
HAL Id: tel-01124332
https://theses.hal.science/tel-01124332

Submitted on 6 Mar 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Binary Arithmetic for Finite-Word-Length Linear
Controllers : MEMS Applications

Abdelkrim Kamel Oudjida

To cite this version:
Abdelkrim Kamel Oudjida. Binary Arithmetic for Finite-Word-Length Linear Controllers : MEMS
Applications. Automatic Control Engineering. Université de Franche-Comté, 2014. English. �NNT :
2014BESA2001�. �tel-01124332�

https://theses.hal.science/tel-01124332
https://hal.archives-ouvertes.fr

Thèse de Doctorat

é c o l e d o c t o r a l e s c i e n c e s p o u r l ’ i n g é n i e u r e t m i c r o t e c h n i q u e s

U N I V E R S I T É D E F R A N C H E - C O M T É

Binary Arithmetic for Finite-Word-Length

Linear Controllers: MEMS Applications

nABDELKRIM KAMEL OUDJIDA

THÈSE présentée par

Abdelkrim Kamel OUDJIDA

pour obtenir le

Grade de Docteur de

L'Université de Franche-Compté

Spécialité: Automatique

Binary Arithmetic for Finite-Word-Length Linear Controllers:
MEMS Applications

Unité de Recherche:
FEMTO-ST, UMR CNRS 6174

Soutenue le 20 Janvier 2014 devant le jury:

Amara AMARA Président Professeur des Universités,
ISEP, Paris

Adel BELOUCHRANI Rapporteur Professeur, ENP, Alger

Chouki AKTOUF Rapporteur
Maître de Conférences HDR,
INP de Grenoble

Thibault HILAIRE Examinateur
Maître de Conférences,
Université Paris 6

Brahim BOUZOUIA Examinateur
Directeur de Recherche,
CDTA, Alger

Nicolas CHAILLET Directeur de Thèse Professeur des Universités,
Université de Besançon

 i

Gödel's Incompleteness Theorems

Theorem 1 − Blind spot: There is a sentence G such that if the formal system is

consistent, G is not a theorem nor is it not a theorem.

Theorem 2 − Consistency: No consistent theory, with a certain amount of arithmetic,

can prove its own consistency.

 ii

Acknowledgments

 I wish to thank my supervisor, Prof. Nicolas Chaillet, for the support and trust he so generously

provided me in the course of the accomplishment of my task. His continuous enthusiasm and

encouragement constituted the driving force of this work.

 I am deeply grateful to Dr. Brahim Bouzouia, Director of CDTA, for his help and support during all

the period of the thesis.

 I am so indebted to Prof. Noureddine Zerhouni, Mr. Karim Henda, and Prof. Yassine Haddab for

their precious help. Without their effective contribution, this thesis would not have been concretized.

 My special thanks go to my two colleagues, Mohamed Lamine Berrandjia and Ahmed Liacha, for

their technical help in a warm and joyful atmosphere.

 I am much thankful to my ex-student, Khaled Tahraoui, for having provided me with a tremendous

number of papers that much contributed to enhance the quality of the work.

 I would like to acknowledge Dr. Joël Agnus, research engineer within AS2M department of Femto-

St institute, for his valuable advices.

 Finally, I would like to thank my wife and sons for their great patience and support during my

seemingly never-ending nights preparing the thesis.

 iii

Abstract

 This thesis addresses the problem of optimal hardware-realization of finite-word-length (FWL) linear

controllers dedicated to MEMS applications. The biggest challenge is to ensure satisfactory control

performances with a minimal hardware. To come up, two distinct but complementary optimizations can

be undertaken: in control theory and in binary arithmetic. Only the latter is involved in this work.

 Because MEMS applications are targeted, the binary arithmetic must be fast enough to cope with

the rapid dynamic of MEMS; power-efficient for an embedded control; highly scalable for an easy

adjustment of the control performances; and easily predictable to provide a precise idea on the

required logic resources before the implementation.

 The exploration of a number of binary arithmetics showed that radix-2r
 is the best candidate that fits

the aforementioned requirements. It has been fully exploited to designing efficient multiplier cores,

which are the real engine of the linear systems.

 The radix-2r
 arithmetic was applied to the hardware integration of two FWL structures: a linear time

variant PID controller and a linear time invariant LQG controller with a Kalman filter. Both controllers

showed a clear superiority over their existing counterparts, or in comparison to their initial forms.

 iv

Glossary

Abstraction Simplification of details, approximation of complex problems

ADC Analog to Digital Converter

AFM Atomic Force Microscopy

ALU Arithmetic and Logic Unit

ASIC Application Specific Integration Circuit

Ath Adder Depth, the maximum number of serial adder-operations from input to output

Avg Average number of additions

BHM Bull Horrocks modified, an existing heuristic MCM algorithm

BIGE Bounded Inverse Graph Enumeration, an optimal SCM algorithm

BMA Booth Multiplication Algorithm, an existing algorithm for signed multiplication

CAD Computer-aided design, tools for design automation

CDE Common Digit Elimination

CLB Configurable Logic Bloc

CMOS Complementary Metal Oxide Semiconductor

COTS Commercial Off-The-Shelf

CSD Canonical Signed Digit, the SD form with no adjacent nonzero digits and the minimum number

of nonzero digits

CSE Common Subexpression Elimination, a framework for solving SCM and MCM

DAC Digital to Analog Converter

DAG Directed Acyclic Graphs, a framework for solving SCM and MCM

DBNS Double Base Number System, an existing number representation system

DFS Dynamic Frequency Scaling

Digit Clashing The CSE problem of disappearing patterns due to colliding digits

DMAC Double Multiply-And-Accumulate

DSP Digital-Signal-Processor/Processing

FF Flip-Flop

FPGA Field Programmable Gate Array

FPR Fixed-Point Representation

FWL Finite Word Length

H(k) Heuristic with k extra nonzero digits, an existing heuristic SCM algorithm

H(k)+ODP The H(k) algorithm with ODPs, a proposed heuristic SCM algorithm

Hcub Cumulative Benefit Heuristic, an existing MCM algorithm

 v

HDL Hardware Description Language

Heuristic An effective but potentially suboptimal method for solving a problem

HIS Host Side Interface

HPM High Performance Multiplication, an existing adder reduction technique

IOB Input Output Block

Logic resources An abstraction of the amount of silicon required to implement a logic function

LQG Linear Quadratic Gaussian

LTI Linear Time Invariant

LTV Linear Time Variant

MAC Multiply-And-Accumulate

MAG Minimized Adder Graph, an existing optimal SCM algorithm

MBMA Modified Booth Multiplication Algorithm, , an existing algorithm for signed multiplication

MCM Multiple Constant Multiplication, find a low-cost add-shift-subtract realization of multiplication by

each of the given constants

MEMS Micro-Electro-Mechanical Structure

MM Matrix Multiplication

MPC Model Predictive Control

MPM Multi-Precision Multiplication

MSD Minimal Signed Digit, any SD representation with the minimum number of nonzero digits

MV Multiplication by a Variable

NEMS Nano-Electro-Mechanical Structure

NP-hard Non-deterministic Polynomial-time hard

ODMAC Optimized Double Multiply-And-Accumulate

ODP Overlapping Digit Pattern, a proposed technique for partially resolving the CSE digit clashing

problem

OS Operating System

Pattern (CSE) A collection of signed digits that define how existing terms are added-operated

together

PC Personal Computer

PID Proportional Integral Derivative, an existing control law

PLD Programmable Logic Device

PPG Partial Product Generator

RAG-n n-dimensional Reduced Adder Graph, an existing heuristic MCM algorithm

RMRMA Recursive-Multibit-Recoding Multiplication Algorithm, a new algorithm

RNS Residue Number System, an existing number representation system

RTL Register Transfer Level

RTOS Real Time Operating System

SCM Single Constant Multiplication, same as MCM but for a single constant

SD Signed Digit, a recoding used in the CSE framework

 vi

Search space The set of all solutions that can be found by an algorithm, this is smaller than the

solution space for heuristic algorithms

SEM Scanning Electron Microscopy

SiGe Silicon Germanium

SM Sign and Magnitude

SOC System On Chip

Solution space The set of all feasible solutions

SRAM Static Random Access Memory

TC True and Complement

TSMC Taiwan Semiconductor Manufacturing Company

Upb Upper bound, maximum number of additions

VHDL Very high speed integrated circuit Hardware Description Language

VLIW Very Large Instruction Word

 vii

Contents

1 General Introduction . 1

 1.1 Motivation and Problem Statement . 1

 1.2 Objective of the Thesis. 1

 1.3 Requirements and Specifications. 2

 1.4 Contribution of the Thesis. 3

 1.5 Organization of the Thesis . 4

2 Problem Background . 6

 2.1 Application Context .6

 2.2 Micromanipulation as a MEMS application . 8

 2.3 Embedded Control-Electronics for MEMS . 10

 2.4 Review of the Basic Digital Solutions for Embedded Control . 12

 2.4.1 Commercial Off-The-Shelf (COTS) Electronics Components . 12

 2.4.2 Digital Signal Processors (DSPs) . 12

 2.4.3 Field Programmable Gate Arrays (FPGA) . 13

 2.4.4 Application Specific Integrated Circuits (ASIC) . 14

 2.5 Overview of Finite-Word-Length (FWL) Controller Optimizations 16

 2.5.1 Definition of the FWL Effect. 16

 2.5.2 Control-Theory Based Optimization. 17

 2.5.3 Binary-Arithmetic Based Optimization . 19

 2.5.3.1 Multiplication by a Constant . 19

 2.5.3.2 Multiplication by a Variable .21

 2.5.3.3 Multi-Precision Multiplication. 22

 2.6 Conclusion . 23

3 The Binary Arithmetic. 28

 3.1 Introduction to the Binary Arithmetic . 28

 3.2 Number Representation Formats. 29

 3.2.1 Fixed-Point Format. 30

 3.2.1.1 Representation of Nonnegative Integers. 30

 3.2.1.2 Representation of Signed Integers . 32

 3.2.1.3 Fixed-Point Arithmetic of Two's Complement Numbers . 33

 3.2.1.4 Multiplication. 34

 3.2.1.5 Addition. 35

 3.2.1.6 Overflow Detection . 35

 3.2.2 Floating-Point Format. 35

 viii

 3.2.2.1 Dynamic Range. 36

 3.2.2.2 Precision .36

 3.3 Number Representation Systems. 38

 3.3.1 Canonical Signed Digit (CSD) . 39

 3.3.2 Double Base Number System (DBNS) . 40

 3.3.2.1 Basic ARDBNR reduction rules. 41

 3.3.2.2 Advanced ARDBNR reduction rules . 41

 3.3.2.3 Addition. 42

 3.3.2.4 Multiplication .43

 3.3.3 Residue Number System (RNS) . 43

 3.3.3.1 Addition and Multiplication. .44

 3.3.3.2 Choosing the RNS Moduli. 45

 3.3.4 Radix-2r Number System. 46

 3.3.4.1 Canonical Radix-2r Representation . 48

 3.4 Comparison of the Number Systems. 48

 3.5 Conclusion . 49

4 Multiplication by a Constant. 51

 4.1 Optimizations of LTI Systems. 51

 4.1.1 Formulation of LTI Systems. 51

 4.1.2 Single-Constant Multiplication (SCM) . 52

 4.1.3 Multiple-Constant Multiplication (MCM) . 54

 4.1.4 Subexpression Sharing between Output Variables. 55

 4.1.5 Matrix Decomposition. 55

 4.2 Formal Definition of the SCM Problem. 56

 4.3 Existing SCM/MCM Algorithms. 57

 4.3.1 Digit-Recoding Algorithms. 58

 4.3.1.1 Avizienis's CSD Algorithm. 58

 4.3.1.2 Dimitrov's DBNS Algorithm . 59

 4.3.2 Common Subexpression Elimination (CSE) . 62

 4.3.2.1 Optimization Problems Due to the Initial SD Form . 62

 4.3.2.2 CSE digit clashing problem. 63

 4.3.2.3 Lefèvre's Common Subpattern (CSP) Algorithm. 63

 4.3.3 Directed Acyclic Graphs (DAG) Algorithms. 64

 4.3.3.1 Bernstein's Algorithm. 64

 4.3.3.2 Voronenko's Hcub Algorithm. 65

 4.3.4 Hybrid Algorithms(CSE & DAG) . 68

 4.3.4.1 Thong's BIGE Algorithm . 68

 4.4 Metrics Definition for SCM/MCM Algorithms. 69

 4.5 Key Limitations of the Existing SCM/MCM Algorithms. 71

 4.5.1 Predictability. 71

 4.5.2 Runtime and Memory Storage . 71

 4.5.3 Overflow Risk. 72

 4.5.4 Ease of Use . 72

 ix

 4.6 New Recoding Algorithm (RADIX-2r) . 72

 4.6.1 Maximum Number of Additions (Upb) . 73

 4.6.2 Average Number of Additions (Avg) . 79

 4.6.3 Length of the Critical-Path in Cascaded Adders (Ath) . 80

 4.6.4 Overflow Safety. 81

 4.7 New Redundant Radix-2r Recoding (R3) Algorithm. 82

 4.8 New MCM Algorithm (RADIX-2r MCM) . 88

 4.9 Conclusion . 89

5 Multiplication by a Variable. 93

 5.1 Optimizations of LTV Systems. 93

 5.2 Formal Definition of the MV Problem. 94

 5.2.1 New Radix-2r Design concept. 94

 5.2.2 New MV Complexity . 95

 5.3 High-Radix Multiplication Algorithms. 96

 5.3.1 Dimitrov's DBNS Algorithm. 96

 5.3.2 Seidel's RNS Algorithm . 100

 5.4 New Radix-2r Multiplication Algorithms. 103

 5.4.1 Two New High Radix (28 and 216) Illustrative Examples . 104

 5.4.1.1 New Radix-28 Recoding . 105

 5.4.1.2 New Radix-216 Recoding. 106

 5.4.1.3 Analytical Characterization of Area and Speed. 106

 5.4.2 Preliminary Study to an Optimal Partitionning . 110

 5.4.3 The Optimal Space/Time Partitioning . 114

 5.4.4 Discussion of the Implementation Results . 115

 5.4.4.1 Area Occupation .117

 5.4.4.2 Delay. 117

 5.5 New Radix-2r Multip-recision Multiplication Algorithms. 118

 5.5.1 New Radix-2r Sign Extension Technique . 118

 5.5.2 New Radix-2r
 Multi-Precision Multiplication Techniques. 119

 5.6 Conclusion. 122

6 Applications . 126

 6.1 PID Controllers . 126

 6.1.1 The Two Mostly-Used Discrete Versions of PID. 127

 6.1.2 BMA Based PID. 129

 6.1.3 MBMA Based PID. 131

 6.1.4 RMRMA Based PID . 133

 6.1.5 Discussion . 135

 6.1.6 Verification Method. 138

 6.1.7 The Finite-Word-Lenght (FWL) Effect . 140

 6.2 LQG Controller with Kalman Filter . 142

 6.2.1 Dynamic Model of the FT-G100 Micro-Gripper . 142

 x

 6.2.2 Kalman Filtering. 144

 6.2.3 Force Control of the FT-G100 Micro-Gripper . 145

 6.2.4 Hardware integration of the LQG controller with Kalman Filter 145

 6.3 Conclusion . 148

7 General Conclusion . 154

 7.1 Major Contributions. 154

 7.2 Current Limitations. 155

 7.3 Perspectives. .155

Appendix A: Proofs of Theorems 4.3 and 4.4 . 157

Appendix B: A Series of New High-Radix Recodings . 159

Appendix C: PID Equations. 163

Appendix D: LQG Controller with Kalman Filter. 166

Bibliography

Chapter 1 . 5

Chapter 2 . 24

Chapter 3 . 50

Chapter 4 . 91

Chapter 5 . 124

Chapter 6 . 150

Chapter 7 . 156

 xi

List of Figures

1.1 ASIC solution for MEMS control providing 100% autonomy . 2

2.1 Microgripper with two degrees of freedom piezocantilevers . 7

2.2 Sizes and dimensions characterizing the microworld . 8

2.3 Some force spans characterizing the microworld . 8

2.4 Amplitude of the forces in the microworld for a microsphere of radius r 9

2.5 Micromanipulation problem due to adhesion forces . 10

2.6 Simple cantilever beam . 18

2.7 Minimum number of additions of M1 and M2 using a separate optimization of a12 and a22 . . . 20

2.8 Minimum number of additions of M1 and M2 using a combined optimization of a12 and a22 . . . 20

2.9 Generalized N×N bit radix-2r
 parallel multiplier . 21

2.10 Illustration of an unsigned 8-bit multiplication, where a 4-bit multiplication, shown in white, is

computed in parallel with a second 4-bit multiplication, shown in black 22

3.1 Fixed-point representation of a signed real number in two's complement system 33

3.2 Double (a) and Simple (b) precision . 34

3.3 Significand in radix-r fixed-point representation . 37

3.4 Distribution of floating-point numbers within the dynamic range . 37

3.5 The ANSI/IEEE standard 754-1988 floating-point representation . 38

3.6 Conversion process from Two's complement notation to SD representation of the positive

integer "7" . 39

3.7 Reduction of consecutive active cells lying in one column (a) and in one row (b) 41

3.8 Example of the DBNS addition process . 43

3.9 Example of the DBNS Multiplication Process . 43

3.10 Binary-coded number format for RNS(8 | 7 | 5 | 3) . 45

3.11 Partitioning of (10599)10 in radix-24 . 47

4.1 The minimal number of addition for 45×Xj . 53

4.2 Multiplication of the constants 81 and 23 . 54

4.3 An example that shows the benefit obtained by considering common subexpressions that

span across multiple output variables . 55

4.4 Matrix decomposition . 56

4.5 A-operation: u and v are the input fundamentals and w is the output fundamental 65

4.5 Sequential order of computation of the entire set of partial-products needed by radix-26 74

4.6 Upb comparison for an N-bit constant . 75

4.7 Avg comparison for an N-bit constant . 76

4.8 Partitioning of a 24-bit C constant using R3 algorithm . 84

4.9 Avg comparison for a N-bit constant . 87

4.9 Avg comparison for a 32-bit constant . 88

 xii

5.1 Generalized N×N bit radix-2r
 parallel multiplier . 95

5.2 The general structure of the DBNS multiplier . 97

5.3 Recoding (32,7) with postcomputation of 7× . 101

5.4 Two’s complement 64×64 bit multiplier . 107

5.5 Critical path (Del+di) inside a generalized PPGj . 111

5.6 Optimal partitioning of a two’s complement 64×64 bit radix-232 parallel multiplier based on

Eq. 5.22 with (r,s)=(32,8) . 116

5.7 Space/Time partitioning of a two’s complement 64×64 bit radix-232 parallel multiplier based

on Eq. 5.22 . 118

5.8 Low-power sign-extension technique for the particular case (N, r)=(8, 2) 119

5.9 Multiplication matrix of partial-products bits for 16-b multiplication with one level recursion . . . 119

5.10 Low-power multi-precision multiplier for the particular case (N,r)=(16,2) with 8-bit sub-

operand size . 120

5.11 Low-power multi-precision multiplier for the particular case (N,r)=(16, 2) with 12 and 4 bit

sub-operand sizes . 121

5.12 Low-power multi-precision multiplier for the particular case (N,r)=(16,8) with 8-bit sub-

operand size . 121

5.13 Low-power multi-precision multiplier for the particular case (N,r)=(16,2) with 4-bit sub-

operand size . 123

6.1 Typical closed-loop control system using a PID . 128

6.2 Various PID IP-cores . 129

6.3 Straightforward DMAC implementation . 130

6.4 Optimized DMAC implementation. 130

6.5 Incremental PID architecture . 131

6.6 Commercial PID architecture . 131

6.7 Optimized DMAC architecture for r=2 . 132

6.8 Partitioning of a 16-bit Y operand with r=8. 134

6.9 Optimized DMAC architecture for r=4 . 135

6.10 The co-simulation of the PID in the Simulink/Modelsim environment.. 138

6.11 Fixed-point versus floating-point. 139

6.12 Perturbation after steady-state on control-output and on plant measure, successively. 139

6.13 Set-point tracking of arbitrary amplitudes and durations . 139

6.14 Synoptic scheme of the setup. 140

6.15 Setup of temperature regulation. 140

6.16 Effect of the setpoint fractional length on temperature regulation . 141

6.17 Structure of the FT-G100 microgripper (Femto Tools GmbH) . 142

6.18 System modelling. 143

6.19 Kalman recursive algorithm . 144

6.20 General scheme of the LQG controller with Kalman filter. 145

6.21 Standard methodology for an optimized hardware integration of LTI systems: from Matlab

functional model to HDL synthesizable code. 146

6.22 The noisy and filtered force (Fc) of the actuated arm. 147

6.23 The difference between the floating-point and the fixed-point filtered force (Fc) 147

 xiii

List of Tables

2.1 Main features of the basic digital solutions for embedded control . 15

2.2 Main features of the most known SCM algorithms in the literature. .20

3.1 Representation of the integer "thirty" in different number systems. 31

3.2 Some features of the ANSI/IEEE 754-1988 standard floating-point number representation

formats. 38

3.3 Booth encoding . 39

3.4 Radix-24 look-up table . 47

3.5 Number of digits required by each number system for the integer value (10599)10 48

3.6 Main features of number systems . 49

4.1 A DBNS representation of c = 10599 obtained using two blocks of 7 bits each 61

4.2 Constant type and allowed operations . 69

4.3 Upper-bound (Upb) and r values for an N-bit constant using RADIX-2r 75

4.4 RADIX-2r versus CSD: average number of additions (Avg) and upper-bound (Upb) 75

4.5 RADIX-2r versus DBNS: average number of additions (Avg) and upper-bound (Upb) 76

4.6 RADIX-2r versus non-recoding algorithms: runtime complexity and number of additions of

some special cases . 77

4.7 RADIX-2r versus CSD, Lefevre's CSP, and exhaustive search: smallest values up to a 32-bit

constant . 78

4.8 RADIX-2r
 versus CSD: Avg, Ath, and Upb for N-bit constant . 81

4.9 Upper-bound and r values for N-bit constant using RADIX-2r . 81

4.10 Odd and even |Qj| digit recoding using R3 algorithm . 85

4.11 R3 versus radix-2r: average number of additions (Avg) . 86

4.12 R3 versus RADIX-2r: smallest values up to 32-bit constant . 86

4.13 R3 and RADIX-2r versus non-recoding algorithms: runtime complexity and number of

additions of some special cases . 87

4.14 RADIX-2r MCM versus non-recoding MCM algorithms: runtime complexity for a number of

M constants with N-bit each.. 89

4.15 RADIX-2r
 MCM versus CSD: Avg comparison . 89

5.1 Dimitrov’s high-radix DBNS algorithms . 99

5.2 Main features of the multibit recoding multiplication algorithm . 103

5.3 Main feature comparison . 109

 xiv

5.4 Implementation results of a two’s complement 64-bit parallel multiplier on Xilinx xc6vsx475t-

2ff1156 circuit . 109

5.5 Delay and multiplexer complexity of basic radices: step #1 . 112

5.6 Optimal PPGj solution (a,b,c,d) leading to the optimal radix-2r
 multiplier according to

composite metrics AiTj : step #1 . 112

5.7 Delay and multiplexer complexity of the new basic radices: step #2 . 113

5.8 Optimal PPGj solution (a,b,c,d) leading to the optimal radix-2r multiplier according to

composite metrics AiTj : step #2 . 113

5.9 Delay and multiplexer complexity of the new basic radices: step #3 . 114

5.10 Optimal PPGj solution (a,b,c,d) leading to the optimal radix-2r multiplier according to

composite metrics AiTj : step #3 . 114

5.11 The optimal partitioning versus operand size N . 115

6.1 Coefficients of discrete recurrent equations . 128

6.2 Booth algorithm . 130

6.3 Implementation result comparison of MBA-based PID . 131

6.4 Modified Booth algorithm . 132

6.5 Implementation result comparison of MBMA-based PID . 132

6.6 Implementation result comparison of RMRMA-based PID . 135

6.7 Maximum power-consumption and control-loop-cycle of PID1 . 136

6.8 Maximum power-consumption and control-loop-cycle of PID2 . 136

6.9 Maximum power-consumption and control-loop-cycle of PID2 mapped on Virtex6 137

 xv

Personal Publications

Publications in Indexed Journals

• A.K. Oudjida, N. Chaillet, "Radix-2r Arithmetic for the Multiplication by a Constant," Accepted

for publication on January 20th 2014. IEEE Trans. on Circuits and Systems II, Expess Brief.

• A.K. Oudjida, N. Chaillet, A. Liacha, M.L. Berrandjia, and M. Hamerlain, "Design of High-

Speed and Low-Power Finite-Word-Length PID Controllers," Journal of Control Theory and

Applications (JCTA), vol. 12, N° 1, pp.68-83, 2014, ISSN:1672-6340, SPRINGER, Germany.

• A.K. Oudjida, N. Chaillet, M.L. Berrandjia, and A. Liacha, "A New High Radix-2r (r ≥ 8) Multibit

Recoding Algorithm for Large Operand Size (N ≥ 32) Multipliers,". Journal of Low Power

Electronics (JOLPE), vol. 9, N° 1, pp. 50-62, April 2013, ISSN:1546-1998, American Scientific

Publishers (ASP), USA.

• A.K. Oudjida, N. Chaillet, A. Liacha, and M.L. Berrandjia, "A New Recursive Multibit Recoding

Algorithm for High-Speed and Low-Power Multiplier,". Journal of Low Power Electronics

(JOLPE), vol. 8, N° 5, pp. 579-594, Dec.2012, ISSN:1546-1998, American Scientific

Publishers (ASP), USA.

Publications in International Conferences

• A.K. Oudjida, M.L. Berrandjia, and N. Chaillet, "A New Low-Power Recoding Algorithm for

Multiplierless Single/Multiple Constant Multiplication," Proceedings of the 12th edition of IEEE-

FTFC Low-Voltage Low-Power Conference, ISBN:978-1-4673-6104-0/13, June 19-21 2013,

Paris, France.

• A.K. Oudjida, N. Chaillet, A. Liacha, and M.L. Berrandjia "New High-Speed and Low-Power

Radix-2r Multiplication Algorithms," Proceedings of the 11th edition of IEEE-FTFC Low-

Voltage Low-Power Conference, ISBN:978-1-4673-0821-2/12, June 06-08 2012, Paris,

France.

• A.K. Oudjida, N. Chaillet, A. Liacha, M. Hamerlain, and M.L. Berrandjia, "High-Speed and

Low-Power PID Structures for Embedded Applications," Proceedings of the 21th Edition of the

International Workshop on Power and Timing Modeling, Optimization and Simulation

PATMOS, LNCS 6951, pp. 257-266, SPRINGER-VERLAG Editor, September 26-29 2011,

Madrid, Spain.

Chapter 1

General Introduction

Chapter 1 − General Introduction

 1

Chapter 1

General Introduction

 This chapter defines the problematic issue treated in this thesis and indicates the

objective to achieve. It sets the main requirements and specifications that fixe the

research scope and limitation, and informs on the essential contribution of the thesis. It

also gives an idea on the organization of this manuscript.

1.1 Motivation and Problem Statement

 As a MEMS application, micromanipulation is a field which has the particularity of being very

sensitive to noise. To reach the desired force/position accuracy in the gripping of micrometric objects,

the development of advanced control methods is necessary. The latter often results in control laws,

filters, and algorithms which are executed in real-time on platforms that are in total disproportion with

the dimensions of the manipulator tool (micro-gripper) and the micro-objects manipulated. They are

bulky and expensive, and have the huge drawback of preventing any embedded or mobile utilisation

(portability). Therefore, the hardware integration of these control laws and all related problems is quite

worthwhile, and constitutes a real challenge.

 With a sound experience in micromanipulation, and being aware of the hardware integration as an

ineluctable future step, the Automatic Control and Micro-Mechatronic Systems (AS2M) department of

FEMTO-ST Institute, Besançon, initiated in 2010 a new research project called embedded electronics

for MEMS. This project has been elaborated in conjunction with the Microelectronics and

Nanotechnology Division (DMN) of CDTA, Algiers, joining their complementary skills together for the

same objective. It is within the framework of this collaboration project CDTA/FEMTO-ST that the

present thesis has evolved.

 The most commonly used platform for micromanipulation setups is composed of a PC (with

Matlab/Simulink or Labview software for instance) connected to a processor (dSPACE compatible for

instance) for the real-time control, incorporating a sophisticated floating-point arithmetic unit with a

high precision and large dynamic range. One intermediate step toward portability will be to substitute

the calculation unit used for the real-time calculation by an FPGA board, wherein only the control

algorithm is embedded [1]. The ideal solution would be to incorporate the whole electronics (control,

power, signal conditioning, and conversion) into a low-power ASIC [2], directly connected to the micro-

gripper (Fig. 1.1). Such a solution provides 100% autonomy, but its implementation requires varied

and multidisciplinary skills.

 1.2 Objective of the Thesis

 The replacement of the dSPACE unit by an FPGA control board will primarily arise the problem of

stability. The latter is due to the inaccuracies of calculations caused by the use of an approximate

representation of real numbers (Fixed-point) with a reduced precision and dynamic range. The fixed-

point representation is dictated in this specific case by implementation considerations. Not only it is

much easier to implement, but also leads to more computational speed and less power consumption

and logic resources, in comparison to floating-point representation.

Chapter 1 − General Introduction

 2

 More precisely, the use of fixed-point instead of floating-point will exaggerate the quantification and

rounding effects on the transfer function of the system (disturbance of the pole-zero position). This

effect is assimilated to an additional source of noise (white noise) which is added to the already

existing environmental noise. Consequently, the biggest challenge is to ensure satisfactory control

performances with a minimum hardware (minimum word sizing of the controller structure). This

problematic issue is well known under the name of optimal realizations of digital Finite-Word-Length

(FWL) controllers. It involves optimizations in control theory and binary arithmetic.

 The objective of the thesis is the development of a new binary arithmetic adapted to the FWL

problem, enabling an easy generation of minimum word-size controller-structures with

acceptable control performances.

1.3 Requirements and Specifications

 The hardware integration of FWL controllers is a vast problematic issue. In order to define the

research scope and limitation of the thesis, a number of requirements and specifications are

established. They are summarized as follows:

• Only linear controllers are considered. This includes both the Linear Time-Invariant (LTI) and

Time-Variant (LTV) controllers;

• Only binary arithmetic is used as a mean of optimization. Are not considered the optimization

methods based on the utilization of sparse and insensitive matrices with minimization of

transfer-function or pole-zero disturbance.

• A new fixed-point binary arithmetic is to be proposed. It must be:

− Fast to cope with the high dynamics of MEMS;

− Power efficient for an embedded control;

− Highly scalable for an easy adjustment of the control performances;

− Predictable to provide a more-or-less precise idea on the speed and logic resources

before the implementation. This feature is very useful to the automatic synthesis of

linear controllers.

• Use of the same word size and the same fixed-point position in the word for all the coefficients

and variables involved. Are not addressed issues related to the order of sum-of-product

operations, nor those pertaining to different rounding modes (truncation, to-the-nearest, etc.).

FIGURE 1.1 – ASIC solution for MEMS control providing 100% autonomy.

Source : [2]

Chapter 1 − General Introduction

 3

• To target a wide range of applications, the arithmetic optimization is undertaken at the

algorithmic level, and not at the architectural level;

• Because only LTI and LTV controllers are concerned, the main arithmetic functions involved

are:

− Single and Multiple Coefficient Multiplication (SCM and MCM);

− Variable operand multiplication;

− Multi-precision multiplication.

• As the optimization effort is deployed at algorithmic level, there is a need to explore a large

number of alternative algorithms in order to select the best one. Therefore, reconfigurable

circuits (FPGA) stand in this case as the most appropriate option of integration. FPGA allows

a fast prototyping;

• Although FPGA serves for the validation of the developed algorithms, HDL code must be fully

compliant to the standard IP design-reuse methodology. This means also that the HDL-RTL

code will be 100% technology independent, offering the possibility to be mapped both on

FPGA and ASIC using a digital standard-cell-library of a given technology foundry. This

measure guarantees a systematic reuse of the same code for any future ASIC integration.

• Arithmetic optimization results are applied to PID and LQG controllers with Kalman's filter.

These two linear controllers were used in a previous work [3] to control the FTG-100

microgripper (www.femtools.com) on a dSPACE platform.

1.4 Contribution of the Thesis

 We have investigated and compared four binary arithmetics: CSD, DBNS, RNS, and Radix-2r. In

spite of a serious limitation of Radix-2r for high values of r due to the generation of an important

number of odd-multiples{ }12,,5,3,1 1 −−rL , it seems relatively the most liable arithmetic to fulfil the

above-set requirements. We have circumvented the limitation of Radix-2r by a recursive construction

of higher radices based on a combination of lower radices. This technique has enabled to develop:

• A new heuristic (RADIX-2r) for SCM. It has the major advantage of being 100% predictable in

maximum number of additions (upper-bound), in average number of additions, and in number

of cascaded adders (adder-depth) forming the critical path. Furthermore, its computational

complexity is linearly proportional to the constant bit size (N), which means that it has no

limitation with regard to N. Despite the big number of existing heuristics, none of them is

predictable, not even partially. Besides, most of them exhibit a polynomial runtime complexity

O(Nα) with α ≥ 3, and some of them show even an exponential O(2N) complexity. Only CSD

is linear and predictable. But the latter is largely superseded by RADIX-2r which requires 18%

less additions for a 64-bit constant.

• A new fully predictable heuristic (RADIX-2r) for MCM with a computational complexity

O(N×M), where M is the number of constants. Compared to the standard CSD for

(N,M)=(64,10), a saving of 53% is obtained. The saving increases as the product N×M

increases.

Chapter 1 − General Introduction

 4

• A series of new high-radix multiplication algorithms with variable operands. They have the

merit of being fast, energy efficient, highly-scalable, and predictable. Contrary to existing

Radix-2r
 algorithms where the highest value of r is limited to 16, the proposed algorithms

have no limitation with regard to r. Theoretically, the higher the radix, the shorter the critical

path (faster).

• A new mathematical formalism which enables to derive the optimal high-radix multiplication

algorithm from a given combination of low-radix multiplication algorithms. The idea has been

physically validated on FPGA.

• A series of new multi-precision multiplication algorithms, offering the possibility to run

simultaneously several small-size multiplications on the same N×N-bit multiplication array.

The proposed algorithms have the superiority over exiting ones to support a generic

partitioning of the array. This results in a higher computational throughput with reduced power

consumption.

• The currently best known analytically-proved bounds (Upper-bound, Adder-depth, Average)

with the exact number of additions for SCM and MCM.

1.5 Organization of the Thesis

 Except the introduction and conclusion, the remainder of the manuscript is structured in five

chapters.

 Because of the intended applications, corresponding informations are given in chapter 2. We first

start with micromanipulation as a MEMS application. We describe its specificities and requirements.

This is followed by the state-of-the-art of embedded control-electronics for MEMS. We review the

basic digital solutions and discuss the pros and cons of each option. At the end, we present an

overview of the different optimization techniques applied to FWL controllers.

 In chapter 3 we deal with the binary arithmetic. First, the mostly used number formats, fixed-point

and floating-point, are introduced and compared to one another with regard to the precision and

dynamic range. We then introduce the most commonly used number representation systems. We

insist more particularly on the two arithmetic operations (+, ×) required by linear systems.

 Chapter 4 is devoted to the operation of multiplication by a constant. A range of the most frequently

cited algorithms are presented, followed by the introduction of a new heuristic called RADIX-2r. A

detailed description of the latter is given, accompanied with a discussion on the experimental results.

 The same is done in chapter 5 for the variable-operand multiplication. We first describe the most

advanced high-radix multiplication algorithms, and then we introduce a series of new high-radix

algorithms and show how to extract the optimal one. Next, we discuss the experimental results. The

same presentation scheme is applied to multi-precision multiplication.

 In chapter 6, we apply the results of research developed in the previous chapters on the PID and

LQG controllers with Kalman’s filter.

 Finally, we provide some concluding remarks on the accomplished work. We comment its strengths

and weaknesses, and propose a roadmap for the continuation of the project of embedded electronics

for MEMS.

Chapter 1 − General Introduction

 5

 Bibliography

[1] E. Manmasson et al., “FPGA in Industrial Control Applications,” IEEE Trans. on Industrial

Informatics Journal, vol. 7, N° 2, pp. 224-243, May 2011.

[2] R. Casanova et al, “Integration of the Control Electronics for a mm3-sized Autonomous Microrobot

into a Single Chip,” Proceedings of the IEEE International Conference on Robotics and

Automation (ICRA’09), pp. 3007-3012, Kobe, Japan, May 12-17, 2009.

[3] M. Boudaoud, "Commande en Effort d'une Micropince en Actionnement Electrostatique," Master

Thesis, AS2M Department, FEMTO-ST, Besançon, July 2009.

Chapter 2

Problem Background

Chapter 2 − Problem Background

 6

Chapter 2

Problem Background

 In this chapter, we first define the application context of the thesis and then give the

state-of-the-art of each topic involved. We describe the main characteristics of the

micromanipulation domain as a MEMS application, followed by a survey of hardware

integration solutions adapted to the embedded control. We examine the solution space

with regard to the MEMS requirements and select, wherever possible, the best option

that leads to an optimized implementation of the controller. The selection is carried out

depending on the control-bandwidth, the power consumption, and the precision of

calculation.

2.1 Application Context

 MEMS (Micro-Electro-Mechanical Systems) technology dates back to the discovery of the

piezoresistive effect in silicon and germanium at Bell Labs in early 1950s [1]. It combines

lithographically formed mechanical-structures with electrical elements to create physical systems that

operate on the scale of microns. A MEMS is defined as a system of micrometric dimension (less than

100 µm) incorporating at least two of the following features: sensor, signal processing electronics,

actuator, power or transmission. Over the last 60 years, an impressive variety of MEMS devices were

developed, constantly pushing the boundaries of physics, mechanics, electronics, and control theory.

 Microrobotics is one of the MEMS applications. It is the field of miniature robotics, in particular

mobile robots with characteristic dimensions less than 1mm. Microrobots [2] and Micromanipulators [3]

are two outstanding examples of MEMS devices, dedicated to work in the micro-world. At this scale,

the systems should have accuracy and resolution that are better than one micron.

 The AS2M department of FEMTO-ST is specialized in micromanipulation/microassembly

applications. For their setups, researchers use bulky equipments (typically standard PC and additional

electronic cards) to control the developed micromanipulators. This constraining environment makes

any mobile utilisation difficult. One of the smallest components of the micromanipulator is the end-

effector. In most cases, this is a micro-gripper. It becomes really interesting if the microgripper can be

easily changed for the adaptation to a new task. Therefore, the solution is to integrate the control

electronics within the MEMS part to obtain some sort of a "plug-and-play" micro-gripper. However, the

implementation of this solution requires advanced skills in hardware integration. For such a purpose, a

collaboration project between FEMTO-ST and CDTA has been established in 2010. It aims at

exploring and proposing appropriate solutions for the hardware integration of the control part of the

micro-gripper. The present thesis is a part of this collaboration project.

 However, controlling structures at the scale of micron is not only challenging from the modeling and

control-law point-of-view, but also computationally challenging [4], mainly for three reasons:

• These miniature devices are capable of extremely fast movements, requiring very high control

bandwidth to ensure their stability. For instance, in [3] a micro-gripper with two degrees of

freedom piezocantilevers is proposed (Fig. 2.1a). It is dedicated to applications where both

Chapter 2 − Problem Background

 7

high performance and high dexterity are required. Such a micro-gripper presents a strong

coupling between the two axes. In addition, it is very oscillating and strongly nonlinear

(hysteresis and creep). All these problems are compensated using additional control/filtering

techniques that require more computational time. Thus, the stability is guaranteed only if

enough computational power is provided. To give an order of magnitude, the dynamic of the

piezocantilever is typically controlled with a sampling time of 20µs (Fig. 2.1b).

• With small physical sizes and high resolution come low tolerance to error, and therefore a

need for a high computational control precision. For instance, in micromanipulation and

microassembly, fixing a micro-lens at the tip of an optical fiber with 1µm of relative positioning

error or 0.4µrad of orientation error, may cause a loss of 50% of the light flux [3].

• The reality is that most of the MEMS devices are embedded in autonomous equipments which

are bound by power and size constraints. This dictates the use of power-efficient solutions in

control and in the implementation of the controller as well. A typical example is the mm3 robots

[2], called I-SWARM. It is a real autonomous mobile micro-robot; powered by solar cells,

equipped with a locomotion unit for moving, an infra-red unit for communication, and a contact

tip for detecting near objects. The whole is managed by a low-power ASIC, which is in fact a

real system-on-chip (SoC) solution.

 Consequently, in addition to an advanced modeling and control, high-speed, low-power, and high

precision of calculation are mandatory for the MEMS control. In the case of an embedded control,

which is the purpose of this thesis, the precision of calculation becomes even a more severe

constraint, harder to satisfy without compromising speed and power. This is essentially due to the

utilization of fixed-point numbers which are an approximation of real numbers. The fixed-point format is

dictated in embedded applications for its high-speed and low-power features.

 Obviously, this thesis does not have the pretention to address all issues related to embedded

control for MEMS. Such a complex and substantial problem would require a series of complementary

works. The objective is rather restricted only to the determination of a suitable binary arithmetic that

conciliates into a good compromise speed, power, and precision, while preserving satisfactory control

performances.

 Because micromanipulation is the MEMS application domain to which the proposed arithmetic is

applied, a brief summary of its characteristics is given hereafter for a better understanding of the real

control challenges.

FIGURE 2.1 – (a) Microgripper with two degrees of freedom piezocantilevers.
 (b) Step response of the piezocantillever.
 (c) Terminal parts of the microgripper.

Source: [3]

(a) (b) (c)

Chapter 2 − Problem Background

 8

1nm 10nm 100nm 1µm 10µm 100µm 1mm 10mm 100mm 1m

Conventional Robotic Micromanipulation Nanomanipulation Atomic Manipulation

Meso

Daily use objects Components of
 microsystems

Biological elements,
 Cells

Genes Atomes,
Molecules

FIGURE 2.2 – Sizes and dimensions characterizing the microworld.

 10pN 100pN 1pN 10pN 100pN 1nN 10nN 100nN 1µN 10µN 100µN 1mN 10mN 100mN

FIGURE 2.3 – Some force spans characterizing the microworld.

Weights of microobjects

Weights of microsystem components

Weights of microsystems

Resolution of the
Micromanipulation force

Adhesion forces

Micromanipulation
forces

2.2 Micromanipulation as a MEMS application

 Micromanipluation addresses the problem of gripping, handling, moving, and placing objects of

micrometric sizes. During the last decade, the need for micromanipulation systems (Fig. 2.1) with

micro/nanometers accuracy and fast dynamics has been growing rapidly [5]. Such systems occur in

applications including:

• Manipulation of biological elements in medicine and biotechnology (micro-organisms, cells,

DNA, etc.).;

• Assembly of micromechanical rigid parts (micro sprocket wheels, optical micro lens, hybrid

circuits, etc.);

• Micro/ Nano-sensors for environnemental monitoring;

• Metrology and nanometer resolution imaging (AFM and SEM);

• Study of micro-world phenomena, such as adhesion forces.

 Before exposing the major problems pertaining to the microworld, it is useful to have a precise idea

on the order of magnitude in size and weight of the physical entities manipulated (Fig. 2.2 and 2.3).

 Force and position measurements are very important to perform micromanipulation and micro-

assembly tasks. Small components are often fragile (e.g. biological cells) and may be damaged or

destroyed if they are grasped without force control.

 Working in the micro/nano-world involves displacements from nanometers to tens of microns [6].

Because of this precision requirement, environmental conditions could generate noise and disturbance

that are in the same range as the desired displacements (very low signal/noise ratio). These

environmental conditions include: thermal variation; vibration; air-flow; and humidity.

Chapter 2 − Problem Background

 9

 In fact the forces that come into play at the micro level are different from those at the macro level.

This is due to what is commonly called the scale effect [7]. Indeed, when the size becomes small

enough, the surface effects become dominant over the volume effects. Gravity, which is often relied on

in control and assembly of macro systems, plays only a minimal role at the micro level. Instead, the

dominant forces are (Fig. 2.4):

• Electrostatic forces (Felec) generated by tribo-electrification and charge transfer during the

contact;

• Surface-tension forces (Ftens) between the two contacting elements, related to the level of

humidity;

• Van der Waal's forces (FVdw , atomic forces).

 There is also another kind of problems related to uncertainties. It is interesting to note that because

of adhesion forces, that still remain difficult to control, the equations of the dynamics and kinematics of

the micro-objects are subject to uncertainties, so that the movements are unpredictable. The

uncertainties are also due to the limited performances of the sensors. To handle a micro-object, the

required accuracy is the tenth of the size of the micro-object in the worst case, and the resolution is

equal to 1/n times of the precision (n>1). At present, propose force and position sensors with such a

performance and a suitable size remains a challenge [8]. Precise position sensors already exist, such

as interferometers, but their size is not suitable (bulky).

 Another problem of the scale-effect is the inability to directly use the human sight sense in the

microworld. A microscope-camera system is often used to monitor micromanipulation tasks. Fully

automated or remotely operated, these systems are equipped with a micromanipulation screen,

enabling the human operator to intervene [9].

 The specific complexities of the microworld (adhesive forces) added to the lack of appropriate

sensors is a real challenge that is far from being mastered [6]. The capture and release by a

microgripper of "sticky" parts (Fig. 2.5) is a hard problematic issue [6][7][10][11][12].

 Because of all these difficulties, the design of micromanipulation systems (Microgrippers) must offer

the best performance in terms of accuracy and resolution. As to their use, it must reproduce as

FIGURE 2.4 – Amplitude of the forces in the microworld for a

microsphere of radius r (Fg: − ; Ftens : - - ; FVdw : -.- ; Felec : ...).

Chapter 2 − Problem Background

 10

accurately as possible the user commands. In order to respond to this double requirement, there is an

increasing resort to use:

• Smart materials such as piezoceramics [5][6][13], magnetostrictive, shape memory,

electroactive polymer, are used to develop microactuators, microrobots, micromanipulators

and Microsystems;

• Robust control techniques (both in theory and implementation) based on closed-loop feedback

[14][15] combined with advanced filtering techniques [8].

2.3 Embedded Control-Electronics for MEMS

 The literature on the control issue of MEMS/NEMS systems is so extensive, but all proposed

solutions fall into two distinct categories:

• Analog controllers: that is, implementing the controller as an active analog feedback circuit.

Used to be the primary method of implementing controllers before digital systems of sufficient

performance became widely and cheaply available. This type of controllers presents

numerous challenges since analog systems are more difficult to design (requiring careful

control of all active components), implement (especially in modern low-cost processes

optimized for digital systems), and maintain (there is not possibility of “patching” the system).

Furthermore, the physical complexity of modern mechanical devices may require modal

control that cannot be implemented by a single analog controller [4].

• Digital controllers: due to the above shortcomings of analog controllers and aided by the

fulgurous progress in semiconductor technology (transistor size shrinking) [16], tightly

integrated solutions that combine high-performance power of digital processing with accurate

sensors are used (closed-loop control).

 To provide stable and robust control, a digital control system must be able to measure the process

variables and set actuator output command within a fixed period of time (loop-cycle time). However,

recent experience of MEMS/NEMS developers [4] has shown that the state-space representation [17]

[18] is being extensively applied across a wide variety of MEMS devices for two reasons:

• Its relative ease in determining stable control equations;

• It forms the basis for many more complex control techniques;

• Its recursive behaviour is suitable for a digital implementation.

Hereafter, are the discrete state-space equations for LTI and LTV, respectively:

FIGURE 2.5 – Micromanipulation problem due to adhesion forces. (a): Difficulty to grip micro-

objets; (b): Problems in placing a micro-object; (c): difficulty of positioning a micro-object due

to adhesion forces created by surrounding micro-objects.

Chapter 2 − Problem Background

 11

Explicit discrete time-invariant
() () ()kuBkxAkx ⋅+⋅=+1

() () ()kuDkxCky ⋅+⋅=
 (2.1)

Explicit discrete time-variant
() () () () ()kukBkxkAkx ⋅+⋅=+1

() () () () ()kukDkxkCky ⋅+⋅=
 (2.2)

 where:

()⋅x is called the "state vector", () ;tx
nℜ∈

()⋅y is called the "output vector", () ;ty
qℜ∈

 ()⋅u
is called the "input (or control) vector", () ;tu

pℜ∈

()⋅A is the "state (or system) matrix", ()[] ;nnAdim ×=⋅

()⋅B
is the "input matrix", ()[] ;pnBdim ×=⋅

()⋅C is the "output matrix", ()[] ;nqCdim ×=⋅

()⋅D is the "feedthrough (or feedforward) matrix", ()[] .pqDdim ×=⋅ .

A depth in-sight into state-space equations reveals that the computation pattern is mainly based upon:

• Matrix Multiplications (MMs), which involve the use of the elementary but time-critical multiply-

and-accumulate (MAC) operation [19][20] in the case of LTV systems, and SCM/MCM in the

case of LTI systems;

• And a limited movement of data between temporary storage elements (load/store of data

from/in memory and registers).

 The computational overhead is maximal when digital controller is performing these operations, more

especially when it is performing MMs. Hence the sampling-rate (performance) is limited by the rate at

which the device performs these computations. However, the high potential of parallelism inherent in

MM suggests that significant performance improvements can be achieved [21][22] by providing

increased architectural parallelism.

 The number of elementary scalar operations (MAC, SCM/MCM) involved depends on the control

complexity, based on:

• The number of state variables that fixes the dimension of the matrices;

• The number of I/O required;

• And, the density of the matrices (the use of sparse and insensitive matrices wherever possible

considerably reduces the computation complexity);

 With time constants several orders of magnitude faster than their non-MEMS counterparts, many

MEMS devices require control-bandwidth and accuracy exceeding the ability of conventional digital

solutions [4]. On the other side, for autonomy purposes and size constraints [2], many MEMS devices

dictate the use of low-power consumption solutions. There is a trade-off between performance and

power consumption that is quite critical.

 The important question that arises at this stage is: with a plethora of available solutions for digital

embedded control [23][24][25][26][27][28], which one fits the best MEMS application requirements?

Chapter 2 − Problem Background

 12

 This question can be quickly answered for the most part by looking to the pros and cons of existing

solutions with respect to the above-mentioned severe antagonistic constraints (high performance &

low power consumption), but the ultimate solution must be tightly tailored to the application case

according to the intended objectives.

2.4 Review of the Basic Digital Solutions for Embedded Control

 The current state-of-the-art [24][16] of embedded solutions offers mainly four possibilities based

on the use of:

• Commercial Off-The-Shelf (COTS) electronics components. This includes general purpose

microprocessors and microcontrollers;

• Digital-Signal-Processors (DSPs) such as the TMS320C55x [29] and TMS320C64x [30],

which are respectively the lowest power and the highest performance DSP available [15];

• Field-Programmable-Gate-Array (FPGAs) such as Xilinx’s [31] and Altera’s [32] FPGAs;

• Application-Specific-Integrated-Circuits (ASICs) which are chips designed from scratch

according to a given technology foundry (e.g. TSMC 90 nm) .

 Let us examine in detail the pros and cons of each solution, focusing more particularly on the

MEMS control requirements.

2.4.1 Commercial Off-The-Shelf (COTS) Electronics Components

 The common measure of control system performance and robustness is jitter, which is a measure of

the variation of the actual loop cycle-time from the desired loop cycle-time. However, the

nondeterminism in the execution of microprocessors makes static timing boundaries difficult to

determine and limits reliable bandwidth. This is mainly due to three reasons:

• In a general purpose microprocessor, the processor resources are held up while it is busy

performing the MAC operations and the speed or the sampling rate is decided by the latency

of these instructions;

• Additionally, priority interrupts and bus contention contribute to the nondeterminism

encountered in typical microprocessors or microcontrollers [24][27].

• Worse enough, in general-purpose operating systems (OS) such as Windows (Ex: PC based

control platform) where the microprocessor is programmed to handle multiple asynchronous

tasks, the jitter becomes exaggeratedly unbounded (random) so closed-loop control system

stability cannot be guaranteed [33]. Processor-based control systems with real-time operating

systems (RTOS) are commonly able to guarantee control-loop jitter of less than 100

microseconds.

2.4.2 Digital Signal Processors (DSPs)

 DSP are mainly differentiated from general purpose microprocessors by additional parallelism

[24][25]. For instance, the TMS320C64x is a VLIW architecture with eight execution units, including

four multipliers and four ALUs [30]. Using its eight execution units, the processor can execute up to

Chapter 2 − Problem Background

 13

eight 32-bit instructions in a single clock cycle (up to 1GHz), allowing it to achieve a high level of

parallelism. The TMS320C64x is able to perform four 16-bit multiplications in parallel. All execution

units in the TMS320C64x have a throughput of one cycle and latencies from one to several cycles

depending on the instruction.

 To date, for sound/image/video applications, conventional DSPs have provided more than adequate

bandwidth, with consistent performance gains from feature scaling [16] and added architectural

parallelism. However, for this new class of control applications (MEMS), the latencies that are inherent

to many DSP architectures limit the achievable control bandwidth which refers to the throughput of the

controller as each state-space time step is dependent on the last. The latency becomes then a critical

aspect. Further, MEMS systems, by nature, are small in size and complexity, resulting in simple

control computations that must be performed at very high rates [34]. For small control systems, the

benefits of added parallelism in high performance DSPs fails to mitigate the complexity and

performance overhead of the architecture. In other words, DSP architecture is oversized for MEMS

applications.

 Besides, as control complexity scales, the computational advantage is outweighed by the cost of

moving data between local register files and main memory, which induces an exponential fall off in

control bandwidth [25]. It is important to note that computation complexity grows quadratically with

control complexity due to the n2 multiplications in a matrix multiply. This has also a negative effect on

power consumption which nearly reaches 1 amp in the case of TMS320C64x, making it impractical for

use in small embedded systems.

 For MEMS control requirements, a good DSP evaluation study based on control bandwidth / power

consumption versus control complexity is given in [4].

2.4.3 Field Programmable Gate Arrays (FPGA)

 FPGAs belong to the class of user programmable digital devices called Programmable Logic

Devices (PLDs, in contrast to ASICs). A PLD is an integrated circuit that enables the user to configure

it in many ways, enabling the implementation of various digital logic functions, of varying sizes and

complexities. For instance, Xilinx’s XC4VSX55 FPGA comprises an array of 128x48 Configurable

Logic Blocs (CLBs), 512 18bit-MACs, 320 18Kb-Block-RAMs and 640 I/Os [31]. Some FPGAs, like

XC4VFX family, include up to 2 PowerPC Processors, which are real System-on-Chip (SoC)

platforms.

 One of the fundamental differences between FPGAs and DSPs is the number of MACs included

[25], which is respectively 512 for XC4VSX55 FPGA and only 4 for TMS320C64 DSP [28]. In the case

of 512 tap filter computation, 512 MAC operations per simple are involved. So what takes 128 (512/4)

clock cycles for DSP can be completed in a single clock cycle for FPGA. In fact the reality is lower

than this, as data has to be pulled in and out of memories; a number of additional clock cycles are

required either for FPGA or DSP. Nevertheless, this example shows the most important feature of

FPGA parallelism.

 Because of the inherent parallelism of FPGA architecture, many independent control loops can run

at different deterministic rates without relying on shared resources that might slow down their

responsiveness as in the case of COTS solutions. Hence, the jitter for FPGA-based control loops

depends only on the accuracy of the FPGA clock source. It typically ranges in the order of

Chapter 2 − Problem Background

 14

picoseconds. Furthermore, since there are enough resources for parallelization, the control loop rate is

limited only by the sensors, actuators, and I/O modules [24]. This is an outstanding contrast to COTS

and DSPs control systems, where the processing performance was typically the limiting factor.

 As comparative example, the Proportional-Integral-Derivative (PID) control algorithm, commonly

used for regulating analog processes such as temperature and pressure, executes in just 300

nanoseconds (3.33 MHz) on FPGA (according to 2006 benchmarks), whereas it executes at the rate

of 2.75 KHz on typical COTS processor [24].

 Recent trends in FPGA based control are:

• Dynamic reconfigurability: In the recent years, the specifications for control systems have

grown to include a certain degree of intelligence. They vary from specifications requiring

certain amount of fault tolerance to operating under varying operating conditions [35]. These

systems must also be capable of intelligent sensor selection, remote monitoring and operation

and must be capable of implementing sophisticated control algorithms that require adaptation.

By systematically partitioning the system; functionality requiring large amounts of

reconfiguration can be given such kind of resources on an FPGA; thereby ensuring that the

above mentioned objectives are met. This is especially useful in certain kinds of fault tolerant

systems. Suppose the system detects the occurrence of a fault; then a new configuration can

be loaded (either partially or fully) so that the fault is taken care of (either remedied or

bypassed) and the control system performance is not affected.

• Hardware/software Co-design: this is an evolving aspect of FPGA based control. An

application of this particular approach in the area of Model Predictive Control (MPC) is

illustrated in [36]. Hardware software co-design is a new paradigm in which a

microprocessor/microcontroller is embedded in an FPGA. Control algorithms that require a

large number of computationally involved operations like matrix manipulations cannot be

effectively implemented on a single microprocessor based set up, as the microprocessor gets

bogged down while performing these operations. It is in this regard that the parallel

architecture of the FPGA can be exploited to develop a matrix coprocessor for performing

these computations; while the general purpose microprocessor that was embedded in the chip

can be used to perform other operations. This is more efficient and still retains its system on

chip nature due to the fact that the processor and the FPGA come together, bundled on single

chip.

