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Plusieurs aspects de rigidité des algèbres de von
Neumann

Résumé

Dans cette thèse je m’intéresse à des propriétés de rigidité de certaines constructions d’algèbres
de von Neumann. Ces constructions relient la théorie des groupes et la théorie ergodique au
monde des algèbres d’opérateurs. Il est donc naturel de s’interroger sur la force de ce lien et sur
la possibilité d’un enrichissement mutuel dans ces différents domaines.

Le Chapitre II traite des actions Gaussiennes. Ce sont des actions de groupes discrets préservant
une mesure de probabilité qui généralisent les actions de Bernoulli. Dans un premier temps,
j’étudie les propriétés d’ergodicité de ces actions à partir d’une analyse de leurs algèbres de
von Neumann (voir Theorem II.1.22 et Corollary II.2.16). Ensuite, je classifie les algèbres de
von Neumann associées à certaines actions Gaussiennes, à isomorphisme près, en montrant un
résultat de W∗-superrigidité (Theorem II.4.5). Ces résultats généralisent des travaux analogues
sur les actions de Bernoulli ([KT08, CI10, Io11, IPV13]).

Dans le Chapitre III, j’étudie les produits libres amalgamés d’algèbres de von Neumann. Ce
chapitre résulte d’une collaboration avec C. Houdayer et S. Raum. Nous analysons les sous-
algèbres de Cartan de tels produits libres amalgamés. Nous déduisons notamment de notre
analyse que le produit libre de deux algèbres de von Neumann n’est jamais obtenu à partir
d’une action d’un groupe sur un espace mesuré.

Enfin, le Chapitre IV porte sur les algèbres de von Neumann associées à des groupes hyperbo-
liques. Ce chapitre est obtenu en collaboration avec A. Carderi. Nous utilisons la géométrie des
groupes hyperboliques pour fournir de nouveaux exemples de sous-algèbres maximales moyen-
nables (mais de type I) dans des facteurs II1.

Mots-clefs

Algèbres de von Neumann, actions Gaussiennes, ergodicité forte, W∗-superrigidité, sous-algèbres
de Cartan, maximale moyennabilité.
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Several rigidity features of von Neumann algebras

Abstract

The purpose of this dissertation is to put on light rigidity properties of several constructions of
von Neumann algebras. These constructions relate group theory and ergodic theory to operator
algebras.

In Chapter II, we study von Neumann algebras associated with measure-preserving actions of
discrete groups : Gaussian actions. These actions are somehow a generalization of Bernoulli
actions. We have two goals in this chapter. The first goal is to use the von Neumann algebra
associated with an action as a tool to deduce properties of the initial action (see Corollary
II.2.16). The second aim is to prove structural results and classification results for von Neumann
algebras associated with Gaussian actions. The most striking rigidity result of the chapter is
Theorem II.4.5, which states that in some cases the von Neumann algebra associated with a
Gaussian action entirely remembers the action, up to conjugacy. Our results generalize similar
results for Bernoulli actions ([KT08, CI10, Io11, IPV13]).

In Chapter III, we study amalgamated free products of von Neumann algebras. The content of
this chapter is obtained in collaboration with C. Houdayer and S. Raum. We investigate Cartan
subalgebras in such amalgamated free products. In particular, we deduce that the free product
of two von Neumann algebras is never obtained as a group-measure space construction of a
non-singular action of a discrete countable group on a measured space.

Finally, Chapter IV is concerned with von Neumann algebras associated with hyperbolic groups.
The content of this chapter is obtained in collaboration with A. Carderi. We use the geometry of
hyperbolic groups to provide new examples of maximal amenable (and yet type I) subalgebras
in type II1-factors.

Key-words

Von Neumann algebras, Gaussian actions, strong ergodicity, W∗-superrigidity, Cartan subalge-
bras, maximal amenability.
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Chapitre I

Introduction générale

Dans cette thèse, j’étudie différentes constructions d’algèbres de von Neumann, en lien avec la
théorie des groupes et la théorie ergodique. Je montre des résultats de rigidité de ces construc-
tions, apportant un éclairage sur la classification des algèbres obtenues.

