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Plusieurs aspects de rigidité des algebres de von
Neumann

Résumé

Dans cette these je m’intéresse a des propriétés de rigidité de certaines constructions d’algebres
de von Neumann. Ces constructions relient la théorie des groupes et la théorie ergodique au
monde des algebres d’opérateurs. Il est donc naturel de s’interroger sur la force de ce lien et sur
la possibilité d’un enrichissement mutuel dans ces différents domaines.

Le Chapitre [T traite des actions Gaussiennes. Ce sont des actions de groupes discrets préservant
une mesure de probabilité qui généralisent les actions de Bernoulli. Dans un premier temps,
j'étudie les propriétés d’ergodicité de ces actions a partir d’'une analyse de leurs algebres de
von Neumann (voir Theorem et Corollary . Ensuite, je classifie les algebres de
von Neumann associées a certaines actions Gaussiennes, & isomorphisme pres, en montrant un
résultat de W*-superrigidité (Theorem . Ces résultats généralisent des travaux analogues
sur les actions de Bernoulli ([KT08| [CT10, To11l, TPV13]).

Dans le Chapitre j’étudie les produits libres amalgamés d’algebres de von Neumann. Ce
chapitre résulte d’'une collaboration avec C. Houdayer et S. Raum. Nous analysons les sous-
algébres de Cartan de tels produits libres amalgamés. Nous déduisons notamment de notre
analyse que le produit libre de deux algebres de von Neumann n’est jamais obtenu a partir
d’une action d’un groupe sur un espace mesuré.

Enfin, le Chapitre porte sur les algebres de von Neumann associées a des groupes hyperbo-
liques. Ce chapitre est obtenu en collaboration avec A. Carderi. Nous utilisons la géométrie des
groupes hyperboliques pour fournir de nouveaux exemples de sous-algebres maximales moyen-
nables (mais de type I) dans des facteurs II;.

Mots-clefs

Algebres de von Neumann, actions Gaussiennes, ergodicité forte, W*-superrigidité, sous-algebres
de Cartan, maximale moyennabilité.






Several rigidity features of von Neumann algebras

Abstract

The purpose of this dissertation is to put on light rigidity properties of several constructions of
von Neumann algebras. These constructions relate group theory and ergodic theory to operator
algebras.

In Chapter [T, we study von Neumann algebras associated with measure-preserving actions of
discrete groups : Gaussian actions. These actions are somehow a generalization of Bernoulli
actions. We have two goals in this chapter. The first goal is to use the von Neumann algebra
associated with an action as a tool to deduce properties of the initial action (see Corollary
. The second aim is to prove structural results and classification results for von Neumann
algebras associated with Gaussian actions. The most striking rigidity result of the chapter is
Theorem which states that in some cases the von Neumann algebra associated with a
Gaussian action entirely remembers the action, up to conjugacy. Our results generalize similar
results for Bernoulli actions ([KT08, [CI10, Tol1l, TPV13]).

In Chapter we study amalgamated free products of von Neumann algebras. The content of
this chapter is obtained in collaboration with C. Houdayer and S. Raum. We investigate Cartan
subalgebras in such amalgamated free products. In particular, we deduce that the free product
of two von Neumann algebras is never obtained as a group-measure space construction of a
non-singular action of a discrete countable group on a measured space.

Finally, Chapter [[V]is concerned with von Neumann algebras associated with hyperbolic groups.
The content of this chapter is obtained in collaboration with A. Carderi. We use the geometry of
hyperbolic groups to provide new examples of maximal amenable (and yet type I) subalgebras
in type II;-factors.

Key-words

Von Neumann algebras, Gaussian actions, strong ergodicity, W*-superrigidity, Cartan subalge-
bras, maximal amenability.
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Chapitre I

Introduction générale

Dans cette these, j’étudie différentes constructions d’algebres de von Neumann, en lien avec la
théorie des groupes et la théorie ergodique. Je montre des résultats de rigidité de ces construc-
tions, apportant un éclairage sur la classification des algebres obtenues.

Cette introduction a pour but de présenter le contexte et les motivations de mon travail, avant
d’expliquer les principaux résultats démontrés dans les chapitres et J’ai choisi de mettre
en avant les concepts plutot que la rigueur et le détail, dans I'idée que le lecteur souhaitant une
présentation plus précise du domaine trouverait son bonheur dans des ouvrages déja existant (par
exemple [Fa09, [Jon09, [Po07b, [Val0al, Io(12)b] ou plus classiquement [Co94., Di69, [Ta02, [Ta03]).

I.1 Algebres de von Neumann

Soit H un espace de Hilbert complexe. L’ensemble B(H) des opérateurs continus (ou bornés)
T : H — H est une x-algebre sur C : on peut ajouter des opérateurs, les composer, et prendre
leur adjoint. L’identité en est une unité, que I’on notera 1.

D’autre part, B(H) est un espace topologique. Il admet la topologie donnée par la norme
d’opérateurs, mais également la topologie faible : c’est la topologie la moins fine rendant continues
les applications T — (T¢,n), &,n € H.

Une algébre de von Neumann est une sous-k-algebre de B(H) contenant identité, et qui est
faiblement fermée. La notion d’algebre de von Neumann a vu le jour dans les années 1930, avec
les travaux de Murray et von Neumann [MvN36], [MvN37], [vN40] et [MyvN43|] dans le but d’offrir
a la physique quantique un cadre mathématique formel et unifié. Une autre de leurs motivations
était de développer plus largement la théorie des représentations de groupes.

Le théoreme fondateur de la théorie des algebres de von Neumann est le Théoréeme du bicom-
mutant de von Neumann qui caractérise les algebres de von Neumann comme les sous-*-algebres
de B(H) égales & leur bicommutant : M = M". Rappelons que le commutant d’un ensemble
SCB(H)est 8":={T' € B(H), ST =T5,VS € S}.

Enfin, de méme que B(H) peut étre identifié au dual de 'espace S1(H) des opérateurs a trace
sur H, une algebre de von Neumann est toujours isomorphe au dual d’un (unique) espace de
Banach. Cette propriété caractérise les algebres de von Neumann parmi les C*-algebres.
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Ces caractérisations, de nature tantét topologique, tantot algébrique, tantot analytique donnent
acces a une multitude d’outils mathématiques. Cette richesse est une autre motivation pour
étudier ces algebres de von Neumann.

Présentons maintenant les principaux exemples étudiés dans cette these.

1.1.1 Exemples importants

Exemple I.1.1 (Algebres abéliennes). Si (X, ) est un espace mesuré, l'algebre L>°(X, u) est
une algebre de von Neumann agissant sur I'espace de Hilbert L?(X, i) par multiplication. Cette
algebre est abélienne, et réciproquement toute algebre de von Neumann abélienne est isomorphe
a une telle algebre de fonctions : c’est le théoreme spectral.

Exemple 1.1.2 (Algebres de groupes). Si I' est un groupe discret dénombrable, on note A :
I' — B(¢*(T")) la représentation réguliere gauche : A\y(8,) = dgp, pour tous g, h € I'. L’algebre de
von Neumann LI' est par définition I’algebre de von Neumann engendrée par {\,, g € '}, i.e.
LT = {)\;, g € T'}. Cest la plus petite algebre de von Neumann sur ¢?(I') contenant les \g,
gel.

Exemple 1.1.3 (Group measure space construction). Soit I' un groupe discret dénombrable agis-
sant de maniére non-singuliere sur (X, 11). Notons o la représentation de Koopman sur L?(X, p1)
qui en découle et considérons I’espace de Hilbert H = L?(X, u) ® ¢2(T'). L’algebre de von Neu-
mann sur H engendrée par les opérateurs f @ 1, f € L®(X, ) et 04 ® Ay, g € I est appelée la
group measure space construction associée a l'action et notée L>(X, u) x I

Plus généralement, pour une action I' ~ N sur une algebre de von Neumann N, on peut
construire de maniere analogue le produit croisé N x ' associé.

Etant données deux algebres de von Neumann M; C B(Hj) et My C B(Hs), il existe plusieurs
procédés pour en construire une troisieme.

e On peut former leur produit tensoriel Mi ® Ms comme l'algebre de von Neumann sur
H, ® Hy engendrée par les opérateurs 11 ® Th, 11 € M1, 1o € Mo.

e On peut également considérer le produit libre amalgamé M; xp Ms au dessus d’une sous-
algebre de von Neumann commune B C M;j, Ms. Cette construction n’est possible que si
B vérifie une certaine condition de “comparabilité” avec Mj et My (plus précisément il
faut qu’il existe une espérance conditionnelle M; — B, pour ¢ = 1,2). Pour plus de détails
sur cette construction, voir le Chapitre [[T]]

Dans le cadre de ’exemple ces constructions sont les analogues du produit direct et du
produit amalgamé de groupes.

Exemple I.1.4. Considérons I'y et I's deux groupes discrets avec un sous-groupe commun A.
Supposons que I' = 'y 5 'y agisse de maniére non singuliére sur un espace mesuré (X, u). Alors
on a un isomorphisme

(X, ) % T o (L2(X, 1) 0 1) #poe (g (L(X, 1) 3 T).

Avec tous ces exemples, la question de classification des algebres de von Neumann s’impose :
dans quels cas est-ce que ces constructions fournissent des algebres isomorphes ?
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I.1.2 Réduction aux facteurs II;

Un facteur est une algebre de von Neumann M dont le centre est restreint aux multiples de
lidentité : Z(M) := M N M’ = C1. Toute algebre de von Neumann peut s’écrire comme
intégrale directe (somme directe généralisée) de facteurs. Cette premiere observation permet de
restreindre ’étude des algebres de von Neumann générales a celle des facteurs.

Mais comment distinguer deux facteurs ?

Le théoreme spectral montre qu’une algebre de von Neumann contient beaucoup de projecteurs
orthogonaux (ils engendrent un sous-espace vectoriel dense pour la norme d’opérateurs). Une
étude comparative de ces projecteurs permet de distinguer trois grandes familles de facteurs :
les facteurs de type LII ou III.

Les facteurs de type I sont complétement classifiés : ils sont isomorphes & B(H ) pour un certain
espace de Hilbert H (si dim H = n < oo, B(H) ~ M, (C)).

Les facteurs de type II se découpent en deux sous-types : les facteurs de type II; et II. Les
facteurs Il s’écrivent comme produit tensoriel M @ B(H) avec M de type 1I; et dim H = oc.
Les facteurs II; sont ceux qui possedent une unique trace fidele, c’est a dire une forme linéaire
T : M — C telle que 7(xzz*) = 7(z*z) > 0 pour tout © € M et vérifiant 7(z*z) = 0 si et
seulement si x = 0. En un sens, cette trace est I’analogue d’une mesure finie sur un espace
mesurable.

Les facteurs de type III ont pendant longtemps été considérés comme hors de portée. C’est la
théorie de Tomita-Takesaki et les travaux de Connes et Takesaki [Co73| [Ta73| [CT77] qui ont
permis de mieux comprendre ces facteurs. Notamment, tout facteur de type III peut s’écrire
comme le produit-croisé d’un facteur de type II par une action de R.

Ainsi, ’étude des algebres de von Neumann se rameéne, au moins théoriquement, & celle des
facteurs II;. En pratique, il n’est pas immédiat de déduire des résultats sur des algebres de von
Neumann quelconques a partir de résultats analogues pour des facteurs II;. C’est précisément
ce que nous faisons dans le Chapitre [[I]] dans le cadre de produits libres amalgamés d’algebres
de von Neumann.

Illustrons cette classification en types I, II et III avec les Exemples et [[.1.3]

e SiI est un groupe discret dénombrable, LI' est un facteur si et seulement si les classes de
conjugaison non-triviales de I' sont infinies (en abrégé : I' est ICC). Dans ce cas c’est un
facteur II;, muni d’une trace fidele donnée par 7(z) = (zd, o), € LI.

e Soit I' ~ (X, ) une action non-singuliere sur un espace sans atomes. L’algebre M :=
L (X, ) x T est un facteur pourvu que action soit libre et ergodique. Ce facteur est de
type II §'il existe une mesure v, finie (cas II;) ou non (cas Il ), équivalente a p qui est
T'-invariante. M est de type III sinon.

1.1.3 Historique sur les facteurs II;

Naturellement, les facteurs de dimension infinie les plus simples a étudier sont a priori ceux qui
sont “approchables” par des sous-algebres de dimension finie. C’est ainsi qu’est née la notion
d’algebre de von Neumann hyperfinie : M est dite hyperfinie s’il existe une suite croissante de
sous-x-algebres de dimension finie M,, C M telles que M = (U, M,,)".
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Dans [MvN36], Murray et von Neumann montrent que tous les facteurs hyperfinis de type IIy
sont isomorphes. Pour cette raison, on parle du facteur II; hyperfini, souvent noté R.

Une question évidente s’impose alors a eux : est-ce que tout facteur II; est isomorphe a R, ou
bien y a t’il des facteurs II; non-hyperfinis ?

Ils répondent a cette question en montrant que le facteur du groupe libre a deux générateurs
LF5 n’est pas hyperfini. Plus précisément, ils prouvent que LFy n’a pas de suites centrales
non-triviales. Sans entrer dans les détails, cela provient du fait que F5 n’est pas intérieurement
moyennable. A contrario, R possede des suites centrales non-triviales.

Cependant, Murray et von Neumann ne parviennent pas a donner d’autres exemples de facteurs
non hyperfinis. Notamment, ils posent la question suivante, encore largement ouverte aujour-
d’hui.

Question I.1.5 (Free group factors problem). Si deuz groupes libres sont non-isomorphes, est-ce
le cas de leurs algébres de von Neumann ¢

Une autre question tres naturelle qu’ils laissent ouverte : est-ce qu’un sous-facteur de R est
hyperfini 7 Si oui, alors le facteur R ® LF» n’est pas hyperfini mais contient tout de méme des
suites centrales non-triviales.

Il aura fallu attendre pres de 30 ans pour que McDuff ([McDG69al McD69b]) démontre 1’exis-
tence d’une infinité de facteurs II; deux & deux non-isomorphes. Ses travaux reposent sur des
arguments de suites centrales déja présents dans les travaux de Murray et von Neumann. Avec
une compréhension plus grande de ces suites centrales, McDuff [McD70] donne également une
caractérisation des facteurs de la forme R® M, appelés par la suite facteurs McDuff.

En 1976, une nouvelle avancée majeure survient avec les travaux de Connes [Co76], qui montre
que tout facteur II; moyennable est hyperfini et donc isomorphe a R. La moyennabilité pour les
algébres de von Neumann est définie de maniére analogue a la moyennabilité des groupes. En
plus d’offrir une description précise des facteurs II; moyennables, le résultat de Connes permet
de répondre a la question de Murray et von Neumann : une sous-algebre de von Neumann du
facteur II; hyperfini est elle-méme hyperfinie.

Ce résultat témoigne d’une grande perte d’information dans le passage a I'algebre de von Neu-
mann LI" d’un groupe I'. Plus tard, Connes |[Co80] observe a l'inverse certaines propriétés de
rigidité vis-a-vis de cette construction pour des groupes avec la propriété (T) de Kazhdan. Il
émet alors la conjecture suivante.

Conjecture I.1.6 (Conjecture de rigidité de Connes). Si I' est un groupe ICC avec la propriété
(T) alors tout groupe A tel que LT ~ LA est isomorphe a T.

Tout comme la question cette conjecture est largement ouverte. De maniére générale, on
ne connait a ce stade que tres peu de choses sur les facteurs II; non-moyennables.

Deux axes de recherche vont alors se dessiner :

e la théorie des sous-facteurs d’une part, initiée par Jones, consistant a étudier une inclusion
de deux facteurs avec des outils combinatoires tels que I'invariant standard, ou les algebres
planaires;

e la théorie des probabilités libres d’autre part, introduite par Voiculescu dans le but de com-
prendre plus en profondeur les facteurs de groupes libres LF),. Sans résoudre le probleme
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d’isomorphisme cette théorie a permis tout de méme de démontrer [Vo96] que les
facteurs LF,, ne possédaient pas de sous-algebre de Cartan (voir la Section [[.2.1]).

En parallele, la recherche se développe dans le domaine des relations d’équivalence sur des
espaces mesurés. Ce développement va induire un troisieme axe de recherche : la théorie de la

de rigidité de la group measure space construction (Exemple [[.1.3)).

Mon travail de these s’inscrit dans cette théorie. Dans les Sections [[.2] et je décris le lien
profond entre les algebres de von Neumann et les relations d’équivalence et j’explique les grandes
idées et avancées de la déformation/rigidité. Mes travaux personnels seront présentés dans la

Section [l

I[.2 Relations d’équivalence mesurées et algebres de von Neu-
mann

1.2.1 Relations d’équivalence et sous-algebres de Cartan

L’exemple[[.1.3explique comment construire une algébre de von Neumann de type produit croisé
M = L*®(X, p) x T & partir d’une action non singuliere I' ~ (X, ) sur un espace de probabilité
sans atome. Cette algebre est un facteur II; des lors que I'action est libre, ergodique et pmp (i.e.
préserve la mesure de probabilité p). Dans ce cas, la sous-algebre A := L>°(X, u) C M est une
sous-algébre de Cartan :

e clle est mazimale abélienne au sens ou A’ N M = A;

e clle est réguliére, i.e. le normalisateur {u € U(M) , uAu* = A} engendre M comme algebre
de von Neumann. Ici U(M) désigne I'ensemble des unitaires de M, i.e. les éléments u € M
tels que wu* = u*u = 1.

La paire A C M ne dépend, a isomorphisme prées, que de la relation d’équivalence Rr sur X
donnée par les I'-orbites.

Réciproquement, Feldman et Moore [FMT77] montrent que cette relation d’équivalence Rr est
un invariant d’isomorphisme de la paire A C M. Autrement dit, pour deux actions I' ~ (X, u)
et A ~ (Y,v), les relations d’équivalence Rr et R sont isomorphes si et seulement si on a un
isomorphisme de paires

(L2(X,p) C L°(X,pu) xT') ~ (L*™(Y,v) C L™(Y,v) x A).

Plus généralement, ils montrent que toute paire A C M ou M est un facteur et A une sous
algébre de Cartan, est associée a une unique relation d’équivalence mesurée R sur un espace
(X, 1) par une construction similaire.

Leurs travaux établissent un lien fort entre algebres de von Neumann et relations d’équivalence
mesurées non sans conséquence sur les avancées dans les deux domaines. Notamment, on observe
un historique sur les relations d’équivalence hyperfinies et moyennables [Dy59, (OW80, [CEWSI]
similaire & ce qui a été exposé pour les algebres de von Neumann en [.1.3]
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1.2.2 W*-(super)rigidité

Toutes les actions considérées dans la suite de cette introduction seront supposées libres ergo-
diques. Nous écrirons pmp lorsqu’elles préservent une mesure de probabilité.

Définition I1.2.1. Deux actions pmp I' ~ (X, ) et A ~ (Y, ) sont dites :

e Conjuguées s’il existe un isomorphisme de groupes ¢ : I' — A et un isomorphisme d’espaces
mesurés (bimesurable préservant la mesure) A : X — Y tels que A(s-xz) = ¢(s) - Ax),
pour presque tout x € X et tout s € I

e Orbitalement équivalentes (OE) s'il existe un isomorphisme d’espaces mesurés (bimesu-
rable préservant la mesure) A : X — Y tel que A(I'- 2) = A - A(x) pour presque tout
x € X. De maniere équivalente, elles sont OE si on a un isomorphisme de paires

(L®(X,p) C L®(X, ) xT) ~ (L>®(Y,v) C L>®(Y,v) x A).

o W*-équivalents si les produits croisés par ces actions sont isomorphes :

L®°(X,pu) x T~ L*®(Y,v) x A.
Clairement, on a les implications
conjugaison = équivalence orbitale = W*-équivalence.

La question des implications réciproques est a l'origine de la théorie de la déformation/rigidité
de Popa. Le point de départ qui a vraiment motivé les travaux de Popa est certainement le
résultat de Gaboriau sur les actions des groupes libres.

Théoréme 1.2.2 (Gaboriau, [Ga0Q]). Des actions pmp de groupes libres de rangs différents ne
sont jamais orbitalement équivalentes.

Ce résultat amene la question suivante, qui rappelle fortement le probleme de Murray et von
Neumann [[.1.5]

Question 1.2.3. Sin # m, existe-t-il des actions pmp F,, ~ (X, p) et Fy, ~ (Y, v) telles que

L®(X,pu) ¥ F, ~ L®(Y,v) x F, ?

De méme, on peut envisager une version dynamique de la conjecture de Connes|[[.1.6] Nous devons
cependant restreindre la classe d’actions considérées pour espérer conclure un isomorphisme au
niveau des groupes.

Question 1.2.4. Soient I" et A deux groupes avec la propriété (T), et '~ (X, pu) et A ~ (Y, v)
deux actions pmp, disons de Bernoulli, W*-équivalentes. Est-ce que les groupes I' et A sont
isomorphes ¢ Est-ce que les actions sont conjuguées ? Et si l'on suppose seulement que I' a la
propriété (T) ?

La version la plus générale de cette question demande en fait si toute action de Bernoulli d’'un
groupe ICC avec la propriété (T) est W*-superrigide, au sens suivant.
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Définition 1.2.5. Une action pmp o est OE-superrigide (resp. W*-superrigide) si toute action
orbitalement équivalente (resp. W*-équivalente) a o est en fait conjuguée a o.

Existe-t-il des actions OE/W*-superrigides ? Notons que pour prouver qu’'une action est W*-
superrigide on peut procéder en deux étapes : d’abord on montre qu’elle est OE-superrigide,
puis on montre que 'algebre de von Neumann associée a une unique sous-algebre de Cartan.
Chacune de ces deux étapes constitue un probleme tres difficile. La déformation/rigidité permet
de résoudre ces deux problemes, dans des situations variées.

I.3 Théorie de la déformation/rigidité

L’idée de la théorie de la déformation/rigidité de Popa est de confronter certaines propriétés de
rigidité d’un facteur IIy M a une déformation de ce facteur, c’est a dire un groupe d’automor-
phismes & un parametre (aq)ier tel que t — ay(x) est faiblement continu pour tout x € M.

Par exemple si une sous-algebre Q C M a la propriété (T)E], alors toute déformation (a;) converge
uniformément vers I'identité sur la boule unité (pour la norme d’opérateurs) de @. Ainsi on peut
espérer identifier @ & la sous-algebre des points fixes de (a).

Pour plus de détails sur la mise en pratique de ces principes de déformation et rigidité, nous
renvoyons a la Section [[1.2

I.3.1 W*-(super)rigidité : quelques résultats

Comme nous 'avons vu dans la Section les algebres de von Neumann sont difficiles a
comprendre. Mais dans certains contextes la déformation/rigidité va s’avérer particulierement
efficace pour prouver des résultats de W*-rigidité et enfin commencer a comprendre le cas non-
moyennable.

Par exemple, les actions par décalage de Bernoulli sont des actions avec de fortes propriétés
de déformation. C’est cette observation qui a permis a Popa [Po06al, [Po06b] de montrer non-
seulement que l’action de Bernoulli d’un groupe ICC avec la propriété (T) est OE-superrigide,
mais aussi de démontrer le premier résultat de W*-rigidité : si I' et A sont ICC et ont la propriété
(T) et si leurs actions de Bernoulli sont W*-équivalentes alors les groupes sont isomorphes et les
actions sont conjuguées.

Plus récemment, Ioana [Iol1] a montré la W*-superrigidité des actions de Bernoulli des groupes
ICC avec la propriété (T). C’est I'un des premiers exemples d’actions W*-superrigides (voir aussi
[Pe(09), [PV10a] et plus récemment [IPV13, [HPV13|CIK(13)]). Ce résultat répond donc partiel-
lement & la question Dans la méme direction, j’ai prouvé dans [Bol3| la W*-superrigidité
de toutes les actions Gaussiennes mélangeantes de groupes ICC avec la propriété (T). Voir la
Section pour la définition des actions Gaussiennes.

Conjecturalement, les résultats de Popa et Ioana [Po06a, [Po06b), Tol1] se généralisent au cadre
des groupes non-moyennables généraux.

Conjecture 1.3.1. Le facteur associé a l'action de Bernoulli de tout groupe non-moyennable a
une unique sous-algebre de Cartan, da conjugaison pres.

1Un analogue de la propriété (T) pour les groupes.
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Précisons que la conjecture n’est méme pas connue pour les groupes avec la propriété (T),
contrairement a ce que pourrait laisser penser le résultat de Ioana [[ol1] mentionné ci-dessus.

Voici une autre conjecture en lien étroit avec le probleme Cette conjecture laisse entrevoir
la possibilité de définir une cohomologie intéressante pour les facteurs II;.

Conjecture 1.3.2. Le premier nombre de Betti ¢* d’un groupe I' est un invariant d’isomor-
phisme de tout facteur L (X, pu) x I' associé a une action pmp I' ~ (X, p).

On sait que ce nombre de Betti 652)@‘) > 0 est un invariant de la relation d’équivalence orbitale
Rr associée a toute action de I' ([Ga02]). Donc pour résoudre la conjecture, il suffit de montrer
que pour tout groupe I' avec un nombre de Betti non-nul et toute action pmp de I', le facteur
associé a une unique sous-algebre de Cartan.

Dans le cadre des groupes libres, le premier résultat est di a Ozawa et Popa [OP10a]. Ils
montrent que toute action profinie de F,, produit un facteur II; qui a une unique sous-algebre
de Cartan, a conjugaison unitaire pres. De nombreuses généralisations de ce résultat ont alors
suivi [OP10D, [CS13| [CSU13, PV(12), PV (13), Io(12)a), (CIK(13)]. Notamment Popa et Vaes ont
montré que pour toute action pmp I' ~ (X, ) d'un groupe hyperbolique, le produit croisé
L>*(X,u) x T a une unique sous-algebre de Cartan & conjugaison unitaire pres.

IIs répondent en particulier 3 la question Cependant la conjecture n’est pas encore
totalement résolue.

Cette méthode d’unicité des sous-algebres de Cartan n’a pas d’analogue dans le cas des algebres
de groupes LT, et les problémes et demeurent entierement ouverts. Cependant on
sait aujourd’hui [IPV13] BV (13)] qu’il existe des groupes W*-superrigides (i.e. tels que I" est un
invariant d’isomorphisme de LT").

1.3.2 Propriétés structurelles des facteurs II;

Outre les résultats de rigidité mentionnés ci-dessus, la déformation/rigidité a permis de nom-
breuses avancées dans la compréhension des facteurs II;. Notamment on a observé de grands
progres sur le calculs d’invariants tels que le groupe fondamental ou le groupe d’automorphismes
extérieurs, [Po06d, Po06al, TPP08, [Ho09, [PV10bl Del0].

D’autre part, la théorie de déformation/rigidité a révélé de nombreuses propriétés structurelles
de certains facteurs II;. Voici une liste non exhaustive de telles propriétés structurelles.

e Absence ou unicité des sous-algebres de Cartan. Nous avons déja discuté ce point.

e Primalité. Un facteur II; M est premier si on ne peut pas I’écrire comme produit tensoriel
de deux facteurs II;.

e Solidité ([Oz04]). M est solide si pour toute algebre diﬂ'useﬂ @ C M le commutant relatif
Q' N M est moyennable.

o Solidité forte ([OP10al). M est fortement solide si pour toute sous-algebre diffuse moyen-
nable Q C M, le normalisateur N/ (Q) := {u € U(M) | uQu* = Q} engendre une algebre
de von Neumann moyennable.

2Une algebre de von Neumann Q est dite diffuse lorsqu’elle n’a pas de projection p minimale, i.e. telle que
pQp = Cp.
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Noter que si M n’est pas moyennable on a des implications

M fortement solide = M solide = M premier,
M fortement solide = M n’a pas de sous-algebre de Cartan.

Les premiers facteurs étudiés dans le cadre de ces propriétés sont les facteurs des groupes libres
LF,. Comme nous l'avons dit plus haut, Voiculescu [Vo96] a montré avec des techniques de
probabilités libres que ces facteurs n’avaient pas de sous-algebre de Cartan. Par des techniques
nouvelles, issues des C*-algebres, Ozawa [0z04] a prouvé qu’ils étaient solides. Ce sont Ozawa et
Popa [OP10a] qui ont démontré qu'’ils étaient en fait fortement solides. Ensuite de nombreuses
généralisations ont suivi pour différentes classes de facteurs [Hol0) [HS11l [(CS13, [CSU13, To(12)a,
Ho(12)b, [Va(13)].

Mentionnons que ces propriétés ont des analogues pour des facteurs de type III, et la plupart des
résultats précédents admettent des généralisations [CHI0L [HRI11) Is(12), BHRI14]. Notamment,
Houdayer et Vaes [HV13] ont démontré des résultats d’unicité de sous-algebres de Cartan dans
les facteurs associés a certaines actions non-singulieres des groupes libres (et plus généralement
des groupes hyperboliques). Vaes [Va(13)] a exhibé le premier exemple d’action non-singuliére
(de type III;) qui soit W*-superrigide.

I.4 Principaux résultats, contenu des chapitres

Dans cette these je m’intéresse a divers aspects de rigidité des algebres de von Neumann dans
trois contextes différents :

e les algebres associées a des actions Gaussiennes ;
e les produits libres amalgamés d’algebres de von Neumann ;

e les algebres de groupes.

Chacun de ces trois cas correspond a un chapitre de ma these.

1.4.1 Chapitre : Crossed-product von Neumann algebras associated with
Gaussian actions

Ce chapitre est la fusion de deux articles [Bol2, [Bol3|. J’y étudie les propriétés des actions
Gaussiennes et des algebres de von Neumann correspondantes.

Les actions Gaussiennes sont des actions pmp fonctoriellement associées a des représentations de
groupes et généralisent la notion d’action de Bernoulli (voir la Section [II.1.1| pour une définition
plus précise).

Le but est de généraliser les principaux résultats sur les actions de Bernoulli obtenus grace a la
déformation rigidité [Po06al, [Po06b, [Po08, Tolll TPV13] : résultats de W*-superrigidité, calculs
d’invariants, propriétés structurelles des produits croisés associés a ces actions. La principale
difficulté dans ce travail tient au fait que les actions Bernoulli ont une structure algébrique riche
et de tres fortes propriétés de mélange, ce qui n’est pas le cas des actions Gaussiennes générales.
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Par rapport aux articles [Bol2, Bol3|, certains résultats ont été améliorés et de nouvelles ob-
servations viennent compléter le sujet. La présentation est aussi rendue plus accessible, en ne
montrant les résultats que dans des cas simples (et en me référant aux articles pour les cas plus
généraux).

Voici deux théorémes qui synthétisent les résultats que je démontre dans le Chapitre [[I}

Théoréme 1.4.1 (Voir Theorem [[1.2.20). Soit T' ~ (X, u) Uaction Gaussienne associée a une
représentation mélangeante faiblement contenue dans la réguliére. Notons M = L*>°(X,u) x T

Pour toute sous-algébre Q C M contenant L*°(X, u), il existe des projections (pp)nen dans le
centre de Q) telles que pyQ est hyperfinie, et pour tout n > 1, p,Q est un facteur premier sans
sutte centrale non-triviale.

En particulier la relation d’équivalence orbitale Rp associée a une action Gaussienne I' ~ (X, p)
comme dans le théoreme est solidement ergodique : toute sous-relation d’équivalence R C Rp se
décompose en une partie hyperfinie et un nombre dénombrable de sous-ensembles invariants sur
lesquels R est fortement ergodique.

Le théoreme donne donc des informations sur les relations d’équivalence a partir de leurs
algébres de von Neumann. Ce résultat avait été démontré pour les actions de Bernoulli par
Chifan et Ioana [CI10].

Dans la direction de la rigidité des groupes avec la propriété (T) (Question [[.2.4)), je montre le
résultat suivant, généralisant [Io11].

Théoréme 1.4.2 (Voir Theorem [I1.4.5(et [[1.4.6). Soient T un groupe ICC avec la propriété (T)
et m une représentation mélangeante de I'. Notons o : I' ~ (X, u) laction Gaussienne associée
a . Les propriétés suivantes sont satisfaites.

1. L’action o est W*-superrigide.

2. L’algébre M := L*°(X,pu) x ' a un groupe fondamental trivial : la seule projection p telle
que lalgebre réduite pMp soit isomorphe a M est la projection identité p = 1.

3. Sim nest pas faiblement contenue dans la régquliére, aucune amplification p(M & M, (C))p
n’est isomorphe a une algébre de groupe LA.

I.4.2 Chapitre [[TI] : Amalgamated free product type III factors with at most
one Cartan subalgebra

Ce chapitre est le fruit d’une collaboration avec Cyril Houdayer et Sven Raum, et a été publié
dans Compositio Mathematica. Nous étudions les sous-algebres de Cartan dans des produits
libres amalgamés d’algebres de von Neumann générales.

Ioana [lo(12)a] a étudié cette question dans le cas des algebres de von Neumann traciales. Il a
ainsi montré que le produit libre tracial non-moyennable de deux algebres de von Neumann ne
contient jamais de sous-algébre de Cartan. Il obtient aussi des résultats dans le cas amalgamé.
Par exemple, si ' =T'; 'y avec |T'1| > 2 et |I'y| > 3, alors le facteur associé a toute action libre
ergodique, pmp I' ~ (X, 1) admet une unique sous-algebre de Cartan, a conjugaison unitaire
pres.

Nous étendons ces résultats aux algebres de von Neumann quelconques en utilisant les travaux
de Connes et Takesaki [Co73| [CT77, [Ta03]. Dans le cas ot 'amalgame est trivial, nous obtenons
le résultat optimal suivant.
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Théoréme 1.4.3 (Voir Theorem [[I1.A)). Si (M, ¢1) et (Ma,p2) sont des algébres de von Neu-
mann (agissant sur des espaces de Hilbert séparables) telles que dim(M;) > 2 and dim(Msz) > 3
alors le produit libre (M, p1) * (Ma, p2) n'a pas de sous-algébre de Cartan.

Ce théoreme signifie que les produits libres ne sont jamais associés a des relations d’équivalence
[EM77]. Dans le cas des produits libres amalgamés au dessus de sous-algebres moyennables, nous
obtenons également des résultats structurels dont nous déduisons le résultat suivant.

Théoréme 1.4.4 (Voir Theorem[II1.C|). Soit R une relation d’équivalence ergodique non-singuliére
sur un espace de probabilité standard (X, ). Supposons que R se décompose comme un produit
libre R = R1 * Ro de deux relations d’équivalence récurrentes.

Alors algébre de von Neumann associée LR ([FM77]) admet L>®(X,u) comme unique sous-
algebre de Cartan, a conjugaison unitaire pres.

La définition de décomposition en produit libre d’une relation d’équivalence est rappelée au
Chapitre Une relation R est dite récurrente si elle satisfait la conclusion du théoreme de
récurrence de Poincaré : pour tout ensemble &/ C X de mesure positive, pour presque tout x € U,
la R-classe d’équivalence de x contient une infinité de points dans U.

Pour illustrer ce théoreme, prenons un groupe I' = I'; x I's, et une action libre ergodique non-
singuliere I' ~ (X, ) telles que pour @ = 1,2, la relation Rr, est récurrente. Alors le produit
croisé L>°(X, u) X I' a une unique sous-algebre de Cartan. Nous traitons aussi le cas ou I' est un
produit libre amalgamé, avec un amalgame fini (Voir Theorem .

Par rapport au cas ou ’action préserve la mesure, nous ajoutons I’hypothese de récurrence de
chacun des facteurs libres. Nous montrons que cette hypothese est nécessaire en construisant
un exemple ou elle n’est pas satisfaite et ol le facteur a une infinité de sous-algebres de Cartan
deux a deux non conjuguées.

I.4.3 Chapitre [IV]: Maximal amenable subalgebras of von Neumann algebras
associated with hyperbolic groups

Contrairement aux deux autres chapitres, les travaux présentés dans ce chapitre, effectués en
collaboration avec Alessandro Carderi, ne reposent pas sur la théorie de déformation/rigidité.
Notre approche consiste a utiliser la géométrie des groupes hyperboliques pour récupérer des
informations sur les algebres de von Neumann qui leur sont associées.