2.4.4 Application Specific Integrated Circuits (ASIC)

 Today, the reality is that control systems for MEMS are bound by three antagonistic constraints:

power, size and performance. Contrary to DSPs and FPGAs, ASIC is the unique solution capable to

cope with such a difficulty.

 By rethinking the architectural choices (efficiently separated and optimized decision part and data-

path, both tightly tailored to the application case), it is possible to create control systems with

reasonable power margins, negligible area overhead and adequate bandwidth. This can be well

illustrated by two recent practical ASIC cases:

• A general purpose solution in [4];

• And a specific purpose solution in [2].

Chapter 2 − Problem Background

 15

 In [4], a general purpose scalable closed-loop-feedback control architecture was developed, based

on 90 nm CMOS TSMC technology. This ASIC solution provides higher bandwidth and lower power

than respectively state-of-the-art DSP TMS320C64x and TMS320C55x. The maximum clock

frequency of the architecture is 1.2 GHz and is limited by a latency of 6-stage data-path. It shows

potential for a wide range of applications, supporting control bandwidths as high as 40 MHz in small

systems and well over 200 KHz in large control systems whereas none of TMS320C64x family is

capable of 100 KHz bandwidth. With 16 MACs included, the chip size does not exceed 1mm2 and

requires less power than TMS320C64x. And with 8 MACs included, it requires less than more than

50% power than TMS320C55x.

 In [2], an ASIC specifically dedicated for a real autonomous microrobot is described. The ASIC is a

real SoC as it incorporates on the same silicon all necessary electronics required by an autonomous

device: power electronics, buffers, ADCs, DACs, control and data-path units, analog transducers and

an oscillator. As the microrobot is powered by solar cells delivering a limited energy of 1mW@1.4V

and 500µW@3.6V, special care has been devoted to power consumption, such as:

• Use of 0.13 µm ultra low leakage SiGe CMOS technology;

• Use of ultra low leakage SRAM memories;

• Incorporate wherever possible low power design techniques such as:

− clock gating: disable those circuits that are not operative;

− power gating: turn off those modules that are not operative;

− dynamic frequency scaling (DFS) which adjusts the clock frequency of the processor as

a function of the workload;

• Use of event driven mode to woke up the processor once one of the peripherals finishes its

task.

 The whole ASIC electronic is mapped onto monolithic silicon surface of 3x3 mm2, which can be

rated at a maximum clock frequency of 12 MHz. The total leakage power consumption can be

managed between 300 to 700 µW approximately.

 Through these two recent illustrative examples, it’s made clear that ASIC solution is the approach

that by far offers better results in terms of speed, area and power than non-ASICs solutions (Table

2.1). However, the main drawback is that the chip has to be designed from scratch with its inherent

risks, developing time and higher costs. As an intermediate solution, FPGA can be effectively used for

TABLE 2.1 – Main features of the basic digital solutions for embedded control.

Technology Jitter1
Time

Parallelism
speed

Power

Consumption

Developing

Cost

Developing

time

Required

Skills
Portability

COTS Yes C2 D D A A SP D

DSP No B C C B B ASP C

FPGA No A B B C C HD B

ASIC No A A A D D AHD A

A–D: A, the best; D, the worst. 1: Jitter is a measure of variation between the actual loop cycle-time

and the desired loop cycle-time. It is caused by the non-determinism of the execution time (Section

2.4.1). 2: Pseudo-parallelism (time sharing). SP: Software Programming. ASP: Advanced Software

Programming. HD: Hardware Design. AHD: Advanced Hardware Design.

Chapter 2 − Problem Background

 16

its shorter design-cycle time as fast prototyping device in order to get the control algorithm fine tuned

and validated even if the ultimate objective is the creation of an ASIC.

 So far, we have shown that ASIC and FPGA are the most appropriate mediums for MEMS control,

independently of the effective implementation that requires important optimizations involving both

control theory and binary arithmetic. This point is treated in the next section.

2.5 Overview of Finite-Word-Length (FWL) Controller Optimizations

 The objective is twofold: we need to achieve an optimal ASIC/FPGA implementation of the

controller without degrading control performances. To reach such a goal, a double expertise is

required in hardware design and control system. But usually, hardware designers do not master

control system design, and control system experts do not have the required skills to implement and

evaluate the controllers using ASIC/FPGAs [37][38]. The only promising solution is a complete

automation of the whole FWL-design-flow, starting from the performance specifications of the

controller up to the generation of a synthesizable HDL code (VHDL or Verilog). Such a consistent work

is being undertaken within a French ANR project called DEFIS (Design of Fixed-Point Embedded

Systems) [39].

2.5.1 Definition of the FWL Effect

 To satisfy the constraints (area, energy consumption, execution time) inherent to embedded

systems, fixed-point arithmetic is widely used and preferred. However, Fixed-point arithmetic is

employed as an approximation of real numbers (floating-point), with a fixed bit-length of the word used

to represent data. This limitation leads to performance degradation (FWL effect) mainly due to:

• Quantization of coefficients (parametric errors) which is achieved by first rounding each

coefficient to the nearest value based on the available word length before implementation of

the system.

• And roundoff errors (signal quantization) which consists of rounding every internal signal at

each time instant k to the nearest available quantization level. Besides, addition operations

and especially multiplication operations produce results that require a longer word length for

accurate representation. Each result is rounded in some manner at the least-significant bit and

truncated or limited at the most-significant bit. The subsequently cumulated error during the

computation process is assimilated to a numeric noise.

If any internal signal exceeds the available dynamic range, then arithmetic overflow occurs. The

usual practice is then to employ saturation arithmetic whereby the particular offending variable is set to

the maximum allowable magnitude. Overflow can cause significant distortion and/or instability such as

signal clipping and limit-cycles. Thus, the internal signals must be scaled so as to appropriately restrict

the occurrence of overflow.

 In fact, the FWL effect is more-or-less exaggerated depending on:

• The structure of the realization used (I/O relationship, levels of parallelism, etc)

• As well as on the way the computations are performed (number of bits, different/unique fixed

point position, rounding/truncation, etc).

Chapter 2 − Problem Background

 17

 The floating-point to fixed-point conversion is split into two steps. Firstly, the number of bits for the

integer part is determined after the dynamic range evaluation. This number of bits must be minimized

while ensuring that no overflow or a limited number of overflows occurs. Secondly, the number of bits

for the fractional part is gradually increased till acceptable control performances are obtained. As a

result, the limited number of bits used to code the data generates an error (FWL effect) between the

infinite precision and finite precision values. This error can be estimated and controlled using some

stability measures [40][41][42], such as:

• Deviation of the Transfer function ;

• Deviation of the pole-zero position ;

• Deviation with regard to the mould, etc.

 In hardware implementation, the word-length defines the size (w) of the data-path in the

architecture. Thus, reducing the word-length leads to a more compact structure of the controller.

However, more substantial optimizations can be achieved using state-space models based on sparse

and insensitive matrices, as illustrated hereafter.

2.5.2 Control-Theory Based Optimization

 It is well-known that there exists an infinite set of state-space representations to represent a given

LTI controller. These representations are equivalent in infinite precision since they yield the same

input-output relationship. However, when a controller is implemented in fixed point arithmetic, it has to

be represented with a finite word length (FWL) which leads to a deterioration of the numerical

properties of the realization. Hence, the equivalent realizations are no more equivalent in finite

precision. One realization may be better suited for implementation than another.

 One state-space form of particular interest to hardware implementation is the sparse and insensitive

form. The latter has the major advantage of:

•••• Containing many trivial elements of 0, 1 or -1 which reduces the number of elementary scalar

operations (MAC, SCM/MCM). This form is particularly important for high-order controllers

(large matrix sizes) as it requires much less hardware and power than the original state-space

representation.

•••• Being least sensitive to quantization effects which allows it to be more coarsely quantized with

smaller word lengths than a form that is more sensitive to these effects. Thus, of all possible

forms, the insensitive form can be implemented with minimal word length for decreasing

hardware requirements.

 It is known that canonical controller realisations have sparse structures but may not have the

required FWL stability robustness [40]. This posed a complex problem in the past of finding sparse

controller realisations with good FWL closed-loop stability characteristics. But because this issue is of

utmost importance to embedded systems, extensive studies have been undertaken and many

solutions have been proposed [43][44]. The theory behind the determination of sparse and insensitive

realisations with stability measure goes beyond the scope of this thesis. Nevertheless, the hardware

benefit of using sparse and insensitive matrices is illustrated by the following example given in [45].

Chapter 2 − Problem Background

 18

 (2.3)

 (2.4)

 (2.5)

Illustrative Example

 In [45], the motion of a cantilevered aluminium beam is controlled in a closed loop using an FPGA

board. The beam is 54.0 cm long, 1.27 cm wide, and 0.318 cm thick; two PZT elements symmetrically

mounted at the beam’s base provide bending-moment type actuation 4.2 cm from the clamped end,

while PZT elements centered at 7.7 cm and 29.0 cm from the clamped end sense strain. Actuator

placement approached the point of maximum strain, while the placement of two sensors resulted in an

observable system. Fig. 2.6 summarizes the mechanical configuration of the cantilever beam with one

input and two outputs.

 The discrete time state-space representation of the controller in floating-point notation is given by

Eq. 2.3.

 This realization is certainly not unique, nor guaranteed to be problem free or minimal in a real

hardware implementation with limited word length. Therefore the scaled balanced real Schur/Givens

transform was applied resulting in a sparse and insensitive system. The result is given by Eq. 2.4.

 Simulation of the new controller was performed to obtain the minimal word length required while still

maintaining closed loop performance. Quantization to eight bits yielded acceptable results. Eq. 2.5

shows the final quantized implementable form using one sign bit and seven fractional bits.

 This simulation accounts for finite-word-length effects of the digital implementation including

coefficient quantization, operator noise, and overflow. The resulting implementation after quantization,

, yielded a sparsity of 7 out of n2+np+nq =16+8+4=28 for a fully populated form.

This yielded a 25% sparsity level.

FIGURE 2.6 – Simple cantilever beam.

Source: [45]

Chapter 2 − Problem Background

 19

 A 100% full state space realization comprises n2+np+nq multiplications and n2+np+nq-(2n+q)

additions (based on Eq. 2.1 and 2.2). In digital hardware, adder area scales linearly O(w) with word

length (w), and multiplier area scales quadratically O(w2). Zeros in the state space matrices remove

multiply operations altogether, while a shorter word length affects the whole system area. We might be

tempted to think that sparsity reduces area more than word length. This is not true. In [45], there is an

example which shows the opposite. In any case, the determination of a sparse and insensitive form is

the first step in the hardware optimization process of an LTI controller. The second step consists in

optimizing the remaining array of multipliers based on the binary arithmetic.

 Up to now, we have been dealing with LTI controllers only. As for LTV controllers, the determination

of the minimum word length is the only possible optimization, given that all matrices are variable (A(k),

B(k), C(k), D(k)). But since the array of n2+np+nq multipliers is constructed using the same multiplier

instance, the hardware optimization of the latter leads to a global optimization of the whole array. By

optimization, we mean the minimization of the computational delay, logic resources, and power

consumption. Because the computational model of LTV state-space involves matrix/vector

multiplications mainly, further improvements of the computation latency can be achieved using efficient

matrix multiplication architectures [21][22].

2.5.3 Binary-Arithmetic Based Optimization

2.5.3.1 Multiplication by a Constant

 In LTI controllers (Eq. 2.1), multiplication by a constant (e.g. aij×xi) is the most important scalar

operation involved in the computational pattern. To be efficiently handled the implementation must be

multiplierless, that is, using exclusively additions, subtractions, and shifts [46]. This is illustrated as

follows. In Eq. 2.5, the a12 and a22 elements of matrix []
wcA

~
 are equal to 0.1016 and 0.7734,

respectively. Their respective representations in 8-bit two’s complement notation are:

 a12 = 0.0001101 = 13×2-7 = (23+22+1)×2-7 ; a22 = 0.1100011 = 99×2-7 = (26+25+2+1)×2-7 .

 Hence, according to Eq. 2.1 the multiplication of a12 and a22 by their common variable x2 gives:

 M1=a12×x2=(x2×23+ x2×22+ x2)×2-7 ; M2=a22×x2=(x2×26+ x2×25+ x2×2+ x2)×2-7 .

 M1 and M2 require 2 and 3 additions, respectively. Thus, a total of 5 additions is needed. The

number of additions can be minimized using for instance the exhaustive algorithm MAG [47]. Using

MAG, a12 and a22 are written as follows:

 a12 = [24–(22–1)]×2-7 ; a22 = (u×25+u)×2-7 with u=22–1.

 Hence, M1 and M2 become:

 M1=a12×x2=[x2×24–(x2×22– x2)]×2-7 ; M2=a22×x2= (u×25+u)×2-7 with u= x2×22–x2.

 The computation order of M1 and M2 is well illustrated in Fig. 2.7. Thus, the optimal numbers of

additions for M1 and M2 are 2 and 2 additions, respectively. With a total of 4 additions, we saved only

1 addition. We assume that addition and subtraction have the same area/speed cost, and that shift is

costless since it can be realized without any gates using hard wiring.

Chapter 2 − Problem Background

 20

x2

x2

M1×27 M2×27

 FIGURE2.7 – Minimum number of additions

 of M1 and M2 using a separate

 optimization of a12 and a22.

x2

M1×27 M2×27

 FIGURE 2.8 – Minimum number of additions

 of M1 and M2 using a combined

 optimization of a12 and a22.

 No further optimization is possible for a12 and a22 unless they are considered together, exploiting the

fact that they are sharing the same variable (x2). RAG-n [48] is one of the exhaustive algorithms

capable of performing a multiple optimization. Applied simultaneously to a12 and a22 , it gives:

 a12 = [24–u]×2-7 and a22 = (u×25+u)×2-7 with u=22–1

 The combined optimization is illustrated in Fig. 2.8. In this case the total number of additions is 3,

achieving a saving of (5-3)/5=40% over the first naive approach.

 Single/Multiple Constant Multiplication (SCM/MCM) is the name given in literature to the problem of

performing separate and combined multiplications, respectively. The computational complexity of

SCM/MCM is conjectured to be NP-hard. Therefore, since the solution space to explore is so huge,

one has to use heuristics. The exhaustive algorithms such as MAG and RAG-n are limited to small

constants due to their exponential runtime and huge memory storage needed. Table 2.2 summarizes

the state-of-the-art in SCM.

TABLE 2.2 – Main features of the most known SCM algorithms in the literature.
Algorithm

Name Author Year Type
Runtime Compression

Performance
Predictability

BIGE Thong [49] 2011 Exhaustive O(2N) Optimal No
H(k) Dempster [50] 2004 Heuristic O(2N) A No
MAG Gustafsson [47] 2002 Exhaustive O (2N) Optimal No

– Bernstein [51] 1986 Heuristic O(2N) E No
Hcub Voronenko [52] 2007 Heuristic O(N6) B No
BHM Dempster [53] 1995 Heuristic O(N4) C No

– Lefèvre [54] 2001 Heuristic O(N3) D No
DBNS Dimitrov [55] 2007 Heuristic O(N) F No
CSD Avizienis [56] 1961 Heuristic O(N) G Yes

A–G: A, the highest ; G, the lowest.

Chapter 2 − Problem Background

 21

 FIGURE 2.9 – Generalized N×N bit radix-2r
 parallel multiplier.

 O(X) is the necessary set of odd-multiples corresponding to radix-2r recoding.

X

Critical path

 Yn−r−1 , n−1

+

P2n−1 , 0

 PP1







 −−= XrXXXO)112(...,5,3)(

PPG(n/r)-1

 PPG0

 PPG1

.

.

.

Y−1 , r−1

r+1

r+1

r+1

Yr−1 , 2r−1

PP0

PP(n/r)-1

n
O(X)

+

.

.

.

O(X) signals

 The classification of the heuristics with regard to the compression performance is based on the

published results, and remains valid up to 32 bits. Beyond that limit, we have no idea about the

behavior of the proposed heuristics since they are not predictable (except CSD).

2.5.3.2 Multiplication by a Variable

 As for LTV controllers (Eq. 2.2), variable-operand multiplication is the most important building block.

Its optimization ineluctably leads to the optimization of the whole controller.

 Although multiplication has been the focus of considerable optimization efforts over the last

decades, it still remains a critical problematic issue because of its relatively:

• High signal propagation delay;

• High power dissipation;

• And large area requirement.

The continuous refinement of the mostly-used design paradigm based on modified Booth algorithm

[57] combined to a reduction tree (Carry-Save-Adder array, Dadda, HPM, etc) has reached saturation.

In [58] and [59] for instance, only slight improvements are achieved. Both proposals reduce the partial

product number from n/2+1 to n/2 using different circuit optimization techniques of the critical path

(n is the operand size).

Chapter 2 − Problem Background

 22

FIGURE 2.10 – Illustration of an unsigned 8-bit multiplication, where a 4-bit multiplication, shown

in white, is computed in parallel with a second 4-bit multiplication, shown in black.

Source: [64]

Theoretically, only the signed multibit recoding multiplication algorithm (Fig. 2.9) [60] is capable of a

drastic reduction (n/r) of the partial product number, given that r+1 is the number of bits of the

multiplier that are simultaneously treated (1≤r≤N). Unfortunately, this algorithm requires the pre-

computation of a number of odd multiples of the multiplicand (until (2r-1-1).X) that scales linearly with r.

The large number of odd multiples not only requires a considerable amount of multiplexers to perform

the necessary complex recoding into PPG, but dramatically increases the routing density as well.

Therefore, a reverse effect occurs that offsets speed and power benefits of the compression factor

(n/r). This is the main reason why the multibit recoding algorithm was abandoned. In practice, most of

industry commercial designs do not exceed r=3 (radix 8). Only the most recent Intel processors such

as Itanium-Poulson [61] use radix-16.

 In research, the highest radix algorithms are proposed in the works of Seidel [62] and Dimitrov [63].

Both works rely upon advanced arithmetic to determine minimal number bases that are

representatives of the digits resulting from larger multibit recoding. The objective is to eliminate

information redundancy inside r+1 bit-length slices for a more compact PPG. This is achievable as

long as no, or just very few odd multiples are required.

In [62], Seidel has introduced a secondary recoding of digits issued from an initial multibit recoding

for 5≤r≤16. The recoding scheme is based on balanced complete residue system. Though it

significantly reduces the number of partial products (n/r for 5≤r≤ 16), it requires some odd multiples

for r≥8. While in [63] Dimitrov has proposed a new recoding scheme based on a double base number

system for 6≤r≤11. The algorithm is limited to unsigned multiplication and requires a larger number of

odd multiples though.

2.5.3.3 Multi-Precision Multiplication

 When choosing a multiplier for a digital system, the bitwidth of the multiplier is required to be at

least as wide as the largest operand of the applications that are to be executed on that digital system.

The bitwidth of the multiplier is, therefore, often much larger than the data represented inside the

operands, which leads to unnecessarily high power dissipation and unnecessary long delay. This

resource waste could partially be remedied by having several multipliers, each with a specific bitwidth,

and use the particular multiplier with the smallest bitwidth that is large enough to accommodate the

current multiplication. Such a scheme (Fig. 2.10) would assure that a multiplication would be

computed on a multiplier that has been optimized in terms of power and delay for that specific bitwidth.

Chapter 2 − Problem Background

 23

 An array of multiplication that can be portioned in several sub-multiplications to be executed in

parallel is referred to in literature as a multi-precision multiplication (MPM) array. Such an array is

useful in the case of integration of a number of controllers with different bitwidths of the input signals.

 A big number of multi-precision arrays have been proposed. They are summarized in [64][65].

Unfortunately, the proposed solutions are either restricted to unsigned multiplication, or they do not

take power consumption into consideration, or they are not flexible enough.

2.6 Conclusion

 From control implementation issues in microrobotics we have defined the problems related to the

integration of controllers for MEMS applications. This would not have been possible without a good

understanding of MEMS requirements, namely, a severe control precision, a high control bandwidth,

and low power consumption. These requirements have been identified through the study of a typical

MEMS application, that is, the micromanipulation. Afterwards, we have explored the different digital

technology-solutions suitable to MEMS control. We have shown that ASIC/FPGA stand as the most

appropriate options.

 Next, a special attention has been devoted to the implementation and especially to the optimization

of digital controllers, as it constitutes the core of this thesis. We have shown that the hardware

optimization approach depends on the type of the controller, LTI or LTV. In the case of LTI controller,

two complementary optimization steps are necessary. Firstly, the determination of the sparse and

insensitive form of the state-space model leads to a significant reduction of the logic resources.

Secondly, the resulting state-space form is once more optimized using SCM/MCM heuristics, which

leads to another substantial reduction in hardware resources. As for LTV controller, the only possible

hardware optimization involves the optimization of the multiplier module (MAC) as it is the main

building-block of LTV controllers. In addition, a special type of multiplier, called multi-precision

multiplier (MPM), has been introduced. It has the merit to considerably reduce power consumption in

the case of integration of several controllers.

 Among all discussed issues, we have more particularly insisted on the binary arithmetic which is the

focal point of this thesis. We have established the state-of-the-art of SCM/MCM, MAC, and MPM.

These three items are the key foundations behind any effective contribution to the hardware

optimization of linear controllers.

Chapter 2 − Problem Background

 24

Bibliography

[1] J. Bryzek and E. Abbott, "Control Issues for MEMS," Proceedings of the 42nd edition of the IEEE

Conference on Decision and Control, vol. WeES3-1, pp. 3039-3047, Hawai, USA, Dec. 2003.

[2] R. Casanova et al, “Integartion of the Control Electronics for a mm3-sized Autonomous

Microrobot into a Single Chip,” IEEE International Conference on Robotics and Automation,

ICRA, pp. 3007-3012, Kobe, Japan, May 12-17, 2009.

[3] M. Rakotondrabe et al., "Robust Feedforward-Feedback Control of a Nonlinear and Oscillating

2-DOF Piezocantilever," IEEE Trans. on Automation, Science, and Engineering, vol. 8, issue 3,

pp. 506-519, July 2011.

[4] G. Hoover et al, “Towards Understanding Architectural Tradeoffs in MEMS Closed-Loop

Feedback Control,” CASES’07, pp. 95-102, Sep. 30-Oct. 3, 2007, Salzburg, Austria

[5] M. Rakotondrabe, J.T. Wen & P. Lutz, “Control Issues in the Micro/Nano-World,” Introduction of

the full day workshop (17 may) of the IEEE International Conference on Robotics and

Automation, ICRA, pp. 1-1, Kobe, Japan, May 12-17, 2009.

[6] M. Rakotondrabe, & P. Lutz, “Main Aspects of the Control Issues in the Micro/Nano-World,”

IEEE International Conference on Robotics and Automation, ICRA, pp. 3-7, Kobe, Japan, May

12-17, 2009.

[7] B. Borovic & al, “Control Issues for Microelectromechanical Systems,” IEEE Control Systems

Magazine, pp. 18-21, April 2006.

[8] Y. Haddab, Q. Chen and P. Lutz, "Improvement of strain gauges micro-forces measurement

using Kalman optimal filtering",International Journal of IFAC Mechatronics, vol. 19; N° 4, pp.

457-462, doi:10.1016/j.mechatronics.2008.11.012, 2009.

[9] Micky Rakotondrabe, “Développement et Commande Modulaire d’Une Station de

Microassemblage,“ Thèse de Doctorat, Ecole Doctorale Sciences Physiques pour l’Ingénieur et

Microtechnique, Nov. 2006.

[10] D.O. Popa & A.N. Das, “Presicion-Driven Hybrid Control for 3D assembly”, IEEE International

Conference on Robotics and Automation, ICRA, pp. 17-23, Kobe, Japan, May 12-17, 2009.

[11] J. Wason & J. Wen, “Robust Vision-Guided Multi-Probe Microassembly,” IEEE International

Conference on Robotics and Automation, ICRA, pp. 23-25, Kobe, Japan, May 12-17, 2009.

[12] R.A. Maclachlan & &l, “Control of an Active Handheld Instrument for Microsurgery and

Micromanipulation,” IEEE International Conference on Robotics and Automation, ICRA, pp. 29-

31, Kobe, Japan, May 12-17, 2009.

[13] M. Grossard et al, “Towards the mechanical and control-oriented optimization of

micromechatronic systems for robust control”, IEEE International Conference on Robotics and

Automation, ICRA, pp. 18-22, Kobe, Japan, May 12-17, 2009.

[14] H. Numasato and M. Tomizuka, “Settling Control and Performance of Dual-Actuator System for

Hard Disk Drives,” Amercian Control Conference, pp.2779-2785, 2001.

[15] M. Rakotondrabe, Y. Haddab and P. Lutz, “Quadrilateral modelling and robust control of a

nonlinear piezoelectruc cantilever”,IEEE Transaction on Control Systems Technology,Vol.17, to

appear 2009.

[16] Reports of the International Technology Roadmap for Semiconductors (ITRS), 2007 & 2008.

[17] K. Ogata, “State-Space Analysis of Control Systems,” Prentice-Hall, 1967.

Chapter 2 − Problem Background

 25

[18] B. Friedland, “Control System Design: an Introduction to State-Space Methods,” Mc Graw-Hill,

1986.

[19] A.K. Oudjida et al, "Design and Analysis of a High Performance Multiplier and its Generator,"

Proceedings of The International Conference on Microelectronics ICM'90, pp 2-32-1 : 2-32-14,

October 13-17, 1990, Damascus, Syria.

[20] A.K. Oudjida et al, "Design of a High Performance CMOS Adder for Both High Performance

Array and Accumulator,". Microelectronics journal, vol. 22 Nos. 5-6, pp 65-73, Elsevier Science

Publishers Ltd., 1991, England.

[21] A.K. Oudjida et al,"Mapping Full-Systolic Arrays For Matrix Product On Xilinx’s XC4000(E,EX)

FPGAs," The International Journal for Computation and Mathematics in Electrical & Electronics

Engineering “COMPEL”, Vol. 21, Issue 1, pp. 69-81, 2002, ISSN 0332-1649, UK.

[22] A.K. Oudjida et al, “N Latency 2N I/O-Dandwidth 2D Array Matrix Multiplication Algorithm," The

International Journal for Computation and Mathematics in Electrical & Electronics Engineering

“COMPEL”, Vol. 21, Issue 3, pp. 377-392, 2002, ISSN 0332-1649, UK.

[23] W. Marx & V. Aggarwal, “FPGAs are Everywhere: in Design, Test & Control,” The Magazine of

Record for the Embedded Computing Industry (RTC Magazine), April 2008.

[24] S. Gretlein et al, “DSPs, Microprocessors and FPGAs in Control,” The Magazine of Record for

the Embedded Computing Industry (RTC Magazine), March 2006.

[25] N. Lall, “FPGAs and DSPs: What Makes Sense for your Design?,” The Magazine of Record for

the Embedded Computing Industry (RTC Magazine), September 2005.

[26] D. Pellerin et al, “Mixed FPGA/Processor Platforms Accelerate Software Algorithms,” The

Magazine of Record for the Embedded Computing Industry (RTC Magazine), March 2004.

[27] K. Parnell & R. Bryner, “Comparing & Contrasting FPGA and Microprocessor System Design

and Development,” Xilinx’s White Paper, WP213, V1.1, July 24, 2004.

[28] D. Naylor, “Embedded System Design Considerations,” Xilinx’s White Paper, WP127, V1.0,

March 6, 2002.

[29] TMS320C55x DSP Reference Guide. Technical Report, Texas Instruments, Feb 2004.

[30] TMS320C64x/C64x+ DSP CPU and Instruction Set Reference Guide. Technical Report, Texas

Instruments, Feb 2004.

[31] Xilinx Inc., www.Xilinx.com

[32] Altera Inc., www.altera.com

[33] National Instruments Inc., “FPGA Based Control: Millions of Transistors at your Command,

2004. www.ni.com

[34] K. Turner, “Robust Feedback Control Design of an Ultra-Sensitive, High Bandwidth Tunneling

Accelerometer,” Proceedings of the American Control Conference, Vol. 6, pp. 4176-4180, June

2005.

[35] R. Muthuraman et al, “Intelligence in Embedded Control: a case study,” Technical and

Leadership Workshop, pp. 125-130, April 2004

[36] P. Vouzis et al, “Towards a Co-design Implementation of a System for Model Predictive

Control,” Proceeding of the Annual Meeting, American Institute of Chemical Engineerings,

Cincinnati Convention Center, OH, November 2005

Chapter 2 − Problem Background

 26

[37] M. Petko and G. Karpiel, “Semi-automatic implementation of control algorithms in ASIC/FPGA,”

Proceedings of Emerging Technologies and Factory Automation Conference (ETFA '03), vol. 1,

pp. 427- 433. Sept. 2003.

[38] J. Lima et al, “A Methodology to Design FPGA-based PID Controllers,” Proceedings of the IEEE

International Conference on Systems, Man and Cybernetics, pp. 2577-2583, Taipei, Taiwan,

October 2006.

[39] D. Menard et al., “Design of Fixed-Point Embedded Systems (DEFIS), French ANR Project,”

Proceedings of the International Conference on Design and Architecture for Signal and Image

Processing (DASIP), Karlsruhe, Germany, Oct. 2012.

[40] M. Gevers and G. Li, “Parametrizations in Control, Estimation and Filtering Probems,” Springer-

Verlag, 1993.

[41] T. Hilaire and P. Chevrel, “Sensitivity-based pole and input-output errors of linear filters as

indicators of the implementation deterioration in fixed-point context,” EURASIP Journal on

Advances in Signal Processing, vol. special issue on Quantization of VLSI Digital Signal

Processing Systems, January 2011.

[42] T. Hilairel, “On the transfer Function Error of State-Space Filters in Fixed-Point Context,” IEEE

Trans on Circuit & Systems II: Express Briefs, vol. 56, N° 12, pp. 936-940, December 2009.

[43] Y. Feng, P. Chevrel, and T. Hilaire, “A Practical Strategy of an Efficient and Sparse FWL

Implementation of LTI Filters,” Proceedings of the European Control Conference (ECC’09),

Budapest, Hungary, August 2009.

[44] J. Wu, et al., “Constructing Sparse Realisations of Finite-Precision Digital Controllers Based on

Closed-Loop Stability Related Measure,” Proceeding of the IEE Control Theory and Application

, vol. 150, N° 1, pp. 61-68, January 2003.

[45] J.S. Kelly et al, “Design and Implementation of Digital Controllers for Smart Structures Using

Field Programmable Gate Arrays,” Smart Material Structure Journal, PII: S0964-1726 (97)

87085-1, pp. 559-572, Printed in the UK, 1997.

[46] R. Kastner, A. Hosangadi, and F. Fallah, “Arithmetic Optimization Techniques for Hardware and

Software Design,” Cambridge University Press, ISBN-13 978-0-521-88099-2, © 2010.

[47] O. Gustafsson, A.G. Dempster, and L. Wanhammar, “Extended Results for Minimum-Adder

Constant Integer Multipliers,” Proceedings of the IEEE International Symposium on Circuits and

Systems (ISCAS), vol. 1, pp. I-73 I-76, Scottsdale Arizona, USA, May 2002.

[48] A.G. Dempster and M.D. Macleod, “Use of Minimum Adder Multiplier Blocks in FIR Digital

Filters,” IEEE Trans. on Circuits and Systems-II: Analog and Digital Signal Processing 42, 9,

pp. 569-577, 1995.

[49] J. Thong and N. Nicolici, “An optimal and practical approach to single constant multiplication,”

IEEE Trans. on Computer-Aided Design of Integrated Circuits and Systems, vol. 30, no. 9, pp.

1373–1386, September 2011.

[50] A. Dempster and M. Macleod, “Using Signed-Digit Representations to Design Single Integer

Multipliers Using Subexpression Elimination,” Proceedings of the IEEE International Symp. on

Circuits and Systems (ISCAS), vol. 3, pp. III-165–168, Vancouver, Canada, May 2004.

[51] R.L. Bernstein, “Multiplication by Integer Constant,” Software – Practice and Experience 16, 7,

pp. 641-652, 1986.

[52] Y. Voronenko and M. Püschel, “Multiplierless Multiple Constant Multiplication,” ACM Trans. on

Algorithms (TALG), vol. 3, No. 2, Artcle 11, pp. 1-38, May 2007.

Chapter 2 − Problem Background

 27

[53] A.G. Dempster and M.D. Macleod, “Use of Minimum Adder Multiplier Blocks in FIR Digital

Filters,” IEEE Trans. on Circuits and Systems-II: Analog and Digital Signal Processing 42, 9,

pp. 569-567, 1995.

[54] V. Lefèvre, “Multiplication by an Integer Constant,” INRIA Research Report, No. 4192, Lyon,

France, May 2001.

[55] V.S. Dimitrov, L. Imbert, and A. Zakaluzny, “Multiplication by a Constant is Sublinear,”

Proceedings of the 18th IEEE Symposium on Computer Arithmetic (ARITH’18), pp. 261-268,

June 2007.

[56] A. Avizienis, “Signed-digit number representation for fast parallel arithmetic,”. IRE Trans. on

Electronic Computers, vol. EC-10, No. 3, pp. 389–400, September 1961.

[57] O.L. MacSorley, “High-Speed Arithmetic in Binary Computers,” Proceedings of the IRE, Vol.

49(1), pp. 67-91, January 1961.

[58] F. Lamberti, “Reducing the Computation Time in (Short Bit-Width) Two’s Complement

Multiplier,” IEEE Trans. on Computers, vol. 60, N° 2, pp. 148-156, February 2011.

[59] S.R. Kuang, J.P. Wang, and C.Y. Guo, “Modified Booth Multipliers with a Regular Partial

Product Array,” IEEE Trans. on Circuit and Systems II, Express Brief, vol. 56, N° 5, May 2009.

[60] H. Sam, and A. Gupta, “A Generalized Multibit Recoding of Two’s Complement Binary Numbers

and its Proof with Application in Multiplier Implementation,” IEEE Trans. on Computers, vol. 39,

N° 8, August 1990.

[61] R.J. Rieldlinger, “A 32 nm 3.1 Billion Transistor 12-Wide-Issue Itanium Processor for Mission-

Critical Servers,” Proceedings of IEEE International Solid-State Circuits Conference (ISSCC),

pp. 84-86, San Francisco, CA ,USA, February 20-24, 2011.

[62] P.M. Seidel, L. D. McFearin, and D.W. Matula, “Secondary Radix Recodings for Higher Radix

Multipliers,” IEEE Trans. on Computers, vol. 54, N°2, February 2005.

[63] V.S. Dimitrov, K.U. Järvinen, and J. adikari, “Area Efficient Multipliers Based on Multiple-Radix

Representations,” IEEE Trans. on Computers, vol. 60, N° 2, pp 189-201, February 2011.

[64] M. Själander and P. Larsson-Edefors, “Multiplication Acceleration Through Twin Precision,”

IEEE Trans. on Very Large Scale Integration (VLSI) Systems, Vol. 17, N° 9, September 2009.

[65] S.R. Kuang, J.P. Wang, “Design of Power-Efficient Configurable Booth Multiplier,” IEEE Trans.

on Circuit and Systems I, vol. 57, N° 3, March 2010.

Chapter 3

The Binary Arithmetic

Chapter 3 − The Binary Arithmetic

 28

Chapter 3

The Binary Arithmetic

 This chapter covers the fundamentals of the binary arithmetic. We first introduce the

two mostly used number formats in computer arithmetic: fixed-point and floating-point

formats. They are confronted to one another with regard to the provided precision and

dynamic range. Afterwards, we review the main number representation systems based

upon fixed-point format. These include the canonical-signed-digit representation, the

double-base number system, the residue number system, and the radix-2
r
 number

system. In each number system, addition and multiplication functions are carefully

investigated as they are the most important arithmetic operations involved in the

hardware implementation of linear systems.

3.1 Introduction to the Binary Arithmetic

 In binary arithmetic, numbers are represented using two symbols: typically 0 and 1. Thus, binary

numbers are seen as a string of 0's and 1's, where the use of a 0/1 symbol corresponds to the dual

On/Off position of the basic electronic component (Transistor) used to build up complex components.

The transistor acts as a switch that either allows a presence of an electrical current (1), or an absence

of an electrical current (0). We only use binary because we currently do not have the technology to

create "switches" that can reliably hold more than two possible states. Such switches are theoretically

possible at a quantum level, but quantum computers are not on sale for the time being.

 In mathematical numeral systems, the symbols are called digits, and the number of symbols is

called the base or radix. Binary numbers are expressed in radix-2, while for example decimal numbers

are represented in radix-10 since ten digits are used (0,1,...,9). The notation commonly used to

represent numbers is: (x)y, where x is a number expressed in the base y. For example,

(10)10 represents the number ten in the decimal system; (10)2 represents the number two in the binary

system. In hardware design, the numeral systems such as octal (radix-8), hexadecimal (radix-16), etc.,

serve only to facilitate the manipulation of long chains of 0's and 1's. The ultimate effective

implementation is realized in binary (radix-2).

 Binary arithmetic is a mathematical field mainly concerned with:

• The study of number representation systems in order to eliminate logic-redundancy in the

recoding. In other words, the determination of smaller numeric bases that represent binary

numbers with a minimal number of digits;

• The search for algorithms that efficiently performs arithmetic operations (–, +,×, /, , an, etc)

based on a given number representation system;

• The exploration of the best implementation techniques when the target computational device

is a DSP, a FPGA, or an ASIC.

Chapter 3 − The Binary Arithmetic

 29

 There exist different types of binary arithmetic. The characteristics of each arithmetic are

fundamentally conditioned by the format used to represent numbers. The mostly used arithmetics are:

floating-point arithmetic and fixed-point arithmetic. The implementations and optimizations undertaken

within each arithmetic are drastically different [1]. The choice of the arithmetic to be used is mainly

dictated by the desired precision and the dynamic range of the application.

 Furthermore, the complexity level of the arithmetic is determined by the required operations. The

latter basically depend on the kind of the system treated: linear system or nonlinear system. A linear

system is a mathematical model based on linear operations (–, +, ×, /). Linear systems typically exhibit

features and properties that are much simpler and easier to understand and manipulate than the more

general nonlinear case which require complex operations, such as polynomial or trigonometric

functions.

3.2 Number Representation Formats

 Representing an infinite, continuous set of real numbers with a finite set of machine numbers is not

a straightforward task. Clever compromises must be found between some non-compatible

requirements. Among the diverse requirements, the most desirable ones are [2]:

• Speed: In computation-intensive applications, as in digital control or DSP, computation-time is

a critical factor that limits the whole system performance;

• Precision: Even if speed is important, getting inaccurate results faster may be worse than

getting the correct results later;

• Range: We may need to represent large as well as tiny numbers;

• Portability: A program written on a given machine must run with no modifications on different

machines;

• Ease of use and implementation: If a given arithmetic is too arcane, almost nobody will use it.

 Various number formats exist [3]. The most commonly used formats are summarized as follows:

• Fixed-point number format: Offers a limited range and/or precision, but easy to implement.

Very convenient for high-speed and low-power applications. It handles integer numbers

{ }NNIx ,...,−=∈ as well as rational numbers of the form f
ax 2/= ("binary" rational),

Ia ∈ , and f is a positive integer.

• Floating-point number format: This is the most common approach. It offers a wide dynamic

range and a high precision to accommodate extremely large and small numbers, respectively.

However, it is relatively difficult to implement. It handles numbers of the form E
bx × , where x

is a rational number, b is an integer base, and E is an integer exponent.

• Logarithmic number format: Represents numbers by their signs and logarithms. Attractive for

applications needing low precision and wide dynamic range.

• Rational number format: Approximates a real value by the ratio of two integers. Leads to

difficult arithmetic operations.

 We limit ourselves to the fixed-point and floating-point representations.

Chapter 3 − The Binary Arithmetic

 30

3.2.1 Fixed-Point Format

 Numbers in the fixed-point format are represented by an ordered n-tuple. Each of the elements of

the n-tuple is called a digit, and the n-tuple is called a digit-vector [1]. We begin with the representation

of nonnegative integers, followed by the representation of signed integers.

3.2.1.1 Representation of Nonnegative Integers

 The digit-vector that represents the integer x is denoted by

 ()0121 ,,...,, xxxxx nn −−= . (3.1)

 Note that we use a zero-origin, leftward-increasing indexing. The number system to represent x

consists of the following elements:

• The number of digits n.

• A set of numerical values for the digits. We call Di the set of values of xi. The cardinality of the

set Di is denoted by iD . For example, { }9,...,2,1,0 is the digit set for the conventional

decimal number system with cardinality 10.

• A rule of interpretation. This rule corresponds to a mapping between the set of digit-vector

values and the set of integers.

 The set of integers, each represented by a digit-vector with n digits, is a finite set with at most

i
n
i DK

1
0

−
=∏= different elements since this is the maximum number of different digit-vectors. For

example, in a conventional decimal system a digit-vector of six digits can represent a million values.

Sets that have been found generally useful to perform basic arithmetic operations include, for

example, all integers from 0 to K–1.

 The number systems most frequently used are weighted systems. Their representation mapping is:

 ∑
−

=

×=
1

0

n

i

ii wxx , (3.2)

where ()0121 ,,...,, wwwww nn −−= is the weight-vector.

 A radix number system is a weighted number system in which the weight-vector is related to the

radix-vector ()0121 ,,...,, rrrrr nn −−= as follows:

 ()11;1 110 −≤≤×== −− nirwww iii . (3.3)

This is equivalent to:

 j

i

j
i rww

1

0
0 ;1

−

=
∏== . (3.4)

Chapter 3 − The Binary Arithmetic

 31

 Radix number systems are classified according to the radix-vector into fixed-radix and mixed-radix

systems. In a fixed-radix system all elements of the radix-vector have the same value r (the radix).

Consequently, the weight-vector is

 ()1,,...,, 221
rrrrw

nn −−= , (3.5)

and the digit-sets are

 Di=D ()11 −≤≤ ni , (3.6)

and

 ∑
−

=

×=
1

0

n

i

i
i rxx . (3.7)

 The most frequently used radices are powers-of-two, such as 2 (binary), 4 (quaternary), 8 (octal), 16

(hexadecimal), and so on. The corresponding range of x represented with n radix-r digits is:

 10 −≤≤ n
rx . (3.8)

 According to the set of digit values (Di), the radix number systems are classified into redundant and

nonredundant systems. A number system is nonredundant if each digit-vector represents a different

integer; that is, if the representation mapping is one to one. It is redundant if there are integers that are

represented by more than one digit-vector. More precisely, in a nonredundant system the set of values

for Di is { }1,...,1,0 −ir with ii rD = . For example, the nonredundant digit sets in the binary,

quaternary, octal, and hexadecimal number systems are{ }1,0 , { }3,2,1,0 , { }7,...,2,1,0 , { }15,...,2,1,0 ,

respectively.

 A digit set Di such that ii rD > produces a redundant system allowing more than one

representation of a value; for example, in the { }1,0,1− binary system the vectors (0,0,1,1,1,1,0) and

(0,1,0,0,0,–1,0) both represent the integer "thirty" (Table 3.1). An exception to this rule is the canonical

systems that yield minimum number of digits for each value of x varying from 0 to 1−nr . Canonical

systems are nonredundant even if ii rD > . An example of such systems is the well-known Canonical

Signed Digit (CSD) representation, used in designing the vast majority of LTI systems [4].

 A system with fixed positive radix r and nonredundant set of digit values is called a radix-r

conventional number system. These are by far the most commonly used number systems.

TABLE 3.1 – Representation of the integer "thirty" in different number systems.

Number system Digit vector

Conventional radix-2 system (binary) (0011110)2

Conventional radix-3 system (0001010)3

Conventional radix-4 system (0000132)4

Conventional radix-10 system (0000030)10

Redundant Radix-2 system with digit set }1,0,11{ =−
(0011110)2

()20101000

Chapter 3 − The Binary Arithmetic

 32

 For the implementation of arithmetic algorithm in (binary) digital systems, it is necessary to

represent the digit-vectors by bit-vectors. This is done by defining a code for a digit and mapping the

digit-vector by mapping each digit according to this code. In the binary (conventional) number system,

the code is direct: the binary-digit values 0 and 1 are represented by the binary-variable values 0 and

1, respectively. For higher power-of-two radices, the most common code is the binary code, in which a

digit d is represented by a bit vector ()0121 ... dddd kk −− of ()rk 2log= bits, such that:

 i
k

i

idd 2
1

0

×=∑
−

=

. (3.9)

 The use of this code for each digit results in a bit vector for x that is the same for any power-of-two

radix, the only difference being the way the bits are grouped to form a digit. In the binary case, each

bit corresponds to a digit, while in the radix-r case, groups of ()r2log bits form a digit. Therefore,

conversion from a bit-vector in a radix-2 representation to a radix-r representation and vice-versa is

trivial. For example, the bit-vector

 x = (110001011101)2

 = ([110] [001] [011] [101])8 (3.10)

 = ([1100] [0101] [1101])H

corresponds to the octal digit-vector (6135)8 and the hexadecimal digit-vector (C5D)H. The fact that bit-

vectors are identical permits the use of some binary algorithms to perform operations on integers

represented in these higher radices.

3.2.1.2 Representation of Signed Integers

 In the previous section we presented the representation of nonnegative integers. We now extend

the discussion to the representation of signed integers (positive and negative). Two representations

are by far the most common:

• The sign-and-magnitude (SM) representation: In SM, a signed integer x is represented by a

pair (xs,xm), where xs is the sign and xm is the magnitude (positive integer). The two values of

the sign (+,–) are represented by a binary variable, where traditionally “0” corresponds to +

and “1” to –. The magnitude can be represented by any system for the representation of

positive integers. If a conventional radix-r system is used, the range of signed integers, for n

digits in the representation of the magnitude, is 0≤xm≤r
n–1. Note that zero has two

representations: xs=0, xm=0 (positive zero) and xs=1, xm=0 (negative zero).

• The true-and-complement (TC) representation: In this system, there is no separation between

the representation of the sign and the representation of the magnitude, but the whole signed

integer is represented by a positive integer. The representations of positive integers are called

true forms, and those of negative integers, complement forms. While TC is expressed in the

general case by radix-r, we consider only the special case of radix-2, called the two's

complement representation. The latter is described hereafter in details.

Chapter 3 − The Binary Arithmetic

 33

 In the two's complement representation, a signed integer (bit-vector) x with n digits is represented

as follows:

 ∑
−

=

−
− ×+×−=

2

0

1
1 22

n

i

i
i

n
n xxx . (3.11)

 In converting a bit-vector to a value, we use the fact that the most significant bit (xn-1) of x has a

negative weight, while the remaining bits have positive weights. For example,

 () 51281611011 −=+++−→=x .

 The two's complement representation (Eq. 3.11) has the following properties:

• The representation of zero is unique. Zero is obtained when all digits are set to zero.

• The range of numbers is not symmetrical since 12 −−= nx is representable but 12 −= nx is

not. That is, the range is []12,2 11 −− −− nn .

3.2.1.3 Fixed-Point Arithmetic of Two's Complement Numbers

 Before describing the arithmetic operations, we need first to formalize the representation of

numbers in fixed-point format [5]. Let β be the number of digits (bits) of a signed number (bit-vector) x,

and γ the number of digits of the fractional part of x (Fig. 3.1). Let α be the number of digits of the

integer part (α=β–γ). Finally, xFPR denotes the tuple (β, α, γ) defining the fixed-point representation

of x. Hence, frInt xxx += is written as ()γγα −+−−− •= xxxxxxx 11011 , such that

 ∑
−

−=

−
− ×+×−=

2
1

1 22
α

γ

α
α

i

i
ixxx . (3.12)

 To convert a real number x to FPR, we proceed as follows. β is a given value since it must be equal

to the bit-width of the data-path. The number of bits of the integer part is given by:

   2log2 += xxα , (3.13)

with  a is the floor function that rounds a to the nearest integer lower than or equal to x. Hence, we

determine the fractional part as xxx αβγ −= , and the FPR of x is given by: ()xxxxFPR γαβ ,,= .

± 2β−γ−2
 ... 21 20 2−1 2−γ

FIGURE 3.1 – Fixed-point representation of a signed real number in two's complement system.

... ...

Signed integer part Fractional part

β

α γ

Chapter 3 − The Binary Arithmetic

 34

Conversely, note that in fixed-point representation, x is represented by the integer Nx such as:

 []xxN x
γ2×= , (3.14)

where []a is the function that rounds a to the nearest integer. Thus, x is approximated by

 xxNx γ−×= 2† . (3.15)

 Multiplication and addition are the two mostly used operations in linear systems. In fixed-point

format, they are handled as follows.

3.2.1.4 Multiplication

 Let us consider the operation yxz ×= , with ()xxx γαβ ,, and ()yyy γαβ ,, . zFPR is given by:

 ()yxyxyxzFPR γγααββ +++= ,, , (3.16)

and the multiplication operation is realized by yxz NNN ×← . In Eq. 3.16 the multiplication is

performed in double-precision since yxz βββ += , but generally the bit-width ()dpW of the data-path

is smaller than ()yx ββ + . In this case, let us denote dpop W=β , and give the general expression

of zFPR :

 []()yxopyxopzFPR ααβααβ +−+= ,, , (3.17)

and the operation is realized by

 () ()yyxxz sNsNN >>×>>← , (3.18)

where sx and sy and are right bit shifts applied on Nx and Ny such that () opyxyx ss βββ −+=+ . But

if ()yxop βββ += , then 0== yx ss . The special and general cases given by Eq. 3.16 and 3.17,

respectively, are illustrated by Fig. 3.2. A number of Scst bits are truncated from the operand Y such

that dpop W=β .

y

y y

y

y

... ...

... ...

... ...

...

... ...

... ...

 (a) Double precision multiplication (b) Simple precision multiplication

 FIGURE 3.2 – Double (a) and Simple (b) precision.
multiplication

Chapter 3 − The Binary Arithmetic

 35

3.2.1.5 Addition

 Adding two fixed-point numbers requires the same point position. Let us consider the

operation yxz ×= , with ()xxx γαβ ,, and ()yyy γαβ ,, . The full-precision zFPR is given by:

()
()









+=

+=

++=

zzz

yxz

yxz

γαβ

γγγ

ααα

max

1max

 . (3.19)

 The general case (limited precision) where dpop W=β is given by:

()
()









=

−+−=

++=

opz

yxopz

yxz

ββ

ααβγ

ααα

1max

1max

, (3.20)

and the addition operation is realized by

 () ()yyxxz sNsNN >>×>>← , (3.21)

with zxxs γγ −= and zyys γγ −= .

3.2.1.6 Overflow Detection

 In the two's complement representation, an overflow occurs when the operands are of the same

sign and the result of the addition represents an integer of opposite sign. Since the sign is determined

by the most significant bit (xn-1), the overflow detection is specified by the following switching

expression:

 () ()111111 −−−−−− ××+××= nnnnnn zyxzyxAVF . (3.22)

3.2.2 Floating-Point Format

 As indicated earlier, a floating-point representation is used to represent real numbers. Since, as in

fixed-point representation, the floating-point representation is encoded in a finite number of bits, it is

possible to represent only a finite subset of the infinite set of real numbers. For a specific floating-point

system, a real number that is exactly represented in the system is called a floating-point number. The

rest of the real numbers either fall outside the range of the representation (overflow and underflow) or

are represented by floating-point numbers that have a value that approximates the real number. The

process of approximation is called roundoff (or rounding) and produces a roundoff error.

 A floating-point number x is represented by a triple (Sx , Mx , Ex), such that:

 () xx E
x

S
bMx ××−= 1 , (3.23)

where b is a constant called the base; Ex is a signed integer exponent; Mx is the significand (also

called the mantissa); and { }1,0∈xS is the sign of the significand.

Chapter 3 − The Binary Arithmetic

 36

3.2.2.1 Dynamic Range

 The objective of using floating-point representation is to increase the dynamic range, with respect to

a fixed-point representation. This dynamic range is defined as the ratio between the largest and the

smallest nonzero and positive number that can be represented [1]. For a fixed-point representation

using n radix-r digits for the magnitude, the dynamic range is:

 1−= n
fxpt rDR . (3.24)

 In contrast, for the floating-point representation:

min

max

min

max
E

E

ftpt
bM

bM
DR

×

×
= . (3.25)

 For instance, if the n digits are partitioned so that m digits are used for the significand and n–m

digits for the exponent, and b=r, we get:

 () ()11 −−

×−=
mnrm

ftpt rrDR . (3.26)

 As an example, if n=32, m=24, and r=2, the corresponding dynamic ranges are:

 932 103.412 ×≈−=fxptDR ;

 () 831224 107.9212
8

×≈×−= −
ftptDR .

 A large dynamic range is required in many applications to avoid overflows and underflows. If the

dynamic range of the fixed-point representation is not sufficient, complicated operations have to be

included in the program. Thus, a floating-point system is preferable in such applications.

3.2.2.2 Precision

 In numerical analysis, errors are very often expressed in terms of relative errors. And yet, when we

want to express infinitesimal errors, it is more adequate and frequently more accurate to express

errors in terms of what we would intuitively define as the weight of the last bit of the significand (Fig.

3.3). To make that notion clearer, the term ulp (acronym for unit in the last place) is used. Several

slightly different definitions of ulp exist in the literature. We cite hereafter the two most frequent ones:

 "ulp(x) is the gap between the two floating-point numbers nearest to x, even if x is one of them."

 "ulp(x) is the distance between the closest straddling floating-point numbers a and b (i.e., those

with a≤x≤ b and a≠b), assuming that the exponent range is not upper-bounded."

 All ulp definitions coincide as long as x is not extremely close to a power of the radix. They have

complex properties that differ to a small extent. However, a deep understanding of these complex

properties is necessary for anyone who wants to prove exact tight bounds on the errors of infinitesimal

computations. This issue goes beyond the scope of this thesis. Readers interested to study the

precision of floating-point arithmetic are referred to [2].

Chapter 3 − The Binary Arithmetic

 37

 Devoting more digits to the exponent part widens the number representation range but reduces the

precision. There is a trade-off between the range and precision that is quite critical. Generally, to

improve the precision without much altering the range, the integer part in the significand is eliminated

to the benefit of the fractional part, that is, we take f=m.

 Contrary to the fixed-point representation where the gap between consecutive numbers is constant

(2–f
), in floating-point representation the number distribution within the dynamic range is not uniform.

Smaller numbers are denser, and larger numbers are sparser. Fig. 3.4 shows the number distribution

pattern and the various subranges in floating-point representations. In particular, it includes the three

special or singular values –∞, 0, and +∞ and depicts the meanings of overflow and underflow.

Overflow occurs when a result is less than –max or greater than max. Underflow, on the other hand,

occurs for results in the range (–min, 0) or (0, min).

 In floating-point representation, the code assignment patterns are different, leading to different

ranges and error characteristics. For the same range of representable values, floating-point tends to

be better than fixed-point in terms of average relative-representation-error, even though the absolute

representation error increases as the values get larger [3].

 Though floating point representation provides greater dynamic range and better precision than fixed

point, it is far more expensive to implement. Most embedded system applications tolerate a certain

degree of inaccuracy and use the much simpler fixed-point notation to increase throughput and

decrease area, delay, and energy.

Illustrative Example

 The two representation formats in IEEE standard for radix-2 (binary) floating-point numbers,

formally known as "ANSI/IEEE Std 754-1988," are depicted in Fig. 3.5. The short, or single-precision,

format is 32 bits wide, whereas the long, or double-precision, version requires 64 bits. The two formats

have 8-bit and 11-bit exponent fields and use exponent biases of 127 and 1023, respectively. The

Integer part Fractional part

f digits

m digits

 FIGURE 3.3 – Significand in radix-r fixed-point representation.

The last bit of
the significand

FIGURE 3.4 – Distribution of floating-point numbers within the dynamic range.
 Source: [3]

Chapter 3 − The Binary Arithmetic

 38

significand is in the range [1, 2), with its single whole bit, which is always 1, removed and only the

fractional part shown. The notation "23+1" or "52+1" for the width of the significand is meant to explain

the role of the hidden bit, which does contribute to the precision without taking space. Table 3.2

summarizes the most important features of the IEEE standard floating-point representation formats.

 In the 32-bit format, the largest and smallest numbers are ±3.4×1038 and ±1.2×10–38, respectively.

The represented values are unequally spaced between these two extremes, such that the gap

between any two numbers is about 10–7 times smaller than the value of the numbers. This is important

because it places large gaps between large numbers, but small gaps between small numbers (ditto for

64-bit format).

TABLE 3.2 – Some features of the ANSI/IEEE 754-1988 standard
floating-point number representation formats.

Feature Single/Short Double/Long

Word width, bits 32 64

Significand bits 23 + 1 hidden 52 + 1 hidden

Significand range [1, 2–2–23] [1, 2–2–52]

Exponent bits 8 11

 Exponent bias 127 1023

Zero (±0) E + bias = 0, f=0 E + bias = 0, f=0

Denormal
E + bias = 0, f≠0

represents ± 0.f×2–126

E + bias = 0, f≠0

represents ± 0.f×2–1022

Infinity (±∞) E + bias = 255, f=0 E + bias = 2047, f=0

Not-a-number (NaN) E + bias = 255, f≠0 E + bias = 2047, f≠0

Ordinary number

E + bias ∈ [1, 254]

E ∈ [–126,127]

represents 1.f ×2E

E + bias ∈ [1, 2046]

E ∈ [–1022,1023]

represents 1.f ×2E

min (±) 2–126
≈ 1.2×10–38 2–1022

≈ 2.2×10–308

max (±) ≈ 2128
≈ 3.4×1038 ≈ 21024

≈ 1.8×10308

3.3 Number Representation Systems

 We have deliberately separated number representation formats from number representation

systems. The latter rely on the former to create sophisticated arithmetic algorithms.

32-bit: 1 bit 8 bits, bias = 127 23 + 1 bits, single-precision or short format

64-bit: 1 bit 11 bits, bias = 1023 52 + 1 bits, double-precision or long format

 ± E+bias f

FIGURE 3.5 – The ANSI/IEEE standard 754-1988 floating-point representation.

