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Introduction

Once upon a time . . . or back in 2009 to be more precise, I discov-
ered thoroughly the transportation management system in the courses "Modeling
and Optimization" and "Logistics" held respectively by Frédéric Semet and Habib
Chabchoub as part of my master program "Operations Research and Production
Management" at the University of Sfax. I was immediately interested in supply
chain management, a subject that influences considerably the performance of the
whole system. I was particularly fascinated by the possibility of translating the
complexity of real-life transport systems into mathematical models, often easy to
state and difficult to solve. Through these courses, I discovered the traveling sales-
man problem and the vehicle routing problem, which have attracted the interest of
many researchers over more than 50 years and are still among the most prominent
combinatorial optimization problems studied until today. This hands-on, I followed
later on, over the period winter 2009 - autumn 2010, an intensive training entitled
"Algorithms and Data Structures applied to Operational Research" held by Mahdi
Khemakhem. This training was part of the Ph.D. preparation courses organized
by the LOGIQ laboratory. The training offered insight into metaheuristics solution
approaches applied to several combinatorial optimization problems. We considered
and applied efficient algorithms combining neighborhoods and strategy guidelines
to obtain high quality solutions with a little computational effort. These courses
enabled me to obtain a more mature perception of transportation problems and to
express my interest for these problems for the first time through my master research
project in 2010. In this project, I proposed a generic mathematical model covering
different scenarios for a multi-constrained vehicle routing problem with compart-
ments. Then, I mostly applied an exact branch-and-bound algorithm to solve it. I
succeeded to apply this approach only for instances of limited sizes because of the
combinatorial aspect of the problem. Therefore, with some knowledge about ex-
act and approximate solution approaches and with a lot of motivation, I decided to
explore more thoroughly this research area in my Ph.D. thesis, since January 2011.
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Introduction

Rich vehicle routing problems as research field
Satisfying efficiently requirements for transportation systems is a central aspect in
logistics. It typically affects strategic and long term horizon decisions involving
large capital investments. But it conditions also the success of medium and short
term horizon operations. Modeling real-life transportation problems as mathemat-
ical programs has a deep impact on the optimization process. Over simplifications
may omit relevant features of the problem or may even generate solutions and rec-
ommendations which cannot be converted into feasible real-life decisions. Similarly,
when all details with respect to the transportation problem are included, the result-
ing model may turn to be intractable. The proposed mathematical models should
then maintain a balance between generality and exhaustiveness. Figure 1 illustrates
the operations research cycle gathering the problem modeling, the model solution
and the solution interpretation so as to change the original problem through deci-
sions. Finally, one has to ensure that a final solution addresses the core problem
properly.

Figure 1: Operations research cycle (Rardin, 1998)

The problems considered in this thesis arise in the field of freight road trans-
portation in many real-life industrial contexts. They correspond often to complex
combinations of assignment, loading, scheduling and routing decisions. All the
decisions are inter-correlated with the objective of optimizing the transportation
resources while satisfying the customers requirements. Because many features have

2



to be considered as well as different types of decision, such transportation problems
are usually considered as "rich". A rich transportation problem may be considered
as a multi-attribute problem reflecting the complexities of the real-life transporta-
tion systems by combining various challenges revealed daily. The most general case
of transportation problems can be modeled as a capacitated vehicle routing problem
(CVRP). Introduced more that fifty years ago (Laporte, 2009), the Vehicle Rout-
ing Problem (VRP) is one of the most prominent and widely studied combinatorial
optimization problem. We conduct a simple query on Scopus using "vehicle rout-
ing" as search words over a period of 39 months, from January 2010 to March 2014.
This exact phrase was searched in "Article Title, Abstract, Keywords" field options
to remove irrelevant studies. The search resulted in 3570 publications with a peak
in 2013 with up to 1000 publications. These publications include 1858 conferences
papers, 1692 journal articles, 13 book chapters and 7 books. The growth rate of
the VRP literature requires necessarily a systematic way to classify the emergent
and new variants of VRPs. Many surveys exist, describing specific VRP variants
and displaying the similarities and the differences among the contributions. We re-
fer, for example, to (Ritzinger and Puchinger, 2013) for the stochastic VRP, (Pillac
et al., 2013) for the dynamic VRP, (Archetti and Speranza, 2012) for the split VRP,
(Campbell and Wilson, 2014) for the periodic VRP. Nonetheless, this observation
enables us to identify existing gaps in the literature dealing with VRPs. There is a
lack of studies dealing with the emergent research area, often known as Rich VRPs
(RVRPs), inspite of the several surveys for single-variant VRPs. The class of RVRPs
requires a taxonomy providing a framework to identify those which can be consid-
ered as rich among the numerous variants of the VRPs. The purpose of the first
part of the thesis is to provide a generic taxonomy for the RVRPs literature with
respect to relevant real-life issues.

Unified framework methodology as a research in-
centive
Many solution methods have been designed for the VRPs: exact methods, which
provide the optimal solution of a model, and approximate approaches, which pro-
duce high quality solutions within a reasonable amount of time at the expense of
optimality. Since most of the problems tackled are NP-hard, exact methods are sel-
dom applicable in real-life contexts. Such cases require often a solution of a large
and multifaceted VRPs within a short computation time. An alternative to exact
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Introduction

methods would be to combine exact and metaheuristic algorithms. This emergent
approach, referred to as matheuristics or model-based metaheuristics, seems to be a
very promising path towards the solution of rich combinatorial optimization prob-
lems. Matheuristics take advantage from synergy between approximate and exact
solution approaches and often lead to considerably higher performance with respect
to solution quality and running time. Puchinger and Raidl (2005) classify these
methods into two main categories: collaborative combinations and integrative com-
binations. The collaboration consists in executing exact and heuristic algorithms
sequentially or in parallel while exchanging information between both. However, no
algorithm is contained in another. At the opposite, the integration requires the def-
inition of a subproblem embedded into a master problem. The column generation
algorithm based on metaheuristics is a good example for this category. It consists in
using the value of the dual bounds for assessing the quality of admissible solutions
obtained by approximate approaches. We follow this approach in this thesis.

Previously proposed solution methods for VRPs may often be adapted to other
problem to a certain degree while the real-life problems bring new methodological
challenges because of their variety. Such variety may affect both the problem model
and the proposed solution method. In addition, RVRPs always combine conflicting
decisions and objectives. Solving these problems iteratively by considering subset
of features and/or decisions may lead to unfeasible decisions. Therefore, proposing
new solution approaches for each specific real-life problem independently is no longer
a reasonable choice neither for researchers nor for practitioners. Indeed, commer-
cial softwares for transportation systems must be able to face a variety of real-life
problems and respond to the multiple combinatorial issues that may arise. These
statements motivate the development of a unified method to provide good quality
solution approaches for a wide class of rich and basic VRPs. The number of pub-
lished studies that propose unified solution approaches addressing several variants
of routing problems has increased significantly, see e.g. (Røpke and Pisinger, 2006b,
Subramanian et al., 2011, Derigs and Vogel, 2014, Vidal et al., 2013b, 2014). As
stated, the methodological purpose of this thesis is to propose a flexible column gen-
eration based matheuristic to solve RVRPs.The proposed method may be used to
solve a set of basic and rich VRPs. The matheuristic proposed relies on the variable
neighborhood search (VNS), (Mladenovic and Hansen, 1997), since it includes the
desirable features of a metaheuristic (Cordeau et al., 2002b). The simple version of
the VNS is based on exploiting neighborhood structures iteratively. This feature of-
fers a considerable flexibility when it comes to extension as well as specialization of
the matheuristic.
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In this thesis several problems were selected as testbed for reasons explained at
the beginning of each corresponding chapter. All these variants can be viewed as ex-
tensions of the Capacitated VRP (CVRP) or/and of the traveling salesman problem.
The general problem we tackle is the multi-depot multi-compartment multi-
commodity vehicle routing problem with time windows (MDMCMCm-VRPTW).
The main variants addressed are: the multi-compartment profitable tour prob-
lem with time windows and incompatibility constraints denoted by (RPTP), the
orienteering problem (OP), the orienteering problem with time window (OPTW),
the multi-product, multi-period and multi-compartment vehicle routing problem
(MPPC-VRP) and the multi-compartment vehicle routing problem (MC-VRP).

Contributions details
Motivated by a case study dealing with heterogeneous goods, we examine a vari-
ant of the CVRP arising when multi-compartment vehicles are required to ensure
the transport of multiple products under physical and temporal restrictions. In this
problem, a customer may have different orders, each corresponding to one single
product. Since orders may be delivered by different vehicles, this introduces some
restricted splitting policies and leads to increase the problem difficulty. We propose
to design and implement a unified matheuristic framework to solve this challeng-
ing VRP, and show how it can be used to solve related rich VRPs. The main
contributions of this thesis are sketched by Figure 2.

Taxonomy : Our first contribution consists in defining the hierarchical attributes
considered when building the taxonomy and identifying the related recent and rel-
evant surveys and studies. We survey and classify 41 papers describing practical
cases and addressing different issues related to RVRPs according to the taxonomy
built. Finally, we conduct a cluster analysis on the selected papers that leads us to
provide a discriminating definition for this class of problems.

Flexible and unified method : This thesis contributes to the solution of a rich
VRP and some of its variants through a column generation based matheuristic. The
column generation resolution requires the definition of a master problem and sub-
problems, one for each vehicle. The overall performance relies on the algorithm
used for them. A first methodological contribution of the thesis is the design of
generic data structures which facilitates the flexibility of the code. We design four
main data structures describing respectively the problem, the customer order, the
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compartment and the solution. Next, we propose a VNS matheuristic, based on
approximate routing neighborhoods and exact loading neighborhoods to solve the
MDMCMCm-VRPTW with a single vehicle. Routing neighborhoods are based on
the Ruin and Recreate paradigm, (Schrimph et al., 2000). The current solution is
partially destroyed, and then repaired using adapted insertion and removal heuris-
tics. The performance of the VNS matheuristic is assessed on instances including up
to 288 customers for the OP and the OPTW literature and on more complex gen-
erated instances. It produces high quality solutions (less than 3% from the optimal
solution values) within very short computational time (few seconds). The column
generation based method (detailed in chapter 5) solves the master problem heuris-
tically thanks to the embedded VNS matheuristic. At each iteration, single vehicle
routes generated by the VNS are included in the pool of routes. Then a new solu-
tion combining some of these routes is identified, which leads to another call to the
VNS procedure.

A post-processing step solving to optimality an NP-hard assignment problem is
executed to eliminate dominated routes. The efficiency of the algorithm is assessed
on instances for the CVRP and the MCVRP. The obtained results are competitive.
By validating the proposed framework, we contribute to the research in the RVRP
area where such solution algorithms have not been considered before.

Compartment assignment problem : Considering multi-compartment vehi-
cles in a routing problem further increases the difficulty of the problem addressed.
In such cases, the routing and the loading problems have to be optimized jointly.
However, we examine separately the loading problem associated with MC-VRP and
referred to the compartment assignment problem (CAP). We propose and solve to
optimality two mathematical models for the CAP: a Quadratic Multiple Knapsack
Problem with Conflicts and a Linear Multiple Knapsack Problem with Conflicts.
These models are coupled as exact loading neighborhood to the VNS matheuristic
to optimize the loading problem of the current solution.

Modeling and solving a real-life case study : This thesis was initiated
through a cooperation with industrial partners facing the problem of collecting olive
oil in Tunisia. The harvest must be picked up from different producers, geographi-
cally scattered over the center of Tunisia, during a set of periods and with respect
to incompatibility restrictions. The relatively small size of the real-life instances
encouraged us to solve the problem to optimality. We propose a mathematical
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Figure 2: Contributions summary
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Introduction

formulation for the problem along with a set of new and known valid inequali-
ties and routing and assignment cuts. Based on the work of (Coelho and Laporte,
2013a), we propose an exact branch-and-cut algorithm. We obtain considerable im-
provements when compared to the current plans designed manually by the industrial
partners and we provide an automated way of making routing and allocation de-
cisions more efficiently. Additionally, we generate realistic data sets and conduct
further experiments to evaluate different transportation scenarios and to highlight
the advantages of buying multi-compartments vehicles.

Outline
Being divided into six parts, the structure of this document matches with the re-
search work described above. Chapter 1 presents an overview for many relevant VRP
classes, then provides a definition for RVRPs. The remaining chapters describe the
methodological contributions of this thesis. Chapter 2 is about the MDMCMCm-
VRPTW. We formally introduce the problem. Then, we propose a mixed integer
linear programming formulation and an integer model based on the Dantzig-Wolfe
decomposition. Chapter 3 is devoted to the description of hybrid solution approaches
to solve the MDMCMCm-VRPTW with a single vehicle. We give a general presen-
tation of the VNS method forming the core of our solution approach. Sequential
and collaborative combinations of a set of routing and loading neighborhoods are
presented next. We focus on the description of efficient removal heuristics for shak-
ing. For customers re-insertion and route improvement we propose several insertion
heuristics as well as exact loading neighborhoods. In Chapter 4 we move from the
method description to the method implementation. We analyze the challenges en-
countered while developing the VNS method and provide a simple and effective data
structure which may be easily generalized for other VRP classes. Later, we assess
the efficiency of the proposed matheuristic on a set of single-vehicle routing instances
with profits from the literature and on a set of new generated instances. We provide
a sensitivity analysis distinguishing the main components for increasing the perfor-
mance of the VNS. The column generation based algorithm is described in Chapter
5. We present its different components and further provide computational results
on a selection of RVRPs including the instances from the real-life application. The
latter is described in Chapter 6. The formulation is provided and strengthened by
the introduction of a set of known and new valid inequalities. We examine their im-
pact on the algorithm efficiency. To better support the managerial process of the
industrial partner which is currently on the verge of buying new vehicles, we gener-
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ate a set of instances with different fleet composition describing the possible future
scenarios. Finally, overall conclusions and perspectives are drawn in the last chapter
of the thesis. In Appendix A, we report detailed computational experiments carried
out in this thesis.
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Chapter 1

Rich vehicle routing problems:
from a taxonomy to a definition

The purpose of this chapter is twofold: i) to provide a comprehensive and relevant
taxonomy for the RVRP literature; ii) to propose an elaborate definition of RVRPs.
To this end, selected papers addressing various cases are classified using the pro-
posed taxonomy. Once the articles have been classified, a cluster analysis based on
two discriminating criteria is performed and leads to the definition of RVRPs.

Part of this work was presented at the First IEEE International Conference on
Logistics Operations Management (GOL’2012), (Lahyani et al., 2012). An article
based on this chapter was submitted for publication: R. Lahyani, M. Khemakehm, F.
Semet. Rich vehicle routing problems: From a taxonomy to a definition. European
Journal of Operational Research, submitted for publication.
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1.1 Introduction
The Vehicle Routing Problem (VRP), introduced by Dantzig and Ramser (1959),
is a central problem in operations research applied to transportation sciences. Over
the last three decades, the number of academic publications on the numerous vari-
ants of the VRP has increased extensively (see (Eksioglu et al., 2009)). These studies
can be roughly divided into theoretical papers providing mathematical formulations
and exact or approximate solution methods for academic problems and case-oriented
papers. Several taxonomies and surveys devoted to the VRP have appeared, e.g.,
(Bodin, 1975, Bodin and Golden, 1981, Desrochers et al., 1990, Laporte and Osman,
1995) who provided a bibliography of 500 studies. More recently, Laporte (2009)
reported on the last fifty years of academic vehicle routing from a historical per-
spective and Eksioglu et al. (2009) presented a taxonomy for the VRP literature.
Many books or book chapters have been devoted to the VRP, its variants, and to
exact and heuristic algorithms, see, e.g., (Toth and Vigo, 2002, Cordeau et al., 2007,
Golden et al., 2008).

The most elementary VRP considered in the literature is the CVRP. Geograph-
ically scattered customers have demands for a homogeneous product. They have
to be served by identical vehicles with a limited capacity based at one depot. The
CVRP aims to determine a set of vehicles routes of minimum total cost over a sin-
gle period such that: i) each route starts and ends at the depot; ii) each customer
is served by only one vehicle; iii) the total demand on each route does not exceed
the vehicle capacity. Most papers devoted to classical problems focus on idealized
models and are motivated by unsolved theoretical problems. Nevertheless, in re-
cent years methodological progress and the development of computer technologies
has led to an increasing academic attention to new variants including more complex
constraints and objectives. This trend is stimulated by the complex characteristics
of real-life VRPs. The families of these extended problems are often called Rich
Vehicle Routing Problems (RVRPs). Several works focusing on RVRPs have been
published. In particular, two special issues were dedicated to works on rich com-
binatorial optimization problems (Hartl et al., 2006, Hasle et al., 2006). Papers
by (Sörensen et al., 2008, Drexl, 2012a) compare the VRPs in academic research
versus the VRPs in the real-life and delineate the complexity of real-life VRPs.
Based on identified gaps, they emphasize on the necessity of adapting commercial
software systems to the evolution of customer needs, and of incorporating more in-
tricate constraints. Doerner and Schmid (2010) present a survey devoted to hybrid
matheuristics for RVRPs and identify promising future avenues.
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In most papers devoted to RVRPs, the authors claim that the problem addressed
is rich, and then focus on the mathematical modeling and on the solution methods.
Thus, the definitions of the RVRP are rather vague and not significantly different.
For instance, (Pellegrini, 2005, Reyes et al., 2008, Rieck and Zimmermann, 2010,
Drexl, 2012a) suggest that the term rich vehicle routing is associated with problems
that represent some or all aspects of a real-world application including optimization
criteria, constraints, and preferences. Recently, some attempts have been made to
propose unified models and algorithms tackling different classes of routing problems,
see e.g. (Røpke and Pisinger, 2006b, Subramanian et al., 2011, Derigs and Vogel,
2014, Vidal et al., 2013b, 2014).

There is no precise definition nor criterion that leads to determine whether or
not a VRP is rich. Such definition has to rely on a relevant taxonomy which can help
to distinguish among the numerous variants of the VRP. Therefore, the objective of
this chapter is twofold: i) to provide a generic taxonomy for the RVRP literature
with respect to relevant real-life issues; ii) to propose a discriminating definition of
the RVRP.

The remainder of this chapter is organized as follows. Section 1.2 describes the
taxonomy and introduces the key characteristics considered when it was built. Def-
initions of the hierarchical taxonomy attributes are provided. In Section 1.3, we
survey several papers describing practical cases and addressing different issues re-
lated to RVRPs. They are classified on the basis of the taxonomy attributes. A
cluster analysis of the selected papers is provided and discussed. Last, a RVRP def-
inition is proposed. Section 1.4 concludes this chapter by discussing some future
research avenues.

1.2 RVRP Taxonomy
Creating a taxonomy is an efficient and effective way of consolidating knowledge
(Reisman, 1992). It enables not only efficient and effective storage, sorting, and sta-
tistical analysis but also knowledge expansion and building (Eksioglu et al., 2009).
Several surveys and classifications of the VRP have been used as guidelines for the
RVRP taxonomy developed in this chapter. This taxonomy aims to build a relevant
framework to classify any RVRP study without going into unnecessary details. It at-
tempts also to highlight the different facets of richness encountered in the literature,
and to distinguish RVRPs from standard VRPs.

To "validate" this taxonomy, we have selected papers devoted to RVRPs pub-
lished since 2006. Real-life and academic works using as benchmarks randomly
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generated instances or real data have been considered. Surveys or theoretical ar-
ticles without testbed have been omitted. Only papers devoted to node routing
problems for road transportation have been retained. More than a half of them are
based on real-life applications. We also have paid attention to take papers emanat-
ing from different countries. Indeed, each country has its geographical and political
specificities and its own industrial practices. This may lead to introduce specific con-
straints on the routing plan. As a result, 41 papers published in different journals
and conferences are examined attempting to be as exhaustive as possible. However,
we apologize for any unintended omission of some relevant articles.

1.2.1 Taxonomy

In this section, we focus on the description of the taxonomy (see Table 1.1) and
on the presentation of its main attributes. The taxonomy was iteratively built, due
to the complexity of the distribution planning process. The taxonomy does not in-
tend to highlight all differences between variants of the VRP in order to maintain
its comprehensibility and its size. It is instead designed according to central con-
cepts in routing that are often present in industrial applications. More precisely, the
attributes mentioned are not necessarily the basic VRP features but are related to
characteristics which alter the nature of the problem significantly. The purpose of
the taxonomy is not to classify the papers according to all the details but rather to
focus on relevant features. Indeed, we face the following dilemma. The omission of
relevant variants of problems studied in the literature introduces some bias in the
classification. Similarly, deepening the level of details may lead to an unmanage-
able taxonomy. Hence, we try to maintain a moderate level of granularity for the
proposed RVRP taxonomy.

The taxonomy is constructed hierarchically with at most four subclasses. Prob-
lems are considered according to the Scenario Characteristics (SCs) and to the
Problem Physical Characteristics (PPCs). Under each of these two classes, the most
discriminating attributes are listed. They determine whether or not the problem un-
der study can be classified as rich. The taxonomy is organized in an arborescent
way with three levels associated with the strategic level, the tactical level and the
operational level. Each of them is divided into sublevels. The difference between
the three levels depends on the types of decision involved. The strategic and tacti-
cal levels are associated with the first branch of the taxonomy, i.e. the SCs. They
correspond to the transportation strategy which describes the distribution system
and designs its main components. At the strategic level, the company has to de-
cide if the operational plan deals simultaneously with decisions related to different
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functions of the supply chain or if transportation planning issues are addressed. For
instance, the strategic planning could include decisions related to the locations and
the number of depots used. At the tactical level, the order type and the visit fre-
quencies at customers over a given time horizon could be considered. The multi-use
of vehicles or the data type leads to other extensions. Although these decisions are
not related to daily transport activities, they affect the routing plan significantly.

The operational level is associated with the PPCs. It describes the distribution
planning including the vehicle and the driver schedules. At this level, short-term
and daily decisions are handled considering each vehicle route. These decisions re-
late to the routing of goods using the distribution system designed at the strategic
and tactical levels. These decisions are based on the characteristics of vehicles, and
on specific constraints faced daily. These constraints are specified for a customer, a
vehicle, a driver or a road.

Table 1.1: A Taxonomy of RVRPs
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1.2.1.1 Scenario characteristics (SCs)

In this section, we describe the sublevels of the strategic and tactical levels presented
in Table 1.1. We briefly define the characteristics of each sublevel and provide some
relevant references.

1.2.1.1.a Input data

The uncertainty and the variability of the data over the planning period are key
factors for a classification of VRPs. Data can be subdivided into four classes:
deterministic, stochastic, static and dynamic.

The deterministic routing problem assumes that the problem parameters are
known with certainty while the stochastic data assumes that probability distribu-
tions are associated with them. In the Stochastic Vehicle Routing Problem (SVRP),
the routes may not be followed as planned. The three most common stochastic
parameters studied in the literature are: customers demands, service times and
travel times (Hasle and Kloster, 2007). We refer to (Gendreau et al., 1996, Flatberg
et al., 2005, Cordeau and Laporte, 2007, Louveaux and Laporte, 2009, Ritzinger and
Puchinger, 2013) for focused surveys.

A seminal work on the Dynamic Vehicle Routing problem (DVRP) is due to
Psaraftis (1988). In the DVRP, the scheduling plan established at the beginning
of the planning period may be adjusted. It allows the possibility of receiving addi-
tional information and changing some problems parameters. Then, the problem is
resolved. For example, new customer requests may occur during the planning period
and must be considered while the vehicles routes are being executed. For recent lit-
erature reviews, we refer to (Psaraftis, 1995, Powell et al., 2001, 2003, Larsen et al.,
2008, Berbeglia et al., 2010, Pillac et al., 2013).

1.2.1.1.b Decision management components

Supply chain management is a set of approaches utilized to integrate efficiently cus-
tomers, manufacturers, warehouses and stores. It ensures producing the products
and distributing them at the right quantities, to the right location and at the right
time in order to minimize system wide costs while satisfying service level require-
ments (Kaminsky and Simchi-Levi, 2003). Hence, integrating decisions of different
functions such as purchasing, inventory control, outsourcing, locating depots, pro-
duction planning, and distribution management are a practice increasingly followed
by many companies (Armentano et al., 2011). Nevertheless, the complexity of these
functions may inhibit defining and solving a complete model including all decision
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variables. The related extensions of the VRP in the literature are inventory-routing,
location-routing, production-routing and vehicle and driver scheduling. Schmid
et al. (2013) propose an elaborated survey on relevant extensions of routing prob-
lems arising in the context of supply chain management. The authors describe a
new family of integrated models considering the interdependencies between different
types of decisions.

The service type decision is a strategic level of decision. Going back to the paper
by Dantzig et al. (1954), each customer has to be served once and only once. How-
ever, profits may be associated with the customer service. In such cases, a subset
of served customers must be determined to maximize an objective function which
includes the total profit collected. This VRP variant is known as the VRP with
profits, see (Feillet et al., 2005).

Boudia et al. (2007) states that, ideally, any cost reduction effort should encom-
pass a production planning. First introduced by Glover et al. (1979), production
and distribution planning aims to determine the quantity produced for each item,
the distribution plans and the quantities of each item delivered to each customer.
This variant was reviewed by (Vidal and Goetschalckx, 1997, Sarmiento and Nagi,
1999, Chen, 2004, Adulyasak et al., 2013) while recent works are those of (Chandra
and Fisher, 1994, Armentano et al., 2011, Adulyasak et al., 2012).

In Inventory Routing Problems (IRP), the supplier defines, in addition to the
routing plans, the quantities to deliver using inventory levels at consumers to avoid
stock shortages. Fisher et al. (1982) and Bell et al. (1983) pioneered this approach
when they studied the IRP at Air Products, a producer of industrial gases. Elabo-
rate surveys are provided by (Campbell et al., 1998, Cordeau et al., 2007, Bertazzi
et al., 2008). Andersson et al. (2010) also describe industrial aspects of combined
inventory management and routing in maritime and road transportation. They pro-
pose a classification and a comprehensive literature review of the current state of the
research. Coelho et al. (2013) describe this research area over the last thirty years.
They categorize the IRP literature with respect to the structure of the problem and
to the availability of information on customer demand. When production manage-
ment, inventory management and transportation management are combined, the
objective is to determine the quantities produced, the quantities delivered to cus-
tomers and the vehicle schedules while minimizing the total costs. These costs
include setup costs, holding costs and distribution costs. Some relevant references
are (Fumero and Vercellis, 1999, Boudia et al., 2007, Boudia and Prins, 2009, Bard
and Nananukul, 2009, Coelho et al., 2012a,b, Coelho, 2013, Coelho and Laporte,
2013b,c, 2014).
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The Location Routing Problem (LRP) aims to determine the location of depots
serving customers and the routes rooted at those depots simultaneously. Surveys
on the LRP have been proposed by (Balakrishnan et al., 1987, Laporte, 1988, 1989,
Berman et al., 1995, Min et al., 1998) and recently by (Nagy and Salhi, 2007).

The simultaneous determination of the vehicle and driver schedules represents
a significant trend in transportation management. It implies to elaborate a crew
assignment and the associated routes concurrently. The literature devoted to this
challenging variant is scarce (Wen et al., 2011). Nevertheless, recent papers have
been published e.g., (Haase et al., 2001, Freling et al., 2003, Xu et al., 2003, Goel,
2009, Zäpfel and Bögl, 2008, Wen et al., 2011). Note that the regulation of working
hours can be modeled as additional constraints (see the section dedicated to driver
regulations).

1.2.1.1.c Depots

In the classic VRP, a single depot is in use which may be quite restrictive in practice.
Thus, in real-life applications, there are often multiple depots and vehicles may have
different starting and final locations. It may be required to allocate the customers to
the appropriate depot. The depots may have different characteristics, regarding of
their number, locations and capacities, which may affect the overall costs. Over the
last four decades, many papers studied the multi-depots vehicle routing problem, for
instance, (Tillman, 1969, Laporte et al., 1984, 1988, Salhi et al., 1998, Surekha and
Sumathi, 2011, Vidal et al., 2012, Hemmelmayr et al., 2013, Rahimi-Vahed et al.,
2013, Muter et al., 2014).

1.2.1.1.d Operation type

Four classes of routing problems can be distinguished: problems where goods are
either delivered or picked-up, problems where goods are loaded and unloaded, prob-
lems where goods are loaded on board when the delivery part of the route is
completed, and last dial-a-ride problems. The first class corresponds to the classical
VRP. The goods are loaded at the depot and then unloaded at customer locations,
or pickup tasks are performed at the customer sites and the unloading at the depot.
The second class, where goods are transported between pickup and delivery loca-
tions, is named Vehicle Routing Problems with Pickups and Deliveries (VRPPD).
In the VRPPD, goods can be loaded or unloaded at each customer. In the standard
case, the pickup point and the delivery point must be served on the same route.
There are many possible extensions to the VRPPD. The VRPPD was divided into
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other subclasses in Parragh et al. (2008b). A survey on this research area is due to
Desaulniers et al. (2002).

The Vehicle Routing Problems with Backhauls (VRPB) was introduced by
Goetschalckx and Jacobs-Blecha (1989). It consists in transporting goods from
the depot to linehaul customers and from backhaul customers to the depot. The
VRPB arises in various applications like in the grocery industry where supermar-
kets and shops are considered as the linehaul customers, and grocery suppliers are
the backhaul customers (Toth and Vigo, 2002). Four subtypes of the VRPB were
considered and detailed in Parragh et al. (2008a).

The Dial-A-Ride Problem (DARP) refers to the situation where a shipment has
to be transported between pre-specified pickup and delivery locations under ser-
vice restrictions. The DARP arises frequently in health related transportation like
patient transportation or blood transportation. Recent solution methods and sur-
veys on the DARP can be found in (Berbeglia et al., 2007, Cordeau and Laporte,
2007, Parragh et al., 2008b, Paquette et al., 2009, Kirchler and Wolfler Calvo, 2013,
Paquette et al., 2013).

The difference between the above described problems is usually expressed
through additional constraints. For the last three classes, there are always
precedence constraints between the different types of nodes.

1.2.1.1.e Load splitting

In the classical VRP, each customer is served by only one vehicle. The possibility
of multiple visits to the same customer characterizes the VRP with Split Deliver-
ies (SDVRP) introduced by Dror and Trudeaut (1989). An intermediate level of
splitting should also be identified when several products have to be delivered to a
customer. In this case, several visits to the same customer may occur, each product
being delivered during a unique visit. Archetti and Speranza (2007, 2012) proposed
a state of the art for the SDVRP.

1.2.1.1.f Planning period

The distribution plan may be computed over a single period or over several periods.
In the Periodic Vehicle Routing problem (PVRP), all the input data is available
at the beginning of the planning period. The customer requests are known in ad-
vance as well as the possible combinations for the visiting days. At each period, one
has to decide which customers are served in this period and which orders are post-
poned to the next periods. The PVRP was first introduced in the paper of Beltrami
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and Bodin (1974). Since then it was extensively studied and enriched with sev-
eral variants. A vast literature is dedicated to the PVRP, see e.g., (Cordeau et al.,
1997, Francis and Smilowitz, 2006, Hemmelmayr et al., 2009, Wen et al., 2010, Bal-
dacci et al., 2011, Gulczynski et al., 2011, Vidal et al., 2012, Michallet et al., 2014).
(Francis et al., 2008, Campbell and Wilson, 2014) have proposed a focused survey
on modeling and solution methods.

1.2.1.1.g Multiple use of vehicles

In the VRP with multiple use of vehicles, the same vehicle may perform several
trips during the planning period while respecting additional temporal precedence
constraints. Introduced by Fleischmann (1990), the multiple use of vehicles was ad-
dressed recently. Most papers appear in the last decade, see, e.g., (Petch and Salhi,
2003, Olivera and Viera, 2007, Salhi and Petch, 2007, Alonso et al., 2008, Azi et al.,
2010, 2012, Macedo et al., 2011, Cattaruzza et al., 2014). In this variant, it is com-
mon to add additional restrictions related to the vehicle use and to decompose the
operating costs in loading/unloading costs and variable costs. The variable costs
may be related to the vehicle cleaning service between tours as in (Oppen et al.,
2010, Oppen and Løkketangen, 2008).

1.2.1.2 Problem physical characteristics (PPCs)

1.2.1.2.a Vehicles

Vehicles with different characteristics better match customer needs related to phys-
ical restrictions, to environmental concerns, to specific logistic equipments or to
demand variations, see, for example, (Semet and Taillard, 1993, Tarantilis et al.,
2003, 2004, Bräysy et al., 2008). The first characteristics of the vehicles considered
here are related to the types of vehicle available at the planning period. There are
also physical characteristics related to the loading/unloading process. Last, social
driver regulations may significantly affect the vehicle routes and are considered then
as vehicle characteristics.

Dealing with the fleet composition goes back to the seminal paper by Kirby
(1959). Since then, several variants of the Heterogeneous Fleet Vehicle Routing
Problem (HFVRP) have been addressed in the literature. Recent surveys have been
proposed by Baldacci et al. (2008), Hoff et al. (2010). The primary decision related
to the fleet consists to determine the size of the fleet, which is always limited in real
life applications.
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The most common capacity constraints in freight transportation are expressed
in terms of weight, volume, or number of pallets. Several capacity restrictions
may be taken into account simultaneously. The vehicles may differ according to
their capacities and the same vehicle may have several compartments with different
capacities. Derigs et al. (2011a) have proposed a survey on VRP with multiple com-
partments. The use of multiple compartments is relevant when several products,
which must remain separated during transportation, have to be loaded on the vehi-
cles. For instance, multi-compartment vehicles are used, to perform selective waste
collection (Muyldermans and Pang, 2010b, Reed et al., 2014), to distribute food re-
quiring different levels of refrigeration (Chajakis and Guignard, 2003), to distribute
various types of fuel to petroleum companies (Brown and Graves, 1981, Cornillier
et al., 2008b,a) and to transport animals from farms to slaughterhouses (Oppen and
Løkketangen, 2008). The optimization of routes to transport animals from farms to
slaughterhouse is known as the livestock collection problem. It is a complex IRP
combining animal welfare regulations and production and inventory constraints, and
requiring vehicles with compartments.

Recently, loading and routing problems have been addressed jointly. Their com-
bined optimization leads to the Loading Vehicle Routing Problem (LoVRP) dealing
with more complex loading constraints than a simple weight or volume restriction.
Routes are obtained thanks to the chronological order induced by the loading policy.
The most common loading/unloading methods are based on the LIFO (Last-In-First-
Out) and FIFO (First-In-First-Out) rules. If the vehicle picks up request i before
request j, then it must deliver request j (i) before delivering request i (j) respec-
tively (Carrabs et al., 2007). Some references devoted to different variants of the
LoVRP are (Doerner et al., 2007, Fuellerer et al., 2009, 2010, Tricoire et al., 2011).
In other studies, the loading problem and the routing problem are solved separately.
The loading problem is viewed as a Bin Packing Problem (Cruz Reyes et al., 2007)
or as a Tank Truck Loading Problem (Cornillier et al., 2008b,a, 2009, 2012). Iori
and Martello (2010) propose a recent survey on the VRP with loading constraints.

Although a vast literature is devoted to the VRP, constraints related to the legis-
lation on driving and working hours were included infrequently. Such rules are either
imposed by the company or legal regulations. Some examples are: daily working
periods, number and duration of daily and weekly rest periods, maximum period
of driving hours, overtime working hours and wages, etc. Driver regulations aim
to provide safe driving, to reduce the number of accidents and to reduce the total
costs. In recent years, there has been an increasing number of papers describing
VRPs where a limited set of the European Union or United States regulations is
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taken into account (e.g., (Zäpfel and Bögl, 2008, Wen et al., 2011, Beaudry et al.,
2010, Derigs et al., 2011b, Parragh et al., 2012)). Other studies include all parts of
the mandatory legislation and the legal requirements, e.g., (Rancourt et al., 2013,
Vidit, 2008) who studied the US regulation in his thesis. (Goel, 2009, Kok et al.,
2010, Prescott-Gagnon et al., 2010) consider a VRP with time window respecting
all driver rules imposed by the European Union. Recently, Goel and Vidal (2013)
consider several sets of driver regulations in the United States, Canada, the Euro-
pean Union and Australia to provide an international evaluation of the impact of
different rules on the road safety and on the minimization of transportation costs.

1.2.1.2.b Time related constraints

The VRP with time window (VRPTW) was studied first in case studies by (Pullen
and Webb, 1967, Knight and Hofer, 1968, Madsen, 1976). Time window constraints
impose that the service at every customer must start and end within a given time
window. In the case of hard time window, the vehicle is allowed to arrive before
the defined time window and waits until the customer becomes available, but it is
not allowed to arrive late. In the case of soft time window, penalties are given for
services starting after the allowed time windows. It leads to take into account the
travel times between customer locations, the service times at customers and the
loading/unloading times at the depot. Defining time window at the depot implies
that the earliest departure time and the latest arrival time for each vehicle must lie
within the interval time associated with the depot. A variant is the multiple time
windows in which one of the time intervals associated with each customer has to be
selected. In the last decades, time constrained routing problems have been exten-
sively studied. Bräysy and Gendreau (2005a,b), Kallehauge et al. (2005), Kallehauge
(2008) and Gendreau and Tarantilis (2010) propose recent surveys on this problem.

Often, the route duration is limited to a predefined parameter which may be
equal to the total driver working hours or to the route access time. Indeed, a road
segment may have a limited access given by an interval of time specifying when it
can be entered. The time restriction can also be set by the number of customers
visited on a route.

1.2.1.2.c Incompatibility constraints

In real-life applications, many (in)compatibility constraints may occur between
the problem entities specifically customer, depot, vehicle compartment, prod-
ucts and driver, as it was discussed in Hasle and Kloster (2007). These
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(in)compatibilities can be classified in two types depending on the causing fac-
tor: physical (in)compatibilities and temporal (in)compatibilities. Some of these
constraints are described in what follows.

An extension of the VRPTW is the VRP with temporal dependencies, which
includes synchronization and sequencing constraints between customers, vehicles,
visits or depots. As Dohn et al. (2011) point out, many practical applications
including such constraints were studied. Some examples are: (i) sequencing con-
straints related to technicians in the Port of Singapore, (e.g., (Lim et al., 2004, Li
et al., 2005)); (ii) synchronization between visits in ground handling at airports,
(e.g., Dohn et al. (2009)); (iii) coupled time windows for vehicles and schools in the
design of school bus transportation services, (e.g., Fügenschuh (2006)).

The temporal incompatibilities are also present as precedence constraints requir-
ing synchronization between tours. The vehicle must visit some pick-up customers
before visiting some delivery customers. This chronological order is a key point in
the DARP, in the VRPPD, in the VRP with backhauls and sometimes in VRP. For
example, in the transportation of livestock from farms to slaughterhouses, (Oppen
and Løkketangen, 2008, Oppen et al., 2010), the health status associated with the
farms may enforce an order for the visits. An elaborate and recent survey on vehicle
routing problems with multiple synchronization constraints is due to Drexl (2012b).

There are also physical inclusion and exclusion restrictions as discussed in
(Desrochers et al., 1990). It may occur that a customer must (not) be served from
a given depot, by a given vehicle (e.g., Pellegrini et al. (2007)) or a specific driver
(e.g., Rieck and Zimmermann (2010)). Indeed, the vehicle requirements and the
driver qualifications, such as licensing, training for transporting specific materials
and knowledge about a geographical area, may limit the compatibility between driver
and vehicle. The VRP including incompatibilities between customers and vehicles
types is known as the site dependent VRP (see e.g., Baldacci et al. (2008)).

Similarly, the vehicle characteristics or the product specificity may cause vehicle-
request incompatibility, see e.g., (Goel and Gruhn, 2008, Goel, 2010, Ceselli et al.,
2009). In the distribution of multi-commodity loads, each vehicle can be used to
handle specific types of cargos. Distribution to groceries is a relevant example where
different types of food to deliver require vehicles with different temperature levels.
In animal transportation, different animal types cannot be transported together in
the same compartment (e.g., (Oppen and Løkketangen, 2008, Oppen et al., 2010)).
Similarly in a health application, the patient condition may prohibit sharing the
ambulance with other patients to avoid the spread of diseases or to allow a medical
staff assistance, see e.g., (Beaudry et al., 2010, Parragh et al., 2012).
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1.2.1.2.d Specific constraints

In industrial real-life applications, managers face continuously various and non-
standard challenging constraints coming from the problem specificities. For instance,
decisions may be constrained by outsourcing resources, by environmental issues,
by the prioritization of customers or by cross docking related restrictions. Other
constraints are logistic restrictions encountered daily when the vehicle routes are
designed. They are described in what follows.

• Outsourcing decisions
In some cases, decision has to be made whether a route is performed using
the company resources or outsourcing services. The constraint set is then ex-
panded, and the cost function includes cost terms for outsourced resources.
Recent papers taking into account such decisions are due to (Ileri et al., 2006,
Zäpfel and Bögl, 2008, Moon et al., 2012, Kovacs et al., 2012, Stenger et al.,
2013).

• Environmental protection
During the last years, environmental concerns have been addressed in VRP
studies. This research avenue is known as green routing problems in the lit-
erature. More precisely, the use of vehicles may be constrained by the release
of gas and toxic effluents into the atmosphere. Reducing noise may also be
a restriction on the types of vehicles used. Erdoğan and Miller-Hooks (2012)
formulated and proposed solution methods for a green VRP arising in the re-
fueling industry. Xiao et al. (2012) extend classical works on CVRP with the
objective of minimizing fuel consumption and identified factors causing the
variation in fuel consumption. The reader may refer to the book of McKinnon
et al. (2012) and to the survey papers by (Sbihi and Eglese, 2007a,b, Demir
et al., 2014, Lin et al., 2014) who examined the environmental issues related
to vehicle routing and scheduling problem.

• Prioritization of customers
Additional transportation requests may have to be planned to face some un-
expected events such as out of stock situations at some customers or vehicle
breakdowns. In such a case, priority tags are put on orders to determine which
goods must be delivered first (see e.g., Cornillier et al. (2008b, 2009)).

• Cross docking strategy
A cross dock terminal can be considered as a consolidation center having a
short term inventory holding capacity. During a short time period incoming
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cargos are unloaded and sorted at a distribution center, and then goods are
loaded on outgoing vehicles serving given areas, see e.g. , (Lee et al., 2006,
Liao et al., 2010, Wen et al., 2009, Santos et al., 2011a,b, Vahdani et al., 2012,
Van Belle et al., 2012). Such delivery systems are of interest for industries
facing large distribution costs like pharmaceutical and food companies, see
e.g., Boysen (2010). Decisions related to the management of cross docking
terminals are constrained by the design of the pickup and delivery routes.

• Open routes
A few papers have been devoted to the Open Vehicle Routing Problem (OVRP)
introduced by Schrage (1981). In the OVRP, the driver must not return to the
depot once the last customer on the route has been served. The route may ter-
minate at a car park or at the driver home. Some relevant applications of the
OVRP can be found in the home delivery of packages and newspapers (e.g.,
Russell et al. (2008)), when deliveries are outsourced to independent contrac-
tors or when drivers use their own vehicles. Some recent studies on the OVRP
are due to (Tarantilis and Kiranoudis, 2002, Brandão, 2004, Fu et al., 2005,
Letchford et al., 2007, Ceselli et al., 2009, Rieck and Zimmermann, 2010).

• Accessibility constraints
Accessibility constraints differ from incompatibility constraints between vehi-
cles and customer locations by imposing the use of different transportation
means to serve customers. This corresponds to different real-life cases based
on multimodal transportation systems. For example, in Semet and Taillard
(1993) some routes are covered by trucks and trailers which have to be un-
coupled to serve a subset of customers. Some references describing different
truck and trailer routing applications are Gerdessen (1996), Hoff and Løkke-
tangen (2007), Caramia and Guerriero (2010), Derigs et al. (2013), Villegas
et al. (2011, 2013).

