speed). Despite the big number of proposed heuristics, only three SCM heuristics are predictable. This issue will be thoroughly investigated in the coming sections of this chapter. 

Multiple-Constant Multiplication (MCM)

Consider the linear Eq. 4.4; MCM is an extension of SCM where the single variable j X is multiplied by the set of constants

mj j j j C C C C , , , , 3 2 1 

L

(the entire column j). Defined as such, the MCM problem is at least as hard as the SCM problem since the latter is a subset of the MCM problem; since the single-constant multiplication problem is conjectured NP-Hard, the MCM problem is also conjectured NP-Hard. One potential solution to the MCM problem is simply to optimize each singleconstant multiplication independently. However, in general, by sharing the intermediate computations required by each constant, MCM can be decomposed into fewer operations than the total number of SCM operations that would be needed.

Illustrative Example

Let us perform the two following multiplications: Obviously, the optimization of the linear Eq. 4.4 taken as a whole is much better using MCM than SCM. However, this added performance is obtained at the expense of an extra computational time which may be prohibitive in case of an important number of constants. To the best of our knowledge there is no predictable MCM heuristic. 

j X j X × 81 j X j X × 23 j X j X × 81 j X × 23 (a) (b) (c)

Subexpression Sharing between Output Variables

MCM addresses only a part of the problem. It involves the optimization of the multiplication of each input variable j X by its corresponding constants of the column j of Eq. 4.4. Optimizations can also be carried out considering common subexpressions between output variables

n in i i i X C X C X C Y × + × + × = L 2 2 1 1 , for . , 1 m i =
In either case, i.e. optimization by column or by line of Eq. 4.4, the scope for optimization is limited, making it possible that the algorithm is not taking full advantage of the solution space.

Illustrative Example

Consider the simple example shown in Fig. 4.3. Fig. 4.3a shows a simple linear system with two input and two output variables and a 2×2 constant matrix. The constants are encoded using simple binary representation though they could just as easily use any other number representation. Looking at the common digit patterns in the constants multiplying variable X 2 (7="0111" and 12="1100"), the digit pattern "11" is detected and extracted. This results in a reduction of one operation as shown in Fig. 4.3c. However, if the scope of the optimization is expanded to include multiple variables, the number of operations can be reduced even further as shown in Fig. 4.3d.

Matrix Decomposition

The idea [3] consists in modifying the constant coefficient matrices and then performing common subexpression elimination. The modification of the coefficients is based on the fact that the complexity of the multiplier is dependent on the value of the coefficient and correspondingly transforms the linear system by splitting the constant matrices such that the overall area is reduced. The matrix Source: [2] decomposition technique splits the transformation matrix into the product of 2×z+1 matrices

1 1 2 1 2 2 2 1 2 1 1 1 1 2 2 1 2 2 2 2 2 × + × = × + + × + = × + = D X Y X D X X Y X X D (c) 3 2 2 2 2 1 2 2 2 1 2 2 2 1 1 1 2 2 2 2 2 2 × + × + × = × + × + + × + = X X X Y X X X X X Y (b) 2 1 2 2 2 1 1 2 1 2 1 2 2 1 2 2 2 × = × + = + = × + = D Y D D Y X X D X D D (d)       ×       =       2 1 2 1 12 4 7 5 X X Y Y ( ) ( ) ( ) ( ) 2
z z z z z C C C C C C C C C - + - - - - - × × × × × × × × × = 1 2 1 0 2 1

L L

. The matrix is split through row and column transformations.

Illustrative Example

Fig. 4.4 shows an example of matrix splitting in a linear system. The matrix is split with the intention of reducing the number of multiplications that are required. In the example of Fig. 4.4a, six multiplications are needed, one for each of the values not equal to 1 or -1. Fig. 4.4b splits this matrix into two parts. As a consequence of this splitting, only three multiplications are now required, two multiplications for the two occurrences of 0.33 and one multiplication for -0.66. Note that the 1, -1, and -2 values can be converted to addition, subtraction, and shift, respectively. The matrix splitting is followed by a decomposition of the multiplications into shifts and additions along with an algorithm to eliminate common subexpressions.

The aforementioned approaches attempt to minimize the number of additions/subtractions required to compute the constant multiplications. In fact, the problem is even more difficult than this. Every addition is not equivalent. The size and the speed of a specific addition highly depend on the numbers being summed. For example, consider summing X+4×X, where the variable X has two bits. Simply concatenating the variable X with itself will perform this addition. If X=(01) 2 , then X+4×X =(0101) 2 , which is simply the string "01" concatenated with itself, i.e., replicated twice. The higher-order two bits correspond to 4×X and the lower two bits represent X. This requires no hardware and no delay for computation. Therefore, not all additions are the same; thus, it is possible to reorder additions to take advantage of this fact. This problem is not treated in this thesis. However, all the effort is rather concentrated on the optimization of SCM/MCM problem.

Formal Definition of the SCM Problem

Prior formalizing the SCM Problem, we must clearly define: Source: [2] • The constant type: positive, negative, odd, or even. Almost all proposed SCM heuristics handle only odd/positive constants as the even/negative ones can be simply derived using negation and shift. Note that in this case an extra-processing of the constants is necessary.

            ×           - - - - - =           4 3 2 1 3 2 1 0 66 . 0 33 . 0 1 33 . 0 33 . 0 66 . 0 1 33 . 0 1 1 0 X X X X Y Y Y (a)             ×           - - - ×           - =           4 3 2 1 3 2 1 0 66 . 0 33 . 0 1 0 0 0 2 33 . 0 1 1 0 1 0 0 1 1 1 0 0 1 X X X X Y Y Y (b)
• The allowed operations: addition, subtraction, left-shift, right-shift, and "or" operation.

Restricting the number of operations makes the problem harder to solve. Most of the proposed heuristics allow only addition, subtraction, and left-shift. Just few heuristics [1] allows rightshift. But right-shift has some drawbacks, while bringing little value: for instance, they do not work with arithmetic modulo 2 k .

The following formal definition apply to all types of constants, i.e., positive/negative and odd/even, allowing addition, subtraction, and left-shift only.

Let c be our constant, Ζ ∈ c

. A finite sequence of signed integers u 0 , u 1 , u 2 , . . . , u q is said to be acceptable for c if it satisfies the following properties:

• Initial value:

1 0 = u ; • For all i>0, i i b k i a j i i u r u s u 2 2 × × + × × = ; with i k j < , ; { } 1 , 0 , 1 , - ∈ i i r s ; and Ν ∈ i i b a , ; • Final value: c u q c q = × 2 , with Ν ∈ q c .
The problem is to find an algorithm that takes the number c and that generates an acceptable sequence ( )

q i i u ≤ ≤ 0
that is as short as possible. q is called the quality, or length. Note that by delaying the shifts, we can restrict b i to 0 (this breaks the symmetry, but makes one less variable).

Thus, an arbitrary number X being given, the corresponding solution iteratively computes u i ×X from already computed values u j ×X and u k ×X, till finally obtain c×X. Note that with this formulation, we are allowed to reuse any already computed value. Therefore some generated solutions may need to store temporary results. SCM/MCM is a fundamental problem in control, DSP, and telecommunications. Because of this, a big number of heuristics have been proposed. Only the most cited ones are summarized hereafter.

Existing SCM/MCM Algorithms

The existing MCM algorithms can be divided into four general classes:

• Digit-recoding algorithms such as the canonical signed digit (CSD) representation [4], Booth recoding [5], and Dimitrov's DBNS recoding [6];

• Common subexpression elimination (CSE) using pattern matching performed after an initial digit-recoding. Typical examples are Hartley [7], Lefèvre [8], and Boullis [9];

• Directed acyclic graph (DAG) based algorithms. This category includes Bernstein [10], MAG [11], H(k) [12], and Hcub [13];

• Hybrid algorithms combining CSE and DAG such as the recent optimal algorithm BIGE [1].

Interesting surveys and detailed comparative studies showing pros and cons of various algorithms are given in [1][13].

Digit-Recoding Algorithms

This category includes simple methods like CSD and the traditional binary method. They generate the decomposition directly from the digit representation of the constant. These methods are the easiest to implement but achieve the worst results. A drawback of digit-recoding methods is the impossibility to reuse intermediate values. Nevertheless, the main advantage of digit-based recoding is their low computational cost, typically linear in the number of bits. As a consequence, these methods can be easily applied to constants with thousands of bits. In addition, these methods allow an easy control of lower bounds on the maximum left-shifts to ovoid overflow.

Avizienis's CSD Algorithm

CSD [4] has the least number of nonzero digits among all possible SD representations, therefore it creates a solution with the smallest number of additions/subtractions for a single constant. The CSD representation is unique, and therefore non-redundant. For a n-bit constant, the number of additions is bounded by (n+1)/2-1 in the worst case, and is roughly equal to n/3 on average (the exact value is n/3-8/9). CSD recoding is not optimal though it minimizes the number of nonzero elements for the constant representation. It is possible to decompose the result to further reduce the number of operations. The value 45 is the smallest number for which the CSD representation does not create the optimal number of operations. Three additions are required by CSD (Eq. 4.8) while the optimal solution (Eq. 4.9) needs only two. CSD has been thoroughly described in Section 3.3.1, and we have come to the conclusion that the vast majority of LTI system optimizations use the CSD representation for constant encoding [2]. It is important at this stage to illustrate how CSD is used in practice. Let us consider for instance the following LTI system: The constants of the transformation matrix C are first scaled to convert them into integers using nine bits. For example, to 1 we associate the value 256, which is the largest representable nine-bit integer number. Thus, for the constant 0.926 corresponds the value 256×0.926≈237.Transforming the remainder of the numbers yields the constant matrix: 

            ×             - - - - - - =            
            - - - - - - =
× - × + × - = × - × + × - = × = × - = × X X X X X X X X X C (4.13)
The number of additions required by each element c ij of C csd is equal to the Hamming weight (i.e., the number of non-zero digits of c ij minus 1). Thus, the implementation of C csd requires 34 additions. This number can be drastically reduced applying one of the techniques described above: MCM, subexpression sharing among output variables, or matrix decomposition.

Dimitrov's DBNS Algorithm

Given p, q, two distinct prime integers; the double-base number system (DBNS) is a representation scheme into which every positive integer n is represented as the sum or difference of numbers of the form p a ×q b as follows [6]:

i i b l i a i q p s n × × = ∑ =1 , (4.14) with { } 1 , 1 - ∈ i s , 0 , ≥ i i b a and ( ) ( ) j j i i b a b a , , ≠
for j i ≠ . The length of a DBNS decomposition is equal to the number l of terms in Eq. (4.14). In the following, we will only consider p=2 and { }. Theorem 4.1-Let n be a positive integer and let q be a prime > 2. The number of unsigned DBNR of n with bases 2 and q is given by f(1)=1, and for n≥1 ( )

( ) ( ) ( ) ( )    - ≡ + - = . 1 , mod 0 / 1 otherwise n f q n if q n f n f n f
The proof of Th. 4.1 is given in [6]. Not only DBNS is highly redundant, but it is also very sparse. Th 4.1 tells us that there exists very many ways to represent a given integer in DBNS. Some of these representations are of special interest, most notably the ones that require the minimal number of {p,q}-integers; that is, an integer can be represented as the sum of m terms, but cannot be represented with (m-1) or fewer terms. These so-called canonic representations are extremely sparse. For example, with bases 2 and 3, Th. 4.1 tells us that 127 has 783 different unsigned representations, among which 6 are canonic requiring only three {2, 3}-integers. Finding one of the canonic DBNS representations in a reasonable amount of time, especially for large integers, seems to be a very difficult task. Fortunately, one can use a greedy approach to find a fairly sparse representation very quickly. Given n > 0, Alg. 4.1 returns a signed DBNR for n.

Although Alg. 4.1 sometimes fails in finding a canonic representation (the smallest example is 41; the canonic representation is 32 + 9, whereas the algorithm returns 41 = 36 + 4 + 1) it is very easy to implement. The complexity of the greedy algorithm mainly depends on the complexity of step 3:

finding the best approximation of n of the form b a p p × . It finishes in ( ) ( ) ( ) (
)

n n O log log / log iterations.
In the following, a generic algorithm for constant multiplication that takes advantage of the sparseness of the double-base encoding scheme is presented (Dimitrov's algorithm [6]). The algorithm computes a special DBNS representation of the constants, where the largest exponent of the second base q is restricted to an arbitrary (small) value B. It uses a divide and conquer strategy to operate on separate blocks of small sizes. For each block, it is possible to generate those specific DBNS representations using the Greedy algorithm.

Before giving the formal description of Dimitrov's algorithm, it is first illustrated on a small example.

The value c = 10599 = (10100101100111) 2 is expressed in radix 2 7 ; that is, c is split in two blocks of 7 bits each. We obtain c = 82×27+103. The "digits" 82 and 103 are expressed in DBNS with bases 2 and 3 using as few terms as possible, where the exponents of the second base q=3 are at most equal to 2. Using Alg. 4.1, it has been found that 82 can be written using two terms as 64+18 and 103 using only three terms as 96+8-1. These two solutions are optimal. By sticking the two parts together, we obtain the representation given in Table 4.1.

INPUT: A positive integer n

OUTPUT: The sequences ( ) 0 , , Using this representation, the product c×X is decomposed in radix-2 7 DBNS as follows:

≥ i i i i b a s for i i b i a i q p s n ∑ × × = with { } 1 , 1 - ∈ i s , 0 , ≥ i i b a and ( ) ( ) j j i i b a b a , , ≠ for j i ≠ . 1: 1 ← s //
P DBNS =((X 1 ×2 1 ) + X 1 ) + (X×2 13 ) + (X×2 3 ) -X ; (4.15)
with X 1 =((X 0 ×2 1 )+X 0 )+(X×2 5 ) and X 0 =(X×2 8 ).

The formal formulation of Dimitrov's algorithm is as follows. The constant c is written in DBNS as:

j i b j a i j i q c c × × = ∑ ∑ = = 2 max max 0 0 , , (4.16) 
with digits

{ } 1 , 0 , 1 , ∈ j i c
. Alg. 4.2 below can be used to compute c×X. We remark that each step of the algorithm requires a multiplication by q. It is therefore important to select the second base q such that the multiplication by q only requires a single addition; i.e., with q=3, we have

X X X + × = × 2 3 . At the end, the result is given by X c X b × = max .
If l is the length of the double-base expansion; i.e, the number of non-zero digits j i c , in Eq. 4.16, and if b max is the largest exponent of q, then the overall number of additions is equal to

1 max - + b l
. The goal is to set B, the predefined upper bound for the exponents of q, such that the overall number of addition is minimal. Note that b max might be different . While this limit shows that multiplication by a constant is sublinear, it says nothing about the constant hidden within the big-O notation, which might be very important by the way. In 2011, Dimitrov [14] evaluated the hidden constant as being equal to 2. Since then, ( )

from B, but B b ≤ max . INPUT: A constant j i j i j i c c 3 2 , , × × = ∑ , with { } 1 , 0 , 1 , ∈ j i c ; and an integer X OUTPUT: c×X 1: 0 1 ← - X 2: for j=0 to max b do 3: 1 - × ← j j X q X 4: i i j b i j j X c X X 2 max , × × + ← ∑ - 5: Return
n n log / 2
is considered as the lowest analytic upper-bound known so far for the multiplication by a constant.

Common Subexpression Elimination (CSE)

As previously mentioned, the major drawback of digit-recoding methods is their inability to reuse intermediate values. To solve this problem, the basic idea is to find common subpatterns in the representations of the constants after the constants are converted to a convenient number system such as SD or CSD. Thus, CSE are considered as direct descendants of digit-recoding methods. The typical example is given by Eq. 4.9 where the use of a common term allows the saving of one addition over CSD (Eq. 4.8).

A significant drawback is that the performance of CSE algorithms depends on the number representation. Some works [12][15] showed how using different representations for the constant encodings can lead to better results. However, the exponential number of representations further complicates the CSE problem which is itself conjectured to be NP-complete. Even if the solution to the CSE problem is optimal, it does not necessarily provide an optimal solution to the SCM/MCM problem. We will begin by examining some cases in which CSE algorithms cannot find the optimal solution.

Optimization Problems Due to the Initial SD Form

As previously stated, Park and Kang [15] found better solutions by applying CSE to all MSD forms of the constant (SD forms of the constant with the minimum number of nonzero digits). Even better solutions are obtained with H(k), which applies CSE to all SD forms of the constant with up to k more digits than the CSD form. For example, the CSD form of 105xX, X X X X 00 0 0

, has no patterns that occur at least twice. Without being able to factor common terms, 3 adders are needed to add the 4 terms. However, one MSD form of 105xX is X X X X 00 00

, in which the pattern X X Y 00 = can be substituted twice to yield Y Y 00 000

. In this case, 2 adders are used (one to create Y and one to add the remaining terms). The problem was due to the CSD form being constrained to have no adjacent nonzero digits. Notice the leftmost nonzero digit of X X 000 000 is adjacent to the rightmost nonzero digit of 000 000X X , which obviously cannot be represented by the CSD form.

The first case in which H(0) produces a non-optimal solution is 363xX. There are only two MSD forms,

X X X X X 0 0 00 0 and X X X XX 0 0 00
, neither of which have a common pattern, thus H(0) requires 4 adders. However, H(1) can find the optimal solution by using the representation

XX X XX X 0 0 0 . The pattern X X Y 0000 = is substituted to produce YY Y 0 00000
, thus the total cost is 3 adders (1 to create Y, 2 to add the remaining terms). If a pattern with 2 nonzero digits is substituted n times, a total of 2n old digits will be replaced with n new digits. This results in a saving of n-1 adders.

CSE digit clashing problem

The first case in which H(k) produces a non-optimal solution for any value of k is 805xX. The optimal solution requires 3 adders. As indicated in Section 4.3.1.1, if we start with more than 8 nonzero digits, then more than 3 adders will be needed by CSD. The CSD form of 805xX has 5 nonzero digits, thus we only need to consider all SD forms with up to 3 extra nonzero digits. H(3) cannot find the optimal solution, and this is sufficient proof that H(k) is not an optimal algorithm for any value of k.

In order to find the optimal solution for 805xX, we will need to consider an unusual case. Notice that

( ) ( ) X XX X X X X 00 0 2 0 2 = + × . This translates to ( ) ( ) X X X × = × + × × 25 5 2 5 2 . The left digit of X X 0 aligns with the right digit of ( ) 2 2 0 × X X
to produce a zero in this position and a carry one position to the left. Thus, if

X X Y 0 =
, we can substitute Y in X XX 00 to get Y Y 0 00 even though X X 0 does not appear at either location of where Y was substituted. This is an example of a class 1 overlapping digit pattern. Now consider representing 805xX as

X X X XX 0 00 00 . We substitute X X Y 0 = to get Y Y Y 0000 0 00
, thus only 3 adders are needed (1 to make Y, 2 to add the remaining terms). This digit alignment problem was recognized and identified as clashing. We thus refer to this problem as the CSE digit clashing problem.

Lefèvre's Common Subpattern (CSP) Algorithm

In Lefèvre's CSP algorithm [8], the number of nonzero digits is called the weight (w). The digit -1 and 1 are denoted P and N respectively. Given a set of constants in SD representation, the problem is to find the maximal-weighted pattern that appears twice, either in the same constant (SCM) or in two different constants (MCM). Note that if such a pattern appears more than twice, it can naturally be reused later.

CSP algorithm looks for a triple (i, j, d) where i and j are numbers identifying the two constants n i and n j (possibly the same, i.e., i=j) in the set, and d a distance (or shift count), with the following restrictions for symmetry reasons: i ≤ j; and if i = j, then d > 0. Once the pattern, denoted n p , of weight greater or equal to 2 has been found, we compute the binary expansion of the new constants i n′ and j n′ ( i n′ only, if i =j) satisfying

p c i i n n n × ± ′ = 2 and p d c j j n n n × ± ′ = - 2
for some integer c (or

p d c p c i i n n n n × ± × ± ′ = - 2 2
if i = j), then we remove i n and j n from the set, then add i n′ , j n′

and n p to the set (with the exception that 0 and 1 are never added to the set, because they cannot yield a pattern). We reiterate until there are no more patterns of weight greater or equal to 2; we use the binary method for the remaining constants. Now, let us illustrate this algorithm more precisely with an example: (47804853381) 10 , which is written (101100100001011001000010110010000101) 2 in binary, and after Booth's recoding:

P0N0N00P000P0N0N00P000P0N0N00P0000P0P. We find the triple (0, 0, 11), the corresponding pattern is P0N0N00P, and the remainder is P0N0N00P00000000000000000000000000P0P (there would be other choices). The set is now:

{ P0N0N00P00000000000000000000000000P0P, P0N0N00P }.
We find the triple (0, 1, 29), the corresponding pattern is P0N0N00P (i.e., still the same one), and the remainder is P0P. The set is now: { P0P, P0N0N00P }.

We find the triple (0, 1, -3), the corresponding pattern is P0P, and the remainder is P000000P. The set is now: { P000000P; P0P }. Now, we cannot find any longer repeating pattern whose weight is greater or equal to 2. Therefore we use the binary method for the remaining constants.

The computational complexity of Lefèvre's CSP algorithm for a n-bit constant is ). ( 3 n O

Directed Acyclic Graphs (DAG) Algorithms

DAG are bottom-up methods that iteratively construct the graph (as in Fig. 4.2c) representing the multiplier block. The graph construction is guided by a heuristic that determines the next graph vertex to add to the graph. The nodes in the graph denote the coefficients. The edges are directed and represent values that are equal to the coefficients in the parent node shifted by some amount. The coefficient value that is stored at every node is obtained by adding up the values on the incoming edges to the node. Graph-based algorithms offer more degrees of freedom by not being restricted to a particular representation of the coefficients, or a predefined graph topology (as in digit-based algorithms), and typically produce solutions with the lowest number of operations. Examples of DAG algorithms include Bernstein [10] and Voronenko [13] (Hcub Algorithm).

Bernstein's Algorithm

In 1986, Bernstein [10] proposed a SCM algorithm. It can be described by the recursive formulas given by Eq. 4.17. Note that every input argument x to the function Cost(x) must be an odd integer. If the SCM target t is even, then we must incur an extra cost of ShiftCost(w) , where t/2 w is an odd integer (and Bernstein's algorithm would be applied to t/2 w ). In Eq. 4.17, a, b, c, and d are integers, c≥1, and d≥1. (

       + + + + + - + + + + + - + = = d ShiftCost AddCost / t Cost c ShiftCost SubCost / t Cost b ShiftCost SubCost / t Cost a ShiftCost AddCost / t Cost min t Cost Cost d c b a 1 2 1 2 2 1 2 1 1 0 1 . (4.17) ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) 
The cost of the shifts in Eq. 4.17 is a function of how many bits the operand was shifted. In microprocessors that only support single bit shifts, ShiftCost(x) is proportional to x. For microprocessors that support shifting by an arbitrary number of bits, ShiftCost(x) is a constant. For hardware implementation, ShiftCost(x)=0 and AddCost=SubCost. Although Eq. 4.17 is expressed in a depth-first manner, the search is computed breadth first since we are interested in finding the minimum cost of t. Bernstein's algorithm is a branch and prune heuristic. The pruning arises from only allowing certain values of a, b, c and d in Eq. 4.17.

The average time complexity seems to be exponential ( )

n O 2 [8],
where n is the bit-size of the constant. This algorithm is too slow for large constants.

Voronenko's Hcub Algorithm

Hcub stands for Heuristic of Cumulative Benefit. It was developed by Voronenko and Püshel [13] in 2007. Hcub is considered as the best heuristic for MCM [1]. The heuristic is split into two parts: the optimal and the heuristic part. It is a non-trivial heuristic, requiring a number of definitions.

In Hcub the constants are called the fundamentals. The MCM implementation uses additions, subtractions, and shifts. These three distinct operations are consolidated into a single operation called the A-operation. The A-operation operates on the fundamentals. It performs a single addition or a subtraction, and an arbitrary number of shifts, which do not truncate non-zero bits of the fundamental.

Because it is possible to merge two consecutive shifts, the most general definition is stated as follows: (fundamentals) and one output fundamental, defined as

( ) ( ) r l s l p v u v u A - × × × - + × = 2 2 1 2 , 2 1 (4.18) where ( ) s r l l p , , , 2 1 

=

is the parameter set or the A-configuration A p . To preserve all significant bits of the output, 2 r must divide ( ) A-operations directly connected to the input of the multiplier block have u = v = 1.

2 1 2 1 2 l s l v u × × - + × .
Source: [13] ( ).

, j i p k r r A r k = (4.19)
The set of A-graph fundamentals R and the set of A-configuration k p uniquely define an A-graph for an MCM block with

1 - = R m add/sub operations.
Next, the notion of A-distance is introduced. This is the key component in Hcub algorithm. 

( ) ( ) { } . , , * v u ion configurat valid a is p v u A v u A p - - = (4.20)

Hcub Algorithm

Now that the main ingredients have been defined, let us describe Hcub algorithm. Actually, the main idea behind Hcub is to use a better heuristic for synthesizing intermediate fundamentals. Hcub is therefore computationally more expensive than its DAG counterparts since it explores a very large space of possible intermediate vertices. It does not require a pre-generated optimal SCM lookup table as other algorithms do. Thus, Hcub is storage efficient and in its applicability is only limited by the computation time.

The A-operation in Hcub is A odd , allowing ( )

1 2 , + ≤ n p v u A
, where n is the maximal bitwidth of constants in T. Hcub is shown in Algorithm 4.3. The heuristic is split into two parts: the optimal and the heuristic part. The optimal part of Hcub synthesizes at each iteration, all distance-1 targets, i.e., S ∩ T.

To avoid computing in each iteration the entire set S, which can become rather large, it is computed incrementally. This necessitates an additional set, the worklist W. When a constant is synthesized, it is added to W, first without being accounted for in neither R nor S. Then, in steps 9-10 an incremental update of R and S based on W is performed. The update of R is straightforward (step 9):

W R R new U = .
Alg. 4.3 gives enough details on how to efficiently construct the successor set S. The heuristic part uses S and the A-distance tests and estimators to select new successors s to be added to R. Hcub heuristic part adds only a single successor to R at each iteration (outer loop consisting of steps 5-18).

Given m constants with n bit-size, the computational complexity of Hcub is ( ) ( )

6 3 5 4 log n m n m n m O +
. For SCM, it corresponds to ( )

6 n O . .
The update formula for S is derived as follows: { }

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) W W R A W R A S W W R A R W A R R A W R A R W R A W R A R R A W R R A R R A S new new new new new new new new new - = - = = = = = , , , , , , , , , , , * * 
* * * * * * * * * U U U U U U U U Since ( ) ( ) W R A W R A new , , * * ⊂ we get ( ) ( ) W W R A S S
1 ← R 3: { } 1 ← W 4: { } 1 ← S 5: While 0 ≠ T do 6:
{ optimal part } 7: While 

0 ≠ W do 8: { update S and R } 9: W R R U ← 10: ( ) ( ) W W R A S S - ← , * U 11: 0 ← W 12: { if S contains
s W W + ← 2: s T T - ←

Hybrid Algorithms(CSE & DAG)

Hybrid algorithms combine different algorithms from different classes. CSE are already considered as mixed algorithms since they rely on a digit recoding followed by a pattern matching. But what is generally meant by "hybrid" in the literature, are those algorithms combining CSE and DAG. A Typical example is the recent Thong's BIGE algorithm [1].