Sign Biased exponent Significand M=1.f (the 1 is hidden)

Chapter 3 − The Binary Arithmetic

 39

 Number systems are developed in order to enable a reduction of the complexity of the arithmetic

operations. The reason is that in most applications, the computational complexity of algorithms

crucially depends upon the number of zeros of the input data in the corresponding number system.

Because each number system exhibits specific numerical properties, the arithmetic operations are

handled differently.

 Only number systems based on fixed-point format are concerned in this thesis. In the previous

section, we developed through Eq. 3.1 to 3.10 the general case of radix theory. This includes:

fixed/mixed radix system; redundant/nonredundant number representation; and

canonical/noncanonical number representation. These notions are the fundamentals of number

systems.

3.3.1 Canonical Signed Digit (CSD)

 CSD is the canonical form of the signed digit (SD) representation developed by Avizienis [6] in

1961. SD is a redundant fixed-radix (r=2) representation defined as follows:

 ∑
−

=

×=
1

0

2
n

i

i
ixx with }1,0,1{=∈ Dxi . (3.27)

 The digit xi is a ternary digit, sometimes called trit. It requires two bits to represent it, but the major

benefit of SD is that addition/subtraction can be made without carry-propagation, accelerating

therefore the operations, especially for large operand addition/subtraction.

 In SD, the integer "seven", for example, has several representations:

 () 71240111 2 =++= ; () 71281110 2 =+−= ; () 712481111 2 =++−= ; () 7181100 2 =−= .

 The rational number "5/8", for exemple; can be written differently:

 () () () ()2222 110.1111.1011.1101.0625.0
8

5
===== .

 One conversion method from two's complement notation to SD representation is to use Booth

encoding (Table 3.3). For example, the two's complement value 7=(0111)2, is converted to SD through

the steps described in Fig. 3.6.

 A signed-digit representation with minimum number of non-zero digits is called a minimum signed-

digit (MSD) representation. In general, there are several MSD representations. One particular MSD

representation can be obtained by constraining two adjacent digits to not be both non-zero, that is,

01 =×+ ii xx . This particular MSD representation is called canonical signed digit (CSD)

0 1 1 1 0

1

1 0

0

Always add "0"

()2=8−1=7 1 0 0 1

FIGURE 3.6 – Conversion process from Two's
complement notation to SD representation of
the positive integer "7".

 TABLE 3.3 – Booth encoding.

Yj Yj-1 Digit

0 0 0
0 1 1
1 0 1
1 1 0

Chapter 3 − The Binary Arithmetic

 40

representation. The CSD representation is unique and therefore not redundant. Reconsidering the

example given above, the CSD representation for the numbers "7" and "5/8" are ()21100 and

()2101.0 , respectively.

 The conversion from SD to CSD is done as follows:

• Convert long string of 1's: 10...10011...011 ⇒ ;

• Convert long string of 1 's: 01...00111...110 ⇒ ;

• Merge adjacent digits of opposite signs: .1011;0111 ⇒⇒

 Using the CSD format on a n-bit value, the number of non-zero digits is bounded by (n+1)/2, and it

tends asymptotically to an average value of (n/3)+(1/9). Compared to the traditional binary

representation that requires n/2 digits on the average, CSD allows a saving of 33% in non-zero digits.

This means that in constant multiplication ()XC × , 33% less additions/subtractions are required,

which leads to much compact implementations of LTI systems [4]. This is the reason why CSD is so

popular.

 Despite the fact that CSD minimizes the number of nonzero digits for the constant representation, it

is far from being optimal. It is possible to decompose the n-bit value to further reduce the number of

operations. This can be achieved using more complex number systems.

3.3.2 Double Base Number System (DBNS)

 DBNS arithmetic was developed by Dimitrov in 1999 [7]. In DBNS, an integer x is expressed using

bases 2 and 3, as follows:

 ji

ji

jidx 32
,

, ××=∑ with }1,0{, =∈ Dd ji . (3.28)

 For example, the integer x=(10599)10 is written in DBNS as follows:

 x = (32×28)+(3×25)+(30×213)+(30×23) –(30×20)= (10599)10.

 According to Eq. 3.2 and 3.3, DBNS is a weighted system, but not a radix system. DBNS

representation is highly redundant; it is set clear from Eq. 3.28 that the traditional binary system is a

special case (j=0) of DBNS. The canonical DBN representation (CDBNR) that expresses a given

integer as a sum of minimal number of 2-integers ()ji 32 × is very complex to determine (NP-

complete problem). Thus, arithmetic operations in this number system do not guarantee that the

results are obtained in the minimal form. The author proposed a minimization heuristic called the

greedy algorithm with the input as a positive integer x; and an output of 2-integers, ai, such that

xa
i i =∑ . The algorithm finds the largest 2-integer, w, smaller than or equal to x, and recursively

applies the same for x−w until reaching zero. The greedy algorithm terminates after

Chapter 3 − The Binary Arithmetic

 41

() ()()()xxO loglog/log steps. The representation obtained by the greedy algorithm is called near-

canonical DBNR (NCDBNR).

 The mechanism of finding the NCDBNR plays a crucial role in performing basic arithmetic

operations. NCDBNR form is further minimized by reducing adjacent non-zero digits based on a

number of reduction rules given hereafter. The resulting form is called addition-ready DBNR

(ARDBNR).

3.3.2.1 Basic ARDBNR reduction rules

 One can use a geometrical interpretation, with orthogonal dimensions for each of the bases, to

represent numbers in the DBNR. Nonzero DBNR digits are shown as black squares (active cells). This

interpretation allows demonstrating simple identities on special combinations of active cells that

provide a transformation of a DBNR to an ARDBNR. For example, Fig. 3.7(a) shows the

representation of the identity 11 323232 ++ ×=×+× jijiji to remove consecutive active cells lying

in one column. Fig. 3.7(b) demonstrates the application of the identity,

jijiji 323232 21 ×=×+× ++ , to remove consecutive active cells lying in one row.

3.3.2.2 Advanced ARDBNR reduction rules

 A generalized solution for the reduction can be applied using the purely exponential Diophantine

equation:

llkk nmnmnmjijiji 32...323232...3232 22112211 ×++×+×=×++×+× with l<k. (3.28)

 The problem of solving such Diophantine equations has been a subject of investigation over the last

two decades, although some interesting results were obtained in the 30s and 40s. The reality is that

only some special cases for k and l are considered. For example, using k =2 and l=1, following

theorem can be proved:

Theorem 3.1 – The Diophantine equation x+y=z, where GCD(x,y,z)=1 and x, y, and z are 6-integers,

that is, x, y, z have the form 654321 13117532 nnnnnn ××××× , with ni≥0 and { }6,5,4,3,2,1∈i , has

exactly 545 solutions.

 Refer to [7] for the proof. For DBNS, n3=n4=n5=n6=0, and the only solutions of x+y=z are (1, 2, 3), (1,

3, 4), and (1, 8, 9). Therefore, these represent the only three cases where we can replace two active

(a) Column reduction (b) Row Column

FIGURE 3.7 – Reduction of consecutive active cells lying in one column (a) and in one row (b).

Source: [7]

Chapter 3 − The Binary Arithmetic

 42

cells with one. For k =3 and l=1, an interesting possibility for reducing the active cells follows from the

solution of the Pillai’s equation [7]:

 dcba 3322 ±=± . (3.29)

 Pillai was able to solve all of the above four equations, excluding the equation

dcba 3322 −=− on which he conjectured that the only solutions are (3, 1, 2, 1), (5, 3, 3, 1), and (8,

4, 5, 1). For DBNS, only the two following equations are relevant:

 dcba 3322 +=− ; (3.30)

 dcba 3322 −=+ . (3.31)

 The solutions of Eq. 3.30 are (2, 1, 0, 0), (3, 1, 1, 1), (5, 1, 1, 3), (3, 2, 1, 0), (5, 2, 0, 3), (4, 2, 1, 2),

and (8, 2, 5, 3), while Eq. 3.31 has only one solution (0, 0, 1, 0). The total number of solutions of the

equation x+y+z=t, GCD(x,y,z,t)=1, in 2-integers is 27 [7].

3.3.2.3 Addition

 Let x and y be two integers in the CDBNR. We note that if x and y contain the element ji 32 × , then

the element ji 32 1 ×+ does not exist. Therefore, addition can be computed by simply overlaying the

corresponding DBNS maps; there will be no overlapping active cells. In order to prepare for another

addition, we ideally perform a reduction into minimal form. In practice, we only require an ARDBNR

and the symbolic substitution methods described in the previous section can be effectively used.

 Let us define ()jiI x , as the DBNS map of the integer x, represented in the ARDBNR. The image

()jiI z , of the DBNS map of the number z=x+y can be obtained using:

 () () ()jiIANDjiIjiI yxz ,,,1 =+ ; (3.32)

 () () ()jiIXORjiIjiI yxz ,,, = . (3.33)

 Note, using the ARDBNR, if () () 1,, == jiIjiI xx , then () () 0,1,1 =+=+ jiIjiI xx and,

therefore, addition can be accomplished using a symbolic substitution technique. To reduce this result,

it is sufficient to use the following rules (see Fig. 3.7):

 () () ()jiIANDjiIjiI zzz ,1,1, +=+ ; (3.34)

 () () ()1,,,2 +=+ jiIANDjiIjiI zzz . (3.35)

 As an example of performing addition, let us consider the addition of the numbers 88 and 123 using

the proposed technique. The representation of the numbers is NCDBNR, obtained via the greedy

algorithm. For the number, 88, the NCDBNR gives 88 = 81 + 6 + 1 (three active cells), while the

CDBNR consists of only two active cells (88 = 72 + 16 = 64 +24). The addition operation is presented

in Fig. 3.8. The example is selected so that the application of the reduction rules, based on the

solution of Eq. 3.32, gives a result which is not optimal. In fact, 211 requires 3 ones in the CDBNR;

one of them could be found using more sophisticated substitution rules:

 () () () () ()1,11,,,1,3 +++=++ jiIANDjiIANDjiIjiIANDjiI zzzzz ; (3.36)

 () () () ()3,11,,1,5 ++++=+ jiIANDjiIANDjiIjiI zzzz . (3.37)

Chapter 3 − The Binary Arithmetic

 43

3.3.2.4 Multiplication

 Let x and y be integers, represented by DBNS maps in the CDBNR. The CDBNR of their product, z,

is an n-tuple of the elements{ }yxyxzz
jjiiji ++ ×=× 3232 , where the{ }xx ji , and { }yy ji , are the

2-integer index locations of the active cells in the CDBNRs of x and y, respectively.

 It is clear that the multiplication process simply corresponds to 2D shifts and DBNS additions in an

equivalent way to that performed using binary arithmetic. The promise here, however, is that the

number of operations is considerably reduced based on the sparseness of the representation. Let us

consider the multiplication of the numbers 79 and 107, represented via their DBNS maps as shown in

Fig. 3.9. The final reduced forms of the product can be found by using two specific solutions of the

Pillai’s equation 3.29:

 () () () ()jiIANDjiIANDjiIjiI zzzz ,6,4,4, ++=+ ; (3.38)

 () () () ()jiIANDjiIANDjiIjiI zzzz ,42,,13, +++=+ . (3.39)

 The representation of the multiplication result is shown in Fig. 3.9(a), and the ARDBNR reduction,

using rules 3.38 and 3.39, in Fig. 3.9(b).

3.3.3 Residue Number System (RNS)

 The concept of RNS dates back 1500 years ago in China [3]. In RNS, a number x is represented by

the vector of its residues with respect to k prime moduli 0121 mmmm kk >>⋅⋅⋅>> −− . The residue

 FIGURE 3.9 – Example of the DBNS Multiplication Process.
 (a) Multiplication result without reduction.
 (b) Multiplication result ARDBNR reduction.

=

(a) (b)
Source: [7]

= =

FIGURE 3.8 – Example of the DBNS addition process.
Source: [7]

Chapter 3 − The Binary Arithmetic

 44

xi of x with respect to the ith modulus mi is similar to a digit, and the entire k-residue representation of

x can be viewed as a k-digit number. Notationally, we write

 () ()0121 ||||0121 ||||
mmmmRNSkk

kk
xxxxx ⋅⋅⋅−−

−−
⋅⋅⋅= ;

imii xmxx == mod with { }1,...,2,1,0 −∈ mxi . (3.40)

 The vector of moduli, ()0121 |||| mmmmRNS kk ⋅⋅⋅−− , can be deleted from the subscript when we have

agreed on a default set. The product M of the k prime moduli is the number of different representable

values in the RNS and is known as its dynamic range:

 0121 mmmmM kk ××⋅⋅⋅××= −− . (3.41)

 For example, 8403578 =×××=M is the total number of distinct values that are representable

in ()3|5|7|8=RNS . Because of the equality

ii mm

xMx −=− , (3.42)

the 840 available values can be used to represent numbers from 0 up to 839, or from –420 up to +419,

or any other interval of 840 consecutive integers. In effect, negative numbers are represented using a

complement system with the complementation constant M. Here are some example numbers in

RNS(8 | 7 | 5 | 3):

 (0 | 0 | 0 | 0)RNS Represents 0 or 840 or . . .

 (1 | 1 | 1 | 1)RNS Represents 1 or 84 1 or . . .

 (2 | 2 | 2 | 2)RNS Represents 2 or 842 or . . .

 (0 | 1 | 3 | 2)RNS Represents 8 or 848 or . . .

 (5 | 0 | 1 | 0)RNS Represents 21 or 861 or . . .

 (0 | 1 | 4 | 1)RNS Represents 64 or 904 or . . .

 (2 | 0 | 0 | 2)RNS Represents −70 or 770 or . . .

 (7 | 6 | 4 | 2)RNS Represents −1 or 839 or . . .

 RNS representation is not redundant within the interval chosen of 840 consecutive integers. Given

the RNS representation of x, the representation of −x can be found by complementing each of the

digits xi with respect to its modulus mi (0 digits are left unchanged). Thus, given that 21=(5 | 0 | 1 |

0)RNS , we find: −21=(8−5 | 0 | 5−1 | 0)RNS=(3|0|4|0)RNS.

 In practice, each residue must be represented or encoded in binary. For our RNS example, such a

representation would require 11 bits (Fig. 3.10). To determine the number representation efficiency of

our 4-modulus RNS, we note that 840 different values are being represented using 11 bits, compared

to 2048 values possible with binary representation. Thus, the representational efficiency is

840/2048=41%.

3.3.3.1 Addition and Multiplication

 As noted earlier, the sign of an RNS number can be changed by independently complementing

each of its digits with respect to its modulus. Similarly, addition, subtraction, and multiplication can be

performed by independently operating on each digit. The following examples for RNS(8 | 7 | 5 | 3)

Chapter 3 − The Binary Arithmetic

 45

illustrate the addition, subtraction, and multiplication processes, respectively:

 (5 | 5 | 0 | 2)RNS Represents x=+5

 (7 | 6 | 4 | 2)RNS Represents y=−1

 (4 | 4 | 4 | 1)RNS x+y: 475
8

=+ , 465
7

=+ , etc.

 (6 | 6 | 1 | 0)RNS x−y: 675
8

=− , 665
7

=− , etc.

 (3 | 2 | 0 | 1)RNS x×y: 375
8

=× , 265
7

=× , etc.

 The speed and simplicity are the primary advantages of RNS arithmetic. In the case of addition, for

example, carry propagation is limited to within a single residue (a few bits). Thus, RNS representation

pretty much solves the carry propagation problem. As for multiplication, a 4 x 4 multiplier (e.g.), is

considerably more than four times simpler than a 16 x 16 multiplier, besides being much faster. In fact,

since the residues are small (say, 6 bits wide), it is quite feasible to implement addition, subtraction,

and multiplication by direct table lookup. With 6-bit residues, say, each operation requires a 4K x 6

table. Thus, excluding division, a complete arithmetic unit module for one 6-bit residue can be

implemented with 9 KB of memory.

 Unfortunately, however, what we gain in terms of the speed and simplicity of addition, subtraction,

and multiplication can be more than nullified by the complexity of division and the difficulty of certain

auxiliary operations such as sign test, magnitude comparison, and overflow detection.

3.3.3.2 Choosing the RNS Moduli

 The set of the moduli chosen for RNS affects both the representational efficiency and the

complexity of arithmetic algorithms. In general, we try to make the moduli as small as possible, since it

is the magnitude of the largest modulus mk–1 that dictates the speed of arithmetic operations (carry-

propagation). We also often try to make all the moduli comparable in magnitude to the largest one,

since with the computation speed already dictated by mk–1, there is usually no advantage in

fragmenting the design through the use of very small moduli.

 We illustrate the process of selecting the RNS moduli through two examples. Let us assume that we

want to represent unsigned integers in the range 0 to (100000)10 requiring 17 bits with standard binary

representation. A simple strategy is to select appropriate prime numbers in sequence until the

dynamic range M becomes adequate. For (100000)10, it gives:

 (17 | 13 | 11 | 7 | 3 | 2)RNS ; M=(102102)10 .

 With binary encoding of the six residues, the number of bits needed for encoding each number is:

 5+4+4+3+2+1=19 bits.

mod 8 mod 7 mod 5 mod 3

11 bits

 FIGURE 3.10 – Binary-coded number format for RNS(8 | 7 | 5 | 3).

Chapter 3 − The Binary Arithmetic

 46

 However, speed and cost do not just depend on the widths of the residues but also on the moduli

chosen. Note that power-of-2 moduli simplify the required arithmetic operations, so that, for example,

the modulus 16 might be better than the smaller modulus 13. Moduli of the form 2a
−1 are also

desirable and referred to as low-cost moduli [3]. Hence, we are motivated to restrict the moduli to a

power of 2 and odd numbers of the form 2a
−1. It is proved that the numbers 2a

−1 and 2b
−1 are

relatively prime if and only if a and b are relatively prime. Thus, any list of relatively prime numbers

012 aaak >>⋅⋅⋅>− can be the basis of the following k-modulus RNS

 ()1-2|1-2||1-2|2 0122 aaaa kkRNS ⋅⋅⋅−−

for which the widest residues are ak−2-bit numbers. Note that to maximize the dynamic range with a

given residue width, the even modulus is chosen to be as large as possible. Applying this strategy to

our desired RNS with the target range [0, 100000], leads to the following result:

 () ()7|15|31|321-2|1-2|1-2|2 3455 RNSRNS = ; M=104160.

 The derived RNS requires 5+5+4+3=17 bits for representing each number, with the largest residues

being 5 bits wide. In this case, the representational efficiency is close to 100% and no bit is wasted.

3.3.4 Radix-2r Number System

 The radix-2r representation was developed by Sam in 1990 [8]. In radix-2r, a n-bit two's

complement number, x, is written as follows:

() rj
rrj

r
rrj

r

rn

j

rjrjrjrj xxxxxxx 222222 1
1

2
2

1)/(

0

2
2

1
10

1 ×−+⋅⋅⋅++++= −+
−

−+
−

−

=
++−∑

rj

rn

j

jQ 2
1)/(

0

×= ∑
−

=

 with }2,12,,1,0,1,,12,2{ 1111 −−−− −−⋅⋅⋅−⋅⋅⋅+−−=∈ rrrr
j DQ , (3.43)

where 01 =−x and *Ν∈r . For simplicity purposes and without loss of generality, we assume that r

is a divider of N. In Eq. 3.43, the two’s complement representation of x is split into n/r two’s

complement slices (jQ), each of r+1 bit length. Each pair of two contiguous slices has one

overlapping bit.

 In fact, SD representation (Eq. 3.27) is a special case of radix-2r representation (Eq. 3.43) for r=1.

 The sign of the term jQ is given by the bit xrj+r–1 , and j
k

j mQ j ×=2 , with { }1210 −∈ r,...,,,kj and

() { }02 Ur
j OMm ∈ , where () { }12...,,5,3,12 1 −= −rrOM . ()rOM 2 is the set of odd positive digits in radix-

2r recoding, with () 222 −= rr
OM . To 0=jQ corresponds mj=0. Finally, x can be expressed as follows:

 ()
()

jrrj krj
rn

j

j
x

mx +
−

=

××−= ∑ −+ 21
1/

0

1 . (3.44)

Chapter 3 − The Binary Arithmetic

 47

Illustrative Example

In order to express x=(10599)10 in radix-2r, a two’s complement representation of x is necessary,

which is (010100101100111)2. Thus, in two’s complement notation, the constant size is equal to n=15.

Let us choose r=4. As 15 is not a multiple of 4, the sign-bit (0 in this case) is extended by one position

so as n=16. For C=10599, Eq. 3.43 and 3.44 become respectively:

∑
=

×=
3

0

42
j

j
jQx , and () jj kj

j

j
c

mx +

=

××−= ∑ + 4
3

0

21 34 .

Fig. 3.11 depicts the four Qj terms. To determine the unknown values c4j+3, mj, and kj, the radix-24

look-up table (Table 3.4) is indexed by Qj terms. Referring to Table 3.4, the triplets (c4j+3, mj, kj)

corresponding to Q0, Q1, Q2, and Q3 are (0,7,0), (0,3,1), (1,7,0), and (0,3,0), respectively.

Consequently, we can write:

 x = (3×212)–(7×28)+(3×25)+(7×20)= (10599)10.

TABLE 3.4 – Radix-24 look-up table.

Qj

x4j+3 x4j+2 x4j+1 x4j x4j-1
mj kj

0 0 0 0 0 0 0
0 0 0 0 1 1 0
0 0 0 1 0 1 0
0 0 0 1 1 1 1
0 0 1 0 0 1 1
0 0 1 0 1 3 0
0 0 1 1 0 3 0
0 0 1 1 1 1 2
0 1 0 0 0 1 2
0 1 0 0 1 5 0
0 1 0 1 0 5 0
0 1 0 1 1 3 1
0 1 1 0 0 3 1
0 1 1 0 1 7 0
0 1 1 1 0 7 0
0 1 1 1 1 1 3
1 0 0 0 0 1 3
1 0 0 0 1 7 0
1 0 0 1 0 7 0
1 0 0 1 1 3 1
1 0 1 0 0 3 1

0 0 1 0 1 0 0 1 0 1 1 0 0
 Q0=7

Q1=3×21

Q2= –7

Q3=3

x15 x14 x13 x12 x11 x10 x9 x8 x7 x6 x5 x4 x3 x2 x1 x0 x-1

x

 16+1 bits 4+1 bits

Qj

 0
4

1
8

2
12

3 222 QQQQx +×+×+×=

 x3, x7, x11, x15 are sign bits ;

 FIGURE 3.11 – Partitioning of (10599)10 in radix-24.

Chapter 3 − The Binary Arithmetic

 48

1 0 1 0 1 5 0
1 0 1 1 0 5 0
1 0 1 1 1 1 2
1 1 0 0 0 1 2
1 1 0 0 1 3 0
1 1 0 1 0 3 0
1 1 0 1 1 1 1
1 1 1 0 0 1 1
1 1 1 0 1 1 0
1 1 1 1 0 1 0
1 1 1 1 1 0 0

Note that for radix-24, { }3210 ,,,kj ∈ ,

and { }75310 ,,,,mj ∈

3.3.4.1 Canonical Radix-2
r
 Representation

 Radix-2r is a redundant representation since further simplifications are possible:

() () () ⋅⋅⋅±+⋅⋅⋅=⋅⋅⋅±−+⋅⋅⋅ −+−++ 111 rrjrrjjr 222

(3.45)

 () () () ⋅⋅⋅±−⋅⋅⋅=⋅⋅⋅±+−⋅⋅⋅ −+−++ 111 rrjrrjjr 222

(3.46)

These two simplifications occur in Eq. 3.44 in case two consecutive terms with opposite signs, Qj

and Qj+1 , exhibit (mj,kj) pairs of the form (1, r–1) and (1,0), respectively.

Whether Eq. 3.45 and 3.46 are the unique simplifications that can be performed in radix-2r needs a

mathematical proof. In any case, the minimal form does exist, but the canonical form (unique) remains

an open research problem.

3.4 Comparison of the Number Systems

 So far, we have summarized the main arithmetic features of the Binary, SD, CSD, DBNS, RNS, and

Radix-2r number systems. It is premature at this stage to comment their hardware features without an

effective implementation of a given arithmetic function. Instead, we only try to give an approximate

idea through the expression of the value, x = (10599)10, in different number systems. The comparison

is based on the number of digits required by each number system (Table 3.5). Generally, the lower the

number of digits, the less hardware resources are required, and the more speed is achieved.

TABLE 3.5 – Number of digits required by each number system for the integer value (10599)10
.

Number
System

Arithmetic expression Number of
Digits

Binary x = 213+211+28+26+25+22+21+20 8

SD x =213+212–211+29–28+27–25+23–20 9

CSD x = 213+211+29–27–25+23–20 7

DBNS x = (32×28)+(3×25)+(30×213)+(30×23) –(30×20) 5+2=7

RNS x is represented by (7 | 28 | 9)RNS(32 | 31 | 15) 3+3+2=8

Radix-2r x = (3×212)–(7×28)+(3×25)+(7×20) 4+2=6

Note that in DBNS and Radix-2r, the terms 32, 3, and 7 are considered as extra-digits.

Chapter 3 − The Binary Arithmetic

 49

 As already mentioned at the beginning of this chapter, the objective of a number system is the

maximum absorption of logic-redundancy in the representation of numbers. This will lead to fewer

digits, and therefore to fewer hardware resources and more speed. This absorption process may be

simple such in the case of CSD, or very complicated such in the case of DBNS and RNS systems.

Depending on the type of arithmetic function to be implemented, the absorption process is carried out

either in software or in hardware. For example, in the constant multiplication (C×X), the reduction

process is realized in software, while in the variable multiplication (Y×X), it is implemented in hardware.

Consequently, the benefit of reducing the number of digits may be outweighed by the absorption

effort, requiring too much computational-time (software), or too many hardware resources (Table 3.6).

This issue will be carefully studied in the two subsequent chapters, based on effective

software/hardware implementations.

TABLE 3.6 – Main features of number systems.

Number
System

Weighted
System

Radix
System

Fixed/Mixed
Radix System

Canonical
Form

Ease of use &
Implementation

Frequently
Used

Hardware
Optimization

Binary Yes Yes Fixed Yes A A E
SD Yes Yes Fixed Yes B A D
CSD Yes Yes Fixed Yes C A C
DBNS Yes No – U* E C B
RNS Yes Yes Mixed U* F D [3] D

Radix-2r Yes Yes Fixed U* D B A

A–F: A, the best; F, the worst. U: Unknown. *: the existence of the canonical form has to be proved.

3.5 Conclusion

 The binary arithmetic is a vast topic. That is why we have deliberately restricted our review to the

main ideas and essential concepts directly involved in the design of FWL linear systems. We focused

more particularly on the fixed-point arithmetic and the main number systems relying on it. Special care

has been devoted to the addition and multiplication operations as they are the two main building-

blocks of any linear-system architecture.

 In the binary arithmetic, the theory is tightly related to the design aspect. Some solutions are

theoretically very attractive, but inefficient when it comes to the hardware implementation. A typical

example is the RNS arithmetic. We could be fascinated by the speed and simplicity of addition and

multiplication in RNS, but when considering the necessary conversions from binary to RNS and vice-

versa, we are rapidly discouraged by the extra-amount of hardware needed. Being aware of such

misleading choices due to an anterior experience in arithmetic design, we have given priority to

simplicity and ease-of-use over potentially-efficient but difficult-to-implement solutions.

 It is well-known that CSD arithmetic is employed in designing the vast majority of linear systems

(controllers and DSP). As radix-2r
 is the generalization of SD arithmetic (r=1) and more likely the

generalization also of CSD (the mathematical proof is missing for the time being), it could lead to

higher speed and less logic resources than CSD since r bits are processed simultaneously. However,

the major drawback of radix-2r
 is that 2r–2 odd-numbers are necessary, which outweighs the speed

and area benefits. Consequently, the odd-numbers in radix-2r
 arithmetic constitute a research-lock

that deserves a special attention. This issue is deeply investigated in the subsequent chapters.

Chapter 3 − The Binary Arithmetic

 50

 Bibliography

[1] M.D. Ercegovac and T. Lang, "Digital Arithmetic," Morgan Kaufman Publishers, an Imprint of

Elsevier Science, ISBN: 1-55860-798-6, San Francisco, USA, © 2004.

[2] J.M. Muller et al. "Handbook of Floating-Point Arithmetic," Birkhäuser Boston, a part of Springer

Science+Bussiness Media, ISBN: 978-0-8176-4704-9, © 2010.

[3] B. Perhami, "Computer Arithmetic, Algorithms and Hardware Design," Oxford University Press,

ISBN: 0-19-512583-5, New-York, USA, © 2000.

[4] R. Kastner, A. Hosangadi, and F. Fallah, “Arithmetic Optimization Techniques for Hardware and

Software Design,” Cambridge University Press, ISBN-13 978-0-521-88099-2, © 2010.

[5] B. Lopez, T. Hilaire and L.S. Didier, “Sum-of-products Evaluation Schemes with Fixed-Point

arithmetic, and their application to IIR filter implementation,” Proceedings of the International

Conference on Design and Architecture for Signal and Image Processing (DASIP), Karlsruhe,

Germany, Oct. 2012.

[6] A. Avizienis, “Signed-digit number representation for fast parallel arithmetic,”. IRE Trans. on

Electronic Computers, vol. EC-10, No. 3, pp. 389–400, September 1961.

[7] V.S. Dimitrov, G.A. Jullien, and W.C. Miller, “Theory and Applications of the Double-Base

Number System,” IEEE Trans. on Computers (TC), vol. 48, No. 10, pp. 1098-1106, October

1999.

[8] H. Sam, and A. Gupta, “A Generalized Multibit Recoding of Two’s Complement Binary Numbers

and its Proof with Application in Multiplier Implementation,” IEEE Trans. on Computers, vol. 39,

N° 8, August 1990.

Chapter 4

Multiplication by a Constant

Chapter 4 − Multiplication by a Constant

 51

Chapter 4

Multiplication by a Constant

 This chapter addresses the problem of hardware optimization of linear-time-invariant

(LTI) systems. It provides a thorough discussion of the issues surrounding the

multiplication by a constant, focusing mainly on the single/multiple constant multiplication

(SCM/MCM). We formalize the SCM/MCM problem, and present a list of the most

common solutions. We then introduce a new fully predictable SCM/MCM heuristic,

accompanied with its upper-bound, average, and adder-depth complexities. Further

optimizations of the proposed heuristic are also provided and compared to existing ones.

4.1 Optimizations of LTI Systems

 A linear system is a mathematical model based on linear operations. Linear operations adhere to

two properties, namely additivity and homogeneity. Given two vectors x and y, and a scalar c, these

properties are formally described as:

• Additivity:)()()(yfxfyxf +=+ ; (4.1)

• Homogeneity:)()(xfcxcf ×=× . (4.2)

 Another way to state this is that for vectors xn and scalars cn the following equality holds:

)()()()(22112211 nnnn xfcxfcxfcxcxcxcf ×+⋅⋅⋅+×+×=×+⋅⋅⋅+×+× . (4.3)

 Linear systems have roles as mathematical abstractions or models of computation in many

applications, including mainly: automatic control theory, signal processing, and telecommunications.

The primary focus of this chapter is on control theory; however, the techniques are applicable across

any application that computes linear systems.

4.1.1 Formulation of LTI Systems

 Based on equation (4.3), an LTI system is formalized as follows. If X and Y are input and output

vectors, respectively, and C is a transformation matrix, the LTI system can be written as



















×



















=



















nmnmm

n

n

m X

X

X

CCC

CCC

CCC

Y

Y

Y

M

K

MMMM

K

K

M

2

1

21

22221

11211

2

1

. (4.4)

 The transformation matrix C is an m×n matrix, where Cij represents the (i,j) constant. An output

signal Yi is the product of the ith row of the transformation matrix C and the n input samples of X:

Chapter 4 − Multiplication by a Constant

 52

j

n

j

ijj XCY ×= ∑
=1

. (4.5)

 In Chapter 2, the state-space representation has been retained as the control computational-model

to be optimized. Note that the explicit state-space LTI Eq. 2.1 is not more than a concatenation of four

Y=C×X operations given by Eq. 4.4. As illustrative example, we have already provided the discrete

time state-space representation of a cantilever controller (Fig. 2.6 and Eq. 2.3).

4.1.2 Single-Constant Multiplication (SCM)

 The constant multiplication problem first emerged in the 1970s for implementing constant

multiplication in software. Many microprocessors at the time (such as Intel's 8008) did not have

multipliers, so multiplication had to be done with additions, subtractions, and shifts. Even when the

multiply instruction first became available in software, it would typically take more clock cycles to

execute than an addition, subtraction, or shift, thus solving the constant multiplication problem could

lead to a reduction in execution time. Today, with high throughput pipelined multipliers, solving the

constant multiplication problem provides no benefit in software.

 Conversely, the whole benefit is rather in hardware implementation. The idea is to propose

algorithms which run in software, but the solutions that these algorithms produce enable one to

efficiently implement constant coefficient multiplication in hardware. Given a set of constant

coefficients, the proposed algorithms search for good hardware realizations.

 In the whole Eq. 4.4, SCM addresses only the problem of multiplication of one variable (Xj) by one

constant (Cij). To be efficiently handled, the hardware implementation of Cij×Xj must be multiplierless,

that is, using exclusively additions, subtractions, and shifts. The shift operation is “free” in a hardware

implementation (it only involves rewiring), therefore, only the number of additions and subtractions is

important. We assume that additions and subtractions have the same area/speed cost, which is a

quite reasonable assumption in hardware design. Careful decomposition into shifts and additions

leads to tremendous benefits with respect to execution time, area, throughput, and power/energy.

 Actually, the computational complexity of SCM still seems to be unknown. It is only conjectured (no

proof) to be NP-Hard [1]. But because the solution-space to explore is so huge, one has to use

heuristics to minimize the number of additions.

Illustrative Examples

 Let us perform for instance jX×45 . While the solution space allows many possibilities, only four

solutions are presented:

 () jjjjjj XXXXXX +×+×+×=×=× 235
2 22210110145 ; (4.6)

() () ()[] () 222010010111111186345 46
22 ×−×−−×=×−=×−=× jjjjjjj XXXXXXX ; (4.7)

 () jjjjjj XXXXXX +×−×−×=×=× 246
2 222011011045 ; (4.8)

 UUX j +×=× 2245 with jj XXU +×= 32 . (4.9)

Chapter 4 − Multiplication by a Constant

 53

 Eq. 4.6 is the most straightforward method for single-constant multiplication. It transforms the

constant Cij into its binary representation, converts the 1s into shifts based on their positions, and

sums the shifted values. For Cij=45, Eq. 4.6 requires three additions and three shift operations. The

number of additions using the binary representation is one less than the number of “1” instances.

 Another method (Eq. 4.7) uses shifts and subtractions by translating the “0” values into shift

operations while subtracting them from the constant of the same length consisting of only 1s. The

constant 45 requires six bits and the corresponding six-bit constant of all 1s (111111) is 63. The term

()jj XX −× 62 represents the number 63 and the following two terms, 42×jX and 2×jX ,

represent the terms 16 and 2, respectively (16+2=18).

 The CSD representation (Eq. 4.8) encodes a constant number using the minimal number of

nonzero digits. Therefore, when transforming a constant multiplication into a sequence of shifts and

additions, the CSD representation yields the minimum number of additions. But in this special case

(Cij=45), does not provide any benefit over Eq. 4.6 and 4.7.

 Eq. 4.9 allows to obtain the minimal number of addition for Cij=45. The reduction in additions

comes from the sharing of the term jXU ×= 9 . This is well illustrated by Fig. 4.1b, where the grey

nodes indicate a shift operation, and the red ones denote addition. The total number of operations is

two additions. Note that several solutions with 2 additions might exist (Fig. 4.1a, 4.1b, and 4.1c).

 The objective of SCM heuristic is to provide optimal solutions in a reasonable computational time.

Predictability is another important feature of SCM heuristic. Depending on the constant bit-size, it

allows to know in advance (before implementation) the maximum number of additions (area) and the

maximum number of additions forming the critical path (speed). Despite the big number of proposed

heuristics, only three SCM heuristics are predictable. This issue will be thoroughly investigated in the

coming sections of this chapter.

jX×45

jX

jX×45

jX

jX×45

jX

FIGURE 4.1 – The minimal number of addition for jX×45 . The solutions are given by

the Spiral web site (www.spiral.net). The sign "<<a" means a shift of a positions (×2a).

(a) (b) (c)

Chapter 4 − Multiplication by a Constant

 54

4.1.3 Multiple-Constant Multiplication (MCM)

 Consider the linear Eq. 4.4; MCM is an extension of SCM where the single variable jX is

multiplied by the set of constants mjjjj CCCC ,,,, 321 L (the entire column j). Defined as such, the

MCM problem is at least as hard as the SCM problem since the latter is a subset of the MCM problem;

since the single-constant multiplication problem is conjectured NP-Hard, the MCM problem is also

conjectured NP-Hard. One potential solution to the MCM problem is simply to optimize each single-

constant multiplication independently. However, in general, by sharing the intermediate computations

required by each constant, MCM can be decomposed into fewer operations than the total number of

SCM operations that would be needed.

Illustrative Example

 Let us perform the two following multiplications: jX×81 and jX×23 . Fig. 4.2a and 4.2b depict

the best optimization for each case individually. The nodes denote addition, while the edges show the

required amount of shifting. Fig. 4.2a and 4.2b require two additions, resulting in four additions to

perform both multiplications. Fig. 4.2c shows the simultaneous optimization of the two variables. The

variables can share a common multiplication 9x, hence, the overall number of additions for both

variables is reduced by one (i.e., total of three additions).

 Obviously, the optimization of the linear Eq. 4.4 taken as a whole is much better using MCM than

SCM. However, this added performance is obtained at the expense of an extra computational time

which may be prohibitive in case of an important number of constants. To the best of our knowledge

there is no predictable MCM heuristic.

jX

jX×81

jX

jX×23

jX

jX×81 jX×23

(a) (b) (c)

FIGURE 4.2 – Multiplication of the constants 81 and 23. (a), (b) The optimization of

each variable independently; this requires two additions per constant for a total of four

additions. (c) The simultaneous optimization of both variables. The variables can

share one addition resulting in three additions for the multiplication of both constants.

Chapter 4 − Multiplication by a Constant

 55

4.1.4 Subexpression Sharing between Output Variables

 MCM addresses only a part of the problem. It involves the optimization of the multiplication of each

input variable jX by its corresponding constants of the column j of Eq. 4.4. Optimizations can also be

carried out considering common subexpressions between output variables

 niniii XCXCXCY ×+×+×= L2211 , for .,1 mi =

 In either case, i.e. optimization by column or by line of Eq. 4.4, the scope for optimization is limited,

making it possible that the algorithm is not taking full advantage of the solution space.

Illustrative Example

 Consider the simple example shown in Fig. 4.3. Fig. 4.3a shows a simple linear system with two

input and two output variables and a 2×2 constant matrix. The constants are encoded using simple

binary representation though they could just as easily use any other number representation. Looking

at the common digit patterns in the constants multiplying variable X2 (7=“0111” and 12=“1100”), the

digit pattern “11” is detected and extracted. This results in a reduction of one operation as shown in

Fig. 4.3c. However, if the scope of the optimization is expanded to include multiple variables, the

number of operations can be reduced even further as shown in Fig. 4.3d.

4.1.5 Matrix Decomposition

 The idea [3] consists in modifying the constant coefficient matrices and then performing common

subexpression elimination. The modification of the coefficients is based on the fact that the complexity

of the multiplier is dependent on the value of the coefficient and correspondingly transforms the linear

system by splitting the constant matrices such that the overall area is reduced. The matrix

1
1

2
12

2
21

2
111

1
221

22

22

2

×+×=

×++×+=

×+=

DXY

XDXXY

XXD

(c)

3
2

2
2

2
12

2
2

1
22

2
111

222

222

×+×+×=

×+×++×+=

XXXY

XXXXXY

(b)

2
12

2
211

212

1
221

2

2

2

×=

×+=

+=

×+=

DY

DDY

XXD

XDD

(d)









×







=









2

1

2

1

124

75

X

X

Y

Y

()
()
()
()2

2

2

2

110012

01117

01004

01015

=

=

=

=

(a)

FIGURE 4.3 – An example that shows the benefit obtained by considering common

subexpressions that span across multiple output variables. (a) the example of a linear

system; (b) decomposing constant multiplications into shifts and adds; (c) extracting

common bit patterns across constants multiplying a single output variable; (d) extending

common subexpressions to include multiple output variables.

Source: [2]

puissance est egale a 2 et non 1

Chapter 4 − Multiplication by a Constant

 56

decomposition technique splits the transformation matrix into the product of 2×z+1 matrices

zzzzz CCCCCCCCC −+−−−−− ×××××××××= 121021 LL . The matrix is split through row and

column transformations.

Illustrative Example

 Fig. 4.4 shows an example of matrix splitting in a linear system. The matrix is split with the intention

of reducing the number of multiplications that are required. In the example of Fig. 4.4a, six

multiplications are needed, one for each of the values not equal to 1 or −1. Fig. 4.4b splits this matrix

into two parts. As a consequence of this splitting, only three multiplications are now required, two

multiplications for the two occurrences of 0.33 and one multiplication for −0.66. Note that the 1, −1,

and −2 values can be converted to addition, subtraction, and shift, respectively. The matrix splitting is

followed by a decomposition of the multiplications into shifts and additions along with an algorithm to

eliminate common subexpressions.

 The aforementioned approaches attempt to minimize the number of additions/subtractions required

to compute the constant multiplications. In fact, the problem is even more difficult than this. Every

addition is not equivalent. The size and the speed of a specific addition highly depend on the numbers

being summed. For example, consider summing X+4×X, where the variable X has two bits. Simply

concatenating the variable X with itself will perform this addition. If X=(01)2, then X+4×X =(0101)2,

which is simply the string “01” concatenated with itself, i.e., replicated twice. The higher-order two bits

correspond to 4×X and the lower two bits represent X. This requires no hardware and no delay for

computation. Therefore, not all additions are the same; thus, it is possible to reorder additions to take

advantage of this fact. This problem is not treated in this thesis. However, all the effort is rather

concentrated on the optimization of SCM/MCM problem.

4.2 Formal Definition of the SCM Problem

 Prior formalizing the SCM Problem, we must clearly define:



















×

















−

−−−

−

=

















4

3

2

1

3

2

1

066.033.01

33.033.066.01

33.0110

X

X

X

X

Y

Y

Y

(a)



















×

















−

−

−

×

















−=

















4

3

2

1

3

2

1

066.033.01

0002

33.0110

100

111

001

X

X

X

X

Y

Y

Y

(b)

FIGURE 4.4 – Matrix decomposition. The constant matrix in (a) is split into two matrices in

(b). This results in a reduction of multiplications for the overall system. Part (a) requires six

multiplications corresponding to the six positive and negative values of 0.66 and 0.33. Part

(b) requires only three multiplications for the two values of 0.33 and the one value of −0.66.

Source: [2]

Chapter 4 − Multiplication by a Constant

 57

• The constant type: positive, negative, odd, or even. Almost all proposed SCM heuristics

handle only odd/positive constants as the even/negative ones can be simply derived using

negation and shift. Note that in this case an extra-processing of the constants is necessary.

• The allowed operations: addition, subtraction, left-shift, right-shift, and "or" operation.

Restricting the number of operations makes the problem harder to solve. Most of the proposed

heuristics allow only addition, subtraction, and left-shift. Just few heuristics [1] allows right-

shift. But right-shift has some drawbacks, while bringing little value: for instance, they do not

work with arithmetic modulo 2k.

 The following formal definition apply to all types of constants, i.e., positive/negative and odd/even,

allowing addition, subtraction, and left-shift only.

 Let c be our constant, Ζ∈c . A finite sequence of signed integers u0, u1, u2, . . . , uq is said to be

acceptable for c if it satisfies the following properties:

• Initial value: 10 =u ;

• For all i>0, ii b
ki

a
jii urusu 22 ××+××= ; with ikj <, ; { }1,0,1, −∈ii rs ; and Ν∈ii ba , ;

• Final value: cu qc
q =× 2 , with Ν∈qc .

 The problem is to find an algorithm that takes the number c and that generates an acceptable

sequence ()
qiiu ≤≤0

 that is as short as possible. q is called the quality, or length. Note that by

delaying the shifts, we can restrict bi to 0 (this breaks the symmetry, but makes one less variable).

 Thus, an arbitrary number X being given, the corresponding solution iteratively computes ui×X from

already computed values uj×X and uk×X, till finally obtain c×X. Note that with this formulation, we are

allowed to reuse any already computed value. Therefore some generated solutions may need to store

temporary results.

 SCM/MCM is a fundamental problem in control, DSP, and telecommunications. Because of this, a

big number of heuristics have been proposed. Only the most cited ones are summarized hereafter.

4.3 Existing SCM/MCM Algorithms

 The existing MCM algorithms can be divided into four general classes:

• Digit-recoding algorithms such as the canonical signed digit (CSD) representation [4], Booth

recoding [5], and Dimitrov’s DBNS recoding [6];

• Common subexpression elimination (CSE) using pattern matching performed after an initial

digit-recoding. Typical examples are Hartley [7], Lefèvre [8], and Boullis [9];

• Directed acyclic graph (DAG) based algorithms. This category includes Bernstein [10], MAG

[11], H(k) [12], and Hcub [13];

• Hybrid algorithms combining CSE and DAG such as the recent optimal algorithm BIGE [1].

Interesting surveys and detailed comparative studies showing pros and cons of various algorithms

are given in [1][13].

Chapter 4 − Multiplication by a Constant

 58

4.3.1 Digit-Recoding Algorithms

 This category includes simple methods like CSD and the traditional binary method. They generate

the decomposition directly from the digit representation of the constant. These methods are the

easiest to implement but achieve the worst results. A drawback of digit-recoding methods is the

impossibility to reuse intermediate values. Nevertheless, the main advantage of digit-based recoding

is their low computational cost, typically linear in the number of bits. As a consequence, these

methods can be easily applied to constants with thousands of bits. In addition, these methods allow an

easy control of lower bounds on the maximum left-shifts to ovoid overflow.

4.3.1.1 Avizienis's CSD Algorithm

 CSD [4] has the least number of nonzero digits among all possible SD representations, therefore it

creates a solution with the smallest number of additions/subtractions for a single constant. The CSD

representation is unique, and therefore non-redundant. For a n-bit constant, the number of additions is

bounded by (n+1)/2−1 in the worst case, and is roughly equal to n/3 on average (the exact value is

n/3−8/9). CSD recoding is not optimal though it minimizes the number of nonzero elements for the

constant representation. It is possible to decompose the result to further reduce the number of

operations. The value 45 is the smallest number for which the CSD representation does not create the

optimal number of operations. Three additions are required by CSD (Eq. 4.8) while the optimal

solution (Eq. 4.9) needs only two.

 CSD has been thoroughly described in Section 3.3.1, and we have come to the conclusion that the

vast majority of LTI system optimizations use the CSD representation for constant encoding [2]. It is

important at this stage to illustrate how CSD is used in practice. Let us consider for instance the

following LTI system:



















×



















−−

−−

−−
=



















4

3

2

1

4

3

2

1

383.0926.0926.0383.0

707.0711.0711.0707.0

926.0383.0383.0926.0

1111

X

X

X

X

Y

Y

Y

Y

. (4.10)

 The constants of the transformation matrix C are first scaled to convert them into integers using

nine bits. For example, to 1 we associate the value 256, which is the largest representable nine-bit

integer number. Thus, for the constant 0.926 corresponds the value 256×0.926≈237.Transforming the

remainder of the numbers yields the constant matrix:



















−−

−−

−−
=

9823723798

181182182181

2379898237

256256256256

C . (4.11)

 Next, we need to encode each of these constants using CSD. It results in:

Chapter 4 − Multiplication by a Constant

 59



















=

010100010011011000100010101000101010

010110110001010011001010011010110101

100010101010100010000101010011011000

100000000100000000100000000100000000

CSDC . (4.12)

 The number −98 at position C44 is represented as ()
2

010100010 . Therefore,

()

222

232128

010100010

98

4
5

4
7

4

444

42

4444

×−×+×−=

×−×+×−=

×=

×−=×

XXX

XXX

X

XXC

 (4.13)

 The number of additions required by each element cij of Ccsd is equal to the Hamming weight (i.e.,

the number of non-zero digits of cij minus 1). Thus, the implementation of Ccsd requires 34 additions.

This number can be drastically reduced applying one of the techniques described above: MCM,

subexpression sharing among output variables, or matrix decomposition.

4.3.1.2 Dimitrov's DBNS Algorithm

 Given p, q, two distinct prime integers; the double-base number system (DBNS) is a representation

scheme into which every positive integer n is represented as the sum or difference of numbers of the

form pa×q
b as follows [6]:

 ii b
l

i

a
i qpsn ××=∑

=1

, (4.14)

with { }1,1−∈is , 0, ≥ii ba and () ()jjii baba ,, ≠ for ji ≠ . The length of a DBNS decomposition is

equal to the number l of terms in Eq. (4.14). In the following, we will only consider p=2 and

{ }.7,5,3∈q DBNS representation system has already been described in Section 3.3.2, but for p=2

and q=3 only.

 Whether one considers signed (si = ±1) or unsigned (si =1) expansions, this representation scheme

is highly redundant. Indeed, if one considers unsigned double-base representations (DBNR) only, with

bases 2 and 3, then one can prove that 10 has exactly 5 different DBNR; 100 has exactly 402 different

DBNR; and 1000 has exactly 1295579 different DBNR. The following theorem gives the number of

unsigned DBNR for a given number n:

Theorem 4.1− Let n be a positive integer and let q be a prime > 2. The number of unsigned DBNR of

n with bases 2 and q is given by f(1)=1, and for n≥1 ()
() () ()
()




−

≡+−
=

.1

,mod0/1

otherwisenf

qnifqnfnf
nf

 The proof of Th. 4.1 is given in [6]. Not only DBNS is highly redundant, but it is also very sparse.

 Th 4.1 tells us that there exists very many ways to represent a given integer in DBNS. Some of

these representations are of special interest, most notably the ones that require the minimal number of

Chapter 4 − Multiplication by a Constant

 60

{p,q}-integers; that is, an integer can be represented as the sum of m terms, but cannot be

represented with (m−1) or fewer terms. These so-called canonic representations are extremely

sparse. For example, with bases 2 and 3, Th. 4.1 tells us that 127 has 783 different unsigned

representations, among which 6 are canonic requiring only three {2, 3}-integers. Finding one of the

canonic DBNS representations in a reasonable amount of time, especially for large integers, seems to

be a very difficult task. Fortunately, one can use a greedy approach to find a fairly sparse

representation very quickly. Given n > 0, Alg. 4.1 returns a signed DBNR for n.

 Although Alg. 4.1 sometimes fails in finding a canonic representation (the smallest example is 41;

the canonic representation is 32 + 9, whereas the algorithm returns 41 = 36 + 4 + 1) it is very easy to

implement. The complexity of the greedy algorithm mainly depends on the complexity of step 3:

finding the best approximation of n of the form ba pp × . It finishes in () ()()()nnO loglog/log iterations.

 In the following, a generic algorithm for constant multiplication that takes advantage of the

sparseness of the double-base encoding scheme is presented (Dimitrov's algorithm [6]). The algorithm

computes a special DBNS representation of the constants, where the largest exponent of the second

base q is restricted to an arbitrary (small) value B. It uses a divide and conquer strategy to operate on

separate blocks of small sizes. For each block, it is possible to generate those specific DBNS

representations using the Greedy algorithm.

 Before giving the formal description of Dimitrov's algorithm, it is first illustrated on a small example.

The value c = 10599 = (10100101100111)2 is expressed in radix 27; that is, c is split in two blocks of

7 bits each. We obtain c = 82×27+103. The "digits" 82 and 103 are expressed in DBNS with bases 2

and 3 using as few terms as possible, where the exponents of the second base q=3 are at most equal

to 2. Using Alg. 4.1, it has been found that 82 can be written using two terms as 64+18 and 103 using

only three terms as 96+8−1. These two solutions are optimal. By sticking the two parts together, we

obtain the representation given in Table 4.1.

INPUT: A positive integer n

OUTPUT: The sequences ()
0

,, ≥iiii bas for ii b
i

a
i qpsn ∑ ××=

 with { }1,1−∈is , 0, ≥ii ba and () ()jjii baba ,, ≠ for ji ≠ .

1: 1←s // to keep track of the sign

2: while 0≠n do

3: Find the best approximation of n of the form ba ppz ×=

4: print (s, a, b)

5: if zn < then

6: ss −←

7: znn −←

ALGORITHM 4.1 – Greedy algorithm.

Chapter 4 − Multiplication by a Constant

 61

 Using this representation, the product c×X is decomposed in radix-27 DBNS as follows:

 PDBNS=((X1×2
1
) + X1) + (X×2

13
) + (X×2

3
) – X ; (4.15)

with X1=((X0×2
1
)+X0)+(X×2

5
) and X0=(X×2

8
).

 The formal formulation of Dimitrov's algorithm is as follows. The constant c is written in DBNS as:

 ji

b

j

a

i

ji qcc ××= ∑ ∑
= =

2
max max

0 0

, , (4.16)

with digits { }1,0,1, ∈jic . Alg. 4.2 below can be used to compute c×X. We remark that each step of

the algorithm requires a multiplication by q. It is therefore important to select the second base q such

that the multiplication by q only requires a single addition; i.e., with q=3, we have XXX +×=× 23 .

At the end, the result is given by XcXb ×=
max

. If l is the length of the double-base expansion; i.e,

the number of non-zero digits jic , in Eq. 4.16, and if bmax is the largest exponent of q, then the overall

number of additions is equal to 1max −+ bl . The goal is to set B, the predefined upper bound for the

exponents of q, such that the overall number of addition is minimal. Note that bmax might be different

from B, but Bb ≤max .

INPUT: A constant ji
ji jicc 32

, , ××=∑ , with { }1,0,1, ∈jic ;

 and an integer X

OUTPUT: c×X

1: 01 ←−X

2: for j=0 to maxb do

3: 1−×← jj XqX

4: i
i jbijj XcXX 2

max, ××+← ∑ −

5: Return
maxbX

 ALGORITHM 4.2 – Double base constant multiplication.

TABLE 4.1− A DBNS representation of c = 10599 obtained using two blocks of 7 bits each.

Chapter 4 − Multiplication by a Constant

 62

 It has been proved in [6] that the number of additions generated by Alg. 4.2 is bounded by

()()nnO log/ . While this limit shows that multiplication by a constant is sublinear, it says nothing about

the constant hidden within the big-O notation, which might be very important by the way. In 2011,

Dimitrov [14] evaluated the hidden constant as being equal to 2. Since then, ()nn log/2 is considered

as the lowest analytic upper-bound known so far for the multiplication by a constant.

4.3.2 Common Subexpression Elimination (CSE)

 As previously mentioned, the major drawback of digit-recoding methods is their inability to reuse

intermediate values. To solve this problem, the basic idea is to find common subpatterns in the

representations of the constants after the constants are converted to a convenient number system

such as SD or CSD. Thus, CSE are considered as direct descendants of digit-recoding methods. The

typical example is given by Eq. 4.9 where the use of a common term allows the saving of one addition

over CSD (Eq. 4.8).

 A significant drawback is that the performance of CSE algorithms depends on the number

representation. Some works [12][15] showed how using different representations for the constant

encodings can lead to better results. However, the exponential number of representations further

complicates the CSE problem which is itself conjectured to be NP-complete. Even if the solution to the

CSE problem is optimal, it does not necessarily provide an optimal solution to the SCM/MCM problem.

We will begin by examining some cases in which CSE algorithms cannot find the optimal solution.

4.3.2.1 Optimization Problems Due to the Initial SD Form

 As previously stated, Park and Kang [15] found better solutions by applying CSE to all MSD forms

of the constant (SD forms of the constant with the minimum number of nonzero digits). Even better

solutions are obtained with H(k), which applies CSE to all SD forms of the constant with up to k more

digits than the CSD form. For example, the CSD form of 105xX, XXXX 0000 , has no patterns that

occur at least twice. Without being able to factor common terms, 3 adders are needed to add the 4

terms. However, one MSD form of 105xX is XXXX 0000 , in which the pattern XXY 00= can be

substituted twice to yield YY 00000 . In this case, 2 adders are used (one to create Y and one to add

the remaining terms). The problem was due to the CSD form being constrained to have no adjacent

nonzero digits. Notice the leftmost nonzero digit of XX 000000 is adjacent to the rightmost nonzero

digit of 000000XX , which obviously cannot be represented by the CSD form.

 The first case in which H(0) produces a non-optimal solution is 363xX. There are only two MSD

forms, XXXXX 00000 and XXXXX 0000 , neither of which have a common pattern, thus H(0)

requires 4 adders. However, H(1) can find the optimal solution by using the representation

XXXXXX 000 . The pattern XXY 0000= is substituted to produce YYY 000000 , thus the total

cost is 3 adders (1 to create Y, 2 to add the remaining terms). If a pattern with 2 nonzero digits is

substituted n times, a total of 2n old digits will be replaced with n new digits. This results in a saving of

n−1 adders.

Chapter 4 − Multiplication by a Constant

 63

4.3.2.2 CSE digit clashing problem

 The first case in which H(k) produces a non-optimal solution for any value of k is 805xX. The

optimal solution requires 3 adders. As indicated in Section 4.3.1.1, if we start with more than 8

nonzero digits, then more than 3 adders will be needed by CSD. The CSD form of 805xX has 5

nonzero digits, thus we only need to consider all SD forms with up to 3 extra nonzero digits. H(3)

cannot find the optimal solution, and this is sufficient proof that H(k) is not an optimal algorithm for any

value of k.