Notre objectif est d’étudier les sous-algebres maximales moyennables dans les facteurs de groupes
hyperboliques. La motivation premiere de ce travail (et des travaux analogues [Po83l ICERW10,
Ho(12)a]) est une question de Kadison, posée dans les années 1960. Murray et von Neumann
avaient remarqué que tout facteur II; contenait le facteur hyperfini. Kadison s’interrogea sur la
fréquence de ce phénomene : y a t’il beaucoup de sous-facteurs hyperfinis dans les facteurs 11y 7
Plus formellement voici la question posée.

Question 1.4.5 (Kadison). Dans un facteur 11, est-ce que tout élément est contenu dans un
facteur hyperfini ¢

Popa [Po83] a répondu a cette question par la négative : il a montré que la sous-algebre de
LF, engendrée par 'un des générateurs a et b de Fy est maximale moyennable. Donc aucun
générateur n’est contenu dans un facteur hyperfini. Plus récemment, les auteurs de [CFRW10)]
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ont montré que a sous-algebre radiale (engendrée par a + a~! + b+ b~!) est aussi maximale
moyennable.

Nous donnons beaucoup plus d’exemples de ce phénomene.

Théoréme 1.4.6 (Voir Theorem|[IV.Al). SiT" est un groupe hyperbolique et A < T un sous-groupe
qui est maximal moyennable alors LA C LT est mazimale moyennable.

Comme dans un groupe libre F), tout élément qui n’est pas une puissance engendre un sous
groupe maximal moyennable, I’élément correspondant dans LF;,, n’est pas contenu dans un
facteur hyperfini. En fait nos techniques montrent que si I est un groupe hyperbolique, aucun
élément d’ordre infini de I" n’est contenu dans un facteur hyperfini.

Nous généralisons ce résultat dans plusieurs directions. Par exemple, nous traitons aussi le cas
des groupes relativement hyperboliques, des produits de tels groupes, et également des produits
croisés associés a des actions sur des algebres moyennables.

Ainsi nous montrons que pour toute action libre pmp I' ~ (X, ) d’un groupe hyperbolique,
et pour tout sous groupe A < I' maximal moyennable, la relation d’équivalence Rn C Rr est
maximale hyperfinie.

1.4.4 Appendice : Mixing bimodules over finite von Neumann algebras

Dans cet appendice, je présente de maniere unifiée plusieurs aspects de mélange des algebres
de von Neumann. Je développe la notion de bimodule mélangeant, introduite par Peterson. Un
bimodule est ’analogue en algebres de von Neumann de la notion de représentation de groupes.

Cette notion permet notamment d’apporter un nouvel éclairage sur le fameux théoreme d’en-
trelacement de Popa, grace a ’observation suivante.

Pour deux sous-algebres A, B C M d’un facteur IIy, A se plonge dans B au sens de Popa si
et seulement si le bimodule 4L?(M)p n’est pas faiblement mélangeant. Le théoreme de Popa
découle alors de la multiplicité des caractérisations de la notion de mélange faible d’un bimodule.



Notations

General notations

On B(H), we will denote the operator norm by || - || or || - ||, depending on the context.

If M C B(H) is a von Neumann algebra and (@ is a subalgebra, we use the following notations.

(M) is the unit ball of M for the norm || - ||;

UM) ={u € M|uu* =u*u =1} is the unitary group of M;
Nu(Q) = {u e U(M) |uQu* = Q} is the normalizer of @ inside M,

ON (@) is the quasi-normalizer of Q). It is the set of elements x € M for which there
exist finitely many w1, ,yr € M such that

k k
2Q C Y Quiand Qz C Y uiQ.
=1 i=1

When we consider a finite von Neumann algebra M, we always denote by 7 a faithful normal
trace on M. If M arises from a specific construction (e.g. M comes from a group, or an
equivalence relation) then we choose 7 to be the canonical trace coming from this construction.

For p = 1,2, we will denote by || - ||, the p-norm on M associated with 7 : ||z||, = 7(|z[P)'/?, for
all z € M. L*(M) will be the GNS construction with respect to 7.

Whenever Q C M is a subalgebra, Eg : M — @ denotes the unique trace preserving conditional
expectation onto Q.

If w is a free ultrafilter on N, we denote by M the corresponding ultraproduct von Neumann
algebra. It is the set of || - ||-bounded sequence, up to the following identification:

(xn) ~ (yn) if and only if lim ||z, — yn|l2 = 0.
n—w
It is itself a von Neumann algebra.

The symbol A <j; B means that a corner of A embeds into B inside M in the sense of Popa.
See Section for the definition (and Section [III.2.1|in the case where M is not finite).

For any t > 0, we denote by M? the t-amplification of M defined (up to isomorphism) by
choosing an integer n > ¢ and a projection p € M ® M,(C) with trace ¢, and by setting
Mt = p(M ® M,(C))p. The fundamental group of M is given by

FM)={teR,| M~ M}

Finally, we will adopt the following convention. Except for ultraproduct algebras, all von Neu-
mann algebras that we consider will be assumed to have separable predual.
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Chapter 11

Crossed-product von Neumann
algebras associated with (Gaussian
actions

In this chapter we study Gaussian actions at the level of ergodic theory and von Neumann
algebras. We thus investigate properties such as strong ergodicity, solid ergodicity ([Gal0,
Definition 5.4]) at the ergodic theoretic level, while we study W*-rigidity phenomena at the von
Neumann algebraic level.
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In the context of von Neumann algebras, Gaussian actions first appeared in [Po06al [Fu07, [Po08]
as examples of malleable actions, for which orbit equivalence superrigidity results have been
proven. Also they have been used by Peterson and Sinclair [PS12] for their nice behaviour with
respect to group cohomology. This idea in [PS12] that the Gaussian construction allows to
construct a deformation of LI" out of a 1-cocycle of I', was further developed in [Sill], [Val3],
and [CS13|] allowing to prove very general strong solidity results, and uniqueness of Cartan
subalgebras results.

II.1 Gaussian actions

Gaussian actions are measure-preserving actions which are constructed from group representa-
tions. Historically they first appeared in probability theory [Ne71l [CFS82], and they were called
random Gaussian processes. However they are closely related to Gaussian Hilbert spaces and
Wiener Chaos decomposition, going back to the work of Segal [Se56], and mathematical physics.
We refer to [Ja97| for more on this.

I1.1.1 Several descriptions of Gaussian actions.

From the multiple constructions of Gaussian Hilbert spaces, one can deduce several ways of
defining Gaussian actions. In order to give a complete picture of Gaussian actions we will
explain the main historical constructions.

Classically [CEFS82 [Ja97, IGI03] Gaussian actions are constructed by the means of a covariance
matrix (as in Section . A construction with creation operators on a symmetric Fock
space is also given in [PS12], which will be explained in Section Another definition is
given in [BHVO08], but we will not present it.

The link between these descriptions is the so-called Wiener chaos decomposition (see [Ja97]).
However, Vaes [Val3|] found an easier way to check that these definitions coincide; he gave an
abstract characterization of Gaussian actions. This characterization will be our main definition.

In the three paragraphs below, the initial data is an orthogonal representation 7w : I' — O(H)
on a real Hilbert space and the aim is to construct a measure-preserving action o, of I' on a
standard probability space (X, ). Equivalently, we want to construct a trace preserving action
o of I' on an abelian tracial von Neumann algebra (Ar, 7).

I1.1.1.1 Finite dimensional approach and universal description

In the case where the representation 7 : I' — O(H) is finite dimensional, the construction of o
is extremely simple:

e Pick an orthonormal basis (e;)i=1,... » of H, so that H ~ R". Now endow H ~ R" with
the product measure p = v®™ of the standard Gaussian measure v € Prob(R).

e The measure p does not depend on the choice of the orthonormal basis (e;); and (equiva-
lently) it is invariant under the action of O(H).
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e So 7 induces a measure preserving action o, on the canonical probability space (X, 1) :=
(H,p). This is the Gaussian action associated to 7.

In our applications we will be mostly interested in infinite dimensional representations. Naively,
one might want to proceed as before. The main problem is that if we identify H with ¢2(N) by
fixing an orthonormal basis, the subset H C (RY,v*N) has measure 0.

So let us first analyse the finite dimensional case in more details. The first question to ask: how
can one compare the initial representation 7 to the resulting Gaussian action o7

Consider the Koopman representation, again denoted by o : I' — O(LZ(Xx,u)). Then 7
appears as a subrepresentation of o,. Indeed, any vector £ € H, gives rise to a function
fe:mn— (n, &) on Xo(= H) in such a way that ox¢(f¢) = fr(g)e for all g € I'. The functions f¢
are centered Gaussian random variables.

Now one can check that the algebra generated by the functions f¢, { € H remains inside
L]%(X,r, w) and forms a dense subspace. Hence we see that the Gaussian action is completely
determined by the restriction of its Koopman representation to some generating Gaussian Hilbert
space.

Definition II.1.1. A Gaussian Hilbert space K is a closed subspace of L%&(X,B,u) for some
standard probability space (X, B, i1), such that every element of K is a centered Gaussian random
variable.

K is said to be generating if the o-subalgebra of B generated by all the random variables X € K
is B itself.

Let us use these Gaussian Hilbert spaces to define Gaussian actions associated with infinite
dimensional representations.

Proposition I1.1.2. Any real Hilbert space H is isomorphic to a generating Gaussian Hilbert
space K C L&(X, B, )

Proof. Take an orthonormal basis (e;);e; of H and identify H ~ ¢?(I). Consider the probability
space (R!,v®!), where v is the standard Gaussian measure. For any i € I, the projection
P; : (zj) € Rl z; defines a standard Gaussian random variable. Then K := span{F;, i € I}
is a Gaussian Hilbert space ([Ja97, Theorem 1.3]), which is clearly generating and the map
e; — P; gives rise to an isomorphism from H onto K. O

Proposition I1.1.3. If K C L%{(X,B, @) is a generating Gaussian Hilbert space then the uni-
taries w(€) := exp(iv2€) € L=®(X, ), & € K satisfy the following properties, where T denotes
the state on L (X, p) corresponding to the measure L.

(1) w(0) =1, w(€+n) = w(§w(n) for all §;n € K;
(it) T(w(€)) = exp(=[|¢]|?) for all & € K.

(iii) The linear span of {w(§),& € K} is a weakly dense subalgebra of the von Neumann algebra
L®(X,p) € B(L*(X, ).
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Proof. (1) is trivial and (i7) follows from the calculation of the Fourier transform of a Gaussian
random variable:

r(w(€)) = /R ¢ 1CIE gz = exp(— [€]2).

1
V2mll¢|

To check property (ii7), first note that since K is generating, the o-subalgebra of B generated by
the functions w(§), £ € K is B itself. This precisely means that the w(§)’s generate L (X, B, i)
as a von Neumann algebra. O

Proposition I1.1.4. Assume that K is a real Hilbert space and that (A, T) is a tracial von Neu-
mann algebra generated by unitary elements (w(&))eck which satisfy (i) — (iii) from Proposition
UL 1.3

Then the vectors (w(§))eck are linearly independent (over C). Therefore, for any orthogonal
operator T € O(K), the equation op(w(§)) := w(TE), for all £ € K uniquely defines an auto-
morphism of (A, T).

Proof. Assume that A\1,--- ;A\, € Cand &,, -+ ,&, € K are such that
> Aiw(&) =0.
i=1
Then for any £ € K, multiplying this equality by w(§) and taking the trace gives
0= Aiexp(—[[& +&[1%) = exp(—[I€]1*) D N exp(—=2(¢, &), (IL.1)
i=1 i=1

with A} = \; exp(—||&]|?). Take a vector n € K such that (n,&) # (n,&;) for all i # j. Then
the functions (f;)i, given by f; : t € R — exp(—2t(n,&;)) are linearly independant. Using
equation ([II.1)) for vectors £ of the form £ = tn, t € R, we see that A, = 0 (hence A; = 0) for all
ie{l, - ,n} O

Combining the above propositions, we can identify H to a generating Gaussian Hilbert space in
some L%{(X,r, 1) so that the representation 7 induces a trace preserving action I' ~ L™®( X, ).
This is the Gaussian action o, characterized by the following abstract description.

Definition II.1.5 (Universal description, [Val3]). Consider an orthogonal representation 7 :
I' — Hgr. The Gaussian action o, associated with 7 is the unique action (up to conjugacy)
I' ~ (A, 7) such that

(i) (Ax,7)is a tracial von Neumann algebra generated by unitaries w(§)ecm satisfying w(0) =

L w(€ +n) = w(w(n) and 7(w(g)) = exp(—[[¢]]?) for all §,n € H.

(ii) For all g € T" and all £ € H, one has o.(g)(w(§)) = w(w(g)&).

The uniqueness above is due to Proposition which implies as well that @ — o, is a
functor from the category of orthogonal representations to the category of pmp actions. Note
that this uniqueness implies that the Gaussian action does not depend on the embedding of H
as a generating Gaussian Hilbert space.
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Example 11.1.6. o If 7 is finite dimensional, the Gaussian action o is as described at the
beginning of this section.

o If 7: ' — O(f?*(I)) is the quasi-regular representation associated with an action T' ~ I,
then one easily checks that o, is the Bernoulli action ' ~ (R, i) given by g - (z;); =
(w4-1.;);- This observation will be further developed in Section [I1.1.11

For later use, let us end this paragraph with a well known property of Gaussian Hilbert spaces.

Proposition 11.1.7. If K C L%(X, w) is a Gaussian Hilbert space, then any orthonormal family
(fi)ier in K forms a family of independent standard Gaussian random variables.

Proof. Since the square of the norm || - ||2 of a random variable is equal to its variance, the f;’s
are standard Gaussian random variables. We need to show that they are independent. Without
loss of generality, we can assume that [ is finite, say I = {1, -+ ,n}.

It is enough to check that the characteristic function ¢x of the random variable X = (f1,--- , fn)
is the product of the characteristic functions ¢; of the f;’s:

ox (@1, @) = ¢1(x1) - Pnlan), V(z1, - xp) € R™

But we have

¢X(«7717"‘ ’xn) —/

s I
et 2kt Pk = exp(—5 || Y i fill3), (1, za) € RY,
X 2 k=1

because > ;_; j fi belongs to K and hence is a centered Gaussian variable on (X, p1). So the
result is clear since the family (f;);er is orthonormal. O]

I1.1.1.2 Operator algebraic description

Denote by He = H ® C the complexified Hilbert space of H, and by Hg" the n’th symmetric
tensor power. It is the closed subset of Hg" spanned elements of the form

1
£10-- O = 2;50(1)®"'®§a(n)7 &,---&, € He.
o€

We normalize inner product on HZ™ in such a way that [|¢]| = n!Hﬁqu@n, for all £ € HZ™.
C

2@
n
HC

Consider the symmetric Fock space associated with Hc¢

S(He) :==CQ e P HE"

n>1

The vector (2 is called the vacuum vector (or vacuum state).

Now, any vector £ € H gives rise to an unbounded operator z¢ € B(S(Hc)), called a (symmetric)
creation operator, defined on S(Hc) by the formulae

re(Q) =& and xe(m © - ONp) =6EOM O -+ O .
Taking real part (times 2), we get an unbounded, self-adjoint operator

s(§) = z¢ + x¢.
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One checks that since H is a real Hilbert space, the operators s(§)¢cy commute to each other.
Also, for & L n and n,m € Z, we see that (s(§)"s(n)™Q, Q) = (s(£)"Q, Q) (s(n)"Q, ). For
these reasons, s(§) and s(n) may be regarded as independant random variables. In [PS12], it
is moreover shown that the distribution of s(§) with respect to the vacuum state is a Gaussian
distribution N(0, ||€]?).

Consider the von Neumann subalgebra A of B(S(Hc¢)) generated by operators of the form
w(&r, -+, &) = exp(ims(&r) - -+ s(&k)), for &1,--- & € H. Denote by 7 the vector state on A
associated with 2. Then Peterson and Sinclair show the following.

Theorem I1.1.8 ([PS12]). The representation of A on S(Hc) is isomorphic to the GNS repre-
sentation associated with T. Moreover A is maximal abelian inside B(S(Hc)).

Now note that any orthogonal operator T' € O(H) can be viewed as a unitary operator on Hg,
and thus gives rise to a unitary operator T' € U(S(Hc)) such that

T(Q) =Qand T(£, 0 ---© &) = (T&1) © - © (TE).

Then Tu(&y, -+, &)T* = w(TEy,--- ,TE,), hence T normalizes A. Since T(Q) = Q, Ad(T) is a
trace preserving automorphism of A.

Proposition II.1.9. With the above notations, the Gaussian action or associated with the

representation m is conjugate with the action I' N7 (A,T) defined by o, = Ad(n(g)) for all
gel.

Proof. This is obvious, because A is generated by the unitary elements w(§) := u(§), £ € H,
which satisfy the (7) of Definition [IT.1.5| and the action is such that o4(w(§)) = w(n(g)&) for all
Ee H. ]

With this description of Gaussian actions, Theorem [[I.1.8] implies the following useful corollary.

Corollary I1.1.10. The Koopman representation of T' on L*(Ay,T) is isomorphic to the rep-
resentation © on S(H) given by 7(g) = 7(g):

L*(Ay,7) ~ S(Hc) as T-representations.

I1.1.1.3 Gaussian actions as twisted Bernoulli actions

This point of view allows to see directly that generalized Bernoulli shifts (with diffuse basis)
are examples of Gaussian actions. The construction is a priori not very canonical, though: the
correct initial data is rather an action of I' on a countable set I, together with a I'-invariant
positive definite function on I (called the covariance matriz).

Consider a countable set I, and ¢ a positive definite function on I, that is, a symmetric map
@ : I x I — R such that Zz’,jeF ziz;p(i,j) > 0, for any finite subset F' C I and real numbers
zi, 1 € F.
Then for any finite set ' C I, the map ¢ pxp can be viewed as a positive matrix of size |F|.
Hence, one can consider the centered Gaussian measure pp on R with covariance matrix given
by ©|Fxp-
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Using Kolmogorov Consistency Theorem, there exists a measure j, on R’ such that for any
finite set /' C I, the canoninal projection 7p : Rf — RY satisfies (7p)upy = pip.

Now any action I' ~ I such that ¢(g-i,9-j) = ¢(i,7), for all i, j € I gives rise to an action on
R! obtained by shifting coordinates. By definition of [y, this action is measure-preserving.

Starting with our representation 7 on the real Hilbert space H, consider a I'-invariant countable
subset I C H such that span(/) is dense in H. Now define a positive definite function ¢ on I
by the formula ¢(i,j) := (i,7), i,7 € I. Since 7 is an orthogonal representation, we indeed have
o(m(g) -i,7(g) - ) = @(i,7), for all i, € I. We denote by oy the corresponding shift action
I~ (RIMWP)'

Proposition 11.1.11. The action oy described above is conjugate with the Gaussian action o .
In particular it does not depend, up to conjugacy, on the choice of an invariant set I C H.

Proof. By definition of ¢, the map
U:H — L*Ru,)
SN e (@iier = Y Ajxg),
jEF JEF

(with F' C [ finite) is a well defined isometric embedding of H as a generating Gaussian Hilbert
space. Hence the vectors w(¢) = exp(iv/2¥(€)) satisfy condition (i) of Definition [II.1.5{and the
shift action oy clearly satisfies (o7)4(w(§)) = w(n(g)§) for all { € H. O

With this point of view, the following becomes obvious.

Example II1.1.12. If 7 is of the form T' — O(¢%(I)) for some action on a countable set ' ~ I,
the Gaussian action o is the Bernoulli action T' ~ (R7, p).

In contrast with the above example, let us mention that this description can be rather vague
when the measure is p, is degenerated. For instance, it is not so easy to compute the Gaussian
action associated with an irrational rotation of R2.

I1.1.2 First properties

We show here how properties of a Gaussian action o, are related to properties of the initial
representation .

Lemma I1.1.13. Let w be a representation of I'. Then Arer ~ Ar®@Ar and under this identi-
fication, orer = 0x ® Ox.

Proof. Note that A; ® A is generated by the unitary elements w(§) ® w(n), for &,n € H, which
satisfy the same relations as the w(£®n)’s. Therefore the map w({®n) — w(§)@w(n), &,n € H
extends to a *-isomorphism from A,g, onto A; ® A;, which intertwines the actions o,q, and
Or Q Ox. L]

Note that the above lemma is clear for finite dimensional representations with the description
given at the beginning of Section [[.1.1.1]
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Proposition I1.1.14. The Gaussian action o, associated with a representation mw is essentially

free if and only if 7 is faithful.

Proof. If m(g) = id for some g € I', then o, acts trivially on {w(§),{ € H}, hence on Ar.
Conversely, assume that o, acts trivially on pA; for some nonzero projection p € A. Then for

all £ € H, we have pw(m(g)&) = pw(§), or equivalently pw(m(g)¢ — &) = p.
If w(g)§ # & for some € H then the sequence w(k(m(g) —&)), k > 0 converges weakly to zero.
This contradicts the equality pw(m(g){ — &) = p. So m(g) has to be the identity operator. [

Since we only work with free actions, we will only consider faithful representations.

In the following result, 00 denotes the unitary representation of I' on L?(A,,7) © C induced by
ox. The proof follows from Corollary

Proposition 11.1.15 ([PS12], Proposition 1.7). Let m a representation of I'. Let P be any
property in the following list:

e being mixing;
e being weakly contained in the left regular representation;

e having a tensor power which is weakly contained in the left reqular representation.
Then © has property P if and only if 02 does.

Since having no invariant vectors is not stable under tensor product, we need to replace this
notion by its stable version in order to have a criterion of ergodicity.

Proposition I1.1.16 ([PS12], Theorem 1.8). The Gaussian action o, is ergodic if and only if
7 is weakly mixing (meaning that m ® m has no invariant vectors).

This proposition admits an “approximate” version, regarding strong ergodicity. This is the
purpose of the next section.

Using Proposition we see that many Gaussian actions are not conjugate to Bernoulli
shift actions.

Corollary I1.1.17. If w is a mizing representation which is not weakly contained in the reqular
representation, the associated Gaussian action is not conjugate to a generalized Bernoulli action.

Proof. 1f 7 is mixing and not weakly contained in the regular representation, then this is also
the case of 02, by Proposition But a generalized Bernoulli action o : T' ~ X! is mixing
if and only if the stabilizers of the action I' ~ I are finite. The latter implies that its koopman
Representation ¢ is weakly contained in the regular representation. Hence o, and o are not
conjugate. ]

In order to have results on the von Neumann algebra associated with a Gaussian action, we will
need however to make spectral hypothesis on the initial representation 7. For instance we will
assume that some tensor power of 7 is weakly contained in the regular representation. Strongly
P, p > 2 representations satisfy this hypothesis, and they are moreover mixing.
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Definition I1.1.18. Let p > 2. A representation 7 : I' — O(H) is said to be strongly ¢ if for
any ¢ > 0, there exists a dense subspace Hy C H such that for all £, € Hy, the coefficient
function ((m(g)&,n))y is in PT(T).

As the following result shows, the class of Gaussian actions associated with strongly ¢? repre-
sentations is larger than the class of generalized Bernoulli actions, for many interesting groups.
We are gratefull to B. Bekka for pointing this out to us.

Proposition I1.1.19 (Bekka). Every lattice I in a non-compact, simple Lie group G with finite
center admits a unitary representation which is strongly P for some p > 2, but not weakly
contained in the reqular representation.

Proof. 1t is a known fact that G admits an irreducible representation 7 with no invariant vectors
which is not strongly ¢9, for some ¢ > 2. By |[CHHS8S]|, 7 is not weakly contained in the regular
representation of G. But by [Cow79, Théoreme 2.4.2, Théoreme 2.5.2], there exist a p > 2 such
that 7 is strongly /P.

We check that mp satisfies the proposition. It is easy to check that being strongly ¢ is stable
by restriction to a lattice, so we are left to prove that mp is not weakly contained in the left
regular representation Ar of I'. Denote by Ag the left regular representation of G.

Assume by contradiction that mp is weakly contained in Ar. Then by stability of weak contain-
ment under induction, we get that Indg(mp) is weakly contained in Ag = Ind¥(\r). However,
Ind¢ (mr) =7® Ind¥(1r), and since T' has finite co-volume in G, the trivial G-representation
is contained in Ind¥ (1) = Ag sr- Altogether, we get that 7 is weakly contained in Ag, which is
absurd. O

I11.1.3 Strong ergodicity for Gaussian actions

Definition II.1.20. A measure-preserving action I' ~ (X, 1) on a probability space is said to
be strongly ergodic if every sequence of almost invariant subsets (A, )pen of X is trivial:

<lirrln pu((g - An)AA,) =0forall g e F) = liérnu(An)(l — u(A,)) = 0.

Here is a very standard characterization of strong ergodicity.

Proposition I1.1.21. A pmp action T' ~ (X, ) is strongly ergodic if and only if every asymp-
totically invariant bounded sequence (xy), C L>(X) (ie. limy, ||og(zn) —zn|l2 =0 forallg € T)
is trwial: limy, ||z, — 7(x,)|l2 = 0, where T is the trace on L*°(X) corresponding to .

Proof. Fix a free ultrafilter w on N. Put M := L>®(X,pu) x I'. By definition, I' ~ (X, p) is
strongly ergodic if and only if M’ N L>®°(X, x)¥ admits no non-trivial projection. This is of
course equivalent to saying that this von Neumann algebra is trivial, which exactly means that
asymptotically invariant bounded sequences in L (X, i) are trivial. ]

The following criterion for strong ergodicity of Gaussian actions generalizes the main result of
[KTO8]. It shows that for Gaussian actions, the so-called spectral gap property (property (ii)
below) is equivalent to strong ergodicity. The proof is essentially the same as the one of [PS12]
Theorem 1.8], combined with a standard Powers-Stgrmer argument, and some calculations about
Gaussian random variables.

Note that the equivalence between (i) and (ii) was already pointed out in [Po08].
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Theorem I1.1.22. Let 7 : T' — O(H) be an orthogonal representation, and denote by o, the
associated Gaussian action and by o2 the Koopman representation on L?(X;) © Cl. Then the
following are equivalent.

(i) 7 is not amenable, in the sense that m@m does not admit almost invariant vectors ([Be90]);
(ii) 0 does not admit almost invariant vectors;

(iii) on is strongly ergodic.

We start with three lemmas.

Lemma 1I1.1.23. Assume that H is a real Hilbert space and that s : H — LIQR(X, W) is an
embedding as a Gaussian Hilbert space. Consider the real Hilbert space H® H with renormalized
inner product such that ||€||3;o 5 = 21€||3em for all € € H® H. Then the map

s@: HogH — L3(X,p)
Eon = s(§s(n) — ()l

extends to an isometry s¥) : H © H — L4(X, p).

Proof. The map is clearly well defined on H ®ay H = span{{ ®n, {,n € H}. We need to show
that it intertwines inner products. Fix (0;);er an orthonormal basis of H. It is sufficient to check
that for all 4, 5,7, 5’ € I,

(5(6:)s(65) — (6i,6;)1, 8(03r)s(85) — (Gir, 651)1) p2(x) = (di © 0j, Oy © Ojr).

But the right term above is equal to 2 if i = j = = j/, to 1 if {i,5} = {¢/, 5’} and i # j and
it is equal to 0 otherwise. The left hand side is easily seen to take the same values because the
s(6;)’s are independent standard Gaussian random variables, by Proposition (recall that
Jp t?dv(t) =1 and [, t*dv(t) = 3, where v is the standard Gaussian measure on R). O

Lemma I1.1.24. Let (X, u) be a standard probability space, and let f,g € L%R(X, w) be real
valued functions. Then we have ||’ — ey < ||f — gl|2.

Proof. From the fact that 2 — 2 cos(u) < u? for all u € R, we see that

e g =22 [ U 0d) = [ 2= 2cos(fghdu < -gl} O

X X
The following lemma provides a control of the norm || - |4 on a specific subspace of L% (X,) in
terms of the norm || - [|2. This Lemma was proved in [Ja97] (Lemma 3.44 therein) using the

so-called Wick products. For completeness, we will provide an elementary proof after the proof

of Theorem [L.1.22

embedding as a Gaussian Hilbert space. With the notations of Lemma put K? =
s@(H o H).

There exists a constant C' > 0 such that ||h|s < C||hl|2, for all h € K@,

Lemma II.1.25. Assume that Hg is a real Hilbert space and that s : H — L%(X,p) is an
11.1.2
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Proof of Theorem [II.1.29. (i) = (ii). As I'-representations, we have by Corollary [[I.1.10| that

0V ~ @778" C @Trg",

n>1 n>1

where m¢ denotes the complexificaction of w. But @nzl Wg" is of the form m¢ ® p, for some
representation p. Hence if 00 has almost invariant vectors, this is also the case of 7 ® 7 (see for
instance [Po08, Lemma 3.2]).

(#4) = (i44) is trivial, and true for any pmp action.
(7i7) = (). Assume that 7 ® 7 has almost invariant vectors, i.e. unit vectors (&,), € H @ H
such that lim, ||(7(g) ® 7(g))&n — &nl| = 0 for all g € T'. View the vectors &, as Hilbert Schmidt

operators on H, and for all n € N put 5, = (g;;gn)l/? As pointed out in the proof of [PS12]
Theorem 1.8], these vectors belong to H ® H. They are still unit vectors.

Furthermore, the (real) space of Hilbert-Schmidt operators HS(H) embeds isometrically in
HS(Hc). Hence, using the Powers-Stgrmer inequality inside HS(H¢), we see that for any g € T’
and n € N,

(7 (9) © 7(9))mm — mnllfis < 2[l(7(g9) ® 7(9))€n — &nllns-

So the 7,’s are almost invariant, unit vectors in H © H.

Now with the notations of Lemma [[I.1.23| define a sequence of unitaries u, € L*(X.,u) by
u, = exp(is? (an,)) for all n, where a > 0 will be chosen later independently of n. Let us check
that (up), is a non-trivial, asymptotically invariant sequence in L (X).

By Lemma [[1.1.24] the sequence (uy,), is asymptoticaly I'-invariant because the vectors 7, are
almost invariant.

Now fix n € H ® H such that ||n]| < 1. Note that for all u € R, we have 1 — u?/2 < cos(u) <
1 —u?/2 +u*/24. Hence

1= % /X s (0)2dp < R(r(explis® () < 1 — % /

1
sO)Pdu+ o / s (n)*dp.
Xr

X

Together with Lemmas [[T.1.23] and [[T.1.25] this implies

1= Ll < Rer(exp(is®(m) < 1— Lz + Sl
2 - - 2 24 ’

So we obtain

: 1 ct
[R(r(exp(is® ()] < 1= S llnll> + 7 Inl* (IL.2)

Similarly we can bound the imaginary part by using the fact that v — u3/6 < sin(u) < u for all
u € R. Since the variables in s2)(H © H) are centered variables, we get

1

-2 / 5@ (n)*dp < S(r(exp(is® (n)) < 0.

™

Using Cauchy-Schwarz inequality and Lemma this gives the bound

. 1 1 C?
[S(r(exp(is® ()] < ¢ /X (s )%y < £l1sP ()21 ()17 < —llnll* (IL.3)

™
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Now we apply and to the vectors an,. We get for all n

[ (exp(is® (arn))[* = [R(7(exp(is® (n))]* + [S(r(exp(is® (1))

So if we choose « small enough, the constant ¢ = (1 — %az + g—:a4)2 + g—ga6 is less than one. In

that case, we get
= 7(un)[3 = 1 = |7 (exp(is® (ann))]* > 1 = ¢ > 0.

This shows that the sequence (u,) is non-trivial and the action is not strongly ergodic by
Proposition ]

It remains to prove Lemma

Proof of Lemma[IT.1.25. From the definition of s(2), we see K(?) is the closed linear span of the
set {fg — [y fgdu, f,g € K}, where K = s(H).

Take an orthonormal basis (f;)ien of K: the f;’s are independent standard Gaussian random
variables, by Proposition Decompose K@ as an orthogonal direct sum K @ =K, & K,
with

e K =span{f?—1,ieN},
o Ky =span{fifj,i,j € N;i#j}.

STEP 1. There exists a constant C; > 0 such that ||h|j4 < Ci||h||2 for all h € K.
Take h € Ky and write h = >, Ni(f2 — 1), with F C N finite and \; € R. Note that

Il =32 0% [ (2 = 1)

ieEF

On the other hand

o= A [ (= 00 = 106 = D - D

1,5,k,l€F

But such an integral [, (f? — 1)(fj2 — 1)(f? — 1)(f? — 1)du is equal to 0 whenever one of the
indices 1, j, k, [ is different from the others. So the only nonzero terms in the above sum are the
ones for which either i = jand k =1[,ori=k and j =1, or ¢ =1 and j = k. Hence we get:

E < S A / 2122 - 1%dp+ 3 A2 / (2 — 12(f2 — 1)%du

i=jk=leF X i=k,j=lcF

£OS [ 1R

i=l,j=kcF

<30 30 N [ (12 =12 [ (77 = 02 = sprnl,

L,JEF
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1 fX f2 _1)4

where M = maX( W

tributed.
So we can put C; = (3M)'/*, which does not depend on h € Kj.
STEP 2. There exists a constant Co > 0 such that ||h|j4 < Co||h||2 for all h € Ko.

Consider h € Ko, h = Zi,jeF,i<j i jfifj, with F' C N finite, and A;; € R for all 4+ < j. For
convenience, define also A; ; := 0 for 7 > j. On the one hand, we have

A3 = [ =30,

i#]

5) is independent of i because the (f;)’s are identically dis-

On the other hand we have

/h4dﬂ_ Z H/\Zsys/ Hfzgfjsdu.

1171027 j2 s=1
i37#73,i47]4

But if for some k € F, there is an odd number of coordinates of i := (i1, j1, i2, j2, i3, 73, 14, j4)
which are equal to k, then the integral [ X H;l:l fis fj.dp is equal to zero, because the odd
moments of f; are equal to zero. So if [y ngl fis fj.du is non-zero then the coordinates of i
can be grouped by pairs.

This simple observation first allows to say that [, H;l:l fis [j.dp takes values in the set

8 4 2 2 4 2 2 4 _
{/Rt dy(t),(/Rt du(t)) ,(/Rt du(t)) ,(/Rt du(t)) /Rt dv(t),0} = {105,9,1,3,0}

(v is the standard Gaussian measure on R). So [y [T,_; fi, fj,du is at most equal to 105.
It also allows to describe the 8-uplets ¢ for which the integral [ X H;L:l fis [j.dp is non-zero. It is
easily checked that up to permutation of the four pairs (is, js) and up to permutation of i, with
js for some s’s, the integral is zero unless i belongs to one of the sets

i Il = {(a7baavbacadacad)’ a,b,c,d € F, a 7é b7 C# d}

o I, ={(a,b,b,c,c,d,d,a), a,byc,d € F,a#b,b#c,c#d,d# a}.
Denote by & C Ss the subgroup of permutations of {1,--- ,8} which is generated by the trans-

position (1,2) and by the permutations of the four pairs {1,2}, {3,4}, {5,6} and {7,8}. For
any o € S, denote by o([1) = {o(i), i € I}, and define similarly o(I3).

Altogether, we get

/h4<105z > HMZU@H > HMMS : (11.4)

o€S \ico(l) i€o(ly) s=1

Using the Cauchy-Schwarz inequality, we have

E ’)‘ihjl /\i21j2 )‘i3,j3 )‘i47j4‘ - E : ’)\a,b/\b,c)\c,d)\d,a‘
i€l a,b,c,deF

Z )\2 )\2 1/2 Z )\ 2 1/2 ||h||4

a,b,c,d a,b,c,d

| A
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And actually, exactly the same calculation shows that for any o € S,

4
> Il < linls.

i€o(lz) s=1

Similarly, for any o € S, the sum } ;¢ 1)) ngl |\i, ;.| is equal to the product of two sums of
the form >, A2, or > atp PapAoal <D0 AZ,. So we see that

4
ico(ly) s=1
Thus, Equation (I1.4) implies that ||h||] < 105|S|||k||3 < 105(8!)||k||3. This proves Step 2.
By density, we see that for i = 1,2 and h € K;, we have ||h|l4 < Ci||h]|2.
STEP 3. Conclusion.

Since in R? all norms are equivalent, there exists a constant C' > 0 such that
Chlal + Calb| < C(a® + b*)V/2, for all a,b € R.
Assume that h = hy + ho, with h; € K and hy € Ko. Then we have

[Alla < |R1lla + [[h2ll4
< Chllhall2 + C2||hz|l2
< C(||mf3 + [|h2[I3)*? = C||hJ2. O

Remark I1.1.26. It is much easier to show that the action is not strongly ergodic whenever m
itself admits almost invariant unit vectors (£,). Indeed, in that case set u, = exp(iv/2s(&,)) for
all n. Then the trace of these unitaries is equal to exp(—||&,]|?) = e™!, so the sequence is clearly
non-trivial and asymptotically invariant.