Cette introduction a pour but de présenter le contexte et les motivations de mon travail, avant
d’expliquer les principaux résultats démontrés dans les chapitres II,III et IV. J’ai choisi de mettre
en avant les concepts plutôt que la rigueur et le détail, dans l’idée que le lecteur souhaitant une
présentation plus précise du domaine trouverait son bonheur dans des ouvrages déjà existant (par
exemple [Fa09, Jon09, Po07b, Va10a, Io(12)b] ou plus classiquement [Co94, Di69, Ta02, Ta03]).

I.1 Algèbres de von Neumann

Soit H un espace de Hilbert complexe. L’ensemble B(H) des opérateurs continus (ou bornés)
T : H → H est une ∗-algèbre sur C : on peut ajouter des opérateurs, les composer, et prendre
leur adjoint. L’identité en est une unité, que l’on notera 1.

D’autre part, B(H) est un espace topologique. Il admet la topologie donnée par la norme
d’opérateurs, mais également la topologie faible : c’est la topologie la moins fine rendant continues
les applications T 7→ 〈Tξ, η〉, ξ, η ∈ H.

Une algèbre de von Neumann est une sous-∗-algèbre de B(H) contenant l’identité, et qui est
faiblement fermée. La notion d’algèbre de von Neumann a vu le jour dans les années 1930, avec
les travaux de Murray et von Neumann [MvN36], [MvN37], [vN40] et [MvN43] dans le but d’offrir
à la physique quantique un cadre mathématique formel et unifié. Une autre de leurs motivations
était de développer plus largement la théorie des représentations de groupes.

Le théorème fondateur de la théorie des algèbres de von Neumann est le Théorème du bicom-
mutant de von Neumann qui caractérise les algèbres de von Neumann comme les sous-∗-algèbres
de B(H) égales à leur bicommutant : M = M ′′. Rappelons que le commutant d’un ensemble
S ⊂ B(H) est S ′ := {T ∈ B(H) , ST = TS, ∀S ∈ S}.

Enfin, de même que B(H) peut être identifié au dual de l’espace S1(H) des opérateurs à trace
sur H, une algèbre de von Neumann est toujours isomorphe au dual d’un (unique) espace de
Banach. Cette propriété caractérise les algèbres de von Neumann parmi les C∗-algèbres.

9



10 CHAPITRE I. INTRODUCTION GÉNÉRALE

Ces caractérisations, de nature tantôt topologique, tantôt algébrique, tantôt analytique donnent
accès à une multitude d’outils mathématiques. Cette richesse est une autre motivation pour
étudier ces algèbres de von Neumann.

Présentons maintenant les principaux exemples étudiés dans cette thèse.

I.1.1 Exemples importants

Exemple I.1.1 (Algèbres abéliennes). Si (X,µ) est un espace mesuré, l’algèbre L∞(X,µ) est
une algèbre de von Neumann agissant sur l’espace de Hilbert L2(X,µ) par multiplication. Cette
algèbre est abélienne, et réciproquement toute algèbre de von Neumann abélienne est isomorphe
à une telle algèbre de fonctions : c’est le théorème spectral.

Exemple I.1.2 (Algèbres de groupes). Si Γ est un groupe discret dénombrable, on note λ :
Γ→ B(`2(Γ)) la représentation régulière gauche : λg(δh) = δgh, pour tous g, h ∈ Γ. L’algèbre de
von Neumann LΓ est par définition l’algèbre de von Neumann engendrée par {λg , g ∈ Γ}, i.e.
LΓ = {λg , g ∈ Γ}′′. C’est la plus petite algèbre de von Neumann sur `2(Γ) contenant les λg,
g ∈ Γ.

Exemple I.1.3 (Group measure space construction). Soit Γ un groupe discret dénombrable agis-
sant de manière non-singulière sur (X,µ). Notons σ la représentation de Koopman sur L2(X,µ)
qui en découle et considérons l’espace de Hilbert H = L2(X,µ)⊗ `2(Γ). L’algèbre de von Neu-
mann sur H engendrée par les opérateurs f ⊗ 1, f ∈ L∞(X,µ) et σg ⊗ λg, g ∈ Γ est appelée la
group measure space construction associée à l’action et notée L∞(X,µ)o Γ.

Plus généralement, pour une action Γ y N sur une algèbre de von Neumann N , on peut
construire de manière analogue le produit croisé N o Γ associé.

Étant données deux algèbres de von Neumann M1 ⊂ B(H1) et M2 ⊂ B(H2), il existe plusieurs
procédés pour en construire une troisième.

