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Gödel's Incompleteness Theorems 
 
 
 
 
 
Theorem 1 − Blind spot: There is a sentence G such that if the formal system is 

consistent, G is not a theorem nor is it not a theorem. 

 

 

 

Theorem 2 − Consistency: No consistent theory, with a certain amount of arithmetic, 

can prove its own consistency. 
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Abstract 
 

    This thesis addresses the problem of optimal hardware-realization of finite-word-length (FWL) linear 

controllers dedicated to MEMS applications. The biggest challenge is to ensure satisfactory control 

performances with a minimal hardware. To come up, two distinct but complementary optimizations can 

be undertaken: in control theory and in binary arithmetic. Only the latter is involved in this work. 

    Because MEMS applications are targeted, the binary arithmetic must be fast enough to cope with 

the rapid dynamic of MEMS; power-efficient for an embedded control; highly scalable for an easy 

adjustment of the control performances; and easily predictable to provide a precise idea on the 

required logic resources before the implementation. 

    The exploration of a number of binary arithmetics showed that radix-2r
 is the best candidate that fits 

the aforementioned requirements. It has been fully exploited to designing efficient multiplier cores, 

which are the real engine of the linear systems. 

    The radix-2r
 arithmetic was applied to the hardware integration of two FWL structures: a linear time 

variant PID controller and a linear time invariant LQG controller with a Kalman filter. Both controllers 

showed a clear superiority over their existing counterparts, or in comparison to their initial forms. 
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Glossary  
 
 

Abstraction  Simplification of details, approximation of complex problems 

ADC  Analog to Digital Converter 

AFM  Atomic Force Microscopy 

ALU  Arithmetic and Logic Unit 

ASIC  Application Specific Integration Circuit 

Ath  Adder Depth, the maximum number of serial adder-operations from input to output 

Avg  Average number of additions 

BHM  Bull Horrocks modified, an existing heuristic MCM algorithm 

BIGE  Bounded Inverse Graph Enumeration, an optimal SCM algorithm 

BMA  Booth Multiplication Algorithm, an existing algorithm for signed multiplication 

CAD  Computer-aided design, tools for design automation 

CDE  Common Digit Elimination 

CLB  Configurable Logic Bloc 

CMOS  Complementary Metal Oxide Semiconductor  

COTS  Commercial Off-The-Shelf 

CSD  Canonical Signed Digit, the SD form with no adjacent nonzero digits and the minimum number 

of nonzero digits 

CSE  Common Subexpression Elimination, a framework for solving SCM and MCM 

DAC  Digital to Analog Converter 

DAG  Directed Acyclic Graphs, a framework for solving SCM and MCM 

DBNS  Double Base Number System, an existing number representation system 

DFS  Dynamic Frequency Scaling 

Digit Clashing  The CSE problem of disappearing patterns due to colliding digits 

DMAC  Double Multiply-And-Accumulate 

DSP  Digital-Signal-Processor/Processing 

FF  Flip-Flop 

FPGA  Field Programmable Gate Array 

FPR  Fixed-Point Representation 

FWL  Finite Word Length 

H(k)  Heuristic with k extra nonzero digits, an existing heuristic SCM algorithm 

H(k)+ODP  The H(k) algorithm with ODPs, a proposed heuristic SCM algorithm 

Hcub  Cumulative Benefit Heuristic, an existing MCM algorithm 



 v 

HDL  Hardware Description Language  

Heuristic  An effective but potentially suboptimal method for solving a problem 

HIS  Host Side Interface 

HPM  High Performance Multiplication, an existing adder reduction technique 

IOB  Input Output Block 

Logic resources  An abstraction of the amount of silicon required to implement a logic function 

LQG  Linear Quadratic Gaussian 

LTI  Linear Time Invariant 

LTV  Linear Time Variant 

MAC  Multiply-And-Accumulate 

MAG  Minimized Adder Graph, an existing optimal SCM algorithm 

MBMA  Modified Booth Multiplication Algorithm, , an existing algorithm for signed multiplication 

MCM  Multiple Constant Multiplication, find a low-cost add-shift-subtract realization of multiplication by 

each of the given constants 

MEMS  Micro-Electro-Mechanical Structure 

MM  Matrix Multiplication 

MPC  Model Predictive Control 

MPM  Multi-Precision Multiplication 

MSD  Minimal Signed Digit, any SD representation with the minimum number of nonzero digits 

MV  Multiplication by a Variable 

NEMS  Nano-Electro-Mechanical Structure 

NP-hard  Non-deterministic Polynomial-time hard 

ODMAC  Optimized Double Multiply-And-Accumulate 

ODP  Overlapping Digit Pattern, a proposed technique for partially resolving the CSE digit clashing 

problem 

OS  Operating System 

Pattern (CSE)  A collection of signed digits that define how existing terms are added-operated 

together 

PC  Personal Computer  

PID  Proportional Integral Derivative, an existing control law  

PLD  Programmable Logic Device 

PPG  Partial Product Generator 

RAG-n  n-dimensional Reduced Adder Graph, an existing heuristic MCM algorithm 

RMRMA  Recursive-Multibit-Recoding Multiplication Algorithm, a new algorithm  

RNS  Residue Number System, an existing number representation system 

RTL  Register Transfer Level 

RTOS  Real Time Operating System 

SCM  Single Constant Multiplication, same as MCM but for a single constant 

SD  Signed Digit, a recoding used in the CSE framework 



 vi 

Search space  The set of all solutions that can be found by an algorithm, this is smaller than the 

solution space for heuristic algorithms 

SEM  Scanning Electron Microscopy 

SiGe  Silicon Germanium 

SM  Sign and Magnitude 

SOC  System On Chip 

Solution space  The set of all feasible solutions 

SRAM  Static Random Access Memory 

TC  True and Complement 

TSMC  Taiwan Semiconductor Manufacturing Company 

Upb  Upper bound, maximum number of additions 

VHDL  Very high speed integrated circuit Hardware Description Language 

VLIW  Very Large Instruction Word 
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Chapter 1 

 

General Introduction 

    This chapter defines the problematic issue treated in this thesis and indicates the 

objective to achieve. It sets the main requirements and specifications that fixe the 

research scope and limitation, and informs on the essential contribution of the thesis. It 

also gives an idea on the organization of this manuscript.  

 

1.1  Motivation and Problem Statement 

    As a MEMS application, micromanipulation is a field which has the particularity of being very 

sensitive to noise. To reach the desired force/position accuracy in the gripping of micrometric objects, 

the development of advanced control methods is necessary. The latter often results in control laws, 

filters, and algorithms which are executed in real-time on platforms that are in total disproportion with 

the dimensions of the manipulator tool (micro-gripper) and the micro-objects manipulated. They are 

bulky and expensive, and have the huge drawback of preventing any embedded or mobile utilisation 

(portability). Therefore, the hardware integration of these control laws and all related problems is quite 

worthwhile, and constitutes a real challenge. 

    With a sound experience in micromanipulation, and being aware of the hardware integration as an 

ineluctable future step, the Automatic Control and Micro-Mechatronic Systems (AS2M) department of 

FEMTO-ST Institute, Besançon, initiated in 2010 a new research project called embedded electronics 

for MEMS. This project has been elaborated in conjunction with the Microelectronics and 

Nanotechnology Division (DMN) of CDTA, Algiers, joining their complementary skills together for the 

same objective. It is within the framework of this collaboration project CDTA/FEMTO-ST that the 

present thesis has evolved. 

    The most commonly used platform for micromanipulation setups is composed of a PC (with 

Matlab/Simulink or Labview software for instance) connected to a processor (dSPACE compatible for 

instance) for the real-time control, incorporating a sophisticated floating-point arithmetic unit with a 

high precision and large dynamic range.  One intermediate step toward portability will be to substitute 

the calculation unit used for the real-time calculation by an FPGA board, wherein only the control 

algorithm is embedded [1]. The ideal solution would be to incorporate the whole electronics (control, 

power, signal conditioning, and conversion) into a low-power ASIC [2], directly connected to the micro-

gripper (Fig. 1.1). Such a solution provides 100% autonomy, but its implementation requires varied 

and multidisciplinary skills. 

 

 1.2  Objective of the Thesis 

    The replacement of the dSPACE unit by an FPGA control board will primarily arise the problem of 

stability. The latter is due to the inaccuracies of calculations caused by the use of an approximate 

representation of real numbers (Fixed-point) with a reduced precision and dynamic range. The fixed-

point representation is dictated in this specific case by implementation considerations. Not only it is 

much easier to implement, but also leads to more computational speed and less power consumption 

and  logic resources, in comparison to floating-point representation. 
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    More precisely, the use of fixed-point instead of floating-point will exaggerate the quantification and 

rounding effects on the transfer function of the system (disturbance of the pole-zero position). This 

effect is assimilated to an additional source of noise (white noise) which is added to the already 

existing environmental noise. Consequently, the biggest challenge is to ensure satisfactory control 

performances with a minimum hardware (minimum word sizing of the controller structure). This 

problematic issue is well known under the name of optimal realizations of digital Finite-Word-Length 

(FWL) controllers. It involves optimizations in control theory and binary arithmetic. 

    The objective of the thesis is the development of a new binary arithmetic adapted to the FWL 

problem, enabling an easy generation of minimum word-size controller-structures with 

acceptable control performances. 

  

1.3  Requirements and Specifications  

    The hardware integration of FWL controllers is a vast problematic issue. In order to define the 

research scope and limitation of the thesis, a number of requirements and specifications are 

established. They are summarized as follows: 

• Only linear controllers are considered. This includes both the Linear Time-Invariant (LTI) and  

Time-Variant (LTV) controllers;  

• Only binary arithmetic is used as a mean of optimization. Are not considered the optimization 

methods based on the utilization of sparse and insensitive matrices with minimization of 

transfer-function or pole-zero disturbance. 

• A new fixed-point binary arithmetic is to be proposed. It must be: 

− Fast to cope with the high dynamics of MEMS; 

− Power efficient for an embedded control; 

− Highly scalable for an easy adjustment of the control performances; 

− Predictable to provide a more-or-less precise idea on the speed and logic resources 

before the implementation. This feature is very useful to the automatic synthesis of 

linear controllers. 

• Use of the same word size and the same fixed-point position in the word for all the coefficients 

and variables involved. Are not addressed issues related to the order of sum-of-product 

operations, nor those pertaining to different rounding modes (truncation, to-the-nearest, etc.). 

 

 
FIGURE 1.1 – ASIC solution for MEMS control providing 100% autonomy.  

 

Source : [2] 



Chapter 1 −  General Introduction 

 3 

• To target a wide range of applications, the arithmetic optimization is undertaken at the 

algorithmic level, and not at the architectural level;  

• Because only LTI and LTV controllers are concerned, the main arithmetic functions involved 

are: 

− Single and Multiple Coefficient Multiplication (SCM and MCM); 

−  Variable operand multiplication; 

−  Multi-precision multiplication.  

• As the optimization effort is deployed at algorithmic level, there is a need to explore a large 

number of alternative algorithms in order to select the best one. Therefore, reconfigurable 

circuits (FPGA) stand in this case as the most appropriate option of integration. FPGA allows 

a fast prototyping; 

• Although FPGA serves for the validation of the developed algorithms, HDL code must be fully 

compliant to the standard IP design-reuse methodology. This means also that the HDL-RTL 

code will be 100% technology independent, offering the possibility to be mapped both on 

FPGA and ASIC using a digital standard-cell-library of a given technology foundry. This 

measure guarantees a systematic reuse of the same code for any future ASIC integration.    

• Arithmetic optimization results are applied to PID and LQG controllers with Kalman's filter. 

These two linear controllers were used in a previous work [3] to control the FTG-100 

microgripper (www.femtools.com) on a dSPACE platform.  

 

1.4  Contribution of the Thesis 

    We have investigated and compared four binary arithmetics: CSD, DBNS, RNS, and Radix-2r. In 

spite of a serious limitation of Radix-2r for high values of r due to the generation of an important 

number of odd-multiples{ }12,,5,3,1 1 −−rL , it seems relatively the most liable arithmetic to fulfil the 

above-set requirements. We have circumvented the limitation of Radix-2r by a recursive construction 

of higher radices based on a combination of lower radices. This technique has enabled to develop:    

• A new heuristic (RADIX-2r) for SCM. It has the major advantage of being 100% predictable in 

maximum number of additions (upper-bound), in average number of additions, and in number 

of cascaded adders (adder-depth) forming the critical path. Furthermore, its computational 

complexity is linearly proportional to the constant bit size (N), which means that it has no 

limitation with regard to N. Despite the big number of existing heuristics, none of them is 

predictable, not even partially. Besides, most of them exhibit a polynomial runtime complexity 

O(Nα) with α ≥ 3, and some of them show even an exponential O(2N) complexity. Only CSD 

is linear and predictable. But the latter is largely superseded by RADIX-2r which requires 18% 

less additions for a 64-bit constant. 

• A new fully predictable heuristic (RADIX-2r) for MCM with a computational complexity 

O(N×M), where M is the number of constants. Compared to the standard CSD for 

(N,M)=(64,10), a saving of 53% is obtained. The saving increases as the product N×M 

increases. 
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• A series of new high-radix multiplication algorithms with variable operands. They have the 

merit of being fast, energy efficient, highly-scalable, and predictable. Contrary to existing 

Radix-2r
 algorithms where the highest value of r is limited to 16, the proposed algorithms 

have no limitation with regard to r. Theoretically, the higher the radix, the shorter the critical 

path (faster). 

• A new mathematical formalism which enables to derive the optimal high-radix multiplication 

algorithm from a given combination of low-radix multiplication algorithms. The idea has been 

physically validated on FPGA.  

• A series of new multi-precision multiplication algorithms, offering the possibility to run 

simultaneously several small-size multiplications on the same N×N-bit multiplication array. 

The proposed algorithms have the superiority over exiting ones to support a generic 

partitioning of the array. This results in a higher computational throughput with reduced power 

consumption. 

• The currently best known analytically-proved bounds (Upper-bound, Adder-depth, Average) 

with the exact number of additions for SCM and MCM.  

 

1.5  Organization of the Thesis 

        Except the introduction and conclusion, the remainder of the manuscript is structured in five 

chapters.     

    Because of the intended applications, corresponding informations are given in chapter 2. We first 

start with micromanipulation as a MEMS application. We describe its specificities and requirements. 

This is followed by the state-of-the-art of embedded control-electronics for MEMS. We review the 

basic digital solutions and discuss the pros and cons of each option. At the end, we present an 

overview of the different optimization techniques applied to FWL controllers.      

    In chapter 3 we deal with the binary arithmetic. First, the mostly used number formats, fixed-point 

and floating-point, are introduced and compared to one another with regard to the precision and 

dynamic range. We then introduce the most commonly used number representation systems. We 

insist more particularly on the two arithmetic operations (+, ×) required by linear systems. 

    Chapter 4 is devoted to the operation of multiplication by a constant. A range of the most frequently 

cited algorithms are presented, followed by the introduction of a new heuristic called RADIX-2r. A 

detailed description of the latter is given, accompanied with a discussion on the experimental results. 

    The same is done in chapter 5 for the variable-operand multiplication. We first describe the most 

advanced high-radix multiplication algorithms, and then we introduce a series of new high-radix 

algorithms and show how to extract the optimal one. Next, we discuss the experimental results. The 

same presentation scheme is applied to multi-precision multiplication.   

    In chapter 6, we apply the results of research developed in the previous chapters on the PID and 

LQG controllers with Kalman’s filter.      

    Finally, we provide some concluding remarks on the accomplished work. We comment its strengths 

and weaknesses, and propose a roadmap for the continuation of the project of embedded electronics 

for MEMS. 
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Chapter 2 

 

Problem Background  

    In this chapter, we first define the application context of the thesis and then give the 

state-of-the-art of each topic involved. We describe the main characteristics of the 

micromanipulation domain as a MEMS application, followed by a survey of hardware 

integration solutions adapted to the embedded control. We examine the solution space 

with regard to the MEMS requirements and select, wherever possible, the best option 

that leads to an optimized implementation of the controller. The selection is carried out 

depending on the control-bandwidth, the power consumption, and the precision of 

calculation. 

  

2.1  Application Context 

    MEMS (Micro-Electro-Mechanical Systems) technology dates back to the discovery of the 

piezoresistive effect in silicon and germanium at Bell Labs in early 1950s [1]. It combines 

lithographically formed mechanical-structures with electrical elements to create physical systems that 

operate on the scale of microns.  A MEMS is defined as a system of micrometric dimension (less than 

100 µm) incorporating at least two of the following features: sensor, signal processing electronics, 

actuator, power or transmission. Over the last 60 years, an impressive variety of MEMS devices were 

developed, constantly pushing the boundaries of physics, mechanics, electronics, and control theory. 

    Microrobotics is one of the MEMS applications. It is the field of miniature robotics, in particular 

mobile robots with characteristic dimensions less than 1mm. Microrobots [2] and Micromanipulators [3] 

are two outstanding examples of MEMS devices, dedicated to work in the micro-world. At this scale, 

the systems should have accuracy and resolution that are better than one micron.  

    The AS2M department of FEMTO-ST is specialized in micromanipulation/microassembly 

applications. For their setups, researchers use bulky equipments (typically standard PC and additional 

electronic cards) to control the developed micromanipulators. This constraining environment makes 

any mobile utilisation difficult. One of the smallest components of the micromanipulator is the end-

effector. In most cases, this is a micro-gripper. It becomes really interesting if the microgripper can be 

easily changed for the adaptation to a new task. Therefore, the solution is to integrate the control 

electronics within the MEMS part to obtain some sort of a "plug-and-play" micro-gripper. However, the 

implementation of this solution requires advanced skills in hardware integration. For such a purpose, a 

collaboration project between FEMTO-ST and CDTA has been established in 2010. It aims at 

exploring and proposing appropriate solutions for the hardware integration of the control part of the 

micro-gripper. The present thesis is a part of this collaboration project. 

    However, controlling structures at the scale of micron is not only challenging from the modeling and 

control-law point-of-view, but also computationally challenging [4], mainly for three reasons: 

• These miniature devices are capable of extremely fast movements, requiring very high control 

bandwidth to ensure their stability. For instance, in [3] a micro-gripper with two degrees of 

freedom piezocantilevers is proposed (Fig. 2.1a). It is dedicated to applications where both 
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high performance and high dexterity are required. Such a micro-gripper presents a strong 

coupling between the two axes. In addition, it is very oscillating and strongly nonlinear 

(hysteresis and creep). All these problems are compensated using additional control/filtering 

techniques that require more computational time. Thus, the stability is guaranteed only if 

enough computational power is provided. To give an order of magnitude, the dynamic of the 

piezocantilever is typically controlled with a sampling time of 20µs (Fig. 2.1b). 

• With small physical sizes and high resolution come low tolerance to error, and therefore a 

need for a high computational control precision. For instance, in micromanipulation and 

microassembly, fixing a micro-lens at the tip of an optical fiber with 1µm of relative positioning 

error or 0.4µrad of orientation error, may cause a loss of 50% of the light flux [3]. 

• The reality is that most of the MEMS devices are embedded in autonomous equipments which 

are bound by power and size constraints. This dictates the use of power-efficient solutions in 

control and in the implementation of the controller as well. A typical example is the mm3 robots 

[2], called I-SWARM. It is a real autonomous mobile micro-robot; powered by solar cells, 

equipped with a locomotion unit for moving, an infra-red unit for communication, and a contact 

tip for detecting near objects. The whole is managed by a low-power ASIC, which is in fact a 

real system-on-chip (SoC) solution.     

     

    Consequently, in addition to an advanced modeling and control, high-speed, low-power, and high 

precision of calculation are mandatory for the MEMS control. In the case of an embedded control, 

which is the purpose of this thesis, the precision of calculation becomes even a more severe 

constraint, harder to satisfy without compromising speed and power. This is essentially due to the 

utilization of fixed-point numbers which are an approximation of real numbers. The fixed-point format is 

dictated in embedded applications for its high-speed and low-power features.  

    Obviously, this thesis does not have the pretention to address all issues related to embedded 

control for MEMS. Such a complex and substantial problem would require a series of complementary 

works. The objective is rather restricted only to the determination of a suitable binary arithmetic that 

conciliates into a good compromise speed, power, and precision, while preserving satisfactory control 

performances.   

    Because micromanipulation is the MEMS application domain to which the proposed arithmetic is 

applied, a brief summary of its characteristics is given hereafter for a better understanding of the real 

control challenges.  

FIGURE 2.1 – (a) Microgripper with two degrees of freedom piezocantilevers.  
                     (b) Step response of the piezocantillever. 
                     (c) Terminal parts of the microgripper. 

  

Source: [3] 

(a) (b) (c) 
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FIGURE 2.2 –  Sizes and dimensions characterizing the microworld. 
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FIGURE 2.3 – Some force spans characterizing the microworld.  

Weights of microobjects 

Weights of microsystem components 

Weights of microsystems  

Resolution of the 
Micromanipulation force 

Adhesion forces 

Micromanipulation  
forces 

2.2  Micromanipulation as a MEMS application 

    Micromanipluation addresses the problem of gripping, handling, moving, and placing objects of 

micrometric sizes. During the last decade, the need for micromanipulation systems (Fig. 2.1) with 

micro/nanometers accuracy and fast dynamics has been growing rapidly [5]. Such systems occur in 

applications including: 

• Manipulation of biological elements in medicine and biotechnology (micro-organisms, cells, 

DNA, etc.).; 

• Assembly of micromechanical rigid parts (micro sprocket wheels, optical micro lens, hybrid 

circuits, etc. ); 

• Micro/ Nano-sensors for environnemental monitoring; 

• Metrology and nanometer resolution imaging (AFM and SEM); 

• Study of micro-world phenomena, such as adhesion forces. 

    Before exposing the major problems pertaining to the microworld, it is useful to have a precise idea 

on the order of magnitude in size and weight of the physical entities manipulated (Fig. 2.2 and 2.3).   

    Force and position measurements are very important to perform micromanipulation and micro-

assembly tasks. Small components are often fragile (e.g. biological cells) and may be damaged or 

destroyed if they are grasped without force control. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

    Working in the micro/nano-world involves displacements from nanometers to tens of microns [6]. 

Because of this precision requirement, environmental conditions could generate noise and disturbance 

that are in the same range as the desired displacements (very low signal/noise ratio). These 

environmental conditions include: thermal variation; vibration; air-flow; and humidity. 
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    In fact the forces that come into play at the micro level are different from those at the macro level. 

This is due to what is commonly called the scale effect [7]. Indeed, when the size becomes small 

enough, the surface effects become dominant over the volume effects. Gravity, which is often relied on 

in control and assembly of macro systems, plays only a minimal role at the micro level. Instead, the 

dominant forces are (Fig. 2.4):  

• Electrostatic forces (Felec) generated by tribo-electrification and charge transfer during the 

contact; 

• Surface-tension forces (Ftens) between the two contacting elements, related to the level of 

humidity;  

• Van der Waal's forces (FVdw , atomic forces). 

    There is also another kind of problems related to uncertainties. It is interesting to note that because 

of adhesion forces, that still remain difficult to control, the equations of the dynamics and kinematics of 

the micro-objects are subject to uncertainties, so that the movements are unpredictable. The 

uncertainties are also due to the limited performances of the sensors. To handle a micro-object, the 

required accuracy is the tenth of the size of the micro-object in the worst case, and the resolution is 

equal to 1/n times of the precision (n>1). At present, propose force and position sensors with such a 

performance and a suitable size remains a challenge [8]. Precise position sensors already exist, such 

as interferometers, but their size is not suitable (bulky). 

    Another problem of the scale-effect is the inability to directly use the human sight sense in the 

microworld. A microscope-camera system is often used to monitor micromanipulation tasks. Fully 

automated or remotely operated, these systems are equipped with a micromanipulation screen, 

enabling the human operator to intervene [9].    

     

 

 

 

 

 

 

 

 

 

 

    The specific complexities of the microworld (adhesive forces) added to the lack of appropriate 

sensors is a real challenge that is far from being mastered [6]. The capture and release by a 

microgripper of "sticky" parts (Fig. 2.5) is a hard problematic issue [6][7][10][11][12].  

    Because of all these difficulties, the design of micromanipulation systems (Microgrippers) must offer 

the best performance in terms of accuracy and resolution. As to their use, it must reproduce as 

 
FIGURE 2.4 – Amplitude of the forces in the microworld for a 

microsphere of radius r (Fg: −  ;  Ftens : - - ; FVdw : -.- ; Felec : ... ). 
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accurately as possible the user commands. In order to respond to this double requirement, there is an 

increasing resort to use:  

• Smart materials such as piezoceramics [5][6][13], magnetostrictive, shape memory, 

electroactive polymer, are used  to develop microactuators, microrobots, micromanipulators 

and Microsystems; 

• Robust control techniques (both in theory and implementation) based on closed-loop feedback 

[14][15] combined with advanced filtering techniques [8].   

 

 

 

 

 

 

 

 

 

2.3  Embedded Control-Electronics for MEMS  

    The literature on the control issue of MEMS/NEMS systems is so extensive, but all proposed 

solutions fall into two distinct categories:  

• Analog controllers:   that is, implementing the controller as an active analog feedback circuit. 

Used to be the primary method of implementing controllers before digital systems of sufficient 

performance became widely and cheaply available. This type of controllers presents 

numerous challenges since analog systems are more difficult to design (requiring careful 

control of all active components), implement (especially in modern low-cost processes 

optimized for digital systems), and maintain (there is not possibility of “patching” the system). 

Furthermore, the physical complexity of modern mechanical devices may require modal 

control that cannot be implemented by a single analog controller [4]. 

•  Digital controllers: due to the above shortcomings of analog controllers and aided by the 

fulgurous progress in semiconductor technology (transistor size shrinking) [16], tightly 

integrated solutions that combine high-performance power of digital processing with accurate 

sensors are used (closed-loop control).  

    To provide stable and robust control, a digital control system must be able to measure the process 

variables and set actuator output command within a fixed period of time (loop-cycle time). However, 

recent experience of MEMS/NEMS developers [4] has shown that the state-space representation [17] 

[18] is being extensively applied across a wide variety of MEMS devices for two reasons: 

• Its relative ease in determining stable control equations; 

• It forms the basis for many more complex control techniques; 

• Its recursive behaviour is suitable for a digital implementation. 

Hereafter, are the discrete state-space equations for LTI and LTV, respectively: 

 
FIGURE 2.5 – Micromanipulation problem due to adhesion forces. (a): Difficulty to grip micro-

objets; (b): Problems in placing a micro-object; (c): difficulty of positioning a micro-object due 

to adhesion forces created by surrounding micro-objects. 
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Explicit discrete time-invariant 
( ) ( ) ( )kuBkxAkx ⋅+⋅=+1  

( ) ( ) ( )kuDkxCky ⋅+⋅=  
                               (2.1) 

Explicit discrete time-variant 
( ) ( ) ( ) ( ) ( )kukBkxkAkx ⋅+⋅=+1  

( ) ( ) ( ) ( ) ( )kukDkxkCky ⋅+⋅=  
                               (2.2) 

    where:  

( )⋅x  is called the "state vector",  ( ) ;tx
nℜ∈  

( )⋅y  is called the "output vector",  ( ) ;ty
qℜ∈  

 ( )⋅u  
is called the "input (or control) vector", ( ) ;tu

pℜ∈   

( )⋅A  is the "state (or system) matrix",  ( )[ ] ;nnAdim ×=⋅  

( )⋅B  
is the "input matrix",  ( )[ ] ;pnBdim ×=⋅  

( )⋅C  is the "output matrix", ( )[ ] ;nqCdim ×=⋅  

( )⋅D  is the "feedthrough (or feedforward) matrix",  ( )[ ] .pqDdim ×=⋅ . 

A depth in-sight into state-space equations reveals that the computation pattern is mainly based upon: 

• Matrix Multiplications (MMs), which involve the use of the elementary but time-critical multiply-

and-accumulate (MAC) operation [19][20] in the case of LTV systems, and SCM/MCM in the 

case of LTI systems; 

• And a limited movement of data between temporary storage elements (load/store of data 

from/in memory and registers). 

    The computational overhead is maximal when digital controller is performing these operations, more 

especially when it is performing MMs. Hence the sampling-rate (performance) is limited by the rate at 

which the device performs these computations. However, the high potential of parallelism inherent in 

MM suggests that significant performance improvements can be achieved [21][22] by providing 

increased architectural parallelism.    

    The number of elementary scalar operations (MAC, SCM/MCM) involved depends on the control 

complexity, based on:      

• The number of state variables that fixes the dimension of the matrices; 

• The number of I/O required; 

• And, the density of the matrices (the use of sparse and insensitive matrices wherever possible 

considerably reduces the computation complexity); 

    With time constants several orders of magnitude faster than their non-MEMS counterparts, many 

MEMS devices require control-bandwidth and accuracy exceeding the ability of conventional digital 

solutions [4]. On the other side, for autonomy purposes and size constraints [2], many MEMS devices 

dictate the use of low-power consumption solutions. There is a trade-off between performance and 

power consumption that is quite critical.  

    The important question that arises at this stage is: with a plethora of available solutions for digital 

embedded control [23][24][25][26][27][28], which one fits the best MEMS application requirements?     
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    This question can be quickly answered for the most part by looking to the pros and cons of existing 

solutions with respect to the above-mentioned severe antagonistic constraints (high performance & 

low power consumption), but the ultimate solution must be tightly tailored to the application case 

according to the  intended objectives.  

 

2.4  Review of the Basic Digital Solutions for Embedded Control 

    The current state-of-the-art [24][16] of embedded solutions offers mainly four possibilities based 

on the use of: 

• Commercial Off-The-Shelf (COTS) electronics components. This includes general purpose 

microprocessors and microcontrollers; 

• Digital-Signal-Processors (DSPs) such as the TMS320C55x [29] and TMS320C64x [30], 

which are respectively the lowest power and the highest performance DSP available [15]; 

• Field-Programmable-Gate-Array (FPGAs) such as Xilinx’s [31] and Altera’s [32] FPGAs; 

• Application-Specific-Integrated-Circuits (ASICs) which are chips designed from scratch 

according to a given technology foundry (e.g. TSMC 90 nm) . 

    Let us examine in detail the pros and cons of each solution, focusing more particularly on the 

MEMS control requirements. 

 

2.4.1  Commercial Off-The-Shelf (COTS) Electronics Components 

    The common measure of control system performance and robustness is jitter, which is a measure of 

the variation of the actual loop cycle-time from the desired loop cycle-time. However, the 

nondeterminism in the execution of microprocessors makes static timing boundaries difficult to 

determine and limits reliable bandwidth. This is mainly due to three reasons: 

• In a general purpose microprocessor, the processor resources are held up while it is busy 

performing the MAC operations and the speed or the sampling rate is decided by the latency 

of these instructions; 

•  Additionally, priority interrupts and bus contention contribute to the nondeterminism 

encountered in typical microprocessors or microcontrollers [24][27].  

• Worse enough, in general-purpose operating systems (OS) such as Windows (Ex: PC based 

control platform) where the microprocessor is programmed to handle multiple asynchronous 

tasks, the jitter becomes exaggeratedly unbounded (random) so closed-loop control system 

stability cannot be guaranteed [33]. Processor-based control systems with real-time operating 

systems (RTOS) are commonly able to guarantee control-loop jitter of less than 100 

microseconds.  

 

2.4.2   Digital Signal Processors (DSPs) 

    DSP are mainly differentiated from general purpose microprocessors by additional parallelism 

[24][25]. For instance, the TMS320C64x is a VLIW architecture with eight execution units, including 

four multipliers and four ALUs [30]. Using its eight execution units, the processor can execute up to 
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eight 32-bit instructions in a single clock cycle (up to 1GHz), allowing it to achieve a high level of 

parallelism. The TMS320C64x is able to perform four 16-bit multiplications in parallel. All execution 

units in the TMS320C64x have a throughput of one cycle and latencies from one to several cycles 

depending on the instruction. 

    To date, for sound/image/video applications, conventional DSPs have provided more than adequate 

bandwidth, with consistent performance gains from feature scaling [16] and added architectural 

parallelism. However, for this new class of control applications (MEMS), the latencies that are inherent 

to many DSP architectures limit the achievable control bandwidth which refers to the throughput of the 

controller as each state-space time step is dependent on the last. The latency becomes then a critical 

aspect. Further, MEMS systems, by nature, are small in size and complexity, resulting in simple 

control computations that must be performed at very high rates [34]. For small control systems, the 

benefits of added parallelism in high performance DSPs fails to mitigate the complexity and 

performance overhead of the architecture. In other words, DSP architecture is oversized for MEMS 

applications. 

    Besides, as control complexity scales, the computational advantage is outweighed by the cost of 

moving data between local register files and main memory, which induces an exponential fall off in 

control bandwidth [25]. It is important to note that computation complexity grows quadratically with 

control complexity due to the n2 multiplications in a matrix multiply. This has also a negative effect on 

power consumption which nearly reaches 1 amp in the case of TMS320C64x, making it impractical for 

use in small embedded systems.  

    For MEMS control requirements, a good DSP evaluation study based on control bandwidth / power 

consumption versus control complexity is given in [4].  

 

2.4.3  Field Programmable Gate Arrays (FPGA) 

    FPGAs belong to the class of user programmable digital devices called Programmable Logic 

Devices (PLDs, in contrast to ASICs). A PLD is an integrated circuit that enables the user to configure 

it in many ways, enabling the implementation of various digital logic functions, of varying sizes and 

complexities. For instance, Xilinx’s XC4VSX55 FPGA comprises an array of 128x48 Configurable 

Logic Blocs (CLBs), 512 18bit-MACs, 320 18Kb-Block-RAMs and 640 I/Os [31]. Some FPGAs, like 

XC4VFX family, include up to 2 PowerPC Processors, which are real System-on-Chip (SoC) 

platforms. 

    One of the fundamental differences between FPGAs and DSPs is the number of MACs included 

[25], which is respectively 512 for XC4VSX55 FPGA and only 4 for TMS320C64 DSP [28]. In the case 

of 512 tap filter computation, 512 MAC operations per simple are involved. So what takes 128 (512/4) 

clock cycles for DSP can be completed in a single clock cycle for FPGA. In fact the reality is lower 

than this, as data has to be pulled in and out of memories; a number of additional clock cycles are 

required either for FPGA or DSP. Nevertheless, this example shows the most important feature of 

FPGA parallelism. 

    Because of the inherent parallelism of FPGA architecture, many independent control loops can run 

at different deterministic rates without relying on shared resources that might slow down their 

responsiveness as in the case of COTS solutions. Hence, the jitter for FPGA-based control loops 

depends only on the accuracy of the FPGA clock source. It typically ranges in the order of 
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picoseconds. Furthermore, since there are enough resources for parallelization, the control loop rate is 

limited only by the sensors, actuators, and I/O modules [24]. This is an outstanding contrast to COTS 

and DSPs control systems, where the processing performance was typically the limiting factor. 

    As comparative example, the Proportional-Integral-Derivative (PID) control algorithm, commonly 

used for regulating analog processes such as temperature and pressure, executes in just 300 

nanoseconds (3.33 MHz) on FPGA (according to 2006 benchmarks), whereas it executes at the rate 

of 2.75 KHz on typical COTS processor [24].     

    Recent trends in FPGA based control are: 

• Dynamic reconfigurability:  In the recent years, the specifications for control systems have 

grown to include a certain degree of intelligence. They vary from specifications requiring 

certain amount of fault tolerance to operating under varying operating conditions [35]. These 

systems must also be capable of intelligent sensor selection, remote monitoring and operation 

and must be capable of implementing sophisticated control algorithms that require adaptation. 

By systematically partitioning the system; functionality requiring large amounts of 

reconfiguration can be given such kind of resources on an FPGA; thereby ensuring that the 

above mentioned objectives are met. This is especially useful in certain kinds of fault tolerant 

systems. Suppose the system detects the occurrence of a fault; then a new configuration can 

be loaded (either partially or fully) so that the fault is taken care of (either remedied or 

bypassed) and the control system performance is not affected. 

• Hardware/software Co-design: this is an evolving aspect of FPGA based control. An 

application of this particular approach in the area of Model Predictive Control (MPC) is 

illustrated in [36]. Hardware software co-design is a new paradigm in which a 

microprocessor/microcontroller is embedded in an FPGA. Control algorithms that require a 

large number of computationally involved operations like matrix manipulations cannot be 

effectively implemented on a single microprocessor based set up, as the microprocessor gets 

bogged down while performing these operations. It is in this regard that the parallel 

architecture of the FPGA can be exploited to develop a matrix coprocessor for performing 

these computations; while the general purpose microprocessor that was embedded in the chip 

can be used to perform other operations. This is more efficient and still retains its system on 

chip nature due to the fact that the processor and the FPGA come together, bundled on single 

chip. 

 

2.4.4  Application Specific Integrated Circuits (ASIC) 

    Today, the reality is that control systems for MEMS are bound by three antagonistic constraints: 

power, size and performance. Contrary to DSPs and FPGAs, ASIC is the unique solution capable to 

cope with such a difficulty.  

    By rethinking the architectural choices (efficiently separated and optimized decision part and data-

path, both tightly tailored to the application case), it is possible to create control systems with 

reasonable power margins, negligible area overhead and adequate bandwidth.  This can be well 

illustrated by two recent practical ASIC cases:  

• A general purpose solution in [4]; 

• And a specific purpose solution in [2]. 
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    In [4], a general purpose scalable closed-loop-feedback control architecture was developed, based 

on 90 nm CMOS TSMC technology. This ASIC solution provides higher bandwidth and lower power 

than respectively state-of-the-art DSP TMS320C64x and TMS320C55x. The maximum clock 

frequency of the architecture is 1.2 GHz and is limited by a latency of 6-stage data-path. It shows 

potential for a wide range of applications, supporting control bandwidths as high as 40 MHz in small 

systems and well over 200 KHz in large control systems whereas none of TMS320C64x family is 

capable of 100 KHz bandwidth. With 16 MACs included, the chip size does not exceed 1mm2 and 

requires less power than TMS320C64x. And with 8 MACs included, it requires less than more than 

50% power than TMS320C55x.  

    In [2], an ASIC specifically dedicated for a real autonomous microrobot is described. The ASIC is a 

real SoC as it incorporates on the same silicon all necessary electronics required by an autonomous 

device: power electronics, buffers, ADCs, DACs, control and data-path units, analog transducers and 

an oscillator. As the microrobot is powered by solar cells delivering a limited energy of 1mW@1.4V 

and 500µW@3.6V, special care has been devoted to power consumption, such as:  

• Use of 0.13 µm ultra low leakage SiGe CMOS technology; 

• Use of ultra low leakage SRAM memories; 

• Incorporate wherever possible low power design techniques such as:  

− clock gating: disable those circuits that are not operative; 

− power gating: turn off those modules that are not operative; 

− dynamic frequency scaling (DFS) which adjusts the clock frequency of the processor as 

a function of the workload; 

• Use of event driven mode to woke up the processor once one of the peripherals finishes its 

task. 

    The whole ASIC electronic is mapped onto monolithic silicon surface of 3x3 mm2, which can be 

rated at a maximum clock frequency of 12 MHz.  The total leakage power consumption can be 

managed between 300 to 700 µW approximately. 

    Through these two recent illustrative examples, it’s made clear that ASIC solution is the approach 

that by far offers better results in terms of speed, area and power than non-ASICs solutions (Table 

2.1). However, the main drawback is that the chip has to be designed from scratch with its inherent 

risks, developing time and higher costs. As an intermediate solution, FPGA can be effectively used for 

TABLE 2.1 –  Main features of the basic digital solutions for embedded control. 

Technology Jitter1 
Time 

Parallelism 
speed 

Power 

Consumption 

Developing 

Cost 

Developing 

time 

Required 

Skills 
Portability 

COTS Yes C2 D D A A SP D 

DSP No B C C B B ASP C 

FPGA No A B B C C HD B 

ASIC No A A A D D AHD A 

A–D: A, the best; D, the worst. 1: Jitter is a measure of variation between the actual loop cycle-time 

and the desired loop cycle-time. It is caused by the non-determinism of the execution time (Section 

2.4.1).  2: Pseudo-parallelism (time sharing). SP: Software Programming. ASP: Advanced Software 

Programming. HD: Hardware Design. AHD: Advanced Hardware Design. 
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its shorter design-cycle time as fast prototyping device in order to get the control algorithm fine tuned 

and validated even if the ultimate objective is the creation of an ASIC.  

    So far, we have shown that ASIC and FPGA are the most appropriate mediums for MEMS control, 

independently of the effective implementation that requires important optimizations involving both 

control theory and binary arithmetic. This point is treated in the next section.  

  

2.5  Overview of Finite-Word-Length (FWL) Controller Optimizations 

    The objective is twofold: we need to achieve an optimal ASIC/FPGA implementation of the 

controller without degrading control performances. To reach such a goal, a double expertise is 

required in hardware design and control system. But usually, hardware designers do not master 

control system design, and control system experts do not have the required skills to implement and 

evaluate the controllers using ASIC/FPGAs [37][38]. The only promising solution is a complete 

automation of the whole FWL-design-flow, starting from the performance specifications of the 

controller up to the generation of a synthesizable HDL code (VHDL or Verilog). Such a consistent work 

is being undertaken within a French ANR project called DEFIS (Design of Fixed-Point Embedded 

Systems) [39].  

 
2.5.1  Definition of the FWL Effect 

    To satisfy the constraints (area, energy consumption, execution time) inherent to embedded 

systems, fixed-point arithmetic is widely used and preferred. However, Fixed-point arithmetic is 

employed as an approximation of real numbers (floating-point), with a fixed bit-length of the word used 

to represent data. This limitation leads to performance degradation (FWL effect) mainly due to: 

• Quantization of coefficients (parametric errors) which is achieved by first rounding each 

coefficient to the nearest value based on the available word length before implementation of 

the system. 

• And roundoff errors (signal quantization) which consists of rounding every internal signal at 

each time instant k to the nearest available quantization level. Besides, addition operations 

and especially multiplication operations produce results that require a longer word length for 

accurate representation. Each result is rounded in some manner at the least-significant bit and 

truncated or limited at the most-significant bit. The subsequently cumulated error during the 

computation process is assimilated to a numeric noise.   

If any internal signal exceeds the available dynamic range, then arithmetic overflow occurs. The 

usual practice is then to employ saturation arithmetic whereby the particular offending variable is set to 

the maximum allowable magnitude. Overflow can cause significant distortion and/or instability such as 

signal clipping and limit-cycles. Thus, the internal signals must be scaled so as to appropriately restrict 

the occurrence of overflow. 

 In fact, the FWL effect is more-or-less exaggerated depending on: 

• The structure of the realization used (I/O relationship, levels of parallelism, etc) 

• As well as on the way the computations are performed (number of bits, different/unique fixed 

point position, rounding/truncation, etc). 
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    The floating-point to fixed-point conversion is split into two steps. Firstly, the number of bits for the 

integer part is determined after the dynamic range evaluation. This number of bits must be minimized 

while ensuring that no overflow or a limited number of overflows occurs. Secondly, the number of bits 

for the fractional part is gradually increased till acceptable control performances are obtained. As a 

result, the limited number of bits used to code the data generates an error (FWL effect) between the 

infinite precision and finite precision values. This error can be estimated and controlled using some 

stability measures [40][41][42], such as: 

• Deviation of the Transfer function ; 

• Deviation of the pole-zero position ; 

• Deviation with regard to the mould, etc.  

    In hardware implementation, the word-length defines the size (w) of the data-path in the 

architecture. Thus, reducing the word-length leads to a more compact structure of the controller. 

However, more substantial optimizations can be achieved using state-space models based on sparse 

and insensitive matrices, as illustrated hereafter. 

 

2.5.2  Control-Theory Based Optimization 

    It is well-known that there exists an infinite set of state-space representations to represent a given 

LTI controller. These representations are equivalent in infinite precision since they yield the same 

input-output relationship. However, when a controller is implemented in fixed point arithmetic, it has to 

be represented with a finite word length (FWL) which leads to a deterioration of the numerical 

properties of the realization. Hence, the equivalent realizations are no more equivalent in finite 

precision. One realization may be better suited for implementation than another. 

    One state-space form of particular interest to hardware implementation is the sparse and insensitive 

form. The latter has the major advantage of: 

•••• Containing many trivial elements of 0, 1 or -1 which reduces the number of elementary scalar 

operations (MAC, SCM/MCM). This form is particularly important for high-order controllers 

(large matrix sizes) as it requires much less hardware and power than the original state-space 

representation.  

•••• Being least sensitive to quantization effects which allows it to be more coarsely quantized with 

smaller word lengths than a form that is more sensitive to these effects. Thus, of all possible 

forms, the insensitive form can be implemented with minimal word length for decreasing 

hardware requirements. 

    It is known that canonical controller realisations have sparse structures but may not have the 

required FWL stability robustness [40]. This posed a complex problem in the past of finding sparse 

controller realisations with good FWL closed-loop stability characteristics. But because this issue is of 

utmost importance to embedded systems, extensive studies have been undertaken and many 

solutions have been proposed [43][44]. The theory behind the determination of sparse and insensitive 

realisations with stability measure goes beyond the scope of this thesis. Nevertheless, the hardware 

benefit of using sparse and insensitive matrices is illustrated by the following example given in [45].  
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        (2.3)

 

        

        (2.4)

 

             

      (2.5)

 

Illustrative Example 

    In [45], the motion of a cantilevered aluminium beam is controlled in a closed loop using an FPGA 

board. The beam is 54.0 cm long, 1.27 cm wide, and 0.318 cm thick; two PZT elements symmetrically 

mounted at the beam’s base provide bending-moment type actuation 4.2 cm from the clamped end, 

while PZT elements centered at 7.7 cm and 29.0 cm from the clamped end sense strain. Actuator 

placement approached the point of maximum strain, while the placement of two sensors resulted in an 

observable system. Fig. 2.6 summarizes the mechanical configuration of the cantilever beam with one 

input and two outputs. 

 

 

 

     

                                    

 

    The discrete time state-space representation of the controller in floating-point notation is given by 

Eq.  2.3.  

 

 

 

    This realization is certainly not unique, nor guaranteed to be problem free or minimal in a real 

hardware implementation with limited word length. Therefore the scaled balanced real Schur/Givens 

transform was applied resulting in a sparse and insensitive system. The result is given by Eq. 2.4. 