• Simultaneous vehicles on site
In some industry sectors, many orders per day may have to be delivered at
the same customer separately. Since queues may occur, a limit is set on the
number of vehicles that are present simultaneously at the same location, e.g.,
Cruz Reyes et al. (2007). This restriction occurs in the production and the
delivery of newspapers where a fixed number of trucks may start their routes
at the same time for the state edition, e.g., Russell et al. (2008).
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• Cleaning
To satisfy sanitary rules and to prevent contamination while transporting oil,
chemicals products, lubricants, cattle food and animals, vehicle cleaning is an
essential daily operation. Cleaning may be not necessary for some sequencing
of products. Hence, in the VRP model we have to decide when cleaning oper-
ations are necessary for the proposed scheduling plan and how much it costs.
For example, in (Oppen and Løkketangen, 2008, Oppen et al., 2010), the au-
thors impose the visits of the disinfected farms at the end of the route to avoid
unnecessary cleaning.

1.2.1.2.e Objective function

The objectives can be multiple and diverse. The most common objectives include
minimizing some or all of these criteria: the total traveled distance, the total time,
the total tour cost, the fleet size, and/or maximizing the service quality, the col-
lected profit. When multiple objectives are identified, the different objectives are
often in conflict. Hence, adequate algorithms have to ensure some trade-off between
them. For a survey on the multi-objective VRPs, we refer to Jozefowiez et al. (2008).

1.3 Taxonomy analysis
Considering the selected papers, we have to mention that some authors first con-
sider a simplified version of a VRP and then tackle a more complicated variant
by considering additional constraints. For instance, Parragh (2011) first solves a
restricted and simplified version of the heterogeneous DARP. Then Parragh et al.
(2012) take into consideration the medical requirements of patients and modeled
them as incompatibilities constraints. Similarly, Pellegrini (2005) focuses on a VRP
with heterogeneous vehicles and multiple time windows for customers. Later on, in
Pellegrini et al. (2007) the authors consider multiple visits to some customers over
a periodic horizon, hierarchical objectives, and additional customer requirements.

In Tables 1.2 and 1.3, papers addressing different variants of the VRP are listed.
Table 1.2 is devoted to papers addressing pure routing problems. Therefore, the
sublevels of the level decision management component (1.2) are omitted. In Table
1.3, we consider papers that combine routing vehicles with other strategic or tac-
tic facets. Each article is classified according to the attributes defined in the above
taxonomy (see Table 1.1). The subclasses and branching classes are shaded. When
the attribute is present in the corresponding paper, ’X’ is reported in the associated
cell. The column headed Number provides the numbers, we assigned, to each se-

26



lected paper. In what follows, we give the number of the selected paper into square
brackets. The columns headed Formulation, Real case study indicate whether or
not the article includes a mathematical formulation and/or a set of instances based
on a real-life application. In the column headed Rich, we report whether or not
the authors consider the problem under study as a RVRP. The last column headed
Method refers to the types of designed method(s).

In Tables 1.2 and 1.3, all described attributes are present in one paper at least.
This shows that no unnecessary node has been introduced in the taxonomy. In se-
lected papers, the routing based problems with pickups or deliveries were studied
more deeply than the other variants. Indeed, 61% of the papers selected addressed
routing issue only (1.2.1), and 70.7% of them are devoted to pickup or delivery
(1.4.1) problems. At the opposite, little attention has been paid to routing prob-
lems dealing with other decisions, such as location (1.2.3), driver scheduling (1.2.4)
and production (1.2.5). This suggests some promising future research avenues. Even
if stochastic and dynamic problems are quite challenging, they constitute almost 15%
of the selected papers which illustrate the key role played by these problem char-
acteristics. Different types of temporal and physical incompatibilities between the
basic entities (2.4) are present in the considered papers (63.4%) as well as specific
restrictions (2.5) related to real-life applications (53.7%). Moreover, the time con-
strained routing problems have been studied intensively. In more than half of the
selected papers, the VRPs tackled take into account time window restrictions for
customers and/or road accesses (2.2.2). Opening hours for depots (2.2.3) are de-
fined in almost 40% of the papers. Last, it is noteworthy to mention that the social
constraints such as legislation rules on driving and working hours are considered in
22% of the papers (2.1.6). This illustrates that social driver regulations increasingly
are taken into account in the VRP literature since 2006.

In 56% of the papers, mathematical formulations are provided even if approx-
imate methods are then designed to solve the problem under study. The models
typically aim to provide a complete description of the problem. With respect to the
solution methods, exact algorithms are proposed in two papers while heuristics and
metaheuristics are described in the remaining 39 papers. This is due to the ability of
approximate methods to find near-optimal solutions for large instances of complex
problems.
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Table 1.2: Selected papers devoted to pure routing problems
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Table 1.3: Selected papers devoted to combined routing problems
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To obtain a more accurate partition of the selected papers, we classify them us-
ing a cluster analysis. The cluster analysis consists in gathering the observed data
having many similarities into significant structures. The formed groups must be as
different as possible while the degree of similarity of the data clustered in the same
group must be maximal. The clustering method used is the K-means algorithm.
The clustering is based on the paper score according to 2 criteria: the number of
scenario characteristics and the number of the operational characteristics. To cal-
culate the scores, we follow 2 main principles. First, we count at least 1 for each
paper according to the attributes (1.2) and (1.4). These attributes are necessary
to describe the problem under study. Second, we add one to the score only if the
problem addressed has one additional feature compared to the basic variant of the
deterministic VRP (see below). Each of these attributes may be considered as di-
chotomous either the score increases by one or zero. The basic variant of VRP,
we defined, is a single depot pickup (or delivery) routing problem. The planning
horizon is one period. All vehicles are identical and covered one route only. Their
number is unlimited. All data are known a priori. This basic variant has a score of
2 for the SCs and of 0 for the PPCs. For the clustering analysis, we include stan-
dard VRPs (see Toth and Vigo (2002)) in addition to the VRPs described in the
41 selected papers. The standard versions are: the CVRP [90], the Distance Con-
strained VRP (DCVRP) [91], the VRPTW [92], the VRPB [93] and the VRPPD
[94]. The greatest dissimilarity between clusters is obtained for 3 clusters using the
K-means method. These clusters are depicted in Figure 1.1.

Cluster C1 contains papers having a significant degree of similarity. It includes
13 papers with the largest scores for the PPCs: [3, 7, 8, 9, 11, 12, 26, 27, 28, 29,
31, 33, 38]. All papers except the article by Rieck and Zimmermann (2010) [33]
are devoted to variants of the VRP with many complicating optimization criteria
and constraints coming from different real-life applications. In all papers of C1, a
capacitated heterogeneous fleet is used, and (in)compatibility constraints (2.4) are
present. In most of them, time window constraints are imposed and/or a restriction
on the number of vehicles (2.1.2.1) is present. Nine papers address variants with a
wide variety of specific constraints (2.5).

The papers of C1 are devoted to VRPs with eight operational characteristics
at least. They are considered by their authors as RVRP studies. For example, in
the papers of (Oppen and Løkketangen, 2008, Oppen et al., 2010) [26, 27], an in-
ventory routing problem is tackled. It consists in collecting animals from farms for
slaughterhouses. This real-world case extends standard routing problems by defining
multiple trips, multiple periods and split deliveries. Several PPCs are considered.
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Figure 1.1: Cluster analysis

They are related to the heterogeneous capacitated and multi-compartment vehicles,
to loading rules for animals, to cleaning constraints, to incompatibilities constraints
between animal types, farms and animals, etc. The variety of the real-life features
considered assesses the richness of the problem addressed in these papers.

The papers by Cruz Reyes et al. (2007, 2008) [11, 12] describe the distribution of
bottled products for a Mexican company. The problem tackled includes 6 variants of
the VRP in [11] and 11 variants in [12]. Many practical aspects are considered such
as a heterogeneous capacitated and limited fleet, the assignment of several trips to
vehicles, the loading plan, time window restrictions and incompatibilities between
products. Additional constraints are included. First, the positions of the loaded
products are optimized according to their weights. Second, the number of vehicles
simultaneously present on the same location is limited. An extended version, which
includes multiple depots and the assignment of orders to the depots, is studied in
[12]. In their paper, Ceselli et al. (2009) [7] consider several operational constraints
that arise in a real life situation. In this application, the routes performed thanks to
a heterogeneous fleet may start from different depots, and may be open paths and
not closed paths. Time windows are associated with the depots and the customers,
which may be served according to a split delivery policy. The authors consider also
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social driver regulations and incompatibilities between products, depots, vehicles
and customers. Last, outsourcing is made possible by using express courier services.
Parragh et al. (2012) [28] and Beaudry et al. (2010) [3] study dial-a-ride problems
enriched by several complicating operational constraints which arise in the hospi-
tal context. For instance, these constraints required for patient transportation are:
precedence constraints, the desired pickup or delivery time restrictions for patients
and hospitals, etc. Last, the paper by Rancourt et al. (2013) [31] has a score of 2
according to SCs, but it considers various driver safety rules imposed for long-haul
trips in North America under different objectives. The authors consider many PPCs
such as multiple time windows at customers and different subsets of heterogeneous
vehicles, which served subsets of customers.

Cluster C3 includes papers dealing with variants of the VRP with the lowest
scores for the PPCs and different scores for the SCs. 15 papers are in C3 : [1, 2,
4, 5, 6, 10, 14, 17, 18, 21, 22, 23, 24, 25, 30] as well as the 5 standard VRPs de-
fined in Toth and Vigo (2002). Since they are in the same group as the standard
VRPs, the problems addressed in these papers have a low level of richness a priori.
Indeed, only 5 papers out of 15 are case studies and most of the diverse real-life con-
straints considered in the papers of C1 are not present. For instance, the articles by
Mendoza et al. (2009, 2011, 2010) [23, 24, 25] are the only ones in which incompat-
ibility constraints are taken into account. Split deliveries is an option in 2 papers
only, Magalhães and Sousa (2006) [22] and Bolduc et al. (2006) [4]. Magalhães and
Sousa (2006) [22] study a pharmaceutical case-study in a dynamic multi-period en-
vironment using a heterogeneous fleet. Each vehicle may cover several routes and
is loaded according to a chronological order. In [4], the authors address an inven-
tory routing problem on a multi-period horizon using a heterogeneous limited fleet
and a multiple use of vehicles. Fügenschuh (2006) [14] consider a real world bus
scheduling problem taking into account school starting times and public bus sched-
ule. The assignment of several trips to buses is the unique additional SC imposed.
In their work, Prodhon and Prins (2008) [30] tackle a VRP variant closed to a stan-
dard one. The paper by Crainic et al. (2009) [10] addresses a multi-depot periodic
VRP including time constraints and using a homogeneous unlimited fleet. Last, in
their works, Mendoza et al. (2009, 2011, 2010) [23, 24, 25] describe routing prob-
lems for compartmentalized vehicles in a stochastic environment which are close to
the classic VRPs. Hvattum et al. (2006) [18] consider an extended variant of the
VRP to take into account some aspects of a real case faced by a major distribution
company in Norway. The problem is modeled as a periodic dynamic and stochas-
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tic problem with temporal constraints for customers and the depot. This paper is
slightly different from those included in C3.

Last, Armentano et al. (2011) [1], Boudia et al. (2007) [6], Boudia and Prins
(2009) [5], and Bard and Nananukul (2009) [2] integrate two types of strate-
gic decision by coordinating the production, inventory and routing decisions over
a multi-period horizon. The customer demands are satisfied either from inven-
tory and/or thanks to the daily production of a single facility. The integration
of two levels of decision illustrates the complexity of real-life supply chain man-
agement problems. It adds various constraints to the basic model to ensure the
balance between demand, production, inventory and deliveries at the facility and at
customers.

Cluster C2 includes the following papers: [13, 15, 16, 19, 20, 32, 34, 35, 36, 37,
39, 40, 41]. It lies between cluster C1, which gathers articles devoted to real cases
and multi-constrained problems, and cluster C3, which contains papers addressing
VRPs which seem not to be rich. In C2, we can identify variants of the VRP closed
to those tackled in the papers of C1 or of C3 in terms of SCs and PPCs. Thus,
Reimann and Ulrich (2006) [32] and Ileri et al. (2006) [19] describe problems which
are not entirely different from the standard VRPs. The problem studied in [32] dif-
fers from the basic VRPB [93] by imposing time windows at customers and depots,
by bounding the route length and by defining a lexicographic objective function.
In [19], the problem addressed is a variant of the VRPPD [94] where multiple time
windows are associated with customers, possible additional stops between the origin
and the destination are considered, and the social rules for the drivers are satis-
fied. In their paper, Derigs and Döhmer (2008) [13] have addressed a pickup and
delivery problem with time window using an unlimited homogeneous capacitated
fleet. The work of Wen et al. (2009) [40] on the vehicle routing with cross-docking
differs from the VRPPD by adding restrictions to synchronize inbound and out-
bound flows. However, the terminal management is not modeled since constraints
related to the resource limitations are not included. For instance, the authors do
not take into account the capacity of the cross-dock, the number and the availability
of docks, and the scheduling of trucks processed at the dock doors, see e.g., (Kreng
and Chen, 2008, Boysen and Fliedner, 2009, Miao et al., 2009). Last, Kok et al.
(2010) [20] study a routing and crew scheduling problem with time window. In this
work, the European social legislation on drivers’ working hours is considered, but
basic physical and the scenario characteristics are included.

Papers devoted to VRPs with 6 to 8 PPCs are also present in C2. Such problems
could be considered as RVRPs. For instance, in their paper, Schmid et al. (2009)
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[37] develop a hybrid solution approach for a rich application in the concrete indus-
try. It consists in delivering concrete produced at different plants to construction
sites at their preferred periods. Multiple visits using a heterogeneous capacitated
fleet are allowed. Different incompatibility constraints between products, vehicles
and customers must be satisfied as well as specific constraints related to the delivery
process at construction sites. Schilde et al. (2009) [36] study the patient transporta-
tion problem faced by the Austrian Red Cross daily. The problem is modeled as
a multi-objective DARP which aims to satisfy dynamic and stochastic requests in
their specified time intervals using a fixed fleet. Zäpfel and Bögl (2008) [41] combine
a multi-period vehicle routing problem with a crew scheduling problem to address
a postal case-study. They consider pickup and delivery routes and time constraints
at the customers and the depots. Driver outsourcing is also considered.

The analysis of the three clusters shows that the multi-constrained VRPs are
considered in papers included mainly in C1 or C2. At the opposite, problems close
to standard VRPs are addressed in papers belonging to clusters C3 and C2. The
foregoing discussion leads us to define a frontier which discriminate the selected pa-
pers (see Figure 1.1). Below the frontier, there are standard variants of the VRP
[90, 91, 92, 93, 94] and papers describing problems closed to those variants. Above
the frontier, papers are devoted to multi-constrained problems.

With respect to the two clustering criteria, we note that multi-constrained prob-
lems have at least 4 SCs and 6 PPCs in the papers included in C1. Rich combinations
contain more PPCs than SCs. This is not a general rule, but it indicates combi-
nations leading to rich vehicle routing studies. In addition, the previous discussion
put into highlights that other combinations may lead to RVRPs. Those are stud-
ies above the frontier and can be characterized as follows: i) papers in which the
strategic level includes several constraints related to the distribution system (5 SCs
or more) , see, e.g., [18, 22]; ii) papers addressing variants in which the strategic
and tactical levels remain standard but the operational characteristics of the route
planning are increased (9 PPCs or more), see, e.g., [8, 29, 31, 38]. It is noteworthy
that some VRPs based on real case studies could not be viewed as RVRPs as illus-
trated by papers [14, 19, 40]. The definition of RVRPs based on the taxonomy relies
on the characteristics of the selected papers. In the literature, the RVRP is defined
as a problem which simultaneously includes several types of challenging and com-
plicating features. It is associated with the complexity of real-life routing problems.
Now, we propose a more precise definition:
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Definition

A RVRP extends the academic variants of the VRP in the different decision levels
by considering at least four strategic and tactical aspects in the distribution system
and including at least six different daily restrictions related to the physical charac-
teristics. When a VRP is mainly defined through strategic and tactical aspects, at
least five of them are present in a RVRP. When a VRP is mainly defined through
physical characteristics, at least nine of them are present in a RVRP.

Clearly, the state of the art of RVRPs has changed since 2006. Some variants
described as rich by their authors in 2006 may not be considered as such anymore
whereas recent papers contain more complex aspects of reality.

1.4 Conclusions
In this chapter, a general taxonomy for RVRPs is proposed. Several papers have
been classified and analyzed. A more elaborate definition of the RVRP than the ex-
isting ones results from this analysis. The taxonomy has been proven to be valid
since some variants of the VRP are classified. Nevertheless, this taxonomy may be
limited and not applicable for some exotic VRPs. In some countries, the distri-
bution process includes primarily specific operational constraints. It may end up,
rarely, with an uncommon problem that contains mainly particular constraints (2.4).
Whether such problem should be classified according to the taxonomy, it could be
not considered as a RVRP according to our taxonomy. Moreover, the RVRP tax-
onomy developed should not remain unchanged over time. It should be updated
as new industrial challenges arise and new attributes may be added. Last, as the
RVRPs incorporate complex features of real-life routing problems, there should be
unified approximate methods to provide good solutions for these problems. Such
heuristics should be generic and able to solve several VRP variants studied in the
literature. A first step in this direction has been made by (Røpke and Pisinger,
2006b, Subramanian et al., 2011, Derigs and Vogel, 2014, Vidal et al., 2013b, 2014).
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Chapter 2

Models for a rich vehicle routing
problem with compartments

In this chapter, we formally introduce the multi-depot multi-compartment multi-
commodity vehicle routing problem with time windows (MDMCMCm-VRPTW).
We propose a mixed integer linear programming formulation for this problem. To
improve the lower bounds obtained from the linear relaxation and to derive easily
feasible solution, we apply the Dantzig-Wolfe decomposition to the previous model.
The model associated with the pricing subproblem is then formulated and discussed.
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2.1 Introduction
The use of multi-compartment vehicles is essential for several industries such as the
transportation of food or petroleum products. In Chapter 1 we provide an overview
of MC-VRPs while in this section we will further deepen this review. A literature re-
view on the VRP with compartments in the food and petrol industries was proposed
by Derigs et al. (2011a). Few published papers were devoted to food transporta-
tion. Such cases concern often delivering dry, refrigerated and frozen commodities
where compartments are equipped with adequate cold holding equipment to main-
tain temperatures for fresh delivery. The use of fleet with several compartments is
common in fuel and oil distribution (Brown et al., 1987, Cornillier et al., 2008a, 2009,
2012, Fagerholt and Christiansen, 2000, Relvas et al., 2014, Van der Bruggen et al.,
1995). Fuel delivery applications are often considered as routing problems ensur-
ing the delivery of petroleum products to underground tanks located in gas stations
(Brown et al., 1987, Van der Bruggen et al., 1995) or as inventory-routing problems
(Popović et al., 2012, Coelho and Laporte, 2013a, Vidović et al., 2014). This prob-
lem is often referred to the petrol station replenishment problem and it has been
widely addressed by Cornillier et al. (2008b,a, 2009, 2012). Such problems arise also
in maritime transportation where a fleet of ships equipped with flexible cargoes is
engaged to distribute liquefied natural gas (Stålhane et al., 2012, Halvorsen-Weare
and Fagerholt, 2013) or of non-mixable cement products (Christiansen et al., 2011)
from loading ports to customers around the world. For a recent survey on maritime
inventory routing problems, see (Papageorgiou et al., 2014).

Transporting oil and fuel with multi-compartment vehicles is more challenging
and interesting from a scientific point of view than transporting food, where dif-
ferent commodities can be pre-assigned to suitable compartments. In this case,
the loading problem reduces to a simple capacity checking procedure (Derigs et al.,
2011a, El Fallahi et al., 2008, Melechovsky, 2013, Muyldermans and Pang, 2010b).
In contrast, in fuel transportation, a routing problem and a compartment assign-
ment problem must be solved jointly. For more details on the loading aspect arising
in vehicle routing problems with compartments, see section 3.4.2.2 in Chapter 3 and
(Pirkwieser et al., 2012b).

An homogeneous fleet is often assumed in the MC-VRP literature since the fleet
is often homogeneous in distribution companies, and the problem is already very
hard to address, (Wang et al., 2014). When distributing different types of fuel,
vehicles are often not equipped with debit meters. As a consequence, a given com-
partment must hold at most only one customer demand. This scenario has been
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widely studied in the MC-VRP literature, see e.g., (Cornillier et al., 2008b,a, 2009,
2012, Popović et al., 2012, Vidović et al., 2014). Coelho and Laporte (2013a) in-
troduce and define the generalized case where compartments can be equipped with
debit meters and the load of a compartment can be split between different cus-
tomers. They also distinguish between the cases where customers may or may not
receive the visit of more than one vehicle per period. The authors highlight the
difficulty of the problem with split compartments and multiple visits per period.

In this chapter, we provide a three-index vehicle flow formulation for the
MDMCMCm-VRPTW. Cordeau et al. (2002a) point out that the network lower
bounds of the equivalent model for the VRPTW obtained by relaxing the time
windows and the capacity constraints is often of poor quality. Similarly, the linear
programming lower bound provides a weak linear relaxation. A possible way to over-
come this drawback is to apply appropriate decomposition procedures, such as the
Dantzig-Wolfe decomposition, which typically provides a tight linear programming
relaxation.

The remainder of this chapter is organized as follows. In Section 2.2 we introduce
and describe formally the MDMCMCm-VRPTW. Then we present a three-index
vehicle flow formulation for the problem, along with a set of valid inequalities. In
Section 2.3 we give an overview of the Dantzig-Wolfe decomposition and apply it
on the MDMCMCm-VRPTW. The problem reformulation decomposes the compact
formulation into smaller subproblems which have their solutions combined in a mas-
ter problem. We describe the relation between the Dantzig-Wolfe decomposition
and the column generation approach and we review its principles. Section 2.4 is de-
voted to describe and model the subproblem. Section 2.5 provides some concluding
remarks.

2.2 Mixed integer linear program for the MDMC
MCm-VRPTW

2.2.1 Problem description

The basic node routing problem is the CVRP, a well-known NP-hard problem (Garey
and Johnson, 1990). The MC-VRP is a generalization of the CVRP in which each
vehicle has only one compartment and it is shown to be NP-hard in (El Fallahi
et al., 2008). Being a generalization of the MC-VRP, the Multi-Compartments Ve-
hicle Routing Problem with Time Windows (MC-VRPTW) is also NP-hard. The
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MC-VRP is obtained when the earliest time and latest time for each customer are
set to 0 and infinity respectively.

The MDMCMCm-VRPTW enriches the CVRP in many ways by considering
several complicated constraints encountered in common practical situations. In this
problem, the routes performed by an homogeneous and sufficiently large fleet may
start from different depots. A customer may have different orders, each correspond-
ing to a single product. A key feature is that some products are incompatible
and must be kept separated during transportation. There are also incompatibil-
ity relations between products and compartments. Thus, these features lead to use
multi-compartments vehicles. Time windows are associated with the depots and the
customers, which may be served according to a specific split delivery policy. Feasible
routes are limited in capacity and time. The MDMCMCm-VRPTW consists then
in designing vehicle routes of least total cost including the routing costs, the vehicle
fixed costs and the total waiting time. Each vehicle route starts and ends at its asso-
ciated depot such that all the customers orders are satisfied, possibly through several
routes, while respecting temporal and physical restrictions. Therefore, a problem
solution specify (1) the assignment of customers to vehicles, (2) how many vehicles
to use, (3) the assignment of orders to compartments, (4) the sequence of the cus-
tomer visits per vehicle such that the capacity and incompatibility restrictions are
satisfied, (5) and the starting and ending times of vehicle routes.

All the problem assumptions are highlighted in Figure 2.1 and marked with an
asterix. As we can see, the MDMCMCm-VRPTW is much more characterized by op-
erational daily characteristics than by strategic ones with a score of 4 for the SC and
8 for the PPC. The problem belongs to cluster C1 (see Chapter 1, Section 1.3) and
is positioned over the frontier to the left. Classifying the MDMCMCm-VRPTW on
the basis of the taxonomy attributes confirms that addressing this problem is quite
challenging. To the best of our knowledge, this rich VRP has not been formally
addressed before.

The MDMCMCm-VRPTW is a generalization of the VRP with capacity as it is
shown in Figure 2.2. This diagram shows the derived problems obtained by relaxing
one or more constraints of the MDMCMCm-VRPTW. To simplify the illustration,
we take into consideration only the most discriminating problem attributes which
have a significant impact on the problem definition. These attributes, as depicted
in Figure 2.2, are : multi-depot (MD), multi-compartment (MC), time windows
(TW) and multi-commodity (MCm). The classical constraints, such as capacity
constraints and maximum route duration restrictions are not considered. Note that
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Figure 2.1: The MDMCMCm-VRPTW assumptions

the MCm-VRP may be considered as a simplified version of the SDVRP in which
the splitting scenarios is fixed a priori.

Formally, the MDMCMCm-VRPTW can be defined on a directed graph G =
(N , E) = (V ∪ D, E) where V = {1, . . . , n} is the set of n customers and
D = {n + 1, n + 2, . . . , n + m} is the set of m depots. E is the arc set where
E = {(i, j) : i, j ∈ V ∪ D, i 6= j}. If i, j ∈ D, then arc (i, j) 6∈ E , i.e. inter-depots
routes are prohibited. The arc (i, j) ∈ E is associated with the lowest cost path con-
necting vertices i and j. A travel cost αij and a travel time tij are associated with
each arc (i, j) ∈ E . We assume that the cost matrix is symmetric and costs satisfy
the triangle inequality. With each customer i ∈ V , are associated a hard time win-
dow [ei, li], within which the deliveries of i take place, and a service time si. In case
of early arrival at customer i, the vehicle is allowed to wait until ei which incurs
a waiting cost. Time windows are also associated with depots d ∈ D. They cor-
respond to the opening hours. They are denoted by [ed, ld] where ed represent the
earliest possible departure from the depot d and ld the latest possible arrival at the
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Figure 2.2: The related problems to the MDMCMCm-VRPTW and their intercon-
nections
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depot d. Service times for the depots are null. The total duration of any vehicle
route must not exceed a preset maximal route duration Tmax.

We consider a set K of available homogeneous vehicles K = {1, . . . , K}. We as-
sume that K is large enough to guarantee the existence of a feasible solution. We
denote by Q the carrying capacity of vehicle k and by β the fixed cost incurred.
With each vehicle k is associated a set of compartments W = {1, . . . ,W}. Each
compartment w ∈ W has a capacity Qw and is equipped with a debit meter. Fea-
sible vehicle routes are single-depot routes starting and ending at the same depot
d ∈ D. We note dko and dkd the origin and destination depots for vehicle k.

There is a set p ∈ P = {1, . . . , P} of products. Each customer i ∈ V , can place
several orders, each referring to one single product p. We denote by opi ∈ O the or-
der placed by customer i for product p. With each order opi we associate a demand
qpi . A key feature of the MDMCMCm-VRPTW is that the number of orders may
differ from one customer to another. We assume that there is at least one order for
each product type p. The delivery of any product must not be split but a customer
may receive several visits corresponding to different orders. We refer to this assump-
tion as partial customer satisfaction which offers an intermediate level of splitting.
The set of orders of one customer may be delivered by several routes starting from
different depots. The set IP ⊆ P ×P denotes the incompatibility relation between
products. (p, q) ∈ IP means that products p and q must not be carried together
in the same compartment. The set IPC ⊆ K × W × P defines incompatibilities
between products and compartments, forbidding product p to be carried in com-
partment w. To sum up its description, we provide in Table 2.1 a summary of the
MDMCMCm-VRPTW notations.

In Figure 2.3 we depict a MDMCMCm-VRPTW solution for a small example.
Consider we have the following problem data:

• V = {1, . . . , 6}

• D = {1}

• P = {p1, p2, p3, }

• O = {1, . . . , 12}

• K = {1, 2}

• W = {w1, w2, w3}

• IP = {(p2, p3)}
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Figure 2.3: Example of solution for the MDMCMCm-VRPTW

• IPC = {(1, w2, p1), (2, w2, p1)}

A solution consists of two vehicles routes covering all the customer orders within
their time windows, while respecting the compartments capacity, the incompati-
bility relations and the maximum route duration. Vehicle k = 1 performs the
route (Depot, 1, 2, 3, Depot) while the second vehicle k = 2 performs the route
(Depot, 6, 5, 4, 3, Depot).

2.2.2 Mathematical model

We propose a three-index vehicle flow formulation for the MDMCMCm-VRPTW.
Three-index vehicle flow models have been extensively used to model multi-
attributes VRPs due to their greater flexibility in incorporating several features. We
define the following decision variables. Binary variables xkij indicate if arc (i, j) ∈ E
is traversed by vehicle k. Binary variables ywkjp indicate if product p of customer j
is carried in compartment w of vehicle k, and variables bki correspond to the time
at which customer i is served thanks to vehicle k. We define variables ywkjp for all
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Table 2.1: Notations used in the description of the MDMCMCm-VRPTW

D set of depots with cardinality m
IP set of incompatible products
IPC set of incompatible products and compartments
K set of vehicles with cardinality K
N set of vertices V ∪ D with cardinality m+ n
O set of orders
P set of products with cardinality P
R set of routes
R̄ subset of routes ⊂ R
V set of customers with cardinality n
V̄ set of customers with one associated depot
W set of compartments with cardinality W
αij transportation cost associated with arc (i, j)
β fixed cost for vehicle use
γ cost of waiting time
πpi profit associated with order opi
cr cost of route r
ei earliest arrival time at customer i
li latest arrival time at customer i
opi order of product p of customer i
qpi quantity associated with order opi
Q vehicle capacity
Qw capacity of compartment w
si service time at customer i
tij travel time associated with arc (i, j)
Tmax maximal route duration
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combinations of customers and products because this simplifies the formulation.
However, since not all customers place orders for all the products, we put ywkjp = 0
if customer j does not request product p, i.e., order opj does not exist. We define
the parameter γ as a normalization coefficient. The mathematical model for the
MDMCMCm-VRPTW is as follows:

min
∑

(ij)∈E

∑
k∈K

αijx
k
ij +

∑
j∈V

∑
k∈K

βxkdk
oj

+ γ
∑
k∈K

(bkdk
d
− bkdk

o
) (2.1)

subject to

∑
i∈N

xkij ≤ 1 j ∈ N , k ∈ K (2.2)∑
i∈N

xkil −
∑
j∈N

xklj = 0 l ∈ N , k ∈ K (2.3)

bkj ≥ bki + si + tij −Mij(1− xkij) i, j ∈ N , k ∈ K (2.4)
ei

∑
j∈N

xkij ≤ bki ≤ li
∑
j∈N

xkij i ∈ N , k ∈ K (2.5)
∑

(i,j)∈E
tijx

k
ij ≤ Tmax k ∈ K (2.6)

ywkjp ≤
∑
i∈N

xkij j ∈ V , k ∈ K, w ∈ W , p ∈ P (2.7)∑
k∈K

∑
w∈W

ywkjp = 1 j ∈ V , p ∈ P , qpj ≥ 0 (2.8)

ywkjp + ywkiq ≤ 1 i, j ∈ V , k ∈ K, w ∈ W , (p, q) ∈ IP (2.9)
ywkjp = 0 j ∈ V , k ∈ K, w ∈ W , (p, wk) ∈ IPC(2.10)∑

j∈V

∑
p∈P

qpj y
wk
jp ≤ Qw k ∈ K, w ∈ W (2.11)

xkij ∈ {0, 1} i, j ∈ N , k ∈ K (2.12)
ywkjp ∈ {0, 1} j ∈ V , k ∈ K, w ∈ W , p ∈ P (2.13)

bki ≥ 0 i ∈ N , k ∈ K. (2.14)

Objective (2.1) minimizes the total transportation costs including routing costs,
fixed vehicles costs and waiting time costs. We do not consider a multi-objective
problem but we aggregate the objective functions hierarchically. The constraints
(2.2)-(2.14) may be classified into three groups of constraints.

The first set of constraints (2.2)-(2.3) is devoted to the routing restrictions. Con-
straints (2.2) mean that a customer can be visited at most once by a given vehicle,
but may be visited by several vehicles. This enables to have some split delivery pol-
icy for customers. For j ∈ D, constraints (2.2) state that each vehicle returns at
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most once to its associated depot. Constraints (2.3) specify flow conservation at
both customers and depots. They ensure the continuity of each route, i.e., if a ve-
hicle visits any customer, it has to leave it to reach another customer and/or depot.
Constraints (2.2) and (2.3) both ensure that each vehicle leaves its associated depot
and return to it at most once.

Constraints (2.4)-(2.6) maintain temporal feasibility of vehicles routes. Con-
straints (2.4)-(2.5) are time window constraints and eliminate subtours, (Cordeau
et al., 2002a). Constraints (2.6) imply that vehicles routes have a limited duration.

The third set of constraints (2.7)-(2.11) describes deliveries in terms of capacity,
loading and physical compatibility restrictions. Constraints (2.7) allow delivery
of product p to customer j only if vehicle k visits customer j. Each product
order is delivered by a single vehicle loaded in one compartment thanks to con-
straints (2.8). Constraints (2.9) guarantee that each compartment carries only
compatible products. Constraints (2.10) forbid carrying products in incompatible
compartments. Constraints (2.11) prevent compartment capacity violation. Fi-
nally, constraints (2.12)-(2.14) impose integrality and non-negativity conditions on
the decision variables.

The formulation (2.1)-(2.14) is sufficient to model the MDMCMCm-VRPTW.
Some additional constraints can however be added to strengthen this formulation.
Such constraints are called valid inequalities. According to Nemhauser and Wolsey
(1988), an inequality dTx ≤ d0 is valid for a set S ⊆ Rn if dTx ≤ d0 for all x ∈ S.
Given a formulation P , identifying valid inequalities and adding them to the for-
mulation, can cut away regions of P that contain no feasible solutions, and thus
leads to better model. The MDMCMCm-VRPTW formulation can be enriched by
the introduction of the constraints (2.15)-(2.16) to enforce logical relations between
routing and assignment variables.

∑
i∈N

xkij ≤
∑
w∈W

∑
p∈P

ywkjp j ∈ V , k ∈ K (2.15)

∑
w∈W

ywkjp ≤
∑
i∈N

xkij j ∈ V , k ∈ K, p ∈ P . (2.16)

Constraints (2.15)-(2.16) impose upper and lower bounds on the routing variables.
Through constraints (2.15), we ensure that if customer j is visited by vehicle k, then
at least one product p should be delivered to customer j. Constraints (2.16) ensure
that if an order opj is loaded into a given vehicle k then the customer must be served
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by this vehicle. Note that constraints (2.16) can be obtained from constraints (2.7)
by applying a lifting procedure.

In some industrial contexts, compartments are not equipped with debit meters,
then the content of a compartment can hold at most one customer order for rea-
sons of weighting and billing. The compartment must be entirely emptied once
delivery has started. In such cases, the MDMCMCm-VRPTW formulation must
include restrictions on the number of orders per compartment while respecting the
compartment capacity. This is ensured by introducing constraints (2.17).

∑
j∈V

∑
p∈P

ywkjp ≤ 1 k ∈ K, w ∈ W . (2.17)

When compartments are not equipped with debit meters, the number of possible
visited customers in each route is bounded by the number of the vehicle compart-
ments which may simplify the problem. However, in some real-applications, using
multi-compartments vehicles gives rise to other complicating constraints. This is
the case when vehicles are either used over different periods or allowed to perform
several routes over a given period and that cleaning or disinfection activities are
required between successive routes. In such cases, one must determine for each ve-
hicle used, the optimal sequencing of vehicle routes to minimize the cleaning costs
incurred.

Generally speaking, the integrality gap obtained with such vehicle flow for-
mulation, is not tight enough to be solved a priori using a straightforward
branch-and-bound algorithm, except for small instances (Cordeau et al., 2002a).
To overcome this drawback, several decomposition procedures were proposed in the
VRP literature, exploiting the structure of the underlying problem. Moreover, three-
index models are not suited when a special attention must be paid to the problem
symmetry, as it is the case for the MDMCMCm-VRPTW. Symmetry can lead to
multiple representations of the same route which may be a source of inefficiency in a
branch-and-bound algorithm. Specifically, in the MDMCMCm-VRPTW, exchang-
ing the orders assignment between any two compartments or two vehicles produces
alternative solutions. Thus, the three-index vehicle flow formulation is expected to
perform poorly when the loading problem is complex. To avoid such pitfalls, we
propose to reformulate it as a set covering model having a better linear relaxation
and a small number of constraints. This new model can be obtained through a
Dantzig-Wolfe decomposition and is introduced in the next section.
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2.3 Reformulation based on Dantzig-Wolfe de-
composition

The Dantzig-Wolfe (DW) decomposition (Dantzig and Wolfe, 1960) is a technique
to improve the solution of structured linear problems (LP) . The general idea be-
hind DW decomposition is to exploit the LP structure to reformulate the problem
into another equivalent problem that is more tractable with regard to complexity,
computational running time, or quality of lower bounds. This decomposition algo-
rithm allows changing any LP with a huge number of constraints to a problem with
a reduced number of constraints which typically has a tighter linear relaxation than
the original formulation. It generates a new problem, the so called master prob-
lem (MP) with many more variables than the original formulation and a number
of disjoint sets, each associated with a subsystem of constraints. The DW decom-
position is very closely connected to column generation and they are often used
interchangeably, (Villeneuve et al., 2005, Desrosiers and Lübbecke, 2005). Even if
the MP has many variables (and associated columns), solving the linear relaxation
of the MP does not require an explicit enumeration of all its variables, since the col-
umn generation algorithm consists in generating columns if needed. In this section,
we illustrate the decomposition technique on a simple example. Then we apply it
to the MDMCMCm-VRPTW vehicle flow formulation. Based on the resulting MP,
we give an overview of the basic column generation algorithm.

2.3.1 Decomposition principle

Consider a minimization integer program of the form:

min
K∑
k=1

Ckxk (2.18)

subject to

∑
k∈K

Bkxk = f (2.19)

Dkxk ≤ ek k ∈ {1, . . . , K} (2.20)
xk ∈ Zn+ k ∈ {1, . . . , K}. (2.21)

This program is referred as the original problem where K is the set of blocks, and
Bk and Dk are the constraints matrices of these blocks. Notice that constraints
(2.20) together with (2.21) have a bloc angular structure, meaning that the con-
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Figure 2.4: Block-angular matrices for K blocks

straint matrix is divided into blocks of non-zero variable coefficients. Each block
corresponds to a subsystem of constraints solved separately for each k ∈ {1, . . . , K}
since the variables vector X can be partitioned into K disjoint subsets of vari-
ables x = (x1, x2, . . . , xK). In practice, these constraints are referred to separable
or easy constraints as they usually form a more tractable model. On the other
hand, constraints (2.19) link together variables from several disjoint sets. They
are often referred as joint, binding or difficult constraints. These constraints are
kept in a superior level and form the master problem. The matrix structure of the
original formulation is depicted in Figure 2.4. The DW decomposition consists in
rewriting the model (2.18)-(2.21) as another program that contains only equivalent
constraints to binding constraints and a set of convexity constraints. The new model
involves a very large number of variables defined based on separable constraints. Let
Xk = conv{xk ∈ Zn+ : Dkxk ≤ ek} be a feasible convex domain defining the K dis-
joint sets. Given the convex set Xk, Minkowski-Weyl theorem (cf. Nemhauser and
Wolsey (1988)) states that Xk can be represented as a convex combination of its ex-
treme points {xkr}r∈Rk and a linear combination of its extreme rays {ρkp}p∈Ωk such
that xk ∈ Xk can be written as:

xk =
∑
r∈Rk

xkrΛkr +
∑
p∈Ωk

ρkpθkp (2.22)
∑
r∈Rk

Λkr = 1 (2.23)

Λkr ≥ 0 r ∈ Rk (2.24)
θkp ≥ 0 p ∈ Ωk (2.25)

where Rk is the index set of extreme points and Ωk is the index set of extreme rays.
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In this thesis, we assume that the set Xk is a large but finite set. Thus, it may
be represented by considering only the extreme points {xkr}r∈Rk . Specifically, we
propose to consider the discretization approach of the DW decomposition set (com-
pared to the convexification approach) since the goal behind the decomposition is
to apply a column generation approach to obtain integer variables representing the
extreme points of the Xk. Both approaches give the same linear relaxation of the
MP if the decision variables are binary (see e.g., (Vanderbeck, 2000, Desrosiers and
Lübbecke, 2011)). Xk can be replaced by:

xk =
∑
r∈Rk

xkrΛkr (2.26)
∑
r∈Rk

Λkr = 1 (2.27)

Λkr ∈ {0, 1} r ∈ Rk (2.28)

Substituting xk in the original problem (2.18)-(2.21) leads to the following integer
program (2.29)-(2.32), the MP. The new variables Λkr in the MP correspond to fea-
sible solutions subject to the subsystem of constraints of each of the independent
blocks.

min
K∑
k=1

∑
r∈Rk

CkxkrΛkr (2.29)

subject to

K∑
k=1

∑
r∈Rk

BkxkrΛkr = f (2.30)
∑
r∈Rk

Λkr = 1 k ∈ {1, . . . , K} (2.31)

Λkr ∈ {0, 1} r ∈ Rk, k ∈ {1, . . . , K}. (2.32)

The linear relaxation of the MP usually provides better bounds than the linear re-
laxation of the original formulation. This is due to the relaxation of all integrality
requirements, i.e., the linear relaxation of the original formulation. For more de-
tails on the DW decomposition and its application on integer programs, we refer
to (Vanderbeck, 2000, Vanderbeck and Savelsbergh, 2006, Vanderbeck and Wolsey,
2010, Frangioni and Gendron, 2013).

51



Models for a rich vehicle routing problem with compartments

2.3.2 DW reformulation for the MDMCMCm-VRPTW

The MDMCMCm-VRPTW can be decomposed obviously into an assignment-type
problem ensuring that all the customers orders are satisfied, i.e., the master prob-
lem, and several disjoint sets of constraints, one for each available vehicle. In the
MDMCMCm-VRPTW model (2.1)-(2.14), constraints (2.8) are the binding con-
straints. The MP includes then the objective function (2.1), the covering of each
customer order exactly once (2.8) and the binary requirements (2.13) on the assign-
ment variables. The remaining constraints sets (2.2)-(2.7) and (2.9)-(2.14) ensure
the feasibility of each vehicle route with respect to routing and loading restrictions.
They define the feasible region of each set of routes associated with vehicle k. Let
Ak = {(xk, yk, bk)|(xk, yk, bk) satisfies (2.2)-(2.7);(2.9)-(2.14)} be the set of routes
satisfying the constraints associated with vehicle k ∈ K. Then, there exists a finite
set of feasible routes {akr}r∈Rk with akr = (xkr, ykr, bkr) and Rk the index set such
that ak ∈ Ak can be replaced by ak = (xkr, ykr, bkr).

yk =
∑
r∈Rk

ykrΛkr (2.33)

xk =
∑
r∈Rk

xkrΛkr (2.34)

bk =
∑
r∈Rk

bkrΛkr (2.35)
∑
r∈Rk

Λkr = 1 (2.36)

Λkr ∈ {0, 1} r ∈ Rk (2.37)

The definition of the MP as a set partitioning (SP) problem requires the following
additional notation: we denote ckr the total cost of route r for a given vehicle k
such that ckr = ∑

(i,j)∈E αijx
k
ij +∑

j∈V βx
k
dk

oj
+γ(bkddk

−bkdk
o
) while akrjp denotes a binary

parameter equal to 1 if order opj is covered by route r of vehicle k.
When all the vehicles are identical, as for the MDMCMCm-VRPTW, the DW

decomposition can be carried even further. The corresponding set of feasible do-
mains Ak can be decomposed into independent and identical blocks. The MP admits
then a vehicle aggregation which allows to formulate the MP with fewer variables
and constraints. An additional limit K is put on the number of routes of all vehicles
used which results in ∑

r∈R Λr = K. This makes the index k irrelevant and it can be
removed from parameters ckr and akrjp . Let R be the index set of all vehicles routes.
After substitution and standard adjustment, the set partitioning formulation of the
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MP can be formulated as follows:

min
∑
r∈R

crΛr (2.38)

subject to

∑
r∈R

arjpΛr = 1 j ∈ V , p ∈ P (2.39)∑
r∈R

Λr = K (2.40)

Λr ∈ {0, 1} r ∈ R. (2.41)

The objective (2.38) is to minimize the sum of fixed and variable transportation
costs. Constraints (2.39) state that each customer order is satisfied exactly once.
The second set of constraints (2.40) limits the number of routes. Constraints (2.40)
hold for the MDMCMCm-VRPTW because empty vehicle routes are permitted.
However, since we assume that we dispose of a sufficiently large fleet, constraints
(2.40) can be dropped from the model.