Thong's BIGE Algorithm

BIGE was developed by Thong and Nicolici in 2011 [1]. It is the shortened form of Bounded Inverse Graph Enumeration (BIGE) algorithm. It is an exhaustive SCM algorithm, based on the combination of two CSE heuristics (H(k)-ODP) and an optimal DAG algorithm. Overlapping digit pattern (ODP) was introduced in [16] to partially resolve the digit clashing problem. ODP enables CSE algorithms to find and substitute non-standard patterns. For example, if we find XX00X, we can substitute Y=X0X to get 00Y0Y even though X0X does not appear in XX00X. those, for which an optimal SCM solution requires exactly n A-operations. For example, { }

0 2 0 ≥ = a C a
, because precisely all 2-power constants require a single left shift and no adds/subtracts. Although the sets C n are infinite, we will always limit our discussion to constants up to certain bitwidth b, which is always explicitly stated. The set of complexity n constants obeying this constraint is then finite and, by abuse of notation, will also be denoted by C n .

The C n sets are independent of the desired SCM constant t and thus are precomputed and stored. Given t, the BIGE algorithm operates as described in Alg. 4.4 and stops as soon as a solution is verified as optimal. For practical reasons, the exhaustive search is limited to 6 adders, although it can be extended. 1) For n = 1, 2, 3, 4 (in that order), if t ∈ C n then return the optimal solution from the lookup table.

2) Initialize the upper bound with the H(k)+ODP heuristic [12][16], use k = 1, if this solution has 5 adders it must be optimal.

3) Exhaustively search for a solution with exactly 5 adders. 4) If the solution found earlier by H(1)+ODP had 6 adders, it is now confirmed as optimal. 5) Try to tighten the upper bound with H(2)+ODP, if this solution has 6 adders it must be optimal. 6) Exhaustively search for a solution with exactly 6 adders. 7) If the upper bound is 7, the heuristic solution is now confirmed as optimal. We have only covered the algorithms which, either are closely related to the contributions in this thesis (CSD, DBNS, Lefèvre's CSP), or the algorithms which proposed the fundamental approaches and ideas (Bernstein, Hcub, BIGE) that were frequently reused and/or improved by later algorithms. In addition to the main features (Table 2.2) of the most known SCM/MCM algorithms in the literature, Table 4.2 recapitulates the information regarding the constant type and allowed operations. 1: Some algorithms normalize the negative/even constants to become positive/odd in order to remove redundancy within their search space. This technique improves runtime with no penalty. The sign of the constant can usually be adjusted elsewhere, for instance by using subtraction in the accumulation after multiplication.

Metrics Definition for SCM/MCM Algorithms

The objective of the proposed software SCM/MCM algorithms is to produce an efficient hardware implementation in a reasonable amount of time. By efficient we mean a small area, high speed, and low power architecture. Some abstraction is therefore needed in order to solve problem sizes of the most practical importance within an acceptable amount of time. Logic resources are used as an abstraction of the amount of silicon required to implement a logic function. As for the speed, the abstraction is to consider the longest path that goes through the logic resources.

While there is a direct correlation for area and speed with their respective abstractions, power consumption poses a complex problem. Power consumption decreases only if both the number of logic resources and the length of the critical path decrease. The rational is that there are two sources to power consumption in CMOS circuits: static power-consumption due to the leakage-current; and dynamic power consumption caused by the switching activity. Roughly speaking, the leakage current depends on the area, while the switching activity depends on the topology of the architecture (number of stages of cascaded logic elements). Thus, increasing one element of the power while decreasing the other one results in an unknown consumption state of the power, where only the use of an efficient power-estimation tool can inform on the situation.

Although the number of additions/subtractions is an abstraction of the amount of silicon required to implement the logic circuit, it is conjectured that finding good solutions with this metric typically results in good solutions in terms of minimizing the amount of silicon. This metric is the most commonly used metric in this area of research [1]. Instead of the number of additions/subtractions, the number of single bit adders/subtractors can be used as a more accurate metric (note even this still has some abstraction from the amount of silicon). As shown in the experimental results in [17], a significant amount of extra time is required to solve the same problems using this more accurate metric. This translates into needing impractical amounts of time to solve larger but still real-sized problems. This also implies that further increasing the metric accuracy will result in longer run times, meaning only smaller problem sizes (which are less relevant in practice) can be solved within reasonable amounts of time. Furthermore, using the amount of silicon as the metric makes the solution dependent on the implementation fabric of the logic circuit, thus the solution would be non-portable and also dependent on the performance of many other computer-aided design (CAD) tools, which perform logic synthesis, place and route, etc.

Adders and subtractors require the same amount of logic resources in custom hardware, so we will simply refer to both as "adders." Shifts are hardwired and thus incur no cost.

Given a N-bit constant, let us give the formal definitions of the metrics discussed above: ( )

i D Ath max = .
Definition 4.8 -Average (Avg):

For each N-bit constant i C , corresponds i A additions for the implementation of X C i × . m A Avg m i i / 1 ∑ = =
, where m is the total number of i C constants.

Actually, though formally defined, the adder depth is an estimate of the longest path through the logic circuit, which is known as the critical path. Because of the physical construction, logic gates have a propagation delay, which is the length of time between when stable inputs are asserted to when all of the outputs become stable. As more logic gates are placed serially between the input and the output, the critical path becomes longer and the logic circuit must be clocked at a slower speed, which results in a lower computational throughput. The critical path is also a function of other things like the delay of each gate and the transit time along wires, however we will make abstraction of this in order to solve real-sized SCM and MCM problems within reasonable amounts of time. Most, if not all of the work in this area of research uses the adder depth to estimate the length of the critical path [17]. Given the same problem instance, the number of adders increases as the depth constraint is made smaller. A solution may not exist if the depth is overly constrained. The depth constraint can also be used to prune the search space.

A "reasonable" amount of time is difficult to quantify because it depends on the design flow of the system. For example, if the system is intended to satisfy an existing standard, the constants will be defined and thus each constant multiplication problem only needs to be solved once (even if other parts of the system are modified). In this case, one may be willing to wait hours or days for each problem instance. Conversely, a faster algorithm is needed if the design specifications are not finalized (for example, the constants may need to be updated as other parts of the system are modified). Depending on how finalized the design is, one may only be willing to wait a few seconds for each constant multiplication problem, for example. If a large part of the system involves constant multiplication, it is sensible to allocate a large portion of the time in the total CAD flow to solving constant multiplication. In conclusion, a "reasonable" amount of time is highly application specific, as discussed above.

Nevertheless, independently of the design flow, the inherent computational complexity of each proposed algorithm is assessed using the big-O notation as defined in [18].

Key Limitations of the Existing SCM/MCM Algorithms

The optimization of linear systems is a critical topic which has been the focus of continuous efforts over decades, resulting in an impressive number of SCM/MCM algorithms. Only some ones considered in the literature as milestone algorithms have been described above. However, we shall discuss hereafter some of the limitations and shortcomings of the existing algorithms, where the most important one is the predictability.

Predictability

Despite the large number of proposed heuristics, to our knowledge, only three heuristics are accompanied with their respective addition-cost complexity [1][19]. This issue is very important as it informs on the heuristic capabilities and limitations with regard to the constant bit-size (N). For low values of N (N≤32), H(k) [12] and Hcub [13] are, up to date, considered as the best heuristics for SCM and MCM, respectively. As long as their respective addition complexities are unknown, there is no guarantee that they will preserve their leading positions for high values of N.

It was shown in [20] that the number of additions for an N-bit constant in CSD is bounded by (N+1)/2-1 and tends asymptotically to an average value of (N/3)-8/9, which yields 33% saving over the naive add-and-shift approach. Pinch [21] was the first to prove that the multiplication by a constant is sublinear: O(N/(Log(N) α )) with α<1. Based on the DBNS arithmetic [22], Dimitrov [6] showed that the condition α<1 in Pinch's complexity is not necessary, decreasing therefore the upper limit to O(N/(Log(N))). Even more, in 2011, Dimitrov [14] evaluated the hidden constant in the big-O notation as being equal to 2. Since then, 2.N/Log(N) is considered as the lowest analytic upper-bound known so far. For all remaining heuristics, no addition complexity does exist. This is a real handicap as there is no visibility on how the heuristic evolves with respect to N, unless to exhaustively calculate Upb and Avg, but this is still limited to low values of (N≤32) as an excessive compute power is required.

On the other hand, according to [8], Ross Donelly was the first to determine in 2000 via an exhaustive search that 699829 is the smallest value (20 bits) that can not be obtained with 5 adders or less. Thong [1] did better with the exact BIGE algorithm as he conjectured (no proof) that 7 additions are enough up to 32 bits. Though BIGE guarantees optimality via an exhaustive search, it requires an exponential runtime and storage with respect to N [1]. Nevertheless, with BIGE we can observe how much any heuristic is far from optimality up to 32 bits.

Runtime and Memory Storage

For N≥128, only Lefèvre's CSP algorithm remains practical O(N 3 ) for SCM, because even when neglecting the hidden constant α in O(N 6 ), Hcub requires more than 4398 billions of iterations. The situation is even worse for optimal algorithms, such as MAG and BIGE, requiring exponential O(2 N ) runtime and memory storage.

For applications involving huge constants such as in cryptography, only linear heuristics O(N) are practical (CSD and DBNS). It seems there is a strong correlation between performance and runtime. However, by extending the analysis of prior works and providing new insight, it is possible to improve both the runtime and the performance (in terms of minimizing logic resources) as will be shown later.

Overflow Risk

In fixed-point representation, an overflow may occur if shift spans are not precisely controlled, especially in the last partial product. While overflow is an important problem, as far as we are aware, it has never been addressed in the proposed heuristics [6]. Contrary to recoding-heuristics (CSD, DBNS, ...) where the shift span is fixed, the non-recoding heuristics are very prone to overflow risk because of their variable shift spans. Therefore, lower bounds on the maximum left-shifts must be carefully considered to minimize overflow; this is may be to the detriment of the optimization.

Ease of Use

Beyond the provided performances, ease of use is a decisive criterion in the selection of any heuristic. Not only it facilitates the implementation, but also makes the latter non-prone to programming errors. Some of the proposed heuristics, for instance Hcub or BIGE, rely on complex mathematical concepts. A deep understanding of the concept is a necessary condition prior any programming. Such a required effort would require too much time which might discourage the user. This is not a surprise that despite the large number of published heuristics; CSD is not only used in designing the vast majority of LTI systems [2], but incorporated in most of the commercial tools as well, such as in Synopsys and Cadence synthesis tools, and Matlab numerical-computing tool.

Our proposed SCM/MCM heuristics attempt to address the weaknesses of the existing heuristics. We propose new linear runtime and fully predictable heuristics with high compression capabilities. The proposed heuristics are based on radix-2 r arithmetic. They are easy to use and overflow-safe.

New Recoding Algorithm (RADIX-2 r )

Radix-2 r has been concisely introduced in Section 3.3.4. We reconsider hereafter the most essential elements and provide further details and explanations. An N-bit constant C is expressed in radix-2 r as follows:

( ) rj r rj r r rj r r n j rj rj rj rj c c c c c c C 2 2 2 2 2 2 1 1 2 2 1 ) / ( 0 2 2 1 1 0 1 × - + ⋅ ⋅ ⋅ + + + + = - + - - + - - = + + - ∑ rj r n j j Q 2 1 ) / ( 0 × = ∑ - = , (4.22) 
where

0 1 = - c and * Ν ∈ r
. For simplicity purposes and without loss of generality, we assume that r is a divider of N. In Eq. 4.22, the two's complement representation of the constant C is split into N/r two's complement slices ( j Q ), each of r bit length because it goes from 2 0 to 2 r-1 . However, j Q needs an additional bit (c rj-1 ) equal to the most significant bit of the previous digit ( 

1 - j Q ), which could
( ) { } 1 1 1 1 2 1 2 1 0 1 1 2 2 2 - - - - - - + - - = ∈ r r r r r j , , ... , , , , ,... , DS Q . (4.24)
Thus, the product becomes:

( ) rj r / N j j Q X X C 2 1 0 × × = × ∑ - = .
(4.25)

The sign of the Q j term is given by the c rj+r-1 bit, and

j k j m Q j × = 2 , with { } 1 2 1 0 - ∈ r , ... , , , k j and ( ) { } 0 2 U r j OM m ∈
, where

( ) { } 1 2 ..., , 5 , 3 , 1 2 1 - = - r r OM . ( ) r OM 2 is the set of odd positive digits in radix-2 r recoding, with ( ) 2 2 2 - = r r OM . To 0 = j Q corresponds m j =0.
Finally, the product can be expressed as follows:

( ) ( )

( ) j r rj k rj r / N j j c X m X C + - = × × × - = × ∑ - + 2 1 1 0 1 . (4.26)
Unlike the multiplication by a variable (Y×X) where the entire set of partial-products (m j ×X) must be precomputed, only a subset is needed in the case of the multiplication by a constant (C×X). In fact, the number of partial-products is equal to the number of different values m j induced by the encoding process of the N/r slices (terms Q j ). Therefore, the generation of partial products (PP) consists first, if m j ≠0, in computing the PP m j ×X if it has not been precomputed before. It is then submitted to a hardwired left-shift of rj+k j positions, and finally, conditionally negated ( )

1 1 - + - r rj c
depending on the sign bit c rj+r-1 of Q j . An illustrative example is given farther.

Maximum Number of Additions (Upb)

On the one hand, there are N/r iterations in Eq. 4.26. Each iteration generates one PP. Thus, the maximal number of PP is N/r, which requires a maximum of N pp =N/r-1 additions. On the other hand, a maximum of

1 2 2 - - r non-trivial PP ( ) { } X X X X r × - × × × - 1 2 , , 7 , 5 , 3 1 
L can be invoked during the PP generation process. They are built using the binary method, from the least significant bit to the most significant bit. That is, the m j elements 3, 5, 7, ..., 2 r-1 -1 are built one after the other, each time by using a single addition between an element that has already been built and a power of two. This process is summarized by the following recurrence relation: Proof -Since each new non-trivial digit requires only one addition (recurrence relation), the adder-cost is the number of non-trivial digits:

( )

1 2 1 2 2 - = - = - r r om

OM N

. As the binary method is used, the adder-depth is deduced from the maximum number of non-zero bits in the binary representation of a digit: (r-1)-1=r-2. Since there are N/r PP, the maximum adder-depth (Ath) in cascaded adders is:

( )       - + =       - + - = 3 2 1 r r N r r N r Ath , ( 4.27) 
where   is the ceiling function (e.g.   6 29 5 = .

).

We illustrate the construction process of non-trivial PP with the following radix-2 Consequently, the total number of additions required by radix-2 r is equal to:

( )

      - + = + = - 2 2 2 r om pp pb r N N N r U . (4.28) X + 3×X X + 2 2 ×X 2 2 ×X 5×X 7×X + 3×X X + 2 3 ×X 2 3 ×X 9×X 11×X + + 2 3 ×X 2 3 ×X 13×X 15×X 5×X 7×X + 2 1 ×X 3×X + 3×X X + 2 4 ×X 2 4 ×X 17×X 19×X + + 2 4 ×X 2 4 ×X 21×X 23×X 5×X 7×X + 11×X + 2 4 ×X 2 4 ×X 25×X 27×X + + 2 4 ×X 2 4 ×X 29×X 31×X 13×X 15×X 9×X
Step #1

Step #2

Step #3

Step #4 For radix-2 6 , a maximum of 2 6-2 -1=15 additions are necessary, carried out in 6-2=4 steps in the worst case.

( )

r U pb is minimal for ( ) ) 2 ( / ) 2 ( 2 log log N W r ⋅ ⋅ =
, where W is the Lambert Function. Table 4.3 gives the values of r that lead to the minimum number of additions for N ranging from 8 to 8192, while Fig. 4.6 depicts the upper-bounds in number of additions for CSD, DBNS, and RADIX-2 r .

As for the average number of additions (Avg), it has been exhaustively calculated for values of C varying from 0 to 2 N -1, for N=8, 16, 24, and 32. But for N=64, we have calculated Avg using 10 5 , 10 6 , 10 9 and 10 10 uniformly distributed random values of C. While the difference between the four obtained results is insignificant (<10 -3 ), the value Avg oscillates around 15.5037 additions. Results are reported in Table 4.4. For N=64, RADIX-2 r uses 24.17 % less additions than CSD. This gain seems to grow linearly for low values of N. 4.5). Note that DBNS Upb will be higher if the worst cases are not attained by the pattern of 10 5 constants.

We have also compared RADIX-2 r to some non-recoding heuristics (CSE and DAG) based on programs and numeric data kindly provided by Lefèvre and Voronenko. While Fig. 4.7 shows lower values of Avg for non-recoding heuristics as expected due to a larger exploration of the solution space, Table 4.6 exhibits rather a higher value of Upb for Bernstein's heuristic. Significant conclusion: a lower Avg does not guarantee a lower Upb. Another performance indicator of the recoding is the smallest value that requires q additions, for q varying from 1 to the upper-bound of the recoding. Table 4.7 summarizes this information for a 32-bit constant. One can note that starting from q=7, higher values are given by RADIX-2 r compared to CSD.

Illustrative Example

The product 10599×X is first calculated in CSD, DBNS, and RADIX-2 P CSD =(X×2 13 )+(X×2 11 )+(X×2 9 )-(X×2 7 )-(X×2 5 )+(X×2 3 )-X.

P DBNS =((X 1 ×2 1 )+ X 1 )+ (X×2 13 )+ (X×2 3 )-X with X 1 =((X 0 ×2 1 )+X 0 )+(X×2 5 ) and X 0 =(X×2 8 ) [6]. In order to express the product in P RADIX , a two's complement representation of (10599) 10 is necessary, which is (010100101100111) 2 . Thus, in two's complement notation, the constant size is equal to N=15, to which corresponds r=4 (Table 4.3). As 15 is not a multiple of 4, the sign-bit (0 in this case) is extended by one position so as N=16. For C=(10599) 10 , Eq. 4.22 and 4.26 become respectively: . Fig. 3.11 depicts the four terms Q j . To determine the unknown values c 4j+3 , m j , and k j , the radix-2 4 look-up table (Table 3.4) is indexed by the terms Q j . Referring to Table 3.4, the triplets (c 4j+3 , m j , k j ) corresponding to Q 0 , Q 1 , Q 2 , and Q 3 are (0,7,0), (0,3,1), (1,7,0), and (0,3,0), respectively. The recoding of C=10599 involves the precomputation of two PP only {3×X, 7×X}, while a maximum of three PP {3×X, 5×X, 7×X} can be invoke by radix-2 4 recoding. Consequently, we can write:

∑ = × =
P RADIX = ((3×X)×2 12 )-((7×X)×2 8 )+((3×X)×2 5 )+ (7×X) = (X 0 ×2 12 )-(X 1 ×2 8 )+(X 0 ×2 5
)+X 1 with X 0 = (X×2)+X and X 1 = (X×2 2 )+X 0 . It has to be noted that for C=10599, P CSD and P DBNS require both 6 additions, while P RADIX requires 5.

The naive shift-and-add approach would have required 7 additions. We assume that addition and subtraction have the same area/speed cost, and that shift is costless since it can be realized without any gates, i.e. just by using hard wiring. The BIGE optimal solutions for the indicated values are obtained as follows:

(84AB5) H : 15 = (2 Simplifications in Eq. 4.26 are possible in case two consecutive terms Q j and Q j+1 with opposite signs exhibit pairs (m j , k j ) of the form (1 , r-1) and (1 , 0), respectively. This is illustrated by the two following possibilities:

⋅ ⋅ ⋅ ± × + ⋅ ⋅ ⋅ = ⋅ ⋅ ⋅ ± × - × + ⋅ ⋅ ⋅ - + - + + 1) (r rj 1) (r rj 1) r(j 2 X 2 X 2 X ⋅ ⋅ ⋅ ± × - ⋅ ⋅ ⋅ = ⋅ ⋅ ⋅ ± × + × - ⋅ ⋅ ⋅ - + - + + 1) (r rj 1) (r rj 1) r(j 2 X 2 X 2 X
Another interesting idea is to include redundancy in the terms Q j of Eq. 4.22 as will be shown farther. These two tricks will decrease the average number of additions in RADIX-2 r (Table 4.4, 4.5, and Fig. 4.7).

In addition to higher compression capabilities of RADIX-2 r compared to CSD and DBNS, its runtime complexity is linearly proportional to N as shown by Eq. 4.22. Moreover the required memory space is very small (for a 8192-bit constant corresponds a look-up table of 2 9+1 =1024 entries). These two features make RADIX-2 r very useful for huge constants. Thong [1] conjectured that 7 additions are enough up to 32 bits, allowing right-shifts (exhaustive BIGE algorithm). It has been proved via RADIX-2 r heuristic that 10 additions are sufficient up to 32 bits, using left-shifts only.

Since the introduction of H(k) [12] in 2004, CSE heuristics have outperformed DAGs at SCM [1]. This was achieved by applying CSE to each possible signed-digit (SD) form of the constant. Likewise, the search space of CSE can be expanded considering RADIX-2 r recoding instead of SD representation. For such a goal (SCM/MCM), Lefèvre's CSP heuristic [8] stands as the best CSE candidate for its lower computational complexity O(N 3 ) in comparison to its CSE counterparts [13].

Average Number of Additions (Avg)

( ) r OM 2 is the required set of odd-multiples

( ) { } 1 2 ..., , 5 , 3 2 1 - = - r r OM in radix-2
r recoding, with ( )

1 2 2 2 - = - r r

OM

. Since each slice Q j comprises r+1 bits, the total number of different combinations is then 2 r+1 . According to Eq. 4.22, only two combinations produce Q j =0: in case the r+1 bits are all "0" or all "1". Hence, the average number of non-null Q j terms is equal to ( )

r r r - + + - = - 2 1 2 / 2 2 1 1
. Each Q j ≠0 generates one partial product (PP). Thus, the average number of PP in the   r N / slices is: 

( )   r N Avg r pp / × - = - 2 1 . ( 4 
1 2 + × = k m j
. To set the correspondence between j and k, m j is denoted m jk . The exact number of occurrences (O cc ) of m jk in the 2 r+1 combinations of Q j is :

( )

4 1 2 2 1 ×         + × = - k m O r jk cc , (4.30) 
where   is the floor function. We need to multiply by 4 because each occurrence of m jk in the positive part of ( ) r DS 2 is double due to the fact that c rj-1 and c rj bits have the same influence on Q j term ( )

⋅ ⋅ ⋅ + × + × - 0 0 1 2 2 rj rj c c
. Symmetrically, when considering the negative part of ( ) r DS 2 , each occurrence of m jk becomes then quadruple (see Table 3.4). Therefore, the probability (P) that m jk occurs among 2 r+1 combinations is:

( ) ( )

1 2 + = r jk cc jk m O m P . ( 4.31) 
We deliberately employ "probability" instead "average" to make easier the demonstration, but actually the two notions have exactly the same meaning in this case. Now, the probability that m jk occurs in slice Q j knowing that it has never occurred in the slices before slice j is (Bayes's theorem):

( ) ( ) ( ) ( ) ( ) [ ] ( ) ( ) [ ] j jk jk j jk jk jk jk m P m P m P m P j P j m P j / m P - × = - × = = 1 1 1 I . (4.32)
The probability that any m jk for ( )

r OM k 2 1 .
. = occurs in slice Q j knowing that it has never occurred in the slices before slice j is: Hence, the average number of additions for RADIX-2 r is:

( ) om pp Avg Avg r Avg + + - = 1 ( )   ( ) ( ) [ ]   ∑ ∑ - = - = -           - × + × - + - = - 1 / 0 1 2 1 2 1 / 2 1 1 r N j k j jk jk r r m P m P r N , ( 4.35) 
with ( )

1 1 2 1 2 2 - -         + × = r r jk k m P
. We proved in the last section that to get the minimum number of additions, r must be equal to:

( ) ) 2 ( / ) 2 ( 2 log log N W r ⋅ ⋅ = , ( 4.36) 
where W is the Lambert function.

Using Avg expression 4.35, we calculated the average for N varying from 8 to 8192. Results are reported in Table 4.8. Note that insignificant differences exist between the values exhaustively calculated in Tables 4. 4 and those of Table 4.8. The reason is due to the fact that before calculating the number of additions, even values of C constant was reduced till to get an odd value. This is why Avg values in Tables 4.4 are slightly lower than those delivered by Avg expression. We rerun the same program but without the reduction of even number and got exactly the same values as Avg expression.

We observe that for RADIX-2 r , Avg values are not far from Upb ones as in the case of CSD. The reason is that the average number of null Q j is very low:

( )

    r r j r / N r / N Q Avg 2 2 2 0 1 = × = = +
. Note that 50% saving over CSD is attained for N=1148.

The maximum adder-depth (Ath) in cascaded adders is given by Eq. 4.27. Based on r values given by equation 4.36, we calculated Ath(r) and grouped the results in Table 4.8. A saving of 50% over CSD is achieved for N=80.

As for Upb, 50% saving is attained at N=128. 

Length of the Critical-Path in Cascaded Adders (Ath)

( )   ( ) r N OM r / ≤ 2
. This condition avoids generating more oddmultiples than it is actually invoked. Thus, a balanced solution for a lower Ath is found for:

( ) ( ) ( ) 2 2 4 log log N W r / . . = , (4.37)
where W is the Lambert function.

Table 4.9 indicates r values that yield lower Ath, accompanied with its corresponding Upb and Avg. Note that both equations 4.36 and 4.37 provide exactly the same results for N≤32, either in Ath, Avg, or Upb. Starting from N≥64, lower Ath are obtained using Eq. 4.37 but at the expense of higher Upb and Avg as indicated by Tables 4.8 and 4.9. For instance, for N=256 Eq. 4.37 achieves a reduction of 22.5% in Ath over equation 4.36, while it causes an increase of 26% and 2.5% in Upb and Avg, respectively. Contrary to Avg corresponding to equation 4.36, the ones of Eq. 4.37 are relatively far from Upb. Compared to CSD, a saving of 50% in Ath is obtained by Eq. 4.37 for N=56.

Finally, to decide which r expression to use depends actually on design requirements. If priority is given to area, Eq. 4.36 must be used. But in case speed is a concern, Eq. 4.36 must be employed.