 

 

 

    Simulation of the new controller was performed to obtain the minimal word length required while still 

maintaining closed loop performance. Quantization to eight bits yielded acceptable results. Eq. 2.5 

shows the final quantized implementable form using one sign bit and seven fractional bits. 

 

 

   

    This simulation accounts for finite-word-length effects of the digital implementation including 

coefficient quantization, operator noise, and overflow. The resulting implementation after quantization, 

, yielded a sparsity of 7 out of n2+np+nq =16+8+4=28 for a fully populated form. 

This yielded a 25% sparsity level.   

FIGURE 2.6 – Simple cantilever beam.  

Source: [45]  
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    A 100% full state space realization comprises n2+np+nq multiplications and n2+np+nq-(2n+q) 

additions (based on Eq. 2.1 and 2.2). In digital hardware, adder area scales linearly O(w) with word 

length (w), and multiplier area scales quadratically O(w2). Zeros in the state space matrices remove 

multiply operations altogether, while a shorter word length affects the whole system area. We might be 

tempted to think that sparsity reduces area more than word length. This is not true. In [45], there is an 

example which shows the opposite. In any case, the determination of a sparse and insensitive form is 

the first step in the hardware optimization process of an LTI controller. The second step consists in 

optimizing the remaining array of multipliers based on the binary arithmetic.  

    Up to now, we have been dealing with LTI controllers only. As for LTV controllers, the determination 

of the minimum word length is the only possible optimization, given that all matrices are variable (A(k), 

B(k), C(k), D(k)). But since the array of n2+np+nq multipliers is constructed using the same multiplier 

instance, the hardware optimization of the latter leads to a global optimization of the whole array. By 

optimization, we mean the minimization of the computational delay, logic resources, and power 

consumption. Because the computational model of LTV state-space involves matrix/vector 

multiplications mainly, further improvements of the computation latency can be achieved using efficient 

matrix multiplication architectures [21][22].  

 

2.5.3 Binary-Arithmetic Based Optimization  

 

2.5.3.1  Multiplication by a Constant     

    In LTI controllers (Eq. 2.1), multiplication by a constant (e.g. aij×xi ) is the most important scalar 

operation involved in the computational pattern. To be efficiently handled the implementation must be 

multiplierless, that is, using exclusively additions, subtractions, and shifts [46]. This is illustrated as 

follows. In Eq. 2.5, the a12 and a22 elements of matrix [ ]
wcA

~
 are equal to 0.1016 and 0.7734, 

respectively.  Their respective representations in 8-bit two’s complement notation are:  

         a12 = 0.0001101 = 13×2-7 = (23+22+1)×2-7        ;      a22 = 0.1100011 = 99×2-7 = (26+25+2+1)×2-7 . 

     Hence, according to Eq. 2.1 the multiplication of a12 and a22 by their common variable x2 gives:  

            M1=a12×x2=( x2×23+ x2×22+ x2)×2-7                         ;       M2=a22×x2=( x2×26+ x2×25+ x2×2+ x2)×2-7 . 

    M1 and M2 require 2 and 3 additions, respectively. Thus, a total of 5 additions is needed. The 

number of additions can be minimized using for instance the exhaustive algorithm MAG [47]. Using 

MAG, a12 and a22 are written as follows:   

                                         a12 =  [24–(22–1)]×2-7     ;      a22 =  (u×25+u)×2-7  with  u=22–1.  

    Hence, M1 and M2 become:  

               M1=a12×x2=[ x2×24–( x2×22– x2)]×2-7       ;      M2=a22×x2= (u×25+u)×2-7  with  u= x2×22–x2. 

    The computation order of M1 and M2 is well illustrated in Fig. 2.7. Thus, the optimal numbers of 

additions for M1 and M2 are 2 and 2 additions, respectively. With a total of 4 additions, we saved only 

1 addition. We assume that addition and subtraction have the same area/speed cost, and that shift is 

costless since it can be realized without any gates using hard wiring. 
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M1×27 M2×27 

   FIGURE2.7 – Minimum number of additions  

                   of M1 and M2  using a separate  

                    optimization of a12 and a22. 

x2 
 

M1×27 M2×27 

 FIGURE 2.8 – Minimum number of additions  

               of M1 and M2  using a combined  

               optimization of a12 and a22. 

    No further optimization is possible for a12 and a22 unless they are considered together, exploiting the 

fact that they are sharing the same variable (x2). RAG-n [48] is one of the exhaustive algorithms 

capable of performing a multiple optimization. Applied simultaneously to a12 and a22 , it gives: 

                                           a12 =  [24–u]×2-7   and  a22 =  (u×25+u)×2-7  with  u=22–1 

    The combined optimization is illustrated in Fig. 2.8. In this case the total number of additions is 3, 

achieving a saving of (5-3)/5=40% over the first naive approach. 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

    

     Single/Multiple Constant Multiplication (SCM/MCM) is the name given in literature to the problem of 

performing separate and combined multiplications, respectively. The computational complexity of 

SCM/MCM is conjectured to be NP-hard. Therefore, since the solution space to explore is so huge, 

one has to use heuristics. The exhaustive algorithms such as MAG and RAG-n are limited to small 

constants due to their exponential runtime and huge memory storage needed. Table 2.2 summarizes 

the state-of-the-art in SCM.                                                      

TABLE 2.2 – Main features of the most known SCM algorithms in the literature. 
Algorithm 

Name Author Year Type 
Runtime Compression 

Performance 
Predictability 

BIGE Thong             [49] 2011 Exhaustive O(2N) Optimal No 
H(k) Dempster        [50] 2004 Heuristic O(2N) A No 
MAG Gustafsson     [47] 2002 Exhaustive O (2N) Optimal No 

– Bernstein        [51] 1986 Heuristic O(2N) E No 
Hcub Voronenko      [52] 2007 Heuristic O(N6) B No 
BHM Dempster        [53] 1995 Heuristic O(N4) C No 

– Lefèvre            [54] 2001 Heuristic O(N3) D No 
DBNS Dimitrov           [55] 2007 Heuristic O(N) F No 
CSD Avizienis          [56] 1961 Heuristic O(N) G Yes 

A–G: A,  the highest ; G, the lowest. 
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  FIGURE 2.9 – Generalized N×N bit radix-2r
 parallel multiplier.    

 O(X) is the necessary set of odd-multiples corresponding to radix-2r recoding. 
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    The classification of the heuristics with regard to the compression performance is based on the 

published results, and remains valid up to 32 bits. Beyond that limit, we have no idea about the 

behavior of the proposed heuristics since they are not predictable (except CSD).    

 

2.5.3.2  Multiplication by a Variable 

    As for LTV controllers (Eq. 2.2), variable-operand multiplication is the most important building block. 

Its optimization ineluctably leads to the optimization of the whole controller. 

 Although multiplication has been the focus of considerable optimization efforts over the last 

decades, it still remains a critical problematic issue because of its relatively: 

• High signal propagation delay; 

• High power dissipation; 

• And large area requirement. 

The continuous refinement of the mostly-used design paradigm based on modified Booth algorithm 

[57] combined to a reduction tree (Carry-Save-Adder array, Dadda, HPM, etc) has reached saturation. 

In [58] and [59] for instance, only slight improvements are achieved. Both proposals reduce the partial 

product number from n/2+1 to n/2 using different circuit optimization techniques of the critical path     

(n is the operand size). 
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FIGURE 2.10 – Illustration of an unsigned 8-bit multiplication, where a 4-bit multiplication, shown 

in white, is computed in parallel with a second 4-bit multiplication, shown in black.  

Source: [64] 

Theoretically, only the signed multibit recoding multiplication algorithm (Fig. 2.9) [60] is capable of a 

drastic reduction (n/r) of the partial product number, given that r+1 is the number of bits of the 

multiplier that are simultaneously treated (1≤r≤N). Unfortunately, this algorithm requires the pre-

computation of a number of odd multiples of the multiplicand (until (2r-1-1).X) that scales linearly with r. 

The large number of odd multiples not only requires a considerable amount of multiplexers to perform 

the necessary complex recoding into PPG, but dramatically increases the routing density as well. 

Therefore, a reverse effect occurs that offsets speed and power benefits of the compression factor 

(n/r). This is the main reason why the multibit recoding algorithm was abandoned. In practice, most of 

industry commercial designs do not exceed r=3 (radix 8). Only the most recent Intel processors such 

as Itanium-Poulson [61] use radix-16.                                        

 In research, the highest radix algorithms are proposed in the works of Seidel [62] and Dimitrov [63]. 

Both works rely upon advanced arithmetic to determine minimal number bases that are 

representatives of the digits resulting from larger multibit recoding. The objective is to eliminate 

information redundancy inside r+1 bit-length slices for a more compact PPG. This is achievable as 

long as no, or just very few odd multiples are required.  

In [62], Seidel has introduced a secondary recoding of digits issued from an initial multibit recoding 

for 5≤r≤16. The recoding scheme is based on balanced complete residue system. Though it 

significantly reduces the number of partial products (n/r for 5≤r≤ 16), it requires some odd multiples 

for r≥8. While in [63] Dimitrov has proposed a new recoding scheme based on a double base number 

system for 6≤r≤11. The algorithm is limited to unsigned multiplication and requires a larger number of 

odd multiples though. 

 

2.5.3.3  Multi-Precision Multiplication 

      When choosing a multiplier for a digital system, the bitwidth of the multiplier is required to be at 

least as wide as the largest operand of the applications that are to be executed on that digital system. 

The bitwidth of the multiplier is, therefore, often much larger than the data represented inside the 

operands, which leads to unnecessarily high power dissipation and unnecessary long delay. This 

resource waste could partially be remedied by having several multipliers, each with a specific bitwidth, 

and use the particular multiplier with the smallest bitwidth that is large enough to accommodate the 

current multiplication. Such a scheme (Fig. 2.10) would assure that a multiplication would be 

computed on a multiplier that has been optimized in terms of power and delay for that specific bitwidth. 
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    An array of multiplication that can be portioned in several sub-multiplications to be executed in 

parallel is referred to in literature as a multi-precision multiplication (MPM) array. Such an array is 

useful in the case of integration of a number of controllers with different bitwidths of the input signals.   

    A big number of multi-precision arrays have been proposed. They are summarized in [64][65]. 

Unfortunately, the proposed solutions are either restricted to unsigned multiplication, or they do not 

take power consumption into consideration, or they are not flexible enough.   

 

2.6  Conclusion 

   From control implementation issues in microrobotics we have defined the problems related to the 

integration of controllers for MEMS applications. This would not have been possible without a good 

understanding of MEMS requirements, namely, a severe control precision, a high control bandwidth, 

and low power consumption. These requirements have been identified through the study of a typical 

MEMS application, that is, the micromanipulation.  Afterwards, we have explored the different digital 

technology-solutions suitable to MEMS control. We have shown that ASIC/FPGA stand as the most 

appropriate options.  

    Next, a special attention has been devoted to the implementation and especially to the optimization 

of digital controllers, as it constitutes the core of this thesis. We have shown that the hardware 

optimization approach depends on the type of the controller, LTI or LTV. In the case of LTI controller, 

two complementary optimization steps are necessary. Firstly, the determination of the sparse and 

insensitive form of the state-space model leads to a significant reduction of the logic resources. 

Secondly, the resulting state-space form is once more optimized using SCM/MCM heuristics, which 

leads to another substantial reduction in hardware resources. As for LTV controller, the only possible 

hardware optimization involves the optimization of the multiplier module (MAC) as it is the main 

building-block of LTV controllers. In addition, a special type of multiplier, called multi-precision 

multiplier (MPM), has been introduced. It has the merit to considerably reduce power consumption in 

the case of integration of several controllers. 

    Among all discussed issues, we have more particularly insisted on the binary arithmetic which is the 

focal point of this thesis. We have established the state-of-the-art of SCM/MCM, MAC, and MPM. 

These three items are the key foundations behind any effective contribution to the hardware 

optimization of linear controllers. 
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Chapter 3 

 

The Binary Arithmetic 

    This chapter covers the fundamentals of the binary arithmetic. We first introduce the 

two mostly used number formats in computer arithmetic: fixed-point and floating-point 

formats. They are confronted to one another with regard to the provided precision and 

dynamic range. Afterwards, we review the main number representation systems based 

upon fixed-point format. These include the canonical-signed-digit representation, the 

double-base number system, the residue number system, and the radix-2
r
 number 

system. In each number system, addition and multiplication functions are carefully 

investigated as they are the most important arithmetic operations involved in the 

hardware implementation of linear systems.  

 

3.1  Introduction to the Binary Arithmetic 

    In binary arithmetic, numbers are represented using two symbols: typically 0 and 1. Thus, binary 

numbers are seen as a string of 0's and 1's, where the use of a 0/1 symbol corresponds to the dual 

On/Off position of the basic electronic component (Transistor) used to build up complex components. 

The transistor acts as a switch that either allows a presence of an electrical current (1), or an absence 

of an electrical current (0). We only use binary because we currently do not have the technology to 

create "switches" that can reliably hold more than two possible states. Such switches are theoretically 

possible at a quantum level, but quantum computers are not on sale for the time being. 

    In mathematical numeral systems, the symbols are called digits, and the number of symbols is 

called the base or radix. Binary numbers are expressed in radix-2, while for example decimal numbers 

are represented in radix-10 since ten digits are used (0,1,...,9). The notation commonly used to 

represent numbers is: (x)y, where x is a number expressed in the base y. For example, 

(10)10 represents the number ten in the decimal system; (10)2 represents the number two in the binary 

system. In hardware design, the numeral systems such as octal (radix-8), hexadecimal (radix-16), etc., 

serve only to facilitate the manipulation of long chains of 0's and 1's. The ultimate effective 

implementation is realized in binary (radix-2). 

    Binary arithmetic is a mathematical field mainly concerned with: 

• The study of number representation systems in order to eliminate logic-redundancy in the 

recoding. In other words, the  determination of smaller numeric bases that represent binary 

numbers with a minimal number of digits; 

• The search for algorithms that efficiently performs arithmetic operations (–, +,×, /, , an, etc) 

based on a given number representation system; 

• The exploration of the best implementation techniques when the target computational device 

is a DSP, a FPGA, or an ASIC.  
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    There exist different types of binary arithmetic. The characteristics of each arithmetic are 

fundamentally conditioned by the format used to represent numbers. The mostly used arithmetics are: 

floating-point arithmetic and fixed-point arithmetic. The implementations and optimizations undertaken 

within each arithmetic are drastically different [1]. The choice of the arithmetic to be used is mainly 

dictated by the desired precision and the dynamic range of the application.  

    Furthermore, the complexity level of the arithmetic is determined by the required operations. The 

latter basically depend on the kind of the system treated: linear system or nonlinear system. A linear 

system is a mathematical model based on linear operations (–, +, ×, /). Linear systems typically exhibit 

features and properties that are much simpler and easier to understand and manipulate than the more 

general nonlinear case which require complex operations, such as polynomial or trigonometric 

functions. 

     

3.2  Number Representation Formats  

    Representing an infinite, continuous set of real numbers with a finite set of machine numbers is not 

a straightforward task. Clever compromises must be found between some non-compatible 

requirements. Among the diverse requirements, the most desirable ones are [2]:  

• Speed: In computation-intensive applications, as in digital control or DSP, computation-time is 

a critical factor that limits the whole system performance; 

• Precision: Even if speed is important, getting inaccurate results faster may be worse than 

getting the correct results later; 

• Range: We may need to represent large as well as tiny numbers; 

• Portability: A program written on a given machine must run with no modifications on different 

machines; 

• Ease of use and implementation: If a given arithmetic is too arcane, almost nobody will use it.   

    Various number formats exist [3]. The most commonly used formats are summarized as follows: 

• Fixed-point number format: Offers a limited range and/or precision, but easy to implement. 

Very convenient for high-speed and low-power applications. It handles integer numbers 

{ }NNIx ,...,−=∈  as well as rational numbers of the form f
ax 2/= ("binary" rational), 

Ia ∈ , and f  is a positive integer. 

• Floating-point number format: This is the most common approach. It offers a wide dynamic 

range and a high precision to accommodate extremely large and small numbers, respectively. 

However, it is relatively difficult to implement. It handles numbers of the form E
bx × , where x 

is a rational number, b is an integer base, and E is an integer exponent. 

• Logarithmic number format: Represents numbers by their signs and logarithms. Attractive for 

applications needing low precision and wide dynamic range. 

• Rational number format: Approximates a real value by the ratio of two integers. Leads to 

difficult arithmetic operations.  

    We limit ourselves to the fixed-point and floating-point representations. 
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3.2.1  Fixed-Point Format 

    Numbers in the fixed-point format are represented by an ordered n-tuple. Each of the elements of 

the n-tuple is called a digit, and the n-tuple is called a digit-vector [1]. We begin with the representation 

of nonnegative integers, followed by the representation of signed integers. 

 

3.2.1.1  Representation of Nonnegative Integers 

    The digit-vector that represents the integer x is denoted by 

                                                    ( )0121 ,,...,, xxxxx nn −−= .                                                    (3.1) 

    Note that we use a zero-origin, leftward-increasing indexing. The number system to represent x 

consists of the following elements: 

• The number of digits n. 

• A set of numerical values for the digits. We call Di the set of values of xi. The cardinality of the 

set Di is denoted by iD . For example, { }9,...,2,1,0  is the digit set for the conventional 

decimal number system with cardinality 10. 

• A rule of interpretation. This rule corresponds to a mapping between the set of digit-vector 

values and the set of integers. 

    The set of integers, each represented by a digit-vector with n digits, is a finite set with at most 

i
n
i DK

1
0

−
=∏=  different elements since this is the maximum number of different digit-vectors. For 

example, in a conventional decimal system a digit-vector of six digits can represent a million values. 

Sets that have been found generally useful to perform basic arithmetic operations include, for 

example, all integers from 0 to K–1.  

    The number systems most frequently used are weighted systems. Their representation mapping is: 

                                                                       ∑
−

=

×=
1

0

n

i

ii wxx ,                                                         (3.2) 

where ( )0121 ,,...,, wwwww nn −−=  is the weight-vector. 

    A radix number system is a weighted number system in which the weight-vector is related to the 

radix-vector ( )0121 ,,...,, rrrrr nn −−=  as follows: 

                                               ( )11;1 110 −≤≤×== −− nirwww iii .                                       (3.3) 

This is equivalent to: 

                                                                  j

i

j
i rww

1

0
0 ;1

−

=
∏== .                                                     (3.4) 
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    Radix number systems are classified according to the radix-vector into fixed-radix and mixed-radix 

systems. In a fixed-radix system all elements of the radix-vector have the same value r (the radix). 

Consequently, the weight-vector is 

                                                           ( )1,,...,, 221
rrrrw

nn −−= ,                                                (3.5) 

and the digit-sets are  

                                                                 Di=D     ( )11 −≤≤ ni ,                                                    (3.6) 

and 

                                                                       ∑
−

=

×=
1

0

n

i

i
i rxx .                                                            (3.7) 

    The most frequently used radices are powers-of-two, such as 2 (binary), 4 (quaternary), 8 (octal), 16 

(hexadecimal), and so on.  The corresponding range of x represented with n radix-r digits is: 

                                                                      10 −≤≤ n
rx .                                                            (3.8) 

   According to the set of digit values (Di), the radix number systems are classified into redundant and 

nonredundant systems. A number system is nonredundant if each digit-vector represents a different 

integer; that is, if the representation mapping is one to one. It is redundant if there are integers that are 

represented by more than one digit-vector. More precisely, in a nonredundant system the set of values 

for Di is { }1,...,1,0 −ir  with ii rD = . For example, the nonredundant digit sets in the binary, 

quaternary, octal, and hexadecimal number systems are{ }1,0 , { }3,2,1,0 , { }7,...,2,1,0 , { }15,...,2,1,0 , 

respectively.  

    A digit set Di such that ii rD >  produces a redundant system allowing more than one 

representation of a value; for example, in the { }1,0,1−  binary system the vectors (0,0,1,1,1,1,0) and 

(0,1,0,0,0,–1,0) both represent the integer "thirty" (Table 3.1). An exception to this rule is the canonical 

systems that yield minimum number of digits for each value of x varying from 0 to 1−nr . Canonical 

systems are nonredundant even if ii rD > . An example of such systems is the well-known Canonical 

Signed Digit (CSD) representation, used in designing the vast majority of LTI systems [4]. 

    A system with fixed positive radix r and nonredundant set of digit values is called a radix-r 

conventional number system. These are by far the most commonly used number systems. 

TABLE 3.1 – Representation of the integer "thirty" in different number systems. 

Number system Digit vector 

Conventional radix-2 system (binary) (0011110)2 

Conventional radix-3 system (0001010)3 

Conventional radix-4 system (0000132)4 

Conventional radix-10 system  (0000030)10 

Redundant Radix-2 system with digit set }1,0,11{ =−  
(0011110)2 

( )20101000  
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    For the implementation of arithmetic algorithm in (binary) digital systems, it is necessary to 

represent the digit-vectors by bit-vectors. This is done by defining a code for a digit and mapping the 

digit-vector by mapping each digit according to this code. In the binary (conventional) number system, 

the code is direct: the binary-digit values 0 and 1 are represented by the binary-variable values 0 and 

1, respectively. For higher power-of-two radices, the most common code is the binary code, in which a 

digit d is represented by a bit vector ( )0121 ... dddd kk −− of ( )rk 2log= bits, such that: 

                                                                       i
k

i

idd 2
1

0

×=∑
−

=

.                                                           (3.9) 

    The use of this code for each digit results in a bit vector for x that is the same for any power-of-two 

radix, the only difference being the way the bits are grouped to form a digit. In the binary case, each 

bit corresponds to a digit, while in the radix-r case, groups of ( )r2log  bits form a digit. Therefore, 

conversion from a bit-vector in a radix-2 representation to a radix-r representation and vice-versa is 

trivial. For example, the bit-vector 

                                                      x = (110001011101)2 

                                                             = ([110] [001] [011] [101])8                                                   (3.10) 

                                                             = ([1100] [0101] [1101])H  

corresponds to the octal digit-vector (6135)8 and the hexadecimal digit-vector (C5D)H. The fact that bit-

vectors are identical permits the use of some binary algorithms to perform operations on integers 

represented in these higher radices. 

 

3.2.1.2  Representation of Signed Integers 

     In the previous section we presented the representation of nonnegative integers. We now extend 

the discussion to the representation of signed integers (positive and negative). Two representations 

are by far the most common: 

• The sign-and-magnitude (SM) representation:  In SM, a signed integer x is represented by a 

pair (xs,xm), where xs is the sign and xm is the magnitude (positive integer). The two values of 

the sign (+,–) are represented by a binary variable, where traditionally “0” corresponds to + 

and “1” to –. The magnitude can be represented by any system for the representation of 

positive integers. If a conventional radix-r system is used, the range of signed integers, for n 

digits in the representation of the magnitude, is 0≤xm≤r
n–1. Note that zero has two 

representations: xs=0, xm=0 (positive zero) and xs=1, xm=0 (negative zero). 

• The true-and-complement (TC) representation: In this system, there is no separation between 

the representation of the sign and the representation of the magnitude, but the whole signed 

integer is represented by a positive integer. The representations of positive integers are called 

true forms, and those of negative integers, complement forms. While TC is expressed in the 

general case by radix-r, we consider only the special case of radix-2, called the two's 

complement representation. The latter is described hereafter in details. 
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    In the two's complement representation, a signed integer (bit-vector) x with n digits is represented 

as follows: 

                                                      ∑
−

=

−
− ×+×−=

2

0

1
1 22

n

i

i
i

n
n xxx .                                               (3.11) 

    In converting a bit-vector to a value, we use the fact that the most significant bit (xn-1) of x has a 

negative weight, while the remaining bits have positive weights. For example, 

                                                        ( ) 51281611011 −=+++−→=x . 

     The two's complement representation (Eq. 3.11) has the following properties: 

• The representation of zero is unique. Zero is obtained when all digits are set to zero.  

• The range of numbers is not symmetrical since 12 −−= nx is representable but 12 −= nx is 

not. That is, the range is [ ]12,2 11 −− −− nn . 

 

3.2.1.3  Fixed-Point Arithmetic of Two's Complement Numbers 

    Before describing the arithmetic operations, we need first to formalize the representation of 

numbers in fixed-point format [5]. Let β be the number of digits (bits) of a signed number (bit-vector) x, 

and γ the number of digits of the fractional part of x (Fig. 3.1). Let α be the number of digits of the 

integer part (α=β–γ). Finally, xFPR denotes the tuple (β, α, γ) defining the fixed-point representation 

of x. Hence, frInt xxx += is written as ( )γγα −+−−− •= xxxxxxx 11011 ...... , such that 

                                                    ∑
−

−=

−
− ×+×−=

2
1

1 22
α

γ

α
α

i

i
ixxx .                                                 (3.12) 

           
    To convert a real number x to FPR, we proceed as follows. β is a given value since it must be equal 

to the bit-width of the data-path. The number of bits of the integer part is given by:  

                                                              2log2 += xxα ,                                                              (3.13) 

with  a  is the floor function that rounds a to the nearest integer lower than or equal to x. Hence, we 

determine the fractional part as xxx αβγ −= , and the FPR of x is given by: ( )xxxxFPR γαβ ,,= . 

±    2β−γ−2
           ...              21     20     2−1                                                2−γ

 

     

FIGURE 3.1 – Fixed-point representation of a signed real number in two's complement system. 

... ... 

Signed integer part Fractional part 

β 

α γ 
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Conversely, note that in fixed-point representation, x is represented by the integer Nx such as: 

                                                               [ ]xxN x
γ2×= ,                                                                (3.14) 

where [ ]a  is the function that rounds a to the nearest integer. Thus, x is approximated by  

                                                                  xxNx γ−×= 2† .                                                           (3.15) 

   Multiplication and addition are the two mostly used operations in linear systems. In fixed-point 

format, they are handled as follows. 

 

3.2.1.4  Multiplication 

    Let us consider the operation yxz ×= , with ( )xxx γαβ ,,  and ( )yyy γαβ ,, . zFPR is given by: 

                                             ( )yxyxyxzFPR γγααββ +++= ,, ,                                            (3.16) 

and the multiplication operation is realized by yxz NNN ×← . In Eq. 3.16 the multiplication is 

performed in double-precision since yxz βββ += , but generally the bit-width ( )dpW  of the data-path 

is smaller than ( )yx ββ + . In this case, let us denote dpop W=β , and give the general expression 

of zFPR : 

                                             [ ]( )yxopyxopzFPR ααβααβ +−+= ,, ,                                     (3.17) 

and the operation is realized by 

                                                      ( ) ( )yyxxz sNsNN >>×>>← ,                                            (3.18) 

where sx and sy and are right bit shifts applied on Nx and Ny such that ( ) opyxyx ss βββ −+=+ . But 

if ( )yxop βββ += , then 0== yx ss . The special and general cases given by Eq. 3.16 and 3.17, 

respectively, are illustrated by Fig. 3.2. A number of Scst bits are truncated from the operand Y such 

that dpop W=β . 

 

y 

y y 

y 

y 

... ... 

... ... 

... ... 

... ... ... 

... ... 

... ... 

           (a) Double precision multiplication                              (b) Simple precision multiplication 

        FIGURE 3.2 – Double (a) and Simple (b) precision. 
multiplication 
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3.2.1.5  Addition 

    Adding two fixed-point numbers requires the same point position. Let us consider the 

operation yxz ×= , with ( )xxx γαβ ,,  and ( )yyy γαβ ,, . The full-precision zFPR is given by: 

                                                        

( )
( )









+=

+=

++=

zzz

yxz

yxz

γαβ

γγγ

ααα

max

1max

      .                                                 (3.19) 

    The general case (limited precision) where dpop W=β is given by:  

                                                        

( )
( )









=

−+−=

++=

opz

yxopz

yxz

ββ

ααβγ

ααα

1max

1max

,                                           (3.20)  

and the addition operation is realized by  

                                                        ( ) ( )yyxxz sNsNN >>×>>← ,                                          (3.21) 

with zxxs γγ −= and zyys γγ −= . 

 

3.2.1.6  Overflow Detection 

    In the two's complement representation, an overflow occurs when the operands are of the same 

sign and the result of the addition represents an integer of opposite sign. Since the sign is determined 

by the most significant bit (xn-1), the overflow detection is specified by the following switching 

expression:  

                                ( ) ( )111111 −−−−−− ××+××= nnnnnn zyxzyxAVF .                                   (3.22) 

 

3.2.2  Floating-Point Format 

    As indicated earlier, a floating-point representation is used to represent real numbers. Since, as in 

fixed-point representation, the floating-point representation is encoded in a finite number of bits, it is 

possible to represent only a finite subset of the infinite set of real numbers. For a specific floating-point 

system, a real number that is exactly represented in the system is called a floating-point number.  The 

rest of the real numbers either fall outside the range of the representation (overflow and underflow) or 

are represented by floating-point numbers that have a value that approximates the real number. The 

process of approximation is called roundoff (or rounding) and produces a roundoff error. 

    A floating-point number x is represented by a triple (Sx ,  Mx , Ex), such that: 

                                                          ( ) xx E
x

S
bMx ××−= 1 ,                                                       (3.23) 

where b is a constant  called the base; Ex is a signed integer exponent; Mx  is the significand (also 

called the mantissa); and { }1,0∈xS  is the sign of the significand. 
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3.2.2.1  Dynamic Range 

    The objective of using floating-point representation is to increase the dynamic range, with respect to 

a fixed-point representation. This dynamic range is defined as the ratio between the largest and the 

smallest nonzero and positive number that can be represented [1]. For a fixed-point representation 

using n radix-r digits for the magnitude, the dynamic range is:  

                                                                1−= n
fxpt rDR .                                                             (3.24) 

    In contrast, for the floating-point representation: 

                                                        
min

max

min

max
E

E

ftpt
bM

bM
DR

×

×
=  .                                                     (3.25)

 

    For instance, if the n digits are partitioned so that m digits are used for the significand and n–m 

digits for the exponent, and b=r,  we get:  

                                               ( ) ( )11 −−

×−=
mnrm

ftpt rrDR .                                                  (3.26) 

    As an example, if n=32, m=24, and r=2, the corresponding dynamic ranges are: 

                                                    932 103.412 ×≈−=fxptDR ; 

                                                    ( ) 831224 107.9212
8

×≈×−= −
ftptDR . 

    A large dynamic range is required in many applications to avoid overflows and underflows. If the 

dynamic range of the fixed-point representation is not sufficient, complicated operations have to be 

included in the program. Thus, a floating-point system is preferable in such applications. 

 

3.2.2.2  Precision 

    In numerical analysis, errors are very often expressed in terms of relative errors. And yet, when we 

want to express infinitesimal errors, it is more adequate and frequently more accurate to express 

errors in terms of what we would intuitively define as the weight of the last bit of the significand (Fig. 

3.3). To make that notion clearer, the term ulp (acronym for unit in the last place) is used. Several 

slightly different definitions of ulp exist in the literature. We cite hereafter the two most frequent ones: 

         "ulp(x) is the gap between the two floating-point numbers nearest to x, even if x is one of them." 

         "ulp(x) is the distance between the closest straddling floating-point numbers a and b (i.e., those 

with a≤x≤ b and a≠b), assuming that the exponent range is not upper-bounded." 

    All ulp definitions coincide as long as x is not extremely close to a power of the radix. They have 

complex properties that differ to a small extent. However, a deep understanding of these complex 

properties is necessary for anyone who wants to prove exact tight bounds on the errors of infinitesimal 

computations. This issue goes beyond the scope of this thesis. Readers interested to study the 

precision of floating-point arithmetic are referred to [2]. 
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    Devoting more digits to the exponent part widens the number representation range but reduces the 

precision. There is a trade-off between the range and precision that is quite critical. Generally, to 

improve the precision without much altering the range, the integer part in the significand is eliminated 

to the benefit of the fractional part, that is, we take f=m.  

    Contrary to the fixed-point representation where the gap between consecutive numbers is constant     

(2–f
 ), in floating-point representation the number distribution within the dynamic range is not uniform. 

Smaller numbers are denser, and larger numbers are sparser. Fig. 3.4 shows the number distribution 

pattern and the various subranges in floating-point representations. In particular, it includes the three 

special or singular values –∞, 0, and +∞ and depicts the meanings of overflow and underflow. 

Overflow occurs when a result is less than –max or greater than max. Underflow, on the other hand, 

occurs for results in the range (–min, 0) or (0, min). 

 

                                            

    In floating-point representation, the code assignment patterns are different, leading to different 

ranges and error characteristics. For the same range of representable values, floating-point tends to 

be better than fixed-point in terms of average relative-representation-error, even though the absolute 

representation error increases as the values get larger [3]. 

    Though floating point representation provides greater dynamic range and better precision than fixed 

point, it is far more expensive to implement. Most embedded system applications tolerate a certain 

degree of inaccuracy and use the much simpler fixed-point notation to increase throughput and 

decrease area, delay, and energy. 

 

Illustrative Example 

    The two representation formats in IEEE standard for radix-2 (binary) floating-point numbers, 

formally known as "ANSI/IEEE Std 754-1988," are depicted in Fig. 3.5. The short, or single-precision, 

format is 32 bits wide, whereas the long, or double-precision, version requires 64 bits. The two formats 

have 8-bit and 11-bit exponent fields and use exponent biases of 127 and 1023, respectively. The 

Integer part  Fractional part  

f  digits   

m  digits   

                FIGURE 3.3 –  Significand in radix-r fixed-point representation. 

The last bit of  
the significand 

FIGURE 3.4 – Distribution of floating-point numbers within the dynamic range. 
                      Source: [3] 
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significand is in the range   [1, 2), with its single whole bit, which is always 1, removed and only the 

fractional part shown. The notation "23+1" or "52+1" for the width of the significand is meant to explain 

the role of the hidden bit, which does contribute to the precision without taking space. Table 3.2 

summarizes the most important features of the IEEE standard floating-point representation formats. 

     

    In the 32-bit format, the largest and smallest numbers are ±3.4×1038 and ±1.2×10–38, respectively. 

The represented values are unequally spaced between these two extremes, such that the gap 

between any two numbers is about 10–7 times smaller than the value of the numbers. This is important 

because it places large gaps between large numbers, but small gaps between small numbers (ditto for 

64-bit format).                                                                          

                                       

TABLE 3.2 – Some features of the ANSI/IEEE 754-1988 standard 
floating-point number representation formats.  

Feature Single/Short Double/Long 

Word width, bits  32  64  

Significand bits  23 + 1 hidden  52 + 1 hidden  

Significand range  [1, 2–2–23]  [1, 2–2–52]  

Exponent bits  8  11  

 Exponent bias  127  1023  

Zero (±0)  E + bias = 0, f=0  E + bias = 0, f=0  

Denormal  
E + bias = 0, f≠0 

represents ± 0.f×2–126  

E + bias = 0, f≠0 

represents ± 0.f×2–1022 

Infinity (±∞)  E + bias = 255, f=0 E + bias = 2047, f=0 

Not-a-number (NaN)  E + bias = 255, f≠0 E + bias = 2047, f≠0  

Ordinary number  

E + bias ∈ [1, 254]  

E  ∈ [–126,127] 

represents 1.f ×2E
  

E + bias ∈ [1, 2046]  

E ∈ [–1022,1023] 

represents 1.f ×2E 

min (±) 2–126 
≈ 1.2×10–38 2–1022 

≈ 2.2×10–308 

max (±) ≈ 2128 
≈ 3.4×1038 ≈ 21024 

≈ 1.8×10308 

 

3.3  Number Representation Systems  

    We have deliberately separated number representation formats from number representation 

systems. The latter rely on the former to create sophisticated arithmetic algorithms. 

32-bit:   1 bit    8 bits, bias = 127               23 + 1 bits, single-precision or short format 

64-bit:   1 bit   11 bits, bias = 1023            52 + 1 bits, double-precision or long format 

  ±              E+bias                                                           f   

FIGURE 3.5 – The ANSI/IEEE standard 754-1988 floating-point representation. 

Sign     Biased exponent                     Significand  M=1.f  (the 1 is hidden) 
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    Number systems are developed in order to enable a reduction of the complexity of the arithmetic 

operations. The reason is that in most applications, the computational complexity of algorithms 

crucially depends upon the number of zeros of the input data in the corresponding number system. 

Because each number system exhibits specific numerical properties, the arithmetic operations are 

handled differently.  

    Only number systems based on fixed-point format are concerned in this thesis.  In the previous 

section, we developed through Eq. 3.1 to 3.10 the general case of radix theory. This includes: 

fixed/mixed radix system; redundant/nonredundant number representation; and 

canonical/noncanonical number representation. These notions are the fundamentals of number 

systems. 

 

3.3.1  Canonical Signed Digit (CSD)  

    CSD is the canonical form of the signed digit (SD) representation developed by Avizienis [6] in 

1961. SD is a redundant fixed-radix (r=2) representation defined as follows: 

                                           ∑
−

=

×=
1

0

2
n

i

i
ixx    with  }1,0,1{=∈ Dxi .                                            (3.27) 

    The digit xi is a ternary digit, sometimes called trit. It requires two bits to represent it, but the major 

benefit of SD is that addition/subtraction can be made without carry-propagation, accelerating 

therefore the operations, especially for large operand addition/subtraction. 

    In SD, the integer "seven", for example, has several representations: 

  ( ) 71240111 2 =++= ; ( ) 71281110 2 =+−= ; ( ) 712481111 2 =++−= ; ( ) 7181100 2 =−= . 

    The rational number "5/8", for exemple; can be written differently:  

                                          ( ) ( ) ( ) ( )2222 110.1111.1011.1101.0625.0
8

5
===== . 

    One conversion method from two's complement notation to SD representation is to use Booth 

encoding (Table 3.3). For example, the two's complement value 7=(0111)2, is converted to SD through 

the steps described in Fig. 3.6. 

                  

    A signed-digit representation with minimum number of non-zero digits is called a minimum signed-

digit (MSD) representation. In general, there are several MSD representations. One particular MSD 

representation can be obtained by constraining two adjacent digits to not be both non-zero, that is, 

01 =×+ ii xx . This particular MSD representation is called canonical signed digit (CSD) 

0   1    1    1    0 

1

1 0

0

Always add "0" 

(                    )2=8−1=7 1 0 0 1

FIGURE 3.6 – Conversion process from Two's 
complement notation to SD representation of 
the positive integer "7". 
 

  TABLE 3.3 – Booth encoding. 

Yj Yj-1 Digit 

0 0 0 
0 1 1 
1 0 1  
1 1 0 
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representation. The CSD representation is unique and therefore not redundant. Reconsidering the 

example given above, the CSD representation for the numbers "7" and "5/8" are ( )21100 and 

( )2101.0 , respectively. 

    The conversion from SD to CSD is done as follows: 

• Convert long string of 1's:  10...10011...011 ⇒ ; 

• Convert long string of 1 's: 01...00111...110 ⇒ ; 

• Merge adjacent digits of opposite signs: .1011;0111 ⇒⇒  

    Using the CSD format on a n-bit value, the number of non-zero digits is bounded by (n+1)/2, and it 

tends asymptotically to an average value of (n/3)+(1/9). Compared to the traditional binary 

representation that requires n/2 digits on the average, CSD allows a saving of 33% in non-zero digits. 

This means that in constant multiplication ( )XC × , 33% less additions/subtractions are required, 

which leads to much compact implementations of LTI systems [4]. This is the reason why CSD is so 

popular.  

    Despite the fact that CSD minimizes the number of nonzero digits for the constant representation, it 

is far from being optimal. It is possible to decompose the n-bit value to further reduce the number of 

operations. This can be achieved using more complex number systems. 

 

3.3.2  Double Base Number System (DBNS) 

     DBNS arithmetic was developed by Dimitrov in 1999 [7]. In DBNS, an integer x is expressed using 

bases 2 and 3, as follows:    

                                       ji

ji

jidx 32
,

, ××=∑      with   }1,0{, =∈ Dd ji .                                    (3.28) 

    For example, the integer x=(10599)10 is written in DBNS as follows: 

                                   x = (32×28)+(3×25)+(30×213)+(30×23) –(30×20)= (10599)10. 

    According to Eq. 3.2 and 3.3, DBNS is a weighted system, but not a radix system. DBNS 

representation is highly redundant; it is set clear from Eq. 3.28 that the traditional binary system is a 

special case (j=0) of DBNS. The canonical DBN representation (CDBNR) that expresses a given 

integer as a sum of minimal number of 2-integers ( )ji 32 ×  is very complex to determine (NP-

complete problem). Thus, arithmetic operations in this number system do not guarantee that the 

results are obtained in the minimal form. The author proposed a minimization heuristic called the 

greedy algorithm with the input as a positive integer x; and an output of 2-integers, ai, such that 

xa
i i =∑ . The algorithm finds the largest 2-integer, w, smaller than or equal to x, and recursively 

applies the same for x−w until reaching zero. The greedy algorithm terminates after 
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( ) ( )( )( )xxO loglog/log  steps. The representation obtained by the greedy algorithm is called near-

canonical DBNR (NCDBNR). 

    The mechanism of finding the NCDBNR plays a crucial role in performing basic arithmetic 

operations. NCDBNR form is further minimized by reducing adjacent non-zero digits based on a 

number of reduction rules given hereafter. The resulting form is called addition-ready DBNR 

(ARDBNR). 

 

3.3.2.1  Basic ARDBNR reduction rules 

    One can use a geometrical interpretation, with orthogonal dimensions for each of the bases, to 

represent numbers in the DBNR. Nonzero DBNR digits are shown as black squares (active cells). This 

interpretation allows demonstrating simple identities on special combinations of active cells that 

provide a transformation of a DBNR to an ARDBNR. For example, Fig. 3.7(a) shows the 

representation of the identity 11 323232 ++ ×=×+× jijiji   to remove consecutive active cells lying 

in one column. Fig. 3.7(b) demonstrates the application of the identity, 

jijiji 323232 21 ×=×+× ++ , to remove consecutive active cells lying in one row. 

     

3.3.2.2  Advanced ARDBNR reduction rules 

    A generalized solution for the reduction can be applied using the purely exponential Diophantine 

equation: 

llkk nmnmnmjijiji 32...323232...3232 22112211 ×++×+×=×++×+×    with   l<k.     (3.28) 

    The problem of solving such Diophantine equations has been a subject of investigation over the last 

two decades, although some interesting results were obtained in the 30s and 40s. The reality is that 

only some special cases for k and l are considered. For example, using k =2 and l=1, following 

theorem can be proved: 

Theorem 3.1 – The Diophantine equation x+y=z, where GCD(x,y,z)=1 and x, y, and z are 6-integers, 

that is, x, y, z have the form 654321 13117532 nnnnnn ××××× , with ni≥0 and { }6,5,4,3,2,1∈i , has 

exactly 545 solutions. 

    Refer to [7] for the proof. For DBNS, n3=n4=n5=n6=0, and the only solutions of x+y=z are (1, 2, 3), (1, 

3, 4), and (1, 8, 9). Therefore, these represent the only three cases where we can replace two active 

(a) Column reduction (b) Row Column 

FIGURE 3.7 – Reduction of consecutive active cells lying in one column (a) and in one row (b). 

Source: [7] 
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cells with one. For k =3 and l=1, an interesting possibility for reducing the active cells follows from the 

solution of the Pillai’s equation [7]: 

                                                                   dcba 3322 ±=± .                                                      (3.29) 

    Pillai was able to solve all of the above four equations, excluding the equation 

dcba 3322 −=− on which he conjectured that the only solutions are (3, 1, 2, 1), (5, 3, 3, 1), and (8, 

4, 5, 1). For DBNS, only the two following equations are relevant: 

                                                                   dcba 3322 +=− ;                                                      (3.30) 

                                                                   dcba 3322 −=+ .                                                      (3.31) 

    The solutions of Eq. 3.30 are (2, 1, 0, 0), (3, 1, 1, 1), (5, 1, 1, 3), (3, 2, 1, 0), (5, 2, 0, 3), (4, 2, 1, 2), 

and (8, 2, 5, 3), while Eq. 3.31 has only one solution (0, 0, 1, 0). The total number of solutions of the 

equation x+y+z=t, GCD(x,y,z,t)=1, in 2-integers is 27 [7]. 

 

3.3.2.3  Addition 

    Let x and y be two integers in the CDBNR. We note that if x and y contain the element ji 32 × , then 

the element ji 32 1 ×+  does not exist. Therefore, addition can be computed by simply overlaying the 

corresponding DBNS maps; there will be no overlapping active cells. In order to prepare for another 

addition, we ideally perform a reduction into minimal form. In practice, we only require an ARDBNR 

and the symbolic substitution methods described in the previous section can be effectively used. 

    Let us define ( )jiI x ,  as the DBNS map of the integer x, represented in the ARDBNR. The image 

( )jiI z ,  of the DBNS map of the number z=x+y can be obtained using: 

                                               ( ) ( ) ( )jiIANDjiIjiI yxz ,,,1 =+  ;                                               (3.32) 

                                                  ( ) ( ) ( )jiIXORjiIjiI yxz ,,, =  .                                                 (3.33) 

    Note, using the ARDBNR, if ( ) ( ) 1,, == jiIjiI xx , then ( ) ( ) 0,1,1 =+=+ jiIjiI xx  and, 

therefore, addition can be accomplished using a symbolic substitution technique. To reduce this result, 

it is sufficient to use the following rules (see Fig. 3.7): 

                                              ( ) ( ) ( )jiIANDjiIjiI zzz ,1,1, +=+  ;                                          (3.34) 

                                              ( ) ( ) ( )1,,,2 +=+ jiIANDjiIjiI zzz  .                                          (3.35) 

    As an example of performing addition, let us consider the addition of the numbers 88 and 123 using 

the proposed technique. The representation of the numbers is NCDBNR, obtained via the greedy 

algorithm. For the number, 88, the NCDBNR gives 88 = 81 + 6 + 1 (three active cells), while the 

CDBNR consists of only two active cells (88 = 72 + 16 = 64 +24). The addition operation is presented 

in Fig. 3.8. The example is selected so that the application of the reduction rules, based on the 

solution of Eq. 3.32, gives a result which is not optimal. In fact, 211 requires 3 ones in the CDBNR; 

one of them could be found using more sophisticated substitution rules:                                                

           ( ) ( ) ( ) ( ) ( )1,11,,,1,3 +++=++ jiIANDjiIANDjiIjiIANDjiI zzzzz ;                (3.36) 

                         ( ) ( ) ( ) ( )3,11,,1,5 ++++=+ jiIANDjiIANDjiIjiI zzzz .                       (3.37)     
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3.3.2.4  Multiplication 

    Let x and y be integers, represented by DBNS maps in the CDBNR. The CDBNR of their product, z, 

is an n-tuple of the elements{ }yxyxzz
jjiiji ++ ×=× 3232 , where the{ }xx ji ,  and { }yy ji ,  are the 

2-integer index locations of the active cells in the CDBNRs of x and y, respectively. 