Set covering formulation A closely related formulation to the SP model is the
set covering (SC) formulation. Like it is commonly done in reformulations for rout-
ing problems, we choose to replace partitioning constraints by covering constraints.
This is due to the fact that doing so, dual variables associated are positive instead
of having no sign restrictions. Consequently, the dual solution space is reduced
which improves the convergence of the solution method. Furthermore, when the
cost matrix satisfies the triangle inequality, each customer is visited exactly once in
an optimal solution. Note also that any feasible solution for the SP formulation is
feasible for the SC formulation and any feasible solution for the SC may be trans-
formed into a feasible solution for the SP with a smaller cost. Indeed, if a customer
order is covered more than once in a SC solution, this customer order can be re-
moved from the most "expensive" route, in a post-processing phase (see Section 5.2.3
in Chapter 5), reducing then the overall solution cost.

Consider the linear relaxation of the MP (2.38)-(2.41), the set covering model
for the MDMCMCm-VRPTW is expressed as follows:

min
∑
r∈R

crΛr (2.42)
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subject to

∑
r∈R

arjpΛr ≥ 1 j ∈ V , p ∈ P (πjp ≥ 0) (2.43)

Λr ≥ 0 r ∈ R. (2.44)

In the above SC formulation, the number of routes {ar}r∈R to be considered is
very large. Generating explicitly all MP variables (columns) and using a straight-
forward branch-and-bound algorithm is impractical, but we can proceed implicitly
by column generation. The column generation algorithm is a method able to solve
the MP obtained through the DW decomposition and it is pioneered by (Dantzig
and Wolfe, 1960, Gilmore and Gomory, 1961). In our implementation, the column
generation scheme starts by initializing the MP with a small set of routes, denoted
by R̄ ⊂ R. We define MP(R̄) the restriction of the MP to a subset of columns, re-
ferred as the Restricted Master Problem (RMP). The column generation approach
consists in solving iteratively the linear relaxation of the RMP with an augmented
subset of routes in each iteration. Following each optimization of the RMP, dual
solution is transfered to a set of constraints defined by the feasible region conv{A}.
The objective is to identify the most promising feasible solutions of the independent
disjoint sets, often called pricing subproblems, such that the objective of the RMP
can be improved. Solving a subproblem consists in identifying new columns with
negative reduced cost (for a minimization problem). The new generated columns
will be added to the RMP. This iterative process continues as long as there are
routes with negative reduced costs in the set R which have not been added yet to
the RMP. The RMP is solved by the primal simplex algorithm.
The RMP can be expressed as follows:

min
∑
r∈R̄

crΛr (2.45)

subject to

∑
r∈R̄

arjpΛr ≥ 1 j ∈ V , p ∈ P (2.46)

Λr ≥ 0 r ∈ R̄. (2.47)

Let πjp be the dual variables associated with constraints (2.46). We denote by
ĉr = cr −∑

j∈V
∑
p∈P a

r
jpπjp the reduced cost of a route ar ∈ A. In a column gener-

ation scheme, given a dual solution of the RMP, the pricing subproblem identifies
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the route ar with the minimum reduced cost:

ãr = argmin{ĉr}ar∈A = argmin{cr −
∑
j∈V

∑
p∈P

arjpπjp} (2.48)

Determining the route ãr ∈ A which satisfies (2.48) is an optimization subproblem
which is described in Section 2.4.

2.4 Pricing subproblem formulation
Based on the DW reformulation, the pricing subproblem includes implicitly two op-
timization problems that have to be solved jointly: a routing problem and a loading
problem. The formulation relies on variables xkij, ykwjp and bki defined in Section 2.2.
We omit the index k when we write the decision variables since the pricing sub-
problem is solved for each vehicle k. To clarify the problem structure, we define
the binary variable zi which is equal to 1 if customer i is visited and 0 otherwise.
The routing variables zi and xij identify which customers to visit and in what or-
der. Once a customer i is selected, the assignment variables ywip specify the orders
to deliver. We recall that πip is the dual variable associated with the delivery of
order p for customer i. πip can be interpreted as the "profit" obtained through the
corresponding delivery. Let V̄ = {d, 1, . . . , n} be the vertex set including the n cus-
tomers and the vehicle associated depot d. The pricing subproblem can be written
as follows:

max
∑
j∈V̄

∑
p∈P

∑
w∈W

Πjpy
w
jp −

∑
(i,j)∈Ē

αijxij −
∑
j∈V̄

βxdoj − γ(bdd
− bdo) (2.49)

subject to

∑
j∈V̄

xij = zi i ∈ V̄ (2.50)

∑
i∈V̄

xij = zj j ∈ V̄ (2.51)
∑

i∈S,j∈S,(i,j)∈Ē
xij ≤

∑
l∈S\{m}

zl m ∈ S,S ⊂ V̄ \ {d}, 3 ≤ |S| ≤ n− 3(2.52)

bj ≥ bi + si + tij −Mij(1− xij) i, j ∈ V̄ (2.53)
eizi ≤ bi ≤ lizi i ∈ V̄ (2.54)∑

(i,j)∈Ē
tijxij ≤ Tmax (2.55)
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∑
w∈W

ywip ≤ zi i ∈ V̄ , p ∈ P (2.56)

zi ≤
∑
p∈P

∑
w∈W

ywip i ∈ V̄ (2.57)

ywip + ywjq ≤ 1 i, j ∈ V̄ , w ∈ W , (p, q) ∈ IP (2.58)
ywip = 0 i ∈ V̄ , w ∈ W , (p, w) ∈ IPC (2.59)∑

i∈V̄

∑
p∈P

ywipqip ≤ Qw w ∈ W (2.60)

xij, y
w
ip, zi ∈ {0, 1} i, j ∈ V̄ , w ∈ W , p ∈ P (2.61)

bi ≥ 0 i ∈ V̄ . (2.62)

A feasible vehicle route aims to maximize the collecting profit while minimizing
the incurred costs. Constraints (2.50)-(2.52) are routing constraints. They ensure
the flow conservation and eliminate subtours. Time windows and maximum route
duration are handled in a classical way by constraints (2.53)-(2.55). Constraints
(2.52) are redundant in the presence of the constraints (2.53) but they strengthen
the model (Cordeau et al., 2002a). Constraints (2.56)-(2.60) handle incompatibility
relations and ensure that vehicle compartment capacities are respected as described
in Section 2.2.

The pricing subproblem can be viewed as a bi-objective routing problem with
two opposite criteria, one consists in visiting more customers to maximize the to-
tal profit collected and the other aiming to reduce the route costs by identifying
a subset of served customers. Feillet et al. (2005) distinguish three generic single
vehicle routing problems with profits gathered under the name of Traveling Sales-
man Problem with Profits (TSP with profits). Depending on the objective function,
three classes of TSP with profits can be distinguished: (i) when both criteria are
combined linearly in the objective function, the problem is so-called the Profitable
Tour Problem (PTP) (Dell’Amico et al., 1995); (ii) when the profit is maximized
and the travel costs have to be less than a preset value, the problem is referred to as
the Orienteering Problem (OP) (Tsiligirides, 1984) or the selective traveling sales-
man problem; (iii) when the objective is to minimize the travel costs and the profit
collected must exceed a preset lower bound gmin, the problem is called the Prize
Collecting TSP (PCTSP) (Balas, 2007).

Many papers and book chapters are devoted to TSP with profits, since many
industrial applications are modeled as such problems (e.g., (Laporte and Martello,
1990, Gendreau et al., 1998a, Fischetti et al., 2007, Balas, 2007)). Some surveys have
appeared over the last three decades and attempt to review the variants and the ap-
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plications of these problems and to differentiate them from other routing problems
(see e.g., (Feillet et al., 2005, Vansteenwegen et al., 2011, Archetti et al., 2013)).

The pricing subproblem can be seen as a rich profitable tour problem with time
windows and maximum route duration, referred to Rich Profitable Tour Problem
(RPTP). The RPTP is an extension of the classical PTP in many ways. It can
be considered as a time constrained capacitated profitable tour problem with mul-
tiple products and incompatibility constraints. Dealing with several complicated
constraints encountered in common practical situations makes this problem more
challenging than the classical PTP.

2.5 Conclusions
In this chapter we introduced the rich MDMCMCm-VRPTW modeled as a mixed-
integer mathematical program. This three-index vehicle flow formulation has a weak
linear relaxation. Therefore, a DW decomposition has been applied to improve the
original formulation bounding. The problem reformulation leads to a master prob-
lem, modeled as a set covering formulation, and a subset of independent pricing
subproblems. The set covering formulation cannot be solved with a straightforward
branch-and-bound method since the number of possible routes grows exponentially
with the number of customers orders. However, a column generation based algo-
rithm may solve such large-scale problem. As a next step, we are interested in
developing an efficient matheuristic to solve the pricing subproblem to be embedded
later in a column generation scheme. The purpose of the matheuristic is to solve
medium and large size instances of the RPTP, as it will be described in Chapter 4.
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Chapter 3

Matheuristic design for a
multi-constrained TSP with profits

In this chapter we describe the components of the proposed matheuristic for a
multi-constrained TSP with profits. First, we review the papers addressing the
flexibility and reusability concerns of VRP solution methods. Then, we describe
the unified matheuristic proposed to solve the MDMCMCm-VRPTW for one ve-
hicle. We motivate the choice for a variable neighborhood search (VNS) based
approach. It combines several removal and insertion routing heuristics as well as
efficient constraint checking procedures. The loading problem due to the use of a
multi-compartment vehicle is addressed carefully. Two loading neighborhoods based
on the solution of mathematical programs are proposed to intensify the search. They
interact with the heuristic routing neighborhoods in the line of matheuristics.

Parts of this work at different stages were presented at the Eight Triennal Sym-
posium on Transportation Analysis (TRISTAN VIII) (Lahyani et al., 2013a), at
the 5th International Conference on Modeling, Simulation and Applied Optimiza-
tion (ICMSAO) (Lahyani et al., 2013c), as well as at ROADEF 2013 and ROADEF
2014 conferences (Lahyani et al., 2013b, 2014).
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3.1 Introduction
In the VRP literature, some studies address variants of the Team Orienteering Prob-
lem with multi-constraints (multi-vehicle Orienteering Problem)(Garcia et al., 2010,
Tricoire et al., 2010, Souffriau et al., 2013). However, no previous work has been
devoted to solve multi-constrained TSPs with profits. There are few studies deal-
ing with basic extended variants of TSPs with profits, e.g., the capacitated PTP
(CPTP) (Archetti et al., 2009, Jepsen, 2011), or the OPTW (Righini and Salani,
2006, Tricoire et al., 2010, Labadie et al., 2011, 2012).

In this chapter, we propose a unified solution approach for a large class of TSPs
with profits, ranging from pure academic problems to multi-constrained variants.
We also investigate a loading subproblem arising when the vehicle has multi-
compartment. To the best of our knowledge, there is only one work focusing on the
loading subproblem arising in the MC-VRP (Pirkwieser et al., 2012a, Pirkwieser,
2012). The authors propose first-fit, best-fit and best-fit decreasing heuristics and
a constraint programming algorithm to solve the problem of assigning products to
compartments considering incompatibility constraints. Previous works either solve
the loading problem implicitly (Derigs et al., 2011a) or consider a simpler scenario
with two compartments and two products, each compartment being dedicated to
one product (El Fallahi et al., 2008, Muyldermans and Pang, 2010a, Wang et al.,
2014, Reed et al., 2014). In such cases, the loading problem reduces to checking ca-
pacity restrictions. Here, we follow the definition given by Pirkwieser et al. (2012a)
and we call the loading subproblem the Compartment Assignment Problem (CAP).

The contributions in this chapter are threefold. First, we develop a unified
matheuristic combining routing and loading neighborhoods. Second, we propose
several insertion and removal heuristics. Last, we propose loading neighborhoods
based on the solution of mathematical programs for the CAP.

This chapter is organized as follows. Section 3.2 reviews a selection of papers
addressing flexibility and reusability concerns in VRP solution methods. Section
3.3 presents the main features of the matheuristic. Section 3.4 presents in detail
the constructive heuristic, the routing and the loading neighborhoods as well as the
route feasibility check procedures.
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3.2 Describing available unified methods for
VRPs

Unified methods are rather seldom in the VRP field despite of their academic and
practical interest. Only a little attention has been paid to this challenging research
area in the last decade. In (Vidal et al., 2013a, 2011), the authors provide a uni-
fied view and a transversal analysis on timing problems and their corresponding
algorithms. Based on the knowledge developed through these surveys, the authors
"invented then a kind of Swiss knife" for the routing problems, referred to as Unified
Hybrid Genetic Search (UHGS). The UHGS distinguishes three classes of attributes
impacting on three aspects of the VRP: the assignment of customers and routes to
resources (ASSIGN), the sequence choices (SEQ), and the evaluation of fixed se-
quences (EVAL), see (Vidal et al., 2013a) for more details. The proposed method
addresses efficiently up to 26 extensions of VRPs, such as the VRPTW and its vari-
ants, the MPVRP, the OVRP, the PVRP, the VRPB, the VRPPD, (Vidal et al.,
2014) but it does not address a variety of constraints simultaneously. The most
constrained VRP addressed by the UHGS is the vehicle routing and truck driver
scheduling problem (VRTDSP) with different driver regulation rules. The authors
consider that the VRTDSP is a RVRP. According to the definition proposed in
Chapter 1, this problem has a score of 2 for the SCs and 7 for the PPCs and cannot
be considered as rich.

Derigs and Vogel (2014) propose a unified matheuristic framework, based on
combining 5 different neighborhood search heuristics, to solve 5 academic routing
problems namely: the MCVRP, the PVRP, the SDVRP, the VRPTW and the truck
and trailer routing problem (TTRP). Their work is based on the thesis of Ulrich Vo-
gel (Vogel, 2012), in which the author starts by describing the architecture of this
VRP solver for the case of standard VRP. Then he proposes an adaptation layer
which allows him to modify the solution algorithm and the solution representation
from one problem to another. The author provides some examples of adaptations
to address complex and rich VRPs such as the DVRP, the MDVRP, the VRP with
multiple use of vehicles, the VRPPD with time windows, the fleet size and mix VRP,
etc. The author claims that these problems are rich but experiments have not been
conducted explicitly in his thesis.

Subramanian (2012) and Pisinger and Røpke (2007) propose general heuristics
and hybrid algorithms to solve a set of VRP variants. They adapt the proposed
metaheuristic to tackle multiple variants of the VRP. Each variant can be formu-
lated as a special case of the underlying problem. Obviously, such approaches depend
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strongly on the generality of the first problem addressed and are not suitable when
other constraints are present. Irnich (2008) provides a modeling framework covering
a variety of standard and nonstandard VRP constraints. He proposed a giant-tour
representation enabling a unified view of moves in local search procedures. The
author claims that these search procedures can be used to solve RVRPs efficiently
including time windows, pickup-and-delivery operations, heterogeneous fleet, com-
partment constraints, etc. However, solutions are presented only for the VRPTW
and the multi-depot VRPTW as the author considers these problems as "prototypes"
for RVRPs. This brief survey puts into highlights that there is a lack of unified and
flexible approaches which are designed explicitly to address RVRPs and which can
be easily enriched accordingly whenever further specific requirements arise.

In Figure 3.1, we present the design of the proposed unified framework. Figure
3.1 sketches the transformation of rich and basic VRPs instances to be solved by the
unified matheuristic. For example, when an instance of the CVRP has to be solved,
it is transformed into an equivalent MDMCMCm-VRPTW instance. The latter is
solved by the proposed unified matheuristic without any customization. The so-
lution obtained is then interpreted as a CVRP instance. Still, designing flexible
solution methods for multi-constrained VRPs requires to rely on existing solution
methods that have been applied to VRPs successfully as it will be shown in Section
3.3.

3.3 Matheuristic approach
Cordeau et al. (2002b) explain that good VRP heuristics require four attributes:
accuracy, speed, flexibility and simplicity. Designing a unified method for RVRPs
represents a considerable research challenge which makes difficult to meet these four
criteria simultaneously. The underlying matheuristic proposed in this chapter will
rather focus on flexibility and simplicity. Most of the VRP heuristics proposed to
solve one variant concentrate rather on accuracy and speed. To maintain a good
compromise between flexibility and simplicity, a special attention must be paid to
the main components of the problem and of the solution.

The multi-attribute PTP is a NP-hard combinatorial problem since the OP is
NP-hard (Golden et al., 1987). Moreover, Gendreau et al. (1998b) outline some rea-
sons explaining the difficulty of designing high quality heuristics for the OP. Part of
the trouble lies in the fact that profits associated with customers and the distances
between them are independent and lead to define conflicting objectives. It is usually
difficult to select the customers that are part of the solution and considering time
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Figure 3.1: Transformation process for solving rich and basic VRPs with a unified
matheurisric, adapted from Røpke and Pisinger (2006a)
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window further complicates the solution process. Therefore, the design of a simple
method providing high quality solution is quite challenging.

In this chapter, we propose a matheuristic based on a Variable Neighborhood
Search (VNS) algorithm which includes exact procedures for the examination of
some neighborhoods. We denote this method VNS*. Let us motivate our choice to
select the VNS (Mladenovic and Hansen, 1997) to solve the RPTP. The VNS is an
approach able to take into account a wide variety of constraints, which proves to
be very efficient for solving complex VRPs (Wen et al., 2011, Schilde et al., 2011).
This success may be explained either by its ability (i) to escape from local optima
compared with population based metaheuristics; (ii) to exploit unexplored parts of
the solution space by applying different problem specific neighborhoods. The basic
steps of the proposed matheuristic are provided in Algorithm 1.

The proposed matheuristic performs two main steps. The first step corresponds
to the constructive stage (lines 5-8 in Algorithm 1) and consists in identifying a good
initial solution s. This solution is obtained thanks to an adapted Nearest Neighbor
Algorithm (NNA) which tries to insert each order in the current circuit while satis-
fying the temporal, capacity and compatibility constraint (see Section 3.4.1). The
second step, described in lines 8-25, is an attempt to diversify and improve the ini-
tial solution by applying VNS*. The key idea of such matheuristic is to exploit a
systematically neighborhood structures during the search. Given an initial solution
s, VNS* procedure alternates the perturbation phase and the improvement phase
(see Sections 3.3.1 and 3.3.2) for a preset number itermax of iterations.

Figure 3.2 sketches the two main steps of the VNS*. It also illustrates an ex-
ample of the solution representation for the reminder of this chapter. Let L be the
set including all customers i covered by route s andM be the set including all re-
moved customers i from s. The setM is initially empty. We denote by U ⊆ O the
set including all the orders opi placed by the customers i ∈ V and not covered by
the current route s. For an insertion move, the current route may not include all
orders opi associated with customer i ∈ V , whereas, a deletion move removes from
the route all orders opi placed by customer i. Since the orders placed by a customer
i ∈ U are known and not delivered, we use interchangeably the expression inserting
customers or inserting orders from the pool U in the remainder of this chapter.

3.3.1 Perturbation phase

The perturbation phase, also known as the shaking phase, aims to guarantee a
proper compromise between the diversification of the search and maintaining the
promising parts of the incumbent solution, without spending too much computa-
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Algorithm 1: Variable Neighborhood Search* (VNS*)
input : (s)/* (obtained after applying the constructive NNA) */
output: (s∗)

1 Let s+ be an intermediate solution;
2 s∗ ← s;
3 iter ← 1;
4 while iter ≤ itermax do
5 if (iter 6= 1 ) then
6 s← new built solution;/* (obtained by the multi-start NNA) */
7 end
8 s+ ← s;
9 REDO:

10 for (i← 1 to 4)/* (Select a removal heuristic H−
i ) */ do

11 for (j ← 1 to 6)/* (Select an insertion heuristic H+
j ) */ do

12 Apply perturbation phase on s;
13 Apply local search heuristic on s;
14 Apply 2_opt local search heuristic on s;
15 if ( s is better than s+) then
16 s+ ← s ;
17 goto REDO ;
18 end
19 end
20 end
21 if ( s+ is better than s∗) then
22 s∗ ← s+ ;
23 end
24 Apply loading based improvement on s∗; /* (The Linear Multiple

Knapsack Problem with Conflicts) */
25 iter + + ;
26 end
27 Waiting_Time_Optimization (s∗);
28 return s∗;
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Figure 3.2: Representing the VNS* general behavior

tional time. For this reason, we propose to implement the perturbation phase as
an adapted Large Neighborhood Search (LNS) heuristic (Shaw, 1997, 1998). The
perturbation phase of the VNS* consists in partially destroying the current solution
without trying to reinsert removed customers again. Rather than using one large
neighborhood as in a standard LNS, we consider a set of four removal heuristics H−i ,
i ∈ {1, . . . , 4}: the similarity removal heuristic, the random removal heuristic, the
worst profit removal heuristic and the spatio-temporal removal heuristic (see Sec-
tion 3.4.2.1 for more details). Each removal neighborhood eliminates a number of kd
customers from the current solution s according to a predefined criteria. The per-
turbation phase is followed by local search procedures aiming to gradually improve
the shaken solution.

3.3.2 Improvement phase

The local search approach iteratively improves the solution obtained from the per-
turbation phase by moving from neighbors of the current solution to local optima.
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Two important issues must be addressed when local search heuristics are designed:
(i) the quality of the solutions obtained (ii) the complexity of the local search heuris-
tic. An efficient local search heuristic should reach a good balance. The Variable
Neighborhood Descent (VND) (Hansen and Mladenovic, 2003) satisfies both crite-
ria and has been applied successfully to many optimization problems. It enables to
reach global optima more probably than with a single neighborhood structure. In
this thesis, we propose a VND which considers alternatively routing based neighbor-
hoods and loading based neighborhoods. The proposed VND includes three different
local search procedures described in what follows.

Local search heuristic : The local search heuristic, denoted for short by (LS),
is a modified extension of the Ruin and Recreate paradigm introduced by Schrimph
et al. (2000). It consists in removing randomly one or more customers from the cur-
rent solution and inserting unvisited customers’ orders from pool U , unlike the Ruin
and Recreate procedure which tries to re-insert the removed customers in better po-
sitions. The LS is a first improvement heuristic, i.e., the search procedure stops as
soon as a solution improving the current objective value is found. We propose six
sequential insertion heuristics, denoted by H+

i , i ∈ {1, . . . , 6}. Since the objective in
the RPTP combines the total profit, the total travel costs and the total waiting time
costs, the insertion criterion proposed either ensure a good trade-off between two
or three of these terms or focus on a single selection measure. Given an insertion
heuristic, each order is considered sequentially to select the best feasible insertion.
The selected order is then cost-effectively inserted in the solution. Each local search
step is parameterized according to the number of customers to remove, kd, the max-
imum number of customers to insert, kc, and the position in the route from which
customer(s) may be removed.

2-opt Local Search : This heuristic attempts to reoptimize the solution obtained
by the LS heuristic by decreasing the total travel time. First, it removes two arcs
from a given route and reconnects the route by inserting two other arcs. When the
time window constraints are considered, the orientation of the path may be reversed.
The evaluation of the solution feasibility with respect to time window constraints is
ensured by an effective time feasibility algorithm described in Section 3.4.3.2. If the
new feasible solution is better than the current best solution in terms of total travel
time, the procedure is reiterated. The algorithm stops in a local optima when no
2-opt exchange is possible. When an improved solution is identified, the heuristic
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tries to insert new customers from the pool of unvisited customers U given an inser-
tion heuristic H+

i . The acceptance criterion consists in accepting all the solutions
improving the objective value. Note that feasible 2-opt exchanges are seldom found
since time window constraints are considered. Nevertheless, experimental results
demonstrate that it is worthy to keep this improvement technique since it improves
the current solution.

Loading Based Improvement : Delivering a set of products using a multi-
compartment vehicle while satisfying incompatibilities constraints between products
and between products and compartments results in an NP-hard packing problem,
referred to as the CAP. This single vehicle packing problem is a key feature of the
RPTP. We propose two exact loading neighborhoods based on the solution of two
mathematical programs: the Quadratic Multiple Knapsack Problem with Conflicts
and the Linear Multiple Knapsack Problem with Conflicts. These neighborhoods,
proposed in Section 3.4.2.2, aim to reoptimize the loading plan of the current so-
lution. The first neighborhood explores the search space by swapping products
between compartments. The second one ensures more intensification by exchanging
some loaded orders with more attractive ones from the pool U .

Note that, given an empty solution s, solving the CAP requires an assignment
heuristic able to insert orders in a feasible way. We propose a fast and effective solu-
tion procedure providing feasible assignments of orders while satisfying the loading
constraints. Section 3.4.3.1 is devoted to describe this heuristic.

3.4 Main features of the matheuristic approach

3.4.1 Multi-start constructive heuristic

Perttunen (1994) proves that using initial solutions generated by constructive heuris-
tics outperforms randomly generated initial solutions for TSPs. In this section, we
propose a simple and fast NNA able to construct a feasible solution s by inserting
orders from U . Starting from an empty route, the NNA tries to insert all orders
opi of customer i, p ∈ P = {1, . . . , P} in the last position of the route as long as
the temporal, capacity and compatibility restrictions are satisfied. The insertion is
repeated until no feasible insertion exists. We consider the insertion of order opj as-
sociated with customer j (and profit gpj ), after an order opi associated with customer
i in the current route s. An insertion is evaluated with the coefficient ĉpij, expressed
in equation (3.3). Let gcrt, dcrt, tcrt denote respectively the current total profit, the
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current total distance and the current total time of the route. dij corresponds to the
distance between customers i and j. Let shiftNNAtij

and shiftNNAdij
be the time in-

crease and the distance increase if order opj is to be inserted at the end of the route
s, expressed by equations (3.1) and (3.2). wj = max{0, ej − aj} is the waiting time
in j and aj corresponds to the vehicle arrival time at customer j.

shiftNNAdij
= dij + dj0 − di0 (3.1)

shiftNNAtij
= tij + wj + tj0 − ti0 (3.2)

ĉpij =
(dcrt + shiftNNAdij

+ tcrt + shiftNNAtij
)

(gcrt + gpj )
(3.3)

The NNA repeatedly selects as new vertex the vertex having the lowest coefficient
ĉpij. This criterion promotes vertices with high profits and generating low time and
distance increases. Such criterion has been experimentally proved to be more effi-
cient than other criteria focusing either on time, distance or profit. The complexity
of this heuristic is O(n) since only the last position of the current route is consid-
ered when an insertion move is evaluated.
The metaheuristics based on local optimization, usually need some diversification
to escape from local optimality. To achieve diversification, we propose a multi-start
NNA starting from a new solution once a region of the solution space has been ex-
plored. The NNA is applied itermax times. The first solution is obtained applying
the NNA as described above. For the remaining iterations, the score matrix gpi as-
sociated with order opi and the distance matrix between all the customers i, j ∈ V̄
are randomized. The randomization is controlled by a parameter σ which varies
between [1/2, 3/2].

3.4.2 Neighborhoods

The proposed matheuristic may be seen as an iterative sequence of Ruin and Recre-
ate steps since it destroys a part of the solution in the shaking phase and repairs it
by means of the local search procedures. The search may be guided either for di-
versification, i.e., examining new regions of the solution space, or for intensification,
i.e., focusing on promising regions. The neighborhoods developed for the RPTP
solution may be classified in two categories:

• Routing neighborhoods: They modify the sequence route and the customers
visited in a given solution. They include six insertion heuristics and four
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removal heuristics. Some of these heuristics are adapted from the VRP litera-
ture. They may require some parameters denoted by Greek letters which will
be fixed in Section 4.2 in Chapter 4.

• Loading neighborhoods: We propose two loading neighborhoods with different
objectives. The first neighborhood attempts to reoptimize the compartments
loading while maintaining the route sequence unchanged, while the second
one removes less attractive orders from the route and replace them by more
profitable orders without inserting any new customers.

The variety of the proposed neighborhoods allows a good exploration of the solution
space as it is discussed in Section 4.2 in Chapter 4.

3.4.2.1 Routing neighborhoods

3.4.2.1.a Removal heuristics

The first three removal heuristics are adapted from the literature while the last one
is new. A pseudo-code outlining the generic removal approach is presented in Al-
gorithm 2. It takes as input an initial feasible solution s and returns a partially
destroyed solution s∗. It removes kd customers according to a predefined removal
operator. Let Li be the i th customer of L. It is worthwhile to mention again that
removal heuristics eliminate orders associated with a customer from a route. The
process is controlled by the parameter ψ and the randomization parameters φ.

Similarity removal heuristic : This removal heuristic was proposed by (Shaw,
1997, 1998) and implemented by (Røpke and Pisinger, 2006b, Pisinger and Røpke,
2007, Ribeiro and Laporte, 2012, Demir et al., 2012). The aim of the similarity re-
moval heuristic is to remove a set of customers that are similar with regards to a
predefined similarity measure. Removing similar customers promotes the insertion
of more customers which may lead probably to better solutions. We define the cri-
terion Sim(i, j) between two customers i and j, Sim(i, j) = φ1dij + φ2|bi − bj| +
φ3|shiftgi − shift

g
j |. The similarity criterion includes three terms. The first one rep-

resents the distance dij between i and j. Temporal similarity is expressed through
the difference between the departure times in i and j. The third term measures the
difference of attractiveness between i and j. shiftgi denotes the contribution of cus-
tomer i to s in terms of profit, such that shiftgi = ∑

p∈P g
p
i ,∀o

p
i /∈ U . φ1, φ2 and φ3

are normalized weights.
The heuristic initially selects a customer i randomly and removes it from the solu-
tion s. For the subsequent kd− 1 iterations, the heuristic selects customers that are
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Algorithm 2: Generic structure of removal heuristics
input : (s, kd, L, ψ ≥ 1)
output: (s∗)

1 InitializeM,M← ∅;
2 Eliminate randomly a vertex i from s;
3 M = {i};
4 while ( |M | ≤ kd ) do
5 Select randomly a customer i fromM;
6 Update L;
7 Compute the removal ratio;
8 Sort all the customers j ∈ L according to the removal ratio;
9 Generate a random number φ ∈ [0, 1];

10 j ← bφψ|L|c;
11 Eliminate randomly Lj from s;
12 M =M⋃{Lj} ;
13 end
14 Remove from s customers inM, let s∗ be the resulting solution;
15 return s∗;

similar to the removed vertex according to Sim(i, j). A lower value of Sim(i, j) in-
dicates that i and j are similar. In line 8 of Algorithm 2 the vertices in L are sorted
in an increasing order according to Sim(i, j). Some randomness is introduced while
selecting the customers thanks to the parameter φ. Given a value of φ, a low value
of ψ (ψ = 1) corresponds to complete determinism and implies removing vertex j
with a low value of Sim(i, j) while the probability of choosing a vertex j much less
similar to i increases with the increasing value of ψ. The time complexity of this
heuristic in the worst cases is O(n2). Figure 3.3 summarizes the principal steps of
this heuristic where kd = 4. The similarity removal heuristic selects randomly from
the solution s customer 3 and puts it in the poolM. Then it computes the Sim(i, j)
value between customer 3 and all the remaining customers in s. Customers 2, 4 and
5 are the most similar ones to customer 3. Given the values of φ and ψ, the heuris-
tic removes customer 2 from the solution. The heuristic reiterates until 4 customers
(3, 2, 4, 5) are removed from the solution s.

Random removal heuristic : This neighborhood consists in randomly remov-
ing kd customers. It may be seen as a special case of the similarity removal heuristic
with φ1 = φ2 = φ3 = 0. This heuristic may be implemented in O(1).
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Figure 3.3: Similarity removal heuristic
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Spatio-temporal removal heuristic : This heuristic is another adaptation of
the removal heuristic proposed by (Shaw, 1997, 1998). It aims to remove cus-
tomers similar in terms of distance and time. It differs from the similarity removal
neighborhood by its removal criterion. The spatio-temporal ratio was proposed by
Prescott-Gagnon et al. (2009) and is defined by equation (3.4).

STij = 1
( dij

dmax
i

+ 1
TST

ij +TST
ji

)
(3.4)

We set dmaxi = max∀j∈s{dij}, i ∈ s. If customer i is visited immediately before
customer j, T STij measures the proximity of time windows between i and j and is
equal to the expression max{1,min{lj, li+tij}−max{aj, ai+tij}} (Gendreau et al.,
1995). The main steps in this heuristic are those described in Algorithm 2. The
customers served by the current route are sorted in decreasing order with respect to
STij value. The larger STij is, the closer are the two customers i and j. The heuris-
tic removes node j = argmaxj∈s{STij}. The removal move is also randomized and
controlled by parameters φ and ψ. The spatio-temporal removal is implemented in
O(n2) in the worst case.

Worst profit removal heuristic : The worst profit removal heuristic iteratively
removes the less attractive customers according to the profit. The idea is to select
the customers that do not contribute enough to the total solution profit. First, all
the customers i ∈ L are sorted in increasing order according to the total profit of
the served orders shiftgi . Then, the heuristic selects a new customer with the lowest
shiftgi . Some randomization is ensured by parameters φ and ψ. This heuristic is
implemented in O(n).

3.4.2.1.b Insertion heuristics

The four insertion heuristics described below are used either to repair a partially
destroyed solution or to improve a current solution. The first four heuristics are
adapted from the OPTW literature, whereas the last two are new. As a general
rule, the heuristic considers each order opi from U and tries to insert it in the best
possible position according to a predefined insertion ratio. The whole process is
repeated for kc iterations. After each insertion, the solution has to be updated. Ob-
viously, the orders of one customer are served in sequence, i.e. during a single visit
to the customer. In the solution process such sequences are enforced by null dis-
tances and null times between these orders. In addition, the insertion of orders of
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customers partially favored would be ensured by the NNA and the second loading
neighborhood. Therefore, insertion heuristics aim to consider the insertion of new
customers. In each insertion heuristic, the feasibility of an insertion move is checked
before it is implemented. Since the checking feasibility algorithms have different
complexities, we order them. The most computationally consuming checking algo-
rithm is the last invoked. The worst case time complexity of the six heuristics is in
O(n2). The generic pseudo-code is shown in Algorithm 3.

Algorithm 3: Generic structure of insertion heuristics
input : (s, kc)
output: (s∗)

1 while (kc ≥0) do
2 for (i← 1 to |U|) do
3 if (the compatibility and capacity constraints are satisfied) then
4 for (j ← 1 to |L|) do
5 if ( ei + tij ≤= lj and tcrt + tij ≤ Tmax ) then
6 Compute the insertion ratio;
7 Memorize and update the best position best_pos;
8 i∗ ← i;
9 end

10 end
11 end
12 end
13 Insert the most attractive i∗ in best_pos;/* (Best insertion) */
14 if (the temporal feasibility of s∗ is maintained) then
15 Update s∗;
16 else
17 Delete i∗ from s∗;
18 end
19 kc−−;
20 end
21 return s∗;

Insertion heuristic (1) : This insertion heuristic is adapted from the construc-
tive heuristic proposed by Labadie et al. (2011) for the single-product OPTW. It
consists in considering over all orders in U and in trying to insert new ones as long
as possible while maintaining the feasibility of capacity, temporal and incompati-
bilities constraints. Giving a current route s, the heuristic examines all the feasible
positions of the order opi in s and inserts it, providing the best compromise between
profit and time increasing. An insertion of candidate order opi in route s between
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orders opj and opj+1 results in a new route s∗. shiftti corresponds to the route time
increasing such that shiftti = tji +wsi + ti,j+1 +ws

∗
j+1− tj,j+1−wsj+1 with ws∗j+1 corre-

sponds to the waiting time incurred at customer j+1 in route s∗. In a first attempt,
the defined ratio favors choosing customers having more reachable neighbors. Let
Ej correspond to the set of reachable customers i from j such that ej + tji <= li and
tcrt+tji < Tmax. The selected customer is i∗ = argmaxop

i∈U{
|Ei|∗gp

i

shiftti
}. Preliminary re-

sults show that favoring customers having many temporal reachable neighbors may
not lead to find a successor vertex that respect all constraints. This could be ex-
plained by the fact that the definition of a reachable neighbor should not rely only
on temporal feasibility but also on physical feasibility. Then, we define the best
insertion i∗ such that i∗ = argmaxop

i∈U{
gp

i

shiftti
}.

Insertion heuristic (2) : This heuristic was proposed first by Vansteenwegen
et al. (2009a) for the Team OPTW (TOPTW) and by Garcia et al. (2010) for the
VRPTW. The ratio proposed by Vansteenwegen et al. (2009a) is equal to (gp

i )2

shiftti
.

Preliminary results show that this ratio is not of interest for the RPTP since the
solution quality depends on other attributes. We should consider insertion principle
considering the time, distance and capacity attributes. Let shiftdi denotes the dis-
tance increase if order opi have to be inserted. The ratio gives the increase for each
attribute on the current route with respect to the available quantity. The inser-
tion ratio has to be computed as expressed by expression (3.5). The best insertion
corresponds to the order with the highest ratio.

(gpi )2

shiftti
availableT ime

+ qp
i

availableCapacity
+ shiftdi

availableDistance

(3.5)

Insertion heuristic (3) : This insertion heuristic is adapted from the two-phase
heuristic proposed by Atahran (2012) in his thesis for the DARP with time window.
This heuristic consists in sequentially adding orders to a given route considering both
the spatial and temporal closeness of customers, while keeping feasibility of the route.
Assume that vertex i is defined by its geographical coordinates xi and yi and its as-
sociated time window [ei, li]. We define a third temporal dimension zi = 1

2(ei + li).
Each vertex i is represented by a three-dimensional vector [xi, yi, zi]. Then, we trans-
form the coordinates xi, yi and zi to put them on a comparable scale. We consider
the centered and scaled values x̄i, ȳi, z̄i and x̃i, ỹi, z̃i respectively. Considering the

coordinate x, we define x̄i = 1
n

n∑
i=1

xi and σxi
=

√
1
n

n∑
i=1

(xi − x̄i)2. Then, each xi is

replaced by its centered reduced value x̃i = xi−x̄i

σxi
. We proceed in a similar way for
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Figure 3.4: Spatio-temporal insertion heuristic

coordinates yi and zi. To measure the distance between two customers i and j, we
use the euclidean metric defined by d(i, j) =

√
(x̃i − x̃j)2 + (ỹi − ỹj)2 + (z̃i − z̃j)2.

Figure 3.4 illustrates an insertion with a spatio-temporal dimension where cylinders
correspond to time windows. Customers 2, 3 and 4 are close geographically and can
be served in the same time slot.

Insertion heuristic (4) : This heuristic is a modified version of the best inser-
tion heuristic proposed by Solomon (1987). It proceeds in two steps. First, for each
order opi from U , the heuristic computes the best feasible insertion, which is the
one that involves the lowest distance increase. Then, the heuristic selects the best
feasible insertion such that the extra time is minimized.

Insertion heuristic (5) : This heuristic inserts orders with the best compromise
between the total insertion cost and the profit . The proposed ratio considers the
difference between the three hierarchical objectives. For i ∈ U and p ∈ P , the best
order insertion i∗ = argminop

i∈U{
shiftti+shift

d
i

gp
i

}.
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Insertion heuristic (6) : This heuristic focuses on the most important attribute
in the RPTP objective function which is the profit. It selects orders with the high-
est profits while satisfying the route feasibility and attempts to insert them in s in
the first feasible positions.

3.4.2.2 Loading neighborhoods

Quadratic Multiple Knapsack Problem with Conflicts : This neighborhood
is an exact product rearrangement method. It consists in optimizing the loading plan
of the vehicle. It aims to minimize the number of compartments used, while main-
taining the route sequence unchanged, (see Figure 3.5). We model this problem as
a Quadratic Multiple Knapsack Problem with incompatibility constraints between
products and products and compartments. This problem is NP-hard, (Golumbic,
2004). Let Os ⊆ O corresponds to the set of orders covered by the route s. To sim-
plify the formulation, we refer to order opi served by route s by o. With each order
o, is associated a customer i ∈ L, a quantity qo and a product po ∈ P . Binary vari-
ables xow indicate whether or not order o is loaded in compartment w. The problem
considered is:

max
∑
w∈W

(Qw −
∑
o∈Os

xowqo)
2 (3.6)

subject to

∑
o∈Os

xowqo ≤ Qw w ∈ W (3.7)∑
w∈W

xow = 1 o ∈ Os (3.8)

xow + xkw ≤ 1 o ∈ Os, k ∈ Os, w ∈ W , p ∈ P , q ∈ P ,
(po, qk) ∈ IP (3.9)

xow = 0 o ∈ Os, w ∈ W , (po, w) ∈ IPC (3.10)
xow ∈ {0, 1} o ∈ Os, w ∈ W . (3.11)

Defining a suitable objective function in any neighborhood search is a key factor. In
this case, the maximization of the compartments loading or the maximization of the
residual compartments capacity is useless it provides the same objective value (see
example in Figure 3.5). The proposed neighborhood aims to minimize the number
of compartments used. The objective function should focus then on filling efficiently
used compartments to keep other compartments unused. The proposed objective
function consists in maximizing the sum of squares of the residual compartments
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Figure 3.5: Example of a solution based on the Quadratic Multiple Knapsack
Problem with Conflicts
Suppose P={p1, p2, p3}, Os={1, . . . , 10}, qo=1 ∀o ∈ Os, W={w1, w2, w3}, Qw1=3,
Qw2=7, Qw3=11, IP={(p2, p3)} and IPC={(1, w2, p1)}. Figure (3.5a) corresponds
to the current loading of a given solution s and Figure (3.5b) corresponds to a
solution based on solving the Quadratic Knapsack Problem with Conflicts.

capacity, as it is expressed by (3.6). Constraints (3.7) ensure that compartment ca-
pacities are respected. Constraints (3.8) impose that each order o ∈ Os is placed in
exactly one compartment w ∈ W . Constraints (3.9) - (3.10) express the incompat-
ibility relations between products and between products and compartments. This
model is solved thanks to the commercial solver IBM CPLEX 12.5.