Overflow Safety

In RADIX-2 r , overflow safety is easy to prove. We consider C and X with n and m bit-lengths, respectively. In two's complement representation, the product

X C P × =
needs n+m bits to be ; where 1 -+m n p is the sign-bit. To be sure there is no overflow risk; we must prove that the sign-bit of the last partial product (PP) is set at most at the n+m -1 position. We write:

( ) ( ) ( ) ( ) ( ) ∑ ∑ ∑ - = - = - = = × × - × × - = × × = - - + 1 0 1 0 1 0 2 1 1 2 1 1 r / n j j rj x r / n j j c rj r / n j j PP X Q X Q P m r rj
, where the last PP is equal to:

( ) ( ) r n x j c r / n X Q PP m n - - × × - × × - = - - 2 1 1 1 1 1
. The maximal positive values that j Q and X can take are 2 r-1 and 2 m-1

, respectively, to which corresponds a maximal PP of:

( ) ( ) 2 1 / 2 1 max 1 1 - + + - × - = - - m n x c r n m n PP . In this case, 2 2 - +m n
occupies the n+m-2 position, plus the sign bit just after at n+m -1 position. This proves that in RADIX-2 r overflow never occurs.

New Redundant Radix-2 r Recoding (R3) Algorithm

The objective is to decrease Avg without increasing Upb. Avg is successively reduced in two steps:

by the utilization of a redundant recoding, followed by a Common Digit Elimination (CDE) step on the PP set. In RADIX-2 r , CDE is already applied on the odd-multiples (m j ) by the recoding itself. A second order of CDE can be applied again on Q j terms thanks to redundancy.

We present hereafter a linear runtime Redundant Radix-2 r Recoding (R3) with better Avg and same Upb as RADIX-2 r .

Eq. 4.22 can be rewritten as Proof -This corollary is a direct consequence of Th. 4.3 applied for s=r/2. This means that Q j digit, which is r+1 bit-length, is split into two overlapping sub-digits P j0 and P j1 , each of r/2+1 bit-length. This assumes that r is even. If r is odd, Th. 4.4 is applied instead of Th. 4.3. For s=r/2, Eq. (4.39) becomes:

( ) ( ) ( ) rj r N j k j c j r rj m C 2 2 1 1 / 0 1 × × × - = ∑ - = - + , ( 4 
( ) rj r N j r j j P P C 2 2 1 / 0 2 / 1 0 × × + = ∑ - = .
(4.40)

Note that

2 / 1 0 2 r j j j P P Q × + =
, and that P j0 and P j1 have exactly the same properties as Q j , which means that they can be expressed in the same way as Q j is written in equation (4.38). Thus, we get:

( ) ( ) [ ] rj h j e l j r N j c j j j r rj v u C 2 2 1 2 1 1 / 0 1 × × × - + × × - = ∑ - = - + . ( 4.41) 
Because addition is a non-injective function, the quintuplet (u j , l j , e j , v j , h j ) is not unique; several ones might exist for the same R3 is illustrated hereafter for the particular case of 8<N≤64. To preserve optimality in Upb and Avg, r must be equal to 4 (Table 4.8). But as R3 comprises two sub-digits, r must be doubled (r=8), which means that s=4. Hence, with (r,s)=(8,4) optimality is guaranteed.

For r=8, 0≤|Qj|≤128, and equation (4.41) becomes: 

( ) ( ) ( ) j c N j h j e l j j j j j v u C 8 1 ) 8 / ( 0 2 1 2 1 2 7 8 × - × × × - + × = + ∑ - = ( ) ( ) j c N j j j Z Z
( ) ( ) ( ) [ ] ( ) j c N j h j e p j j j j j X v X u X C 8 1 ) 8 / ( 0 2 1 2 1 2 7 8 × - × × × × - + × × = × + ∑ - = .
(4.43)

The partitioning of the constant C according to equation (4.42) is depicted in Fig. 4 

( ) ( )   r j r N r Q Avg 2 / / 1 2 1 × - × = =
. Thus, we can write:

( )   1 2 / / 1 , 0 - × = = r j r N r Q Avg . Preserving the same ( ) 1 , 0 = j Q Avg
value in R3 is a proof of optimality of Avg, because the number of PPs as well as the odd-multiple set are exactly the same in R3 and RADIX-2 r .

Optimal R3 recoding is obtained using a C-program which exhaustively explores for each odd |Q j | varying from 1 to 127, all (u j , l j , e j , v j , h j ) possibilities and selects the least adder consumer combination according to the following priority order: (u j , v j )=(u j , 0); (u j , v j )=(1 , 1); (Z 1 ,Z 2 )=(1×2 7 , Z 2 ); and finally (Z 1 , Z 2 )=(Z 1 ,1×2 0 ). These two latter couples allow the following simplifications: 

( ) [ ] ( ) [ ] [ ] [ ] ... 2 
± × + - × + = ± × × - + × + × + + + j j j j Z Z Z Z ( ) [ ] ( ) [ ] [ ] [ ] ... 2 
± × + - × - = ± × × + + × + × - + + j j j j Z Z Z Z
In case none of those cases is encountered, C-program pursues in the following priority order: (u j , v j )=(1,3) or (3,1); (u j , v j )=(3 , 3); (u j , v j )= (1,5) or (5,1); (u j , v j )=(5, 5); (u j , v j )= (1, 7) or (7, 1); (u j , v j )=(7, 7); (u j , v j )= (3,5) or (5,3); (u j , v j )= (3,7) or (7,3); (u j , v j )= (5,7) or (7,5). This order maximizes the occurrences of 1, then of 3, and minimizes those of 5 and 7 in |Q j | digits, which will more likely reduce the number of adders in the whole C recoding. Optimized odd |Qj| combinations are grouped in Table 4.10. Even combinations of |Qj| are directly derived from odd ones using shift operations.

For a given 8<N≤64, optimality for RADIX-2 r and R3 is guaranteed for r=4 and r=8, respectively. To

RADIX-2 r corresponds ( )   2 4 1 0 / / , N Q Avg j = =
. Counting the number of u j =1, v j =0, and v j =1 in both odd and even |Q j | of Table 4.10, we can easily prove that for R3, ( )

  128 8 24 0 / / N v Avg j × = = and ( ) ( )   64 8 52 1 1 / / N v Avg u Avg j j × = = + = . This gives ( ) ( )   8 1 0 1 / N , v Avg u Avg j j = = + = which is equal to ( ) 1 0, = j Q Avg
. This is a formal proof that R3 (Table 4.10) is optimal. P RADIX = X 0 ×2 20 -X×2 19 +X 0 ×2 12 -X×2 11 +X×2 4 -X 1 with X 0 =(X×2)+X and X 1 =(X×2 3 )-X.

c-1 c0 c1 c2 c3 c4 c5 c6 c7 c8 c9 c10 c11 c12 c13 c14 c15 c16 c17 c18 c19 c20 c21 c22 c23 ( ) ( ) 7 1 0 2 1 0 c Z Z Q - × + = 16 2 8 1 0 0 2 2 2 × + × + × = Q Q Q C ( ) ( ) 15 1 1 2 1 1 c Z Z Q - × + = ( ) ( ) 23 1 2 2 1 2 c Z Z Q - × + = 8+1 bits : c-1= 0 C 24+1 bits Qj ( ) 128 
0 2 1 ≤ + ≤ j Z Z : c7 , c15 , c23 are sign bits
|Q j | Z 1 =u j × 2 lj Z 2 =(-1) ej ×v j × 2 hj (Z 1 + Z 2 ) j Even |Q j | (Z 1 + Z 2 ) j 1 1 × 2 0 0 × 2 0 U1 2 2 1 × U1 3 3 × 2 0 0 × 2 0 U3 4 2 2 × U1 5 5 × 2 0 0 × 2 0 U5 6 2 1 × U3 7 7 × 2 0 0 × 2 0 U7 8 2 3 × U1 9 1 × 2 3 1 × 2 0 U9 10 2 1 × U5 11 3 × 2 2 -1 × 2 0 U11 12 2 2 × U3 13 3 × 2 2 1 × 2 0 U13 14 2 1 × U7 15 1 × 2 4 -1 × 2 0 U15 16 2 4 × U1 17 1 × 2 4 1 × 2 0 U17 18 2 1 × U9 19 5 × 2 2 -1 × 2 0 U19 20 2 2 × U5 21 5 × 2 2 1 × 2 0 U21 22 × U11 23 3 × 2 3 -1 × 2 0 U23 24 2 3 × U3 25 3 × 2 3 1 × 2 0 U25 26 × U13 27 7 × 2 2 -1 × 2 0 U27 28 
P R3 =U 40 ×2 16 +U 40 ×2 8 +U 9 with U 40 = U 5 ×2 3 ; U 5 =(X×2 2 )+X and U 9 =(X×2 3 )+X.

Note that P RADIX requires 7 additions, while P R3 needs only 4. A saving of 2 additions is due to redundancy (U 9 and U 40 ) and a saving of 1 addition is due to CDE (U 40 ).

Avg has been exhaustively calculated for C values varying from 0 to 2 N -1, for N=8, 16, 24, and 32. But for N=64, we calculated Avg using 10 10 uniformly distributed random C values. For N=64, R3 uses 13.49 % less additions than RADIX-2 r (Table 4.11). For N≤32, the saving is not substantial because the number of Q j digits is very low (≤4). But for N=64, it is equal to 8, offering more possibilities to CDE. Note that for N=8, the saving of 3.51% is due exclusively to the use of redundancy since there is only one Q j digit.

We also determined the smallest value that requires q additions, for q varying from 1 to the Upb of the recoding. Table 4.12 summarizes the results for 32-bit constant. Note that starting from q=7, higher values are given by R3.

We have compared R3 to a number of well-known non-recoding algorithms for which neither Avg nor Upb are analytically known. While they exhibit lower Avg (Fig. 4.9), their respective Upb may be higher such as in the case of Bernstein's algorithm (Table 4 In Fig. 4.9 the comparison is limited to 32 bits. Beyond that bit-length, and especially for large constants (N≥64), it would be impossible to perform any comparison since the analytical expression of the average is unknown for all heuristics, except RADIX-2 r . Therefore, there is no guarantee that Hcub will preserve its leading position for high values of N. As for R3, CDE becomes more effective since the number of Q j digits increases. This may enable R3 to rapidly outperform Bernstein's heuristic. Finally, for huge constants, only R3 remains practical due to its linear computational time O(N). 

L

. Therefore, the same non-

trivial PP set ( ) { } X X X X r × - × × × - 1 2 , , 7 , 5 , 3 1 

L

can be shared among the M constants C i . Using the same reasoning developed in Section 4.6, we can easily prove that the upper-bound is equal to:

( )

      - - + × = - M r N M r U r pb 1 2 2 , (4.44) with ( ) ) 2 ( / ) 2 ( 2 log log N M W r ⋅ ⋅ ⋅ =
, where W is the Lambert Function.

We can also easily prove using Bayes's theorem that the average number of additions is equal to:

( ) ( )   ( ) ( ) [ ]   ∑ ∑ - × = - = -           - × + × × - + - = - 1 / 0 1 2 1 2 1 / 2 1 ) ( r N M j k j jk jk r r m P m P r N M M r Avg , ( 4.45) 
with ( )

1 1 2 1 2 2 - -         + × = r r jk k m P and ( ) ) 2 ( / ) 2 ( . 2 log log N M W r ⋅ ⋅ = .
As for the adder-depth (Ath), it is exactly the same as in SCM (Eq. 4.27) since the M constants C i are implemented independently of each other, sharing only the non-trivial PP set. Table 4.14 gives the computational complexity of each MCM algorithm that served for comparison.

It is important to note that the hidden constant in the big-O notation of Hcub is very important [13].

Table 4.15 compares RADIX-2 r MCM heuristic to the standard CSD technique for 32 and 64-bit constants, with a number of constants varying from 1 up to 100.

Conclusion

Based on radix-2 r arithmetic, we have introduced a new linear-runtime and fully-predictable

heuristic (RADIX-2 r
) for the multiplication by a constant. An improved version (R3) of RADIX-2 r has also been introduced. It is based on the utilization of a redundant radix-2 r recoding in conjunction with a common-digit-elimination technique. Compared to the existing algorithms, R3 is very competitive especially for large constants. Because of its linear-runtime complexity, R3 remains the unique practical heuristic for huge constants.

On the other hand, we have determined the analytic expressions for the maximum number of additions (upper-bound), the average number of addition (average), and the maximum number of additions forming the critical path (adder-depth). These bounds are the lowest bounds known so far for the multiplication by a constant (SCM and MCM). While the bounds are for a minimal set of operations (additions, subtractions, and left-shifts), they remain valid if any other operation (such as right-shifts) is allowed. It is noteworthy to mention that asymptotic worst-case cost of the optimal decomposition remains an open research problem.

The predictability feature of RADIX-2 r and R3 (bounds of R3 are lower) enables the generation of fully-predictable LTI-controllers capable of satisfying different requirements, such as: Algorithm Runtime [13] Hcub* [13] O(M 3 . N 6 )

BHM* [23] O(M 3 . N 4 )

Lefèvre's CSP [8] O(M

3 . N 3 ) RADIX-2 r O(M . N)
• Generate a controller comprising the minimum number of additions (most compact controller);

• Generate a controller with the shortest critical-path (fastest controller);

• Enable a trade-off between the number of adders and the number of adder-steps, i.e., between the area and the speed:

-Given a maximal number of adder-steps, generate a controller that needs a minimal number of adders/subtractors and does not violate the number of adder-steps;

-Given a delay constraint, generate a controller satisfying the delay constraint such that the number of adders/subtractors is minimal; etc.

CSD has two very-attractive features: ease-of-use and linear runtime complexity. Because of this, CSD is used in designing the vast majority of LTI systems. With the same features and much more interesting compression capabilities, RADIX-2 r and R3 will certainly replace CSD, and therefore allows the design of more compact, faster, and less power consumer LTI-systems.

Since the introduction of H(k) in 2004, CSE heuristics have outperformed DAGs at SCM. This was achieved by applying CSE to each possible signed-digit (SD) form of the constant. Likewise, the search space of CSE can be expanded considering RADIX-2 r recoding instead of SD representation.

For such a goal (SCM/MCM), Lefèvre's CSP heuristic stands as the best CSE candidate for its lower computational complexity O(N 3 ) in comparison to its CSE counterparts. Thus, the combination of Lefèvre's CSP with RADIX-2 r will be a very competitive heuristic.

Finaly, radix-2 r arithmetic is a simple and powerful mathematical tool that might be further explored to derive even tighter addition-cost complexities.

Chapter 5

Multiplication by a Variable

This chapter deals with the problem of hardware optimization of linear-time-variant (LTV) systems. The optimization focuses on the multiplication by a variable (MV) which is the main building block of LTV systems. We formalize the MV problem in radix- 2r arithmetic, and present the two most-known state-of-the-art solutions. We then introduce a series of fully predictable MV algorithms, accompanied with their respective speed and area complexities. Next, we set up the general equation of the space/time partitioning and derive the optimal radix-2 r architecture. At the end, a number of multiprecision-multiplication algorithms are proposed as an extension of the MV problem.

Optimizations of LTV Systems

The general definition of a linear system has already been given in Section 4.1. An LTV system is rather a system in which certain quantities governing the system's behavior change with time, so that the system will respond differently to the same input at different times.

An LTV system is formalized as follows. If X and Y are input and output vectors, respectively, and V is a transformation matrix, the linear system can be written as (5.1)

            ×             =             n mn m m n n m X X X V V V V V V V V V Y Y Y M K M M M M K K M
The transformation matrix V is an m×n matrix, where V ij represents the (i,j) value which can change with time. An output signal Y i is the product of the ith row of the transformation matrix V and the n input samples of X:

j n j ij j X V Y × = ∑ =1 . (5.2)
In Chapter 2, the state-space representation has been retained as the control computational-model to be optimized. Note that the explicit state-space LTV Eq. 2.2 is no more than a concatenation of four Y=V×X operations given by Eq. 5.1. In Chapter 6 we provide an illustrative example consisting in a PID-controller dedicated to LTV systems. The PID-controller can be tuned on the fly to handle changing environmental conditions.

The computational model of the LTV Eq. 2.2 involves mainly matrix-multiplications (MM), based on the very space/time critical MV operations. In an earlier work, MM operation was the subject of a thorough investigation in order to optimize the throughput and latency. The results were published in [1] [2]. Therefore, MM operation is not reconsidered in this thesis. The whole effort is concentrated on the optimization of the MV operation.

Formal Definition of the MV Problem

In Section 2.5.3.2, we have given the state-of-the-art of MV problem and have outlined the need for the high-radix paradigm to achieve high-speed, low-power, and highly-scalable architecture of the multiplier. These are the three main requirements for today's general purpose multipliers [3]. We have also formulized the radix-2 r multiplier in number of PPGs, number of non-trivial PPs, and number of additions forming the critical path (Fig. 2.9). We have especially insisted on the number of non-trivial PPs as being the major hurdle to designing high-radix multipliers (responsible for very dense PPGs).

Reader is encouraged to read Section 2.5.3.2 for a better understanding of the present discussion context.

In fact, non-trivial PPs are not the only problem for a compact PPG. Recoding large slices (r≥8) in a mono-bloc PPG such as in [4][5], requires the use of an RTL "case statement" with r+1 entries. In this case, 2 r+1 combinations must be processed, which yields to a huge amount of multiplexer resources. Thus, mono-bloc PPG recoding is incompatible with high-radix (r≥8) approach whose purpose is to reduce the multiply-time (N/r) of large operand size (N ≥32) multipliers.

To overcome these two above-mentioned shortcomings, a new radix-2 r design concept is proposed.

New Radix-2 r Design concept

To achieve such a goal, the multibit recoding multiplication algorithm is revisited [6]. Its design space is extended by the introduction of a new recursive version that enabled to solve the hard problem of radix-2 r two's complement multiplication for any value of r. The solution consists essentially in dividing the high radix-2 r mono-bloc PPG j (Fig. 5.1a) into a number of lower sub-radix-2 s oddmultiple free PPG ji (Fig. 5.1b), such as s is a divider of r. The direct benefits of the new partitioning of Fig.

5.1b are:

• There is no need to pre-compute non-trivial PP, which drastically reduces the required amount of hardware resources and routing;

• Since the size of PPG ji entry is much smaller than the size of PPG j one (s≤r/2), the total multiplexing logic required by RTL "case statements" to recode the entries is greatly reduced;

• The possibility to simultaneously process larger bit slices (r≥16) radically shortens the critical path in terms of adder levels, especially for very large operand sizes (N≥64).

Formal problem statement. Aided by Fig. 5.1b, now we can formally state the problem of constructing multiplier blocks. Definition 5.1 -MV problem: Given N, find the couple (r, s) that leads to the shortest critical path in adder stages and to the minimum logic resources inside PPGs.

New MV Complexity

In [5] a number of MV complexities are cited in a chorological order. They are summarized hereafter and compared to our new MV complexity.

In the mid-1950s, Kolmogorov made a conjecture that any multiplication algorithm will require ( )

2

N Ω elementary additions, where N is the binary length of the operands. This conjecture has been disproved in a constructive manner by Karatsuba who proposed an algorithm that uses ( ) In Eq. 4.28 we have proved an upper-bound for SCM. The latter can be easily extended to MV problem, giving:

( )       - × + - 2 2 2 2 r N r N (5.3) with ( ) ) 2 ( / ) 2 ( 2 log log N W r ⋅ ⋅ =
and W is the Lambert's function. The above-mentioned algorithms (Karatsuba's, Schönhage-Strassen's, and Fürer's) are all having a subquadratic complexity. However, the implicit constant, associated with the big-O notation, is very large and this severely limits their applicability to problems of practical importance. Karatsuba's multiplication outperforms classical shift-and-add algorithm if the size of the operands is around 1,000 bits. The exact break-even point is platform dependent. This makes it suitable for specific cryptographic applications. The algorithms by Schönhage-Strassen and Fürer are useful if one deals with extremely large numbers. Applications include computational number theory and computations associated with the search of large Mersenne primes and finding divisors of Fermat numbers. In those cases, we deal with numbers having more than 1 million decimal digits [5].

      - - = X r X X X O ) 1 1 2 ( ...

High-Radix Multiplication Algorithms

While the multibit recoding multiplication algorithm [6] is mathematically attracting, it suffers from a serious limitation: high-radices require high number of non-trivial PPs. This is the main reason why it was abandoned. Moreover, in industry commercial designs do not exceed r=4 (radix-16). A hybrid radix-4/8 is proposed in [12] for low-power multimedia applications. To increase the speed of the multiplier, most ancient processors employed radix-8, such as: Fchip [7], IBM S/390 [8], Alpha RISC [9], IA-32 [10] and AMDK7 [11]. While radix-16 is used only in the most recent Intel processors: 64 and IA-32 [13], and Itanium-Poulson [14].

In research, the highest radices are used in the algorithms proposed by Seidel [4] and Dimitrov [5].

Dimitrov's DBNS Algorithm

The biggest advantage of the DBNS multiplier is the fact that it has a provably subquadratic complexity (

N N log / 2 2
). The latter guarantees that, eventually, it will outperform the shift-and-add based algorithms for certain range of multiplicands. The biggest practical problems are: when will it happen; and how to apply the algorithm as efficiently as possible on hardware.

We give a general description of the proposed multipliers. Let Y and X be two N-bit unsigned integers, i.e., [ ]

1 2 , 0 , - ∈ N X Y
and let P denote the 2N-bit result of the multiplication X Y P × = .

All proposed multipliers compute the entire product in parallel combinatorially, i.e., without registers or feedback loops. The general structure of all multipliers that are proposed is depicted in Fig. 5 

( ) ( ) ( ) , 3 2 1 3 2 1 3 2 1 2 2 2 1 1 1 k k k t a s t a s t a s - + + - + - L (5.4) where [ ] r a i , 0 ∈ , { } 1 , 0 ∈ i s , and [ ] m t i , 0 ∈
, where m is the predefined highest power of three allowed by the representation. The encoder is essentially a table with 2 r rows (one for each integer represented by the block), each containing n triples of the form ( ) If for instance, we would like to use a window of size seven (r=7), then we have to make sure that any integer between 0 and 127 can be represented by using the corresponding number representation. For that purpose Eq. 5.4 has undergone a number of modifications to allow more degree of freedom in the choice of the associated digits [5]. Because if we want to use the double-base number representation in Eq. 5.4, then we will have to use three terms, because certain numbers less than 127 cannot be represented as the sum or difference of two {2,3}-integers (as it is pointed above, the smallest positive integer with this property is 103). On the other hand, if one uses representation in the modified form of Eq. 5.4, then it is sufficient to use digits

i i i t a s , ,
{ } 7 , 5 , 3 , 1 ∈ i d
which guarantee a representation for every 7-bit integer in the modified form of Eq. 5.4 using at most two terms. The following fact will be used in the design, so we shall specifically acknowledge it: Fact -Every nonnegative 7-bit integer can be represented in the form

2 1 z z ± , where { } , 2 7 , 2 5 , 2 3 , 2 1 , 2 1 k k k k z z × × × × ∈ with { }. 7 , , 1 , 0 L = k
Note -The smallest number for which the above fact is not valid is 137, i.e., an 8-bit number.

So, from a point of view of integer representations, this new number representation is more attractive compared to DBNS. In order to cover the same range (7-bit numbers) with the DBNS, one must use the digit set {1, 3, 9, 27, 81}, and more importantly three terms.

After examining many options (different digit sets with different numbers of terms), Dimitrov has concluded that for multipliers, it is optimal to have two summands (as in the above-explained case with Source: [5] 7-bit numbers) and a carefully selected set of digits. This particular encoding can be formally expressed as follows:

2 1 z z ± ± (5.5) where { } , 2 , , 2 , 2 2 1 1 k s k k a a a z × × × ∈ L and { } , 2 , , 2 , 2 2 1 2 k l k k b b b z × × × ∈ L for . , , 1 , 0 r k L =
The determination of the sets . For a better implementation of the multiplication, it is preferable:

• To select those digits in such a way as to encode every r-bit number in the form 2 1 z z ± (that is, the first summand is always positive), then it will lead to smaller area complexity of the design.

• To fix the signs of both the summands, 1 . For sizes that would be useful, e.g., in RSA cryptography, we may need larger windows if the hardware resources allow that.

Several multipliers using the above-discussed representations were described in VHDL in order to find out how they perform in practice. The representations used in these multipliers are collected in Table 5.1. They were carefully selected from many possibilities because they appeared to have very attractive features in theory and/or practice as discussed in the previous sections.

The multipliers of Table 5.1 were implemented on 0.18µm CMOS technology using Synopsis Design Compiler Ultra. They were compared to According to the results presented in [5], all of the multipliers are better than the add-and-shift reference multiplier in both area and power in 64-bit multiplication. Further, all the multipliers outperform radix-8 reference multiplier in 64-bit multiplication in terms of power consumption. Most of the multipliers have better area figures than radix-8 reference multiplier.

We can notice that some of the multipliers are better in terms of area than array-based reference multiplier in 32-bit multiplication. All of the multipliers are having more power consumption than both reference multipliers in 32-bit multiplication. The area consumption of 32-bit radix-8 multiplier is always better than any of the proposed multipliers. Mult_6bsms design is having the best performance in both area and power consumption among all designs, followed by Mult_7b2d multiplier.

The results show the delicacy of selecting the representations. The quality of the results varies considerably even between representations which, at first sight, have only little difference. The effects of the conditions discussed previously are clearly visible in the results. For instance, the "somethingminus-something" (SMS) encodings, where the first term is always positive and the second term is negative, show an advantage over other encodings with the same r. The sizes of the encoders start to play a significant role in the area complexity when r increases. This diminishes the feasibility of representations with large r, such as Mult_11b3d, although they appear attractive in theory because of the low total number of additions/subtractions.

It is important to mention the following:

• Although several multipliers have been proposed, there is no formal study (search of the optimum) on the size of the window r. We have no exact idea on how r evolves when the size of the operands N increases (there must be some sort of correlation);

• All recodings proposed in Table 5.1 are not DBNS recodings, though the starting Eq. 5.4 allows a DBNS recoding. Eq. 5.4 has been radically modified [5];

• All proposed algorithms are unsigned. Handling the two's complement representation will make the recoding harder. 
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Seidel's RNS Algorithm

In Seidel's algorithms [15] [16], a secondary radix multiplier recoding of the N-bit integer The N-bit integer can then be expressed as the weighted sum:

( ) ( ) j r N j j j r N j j d d Y 2 2 1 0 0 1 0 1 × + × × = ∑ ∑ - ′ = - ′ = γ (5.6)
Note that the generalization for arbitrary k of Eq. 5.6 partitions the sum of partial products into k independent secondary digit summations with respective weights

1 1 0 , , , - k γ γ γ L with 4 2 ≤ ≤ k considered herein.

Illustrative Example (k=2)

The primary radix is The right hand side of Eq. 5.7 has 26 partial products, achieving a reduction more than halfway that of Booth radix 4 and 8. These 26 partial products are partitioned into two groups, 13 of which employ the primary ( X × 7

( ) ( ) ( ) .
) and 13 of which employ ( X ) giving a PPG fanin of only 26. Two options are possible with these simplified partial products noting that

( ) ( ) n s j ij d 2 1 2 5 × - = × or 0 for all 12 0 ≤ ≤ j , 1 0 ≤ ≤ i . • Pre-compute ( X × 7 
): The primary partial product can be pre-computed by a shift and add

( X X X - × = × 3 2 7
) while the ij d are obtained from a recoder or recoding table. Note that the post-computation option (Fig. 5.3) utilizes only two more partial products and one additional level of 3-to-2 adder delay to avoid the complexity of a 2-1 adder to pre-compute ( X × 7

).