    It is clear that the multiplication process simply corresponds to 2D shifts and DBNS additions in an 

equivalent way to that performed using binary arithmetic. The promise here, however, is that the 

number of operations is considerably reduced based on the sparseness of the representation. Let us 

consider the multiplication of the numbers 79 and 107, represented via their DBNS maps as shown in 

Fig. 3.9. The final reduced forms of the product can be found by using two specific solutions of the 

Pillai’s equation 3.29: 

                              ( ) ( ) ( ) ( )jiIANDjiIANDjiIjiI zzzz ,6,4,4, ++=+ ;                             (3.38) 

                              ( ) ( ) ( ) ( )jiIANDjiIANDjiIjiI zzzz ,42,,13, +++=+ .                      (3.39)     

    The representation of the multiplication result is shown in Fig. 3.9(a), and the ARDBNR reduction, 

using rules 3.38 and 3.39, in Fig. 3.9(b). 

               
 

3.3.3  Residue Number System (RNS) 

    The concept of RNS dates back 1500 years ago in China [3]. In RNS, a number x is represented by 

the vector of its residues with respect to k prime moduli 0121 mmmm kk >>⋅⋅⋅>> −− . The residue 

    FIGURE 3.9 – Example of the DBNS Multiplication Process. 
    (a) Multiplication result without reduction. 
    (b) Multiplication result ARDBNR reduction. 
 

= 

(a) (b) 
Source: [7] 

= = 

FIGURE 3.8 – Example of the DBNS addition process. 
Source: [7] 
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xi of x with respect to the ith modulus mi is similar to a digit, and the entire k-residue representation of 

x can be viewed as a k-digit number. Notationally, we write 

                                     ( ) ( )0121 ||||0121 ||||
mmmmRNSkk

kk
xxxxx ⋅⋅⋅−−

−−
⋅⋅⋅=  ;                     

                                     
imii xmxx == mod  with   { }1,...,2,1,0 −∈ mxi .                                (3.40) 

    The vector of moduli, ( )0121 |||| mmmmRNS kk ⋅⋅⋅−− , can be deleted from the subscript when we have 

agreed on a default set. The product M of the k prime moduli is the number of different representable 

values in the RNS and is known as its dynamic range: 

                                                   0121 mmmmM kk ××⋅⋅⋅××= −− .                                             (3.41) 

    For example, 8403578 =×××=M  is the total number of distinct values that are representable 

in   ( )3|5|7|8=RNS . Because of the equality 

                                                              
ii mm

xMx −=− ,                                                      (3.42) 

the 840 available values can be used to represent numbers from 0 up to 839, or from –420 up to +419, 

or any other interval of 840 consecutive integers. In effect, negative numbers are represented using a 

complement system with the complementation constant M. Here are some example numbers in       

RNS(8 | 7 | 5 | 3): 

                                                    (0 | 0 | 0 | 0)RNS Represents 0 or 840 or . . . 

                                                    (1 | 1 | 1 | 1)RNS Represents 1 or 84 1 or . . . 

                                                    (2 | 2 | 2 | 2)RNS Represents 2 or 842 or . . . 

                                                    (0 | 1 | 3 | 2)RNS Represents 8 or 848 or . . . 

                                                    (5 | 0 | 1 | 0)RNS Represents 21 or 861 or . . . 

                                                    (0 | 1 | 4 | 1)RNS Represents 64 or 904 or . . . 

                                                    (2 | 0 | 0 | 2)RNS Represents −70 or 770 or . . . 

                                                    (7 | 6 | 4 | 2)RNS Represents −1 or 839 or . . . 

    RNS representation is not redundant within the interval chosen of 840 consecutive integers. Given 

the RNS representation of x, the representation of −x can be found by complementing each of the 

digits xi with respect to its modulus mi (0 digits are left unchanged). Thus, given that 21=(5 | 0 | 1 | 

0)RNS , we find: −21=(8−5 | 0 | 5−1 | 0)RNS=(3|0|4|0)RNS. 

    In practice, each residue must be represented or encoded in binary. For our RNS example, such a 

representation would require 11 bits (Fig. 3.10). To determine the number representation efficiency of 

our 4-modulus RNS, we note that 840 different values are being represented using 11 bits, compared 

to 2048 values possible with binary representation. Thus, the representational efficiency is 

840/2048=41%. 

 

3.3.3.1  Addition and Multiplication 

    As noted earlier, the sign of an RNS number can be changed by independently complementing 

each of its digits with respect to its modulus. Similarly, addition, subtraction, and multiplication can be 

performed by independently operating on each digit. The following examples for RNS(8 | 7 | 5 | 3) 
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illustrate the addition, subtraction, and multiplication processes, respectively: 

                                                 (5 | 5 | 0 | 2)RNS Represents x=+5 

                                                 ( 7 | 6 | 4 | 2)RNS Represents y=−1 

                                                 (4 | 4 | 4 | 1)RNS  x+y: 475
8

=+ , 465
7

=+ , etc. 

                                                 ( 6 | 6 | 1 | 0)RNS  x−y: 675
8

=− , 665
7

=− , etc. 

                                                 (3 | 2 | 0 | 1)RNS  x×y: 375
8

=× , 265
7

=× , etc. 

                         

    The speed and simplicity are the primary advantages of RNS arithmetic. In the case of addition, for 

example, carry propagation is limited to within a single residue (a few bits). Thus, RNS representation 

pretty much solves the carry propagation problem. As for multiplication, a 4 x 4 multiplier (e.g.), is 

considerably more than four times simpler than a 16 x 16 multiplier, besides being much faster. In fact, 

since the residues are small (say, 6 bits wide), it is quite feasible to implement addition, subtraction, 

and multiplication by direct table lookup. With 6-bit residues, say, each operation requires a 4K x 6 

table. Thus, excluding division, a complete arithmetic unit module for one 6-bit residue can be 

implemented with 9 KB of memory. 

    Unfortunately, however, what we gain in terms of the speed and simplicity of addition, subtraction, 

and multiplication can be more than nullified by the complexity of division and the difficulty of certain 

auxiliary operations such as sign test, magnitude comparison, and overflow detection. 

 

3.3.3.2  Choosing the RNS Moduli 

    The set of the moduli chosen for RNS affects both the representational efficiency and the 

complexity of arithmetic algorithms. In general, we try to make the moduli as small as possible, since it 

is the magnitude of the largest modulus mk–1 that dictates the speed of arithmetic operations (carry-

propagation). We also often try to make all the moduli comparable in magnitude to the largest one, 

since with the computation speed already dictated by mk–1, there is usually no advantage in 

fragmenting the design through the use of very small moduli.  

    We illustrate the process of selecting the RNS moduli through two examples. Let us assume that we 

want to represent unsigned integers in the range 0 to (100000)10 requiring 17 bits with standard binary 

representation. A simple strategy is to select appropriate prime numbers in sequence until the 

dynamic range M becomes adequate. For (100000)10, it gives: 

                                                      (17 | 13 | 11 | 7 | 3 | 2 )RNS ;  M=(102102)10 . 

    With binary encoding of the six residues, the number of bits needed for encoding each number is: 

                                                                      5+4+4+3+2+1=19 bits. 

mod 8 mod 7 mod 5 mod 3 

11 bits 

 FIGURE 3.10 – Binary-coded number format for RNS(8 | 7 | 5 | 3). 
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    However, speed and cost do not just depend on the widths of the residues but also on the moduli 

chosen. Note that power-of-2 moduli simplify the required arithmetic operations, so that, for example, 

the modulus 16 might be better than the smaller modulus 13. Moduli of the form 2a
−1 are also 

desirable and referred to as low-cost moduli [3]. Hence, we are motivated to restrict the moduli to a 

power of 2 and odd numbers of the form 2a
−1. It is proved that the numbers 2a

−1 and 2b
−1 are 

relatively prime if and only if a and b are relatively prime. Thus, any list of relatively prime numbers 

012 aaak >>⋅⋅⋅>−  can be the basis of the following k-modulus RNS 

                                                       ( )1-2|1-2||1-2|2 0122 aaaa kkRNS ⋅⋅⋅−−  

for which the widest residues are ak−2-bit numbers. Note that to maximize the dynamic range with a 

given residue width, the even modulus is chosen to be as large as possible. Applying this strategy to 

our desired RNS with the target range [0, 100000], leads to the following result: 

                                    ( ) ( )7|15|31|321-2|1-2|1-2|2 3455 RNSRNS =  ; M=104160. 

    The derived RNS requires 5+5+4+3=17 bits for representing each number, with the largest residues 

being 5 bits wide. In this case, the representational efficiency is close to 100% and no bit is wasted.  

 

3.3.4  Radix-2r Number System 

    The radix-2r representation was developed by Sam in 1990 [8]. In radix-2r, a n-bit two's 

complement number, x, is written as follows: 

    

( ) rj
rrj

r
rrj

r

rn

j

rjrjrjrj xxxxxxx 222222 1
1

2
2

1)/(

0

2
2

1
10

1 ×−+⋅⋅⋅++++= −+
−

−+
−

−

=
++−∑  

       

rj

rn

j

jQ 2
1)/(

0

×= ∑
−

=

  with   }2,12,,1,0,1,,12,2{ 1111 −−−− −−⋅⋅⋅−⋅⋅⋅+−−=∈ rrrr
j DQ  ,       (3.43)                           

where 01 =−x  and *Ν∈r . For simplicity purposes and without loss of generality, we assume that r 

is a divider of N. In Eq. 3.43, the two’s complement representation of x is split into n/r two’s 

complement slices ( jQ ), each of r+1 bit length.  Each pair of two contiguous slices has one 

overlapping bit.    

    In fact, SD representation (Eq. 3.27) is a special case of radix-2r representation (Eq. 3.43) for r=1.      

     The sign of the term jQ  is given by the bit xrj+r–1 , and j
k

j mQ j ×=2 , with { }1210 −∈ r,...,,,kj  and 

( ) { }02 Ur
j OMm ∈ , where ( ) { }12...,,5,3,12 1 −= −rrOM . ( )rOM 2  is the set of odd positive digits in radix-

2r recoding, with ( ) 222 −= rr
OM . To 0=jQ  corresponds mj=0.  Finally, x can be expressed as follows:                      

                                             ( )
( )

jrrj krj
rn

j

j
x

mx +
−

=

××−= ∑ −+ 21
1/

0

1 .                                              (3.44)  
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Illustrative Example 

In order to express x=(10599)10 in radix-2r, a two’s complement representation of x is necessary, 

which is (010100101100111)2. Thus, in two’s complement notation, the constant size is equal to n=15. 

Let us choose r=4. As 15 is not a multiple of 4, the sign-bit (0 in this case) is extended by one position 

so as n=16. For C=10599, Eq. 3.43 and 3.44 become respectively: 

                                      
∑
=

×=
3

0

42
j

j
jQx  , and    ( ) jj kj

j

j
c

mx +

=

××−= ∑ + 4
3

0

21 34 . 

Fig. 3.11 depicts the four Qj terms. To determine the unknown values c4j+3, mj, and kj, the radix-24 

look-up table (Table 3.4) is indexed by Qj terms. Referring to Table 3.4, the triplets (c4j+3, mj, kj) 

corresponding to Q0, Q1, Q2, and Q3 are (0,7,0), (0,3,1), (1,7,0), and (0,3,0), respectively. 

Consequently, we can write:    

                                       x = (3×212)–(7×28)+(3×25)+(7×20)= (10599)10. 

                                 

TABLE 3.4 –  Radix-24 look-up table. 

Qj 

x4j+3 x4j+2 x4j+1 x4j x4j-1 
mj kj 

0 0 0 0 0 0 0 
0 0 0 0 1 1 0 
0 0 0 1 0 1 0 
0 0 0 1 1 1 1 
0 0 1 0 0 1 1 
0 0 1 0 1 3 0 
0 0 1 1 0 3 0 
0 0 1 1 1 1 2 
0 1 0 0 0 1 2 
0 1 0 0 1 5 0 
0 1 0 1 0 5 0 
0 1 0 1 1 3 1 
0 1 1 0 0 3 1 
0 1 1 0 1 7 0 
0 1 1 1 0 7 0 
0 1 1 1 1 1 3 
1 0 0 0 0 1 3 
1 0 0 0 1 7 0 
1 0 0 1 0 7 0 
1 0 0 1 1 3 1 
1 0 1 0 0 3 1 

0   0   1   0   1   0   0   1   0   1   1   0   0   
   Q0=7 

Q1=3×21 

Q2= –7 

Q3=3 

x15   x14   x13   x12   x11    x10   x9     x8    x7    x6    x5   x4      x3   x2     x1    x0    x-1 

x 

    16+1 bits 4+1 bits 

Qj 

             0
4

1
8

2
12

3 222 QQQQx +×+×+×=    
 

      x3, x7, x11, x15 are sign bits ;             

    FIGURE 3.11 –  Partitioning of (10599)10 in radix-24.   
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1 0 1 0 1 5 0 
1 0 1 1 0 5 0 
1 0 1 1 1 1 2 
1 1 0 0 0 1 2 
1 1 0 0 1 3 0 
1 1 0 1 0 3 0 
1 1 0 1 1 1 1 
1 1 1 0 0 1 1 
1 1 1 0 1 1 0 
1 1 1 1 0 1 0 
1 1 1 1 1 0 0 

Note that for radix-24, { }3210 ,,,kj ∈ , 

and { }75310 ,,,,mj ∈  

 

3.3.4.1  Canonical Radix-2
r
 Representation 

   Radix-2r is a redundant representation since further simplifications are possible: 

                                            
( ) ( ) ( ) ⋅⋅⋅±+⋅⋅⋅=⋅⋅⋅±−+⋅⋅⋅ −+−++ 111 rrjrrjjr 222

                            
(3.45)       

                                            ( ) ( ) ( ) ⋅⋅⋅±−⋅⋅⋅=⋅⋅⋅±+−⋅⋅⋅ −+−++ 111 rrjrrjjr 222
                             

(3.46) 

These two simplifications occur in Eq. 3.44 in case two consecutive terms with opposite signs, Qj 

and Qj+1 , exhibit (mj,kj) pairs of the form (1, r–1) and (1,0), respectively.  

Whether Eq. 3.45 and 3.46 are the unique simplifications that can be performed in radix-2r needs a 

mathematical proof. In any case, the minimal form does exist, but the canonical form (unique) remains 

an open research problem. 

 

3.4 Comparison of the Number Systems 

    So far, we have summarized the main arithmetic features of the Binary, SD, CSD, DBNS, RNS, and 

Radix-2r number systems. It is premature at this stage to comment their hardware features without an 

effective implementation of a given arithmetic function. Instead, we only try to give an approximate 

idea through the expression of the value, x = (10599)10, in different number systems. The comparison 

is based on the number of digits required by each number system (Table 3.5). Generally, the lower the 

number of digits, the less hardware resources are required, and the more speed is achieved. 

TABLE 3.5 –  Number of digits required by each number system for the integer value (10599)10
. 

Number 
System 

Arithmetic expression  Number of 
Digits 

Binary x = 213+211+28+26+25+22+21+20 8 

SD x =213+212–211+29–28+27–25+23–20 9 

CSD x = 213+211+29–27–25+23–20 7 

DBNS x = (32×28)+(3×25)+(30×213)+(30×23) –(30×20)       5+2=7 

RNS x  is represented by (7 | 28 | 9 )RNS(32 | 31 | 15)   3+3+2=8 

Radix-2r x = (3×212)–(7×28)+(3×25)+(7×20)       4+2=6 

Note that in DBNS and Radix-2r, the terms 32, 3, and 7 are considered as extra-digits. 
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     As already mentioned at the beginning of this chapter, the objective of a number system is the 

maximum absorption of logic-redundancy in the representation of numbers. This will lead to fewer 

digits, and therefore to fewer hardware resources and more speed. This absorption process may be 

simple such in the case of CSD, or very complicated such in the case of DBNS and RNS systems. 

Depending on the type of arithmetic function to be implemented, the absorption process is carried out 

either in software or in hardware. For example, in the constant multiplication (C×X), the reduction 

process is realized in software, while in the variable multiplication (Y×X), it is implemented in hardware. 

Consequently, the benefit of reducing the number of digits may be outweighed by the absorption 

effort, requiring too much computational-time (software), or too many hardware resources (Table 3.6). 

This issue will be carefully studied in the two subsequent chapters, based on effective 

software/hardware implementations. 

TABLE 3.6 –  Main features of number systems. 

Number 
System 

Weighted 
System 

Radix 
System 

Fixed/Mixed 
Radix System 

Canonical 
Form 

Ease of use & 
Implementation 

Frequently 
Used 

Hardware 
Optimization 

Binary Yes Yes Fixed Yes A A E 
SD Yes Yes Fixed Yes B A D 
CSD Yes Yes Fixed Yes C A C 
DBNS Yes No – U* E C B 
RNS Yes Yes Mixed U* F      D [3] D 

Radix-2r Yes Yes Fixed U* D B A 

A–F: A, the best; F, the worst. U: Unknown. *: the existence of the canonical form has to be proved. 

 

3.5 Conclusion  

    The binary arithmetic is a vast topic. That is why we have deliberately restricted our review to the 

main ideas and essential concepts directly involved in the design of FWL linear systems. We focused 

more particularly on the fixed-point arithmetic and the main number systems relying on it. Special care 

has been devoted to the addition and multiplication operations as they are the two main building-

blocks of any linear-system architecture. 

    In the binary arithmetic, the theory is tightly related to the design aspect. Some solutions are 

theoretically very attractive, but inefficient when it comes to the hardware implementation. A typical 

example is the RNS arithmetic. We could be fascinated by the speed and simplicity of addition and 

multiplication in RNS, but when considering the necessary conversions from binary to RNS and vice-

versa, we are rapidly discouraged by the extra-amount of hardware needed. Being aware of such 

misleading choices due to an anterior experience in arithmetic design, we have given priority to 

simplicity and ease-of-use over potentially-efficient but difficult-to-implement solutions. 

    It is well-known that CSD arithmetic is employed in designing the vast majority of linear systems 

(controllers and DSP). As radix-2r
 is the generalization of SD arithmetic (r=1) and more likely the 

generalization also of CSD (the mathematical proof is missing for the time being), it could lead to 

higher speed and less logic resources than CSD since r bits are processed simultaneously.  However, 

the major drawback of radix-2r
 is that 2r–2 odd-numbers are necessary, which outweighs the speed 

and area benefits.  Consequently, the odd-numbers in radix-2r
 arithmetic constitute a research-lock 

that deserves a special attention. This issue is deeply investigated in the subsequent chapters. 
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Chapter 4 

 

Multiplication by a Constant 

    This chapter addresses the problem of hardware optimization of linear-time-invariant 

(LTI) systems. It provides a thorough discussion of the issues surrounding the 

multiplication by a constant, focusing mainly on the single/multiple constant multiplication 

(SCM/MCM). We formalize the SCM/MCM problem, and present a list of the most 

common solutions. We then introduce a new fully predictable SCM/MCM heuristic, 

accompanied with its upper-bound, average, and adder-depth complexities. Further 

optimizations of the proposed heuristic are also provided and compared to existing ones.  

 

4.1  Optimizations of LTI Systems 

    A linear system is a mathematical model based on linear operations. Linear operations adhere to 

two properties, namely additivity and homogeneity. Given two vectors x and y, and a scalar c, these 

properties are formally described as: 

• Additivity: )()()( yfxfyxf +=+ ;                                             (4.1) 

• Homogeneity: )()( xfcxcf ×=× .                                               (4.2) 

    Another way to state this is that for vectors xn and scalars cn the following equality holds: 

          )()()()( 22112211 nnnn xfcxfcxfcxcxcxcf ×+⋅⋅⋅+×+×=×+⋅⋅⋅+×+× .            (4.3) 

    Linear systems have roles as mathematical abstractions or models of computation in many 

applications, including mainly: automatic control theory, signal processing, and telecommunications. 

The primary focus of this chapter is on control theory; however, the techniques are applicable across 

any application that computes linear systems. 

 

4.1.1  Formulation of LTI Systems 

    Based on equation (4.3), an LTI system is formalized as follows. If X and Y are input and output 

vectors, respectively, and C is a transformation matrix, the LTI system can be written as 
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.                                       (4.4) 

    The transformation matrix C is an m×n matrix, where Cij represents the (i,j) constant. An output 

signal Yi is the product of the ith row of the transformation matrix C and the n input samples of X:    
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j

n

j

ijj XCY ×= ∑
=1

.                                                           (4.5) 

    In Chapter 2, the state-space representation has been retained as the control computational-model 

to be optimized. Note that the explicit state-space LTI Eq. 2.1 is not more than a concatenation of four 

Y=C×X operations given by Eq. 4.4. As illustrative example, we have already provided the discrete 

time state-space representation of a cantilever controller (Fig. 2.6 and Eq. 2.3). 

 

4.1.2  Single-Constant Multiplication (SCM) 

    The constant multiplication problem first emerged in the 1970s for implementing constant 

multiplication in software. Many microprocessors at the time (such as Intel's 8008) did not have 

multipliers, so multiplication had to be done with additions, subtractions, and shifts. Even when the 

multiply instruction first became available in software, it would typically take more clock cycles to 

execute than an addition, subtraction, or shift, thus solving the constant multiplication problem could 

lead to a reduction in execution time. Today, with high throughput pipelined multipliers, solving the 

constant multiplication problem provides no benefit in software.  

    Conversely, the whole benefit is rather in hardware implementation. The idea is to propose 

algorithms which run in software, but the solutions that these algorithms produce enable one to 

efficiently implement constant coefficient multiplication in hardware. Given a set of constant 

coefficients, the proposed algorithms search for good hardware realizations. 

    In the whole Eq. 4.4, SCM addresses only the problem of multiplication of one variable (Xj) by one 

constant (Cij). To be efficiently handled, the hardware implementation of Cij×Xj must be multiplierless, 

that is, using exclusively additions, subtractions, and shifts. The shift operation is “free” in a hardware 

implementation (it only involves rewiring), therefore, only the number of additions and subtractions is 

important. We assume that additions and subtractions have the same area/speed cost, which is a 

quite reasonable assumption in hardware design. Careful decomposition into shifts and additions 

leads to tremendous benefits with respect to execution time, area, throughput, and power/energy. 

     Actually, the computational complexity of SCM still seems to be unknown. It is only conjectured (no 

proof) to be NP-Hard [1]. But because the solution-space to explore is so huge, one has to use 

heuristics to minimize the number of additions.  

 

Illustrative Examples 

    Let us perform for instance jX×45 .  While the solution space allows many possibilities, only four 

solutions are presented: 

                          ( ) jjjjjj XXXXXX +×+×+×=×=× 235
2 22210110145  ;                  (4.6) 

( ) ( ) ( )[ ] ( ) 222010010111111186345 46
22 ×−×−−×=×−=×−=× jjjjjjj XXXXXXX ;  (4.7) 

                        ( ) jjjjjj XXXXXX +×−×−×=×=× 246
2 222011011045  ;                  (4.8) 

                                      UUX j +×=× 2245    with   jj XXU +×= 32 .                                  (4.9) 
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   Eq. 4.6 is the most straightforward method for single-constant multiplication. It transforms the 

constant Cij into its binary representation, converts the 1s into shifts based on their positions, and 

sums the shifted values. For Cij=45, Eq. 4.6 requires three additions and three shift operations. The 

number of additions using the binary representation is one less than the number of “1” instances. 

    Another method (Eq. 4.7) uses shifts and subtractions by translating the “0” values into shift 

operations while subtracting them from the constant of the same length consisting of only 1s. The 

constant 45 requires six bits and the corresponding six-bit constant of all 1s (111111) is 63. The term 

( )jj XX −× 62  represents the number 63 and the following two terms, 42×jX  and 2×jX , 

represent the terms 16 and 2, respectively (16+2=18). 

    The CSD representation (Eq. 4.8) encodes a constant number using the minimal number of 

nonzero digits. Therefore, when transforming a constant multiplication into a sequence of shifts and 

additions, the CSD representation yields the minimum number of additions. But in this special case 

(Cij=45), does not provide any benefit over Eq. 4.6 and 4.7. 

    Eq. 4.9 allows to obtain the minimal number of addition for Cij=45. The reduction in additions 

comes from the sharing of the term jXU ×= 9 . This is well illustrated by Fig. 4.1b, where the grey 

nodes indicate a shift operation, and the red ones denote addition. The total number of operations is 

two additions. Note that several solutions with 2 additions might exist (Fig. 4.1a, 4.1b, and 4.1c). 

          

    The objective of SCM heuristic is to provide optimal solutions in a reasonable computational time. 

Predictability is another important feature of SCM heuristic. Depending on the constant bit-size, it 

allows to know in advance (before implementation) the maximum number of additions (area) and the 

maximum number of additions forming the critical path (speed). Despite the big number of proposed 

heuristics, only three SCM heuristics are predictable. This issue will be thoroughly investigated in the 

coming sections of this chapter.  

jX×45  

jX  

jX×45  

jX  

jX×45  

jX  

FIGURE 4.1 – The minimal number of addition for jX×45 . The solutions are given by 

the Spiral web site (www.spiral.net). The sign "<<a" means a shift of a positions (×2a).  

(a) (b) (c) 
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4.1.3  Multiple-Constant Multiplication (MCM) 

    Consider the linear Eq. 4.4; MCM is an extension of SCM where the single variable jX  is 

multiplied by the set of constants mjjjj CCCC ,,,, 321 L  (the entire column j). Defined as such, the 

MCM problem is at least as hard as the SCM problem since the latter is a subset of the MCM problem; 

since the single-constant multiplication problem is conjectured NP-Hard, the MCM problem is also 

conjectured NP-Hard. One potential solution to the MCM problem is simply to optimize each single-

constant multiplication independently. However, in general, by sharing the intermediate computations 

required by each constant, MCM can be decomposed into fewer operations than the total number of 

SCM operations that would be needed. 

 

Illustrative Example 

    Let us perform the two following multiplications: jX×81  and jX×23 . Fig. 4.2a and 4.2b depict 

the best optimization for each case individually. The nodes denote addition, while the edges show the 

required amount of shifting. Fig. 4.2a and 4.2b require two additions, resulting in four additions to 

perform both multiplications. Fig. 4.2c shows the simultaneous optimization of the two variables. The 

variables can share a common multiplication 9x, hence, the overall number of additions for both 

variables is reduced by one (i.e., total of three additions). 

             
    Obviously, the optimization of the linear Eq. 4.4 taken as a whole is much better using MCM than 

SCM. However, this added performance is obtained at the expense of an extra computational time 

which may be prohibitive in case of an important number of constants. To the best of our knowledge 

there is no predictable MCM heuristic.  

jX  

jX×81  

jX  

jX×23  

jX  

jX×81  jX×23  

(a) (b) (c) 

FIGURE 4.2 – Multiplication of the constants 81 and 23. (a), (b) The optimization of 

each variable independently; this requires two additions per constant for a total of four 

additions. (c) The simultaneous optimization of both variables. The variables can 

share one addition resulting in three additions for the multiplication of both constants. 



Chapter 4  −  Multiplication by a Constant 

 55 

4.1.4  Subexpression Sharing between Output Variables 

    MCM addresses only a part of the problem. It involves the optimization of the multiplication of each 

input variable jX  by its corresponding constants of the column j of Eq. 4.4. Optimizations can also be 

carried out considering common subexpressions between output variables  

                                          niniii XCXCXCY ×+×+×= L2211 ,     for .,1 mi =  

    In either case, i.e. optimization by column or by line of Eq. 4.4, the scope for optimization is limited, 

making it possible that the algorithm is not taking full advantage of the solution space. 

Illustrative Example 

    Consider the simple example shown in Fig. 4.3. Fig. 4.3a shows a simple linear system with two 

input and two output variables and a 2×2 constant matrix. The constants are encoded using simple 

binary representation though they could just as easily use any other number representation. Looking 

at the common digit patterns in the constants multiplying variable X2 (7=“0111” and 12=“1100”), the 

digit pattern “11” is detected and extracted. This results in a reduction of one operation as shown in 

Fig. 4.3c. However, if the scope of the optimization is expanded to include multiple variables, the 

number of operations can be reduced even further as shown in Fig. 4.3d. 

 

    

4.1.5  Matrix Decomposition 

    The idea [3] consists in modifying the constant coefficient matrices and then performing common 

subexpression elimination. The modification of the coefficients is based on the fact that the complexity 

of the multiplier is dependent on the value of the coefficient and correspondingly transforms the linear 

system by splitting the constant matrices such that the overall area is reduced. The matrix 

1
1

2
12

2
21

2
111

1
221

22

22

2

×+×=

×++×+=

×+=

DXY

XDXXY

XXD

 

(c) 

3
2

2
2

2
12

2
2

1
22

2
111

222

222

×+×+×=

×+×++×+=

XXXY

XXXXXY
 

(b) 

2
12

2
211

212

1
221

2

2

2

×=

×+=

+=

×+=

DY

DDY

XXD

XDD

 

(d) 









×







=









2

1

2

1

124

75

X

X

Y

Y
 

( )
( )
( )
( )2

2

2

2

110012

01117

01004

01015

=

=

=

=

 

(a) 

FIGURE 4.3 – An example that shows the benefit obtained by considering common 

subexpressions that span across multiple output variables. (a) the example of a linear 

system; (b) decomposing constant multiplications into shifts and adds; (c) extracting 

common bit patterns across constants multiplying a single output variable; (d) extending 

common subexpressions to include multiple output variables. 

Source: [2] 

puissance est egale a 2 et non 1
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decomposition technique splits the transformation matrix into the product of 2×z+1 matrices 

zzzzz CCCCCCCCC −+−−−−− ×××××××××= 121021 LL .  The matrix is split through row and 

column transformations. 

 

Illustrative Example 

    Fig. 4.4 shows an example of matrix splitting in a linear system. The matrix is split with the intention 

of reducing the number of multiplications that are required. In the example of Fig. 4.4a, six 

multiplications are needed, one for each of the values not equal to 1 or −1. Fig. 4.4b splits this matrix 

into two parts. As a consequence of this splitting, only three multiplications are now required, two 

multiplications for the two occurrences of 0.33 and one multiplication for −0.66. Note that the 1, −1, 

and −2 values can be converted to addition, subtraction, and shift, respectively. The matrix splitting is 

followed by a decomposition of the multiplications into shifts and additions along with an algorithm to 

eliminate common subexpressions. 

 

    The aforementioned approaches attempt to minimize the number of additions/subtractions required 

to compute the constant multiplications. In fact, the problem is even more difficult than this. Every 

addition is not equivalent. The size and the speed of a specific addition highly depend on the numbers 

being summed. For example, consider summing X+4×X, where the variable X has two bits. Simply 

concatenating the variable X with itself will perform this addition. If X=(01)2, then X+4×X =(0101)2, 

which is simply the string “01” concatenated with itself, i.e., replicated twice. The higher-order two bits 

correspond to 4×X and the lower two bits represent X. This requires no hardware and no delay for 

computation. Therefore, not all additions are the same; thus, it is possible to reorder additions to take 

advantage of this fact. This problem is not treated in this thesis. However, all the effort is rather 

concentrated on the optimization of SCM/MCM problem. 

 

4.2  Formal Definition of the SCM Problem 

    Prior formalizing the SCM Problem, we must clearly define: 
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FIGURE 4.4 – Matrix decomposition. The constant matrix in (a) is split into two matrices in 

(b). This results in a reduction of multiplications for the overall system. Part (a) requires six 

multiplications corresponding to the six positive and negative values of 0.66 and 0.33. Part 

(b) requires only three multiplications for the two values of 0.33 and the one value of −0.66. 

Source: [2] 
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• The constant type: positive, negative, odd, or even. Almost all proposed SCM heuristics 

handle only odd/positive constants as the even/negative ones can be simply derived using 

negation and shift. Note that in this case an extra-processing of the constants is necessary. 

• The allowed operations: addition, subtraction, left-shift, right-shift, and "or" operation. 

Restricting the number of operations makes the problem harder to solve. Most of the proposed 

heuristics allow only addition, subtraction, and left-shift. Just few heuristics [1] allows right-

shift. But right-shift has some drawbacks, while bringing little value: for instance, they do not 

work with arithmetic modulo 2k. 

    The following formal definition apply to all types of constants, i.e., positive/negative and odd/even, 

allowing addition, subtraction, and left-shift only. 

    Let c be our constant, Ζ∈c . A finite sequence of signed integers u0, u1, u2, . . . , uq is said to be 

acceptable for c if it satisfies the following properties: 

• Initial value: 10 =u ; 

• For all i>0, ii b
ki

a
jii urusu 22 ××+××= ; with ikj <, ; { }1,0,1, −∈ii rs  ; and Ν∈ii ba , ; 

• Final value: cu qc
q =× 2 , with Ν∈qc .  

    The problem is to find an algorithm that takes the number c and that generates an acceptable 

sequence ( )
qiiu ≤≤0

 that is as short as possible. q is called the quality, or length. Note that by 

delaying the shifts, we can restrict bi to 0 (this breaks the symmetry, but makes one less variable). 

    Thus, an arbitrary number X being given, the corresponding solution iteratively computes ui×X from 

already computed values uj×X  and uk×X, till finally obtain c×X. Note that with this formulation, we are 

allowed to reuse any already computed value. Therefore some generated solutions may need to store 

temporary results. 

    SCM/MCM is a fundamental problem in control, DSP, and telecommunications. Because of this, a 

big number of heuristics have been proposed. Only the most cited ones are summarized hereafter. 

 

4.3  Existing SCM/MCM Algorithms 

    The existing MCM algorithms can be divided into four general classes: 

• Digit-recoding algorithms such as the canonical signed digit (CSD) representation [4], Booth 

recoding [5], and Dimitrov’s DBNS recoding [6]; 

• Common subexpression elimination (CSE) using pattern matching performed after an initial 

digit-recoding. Typical  examples are Hartley [7], Lefèvre [8], and Boullis [9]; 

• Directed acyclic graph (DAG) based algorithms. This category includes Bernstein [10], MAG 

[11], H(k) [12], and Hcub [13]; 

• Hybrid algorithms combining CSE and DAG such as the recent optimal algorithm BIGE [1]. 

Interesting surveys and detailed comparative studies showing pros and cons of various algorithms 

are given in [1][13].  
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4.3.1  Digit-Recoding Algorithms 

    This category includes simple methods like CSD and the traditional binary method. They generate 

the decomposition directly from the digit representation of the constant. These methods are the 

easiest to implement but achieve the worst results. A drawback of digit-recoding methods is the 

impossibility to reuse intermediate values. Nevertheless, the main advantage of digit-based recoding 

is their low computational cost, typically linear in the number of bits. As a consequence, these 

methods can be easily applied to constants with thousands of bits. In addition, these methods allow an 

easy control of lower bounds on the maximum left-shifts to ovoid overflow. 

 

4.3.1.1  Avizienis's CSD Algorithm 

    CSD [4] has the least number of nonzero digits among all possible SD representations, therefore it 

creates a solution with the smallest number of additions/subtractions for a single constant. The CSD 

representation is unique, and therefore non-redundant. For a n-bit constant, the number of additions is 

bounded by (n+1)/2−1 in the worst case, and is roughly equal to n/3 on average (the exact value is 

n/3−8/9). CSD recoding is not optimal though it minimizes the number of nonzero elements for the 

constant representation. It is possible to decompose the result to further reduce the number of 

operations. The value 45 is the smallest number for which the CSD representation does not create the 

optimal number of operations. Three additions are required by CSD (Eq. 4.8) while the optimal 

solution (Eq. 4.9) needs only two. 

    CSD has been thoroughly described in Section 3.3.1, and we have come to the conclusion that the 

vast majority of LTI system optimizations use the CSD representation for constant encoding [2]. It is 

important at this stage to illustrate how CSD is used in practice. Let us consider for instance the 

following LTI system: 
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    The constants of the transformation matrix C are first scaled to convert them into integers using 

nine bits. For example, to 1 we associate the value 256, which is the largest representable nine-bit 

integer number. Thus, for the constant 0.926 corresponds the value 256×0.926≈237.Transforming the 

remainder of the numbers yields the constant matrix: 
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C  .                                               (4.11) 

    Next, we need to encode each of these constants using CSD. It results in: 
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CSDC  .                     (4.12) 

    The number −98 at position C44 is represented as ( )
2

010100010 . Therefore, 
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    The number of additions required by each element cij of Ccsd is equal to the Hamming weight (i.e., 

the number of non-zero digits of cij minus 1). Thus, the implementation of Ccsd requires 34 additions. 

This number can be drastically reduced applying one of the techniques described above: MCM, 

subexpression sharing among output variables, or matrix decomposition.  

 

4.3.1.2  Dimitrov's DBNS Algorithm 

    Given p, q, two distinct prime integers; the double-base number system (DBNS) is a representation 

scheme into which every positive integer n is represented as the sum or difference of numbers of the 

form pa×q
b as follows [6]: 

                                                          ii b
l

i

a
i qpsn ××=∑

=1

,                                                  (4.14) 

with { }1,1−∈is , 0, ≥ii ba  and ( ) ( )jjii baba ,, ≠  for ji ≠ . The length of a DBNS decomposition is 

equal to the number l of terms in Eq. (4.14). In the following, we will only consider p=2 and 

{ }.7,5,3∈q  DBNS representation system has already been described in Section 3.3.2, but for p=2 

and q=3 only.   

    Whether one considers signed (si = ±1) or unsigned (si =1) expansions, this representation scheme 

is highly redundant. Indeed, if one considers unsigned double-base representations (DBNR) only, with 

bases 2 and 3, then one can prove that 10 has exactly 5 different DBNR; 100 has exactly 402 different 

DBNR; and 1000 has exactly 1295579 different DBNR. The following theorem gives the number of 

unsigned DBNR for a given number n: 

Theorem 4.1− Let n be a positive integer and let q be a prime > 2. The number of unsigned DBNR of 

n with bases 2 and q is given by f(1)=1, and for  n≥1 ( )
( ) ( ) ( )
( )




−

≡+−
=

.1

,mod0/1

otherwisenf

qnifqnfnf
nf  

    The proof of Th. 4.1 is given in [6]. Not only DBNS is highly redundant, but it is also very sparse. 

    Th 4.1 tells us that there exists very many ways to represent a given integer in DBNS. Some of 

these representations are of special interest, most notably the ones that require the minimal number of 
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{p,q}-integers; that is, an integer can be represented as the sum of m terms, but cannot be 

represented with (m−1) or fewer terms. These so-called canonic representations are extremely 

sparse. For example, with bases 2 and 3, Th. 4.1 tells us that 127 has 783 different unsigned 

representations, among which 6 are canonic requiring only three {2, 3}-integers. Finding one of the 

canonic DBNS representations in a reasonable amount of time, especially for large integers, seems to 

be a very difficult task. Fortunately, one can use a greedy approach to find a fairly sparse 

representation very quickly. Given n > 0, Alg. 4.1 returns a signed DBNR for n. 

    Although Alg. 4.1 sometimes fails in finding a canonic representation (the smallest example is 41; 

the canonic representation is 32 + 9, whereas the algorithm returns 41 = 36 + 4 + 1) it is very easy to 

implement. The complexity of the greedy algorithm mainly depends on the complexity of step 3: 

finding the best approximation of n of the form ba pp × . It finishes in ( ) ( )( )( )nnO loglog/log  iterations. 

                  

    In the following, a generic algorithm for constant multiplication that takes advantage of the 

sparseness of the double-base encoding scheme is presented (Dimitrov's algorithm [6]). The algorithm 

computes a special DBNS representation of the constants, where the largest exponent of the second 

base q is restricted to an arbitrary (small) value B. It uses a divide and conquer strategy to operate on 

separate blocks of small sizes. For each block, it is possible to generate those specific DBNS 

representations using the Greedy algorithm. 

    Before giving the formal description of Dimitrov's algorithm, it is first illustrated on a small example. 

The value c = 10599 = (10100101100111)2 is expressed in radix 27; that is, c is split in two blocks of 

7 bits each. We obtain c = 82×27+103. The "digits" 82 and 103 are expressed in DBNS with bases 2 

and 3 using as few terms as possible, where the exponents of the second base q=3 are at most equal 

to 2. Using Alg. 4.1, it has been found that 82 can be written using two terms as 64+18 and 103 using 

only three terms as 96+8−1. These two solutions are optimal. By sticking the two parts together, we 

obtain the representation given in Table 4.1. 

INPUT: A positive integer n 

OUTPUT: The sequences ( )
0

,, ≥iiii bas for ii b
i

a
i qpsn ∑ ××=  

                with { }1,1−∈is , 0, ≥ii ba  and ( ) ( )jjii baba ,, ≠  for ji ≠ . 

1:   1←s    // to keep track of the sign 

2:    while 0≠n  do 

3:    Find the best approximation of n of the form ba ppz ×=  

4:    print (s, a, b) 

5:   if  zn <  then 

6:    ss −←  

7:    znn −←  

ALGORITHM 4.1 – Greedy algorithm. 
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    Using this representation, the product c×X is decomposed in radix-27 DBNS as follows: 

                                 PDBNS=((X1×2
1
) + X1) + (X×2

13
) + (X×2

3
) – X  ;                                     (4.15)     

with    X1=((X0×2
1
)+X0)+(X×2

5
)   and  X0=(X×2

8
). 

    The formal formulation of Dimitrov's algorithm is as follows. The constant c is written in DBNS as: 

                                                      ji

b

j

a

i

ji qcc ××= ∑ ∑
= =

2
max max

0 0

, ,                                                    (4.16)     

with digits { }1,0,1, ∈jic . Alg. 4.2 below can be used to compute c×X. We remark that each step of 

the algorithm requires a multiplication by q. It is therefore important to select the second base q such 

that the multiplication by q only requires a single addition; i.e., with q=3, we have XXX +×=× 23 . 

At the end, the result is given by XcXb ×=
max

. If l is the length of the double-base expansion; i.e, 

the number of non-zero digits jic ,  in Eq. 4.16, and if bmax is the largest exponent of q, then the overall 

number of additions is equal to 1max −+ bl . The goal is to set B, the predefined upper bound for the 

exponents of q, such that the overall number of addition is minimal. Note that bmax might be different 

from B, but Bb ≤max . 

                      

INPUT:   A constant ji
ji jicc 32

, , ××=∑ , with { }1,0,1, ∈jic ; 

               and an integer X 

OUTPUT:   c×X 

1:   01 ←−X     

2:    for j=0 to maxb  do 

3:    1−×← jj XqX  

4:    i
i jbijj XcXX 2

max, ××+← ∑ −  

5:   Return 
maxbX  

    ALGORITHM 4.2 – Double base constant multiplication. 

TABLE 4.1− A DBNS representation of c = 10599 obtained using two blocks of 7 bits each. 
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    It has been proved in [6] that the number of additions generated by Alg. 4.2 is bounded by 

( )( )nnO log/ . While this limit shows that multiplication by a constant is sublinear, it says nothing about 

the constant hidden within the big-O notation, which might be very important by the way. In 2011, 

Dimitrov [14] evaluated the hidden constant as being equal to 2. Since then, ( )nn log/2  is considered 

as the lowest analytic upper-bound known so far for the multiplication by a constant.  

     
4.3.2  Common Subexpression Elimination (CSE) 

    As previously mentioned, the major drawback of digit-recoding methods is their inability to reuse 

intermediate values. To solve this problem, the basic idea is to find common subpatterns in the 

representations of the constants after the constants are converted to a convenient number system 

such as SD or CSD. Thus, CSE are considered as direct descendants of digit-recoding methods. The 

typical example is given by Eq. 4.9 where the use of a common term allows the saving of one addition 

over CSD (Eq. 4.8). 

    A significant drawback is that the performance of CSE algorithms depends on the number 

representation. Some works [12][15] showed how using different representations for the constant 

encodings can lead to better results. However, the exponential number of representations further 

complicates the CSE problem which is itself conjectured to be NP-complete. Even if the solution to the 

CSE problem is optimal, it does not necessarily provide an optimal solution to the SCM/MCM problem. 

We will begin by examining some cases in which CSE algorithms cannot find the optimal solution. 

 

4.3.2.1  Optimization Problems Due to the Initial SD Form 

    As previously stated, Park and Kang [15] found better solutions by applying CSE to all MSD forms 

of the constant (SD forms of the constant with the minimum number of nonzero digits). Even better 

solutions are obtained with H(k), which applies CSE to all SD forms of the constant with up to k more 

digits than the CSD form. For example, the CSD form of 105xX, XXXX 0000 , has no patterns that 

occur at least twice. Without being able to factor common terms, 3 adders are needed to add the 4 

terms. However, one MSD form of 105xX is XXXX 0000 , in which the pattern XXY 00= can be 

substituted twice to yield YY 00000 . In this case, 2 adders are used (one to create Y and one to add 

the remaining terms). The problem was due to the CSD form being constrained to have no adjacent 

nonzero digits. Notice the leftmost nonzero digit of XX 000000 is adjacent to the rightmost nonzero 

digit of 000000XX , which obviously cannot be represented by the CSD form.  

    The first case in which H(0) produces a non-optimal solution is 363xX. There are only two MSD 

forms, XXXXX 00000  and XXXXX 0000 , neither of which have a common pattern, thus H(0) 

requires 4 adders. However, H(1) can find the optimal solution by using the representation 

XXXXXX 000 . The pattern XXY 0000=  is substituted to produce YYY 000000 , thus the total 

cost is 3 adders (1 to create Y, 2 to add the remaining terms). If a pattern with 2 nonzero digits is 

substituted n times, a total of 2n old digits will be replaced with n new digits. This results in a saving of 

n−1 adders.  
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4.3.2.2  CSE digit clashing problem 

    The first case in which H(k) produces a non-optimal solution for any value of k is 805xX. The 

optimal solution requires 3 adders. As indicated in Section 4.3.1.1, if we start with more than 8 

nonzero digits, then more than 3 adders will be needed by CSD. The CSD form of 805xX has 5 

nonzero digits, thus we only need to consider all SD forms with up to 3 extra nonzero digits. H(3) 

cannot find the optimal solution, and this is sufficient proof that H(k) is not an optimal algorithm for any 

value of k. 