Note also that for a quasi-regular representation 7, being amenable and admitting almost-
invariant unit vectors is equivalent. So our result is consistent with [KT08, Theorem 1.2].

I1.2 Deformation/rigidity results

In this section we prove results regarding the position of “rigid” subalgebras of the crossed-
product von Neumann algebra M = A x I' associated with a Gaussian action o : I' ~ A. This
is performed by applying Popa’s deformation/rigidity theory, as follows.

1. In a first step we explain, following [PS12], how to construct an interesting one-parameter
group ()¢ of automorphisms of a von Neumann algebra which contains M.

2. Then we give sufficient conditions for a subalgebra @@ C M to be («ay)-rigid, in the sense
that lims_q ||t (x) — z||2 = 0, uniformly in z € U(Q).

3. Finally we will use techniques due to Popa ([Po06a), [Po06bl [Po06c]) to describe the posi-
tion of rigid subalgebras of M. Their position will be compared to the crossed product
decomposition M = A x I
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I1.2.1 Deformation of Gaussian actions

We are interested in malleability properties of Gaussian actions, in the following sense.

Definition I1.2.1 ([Po08]). A measure preserving action I' ~ (X, i) is said to be s-malleable
if there exists a one-parameter group (y)ier of automorphisms of L°(X x X,y ® p), and an
automorphism 8 € Aut(L>®(X x X, u ® p)) such that:

e the map t — ay(z) is strongly continuous for any x € L*>(X x X);
e the automorphisms ay, t € R and 8 commute with the double action of I' on X x X;
o a(L®(X)®1)=1® L*°(X), where we identify L>(X x X) ~ L®(X)® L>®(X);
e for any t € R, one has az 0 f = o a_y;
e 3 acts trivially on L>(X) ® 1 and 8% = id.
Such a pair ((a¢)¢, 8) is called an s-malleable deformation of the action.

As explained in [Fu07] or [PS12], Gausssian actions are s-malleable. The construction of a
malleable deformation can be performed as follows.

Let m : I' — O(H) be an orthogonal representation of a group I' on a real Hilbert space H.
Denote by o : I' ~ A the associated Gaussian action. By Lemma o ® o is the Gaussian

action associated with m & m.
Define on H ¢ H the block operators

p=(o 1) mao= (nirtsa) “emtursay )t ®

Here are some trivial facts about these operators:

e VicR poby=0_0p;
e 0, and p commute with (1 @ 7)(g) forallge T, t e R ;
o Vs, t €R, 0500, =6;,.

By Proposition [II.1.4] p and (6;) induce respectively an automorphism § and a one-parameter
group (ay) of automorphisms of A® A which are easily seen to be an s-malleable deformation
of o.

Now consider the crossed-product von Neumann algebras M = AxT and M = (A® A) Xoge L.
View M as a subalgebra of M using the identification M ~ (A®1) x I. The automorphisms
defined above then extend to automorphisms of M still denoted (oy) and 3, in such a way that
at(ug) = B(ug) = ug, for all g € I.

Now that we have introduced a deformation of M, we can define the concept of rigid subalgebra
(relatively to this deformation).

Definition I1.2.2. For any projection p € M, we will say that a von Neumann subalgebra
Q C pMp is (oy)-rigid if the deformation («ay); converges to the identity uniformly on the unit
ball (@)1 of Q:

lim sup ||at(x) —z|]2 =0.
t—)Oxe(Q)l
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The following lemma will be useful to check that some subalgebras are (ay)-rigid. It is the
so-called transversality Lemma.

Lemma I1.2.3 ([Po08|, Lemma 2.1). For any z € M and t € R one has

|2 — aat(z)]l2 < 2|ae(z) — Epr o ar(z)]]2.
Proof. Take x € M and t € R. Recall that 3o a_; = oy o 8 and that §j;; = id. We have

[z — age(@)l|2 = [Ja—t(z) — ar(z)]2
< lla—t(x) = Epr o an(@)|l2 + [[Ear 0 o (@) — (@) |2
= [|Boa—(z) = BoEyoay(z)|z+ [[Enm o ar(x) — cu(@)l|2
= 2||ax(x) — Epr o ag()]]2. O

I1.2.2 Examples of («;)-rigid subalgebras
General rigidity condition: property (T)

We consider a Gaussian action ¢ and we use the notations and definitions of Section [T.2.1]

A sufficient condition for a subalgebra @ € M to be (ay)-rigid is to have property (T), in the
sense of [CJ85]. More generally, Q@ C M is (ay)-rigid if it satisfies a relative version of property
(T), which can be formulated as follows in the setting of tracial von Neumann algebras.

Definition I1.2.4 ([Po06c|, Definition 4.2.1). Let (N, 7) be a tracial von Neumann algebra, and
B be a von Neumann subalgebra of N. The inclusion B C N has relative property (T), or is
rigid if for any € > 0, there exists 6 > 0 and x1,--- ,x, € N with the following property.

Any normal, completely positive map ¢ : N — N for which ¢(1) < 1, 7o ¢ < 7 and ||¢(z;) —
zill2 < 9,4 =1, -+ ,n automatically satisfies ||¢(z) — z||2 < ¢, for all z € (B);.

Generalizing [CJ85, Theorem 2], Popa showed in [Po06c] that this notion coincides with the
notion of relative property (T) for groups: for any countable groups A < TI', the inclusion
LA C LT as property (T) if and only if the pair (I', A) has relative property (T).

With Definition |I1.2.4] we see easily that rigid inclusions @ C M are (o)-rigid. Let us now give
another condition, more specific to M and (ay), which ensures («ay)-rigidity. It is the so-called
spectral gap rigidity, discovered by Popa in [Po0§].

Spectral gap rigidity

The following criterion is the main result of this section. It was proved by Popa [Po08] for
Bernoulli actions. The idea to require that some tensor power of 7 is weakly contained in the
regular representation and not necessarily 7 itself is due to Sinclair [Sil1]. It allows to cover
strongly ¢P-representations, as discussed at the end of Section

Proposition I1.2.5 (Spectral gap rigidity). Assume that 7 : I' — O(Hg) is an orthogonal
representation such that T®F is weakly contained in the regular representation for some k > 1.
Denote by o : T' ~ (A, T) the associated Gaussian action and put M = A x T'. Define M and

(o) € Aut(M) as in Section |II.2.1}

If @ C M is a von Neumann subalgebra with no amenable direct summand, then Q' N M is
(o )-rigid.
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In fact we will rather use the follwing “corner version” of Proposition [[I.2.5]

Corollary I1.2.6. With the same hypotheses and notations as in Proposition[II.2.5], if p € M s
a projection and if Q C pMp is a von Neumann subalgebra with no amenable direct summand,
then Q' N pMp is (oy)-rigid.

Proof. Since @ is non-amenable, then M is non amenable. So I' is non-amenable, and M has
no amenable direct summand. Thus the algebra Q1 := Q @ (1 — p)M (1 — p) has no amenable
direct summand and we can apply Proposition to Q1. The corollary follows because
Q' NpMp = p(Q) N M)p. -

Proposition will be deduced from the following two lemmas.

Lemma I1.2.7. If 7%F is weakly contained in the regular representation for some k > 1, then
the M-M -bimodule H = L?>(M) S L?(M) is such that the Connes’ fusion tensor power of yHar,
HOME = H @pr - @ H is weakly contained in the coarse bimodule L*(M) ® L*(M).

Proof. As in the proof of [Val3, Lemma 3.5], for any representation n : I' — U(K), define an
M-M bimodule structure H"” on the Hilbert space K ® L?(M) by

(aug) - (£ @) - (bup) = ny(§) ® augxbuy, for all a,b€ A, g,h e,z € M, £ € K.

We can make three observations regarding this definition.

e Weak containment for two representations 71,72 of I' implies the weak containment of the
correpsonding bimodules H™, H"?;

e If 1 is the regular representation then H" is weakly contained in L?(M) ® L?(M), because
the A-A bimodule L?(A) is weakly contained in L?(A) ® L?(A) (A is amenable);

e For two representation 1y, 1y, H™ @y H? = HME”,

Now remark that the M-M bimodule L2(M)& L2(M) is isomorphic to H°=. Moreover, Proposi-
tion [[1.1.15|implies that (02)®* is weakly contained in the regular representation. So the lemma
follows from the above observations. O

Lemma I1.2.8. Let w be a free ultrafilter on N. If 7%F is weakly contained in the regular repre-
sentation for some k > 1 then for every subalgebra Q C M with no amenable direct summand,
one has

Q' NM*Y c M“.

Proof. By Lemma we know that H®M* is weakly contained in the coarse M-M bimodule,
were H = L2(M) & L?(M). Now note that if H®MK is weakly contained in the coarse M-M
bimodule, then this is also the case of H®MX+1 Hence one can assume that k is of the form
k = 2P, which will be used later.

Fix Q C M such that Q' N M¥ ¢ M*. We will show that @ has an amenable direct summand.
Since Q' N M* ¢ M*, there exist a sequence z,, € (M); such that:

o z, € L>(M)© L*(M), for all n € N;
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e There exists € > 0 such that ||z,||2 > € for all n € N;

e lim, ||[u, zy]]|2 = 0 for all u € U(Q).

*
n-

°® T, =z
Since z,, € (M )1 for all n € N, the vectors x,, € H are left and right uniformly bounded, and
one can consider the sequence &, = z, Q-+ Q¥ € HOM % One checks that these are almost
Q-central vectors, because the x,’s are. Let’s show that up to some slight modifications they
are Qg-tracial as well, for some g € Z(Q).

For all n, define by induction elements y(n) eM,i=0,---,kby y((]n) =1, yl(i)l = EM(:L"nyEn)l‘n).

i
Then an easy computation gives, for all n € N and a € M,

<a§nafn> = <axny1(i)1a$n> = T(ayl(cn))-
Moreover, for all n € N, ||z, || <1 implies Hy,(gn)H < 1. So taking a subsequence if necessary, one

can assume that (y,gn)) converges weakly to some b € Q' N M.
Claim. 7(b) > 2*, so that b € M is a nonzero element.

To prove this claim, first observe that for any 0 <,7 < k — 1, one has:

(n), (n)

Ty (), . (n)

(" Ear (g w0)) = 70 0y )

Bt f?) = 012l

Remembering that k = 2P, the relation above and Cauchy-Schwarz inequality give:

(n))

(") = r(ysn ) i)

T(y2p7 1 y2p71

n n)y2(—1)
T > > ()

op—1 jll il
7'(95%)’“/2 > P,

Y

This proves the claim. Therefore there exists § > 0 such that ¢ = x(5.0[(Eg(b)) # 0. Note that
q € Z2(Q) and take c € Z(Q)+ such that ¢ = cEg(b).
Finally, we get that the sequence 1, = ¢'/2 - &, € H®MK gatisfies:

e (1) is almost Qg-tracial: Ya € Qq, lim, (an,,n,) = 7(c*/%ac*/?b) = 7(aq).
e (1) is almost Q-central.
Therefore as (Qg-QQq bimodules, we have:
L*(Qq) Cop HEMH Cyp L*(M) © L*(M) Cuy L*(Qq) © L*(Qq),

so that Qg is amenable. O

Proof of Proposition [IT.2.5. Assume that 7®* is weakly contained in the regular representation
for some k > 1, and consider a von Neumann subalgebra ¢ C M with no amenable direct
summand.
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Fix ¢ > 0. We want to find a ¢ > 0 such that for all s € [0,t],||x — as(z)|2 < e for all z in
(Q'NM);.

By Lemma [IL.2.8] we have Q' N M¥ C MY for any free ultrafilter w on N. It implies that there
exists a finite set 1, -+ ,x, € Q and a 6 > 0 such that for any y € M such that ||yx; —z;y|2 < 0
foralli=1,---,n we have

ly = Ex(@)ll2 < /2.
Now let ¢ > 0 be such that for any s € [0,¢], and any i = 1,--- ,n, ||as(z;) — xi]l2 < /2. Take
s €[0,t] and z € (Q' N M);.

We have for alli=1,---,n

las(z)ri — zios(@)[|2 = [[pa—s(z;) — a—s(zi)z|2
< 2lz|l[la—s(z:) — mill2 + [|z2s — 3|2
< 2|z — as(@i)]]2
<.

By definition of §, we get
las(x) — Ep(as(z))|l2 < /2.

By Lemma [II.2.3| we conclude that ||aas(x) — z||2 < €, as desired. O

11.2.3 Position of rigid subalgebras of M

Under the assumption that the action is mixing, the following result shows that diffuse, rigid
subalgebras of M either lie in the group algebra LI' or their normalizers lie in the Cartan
subalgebra A.

Theorem I1.2.9. Assume that I' ~ A is the Gaussian action associated with a mizing repre-
sentation of the group T. Put M = AxT, M = (A® A) x T and define (o) € Aut(M) as
in section . Let p € M be a projection, and Q C pMp be an (ay)-rigid subalgebra, in the
sense of Definition . Denote by P = QN pup(Q)".

Then either P <31 A, or QQ <pr LT.

To prove such a rigidity result, we follow a very standard strategy, initiated in [Po06al, Theorem
4.1] and applied to several contexts [Po06d, TPPO8, [HR11,[PS12]. Our proofis a direct adaptation
of the proof of [IPV13, Theorem 4.2].

Proof. Assume that no corner of P := QN pu,p(Q)” embeds into A inside M. We will proceed
in three steps to show that Q < LI'.

For subalgebras Q1,Qs C M, an element x € M is said to be Q-Qa-finite if there exist
T1i, -+ ,Tn € M such that

n n
Qix C inQg and Qs C Zlei'
i=1 i=1
Note that QN ;7(Q1) is exactly the set of Q;-Q; finite elements.

STEP 1. For all ¢ small enough, there exists a non-zero Q-a;(Q)-finite element a; in pMoy(p).
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By assumption, for all ¢ small enough and all v € U(Q) we have ||u — a;(u)||3 < 1/2. This
implies that

T(uoyg(u*)) > 3/4 > 0 for all u € U(Q). (IL.5)
Denote by C C pMat(p) the strong closure of Cy := conv({uas(u*), u € U(Q)}). Since Cp is in
the unit ball of M, C is closed in the norm || - ||2.

Consider the unique element a; of C which minimizes the norm || - [|2. By uniqueness of a;, and
since C is invariant under the maps = — vzoy(v*) for all v € U(Q), we get that a; = vagoy(v*)
for all v € U(Q), and a; is indeed Q- (Q)-finite.

Moreover, by we get that 7(v;) > 3/4 and so a; # 0.

STEP 2. There exists a non-zero element a; € pMa;(p) which is Q-a;(Q)-finite. In particular
Oél(Q) = M.

Take a; as in Step 1, with ¢ of the form ¢ = 1/2’“, k > 1. We will show that there exists d € P
such that ag := a(B(af)da;) is non-zero. This element as; € pMagi(p) is easily seen to be

Q-a9:(Q) finite, so ag; satisfies Step 1 with 2¢ instead of t. Going on inductively this is enough
to prove the existence of a.

Assume by contradiction that S(a;)da; = 0 for all d € P. Denote by ¢q € pMp the projection
onto the closed linear span of {range(da;), d € P}. We see that (¢q)g =0 and Q € P'NpMp.

But if 7 is mixing and P 43 A, Lemma implies that P’ N pMp C pMp. So we have
0 = B(q)q = q which contradicts the fact that ¢ majorizes the left support of pa; = a; # 0.

STEP 3. Conclusion: @ <7 LT'.
Denote by ug4, g € I' the canonical unitaries which implement the action of I'.

Assume by contradiction that @ £j; LI': there exists a sequence (w,) C U(Q) such that
lim, ||Err(zwyy)|l2 = 0 for all xz,y € M

We claim that limy, || Epr(zaq(wn)y)ll2 = 0 for all 2,y € M. By a linearity/density argument, it
suffices to prove this equality for z = (a ® b)us € M and y = (¢ @ d)uy € M, with a,b,c,d € A,
s,t € I'. Now writing wy, = ), Tg,nly, an easy calculation gives

2

1Eas(zar(wa)y) |3 = || Enr (m hE! ®wg,n)ugy)

g

2
2

= ||Eym <Z (aosg(c) ® bos(zgn)0se(d)) “89t>

g

=" [la0(€) 3 [7 (b0 () 759(D) [

2

< D llallZliell3 17 (bos(2g.0) o5 (d))?

g
= llallZllel3l Err ((bus)wnd) |13,

which tends to 0 when n goes to infinity. This contradicts o (Q) <,; M. O

Remark I1.2.10. From this proof, we see that the assumption that @ is (oy)-rigid can be
replaced by the following weaker assumption: for ¢ small enough, there exist z € M and ¢ > 0
such that

|T(ce(u*)zu)| > ¢, for all u € U(Q). (IL.6)
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Assuming that T' is ICC and using again the mixing property, one can deduce a more accurate
result.

Corollary I1.2.11. Consider a mizing Gaussian_action I' ~ A of an ICC group I'. Define
M =AxT and (ay) € Aut(M) as in section|I.2.1. Let p € M be a projection, and Q C pMp
be an (ou)-rigid subalgebra, in the sense of Definition [I1.2.2. Denote by P = QN pnp(Q)”.

Then at least one of the following assertions occurs.

1. Q <um 15
2. Py A;

3. There exists a unitary v € M such that v*Pv C LT.

Proof. Note that for all » € Q' N pMp, the subalgebra rQ C rMr is (oy)-rigid. So if P £ A,
Theorem applied to all such rQ’s implies that for all r € Q' N pMp, rQ < LT'. Now one
can apply Proposition 3 because the inclusion LI' C M is mixing (relative to C). This
implies that either 1 or 3 (or both) holds true. O

We now provide a new variant of Theorem which relies on spectral hypotheses on 7
instead of mixing hypotheses. Note however that if I is non-amenable, the assumption that 7®*
is weakly contained in the regular representation implies that 7 is weakly mixing.

Theorem 11.2.12. Assume that ' ~ A is the Gaussian action associated with a representation
7 such that ©®F is weakly contained in the reqular representation for some k > 1. Put M = AxT,
M = (AR A) x T and define (o) € Aut(M) as in section . Let p € M be a projection,
and Q C pMp be an (ou)-rigid subalgebra. Denote by P = QN parp(Q)”.

Then either P has an amenable direct summand or Q <p; LI.

Proof. Assume that @ C pMp is an (oy)-rigid subalgebra and that P := QN parp(Q)” has no
amenable direct summand.

Denote by Py = P& (1 —p)M(1—p). Then P has no amenable direct summand. Using Lemma
11.2.8) we have that P, N M C M. In particular P’ N pMp C pMp.

Now we can repeat Steps 1-3 of the proof of Theorem [[I.2.9| word by word to get @ < LI'. [

From Theorem we can deduce the following relative solidity result. The first result
of this type is due to Ozawa [BOOS, Theorem 15.3.10] (inspired from [Oz04]) and deals with
(some) plain Bernoulli shiftsﬂ Then Chifan and Ioana [CI10] managed to weaken the mixing
assumption, and proved the result for generalized Bernoulli shifts associated with actions with
amenable stabilizers. The result that we give here is an improved version of [Bol2l, Proposition
4.1].

Corollary I1.2.13. Assume that ' ~ A is the Gaussian action associated with a representation
7 such that 7@ is weakly contained in the reqular representation for some k > 1. Put M = AxT'
and take a projection p € M.

For any Q C pMp such that Q Ay LT, we have that Q' N\ pMp is amenable.

!Ozawa’s approach is totally different from what is presented here.
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Proof. Assume by contradiction that @ 4»; LT and that P := Q' NpMp is not amenable. Then
we can find a central projection z € Z(P) such that Pz has no amenable direct summand. By

Corollary [I1.2.6, we get that (Pz) NzMz is (a)-rigid. But since Qz C (Pz) N zMz, we deduce
that Qz is (ay)-rigid.

Since Q 4 LI', we also have that Qz 4 LI'. Applying Theorem to Qz, we get
that the quasi-normalizer of )z inside zM z has an amenable direct summand. But this quasi-

normalizer contains (unitaly) Pz, which has no amenable direct summand by definition of z.
This is impossible. O

This corollary is interesting on its own, but it also has an application regarding solid ergodicity
of Gaussian actions.

11.2.4 Application: Gaussian actions and solid ergodicity

Definition I1.2.14. A measure preserving equivalence relation R on a probability space (X, )
is called solidly ergodic if for any subrelation S of R, there exists a countable measurable partition
(Xn)n>o0 of X into measurable S-invariant subsets with:

e S|x, hyperfinite ;

e S|x, is strongly ergodic for all n > 1.”

Solid ergodicity is a very strong property because it gives valuable information on the ergodic
decomposition of any sub-equivalence relation.

The name solid ergodicity was introduced by Gaboriau [Gal0), definition 5.4] and is due to the
following characterisation found by Chifan and Ioana [CI10].

Proposition I1.2.15 ([CIL0], Proposition 6). A measure preserving equivalence relation R on
a standard probability space (X, ) is solidly ergodic if and only if for any diffuse von Neumann
subalgebra Q of L (X, u), the relative commutant Q' N LR is amenable.

Chifan and Ioana applied this criterion to provide the first example of solidly ergodic action: if
I' ~ I is an action of a group on a countable set I, with amenable stabilizers then the orbit
equivalence relation of the associated Bernoulli action is solidly ergodic.

Together with Ozawa’s work [0z09], Proposition [I1.2.15] also implies that the orbit equivalence
relation induced by SLg(Z) ~ T? is solidly ergodic.

Combining Proposition with Proposition we obtain solid ergodicity results for a
large class of Gaussian actions.
Corollary I1.2.16. Assume that w : T' — O(Hg) is an orthogonal representation such that T®*

1s weakly contained in the regular representation for some k > 1.

Then the orbit equivalence relation associated with the Gaussian action o, is solidly ergodic.

Although this result might sound slightly more general than [Bol2, Theorem A], we were not
able to provide new examples of solidly ergodic Gaussian actions. Moreover note that for quasi-
regular representations, this theorem is equivalent to [Bol2, Theorem A].
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I1.2.5 Deformation/rigidity in the ultraproduct algebra

In this section we apply deformation/rigidity techniques in the ultraproduct algebra. This idea
was first used in [PeQ9]. Our main result is Theorem [[1.2.19, which will play a crucial role in
Section I3l

Let 0 : I' ~ A be the Gaussian action associated with an orthogonal representation 7. As in
Section [I1.2.1} denote by M = Ax T, M = (A® A) x T and by ((ou)s, 5) the corresponding
s-malleable deformation of M.

Let w be a free ultrafilter on N. The malleable deformation («;); of M induces a one parameter

group of automorphisms, also denoted by (o), of the ultraproduct algebra (M)* by the formula

ar(x) == (at(xp))n, for all x = (x,) € (M)¥,t € R.

Definition II1.2.17. For a given z = (z,,) € (M)%, the map t — «a;(x) may not be continuous
for the norm || - ||2. Whenever it is continuous, we will say that z is (ay)-rigid.

A sufficient condition for an element z = (x,) to be (ay)-rigid is that the deformation converges
uniformly to the identity on the set {z,,, n € N}. Since the deformation is trivial on LT, any
element of (LI')* is (ay)-rigid.

The spectral gap argument also yields rigidity in M.
Lemma I1.2.18. Let p € M be a projection. If QQ C pMp has no amenable direct summand,

then the deformation converges pointwise (even uniformly) to the identity in the norm || - ||2 on
the unit ball (Q' N M¥);.

Proof. The proof is exactly the same as the one of Proposition [I.2.5] O

The following result shows that for if 7 is mixing one can transfer the rigidity of an element
x € MY to its relative commutant in M.

Theorem I1.2.19. Let I' ~ A be a mizing Gaussian action. Put M = A xT'. Assume that
x = () € MY is an (a4)-rigid element and consider a subalgebra Q) C M of elements of M
that commute (inside M*) with z. Put P = QN p(Q)".

If v ¢ AY x T, then P <pr A or @ < LT.

Proof. Assume that z ¢ (A xT"). If we could show that @ is (oy)-rigid then we would conclude
with Theorem We will rather show that ) satisfies condition and apply Remark
L1.2.10

Define y = © — Egwxr(z) # 0 and write y = (y,). Dividing y if necessary by ||y||2, one can
assume that ||ly[ls < 1. For all n write yn, = 3 yn gug, Where ug, g € I' denote the unitaries of
M implementing the action of I'. One checks that:

o y is (ay)-rigid, since oy commutes with E 3., for all ¢;
e yd = dy, for any d € Q;

e For all g, y is orthogonal to (yn gug)n € A¥ X T', so that lim,_, ||[Yn4/l2 = 0.
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Using Lemma this last condition implies that
Lim (y,€yy,n) = 0,€,7m € L*(M) © L*(M). (IL.7)

Fix € > 0. Then there exists ¢ty > 0 such that for all ¢ € [0,ty] we have ||a:(y) — yl|]2 < .

Let t € [0,to] and u € U(Q). For a € M define 6;(a) = ay(a) — Ey o ay(a) € L*(M) © L*(M).
We have

lim {16 (uw)yn — 0t (uyn)ll2 = lim [[(1 — Epr)(as(w)yn — ar(uyn))ll2

n—w n—w

< lim o (w)yn — ar(w)ag(yn)||2

n—w

=lly—au(y)l2<e.

Similarly limy, ., ||ynd:(u) — 6t (ynu)|l2 < e. Hence we get
Jim {10 (w)yn||3 < im (8 (uyn), 6 (w)yn)
= Tli_f)%}((st (ynte), 6 (w)yn)

T (5.0, (u)y, 0 () + 2e.

+e
+e

IA

With (I1.7]), we obtain
I8¢ (w)yll3 < 2. (IL.8)

But exactly as in the proof of Popa’s transversality lemma (Lemma [I1.2.3]), we show that

s (u)y — uyll2 < [|ag(u)y — a—t(uw)yll2 + 2]y — ar(y)|l2
< 2[]0¢(u)yll2 + 2¢

With (II1.8)) we thus obtain
ez (w)y — uyll2 < 2v2e + 2¢ < 6/,

if we assume that e < 1. Put z = Ej(yy*) # 0 (conditionnal expectation inside M*“, onto M).
We have
levze (u)y — wyl|3 = 2[ly]13 — 2R (7 (@z2e(u*)2u)) < 36¢.

If ¢ was chosen to be smaller than ||y||3/18, then ¢ := ||y||3 — 18¢ is positive and satisfies
|7 (o (u™)zu)| > c.

This inequality is true for all ¢ € [0, ¢p] and all u € U(Q), so we can apply Remark [I1.2.10] to get
the result. O

11.2.6 Application: structural properties of M

From Sections[[T.2.3]and [[T.2.5], we can deduce the following result about primeness and property
Gamma.

Theorem 11.2.20. Assume that I' ~ A is the Gaussian action associated with a mizing repre-
sentation ™ such that 7% is weakly contained in the reqular representation for some k > 1. Put

M=AxT.

Let Q C M be a von Neumann subalgebra such that QQ 4 LI'. Then there exists countably many
projections (pn)n>0 in Z2(Q) such that 3, ~opn =1 and
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e poQ is amenable;

o Foralln > 1, p,Q is prime and does not have property Gamma.

Proof. We proceed in two steps.

STEP 1. Construction of the projections py,.

Naturally, take for pg the maximal projection in Z(Q) such that pp@ is amenable. Let us show
that (1 — pp)Z(Q) is discrete.

Otherwise one can find a projection p € Z(Q) with p < 1 — pg such that pZ(Q) is diffuse. Since
the action is mixing and pQ £ LI', Proposition 1 implies that pZ(Q) A LT'. Therefore
Corollary [[T.2.13] implies that pQ is amenable, which contradicts the fact that p <1 — py.

Thus we obtain (at most) countably many projections (py)n>0 such that po@) is hyperfinite, and
pn@ is a non-hyperfinite factor for all n > 1.

STEP 2. For any n > 1, p,@ does not have property Gamma and is prime.

We have to show that for every projection p € M, any non-hyperfinite subfactor N C pMp such
that N £ps LI is non-Gamma and prime.

Primeness. If N = N1 ® Ns, then N; and N, are factors, and one of them, say Ni, is non-
amenable. Hence Corollary implies that Ny <ps L. By Proposition [A.4.6]1, either N
is discrete or N <j; LI'. The only possible case is that Ns is discrete. So N is prime.

Non Property Gamma. Fix a free ultrafilter w on N. Put B = N' N N¥.

Since N C pMp has no amenable direct summand, Lemma and Theorem imply
that either N’ N (pMp)¥ C AY x T, or N <p; A or N <7 LT'. But the last two possibilities are
clearly excluded. We deduce that B C A x I

Assume by contradiction that the II;-factor IV has property Gamma, i.e. that B is diffuse. The
proof of [0z04, Proposition 7], shows that there exists a sequence of T-independent commuting
projections p, € N of trace 1/2, such that (p,) € N'N N¥, and if C = {p,|n € N}’ then
C’' N N is not amenable.

By Corollary we get that C' <p; LT

At this point, remark that the sequence of unitaries w,, = 2p, — 1 € U(C') converges weakly to
0, and that (w,) € N'N N¥ C A¥ x . The following claim leads to a contradiction.

Claim. For all z,y € M, lim, |Err(zwyy)|2 = 0.

Denote by uy € M, g € I' the unitaries implementing the action of I'. By linearity and density, it
suffices to prove the claim for x = auy, y = bug, for a,b € A, h,k € I'. Write w,, = der Qp,glg
and let ¢ > 0. Since (wy,) € A¥ x I, there exists F' € I finite such that

| Pr(wn) — wyll2 < Vn € N.

&
2|[allflo])”
Now we have:

1ELr(@Pr(wa)y) |13 = [7(aon(an,g)ong (b))
geF

= Z |7 (-1 (a)wnugyoy (b)) 2.

geF

This quantity can be made smaller than £2 /4 for n large enough, and we get that || Err (zwny)|le <
¢ for n large enough. That proves the claim and gives the desired contradiction. O
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Remark I1.2.21. Theorem is a von Neumann algebraic analogue of Theorem
However we added a mixing assumption in order to prove it. This mixing assumption can be
weakened to a relative mixing assumption though, see [Bol2, Theorem B].

I1.3 Position of well-normalized subalgebras

We continue our analysis of remarkable von Neumann subalgebras of the crossed product von
Neumann algebra by a mixing Gaussian action. The whole section will be devoted to proving
Theorem [II.3.1f which generalizes [Po06b, Theorem 4.2].

I1.3.1 Statement of the main result

Theorem I1.3.1. Consider a mizing Gaussian action I' ~ (X, p) of a discrete countable group
. Put A= L>(X,pu), and M = AxT. Assume that B C M is an abelian subalgebra which is
normalized by a sequence of unitaries v, € U(LT") such that v, — 0 weakly.

Then B'NM <3 A or B < LT.

For later use, let us mention a tensor product version of this result which we proved in [Bol3].
We also allow amplifications. The proof does not change much compared to that of Theorem
[1.3.1l It is a generalization of [Iolll Theorem 6.1] and [IPV13| Theorem 5.1], in the mixing
case.

Theorem 11.3.2. Fori = 1,2, consider mizing Gaussian actions I'; ~ A; of discrete countable
groups T';, and put M; = A; xT';, A= A1 ®As, ' =11 xI'y and

M:M1®M2:A>4F.

Let t > 0. Realize (LT')* € M" by fizing an integer n > t and a projection p € LT @ M, (C)
with trace t/n. Let D C M?! be an abelian von Neumann subalgebra, and denote by A" the
von Neumann algebra generated by the group of unitaries A = Ny (D) NU((LT)Y). Make the
following assumptions:

(i) A Ay LT'1 ® 1 and A A 1® LT's;

(i) D 4 L'y @ My and D 4y My ® LTs.
Denote by C' = D' N M. Then for all projections q € Z(C), Cq < A.

Bernoulli actions I' ~ A = AE)@F have a strong algebraic structure, given by the cylinders Ag@F ,
F C T finite. This structure was used via the so-called clustering property (see [Po06bl Section
1,2,3]), one of the main ingredients to prove the Bernoulli analogue of Theorem namely
[Po06bl, Theorem 4.2].

General mixing Gaussian actions do not have such an algebraic structure, but they are 2-mixing.
This 2-mixing property will allow to replace cylinders by general finite dimensional subspaces
of A.
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11.3.2 2-mixing property

Definition I1.3.3. A trace-preserving action I' % A of a countable group on an abelian von
Neumann algebra is said to be 2-mizing if for any a,b, c € A, the quantity 7(acy(b)ox(c)) tends
to 7(a)7(b)7(c) as g, h, g 'h tend to infinity.

Proposition I1.3.4. An action I' ~7 A is 2-mizxing if and only if for all a,b,c € A, one has

|7(acy(b)on(c)) = T(a)T(o4(b)an(c))| = 0,

when g — oo, h — oo.

Proof. The if part is straightforward. For the converse, assume that ¢ is 2-mixing. It is sufficient
to show that if a,b,c € A, with 7(a) = 0, then 7(aoy(b)op(c)) = 0, as g,h — oo.

Assume by contradiction that there exist sequences g, h, € I' going to infinity, and § > 0 such
that |7(aoy, (b)oy, (c))| > 6, for all n. Then two cases are possible:

Case 1. The sequence g, ' h,, is contained in a finite set. Then taking a subsequence if necessary,
one can assume that g, 'h, = k is constant. Then for all n, we get

7(aog, (b)op, (¢)) = 7(aoy, (boy(c)).

But since ¢ is mixing this quantity tends to 0 as n tends to infinity.

Case 2. The sequence g, 'h, is not contained in a finite set. Then taking a subsequence if
necessary, one can assume that g-'h, — oo when n — oo. Then the 2-mixing implies that
7(aog, (b)on,(c)) = 0.

In both cases, we get a contradiction. O

Of course any 2-mixing action is mixing. The converse holds for Gaussian actions.
Proposition 11.3.5. If ' ~7 A is the Gaussian action associated with a mizring representation

m on H, then o is 2-mizxing.

Proof. By a linearity/density argument, it is enough to prove that for all £,n,d € H, and all
sequences gn, h, € I' tending to infinity, one has

lim [7(w(&)oy, (w(n))on, (w(5))) — T(w(§))7(og, (wn))on, (w(5)))] =0,

n

where we used the notations of Definition [II.1.5 for w(&), w(n) and w(d). But we see that:

o 7(w(€)ag, (W(n)on, (w(8))) = exp([I€ + (gn)n + 7 (hn)d|1?);

o T(w(&)7(og, (W(m)on, (w(8))) = exp(=[I€]? — |7 (gn)n + 7(hn)d]|?).

The difference is easily seen to tend to 0. O
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11.3.3 Proof of Theorem [M1.3.1]

Let B C M be an abelian von Neumann subalgebra which is normalized by unitaries v, € LT’
such that the sequence (v,) converges weakly to 0. Assume that B £j; L' and that C :=
B'NnM 4y A.

We will proceed in two steps to get a contradiction. First we will collect properties regarding
the sequence (vy,) or sequences of the form (vhav)), a € B. Then we will derive a contradiction.
Before moving on to these two steps, we introduce some notations:

We denote by ug,g € I' the canonical unitaries in M implementing the action of I’

For any element x € M, we denote by x = der zgug (4 € A for all g € I') its Fourier
decomposition.

If S C T is any subset, denote by Ps : L>(M) — L?(M) the projection onto the closed
linear span of the vectors auy, a € A, g € S.

If K C Ais a closed subspace, we denote by Qx : L?(M) — L?(M) the projection onto
the closed linear span of the vectors auy, a € K, g € I'.

Step 1: Properties of the sequences (v,av})), a € D

Lemma I1.3.6. For any free ultrafilter w on N, and any a € B, the element (vpav)), € MY
belongs to A“ x T'.

Proof. Let a € B. Since v, € LT, the sequence (vn,av}), is (oy)-rigid in the sense of Definition
11.2.17| (we use the notations of Section . Assume that this sequence does not belong to
AY x T'. Since B C M commutes with the sequence (vnav)),, Theorem implies that
either B <3y LT or QN 3 (B)” < A. But C € QN (B)”, so both possibilities are excluded.
Hence (v,av)), € AY x T O

For an element z € M = LI, denote by h(x) the height of z: h(z) = sup,r |7y, where
x =) xgug is the Fourier decomposition of z.