Multiple Knapsack Problem with Conflicts : In order to maximize the solu-
tion profit, this neighborhood aims to insert orders, placed by customers served in
the current solution s but not covered by the route s, and to remove less attractive
orders from the current solution s. It is considered as a products reallocation method
and modeled as a Multiple Knapsack Problem with incompatibility constraints be-
tween products and products and compartments. This problem is known also as
the disjunctively constrained Knapsack Problem (Pferschy and Schauer, 2009) and
is NP-hard. Let Ō be the set of orders ōpi , placed by customers i ∈ L. For sake of
simplicity, we refer to ōpi by ō with which is associated with a product pō ∈ P , a
customer i ∈ L, a quantity qō and a profit gō. The decision variable yōw is equal to
one if order ō is loaded in compartment w and zero otherwise. Now we consider the
following integer linear program:

max
∑
w∈W

∑
ō∈Ō

yōwgō (3.12)
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subject to

∑
ō∈Ō

qōyōw ≤ Qw w ∈ W (3.13)
∑
w∈W

yōw ≤ 1 ō ∈ Ō (3.14)

yōw + ykw ≤ 1 ō ∈ Ō, k ∈ Ō, w ∈ W , p ∈ P , q ∈ P , (pō, qk) ∈ IP (3.15)
yōw = 0 ō ∈ Ō, w ∈ W , (pō, w) ∈ IPC (3.16)

yōw ∈ {0, 1} ō ∈ Ō, w ∈ W . (3.17)

The objective expressed by constraints (3.12) maximizes the collected profit by
placing the maximum orders ō in compartment w. Constraints (3.13) - (3.17) may
be interpreted similarly to constraints (3.7) - (3.11). The model is solved using the
commercial integer programming solver IBM CPLEX 12.5 and the performance on
small and large instances is discussed in Section 4.2.3 in Chapter 4.

3.4.3 Route feasibility check

To speed up the solution evaluation and the cost computation, it is crucial to imple-
ment feasibility check algorithms efficiently. This section is devoted to two feasibility
checks algorithms and one route-optimization heuristic. The feasibility checking
routine proceeds as follows:

• The capacity and incompatibility constraints are checked first through the
Get_Compartment heuristic, which is called in each insertion move. This
heuristic provides a feasible order assignment to compartments, if it exists.

• The TW_Feasibility_Check is an exact algorithm checking the feasibility
of the route with regards to time windows. It is called after each removal
heuristic or insertion heuristic.

• The purpose of the Waiting_Time_Optimization exact algorithm is to min-
imize the waiting time in a given solution. This algorithm is called at the
end of the search, it postpones the departure time from the depot as much as
possible.

3.4.3.1 Loading feasibility check

A fast and effective assignment heuristic is required to solve the CAP as it must be
solved frequently. The Get_Compartment heuristic first assesses the feasibility of
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a potential order insertion with respect to capacity and incompatibility constraints.
Then, it assigns the order to a compartment considering compartments according to
their increasing residual capacity. The Get_Compartment heuristic is able to iden-
tify a feasible assignment for a new order, given an initial solution. The principal
steps of this heuristic are summarized in pseudo-algorithm 4.

Algorithm 4: Get_Compartment heuristic
input : (s, o ∈ U)
output: (compartment index )

1 Let Sort be the table including the compartments index sorted according to
the decreasing residual capacity in s;

2 for (i← 1 to |W|) do
3 if ((po, Sort[i]) /∈ IPC) and (qo < residual capacity[Sort[w]]) and

(Q[Sort[i]] 6= 0) and ((po, all the orders loaded in Sort[i])/∈ IP) then
4 return Sort[i] ;
5 end
6 end
7 return −1;/* (No feasible assignment exists) */

3.4.3.2 Temporal feasibility check and optimization

The fundamental algorithms for handling time windows in routing problems were
proposed by Savelsbergh (1992). An improved version of these algorithms was intro-
duced by Cornillier et al. (2009). The TW_Feasibility_Check andWaiting_Time
_Optimization algorithms are both based on the algorithms proposed by Cornillier
et al. (2009). In what follows, we present the key formulas of these algorithms and
we refer to Cornillier et al. (2009) for detailed proofs.

Given a route s, we define for each customer i ∈ s a normalized time window
[eni , lni ] if waiting times are not allowed. They indicate to which time the service can
be preponed or postponed while still allowing timely arrivals at other customers. We
set eni = (ei−

i−1∑
j=0

tj,j+1−
i−1∑
j=0

sj) and lni = (li−
i−1∑
j=0

tj,j+1−
i−1∑
j=0

sj). In this case, the route
is feasible if and only if the intersection of all normalized time windows is not empty.
However, when waiting times are allowed, as it is the case for the RPTP, a route s is
time-window feasible if and only if for each customer i ∈ s, max0≤j<i{eni } ≤ lni . The
TW_Feasibility_Check algorithm is applied whenever a feasibility evaluation is
required. Its time complexity in the worst case is O(n). To minimize the computa-
tion times, we indicate the position in the route from which the feasibility evaluation
procedure should start. Once a route s is feasible, one may calculate its minimal
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waiting time ws such that ws = max{0,maxi∈V̄{eni } − maxi∈V̄{lni }}. Adding the
minimal waiting time to the sum of travel and service times we obtain the minimal
route duration. Then, we can compute the normalized departure and arrival times
associated to the depot, [end , lnd ], such that the total waiting time of s is minimized.
We set end = maxi∈V̄{eni } − ws and lnd = mini∈V̄{lni }.

3.5 Conclusions
In this chapter, we described a unified matheuristic based on routing and loading
heuristics, denoted as VNS*. An effective multi start-construction heuristic has
been proposed to build the initial solution. To diversify and intensify the search,
we suggested removal and insertion heuristics as well as different local search pro-
cedures. We tried to focus on the loading aspect of the problem which was barely
considered in the MC-VRP literature. We introduced an heuristic to ensure and
check the assignment of products to compartments and we proposed two loading
neighborhoods based on the solution of mathematical programs. We incorporated
these neighborhoods in the matheuristic approach to optimize the loading plan for
the current solution.
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Chapter 4

From methods to implementation
and results

After describing the main matheuristic components, we present the data structures
and the object classes used to model the RVRP solutions in Section 4.1. In Sec-
tion 4.2, the performance of the VNS* is assessed on a large set of instances for the
OP and the OPTW including up to 288 customers. The proposed matheuristic is
very competitive compared with the state-of-the-art methods. To evaluate its perfor-
mance, we generate a new testbed for the MDMCMCm-VRPTW, in Section 4.2.3.1,
including a large variety of general attributes. Extensive computational experiments
on the new testbed confirm the efficiency of the matheuristic. A sensitivity analysis
follows in Section 4.2.3.2 to highlight which feature of the matheuristic contributes
most to the solution quality. Conclusions are drawn in Section 4.3.

Preliminary results of this work were presented at the Eight Triennal Sympo-
sium on Transportation Analysis (TRISTAN VIII) (Lahyani et al., 2013a), at the
5th International Conference on Modeling, Simulation and Applied Optimization
(ICMSAO) (Lahyani et al., 2013c), as well as at ROADEF 2013 and ROADEF 2014
conferences (Lahyani et al., 2013b, 2014). An article based on Chapters 3 and 4
was submitted for publication: R. Lahyani, M. Khemakehm, F. Semet. A unified
matheuristic for solving multi-attribute traveling salesman problems with profits.
EURO Journal on Computational Optimization, submitted for publication.
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4.1 Design of data structure classes

4.1.1 Challenges

A VRP solution is composed by a set of routes, describing the sequences of served
customers. In a RVRP, more decisions have to be made simultaneously. In the
MDMCMCm-VRPTW, a complex loading problem must be solved jointly to the
routing and sequencing problem which adds up to the problem difficulty. Part of
this difficulty comes from (i) the presence of compatibility constraints while loading
orders into compartments (ii) the presence of orders rather than customers (iii) the
different number and types of products delivered to each customer. Determining
which orders to deliver to a customer with a given vehicle represents an additional
decision to make. Delivering orders rather than visiting customers leads to a con-
siderable increase of the problem size when many different products are considered:
for P product types the number of orders is up to |V| × P . Therefore, addressing a
VRP with multi-compartments, multiple products requires a special attention when
the solution method and the data structures are designed.

The solution description of the MDMCMCm-VRPTW or more generally a so-
lution for a real-life problem has to take into account several attributes associated
with constraints, decisions and objectives. In the MDMCMCm-VRPTW, orders can
be interpreted as dummy customers and the set of orders associated with a customer
share the same attributes (e.g., coordinates, time windows, service time, etc). In
addition, we have to keep the orders sequence for a route as well as for the compart-
ment loading plan during the search process. The solution data structure is then
much more difficult to design and is unlikely to be modeled by a single class hold-
ing all the routing and loading data. Therefore, we introduce the following classes:
the Order Class and the Compartment Class in addition to the Problem Class and
the Solution Class.

Since the routing and loading heuristics aim to apply moves to a solution and the
checking procedures evaluate the solution feasibility, all details of each data struc-
ture should be accessed and modified. Two main challenges are encountered while
designing the four data structures. On the one hand, we should maintain a mod-
erate level of granularity while describing the data elements because storing and
updating irrelevant data may slow down the optimization process. On the other
hand, we must pay a special attention to the selection of data access techniques. To
this end, we choose to implement all data classes in the programming language C
and follow an object-oriented like design. Object-oriented programming represents
a powerful tool for developing unified solution methods. Each object corresponds to
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an instance of a class with its associated attributes and allow, at the same time, an
easy access to other object through functions and pointers. The concept of pointers
is one of the key concepts of language C. It enables to create dynamic data struc-
tures and to access data stored in the computer memory easily. Tables 4.1-4.3 list
the elements of the main classes designed for the MDMCMCm-VRPTW. In these
tables, we highlight the relationship between classes indicating with a (*) the pointer
to other classes and with with a (**) the array of pointers to other classes.

4.1.2 Data structures classes

The Problem Class holds the data about the problem which have been extracted
from a text file. This data remains unchanged during the solution process. This
class includes the values defining the sets described in Section 2.2 in Chapter 2 in
addition to the distance and time matrices. The distance matrix includes Euclidean
distances computed from (x, y) coordinates of each vertex. By default, the distances
are rounded down to the second decimal. However for a fair comparison with re-
sults obtained with other VRPs methods, distances may be rounded down to the
first decimal.

The Solution Class represents a vehicle route starting from and returning to the
depot. Each route is represented by a doubly linked list linking the orders covered by
this route. From a theoretical point of view, linked lists allow to store similar data
in memory efficiently. The solution class enables access to the other three classes
through a specific pointer to each one. The solution class includes also relevant data
that are used to check the feasibility and to evaluate the solution. These are the so-
lution cost value, the total distance, the total wait, the total profit, the number of
customers visited and the number of orders delivered.

Every non-depot node in the list corresponds to a given order which gives rise to
the Order Class. This class specifies all attributes required to perform an operation
on a given order. These attributes include the identification number in O, the cus-
tomer involved, the associated product, the compartment in which it is loaded, if one
exists, and the vehicle arrival and departure times at the customer placing this order.
Each order is linked to its predecessor and its successor on the route and the com-
partment. These links are referred to respectively by R_pred, R_succ, C_pred and
C_succ. Choosing doubly-linked lists while designing the MDMCMCm-VRPTW
data structures has many advantages. It allows to examine the sequence of orders
on the route in both directions, from the first order, RF_ord, to the last order,
RL_ord and vice-versa. The presence of predecessors and successors, even if null,
associated with each order allows to keep track of the order positions during the
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Table 4.1: Details of the order class

Order Class
Element Description

Num Order index in O
Cust Index of the associated customer
Prod Index of the associated product
Comp Index of the associated compartment, -1 by default
A_time Vehicle arrival time at Cust, -1 by default
D_time Vehicle departure time from Cust, -1 by default
∗R_pred Pointer to the order predecessor on the route, NULL by default
∗R_succ Pointer to the order successor on the route, NULL by default
∗C_pred Pointer to the order predecessor in the compartment, NULL by default
∗C_succ Pointer to the order successor in the compartment, NULL by default

routing and the loading process. It enables also to quickly and efficiently detect
unassigned orders to a route. Furthermore, an order can be inserted into (or re-
moved from) a route or a compartment without searching the complete route or the
whole content of a compartment to find the address of the previous order.

The information related to the compartment containing a given order is part of
the solution representation. The Compartments Class aims to maintain data about
the current vehicle load consistently in order to speed up the check feasibility proce-
dure. It involves the current free capacity of the vehicle compartments and an array
of compartments index sorted decreasingly with respect to the available capacity.
This class involves pointers to the first and the last order currently loaded in the
compartment. Thus, we can easily browse all orders loaded in this compartment.

Figure 4.1 illustrates the solution representation. Consider the route performed
by vehicle k = 2 in the example described in Section 2.2.1 in Chapter 2 (see Fig-
ure 2.3). The vehicle route is (Depot, 6, 5, 4, 3, Depot) including 7 orders. Figure
4.1 highlights how the use of doubly linked lists allows access to the associated or-
der successors and predecessors easily. In particular, Figure 4.1 sketches the links
between orders hold in compartment w3. Consider customer 6 which is the first cus-
tomer visited on the route and has three orders delivered (1, 2, 3). Although order
2 associated with customer 6 is the second order on the route, is not necessarily the
second order in compartment w3. Note that efficient cloning procedures are devel-
oped to create copies of a given class when it is required during the search process.

86



Table 4.2: Details of the compartment class

Compartment Class
Element Description

Free_Q Array of size W , contains the current free capacities
of compartments

Sort Array of size W , contains the index of compartments sorted
decreasingly with respect to Free_Q content

∗ ∗ CF_ord Array of size W , contains pointers to the first order hold
in each compartment

∗ ∗ CL_ord Array of size W , contains pointers to the last order hold
in each compartment

Table 4.3: Details of the solution class

Solution Class
Element Description

∗Prob Pointer to the problem class
∗ ∗Ord_list Array of size |O|, contains pointers to the orders covered

by this route
∗Compartment Pointer to the compartment class
∗RF_ord Pointer to the first order in the route, NULL by default
∗RL_ord Pointer to the last order in the route, NULL by default
# Cust Total number of the route customers
# Ord Total number of the route orders
Obj Route cost
T_distance Total route distance
T_time Total route time
T_wait Total route wait
T_profit Total route profit
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Figure 4.1: Solution representation using the order class and the compartment class

88



4.2 Computational experiments
To assess the efficiency of the proposed matheuristic, we report experimental results
on problems related to the RPTP, sharing common features with it. To preserve the
efficiency of the proposed matheuristic compared with state-of-the-art methods, we
select 4 insertion heuristics among 6 in the improvement phase of the VNS* for all
the tests carried out in this Chapter. The invoked insertion heuristics are heuristics
(1), (2), (5) and (6). This section presents experimental results and is divided in
three main parts. In Section 4.2.1, we report results obtained by applying the pro-
posed matheuristic on OP instances. In Section 4.2.2, computational experiments
are conducted on the OPTW, a more difficult RPTP. Since the loading neighbor-
hoods are not relevant for the OP and OPTW instances, we generate new instances
under three real-life scenarios to better evaluate the VNS*. Extensive computational
experiments and a sensitivity analysis for the RPTP demonstrate the contribution
of the main components of the matheuristic to the solution quality.

The matheuristic has been coded in language C and executed on an Intel Quad
Core with 2.66 GHz and 4 GB Ram. Results are summarized in Tables 4.4-4.8 and
4.10-4.12. In these tables, data are grouped by instance class and average statistics
over the 5 runs are reported for each instance class. Columns headed Class iden-
tify the instance class, columns headed Gap% report the percentage gap to the best
known value solution and columns headed Time(s) give the computational time in
seconds for each instance class. Detailed computational experiments are reported in
Appendix A.

Preliminary experiments have been carried out on sample instances to determine
the best parameter setting with respect to speed and efficiency. The maximum
VNS* iterations, itermax, is fixed to 20. The maximum number of deleted cus-
tomers in the shaking phase is kd = 2. The local search procedures try to insert
new customers while kc ≤ 2 ∗ kd. For the routing heuristics, we used the same
parameter setting determined in (Røpke and Pisinger, 2006b), (φ1, φ2, φ3)=(9, 3, 2)
and (Prescott-Gagnon et al., 2009), ψ=35. Preliminary experiments also reveal that
the performance of the VNS* is improved when itermax (re-starting in every itera-
tion from a new solution) or kd (exploring new solutions neighbors) are increased.
Since this improvement is at the expense of computational times, we do not con-
sider such settings. We keep the same parameter values for all the benchmarks to
demonstrate that the performance of the proposed matheuristic is not subject to
any customization, as in Vidal et al. (2014).
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4.2.1 OP instances

Tsiligirides (1984) propose an exact algorithm for 3 sets of instances for the OP. The
sets (1_p21, 1_p32 and 1_p33) include 18, 11 and 20 instances respectively. The
number of customers ranges from 21 to 33. A second testbed with larger instances
was generated by Chao et al. (1996). The authors proposed five steps heuristic
named CGW which was evaluated on 2 sets of instances (1_p64 and 1_p66) with
14 and 26 instances including 64 and 66 customers respectively. We test the VNS*
over these 5 instances sets. We compare the results with the optimum values pub-
lished by Tsiligirides (1984), the best known (BK) solutions values published by
Chao et al. (1996) and the following 4 state-of-the-art methods:

• A 3-run trained Ant Colony Optimization with 20 iterations (ACOt
20) proposed

by Souffriau et al. (2008),

• A 1-run deterministic Guided Local Search (GLS) proposed by Vansteenwegen
et al. (2009b),

• A 10-run Pareto Ant Colony Optimization (P-ACO) and 10-run Pareto
Variable Neighborhood Search (P-VNS) proposed by Schilde et al. (2009),

• A 10-run GRASP with path relinking (GRASP) proposed by Campos et al.
(2013).

Tables 4.4 and 4.5 summarize the computational results on Tsiligirides (1984) and
Chao et al. (1996) instances sets respectively. Columns headed Gap% in Table 4.4
and Table 4.5 give the average percentage gaps to the optimal value identified by
Tsiligirides (1984) for the sets 1_p21, 1_p32 and 1_p33 and to the BK value for
the sets 1_p64 and 1_p66 respectively. Note that for the three Tsiligirides (1984)
instances sets, both methods proposed by Schilde et al. (2009) find the optimal
values but computational times were not reported. Table 4.4 shows that the pro-
posed matheuristic VNS* outperforms all the published methods by providing the
optimal values of less than one second, 0,67 seconds in average. GLS is the fast
method on average on the three instances classes. It takes 0.44 seconds but pro-
vides worst results, 1.74% of average gap. In Table 4.5, the VNS* finds the best
gap value for the class 1_p64 in 4.64 seconds while the CGW finds solutions with
the same gap value, with more computational effort equal to 177 seconds. More-
over, the VNS* achieves only slightly worse average gap equal to 0.08% compared
to 0.06% obtained by P_ACO. Nevertheless, we cannot conclude that the VNS* is
the most competitive among the state-of-the-art methods since the running times
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for P_ACO, P_VNS and GRASP are missing. For Chao et al. (1996) instances,
Schilde et al. (2009) and Campos et al. (2013) report only the running time elapsed
to find the BK value which is useless for this comparison.

According to Dongarra (2013), computers used for state-of-the-art methods and
the VNS* have similar performance (similar enough to compare absolute run times).
Our computer is similar to the machine used to run the CGW heuristic and two
time faster than the machine used to run the GLS heuristic.

Table 4.4: Comparison of VNS* to the state-of-the-art methods on Tsiligirides (1984)
data sets

Class Gap% Time(s)
GLS ACOt

20 VNS* GLS ACOt
20 VNS*

1_p21 1.34 4.78 0.00 0.25 - 0.33
1_p32 3.28 1.80 0.00 0.52 - 0.70
1_p33 0.60 1.79 0.00 0.55 - 0.98

Table 4.5: Comparison of VNS* to the state-of-the-art methods on Chao et al.
(1996) data sets

Class Gap% Time(s)
CGW GLS P_ACO P_VNS GRASP VNS* CGW GLS P_ACO P_VNS GRASP VNS*

1_p64 0.07 1.09 0.13 0.17 0.14 0.07 177.04 2.18 1.97 2.56 0.08 4.64
1_p66 0.43 1.31 0.00 0.13 0.00 0.10 158.65 2.26 0.22 1.18 0.07 4.94

4.2.2 OPTW instances

The OPTW is a simplified version of the RPTP where the vehicle has only one com-
partment w and there is only one product demand p associated with each customer
i. The OPTW has received a lot of attention in the literature and a large set of
instances has been proposed. The instances were obtained from the data sets pro-
posed by Solomon (1987) for the VRPTW and the data sets of Cordeau et al. (1997)
generated for the periodic MDVRPTW. Based on the Solomon’s instances, Righ-
ini and Salani (2006) generated 58 instances for the OPTW by considering 50 and
100 customers (c-50, r-50, rc-50, c-100, r-100, rc-100). They derived a second set of
10 instances based on Cordeau’s data sets (pr01-pr10). Righini and Salani (2006,
2009) solved the derived sets of the OPTW to optimality thanks to a dynamic pro-
gramming approach. Montemanni and Gambardella (2009) proposed an Ant Colony
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System (ACS) and added 2 data sets by considering 27 Solomon’s instances with
100 customers (c2-100, r2-100, rc2-100) and other 10 Cordeau’s instances (pr11-
pr20). The Solomon’s instances referred to by (c2-100, r2-100, rc2-100) as well as
the Cordeau’s instances are characterized by wide time windows and are known to
be hard to solve (Righini and Salani, 2006, Labadie et al., 2011). Most approxi-
mate algorithms failed to obtain optimal solutions in a reasonable time for these
instances. In total, 105 instances for the OPTW divided into 11 classes are avail-
able. The number of customers in Cordeau’s data sets ranges from 48 to 288 while
the Solomon’s instances contain 50 or 100 customers. The demand of each customer
in each instance represents the associated score. The maximum duration Tmax of
a route equals the closing time of the starting point. These test instances can be
downloaded from http://www.mech.kuleuven.be/en/cib/op.

The performance of the proposed matheuristic is now compared to the OPTW
published results, in particular, the Iterative Local Search (ILS) (Vansteenwegen
et al., 2009a), the ACS (Montemanni and Gambardella, 2009), the VNS (Tri-
coire et al., 2010), the Greedy Randomized Adaptive Search Procedure (GRASP)
(Labadie et al., 2011), the Granular VNS (GVNS) (Labadie et al., 2012) and the
Slow Simulated Annealing (SSA) (Lin and Yu, 2012). Vansteenwegen et al. (2009a)
proposed a fast ILS based on a multi-start strategy to solve the OPTW and the
TOPTW instances. Tricoire et al. (2010) designed a VNS to deal with instances
of the multi-period orienteering problem with multiple time windows, the OPTW
and the TOPTW. A GRASP hybridized with an evolutionary local search algorithm
was proposed in Labadie et al. (2011). Recently, Labadie et al. (2012) develop an
effective GVNS. To fairly compare the performance of the GVNS to the ILS, the
authors report the detailed results of a fast version of the GVNS which terminates
once the solution value of the ILS is retrieved. Lin and Yu (2012) propose a fast and
a slow version of an algorithm based on Simulated Annealing ((FSA) and (SSA)).
The SSA outperforms the FSA due to the different stopping criterion. SSA stops
when the best solution visited is not improved for a preset number of iterations.
The SSA improves the BK solutions for 4 instances: rc2-104, pr11, pr17 and pr18.
In the remainder of this chapter, we compute all average percentage gaps for ACS,
ILS, VNS, GRASP and GVNS taking into consideration these new BK values.

In this chapter, the Euclidean distance for all the instances are rounded down to
the second decimal as in (Righini and Salani, 2009, Montemanni and Gambardella,
2009, Labadie et al., 2011, 2012). It is worth mentioning that the remaining state-of-
the-art methods compute distances rounded down to the second digit for Cordeau’s
instances and to the first digit for Solomon’s instances.
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For a fair comparison, we compare the computers on which computational results
were conducted (Dongarra, 2013). The performance of our computer is equivalent
to the computers used by Vansteenwegen et al. (2009a) and Lin and Yu (2012). For
the other state-of-the-art methods, our processor is approximately two times faster.
It should be noted that ILS and SSA are deterministic algorithms and were run
only once. ACS, GRASP and GVNS were executed 5 times while the results for
VNS were obtained with 10 runs. The comparison to previous methods is shown in
Tables 4.6-4.8.

A large variance of computational time can be observed for the results of
Solomon’s instances. For example, for the instance class r*2-100, the CPU ranges
from 1.66 seconds to 3600 seconds. To obtain a meaningful comparison, we propose
to divide methods into slow algorithms: ACS and VNS, (see Table 4.6) and fast al-
gorithms: ILS, GRASP, GVNS and SSA (see Table 4.7). In Table 4.6, we report
results when we limit the CPU time to 120 and 300 seconds. In Table 4.7, we report
the results of VNS* when the stopping criteria, itermax, is fixed to 20 and the results
when the computation time is limited to 20 seconds. Results for Cordeau’s instances
are summarized in Table 4.8. We report the computational results of VNS* for 120
and 300 seconds of computation time.

In the detailed experimentations results, we state that VNS* is able to obtain
the BK solution at least once for most of the Solomon’s instances. In Tables 4.6, 4.7
and 4.8 the efficiency of VNS* increases with running time. Looking at the results
after 120 seconds of computation time, VNS* provides a better solution value than
the ACS on 8 out of 9 classes. After 300 seconds, VNS* and VNS provide similar
results for the different instances classes. On average, Tricoire et al. (2010) obtain
a gap to BK values equal to 0.33% in 318 seconds while we obtain 0,38% in 300
seconds.

When the stopping criteria is the fixed number of iterations, VNS* leads to
near-optimal solutions with a little computational effort. The average gap to the
BK solutions ranges from 0% to 2.77% over all the instances classes within an aver-
age computation time equal to 7.86 seconds. VNS* outperforms then the GVNS in
terms of solution quality and provides similar average gap than GRASP (0.88% vs.
0.73% respectively). For the instances classes with 50 and 100 customers, the SSA
provides slightly lower average gaps than VNS* at the expense of larger computa-
tional times. Computation times indicate that ILS is certainly the fastest method
but it provides the highest average gap equal to 1.93%. This is not surprising be-
cause ILS is a deterministic algorithm designed to reach good quality solution very
quickly.
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Considering the first seven instances classes, VNS* 20 seconds achieves better re-
sults compared to VNS* with itermax as stopping criterion. For the instances classes
(r2-100 and rc2-100) known to be hard, VNS* is able to provide good quality solu-
tion with an average gap equal to 3.05% at most. We can conclude then that the
VNS* is competitive as the state-of-the-art methods on the Solomon’s instances.

On the Cordeau’s data sets, VNS* is not as efficient as on the Solomon’s in-
stances. After 120 seconds ans 300 seconds of computation time, the average gaps
to BK on Cordeau’s instances (pr01-pr10) and (pr11-pr20) are 4% and 3.06% re-
spectively better than the values obtained by ILS (6.91%) and ACS (6.02%) with an
average computational times of 1.86 seconds and 3600 seconds respectively. Results
in Table 4.8 indicate that the SSA provides the best solution values on average and
finds new BK solutions for three of the Cordeau’s instances: pr11, pr17 and pr18.
For the state-of-the-art methods, the average gap from BK solutions ranges from
0.97% to 10.84%. Due to their characteristics (large TW, large time duration per
route), Cordeau’s instances require much more diversification than intensification.
Therefore, to assess the efficiency of the proposed matheuristic for more difficult
instances, we propose a slightly modified version of the VNS* by increasing the
number of deleted customers kd to #Cust

3 in each iteration and by reducing itermax

to 5. This method, VNS*C, explores the solution space more widely. The average
gap decreases significantly. After 300 seconds of running time, VNS*C is as efficient
as SSA: 0.99% and 2.96% versus 0.97% and 3.25% in 112.21 seconds and 162.40 sec-
onds respectively. In addition, it is worth mentioning that VNS* improves the BK
solution for instance pr11 while VNS*C improves the BK solution for instance pr13.
Note that in VNS*, the maximum number kd of deleted customers is set to 2. We
have to preserve the speed of the proposed matheuristic and it is shown experimen-
tally that is turns to be time consuming to explore the solution space extensively as
VNS*C does on Solomon’s instances.

Altogether, the performance of the unified matheuristic is very encouraging. The
results have shown that the proposed algorithm can compete with the current state-
of-the-art methods. It is able to produce optimal and near-optimal solutions for
slightly longer running times. This is not surprising since the code was not modi-
fied to solve these problems. Therefore, some procedures are invoked even if they
are of no interest in this case. This represents the cost to pay when the method
implemented is able to solve a wider range of multi-constrained problems.
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Table 4.6: Average results of the slow methods on Solomon’s data sets

Class Gap% Time(s)
ACS VNS VNS* VNS* VNS
(3600s) (120s) (300s)

c-50 0.00 0.00 0.00 0.00 53.63
r-50 0.00 0.00 0.33 0.33 24.18
rc-50 0.00 0.19 0.00 0.00 31.93
c-100 0.00 0.11 0.00 0.00 98.39
r-100 0.24 0.05 0.06 0.05 89.10
rc-100 0.00 0.04 0.00 0.00 65.21
c2-100 0.58 0.21 0.42 0.33 560.17
r2-100 3.16 1.05 2.10 1.53 1065.82
rc2-100 2.04 1.35 1.61 1.23 869.41

Table 4.7: Average results of the fast methods on Solomon’s data sets

Class Gap% Time(s)
ILS GRASP GVNS SSA VNS* VNS* ILS GRASP GVNS SSA VNS*

(20 iter) (20s) (20 iter)
c-50 0.33 0.00 - - 0.00 0.00 0.27 7.01 - - 0.88
r-50 0.63 0.47 - - 0.33 0.33 0.20 0.93 - - 0.80
rc-50 2.21 1.11 - - 0.10 0.00 0.18 0.91 - - 0.65
c-100 1.11 0.00 1.22 0.00 0.49 0.00 0.33 22.59 166.46 21.07 1.88
r-100 1.90 0.22 2.68 0.11 0.25 0.09 0.19 3.51 29.43 23.34 2.75
rc-100 2.92 0.40 3.51 0,00 0.19 0.00 0.23 1.99 9.80 22.19 2.03
c2-100 2.28 0.61 1.11 0.13 1.16 0.85 1.71 32.18 192.40 37.49 11.28
r2-100 2.89 1.61 3.37 1.29 2.77 3.05 1.66 11.18 33.82 45.83 29.46
rc2-100 3.43 2.20 3.96 0.96 2.65 2.60 1.63 8.21 16.01 50.25 21.05

Table 4.8: Average results of the state-of-the-art methods on Cordeau’s data sets

Class Gap%
Time(s)
ILS ACS VNS GRASP GVNS SSA VNS*C VNS*C VNS* VNS*

(3600s) (120 s) (300s) (120 s) (300s)
pr01-10 4.72 1.20 1.08 1.44 1.61 0.97 1.20 0.99 2.41 1.77

1.75 822.07 5.03 12.37 112.21
pr11-20 9.11 10.84 2.92 2.92 3.81 3.25 3.45 2.96 5.60 4.36

1.98 1045.93 7.90 24.22 162.40
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4.2.3 Experimental results for the RPTP

4.2.3.1 New testbed

Since no data sets are available for the RPTP, we generate a new testbed to eval-
uate the VNS*. The proposed testbed is based on the Solomon’s data sets with 50
and 100 customers and on the extended instances including 200 customers proposed
for the VRPTW by Gehring and Homberger (1999). We consider a total of 172
original instances classified into 18 classes. We introduce three types of products
p ∈ P = {1, 2, 3} with the vector profit (10, 15, 20). We split the original customer
demand into three amounts randomly. A customer i may not place an order for a
given product p, i.e., qpi = 0. The gain gpi associated with each order opi is obtained
by multiplying the quantity qpi by the associated product profit.

Three compartments w ∈ W = {1, 2, 3} are considered for each vehicle. The
compartments capacities (Q1, Q2, Q3) are obtained by dividing the original capacity
Q into three parts according to the following distribution (0.2 ∗Q, 0.3 ∗Q, 0.5 ∗Q).
W and P are the same for all 172 instances. As in the original data sets, instances
belonging to the same class have the same customers locations but have different
time windows and quantity (eventually, null) of products for each customer. An-
other relevant design parameter is the incompatibility relations. To study different
loading problems as they arise in real-life scenarios, we propose to generate three
types of incompatibilities as it is shown in Table 4.9, each type contains 172 in-
stances divided into 18 classes.
The first type of instances (type A) is the simplest one. In this data set, there is
no incompatibility constraints, i.e., each product may be loaded in any compart-
ment and with any other product. Therefore, a solution for an instance of type A
is feasible for the corresponding OPTW instances. Type B instances correspond to
the distribution of liquid products to customers or animal feeds to farms or to the
waste collection. In such cases, there are no product-compartment incompatibilities
and all the products are incompatible pairwise. The third instances type, type C,
corresponds to the general one. We choose to maintain a moderate level of incom-
patibility restrictions. Two products must be kept segregated during transportation
and each product may be loaded in two compartments out of three.
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Table 4.9: Incompatibility configurations in generated data sets

Sets Type A Type B Type C
IP ⊆ P × P IP= {∅} IP={(1,2),(1,3),(2,3)} IP={(1,3)}
IPC ⊆ K ×W ×P IPC= {∅} IPC={∅} IPC={(1,1,1),(1,2,2),

(1,3,3)}

The instances names are as follows: the first two letters give the type of cus-
tomers distribution followed by an asterix to differentiate the instances designed for
the VRPTW with compartments from the original ones designed for the VRPTW.
The first digit gives the type of time window (1: narrow, 2: large), the second
three-digits indicate the number of customers.

Table 4.10 reports the performance of VNS* on the three data sets. The first
two columns report the number of customers and the number of orders included in
the solution respectively. Columns headed Obj report the average objective value
obtained with the standard setting of parameters. Table 4.10 shows that solutions
for instances of type A, provide higher average objective than solutions for instances
of type B and type C, although the average number of covered customers is almost
the same between the three instances types. This could be expected since instances
of class A are less constrained. Indeed, the number of visited customers in each
route is limited by the temporal restrictions or/and capacity for the three data sets
while the absence of incompatibility relations enables to freely assign products to
compartments and increasing the objective value.

For instances of type B, identifying very good solutions requires large computa-
tional times almost equal to the double of average running time required by solving
instances of type A and type C. This is likely due to the fact that the assignment
of each product to any compartment induces some symmetry which can not be bro-
ken easily. Finally, VNS* seems sensitive not only to incompatibility constraints but
also to the type of the time windows associated with customers, since few customers
are inserted for instances with narrow time windows. These observations seem to
be consistent with previous research (Righini and Salani, 2006, Labadie et al., 2011)
as we pointed out in Section 4.2.2.

Now, we assess the efficiency of the loading neighborhoods. We compare two
new versions of VNS* as follows.

• VNS*= The Linear Multiple Knapsack Problem with Conflicts is solved at the
end of each VNS iteration.
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• VNS*I= The Quadratic Multiple Knapsack Problem with Conflicts is solved
at the end of each VNS iteration. Next an insertion heuristic attempting to
insert new orders is applied. Last, we solve the Linear Multiple Knapsack
Problem with Conflicts.

• VNS*II= VNS* without any loading neighborhoods.

To avoid misleading results, the remaining tests are performed on instances of type
C. Results for each instance class are reported in Table 4.11.

Obviously, VNS*II provides good but not convincing results. The solutions pro-
vided serve almost the same number of customers compared with the solutions
provided by applying the loading neighborhoods. However, VNS*II provides lower
average objective values by 10% than those provided by VNS* and VNS*I. As we
expected, optimizing the loading plan in the MC-VRP has a significant impact on
the solution quality.

Extensive computational experiments with VNS*I, put into highlight that im-
proving the quality solution is unlikely within a reasonable amount of computation
time. When we solve the Quadratic Multiple Knapsack Problem with Conflicts,
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Table 4.10: Average results of VNS* on RPTP data sets

Class Type A Type B Type C
# Cust # Ord Obj Time(s) # Cust # Ord Obj Time(s) # Cust # Ord Obj Time(s)

c*1-50 11.33 19.89 3478.47 2.10 11.11 18.44 3360.23 5.37 11.56 21.56 3236.88 2.43
c*2-50 33.38 82.88 9900.73 13.03 33.38 77.13 8734.90 83.08 33.00 81.38 9264.00 17.52
r*1-50 8.58 20.67 2824.96 1.32 8.58 20.17 2623.35 2.62 8.75 21.67 2785.72 1.41
r*2-50 38.91 92.18 8326.97 12.67 38.64 91.64 8207.63 40.49 38.00 90.36 8063.30 15.00
rc*1-50 8.63 18.63 3128.93 1.79 9.25 18.13 2871.65 2.95 9.00 19.63 2975.40 1.51
rc*2-50 35.75 89.88 10752.40 11.27 35.50 87.75 10326.02 94.09 34.75 88.00 10216.72 14.94
c*1-100 11.11 16.56 3553.52 3.97 11.11 16.00 3478.68 6.05 11.22 20.89 3279.04 3.68
c*2-100 31.63 66.63 11447.27 28.25 31.63 71.50 10118.81 107.14 32.00 72.25 10381.67 31.76
r*1-100 11.42 23.58 3318.47 4.02 10.83 19.92 3177.76 7.41 11.67 24.08 3160.05 4.17
r*2-100 49.82 122.55 13371.22 61.29 49.45 114.73 11981.13 316.85 49.64 121.55 12311.07 71.99
rc*1-100 10.38 20.13 3343.15 4.79 10.13 17.75 3176.81 6.02 10.50 21.13 3207.39 3.46
rc*2-100 42.63 102.50 13199.75 46.43 43.00 94.75 11715.23 222.65 42.63 103.88 11962.38 52.16
c*1-200 11.60 18.40 3555.19 7.18 11.20 17.00 3449.21 10.18 11.80 21.00 3273.55 7.06
c*2-200 33.50 66.40 11799.60 64.79 33.60 73.70 10423.75 165.82 33.70 70.10 10347.67 68.44
r*1-200 20.40 23.10 3621.71 16.71 16.60 21.90 3291.21 20.60 16.00 25.60 3209.68 14.37
r*2-200 87.10 128.90 16938.42 371.27 84.80 134.00 14568.86 267.57 80.40 135.00 16034.64 397.53
rc*1-200 20.50 22.90 3642.42 14.85 18.60 24.60 3316.47 30.64 17.40 26.30 3260.44 14.04
rc*2-200 81.10 128.40 16815.84 272.69 80.90 135.00 13516.57 232.84 79.00 134.00 16012.48 332.15
Average 30.43 59.12 7945.50 52.13 29.91 58.56 7129.90 90.13 29.50 61.02 7387.89 58.53
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Table 4.11: Average results of VNS* variants on RPTP data sets

Class VNS* VNS*I VNS*II
# Cust # Ord Obj Time(s) # Cust # Ord Obj Time(s) # Cust # Ord Obj Time(s)

c*1-50 11.56 21.56 3236.88 2.43 11.33 23.89 3210.17 3.91 11.56 22.44 3170.84 1.55
c*2-50 33.00 81.38 9264.00 17.52 33.00 81.13 9186.04 522.33 33.00 73.63 8369.57 12.59
r*1-50 8.75 21.67 2785.72 1.41 8.75 21.75 2759.27 4.26 8.75 21.42 2762.88 0.98
r*2-50 38.00 90.36 8063.30 15.00 38.18 90.55 8066.45 458.08 37.91 84.55 7679.49 12.33
rc*1-50 9.00 19.63 2975.40 1.51 8.75 20.75 2965.76 3.29 9.00 20.38 2948.56 1.00
rc*2-50 34.75 88.00 10216.72 14.94 34.75 87.50 10194.07 481.74 34.88 80.88 9466.77 11.37
c*1-100 11.22 20.89 3279.04 3.68 11.44 21.56 3266.81 5.31 11.11 20.33 3217.79 2.97
c*2-100 32.00 72.25 10381.67 31.76 32.13 73.00 10185.00 521.78 32.38 68.63 9497.83 27.78
r*1-100 11.67 24.08 3160.05 4.17 11.75 25.00 3126.62 12.69 11.58 24.33 3101.71 3.41
r*2-100 49.64 121.55 12311.07 71.99 49.64 120.91 12286.95 580.93 49.27 107.18 11018.73 61.56
rc*1-100 10.50 21.13 3207.39 3.46 10.63 21.75 3173.95 5.76 10.50 20.88 3150.69 2.78
rc*2-100 42.63 103.88 11962.38 52.16 43.00 103.88 11932.72 558.44 42.75 94.38 10983.27 45.84
c*1-200 11.80 21.00 3273.55 7.06 11.90 21.90 3247.12 8.53 11.80 22.80 3205.34 6.35
c*2-200 33.70 70.10 10347.67 68.44 33.70 68.90 10242.72 534.96 34.60 68.80 9641.03 63.50
r*1-200 16.00 25.60 3209.68 14.37 19.00 29.70 3166.47 83.40 20.50 27.40 3036.41 13.44
r*2-200 80.40 135.00 16034.64 397.53 83.40 139.50 15923.66 907.89 86.30 126.10 13147.38 347.32
rc*1-200 17.40 26.30 3260.44 14.04 17.70 29.00 3201.31 111.79 19.10 26.50 3133.65 12.96
rc*2-200 79.00 134.00 16012.48 332.15 82.30 140.00 15912.79 846.41 84.40 129.90 13070.97 283.31
Average 29.50 61.02 7387.89 58.53 30.07 62.26 7335.99 313.97 30.52 57.81 6700.16 50.61
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we stop CPLEX when an integer feasible solution has been proved to be within
0.05% of optimality or when running time limit set to 25 seconds is reached. Given
the results presented in Table 4.11, VNS*I is two to thirty times slower than VNS*
without a significant improvement on the solution quality. VNS* provides slightly
better results than those provided by VNS*I compared to the results obtained with-
out loading neighborhoods. Despite this, we kept the same stopping criteria when
solving the quadratic program. Indeed, deriving better results at the expense of
longer run times is not our goal. To conclude, VNS* is the best configuration pro-
viding high quality solutions without a large computational effort. The efficiency of
the VNS* depends on the type of the time windows and the instances size. This
finding suggests that the larger computational times required by VNS* are always
due to the solution of instances (c*2-200, r*2-200 and rc*2-200). Detailed results
are provided in Appendices A.5-A.9.

4.2.3.2 Sensitivity analysis

The proposed matheuristic embeds different components that contribute to the
performance of VNS*. In order to better analyze the contribution of the main com-
ponents, we conduct some additional experiments reported in this section. In these
experiments, the performance of each setting is assessed by reporting the average
deviation from the best solution found over the three classes of instances (c*1-100,
r*1-100 and rc*1-100). The results provided by VNS* are used as reference solutions.
The parameters setting is unchanged.

First, we study the impact of the multi-start constructive heuristic by running
VNS* with the same initial solution for the 20 iterations, i.e., lines (5-7) are re-
moved from Algorithm 1 in Chapter 3. We obtain an average percentage gap of
1.04%, 6.33% and 4.42% for classes: c*1-100, r*1-100 and rc*1-100 respectively.
These results confirm that starting from a new solution at each iteration plays an
important role in the effective exploration of the solution space.

One critical component in VNS* is the Get_Compartment heuristic. To prove
its efficiency, we solve the Quadratic Multiple Knapsack Problem with Conflicts
for the final solution s∗ obtained by VNS*. We denote the new solution s̄. We
compare the residual capacity of solutions s∗ and s̄. No improvement has been
obtained on the sample instances. Therefore, the loading feasibility check heuris-
tic provides a very effective (most likely the optimal) assignment of products to
compartments. It represents a key component in the VNS* framework. Fur-
thermore, we test the VNS* without the Waiting_time_optimization heuristic.
The average results obtained are slightly worse than those obtained when the
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Waiting_time_optimization heuristic is applied. Hence, optimizing the total route
duration contributes to the quality of the obtained solution.

Table 4.12 summarizes the behavior of each removal and insertion heuristic, in-
voked in the current version of VNS*, when used in a LNS scheme combining one
insertion heuristic and one removal heuristic. For these tests, we compare the quality
of the solution obtained by VNS* without theWaiting_time_optimization heuris-
tic. The first four configurations describe the impact of the removal heuristics when
the insertion heuristic is fixed. The results show that there is no significant differ-
ence between the 4 removal heuristic performance. The aim of a removal heuristic
is to diversify the solution, which seems to be ensured by the 4 heuristics in a simi-
lar way. However, the combination of the 4 removal heuristics leads to improve the
exploration of the solution space.