    In order to find the optimal solution for 805xX, we will need to consider an unusual case. Notice that 

( )( ) XXXXXXX 00020 2 =+× . This translates to ( ) ( ) XXX ×=×+×× 25525 2 . The left digit 

of XX 0 aligns with the right digit of ( ) 220 ×XX to produce a zero in this position and a carry one 

position to the left. Thus, if XXY 0= , we can substitute Y in XXX 00 to get YY 000 even though 

XX 0 does not appear at either location of where Y was substituted. This is an example of a class 1 

overlapping digit pattern. Now consider representing 805xX as XXXXX 00000 . We substitute 

XXY 0= to get YYY 0000000 , thus only 3 adders are needed (1 to make Y, 2 to add the remaining 

terms). This digit alignment problem was recognized and identified as clashing. We thus refer to this 

problem as the CSE digit clashing problem. 

 

4.3.2.3  Lefèvre's Common Subpattern (CSP) Algorithm   

   In Lefèvre's CSP algorithm [8], the number of nonzero digits is called the weight (w). The digit −1 

and 1 are denoted P and N respectively. Given a set of constants in SD representation, the problem is 

to find the maximal-weighted pattern that appears twice, either in the same constant (SCM) or in two 

different constants (MCM). Note that if such a pattern appears more than twice, it can naturally be 

reused later. 

    CSP algorithm looks for a triple (i, j, d) where i and j are numbers identifying the two constants ni 

and nj (possibly the same, i.e., i=j) in the set, and d a distance (or shift count), with the following 

restrictions for symmetry reasons:  i ≤ j; and if i = j, then d > 0. Once the pattern, denoted np, of 

weight greater or equal to 2 has been found, we compute the binary expansion of the new constants 

in′  and jn′  ( in′ only, if i =j) satisfying p
c

ii nnn ×±′= 2 and p
dc

jj nnn ×±′= −2 for some integer c 

(or p
dc

p
c

ii nnnn ×±×±′= −22  if i = j), then we remove in and jn  from the set, then add in′ , jn′  

and np to the set (with the exception that 0 and 1 are never added to the set, because they cannot 

yield a pattern). We reiterate until there are no more patterns of weight greater or equal to 2; we use 

the binary method for the remaining constants. 

 
    Now, let us illustrate this algorithm more precisely with an example: (47804853381)10, which is 

written (101100100001011001000010110010000101)2 in binary, and after Booth's recoding: 

P0N0N00P000P0N0N00P000P0N0N00P0000P0P. We find the triple (0, 0, 11), the corresponding 

pattern is P0N0N00P, and the remainder is P0N0N00P00000000000000000000000000P0P (there 

would be other choices). The set is now: 

                               { P0N0N00P00000000000000000000000000P0P, P0N0N00P }. 
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    We find the triple (0, 1, 29), the corresponding pattern is P0N0N00P (i.e., still the same one), and 

the remainder is P0P. The set is now:     { P0P, P0N0N00P }. 

    We find the triple (0, 1, −3), the corresponding pattern is P0P, and the remainder is P000000P. The 

set is now:                                                { P000000P; P0P }. 

    Now, we cannot find any longer repeating pattern whose weight is greater or equal to 2. Therefore 

we use the binary method for the remaining constants. 

    The computational complexity of Lefèvre's CSP algorithm for a n-bit constant is ).( 3nO  

 

4.3.3  Directed Acyclic Graphs (DAG) Algorithms    
 
    DAG are bottom-up methods that iteratively construct the graph (as in Fig. 4.2c) representing the 

multiplier block. The graph construction is guided by a heuristic that determines the next graph vertex 

to add to the graph. The nodes in the graph denote the coefficients. The edges are directed and 

represent values that are equal to the coefficients in the parent node shifted by some amount. The 

coefficient value that is stored at every node is obtained by adding up the values on the incoming 

edges to the node. Graph-based algorithms offer more degrees of freedom by not being restricted to a 

particular representation of the coefficients, or a predefined graph topology (as in digit-based 

algorithms), and typically produce solutions with the lowest number of operations. Examples of DAG 

algorithms include Bernstein [10] and Voronenko [13] (Hcub Algorithm). 

 

4.3.3.1 Bernstein's Algorithm 
 
    In 1986, Bernstein [10] proposed a SCM algorithm. It can be described by the recursive formulas 

given by Eq. 4.17. Note that every input argument x to the function Cost(x) must be an odd integer. If 

the SCM target t is even, then we must incur an extra cost of ShiftCost(w) , where t/2w
 is an odd 

integer (and Bernstein's algorithm would be applied to t/2w
 ). In Eq. 4.17, a, b, c, and d are integers, 

c≥1, and d≥1. 

                     

( )

( )

( )( ) ( )
( )( ) ( )

( )( ) ( )
( )( ) ( )












+++

++−

+++

++−

+=

=

dShiftCostAddCost/tCost

cShiftCostSubCost/tCost

bShiftCostSubCost/tCost

aShiftCostAddCost/tCost

mintCost

Cost

d

c

b

a

12

12

21

21

1

01

.                       (4.17)
 

    The cost of the shifts in Eq. 4.17 is a function of how many bits the operand was shifted. In 

microprocessors that only support single bit shifts, ShiftCost(x) is proportional to x. For 

microprocessors that support shifting by an arbitrary number of bits, ShiftCost(x) is a constant. For 

hardware implementation, ShiftCost(x)=0 and AddCost=SubCost. Although Eq. 4.17 is expressed in a 

depth-first manner, the search is computed breadth first since we are interested in finding the 

minimum cost of t. Bernstein's algorithm is a branch and prune heuristic. The pruning arises from only 

allowing certain values of a, b, c and d in Eq. 4.17. 

    The average time complexity seems to be exponential ( )nO 2  [8], where n is the bit-size of the 

constant. This algorithm is too slow for large constants.  
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4.3.3.2 Voronenko's Hcub Algorithm 

    Hcub stands for Heuristic of Cumulative Benefit. It was developed by Voronenko and Püshel [13] in 

2007. Hcub is considered as the best heuristic for MCM [1]. The heuristic is split into two parts: the 

optimal and the heuristic part. It is a non-trivial heuristic, requiring a number of definitions.  

     In Hcub the constants are called the fundamentals. The MCM implementation uses additions, 

subtractions, and shifts. These three distinct operations are consolidated into a single operation called 

the A-operation. The A-operation operates on the fundamentals. It performs a single addition or a 

subtraction, and an arbitrary number of shifts, which do not truncate non-zero bits of the fundamental. 

Because it is possible to merge two consecutive shifts, the most general definition is stated as follows: 

Definition 4.1 − General A-operation: Let 0, 21 ≥ll  be integers (left shifts), 0≥r be an integer (right 

shift) and let { }1,0∈s  (sign). An A-operation is an operation with two integer inputs u, v 

(fundamentals) and one output fundamental, defined as 

                                           ( ) ( ) rlsl
p vuvuA −×××−+×= 2212, 21                            (4.18) 

where ( )srllp ,,, 21= is the parameter set or the A-configuration Ap. To preserve all significant bits 

of the output, 2
r
must divide ( ) 21 212 lsl vu ××−+× . 

    Hcub considers positive fundamentals only and use right shifts just to normalize the output 

fundamentals to be odd. The absolute value in the definition of A enforces positive fundamentals, and 

enables the subtraction to be done in only one direction, which simplifies the definition. 

    The structure of a multiplier block can be represented as a directed graph. Such graph is called an 

A-graph, since it is built out of the A-operations shown in Fig. 4.5. The vertices of an A-graph are 

labelled with their respective fundamentals; hence the input vertex has label 1. The edges are labelled 

with a 2-power scaling factor equivalent to the performed shift. Negative edge values are used to 

indicate subtractions at the following vertex. 

 

 

    The problem of constructing multiplier blocks can now be formally stated as follows. 

Definition 4.2 − MCM problem: Given a set of positive target constants { } Ν⊂= nttT ,,1 L . Find the 

smallest set { }mrrrR ,,, 10 L=  with RT ⊂ , such that 10 =r , and for all kr  with mk ≤≤1  there exist  

ji rr , with ,,0 kji ≤≤ and an A-configuration kp  such that 

FIGURE 4.5 – A-operation: u and v are the input fundamentals and w is the output fundamental. 

A-operations directly connected to the input of the multiplier block have u = v = 1. 

 

Source: [13] 
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                                                     ( )., jipk rrAr
k

=                                                                (4.19) 

The set of A-graph fundamentals R and the set of A-configuration kp uniquely define an A-graph for 

an MCM block with  1−= Rm add/sub operations. 

    Next, the notion of A-distance is introduced. This is the key component in Hcub algorithm. 

Definition 4.3 − A-distance: Let Ν∈c  be a constant, and let Ν⊂R  be a set of constants 

(fundamentals of an A-graph). Then, the A-distance of c from the set R, denoted with dist(R, c), is the 

minimum number of extra A-operations required to obtain c given R. 

    Afterwards, to express the degree of freedom in the output of an A-operation when different          

A-configurations are chosen, the vertex fundamental set is defined. 

Definition 4.4 − Vertex fundamental set: The set of all possible outputs (not equal to the inputs) of an 

A-operation with fixed inputs (u and v) under different A-configurations is called the vertex 

fundamental set, written as  

                              ( ) ( ){ } .,,* vuionconfiguratvalidaispvuAvuA p −−=                    (4.20) 

Hcub Algorithm 

    Now that the main ingredients have been defined, let us describe Hcub algorithm. Actually, the main 

idea behind Hcub is to use a better heuristic for synthesizing intermediate fundamentals. Hcub is 

therefore computationally more expensive than its DAG counterparts since it explores a very large 

space of possible intermediate vertices. It does not require a pre-generated optimal SCM lookup table 

as other algorithms do. Thus, Hcub is storage efficient and in its applicability is only limited by the 

computation time. 

    The A-operation in Hcub is A
odd , allowing ( ) 12, +≤ n

p vuA , where n is the maximal bitwidth of 

constants in T. Hcub is shown in Algorithm 4.3. The heuristic is split into two parts: the optimal and the 

heuristic part. The optimal part of Hcub synthesizes at each iteration, all distance-1 targets, i.e., S ∩ T. 

To avoid computing in each iteration the entire set S, which can become rather large, it is computed 

incrementally. This necessitates an additional set, the worklist W. When a constant is synthesized, it is 

added to W, first without being accounted for in neither R nor S. Then, in steps 9–10 an incremental 

update of R and S based on W is performed. The update of R is straightforward (step 9): WRRnew U= .  

    Alg. 4.3 gives enough details on how to efficiently construct the successor set S. The heuristic part 

uses S and the A-distance tests and estimators to select new successors s to be added to R. Hcub 

heuristic part adds only a single successor to R at each iteration (outer loop consisting of steps 5–18).  

    Given m constants with n bit-size, the computational complexity of Hcub is 

( )( )6354 log nmnmnmO + . For SCM, it corresponds to ( )6nO . 
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.  

    The update formula for S is derived as follows: 
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    Since ( ) ( )WRAWRA new,, ** ⊂  we get  

                                               ( )( ) WWRASS newnew −= ,*U                                                           (4.21) 

which is step 10 in Alg. 4.3. 

ALGORITHM 4.3 – Hcub Algorithm. Given the target set of constant T. Compute the set 

{ }mrrR ,,1 L= , with RT ⊂ , as given in Definition 4.2. There is a degree of freedom in 

choosing the heuristic function H(R, S, T) for the algorithm.  
 
Synthesize multiplier block (T) 

1:  Right shift elements of T until odd 

2: { }1←R  

3: { }1←W  

4: { }1←S  

5:  While 0≠T  do 

6:           { optimal part } 

7:           While 0≠W  do 

8:                    { update S and R } 

9:                   WRR U←  

10:               ( )( ) WWRASS −← ,*U  

11:                 0←W  

12:                  { if  S contains targets, synthesize them } 

13:                  for TSt I∈  do 

14:                      Synthesize(t) 

15:         { heuristic part }   

16:         if 0≠T  then  

17:        ( )TSRHs ,,←   

18:        Synthesize(s) 

Synthesize(s) 

1:  sWW +←  

2: sTT −←  
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4.3.4  Hybrid Algorithms(CSE & DAG) 

    Hybrid algorithms combine different algorithms from different classes. CSE are already considered 

as mixed algorithms since they rely on a digit recoding followed by a pattern matching. But what is 

generally meant by "hybrid" in the literature, are those algorithms combining CSE and DAG. A Typical 

example is the recent Thong's BIGE algorithm [1]. 

 
4.3.4.1  Thong's BIGE Algorithm  

    BIGE was developed by Thong and Nicolici in 2011 [1]. It is the shortened form of Bounded Inverse 

Graph Enumeration (BIGE) algorithm. It is an exhaustive SCM algorithm, based on the combination of 

two CSE heuristics (H(k)-ODP) and an optimal DAG algorithm. Overlapping digit pattern (ODP) was 

introduced in [16] to partially resolve the digit clashing problem. ODP enables CSE algorithms to find 

and substitute non-standard patterns. For example, if we find XX00X, we can substitute Y=X0X to get 

00Y0Y even though X0X does not appear in XX00X. 

    An heuristic (H(k)-ODP) is used to obtain an upper bound (the “B” in BIGE) and an exhaustive DAG 

search to obtain the lower bound. Both bounds are progressively tightened until they meet or until a 

solution is found by the lower bounding exhaustive search. If any heuristic finds a solution with n 

adders, the exhaustive search only needs to consider up to n−1 adders. The exhaustive search is 

done via lookup table for up to 4 adders. For 5 adders and above, inverse graph enumeration (the 

“IGE” in BIGE) is used to prune the exhaustive search. Prior to describe the high-level operation of 

BIGE, the following definition is necessary. 

Definition 4.5 − Complexity-n constant: We denote by Cn the set of all constants with complexity n, i.e. 

those, for which an optimal SCM solution requires exactly n A-operations. For example, 

{ }020 ≥= aC a , because precisely all 2-power constants require a single left shift and no 

adds/subtracts. Although the sets Cn are infinite, we will always limit our discussion to constants up to 

certain bitwidth b, which is always explicitly stated. The set of complexity n constants obeying this 

constraint is then finite and, by abuse of notation, will also be denoted by Cn. 

    The Cn sets are independent of the desired SCM constant t and thus are precomputed and stored. 

Given t, the BIGE algorithm operates as described in Alg. 4.4 and stops as soon as a solution is 

verified as optimal. For practical reasons, the exhaustive search is limited to 6 adders, although it can 

be extended. 

 

1) For n = 1, 2, 3, 4 (in that order), if t ∈ Cn then return the optimal solution from the lookup table. 

2) Initialize the upper bound with the H(k)+ODP  heuristic [12][16], use k = 1, if this solution has 5   

    adders it must be optimal. 

3) Exhaustively search for a solution with exactly 5 adders. 

4) If the solution found earlier by H(1)+ODP had 6 adders, it is now confirmed as optimal. 

5) Try to tighten the upper bound with H(2)+ODP, if this solution has 6 adders it must be optimal. 

6) Exhaustively search for a solution with exactly 6 adders. 

7) If the upper bound is 7, the heuristic solution is now confirmed as optimal. 

        ALGORITHM 4.4 – The optimal BIGE algorithm. 
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    We have only covered the algorithms which, either are closely related to the contributions in this 

thesis (CSD, DBNS, Lefèvre's CSP), or the algorithms which proposed the fundamental approaches 

and ideas (Bernstein, Hcub, BIGE) that were frequently reused and/or improved by later algorithms. In 

addition to the main features (Table 2.2) of the most known SCM/MCM algorithms in the literature, 

Table 4.2 recapitulates the information regarding the constant type and allowed operations. 

 
TABLE 4.2 − Constant type and allowed operations. 

Constant Type Allowed Operations  
Algorithm 

Positive Negative Odd Even Addition Subtraction Left-shift Right-shift 
Avizienis's CSD + + + + + + + − 
Dimitrov's DBNS + + + + + + + − 
Lefèvre'CSP1 + − + − + + + −* 
Bernstein's1 + − + − + + + −* 
Voronenko'sHcub1 + − + − + + + −* 
Thong's BIGE1 + − + − + + + + 

+: Yes; −: No; *: Right-shift is allowed to normalize the constant to be odd, only for that. 
1: Some algorithms normalize the negative/even constants to become positive/odd in order to remove 
redundancy within their search space. This technique improves runtime with no penalty. The sign of 
the constant can usually be adjusted elsewhere, for instance by using subtraction in the accumulation 
after multiplication. 

 

4.4  Metrics Definition for SCM/MCM Algorithms 

    The objective of the proposed software SCM/MCM algorithms is to produce an efficient hardware 

implementation in a reasonable amount of time. By efficient we mean a small area, high speed, and 

low power architecture. Some abstraction is therefore needed in order to solve problem sizes of the 

most practical importance within an acceptable amount of time. Logic resources are used as an 

abstraction of the amount of silicon required to implement a logic function. As for the speed, the 

abstraction is to consider the longest path that goes through the logic resources.  

    While there is a direct correlation for area and speed with their respective abstractions, power 

consumption poses a complex problem. Power consumption decreases only if both the number of 

logic resources and the length of the critical path decrease. The rational is that there are two sources 

to power consumption in CMOS circuits: static power-consumption due to the leakage-current; and 

dynamic power consumption caused by the switching activity. Roughly speaking, the leakage current 

depends on the area, while the switching activity depends on the topology of the architecture (number 

of stages of cascaded logic elements). Thus, increasing one element of the power while decreasing 

the other one results in an unknown consumption state of the power, where only the use of an efficient 

power-estimation tool can inform on the situation. 

    Although the number of additions/subtractions is an abstraction of the amount of silicon required to 

implement the logic circuit, it is conjectured that finding good solutions with this metric typically results 

in good solutions in terms of minimizing the amount of silicon. This metric is the most commonly used 

metric in this area of research [1]. Instead of the number of additions/subtractions, the number of 

single bit adders/subtractors can be used as a more accurate metric (note even this still has some 

abstraction from the amount of silicon). As shown in the experimental results in [17], a significant 

amount of extra time is required to solve the same problems using this more accurate metric. This 

translates into needing impractical amounts of time to solve larger but still real-sized problems. This 
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also implies that further increasing the metric accuracy will result in longer run times, meaning only 

smaller problem sizes (which are less relevant in practice) can be solved within reasonable amounts of 

time. Furthermore, using the amount of silicon as the metric makes the solution dependent on the 

implementation fabric of the logic circuit, thus the solution would be non-portable and also dependent 

on the performance of many other computer-aided design (CAD) tools, which perform logic synthesis, 

place and route, etc. 

    Adders and subtractors require the same amount of logic resources in custom hardware, so we will 

simply refer to both as “adders.” Shifts are hardwired and thus incur no cost. 

    Given a N-bit constant, let us give the formal definitions of the metrics discussed above:  

Definition 4.6 − Upper-bound (Upb):  For each N-bit constant iC , corresponds iA additions for the 

implementation of XCi × . ( )iAUpb max= . 

Definition 4.7 − Adder-Depth (Ath): Let iD be the number of adders that we pass through along any 

path i from the input to any of the outputs in the constant multiplication logic circuit. ( )iDAth max= . 

Definition 4.8 − Average (Avg): For each N-bit constant iC , corresponds iA additions for the 

implementation of XCi × . mAAvg
m

i

i /
1

∑
=

= , where m is the total number of iC constants. 

     Actually, though formally defined, the adder depth is an estimate of the longest path through the 

logic circuit, which is known as the critical path. Because of the physical construction, logic gates have 

a propagation delay, which is the length of time between when stable inputs are asserted to when all 

of the outputs become stable. As more logic gates are placed serially between the input and the 

output, the critical path becomes longer and the logic circuit must be clocked at a slower speed, which 

results in a lower computational throughput. The critical path is also a function of other things like the 

delay of each gate and the transit time along wires, however we will make abstraction of this in order 

to solve real-sized SCM and MCM problems within reasonable amounts of time. Most, if not all of the 

work in this area of research uses the adder depth to estimate the length of the critical path [17]. Given 

the same problem instance, the number of adders increases as the depth constraint is made smaller. 

A solution may not exist if the depth is overly constrained. The depth constraint can also be used to 

prune the search space. 

    A "reasonable" amount of time is difficult to quantify because it depends on the design flow of the 

system. For example, if the system is intended to satisfy an existing standard, the constants will be 

defined and thus each constant multiplication problem only needs to be solved once (even if other 

parts of the system are modified). In this case, one may be willing to wait hours or days for each 

problem instance. Conversely, a faster algorithm is needed if the design specifications are not 

finalized (for example, the constants may need to be updated as other parts of the system are 

modified). Depending on how finalized the design is, one may only be willing to wait a few seconds for 

each constant multiplication problem, for example. If a large part of the system involves constant 

multiplication, it is sensible to allocate a large portion of the time in the total CAD flow to solving 

constant multiplication. In conclusion, a "reasonable" amount of time is highly application specific, as 

discussed above. 
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    Nevertheless, independently of the design flow, the inherent computational complexity of each 

proposed algorithm is assessed using the big-O notation as defined in [18]. 

 

4.5  Key Limitations of the Existing  SCM/MCM Algorithms 

    The optimization of linear systems is a critical topic which has been the focus of continuous efforts 

over decades, resulting in an impressive number of SCM/MCM algorithms. Only some ones 

considered in the literature as milestone algorithms have been described above. However, we shall 

discuss hereafter some of the limitations and shortcomings of the existing algorithms, where the most 

important one is the predictability. 

 

4.5.1  Predictability 

                Despite the large number of proposed heuristics, to our knowledge, only three heuristics are 

accompanied with their respective addition-cost complexity [1][19]. This issue is very important as it 

informs on the heuristic capabilities and limitations with regard to the constant bit-size (N). For low 

values of N (N≤32), H(k) [12]  and Hcub [13] are, up to date, considered as the best heuristics  for 

SCM and MCM, respectively. As long as their respective addition complexities are unknown, there is 

no guarantee that they will preserve their leading positions for high values of N. 

 It was shown in [20] that the number of additions for an N-bit constant in CSD is bounded by 

(N+1)/2–1 and tends asymptotically to an average value of (N/3)–8/9, which yields 33% saving over 

the naive add-and-shift approach. Pinch [21] was the first to prove that the multiplication by a constant 

is sublinear: O(N/(Log(N)α)) with α<1. Based on the DBNS arithmetic [22], Dimitrov [6] showed that 

the condition α<1 in Pinch’s complexity is not necessary, decreasing therefore the upper limit to 

O(N/(Log(N))). Even more, in 2011, Dimitrov [14] evaluated the hidden constant in the big-O notation 

as being equal to 2. Since then, 2.N/Log(N) is considered as the lowest analytic upper-bound known 

so far.  For all remaining heuristics, no addition complexity does exist. This is a real handicap as there 

is no visibility on how the heuristic evolves with respect to N, unless to exhaustively calculate Upb and  

Avg, but this is still limited to low values of (N≤32) as an excessive compute power is required. 

 On the other hand, according to [8], Ross Donelly was the first to determine in 2000 via an 

exhaustive search that 699829 is the smallest value (20 bits) that can not be obtained with 5 adders or 

less. Thong [1] did better with the exact BIGE algorithm as he conjectured (no proof) that 7 additions 

are enough up to 32 bits. Though BIGE guarantees optimality via an exhaustive search, it requires an 

exponential runtime and storage with respect to N [1]. Nevertheless, with BIGE we can observe how 

much any heuristic is far from optimality up to 32 bits.  

 

4.5.2  Runtime and Memory Storage 

    For N≥128, only Lefèvre's CSP algorithm remains practical O(N3) for SCM, because even when 

neglecting the hidden constant α in O(N6), Hcub requires more than 4398 billions of iterations. The 

situation is even worse for optimal algorithms, such as MAG and BIGE, requiring exponential O(2N) 

runtime and memory storage.  
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    For applications involving huge constants such as in cryptography, only linear heuristics O(N) are 

practical (CSD and DBNS). It seems there is a strong correlation between performance and runtime. 

However, by extending the analysis of prior works and providing new insight, it is possible to improve 

both the runtime and the performance (in terms of minimizing logic resources) as will be shown later. 

 

4.5.3  Overflow Risk 

    In fixed-point representation, an overflow may occur if shift spans are not precisely controlled, 

especially in the last partial product. While overflow is an important problem, as far as we are aware, it 

has never been addressed in the proposed heuristics [6]. Contrary to recoding-heuristics (CSD, 

DBNS, ...) where the shift span is fixed, the non-recoding heuristics are very prone to overflow risk 

because of their variable shift spans. Therefore, lower bounds on the maximum left-shifts must be 

carefully considered to minimize overflow; this is may be to the detriment of the optimization. 

 

4.5.4  Ease of Use 

    Beyond the provided performances, ease of use is a decisive criterion in the selection of any 

heuristic. Not only it facilitates the implementation, but also makes the latter non-prone to 

programming errors. Some of the proposed heuristics, for instance Hcub or BIGE, rely on complex 

mathematical concepts. A deep understanding of the concept is a necessary condition prior any 

programming. Such a required effort would require too much time which might discourage the user. 

    This is not a surprise that despite the large number of published heuristics; CSD is not only used in 

designing the vast majority of LTI systems [2], but incorporated in most of the commercial tools as 

well, such as in Synopsys and Cadence synthesis tools, and Matlab numerical-computing tool.  

    Our proposed SCM/MCM heuristics attempt to address the weaknesses of the existing heuristics. 

We propose new linear runtime and fully predictable heuristics with high compression capabilities. The 

proposed heuristics are based on radix-2r arithmetic. They are easy to use and overflow-safe. 

 

4.6  New Recoding Algorithm (RADIX-2
r
) 

Radix-2r has been concisely introduced in Section 3.3.4. We reconsider hereafter the most essential 

elements and provide further details and explanations.  An N-bit constant C is expressed in radix-2r as 

follows: 
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where 01 =−c  and *Ν∈r . For simplicity purposes and without loss of generality, we assume that r 

is a divider of N. In Eq. 4.22, the two’s complement representation of the constant C is split into N/r 

two’s complement slices ( jQ ), each of r bit length because it goes from 20 to 2r–1. However, jQ  

needs an additional bit (crj–1) equal to the most significant bit of the previous digit ( 1−jQ ), which could 
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be seen as some form of carry due to the use of signed digits; it comes from the following formula: 

                             
( )
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rrj
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(4.23)                           

This formula expresses the transformation of the conventional radix-2r representation to the signed-

digit radix-2r one. A digit-set ( )r
DS 2  corresponds to Eq. 4.22, such as   

                        
( ) { }1111 2121011222 −−−− −−+−−=∈ rrrrr

j ,,...,,,,,...,DSQ .                           (4.24)                           

Thus, the product becomes:            
( )

rj
r/N

j

jQXXC 2
1
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××=× ∑
−

=  

. 
                                             (4.25)                      

The sign of the Qj term is given by the crj+r–1 bit, and 
j

k
j mQ j ×=2 , with { }1210 −∈ r,...,,,kj

 and 

( ) { }02 U
r

j OMm ∈ , where ( ) { }12...,,5,3,12 1 −= −rrOM . ( )r
OM 2  is the set of odd positive digits in radix-2r 

recoding, with ( ) 222 −= rr
OM . To 0=jQ  corresponds mj=0.  Finally, the product can be expressed as 

follows:                                  ( ) ( )
( )

jrrj
krj

r/N

j

j
c

XmXC
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×××−=× ∑ −+ 21
1
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 Unlike the multiplication by a variable (Y×X) where the entire set of partial-products (mj×X) must be 

precomputed, only a subset is needed in the case of the multiplication by a constant (C×X). In fact, 

the number of partial-products is equal to the number of different values mj induced by the encoding 

process of the N/r slices (terms Qj). Therefore, the generation of partial products (PP) consists first, if 

mj≠0, in computing the PP mj×X if it has not been precomputed before. It is then submitted to a 

hardwired left-shift of rj+kj positions, and finally, conditionally negated ( ) 11 −+− rrjc
depending on the 

sign bit crj+r–1 of Qj. An illustrative example is given farther.  

 

4.6.1  Maximum Number of Additions (Upb)  

    On the one hand, there are N/r iterations in Eq. 4.26. Each iteration generates one PP. Thus, the 

maximal number of PP is N/r, which requires a maximum of Npp=N/r–1 additions. On the other hand, 

a maximum of 12 2 −−r  non-trivial PP ( ){ }XXXX r ×−××× − 12,,7,5,3 1L  can be invoked 

during the PP generation process. They are built using the binary method, from the least significant bit 

to the most significant bit. That is, the mj elements 3, 5, 7, ..., 2r–1
–1 are built one after the other, each 

time by using a single addition between an element that has already been built and a power of two. 

This process is summarized by the following recurrence relation: dm
p

j += 2 ,  where p≤r–2 because 

mj ≤ 2
r–1

–1, and 0 < d < 2p. 

Theorem 4.2 − In radix-2r, the precomputation of the entire set of non-trivial PP {3×X, 5×X, 

7×X,…,(2r–1
–1)×X} yields an adder-cost and an adder-depth of  2r–2

–1 and r–2, respectively. 

Proof − Since each new non-trivial digit requires only one addition (recurrence relation), the adder-cost 
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is the number of non-trivial digits: ( ) 1212 2 −=−= −rr

om OMN . As the binary method is used, the 

adder-depth is deduced from the maximum number of non-zero bits in the binary representation of a 

digit: (r–1)–1=r–2. Since there are N/r PP, the maximum adder-depth (Ath) in cascaded adders is:  

                                                ( ) 







−+=




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


−+−= 321 r

r

N
r

r

N
rAth ,                                             (4.27) 

where    is the ceiling function (e.g.   6295 =. ). 

We illustrate the construction process of non-trivial PP with the following radix-26 example: 

( ) { }31,29,27,25,23,21,19,17,15,13,11,9,7,5,3,126 =OM  

               
{ } { } { } { ,1132,912732,5123121 33221 =+=+=+=+=+= UUU  }U1572,1352 33 =+=+                 

                  { ,2152,1932,1712 444 =+=+=+ }.31152,29132,27112,2592,2372 44444 =+=+=+=+=+
 

    Thus, the PP (mj×X) corresponding to ( )6
2OM  are subsequently calculated in the following order 

(6–2=4 steps):  

                                             {3×X} ; {5×X ,7×X } ; {9×X ,11×X ,13×X ,15×X } ;  

                                      {17×X ,19×X , 21×X , 23×X , 25×X , 27×X , 29×X , 31×X }. 

    Fig.4.6 provides all necessary details for hardware implementation. It now becomes clear that Eq. 

4.26 involves only additions, subtractions, and left-shifts. Note that right-shifts are not allowed since r, 

j, and kj , are positive integers. 
     

 

    Consequently, the total number of additions required by radix-2r is equal to: 

                                        ( ) 







−+=+= − 22 2r

ompppb
r

N
NNrU .                                            (4.28) 

X 
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3×X X 
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22×X 22×X 

5×X 7×X 

+ 

3×X X 

+ 

23×X 23×X 

9×X 11×X 

+ + 

23×X 23×X 

13×X 15×X 

5×X 7×X 

+ 

21×X 

3×X 

+ 

3×X X 

+ 

24×X 24×X 

17×X 19×X 

+ + 

24×X 24×X 

21×X 23×X 

5×X 7×X 

+ 

11×X 

+ 

24×X 24×X 

25×X 27×X 

+ + 

24×X 24×X 

29×X 31×X 

13×X 15×X 9×X 

Step #1 

Step #2 

Step #3 

Step #4 

FIGURE 4.5 – Sequential order of computation of the entire set of partial-products needed by radix-26. 

For  radix-26, a maximum of  26–2–1=15 

additions are necessary, carried out in  

6–2=4 steps in the worst case. 
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( )rU pb  is minimal for ( ) )2(/)2(2 loglogNWr ⋅⋅= , where  W is the Lambert Function. Table 4.3 

gives the values of r that lead to the minimum number of additions for N ranging from 8 to 8192, while 

Fig. 4.6 depicts the upper-bounds in number of additions for CSD, DBNS, and RADIX-2r. 

             
 

                     

    As for the average number of additions (Avg), it has been exhaustively calculated for values of C 

varying from 0 to 2N–1, for N=8, 16, 24, and 32. But for N=64, we have calculated Avg using 105, 106, 

109 and 1010 uniformly distributed random values of C. While the difference between the four obtained 

results is insignificant (<10–3), the value Avg oscillates around 15.5037 additions. Results are reported 

in Table 4.4. For N=64, RADIX-2r uses 24.17 % less additions than CSD. This gain seems to grow 

linearly for low values of N.  

                           

 TABLE 4.3 − Upper-bound (Upb) and r values for an N-bit constant using RADIX-2r. 

N 8 16 32 64 128 256 512 1024 2048 4096 8192 

r 3 4 4 4 5 6 6 7 8 8 9 

 Upb(r) 3 6 10 18 32 57 100 177 318 574 1037 

             FIGURE 4.6 –  Upb comparison for an N-bit constant.  

TABLE 4.4 − RADIX-2r versus CSD: average number of additions 

(Avg) and upper-bound (Upb). 

CSD RADIX-2r Constant      
Bit-width N Avg Upb Avg Upb 

Saving 
(Avg,%) 

8 1.7882 4 1.7843 3 0.2180 
16 4.4445 8 4.2518 6 4.3356 
24 7.1111 12 6.5314 8 8.1520 
32 9.7777 16 8.6855 10 11.1703 
64 20.4444 32 15.5037* 18 24.1666 

*: Obtained from 1010 uniformly distributed random values of C. 

CSD Avg = (N/3)–8/9 and CSD Upb = (N+1)/2–1. 
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    Regarding DBNS, Dimitrov [6] calculated Avg and Upb from 105 uniformly distributed random 

constants, for 32 and 64 bits only (Table 4.5). Note that DBNS Upb will be higher if the worst cases 

are not attained by the pattern of 105 constants. 

                           

    We have also compared RADIX-2r to some non-recoding heuristics (CSE and DAG) based on 

programs and numeric data kindly provided by Lefèvre and Voronenko. While Fig. 4.7 shows lower 

values of Avg for non-recoding heuristics as expected due to a larger exploration of the solution 

space, Table 4.6 exhibits rather a higher value of Upb for Bernstein's heuristic. Significant conclusion: 

a lower Avg does not guarantee a lower Upb. Another performance indicator of the recoding is the 

smallest value that requires q additions, for q varying from 1 to the upper-bound of the recoding. Table 

4.7 summarizes this information for a 32-bit constant. One can note that starting from q=7, higher 

values are given by RADIX-2r compared to CSD. 

                              
Illustrative Example 

    The product 10599×X is first calculated in CSD, DBNS, and RADIX-2r. Let us note that 

(10599)10=(10100101100111)2. 

PCSD=(X×213)+(X×211)+(X×29)–(X×27)–(X×25)+(X×23)–X. 

PDBNS=((X1×21)+ X1)+ (X×213)+ (X×23)–X     with    X1=((X0×21)+X0)+(X×25)   and  X0=(X×28)   [6]. 

TABLE 4.5 − RADIX-2r versus DBNS: average number of additions 

(Avg) and upper-bound (Upb). 

DBNS [6] RADIX-2r Constant 
Bit-width N Avg Upb Avg Upb 

Saving 
(Avg,%) 

32 ≈9.05+* 13* 8.6855 10 4.0276 

64 16.2151* 21* 15.5037 18 4.3872 

+: Taken from Fig.1 in [6]; *: Obtained from 105 uniformly distributed 

random values of  C. 

 

         FIGURE 4.7 –  Avg comparison for an N-bit constant.  
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    In order to express the product in PRADIX, a two’s complement representation of (10599)10 is 

necessary, which is (010100101100111)2. Thus, in two’s complement notation, the constant size is 

equal to N=15, to which corresponds r=4 (Table 4.3). As 15 is not a multiple of 4, the sign-bit (0 in this 

case) is extended by one position so as N=16. For C=(10599)10, Eq. 4.22 and 4.26 become 

respectively: 
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Fig. 3.11 depicts the four terms Qj. To determine the unknown values c4j+3, mj, and kj, the radix-24 

look-up table (Table 3.4) is indexed by the terms Qj. Referring to Table 3.4, the triplets (c4j+3, mj, kj) 

corresponding to Q0, Q1, Q2, and Q3 are (0,7,0), (0,3,1), (1,7,0), and (0,3,0), respectively. The 

recoding of C=10599 involves the precomputation of two PP only {3×X, 7×X}, while a maximum of 

three PP {3×X, 5×X, 7×X} can be invoke by radix-24 recoding. Consequently, we can write: 

PRADIX   = ((3×X)×212)–((7×X)×28)+((3×X)×25)+ (7×X) 

            = (X0×212)–(X1×28)+(X0×25)+X1  with  X0 = (X×2)+X  and X1 = (X×22)+X0. 

It has to be noted that for C=10599, PCSD and PDBNS require both 6 additions, while PRADIX requires 5. 

The naive shift-and-add approach would have required 7 additions. We assume that addition and 

subtraction have the same area/speed cost, and that shift is costless since it can be realized without 

any gates, i.e. just by using hard wiring. 

TABLE 4.6 − RADIX-2r versus non-recoding algorithms:  runtime complexity  

and number of additions of some special cases.  

Algorithm (84AB5)H 

N=20 

(64AB55)H 

N=23+ 

(5959595B)H  

N=31+ 

Runtime 
 [13] 

BIGE [1] 4 5 6 O(2 
N) 

Bernstein [10]   8 
G 7 8 O(2 

N) [8] 

Hcub*  [13] 4 6 – O(N 
6) 

BHM* [23] 5 7 – O(N 
4) 

Lefèvre’s CSP [8] 4 6   9 O(N 
3) 

RADIX-2r 5 7 10 O(N) 

N: Constant bit-size; +: In RADIX-2r, for 16≤N≤64, r=4 (Table 4.3). A zero 

bit is added in the MSB position to make N  a multiple of  r  (N=24, N=32). 

G:  Greater than RADIX-2r Upb; RADIX-2r
 Upb=7, 8, and 10, for N=20, 24, 

and 32, respectively; *: Values are delivered  by  the Spiral  web  version 

(www.spiral.net), limited to 26 bits; x: optimal number of additions. 

The BIGE optimal solutions for the indicated values are obtained  as follows: 

(84AB5)H : 15 = (24)–1 ; 3825 = (15×28)–15 ; 19125 = (3825×22)+3825; 

543413 = (219)+19125. 

(64AB55)H : 255 = (28)–1; 65281 = (255×28)+1; 1109777 = (65281×24)+ 

65281; 5548885 = (1109777×22)+1109777; 6597461 = (220)+5548885. 

(5959595B)H : 257 = (28)+1; 16843009 = (257×216)+257; 16843011 = (2)+ 

16843009; 50529027 = (16843009×2)+16843009; 421075227 = 

(50529027×23) +16843011; 1499027803 =  (16843009×26)+421075227. 
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    Simplifications in Eq. 4.26 are possible in case two consecutive terms Qj and Qj+1 with opposite 

signs exhibit pairs (mj , kj) of the form (1 , r–1) and (1 , 0), respectively. This is illustrated by the two 

following possibilities:  

                               ⋅⋅⋅±×+⋅⋅⋅=⋅⋅⋅±×−×+⋅⋅⋅ −+−++ 1)(rrj1)(rrj1)r(j
2X2X2X         

                               ⋅⋅⋅±×−⋅⋅⋅=⋅⋅⋅±×+×−⋅⋅⋅ −+−++ 1)(rrj1)(rrj1)r(j
2X2X2X  

    Another interesting idea is to include redundancy in the terms Qj of Eq. 4.22 as will be shown 

farther. These two tricks will decrease the average number of additions in RADIX-2r (Table 4.4, 4.5, 

and Fig. 4.7). 

    In addition to higher compression capabilities of RADIX-2r compared to CSD and DBNS, its runtime 

complexity is linearly proportional to N as shown by Eq. 4.22. Moreover the required memory space is 

very small (for a 8192-bit constant corresponds a look-up table of 29+1=1024 entries). These two 

features make RADIX-2r very useful for huge constants. 

 

TABLE 4.7 − RADIX-2r versus CSD, Lefevre's CSP,  and exhaustive search:  

smallest values up to a 32-bit constant. 

Number of  
Additions (q) 

CSD RADIX-2r 
Lefèvre’s 
CSP*  [8] 

Exhaustive 
search [8] 

1 3 3 3 3 
2 11 11 11 11 
3 43 43 43 43 
4 171 139 213 683 
5 683 651 1703 14709 
6 2731 2699 13623 699829 
7 10923 33419 174903 171398453+

 

8 43691 526491 1420471 – 
9 174763 8422027 13479381 – 
10 699051 134744219 – – 
11 2796203 – – – 
12 11184811 – – – 
13 44739243 – – – 
14 178956971 – – – 
15 715827883 – – – 

*:  Lefèvre calculated the values for q up to 9. This means that the common 

subpattern algorithm (CSP) exhibits an Upb ≥ 9 among all 32-bit constants. 

+: This is the sole value which has not been confirmed by Lefèvre’s 

exhaustive algorithm. It has been found only by Donelly [8], using left-shifts 

exclusively. If "right-shifts" are allowed, the value is strictly higher since the 

BIGE solution using right-shifts gives 6 additions, as follows: 5 = (22)+1; 

639 = (5×27)–1; 317 = (639–5)×2–1; 5194045 = (317×214)+317; 171393341 

= (317×219)+5194045; 171398453 = (639×23)+171393341. 

Thong [1] conjectured that 7 additions are enough up to 32 bits, allowing 

right-shifts (exhaustive BIGE algorithm). It has been proved via RADIX-2r 

heuristic that 10 additions are sufficient up to 32 bits, using left-shifts only. 
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Since the introduction of H(k) [12] in 2004, CSE heuristics have outperformed DAGs at SCM [1]. 

This was achieved by applying CSE to each possible signed-digit (SD) form of the constant. Likewise, 

the search space of CSE can be expanded considering RADIX-2r recoding instead of SD 

representation. For such a goal (SCM/MCM), Lefèvre’s CSP heuristic [8] stands as the best CSE 

candidate for its lower computational complexity O(N 
3) in comparison to its CSE counterparts [13]. 

 

4.6.2  Average Number of Additions (Avg) 

( )rOM 2  is the required set of odd-multiples ( ) { }12...,,5,32 1 −= −rrOM  in radix-2r recoding, with 

( ) 122 2 −= −rrOM . Since each slice Qj comprises r+1 bits, the total number of different combinations 

is then 2r+1. According to Eq. 4.22, only two combinations produce Qj =0: in case the r+1 bits are all 

“0” or all “1”. Hence, the average number of non-null Qj terms is equal to ( ) rrr −++ −=− 212/22 11 . 

Each Qj≠0 generates one partial product (PP).  Thus, the average number of PP in the  rN /  slices is:  

                                                        
( )  rNAvg

r
pp /×−= −21 .                                                      (4.29) 

For each ( )r
j OMm 2∈  there exists an integer ( ){ }r

OMk 221 ...,,,∈ , such as 12 +×= km j . To set the 

correspondence between j and k, mj is denoted mjk.  The exact number of occurrences (Occ) of mjk  in 

the 2r+1 combinations of Qj is :  
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where    is the floor function. We need to multiply by 4 because each occurrence of mjk in the 

positive part of ( )r
DS 2  is double due to the fact that crj−1 and crj bits have the same influence on Qj 

term ( )⋅⋅⋅+×+×−
00

1 22 rjrj cc . Symmetrically, when considering the negative part of ( )r
DS 2 , each 

occurrence of mjk becomes then quadruple (see Table 3.4). Therefore, the probability (P) that mjk 

occurs among 2r+1 combinations is:  

                                                                    
( ) ( )

12 +
=

r

jkcc
jk

mO
mP .

                                                         
(4.31)

 

    We deliberately employ “probability” instead “average” to make easier the demonstration, but 

actually the two notions have exactly the same meaning in this case. Now, the probability that mjk 

occurs in slice Qj knowing that it has never occurred in the slices before slice j is (Bayes’s theorem):  

                        
( ) ( )

( )
( ) ( )[ ] ( ) ( )[ ] j

jkjk

j
jkjkjk

jk mPmP
mPmP

jP

jmP
j/mP −×=

−×
== 1

1

1I
.                      (4.32)

 

The probability that any mjk for ( )r
OMk 21 ..=  occurs in slice Qj knowing that it has never occurred 

in the slices before slice j is: 

                                                      

( ) ( )
( )

∑
=

=∀

rOM

k

jkjk j/mPj/mP

2

1

.
                                                     

(4.33)
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Note that ( )j/mP jk  are mutually exclusive, since one and only one odd-multiple (mjk) can occur in 

slice j. Consequently, the average number of generated odd-multiples considering all slices is: 

                                                          

( )
 

∑
−

=

∀=
1

0

r/N

j

jkom j/mPAvg .                                                  (4.34)
 

Hence, the average number of additions for RADIX-2r is:  

                           ( ) ompp AvgAvgrAvg ++−= 1                                                       

                                     ( )   ( ) ( )[ ]
 

∑ ∑
−

=

−

=

−













−×+×−+−=
−1/

0

12

1

2

1/211
rN

j k

j
jkjk

r

r

mPmPrN ,                       (4.35) 

with ( )
1

1

2

12

2

−

−













+×
=

r

r

jk

k
mP . We proved in the last section that to get the minimum number of additions, r 

must be equal to:  

                                                             ( ) )2(/)2(2 loglogNWr ⋅⋅= ,                                               (4.36)                    

where W is the Lambert function.  

Using Avg expression 4.35, we calculated the average for N varying from 8 to 8192. Results are 

reported in Table 4.8. Note that insignificant differences exist between the values exhaustively 

calculated in Tables 4.4 and those of Table 4.8. The reason is due to the fact that before calculating 

the number of additions, even values of C constant was reduced till to get an odd value. This is why 

Avg values in Tables 4.4 are slightly lower than those delivered by Avg expression. We  rerun the 

same program but without the reduction of even number and  got exactly the same values as Avg 

expression. 

    We observe that for RADIX-2r
, Avg values are not far from Upb ones as in the case of CSD. The 

reason is that the average number of null Qj is very low: ( )  
 

rrj
r/N

r/NQAvg
22

2
0

1
=×==

+  . Note that 

50% saving over CSD is attained for N=1148. 

    The maximum adder-depth (Ath) in cascaded adders is given by Eq. 4.27.  Based on r values given 

by equation 4.36, we calculated Ath(r) and grouped the results in Table 4.8. A saving of 50% over 

CSD is achieved for N=80.  

As for Upb, 50% saving is attained at N=128. 