Lemma I1.3.7. There exists 6 > 0 such that liminf,, h(v,) > 6.

Proof. Assume that the result is false. Taking a subsequence if necessary, we get that h(v,) — 0.
Then we claim that for all finite subset S C T, for all a € M & LT,

|| Ps(vnavy,)||2 — 0.

To prove this claim, it is sufficient to show that for any sequence of unitaries w, € U(LT"), and
all a € Ao Cl1,
| EA(vpawy,)||2 — 0.

Thus write v,, = der Un,gttg and wy = D, cp Wn pup. We get

EA(’Una/wn) = Z vn7gag(a)wn7971 :
g
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Fix ¢ > 0, and take F C T finite such that |7(o4(a)on(a*))| < €, as soon as g~ 'h ¢ F. A
computation gives :

1EA(vnawn)|3 =D vngtng-10nn®y p-17(0g(a)on(a"))

g,hel’

< Z Z Vn,gWh, g—10n kW, 1T (0g(a)op(a”)) + E(Z Vg, g-1])°
g€l hegF

<D ngngil Y hv)]all3 +e
gel hegF

< |F[h(vg)all3 + e

Which is smaller than 2¢, for n large enough. That proves the claim.
Now since B £ LI, there exists a € U(B) with ||Err(a)|l2 <1/3. For any S C I finite, we get :

[Ps(vnavy)ll2 < || Ps(vn(a — Err(a))vy)ll2 +1/3 < 2/3,

for n large enough, by the claim. This contradicts the fact that (v,av)) € AY x T O

We end this paragraph by a lemma that localizes the Fourier coeflicients of elements v,av), inside
A, for a particular (fixed) a € D. In fact, this lemma will be the starting point of our reasoning
by contradiction in Step 2 below, being the initialization of an induction process.

Lemma I1.3.8. There exists an a € U(B), a dy > 0, a finite dimensional subspace K C A© C1
and a sequence gy, € I' which converges to infinity, such that :

liminf [|v,av,, — Qg (k) (vnavy)|l2 < /1 — 5.

Proof. Put §; = liminf h(v,) > 0, and consider for all n, g, € I' such that |v, g, | = h(vy,). Since
(vp) converges weakly to 0, the sequence (g,,) goes to infinity with n. Moreover, one checks that

lim sup ||y, — Un g, Ug, |2 = /1 — 6%.
n

Take £ > 0 small enough so that y/1 — 67 +¢ < 1, and consider a € U(B) such that ||Err(a)|2 <
€.
Then one can find a finite dimensional space K C A© C1, such that |ja — Qx(a)||2 < e. Finally,
we get that v,av} is at distance at most /1 — 07 + € of vy g4, ug, Qi (a)v}, which belongs to

the image of the projection @, (k). Then we get the result with 9 > 0 defined by 1 — 62 =
(v/1-67+¢)% O
Step 2 : Derive a contradiction

Notation. For a finite subset F' C I', finite dimensional subspaces K1, Ko C A and A > 0,
define

(K1 % op(K2)]* = conv{aoy(b)|a € K1,b € Ka,g € F,||al2 < 1, [|bll2 < 1}.
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We have that [K; x op(K>2)]* is a closed convex subset C of A (being the convex hull of a compact
subset in a finite dimensional vector space). Then the set C consisting of vectors & € L?(M)
whose Fourier coefficients £, = (£,u,) (g € I') belong to C is a closed convex subset of L?(M).
Hence one can define the orthogonal projection onto this set Q¢ : L*(M) — L?(M) as follows.
For z € L?(M), Qc(z) is the unique point of C such that

[z — Qc(x)|| = inf ||z — y].
yeC

Note that the restriction of Q¢ to L?(A) is equal to the orthogonal projection onto C, and that
QC(deF Tgug) = der Qc(zg)ug.

Remark I1.3.9. This notation is consistent with the previous notation Qg: If K C A is a finite
dimensional subspace, then Qg (a) = Qc¢(a), where C = [C1 X oy (K)]* as soon as A > |lall2.

Before getting into the heart of the proof, we check some easy properties of these convex sets.

Lemma I1.3.10. Fiz A > 0 and finite dimensional subspaces K1, Ko C A. Then there exists a
constant > 0 such that for all finite F C T, and all x € [K1 x op(K2)],

2]l < .

Proof. Since K, and K are finite dimensional, there exists a constant ¢ > 0 such that ||al|s <
c|lallz for all @ € K7 or a € K. One sees that k = Ac? satisfies the conclusion of the lemma. [

Lemma I1.3.11. For finite subsets F, F' C T, and finite dimensional subspaces K1, Ko, K|, K} C
A and A\, > 0, we have

(K1 x op(K2)]* + [K] x o (K3)[Y C (K1 + K1) x opum (Ka + Kp)] Y.
Proof. This is straightforward. O

The following lemma is the key of the proof, and yields the contradiction we are after. Indeed,
using Lemmall1.3.8] and iterating Lemmal[lI.3.12|enough times, we get the absurd statement that
there exist unitaries a,, = v,av}, and elements b, of the form Q¢, (a,) such that limsup,, ||a, —
bn||3 is negative.

Lemma I1.3.12. Fiz a € U(B) and put a, = vpav), for all n. Assume that there exists a
sequence of finite subsets F,, C I, finite dimensional subspaces K1 C A, Ko C A6C1, A >0
and § > 0 such that:

e sup, |F,| < oo and F,, — oo (meaning that for all g € T'1, g ¢ F,, for n large enough);

e limsup, |la, — Qc, (an)||3 < ||pl|3 — 62, where C,, = [K7 X aFn(KQ)]/\.

Then there exists a sequence of finite subsets F|, C T, finite dimensional subspaces K| C A,
K} c Ao Cl1, and N > 0 such that:

e sup, |F)| < oo and F), — oo;

e limsup, ||a, — Qca(an)H% < Hp||% —362/2, where C!, = [K{ x UFT/L(KQ)]’\I.
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Proof. Let a, ayn, F,, K1, K2, A, § and C, be as in the lemma. Fix ¢ > 0, with ¢ < §. By
Lemma [I1.3.6/ one can find S C T finite such that ||a, — Ps(a,)||2 < ¢, for all n. Hence we get
that limsup, lan — Ps o Qc, (an) 2 < v/[pJE— 02 +<.

Now following Ioana’s idea (see the proof of [Iol1l Theorem 5.2] and also the end of the proof of
[Valll Theorem 14.1] for a more clear exposition of this idea), we will consider an element d €
U(C) with sufficiently spread out Fourier coefficients so that for n large enough, d(PsoQc¢, (an))d*
is almost orthogonal to Pg o Q¢, (a,), while it is still close to a, = da,d*. Then the sum
d(Ps o Qc, (an))d* + Ps o Q¢, (ay) should be even closer to ay,.

Let o > 0 be a (finite) constant such that ||z|ec < afz||2, for all z € K. Since Ky C A6 C1 is
finite dimensional, the set

L={geTl|3abe Ky, a2 <1,[bll2 < 1:|{g4(a),b)] > c/|S|*\?a’}

is finite. Hence for all n, L, = Uy ncr, gLh~! is finite, with cardinality smaller or equal to
|Fy|?|L|, which is itself majorized by some N, not depending on n.

Since C' £ A, Ioana’s intertwining criterion (Lemma [A.3.6)) implies that there exists d € U(C)
such that ||Pr(d)|2 < e/k|S|, whenever |F| < N, where  is given by Lemma [[1.3.10] applied to
l(l,JKQ and .

By Kaplansky’s density theorem, one can find dy,d; € M, and T' C T finite such that:
o di = Pr(d;),i=1,2;
o |ldo — dllz < min(e, e/x]S]), lldr — d*z < e

o |dillo <1,i=1,2.

Since a,, € B for alln and d € C = B'NM, we have da,d* = a,,. Thus for all n, ||a, —dpa,d;||2 <
2¢, and so

limsup ||a,, — do(Ps o Qc, (an))d1ll2 < +/|Ipl|3 — 02 + 3e. (11.9)
Now, for all n, put 7,, =T\ L,. By definition of d and dy, we have
ldo — Pr,(do)ll2 < [|PL,, (do)ll2 < [[Pr, (d)[|2 + &/k|S| < 2¢/k|S] (I1.10)

Notice that ||Ps o Qc,, (an)|leo < k|S|. Together with (I1.9) and (II.10]), this implies that
limsup |lan — Pr, (do)Ps o Qc, (an)dill2 < 1/|[pl|3 — 02 + 5e.
n

Denote by z, = Ps o Qc¢, (ayn) and y, = Pr, (dp)Ps o Qc, (an)d;.
We want to show that limsup,, |(zn, yn)| is small.

Write dy = deT do,glg, Gn = D Gp pp, and dy = Y, dy pug. We get

nszn) = D T(dogog(Qc, (ann))ogn(dir)Qe, (angnr)*)
g€Tn ,heSkeT
ghkesS
= Y yerym(dogogn(dik)og(Qc, (any))Qe, (anghi)®)-

g€T heS,keT
ghkeS
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Claim. For all fixed z,y € A, and g € T, there exists ng such that for all n > ng, and all
a,beCy,
|1gery7(@yog(a)b”))] < 2ellzllz[lyll2/[S]>.

To prove this claim, first recall that for all n, C, = [K; x og, (K2)]*. Denote by
Ky = span{zyo,(a)b*,a,b € K;}.

Since K7 and K5 have finite dimension and since F,, — oo, Proposition [[1.3.4 implies that there
exists ng such that for n > ng, and for all s,t € F}, one has

_sup |7 (a0gs(D)at(c*)) — T(a)T(0gs(b)or(¢")| < ellz|2llyll2/[SIPA%. (IL11)
a€Ky,[lall2<1
b,ceK>,||b]|2<1,||c|l2<1

Thus take n > ng. By definition of C,, it is sufficient to prove that for all a,b € K1, ¢,d € Ko,
with [|a||2, [|b]|2, |lc]l2, [|d]]2 < 1, and all s,t € F,,

|1gery7(@yog(Aaos(e)Ab*or(d))| < 2¢z2llyll2/|SI.
We can assume that g € T,,. An easy calculation gives

|7 (zyog(Aaos(e)Ab*ou(d%))] < ellzll2llyll2/|S* + N[ (zyoy(a)b™)7(ogs(c)oe(d))]
< ellzl2llyll2/1S1 + Nllzll2llyllzllallcblloce/|S2X%0”
< 2¢|zl2llyll2/1SI,
where the first inequality is deduced from while the second is because g ¢ L,. So the
claim is proved.
Now we can estimate |(zy, yn)|, for n large enough.

(zn )l < D genyT(dogogn(dip-14-15)04(Qc, (@nn)Qc, (anw)")|
geT,heS,k'eS

< > 2ldogllalldip-rg-wll2/ISP
geT,heS,k'eS

< 2el|dp||2ld1]]2 < 2e.

Therefore, we obtain:

e limsup,, ||a, — xn2 < /|Ipll3 — 6% + &5

e limsup,, [|an — ynll2 < /I|plI3 — 62 + 5e;

e limsup,, [(zn, yn)| < 2¢.

Thus using the formula
lz = (y + 2)3 = llz = ylI3 + |z — 2[5 = l|2[I3 + 2R(y, 2),

one checks that limsup,, [|a, — (zn + yn)||3 < |Ipll3 — 30%/2, if € is small enough. Let us show

that x,, + y, belongs to some C/, as in the conclusion of lemma.
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Observe that

Yn = Z do,g0gn(d1,k)04(Qc, (an,n))ughk-
gGTthS:kET

So let us check that g, has its Fourier coefficients in the convex set [Ko x o p, (K2)]M9I171, where
Ko = span{do go4n(di 1)o4(c),c € Ki1,9,k € T, h € S} has finite dimension.

Fix n € N, and s € I'. Denote by y, s = Ea(ynul). We have

Yn,s = Z dO,gUgh (dl,k)ag(QCn (an,h))'

g€Tn heS,keT
ghk=s

Thus it is a convex combination of terms of the form

T = Z do,g0gn(d1k)og(Aayoy, (by))

geT,heS,keT
ghk=s

1
=g 2. 1SIITldogogn(di)og(Aanow, (bn)).

| || ‘gGT,hGS,kGT
ghk=s

for elements ap, € Ki, by € Ko, with ||ap||2, ||br]le < 1 and ¢, € F,, for all h € S. But
such terms 7 are themselves convex combinations of elements of the form A|S||T|xoy(y), with
T e K(]vy € K27 HxH27 HyH2 <1 and gt € TF’fl

Therefore, as pointed out in Lemma [I1.3.11} z,, + y,, has Fourier coefficients in C], = [K] x
or (K5, with K| = K1 + Ko, K = Ko, N = XA+ A\|S||T|, and F, = F, UTF,.

We conclude that:
lan — Qcr (an)|3 < |Ipll5 — 36%/2,

which proves the lemma. ]
The proof of Theorem is complete. O
The following question on a possible generalization of Theorem seems to be interesting.

Question I1.3.13. Consider a mizing Gaussian action I' ~ (X, p) of a discrete countable group
I'. Put A= L>*(X,u), and M = A xT. Assume that B C M is an abelian subalgebra which is
normalized by a sequence of unitaries v, € U(M) such that:

e the deformation (oy); converges uniformly on the set {v,, n € N}.

o (vy) goes weakly to O relative to A: ||[Ea(xvyy)ll2 — 0 for all z,y € M.

Is it true that either BN M <3 A or B <y LT'?

I1.4 W*-rigidity

In this section we are interested in W*-rigidity results for Gaussian actions.

As explained in the introduction (Section, WH-rigidity results are obtained by combining OE-
rigidity results, and structural results for Cartan subalgebras in the associated crossed product.
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11.4.1 Popa’s OE-superrigidity results

Using the malleability property of Gaussian actions described above, Popa managed to prove
the following striking OE-superrigidity theorems.

Theorem I1.4.1 ([Po07a], Theorem 0.3). Assume that T’ is an ICC group which admits an
infinite normal subgroup with the relative property (T).

Then any mizing Gaussian action of I' is OFE-superrigid.

Theorem I1.4.2 ([Po0§|, Corollary 1.3). Assume that I' = T’y x 'y is an ICC group, with

I'1 non-amenable and Ty infinite. Consider a mizing representation m such that ©®F is weakly
contained in the reqular representation for some k > 1.

Then the Gaussian action of I' associated with w is OE-superrigid.

11.4.2 First W*-rigidity results

With the work of Section [LI.3| we are able to generalize many W*-rigidity results about Bernoulli
actions to general mixing Gaussian actions.

The first W*-rigidity result was [Po06b, Theorem 0.1]. We generalize this result as follows.

Theorem 11.4.3. Let I and A be two ICC countable discrete groups, and let m : T' — O(H) be
a mizing orthogonal representation of I'. Make one of the following two assumptions:

(i) either A admits an infinite normal subgroup Aoy such that the pair (A, Ag) has the relative
property (T);

(ii) or A = Ay X Ag, with Ay non-amenable and Az infinite, and some tensor power of 7 is
weakly contained in the regular representation.

Denote by I' ~ (X, u) the Gaussian action associated with m and consider a measure preserving
action A ~ (Y, v).

If there exists a *-isomorphism L™ (Y,v) x A ~ (L>°(X,u) x T)t for some 0 <t <1, thent =1
and the actions are conjugate.

Proof. Put A =L>®(X,u), B=L>®(Y,v), M = AxT and N = B x A. By assumption, we have
an identification N = pMp, with p € M a projection with trace t. We can assume that p € A.
We use the deformation (a;) of M from Section [II.2.1

STEP 1. There exists a unitary v € M such that uLAu* C LI

In case (i), we see that LAg is (ay)-rigid inside pMp. In case (ii), spectral gap rigidity implies
that LAg is (ay)-rigid inside pMp.

In both cases, since A is non amenable, Corollary implies that there exists a unitary
u € M such that uLAu* C LI

STEP 2. The Cartan subalgebras B and pA in N = pMp are unitarily conjugate.

Put ¢ = upu*. Note that uBu* is normalized by the unitary elements uvsu* € N, g € A. Since
uLAu* C LT, a corner version of Theorem [I[1.3.1] implies that either (uBu*)' N gMgq < A or
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uBu* < LT'. The latter case is impossible because Proposition [A.4.6/1 would further imply that
pMp = N < LT', which is clearly not true.

Therefore, we get uBu* = (uBu*)' N g¢Mgq < A and then B <y, pA, which implies that these
two Cartan subalgebras of pMp are conjugate by Theorem

STEP 3. Conclusion.
One concludes with Popa’s conjugacy criterion [Po06bl Theorem 5.2]. O
Remark I1.4.4. In fact, the conclusion of our proof relies on Popa’s conjugacy criterion which

implies a more accurate result: any isomorphism ¢ : L>(X, u) x I' = L*(Y,v) x A comes from
a conjugacy of the action in the sense that ¢ = Ad(u) o ¢7 0 ¢, where u € U(M) and:

e v :I' = C is a character and ¢ (auy) = v(g)au, for all a € L*(X, pn), g € T

e 0 : ' — Ais a group isomorphism and A : (X,u) — (Y,v) is a measure-preserving,
bi-measurable isomorphism such that A(gz) = §(g)A(x) for a.e. x € X and all g € T.
Finally, ¢**(au,) = (a o AN for a € L®(X, ), g € T.

Theorem gives in particular a classification of all IT-factors arising from mixing Gaussian
actions of property (T) groups. It clearly implies that the fundamental group of such factors is
trivial.

Being more accurate in the proof (see Remark|I1.4.4]), we could also describe all *-endomorphisms
of A x T for Gaussian actions I' ~ A such that

e the initial representation is mixing and has some tensor power which is weakly contained
in the regular representation;

e ' =T; x I'y, with I'y non-amenable, Iy is infinite, and I" is ICC and has CMAP (or is
weakly amenable).

The precise statement and its proof are similar to [Iol1l, Theorem 10.5], with the update [Oz12]
allowing to replace the CMAP assumption by weak amenability.

11.4.3 W*-superrrigidity for mixing Gaussian actions

Instead of classifying crossed product II;-factors inside a specific class, a natural (but much
harder) question is the W*-superrigidity question: is there an explicit class of crossed-product
II;-factors M such that an x-isomorphism of M with any other crossed-product von Neumann
algebra implies conjugacy of the actions?

In other words, can one put all the assumptions “on the same side”?
The following theorem is our most general W*-rigidity result. It generalizes similar results for

Bernoulli actions [Iol1l Theorem A] and [IPV13, Theorem 10.1].

Theorem I1.4.5. Let I be an ICC countable discrete group, and let w : ' — O(HRg) be a mizing
orthogonal representation of I'. Make one of the following two assumptions:

(i) T' admits an infinite normal subgroup Iy such that the pair (I',T) has the relative property

(T);
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(i) T is a non-amenable product of two infinite groups and ™ admits a tensor power which is
weakly contained in the reqular representation.

Let T ~ A be the Gaussian action associated with m and put M = AxI'. Let A ~ B be another
free ergodic pmp action on an abelian von Neumann algebra, and put N = B x A.

If for somet > 1, M ~ Nt thent =1, T ~ A and the actions T ~ A and A ~ B are conjugate.
In particular, T ~ A is W*-superrigid.

Note that this implies that t-amplifications of M as in the theorem, ¢ > 1, are never isomorphic
to crossed-product von Neumann algebras. This feature was already observed by Ioana ([Tol1])
in the case of Bernoulli actions. In the same vein, he proved that if I" is as in case (i) and
is torsion free, then no non-trivial amplification of A x I" (for the Bernoulli action ' ~ A) is
isomorphic to a (twisted) group von Neumann algebra. In the next section, we investigate the
Gaussian case and we show that even M itself cannot be isomorphic to a group von Neumann
algebra, for some Gaussian actions I' ~ A.

With Theorem in hand, the proof of Theorem is very similar to what was done in
the Bernoulli case, [IPV13, Theorem 10.1]. Since it is very technical, we only roughly explain
the main steps of it; we refer to [Bol3l Section 4] and to the proof of [[PV13| Theorem 10.1] for
technical details.

Steps of the proof of Theorem[II.4.5. Let I' ~ X be a Gaussian action as Theorem As-

sume that A ~ (Y, v) is another pmp, free ergodic action such that
L¥(X)x [~ L®(Y) x AP

Put A=L®(X), B=L®(Y)and M = AxT.

Thanks to Popa’s orbit equivalence superrigidity theorems (Theorem [I1.4.1{and Theorem [I1.4.2)),
we only need to show that the two actions are orbit equivalent. More concretely, with the results
of Feldman and Moore [FMT77] it is enough to prove that B is unitarily conjugate to A inside
M.

The main idea of the proof, due to loana, is to exploit the information given by the isomorphism
M =~ B x A via the dual co-action])]
A:M — MM
bvg — bus @ vg,

be B, s (vs, s €A, denote the canonical unitaries corresponding to the action of A). This

morphism A allows us to play against each other two data of the single action I' ~ X: the
rigidity of A(LT"), and the malleability of the algebra M @ M = (A® A) x (I' x I).

Assume that B is not unitarily conjugate to A, or equivalently that B Aj; A by Theorem [A.3.5]
The following four steps lead to a contradiction, compare with the proof of Theorem |[1.4.3

STEP 1. There exists a unitary u € M ® M such that

uA(LT)u* ¢ LT ® LT

2We assume for simplicity that we are in the case t = 1.
3This morphism were also introduced by Popa and Vaes in [PV10a, Lemma 3.2].
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This can be deduced from a tensor product version of Corollary exactly as in the proof
of Step 1 of
STEP 2. The algebra C := A(A)' N (M ® M) satisfies

C '<M@M ARQA.

Indeed, the algebra uA(A)u* is normalized by the unitaries uA(uy)u* C LI'® LI, g € T.
Applying Theorem it is not too hard to prove Step 2.

STEP 3. The previous steps, and an enhanced version of Popa’s conjugacy criterion [PoOGb),
Theorem 5.2] (namely [[PV13, Theorem 6.1, Corollary 6.2]) roughly imply that there exists a
unitary v € M ® M, a group homomorphism 6 : I' — I" x I, and a character w : I' — C such
that

vCv* = A® A and vA(uy)v* = w(g)usy), Vg € T.

STEP 4. Conclusion.

Using Step (3), one can now show that if a sequence (z,) in M has Fourier coefficients (with
respect to the decomposition M = A xT") which tend to zero pointwise in norm ||-[|2, then this is
also the case of the sequence A(zy,), with respect to the decomposition M @ M = (M @ A) x T
This easily contradicts the fact that B £p; A. O

11.4.4 An application to group von Neumann algebras

We construct here a large class of II; factors which are not stably isomorphic to group von
Neumann algebras.

Our examples are crossed-product von Neumann algebras of Gaussian actions associated with
representations 7 as in Theorem [[I.4.5] with the extra-assumption that 7 is not weakly contained
in the regular representation.

Whenever 7 is the regular representation, then the corresponding factor is of course a group
factor, but Ioana, Popa and Vaes showed that all other amplifications are not isomorphic to
group factors [[PV13, Theorem 8.2] (see also [Iol1, Corollary 10.1]). Thanks to Theorem [[1.3.2]
their result is also true for the representations 7 that we consider. So we only have to show that
the factor itself is not a group factor.

Theorem 11.4.6. Let T and w : T' — O(H) be as in Theorem |[1.4.5. Assume moreover that
itself is not contained in a direct sum AT of copies of the left-reqular representation.

Let I' 7 A be the Gaussian action associated with m and put M = AxT'. Then M is not stably
isomorphic to a group von Neumann algebra.

Proof. Assume by contradiction that M ~ LA? for some ¢ > 0. Then adapting the proof of
[[PV13, Theorem 8.2], we get that ¢ = 1, and A ~ X x I, for some infinite abelian group ¥ and
some action I' ~ ¥ by automorphisms. Moreover, the initial Gaussian action o is conjugate to
the action of I on LX.

Now, since o is mixing, the action I' ~ ¥\ {e} has finite stabilizers. But then the representation
I' ~ 2(2\ {e}) is a direct sum of quasi-regular representations of the form I' ~ ¢2(T'/Ig),
where ['g is a finite subgroup of I'. But such quasi-regular representations are all contained in
the regular representation.
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So we conclude that that the Koopman representation I' ~ L?(A) © C1 is contained in a direct
sum of copies of the regular representation. Thus this is also the case of the sub-representation
7, which is excluded by assumption. O

By Proposition we know that for each n > 3, SL(n,Z) admits a representation as in
Theorem C. Thus we obtain the existence of a II; factor M,,, which is not stably isomorphic to
a group von Neumann algebra. But using Theorem we get that the M,,’s are pairwise
non-stably isomorphic : M, % (My,)!, Vt > 0, Vn # m.



Chapter 111

Amalgamated free product type III
factors with at most one Cartan
subalgebra

This Chapter is based on a joint work with Cyril Houdayer and Sven Raum [BHRI14]. We
investigate Cartan subalgebras in nontracial amalgamated free product von Neumann algebras
Mj xg My over an amenable von Neumann subalgebra B. First, we settle the problem of the
absence of Cartan subalgebra in arbitrary free product von Neumann algebras. Namely, we
show that any nonamenable free product von Neumann algebra (M7, 1) * (M2, p2) with respect
to faithful normal states has no Cartan subalgebra. This generalizes the tracial case that was
established in [lo(12)a]. Next, we prove that any countable nonsingular ergodic equivalence
relation R defined on a standard measure space and which splits as the free product R = R1*Ro
of recurrent subequivalence relations gives rise to a nonamenable factor L(R) with a unique
Cartan subalgebra, up to unitary conjugacy. Finally, we prove unique Cartan decomposition for
a class of group measure space factors L>(X) x I" arising from nonsingular free ergodic actions
I' ~ (X,pu) on standard measure spaces of amalgamated groups I' = T'; #x I'y over a finite
subgroup .
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I11.1 Introduction and main results

A Cartan subalgebra A in a von Neumann algebra M is a unital maximal abelian x-subalgebra
A C M such that there exists a faithful normal conditional expectation E4 : M — A and such
that the group of normalizing unitaries of A inside M defined by Ny (A) = {u € U(M) : vAu* =
A} generates M.

By a classical result of Feldman and Moore [FMT77], any Cartan subalgebra A in a von Neumann
algebra M with separable predual arises from a countable nonsingular equivalence relation R on
a standard measure space (X, ) and a 2-cocycle v € H?(R, T). Namely, we have the following
isomorphism of inclusions

(AC M) = (L™®(X) C L(R,v)).

In particular, for any nonsingular free action I' ~ (X, ) of a countable discrete group I' on a
standard measure space (X, u), L>(X) is a Cartan subalgebra in the group measure space von
Neumann algebra L (X) x T'.

The presence of a Cartan subalgebra A in a von Neumann algebra M with separable predual
is therefore an important feature which allows to divide the classification problem for M up to
x-isomorphism into two different questions: uniqueness of the Cartan subalgebra A inside M up
to conjugacy and classification of the underlying countable nonsingular equivalence relation R
up to orbit equivalence.

In [CEFWRI], Connes, Feldman and Weiss showed that any amenable countable nonsingular
ergodic equivalence relation is hyperfinite and thus implemented by an ergodic Z-action. This
implies, together with [Kr76], that any two Cartan subalgebras inside an amenable factor are
always conjugate by an automorphism.

The uniqueness of Cartan subalgebras up to conjugacy is no longer true in general for nona-
menable factors. In [CJ82], Connes and Jones discovered the first examples of II; factors with
at least two Cartan subalgebras which are not conjugate by an automorphism. More concrete
examples were later found by Popa and Ozawa in [OP10b]. We also refer to the recent work of
Speelman and Vaes [SV12] on II; factors with uncountably many non (stably) conjugate Cartan
subalgebras.

In the last decade, Popa’s deformation/rigidity theory [Po06al [Po06bl [Po06c] has led to a lot
of progress in the classification of II; factors arising from probability measure preserving (pmp)
actions of countable discrete groups on standard probability spaces and from countable pmp
equivalence relations. We refer to the recent surveys [Po07b, [ValOal, lo(12)b] for an overview of
this topic.

We highlight below three breakthrough results regarding uniqueness of Cartan subalgebras in
nonamenable II; factors. In his pioneering article [Po06¢c], Popa showed that any rigid Cartan
subalgebra inside group measure space II; factors L*°(X) x F,, arising from rigid pmp free
ergodic actions F,, ~ (X, u) of the free group F,, (n > 2) is necessarily unitarily conjugate to
L°(X). In [OP10a], Ozawa and Popa proved that any compact pmp free ergodic action of the
free group F,, (n > 2) gives rise to a II; factor L*°(X) x [F,, with unique Cartan decomposition,
up to unitary conjugacy. This was the first result in the literature proving the uniqueness of
Cartan subalgebras in nonamenable II; factors. Recently, Popa and Vaes [PV (12)] proved that
any pmp free ergodic action of the free group F,, (n > 2) gives rise to a II; factor L>(X) x F,
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with unique Cartan decomposition, up to unitary conjugacy. We refer to [OP10bl, [Hol0, [CS13,
CSU13, |PV(13), [HV13, Io(12)a] for further results in this direction.

Very recently, using [PV(12)], Ioana [Io(12)a] obtained new results regarding the Cartan decom-
position of tracial amalgamated free product von Neumann algebras M; xp Ms. Let us highlight
below two of Ioana’s results [Io(12)a]: any nonamenable tracial free product M * Ms has no Car-
tan subalgebra and any pmp free ergodic action I' ~ (X, 1) of a free product group I' = T'; Iy
with |I';| > 2 and |I'y| > 3 gives rise to a II; factor with unique Cartan decomposition, up to
unitary conjugacy.

In the present paper, we use Popa’s deformation/rigidity theory to investigate Cartan subalge-
bras in nontracial amalgamated free product (AFP) von Neumann algebras M; g Ms over an
amenable von Neumann subalgebra B. We generalize some of Ioana’s recent results |lo(12)a]
to this setting. The methods of proofs rely on a combination of results and techniques from
[PV (12), HV13] lo(12)a].

Statement of the main results

Using his free probability theory, Voiculescu [Vo96] proved that the free group factors L(Fy,)
(n > 2) have no Cartan subalgebra. This exhibited the first examples of II; factors with no
Cartan decomposition. This result was generalized later in [Ju07] to free product II; factors
M7 % My of diffuse subalgebras which are embeddable into R“. Finally, the general case of
arbitrary tracial free product von Neumann algebras was recently obtained in [Io(12)a] using
Popa’s deformation/rigidity theory.

The first examples of type III factors with no Cartan subalgebra were obtained in [Shl00] as a
consequence of [Vo96]. Namely, it was shown that the unique free Araki-Woods factor of type
III (0 < A < 1) has no Cartan subalgebra. This result was vastly generalized later in [HR11]
where it was proven that in fact any free Araki-Woods factor has no Cartan subalgebra.

Our first result settles the question of the absence of Cartan subalgebra in arbitrary free product
von Neumann algebras.

Theorem III.A. Let (M, 1) and (Ma,p2) be any von Neumann algebras with separable pre-
dual endowed with faithful normal states such that dim My > 2 and dim My > 3. Then the free
product von Neumann algebra (M, ) = (M, p1) * (Ma, p2) has no Cartan subalgebra.

Observe that when dim M; = dim Ms = 2, the free product M = M; * M is hyperfinite by
[Dyk93 Theorem 1.1] and so has a Cartan subalgebra. Note that the questions of factoriality,

type classification and fullness for arbitrary free product von Neumann algebras were recently
settled in [Uell]. These results are used in the proof of Theorem [III.A

We next investigate more generally Cartan subalgebras in nontracial AFP von Neumann algebras
M = Mj xg My over an amenable von Neumann subalgebra B. Even though we do not get a
complete solution in that setting, our second result shows that, under fairly general assumptions,
any Cartan subalgebra A C M can be embedded into B inside M, in the sense of Popa’s
intertwining techniques. We refer to Section for more information on these intertwining
techniques and the notation A <3; B. Recall from [HV13| Definition 5.1] that an inclusion of
von Neumann algebras P C M has no trivial corner if for all nonzero projections p € P’ N M,
we have Pp # pMp.
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Theorem IIL.B. Fori € {1,2}, let B C M; be any inclusion of von Neumann algebras with
separable predual and with faithful normal conditional expectation E; : M; — B. Let (M, E) =
(M, Ey) xp (Ma, E3) be the corresponding amalgamated free product von Neumann algebra.
Assume that B is a finite amenable von Neumann algebra.

Assume moreover that:

o FEither both My and My have no amenable direct summand.

e Or B is of finite type I, My has no amenable direct summand and the inclusion B C Mo
has no trivial corner.

If AcC M is a Cartan subalgebra, then A <;; B.

A similar result was obtained for tracial AFP von Neumann algebras in [lo(12)a, Theorem 1.3].

The first examples of type I1I factors with unique Cartan decomposition were recently obtained in
[HV13]. Namely, it was shown that any nonamenable nonsingular free ergodic action I' ~ (X, u)
of a Gromov hyperbolic group on a standard measure space gives rise to a factor L>(X) x T’
with unique Cartan decomposition, up to unitary conjugacy. This generalized the probability
measure preserving case that was established in [PV(13)].

In order to state our next results, we need to introduce some terminology. Let R be a countable
nonsingular equivalence relation on a standard measure space (X, ) and denote by L(R) the
von Neumann algebra of the equivalence relation R ([FM77]). Following [Ad94], Definition 2.1],
we say that R is recurrent if for all measurable subsets &« C X such that p(U) > 0, the set
[x]r NU is infinite for almost every x € Y. This is equivalent to saying that L(R) has no type
I direct summand. We then say that a nonsingular action I' ~ (X, ) of a countable discrete
group on a standard measure space is recurrent if the corresponding orbit equivalence relation
R(I' ~ X) is recurrent.

Our next result provides a new class of type I1I factors with unique Cartan decomposition, up to
unitary conjugacy. These factors arise from countable nonsingular ergodic equivalence relations
‘R which split as a free product R = R xR of arbitrary recurrent subequivalence relations. We
refer to [Ga00, Definition IV.6] for the notion of free product of countable nonsingular equivalence
relations.

Theorem III.C. Let R be any countable nonsingular ergodic equivalence relation on a standard
measure space (X, p) which splits as a free product R = Rq * Ra such that the subequivalence
relation R; is recurrent for all i € {1,2}.

Then the nonamenable factor L(R) has L*°(X) as its unique Cartan subalgebra, up to unitary
conjugacy. In particular, for any nonsingular ergodic equivalence relation S on a standard
measure space (Y,n) such that L(R) = L(S), we have R = S.

Observe that Theorem generalizes [[o(12)a, Corollary 1.4] where the same result was
obtained for countable pmp equivalence relations under additional assumptions. Note that in
the case when R is nowhere amenable, that is, L(R1) has no amenable direct summand and
Ro is recurrent, Theorem is a consequence of Theorem and [HV13| Theorem 2.5].
However, Theorem [[IL.B| does not cover the case when both Ry and R are amenable. So, in
the setting of von Neumann algebras arising from countable nonsingular equivalence relations,
Theorem [[II.C| is a generalization of Theorem [[IL.B|in the sense that we are able to remove the
nonamenability assumption on M; = L(Rq).



II1.1. INTRODUCTION AND MAIN RESULTS 65

Finally, when dealing with certain nonsingular free ergodic actions I' ~ (X, u) of amalgamated
groups I'1 x5 I's, we obtain new examples of group measure space type III factors with unique
Cartan decomposition, up to unitary conjugacy.

Theorem III.D. Let' =I'1 xxI's be any amalgamated free product of countable discrete groups
such that ¥ is finite and T'; is infinite for all i € {1,2}. Let T' ~ (X, p) be any nonsingular
free ergodic action on a standard measure space such that for all i € {1,2}, the restricted action
Ly ~ (X, p) is recurrent.

Then the group measure space factor L°(X) x T' has L>°(X) as its unique Cartan subalgebra,
up to unitary conjugacy.

Observe that Theorem |[I1I.D|generalizes the probability measure preserving case that was estab-
lished in [Io(12)a, Theorem 1.1].