For the following experiments (conf.5, conf.6 and conf.7), we select arbitrar-
ily the similarity removal heuristic to perturb the solution. In these experiments,
all insertion heuristics perform well expect insertion heuristic (1). The insertion
heuristic (5) performs better with an average gap equal to 1.32% followed by the
insertion heuristics (6) and (2). The insertion heuristic (1) gives the worst aver-
age gap 12.20%. Among the 8 settings described in Table 4.12, conf.6 turns out
to be the most efficient combination on the testbed. Nevertheless, it is worth wile
that applying conf.6, coupling the insertion heuristic (5) and the similarity removal
heuristic, on the OP and the OPTW fails to provide good quality solutions while
the VNS* performs particularly well. These observations support the idea that com-
bining several removal and insertion heuristics may have a positive impact on the
solution quality and that designing the matheuristic with different neighborhoods is
definitely a good option.
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Table 4.12: Effectiveness of the insertion and removal heuristics

Conf. Removal heuristics Insertion heuristics Gap%
Similarity Worst Random Spatio- Insert Insert Insert Insert c*1-100

temporal (1) (2) (5) (6) r*1-100
rc*1-100

1 • • 3.84
3.78
3.70

2 • • 3.19
4.81
3.65

3 • • 3.66
4.29
3.95

4 • • 3.78
5.12
3.61

5 • • 5.33
12.85
18.41

6 • • 0.75
1.88
1.32

7 • • 3.05
3.08
3.57

VNS* • • • • • • • • 0.00

4.3 Conclusions
In this chapter, we presented the data structure developed of our unified framework,
representing the problem instance and the solution. Then, extensive experimental
results show that VNS* competes with the best known state-of-the-art methods pro-
posed for the OP and the OPTW without any customization. To better evaluate
the matheuristic performance on rich instances, we generated three data sets. Each
data set includes 172 instances and describes three real-life scenarios. As expected,
VNS* performs specially well on the less constrained instances. In the presence of
incompatibility restrictions, VNS* produces high quality solutions on average with
a larger computational effort. The sensitivity analysis reveals that the exact load-
ing neighborhoods contribute to the VNS* performance significantly. They lead to
improve the solution quality with no significant time increase. Furthermore, start-
ing from a different solution at each iteration and combining removal and insertion
neighborhoods contribute to the quality of solutions.

As presented in Chapter 2, the RPTP solution corresponds to the solution of the
pricing subproblem arising in the column generation scheme designed for solving the
MDMCMCm-VRPTW. In the next chapter we investigate this research avenue.
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Chapter 5

Column generation heuristic

This chapter is devoted to describe the column generation heuristic, which hybridizes
the VNS* matheuristic and the column generation approach to solve a variety of
VRPs. In the following sections, we first describe the components of the column
generation heuristic. Specifically we present the heuristic for generating the initial
set of columns. Next, we summarize the accelerating strategies performed to solve
the NP-hard pricing subproblem. Last, we model the post-processing procedure in-
voked to re-optimize the final solutions. The performance of the column generation
heuristic is assessed on a set of 14 CVRP instances including up to 199 customers
and the test bed for the MCMCm-VRPTW generated in Chapter 4. The computa-
tional results reported show that the proposed column generation heuristic performs
moderately well in terms of solution quality and computational efficiency, so far. In
this chapter, we describe a preliminary version of column generation heuristic and
several potential strategies will be explored in depth in future research for further
improvements.

5.1 Introduction
As pointed out in Chapter 2, the DW decomposition leads to a model with a po-
tentially exponential number of new variables and to a set of pricing problems. We
showed in Chapter 2 that it can be modeled as a rich profitable tour problem. We
refer to Lübbecke and Desrosiers (2005) as well as the book Desaulniers et al. (2005)
for comprehensive surveys on column generation.

Since the subproblem is NP-hard, it seems to be very difficult to solve it effi-
ciently. Therefore, we choose to solve it heuristically. The VNS* matheuristic can
handle all the complex issues of the MDMCMCm-VRPTW efficiently. Figure 5.1
sketches the proposed column generation heuristic. Initialization involves adding
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to the RMP a number of columns to obtain a feasible solution. The initial set of
columns is obtained by applying an effective constructive heuristic described in Sec-
tion 5.2.1. An iteration of a column generation consists in solving the RMP in order
to (i) identify the current optimal objective function value ∑

r∈R̄ c
r and dual vari-

ables πpj associated with active constraints and to (ii) find a new column, Λr, if there
is still one, with a negative reduced cost ĉr. The RMP is gradually enriched by new
columns by iteratively solving pricing subproblems, which corresponds to solving the
MDMCMCm-VRPTW with one vehicle. At each iteration, the VNS* matheuris-
tic is invoked to rapidly generate columns with positive costs since the subproblem
is formulated as a maximization problem. If there is no improving columns or the
maximum column generation iterations, iterMax

CG , is reached, we solve the resulting
RMP with integer requirements. Otherwise, the column found is added to the RMP
which is solved by the primal simplex method.

5.2 Column generation heuristic components

5.2.1 Initial solution heuristic

Starting from a promising initial solution is a key feature in column generation. This
helps the column generation process get a fast increase in the quality of dual vari-
ables. We use a fast heuristic based on the VNS* matheuristic described in Chapter
3 which produces a set of feasible routes. It is noteworthy that generating columns
provided by a few iterations of the VNS* or by the constructive heuristic NNA as
well as the trivial depot-customer-depot routes yields to poor quality initial solution.
The basic steps of the proposed matheuristic are provided in Algorithm 5.

The heuristic is performed L times. In each iteration `, a solution S` is build in-
cluding a set of routes which satisfy all the customers orders. We propose a method
to implicitly cluster the non-satisfied customer orders located in the same region.
At each iteration, we build a route depending on a seed customer denoted h. For
the first route built customer h corresponds to the ` th farthest customer from the
depot do. For the remaining routes, the seed customer h corresponds to the farthest
customer from the depot with at least one non-satisfied order. For each new route,
we need to recalculate the profit gpi associated with each order opi with respect to the
distance, disdoh, separating the seed customer h and the depot according to equa-
tions 5.1. The better choices are then to visit customers as close as possible to the
seed customer h with the highest profit gpi . Through preliminary experimentations,
we notice that instances with a large number of orders require more diversification
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than small ones. We set L to n/2 for instances with up to 75 customers and to n for
instances with more than 75 customers. This heuristic produces a set a meaningful
routes satisfying all the customers orders. The obtained feasible solutions routes are
then included in the initial set of columns for the column generation heuristic. With
these initial columns, column generation is usually faster and can produce higher
quality heuristic solutions.

gpi = ( disdol

disdoi + disil
)3 ∗ 100 (5.1)

Algorithm 5: Heuristic to construct an initial set of columns
input : (Problem Class )
output: ({S`∀ ` ∈ L : S` = {s1

` , s
2
` , . . . , s

j
`}} )

1 for (`← 1 to L) do
2 exist ← 1;
3 j ← 1;
4 Initialize S`, S` ← ∅;
5 while (exist == 1) do
6 exist ← 0;
7 if (j == 1 ) then
8 h← the ` th farthest customer from the depot;
9 else

10 h← the farthest customer from the depot;
11 end
12 Compute the profits associated with undelivered orders;
13 Let sj` be an empty solution;
14 Apply the NNA heuristic on sj`;
15 Apply the VNS* with itermax = 5 on sj`;
16 Apply the Waiting_Time_Optimization procedure on sj`;
17 S` = S`

⋃
sj`;

18 for (all the orders in the Problem Class) do
19 if (there still at least one order not satisfied) then
20 exist ← 1;
21 break;
22 end
23 end
24 j + + ;
25 end
26 return S`;
27 end
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5.2.2 Accelerating strategies for solving the pricing problem

Generating an attractive and reasonable number of columns is definitely the bot-
tleneck for column generation, paired with the time to solve the RMP with a large
number of columns to integrality. Some accelerating strategies and dominance rules
are used to speed up the generation process.

• Regarding the column generation process, we apply two dominance rules while
solving the pricing subproblem. First, we retain only distinct columns hav-
ing a different reduced cost. Second, in each call for the VNS* matheuristic,
we remove dominated routes from the pool of columns added to the RMP. A
route s∗ dominates a route s̄ if s̄ covers the same subset of customers visited
by s∗ and incurs a higher travel cost.

• A well known strategy for accelerating column generation is to return many
positive reduced costs columns at each iteration when we solve the pricing sub-
problem. Even though only one column needs to be returned, returning several
ones when they are available have been proved to be beneficial experimentally
(Larsen, 1999, Desaulniers et al., 2005).

• The column generation approach does not automatically guarantee integer so-
lutions. The solutions obtained will indeed be fractional. We impose decisions
on the route variables Λr to reduce the search space before the linear opti-
mization is started. This can be achieved by fixing some variables to 1 when
no improvement of larger than 0.05% in the objective value of the RMP has
been realized in the last iterFixCG column generation iterations (iterFixCG was set
to 3 for our experiments). It may be of interest to fix variables, since due to
the reduced size of the resulting search tree, potentially more improvements
could be possible in limited time. Nevertheless, note that so far, we consider
the strategy that keeps all columns in the RMP once they were added be-
cause, for some instances columns with fractional value near to 0 are part of
the optimal solution.

• Since we aim to design a heuristic approach which is competitive to other
state-of-the-art methods, we choose to not solve the linear RMP relaxation
to optimality. We put a limit on the number of column generation iterations
iterMax

CG which equals to 100 for our experiments. In addition, we set an early
termination criterion by means of a gap limit equals to 3%. For many of the
instances considered, this limit does not deter to obtain good solutions while
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it could in turn lead to worse solutions for larger instances.

5.2.3 Post-processing procedure

In Chapter 2, the MP is modeled as a set covering problem where constraints 2.43
enable a customer order to be covered more than once in a solution. We overcome
this problem by removing redundant orders (i.e., delivered more the once in the fi-
nal solution) and apply a post-processing procedure on these routes. This procedure
completes the resulting column generation heuristic and allows to find consistently
solutions that improve the distance costs. This repair process is performed only once
for the final routes and is based on the solution of an assignment problem. Each
customer is treated as an independent vertex regardless of the number and type of
orders covered by this route. We compute cri the distance incurred by visiting cus-
tomer i by route r. cri takes a big positive value if customer i /∈ r in order to forbid
relocating customers between routes. We define R̂ the set of final routes obtained
from solving the integer MP and Pi the set of orders placed by customer i. We in-
troduce the following decision variables. Binary variables xpri indicate if order opi is
covered by route r. Binary variables yri indicate if customer i is visited by route r.
The mathematical model for the post-processing phase is as follows:

min
∑
r∈R̂

∑
i∈V

criy
r
i (5.2)

subject to

∑
r∈R̂

xpri = 1 i ∈ V , p ∈ Pi (5.3)

∑
p∈Pi

xpri ≥ yri i ∈ V , r ∈ R̂ (5.4)
∑
p∈Pi

xpri ≤ |Pi|yri i ∈ V , r ∈ R̂ (5.5)

xpri = 0 i ∈ V , p ∈ Pi, opi /∈ r. (5.6)

The objective function (5.2) minimizes the sum of the distance costs. Constraints
(5.3) ensure that an order opi is covered exactly once. Constraints (5.4) guarantee
that if a customer i is visited by a route r then at least one order opi should be deliv-
ered by this route. Constraints (5.5) put an upper bound on the maximum number
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of delivered orders for a given customer i by a route r. Constraints (5.6) put to 0
variables xpri if order opi does not appear on route r.

5.3 Computational experiments
Due to the large variety of constraints which have been considered in the
MDMCMCm-VRPTW, a large number of derived problems exists and it is not
possible to perform tests on all of them. Hence, we choose to solve the MCMCm-
VRPTW, positioned at the top of Figure 2.2 and the CVRP positioned at the
bottom of this figure. We first present the results on instances for the CVRP and
then on the testbed generated in Chapter 4. We ran the experiments on a com-
puter with 2.50 GHz and 4 GB Ram. The algorithms have been implemented in
language C and we use Cplex 12.5 to solve mathematical programs. The number of
deleted customer kd has been adjusted through preliminary tests and it is set to 4
for the experimentations conducted in this chapter. We allow the VNS* invoked to
build the initial solution to run over 5 iterations. All the remaining parameters are
maintained unchanged.

5.3.1 CVRP instances

The first set of instances is the well-known CVRP instances introduced by
Christofides et al. (1979) which can be downloaded from http://www.bernabe. dor-
ronsoro.es/vrp/. The 14 problem instances (vrpnc) contain 50 to 199 customers.
Instances vrpnc6− vrpnc10, vrpnc13 and vrpnc14 include route length restrictions.
Results are summarized in Table 5.1. To assess the efficiency of the initial construc-
tive heuristic and the post-processing procedure, we report three costs obtained in
three different phases of the column generation heuristic. Cost_1 corresponds to
the initial objective value of the RMP. Cost_2 and Cost_3 correspond respectively
to the objective value of the RMP before and after the post-processing procedure.
The BK column reports the BK solutions for the CVRP as listed in Laporte et al.
(2000). The Euclidean distance for the CVRP instances are real distances.
Although the framework proposed in this thesis is designed to solve RVRPs, it
provides reasonable results on the CVRP, especially for small and medium-sized
instances. The average gap obtained is equal to 5.41% for the instances vrpnc1-
vrpnc3 and vrpnc6-vrpnc8 including up to 100 customers. Unfortunately on larger
instances, the column generation heuristic behavior has to be improved. The cardi-
nality of R becomes prohibitive and we still have to develop some efficient rules to
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manage such a large pool.
Preliminary experimentations show that incorporating the 6 insertion heuristics de-
scribed in Chapter 2 in the VNS* improve the overall average results on the CVRP
instances. For example, the average gap obtained for instance vrpnc3 is reduced
from 5% to 2.5%. However, this configuration turns out to be very time consuming,
so it will not be considered.
The column generation heuristic takes longer running times than the best known
classical VRP heuristics. It takes less than 5 minutes on average to solve instances
with 50, 75 and 100 customers. This is not surprising since some procedures are in-
voked even if they are of no interest for the solution of CVRP instances.
The costs of the initial set of columns computed with the heuristic described in Sec-
tion 5.2.1 are close to those resulting from the column generation heuristic. Cost_3
outperforms Cost_1 with less than 10% on average. Indeed, since the heuristic starts
with a set of feasible and good quality columns, it is called with tight dual variables
values which avoids generating many columns with a large computational effort.
The success of post-processing procedure is apparent from most of the instances
since the total costs is reduced after its use.

Table 5.1: Performance of the column generation heuristic on the CVRP instances

Instance n BK Column Generation heuristic
Cost_1 Cost_2 Cost_3 Gap% Time(s)

vrpnc1 50 524.61 577.02 524.93 524.93 0.06 65.31
vrpnc2 75 835.32 973.91 891.54 890.78 6.64 103.41
vrpnc3 100 826.14 1031.78 867.70 867.64 5.02 477.76
vrpnc4 150 1031.07 1370.59 1099.27 1096.57 6.35 1338.27
vrpnc5 199 1311.35 1705.94 1375.32 1371.7 4.60 3157.9
vrpnc6 50 555.43 606.40 583.33 583.33 5.02 85.87
vrpnc7 75 909.68 1072.41 964.88 964.88 6.07 133.17
vrpnc8 100 865.94 958.74 953.12 949.33 9.63 750.21
vrpnc9 150 1162.89 1333.36 1293.37 1293.37 11.22 2596.44
vrpnc10 199 1404.75 1549.13 1519.27 1516.63 7.96 4817.52
vrpnc11 120 1042.11 1458.36 1293.62 1293.62 24.13 1686.33
vrpnc12 100 819.56 1080.63 952.31 927.97 13.23 289.83
vrpnc13 120 1545.93 1864.93 1864.93 1864.93 20.63 635.64
vrpnc14 100 866.37 1017.77 1017.77 1017.77 17.48 684.41
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5.3.2 MCMCm-VRPTW instances

We conduct experiments on the test bed generated in Chapter 4, specifically on
instances of type C with 50 and 100 customers. For the 100-customers instances,
we consider only the sets r*1-100, c*1-100, rc*1-100 with tight time windows. For
Solomon’s instances, the average width of the time windows and the number of cus-
tomers with constraining time windows vary from one instance to another within
the same class. In the test bed generated for the MCMCm-VRPTW, the difficulty
of instances is correlated to the number of orders rather than to the number of cus-
tomers. As shown in Table 5.2, the average number of orders vary from one instance
to another within the same class. For example, instances with 50 customers contain
between 50 and 150 customer orders since P = 3. Detailed computational experi-
ments are reported in Appendix A.

Table 5.2: Classes description

Class n #Orders
c*1-50 50 123.00
c*2-50 50 126.13
r*1-50 50 112.08
r*2-50 50 112.27
rc*-50 50 124.25
rc*2-50 50 127.25
c*1-100 100 251.00
r*1-100 100 219.67
rc*1-100 100 235.75

Table 5.3 presents the results of the column generation heuristic on 6 data sets
of the MCMCm-VRPTW including 112 different instances. Only Cost_1, Cost_3,
the running time in seconds and the average number of used vehicles are reported
for the sake of brevity. Column headed |K|V RPTW indicates the average number
of used vehicles in the BK or the optimal solution of Solomon’s instances designed
for the VRPTW. We succeed to solve the 112 instances. Table 5.3 shows that the
average solution time is almost 25 minutes for instances with 100 customers and
less than 4 minutes for instances of type 1 including 50 customers. However, it is
noteworthy that for solved instances, the heuristic stopping criterion is the fixed
number of column generation iterations. This clearly shows that the column gen-
eration heuristic could have found better solutions if we have allowed more time to

113



Column generation heuristic

Table 5.3: Results of the column generation heuristic on the MCMCm-VRPTW
instances

textitClass Cost_1 Cost_3 |K| |K|V RPTW Costs gap% Time(s)

c*1-50 556.61 503.79 6.33 4.8 10.54 341.16
c*2-50 817.69 757.32 4.75 2.75 8.90 1462.84
r*1-50 919.44 826.62 8.08 8.41 11.88 190.77
r*2-50 978.17 923.08 3.82 4.18 6.84 2037.73
rc*1-50 883.15 875.84 7.88 7 0.75 182.80
rc*2-50 1136.11 1083.69 4.38 4.25 5.60 3725.05
c*1-100 1137.48 1071.66 12.56 10 6.10 1641.92
r*1-100 1410.48 1297.07 13.33 13.5 8.91 1492.93
rc-1-100 1573.27 1509.35 13.75 13.12 4.17 1383.09

solve the instances. Nevertheless, we had to make a trade-off between solution qual-
ity and computational time.
We tried to solve the MCMCm-VRPTW instances which have 100 customers and
larger time windows (c*2-100, r*2-100, rc*2-100) with the same parameter setting.
We succeed to solve many of these instances despite of the straightforward imple-
mentation of the current version of column generation heuristic. However, for some
instances, the heuristic runs out of memory because it cannot deal with the very
large number of generated columns when the RMP is solved with integer require-
ments.
Considering the number of vehicles, we notice that the column generation heuristic
produces solutions with almost the same or a slightly larger fleet size than the one
used in the optimal solution of the VRPTW despite of the physical incompatibil-
ities considered in the MCMCm-VRPTW. This highlights the performance of the
proposed heuristic especially as the primary objective of the VPRTW consists in
the minimization of the number of vehicles used.
The proposed column generation heuristic depends on some control parameters.
Most of them are used to limit computational times in one or another way. Param-
eter setting should be done on different instances sets with different characteristics.
A sensitivity analysis on the most sensible parameters should be conducted to adapt
these parameters to each instances set.
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5.4 Conclusions
We described a column generation heuristic for the MDMCMCm-VRPTW. The
most important contributions of this chapter are the design of this heuristic and
the introduction of the post-processing algorithm to re-optimize the resulting routes
based on the solution of a mathematical program. Although a basic implementation
of these ideas only allows the solution of medium sized instances, by managing more
efficiently the pool of generated columns we believe that we will be able to solve
instances with up to 200 customers. Future research will focus also on developing
more efficient accelerating strategies.

We tried to assess the performance of the column generation heuristic on real
data sets arising in the olive oil collection process in Tunisia. This real-life case
study is the topic of Chapter 6. The real instances are defined over a set of periods
and use a limited size fleet. Cleaning activities may be required between successive
routes. One can run the column generation heuristic on each period. The solutions
obtained may be modeled as minimum-cost flow with the cost associated with each
arc is equal to the cost incurred by the cleaning activity if it is required, 0 other-
wise. However, we are not able to overcome the difficulty of limiting the fleet size
in the column generation process. Therefore, we propose an exact branch-and-cut
algorithm to solve these real data sets.
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Chapter 6

Real case study: The collection of
olive oil in Tunisia

In this chapter, we introduce, model and solve to optimality a rich multi-product,
multi-period and multi-compartment vehicle routing problem with a required com-
partment cleaning activity. This real-life application arises in the olive oil collection
process in Tunisia, where regional collection offices dispose of a fleet of vehicles to
collect one or several grades of olive oils from a set of producers. For each grade,
the quantity offered by a producer changes dynamically over the planning horizon.
We provide a mathematical formulation for the problem, along with a set of known
and new valid inequalities. We propose an exact branch-and-cut algorithm in or-
der to solve the problem. We evaluate the performance of the algorithm on real
data sets under different transportation scenarios to demonstrate to our industrial
partner the advantages of using multi-compartment vehicles.

An article based on this chapter was submitted for publication: R. Lahyani, L.C.
Coelho, M. Khemakhem, G. Laporte, F. Semet. A multi-compartment vehicle rout-
ing problem arising in the collection of olive oil in Tunisia. OMEGA, submitted for
publication.
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6.1 Introduction
We introduce, model and solve a real-world application of a multi-product, multi-
period and multi-compartment vehicle routing problem (MPPC-VRP) arising in the
collection of olive oil in Tunisia. In 2012, that country was the fourth largest exporter
of olive oil worldwide, with an export production of 163,000 tons. This amount was
expected to increase in 2013 according to the General Directorate for Research at
the Ministry of Agriculture. For climatic and geographical reasons, olive groves are
rather widespread in the central part of the country, as shown in Figure 6.1. Col-
lecting olive oil is particularly important during the four-month production season.
It mobilizes considerable human and material resources, and timeliness is crucial in
this operation. Producers work non-stop 24 hours a day in order not to damage the
harvest. On any given day, olive oil collection is carried out over six periods lasting
almost 24 hours in total. This activity is performed by a fleet of capacitated hetero-
geneous vehicles, often with compartments of equal or different sizes, all equipped
with a debit meter, enabling the decision maker to have full knowledge of the load
contained in each compartment at all times. The oil must be collected before the
producer runs out of storage space. A good forecast is available for the production
rate of each product by each producer.

Olive oil comes in three different grades known as extra, virgin, and lampante.
The top two grades with superior tastes are extra and virgin, which are suitable for
consumption, whereas lampante oil is mostly destined for industrial uses. The trans-
portation is regulated by law in order to protect the natural flavors of the oils. In
particular, the different grades must be kept separate during transportation, hence
the need to have multi-compartment vehicles. It is forbidden to load superior grades
and lampante oil consecutively in the same compartment, unless it has been cleaned
before the changeover. The cleaning activity generates a cost and takes time.

Routing problems with cleaning activity have not been widely studied from a sci-
entific perspective, but similar constraints appear in other contexts, although several
features of our problem are different. Thus, Oppen et al. (2010) consider the prob-
lem of transporting different types of live animals from farms to slaughterhouses by
means of multi-compartment vehicles. They add time between consecutive tours
to allow for unloading and disinfection of the vehicles. Hvattum et al. (2009) deal
with a tank allocation problem arising in the shipping of bulk oil and chemical
products by tanker ships. They consider that a cleaning activity is required if two
incompatible products are assigned to the same compartment within less than three
trips.
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: Regional offices, (1-9, A-G): Producers

Figure 6.1: Map of Tunisia pinpointing producers and regional offices locations
(Source: Google Maps, accessed March 2014)

Transporting oil and fuel with multi-compartment vehicles is more challenging
and interesting from a scientific point of view than transporting food, as explained
in Chapter 2. In this chapter, we introduce other complicating constraints reflect-
ing the complexities of the olive oil transport. The mathematical model developed
for this application considers two vehicle types which differ in the number and sizes
of the compartments. In the olive oil industry, a producer typically offers several
products in different quantities in each period. The grades and quantities offered
depend on the producer. All offers must be picked up in each period. These as-
sumptions, together with the presence of the cleaning activity, increase the difficulty
of the problem and make it very difficult to be solved by exact algorithms for most
instances of realistic sizes.

From a scientific perspective, we introduce, model, and solve exactly a difficult
and rich variation of the well-known vehicle routing problem. Part of the complexity
of the problem comes from the requirement to clean the compartments, depending
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on the assignment and scheduling decisions. From a practical standpoint, we provide
a tool that can assist managerial decision making at the tactical and operational lev-
els. In particular, we are able to compare several transportation alternatives for the
service provider and to evaluate the potential routing savings yielded by replacing
single compartment vehicles with multi-compartment ones.

The remainder of this chapter is organized as follows. In Section 6.2 we provide
a precise description of the problem and we introduce a mathematical model com-
plemented with known and new valid inequalities. The branch-and-cut algorithm is
described in Section 6.3. We present computational results on real and artificially
generated instances in Section 6.4, followed by conclusions in Section 6.5.

6.2 Mathematical description of the problem
We first introduce some notation, followed by a mathematical model and valid
inequalities.

6.2.1 Notation

The MPPC-VRP is defined on an undirected graph Ḡ = (V̄ , Ē), where V̄ is the vertex
set and Ē is the edge set. The set V̄ = {0, . . . , n} contains the locations of the depot
0 and of the producers V = {1, . . . , n}. The set Ē = {(i, j) : i ∈ V̄ , j ∈ V , i < j} de-
fines the edges of the problem. A routing cost αij is known for each edge (i, j) ∈ Ē .
The problem is defined over a finite planning horizon T = {1, . . . , T}, and a set
K = {1, . . . , K} of heterogeneous vehicles is available at the depot. Each vehicle
k contains a set Wk of compartments equipped with a debit meter, and each com-
partment w ∈ Wk has a capacity Qwk. The use of vehicle k incurs a fixed cost
βk. Identical products collected from different producers can be loaded into the
same compartment provided there is sufficient capacity. Also, each producer may
be visited by more than one vehicle in any given period.

A set P = {1, . . . , P} of products are offered. For ease of notation, we assume
that products are ordered according to their grade, and if the product of the lowest
grade, i.e., P , is loaded into a compartment of a vehicle, it contaminates the com-
partment and a cleaning procedure is required to load any product p < P (p ∈ P)
in subsequent periods. If a cleaning procedure is undertaken, it generates a cost δ.
Each producer i ∈ V offers a quantity qpti of product of type p in period t with which
is associated a transportation request. Not all producers offer all types of products,
and the available quantities change from one period to the next.
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6.2.2 Mathematical model

We now provide an integer linear programming formulation for the MPPC-VRP,
followed by known and new valid inequalities used to strengthen the mathematical
model. The decision variables are defined as follows. The routing variables xktij are
equal to the number of times edge (i, j) is used by vehicle k in period t; the visiting
variables zkti are binary and equal to one if and only if vertex i is visited by vehicle
k in period t; the assignment variables ywktip are equal to one if and only if product
p of producer i is loaded into compartment w of vehicle k in period t; likewise, the
variables wwktp are equal to one only if product p is loaded in compartment w of ve-
hicle k in period t. Finally, the variables uwkt are binary and indicate whether or
not compartment w of vehicle k is cleaned at the beginning of period t.

Recall that not all producers offer all products at each period. Nevertheless, we
define variables ywktip for all combinations of producers and products, because this
simplifies the formulation. If a producer i does not offer product p in period t, we
then set ywktip = 0 for all compartments w and vehicles k. Finally, we need to define
the set T ts containing the periods elapsed between s and t, i.e., T ts = {s+ 1, . . . , t−
1}.

The problem can then be modeled as follows:

minimize
∑
t∈T

∑
k∈K

∑
(i,j)∈Ē

αijx
kt
ij +

∑
t∈T

∑
k∈K

∑
j∈V

βkzkt0 +
∑
t∈T

∑
k∈K

∑
w∈Wk

δuwkt (6.1)

subject to

∑
i∈V

qpti y
wkt
ip ≤ Qwk k ∈ K, w ∈ Wk, p ∈ P , t ∈ T (6.2)

ywktip ≤ zkti i ∈ V , k ∈ K, w ∈ Wk, p ∈ P , t ∈ T (6.3)
ywktip ≤ wwktp i ∈ V , k ∈ K, w ∈ Wk, p ∈ P , t ∈ T (6.4)

wwktp ≤
∑
i∈V

ywktip k ∈ K, w ∈ Wk, p ∈ P , t ∈ T (6.5)∑
p∈P

wwktp ≤ 1 k ∈ K, w ∈ Wk, t ∈ T (6.6)
∑

j∈V̄,i<j
xktij +

∑
j∈V̄,j<i

xktji = 2zkti i ∈ V̄ , k ∈ K, t ∈ T (6.7)
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∑
i∈Z

∑
j∈Z,i<j

xktij ≤
∑
i∈Z

zkti − zktz Z ⊆ V , z ∈ Z, k ∈ K, t ∈ T (6.8)
∑
k∈K

∑
w∈Wk

ywktip = 1 i ∈ V , p ∈ P , t ∈ T (6.9)

wwksP + wwktp ≤ 1 + uwkt +
∑
t′∈T t

s

uwkt
′

k ∈ K, w ∈ Wk, p ∈ P\{P},

s, t ∈ T (6.10)
xkt0j ∈ {0, 1, 2} j ∈ V , k ∈ K, t ∈ T (6.11)
xktij ∈ {0, 1} i, j ∈ V , k ∈ K, t ∈ T (6.12)

ywktjp , zkti , w
wkt
p , uwkt ∈ {0, 1} i ∈ V̄ , j ∈ V , k ∈ K, w ∈ Wk,

p ∈ P , t ∈ T . (6.13)

The objective function (6.1) minimizes the sum of the routing cost, the vehicle
fixed cost and the compartment cleaning cost. Constraints (6.2) ensure that the
capacity of each compartment is not violated. Constraints (6.3)−(6.5) link the vari-
ables ywktjp , wwktp and zkti . Specifically, constraints (6.3) ensure that a product from
a producer is loaded into a given compartment of a vehicle at a given period only if
the producer is served by the vehicle. Constraints (6.4) and (6.5) guarantee that a
compartment is allowed to carry a product in a given period only if the vehicle visits
a producer offering that product in the same period. Constraints (6.6) ensure that
each compartment carries at most one type of product at a time. Constraints (6.7)
and (6.8) are degree and subtour elimination constraints, respectively. Constraints
(6.9) ensure that all the quantities being offered are collected. Constraints (6.10)
mean that a cleaning operation is performed if necessary. The term ∑

t′∈T t
s
uwkt

′

keeps track of each compartment cleaning operations for the interval between peri-
ods s and t. Constraints (6.11)−(6.13) define the integer and binary nature of the
variables.

6.2.3 Valid inequalities

The formulation defined by (6.1)−(6.13) is sufficient to model the MPPC-VRP. We
can, however, strengthen it through the inclusion of valid inequalities in the form of
symmetry breaking constraints and additional cuts imposing upper bounds on the
integer variables. The first one is related to the period in which a cleaning opera-
tion takes place. For example, suppose a contaminating product is transported by
a given compartment in period t = 1, and the next use of this compartment is to
carry a higher grade product in period t = 5. Then, at least four optimal solutions
exist, by cleaning the compartment in period 2, 3, 4, or 5. In order to avoid such
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symmetries, we impose constraints (6.14) which postpone the cleaning operation as
much as possible:

uwkt ≤
∑
p∈P

wwktp k ∈ K, w ∈ Wk, t ∈ T . (6.14)

We also integrate the vehicle and the compartment symmetry breaking con-
straints for the first period, when no cleaning operation is necessary. These
constraints are inspired from those proposed in (Coelho and Laporte, 2013a). Con-
straints (6.15) and (6.16) are valid if the considered vehicles and compartments are
identical. We define the set K′ ⊂ K containing only the homogeneous vehicles of
K. Note that in the olive oil industry as in petrol distribution, multi-compartment
vehicles with different compartments capacities are seldom used in order to reduce
the imbalance of loaded vehicles on the road (Derigs et al., 2011a). These symmetry
breaking constraints are

∑
i∈V̄

zk1
i ≤

∑
i∈V̄

zk−1,1
i k ∈ K′\{1} (6.15)

and

wwk1
h ≤

∑
p∈P

ww−1,k,1
p k ∈ K, w ∈ Wk\{1}, h ∈ P . (6.16)

Constraints (6.15) rank identical vehicles according to the index of the producers
served. In particular, they ensure that among vehicles of the same type, vehicle k
cannot serve any customer if vehicle k− 1 has not already been used in the first pe-
riod. Constraints (6.16) state that if deliveries are performed using compartment w,
then compartment w − 1 is already used. These rules cannot be generalized to the
remaining periods because they may impact the cleaning operation and ultimately
affect the solution cost.

We also make use of a known set of useful cuts to enforce logical relationships
between routing, visiting and assignments variables. For more details on logical in-
equalities for routing problems, see Coelho and Laporte (2013a) and Gendreau et al.
(1998c). These cuts are as follows:

xkt0i ≤ 2zkti i ∈ V , k ∈ K, t ∈ T (6.17)
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xktij ≤ zkti i, j ∈ V , k ∈ K, t ∈ T (6.18)

zkti ≤ zkt0 i ∈ V , k ∈ K, t ∈ T (6.19)

zkti ≤
∑
p∈P

∑
w∈Wk

ywktip i ∈ V , k ∈ K, t ∈ T (6.20)

zkti ≤
∑
p∈P

∑
w∈Wk

wwktp i ∈ V , k ∈ K, t ∈ T (6.21)

∑
i∈V

zkti ≤
∑
i∈V

∑
p∈P

∑
w∈Wk

ywktip k ∈ K, t ∈ T . (6.22)

Constraints (6.17), (6.18) and (6.19) are referred to as routing cuts, as a way
to ensure that if a producer i is visited, i.e., (6.17) holds, or a producer j is the
successor of a producer i, i.e., (6.18) holds on the route of vehicle k in period t,
then the producer i to be visited, i.e., zkti = 1. Constraints (6.18) can also be con-
sidered as subtour elimination constraints (6.8) when |Z| = 2. Inequalities (6.19)
guarantee that if vehicle k visits producer i in period t, then the depot must be in-
cluded in the route of vehicle k in period t. Through constraints (6.20) and (6.21),
we ensure that if a producer i is visited in period t by vehicle k, then at least one
product p should be loaded in some compartment of vehicle k in that period. Con-
straints (6.22) strengthen the relationships between the collection routes, products
and compartments. Specifically, a collection route using vehicle k in period t exists
to ensure the pick-up of some products from a producer i and load them in some
compartment of that vehicle. We also note that constraints (6.22) are the sum over
the locations of (6.20). Even if these constraints are redundant in this context, they
are known to help the mathematical programming solvers to derive new cuts and
improve the overall algorithmic performance (Coelho and Laporte, 2014, Gendron
and Crainic, 1994, Jena et al., 2012, 2013).

6.3 Branch-and-cut algorithm
We have implemented a branch-and-cut algorithm capable of solving the formula-
tion just presented. All variables of the formulation are explicitly handled by the
algorithm. Since the number of constraints (6.17)−(6.22) is polynomial, they are
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added a priori in the model. In the sequel, we will show how each subset of inequali-
ties impacts its solution. At the opposite, we cannot generate all subtour elimination
constraints (6.8) a priori since their number is exponential. These are dynamically
generated as cuts as they are found to be violated. The formulation is then solved
by branch-and-cut as follows. At a generic node of the search tree, a linear program
with relaxed integrality constraints is solved, a search for violated constraints is per-
formed, and appropriate valid inequalities are added to eliminate subtours, and the
current subproblem is then reoptimized. This process is reiterated until a feasible
or dominated solution has been reached, or until no more cuts can be added. At
this point, branching on a fractional variable occurs. We provide in Algorithm 6 a
sketch of the branch-and-cut scheme.

6.4 Computational experiments
In this section we describe the computational experiments carried out in order to
assess the performance of our model and algorithm. We provide in Section 6.4.1
details of the real instances we have obtained from our Tunisian partner, and the in-
stances generated with a different fleet composition. In Section 6.4.2 we describe the
results of computational experiments performed to evaluate the effectiveness of the
cuts and valid inequalities, and we compare our solutions with those corresponding
to the current situation.

We have coded the algorithm in C++ using IBM CPLEX Studio 12.5.1 as the
MIP solver. All computations were executed on a grid of Intel XeonTM processors
running at 2.66 GHz with up to 96 GB of RAM installed per node, with the Sci-
entific Linux 6.1 operating system. All instances and detailed results are available
from http://www.leandro-coelho.com.

6.4.1 Instance generation

We have created a set of five instances based on real data gathered from industrial
partners in the regions of Sfax and Kairouan in Tunisia. In terms of size, we han-
dle instances with one depot and up to 45 transportation requests loaded on three
or four vehicles. The product quantities being offered are either obtained from our
partner, or estimated when these could not be made publicly available for confi-
dentiality reasons. There is no restriction on the number of producers that can be
visited on a route. The quantities of available extra, virgin and lampante oils repre-
sent 56%, 30% and 14% of the total available production, respectively. The routable
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Algorithm 6: Branch-and-cut algorithm
1 At the root node of the search tree, generate and insert all valid inequalities
into the program.

2 z∗ ←∞.
3 Termination check:
4 if there are no more nodes to evaluate then
5 Stop with the incumbent and optimal solution of cost z∗.
6 else
7 Select one node from the branch-and-bound tree.
8 end
9 Subproblem solution: solve the LP relaxation of the node and let z be its cost.

10 if the current solution is feasible then
11 if z ≥ z∗ then
12 Go to the termination check.
13 else
14 z∗ ← z.
15 Update the incumbent solution.
16 Prune the nodes with a lower bound larger than or equal to z∗.
17 Go to the termination check.
18 end
19 end
20 Cut generation:
21 if the solution of the current LP relaxation violates any cuts then
22 Identify connected components as in Padberg and Rinaldi (1991).
23 Determine whether the component containing the producer is weakly

connected as in Gendreau et al. (1997).
24 Add violated subtour elimination constraints (6.8).
25 Go to the subproblem solution.
26 end
27 Branching: branch on one of the fractional variables.
28 Go to the termination check.
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network dataset is constructed using real travel distances. Only driving distances
provided by the regional office of Sfax take traffic congestion and the road state into
account. The geographical location of the producers of this case study are depicted
in Figures 6.2 and 6.3 and Table 6.1.

Figure 6.2: Geographical locations of the producers around the region of Sfax
(Source: Google Maps, accessed March 2014)

Figure 6.3: Geographical locations of the producers around the region of Kairouan
(Source: Google Maps, accessed March 2014)

The industrial partners of the regions Sfax and Kairouan do not currently dis-
pose of the same fleet composition. The first office controls an heterogeneous limited
size fleet of single-compartment vehicles having a capacity of 10 tons, and double-
compartment vehicles in which each compartment has a capacity of five tons. These
two configurations will be denoted by type I and type II, respectively. The regional
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Table 6.1: Producers locations in Figures 6.2 and 6.3

Producer Location Producer Location

1 Fériana, Kasserine A Bir El Hfey, Sidi Bouzid
2 Jelma, Sidi Bouzid B Sened, Gafsa
3 Regueb, Sidi Bouzid C Sidi Ali Ben Aoun, Sidi Bouzid
4 Hajeb El Ayoun, Kairouan D North of Sfax
5 El Khazaziya, Kairouan E Road Gremda, Sfax
6 Boussari, Kairouan F Road Mahdia, Sfax
7 Cherarda, Kairouan G Sidi Bouzid
8 El Houareb, Kairouan
9 South of Kairouan

office of Kairouan, which presently uses single-compartment vehicles only, will re-
vise its short-term procurement policy once we will have identified the cost savings
achieved by using multi-compartment vehicles. Some drivers are outsourced, which
enables the service providers to perform tours and to exploit the available fleet over
six periods spread out during day-time and in the evening. The data exploitation re-
sults in five original instances, with an asterisk prepended to their names. To cover
the different scenarios under a different fleet composition, we generate 10 instances
identical to the original ones, but with a different set of vehicles. The names of the
test instances highlight the factors that may affect the results. These factors include
the first four letters of the regional office they refer to, the total number of requests,
and the number of vehicles of type I and type II, respectively. Since the original
instances may contain some products with a supply of more than five tons, some
restrictions had to be made while generating the fleet composition. Each collec-
tion route requires at least one single-compartment vehicle for the Kairouan region,
and two single-compartment vehicles for the Sfax region. Table 6.2 summarizes the
characteristics of these instances. Regarding the objective function, we have used
the following parameters after a tuning phase and discussions with our industrial
partner:

• αij = e1 per driving kilometer between vertices i and j;

• βk = e15 per vehicle k used per period t regardless of the vehicle type;

• δ = e10 per cleaning activity.

6.4.2 Computational results

We have run the proposed algorithm over the data sets shown on Table 6.2. Ta-
ble 6.3 summarizes the performance of the algorithm. We assess the performance
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Table 6.2: Configurations of the real-world instances

Instance # Producers # Requests Fleet composition
Type I Type II

*Kair_27_3_0 6 27 3 0
Kair_27_1_2 6 27 1 2
Kair_27_2_1 6 27 2 1
*Kair_33_3_0 5 33 3 0
Kair_33_1_2 5 33 1 2
Kair_33_2_1 5 33 2 1
*Kair_34_3_0 6 34 3 0
Kair_34_1_2 6 34 1 2
Kair_34_2_1 6 34 2 1
*Kair_45_3_0 7 45 3 0
Kair_45_1_2 7 45 1 2
Kair_45_2_1 7 45 2 1
*Sfax_39_2_2 7 39 2 2
Sfax_39_3_1 7 39 3 1
Sfax_39_4_0 7 39 4 0

of the routing and assignment cuts by comparing the solutions obtained for differ-
ent configurations. The implementation with constraints (6.1)−(6.16) is used as a
reference point. Specifically, for each instance test we present the number of nodes
explored in the branch-and-cut tree, the ratio of the lower bound at the root node
between the configuration with cuts and the basic configuration (6.1)−(6.16), and
finally the running time in seconds.

The algorithm proves optimality over all the 15 instances within very short com-
puting times. For most of the instances of the region of Kairouan with three vehicles
and up to seven producers, the algorithm takes less than one second to reach op-
timality. However, it requires more computational effort for the instances of Sfax,
especially when the proposed cuts are disabled. This may be explained by the fact
that increasing the number of vehicles generates much more symmetry.