Illustrative Example (k=3)

The following encoding scheme is based on a radix-2 8 signed digit representation of the multiplier:

( ) , )

  8 / 1 + = ′ N N radix-2 8 digits { }. 128 , 127 , , 127 , 128 L - - ∈ j d
As previously suggested each radix-2 8 d j can be represented by three digits in the secondary radix-11:

, 11 11 0 1 2 2 j j j j d d d d + × + × =
where each of the digits d 2j , d 1j , and d 0j in the secondary radix representation is a power of two (see recoding table in [16]). The high order radix-11 digits d 2j can only have values from the set { -4, -2, -1, 0,1,2,4} and the middle and the low order radix-11 digits d 2j and d 1j can only have the values {-16, -8, -4, -2, -l,0, 1,2,4,8,16}. In this case the partial products corresponding to the high order digits and the middle digits have to be weighted by 121 and 11, respectively.

In [15], three other recodings are proposed with secondary radices 31 , 23 , 17 = γ , corresponding to k=4,2,3 and primary radices 2 15 , 2 8 , 2 13 .

Selecting Secondary Radix Recoding

A secondary radix recoding procedure involves the joint selection of a primary radix To allow the representation of all members of the contiguous integer interval [ ]

with from two to four digits, it is useful to first consider the case that γ D is a complete residue system modulo γ . Since complements and shifts can be employed to increase the range of digit values as traditionally employed in Booth recoding, all nonzero digits should be of the form

i 2 δ ±
, where δ is a member of the store {1}, {1,3}, or {1,3,5}. Note that residue digit sets of the form

( ) { } 2 / 1 2 1 , , , , 0 - 
± ± ± = γ γ d d d D L
are termed balanced complete residue systems when every integer i with 1 0 -≤ ≤ γ i is congruent to some (and necessarily exactly one) member of γ D .

It is important to note that the digit values of γ D that must form a balanced complete residue system need not form a contiguous integer sequence as do the traditional primary Booth digit sets. It is only necessary that the k-digit values radix γ cover the contiguous integer interval [ ]

1 1 2 , 2 - - - r r .
This flexibility is best utilized by finding sets γ D , where the maximum digit is not too large and, further, where the smallest odd magnitude that is not a digit of γ D is not too small. For this latter reason, are not consider digit sets γ D with the odd multiple store for δ having {1x, 5x} without 3x.

It should be noted that, for a 2-signed-bit secondary radix

1 2 ± = i γ , the digit set γ D will necessarily contain { } 1 2 , , 2 , 1 , 0 - 
± ± ± = i D L γ .
This set is a complete residue system for

7 = γ with { } 4 , , 2 , 1 , 0 ± ± ± = L γ D
and employs only the 1x multiplicand in the store.

New Radix-2 r Multiplication Algorithms

The equation (2.1.2) of the original multibit recoding algorithm presented in [6] does not offer hardware visibility. Let us rewrite it in a simpler hardware-friendly form, as follows:

( ) rj r rj r r rj r r n j rj rj rj rj y y y y y y Y 2 2 2 2 2 2 1 1 2 2 1 ) / ( 0 2 2 1 1 0 1 × - + ⋅ ⋅ ⋅ + + + + = - + - - + - - = + + - ∑ rj r n j j Q 2 1 ) / ( 0 × = ∑ - = , (5.8) 
where

0 1 = - y and * Ν ∈ r
. For simplicity purposes and without loss of generality, we assume that r is a divider of N. In Eq. 5.8, the two's complement representation of the multiplier Y is split into N/r two's complement slices ( j Q ), each of r+1 bit length. Each pair of two contiguous slices has one overlapping bit.

In literature, Eq. 5.8 is referred to by radix-2 r equation, to which corresponds a digit set ( )

r D 2 such as ( ) { } 1 1 2 , , 0 , , 2 2 - 
- - = ∈ r r r j D Q L L
. Thus, the signed multiplication between X and Y becomes:

rj r N j j Q X Y X 2 . . . 1 0 ∑ - = = , (5.9) 
Where each partial product can be expressed as follows:

( ) ( ) . Hence, the partial-product generation-process consists first in selecting one odd-multiple (m.X) among the whole set of pre-computed odd-multiples, which is then submitted to a hardwired shift of f positions, and finally conditionally negated (-1) e depending on the bit sign e of Q j term. Table 5.2 provides a picture on how the number of oddmultiples grows when the radix becomes higher. While lower m.X can be obtained using just one addition (3X=2X+1X), the calculation of higher ones may require a number of computation steps (11X= 8X+2X+1X).

X m Q X f e rj j . . . . . 2 1 2 - = , with ( ) { } 1 2 , , 3 , 1 2 1 - = ∈ - r r O m L such as ( ) 2 2 2 
To bypass the hard problem of odd-multiples, we exploit the fact that the N+1 bit-length two's complement multiplier Y on which Eq. 5.8 is applied, is composed of a series (N/r) of r+1 bit-length two's complement slices ( j Q digits) on which Eq. 5.8 can be recursively applied again. Based on this TABLE 5.2 -Main features of the multibit recoding multiplication algorithm.

Radix

Number of Partial Products Odd Multiples (m.X)

2 1 N 1X 2 2 N/2 1X 2 3 N/3 1X, 3X 2 4 N/4 1X, 3X, 5X, 7X 2 5 N/5 1X, 3X, 5X, 7X, 9X, 11X, 13X, 15X O(2 r+1 )|=2×|O(2 r )|.
In radix-2 r , the multiplier Y is divided into N/r slices, each of r+1 bit length. Each pair of two contiguous slices has one overlapping bit.

| observation, we have already announced Th. 4.3 and 4.4 accompanied with their respective proofs, inserted in Appendix A. When Th. 4.3 is applied to Eq. 5.8, it gives:

rj r N j s r i si ji P Y 2 2 1 0 1 0 ∑ ∑ - = - =           = , (5.10) 
where

( ) { } 1 1 2 0 2 2 - - - = ∈ s s s ji , ... , , ... , D P with ( ) { } 1 2 , , 3 , 1 2 1 - = - s s O L such as ( ) ( ) ks s r O O 2 2 2 = and rj r N j s r i si ji P . X Y . X 2 2 1 0 1 0 ∑ ∑ - = - =           = .
(5.11)

Likewise, when Th. 4.4 is applied to Eq. 5.8, we obtain: , resp.) of the number of oddmultiples in Eq. 5.11 and 5.13 in comparison to Eq. 5.9, but at the expense of a linear increase (ks-1 and k(s+t)-1, resp.) in the number of additions. The advantage by far outweighs the cost, as practically shown in the next section.

[ ] ( ) rj r N j t s r i i t s s ji ji T P Y 2 2 2 1 0 1 0 ∑ ∑ - = - + = +           + = , (5.12) where ( ) { } 1 1 2 , , 0 , , 2 2 - 
- - = ∈ s s s ji D P L L with ( ) { } 1 2 , , 3 , 1 2 1 - = 
- s s O L and ( ) { } 1 1 2 , , 0 , , 2 2 - 
- - = ∈ t t t ji D T L L with ( ) { } 1 2 , , 3 , 1 2 1 - = 
- t t O L such as ( ) ( ) ( ) 
The translation of Eq. 5.11 into architecture is depicted by Fig. 5.1b, where each PPG j (Q j ) is built up using r/s identical PPG ji (P ji ). This is not the case for Eq. 5.13 which requires two different PPG ji (P ji and T ji ) . Th. 4.3 and 4.4 can be merged together to produce PPG j made of a number of different PPG ji (P ji ,T ji ,U ji ,V ji ,...). This is the general case that is thoroughly studied in next sections in order to determine the optimal multiplier. 

Two New
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• the number (N/r) of PPG j ;

• the number (i) of lower sub-radices (

) used to build up the higher radix-2 r . To each sub-radix-2 s used (PPG ji ) corresponds an RTL "case statement" that recodes the digit terms (Q ji ,P ji ,T ji ,…) present in the equation; Del T is the delay in adder levels of the total critical path. Del is the delay in adder levels inside PPGj and d s is the delay due to multiplexer logic inside PPGji

P127 -0 PP1 PP2 PP3 X (b) Y7 , 12 Y12 , 14 Y14 , 15 Y-1 , 7 U0 V0 R0 S0 + PPG0 Q0 P0 T0 U1 + V1 R1 S1 + PPG1 Q1 P1 T1 + U2 + V2 R2 S2 + PPG2 Q2 P2 T2 + U3 + V3 R3 S3 + PPG3 Q3 P3 T3 + + + + + Critical path (Del T = N/r-1+Del+d s ) (a) X 64 Y-1 , 4
• the number of entries (e s +1) in each "case statement" corresponding to each sub-radix-2 s ;

• the number (d s ) of digit terms (Q ji ,P ji ,T ji ,…) that figures in each "case statement" ;

• and on the number of necessary odd-multiples (|O s |) used to calculate the digit terms.

Hence, we can announce that:

( ) ∑ + = i s s e O d r N Mux s | | . . 2 . 1 1
. For Dimitrov algorithm (Eq. 5.20), this gives: r=8, i=1, e s =8, d s =2, and |O s |=4. Thus, Mux1 = 512 N.

The synthesis of the RTL "shift statement" infers multiplexers whose complexity depends on the number (p sj ) of different shift positions for all odd-multiples involved in the calculation of each digit term (j). Thus, we can write:

( ) ∑ ∑ = i j sj sj O p r N Mux | | . . 2
. For Dimitrov algorithm (Eq. 5.20), this gives: r = 8, i=1, j=2, p s1 =p s2 =8, and |O s1 | = |O s2 | = 4. Thus, Mux2=8N. Hence, the total multiplexer complexity becomes: Mux T = Mux1+Mux2=520N.

An N-bit radix-2 r multiplier generates N/r PP. Thus, the total number of adders comprises:

• ( ) 1 / - r N
adders to sum the N/r PP;

• plus the necessary adders inside each PPG j to accumulate the intermediate PP issuing from PPG ji ;

• plus a number of adders included inside each PPG ji depending on the recoding scheme used.

For instance, in Seidel algorithm (Eq. 5.17), the term

ji ji ji T P Q + + 11 11 2
is calculated as follows:

( ) ( ) ji ji ji ji ji ji ji T P P P Q Q Q + - + + + - 2 3 3 7 2 2 2 2
, which requires 6 adders for post-accumulation operation [15] [16]. Hence, the total number of necessary adders is:

Add T = ( ) ( ) ( ) 1 8 7 8 6 1 8 - = + - N / / N / N .

Delay

The total delay (Del T ) along the critical path is the summation of PPG j delay and reduction tree delay. Based on the total number of adders (Add T ), the critical path of the multiplier in terms of logic levels is: Del T = N/r-1+Del+d s , where Del is the delay due to adder stages inside PPG j and d s is the delay due to multiplexer logic inside PPG ji . This latter depends on Mux factor of used PPG ji (2

). Therefore, d 1 < d 2 < d 5 < d 8 . Note that d s is fixed and Del depends on r and s values. For instance, according to Eq. 5.17, Seidel algorithm exhibits a critical path of: Del T = N/8-1+6+d 8 =N/8+5+d 8 . Table 5.3 provides the area occupation and delay for each recoding algorithm.

Physical implementation

All recoding schemes mentioned in Table 5.3 underwent several verification steps. First all equations were validated with a random C-program. Then, they were implemented at RTL level in Verilog-2001 (IEEE 1364) as technology-independent reusable IP-cores [3], using exactly the same optimized coding style for an equitable comparison. They are compile-time reconfigurable according to N and r. Reader is referred to [15], [16], and [5] for recoding tables used in Eq. 5.16, 5.17, and 5.20, respectively.

TABLE 5.3 -Main feature comparison.

New Recoding Algorithms Features Eq. 5.18 Eq. 5.19

McSorley [18] Eq. 5.15

Seidel [15][16]

Eq. 5.17 

N 106 N 5 N 194 N 520 Add T 1 8 5 - N 1 8 6 - N 1 2 - N 1 8 7 - N 1 4
-N N is the operand size and 2 r is the radix used. Del T is the total delay in terms of adder levels in the critical path of a linear reduction tree. d s is the delay due to multiplexer logic inside PPG ji . d s depends on Mux factor (d 1 <d 2 <d 5 <d 8 <d' 8 ). Mux T =(N/r)Mux, where

Mux is an estimation of the multiplexer logic required by PPG j . Add T is the total number of adders required in the whole multiplier. Del T is the delay in adder levels of the total critical path. Del is the delay in adder levels inside PPG j and d s is the delay due to multiplexer logic inside PPG ji .

All RTL codes went through a severe cycle-accurate functional verification procedure using Modelsim SE-6.3f logic simulator. They were first challenged against a set of special and severe test cases, and then submitted to a random test for a very large number of vectors. After a successful functional verification, physical tests were performed. They were integrated into an FPGA evaluation board for an ultimate validation. Afterwards, all equations were synthesized and mapped to the same Virtex-6 FPGA circuit (xc6vsx475t-2ff1156) using Xilinx ISE 13.2 release version [21]. We used for comparison a two's complement 64×64 bit parallel multiplier. The implementation results are grouped in Table 5.4

Although Dimitrov recoding exhibits the shortest critical path in adder stages (N/8), the impact of multiplexer logic (d' 8 ) on the total performance is important (Table 5.4). Besides, it is the most area TABLE 5.4 -Implementation results of a two's complement 64-bit parallel multiplier on Xilinx xc6vsx475t-2ff1156 circuit.

New Recoding Algorithms Results

Eq. 5.18 Eq. 5.19

McSorley [18] Eq. 5.15

Seidel [15][16]

Eq. 5.17

Dimitrov [5] Eq. 5. consumer despite the fact that it employs the lowest number of adders (N/4-1). Adversely, Seidel algorithm is the most adder consumer (7N/8-1). To determine which factor, Mux T or Add T , exerts more influence on area occupation, let us compare their respective ratios for Seidel and Dimitrov algorithms: Mux T (Eq. 5.20)/Mux T (Eq. 5.17)=2.7 and Add T (Eq. 5.17)/Add T (Eq. 5.20)=3.5.

Significant conclusion: the area occupation is dominated by Mux T factor, and becomes larger as Mux T number becomes higher (Table 5.3 and5.4). This correlation is advantageously used to minimize area occupation as will be shown in the next section.

McSorley algorithm (Eq. 5.15) is the least area consumer and the slowest recoding scheme for any value of N. The best area/speed compromise for N=64 is given by our recoding scheme based on Eq. 5.18. However, this latter will be outperformed by Eq. 5.19 for larger values of N (N>64) since a higher radix (2 16) is employed.

While energy consumption is function of the switched capacitance, Table 5.4 shows a direct correlation between area occupation and energy consumption. Making Mux T indicator lower, will result in a less energy-consumer recoding algorithm.

Finally, based on theory and implementation results, we conclude that the best tradeoff related to our recoding schemes depends on N and r values. For larger N values (N>64), larger radices are necessary to reduce the critical path. But for larger radices (r>16) we need to duplicate some of the elementary PPG ji (

) to build up the radix-2 r PPG j . Therefore, at this level a relevant question arises: given N, what is the value of r and its corresponding elementary PPG ji configuration (optimal partitioning of PPG j ) that leads to the shortest critical path (Del Tmin ) with minimum hardware resources (Mux Tmin )? The answer to this question is given in the next sections.

Preliminary Study to an Optimal Partitionning

We extend the recoding-space of our Eq. 5.18 and 5.19 to the general case as follows: each r+1 bit slice is recoded using a, b, c, d instances of radix 2 8 , 2 5 , 2 2 , 2 1 algorithms, respectively, such that 8a+5b+2c+d=r. To this recoding scheme corresponds the following equation:

∑ ∑ ∑ ∑ - = - = - = - = + + +     + + + = 1 0 1 0 1 0 1 0 5 8 2 8 5 8 2 . 2 . 2 . r N j a i b i c i b a i j i a i j i i j i C B A Y rj d i c b a i j i D 2 . 2 . 1 0 2 5 8     ∑ - = + + + , (5.21) 
where Given N and r, to determine the optimal partitioning of the whole multiplier (global optimum since PPG j are identical), we need to find first the quadruplet (a,b,c,d) that satisfies the condition 8a+5b+2c+d=r and leads to the PPG j with minimum hardware ressources (Mux min ) and the shortest critical path (Del min ). As it is not sure that such a solution exists, we are using composite metrics A i T j of area (A) and delay (T) for i and j varying from 0 to 5 [22]. A total of 11 metrics (A, A 5 T, A 4 T, A 3 T, A 2 T, AT, AT

j i j i j i j i T P . Q . A + + = 11 
, T) are used. The A metric alone delivers the best area solution (Mux min ), while T metric provides the best delay solution (Del min ). In between (A i T j ), more-or-less balanced solutions are obtained. The implementation of this solution requires the (Mux, Del) couple (Table 5.5) corresponding to each basic recoding algorithm (2

).

Because of an explosive number of possible combinations (N>>), the solution space is exhaustively explored using a deterministic C-program for r varying from 8 to 1024. The obtained results are reported in Table 5.6. A -T: all the metric span A, A

PPj

, T. To A and T metrics correspond respectively the minimal values Mux min and Del min that serve as reference for the optimization process.

To correct this disequilibrium, we replace respectively the two Seidel radix-2 8 and 2 5 expressions ( j i A and j i B ) included in Eq. 5.21 by their mathematically equivalent counterparts as follows:

∑ = = 3 0 2 2 k ji k k j i C A and ji ji ji j i C C D B 1 3 0 0 2 2 + + =
. These new expressions are radix-2 8 and 2 5 , respectively. They produce respectively the same intermediary partial products at PPG ji output as their Seidel counterparts. In fact

j i
A is formed by a succession of four instances of McSorley algorithm, while j i B is composed of one instance of Booth algorithm followed by two instances of McSorley algorithm. Del and Mux values of the new basic radices are grouped in Table 5.7. Results delivered by the deterministic C-program are reported in Table 5.8. All solutions are optimal since Del=Del min and Mux=Mux min . They are all based on radix-2 8 algorithm (a,0,0,0). In case r is not a multiple of 8, optimal solutions are also obtained, composed mainly of radix-2 8 algorithm with at most one instance of radix-2 1 , 2 2 or 2 5 algorithms, depending on the remainder of r by 8 division.

The new results are so interesting that we are encouraged to pursue further the optimization process using higher basic sub-radices (s>8) to reduce the total delay (Del T ) of the multiplier. Let us this time replace . We eliminate radix-2 5 since it can be derived from radix-2 1 and 2

2

. The new Del and Mux values of basic radices are grouped in Table 5.9. The C-program shows up even more interesting results since starting from r≥64 (Table 5.10), lower delays are obtained with the same multiplexer complexities as the ones reported in Table 5.8. Based on the obtained results, we pushed farther the optimization process using even higher basic sub-radices (s=16..32). All optimal solutions come either on the form (a,0,

. At this level we can draw a significant conclusion: since the optimal solution is always in the form (a,0,

with a=2k and b=2k', there exists an integer s=2k'' such as either (s,0,0,0) or (0,s,0,0) is the optimal solution.

Consequently, Eq. 5.21 is rewritten accordingly, as follows:

rj r N j s r i si s k k ji k . C Y 2 2 2 1 0 1 0 1 2 0 2 ∑ ∑ ∑ - = - = - =                     = , (5.22) 
with ji k ji k ji k ji k y y y C 1 2 2 1 2 2 + - - + = and } { 2 1 0 1 2 , , , , C ji k - - ∈ .
Based on heuristic developed in Section 5.4.1.3, multiplexer complexity of Eq. 5.22 for the whole multiplier is always equal to Mux T =10×N/2=5N for any value of r and s. As for the multiplier delay (Del T ), we need to determine the couple (r,s) that leads to the shortest critical path in terms of adder levels. This is what is achieved in the next section.

The Optimal Space/Time Partitioning

The total delay (Del T ) of the whole multiplier related to Eq. 5.22 is: Del T = N/r-1+Del+d 2 where Del is the PPG j delay equal to (r/s-1)+(s/2-1), and d 2 is the multiplexer delay corresponding to the recoding logic of radix-2 2 . Thus, Del T = N/r+r/s+s/2-3+d 2 . ).

(5.24)

Table 5.11 provides the s and r values that lead to the optimal partitioning with respect to the operand size N. The values s and r correspond to the number of multiplier bits that are treated simultaneously inside each PPG ji and each PPG j , respectively. For N=64, the optimal partitioning is obtained with (r,s)=(32,8) as illustrated by Fig. 5.6. Whereas Eq. 5.22 and 5.15 require the same amount of hardware resources (Mux T , Add T )=(320,31), they exhibit different critical paths: 7 and 31 in terms of adder levels, respectively.

Discussion of the Implementation Results

We proved via FPGA implementation (Table 5.4) how much accurate are the area heuristics developed in Section 5.4.1.3 (Table 5.3). Based on this, we have undertaken a gradual theoretical optimization process that yielded to Eq. 5.22. This latter is implemented on FPGA with N=64, and the results in terms of multiply-time, energy consumption per multiply-operation, and total gate count, are as follows: 78.98 MMPS, 1.45pJ and 1987 slices, respectively. TABLE 5.11 -The optimal partitioning versus operand size N.

New recoding

Eq. 5.22

McSorley [18] Eq. 5.15

Seidel [15] [16] Eq. 5.17 Dimitrov [5] Eq. 5.20 schemes are incorporating a number of adders in their PPG ji /PPG j which is 3, 6, and 1 for Eq. 5.22, Seidel and Dimitrov algorithms, respectively.

Significant conclusion: the area occupation is dominated by the Mux factor, and becomes larger as Mux value becomes higher.

Delay

Using higher radices (r>>) will certainly shortens the critical path. However, for high r values, monobloc PPG j recoding induces an important delay (d s ) due to the high density of multiplexer logic that significantly degrades the whole performance of the multiplier. This is clearly illustrated by Dimitrov radix-2 8 recoding whose critical-path totalizes 8 adder levels but exhibits a lower multiply rate (43.17 MMPS) compared to Seidel recoding that have a critical-path composed of 13 adder levels but shows a more interesting rate (48.62 MMPS) due to lower multiplexer complexity (Table 5.3 and 5.4). As for Eq. 5.22, since a composite PPG j is used, d s is equal to d 2 ( ji k C delay) which is the smallest delay (d 2 < d 5 < d 8 ). Besides, the critical path goes through the smallest number (7) of adder stages, exploiting maximum parallelism that can be provided by the triple-recursive Eq. 5.22. Thus, it is not surprising that Eq. 5.22 achieves the best performance (78.98 MHz), even when compared to Xilinx Coregen multiplier based on DSP-slices (75.86 MHz). A double-recursive (s=2) version of Eq. 5.22 served to design a scalable 16-bit setpoint Finite-Word-Length PID controller, employing five multiplication cores. The implementation results outperformed the published ones at all levels as will be shown in the next Chapter.

Significant conclusion: using composite recoding in conjunction with an optimal partitioning (r and s values) provides the shortest critical path. Eq. 5.22 shows high aptitude for pipelining. Two finely and coarsely grained systolic architectures for 64-bit multiplier are depicted in Fig. 5.7a and Fig. 5.7b, respectively. Fig. 5.7a architecture is more suitable for high throughput applications, with 7 clock-cycle latency.

New Radix-2 r Multip-recision Multiplication Algorithms

Prior to develop a highly-scalable radix-2 r multi-precision multiplier, the need for a flexible and lowpower sign-extension technique is mandatory.

New Radix-2 r Sign Extension Technique

Though many low-power sign extension techniques exist in the literature, they are not adapted to reconfigurability. The reason for this shortcoming is that the correction bits must be calculated for each value of operand-size N [23][24]. Besides, to our knowledge, no sign-extension solution exists for radix based multiplication (r). In what follows, we propose a generic low-power solution that circumvents these two obstacles. It is illustrated by Fig. 5.8 for N=8 and r=2, but can be systematically extended to any N and r values.

Intuitively, we are not simultaneously performing the sum of the partial products, but each partial product of current step j is added to the sum of the preceding ones (from 0 to j-1). The rationale for the number of sign-bits to the left can be done locally, step by step, row by row. In other words, we have to take advantage of the fact that the partial sum already contains the sum of the sign bits of previous partial products. We must simply ensure that the sum output of the sign bit of current step j is added to the two most-significant bits of the next step (j+1). To generalize to radix-2 r multiplication, the sign-bit (N th position bit) of each partial product is extended with r bits to the left (r-1 for a maximum shift, plus one bit for the sign), and the sum output of the sign bit of step j is added to the r most- significant bits of the next step (j+1).

New Radix-2 r Multi-Precision Multiplication Techniques

In traditional N×N bit multi-precision multipliers, there is possibility to perform either a single N×N double precision, or a single N/2×N/2 simple precision, or a twin parallel N/2×N/2 simple precision multiplication. This is made possible by partitioning the two operands X and Y into respectively most and less significant sub-operands (X H, Y H ) , and (X L ,Y L ). A number of solutions exist and are summarized in [23][25]. Unfortunately, they are either restricted to unsigned multiplication, or they do not take power consumption into consideration, or they are not flexible enough.

We propose hereafter a new technique that not only overcomes all above-mentioned shortcomings, : partial product bit; : product bit; : sign bit; : sum of sign bits;

: negative one inserted into carry-in of the adder; #i : step i

+ = + = + 0 0 0 0 0 0 0 0 0 = # 0 # 1 #2 #3 + =
Let us take Eq. 5.8 and apply it to X and Y for r=N/2, we obtain:

L H N j j N j X X Q Q Q X + = + = = ∑ = 0 2 1 1 0 2 2 2 .
(5.25) Hence,

0 0 2 1 0 2 0 1 1 1 2 2 2 P Q P Q P Q P Q Y . X N N N + + + = L L H L L H H H Y X Y X Y X Y X . . . . + + + = .
(5.26)

Note that Q 1 and Q 0 are (N/2)+1 bit size, but x -1 can be omitted from Q 0 since it is stuck at zero.

Thus, we obtain four independent signed multipliers: X H .Y H , X H .Y L , X L .Y H , X L .Y L which are respectively (N/2)+1×(N/2), (N/2)+1×N/2, N/2×(N/2), N/2×N/2 bit size. Fig. 5.10 illustrates the implementation of Eq. 5.26 for a signed 16x16 bit multiplier based on recoding Eq. 5.15 with r=2.

Eq. 5.26 eliminates the cumbersome term (EV×2 N/2 ) in equation ( 6) of [23] as well as the necessary logic for its generation. More importantly, in Fig. 5.10, four 8x8 bit multiplications can be performed simultaneously, whereas in [23] only two are allowed because of the shared terms (EV×2 N/2 ) and CV required for the sign extension. Without counting the necessary EV generation logic and the use of inverters for the negation of the sign bits, the partitioning proposed in [23] consumes a total bit count of 205 for a 16x16 bit multiplier, while ours requires 198 bits.