• On peut former leur produit tensoriel M1⊗M2 comme l’algèbre de von Neumann sur
H1 ⊗H2 engendrée par les opérateurs T1 ⊗ T2, T1 ∈M1, T2 ∈M2.

• On peut également considérer le produit libre amalgamé M1 ∗B M2 au dessus d’une sous-
algèbre de von Neumann commune B ⊂ M1,M2. Cette construction n’est possible que si
B vérifie une certaine condition de “comparabilité” avec M1 et M2 (plus précisément il
faut qu’il existe une espérance conditionnelle Mi → B, pour i = 1, 2). Pour plus de détails
sur cette construction, voir le Chapitre III.

Dans le cadre de l’exemple I.1.2, ces constructions sont les analogues du produit direct et du
produit amalgamé de groupes.

Exemple I.1.4. Considérons Γ1 et Γ2 deux groupes discrets avec un sous-groupe commun Λ.
Supposons que Γ = Γ1 ∗Λ Γ2 agisse de manière non singulière sur un espace mesuré (X,µ). Alors
on a un isomorphisme

L∞(X,µ)o Γ ' (L∞(X,µ)o Γ1) ∗L∞(X,µ)oΛ (L∞(X,µ)o Γ2).

Avec tous ces exemples, la question de classification des algèbres de von Neumann s’impose :
dans quels cas est-ce que ces constructions fournissent des algèbres isomorphes ?
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I.1.2 Réduction aux facteurs II1

Un facteur est une algèbre de von Neumann M dont le centre est restreint aux multiples de
l’identité : Z(M) := M ∩ M ′ = C1. Toute algèbre de von Neumann peut s’écrire comme
intégrale directe (somme directe généralisée) de facteurs. Cette première observation permet de
restreindre l’étude des algèbres de von Neumann générales à celle des facteurs.

Mais comment distinguer deux facteurs ?

Le théorème spectral montre qu’une algèbre de von Neumann contient beaucoup de projecteurs
orthogonaux (ils engendrent un sous-espace vectoriel dense pour la norme d’opérateurs). Une
étude comparative de ces projecteurs permet de distinguer trois grandes familles de facteurs :
les facteurs de type I,II ou III.

Les facteurs de type I sont complètement classifiés : ils sont isomorphes à B(H) pour un certain
espace de Hilbert H (si dimH = n <∞, B(H) 'Mn(C)).

Les facteurs de type II se découpent en deux sous-types : les facteurs de type II1 et II∞. Les
facteurs II∞ s’écrivent comme produit tensoriel M ⊗B(H) avec M de type II1 et dimH = ∞.
Les facteurs II1 sont ceux qui possèdent une unique trace fidèle, c’est à dire une forme linéaire
τ : M → C telle que τ(xx∗) = τ(x∗x) ≥ 0 pour tout x ∈ M et vérifiant τ(x∗x) = 0 si et
seulement si x = 0. En un sens, cette trace est l’analogue d’une mesure finie sur un espace
mesurable.

Les facteurs de type III ont pendant longtemps été considérés comme hors de portée. C’est la
théorie de Tomita-Takesaki et les travaux de Connes et Takesaki [Co73, Ta73, CT77] qui ont
permis de mieux comprendre ces facteurs. Notamment, tout facteur de type III peut s’écrire
comme le produit-croisé d’un facteur de type II par une action de R.

Ainsi, l’étude des algèbres de von Neumann se ramène, au moins théoriquement, à celle des
facteurs II1. En pratique, il n’est pas immédiat de déduire des résultats sur des algèbres de von
Neumann quelconques à partir de résultats analogues pour des facteurs II1. C’est précisément
ce que nous faisons dans le Chapitre III dans le cadre de produits libres amalgamés d’algèbres
de von Neumann.

Illustrons cette classification en types I, II et III avec les Exemples I.1.2 et I.1.3.

• Si Γ est un groupe discret dénombrable, LΓ est un facteur si et seulement si les classes de
conjugaison non-triviales de Γ sont infinies (en abrégé : Γ est ICC). Dans ce cas c’est un
facteur II1, muni d’une trace fidèle donnée par τ(x) = 〈xδe, δe〉, x ∈ LΓ.

• Soit Γ y (X,µ) une action non-singulière sur un espace sans atomes. L’algèbre M :=
L∞(X,µ)o Γ est un facteur pourvu que l’action soit libre et ergodique. Ce facteur est de
type II s’il existe une mesure ν, finie (cas II1) ou non (cas II∞), équivalente à µ qui est
Γ-invariante. M est de type III sinon.