 

4.6.3  Length of the Critical-Path in Cascaded Adders (Ath) 

Equation 4.36 assures minimum Avg and Upb, whereas lower Ath values are still possible. Any r 

value, such as ( ) )2(/)2(2 loglogNWr ⋅⋅≤  produces higher Avg, Upb, and Ath. While any r value, such 

as   ( ) )2(/)2(2 loglogNWr ⋅⋅≥  produces lower Ath but higher Avg and Upb. To garantee a reasonable 

balance, we set as condition that the entire number of odd-multiples must be equal, or less than the 
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total number of the slices Qj ( )  ( )rNOM
r /≤2 . This condition avoids generating more odd-

multiples than it is actually invoked. Thus, a balanced solution for a lower Ath is found for: 

                                                     
( )( ) ( )224 loglogNWr /..=  

,
                                                   (4.37) 

where W  is the Lambert function. 

 

Table 4.9 indicates r values that yield lower Ath, accompanied with its corresponding Upb and Avg. 

Note that both equations 4.36 and 4.37 provide exactly the same results for N≤32, either in Ath, Avg, 

or Upb. Starting from N≥64, lower Ath are obtained using Eq. 4.37 but at the expense of higher Upb 

and Avg as indicated by Tables 4.8 and 4.9. For instance, for N=256 Eq. 4.37  achieves a reduction of 

22.5% in Ath over equation 4.36, while it causes an increase of  26% and 2.5% in Upb and Avg, 

respectively. Contrary to Avg corresponding to equation 4.36, the ones of Eq. 4.37 are relatively far 

from Upb. Compared to CSD, a saving of 50% in Ath is obtained by Eq. 4.37 for N=56.  

Finally, to decide which r expression to use depends actually on design requirements. If priority is 

given to area, Eq. 4.36 must be used. But in case speed is a concern, Eq. 4.36 must be employed.   

                

 

4.6.4  Overflow Safety 

In RADIX-2r, overflow safety is easy to prove. We consider C and X with n and m bit-lengths, 

respectively. In two’s complement representation, the product XCP ×=  needs n+m bits to be 

TABLE 4.8 − RADIX-2r
 versus CSD: Avg, Ath, and Upb for N-bit constant.   

N 8 16 32 64 128 256 512 1024 2048 4096 8192 

r 3 4 4 4 5 6 6 7 8 8 9 

RADIX-2r 1.78 4.26 8.71 16.75 30.40 54.08 98.12 174.22 312.49 571.41 1033.39 

CSD 1.78 4.44 9.77 20.44 41.77 84.44 169.77 340.44 681.77 1364.44 2729.77 Avg 

Saving (%) 0.39 4.12 10.89 18.05 27.22 35.95 42.20 48.82 54.16 58.12 62.14 

RADIX-2r 3 5 9 17 28 46 89 151 261 517 917 

CSD 4 8 16 32 64 128 256 512 1024 2048 4096 Ath 

Saving (%) 25 37.5 43.75 46.87 56.25 64.06 65.23 70.50 74.51 74.75 77.61 

RADIX-2r 3 6 10 18 32 57 100 177 318 574 1037 

CSD 4 8 16 32 64 128 256 512 1024 2048 4096 Upb 

Saving (%) 25 25 37.5 43.75 50 55.46 60.93 65.42 68.94 71.97 74.68 

N is the constant bit-size; ( ) )2(/)2(2 loglogNWr ⋅⋅= , where W is the Lambert function. 
            

TABLE 4.9 − Upper-bound and r values for N-bit constant using RADIX-2r. 

N 8 16 32 64 128 256 512 1024 2048 4096 8192 

r 3 4 4 5 6 7 8 8 9 10 11 

Ath(r) 3 5 9 15 25 41 69 133 234 417 753 

Upb(r) 3 6 10 19 36 67 126 190 354 664 1255 

Avg(r) 1.78 4.26 8.71 16.61 30.77 55.47 100.56 175.99 322.83 594.90 1104.27 

 N is the constant bit-size; ( )( ) ( )2/2..4 loglogNWr = , where W is the Lambert function.
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complete, i.e., without truncation. We can write: 0121 ppppP mnmn ⋅⋅⋅= −+−+ ; where 1−+mnp  is the 

sign-bit. To be sure there is no overflow risk; we must prove that the sign-bit of the last partial product 

(PP) is set at most at the n+m−1 position. We write: 

                               
( )

( )
( )

( )
( )

∑∑∑
−

=

−

=

−

=

=××−××−=××= −−+

1

0

1

0

1

0

2112 11

r/n

j

j
rjx

r/n

j

j
crj

r/n

j

j PPXQXQP mrrj , 

where the last PP is equal to: ( ) ( ) rnx
j

c
r/n XQPP mn −
− ××−××−= −− 211 11
1 . The maximal positive values 

that jQ  and X  can take are 2r−1 and 2m−1, respectively, to which corresponds a maximal PP of: 

                                                         ( ) ( ) 2
1/ 21max 11 −++

− ×−= −− mnxc
rn

mnPP . 

 In this case, 22 −+mn  occupies the n+m−2 position, plus the sign bit just after at n+m−1 position. This 

proves that in RADIX-2r overflow never occurs. 

 

4.7  New Redundant Radix-2
r Recoding (R3) Algorithm 

    The objective is to decrease Avg without increasing Upb. Avg is successively reduced in two steps: 

by the utilization of a redundant recoding, followed by a Common Digit Elimination (CDE) step on the 

PP set. In RADIX-2r, CDE is already applied on the odd-multiples (mj) by the recoding itself. A second 

order of CDE can be applied again on Qj terms thanks to redundancy. 

     We present hereafter a linear runtime Redundant Radix-2r Recoding (R3) with better Avg and same 

Upb as RADIX-2r. 

 Eq. 4.22 can be rewritten as                  

                                                   ( ) ( )
( )

rj
rN

j

k
j

c
jrrj mC 221

1/

0

1 ×××−= ∑
−

=

−+ ,                                    (4.38) 

with { }12...,,5,3,1,0 1 −∈ −r
jm  and { }1,...,2,1,0 −∈ rkj .  

To enable CDE at Qj level, we announce the two following theorems. 

Theorem 4.3 − Any digit ( )r
j DSQ 2∈   can be represented in a combination of digits ( )s

ji DSP 2∈ , 

such as s is a divider of r.   

Theorem 4.4 − Any digit ( )r
j DSQ 2∈  can be represented in a combination of digits Pji+Tjk such as 

( )s
ji DSP 2∈ and ( )t

jk SDT 2∈  with  s+t  a divider of r ,  and t < s. 

Proofs − see Appendix A. 

When Th. 4.3 is applied to Eq. 4.22, it gives: 

                                                       

( )( )
rj

rN

j

sr

i

si
jiPC 22

1

0

1

0

∑ ∑
−

=

−

= 










=

/ /

,                                              (4.39)
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where ( ) { }1111 2,12,...,0,...,12,22 −−−− −+−−=∈ sssss
ji DSP ,  ( ) { }12,...,3,12 1 −= −ssOM   such 

as ( ) ( ) ( )sksr OMOM 122/2 −=  with r/s=k. Th. 4.3 allows an exponential reduction (1/2k−1
) of the 

number of odd-multiples in Eq. 4.39 in comparison to Eq. 4.22, but at the expense of a linear increase 

(k−1) in the number of additions.  

Corollary 4.1 − In radix-2r, ( ) jjj h
j

el
jj vuQ 212 ××−+×= , where: ( ){ };12,...,5,3,1,0, 12/ −∈ −r

jj vu  

{ };12,...,2,1,0 1 −∈ −r
jl

 
( ){ };12,...,2,1,0 12/ −∈ −r

jh
 
and

 
{ } .1,0∈je

 

Proof − This corollary is a direct consequence of Th. 4.3 applied for s=r/2. This means that Qj digit, 

which is r+1 bit-length, is split into two overlapping sub-digits Pj0 and Pj1, each of r/2+1 bit-length. 

This assumes that r is even. If r is odd, Th. 4.4 is applied instead of Th. 4.3. For s=r/2, Eq. (4.39) 
becomes: 

                                                         ( ) rj
rN

j

r
jj PPC 22

1/

0

2/
10 ××+= ∑

−

=

.                                                  (4.40) 

    Note that 2/
10 2r
jjj PPQ ×+= , and that Pj0 and Pj1 have exactly the same properties as Qj, which 

means that they can be expressed in the same way as Qj is written in equation (4.38). Thus, we get:         

                                          ( ) ( )[ ] rjh
j

el
j

rN

j

c
jjjrrj vuC 22121

1/

0

1 ×××−+××−= ∑
−

=

−+ .                                (4.41) 

    Because addition is a non-injective function, the quintuplet (uj, lj, ej, vj, hj) is not unique; several 

ones might exist for the same jQ  value. For instance, the term 35=jQ  can be expressed as: 

35=1×25+3×20, or 35=5×23–5×20, or 35=7×22+7×20. Consequently, Eq. (4.41) is a redundant radix-2r 

recoding (R3) of the constant C. 

    Corollary 4.1 is just one case (s=r/2) among many others. A number of Qj partitionings are possible 

(s=r/3, r/4,...), but lower values of s increase the number of sub-digits, which  makes equation (4.41) 

difficult to handle. 

    R3 is illustrated hereafter for the particular case of 8<N≤64. To preserve optimality in Upb and Avg, 

r must be equal to 4 (Table 4.8).  But as R3 comprises two sub-digits, r must be doubled (r=8), which 

means that s=4. Hence, with (r,s)=(8,4) optimality is guaranteed. 

For r=8, 0≤|Qj|≤128, and equation (4.41) becomes:  

                                            ( )( ) ( ) jc
N

j

h
j

el
j

jjjj vuC 8
1)8/(

0

21212 78 ×−×××−+×= +∑
−

=

     

                                               ( ) ( ) jc
N

j
j

jZZ 8

1)8/(

0

21 21 78 ×−×+= +∑
−

=

,                                                   (4.42)                           

where jl
juZ 21 ×=  ; ( ) jj h

j
e

vZ 212 ××−=  ; { };7,5,3,1,0, ∈jj vu { };7,...,2,1,0∈jp  { };3,2,1,0∈jh  and 

{ }.1,0∈je  
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    Note that |Qj|=(Z1+Z2)j. Thus, the product C×X becomes: 

                            

( ) ( ) ( )[ ] ( ) jc
N

j

h
j

ep
j

jjjj XvXuXC 8

1)8/(

0

21212 78 ×−××××−+××=× +∑
−

=  

. 

                 

(4.43)

 

The partitioning of the constant C according to equation (4.42) is depicted in Fig. 4.8.  

                                         

Since jQ
 
may have several notations in (Z1, Z2), we must carefully select among a big number of 

possibilities, the recoding (R3) that yields optimal Avg. We have shown that for RADIX-2
r
, 

( )   r
j rNQAvg 2//0 == and we can easily prove applying the same reasoning developed in Section 

4.6.2
 
that ( ) ( )   r

j rNrQAvg 2//121 ×−×== . Thus, we can write: ( )   12//1,0 −×== r
j rNrQAvg . Preserving the 

same ( )1,0=jQAvg  value in R3 is a proof of optimality of Avg, because the number of PPs as well as 

the odd-multiple set are exactly the same in R3 and RADIX-2r. 

Optimal R3 recoding is obtained using a C-program which exhaustively explores for each odd |Qj| 

varying from 1 to 127, all (uj, lj, ej, vj, hj) possibilities and selects the least adder consumer 

combination according to the following priority order: (uj , vj)=(uj , 0); (uj , vj)=(1 , 1); (Z1,Z2)=(1×27, Z2); 

and finally (Z1 , Z2)=(Z1 ,1×20). These two latter couples allow the following simplifications:  

          ( )[ ] ( )[ ] [ ] [ ] ...222......221221... 88
1

8
2

880
1

8
2

7 ±×+−×+=±××−+×+×+ ++ jjjj ZZZZ  

          ( )[ ] ( )[ ] [ ] [ ] ...222......221221... 88
1

8
2

880
1

8
2

7 ±×+−×−=±××++×+×− ++ jjjj ZZZZ  

    In case none of those cases is encountered, C-program pursues in the following priority order: (uj , 

vj)=(1,3) or (3,1); (uj , vj)=(3 , 3); (uj , vj)= (1,5) or (5,1); (uj , vj)=(5, 5); (uj , vj)= (1, 7) or (7, 1); (uj , 

vj)=(7, 7);  (uj , vj)= (3,5) or (5,3); (uj , vj)= (3,7) or (7,3); (uj , vj)= (5,7) or (7,5). This order maximizes 

the occurrences of 1, then of 3, and minimizes those of 5 and 7 in |Qj| digits, which will more likely 

reduce the number of adders in the whole C recoding. Optimized odd |Qj| combinations are grouped 

in Table 4.10. Even combinations of |Qj| are directly derived from odd ones using shift operations. 

For a given 8<N≤64, optimality for RADIX-2r and R3 is guaranteed for r=4 and r=8, respectively. To 

RADIX-2r corresponds ( )   2410 //, NQAvg j == . Counting the number of uj=1, vj=0, and vj=1 in both 

odd and even |Qj| of Table 4.10, we can easily prove that for R3, ( )   1288240 //NvAvg j ×==  and 

( ) ( )   6485211 //NvAvguAvg jj ×==+= . This gives ( ) ( )  8101 /N,vAvguAvg jj ==+=
 which is equal 

to ( )10 ,=jQAvg . This is a formal proof that R3 (Table 4.10) is optimal. 

 c-1 c0  c1   c2    c3  c4   c5  c6  c7  c8  c9  c10 c11 c12 c13 c14 c15 c16 c17 c18 c19 c20 c21 c22 c23 

( ) ( ) 710210
c

ZZQ −×+=  

16
2

8
1

0
0 222 ×+×+×= QQQC  

( ) ( ) 1511211
c

ZZQ −×+=  

( ) ( ) 2312212
cZZQ −×+=  

   8+1 bits 

  : c-1= 0  C 
   24+1 bits 

Qj ( ) 1280 21 ≤+≤
j

ZZ  
: c7 ,  c15 , c23  are sign bits  

 FIGURE 4.8 – Partitioning of a 24-bit C constant using R3 algorithm. 
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TABLE 4.10 − Odd and even |Qj| digit recoding using R3  algorithm. 

Odd |Qj| Z1=uj× 2
lj Z2=(−1)

ej×vj × 2
hj (Z1+ Z2)j Even |Qj| (Z1+ Z2)j 

1 1 × 2 0 0 × 2 0 U1 2 21 × U1 
3 3 × 2 0 0 × 2 0 U3 4 22 × U1 
5 5 × 2 0 0 × 2 0 U5 6 21 × U3 
7 7 × 2 0 0 × 2 0 U7 8 23 × U1 
9 1 × 2 3 1 × 2 0 U9 10 21 × U5 
11 3 × 2 2 −1 × 2 0 U11 12 22 × U3 
13 3 × 2 2 1 × 2 0 U13 14 21 × U7 
15 1 × 2 4 −1 × 2 0 U15 16 24 × U1 
17 1 × 2 4 1 × 2 0 U17 18 21 × U9 
19 5 × 2 2 −1 × 2 0 U19 20 22 × U5 
21 5 × 2 2 1 × 2 0 U21 22 21 × U11 
23 3 × 2 3 −1 × 2 0 U23 24 23 × U3 
25 3 × 2 3 1 × 2 0 U25 26 21 × U13 
27 7 × 2 2 −1 × 2 0 U27 28 22 × U7 
29 7 × 2 2 1 × 2 0 U29 30 21 × U15 
31 1 × 2 5 −1 × 2 0 U31 32 25 × U1 
33 1 × 2 5 1 × 2 0 U33 34 21 × U17 
35 1 × 2 5 3 × 2 0 U35 36 22 × U9 
37 1 × 2 5 5 × 2 0 U37 38 21 × U19 
39 5 × 2 3 −1 × 2 0 U39 40 23 × U5 
41 5 × 2 3 1 × 2 0 U41 42 21 × U21 
43 5 × 2 3 3 × 2 0 U43 44 22 × U11 
45 3 × 2 4 −3 × 2 0 U45 46 21 × U23 
47 3 × 2 4 −1 × 2 0 U47 48 24 × U3 
49 3 × 2 4 1 × 2 0 U49 50 21 × U25 
51 3 × 2 4 3 × 2 0 U51 52 22 × U13 
53 3 × 2 4 5 × 2 0 U53 54 21 × U27 
55 7 × 2 3 −1 × 2 0 U55 56 23 × U7 
57 7 × 2 3 1 × 2 0 U57 58 21 × U29 
59 1 × 2 6 −5 × 2 0 U59 60 24 × U15 
61 1 × 2 6 −3 × 2 0 U61 62 21 × U31 
63 1 × 2 6 −1 × 2 0 U63 64 26 × U1 
65 1 × 2 6 1 × 2 0 U65 66 21 × U33 
67 1 × 2 6 3 × 2 0 U67 68 22 × U17 
69 1 × 2 6 5 × 2 0 U69 70 21 × U35 
71 1 × 2 6 7 × 2 0 U71 72 23 × U9 
73 5 × 2 4 −7 × 2 0 U73 74 21 × U37 
75 5 × 2 4 −5 × 2 0 U75 76 24 × U19 
77 5 × 2 4 −3 × 2 0 U77 78 21 × U39 
79 5 × 2 4 −1 × 2 0 U79 80 24 × U5 
81 5 × 2 4 1 × 2 0 U81 82 21 × U41 
83 5 × 2 4 3 × 2 0 U83 84 22 × U21 
85 5 × 2 4 5 × 2 0 U85 86 21 × U43 
87 5 × 2 4 7 × 2 0 U87 88 23 × U11 
89 3 × 2 5 −7 × 2 0 U89 90 21 × U45 
91 3 × 2 5 −5 × 2 0 U91 92 22 × U23 
93 3 × 2 5 −3 × 2 0 U93 94 21 × U47 
95 3 × 2 5 −1 × 2 0 U95 96 25 × U3 
97 3 × 2 5 1 × 2 0 U97 98 21 × U49 
99 3 × 2 5 3 × 2 0 U99 100 22 × U25 

101 3 × 2 5 5 × 2 0 U101 102 21 × U51 
103 3 × 2 5 7 × 2 0 U103 104 23 × U13 
105 7 × 2 4 −7 × 2 0 U105 106 21 × U53 
107 7 × 2 4 −5 × 2 0 U107 108 22 × U27 
109 7 × 2 4 −3 × 2 0 U109 110 21 × U55 
111 7 × 2 4 −1 × 2 0 U111 112 24 × U7 
113 7 × 2 4 1 × 2 0 U113 114 21 × U57 
115 7 × 2 4 3 × 2 0 U115 116 23 × U29 
117 7 × 2 4 5 × 2 0 U117 118 21 × U59 
119 7 × 2 4 7 × 2 0 U119 120 23 × U15 
121 1 × 2 7 −7 × 2 0 U121 122 21 × U61 
123 1 × 2 7 −5 × 2 0 U123 124 22 × U31 
125 1 × 2 7 −3 × 2 0 U125 126 21 × U63 
127 1 × 2 7 −1 × 2 0 U127 128 27 × U1 

 Note that 9=1×2 3+1×2 0 in R3 (1 addition) and 9=1×2 4
−7×2 0 in RADIX-2r  

 (2 additions), taking into account that the recoding is on 8+1=9 bits (Fig. 4.8). 

 There are many cases where the number of additions is lower, as in 10, 40, …   
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    As for Upb, R3 comprises  8/N   Qj , each one groups two digits (Z1, Z2). Thus, the number of PP 

is  4/N . Since 3 odd-multiples are required,   24 += /NUpb  which is equal to Upb of RADIX-2r. It is 

important to mention that 8<N≤64 was chosen just to make the demonstration simpler, but the proof 

holds true for any value of N. 

    CDE is performed in a linear runtime on the  r/N ×2  Uk digits as an ultimate optimization step. It 

is illustrated by the product P=(2631689)10×X. We first calculate the product (P) in RADIX-2r and then 

in R3.  

    PRADIX  = X0×220–X×219+X0×212–X×211+X×24–X1      with   X0=(X×2)+X and X1=(X×23)–X.  

    PR3=U40×216+U40×28+U9      with    U40= U5×23
 ; U5=(X×22)+X   and  U9=(X×23)+X.  

    Note that PRADIX requires 7 additions, while PR3 needs only 4. A saving of 2 additions is due to 

redundancy (U9 and U40) and a saving of 1 addition is due to CDE (U40).  

Avg has been exhaustively calculated for C values varying from 0 to 2N
−1, for N=8, 16, 24, and 32. 

But for N=64, we calculated Avg using 1010 uniformly distributed random C values. For N=64,  R3 

uses 13.49 % less additions than RADIX-2r (Table 4.11). For N≤32, the saving is not substantial 

because the number of Qj digits is very low (≤4). But for N=64, it is equal to 8, offering more 

possibilities to CDE. Note that for N=8, the saving of 3.51% is due exclusively to the use of 

redundancy since there is only one Qj digit. 

                                

We also determined the smallest value that requires q additions, for q varying from 1 to the Upb of 

the recoding. Table 4.12 summarizes the results for 32-bit constant. Note that starting from q=7, 

higher values are given by R3.  

We have compared R3 to a number of well-known non-recoding algorithms for which neither Avg 

nor Upb are analytically known. While they exhibit lower Avg (Fig. 4.9), their respective Upb may be 

higher such as in the case of Bernstein's algorithm (Table 4.13).  

TABLE 4.12 − R3 versus RADIX-2r: 

smallest values up to 32-bit constant. 

q RADIX-2r R3 

1 3 3 
2 11 11 
3 43 43 
4 139 139 
5 651 651 
6 2699 2699 
7 33419 34971 
8 526491 559259 
9 8422027 17336475 
10 134744219 143163547 

q: number of additions. 

 

TABLE 4.11 − R3 versus RADIX-2r: 

 average number of additions (Avg). 

Avg 
N 

RADIX-2r R3 
Saving 

% 

8 1.78 1.72 3.51 
16 4.26 4.10 3.66 
24 6.54 6.28 4.04 
32 8.71 8.31 4.51 
64 16.75 14.49* 13.49 

*:Obtained from 1010 uniformly 

distributed random C values. N is 

the bit-size of the constant. For 

N=8, the saving is exclusively due 

to redundancy (Table 4.9). 
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In Fig. 4.9 the comparison is limited to 32 bits. Beyond that bit-length, and especially for large 

constants (N≥64), it would be impossible to perform any comparison since the analytical expression of 

the average is unknown for all heuristics, except RADIX-2r. Therefore, there is no guarantee that Hcub 

will preserve its leading position for high values of N. As for R3, CDE becomes more effective since 

the number of Qj digits increases. This may enable R3 to rapidly outperform Bernstein's heuristic. 

Finally, for huge constants, only R3 remains practical due to its linear computational time O(N). 

               

                    

 

                        FIGURE 4.9 – Avg comparison for a N-bit constant.  

TABLE 4.13 − R3 and RADIX-2r versus non-recoding algorithms:  

 runtime complexity and number of additions of some special cases.  

   Algorithm (84AB5)H 
N=20 

(64AB55)H 
N=23+

 

(5959595B)H  
N=31+

 
Runtime [13] 

 BIGE [1]  4  5  6  O(2 
N) 

Bernstein [10]   8G 7 8 O(2 
N) [8] 

Hcub*  [13] 4 6 – O(N 
6) 

BHM* [23] 5 7 – O(N 
4) 

Lefèvre'CSP  [8] 4 6 9 O(N 
3) 

RADIX-2r 5 7 10 O(N) 

R3 4 6 8 O(N) 

N: Constant bit-size ; +: In RADIX-2r, for 16≤N≤64, r=8 (Table 4.9). A zero 

bit is added in the MSB position to make N a multiple of  r  (N=24, N=32). 

G:  Greater than R3 Upb; R3 Upb = 7, 8, and 10 for N=20, 24, and 32, 

respectively;  *: Values are delivered by Spiral web version, limited to 26 

bits;  x: Lowest number of additions. 
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4.8  New MCM Algorithm (RADIX-2
r
 MCM) 

    RADIX-2r SCM algorithm (Section 4.6) can be easily extended to MCM. In MCM, the single 

variable X  is multiplied by a set of N-bit constants MCCCC ,,,, 321 L . Therefore, the same non-

trivial PP set ( ){ }XXXX r ×−××× − 12,,7,5,3 1L  can be shared among the M constants Ci. Using 

the same reasoning developed in Section 4.6, we can easily prove that the upper-bound is equal to:  

                                                  ( ) 





−−+

×
= − M

r

NM
rU r

pb 12 2 ,                                       (4.44)  

 with ( ) )2(/)2(2 loglogNMWr ⋅⋅⋅= , where  W is the Lambert Function. 

     We can also easily prove using Bayes's theorem that the average number of additions is equal to: 
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and ( ) )2(/)2(.2 loglogNMWr ⋅⋅= . 

    As for the adder-depth (Ath), it is exactly the same as in SCM (Eq. 4.27) since the M constants Ci
 

are implemented independently of each other, sharing only the non-trivial PP set. 

    Fig. 4.10 compares the new RADIX-2r
 MCM algorithm to the state-of-the-art for 32-bit constants, 

with a number of constants varying from 1 up to 100. Note that for Lefèvre, BHM and Hcub, the 

average is taken only over 50 uniformly distributed random constant sets [13]. In RADIX-2r the 

average is rather exactly calculated using Eq. 4.45. Nevertheless, RADIX-2r surpasses Bernstein and 

Lefèvre, and has a big potential to surpass BHM and competes with Hcub if the optimization 

techniques (redundancy and CDE) employed to R3 are integrated into RADIX-2r MCM heuristic. 

 
FIGURE 4.10 – Avg comparison for 32-bit constants.  
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    Table 4.14 gives the computational complexity of each MCM algorithm that served for comparison. 

It is important to note that the hidden constant in the big-O notation of Hcub is very important [13].  

 

                                           
 

    Table 4.15 compares RADIX-2r MCM heuristic to the standard CSD technique for 32 and 64-bit 

constants, with a number of constants varying from 1 up to 100. 

 

                  

 

4.9  Conclusion 

    Based on radix-2r arithmetic, we have introduced a new linear-runtime and fully-predictable 

heuristic (RADIX-2r) for the multiplication by a constant. An improved version (R3) of RADIX-2r has 

also been introduced. It is based on the utilization of a redundant radix-2r recoding in conjunction with 

a common-digit-elimination technique.  Compared to the existing algorithms, R3 is very competitive 

especially for large constants. Because of its linear-runtime complexity, R3 remains the unique 

practical heuristic for huge constants. 

    On the other hand, we have determined the analytic expressions for the maximum number of 

additions (upper-bound), the average number of addition (average), and the maximum number of 

additions forming the critical path (adder-depth). These bounds are the lowest bounds known so far for 

the multiplication by a constant (SCM and MCM). While the bounds are for a minimal set of operations 

(additions, subtractions, and left-shifts), they remain valid if any other operation (such as right-shifts) is 

allowed. It is noteworthy to mention that asymptotic worst-case cost of the optimal decomposition 

remains an open research problem. 

    The predictability feature of RADIX-2r and R3 (bounds of R3 are lower) enables the generation of 

fully-predictable LTI-controllers capable of satisfying different requirements, such as: 

TABLE 4.15 − RADIX-2r
 MCM versus CSD: Avg  comparison 

M 1 2 10 20 40 60 80 100 

RADIX-2r 8.71 15.75 56.61 100.05 171.65 236.92 299.07 360.02 

CSD 9.77 19.55 97.77 195.55 391.11 586.66 782.22 977.77 N=32 

Saving (%) 10.84 19.43 42.09 48.83 56.11 59.61 61,76 63.17 

RADIX-2r 16.75 29.40 110.05 191.65 339.07 480.37 607.72 733.58 

CSD 20.44 40.88 204.44 408.88 817.77 1226.7 1635.6 2044.4  N=64 

Saving (%) 18.05 28.08 46.17 53.12 58.53 60.84 62.84 64.11 

            

TABLE 4.14 − RADIX-2r  MCM versus non-recoding 

MCM algorithms:  runtime complexity for a number 

of M constants with N-bit each.  

Algorithm Runtime [13] 

Hcub*  [13] O(M3
. N 

6) 

BHM* [23] O(M3 
. N 

4) 

Lefèvre’s CSP [8] O(M3 
. N 

3) 

RADIX-2r O(M 
. N) 
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• Generate a controller comprising the minimum number of additions (most compact controller); 

• Generate a controller with the shortest critical-path (fastest controller); 

• Enable a trade-off between the number of adders and the number of adder-steps, i.e., 

between the area and the speed: 

− Given a maximal number of adder-steps, generate a controller that needs a minimal 

number of adders/subtractors and does not violate the number of adder-steps; 

− Given a delay constraint, generate a controller satisfying the delay constraint such that 

the number of adders/subtractors is minimal; etc. 

    CSD has two very-attractive features: ease-of-use and linear runtime complexity. Because of this, 

CSD is used in designing the vast majority of LTI systems. With the same features and much more 

interesting compression capabilities, RADIX-2r and R3 will certainly replace CSD, and therefore allows 

the design of more compact, faster, and less power consumer LTI-systems. 

    Since the introduction of H(k) in 2004, CSE heuristics have outperformed DAGs at SCM. This was 

achieved by applying CSE to each possible signed-digit (SD) form of the constant. Likewise, the 

search space of CSE can be expanded considering RADIX-2r
 recoding instead of SD representation. 

For such a goal (SCM/MCM), Lefèvre’s CSP heuristic stands as the best CSE candidate for its lower 

computational complexity O(N 

3) in comparison to its CSE counterparts. Thus, the combination of 

Lefèvre’s CSP with RADIX-2r
 will be a very competitive heuristic.  

    Finaly, radix-2r arithmetic is a simple and powerful mathematical tool that might be further explored 

to derive even tighter addition-cost complexities. 
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Chapter 5 

 

Multiplication by a Variable 

    This chapter deals with the problem of hardware optimization of linear-time-variant 

(LTV) systems. The optimization focuses on the multiplication by a variable (MV) which is 

the main building block of LTV systems. We formalize the MV problem in radix-

2
r
 arithmetic, and present the two most-known state-of-the-art solutions. We then 

introduce a series of fully predictable MV algorithms, accompanied with their respective 

speed and area complexities. Next, we set up the general equation of the space/time 

partitioning and derive the optimal radix-2
r
 architecture. At the end, a number of multi-

precision-multiplication algorithms are proposed as an extension of the MV problem.  

 

5.1  Optimizations of LTV Systems 

    The general definition of a linear system has already been given in Section 4.1. An LTV system is 

rather a system in which certain quantities governing the system's behavior change with time, so that 

the system will respond differently to the same input at different times. 

    An LTV system is formalized as follows. If X and Y are input and output vectors, respectively, and V 

is a transformation matrix, the linear system can be written as 
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    The transformation matrix V is an m×n matrix, where Vij represents the (i,j) value which can 

change with time. An output signal Yi is the product of the ith row of the transformation matrix V and 

the n input samples of X:    

                                                                 
j

n

j

ijj XVY ×= ∑
=1

.                                                           (5.2) 

    In Chapter 2, the state-space representation has been retained as the control computational-model 

to be optimized. Note that the explicit state-space LTV Eq. 2.2 is no more than a concatenation of four 

Y=V×X operations given by Eq. 5.1. In Chapter 6 we provide an illustrative example consisting in a 

PID-controller dedicated to LTV systems. The PID-controller can be tuned on the fly to handle 

changing environmental conditions. 

    The computational model of the LTV Eq. 2.2 involves mainly matrix-multiplications (MM), based on 

the very space/time critical MV operations. In an earlier work, MM operation was the subject of a 
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thorough investigation in order to optimize the throughput and latency. The results were published in 

[1][2]. Therefore, MM operation is not reconsidered in this thesis. The whole effort is concentrated on 

the optimization of the MV operation. 

 

5.2  Formal Definition of the MV Problem 

    In Section 2.5.3.2, we have given the state-of-the-art of MV problem and have outlined the need for 

the high-radix paradigm to achieve high-speed, low-power, and highly-scalable architecture of the 

multiplier. These are the three main requirements for today's general purpose multipliers [3]. We have 

also formulized the radix-2r multiplier in number of PPGs, number of non-trivial PPs, and number of 

additions forming the critical path (Fig. 2.9). We have especially insisted on the number of non-trivial 

PPs as being the major hurdle to designing high-radix multipliers (responsible for very dense PPGs). 

Reader is encouraged to read Section 2.5.3.2 for a better understanding of the present discussion 

context. 

    In fact, non-trivial PPs are not the only problem for a compact PPG. Recoding large slices (r≥8) in 

a mono-bloc PPG such as in [4][5], requires the use of an RTL “case statement” with r+1 entries. In 

this case, 2r+1 combinations must be processed, which yields to a huge amount of multiplexer 

resources. Thus, mono-bloc PPG recoding is incompatible with high-radix (r≥8) approach whose 

purpose is to reduce the multiply-time (N/r) of large operand size (N ≥32) multipliers.  

To overcome these two above-mentioned shortcomings, a new radix-2r design concept is proposed. 

 

5.2.1  New Radix-2
r
 Design concept 

 To achieve such a goal, the multibit recoding multiplication algorithm is revisited [6]. Its design 

space is extended by the introduction of a new recursive version that enabled to solve the hard 

problem of radix-2r two’s complement multiplication for any value of r. The solution consists essentially 

in dividing the high radix-2r
 mono-bloc PPGj (Fig. 5.1a) into a number of lower sub-radix-2s odd-

multiple free PPGji (Fig. 5.1b), such as s is a divider of r. The direct benefits of the new partitioning of 

Fig. 5.1b are:  

• There is no need to pre-compute non-trivial PP, which drastically reduces the required amount 

of hardware resources and routing;  

• Since the size of PPGji entry is much smaller than the size of PPGj one (s≤r/2), the total 

multiplexing logic required by RTL “case statements” to recode the entries is greatly reduced; 

• The possibility to simultaneously process larger bit slices (r≥16) radically shortens the critical 

path in terms of adder levels, especially for very large operand sizes (N≥64). 

    Formal problem statement. Aided by Fig. 5.1b, now we can formally state the problem of 

constructing multiplier blocks. 

Definition 5.1 − MV problem: Given N, find the couple (r, s) that leads to the shortest critical path in 

adder stages and to the minimum logic resources inside PPGs. 



Chapter 5  −  Multiplication by a Variable 

 95 

 

 

5.2.2  New MV Complexity  

    In [5] a number of MV complexities are cited in a chorological order. They are summarized hereafter 

and compared to our new MV complexity. 

    In the mid-1950s, Kolmogorov made a conjecture that any multiplication algorithm will require 

( )2NΩ  elementary additions, where N is the binary length of the operands. This conjecture has been 

disproved in a constructive manner by Karatsuba who proposed an algorithm that uses ( )585.1NO   

additions. in 1971, Schönhage and Strassen published an algorithm with asymptotic complexity 

( )NNNO logloglog . For almost 40 years, this result has not been improved; however, in 2007 

Fürer designed an algorithm with lower asymptotic complexity, namely, ( )NNNO loglogloglog L  

operations. Finally, in 2011, using DBNS arithmetic, Dimitrov proved that MV can be performed in 

NN log/2 2 additions.  

    In Eq. 4.28 we have proved an upper-bound for SCM. The latter can be easily extended to MV 

problem, giving:  

                                                    
( )






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N
                                             (5.3) 

with
 

( ) )2(/)2(2 loglogNWr ⋅⋅=  and W is the Lambert's function. 

                                   FIGURE 5.1 – Generalized N×N bit radix-2r
 parallel multiplier.  

a) Critical path in conventional [6][7][8][9][10][11] and recent [4][5][12][13][14] radix-2r multipliers. 

O(X) is the necessary set of odd-multiples corresponding to radix-2r recoding. PPGj of [4][5] 

includes a number of adders to accumulate intermediary partial product.   

b) Critical path in our proposed radix-2r multipliers. Main features are: no odd-multiples, much 

more compact PPGj, much shorter critical path. 
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    Eq. 5.3 is actually the lowest upper-bound known so far for the MV problem. Whether or not it is 

possible to multiply two numbers in purely linear number ( )NO of additions is still an open problem. 

    The above-mentioned algorithms (Karatsuba’s, Schönhage-Strassen’s, and Fürer’s) are all having a 

subquadratic complexity. However, the implicit constant, associated with the big-O notation, is very 

large and this severely limits their applicability to problems of practical importance. Karatsuba’s 

multiplication outperforms classical shift-and-add algorithm if the size of the operands is around 1,000 

bits. The exact break-even point is platform dependent. This makes it suitable for specific 

cryptographic applications. The algorithms by Schönhage-Strassen and Fürer are useful if one deals 

with extremely large numbers. Applications include computational number theory and computations 

associated with the search of large Mersenne primes and finding divisors of Fermat numbers. In those 

cases, we deal with numbers having more than 1 million decimal digits [5]. 

 

5.3  High-Radix Multiplication Algorithms 

    While the multibit recoding multiplication algorithm [6] is mathematically attracting, it suffers from a 

serious limitation: high-radices require high number of non-trivial PPs. This is the main reason why it 

was abandoned. Moreover, in industry commercial designs do not exceed r=4 (radix-16). A hybrid 

radix-4/8 is proposed in [12] for low-power multimedia applications. To increase the speed of the 

multiplier, most ancient processors employed radix-8, such as: Fchip [7], IBM S/390 [8], Alpha RISC 

[9], IA-32 [10] and AMDK7 [11]. While radix-16 is used only in the most recent Intel processors: 64 and 

IA-32 [13], and Itanium-Poulson [14].  

     In research, the highest radices are used in the algorithms proposed by Seidel [4] and Dimitrov [5]. 

 

5.3.1  Dimitrov's DBNS Algorithm 

     The biggest advantage of the DBNS multiplier is the fact that it has a provably subquadratic 

complexity ( NN log/2 2 ). The latter guarantees that, eventually, it will outperform the shift-and-add 

based algorithms for certain range of multiplicands. The biggest practical problems are:  when will it 

happen;  and  how to apply the algorithm as efficiently as possible on hardware. 

     We give a general description of the proposed multipliers. Let Y and X be two N-bit unsigned 

integers, i.e., [ ]12,0, −∈ NXY  and let P denote the 2N-bit result of the multiplication XYP ×= . 

All proposed multipliers compute the entire product in parallel combinatorially, i.e., without registers or 

feedback loops. The general structure of all multipliers that are proposed is depicted in Fig. 5.2. Y is 

split using r-bit windows into  rN /   blocks. Each r -bit block, Yi, is fed into an encoder. It encodes a 

block, i.e., an integer in the interval [ ]12,0 −r , as the following sum of k terms: 

                                      ( ) ( ) ( ) ,321321321 222111 kkk tastastas −++−+− L                                  (5.4) 

where [ ]rai ,0∈ , { }1,0∈is , and [ ]mti ,0∈ , where m is the predefined highest power of three 

allowed by the representation. The encoder is essentially a table with 2r rows (one for each integer 

represented by the block), each containing n triples of the form ( )iii tas ,, . 
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     The operand X is fed into a circuit that computes XX iti ×= 3  for .,,0 mi L=  These 

computations are carried out with shifts, additions, and subtractions. Each partial result circuit 

computes Eq. 5.4 by, first, selecting the correct iX  from the values computed in the X processing. 

They are, then, shifted by ai bit positions to the left (multiplication by ia2 ), and, finally, added or 

subtracted as described by the sign bits, si, to receive the partial result XYi × . The result of the entire 

multiplication, XYP ×= , is computed by shifting and adding the partial results. 

 
If for instance, we would like to use a window of size seven (r=7), then we have to make sure that any 

integer between 0 and 127 can be represented by using the corresponding number representation. 

For that purpose Eq. 5.4 has undergone a number of modifications to allow more degree of freedom in 

the choice of the associated digits [5]. Because if we want to use the double-base number 

representation in Eq. 5.4, then we will have to use three terms, because certain numbers less than 

127 cannot be represented as the sum or difference of two {2,3}-integers (as it is pointed above, the 

smallest positive integer with this property is 103). On the other hand, if one uses representation in the 

modified form of Eq. 5.4, then it is sufficient to use digits { }7,5,3,1∈id  which guarantee a 

representation for every 7-bit integer in the modified form of Eq. 5.4 using at most two terms. The 

following fact will be used in the design, so we shall specifically acknowledge it: 

 Fact − Every nonnegative 7-bit integer can be represented in the form 21 zz ± , where 

{ },27,25,23,21, 21
kkkkzz ××××∈  with { }.7,,1,0 L=k   

Note − The smallest number for which the above fact is not valid is 137, i.e., an 8-bit number. 

    So, from a point of view of integer representations, this new number representation is more 

attractive compared to DBNS. In order to cover the same range (7-bit numbers) with the DBNS, one 

must use the digit set {1, 3, 9, 27, 81}, and more importantly three terms. 

    After examining many options (different digit sets with different numbers of terms), Dimitrov has 

concluded that for multipliers, it is optimal to have two summands (as in the above-explained case with 

Y X 

X 

r r r r 

P 

FIGURE 5.2 – The general structure of the DBNS multiplier. 
Source: [5] 
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7-bit numbers) and a carefully selected set of digits. This particular encoding can be formally 

expressed as follows:  

                                                                         21 zz ±±                                                                   (5.5) 

where { },2,,2,2 211
k

s
kk aaaz ×××∈ L  and { },2,,2,2 212

k
l

kk bbbz ×××∈ L  for .,,1,0 rk L=  

    The determination of the sets { }sa aaaD ,,, 21 L=  and { }lb bbbD ,,, 21 L=  is the cornerstone of 

the proposed algorithm. In the above example with 7-bit integers, the sets of digits were 

{ }7,5,3,1== ba DD . For a better implementation of the multiplication, it is preferable: 

• To select those digits in such a way as to encode every r-bit number in the form  21 zz ±  (that 

is, the first summand is always positive), then it will lead to smaller area complexity of the 

design. 

• To fix the signs of both the summands, 1z and 2z (that is, if we represent every r -bit integer 

as either 21 zz + or 21 zz − ), then we can expect further hardware simplifications due to the 

elimination of the necessity to process the sign of the second summand. 

• To use a window (r) of size six at least, and 11 at most, for multiplication of integers of 

medium size: ,128128,6464 ×× and 256256× . For sizes that would be useful, e.g., in 

RSA cryptography, we may need larger windows if the hardware resources allow that. 

    Several multipliers using the above-discussed representations were described in VHDL in order to 

find out how they perform in practice. The representations used in these multipliers are collected in 

Table 5.1. They were carefully selected from many possibilities because they appeared to have very 

attractive features in theory and/or practice as discussed in the previous sections. 

    The multipliers of Table 5.1 were implemented on 0.18µm CMOS technology using Synopsis 

Design Compiler Ultra. They were compared to 3232×  and 6464×  bit add-and-shift and radix-8 

references designs. 

    According to the results presented in [5], all of the multipliers are better than the add-and-shift 

reference multiplier in both area and power in 64-bit multiplication. Further, all the multipliers 

outperform radix-8 reference multiplier in 64-bit multiplication in terms of power consumption. Most of 

the multipliers have better area figures than radix-8 reference multiplier. 

    We can notice that some of the multipliers are better in terms of area than array-based reference 

multiplier in 32-bit multiplication. All of the multipliers are having more power consumption than both 

reference multipliers in 32-bit multiplication. The area consumption of 32-bit radix-8 multiplier is always 

better than any of the proposed multipliers. Mult_6bsms design is having the best performance in both 

area and power consumption among all designs, followed by Mult_7b2d multiplier. 

    The results show the delicacy of selecting the representations. The quality of the results varies 

considerably even between representations which, at first sight, have only little difference. The effects 

of the conditions discussed previously are clearly visible in the results. For instance, the “something- 

minus-something” (SMS) encodings, where the first term is always positive and the second term is 
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negative, show an advantage over other encodings with the same r. The sizes of the encoders start to 

play a significant role in the area complexity when r increases. This diminishes the feasibility of 

representations with large r, such as Mult_11b3d, although they appear attractive in theory because of 

the low total number of additions/subtractions. 

    It is important to mention the following: 

• Although several multipliers have been proposed, there is no formal study (search of the 

optimum) on the size of the window r. We have no exact idea on how r evolves when the size 

of the operands N increases (there must be some sort of correlation); 

• All recodings proposed in Table 5.1 are not DBNS recodings, though the starting Eq. 5.4  

allows a  DBNS recoding. Eq. 5.4 has been radically modified [5]; 

• All proposed algorithms are unsigned. Handling the two's complement representation will 

make the recoding harder.  

 

TABLE 5.1 − Dimitrov’s high-radix DBNS algorithms. 

Name Recoding r Digit Sets 
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5.3.2  Seidel's RNS Algorithm  

    In Seidel's algorithms [15] [16], a secondary radix multiplier recoding of the N-bit integer  

j
N

j

jyY 2
1

0

×= ∑
−

=

 is performed. It is illustrated as a 2-step process: 

• Step 1 (High Radix Booth): The operand Y is recoded to a ( ) rNN /1+=′ -digit minimally 

redundant (Booth) radix polynomial representation ( ) jr
N

j

jdY 2
1

0

×= ∑
−′

=

 in a primary 

radix r2=β , where 11 22 −− ≤≤− r
j

r d  for 10 −′≤≤ Nj . Authors are particularly 

interested here in high primary radices determined by 165 ≤≤ r , similar to the size of 

radices in high radix (byte) division. 

• Step 2 (Secondary Radix Reduction): Each primary (Booth) digit value 11 22 −− ≤≤− r
j

r d  is 

recoded to a k-digit value in a secondary radix system. We limit our focus here to 42 ≤≤ k  . 

For the case 2=k  and secondary radix γ  , we recode d by two digits so that 01 ddd +×= γ , 

where digits 1d  and 0d  are chosen from a balanced complete residue system modulo γ  

having a novel design.  

    The  N-bit integer can then be expressed as the weighted sum: 

                                                   ( ) ( ) jr
N

j

j
jr

N

j

j ddY 22
1

0

0

1

0

1 ×+××= ∑∑
−′

=

−′

=

γ                                     (5.6) 

    Note that the generalization for arbitrary k of Eq. 5.6 partitions the sum of partial products into k 

independent secondary digit summations with respective weights  110 ,,, −kγγγ L  with  42 ≤≤ k  

considered herein. 