A deeper analysis of the tested configurations shows that the introduction of
valid inequalities significantly improves the performance of the algorithm. The av-
erage running time is reduced from 50.58 to 2.77 seconds and the average number of
explored nodes goes down from 101,184 to 384 when the full model is implemented.
The short computational time results from the fact that the model provides a high
quality lower bound at the root node of the search tree. On average, the lower
bound of the model with all cuts is almost equal to 1.5 times the initial lower bound
value of the basic formulation (6.1)−(6.16). The full set of proposed cuts is essen-
tial to achieve the best algorithmic performance. In particular, the assignment cuts
(6.20)−(6.22) have a more positive impact on these instances than the routing cuts
(6.17)−(6.19). Without the assignment cuts, the model requires more iterations and
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Table 6.3: Summary of computational results of the test instances with respect to
several configurations

Model Instance # Nodes Lower bound Time(s) Instance # Nodes Lower bound Time(s)increase increase
(6.1)-(6.16) *Kair_27_3_0 1250 1 4.32 Kair_34_2_1 219 1 3.36
(6.1)-(6.19) 98 1.28 1.19 114 1.25 2.45

(6.1)-(6.16), (6.20)-(6.22) 125 1.45 1.16 88 1.29 1.89
(6.1)-(6.22) 1 1.54 0.30 32 1.40 1.46
(6.1)-(6.16) Kair_27_1_2 3242 1 19.92 *Kair_45_3_0 801 1 7.11
(6.1)-(6.19) 212 1.28 3.49 94 1.20 2.9

(6.1)-(6.16), (6.20)-(6.22) 237 1.13 2.51 17 1.18 1.32
(6.1)-(6.22) 119 1.54 2.07 1 1.39 0.54
(6.1)-(6.16) Kair_27_2_1 50 1 1.98 Kair_45_1_2 230 1 5.52
(6.1)-(6.19) 14 1.25 0.73 256 1.21 5.61

(6.1)-(6.16), (6.20)-(6.22) 7 1.29 0.82 78 1.08 3.3
(6.1)-(6.22) 1 1.39 0.26 93 1.26 2.89
(6.1)-(6.16) *Kair_33_3_0 85 0.89 0 Kair_45_2_1 88 1 3.86
(6.1)-(6.19) 22 1.57 0.68 39 1.19 2.18

(6.1)-(6.16), (6.20)-(6.22) 4 1.36 0.22 76 1.12 2.63
(6.1)-(6.22) 1 1.80 0.16 5 1.31 1.20
(6.1)-(6.16) Kair_33_1_2 34 1 2.2 *Sfax_39_2_2 18008 1 98.51
(6.1)-(6.19) 112 1.40 0.64 6056 1.37 31.61

(6.1)-(6.16), (6.20)-(6.22) 74 1.13 1.73 5314 1.10 26.5
(6.1)-(6.22) 28 1.43 0.57 1090 1.85 7.06
(6.1)-(6.16) Kair_33_2_1 105 1 2.2 Sfax_39_3_1 19090 1 99.01
(6.1)-(6.19) 76 1.51 0.96 9373 1.29 48.64

(6.1)-(6.16), (6.20)-(6.22) 28 1.25 1.31 732 1.04 7.34
(6.1)-(6.22) 21 1.68 0.70 1801 1.77 10.66
(6.1)-(6.16) *Kair_34_3_0 678 1 3.11 Sfax_39_4_0 108657 1 504.11
(6.1)-(6.19) 54 1.28 1.68 16831 1.31 76.38

(6.1)-(6.16), (6.20)-(6.22) 108 1.43 1.75 2943 1.04 14.92
(6.1)-(6.22) 6 1.53 0.60 2504 1.79 12.15
(6.1)-(6.16) Kair_34_1_2 216 1 2.56
(6.1)-(6.19) 82 1.28 1.24

(6.1)-(6.16), (6.20)-(6.22) 72 1.13 1.47
(6.1)-(6.22) 60 1.29 0.87

explores more nodes to identify the best solution. On average, the algorithm ex-
plores respectively 660 and 2,253 nodes when using separately assignment cuts and
routing cuts. Under these two configurations, we have obtained almost the same im-
provement in the lower bound value (1.31 against 1.20) by imposing the assignment
cuts.

When this study was undertaken, our industrial partner was trying to find ways
to minimize the total associated logistic costs, i.e., the fixed and variable costs related
to transport and cleaning related costs. In particular, it was paying close attention
to the the fleet composition component and its impact on the overall costs. Using
our methodology, we can provide alternative solutions to the managers by generat-
ing 10 instances while the overall capacity remains unchanged and the number of
vehicles of types I and II varies. Table 6.4 summarizes these results. We note that
substantial savings are achieved if both types of vehicles are used. We observe that
a combination of vehicles yields better quality solutions for all Kairouan related in-
stances, with improvements ranging from 1.9% to 21.7%, and averaging 11.7%. For
the instances related to the office of Sfax, the best solutions are obtained with the
current fleet composition, i.e., by using two vehicles of each type. One possible ex-
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Table 6.4: Relative savings compared to existing situation

Instance Optimized solution Manual solution
# Km # Vehicles # Cleanings # Km # Vehicles # Cleanings

*Kair_27_3_0 2361 17 1 2435 17 0
Kair_27_1_2 1848 15 0 - - -
Kair_27_2_1 1848 15 1 - - -
*Kair_33_3_0 2173 16 0 2339 16 0
Kair_33_1_2 1990 16 0 - - -
Kair_33_2_1 2104 16 0 - - -
*Kair_34_3_0 2737 17 1 2829 17 1
Kair_34_1_2 2322 16 1 - - -
Kair_34_2_1 2424 17 1 - - -
*Kair_45_3_0 4477 18 0 4721 18 0
Kair_45_1_2 4008 17 3 - - -
Kair_45_2_1 4388 17 0 - - -
*Sfax_39_2_2 2755 21 0 2866 21 0
Sfax_39_3_1 2787 21 0 - - -
Sfax_39_4_0 2811 21 0 - - -

planation is that compartments equipped with debit meters enable the collection of
small quantities of the same product and the segregation of non-mixable products.

Finally, we compare our results to the solution currently applied by our indus-
trial partner. Table 6.4 indicates that the proposed method provides an improvement
over the current solution designed manually by the dispatcher since it reduces the
overall costs for all the data sets. Our solutions minimize the distance traveled with
an improvement of up to 7% and optimize the products assignment process to avoid
unnecessary cleaning costs. However, the same number of vehicles is needed to cover
all the producers’ locations. We have run further test with an hierarchical objec-
tive function, which first minimizes the required number of vehicles, and then the
routing and cleaning costs. These tests reveal that the current number of vehicles
used by our industrial partner is in fact optimal. For the managers, optimizing both
the collection routes and the fleet composition is important but difficult to achieve
through manual methods. They were asked to evaluate the solutions obtained and
declared themselves very satisfied with the results.

6.5 Conclusions
We tackled a real-world and rich multi-compartment vehicle routing problem arising
in the olive oil collection industry. This practical application concerns the pick-up
of one or more commodities from a set of geographically scattered producers in the
center of Tunisia. We presented a mathematical model including known and new
valid inequalities, as well as a branch-and-cut algorithm for its solution. We tested
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the algorithm on several sets of realistic instances. Our experimental results show
the effectiveness of the proposed algorithm. Extensive tests enabled us to generate
solutions that can help support decision making at the tactical level, i.e., purchas-
ing new vehicles, and at the operational level, i.e., redesigning vehicles loading and
collection routes.
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Conclusions

This thesis addressed the emergent research area reflecting the challenges of real-life
VRPs, known as Rich VRPs. We provided first a comprehensive and relevant sur-
vey of the RVRP literature as well as a taxonomy. Then we proposed an elaborate
definition of RVRPs. The proposed taxonomy served as an illustration of the rel-
evance of flexible solution methods to incorporate real-life requirements arising in
various industries. Few approaches explicitly address the solution of RVRPs in gen-
eral. This motivates the development of a unified metaheuristic framework to solve
a RVRP and some of its variants.
Specifically, we solved the MDMCMCm-VRPTW. First, we introduced a three-index
vehicle flow formulation for this problem and we applied the DW decomposition on
this formulation. This decomposition gives raise to a more tractable integer prob-
lem. We proposed a unified column generation heuristic cooperating with a VNS to
solve the pricing problem. The VNS combines several removal and insertion rout-
ing heuristics as well as computationally efficient constraint checking procedures in
order to solve the MDMCMCm-VRPTW with a single vehicle. A special attention
was paid to the loading problem resulting from the use of multi-compartment vehi-
cles. Two loading neighborhoods based on the solution of mathematical programs
are proposed to intensify the search. They interact with the heuristic routing neigh-
borhoods in the line of matheuristics. On a set of 191 instances of less complex
routing problems, the unified matheuristic turns to be competitive. A sensitivity
analysis, performed on more complex generated instances reveals the importance of
some algorithmic features and of loading neighborhoods for reaching high quality so-
lutions. The VNS based matheuristic is embedded in a column generation heuristic
to solve the MDMCMCm-VRPTW. We proposed a set of techniques to improve the
solution quality as well as an exact post-processing method to optimize the assign-
ment of customers to vehicle routes. While developing the unified matheuristic, we
focused on the definition of a generic data structure which offers flexibility to extend
or to specialize the proposed matheuristic easily. Last, we tackled the real case-study
that motivated this work. We introduced, modeled and solved to optimality a rich
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Conclusions

multi-product, multi-period and multi-compartment vehicle routing problem with
a required compartment cleaning activity. This real-life application arises in the
olive oil collection process in Tunisia. We proposed an exact branch-and-cut algo-
rithm to solve the problem. We evaluated the performance of the algorithm on real
data sets under different transportation scenarios to demonstrate to our industrial
partner the advantages of using multi-compartment vehicles.

For some benchmarks, the proposed matheuristic outperforms state-of-the-art
methods with respect to both solution quality and computational time. On other
problems, it is dominated by specialized algorithms but still produce good results.
This explains the average behavior of the proposed method on some benchmarks.
This drawback is offset by the increase of flexibility when the proposed matheuristic
is extended/specilized to deal with real-world requirements in solving VRPs.

Many avenues could be explored in future research. A number of other VRP
extensions are relevant in the context of the MC-VRPs. We believe that the most
interesting variant is probably a simple version of the MDMCMCm-VRPTW with-
out considering the temporal restrictions. Modeling this problem would require a
smaller number of variables, parameters and constraints, probably making it sig-
nificantly more tractable. This problem can be considered as a special case of the
SDVRP with multi-compartment vehicles where some splitting scenarios are fixed a
priori. Simplifying the problem could be a promising incentive to enrich the loading
neighborhood search methods, in line with works on VRPs with loading constraints.
The loading neighborhoods available in this context are clearly very numerous. For
example, a possible neighborhood would consist in isolating a certain proportion of
the orders that are considered the most incompatible, or to rearrange the loading
plan to maximize the number of compartment filled to 100%.

There are many potential starting points for further improvement of the pro-
posed column generation heuristic. We may improve the overall performance of the
framework by designing innovative strategies to add variables and by defining bet-
ter initialization procedures. Larger instances remain difficult to solve. This clearly
calls for increasing the number of generated columns and/or avoiding degeneracy
caused by the large dual space. The aspect of preventing dual variables from tak-
ing extreme values, is theoretically interesting. Satbilization methods could also be
investigated further to enhance the column generation convergence.

Through this thesis, we attempted to answer the primary research question: "uni-
fied matheuristic: birth or burial?". Evidently, this thesis represents a step in this
research avenue and works on the subject can be pursued by considering more VRP
variants. In addition, I started this trip with the aim of providing additional guide-
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lines for hybrid solution approaches for RVRPs. Combining matheuristics, which
in some way exploit the mathematical model of a problem, is very promising and
may produce effective solution approaches. I look forward to discover these fu-
ture researches development, which I hope not only to observe but in some way to
participate in, too.
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Résumé

Une matheuristique unifiée pour résoudre des problèmes de
tournées de véhicules riches

Les problèmes considérés dans cette thèse se retrouvent dans le domaine du
transport routier de marchandises relatifs à de nombreux contextes industriels réels.
Ces problèmes correspondent souvent à des combinaisons complexes des décisions
d’affectation, de chargement, de planification et de routage. Toutes ces décisions
sont inter-corrélées afin d’optimiser les ressources utilisées, tout en satisfaisant les
exigences des clients. Différents types de décision et de nombreuses caractéristiques
doivent être considérés dans ces problèmes de transport qui sont généralement con-
sidérés comme riches. Un problème de transport riche peut être considéré comme
un problème multi-attribut reflétant la complexité des systèmes de transport réels
et combinant divers défis soulevés quotidiennement dans les industries. A travers
la littérature consacrée pour les Problèmes de Tournées de Véhicules (VRPs), on
a pu constaté un manque d’études sur ce domaine de recherche émergent, souvent
connu sous le nom de Rich VRP (RVRPs), en dépit de plusieurs travaux dédiés à
différentes variantes du VRP. La classe des RVRPs nécessite donc une classifica-
tion taxonomique permettant d’identifier les problèmes qui peuvent être considérés
comme riches parmi les nombreuses variantes du VRP. Le but de la première partie
de la thèse est de fournir une taxonomie générique s’intéressant à la littérature des
RVRPs.

Les méthodes de résolution proposées précédemment pour les VRPs peuvent
souvent être adaptées à d’autres problèmes semblables, tandis que les problèmes in-
spirés de la réalité soulèvent de nouveaux défis méthodologiques en raison de leur
variété. Cette variété peut affecter à la fois le modèle du problème et la méthode
de résolution proposée. En outre, les RVRPs combinent souvent des décisions et
des objectifs contradictoires. Résoudre ces problèmes de manière itérative en con-
sidérant un sous-ensemble de caractéristiques et/ou de décisions peut conduire à
des décisions irréalisables. Par conséquent, proposer une nouvelle approche de so-
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lution spécifique à chaque problème concret émergent ne représente plus un choix
raisonnable ni pour les chercheurs, ni pour les praticiens. En effet, les logiciels com-
merciaux résolvant les systèmes de transport doivent être en mesure de faire face à
une variété de problèmes réels et de contourner les multiples aspects combinatoires
qui peuvent survenir. Ces observations motivent le développement d’une méthode
unifiée capable de résoudre une large classe de VRP basiques et riches.

Plusieurs méthodes de résolution ont été proposées pour le VRP: des méthodes
exactes qui fournissent la solution optimale d’un modèle, et les méthodes approchées
qui produisent des solutions de bonne qualité dans un délai raisonnable, au détri-
ment de l’optimalité. Comme la plupart des problèmes abordés sont NP-difficiles, les
méthodes exactes sont rarement applicables dans des contextes réels. Ces contextes
nécessitent souvent une solution rapidement pour résoudre un VRP multi-attribut.
Une alternative aux méthodes exactes serait donc de combiner des algorithmes ex-
actes et les métaheuristiques. Cette approche émergente, appelée matheuristiques
ou métaheuristiques à base de modèles, semble être une voie très prometteuse vers la
solution de problèmes riches d’optimisation combinatoire. Les matheuristiques per-
mettent de profiter de la synergie entre les deux approches et conduisent souvent à
des performances nettement plus élevées par rapport à la qualité de la solution et le
temps de calcul. L’objectif méthodologique de cette thèse est de proposer un cadre
de résolution unifiée pour les problèmes de tournées de véhicules multi-contraints
(VRP). Ces travaux de recherche sont motivés par les défis complexes que posent les
VRPs dans de nombreuses applications réelles formant la classe des problèmes de
tournées de véhicules riches (RVRPs). On propose une heuristique de génération de
colonne basée sur une matheuristique. La méthode proposée peut être utilisée pour
résoudre un ensemble de VRPs de base et des VRPs riches. La matheuristique pro-
posée repose sur la méthode de recherche à voisinage variable (VNS), (Mladenovic
and Hansen, 1997).

Plus précisémment, dans la première partie de la thèse, on présente une revue
de la littérature complète des RVRPs ainsi qu’une taxonomie. Ensuite, on propose
une définition élaborée des RVRPs. On sélectionne 41 articles, pour les diverses
variantes des RVRPs qu’ils traitent, et on les classe en fonction de la taxonomie
proposée. Une fois le classement est effectué, une analyse typologique, basée sur
deux critères discriminatoires, est réalisée. Cette analyse débouche sur la défini-
tion des RVRPs. La taxonomie ainsi développée souligne le manque de méthodes
unifiées capables de traiter de nombreuses variantes des VRPs de manière efficace.
Dans ce cadre découle le but de la seconde partie de cette thèse qui consiste à pro-
poser une méthode de génération de colonnes basée sur une matheuristique pour
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résoudre les RVRPs. La méthode proposée est capable de traiter un large éventail
de contraintes. Elle est ensuite utilisée pour résoudre une grande variété de VRPs.

Le RVRP étudié dans cette thèse concerne les industries où les marchandises sont
non homogènes et doivent être séparés pendant leur transport. Cette caractéristique
motive l’utilisation des véhicules multi-compartiments. Dans ce problème, un client
peut avoir différentes commandes, chacune correspondant à un produit. La possi-
bilité de livrer les commandes par des véhicules différents introduit des politiques
de division spécifiques et augmente la difficulté du problème. Plus précisément,
on s’intéresse à la résolution d’un problème de tournées de véhicules multi-dépôt
multi-compartiment multi-produits avec fenêtres de temps (MDMCMCm-VRPTW).

On propose de concevoir et d’appliquer une méthode de génération de colonnes
basée sur une matheuristique unifiée qui contribue à la solution d’un RVRP et cer-
taines de ses variantes. Tout d’abord, on propose une modélisation mathématique
du problème sous forme d’un programme linéaire en nombres entiers et mixtes. Puis,
on applique la décomposition de Dantzig-Wolfe (DW) sur cette formulation. Cette
décomposition donne naissance à un problème en nombre entier plus facile à traiter
du point de vue combinatoire et un ensemble de sous-problèmes, un pour chaque
véhicule. On propose une matheuristique de recherche à voisinage variable (VNS)
pour résoudre le sous-problème. Cette méthode combine plusieurs heuristiques de
routage de type destruction et insertion ainsi que des procédures efficaces de contrôle
de réalisabilité des contraintes, afin de résoudre le MDMCMCm-VRPTW pour un
seul véhicule. Le problème de chargement, venant de la présence de plusieurs com-
partiments, est examiné attentivement. Deux voisinages de chargement, basés sur la
résolution de programmes mathématiques, sont proposés et résolus à l’optimalité afin
d’intensifier la recherche. Ces voisinages interagissent avec les voisinages heuristiques
de routage, comme cela est fait de manière courante dans les matheuristiques.

La description de la solution du MDMCMCm-VRPTW ou plus généralement
une solution pour un problème réel doit tenir compte de plusieurs attributs relatifs
aux contraintes, décisions et objectifs. Dans le MDMCMCm-VRPTW, les comman-
des peuvent être interprétées comme des clients fictifs et l’ensemble des commandes
associées à un meme client ont les mêmes attributs (par exemple, les coordonnées,
les fenêtres de temps, le temps de service, etc). En outre, le processus de recherche
doit garder en mémoire la séquence des commandes livrées sur une route ainsi que
leur séquencement dans le compartiment. La structure des données d’une solution
pour le MDMCMCm-VRPTW est alors beaucoup plus difficile à concevoir et ne
peut pas être modélisé par une seule classe qui maintient toutes les données de
routage et de chargement. Par conséquent, on introduit les classes suivantes: la
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classe Commande, la classe Compartiment, la classe Problème et la classe Solution.
La conception de structures de données est générique afin de faciliter la ré-utilisation
du code et son extension facilement pour d’autres variantes du VRP. Ceci représente
une autre contribution méthodologique de la thèse.

Des études expérimentales approfondies sont conduites sur un ensemble de 191
instances moins complexes pour tester la matheuristique VNS. Ces instances sont
relatives aux variantes Orienteering Problem et Orienteering Problem with Time
Windows. Les expérimentations valident la compétitivité de la matheuristique
unifiée par rapport aux meilleurs résultats trouvés dans la littérature. Une analyse de
sensibilité, effectuée sur des instances plus complexes générées pour le MDMCMCm-
VRPTW, révèle l’importance de certains choix algorithmiques et des voisinages de
chargement pour parvenir à des solutions de très bonne qualité.

La matheuristique basée sur la méthode de VNS est intégrée dans l’heuristique
de génération de colonnes pour résoudre le MDMCMCm-VRPTW. On propose un
ensemble de techniques visant à améliorer la qualité de la solution ainsi qu’une
méthode exacte de post-traitement capable d’optimiser l’affectation des clients aux
tournées de véhicules. Tout en développant la matheuristique unifiée, on se con-
centre sur la définition de structures de données génériques qui offre une grande
flexibilité lorsqu’il s’agit d’étendre ou de spécialiser la matheuristique proposée.

Finalement, on s’intéresse à l’application réelle qui a motivé cette thèse. On
présente le problème de tournées de véhicules riche multi-produit, multi-période
multi-compartiment avec une activité de nettoyage des compartiments. Cette appli-
cation réelle survient dans le processus de collecte de l’huile d’olive en Tunisie. On
propose un algorithme exact de type branch-and-cut pour résoudre ce problème. On
évalue la performance de l’algorithme proposé sur des données réelles selon différents
scénarios de transport dans l’objectif de démontrer à notre partenaire industriel, les
avantages de l’utilisation des véhicules multi-compartiments.

170



Abstract
Unified matheuristic for solving rich vehicle routing problems

The purpose of this thesis is to develop a solution framework for Rich Vehicle Routing Problems
(RVRPs). We first provide a comprehensive survey of the RVRP literature as well as a taxonomy.
Selected papers addressing various variants are classified according to the proposed taxonomy. A
cluster analysis based on two discriminating criteria is performed and leads to define RVRPs. In
this thesis we are interested in solving a multi-depot multi-compartment multi-commodity vehicle
routing problem with time windows (MDMCMCm-VRPTW). We propose a unified column gen-
eration heuristic cooperating with a variable neighborhood search (VNS) matheuristic. The VNS
combines several removal and insertion routing heuristics as well as computationally efficient con-
straint checking. Two loading neighborhoods based on the solution of mathematical programs are
proposed to intensify the search. On a set of 191 instances of less complex routing problems, the
unified matheuristic turns to be competitive. A sensitivity analysis, performed on more complex
generated instances reveals the importance of some algorithmic features and of loading neighbor-
hoods for reaching high quality solutions. The VNS based matheuristic is embedded in a column
generation heuristic to solve the MDMCMCm-VRPTW. We propose an exact post-processing
method to optimize the assignment of customers to vehicle routes. Last, we introduce, model and
solve to optimality a RVRP arising in the olive oil collection process in Tunisia. We propose an ex-
act branch-and-cut algorithm to solve the problem. We evaluate the performance of the algorithm
on real data sets under different transportation scenarios.

Keywords: Rich Vehicle Routing Problems, Loading Problems, Taxonomy, Matheuristic,
Variable Neighborhood Search, Column Generation Method.

Résumé
Une matheuristique unifiée pour résoudre des problèmes de tournées de véhicules
riches

L’objectif de cette thèse est de développer un cadre méthodologique pour les problèmes de
tournées de véhicules riches (RVRPs). Nous présentons d’abord une taxonomie et une définition
élaborée des RVRPs basée sur une analyse typologique réalisée en fonction de deux critères dis-
criminatoires. Dans cette thèse, nous nous intéressons à la résolution du problème de tournées de
véhicules multi-dépôt multi-compartiment multi-produits avec fenêtres de temps (MDMCMCm-
VRPTW). Nous proposons une heuristique de génération de colonnes unifiée qui inclut une
matheuristique de type VNS. La matheuristique combine plusieurs heuristiques de routage de type
destruction et insertion ainsi que des procédures efficaces de contrôle de réalisabilité des contraintes
afin de résoudre le MDMCMCm-VRPTW pour un seul véhicule. Deux voisinages de chargement,
basés sur la résolution de programmes mathématiques sont proposées. Des études expérimentales
approfondies sont conduites sur un ensemble de 191 instances pour des VRPs moins complexes. Les
expérimentations valident la compétitivité de la matheuristique unifiée. Une analyse de sensibilité
révèle l’importance de certains choix algorithmiques et des voisinages de chargement pour parvenir
à des solutions de très bonne qualité. La matheuristique basée sur la méthode de VNS est inté-
grée dans l’heuristique de génération de colonnes pour résoudre le MDMCMCm-VRPTW. Nous
proposons une méthode exacte de post-traitement capable d’optimiser l’affectation des clients aux
tournées de véhicules. Enfin, nous résolvons un RVRP qui survient dans le processus de collecte
de l’huile d’olive en Tunisie à l’aide d’un algorithme exact de type branch-and-cut.

Mots-Clefs: Problèmes de Tournées de Véhicules Riches, Problèmes de Chargement, Tax-
onomie, Matheuristique, Méthode de Recherche à Voisinages Variables, Méthode de Génération de
Colonnes.
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Electronic appendix A

In this appendix, we provide files with results for the full computational experiments carried out
in this thesis.
• Table A.1 provides full results of VNS* on Tsiligirides (1984) instances.
• Table A.2 provides full results of VNS* on Chao et al. (1996) instances.
• Table A.3 provides full results of VNS* on Solomon (1987) instances.
• Table A.4 provides full results of VNS* on Cordeau et al. (1997) instances.
• Table A.5 provides full results of VNS* on instances of type A.
• Table A.6 provides full results of VNS* on instances of type B.
• Table A.7 provides full results of VNS* on instances of type C.
• Table A.8 provides full results of VNS*I on instances of type C.
• Table A.9 provides full results of VNS*II on instances of type C.
• Table A.10 provides full results of the column generation heuristic on the MCMCm-

VRPTW instances of type C.
Columns indicate the following:
• # Cust: Total number of customers in the best solution.
• # Ord: Total number of orders in the best solution.
• BK: Best known solution.
• Cost1: Initial objective value of the RMP.
• Cost3: Objective value of the RMP after the post-processing procedure.
• Costs Gap%: Gap between Cost1 and Cost3.
• Gap%: Average percentage gap to the BK value or optimal solution.
• Instance: Instance name.
• |K|: Number of used vehicles.
• n: Number of customers in the instance.
• Obj: Show the minimum, maximum and average solution values over 5 runs.
• Opt: Optimal value.
• T_distance: Total distance of the best solution.
• T_profit: Total profit of the best solution.
• T_profitAvg: Average total profit over 5 runs.
• T_wait: Total wait of the best solution.
• Time(s): Average running time in seconds over 5 runs.
• T max: Maximum route duration.
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Instance T max Opt T_profit Avg Gap% Time(s)

1 15 120 120 0.00 0.23

2 20 200 200 0.00 0.26

3 23 210 210 0.00 0.33

4 25 230 230 0.00 0.28

5 27 230 230 0.00 0.32

6 30 265 265 0.00 0.31

7 32 300 300 0.00 0.38

8 35 320 320 0.00 0.38

9 38 360 360 0.00 0.38

10 40 395 395 0.00 0.44

11 45 450 450 0.00 0.31

Average 0.00 0.33

Instance T max Opt T_profit Avg Gap% Time(s)

1 5 10 10 0.00 0.04

2 10 15 15 0.00 0.06

3 15 45 45 0.00 0.16

4 20 65 65 0.00 0.32

5 25 90 90 0.00 0.45

6 30 110 110 0.00 0.53

7 35 135 135 0.00 0.66

8 40 155 155 0.00 0.80

9 46 175 175 0.00 0.93

10 50 190 190 0.00 0.96

11 55 205 205 0.00 0.94

12 60 225 225 0.00 0.97

13 65 240 240 0.00 0.97

14 70 260 260 0.00 0.97

15 73 265 265 0.00 0.98

16 75 270 270 0.00 0.95

17 80 280 280 0.00 0.96

18 85 285 285 0.00 0.98

Average 0.00 0.70

Instance T max Opt T_profit Avg Gap% Time(s)

1 15 170 170 0.00 0.4

2 20 200 200 0.00 0.5

3 25 260 260 0.00 0.54

4 30 320 320 0.00 0.66

5 35 390 390 0.00 0.74

6 40 430 430 0.00 0.96

7 45 470 470 0.00 1.06

8 50 520 520 0.00 1.04

9 55 550 550 0.00 1.22

   Set p_21

   Set p_32

   Set p_33

Table A.1 Results of VNS* on Tsiligirides (1984) instances  



10 60 580 580 0.00 1.14

11 65 610 610 0.00 1.21

12 70 640 640 0.00 1.17

13 75 670 670 0.00 1.18

14 80 710 710 0.00 1.14

15 85 740 740 0.00 1.11

16 90 770 770 0.00 1.12

17 95 790 790 0.00 1.12

18 100 800 800 0.00 1.1

19 105 800 800 0.00 1.07

20 110 800 800 0.00 1.06

Average 0.00 0.98



Instance T max BK T_profit Avg Gap% Time(s)

1 15 96 96 0.00 0.63

2 20 294 294 0.00 1.58

3 25 390 390 0.00 2.44

4 30 474 474 0.00 2.89

5 35 576 574.8 0.20 3.26

6 40 714 714 0.00 4.83

7 45 816 814.8 0.14 5.37

8 50 900 900 0.00 5.97

9 55 984 981.6 0.24 5.88

10 60 1062 1062 0.00 6.64

11 65 1116 1116 0.00 6.60

12 70 1188 1188 0.00 6.64

13 75 1236 1236 0.00 6.48

14 80 1284 1279.2 0.37 5.73

Average 0.07 4.64

Instance T max BK T_profit Avg Gap% Time(s)

1 5 10 10 0.00 0.12

2 10 40 40 0.00 0.29

3 15 120 120 0.00 0.62

4 20 205 205 0.00 0.97

5 25 290 286 1.37 1.29

6 30 400 400 0.00 1.84

7 35 465 465 0.00 2.18

8 40 575 575 0.00 3.02

9 45 650 650 0.00 3.56

10 50 730 730 0.00 4.06

11 55 825 825 0.00 4.91

12 60 915 915 0.00 5.57

13 65 980 980 0.00 5.76

14 70 1070 1070 0.00 6.62

15 75 1140 1140 0.00 6.85

16 80 1215 1215 0.00 7.77

17 85 1270 1270 0.00 7.58

18 90 1340 1340 0.00 7.97

19 95 1395 1395 0.00 7.90

20 100 1465 1455 0.68 7.94

21 105 1520 1520 0.00 7.95

22 110 1560 1558 0.12 7.61

23 115 1595 1594 0.06 7.14

24 120 1635 1629 0.36 6.70

25 125 1670 1670 0.00 6.19

26 130 1680 1680 0.00 5.90

Average 0.10 4.94

   Set p_66

   Set p_64

Table A.2 Results of VNS* on Chao et al. (1996) instances  



Instance VNS* (20 iter) VNS* (20 s) VNS* (120 s) VNS* (300s)

Gap% Time(s) Gap% Gap% Gap%

c101_50 0.00 0.66 0.00 0.00 0.00 

c102_50 0.00 0.87 0.00 0.00 0.00 

c103_50 0.00 1.00 0.00 0.00 0.00 

c104_50 0.00 1.13 0.00 0.00 0.00 

c105_50 0.00 0.80 0.00 0.00 0.00 

c106_50 0.00 0.69 0.00 0.00 0.00 

c107_50 0.00 0.84 0.00 0.00 0.00 

c108_50 0.00 0.85 0.00 0.00 0.00 

c109_50 0.00 1.04 0.00 0.00 0.00 

r101_50 0.00 0.39 0.00 0.00 0.00 

r102_50 1.52 0.82 1.52 1.52 1.52

r103_50 0.00 0.92 0.00 0.00 0.00

r104_50 0.00 0.97 0.00 0.00 0.00

r105_50 0.00 0.49 0.00 0.00 0.00

r106_50 2.40 0.89 2.40 2.40 2.40

r107_50 0.00 0.91 0.00 0.00 0.00

r108_50 0.00 0.98 0.00 0.00 0.00

r109_50 0.00 0.67 0.00 0.00 0.00

r110_50 0.00 0.79 0.00 0.00 0.00

r111_50 0.00 0.88 0.00 0.00 0.00

r112_50 0.00 0.90 0.00 0.00 0.00

rc101_50 0.00 0.56 0.00 0.00 0.00

rc102_50 0.00 0.61 0.00 0.00 0.00

rc103_50 0.00 0.67 0.00 0.00 0.00

rc104_50 0.00 0.80 0.00 0.00 0.00

rc105_50 0.00 0.57 0.00 0.00 0.00

rc106_50 0.00 0.57 0.00 0.00 0.00

rc107_50 0.83 0.65 0.00 0.00 0.00

rc108_50 0.00 0.76 0.00 0.00 0.00

c101_100 0.00 1.64 0.00 0.00 0.00

c102_100 0.00 1.88 0.00 0.00 0.00

c103_100 0.00 2.10 0.00 0.00 0.00

c104_100 0.95 2.29 0.00 0.00 0.00

c105_100 1.18 1.65 0.00 0.00 0.00

c106_100 1.76 1.70 0.00 0.00 0.00

c107_100 0.54 1.71 0.00 0.00 0.00

c108_100 0.00 1.89 0.00 0.00 0.00

c109_100 0.00 2.10 0.00 0.00 0.00

r101_100 0.00 1.37 0.00 0.00 0.00

r102_100 0.00 2.65 0.00 0.00 0.00

r103_100 0.00 2.88 0.00 0.00 0.00

r104_100 0.00 3.06 0.00 0.00 0.00

r105_100 0.00 2.28 0.00 0.00 0.00

r106_100 0.00 2.96 0.00 0.00 0.00

r107_100 0.74 3.29 0.67 0.67 0.67

r108_100 0.52 3.50 0.00 0.00 0.00

Table A.3 Results of  VNS* on Solomon (1987) instances   



r109_100 0.00 2.70 0.00 0.00 0.00

r110_100 0.92 2.69 0.42 0.14 0.00

r111_100 0.74 3.04 0.00 0.00 0.00

r112_100 0.13 2.56 0.00 0.00 0.00

rc101_100 0.00 1.62 0.00 0.00 0.00

rc102_100 0.00 1.84 0.00 0.00 0.00

rc103_100 0.68 2.06 0.00 0.00 0.00

rc104_100 0.00 2.46 0.00 0.00 0.00

rc105_100 0.00 1.88 0.00 0.00 0.00

rc106_100 0.00 1.94 0.00 0.00 0.00

rc107_100 0.87 2.14 0.00 0.00 0.00

rc108_100 0.00 2.29 0.00 0.00 0.00

c201_100 0.46 8.62 0.00 0.00 0.00

c202_100 1.08 11.27 0.86 0.00 0.00

c203_100 1.25 12.57 0.42 0.00 0.00

c204_100 1.63 14.73 1.22 1.02 1.02

c205_100 1.1 9.52 0.88 0,00 0.00

c206_100 1.51 10.67 1.72 1.08 0.86

c207_100 1.08 11.56 0.86 0.86 0.43

c208_100 1.68 10.93 1.68 1.05 1.05

r201_100 1.73 15.73 1.53 1.13 0.60

r202_100 4.63 25.86 4.22 3.68 2.97

r203_100 2.31 33.42 4.11 2.10 1.68

r204_100 2.01 40.26 2.74 0.87 0.61

r205_100 3.17 22.45 2.31 1.24 0.82

r206_100 3.87 31.18 4.26 2.97 2.10

r207_100 2.48 34.77 2.91 1.79 1.77

r208_100 2.00 39.84 2.36 1.89 1.40

r209_100 2.40 22.91 2.44 1.92 1.31

r210_100 4.05 28.58 4.5 3.51 2.33

r211_100 1.82 29.08 2.16 2.05 1.28

rc201_100 0.96 13.32 0.70 0,00 0.00

rc202_100 4.10 20.10 4.66 2.99 1.84

rc203_100 2.59 26.64 2.59 1.91 1.73

rc204_100 2.26 30.42 2.60 1.30 1.02

rc205_100 1.72 17.06 1.37 0.77 0.61

rc206_100 2.99 15.71 2.41 1.72 1.23

rc207_100 4.17 21.09 4.23 2.79 2.08

rc208_100 2.43 24.07 2.22 1.39 1.29



Instance n VNS* (120 s) VNS* (300s) VNS*C (120 s) VNS* C (300s)

Gap% Gap% Gap% Gap%

pr01 49 0.00 0.00 0.00 0.00

pr02 97 2.48 2.48 2.67 2.48

pr03 145 0.15 0.15 0.20 0.10

pr04 193 2.94 2.21 1.15 0.53

pr05 241 4.61 2.45 3.29 2.72

pr06 289 8.61 6.64 1.49 1.25

pr07 73 0.00 0.00 0.00 0.00

pr08 145 0.00 0.00 0.00 0.00

pr09 217 2.92 1.66 1.01 0.65

pr10 289 2.39 2.12 2.19 2.19

pr11 49 0.11 -0.11 0.57 0.40

pr12 97 0.95 0.90 0.54 0.77

pr13 145 0.74 0.09 0.39 -0.35

pr14 193 4.83 4.06 5.08 4.76

pr15 241 7.53 6.16 3.09 3.80

pr16 289 9.35 9.76 8.37 8.25

pr17 73 0.00 0.00 0.00 0.00

pr18 145 10.24 3.90 0.22 0.00

pr19 217 15.23 11.74 10.71 5.44

pr20 289 6.99 7.08 5.58 6.57

Table A.4 Results of  VNS* and VNS*C on Cordeau et al. (1997) instances   



Instance # Cust # Ord T_profit T_distance T_wait Time(s)