 In order to find the optimal solution for 805xX, we will need to consider an unusual case. Notice that

()() XXXXXXX 00020 2 =+× . This translates to () () XXX ×=×+×× 25525 2 . The left digit

of XX 0 aligns with the right digit of () 220 ×XX to produce a zero in this position and a carry one

position to the left. Thus, if XXY 0= , we can substitute Y in XXX 00 to get YY 000 even though

XX 0 does not appear at either location of where Y was substituted. This is an example of a class 1

overlapping digit pattern. Now consider representing 805xX as XXXXX 00000 . We substitute

XXY 0= to get YYY 0000000 , thus only 3 adders are needed (1 to make Y, 2 to add the remaining

terms). This digit alignment problem was recognized and identified as clashing. We thus refer to this

problem as the CSE digit clashing problem.

4.3.2.3 Lefèvre's Common Subpattern (CSP) Algorithm

 In Lefèvre's CSP algorithm [8], the number of nonzero digits is called the weight (w). The digit −1

and 1 are denoted P and N respectively. Given a set of constants in SD representation, the problem is

to find the maximal-weighted pattern that appears twice, either in the same constant (SCM) or in two

different constants (MCM). Note that if such a pattern appears more than twice, it can naturally be

reused later.

 CSP algorithm looks for a triple (i, j, d) where i and j are numbers identifying the two constants ni

and nj (possibly the same, i.e., i=j) in the set, and d a distance (or shift count), with the following

restrictions for symmetry reasons: i ≤ j; and if i = j, then d > 0. Once the pattern, denoted np, of

weight greater or equal to 2 has been found, we compute the binary expansion of the new constants

in′ and jn′ (in′ only, if i =j) satisfying p
c

ii nnn ×±′= 2 and p
dc

jj nnn ×±′= −2 for some integer c

(or p
dc

p
c

ii nnnn ×±×±′= −22 if i = j), then we remove in and jn from the set, then add in′ , jn′

and np to the set (with the exception that 0 and 1 are never added to the set, because they cannot

yield a pattern). We reiterate until there are no more patterns of weight greater or equal to 2; we use

the binary method for the remaining constants.

 Now, let us illustrate this algorithm more precisely with an example: (47804853381)10, which is

written (101100100001011001000010110010000101)2 in binary, and after Booth's recoding:

P0N0N00P000P0N0N00P000P0N0N00P0000P0P. We find the triple (0, 0, 11), the corresponding

pattern is P0N0N00P, and the remainder is P0N0N00P00000000000000000000000000P0P (there

would be other choices). The set is now:

 { P0N0N00P00000000000000000000000000P0P, P0N0N00P }.

Chapter 4 − Multiplication by a Constant

 64

 We find the triple (0, 1, 29), the corresponding pattern is P0N0N00P (i.e., still the same one), and

the remainder is P0P. The set is now: { P0P, P0N0N00P }.

 We find the triple (0, 1, −3), the corresponding pattern is P0P, and the remainder is P000000P. The

set is now: { P000000P; P0P }.

 Now, we cannot find any longer repeating pattern whose weight is greater or equal to 2. Therefore

we use the binary method for the remaining constants.

 The computational complexity of Lefèvre's CSP algorithm for a n-bit constant is).(3nO

4.3.3 Directed Acyclic Graphs (DAG) Algorithms

 DAG are bottom-up methods that iteratively construct the graph (as in Fig. 4.2c) representing the

multiplier block. The graph construction is guided by a heuristic that determines the next graph vertex

to add to the graph. The nodes in the graph denote the coefficients. The edges are directed and

represent values that are equal to the coefficients in the parent node shifted by some amount. The

coefficient value that is stored at every node is obtained by adding up the values on the incoming

edges to the node. Graph-based algorithms offer more degrees of freedom by not being restricted to a

particular representation of the coefficients, or a predefined graph topology (as in digit-based

algorithms), and typically produce solutions with the lowest number of operations. Examples of DAG

algorithms include Bernstein [10] and Voronenko [13] (Hcub Algorithm).

4.3.3.1 Bernstein's Algorithm

 In 1986, Bernstein [10] proposed a SCM algorithm. It can be described by the recursive formulas

given by Eq. 4.17. Note that every input argument x to the function Cost(x) must be an odd integer. If

the SCM target t is even, then we must incur an extra cost of ShiftCost(w) , where t/2w
 is an odd

integer (and Bernstein's algorithm would be applied to t/2w
). In Eq. 4.17, a, b, c, and d are integers,

c≥1, and d≥1.

()

()

()() ()
()() ()

()() ()
()() ()












+++

++−

+++

++−

+=

=

dShiftCostAddCost/tCost

cShiftCostSubCost/tCost

bShiftCostSubCost/tCost

aShiftCostAddCost/tCost

mintCost

Cost

d

c

b

a

12

12

21

21

1

01

. (4.17)

 The cost of the shifts in Eq. 4.17 is a function of how many bits the operand was shifted. In

microprocessors that only support single bit shifts, ShiftCost(x) is proportional to x. For

microprocessors that support shifting by an arbitrary number of bits, ShiftCost(x) is a constant. For

hardware implementation, ShiftCost(x)=0 and AddCost=SubCost. Although Eq. 4.17 is expressed in a

depth-first manner, the search is computed breadth first since we are interested in finding the

minimum cost of t. Bernstein's algorithm is a branch and prune heuristic. The pruning arises from only

allowing certain values of a, b, c and d in Eq. 4.17.

 The average time complexity seems to be exponential ()nO 2 [8], where n is the bit-size of the

constant. This algorithm is too slow for large constants.

Chapter 4 − Multiplication by a Constant

 65

4.3.3.2 Voronenko's Hcub Algorithm

 Hcub stands for Heuristic of Cumulative Benefit. It was developed by Voronenko and Püshel [13] in

2007. Hcub is considered as the best heuristic for MCM [1]. The heuristic is split into two parts: the

optimal and the heuristic part. It is a non-trivial heuristic, requiring a number of definitions.

 In Hcub the constants are called the fundamentals. The MCM implementation uses additions,

subtractions, and shifts. These three distinct operations are consolidated into a single operation called

the A-operation. The A-operation operates on the fundamentals. It performs a single addition or a

subtraction, and an arbitrary number of shifts, which do not truncate non-zero bits of the fundamental.

Because it is possible to merge two consecutive shifts, the most general definition is stated as follows:

Definition 4.1 − General A-operation: Let 0, 21 ≥ll be integers (left shifts), 0≥r be an integer (right

shift) and let { }1,0∈s (sign). An A-operation is an operation with two integer inputs u, v

(fundamentals) and one output fundamental, defined as

 () () rlsl
p vuvuA −×××−+×= 2212, 21 (4.18)

where ()srllp ,,, 21= is the parameter set or the A-configuration Ap. To preserve all significant bits

of the output, 2
r
must divide () 21 212 lsl vu ××−+× .

 Hcub considers positive fundamentals only and use right shifts just to normalize the output

fundamentals to be odd. The absolute value in the definition of A enforces positive fundamentals, and

enables the subtraction to be done in only one direction, which simplifies the definition.

 The structure of a multiplier block can be represented as a directed graph. Such graph is called an

A-graph, since it is built out of the A-operations shown in Fig. 4.5. The vertices of an A-graph are

labelled with their respective fundamentals; hence the input vertex has label 1. The edges are labelled

with a 2-power scaling factor equivalent to the performed shift. Negative edge values are used to

indicate subtractions at the following vertex.

 The problem of constructing multiplier blocks can now be formally stated as follows.

Definition 4.2 − MCM problem: Given a set of positive target constants { } Ν⊂= nttT ,,1 L . Find the

smallest set { }mrrrR ,,, 10 L= with RT ⊂ , such that 10 =r , and for all kr with mk ≤≤1 there exist

ji rr , with ,,0 kji ≤≤ and an A-configuration kp such that

FIGURE 4.5 – A-operation: u and v are the input fundamentals and w is the output fundamental.

A-operations directly connected to the input of the multiplier block have u = v = 1.

Source: [13]

Chapter 4 − Multiplication by a Constant

 66

 ()., jipk rrAr
k

= (4.19)

The set of A-graph fundamentals R and the set of A-configuration kp uniquely define an A-graph for

an MCM block with 1−= Rm add/sub operations.

 Next, the notion of A-distance is introduced. This is the key component in Hcub algorithm.

Definition 4.3 − A-distance: Let Ν∈c be a constant, and let Ν⊂R be a set of constants

(fundamentals of an A-graph). Then, the A-distance of c from the set R, denoted with dist(R, c), is the

minimum number of extra A-operations required to obtain c given R.

 Afterwards, to express the degree of freedom in the output of an A-operation when different

A-configurations are chosen, the vertex fundamental set is defined.

Definition 4.4 − Vertex fundamental set: The set of all possible outputs (not equal to the inputs) of an

A-operation with fixed inputs (u and v) under different A-configurations is called the vertex

fundamental set, written as

 () (){ } .,,* vuionconfiguratvalidaispvuAvuA p −−= (4.20)

Hcub Algorithm

 Now that the main ingredients have been defined, let us describe Hcub algorithm. Actually, the main

idea behind Hcub is to use a better heuristic for synthesizing intermediate fundamentals. Hcub is

therefore computationally more expensive than its DAG counterparts since it explores a very large

space of possible intermediate vertices. It does not require a pre-generated optimal SCM lookup table

as other algorithms do. Thus, Hcub is storage efficient and in its applicability is only limited by the

computation time.

 The A-operation in Hcub is A
odd , allowing () 12, +≤ n

p vuA , where n is the maximal bitwidth of

constants in T. Hcub is shown in Algorithm 4.3. The heuristic is split into two parts: the optimal and the

heuristic part. The optimal part of Hcub synthesizes at each iteration, all distance-1 targets, i.e., S ∩ T.

To avoid computing in each iteration the entire set S, which can become rather large, it is computed

incrementally. This necessitates an additional set, the worklist W. When a constant is synthesized, it is

added to W, first without being accounted for in neither R nor S. Then, in steps 9–10 an incremental

update of R and S based on W is performed. The update of R is straightforward (step 9): WRRnew U= .

 Alg. 4.3 gives enough details on how to efficiently construct the successor set S. The heuristic part

uses S and the A-distance tests and estimators to select new successors s to be added to R. Hcub

heuristic part adds only a single successor to R at each iteration (outer loop consisting of steps 5–18).

 Given m constants with n bit-size, the computational complexity of Hcub is

()()6354 log nmnmnmO + . For SCM, it corresponds to ()6nO .

Chapter 4 − Multiplication by a Constant

 67

.

 The update formula for S is derived as follows:

() ()
() ()
() ()
() () ()

() () WWRAWRAS

WWRARWARRA

WRARWRA

WRARRA

WRRARRAS

new

new

new

newnew

newnewnewnew

−=

−=

=

=

==

,,

,,,

,,

,,

,,

**

**

**

**

UU

UU

UU

U

U

 Since () ()WRAWRA new,, ** ⊂ we get

 ()() WWRASS newnew −= ,*U (4.21)

which is step 10 in Alg. 4.3.

ALGORITHM 4.3 – Hcub Algorithm. Given the target set of constant T. Compute the set

{ }mrrR ,,1 L= , with RT ⊂ , as given in Definition 4.2. There is a degree of freedom in

choosing the heuristic function H(R, S, T) for the algorithm.

Synthesize multiplier block (T)

1: Right shift elements of T until odd

2: { }1←R

3: { }1←W

4: { }1←S

5: While 0≠T do

6: { optimal part }

7: While 0≠W do

8: { update S and R }

9: WRR U←

10: ()() WWRASS −← ,*U

11: 0←W

12: { if S contains targets, synthesize them }

13: for TSt I∈ do

14: Synthesize(t)

15: { heuristic part }

16: if 0≠T then

17: ()TSRHs ,,←

18: Synthesize(s)

Synthesize(s)

1: sWW +←

2: sTT −←

Chapter 4 − Multiplication by a Constant

 68

4.3.4 Hybrid Algorithms(CSE & DAG)

 Hybrid algorithms combine different algorithms from different classes. CSE are already considered

as mixed algorithms since they rely on a digit recoding followed by a pattern matching. But what is

generally meant by "hybrid" in the literature, are those algorithms combining CSE and DAG. A Typical

example is the recent Thong's BIGE algorithm [1].

4.3.4.1 Thong's BIGE Algorithm

 BIGE was developed by Thong and Nicolici in 2011 [1]. It is the shortened form of Bounded Inverse

Graph Enumeration (BIGE) algorithm. It is an exhaustive SCM algorithm, based on the combination of

two CSE heuristics (H(k)-ODP) and an optimal DAG algorithm. Overlapping digit pattern (ODP) was

introduced in [16] to partially resolve the digit clashing problem. ODP enables CSE algorithms to find

and substitute non-standard patterns. For example, if we find XX00X, we can substitute Y=X0X to get

00Y0Y even though X0X does not appear in XX00X.

 An heuristic (H(k)-ODP) is used to obtain an upper bound (the “B” in BIGE) and an exhaustive DAG

search to obtain the lower bound. Both bounds are progressively tightened until they meet or until a

solution is found by the lower bounding exhaustive search. If any heuristic finds a solution with n

adders, the exhaustive search only needs to consider up to n−1 adders. The exhaustive search is

done via lookup table for up to 4 adders. For 5 adders and above, inverse graph enumeration (the

“IGE” in BIGE) is used to prune the exhaustive search. Prior to describe the high-level operation of

BIGE, the following definition is necessary.

Definition 4.5 − Complexity-n constant: We denote by Cn the set of all constants with complexity n, i.e.

those, for which an optimal SCM solution requires exactly n A-operations. For example,

{ }020 ≥= aC a , because precisely all 2-power constants require a single left shift and no

adds/subtracts. Although the sets Cn are infinite, we will always limit our discussion to constants up to

certain bitwidth b, which is always explicitly stated. The set of complexity n constants obeying this

constraint is then finite and, by abuse of notation, will also be denoted by Cn.

 The Cn sets are independent of the desired SCM constant t and thus are precomputed and stored.

Given t, the BIGE algorithm operates as described in Alg. 4.4 and stops as soon as a solution is

verified as optimal. For practical reasons, the exhaustive search is limited to 6 adders, although it can

be extended.

1) For n = 1, 2, 3, 4 (in that order), if t ∈ Cn then return the optimal solution from the lookup table.

2) Initialize the upper bound with the H(k)+ODP heuristic [12][16], use k = 1, if this solution has 5

 adders it must be optimal.

3) Exhaustively search for a solution with exactly 5 adders.

4) If the solution found earlier by H(1)+ODP had 6 adders, it is now confirmed as optimal.

5) Try to tighten the upper bound with H(2)+ODP, if this solution has 6 adders it must be optimal.

6) Exhaustively search for a solution with exactly 6 adders.

7) If the upper bound is 7, the heuristic solution is now confirmed as optimal.

 ALGORITHM 4.4 – The optimal BIGE algorithm.

Chapter 4 − Multiplication by a Constant

 69

 We have only covered the algorithms which, either are closely related to the contributions in this

thesis (CSD, DBNS, Lefèvre's CSP), or the algorithms which proposed the fundamental approaches

and ideas (Bernstein, Hcub, BIGE) that were frequently reused and/or improved by later algorithms. In

addition to the main features (Table 2.2) of the most known SCM/MCM algorithms in the literature,

Table 4.2 recapitulates the information regarding the constant type and allowed operations.

TABLE 4.2 − Constant type and allowed operations.

Constant Type Allowed Operations
Algorithm

Positive Negative Odd Even Addition Subtraction Left-shift Right-shift
Avizienis's CSD + + + + + + + −
Dimitrov's DBNS + + + + + + + −
Lefèvre'CSP1 + − + − + + + −*
Bernstein's1 + − + − + + + −*
Voronenko'sHcub1 + − + − + + + −*
Thong's BIGE1 + − + − + + + +

+: Yes; −: No; *: Right-shift is allowed to normalize the constant to be odd, only for that.
1: Some algorithms normalize the negative/even constants to become positive/odd in order to remove
redundancy within their search space. This technique improves runtime with no penalty. The sign of
the constant can usually be adjusted elsewhere, for instance by using subtraction in the accumulation
after multiplication.

4.4 Metrics Definition for SCM/MCM Algorithms

 The objective of the proposed software SCM/MCM algorithms is to produce an efficient hardware

implementation in a reasonable amount of time. By efficient we mean a small area, high speed, and

low power architecture. Some abstraction is therefore needed in order to solve problem sizes of the

most practical importance within an acceptable amount of time. Logic resources are used as an

abstraction of the amount of silicon required to implement a logic function. As for the speed, the

abstraction is to consider the longest path that goes through the logic resources.

 While there is a direct correlation for area and speed with their respective abstractions, power

consumption poses a complex problem. Power consumption decreases only if both the number of

logic resources and the length of the critical path decrease. The rational is that there are two sources

to power consumption in CMOS circuits: static power-consumption due to the leakage-current; and

dynamic power consumption caused by the switching activity. Roughly speaking, the leakage current

depends on the area, while the switching activity depends on the topology of the architecture (number

of stages of cascaded logic elements). Thus, increasing one element of the power while decreasing

the other one results in an unknown consumption state of the power, where only the use of an efficient

power-estimation tool can inform on the situation.

 Although the number of additions/subtractions is an abstraction of the amount of silicon required to

implement the logic circuit, it is conjectured that finding good solutions with this metric typically results

in good solutions in terms of minimizing the amount of silicon. This metric is the most commonly used

metric in this area of research [1]. Instead of the number of additions/subtractions, the number of

single bit adders/subtractors can be used as a more accurate metric (note even this still has some

abstraction from the amount of silicon). As shown in the experimental results in [17], a significant

amount of extra time is required to solve the same problems using this more accurate metric. This

translates into needing impractical amounts of time to solve larger but still real-sized problems. This

Chapter 4 − Multiplication by a Constant

 70

also implies that further increasing the metric accuracy will result in longer run times, meaning only

smaller problem sizes (which are less relevant in practice) can be solved within reasonable amounts of

time. Furthermore, using the amount of silicon as the metric makes the solution dependent on the

implementation fabric of the logic circuit, thus the solution would be non-portable and also dependent

on the performance of many other computer-aided design (CAD) tools, which perform logic synthesis,

place and route, etc.

 Adders and subtractors require the same amount of logic resources in custom hardware, so we will

simply refer to both as “adders.” Shifts are hardwired and thus incur no cost.

 Given a N-bit constant, let us give the formal definitions of the metrics discussed above:

Definition 4.6 − Upper-bound (Upb): For each N-bit constant iC , corresponds iA additions for the

implementation of XCi × . ()iAUpb max= .

Definition 4.7 − Adder-Depth (Ath): Let iD be the number of adders that we pass through along any

path i from the input to any of the outputs in the constant multiplication logic circuit. ()iDAth max= .

Definition 4.8 − Average (Avg): For each N-bit constant iC , corresponds iA additions for the

implementation of XCi × . mAAvg
m

i

i /
1

∑
=

= , where m is the total number of iC constants.

 Actually, though formally defined, the adder depth is an estimate of the longest path through the

logic circuit, which is known as the critical path. Because of the physical construction, logic gates have

a propagation delay, which is the length of time between when stable inputs are asserted to when all

of the outputs become stable. As more logic gates are placed serially between the input and the

output, the critical path becomes longer and the logic circuit must be clocked at a slower speed, which

results in a lower computational throughput. The critical path is also a function of other things like the

delay of each gate and the transit time along wires, however we will make abstraction of this in order

to solve real-sized SCM and MCM problems within reasonable amounts of time. Most, if not all of the

work in this area of research uses the adder depth to estimate the length of the critical path [17]. Given

the same problem instance, the number of adders increases as the depth constraint is made smaller.

A solution may not exist if the depth is overly constrained. The depth constraint can also be used to

prune the search space.

 A "reasonable" amount of time is difficult to quantify because it depends on the design flow of the

system. For example, if the system is intended to satisfy an existing standard, the constants will be

defined and thus each constant multiplication problem only needs to be solved once (even if other

parts of the system are modified). In this case, one may be willing to wait hours or days for each

problem instance. Conversely, a faster algorithm is needed if the design specifications are not

finalized (for example, the constants may need to be updated as other parts of the system are

modified). Depending on how finalized the design is, one may only be willing to wait a few seconds for

each constant multiplication problem, for example. If a large part of the system involves constant

multiplication, it is sensible to allocate a large portion of the time in the total CAD flow to solving

constant multiplication. In conclusion, a "reasonable" amount of time is highly application specific, as

discussed above.

Chapter 4 − Multiplication by a Constant

 71

 Nevertheless, independently of the design flow, the inherent computational complexity of each

proposed algorithm is assessed using the big-O notation as defined in [18].

4.5 Key Limitations of the Existing SCM/MCM Algorithms

 The optimization of linear systems is a critical topic which has been the focus of continuous efforts

over decades, resulting in an impressive number of SCM/MCM algorithms. Only some ones

considered in the literature as milestone algorithms have been described above. However, we shall

discuss hereafter some of the limitations and shortcomings of the existing algorithms, where the most

important one is the predictability.

4.5.1 Predictability

 Despite the large number of proposed heuristics, to our knowledge, only three heuristics are

accompanied with their respective addition-cost complexity [1][19]. This issue is very important as it

informs on the heuristic capabilities and limitations with regard to the constant bit-size (N). For low

values of N (N≤32), H(k) [12] and Hcub [13] are, up to date, considered as the best heuristics for

SCM and MCM, respectively. As long as their respective addition complexities are unknown, there is

no guarantee that they will preserve their leading positions for high values of N.

 It was shown in [20] that the number of additions for an N-bit constant in CSD is bounded by

(N+1)/2–1 and tends asymptotically to an average value of (N/3)–8/9, which yields 33% saving over

the naive add-and-shift approach. Pinch [21] was the first to prove that the multiplication by a constant

is sublinear: O(N/(Log(N)α)) with α<1. Based on the DBNS arithmetic [22], Dimitrov [6] showed that

the condition α<1 in Pinch’s complexity is not necessary, decreasing therefore the upper limit to

O(N/(Log(N))). Even more, in 2011, Dimitrov [14] evaluated the hidden constant in the big-O notation

as being equal to 2. Since then, 2.N/Log(N) is considered as the lowest analytic upper-bound known

so far. For all remaining heuristics, no addition complexity does exist. This is a real handicap as there

is no visibility on how the heuristic evolves with respect to N, unless to exhaustively calculate Upb and

Avg, but this is still limited to low values of (N≤32) as an excessive compute power is required.

 On the other hand, according to [8], Ross Donelly was the first to determine in 2000 via an

exhaustive search that 699829 is the smallest value (20 bits) that can not be obtained with 5 adders or

less. Thong [1] did better with the exact BIGE algorithm as he conjectured (no proof) that 7 additions

are enough up to 32 bits. Though BIGE guarantees optimality via an exhaustive search, it requires an

exponential runtime and storage with respect to N [1]. Nevertheless, with BIGE we can observe how

much any heuristic is far from optimality up to 32 bits.

4.5.2 Runtime and Memory Storage

 For N≥128, only Lefèvre's CSP algorithm remains practical O(N3) for SCM, because even when

neglecting the hidden constant α in O(N6), Hcub requires more than 4398 billions of iterations. The

situation is even worse for optimal algorithms, such as MAG and BIGE, requiring exponential O(2N)

runtime and memory storage.

Chapter 4 − Multiplication by a Constant

 72

 For applications involving huge constants such as in cryptography, only linear heuristics O(N) are

practical (CSD and DBNS). It seems there is a strong correlation between performance and runtime.

However, by extending the analysis of prior works and providing new insight, it is possible to improve

both the runtime and the performance (in terms of minimizing logic resources) as will be shown later.

4.5.3 Overflow Risk

 In fixed-point representation, an overflow may occur if shift spans are not precisely controlled,

especially in the last partial product. While overflow is an important problem, as far as we are aware, it

has never been addressed in the proposed heuristics [6]. Contrary to recoding-heuristics (CSD,

DBNS, ...) where the shift span is fixed, the non-recoding heuristics are very prone to overflow risk

because of their variable shift spans. Therefore, lower bounds on the maximum left-shifts must be

carefully considered to minimize overflow; this is may be to the detriment of the optimization.

4.5.4 Ease of Use

 Beyond the provided performances, ease of use is a decisive criterion in the selection of any

heuristic. Not only it facilitates the implementation, but also makes the latter non-prone to

programming errors. Some of the proposed heuristics, for instance Hcub or BIGE, rely on complex

mathematical concepts. A deep understanding of the concept is a necessary condition prior any

programming. Such a required effort would require too much time which might discourage the user.

 This is not a surprise that despite the large number of published heuristics; CSD is not only used in

designing the vast majority of LTI systems [2], but incorporated in most of the commercial tools as

well, such as in Synopsys and Cadence synthesis tools, and Matlab numerical-computing tool.

 Our proposed SCM/MCM heuristics attempt to address the weaknesses of the existing heuristics.

We propose new linear runtime and fully predictable heuristics with high compression capabilities. The

proposed heuristics are based on radix-2r arithmetic. They are easy to use and overflow-safe.

4.6 New Recoding Algorithm (RADIX-2
r
)

Radix-2r has been concisely introduced in Section 3.3.4. We reconsider hereafter the most essential

elements and provide further details and explanations. An N-bit constant C is expressed in radix-2r as

follows:

() rj
rrj

r
rrj

r

rn

j

rjrjrjrj ccccccC 222222 1
1

2
2

1)/(

0

2
2

1
10

1 ×−+⋅⋅⋅++++= −+
−

−+
−

−

=
++−∑

rj

rn

j

jQ 2
1)/(

0

×= ∑
−

=

 , (4.22)

where 01 =−c and *Ν∈r . For simplicity purposes and without loss of generality, we assume that r

is a divider of N. In Eq. 4.22, the two’s complement representation of the constant C is split into N/r

two’s complement slices (jQ), each of r bit length because it goes from 20 to 2r–1. However, jQ

needs an additional bit (crj–1) equal to the most significant bit of the previous digit (1−jQ), which could

Chapter 4 − Multiplication by a Constant

 73

be seen as some form of carry due to the use of signed digits; it comes from the following formula:

()

.ccc
rrj

rrj
jr

rrj
rj

rrj
r 1

1
1

11
1

2222
−+

−+
+

−+−+
− ×=×+×−

(4.23)

This formula expresses the transformation of the conventional radix-2r representation to the signed-

digit radix-2r one. A digit-set ()r
DS 2 corresponds to Eq. 4.22, such as

() { }1111 2121011222 −−−− −−+−−=∈ rrrrr

j ,,...,,,,,...,DSQ . (4.24)

Thus, the product becomes:
()

rj
r/N

j

jQXXC 2
1

0

××=× ∑
−

=

.
 (4.25)

The sign of the Qj term is given by the crj+r–1 bit, and
j

k
j mQ j ×=2 , with { }1210 −∈ r,...,,,kj

 and

() { }02 U
r

j OMm ∈ , where () { }12...,,5,3,12 1 −= −rrOM . ()r
OM 2 is the set of odd positive digits in radix-2r

recoding, with () 222 −= rr
OM . To 0=jQ corresponds mj=0. Finally, the product can be expressed as

follows: () ()
()

jrrj
krj

r/N

j

j
c

XmXC
+

−

=

×××−=× ∑ −+ 21
1

0

1 . (4.26)

 Unlike the multiplication by a variable (Y×X) where the entire set of partial-products (mj×X) must be

precomputed, only a subset is needed in the case of the multiplication by a constant (C×X). In fact,

the number of partial-products is equal to the number of different values mj induced by the encoding

process of the N/r slices (terms Qj). Therefore, the generation of partial products (PP) consists first, if

mj≠0, in computing the PP mj×X if it has not been precomputed before. It is then submitted to a

hardwired left-shift of rj+kj positions, and finally, conditionally negated () 11 −+− rrjc
depending on the

sign bit crj+r–1 of Qj. An illustrative example is given farther.

4.6.1 Maximum Number of Additions (Upb)

 On the one hand, there are N/r iterations in Eq. 4.26. Each iteration generates one PP. Thus, the

maximal number of PP is N/r, which requires a maximum of Npp=N/r–1 additions. On the other hand,

a maximum of 12 2 −−r non-trivial PP (){ }XXXX r ×−××× − 12,,7,5,3 1L can be invoked

during the PP generation process. They are built using the binary method, from the least significant bit

to the most significant bit. That is, the mj elements 3, 5, 7, ..., 2r–1
–1 are built one after the other, each

time by using a single addition between an element that has already been built and a power of two.

This process is summarized by the following recurrence relation: dm
p

j += 2 , where p≤r–2 because

mj ≤ 2
r–1

–1, and 0 < d < 2p.

Theorem 4.2 − In radix-2r, the precomputation of the entire set of non-trivial PP {3×X, 5×X,

7×X,…,(2r–1
–1)×X} yields an adder-cost and an adder-depth of 2r–2

–1 and r–2, respectively.

Proof − Since each new non-trivial digit requires only one addition (recurrence relation), the adder-cost

Chapter 4 − Multiplication by a Constant

 74

is the number of non-trivial digits: () 1212 2 −=−= −rr

om OMN . As the binary method is used, the

adder-depth is deduced from the maximum number of non-zero bits in the binary representation of a

digit: (r–1)–1=r–2. Since there are N/r PP, the maximum adder-depth (Ath) in cascaded adders is:

 () 







−+=








−+−= 321 r

r

N
r

r

N
rAth , (4.27)

where   is the ceiling function (e.g.   6295 =.).

We illustrate the construction process of non-trivial PP with the following radix-26 example:

() { }31,29,27,25,23,21,19,17,15,13,11,9,7,5,3,126 =OM

{ } { } { } { ,1132,912732,5123121 33221 =+=+=+=+=+= UUU }U1572,1352 33 =+=+

 { ,2152,1932,1712 444 =+=+=+ }.31152,29132,27112,2592,2372 44444 =+=+=+=+=+

 Thus, the PP (mj×X) corresponding to ()6
2OM are subsequently calculated in the following order

(6–2=4 steps):

 {3×X} ; {5×X ,7×X } ; {9×X ,11×X ,13×X ,15×X } ;

 {17×X ,19×X , 21×X , 23×X , 25×X , 27×X , 29×X , 31×X }.

 Fig.4.6 provides all necessary details for hardware implementation. It now becomes clear that Eq.

4.26 involves only additions, subtractions, and left-shifts. Note that right-shifts are not allowed since r,

j, and kj , are positive integers.

 Consequently, the total number of additions required by radix-2r is equal to:

 () 







−+=+= − 22 2r

ompppb
r

N
NNrU . (4.28)

X

+

3×X X

+

22×X 22×X

5×X 7×X

+

3×X X

+

23×X 23×X

9×X 11×X

+ +

23×X 23×X

13×X 15×X

5×X 7×X

+

21×X

3×X

+

3×X X

+

24×X 24×X

17×X 19×X

+ +

24×X 24×X

21×X 23×X

5×X 7×X

+

11×X

+

24×X 24×X

25×X 27×X

+ +

24×X 24×X

29×X 31×X

13×X 15×X 9×X

Step #1

Step #2

Step #3

Step #4

FIGURE 4.5 – Sequential order of computation of the entire set of partial-products needed by radix-26.

For radix-26, a maximum of 26–2–1=15

additions are necessary, carried out in

6–2=4 steps in the worst case.

Chapter 4 − Multiplication by a Constant

 75

()rU pb is minimal for ())2(/)2(2 loglogNWr ⋅⋅= , where W is the Lambert Function. Table 4.3

gives the values of r that lead to the minimum number of additions for N ranging from 8 to 8192, while

Fig. 4.6 depicts the upper-bounds in number of additions for CSD, DBNS, and RADIX-2r.

 As for the average number of additions (Avg), it has been exhaustively calculated for values of C

varying from 0 to 2N–1, for N=8, 16, 24, and 32. But for N=64, we have calculated Avg using 105, 106,

109 and 1010 uniformly distributed random values of C. While the difference between the four obtained

results is insignificant (<10–3), the value Avg oscillates around 15.5037 additions. Results are reported

in Table 4.4. For N=64, RADIX-2r uses 24.17 % less additions than CSD. This gain seems to grow

linearly for low values of N.

 TABLE 4.3 − Upper-bound (Upb) and r values for an N-bit constant using RADIX-2r.

N 8 16 32 64 128 256 512 1024 2048 4096 8192

r 3 4 4 4 5 6 6 7 8 8 9

 Upb(r) 3 6 10 18 32 57 100 177 318 574 1037

 FIGURE 4.6 – Upb comparison for an N-bit constant.

TABLE 4.4 − RADIX-2r versus CSD: average number of additions

(Avg) and upper-bound (Upb).

CSD RADIX-2r Constant
Bit-width N Avg Upb Avg Upb

Saving
(Avg,%)

8 1.7882 4 1.7843 3 0.2180
16 4.4445 8 4.2518 6 4.3356
24 7.1111 12 6.5314 8 8.1520
32 9.7777 16 8.6855 10 11.1703
64 20.4444 32 15.5037* 18 24.1666

*: Obtained from 1010 uniformly distributed random values of C.

CSD Avg = (N/3)–8/9 and CSD Upb = (N+1)/2–1.

Chapter 4 − Multiplication by a Constant

 76

 Regarding DBNS, Dimitrov [6] calculated Avg and Upb from 105 uniformly distributed random

constants, for 32 and 64 bits only (Table 4.5). Note that DBNS Upb will be higher if the worst cases

are not attained by the pattern of 105 constants.

 We have also compared RADIX-2r to some non-recoding heuristics (CSE and DAG) based on

programs and numeric data kindly provided by Lefèvre and Voronenko. While Fig. 4.7 shows lower

values of Avg for non-recoding heuristics as expected due to a larger exploration of the solution

space, Table 4.6 exhibits rather a higher value of Upb for Bernstein's heuristic. Significant conclusion:

a lower Avg does not guarantee a lower Upb. Another performance indicator of the recoding is the

smallest value that requires q additions, for q varying from 1 to the upper-bound of the recoding. Table

4.7 summarizes this information for a 32-bit constant. One can note that starting from q=7, higher

values are given by RADIX-2r compared to CSD.

Illustrative Example

 The product 10599×X is first calculated in CSD, DBNS, and RADIX-2r. Let us note that

(10599)10=(10100101100111)2.

PCSD=(X×213)+(X×211)+(X×29)–(X×27)–(X×25)+(X×23)–X.

PDBNS=((X1×21)+ X1)+ (X×213)+ (X×23)–X with X1=((X0×21)+X0)+(X×25) and X0=(X×28) [6].

TABLE 4.5 − RADIX-2r versus DBNS: average number of additions

(Avg) and upper-bound (Upb).

DBNS [6] RADIX-2r Constant
Bit-width N Avg Upb Avg Upb

Saving
(Avg,%)

32 ≈9.05+* 13* 8.6855 10 4.0276

64 16.2151* 21* 15.5037 18 4.3872

+: Taken from Fig.1 in [6]; *: Obtained from 105 uniformly distributed

random values of C.

 FIGURE 4.7 – Avg comparison for an N-bit constant.

Chapter 4 − Multiplication by a Constant

 77

 In order to express the product in PRADIX, a two’s complement representation of (10599)10 is

necessary, which is (010100101100111)2. Thus, in two’s complement notation, the constant size is

equal to N=15, to which corresponds r=4 (Table 4.3). As 15 is not a multiple of 4, the sign-bit (0 in this

case) is extended by one position so as N=16. For C=(10599)10, Eq. 4.22 and 4.26 become

respectively:

∑
=

×=
3

0

42
j

j
jQC

, and
 () () jj kj

j

j
c

RADIX XmP +

=

×××−= ∑ + 4
3

0

21 34
.

Fig. 3.11 depicts the four terms Qj. To determine the unknown values c4j+3, mj, and kj, the radix-24

look-up table (Table 3.4) is indexed by the terms Qj. Referring to Table 3.4, the triplets (c4j+3, mj, kj)

corresponding to Q0, Q1, Q2, and Q3 are (0,7,0), (0,3,1), (1,7,0), and (0,3,0), respectively. The

recoding of C=10599 involves the precomputation of two PP only {3×X, 7×X}, while a maximum of

three PP {3×X, 5×X, 7×X} can be invoke by radix-24 recoding. Consequently, we can write:

PRADIX = ((3×X)×212)–((7×X)×28)+((3×X)×25)+ (7×X)

 = (X0×212)–(X1×28)+(X0×25)+X1 with X0 = (X×2)+X and X1 = (X×22)+X0.

It has to be noted that for C=10599, PCSD and PDBNS require both 6 additions, while PRADIX requires 5.

The naive shift-and-add approach would have required 7 additions. We assume that addition and

subtraction have the same area/speed cost, and that shift is costless since it can be realized without

any gates, i.e. just by using hard wiring.

TABLE 4.6 − RADIX-2r versus non-recoding algorithms: runtime complexity

and number of additions of some special cases.

Algorithm (84AB5)H

N=20

(64AB55)H

N=23+

(5959595B)H

N=31+

Runtime
 [13]

BIGE [1] 4 5 6 O(2
N)

Bernstein [10] 8
G 7 8 O(2

N) [8]

Hcub* [13] 4 6 – O(N
6)

BHM* [23] 5 7 – O(N
4)

Lefèvre’s CSP [8] 4 6 9 O(N
3)

RADIX-2r 5 7 10 O(N)

N: Constant bit-size; +: In RADIX-2r, for 16≤N≤64, r=4 (Table 4.3). A zero

bit is added in the MSB position to make N a multiple of r (N=24, N=32).

G: Greater than RADIX-2r Upb; RADIX-2r
 Upb=7, 8, and 10, for N=20, 24,

and 32, respectively; *: Values are delivered by the Spiral web version

(www.spiral.net), limited to 26 bits; x: optimal number of additions.

The BIGE optimal solutions for the indicated values are obtained as follows:

(84AB5)H : 15 = (24)–1 ; 3825 = (15×28)–15 ; 19125 = (3825×22)+3825;

543413 = (219)+19125.

(64AB55)H : 255 = (28)–1; 65281 = (255×28)+1; 1109777 = (65281×24)+

65281; 5548885 = (1109777×22)+1109777; 6597461 = (220)+5548885.

(5959595B)H : 257 = (28)+1; 16843009 = (257×216)+257; 16843011 = (2)+

16843009; 50529027 = (16843009×2)+16843009; 421075227 =

(50529027×23) +16843011; 1499027803 = (16843009×26)+421075227.

Chapter 4 − Multiplication by a Constant

 78

 Simplifications in Eq. 4.26 are possible in case two consecutive terms Qj and Qj+1 with opposite

signs exhibit pairs (mj , kj) of the form (1 , r–1) and (1 , 0), respectively. This is illustrated by the two

following possibilities:

 ⋅⋅⋅±×+⋅⋅⋅=⋅⋅⋅±×−×+⋅⋅⋅ −+−++ 1)(rrj1)(rrj1)r(j
2X2X2X

 ⋅⋅⋅±×−⋅⋅⋅=⋅⋅⋅±×+×−⋅⋅⋅ −+−++ 1)(rrj1)(rrj1)r(j
2X2X2X

 Another interesting idea is to include redundancy in the terms Qj of Eq. 4.22 as will be shown

farther. These two tricks will decrease the average number of additions in RADIX-2r (Table 4.4, 4.5,

and Fig. 4.7).

 In addition to higher compression capabilities of RADIX-2r compared to CSD and DBNS, its runtime

complexity is linearly proportional to N as shown by Eq. 4.22. Moreover the required memory space is

very small (for a 8192-bit constant corresponds a look-up table of 29+1=1024 entries). These two

features make RADIX-2r very useful for huge constants.

TABLE 4.7 − RADIX-2r versus CSD, Lefevre's CSP, and exhaustive search:

smallest values up to a 32-bit constant.

Number of
Additions (q)

CSD RADIX-2r
Lefèvre’s
CSP* [8]

Exhaustive
search [8]

1 3 3 3 3
2 11 11 11 11
3 43 43 43 43
4 171 139 213 683
5 683 651 1703 14709
6 2731 2699 13623 699829
7 10923 33419 174903 171398453+

8 43691 526491 1420471 –
9 174763 8422027 13479381 –
10 699051 134744219 – –
11 2796203 – – –
12 11184811 – – –
13 44739243 – – –
14 178956971 – – –
15 715827883 – – –

*: Lefèvre calculated the values for q up to 9. This means that the common

subpattern algorithm (CSP) exhibits an Upb ≥ 9 among all 32-bit constants.

+: This is the sole value which has not been confirmed by Lefèvre’s

exhaustive algorithm. It has been found only by Donelly [8], using left-shifts

exclusively. If "right-shifts" are allowed, the value is strictly higher since the

BIGE solution using right-shifts gives 6 additions, as follows: 5 = (22)+1;

639 = (5×27)–1; 317 = (639–5)×2–1; 5194045 = (317×214)+317; 171393341

= (317×219)+5194045; 171398453 = (639×23)+171393341.

Thong [1] conjectured that 7 additions are enough up to 32 bits, allowing

right-shifts (exhaustive BIGE algorithm). It has been proved via RADIX-2r

heuristic that 10 additions are sufficient up to 32 bits, using left-shifts only.

Chapter 4 − Multiplication by a Constant

 79

Since the introduction of H(k) [12] in 2004, CSE heuristics have outperformed DAGs at SCM [1].

This was achieved by applying CSE to each possible signed-digit (SD) form of the constant. Likewise,

the search space of CSE can be expanded considering RADIX-2r recoding instead of SD

representation. For such a goal (SCM/MCM), Lefèvre’s CSP heuristic [8] stands as the best CSE

candidate for its lower computational complexity O(N
3) in comparison to its CSE counterparts [13].

4.6.2 Average Number of Additions (Avg)

()rOM 2 is the required set of odd-multiples () { }12...,,5,32 1 −= −rrOM in radix-2r recoding, with

() 122 2 −= −rrOM . Since each slice Qj comprises r+1 bits, the total number of different combinations

is then 2r+1. According to Eq. 4.22, only two combinations produce Qj =0: in case the r+1 bits are all

“0” or all “1”. Hence, the average number of non-null Qj terms is equal to () rrr −++ −=− 212/22 11 .

Each Qj≠0 generates one partial product (PP). Thus, the average number of PP in the  rN / slices is:

()  rNAvg

r
pp /×−= −21 . (4.29)

For each ()r
j OMm 2∈ there exists an integer (){ }r

OMk 221 ...,,,∈ , such as 12 +×= km j . To set the

correspondence between j and k, mj is denoted mjk. The exact number of occurrences (Occ) of mjk in

the 2r+1 combinations of Qj is :

() 4
12

2 1

×












+×
=

−

k
mO

r

jkcc , (4.30)

where   is the floor function. We need to multiply by 4 because each occurrence of mjk in the

positive part of ()r
DS 2 is double due to the fact that crj−1 and crj bits have the same influence on Qj

term ()⋅⋅⋅+×+×−
00

1 22 rjrj cc . Symmetrically, when considering the negative part of ()r
DS 2 , each

occurrence of mjk becomes then quadruple (see Table 3.4). Therefore, the probability (P) that mjk

occurs among 2r+1 combinations is:

() ()

12 +
=

r

jkcc
jk

mO
mP .

(4.31)

 We deliberately employ “probability” instead “average” to make easier the demonstration, but

actually the two notions have exactly the same meaning in this case. Now, the probability that mjk

occurs in slice Qj knowing that it has never occurred in the slices before slice j is (Bayes’s theorem):

() ()

()
() ()[] () ()[] j

jkjk

j
jkjkjk

jk mPmP
mPmP

jP

jmP
j/mP −×=

−×
== 1

1

1I
. (4.32)

The probability that any mjk for ()r
OMk 21 ..= occurs in slice Qj knowing that it has never occurred

in the slices before slice j is:

() ()
()

∑
=

=∀

rOM

k

jkjk j/mPj/mP

2

1

.

(4.33)

Chapter 4 − Multiplication by a Constant

 80

Note that ()j/mP jk are mutually exclusive, since one and only one odd-multiple (mjk) can occur in

slice j. Consequently, the average number of generated odd-multiples considering all slices is:

()
 

∑
−

=

∀=
1

0

r/N

j

jkom j/mPAvg . (4.34)

Hence, the average number of additions for RADIX-2r is:

 () ompp AvgAvgrAvg ++−= 1

 ()   () ()[]
 

∑ ∑
−

=

−

=

−













−×+×−+−=
−1/

0

12

1

2

1/211
rN

j k

j
jkjk

r

r

mPmPrN , (4.35)

with ()
1

1

2

12

2

−

−













+×
=

r

r

jk

k
mP . We proved in the last section that to get the minimum number of additions, r

must be equal to:

 ())2(/)2(2 loglogNWr ⋅⋅= , (4.36)

where W is the Lambert function.

Using Avg expression 4.35, we calculated the average for N varying from 8 to 8192. Results are

reported in Table 4.8. Note that insignificant differences exist between the values exhaustively

calculated in Tables 4.4 and those of Table 4.8. The reason is due to the fact that before calculating

the number of additions, even values of C constant was reduced till to get an odd value. This is why

Avg values in Tables 4.4 are slightly lower than those delivered by Avg expression. We rerun the

same program but without the reduction of even number and got exactly the same values as Avg

expression.

 We observe that for RADIX-2r
, Avg values are not far from Upb ones as in the case of CSD. The

reason is that the average number of null Qj is very low: ()  
 

rrj
r/N

r/NQAvg
22

2
0

1
=×==

+ . Note that

50% saving over CSD is attained for N=1148.

 The maximum adder-depth (Ath) in cascaded adders is given by Eq. 4.27. Based on r values given

by equation 4.36, we calculated Ath(r) and grouped the results in Table 4.8. A saving of 50% over

CSD is achieved for N=80.

As for Upb, 50% saving is attained at N=128.

4.6.3 Length of the Critical-Path in Cascaded Adders (Ath)

Equation 4.36 assures minimum Avg and Upb, whereas lower Ath values are still possible. Any r

value, such as ())2(/)2(2 loglogNWr ⋅⋅≤ produces higher Avg, Upb, and Ath. While any r value, such

as ())2(/)2(2 loglogNWr ⋅⋅≥ produces lower Ath but higher Avg and Upb. To garantee a reasonable

balance, we set as condition that the entire number of odd-multiples must be equal, or less than the

Chapter 4 − Multiplication by a Constant

 81

total number of the slices Qj ()  ()rNOM
r /≤2 . This condition avoids generating more odd-

multiples than it is actually invoked. Thus, a balanced solution for a lower Ath is found for:

()() ()224 loglogNWr /..=

,
 (4.37)

where W is the Lambert function.

Table 4.9 indicates r values that yield lower Ath, accompanied with its corresponding Upb and Avg.

Note that both equations 4.36 and 4.37 provide exactly the same results for N≤32, either in Ath, Avg,

or Upb. Starting from N≥64, lower Ath are obtained using Eq. 4.37 but at the expense of higher Upb

and Avg as indicated by Tables 4.8 and 4.9. For instance, for N=256 Eq. 4.37 achieves a reduction of

22.5% in Ath over equation 4.36, while it causes an increase of 26% and 2.5% in Upb and Avg,

respectively. Contrary to Avg corresponding to equation 4.36, the ones of Eq. 4.37 are relatively far

from Upb. Compared to CSD, a saving of 50% in Ath is obtained by Eq. 4.37 for N=56.

Finally, to decide which r expression to use depends actually on design requirements. If priority is

given to area, Eq. 4.36 must be used. But in case speed is a concern, Eq. 4.36 must be employed.

4.6.4 Overflow Safety

In RADIX-2r, overflow safety is easy to prove. We consider C and X with n and m bit-lengths,

respectively. In two’s complement representation, the product XCP ×= needs n+m bits to be

TABLE 4.8 − RADIX-2r
 versus CSD: Avg, Ath, and Upb for N-bit constant.

N 8 16 32 64 128 256 512 1024 2048 4096 8192

r 3 4 4 4 5 6 6 7 8 8 9

RADIX-2r 1.78 4.26 8.71 16.75 30.40 54.08 98.12 174.22 312.49 571.41 1033.39

CSD 1.78 4.44 9.77 20.44 41.77 84.44 169.77 340.44 681.77 1364.44 2729.77 Avg

Saving (%) 0.39 4.12 10.89 18.05 27.22 35.95 42.20 48.82 54.16 58.12 62.14

RADIX-2r 3 5 9 17 28 46 89 151 261 517 917

CSD 4 8 16 32 64 128 256 512 1024 2048 4096 Ath

Saving (%) 25 37.5 43.75 46.87 56.25 64.06 65.23 70.50 74.51 74.75 77.61

RADIX-2r 3 6 10 18 32 57 100 177 318 574 1037

CSD 4 8 16 32 64 128 256 512 1024 2048 4096 Upb

Saving (%) 25 25 37.5 43.75 50 55.46 60.93 65.42 68.94 71.97 74.68

N is the constant bit-size; ())2(/)2(2 loglogNWr ⋅⋅= , where W is the Lambert function.

TABLE 4.9 − Upper-bound and r values for N-bit constant using RADIX-2r.

N 8 16 32 64 128 256 512 1024 2048 4096 8192

r 3 4 4 5 6 7 8 8 9 10 11

Ath(r) 3 5 9 15 25 41 69 133 234 417 753

Upb(r) 3 6 10 19 36 67 126 190 354 664 1255

Avg(r) 1.78 4.26 8.71 16.61 30.77 55.47 100.56 175.99 322.83 594.90 1104.27

 N is the constant bit-size; ()() ()2/2..4 loglogNWr = , where W is the Lambert function.

Chapter 4 − Multiplication by a Constant

 82

complete, i.e., without truncation. We can write: 0121 ppppP mnmn ⋅⋅⋅= −+−+ ; where 1−+mnp is the

sign-bit. To be sure there is no overflow risk; we must prove that the sign-bit of the last partial product

(PP) is set at most at the n+m−1 position. We write:

()

()
()

()
()

∑∑∑
−

=

−

=

−

=

=××−××−=××= −−+

1

0

1

0

1

0

2112 11

r/n

j

j
rjx

r/n

j

j
crj

r/n

j

j PPXQXQP mrrj ,

where the last PP is equal to: () () rnx
j

c
r/n XQPP mn −
− ××−××−= −− 211 11
1 . The maximal positive values

that jQ and X can take are 2r−1 and 2m−1, respectively, to which corresponds a maximal PP of:

 () () 2
1/ 21max 11 −++

− ×−= −− mnxc
rn

mnPP .

 In this case, 22 −+mn occupies the n+m−2 position, plus the sign bit just after at n+m−1 position. This

proves that in RADIX-2r overflow never occurs.

4.7 New Redundant Radix-2
r Recoding (R3) Algorithm

 The objective is to decrease Avg without increasing Upb. Avg is successively reduced in two steps:

by the utilization of a redundant recoding, followed by a Common Digit Elimination (CDE) step on the

PP set. In RADIX-2r, CDE is already applied on the odd-multiples (mj) by the recoding itself. A second

order of CDE can be applied again on Qj terms thanks to redundancy.

 We present hereafter a linear runtime Redundant Radix-2r Recoding (R3) with better Avg and same

Upb as RADIX-2r.

 Eq. 4.22 can be rewritten as

 () ()
()

rj
rN

j

k
j

c
jrrj mC 221

1/

0

1 ×××−= ∑
−

=

−+ , (4.38)

with { }12...,,5,3,1,0 1 −∈ −r
jm and { }1,...,2,1,0 −∈ rkj .

To enable CDE at Qj level, we announce the two following theorems.

Theorem 4.3 − Any digit ()r
j DSQ 2∈ can be represented in a combination of digits ()s

ji DSP 2∈ ,

such as s is a divider of r.

Theorem 4.4 − Any digit ()r
j DSQ 2∈ can be represented in a combination of digits Pji+Tjk such as

()s
ji DSP 2∈ and ()t

jk SDT 2∈ with s+t a divider of r , and t < s.

Proofs − see Appendix A.

When Th. 4.3 is applied to Eq. 4.22, it gives:

()()
rj

rN

j

sr

i

si
jiPC 22

1

0

1

0

∑ ∑
−

=

−

= 










=

/ /

, (4.39)

Chapter 4 − Multiplication by a Constant

 83

where () { }1111 2,12,...,0,...,12,22 −−−− −+−−=∈ sssss
ji DSP , () { }12,...,3,12 1 −= −ssOM such

as () () ()sksr OMOM 122/2 −= with r/s=k. Th. 4.3 allows an exponential reduction (1/2k−1
) of the

number of odd-multiples in Eq. 4.39 in comparison to Eq. 4.22, but at the expense of a linear increase

(k−1) in the number of additions.

Corollary 4.1 − In radix-2r, () jjj h
j

el
jj vuQ 212 ××−+×= , where: (){ };12,...,5,3,1,0, 12/ −∈ −r

jj vu

{ };12,...,2,1,0 1 −∈ −r
jl

(){ };12,...,2,1,0 12/ −∈ −r

jh

and

{ } .1,0∈je

Proof − This corollary is a direct consequence of Th. 4.3 applied for s=r/2. This means that Qj digit,

which is r+1 bit-length, is split into two overlapping sub-digits Pj0 and Pj1, each of r/2+1 bit-length.

This assumes that r is even. If r is odd, Th. 4.4 is applied instead of Th. 4.3. For s=r/2, Eq. (4.39)
becomes:

 () rj
rN

j

r
jj PPC 22

1/

0

2/
10 ××+= ∑

−

=

. (4.40)

 Note that 2/
10 2r
jjj PPQ ×+= , and that Pj0 and Pj1 have exactly the same properties as Qj, which

means that they can be expressed in the same way as Qj is written in equation (4.38). Thus, we get:

 () ()[] rjh
j

el
j

rN

j

c
jjjrrj vuC 22121

1/

0

1 ×××−+××−= ∑
−

=

−+ . (4.41)

 Because addition is a non-injective function, the quintuplet (uj, lj, ej, vj, hj) is not unique; several

ones might exist for the same jQ value. For instance, the term 35=jQ can be expressed as:

35=1×25+3×20, or 35=5×23–5×20, or 35=7×22+7×20. Consequently, Eq. (4.41) is a redundant radix-2r

recoding (R3) of the constant C.

 Corollary 4.1 is just one case (s=r/2) among many others. A number of Qj partitionings are possible

(s=r/3, r/4,...), but lower values of s increase the number of sub-digits, which makes equation (4.41)

difficult to handle.

 R3 is illustrated hereafter for the particular case of 8<N≤64. To preserve optimality in Upb and Avg,

r must be equal to 4 (Table 4.8). But as R3 comprises two sub-digits, r must be doubled (r=8), which

means that s=4. Hence, with (r,s)=(8,4) optimality is guaranteed.

For r=8, 0≤|Qj|≤128, and equation (4.41) becomes:

 ()() () jc
N

j

h
j

el
j

jjjj vuC 8
1)8/(

0

21212 78 ×−×××−+×= +∑
−

=

 () () jc
N

j
j

jZZ 8

1)8/(

0

21 21 78 ×−×+= +∑
−

=

, (4.42)

where jl
juZ 21 ×= ; () jj h

j
e

vZ 212 ××−= ; { };7,5,3,1,0, ∈jj vu { };7,...,2,1,0∈jp { };3,2,1,0∈jh and

{ }.1,0∈je

Chapter 4 − Multiplication by a Constant

 84

 Note that |Qj|=(Z1+Z2)j. Thus, the product C×X becomes:

() () ()[] () jc
N

j

h
j

ep
j

jjjj XvXuXC 8

1)8/(

0

21212 78 ×−××××−+××=× +∑
−

=

.

(4.43)

The partitioning of the constant C according to equation (4.42) is depicted in Fig. 4.8.

Since jQ

may have several notations in (Z1, Z2), we must carefully select among a big number of

possibilities, the recoding (R3) that yields optimal Avg. We have shown that for RADIX-2
r
,

()   r
j rNQAvg 2//0 == and we can easily prove applying the same reasoning developed in Section

4.6.2

that () ()   r

j rNrQAvg 2//121 ×−×== . Thus, we can write: ()   12//1,0 −×== r
j rNrQAvg . Preserving the

same ()1,0=jQAvg value in R3 is a proof of optimality of Avg, because the number of PPs as well as

the odd-multiple set are exactly the same in R3 and RADIX-2r.

Optimal R3 recoding is obtained using a C-program which exhaustively explores for each odd |Qj|

varying from 1 to 127, all (uj, lj, ej, vj, hj) possibilities and selects the least adder consumer

combination according to the following priority order: (uj , vj)=(uj , 0); (uj , vj)=(1 , 1); (Z1,Z2)=(1×27, Z2);

and finally (Z1 , Z2)=(Z1 ,1×20). These two latter couples allow the following simplifications:

 ()[] ()[] [] [] ...222......221221... 88
1

8
2

880
1

8
2

7 ±×+−×+=±××−+×+×+ ++ jjjj ZZZZ

 ()[] ()[] [] [] ...222......221221... 88
1

8
2

880
1

8
2

7 ±×+−×−=±××++×+×− ++ jjjj ZZZZ

 In case none of those cases is encountered, C-program pursues in the following priority order: (uj ,

vj)=(1,3) or (3,1); (uj , vj)=(3 , 3); (uj , vj)= (1,5) or (5,1); (uj , vj)=(5, 5); (uj , vj)= (1, 7) or (7, 1); (uj ,

vj)=(7, 7); (uj , vj)= (3,5) or (5,3); (uj , vj)= (3,7) or (7,3); (uj , vj)= (5,7) or (7,5). This order maximizes

the occurrences of 1, then of 3, and minimizes those of 5 and 7 in |Qj| digits, which will more likely

reduce the number of adders in the whole C recoding. Optimized odd |Qj| combinations are grouped

in Table 4.10. Even combinations of |Qj| are directly derived from odd ones using shift operations.