Illustrative Example (k=2) 

    The primary radix is 52=β with Booth digit set { }.16,,15,16 L−−=D  The secondary radix is 

7=γ with a digit set { }4,2,1,0,1,2,4 −−−=D  having only signed binary power or zero digits. Note that 

every digit 1616 ≤≤− jd  of the primary radix system can be represented as a two digit radix-7 

number jjj ddd 01 7 +×=  , with { }.4,2,1,0,1,2,4, 01 −−−∈jj dd . Reader is referred to [15] [16] for the 

recoding table. 

    A 6464×  bit product XYP ×= using a secondary radix representation for Y can be expressed as: 

                                      ( ) ( ) ( ) .227 5
12

0

0
5

12

0

1
j

j

j
j

j

j dXdXP ××+×××= ∑∑
==

                                (5.7) 

The right hand side of Eq. 5.7 has 26 partial products, achieving a reduction more than halfway that of 

Booth radix 4 and 8. These 26 partial products are partitioned into two groups, 13 of which employ the 
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primary ( X×7 ) and 13 of which employ ( X ) giving a PPG fanin of only 26. Two options are possible 

with these simplified partial products noting that ( ) ( ) nsj
ijd 2125 ×−=×  or 0 for all 120 ≤≤ j , 10 ≤≤ i . 

• Pre-compute ( X×7 ): The primary partial product can be pre-computed by a shift and add 

( XXX −×=× 327 ) while the ijd  are obtained from a recoder or recoding table. 

• Post-compute ( X×7 ): The higher order summation can utilise a 13:2 adder tree 

compressing ( )[ ]∑
=

××
12

0

5
1 2

j

j
jdX  to a redundant (e.g. carry save) sum z. then the post 

computation can add zz −× 32  to the low order sum ( )[ ]∑
=

××=
12

0

5
0 2

j

j
jdXt  output from a 

second 13:2 adder tree. The value of tzz +−× 32  is completed by a 6:2 compressor and a 

2−1 addition. 

    Note that the post-computation option (Fig. 5.3) utilizes only two more partial products and one 

additional level of 3-to-2 adder delay to avoid the complexity of a 2−1 adder to pre-compute ( X×7 ). 

 

Illustrative Example (k=3) 

    The following encoding scheme is based on a radix-28 signed digit representation of the multiplier: 

( ) ,28
1

0

j
N

j

jd ×∑
−′

=

so that the multiplier is represented by ( ) 8/1+=′ NN  radix-28 digits 

{ }.128,127,,127,128 L−−∈jd  As previously suggested each radix-28 dj can be represented by three 

digits in the secondary radix-11: ,1111 01
2

2 jjjj dddd +×+×=  where each of the digits d2j, d1j, and 

d0j in the secondary radix representation is a power of two (see recoding table in [16]). 

 

Y[N−1:0] 

X[N−1:0] 

(N+1)/5:2 (N+1)/5:2 

Pc[2N−1:0] Ps[2N−1:0] 

FIGURE 5.3 – Recoding (32,7) with postcomputation of ×7 . 
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    The high order radix-11 digits d2j can only have values from the set { −4, −2, −1, 0,1,2,4} and the 

middle and the low order radix-11 digits d2j and d1j can only have the values {−16, −8, −4, −2, −l,0, 

1,2,4,8,16}. In this case the partial products corresponding to the high order digits and the middle 

digits have to be weighted by 121 and 11, respectively. 

    In [15], three other recodings are proposed with secondary radices 31,23,17=γ , corresponding to  

k=4,2,3 and primary radices 215, 28, 213. 

 

Selecting Secondary Radix Recoding 

    A secondary radix recoding procedure involves the joint selection of a primary radix r2=β , a 

secondary radix (modulus) γ , a balanced complete residue system modulo γ  forming a secondary 

radix digit set γD , and a number of digits k, 42 ≤≤ k , such that the k-digit secondary radix values 

include all integers in the Booth high radix digit range [ ]11 2,2 −−− rr . 

    The search for practically useful tuples ( )kD ,,, γγβ  starts by considering the relatively small 

number of secondary radix candidates γ  that might have sufficient properties to support a reasonable 

secondary radix recoding in competition with standard Booth recodings. Several key criteria become 

evident to prune the candidate search space of values for γ  [15]. 

    To allow the representation of all members of the contiguous integer interval [ ]11 2,2 −−− rr  with 

from two to four digits, it is useful to first consider the case that γD  is a complete residue system 

modulo γ  . Since complements and shifts can be employed to increase the range of digit values as 

traditionally employed in Booth recoding, all nonzero digits should be of the form i2δ± , whereδ  is a 

member of the store {1}, {1,3}, or {1,3,5}. Note that residue digit sets of the 

form ( ){ }2/121 ,,,,0 −±±±= γγ dddD L   are termed balanced complete residue systems when every 

integer i with 10 −≤≤ γi  is congruent to some (and necessarily exactly one) member of γD . 

    It is important to note that the digit values of γD  that must form a balanced complete residue 

system need not form a contiguous integer sequence as do the traditional primary Booth digit sets. It 

is only necessary that the k-digit values radix γ  cover the contiguous integer interval [ ]11 2,2 −−− rr . 

This flexibility is best utilized by finding sets γD , where the maximum digit is not too large and, further, 

where the smallest odd magnitude that is not a digit of γD  is not too small. For this latter reason, are  

not consider digit sets γD with the odd multiple store for δ  having  {1x, 5x} without 3x.  

    It should be noted that, for a 2-signed-bit secondary radix 12 ±= iγ , the digit set γD  will 

necessarily contain { }12,,2,1,0 −±±±= iD Lγ . This set is a complete residue system for 7=γ  with 

{ }4,,2,1,0 ±±±= LγD  and employs only the 1x multiplicand in the store. 
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 5.4  New Radix-2
r
 Multiplication Algorithms  

    The equation (2.1.2) of the original multibit recoding algorithm presented in [6] does not offer 

hardware visibility. Let us rewrite it in a simpler hardware-friendly form, as follows: 

       

( ) rj
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r
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r
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j

rjrjrjrj yyyyyyY 222222 1
1

2
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 ,                                                                                                                   (5.8)                           

where 01 =−y  and *Ν∈r . For simplicity purposes and without loss of generality, we assume that r 

is a divider of N. In Eq. 5.8, the two’s complement representation of the multiplier Y is split into N/r 

two’s complement slices ( jQ ), each of r+1 bit length. Each pair of two contiguous slices has one 

overlapping bit. 

In literature, Eq. 5.8 is referred to by radix-2r
 equation, to which corresponds a digit set ( )r

D 2  such 

as ( ) { }11 2,,0,,22 −−−=∈ rrr
j DQ LL . Thus, the signed multiplication between X and Y 

becomes: 

                                                                        rj
r

N

j

jQXYX 2...

1

0

∑
−

=

= ,                                                          (5.9) 

Where each partial product can be expressed as follows: ( ) ( )XmQX ferj

j ..... 212 −= , with 

( ) { }12,,3,12 1 −=∈ −rrOm L  such as ( ) 222 −= rr
O . ( )r

O 2  represents the required set of 

odd-multiples of the multiplicand (m.X) for radix-2r. Hence, the partial-product generation-process 
consists first in selecting one odd-multiple (m.X) among the whole set of pre-computed odd-multiples, 
which is then submitted to a hardwired shift of f positions, and finally conditionally negated (-1)e 
depending on the bit sign e of Qj term. Table 5.2 provides a picture on how the number of odd-
multiples grows when the radix becomes higher. While lower m.X can be obtained using just one 
addition (3X=2X+1X), the calculation of higher ones may require a number of computation steps              
(11X= 8X+2X+1X). 

                  

    To bypass the hard problem of odd-multiples, we exploit the fact that the N+1 bit-length two’s 

complement multiplier Y on which Eq. 5.8 is applied, is composed of a series (N/r) of r+1 bit-length 

two’s complement slices ( jQ digits) on which Eq. 5.8 can be recursively applied again. Based on this 

TABLE 5.2 − Main features of the multibit recoding multiplication algorithm. 

Radix Number of Partial Products Odd Multiples (m.X) 
21 N 1X 

22 N/2 1X 

23 N/3 1X, 3X 

24 N/4 1X, 3X, 5X, 7X 

25 N/5 1X, 3X, 5X, 7X, 9X, 11X, 13X, 15X 

O(2r+1)|=2×|O(2r)|. In radix-2r, the multiplier Y is divided into N/r slices, each 
of r+1 bit length. Each pair of two contiguous slices has one overlapping bit. 

|  
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observation, we have already announced Th. 4.3 and 4.4 accompanied with their respective proofs, 

inserted in Appendix A. When  Th. 4.3  is applied to Eq. 5.8, it gives:  
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where ( ) { }11 2022 −−−=∈ sss
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    Likewise, when Th. 4.4  is applied to Eq. 5.8, we obtain:    
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where ( ) { }11 2,,0,,22 −−−=∈ sss
ji DP LL   with   ( ) { }12,,3,12 1 −= −ssO L  and  
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Th. 4.3 and 4.4 allow an exponential reduction (1/2ks and 1/2k(s+t), resp.) of the number of odd-

multiples in Eq. 5.11 and 5.13 in comparison to Eq. 5.9, but at the expense of a linear increase (ks−1 

and k(s+t)−1, resp.) in the number of additions. The advantage by far outweighs the cost, as 

practically shown in the next section.   

The translation of Eq. 5.11 into architecture is depicted by Fig. 5.1b, where each PPGj (Qj) is built 

up using r/s identical PPGji (Pji). This is not the case for Eq. 5.13 which requires two different PPGji 

(Pji and Tji) . Th. 4.3 and 4.4  can be merged together to produce PPGj made of a number of different 

PPGji (Pji ,Tji ,Uji ,Vji ,...). This is the general case that is thoroughly studied in next sections in order 

to determine the optimal multiplier.  

 

5.4.1  Two New High Radix (28 and 216 ) Illustrative Examples  

    Th. 4.3 and 4.4 permit to build up any high radix-2r multiplication algorithm based on lower sub-

radices, employing much less odd-multiples. The objective hereafter is to generate high radix-2r 

multiplication without odd-multiples for a maximum reduction of multiplexer complexity inside PPGj. To 

achieve such a goal, a number of odd-multiple free low-radix algorithms are used, such as Booth 
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algorithm  (radix-21) [17], modified Booth algorithm  (radix-22) [18], Seidel et al. algorithms  (radix-25 

and   radix-28) [15][16]. Booth and modified Booth recoding (McSorley algorithm [18]) can be derived 

from Eq. 5.10 for (r,s)=(1,1) and (r,s)=(2,2), respectively. They are respectively summarized as 

follows: 
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with ( ) { }10121
,,D −=    and   ( ) { }121 =O ; 
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with ( ) }{ 2,1,0,1,22 2 −−=D   and   ( ) { }122 =O . 

    Seidel radix-25 recoding [15][16] is described as follows: 

                                                                [ ]
( )

j
/N

j

jj PQ.Y
5

15

0

27∑
−

=

+= ,                                               (5.16) 

 with { } ;,,,,Q j 21012 −−∈ { }4210124 ,,,,,,Pj −−−∈ and ( ) { }125 =O . 

And Seidel radix-28 recoding is given by the following equation:  

                                                   [ ]
( )

j
/N

j

jjj TP.Q.Y 8
18

0

2 21111∑
−

=

++= ,                                        (5.17) 

with { }21012 ,,,,Qj −−∈  ; { }16,8,4,2,1,0,1,2,4,8,16, −−−−−∈jj TP  and ( ) { }128 =O . Note that 

while Eq. 5.16 and 5.17 are odd-multiple free since all included digits are power of 2. They require a 

post-accumulation to deal with odd numbers (7, 11 and 121). Thus, a number of extra-adders are 

needed.   

Optimized higher radices are obtained as follows. 

 

5.4.1.1  New Radix-2
8
 Recoding 

    Based on Th. 4.4, each 8+1 bit slice is split into 5+1, 2+1, and 1+1 overlapping slices using Seidel 

radix-25, McSorley radix-22, and Booth radix-21 algorithms, respectively. The new recoding is given by 

the following equation: 

                                              ( ) ( )[ ]
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with { }21012 ,,,,Q j −−∈  ; { }4210124 ,,,,,,Pj −−−∈  ; { }21012 ,,,,R j −−∈  ; { }101 ,,S j −∈  and 

( ) { }128 =O . 
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5.4.1.2  New Radix-2
16

 Recoding 

Likewise, using Th. 4.4, each 16+1 bit slice is split into 8+1, 5+1, 2+1, and 1+1 overlapping slices 

using Seidel radix-28 and radix-25, McSorley radix-22, and Booth radix-21 algorithms, respectively. The 

new recoding is described by the following equation: 

                   ( ) ( )[∑
−

=

+++++=

1
16

0

82 271111

N

j

jjjjj .SR.TP.Q.Y ( ) ] j
jj VU 16132 2.2.2+ ,            (5.19) 

with { }21012 ,,,,Q j −−∈ ; { }1684210124816 ,,,,,,,,,,T,P jj −−−−−∈  ; { }21012 ,,,,R j −−∈ ; 

{ }4210124 ,,,,,,S j −−−∈  ; { }21012 ,,,,U j −−∈  ; { }101 ,,V j −=  and ( ) { }1216 =O . 

In [19][20], we have pursued this combination process farther and generated a series (Appendix B) 

of higher radix (224, 232, …) recoding schemes with ( ) { }12 =r
O . However, what still remains unknown 

is to determine, for a given value N, the proper radix (2r) that leads to the optimal architecture.  

The translation of Eq. 5.18 and 5.19 into architectures are depicted in Fig. 5.4a and 5.4b, 

respectively. 

All Dimitrov algorithms developed in [5] are unsigned. For an equitable comparison, we had to 

develop a new two’s complement radix-28 recoding version with ( ) { }7,5,3,128 =O  based on 

Dimitrov unsigned radix-27 recoding (mult_7b2d in [5]) with ( ) { }7,5,3,127 =O . The new recoding is: 

                                         ( )( )
( )

( ) ij
n

j

j
he

j
k PQY 878

18/

0

21.21.2
+

−

=

−−+= ∑                                   (5.20) 

  with { } { } { }1,07,6,5,4,3,2,1,0,;7,5,3,1, ∈∈∈ eandhkPQ jj . 

For the comparative study, our proposed algorithms (Eq. 5.18 and 5.19) as well as Seidel and 

Dimitrov algorithms (Eq. 5.17 and 5.20, resp.) are first analytically characterized and then physically 

implemented on FPGA. 

 

5.4.1.3  Analytical Characterization of Area and Speed 

    Prior implementation, we need to develop a generalized theoretical model which predicts area and 

speed features of each recoding algorithm with respect to N and r values.  

Area 

Three basic components are necessary for the implementation of RTL multipliers:  

• multiplexers (Mux1) to recode the digit terms (Qj,Pj,…) included in the recoding expression; 

• shifters (Mux2) for partial product generation;  

• and adders for partial product summation.  

    Whereas the exact number of adders can be known in advance, we need to develop heuristics for 

the two others. The total multiplexer complexity (Mux1) of a radix-2r multiplier depends on: 
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• the number (N/r) of PPGj; 

• the number (i) of lower sub-radices (21, 22, 25, and 28) used to build up the higher radix-2r. To 

each sub-radix-2s
 used (PPGji) corresponds an RTL “case statement” that recodes the digit 

terms (Qji,Pji,Tji,…) present in the equation; 

            FIGURE 5.4 –   Two’s complement 64×64 bit multiplier. 

(a) Radix-28 multiplier. Space partitioning according to  Eq. 5.18 

(b) Radix-216 multiplier. Space partitioning according to Eq. 5.19 
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• the number of entries (es+1) in each “case statement” corresponding to each sub-radix-2s;  

• the number (ds) of digit terms (Qji,Pji,Tji,…) that figures in each “case statement”; 

• and on the number of necessary odd-multiples (|Os|) used to calculate the digit terms.  

    Hence, we can announce that: ( )∑ +=
i

ss
e Od

r

N
Mux s || ..2.1 1 . For Dimitrov algorithm (Eq. 

5.20), this gives: r=8, i=1, es =8, ds =2, and |Os|=4. Thus, Mux1 = 512 N. 

The synthesis of the RTL “shift statement” infers multiplexers whose complexity depends on the 

number (psj) of different shift positions for all odd-multiples involved in the calculation of each digit 

term (j). Thus, we can write: ( )∑∑=
i j

sjsj Op
r

N
Mux || ..2 . For Dimitrov algorithm  (Eq. 5.20), this 

gives: r = 8, i=1, j=2, ps1 =ps2 =8, and |Os1| = |Os2| = 4. Thus, Mux2=8N. Hence, the total multiplexer 

complexity becomes: MuxT = Mux1+Mux2=520N. 

An N-bit radix-2r
 multiplier generates N/r PP. Thus, the total number of adders comprises:  

• ( ) 1/ −rN  adders to sum the N/r PP; 

• plus the necessary adders inside each PPGj  to accumulate the intermediate PP issuing from 

PPGji; 

• plus a number of adders included inside each PPGji depending on the recoding scheme used. 

For instance, in Seidel algorithm (Eq. 5.17), the term 
jijiji TPQ ++1111

2  is calculated as follows: 

 ( ) ( ) jijijijijijiji TPPPQQQ +−+++− 2337 2222 , which requires 6 adders for post-accumulation 

operation [15][16]. Hence, the total number of necessary adders is: 

AddT= ( ) ( ) ( ) 1878618 −=+− N//N/N .  

Delay 

    The total delay (DelT) along the critical path is the summation of PPGj delay and reduction tree 

delay. Based on the total number of adders (AddT), the critical path of the multiplier in terms of logic 

levels is: DelT= N/r−1+Del+ds, where Del is the delay due to adder stages inside PPGj and ds is the 

delay due to multiplexer logic inside PPGji. This latter depends on Mux factor of used PPGji (2
1, 22, 25, 

or 28). Therefore, d1 < d2 < d5 < d8.   Note that ds is fixed and Del depends on r and s values. For 

instance, according to Eq. 5.17, Seidel algorithm exhibits a critical path of: DelT= 

N/8−1+6+d8=N/8+5+d8. Table 5.3 provides the area occupation and delay for each recoding 

algorithm. 

Physical implementation  

All recoding schemes mentioned in Table 5.3 underwent several verification steps. First all 

equations were validated with a random C-program. Then, they were implemented at RTL level in 

Verilog-2001 (IEEE 1364) as technology-independent reusable IP-cores [3], using exactly the same 
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optimized coding style for an equitable comparison. They are compile-time reconfigurable according to 

N and r. Reader is referred to [15], [16], and [5] for recoding tables used in Eq. 5.16, 5.17, and 5.20, 

respectively. 

       
TABLE 5.3 − Main feature comparison. 

 New Recoding Algorithms 
Features 

Eq. 5.18 Eq. 5.19 

McSorley [18] 

Eq. 5.15 

Seidel [15][16] 

 Eq. 5.17 

Dimitrov [5]  

Eq. 5.20 

Radix 28 216 22 28 28 

DelT 53
8

d
N

++  88
16

d
N

++  
21

2
d

N
+−  85

8
d

N
++  'd

N
8

8
+  

MuxT N19  N106  N5  N194  N520  

AddT 1
8

5
−

N
 1

8

6
−

N
 1

2
−

N
 1

8

7
−

N
 1

4
−

N
 

N is the operand size and 2r is the radix used. DelT is the total delay in terms of adder 

levels in the critical path of a linear reduction tree. ds is the delay due to multiplexer logic 

inside PPGji. ds depends on Mux factor (d1<d2<d5<d8<d'8). MuxT=(N/r)Mux, where 

Mux is an estimation of the multiplexer logic required by PPGj. AddT is the total number 

of adders required in the whole multiplier. DelT is the delay in adder levels of the total 

critical path. Del is the delay in adder levels inside PPGj and ds is the delay due to 

multiplexer logic inside PPGji. 

All RTL codes went through a severe cycle-accurate functional verification procedure using 

Modelsim SE-6.3f logic simulator. They were first challenged against a set of special and severe test 

cases, and then submitted to a random test for a very large number of vectors. After a successful 

functional verification, physical tests were performed. They were integrated into an FPGA evaluation 

board for an ultimate validation. Afterwards, all equations were synthesized and mapped to the same 

Virtex-6 FPGA circuit (xc6vsx475t-2ff1156) using Xilinx ISE 13.2 release version [21]. We used for 

comparison a two’s complement 64×64 bit parallel multiplier. The implementation results are grouped 

in Table 5.4 

            

Although Dimitrov recoding exhibits the shortest critical path in adder stages (N/8), the impact of 

multiplexer logic (d'8) on the total performance is important (Table 5.4). Besides, it is the most area 

TABLE 5.4 − Implementation results of a two’s complement 64-bit parallel multiplier on 

Xilinx xc6vsx475t-2ff1156 circuit. 

New Recoding Algorithms 
Results 

Eq. 5.18 Eq. 5.19 

McSorley [18] 

Eq. 5.15 

Seidel [15][16]  

Eq. 5.17 

Dimitrov[5]  

Eq. 5.20 

Area1
 3219 4659 2103 5251 6599 

Energy2 1.63 2.11 1.46 2.49 2.48 

Speed3 52.4 49.34 30.04 48.62 43.17 

Synthesis tool was forced to map RTL code to distributed slices of FPGA and avoid 

mapping to builtin 18x18 bit hardwired multipliers (DSP slices). 

1: Area occupation in number of Virtex-6 slices. 2: Energy consumption per multiplication 

operation (pJ). 3: Million multiplications per second (MMPS). 
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consumer despite the fact that it employs the lowest number of adders (N/4-1). Adversely, Seidel 

algorithm is the most adder consumer (7N/8-1). To determine which factor, MuxT or AddT, exerts 

more influence on area occupation, let us compare their respective ratios for Seidel and Dimitrov 

algorithms: MuxT(Eq. 5.20)/MuxT(Eq. 5.17)=2.7  and  AddT(Eq. 5.17)/AddT(Eq. 5.20)=3.5. 

Significant conclusion: the area occupation is dominated by MuxT factor, and becomes larger as 

MuxT number becomes higher (Table 5.3 and 5.4). This correlation is advantageously used to 

minimize area occupation as will be shown in the next section. 

McSorley algorithm (Eq. 5.15) is the least area consumer and the slowest recoding scheme for any 

value of N. The best area/speed compromise for N=64 is given by our recoding scheme based on Eq. 

5.18. However, this latter will be outperformed by Eq. 5.19 for larger values of N (N>64) since a higher 

radix (216) is employed.  

While energy consumption is function of the switched capacitance, Table 5.4 shows a direct 

correlation between area occupation and energy consumption. Making MuxT indicator lower, will 

result in a less energy-consumer recoding algorithm.  

Finally, based on theory and implementation results, we conclude that the best tradeoff related to 

our recoding schemes depends on N and r values. For larger N values (N>64), larger radices are 

necessary to reduce the critical path. But for larger radices (r>16) we need to duplicate some of the 

elementary PPGji (2
1,22,25,28) to build up the radix-2r PPGj. Therefore, at this level a relevant question 

arises: given N, what is the value of r and its corresponding elementary PPGji configuration (optimal 

partitioning of PPGj) that leads to the shortest critical path (DelTmin) with minimum hardware resources 

(MuxTmin)? The answer to this question is given in the next sections. 

 

5.4.2  Preliminary Study to an Optimal Partitionning 

    We extend the recoding-space of our Eq. 5.18 and 5.19 to the general case as follows: each r+1 

bit slice is recoded using a, b, c, d instances of radix 28, 25, 22, 21 algorithms, respectively,  such that 

8a+5b+2c+d=r. To this recoding scheme corresponds the following equation: 
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where j
i

j
i

j
i

j
i TP.Q.A ++= 11112  with { }21012 ,,,,Q

j
i −−∈  and  

 { }1684210124816 ,,,,,,,,,,T,P
j

i
j

i −−−−−∈ ;  j
i

j
i

j
i SRB += .7  with { }2,1,0,1,2 −−∈j

iR  and  

{ }4,2,1,0,1,2,4 −−−∈j
iS ;  j

i
j
i

j
i

j
i yyyC 12212 2 +− −+=  with }{ 21012 ,,,,C j

i −−∈ ;  finally 

j
i

j
i

j
i yyD −= −1  with { }101 ,,D

j
i −∈ . 

The translation of Eq. 5.21 into architecture is depicted in Fig. 5.1b (top view only), where each 

PPGj is built up using a mixture of four different PPGji depending on the quadruplet (a,b,c,d) as 

illustrated by Fig. 5.5. For instance, Eq. 5.18 and 5.19 correspond (0,1,1,1) and (1,1,1,1), respectively. 
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Note that because of the general nature of Eq. 5.21, the ds term of DelT is equal to max(d8,d5,d2,d1) of 

used PPGji. 

                                   

    Given N and r, to determine the optimal partitioning of the whole multiplier (global optimum since 

PPGj are identical), we need to find first the quadruplet (a,b,c,d) that satisfies the condition 

8a+5b+2c+d=r and leads to the PPGj with minimum hardware ressources (Muxmin) and the shortest 

critical path (Delmin). As it is not sure that such a solution exists, we are using composite metrics AiTj 

of area (A) and delay (T) for i and j varying from 0 to 5 [22]. A total of 11 metrics (A, A5T,  A4T,  A3T,  

A2T,  AT,  AT2,  AT3,  AT4,  AT5, T) are used. The A metric alone delivers the best area solution 

(Muxmin), while T metric provides the best delay solution (Delmin). In between (AiTj), more-or-less 

balanced solutions are obtained. The implementation of this solution requires the (Mux, Del) couple  

(Table 5.5) corresponding to each basic recoding algorithm (28,25,22,21).  

    Because of an explosive number of possible combinations (N>>), the solution space is exhaustively 

explored using a deterministic  C-program for r varying from 8 to 1024. The obtained results are 

reported in Table 5.6.  

 

PPj 

     FIGURE 5.5 –  Critical path (Del+di)  inside a generalized PPGj. 
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     In conclusion, optimal area solutions (Mux=Muxmin) are exclusively based on radix-22 algorithm 

(0,0,c,0), but they are excessively slow (Del>>Delmin). While optimal speed solutions (Del=Delmin) 

are entirely composed of radix-28 algorithm (a,0,0,0), but they are exaggeratedly large 

(Mux>>Muxmin). Finally, balanced area/speed solutions are mainly based on radix-25 algorithm with 

at most one or two instances of radices 21 and 22 algorithms (0,b,c,d). However, even the “balanced” 

solution is not really balanced enough since the mean values of Del and Mux are 1.4×Delmin and 

5.2×Muxmin , respectively. The reason is due to the large disparity between Mux values of the basic 

radices (Table 5.5).  

TABLE 5.5 − Delay and multiplexer 

complexity of basic radices: step #1 

Algorithm Del Mux 

21 0 5 
22 0 10 
25 2 133 
28 6 1548 

Mux values are extracted from the 

heuristic developed in Section 5.4.1.3 

Ex: 1548=194 × 8. 

 

TABLE 5.6 − Optimal PPGj solution (a,b,c,d) leading to the optimal radix-2r
 multiplier according to 

composite metrics AiTj : step #1. 

Instance Number r size 
(bits) 

Criteria 
a b c d 

Del Mux Delmin Muxmin 

8 A – T 0 0 4 0 3 40 3 40 
A – AT5 0 0 8 0 7 80 

16 
T 0 3 0 1 5 404 

5 80 

A – AT3 0 0 16 0 15 160 
32 

AT4 – T 0 6 1 0 8 808 
8 160 

A – AT2 0 0 32 0 31 320 
AT3 – AT5 0 12 2 0 15 1616 64 

T 8 0 0 0 13 12384 
13 320 

A – AT2 0 0 64 0 63 640 
AT3 – AT5 0 25 1 1 28 3340 128 

T 16 0 0 0 21 24768 
21 640 

A – AT 0 0 128 0 127 1280 
AT2 – AT5 0 51 0 1 53 6788 256 

T 32 0 0 0 37 49536 
37 1280 

A – AT 0 0 256 0 257 2560 
AT2 – AT5 0 102 1 0 104 13576 512 

T 64 0 0 0 69 99072 
69 2560 

A – AT 0 0 512 0 512 5120 
AT2 – AT5 0 204 2 0 207 27152 1024 

T 128 0 0 0 133 198144 
133 5120 

A – T: all the metric span A, A5T, A4T, A3T, A2T, AT, AT2, AT3, AT4,  AT5, T. To A and T metrics 

correspond respectively the minimal values Muxmin and Delmin that serve as reference for the 

optimization process.  
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    To correct this disequilibrium, we replace respectively the two Seidel radix-28 and 25 expressions 

( j
iA and j

iB ) included in Eq. 5.21 by their mathematically equivalent counterparts as follows: 

∑
=

=
3

0

22
k

ji

k

kj

i CA  and jijijij

i CCDB 1

3

00 22 ++= . These new expressions are radix-28 and 25, 

respectively. They produce respectively the same intermediary partial products at PPGji output as their 

Seidel counterparts.  In fact j
iA  is formed by a succession of four instances of McSorley algorithm, 

while j
iB is composed of one instance of Booth algorithm followed by two instances of McSorley 

algorithm. Del and Mux values of the new basic radices are grouped in Table 5.7.  

    Results delivered by the deterministic C-program are reported in Table 5.8. All solutions are optimal 

since Del=Delmin and Mux=Muxmin. They are all based on radix-28 algorithm (a,0,0,0). In case r is 

not a multiple of 8, optimal solutions are also obtained, composed mainly of radix-28 algorithm with at 

most one instance of radix-21, 22 or 25 algorithms, depending on the remainder of r by 8 division.   

                                                          
 

                                 

The new results are so interesting that we are encouraged to pursue further the optimization 

process using higher basic sub-radices (s>8) to reduce the total delay (DelT) of the multiplier. Let us 

this time replace j
iA  and j

iB  as follows: ∑
=

=
7

0

22
k

ji

k

kj

i CA  and ∑
=

=
3

0

22
k

ji

k

kj

i CB . We eliminate 

radix-25 since it can be derived from radix-21 and 22. The new Del and Mux values of basic radices 

are grouped in Table 5.9. The C-program shows up even more interesting results since starting from 

r≥64 (Table 5.10), lower delays are obtained with the same multiplexer complexities as the ones 

reported in Table 5.8. Based on the obtained results, we pushed farther the optimization process using 

even higher basic sub-radices (s=16..32). 

TABLE 5.7 − Delay and multiplexer complexity 

of the new basic radices: step #2. 

Algorithm Del Mux 

21 0 5 
22 0 10 
25 2 25 
28 3 40 

TABLE 5.8 − Optimal PPGj solution (a,b,c,d) leading to the optimal  

radix-2r multiplier according to composite metrics AiTj : step #2. 

 Instance Number r size   
(bits) a b c d 

Del Mux Delmin Muxmin 

8 1 0 0 0 3 40 3 40 
16 2 0 0 0 4 80 4 80 
32 4 0 0 0 6 160 6 160 
64 8 0 0 0 10 320 10 320 
128 16 0 0 0 18 640 18 640 
256 32 0 0 0 34 1280 34 1280 
512 64 0 0 0 66 2560 66 2560 
1024 128 0 0 0 130 5120 130 5120 
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    All optimal solutions come either on the form (a,0,0,0) or (0,b,0,0). At this level we can draw a 

significant conclusion: since the optimal solution is always in the form (a,0,0,0) or (0,b,0,0) with a=2k 

and b=2k', there exists an integer s=2k'' such as either (s,0,0,0) or (0,s,0,0) is the optimal solution.  

    Consequently, Eq. 5.21  is rewritten accordingly, as follows:  

                                              rj
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with ji

k

ji

k

ji

k

ji

k yyyC 12212 2 +− −+=  and }{ 21012 ,,,,C
ji

k −−∈ . 

Based on heuristic developed in Section 5.4.1.3, multiplexer complexity of Eq. 5.22 for the whole 

multiplier is always equal to MuxT=10×N/2=5N for any value of r and s. As for the multiplier delay 

(DelT), we need to determine the couple (r,s) that leads to the shortest critical path in terms of adder 

levels. This is what is achieved in the next section. 

 

5.4.3  The Optimal Space/Time Partitioning 

    The total delay (DelT) of the whole multiplier related to Eq. 5.22 is: DelT= N/r−1+Del+d2 where Del 

is the PPGj delay equal to (r/s−1)+(s/2−1), and d2 is the multiplexer delay corresponding to the 

recoding logic of radix-22. Thus,   DelT= N/r+r/s+s/2−3+d2.  

TABLE 5.10 − Optimal PPGj solution (a,b,c,d) leading to the optimal  

radix-2r multiplier according to composite metrics AiTj : step #3. 

 Instance Number r size   
(bits) a b c d 

Del Mux Delmin Muxmin 

8 0 1 0 0 3 40 3 40 
16 0 2 0 0 4 80 4 80 
32 0 4 0 0 6 160 6 160 
64 4 0 0 0 10 320 10 320 
128 8 0 0 0 14 640 14 640 
256 16 0 0 0 22 1280 22 1280 
512 32 0 0 0 38 2560 38 2560 
1024 64 0 0 0 70 5120 70 5120 

           : Optimal solution moved from (0,b,0,0) to (a,0,0,0) 
 

TABLE 5.9 − Delay and multiplexer complexity 

of the new basic radices: step #3. 

Algorithm Del Mux 

21 0 5 
22 0 10 
25 3 40 
28 7 80 
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    The optimal delay with regard to r is obtained for (r,s) couples satisfying ( ) 0/ =∂∂ rDelT , which 

gives N.sr = . When r is substituted by N.s  into DelT expression, we obtain: 

232//2 dssNDelT +−+= .  Likewise, the optimal delay with regard to s is obtained for s value 

satisfying ( ) 0/ =∂∂ sDelT . We obtain 3 2/2 Ns = . Hence, the optimal delay becomes: 

                                                             2
3 32/3 dNDelT +−= .                                                 (5.23) 

    Finally, we conclude that the optimal N-bit multiplier, in comparison to Eq. 5.15 [18], relies on the 

new triple recursive Eq. 5.22 with  

                                                                (r,s)=( 3 22 N. , 3 22 /N ).                                               (5.24) 

Table 5.11 provides the s and r values that lead to the optimal partitioning with respect to the 

operand size N. The values s and r correspond to the number of multiplier bits that are treated 

simultaneously inside each PPGji and each PPGj, respectively. For N=64, the optimal partitioning is 

obtained with (r,s)=(32,8) as illustrated by Fig. 5.6. Whereas Eq. 5.22 and 5.15 require the same 

amount of hardware resources (MuxT , AddT)=(320,31), they exhibit different critical paths: 7 and 31 in 

terms of adder levels, respectively. 

 

5.4.4  Discussion of the Implementation Results 

    We proved via FPGA implementation (Table 5.4) how much accurate are the area heuristics 

developed in Section 5.4.1.3 (Table 5.3). Based on this, we have undertaken a gradual theoretical 

optimization process that yielded to Eq. 5.22. This latter is implemented on FPGA with N=64, and the 

results in terms of multiply-time, energy consumption per multiply-operation, and total gate count, are 

as follows: 78.98 MMPS, 1.45pJ and 1987 slices, respectively. 

TABLE 5.11 − The optimal partitioning versus operand size N. 

New recoding 

Eq. 5.22 

McSorley [18] 

Eq. 5.15 

Seidel [15][16] 

Eq. 5.17 

Dimitrov [5] 

Eq. 5.20 N      

(bits) s r DelT 

8 4 8 2 3 6 1 
16 4 8 3 7 7 2 
32 8 16 5 15 9 4 
64 8 32 7 31 13 8 
128 8 32 9 63 21 16 
256 16 64 13 127 37 32 
512 16 128 17 255 69 64 
1024 16 128 21 511 133 128 
2048 32 256 28 1023 261 256 
4096 32 512 35 2047 517 512 
8192 32 512 45 4095 1029 1024 

 s value corresponds to the number of bits that are treated simultaneously 

inside each PPGji , while r value indicates the number of bits that are 

processed simultaneously inside each PPGj. ds is not included in DelT since 

d2<d8<d'8. 
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 FIGURE 5.6 –  Optimal partitioning of a two’s complement 64×64 bit  

 radix-232 parallel multiplier based on Eq. 5.22 with (r,s)=(32,8). 
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Compared to implementation results of Seidel and Dimitrov algorithms (Table 5.4), gain ratios of 

1.62, 1.71, 2.64 and 1.83, 1.71, 3.32 are obtained, respectively. A 64-bit multiplier generated by Xilinx 

Coregen exhibits 75.86 MMPS and consumes twelve 18×18 bit DSP-slice multipliers.  

The real reasons behind these important results are cleared up as follows. 

 

5.4.4.1  Area Occupation 

For operand size N=64, Eq. 5.22  is a composite radix-232 algorithm (Table 5.11), where each PPGj 

processes simultaneously 32+1 inputs that are split on four sub-radix- 28 PPGji made of four instances 

( ji
kC ) of McSorley algorithm (Fig. 5.6). Seidel and Dimitrov algorithms are rather radix-28 algorithms, 

based on mono-bloc PPGj.  

In fact, although radix-28 PPGji of Eq. 5.22 and radix-28 PPGj of Seidel and Dimitrov are based on 

different recoding schemes, they are mathematically equivalent since they produce the same partial 

product PPji/PPj. Based on theory (Table 5.3) and implementation results (Table 5.4), Dimitrov 

recoding is the most space consuming due to the use of odd-multiples of the multiplicand. On the 

other hand, Seidel recoding does not require odd-multiples, but since 9 inputs are treated 

simultaneously in a mono-bloc PPGj; a large amount of multiplexer resources is needed to recode the 

29=512 input combinations. Finally, radix-28 PPGji of Eq. 5.22 is the least area consumer because it 

does not employ odd-multiples and requires a small amount of multiplexers as the total number of 

input combinations in each radix-28 PPGji is equal to 8+8+8+8=32. Note that the three recoding 

schemes are incorporating a number of adders in their PPGji/PPGj which is 3, 6, and 1 for Eq. 5.22, 

Seidel and Dimitrov algorithms, respectively. 

Significant conclusion: the area occupation is dominated by the Mux factor, and becomes larger as 

Mux value becomes higher.  

 

5.4.4.2  Delay 

Using higher radices (r>>) will certainly shortens the critical path. However, for high r values, mono-

bloc PPGj recoding induces an important delay (ds) due to the high density of multiplexer logic that 

significantly degrades the whole performance of the multiplier. This is clearly illustrated by Dimitrov 

radix-28 recoding whose critical-path totalizes 8 adder levels but exhibits a lower multiply rate (43.17 

MMPS) compared to Seidel recoding that have a critical-path composed of 13 adder levels but shows 

a more interesting rate (48.62 MMPS) due to lower multiplexer complexity (Table 5.3 and 5.4). As for 

Eq. 5.22, since a composite PPGj is used, ds is equal to d2 ( ji
kC  delay) which is the smallest delay (d2 

< d5 < d8). Besides, the critical path goes through the smallest number (7) of adder stages, exploiting 

maximum parallelism that can be provided by the triple-recursive Eq. 5.22. Thus, it is not surprising 

that Eq. 5.22 achieves the best performance (78.98 MHz), even when compared to Xilinx Coregen 

multiplier based on DSP-slices (75.86 MHz). A double-recursive (s=2) version of Eq. 5.22 served to 

design a scalable 16-bit setpoint Finite-Word-Length PID controller, employing five multiplication 

cores. The implementation results outperformed the published ones at all levels as will be shown in 

the next Chapter. 

Significant conclusion: using composite recoding in conjunction with an optimal partitioning (r and s 

values) provides the shortest critical path. 
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Eq. 5.22 shows high aptitude for pipelining. Two finely and coarsely grained systolic architectures 

for 64-bit multiplier are depicted in Fig. 5.7a and Fig. 5.7b, respectively. Fig. 5.7a architecture is more 

suitable for high throughput applications, with 7 clock-cycle latency.  

                  

5.5  New Radix-2
r
 Multip-recision Multiplication Algorithms 

    Prior to develop a highly-scalable radix-2r multi-precision multiplier, the need for a flexible and low-

power sign-extension technique is mandatory. 

 

5.5.1  New Radix-2r Sign Extension Technique 

    Though many low-power sign extension techniques exist in the literature, they are not adapted to 

reconfigurability. The reason for this shortcoming is that the correction bits must be calculated for each 

value of operand-size N  [23][24]. Besides, to our knowledge, no sign-extension solution exists for 

radix based multiplication (r). In what follows, we propose a generic low-power solution that 

circumvents these two obstacles. It is illustrated by Fig. 5.8 for N=8 and r=2, but can be systematically 

extended to any N and r values.  

    Intuitively, we are not simultaneously performing the sum of the partial products, but each partial 

product of current step j is added to the sum of the preceding ones (from 0 to j-1). The rationale for 
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the number of sign-bits to the left can be done locally, step by step, row by row. In other words, we 

have to take advantage of the fact that the partial sum already contains the sum of the sign bits of 

previous partial products. We must simply ensure that the sum output of the sign bit of current step j is 

added to the two most-significant bits of the next step (j+1). To generalize to radix-2r multiplication, the 

sign-bit (Nth position bit) of each partial product is extended with r bits to the left (r-1 for a maximum 

shift, plus one bit for the sign), and the sum output of the sign bit of step j is added to the r most-

significant bits of the next step (j+1). 

              

5.5.2  New Radix-2r Multi-Precision Multiplication Techniques 

    In traditional N×N bit multi-precision multipliers, there is possibility to perform either a single N×N 

double precision, or a single N/2×N/2 simple precision, or a twin parallel N/2×N/2 simple precision 

multiplication. This is made possible by partitioning the two operands X and Y into respectively most 

and less significant sub-operands (XH,YH) , and (XL,YL). A number of solutions exist and are 

summarized in [23][25]. Unfortunately, they are either restricted to unsigned multiplication, or they do 

not take power consumption into consideration, or they are not flexible enough.  

    We propose hereafter a new technique that not only overcomes all above-mentioned shortcomings, 

but also allows a customized partitioning of the operands into any number of slices as well as in any 

slice sizes. Besides, this new technique is well adapted to radix based multiplication. Its features are 

compared to the technique presented in [23] (Fig 5.9).    

                 FIGURE 5.9 – Multiplication matrix of partial-products bits for 16-b multiplication  

                 with one level recursion [23]. 

FIGURE 5.8 – Low-power sign-extension technique for the particular case (N, r)=(8, 2). 
 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

   : partial product bit;     : product bit;    : sign bit;    : sum of sign bits;     

   : negative one inserted into carry-in of the adder; #i : step i 

+ 
= 

 + 
= 

+ 
0 0 0 0 0 0 0 0 0 

= 

# 0

# 1 

#2 

#3 +  
= 



Chapter 5  −  Multiplication by a Variable 

 120 

  Let us take Eq. 5.8 and apply it to X and Y for r=N/2, we obtain:   

                                              
LH

N

j

j
N

j XXQQQX +=+==∑
=

0
2

1

1

0

2 22 .                                  (5.25) 

Hence,                               00
2

10
2

0111 222 PQPQPQPQY.X

NN

N +++=                                   

                                                    LLHLLHHH YXYXYXYX .... +++=  .                             (5.26) 

    Note that Q1 and Q0 are (N/2)+1 bit size, but x−1 can be omitted from Q0 since it is stuck at zero. 

Thus, we obtain four independent signed multipliers: XH.YH , XH.YL , XL.YH , XL.YL which are 

respectively (N/2)+1×(N/2), (N/2)+1×N/2, N/2×(N/2), N/2×N/2 bit size. Fig. 5.10 illustrates the 

implementation of Eq. 5.26 for a signed 16x16 bit multiplier based on recoding Eq. 5.15 with r=2.             

    Eq. 5.26 eliminates the cumbersome term (EV×2N/2) in equation (6) of [23] as well as the necessary 

logic for its generation. More importantly, in Fig. 5.10, four 8x8 bit multiplications can be performed 

simultaneously, whereas in [23] only two are allowed because of the shared terms (EV×2N/2) and CV 

required for the sign extension. Without counting the necessary EV generation logic and the use of 

inverters for the negation of the sign bits, the partitioning proposed in [23] consumes a total bit count 

of 205 for a 16x16 bit multiplier, while ours requires 198 bits.  

               

    Note that Eq. 5.12 can be advantageously used to partition XH and XL with different bit lengths. For 

instance, with r=N, s=3N/4 and t=N/4, we obtain:  

                                                                4

3

2

N

TPX +=                                                           (5.27) 

Hence,                               2

3

4

3

4

3

2'2'2''.

NNN

TTPTTPPPYX +++=  

                                                    HHLHHLLL YXYXYXYX .... +++=                            (5.28) 

FIGURE 5.10 – Low-power multi-precision multiplier for the particular case (N,r)=(16,2) 

with 8-bit sub-operand size.  

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 

8x8 bits 

XL .YL 

+ 
= 

= 

= 

+ 

+ 

= 

+ 

8x8 bits 

XL .YH 

= 

= 

= 
+ 

= 

+ 

+ 

  XH .YH 

9x8 bits 

+ 
= 

+ 

= 

= 
+ 

+ 

      = = 

= 
      + 
= 

= 
+      XH .YL 

9x8 bits  

 



Chapter 5  −  Multiplication by a Variable 

 121 
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    Four independent signed multipliers are generated: XH.YH, XH.YL, XL.YH, XL.YL, which are 

respectively (N/4)+1×(N/4), (N/4)+1×(3N/4), (3N/4)+1×(N/4), and (3N/4)×(3N/4) bit size. The 

translation of Eq. 5.28 into architecture is depicted by Fig. 5.11. Both partitioning schemes (Fig. 5.10 

and 5.11) needs the same amount of bits (198). 

    

 More efficiently, Eq. 5.28 can be combined with Eq. 5.18 for the recoding of YH and YL sub-

multiplicands to produce a faster partitioning (Fig. 5.12) for operand sizes larger than 16 bits.    