In the spirit of [HV13, Corollary B], we obtain the following interesting consequence. Let
I' = I'y *xI'y be an arbitrary free product group such that I'y is amenable and infinite and
IT'2| > 2. Then we get group measure space factors of the form L°°(X) x I with unique Cartan
decomposition, having any possible type and with any possible flow of weights in the type Il
case.

We finally mention that, unlike the probability measure preserving case [Io(12)a, Theorem 1.1],
the assumption of recurrence of the action I'; ~ (X, u) for all ¢ € {1,2} is necessary. Indeed,
using [SV12], we exhibit in Section a class of nonamenable infinite measure preserving free
ergodic actions I' ~ (X, u) of free product groups I' = I'; % I'y such that the corresponding
type Il group measure space factor L°°(X) x I' has uncountably many non conjugate Cartan
subalgebras.

Comments on the proofs

As we already mentioned above, the proofs of our main results rely heavily on results and
techniques from [PV (12), [HV13l lo(12)a]. Let us describe below the main three ingredients
which are needed. We will mainly focus on the proof of Theorem [[TI.A]

Denote by (M, ¢) = (M1, ¢1) * (M2, ¢2) an arbitrary free product of von Neumann algebras as
in Theorem [[IT.A] For simplicity, we may assume that M is a factor. In the case when both M
and M, are amenable, M is already known to have no Cartan subalgebra by [HR11, Theorem
5.5]. So we may assume that M; is not amenable. Using [Dyk93] [Uell], we may further assume
that M; has no amenable direct summand and My # C. By contradiction, assume that A C M
is a Cartan subalgebra.

We first use Connes-Takesaki’s noncommutative flow of weights [Co73l, [CT77, [Ta03] in order
to work inside the semifinite von Neumann algebra c(M) which is the continuous core of M.
We obtain a canonical decomposition of ¢(M) as the semifinite amalgamated free product von
Neumann algebra c(M) = c(Mi) *p,wr) ¢(Mz). Moreover c(A) C c(M) is a Cartan subalgebra.

Next, we use Popa’s intertwining techniques in the setting of nontracial von Neumann algebras
that were developed in [HV13], Section 2]. Since A is diffuse, we show that necessarily c¢(A) Aq(ar)

L(R) (see Proposition [I11.2.10)).

Finally, we extend Ioana’s techniques from [lo(12)al Sections 3,4] to semifinite AFP von Neu-
mann algebras (see Theorems [[I1.3.4] and [III.4.1). The major difference though between our
approach and Ioana’s approach is that we cannot use the spectral gap techniques from [lo(12)a,




66 CHAPTER III. AFP WITH AT MOST ONE CARTAN SUBALGEBRA

Section 5]. The main reason why Ioana’s approach cannot work here is that c¢(M) is not full
in general even though M is a full factor. Instead, we strengthen [Io(12)a, Theorem 4.1] in the
following way. We show that the presence of the Cartan subalgebra c(A) C ¢(M) which satisfies
c¢(A) Zcary L(R) forces both ¢(Mp) and c(Mz) to have an amenable direct summand. Therefore,
both M; and M> have an amenable direct summand as well. Since we assumed that M7 had no
amenable direct summand, this is a contradiction.

II1.2 Preliminaries

Since we want the paper to be as self contained as possible, we recall in this section all the
necessary background that will be needed for the proofs of the main results.

I111.2.1 Intertwining techniques

All the von Neumann algebras that we consider in this paper are always assumed to be o-finite.
Let M be a von Neumann algebra. We say that a von Neumann subalgebra P C 1pM1p is
with expectation if there exists a faithful normal conditional expectation Ep : 1pM1p — P.
Whenever V C M is a linear subspace, we denote by Ball(V) the unit ball of V with respect to
the uniform norm || - ||c. We will sometimes say that a von Neumann algebra (M, ) is tracial
if M is endowed with a faithful normal tracial state 7.

In [Po06al, [Po06b), [Po06¢], Popa discovered the following powerful method to unitarily conjugate
subalgebras of a finite von Neumann algebra. Let M be a finite von Neumann algebra and
A C 14M1y, B C 1gM1p von Neumann subalgebras. By [Po06al Corollary 2.3] and [Po06c,
Theorem A.1], the following statements are equivalent:

e There exist projections p € A and g € B, a nonzero partial isometry v € pMq and a unital
normal x-homomorphism ¢ : pAp — ¢Bgq such that av = vp(a) for all a € A.

e There exist n > 1, a possibly nonunital normal *-homomorphism 7 : A — M,,(B) and a
nonzero partial isometry v € My ,(14M1p) such that av = vr(a) for all a € A.

e There is no net of unitaries (wy) in U(A) such that Ep(z*wiy) — 0 *-strongly for all
2,y € 14M1p.

If one of the previous equivalent conditions is satisfied, we say that A embeds into B inside M
and write A <, B.

We will need the following generalization of Popa’s Intertwining Theorem which was proven in
[HV13, Theorems 2.3, 2.5]. A further generalization can also be found in [Ue(12), Proposition
3.1].

Theorem II1.2.1. Let M be any von Neumann algebra. Let A C 1M1y and B C 1gM1p be
von Neumann subalgebras such that B is finite and with expectation Ep : 1pM1p — B. The
following are equivalent.

1. There exist n > 1, a possibly nonunital normal x-homomorphism 7 : A — M, (B) and a
nonzero partial isometry v € My ,(14M1p) such that av = vr(a) for all a € A.



I11.2. PRELIMINARIES 67

2. There is no net of unitaries (wg) in U(A) such that Eg(z*wiy) — 0 x-strongly for all
x,y € 1aMl1p.

Moreover, when M is a factor and A, B C M are both Cartan subalgebras, the previous conditions
are equivalent with the following:

(8) There exists a unitary u € U(A) such that uAu* = B.

Definition II1.2.2. Let M be any von Neumann algebra. Let A C 14M14 and B C 1gM1p
be von Neumann subalgebras such that B is finite and with expectation. We say that A embeds
into B inside M and denote A <), B if one of the equivalent conditions of Theorem is
satisfied.

Observe that when 14 and 1p are finite projections in M then 14V 1p is finite, and A < B in
the sense of Definition if and only if A =(1,v1,)M(14v1p) B holds in the usual sense for
finite von Neumann algebras.

In case of semifinite von Neumann algebras, we recall the following useful intertwining result
(see [HR11, Lemma 2.2]). When (B, Tr) is a semifinite von Neumann algebra endowed with a
semifinite faithful normal trace, we will denote by Projs(B) the set of all nonzero finite trace
projections of B. We will denote by || - |21y the L?-norm associated with the trace Tr.

Lemma II1.2.3. Let (M, Tr) be a semifinite von Neumann algebra endowed with a semifinite
faithful normal trace. Let B C M be a von Neumann subalgebra such that Tr|B is semifinite.
Denote by Ep : M — B the unique trace-preserving faithful normal conditional expectation.

Let p € Proj(M) and A C pMp any von Neumann subalgebra. The following conditions are
equivalent:

1. For every q € Proj(BB), we have A £ qBg.

2. There exists an increasing sequence of projections qn, € Projy(B) such that q, — 1 strongly
and A A gnBqy for all n € N.

3. There ezists a net of unitaries wy € U(A) such that limy, || Eg(x*wiy)|l2 = 0 for all
T,y € pM.

Proof. (1) = (2) is obvious.

(2) = (3) Let F C Ball(pM) be a finite subset and £ > 0. We need to show that there exists
w € U(A) such that ||Eg(z*wy)||2 1 < € for all z,y € F. Since the projection p has finite trace,
there exists n € N large enough such that

g
llgnz™p — 2" pllo v + |lPYan — PYll2om < 378y € F.

Put ¢ = gy. Since A A qBBq, there exists a net wy, € U(A) such that limy, | Eypq(a*wib) |2 = 0
for all a,b € pMgq. Appying this to a = pzq and b = pyq, if we take w = wy, for k large enough,
we get [|Ep(qzpwpyq)|lam = [| Egse(g2"pwpyg)|l2e < 5. Therefore, [|Ep(z wy)ll2m <&

(3) = (1) Let g € Proje(B) and put e = pV q. Let A\ = Tr(e) < oo and denote by || - |2 the
L2-norm with respect to the normalized trace on eMe. For all z,y € pMg, we have

lim | By (a*wiy) 12 = A7 lim | By (@ wiy) o e = 0.

This means exactly that A Zcae ¢Bg in the usual sense for tracial von Neumann algebras and
so A Am qBg. O
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Let I" be any countable discrete group and S any nonempty collection of subgroups of I'. Fol-
lowing [BOOS8|, Definition 15.1.1], we say that a subset F C I" is small relative to S if there exist
n>1,%,...,%, €S and g1, h1,...,gn, hy € I' such that F C U?:l gi2ih;.

We will need the following generalization of [Val3, Proposition 2.6] and [HV13| Lemma 2.7].

Proposition I11.2.4. Let (B, Tr) be a semifinite von Neumann algebra endowed with a semifinite
faithful normal trace. LetT' ~ (B,Tr) be a trace preserving action of a countable discrete group T’
on (B, Tr) and denote by M = B x T the corresponding semifinite crossed product von Neumann
algebra. Letp € Projy(M) and A C pMp any von Neumann subalgebra. Denote P = Npap(A)".

For every subset F C I' which is small relative to S, denote by Pr the orhogonal projection from
L2(M,Tr) onto the closed linear span of {xu, : * € BNL*(B, Tr),g € F}.

1. The set J ={e € A NpMp: Ae Arm q(B x X)q,VE € S§,Vq € Projy(B)} is directed and
attains its mazimum in a projection z which belongs to Z(P).

2. There exists a net (wy) in U(Az) such that limy, | Pr(wg)|l2 e = 0 for every subset F C T’
which is small relative to S.

3. For every ¢ > 0, there exists a subset F C I' which is small relative to S such that
la — Pr(a)|l2m < € for all a € A(p — z).

Proof. (1) In order to show that the set J is directed and attains its maximum, it suffices to
prove that whenever (e;);cr is a family of projections in A'NpMp and e = \/;;e;, if e & T,
then there exists i € I such that e; ¢ J. If e ¢ J, there exist ¥ € S and ¢ € Proj¢(B) such that
Ae <1 q(B x ¥)g. Let n > 1, a nonzero partial isometry v € M, ,(C) ® eMgq and a normal
s-homomorphism ¢ : Ae — M,,(q¢(B x X)q) such that av = vp(a) for all a € Ae. By definition
we have ev = v. Choose i € I such that e;v # 0 and denote by w € M ,,(C) ® e;Mq the polar
part of e;v. Since aw = wep(a) for all a € Ae, it follows that Ae; < ¢(B x X)q. Hence, e; ¢ J.

Denote by z the maximum of the set J. It is easy to see that uzu* € J whenever u € N, (A),
hence uzu* = z. Therefore z € Z(P).

(2) We have that Az Ay (B x X)g for all ¥ € S and all ¢ € Projy(B). Let ¢ > 0 and
F C T a subset which is small relative to S. We show that we can find w € U(Az) such that

1PF(w) 21 <e.

Let F C U, ¢:Xih; with X4,...,%, € S and g1, h1, ..., gn, hn € I'. Consider the semifinite von
Neumann algebra M, (M) together with the diagonal subalgebra Q = @;" ; BxY;. Observe that
the canonical trace on M, (M) is still semifinite on Q. Consider moreover the trace preserving
sx-embedding p: M - M;,(M) :z—z& - - Sx.

Since Az Anm (B x E;)q for all i € {1,...,n} and all ¢ € Projy(B), we get that p(Az) Am, m)
p(q)Qp(q) for all ¢ € Proj(B) by the first criterion in Lemma [II1.2.3] Then by the second
criterion in Lemma [[11.2.3] there exists a net wy € U(Az) such that

lilgn ]\nggi(xwky)ﬂzﬂ =0,Vx,y € M, Vi € {1, ey n}

Recall that Pysp(r) = ugEpus(ugzuy,)uy for all x € M N L?(M,Tr). Applying what we have
just proved to x = uy, and y = ujy , we get that limy, || Py,s;n, (wi)|l2,r = 0 for all i € {1,...,n}.
Therefore 1imk ||P]:(’Ujk)”27’[\r =0.
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(3) By construction, for any projection e < p — z, there exist ¥ € S and ¢ € Projg(B) such that
Ae <y qg(B x X)q. Let € > 0. Choose £ > 1 and eq,...,e, € A" N pMp pairwise orthogonal
projections such that:

e Foreveryie {1,...,0},e; <p—zande=e; +- -+ ¢ satisfies ||(p — z) —e|2 < /3.

e For every ¢ € {1,...,/¢}, there exist n; > 1, ¥; € S, a projection ¢; € Proj(B), a
nonzero partial isometry v; € Mj,,(C) ® ¢;,Mg; and a normal x-homomorphism ¢; :
A — M, (gi(B % ;)¢;) such that v;vf = e; and av; = vip;(a) for all a € A.

Putn=ni+---4+ng, qg= \/f:1 ¢; and define ¢ : A — @le qi(Bx%;)q; C M,,(¢Mgq) by putting
together the ¢; diagonally. Similarly, define the partial isometry v € M, ,,(C) ® eMgq such that
vv* = e and av = vy(a) for all a € A.

Using Kaplansky density theorem, choose vy € My ,(C) ® ¢(B %415 I')g such that |[vg]|e < 1 and
lv — voll2,r < €/3. Define G C T the finite subset such that vy belongs to the linear span of
{ei®exugq:x€B,ge G, 1 <i<(l}. Put F= Ule Ug,heg g3t

Let a € Ball(A(p — 2)) and write a = a(p — 2z — e) + ae. Observe that ||a(p — 2z — e)|2 1 <
llalloollp — 2 — ell2 1 < €/3. Since ae = vy(a)v*, it follows that ae lies at a distance less than
2e/3 from vop(a)vs. Observe that by construction Pr(vop(a)vd) = vop(a)vg. Therefore, a lies
at a distance less than ¢ from the range of Pr. O

I11.2.2 Amalgamated free product von Neumann algebras

For ¢ € {1,2}, let B C M; be an inclusion of von Neumann algebras with expectation E; :
M; — B. Recall that the amalgamated free product (M, E) = (M, E1) *p (M2, E2) is the von
Neumann algebra M generated by M; and My where the faithful normal conditional expectation
E : M — B satisfies the freeness condition:

E(zy -+ x,) =0 whenever x; € M;; © B and ij # ij41 .

Here and in what follows, we denote by M; © B the kernel of the conditional expectation E; :
M; — B. We refer to [Vo85, [Vo92| [Ue99] for more details on the construction of amalgamated
free products in the framework of von Neumann algebras.

Assume that Tr is a semifinite faithful normal trace on B such that for all i € {1, 2}, the weight
TroE; is a trace on M;. Then the weight TroFE is a trace on M by [Ue99, Theorem 2.6].
In that case, we will say that the amalgamated free product (M, E) = (M, E1) xp (Ma, E3) is
semifinite. Whenever we consider a semifinite faithful normal trace on a semifinite amalgamated
free product (M, E) = (M, Ey) *p (Ma, E3), we will always assume that TroE = Tr and Tr|B
is semifinite.

The following proposition is a semifinite analogue of [IPP08| Theorem 1.1]. The proof of Theorem
[11.2.5]is essentially contained in [CHI0, Theorem 2.4].

Theorem I11.2.5. Let (M, E) = (M1, E1)*p(Ma, E2) be a semifinite amalgamated free product
von Neumann algebra with semifinite faithful normal trace Tr. Let p € Proj(M;y) and Q C
pMip any von Neumann subalgebra. Assume that there exists a net of unitaries wy € U(Q)
such that limy, || Eg(x*wiy) |2 = 0 for all x,y € pM;.

Then any Q-pMip-subbimodule H of L?(pMp) which has finite dimension as a right pMip-
bimodule must be contained in L?(pMap). In particular, Nyapmp(Q)” C pMip.
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Proof. Using [Ta02, Proposition V.2.36], we denote by Ejxy, : M — M; the unique trace
preserving faithful normal conditional expectation which satisfies

Enm, (1 22m+41) =0

whenever m > 1, 21, Zom41 € M1, 225 € Ma© B and z9j4.1 e Mo Bforall 1 <j<m—1.
Observe that we moreover have TroEx, = Tr. We denote by M & M; the kernel of the
conditional expectation Faq, : M — M.

Claim. We have that limy, ||Exq, (2*wiy) |2 = 0 for all 2,y € p(M © M;).

Proof of the Claim. Observe that using Kaplansky’s density theorem, it suffices to prove the
Claim for # = pw1---22m41 and y = py1 -+ yong1 With m,n > 1, 21, Z2m41, 91, Y2nt1 € M,
Toptr1,Yorry1 € My © B and wop, 0y € Moo Bforalll </ <m-—1landalll</¢ <n-1
Then, we have

EMl ('T*wky) = EM1 (‘/E;m—i-l T I; EB(xkayl) Y2 'y2n+l)-

Hence, limy, [|[Epq, (2 wiy)]2,me = 0. =

In particular, we get limy, || Epp,p(2*wiy)||2,m = 0 for all z,y € pMpSpMip. Finally, applying
[Va07, Lemma D.3], we are done. O

We will moreover need the following technical results.

Proposition II1.2.6. Let (M, E) = (M, Ey) %3 (Mg, Es) be a semifinite amalgamated free
product von Neumann algebra with semifinite faithful normal trace Tr. Assume the following:

e For alli € {1,2} and all nonzero projections z € Z(B), Bz # z2M,z.

e For all p € Projy(M) and all q € Proj¢(B), we have pMp £ qBqg.
Then for all i € {1,2}, all e € Projg(M) and all f € Proj(M,), we have eMe g fM;f.

Proof. By contradiction, assume that there exist ¢ € {1,2}, e € Projs(M) and f € Proj(M,),
a nonzero partial isometry v € e M f and a unital normal *-homomorphism ¢ : eMe — fM;f
such that zv = vep(x) for all z € eMe. We may assume without loss of generality that i = 1.
Moreover, as in [Va08, Remark 3.8], we may assume that the support projection of Eaq, (v'v)
in Mj equals f.

Let ¢ € Proj(B) be arbitrary. By assumption, we have eMe £ ¢Bg. Next, we claim that
p(eMe) Aam, ¢Bg. Indeed, otherwise there would exist n > 1, a nonzero partial isometry
w € Mj,(C) ® fMiq and a normal *-homomorphism 1 : ¢(eMe) — M, (¢Bq) such that
o(r)w = wip(p(x)) for all z € eMe. Hence, we get xvw = vw(y) o )(z) for all z € eMe. We
have Epng, () (w v vw) = w* Eaq, (v*v)w # 0 since the support projection of E g, (v*v) is f and
fw = w. By taking the polar part of vw, this would imply that eMe < ¢Bq, a contradiction.

By Lemma and Theorem we get p(eMe) N fMf C fMyf, hence v*v € fM;f.
Thus, we may assume that v*v = f. Weget fMf =v*Mv C fMf C fMf,s0 fMif = fMf.
The proof of [HV13] Theorem 5.7] shows that there exists a nonzero projection z € Z(B) such
that 2z Moz = Bz, contradicting the assumptions. O
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Proposition II1.2.7. Let (M, E) = (M1, E1) %5 (Mg, Ea) be a semifinite amalgamated free
product von Neumann algebra with semifinite faithful normal trace Tr. Let p € Proj(M) and
A C pMp any von Neumann subalgebra. Assume there exist i € {1,2} and p; € Proj(M;) such
that A 2 aq piMip;.

Then either there exists q € Proji(B) such that A < ¢Bq or Nppp(A)” 2aa piMip;.

Proof. We assume that for all ¢ € Projy(B), we have A £y gBgq and show that necessarily
Nopmp(A)" 2m piMip;.

Since A < piM;p;, there exist n > 1, a nonzero partial isometry v € My ,,(C) ® pMp; and a
possibly nonunital normal *-homomorphism ¢ : A — M,,(p;M;p;) such that av = vy(a) for all
a € A. Since we also have A £ gBq for all ¢ € Projg(B), a reasoning entirely analogous to the
one of the proof of Proposition allows us to further assume that ¢(.A) ﬁMn( M,) Mn(qBq)
for all ¢ € Proj¢(B).

Let u € Npap(A). Then for all a € A, we have
v*uve(a) = vuav = v* (uau™)uv = p(uau™)v uv.

By Theorem [III.2.5|and Lemma [IT1.2.3] we get v*uv € M,,(piM;p;) for all u € Nyaqp(A), hence
V*Npmp(A)"v C piM;p;. Therefore, we have Nppp(A)” < piMip;. O

I11.2.3 Hilbert bimodules

Let M and N be any von Neumann algebras. Recall that an M-N-bimodule H is a Hilbert space
endowed with two commuting normal *-representations 7 : M — B(H) and p : N°? — B(H).
We then define my; : M ®a1g NP — B(H) by my(z @ y°P) = w(x)p(y°P) for all x € M and all
y € N. We will simply write z{y = my(x @ y°P)¢ for all x € M, all y € N and all £ € H.

Let H and K be M-N-bimodules. Following [Co94, Appendix V.B], we say that K is weakly
contained in H and write K Cyeax H if [|[Tc(T)]|cc < |73 (T)||oo for all T € M ®a4 NP.
We simply denote by (N,L2(N),J,*B) the standard form of N (see e.g. [Ta03, Chapter IX.1]).
Then the N-N-bimodule L? (N) with left and right action given by xz€y = xJy*J¢ is the trivial
N-N-bimodule while the N-N-bimodule L?*(N) ® L?(N) with left and right action given by
z(§ ®@n)y = x£ ® Jy*Jn is the coarse N-N-bimodule.

Recall that a von Neumann algebra N is amenable if as N-N-bimodules, we have LQ(N ) Cweak
L?(N) ® L?(N). Equivalently, there exists a norm one projection ® : B(L?(N)) — N.

For any von Neumann algebras B, M, N, any M-B-bimodule H and any B-N-bimodule K, there
is a well defined M-N-bimodule H ®p I called the Connes’s fusion tensor product of H and K
over B. We refer to [Co94, Appendix V.B] and [AD95, Section 1] for more details regarding this
construction.

We will be using the following well known fact (see [AD95, Lemma 1.7]). For any von Neumann
algebras B, M, N such that B is amenable, any M-B-bimodule H and any B-N-bimodule K,
we have, as M-N-bimodules,

HRIp K Cyeax H QK.
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111.2.4 Relative amenability

Let M be any von Neumann algebra. Denote by (M,L2(M), J,’B) the standard form of M. Let
P C1pM1p (resp. @ C M) be a von Neumann subalgebra with expectation Ep : 1pM1p — P
(resp. Eg : M — Q). The basic construction (M, Q) is the von Neumann algebra (JQ.J)' NB(H).
Following [OP10a) Section 2.1], we say that P is amenable relative to Q) inside M if there exists
a norm one projection ® : 1p(M,Q)1p — P such that ®|1pM1p = Ep.

In the case when (M, ) is a tracial von Neumann algebra and the conditional expectation
Ep : M — P (resp. Eg : M — Q) is T-preserving, the basic construction that we denote by
(M, eq) coincides with the von Neumann algebra generated by M and the orthogonal projection
e : L2(M,7) — L*(Q,7|Q). Observe that (M, eq) comes with a semifinite faithful normal
trace given by Tr(zeqy) = 7(xy) for all z,y € M. Then [OP10a, Theorem 2.1] shows that P is
amenable relative to @ inside M if and only if there exists a net of vectors &, € L2((M, eq), Tr)
such that lim, (2&,, &) = 7(x) for all x € 1pM1p and limy, ||[y&, — &yl = 0 for all y € P.

I11.2.5 Noncommutative flow of weights

Let (M, ¢) be a von Neumann algebra together with a faithful normal state. Denote by M¥ the
centralizer of ¢ and by M x, R the continuous core of M, that is, the crossed product of M
with the modular automorphism group (of);cr associated with the faithful normal state ¢. We
have a canonical *-embedding 7, : M — M x, R and a canonical group of unitaries (A, (s))ser
in M x4, R such that

To(0f(2)) = Ap(8) mp(x) Ap(s)™  for all x € M,s eR.

The unitaries (A,(s))ser generate a copy of L(R) inside M x,, R.

We denote by @ the dual weight on M x,R (see [Ta03, Definition X.1.16]), which is a semifinite
faithful normal weight on M X, R whose modular automorphism group (o7 );cr satisfies

oF (mp(x)) = mp(of (z)) for allz € M and o (As(s)) = Au(s) for all s € R.
We denote by (67 )icr the dual action on M %, R, given by
07 (myp(2)) = mp(x) for allz € M and 67 (A\,(s)) = exp(its)A,(s) for all s € R.

Denote by h,, the unique nonsingular positive selfadjoint operator affiliated with L(R) € M x,R
such that hiﬁ = Ay (s) for all s € R. Then Tr, = @(h;l-) is a semifinite faithful normal trace on
M %, R and the dual action 6% scales the trace Tr:

Tr, o8] = exp(t) Try, Vt € R.

Note that Tr, is semifinite on L(R) € M x, R. Moreover, the canonical faithful normal condi-
tional expectation Ey gy : M x, R — L(R) defined by Epg)(zA,(s)) = ¢(x)A,(s) preserves the
trace Try, that is,

TI‘SO OEL(]R) = TI‘SO .

Because of Connes’s Radon-Nikodym cocycle theorem (see [Ta03), Theorem VIII.3.3]), the semifi-
nite von Neumann algebra M xR, together with its trace Tr, and trace-scaling action 0¥, “does
not depend” on the choice of ¢ in the following precise sense. If ¢ is another faithful normal
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state on M, there is a canonical surjective *-isomorphism Il , : M x, R — M x, R such that
Iy, 0wy = my, Try olly , = Try, and 1y, , 0 0¥ = 6% o IIy,,. Note however that IL; , does not
map the subalgebra L(R) C M X, R onto the subalgebra L(R) C M X R.

Altogether we can abstractly consider the continuous core (c¢(M),0,Tr), where ¢(M) is a von
Neumann algebra with a faithful normal semifinite trace Tr, 6 is a trace-scaling action of R on
(¢c(M), Tr) and c(M) contains a copy of M. Whenever ¢ is a faithful normal state on M, we
get a canonical surjective x-isomorphism II, : M x, R — c¢(M) such that

,00?=00ll,, Tr,="Troll,, I (m,(x))=x Yoe M.

A more functorial construction of the continuous core, known as the noncommutative flow of
weights can be given, see [Co73, [CT77, [ET01].

By Takesaki’s duality theorem [Ta03, Theorem X.2.3], we have that c(M) xgR = M@B(L(R)).
In particular, by [AD95] Proposition 3.4], M is amenable if and only if ¢(M) is amenable.

If P C 1pM1p is a von Neumann subalgebra with expectation, we have a canonical trace
preserving inclusion ¢(P) C 1pc(M)1p.

We will also frequently use the following well-known fact: if A C M is a Cartan subalgebra then
c(A) C ¢(M) is still a Cartan subalgebra. For a proof of this fact, see e.g. [HR11, Proposition
2.6].

Proposition II1.2.8. Let M be any von Neumann algebra with no amenable direct summand.
Then the continuous core c(M) has no amenable direct summand either.

Proof. Assume that ¢(M) has an amenable direct summand. Let z € Z(c(M)) be a nonzero
projection such that c(M)z is amenable. Denote by 6 : R ~ ¢(M) the dual action which scales
the trace Tr. Put e = \/,c.g 0i(2). Observe that e € Z(c(M)) and 6;(e) = e for all t € R. By
[Ta03l, Theorem XII.6.10], we have e € M N Z(c(M)), hence e € Z(M). We canonically have
c(M)e =c(Me).

Since amenability is stable under direct limits, we have that c(M )e is amenable, hence c¢(Me) is
amenable. Applying again [Ta03, Theorem XII.6.10], we have c(Me) xg R = (Me) ® B(L(R)).
We get that c¢(Me) xp R is amenable and so is Me. Therefore, M has an amenable direct
summand. O

We will frequently use the following:

Notation II1.2.9. Let A C M (resp. B C M) be a von Neumann subalgebra with expectation
Ejp: M — A (resp. Ep : M — B) of a given von Neumann algebra M. Assume moreover that
A and B are both tracial. Let 74 be a faithful normal trace on A (resp. 7 on B) and write
pa=Ta0E, (resp. pp = 7o Eg). Write my, : M — M x,, R (resp. myp, : M — M x4, R)
for the canonical *-representation of M into its continuous core associated with ¢4 (resp. ¢p).

By Connes’s Radon-Nikodym cocycle theorem, there is a surjective x-isomorphism
Uoppa: M Xy R—= M xpp R

which intertwines the dual actions, that is, 092 o Il,, ,, = Iy, ,, © 094, and preserves
the faithful normal semifinite traces, that is, Tr,, oll,, », = Tr,,. In particular, we have
Uy (T, (7)) = mpp (2) for all z € M.
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Put ¢(M) = M x4, R, ¢(B) = B %y, R and ¢(4) = Hyp, 0, (A g, R). We simply denote
by Tr = Tr,, the canonical semifinite faithful normal trace on c(M). Observe that Tr is still
semifinite on Z(c(A4)) and Z(c(B)).

Proposition III.2.10. Assume that we are in the setup of Notation |II1.2.9 If A £y B, then
for all p € Projg(Z(c(A))) and all g € Proji(Z(c(B))), we have c(A)p Aoary c(B)g.

Proof. Let vy, € U(A) be a net such that Ep(z*viy) — 0 *-strongly for all ,y € M. Recall that
c(M)=Mx,, R, ¢(B) =B x,,; Rand c(4) =1,, 4, (A x,, R). Let p € Proj(Z(c(A))) and
q € Proji(Z(c(B))). Observe that since p commutes with every element in ¢(A4), p commutes with
every element in Il o, (7, (A)) = Tz (A) C c(A). Then wy, =11y, 0, (7o, (Vk))D = Tpp (Vi)P
is a net of unitaries in U(c(A)p).

Write ¢(M)ag = M leg R for the algebraic crossed product, that is, the linear span of
{Top (@) Aoy (t) - @ € M,t € R}. Observe that ¢(M)a, is a dense unital x-subalgebra of c(M).
We have Epy(2*m,,(vk)y) — 0 x-strongly for all 2,y € ¢(M)ag. Since g € Projg(c(B)), we
have

| Ee(B)q(q 2" Top (vr)y Q)21 = l9Ec(m) (2" Tpp (vi)y)qlleme — 0,Vz,y € c(M)alg.

Fix now z,y € Ball(c(M)). By Kaplansky density theorem, choose a net (z;)icr (resp. (y;)jecs)
in Ball(c(M )alg) such that x; — px (resp. y; — py) *-strongly. Let € > 0. Since ¢ € Proji(c(B)),
we can choose (i,j) € I x J such that

I(py = yj)allz e + llg(z"p — zj)[lam < e

Therefore, by triangle inequality, we obtain

limksup 1 Ee(B)q(0 2" PTrog (vi)py @)|l2,me < limksup | Ee(B)q(q ;T (k)Y @) 21 +€ < e
Since e > 0 is arbitrary, we get limy, [| E¢(p)q(qz*pwi pyq)|l2,y = 0. This finally proves that
c(A)p Aoy c(B)g. O

Example II1.2.11. We emphasize two well-known examples that will be extensively used in
this paper.

1. Let ' ~ (X, u) be any nonsingular action on a standard measure space. Define the
Maharam extension (see [Ma64]) T' ~ (X x R, m) by

95,0 = (g0t 10g (L2 ) ),

where dm = dp x exp(t)dt. It is easy to see that the action I' ~ X x R preserves the
infinite measure m and we moreover have that

c(L®(X) xT)=L>*(X xR) xT.

2. Let (M, E) = (M, E1) *p (M, E3) be any amalgamated free product von Neumann alge-
bra. Fix a faithful normal state ¢ on B. We still denote by ¢ the faithful normal state
@oE on M. We realize the continuous core of M as ¢(M) = M x, R. Likewise, if we
denote by ¢; = @ o E; the corresponding state on M;, we realize the continuous core of M;
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as ¢(M;) = M; x,, R. We denote by c¢(E) : ¢(M) — c(B) (resp. ¢(E;) : ¢(M;) = c(B))
the canonical trace preserving faithful normal conditional expectation. Recall from [Ue99,
Section 2] that of (M;) = M; for all t € R and all i € {1, 2}, hence

(c(M), c(E)) = (c(Mr), c(E1)) *(p) (¢(Mz), c(En)).

Moreover, ¢(M) is a semifinite amalgamated free product von Neumann algebra.

III.3 Intertwining subalgebras inside semifinite AFP von Neu-
mann algebras

I11.3.1 Malleable deformation on semifinite AFP von Neumann algebras

First, we recall the construction of the malleable deformation on amalgamated free product von
Neumann algebras discovered in [IPPO8| Section 2].

Let (M, E) = (M, E1) #5 (Ma, E3) be any semifinite amalgamated free product von Neumann
algebra with semifinite faithful normal trace Tr. We will simply write M = M x3 Mo when
no confusion is possible. Put M = M x5 (B ® L(IF3)) and observe that M is still a semifinite
amalgamated free product von Neumann algebra. We still denote by Tr the semifinite faithful
normal trace on M. Let uy,us € U(L(F2)) be the canonical Haar unitaries generating L(Fs).
Observe that we can decompose M= le *B Mvg with Mv, =M, xg (B L(Z)).

Consider the unique Borel function f : T — (—m, 7] such that f(exp(it)) =t for all t € (—m, 7]
Define the selfadjoint operators by = f(u;) and hy = f(ug2) so that exp(iu1) = h; and exp(iug) =
hy. For every t € R, put u} = exp(ith;) and u} = exp(ithy). We have

_ sin(nt)
ot

,Vt € R.

Define the one-parameter group of trace preserving #-automorphisms a; € Aut(ﬂ) by
a; = Ad(ul) x5 Ad(ub), vt € R.
Define moreover the trace preserving x-automorphism S € Aut(ﬂ) by
B = idm *5(id ®5)
with Bo(u1) = uj and So(u2) = u3. We have auff = fa—y for all t € R. Thus, (ay, ) is a

malleable deformation in the sense of Popa [Po07h].
We will be using the following notation throughout this section.
Notation ITL1.3.1. Put Ho = L?(B,Tr) and Ky = L?(B® L(Fy), Tr). For n > 1, define S,, =

{(i1,...,ipn) : i1 # -+ # in} to be the set of the two alternating sequences of length n made of
1’s and 2’s. For Z = (i1,...,i,) € Sy, denote by

e 747 the closed linear span in L? (M, Tr) of elements x; - - -z, with z; € M;; © B such that
Tr(zjz;) < oo forall j € {1,...,n}.

e Kz the closed linear span in L2(M, Tr) of elements uy,, 1 - - - U, Tnlp,,,,, With h; € Fy for
all j € {1,...,n+1} and z; € M;; © B such that Tr(2jz;) < oo forall j € {1,...,n}.
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We denote by E : : M — M the unique trace preserving faithful normal conditional expectation
as well as the orthogonal projection L2(./\/l Tr) — L?(M,Tr). We still denote by a : R —
U(L? (./\/l, Tr)) the Koopman representation associated with the trace preserving action o : R —
Aut(M).

Lemma I11.3.2. Let m,n > 1, Z = (i1,...,im) € Sm and T = (j1,-.-,n) € Sn. Let 1 €
My, ©B,...,xm € My, ©B and y1 € My, ©B,...,yn € M;, © B with Tr(a*a) < oo for
G=1T1, - Ty Yly---sYn- L€t g1, ., Gma1,h1,... , hnt1 € Fo. Then

(g @1 -+ Ugy, T Uy 15 Uny Y1 -+ Uy YnWh g1 )12 (R 1) =

<x1'--xm,y1-~yn>L2(M7Tr) ifm=n,7=J and g, = hy,Vk € {1,...,m+ 1};
0 otherwise.

Proof. The proof is the same as the proof of [Io(12)a, Lemma 3.1]. We leave it to the reader. [

Lemma [IT1.3.2| allows us, in particular, to put H, = @ s, Hr and ), = P s, Kz since the
K7’s are pairwise orthogonal. We then have

L*(M,Tr) = @ Hn and L*( M, Tr) =P k..

neN neN

For all ¢ € L2(M,Tr), write & = > nenén With &, € H,, for all n € N. A simple calculation
shows that for all ¢t € R,

. 2n
Tr(ar(€)€") = Tr(Ba(an()E) = S (Sm(“)> lnlE

Tt
neN

Observe that ¢ — Tr(ay(£)E*) is decreasing on [0, 1] for all & € L2(M, Tr).