For a given 8<N≤64, optimality for RADIX-2r and R3 is guaranteed for r=4 and r=8, respectively. To

RADIX-2r corresponds ()   2410 //, NQAvg j == . Counting the number of uj=1, vj=0, and vj=1 in both

odd and even |Qj| of Table 4.10, we can easily prove that for R3, ()   1288240 //NvAvg j ×== and

() ()   6485211 //NvAvguAvg jj ×==+= . This gives () ()  8101 /N,vAvguAvg jj ==+=
 which is equal

to ()10 ,=jQAvg . This is a formal proof that R3 (Table 4.10) is optimal.

 c-1 c0 c1 c2 c3 c4 c5 c6 c7 c8 c9 c10 c11 c12 c13 c14 c15 c16 c17 c18 c19 c20 c21 c22 c23

() () 710210
c

ZZQ −×+=

16
2

8
1

0
0 222 ×+×+×= QQQC

() () 1511211
c

ZZQ −×+=

() () 2312212
cZZQ −×+=

 8+1 bits

 : c-1= 0 C
 24+1 bits

Qj () 1280 21 ≤+≤
j

ZZ
: c7 , c15 , c23 are sign bits

 FIGURE 4.8 – Partitioning of a 24-bit C constant using R3 algorithm.

Chapter 4 − Multiplication by a Constant

 85

TABLE 4.10 − Odd and even |Qj| digit recoding using R3 algorithm.

Odd |Qj| Z1=uj× 2
lj Z2=(−1)

ej×vj × 2
hj (Z1+ Z2)j Even |Qj| (Z1+ Z2)j

1 1 × 2 0 0 × 2 0 U1 2 21 × U1
3 3 × 2 0 0 × 2 0 U3 4 22 × U1
5 5 × 2 0 0 × 2 0 U5 6 21 × U3
7 7 × 2 0 0 × 2 0 U7 8 23 × U1
9 1 × 2 3 1 × 2 0 U9 10 21 × U5
11 3 × 2 2 −1 × 2 0 U11 12 22 × U3
13 3 × 2 2 1 × 2 0 U13 14 21 × U7
15 1 × 2 4 −1 × 2 0 U15 16 24 × U1
17 1 × 2 4 1 × 2 0 U17 18 21 × U9
19 5 × 2 2 −1 × 2 0 U19 20 22 × U5
21 5 × 2 2 1 × 2 0 U21 22 21 × U11
23 3 × 2 3 −1 × 2 0 U23 24 23 × U3
25 3 × 2 3 1 × 2 0 U25 26 21 × U13
27 7 × 2 2 −1 × 2 0 U27 28 22 × U7
29 7 × 2 2 1 × 2 0 U29 30 21 × U15
31 1 × 2 5 −1 × 2 0 U31 32 25 × U1
33 1 × 2 5 1 × 2 0 U33 34 21 × U17
35 1 × 2 5 3 × 2 0 U35 36 22 × U9
37 1 × 2 5 5 × 2 0 U37 38 21 × U19
39 5 × 2 3 −1 × 2 0 U39 40 23 × U5
41 5 × 2 3 1 × 2 0 U41 42 21 × U21
43 5 × 2 3 3 × 2 0 U43 44 22 × U11
45 3 × 2 4 −3 × 2 0 U45 46 21 × U23
47 3 × 2 4 −1 × 2 0 U47 48 24 × U3
49 3 × 2 4 1 × 2 0 U49 50 21 × U25
51 3 × 2 4 3 × 2 0 U51 52 22 × U13
53 3 × 2 4 5 × 2 0 U53 54 21 × U27
55 7 × 2 3 −1 × 2 0 U55 56 23 × U7
57 7 × 2 3 1 × 2 0 U57 58 21 × U29
59 1 × 2 6 −5 × 2 0 U59 60 24 × U15
61 1 × 2 6 −3 × 2 0 U61 62 21 × U31
63 1 × 2 6 −1 × 2 0 U63 64 26 × U1
65 1 × 2 6 1 × 2 0 U65 66 21 × U33
67 1 × 2 6 3 × 2 0 U67 68 22 × U17
69 1 × 2 6 5 × 2 0 U69 70 21 × U35
71 1 × 2 6 7 × 2 0 U71 72 23 × U9
73 5 × 2 4 −7 × 2 0 U73 74 21 × U37
75 5 × 2 4 −5 × 2 0 U75 76 24 × U19
77 5 × 2 4 −3 × 2 0 U77 78 21 × U39
79 5 × 2 4 −1 × 2 0 U79 80 24 × U5
81 5 × 2 4 1 × 2 0 U81 82 21 × U41
83 5 × 2 4 3 × 2 0 U83 84 22 × U21
85 5 × 2 4 5 × 2 0 U85 86 21 × U43
87 5 × 2 4 7 × 2 0 U87 88 23 × U11
89 3 × 2 5 −7 × 2 0 U89 90 21 × U45
91 3 × 2 5 −5 × 2 0 U91 92 22 × U23
93 3 × 2 5 −3 × 2 0 U93 94 21 × U47
95 3 × 2 5 −1 × 2 0 U95 96 25 × U3
97 3 × 2 5 1 × 2 0 U97 98 21 × U49
99 3 × 2 5 3 × 2 0 U99 100 22 × U25

101 3 × 2 5 5 × 2 0 U101 102 21 × U51
103 3 × 2 5 7 × 2 0 U103 104 23 × U13
105 7 × 2 4 −7 × 2 0 U105 106 21 × U53
107 7 × 2 4 −5 × 2 0 U107 108 22 × U27
109 7 × 2 4 −3 × 2 0 U109 110 21 × U55
111 7 × 2 4 −1 × 2 0 U111 112 24 × U7
113 7 × 2 4 1 × 2 0 U113 114 21 × U57
115 7 × 2 4 3 × 2 0 U115 116 23 × U29
117 7 × 2 4 5 × 2 0 U117 118 21 × U59
119 7 × 2 4 7 × 2 0 U119 120 23 × U15
121 1 × 2 7 −7 × 2 0 U121 122 21 × U61
123 1 × 2 7 −5 × 2 0 U123 124 22 × U31
125 1 × 2 7 −3 × 2 0 U125 126 21 × U63
127 1 × 2 7 −1 × 2 0 U127 128 27 × U1

 Note that 9=1×2 3+1×2 0 in R3 (1 addition) and 9=1×2 4
−7×2 0 in RADIX-2r

 (2 additions), taking into account that the recoding is on 8+1=9 bits (Fig. 4.8).

 There are many cases where the number of additions is lower, as in 10, 40, …

Chapter 4 − Multiplication by a Constant

 86

 As for Upb, R3 comprises  8/N Qj , each one groups two digits (Z1, Z2). Thus, the number of PP

is  4/N . Since 3 odd-multiples are required,   24 += /NUpb which is equal to Upb of RADIX-2r. It is

important to mention that 8<N≤64 was chosen just to make the demonstration simpler, but the proof

holds true for any value of N.

 CDE is performed in a linear runtime on the  r/N ×2 Uk digits as an ultimate optimization step. It

is illustrated by the product P=(2631689)10×X. We first calculate the product (P) in RADIX-2r and then

in R3.

 PRADIX = X0×220–X×219+X0×212–X×211+X×24–X1 with X0=(X×2)+X and X1=(X×23)–X.

 PR3=U40×216+U40×28+U9 with U40= U5×23
 ; U5=(X×22)+X and U9=(X×23)+X.

 Note that PRADIX requires 7 additions, while PR3 needs only 4. A saving of 2 additions is due to

redundancy (U9 and U40) and a saving of 1 addition is due to CDE (U40).

Avg has been exhaustively calculated for C values varying from 0 to 2N
−1, for N=8, 16, 24, and 32.

But for N=64, we calculated Avg using 1010 uniformly distributed random C values. For N=64, R3

uses 13.49 % less additions than RADIX-2r (Table 4.11). For N≤32, the saving is not substantial

because the number of Qj digits is very low (≤4). But for N=64, it is equal to 8, offering more

possibilities to CDE. Note that for N=8, the saving of 3.51% is due exclusively to the use of

redundancy since there is only one Qj digit.

We also determined the smallest value that requires q additions, for q varying from 1 to the Upb of

the recoding. Table 4.12 summarizes the results for 32-bit constant. Note that starting from q=7,

higher values are given by R3.

We have compared R3 to a number of well-known non-recoding algorithms for which neither Avg

nor Upb are analytically known. While they exhibit lower Avg (Fig. 4.9), their respective Upb may be

higher such as in the case of Bernstein's algorithm (Table 4.13).

TABLE 4.12 − R3 versus RADIX-2r:

smallest values up to 32-bit constant.

q RADIX-2r R3

1 3 3
2 11 11
3 43 43
4 139 139
5 651 651
6 2699 2699
7 33419 34971
8 526491 559259
9 8422027 17336475
10 134744219 143163547

q: number of additions.

TABLE 4.11 − R3 versus RADIX-2r:

 average number of additions (Avg).

Avg
N

RADIX-2r R3
Saving

%

8 1.78 1.72 3.51
16 4.26 4.10 3.66
24 6.54 6.28 4.04
32 8.71 8.31 4.51
64 16.75 14.49* 13.49

*:Obtained from 1010 uniformly

distributed random C values. N is

the bit-size of the constant. For

N=8, the saving is exclusively due

to redundancy (Table 4.9).

Chapter 4 − Multiplication by a Constant

 87

In Fig. 4.9 the comparison is limited to 32 bits. Beyond that bit-length, and especially for large

constants (N≥64), it would be impossible to perform any comparison since the analytical expression of

the average is unknown for all heuristics, except RADIX-2r. Therefore, there is no guarantee that Hcub

will preserve its leading position for high values of N. As for R3, CDE becomes more effective since

the number of Qj digits increases. This may enable R3 to rapidly outperform Bernstein's heuristic.

Finally, for huge constants, only R3 remains practical due to its linear computational time O(N).

 FIGURE 4.9 – Avg comparison for a N-bit constant.

TABLE 4.13 − R3 and RADIX-2r versus non-recoding algorithms:

 runtime complexity and number of additions of some special cases.

 Algorithm (84AB5)H
N=20

(64AB55)H
N=23+

(5959595B)H
N=31+

Runtime [13]

 BIGE [1] 4 5 6 O(2
N)

Bernstein [10] 8G 7 8 O(2
N) [8]

Hcub* [13] 4 6 – O(N
6)

BHM* [23] 5 7 – O(N
4)

Lefèvre'CSP [8] 4 6 9 O(N
3)

RADIX-2r 5 7 10 O(N)

R3 4 6 8 O(N)

N: Constant bit-size ; +: In RADIX-2r, for 16≤N≤64, r=8 (Table 4.9). A zero

bit is added in the MSB position to make N a multiple of r (N=24, N=32).

G: Greater than R3 Upb; R3 Upb = 7, 8, and 10 for N=20, 24, and 32,

respectively; *: Values are delivered by Spiral web version, limited to 26

bits; x: Lowest number of additions.

Chapter 4 − Multiplication by a Constant

 88

4.8 New MCM Algorithm (RADIX-2
r
 MCM)

 RADIX-2r SCM algorithm (Section 4.6) can be easily extended to MCM. In MCM, the single

variable X is multiplied by a set of N-bit constants MCCCC ,,,, 321 L . Therefore, the same non-

trivial PP set (){ }XXXX r ×−××× − 12,,7,5,3 1L can be shared among the M constants Ci. Using

the same reasoning developed in Section 4.6, we can easily prove that the upper-bound is equal to:

 () 





−−+

×
= − M

r

NM
rU r

pb 12 2 , (4.44)

 with ())2(/)2(2 loglogNMWr ⋅⋅⋅= , where W is the Lambert Function.

 We can also easily prove using Bayes's theorem that the average number of additions is equal to:

() ()  () ()[]

 

∑ ∑
−×

=

−

=

−













−×+××−+−=
−1/

0

12

1

2

1/21)(

rNM

j k

j
jkjk

r

r

mPmPrNMMrAvg ,

(4.45)

with ()
1

1

2

12

2

−

−













+×
=

r

r

jk

k
mP

and ())2(/)2(.2 loglogNMWr ⋅⋅= .

 As for the adder-depth (Ath), it is exactly the same as in SCM (Eq. 4.27) since the M constants Ci

are implemented independently of each other, sharing only the non-trivial PP set.

 Fig. 4.10 compares the new RADIX-2r
 MCM algorithm to the state-of-the-art for 32-bit constants,

with a number of constants varying from 1 up to 100. Note that for Lefèvre, BHM and Hcub, the

average is taken only over 50 uniformly distributed random constant sets [13]. In RADIX-2r the

average is rather exactly calculated using Eq. 4.45. Nevertheless, RADIX-2r surpasses Bernstein and

Lefèvre, and has a big potential to surpass BHM and competes with Hcub if the optimization

techniques (redundancy and CDE) employed to R3 are integrated into RADIX-2r MCM heuristic.

FIGURE 4.10 – Avg comparison for 32-bit constants.

Chapter 4 − Multiplication by a Constant

 89

 Table 4.14 gives the computational complexity of each MCM algorithm that served for comparison.

It is important to note that the hidden constant in the big-O notation of Hcub is very important [13].

 Table 4.15 compares RADIX-2r MCM heuristic to the standard CSD technique for 32 and 64-bit

constants, with a number of constants varying from 1 up to 100.

4.9 Conclusion

 Based on radix-2r arithmetic, we have introduced a new linear-runtime and fully-predictable

heuristic (RADIX-2r) for the multiplication by a constant. An improved version (R3) of RADIX-2r has

also been introduced. It is based on the utilization of a redundant radix-2r recoding in conjunction with

a common-digit-elimination technique. Compared to the existing algorithms, R3 is very competitive

especially for large constants. Because of its linear-runtime complexity, R3 remains the unique

practical heuristic for huge constants.

 On the other hand, we have determined the analytic expressions for the maximum number of

additions (upper-bound), the average number of addition (average), and the maximum number of

additions forming the critical path (adder-depth). These bounds are the lowest bounds known so far for

the multiplication by a constant (SCM and MCM). While the bounds are for a minimal set of operations

(additions, subtractions, and left-shifts), they remain valid if any other operation (such as right-shifts) is

allowed. It is noteworthy to mention that asymptotic worst-case cost of the optimal decomposition

remains an open research problem.

 The predictability feature of RADIX-2r and R3 (bounds of R3 are lower) enables the generation of

fully-predictable LTI-controllers capable of satisfying different requirements, such as:

TABLE 4.15 − RADIX-2r
 MCM versus CSD: Avg comparison

M 1 2 10 20 40 60 80 100

RADIX-2r 8.71 15.75 56.61 100.05 171.65 236.92 299.07 360.02

CSD 9.77 19.55 97.77 195.55 391.11 586.66 782.22 977.77 N=32

Saving (%) 10.84 19.43 42.09 48.83 56.11 59.61 61,76 63.17

RADIX-2r 16.75 29.40 110.05 191.65 339.07 480.37 607.72 733.58

CSD 20.44 40.88 204.44 408.88 817.77 1226.7 1635.6 2044.4 N=64

Saving (%) 18.05 28.08 46.17 53.12 58.53 60.84 62.84 64.11

TABLE 4.14 − RADIX-2r MCM versus non-recoding

MCM algorithms: runtime complexity for a number

of M constants with N-bit each.

Algorithm Runtime [13]

Hcub* [13] O(M3
. N

6)

BHM* [23] O(M3
. N

4)

Lefèvre’s CSP [8] O(M3
. N

3)

RADIX-2r O(M
. N)

Chapter 4 − Multiplication by a Constant

 90

• Generate a controller comprising the minimum number of additions (most compact controller);

• Generate a controller with the shortest critical-path (fastest controller);

• Enable a trade-off between the number of adders and the number of adder-steps, i.e.,

between the area and the speed:

− Given a maximal number of adder-steps, generate a controller that needs a minimal

number of adders/subtractors and does not violate the number of adder-steps;

− Given a delay constraint, generate a controller satisfying the delay constraint such that

the number of adders/subtractors is minimal; etc.

 CSD has two very-attractive features: ease-of-use and linear runtime complexity. Because of this,

CSD is used in designing the vast majority of LTI systems. With the same features and much more

interesting compression capabilities, RADIX-2r and R3 will certainly replace CSD, and therefore allows

the design of more compact, faster, and less power consumer LTI-systems.

 Since the introduction of H(k) in 2004, CSE heuristics have outperformed DAGs at SCM. This was

achieved by applying CSE to each possible signed-digit (SD) form of the constant. Likewise, the

search space of CSE can be expanded considering RADIX-2r
 recoding instead of SD representation.

For such a goal (SCM/MCM), Lefèvre’s CSP heuristic stands as the best CSE candidate for its lower

computational complexity O(N

3) in comparison to its CSE counterparts. Thus, the combination of

Lefèvre’s CSP with RADIX-2r
 will be a very competitive heuristic.

 Finaly, radix-2r arithmetic is a simple and powerful mathematical tool that might be further explored

to derive even tighter addition-cost complexities.

Chapter 4 − Multiplication by a Constant

 91

Bibliography

[1] J. Thong and N. Nicolici, “An optimal and practical approach to single constant multiplication,”

IEEE Trans. on Computer-Aided Design of Integrated Circuits and Systems, vol. 30, no. 9, pp.

1373–1386, September 2011.

[2] R. Kastner, A. Hosangadi, and F. Fallah, “Arithmetic Optimization Techniques for Hardware and

Software Design,” Cambridge University Press, ISBN-13 978-0-521-88099-2, © 2010.

[3] A. Chatterjee, R. K. Roy, and M. A. d’Abreu, "Greedy Hardware Optimization for Linear Digital

Systems Using Number Splitting and Repeated Factorization," Proceedings of the sixth IEEE

International Conference on VLSI Design, pp. 154-159 , Bombay, India, January 1993.

[4] A. Avizienis, “Signed-digit number representation for fast parallel arithmetic,” IRE Trans. on

Electronic Computers, vol. EC-10, No. 3, pp. 389–400, September 1961.

[5] Y.E. Kim et al., “Efficient Design of Modified Booth Multipliers for Predetermined Coefficients,”

Proceedings of the IEEE International Symposium on Circuits and Systems (ISCAS), pp. 2717-

2720, Island of Kos, Greece, May 2006.

[6] V.S. Dimitrov, L. Imbert, and A. Zakaluzny, “Multiplication by a Constant is Sublinear,”

Proceedings of the 18th IEEE Symposium on Computer Arithmetic (ARITH), pp. 261-268, June

2007.

[7] R.I. Hartley, “Subexpression Sharing in Filters Using Canonic Signed Digit Multipliers,” IEEE

Trans. on Circuits and Systems II: Analog and Digital Signal Processing, vol. 43, No. 10, pp.

677-688, October 1996.

[8] V. Lefèvre, “Multiplication by an Integer Constant,” INRIA Research Report, No. 4192, Lyon,

France, May 2001.

[9] N. Boullis and A. Tisserand, “Some Optimizations of Hardware Multiplication by Constant

Matrices,” IEEE Trans. on Computers (TC), vol. 54, No. 10, pp. 1271-1282, October 2005.

[10] R.L. Bernstein, “Multiplication by Integer Constant,” Software– Practice and Experience 16, 7,

pp. 641-652, 1986.

[11] O. Gustafsson, A.G. Dempster, and L. Wanhammar, “Extended Results for Minimum-Adder

Constant Integer Multipliers,” Proceedings of the IEEE International Symposium on Circuits and

Systems (ISCAS), vol. 1, pp. I-73 I-76, Scottsdale Arizona, USA, May 2002.

[12] A. Dempster and M. Macleod, “Using Signed-Digit Representations to Design Single Integer

Multipliers Using Subexpression Elimination,” Proceedings of the IEEE International Symp.m

on Circuits and Systems (ISCAS), vol. 3, pp. III-165-168, Vancouver, Canada, May 2004.

[13] Y. Voronenko and M. Püschel, “Multiplierless Multiple Constant Multiplication,” ACM Trans. on

Algorithms (TALG), vol. 3, No. 2, article 11, pp. 1-38, May 2007.

[14] V.S. Dimitrov, K.U. Järvinen, and J. adikari, “Area Efficient Multipliers Based on Multiple-Radix

Representations,” IEEE Trans. on Computers (TC), vol. 60, N° 2, pp 189-201, February 2011.

[15] I.C. Park and H.J. Kang, "Digital filter synthesis based on an algorithm to generate all minimal

signed digit representations," IEEE Trans. on Computer-Aided Design of Integrated Circuits and

Systems, vol. 21, No. 12, pp. 1525-1529, Dec 2002.

[16] J. Thong and N. Nicolici, “Time-efficient single constant multiplication based on overlapping digit

patterns,” IEEE Trans. Very Large Scale Integr. Syst., vol. 17, No. 9, pp.1353–1357, Sep. 2009.

Chapter 4 − Multiplication by a Constant

 92

[17] J. Thong, "New Algorithm for Constant Coefficient Multiplication in Custom Hardware," Master

Thesis, No 4292, McMaster University, Hamilton, Ontario, Canada, October 2009.

[18] Available at: http://en.wikipedia.org/wiki/Big_O_notation

[19] O. Gustafsson, “Lower Bounds for Constant Multiplication Problems,” IEEE Trans. on Circuits

and Systems II: Express Brief, vol. 54, No. 11, pp. 974-978, November 2007.

[20] R. W. Reitwiesner, “Binary Arithmetic,” Advances in Computers, New York: Academic, vol. I ,

pp. 231-308, 1966.

[21] R. G. E. Pinch, “Asymptotic Upper Bound for Multiplier Design,” Electronics Letters, vol. 32, N°

5, pp. 420-421, February 1996.

[22] V.S. Dimitrov, G.A. Jullien, and W.C. Miller, “Theory and Applications of the Double-Base

Number System,” IEEE Trans. on Computers (TC), vol. 48, No. 10, pp. 1098-1106, October

1999.

[23] A.G. Dempster and M.D. Macleod, “Use of Minimum Adder Multiplier Blocks in FIR Digital

Filters,” IEEE Trans. on Circuits and Systems-II: Analog and Digital Signal Processing 42, 9,

pp. 569-567, 1995.

Chapter 5

Multiplication by a Variable

Chapter 5 − Multiplication by a Variable

 93

Chapter 5

Multiplication by a Variable

 This chapter deals with the problem of hardware optimization of linear-time-variant

(LTV) systems. The optimization focuses on the multiplication by a variable (MV) which is

the main building block of LTV systems. We formalize the MV problem in radix-

2
r
 arithmetic, and present the two most-known state-of-the-art solutions. We then

introduce a series of fully predictable MV algorithms, accompanied with their respective

speed and area complexities. Next, we set up the general equation of the space/time

partitioning and derive the optimal radix-2
r
 architecture. At the end, a number of multi-

precision-multiplication algorithms are proposed as an extension of the MV problem.

5.1 Optimizations of LTV Systems

 The general definition of a linear system has already been given in Section 4.1. An LTV system is

rather a system in which certain quantities governing the system's behavior change with time, so that

the system will respond differently to the same input at different times.

 An LTV system is formalized as follows. If X and Y are input and output vectors, respectively, and V

is a transformation matrix, the linear system can be written as



















×



















=



















nmnmm

n

n

m X

X

X

VVV

VVV

VVV

Y

Y

Y

M

K

MMMM

K

K

M

2

1

21

22221

11211

2

1

. (5.1)

 The transformation matrix V is an m×n matrix, where Vij represents the (i,j) value which can

change with time. An output signal Yi is the product of the ith row of the transformation matrix V and

the n input samples of X:

j

n

j

ijj XVY ×= ∑
=1

. (5.2)

 In Chapter 2, the state-space representation has been retained as the control computational-model

to be optimized. Note that the explicit state-space LTV Eq. 2.2 is no more than a concatenation of four

Y=V×X operations given by Eq. 5.1. In Chapter 6 we provide an illustrative example consisting in a

PID-controller dedicated to LTV systems. The PID-controller can be tuned on the fly to handle

changing environmental conditions.

 The computational model of the LTV Eq. 2.2 involves mainly matrix-multiplications (MM), based on

the very space/time critical MV operations. In an earlier work, MM operation was the subject of a

Chapter 5 − Multiplication by a Variable

 94

thorough investigation in order to optimize the throughput and latency. The results were published in

[1][2]. Therefore, MM operation is not reconsidered in this thesis. The whole effort is concentrated on

the optimization of the MV operation.

5.2 Formal Definition of the MV Problem

 In Section 2.5.3.2, we have given the state-of-the-art of MV problem and have outlined the need for

the high-radix paradigm to achieve high-speed, low-power, and highly-scalable architecture of the

multiplier. These are the three main requirements for today's general purpose multipliers [3]. We have

also formulized the radix-2r multiplier in number of PPGs, number of non-trivial PPs, and number of

additions forming the critical path (Fig. 2.9). We have especially insisted on the number of non-trivial

PPs as being the major hurdle to designing high-radix multipliers (responsible for very dense PPGs).

Reader is encouraged to read Section 2.5.3.2 for a better understanding of the present discussion

context.

 In fact, non-trivial PPs are not the only problem for a compact PPG. Recoding large slices (r≥8) in

a mono-bloc PPG such as in [4][5], requires the use of an RTL “case statement” with r+1 entries. In

this case, 2r+1 combinations must be processed, which yields to a huge amount of multiplexer

resources. Thus, mono-bloc PPG recoding is incompatible with high-radix (r≥8) approach whose

purpose is to reduce the multiply-time (N/r) of large operand size (N ≥32) multipliers.

To overcome these two above-mentioned shortcomings, a new radix-2r design concept is proposed.

5.2.1 New Radix-2
r
 Design concept

 To achieve such a goal, the multibit recoding multiplication algorithm is revisited [6]. Its design

space is extended by the introduction of a new recursive version that enabled to solve the hard

problem of radix-2r two’s complement multiplication for any value of r. The solution consists essentially

in dividing the high radix-2r
 mono-bloc PPGj (Fig. 5.1a) into a number of lower sub-radix-2s odd-

multiple free PPGji (Fig. 5.1b), such as s is a divider of r. The direct benefits of the new partitioning of

Fig. 5.1b are:

• There is no need to pre-compute non-trivial PP, which drastically reduces the required amount

of hardware resources and routing;

• Since the size of PPGji entry is much smaller than the size of PPGj one (s≤r/2), the total

multiplexing logic required by RTL “case statements” to recode the entries is greatly reduced;

• The possibility to simultaneously process larger bit slices (r≥16) radically shortens the critical

path in terms of adder levels, especially for very large operand sizes (N≥64).

 Formal problem statement. Aided by Fig. 5.1b, now we can formally state the problem of

constructing multiplier blocks.

Definition 5.1 − MV problem: Given N, find the couple (r, s) that leads to the shortest critical path in

adder stages and to the minimum logic resources inside PPGs.

Chapter 5 − Multiplication by a Variable

 95

5.2.2 New MV Complexity

 In [5] a number of MV complexities are cited in a chorological order. They are summarized hereafter

and compared to our new MV complexity.

 In the mid-1950s, Kolmogorov made a conjecture that any multiplication algorithm will require

()2NΩ elementary additions, where N is the binary length of the operands. This conjecture has been

disproved in a constructive manner by Karatsuba who proposed an algorithm that uses ()585.1NO

additions. in 1971, Schönhage and Strassen published an algorithm with asymptotic complexity

()NNNO logloglog . For almost 40 years, this result has not been improved; however, in 2007

Fürer designed an algorithm with lower asymptotic complexity, namely, ()NNNO loglogloglog L

operations. Finally, in 2011, using DBNS arithmetic, Dimitrov proved that MV can be performed in

NN log/2 2 additions.

 In Eq. 4.28 we have proved an upper-bound for SCM. The latter can be easily extended to MV

problem, giving:

()








−×+ − 22 2

2
rN

r

N
 (5.3)

with

())2(/)2(2 loglogNWr ⋅⋅= and W is the Lambert's function.

 FIGURE 5.1 – Generalized N×N bit radix-2r
 parallel multiplier.

a) Critical path in conventional [6][7][8][9][10][11] and recent [4][5][12][13][14] radix-2r multipliers.

O(X) is the necessary set of odd-multiples corresponding to radix-2r recoding. PPGj of [4][5]

includes a number of adders to accumulate intermediary partial product.

b) Critical path in our proposed radix-2r multipliers. Main features are: no odd-multiples, much

more compact PPGj, much shorter critical path.

(b)

2r is the main radix and
2s

 is the sub-radix
PP: Partial Product

Critical path (DelT)







 −−= XrXXXO)112(...,5,3)(

. . .

P2N-1 , 0

X
N

(a)

 PPG0

 PPG1

Y-1 , r-1

r+1

r+1

YN-r-1 , N-1

r+1

+

+ PPG(N/r)-1

.

.

.

PP0

PP1

PP(N/r)-1

()XO

Yr-1 , 2r-1

P2N-1 , 0

. . .

PP1

YN-r-1 , N-1

∑

. . .

PPG00

. . .

PPG01

 PPG0 (r/s)-1

 PPG0

. . .

PPG10

. . .

PPG11

 PPG1 (r/s)-1

 PPG1

∑ . . .

PPG(N/r)-1 0

. . .

PPG(N/r)-1 1

PPG(N/r)-1 (r/s)-1

PPG(N/r)-1

∑ . . .

Y-1 , r-1

r+1

Yr-1 , 2r-1

r+1

r+1 PP(N/r)-1

PP0

+

+

N

X

Chapter 5 − Multiplication by a Variable

 96

 Eq. 5.3 is actually the lowest upper-bound known so far for the MV problem. Whether or not it is

possible to multiply two numbers in purely linear number ()NO of additions is still an open problem.

 The above-mentioned algorithms (Karatsuba’s, Schönhage-Strassen’s, and Fürer’s) are all having a

subquadratic complexity. However, the implicit constant, associated with the big-O notation, is very

large and this severely limits their applicability to problems of practical importance. Karatsuba’s

multiplication outperforms classical shift-and-add algorithm if the size of the operands is around 1,000

bits. The exact break-even point is platform dependent. This makes it suitable for specific

cryptographic applications. The algorithms by Schönhage-Strassen and Fürer are useful if one deals

with extremely large numbers. Applications include computational number theory and computations

associated with the search of large Mersenne primes and finding divisors of Fermat numbers. In those

cases, we deal with numbers having more than 1 million decimal digits [5].

5.3 High-Radix Multiplication Algorithms

 While the multibit recoding multiplication algorithm [6] is mathematically attracting, it suffers from a

serious limitation: high-radices require high number of non-trivial PPs. This is the main reason why it

was abandoned. Moreover, in industry commercial designs do not exceed r=4 (radix-16). A hybrid

radix-4/8 is proposed in [12] for low-power multimedia applications. To increase the speed of the

multiplier, most ancient processors employed radix-8, such as: Fchip [7], IBM S/390 [8], Alpha RISC

[9], IA-32 [10] and AMDK7 [11]. While radix-16 is used only in the most recent Intel processors: 64 and

IA-32 [13], and Itanium-Poulson [14].

 In research, the highest radices are used in the algorithms proposed by Seidel [4] and Dimitrov [5].

5.3.1 Dimitrov's DBNS Algorithm

 The biggest advantage of the DBNS multiplier is the fact that it has a provably subquadratic

complexity (NN log/2 2). The latter guarantees that, eventually, it will outperform the shift-and-add

based algorithms for certain range of multiplicands. The biggest practical problems are: when will it

happen; and how to apply the algorithm as efficiently as possible on hardware.

 We give a general description of the proposed multipliers. Let Y and X be two N-bit unsigned

integers, i.e., []12,0, −∈ NXY and let P denote the 2N-bit result of the multiplication XYP ×= .

All proposed multipliers compute the entire product in parallel combinatorially, i.e., without registers or

feedback loops. The general structure of all multipliers that are proposed is depicted in Fig. 5.2. Y is

split using r-bit windows into  rN / blocks. Each r -bit block, Yi, is fed into an encoder. It encodes a

block, i.e., an integer in the interval []12,0 −r , as the following sum of k terms:

 () () () ,321321321 222111 kkk tastastas −++−+− L (5.4)

where []rai ,0∈ , { }1,0∈is , and []mti ,0∈ , where m is the predefined highest power of three

allowed by the representation. The encoder is essentially a table with 2r rows (one for each integer

represented by the block), each containing n triples of the form ()iii tas ,, .

Chapter 5 − Multiplication by a Variable

 97

 The operand X is fed into a circuit that computes XX iti ×= 3 for .,,0 mi L= These

computations are carried out with shifts, additions, and subtractions. Each partial result circuit

computes Eq. 5.4 by, first, selecting the correct iX from the values computed in the X processing.

They are, then, shifted by ai bit positions to the left (multiplication by ia2), and, finally, added or

subtracted as described by the sign bits, si, to receive the partial result XYi × . The result of the entire

multiplication, XYP ×= , is computed by shifting and adding the partial results.

If for instance, we would like to use a window of size seven (r=7), then we have to make sure that any

integer between 0 and 127 can be represented by using the corresponding number representation.

For that purpose Eq. 5.4 has undergone a number of modifications to allow more degree of freedom in

the choice of the associated digits [5]. Because if we want to use the double-base number

representation in Eq. 5.4, then we will have to use three terms, because certain numbers less than

127 cannot be represented as the sum or difference of two {2,3}-integers (as it is pointed above, the

smallest positive integer with this property is 103). On the other hand, if one uses representation in the

modified form of Eq. 5.4, then it is sufficient to use digits { }7,5,3,1∈id which guarantee a

representation for every 7-bit integer in the modified form of Eq. 5.4 using at most two terms. The

following fact will be used in the design, so we shall specifically acknowledge it:

 Fact − Every nonnegative 7-bit integer can be represented in the form 21 zz ± , where

{ },27,25,23,21, 21
kkkkzz ××××∈ with { }.7,,1,0 L=k

Note − The smallest number for which the above fact is not valid is 137, i.e., an 8-bit number.

 So, from a point of view of integer representations, this new number representation is more

attractive compared to DBNS. In order to cover the same range (7-bit numbers) with the DBNS, one

must use the digit set {1, 3, 9, 27, 81}, and more importantly three terms.

 After examining many options (different digit sets with different numbers of terms), Dimitrov has

concluded that for multipliers, it is optimal to have two summands (as in the above-explained case with

Y X

X

r r r r

P

FIGURE 5.2 – The general structure of the DBNS multiplier.
Source: [5]

Chapter 5 − Multiplication by a Variable

 98

7-bit numbers) and a carefully selected set of digits. This particular encoding can be formally

expressed as follows:

 21 zz ±± (5.5)

where { },2,,2,2 211
k

s
kk aaaz ×××∈ L and { },2,,2,2 212

k
l

kk bbbz ×××∈ L for .,,1,0 rk L=

 The determination of the sets { }sa aaaD ,,, 21 L= and { }lb bbbD ,,, 21 L= is the cornerstone of

the proposed algorithm. In the above example with 7-bit integers, the sets of digits were

{ }7,5,3,1== ba DD . For a better implementation of the multiplication, it is preferable:

• To select those digits in such a way as to encode every r-bit number in the form 21 zz ± (that

is, the first summand is always positive), then it will lead to smaller area complexity of the

design.

• To fix the signs of both the summands, 1z and 2z (that is, if we represent every r -bit integer

as either 21 zz + or 21 zz −), then we can expect further hardware simplifications due to the

elimination of the necessity to process the sign of the second summand.

• To use a window (r) of size six at least, and 11 at most, for multiplication of integers of

medium size: ,128128,6464 ×× and 256256× . For sizes that would be useful, e.g., in

RSA cryptography, we may need larger windows if the hardware resources allow that.

 Several multipliers using the above-discussed representations were described in VHDL in order to

find out how they perform in practice. The representations used in these multipliers are collected in

Table 5.1. They were carefully selected from many possibilities because they appeared to have very

attractive features in theory and/or practice as discussed in the previous sections.

 The multipliers of Table 5.1 were implemented on 0.18µm CMOS technology using Synopsis

Design Compiler Ultra. They were compared to 3232× and 6464× bit add-and-shift and radix-8

references designs.

 According to the results presented in [5], all of the multipliers are better than the add-and-shift

reference multiplier in both area and power in 64-bit multiplication. Further, all the multipliers

outperform radix-8 reference multiplier in 64-bit multiplication in terms of power consumption. Most of

the multipliers have better area figures than radix-8 reference multiplier.

 We can notice that some of the multipliers are better in terms of area than array-based reference

multiplier in 32-bit multiplication. All of the multipliers are having more power consumption than both

reference multipliers in 32-bit multiplication. The area consumption of 32-bit radix-8 multiplier is always

better than any of the proposed multipliers. Mult_6bsms design is having the best performance in both

area and power consumption among all designs, followed by Mult_7b2d multiplier.

 The results show the delicacy of selecting the representations. The quality of the results varies

considerably even between representations which, at first sight, have only little difference. The effects

of the conditions discussed previously are clearly visible in the results. For instance, the “something-

minus-something” (SMS) encodings, where the first term is always positive and the second term is

Chapter 5 − Multiplication by a Variable

 99

negative, show an advantage over other encodings with the same r. The sizes of the encoders start to

play a significant role in the area complexity when r increases. This diminishes the feasibility of

representations with large r, such as Mult_11b3d, although they appear attractive in theory because of

the low total number of additions/subtractions.

 It is important to mention the following:

• Although several multipliers have been proposed, there is no formal study (search of the

optimum) on the size of the window r. We have no exact idea on how r evolves when the size

of the operands N increases (there must be some sort of correlation);

• All recodings proposed in Table 5.1 are not DBNS recodings, though the starting Eq. 5.4

allows a DBNS recoding. Eq. 5.4 has been radically modified [5];

• All proposed algorithms are unsigned. Handling the two's complement representation will

make the recoding harder.

TABLE 5.1 − Dimitrov’s high-radix DBNS algorithms.

Name Recoding r Digit Sets

Mult_6b2d7 ()()
()

rj
r/N

j

j

he

j

k
PQY 2212

1

0

∑
−

=

−+= 6 { } { }317531 ,P;,,,Q jj ∈∈

Mult_6b2d9 () ()()
()

rj
r/N

j

j

hf

j

ke
PQY 22121

1

0

∑
−

=

−+−= 6 { } { }317531 ,P;,,,Q jj ∈∈

Mult_6bsms ()
()

rj
r/N

j

j

h

j

k
PQY 222

1

0

∑
−

=

−= 6 { }7531 ,,,P,Q jj ∈

Mult_7b2d ()()
()

rj
r/N

j

j

he

j

k
PQY 2212

1

0

∑
−

=

−+= 7 { }7531 ,,,P,Q jj ∈

Mult_7bsms ()
()

rj
r/N

j

j

h

j

k
PQY 222

1

0

∑
−

=

−= 7 { }125897531 ,,,,,P,Q jj ∈

Mult_8b2dd ()()
()

rj
r/N

j

j

he

j

k
PQY 2212

1

0

∑
−

=

−+= 8
{ }89117531 ,,,,,Q j ∈

{ }119117531 ,,,,,Pj ∈

Mult_8b2di () ()()
()

rj
r/N

j

j

hf

j

ke
PQY 22121

1

0

∑
−

=

−+−= 8 { }25191511731 ,,,,,,P,Q jj ∈

Mult_8b3d () () ()()
()

rj
r/N

j

j

lg

j

hf

j

ke
SPQY 2212121

1

0

∑
−

=

−+−+−= 8
{ } { }31 ∈∈ jj P;Q

{ }177,S j ∈

Mult_8bsms ()
()

rj
r/N

j

j

h

j

k
PQY 222

1

0

∑
−

=

−= 8 { }15131197531 ,,,,,,,P,Q jj ∈

Mult_9b2d ()()
()

rj
r/N

j

j

he

j

k
PQY 2212

1

0

∑
−

=

−+= 9 { }15131197531 ,,,,,,,P,Q jj ∈

Mult_11b3d () ()()
()

rj
r/N

j

j

lg

j

hf

j

k
SPQY 221212

1

0

∑
−

=

−+−+= 11 { }7531 ,,,S,P,Q jjj ∈

{ } { }r,,,l,h,k;,g,f,e L1010 ∈∈

Chapter 5 − Multiplication by a Variable

 100

5.3.2 Seidel's RNS Algorithm

 In Seidel's algorithms [15] [16], a secondary radix multiplier recoding of the N-bit integer

j
N

j

jyY 2
1

0

×= ∑
−

=

 is performed. It is illustrated as a 2-step process:

• Step 1 (High Radix Booth): The operand Y is recoded to a () rNN /1+=′ -digit minimally

redundant (Booth) radix polynomial representation () jr
N

j

jdY 2
1

0

×= ∑
−′

=

 in a primary

radix r2=β , where 11 22 −− ≤≤− r
j

r d for 10 −′≤≤ Nj . Authors are particularly

interested here in high primary radices determined by 165 ≤≤ r , similar to the size of

radices in high radix (byte) division.

• Step 2 (Secondary Radix Reduction): Each primary (Booth) digit value 11 22 −− ≤≤− r
j

r d is

recoded to a k-digit value in a secondary radix system. We limit our focus here to 42 ≤≤ k .

For the case 2=k and secondary radix γ , we recode d by two digits so that 01 ddd +×= γ ,

where digits 1d and 0d are chosen from a balanced complete residue system modulo γ

having a novel design.

 The N-bit integer can then be expressed as the weighted sum:

 () () jr
N

j

j
jr

N

j

j ddY 22
1

0

0

1

0

1 ×+××= ∑∑
−′

=

−′

=

γ (5.6)

 Note that the generalization for arbitrary k of Eq. 5.6 partitions the sum of partial products into k

independent secondary digit summations with respective weights 110 ,,, −kγγγ L with 42 ≤≤ k

considered herein.

Illustrative Example (k=2)

 The primary radix is 52=β with Booth digit set { }.16,,15,16 L−−=D The secondary radix is

7=γ with a digit set { }4,2,1,0,1,2,4 −−−=D having only signed binary power or zero digits. Note that

every digit 1616 ≤≤− jd of the primary radix system can be represented as a two digit radix-7

number jjj ddd 01 7 +×= , with { }.4,2,1,0,1,2,4, 01 −−−∈jj dd . Reader is referred to [15] [16] for the

recoding table.

 A 6464× bit product XYP ×= using a secondary radix representation for Y can be expressed as:

 () () () .227 5
12

0

0
5

12

0

1
j

j

j
j

j

j dXdXP ××+×××= ∑∑
==

 (5.7)

The right hand side of Eq. 5.7 has 26 partial products, achieving a reduction more than halfway that of

Booth radix 4 and 8. These 26 partial products are partitioned into two groups, 13 of which employ the

Chapter 5 − Multiplication by a Variable

 101

primary (X×7) and 13 of which employ (X) giving a PPG fanin of only 26. Two options are possible

with these simplified partial products noting that () () nsj
ijd 2125 ×−=× or 0 for all 120 ≤≤ j , 10 ≤≤ i .

• Pre-compute (X×7): The primary partial product can be pre-computed by a shift and add

(XXX −×=× 327) while the ijd are obtained from a recoder or recoding table.

• Post-compute (X×7): The higher order summation can utilise a 13:2 adder tree

compressing ()[]∑
=

××
12

0

5
1 2

j

j
jdX to a redundant (e.g. carry save) sum z. then the post

computation can add zz −× 32 to the low order sum ()[]∑
=

××=
12

0

5
0 2

j

j
jdXt output from a

second 13:2 adder tree. The value of tzz +−× 32 is completed by a 6:2 compressor and a

2−1 addition.

 Note that the post-computation option (Fig. 5.3) utilizes only two more partial products and one

additional level of 3-to-2 adder delay to avoid the complexity of a 2−1 adder to pre-compute (X×7).

Illustrative Example (k=3)

 The following encoding scheme is based on a radix-28 signed digit representation of the multiplier:

() ,28
1

0

j
N

j

jd ×∑
−′

=

so that the multiplier is represented by () 8/1+=′ NN radix-28 digits

{ }.128,127,,127,128 L−−∈jd As previously suggested each radix-28 dj can be represented by three

digits in the secondary radix-11: ,1111 01
2

2 jjjj dddd +×+×= where each of the digits d2j, d1j, and

d0j in the secondary radix representation is a power of two (see recoding table in [16]).

Y[N−1:0]

X[N−1:0]

(N+1)/5:2 (N+1)/5:2

Pc[2N−1:0] Ps[2N−1:0]

FIGURE 5.3 – Recoding (32,7) with postcomputation of ×7 .

Chapter 5 − Multiplication by a Variable

 102

 The high order radix-11 digits d2j can only have values from the set { −4, −2, −1, 0,1,2,4} and the

middle and the low order radix-11 digits d2j and d1j can only have the values {−16, −8, −4, −2, −l,0,

1,2,4,8,16}. In this case the partial products corresponding to the high order digits and the middle

digits have to be weighted by 121 and 11, respectively.

 In [15], three other recodings are proposed with secondary radices 31,23,17=γ , corresponding to

k=4,2,3 and primary radices 215, 28, 213.

Selecting Secondary Radix Recoding

 A secondary radix recoding procedure involves the joint selection of a primary radix r2=β , a

secondary radix (modulus) γ , a balanced complete residue system modulo γ forming a secondary

radix digit set γD , and a number of digits k, 42 ≤≤ k , such that the k-digit secondary radix values

include all integers in the Booth high radix digit range []11 2,2 −−− rr .

 The search for practically useful tuples ()kD ,,, γγβ starts by considering the relatively small

number of secondary radix candidates γ that might have sufficient properties to support a reasonable

secondary radix recoding in competition with standard Booth recodings. Several key criteria become

evident to prune the candidate search space of values for γ [15].

 To allow the representation of all members of the contiguous integer interval []11 2,2 −−− rr with

from two to four digits, it is useful to first consider the case that γD is a complete residue system

modulo γ . Since complements and shifts can be employed to increase the range of digit values as

traditionally employed in Booth recoding, all nonzero digits should be of the form i2δ± , whereδ is a

member of the store {1}, {1,3}, or {1,3,5}. Note that residue digit sets of the

form (){ }2/121 ,,,,0 −±±±= γγ dddD L are termed balanced complete residue systems when every

integer i with 10 −≤≤ γi is congruent to some (and necessarily exactly one) member of γD .

 It is important to note that the digit values of γD that must form a balanced complete residue

system need not form a contiguous integer sequence as do the traditional primary Booth digit sets. It

is only necessary that the k-digit values radix γ cover the contiguous integer interval []11 2,2 −−− rr .

This flexibility is best utilized by finding sets γD , where the maximum digit is not too large and, further,

where the smallest odd magnitude that is not a digit of γD is not too small. For this latter reason, are

not consider digit sets γD with the odd multiple store for δ having {1x, 5x} without 3x.

 It should be noted that, for a 2-signed-bit secondary radix 12 ±= iγ , the digit set γD will

necessarily contain { }12,,2,1,0 −±±±= iD Lγ . This set is a complete residue system for 7=γ with

{ }4,,2,1,0 ±±±= LγD and employs only the 1x multiplicand in the store.

Chapter 5 − Multiplication by a Variable

 103

 5.4 New Radix-2
r
 Multiplication Algorithms

 The equation (2.1.2) of the original multibit recoding algorithm presented in [6] does not offer

hardware visibility. Let us rewrite it in a simpler hardware-friendly form, as follows:

() rj
rrj

r
rrj

r

rn

j

rjrjrjrj yyyyyyY 222222 1
1

2
2

1)/(

0

2
2

1
10

1 ×−+⋅⋅⋅++++= −+
−

−+
−

−

=
++−∑

rj

rn

j

jQ 2
1)/(

0

×= ∑
−

=

 , (5.8)

where 01 =−y and *Ν∈r . For simplicity purposes and without loss of generality, we assume that r

is a divider of N. In Eq. 5.8, the two’s complement representation of the multiplier Y is split into N/r

two’s complement slices (jQ), each of r+1 bit length. Each pair of two contiguous slices has one

overlapping bit.

In literature, Eq. 5.8 is referred to by radix-2r
 equation, to which corresponds a digit set ()r

D 2 such

as () { }11 2,,0,,22 −−−=∈ rrr
j DQ LL . Thus, the signed multiplication between X and Y

becomes:

 rj
r

N

j

jQXYX 2...

1

0

∑
−

=

= , (5.9)

Where each partial product can be expressed as follows: () ()XmQX ferj

j 212 −= , with

() { }12,,3,12 1 −=∈ −rrOm L such as () 222 −= rr
O . ()r

O 2 represents the required set of

odd-multiples of the multiplicand (m.X) for radix-2r. Hence, the partial-product generation-process
consists first in selecting one odd-multiple (m.X) among the whole set of pre-computed odd-multiples,
which is then submitted to a hardwired shift of f positions, and finally conditionally negated (-1)e
depending on the bit sign e of Qj term. Table 5.2 provides a picture on how the number of odd-
multiples grows when the radix becomes higher. While lower m.X can be obtained using just one
addition (3X=2X+1X), the calculation of higher ones may require a number of computation steps
(11X= 8X+2X+1X).

 To bypass the hard problem of odd-multiples, we exploit the fact that the N+1 bit-length two’s

complement multiplier Y on which Eq. 5.8 is applied, is composed of a series (N/r) of r+1 bit-length

two’s complement slices (jQ digits) on which Eq. 5.8 can be recursively applied again. Based on this

TABLE 5.2 − Main features of the multibit recoding multiplication algorithm.

Radix Number of Partial Products Odd Multiples (m.X)
21 N 1X

22 N/2 1X

23 N/3 1X, 3X

24 N/4 1X, 3X, 5X, 7X

25 N/5 1X, 3X, 5X, 7X, 9X, 11X, 13X, 15X

O(2r+1)|=2×|O(2r)|. In radix-2r, the multiplier Y is divided into N/r slices, each
of r+1 bit length. Each pair of two contiguous slices has one overlapping bit.

|

Chapter 5 − Multiplication by a Variable

 104

observation, we have already announced Th. 4.3 and 4.4 accompanied with their respective proofs,

inserted in Appendix A. When Th. 4.3 is applied to Eq. 5.8, it gives:

 rj
r

N

j

s

r

i

si
jiPY 22

1

0

1

0

∑ ∑
−

=

−

= 















= , (5.10)

where () { }11 2022 −−−=∈ sss
ji ,...,,...,DP with () { }12,,3,12 1 −= −ssO L such as

()
()

ks

s

r

O

O
2

2

2
=

and rj
r

N

j

s

r

i

si
jiP.XY.X 22

1

0

1

0

∑ ∑
−

=

−

= 















= . (5.11)

 Likewise, when Th. 4.4 is applied to Eq. 5.8, we obtain:

 [] () rj
r

N

j

ts

r

i

itss

jiji TPY 222

1

0

1

0

∑ ∑
−

=

−
+

=

+

















+= , (5.12)

where () { }11 2,,0,,22 −−−=∈ sss
ji DP LL with () { }12,,3,12 1 −= −ssO L and

 () { }11 2,,0,,22 −−−=∈ ttt
ji DT LL with () { }12,,3,12 1 −= −ttO L such as

()
()

()tsk

ts

r

O

O
+

+
= 2

2

2

and [] () rj
r

n

j

ts

r

i

itss

jiji TXPXYX 222

1

0

1

0

∑ ∑
−

=

−
+

=

+

















+= (5.13)

Th. 4.3 and 4.4 allow an exponential reduction (1/2ks and 1/2k(s+t), resp.) of the number of odd-

multiples in Eq. 5.11 and 5.13 in comparison to Eq. 5.9, but at the expense of a linear increase (ks−1

and k(s+t)−1, resp.) in the number of additions. The advantage by far outweighs the cost, as

practically shown in the next section.

The translation of Eq. 5.11 into architecture is depicted by Fig. 5.1b, where each PPGj (Qj) is built

up using r/s identical PPGji (Pji). This is not the case for Eq. 5.13 which requires two different PPGji

(Pji and Tji) . Th. 4.3 and 4.4 can be merged together to produce PPGj made of a number of different

PPGji (Pji ,Tji ,Uji ,Vji ,...). This is the general case that is thoroughly studied in next sections in order

to determine the optimal multiplier.

5.4.1 Two New High Radix (28 and 216) Illustrative Examples

 Th. 4.3 and 4.4 permit to build up any high radix-2r multiplication algorithm based on lower sub-

radices, employing much less odd-multiples. The objective hereafter is to generate high radix-2r

multiplication without odd-multiples for a maximum reduction of multiplexer complexity inside PPGj. To

achieve such a goal, a number of odd-multiple free low-radix algorithms are used, such as Booth

Chapter 5 − Multiplication by a Variable

 105

algorithm (radix-21) [17], modified Booth algorithm (radix-22) [18], Seidel et al. algorithms (radix-25

and radix-28) [15][16]. Booth and modified Booth recoding (McSorley algorithm [18]) can be derived

from Eq. 5.10 for (r,s)=(1,1) and (r,s)=(2,2), respectively. They are respectively summarized as

follows:

 () ∑∑
−

=

−

=
− =−=

1

0

1

0

1 22
N

j

j

j

j
N

j

jj QyyY , (5.14)

with () { }10121
,,D −= and () { }121 =O ;

 ()
() ()

∑∑
−

=

−

=

+− =−+=
12

0

22
12

0

12212 222
/N

j

j
j

j
/N

j

jjj QyyyY , (5.15)

with () }{ 2,1,0,1,22 2 −−=D and () { }122 =O .

 Seidel radix-25 recoding [15][16] is described as follows:

 []
()

j
/N

j

jj PQ.Y
5

15

0

27∑
−

=

+= , (5.16)

 with { } ;,,,,Q j 21012 −−∈ { }4210124 ,,,,,,Pj −−−∈ and () { }125 =O .

And Seidel radix-28 recoding is given by the following equation:

 []
()

j
/N

j

jjj TP.Q.Y 8
18

0

2 21111∑
−

=

++= , (5.17)

with { }21012 ,,,,Qj −−∈ ; { }16,8,4,2,1,0,1,2,4,8,16, −−−−−∈jj TP and () { }128 =O . Note that

while Eq. 5.16 and 5.17 are odd-multiple free since all included digits are power of 2. They require a

post-accumulation to deal with odd numbers (7, 11 and 121). Thus, a number of extra-adders are

needed.

Optimized higher radices are obtained as follows.

5.4.1.1 New Radix-2
8
 Recoding

 Based on Th. 4.4, each 8+1 bit slice is split into 5+1, 2+1, and 1+1 overlapping slices using Seidel

radix-25, McSorley radix-22, and Booth radix-21 algorithms, respectively. The new recoding is given by

the following equation:

 () ()[]
()

∑
−

=

+++=
18

0

852
2227

/N

j

j
jjjj ..SRPQ.Y , (5.18)

with { }21012 ,,,,Q j −−∈ ; { }4210124 ,,,,,,Pj −−−∈ ; { }21012 ,,,,R j −−∈ ; { }101 ,,S j −∈ and

() { }128 =O .

Chapter 5 − Multiplication by a Variable

 106

5.4.1.2 New Radix-2
16

 Recoding

Likewise, using Th. 4.4, each 16+1 bit slice is split into 8+1, 5+1, 2+1, and 1+1 overlapping slices

using Seidel radix-28 and radix-25, McSorley radix-22, and Booth radix-21 algorithms, respectively. The

new recoding is described by the following equation:

 () ()[∑
−

=

+++++=

1
16

0

82 271111

N

j

jjjjj .SR.TP.Q.Y ()] j
jj VU 16132 2.2.2+ , (5.19)

with { }21012 ,,,,Q j −−∈ ; { }1684210124816 ,,,,,,,,,,T,P jj −−−−−∈ ; { }21012 ,,,,R j −−∈ ;

{ }4210124 ,,,,,,S j −−−∈ ; { }21012 ,,,,U j −−∈ ; { }101 ,,V j −= and () { }1216 =O .

In [19][20], we have pursued this combination process farther and generated a series (Appendix B)

of higher radix (224, 232, …) recoding schemes with () { }12 =r
O . However, what still remains unknown

is to determine, for a given value N, the proper radix (2r) that leads to the optimal architecture.

The translation of Eq. 5.18 and 5.19 into architectures are depicted in Fig. 5.4a and 5.4b,

respectively.

All Dimitrov algorithms developed in [5] are unsigned. For an equitable comparison, we had to

develop a new two’s complement radix-28 recoding version with () { }7,5,3,128 =O based on

Dimitrov unsigned radix-27 recoding (mult_7b2d in [5]) with () { }7,5,3,127 =O . The new recoding is:

 ()()
()

() ij
n

j

j
he

j
k PQY 878

18/

0

21.21.2
+

−

=

−−+= ∑ (5.20)

 with { } { } { }1,07,6,5,4,3,2,1,0,;7,5,3,1, ∈∈∈ eandhkPQ jj .

For the comparative study, our proposed algorithms (Eq. 5.18 and 5.19) as well as Seidel and

Dimitrov algorithms (Eq. 5.17 and 5.20, resp.) are first analytically characterized and then physically

implemented on FPGA.

5.4.1.3 Analytical Characterization of Area and Speed

 Prior implementation, we need to develop a generalized theoretical model which predicts area and

speed features of each recoding algorithm with respect to N and r values.

Area

Three basic components are necessary for the implementation of RTL multipliers:

• multiplexers (Mux1) to recode the digit terms (Qj,Pj,…) included in the recoding expression;

• shifters (Mux2) for partial product generation;

• and adders for partial product summation.

 Whereas the exact number of adders can be known in advance, we need to develop heuristics for

the two others. The total multiplexer complexity (Mux1) of a radix-2r multiplier depends on:

Chapter 5 − Multiplication by a Variable

 107

• the number (N/r) of PPGj;

• the number (i) of lower sub-radices (21, 22, 25, and 28) used to build up the higher radix-2r. To

each sub-radix-2s
 used (PPGji) corresponds an RTL “case statement” that recodes the digit

terms (Qji,Pji,Tji,…) present in the equation;

 FIGURE 5.4 – Two’s complement 64×64 bit multiplier.