I.1.3 Historique sur les facteurs II1

Naturellement, les facteurs de dimension infinie les plus simples à étudier sont à priori ceux qui
sont “approchables” par des sous-algèbres de dimension finie. C’est ainsi qu’est née la notion
d’algèbre de von Neumann hyperfinie : M est dite hyperfinie s’il existe une suite croissante de
sous-∗-algèbres de dimension finie Mn ⊂M telles que M = (∪nMn)′′.
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Dans [MvN36], Murray et von Neumann montrent que tous les facteurs hyperfinis de type II1

sont isomorphes. Pour cette raison, on parle du facteur II1 hyperfini, souvent noté R.

Une question évidente s’impose alors à eux : est-ce que tout facteur II1 est isomorphe à R, ou
bien y a t’il des facteurs II1 non-hyperfinis ?

Ils répondent à cette question en montrant que le facteur du groupe libre à deux générateurs
LF2 n’est pas hyperfini. Plus précisément, ils prouvent que LF2 n’a pas de suites centrales
non-triviales. Sans entrer dans les détails, cela provient du fait que F2 n’est pas intérieurement
moyennable. À contrario, R possède des suites centrales non-triviales.

Cependant, Murray et von Neumann ne parviennent pas à donner d’autres exemples de facteurs
non hyperfinis. Notamment, ils posent la question suivante, encore largement ouverte aujour-
d’hui.

Question I.1.5 (Free group factors problem). Si deux groupes libres sont non-isomorphes, est-ce
le cas de leurs algèbres de von Neumann ?

Une autre question très naturelle qu’ils laissent ouverte : est-ce qu’un sous-facteur de R est
hyperfini ? Si oui, alors le facteur R⊗LF2 n’est pas hyperfini mais contient tout de même des
suites centrales non-triviales.

Il aura fallu attendre près de 30 ans pour que McDuff ([McD69a, McD69b]) démontre l’exis-
tence d’une infinité de facteurs II1 deux à deux non-isomorphes. Ses travaux reposent sur des
arguments de suites centrales déjà présents dans les travaux de Murray et von Neumann. Avec
une compréhension plus grande de ces suites centrales, McDuff [McD70] donne également une
caractérisation des facteurs de la forme R⊗M , appelés par la suite facteurs McDuff.

En 1976, une nouvelle avancée majeure survient avec les travaux de Connes [Co76], qui montre
que tout facteur II1 moyennable est hyperfini et donc isomorphe à R. La moyennabilité pour les
algèbres de von Neumann est définie de manière analogue à la moyennabilité des groupes. En
plus d’offrir une description précise des facteurs II1 moyennables, le résultat de Connes permet
de répondre à la question de Murray et von Neumann : une sous-algèbre de von Neumann du
facteur II1 hyperfini est elle-même hyperfinie.

Ce résultat témoigne d’une grande perte d’information dans le passage à l’algèbre de von Neu-
mann LΓ d’un groupe Γ. Plus tard, Connes [Co80] observe à l’inverse certaines propriétés de
rigidité vis-à-vis de cette construction pour des groupes avec la propriété (T) de Kazhdan. Il
émet alors la conjecture suivante.

Conjecture I.1.6 (Conjecture de rigidité de Connes). Si Γ est un groupe ICC avec la propriété
(T) alors tout groupe Λ tel que LΓ ' LΛ est isomorphe à Γ.

Tout comme la question I.1.5, cette conjecture est largement ouverte. De manière générale, on
ne connait à ce stade que très peu de choses sur les facteurs II1 non-moyennables.

Deux axes de recherche vont alors se dessiner :

• la théorie des sous-facteurs d’une part, initiée par Jones, consistant à étudier une inclusion
de deux facteurs avec des outils combinatoires tels que l’invariant standard, ou les algèbres
planaires ;

• la théorie des probabilités libres d’autre part, introduite par Voiculescu dans le but de com-
prendre plus en profondeur les facteurs de groupes libres LFn. Sans résoudre le problème
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d’isomorphisme I.1.5, cette théorie a permis tout de même de démontrer [Vo96] que les
facteurs LFn ne possédaient pas de sous-algèbre de Cartan (voir la Section I.2.1).