I11.3.2 A semifinite analogue of Ioana-Peterson-Popa’s intertwining theorem
[TPPOS|

The first result of this section is an analogue of the main technical result of [IPP08] (see [IPPOS,
Theorem 4.3]) for semifinite amalgamated free product von Neumann algebras. A similar result
also appeared in [CH10, Theorem 4.2]. For the sake of completeness, we will give the proof.

Theorem II1.3.3. Let M = Mjxp Ma be a semifinite amalgamated free product von Neumann
algebra with semifinite faithful normal trace Tr. Let p € Proji (M) and A C pMp any von
Neumann subalgebra. Assume that there exist ¢ > 0 and t € (0,1) such that Tr(az(w)w*) > ¢
for allw € U(A).

Then there exists g € Proje(B) such that A <aq qBq or there exists i € {1,2} and g; € Proj(M;)
such that Nppp(A)" 2m aiMigs.

Proof. By assumption, there exist ¢ > 0 and ¢ € (0,1) such that Tr(ay(w)w*) > ¢ for all
w € U(A). Choose r € N large enough such that 27" < ¢. Then Tr(ag—r(w)w*) > ¢ for all
w € U(A). So, we may assume that ¢ = 27". A standard functional analysis trick yields a
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nonzero partial isometry v € au(p )Mp such that va = ay(x)v for all x € A. Observe that
v*v € A' N pMp and vv* € ar(A ﬂp/\/lp)

We prove the result by contradiction. Using Proposition[[I[.2.7]and as in the proof of Proposition
we may choose a net of unitaries wy, € U(.A) such that limy, || Eaq, (2" wry) |2, = 0 for all
i € {1,2} and all =,y € pM. In particular, we get limy, | Eg(z*wiy)|2m = O for all z,y € pM.
Regarding M = Mxg(BRL(F2)), we get v*v € A'NpMp by Theorem [I11.2.5.. We use now Popa’s
malleability trick [Po06a] and put w = ay(vB(v*)) € ag(p)Mp. Since ww* = ay(vv*) % 0, we
get w # 0 and wx :Nozgt(x)w for all z € A. Tterating this construction, we find a nonzero partial

isometry v € ay(p)Mp such that

vr = ai(x)v, Vo € A. (IIL.1)
Moreover, using again Proposition we get v*v € AN pMp and vv* € ai (A" N pMp).
Next, exactly as in the proof of [CHI0, Claim 4.3], we obtain the following.
Claim. We have limg, || Eq, (o) (2" wiy) |2 = 0 for all z,y € M.

Proof of the Claim. Regard M = M3 (B® L(FF3)). By Kaplansky density theorem, it suffices
to prove the Claim for x = pa and y = pb with a,b in B or reduced words in M with letters
alternating from M © B and B® L(F2) © B® C1. Write a = ca’ with c=a ifa € B;c=11ifa
begins with a letter from B ® L(IF2) © B ® C1; ¢ equals the first letter of a otherwise. Likewise,
write b = db’. Then we have z*wy = a*wib = a’* c*wrd b’ and note that c*wrd € M. Observe
that o’ (resp. V') equals 1 or is a reduced word beginning with a letter from B® L(FFy) © B® Cl1.

Denote by P the orthogonal projection from L*(M,Tr) onto Hg @ Hi. Observe that since
cfwpd € M NLA(M, Tr), we have

P(c*wid) = Enm, (cFwid) + Epm, (cFwid) — Eg(cfwyd).
Hence, limy, || P(c*wyd)||2, 1+ = 0. Moreover, a simple calculation shows that
Eo, () (2" wiy) = Eqgym (@™ P(crwrd)t').

Therefore, limy, || Eq, (p) (2" wgy) |2, = 0. This finishes the proof of the Claim. O

Finally, combining Equation (//7.1) together with the Claim, we get

[oo™ |2 = flaa(wr)vv” [z = [[Eay (v (@1 (wr)ov”) [l = [[Eay (v (vwre) |20 = 0.

This contradicts the fact that v # 0 and finishes the proof of Theorem [[T.3.3] O

IT1.3.3 A semifinite analogue of Ioana’s intertwining theorem [lo(12)a]

Let M = M;j g Mz be a semifinite amalgamated free product von Neumann algebra with
semifinite faithful normal trace Tr. Put M = M sz (B ® L(F2)) and observe that M is still a
semifinite amalgamated free product von Neumann algebra. We still denote by Tr the semifinite
faithful normal trace on M. Let N' = \/{ugMu; : g € Fo} C M. Observe that N can
be identified with an infinite amalgamated free product von Neumann algebra, that Tr |\ is
semifinite and that, under this identification, the action Fo ~ N is given by the free Bernoulli
shift which preserves the canonical trace Tr. We moreover have M = N x Fs.
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We will denote by Ejn : M = N the unique trace preserving faithful normal conditional
expectation as well as the orthogonal projection F : LQ(M, Tr) — L2(./\/, Tr).

We prove next the analogue of [Io(12)a, Theorem 3.2] for semifinite amalgamated free product
von Neumann algebras.

Theorem I11.3.4. Let M = My xg My be a semifinite amalgamated free product von Neumann
algebra with semifinite faithful normal trace Tr. Let p € Projy(B), A C pMp any von Neumann
subalgebra and t € (0,1). Assume that there is no net of unitaries wy, € U(A) such that

lim || En (2" (wp)y) 200 = 0, Var,y € pM.
Then there exists q € Proji(B) such that A < qBq or there exists i € {1,2} and q; € Proj(M;)

such that Nppp(A)” 2a giMig;.

The main technical lemma that will be used to prove Theorem is a straightforward
generalization of [lo(12)a, Lemma 3.4]. We include a proof for the sake of completeness.

Lemma II1.3.5. Let t € (0,1) and g,h € Fy. For all n > 0, define

Cn = sup | En (ugon (z)un)
-Z’Ean ||$||2,Tr§1

2,Tr-

Then lim,, ¢,, = 0.
Proof. First, observe that for all g1 ...,9p4+1 € Fo and all z1,..., 2z, € M, we have

Ug T1 ** * Ug, Tplg, .1 if g1+ gni1 =15

) (I11.2)
0 otherwise.

En(ug, @1 - - g, Tnlg, ) = {

Thus for all Z € S, we have Exr(Kz) C Kz and since oy (H7z) C Kz, we get that Ex(ugaq(x)up) €
Kz for all x € Hz. So defining

cr = sup HE/\/(Ugat(x)Uh)H?,Trv
z€HT, ||zl <1

we see that ¢, = maxzeg, ¢z since the subspaces Kz’s are pairwise orthogonal.

Let us fix Z = (iy,...,iy) € S, and calculate ¢z. Denote by a and b the canonical generators of
Fy so that u; = ug, ug = up and put Gy = (a) and Gy = (b). For g1,h1 € G;,,...,gn, hn € Gi,,
define a map

o * *
%17h17"'797bahn ('1:1 T Cl?n) - U’glxl’u’hl e ugnmnuhn

for all z; € M;; ©B such that Tr(27z;) < oo forall j € {1,...,n}. By Lemma these maps
Vi hsesgn b €Xtend to isometries Vy, p, . . h, : Hz — Kz with pairwise orthogonal ranges when
(91,71, .., gn, hn) are pairwise distinct. Indeed, we have Vg, ny. . g.h, (Hz) L Vi o g nr (H1)
unless g1 = ¢4, hy tge = W g, ol tygn = B gl bt = BT Since moreover G1NGy = {e},
this further implies that g; = g’ and h; =’ for all j € {1,...,n}.

Denote the Fourier coefficients of u! and ul, respectively by 81(g1) = T(utlugl) for g1 € G and
Ba(g2) = T(ubu,) for g» € G. We have an explicit formula for these coefficients given by

sin(m(t — n))

() = t(ubu ™) = 7(ul ") =
Bl( z) (7,7, ) (z ) W(t—n)
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It follows in particular that 3;(¢g;) € R for all i € {1,2} and all g; € G;. Since u} and u}, are
unitaries, we moreover have

Y Big)? =) Balge)? =1

g1€G1 g2€G2

If £ =212, with z; € M;; © B satisfying Tr(2}z;) < oo, we have

gy (x)up = ug uglmluﬁi‘ e ufn$nuf: up
= > Bir (91)Biy (h1) -+ Bir (9n) Bi, (hn) ug g, T1upy, - - - g, Tntip,
gl»hleGila"'vgnahnEGin
= > Bir (91)Bir (M) -+ By (gn) Biry (en) gV, ha,....g b () 0,
gl$h1€Gi1""7gnahn€G’in
where the sum converges in || - |2 1v. Thus, for all x € Hz, we get
ugo (x)up = > Bir(91)Biy (h1) -+ Bin (9n) Biy (hnr) g Vs ha ... (%) U

91,R1E€G; ,....gn,hn €G),

Now, using the calculation ([11.2)), and the fact that the isometries Vy, 4, .. 4.4, have mutually
orthogonal ranges, we get that for all x € Hz,

| Ex(uga(z)up) |3y = [|]|5 1 > Bir (91)*Bir (h1)? -+ Bi, (gn)* iy, (hn) .
91,h €Giy oo gn hn €Gy,
9g1hy o gnhy th=1

Thus we get an explicit formula for ¢z given by

er = > B ()26, (W) B (gn) 2B (R=D)2. (I1L.3)

91,h1 €G;y ,....gn,hn €Giy,
gg1hi--gnhnh=1

For i € {1,2}, define u; € Prob(F2) by u;(g) = Bi(g)? if g € G; and pi(g) = 0 otherwise.
Likewise, define ji; € Prob(F2) by fi;(g) = pi(g~!) for all g € Fo. Put v; = p; * fi;. Then we have

cr = (viy %+ x v, ) (g AT,
So if we put g = v1 * 19, we have that
n n n n—1 14—
er € {wBl (g 1), B (g7 ), vy v Bl A7), vy 5 e (g7 |

Then [lo(12)a, Lemma 2.13] implies that limy, u**(s) = 0 for all s € Fy and so lim,, ¢, =0. [

Proof of Theorem [III.3.4. Assume by contradiction that the conclusion of the theorem does not
hold. Then Theorem [[I1.3.3| implies that for ¢ € (0,1) there exists a net wy € U(A) such that

lillgn Tr (o (wy)wy,) = 0.



80 CHAPTER III. AFP WITH AT MOST ONE CARTAN SUBALGEBRA

We will show that for all z,5 € pM, we have limy, | En(x* o (wg)y)|l2 e = 0, which will contra-
dict the assumption of Theorem [II1.3.4] By a linearity/density argument, it is sufficient to show
that for all g, h € Fo,

h]l;n | Enr(ugou (wy)up) |2, = 0. (I1L.4)

For all k, we have w, € A C L}(M,Tr) = D,.cn Hn so that we can write wy, = Y N Wk,
. 2n
with wy, € Hy. Recall that Tr(ag(wi)wy) = Y, cn (Sm(ﬂ)> Hwan%Tr Thus the fact that

Tt
limy, Tr(ov (wg)wy) = 0 implies that for all n > 0, limy, [|wg /2,1 = O.

Fix g,h € Fy and € > 0. Note that for n > 1, Ex(ugay(wg ,)un) € Kp, so that all these terms
are pairwise orthogonal. They are also all orthogonal to En(uga(wyo)up), which belongs to
/Co. Thus

I En(ugere (wi)un) |13 me = > I1EA(tgry (wien)un) 13
n>0

< lwin

n>0

‘%,Tr

where ¢, is defined in Lemma [I11.3.5] Observe that ¢, <1 for all n € N.

Lemma [[11.3.5/ implies that there exists ng > 0 such that for all n > ng, ¢2 < £/2. Then we can
find kg such that for all k¥ > kg, and all n < ny, Hwan%Tr < e/2(np+1). So we get that for all
k > k07

no 0o
9
| Ex (g (wi)un) 3 < Y lwenll3o + 5 Y lwknldm < lwen

n=0 n>ng n=0

This shows (//1.4) and finishes the proof of Theorem [[11.3.4 O

9
%,Tr + §||wk||%,Tr <e.

I11.4 Relative amenability inside semifinite AFP von Neumann
algebras

Let M = M;j g Mz be a semifinite amalgamated free product von Neumann algebra with
semifinite faithful normal trace Tr. Recall that M = M x5 (B ® L(F2)), N' = \{u,Mu; :

g € F3} C M and observe that M = N x Fo. We denote by a : R — Aut(M) the malleable
deformation from Section [IL3.1l

The main result of this section is the following strengthening of Ioana’s result [[o(12)a, Theorem
4.1] in the framework of semifinite amalgamated free product von Neumann algebras over an
amenable subalgebra.

Theorem II1.4.1. Let M = Mjxp Ms be a semifinite amalgamated free product von Neumann
algebra with semifinite faithful normal trace Traq. Assume that B is amenable. Let q € Projs(B)
such that gM1q # qBq # qMaq and t € (0,1) such that a(qgMq) is amenable relative to gNq

instde g Mgq.
Then for alli € {1,2}, there exists a nonzero projection z; € Z(M;) such that M;z; is amenable.
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Let Trg; be the semifinite faithful normal trace on M = M xg (B ® L(F2)). Consider the
basic construction <qﬂq, eqNq) associated with the inclusion of tracial von Neumann algebras

gNq C ¢Mq.

We denote by 7 = Tr%@ Tr (g - ) the faithful normal tracial state on gMgq and by | - [|2
M

the L2-norm on ¢Mgq associated with 7. We then simply denote by Tr the canonical semifinite
faithful normal trace on (gMg, eqng) given by Tr(aegngb) = 7(ab) for all a,b € gMgq. Observe

that ¢Mgq = gN ¢ x Fa. Following [To(12)al, Section 4], we define the ¢M;¢-gM;jg-bimodule

H1 = @ L2(¢M1q) ugegnqul © L2({gMa, eqn)).-
g€l

Denote by ‘H = L2(<q/\7q, 6q/\/q>a Tr) © Hi.

Lemma I11.4.2. As gM;q-gMq-bimodules, we have that H Cyear L?(gM1q) ® L2(gM1q).

Proof. The proof goes along the same lines as [lo(12)a, Lemma 4.2]. First observe that since
qMq = gNq x Fa, we have

L?({gMq, €qNq)) = @ L?(gNq) Ug€qNqUh-
g,helFq

So it suffices to prove that for all g, h € Fy such that h # ¢g~!, as ¢M1¢-gMg-bimodules, we
have

(L%(gNq) © L?(gM1q)) ugeqnqty Ceak L?(gM1q) @ L2 (gM1q)
L2(gN'q) tgeonqin Cueare L2(gM1q) © L2 (gM1q).

Denote by L2(¢Nq)¢ the gM1g-gMig-bimodule L?(gN¢q) with left and right action given by
z- &y = z€ugyuy for all z,y € gMiq and all § € L2(¢Nq). Likewise, define the Mj-M;-
bimodule L2(N)9. As gM1q-gMig-bimodules, we have

@ (L*(¢Nq) © L*(gM1q)) ugegrquy = € (L*(¢Nq) © L* (gM1q))
g€l =1
P  LNQuepwun =P @ L(aNg)y.
g,h€F2,h#g—1 i=1 geFa\{e}

"

"
Put P = (UhE]FQ\{e} UhMUZ U MQ) and Pg = (UhEFQ\{e,g} UhMUZ U MQ U UgMQUZ) for all
g € Fo. Then we have

N = My xp P = My xp ugMyuy x5 Py, Vg € Fa \ {e}.

Using [Ue99, Section 2], there are B-B-bimodules £ and L, for g € Fy \ {e}, such that as
Mi-Mi-bimodules, we have

L2(NV) © L(M;y) = L2 (M) @5 L @5 L2 (M)
LA(N)9 =2 L2(My) @p L, @5 L*(My).
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Since B is amenable, we have that L?(B) Cyeak L2(B) ® L?(B) as B-B-bimodules. Using [AD95],
Lemma 1.7], we obtain that, as ¢M1g-¢M;jg-bimodules,

L?(qNq) © L*(gM1q) = ¢ (L*(M1) ®5 L @5 L*(M1)) ¢
Cweak ¢ (L2(M1) RL® L2(M1)) q
Cweak ¢ (L2(M1) ® L2<M1)) q.

Since ¢ (L?(M;) ® L?(My)) ¢ is isomorphic to a gM1¢-gM;g-subbimodule of @7°; L?(gM1¢)®
L%(qM1q), we infer that, as gM1¢-gMg-bimodules,

L?(¢Ngq) © L% (gM1q) Cyear L2(gM19) ® L2 (gMq).
Similarly, for all g € Fy \ {e} we get that, as ¢ M;¢-¢M1g-bimodules,
L?(gNq)? Cyeax L?(gM1q) ® L*(gM1q). O

Proof of Theorem[III.4.1] Since a;(¢Mgq) is amenable relative to g\ ¢ inside gMg, we find a net
of vectors &, € L?({(gMgq, eqnry), Tr) for n € I, such that

o (&, | &) — T(2) for all x € quq, and
o ||x&, — &nxllom — O for all z € ay(gMyq).

Observe that using the proof of [OP10al Theorem 2.1] we may assume that &, > 0 so that
(x& | &)y = Tr(2€2) = (€| &)1y for all z € gMq and all n € I. Since ||€,
further assume that ||&,||2 v =1 for all n € 1.

2,r — 1, we may

By contradiction, assume that for some i € {1,2}, ¢M;q has no amenable direct summand.
Without loss of generality, we may assume that ¢ = 1. Denote by Py, : LQ((qJWq, eqNq)) —
‘H1 the orthogonal projection. Observe that Py, is the orthogonal projection corresponding
to the unique trace preserving faithful normal conditional expectation Eg : q//\/lvq — Q onto
the von Neumann subalgebra Q = \/{quq,ugequu; : g € Fo} € gMq. We claim that
lim,, [|ul*&ul — Py, (ul*€nul)||2m = 0. If this is not the case, let ¢, = (1 — Py, ) (ul*&ul) € H
and observe that limsup,, |(s||2, 7+ > 0. Arguing as in the proof of [lo(12)a, Lemma 2.3], we may
further assume that liminf,, ||G, |2 > 0.

Then (, € H is a net of vectors which satisfies the following conditions:
° liminfn Hgn”Q’Tr > 0;
e limsup,, ||z(s|l2m < ||z||2 for all z € gMg;

e lim, |y, — Guyll2 e = 0 for all y € gMq.

Since as qM1g-gMg-bimodules, we have that H Cyeax L?(¢gM1q) ® L2(¢M1q) by Lemma
it follows that gM;q has an amenable direct summand by Connes’s result [Co76].
This contradicts our assumption and we have shown that lim,, |&, — u} Py, (u{*&ul)ult|lam =
limy, [[uf§nui — Pry (uf"€nut)

lom = 0.

Put £1 = u{H;ul* and denote by Pr, : L2(<quq, eqNq)) — L1 the orthogonal projection. Put
nn = Pr,(&,) and observe that 7, € £; and 7, > 0. We moreover have lim,, ||, — 1 /2, 7+ = 0.
So n, € L4 is a net of vectors which satisfy
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() (@0 [12) 1 = (10 [ 1)1 = 7(2) for all @ € ¢Mg, and

— 0 for all z € ay(gMq).

(%) lmn —

We have n, =3 cp, U T gUgCqN qUyuf™ With z,, ; € L2(gM1q). Since 0, = n’ for all n € I, we
may assume that z, 4, = z;, , for all n € I and all g € Fp. Next, we claim that we may further
assume that z, 4 € gMiq with xy, g = 27, ; for all n € I and all g € Fs.

To do so, define the set J of triples j = (X,Y,e) where X C Ball(q./{/lvq), Y C Ball(ax(¢gMq))
are finite subsets and € > 0. We make J a directed set by putting (X,Y,e) < (X', Y, &) if
and only if X € X', Y C Y and ¢/ < e. Let j = (X,Y,e) € J. There exists n € I such
that [(zny, | ) — 7(2)| < /2 and ||yn, — muyllom < €/2 for all z € X and all y € Y. Let
v € (%2(F3), such that |v]l¢2(,) = 1. For each g € Fy, choose y]g € gMq such that y]g ng
and [|2n,g —yjglle < v(g)e/4. Put ;=3 cp, UL Yj gUgaNquyuit € L1 and observe that 1 = 7
and ||, — 0l < e/4. We get (0 [nj)m — 7(2)] < e+ 52/16 and |lyn; — niyll2m < € for all
z € X and all y € Y. Then the net (1});es clearly satisfies Conditions () and (+*) above. This
finishes the proof of the claim.

Fix any y € gMaq & ¢Bq satisfying ||y||2 = 1. Then we have

(oY) | Mo (y))me — 1.

Expanding oy (y) and 7,, we obtain

(W) [moa(y)) e = Y (ubyub” ulwn gugeqnquiut™ | ufzn puneqnquiul ubyub’)
g,he€F2

_ * ok tx T tx t E = A tx t
= § : <uh$n,hul UgYUs UI Ty, glUg EqNq | EqNq URUT UsYUY U1“9>Tr

gvhe]FZ

_ E *, tx *, tx E k% tx, t tx, t

= ( qu(U Uy uzy Ug Uluh) qu(Uh%,h% UgYUs ulgﬁn,gug))'
gth]FQ

Recall from Section the definition of the Hilbert spaces Kj for k¥ € N and denote by
bn,g = EqBq(zng). Since we have

Eqnrg (u uftuby ububug) € Ky,

Egnyg (“Z(QTnh - bn,g)*uti*%yuz by g“g) and Egng (uhbn gul uwué*uﬁ(:z:n,g bn,g)ug) € Ky,

Eqng (“Z(xnh - bn,g)*u?uzy% Ul(fﬁn,g bn,g)ug) € Ks,
we get

() | mmen (W) = > 7 (Bgng(ujut uby b ulun) Egnrg (ui by, pul ubyub ul by guy))
g,h€F2
= Y 7 (Bang(ujuiruby* ubufup) Egng(uuiub (b, pybn g )us uiug)).
g,h€l2

As in the proof of Theorem [[I1.3.4] for i € {1,2}, put G; = (a) and G2 = (b) so that u; = u,
and us = wy,. Denote by (8i(g))gec, the Fourier coefficients of uf. For g,h € Fy, define the

isometry Wy, : L3 (My) © L*(B) — L2(M) by Wyn(x) = ugzuy for v € My © B such that
Tra(x*x) < co. Thanks to Lemma [lI1.3.2] the isometries W, j, have pairwise orthogonal ranges
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when (g, h) are pairwise distinct. For all z € ¢Mgoq © ¢Bq and all g,h € Fa, using calculation
([11.2), we obtain

Eq/\/q(u;kzu?i*ugzug*ugug) = Z Bl (T)B2(S)B2(8/)Bl(r/) Equ(thlrfls,gflr’*ls’(Z))

rr'e€G,s,s'€Ga

— E B1(r)B2(s)B2(s") B1(r") W11 g-17-14(2).
rr' €G1,s,8'€Ga
h=lr=lss'~lp/g=1

Using the facts that G1 N G2 = {e} and that the isometries W ;/ have pairwise orthogonal
ranges when (¢’, h') are pairwise distinct, we get

7 (Bgnrq (uguy”ugy™us wi un) Egng (uiu (], pybn.g)us uig))

= > Bi(r=)?Ba(s)*Ba(s" )2 Br(r") T (4 b, 1 ybn.g)-
ror'cG,s,s'€Ga
rss'r'=hg~1

For i € {1,2}, define p; € Prob(F2) by u;(g) = Bi(g)? if g € G; and pi(g) = 0 otherwise.
Likewise, define ji; € Prob(F2) by fi;(g) = pi(g~!) for all g € Fo. Put 1 = fiq * o * fig * j11. Since
y € ¢M2q © qBq and z,, 4 € ¢M1q, we obtain that

* otk * otk

7 (Bgnq(ujuf uby us ufun) Egng(ujut ub (b} jybn.g)ub ufug)) = pu(hg ™) 7(y* b} ybn.g)
= u(hg™") T(y* @}, pyan,g)-

Summing over all g, h € Fy and using Cauchy-Schwarz inequality, we get

@) | mne(@) el = | D wlhg™ )T (Y ) yyan.g)
g,h€Fq

=1 > wg)TW T YT 1)
g7h’€]F2

< D @l znnylle vz, g-1all
g,heFq

< 19 | Ag(E)) 2 ()

g€F2

where ¢, = > e, 1Tnnyll20n and ¢, = 3, cp, |[Y@nnll2 0n. Since we moreover have uf*n,u} =
ZQGFQ UgeqN gy Tn,g, We get

”Uﬁ*ﬁnutﬂJH%Tr = Z l[ugeqnrquy fUn,ng%,Tr = Z lzn,gyl3 = ||Cn||?2(11<‘2)-
g€F2 g€F2

|2,Tr-

Denote by T : ¢?(Fy) — (?(F2) the Markov operator defined by T = > _ger, H(g)Ag. Since the
support of p generates Fo and p(e) > 0 (see the proof of [lo(12)a, Lemma 3.4, Claim]), Kesten’s

Likewise we have ||} ]le2(r,) = lyui mnul
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criterion for amenability [Ke59] yields ||T||cc < 1. This gives

[t ()1 [ e (¥) e ] < (Gn I TC) 2 (my)
< T lloo 1Snlle2 ) 160Nl e2my)
= [ITlloo [l nauiyll2 e [yt naud 12,

= 1T lloo lmmuiyllzme lyui .

2, Tr-

Since 1y, = 7}, we obtain

It yllo o [yuf mnllem — luiyllz lyufllz = yll3 = 1,

hence limsup,, |[{a:(y)1n | Mow(y)) | < ||T]|oo < 1. This however contradicts the fact that

[t (y)mn | e (y)) 1| — 1

and hence our assumption that gMi¢ had no amenable direct summand. Thus for all ¢ €
{1,2}, gM;q has an amenable direct summand and so does M,;. This finishes the proof of

Theorem [IL.4.1] O

A combination of the proof of the above Theorem [III.4.1| and the one of [lo(12)al, Theorem 4.1]
shows that “or” can be replaced with “and” in Ioana’s result [Io(12)a, Theorem 4.1].

Theorem 1I1.4.3. Let M = My xp My be a tracial amalgamated free product von Neumann
algebra. Assume that My # B # Msy. Put M = M xp (B ® L(F2)) = N x Fy where N =
V{ugMuy : g € L(F2)}. Lett € (0,1) such that ay(M) is amenable relative to N.

Then for alli € {1,2}, there exists a nonzero projection z; € Z(M;) such that M;z; is amenable
relative to B inside M.

I11.5 Proofs of Theorems [III.Al and ITL.BI

IT1.5.1 A general intermediate result

Theorems [[TT.A] and [[TL.B] will be derived from the following very general result regarding Cartan
subalgebras inside semifinite amalgamated free product von Neumann algebras.

Theorem IIL.5.1. Let M = My x5 My be a semifinite amalgamated free product von Neu-
mann algebra with semifinite faithful normal trace Tr. Assume that B is amenable, My has no
amenable direct summand and for all nonzero projections e € B, we have eBe # eMose.

Let p € Proj(B) and A C pMp any regular amenable von Neumann subalgebra. Then there
exists q € Proje(B) such that A < qBq.

Proof. Put M = Mxg (B®L(F3)) and regard pMp as the tracial crossed product von Neumann
algebra pMp = pNp x Fy with N = V{ugMugy : g € Fo}. We denote by (ay) the malleable
deformation from Section Applying Popa-Vaes’s dichotomy result [PV(12), Theorem
1.6] to the inclusion ay(A) C pMp for ¢t € (0,1), we get that at least one of the following holds
true:

1. Either ot (A) =2 57,

pNp.
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2. Or ay(pMp) is amenable relative to pN'p inside pﬂp.

Since M has no amenable direct summand, case (2) cannot hold by Theorem [[11.4.1} It remains
to show that case (1) leads to the conclusion of the theorem.

In case (1), using Lemmal[[IL.2.3)and Theorem[[I1.3.4] we get that either there exists ¢ € Projs(B)
such that A < gBgq or there exist i € {1,2} and ¢; € Proj;(M;) such that pMp <y ¢iM;q;.
Since the latter case is impossible by Proposition [[I[.2.6] we get A < ¢Bq for some ¢q €
Proj(B). O

111.5.2 Proof of Theorem [IIL. Al

We first need to prove the following well-known result.

Lemma II1.5.2. Let M be any von Neumann algebra such that M # C and ¢ any faithful
normal state on M. Realize the continuous core ¢(M) = M x, R. Then for every nonzero
projection p € L(R), we have L(R)p # pc(M)p.

Proof. There are two cases to consider.

Case (1): assume that M¥ # C. Choose r € M? a projection such that r # 0,1. Observe that
x=p(l—r)r—p(r)(l—r) € M? is invertible and ¢(z) = 0. Then for every nonzero projection
p € L(R), we have xp # 0 and Ep,g),(rp) = ¢(x)p = 0. This proves that L(R)p # pMp.

Case (2): assume that M¥ = C. Since Z(M) C Z(M¥), it follows that M is a factor. If M is
of type III, it follows from Connes’s classification of type III factors [Co73|] that M is necessarily
of type III;. In that case, c(M) is a type Il factor and thus L(R)p # pc(M)p for every nonzero
projection p € L(R). If M is a semifinite factor with semifinite faithful normal trace Tr, there
exists b € L' (M, Tr)+ such that ¢ = Tr(b-) and ||b]|1 v = 1. Let ¢ € M be a nonzero spectral
projection of b. Since

©(qx) = Tr(bgx) = Tr(gbx) = Tr(bxq) = ¢(xq)

for all x € M, we get ¢ € M¥ and so ¢ = 1. This shows that b = 1 and Tr = ¢ is a finite trace
on M. Hence M = M¥ = C, which is a contradiction. [

Proof of Theorem [[II.Al By [Uelll, Theorem 4.1], we know that there exists a nonzero projection
z € Z(M) such that Mz is a full factor and M (1 — z) is a purely atomic von Neumann algebra.
In particular, M is not amenable.

In the case when both M; and M, are amenable, [HR11, Theorem 5.5] implies that M has no
Cartan subalgebra. It remains to consider the case when M; or Ms is not amenable. Without
loss of generality, we may assume that M; is not amenable.

By contradiction, assume that M has a Cartan subalgebra. Hence, Mz also has a Cartan
subalgebra. Let p € Z(M;) be the largest nonzero projection such that M;p has no amenable
direct summand. Since M (1 — z) is purely atomic, we necessarily have p < z.

By [Uelll, Lemma 2.2], we have

(pMp, Sp(lp)so(p ) = (Mip, @f(msolcp)) « (pNp, S0(1]9)50@ )
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with N = (Cp @ M1(1 — p)) V My. Observe that pNp # Cp. Indeed let ¢ € M3 be a projection
such that ¢ # 0,1. Then pgp = p2(q)p + p(q — ¢2(q))p € pNp \ Cp. Since Mz is a factor and
p < z, it follows that pMp has a Cartan subalgebra by [Po06a, Lemma 3.5].

From the previous discussion, it follows that we may assume that M; has no amenable direct
summand, My # C and M has a Cartan subalgebra A C M. Using Notation denote
by c¢(A) C ¢(M) the Cartan subalgebra in the continuous core c(M) = c¢(M1) *1,g) ¢(M2). Let
g € Proj(L(R)). Since c(A) C ¢(M) is maximal abelian and Tr|c(A) is semifinite, [HV13,
Lemma 2.1] shows that there exists a nonzero finite trace projection p € c¢(A) and a partial
isometry v € c¢(M) such that p = v*v and ¢ = vv*. Observe that vc(A)v* C gc(M)q is still a
Cartan subalgebra by [Po06a, Lemma 3.5].

By Lemma [[11.2.3] Proposition [[I1.2.8, Theorem [[IL.5.1] and Lemma [[I1.5.2) there exists ¢’ €
Proj¢(L(R)) such that vc(A)v* < ar) L(R)g". Then Proposition [II1.2.10| implies that A <, C.
This contradicts the fact that A is diffuse and finishes the proof of Theorem [[TI.A] O

I11.5.3 Proof of Theorem [111.B]

Proof of Theorem[IIL.B, Let A C M be a Cartan subalgebra. Since A,B C M are both
tracial von Neumann subalgebras of M with expectation, we use Notation Let q €
Proj¢(Z(c(B))). By [HV13, Lemma 2.1], there exists p € Proji(c(A)) and a partial isometry
v € ¢(M) such that p = v*v and ¢ = vv*. Observe that vc(A)v* C ge(M)q is still a Cartan
subalgebra by [Po06al Lemma 3.5].

Using the assumptions, by Lemma[11.2.3] Proposition [l11.2.8) [HV13, Proposition 5.5] and The-
orem [[T1.5.1} there exists ¢’ € Proj¢(Z(c(B))) such that vc(A)v* = ar) ¢(B)q'. Then Proposition
implies that A <p; B. O

II1.6 Proof of Theorem III.C

Let R be any countable nonsingular equivalence relation on a standard measure space (X, u).
Following [FMT77], denote by m the measure on R given by

m(w) = /X {y € X : (,9) € W}| du(x)

for all measurable subsets W C R. We denote by [R] the full group of R, M = L(R) the von
Neumann algebra of R and identify L?(M) = L2(R,m). For all ¢ € [R], define u(y)) € U(M)
whose action on L?(R,m) is given by

d(poy™!

1/2
ey = (@) e @

We view L®(R) as acting on L?(R,m) by multiplication operators. Note that the unitaries
u(y) € U(M) for ¢ € [R] normalize L*°(R) and that L>(X) C L*°(R), by identifying a
function F' € L°°(X) with the function on R given by (z,y) — F(z).

Recall from [CEWS&I] Definition 5] that R is amenable if there exists a norm one projection
d : L°(R) — L>(X) satisfying

P (u(y) Fu(¥)") = u()@(Flu(y), vy € [R].
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By [CEWRIl Theorem 10], a countable nonsingular equivalence relation R is amenable if and
only if it is hyperfinite. We will say that a countable nonsingular equivalence relation R is
nowhere amenable if for every measurable subset &« C X such that u(U) > 0, the equivalence
relation R|U = R N (U x U) is nonamenable.

Recall the following definition due to Gaboriau [Ga00, Definition IV.6].

Definition IT1.6.1. Let R be a countable nonsingular equivalence relation on a standard mea-
sure space (X, u) and Ri,Re C R subequivalence relations. We say that R splits as the free
product R = Ry * Ry if

e R is generated by R; and Ro;

e For every p € N> and almost every 2p-tuple (z;);ez/2pz in X such that (z2;—1,2) € R1
and (29;, Z2i+1) € Ro for all i € Z/pZ, there exists j € Z/2pZ such that x; = x;41.

We have the following well-known fact:

Proposition II1.6.2. Let R be a countable nonsingular equivalence relation on a standard
measure space (X, p) and Ri, Re C R subequivalence relations. Let B = L*°(X), M; = L(Ry),
My = L(R2), M = L(R) and denote by Ey : My — B, Ey : My — B, E : M — B the canonical
faithful normal conditional expectations. The following conditions are equivalent:

1. R splits as the free product R = Rq * Ro.

2. (M, E) = (M, Er) xp (Ma, E»)

We start by proving the following intermediate result in the framework of type II; equivalence
relations.

Theorem I11.6.3. Let R be a countable (not necessarily ergodic) probability measure preserving
equivalence relation on a standard probability space (X, p) which splits as a free product R =
R1 * Ra where R; is a countable type 11} subequivalence relation for all i € {1,2}.

Let A C L(R) be a Cartan subalgebra. Then A =) L*(X).

Proof. Let B =1L>*(X), My = L(R1), My =L(R2) and M = L(R) so that M = M; xg Ms. Let
A C M be a Cartan subalgebra.

Assume first that both R; and Ry are amenable and thus hyperfinite by [CEWSI]. Since both
R1 and Re are moreover of type II;, they are necessarily generated by a free pmp action of Z.
Hence R = R * Ry is generated by a free pmp action of Fo and so M = B x Fy. Then [PV(12),
Theorem 1.6] shows that A <) B.

Next assume that Rq or Ro is nonamenable. Without loss of generality, we may assume that
R is nonamenable. Choose a measurable subset &/ C X such that p(U) > 0 and R;|U is
nowhere amenable. Denote by ¥V C X the R-saturated measurable subset of & in X. Since
RV = (R1]V) * (R2|V), we may assume that p(V) = 1.