Note that Eq. 5.12 can be advantageously used to partition X H and X L with different bit lengths. For instance, with r=N, s=3N/4 and t=N/4, we obtain: 

Y X + + + = H H L H H L L L Y X Y X Y X Y X . . . . + + + =
(5.28) FIGURE 5.10 -Low-power multi-precision multiplier for the particular case (N,r)=(16,2) with 8-bit sub-operand size. 

XH.YH 9x8 bits

Four independent signed multipliers are generated: X H .Y H , X H .Y L , X L .Y H , X L .Y L , which are respectively (N/4)+1×(N/4), (N/4)+1×(3N/4), (3N/4)+1×(N/4), and (3N/4)×(3N/4) bit size. The translation of Eq. 5.28 into architecture is depicted by Fig. 5.11. Both partitioning schemes (Fig. 5.10 and 5.11) needs the same amount of bits (198).

More efficiently, Eq. 5.28 can be combined with Eq. 5.18 for the recoding of Y H and Y L submultiplicands to produce a faster partitioning (Fig. 5.12) for operand sizes larger than 16 bits. More importantly, Eq. 5.8 can be used to partition the X and Y operands into any desired number of slices depending on r value. Choosing for instance r=N/4 results into the following partitioning:

0 4 1 2 2 4 3 3 3 0 4 2 2 2 2 Q Q Q Q Q X N N N j j N j + + + = = ∑ = .
(5.29)

Hence, N n

N N P Q P Q P Q P Q Y X + + + = 2 0 2 4 3 1 2 2 2 4 5 3 2 2 2 2 2 N N N N P Q P Q P Q P Q + + + + 4 0 1 2 1 1 4 3 2 1 3 1 2 2 2 2 N N N N P Q P Q P Q P Q + + + + 0 0 4 1 0 2 2 0 4 3 3 0 2 2 2 P Q P Q P Q P Q N N N + + + + LL HH LH HH HL HH HH HH Y X Y X Y X Y X . . . . + + + = LL HL LH HL HL HL HH HL Y X Y X Y X Y X . . . . + + + + LL LH LH LH HL LH HH LH Y X Y X Y X Y X . . . . + + + + LL LL LH LL HL LL HH LL Y X Y X Y X Y X . . . . + + + +
(5.30) Eq. 5.30 generates sixteen independent signed multipliers. All are (N/4)+1×(N/4) bit size, except X LL .Y HH , X LL .Y HL , X LL .Y LH , X LL .Y LL which are (N/4)×(N/4) bit size. The implementation details of Eq. 5.30 for N=16 based on Eq. 5.15 with r=2 are described in Fig. 5.13. Eq. 5.30 requires a total bit count of 254 which induces an overhead of 28% compared to Eq. 5.26. Finally, Eq. 5.8 and Eq. 5.12 can be combined with any proposed radix-2 r recoding algorithm to produce any desired multi-precision multiplication scheme.

Conclusion

From the basis of the new multibit recoding multiplication algorithm, we have developed optimal multipliers with shortest critical paths and minimum hardware resources for any value of the operand size N. We have demonstrated by theory and FPGA implementation the superiority of our high-radix algorithms over their existing counterparts. Because exploiting the maximum parallelism inherent in the multiply operation, our look-up-table based multiplier (Eq. 5.22) is even speed-competitive with Xilinx's hardwired multiplier employing DSP-Slices (18×18 bit full-custom multipliers).

More importantly, we have also demonstrated that the current trend relying upon minimal numberbases for the development of high radix-2 r recoding (r≥8) with mono-bloc PPG requires an excessive amount of multiplexer resources, which offsets speed and power benefits of the compressor factor N/r. On the other hand, we have proved that composite PPG based on the new recursive multibit recoding algorithm is the best realistic alternative.
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The topology of our proposed recoding schemes shows high capabilities for pipelining which can be finely or coarsely grained to satisfy both high throughput and low latency applications. A radix-2 32 64-bit parallel multiplier has been finely pipelined, resulting in a systolic architecture with seven clockcycle latency.

While the theoretical concept has been validated using FPGA as a preliminary step, an ASIC implementation based on a standard-cell library is necessary for an ultimate validation of the whole optimization work.

As for the multi-precision solution, this latter would not have been possible without the development of a flexible sign-extension technique. Based on the new recursive algorithm, we have proposed a generic partitioning scheme that can be adapted to any size combination of the operands in order to reduce the power consumption while increasing the computational throughput. This new solution will be deeply explored for further optimizations using the proposed radix 2 r algorithms. The digital implementation of PID controllers went through several stages of evolution, initially dominated by the use of commercial-of-the-shelf (COTS) components and DSP. But over the past few years, FPGAs have brought a key advantage to digital control: the inherent parallelism of FPGA architecture allows many independent control loops to run at different deterministic rates without relying on shared resources that might slow down their responsiveness as in the case of COTS and DSP [10] [11].

A survey of recent PID related works can be classified into three categories. The biggest one includes works that are straightforward FPGA implementations targeting specific applications: DC-DC converter [12], temperature control [13], motor multi-axis control [14], liquid level control [15], and Xilinx versus Altera FPGA implementation for result comparison [16]. The second category proposes methodologies that analyze the FWL effect on PID controller in order to reduce the number of hardware resources [17] [18]. And finally the third category, paradoxically the smallest one despite the large popularity of PID, comprises architecture-optimization works. In [19] low-power serial and parallel multiple-channel PID architectures are proposed for small mobile robots. In this work, the optimization was carried out at macro-level considering several PIDs, rather than at micro-level (optimization of the PID itself). Nevertheless, the whole architecture will deliver much more interesting results if combined with an optimized PID. The second work [20] proposes serial, parallel, and mixed PID architectures incorporating different number (1-3) of multiplication cores. High power consumption, even with the serial architecture, and complex control-part are the two major shortcomings of this proposal. Finally, in [21] an attractive optimized PID structure based on distributed arithmetic (DA) is presented. Although this latter exhibits interesting results in terms of resource utilization and power consumption, it suffers from three serious drawbacks: high latency (n+1 clock-cycles for n bit set-point word-length), FPGA technology-dependent as it's essentially based upon FPGA look-up-tables (LUTs), and inability to handle time-varying PID parameters since they are precomputed and stored into LUTs. Nevertheless, it's considered as a reference design against which the obtained results are confronted into the same conditions.

The objective is to design optimized FWL-PID structures that overcome all above-mentioned shortcomings, and which are especially dedicated to embedded control applications. The PID cores are described at RTL level. They are highly reconfigurable and technology-independent, offering the possibility to be mapped both on FPGA and ASIC.

To reach such a goal, a special focus was put on the optimization of the inner arithmetic of PID. For that, we considered two discrete forms of PID algorithm: the commercial form [22], called also the standard or ISA form, and the incremental form. These two forms went through three successive types of FPGA implementations, using: Booth multiplication algorithm (BMA) [23], modified Booth multiplication algorithm (MBMA) [24], and a new developed version called recursive multibit recoding multiplication algorithm (RMRMA) [25].

Our previous paper [26] introduced a limited design-space of PID. In this chapter, we extended the design-space to accommodate different application cases and provided all necessary implementation details to make the design easily reproducible.

The Two Mostly-Used Discrete Versions of PID

A typical closed-loop system using a PID controller is shown in Fig. 6.1, where u c (k), y(k), and u(k) are the discrete signal quantities at the k th sampling instant of the reference set-point, the process-feedback measured output, and the PID controller output, respectively.

In digital control, commercial and incremental forms are the two mostly-used discrete PID versions [1] [22]. They are denoted by recurrent Eq. 6.1 and 6.2, respectively, and their corresponding coefficients are grouped in Table 6.1. Eq. 6.1 and 6.2 are fully detailed in the Appendix C.

( ) ( ) ( ) ( ) k D k I k P k u + + = , ( 6.1) 
where ( ) ( ) ( )

k y B k u A k P c ⋅ + ⋅ = ; ( ) ( ) ( ) 1 1 - ⋅ + - = k e C k I k I ; ( ) ( ) ( ) k f L k D H k D ⋅ + - ⋅ = 1
; with ( ) ( ) ( )
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where ( ) ( ) ( )
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To satisfy different application cases, two IP versions are developed for each equation with constant coefficients and with varying coefficients (Fig. 6.2). This latter requires a host side interface (HSI) to handle the runtime change of the coefficients. 

Coefficients

Commercial PID Incremental PID The commercial version allows the three standard PID functioning modes (P, PI, PID) according to Mode input value. At the end of u(k) computation, the Done output signal toggles during one clock cycle, and the PID enters into sleep mode (whole internal activity stopped except for clocking and HSI) for maximum energy conservation.

A b K p         + + s d i s p T T T T K 1 B p K -         + -

BMA Based PID

A straightforward parallel implementation of PID requires an amount of 7 adders/substractors and 5 multiplication cores for Eq. 6.1, and 4 adders/substractors and 3 multiplication cores for Eq. 6.2. In digital hardware, the total gate count scales linearly with word length for an adder core, while it scales quadratically for a multiplier core. Thus, any effort for a low-power optimization of PID must be focused on the implementation of the multiply-and-accumulate (MAC) function (X×Y) [27]. In this work, the optimization effort is rather concentrated on the double MAC function (X×Y+T×Z) called DMAC, considered as the main building block of our PID structures. Eq. 6.1 and 6.2 are partitioned accordingly.

For FWL-PID, two's complement fixed-point representation is used, which is habitually expressed in Q notation as Q ni.nf . The values are coded in n i bits before the point (integer word length including 1 sign bit), and n f bits after the point (fractional word length). The total word length is n=n i +n f . Booth multiplication algorithm [23] belongs to the class of recoding algorithm, i.e. algorithms that recode one of the two operands to cope with signed two's complement multiplication. Let Y be the multiplier: Let Y be the multiplier: 

Y j Y j-1 Operation 0 0 + 0 0 1 + X 1 0 -X 1 1 -0 ( ) ( ) ∑ ∑ - = - = + = + 1 0 1 0 2 . 2 . . . n j j j n j j j T P X Q Z T Y X (6.5) [ ] j n j j j T P X Q 2 1 0 ∑ - = + =
. . (6.6) According to Eq. 6.5, Booth algorithm consists in recoding the multiplier Y into a set of ternary numbers } { 1 , 0 , 1 -in order to generate n simple partial products which are summed subsequently. Table 6.2 summarizes the 4 possibilities that may occur. The -X can be easily formed by adding 1 to the complement of X. A direct translation of DMAC Eq. 6.5 into architecture (Fig. 6.3) requires one extra adder and two registers in comparison with the optimized version (Fig. 6.4) based on Eq. 6.6, called ODMAC. Additionally, one clock cycle latency is also needed in Fig. 6.3. The control-part responsible of producing the successive couples (y j-1 , y j ) is insignificant: just one multiplexer driven by a counter.

Based upon ODMAC as the main building block, PID architectures are constructed for both incremental (Fig. 6.5) and commercial (Fig. 6.6) forms, and their implementation results (Table 6.3) are respectively compared to those of [21]. Comparison was made into identical conditions using the same FPGA device (Spartan XC2S50E-7FT256), although relatively old, as well as the same synthesis-tool version (Xilinx ISE 9.1i). In [21], only a 16-bit word-length commercial version with constant coefficients (without HSI) is implemented. PID1 and PID3 exhibits interesting results: 44%, 25%, and 32% savings and 62%, 35%, and 38% savings in terms of gate count, power, and speed, respectively. PID3 exhibits higher savings but at the expense of control-quality. Latency is rather the same (17), which is n+1 clock cycles for all designs (PIDX).

Optimizing latency without sacrificing the three other issues is the main objective of the two next sections. 

MBMA Based PID

Eq. 6.3 can also be rewritten as follows [24]:

( ) ∑ ∑ - = - = + - = - + = 1 ) 2 / ( 0 2 2 1 ) 2 / ( 0 1 2 2 1 2 2 2 2 n j j j j n j j j j Q y y y Y , ( 6.7) 
where

0 1 = - y and } { 2 , 1 , 0 , 1 , 2 - - ∈ j Q .
In this case, the multiplier Y is divided into n/2 slices, each of 3 bits, with one bit overlapping between adjacent slices. The proof of Eq. 6.7 is given in [28]. Thus, the DMAC equation becomes: With regard of these improvements, one is encouraged to pursue farther [24] in reducing latency by considering larger slices, such as: Depending on r value ranging from 2 to n, PIDs with various levels of parallelism and latencies (n/r+1) can be automatically generated with slight control complexity. The special cases of r=n and r=2 correspond to fully-parallel and fully-sequential PID, respectively. In between (r=4,n/2), partiallyparallel PIDs are obtained. The outstanding advantage of this algorithm (Eq. 6.13) is that hard partial products are generated using simple ones (2X, X) only. For a simplified hardware and lower power consumption, the step-by-step sign-propagate technique is employed [36].
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Obviously, Eq. 6.13 does not reduce the number of partial products, but allows a modulable spacetime partitioning of the multibit recoding algorithm (Eq. 6.10), where n/r sets comprising each r/2 partial products can be generated and summed either simultaneously or iteratively. Whilst the parallel implementation of Eq. 6.13 allows an important reduction of the critical path (using a carry-save adder CSA), it requires too much space. Therefore, only the serial implementation is retained. In this case, latency drops from (n/2+1) to (n/r+1), whereas the overhead on the total critical path, which goes through log 2 (r/2) adder levels and which is equal to D in the case of MBMA, is slightly increased D+log 2 (r/2). Note that we are using a logarithmic summation tree and not a linear one (CSA like).

An illustrative serial example with r=4 is described as follows: ∑ ∑
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The mapping of Eq. 6.18 into a serial architecture is shown in Fig. 6.9. Such a case (r=4) would have required the computation of hard partial products (7X, 5X, 3X) if the simple form of Eq. 6.15 was used. Notice that MBMA is a special case of RMRMA for r=2. For r=1, Eq. 6.10 corresponds to BMA (Eq. 6.4). with r=4 not only achieves high improvement in latency (71%), but also maintains positive savings in power (14%) and speed (13%). These important achievements are partially due to logic-trimming performed by the synthesis tool on the constant coefficients. Such an operation is impossible in the case of PID [21] since the coefficients are stored into LUTs.
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At this stage, a key question arises: among this panoply of PIDs, which one fits the best one's application case? The answer to this question is given in the next section.

Discussion

In embedded control, satisfactory control-rate (without performance degradation) at minimum power consumption is the main requirement. To select the most adequate PID for a given application, it's necessary to investigate how speed, power and hardware resources scales versus r factor for a fixed word length n. Referring to Eq. 6.14 and aided by Fig. 6.9, the ODMAC architecture scales as a binary tree with one stage of r mux(8:1) followed by Log 2 (r)+1 stages of adders with a total of r adders too. Thus, the total delay cumulated by the critical path which goes through Log 2 (r)+2 stages increases with O(Log(r)) complexity, whilst latency (n/r+1) decreases linearly O(r), which makes the maximum control-rate increases as r increases. This is confirmed by implementation results shown in Table 6.7 In terms of resource occupation, the total complexity grows linearly O(r) as r multiplexers and r adders are required by ODMAC which is the most resource consuming block of PID architecture. This is also confirmed by the implementation results shown in Table 6.6. Note that each adder of each level of MAC and ODMAC as well as the two ones at the output of the PID (Fig. 6.5 and 6.6) are successively extended by one bit so that the total bit size of the control output u(k) becomes 2n+log 2 (r)+2. It's necessary to do so to prevent the apparition of a possible overflow in the data-path which can cause signal clipping and instabilities in the closed loop response [37].
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As for power consumption, intuitively, one would expect to see PID1_16 of Table 6.7 as being the most rapid and the most power consumer too, for the reason that it exhibits the smallest latency and the biggest total gate count! While it is almost true for the latter (13 MHz, before the first), it is quite the opposite for the former (244 mW, the smallest one). The explanation is that power consumption

( clk sw dd F C V P 2 5 . 0 =
) depends linearly on the frequency (F clk ), which is in this case 26 MHz (the smallest one) and also on the switched capacitance (C sw ) which describes the average capacitance charged during each clock period (1/F clk ). In fact, C sw depends on a number of parameter (circuit structure, logic function, input pattern dependence…) and not only on the total gate count (more precisely, not only on the total physical capacitance of the circuit). Furthermore, a study [38] that analyzed the dynamic power consumption in Xilinx's FPGA revealed the following share: 60% by Finally, when only low power is targeted, PIDX_1 is the best candidate. We dealt here with extreme situations only, but for a given couple (cr, pc) of control-rate and power consumption, several candidates are possible. Yet, the best PID is the one which requires the smallest gate count.

So far, speed and power have been considered in isolation to area which becomes critical, and sometimes prohibitive, for large word-length n due to the fact that PID is basically built of a set of multipliers (three or five) that scale quadratically with word length. The bigger is the area, the higher is the cost. Consequently, another advantage of RMRMA algorithm is to cope also with the cost issue as an additional constraint to speed and power.

We have deliberately chosen Spartan2e FPGA to compare our results with those provided in [21]. A mapping on a recent FPGA circuit (Virtex6) using XST 12.1 version of extreme PID2 delivered stateof-the-art results grouped in Table 6.9. Note that control-rate scaled with an average factor of 2, while power dissipation scaled with an average factor of 45. This is not surprising, since Spartan2e and Virtex6 were fabricated with two differently scaled technology processes: 150 nm and 40 nm, respectively. Therefore, the physical capacitances of the circuit in Virtex6 are relatively too much smaller. Additionally, the supply-voltages (V dd ) used for internal core (Vccint) and for output blocks (Vcco) are respectively 1.8V and 3.3V for Spartan2e, 1V and 2.5V for Virtex6. Furthermore, the efficient advances made in CAD tools (from Xilinx ISE 9.1 to 12.1 versions) as well as in FPGA architecture, such as advanced segmented-routing, much contributed to lower the power consumption [39]. Power consumption evaluation studies [38][39] based on simulation and measurements, targeting Virtex2 and Virtex6 families revealed the following results: 5.9µW per CLB per MHz, and 1.09 mW per 100 MHz at 38% toggle rate, respectively. These studies roughly confirm our power results as proximate values are obtained.

Timing and power evaluations were performed in the following conditions. Delays were calculated for two types of paths: Clock-To-Setup and all paths together (Pad-To-Setup, Clock-To-Pad and Pad-To-Pad.) The Clock-To-Setup gives more precise information on the delays than other remaining paths, which depend in fact on I/O Block (IOB) configuration (low/high fanout, CMOS, TTL, LVDS…). Thus, all delays (frequencies) presented so far are clock-to-setup delays with the highest speed grade of the FPGA circuit. As for power, we chose the highest Vcco voltage value (3.3 for Spartan2e and 2.5 for Virex6) with a maximum toggle activity of 50%, which means that Flip-Flops (FFs) toggle one time during each clock cycle. The reason is that only simple-edge triggered FFs are used for synthesis (no double-edge FFs).

Verification Method

The PID design verification process went through several steps. First Eq. 6.12 and 6.14 were tested with a random C-program. Then, a severe cycle-accurate functional verification procedure using Note that to represent the original parameters with full-precision, 44 bits are needed for the fractional part. Varied simulations were performed to verify the correctness of the PID RTL code. First, to explore the precision effect on control quality, the control output of PIDs with various fractional-part sizes (Q 4.4 , Q 4.12 , Q 4.20 ) were compared to that of the Matlab floating-point PID component (Fig. 6.11).

Simulation shows different rise-times for different precisions. The higher is the precision; the closer is the control output from the ideal model. The second simulation tests the behavior of the PID after having reached the steady state (Fig. 6.12). For that, two perturbations are successively exerted on control output and on the plant measure. Each time the system recovers as expected. And finally, the third simulation investigates the PID capabilities to track set-points of arbitrary amplitudes and durations (Fig. 6.13).

After a successful functional verification, the RTL code of PID was synthesized, placed, and routed on Xilinx's FPGA (Virtex-2). The three preceding co-simulations but with timing backannotation were performed again as a last necessary software verification step before hardware integration of the PID into an FPGA evaluation board (MEMEC V2MB1000).

Finally, as an ultimate validation step, a physical test of our PIDs is performed. We built up a classical temperature control setup (Fig. 6.14 and 6.15), which consists in a tube comprising a halogen lamp (12 V, 21 W), a temperature sensor (LM35), and a DC Fan (12 V, 1.68 W). Temperature regulation inside the tube is achieved by controlling either the intensity of the lamp, or the rotation speed of the fan. This is carried out by the use of two PWMs, whose duty-cycle ratios represent the PID controller output (u(k)). These two PWMs do not act directly on the fan or on the lamp but rather on transistors (IRF540) that control the power consumed by the lamp and fan. The V2MB1000 board is connected through RS232 port to a PC running a .net application which allows a real-time display of the temperature as well as an instantaneous tuning of the set-point.

The Finite-Word-Lenght (FWL) Effect

Fixed-point arithmetic is employed as an approximation of real numbers (floating-point), with a fixed bit-length of the word used to represent data (Finite Word-Length). This limitation leads to performance degradation (FWL effect) mainly due to quantization of coefficients (parametric errors) and roundoff errors subsequently cumulated during the computation process (numeric noise). In fact, the FWL effect is more-or-less exaggerated depending on the control algorithm used (I/O relationship, levels of parallelism, etc) as well as on the way the computations are performed (number of bits, different/unique fixed point position, round/truncation, etc). Compared to the reference floating-point implementation, the FWL effect can be assessed using some indicators such as transfer function sensitivity, or pole sensitivity [40][41] [42].

In fact, the objective is twofold: we need to provide an optimal ASIC/FPGA implementation of FWL PID without degrading control performances. To achieve such a goal, a double expertise is required in hardware design and control system. But usually, hardware designers do not master control system design, and control system experts do not have the required skills to implement and evaluate the controllers using ASIC/FPGAs [17][43]. This is why we propose a highly reconfigurable (n, r) and technology-independent FWL PID that can systematically respond to control-engineer demands after having modelled, simulated, and evaluated the performances provided by different bit-width fixed-point representations using Matlab/Simulink environment, and finally opted for an appropriate word-length (n) of the setpoint. As for latency value (r), it depends on the application domain and intended objectives. Precise guidelines on how to choose r value were given in Section 6.1.5. Now that (n, r) couple is known, the FWL problem is tackled from hardware side by simply adjusting in the RTL code the two compile-time constants: setpoint bit-size (n) and latency (r). The synthesis of such a PID generates an optimal structure that not only meets the performances specified by controlengineers, but also consumes minimum power and hardware resources. This would not have been possible without the use of the new highly serialisable multi-bit multiplication algorithm (Eq. 6.13). The incorporation of Eq. 6.13 [25] into Eq. 6.1 and 6.2 as an efficient PID engine, allows the generation of PID architectures classified as regular iterative architectures (RIA) [44], known for their high conformity with the principles of regularity and locality. In addition to Eq. 6.13, we highly recommend to use the optimal multiplier (Eq. 5.22) for high values of n (n≥16). As for low values of n, we have proposed in [25] several new highly serialisable multiplication algorithms, offering different features in power, space and delay, depending on the operand size (n). Reader is encouraged to explore these algorithms [25] to select the appropriate one that leads to best performances of its controller with regard to the size (n) of the setpoint.

Regularity and locality are two important features, highly sought in hardware design as they lead to an important gain in space and delay. Regularity is a general space feature, where the repetitiveness of just one or few elementary building-blocks (mux, adders and shifters of ODMAC, Fig. 6.9) and their interconnection scheme (predefined netlist) suffice to draw the whole architecture (MAC/ODMAC and then PID). In the other hand, locality is both space and time feature, in the sense where each buildingblock can only interact with its nearest surrounding neighbours, and any transaction from one building-block to the next is completed in one and only one unit time delay (clock period). Because of these two important features, our PIDs can be finely grained at bit level in space (setpoint bit-size n, latency r) and unit delay in time (latency r).

Experimental results depicted in Fig. 6.16 illustrate the FWL effects on temperature regulation.

Reducing the fractional-part size of the set-point beyond a certain limit (4 bits) yields to a continuous fluctuation of the temperature inside the tube (Fig. resources. As temperature regulation system has a very slow dynamic, speed is not a concern. Therefore, the most appropriate PID in this case is PIDX_1 as it is the least power consumer.

Adversely, for very fast dynamic systems, such as MEMS [45] or microrobotics applications [46],

PIDX_n/2 is the most adequate option as it leads to the highest control rate.

LQG Controller with Kalman Filter

Accurate and dexterous micromanipulation tasks are very important in a wide range of microrobotics applications such as microassembly tasks, minimally invasive surgery, genetics, in vitro fertilization, and cell mechanical characterization. In this case, the use of microgrippers and controlling gripping forces applied on manipulated samples in the micrometer range (i.e. between 1µm and 1mm) without destroying and damaging is still a great scientific and technological challenge [47].

The AS2M department of FEMTO-ST (Besançon) has been working for many years on problems related to the modelling and control of micro-systems for micro-assembly/micromanipulation applications. One of its numerous works is the modelling [47] and control [48] of the FT-G100 microgripper (Fig. 6.17) in order to enable dexterous micromanipulation tasks through gripping force sensing and control. The developed control model is based on the Linear Quadratic Gaussian (LQG) controller with Kalman filter.

We show hereafter how the Matlab model of the controller (LQG+Kalman) is gradually translated into a synthesisable Verilog code through the application of the new SCM/MCM heuristics introduced in Chapter 4.

Dynamic Model of the FT-G100 Micro-Gripper

The gripping force appears when the gripper arms are in contact with the manipulated object. The use of a coupled model of the gripper is necessary in order to take into account both dynamics of the actuated subsystem (electrostatic actuator + actuated arm) and the sensing one (sensing arm + capacitive sensor) (Fig. Source: [48] "support@femtotools.com" are used for the modelling approach. Higher dynamics of each subsystem are neglected as their effects are not significant. Thus, only second order models are considered [47].