    

FIGURE 5.11 – Low-power multi-precision multiplier for the particular case (N,r)=(16, 2) 

with 12 and 4 bit sub-operand sizes.  
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    More importantly, Eq. 5.8 can be used to partition the X and Y operands into any desired number of 

slices depending on r value. Choosing for instance r=N/4 results into the following partitioning: 

                              041224

3

3

3

0

4 2222 QQQQQX

NNN

j

j
N

j +++== ∑
=

.                                   (5.29) 

Hence,                 4
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3

2131 2222

NNN
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3

30 222 PQPQPQPQ

NNN

++++  

                                     LLHHLHHHHLHHHHHH YXYXYXYX .... +++=  

                                        LLHLLHHLHLHLHHHL YXYXYXYX .... ++++  

                                        LLLHLHLHHLLHHHLH YXYXYXYX .... ++++  

                                        LLLLLHLLHLLLHHLL YXYXYXYX .... ++++                      (5.30) 

    Eq. 5.30 generates sixteen independent signed multipliers. All are (N/4)+1×(N/4) bit size, except 

XLL.YHH, XLL.YHL, XLL.YLH, XLL.YLL which are (N/4)×(N/4) bit size. The implementation details of Eq. 

5.30 for N=16 based on Eq. 5.15 with r=2 are described in Fig. 5.13.  Eq. 5.30 requires a total bit 

count of 254 which induces an overhead of 28% compared to Eq. 5.26.   

    Finally, Eq. 5.8 and Eq. 5.12 can be combined with any proposed radix-2r recoding algorithm to 

produce any desired multi-precision multiplication scheme. 

 

5.6  Conclusion 

    From the basis of the new multibit recoding multiplication algorithm, we have developed optimal 

multipliers with shortest critical paths and minimum hardware resources for any value of the operand 

size N. We have demonstrated by theory and FPGA implementation the superiority of our high-radix 

algorithms over their existing counterparts. Because exploiting the maximum parallelism inherent in 

the multiply operation, our look-up-table based multiplier (Eq. 5.22) is even speed-competitive with 

Xilinx’s hardwired multiplier employing DSP-Slices (18×18 bit full-custom multipliers).  

    More importantly, we have also demonstrated that the current trend relying upon minimal number-

bases for the development of high radix-2r recoding (r≥8) with mono-bloc PPG requires an excessive 

amount of multiplexer resources, which offsets speed and power benefits of the compressor factor 

N/r. On the other hand, we have proved that composite PPG based on the new recursive multibit 

recoding algorithm is the best realistic alternative. 
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    The topology of our proposed recoding schemes shows high capabilities for pipelining which can be 

finely or coarsely grained to satisfy both high throughput and low latency applications. A radix-232       

64-bit parallel multiplier has been finely pipelined, resulting in a systolic architecture with seven clock-

cycle latency.  

    While the theoretical concept has been validated using FPGA as a preliminary step, an ASIC 

implementation based on a standard-cell library is necessary for an ultimate validation of the whole 

optimization work.  

    As for the multi-precision solution, this latter would not have been possible without the development 

of a flexible sign-extension technique. Based on the new recursive algorithm, we have proposed a 

generic partitioning scheme that can be adapted to any size combination of the operands in order to 

reduce the power consumption while increasing the computational throughput. This new solution will 

be deeply explored for further optimizations using the proposed radix 2r algorithms.  

 

              

FIGURE 5.13 – Low-power multi-precision multiplier for the particular case (N,r)=(16,2)  

with 4-bit sub-operand size. 
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Chapter 6 

 

Applications 

    In this chapter we apply the results obtained in the previous chapters on the PID and 

LQG controllers with a Kalman filter. The new algorithms of multiplication by a variable 

(MV) and a constant (SCM/MCM) are applied to the PID and LQG controllers, 

respectively. We show through a practical implementation based on the design-reuse 

methodology, how these new algorithms contribute to designing high-speed, low-power, 

very compact, and highly scalable FWL controllers, which is the main objective of this 

thesis. 

 

6.1  PID Controllers 

    The PID is by far the most commonly used closed-loop controller due to its simple structure and 

robust performance [1]. An important feature of this controller is that it does not require a precise 

analytical model of the system that is being controlled, which makes it very attractive for a large class 

of dynamic systems. While PID is well adapted for linear-time-invariant (LTI) systems [2], it stands 

powerless for non-LTI ones. Nevertheless some solutions exist, such as partitioning the non-LTI 

control algorithm into a linear part and a non-linear part [3][4][5]. The linear part represents the major 

control loop and is computed using an integrated PID, while the non-linear part that acts as dynamic 

compensation to the linear one is performed in software using a general-purpose-processor or a DSP.  

    In embedded control applications, such as in small-scale mobile robots, the control-loop-cycle is 

very tight and the power budget is very limited. A low sample rate leads to poor and degraded control-

performance. And high power consumption shortens the battery lifetime. To cope with these two 

severe and antagonistic constraints, the need for both a high-speed and low-power PID structure is of 

utmost importance.  

    Today, design-reuse [6] is a well established design standard that allows grasping with rapid 

technology changes and increasing design complexity. It consists in the use of predesigned 

technology-independent, generic and reconfigurable IP-cores [7], most generally implemented at 

register-transfer-level (RTL).  

    However, at RTL abstraction level, no significant optimization results can be achieved if not 

undertaken at architectural and especially at algorithmic level. To achieve such a goal, a deep insight 

into PID arithmetic is necessary. At this stage, a choice of a numeric representation format is a crucial 

issue. Compared to floating-point, fixed-point format is the best candidate for optimized designs as it is 

much simpler to implement, faster, power-efficient and requires far much less hardware resources.  

However, the limited dynamic range can be source of control instability. This problem, referred to as 

finite-word-length (FWL) effect is an active research area that aims to shorten the floating-to-fixed 

point conversion time while preserving control performances [8][9]. 
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    The digital implementation of PID controllers went through several stages of evolution, initially 

dominated by the use of commercial-of-the-shelf (COTS) components and DSP. But over the past few 

years, FPGAs have brought a key advantage to digital control: the inherent parallelism of FPGA 

architecture allows many independent control loops to run at different deterministic rates without 

relying on shared resources that might slow down their responsiveness as in the case of COTS and 

DSP [10][11].  

    A survey of recent PID related works can be classified into three categories. The biggest one 

includes works that are straightforward FPGA implementations targeting specific applications: DC-DC 

converter [12], temperature control [13], motor multi-axis control [14], liquid level control [15], and 

Xilinx versus Altera FPGA implementation for result comparison [16]. The second category proposes 

methodologies that analyze the FWL effect on PID controller in order to reduce the number of 

hardware resources [17][18]. And finally the third category, paradoxically the smallest one despite the 

large popularity of PID, comprises architecture-optimization works. In [19] low-power serial and parallel 

multiple-channel PID architectures are proposed for small mobile robots. In this work, the optimization 

was carried out at macro-level considering several PIDs, rather than at micro-level (optimization of the 

PID itself). Nevertheless, the whole architecture will deliver much more interesting results if combined 

with an optimized PID.  The second work [20] proposes serial, parallel, and mixed PID architectures 

incorporating different number (1-3) of multiplication cores. High power consumption, even with the 

serial architecture, and complex control-part are the two major shortcomings of this proposal. Finally, 

in [21] an attractive optimized PID structure based on distributed arithmetic (DA) is presented. 

Although this latter exhibits interesting results in terms of resource utilization and power consumption, 

it suffers from three serious drawbacks: high latency (n+1 clock-cycles for n bit set-point word-length), 

FPGA technology-dependent as it’s essentially based upon FPGA look-up-tables (LUTs), and inability 

to handle time-varying PID parameters since they are precomputed and stored into LUTs.  

Nevertheless, it’s considered as a reference design against which the obtained results are confronted 

into the same conditions.   

    The objective is to design optimized FWL-PID structures that overcome all above-mentioned 

shortcomings, and which are especially dedicated to embedded control applications. The PID cores 

are described at RTL level. They are highly reconfigurable and technology-independent, offering the 

possibility to be mapped both on FPGA and ASIC.  

    To reach such a goal, a special focus was put on the optimization of the inner arithmetic of PID. For 

that, we considered two discrete forms of PID algorithm: the commercial form [22], called also the 

standard or ISA form, and the incremental form. These two forms went through three successive types 

of FPGA implementations, using: Booth multiplication algorithm (BMA) [23], modified Booth 

multiplication algorithm (MBMA) [24], and a new developed version called recursive multibit recoding 

multiplication algorithm (RMRMA) [25]. 

    Our previous paper [26] introduced a limited design-space of PID. In this chapter, we extended the 

design-space to accommodate different application cases and provided all necessary implementation 

details to make the design easily reproducible. 

 

6.1.1 The Two Mostly-Used Discrete Versions of PID  

    A typical closed-loop system using a PID controller is shown in Fig. 6.1, where uc(k), y(k), and u(k)  

are the discrete signal quantities at the kth sampling instant of the reference set-point, the process-
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feedback measured output, and the PID controller output, respectively. 

                                  

    In digital control, commercial and incremental forms are the two mostly-used discrete PID versions 

[1][22]. They are denoted by recurrent Eq. 6.1 and 6.2, respectively, and their corresponding 

coefficients are grouped in Table 6.1. Eq. 6.1 and 6.2 are fully detailed in the Appendix C. 

                                                     ( ) ( ) ( ) ( )kDkIkPku ++=  ,                                            (6.1) 

where  ( ) ( ) ( )kyBkuAkP c ⋅+⋅= ;  ( ) ( ) ( )11 −⋅+−= keCkIkI  ; ( ) ( ) ( )kfLkDHkD ⋅+−⋅= 1 ; with 

( ) ( ) ( )111 −−−=− kykuke c
  and ( ) ( ) ( )1−−= kykykf . 

And                        ( ) ( ) ( ) ( ) ( )211 −⋅+−⋅+⋅+−= keCkeBkeAkuku ,                  (6.2) 

where ( ) ( ) ( )kykuke c −= . 

                                 

    To satisfy different application cases, two IP versions are developed for each equation with constant 

coefficients and with varying coefficients (Fig. 6.2). This latter requires a host side interface (HSI) to 

handle the runtime change of the coefficients.  

 

TABLE 6.1 − Coefficients of discrete recurrent equations.  

Coefficients Commercial PID Incremental PID 
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Kp is the proportional gain; Ti and Td are the integral and 
derivative times, respectively; N is the maximum derivative 
gain; b is the fraction of set-point in proportional term; and 
Ts is the sampling period. 
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FIGURE 6.1 –  Typical closed-loop control system using a PID. 
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    The commercial version allows the three standard PID functioning modes (P, PI, PID) according to 

Mode input value. At the end of u(k) computation, the Done output signal toggles during one clock 

cycle, and the PID enters into sleep mode (whole internal activity stopped except for clocking and HSI) 

for maximum energy conservation.     

 

6.1.2  BMA Based PID 

    A straightforward parallel implementation of PID requires an amount of 7 adders/substractors and 5 

multiplication cores for Eq. 6.1, and 4 adders/substractors and 3 multiplication cores for Eq. 6.2. In 

digital hardware, the total gate count scales linearly with word length for an adder core, while it scales 

quadratically for a multiplier core. Thus, any effort for a low-power optimization of PID must be focused 

on the implementation of the multiply-and-accumulate (MAC) function (X×Y) [27]. In this work, the 

optimization effort is rather concentrated on the double MAC function (X×Y+T×Z) called DMAC, 

considered as the main building block of our PID structures. Eq. 6.1 and 6.2 are partitioned 

accordingly. 

    For FWL-PID, two’s complement fixed-point representation is used, which is habitually expressed in 

Q notation as Qni.nf . The values are coded in ni bits before the point (integer word length including 1 

sign bit), and nf  bits after the point (fractional word length). The total word length is n=ni+nf . 

    Booth multiplication algorithm [23] belongs to the class of recoding algorithm, i.e. algorithms that 

recode one of the two operands to cope with signed two’s complement multiplication.  Let Y be the 

multiplier: Let Y be the multiplier: 
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 where 01 =−y   and }{ 1,0,1−∈jQ . 

    Consequently, the multiplier Y is divided into n slices, each of 2 bits. Each pair of two contiguous 

slices has one bit in common. Thus, the DMAC becomes: 

FIGURE 6.2 – Various PID IP-cores. (a) commercial PID with 

constant coefficients; (b) commercial PID with time varying 

coefficients; (c) incremental PID with constant coefficients; 

(d) incremental PID with time varying coefficients; 
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FIGURE 6.4 – Optimized DMAC 

implementation. 
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    According to Eq. 6.5, Booth algorithm consists in recoding the multiplier Y into a set of ternary 

numbers }{ 1,0,1−   in order to generate n simple partial products which are summed subsequently. 

Table 6.2 summarizes the 4 possibilities that may occur. The −X can be easily formed by adding 1 to 

the complement of X. A direct translation of DMAC Eq. 6.5 into architecture (Fig. 6.3) requires one 

extra adder and two registers in comparison with the optimized version (Fig. 6.4) based on Eq. 6.6, 

called ODMAC. Additionally, one clock cycle latency is also needed in Fig. 6.3. The control-part 

responsible of producing the successive couples (yj-1 , yj) is insignificant: just one multiplexer driven 

by a counter. 

 

    

    Based upon ODMAC as the main building block, PID architectures are constructed for both 

incremental (Fig. 6.5) and commercial (Fig. 6.6) forms, and their implementation results (Table 6.3) 

are respectively compared to those of [21]. Comparison was made into identical conditions using the 

same FPGA device (Spartan XC2S50E-7FT256), although relatively old, as well as the same 

synthesis-tool version (Xilinx ISE 9.1i). In [21], only a 16-bit word-length commercial version with 

constant coefficients (without HSI) is implemented. PID1 and PID3 exhibits interesting results: 44%, 

25%, and 32% savings and 62%, 35%, and 38% savings in terms of gate count, power, and speed, 

respectively. PID3 exhibits higher savings but at the expense of control-quality. Latency is rather the 

same (17), which is n+1 clock cycles for all designs (PIDX).   

Optimizing latency without sacrificing the three other issues is the main objective of the two next 

sections.  
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 FIGURE 6.3 – Straightforward DMAC 

implementation. 



Chapter 6  −  Applications 

 131 

                                                              

                                            

                                     

6.1.3  MBMA Based PID 

    Eq. 6.3 can also be rewritten as follows [24]: 
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where 01 =−y   and }{ 2,1,0,1,2 −−∈jQ . 

In this case, the multiplier Y is divided into n/2 slices, each of 3 bits, with one bit overlapping 

between adjacent slices. The proof of Eq. 6.7 is given in [28]. Thus, the DMAC equation becomes: 

  TABLE 6.3 − Implementation result comparison of MBA-based PID. 

PID 
 Core 

Total Gate  
Count 

Power* (mW) Max.  Clock  
Freq. (MHz) 

Latency 

 PID [21] 16728 456 47 
PID1 9286   (44%) 342  (25%) 62  (32%) 
PID2 10661 (36%) 359  (21%) 61  (30%) 
PID3 6337   (62%) 297  (35%) 65  (38%) 
PID4 7168   (57%) 308  (32%) 62  (32%) 

17 

  * : Dynamic power consumption at 47MHz;  (XX%): saving. 
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TABLE 6.4 − Modified Booth algorithm. 

Y2j+1 Y2j Y2j-1 Operation 
0 0 0 + 0 
0 0 1 + X 
0 1 0 + X 
0 1 1 + 2X 
1 0 0 - 2X 
1 0 1 - X 
1 1 0 - X 
1 1 1 - 0 
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Likewise, n/2 simple partial products are generated (Table 6.4). Since ODMAC is a reconfigurable 

RTL block, it is parameterized to suit Eq. 6.8. The new adapted ODMAC architecture is depicted in 

Fig. 6.7. The only difference is that Mux(8:1) are used instead of Mux(4:1), and (<<2.j) hardwired 

shifter instead (<<1.j). Compared to BMA based PID (Table 6.5), MBMA based one (PID1) shows 

much more interesting results, since latency is divided by 2 while maintaining stable power 

consumption and speed. Control rate is drastically improved as its equal to maximum clock frequency 

divided by latency. As the discrete commercial form (Eq. 6.1) can accommodate the three functioning 

modes, implementation of PID2 produced the following power consumption values at 47 MHz: 268 

mW, 313 mW, and 366 mW for P, PI, and PID functioning modes, respectively.   

          

                           

With regard of these improvements, one is encouraged to pursue farther [24] in reducing latency by 

considering larger slices, such as: 
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where 01 =−y   and }{ 4,...,0,...,4−∈jQ . 

But in this case, some hard partial products are required such as 3X and −3X which are not easy to 

generate. How to circumvent this obstacle is the purpose of the next section. 

FIGURE 6.7 – Optimized DMAC architecture for r=2 
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   TABLE 6.5 − Implementation result comparison of MBMA-based PID. 

PID 
Core 

Total Gate 
Count Power* (mW) 

Max.  Clock 
Freq. (MHz) 

Latency 

PID [21] 16728 456 47 17 
PID1 10642   (36%) 350  (23%) 62  (32%) 
PID2 11923  (29%) 366  (20%) 61  (30%) 
PID3 7042    (58%) 303  (33%) 64  (38%) 
PID4 7795    (53%) 315  (31%) 62  (32%) 

9  (47%) 

  * : Dynamic power consumption at 47MHz;  (XX%): saving. 
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6.1.4  RMRMA Based PID 

    Multiplication is a fundamental operation in digital design. Its speed and power requirements are 

two critical factors limiting the whole system performances (PID in our case). Since the publication of 

Booth’s algorithm in 1951, a huge number of improvement attempts were proposed, especially after 

the publication of a generalized version of MBA algorithm accompanied with its proof [29]. Most of the 

proposals aimed to reduce the number of partial products either by employing digital optimization 

techniques [30][31][32] or by using larger slices (higher radices) [33]. However, experience showed 

[34] that beyond 4-bit slices (radix 8), the complexity to generate hard partial products can not be 

managed in a realistic way. In [34], three metrics are provided for comparing the tradoffs when 

employing higher radix Booth recodings: partial product compression factor (gain), the number of hard 

multiples that must be precomputed (computation complexity), and partial product generation fanin 

(routing complexity).   

To circumvent the problem of hard partial products in higher radices, the idea proposed in [35] is to 

apply a recursive Booth recoding on the r-bit slice. While the idea is interesting, it relies upon a 

complicated mathematical formulation, leading to a complex control circuitry and especially to an 

exaggerated latency (2n/r).      

    According to the multibit recoding algorithm presented in [29], an n-bit two’s complement operand Y 

can be written as: 
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  where 01 =−y   ; *Ν∈r ; and { }11 2,...,0,...,2 −−−∈ rr

jQ . 

In this general case, the multiplier Y is divided into n/r slices, each of r+1 bits. Each pair of two 

contiguous slices has one overlapping bit. To bypass the problem of hard partial products, MBMA (Eq. 

6.7) is applied to the Qj terms. Thus, Eq. 6.10 takes the new simpler recursive form:  
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There is no need to prove Eq. 6.11 since it is a combination of Eq. 6.10 and 6.7 which were already 

proven in [29] and [28], respectively. The partitioning of operand Y according to Eq. 6.13 is illustrated 

by Fig. 6.8. To avoid dealing with special cases, n and r must be chosen as even numbers, with r as a 

divider of n. Thus, the DMAC equation becomes: 
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Depending on r value ranging from 2 to n, PIDs with various levels of parallelism and latencies 

(n/r+1) can be automatically generated with slight control complexity. The special cases of r=n and 

r=2 correspond to fully-parallel and fully-sequential PID, respectively. In between (r=4,n/2), partially-

parallel PIDs are obtained. The outstanding advantage of this algorithm (Eq. 6.13) is that hard partial 

products are generated using simple ones (2X, X) only. For a simplified hardware and lower power 

consumption, the step-by-step sign-propagate technique is employed [36]. 

Obviously, Eq. 6.13 does not reduce the number of partial products, but allows a modulable space-

time partitioning of the multibit recoding algorithm (Eq. 6.10), where n/r sets comprising each r/2 

partial products can be generated and summed either simultaneously or iteratively. Whilst the parallel 

implementation of Eq. 6.13 allows an important reduction of the critical path (using a carry-save adder 

CSA), it requires too much space. Therefore, only the serial implementation is retained. In this case, 

latency drops from (n/2+1) to (n/r+1), whereas the overhead on the total critical path, which goes 

through log2(r/2) adder levels and which is equal to D in the case of MBMA, is slightly increased 

D+log2(r/2). Note that we are using a logarithmic summation tree and not a linear one (CSA like). 

An illustrative serial example with r=4 is described as follows: 
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The mapping of Eq. 6.18 into a serial architecture is shown in Fig. 6.9. Such a case (r=4) would 

have required the computation of hard partial products (7X, 5X, 3X) if the simple form of Eq. 6.15 

was used. Notice that MBMA is a special case of RMRMA for r=2. For r=1, Eq. 6.10 corresponds to 

BMA (Eq. 6.4). 

  FIGURE 6.8 – Partitioning of a 16-bit Y operand with r=8. 
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Table 6.6 comprises the implementation results of PIDs with n=16 and r=4,8,16.  For instance, PID1 

with r=4 not only achieves high improvement in latency (71%), but also maintains positive savings in 

power (14%) and speed (13%). These important achievements are partially due to logic-trimming 

performed by the synthesis tool on the constant coefficients. Such an operation is impossible in the 

case of PID [21] since the coefficients are stored into LUTs.  

                                  

At this stage, a key question arises: among this panoply of PIDs, which one fits the best one’s 

application case? The answer to this question is given in the next section.  

6.1.5  Discussion 

    In embedded control, satisfactory control-rate (without performance degradation) at minimum power 

consumption is the main requirement. To select the most adequate PID for a given application, it’s 

necessary to investigate how speed, power and hardware resources scales versus r factor for a fixed 

word length n. Referring to Eq. 6.14 and aided by Fig. 6.9, the ODMAC architecture scales as a binary 

tree with one stage of r mux(8:1) followed by Log2(r)+1 stages of adders with a total of r adders too. 

Thus, the total delay cumulated by the critical path which goes through Log2(r)+2 stages increases 

with O(Log(r)) complexity, whilst latency (n/r+1) decreases linearly O(r), which makes the maximum 

control-rate increases as r increases. This is confirmed by implementation results shown in Table 6.7 

 TABLE 6.6 − Implementation result comparison of RMRMA-based PID. 

PID 
Core 

Total Gate  
Count Power* (mW) 

Max.  Clock  
Freq. (MHz) 

Latency 

PID [21] 16728 223 47 17 
PID1_4 12443  (+26%) 191  (+14%) 53  (+13%) 5 (+71%) 
PID1_8 15688 (+06%) 194  (+13%) 44  (-06%) 3 (+82%) 
PID1_16 23545  (-41%) 217  (+03%) 26  (-45%) 2 (+88%) 
PID2_4 22962  (-37%) 256  (-15%) 43  (-08%) 5 (+71%) 
PID2_8 26073  (-56%) 204  (+08%) 37  (-21%) 3 (+82%) 
PID2_16 40327 (-141%) 488  (-119%) 23 (-51%) 2 (+88%) 

  *: Dynamic power consumption at 23MHz; PIDY_X: X = r;  

  (+AB%): saving; (-AB%): overhead. 

FIGURE 6.9 – Optimized DMAC architecture for r=4. 
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and 6.8 corresponding to PID1 and PID2, respectively. The sole exception to this general rule is 

PIDX_n/2 which always yields to the highest control-rate compared to PIDX_n despite the numerous 

tests with various n values. This is justified since they exhibit very close latencies (3 and 2, 

respectively) and one stage difference in the critical path (n-1 and n, respectively), but an important 

multiplexer fanin difference (n/4 and n/2, respectively). 

                           

              

    In terms of resource occupation, the total complexity grows linearly O(r) as r multiplexers and r 

adders are required by ODMAC which is the most resource consuming block of PID architecture. This 

is also confirmed by the implementation results shown in Table 6.6. Note that each adder of each level 

of MAC and ODMAC as well as the two ones  at the output of the PID (Fig. 6.5 and 6.6)  are 

successively extended by one bit so that the total bit size of the control output u(k) becomes 

2n+log2(r)+2. It’s necessary to do so to prevent the apparition of a possible overflow in the data-path 

which can cause signal clipping and instabilities in the closed loop response [37]. 

    As for power consumption, intuitively, one would expect to see PID1_16 of Table 6.7 as being the 

most rapid and the most power consumer too, for the reason that it exhibits the smallest latency and 

the biggest total gate count! While it is almost true for the latter (13 MHz, before the first), it is quite the 

opposite for the former (244 mW, the smallest one). The explanation is that power consumption 

(
clkswdd FCVP 25.0= ) depends linearly on the frequency (Fclk), which is in this case 26 MHz (the 

smallest one) and also on the switched capacitance (Csw) which describes the average capacitance 

charged during each clock period  (1/Fclk). In fact, Csw depends on a number of parameter (circuit 

structure, logic function, input pattern dependence…) and not only on the total gate count (more 

precisely, not only on the total physical capacitance of the circuit). Furthermore, a study [38] that 

analyzed the dynamic power consumption in Xilinx’s FPGA revealed the following share: 60% by 

     TABLE 6.7 − Maximum power-consumption and control-loop-cycle of PID1. 

PID 
Core Power* (mW) 

Max.  Clock 
Freq. (MHz) 

Latency Max. Control Loop 
Cycle (MHz) 

PID [21] 456 47 17 2.76 
PID1_1 342   (+25%) 62 17 3.65    (+32%) 
PID1_2 350   (+23%) 62 9 7.66     (+177%) 
PID1_4 431   (+05%) 53 5 10.60    (+284%) 
PID1_8 365   (+20%) 44 3 14.67    (+431%) 
PID1_16 244   (+46%) 26 2 13.00    (+371%) 

*: Dynamic power consumption at maximum clock frequency; PID1_X: X=r; 

Max. control loop cycle = Max. clock frequency / Latency. 

 TABLE 6.8 − Maximum power-consumption and control-loop-cycle of PID2. 

PID 
Core Power* (mW) 

Max.  Clock 
Freq. (MHz) 

Latency Max. Control Loop 
Cycle (MHz) 

PID [21] 456 47 17 2.76 
PID2_1 466  (-02%) 61 17 3.59   (+30%) 
PID2_2 475  (-04%) 61 9 6.78   (+146%) 
PID2_4 479  (-05%) 43 5 8.60   (+211%) 
PID2_8 328  (+28%) 37 3 12.33  (+347%) 
PID2_16 488  (-07%) 23 2 11.50 (+317%) 

*: Dynamic power consumption at maximum clock frequency; PID2_X: X = r;  
Max. control loop cycle = Max. clock frequency / Latency. 
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routing, 16% by logic, and 14% by clocking. The reason is that routing is intensively segmented, using 

pass logic and buffers.    

    When both high control-rate close to 13MHz and low power are required, PID1_16 (244 mW at 

13MHz) stands as the best candidate compared to PID1_8 (323 mW at 13MHz). However, it’s 

noteworthy to mention that this comparison stands valid only for the special case of 16-bit word-length 

PID, for a given set of coefficients,  mapped on XC2S150E-7FT256 FPGA circuit and using Xilinx’s 

XST synthesis tool, version 9.2. Results could significantly change under other conditions, especially 

when considering the logic trimming process which is essentially dependant on the bit-arrangement of 

the coefficients. For a minimum influence of the trimming operation on the synthesized results, 

appropriate coefficients were used such as all Qj terms are represented except the null one to avoid 

generating null partial products that greatly simplify the circuit logic. In fact, constant coefficients PIDs 

(PID1) are somehow unpredictable with regard to r. They are coefficient dependant. Adversely, PID2 is 

not involved with the trimming process since coefficients are time varying. Implementation results 

comprised in Table 6.8 show that PID2_8 is the best at all aspects for the same reasons cited above. 

In sum, when high control-rate is the ultimate objective, PIDX_n/2 is the best candidate whatever n 

value. But in the case where both high speed and low power are required, timing and power 

evaluations are necessary to decide which PID to select: either PIDX_n/2 or PIDX_n.  

    Finally, when only low power is targeted, PIDX_1 is the best candidate. We dealt here with extreme 

situations only, but for a given couple (cr, pc) of control-rate and power consumption, several 

candidates are possible. Yet, the best PID is the one which requires the smallest gate count.         

    So far, speed and power have been considered in isolation to area which becomes critical, and 

sometimes prohibitive, for large word-length n due to the fact that PID is basically built of a set of 

multipliers (three or five) that scale quadratically with word length. The bigger is the area, the higher is 

the cost. Consequently, another advantage of RMRMA algorithm is to cope also with the cost issue as 

an additional constraint to speed and power.  

    We have deliberately chosen Spartan2e FPGA to compare our results with those provided in [21]. A 

mapping on a recent FPGA circuit (Virtex6) using XST 12.1 version of extreme PID2 delivered state-

of-the-art results grouped in Table 6.9. Note that control-rate scaled with an average factor of 2, while 

power dissipation scaled with an average factor of 45.  

    

    This is not surprising, since Spartan2e and Virtex6 were fabricated with two differently scaled 

technology processes: 150 nm and 40 nm, respectively. Therefore, the physical capacitances of the 

circuit in Virtex6 are relatively too much smaller. Additionally, the supply-voltages (Vdd) used for 

internal core (Vccint) and for output blocks (Vcco) are respectively 1.8V and 3.3V for Spartan2e, 1V 

and 2.5V for Virtex6. Furthermore, the efficient advances made in CAD tools (from Xilinx ISE 9.1 to 

     TABLE 6.9 − Maximum power-consumption and control-loop-cycle of PID2 mapped on Virtex6. 

PID 
Core 

Number 
of Slices Power* (mW) 

Max.  Clock  
Freq. (MHz) 

Latency Max. Control Loop 
 Cycle (MHz) 

PID2_1 231 23 122 17 07.17 
PID2_8 1060 04 90.5 3 30.16 
PID2_16 1963 13 50.4 2 25.19 

*: Dynamic power consumption at maximum clock frequency; PID2_X: X=r; Max. control loop 

cycle=Max.clock frequency / Latency. 
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FIGURE 6.10 – The co-simulation of the PID in the Simulink/Modelsim environment. 

 

12.1 versions) as well as in FPGA architecture, such as advanced segmented-routing, much 

contributed to lower the power consumption [39]. Power consumption evaluation studies [38][39] 

based on simulation and measurements, targeting Virtex2 and Virtex6 families revealed the following 

results: 5.9µW per CLB per MHz,  and 1.09 mW per 100 MHz at 38% toggle rate, respectively. These 

studies roughly confirm our power results as proximate values are obtained.  

    Timing and power evaluations were performed in the following conditions. Delays were calculated 

for two types of paths: Clock-To-Setup and all paths together (Pad-To-Setup, Clock-To-Pad and Pad-

To-Pad.) The Clock-To-Setup gives more precise information on the delays than other remaining 

paths, which depend in fact on I/O Block (IOB) configuration (low/high fanout, CMOS, TTL, LVDS…). 

Thus, all delays (frequencies) presented so far are clock-to-setup delays with the highest speed grade 

of the FPGA circuit.  As for power, we chose the highest Vcco voltage value (3.3 for Spartan2e and 

2.5 for Virex6) with a maximum toggle activity of 50%, which means that Flip-Flops (FFs) toggle one 

time during each clock cycle. The reason is that only simple-edge triggered FFs are used for synthesis 

(no double-edge FFs).    

6.1.6  Verification Method 

    The PID design verification process went through several steps. First Eq. 6.12 and 6.14 were tested 

with a random C-program. Then, a severe cycle-accurate functional verification procedure using 

Modelsim simulator was applied to MAC and ODMAC as they are the main building blocks of PID 

architecture. They were challenged against a set of special test cases (visual simulation), and then 

submitted to a random test for a very large number of vectors. Once tested successfully, the RTL PID 

module written in Verilog-2001 (IEEE 1364) was integrated into Modelsim/Simulink environment for a 

co-simulation. At this stage, a ZOH discrete time invariant model of a third order continuous process 

(G(s)=1/(s+1)3) was chosen from the test set used by Åström and Hägglund [1] as examples of 

representative plants for the dynamics of typical industrial processes (Fig 6.10).  

 

 

 

 

 

 

 

 

 

 

 

           



Chapter 6  −  Applications 

 139 

    To derive the PID parameters, a theoretical PID taken from Matlab component-library was tuned 

using floating-point numerical representation (IEEE 754 double format). The sampling period Ts was 

chosen based on the magnitude of the pole time constants. For this case Ts=10 ms. The following 

parameters were obtained:   

                                 Kp = 0.5913  ;  Ti = 0.0523  ;  Td = 0.0225  for N=10 and b=1. 

    Calculations give the following floating-point values for the coefficients of commercial PID: 

                                   A=0.5913; B=−0.5913; C=0.1130; D=0.1836; E=−1.0860  

    To co-simulate the RTL PID, a conversion of the coefficients to 16-bit (Q4.12) fixed-point 

representation was necessary. Variations were obtained: 

                                   A=0.5911; B=−0.5911; C=0.1130; D=0.1836; E=−1.0860 

     Note that to represent the original parameters with full-precision, 44 bits are needed for the 

fractional part. Varied simulations were performed to verify the correctness of the PID RTL code. First, 

to explore the precision effect on control quality, the control output of PIDs with various fractional-part 

sizes (Q4.4 ,  Q4.12 , Q4.20) were compared to that of the Matlab floating-point PID component (Fig. 6.11). 

Simulation shows different rise-times for different precisions. The higher is the precision; the closer is 

the control output from the ideal model. The second simulation tests the behavior of the PID after 

having reached the steady state (Fig. 6.12). For that, two perturbations are successively exerted on 

control output and on the plant measure. Each time the system recovers as expected. And finally, the 

third simulation investigates the PID capabilities to track set-points of arbitrary amplitudes and 

durations  (Fig. 6.13).  

     After a successful functional verification, the RTL code of PID was synthesized, placed, and routed 

on Xilinx’s FPGA (Virtex-2). The three preceding co-simulations but with timing backannotation were 

performed again as a last necessary software verification step before hardware integration of the PID 

into an FPGA evaluation board (MEMEC V2MB1000). 

   Finally, as an ultimate validation step, a physical test of our PIDs is performed. We built up a 

classical temperature control setup (Fig. 6.14 and 6.15), which consists in a tube comprising a 

halogen lamp (12 V, 21 W), a temperature sensor (LM35), and a DC Fan (12 V, 1.68 W). Temperature 

regulation inside the tube is achieved by controlling either the intensity of the lamp, or the rotation 

speed of the fan. This is carried out by the use of two PWMs, whose duty-cycle ratios represent the 

PID controller output (u(k)). These two PWMs do not act directly on the fan or on the lamp but rather 

on transistors (IRF540) that control the power consumed by the lamp and fan.    
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FIGURE 6.11 – Fixed-point versus 
floating-point. 

FIGURE 6.12 – Perturbation after 
steady-state on control-output and 
on plant measure, successively. 

FIGURE 6.13 – Set-point tracking of 
arbitrary amplitudes and durations. 
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    The sensing of the actual temperature of the tube is assured by LM35 component which delivers a 

voltage value that grows linearly with temperature (1.5 volts corresponds to 150 °C). As the maximum 

voltage allowed by FPGA evaluation board (V2MB1000) is 3.3 Volts, the calculation of the real 

temperature (T) is done as follows: T = [(val_opb_ADC * 3.3)/1023] * 100. This allows a temperature 

control with a minimum step of  0.32 °C. 

The V2MB1000 board is connected through RS232 port to a PC running a .net application which 

allows a real-time display of the temperature as well as an instantaneous tuning of the set-point.  

6.1.7  The Finite-Word-Lenght (FWL) Effect 

Fixed-point arithmetic is employed as an approximation of real numbers (floating-point), with a fixed 

bit-length of the word used to represent data (Finite Word-Length). This limitation leads to 

performance degradation (FWL effect) mainly due to quantization of coefficients (parametric errors) 

and roundoff errors subsequently cumulated during the computation process (numeric noise).  In fact, 

the FWL effect is more-or-less exaggerated depending on the control algorithm used (I/O relationship, 

levels of parallelism, etc) as well as on the way the computations are performed (number of bits, 

different/unique fixed point position, round/truncation, etc).  Compared to the reference floating-point 

implementation, the FWL effect can be assessed using some indicators such as transfer function 

sensitivity, or pole sensitivity [40][41][42].  

In fact, the objective is twofold: we need to provide an optimal ASIC/FPGA implementation of FWL 

PID without degrading control performances. To achieve such a goal, a double expertise is required in 

hardware design and control system. But usually, hardware designers do not master control system 

design, and control system experts do not have the required skills to implement and evaluate the 

controllers using ASIC/FPGAs [17][43]. This is why we propose a highly reconfigurable (n, r) and 

technology-independent FWL PID that can systematically respond to control-engineer demands after 

having modelled, simulated, and evaluated the performances provided by different bit-width fixed-point 

representations using Matlab/Simulink environment, and finally opted for an appropriate word-length 

(n) of the setpoint. As for latency value (r), it depends on the application domain and intended 

objectives. Precise guidelines on how to choose r value were given in Section 6.1.5. 

Now that (n, r) couple is known, the FWL problem is tackled from hardware side by simply adjusting 
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FIGURE 6.14 – Synoptic scheme of the setup. FIGURE 6.15 – Setup of temperature regulation. 

1: FPGA evaluation board; 2: Electronic device; 
3: Tube containing a fan and a lamp, 4: PC  
display screen. 
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in the RTL code the two compile-time constants: setpoint bit-size (n) and latency (r). The synthesis of 

such a PID generates an optimal structure that not only meets the performances specified by control-

engineers, but also consumes minimum power and hardware resources. This would not have been 

possible without the use of the new highly serialisable multi-bit multiplication algorithm (Eq. 6.13). The 

incorporation of Eq. 6.13 [25] into Eq. 6.1 and 6.2 as an efficient PID engine, allows the generation of 

PID architectures classified as regular iterative architectures (RIA) [44], known for their high conformity 

with the principles of regularity and locality. In addition to Eq. 6.13, we highly recommend to use the 

optimal multiplier (Eq. 5.22) for high values of n (n≥16). As for low values of n, we have proposed in 

[25] several new highly serialisable multiplication algorithms, offering different features in power, 

space and delay, depending on the operand size (n). Reader is encouraged to explore these 

algorithms [25] to select the appropriate one that leads to best performances of its controller with 

regard to the size (n) of the setpoint.  

Regularity and locality are two important features, highly sought in hardware design as they lead to 

an important gain in space and delay. Regularity is a general space feature, where the repetitiveness 

of just one or few elementary building-blocks (mux, adders and shifters of ODMAC, Fig. 6.9) and their 

interconnection scheme (predefined netlist) suffice to draw the whole architecture (MAC/ODMAC and 

then PID). In the other hand, locality is both space and time feature, in the sense where each building-

block can only interact  with its nearest surrounding neighbours, and any transaction from one 

building-block to the next is completed in one and only one unit time delay (clock period). Because of 

these two important features, our PIDs can be finely grained at bit level in space (setpoint bit-size n, 

latency r) and unit delay in time (latency r).       

Experimental results depicted in Fig. 6.16 illustrate the FWL effects on temperature regulation. 

Reducing the fractional-part size of the set-point beyond a certain limit (4 bits) yields to a continuous 

fluctuation of the temperature inside the tube (Fig. 6.16d). The best compromise is a 6-bit fractional-

part (Fig. 6.16c) which ensures a correct regulation while consuming less power and hardware 
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FIGURE 6.16 – Effect of the setpoint fractional length on temperature regulation. 

(a) Floating point PID; (b) Our PID with Qni.nf = Q8.8 ; (c) Our PID with Qni.nf= Q8.6 ; 

(d) Our PID with Qni.nf= Q8.4  
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resources. As temperature regulation system has a very slow dynamic, speed is not a concern. 

Therefore, the most appropriate PID in this case is PIDX_1 as it is the least power consumer. 

Adversely, for very fast dynamic systems, such as MEMS [45] or microrobotics applications [46], 

PIDX_n/2 is the most adequate option as it leads to the highest control rate. 

6.2  LQG Controller with Kalman Filter 

    Accurate and dexterous micromanipulation tasks are very important in a wide range of 

microrobotics applications such as microassembly tasks, minimally invasive surgery, genetics, in vitro 

fertilization, and cell mechanical characterization. In this case, the use of microgrippers and controlling 

gripping forces applied on manipulated samples in the micrometer range (i.e. between 1µm and 1mm) 

without destroying and damaging is still a great scientific and technological challenge [47]. 

    The AS2M department of FEMTO-ST (Besançon) has been working for many years on problems 

related to the modelling and control of micro-systems for micro-assembly/micromanipulation 

applications. One of its numerous works is the modelling [47] and control [48] of the FT-G100 micro-

gripper (Fig. 6.17) in order to enable dexterous micromanipulation tasks through gripping force 

sensing and control. The developed control model is based on the Linear Quadratic Gaussian (LQG) 

controller with Kalman filter.  

    We show hereafter how the Matlab model of the controller (LQG+Kalman) is gradually translated 

into a synthesisable Verilog code through the application of the new SCM/MCM heuristics introduced 

in Chapter 4.                                  

                      

6.2.1  Dynamic Model of the FT-G100 Micro-Gripper 

    The gripping force appears when the gripper arms are in contact with the manipulated object. The 

use of a coupled model of the gripper is necessary in order to take into account both dynamics of the 

actuated subsystem (electrostatic actuator + actuated arm) and the sensing one (sensing arm + 

capacitive sensor) (Fig. 6.18). The actuated and sensing subsystems are first modelled when an 

external force is applied at the tip of the gripper arms. Thereafter a simple modelling of the 

manipulated object is used to couple previous subsystems in the state space representation. Internal 

dimensions of the FTG100 microgripper provided by femtotools technical support 

Sensing arm 

Actuated arm 

Capacitive sensor 

Suspension system 

Electrostatic 
micro-actuator 

1 mm 

Bulk 

FIGURE 6.17 – Structure of the FT-G100 microgripper (Femto Tools GmbH). 

Source: [48] 
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“support@femtotools.com” are used for the modelling approach. Higher dynamics of each subsystem 

are neglected as their effects are not significant. Thus, only second order models are considered [47]. 

                                             

Actuated System Modelling 

    Around an excitation voltage of 70V, the model of the discrete state of the actuated system 

identified during the gripping of a glass-ball of 80µm diameter is the following: 
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Sensing System Modelling 

    Likewise, the state-space representation of the sensing system is defined as follows: 
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Coupled System Modeling 

    Considering the assumption that the objects being manipulated by the micro-gripper behave like a 

spring having a stiffness k0, it is possible to characterize the effort of the gripping force Fc by the 

following equation: ( ) ( ) abbbac xkkkxxkxxkF ⋅+=⇒⋅=−⋅= 20020 / , with k2 being the stiffness 

of the sensing system.  

    Now we can group both models (Eq. 6.18 and 6.19) into a generalized model defining the FT-G100 

xb xa

Fc 
Micro-object 

Actuated arm Sensing arm 

Vout Vin Electrostatic 
actuator 

Capacitive 
sensor 

FIGURE 6.18 – System modelling. 

Source: [48] 
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Time Update ("Predict"): time=k Measurement Update ("Correct"): time=k+1 
(5)  Update the error covariance at time k+1: 

( ) ( )[ ] ( )kkPCkKIkkP e /1.11/1 4 +⋅+−=++  
 

(1) Project the state ahead for time 
k+1: 

( ) ( ) ( )kVBkkXAkkX in⋅+⋅=+ /ˆ/1ˆ  

 

(4)  Update state estimate with the innovation at 
time k+1: 

( ) ( ) ( ) ( )1
~

.1/1ˆ1/1ˆ ++++=++ kVkKkkXkkX oute
 

(2) Project the error covariance ahead 
for time k+1: 

( ) ( ) TT MWMAkkPAkkP ⋅⋅+⋅⋅=+ //1  

 
 
 
 

(3) Compute the Kalman gain at time k+1: 

( ) ( ) ( )[ ] 1
/1/11

−
+⋅+⋅⋅⋅+=+ VCkkPCCkkPkK TT

e
 

 

FIGURE 6.19 – Kalman recursive algorithm. 

micro-gripper in the gripping phase (actuation and sensing), as follows: 
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6.2.2  Kalman Filtering 

    Kalman filtering [49] uses a state-space representation comprising a stochastic part modeled in the 

form of a state noise w(k) and a measure noise v(k). Considering Eq. 6.20, the Kalman model of the 

microgripper FT-G100 is:  

                                             
( ) ( ) ( )
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)(
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
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+⋅=

⋅++⋅=+
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where 14)( ×ℜ∈kX : system state vector at time eTkt ⋅=  , eT  is the sampling period. 

           44×ℜ∈A : transition state matrix. 

           14×ℜ∈B : control input matrix. 

          11×ℜ∈inV : known and deterministic input vector. 

          ( ) 14×ℜ∈kw : vector of random unknown signals coming disrupting  the equation state of the  

system through an entry matrix 41×M . 

          11×ℜ∈outV : vector of measures (output). 

         41×ℜ∈C : observation output matrix. 

         ( ) 11×ℜ∈kv : vector of random signal disrupting the system measures. 

    Fig. 6.19 summarizes the different equations governing the evolution of the Kalman algorithm, 

implemented on the micro-gripper FT-G100 (Eq. 6.21). The algorithm requires at the starting step the 

determination of the initial states )0/0(P  and )0/0(X̂ . A zero value has been assigned to these 

parameters due to the initial state of the system. 

(6.20) 
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    It is important to note that the gain of Kalman Ke rapidly converges to a constant value. It is 

therefore possible to make an offline calculation of the gain and exploit its permanent regime 

throughout the filtering algorithm. In this case, only equations (1) and (4) of the Fig. 6.19 are used. 

6.2.3  Force Control of the FT-G100 Micro-Gripper 

    The LQG belongs to the category of controllers called "optimal". It is based on the minimization of 

an energy criterion in order to achieve a compromise between the performance of the controlled 

system and the energy consumed. The LQG controller and the Kalman filter can be independently 

calculated according to a principle of separation. The synthesis of the LQG for controlling the FT-G100 

micro-gripper is beyond the scope of this thesis. We limit ourselves to the utilization of the final 

equation provided in [48]: 
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where yε  is the estimation error of the output, ccF  is the force setpoint, and ( ) ( ) ( )kkXkXkx /ˆ−=ε . 

    The general control scheme grouping the LQG controller and Kalman filter is depicted in Fig. 6.20.  

    

6.2.4  Hardware integration of the LQG controller with Kalman Filter 

    The Matlab model corresponding to Fig. 6.20 was kindly provided by Boudaoud [48] (Appendix D). 