Since U is a complete section for R, it follows from [AIL0, Théoreme 44| that we can write
RIU = &1 * Sy where §; = R1|U and Sz is a type II; subequivalence relation of R|U which
contains Ra|U.
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Write ¢ = 1;y € B. By [BOO0S8|, Corollary F.8|, choose a projection p € A and a partial isometry
v € M such that v*v = p and vv* = q. Then vAv* C ¢Mgq is a Cartan subalgebra by [Po06al,
Lemma 3.5]. We can thus apply Theorem to M = L(81) #1yy) L(S2), A = vAv* and
p = 1. Then we obtain that vAv* <, Bg, hence A <y B. O

Proof of Theorem [[II.( Write B = L*(X), M1 = L(R1), M2 = L(R3) and M = L(R) so
that M = Mj xp M,. Define on the standard infinite measure space (X x R, m) the countable
infinite measure preserving equivalence relations c¢(R1), ¢(R2) and ¢(R) which are the Maharam

extensions [Ma64] of the countable nonsingular equivalence relations R, Ro and R respectively.
Observe that both ¢(Rq) and ¢(R3) are of type IT and ¢(R) = ¢(R1) * ¢(R2).

If we moreover write ¢(B) = L>(X x R), we canonically have

c(My) = L(c(R1)), c(M2) = L(c(R2)), ¢(M) = L(c(R)) and c(M) = c(M1) *¢(p) c(Mz2).

Let A C M be a Cartan subalgebra. Using Notation we obtain that c(A) C ¢(M) is a
Cartan subalgebra. Let ¢ € Proj¢(c(B)) such that Tr(q) = 1. Up to cutting down by the central
support of ¢ in ¢(M), we may assume that ¢ has central support equal to 1 in ¢(M). By [HV13,
Lemma 2.1], there exists p € Projs(c(A)) and a partial isometry v € ¢(M) such that p = v*v
and ¢ = vv*. Observe that vc(A)v* C gc(M)q is still a Cartan subalgebra by [Po06al, Lemma
3.5]. In order to show that A and B are unitarily conjugate inside M, using Theorem

and Proposition [[11.2.10} it suffices to show that vc(A)v* =) ¢(B)g.

Let U4 C X xR be a measurable subset such that 1;; = ¢. Since 1;; has central support equal to 1
in ¢(M), U is a complete section for ¢(R). By [AIL0, Théoreme 44], we can write ¢(R)|U = S1 xSz
where §; = ¢(R1)|U and Ss is a subequivalence relation of ¢(R)|U which contains ¢(R2)|U. In
particular, both &; and Ss are type 11 equivalence relations on the standard probability space
U, mi).

Let A = vc(A)v* and B = L*™(U). Observe that qc(M)g = L(c(R)|U) = L(S1 * S2) and A is a
Cartan subalgebra in L(Sy * Sz). Then Theorem [[IL6.3| implies that A <y s, +s,) L™ (U), that
is, ve(A)v* Zc(ar) ¢(B)g. This finishes the proof of Theorem [IIL.CL O

I11.7 Proof of Theorem [111.D|

We start by proving Theorem [[IL.D] in the infinite measure preserving case. More precisely, we
deduce the following result from its finite measure preserving counterpart proven in [lo(12)a,
Theorem 1.1].

Theorem II1.7.1. Let I' = I'y x5 'y be an amalgamated product group such that 3 is finite and
for all i € {1,2}, I'; is infinite. Let (B,Tr) be a type I von Neumann algebra endowed with a
semifinite faithful normal trace. Let T' ~ (B,Tr) be a trace preserving action such that for all
i € {1,2}, the crossed product von Neumann algebra B x T; is of type II. Put M =B xT. Let
p € Projy(B) and A C pMp any regular amenable von Neumann subalgebra.

Then for every nonzero projection e € A' N pMp, we have Ae =,mp pBp.

Proof. For every subset F C I', denote by Pr the orthogonal projection from L2(./\/l, Tr) onto
the closed linear span of {zu, : € BNL%(B, Tr),g € F}. Since Npyrp(A)” = pMp, Proposition
(see also [HVI3, Lemma 2.7]) provides a central projection z € Z(pMp) and a net of
unitaries wy, € U(Az) such that:
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e limy || Pr(wg)|l2 = O for all finite subset F C I

e For every ¢ > 0, there exists a finite subset F C I' such that ||a — Pr(a)|l2m < € for all
a € Ball(A(p — 2)).

We prove by contradiction that z = 0. So, assume that z # 0. Recall that T' = I'y *y T's.
Hence the subgroup 3¢ = () ger g¥g~! < ¥ is finite and normal in I. Define the quotient
homomorphism p : I' = I'/¥ and put A =T1/3, A; =T;/% for i € {1,2}, T = X/%) so that
A = Ay *#y Ay, We get that ()., sTs~! = {e}, hence L(A) is a II; factor which does not have
property Gamma by [lo(12)al, Corollary 6.2].

Define the unitary W € U(L?(B, Tr) ® ¢*(T) ® £2(A)) by
W(E® 8y ®0s) =€ ® g ® 0,415,V € L*(B, Tr), Vg € I', Vs € A.

Next, define the dual coaction A, : M — M & L(A) by A,(x) = W*(x @ 1)W for all x € M.
Observe that A, is a trace preserving *-embedding which satisfies A, (buy) = buy ® v,y for all
beBandall gel.

9)

For every subset F C I, denote by Q) the orthogonal projection from L2(L(A)) onto the
closed linear span of {v,) : g € F}. Observe that (1 ® Q,r))(Ap(7)) = Ap(Psyr(x)) for all
x € M. Since A, is || - ||2,r-preserving and since ¥ is finite, for any finite subset F C T, we
have

lim [[(1 @ Q7)) (Ap(wr))ll2 = im [ Ay (Pr 7 (wr)) 2 = 0.

Since T < A is a finite subgroup, this implies that A,(Az) fM@L(A) gMq @ L(Y) for all
q € Proj¢(B).

Put A = A sy (T x FQi = A1 #y Ag *y (T x Fg) and consider the malleable deformation (cy) on
111.3.1

L(]N\) from Section Define N < A the normal subgroup generated by {tAt~! : ¢ € Fa} so

that L(A) = N xFy with A" = L(N). Applying Popa-Vaes’s dichotomy result [PV(12), Theorem
1.6] to each of the inclusions

(id®a)(Ap(Az)) C pMp RL(A) = (pMpRN) x Fy with ¢ € (0,1),

we obtain that at least one of the following holds true:

1. Either there exists ¢t € (0,1) such that (id ®a;)(A,(Az)) =ML () pMpRN.

2. Or for all t € (0,1), (id ®a)(A,(pMp)) is amenable relative to pMp ® N inside pMp ®
L(A).

We will prove below that each case leads to a contradiction.

In case (1), by [To(12)a, Theorem 3.2] and since A, (A2) Zprpera) PMPOL(Y) and Nppp: (Az)”
pMpz, there exists ¢ € {1,2} such that A,(pMpz) =2, vpmnn) PMP @ L(A;). In order to get a
contradiction, we will need the following.

Claim. Let e € Proji(M), Q@ C eMe any von Neumann subalgebra and & any nonempty
collection of subgroups of I'. If Q A ¢(B x H)q for all H € S and all ¢ € Proj(B), then
Ap(Q) Zrra) ¢Ma @ L(p(H)) for all H € S and all ¢ € Proj¢(B).
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Proof of the Claim. Since Q A q(B x H)q for all H € S and all ¢ € Proj¢(B), Proposition
implies that there exists a net vy, € U(Q) such that limy, || Pr(vg)|l2,mr = 0 for all subsets
JF C I which are small relative to S. Observe that since ¥ is finite, XoF is small relative to S for
all subsets F C I' which are small relative to S. Moreover, (1® Q,7))(A,(z)) = Ap(Psy7(7))
for all z € Q and all subsets 7 C I' which are small relative to S. Since A, is || - [|2, 7e-preserving,
for all subsets F C I' which are small relative to S, we have

lim [[(1 @ Q7)) (Bp(vr))ll2/me = lim [[Ap (Prg 7 (vr)) 27 = 0. (IIL5)

Denote by p(S) the nonempty collection of subgroups p(H) C A with H € §. Let G C A
be any subset which is small relative to p(S). Then there exist n > 1, Hy,...,H, € S and
S1,t1,...,8p,ty € A such that G C U}, sip(H;)t;. Choose g;,h; € T such that p(g;) = s;
and p(h;) = t; and denote F = (J;", giH;hi. Then G C p(F). Therefore, implies
that limy, [[(1 ® Qg)(A,(vk))|l2e = 0 for all subsets G C A which are small relative to p(S).
Thus, Proposition implies that A,(Q) Auara) ¢Ma ® L(p(H)) for all H € S and all
q € Proj(B). O

We apply the Claim to @ = pMpz and S = {I'1,I'2}. In order to do that, we need to check
that pMpz Zgmg ¢(B x T)q for all i € {1,2} and all ¢ € Proj¢(B). Since B x ¥ is a type I
von Neumann algebra and B x I'; is a type II von Neumann algebra, Proposition yields
the result. Therefore, by the Claim, we get that A,(pMpz) £, sy PMp @ L(A;) for all
i € {1,2}. This is a contradiction.

In case (2), since L(A) does not have property Gamma, [lo(12)a, Theorem 5.2] shows that either
there exists 7 € {1,2} such that L(A) =) L(A;) or L(A) is amenable. Both of these cases are
easily seen to lead to a contradiction. This finishes the proof of Theorem O

Proof of Theorem [II.D. Let now I' ~ (X, 1) be any nonsingular free ergodic action on a stan-
dard measure space such that for all ¢ € {1,2}, the restricted action I'; ~ (X, p1) is recurrent.
Let B=L%(X) and put M = B x T'. Assume that A C M is another Cartan subalgebra.

Since A, B C M are both tracial von Neumann subalgebras of M with expectation, we use
Notation Define ¢(B) = L*°(X x R) and consider the Maharam extension I' ~ ¢(B) of
the action I ~ B so that we canonically have c¢(M) = ¢(B) x I'. Observe that for all i € {1, 2},
the action I'; ~ ¢(B) is still recurrent so that ¢(B) x I'; is a type II von Neumann algebra.

Let p € Projg(c(A)). By [HV13, Lemma 2.1], there exist ¢ € Projs(c(B)) and a partial isometry
v € ¢(M) such that p = v*v and ¢ = vv*. Observe that vc(A)v* C gc(M)q is still a Cartan
subalgebra by [Po06al Lemma 3.5].

By Theorem [[I1.7.1, we get ve(A)v* =c(ar)q ¢(B)g. By Proposition [[I11.2.10} this implies that

A =<y B. Since M is a factor, by [HV13, Theorem 2.5], we get that there exists a unitary
u € U(M) such that uAu* = B. This finishes the proof of Theorem [III.D O

II1.8 AFP von Neumann algebras with many Cartan subalge-
bras

Connes and Jones exhibited in [CJ82] the first examples of II; factors M with at least two Cartan
subalgebras which are not conjugate by an automorphism of M. More concrete examples were
found by Ozawa and Popa in [OP10b].
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Recently, Speelman and Vaes exhibited in [SV12| the first examples of group measure space
I1; factors M = L*°(Y) x A with uncountably many non stably conjugate Cartan subalgebras.
Recall from [SV12] that two Cartan subalgebras A and B of a II; factor N are stably conjugate if
there exists nonzero projections p € A and ¢ € B and a surjective x-isomorphism « : pNp — qN¢q
such that a(Ap) = Bq. Put N = N@B(#?), A= AR (* and B = B® (. Observe that A
and B are Cartan subalgebras in the type Il factor A'. Moreover, we have that A and B are
stably conjugate in N if and only if A and B are conjugate in N.

Let A ~ (Y,v) be a probability measure preserving free ergodic action as in the statement of
[SV12| Theorem 2] so that the corresponding group measure space II; factor N = L*(Y) x A
has uncountably many non stably conjugate Cartan subalgebras.

Put T' = A % Z and consider the induced action T' ~ (X, u) with X = Ind} V. Observe that
I' ~ (X,p) is an infinite measure preserving free ergodic action. Write M = L*(X) x T for
the corresponding group measure space type Il factor. Since I' = A % Z, we canonically have
M = M xg Mo with B=L>(X), M1 =B x A and My = B x Z. On the other hand, we also
have

M = (L¥(Y) % A) @ B((T/A)) = N @ B((T/A)).

Therefore we obtain the following result.

Theorem III.8.1. The amalgamated free product type Il factor M = My xg Ms has un-
countably many nonconjugate Cartan subalgebras.

This result shows that the condition in Theorem imposing recurrence of the action I'; ~
(X, p) for all ¢+ € {1,2}, is indeed necessary.



Chapter IV

Maximal amenable subalgebras of
von Neumann algebras associated
with hyperbolic groups

This chapter is based on a joint work with Alessandro Carderi [BC(13)]. We prove that for any
infinite, maximal amenable subgroup H in a hyperbolic group G, the von Neumann subalgebra
LH is maximal amenable inside LG. It provides many new, explicit examples of maximal
amenable subalgebras in I1; factors. We also prove similar maximal amenability results for direct
products of relatively hyperbolic groups and orbit equivalence relations arising from measure-
preserving actions of such groups.
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IV.1 Introduction

Hyperfinite von Neumann algebras form the simplest and most fundamental class of von Neu-
mann algebras. This class is very well understood: Murray and von Neumann proved that there
is a unique hyperfinite II; factor and Connes celebrated result [Co76] states that hyperfinite von
Neumann algebras are exactly the amenable ones. This characterization implies in particular
that all von Neumann subalgebras of a hyperfinite tracial von Neumann algebra are completely
described: they are hyperfinite. Up to now, such an understanding of subalgebras is out of reach
for a non-hyperfinite von Neumann algebra.

Thus given a II; factor, it is natural to study the structure of its hyperfinite subalgebras. In
the sixties, Kadison adressed a general question: is any self-adjoint element in a IIy factor M
contained in a hyperfinite subfactor of M? A first answer to this question was provided by Popa,

93
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who showed [Po83] that the von Neumann subalgebra of LF,, (n > 2) generated by one of the
generators of F;, is maximal amenable, and yet it is abelian.

Recently there has been some further work in this direction. In 2006, Shen [Sh06] extended the
work of Popa to (countable) direct products of free group factors, providing the first example
of an abelian maximal amenable subalgebra in McDuff factor. Subsequently, the authors in
[CFRW10| investigated the radial subalgebra of LF, and they managed to prove that it is
also maximal amenable. Then Jolissaint [Jo(10)| extended Popa’s result, providing examples of
maximal amenable subalgebras in factors associated to amalgamated free-product groups, over
finite subgroups. Infinitely many explicit examples of maximal amenable subalgebras were also
discovered by Houdayer [Ho(12)a]. He showed that the measure class on T? associated to a
maximal amenable, abelian subalgebra in a II; factor reaches a wide range. An example from
subfactor theory was also provided in [Br(12)].

In this article, we intend to provide examples of maximal amenable subalgebras of factors as-
sociated with hyperbolic groups. At the group level, amenable subgroups of hyperbolic groups
are completely understood: they are virtually cyclic, and they act in a nice way on the Gromov
boundary of the group. At the level of von Neumann algebras, we can show the following,
generalizing the main result of [Po83].

Theorem IV.A. Consider a hyperbolic group G and an infinite, mazimal amenable subgroup
H < G. Then the group von Neumann algebra LH is mazimal amenable inside LG.

This answers a question of Cyril Houdayer [Hol3, Probleme 3.13].

Since any maximal amenable subgroup H of a hyperbolic group is virtually cyclic, the associated
von Neumann algebra LH is far from being a factor. By Remark[[V.3.5 we obtain many counter-
examples to Kadison’s question, even in property (T) factors. For instance factors of the form
LT, with T a cocompact lattice in Sp(n, 1), are counter examples with property (T).

Using similar techniques, we can prove the following result for relatively hyperbolic groups.

Theorem IV.B. Let G be a group which is hyperbolic relative to a family G of subgroups of G
and consider an infinite amenable subgroup H € G. Then the group von Neumann algebra LH
1s mazimal amenable inside LG.

In particular, a subgroup H € G of G as in Theorem is itself maximal amenable inside G (of
course there are more elementary ways to see this fact). Using results of Osin [Os06al, [0s06b], we
obtain the following corollary, which generalizes Theorem and the main result of [Jo(10)].

Corollary IV.C. Let G be a group which is hyperbolic relative to a family G of amenable
subgroups and H be an infinite mazimal amenable subgroup of G. Then the group von Neumann
algebra LH is maximal amenable inside LG.

Limit groups are examples of groups G covered by this corollary.

It is also possible to prove similar results in the context of hyperbolically embedded subgroups,
in the sense of [DGO(11)]: generalizing our techniques one can show that if H < G is an infinite
amenable subgroup which is hyperbolically embedded then LH is maximal amenable inside LG.

Finally, we extend our results to products of groups as above. We also allow the groups to act on
an amenable von Neumann algebra, and we get a similar result about the crossed product von
Neumann algebra. Such a product situation were already investigated in [Sh06] and [CERWI0].
We thank Stuart White for suggesting us to study this case.
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Theorem IV.D. Let n > 1, and consider for all i = 1,...,n an inclusion of groups H; < G;
as in Theorem [IV.B. Put G := Gy x -+ X Gy, and H :== Hy x -+ X H,.

Then for any trace-preserving action of G on a finite amenable von Neumann algebra (Q,T),
the crossed-product () X H is mazimal amenable inside () X G.

In particular, when G and H are as above, for any free measure preserving action on a probability
space G ~ (X, ), the equivalence relation on (X, 1) given by the H-orbits is maximal hyperfinite
inside the equivalence relation given by the G-orbits.

Strategy of proof

Given an inclusion H < G as in Theorem [[V.A] or [V.B] we will analyse LH-central sequences
to deduce that LH is maximal Gamma inside LG. This approach is in the spirit of Popa’s
asymptotic orthogonality property [Po83].

To that aim, we need to understand the conjugacy action of H on G. Once this is achieved, one
can easily conclude as explained in Section |[V.2.1

In Theorem [[V.D] note that Q@ x H C @ x G is not maximal Gamma in general. We will
in fact use Houdayer’s relative version of the asymptotic orthogonality property to conclude
([Ho(12)b]). The argument relies on the same analysis of LH-central sequences.

IV.2 Preliminaries

IV.2.1 Central sequences and group von Neumann algebras

In this section, we consider an inclusion of two countable discrete groups H < G. We denote by
LH C LG the associated von Neumann algebras and by u, the canonical unitaries in LG that
correspond to elements g € G.

For a set F' C G, we will by denote P : £2(G) — ¢2(F) the orthogonal projection onto ¢2(F).

As explained in the introduction, the proofs of our main results rely on an analysis of LH-
central sequences. We describe here how the H-conjugacy action on G allows localizing the
Fourier coefficients of L H-central sequences in terms of projections Pr, F' C G.

Definition IV.2.1. Let H < G be an inclusion of two countable groups. A set F' C G\ H is
said to be H-roaming if there exists an infinite sequence (hy)g>o of elements in H such that

hiFhi ' O h Fhyt =0 for all k # k.
Such a sequence (hg)y is called a disjoining sequence.

The following standard lemma is the key of our proofs.

Lemma IV.2.2. Let H < G be an inclusion of two countable groups and denote by LH C LG

the associated von Neumann algebras. Assume that (xy,), is a bounded LH -central sequence in
LG.

Then for any H-roaming set F' we have that lim,, ||Pp(xy,)|l2 = 0.
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Proof. Assume that F' is an H-roaming set and consider a disjoining sequence (h)r C H for F.
Since (zy,), is LH-central, we have for all k&

lim sup || Pr(xy)||l2 = limsup || Pr (up, 2nup, )|l2 = lim sup thgthk (n)||2- (IV.1)

But Ph,lehk (xn) L Ph,:/IFhk/ (x,) for all k # k' and all n. Thus we get that for any N > 0 and
n >0,
||33n||2 > ”an% > Z ||Ph;1Fhk(33n)||g‘

k<N
Applying we deduce that sup,, |z, ||%, > N limsup,, | Pr(z,)||3. Since N can be arbitrarily
large, we get the result. O

Proposition IV.2.3. Let H < G be an inclusion of two infinite countable groups. Assume that
for any s,t € G\ H, there exists an H-roaming set F C G\ H such that sF°t N F€ is finite.

If LH has property Gamma, then it is mazimal Gamma inside LG.

Proof. Assume that there exists an intermediate von Neumann algebra P with property Gamma:
LH C P C LG. Since H is infinite, P is diffuse and so it admits a central sequence (vy), of
unitary elements which tends weakly to 0.

Claim. For every a € LG & LH, we have lim,(av,a*,v,) = 0.

By a standard linearity/density argument, to prove this claim it is sufficient to check that for
all s,t ¢ H, we have lim, (usv,us, v,) = 0.

So fix s,t € G\ H. By assumption there exists an H-roaming set F' such that K := sFt N F*¢ is
finite. Since (vy)p is LH-central and bounded, Lemma [IV.2.2| implies that lim,, || Pr(vy,)||2 = 0.
Noting that usPpec(vy,)uy is in the range of Pgpe; for all n, we obtain

lim sup [(usvpus, vy )| = limsup |(us Pre (v )ug, Pre(vy))|
n n
= lim sup |(us Ppe (vp )ut, Pspet © Ppe(vy))|

n

< lim sup || P (vn)|]2.
n

This last term is equal to 0 because (vy,), tends weakly to 0 and K is finite, which proves the
claim.

The claim implies that P = LH. Indeed, if a € P& LH, then on the one hand lim,, (av,a*, v,) =
lal|3 because the unitaries v, asymptotically commute with a. On the other hand, this limit is
equal to 0 by the claim. So a = 0 and we are done. O

Remark IV.2.4. By [Co76], diffuse amenable von Neumann algebras have property Gamma.
Hence an amenable maximal Gamma subalgebra of a finite von Neumann algebra M is maximal
amenable. In the case where M = LG for some hyperbolic group G then the two notions are
equivalent, because M is solid ([0z04]).

If H < G is an inclusion satisfying the assumption of Proposition then H is almost
malnormal in G in the sense that sHs~' N H is finite for all s ¢ H. As pointed out in Example
this is equivalent to saying that the inclusion LH C LG is mixing (Definition |A.1.2)).
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IV.2.2 Relatively hyperbolic groups and their boundary

The contents of this section is taken from Bowditch [Bowl12]. Let us fix first some terminology
and notations about graphs.

Let K be a connected graph. Its vertex set and edge set are denoted by V(K) and E(K)

respectively. A path of length n between two vertices x and y is a sequence (zg, 1,...,Ty,) of
vertices such that zg = z and z, = y, and (x;,z,41) € E(K) for all i = 0,...,n — 1. The
path (zo,...,xy,) is a circuit if 9 = x, and if xg, x1, ..., 2,1 are pairwise distinctﬂ For a path
a=(xg,x1,...,2Tpn), we put a(k) = xg, k=0,...,n.

We endow K with the distance d given by the length of a shortest path between two points.
A path a between two vertices x and y is a geodesic if its length equals d(z,y). We denote by
F(z,y) the set of all geodesics between x and y.

More generally, for r > 0, a path « is an r-quasi-geodesic if all its vertices are distinctsﬂ and if
for any finite subpath 8 = (zg,...,z,) of «, the length of 3 is smaller than d(x¢,z,) + r. Note
that the geodesics are exactly the 0-quasi-geodesics. For z,y € V(K), denote by F,.(x,y) the
set of r-quasi-geodesics between x and y.

We will also consider infinite paths (zg,z1,...) or bi-infinite paths (...,x_1,z¢,21,...). For
r > 0, such an infinite or bi-infinite path will be called r-quasi-geodesic if all its finite subpaths
are r-quasi-geodesics.

Definition IV.2.5. In a graph K, a geodesic triangle is a set of three vertices x,y,z € V(K),
together with geodesic paths [z,y] € F(z,y), [y,2] € F(y,z) and [z,z] € F(z,x) connecting
them. These paths are called the sides of the triangle.

Definition IV.2.6 (Gromov [Gr87]). A connected graph K is called hyperbolic if there exists
a constant § > 0 such that every geodesic triangle in K is §-thin: each side of the triangle is
contained in the d-neighbourhood of the union of the other two, namely [z, y] C B([y, z]U[z, z], ),
and similarly for the other two sides.

Two infinite quasi-geodesics in a hyperbolic graph K are equivalent if their Hausdorff distance is
finite. The Gromov boundary OK of K is the set of equivalence classes of infinite quasi-geodesics.
The endpoints of a path « = (g, x1,...) in a class z of K are defined to be z¢ and . Similarly,
a bi-infinite path a := (...,x_1,20,21,...) has endpoints a_ := [(zg,2_1,...)] € K and
ar = [(xg,x1,...)] € OK. It turns out that for any two points z,y € K U 9K, for any r > 0,
the set F,(z,y) of r-quasi-geodesics connecting them is non-empty.

Recall that a hyperbolic group is a finitely generated group which admits a hyperbolic Cayley
graph (this implies that all its Cayley graphs are hyperbolic). We will define similarly relatively
hyperbolic groups, but we have to replace the Cayley graph by a graph in which some subgroups
are “collapsed” to points.

Definition IV.2.7 ([Far98]). Consider a group G, with finite generating set S and denote by
I' := Cay(G, S) the associated Cayley graph. Let G be a collection of subgroups of G. The
coned-off graph of I' with respect to G is the graph I' with:

o vertex set V(L) := V() U |yeq G/H;

IThis last condition will be crucial in Definition [[V.2.8
1) to be true.

2This condition is necessary for Lemma [[V.2.12
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e edge set E(T') := E(T') U {(gh,[gH])|H € G,[gH] € G/H,h € H}.

In the sequel, we will identify V(lj) with G. The action of G on itself by left multiplication
extends to an isometric action on I'. The stabilizer of the vertex [gH] is equal to gHg™!.

Note that in the coned-off graph f, the distance between two elements g and gh is at most 2
whenever h € H for some H € G. Note also that this coned-off graph will not be locally finite
in general. But it will sometimes satisfy the following fineness condition.

Definition IV.2.8 ([Bowl12]). A graph I is called fine if each edge of I is contained in only
finitely many loops of length n, for any given integer n.

Definition IV.2.9 ([Bowl12]). A group G is said to be hyperbolic relative to the family G if there
exists a finite generating set S of G such that the coned-off graph I' is fine and é-hyperbolic (for
some 6 > 0).

From this definition, usual hyperbolic groups appear as hyperbolic relative to the empty family.

For any relatively hyperbolic group G with Cayley graph T, let us define a topology on AT :=

ruoar.

Definition IV.2.10. Given z € AT and a finite set A C V(I') such that = ¢ A, we define
M(z,A):={ye AT : Ana=0,Va € F(x,y)}.

Theorem IV.2.11 ([Bowl2], section 8). The family {M(z, A)}z A is a basis for a Hausdorff
compact topology on AL such that G C AT is a dense subset, and every graph automorphism of
I' extends to a homeomorphism of AT,

Actually, we will not use the fact that Al is compact. The proof of Theorem relies on
the following lemma, which will be our main tool in order to manipulate neighbourhoods in AT

Lemma IV.2.12 ([Bowl2], Section 8). Let r > 0. The following facts are true.

1. For every x,y € AT, the graph |J o) 0 locally finite.

aEFr(

2. For every edge e € E(L), there exists a finite set E,(e) C E(L) such that for all z,y € AT,
and all o, B € Fr(x,y) with e € a, we have that E,(e) N [ contains at least one edge.

3. For every a € V(I'),z € AT, with = # a, there exists a finite set Vy 5(a) C V(I')\ {a:} such
that for ally € AT, and all o, B € F,.(z,y) with a € o, we have that BNV, z(a) #

More generally, given a subset A C V(T), we will put Vy,(A) = Uaes Vrz(a). We will also
assume that A C V, 5(A).

Proof. The first two facts are 8.2 and 8.3 in [Bowl12]. To derive the third fact from the others,
fixae V(f‘) and x € AT'. Denote by Ej the set of edges e in the graph Uae}'r(a,x) a such that
a is an endpoint of e. By (1), the set Ejy is finite. Now put F := UeEEo E,(e), and define V;. »(a)
to be the set of endpoints of E, in which we remove z if necessary. This is a finite set.

Now if a € F,(z,y) goes through a, then it will contain an edge in Ey. Thus any § € F,(z,y)
contains an edge in F, and we are done by the definition of V; ,(a). O
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Lemma, will always be used via the following easy lemma.

Lemma IV.2.13. Let r >0, x € AT and A C V(') \ {z} finite. The following are true.

1. Ify ¢ M(z, A), then any r-quasi-geodesic o € F,(x,y) intersects V, ,(A).

2. Ify € M(z,V,(A)), then no r-quasi-geodesic from y to = intersect A.

Now we describe a way of constructing quasi-geodesic paths. The following lemma is well known.

Lemma IV.2.14. There exist a constant ro > 0, only depending on the hyperbolicity constant of
the graph I', with the following property: for any geodesic paths o, 8 sharing exactly one endpoint
a, if a is the closest point of a to each point of 5, then aU B is an rg-quasi-geodesic.

Definition IV.2.15. Consider z,y,z € AI' and let a € F(x,y) be a geodesic. A point zy € «
which minimizes the distance from z to «, is called a projection of z on «. Such a zy splits
the path o into two geodesic paths a, € F(z,29) and o, € F(z0,y). Given any geodesic
B € F(z,2), we can join 3 and oy or ay to get two paths that are ro-quasi geodesic by Lemma

V214

We end this section with a lemma that we will need later. Its proof illustrates well how to use
the tools defined above.

Lemma IV.2.16 ([Bowl2]). For every x € AL and for every finite subset A C V(D) \ {z},
there exists a finite subset C' C V(') \ {x} such that for every y € M(x,C),

M(y,C) C M(x, A).

Proof. Let rg > 0 be given by Lemma [IV.2.14] and set C' := V;, z(V;,.2(A)) (see Lemma
1V.2.12(3)). We will show that the conclusion of the lemma holds for this C'.

If y = x, we see that M(z,C) C M(z,A) because A C V,, »(A) C C. Now let y € M(z,C),
with y # z, and take z ¢ M(z, A). We will show that z ¢ M (y,C).

Let a be a geodesic between y and z. Consider a projection xg of z on « as in Definition
and let 8 € F(x,x0). We denote with a,, (resp. «;) the subgeodesic of a between zy and y

(resp. x¢ and z). Then, by Lemma [IV.2.14] the paths 8 U oy € Fry(x,y) and BU a, € Fry(x, 2)
are rg-quasi-geodesics.

Since z ¢ M(x, A), Lemma[[V.2.13{(1) implies that U« intersects V;, »(A). If the intersection
point lied on SUaq, then Lemma [[V.2.13|(2) would contradict our assumption that y € M (z, C).
Hence the intersection point lies on o, C a. We have found a geodesic between z and y which
intersects a point of V;, »(A) C C, which means precisely that z ¢ M (y,C). O

IV.3 Hyperbolic case: proof of Theorem [V.A]

Suppose that G is a hyperbolic group and that H is an infinite maximal amenable subgroup of
G. We want to apply Proposition in order to prove Theorem [[V.A]

As mentioned in Section [[V.2.2) G is hyperbolic relative to the empty family and I' = T, for
any Cayley graph I' of G. Thus AT :=T'U 9T is the usual Gromov compactification of ', with
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boundary OI', endowed with the topology given by the sets {M (z, A)}» 4. As before, we identify
G with V().

Recall that the action of G by left multiplication on itself extends to a continuous action on AT
This action is amenable.

The amenable subgroup H has a particular form by |[GdH90, Théoreme 8.29, Théoreme 8.37].
First, H admits an element ¢ € H which generates a finite index subgroup of H. Second, the
element a acts on AI' with exactly two fixed points a4 € OI', and H C Stabg({a—_,a4+}). Since
the left action of G on AT is amenable, the group Stabg({a—,a}) is amenable. By maximal
amenability of H this yields the equality H = Stabg({a—,a+}). Also, Stab(a_) and Stab(a4)
are contained in H.

Moreover, the fixed points at of a are such that lim,_, 1~ a"z = a4 and lim,—,_ a"x = a_,
for any x € AT (so in particular a4 is the unique cluster point of the sequence {a"},>0).

The action of G on itself by right multiplication also extends to a continuous action on AT, in
such a way that any element g € G acts trivially on JI' (see for instance [BOOS, Proposition
5.3.18)).

In order to find an H-roaming set as in Proposition we need to understand geometrically
the conjugacy action of H on GG. We start by collecting properties of left and right actions of
H on AT separately, in the following two lemmas. Combining these lemmas, we will see that
the conjugacy action of H has a uniform “north-south dynamics” out of H, as shown in Figure

[V.1al

Sa

h-h1

(a) Conjugacy action of H on G. (b) The subsets V' and sVt are disjoint.

Figure IV.1: The action of G and a good neighborhood V of {a,a_}.
The following fact is certainly known, but we include a proof for the sake of completeness.

Lemma IV.3.1. For any finite sets A, B C V(I'), there exists n € Z such that
GnN(a" -M(a—,B)") C M(ay,A).

Proof. First note that we can (and we will) assume that a_ ¢ M (a4, A). By Lemma [IV.2.16
there exists a finite set C' C V(I") such that for all y € M (a4, C) we have M (y,C) C M (a4, A).
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In particular, for all y € M(a4,C) and z ¢ M(a4, A) there exists a geodesic between y and z
which intersects C.

Choose n € Z such that "B C M(a4,C) and such that the distance between points of C' and
a" B is larger than the diameter D of Vp,_ (C). We claim that this n satisfies the conclusion of
the lemma.

Assume by contradiction that there exists z € G = V(I') such that z ¢ a"M(a_,B) and
z ¢ M(ag,A). Since z ¢ a"M(a—,B) = M(a—,a"B), there exists a geodesic o € F(a_,2)
which contains a point y € a"B C M (ay,C). Let us denote «,_ the sub-geodesic of a between
a— and y and with «, the sub-geodesic between y and z.

Since a_ ¢ M (a4, A), there exists a geodesic between a_ and y which intersects C. By Lemma
the geodesic o, meets Vp,_(C) at a vertex 1. Moreover z ¢ M (a4, A), so replacing
o, by another geodesic between y and z if necessary, we can assume that o, meets C C Vy,_
at a vertex xg (while a = oy U @, is still a geodesic). But then

d(z1,z2) < diam(Vp,_(C)) = D.

On the other hand, the length of a between these two points is equal to d(z1,y)+d(y, z2), while
d(x1,y) > D because 1 € C and y € aB. This is absurd. O

Lemma IV.3.2. For any A C V(I') finite, there exists a finite B C V(I') such that for any
keZ,
(M(as, B) N (G\ H))a* € M(ay, A).

Proof. We start with a claim.

Claim. There exists a finite set B’ C V(T') such that if y € M(ay,B’) N G is such that
ya* ¢ M(ay, A) for some k € Z, then there exists m € Z such that ya™ € B’

Proof of the Claim. By [GdH90), Proposition 8.21], there exists a finite constant r» > 0 such
that for any p € Z, all geodesics between the neutral element e and a? are contained in the
r-neighbourhood of the sequence {a*, k € Z}.

By Lemma [IV.2.16| there exists a finite set C' C V(I") such that for all y € M (a4, C) we have
M(y,C) C M(ay,A). We show the claim for B’ := B(C, r), the r-neighbourhood of C.

Take y € M(ay,B") NG C M(ay,C) such that ya* ¢ M(ay,A) for some k € Z. Then
ya* ¢ M(y,C), so there exists a geodesic o between y and ya* which meets C' at a point c.

Then y~'c belongs to a geodesic between e and a¥, so it is at distance less than r to some a™.
In other words, ya™ € B(C,r) = B’, which proves the claim. O

Observe that the set of cluster points of the sequences (ya*)z, with y € B’ \ H is finite and
contained in OI' \ {ay,a_}. So there exists B such that

M(ay,B) C M(ay,B’) and M(a,,B)N{ba*|bec B'\ H k€ Z} = 0.