Actuated System Modelling

Around an excitation voltage of 70V, the model of the discrete state of the actuated system identified during the gripping of a glass-ball of 80µm diameter is the following: 
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Sensing System Modelling

Likewise, the state-space representation of the sensing system is defined as follows: 
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Coupled System Modeling

Considering the assumption that the objects being manipulated by the micro-gripper behave like a spring having a stiffness k 0 , it is possible to characterize the effort of the gripping force F c by the following equation:

( ) ( ) a b b b a c x k k k x x k x x k F ⋅ + = ⇒ ⋅ = - ⋅ = 2 0 0 2 0

/

, with k 2 being the stiffness of the sensing system. 
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(2) Project the error covariance ahead for time k+1:
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(3) Compute the Kalman gain at time k+1: 19 -Kalman recursive algorithm. micro-gripper in the gripping phase (actuation and sensing), as follows:
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Kalman Filtering

Kalman filtering [49] uses a state-space representation comprising a stochastic part modeled in the form of a state noise w(k) and a measure noise v(k). Considering Eq. 6.20, the Kalman model of the microgripper FT-G100 is: It is important to note that the gain of Kalman K e rapidly converges to a constant value. It is therefore possible to make an offline calculation of the gain and exploit its permanent regime throughout the filtering algorithm. In this case, only equations ( 1) and (4) of the Fig. 6.19 are used.
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Force Control of the FT-G100 Micro-Gripper

The LQG belongs to the category of controllers called "optimal". It is based on the minimization of an energy criterion in order to achieve a compromise between the performance of the controlled system and the energy consumed. The LQG controller and the Kalman filter can be independently calculated according to a principle of separation. The synthesis of the LQG for controlling the FT-G100 micro-gripper is beyond the scope of this thesis. We limit ourselves to the utilization of the final equation provided in [48]:
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where y ε is the estimation error of the output, cc F is the force setpoint, and ( ) ( ) ( )
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The general control scheme grouping the LQG controller and Kalman filter is depicted in Fig. 6.20.

Hardware integration of the LQG controller with Kalman Filter

The Matlab model corresponding to Fig. 6.20 was kindly provided by Boudaoud [48] (Appendix D).

It runs on dSPACE with a 200 KHz sampling frequency. We have translated it to a synthesizable Verilog code (Appendix D) through the methodology described in Fig. 6.21. The latter can be perceived as a standard methodology allowing the translation of LTI Matlab models to synthesizable HDL (Verilog/VHDL) code. The steps of Fig. 6.21 are successively commented as follows. 6.20 -General scheme of the LQG controller with Kalman filter. Prefilter Source: [48] Step #1 Before performing the functional verification, we must determine which state-space form, canonical or simple, is more optimized (contains more zeros and ones elements). Because using the Matlab "canon" function, we have noticed that for low order systems (≤4) the canonical form is not necessarily better than the simple form. To decide which form to use, we have to count the number of zeros and ones elements in each representation. In our case, we opted for the canonical form though it does not offer a clear advantage over the simple form (to be in total conformity with the initial Matlab model for ulterior comparisons). Then, before pursuing the process, we must be sure that the Matlab description is 100% functionally correct to avoid very time-consuming backward verifications. In our case, the Matlab model of Fig. 6.20 has undergone severe verifications. For instance, Fig. 6.22 describes the noisy and filtered force (F c ) of the actuated arm.
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Step #2

In this step, the Matlab code is decompressed: the linear matrix operations (+, -, ×) are replaced by Step #5

Step #6

Step #7

Translate the fixed-point scalar model to a quantified fixed-point SCM/MCM scalar model

-Matlab Fixed-Point SCM/MCM Scalar Model -

Step #4

Step #1

Step #2

Step #3 scalar operations. The higher the order of the system, the more difficult the translation is. In our case, the order of the system is 4. The decompression process results in 29 multiplications and 23 additions.

The decompression operation is error prone; therefore it should be carefully performed or automated if possible. A functional verification of the scalar model is necessary to move to the next step.

Step #3 This is a crucial step. Up to now, we have been using the floating-point representation. To move to the fixed-point representation, we need to determine the dynamic range of all the variables involved. In our case, this operation has led to an integer part of 5 bits and a fractional part of 16 bits (Q 5. 16 ). With Step #4

In this step, the scalar multiplication (×) is replaced by SCM/MCM (additions, subtractions, and shifts) and the common sub-expressions are eliminated using MCM. In our case, the replacement of the scalar multiplication by SCM/MCM results in 101 additions (Appendix D). The 29 multiplications of step #3 would have required ( )

  290 29 1 2 / 21 = × -
additions in case the optimal multiplier (Eq. 5.22) was used. Adding the 29 additions, the total number of additions corresponding to step #3 is 290+23=313. A saving of (313-101)/313=68% is therefore induced. In fact the saving in logic resources is more important since the 29 multipliers require a recoding logic (PPG).

The Matlab simulation results of this step must be exactly identical to the ones of step #3.

Step #5

In this step, the Matlab model is simply translated into a synthesizable HDL code (Verilog in our case). The code should be compliant to the standard design-reuse methodology [6] to make it technology-independant. This allows the code to be mapped on FPGA and ASIC as well.

Matlab/Simulink simulations are necessary to validate the code. Simulation results should be exactly identical to the ones of step #3.

For the time being, this step is under progress. The Matlab code of step #4 has been systematically translated into a Verilog code, and the necessary verifications are being performed.

Step #6

The synthesizable HDL code is mapped to a FPGA circuit and physical tests are performed to validate the HDL code.

Step #7

Since the HDL code is technology-independent (design-reuse methodology), it can also be mapped to an ASIC using a standard-cell-library of a given foundry (e.g. TSMC 0.18 µm CMOS technology).

The hardware integration flow of LTI FWL controllers (Fig. 6.21) is very time consuming and errorprone, particularly the crucial steps #3 and #4. Consequently, the automation of the design flow becomes necessary, especially for high order systems.

Conclusion

Despite the large popularity of PID controller, little attention has been paid to its optimization, either for ASIC or for FPGA integration. To break down this paradoxical situation, a series of high-speed and low-power PIDs, dedicated to embedded applications were proposed. They are based on two discrete forms of PID algorithm: the incremental form and the commercial form, both with constant and timevarying coefficients. The work focused more particularly on the commercial form with varying coefficients (LTV) as it is the most used in industry due to the higher control-quality provided. Two types of optimizations were carried out: architectural and algorithmic optimizations. The former is a macro-level optimization, based on an efficient partitioning of PID discrete-equations, considering the double MAC (DMAC) as the main building block of PID architecture. An optimized version of DMAC was developed (ODMAC) for less hardware resource occupation. As for the micro-level optimization (inner optimization of ODMAC), three multiplication algorithms were experienced: BMA, MBMA, and a new general and recursive version of MBMA called RMRMA. In addition, some low-power design techniques were incorporated, such as: sleep mode, and step-by-step sign-propagation technique.

The implementation results of PID based upon these three algorithms yielded to gradual improvements with a clear superiority over results presented in [21]. For instance, concerning PID1_2 and PID1_4, savings of 177%, 23%, and 36%, and savings of 284%, 14%, and 26% are obtained in control-rate, power consumption, and total gate count, respectively. Additionally, analytical scalingcomplexity evaluations with respect to the couple (n,r), confirmed also by software simulations, revealed useful information which is summarized as follows:

• PIDX_n/2 is the fastest PID that yields to the highest control-rate (30 MHz for PID2_8 mapped on Virtex6, with (n,r)=(16,8) );

• PIDX_1 is the most power efficient PID when speed is not a concern;

• PIDX_n and PIDX_n/2 are the most efficient PIDs when both high control-rate and low-power dissipation are required.

RMRMA is a double recursive algorithm (Eq. 6.13), which is a particular case of Eq. 5.22. The use of the triple recursive version (Eq. 5.22) instead Eq. 6.13 will produce more efficient PIDs.

Further extension to the present work is to apply the same (or appropriate) partitioning in conjunction with RMRMA algorithm (or Eq. 5.22) to the set of recurrent equations of an arbitrary number of multi-loop PID controllers taken as a whole.

The LTI option has been addressed through the implementation of an LQG controller with Kalman filtering. A methodology for converting a Matlab code to a synthtizable HDL code has been proposed and applied. Though it has contributed to a drastic reduction of logic resources (68% saving) due to the utilization of our SCM/MCM algorithms, the methodology is very time-consuming and error-prone, especially for high-order systems. The automation stands therefore as the sole practical solution, however, it requires a considerable effort (code translations).

Chapter 7

General Conclusion

Let us restart from the introduction:

The objective of the thesis is the development of a new binary arithmetic adapted to the FWL problem, enabling an easy generation of minimum word-size controller-structures with acceptable control performances.

In this thesis, a new radix-2 r arithmetic has been developed. It basically relies on the multibit recoding algorithm which was introduced in 1990 but abandoned due to its inability to cope with highradix arithmetic. We have solved its radix lock and taken, as a result, full advantage of its high potential in producing efficient multiply arithmetic, which is the real engine of LTI/LTV controllers. In addition, because highly-scalable (r), the new radix-2 r arithmetic is well adapted to the FWL effect.

Given a bit-size N of the word that ensures acceptable control performance, the new arithmetic is capable of generating the optimal realization of the FWL controller without degrading the control performances.

The "optimality" of the realization comes from the multipliers themselves. For each value of N, we provide the optimal space/time partitioning of the multiplier that leads ineluctably to the optimal implementation of the controller structure. This is valid for both types of multiplier: variable multipliers and constant multipliers.

The variable and the constant multipliers have been used to build up two FWL structures: an LTV (PID) and LTI (LQG + Kalman filter) controllers, respectively. The PID shows a high superiority over its existing counterparts, either in speed, power, or area. As for the LQG controller, a drastic reduction in logic resources is achieved, which means also much higher speed and less power consumption.

We have proved via the implementation of the PID and LQG controllers, the high capabilities of the new arithmetic to respond to the needs of MEMS applications in speed, power, and especially in scalability for an easy adjustment of the control performances.

Major Contributions

Breaking the high-radix deadlock of the multibit recoding algorithm has enabled to achieve some important results in binary arithmetic, notably:

• The development of a linear O(N) and fully predictable heuristic for the multiplication by a constant (SCM/MCM). The major advantage over the existing heuristics is that no limitation exists on the word-size (N) of the LTI controller.

• The development of an optimal algorithm for the multiplication by a variable (MV). According to the word-size of the LTV controller, there exists an optimal multiplier that leads to an optimal implementation of the controller.

• The development of several multi-precision multipliers (MPM) allowing a number of LTV controllers with different word-sizes to share the same multiplication array. This contributes to increase the throughput while decreasing the power consumption.

• The determination of the currently best known analytically-proved bounds for the multiplication problem (SCM, MCM, and MV).

Current Limitations

Because of a limited time, a number of improvements could not be undertaken, namely:

• For the multiplication by a constant, we have proposed two heuristics: RADIX-2 r and R3.

While RADIX-2 r is fully predictable (Upb, Ath, Avg), R3 is not predictable. Nevertheless, since we have proved that R3 is better than RADIX-2 r , R3 can be bounded by RADIX-2 r metrics.

• Lefèvre's algorithm for the multiplication by a constant relies on CSD recoding. Since R3 is much better than CSD, combining Lefèvre's algorithm with R3 will produce better results.

• To determine the optimal multiplier (Eq. 5.22), we have employed a mathematical formalism (Eq. 5.21) including only four low radix recodings (Seidel radix-2 8 and radix-2 ). These are the only low-radix algorithms that we are aware of. In case another low-radix recoding exists, it can be inserted into Eq. 5.21 to look for another optimum that could be better than Eq. 5.22.

• We still do not know whether RADIX-2 r is a canonical recoding (minimal and unique) even after the simplifications given by Eq. 3.45 and 3.46. A mathematical proof is missing. The proof, if any, will let to declare RADIX-2 r as a generalization of CSD (i.e. CSD=RADIX-2

).

• While the theoretical concept for MV has been validated using FPGA as a preliminary step, an ASIC implementation based on a standard-cell library is necessary for an ultimate validation of the whole optimization work.

Perspectives

The new arithmetic is a complete package, ready for integration. While it is dedicated to MEMS applications in general, a direct utilization for the AS2M department would be in the control of microgrippers or the integration of smart sensors.

Translating FWL controllers from high-level specifications in C or Matlab code to a synthesizable HDL code requires a fully automated design flow. Such a flow is already under progress in a French ANR project called DEFIS (Design of Fixed-Point Embedded Systems) [1]. It would be useful to explore the possibility to integrate some of the results of this thesis into the DEFIS flow, especially the predictable SCM/MCM heuristic and the optimal MV algorithm.

The "predictability" is a highly sought feature for CAD synthesis tools. It enables the synthesis tools to rapidly satisfy designer requirements in speed and area, avoiding therefore unnecessary feedbacks.

Hence, the new SCM/MCM, MV, and MPM algorithms can be incorporated into synthesis tools to produce predictable IPs. In fact the Q j term is no more than a two's complement representation of r+1 bit string which can be split in its turn into r/s two's complement overlapping slices (P ji ), each of s+1 bit length. Thus Y becomes:

( [ ( ) r m O 2 represents the required set of odd-multiples of the multiplicand (m.X) for radix-2 r . Hence, the partial-product generation-process consists first in selecting one odd-multiple (m.X) among the whole set of pre-computed odd-multiples, which is then submitted to a hardwired shift of e positions, and finally conditionally complemented (-1) s depending on the bit sign s of Q j term.. While lower m.X can be obtained using just one addition (3X=2X+1X), the calculation of higher ones may require a number of computation steps (11X= 8X+2X+1X).

∑ - = + + - ⋅ ⋅ ⋅ + + + + = 1 0 2 2 1
To bypass the hard problem of odd-multiples, we exploit the fact that the two's complement multiplier Y on which equation ( 1) is applied, is composed of a series of two's complement digits ( j Q ) on which equation (1) can be recursively applied again. Based on this observation, let us announce the two following theorems. 

Theorem ( 1) and ( 2) allow an exponential reduction (1/2 ks and 1/2 k(s+t) , resp.) of the number of odd-multiples in equations ( 4) and ( 6) in comparison to equation ( 2), but at the expense of a linear augmentation (ks-1 and k(s+t)-1, resp.) in the number of additions. The advantage by far outweighs the cost, as practically shown in the next section.

The translation of equation ( 4) into architecture is depicted by Fig. 1, where each PPG j (Q j ) is built up using identical PPG ji (P ji ). This is not the case for equation (6) which requires two different PPG ji (P ji and T ji ) . Theorem (1) and ( 2) can be merged together to produce PPG j made of a number of different PPG ji (P ji ,T ji , U ji , V ji ,...). This is the general case that is thoroughly studied in the next section in order to determine the optimal multiplier. 2) permit to build up any high radix-2 r multiplication algorithm based on lower sub-radices, employing much less odd-multiples. The objective is to generate high radix-2 r multiplication without odd-multiples for a maximum reduction of multiplexer complexity inside PPG j . To achieve such a goal, a number of odd-multiple free lowradix algorithms are used, such as Booth algorithm [6] (radix-2 1 ), McSorley algorithm [1] (radix-2 2 ), Seidel et al. algorithms [4] (radix-2 5 and radix-2 8 ). The combination of these four algorithms enabled the generation of a series of higher radix recoding schemes (2 3 -2 32 ) with minimum hardware resources (Table I). The generation process was manually guided by an heuristic (Table II) that evaluates the logic complexity (Mux) inside each PPG j (Fig. 1).

The multipliers were mapped to Virtex-6 FPGA and characterized in terms of multiply-time, energy consumption per multiply-operation, and area occupation for r value varying from 2 to 64. The obtained results (Fig. 2, 3, and4) showed an outstanding superiority of our algorithms over their recent counterparts [4] [5]. When comparing our algorithms to each other, ß2 2 algorithm is the most area and energy efficient algorithm for any value of r (Table II). For r ranging from 8 to 64, ß''2 8 is the fastest algorithm, but it is outperformed by ß2 32 for r values greater than 64. ß2 2 algorithm served to design a 16-bit set-point PID. The implementation results outperformed the published ones at all levels [7]. , where e is the system error ( ( ) ( ) ( )

t y t u t e c - =
), u c is the command signal (setpoint), y is the process variable (measured variable). K p is the proportional gain, T i the integration time constant, and T d the derivative time constant of the controller. Using Laplace transform, ( ) t u is expressed in s-domain by: ( ) ( ) ( )

( )         ⋅ ⋅ + ⋅ + = s E T s T s s E s E K s U d i p .
For a small sample interval T s , the continuous time variable ( ) t u can be discretized using the following approximations: . This latter equation is called the incremental form of the controller. A drawback with the incremental algorithm is that it cannot be used for P or PD controllers.

Commercial Form

For better performances of PID, two corrections are performed: limitation of the derivative gain and setpoint weighting. A pure derivative action will induce a very large amplification of measurement noise. The gain of the derivative must thus be limited. This can be done by approximating the transfer Consequently, the discretized form of ( )

t u d is: ( ) ( ) ( ) ( ) ( ) s d p s d T k Y k Y T K T k D k D N T k D 1 1 - - - - - ⋅ - = .
After simplification, we obtain: Binary Arithmetic for Finite-Word-Length Linear Controllers: MEMS Applications Abstract: This thesis addresses the problem of optimal hardware-realization of finite-word-length (FWL) linear controllers dedicated to MEMS applications. The biggest challenge is to ensure satisfactory control performances with a minimal hardware. To come up, two distinct but complementary optimizations can be undertaken: in control theory and in binary arithmetic. Only the latter is involved in this work.

Because MEMS applications are targeted, the binary arithmetic must be fast enough to cope with the rapid dynamic of MEMS; power-efficient for an embedded control; highly scalable for an easy adjustment of the control performances; and easily predictable to provide a precise idea on the required logic resources before the implementation.

The exploration of a number of binary arithmetics showed that radix-2 r is the best candidate that fits the aforementioned requirements. It has been fully exploited to designing efficient multiplier cores, which are the real engine of the linear systems.

The radix-2 r arithmetic was applied to the hardware integration of two FWL structures: a linear time variant PID controller and a linear time invariant LQG controller with a Kalman filter. Both controllers showed a clear superiority over their existing counterparts, or in comparison to their initial forms. 
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 2122 FIGURE 2.1 -(a) Microgripper with two degrees of freedom piezocantilevers. (b) Step response of the piezocantillever. (c) Terminal parts of the microgripper.
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 23 FIGURE 2.3 -Some force spans characterizing the microworld.
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 25 FIGURE 2.5 -Micromanipulation problem due to adhesion forces. (a): Difficulty to grip microobjets; (b): Problems in placing a micro-object; (c): difficulty of positioning a micro-object due to adhesion forces created by surrounding micro-objects.
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 210 FIGURE 2.10 -Illustration of an unsigned 8-bit multiplication, where a 4-bit multiplication, shown in white, is computed in parallel with a second 4-bit multiplication, shown in black.

xFPR

  denotes the tuple (β, α, γ) defining the fixed-point representation of x. Hence,

FIGURE 3 . 1 -

 31 FIGURE 3.1 -Fixed-point representation of a signed real number in two's complement system.
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 83334 FIGURE 3.3 -Significand in radix-r fixed-point representation.
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 36 FIGURE 3.6 -Conversion process from Two's complement notation to SD representation of the positive integer "7".

  (a) Column reduction (b) Row Column FIGURE 3.7 -Reduction of consecutive active cells lying in one column (a) and in one row (b).

  as the DBNS map of the integer x, represented in the ARDBNR. The image ( ) j i I z , of the DBNS map of the number z=x+y can be obtained using:
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  index locations of the active cells in the CDBNRs of x and y, respectively.
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 39 FIGURE 3.9 -Example of the DBNS Multiplication Process. (a) Multiplication result without reduction. (b) Multiplication result ARDBNR reduction.
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 38 FIGURE 3.8 -Example of the DBNS addition process.
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 310 FIGURE 3.10 -Binary-coded number format for RNS(8 | 7 | 5 | 3).

  16 and 2, respectively (16+2=18).
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 4145 FIGURE 4.1 -The minimal number of addition for

23 .

 23 Fig. 4.2a and 4.2b depict the best optimization for each case individually. The nodes denote addition, while the edges show the required amount of shifting. Fig. 4.2a and 4.2b require two additions, resulting in four additions to perform both multiplications. Fig. 4.2c shows the simultaneous optimization of the two variables. The variables can share a common multiplication 9x, hence, the overall number of additions for both variables is reduced by one (i.e., total of three additions).
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 42 FIGURE 4.2 -Multiplication of the constants 81 and 23. (a), (b) The optimization of each variable independently; this requires two additions per constant for a total of four additions. (c) The simultaneous optimization of both variables. The variables can share one addition resulting in three additions for the multiplication of both constants.
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 43 FIGURE 4.3 -An example that shows the benefit obtained by considering common subexpressions that span across multiple output variables. (a) the example of a linear system; (b) decomposing constant multiplications into shifts and adds; (c) extracting common bit patterns across constants multiplying a single output variable; (d) extending common subexpressions to include multiple output variables.
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 44 FIGURE 4.4 -Matrix decomposition. The constant matrix in (a) is split into two matrices in (b). This results in a reduction of multiplications for the overall system. Part (a) requires six multiplications corresponding to the six positive and negative values of 0.66 and 0.33. Part (b) requires only three multiplications for the two values of 0.33 and the one value of -0.66.
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 341 to keep track of the sign 2: while 0 Find the best approximation of n of the form Greedy algorithm.
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  max b ALGORITHM 4.2 -Double base constant multiplication.

  TABLE 4.1-A DBNS representation of c = 10599 obtained using two blocks of 7 bits each. Chapter 4 -Multiplication by a Constant 62 It has been proved in [6] that the number of additions generated by Alg. 4.2 is bounded by
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 41 General A-operation: . An A-operation is an operation with two integer inputs u, v

  Hcub considers positive fundamentals only and use right shifts just to normalize the output fundamentals to be odd. The absolute value in the definition of A enforces positive fundamentals, and enables the subtraction to be done in only one direction, which simplifies the definition. The structure of a multiplier block can be represented as a directed graph. Such graph is called an A-graph, since it is built out of the A-operations shown in Fig. 4.5. The vertices of an A-graph are labelled with their respective fundamentals; hence the input vertex has label 1. The edges are labelled with a 2-power scaling factor equivalent to the performed shift. Negative edge values are used to indicate subtractions at the following vertex. The problem of constructing multiplier blocks can now be formally stated as follows. Definition 4.2 -MCM problem: Given a set of positive target constants and an A-configuration k p such that
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 45 FIGURE 4.5 -A-operation: u and v are the input fundamentals and w is the output fundamental.
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 43 A-distance: Let Ν ∈ c be a constant, and let Ν ⊂ R be a set of constants (fundamentals of an A-graph). Then, the A-distance of c from the set R, denoted with dist(R, c), is the minimum number of extra A-operations required to obtain c given R. Afterwards, to express the degree of freedom in the output of an A-operation when different A-configurations are chosen, the vertex fundamental set is defined. Definition 4.4 -Vertex fundamental set: The set of all possible outputs (not equal to the inputs) of an A-operation with fixed inputs (u and v) under different A-configurations is called the vertex fundamental set, written as

  is step 10 in Alg. 4.3. ALGORITHM 4.3 -Hcub Algorithm. Given the target set of constant T. Compute the set as given in Definition 4.2. There is a degree of freedom in choosing the heuristic function H(R, S, T) for the algorithm. Synthesize multiplier block (T) 1: Right shift elements of T until odd 2:

  An heuristic (H(k)-ODP) is used to obtain an upper bound (the "B" in BIGE) and an exhaustive DAG search to obtain the lower bound. Both bounds are progressively tightened until they meet or until a solution is found by the lower bounding exhaustive search. If any heuristic finds a solution with n adders, the exhaustive search only needs to consider up to n-1 adders. The exhaustive search is done via lookup table for up to 4 adders. For 5 adders and above, inverse graph enumeration (the "IGE" in BIGE) is used to prune the exhaustive search. Prior to describe the high-level operation of BIGE, the following definition is necessary. Definition 4.5 -Complexity-n constant: We denote by C n the set of all constants with complexity n, i.e.
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 4647 Upper-bound (Upb): For each N-bit constant i C , corresponds i A Adder-Depth (Ath): Let i D be the number of adders that we pass through along any path i from the input to any of the outputs in the constant multiplication logic circuit.
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 4 Multiplication by a Constant 73 be seen as some form of carry due to the use of signed digits; it comes from the following formula: the transformation of the conventional radix-2 r representation to the signeddigit radix-2 r one. A digit-set ( ) r DS 2 corresponds to Eq. 4.22, such as

2 , 2 r, 1 - 1 ) 2 - 1

 221121 where p≤r-2 because m j ≤ 2 r-1 -1, and 0 < d < 2 p . Theorem 4.2 -In radix-the precomputation of the entire set of non-trivial PP {3×X, 5×X, 7×X,…,(2 r-×X} yields an adder-cost and an adder-depth of 2 rand r-2, respectively.
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 4 Fig.4.6 provides all necessary details for hardware implementation. It now becomes clear that Eq. 4.26 involves only additions, subtractions, and left-shifts. Note that right-shifts are not allowed since r, j, and k j , are positive integers.
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 45 FIGURE 4.5 -Sequential order of computation of the entire set of partial-products needed by radix-2 6 .

r.

  Let us note that (10599) 10 =(10100101100111) 2 .

FIGURE 4 . 7 -

 47 FIGURE 4.7 -Avg comparison for an N-bit constant.

4 )

 4 

7 )

 7 

  mutually exclusive, since one and only one odd-multiple (m jk ) can occur in slice j. Consequently, the average number of generated odd-multiples considering all slices is:

0 .

 0 Consequently, Eq. (4.41) is a redundant radix-2 r recoding (R3) of the constant C.

Corollary 4 .

 4 1 is just one case (s=r/2) among many others. A number of Q j partitionings are possible (s=r/3, r/4,...), but lower values of s increase the number of sub-digits, which makes equation(4.41) difficult to handle.

Chapter 4 -

 4 Multiplication by a Constant 84 Note that |Q j |=(Z 1 +Z 2 ) j . Thus, the product C×X becomes:

FIGURE 4 . 8 -

 48 FIGURE 4.8 -Partitioning of a 24-bit C constant using R3 algorithm.

FIGURE 4 . 9 -

 49 FIGURE 4.9 -Avg comparison for a N-bit constant.

Fig. 4 .

 4 Fig. 4.10 compares the new RADIX-2 r MCM algorithm to the state-of-the-art for 32-bit constants, with a number of constants varying from 1 up to 100. Note that for Lefèvre, BHM and Hcub, the average is taken only over 50 uniformly distributed random constant sets [13]. In RADIX-2 r the average is rather exactly calculated using Eq. 4.45. Nevertheless, RADIX-2 r surpasses Bernstein and Lefèvre, and has a big potential to surpass BHM and competes with Hcub if the optimization techniques (redundancy and CDE) employed to R3 are integrated into RADIX-2 r MCM heuristic.

FIGURE 4 . 10 -

 410 FIGURE 4.10 -Avg comparison for 32-bit constants.

.

  1971, Schönhage and Strassen published an algorithm with asymptotic complexity For almost 40 years, this result has not been improved; however, in 2007Fürer designed an algorithm with lower asymptotic complexity, namely, ( ) , in 2011, using DBNS arithmetic, Dimitrov proved that MV can be performed in

FIGURE 5 . 1 -

 51 FIGURE 5.1 -Generalized N×N bit radix-2 r parallel multiplier. a) Critical path in conventional [6][7][8][9][10][11] and recent [4][5][12][13][14] radix-2 r multipliers.O(X) is the necessary set of odd-multiples corresponding to radix-2 r recoding. PPG j of [4][5] includes a number of adders to accumulate intermediary partial product.b) Critical path in our proposed radix-2 r multipliers. Main features are: no odd-multiples, much more compact PPG j , much shorter critical path.

  actually the lowest upper-bound known so far for the MV problem. Whether or not it is possible to multiply two numbers in purely linear number ( ) N O of additions is still an open problem.