min max avg

c*101-50 11 20 3640.00 179.71 17.04 3339.01 3443.25 3409.42 1.95

c*102-50 11 24 3675.00 175.78 0.00 3452.11 3499.22 3475.97 1.96

c*103-50 12 16 3690.00 144.61 0.00 3411.54 3545.39 3472.17 2.64

c*104-50 12 18 3850.00 153.30 0.00 3596.12 3696.70 3658.70 2.42

c*105-50 11 23 3510.00 217.97 0.00 3193.50 3292.03 3256.88 2.00

c*106-50 12 22 3680.00 130.06 1.87 3492.05 3548.07 3517.83 1.95

c*107-50 11 17 3720.00 217.99 0.00 3473.93 3502.01 3485.40 1.93

c*108-50 11 23 3495.00 149.10 0.00 3309.92 3345.90 3332.68 2.16

c*109-50 11 16 3890.00 171.45 0.00 3667.26 3718.55 3697.17 1.90

c*201-50 32 84 10150.00 353.14 0.00 9796.86 9796.86 9796.86 12.65

c*202-50 34 84 9755.00 297.51 0.00 9424.61 9457.49 9445.76 9.53

c*203-50 34 83 10395.00 321.20 0.00 9933.09 10073.80 9967.46 11.99

c*204-50 34 86 10320.00 256.40 0.00 9955.95 10063.60 10008.26 18.84

c*205-50 32 79 10185.00 405.22 0.00 9748.87 9779.78 9772.55 14.15

c*206-50 33 82 10625.00 376.64 0.00 10241.24 10248.36 10245.51 12.84

c*207-50 34 79 10440.00 323.91 0.00 10011.48 10116.09 10035.89 14.37

c*208-50 34 86 10250.00 301.44 0.00 9899.52 9948.56 9933.53 9.89

r*101-50 5 13 2010.00 112.62 36.44 1860.94 1860.94 1860.94 0.61

r*102-50 8 21 3020.00 132.88 3.80 2873.68 2883.32 2875.61 1.28

r*103-50 9 22 3280.00 138.57 0.00 3113.45 3141.43 3124.64 1.32

r*104-50 10 25 3210.00 128.26 0.00 3051.78 3081.74 3075.75 1.76

r*105-50 6 12 2170.00 151.97 0.00 2018.03 2018.03 2018.03 0.64

r*106-50 8 20 3270.00 143.81 0.00 3032.49 3126.19 3069.97 1.24

r*107-50 10 26 3180.00 129.09 0.00 2987.95 3050.91 3016.45 1.55

r*108-50 10 17 3380.00 128.46 0.00 3188.81 3251.54 3212.65 2.18

r*109-50 8 21 2775.00 129.94 0.00 2645.06 2645.06 2645.06 1.10

r*110-50 9 23 3035.00 126.45 0.00 2908.55 2908.55 2908.55 1.16

r*111-50 10 23 3140.00 127.59 0.00 2996.99 3012.41 3006.24 1.31

r*112-50 10 25 3210.00 124.35 0.00 3085.65 3085.65 3085.65 1.66

r*201-50 26 62 6865.00 643.30 27.45 6124.12 6194.25 6159.65 7.73

r*202-50 35 82 8075.00 606.73 0.49 7222.26 7467.78 7344.99 9.87

r*203-50 40 95 9210.00 560.36 0.00 8516.38 8649.64 8568.84 11.71

r*204-50 44 103 9920.00 547.57 0.00 9269.03 9372.43 9337.64 12.59

r*205-50 35 80 8045.00 618.38 0.00 7300.12 7426.62 7358.35 12.06

r*206-50 38 90 9230.00 569.39 0.00 8451.32 8660.61 8538.67 13.75

r*207-50 41 98 9585.00 583.47 0.00 8916.20 9001.53 8949.59 12.79

r*208-50 48 112 10470.00 512.72 0.00 9811.24 9957.28 9875.43 12.36

r*209-50 38 90 8915.00 605.06 0.00 8246.64 8309.94 8288.82 14.58

r*210-50 41 102 8735.00 569.05 0.00 8056.59 8165.95 8113.07 15.08

r*211-50 42 100 9680.00 567.79 0.00 9001.62 9112.21 9061.65 16.85

rc*101-50 9 19 2800.00 121.47 0.00 2678.53 2678.53 2678.53 1.05

rc*102-50 7 15 3100.00 162.97 0.00 2933.90 2937.03 2935.78 1.03

rc*103-50 9 25 3205.00 148.83 0.00 3041.17 3056.17 3050.17 1.61

rc*104-50 10 20 3570.00 136.69 0.00 3355.14 3433.31 3407.27 1.74

rc*105-50 9 21 3450.00 144.35 0.00 3305.65 3305.65 3305.65 1.30

rc*106-50 9 16 3120.00 131.87 0.00 2986.68 2988.13 2987.26 4.52

Obj

Table A.5 Results of VNS* on instances of Type A 



rc*107-50 6 12 3350.00 175.68 0.00 3128.58 3174.32 3140.27 1.40

rc*108-50 10 21 3670.00 138.13 0.00 3518.49 3531.87 3526.52 1.65

rc*201-50 28 68 8900.00 642.64 0.00 8199.26 8257.36 8240.78 10.47

rc*202-50 32 75 11195.00 626.86 3.00 10429.40 10565.14 10496.56 7.26

rc*203-50 38 98 11710.00 557.20 0.00 11145.31 11152.80 11150.17 9.76

rc*204-50 45 120 13655.00 504.74 0.00 12968.75 13150.26 13091.23 15.19

rc*205-50 32 81 9990.00 619.55 0.82 9324.49 9369.63 9350.99 9.73

rc*206-50 33 85 10725.00 626.85 0.00 9829.83 10098.15 9971.97 9.46

rc*207-50 37 88 11715.00 585.10 0.00 10868.00 11129.90 11035.98 11.08

rc*208-50 41 104 13285.00 547.55 0.00 12467.19 12737.45 12681.52 17.24

c*101-100 10 16 3580.00 149.40 0.00 3381.35 3430.60 3403.29 3.34

c*102-100 11 18 3715.00 180.34 0.00 3512.33 3534.66 3525.25 4.40

c*103-100 12 17 3865.00 151.55 0.00 3616.78 3713.45 3678.97 5.44

c*104-100 12 16 3880.00 124.24 0.00 3698.61 3755.76 3739.26 4.58

c*105-100 11 14 3900.00 190.22 0.00 3579.52 3709.78 3649.24 3.20

c*106-100 11 20 3630.00 180.05 0.00 3331.20 3449.95 3383.85 3.04

c*107-100 11 12 3895.00 234.40 0.00 3480.82 3660.60 3591.81 3.70

c*108-100 11 21 3685.00 142.49 0.00 3367.49 3542.51 3456.84 3.79

c*109-100 11 15 3770.00 166.11 0.00 3519.03 3603.89 3553.13 4.21

c*201-100 32 76 11690.00 484.62 0.00 11091.85 11205.38 11141.80 21.15

c*202-100 31 66 12220.00 556.61 3.91 11438.65 11659.48 11525.89 27.87

c*203-100 32 63 12300.00 489.47 0.00 11575.62 11810.53 11698.78 31.69

c*204-100 32 68 12200.00 455.44 0.00 11673.62 11744.56 11702.81 36.38

c*205-100 30 62 11440.00 593.51 0.00 10675.56 10846.49 10761.30 25.06

c*206-100 32 63 12145.00 497.88 0.00 11532.21 11647.12 11604.90 28.14

c*207-100 32 67 12350.00 422.41 0.00 11663.28 11927.59 11835.41 27.96

c*208-100 32 68 11855.00 480.72 0.00 11264.62 11374.28 11307.26 27.77

r*101-100 9 24 2810.00 130.65 0.00 2679.35 2679.35 2679.35 2.02

r*102-100 12 21 3685.00 100.37 0.00 3547.63 3584.63 3576.73 3.84

r*103-100 12 26 3480.00 107.24 0.00 3308.21 3372.76 3342.80 4.39

r*104-100 12 24 3430.00 105.11 0.00 3197.60 3324.89 3260.69 5.15

r*105-100 10 24 3405.00 127.34 0.00 3256.88 3277.66 3269.35 2.89

r*106-100 11 30 3330.00 117.61 0.00 3178.70 3212.39 3198.91 3.89

r*107-100 13 28 3605.00 95.80 0.00 3387.89 3509.20 3436.94 4.84

r*108-100 13 24 3515.00 91.05 0.00 3312.69 3423.95 3384.51 4.74

r*109-100 10 19 3485.00 127.58 0.00 3254.22 3357.42 3298.29 3.58

r*110-100 10 21 3635.00 112.66 0.00 3432.85 3522.34 3470.73 4.33

r*111-100 13 21 3560.00 96.93 0.00 3345.64 3463.07 3400.39 4.70

r*112-100 12 21 3650.00 107.65 0.00 3472.69 3542.35 3502.94 3.92

r*201-100 37 93 11075.00 604.43 15.40 10288.65 10455.17 10365.40 33.35

r*202-100 47 115 12865.00 522.87 0.00 12156.18 12342.13 12251.89 47.79

r*203-100 54 131 14290.00 450.11 0.00 13492.39 13839.89 13671.62 64.95

r*204-100 55 128 15105.00 449.27 0.00 14536.08 14655.73 14598.36 80.43

r*205-100 45 109 13200.00 533.26 0.00 12162.76 12666.74 12534.27 46.22

r*206-100 50 130 14835.00 488.87 0.00 13765.74 14346.13 14097.16 62.19

r*207-100 54 131 15520.00 458.70 0.00 14633.10 15061.30 14749.04 72.39

r*208-100 58 151 15550.00 416.46 0.00 15011.77 15133.54 15069.67 86.85

r*209-100 47 112 13145.00 524.94 0.00 12418.86 12620.06 12499.68 54.62

r*210-100 49 126 13995.00 506.69 0.00 13319.17 13488.31 13416.51 60.99

r*211-100 52 122 14540.00 473.40 0.00 13561.53 14066.60 13829.84 64.38



rc*101-100 9 19 3300.00 141.59 0.00 3053.71 3158.41 3108.48 2.48

rc*102-100 10 20 3495.00 133.48 0.00 3281.42 3361.52 3313.65 2.93

rc*103-100 10 18 3525.00 132.88 0.00 3353.16 3392.12 3383.22 3.09

rc*104-100 10 21 3665.00 137.79 0.00 3441.45 3527.21 3490.51 3.84

rc*105-100 12 24 3530.00 116.84 0.00 3302.28 3413.16 3340.25 3.05

rc*106-100 11 22 3410.00 127.75 0.00 3256.47 3282.25 3271.94 3.52

rc*107-100 11 20 3450.00 119.36 0.00 3248.39 3330.64 3288.15 3.74

rc*108-100 10 17 3730.00 128.49 0.00 3527.49 3601.51 3549.03 15.70

rc*201-100 34 79 11420.00 618.39 0.00 10502.89 10801.61 10685.25 27.60

rc*202-100 42 104 13125.00 503.80 0.00 12273.08 12621.20 12439.46 42.11

rc*203-100 49 117 14845.00 469.32 0.00 14093.94 14375.68 14246.73 60.61

rc*204-100 51 113 15965.00 448.06 0.00 15191.14 15516.94 15390.09 69.33

rc*205-100 39 101 12385.00 565.61 0.00 11519.90 11819.39 11660.60 35.83

rc*206-100 37 93 13100.00 548.87 0.00 12053.70 12551.13 12415.66 35.53

rc*207-100 43 104 14890.00 500.12 0.00 13483.59 14389.88 13966.47 44.09

rc*208-100 46 109 15425.00 498.99 0.00 14662.80 14926.01 14793.71 56.30

c*101-200 10 21 3560.00 169.84 0.00 3316.87 3390.16 3361.65 4.72

c*102-200 12 16 3920.00 254.64 0.00 3620.00 3665.36 3641.51 8.47

c*103-200 13 18 3905.00 163.01 0.00 3668.63 3741.99 3711.66 8.29

c*104-200 13 21 3715.00 163.68 0.00 3527.86 3551.32 3543.63 8.43

c*105-200 11 19 3765.00 181.46 0.00 3472.28 3583.54 3544.15 5.15

c*106-200 11 15 3760.00 213.56 0.00 3414.38 3546.44 3482.82 6.27

c*107-200 11 17 3770.00 151.85 0.00 3494.65 3618.15 3553.90 8.39

c*108-200 12 18 3775.00 175.41 0.00 3513.16 3599.59 3554.18 7.21

c*109-200 11 20 3720.00 208.16 0.00 3473.16 3511.84 3497.72 7.22

c*110-200 12 19 3860.00 133.80 0.00 3603.52 3726.20 3660.69 7.69

c*201-200 31 69 12370.00 745.62 0.00 11468.85 11624.38 11550.20 44.28

c*202-200 33 66 12200.00 584.45 0.00 11484.98 11615.55 11557.00 63.76

c*203-200 35 63 12885.00 433.81 0.00 12127.58 12451.19 12281.11 82.11

c*204-200 35 56 13090.00 439.22 0.00 12482.18 12650.78 12564.27 83.92

c*205-200 34 77 11945.00 525.78 0.00 11320.29 11419.22 11365.86 51.75

c*206-200 34 71 12270.00 533.76 0.00 11562.96 11736.24 11650.69 54.07

c*207-200 32 71 12110.00 704.60 0.00 11153.41 11405.40 11274.45 60.97

c*208-200 34 66 12360.00 500.03 0.00 11705.94 11859.97 11770.05 68.93

c*209-200 34 64 12625.00 480.35 0.00 12062.19 12144.65 12098.76 68.37

c*210-200 33 61 12570.00 622.72 0.00 11808.19 11947.28 11883.61 69.69

r*101-200 13 17 3830.00 336.71 59.13 3380.64 3434.16 3411.14 7.82

r*102-200 22 24 3960.00 334.53 14.11 3502.18 3611.36 3556.53 15.31

r*103-200 19 20 3970.00 234.53 0.00 3588.38 3735.47 3689.63 17.69

r*104-200 21 21 4000.00 250.60 0.00 3696.59 3749.40 3726.74 21.17

r*105-200 19 22 3935.00 322.97 0.00 3534.78 3612.03 3574.51 9.54

r*106-200 19 21 3955.00 273.77 4.52 3567.86 3676.71 3617.49 16.08

r*107-200 23 25 3990.00 260.01 0.00 3641.10 3729.99 3675.62 20.75

r*108-200 23 26 3960.00 223.91 0.00 3670.03 3736.09 3702.31 26.82

r*109-200 22 28 3895.00 289.02 9.59 3536.65 3596.39 3577.82 13.62

r*110-200 23 27 3980.00 251.67 0.00 3630.42 3728.33 3685.31 18.33

r*201-200 67 116 17460.00 1632.96 0.00 15378.38 15827.04 15614.70 164.99

r*202-200 81 131 17685.00 1188.02 6.48 16299.18 16490.50 16410.02 286.53

r*203-200 97 148 18590.00 1171.94 1.16 17127.85 17416.90 17285.46 382.60

r*204-200 104 121 19350.00 1107.33 11.96 18060.10 18230.71 18159.74 577.94



r*205-200 72 122 18000.00 1278.39 38.89 16231.53 16682.72 16460.50 234.84

r*206-200 78 119 18280.00 1129.36 0.00 16839.25 17150.64 16972.11 346.07

r*207-200 94 140 18355.00 1140.36 7.47 17059.58 17207.17 17146.65 533.42

r*208-200 112 138 18825.00 1266.79 0.00 17361.44 17558.21 17475.09 556.60

r*209-200 79 124 18150.00 1419.20 12.64 16505.69 16718.16 16639.26 264.52

r*210-200 87 130 18660.00 1241.55 0.00 17070.90 17418.45 17220.63 365.17

rc*101-200 18 18 4000.00 318.91 28.28 3503.33 3652.81 3586.51 8.86

rc*102-200 22 24 3965.00 266.96 0.00 3569.52 3698.04 3636.57 16.14

rc*103-200 24 26 3975.00 220.87 0.00 3645.32 3754.13 3714.40 24.63

rc*104-200 27 29 3980.00 190.84 0.00 3731.59 3789.16 3756.56 25.91

rc*105-200 18 23 3900.00 247.84 0.00 3584.59 3652.16 3616.10 9.61

rc*106-200 19 23 3915.00 300.97 9.87 3536.04 3604.16 3575.99 12.46

rc*107-200 15 18 3900.00 212.31 0.00 3609.15 3687.69 3653.20 10.39

rc*108-200 20 22 3910.00 240.76 0.00 3509.16 3669.24 3590.89 13.59

rc*109-200 21 25 3910.00 258.27 6.75 3564.43 3644.98 3598.41 12.84

rc*110-200 21 21 4000.00 255.01 0.00 3649.62 3744.99 3695.55 14.03

rc*201-200 64 105 17350.00 1250.72 113.82 15724.45 15985.46 15857.47 145.84

rc*202-200 71 119 17580.00 902.32 29.30 16349.03 16648.38 16508.92 224.64

rc*203-200 93 138 18480.00 1137.56 6.71 17150.01 17335.73 17252.31 365.81

rc*204-200 113 134 19345.00 879.77 0.00 18232.45 18465.23 18339.01 511.34

rc*205-200 72 126 17765.00 1085.38 245.62 16017.59 16434.00 16188.15 191.49

rc*206-200 77 126 18220.00 1503.87 45.44 15936.17 16670.69 16156.93 177.54

rc*207-200 79 133 17795.00 1031.67 28.10 16428.51 16735.23 16617.15 244.09

rc*208-200 82 135 18530.00 992.84 2.03 17062.49 17535.13 17278.99 239.84

rc*209-200 79 134 18115.00 1027.63 0.00 16597.62 17087.37 16901.65 286.99

rc*210-200 81 134 18205.00 1037.28 0.00 16858.37 17167.72 17057.77 339.33



Instance # Cust # Ord T_profit T_distance T_wait Time(s)

min max avg

c*101-50 11 20 3640.00 243.77 0.00 3302.14 3396.23 3359.56 4.54

c*102-50 11 20 3640.00 191.10 0.00 3301.05 3448.90 3366.54 5.69

c*103-50 11 17 3660.00 179.49 0.00 3416.62 3480.51 3460.51 5.61

c*104-50 12 16 3760.00 150.45 0.00 3523.49 3609.55 3554.87 5.68

c*105-50 11 21 3335.00 198.26 0.00 2945.03 3136.74 3047.37 5.77

c*106-50 12 19 3615.00 138.39 0.00 3187.71 3476.61 3345.20 6.06

c*107-50 11 20 3780.00 244.28 0.00 3443.24 3535.72 3463.91 4.69

c*108-50 11 23 3185.00 141.15 0.00 2969.56 3043.85 3005.48 5.93

c*109-50 10 10 3920.00 210.30 0.00 3600.46 3709.70 3638.66 4.33

c*201-50 33 73 9140.00 238.51 0.00 8718.87 8901.49 8844.47 66.61

c*202-50 35 80 8905.00 236.39 0.00 8469.44 8668.61 8583.53 80.89

c*203-50 32 75 9310.00 338.38 0.00 8334.64 8971.62 8571.22 80.39

c*204-50 34 80 9160.00 318.89 0.00 8528.26 8841.11 8652.01 118.23

c*205-50 32 77 9070.00 371.06 0.00 8605.12 8698.94 8652.44 82.64

c*206-50 34 77 9415.00 281.20 0.00 8562.76 9133.80 8901.89 72.56

c*207-50 33 76 9775.00 375.05 0.00 9100.99 9399.95 9235.63 62.44

c*208-50 34 79 8880.00 320.56 0.00 8319.29 8559.44 8438.04 100.85

r*101-50 5 13 2010.00 112.62 36.44 1734.85 1860.94 1810.50 0.78

r*102-50 8 20 3000.00 146.72 0.00 2748.36 2853.28 2769.34 1.63

r*103-50 10 23 3125.00 128.59 0.00 2972.33 2996.41 2977.15 3.68

r*104-50 10 24 3030.00 125.98 0.00 2887.15 2904.02 2890.52 2.68

r*105-50 6 11 2170.00 152.24 0.00 1947.08 2017.76 1988.10 0.87

r*106-50 9 23 3090.00 127.59 0.00 2797.79 2962.41 2893.58 2.45

r*107-50 9 23 2860.00 135.30 0.00 2634.49 2724.70 2688.04 3.53

r*108-50 10 15 3090.00 127.82 0.00 2917.49 2962.18 2933.45 3.52

r*109-50 8 21 2765.00 122.49 0.00 2206.73 2642.51 2378.35 2.36

r*110-50 9 22 2975.00 126.45 0.00 2848.55 2848.55 2848.55 3.92

r*111-50 9 22 2950.00 131.71 0.00 2606.45 2818.29 2733.97 2.48

r*112-50 10 25 2920.00 126.91 0.00 2393.25 2793.09 2568.59 3.55

r*201-50 27 65 6840.00 649.09 1.71 6144.45 6189.20 6163.58 16.07

r*202-50 34 82 8065.00 597.38 0.00 7326.20 7467.62 7377.00 29.48

r*203-50 39 90 9035.00 585.98 0.00 8352.75 8449.02 8406.67 38.48

r*204-50 45 104 9935.00 541.60 0.00 8904.30 9393.40 9165.77 49.94

r*205-50 34 80 7985.00 578.39 0.00 7293.17 7406.61 7343.95 28.94

r*206-50 38 90 9025.00 559.21 0.00 8365.06 8465.79 8413.17 39.85

r*207-50 41 98 9405.00 568.85 0.00 8426.80 8836.15 8696.96 45.57

r*208-50 47 109 10295.00 510.28 0.00 9634.35 9784.72 9705.66 55.56

r*209-50 37 88 8710.00 609.10 0.00 7759.14 8100.90 7937.44 39.33

r*210-50 41 102 8725.00 582.04 0.00 8088.37 8142.96 8115.18 50.52

r*211-50 42 100 9585.00 572.77 0.00 8883.94 9012.23 8958.54 51.65

rc*101-50 9 16 2670.00 125.87 0.00 2528.09 2544.13 2540.92 1.67

rc*102-50 8 17 2950.00 147.54 0.00 2632.18 2802.46 2695.46 1.50

rc*103-50 9 19 3050.00 143.24 0.00 2621.55 2906.76 2778.67 4.05

rc*104-50 10 18 3340.00 136.69 0.00 3167.74 3203.31 3181.97 4.81

rc*105-50 9 17 3240.00 144.35 0.00 2626.12 3095.65 2883.84 3.13

rc*106-50 10 23 2880.00 109.60 0.00 2618.60 2770.40 2735.54 2.21

Obj

Table A.6 Results of VNS* on instances of Type B 



rc*107-50 9 17 3145.00 142.84 0.00 2702.62 3002.16 2892.81 2.25

rc*108-50 10 18 3540.00 138.13 0.00 3074.13 3401.87 3263.98 4.00

rc*201-50 28 68 8845.00 609.86 0.00 8203.03 8235.14 8228.03 20.66

rc*202-50 31 74 11070.00 622.99 14.13 10267.24 10432.88 10331.13 26.12

rc*203-50 38 92 11505.00 564.85 0.00 10751.18 10940.15 10893.77 84.04

rc*204-50 45 116 12380.00 480.84 0.00 11517.02 11899.16 11810.78 403.41

rc*205-50 32 81 9990.00 621.37 0.00 9055.38 9368.63 9216.41 26.97

rc*206-50 33 83 10565.00 626.85 0.00 9764.52 9938.15 9851.41 45.91

rc*207-50 36 86 11525.00 592.38 0.00 10341.23 10932.62 10699.46 37.59

rc*208-50 41 102 12405.00 541.43 0.00 11221.78 11863.57 11577.15 108.04

c*101-100 10 16 3600.00 198.29 0.00 3266.38 3401.71 3340.83 4.94

c*102-100 11 17 3700.00 200.99 0.00 3462.25 3499.01 3481.44 5.50

c*103-100 12 20 3785.00 150.81 0.00 3579.47 3634.19 3610.76 6.54

c*104-100 12 12 3940.00 140.69 0.00 3393.84 3799.31 3571.71 8.34

c*105-100 11 17 3765.00 156.01 0.00 3430.69 3608.99 3549.51 5.87

c*106-100 11 18 3610.00 179.85 0.00 3148.73 3430.15 3280.89 6.09

c*107-100 10 10 3860.00 247.47 0.00 3532.28 3612.53 3575.50 4.76

c*108-100 11 15 3640.00 141.36 0.00 3319.82 3498.64 3406.44 6.06

c*109-100 12 19 3660.00 133.25 0.00 3368.08 3526.75 3491.05 6.34

c*201-100 32 70 11300.00 490.70 0.00 8728.08 10809.30 9723.10 108.21

c*202-100 30 56 9830.00 468.39 4.91 8954.17 9356.70 9088.20 98.27

c*203-100 32 72 11550.00 379.42 0.00 9192.08 11170.58 10575.78 112.06

c*204-100 33 76 10850.00 353.87 0.00 9322.43 10496.13 9595.85 151.28

c*205-100 30 67 10970.00 607.83 0.00 9889.40 10362.17 10231.36 74.38

c*206-100 32 80 10490.00 478.64 0.00 9706.34 10011.36 9869.54 96.33

c*207-100 33 78 11530.00 354.17 0.00 11011.11 11175.83 11082.93 94.00

c*208-100 31 73 11510.00 503.23 0.00 10441.27 11006.77 10783.72 122.61

r*101-100 7 19 2640.00 140.00 9.82 2328.38 2490.18 2376.87 2.95

r*102-100 12 20 3660.00 106.29 0.00 3539.63 3553.71 3545.10 5.93

r*103-100 11 20 3450.00 117.64 0.00 3201.00 3332.36 3284.49 9.50

r*104-100 11 22 3500.00 108.23 0.00 3054.56 3391.77 3138.91 9.84

r*105-100 10 19 3300.00 127.34 0.00 3172.66 3172.66 3172.66 5.73

r*106-100 11 26 3200.00 118.77 0.00 2887.47 3081.23 3018.75 7.45

r*107-100 11 18 3460.00 108.88 0.00 3190.53 3351.12 3283.34 8.23

r*108-100 12 18 3525.00 108.78 0.00 2840.62 3416.22 3149.56 8.29

r*109-100 11 19 3375.00 107.74 0.00 3041.71 3267.26 3133.48 6.37

r*110-100 10 19 3580.00 126.82 0.00 3283.85 3453.18 3401.08 7.82

r*111-100 13 23 3480.00 96.71 0.00 3195.03 3383.29 3258.03 8.26

r*112-100 11 16 3580.00 116.70 0.00 3281.43 3463.30 3370.87 8.58

r*201-100 39 94 10875.00 574.98 24.72 10115.33 10275.30 10207.95 101.63

r*202-100 46 109 12060.00 485.97 1.71 11375.71 11572.32 11440.57 258.77

r*203-100 50 114 13010.00 497.86 0.00 11673.57 12512.14 12004.02 403.00

r*204-100 56 122 13350.00 422.84 0.00 12578.34 12927.16 12795.13 389.31

r*205-100 44 102 12645.00 511.07 14.81 11661.05 12119.12 11862.17 127.17

r*206-100 53 131 13385.00 462.72 0.00 11315.13 12922.28 11714.36 293.55

r*207-100 52 120 14320.00 474.28 0.00 13619.16 13845.72 13749.64 377.68

r*208-100 57 132 13340.00 427.41 0.00 12350.92 12912.59 12528.49 529.63

r*209-100 45 106 11970.00 499.54 0.00 11196.08 11470.46 11290.18 344.55

r*210-100 50 114 12190.00 477.31 0.00 11568.32 11712.69 11638.64 413.84

r*211-100 52 118 13460.00 457.62 0.00 12088.83 13002.38 12561.29 246.23



rc*101-100 9 20 3105.00 141.59 0.00 2963.41 2963.41 2963.41 8.47

rc*102-100 10 17 3435.00 133.58 0.00 3061.60 3301.42 3180.86 5.43

rc*103-100 9 16 3380.00 146.48 0.00 3158.60 3233.52 3189.47 5.94

rc*104-100 11 17 3660.00 128.62 0.00 3271.85 3531.38 3419.50 5.13

rc*105-100 10 17 3420.00 133.78 0.00 3229.95 3286.22 3253.42 4.85

rc*106-100 11 19 3250.00 127.42 0.00 3112.01 3122.58 3119.18 4.33

rc*107-100 11 19 3220.00 117.21 0.00 2759.11 3102.79 2972.81 6.34

rc*108-100 10 17 3600.00 131.16 0.00 3080.20 3468.84 3315.84 7.64

rc*201-100 34 79 11035.00 610.25 0.00 10221.01 10424.75 10290.33 51.94

rc*202-100 43 98 12420.00 503.89 0.00 11275.74 11916.11 11650.52 220.24

rc*203-100 50 105 13100.00 450.13 0.00 11354.65 12649.87 12207.02 328.43

rc*204-100 53 105 12900.00 429.23 0.00 12137.66 12470.77 12291.93 479.46

rc*205-100 40 98 11610.00 554.30 0.00 10749.62 11055.70 10858.11 109.45

rc*206-100 38 93 12320.00 551.69 0.00 11074.85 11768.31 11355.36 119.33

rc*207-100 40 94 13975.00 529.38 0.00 13098.92 13445.62 13272.40 132.89

rc*208-100 46 86 12460.00 486.89 0.00 11631.78 11973.11 11796.20 339.45

c*101-200 10 17 3640.00 262.21 0.00 3313.59 3377.79 3351.96 8.27

c*102-200 12 17 3780.00 242.10 0.00 3456.16 3537.90 3484.96 10.46

c*103-200 13 22 3720.00 140.59 0.00 3472.88 3579.41 3520.30 11.37

c*104-200 12 18 3700.00 138.68 0.00 3176.86 3561.32 3419.55 11.87

c*105-200 10 10 3820.00 265.46 0.00 3407.24 3554.54 3465.66 9.45

c*106-200 11 15 3660.00 194.86 0.00 3332.82 3465.14 3398.99 8.97

c*107-200 11 18 3680.00 155.18 0.00 3452.21 3524.82 3495.85 8.83

c*108-200 11 20 3640.00 174.09 0.00 3312.10 3465.91 3402.55 10.31

c*109-200 11 18 3680.00 169.13 0.00 3150.79 3510.87 3375.96 10.28

c*110-200 11 15 3800.00 162.65 0.00 3479.58 3637.35 3576.31 12.02

c*201-200 32 71 10385.00 584.25 0.00 9364.24 9800.75 9507.54 97.82

c*202-200 32 69 11550.00 576.07 0.00 10908.31 10973.93 10934.66 119.32

c*203-200 34 77 10835.00 366.01 0.00 10350.22 10468.99 10428.78 246.94

c*204-200 36 72 10850.00 319.35 0.00 10067.76 10530.65 10424.17 231.64

c*205-200 32 69 10850.00 507.30 0.00 9196.34 10342.70 10084.75 159.85

c*206-200 34 77 11530.00 522.45 0.00 10371.87 11007.55 10614.21 165.32

c*207-200 33 75 11550.00 580.79 0.00 10666.46 10969.21 10801.51 139.32

c*208-200 34 79 10835.00 415.04 0.00 9831.48 10419.96 10288.38 166.76

c*209-200 34 72 10770.00 519.03 0.00 9902.59 10250.97 10041.25 141.01

c*210-200 35 76 11550.00 419.22 0.00 11086.09 11130.78 11112.23 190.26

r*101-200 14 23 3700.00 254.40 138.98 3040.04 3306.62 3108.37 15.06

r*102-200 20 23 3800.00 280.23 59.94 3258.41 3459.83 3377.90 22.79

r*103-200 19 19 4000.00 252.96 0.00 3276.91 3747.04 3473.37 20.03

r*104-200 20 23 3800.00 219.88 0.00 3303.69 3580.12 3409.04 23.10

r*105-200 15 18 3800.00 315.41 24.53 3396.84 3460.06 3433.22 12.78

r*106-200 11 15 3800.00 225.21 4.27 3461.24 3570.52 3518.27 17.15

r*107-200 21 26 3800.00 280.19 0.00 3142.64 3519.81 3434.83 24.18

r*108-200 16 24 3285.00 141.51 0.00 2943.46 3143.49 3045.48 20.62

r*109-200 17 28 3480.00 282.46 34.83 2892.64 3162.71 3066.87 26.06

r*110-200 13 20 3500.00 189.70 0.00 2869.63 3310.30 3044.70 24.23

r*201-200 66 117 16455.00 1477.39 50.34 14823.15 14927.27 14861.33 128.92*

r*202-200 89 145 16455.00 1555.53 32.86 13199.09 14866.61 14344.79 246.89*

r*203-200 89 141 14455.00 886.64 0.00 12872.67 13568.36 13404.81 332.43*

r*204-200 102 138 15455.00 1020.05 0.00 13481.96 14434.95 13874.99 389.10*



r*205-200 79 137 15955.00 1310.27 0.00 13023.05 14644.73 14274.96 166.28*

r*206-200 92 144 16455.00 1356.71 0.41 14600.55 15097.88 14804.14 279.27*

r*207-200 96 136 15955.00 1080.35 0.00 14641.88 14874.65 14729.72 322.69*

r*208-200 86 134 15955.00 786.44 0.00 14658.05 15168.56 15001.35 330.36*

r*209-200 79 125 16455.00 1337.98 0.00 15030.90 15117.02 15084.19 195.59*

r*210-200 70 123 16455.00 989.76 49.98 15217.85 15415.26 15308.36 284.16*

rc*101-200 22 25 3800.00 320.46 1.78 3261.98 3477.76 3332.10 24.77*

rc*102-200 14 20 3500.00 194.44 38.15 3136.57 3267.41 3171.99 20.49

rc*103-200 21 24 3800.00 238.34 0.00 3453.30 3561.66 3509.66 27.16

rc*104-200 20 24 3800.00 151.33 0.00 3258.19 3648.67 3481.16 100.10

rc*105-200 19 26 3800.00 309.46 2.81 3365.14 3487.73 3421.89 19.63

rc*106-200 19 22 3800.00 277.59 47.87 2890.82 3474.54 3184.91 23.64

rc*107-200 15 28 3455.00 241.19 6.36 2856.50 3207.45 2945.45 21.46

rc*108-200 21 26 3700.00 271.29 8.78 3089.25 3419.93 3271.98 20.12

rc*109-200 16 26 3700.00 209.68 0.00 3319.77 3490.32 3408.99 23.86

rc*110-200 19 25 3800.00 244.60 16.06 3219.14 3539.34 3436.61 25.17

rc*201-200 67 121 13455.00 1514.17 137.39 11755.29 11803.44 11792.58 123.73*

rc*202-200 78 133 14455.00 1063.08 5.20 13069.98 13386.72 13240.15 204.13*

rc*203-200 85 140 13955.00 767.20 0.00 13046.55 13187.80 13126.17 365.37*

rc*204-200 89 149 16455.00 554.78 0.00 13754.47 15900.22 15430.38 386.07*

rc*205-200 76 116 15455.00 1450.27 32.43 12982.61 13972.30 13390.40 153.65*

rc*206-200 68 126 14350.00 1201.21 79.88 12919.10 13068.91 12988.25 156.91*

rc*207-200 83 145 15955.00 1212.29 0.00 12768.23 14742.71 13220.47 200.56*

rc*208-200 86 134 15955.00 1125.37 15.77 13106.57 14813.86 13799.22 226.86*

rc*209-200 86 139 15455.00 962.09 0.00 14094.95 14492.91 14251.55 224.38*

rc*210-200 91 147 15955.00 1180.22 0.00 13539.21 14774.78 13926.57 286.75*

time(s)*: aborted prematurely with out-of-memory status in the solution   
based  on the Linear Multiple Knapsack Problem with Conflicts  



Instance # Cust # Ord T_profit T_distance T_wait Time(s)

min max avg

c*101-50 11 16 3500.00 209.91 0.00 3218.23 3290.09 3264.89 1.77

c*102-50 12 24 3290.00 124.17 0.00 3121.45 3165.83 3148.14 2.35

c*103-50 11 20 3485.00 178.60 0.00 3234.75 3306.40 3262.10 2.75

c*104-50 12 22 3470.00 124.83 0.00 3246.08 3345.17 3306.19 2.88

c*105-50 11 23 3380.00 149.38 0.00 3099.24 3230.62 3149.18 2.92

c*106-50 11 26 3400.00 197.19 0.00 3132.17 3202.81 3162.30 2.70

c*107-50 12 23 3415.00 153.22 0.00 3186.52 3261.78 3236.95 2.09

c*108-50 12 20 3480.00 154.96 0.00 3095.07 3325.04 3255.26 2.22

c*109-50 12 20 3500.00 120.47 0.00 3312.26 3379.53 3346.90 2.18

c*201-50 31 78 9660.00 399.77 0.00 8629.39 9260.23 8992.34 14.42

c*202-50 34 86 9200.00 290.91 0.00 8652.23 8909.09 8743.54 16.03

c*203-50 33 78 9895.00 383.48 0.00 9309.18 9511.52 9428.26 18.45

c*204-50 34 84 9670.00 309.98 0.00 8988.26 9360.02 9175.78 25.38

c*205-50 31 75 9695.00 392.35 0.00 8950.98 9302.65 9169.78 16.59

c*206-50 33 83 10080.00 359.91 0.00 9181.12 9720.09 9339.54 16.17

c*207-50 34 83 10030.00 299.11 0.00 9424.38 9730.89 9655.06 17.13

c*208-50 34 84 10150.00 312.03 0.00 9494.75 9837.97 9607.70 15.97

r*101-50 5 13 2010.00 112.62 36.44 1860.94 1860.94 1860.94 0.63

r*102-50 9 25 2975.00 132.51 0.00 2767.04 2842.49 2821.65 1.25

r*103-50 10 23 3230.00 128.90 0.00 2987.70 3101.10 3035.86 1.63

r*104-50 10 27 3210.00 128.26 0.00 2940.97 3081.74 3002.80 1.89

r*105-50 6 12 2170.00 151.97 0.00 2018.03 2018.03 2018.03 0.74

r*106-50 8 20 3150.00 142.12 4.84 3003.04 3003.04 3003.04 1.39

r*107-50 10 26 3180.00 129.09 0.00 2968.48 3050.91 3007.83 1.78

r*108-50 10 19 3350.00 126.87 0.00 3142.60 3223.13 3188.71 1.73

r*109-50 8 21 2775.00 129.94 0.00 2645.06 2645.06 2645.06 1.17

r*110-50 9 23 3035.00 126.45 0.00 2908.55 2908.55 2908.55 1.40

r*111-50 10 25 3125.00 128.01 0.00 2889.06 2996.99 2937.61 1.57

r*112-50 10 26 3180.00 126.91 0.00 2877.35 3053.09 2998.52 1.76

r*201-50 25 61 6825.00 612.75 2.05 6071.66 6210.20 6110.82 8.58

r*202-50 34 80 7890.00 604.62 0.00 6966.36 7285.38 7124.53 11.66

r*203-50 38 90 8955.00 590.43 0.00 7930.62 8364.57 8121.59 13.62

r*204-50 45 103 9760.00 533.78 6.68 8587.64 9219.54 8858.14 16.32

r*205-50 33 78 8020.00 586.91 0.00 7168.29 7433.09 7292.39 13.85

r*206-50 41 94 9025.00 583.44 0.00 7992.29 8441.56 8139.85 14.61

r*207-50 41 99 9310.00 555.91 0.00 8451.49 8754.09 8547.52 16.04

r*208-50 45 108 10280.00 524.42 0.00 9725.53 9755.58 9741.94 15.66

r*209-50 37 89 8855.00 578.39 0.00 7778.49 8276.61 8065.92 17.29

r*210-50 38 96 8550.00 525.46 0.00 7590.61 8024.54 7859.55 17.37

r*211-50 41 96 9455.00 544.42 0.00 8660.31 8910.58 8834.09 19.96

rc*101-50 9 19 2800.00 121.47 0.00 2678.53 2678.53 2678.53 1.07

rc*102-50 7 15 3100.00 162.97 0.00 2802.46 2937.03 2884.38 1.12

rc*103-50 9 25 3205.00 148.83 0.00 2863.07 3056.17 2983.00 1.66

rc*104-50 10 21 3375.00 138.38 0.00 3162.23 3236.62 3196.20 1.89

rc*105-50 9 22 3135.00 140.71 0.00 2776.20 2994.29 2874.41 1.41

rc*106-50 9 17 3115.00 133.32 0.00 2918.60 2981.68 2952.15 1.40

Obj

Table A.7 Results of VNS* on instances of Type C 



rc*107-50 9 18 3260.00 143.39 0.00 3076.51 3116.61 3096.68 1.69

rc*108-50 10 20 3310.00 134.37 0.00 3101.33 3175.63 3137.86 1.86

rc*201-50 27 67 8835.00 633.89 0.00 8131.27 8201.11 8164.95 11.05

rc*202-50 32 77 10780.00 616.17 0.26 9618.32 10163.57 9928.97 9.82

rc*203-50 37 95 10855.00 550.46 0.00 10295.39 10304.54 10301.20 14.56

rc*204-50 45 121 13415.00 493.02 0.00 11750.78 12921.98 12284.15 22.66

rc*205-50 30 75 9795.00 613.30 12.78 8749.99 9168.92 8902.43 10.64

rc*206-50 32 81 10555.00 632.76 0.00 9078.09 9922.24 9550.89 11.61

rc*207-50 36 88 11205.00 578.75 0.00 10470.13 10626.25 10556.46 15.92

rc*208-50 39 100 12785.00 535.52 0.00 11572.53 12249.48 12044.71 23.27

c*101-100 11 18 3445.00 167.25 0.00 3075.60 3277.75 3167.30 3.09

c*102-100 11 19 3500.00 121.55 1.00 3260.97 3377.45 3316.96 3.95

c*103-100 12 26 3440.00 129.64 0.00 3229.84 3310.36 3286.59 4.09

c*104-100 12 22 3490.00 113.51 0.00 3298.29 3376.49 3341.74 4.59

c*105-100 11 22 3455.00 160.39 0.00 3263.42 3294.61 3282.49 2.99

c*106-100 11 23 3410.00 168.53 0.00 3159.77 3241.47 3203.27 3.21

c*107-100 10 15 3465.00 133.31 0.00 3236.40 3331.69 3268.68 3.39

c*108-100 11 21 3455.00 148.84 0.00 3187.52 3306.16 3274.18 4.04

c*109-100 12 22 3500.00 110.90 0.00 3343.36 3389.10 3370.18 3.80

c*201-100 32 79 11230.00 476.32 0.00 10347.71 10753.68 10590.39 22.60

c*202-100 33 74 11545.00 399.02 0.00 9813.81 11145.98 10254.90 27.49

c*203-100 31 70 10900.00 463.33 0.00 9894.12 10436.67 10163.18 33.73

c*204-100 33 67 11465.00 367.10 0.00 10413.02 11097.90 10630.04 42.84

c*205-100 31 75 10320.00 394.23 31.78 9544.31 9893.99 9745.87 31.54

c*206-100 32 73 10960.00 478.50 0.00 9808.09 10481.50 10207.42 29.93

c*207-100 32 68 11585.00 412.40 0.00 10547.75 11172.60 10909.71 32.53

c*208-100 32 72 11285.00 410.66 0.00 10337.76 10874.34 10551.81 33.45

r*101-100 9 24 2810.00 130.65 0.00 2679.35 2679.35 2679.35 2.15

r*102-100 11 20 3465.00 113.72 0.00 3305.64 3351.28 3318.95 3.82

r*103-100 12 25 3340.00 106.43 0.00 3123.19 3233.57 3175.77 4.59

r*104-100 12 22 3400.00 108.72 0.00 3183.00 3291.28 3212.27 4.92

r*105-100 9 20 3300.00 122.15 0.00 3121.24 3177.85 3155.44 3.31

r*106-100 12 27 3130.00 106.49 0.00 2680.93 3023.51 2907.85 4.28

r*107-100 12 22 3460.00 92.70 0.00 3254.72 3367.30 3300.98 4.16

r*108-100 13 26 3445.00 91.06 0.00 3160.22 3353.94 3226.01 5.30

r*109-100 12 25 3380.00 100.16 0.00 3125.66 3279.84 3215.76 3.88

r*110-100 13 29 3310.00 97.20 0.00 3128.80 3212.80 3178.82 4.67

r*111-100 13 24 3420.00 90.81 0.00 3238.52 3329.19 3288.00 4.34

r*112-100 12 25 3395.00 99.08 0.00 3217.55 3295.92 3261.39 4.60

r*201-100 38 96 10925.00 606.55 4.16 9683.40 10314.29 10137.39 39.13

r*202-100 49 117 12065.00 503.68 0.00 10683.22 11561.32 11209.11 61.67

r*203-100 55 134 13320.00 439.51 0.00 11940.55 12880.49 12349.65 75.38

r*204-100 57 139 14360.00 429.00 0.00 13542.38 13931.00 13817.59 94.14

r*205-100 47 111 12405.00 521.24 0.00 11350.69 11883.76 11535.33 56.40

r*206-100 50 125 13800.00 487.42 0.00 12215.79 13312.58 12733.12 72.79

r*207-100 52 130 14945.00 474.19 0.00 12968.63 14470.81 13976.22 85.97

r*208-100 56 142 14145.00 439.32 0.00 13133.09 13705.68 13462.81 101.99

r*209-100 46 108 12485.00 533.28 0.00 11507.73 11951.72 11787.17 64.21

r*210-100 48 121 12655.00 507.82 0.00 11215.50 12147.18 11759.07 66.70

r*211-100 48 114 13710.00 492.79 0.00 12042.97 13217.21 12654.31 73.50



rc*101-100 10 23 3120.00 110.08 0.00 3009.92 3009.92 3009.92 2.78

rc*102-100 9 18 3410.00 117.69 0.00 3192.96 3292.31 3243.51 3.01

rc*103-100 10 21 3390.00 133.88 0.00 3166.78 3256.12 3215.93 3.29

rc*104-100 11 19 3430.00 125.76 0.00 3250.79 3304.24 3274.66 4.36

rc*105-100 10 18 3465.00 130.05 0.00 3253.78 3334.95 3299.93 3.28

rc*106-100 11 24 3410.00 127.42 0.00 3155.68 3282.58 3213.22 3.40

rc*107-100 11 19 3465.00 128.28 0.00 3200.68 3336.72 3241.82 3.71

rc*108-100 12 27 3350.00 110.11 0.00 3037.41 3239.89 3160.11 3.87

rc*201-100 33 79 10900.00 575.47 0.00 9747.32 10324.53 10079.38 32.57

rc*202-100 41 104 12615.00 538.33 2.14 11307.92 12074.53 11701.10 50.27

rc*203-100 47 112 13585.00 489.14 0.00 12688.62 13095.86 12930.21 67.50

rc*204-100 53 128 14770.00 424.43 0.00 13137.47 14345.57 14014.64 77.28

rc*205-100 39 96 12000.00 568.83 0.00 10549.46 11431.17 11062.06 37.65

rc*206-100 39 94 12345.00 510.61 0.00 10790.59 11834.39 11347.27 42.00

rc*207-100 42 106 13065.00 536.62 0.00 10423.06 12528.38 11127.07 47.40

rc*208-100 47 112 14690.00 475.71 0.00 12540.63 14214.29 13437.30 62.62

c*101-200 11 17 3475.00 175.85 0.00 3114.51 3299.15 3197.08 5.00

c*102-200 13 22 3500.00 147.02 0.00 3279.50 3352.98 3311.04 7.85

c*103-200 13 24 3435.00 158.49 0.00 3219.75 3276.51 3250.96 8.59

c*104-200 13 25 3495.00 124.18 0.00 3347.62 3370.82 3356.91 8.87

c*105-200 11 24 3430.00 216.61 0.00 3151.11 3213.39 3187.17 5.37

c*106-200 10 16 3480.00 141.03 0.00 3176.39 3338.97 3262.93 5.79

c*107-200 12 22 3480.00 147.98 0.00 3254.02 3332.02 3297.61 6.47

c*108-200 12 22 3490.00 161.30 0.00 3214.67 3328.70 3257.96 6.59

c*109-200 12 19 3485.00 188.81 0.00 3226.14 3296.19 3271.46 7.28

c*110-200 11 19 3490.00 128.37 0.00 3309.09 3361.63 3342.37 8.74

c*201-200 33 81 10480.00 553.81 0.00 9244.01 9926.19 9563.48 46.97

c*202-200 32 69 11610.00 624.12 0.00 9615.53 10985.88 10163.61 63.32

c*203-200 35 66 11930.00 393.28 0.00 10902.44 11536.72 11114.64 85.93

c*204-200 35 59 11320.00 389.38 0.00 10314.20 10930.62 10653.13 83.63

c*205-200 33 76 11005.00 575.44 0.00 9940.51 10429.56 10227.35 54.25

c*206-200 33 65 10990.00 546.79 0.00 9977.51 10443.21 10238.01 71.22

c*207-200 35 72 10905.00 446.10 0.00 9769.37 10458.90 10076.81 66.40

c*208-200 35 75 11990.00 433.22 0.00 10271.07 11556.78 11010.38 66.40

c*209-200 32 71 10905.00 564.82 0.00 9880.93 10340.18 10149.04 70.56

c*210-200 34 67 10980.00 447.46 0.00 9891.45 10532.54 10280.25 75.76

r*101-200 15 26 3500.00 245.81 106.90 2985.73 3147.29 3098.33 8.44

r*102-200 18 29 3500.00 234.82 16.09 3197.40 3249.09 3236.62 12.43

r*103-200 12 22 3500.00 178.13 0.00 3246.74 3321.87 3283.78 14.89

r*104-200 16 22 3500.00 185.02 0.00 3139.00 3314.98 3260.14 18.79

r*105-200 13 20 3500.00 255.99 5.84 3100.17 3238.17 3163.79 9.23

r*106-200 14 23 3500.00 193.29 74.83 3164.69 3231.88 3209.06 16.01

r*107-200 16 26 3500.00 226.74 0.00 3194.28 3273.26 3232.11 17.46

r*108-200 18 24 3425.00 175.48 0.00 3172.45 3249.52 3223.37 17.28

r*109-200 16 29 3500.00 263.39 58.98 3134.90 3177.63 3162.10 12.40

r*110-200 22 35 3500.00 243.52 0.00 3192.94 3256.48 3227.51 16.74

r*201-200 68 119 16540.00 1430.28 103.12 14519.79 15006.60 14757.54 186.91

r*202-200 87 145 17445.00 1393.31 81.92 15635.90 15969.77 15856.43 321.13

r*203-200 82 140 17500.00 1035.16 35.94 16236.74 16428.90 16334.29 426.14

r*204-200 79 129 17500.00 828.00 0.00 16407.53 16672.00 16526.38 598.13



r*205-200 74 132 17350.00 1394.97 44.12 15158.64 15910.91 15569.38 234.21

r*206-200 80 135 17500.00 1103.82 55.08 15949.98 16341.10 16122.16 388.51

r*207-200 89 147 17465.00 948.95 22.94 16238.12 16493.11 16400.44 554.68

r*208-200 87 140 17500.00 825.97 6.14 16450.88 16667.89 16556.77 566.36

r*209-200 83 128 17415.00 1341.00 17.21 15988.30 16056.79 16034.51 315.48

r*210-200 75 135 17500.00 1207.05 66.56 16142.74 16226.39 16188.50 383.78

rc*101-200 20 25 3500.00 218.60 1.11 3121.93 3280.29 3220.00 9.30

rc*102-200 16 19 3500.00 202.08 25.67 3156.75 3272.25 3226.99 15.53

rc*103-200 20 29 3500.00 185.95 0.00 3229.28 3314.05 3285.88 20.90

rc*104-200 21 34 3500.00 143.21 0.00 3285.70 3356.79 3323.71 24.29

rc*105-200 15 24 3500.00 204.17 15.61 3246.78 3280.22 3259.35 9.28

rc*106-200 12 21 3500.00 222.14 0.00 3188.50 3277.86 3242.25 10.88

rc*107-200 18 32 3500.00 192.35 22.21 3194.86 3285.44 3246.66 10.78

rc*108-200 18 30 3465.00 190.71 0.00 3080.73 3274.29 3192.77 13.17

rc*109-200 18 21 3500.00 163.04 0.00 3303.13 3336.96 3319.80 12.08

rc*110-200 16 28 3500.00 186.82 0.00 3237.11 3313.18 3286.98 14.21

rc*201-200 66 104 16985.00 1403.54 91.37 14799.61 15490.09 15165.26 146.06

rc*202-200 77 130 17500.00 1105.15 136.94 15983.41 16257.91 16060.67 270.26

rc*203-200 86 141 17500.00 919.10 87.33 16305.10 16493.57 16422.52 477.60

rc*204-200 82 137 17500.00 659.93 62.43 16647.85 16777.64 16724.58 627.00

rc*205-200 70 138 17270.00 1181.81 154.26 15140.84 15933.93 15612.17 223.79

rc*206-200 70 123 17375.00 1535.75 94.09 15439.39 15745.16 15602.28 208.97

rc*207-200 86 139 17500.00 1250.38 17.69 16011.37 16231.93 16142.45 290.45

rc*208-200 86 144 17370.00 1284.35 22.00 15723.64 16063.65 15916.58 373.62

rc*209-200 80 135 17405.00 1071.96 3.57 16103.09 16329.47 16215.07 301.63

rc*210-200 87 149 17495.00 900.11 5.65 16130.65 16589.24 16263.23 402.11



Instance # Cust # Ord T_profit T_distance T_wait Time(s)