The subset B satisfies the conclusion of the lemma. Indeed, if y € M (a4, B) N (G \ H) is such
that ya* ¢ M(ay, A) for some k € Z, then by the claim there exists h such that y € B'a™". But
in this case we would have y € M (a4, B) N{ba?|b € B\ H,p € Z}, which was assumed to be
empty. Therefore ya* € M(a,, A) for any k. O

Now we can deduce a relevant property of the conjugacy action of H, as shown in Figure [[V.Ta]
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Proposition IV.3.3. For any neighbourhood V of {a_,a. } inside AT, the set F' := V¢N(G\H)
is H-roaming.

Proof. Let V and F be as in the proposition. We will construct a disjoining sequence (hy)x
inductively. First put hg :=e.

Now assume that hg,...,h,_1 have been constructed, for some n > 1. We will construct h,.
Denote by V,, := i, hthi_l. It is a neighbourhood of {a_, a4}, by continuity of left and right
actions of H. Now put F,, := VN (G \ H).

By Lemma [IV.3.2] there exists a neighbourhood V' of ay. such that (V' N (G \ H))a* C V,, for
all k € Z. By Lemma [IV.3.1] there exists k, € Z such that G N a* V¢ C V' and in particular
a*nF C V'. Note also that (a*F)n H = {.

Altogether, we get that afnFa=F c Vi, is disjoint from F},. But F, contains all the hiFhi_l,
i <n—1. So we can define h,, = a*n. O

Corollary IV.3.4. For every s,t € G\ H, there exists an H-roaming set F C G\ H such that
sFt N F¢ is finite.

Proof. Choose a neighbourhood Vj of {a4,a_} such that V} is disjoint from sVj. Since the right
action of ¢ on AT is continuous, we can find a V' C Vp such that V and sVt are disjoint (see
Figure . We observe that sVt N H, sHt NV and sHt N H are finite because the only
cluster points of H are in V' and the only cluster points of sHt are in sV't.

Therefore, setting F' := V¢ N (G \ H), we get an H-roaming set (by Proposition [IV.3.3]) such
that sF'“¢ N F° is finite. O

Now Theorem [[V.A] follows from Proposition [[V.2.3

Remark IV.3.5. Note that in the proof of Proposition the disjoining sequence that we
construct is contained in the subgroup Hy := (a) C H. Then the proof of Theorem actually
shows that if P C LG is an algebra with property Gamma such that LHy C P, then P C LH.
Hence u, is contained in a unique maximal amenable von Neumann subalgebra of M.

IV.4 Relatively hyperbolic case

IV.4.1 Proof of Theorem IV.BI

Let G be a hyperbolic group relative to a family G of subgroups of G, and let H € G be an
infinite amenable subgroup.

Consider a Cayley graph T of G such that the coned-off graph I of I with respect to G is fine and
hyperbolic. Denote by AI its Gromov compactification, endowed with tl}e topology generated
by the sets {M (z, A)}z 4. We still identify G with the subset V(I') C V/(I).

Now denote by ¢ = [H] € V(T') the vertex associated with [H] € G//H. This point is not in the
boundary 0T, but it is represented out of I', as in Figure

We will show that for any neighbourhood V' of ¢, the set F' := V¢ N (G \ H) (Figure [IV.2a))
is H-roaming in the sense of Definition Then we will show that if V' is small enough

(Figure [IV.2b)), F' satisfies the condition of Proposition [IV.2.3] hence proving Theorem
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c = [H] c = [H]

I

h-h=t
sc = s[H]
(a) Conjugacy action of H on G. (b) The subsets V' and sVt are disjoint.

Figure IV.2: The action of G and a good neighborhood V' of ¢ = [H].

In this section, we will write V;. instead of V,.., r > 0 (see Lemma [IV.2.12).

Remark that since ¢ shares an edge with all the points in H (and only with them), any geodesic
between ¢ and a point x € AT contains exactly one element in H. In particular one has the
following simple lemma.

Lemma IV.4.1. The family {M(c, A)} acH is a basis of neighbourhoods of c.

Proof. Let B C V(f‘) be a finite subset, for every b € B choose a geodesic ay from ¢ to b. Set
A :={ap(1) }pep and observe that M(c, A) C M(c, B). O

Remark IV.4.2. In the same way, if A C H is finite and r > 0, the set V;(A) from Lemma
1V.2.12| can be assumed to be contained in H. Indeed one can replace V,.(A) by the finite set of
points in H which lie on an r quasi-geodesic from V,.(A) to c.

To give a hint about the topology near the point ¢, let us mention that any sequence (hy), in
H which goes to infinity converges to c.

As in the hyperbolic case, we will study geometrically the conjugacy action of H on G. We will
treat left and right actions separately. First, the left multiplication of G on itself extends to an
isometric action on f, and hence extends to a continuous action on AI'. Let us extend also the
right action.

Definition IV.4.3. The right action of G on AT is the action whose restriction to G is equal
to the right multiplication by G on itself, and which is trivial on AI'\ G. This action is a priori
not continuous, and it clearly commutes with the left action.

The following lemma is due to Ozawa, who shows actually that the right action on AT is
continuous. But we will only use continuity at c.

Lemma IV.4.4 ([0z006]). The right action of G on AL is continuous at c.
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Proof. Let g € G, and let (x,) be a sequence converging to ¢. We want to prove that (x,g)
converges to c¢. Since the right action is trivial on AT'\ G, we can assume that x,, € G for all n.
Fix a finite set A C H. We will show that z,g € M(c, A) for n large enough.

By Lemmal|[V.2.16} there exists a finite set C' C V(I')\ {¢} such that for all y € M(c, C) we have
M(y,C) C M(c,A). Soify € M(¢,C) and z ¢ M(c, A), then there exists a geodesic between y
and z which intersects C'.

Assume by contradiction that there exist infinitely many indices n for which z,g ¢ M(c, A).
By assumption z, € M(c,C) for n large enough, which implies that there exists a geodesic
an € F(2n,ng) which intersects C for infinitely many n’s. Then z,, o, belongs to F(e, g) and
the set X := {Jye7(c,q) V() is finite by Lemma :IV.2.12|( 1). Altogether we get that z,, !CNX # ()
for infinitely many n’s. Taking a subsequence if necessary, we find an element ¢ € C and x € X
such that z,, !¢’ = z for all n.

But then for all p,n € N, we see that 12, € Stabg(z). Since there are infinitely many distinct

elements x,, we get that x has to be a conic point, and for all fixed p, the sequence (x; Len)n
converges to z. But by continuity of the left action, the sequence also converges to z,, Le.

Therefore ¢ = xpz = ¢’. This contradicts our assumption that ¢ ¢ C. O

We now collect properties of left and right actions of H on AI'. Note that the left action of H
stabilizes ¢ (and H = Stab(c)).

Lemma IV.4.5. For any finite subsets A, B C H, there exists h € H such that
hM (e, A)¢ C M(c, B).

Proof. By Remark[[V.4.2] we may assume that V5(A) C H. Let h € H be such that hVy(A)NB =
(. Let x € M(c, A)° and let o be any geodesic between ¢ and hz, a € F(c,hz) . By Lemma
IV.2.13(1), h~la € F(e, x) contains a point a € Vy(A). Thus ha is the unique point of H which
is on «. In particular o contains no point of B. O

Lemma IV.4.6. For any A C V(f‘) finite, there exists a finite B C V(f‘) such that for any
heH,
(M(¢, ByN(G\ H))h C M(c, A).

Proof. By Lemma [IV.4.1] we can assume that A C H. Consider an element z € G\ H such
that x ¢ M(c, A) and take h € H. We will show that xh ¢ M(c, Va(A)).

Let a be a geodesic from ¢ to x that meets A and put a := a(1) € N A. Note that since
xh ¢ H, we have d(zh,c) > 2, and at the same time d(zh,z) < 2, because zh and z lie in the
same coset H. Hence one can choose a projection zy of xh on « to be different from c¢. Thus
the path from zh to ¢ through zy constructed as in Definition is a 2-quasi-geodesic and
it contains @ = «(1) € A. By Remark [[V.2.13|2), this implies that zh ¢ M(c,Va(A)). Thus
B := V5(A) satisfies the conclusion of the lemma. O

As in the hyperbolic case, we deduce the following property of the conjugacy action of H on G,

see Figure [[V.2a]

Proposition IV.4.7. For any neighbourhood V' of ¢ inside AT, the set F := VN (G\ H) is
H-roaming.
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Proof. We will construct a disjoining sequence (hy)r C H inductively. First put hg := e. Now
assume that hyg, ..., h,_1 have been constructed, for some n > 1. We will construct h,,.

Denote by V, := N, hiVh;'. Tt is a neighbourhood of {c}, by continuity at ¢ of left and
right actions of H. Hence there exists A C H finite such that M(c, A) C V,,. Now put F, :=
M(c,A)*N(G\ H).

By Lemma [[V.4.6] there exists B C H finite such that (M(c,B) N (G \ H))H C M(c, A).
Then Lemma [IV.4.5| provides an h € H such that hF,, C M(c, B). Altogether, we get that
hF,h=! C M(c, A), which is disjoint from F,.

Note that for all i = 0,...,n— 1, we have h;Fh; ' C V.¢N (G \ H) C F,. Therefore we can define
h, to be equal to h. ]

Corollary IV.4.8. For every s,t € G\ H, there exists an H-roaming set F C G\ H such that
sFt N F° is finite.

Proof. We proceed as in Corollary [V-3:4] By continuity of left and right action at ¢, there exists
a neighbourhood V' of ¢ such that V' and sVt are disjoint (see Figure . We observe that
sVtNH, sHtNV and sHtN H are finite because the cluster point of H lies in V' and the cluster
point of sHt lies in sVt.

Therefore, setting F' := VN (G \ H), we get an H-roaming set (by Proposition [[V.4.7) such
that sF°t N F¢ is finite. O

Now Theorem [[V.B] follows from Proposition

Surprisingly, we did not use the fact that H is amenable until the end of the proof. In fact our
proof shows that if G is hyperbolic relative to a family G of subgroup and if H € G is infinite
and such that LH has property Gamma then LH is maximal Gamma inside LG.

Remark I'V.4.9. For later use, note that the set F'in Corollary|lV.4.8|is such that sF'“¢tNF° C H
and hence s(FUH)t C FUH.

IV.4.2 Proof of Corollary [V.C|

Assume that G is hyperbolic relative to a family G of amenable subgroups, and consider an
infinite maximal amenable subgroup H < G. We will show that G is hyperbolic relative to
G U{H}. Then Theorem will directly allow to conclude that LH is maximal amenable
inside LG.

The argument relies on Osin’s work [Os06al, [(Os06b].

Definition IV.4.10. An element g € G is said to be hyperbolic if it has infinite order and is
not contained in a conjugate of a group in G.

Definition IV.4.11. A subgroup K of G is said to be elementary if it is either finite, or
contained in a conjugate of a group in G, or if it contains a finite index cyclic subgroup (g), for
some hyperbolic element g.

(Gromov-)Tukia’s strong Tits alternative (see [Tu94, Theorem 2T, Theorem 3A] using [Bow12,
Definition 1]) states that a non-elementary subgroup K of G contains a copy of the free group
on two generators.
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In particular, our amenable subgroup H is elementary. If it is contained in a conjugate aH;a ™! of
a group in G, then it is equal to aH;a~' by maximal amenability, and Theorem concludes.

Now assume that H contains a finite index cyclic subgroup (g), for some hyperbolic element g.
Osin showed in [Os06bl Section 3] that such a hyperbolic element ¢ is contained in a unique
maximal elementary subgroup E(g) (thus H = E(g), by maximal amenability). Moreover he
showed [Os06b, Corollary 1.7] that G is hyperbolic relative to G U {E(g)}. This is what we
wanted to show.

IV.5 Product case: proof of Theorem [V.D|

Observe that if H; < Gy, for ¢ = 1,2, are infinite maximal amenable subgroups, then the von
Neumann subalgebra L(H; x Hy) C L(G1 X G2) is neither maximal Gamma nor mixing as soon
as H1 75 Gl.

Therefore to treat the product case, we will have to deal with relative notions. We could
consider a relative notion of property Gamma and proceed as in Section We choose
instead to apply directly the work of C. Houdayer and the relative asymptotic orthogonality
property, [Ho(12)b]. Note that in the case of virtually abelian subgroups Hi, Hy we could also
use [CFRW10, Theorem 2.8].

Definition IV.5.1. Let A C N C (M, 7) be finite von Neumann algebras. The inclusion
N C M is said to be weakly mizing through A if the bimodule AL?(M)© L*(N)y is (left) weakly
mixing, in the sense of Definition

In the spirit of Example one can check the following.

Example IV.5.2. If H < G is an inclusion of groups satisfying the assumption of Proposition
IV.2.3|(e.g. if H and G are as in Theorem , then for any trace-preserving action G ~ (Q, 7)
on a finite von Neumann algebra, the inclusion @) X H C () x G is weakly mixing through LH.

Definition IV.5.3 ([Ho(12)b|, Definition 5.1). Let A C N C (M, 1) be an inclusion of finite
von Neumann algebras. We say that N C M has the asymptotic orthogonality property relative
to A if for every || - ||co-bounded sequences (x,), and (yn), in M © N which asymptotically
commute with A, we have that

lim{ax,b, y,) =0, for all a,b € M © N.

Theorem IV.5.4 ([Ho(12)b], Theorem 8.1). Let A C N C (M, 1) be an inclusion of finite von
Neumann algebras. Assume the following:

1. A is amenable.
2. The inclusion N C M is weakly mizing through A.

3. The inclusion N C M has the relative asymptotic orthogonality property relative to A.

Then any amenable von Neumann subalgebra of M containing A is automatically contained in
N.
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From now on, we consider the crossed-product von Neumann algebras () x G associated to
a trace-preserving actions G ~ (Q, 7). As for group von Neumann algebras, denote by wu,
the unitaries of @ x G corresponding to elements ¢ € G and for any set F' C G denote by
Pr: L*(Q,7) ® 2(G) — L*(Q,7) ® {*(F) the orthogonal projection.

Proposition IV.5.5. Let H < G be an inclusion of two infinite groups, with H amenable.
Consider an action G ~ (Q,T) of G on a tracial von Neumann algebra, and assume that for
any s,t € G\ H, there exists an H-roaming set F C G\ H such that s(F UH)‘t C FUH.

Then the inclusion Q x H C Q x G has the asymptotic orthogonality property relative to LH .

Proof. Consider two || - ||s-bounded sequences (), and (y,), in (Q x G) © (Q x H) which
asymptotically commute with LH. By linearity and density it is sufficient to check that for any
s,t ¢ H,

lm(uszpus, yn) = 0.
n

Fix s,t € G\ H. There exists an H-roaming set I’ such that s(F'U H)% C F'U H. Proceeding
as in the proof of Lemma [IV.2.2] it is easy to show that lim,, || Pr(zy)||2 = limy, || Pr(yn)||2 = 0.
Note also that for all n, we have z,, = Pye(x,) and y,, = Pge(y,). Therefore

lm(usxpug, yn) = lim(us Ppe(zy)ug, Pre(yn))
n n

= hén@sP(FuH)c(xn)Uta Prumye(yn)) =0,
because s(F'U H)t C F'U H. This ends the proof of the proposition. ]

Proof of Theorem[IV.D. Fori=1,...,n, let G; be a hyperbolic group relative to a family G; of
subgroups and let H; € G; be an infinite amenable group. Consider the inclusion

H=Hx ---xH,<G:=G1 X xGy.
Let (@, 7) be a finite amenable von Neumann algebra and consider a trace-preserving action

G (Q,7)of G. Put N:=Q x Hand M :=Q xG.

Assume that P is an intermediate amenable von Neumann subalgebra: N C P C M. We have
to show that P = N. In order to do so, we will show that for all i = 1,...,n, we have

PCN;:=Qx (G x-xGj—1 Xx Hi x Gig1 X -+ X Gyp).

This is enough to conclude, because N = N, V;.

Fori e {l,...,n}, weset A; := LH; and Q; := Q % Gi, where G; is the direct product of all G,
j # 4. Then we have N; ~ Q; X H; and M ~ Q; % G;.
By Corollary [IV.4.8| (and Remark [IV.4.9)), we see that H; C G; satisfies the assumptions of

Proposition so that N; C M has the asymptotic orthogonality property relative to A;.
Moreover the Example [[V.5.2 tells us that N; C M is (weakly) mixing through A;.

By Theorem one concludes that the amenable algebra P, which contains A;, is contained
in N;. This ends the proof of Theorem [[V.D] O
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Chapter V

Questions and perspectives

V.1 Von Neumann algebras associated with Gaussian actions

The main question that attracted my attention during these three years is the following well
known conjecture.

Conjecture V.1.1. For any non-amenable group I, the I} factor associated with the Bernoulli
action T ~ ([0,1], \)'' has a unique Cartan subalgebra, up to unitary conjugacy.

Following [PV (12)], we say that an action of a group I' is C-rigid if the associated von Neumann
algebra has a unique Cartan subalgebra, up to unitary conjugacy. One can wonder if any non-
amenable group has a C-rigid pmp action. Several facts [Po06al [Po06bl [AW13] seem to indicate
that for a given group, the best candidate for a C-rigid action is the Bernoulli action.

Conjecture is very hard to answer in full generality. I mention here several possible
approaches to solve weaker forms of the conjecture and related questions.

First note that Ioana’s result [Io11] shows uniqueness of group-measure space Cartan subalgebras
whenever I' has property (T). Would it be possible to find a simpler proof of this result, not
relying on the co-product map (see the proof of Theorem [I1.4.5))?

In view of Popa and Vaes uniqueness of Cartan papers [PV (12), [PV (13)], would it be possible
to solve Conjecture for non-amenable, weakly amenable groups? More precisely, would
it be possible to combine (a variant of) [PV(12), Theorem 5.1] and the Bernoulli deformation
to prove uniqueness of Cartan subalgebras in crossed-product factors associated with Bernoulli
actions of weakly amenable groups?

Alternatively one could try to use the relative bi-exactness result for Bernoulli actions [BOOS,
Proposition 15.3.6] instead of the Bernoulli malleable deformation. In the same vein, one can
ask the following question.

Question V.1.2. Consider a non-amenable group I' and denote by M the crossed-product I
factor associated with the Bernoulli action T' ~ ([0,1], \)''. Assume that M ~ L>(Y,v) x A for
a free ergodic pmp action A ~ (Y,v) of a weakly amenable group A.

Are the Cartan subalgebras L>=([0,1]") and L>®(Y) necessarily unitarily conjugate?

Furthermore, together with [Pe(09), Lemma 2.6] a positive answer to Question [II.3.13| could
help to answer the following almost complementary question.
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Question V.1.3. Consider a non-amenable group I' and denote by M the crossed-product I
factor associated with the Bernoulli action T' ~ ([0,1], )Y, Assume that M ~ L>(Y,v) x A for
a free ergodic pmp action A ~ (Y,v) of a group A which does not have the Haagerup property.

Are the Cartan subalgebras L>=([0,1]") and L>®(Y) necessarily unitarily conjugate?

Finally, if the two questions above have positive answers can one fill the gap to prove unique-
ness of group measure space Cartan subalgebras in crossed products associated with Bernoulli
actions?

V.2 Problems on maximal amenable subalgebras in free group
factors

The work presented in Chapter [[V] makes use of the Gromov boundary of hyperbolic groups.
This boundary is also used in Ozawa’s work on solidity and bi-exactness [0z04, BOOQS§]. It would
be interesting to elucidate the link between the two approaches. For instance could we reprove
Theorem using bi-exactness, or property AO of Akemann and Ostrand?

Next, it would be worth further investigating the position of hyperfinite subfactors in free group
factors. Theorem shows that for n > 2 no element x € F,, C LF, is contained in a
hyperfinite subfactor of LF},. As was asked by Jean Renault, what about an element z € CF,, C
LF, or an element z € C}(F,) C LF,?

Finally, can one produce an explicit example of a hyperfinite subfactor R C LF},, such that
RN C}(F,) =C1?



Appendix A

(Weakly) Mixing bimodules over
finite von Neumann algebras

One of the main concepts in the theory of group representations (and group actions) is the
notion of a mixing representation.

In the context of finite von Neumann algebras one can observe various mixing phenomena. In
this chapter, we intend to provide a unified approach to the notion of mixing for von Neumann
algebras. Then we shall present applications of this notion which are intensively used in Chapters

I, 1] and [V}

A.1 Definitions and examples

Inspired by the notion of mixing representation of a group, Peterson and Sinclair [PS12] intro-
duced the notion of mixing bimoduld!]

Definition A.1.1. Let M and N be von Neumann algebras. An M-N bimodule yyHy is (left)
mizing if for any bounded sequence of unitaries (u,) C U (M) which tends weakly to 0, one has

lim sup [(un&y,n)| =0, VE,n € H.
" ye(N)

A more classical definition, though, is the notion of a mixing inclusion of finite von Neumann
algebras.

Definition A.1.2. An inclusion of finite von Neumann algebras N C (M, 1) is mizing if any
sequence (uy) C U(N) which tends weakly to O satisfies

lim | Ex(aupb)|l2 =0, Va,b € M & N.

It turns out that mixing inclusions are just a particular case of mixing bimodules.

Proposition A.1.3. An inclusion N C (M, ) is mizing if and only if n(L*(M) S L?(N))y is
mizTing.

!The mixing property of the coarse bimodule was already explicitly used in [Pe09].

111



112 APPENDIX A. MIXING BIMODULES

Proof. Assume that N C M is mixing. Consider a sequence (un) C U(N) which tends weakly
to 0. By density it is clearly sufficient to check that for all a,b € M © N we have

lim sup |(upay,b)| = 0.
" ye(Nn

But for every n we see that

sup [(unay,b)| = sup [(b*una,y*)| < [[En(b*zna)l5’0.
ye(N)1 yE€(N)1

Conversely assume that the bimodule is left mixing and take a bounded sequence (u,) C N
which tends weakly to 0. Take also a,b € M © N. For all n we have

IEN (aunb) 3 = (aunb, En(aunb)),
which tends to 0 because the sequence En(auyb) is bounded for the operator norm. O

Proposition A.1.4. A measure preserving action I' ~ (X, p) is mizing if and only if the
inclusion LT' C L>®(X) x ' is mizing.

Proof. Denote by ug,g € I" the canonical unitaries in M implementing the action of I'.
First assume that the inclusion is mixing. Then for any sequence (g,,) C ' going to infinity and
a,b € L*(X,u) ©C, we have

lim [r(ac, (1)) = lim || Ezr(aug, b)[l» = 0.

Conversely, assume that the action is mixing and take a sequence (u,) C U(LI") which tends
weakly to 0. By linearity and density, it is sufficient to check that for all a,b € L*>°(X, u) ©C we
have limy, [|[Err(aunb)|l2 = 0. Fix a,b € L*(X, pu) © C and £ > 0. Writing up, = > An gy,
we get

IELr(aund) |5 =~ [Ang7(acy(b))]?, for all n.
ger

Since the action is mixing there exists a finite set /' C I' such that |7(aoy(b))| < € for all g ¢ F.
Hence for all n, we have
I1Err(aunb)[3 < D [Angm(aog®) +° ) Angl?
geF 9g¢&r

< Z | An.gT(acy(b))|* + €.
geF

But since the (un) converges weakly to 0, we have that lim,  p |An g7 (aoy(b))|* = 0. This
concludes the proof. O
With the same kind of proof, we also get the following examples.

Example A.1.5. Given groups ['g < I', the inclusion LI'g C LI' is mixing if and only if Iy is
almost malnormal inside Tf

Example A.1.6. If M = M % M is a free product of finite von Neumann algebras, then
M; C M is mixing.

2This means that sTgs™* N T is finite for all s € T \ To.



A.2. WEAKLY MIXING BIMODULES 113

A.2 Weakly mixing bimodules

Definition A.2.1. A bimodule p;Hy is (left) weakly mixing if there exists a sequence of uni-
taries (up) C U(M) such that

lim sup [(un&y,n)| =0,VEn e H.
" ye(N)

From this definition, one deduces corresponding notions of weakly mixing inclusions of finite
von Neumann algebras, and provide examples similar to what we did for mixing bimodules.

In the context of group representations, recall that we have an equivalence between the three
statements:

e a representation 7 is weakly mixing;
e 7 has no (non-zero) finite dimensional sub-representation;

e 7m® 7 has no (non-zero) invariant vectors.

The following theorem is the von Neumann algebraic analogue of this statement. The proof is
similar to the proof of Popa’s intertwining lemma [Po06al, [Po06d]. This is not a coincidence, as
we will see in the next section. Here y H 3 denotes the contragredient bimodule of the bimodule
vHy, and H @y H is their fusion product in the sense of Connes. For more on this, see
[Co94l, [Fa09].

Theorem A.2.2. Assume that pyHpy is a bimodule over finite von Neumann algebras M and
N. The following are equivalent:

(i) mHpN is weakly mizing;
(ii) {0} is the only M-N subbimodule of pyHy which has finite N-dimension;

(iii) n(H @n H)p has no non-zero central vector.

Proof. (i) = (dii). Assume that pyHpy is weakly mixing. Then this is also the case of the
bimodule y;(H ®x H)pr, which can not contain a central vector.

(iii) = (ii). Assume that p;(H @y H)js has no central vector.
Claim. {0} is the only subbimodule of j;Hx which is finitely generated as an N-module.

By contradiction, consider a non-zero subbimodule y; K C a7 H  which is finitely N-generated:
there exists an onto isomorphism of right modules u : Ky — (pL?(N)®")y for some n > 1 and
some projection p € M,(C) ® N, p # 0.
Then the left M-action on K induces a *-homomorphism ¢ : M — p(M,,(C) ® N)p such that
u(zf) = p(x)u(§) forallz € M, £ € K.

For all j = 1,--- ,n, denote by & = u~1(pe;), where e; € L*(N)®" is the j*® coordinate vector
ej =(0,---,0,1,0,---,0). One checks that the vectors &; are right N-bounded and satisfy the
relations

x&; = Zf] : (QD(ZE))LZ', foralz e M,i=1,--- ,n.
j=1
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Then the vector £ := ) & ® &, is an M-central vector in K ® vy K C H @y N. Indeed, for
all z € M we have

n

€ - § Z gz ®§z = Z (f : (@(x))j,i) ®g

711

—Z@@@- 2))ja)"

Jl

—Z@@& Z@@x & =¢

3,j=1

But since the vectors &;, i = 1,--- ,n are pairwise orthogonal, the vector £ is non-zero. This
contradicts our assumption (7i).

Now that the claim is proved, assume that K is a non-zero subbimodule of j; Hy with finite
N-dimension. Denote by 1 —p € Z(N) the maximal projection in Z(N) such that Kp = {0}.
By assumption, 1 —p # 1 and so p # 0. Now consider the bimodule p/(Kp),n. It has finite
right dimension, and so there exists a non-zero projection ¢ € Z(pN) such that (Hgq)n is
finitely generated (see [Va(7, Lemma A.1]). Therefore p(K¢q)yn is a non-zero subbimodule of
the weakly mixing bimodule ps(Hq)qn which is finitely N-generated. This contradicts the claim.

(ii) = (i). Assume that pyHy is not weakly mixing. Denote by H® C H the (dense) subspace
of right bounded vectors, and for ¢ € HY denote by L : L?>(M) — K the operator defined by
Lex = Ex for all z € N. Recall that for all {,n € H°, and any 2 € M we have L¢xLy € N C
B(L*(N)).

Since j/Hy is not weakly mixing there exists ¢ > 0 and a finite set ' C H° such that for all
x € M we have

| sup (wy, )’ > e
gmeF YENN

Equivalently, for all z € M we have
> gLyl > -
Enek
Now define an element ¢ € B(H) N (N°P)’ by the formula ¢ =3 . Le L.
Denote by Tr the canonical semi-finite faithful normal trace on B(H) N (N°P)" which satisfies
Tr(LeLy) == 1(LyLe) for all §,m € HY. We see that Tr(c) is finite.

Consider the ultraweakly closed convex hull C of the set {ucu*|u € U(M)}. Then C is a closed
convex set in the Hilbert space L2(B(H) N (N°P), Tr). So it admits a unique element d € C of

minimal || - ||2 w-norm. By uniqueness, and since C is invariant under conjugacy by U(M) we
get that d € M' N (N°P)’. Let us show that d # 0. For all u € U(M) we have

ZT(Lflucu*Ln) = Z T(LyuLeLgu®Ly)
ner &ner

= Y L Lyll3

IS

> Y L Lyl 2 e
EneF
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By continuity, we get that ZneF 7(LydLy) > €, so that d # 0.

Take a non-zero spectral projection p € M’ N (N°P) of d*d. We have Tr(p) < ||dH§7Tr < 00. This
precisely means that pH is a subbimodule of py Hy with finite right N-dimension. O

Corollary A.2.3. Assume that N C (M, 7) is a mixing inclusion of finite von Neumann alge-
bras. Then for any diffuse subalgebra Q@ C N, we have QN (Q) C N.

Proof. By assumption, we know that n(L2(M) © L?(N))y is mixing. Since Q C N is diffuse,
the bimodule ¢(L*(M) & L*(N))g is weakly mixing. Assuming that v € QN 3/(Q), we get that
r:=v— Ex(v) € QN 1(Q) as well. Therefore span(QzQ) C L?>(M) © L?(N) is a subbimodule
with finite right B-dimension so it has to be {0} by Theorem Hence v = En(v). O

A.3 Popa’s intertwining-by-bimodules lemma

Since its first developments in the early 2000’s, Popa’s deformation/rigidity theory has lead to
numerous breakthroughs. Together with the concepts of deformation and rigidity came a very
powerful technical tool: the so-called “intertwining-by-bimodules lemma” discovered by Popa
[Po06a]. This lemma is certainly the key to the success of Deformation/rigidity theory.

Definition A.3.1. Let A, B C (M, 1) be finite von Neumann algebras (with possibly non-unital
inclusions). We say that A embeds into B inside M (and we write A <j; B) if the bimodule
A(14L?(M)1p)p is not weakly mixing.

Remark A.3.2. Proceeding as in the proof of Proposition one can check that A <p; B
if and only if there is no sequence of unitaries (u,) C U(A) such that

lim ||Eg(1pzunylp)|l2 =0, Yo,y € M.
n

The terminology is justified by the following theorem. The equivalence between (i) and (i7)
below is due to Theorem We also provided the material to prove the equivalence with
(4i7) in the proof of Theorem We refer to the original articles [Po06al [Po06d], or to [BOOS,
Appendix F] for more details.

Theorem A.3.3 (Intertwining-by-bimodules, [Po06a), [Po06d]). Let A, B C (M,T) be finite von
Neumann algebras (with possibly non-unital inclusions). Then the following are equivalent.

(i) A<m B;
(ii) There exists a subbimodule of 4L?(M)p with finite right B-dimension;

(iii) There exist projections p € A, q € B, a normal x-homomorphism 1 : pAp — qBgq, and a
non-zero partial isometry v € pMq such that xv = vi(x), for all x € pAp;

Example A.3.4. Assume that M is of the form M = B x I' for some trace preserving action
of I" on a finite von Neumann algebra and B. Denote by u4,g € I' the canonical unitaries in M
implementing the action of I'.

A subalgebra A C M satisfies A £ B if and only if there exists a sequence of unitaries v,, € U(A)
such that
| B (vnt?) s — 0, Vg € T.
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If B is abelian in the above example and if the action is free and ergodic, then B is a Cartan
subalgebra of the factor M. The following result states that for Cartan subalgebras intertwining-
by-bimodules amounts to unitary conjugacy.

Theorem A.3.5 ([Po06c], Theorem A.1). Assume that A and B are Cartan subalgebras in a
II-factor M. Then A embeds into B inside M if and only if there exits uw € U(M) such that
uAu* = B.

Proposition is a real motivation to further study properties of the relation <,;. We
refer to [Va08, Section 3| for elementary stability properties (relative commutant, amplifica-
tion/reduction...) and for a discussion on the transitivity of this relation.

The following criterion, due to loana, is an improvement of the characterization given in Example
It will play a crucial role in the proof of Theorem

Proposition A.3.6 ([Ioll], Theorem 1.3.2). Let I' ~ B be a trace preserving action on a finite
von Neumann algebra (B, 7). Put M = B x T, and let P C M be a von Neumann subalgebra.
Then P 4 B if and only if there exists a sequence of unitaries v, € U(P) such that

no\ ger

lim (sup HEB(vnu;)H2> =0.

A.4 Relatively mixing bimodules

We define a relative version of mixing bimodules, more adapted to our purposes. Let us start
with a convenient definition.

Definition A.4.1. Consider finite von Neumann algebras A C (M, 7). We say that a bounded
sequence (zy,) C M (weakly) tends to 0 relative to A if lim,, || E4(aznb)||2 = 0 for all a,b € M.

If A =C, this amounts to saying that (x,) tends weakly to 0.

Definition A.4.2. Let A C (M, 7) and N be finite von Neumann algebras. A bimodule s Hy
is mizing relative to A if for any sequence of unitaries (u,) C U(M) which tends to 0 relative to
A, one has

lim sup [(unéy,n)| =0,VE,n e H.

" ye(N)n
Definition A.4.3. An inclusion N C (M, 1) is mixing relative to a subalgebra A of N if the
bimodule y(L*(M) © L*(N))y is mixing relative to A.

Example A.4.4. As in Section we get very concrete examples.

1. Consider a measure preserving action I' ~7 (X, u) and any trace preserving action I' ~
(A, 7). Then (1® A) xI' C (L*°(X, ) ® A) x I' is mixing relative to 1 ® A if and only if
o is mixing.

2. Consider a trace-preserving action I' ~ (A4, 7) and take a subgroup I'g < I". The inclusion
A x Ty C A xT is mixing relative to A if and only if Iy is almost malnormal inside T'.

3. If M = My x4 M5 is an amalgamated free product of finite von Neumann algebras, then
My C M is mixing relative to A.
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Proposition A.4.5. Consider finite von Neumann algebras A C N C (M, 7). Assume that N C
M is mizing relative to A. Then for any Q C N such that Q 4 A, we have that QN y(Q) C N.

Proof. Since Q £ A, we get that o(L*(M) © L*(N))g is weakly mixing. So the conclusion is
a consequence of Theorem O

Proposition A.4.6. Assume that A C N C M are finite von Neumann algebras such that
N C M is mizing relative to A. Take a projection p € M and a subalgebra QQ C pMp such that

Q Am A. Put P = QNpMp(Q)H-

1. If Q <pr N then there exists a non-zero partial isometry v € pM such that vv* € P and
v*Pv C N.

2. If moreover N is a factor then one can find such a v with vv* € Z(P).

3. If N is a factor and if rQ <pr N for allr € Q'NpMp then there exists a unitary u € U(M)
such that uPu* C N.

Proof. (1) By assumption, there exist projections pg € @, ¢ € N, a non-zero partial isometry
v € poMq and a *-homomorphism ¢ : po@Qpo — ¢Ng such that for all x € py@po, one has
xv = vp(x).

By [Va08, Remark 3.8], one can assume that ¢(poQpo) Aa A. Hence Proposition implies

that QN g (p(PoQpo))” C N. But we see that v*Pv C QN garq(0(poQpo))”. Moreover vv* €
po(Q/ NM)cC P.

(2) Let us modify v obtained above in such a way that vv* € Z(P).

Take partial isometries vy, -+ ,vr € P such that vv; < vv*, ¢ =1,--- ,k and Ele viUf

S is a
central projection in P. Since N is a factor, there exist partial isometries wy, - ,wr € N such
that w;w] = v*v]v;v and w;w} = 0, for all 1 <4 # j < k. Define a non-zero partial isometry by

J
w =), vivw; € pM. We get

o ww* =} vivwawivtvl =3 vivy € Z(P);

o w'Pw C ) wiv*Pvw; C N.

(3) Consider a maximal projection ry € Z(P) for which there exists a unitary v € U(M) such
that u(roP)u* C N. One has to show that g = p. Otherwise we can cut by r = p — o,
and we obtain an algebra r() C rMr such that rQQ <p; N and rQ Ay A. Remark that
rP C ON v (rQ)”. Applying (2), we get that there exists a non-zero partial isometry v € rM,
such that vv* € Z(rP) and v*(rP)v C N.

Since N is a factor, modifying v if necessary, one can assume that v*v L wurgu®. Now the
following “cutting and pasting” argument contradicts the maximality of rg. The partial isometry
wp = urg + v* satisfies wiwy = ro + vv* € Z(P) and wy(ro + vv*)Pwi C N. Extending wy into
a unitary, we obtain a w € U(M) satisfying w(ro + vv*)Pw* C N. O
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