.

  The operand X is fed into a circuit that computes X out with shifts, additions, and subtractions. Each partial result circuit computes Eq. 5.4 by, first, selecting the correct i X from the values computed in the X processing.They are, then, shifted by a i bit positions to the left (multiplication by i a 2 ), and, finally, added or subtracted as described by the sign bits, s i , to receive the partial result X Y i × . The result of the entire multiplication, by shifting and adding the partial results.

FIGURE 5 . 2 -

 52 FIGURE 5.2 -The general structure of the DBNS multiplier.Source:[5] 

  of the proposed algorithm. In the above example with 7-bit integers, the sets of digits were

z and 2 z•

 2 (that is, if we represent every r -bit integer as either -), then we can expect further hardware simplifications due to the elimination of the necessity to process the sign of the second summand. To use a window (r) of size six at least, and 11 at most, for multiplication of integers of medium size:

  bit add-and-shift and radix-8 references designs.

0 d

 0 It is illustrated as a 2-step process:• Step 1 (High Radix Booth): The operand Y is recoded to a the size of radices in high radix (byte) division.• Step 2 (Secondary Radix Reduction): Each primary (Booth) digit value a k-digit value in a secondary radix system. We limit our focus here to 4 secondary radix γ , we recode d by two digits so that are chosen from a balanced complete residue system modulo γ having a novel design.

• 7 ):

 7 Post-compute ( X × The higher order summation can utilise a 13:(e.g. carry save) sum z.

  multiplier is represented by

(

  

  Pc[2N-1:0] Ps[2N-1:0]

FIGURE 5 . 3 -

 53 FIGURE 5.3 -Recoding (32,7) with postcomputation of × 7 .

  modulus) γ , a balanced complete residue system modulo γ forming a secondary radix digit set γ D , and a number of digits k, 4 2 ≤ ≤ k , such that the k-digit secondary radix values include all integers in the Booth high radix digit range [ ] by considering the relatively small number of secondary radix candidates γ that might have sufficient properties to support a reasonable secondary radix recoding in competition with standard Booth recodings. Several key criteria become evident to prune the candidate search space of values for γ [15].

2

 2 represents the required set of odd-multiples of the multiplicand (m.X) for radix-2 r

FIGURE 5 . 4 - 19 +

 5419 FIGURE 5.4 -Two's complement 64×64 bit multiplier. (a) Radix-2 8 multiplier. Space partitioning according to Eq. 5.18 (b) Radix-2 16 multiplier. Space partitioning according to Eq. 5.19

Dimitrov [ 5

 5 

1 :

 1 Synthesis tool was forced to map RTL code to distributed slices of FPGA and avoid mapping to builtin 18x18 bit hardwired multipliers (DSP slices). Area occupation in number of Virtex-6 slices. 2: Energy consumption per multiplication operation (pJ). 3: Million multiplications per second (MMPS).

  of the general nature of Eq. 5.21, the d s term of Del T is equal to max(d 8 ,d 5 ,d 2 ,d 1 ) of used PPG ji .

FIGURE 5 . 5 -

 55 FIGURE 5.5 -Critical path (Del+d i ) inside a generalized PPG j .

  moved from (0,b,0,0) to (a,0,0,0) TABLE 5.9 -Delay and multiplexer complexity of the new basic radices: step #3

CFIGURE 5 . 7 -

 57 FIGURE 5.7 -Space/Time partitioning of a two's complement 64×64 bit radix-2 32 parallel multiplier based on Eq. 5.22. (a) High-throughput finely-grained systolic architecture; (b) Low-latency coarsely-grained systolic architecture.

FIGURE 5 . 9 -

 59 FIGURE 5.9 -Multiplication matrix of partial-products bits for 16-b multiplication with one level recursion [23].

FIGURE 5 . 8 -

 58 FIGURE 5.8 -Low-power sign-extension technique for the particular case (N, r)=(8, 2).

FIGURE 5 . 11 -

 511 FIGURE 5.11 -Low-power multi-precision multiplier for the particular case (N,r)=(16, 2) with 12 and 4 bit sub-operand sizes.

FIGURE 5 . 13 -

 513 FIGURE 5.13 -Low-power multi-precision multiplier for the particular case (N,r)=(16,2) with 4-bit sub-operand size.

FIGURE 6 . 1 -

 61 FIGURE 6.1 -Typical closed-loop control system using a PID.

  multiplier Y is divided into n slices, each of 2 bits. Each pair of two contiguous slices has one bit in common. Thus, the DMAC becomes:

FIGURE 6 . 2 -

 62 FIGURE 6.2 -Various PID IP-cores. (a) commercial PID with constant coefficients; (b) commercial PID with time varying coefficients; (c) incremental PID with constant coefficients; (d) incremental PID with time varying coefficients;

  FIGURE 6.3 -Straightforward DMAC implementation.

.

  FIGURE 6.6 -Commercial PID architecture.

.

  But in this case, some hard partial products are required such as 3X and -3X which are not easy to generate. How to circumvent this obstacle is the purpose of the next section.

FIGURE 6 . 7 -

 67 FIGURE 6.7 -Optimized DMAC architecture for r=2

FIGURE 6 . 8 - 0 y- 1

 6801 FIGURE 6.8 -Partitioning of a 16-bit Y operand with r=8.

3 )

 3 Modelsim simulator was applied to MAC and ODMAC as they are the main building blocks of PID architecture. They were challenged against a set of special test cases (visual simulation), and then submitted to a random test for a very large number of vectors. Once tested successfully, the RTL PID module written in Verilog-2001 (IEEE 1364) was integrated into Modelsim/Simulink environment for a co-simulation. At this stage, a ZOH discrete time invariant model of a third order continuous process (G(s)=1/(s+1) was chosen from the test set used by Åström and Hägglund [1] as examples of representative plants for the dynamics of typical industrial processes (Fig 6.10). 139 To derive the PID parameters, a theoretical PID taken from Matlab component-library was tuned using floating-point numerical representation (IEEE 754 double format). The sampling period T s was chosen based on the magnitude of the pole time constants. For this case T s =10 ms. The following parameters were obtained: K p = 0.5913 ; T i = 0.0523 ; T d = 0.0225 for N=10 and b=1. Calculations give the following floating-point values for the coefficients of commercial PID: A=0.5913; B=-0.5913; C=0.1130; D=0.1836; E=-1.0860 To co-simulate the RTL PID, a conversion of the coefficients to 16-bit (Q 4.12 ) fixed-point representation was necessary. Variations were obtained: A=0.5911; B=-0.5911; C=0.1130; D=0.1836; E=-1.0860

FIGURE 6 .

 6 FIGURE 6.11 -Fixed-point versus floating-point. FIGURE 6.12 -Perturbation after steady-state on control-output and on plant measure, successively. FIGURE 6.13 -Set-point tracking of arbitrary amplitudes and durations.

FIGURE 6 . 14 -

 614 FIGURE 6.14 -Synoptic scheme of the setup. FIGURE 6.15 -Setup of temperature regulation. 1: FPGA evaluation board; 2: Electronic device; 3: Tube containing a fan and a lamp, 4: PC display screen.

FIGURE 6 . 16 -

 616 FIGURE 6.16 -Effect of the setpoint fractional length on temperature regulation. (a) Floating point PID; (b) Our PID with Q ni.nf = Q 8.8 ; (c) Our PID with Q ni.nf = Q 8.6 ; (d) Our PID with Q ni.nf = Q 8.4

FIGURE 6 . 17 -

 617 FIGURE 6.17 -Structure of the FT-G100 microgripper (Femto Tools GmbH).

(

  

T

  is the sampling period.

:

  vector of random unknown signals coming disrupting the equation state of the system through an entry matrix 4 1× M .

  measures (output).

:

  vector of random signal disrupting the system measures.

Fig. 6 .

 6 Fig. 6.19 summarizes the different equations governing the evolution of the Kalman algorithm, implemented on the micro-gripper FT-G100 (Eq. 6.21). The algorithm requires at the starting step the determination of the initial states ) 0 / 0 ( P and ) 0 / 0 ( X . A zero value has been assigned to these

(

  

FIGURE 6 . 21 -

 621 FIGURE 6.21 -Standard methodology for an optimized hardware integration of LTI systems: from Matlab functional model to HDL synthesizable code.

  21-bit word length, the difference between the floating-point and the fixed-point filtered force (F c ) is less than 7×10 -5 µN as indicated by Fig. 6.23. Improving the precision (<7×10 -5 µN), will result in a larger controller (from a hardware point of view).

FIGURE 6 . 23 -

 623 FIGURE 6.23 -The difference between the floating-point and the fixed-point filtered force (F c ).

FIGURE 6 . 22 -

 622 FIGURE 6.22 -The noisy and filtered force (F c ) of the actuated arm.

  is depicted in Fig. A.1 to illustrate the use of Th 4.3 in the partitioning of a 16-bit Y operand.Proof of Theorem 4.4Likewise, Y can also be rewritten as follows:

1 YFIGURE A. 1 0 Q 1 Y

 1101 FIGURE A.1 Partitioning of a 16-bit Y operand with r=8 and s=4

2 ∈

 2 s is a divider of r.When theorem (1) is applied to equation (1), it gives:with s+t a divider of r , and t < s.Likewise, when theorem (2) is applied to equation (1), we obtain:

  per Mult. Operation (pJ) Slice Size of the Multiplier (r Bits)Slice size of the multiplier (r bits) Figure3. Max. energy consumption per mult. operation versus r.

  the multiplier (r bits) Figure2. Max. multiply time versus r.

32 Figure. 4 .

 324 Figure. 4. Area occupation versus r

.

  k denotes the k th sampling instant (k.T s ). Thus, ( ) t u can be rewritten as:

1 . 1 .

 11 function s.T d as follows: N is typically in the range of 3 to 20. In addition, to avoid sudden overshoots due to high variations of the setpoint, only a fraction b of u c acts on the proportional part (b.u cy). Hence, the improved PID algorithm becomes: ) expression is discretized such that the proportional, integral and derivative terms are separately obtained, as follows: By performing cross products, we get:Applying the inverse Laplace Transform to this latter equation, we obtain:

  -words: Finite-Word-Length Controllers, High-Speed and Low-Power Design, Radix-2 r arithmetic Résumé: Cette thèse traite le problème d'intégration hardware optimale de contrôleurs linéaires à taille de mot finie, dédiés aux applications MEMS. Le plus grand défi est d'assurer des performances de contrôle satisfaisantes avec un minimum de ressources logiques. Afin d'y parvenir, deux optimisations distinctes mais complémentaires peuvent être entreprises: en théorie de contrôle et en arithmétique binaire. Seule cette dernière est considérée dans ce travail. Comme cette arithmétique cible des applications MEMS, elle doit faire preuve de vitesse afin de prendre en charge la dynamique rapide des MEMS, à faible consommation de puissance pour un contrôle intégré, hautement reconfigurabe pour un ajustement facile des performances de contrôle, et facilement prédictible pour fournir une idée précise sur les ressources logiques nécessaires avant l'implémentation même. L'exploration d'un certain nombre d'arithmétiques binaires a montré que l'arithmétique radix-2 r est celle qui répond au mieux aux exigences précitées. Elle a été pleinement exploitée afin de concevoir des circuits de multiplication efficaces, qui sont au fait, le véritable moteur des systèmes linéaires. L'arithmétique radix-2 r a été appliquée à l'intégration hardware de deux structures linéaires à taille de mot finie: un contrôleur PID variant dans le temps et à un contrôleur LQG invariant dans le temps, avec un filtre de Kalman. Le contrôleur PID a montré une nette supériorité sur ses homologues existants. Quant au contrôleur LQG, une réduction très importante des ressources logiques a été obtenue par rapport à sa forme initiale non optimisée. Mots-clès: Contrôleurs à Taille de Mot Finie, Circuits à Haute vitesse et Faible Consommation de Puissance, Arithmétique Radix-2 r

  

TABLE 2 .

 2 1 -Main features of the basic digital solutions for embedded control.

	Technology Jitter	1	Time Parallelism	speed	Power Consumption	Developing Cost	Developing time	Required Skills	Portability
	COTS	Yes		C	2	D	D	A	A	SP	D
	DSP	No		B	C	C	B	B	ASP	C
	FPGA	No		A	B	B	C	C	HD	B
	ASIC	No		A	A	A	D	D	AHD	A

A-D: A, the best; D, the worst. 1: Jitter is a measure of variation between the actual loop cycle-time and the desired loop cycle-time. It is caused by the non-determinism of the execution time (Section 2.4.1). 2: Pseudo-parallelism (time sharing). SP: Software Programming. ASP: Advanced Software Programming. HD: Hardware Design. AHD: Advanced Hardware Design. its shorter design-cycle time as fast prototyping device in order to get the control algorithm fine tuned and validated even if the ultimate objective is the creation of an ASIC.

  5, the a 12 and a 22 elements of matrix [ ] w

c A ~ are equal to 0.1016 and 0.7734, respectively. Their respective representations in 8-bit two's complement notation are:

Table 2

 2 

.2 summarizes the state-of-the-art in SCM.

TABLE 2 .

 2 2 -Main features of the most known SCM algorithms in the literature.

	Name	Algorithm Author	Year	Type	Runtime	Compression Performance	Predictability
	BIGE	Thong	[49]	2011	Exhaustive	O(2 N )	Optimal	No
	H(k)	Dempster	[50]	2004	Heuristic	O(2 N )	A	No
	MAG	Gustafsson [47]	2002	Exhaustive	O (2 N )	Optimal	No
	-	Bernstein	[51]	1986	Heuristic	O(2 N )	E	No
	Hcub	Voronenko	[52]	2007	Heuristic	O(N	)	B	No
	BHM	Dempster	[53]	1995	Heuristic	O(N	4 )	C	No
	-	Lefèvre	[54]	2001	Heuristic	O(N	3 )	D	No
	DBNS Dimitrov	[55]	2007	Heuristic	O(N)	F	No
	CSD	Avizienis	[56]	1961	Heuristic	O(N)	G	Yes
	A-G: A, the highest ; G, the lowest.					

FIGURE 2.9 -Generalized N×N bit radix-2 r parallel multiplier.

  • A set of numerical values for the digits. We call D i the set of values of x i . The cardinality of the

	set D i is denoted by i D . For example, { 0 , 1 ,	} 9 ,..., 2

TABLE 3 .

 3 

	2 -Some features of the ANSI/IEEE 754-1988 standard floating-point number representation formats.
	Feature	Single/Short		Double/Long	
	Word width, bits	32		64	
	Significand bits	23 + 1 hidden		52 + 1 hidden	
	Significand range	[1, 2-2 -23 ]		[1, 2-2 -52 ]	
	Exponent bits	8		11	
	Exponent bias	127		1023	
	Zero (±0)	E + bias = 0, f=0		E + bias = 0, f=0	
	Denormal	E + bias = 0, f≠0 represents ± 0.f×2	-126	E + bias = 0, f≠0 represents ± 0.f×2	-1022
	Infinity (±∞)	E + bias = 255, f=0	E + bias = 2047, f=0
	Not-a-number (NaN)	E + bias = 255, f≠0	E + bias = 2047, f≠0

TABLE 3 .

 3 

3 -Booth encoding.

TABLE 3 .

 3 5 -Number of digits required by each number system for the integer value (10599) 10

	.

TABLE 3 .

 3 6 -Main features of number systems.

	Number System	Weighted System	Radix System	Fixed/Mixed Radix System	Canonical Form	Ease of use & Implementation	Frequently Used	Hardware Optimization
	Binary	Yes	Yes	Fixed	Yes	A	A	E
	SD	Yes	Yes	Fixed	Yes	B	A	D
	CSD	Yes	Yes	Fixed	Yes			

TABLE 4 .

 4 2 -Constant type and allowed operations.

	Algorithm	Constant Type Positive Negative Odd Even Addition Subtraction Left-shift Right-shift Allowed Operations
	Avizienis's CSD	+	+	+	+	+	+	+	-
	Dimitrov's DBNS	+	+	+	+	+	+	+	-
	Lefèvre'CSP 1	+	-	+	-	+	+	+	-*
	Bernstein's	1	+	-	+	-	+	+	+	-*
	Voronenko'sHcub 1	+	-	+	-	+	+	+	-*
	Thong's BIGE 1	+	-	+	-	+	+	+	+

+: Yes; -: No; *: Right-shift is allowed to normalize the constant to be odd, only for that.

  21×X , 23×X , 25×X , 27×X , 29×X , 31×X }.

																																							6 example:
	OM	( ) { 2 6 =	, 1	, 3	, 5	, 7		, 9	, 11	, 13	, 15	, 17	, 19	, 21	, 23		, 25	, 27	, 29	} 31
		=	{ } { 2 1 1 U	+	1	=	} { 2 3 U	2	+	1	=	, 5	2	2	+	3	=	} { 2 7 U	3	+	1	=	, 9	2	3	+	3	=	, 11	2 3	+	5	=	, 13	2 3	+	7	=	}U 15
			{ 2 4	+	1	=	, 17	2 4	+	3	=	, 19	2 4	+	5	=	, 21	2 4	+	7	=	, 23	2 4	+	9	=	, 25	2 4	11 = +	, 27	2 4	13 +	=	, 29	2 4	15 +	=	}. 31
	Thus, the PP (m j ×X) corresponding to	( ) 6 2 OM	are subsequently calculated in the following order
	(6-2=4 steps):																																	
																	{3×X} ; {5×X ,7×X } ; {9×X ,11×X ,13×X ,15×X } ;
														{17×X ,19×X ,												

TABLE 4 .

 4 3 -Upper-bound (Upb) and r values for an N-bit constant using RADIX-2 r .

	N	8 16 32 64 128 256 512 1024 2048 4096	8192
	r	3 4	4	4	5	6	6	7	8	8	9
	Upb(r) 3 6	10 18	32	57	100	177	318	574	1037

*: Obtained from 10 10 uniformly distributed random values of C. CSD Avg = (N/3)-8/9 and CSD Upb = (N+1)/2-1.

TABLE 4 .

 4 

	5 -RADIX-2 r versus DBNS: average number of additions
	(Avg) and upper-bound (Upb).			
	Constant Bit-width N	DBNS [6] Avg Upb	r RADIX-2 Avg Upb	Saving (Avg,%)
	32	≈9.05 + *	13*	8.6855	10	4.0276
	64	16.2151*	21*	15.5037	18	4.3872
	+: Taken from Fig.1 in [6]; *: Obtained from 10 5 uniformly distributed
	random values of C.				

TABLE 4 .

 4 Constant bit-size; +: In RADIX-2 r , for 16≤N≤64, r=4 (Table4.3). A zero bit is added in the MSB position to make N a multiple of r (N=24, N=32).

	6 -RADIX-2 r versus non-recoding algorithms: runtime complexity
	and number of additions of some special cases.		
	Algorithm	(84AB5) H N=20	(64AB55) H N=23 +	(5959595B) H N=31 +	Runtime [13]
	BIGE [1]	4		5	6	O(2 N )
	Bernstein [10]	8	G	7	8	O(2 N ) [8]
	Hcub* [13]	4		6	-	O(N 6 )
	BHM* [23]	5		7	-	O(N 4 )
	Lefèvre's CSP [8]	4		6	9	O(N 3 )
	RADIX-2 r	5		7	10	O(N)
	N: G: Greater than RADIX-2 r Upb; RADIX-2 r Upb=7, 8, and 10, for N=20, 24,
	and 32, respectively;					

*: Values are delivered by the Spiral web version (www.spiral.net), limited to 26 bits; x: optimal number of additions.

TABLE 4 .

 4 

	7 -RADIX-2 r versus CSD, Lefevre's CSP, and exhaustive search:
	smallest values up to a 32-bit constant.		
	Number of Additions (q)	CSD	RADIX-2 r	Lefèvre's CSP* [8]	Exhaustive search [8]
	1	3	3	3	3
	2	11	11	11	11
	3	43	43	43	43
	4	171	139	213	683
	5	683	651	1703	14709
	6 7	2731 10923	2699 33419	13623 174903	699829 171398453 +
	8	43691	526491	1420471	-
	9	174763	8422027	13479381	-
	10	699051	134744219	-	-
	11	2796203	-	-	-
	12	11184811	-	-	-
	13	44739243	-	-	-
	14	178956971	-	-	-
	15	715827883	-	-	-
					2 )+1;
	639 = (5×2				

*: Lefèvre calculated the values for q up to 9. This means that the common subpattern algorithm (CSP) exhibits an Upb ≥ 9 among all 32-bit constants. +: This is the sole value which has not been confirmed by Lefèvre's exhaustive algorithm. It has been found only by Donelly

[8]

, using left-shifts exclusively. If "right-shifts" are allowed, the value is strictly higher since the BIGE solution using right-shifts gives 6 additions, as follows: 5 = (2

  Equation 4.36 assures minimum Avg and Upb, whereas lower Ath values are still possible. Any r To garantee a reasonable balance, we set as condition that the entire number of odd-multiples must be equal, or less than the

	Chapter 4 -Multiplication by a Constant
	total number of the slices Q j
	value, such as	r	≤	2	⋅	W	(	N	⋅	) 2 ( log	) ) 2 ( / log	produces higher Avg, Upb, and Ath. While any r value, such
	as	r	≥	2	( W ⋅	N	⋅	) 2 ( log	) ) 2 ( / log
													81

produces lower Ath but higher Avg and Upb.

TABLE 4 .

 4 

			8 -RADIX-2				
	N		8	16				32		64		128	256	512	1024	2048	4096	8192
	r		3	4				4			4		5	6	6	7	8	8	9
	RADIX-2 r	1.78 4.26		8.71		16.75 30.40 54.08	98.12	174.22 312.49	571.41	1033.39
	Avg	CSD	1.78 4.44		9.77		20.44 41.77 84.44 169.77 340.44 681.77 1364.44 2729.77
	Saving (%) 0.39 4.12 10.89 18.05 27.22 35.95 42.20	48.82	54.16	58.12	62.14
	RADIX-2 r	3	5				9			17		28	46	89	151	261	517	917
	Ath	CSD	4	8				16		32		64	128	256	512	1024	2048	4096
	Saving (%) 25 37.5 43.75 46.87 56.25 64.06 65.23	70.50	74.51	74.75	77.61
	RADIX-2 r	3	6				10		18		32	57	100	177	318	574	1037
	Upb	CSD	4	8				16		32		64	128	256	512	1024	2048	4096
	Saving (%) 25	25			37.5		43.75	50	55.46	60.93	65.42	68.94	71.97	74.68
	N is the constant bit-size;	r	=	2	⋅	W	(	N	⋅	) 2 ( log	) ) 2 ( / log	, where W is the Lambert function.

r versus CSD: Avg, Ath, and Upb for N-bit constant.

TABLE 4 .

 4 9 -Upper-bound and r values for N-bit constant using RADIX-2 r . N

		8	16	32	64		128		256	512	1024	2048	4096	8192
	r	3	4	4	5			6		7	8	8	9	10	11
	Ath(r)	3	5	9	15		25		41	69	133	234	417	753
	Upb(r)	3	6	10	19		36		67	126	190	354	664	1255
	Avg(r) 1.78 4.26 8.71 16.61 30.77 55.47 100.56 175.99 322.83 594.90 1104.27
	N is the constant bit-size;	r =	W	( 4	.	N	.	( ) ) ( ) 2 / 2 log log	, where W is the Lambert function.

  s+t a divider of r , and t < s.

																											.38)
	with	m	j	∈	{	, 0	, 1	, 3	, 5	...,	2	r	1 --	1	}	and	k j	{ ∈	, 0	, 1	, 2	...	,	r	} 1 -	.
		To enable CDE at Q j level, we announce the two following theorems.
	Theorem 4.3 -Any digit	Q	j	∈	DS	( ) r 2	can be represented in a combination of digits	P	ji	∈	DS	( ) s 2	,
	such as s is a divider of r.					
	Theorem 4.4 -Any digit	Q	j DS ∈	( ) r 2	can be represented in a combination of digits P ji +T jk such as
	P	ji	∈	DS	( ) s 2	and	T	jk	∈	D	S	( ) t 2
	Proofs -see Appendix A.					
		When Th. 4.3 is applied to Eq. 4.22, it gives:

with

  .8.

	Since r ,
	Avg	( Q	j	=	)   r r N 2 / / 0 =	and we can easily prove applying the same reasoning developed in Section
	4.6.2 that		

j Q may have several notations in (Z 1 , Z 2 ), we must carefully select among a big number of possibilities, the recoding (R3) that yields optimal Avg. We have shown that for RADIX-2

TABLE 4 .

 4 10 -Odd and even |Q j | digit recoding using R3 algorithm.

	Odd

  .13).

	TABLE 4.11 -R3 versus RADIX-2	TABLE 4.12 -R3 versus RADIX-2 r :
					smallest values up to 32-bit constant.
	Avg N RADIX-2 r	R3	Saving %	q 1	RADIX-2 r 3	R3 3
	8	1.78	1.72	3.51	2	11	11
	16 24 32	4.26 6.54 8.71	4.10 6.28 8.31	3.66 4.04 4.51	3 4 5	43 139 651	43 139 651
	64 *:Obtained from 10 16.75 14.49 * 10 distributed random C values. N is 13.49 uniformly the bit-size of the constant. For N=8, the saving is exclusively due to redundancy (Table 4.9).	6 7 8 9 10 134744219 2699 33419 526491 8422027 q: number of additions.	2699 34971 559259 17336475 143163547

r : average number of additions (Avg).

TABLE 4 .

 4 Constant bit-size ; +: In RADIX-2 r , for 16≤N≤64, r=8 (Table4.9). A zero bit is added in the MSB position to make N a multiple of r (N=24, N=32). SCM algorithm (Section 4.6) can be easily extended to MCM. In MCM, the single variable X is multiplied by a set of N-bit constants

	13 -R3 and RADIX-2 r versus non-recoding algorithms:
	runtime complexity and number of additions of some special cases.
	Algorithm	(84AB5) H N=20	(64AB55) H N=23 +	(5959595B) H N=31 +	Runtime [13]
	BIGE [1]	4	5	6	O(2 N )
	Bernstein [10]	8 G	7	8	O(2 N ) [8]
	Hcub* [13]	4	6	-	O(N 6 )
	BHM* [23]	5	7	-	O(N 4 )
	Lefèvre'CSP [8]	4	6	9	O(N 3 )
	RADIX-2 r	5	7	10	O(N)
	R3	4	6	8	O(N)
	N:				

G: Greater than R3 Upb; R3 Upb = 7, 8, and 10 for N=20, 24, and 32, respectively; *: Values are delivered by Spiral web version, limited to 26 bits; x: Lowest number of additions.

4.8 New MCM Algorithm (RADIX-2 r MCM)

RADIX-2 r

TABLE 4 .