(a) Radix-28 multiplier. Space partitioning according to Eq. 5.18

(b) Radix-216 multiplier. Space partitioning according to Eq. 5.19

+

PPGji including a fixed
number of adders

PP0

+

Y23 , 28

Y28 , 30

Y30 , 31

Y15 , 23

Y39 , 44

Y44 , 46

Y46 , 47

Y31 , 39

Y55 , 60

Y60 , 62

Y62 , 63

Y47 , 55

64

P127 - 0

PP1

PP2

PP3

X

(b)

Y7 , 12

Y12 , 14

Y14 , 15

Y-1 , 7

U0

V0

R0 S0
+

PPG0

Q0 P0

T0

U1

+ V1

R1 S1 +

PPG1

Q1 P1

T1

+

U2

+ V2

R2 S2 +

PPG2

Q2 P2

T2

+

U3

+ V3

R3 S3 +

PPG3

Q3 P3

T3

+

+

+

+

+

Critical path (DelT = N/r-1+Del+ds)

(a)

X 64

Y-1 , 4

Y4 , 6

Y6 , 7

Y7 , 12

Y12 , 14

Y14 , 15

Y15 , 20

Y20 , 22

Y22 , 23

Y23 , 28

Y28 , 30

Y30 , 31

Y31 , 36

Y36 , 38

Y38 , 39

Y39 , 44

Y44 , 46

Y46 , 47

Y47 , 52

Y52 , 54

Y54 , 55

Y55 , 60

Y60 , 62

Y62 , 63

+

PP7

PP0

PP1

PP2

PP3

PP4

PP5

PP6

P127 - 0

R0

S0

Q0 P0

PPG0

R1

S1

Q1 P1

PPG1

R2

S2

Q2 P2

PPG2

R3

S3

Q3 P3

PPG3

R4

S4

Q4 P4

PPG4

R5

S5

Q5 P5

PPG5

R6

S6

Q6 P6

PPG6

R7

S7

Q7 P7

PPG7

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

 DelT is the delay in adder levels of
the total critical path. Del is the delay
in adder levels inside PPGj and ds is
the delay due to multiplexer logic
inside PPGji

Chapter 5 − Multiplication by a Variable

 108

• the number of entries (es+1) in each “case statement” corresponding to each sub-radix-2s;

• the number (ds) of digit terms (Qji,Pji,Tji,…) that figures in each “case statement”;

• and on the number of necessary odd-multiples (|Os|) used to calculate the digit terms.

 Hence, we can announce that: ()∑ +=
i

ss
e Od

r

N
Mux s || ..2.1 1 . For Dimitrov algorithm (Eq.

5.20), this gives: r=8, i=1, es =8, ds =2, and |Os|=4. Thus, Mux1 = 512 N.

The synthesis of the RTL “shift statement” infers multiplexers whose complexity depends on the

number (psj) of different shift positions for all odd-multiples involved in the calculation of each digit

term (j). Thus, we can write: ()∑∑=
i j

sjsj Op
r

N
Mux || ..2 . For Dimitrov algorithm (Eq. 5.20), this

gives: r = 8, i=1, j=2, ps1 =ps2 =8, and |Os1| = |Os2| = 4. Thus, Mux2=8N. Hence, the total multiplexer

complexity becomes: MuxT = Mux1+Mux2=520N.

An N-bit radix-2r
 multiplier generates N/r PP. Thus, the total number of adders comprises:

• () 1/ −rN adders to sum the N/r PP;

• plus the necessary adders inside each PPGj to accumulate the intermediate PP issuing from

PPGji;

• plus a number of adders included inside each PPGji depending on the recoding scheme used.

For instance, in Seidel algorithm (Eq. 5.17), the term
jijiji TPQ ++1111

2 is calculated as follows:

 () () jijijijijijiji TPPPQQQ +−+++− 2337 2222 , which requires 6 adders for post-accumulation

operation [15][16]. Hence, the total number of necessary adders is:

AddT= () () () 1878618 −=+− N//N/N .

Delay

 The total delay (DelT) along the critical path is the summation of PPGj delay and reduction tree

delay. Based on the total number of adders (AddT), the critical path of the multiplier in terms of logic

levels is: DelT= N/r−1+Del+ds, where Del is the delay due to adder stages inside PPGj and ds is the

delay due to multiplexer logic inside PPGji. This latter depends on Mux factor of used PPGji (2
1, 22, 25,

or 28). Therefore, d1 < d2 < d5 < d8. Note that ds is fixed and Del depends on r and s values. For

instance, according to Eq. 5.17, Seidel algorithm exhibits a critical path of: DelT=

N/8−1+6+d8=N/8+5+d8. Table 5.3 provides the area occupation and delay for each recoding

algorithm.

Physical implementation

All recoding schemes mentioned in Table 5.3 underwent several verification steps. First all

equations were validated with a random C-program. Then, they were implemented at RTL level in

Verilog-2001 (IEEE 1364) as technology-independent reusable IP-cores [3], using exactly the same

Chapter 5 − Multiplication by a Variable

 109

optimized coding style for an equitable comparison. They are compile-time reconfigurable according to

N and r. Reader is referred to [15], [16], and [5] for recoding tables used in Eq. 5.16, 5.17, and 5.20,

respectively.

TABLE 5.3 − Main feature comparison.

 New Recoding Algorithms
Features

Eq. 5.18 Eq. 5.19

McSorley [18]

Eq. 5.15

Seidel [15][16]

 Eq. 5.17

Dimitrov [5]

Eq. 5.20

Radix 28 216 22 28 28

DelT 53
8

d
N

++ 88
16

d
N

++
21

2
d

N
+− 85

8
d

N
++ 'd

N
8

8
+

MuxT N19 N106 N5 N194 N520

AddT 1
8

5
−

N
 1

8

6
−

N
 1

2
−

N
 1

8

7
−

N
 1

4
−

N

N is the operand size and 2r is the radix used. DelT is the total delay in terms of adder

levels in the critical path of a linear reduction tree. ds is the delay due to multiplexer logic

inside PPGji. ds depends on Mux factor (d1<d2<d5<d8<d'8). MuxT=(N/r)Mux, where

Mux is an estimation of the multiplexer logic required by PPGj. AddT is the total number

of adders required in the whole multiplier. DelT is the delay in adder levels of the total

critical path. Del is the delay in adder levels inside PPGj and ds is the delay due to

multiplexer logic inside PPGji.

All RTL codes went through a severe cycle-accurate functional verification procedure using

Modelsim SE-6.3f logic simulator. They were first challenged against a set of special and severe test

cases, and then submitted to a random test for a very large number of vectors. After a successful

functional verification, physical tests were performed. They were integrated into an FPGA evaluation

board for an ultimate validation. Afterwards, all equations were synthesized and mapped to the same

Virtex-6 FPGA circuit (xc6vsx475t-2ff1156) using Xilinx ISE 13.2 release version [21]. We used for

comparison a two’s complement 64×64 bit parallel multiplier. The implementation results are grouped

in Table 5.4

Although Dimitrov recoding exhibits the shortest critical path in adder stages (N/8), the impact of

multiplexer logic (d'8) on the total performance is important (Table 5.4). Besides, it is the most area

TABLE 5.4 − Implementation results of a two’s complement 64-bit parallel multiplier on

Xilinx xc6vsx475t-2ff1156 circuit.

New Recoding Algorithms
Results

Eq. 5.18 Eq. 5.19

McSorley [18]

Eq. 5.15

Seidel [15][16]

Eq. 5.17

Dimitrov[5]

Eq. 5.20

Area1
 3219 4659 2103 5251 6599

Energy2 1.63 2.11 1.46 2.49 2.48

Speed3 52.4 49.34 30.04 48.62 43.17

Synthesis tool was forced to map RTL code to distributed slices of FPGA and avoid

mapping to builtin 18x18 bit hardwired multipliers (DSP slices).

1: Area occupation in number of Virtex-6 slices. 2: Energy consumption per multiplication

operation (pJ). 3: Million multiplications per second (MMPS).

Chapter 5 − Multiplication by a Variable

 110

consumer despite the fact that it employs the lowest number of adders (N/4-1). Adversely, Seidel

algorithm is the most adder consumer (7N/8-1). To determine which factor, MuxT or AddT, exerts

more influence on area occupation, let us compare their respective ratios for Seidel and Dimitrov

algorithms: MuxT(Eq. 5.20)/MuxT(Eq. 5.17)=2.7 and AddT(Eq. 5.17)/AddT(Eq. 5.20)=3.5.

Significant conclusion: the area occupation is dominated by MuxT factor, and becomes larger as

MuxT number becomes higher (Table 5.3 and 5.4). This correlation is advantageously used to

minimize area occupation as will be shown in the next section.

McSorley algorithm (Eq. 5.15) is the least area consumer and the slowest recoding scheme for any

value of N. The best area/speed compromise for N=64 is given by our recoding scheme based on Eq.

5.18. However, this latter will be outperformed by Eq. 5.19 for larger values of N (N>64) since a higher

radix (216) is employed.

While energy consumption is function of the switched capacitance, Table 5.4 shows a direct

correlation between area occupation and energy consumption. Making MuxT indicator lower, will

result in a less energy-consumer recoding algorithm.

Finally, based on theory and implementation results, we conclude that the best tradeoff related to

our recoding schemes depends on N and r values. For larger N values (N>64), larger radices are

necessary to reduce the critical path. But for larger radices (r>16) we need to duplicate some of the

elementary PPGji (2
1,22,25,28) to build up the radix-2r PPGj. Therefore, at this level a relevant question

arises: given N, what is the value of r and its corresponding elementary PPGji configuration (optimal

partitioning of PPGj) that leads to the shortest critical path (DelTmin) with minimum hardware resources

(MuxTmin)? The answer to this question is given in the next sections.

5.4.2 Preliminary Study to an Optimal Partitionning

 We extend the recoding-space of our Eq. 5.18 and 5.19 to the general case as follows: each r+1

bit slice is recoded using a, b, c, d instances of radix 28, 25, 22, 21 algorithms, respectively, such that

8a+5b+2c+d=r. To this recoding scheme corresponds the following equation:

 ∑ ∑ ∑ ∑
−

=

−

=

−

=

−

=

+++






+++=

1

0

1

0

1

0

1

0

582858 2.2.2.
r

N

j

a

i

b

i

c

i

baij
i

aij
i

ij
i CBAY

rj
d

i

cbaij
iD 2.2.

1

0

258






∑

−

=

+++ , (5.21)

where j
i

j
i

j
i

j
i TP.Q.A ++= 11112 with { }21012 ,,,,Q

j
i −−∈ and

 { }1684210124816 ,,,,,,,,,,T,P
j

i
j

i −−−−−∈ ; j
i

j
i

j
i SRB += .7 with { }2,1,0,1,2 −−∈j

iR and

{ }4,2,1,0,1,2,4 −−−∈j
iS ; j

i
j
i

j
i

j
i yyyC 12212 2 +− −+= with }{ 21012 ,,,,C j

i −−∈ ; finally

j
i

j
i

j
i yyD −= −1 with { }101 ,,D

j
i −∈ .

The translation of Eq. 5.21 into architecture is depicted in Fig. 5.1b (top view only), where each

PPGj is built up using a mixture of four different PPGji depending on the quadruplet (a,b,c,d) as

illustrated by Fig. 5.5. For instance, Eq. 5.18 and 5.19 correspond (0,1,1,1) and (1,1,1,1), respectively.

Chapter 5 − Multiplication by a Variable

 111

Note that because of the general nature of Eq. 5.21, the ds term of DelT is equal to max(d8,d5,d2,d1) of

used PPGji.

 Given N and r, to determine the optimal partitioning of the whole multiplier (global optimum since

PPGj are identical), we need to find first the quadruplet (a,b,c,d) that satisfies the condition

8a+5b+2c+d=r and leads to the PPGj with minimum hardware ressources (Muxmin) and the shortest

critical path (Delmin). As it is not sure that such a solution exists, we are using composite metrics AiTj

of area (A) and delay (T) for i and j varying from 0 to 5 [22]. A total of 11 metrics (A, A5T, A4T, A3T,

A2T, AT, AT2, AT3, AT4, AT5, T) are used. The A metric alone delivers the best area solution

(Muxmin), while T metric provides the best delay solution (Delmin). In between (AiTj), more-or-less

balanced solutions are obtained. The implementation of this solution requires the (Mux, Del) couple

(Table 5.5) corresponding to each basic recoding algorithm (28,25,22,21).

 Because of an explosive number of possible combinations (N>>), the solution space is exhaustively

explored using a deterministic C-program for r varying from 8 to 1024. The obtained results are

reported in Table 5.6.

PPj

 FIGURE 5.5 – Critical path (Del+di) inside a generalized PPGj.

 PPGj

. . .

j

D0

j

D1

j

dD 1−

. . .

j

cC 1−

 j
B0

 j
B1
. . .

 j
bB 1−

 j
A0

 j
A1

. . .

 j
aA 1−

d

c

b

a

2
 b

it
s

3
 b

it
s

6
 b

it
s

9
 b

it
s

+

. . .

+

+

+

. . .

+

+

+
. . .

+

+

+

+

. . .

j

C0

j

C1

r
+

1

b
it

s

Chapter 5 − Multiplication by a Variable

 112

 In conclusion, optimal area solutions (Mux=Muxmin) are exclusively based on radix-22 algorithm

(0,0,c,0), but they are excessively slow (Del>>Delmin). While optimal speed solutions (Del=Delmin)

are entirely composed of radix-28 algorithm (a,0,0,0), but they are exaggeratedly large

(Mux>>Muxmin). Finally, balanced area/speed solutions are mainly based on radix-25 algorithm with

at most one or two instances of radices 21 and 22 algorithms (0,b,c,d). However, even the “balanced”

solution is not really balanced enough since the mean values of Del and Mux are 1.4×Delmin and

5.2×Muxmin , respectively. The reason is due to the large disparity between Mux values of the basic

radices (Table 5.5).

TABLE 5.5 − Delay and multiplexer

complexity of basic radices: step #1

Algorithm Del Mux

21 0 5
22 0 10
25 2 133
28 6 1548

Mux values are extracted from the

heuristic developed in Section 5.4.1.3

Ex: 1548=194 × 8.

TABLE 5.6 − Optimal PPGj solution (a,b,c,d) leading to the optimal radix-2r
 multiplier according to

composite metrics AiTj : step #1.

Instance Number r size
(bits)

Criteria
a b c d

Del Mux Delmin Muxmin

8 A – T 0 0 4 0 3 40 3 40
A – AT5 0 0 8 0 7 80

16
T 0 3 0 1 5 404

5 80

A – AT3 0 0 16 0 15 160
32

AT4 – T 0 6 1 0 8 808
8 160

A – AT2 0 0 32 0 31 320
AT3 – AT5 0 12 2 0 15 1616 64

T 8 0 0 0 13 12384
13 320

A – AT2 0 0 64 0 63 640
AT3 – AT5 0 25 1 1 28 3340 128

T 16 0 0 0 21 24768
21 640

A – AT 0 0 128 0 127 1280
AT2 – AT5 0 51 0 1 53 6788 256

T 32 0 0 0 37 49536
37 1280

A – AT 0 0 256 0 257 2560
AT2 – AT5 0 102 1 0 104 13576 512

T 64 0 0 0 69 99072
69 2560

A – AT 0 0 512 0 512 5120
AT2 – AT5 0 204 2 0 207 27152 1024

T 128 0 0 0 133 198144
133 5120

A – T: all the metric span A, A5T, A4T, A3T, A2T, AT, AT2, AT3, AT4, AT5, T. To A and T metrics

correspond respectively the minimal values Muxmin and Delmin that serve as reference for the

optimization process.

Chapter 5 − Multiplication by a Variable

 113

 To correct this disequilibrium, we replace respectively the two Seidel radix-28 and 25 expressions

(j
iA and j

iB) included in Eq. 5.21 by their mathematically equivalent counterparts as follows:

∑
=

=
3

0

22
k

ji

k

kj

i CA and jijijij

i CCDB 1

3

00 22 ++= . These new expressions are radix-28 and 25,

respectively. They produce respectively the same intermediary partial products at PPGji output as their

Seidel counterparts. In fact j
iA is formed by a succession of four instances of McSorley algorithm,

while j
iB is composed of one instance of Booth algorithm followed by two instances of McSorley

algorithm. Del and Mux values of the new basic radices are grouped in Table 5.7.

 Results delivered by the deterministic C-program are reported in Table 5.8. All solutions are optimal

since Del=Delmin and Mux=Muxmin. They are all based on radix-28 algorithm (a,0,0,0). In case r is

not a multiple of 8, optimal solutions are also obtained, composed mainly of radix-28 algorithm with at

most one instance of radix-21, 22 or 25 algorithms, depending on the remainder of r by 8 division.

The new results are so interesting that we are encouraged to pursue further the optimization

process using higher basic sub-radices (s>8) to reduce the total delay (DelT) of the multiplier. Let us

this time replace j
iA and j

iB as follows: ∑
=

=
7

0

22
k

ji

k

kj

i CA and ∑
=

=
3

0

22
k

ji

k

kj

i CB . We eliminate

radix-25 since it can be derived from radix-21 and 22. The new Del and Mux values of basic radices

are grouped in Table 5.9. The C-program shows up even more interesting results since starting from

r≥64 (Table 5.10), lower delays are obtained with the same multiplexer complexities as the ones

reported in Table 5.8. Based on the obtained results, we pushed farther the optimization process using

even higher basic sub-radices (s=16..32).

TABLE 5.7 − Delay and multiplexer complexity

of the new basic radices: step #2.

Algorithm Del Mux

21 0 5
22 0 10
25 2 25
28 3 40

TABLE 5.8 − Optimal PPGj solution (a,b,c,d) leading to the optimal

radix-2r multiplier according to composite metrics AiTj : step #2.

 Instance Number r size
(bits) a b c d

Del Mux Delmin Muxmin

8 1 0 0 0 3 40 3 40
16 2 0 0 0 4 80 4 80
32 4 0 0 0 6 160 6 160
64 8 0 0 0 10 320 10 320
128 16 0 0 0 18 640 18 640
256 32 0 0 0 34 1280 34 1280
512 64 0 0 0 66 2560 66 2560
1024 128 0 0 0 130 5120 130 5120

Chapter 5 − Multiplication by a Variable

 114

 All optimal solutions come either on the form (a,0,0,0) or (0,b,0,0). At this level we can draw a

significant conclusion: since the optimal solution is always in the form (a,0,0,0) or (0,b,0,0) with a=2k

and b=2k', there exists an integer s=2k'' such as either (s,0,0,0) or (0,s,0,0) is the optimal solution.

 Consequently, Eq. 5.21 is rewritten accordingly, as follows:

 rj
r

N

j

s

r

i

si

s

k

kji

k .CY 222

1

0

1

0

1
2

0

2∑ ∑ ∑
−

=

−

=

−

= 































= , (5.22)

with ji

k

ji

k

ji

k

ji

k yyyC 12212 2 +− −+= and }{ 21012 ,,,,C
ji

k −−∈ .

Based on heuristic developed in Section 5.4.1.3, multiplexer complexity of Eq. 5.22 for the whole

multiplier is always equal to MuxT=10×N/2=5N for any value of r and s. As for the multiplier delay

(DelT), we need to determine the couple (r,s) that leads to the shortest critical path in terms of adder

levels. This is what is achieved in the next section.

5.4.3 The Optimal Space/Time Partitioning

 The total delay (DelT) of the whole multiplier related to Eq. 5.22 is: DelT= N/r−1+Del+d2 where Del

is the PPGj delay equal to (r/s−1)+(s/2−1), and d2 is the multiplexer delay corresponding to the

recoding logic of radix-22. Thus, DelT= N/r+r/s+s/2−3+d2.

TABLE 5.10 − Optimal PPGj solution (a,b,c,d) leading to the optimal

radix-2r multiplier according to composite metrics AiTj : step #3.

 Instance Number r size
(bits) a b c d

Del Mux Delmin Muxmin

8 0 1 0 0 3 40 3 40
16 0 2 0 0 4 80 4 80
32 0 4 0 0 6 160 6 160
64 4 0 0 0 10 320 10 320
128 8 0 0 0 14 640 14 640
256 16 0 0 0 22 1280 22 1280
512 32 0 0 0 38 2560 38 2560
1024 64 0 0 0 70 5120 70 5120

 : Optimal solution moved from (0,b,0,0) to (a,0,0,0)

TABLE 5.9 − Delay and multiplexer complexity

of the new basic radices: step #3.

Algorithm Del Mux

21 0 5
22 0 10
25 3 40
28 7 80

Chapter 5 − Multiplication by a Variable

 115

 The optimal delay with regard to r is obtained for (r,s) couples satisfying () 0/ =∂∂ rDelT , which

gives N.sr = . When r is substituted by N.s into DelT expression, we obtain:

232//2 dssNDelT +−+= . Likewise, the optimal delay with regard to s is obtained for s value

satisfying () 0/ =∂∂ sDelT . We obtain 3 2/2 Ns = . Hence, the optimal delay becomes:

 2
3 32/3 dNDelT +−= . (5.23)

 Finally, we conclude that the optimal N-bit multiplier, in comparison to Eq. 5.15 [18], relies on the

new triple recursive Eq. 5.22 with

 (r,s)=(3 22 N. , 3 22 /N). (5.24)

Table 5.11 provides the s and r values that lead to the optimal partitioning with respect to the

operand size N. The values s and r correspond to the number of multiplier bits that are treated

simultaneously inside each PPGji and each PPGj, respectively. For N=64, the optimal partitioning is

obtained with (r,s)=(32,8) as illustrated by Fig. 5.6. Whereas Eq. 5.22 and 5.15 require the same

amount of hardware resources (MuxT , AddT)=(320,31), they exhibit different critical paths: 7 and 31 in

terms of adder levels, respectively.

5.4.4 Discussion of the Implementation Results

 We proved via FPGA implementation (Table 5.4) how much accurate are the area heuristics

developed in Section 5.4.1.3 (Table 5.3). Based on this, we have undertaken a gradual theoretical

optimization process that yielded to Eq. 5.22. This latter is implemented on FPGA with N=64, and the

results in terms of multiply-time, energy consumption per multiply-operation, and total gate count, are

as follows: 78.98 MMPS, 1.45pJ and 1987 slices, respectively.

TABLE 5.11 − The optimal partitioning versus operand size N.

New recoding

Eq. 5.22

McSorley [18]

Eq. 5.15

Seidel [15][16]

Eq. 5.17

Dimitrov [5]

Eq. 5.20 N

(bits) s r DelT

8 4 8 2 3 6 1
16 4 8 3 7 7 2
32 8 16 5 15 9 4
64 8 32 7 31 13 8
128 8 32 9 63 21 16
256 16 64 13 127 37 32
512 16 128 17 255 69 64
1024 16 128 21 511 133 128
2048 32 256 28 1023 261 256
4096 32 512 35 2047 517 512
8192 32 512 45 4095 1029 1024

 s value corresponds to the number of bits that are treated simultaneously

inside each PPGji , while r value indicates the number of bits that are

processed simultaneously inside each PPGj. ds is not included in DelT since

d2<d8<d'8.

Chapter 5 − Multiplication by a Variable

 116

 FIGURE 5.6 – Optimal partitioning of a two’s complement 64×64 bit

 radix-232 parallel multiplier based on Eq. 5.22 with (r,s)=(32,8).

Critical path (DelT)

X

"0" PPG00

1

y0
y1

y2

 P127 - 0

64

+ y3

y4
y5

y6
y7

+

+

PPG01 y8
y9

y10 + y11

y12
y13

+

+

PPG02

+

+

+

PPG03

+

+

+

+

+

+

+

+

+

PPG11

+

+

+

PPG12

+

+

+

PPG13

+

+

+

+

+

+ +

2

3

4

5

6

7

PPG0

PPG1
PPG10

y14
y15

y16
y17

y18
y19

y20
y21

y22
y23

y29

y24
y25

y26
y27

y28

y30
y31

y61

y56
y57

y58
y59

y60

y62
y63

y37

y32
y33

y34
y35

y36

y38
y39

y45

y40
y41

y42
y43

y44

y46
y47

y53

y48
y49

y50
y51

y52

y54
y55

00
0C

00
1C

00
2C

00
3C

12
0C

12
1C

12
2C

12
3C

02
0C

02
1C

02
2C

02
3C

03
0C

03
1C

03
2C

03
3C

10
0C

10
1C

10
2C

10
3C

11
0C

11
1C

11
2C

11
3C

13
0C

13
1C

13
2C

13
3C

01
0C

01
1C

01
2C

01
3C

PP0

PP1

Chapter 5 − Multiplication by a Variable

 117

Compared to implementation results of Seidel and Dimitrov algorithms (Table 5.4), gain ratios of

1.62, 1.71, 2.64 and 1.83, 1.71, 3.32 are obtained, respectively. A 64-bit multiplier generated by Xilinx

Coregen exhibits 75.86 MMPS and consumes twelve 18×18 bit DSP-slice multipliers.

The real reasons behind these important results are cleared up as follows.

5.4.4.1 Area Occupation

For operand size N=64, Eq. 5.22 is a composite radix-232 algorithm (Table 5.11), where each PPGj

processes simultaneously 32+1 inputs that are split on four sub-radix- 28 PPGji made of four instances

(ji
kC) of McSorley algorithm (Fig. 5.6). Seidel and Dimitrov algorithms are rather radix-28 algorithms,

based on mono-bloc PPGj.

In fact, although radix-28 PPGji of Eq. 5.22 and radix-28 PPGj of Seidel and Dimitrov are based on

different recoding schemes, they are mathematically equivalent since they produce the same partial

product PPji/PPj. Based on theory (Table 5.3) and implementation results (Table 5.4), Dimitrov

recoding is the most space consuming due to the use of odd-multiples of the multiplicand. On the

other hand, Seidel recoding does not require odd-multiples, but since 9 inputs are treated

simultaneously in a mono-bloc PPGj; a large amount of multiplexer resources is needed to recode the

29=512 input combinations. Finally, radix-28 PPGji of Eq. 5.22 is the least area consumer because it

does not employ odd-multiples and requires a small amount of multiplexers as the total number of

input combinations in each radix-28 PPGji is equal to 8+8+8+8=32. Note that the three recoding

schemes are incorporating a number of adders in their PPGji/PPGj which is 3, 6, and 1 for Eq. 5.22,

Seidel and Dimitrov algorithms, respectively.

Significant conclusion: the area occupation is dominated by the Mux factor, and becomes larger as

Mux value becomes higher.

5.4.4.2 Delay

Using higher radices (r>>) will certainly shortens the critical path. However, for high r values, mono-

bloc PPGj recoding induces an important delay (ds) due to the high density of multiplexer logic that

significantly degrades the whole performance of the multiplier. This is clearly illustrated by Dimitrov

radix-28 recoding whose critical-path totalizes 8 adder levels but exhibits a lower multiply rate (43.17

MMPS) compared to Seidel recoding that have a critical-path composed of 13 adder levels but shows

a more interesting rate (48.62 MMPS) due to lower multiplexer complexity (Table 5.3 and 5.4). As for

Eq. 5.22, since a composite PPGj is used, ds is equal to d2 (ji
kC delay) which is the smallest delay (d2

< d5 < d8). Besides, the critical path goes through the smallest number (7) of adder stages, exploiting

maximum parallelism that can be provided by the triple-recursive Eq. 5.22. Thus, it is not surprising

that Eq. 5.22 achieves the best performance (78.98 MHz), even when compared to Xilinx Coregen

multiplier based on DSP-slices (75.86 MHz). A double-recursive (s=2) version of Eq. 5.22 served to

design a scalable 16-bit setpoint Finite-Word-Length PID controller, employing five multiplication

cores. The implementation results outperformed the published ones at all levels as will be shown in

the next Chapter.

Significant conclusion: using composite recoding in conjunction with an optimal partitioning (r and s

values) provides the shortest critical path.

Chapter 5 − Multiplication by a Variable

 118

Eq. 5.22 shows high aptitude for pipelining. Two finely and coarsely grained systolic architectures

for 64-bit multiplier are depicted in Fig. 5.7a and Fig. 5.7b, respectively. Fig. 5.7a architecture is more

suitable for high throughput applications, with 7 clock-cycle latency.

5.5 New Radix-2
r
 Multip-recision Multiplication Algorithms

 Prior to develop a highly-scalable radix-2r multi-precision multiplier, the need for a flexible and low-

power sign-extension technique is mandatory.

5.5.1 New Radix-2r Sign Extension Technique

 Though many low-power sign extension techniques exist in the literature, they are not adapted to

reconfigurability. The reason for this shortcoming is that the correction bits must be calculated for each

value of operand-size N [23][24]. Besides, to our knowledge, no sign-extension solution exists for

radix based multiplication (r). In what follows, we propose a generic low-power solution that

circumvents these two obstacles. It is illustrated by Fig. 5.8 for N=8 and r=2, but can be systematically

extended to any N and r values.

 Intuitively, we are not simultaneously performing the sum of the partial products, but each partial

product of current step j is added to the sum of the preceding ones (from 0 to j-1). The rationale for

7

6

5

4

3

2

1

X 64

"0"
00
0C

y0
y1

y2 + y3

y4
y5

y6
y7

+

+

+

+

+ +

+

+

+ +

+

+

+ +

y29

y24
y25

y26
y27

y28

y30
y31

y8
y9

y10
y11

y12
y13

y14
y15

y16
y17

y18
y19

y20
y21

y22
y23

+

+

+

+

+

+ +

+

+

+ +

+

+

+ +

P127 - 0

+

X 64

00
1C

00
2C

00
3C

10
3C

10
2C

10
0C

10
1C

01
0C

11
0C

01
1C

11
1C

01
3C

01
2C

02
0C

02
1C

02
2C

03
0C

03
1C

13
3C

03
2C

03
3C

02
3C

11
2C

11
3C

12
0C

12
1C

12
2C

13
0C

13
1C

13
2C

12
3C

FIGURE 5.7 – Space/Time partitioning of a two’s complement 64×64 bit radix-232

parallel multiplier based on Eq. 5.22. (a) High-throughput finely-grained systolic

architecture; (b) Low-latency coarsely-grained systolic architecture.

y61

y56
y57

y58
y59

y60

y62
y63

y45

y40
y41

y42
y43

y44

y46
y47

y53

y48
y49

y50
y51

y52

y54
y55

y37

y32
y33

y34
y35

y36

y38
y39

y31

y61

y56
y57

y58
y59

y60

y62
y63

y45

y40
y41

y42
y43

y44

y46
y47

y53

y48
y49

y50
y51

y52

y54
y55

y37

y32
y33

y34
y35

y36

y38
y39

y31

P127 - 0

X 64

"0"
y0
y1

y2
y3

y4
y5

y6
y7

+

+

+

+ +

+

+

+ +

+

+

+ +

y29

y24
y25

y26
y27

y28

y30
y31

y8
y9

y10
y11

y12
y13

y14
y15

y16
y17

y18
y19

y20
y21

y22
y23

+

+

+

+

+

+ +

+

+

+ +

+

+

+ +

+

X 64

(b)

00
0C

00
1C

00
2C

00
3C

01
0C

01
1C

01
2C

01
3C

02
0C

02
1C

02
2C

02
3C

03
0C

03
1C

03
2C

03
3C

10
0C

10
1C

10
2C

10
3C

11
0C

11
1C

11
2C

11
3C

12
0C

12
1C

12
2C

12
3C

13
0C

13
1C

13
2C

13
3C

+

+

1

2

3

4 Critical path Clock Cycle Register
(a) (b)

Chapter 5 − Multiplication by a Variable

 119

the number of sign-bits to the left can be done locally, step by step, row by row. In other words, we

have to take advantage of the fact that the partial sum already contains the sum of the sign bits of

previous partial products. We must simply ensure that the sum output of the sign bit of current step j is

added to the two most-significant bits of the next step (j+1). To generalize to radix-2r multiplication, the

sign-bit (Nth position bit) of each partial product is extended with r bits to the left (r-1 for a maximum

shift, plus one bit for the sign), and the sum output of the sign bit of step j is added to the r most-

significant bits of the next step (j+1).

5.5.2 New Radix-2r Multi-Precision Multiplication Techniques

 In traditional N×N bit multi-precision multipliers, there is possibility to perform either a single N×N

double precision, or a single N/2×N/2 simple precision, or a twin parallel N/2×N/2 simple precision

multiplication. This is made possible by partitioning the two operands X and Y into respectively most

and less significant sub-operands (XH,YH) , and (XL,YL). A number of solutions exist and are

summarized in [23][25]. Unfortunately, they are either restricted to unsigned multiplication, or they do

not take power consumption into consideration, or they are not flexible enough.

 We propose hereafter a new technique that not only overcomes all above-mentioned shortcomings,

but also allows a customized partitioning of the operands into any number of slices as well as in any

slice sizes. Besides, this new technique is well adapted to radix based multiplication. Its features are

compared to the technique presented in [23] (Fig 5.9).

 FIGURE 5.9 – Multiplication matrix of partial-products bits for 16-b multiplication

 with one level recursion [23].

FIGURE 5.8 – Low-power sign-extension technique for the particular case (N, r)=(8, 2).

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

 : partial product bit; : product bit; : sign bit; : sum of sign bits;

 : negative one inserted into carry-in of the adder; #i : step i

+
=

 +
=

+
0 0 0 0 0 0 0 0 0

=

0

1

#2

#3 +
=

Chapter 5 − Multiplication by a Variable

 120

 Let us take Eq. 5.8 and apply it to X and Y for r=N/2, we obtain:

LH

N

j

j
N

j XXQQQX +=+==∑
=

0
2

1

1

0

2 22 . (5.25)

Hence, 00
2

10
2

0111 222 PQPQPQPQY.X

NN

N +++=

 LLHLLHHH YXYXYXYX +++= . (5.26)

 Note that Q1 and Q0 are (N/2)+1 bit size, but x−1 can be omitted from Q0 since it is stuck at zero.

Thus, we obtain four independent signed multipliers: XH.YH , XH.YL , XL.YH , XL.YL which are

respectively (N/2)+1×(N/2), (N/2)+1×N/2, N/2×(N/2), N/2×N/2 bit size. Fig. 5.10 illustrates the

implementation of Eq. 5.26 for a signed 16x16 bit multiplier based on recoding Eq. 5.15 with r=2.

 Eq. 5.26 eliminates the cumbersome term (EV×2N/2) in equation (6) of [23] as well as the necessary

logic for its generation. More importantly, in Fig. 5.10, four 8x8 bit multiplications can be performed

simultaneously, whereas in [23] only two are allowed because of the shared terms (EV×2N/2) and CV

required for the sign extension. Without counting the necessary EV generation logic and the use of

inverters for the negation of the sign bits, the partitioning proposed in [23] consumes a total bit count

of 205 for a 16x16 bit multiplier, while ours requires 198 bits.

 Note that Eq. 5.12 can be advantageously used to partition XH and XL with different bit lengths. For

instance, with r=N, s=3N/4 and t=N/4, we obtain:

 4

3

2

N

TPX += (5.27)

Hence, 2

3

4

3

4

3

2'2'2''.

NNN

TTPTTPPPYX +++=

 HHLHHLLL YXYXYXYX +++= (5.28)

FIGURE 5.10 – Low-power multi-precision multiplier for the particular case (N,r)=(16,2)

with 8-bit sub-operand size.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

8x8 bits

XL .YL

+
=

=

=

+

+

=

+

8x8 bits

XL .YH

=

=

=
+

=

+

+

 XH .YH

9x8 bits

+
=

+

=

=
+

+

 = =

=
 +
=

=
+ XH .YL

9x8 bits

Chapter 5 − Multiplication by a Variable

 121

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R0

+
S0

Y-1 , 4 Q0 P0

+ Y4 , 6

Y6 , 7

PPG0

FIGURE 5.12 – Low-power multi-precision multiplier for the particular case (N,r)=(16,8) with 8-bit

sub-operand size.

X0 , 7

+

XL .YL

+

8x8 bits

+

X7 , 15

R2

+
S2

Y-1 , 4 Q2 P2

+ Y4 , 6

Y6 , 7

PPG2

XH.YL

X0 , 7

R1

+

Y7 , 12 Q1 P1

+ Y12 , 14

Y14 , 15

PPG1

S1

XL .YH

8x8 bits

9x8 bits

X7 , 15
PPG3

R3

+

Y7 , 12 Q3 P3

+ Y12 , 14

Y14 , 15
S3

XH.YH

9x8 bits

 Four independent signed multipliers are generated: XH.YH, XH.YL, XL.YH, XL.YL, which are

respectively (N/4)+1×(N/4), (N/4)+1×(3N/4), (3N/4)+1×(N/4), and (3N/4)×(3N/4) bit size. The

translation of Eq. 5.28 into architecture is depicted by Fig. 5.11. Both partitioning schemes (Fig. 5.10

and 5.11) needs the same amount of bits (198).

 More efficiently, Eq. 5.28 can be combined with Eq. 5.18 for the recoding of YH and YL sub-

multiplicands to produce a faster partitioning (Fig. 5.12) for operand sizes larger than 16 bits.

FIGURE 5.11 – Low-power multi-precision multiplier for the particular case (N,r)=(16, 2)

with 12 and 4 bit sub-operand sizes.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

12x12 bits

XL .YL

+
=

=

=

+

+

=

+
=

=

+

+

XL .YH 12x4 bits

+
=

+

+

= =
5x12 bits

XH .YL +

=

=

=

+

+

+

+

=

=

XH .YH
5x4 bits

+

Chapter 5 − Multiplication by a Variable

 122

 More importantly, Eq. 5.8 can be used to partition the X and Y operands into any desired number of

slices depending on r value. Choosing for instance r=N/4 results into the following partitioning:

 041224

3

3

3

0

4 2222 QQQQQX

NNN

j

j
N

j +++== ∑
=

. (5.29)

Hence, 4

3

03134

5

232

3

33 2222.

N

n

NN

PQPQPQPQYX +++=

 2024

3

12224

5

32 2222

NN

N

N

PQPQPQPQ ++++

 4012114

3

2131 2222

NNN

N PQPQPQPQ ++++

 004102204

3

30 222 PQPQPQPQ

NNN

++++

 LLHHLHHHHLHHHHHH YXYXYXYX +++=

 LLHLLHHLHLHLHHHL YXYXYXYX ++++

 LLLHLHLHHLLHHHLH YXYXYXYX ++++

 LLLLLHLLHLLLHHLL YXYXYXYX ++++ (5.30)

 Eq. 5.30 generates sixteen independent signed multipliers. All are (N/4)+1×(N/4) bit size, except

XLL.YHH, XLL.YHL, XLL.YLH, XLL.YLL which are (N/4)×(N/4) bit size. The implementation details of Eq.

5.30 for N=16 based on Eq. 5.15 with r=2 are described in Fig. 5.13. Eq. 5.30 requires a total bit

count of 254 which induces an overhead of 28% compared to Eq. 5.26.

 Finally, Eq. 5.8 and Eq. 5.12 can be combined with any proposed radix-2r recoding algorithm to

produce any desired multi-precision multiplication scheme.

5.6 Conclusion

 From the basis of the new multibit recoding multiplication algorithm, we have developed optimal

multipliers with shortest critical paths and minimum hardware resources for any value of the operand

size N. We have demonstrated by theory and FPGA implementation the superiority of our high-radix

algorithms over their existing counterparts. Because exploiting the maximum parallelism inherent in

the multiply operation, our look-up-table based multiplier (Eq. 5.22) is even speed-competitive with

Xilinx’s hardwired multiplier employing DSP-Slices (18×18 bit full-custom multipliers).

 More importantly, we have also demonstrated that the current trend relying upon minimal number-

bases for the development of high radix-2r recoding (r≥8) with mono-bloc PPG requires an excessive

amount of multiplexer resources, which offsets speed and power benefits of the compressor factor

N/r. On the other hand, we have proved that composite PPG based on the new recursive multibit

recoding algorithm is the best realistic alternative.

Chapter 5 − Multiplication by a Variable

 123

 The topology of our proposed recoding schemes shows high capabilities for pipelining which can be

finely or coarsely grained to satisfy both high throughput and low latency applications. A radix-232

64-bit parallel multiplier has been finely pipelined, resulting in a systolic architecture with seven clock-

cycle latency.

 While the theoretical concept has been validated using FPGA as a preliminary step, an ASIC

implementation based on a standard-cell library is necessary for an ultimate validation of the whole

optimization work.

 As for the multi-precision solution, this latter would not have been possible without the development

of a flexible sign-extension technique. Based on the new recursive algorithm, we have proposed a

generic partitioning scheme that can be adapted to any size combination of the operands in order to

reduce the power consumption while increasing the computational throughput. This new solution will

be deeply explored for further optimizations using the proposed radix 2r algorithms.

FIGURE 5.13 – Low-power multi-precision multiplier for the particular case (N,r)=(16,2)

with 4-bit sub-operand size.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

=

+

+

+

+

+

+

4x4 bits

=

XLL .YLL

+
=

4x4 bits

4x4 bits

4x4bits

=

XLL .YLH

+
=

=

XLL .YHL

+
=

=

XLL .YHH

+
=

+

+

=

+

=

=

=
XLH .YLL

5x4 bits +

=

=
XLH .YLH

5x4 bits +

=

=
XLH .YHL

5x4 bits +

=

=
XLH .YHH

5x4 bits +

=

=
XHL .YLL

5x4 bits +

=

=
XHL.YLH

5x4 bits +

=

=
XHL.YHL

5x4 bits +

=

=
XHL.YHH

5x4 bits +

XHH .YLL

XHH .YLH

XHH .YHL

XHH .YHH

=

= 5x4 bits +

=

= 5x4 bits +

=

= 5x4 bits +

=
5x4 bits +

+

+

+

+

+

Chapter 5 − Multiplication by a Variable

 124

Bibliography

[1] A.K. Oudjida et al, "N Latency 2N I/O-Dandwidth 2D Array Matrix Multiplication Algorithm," The

International Journal for Computation and Mathematics in Electrical & Electronics Engineering

“COMPEL”, Vol. 21, Issue 3, pp. 377-392, ISSN 0332-1649, UK, 2002.

[2] A.K. Oudjida et al, "Mapping Full-Systolic Arrays For Matrix Product On Xilinx’s XC4000(E,EX)

FPGAs," The International Journal for Computation and Mathematics in Electrical & Electronics

Engineering “COMPEL”, Vol. 21, Issue 1, pp. 69-81, ISSN 0332-1649, UK, 2002.

[3] Reports on System Drivers of the International Technology Roadmap for Semiconductors

(ITRS), 2009 and 2010. Available: www.itrs.net/reports.html

[4] P.M. Seidel, L. D. McFearin, and D.W. Matula, “Secondary Radix Recodings for Higher Radix

Multipliers,” IEEE Trans. on Computers, vol. 54, N°2, February 2005.

[5] V.S. Dimitrov, K.U. Järvinen, and J. adikari, “Area Efficient Multipliers Based on Multiple-Radix

Representations,” IEEE Trans. on Computers, vol. 60, N° 2, pp 189-201, February 2011.

[6] H. Sam, and A. Gupta, “A Generalized Multibit Recoding of Two’s Complement Binary Numbers

and its Proof with Application in Multiplier Implementation,” IEEE Trans. on Computers, vol. 39,

N° 8, August 1990.

[7] B.J. Benschneider et al, “A Pipelined 50MHz CMOS 64-Bit Floating-Point Arithmetic Processor,”

IEEE Journal of Solid-State Circuits, vol. (24) 5, pp. 1317-1323, October 1989.

[8] C.F. Webb et al, “A 400-MHz s/390 Microprocessor,” IEEE Journal of Solid-State Circuits, vol.

(32) 11, pp. 1665-1675, November 1997.

[9] J. Clouser et al, “A 600-MHz Superscalar Floating-point Processor,” IEEE Journal of Solid-

State Circuits, vol. (34) 7, pp. 1026-1029,July 1999.

[10] R. Senthinathan et al, “A 650-MHz, IA-32 Microprocessor with Enhanced Data Streaming for

Graphics and Video,” IEEE Journal of Solid-State Circuits, vol. (34) 11, pp. 1454-1465,

November 1999.

[11] A. Scherer et al, “An Out-of-Order Tree-Way Superscalar Multimedia Floating Point Unit,”

Proceeding of IEEE International Solid-State Circuits Conference (ISSCC), pp. 94-95, 1999.

[12] G. Kim et al., “A Low-Energy Hybrid Radix-4/-8 Multiplier for Portable Multimedia Applications,”

Proceedings of IEEE International Symposium on Circuits and Systems, (ISCAS), pp. 1171-

1174, Rio de Janeiro, Brazil, May 15-18, 2011.

[13] Intel Corp., “Intel 64 and IA-32 Architectures Software Developers Manual,” volume 1, order

number 253668, Copyright May 2011.

[14] R.J. Rieldlinger, “A 32 nm 3.1 Billion Transistor 12-Wide-Issue Itanium Processor for Mission-

Critical Servers,” Proceedings of IEEE International Solid-State Circuits Conference (ISSCC),

pp. 84-86, San Francisco, CA ,USA, February 20-24, 2011.

[15] P.M. Seidel, L. D. McFearin, and D.W. Matula, “Secondary Radix Recodings for Higher Radix

Multipliers,” IEEE Trans. on Computers, vol. 54, N°2, February 2005.

[16] P.M. Seidel, L. D. McFearin, and D.W. Matula, “Binary Multiplication Radix-32 and Radix-256,”

Proceedings of the IEEE Symposium on Computer Arithmetic (ARITH-15), ISBN: 0-7695-1150-

3, pp. 23-32, USA, June 2001.

[17] A. D. Booth, “A Signed Binary Multiplication Technique,” Quarterly J. Mech. Appl. Math., Vol. 4,

part 2, pp. 236-240,1951.

Chapter 5 − Multiplication by a Variable

 125

[18] O.L. McSorley, “High-Speed Arithmetic in Binary Computers,” Proceedings of the IRE, Vol.

49(1), pp. 67-91, January 1961.

[19] A.K. Oudjida, N. Chaillet, A. Liacha, and M.L. Berrandjia, “A New Recursive Multibit Recoding

Algorithm for High-Speed and Low-Power Multiplier, ” Journal of Low Power Electronics

(JOLPE), vol. 8, N° 5, pp. 579-594, ISSN: 1546-1998/2012/8/579/594, American Scientific

Publishers (ASP), December 2012.

[20] A.K. Oudjida, N. Chaillet, A. Liacha, and M.L. Berrandjia “New High-Speed and Low-Power

Radix-2r Multiplication Algorithms,” Proceedings of the 11th edition of IEEE-FTFC Low-Voltage

Low-Power Conference, ISSN: 978-1-4673-0821-2/12, Paris, June 2012.

[21] E. Manmasson et al., “FPGA in Industrial Control Applications,” IEEE Trans. on Industrial

Informatics, vol. 7, N° 2, May 2011.

[22] M. Alioto, Elio Consoli, and Gaetano Palumbo, “Metrics and Design Consideration on the

Energy-Delay Tradoff of Digital Circuits,” Proceedings of the IEEE International Symposium on

Circuits and Systems (ISCAS’09), pp. 3150-3153, Taiwan, May 24-27 2009.

[23] S.R. Kuang, J.P. Wang, “Design of Power-Efficient Configurable Booth Multiplier,” IEEE Trans.

on Circuit and Systems I, vol. 57, N° 3, March 2010.

[24] M. Annaratone, “Digital CMOS Circuit Design,” Kluwer Academic Publisher, 1986.

[25] M. Själander and P. Larsson-Edefors, “Multiplication Acceleration Through Twin Precision,”

IEEE Trans. on Very Large Scale Integration (VLSI) Systems, Vol. 17, N° 9, September 2009.

Chapter 6

Applications

Chapter 6 − Applications

 126

Chapter 6

Applications

 In this chapter we apply the results obtained in the previous chapters on the PID and

LQG controllers with a Kalman filter. The new algorithms of multiplication by a variable

(MV) and a constant (SCM/MCM) are applied to the PID and LQG controllers,

respectively. We show through a practical implementation based on the design-reuse

methodology, how these new algorithms contribute to designing high-speed, low-power,

very compact, and highly scalable FWL controllers, which is the main objective of this

thesis.

6.1 PID Controllers

 The PID is by far the most commonly used closed-loop controller due to its simple structure and

robust performance [1]. An important feature of this controller is that it does not require a precise

analytical model of the system that is being controlled, which makes it very attractive for a large class

of dynamic systems. While PID is well adapted for linear-time-invariant (LTI) systems [2], it stands

powerless for non-LTI ones. Nevertheless some solutions exist, such as partitioning the non-LTI

control algorithm into a linear part and a non-linear part [3][4][5]. The linear part represents the major

control loop and is computed using an integrated PID, while the non-linear part that acts as dynamic

compensation to the linear one is performed in software using a general-purpose-processor or a DSP.

 In embedded control applications, such as in small-scale mobile robots, the control-loop-cycle is

very tight and the power budget is very limited. A low sample rate leads to poor and degraded control-

performance. And high power consumption shortens the battery lifetime. To cope with these two

severe and antagonistic constraints, the need for both a high-speed and low-power PID structure is of

utmost importance.

 Today, design-reuse [6] is a well established design standard that allows grasping with rapid

technology changes and increasing design complexity. It consists in the use of predesigned

technology-independent, generic and reconfigurable IP-cores [7], most generally implemented at

register-transfer-level (RTL).

 However, at RTL abstraction level, no significant optimization results can be achieved if not

undertaken at architectural and especially at algorithmic level. To achieve such a goal, a deep insight

into PID arithmetic is necessary. At this stage, a choice of a numeric representation format is a crucial

issue. Compared to floating-point, fixed-point format is the best candidate for optimized designs as it is

much simpler to implement, faster, power-efficient and requires far much less hardware resources.

However, the limited dynamic range can be source of control instability. This problem, referred to as

finite-word-length (FWL) effect is an active research area that aims to shorten the floating-to-fixed

point conversion time while preserving control performances [8][9].

Chapter 6 − Applications

 127

 The digital implementation of PID controllers went through several stages of evolution, initially

dominated by the use of commercial-of-the-shelf (COTS) components and DSP. But over the past few

years, FPGAs have brought a key advantage to digital control: the inherent parallelism of FPGA

architecture allows many independent control loops to run at different deterministic rates without

relying on shared resources that might slow down their responsiveness as in the case of COTS and

DSP [10][11].

 A survey of recent PID related works can be classified into three categories. The biggest one

includes works that are straightforward FPGA implementations targeting specific applications: DC-DC

converter [12], temperature control [13], motor multi-axis control [14], liquid level control [15], and

Xilinx versus Altera FPGA implementation for result comparison [16]. The second category proposes

methodologies that analyze the FWL effect on PID controller in order to reduce the number of

hardware resources [17][18]. And finally the third category, paradoxically the smallest one despite the

large popularity of PID, comprises architecture-optimization works. In [19] low-power serial and parallel

multiple-channel PID architectures are proposed for small mobile robots. In this work, the optimization

was carried out at macro-level considering several PIDs, rather than at micro-level (optimization of the

PID itself). Nevertheless, the whole architecture will deliver much more interesting results if combined

with an optimized PID. The second work [20] proposes serial, parallel, and mixed PID architectures

incorporating different number (1-3) of multiplication cores. High power consumption, even with the

serial architecture, and complex control-part are the two major shortcomings of this proposal. Finally,

in [21] an attractive optimized PID structure based on distributed arithmetic (DA) is presented.

Although this latter exhibits interesting results in terms of resource utilization and power consumption,

it suffers from three serious drawbacks: high latency (n+1 clock-cycles for n bit set-point word-length),

FPGA technology-dependent as it’s essentially based upon FPGA look-up-tables (LUTs), and inability

to handle time-varying PID parameters since they are precomputed and stored into LUTs.

Nevertheless, it’s considered as a reference design against which the obtained results are confronted

into the same conditions.

 The objective is to design optimized FWL-PID structures that overcome all above-mentioned

shortcomings, and which are especially dedicated to embedded control applications. The PID cores

are described at RTL level. They are highly reconfigurable and technology-independent, offering the

possibility to be mapped both on FPGA and ASIC.

 To reach such a goal, a special focus was put on the optimization of the inner arithmetic of PID. For

that, we considered two discrete forms of PID algorithm: the commercial form [22], called also the

standard or ISA form, and the incremental form. These two forms went through three successive types

of FPGA implementations, using: Booth multiplication algorithm (BMA) [23], modified Booth

multiplication algorithm (MBMA) [24], and a new developed version called recursive multibit recoding

multiplication algorithm (RMRMA) [25].

 Our previous paper [26] introduced a limited design-space of PID. In this chapter, we extended the

design-space to accommodate different application cases and provided all necessary implementation

details to make the design easily reproducible.

6.1.1 The Two Mostly-Used Discrete Versions of PID

 A typical closed-loop system using a PID controller is shown in Fig. 6.1, where uc(k), y(k), and u(k)

are the discrete signal quantities at the kth sampling instant of the reference set-point, the process-

Chapter 6 − Applications

 128

feedback measured output, and the PID controller output, respectively.

 In digital control, commercial and incremental forms are the two mostly-used discrete PID versions

[1][22]. They are denoted by recurrent Eq. 6.1 and 6.2, respectively, and their corresponding

coefficients are grouped in Table 6.1. Eq. 6.1 and 6.2 are fully detailed in the Appendix C.

 () () () ()kDkIkPku ++= , (6.1)

where () () ()kyBkuAkP c ⋅+⋅= ; () () ()11 −⋅+−= keCkIkI ; () () ()kfLkDHkD ⋅+−⋅= 1 ; with

() () ()111 −−−=− kykuke c
 and () () ()1−−= kykykf .

And () () () () ()211 −⋅+−⋅+⋅+−= keCkeBkeAkuku , (6.2)

where () () ()kykuke c −= .

 To satisfy different application cases, two IP versions are developed for each equation with constant

coefficients and with varying coefficients (Fig. 6.2). This latter requires a host side interface (HSI) to

handle the runtime change of the coefficients.

TABLE 6.1 − Coefficients of discrete recurrent equations.

Coefficients Commercial PID Incremental PID

A bK p









++

s

d

i

s

p
T

T

T

T
K 1

B pK−









+−

s

d

p
T

T
K 21

C
i

s

p
T

T
K−

s

d

p
T

T
K

H

sd

d

TNT

T

+

_

L

sd

dp

TNT

NTK

+
−

_

Kp is the proportional gain; Ti and Td are the integral and
derivative times, respectively; N is the maximum derivative
gain; b is the fraction of set-point in proportional term; and
Ts is the sampling period.

PID

Controller

Input

Interface

Process under

Control

Output

Interface

y(k)

uc(k)

u(k)

FIGURE 6.1 – Typical closed-loop control system using a PID.

Chapter 6 − Applications

 129

 The commercial version allows the three standard PID functioning modes (P, PI, PID) according to

Mode input value. At the end of u(k) computation, the Done output signal toggles during one clock

cycle, and the PID enters into sleep mode (whole internal activity stopped except for clocking and HSI)

for maximum energy conservation.

6.1.2 BMA Based PID

 A straightforward parallel implementation of PID requires an amount of 7 adders/substractors and 5

multiplication cores for Eq. 6.1, and 4 adders/substractors and 3 multiplication cores for Eq. 6.2. In

digital hardware, the total gate count scales linearly with word length for an adder core, while it scales

quadratically for a multiplier core. Thus, any effort for a low-power optimization of PID must be focused

on the implementation of the multiply-and-accumulate (MAC) function (X×Y) [27]. In this work, the

optimization effort is rather concentrated on the double MAC function (X×Y+T×Z) called DMAC,

considered as the main building block of our PID structures. Eq. 6.1 and 6.2 are partitioned

accordingly.

 For FWL-PID, two’s complement fixed-point representation is used, which is habitually expressed in

Q notation as Qni.nf . The values are coded in ni bits before the point (integer word length including 1

sign bit), and nf bits after the point (fractional word length). The total word length is n=ni+nf .

 Booth multiplication algorithm [23] belongs to the class of recoding algorithm, i.e. algorithms that

recode one of the two operands to cope with signed two’s complement multiplication. Let Y be the

multiplier: Let Y be the multiplier:

 j
n

j

j
n

n yyY 22
2

0

1
1 ∑

−

=

−
− +−= ; (6.3)

 () ∑∑
−

=

−

=
− =−=

1

0

1

0

1 22
n

j

j

j

j
n

j

jj QyyY , (6.4)

 where 01 =−y and }{ 1,0,1−∈jQ .

 Consequently, the multiplier Y is divided into n slices, each of 2 bits. Each pair of two contiguous

slices has one bit in common. Thus, the DMAC becomes:

FIGURE 6.2 – Various PID IP-cores. (a) commercial PID with

constant coefficients; (b) commercial PID with time varying

coefficients; (c) incremental PID with constant coefficients;

(d) incremental PID with time varying coefficients;

Ck Reset

 u(k)

Done

y(k)

 uc(k)
A B C H L

 HSI

Din Adr Cs Rw

PID2

 u(k)

Done

y(k)

 uc(k)

PID3

Ck Reset

(a) (b)

(c)

 u(k)

Done

 y(k)

 uc(k)

Ck Reset

Mode

PID1

 u(k)

Done

 y(k)

 uc(k)
A B

C

Ck Reset

Din Adr Cs Rw

PID4

(d)

 HSI

Mode

Chapter 6 − Applications

 130

FIGURE 6.4 – Optimized DMAC

implementation.

yj-1
yj

Reg

X T

zj-1
zj

Y Z

X.Y+T.Z

+
Cin

+
Cin

T "0" T

 Mux

 "0" X "0" X

 Mux

 "0"

<< j

(Pj.T) (Qj.X)

j = 0 , n-1
 ODMAC

n n n n

2n+1

TABLE 6.2 − Booth
algorithm.