En parallèle, la recherche se développe dans le domaine des relations d’équivalence sur des
espaces mesurés. Ce développement va induire un troisième axe de recherche : la théorie de la
déformation/rigidité élaborée par Popa, dont le but premier était de démontrer des propriétés
de rigidité de la group measure space construction (Exemple I.1.3).

Mon travail de thèse s’inscrit dans cette théorie. Dans les Sections I.2 et I.3, je décris le lien
profond entre les algèbres de von Neumann et les relations d’équivalence et j’explique les grandes
idées et avancées de la déformation/rigidité. Mes travaux personnels seront présentés dans la
Section I.4.

I.2 Relations d’équivalence mesurées et algèbres de von Neu-
mann

I.2.1 Relations d’équivalence et sous-algèbres de Cartan

L’exemple I.1.3 explique comment construire une algèbre de von Neumann de type produit croisé
M := L∞(X,µ)oΓ à partir d’une action non singulière Γ y (X,µ) sur un espace de probabilité
sans atome. Cette algèbre est un facteur II1 dès lors que l’action est libre, ergodique et pmp (i.e.
préserve la mesure de probabilité µ). Dans ce cas, la sous-algèbre A := L∞(X,µ) ⊂ M est une
sous-algèbre de Cartan :

• elle est maximale abélienne au sens où A′ ∩M = A ;

• elle est régulière, i.e. le normalisateur {u ∈ U(M) , uAu∗ = A} engendre M comme algèbre
de von Neumann. Ici U(M) désigne l’ensemble des unitaires de M , i.e. les éléments u ∈M
tels que uu∗ = u∗u = 1.

La paire A ⊂ M ne dépend, à isomorphisme près, que de la relation d’équivalence RΓ sur X
donnée par les Γ-orbites.

Réciproquement, Feldman et Moore [FM77] montrent que cette relation d’équivalence RΓ est
un invariant d’isomorphisme de la paire A ⊂ M . Autrement dit, pour deux actions Γ y (X,µ)
et Λ y (Y, ν), les relations d’équivalence RΓ et RΛ sont isomorphes si et seulement si on a un
isomorphisme de paires

(L∞(X,µ) ⊂ L∞(X,µ)o Γ) ' (L∞(Y, ν) ⊂ L∞(Y, ν)o Λ).

Plus généralement, ils montrent que toute paire A ⊂ M où M est un facteur et A une sous
algèbre de Cartan, est associée à une unique relation d’équivalence mesurée R sur un espace
(X,µ) par une construction similaire.

Leurs travaux établissent un lien fort entre algèbres de von Neumann et relations d’équivalence
mesurées non sans conséquence sur les avancées dans les deux domaines. Notamment, on observe
un historique sur les relations d’équivalence hyperfinies et moyennables [Dy59, OW80, CFW81]
similaire à ce qui a été exposé pour les algèbres de von Neumann en I.1.3.
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I.2.2 W∗-(super)rigidité

Toutes les actions considérées dans la suite de cette introduction seront supposées libres ergo-
diques. Nous écrirons pmp lorsqu’elles préservent une mesure de probabilité.

Définition I.2.1. Deux actions pmp Γ y (X,µ) et Λ y (Y, ν) sont dites :

• Conjuguées s’il existe un isomorphisme de groupes φ : Γ→ Λ et un isomorphisme d’espaces
mesurés (bimesurable préservant la mesure) ∆ : X → Y tels que ∆(s · x) = φ(s) · ∆(x),
pour presque tout x ∈ X et tout s ∈ Γ.

• Orbitalement équivalentes (OE) s’il existe un isomorphisme d’espaces mesurés (bimesu-
rable préservant la mesure) ∆ : X → Y tel que ∆(Γ · x) = Λ · ∆(x) pour presque tout
x ∈ X. De manière équivalente, elles sont OE si on a un isomorphisme de paires

(L∞(X,µ) ⊂ L∞(X,µ)o Γ) ' (L∞(Y, ν) ⊂ L∞(Y, ν)o Λ).

• W ∗-équivalents si les produits croisés par ces actions sont isomorphes :

L∞(X,µ)o Γ ' L∞(Y, ν)o Λ.

Clairement, on a les implications

conjugaison ⇒ équivalence orbitale ⇒ W ∗-équivalence.