 4 

	M		1	2	10	20	40	60	80	100
	RADIX-2 r	8.71	15.75	56.61	100.05 171.65 236.92 299.07 360.02
	N=32	CSD	9.77	19.55	97.77	195.55 391.11 586.66 782.22 977.77
	Saving (%) 10.84 19.43 42.09	48.83	56.11	59.61	61,76	63.17
	RADIX-2 r	16.75 29.40 110.05 191.65 339.07 480.37 607.72 733.58
	N=64	CSD	20.44 40.88 204.44 408.88 817.77 1226.7 1635.6 2044.4
	Saving (%) 18.05 28.08 46.17	53.12	58.53	60.84	62.84	64.11

15 -RADIX-2 r MCM versus CSD: Avg comparison

TABLE 4 .

 4 

	14 -RADIX-2 r MCM versus non-recoding
	MCM algorithms: runtime complexity for a number
	of M constants with N-bit each.

TABLE 5 .

 5 1 -Dimitrov's high-radix DBNS algorithms.

	Name	Recoding	r	Digit Sets
	Mult_6b2d7	( )		

High Radix (2 8 and 2 16 ) Illustrative Examples

  

	5.4.1.2 New Radix-2 16 Recoding
	Likewise, using Th. 4.4, each 16+1 bit slice is split into 8+1, 5+1, 2+1, and 1+1 overlapping slices
	using Seidel radix-2 8 and radix-2 5 , McSorley radix-2 2 , and Booth radix-2 1 algorithms, respectively. The
	new recoding is described by the following equation:
	Th. 4.3 and 4.4 permit to build up any high radix-2

r multiplication algorithm based on lower subradices, employing much less odd-multiples. The objective hereafter is to generate high radix-2 r multiplication without odd-multiples for a maximum reduction of multiplexer complexity inside PPG j . To achieve such a goal, a number of odd-multiple free low-radix algorithms are used, such as Booth

TABLE 5 .

 5 

			7 -Delay and multiplexer complexity	
		of the new basic radices: step #2.		
		Algorithm	Del		Mux	
		2 1		0		5	
		2 2		0		10	
		2 5		2		25	
		2 8		3		40	
	TABLE 5.8 -Optimal PPG j solution (a,b,c,d) leading to the optimal
	radix-2						
	r size (bits)	Instance Number a b c d	Del Mux Del min Mux min
	8	1	0 0 0	3	40	3	40
	16	2	0 0 0	4	80	4	80
	32	4	0 0 0	6	160	6	160
	64	8	0 0 0	10	320	10	320
	128	16	0 0 0	18	640	18	640
	256	32	0 0 0	34	1280	34	1280
	512	64	0 0 0	66	2560	66	2560
	1024	128	0 0 0 130 5120	130	5120

r multiplier according to composite metrics A i T j : step #2.

TABLE 5 .

 5 10 -Optimal PPG j solution (a,b,c,d) leading to the optimal

	radix-2 r multiplier according to composite metrics A i T	j : step #3.
	r size (bits)	Instance Number a b c d	Del Mux Del min Mux min
	8	0	1 0 0	3	40	3	40
	16	0	2 0 0	4	80	4	80
	32	0	4 0 0	6	160	6	160
	64	4	0 0 0	10	320	10	320
	128	8	0 0 0	14	640	14	640
	256	16	0 0 0	22	1280	22	1280
	512	32	0 0 0	38	2560	38	2560
	1024						

  value corresponds to the number of bits that are treated simultaneously inside each PPG ji , while r value indicates the number of bits that are processed simultaneously inside each PPG j . d s is not included in Del T since d 2 <d 8 <d' 8 .

	N						
	(bits)	s	r			Del T	
	8	4	8	2	3	6	1
	16	4	8	3	7	7	2
	32	8	16	5	15	9	4
	64	8	32	7	31	13	8
	128	8	32	9	63	21	16
	256	16	64	13	127	37	32
	512	16	128	17	255	69	64
	1024 16	128	21	511	133	128
	2048 32	256	28	1023	261	256
	4096 32	512	35	2047	517	512
	8192 32	512	45	4095	1029	1024

s FIGURE 5.6 -Optimal partitioning of a two's complement 64×64 bit radix-2

32 

parallel multiplier based on Eq. 5.22 with (r,s)=

[START_REF] Kang | A Simple High-Speed Multiplier Design[END_REF]8)

.

TABLE 6 .

 6 1 -Coefficients of discrete recurrent equations.

TABLE 6 .

 6 

	2 -Booth algorithm.

TABLE 6 .

 6 

	3 -Implementation result comparison of MBA-based PID.
	PID Core	Total Gate Count	Power* (mW)	Max. Clock Freq. (MHz)	Latency
	PID [21]	16728	456	47	
	PID1	9286 (44%)	342 (25%)	62 (32%)	
	PID2	10661 (36%)	359 (21%)	61 (30%)	17
	PID3	6337 (62%)	297 (35%)	65 (38%)	
	PID4	7168 (57%)	308 (32%)	62 (32%)	
	* : Dynamic power consumption at 47MHz; (XX%): saving.

TABLE 6 .

 6 4 -Modified Booth algorithm.

  Likewise, n/2 simple partial products are generated (Table6.4). Since ODMAC is a reconfigurable RTL block, it is parameterized to suit Eq. 6.8. The new adapted ODMAC architecture is depicted in

	.	+	.	=	(	2 ∑ / -	.	+	.	2	.	(6.8)
						=	0					
	Fig. 6.7. The only difference is that Mux(8:1) are used instead of Mux(4:1), and (<<2.j) hardwired
	shifter instead (<<1.j). Compared to BMA based PID (Table 6.5), MBMA based one (PID1) shows
	much more interesting results, since latency is divided by 2 while maintaining stable power
	consumption and speed. Control rate is drastically improved as its equal to maximum clock frequency
	divided by latency. As the discrete commercial form (Eq. 6.1) can accommodate the three functioning
	modes, implementation of PID2 produced the following power consumption values at 47 MHz: 268
	mW, 313 mW, and 366 mW for P, PI, and PID functioning modes, respectively.

TABLE 6 .

 6 

	5 -Implementation result comparison of MBMA-based PID.
	PID Core	Total Gate Count	Power* (mW)	Max. Clock Freq. (MHz)	Latency
	PID [21]	16728	456	47	17
	PID1	10642 (36%)	350 (23%)	62 (32%)	
	PID2 PID3	11923 (29%) 7042 (58%)	366 (20%) 303 (33%)	61 (30%) 64 (38%)	9 (47%)
	PID4	7795 (53%)	315 (31%)	62 (32%)	
	* : Dynamic power consumption at 47MHz; (XX%): saving.	

Table 6 .

 6 6 comprises the implementation results of PIDs with n=16 and r=4,8,16. For instance, PID1

TABLE 6 .

 6 6 -Implementation result comparison of RMRMA-based PID.

		X	Y	T	Z
	y4j+1		T		
		Mux			
			+	Cin	
			Reg	
				X.Y+T.Z	
		FIGURE 6.9 -Optimized DMAC architecture for r=4.
	PID Core	Total Gate Count	Power* (mW)	Max. Clock Freq. (MHz)	Latency
	PID [21]	16728	223	47	17
	PID1_4 12443 (+26%) 191 (+14%)	53 (+13%) 5 (+71%)
	PID1_8	15688 (+06%) 194 (+13%)	44 (-06%) 3 (+82%)
	PID1_16 23545 (-41%) 217 (+03%)	26 (-45%) 2 (+88%)
	PID2_4	22962 (-37%)	256 (-15%)	43 (-08%) 5 (+71%)
	PID2_8	26073 (-56%) 204 (+08%)	37 (-21%) 3 (+82%)
	PID2_16 40327 (-141%) 488 (-119%)	23 (-51%)	2 (+88%)
	*: Dynamic power consumption at 23MHz; PIDY_X: X = r;
	(+AB%): saving; (-AB%): overhead.	

  The sole exception to this general rule is PIDX_n/2 which always yields to the highest control-rate compared to PIDX_n despite the numerous tests with various n values. This is justified since they exhibit very close latencies (3 and 2, respectively) and one stage difference in the critical path (n-1 and n, respectively), but an important multiplexer fanin difference (n/4 and n/2, respectively).

	and 6.8 corresponding to PID1 and PID2, respectively.					
			n	n	n	n			
	z4j-1	z4j+	z4j+1			y4j+1	y4j+21	y4j+3	z4j+1	z4j+2	z4j+3
			(Pj0.T)			(Qj1.X)				(Pj1.T)
										ODMAC
										1
				2n+2					

TABLE 6 .

 6 , 16% by logic, and 14% by clocking. The reason is that routing is intensively segmented, using pass logic and buffers.When both high control-rate close to 13MHz and low power are required, PID1_16 (244 mW at 13MHz) stands as the best candidate compared to PID1_8 (323 mW at 13MHz). However, it's noteworthy to mention that this comparison stands valid only for the special case of 16-bit word-length PID, for a given set of coefficients, mapped on XC2S150E-7FT256 FPGA circuit and using Xilinx's XST synthesis tool, version 9.2. Results could significantly change under other conditions, especially when considering the logic trimming process which is essentially dependant on the bit-arrangement of the coefficients. For a minimum influence of the trimming operation on the synthesized results, appropriate coefficients were used such as all Q j terms are represented except the null one to avoid generating null partial products that greatly simplify the circuit logic. In fact, constant coefficients PIDs (PID1) are somehow unpredictable with regard to r. They are coefficient dependant. Adversely, PID2 is not involved with the trimming process since coefficients are time varying. Implementation results comprised in Table6.8 show that PID2_8 is the best at all aspects for the same reasons cited above.In sum, when high control-rate is the ultimate objective, PIDX_n/2 is the best candidate whatever n value. But in the case where both high speed and low power are required, timing and power evaluations are necessary to decide which PID to select: either PIDX_n/2 or PIDX_n.

	7 -Maximum power-consumption and control-loop-cycle of PID1.
	PID Core	Power* (mW)	Max. Clock Freq. (MHz)	Latency	Max. Control Loop Cycle (MHz)
	PID [21]	456	47	17	2.76
	PID1_1 342 (+25%)	62	17	3.65 (+32%)
	PID1_2 350 (+23%)	62	9	7.66 (+177%)
	PID1_4 431 (+05%)	53	5	10.60 (+284%)
	PID1_8 365 (+20%)	44	3	14.67 (+431%)
	PID1_16 244 (+46%)	26	2	13.00 (+371%)
	*: Dynamic power consumption at maximum clock frequency; PID1_X: X=r;
	Max. control loop cycle = Max. clock frequency / Latency.
	TABLE 6.8 -Maximum power-consumption and control-loop-cycle of PID2.
	PID Core	Power* (mW)	Max. Clock Freq. (MHz)	Latency	Max. Control Loop Cycle (MHz)
	PID [21]	456	47	17	2.76
	PID2_1	466 (-02%)	61	17	3.59 (+30%)
	PID2_2	475 (-04%)	61	9	6.78 (+146%)
	PID2_4	479 (-05%)	43	5	8.60 (+211%)
	PID2_8	328 (+28%)	37	3	12.33 (+347%)
	PID2_16	488 (-07%)	23	2	11.50 (+317%)

*: Dynamic power consumption at maximum clock frequency; PID2_X: X = r; Max. control loop cycle = Max. clock frequency / Latency. routing

TABLE 6 .

 6 9 -Maximum power-consumption and control-loop-cycle of PID2 mapped on Virtex6.

	PID Core	Number of Slices	Power* (mW)	Max. Clock Freq. (MHz)	Latency	Max. Control Loop Cycle (MHz)
	PID2_1	231	23	122	17	07.17
	PID2_8	1060	04	90.5	3	30.16
	PID2_16	1963	13	50.4	2	25.19
	*: Dynamic power consumption at maximum clock frequency; PID2_X: X=r; Max. control loop

cycle=Max.clock frequency / Latency. FIGURE

6

.10 -The co-simulation of the PID in the Simulink/Modelsim environment.

4 )

 4 Update state estimate with the innovation at

	time k+1:

7
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with r/s=k. Th. 4.3 allows an exponential reduction (1/2 k-1 ) of the number of odd-multiples in Eq. 4.39 in comparison to Eq. 4.22, but at the expense of a linear increase (k-1) in the number of additions. Corollary 4.1 -In radix-2 r , ( )

, where: ) [15] [16]. Booth and modified Booth recoding (McSorley algorithm [18]) can be derived from Eq. 5.10 for (r,s)=(1,1) and (r,s)=(2,2), respectively. They are respectively summarized as follows:

(

) ∑ ∑ And Seidel radix-2 8 recoding is given by the following equation: 8 = O . Note that while Eq. 5.16 and 5.17 are odd-multiple free since all included digits are power of 2. They require a post-accumulation to deal with odd numbers (7, 11 and 121). Thus, a number of extra-adders are needed.

Optimized higher radices are obtained as follows.

New Radix-2 8 Recoding

Based on Th. 4.4, each 8+1 bit slice is split into 5+1, 2+1, and 1+1 overlapping slices using Seidel radix-2 

In [19][20], we have pursued this combination process farther and generated a series (Appendix B) of higher radix (2 The translation of Eq. 5.18 and 5.19 into architectures are depicted in Fig. 5.4a and 5.4b, respectively.

All Dimitrov algorithms developed in [5] are unsigned. For an equitable comparison, we had to develop a new two's complement radix-2 8 recoding version with .

For the comparative study, our proposed algorithms (Eq. 5.18 and 5.19) as well as Seidel and Dimitrov algorithms (Eq. 5.17 and 5.20, resp.) are first analytically characterized and then physically implemented on FPGA.

Analytical Characterization of Area and Speed

Prior implementation, we need to develop a generalized theoretical model which predicts area and speed features of each recoding algorithm with respect to N and r values.

Area

Three basic components are necessary for the implementation of RTL multipliers:

• multiplexers (Mux1) to recode the digit terms (Q j ,P j ,…) included in the recoding expression;

• shifters (Mux2) for partial product generation;

• and adders for partial product summation.

Whereas the exact number of adders can be known in advance, we need to develop heuristics for the two others. The total multiplexer complexity (Mux1) of a radix-2 r multiplier depends on:

The translation of Eq. 5.21 into architecture is depicted in Fig. 5.1b (top view only), where each PPG j is built up using a mixture of four different PPG ji depending on the quadruplet (a,b,c,d) as illustrated by Fig. 5.5. For instance, Eq. 5.18 and 5.19 correspond (0,1,1,1) and (1,1,1,1), respectively.

In conclusion, optimal area solutions (Mux=Mux min ) are exclusively based on radix-2 2 algorithm (0,0,c,0), but they are excessively slow (Del>>Del min ). While optimal speed solutions (Del=Del min ) are entirely composed of radix-2 8 algorithm (a,0,0,0), but they are exaggeratedly large (Mux>>Mux min ). Finally, balanced area/speed solutions are mainly based on radix-2 5 algorithm with at most one or two instances of radices 2 1 and 2 2 algorithms (0,b,c,d). However, even the "balanced" solution is not really balanced enough since the mean values of Del and Mux are 1.4×Del min and 5.2×Mux min , respectively. The reason is due to the large disparity between Mux values of the basic radices (Table 5.5). . Likewise, the optimal delay with regard to s is obtained for s value satisfying ( )

. Hence, the optimal delay becomes:

(5.23)

Finally, we conclude that the optimal N-bit multiplier, in comparison to Eq. 5.15 [18], relies on the new triple recursive Eq. 5.22 with (r,s)=( 3 2 2 N .

Compared to implementation results of Seidel and Dimitrov algorithms (Table 5.4), gain ratios of 1.62, 1.71, 2.64 and 1.83, 1.71, 3.32 are obtained, respectively. A 64-bit multiplier generated by Xilinx Coregen exhibits 75.86 MMPS and consumes twelve 18×18 bit DSP-slice multipliers.

The real reasons behind these important results are cleared up as follows.

Area Occupation

For operand size N=64, Eq. 5.22 is a composite radix-2 32 algorithm (Table 5.11), where each PPG j processes simultaneously 32+1 inputs that are split on four sub-radix-2 8 PPG ji made of four instances

McSorley algorithm (Fig. 5.6). Seidel and Dimitrov algorithms are rather radix-2 8 algorithms, based on mono-bloc PPG j .

In fact, although radix-2 8 PPG ji of Eq. 5.22 and radix-2 8 PPG j of Seidel and Dimitrov are based on different recoding schemes, they are mathematically equivalent since they produce the same partial product PP ji /PP j . Based on theory (Table 5.3) and implementation results (Table 5.4), Dimitrov recoding is the most space consuming due to the use of odd-multiples of the multiplicand. On the other hand, Seidel recoding does not require odd-multiples, but since 9 inputs are treated simultaneously in a mono-bloc PPG j ; a large amount of multiplexer resources is needed to recode the 2 9 =512 input combinations. Finally, radix-2 8 PPG ji of Eq. 5.22 is the least area consumer because it does not employ odd-multiples and requires a small amount of multiplexers as the total number of input combinations in each radix-2 8 PPG ji is equal to 8+8+8+8=32. Note that the three recoding Chapter 6

Applications

In this chapter we apply the results obtained in the previous chapters on the PID and LQG controllers with a Kalman filter. The new algorithms of multiplication by a variable (MV) and a constant (SCM/MCM) are applied to the PID and LQG controllers, respectively. We show through a practical implementation based on the design-reuse methodology, how these new algorithms contribute to designing high-speed, low-power, very compact, and highly scalable FWL controllers, which is the main objective of this thesis.

PID Controllers

The PID is by far the most commonly used closed-loop controller due to its simple structure and robust performance [1]. An important feature of this controller is that it does not require a precise analytical model of the system that is being controlled, which makes it very attractive for a large class of dynamic systems. While PID is well adapted for linear-time-invariant (LTI) systems [2], it stands powerless for non-LTI ones. Nevertheless some solutions exist, such as partitioning the non-LTI control algorithm into a linear part and a non-linear part [3][4] [5]. The linear part represents the major control loop and is computed using an integrated PID, while the non-linear part that acts as dynamic compensation to the linear one is performed in software using a general-purpose-processor or a DSP.

In embedded control applications, such as in small-scale mobile robots, the control-loop-cycle is very tight and the power budget is very limited. A low sample rate leads to poor and degraded controlperformance. And high power consumption shortens the battery lifetime. To cope with these two severe and antagonistic constraints, the need for both a high-speed and low-power PID structure is of utmost importance.

Today, design-reuse [6] is a well established design standard that allows grasping with rapid technology changes and increasing design complexity. It consists in the use of predesigned technology-independent, generic and reconfigurable IP-cores [7], most generally implemented at register-transfer-level (RTL). However, at RTL abstraction level, no significant optimization results can be achieved if not undertaken at architectural and especially at algorithmic level. To achieve such a goal, a deep insight into PID arithmetic is necessary. At this stage, a choice of a numeric representation format is a crucial issue. Compared to floating-point, fixed-point format is the best candidate for optimized designs as it is much simpler to implement, faster, power-efficient and requires far much less hardware resources. However, the limited dynamic range can be source of control instability. This problem, referred to as finite-word-length (FWL) effect is an active research area that aims to shorten the floating-to-fixed point conversion time while preserving control performances [8][9].

RMRMA Based PID

Multiplication is a fundamental operation in digital design. Its speed and power requirements are two critical factors limiting the whole system performances (PID in our case). Since the publication of Booth's algorithm in 1951, a huge number of improvement attempts were proposed, especially after the publication of a generalized version of MBA algorithm accompanied with its proof [29]. Most of the proposals aimed to reduce the number of partial products either by employing digital optimization techniques [30][31] [START_REF] Kang | A Simple High-Speed Multiplier Design[END_REF] or by using larger slices (higher radices) [33]. However, experience showed [34] that beyond 4-bit slices (radix 8), the complexity to generate hard partial products can not be managed in a realistic way. In [34], three metrics are provided for comparing the tradoffs when employing higher radix Booth recodings: partial product compression factor (gain), the number of hard multiples that must be precomputed (computation complexity), and partial product generation fanin (routing complexity).

To circumvent the problem of hard partial products in higher radices, the idea proposed in [35] is to apply a recursive Booth recoding on the r-bit slice. While the idea is interesting, it relies upon a complicated mathematical formulation, leading to a complex control circuitry and especially to an exaggerated latency (2n/r).

According to the multibit recoding algorithm presented in [29], an n-bit two's complement operand Y can be written as: In this general case, the multiplier Y is divided into n/r slices, each of r+1 bits. Each pair of two contiguous slices has one overlapping bit. To bypass the problem of hard partial products, MBMA (Eq. 6.7) is applied to the Q j terms. Thus, Eq. 6.10 takes the new simpler recursive form: 

There is no need to prove Eq. 6.11 since it is a combination of Eq. 6.10 and 6.7 which were already proven in [29] and [28], respectively. The partitioning of operand Y according to Eq. 6.13 is illustrated by Fig. 6.8. To avoid dealing with special cases, n and r must be chosen as even numbers, with r as a divider of n. Thus, the DMAC equation becomes: Initially, the multiplier Y is an N bit string. But to comply with the requirement of the multibit recoding algorithm, we need to add a zero bit (y -1 ) to the less significant side of Y. Thus, the total size becomes N+1. Y is a two's complement number. It is written as follows:

In the multibit recoding algorithm, the multiplier Y is split into N/r two's complement slices ( j Q ), each of r+1 bit length. Two contiguous slices (Q j with Q j-1 , and Q j with Q j+1 ) have one overlapping bit in common. Thus Y becomes: Besançon, France nicolas.chaillet@femto-st.fr

Abstract-In this paper, a new recursive multibit recoding multiplication algorithm is introduced. It provides a general space-time partitioning of the multiplication problem that not only enables a drastic reduction of the number of partial products (N/r), but also eliminates the need of pre-computing odd multiples of the multiplicand in higher radix (r≥3) multiplication.

Based on a mathematical proof that any higher radix-2 r can be recursively derived from a combination of two or a number of lower radices, a series of generalized radix-2 r multipliers are generated by means of primary radices: 2 1 , 2 2 , 2 5 , and 2 8 . A variety of higher-radix (2 3 -2 32 ) two's complement 64x64 bit serial/parallel multipliers are implemented on Virtex-6 FPGA and characterized in terms of multiply-time, energy consumption per multiply-operation, and area occupation for r value varying from 2 to 64. Compared to a recent published algorithm, savings of 21%, 53%, 105% are respectively obtained in terms of speed, power, and area.

Keywords-High-Radix Multiplication; Low-Power Multiplication; Multibit Recoding Multiplication; Partial Product Generator (PPG)

I. BACKGROUND AND MOTIVATION

The continuous refinement of the mostly-used design paradigm based on modified Booth algorithm [1] combined to a reduction tree (carry-save-adder array , Dadda,…) has reached saturation. In [2] only slight improvements are achieved. The proposal reduces the partial product number from N/2+1 to N/2 using different circuit optimization techniques of the critical path.

Theoretically, only the signed multibit recoding multiplication algorithm [3] is capable of a drastic reduction (N/r) of the partial product number, given that r+1 is the number of bits of the multiplier that are simultaneously treated (1≤r≤N). Unfortunately, this algorithm requires the precomputation of a number of odd multiples of the multiplicand (until (2 r-1 -1).X) that scales linearly with r. The large number of odd multiples not only requires a considerable amount of multiplexers to perform the necessary complex recoding into PPG, but dramatically increases the routing density as well. Therefore, a reverse effect occurs that offsets speed and power benefits of the compression factor (N/r). This is the main reason why the multibit recoding algorithm was abandoned. In practice, designs do not exceed r=3 (radix-8).

The current trend [4][5] relies upon advanced arithmetic to determine minimal number bases that are representatives of the digits resulting from larger multibit recoding. The objective is to eliminate information redundancy inside r+1 bit-length slices for a more compact PPG. This is achievable as long as no or just very few odd multiples are required.

In [4], Seidel et al. have introduced a secondary recoding of digits issued from an initial multibit recoding for 5≤r≤16. The recoding scheme is based on balanced complete residue system. Though it significantly reduces the number of partial products (N/r for 5≤r≤ 16), it requires some odd multiples for r≥8. While in [5], Dimitrov et al. have proposed a new recoding scheme based on double base number system for 6≤r≤11. The algorithm is limited to unsigned multiplication and requires a larger number of odd multiples.

Instead of looking for more effective number bases, which is a hard mathematical task, our approach consists in exploiting already existing odd-multiple free recoding algorithms (2 1 , 2 2 , 2 5 , and 2 8 ) to recursively build up generalized oddmultiple free radix-2 r recoding schemes.

To achieve such a goal, the multibit recoding multiplication algorithm is revisited [3]. Its design space is extended by the introduction of a new recursive version that enables a hardware-friendly space-time partitioning of the multiplication problem. Depending on r value ranging from 2 to N, highlyscalable signed multipliers with various levels of parallelism and latencies can be systematically generated with insignificant control-complexity. The new algorithm has also the merit to recursively reduce the number of partial products (N/r) without any limit for the parameter r and any need for the odd multiples of the multiplicand. It also allows the combination of different recoding schemes proposed in the literature into the same architecture for better performances of the multiplier. Several higher radix (2 3 -2 32 ) two's complement 64x64 bit serial/parallel multipliers based on combined recoding schemes are implemented on Virtex-6 FPGA and characterized in terms of speed, power, and area occupation for r value ranging from 2 to 64. Compared to a new signed version of Dimitrov et al. algorithm [5] and Seidel et al. algorithm [4], outstanding results are obtained with the new multibit recoding scheme for r=8 formed by the combination of Seidel algorithm (r=5), MacSorley algorithm (r=2) [1] and Booth algorithm (r=1) [6]. This work is supported by "Centre de Développement des Technologies Avancées" (CDTA), Algiers, Algeria, in collaboration with FEMTO-ST Institute, Besançon, France.
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The respective savings are as follows: 21%, 53%, 105% and 8%, 52%, 63% are obtained in terms of multiply-time, energy consumption per multiply-operation, and total gate count, respectively.

The paper is organized as follows. Section I outlines the main requirement specifications for a generalized radix-2 r multiplication. Section II introduces the new recursive multibit recoding multiplication algorithm. A number of high-radix (2 3 -2 32 ) variants of the new algorithm accompanied with their implementation results are presented in Section III.

II. THE NEW RECURSIVE MULTIBIT RECODING MULTIPLICATION ALGORITHM

The equation (2.1.2) of the original multibit recoding algorithm presented in [3] does not offer hardware visibility. Let us rewrite it in a simpler hardware-friendly form, as follows:

Where

. For simplicity purposes and without loss of generality, we assume that r is a divider of N .

In equation ( 1), the two's complement representation of the multiplier Y is split into N/r two's complement slices ( j Q ), each of r+1 bit length. Each pair of two contiguous slices has one overlapping bit. In literature, equation ( 1) is referred to by radix-2 r equation, to which corresponds a digit set ( )

. Thus, the multiplication between X and Y becomes:

(2). Where each partial product can be expressed as follows:

( ) ( ) 

∑ ∑ ∑

∑ ∑ ∑