Yj Yj-1 Operation
0 0 + 0
0 1 + X
1 0 − X
1 1 − 0

 () ()∑∑
−

=

−

=

+=+
1

0

1

0

2.2...
n

j

j

j

n

j

j

j TPXQZTYX (6.5)

 [] j
n

j

jj TPXQ 2
1

0

∑
−

=

+= .. (6.6)

 According to Eq. 6.5, Booth algorithm consists in recoding the multiplier Y into a set of ternary

numbers }{ 1,0,1− in order to generate n simple partial products which are summed subsequently.

Table 6.2 summarizes the 4 possibilities that may occur. The −X can be easily formed by adding 1 to

the complement of X. A direct translation of DMAC Eq. 6.5 into architecture (Fig. 6.3) requires one

extra adder and two registers in comparison with the optimized version (Fig. 6.4) based on Eq. 6.6,

called ODMAC. Additionally, one clock cycle latency is also needed in Fig. 6.3. The control-part

responsible of producing the successive couples (yj-1 , yj) is insignificant: just one multiplexer driven

by a counter.

 Based upon ODMAC as the main building block, PID architectures are constructed for both

incremental (Fig. 6.5) and commercial (Fig. 6.6) forms, and their implementation results (Table 6.3)

are respectively compared to those of [21]. Comparison was made into identical conditions using the

same FPGA device (Spartan XC2S50E-7FT256), although relatively old, as well as the same

synthesis-tool version (Xilinx ISE 9.1i). In [21], only a 16-bit word-length commercial version with

constant coefficients (without HSI) is implemented. PID1 and PID3 exhibits interesting results: 44%,

25%, and 32% savings and 62%, 35%, and 38% savings in terms of gate count, power, and speed,

respectively. PID3 exhibits higher savings but at the expense of control-quality. Latency is rather the

same (17), which is n+1 clock cycles for all designs (PIDX).

Optimizing latency without sacrificing the three other issues is the main objective of the two next

sections.

yj-1
yj

X T

zj-1
zj

Y Z

+
Cin

+
Cin

Reg

X.Y+T.Z

+

Reg

Reg

T "0" T

 Mux

 "0" X "0" X

 Mux

 "0"

<< j << j

(Pj.T) (Qj.X)

j = 0 , n-1

 DMAC

j = 0 , n-1
 MAC

j = 0 , n-1

 MAC

n n n n

2n+1

 FIGURE 6.3 – Straightforward DMAC

implementation.

Chapter 6 − Applications

 131

6.1.3 MBMA Based PID

 Eq. 6.3 can also be rewritten as follows [24]:

 () ∑∑
−

=

−

=
+− =−+=

1)2/(

0

22
1)2/(

0

12212 222
n

j

j

j

j
n

j

jjj QyyyY , (6.7)

where 01 =−y and }{ 2,1,0,1,2 −−∈jQ .

In this case, the multiplier Y is divided into n/2 slices, each of 3 bits, with one bit overlapping

between adjacent slices. The proof of Eq. 6.7 is given in [28]. Thus, the DMAC equation becomes:

 TABLE 6.3 − Implementation result comparison of MBA-based PID.

PID
 Core

Total Gate
Count

Power* (mW) Max. Clock
Freq. (MHz)

Latency

 PID [21] 16728 456 47
PID1 9286 (44%) 342 (25%) 62 (32%)
PID2 10661 (36%) 359 (21%) 61 (30%)
PID3 6337 (62%) 297 (35%) 65 (38%)
PID4 7168 (57%) 308 (32%) 62 (32%)

17

 * : Dynamic power consumption at 47MHz; (XX%): saving.

y(k)

e(k-1)

uc(k)

C

 FIGURE 6.5 – Incremental PID architecture.

.

uc(k)

_

Reg

Reg

y(k)

e(k)

e(k-2)

B

A

+
+ R

eg
 u(k)

u(k-1)

M
A

C

O
D

M
A

C

n n

PID3-4

_

2n+log2(r)+2

uc(k)

uc(k) y(k)

C + +

M
A

C

Reg

y(k)

e(k-1)

_

R
eg

B

A

O
D

M
A

C

uc(k)

y(k) P(k)

.

D R
eg

O
D

M
A

C

E

f(k)

D(k-1)

R
eg

I(k-1)

I(k)

+

 R
eg

FIGURE 6.6 – Commercial PID architecture.

n n

PID1-2

2n+log2(r)+2

u(k)

_ _

Chapter 6 − Applications

 132

TABLE 6.4 − Modified Booth algorithm.

Y2j+1 Y2j Y2j-1 Operation
0 0 0 + 0
0 0 1 + X
0 1 0 + X
0 1 1 + 2X
1 0 0 - 2X
1 0 1 - X
1 1 0 - X
1 1 1 - 0

 [] j
n

j

jj TPXQZTYX
2

1)2/(

0

2.... ∑
−

=

+=+ . (6.8)

Likewise, n/2 simple partial products are generated (Table 6.4). Since ODMAC is a reconfigurable

RTL block, it is parameterized to suit Eq. 6.8. The new adapted ODMAC architecture is depicted in

Fig. 6.7. The only difference is that Mux(8:1) are used instead of Mux(4:1), and (<<2.j) hardwired

shifter instead (<<1.j). Compared to BMA based PID (Table 6.5), MBMA based one (PID1) shows

much more interesting results, since latency is divided by 2 while maintaining stable power

consumption and speed. Control rate is drastically improved as its equal to maximum clock frequency

divided by latency. As the discrete commercial form (Eq. 6.1) can accommodate the three functioning

modes, implementation of PID2 produced the following power consumption values at 47 MHz: 268

mW, 313 mW, and 366 mW for P, PI, and PID functioning modes, respectively.

With regard of these improvements, one is encouraged to pursue farther [24] in reducing latency by

considering larger slices, such as:

 () ∑∑
−

=

−

=
++− =−++=

1)3/(

0

33
1)3/(

0

23

2

13313 222.2
n

j

j

j

j
n

j

jjjj QyyyyY , (6.9)

where 01 =−y and }{ 4,...,0,...,4−∈jQ .

But in this case, some hard partial products are required such as 3X and −3X which are not easy to

generate. How to circumvent this obstacle is the purpose of the next section.

FIGURE 6.7 – Optimized DMAC architecture for r=2

X T Y Z

z2j-1

z2j+1

z2j

j = 0 , (n/2)-1
ODMAC Reg

X.Y+T.Z

+
Cin

 Mux

T "0" T

 2T 2T T T

 "0"

 Mux

X "0" X

 2X 2X X X

 "0"

+
Cin

<< 2j

(Qj.X) (Pj.T)

y2j
y2j+1

y2j-1

2n+1

n n n n

 TABLE 6.5 − Implementation result comparison of MBMA-based PID.

PID
Core

Total Gate
Count Power* (mW)

Max. Clock
Freq. (MHz)

Latency

PID [21] 16728 456 47 17
PID1 10642 (36%) 350 (23%) 62 (32%)
PID2 11923 (29%) 366 (20%) 61 (30%)
PID3 7042 (58%) 303 (33%) 64 (38%)
PID4 7795 (53%) 315 (31%) 62 (32%)

9 (47%)

 * : Dynamic power consumption at 47MHz; (XX%): saving.

Chapter 6 − Applications

 133

6.1.4 RMRMA Based PID

 Multiplication is a fundamental operation in digital design. Its speed and power requirements are

two critical factors limiting the whole system performances (PID in our case). Since the publication of

Booth’s algorithm in 1951, a huge number of improvement attempts were proposed, especially after

the publication of a generalized version of MBA algorithm accompanied with its proof [29]. Most of the

proposals aimed to reduce the number of partial products either by employing digital optimization

techniques [30][31][32] or by using larger slices (higher radices) [33]. However, experience showed

[34] that beyond 4-bit slices (radix 8), the complexity to generate hard partial products can not be

managed in a realistic way. In [34], three metrics are provided for comparing the tradoffs when

employing higher radix Booth recodings: partial product compression factor (gain), the number of hard

multiples that must be precomputed (computation complexity), and partial product generation fanin

(routing complexity).

To circumvent the problem of hard partial products in higher radices, the idea proposed in [35] is to

apply a recursive Booth recoding on the r-bit slice. While the idea is interesting, it relies upon a

complicated mathematical formulation, leading to a complex control circuitry and especially to an

exaggerated latency (2n/r).

 According to the multibit recoding algorithm presented in [29], an n-bit two’s complement operand Y

can be written as:

(∑
−

=
++− ⋅⋅⋅++++=

1)/(

0

2

2

1

10

1 2.22
rn

j

rjrjrjrj yyyyY) ∑
−

=
−+

−
−+

− =−+
1)/(

0

1

1

2

2 2222
rn

j

rj

j

rj

rrj

r

rrj

r
Qyy , (6.10)

 where 01 =−y ; *Ν∈r ; and { }11 2,...,0,...,2 −−−∈ rr

jQ .

In this general case, the multiplier Y is divided into n/r slices, each of r+1 bits. Each pair of two

contiguous slices has one overlapping bit. To bypass the problem of hard partial products, MBMA (Eq.

6.7) is applied to the Qj terms. Thus, Eq. 6.10 takes the new simpler recursive form:

)([)(...2.22.2 2

321

1)/(

0

0

11 +−++−+= +++

−

=
+−∑ rjrjrj

rn

j

rjrjrj yyyyyyY)(+−++
−

−+−+−+

)2
2

(2

345 2.2

r

rrjrrjrrj yyy

)(rj

r

rrjrrjrrj yyy 22.2
)1

2
(2

123 



−+

−

−+−+−+
 (6.11)

()
()()

rj
rn

j

r

i

i

irjirjirj yyy 222
1

0

12

0

2

21221∑ ∑
−

=

−

=
++++− 








−+=

/ /

. (6.12)

()()
rj

rn

j

r

i

i

jiQ 22
1

0

12

0

2∑ ∑
−

=

−

=








=

/ /

, with }{ 2,1,0,1,2 −−∈jiQ . (6.13)

There is no need to prove Eq. 6.11 since it is a combination of Eq. 6.10 and 6.7 which were already

proven in [29] and [28], respectively. The partitioning of operand Y according to Eq. 6.13 is illustrated

by Fig. 6.8. To avoid dealing with special cases, n and r must be chosen as even numbers, with r as a

divider of n. Thus, the DMAC equation becomes:

 () rj
rn

j

i
r

i

jiji TPXQZTYX 22....
1)/(

0

2
1)2/(

0

∑ ∑
−

=

−

=








+=+ . (6.14)

Chapter 6 − Applications

 134

Depending on r value ranging from 2 to n, PIDs with various levels of parallelism and latencies

(n/r+1) can be automatically generated with slight control complexity. The special cases of r=n and

r=2 correspond to fully-parallel and fully-sequential PID, respectively. In between (r=4,n/2), partially-

parallel PIDs are obtained. The outstanding advantage of this algorithm (Eq. 6.13) is that hard partial

products are generated using simple ones (2X, X) only. For a simplified hardware and lower power

consumption, the step-by-step sign-propagate technique is employed [36].

Obviously, Eq. 6.13 does not reduce the number of partial products, but allows a modulable space-

time partitioning of the multibit recoding algorithm (Eq. 6.10), where n/r sets comprising each r/2

partial products can be generated and summed either simultaneously or iteratively. Whilst the parallel

implementation of Eq. 6.13 allows an important reduction of the critical path (using a carry-save adder

CSA), it requires too much space. Therefore, only the serial implementation is retained. In this case,

latency drops from (n/2+1) to (n/r+1), whereas the overhead on the total critical path, which goes

through log2(r/2) adder levels and which is equal to D in the case of MBMA, is slightly increased

D+log2(r/2). Note that we are using a logarithmic summation tree and not a linear one (CSA like).

An illustrative serial example with r=4 is described as follows:

 () j
n

j

jjjjj yyyyyY
4

1)4/(

0

34

3

24

2

14414 2222∑
−

=
+++− −+++= (6.15)

 ()
()

j

n

j i

i
ijijij yyy 4

14/

0

1

0

2
21424214 222∑ ∑

−

= =
++++−












−+= (6.16)

 []
()

j
n

j

jj QQ 4
14

0

2

10 22∑
−

=

+=
/

 (6.17)

 () ()[] j
n

j

jjjj TPXQTPXQZTYX
4

1)4/(

0

2

1100 22.. ∑
−

=

+++=+ (6.18)

The mapping of Eq. 6.18 into a serial architecture is shown in Fig. 6.9. Such a case (r=4) would

have required the computation of hard partial products (7X, 5X, 3X) if the simple form of Eq. 6.15

was used. Notice that MBMA is a special case of RMRMA for r=2. For r=1, Eq. 6.10 corresponds to

BMA (Eq. 6.4).

 FIGURE 6.8 – Partitioning of a 16-bit Y operand with r=8.

Q0

y-1 y0 y1 y2 y3 y4 y5 y6 y7 y8 y9 y10 y11 y12 y13 y14

y

Q00

Q1

Y

Y
16+1 bits

Qj

 8+1 bits

Qji

2+1 bits

Q01

Q02

Q03

Q10

Q11

Q12

Q13

 : y-1= 0

Chapter 6 − Applications

 135

Table 6.6 comprises the implementation results of PIDs with n=16 and r=4,8,16. For instance, PID1

with r=4 not only achieves high improvement in latency (71%), but also maintains positive savings in

power (14%) and speed (13%). These important achievements are partially due to logic-trimming

performed by the synthesis tool on the constant coefficients. Such an operation is impossible in the

case of PID [21] since the coefficients are stored into LUTs.

At this stage, a key question arises: among this panoply of PIDs, which one fits the best one’s

application case? The answer to this question is given in the next section.

6.1.5 Discussion

 In embedded control, satisfactory control-rate (without performance degradation) at minimum power

consumption is the main requirement. To select the most adequate PID for a given application, it’s

necessary to investigate how speed, power and hardware resources scales versus r factor for a fixed

word length n. Referring to Eq. 6.14 and aided by Fig. 6.9, the ODMAC architecture scales as a binary

tree with one stage of r mux(8:1) followed by Log2(r)+1 stages of adders with a total of r adders too.

Thus, the total delay cumulated by the critical path which goes through Log2(r)+2 stages increases

with O(Log(r)) complexity, whilst latency (n/r+1) decreases linearly O(r), which makes the maximum

control-rate increases as r increases. This is confirmed by implementation results shown in Table 6.7

 TABLE 6.6 − Implementation result comparison of RMRMA-based PID.

PID
Core

Total Gate
Count Power* (mW)

Max. Clock
Freq. (MHz)

Latency

PID [21] 16728 223 47 17
PID1_4 12443 (+26%) 191 (+14%) 53 (+13%) 5 (+71%)
PID1_8 15688 (+06%) 194 (+13%) 44 (-06%) 3 (+82%)
PID1_16 23545 (-41%) 217 (+03%) 26 (-45%) 2 (+88%)
PID2_4 22962 (-37%) 256 (-15%) 43 (-08%) 5 (+71%)
PID2_8 26073 (-56%) 204 (+08%) 37 (-21%) 3 (+82%)
PID2_16 40327 (-141%) 488 (-119%) 23 (-51%) 2 (+88%)

 *: Dynamic power consumption at 23MHz; PIDY_X: X = r;

 (+AB%): saving; (-AB%): overhead.

FIGURE 6.9 – Optimized DMAC architecture for r=4.

X T Y Z

Reg

X.Y+T.Z

+
Cin

y
4

j+
1

 Mux

T "0" T

 2T 2T T T

 "0"

y
4

j-
1

y
4

j+

 Mux

X "0" X

 2X 2X X X

 "0"

y4j+1 +
Cin

z4j+1

z4j+3

+
Cin

<
<

 2

<< 4j

 Mux

T T

 2T 2T T T

 "0"

 Mux

X "0" X

 2X 2X X X

 "0"

y4j+3
z4j+3 +

Cin

<
<

 2

 "0"

(Qj0.X)

j = 0 , (n/4)-1
ODMAC

(Pj0.T)
(Qj1.X) (Pj1.T)

y
4

j+
3

y
4

j+
1

y
4

j+
2

1

z 4
j+

1

z 4
j-

1

z 4
j+

z 4
j+

3

z 4
j+

1

z 4
j+

2

n n n n

2n+2

Chapter 6 − Applications

 136

and 6.8 corresponding to PID1 and PID2, respectively. The sole exception to this general rule is

PIDX_n/2 which always yields to the highest control-rate compared to PIDX_n despite the numerous

tests with various n values. This is justified since they exhibit very close latencies (3 and 2,

respectively) and one stage difference in the critical path (n-1 and n, respectively), but an important

multiplexer fanin difference (n/4 and n/2, respectively).

 In terms of resource occupation, the total complexity grows linearly O(r) as r multiplexers and r

adders are required by ODMAC which is the most resource consuming block of PID architecture. This

is also confirmed by the implementation results shown in Table 6.6. Note that each adder of each level

of MAC and ODMAC as well as the two ones at the output of the PID (Fig. 6.5 and 6.6) are

successively extended by one bit so that the total bit size of the control output u(k) becomes

2n+log2(r)+2. It’s necessary to do so to prevent the apparition of a possible overflow in the data-path

which can cause signal clipping and instabilities in the closed loop response [37].

 As for power consumption, intuitively, one would expect to see PID1_16 of Table 6.7 as being the

most rapid and the most power consumer too, for the reason that it exhibits the smallest latency and

the biggest total gate count! While it is almost true for the latter (13 MHz, before the first), it is quite the

opposite for the former (244 mW, the smallest one). The explanation is that power consumption

(
clkswdd FCVP 25.0=) depends linearly on the frequency (Fclk), which is in this case 26 MHz (the

smallest one) and also on the switched capacitance (Csw) which describes the average capacitance

charged during each clock period (1/Fclk). In fact, Csw depends on a number of parameter (circuit

structure, logic function, input pattern dependence…) and not only on the total gate count (more

precisely, not only on the total physical capacitance of the circuit). Furthermore, a study [38] that

analyzed the dynamic power consumption in Xilinx’s FPGA revealed the following share: 60% by

 TABLE 6.7 − Maximum power-consumption and control-loop-cycle of PID1.

PID
Core Power* (mW)

Max. Clock
Freq. (MHz)

Latency Max. Control Loop
Cycle (MHz)

PID [21] 456 47 17 2.76
PID1_1 342 (+25%) 62 17 3.65 (+32%)
PID1_2 350 (+23%) 62 9 7.66 (+177%)
PID1_4 431 (+05%) 53 5 10.60 (+284%)
PID1_8 365 (+20%) 44 3 14.67 (+431%)
PID1_16 244 (+46%) 26 2 13.00 (+371%)

*: Dynamic power consumption at maximum clock frequency; PID1_X: X=r;

Max. control loop cycle = Max. clock frequency / Latency.

 TABLE 6.8 − Maximum power-consumption and control-loop-cycle of PID2.

PID
Core Power* (mW)

Max. Clock
Freq. (MHz)

Latency Max. Control Loop
Cycle (MHz)

PID [21] 456 47 17 2.76
PID2_1 466 (-02%) 61 17 3.59 (+30%)
PID2_2 475 (-04%) 61 9 6.78 (+146%)
PID2_4 479 (-05%) 43 5 8.60 (+211%)
PID2_8 328 (+28%) 37 3 12.33 (+347%)
PID2_16 488 (-07%) 23 2 11.50 (+317%)

*: Dynamic power consumption at maximum clock frequency; PID2_X: X = r;
Max. control loop cycle = Max. clock frequency / Latency.

Chapter 6 − Applications

 137

routing, 16% by logic, and 14% by clocking. The reason is that routing is intensively segmented, using

pass logic and buffers.

 When both high control-rate close to 13MHz and low power are required, PID1_16 (244 mW at

13MHz) stands as the best candidate compared to PID1_8 (323 mW at 13MHz). However, it’s

noteworthy to mention that this comparison stands valid only for the special case of 16-bit word-length

PID, for a given set of coefficients, mapped on XC2S150E-7FT256 FPGA circuit and using Xilinx’s

XST synthesis tool, version 9.2. Results could significantly change under other conditions, especially

when considering the logic trimming process which is essentially dependant on the bit-arrangement of

the coefficients. For a minimum influence of the trimming operation on the synthesized results,

appropriate coefficients were used such as all Qj terms are represented except the null one to avoid

generating null partial products that greatly simplify the circuit logic. In fact, constant coefficients PIDs

(PID1) are somehow unpredictable with regard to r. They are coefficient dependant. Adversely, PID2 is

not involved with the trimming process since coefficients are time varying. Implementation results

comprised in Table 6.8 show that PID2_8 is the best at all aspects for the same reasons cited above.

In sum, when high control-rate is the ultimate objective, PIDX_n/2 is the best candidate whatever n

value. But in the case where both high speed and low power are required, timing and power

evaluations are necessary to decide which PID to select: either PIDX_n/2 or PIDX_n.

 Finally, when only low power is targeted, PIDX_1 is the best candidate. We dealt here with extreme

situations only, but for a given couple (cr, pc) of control-rate and power consumption, several

candidates are possible. Yet, the best PID is the one which requires the smallest gate count.

 So far, speed and power have been considered in isolation to area which becomes critical, and

sometimes prohibitive, for large word-length n due to the fact that PID is basically built of a set of

multipliers (three or five) that scale quadratically with word length. The bigger is the area, the higher is

the cost. Consequently, another advantage of RMRMA algorithm is to cope also with the cost issue as

an additional constraint to speed and power.

 We have deliberately chosen Spartan2e FPGA to compare our results with those provided in [21]. A

mapping on a recent FPGA circuit (Virtex6) using XST 12.1 version of extreme PID2 delivered state-

of-the-art results grouped in Table 6.9. Note that control-rate scaled with an average factor of 2, while

power dissipation scaled with an average factor of 45.

 This is not surprising, since Spartan2e and Virtex6 were fabricated with two differently scaled

technology processes: 150 nm and 40 nm, respectively. Therefore, the physical capacitances of the

circuit in Virtex6 are relatively too much smaller. Additionally, the supply-voltages (Vdd) used for

internal core (Vccint) and for output blocks (Vcco) are respectively 1.8V and 3.3V for Spartan2e, 1V

and 2.5V for Virtex6. Furthermore, the efficient advances made in CAD tools (from Xilinx ISE 9.1 to

 TABLE 6.9 − Maximum power-consumption and control-loop-cycle of PID2 mapped on Virtex6.

PID
Core

Number
of Slices Power* (mW)

Max. Clock
Freq. (MHz)

Latency Max. Control Loop
 Cycle (MHz)

PID2_1 231 23 122 17 07.17
PID2_8 1060 04 90.5 3 30.16
PID2_16 1963 13 50.4 2 25.19

*: Dynamic power consumption at maximum clock frequency; PID2_X: X=r; Max. control loop

cycle=Max.clock frequency / Latency.

Chapter 6 − Applications

 138
FIGURE 6.10 – The co-simulation of the PID in the Simulink/Modelsim environment.

12.1 versions) as well as in FPGA architecture, such as advanced segmented-routing, much

contributed to lower the power consumption [39]. Power consumption evaluation studies [38][39]

based on simulation and measurements, targeting Virtex2 and Virtex6 families revealed the following

results: 5.9µW per CLB per MHz, and 1.09 mW per 100 MHz at 38% toggle rate, respectively. These

studies roughly confirm our power results as proximate values are obtained.

 Timing and power evaluations were performed in the following conditions. Delays were calculated

for two types of paths: Clock-To-Setup and all paths together (Pad-To-Setup, Clock-To-Pad and Pad-

To-Pad.) The Clock-To-Setup gives more precise information on the delays than other remaining

paths, which depend in fact on I/O Block (IOB) configuration (low/high fanout, CMOS, TTL, LVDS…).

Thus, all delays (frequencies) presented so far are clock-to-setup delays with the highest speed grade

of the FPGA circuit. As for power, we chose the highest Vcco voltage value (3.3 for Spartan2e and

2.5 for Virex6) with a maximum toggle activity of 50%, which means that Flip-Flops (FFs) toggle one

time during each clock cycle. The reason is that only simple-edge triggered FFs are used for synthesis

(no double-edge FFs).

6.1.6 Verification Method

 The PID design verification process went through several steps. First Eq. 6.12 and 6.14 were tested

with a random C-program. Then, a severe cycle-accurate functional verification procedure using

Modelsim simulator was applied to MAC and ODMAC as they are the main building blocks of PID

architecture. They were challenged against a set of special test cases (visual simulation), and then

submitted to a random test for a very large number of vectors. Once tested successfully, the RTL PID

module written in Verilog-2001 (IEEE 1364) was integrated into Modelsim/Simulink environment for a

co-simulation. At this stage, a ZOH discrete time invariant model of a third order continuous process

(G(s)=1/(s+1)3) was chosen from the test set used by Åström and Hägglund [1] as examples of

representative plants for the dynamics of typical industrial processes (Fig 6.10).

Chapter 6 − Applications

 139

 To derive the PID parameters, a theoretical PID taken from Matlab component-library was tuned

using floating-point numerical representation (IEEE 754 double format). The sampling period Ts was

chosen based on the magnitude of the pole time constants. For this case Ts=10 ms. The following

parameters were obtained:

 Kp = 0.5913 ; Ti = 0.0523 ; Td = 0.0225 for N=10 and b=1.

 Calculations give the following floating-point values for the coefficients of commercial PID:

 A=0.5913; B=−0.5913; C=0.1130; D=0.1836; E=−1.0860

 To co-simulate the RTL PID, a conversion of the coefficients to 16-bit (Q4.12) fixed-point

representation was necessary. Variations were obtained:

 A=0.5911; B=−0.5911; C=0.1130; D=0.1836; E=−1.0860

 Note that to represent the original parameters with full-precision, 44 bits are needed for the

fractional part. Varied simulations were performed to verify the correctness of the PID RTL code. First,

to explore the precision effect on control quality, the control output of PIDs with various fractional-part

sizes (Q4.4 , Q4.12 , Q4.20) were compared to that of the Matlab floating-point PID component (Fig. 6.11).

Simulation shows different rise-times for different precisions. The higher is the precision; the closer is

the control output from the ideal model. The second simulation tests the behavior of the PID after

having reached the steady state (Fig. 6.12). For that, two perturbations are successively exerted on

control output and on the plant measure. Each time the system recovers as expected. And finally, the

third simulation investigates the PID capabilities to track set-points of arbitrary amplitudes and

durations (Fig. 6.13).

 After a successful functional verification, the RTL code of PID was synthesized, placed, and routed

on Xilinx’s FPGA (Virtex-2). The three preceding co-simulations but with timing backannotation were

performed again as a last necessary software verification step before hardware integration of the PID

into an FPGA evaluation board (MEMEC V2MB1000).

 Finally, as an ultimate validation step, a physical test of our PIDs is performed. We built up a

classical temperature control setup (Fig. 6.14 and 6.15), which consists in a tube comprising a

halogen lamp (12 V, 21 W), a temperature sensor (LM35), and a DC Fan (12 V, 1.68 W). Temperature

regulation inside the tube is achieved by controlling either the intensity of the lamp, or the rotation

speed of the fan. This is carried out by the use of two PWMs, whose duty-cycle ratios represent the

PID controller output (u(k)). These two PWMs do not act directly on the fan or on the lamp but rather

on transistors (IRF540) that control the power consumed by the lamp and fan.

0 20 40 60 80 100 120 140
0

0.2

0.4

0.6

0.8

1

Time (s)

R
es

p
o

n
se

Set Point (Uc)

PID (4 .4)

PID (4 .12)

PID (4 .20)

PID Ideal Model

0 100 200 300 400 500
0

0.5

1

1.5

Time (s)

R
es

p
o

n
se

Set Point (Uc)

Plant Measure (Y)

0 100 200 300 400
0

0.2

0.4

0.6

0.8

1

Time (s)

R
e
sp

o
n

se

Set Point (Uc)

Plant Measure (Y)

FIGURE 6.11 – Fixed-point versus
floating-point.

FIGURE 6.12 – Perturbation after
steady-state on control-output and
on plant measure, successively.

FIGURE 6.13 – Set-point tracking of
arbitrary amplitudes and durations.

Chapter 6 − Applications

 140

 The sensing of the actual temperature of the tube is assured by LM35 component which delivers a

voltage value that grows linearly with temperature (1.5 volts corresponds to 150 °C). As the maximum

voltage allowed by FPGA evaluation board (V2MB1000) is 3.3 Volts, the calculation of the real

temperature (T) is done as follows: T = [(val_opb_ADC * 3.3)/1023] * 100. This allows a temperature

control with a minimum step of 0.32 °C.

The V2MB1000 board is connected through RS232 port to a PC running a .net application which

allows a real-time display of the temperature as well as an instantaneous tuning of the set-point.

6.1.7 The Finite-Word-Lenght (FWL) Effect

Fixed-point arithmetic is employed as an approximation of real numbers (floating-point), with a fixed

bit-length of the word used to represent data (Finite Word-Length). This limitation leads to

performance degradation (FWL effect) mainly due to quantization of coefficients (parametric errors)

and roundoff errors subsequently cumulated during the computation process (numeric noise). In fact,

the FWL effect is more-or-less exaggerated depending on the control algorithm used (I/O relationship,

levels of parallelism, etc) as well as on the way the computations are performed (number of bits,

different/unique fixed point position, round/truncation, etc). Compared to the reference floating-point

implementation, the FWL effect can be assessed using some indicators such as transfer function

sensitivity, or pole sensitivity [40][41][42].

In fact, the objective is twofold: we need to provide an optimal ASIC/FPGA implementation of FWL

PID without degrading control performances. To achieve such a goal, a double expertise is required in

hardware design and control system. But usually, hardware designers do not master control system

design, and control system experts do not have the required skills to implement and evaluate the

controllers using ASIC/FPGAs [17][43]. This is why we propose a highly reconfigurable (n, r) and

technology-independent FWL PID that can systematically respond to control-engineer demands after

having modelled, simulated, and evaluated the performances provided by different bit-width fixed-point

representations using Matlab/Simulink environment, and finally opted for an appropriate word-length

(n) of the setpoint. As for latency value (r), it depends on the application domain and intended

objectives. Precise guidelines on how to choose r value were given in Section 6.1.5.

Now that (n, r) couple is known, the FWL problem is tackled from hardware side by simply adjusting

 Memec
V2MB1000

FPGA
Evaluation

Board

Tube

Fan Lamp

5V

LM35

Electronic
Device

PMW Fun
PMW Lamp

FIGURE 6.14 – Synoptic scheme of the setup. FIGURE 6.15 – Setup of temperature regulation.

1: FPGA evaluation board; 2: Electronic device;
3: Tube containing a fan and a lamp, 4: PC
display screen.

Chapter 6 − Applications

 141

in the RTL code the two compile-time constants: setpoint bit-size (n) and latency (r). The synthesis of

such a PID generates an optimal structure that not only meets the performances specified by control-

engineers, but also consumes minimum power and hardware resources. This would not have been

possible without the use of the new highly serialisable multi-bit multiplication algorithm (Eq. 6.13). The

incorporation of Eq. 6.13 [25] into Eq. 6.1 and 6.2 as an efficient PID engine, allows the generation of

PID architectures classified as regular iterative architectures (RIA) [44], known for their high conformity

with the principles of regularity and locality. In addition to Eq. 6.13, we highly recommend to use the

optimal multiplier (Eq. 5.22) for high values of n (n≥16). As for low values of n, we have proposed in

[25] several new highly serialisable multiplication algorithms, offering different features in power,

space and delay, depending on the operand size (n). Reader is encouraged to explore these

algorithms [25] to select the appropriate one that leads to best performances of its controller with

regard to the size (n) of the setpoint.

Regularity and locality are two important features, highly sought in hardware design as they lead to

an important gain in space and delay. Regularity is a general space feature, where the repetitiveness

of just one or few elementary building-blocks (mux, adders and shifters of ODMAC, Fig. 6.9) and their

interconnection scheme (predefined netlist) suffice to draw the whole architecture (MAC/ODMAC and

then PID). In the other hand, locality is both space and time feature, in the sense where each building-

block can only interact with its nearest surrounding neighbours, and any transaction from one

building-block to the next is completed in one and only one unit time delay (clock period). Because of

these two important features, our PIDs can be finely grained at bit level in space (setpoint bit-size n,

latency r) and unit delay in time (latency r).

Experimental results depicted in Fig. 6.16 illustrate the FWL effects on temperature regulation.

Reducing the fractional-part size of the set-point beyond a certain limit (4 bits) yields to a continuous

fluctuation of the temperature inside the tube (Fig. 6.16d). The best compromise is a 6-bit fractional-

part (Fig. 6.16c) which ensures a correct regulation while consuming less power and hardware

T
em

pe
ra

tu
re

 °
C

T

em
pe

ra
tu

re
 °

C

Time (s)

Time (s)

T
em

pe
ra

tu
re

 °
C

T

em
pe

ra
tu

re
 °

C

Time (s)

Time (s)

(a) (b)

(c) (d)

FIGURE 6.16 – Effect of the setpoint fractional length on temperature regulation.

(a) Floating point PID; (b) Our PID with Qni.nf = Q8.8 ; (c) Our PID with Qni.nf= Q8.6 ;

(d) Our PID with Qni.nf= Q8.4

Chapter 6 − Applications

 142

resources. As temperature regulation system has a very slow dynamic, speed is not a concern.

Therefore, the most appropriate PID in this case is PIDX_1 as it is the least power consumer.

Adversely, for very fast dynamic systems, such as MEMS [45] or microrobotics applications [46],

PIDX_n/2 is the most adequate option as it leads to the highest control rate.

6.2 LQG Controller with Kalman Filter

 Accurate and dexterous micromanipulation tasks are very important in a wide range of

microrobotics applications such as microassembly tasks, minimally invasive surgery, genetics, in vitro

fertilization, and cell mechanical characterization. In this case, the use of microgrippers and controlling

gripping forces applied on manipulated samples in the micrometer range (i.e. between 1µm and 1mm)

without destroying and damaging is still a great scientific and technological challenge [47].

 The AS2M department of FEMTO-ST (Besançon) has been working for many years on problems

related to the modelling and control of micro-systems for micro-assembly/micromanipulation

applications. One of its numerous works is the modelling [47] and control [48] of the FT-G100 micro-

gripper (Fig. 6.17) in order to enable dexterous micromanipulation tasks through gripping force

sensing and control. The developed control model is based on the Linear Quadratic Gaussian (LQG)

controller with Kalman filter.

 We show hereafter how the Matlab model of the controller (LQG+Kalman) is gradually translated

into a synthesisable Verilog code through the application of the new SCM/MCM heuristics introduced

in Chapter 4.

6.2.1 Dynamic Model of the FT-G100 Micro-Gripper

 The gripping force appears when the gripper arms are in contact with the manipulated object. The

use of a coupled model of the gripper is necessary in order to take into account both dynamics of the

actuated subsystem (electrostatic actuator + actuated arm) and the sensing one (sensing arm +

capacitive sensor) (Fig. 6.18). The actuated and sensing subsystems are first modelled when an

external force is applied at the tip of the gripper arms. Thereafter a simple modelling of the

manipulated object is used to couple previous subsystems in the state space representation. Internal

dimensions of the FTG100 microgripper provided by femtotools technical support

Sensing arm

Actuated arm

Capacitive sensor

Suspension system

Electrostatic
micro-actuator

1 mm

Bulk

FIGURE 6.17 – Structure of the FT-G100 microgripper (Femto Tools GmbH).

Source: [48]

Chapter 6 − Applications

 143

“support@femtotools.com” are used for the modelling approach. Higher dynamics of each subsystem

are neglected as their effects are not significant. Thus, only second order models are considered [47].

Actuated System Modelling

 Around an excitation voltage of 70V, the model of the discrete state of the actuated system

identified during the gripping of a glass-ball of 80µm diameter is the following:

() () ()
() ()




⋅=

⋅+⋅=+

kXCkx

kVBkXAkX

aa

inaa

1

11 1
, (6.18)

with

() 00258470773147100.0169971768640419.0

0

5.0

01

600999630645015.084396851580395.1

=−=









=







 −
=

aa

aa

DC

BA
.

Sensing System Modelling

 Likewise, the state-space representation of the sensing system is defined as follows:

() () ()

() ()



⋅=

⋅+⋅=+

kXCkx

kFBkXAkX

cb

ccc

2

22 1
, (6.19)

with

() 0130512992324508.01446150605315717.0

0

25.0

01

418119672818668.095714256082923.1

=−=









=







 −
=

cc

cc

DC

BA
.

Coupled System Modeling

 Considering the assumption that the objects being manipulated by the micro-gripper behave like a

spring having a stiffness k0, it is possible to characterize the effort of the gripping force Fc by the

following equation: () () abbbac xkkkxxkxxkF ⋅+=⇒⋅=−⋅= 20020 / , with k2 being the stiffness

of the sensing system.

 Now we can group both models (Eq. 6.18 and 6.19) into a generalized model defining the FT-G100

xb xa

Fc
Micro-object

Actuated arm Sensing arm

Vout Vin Electrostatic
actuator

Capacitive
sensor

FIGURE 6.18 – System modelling.

Source: [48]

Chapter 6 − Applications

 144

Time Update ("Predict"): time=k Measurement Update ("Correct"): time=k+1
(5) Update the error covariance at time k+1:

() ()[] ()kkPCkKIkkP e /1.11/1 4 +⋅+−=++

(1) Project the state ahead for time
k+1:

() () ()kVBkkXAkkX in⋅+⋅=+ /ˆ/1ˆ

(4) Update state estimate with the innovation at
time k+1:

() () () ()1
~

.1/1ˆ1/1ˆ ++++=++ kVkKkkXkkX oute

(2) Project the error covariance ahead
for time k+1:

() () TT MWMAkkPAkkP ⋅⋅+⋅⋅=+ //1

(3) Compute the Kalman gain at time k+1:

() () ()[] 1
/1/11

−
+⋅+⋅⋅⋅+=+ VCkkPCCkkPkK TT

e

FIGURE 6.19 – Kalman recursive algorithm.

micro-gripper in the gripping phase (actuation and sensing), as follows:

()
()

()
()

()

() []
()
()

() () ()
() ()

,
.1

0

0

0

1

1

2

1

2

1

2

1





⋅=

+⋅=+













≡









⋅⋅=

⋅







+








⋅








⋅⋅
=









+

+

kXCkV

kVBkXAkX

kX

kX
CrkV

kV
B

kX

kX

ACkB

A

kX

kX

out

in

cout

in
a

cakc

a

with () ()2020 / kkkkkk +⋅= .

6.2.2 Kalman Filtering

 Kalman filtering [49] uses a state-space representation comprising a stochastic part modeled in the

form of a state noise w(k) and a measure noise v(k). Considering Eq. 6.20, the Kalman model of the

microgripper FT-G100 is:

() () ()

() ()
,

)(

)(.1





+⋅=

⋅++⋅=+

kvkXCkV

kwMkVBkXAkX

out

in (6.21)

where 14)(×ℜ∈kX : system state vector at time eTkt ⋅= , eT is the sampling period.

 44×ℜ∈A : transition state matrix.

 14×ℜ∈B : control input matrix.

 11×ℜ∈inV : known and deterministic input vector.

 () 14×ℜ∈kw : vector of random unknown signals coming disrupting the equation state of the

system through an entry matrix 41×M .

 11×ℜ∈outV : vector of measures (output).

 41×ℜ∈C : observation output matrix.

 () 11×ℜ∈kv : vector of random signal disrupting the system measures.

 Fig. 6.19 summarizes the different equations governing the evolution of the Kalman algorithm,

implemented on the micro-gripper FT-G100 (Eq. 6.21). The algorithm requires at the starting step the

determination of the initial states)0/0(P and)0/0(X̂ . A zero value has been assigned to these

parameters due to the initial state of the system.

(6.20)

Chapter 6 − Applications

 145

 It is important to note that the gain of Kalman Ke rapidly converges to a constant value. It is

therefore possible to make an offline calculation of the gain and exploit its permanent regime

throughout the filtering algorithm. In this case, only equations (1) and (4) of the Fig. 6.19 are used.

6.2.3 Force Control of the FT-G100 Micro-Gripper

 The LQG belongs to the category of controllers called "optimal". It is based on the minimization of

an energy criterion in order to achieve a compromise between the performance of the controlled

system and the energy consumed. The LQG controller and the Kalman filter can be independently

calculated according to a principle of separation. The synthesis of the LQG for controlling the FT-G100

micro-gripper is beyond the scope of this thesis. We limit ourselves to the utilization of the final

equation provided in [48]:

()
()

()
()

()

() []
()
()

,

0

001

1





















⋅=

⋅






 ⋅
+








⋅








⋅−

⋅⋅−
=









+

+

k

kX
Ck

kF
LB

k

kX

CKA

KBKBA

k

kX

x
y

cc
xe

cc

x

ε
ε

εε
 (6.22)

where yε is the estimation error of the output, ccF is the force setpoint, and () () ()kkXkXkx /ˆ−=ε .

 The general control scheme grouping the LQG controller and Kalman filter is depicted in Fig. 6.20.

6.2.4 Hardware integration of the LQG controller with Kalman Filter

 The Matlab model corresponding to Fig. 6.20 was kindly provided by Boudaoud [48] (Appendix D).

It runs on dSPACE with a 200 KHz sampling frequency. We have translated it to a synthesizable

Verilog code (Appendix D) through the methodology described in Fig. 6.21. The latter can be

perceived as a standard methodology allowing the translation of LTI Matlab models to synthesizable

HDL (Verilog/VHDL) code. The steps of Fig. 6.21 are successively commented as follows.

() () ()
() ()




+⋅=

⋅++⋅=+

)(

)(.1

kvkXCkV

kwMkVBkXAkX

out

in

FT-G100 state-space
model

+
−

Gripping
 force

Fc
Sens

Sensor
sensitivity

Vin(k)
 L

Fcc

Force
setpoint

Kc

Predict

Correct

 Discret Kalman
filter

Vout(k)

()1/1ˆ ++ kkX

Gain
FIGURE 6.20 – General scheme of the LQG controller with Kalman filter.

Prefilter

Source: [48]

Chapter 6 − Applications

 146

Step #1

 Before performing the functional verification, we must determine which state-space form, canonical

or simple, is more optimized (contains more zeros and ones elements). Because using the Matlab

"canon" function, we have noticed that for low order systems (≤4) the canonical form is not necessarily

better than the simple form. To decide which form to use, we have to count the number of zeros and

ones elements in each representation. In our case, we opted for the canonical form though it does not

offer a clear advantage over the simple form (to be in total conformity with the initial Matlab model for

ulterior comparisons). Then, before pursuing the process, we must be sure that the Matlab description

is 100% functionally correct to avoid very time-consuming backward verifications. In our case, the

Matlab model of Fig. 6.20 has undergone severe verifications. For instance, Fig. 6.22 describes the

noisy and filtered force (Fc) of the actuated arm.

Step #2

 In this step, the Matlab code is decompressed: the linear matrix operations (+, −, ×) are replaced by

FIGURE 6.21 – Standard methodology for an optimized hardware integration
of LTI systems: from Matlab functional model to HDL synthesizable code.

Matlab functional verification of the simple/canonical

state-space representation of the LTI system

− Matlab Matrix Model −

Translate the matrix model to the scalar model

− Matlab Scalar Model −

Translate the fixed-point SCM/MCM scalar

model to a fixed-point HDL synthesizable model

 − Fixed-Point HDL Synthesizable Code −

Mapping the fixed-point HDL code to FPGA

− FPGA Netlist Format −

Mapping of the fixed-point HDL code to ASIC

− ASIC Netlist Format −

Translate the floating-point scalar model to a

quantified fixed-point scalar model

 − Matlab Fixed-Point Scalar Model −

Step #5

Step #6

Step #7

Translate the fixed-point scalar model to a

quantified fixed-point SCM/MCM scalar model

 − Matlab Fixed-Point SCM/MCM Scalar Model −

Step #4

Step #1

Step #2

Step #3

Chapter 6 − Applications

 147

scalar operations. The higher the order of the system, the more difficult the translation is. In our case,

the order of the system is 4. The decompression process results in 29 multiplications and 23 additions.

The decompression operation is error prone; therefore it should be carefully performed or automated if

possible. A functional verification of the scalar model is necessary to move to the next step.

Step #3

 This is a crucial step. Up to now, we have been using the floating-point representation. To move to

the fixed-point representation, we need to determine the dynamic range of all the variables involved. In

our case, this operation has led to an integer part of 5 bits and a fractional part of 16 bits (Q5.16). With

21-bit word length, the difference between the floating-point and the fixed-point filtered force (Fc) is

less than 7×10−5 µN as indicated by Fig. 6.23. Improving the precision (<7×10−5 µN), will result in a

larger controller (from a hardware point of view).

×10−5

Time (µs)

F
or

ce
 (

µ
N

)

FIGURE 6.23 – The difference between the floating-point and the fixed-point filtered force (Fc).

FIGURE 6.22 – The noisy and filtered force (Fc) of the actuated arm.

Chapter 6 − Applications

 148

Step #4

 In this step, the scalar multiplication (×) is replaced by SCM/MCM (additions, subtractions, and

shifts) and the common sub-expressions are eliminated using MCM. In our case, the replacement of

the scalar multiplication by SCM/MCM results in 101 additions (Appendix D). The 29 multiplications of

step #3 would have required ()  2902912/21 =×− additions in case the optimal multiplier (Eq. 5.22)

was used. Adding the 29 additions, the total number of additions corresponding to step #3 is

290+23=313. A saving of (313-101)/313=68% is therefore induced. In fact the saving in logic

resources is more important since the 29 multipliers require a recoding logic (PPG).

 The Matlab simulation results of this step must be exactly identical to the ones of step #3.

Step #5

 In this step, the Matlab model is simply translated into a synthesizable HDL code (Verilog in our

case). The code should be compliant to the standard design-reuse methodology [6] to make it

technology-independant. This allows the code to be mapped on FPGA and ASIC as well.

Matlab/Simulink simulations are necessary to validate the code. Simulation results should be exactly

identical to the ones of step #3.

 For the time being, this step is under progress. The Matlab code of step #4 has been systematically

translated into a Verilog code, and the necessary verifications are being performed.

Step #6

 The synthesizable HDL code is mapped to a FPGA circuit and physical tests are performed to

validate the HDL code.

Step #7

 Since the HDL code is technology-independent (design-reuse methodology), it can also be mapped

to an ASIC using a standard-cell-library of a given foundry (e.g. TSMC 0.18 µm CMOS technology).

 The hardware integration flow of LTI FWL controllers (Fig. 6.21) is very time consuming and error-

prone, particularly the crucial steps #3 and #4. Consequently, the automation of the design flow

becomes necessary, especially for high order systems.

6.3 Conclusion

 Despite the large popularity of PID controller, little attention has been paid to its optimization, either

for ASIC or for FPGA integration. To break down this paradoxical situation, a series of high-speed and

low-power PIDs, dedicated to embedded applications were proposed. They are based on two discrete

forms of PID algorithm: the incremental form and the commercial form, both with constant and time-

varying coefficients. The work focused more particularly on the commercial form with varying

coefficients (LTV) as it is the most used in industry due to the higher control-quality provided. Two

types of optimizations were carried out: architectural and algorithmic optimizations. The former is a

macro-level optimization, based on an efficient partitioning of PID discrete-equations, considering the

double MAC (DMAC) as the main building block of PID architecture. An optimized version of DMAC

was developed (ODMAC) for less hardware resource occupation. As for the micro-level optimization

(inner optimization of ODMAC), three multiplication algorithms were experienced: BMA, MBMA, and a

Chapter 6 − Applications

 149

new general and recursive version of MBMA called RMRMA. In addition, some low-power design

techniques were incorporated, such as: sleep mode, and step-by-step sign-propagation technique.

 The implementation results of PID based upon these three algorithms yielded to gradual

improvements with a clear superiority over results presented in [21]. For instance, concerning PID1_2

and PID1_4, savings of 177%, 23%, and 36%, and savings of 284%, 14%, and 26% are obtained in

control-rate, power consumption, and total gate count, respectively. Additionally, analytical scaling-

complexity evaluations with respect to the couple (n,r), confirmed also by software simulations,

revealed useful information which is summarized as follows:

• PIDX_n/2 is the fastest PID that yields to the highest control-rate (30 MHz for PID2_8 mapped

on Virtex6, with (n,r)=(16,8));

• PIDX_1 is the most power efficient PID when speed is not a concern;

• PIDX_n and PIDX_n/2 are the most efficient PIDs when both high control-rate and low-power

dissipation are required.

 RMRMA is a double recursive algorithm (Eq. 6.13), which is a particular case of Eq. 5.22. The use

of the triple recursive version (Eq. 5.22) instead Eq. 6.13 will produce more efficient PIDs.

 Further extension to the present work is to apply the same (or appropriate) partitioning in

conjunction with RMRMA algorithm (or Eq. 5.22) to the set of recurrent equations of an arbitrary

number of multi-loop PID controllers taken as a whole.

 The LTI option has been addressed through the implementation of an LQG controller with Kalman

filtering. A methodology for converting a Matlab code to a synthtizable HDL code has been proposed

and applied. Though it has contributed to a drastic reduction of logic resources (68% saving) due to

the utilization of our SCM/MCM algorithms, the methodology is very time-consuming and error-prone,

especially for high-order systems. The automation stands therefore as the sole practical solution,

however, it requires a considerable effort (code translations).

Chapter 6 − Applications

 150

Bibliography

[1] K. Åström, T. Hägglund, “PID Controllers: Theory, Design, and Tuning,” by the Instrument Society

of America, Research Triangle Park, NC, USA, 2nd Edition, ISBN: 1-55617-516-7, Copyright 1995.

[2] D. Xue et al, “Linear Feedback Control,” by the Society for Industrial and Applied mathematics,

Copyright 2007. Available: http://www.siam.org/books/dc14/DC14Sample.pdf

[3] S. Xiaoyin et al, “A New Motion Control Hardware Architecture with FPGA based IC-Design for

Robotic Manipulators,” Proceedings of the IEEE International Conference on Robotics and

Automation (ICRA), pp. 3520-3525, Orlando, Florida, May 2006.

[4] J.S. Kim, H.W. Jeon, and S. Jeung, “Hardware Implementation of Nonlinear PID Controller with

FPGA based on Floating Point Operation for 6-DOF Manipulator Robot Arm,” Proceedings of the

IEEE International Conference on Control Automation and Systems (ICROS), pp. 1066-1071,

Seoul, Korea, October 2007.

[5] L. Qu, Y. Huang, and L. Ling, “Design and Implementation of Intelligent PID Controller based on

FPGA,” Proceedings of the IEEE International Conference on Natural Computation (ICNC), pp.

511-515, 2008.

[6] M. Keating & P. Bricaud, “Reuse Methodology Manual for System on a Chip Designs,” by the

Kluwer Academic Publishers, NY, USA, 3rd Edition, ISBN: 1-4020-7141-8, Copyright 2002.

[7] Reports of the International Technology Roadmap for Semiconductors (ITRS), 2007 & 2008.

 Available: www.itrs.net/reports.html

[8] T. Hilaire, P. Chevrel, and J.F. Whidborne, “A Unifying Framework for Finite Word Length

Realizations,” IEEE Trans. on Circuits and Systems, Vol. 54, N° 8,, August 2007.

[9] T. Hilaire, D. Ménard, and O. Sentieys, “Bit Accurate Roundoff Noise Analysis of Fixed-Point

Linear Controllers,” Proceedings of the IEEE International Conference on Computer-Aided Control

Systems (CACSD), pp. 607-612, 2008.

[10] S. Gretlein et al, “DSPs, Microprocessors and FPGAs in Control,” the Magazine of Record for the

Embedded Computing Industry (RTC Magazine), March 2006.

[11] E. Manmasson et al., “FPGA in Industrial Control Applications,” IEEE Trans. on Industrial

Informatics, vol. 7, N° 2, May 2011.

[12] S. Chander, P. Agarwal, and I. Gupta, “ FPGA-based PID Controller for DC-DC Converter,”

Proceedings of the IEEE Joint International Conference on Power Electronics, Drives and Energy

Systems (PEDES), India, 2010.

[13] S. Yang et al, “The IP Core Design of PID Controller based on SOPC,” Proceedings of the IEEE

International Conference on Intelligent Control and Information Processing, pp. 363-366, Dalian,

China, August 2010.

[14] J. Lazaro et al, “Simulink/Modelsim Simulable VHDL PID Core for Industrial SoPC Multiaxis

Controllers,” Proceedings of the IEEE 32nd Annual Conference on Industrial Electronics (IECON),

pp. 3007-3011, 2006.

[15] F. Fons, M. Fons, and E. Canto, “Custom-Made Design of a Digital PID Control System,”

Proceedings of the IEEE International Conference on Acoustics, Speech and Signal

Processing(ICASSP), Vol. 3, pp. 1020-1023, 2006.

Chapter 6 − Applications

 151

[16] B.V. Sreenivasappa and R.Y. Udaykumar, “ Design and Implementation of FPGA based Low

Power Digital PID Controllers,” Proceedings of the IEEE International Conference on Industrial

and Information Systems (ICIIS), pp. 568-573, 2009.

[17] J. Lima et al, “A Methodology to Design FPGA-based PID Controllers,” Proceedings of the IEEE

International Conference on Systems, Man and Cybernetics, pp. 2577-2583, Taipei, Taiwan,

October 2006.

[18] I. Urriza et al, “Word Length Selection Method based on Mixed Simulation for Digital PID

Controllers Implemented in FPGA,” Proceedings of the IEEE International Symposium on

Industrial Electronics (ISIE), pp. 1965-1970, 2008.

[19] W. Zhao et al, “FPGA Implementation of Closed-Loop Control Systems for Small-Scale Robot,”

Proceedings of the IEEE 12th International Conference on Advanced Robotics (ICAR), pp. 70-77,

2005.

[20] L. Samet et al, “A Digital PID Controller for Real-Time and Multi-Loop Control: a Comparative

Study,” Proceedings of the IEEE International Conference on Electronics, Circuits, and Systems

(ICECS), vol. 1, pp. 291-296, 1998.

[21] Y. Fong, M. Moallem, and W. Wang, “Design and Implementation of Modular FPGA-Based PID

Controllers,” IEEE Trans. on Industrial Electronics, Vol. 54, N° 4, pp. 1898-1906, August 2007.

[22] B. Wittenmark, K. J. Astrom, and K.-E. Arzenin “Computer control: An overview,” Technical Report

of Dept. of Automatic Control, Lund Institute of Technology, Lund, Sweden, Apr. 2003.

 Available: www.control.lth.se/kursdr/ifac.pdf

[23] A. D. Booth, “A Signed Binary Multiplication Te:chnique,” Quarterly J. Mech. Appl. Math., Vol. 4,

part 2, pp. 236-240,1951.

[24] O.L. MacSorley, “High-Speed Arithmetic in Binary Computers,” Proceedings of the IRE, Vol. 49(1),

pp. 67-91, January 1961.

[25] A.K. Oudjida, N. Chaillet, A. Liacha, and M.L. Berrandjia, “A New Recursive Multibit Recoding

Algorithm for High-Speed and Low-Power Multiplier,” Journal of Low Power Electronics (JOLPE),

vol. 8, N° 5, pp. 1-16, December 2012, American Scientific Publishers (ASP), USA.

[26] A.K. Oudjida et al., “High-Speed and Low-Power PID Structures for Embedded Applications,”

Proceedings of the 21th edition of the International Workshop on Power and Timing Modeling,

Optimization and Simulation PATMOS, LNCS 6951, pp. 257-266, Springer-Verlag Editor. Madrid,

Spain, September 26-29, 2011.

[27] Y.H. Seo, and D.W. Kim, “A New VLSI Architecture of Parallel Multiplirer-Accumulator Based on

Radix-2 Modified Booth Algorithm,” IEEE Trans. on VLSI Systems, vol. 18, N° 2, Feb. 2010.

[28] L.P. Rubinfield, “A Proof of the Modified Booth Algorithm for Multiplication,” IEEE Trans. On

Computers, C-24, (10), pp. 1014-1015, 1975.

[29] H. Sam, and A. Gupta, “A Generalized Multibit Recoding of Two’s Complement Binary Numbers

and its Proof with Application in Multiplier Implementation,” IEEE Trans. on Computers, vol. 39,

N° 8, August 1990.

[30] F. Lamberti, “Reducing the Computation Time in (Short Bit-Width) Two’s Complement Multiplier,”

IEEE Trans. on Computers, vol. 60, N° 2, pp. 148-156, February 2011.

[31] S.R. Kuang, J.P. Wang, and C.Y. Guo, “Modified Booth Multipliers with a Regular Partial Product

Array,” IEEE Trans. on Circuit and Systems II, Express Brief, vol. 56, N° 5, May 2009.

Chapter 6 − Applications

 152

[32] J.Y. Kang, J.L. Gaudiot, “A Simple High-Speed Multiplier Design,” IEEE Trans. on Computers, vol.

55, N° 10, Oct. 2006.

[33] D. Crookes and M. Jiang, “Using Signed Digit Arithmetic for Low-Power Multiplication,” Electronics

Letters, vol. 43, N° 11, may 2007.

[34] P.M. Seidel, L. D. McFearin, and D.W. Matula, “Secondary Radix Recodings for Higher Radix

Multipliers,” IEEE Trans. on Computers, vol. 54, N°2, February 2005.

[35] R.C. North, and W.H. Ku, “β-Bit Serial/Parallel Multipliers,” Journal of VLSI Signal Processing,

Kluwer Academic Publishers, Boston, vol. 2, pp. 219-233, 1991.

[36] D.A. Henlin, M.T. Fertsch, M. Mazin, and E.T. Lewis, “A 16 bit x 16 bit Pipelined Multiplier

Marcrocell,” 1EEE Journal of Solid-State Circuits, vol. SC-20, no. 2, pp. 542-547, 1985.

[37] J.S. Kelly et al, “Design and Implementation of Digital Controllers for Smart Structures Using Field

Programmable Gate Arrays,” Smart Material Structure Journal, PII: S0964-1726 (97) 87085-1, pp.