min max avg

c*101-50 12 26 3390.00 129.42 0.00 3200.09 3260.58 3221.58 2.92

c*102-50 12 29 3330.00 110.96 0.00 3095.83 3219.04 3138.43 4.17

c*103-50 11 20 3485.00 178.60 0.00 3241.52 3306.40 3267.80 3.79

c*104-50 12 22 3455.00 145.85 0.00 3257.45 3309.15 3286.32 3.98

c*105-50 11 23 3320.00 149.38 0.00 3079.24 3170.62 3111.21 5.01

c*106-50 11 26 3400.00 197.19 0.00 3035.96 3202.81 3134.42 4.17

c*107-50 11 26 3370.00 128.19 0.00 3210.34 3241.81 3224.98 3.24

c*108-50 11 21 3435.00 147.73 0.00 3096.21 3287.27 3176.63 4.65

c*109-50 11 22 3480.00 119.21 0.00 3308.72 3360.79 3330.12 3.28

c*201-50 31 77 9610.00 399.77 0.00 8629.39 9210.23 8982.34 519.73

c*202-50 34 83 9340.00 287.63 0.00 8312.23 9052.37 8581.86 518.80

c*203-50 33 81 9835.00 375.71 0.00 9025.19 9459.29 9224.26 522.71

c*204-50 34 85 9660.00 309.98 0.00 8833.72 9350.02 9100.85 529.93

c*205-50 31 75 9695.00 392.35 0.00 8950.98 9302.65 9153.78 522.22

c*206-50 33 80 9900.00 359.91 0.00 9181.12 9540.09 9279.54 521.71

c*207-50 34 83 10030.00 299.11 0.00 9349.04 9730.89 9623.99 522.62

c*208-50 34 85 10090.00 312.03 0.00 9284.75 9777.97 9541.70 520.90

r*101-50 5 13 2010.00 112.62 36.44 1860.94 1860.94 1860.94 1.42

r*102-50 9 25 2975.00 132.51 0.00 2747.04 2842.49 2817.65 3.85

r*103-50 10 24 3205.00 129.13 0.00 3012.08 3075.87 3040.67 4.31

r*104-50 10 28 3125.00 128.58 0.00 2912.59 2996.42 2962.35 8.50

r*105-50 6 12 2170.00 151.97 0.00 2018.03 2018.03 2018.03 1.59

r*106-50 8 20 3150.00 142.12 4.84 3003.04 3003.04 3003.04 2.96

r*107-50 10 26 3115.00 127.05 0.00 2950.91 2987.95 2967.83 8.38

r*108-50 10 19 3300.00 126.87 0.00 3128.62 3173.13 3143.76 2.76

r*109-50 8 21 2775.00 129.94 0.00 2645.06 2645.06 2645.06 3.81

r*110-50 9 23 2985.00 138.07 0.00 2768.55 2846.93 2785.22 4.37

r*111-50 10 24 3095.00 128.01 0.00 2862.38 2966.99 2913.61 3.73

r*112-50 10 26 3140.00 124.35 0.00 2867.82 3015.65 2953.12 5.48

r*201-50 25 61 6825.00 612.75 2.05 6071.66 6210.20 6110.82 46.88

r*202-50 34 80 7890.00 604.62 0.00 6966.36 7285.38 7124.53 488.56

r*203-50 38 90 8955.00 590.43 0.00 7930.62 8364.57 8121.59 518.44

r*204-50 45 103 9760.00 533.78 6.68 8587.64 9219.54 8880.40 522.92

r*205-50 33 78 8020.00 586.91 0.00 7168.29 7433.09 7292.39 326.76

r*206-50 41 94 9025.00 583.44 0.00 7992.29 8441.56 8139.85 519.10

r*207-50 42 100 9320.00 557.24 0.00 8451.49 8762.76 8549.25 523.05

r*208-50 46 109 10340.00 531.49 0.00 9725.53 9808.51 9752.53 523.08

r*209-50 37 89 8855.00 578.39 0.00 7778.49 8276.61 8065.92 521.34

r*210-50 38 96 8550.00 525.46 0.00 7590.61 8024.54 7859.55 522.52

r*211-50 41 96 9455.00 544.42 0.00 8660.31 8910.58 8834.09 526.19

rc*101-50 9 19 2800.00 121.47 0.00 2678.53 2678.53 2678.53 2.39

rc*102-50 7 15 3100.00 162.97 0.00 2802.46 2937.03 2876.38 2.45

rc*103-50 9 24 3175.00 148.83 0.00 2863.07 3026.17 2968.00 3.56

rc*104-50 8 21 3405.00 157.59 0.00 3162.82 3247.41 3200.55 3.09

rc*105-50 9 22 3095.00 140.71 0.00 2776.20 2954.29 2866.41 6.66

rc*106-50 9 20 3115.00 136.45 0.00 2920.92 2978.55 2948.12 2.39

Obj

Table A.8 Results of VNS*I  on instances of Type C 



rc*107-50 9 19 3235.00 139.82 0.00 3022.69 3095.18 3064.79 2.58

rc*108-50 10 26 3280.00 135.79 0.00 3099.57 3144.21 3123.32 3.22

rc*201-50 27 67 8835.00 633.89 0.00 8131.27 8201.11 8164.95 204.07

rc*202-50 32 77 10780.00 616.33 0.00 9618.32 10163.67 9948.97 514.69

rc*203-50 37 93 10715.00 550.46 0.00 10155.39 10164.54 10161.20 519.94

rc*204-50 45 121 13415.00 493.02 0.00 11750.78 12921.98 12284.15 533.02

rc*205-50 30 75 9795.00 613.30 12.78 8749.99 9168.92 8902.43 514.62

rc*206-50 32 80 10495.00 632.76 0.00 9078.09 9862.24 9538.89 515.93

rc*207-50 36 87 11145.00 584.28 0.00 10470.13 10560.72 10525.28 520.94

rc*208-50 39 100 12785.00 535.52 0.00 11512.53 12249.48 12026.71 530.68

c*101-100 11 18 3445.00 167.25 0.00 3088.64 3277.75 3163.49 6.26

c*102-100 12 23 3440.00 108.98 0.00 3240.97 3331.02 3301.22 6.79

c*103-100 12 26 3440.00 129.64 0.00 3282.72 3310.36 3294.69 5.42

c*104-100 12 18 3500.00 124.76 0.00 3295.08 3375.24 3332.32 5.47

c*105-100 12 26 3410.00 99.54 0.00 3223.41 3310.46 3268.53 4.11

c*106-100 11 24 3325.00 111.70 0.00 3187.66 3213.30 3204.05 5.28

c*107-100 11 19 3430.00 165.96 0.00 3197.04 3264.04 3234.56 4.38

c*108-100 10 19 3500.00 195.74 0.00 3238.58 3304.26 3274.59 5.01

c*109-100 12 21 3500.00 122.55 0.00 3251.79 3377.45 3327.86 5.03

c*201-100 32 78 11000.00 476.32 0.00 9947.71 10523.68 10275.39 527.21

c*202-100 33 76 11190.00 401.10 0.00 9813.81 10788.90 10116.86 532.45

c*203-100 30 70 10665.00 467.06 0.00 9894.12 10197.94 10051.18 538.49

c*204-100 33 70 11350.00 371.73 0.00 10186.35 10978.27 10480.11 540.51

c*205-100 33 73 10225.00 404.68 0.00 9508.21 9820.32 9634.47 431.58

c*206-100 32 75 10570.00 483.72 0.00 9798.09 10086.28 9931.41 533.85

c*207-100 31 68 11200.00 407.15 0.00 10315.82 10792.85 10600.50 535.54

c*208-100 33 74 11140.00 410.72 0.00 10067.76 10729.28 10390.09 534.64

r*101-100 9 24 2810.00 130.65 0.00 2679.35 2679.35 2679.35 7.06

r*102-100 10 22 3425.00 111.44 0.00 3274.13 3313.56 3294.95 4.86

r*103-100 13 33 3265.00 91.19 0.00 3083.46 3173.81 3125.38 51.54

r*104-100 12 21 3300.00 108.72 0.00 3045.25 3191.28 3137.84 12.58

r*105-100 10 24 3265.00 127.34 0.00 3111.24 3137.66 3127.98 5.64

r*106-100 11 27 3060.00 104.80 0.00 2660.93 2955.20 2831.81 12.32

r*107-100 13 25 3360.00 94.08 0.00 3242.00 3265.92 3252.16 7.62

r*108-100 13 26 3445.00 91.06 0.00 3155.26 3353.94 3206.01 9.17

r*109-100 12 24 3380.00 105.67 0.00 3125.66 3274.33 3187.65 6.62

r*110-100 13 31 3340.00 97.12 0.00 3102.17 3242.88 3160.15 10.03

r*111-100 12 19 3460.00 103.21 0.00 3205.25 3356.79 3276.39 8.69

r*112-100 13 24 3415.00 88.99 0.00 3175.35 3326.01 3239.72 16.16

r*201-100 38 95 10795.00 558.80 10.33 9683.40 10225.87 10052.48 544.11

r*202-100 49 117 12065.00 503.68 0.00 10453.22 11561.32 11163.11 570.41

r*203-100 55 134 13320.00 439.51 0.00 11840.55 12880.49 12329.65 585.72

r*204-100 57 139 14340.00 429.00 0.00 13542.38 13911.00 13805.59 600.87

r*205-100 46 106 12075.00 510.83 0.00 11258.97 11564.17 11428.30 561.74

r*206-100 50 125 13800.00 487.42 0.00 12215.79 13312.58 12733.12 583.93

r*207-100 52 129 14855.00 474.19 0.00 12968.63 14380.81 13958.22 598.39

r*208-100 56 142 14145.00 439.32 0.00 13083.09 13705.68 13452.81 616.95

r*209-100 46 108 12485.00 533.28 0.00 11227.73 11951.72 11731.17 571.16

r*210-100 48 121 12655.00 507.82 0.00 10955.50 12147.18 11653.07 575.18

r*211-100 49 114 13920.00 496.31 0.00 12424.47 13423.69 12848.96 581.82



rc*101-100 9 20 3075.00 144.03 0.00 2879.40 2930.97 2914.67 5.11

rc*102-100 10 20 3440.00 127.50 0.00 3182.96 3312.50 3231.96 3.99

rc*103-100 10 22 3380.00 133.88 0.00 3175.47 3246.12 3215.13 5.40

rc*104-100 11 19 3405.00 119.01 0.00 3142.27 3285.99 3207.97 6.87

rc*105-100 10 18 3465.00 130.05 0.00 3213.17 3334.95 3285.57 4.35

rc*106-100 11 24 3380.00 127.42 0.00 3125.68 3252.58 3176.84 4.48

rc*107-100 12 24 3395.00 116.60 0.00 3144.74 3278.40 3224.82 10.33

rc*108-100 12 27 3350.00 110.11 0.00 3007.41 3239.89 3134.64 5.54

rc*201-100 34 76 10835.00 607.85 3.98 9747.32 10223.17 10021.54 536.71

rc*202-100 41 104 12615.00 538.33 2.14 11307.92 12074.53 11619.10 556.55

rc*203-100 45 109 13595.00 509.02 0.00 12688.62 13085.98 12902.21 575.03

rc*204-100 54 128 14715.00 412.91 0.00 13137.47 14302.09 13874.64 585.60

rc*205-100 39 98 11710.00 556.55 0.00 10549.46 11153.45 10956.51 542.30

rc*206-100 39 94 12345.00 510.61 0.00 10763.46 11834.39 11301.84 547.48

rc*207-100 45 111 13505.00 506.58 0.00 10659.51 12998.42 11500.63 554.12

rc*208-100 47 111 14630.00 475.71 0.00 12020.63 14154.29 13285.30 569.69

c*101-200 11 24 3390.00 140.85 17.72 3112.30 3231.43 3159.71 6.15

c*102-200 13 29 3405.00 135.87 0.00 3182.07 3269.13 3243.58 9.62

c*103-200 13 22 3460.00 161.68 0.00 3208.05 3298.32 3262.52 11.61

c*104-200 13 23 3490.00 139.58 0.00 3301.64 3350.42 3327.19 10.55

c*105-200 11 21 3460.00 169.02 0.00 3125.64 3290.98 3188.38 6.73

c*106-200 10 17 3460.00 141.03 0.00 3135.31 3318.97 3207.93 6.66

c*107-200 12 22 3445.00 143.78 0.00 3248.46 3301.22 3274.18 7.66

c*108-200 12 22 3490.00 161.30 0.00 3191.49 3328.70 3238.33 7.54

c*109-200 12 21 3480.00 160.88 0.00 3136.14 3319.12 3234.75 8.51

c*110-200 12 18 3500.00 142.20 0.00 3289.09 3357.80 3334.64 10.30

c*201-200 31 72 10880.00 682.97 6.09 9164.09 10190.94 9638.86 500.33

c*202-200 32 70 11365.00 624.12 0.00 9615.53 10740.88 10113.92 445.57

c*203-200 35 65 11810.00 393.28 0.00 10407.44 11416.72 10837.64 575.40

c*204-200 35 60 11150.00 389.38 0.00 10252.68 10760.62 10518.80 573.45

c*205-200 33 74 10910.00 607.42 0.00 9470.51 10302.58 10017.46 555.59

c*206-200 33 61 10890.00 546.79 0.00 9957.51 10343.21 10164.01 570.64

c*207-200 34 67 10725.00 472.12 0.00 9602.50 10252.88 9979.83 475.54

c*208-200 35 81 11710.00 435.80 0.00 10001.07 11274.20 10754.31 554.51

c*209-200 35 69 11030.00 440.60 0.00 10043.72 10589.40 10226.11 522.68

c*210-200 34 70 10910.00 447.46 0.00 9891.45 10462.54 10176.25 575.87

r*101-200 15 23 3500.00 255.35 96.96 2946.62 3147.69 3027.53 28.24

r*102-200 19 33 3410.00 239.26 1.65 3071.55 3169.09 3123.57 41.05

r*103-200 15 22 3500.00 204.24 2.10 3239.29 3293.66 3256.52 18.26

r*104-200 27 42 3470.00 279.98 0.00 3137.93 3190.02 3158.75 209.49

r*105-200 13 18 3500.00 261.93 15.00 3125.37 3223.07 3182.33 10.90

r*106-200 22 33 3500.00 289.28 11.73 3152.95 3198.99 3172.44 49.88

r*107-200 19 31 3490.00 221.94 10.03 3191.93 3258.03 3221.87 24.40

r*108-200 20 27 3500.00 225.89 0.00 3184.72 3274.11 3227.73 209.33

r*109-200 18 33 3470.00 297.73 20.24 3118.56 3152.03 3133.37 36.78

r*110-200 22 35 3500.00 290.75 0.00 3091.33 3209.25 3160.60 205.66

r*201-200 69 121 16310.00 1432.87 103.12 14509.79 14774.01 14605.03 689.60

r*202-200 90 149 17395.00 1397.19 50.20 15427.17 15947.61 15731.16 823.50

r*203-200 87 134 17475.00 1038.92 2.33 16236.18 16433.75 16334.77 942.89

r*204-200 87 135 17470.00 862.20 0.00 16429.80 16607.80 16520.75 1121.18



r*205-200 73 145 17105.00 1377.03 72.06 14813.64 15655.91 15207.38 739.40

r*206-200 84 140 17455.00 1164.24 16.20 15859.98 16274.56 16060.07 901.05

r*207-200 92 148 17335.00 942.63 0.00 16102.17 16392.37 16286.48 1057.21

r*208-200 92 145 17435.00 859.91 0.00 16446.00 16575.09 16503.81 1086.50

r*209-200 79 134 17440.00 1395.05 33.82 15730.46 16011.13 15890.10 820.70

r*210-200 81 144 17435.00 1264.17 0.00 16013.63 16170.83 16097.06 896.84

rc*101-200 19 30 3480.00 209.49 20.10 3079.02 3250.41 3171.96 53.08

rc*102-200 15 25 3480.00 246.59 13.41 3067.12 3220.00 3132.09 215.79

rc*103-200 24 39 3485.00 248.95 0.00 3054.54 3236.05 3146.70 204.00

rc*104-200 23 37 3490.00 186.40 0.00 3148.48 3303.60 3255.80 171.94

rc*105-200 15 24 3500.00 204.17 15.61 3194.36 3280.22 3249.80 14.29

rc*106-200 16 27 3500.00 249.41 0.00 3118.01 3250.59 3188.32 25.57

rc*107-200 14 20 3500.00 181.78 0.00 3151.92 3318.22 3229.44 123.45

rc*108-200 19 34 3430.00 243.27 9.33 3048.55 3177.40 3125.59 238.15

rc*109-200 19 31 3475.00 184.77 0.00 3224.76 3290.23 3251.71 17.37

rc*110-200 13 23 3500.00 173.08 0.00 3230.49 3326.92 3261.66 54.28

rc*201-200 66 106 16745.00 1428.83 66.08 14472.35 15250.09 14860.81 648.23

rc*202-200 80 134 17335.00 1117.51 94.58 15786.88 16122.91 15947.22 775.64

rc*203-200 92 154 17485.00 972.15 30.20 16355.26 16482.65 16403.28 1006.54

rc*204-200 100 156 17495.00 703.25 0.00 16659.65 16791.75 16715.89 1177.03

rc*205-200 70 139 17115.00 1181.81 154.26 15030.84 15778.93 15479.14 728.80

rc*206-200 70 123 17375.00 1535.75 94.09 15329.39 15745.16 15471.92 718.11

rc*207-200 85 140 17465.00 1250.36 17.69 15937.42 16196.95 16074.35 794.50

rc*208-200 85 147 17295.00 1192.79 36.89 15755.29 16065.32 15921.72 887.61

rc*209-200 90 149 17425.00 1204.83 22.73 15920.51 16197.44 16040.05 811.47

rc*210-200 85 152 17370.00 888.11 37.65 16116.16 16444.24 16213.47 916.16



Instance # Cust # Ord T_profit T_distance T_wait Time(s)

min max avg

c*101-50 12 24 3330.00 129.42 0.00 3153.56 3200.58 3170.18 1.18

c*102-50 12 26 3240.00 110.96 0.00 3074.84 3129.04 3099.44 1.64

c*103-50 12 21 3340.00 113.37 0.00 3191.85 3226.63 3211.28 1.97

c*104-50 12 22 3410.00 130.70 0.00 3239.42 3279.30 3257.86 2.08

c*105-50 11 24 3285.00 201.09 0.00 3053.48 3083.91 3075.66 1.26

c*106-50 11 20 3270.00 165.01 0.00 3047.41 3104.99 3070.75 1.43

c*107-50 12 23 3370.00 153.22 0.00 3181.81 3216.78 3196.43 1.39

c*108-50 10 21 3360.00 136.84 0.00 3055.07 3223.16 3166.26 1.39

c*109-50 12 21 3420.00 114.83 0.00 3276.16 3305.17 3289.71 1.58

c*201-50 31 71 8525.00 397.50 0.00 7981.48 8127.50 8033.86 11.42

c*202-50 34 75 8640.00 287.63 0.00 8067.49 8352.37 8233.78 10.11

c*203-50 33 73 9370.00 400.82 0.00 8865.21 8969.18 8922.61 12.60

c*204-50 34 79 9110.00 276.42 0.00 8595.74 8833.58 8692.81 17.57

c*205-50 32 69 8360.00 347.94 0.00 7795.08 8012.06 7909.98 12.79

c*206-50 33 70 8140.00 387.44 0.00 7647.60 7752.56 7688.94 12.69

c*207-50 34 73 9050.00 298.33 0.00 8613.42 8751.67 8658.20 13.46

c*208-50 33 79 9165.00 307.52 0.00 8743.90 8857.48 8816.36 10.08

r*101-50 5 13 2010.00 112.62 36.44 1860.94 1860.94 1860.94 0.41

r*102-50 9 25 2975.00 132.51 0.00 2767.04 2842.49 2821.65 0.92

r*103-50 10 25 3150.00 127.85 0.00 2928.88 3022.15 2964.35 1.14

r*104-50 10 25 3150.00 128.26 0.00 2940.97 3021.74 2982.80 1.27

r*105-50 6 12 2170.00 151.97 0.00 2018.03 2018.03 2018.03 0.50

r*106-50 8 20 3150.00 142.12 4.84 3003.04 3003.04 3003.04 1.09

r*107-50 10 25 3130.00 129.09 0.00 2918.48 3000.91 2962.80 1.20

r*108-50 10 19 3300.00 126.87 0.00 3126.79 3173.13 3145.57 1.18

r*109-50 8 21 2775.00 129.94 0.00 2645.06 2645.06 2645.06 0.89

r*110-50 9 23 3035.00 126.45 0.00 2868.55 2908.55 2888.55 0.98

r*111-50 10 24 3080.00 128.01 0.00 2889.06 2951.99 2918.61 1.13

r*112-50 10 25 3150.00 124.35 0.00 2827.82 3025.65 2943.12 1.09

r*201-50 25 58 6725.00 580.01 34.79 5994.25 6110.20 6060.75 7.57

r*202-50 33 78 7690.00 598.43 2.34 6862.32 7089.23 6996.95 9.87

r*203-50 38 84 8470.00 538.39 0.00 7629.43 7931.61 7782.93 11.04

r*204-50 43 93 9220.00 565.91 0.00 8462.70 8654.09 8589.06 12.56

r*205-50 33 76 7810.00 550.61 0.00 7133.85 7259.39 7219.94 12.12

r*206-50 41 89 8725.00 583.44 0.00 7752.47 8141.56 7907.05 12.56

r*207-50 41 88 8550.00 579.67 0.00 7828.50 7970.33 7913.39 12.29

r*208-50 46 97 8815.00 538.44 0.00 8074.00 8276.56 8179.10 11.58

r*209-50 37 82 8415.00 578.39 0.00 7596.22 7836.61 7733.09 15.21

r*210-50 38 92 8265.00 542.51 0.00 7434.94 7722.49 7592.70 14.41

r*211-50 42 93 9125.00 570.46 0.00 8419.89 8554.54 8499.46 16.47

rc*101-50 9 19 2800.00 121.47 0.00 2678.53 2678.53 2678.53 0.72

rc*102-50 7 15 3100.00 162.97 0.00 2802.46 2937.03 2872.38 0.77

rc*103-50 9 24 3165.00 148.83 0.00 2871.05 3016.17 2959.31 1.09

rc*104-50 10 23 3320.00 125.25 0.00 3137.87 3194.75 3163.50 1.20

rc*105-50 9 22 3065.00 140.71 0.00 2776.20 2924.29 2821.69 0.90

rc*106-50 9 19 3075.00 136.45 0.00 2911.02 2938.55 2923.15 0.96

Obj

Table A.9 Results of VNS*II  on instances of Type C 



rc*107-50 9 16 3240.00 138.20 0.00 3045.75 3101.80 3064.19 1.04

rc*108-50 10 25 3275.00 136.78 0.00 3071.33 3138.22 3105.74 1.29

rc*201-50 27 69 8785.00 634.97 0.00 7990.03 8150.03 8110.64 9.90

rc*202-50 34 73 9790.00 600.30 5.70 8960.09 9184.00 9089.42 8.32

rc*203-50 38 89 10610.00 555.49 0.00 9466.92 10054.51 9736.87 10.47

rc*204-50 45 103 10900.00 506.51 0.00 10241.18 10393.49 10306.18 13.81

rc*205-50 30 72 9435.00 613.30 12.78 8398.47 8808.92 8631.28 9.25

rc*206-50 32 73 10035.00 632.76 0.00 9098.45 9402.24 9270.83 9.30

rc*207-50 33 76 10670.00 609.10 0.00 9830.19 10060.90 9929.00 12.70

rc*208-50 40 92 11255.00 525.39 0.00 10590.36 10729.61 10659.90 17.23

c*101-100 11 20 3315.00 136.79 3.00 3027.76 3175.21 3095.94 2.43

c*102-100 11 18 3425.00 121.63 1.00 3219.76 3302.37 3266.60 3.09

c*103-100 11 21 3440.00 173.62 0.00 3221.24 3266.38 3248.61 3.57

c*104-100 12 21 3425.00 113.51 0.00 3281.05 3311.49 3300.56 3.69

c*105-100 10 19 3385.00 154.27 0.00 3187.38 3230.73 3210.33 2.41

c*106-100 11 23 3340.00 168.53 0.00 3096.45 3171.47 3136.10 2.51

c*107-100 11 20 3420.00 177.42 0.00 3187.27 3242.58 3211.15 2.65

c*108-100 12 21 3410.00 153.73 0.00 3171.04 3256.27 3223.57 3.20

c*109-100 11 20 3415.00 115.58 0.00 3232.60 3299.42 3267.23 3.21

c*201-100 30 64 9755.00 594.24 0.00 9003.44 9160.76 9062.85 18.63

c*202-100 33 72 11480.00 401.10 0.00 9255.41 11078.90 9687.46 24.63

c*203-100 33 70 9915.00 358.56 0.00 9418.54 9556.44 9502.70 30.41

c*204-100 33 70 10095.00 366.24 0.00 9670.21 9728.76 9706.07 38.50

c*205-100 32 72 9995.00 433.22 0.00 9469.12 9561.78 9515.26 25.88

c*206-100 32 64 9785.00 435.17 0.00 9262.32 9349.83 9292.63 25.81

c*207-100 33 70 10025.00 382.48 0.00 9578.11 9642.52 9620.48 28.39

c*208-100 33 67 10040.00 409.08 0.00 9545.58 9630.92 9595.16 29.99

r*101-100 9 24 2810.00 130.65 0.00 2679.35 2679.35 2679.35 1.67

r*102-100 11 24 3380.00 117.90 0.00 3241.28 3262.10 3253.95 3.19

r*103-100 11 23 3275.00 117.00 0.00 3062.59 3158.00 3110.78 3.73

r*104-100 12 23 3365.00 108.72 0.00 3081.29 3256.28 3151.46 4.17

r*105-100 11 26 3255.00 115.71 0.00 3081.24 3139.29 3114.91 2.59

r*106-100 12 24 3035.00 108.33 0.00 2625.06 2926.67 2792.57 3.36

r*107-100 12 28 3360.00 99.34 0.00 3187.88 3260.66 3229.24 3.50

r*108-100 12 25 3260.00 92.77 0.00 3091.13 3167.23 3124.56 4.34

r*109-100 12 23 3325.00 105.67 0.00 3095.33 3219.33 3157.59 3.07

r*110-100 12 24 3255.00 89.20 0.00 3068.94 3165.80 3129.89 3.65

r*111-100 12 23 3375.00 102.55 0.00 3203.52 3272.45 3251.18 3.72

r*112-100 13 25 3335.00 88.99 0.00 3201.85 3246.01 3224.99 3.88

r*201-100 37 88 10335.00 564.39 20.34 9611.47 9750.27 9662.33 35.34

r*202-100 48 100 10660.00 508.55 4.16 9902.73 10147.29 10043.90 52.78

r*203-100 51 110 11890.00 485.99 0.00 11258.88 11404.01 11323.21 63.99

r*204-100 55 117 13120.00 448.15 0.00 12451.58 12671.85 12548.98 75.20

r*205-100 45 99 11910.00 545.49 0.00 10977.25 11364.51 11222.17 50.20

r*206-100 50 105 11390.00 493.69 0.00 10351.13 10896.31 10569.16 61.77

r*207-100 52 111 11745.00 471.81 0.00 10992.66 11273.19 11087.32 72.71

r*208-100 57 122 11975.00 429.40 0.00 11342.35 11545.60 11452.80 85.31

r*209-100 45 105 11750.00 535.82 0.00 10885.58 11214.18 11068.72 57.10

r*210-100 49 110 11200.00 509.07 0.00 10482.63 10690.93 10585.72 57.62

r*211-100 53 112 12410.00 446.25 0.00 11369.47 11963.75 11641.73 65.17



rc*101-100 10 23 3100.00 110.08 0.00 2959.92 2989.92 2980.35 2.23

rc*102-100 10 19 3385.00 137.18 0.00 3170.97 3247.82 3196.43 2.46

rc*103-100 10 20 3295.00 127.67 0.00 3121.90 3167.33 3149.01 2.74

rc*104-100 11 18 3380.00 125.76 0.00 3217.63 3254.24 3243.33 3.56

rc*105-100 9 18 3375.00 142.81 0.00 3178.78 3232.19 3207.06 2.50

rc*106-100 11 22 3360.00 127.42 0.00 3095.68 3232.58 3156.64 2.65

rc*107-100 11 20 3360.00 128.28 0.00 3138.40 3231.72 3187.14 3.08

rc*108-100 12 27 3280.00 110.11 0.00 2941.92 3169.89 3085.59 3.05

rc*201-100 34 75 10755.00 607.85 3.98 9571.53 10143.17 9839.65 29.38

rc*202-100 41 94 11045.00 544.74 0.00 10093.27 10500.26 10372.34 43.73

rc*203-100 48 101 12365.00 479.29 0.00 11341.58 11885.71 11627.85 59.63

rc*204-100 52 111 13295.00 435.94 0.00 12291.64 12859.06 12525.09 66.28

rc*205-100 38 88 11110.00 558.36 0.00 10206.48 10551.64 10455.75 33.73

rc*206-100 40 95 11330.00 545.73 0.00 10472.21 10784.27 10643.90 37.21

rc*207-100 42 92 11200.00 537.56 0.00 10208.42 10662.44 10460.15 42.05

rc*208-100 47 99 12610.00 475.71 0.00 11618.61 12134.29 11941.46 54.71

c*101-200 11 21 3305.00 174.84 0.54 3057.56 3129.62 3086.73 4.34

c*102-200 13 25 3390.00 135.87 0.00 3199.80 3254.13 3231.24 7.19

c*103-200 13 23 3400.00 160.39 0.00 3199.08 3239.61 3216.60 7.90

c*104-200 11 20 3445.00 120.97 0.00 3317.72 3324.03 3320.24 8.18

c*105-200 11 22 3310.00 181.16 0.00 3098.86 3128.84 3110.18 4.79

c*106-200 10 20 3400.00 156.57 0.00 3148.31 3243.43 3197.88 5.03

c*107-200 12 22 3395.00 148.93 0.00 3212.02 3246.07 3234.01 5.59

c*108-200 11 21 3365.00 154.71 0.00 3165.15 3210.29 3184.37 5.87

c*109-200 13 27 3360.00 120.62 0.00 3156.14 3239.38 3200.75 6.59

c*110-200 13 27 3425.00 135.59 0.00 3252.14 3289.41 3271.43 8.02

c*201-200 34 70 9560.00 522.12 0.00 8985.41 9037.88 9021.62 41.36

c*202-200 32 62 11500.00 624.12 0.00 9420.58 10875.88 9759.66 58.33

c*203-200 35 66 10060.00 366.58 0.00 9658.68 9693.42 9675.08 81.17

c*204-200 36 69 10105.00 344.82 0.00 9695.58 9760.18 9735.82 79.91

c*205-200 34 71 10025.00 479.09 0.00 9362.89 9545.91 9443.75 49.94

c*206-200 35 70 10010.00 407.75 0.00 9548.56 9602.25 9569.26 65.55

c*207-200 35 71 10060.00 438.94 0.00 9503.11 9621.06 9542.83 60.77

c*208-200 35 77 11660.00 433.22 0.00 9637.66 11226.78 10472.55 61.57

c*209-200 35 69 10040.00 440.60 0.00 9448.94 9599.40 9544.49 65.64

c*210-200 35 63 10105.00 415.08 0.00 9592.04 9689.92 9645.25 70.72

r*101-200 13 23 2850.00 240.36 32.73 2485.85 2576.91 2519.00 7.56

r*102-200 19 27 3410.00 252.87 0.00 3040.90 3157.13 3106.03 11.39

r*103-200 25 30 3445.00 254.85 0.00 2678.33 3190.15 3073.33 14.08

r*104-200 21 26 3445.00 187.24 0.00 2656.38 3257.76 2999.50 17.83

r*105-200 14 23 3395.00 256.01 0.00 3091.71 3138.99 3110.23 8.61

r*106-200 22 31 3435.00 233.74 0.00 3145.56 3201.26 3166.73 14.95

r*107-200 24 28 3445.00 254.47 0.00 3079.97 3190.53 3138.17 16.46

r*108-200 24 28 3440.00 221.68 0.00 2708.10 3218.32 2994.01 16.43

r*109-200 21 28 3420.00 287.73 15.68 3086.27 3116.59 3100.65 11.45

r*110-200 22 30 3445.00 250.41 0.00 3132.48 3194.59 3156.40 15.68

r*201-200 65 119 14260.00 1387.33 35.84 12601.54 12836.83 12718.95 161.22

r*202-200 80 113 14270.00 1209.29 30.28 12897.27 13030.43 12954.46 268.23

r*203-200 88 126 14400.00 954.33 0.00 13396.90 13445.67 13428.53 373.49

r*204-200 103 135 14425.00 880.61 0.00 13483.99 13544.39 13504.21 552.05



r*205-200 80 127 14305.00 1343.87 20.38 12730.73 12940.75 12836.63 194.74

r*206-200 90 130 14310.00 1204.30 0.00 12974.38 13105.70 13022.53 328.52

r*207-200 89 131 14435.00 939.50 0.00 13421.71 13495.50 13466.89 475.39

r*208-200 94 126 14435.00 764.54 0.00 13585.40 13670.46 13641.85 505.01

r*209-200 86 130 14350.00 1366.11 25.82 12740.41 12958.07 12875.59 274.22

r*210-200 88 124 14365.00 1307.62 0.47 12967.71 13056.91 13024.20 340.33

rc*101-200 19 28 3415.00 219.03 10.40 2618.25 3185.57 3019.98 8.38

rc*102-200 15 19 3435.00 215.13 0.00 3113.63 3219.87 3167.30 14.43

rc*103-200 22 29 3420.00 189.85 0.00 3211.71 3230.15 3220.85 19.44

rc*104-200 24 31 3430.00 145.59 0.00 3262.18 3284.41 3270.63 22.65

rc*105-200 16 23 3445.00 236.44 6.49 3159.82 3202.07 3188.19 8.50

rc*106-200 20 28 3430.00 225.48 0.00 3091.40 3204.52 3174.80 9.85

rc*107-200 15 24 3410.00 160.38 0.00 3138.63 3249.62 3182.39 9.84

rc*108-200 22 30 3425.00 261.38 0.00 2654.29 3163.62 2856.91 12.13

rc*109-200 20 28 3425.00 238.28 1.78 2657.05 3184.94 3040.36 11.07

rc*110-200 18 25 3435.00 195.96 0.00 3199.57 3239.04 3215.11 13.27

rc*201-200 67 107 14380.00 1507.84 126.41 12633.70 12745.75 12686.65 129.33

rc*202-200 86 135 14305.00 1170.76 1.41 13010.00 13132.83 13076.46 225.18

rc*203-200 94 137 14395.00 863.98 0.00 13432.57 13531.02 13475.55 408.31

rc*204-200 90 126 14450.00 583.18 0.00 13740.32 13866.82 13792.78 567.88

rc*205-200 81 118 14265.00 1423.33 11.97 12687.49 12829.70 12745.90 182.77

rc*206-200 81 134 14035.00 1420.10 14.36 12397.89 12600.54 12505.72 175.82

rc*207-200 79 125 14380.00 1114.72 0.00 12976.95 13265.28 13118.84 235.45

rc*208-200 88 143 14055.00 1061.68 0.00 12636.01 12993.32 12872.37 306.98

rc*209-200 86 135 14305.00 1116.87 24.63 12947.26 13163.50 13091.87 258.21

rc*210-200 92 139 14320.00 881.42 0.00 13261.04 13438.58 13343.56 343.12



Instance Cost_1 Cost_3 |K| Costs Gap% Time(s)

c*101-50 475,94 449,82 6 5,81 50,64

c*102-50 607,67 549,76 7 10,53 525,96

c*103-50 587,10 540,46 6 8,63 87,90

c*104-50 560,27 485,39 6 15,43 682,82

c*105-50 503,81 474,04 6 6,28 170,26

c*106-50 523,63 523,63 6 0,00 130,08

c*107-50 621,46 492,01 6 26,31 388,88

c*108-50 565,10 494,37 7 14,31 531,90

c*109-50 564,55 524,65 7 7,61 502,01

c*201-50 849,05 849,05 6 0,00 130,68

c*202-50 723,11 723,11 5 0,00 142,87

c*203-50 915,57 652,71 3 40,27 3806,32

c*204-50 713,23 628,53 4 13,48 4203,45

c*205-50 940,59 882,46 4 6,59 268,82

c*206-50 900,12 900,12 7 0,00 218,95

c*207-50 776,65 712,72 3 8,97 2696,07

c*208-50 723,16 709,88 6 1,87 235,53

r*101-50 1207,02 1148,62 12 5,08 40,30

r*102-50 1097,47 1002,74 10 9,45 126,71

r*103-50 930,15 850,32 9 9,39 160,46

r*104-50 756,30 697,19 7 8,48 360,80

r*105-50 1071,29 1030,21 9 3,99 72,77

r*106-50 959,65 824,07 8 16,45 172,53

r*107-50 830,76 731,94 7 13,50 200,72

r*108-50 712,46 646,09 6 10,27 314,94

r*109-50 910,81 838,97 8 8,56 112,69

r*110-50 874,91 755,46 8 15,81 195,28

r*111-50 888,50 743,34 7 19,53 261,44

r*112-50 793,93 650,49 6 22,05 270,55

r*201-50 1183,13 1183,13 5 0,00 1240,63

r*202-50 1084,73 1084,73 6 0,00 197,05

r*203-50 1047,37 901,77 4 16,15 1503,09

r*204-50 824,79 726,46 2 13,54 2436,25

r*205-50 1044,29 1044,29 2 0,00 141,66

r*206-50 968,29 968,29 5 0,00 3534,46

r*207-50 996,76 866,43 5 15,04 3242,05

r*208-50 755,22 669,04 3 12,88 3596,01

r*209-50 936,23 936,23 4 0,00 159,82

r*210-50 1045,33 1002,96 3 4,22 2438,43

r*211-50 873,71 770,54 3 13,39 3925,61

rc*101-50 1013,08 1013,08 9 0,00 93,83

rc*102-50 969,45 960,65 9 0,92 188,34

rc*103-50 918,25 918,25 8 0,00 350,38

rc*104-50 659,89 659,89 7 0,00 90,86

rc*105-50 1029,46 979,74 9 5,07 128,17

rc*106-50 830,29 830,29 7 0,00 138,82

rc*107-50 837,19 837,19 7 0,00 146,01

Table A.10 Results of  the column generation heuristic on MCMCm-VRPTW  instances (Type C) 



rc*108-50 807,62 807,62 7 0,00 325,95

rc*201-50 1282,57 1282,57 6 0,00 2037,57

rc*202-50 1371,52 1307,00 4 4,94 2079,93

rc*203-50 1145,00 1115,93 3 2,61 2249,43

rc*204-50 994,39 814,45 5 22,09 1695,12

rc*205-50 1224,00 1224,00 5 0,00 2359,35

rc*206-50 1068,91 1036,94 4 3,08 2127,61

rc*207-50 1003,28 935,15 3 7,29 2218,56

rc*208-50 999,19 953,47 5 4,80 15032,82

c*101-100 1036,11 1036,11 12 0,00 646,82

c*102-100 1219,78 1148,85 13 6,17 1416,79

c*103-100 1301,27 1105,80 13 17,68 2467,05

c*104-100 1252,15 1072,47 12 16,75 3617,64

c*105-100 1083,09 1083,09 14 0,00 1235,14

c*106-100 1083,57 1083,57 13 0,00 1171,01

c*107-100 1108,78 1046,48 12 5,95 1002,92

c*108-100 1073,01 1069,27 13 0,35 1514,59

c*109-100 1079,54 999,26 11 8,03 1705,29

r*101-100 1911,51 1792,76 20 6,62 517,55

r*102-100 1785,92 1644,33 18 8,61 837,42

r*103-100 1572,12 1417,78 14 10,89 1508,74

r*104-100 1200,88 1087,11 11 10,47 2304,59

r*105-100 1583,32 1493,81 15 5,99 949,89

r*106-100 1453,83 1350,25 14 7,67 1515,09

r*107-100 1281,30 1145,90 11 11,82 1844,61

r*108-100 1108,22 1038,94 10 6,67 2275,34

r*109-100 1377,39 1271,05 13 8,37 1313,59

r*110-100 1248,21 1172,84 12 6,43 1459,80

r*111-100 1271,45 1099,21 11 15,67 1587,82

r*112-100 1131,61 1050,85 11 7,69 1800,67

rc*101-100 1867,86 1746,87 16 6,93 906,46

rc*102-100 1674,80 1667,05 15 0,46 1389,15

rc*103-100 1539,08 1458,67 13 5,51 1592,79

rc*104-100 1337,63 1278,21 11 4,65 1926,15

rc*105-100 1747,15 1660,05 15 5,25 1224,27

rc*106-100 1608,07 1479,23 13 8,71 1457,54

rc*107-100 1467,21 1440,35 14 1,86 1320,82

rc*108-100 1344,33 1344,33 13 0,00 1247,52
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