It runs on dSPACE with a 200 KHz sampling frequency. We have translated it to a synthesizable 

Verilog code (Appendix D) through the methodology described in Fig. 6.21. The latter can be 

perceived as a standard methodology allowing the translation of LTI Matlab models to synthesizable 

HDL (Verilog/VHDL) code. The steps of Fig. 6.21 are successively commented as follows. 
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FIGURE 6.20 – General scheme of the LQG controller with Kalman filter. 
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Step #1 

     Before performing the functional verification, we must determine which state-space form, canonical 

or simple, is more optimized (contains more zeros and ones elements). Because using the Matlab 

"canon" function, we have noticed that for low order systems (≤4) the canonical form is not necessarily 

better than the simple form. To decide which form to use, we have to count the number of zeros and 

ones elements in each representation. In our case, we opted for the canonical form though it does not 

offer a clear advantage over the simple form (to be in total conformity with the initial Matlab model for 

ulterior comparisons). Then, before pursuing the process, we must be sure that the Matlab description 

is 100% functionally correct to avoid very time-consuming backward verifications. In our case, the 

Matlab model of Fig. 6.20 has undergone severe verifications. For instance, Fig. 6.22 describes the 

noisy and filtered force (Fc) of the actuated arm. 

Step #2 

     In this step, the Matlab code is decompressed: the linear matrix operations (+, −, ×) are replaced by 

FIGURE 6.21 – Standard methodology for an optimized hardware integration 
of LTI systems: from Matlab functional model to HDL synthesizable code. 
 

Matlab functional verification of the simple/canonical 

state-space representation of the LTI system 

− Matlab Matrix Model − 

Translate the matrix model to the scalar model 

− Matlab Scalar Model − 

Translate the fixed-point SCM/MCM scalar 

model to a fixed-point HDL synthesizable model 

 − Fixed-Point HDL Synthesizable Code − 

Mapping the fixed-point HDL code to FPGA 

− FPGA Netlist Format − 

Mapping of the fixed-point HDL code to ASIC 

− ASIC Netlist Format − 

Translate the floating-point scalar model to a 

quantified fixed-point scalar model 

 − Matlab Fixed-Point Scalar Model − 

Step #5 

Step #6 

Step #7 

Translate the fixed-point scalar model to a 

quantified fixed-point SCM/MCM scalar model 

 − Matlab Fixed-Point SCM/MCM Scalar Model − 

Step #4 

Step #1 

Step #2 

Step #3 
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scalar operations. The higher the order of the system, the more difficult the translation is. In our case, 

the order of the system is 4. The decompression process results in 29 multiplications and 23 additions. 

The decompression operation is error prone; therefore it should be carefully performed or automated if 

possible. A functional verification of the scalar model is necessary to move to the next step.               

                          

Step #3 

     This is a crucial step. Up to now, we have been using the floating-point representation. To move to 

the fixed-point representation, we need to determine the dynamic range of all the variables involved. In 

our case, this operation has led to an integer part of 5 bits and a fractional part of 16 bits (Q5.16). With 

21-bit word length, the difference between the floating-point and the fixed-point filtered force (Fc) is 

less than 7×10−5 µN as indicated by Fig. 6.23. Improving the precision (<7×10−5 µN), will result in a 

larger controller (from a hardware point of view). 

                       

×10−5
 

Time (µs) 
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µ
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) 

FIGURE 6.23 – The difference between the floating-point and the fixed-point filtered force (Fc). 
 

FIGURE 6.22 – The noisy and filtered force (Fc) of the actuated arm. 
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Step #4 

     In this step, the scalar multiplication (×) is replaced by SCM/MCM (additions, subtractions, and 

shifts) and the common sub-expressions are eliminated using MCM. In our case, the replacement of 

the scalar multiplication by SCM/MCM results in 101 additions (Appendix D). The 29 multiplications of 

step #3 would have required ( )  2902912/21 =×−  additions in case the optimal multiplier (Eq. 5.22) 

was used. Adding the 29 additions, the total number of additions corresponding to step #3 is 

290+23=313. A saving of (313-101)/313=68% is therefore induced. In fact the saving in logic 

resources is more important since the 29 multipliers require a recoding logic (PPG). 

    The Matlab simulation results of this step must be exactly identical to the ones of step #3.                

Step #5 

     In this step, the Matlab model is simply translated into a synthesizable HDL code (Verilog in our 

case). The code should be compliant to the standard design-reuse methodology [6] to make it 

technology-independant. This allows the code to be mapped on FPGA and ASIC as well. 

Matlab/Simulink simulations are necessary to validate the code. Simulation results should be exactly 

identical to the ones of step #3. 

    For the time being, this step is under progress. The Matlab code of step #4 has been systematically 

translated into a Verilog code, and the necessary verifications are being performed. 

Step #6 

     The synthesizable HDL code is mapped to a FPGA circuit and physical tests are performed to 

validate the HDL code. 

Step #7 

     Since the HDL code is technology-independent (design-reuse methodology), it can also be mapped 

to an ASIC using a standard-cell-library of a given foundry (e.g. TSMC 0.18 µm CMOS technology).   

    The hardware integration flow of LTI FWL controllers (Fig. 6.21) is very time consuming and error-

prone, particularly the crucial steps #3 and #4. Consequently, the automation of the design flow 

becomes necessary, especially for high order systems.  

6.3  Conclusion 

    Despite the large popularity of PID controller, little attention has been paid to its optimization, either 

for ASIC or for FPGA integration. To break down this paradoxical situation, a series of high-speed and 

low-power PIDs, dedicated to embedded applications were proposed. They are based on two discrete 

forms of PID algorithm: the incremental form and the commercial form, both with constant and time-

varying coefficients. The work focused more particularly on the commercial form with varying 

coefficients (LTV) as it is the most used in industry due to the higher control-quality provided. Two 

types of optimizations were carried out: architectural and algorithmic optimizations. The former is a 

macro-level optimization, based on an efficient partitioning of PID discrete-equations, considering the 

double MAC (DMAC) as the main building block of PID architecture. An optimized version of DMAC 

was developed (ODMAC) for less hardware resource occupation.  As for the micro-level optimization 

(inner optimization of ODMAC), three multiplication algorithms were experienced: BMA, MBMA, and a 
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new general and recursive version of MBMA called RMRMA. In addition, some low-power design 

techniques were incorporated, such as: sleep mode, and step-by-step sign-propagation technique.   

 The implementation results of PID based upon these three algorithms yielded to gradual 

improvements with a clear superiority over results presented in [21]. For instance, concerning PID1_2 

and PID1_4, savings of 177%, 23%, and 36%, and savings of 284%, 14%, and 26% are obtained in 

control-rate, power consumption, and total gate count, respectively. Additionally, analytical scaling-

complexity evaluations with respect to the couple (n,r), confirmed also by software simulations, 

revealed useful information which is summarized as follows:  

• PIDX_n/2 is the fastest PID that yields to the highest control-rate (30 MHz for PID2_8 mapped 

on Virtex6, with (n,r)=(16,8) ); 

• PIDX_1 is the most power efficient PID when speed is not a concern; 

• PIDX_n and PIDX_n/2 are the most efficient PIDs when both high control-rate and low-power 

dissipation are required.  

    RMRMA is a double recursive algorithm (Eq. 6.13), which is a particular case of Eq. 5.22. The use 

of the triple recursive version (Eq. 5.22) instead Eq. 6.13 will produce more efficient PIDs. 

    Further extension to the present work is to apply the same (or appropriate) partitioning in 

conjunction with RMRMA algorithm (or Eq. 5.22) to the set of recurrent equations of an arbitrary 

number of multi-loop PID controllers taken as a whole. 

    The LTI option has been addressed through the implementation of an LQG controller with Kalman 

filtering. A methodology for converting a Matlab code to a synthtizable HDL code has been proposed 

and applied. Though it has contributed to a drastic reduction of logic resources (68% saving) due to 

the utilization of our SCM/MCM algorithms, the methodology is very time-consuming and error-prone, 

especially for high-order systems. The automation stands therefore as the sole practical solution, 

however, it requires a considerable effort (code translations). 
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Chapter 7 

 

General Conclusion 

    Let us restart from the introduction:     

    The objective of the thesis is the development of a new binary arithmetic adapted to the FWL 

problem, enabling an easy generation of minimum word-size controller-structures with 

acceptable control performances. 

    In this thesis, a new radix-2r
 arithmetic has been developed. It basically relies on the multibit 

recoding algorithm which was introduced in 1990 but abandoned due to its inability to cope with high-

radix arithmetic. We have solved its radix lock and taken, as a result, full advantage of its high 

potential in producing efficient multiply arithmetic, which is the real engine of LTI/LTV controllers. In 

addition, because highly-scalable (r), the new radix-2r
 arithmetic is well adapted to the FWL effect. 

Given a bit-size N of the word that ensures acceptable control performance, the new arithmetic is 

capable of generating the optimal realization of the FWL controller without degrading the control 

performances. 

    The "optimality" of the realization comes from the multipliers themselves. For each value of N, we 

provide the optimal space/time partitioning of the multiplier that leads ineluctably to the optimal 

implementation of the controller structure. This is valid for both types of multiplier: variable multipliers 

and constant multipliers. 

    The variable and the constant multipliers have been used to build up two FWL structures: an LTV 

(PID) and LTI (LQG + Kalman filter) controllers, respectively. The PID shows a high superiority over its 

existing counterparts, either in speed, power, or area. As for the LQG controller, a drastic reduction in 

logic resources is achieved, which means also much higher speed and less power consumption. 

    We have proved via the implementation of the PID and LQG controllers, the high capabilities of the 

new arithmetic to respond to the needs of MEMS applications in speed, power, and especially in 

scalability for an easy adjustment of the control performances.    

 

7.1  Major Contributions 

    Breaking the high-radix deadlock of the multibit recoding algorithm has enabled to achieve some 

important results in binary arithmetic, notably: 

• The development of a linear O(N) and fully predictable heuristic for the multiplication by a 

constant (SCM/MCM). The major advantage over the existing heuristics is that no limitation 

exists on the word-size (N) of the LTI controller.  

• The development of an optimal algorithm for the multiplication by a variable (MV). According 

to the word-size of the LTV controller, there exists an optimal multiplier that leads to an 

optimal implementation of the controller. 
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• The development of several multi-precision multipliers (MPM) allowing a number of LTV 

controllers with different word-sizes to share the same multiplication array. This contributes to 

increase the throughput while decreasing the power consumption. 

• The determination of the currently best known analytically-proved bounds for the multiplication 

problem (SCM, MCM, and MV). 

 

7.2  Current Limitations 

    Because of a limited time, a number of improvements could not be undertaken, namely: 

• For the multiplication by a constant, we have proposed two heuristics: RADIX-2r and R3. 

While RADIX-2r is fully predictable (Upb, Ath, Avg), R3 is not predictable. Nevertheless, since 

we have proved that R3 is better than RADIX-2r, R3 can be bounded by RADIX-2r metrics. 

• Lefèvre's algorithm for the multiplication by a constant relies on CSD recoding.  Since R3 is 

much better than CSD, combining Lefèvre's algorithm with R3 will produce better results. 

• To determine the optimal multiplier (Eq. 5.22), we have employed a mathematical formalism 

(Eq. 5.21) including only four low radix recodings (Seidel radix-28 and radix-25, McSorley 

radix-22, and Booth radix-21). These are the only low-radix algorithms that we are aware of. In 

case another low-radix recoding exists, it can be inserted into Eq. 5.21 to look for another 

optimum that could be better than Eq. 5.22. 

•  We still do not know whether RADIX-2r is a canonical recoding (minimal and unique) even 

after the simplifications given by Eq. 3.45 and 3.46. A mathematical proof is missing. The 

proof, if any, will let to declare RADIX-2r as a generalization of CSD (i.e. CSD=RADIX-21). 

• While the theoretical concept for MV has been validated using FPGA as a preliminary step, an 

ASIC implementation based on a standard-cell library is necessary for an ultimate validation of 

the whole optimization work. 

 

7.3  Perspectives 

    The new arithmetic is a complete package, ready for integration. While it is dedicated to MEMS 

applications in general, a direct utilization for the AS2M department would be in the control of 

microgrippers or the integration of smart sensors. 

    Translating FWL controllers from high-level specifications in C or Matlab code to a synthesizable 

HDL code requires a fully automated design flow. Such a flow is already under progress in a French 

ANR project called DEFIS (Design of Fixed-Point Embedded Systems) [1]. It would be useful to 

explore the possibility to integrate some of the results of this thesis into the DEFIS flow, especially the 

predictable SCM/MCM heuristic and the optimal MV algorithm. 

    The "predictability" is a highly sought feature for CAD synthesis tools. It enables the synthesis tools 

to rapidly satisfy designer requirements in speed and area, avoiding therefore unnecessary feedbacks. 

Hence, the new SCM/MCM, MV, and MPM algorithms can be incorporated into synthesis tools to 

produce predictable IPs. 
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    Finally, the new arithmetic can be advantageously applied to other numeric areas, such as DSP, 

image processing, telecommunication, and encryption. An idea is to apply the new SCM/MCM and MV 

algorithms in RSA encryption to target long encryption keys (more than 4096 bits). 
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Appendix A 

 

Proofs of Theorems 4.3 and 4.4  

   

Proof of Theorem 4.3 

    Initially, the multiplier Y is an N bit string. But to comply with the requirement of the multibit 

recoding algorithm, we need to add a zero bit (y−1) to the less significant side of Y. Thus, the total size 

becomes N+1.  Y is a two’s complement number. It is written as follows: 
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    In the multibit recoding algorithm, the multiplier Y is split into N/r two’s complement slices ( jQ ), 

each of r+1 bit length. Two contiguous slices (Qj with Qj−1, and Qj with Qj+1) have one overlapping bit 

in common. Thus Y becomes:   
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In fact the Qj term is no more than a two’s complement representation of  r+1  bit string which can 

be split in its turn into r/s two’s complement overlapping slices (Pji), each of s+1 bit length. Thus Y 

becomes: 
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 A synoptic scheme is depicted in Fig. A.1 to illustrate the use of Th 4.3 in the partitioning of a 16-bit 

Y operand.  

                                                         
Proof of Theorem 4.4  
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A synoptic scheme is depicted in Fig. A.2 to illustrate the use of Th. 4.4 in the partitioning of a 16-bit 

Y operand.  
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FIGURE A.1 Partitioning of a 16-bit Y operand with 
r=8 and s=4 
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Abstract— In this paper, a new recursive multibit recoding 

multiplication algorithm is introduced. It provides a general 

space-time partitioning of the multiplication problem that not 

only enables a drastic reduction of the number of partial 

products (N/r), but also eliminates the need of pre-computing odd 
multiples of the multiplicand in higher radix (r≥3) multiplication. 

Based on a mathematical proof that any higher radix-2r can be 

recursively derived from a combination of two or a number of 

lower radices, a series of generalized radix-2r multipliers are 

generated by means of primary radices:  21 , 22, 25, and 28.           

A variety of higher-radix (23-232) two’s complement 64x64 bit 

serial/parallel multipliers are implemented on Virtex-6 FPGA 

and characterized in terms of multiply-time, energy consumption 

per multiply-operation, and area occupation for r value varying 

from 2 to 64. Compared to a recent published algorithm, savings 

of 21%, 53%, 105% are respectively obtained in terms of speed, 

power, and area. 

Keywords—High-Radix Multiplication; Low-Power Multiplication; 

Multibit Recoding Multiplication; Partial Product Generator (PPG) 

I.  BACKGROUND AND MOTIVATION 

The continuous refinement of the mostly-used design 
paradigm based on modified Booth algorithm [1] combined to 
a reduction tree (carry-save-adder array , Dadda,…) has 
reached saturation. In [2] only slight improvements are 
achieved. The proposal reduces the partial product number 
from N/2+1 to N/2 using different circuit optimization 
techniques of the critical path. 

Theoretically, only the signed multibit recoding 
multiplication algorithm [3] is capable of a drastic reduction 
(N/r) of the partial product number, given that r+1 is the 
number of bits of the multiplier that are simultaneously treated 
(1≤r≤N). Unfortunately, this algorithm requires the pre-
computation of a number of odd multiples of the multiplicand 
(until (2

r-1
-1).X) that scales linearly with r. The large number of 

odd multiples not only requires a considerable amount of 
multiplexers to perform the necessary complex recoding into 
PPG, but dramatically increases the routing density as well. 
Therefore, a reverse effect occurs that offsets speed and power 
benefits of the compression factor (N/r). This is the main 
reason why the multibit recoding algorithm was abandoned. In 
practice, designs do not exceed r=3 (radix-8).   

The current trend [4][5] relies upon advanced arithmetic to 
determine minimal number bases that are representatives of the 
digits resulting from larger multibit recoding. The objective is 
to eliminate information redundancy inside r+1 bit-length 
slices for a more compact PPG. This is achievable as long as no 
or just very few odd multiples are required.  

In [4], Seidel et al. have introduced a secondary recoding of 
digits issued from an initial multibit recoding for 5≤r≤16. The 
recoding scheme is based on balanced complete residue 
system. Though it significantly reduces the number of partial 
products (N/r for 5≤r≤ 16), it requires some odd multiples for 
r≥8. While in [5], Dimitrov et al. have proposed a new 
recoding scheme based on double base number system for 
6≤r≤11. The algorithm is limited to unsigned multiplication 
and requires a larger number of odd multiples. 

Instead of looking for more effective number bases, which 
is a hard mathematical task, our approach consists in exploiting 
already existing odd-multiple free recoding algorithms          
(2

1
, 2

2
, 2

5
, and 2

8
) to recursively build up generalized odd-

multiple free radix-2
r
 recoding schemes.  

To achieve such a goal, the multibit recoding multiplication 
algorithm is revisited [3]. Its design space is extended by the 
introduction of a new recursive version that enables a 
hardware-friendly space-time partitioning of the multiplication 
problem. Depending on r value ranging from 2 to N, highly-
scalable signed multipliers with various levels of parallelism 
and latencies can be systematically generated with insignificant 
control-complexity. The new algorithm has also the merit to 
recursively reduce the number of partial products (N/r) without 
any limit for the parameter r and any need for the odd multiples 
of the multiplicand. It also allows the combination of different 
recoding schemes proposed in the literature into the same 
architecture for better performances of the multiplier. Several 
higher radix (2

3
-2

32
) two’s complement 64x64 bit serial/parallel 

multipliers based on combined recoding schemes are 
implemented on Virtex-6 FPGA and characterized in terms of 
speed, power, and area occupation for r value ranging from 2 to 
64. Compared to a new signed version of Dimitrov  et al. 
algorithm [5] and Seidel et al. algorithm [4], outstanding results 
are obtained with the new multibit recoding scheme for r=8 
formed by the combination of Seidel algorithm (r=5), 
MacSorley algorithm (r=2) [1] and Booth algorithm (r=1) [6].  

This work is supported by “Centre de Développement des Technologies 

Avancées” (CDTA), Algiers, Algeria, in collaboration with FEMTO-ST 

Institute, Besançon, France. 
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The respective savings are as follows: 21%, 53%, 105% 
and 8%, 52%, 63% are obtained in terms of multiply-time, 
energy consumption per multiply-operation, and total gate 
count, respectively. 

 The paper is organized as follows. Section I outlines the 
main requirement specifications for a generalized radix-2

r
 

multiplication. Section II introduces the new recursive multibit 
recoding multiplication algorithm. A number of high-radix   
(2

3
-2

32
) variants of the new algorithm accompanied with their 

implementation results are presented in Section III.  

II. THE NEW RECURSIVE MULTIBIT RECODING   

MULTIPLICATION ALGORITHM 

The equation (2.1.2) of the original multibit recoding 

algorithm presented in [3] does not offer hardware visibility. 

Let us rewrite it in a simpler hardware-friendly form, as 

follows: (∑
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Where 01 =−y  and *Ν∈r . For simplicity purposes and 

without loss of generality, we assume that r is a divider of N . 

In equation (1), the two’s complement representation of the 

multiplier Y is split into N/r two’s complement slices (
jQ ), 

each of r+1 bit length. Each pair of two contiguous slices has 
one overlapping bit.  In literature, equation (1) is referred to by 

radix-2
r
 equation, to which corresponds a digit set ( )r

D 2  such 

as ( ) { }11 2022 −−−=∈ rrr
j ,...,,...,DQ . Thus, the multiplication 

between X and Y becomes: rj
r
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jQXYX 2...

1
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each partial product can be expressed as follows: 

( ) ( )XmQX
esrj

j ..2.12.. −= , with ( ) { }12...,,3,12 1 −=∈ −rr
mOm  

such as ( ) 2
22

−= rr
mO . ( )r

mO 2  represents the required set of 

odd-multiples of the multiplicand (m.X) for radix-2
r
. Hence, the 

partial-product generation-process consists first in selecting 
one odd- multiple (m.X) among the whole set of pre-computed 
odd- multiples, which is then submitted to a hardwired shift of 

e positions, and finally conditionally complemented (-1)
s
 

depending on the bit sign s of Qj term.. While lower m.X can be 
obtained using just one addition (3X=2X+1X), the calculation 
of higher ones may require a number of computation steps 
(11X= 8X+2X+1X). 

To bypass the hard problem of odd-multiples, we exploit 
the fact that the two’s complement multiplier Y on which 
equation (1) is applied, is composed of a series of two’s 

complement digits (
jQ ) on which equation (1) can be 

recursively applied again. Based on this observation, let us 
announce the two following theorems. 

Theorem 1. Any digit ( )r
j DQ 2∈  can be represented in a 

combination of digits ( )s

i DP 2∈ , such as s is a divider of r.   

When theorem (1) is applied to equation (1), it gives:    
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Theorem 2. Any digit ( )r
j DQ 2∈  can be represented in a 

combination of digits Pi+Ti such as ( )s
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( )t

i DT 2∈  with  s+t  a divider of r ,  and t < s. 

Likewise, when theorem (2) is applied to equation (1), we 
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Theorem (1) and (2) allow an exponential reduction      
(1/2

ks
 and 1/2

k(s+t)
, resp.) of the number of odd-multiples in 

equations (4) and (6) in comparison to equation (2), but at the 
expense of a linear augmentation (ks-1 and k(s+t)-1, resp.) in 
the number of additions. The advantage by far outweighs the 
cost, as practically shown in the next section.   

The translation of equation (4) into architecture is depicted 
by Fig. 1, where each PPGj (Qj) is built up using identical PPGji 

(Pji). This is not the case for equation (6) which requires two 
different PPGji (Pji and Tji) . Theorem (1) and (2) can be merged 
together to produce PPGj made of a number of different PPGji 
(Pji ,Tji , Uji , Vji ,...). This is the general case that is thoroughly 
studied in the next section in order to determine the optimal 
multiplier. 
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TABLE II 

THEORETICAL ESTIMATION OF AREA OCCUPATION AND DELAY 

Area Occupation Delay (levels) Recoding  

Algorithm Mux Add 
Mux 

Delay 

PPG 

Adders 

Linear 

Reduction Tree 

ß22 5r r/2 d2 0 r/2 

ß23 5r (2/3)r d2 1 r/3 

ß25 27r (3/5)r d5 2 r/5 

ß28 194r (7/8)r d8 6 r/8 

ß'28 520r r/4 d'8 1 r/8 

ß''28 19r (5/8)r d5 4 r/8 

ß213 130r (10/13)r d8 9 r/13 

ß216 100r (11/16)r d8 10 r/16 

ß224 74r (16/24)r d8 15 r/24 

ß232 60r (21/32)r d8 20 r/32 

 Mux is an heuristic measure of the multiplexer logic inside PPGi . Add is the exact umber of 

adders. di is the delay due to Mux logic (d2 < d5 < d8 < d'8) 
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III. SOME NEW HIGH RADIX  (2
3
-2

32
) RECODING SCHEMES  

Theorems (1) and (2) permit to build up any high radix-2
r
 

multiplication algorithm based on lower sub-radices, 
employing much less odd-multiples.  The objective is to 
generate high radix-2

r
 multiplication without odd-multiples for 

a maximum reduction of multiplexer complexity inside PPGj. 
To achieve such a goal, a number of odd-multiple free low-
radix algorithms are used, such as Booth algorithm [6]     
(radix-2

1
), McSorley algorithm [1] (radix-2

2
), Seidel et al. 

algorithms [4] (radix-2
5
 and radix-2

8
). The combination of 

these four algorithms enabled the generation of a series of 
higher radix recoding schemes (2

3
-2

32
) with minimum 

hardware resources (Table I). The generation process was 
manually guided by an heuristic (Table II) that evaluates the 
logic complexity (Mux) inside each PPGj (Fig. 1).  

The multipliers were mapped to Virtex-6 FPGA and 

characterized in terms of multiply-time, energy consumption 

per multiply-operation, and area occupation for r value 

varying from 2 to 64. The obtained results (Fig. 2, 3, and 4) 

showed an outstanding superiority of our algorithms over their 

recent counterparts [4][5]. When comparing our algorithms to 

each other, ß2
2
 algorithm is the most area and energy efficient 

algorithm for any value of r (Table II). For r ranging from 8 to 

64, ß''2
8
 is the fastest algorithm, but it is outperformed by ß2

32
 

for r values greater than 64. ß2
2
 algorithm served to design a 

16-bit set-point PID. The implementation results outperformed 

the published ones at all levels [7]. 
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Recoding Equation and Main Features 
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Appendix C 

 

PID Equations 

   

Incremental Form 

    The standard version of the PID controller is described in a differential equation as:  

( ) ( ) ( ) ( )

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









+⋅+= ∫ ⋅

t

d
i

p
dt

tde
Tde

T
teKtu

0

1
ττ , where e is the system error ( ( ) ( ) ( )tytute c −= ), uc is the 

command signal (setpoint), y is the process variable (measured variable). Kp is the proportional gain, 

Ti the integration time constant, and Td the derivative time constant of the controller. Using Laplace 

transform, ( )tu  is expressed in s-domain by: ( ) ( ) ( ) ( )







⋅⋅+

⋅
+= sETs
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    For a small sample interval Ts, the continuous time variable ( )tu  can be discretized using the 

following approximations: ( ) ( )∑∫
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⋅
⋅≈⋅
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0
0

; ( ) ( ) ( )
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ted 1−−
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 sampling 

instant (k.Ts). Thus, ( )tu  can be rewritten as: 
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    We calculate the difference:   
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    Developing separately each term of ( ) ( )1−− kuku , we obtain: 
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    After simplifications, we get the following recurrent equation: 
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            ( ) ( ) ( )11 −⋅+⋅+−= keBkeAku ( )2−⋅+ keC . 

    This latter equation is called the incremental form of the controller. A drawback with the incremental 

algorithm is that it cannot be used for P or PD controllers. 

     

Commercial Form 

    For better performances of PID, two corrections are performed: limitation of the derivative gain and 

setpoint weighting. A pure derivative action will induce a very large amplification of measurement 

noise. The gain of the derivative must thus be limited. This can be done by approximating the transfer 

function s.Td as follows: 
NTs

Ts
Ts

d

d
d

/1 ⋅+

⋅
≈⋅ , where N is typically in the range of 3 to 20. In addition, 

to avoid sudden overshoots due to high variations of the setpoint, only a fraction b of uc acts on the 

proportional part (b.uc − y). Hence, the improved PID algorithm becomes: 
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    U(s) expression is discretized such that the proportional, integral and derivative terms are 

separately obtained, as follows:  ( ) ( ) ( ) ( )kDkIkPku ++= , where 

 ( ) ( ) ( )kYKkUbKkP pcp ⋅−⋅⋅=   and  ( ) ( ) ( ) ( )( )111 −−−⋅⋅+−= kYkU
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T
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p .  

    To determine the derivative term ( )kD , we use the differential equation representing the transfer 

function of ( )sGd : ( ) ( )
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    Applying the inverse Laplace Transform to this latter equation, we obtain:  
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    Consequently, the discretized form of ( )tu
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   ( ) ( ) ( )kyBkuAkP c ⋅+⋅=  ; 

   ( ) ( ) ( )11 −⋅+−= keCkIkI  ; 

   ( ) ( ) ( )kfLkDHkD ⋅+−⋅= 1    and  

   bKA p ⋅= ;  pKB −= ;     
i

s
p

T

T
KC ⋅−= ;    

sd

d

TNT

T
H

⋅+
= ;  

sd

dp

TNT

TNK
L

⋅+

⋅⋅
−= . 
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Appendix D 

 

LQG Controller with Kalman Filter 

   

Matlab Matriciel Model 

clc; 

clear all; 

%% Simulation parameters 

T0=1/50000;% Sampling period at start-up 

Ts=1/20000;% Sampling period of simulation 

tf=0.02;% Final time of simulation 

long=(tf/Ts)+2;% Number of samples during simulation 

t=[0:Ts:tf];% Time vector 1 

tt=[0:Ts:tf tf]; % Time vector 2 

sens=50.6; %% Sensitivity of the force sensor (µN/volts) 

%% Coupled system model 

%% Actuated system model 

Aa=[1.6621,-0.9536;1,0];  

Ba=[0.25;0]; 

Ca=[0.1104,0.1086]; 

Da=[0]; 

Ga=ss(Aa,Ba,Ca,Da,Ts);        

%% Sensing system Model 

Ac=[1.142174,-0.947527;1,0]; 

Bc=[0.5;0]; 

Cc=[0.13208,0.129656]; 

Dc=[0]; 

Gc=ss(Ac,Bc,Cc,Dc,Ts); 

%% Global model of the FT-G100 micro-gripper 

k0=1000; % Stiffness of the micro-object 

k2=6.45; 

r=0.1290; 

Kk=(k2*k0)/(k2+k0); 

A=[Aa zeros(2,2);Bc*Kk*Ca Ac]; 

B=[Ba;zeros(2,1)]; 

C=[zeros(1,2) r*Cc]; 

D=[0]; 

Gg=ss(A,B,C,D,Ts); 

% Canonical form 

     Gg=canon(Gg); 
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     [A,B,C,D]=ssdata(Gg); 

%% LQ Control 

%%Parameters of the optimal control 

R=1; 

Q=[1 0 0 0;0 10 0 0;0 0 1 0;0 0 0 1000]; 

%% Solving Riccati equation  

[Pc,mat1,mat2]=dare(A,B,Q,R); 

%%Gain of the optimal control 

Kc=inv(R+(B'*Pc*B))*B'*Pc*A;% Gain of the optimal state-feedback 

%% Prefiltre 

L=inv(sens*C*inv(eye(4)-(A-B*Kc))*B); 

%% Setpoint 

fcc=10*ones(1,long+1); 

%% Parameter initialisation 

Vin(:,1)=0; 

%% Kalman filter 

%% Parameter initialisation 

M=0.01*[1;1;1;1]; 

W= 9.2375e-005;% Variance of the state noise 

V=1.7419e-005;% Variance of the measure noise 

x(:,1)=[0;0;0;0]; 

xe(:,1)=[0;0;0;0]; 

pe=zeros(4,4); 

Vin(:,1)=0; 

%% Noise loading 

load bre.txt; 

load brm.txt; 

load tb.txt; %Time vector 

% State noise 

     w=bre; 

     w=[w w]; 

     w=w(1:long);   

% Measure noise 

     v=brm; 

     v=[v v]; 

     v=v(1:long);  

%% LQG controller loop     

q=0; 

 for i=0:Ts:tf; 

     q=q+1; 
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        % Kalman discret model 

         x(:,q+1)=(A*x(:,q))+(B*Vin(:,q))+(M*w(:,q)); 

         xa(:,q+1)=((C*x(:,q+1))+(v(:,q+1))); 

         % Prediction 

         pf=(A*pe*A')+(M*W*M'); 

         xp(:,q+1)=(A*xe(:,q))+(B*Vin(:,q)); 

        % Kalman gain 

         ke(:,q+1)=(pf*C'*inv((C*pf*C')+V)); 

        % Estimation -Update- 

         xe(:,q+1)=xp(:,q+1)+(ke(:,q+1)*(xa(:,q+1)-(C*xp(:,q+1)))); 

         pe=(eye(4)-(ke(:,q+1)*C))*pf; 

        % Response of the controlled system 

         xae(:,q)=(C*xe(:,q)); 

         % Control voltage  -Estimator form- 

         Vin(:,q+1)=((L*fcc(:,q))-Kc*xe(:,q+1)); 

   end 

 kef=ke(:,402); 

%% Curve display 

    figure(1); 

    plot(tt,sens*xa); 

    hold on; 

    plot(t,sens*xae,'r'); 

    title('Noisy and filtered force (Fc) of the actuated arm'); 

    xlabel ('Time (s)'); 

    ylabel('Force(µN)'); 

    grid on;  

    figure(2); 

    plot(tt,Vin); 

    title('Voltage control (Vin) at the input of the electrostatic actuator'); 

    xlabel ('Time (s)'); 

    ylabel('Voltage (Volts)'); 

    grid on; 

Matlab Fixed-Point SCM/MCM Scalar Model 

clc; 

clear all; 

%% Simulation parameters 

T0=1/50000;% Sampling period at startup 

Ts=1/20000;% Sampling period of simulation 

tf=0.02;% Final time of simulation 

long=(tf/Ts)+2;% Number of samples during simulation 

t=[0:Ts:tf];% Time vector 1 

tt=[0:Ts:tf tf]; % Time vector 2 
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sens=50.6; %% Stiffness of the force sensor (µN/volts) 

%% Coupled system model 

%% Actuated system model 

Aa=[1.6621,-0.9536;1,0];  

Ba=[0.25;0]; 

Ca=[0.1104,0.1086]; 

Da=[0]; 

Ga=ss(Aa,Ba,Ca,Da,Ts);    

%% Sensing system  model 

Ac=[1.142174,-0.947527;1,0]; 

Bc=[0.5;0]; 

Cc=[0.13208,0.129656]; 

Dc=[0]; 

Gc=ss(Ac,Bc,Cc,Dc,Ts);  

% Fixed-point conversion parameters 

Wl = 21; % Word length, integer+fractional parts 

Fl = 16;   % Fractional part 

S=2^Fl ; 

ke1=[5.017862284983336e-04; -1.962693211189190e-05; 4.758862132834878e-04;-

3.039545010122170e-05];   

ke = fi(ke1,1,Wl,Fl);   

MW=9.2375e-09;  

%% Global model of the FT-G100 micro-gripper 

k0=1000;% Stiffness of the micro-object 

k2=6.45; 

r=0.1290; 

Kk=(k2*k0)/(k2+k0); 

A=[Aa zeros(2,2);Bc*Kk*Ca Ac]; 

B=[Ba;zeros(2,1)]; 

C=[zeros(1,2) r*Cc]; 

D=[0]; 

Gg=ss(A,B,C,D,Ts); 

  %Canonical form 

   Gg=canon(Gg); 

     [A,B,C,D]=ssdata(Gg); 

%% Declaration of the scalar elements of the matrices 

%Matrice A 

a11 = fi(A(1,1),1,Wl,Fl); 

a12 = fi(A(1,2),1,Wl,Fl); 

a13 = fi(A(1,3),1,Wl,Fl); 

a14 = fi(A(1,4),1,Wl,Fl); 

a21 = fi(A(2,1),1,Wl,Fl); 

a22 = fi(A(2,2),1,Wl,Fl); 
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a23 = fi(A(2,3),1,Wl,Fl); 

a24 = fi(A(2,4),1,Wl,Fl); 

a31 = fi(A(3,1),1,Wl,Fl); 

a32 = fi(A(3,2),1,Wl,Fl); 

a33 = fi(A(3,3),1,Wl,Fl); 

a34 = fi(A(3,4),1,Wl,Fl); 

a41 = fi(A(4,1),1,Wl,Fl); 

a42 = fi(A(4,2),1,Wl,Fl); 

a43 = fi(A(4,3),1,Wl,Fl); 

a44 = fi(A(4,4),1,Wl,Fl); 

%Matrice B 

b11 = fi(B(1,1),1,Wl,Fl); 

b21 = fi(B(2,1),1,Wl,Fl); 

b31 = fi(B(3,1),1,Wl,Fl); 

b41 = fi(B(4,1),1,Wl,Fl); 

%Matrice C 

c11 = fi(C(1,1),1,Wl,Fl); 

c12 = fi(C(1,2),1,Wl,Fl); 

c13 = fi(C(1,3),1,Wl,Fl); 

c14 = fi(C(1,4),1,Wl,Fl); 

%Matrice XE 

xe11(:,1) = fi(0,1,Wl,Fl); 

xe21(:,1) = fi(0,1,Wl,Fl); 

xe31(:,1) = fi(0,1,Wl,Fl); 

xe41(:,1) = fi(0,1,Wl,Fl); 

%% LQ Control 

%% Parameters of the optimal control 

%R=1; 

%Q=[1 0 0 0;0 10 0 0;0 0 1 0;0 0 0 1000]; 

%%Solving Recatti equation 

%[Pc,mat1,mat2]=dare(A,B,Q,R); 

%%Gain of the optimal control 

%Kc=inv(R+(B'*Pc*B))*B'*Pc*A;%Gain of the optimal state feedback 

Kc1=[-0.000497622140588062,-0.0506923522114969,-0.970182175915640,1.60838698935252]; 

Kc = fi(Kc1,1,Wl,Fl); 

%% Prefiltre 

L=0.101783536095972; 

%L = fi(L1,1,Wl,Fl); 

 

%%Setpoint 

fcc = 10; 

Lfcc=L*fcc; 

Lfcc= fi(Lfcc,1,Wl,Fl); 
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%% Parameter initialisation 

Vin(:,1)=fi(0,1,Wl,Fl); 

%% Kalman filter 

% Parameter initialisation 

M=0.01*[1;1;1;1]; 

W= 9.2375e-005;% Variance of the state noise 

V=1.7419e-005;% Variance of the measure noise 

x(:,1)=[0;0;0;0]; 

%% Noise loading 

load bre.txt; 

load brm.txt; 

load tb.txt; %vecteur de temps  

% State noise 

     w=bre; 

     w=[w w]; 

     w=w(1:long);  

% Measure noise 

     v=brm; 

     v=[v v]; 

     v=v(1:long);  

%% LQG control loop     

q=0; 

 for i=0:Ts:tf; 

     q=q+1; 

     % Kalman discret model 

      x(:,q+1)=(A*x(:,q))+(B*double(Vin(:,q)))+(M*w(:,q)); 

      xa(:,q+1)=((C*x(:,q+1))+(v(:,q+1))); 

      xa(:,q+1)= fi(xa(:,q+1),1,Wl,Fl); 

      % Prédiction 

      %)------------------------ 

      V =Vin(:,q); 

      V3=2*V+V; 

      V5=4*V+V; 

      V7=8*V-V; 

      ea1=xe11(q); 

      ea3=2*ea1+ea1; 

      ea7=8*ea1-ea1; 

      eb1=xe21(q); 

      eb3=2*eb1+eb1; 

      eb7=8*eb1-eb1; 

      ec1=xe31(q); 
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      ec3=2*ec1+ec1; 

      ec5=4*ec1+ec1; 

      ed1=xe41(q); 

      ed3=2*ed1+ed1; 

      ed5=4*ed1+ed1; 

      %----------------------------- 

      xp11(q+1)= fi((-V5*2^2+V*2^9)/S + (ea3*2^4+ea3-ea7*2^12+ea1*2^9+ea1*2^16)/S + (-eb3*2^4-

eb3-eb7*2^11+eb1*2^9+eb1*2^16)/S,1,Wl,Fl); 

      xp21(q+1)= fi((V7*2^2-V-V*2^14+V*2^9)/S + (eb3*2^4+eb3-eb7*2^12+eb1*2^9+eb1*2^16)/S - (-

ea3*2^4-ea3-ea7*2^11+ea1*2^9+ea1*2^16)/S,1,Wl,Fl); 

      xp31(q+1)= fi((V7*2^3-V+V*2^13+V*2^10)/S + (-ec1*2^6-ec3*2^8-ec5*2^11+ec1*2^16)/S + 

(ed5*2^4-ed5*2-ed1*2^15+ed3*2^8+ed1*2^16)/S,1,Wl,Fl); 

      xp41(q+1)= fi((V5*2^4-V*2^15+V3*2^8+V*2^16)/S + (-ed1*2^6-ed3*2^8-ed5*2^11+ed1*2^16)/S - 

(ec5*2^4-ec5*2-ec1*2^15+ec3*2^8+ec1*2^16)/S,1,Wl,Fl); 

      %----------------------------- 

      pa1=fi(xp11(q+1),1,Wl,Fl); 

      pa3=fi(2*pa1+pa1,1,Wl,Fl); 

      pa5=fi(4*pa1+pa1,1,Wl,Fl); 

      pa7=fi(8*pa1-pa1,1,Wl,Fl); 

      pb1=xp21(q+1); 

      pb3=2*pb1+pb1; 

      pc1=xp31(q+1); 

      pc3=2*pc1+pc1; 

      pc5=4*pc1+pc1;  

      pd1=xp41(q+1); 

      pd3=2*pd1+pd1; 

      % Estimation -update- 

      xec = fi((pa7*2^3+pa3*2^10)/S - xa(q+1) + (pb3*2^4+pb3)/S + (-pc3*2^5-pc3+pc5*2^9)/S + 

(pd1*2^6+pd1*2^2-pd3*2^8)/S,1,Wl,Fl); 

      xe11(q+1)= fi(xp11(q+1) - (xec+xec*2^5)/S,1,Wl,Fl); 

      xe21(q+1)= fi(xp21(q+1) + xec/S,1,Wl,Fl); 

      xe31(q+1)= fi(xp31(q+1) - (-xec+xec*2^5)/S,1,Wl,Fl); 

      xe41(q+1)= fi(xp41(q+1) + 2*xec/S,1,Wl,Fl); 

      %----------------------------- 

      xae(:,q)= fi(((7*2^3+3*2^10)*xe11(q)/S + (3*2^4+3)*xe21(q)/S + (-3*2^5-3+5*2^9)*xe31(q)/S + 

(2^6+2^2-3*2^8)*xe41(q)/S),1,Wl,Fl); 

      xae1(:,q)=double(xae(:,q)); 

      %----------------------------- 

      ee1=xe11(q+1); 

      ef1=xe21(q+1); 
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      ef3=fi(2*ef1+ef1,1,Wl,Fl);  

      eg1=xe31(q+1); 

      eg3=fi(2*eg1+eg1,1,Wl,Fl); 

      eh1=xe41(q+1); 

      eh3=fi(2*eh1+eh1,1,Wl,Fl); 

      % Control voltage  -Estimator form- 

       Vin(:,q+1)= fi((66705/S-((-ee1-ee1*2^5)/S+(ef3*2-ef1*2^8-ef3*2^10)/S+(-

eg3*2^5+eg1*2+eg1*2^11-eg1*2^16)/S+(-eh1-eh1*2^6-eh1*2^10-eh3*2^13+eh1*2^17)/S)),1,Wl,Fl); 

      % Vin(:,q+1)= fi((Lfcc -( Kc(1,1)*xe11(q+1)+Kc(1,2)*xe21(q+1) +Kc(1,3)*xe31(q+1)  +                  

Kc(1,4)*xe41(q+1))),1,Wl,Fl); 

       Vin1(:,q+1) =double(Vin(:,q+1)); 

 end 

%% Affichage des courbes  

%% Curve display 

    figure(1); 

    plot(tt,sens*xa); 

    hold on; 

    plot(t,sens*xae,'r'); 

    title('Noisy and filtered force (Fc) of the actuated arm'); 

    xlabel ('Time (s)'); 

    ylabel('Force(µN)'); 

    grid on;  

    figure(2); 

    plot(tt,Vin); 

    title('Voltage control (Vin) at the input of the electrostatic actuator'); 

    xlabel ('Time (s)'); 

    ylabel('Voltage (Volts)'); 

    grid on; 

 



Binary Arithmetic for Finite-Word-Length Linear Controllers: MEMS Applications 
 

Abstract: This thesis addresses the problem of optimal hardware-realization of finite-word-length 

(FWL) linear controllers dedicated to MEMS applications. The biggest challenge is to ensure 

satisfactory control performances with a minimal hardware. To come up, two distinct but 

complementary optimizations can be undertaken: in control theory and in binary arithmetic. Only the 

latter is involved in this work. 

    Because MEMS applications are targeted, the binary arithmetic must be fast enough to cope with 

the rapid dynamic of MEMS; power-efficient for an embedded control; highly scalable for an easy 

adjustment of the control performances; and easily predictable to provide a precise idea on the 

required logic resources before the implementation. 

    The exploration of a number of binary arithmetics showed that radix-2r
 is the best candidate that fits 

the aforementioned requirements. It has been fully exploited to designing efficient multiplier cores, 

which are the real engine of the linear systems. 

    The radix-2r
 arithmetic was applied to the hardware integration of two FWL structures: a linear time 

variant PID controller and a linear time invariant LQG controller with a Kalman filter. Both controllers 

showed a clear superiority over their existing counterparts, or in comparison to their initial forms. 

Key-words:  Finite-Word-Length Controllers, High-Speed and Low-Power Design, Radix-2r arithmetic 

 

Résumé: Cette thèse traite le problème d'intégration hardware optimale de contrôleurs linéaires à 

taille de mot finie, dédiés aux applications MEMS. Le plus grand défi est d'assurer des performances 

de contrôle satisfaisantes avec un minimum de ressources logiques. Afin d'y parvenir, deux 

optimisations distinctes mais complémentaires peuvent être entreprises: en théorie de contrôle et en 

arithmétique binaire. Seule cette dernière est considérée dans ce travail. 

    Comme cette arithmétique cible des applications MEMS, elle doit faire preuve de vitesse afin de  

prendre en charge la dynamique rapide des MEMS, à faible consommation de puissance pour un 

contrôle intégré, hautement reconfigurabe pour un ajustement facile des performances de contrôle, et 

facilement prédictible pour fournir une idée précise sur les ressources logiques nécessaires avant 

l'implémentation même. 

    L'exploration d'un certain nombre d'arithmétiques binaires a montré que l'arithmétique radix-2r est 

celle qui répond au mieux aux exigences précitées. Elle a été pleinement exploitée afin de concevoir 

des circuits de multiplication efficaces, qui sont au fait, le véritable moteur des systèmes linéaires. 

    L'arithmétique radix-2r a été appliquée à l'intégration hardware de deux structures linéaires à taille 

de mot finie: un contrôleur PID variant dans le temps et à un contrôleur LQG invariant dans le temps, 

avec un filtre de Kalman. Le contrôleur PID a montré une nette supériorité sur ses homologues 

existants. Quant au contrôleur LQG, une réduction très importante des ressources logiques a été 

obtenue par rapport à sa forme initiale non optimisée.    

Mots-clès: Contrôleurs à Taille de Mot Finie, Circuits à Haute vitesse et Faible Consommation de 
Puissance, Arithmétique Radix-2r 