559-572, Printed in the UK, 1997.

[38] L. Shang, A.S. Kaviani, and K. Bathala, “Dynamic Power Consumption in Virtex-II FPGA Family,”

Proceedings of FPGA Conference, pp. 157-164, Monterey, California, USA, February 2002.

[39] Xilinx Inc., “Virtex6 FPGA: Satisfying the Insatiable Demand for Higher Bandwidth,” PN 2403,

Printed in the USA, Copyright 2009.

 www.xilinx.com/publications/prod_mktg/Virtex6_Product_Brief.pdf

[40] M. Gevers and G. Li, “Parametrizations in Control, Estimation and Filtering Probems,” Springer-

Verlag, 1993.

[41] T. Hilaire and P. Chevrel, “Sensitivity-based pole and input-output errors of linear filters as

indicators of the implementation deterioration in fixed-point context,” EURASIP Journal on

Advances in Signal Processing, vol. special issue on Quantization of VLSI Digital Signal

Processing Systems, January 2011.

[42] B. Lopez, T. Hilaire and L.S. Didier, “Sum-of-products Evaluation Schemes with Fixed-Point

arithmetic, and their application to IIR filter implementation,” Proceedings of the IEEE International

Conference on Design and Architecture for Signal and Image Processing (DASIP), Karlsruhe,

Germany, Oct. 2012.

[43] M. Petko and G. Karpiel, “Semi-automatic implementation of control algorithms in ASIC/FPGA,”

Proceedings of Emerging Technologies and Factory Automation Conference (ETFA '03), vol. 1,

pp. 427- 433. Sept. 2003.

[44] S.K. Rao and T. Kailath, “Regular Iterative Algorithms and their Implementation on Processor

Arrays,” Proceeding of the IEEE, vol. 76, pp. 259-269, Mar. 1988.

[45] G. Hoover et al, “Towards Understanding Architectural Tradeoffs in Mems Closed-Loop Feedback

Control,” Proceedings of the International Conference on Compilers, Architecture, and Synthesis

for Embedded Systems (CASES’07), pp. 95-102, Salzburg, Austria, Sep. 30-Oct. 3, 2007.

[46] R. Casanova et al, “Integration of the Control Electronics for a mm3-sized Autonomous Microrobot

into a Single Chip,” Proceedings of the IEEE International Conference on Robotics and

Automation (ICRA), pp. 3007-3012, Kobe, Japan, May 12-17, 2009.

[47] M. Boudaoud, Y. Haddab, and Y. Le Gorrec, "Modelling of a MEMS Micro-Gripper: Application to

Dexterous Micromanipulation," Proceedings of the IEEE/RSJ International Conference on

Intelligent Robots and Systems, pp. 5634-5639, Taipei, Taïwan, October 18-22, 2010.

Chapter 6 − Applications

 153

[48] M. Boudaoud, "Commande en Effort d'une Micropince en Actionnenement Electrostatique,"

Master Thesis, AS2M Department, FEMTO-ST, Besançon, July 2009.

[49] G. Welch and G. Bishop, "An Introduction to the Kalman Filter," Internal Report, Department of

Computer science, UNC-Chapel Hill, TR 95-041, July 24, 2006.

Chapter 7

General Conclusion

Chapter 7 − General Conclusion

 154

Chapter 7

General Conclusion

 Let us restart from the introduction:

 The objective of the thesis is the development of a new binary arithmetic adapted to the FWL

problem, enabling an easy generation of minimum word-size controller-structures with

acceptable control performances.

 In this thesis, a new radix-2r
 arithmetic has been developed. It basically relies on the multibit

recoding algorithm which was introduced in 1990 but abandoned due to its inability to cope with high-

radix arithmetic. We have solved its radix lock and taken, as a result, full advantage of its high

potential in producing efficient multiply arithmetic, which is the real engine of LTI/LTV controllers. In

addition, because highly-scalable (r), the new radix-2r
 arithmetic is well adapted to the FWL effect.

Given a bit-size N of the word that ensures acceptable control performance, the new arithmetic is

capable of generating the optimal realization of the FWL controller without degrading the control

performances.

 The "optimality" of the realization comes from the multipliers themselves. For each value of N, we

provide the optimal space/time partitioning of the multiplier that leads ineluctably to the optimal

implementation of the controller structure. This is valid for both types of multiplier: variable multipliers

and constant multipliers.

 The variable and the constant multipliers have been used to build up two FWL structures: an LTV

(PID) and LTI (LQG + Kalman filter) controllers, respectively. The PID shows a high superiority over its

existing counterparts, either in speed, power, or area. As for the LQG controller, a drastic reduction in

logic resources is achieved, which means also much higher speed and less power consumption.

 We have proved via the implementation of the PID and LQG controllers, the high capabilities of the

new arithmetic to respond to the needs of MEMS applications in speed, power, and especially in

scalability for an easy adjustment of the control performances.

7.1 Major Contributions

 Breaking the high-radix deadlock of the multibit recoding algorithm has enabled to achieve some

important results in binary arithmetic, notably:

• The development of a linear O(N) and fully predictable heuristic for the multiplication by a

constant (SCM/MCM). The major advantage over the existing heuristics is that no limitation

exists on the word-size (N) of the LTI controller.

• The development of an optimal algorithm for the multiplication by a variable (MV). According

to the word-size of the LTV controller, there exists an optimal multiplier that leads to an

optimal implementation of the controller.

Chapter 7 − General Conclusion

 155

• The development of several multi-precision multipliers (MPM) allowing a number of LTV

controllers with different word-sizes to share the same multiplication array. This contributes to

increase the throughput while decreasing the power consumption.

• The determination of the currently best known analytically-proved bounds for the multiplication

problem (SCM, MCM, and MV).

7.2 Current Limitations

 Because of a limited time, a number of improvements could not be undertaken, namely:

• For the multiplication by a constant, we have proposed two heuristics: RADIX-2r and R3.

While RADIX-2r is fully predictable (Upb, Ath, Avg), R3 is not predictable. Nevertheless, since

we have proved that R3 is better than RADIX-2r, R3 can be bounded by RADIX-2r metrics.

• Lefèvre's algorithm for the multiplication by a constant relies on CSD recoding. Since R3 is

much better than CSD, combining Lefèvre's algorithm with R3 will produce better results.

• To determine the optimal multiplier (Eq. 5.22), we have employed a mathematical formalism

(Eq. 5.21) including only four low radix recodings (Seidel radix-28 and radix-25, McSorley

radix-22, and Booth radix-21). These are the only low-radix algorithms that we are aware of. In

case another low-radix recoding exists, it can be inserted into Eq. 5.21 to look for another

optimum that could be better than Eq. 5.22.

• We still do not know whether RADIX-2r is a canonical recoding (minimal and unique) even

after the simplifications given by Eq. 3.45 and 3.46. A mathematical proof is missing. The

proof, if any, will let to declare RADIX-2r as a generalization of CSD (i.e. CSD=RADIX-21).

• While the theoretical concept for MV has been validated using FPGA as a preliminary step, an

ASIC implementation based on a standard-cell library is necessary for an ultimate validation of

the whole optimization work.

7.3 Perspectives

 The new arithmetic is a complete package, ready for integration. While it is dedicated to MEMS

applications in general, a direct utilization for the AS2M department would be in the control of

microgrippers or the integration of smart sensors.

 Translating FWL controllers from high-level specifications in C or Matlab code to a synthesizable

HDL code requires a fully automated design flow. Such a flow is already under progress in a French

ANR project called DEFIS (Design of Fixed-Point Embedded Systems) [1]. It would be useful to

explore the possibility to integrate some of the results of this thesis into the DEFIS flow, especially the

predictable SCM/MCM heuristic and the optimal MV algorithm.

 The "predictability" is a highly sought feature for CAD synthesis tools. It enables the synthesis tools

to rapidly satisfy designer requirements in speed and area, avoiding therefore unnecessary feedbacks.

Hence, the new SCM/MCM, MV, and MPM algorithms can be incorporated into synthesis tools to

produce predictable IPs.

Chapter 7 − General Conclusion

 156

 Finally, the new arithmetic can be advantageously applied to other numeric areas, such as DSP,

image processing, telecommunication, and encryption. An idea is to apply the new SCM/MCM and MV

algorithms in RSA encryption to target long encryption keys (more than 4096 bits).

Bibliography

[1] D. Menard et al., “Design of Fixed-Point Embedded Systems (DEFIS) French ANR Project,”

Proceedings of the IEEE International Conference on Design and Architecture for Signal and

Image Processing (DASIP), Karlsruhe, Germany, Oct. 2012.

Appendices

Appendix A − Proofs of Theorems 4.3 and 4.4

 157

Appendix A

Proofs of Theorems 4.3 and 4.4

Proof of Theorem 4.3

 Initially, the multiplier Y is an N bit string. But to comply with the requirement of the multibit

recoding algorithm, we need to add a zero bit (y−1) to the less significant side of Y. Thus, the total size

becomes N+1. Y is a two’s complement number. It is written as follows:

122101 −−− ⋅⋅⋅= NN yyyyyyY , with y−1=0

 1
1

2
2

2
2

1
1

0
0

1 22222 −
−

−
−

− −+⋅⋅⋅++++= N
N

N
N yyyyyy

 j
N

j

j

N

N yy 22
2

1

1

1 ∑
−

−=

−
− +−=

 In the multibit recoding algorithm, the multiplier Y is split into N/r two’s complement slices (jQ),

each of r+1 bit length. Two contiguous slices (Qj with Qj−1, and Qj with Qj+1) have one overlapping bit

in common. Thus Y becomes:

 (∑
−

=
++− ⋅⋅⋅++++=

1

0

2
2

1
10

1 222
r

N

j

rjrjrjrj yyyyY) ∑
−

=
−+

−
−+

− =−+

1

0

1
1

2
2 2222

r

N

j

rj
j

rj
rrj

r
rrj

r
Qyy

In fact the Qj term is no more than a two’s complement representation of r+1 bit string which can

be split in its turn into r/s two’s complement overlapping slices (Pji), each of s+1 bit length. Thus Y

becomes:

 ([∑
−

=
++− ⋅⋅⋅++++=

1

0

2
2

1
10

1 222
r

N

j

rjrjrjrj yyyyY) +−+ −+
−

−+
− 0

1
1

2
2 222 srj

s
srj

s yy

 (⋅⋅⋅++++ +++++−+ 2
2

1
10

1 2.22 srjsrjsrjsrj yyyy) +−+ −+
−

−+
− s

srj
s

srj
s yy 222 12

1
22

2

 .

 .

 .

 (⋅⋅⋅++++ +−++−+−+−−+ 22
2

12
1

2
0

21 2.22 srrjsrrjsrrjsrrj yyyy) +−+








−

−−+
−

−−+
−

2

1
1

2
2 222 s

r
s

srrj
s

srrj
s yy

 (⋅⋅⋅++++ ++++++−+−−+ 2
2

1
10

1 2.22 srrjsrrjsrrjsrrj yyyy)






−+









−

−+
−

−+
−

1

1
1

2
2 222 s

r
s

rrj
s

rrj
s yy

Appendix A − Proofs of Theorems 4.3 and 4.4

 158

() rj
r

N

j

s

r

i

si
sisrj

s
sisrj

s
sirjsirjsirjsirj yyyyyy 22.22222

1

0

1

0

1
1

2
2

2
2

1
10

1∑ ∑
−

=

−

=
+−+

−
+−+

−
++++++−



















−+⋅⋅⋅++++=

rj
r

N

j

s

r

i

si
jiP 22

1

0

1

0

∑ ∑
−

=

−

=


















=

 A synoptic scheme is depicted in Fig. A.1 to illustrate the use of Th 4.3 in the partitioning of a 16-bit

Y operand.

Proof of Theorem 4.4

 Likewise, Y can also be rewritten as follows:

 ([∑ ∑
−

=

−
+

=
+++++++−










⋅⋅⋅+++=

1

0

1

0

)(1
1

)(
0

)(1 .22
r

N

j

ts

r

i

itsrjitsrjitsrj yyyY) +−+ ++−+
−

++−+
−

itssrj
s

itssrj
s yy)(1

1
)(2

2 22

 (⋅⋅⋅+++ +++++++++−+ itssrjitssrjitssrj yyy)(1
1

)(
0

)(1 .22)] ()] rjitss
itsrrj

t
itsrrj

t yy 22222)(1
1

)(2
2 +

++−+
−

++−+
− −+

 [] () rj
r

N

j

ts

r

i

itss
jiji TP 222

1 1

0

∑ ∑
− −

+

=

+



















+=

A synoptic scheme is depicted in Fig. A.2 to illustrate the use of Th. 4.4 in the partitioning of a 16-bit

Y operand.

 y−1 y0 y1 y2 y3 y4 y5 y6 y7 y8 y9 y10 y11 y12 y13 y14 y15

P00

P01

P10

P11

Q0

Q1

Y

FIGURE A.1 Partitioning of a 16-bit Y operand with
r=8 and s=4

Y
 16+1 bits

Qj
 8+1 bits

Pji
4+1 bits

y−1 y0 y1 y2 y3 y4 y5 y6 y7 y8 y9 y10 y11 y12 y13 y14 y15

P00

T00

P10

T10

Q0

Q1

Y

FIGURE A.2 Partitioning of a 16-bit Y operand with r=8,
s=6 and t=2

Y
16+1 bits

Qj

 8+1 bits
Pji

 6+1 bits 2+1 bits
Tji

Appendix B

A Series of New High-Radix Recodings

Appendix B − A Series of New High Radix Recodings

 159

New High-Speed and Low-Power

Radix-2
r
 Multiplication Algorithms

A.K. Oudjida, A. Liacha, M.L. Berrandjia

Microelectronics and Nanotechnology Division

Centre de Développement des Technologies Avancées

Algiers, Algeria

a_oudjida@cdta.dz

N. Chaillet

AS2M Department

FEMTO-ST Institute

Besançon, France

nicolas.chaillet@femto-st.fr

Abstract— In this paper, a new recursive multibit recoding

multiplication algorithm is introduced. It provides a general

space-time partitioning of the multiplication problem that not

only enables a drastic reduction of the number of partial

products (N/r), but also eliminates the need of pre-computing odd
multiples of the multiplicand in higher radix (r≥3) multiplication.

Based on a mathematical proof that any higher radix-2r can be

recursively derived from a combination of two or a number of

lower radices, a series of generalized radix-2r multipliers are

generated by means of primary radices: 21 , 22, 25, and 28.

A variety of higher-radix (23-232) two’s complement 64x64 bit

serial/parallel multipliers are implemented on Virtex-6 FPGA

and characterized in terms of multiply-time, energy consumption

per multiply-operation, and area occupation for r value varying

from 2 to 64. Compared to a recent published algorithm, savings

of 21%, 53%, 105% are respectively obtained in terms of speed,

power, and area.

Keywords—High-Radix Multiplication; Low-Power Multiplication;

Multibit Recoding Multiplication; Partial Product Generator (PPG)

I. BACKGROUND AND MOTIVATION

The continuous refinement of the mostly-used design
paradigm based on modified Booth algorithm [1] combined to
a reduction tree (carry-save-adder array , Dadda,…) has
reached saturation. In [2] only slight improvements are
achieved. The proposal reduces the partial product number
from N/2+1 to N/2 using different circuit optimization
techniques of the critical path.

Theoretically, only the signed multibit recoding
multiplication algorithm [3] is capable of a drastic reduction
(N/r) of the partial product number, given that r+1 is the
number of bits of the multiplier that are simultaneously treated
(1≤r≤N). Unfortunately, this algorithm requires the pre-
computation of a number of odd multiples of the multiplicand
(until (2

r-1
-1).X) that scales linearly with r. The large number of

odd multiples not only requires a considerable amount of
multiplexers to perform the necessary complex recoding into
PPG, but dramatically increases the routing density as well.
Therefore, a reverse effect occurs that offsets speed and power
benefits of the compression factor (N/r). This is the main
reason why the multibit recoding algorithm was abandoned. In
practice, designs do not exceed r=3 (radix-8).

The current trend [4][5] relies upon advanced arithmetic to
determine minimal number bases that are representatives of the
digits resulting from larger multibit recoding. The objective is
to eliminate information redundancy inside r+1 bit-length
slices for a more compact PPG. This is achievable as long as no
or just very few odd multiples are required.

In [4], Seidel et al. have introduced a secondary recoding of
digits issued from an initial multibit recoding for 5≤r≤16. The
recoding scheme is based on balanced complete residue
system. Though it significantly reduces the number of partial
products (N/r for 5≤r≤ 16), it requires some odd multiples for
r≥8. While in [5], Dimitrov et al. have proposed a new
recoding scheme based on double base number system for
6≤r≤11. The algorithm is limited to unsigned multiplication
and requires a larger number of odd multiples.

Instead of looking for more effective number bases, which
is a hard mathematical task, our approach consists in exploiting
already existing odd-multiple free recoding algorithms
(2

1
, 2

2
, 2

5
, and 2

8
) to recursively build up generalized odd-

multiple free radix-2
r
 recoding schemes.

To achieve such a goal, the multibit recoding multiplication
algorithm is revisited [3]. Its design space is extended by the
introduction of a new recursive version that enables a
hardware-friendly space-time partitioning of the multiplication
problem. Depending on r value ranging from 2 to N, highly-
scalable signed multipliers with various levels of parallelism
and latencies can be systematically generated with insignificant
control-complexity. The new algorithm has also the merit to
recursively reduce the number of partial products (N/r) without
any limit for the parameter r and any need for the odd multiples
of the multiplicand. It also allows the combination of different
recoding schemes proposed in the literature into the same
architecture for better performances of the multiplier. Several
higher radix (2

3
-2

32
) two’s complement 64x64 bit serial/parallel

multipliers based on combined recoding schemes are
implemented on Virtex-6 FPGA and characterized in terms of
speed, power, and area occupation for r value ranging from 2 to
64. Compared to a new signed version of Dimitrov et al.
algorithm [5] and Seidel et al. algorithm [4], outstanding results
are obtained with the new multibit recoding scheme for r=8
formed by the combination of Seidel algorithm (r=5),
MacSorley algorithm (r=2) [1] and Booth algorithm (r=1) [6].

This work is supported by “Centre de Développement des Technologies

Avancées” (CDTA), Algiers, Algeria, in collaboration with FEMTO-ST

Institute, Besançon, France.

Appendix B − A Series of New High Radix Recodings

 160

The respective savings are as follows: 21%, 53%, 105%
and 8%, 52%, 63% are obtained in terms of multiply-time,
energy consumption per multiply-operation, and total gate
count, respectively.

 The paper is organized as follows. Section I outlines the
main requirement specifications for a generalized radix-2

r

multiplication. Section II introduces the new recursive multibit
recoding multiplication algorithm. A number of high-radix
(2

3
-2

32
) variants of the new algorithm accompanied with their

implementation results are presented in Section III.

II. THE NEW RECURSIVE MULTIBIT RECODING

MULTIPLICATION ALGORITHM

The equation (2.1.2) of the original multibit recoding

algorithm presented in [3] does not offer hardware visibility.

Let us rewrite it in a simpler hardware-friendly form, as

follows: (∑
−

=
++− ⋅⋅⋅++++=

1

0

2
2

1
10

1 222
r

N

j

rjrjrjrj yyyyY

) ∑
−

=
−+

−
−+

− =−+

1

0

1
1

2
2 2222

r

N

j

rj
j

rj
rrj

r
rrj

r
Qyy (1)

Where 01 =−y and *Ν∈r . For simplicity purposes and

without loss of generality, we assume that r is a divider of N .

In equation (1), the two’s complement representation of the

multiplier Y is split into N/r two’s complement slices (
jQ),

each of r+1 bit length. Each pair of two contiguous slices has
one overlapping bit. In literature, equation (1) is referred to by

radix-2
r
 equation, to which corresponds a digit set ()r

D 2 such

as () { }11 2022 −−−=∈ rrr
j ,...,,...,DQ . Thus, the multiplication

between X and Y becomes: rj
r

N

j

jQXYX 2...

1

0

∑
−

=

= (2). Where

each partial product can be expressed as follows:

() ()XmQX
esrj

j ..2.12.. −= , with () { }12...,,3,12 1 −=∈ −rr
mOm

such as () 2
22

−= rr
mO . ()r

mO 2 represents the required set of

odd-multiples of the multiplicand (m.X) for radix-2
r
. Hence, the

partial-product generation-process consists first in selecting
one odd- multiple (m.X) among the whole set of pre-computed
odd- multiples, which is then submitted to a hardwired shift of

e positions, and finally conditionally complemented (-1)
s

depending on the bit sign s of Qj term.. While lower m.X can be
obtained using just one addition (3X=2X+1X), the calculation
of higher ones may require a number of computation steps
(11X= 8X+2X+1X).

To bypass the hard problem of odd-multiples, we exploit
the fact that the two’s complement multiplier Y on which
equation (1) is applied, is composed of a series of two’s

complement digits (
jQ) on which equation (1) can be

recursively applied again. Based on this observation, let us
announce the two following theorems.

Theorem 1. Any digit ()r
j DQ 2∈ can be represented in a

combination of digits ()s

i DP 2∈ , such as s is a divider of r.

When theorem (1) is applied to equation (1), it gives:

rj
r

N

j

s

r

i

si
jiPY 22

1

0

1

0

∑ ∑
−

=

−

= 















= (3) ; where

() { }11 2022 −−−=∈ sss
ji ,...,,...,DP with

() { }12312 1 −= −ss
m ,...,,O such as

()
()

ks

s
m

r
m

O

O
2

2

2
= and

 rj
r

N

j

s

r

i

si
jiP.XY.X 22

1

0

1

0

∑ ∑
−

=

−

= 















= (4)

Theorem 2. Any digit ()r
j DQ 2∈ can be represented in a

combination of digits Pi+Ti such as ()s
i DP 2∈ and

()t

i DT 2∈ with s+t a divider of r , and t < s.

Likewise, when theorem (2) is applied to equation (1), we

obtain: [] () rj
r

N

j

ts

r

i

itss
jiji TPY 222

1 1

0

∑ ∑
− −

+

=

+

















+= (5). Where

() { }11 2,...,0,...,22 −−−=∈ sss
ji DP with

() { }12312 1 −= −ss
m ...,,,O and

 () { }11 2,...,0,...,22 −−−=∈ ttt
ji DT with

() { }12312 1 −= −tt
m ...,,,O such as

()
()

()tsk

ts
m

r
m

O

O
+

+
= 2

2

2

 and [] () rj
r

n

j

ts

r

i

itss
jiji TXPXYX 222...

1 1

0

∑ ∑
− −

+

=

+

















+= (6)

Theorem (1) and (2) allow an exponential reduction
(1/2

ks
 and 1/2

k(s+t)
, resp.) of the number of odd-multiples in

equations (4) and (6) in comparison to equation (2), but at the
expense of a linear augmentation (ks-1 and k(s+t)-1, resp.) in
the number of additions. The advantage by far outweighs the
cost, as practically shown in the next section.

The translation of equation (4) into architecture is depicted
by Fig. 1, where each PPGj (Qj) is built up using identical PPGji

(Pji). This is not the case for equation (6) which requires two
different PPGji (Pji and Tji) . Theorem (1) and (2) can be merged
together to produce PPGj made of a number of different PPGji
(Pji ,Tji , Uji , Vji ,...). This is the general case that is thoroughly
studied in the next section in order to determine the optimal
multiplier.

Appendix B − A Series of New High Radix Recodings

 161

TABLE II

THEORETICAL ESTIMATION OF AREA OCCUPATION AND DELAY

Area Occupation Delay (levels) Recoding

Algorithm Mux Add
Mux

Delay

PPG

Adders

Linear

Reduction Tree

ß22 5r r/2 d2 0 r/2

ß23 5r (2/3)r d2 1 r/3

ß25 27r (3/5)r d5 2 r/5

ß28 194r (7/8)r d8 6 r/8

ß'28 520r r/4 d'8 1 r/8

ß''28 19r (5/8)r d5 4 r/8

ß213 130r (10/13)r d8 9 r/13

ß216 100r (11/16)r d8 10 r/16

ß224 74r (16/24)r d8 15 r/24

ß232 60r (21/32)r d8 20 r/32

 Mux is an heuristic measure of the multiplexer logic inside PPGi . Add is the exact umber of

adders. di is the delay due to Mux logic (d2 < d5 < d8 < d'8)

2 4 8 16 32 64
1

2

3

4

5

6

7

8

9

10

11 ß2
2

 ß2
3

 ß2
5

 ß2
8

 ß'2
8

 ß''2
8

 ß2
13

 ß2
16

 ß2
24

 ß2
32

M
ax

.
E

n
e
rg

y
 p

er
 M

u
lt

.
O

p
er

at
io

n
 (

p
J)

Slice Size of the Multiplier (r Bits)

 Slice size of the multiplier (r bits)

 Figure 3. Max. energy consumption per mult. operation versus r.

2 4 8 16 32 64

10

20

30

40

50

ß2
32

M
il

li
o

n
 M

u
lt

ip
li

ca
ti

o
n
s

p
er

 S
ec

.
(M

M
P

S
)

 ß2
2

 ß2
3

 ß2
5

 ß2
8

 ß'2
8

 ß''2
8

 ß2
13

 ß2
16

 ß2
24

 ß2
32

Slice size of the multiplier (r bits)

 Figure 2. Max. multiply time versus r.

2 4 8 16 32 64

1k

2k

3k

4k

5k

6k

7k

A
re

a
O

cc
u

p
at

io
n

 (

N
b

r.
 o

f
V

ir
te

x
-6

 S
li

c
es

)

Slice Size of the Multiplier (r Bits)

ß2
2

 ß2
3

 ß2
5

 ß2
8

 ß'2
8

 ß''2
8

 ß2
13

 ß2
16

 ß2
24

 ß2
32

 Figure. 4. Area occupation versus r

III. SOME NEW HIGH RADIX (2
3
-2

32
) RECODING SCHEMES

Theorems (1) and (2) permit to build up any high radix-2
r

multiplication algorithm based on lower sub-radices,
employing much less odd-multiples. The objective is to
generate high radix-2

r
 multiplication without odd-multiples for

a maximum reduction of multiplexer complexity inside PPGj.
To achieve such a goal, a number of odd-multiple free low-
radix algorithms are used, such as Booth algorithm [6]
(radix-2

1
), McSorley algorithm [1] (radix-2

2
), Seidel et al.

algorithms [4] (radix-2
5
 and radix-2

8
). The combination of

these four algorithms enabled the generation of a series of
higher radix recoding schemes (2

3
-2

32
) with minimum

hardware resources (Table I). The generation process was
manually guided by an heuristic (Table II) that evaluates the
logic complexity (Mux) inside each PPGj (Fig. 1).

The multipliers were mapped to Virtex-6 FPGA and

characterized in terms of multiply-time, energy consumption

per multiply-operation, and area occupation for r value

varying from 2 to 64. The obtained results (Fig. 2, 3, and 4)

showed an outstanding superiority of our algorithms over their

recent counterparts [4][5]. When comparing our algorithms to

each other, ß2
2
 algorithm is the most area and energy efficient

algorithm for any value of r (Table II). For r ranging from 8 to

64, ß''2
8
 is the fastest algorithm, but it is outperformed by ß2

32

for r values greater than 64. ß2
2
 algorithm served to design a

16-bit set-point PID. The implementation results outperformed

the published ones at all levels [7].

REFERENCES
[1] O.L. MacSorley, “High-Speed Arithmetic in Binary Computers,”

Proceedings of the IRE, Vol. 49(1), pp. 67-91, January 1961.

[2] F. Lamberti, “Reducing the Computation Time in (Short Bit-Width)

Two’s Complement Multiplier,” IEEE Trans. on Computers, vol. 60, N°

2, pp. 148-156, February 2011.

[3] H. Sam, and A. Gupta, “A Generalized Multibit Recoding of Two’s

Complement Binary Numbers and its Proof with Application in

Multiplier Implementation,” IEEE Trans. on Computers, vol. 39, N° 8,

August 1990.

[4] P.M. Seidel et al., “Secondary Radix Recodings for Higher Radix

Multipliers,” IEEE Trans. on Computers, vol. 54, N°2, February 2005.

[5] V.S. Dimitrov et al., “Area Efficient Multipliers Based on Multiple-

Radix Representations,” IEEE Trans. on Computers, vol. 60, N° 2, pp

189-201, February 2011.

[6] A. D. Booth, “A Signed Binary Multiplication Te:chnique,” Quarterly J.

Mech. Appl. Math., Vol. 4, part 2, pp. 236-240,1951.

[7] A.K. Oudjida et al., “High-Speed and Low-Power PID Structures for

Embedded Applications” Proceedings of the 21th edition of the

International Workshop on Power and Timing Modeling, Optimization

and Simulation PATMOS, LNCS 6951, pp. 257-266, Springer-Verlag

Editor. Madrid, Spain, Sep. 26-29 2011.

∑

.

.

.

.

.

.

PPG00

. . .

PPG01

PPG0(r/s)-1

 PPG0

. . .

PPG10

. . .

PPG11

PPG1(r/s)-1

 PPG1

∑ . . .

PPG(n/r)-1 1

. . .

PPG(n/r)-1 2

PPG(n/r)-1 (r/s)-1

PPG(n/r)-1

∑ . . .

Y-1 , r-1

r+1

Yr-1 , 2r-1

r+1

Yn-r-1 , n-1

r+1

r
r

n








−1

 bits

PP0

PP(n/r)-1

 Figure. 1. Generalized N×N bit radix-2r parallel multiplier based

 on sub-radix 2s. Space partitioning according to r and s values.

r bits
PP1

X N

Appendix B − A Series of New High Radix Recodings

 162

Recoding

Algorithm
Recoding Equation and Main Features

r
2β ∑

−

=

=

1

0

2
r

N

j

jr
j .QY ; BR:

r2 ; OM: { }1231 1 −−r
...,,, ; DV: { }11 202 −−−∈ rr

j ,...,,...,Q ;

2
2β jr

r

N

j

r

i

i
ji .QY 22

1

0

1
2

0

2∑ ∑
−

=

−

= 















= ; BR:
22 ; OM: { }1 ; DV: }{ 21012 ,,,,Q ji −−∈ ;

3
2β () jr

r

N

j

r

i

i
jiji ..PQY 222

1 1
3

0

32∑ ∑
− −

= 















+= ; BR:
12 ,

22 ; OM: { }1 ; DV: { }21012 ,,,,Q ji −−∈ , { }101 ,,Pji −∈

5
2β () jr

r

N

j

i

r

i

jiji .PQ.Y 227

1

0

5

1
5

0

∑ ∑
−

=

−

= 















+= ; BR:
52 ; OM: { }1 ; DV: { }21012 ,,,,Q ji −−∈ , { }4210124 ,,,,,,Pji −−−∈

8
2β () jr

r

N

j

i

r

i

jijiji .TP.Q.Y 221111

1

0

8

1
8

0

2∑ ∑
−

=

−

= 















++= ;

BR:
82 ; OM: { }1 ;

DV: { }21012 ,,,,Q ji −−∈ ,

 { }1684210124816 ,,,,,,,,,,T,P jiji −−−−−∈ ;

8
2'β ()() jr

r

N

j

i

r

i

ji
he

ji
k

.P.Q.Y 22212

1

0

8

1
8

0

∑ ∑
−

=

−

= 















−+=

BR:
82 ; OM: { }7531 ,,, ;

DV: { }7531 ,,,P,Q jiji ∈

{ }76543210 ,,,,,,,h,k ∈ ; { }10 ,e ∈

8
2''β

() ()[] jr
r

N

j

r

i

i
jijijiji ...SRPQ.Y 22227

1

0

1
8

0

852∑ ∑
−

=

−

= 















+++=

BR:
12 ,

22 ,
52 ; OM: { }1 ;

DV: { }21012 ,,,,Q ji −−∈ , { }4210124 ,,,,,,Pji −−−∈ ,

 { }21012 ,,,,R ji −−∈ , { }101 ,,S ji −∈

13

2β () ()[] jr
r

N

j

r

i

i
jijijijiji ...SR.TP.Q.Y 22271111

1

0

1
13

0

1382∑ ∑
−

=

−

= 















++++=

 BR:
52 ,

82 ; OM: { }1 ; DV: { }21012 ,,,,Q ji −−∈ ,

{ }1684210124816 ,,,,,,,,,,T,P jiji −−−−−∈ ,

 { }21012 ,,,,R ji −−∈ , { }4210124 ,,,,,,S ji −−−∈

16
2β () jr

r

N

j

r

i

i

k

k
kjijijijiMTP.Q.Y 22221111

1

0

1
16

0

168
3

0

22∑ ∑ ∑
−

=

−

= = 




































+++=

BR:
22 , 82 ; OM: { }1 ; DV: { }21012 ,,,,Q ji −−∈ ,

{ }1684210124816 ,,,,,,,,,,T,P jiji −−−−−∈ ,

{ }21012 ,,,,M kji −−∈

24

2β

() () () jr
r

N

j

r

i

i
jijijiji

k

k
kjijijiji ...VU.SR...MTP.Q.Y 222227221111

1

0

1
24

0

24212168
3

0

22∑ ∑ ∑
−

=

−

= = 


























++++










+++=

 BR:
12 , 22 , 52 , 82 ; OM: { }1 ; DV: { }21012 ,,,,Q ji −−∈ , { }1684210124816 ,,,,,,,,,,T,P jiji −−−−−∈ ,

{ }21012 ,,,,M kji −−∈ , { }21012 ,,,,R ji −−∈ , { }4210124 ,,,,,,S ji −−−∈ , { }21012 ,,,,U ji −−∈ , { }101 ,,V ji −∈

32
2β

() () ()() jr
r

N

j

r

i

i

k

k
kjikji

k
kjikji

k

k
kjijijiji ...VU.SR...MTP.Q.Y 222227221111

1

0

1
32

0

32
1

0

82128168
3

0

22∑ ∑ ∑∑
−

=

−

= =

++

= 


























++++










+++=

BR:
12 , 22 , 52 , 82 ; OM: { }1 ; DV: { }21012 ,,,,Q ji −−∈ , { }1684210124816 ,,,,,,,,,,T,P jiji −−−−−∈ ,

{ }21012 ,,,,M kji −−∈ , { }21012 ,,,,Rkji −−∈ , { }4210124 ,,,,,,S kji −−−∈ , { }21012 ,,,,U kji −−∈ , { }101 ,,Vkji −∈

BR: Based on Radix ; DV: Digit Variations ; OM: Odd-Multiples

TABLE I

SUMMARY OF OUR NEW RADIX-2r MULTIBIT RECODING ALGORITHMS

Appendix C − PID Equations

 163

Appendix C

PID Equations

Incremental Form

 The standard version of the PID controller is described in a differential equation as:

() () () ()













+⋅+= ∫ ⋅

t

d
i

p
dt

tde
Tde

T
teKtu

0

1
ττ , where e is the system error (() () ()tytute c −=), uc is the

command signal (setpoint), y is the process variable (measured variable). Kp is the proportional gain,

Ti the integration time constant, and Td the derivative time constant of the controller. Using Laplace

transform, ()tu is expressed in s-domain by: () () () ()







⋅⋅+

⋅
+= sETs

Ts

sE
sEKsU d

i
p

.

 For a small sample interval Ts, the continuous time variable ()tu can be discretized using the

following approximations: () ()∑∫
=

⋅
⋅≈⋅

k

j

s

Tk
Tjedtte

s

0
0

; () () ()

sT

keke

dt

ted 1−−
≈ . k denotes the k

th
 sampling

instant (k.Ts). Thus, ()tu can be rewritten as:

 () () () () ()












 −−
+⋅+⋅= ⋅

=
∑

s
d

k

j

s
i

p
T

keke
TTje

T
keKku

11

0

 with () () ()kykuke c −= and

 () () () () ()












 −−−
++−=− ⋅

−

=
∑

s
d

k

j

sp
T

keke
TTje

T
keKku

i

21
.

1
11

1

0

.

 We calculate the difference:

 () () () ()() () ()













⋅−⋅+−−⋅=−− ∑∑

−

==

1

00

11
k

j

s

k

j

s
p

p TjeTje
T

K
kekeKkuku

i

 () () () ()







 −−−
−

−−
⋅+ ⋅

ss
dp

T

keke

T

keke
TK

211

 Developing separately each term of () ()1−− kuku , we obtain:

 () ()() () ()1.1 −⋅−=−−⋅ keKkeKkekeK ppp ;

 () () ()ke
T

T
KTjeTje

T

K

i

s
p

k

j

k

j

ss
i

p
⋅⋅=














⋅−⋅⋅ ∑ ∑

=

−

=0

1

0

;

Appendix C − PID Equations

 164

() () () () ()ke
T

T
K

T

keke

T

keke
TK

s

d
p

ss
dp ⋅⋅=







 −−−
−

−−
⋅ ⋅

211
;

() ()21
2

−⋅⋅+−⋅
⋅

⋅− ke
T

T
Kke

T

T
K

s

d
p

s

d
p

.

 After simplifications, we get the following recurrent equation:

 () () () ()1.2111 −⋅







+⋅−⋅








++⋅+−= ke

T

T
Kke

T

T

T

T
Kkuku

s

d
p

s

d

i

s
p ()2−⋅⋅+ ke

T

T
K

s

d
p

 () () ()11 −⋅+⋅+−= keBkeAku ()2−⋅+ keC .

 This latter equation is called the incremental form of the controller. A drawback with the incremental

algorithm is that it cannot be used for P or PD controllers.

Commercial Form

 For better performances of PID, two corrections are performed: limitation of the derivative gain and

setpoint weighting. A pure derivative action will induce a very large amplification of measurement

noise. The gain of the derivative must thus be limited. This can be done by approximating the transfer

function s.Td as follows:
NTs

Ts
Ts

d

d
d

/1 ⋅+

⋅
≈⋅ , where N is typically in the range of 3 to 20. In addition,

to avoid sudden overshoots due to high variations of the setpoint, only a fraction b of uc acts on the

proportional part (b.uc − y). Hence, the improved PID algorithm becomes:

() () ()() () ()() ()







⋅

⋅+

⋅
−−⋅

⋅
+−⋅⋅= sY

NTs

Ts
sYsU

Ts
sYsUbKsU

d

d
c

i
cp

1

1
.

 U(s) expression is discretized such that the proportional, integral and derivative terms are

separately obtained, as follows: () () () ()kDkIkPku ++= , where

 () () ()kYKkUbKkP pcp ⋅−⋅⋅= and () () () ()()111 −−−⋅⋅+−= kYkU
T

T
KkIkI c

i

s
p .

 To determine the derivative term ()kD , we use the differential equation representing the transfer

function of ()sGd : () ()
() NTs

Ts
K

sY

sU
sG

d

d
p

d
d

⋅+

⋅
−==

1
. By performing cross products, we get:

() () dp
d

d TssYK
N

Ts
sU ⋅⋅⋅−=







 ⋅
+⋅ 1 .

 Applying the inverse Laplace Transform to this latter equation, we obtain:

 ()
() ()

dt

tdy
TK

dt

tdu

N

T
tu d

dp
dd

d ⋅⋅−⋅−= .

Appendix C − PID Equations

 165

 Consequently, the discretized form of ()tu
d is: () () () () ()

s
dp

s

d

T

kYkY
TK

T

kDkD

N

T
kD

11 −−
−

−−
⋅−= .

 After simplification, we obtain: () () () ()()11 −−
⋅+

⋅⋅
−−

⋅+
= kYkY

TNT

TNK
kD

TNT

T
kD

sd

d

sd

d .

 Finally we can write: () () () ()kDkIkPku ++= with

 () () ()kyBkuAkP c ⋅+⋅= ;

 () () ()11 −⋅+−= keCkIkI ;

 () () ()kfLkDHkD ⋅+−⋅= 1 and

 bKA p ⋅= ; pKB −= ;
i

s
p

T

T
KC ⋅−= ;

sd

d

TNT

T
H

⋅+
= ;

sd

dp

TNT

TNK
L

⋅+

⋅⋅
−= .

Appendix D − LQG Controller with Kalman Filter

 166

Appendix D

LQG Controller with Kalman Filter

Matlab Matriciel Model

clc;

clear all;

%% Simulation parameters

T0=1/50000;% Sampling period at start-up

Ts=1/20000;% Sampling period of simulation

tf=0.02;% Final time of simulation

long=(tf/Ts)+2;% Number of samples during simulation

t=[0:Ts:tf];% Time vector 1

tt=[0:Ts:tf tf]; % Time vector 2

sens=50.6; %% Sensitivity of the force sensor (µN/volts)

%% Coupled system model

%% Actuated system model

Aa=[1.6621,-0.9536;1,0];

Ba=[0.25;0];

Ca=[0.1104,0.1086];

Da=[0];

Ga=ss(Aa,Ba,Ca,Da,Ts);

%% Sensing system Model

Ac=[1.142174,-0.947527;1,0];

Bc=[0.5;0];

Cc=[0.13208,0.129656];

Dc=[0];

Gc=ss(Ac,Bc,Cc,Dc,Ts);

%% Global model of the FT-G100 micro-gripper

k0=1000; % Stiffness of the micro-object

k2=6.45;

r=0.1290;

Kk=(k2*k0)/(k2+k0);

A=[Aa zeros(2,2);Bc*Kk*Ca Ac];

B=[Ba;zeros(2,1)];

C=[zeros(1,2) r*Cc];

D=[0];

Gg=ss(A,B,C,D,Ts);

% Canonical form

 Gg=canon(Gg);

Appendix D − LQG Controller with Kalman Filter

 167

 [A,B,C,D]=ssdata(Gg);

%% LQ Control

%%Parameters of the optimal control

R=1;

Q=[1 0 0 0;0 10 0 0;0 0 1 0;0 0 0 1000];

%% Solving Riccati equation

[Pc,mat1,mat2]=dare(A,B,Q,R);

%%Gain of the optimal control

Kc=inv(R+(B'*Pc*B))*B'*Pc*A;% Gain of the optimal state-feedback

%% Prefiltre

L=inv(sens*C*inv(eye(4)-(A-B*Kc))*B);

%% Setpoint

fcc=10*ones(1,long+1);

%% Parameter initialisation

Vin(:,1)=0;

%% Kalman filter

%% Parameter initialisation

M=0.01*[1;1;1;1];

W= 9.2375e-005;% Variance of the state noise

V=1.7419e-005;% Variance of the measure noise

x(:,1)=[0;0;0;0];

xe(:,1)=[0;0;0;0];

pe=zeros(4,4);

Vin(:,1)=0;

%% Noise loading

load bre.txt;

load brm.txt;

load tb.txt; %Time vector

% State noise

 w=bre;

 w=[w w];

 w=w(1:long);

% Measure noise

 v=brm;

 v=[v v];

 v=v(1:long);

%% LQG controller loop

q=0;

 for i=0:Ts:tf;

 q=q+1;

Appendix D − LQG Controller with Kalman Filter

 168

 % Kalman discret model

 x(:,q+1)=(A*x(:,q))+(B*Vin(:,q))+(M*w(:,q));

 xa(:,q+1)=((C*x(:,q+1))+(v(:,q+1)));

 % Prediction

 pf=(A*pe*A')+(M*W*M');

 xp(:,q+1)=(A*xe(:,q))+(B*Vin(:,q));

 % Kalman gain

 ke(:,q+1)=(pf*C'*inv((C*pf*C')+V));

 % Estimation -Update-

 xe(:,q+1)=xp(:,q+1)+(ke(:,q+1)*(xa(:,q+1)-(C*xp(:,q+1))));

 pe=(eye(4)-(ke(:,q+1)*C))*pf;

 % Response of the controlled system

 xae(:,q)=(C*xe(:,q));

 % Control voltage -Estimator form-

 Vin(:,q+1)=((L*fcc(:,q))-Kc*xe(:,q+1));

 end

 kef=ke(:,402);

%% Curve display

 figure(1);

 plot(tt,sens*xa);

 hold on;

 plot(t,sens*xae,'r');

 title('Noisy and filtered force (Fc) of the actuated arm');

 xlabel ('Time (s)');

 ylabel('Force(µN)');

 grid on;

 figure(2);

 plot(tt,Vin);

 title('Voltage control (Vin) at the input of the electrostatic actuator');

 xlabel ('Time (s)');

 ylabel('Voltage (Volts)');

 grid on;

Matlab Fixed-Point SCM/MCM Scalar Model

clc;

clear all;

%% Simulation parameters

T0=1/50000;% Sampling period at startup

Ts=1/20000;% Sampling period of simulation

tf=0.02;% Final time of simulation

long=(tf/Ts)+2;% Number of samples during simulation

t=[0:Ts:tf];% Time vector 1

tt=[0:Ts:tf tf]; % Time vector 2

Appendix D − LQG Controller with Kalman Filter

 169

sens=50.6; %% Stiffness of the force sensor (µN/volts)

%% Coupled system model

%% Actuated system model

Aa=[1.6621,-0.9536;1,0];

Ba=[0.25;0];

Ca=[0.1104,0.1086];

Da=[0];

Ga=ss(Aa,Ba,Ca,Da,Ts);

%% Sensing system model

Ac=[1.142174,-0.947527;1,0];

Bc=[0.5;0];

Cc=[0.13208,0.129656];

Dc=[0];

Gc=ss(Ac,Bc,Cc,Dc,Ts);

% Fixed-point conversion parameters

Wl = 21; % Word length, integer+fractional parts

Fl = 16; % Fractional part

S=2^Fl ;

ke1=[5.017862284983336e-04; -1.962693211189190e-05; 4.758862132834878e-04;-

3.039545010122170e-05];

ke = fi(ke1,1,Wl,Fl);

MW=9.2375e-09;

%% Global model of the FT-G100 micro-gripper

k0=1000;% Stiffness of the micro-object

k2=6.45;

r=0.1290;

Kk=(k2*k0)/(k2+k0);

A=[Aa zeros(2,2);Bc*Kk*Ca Ac];

B=[Ba;zeros(2,1)];

C=[zeros(1,2) r*Cc];

D=[0];

Gg=ss(A,B,C,D,Ts);

 %Canonical form

 Gg=canon(Gg);

 [A,B,C,D]=ssdata(Gg);

%% Declaration of the scalar elements of the matrices

%Matrice A

a11 = fi(A(1,1),1,Wl,Fl);

a12 = fi(A(1,2),1,Wl,Fl);

a13 = fi(A(1,3),1,Wl,Fl);

a14 = fi(A(1,4),1,Wl,Fl);

a21 = fi(A(2,1),1,Wl,Fl);

a22 = fi(A(2,2),1,Wl,Fl);

Appendix D − LQG Controller with Kalman Filter

 170

a23 = fi(A(2,3),1,Wl,Fl);

a24 = fi(A(2,4),1,Wl,Fl);

a31 = fi(A(3,1),1,Wl,Fl);

a32 = fi(A(3,2),1,Wl,Fl);

a33 = fi(A(3,3),1,Wl,Fl);

a34 = fi(A(3,4),1,Wl,Fl);

a41 = fi(A(4,1),1,Wl,Fl);

a42 = fi(A(4,2),1,Wl,Fl);

a43 = fi(A(4,3),1,Wl,Fl);

a44 = fi(A(4,4),1,Wl,Fl);

%Matrice B

b11 = fi(B(1,1),1,Wl,Fl);

b21 = fi(B(2,1),1,Wl,Fl);

b31 = fi(B(3,1),1,Wl,Fl);

b41 = fi(B(4,1),1,Wl,Fl);

%Matrice C

c11 = fi(C(1,1),1,Wl,Fl);

c12 = fi(C(1,2),1,Wl,Fl);

c13 = fi(C(1,3),1,Wl,Fl);

c14 = fi(C(1,4),1,Wl,Fl);

%Matrice XE

xe11(:,1) = fi(0,1,Wl,Fl);

xe21(:,1) = fi(0,1,Wl,Fl);

xe31(:,1) = fi(0,1,Wl,Fl);

xe41(:,1) = fi(0,1,Wl,Fl);

%% LQ Control

%% Parameters of the optimal control

%R=1;

%Q=[1 0 0 0;0 10 0 0;0 0 1 0;0 0 0 1000];

%%Solving Recatti equation

%[Pc,mat1,mat2]=dare(A,B,Q,R);

%%Gain of the optimal control

%Kc=inv(R+(B'*Pc*B))*B'*Pc*A;%Gain of the optimal state feedback

Kc1=[-0.000497622140588062,-0.0506923522114969,-0.970182175915640,1.60838698935252];

Kc = fi(Kc1,1,Wl,Fl);

%% Prefiltre

L=0.101783536095972;

%L = fi(L1,1,Wl,Fl);

%%Setpoint

fcc = 10;

Lfcc=L*fcc;

Lfcc= fi(Lfcc,1,Wl,Fl);

Appendix D − LQG Controller with Kalman Filter

 171

%% Parameter initialisation

Vin(:,1)=fi(0,1,Wl,Fl);

%% Kalman filter

% Parameter initialisation

M=0.01*[1;1;1;1];

W= 9.2375e-005;% Variance of the state noise

V=1.7419e-005;% Variance of the measure noise

x(:,1)=[0;0;0;0];

%% Noise loading

load bre.txt;

load brm.txt;

load tb.txt; %vecteur de temps

% State noise

 w=bre;

 w=[w w];

 w=w(1:long);

% Measure noise

 v=brm;

 v=[v v];

 v=v(1:long);

%% LQG control loop

q=0;

 for i=0:Ts:tf;

 q=q+1;

 % Kalman discret model

 x(:,q+1)=(A*x(:,q))+(B*double(Vin(:,q)))+(M*w(:,q));

 xa(:,q+1)=((C*x(:,q+1))+(v(:,q+1)));

 xa(:,q+1)= fi(xa(:,q+1),1,Wl,Fl);

 % Prédiction

 %)------------------------

 V =Vin(:,q);

 V3=2*V+V;

 V5=4*V+V;

 V7=8*V-V;

 ea1=xe11(q);

 ea3=2*ea1+ea1;

 ea7=8*ea1-ea1;

 eb1=xe21(q);

 eb3=2*eb1+eb1;

 eb7=8*eb1-eb1;

 ec1=xe31(q);

Appendix D − LQG Controller with Kalman Filter

 172

 ec3=2*ec1+ec1;

 ec5=4*ec1+ec1;

 ed1=xe41(q);

 ed3=2*ed1+ed1;

 ed5=4*ed1+ed1;

 %-----------------------------

 xp11(q+1)= fi((-V5*2^2+V*2^9)/S + (ea3*2^4+ea3-ea7*2^12+ea1*2^9+ea1*2^16)/S + (-eb3*2^4-

eb3-eb7*2^11+eb1*2^9+eb1*2^16)/S,1,Wl,Fl);

 xp21(q+1)= fi((V7*2^2-V-V*2^14+V*2^9)/S + (eb3*2^4+eb3-eb7*2^12+eb1*2^9+eb1*2^16)/S - (-

ea3*2^4-ea3-ea7*2^11+ea1*2^9+ea1*2^16)/S,1,Wl,Fl);

 xp31(q+1)= fi((V7*2^3-V+V*2^13+V*2^10)/S + (-ec1*2^6-ec3*2^8-ec5*2^11+ec1*2^16)/S +

(ed5*2^4-ed5*2-ed1*2^15+ed3*2^8+ed1*2^16)/S,1,Wl,Fl);

 xp41(q+1)= fi((V5*2^4-V*2^15+V3*2^8+V*2^16)/S + (-ed1*2^6-ed3*2^8-ed5*2^11+ed1*2^16)/S -

(ec5*2^4-ec5*2-ec1*2^15+ec3*2^8+ec1*2^16)/S,1,Wl,Fl);

 %-----------------------------

 pa1=fi(xp11(q+1),1,Wl,Fl);

 pa3=fi(2*pa1+pa1,1,Wl,Fl);

 pa5=fi(4*pa1+pa1,1,Wl,Fl);

 pa7=fi(8*pa1-pa1,1,Wl,Fl);

 pb1=xp21(q+1);

 pb3=2*pb1+pb1;

 pc1=xp31(q+1);

 pc3=2*pc1+pc1;

 pc5=4*pc1+pc1;

 pd1=xp41(q+1);

 pd3=2*pd1+pd1;

 % Estimation -update-

 xec = fi((pa7*2^3+pa3*2^10)/S - xa(q+1) + (pb3*2^4+pb3)/S + (-pc3*2^5-pc3+pc5*2^9)/S +

(pd1*2^6+pd1*2^2-pd3*2^8)/S,1,Wl,Fl);

 xe11(q+1)= fi(xp11(q+1) - (xec+xec*2^5)/S,1,Wl,Fl);

 xe21(q+1)= fi(xp21(q+1) + xec/S,1,Wl,Fl);

 xe31(q+1)= fi(xp31(q+1) - (-xec+xec*2^5)/S,1,Wl,Fl);

 xe41(q+1)= fi(xp41(q+1) + 2*xec/S,1,Wl,Fl);

 %-----------------------------

 xae(:,q)= fi(((7*2^3+3*2^10)*xe11(q)/S + (3*2^4+3)*xe21(q)/S + (-3*2^5-3+5*2^9)*xe31(q)/S +

(2^6+2^2-3*2^8)*xe41(q)/S),1,Wl,Fl);

 xae1(:,q)=double(xae(:,q));

 %-----------------------------

 ee1=xe11(q+1);

 ef1=xe21(q+1);

Appendix D − LQG Controller with Kalman Filter

 173

 ef3=fi(2*ef1+ef1,1,Wl,Fl);

 eg1=xe31(q+1);

 eg3=fi(2*eg1+eg1,1,Wl,Fl);

 eh1=xe41(q+1);

 eh3=fi(2*eh1+eh1,1,Wl,Fl);

 % Control voltage -Estimator form-

 Vin(:,q+1)= fi((66705/S-((-ee1-ee1*2^5)/S+(ef3*2-ef1*2^8-ef3*2^10)/S+(-

eg3*2^5+eg1*2+eg1*2^11-eg1*2^16)/S+(-eh1-eh1*2^6-eh1*2^10-eh3*2^13+eh1*2^17)/S)),1,Wl,Fl);

 % Vin(:,q+1)= fi((Lfcc -(Kc(1,1)*xe11(q+1)+Kc(1,2)*xe21(q+1) +Kc(1,3)*xe31(q+1) +

Kc(1,4)*xe41(q+1))),1,Wl,Fl);

 Vin1(:,q+1) =double(Vin(:,q+1));

 end

%% Affichage des courbes

%% Curve display

 figure(1);

 plot(tt,sens*xa);

 hold on;

 plot(t,sens*xae,'r');

 title('Noisy and filtered force (Fc) of the actuated arm');

 xlabel ('Time (s)');

 ylabel('Force(µN)');

 grid on;

 figure(2);

 plot(tt,Vin);

 title('Voltage control (Vin) at the input of the electrostatic actuator');

 xlabel ('Time (s)');

 ylabel('Voltage (Volts)');

 grid on;

Binary Arithmetic for Finite-Word-Length Linear Controllers: MEMS Applications

Abstract: This thesis addresses the problem of optimal hardware-realization of finite-word-length

(FWL) linear controllers dedicated to MEMS applications. The biggest challenge is to ensure

satisfactory control performances with a minimal hardware. To come up, two distinct but

complementary optimizations can be undertaken: in control theory and in binary arithmetic. Only the

latter is involved in this work.

 Because MEMS applications are targeted, the binary arithmetic must be fast enough to cope with

the rapid dynamic of MEMS; power-efficient for an embedded control; highly scalable for an easy

adjustment of the control performances; and easily predictable to provide a precise idea on the

required logic resources before the implementation.

 The exploration of a number of binary arithmetics showed that radix-2r
 is the best candidate that fits

the aforementioned requirements. It has been fully exploited to designing efficient multiplier cores,

which are the real engine of the linear systems.

 The radix-2r
 arithmetic was applied to the hardware integration of two FWL structures: a linear time

variant PID controller and a linear time invariant LQG controller with a Kalman filter. Both controllers

showed a clear superiority over their existing counterparts, or in comparison to their initial forms.

Key-words: Finite-Word-Length Controllers, High-Speed and Low-Power Design, Radix-2r arithmetic

Résumé: Cette thèse traite le problème d'intégration hardware optimale de contrôleurs linéaires à

taille de mot finie, dédiés aux applications MEMS. Le plus grand défi est d'assurer des performances

de contrôle satisfaisantes avec un minimum de ressources logiques. Afin d'y parvenir, deux

optimisations distinctes mais complémentaires peuvent être entreprises: en théorie de contrôle et en

arithmétique binaire. Seule cette dernière est considérée dans ce travail.

 Comme cette arithmétique cible des applications MEMS, elle doit faire preuve de vitesse afin de

prendre en charge la dynamique rapide des MEMS, à faible consommation de puissance pour un

contrôle intégré, hautement reconfigurabe pour un ajustement facile des performances de contrôle, et

facilement prédictible pour fournir une idée précise sur les ressources logiques nécessaires avant

l'implémentation même.

 L'exploration d'un certain nombre d'arithmétiques binaires a montré que l'arithmétique radix-2r est

celle qui répond au mieux aux exigences précitées. Elle a été pleinement exploitée afin de concevoir

des circuits de multiplication efficaces, qui sont au fait, le véritable moteur des systèmes linéaires.

 L'arithmétique radix-2r a été appliquée à l'intégration hardware de deux structures linéaires à taille

de mot finie: un contrôleur PID variant dans le temps et à un contrôleur LQG invariant dans le temps,

avec un filtre de Kalman. Le contrôleur PID a montré une nette supériorité sur ses homologues

existants. Quant au contrôleur LQG, une réduction très importante des ressources logiques a été

obtenue par rapport à sa forme initiale non optimisée.

Mots-clès: Contrôleurs à Taille de Mot Finie, Circuits à Haute vitesse et Faible Consommation de
Puissance, Arithmétique Radix-2r