La question des implications réciproques est à l’origine de la théorie de la déformation/rigidité
de Popa. Le point de départ qui a vraiment motivé les travaux de Popa est certainement le
résultat de Gaboriau sur les actions des groupes libres.

Théorème I.2.2 (Gaboriau, [Ga00]). Des actions pmp de groupes libres de rangs différents ne
sont jamais orbitalement équivalentes.

Ce résultat amène la question suivante, qui rappelle fortement le problème de Murray et von
Neumann I.1.5.

Question I.2.3. Si n 6= m, existe-t-il des actions pmp Fn y (X,µ) et Fm y (Y, ν) telles que

L∞(X,µ)o Fn ' L∞(Y, ν)o Fm ?

De même, on peut envisager une version dynamique de la conjecture de Connes I.1.6. Nous devons
cependant restreindre la classe d’actions considérées pour espérer conclure un isomorphisme au
niveau des groupes.

Question I.2.4. Soient Γ et Λ deux groupes avec la propriété (T), et Γ y (X,µ) et Λ y (Y, ν)
deux actions pmp, disons de Bernoulli, W∗-équivalentes. Est-ce que les groupes Γ et Λ sont
isomorphes ? Est-ce que les actions sont conjuguées ? Et si l’on suppose seulement que Γ a la
propriété (T) ?

La version la plus générale de cette question demande en fait si toute action de Bernoulli d’un
groupe ICC avec la propriété (T) est W∗-superrigide, au sens suivant.
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Définition I.2.5. Une action pmp σ est OE-superrigide (resp. W∗-superrigide) si toute action
orbitalement équivalente (resp. W∗-équivalente) à σ est en fait conjuguée à σ.

Existe-t-il des actions OE/W∗-superrigides ? Notons que pour prouver qu’une action est W∗-
superrigide on peut procéder en deux étapes : d’abord on montre qu’elle est OE-superrigide,
puis on montre que l’algèbre de von Neumann associée a une unique sous-algèbre de Cartan.
Chacune de ces deux étapes constitue un problème très difficile. La déformation/rigidité permet
de résoudre ces deux problèmes, dans des situations variées.

I.3 Théorie de la déformation/rigidité

L’idée de la théorie de la déformation/rigidité de Popa est de confronter certaines propriétés de
rigidité d’un facteur II1 M à une déformation de ce facteur, c’est à dire un groupe d’automor-
phismes à un paramètre (αt)t∈R tel que t 7→ αt(x) est faiblement continu pour tout x ∈M .

Par exemple si une sous-algèbre Q ⊂M a la propriété (T)1, alors toute déformation (αt) converge
uniformément vers l’identité sur la boule unité (pour la norme d’opérateurs) de Q. Ainsi on peut
espérer identifier Q à la sous-algèbre des points fixes de (αt).

Pour plus de détails sur la mise en pratique de ces principes de déformation et rigidité, nous
renvoyons à la Section II.2.

I.3.1 W∗-(super)rigidité : quelques résultats

Comme nous l’avons vu dans la Section I.1.3, les algèbres de von Neumann sont difficiles à
comprendre. Mais dans certains contextes la déformation/rigidité va s’avérer particulièrement
efficace pour prouver des résultats de W∗-rigidité et enfin commencer à comprendre le cas non-
moyennable.

Par exemple, les actions par décalage de Bernoulli sont des actions avec de fortes propriétés
de déformation. C’est cette observation qui a permis à Popa [Po06a, Po06b] de montrer non-
seulement que l’action de Bernoulli d’un groupe ICC avec la propriété (T) est OE-superrigide,
mais aussi de démontrer le premier résultat de W∗-rigidité : si Γ et Λ sont ICC et ont la propriété
(T) et si leurs actions de Bernoulli sont W∗-équivalentes alors les groupes sont isomorphes et les
actions sont conjuguées.

Plus récemment, Ioana [Io11] a montré la W∗-superrigidité des actions de Bernoulli des groupes
ICC avec la propriété (T). C’est l’un des premiers exemples d’actions W∗-superrigides (voir aussi
[Pe(09), PV10a] et plus récemment [IPV13, HPV13, CIK(13)]). Ce résultat répond donc partiel-
lement à la question I.2.4. Dans la même direction, j’ai prouvé dans [Bo13] la W∗-superrigidité
de toutes les actions Gaussiennes mélangeantes de groupes ICC avec la propriété (T). Voir la
Section II.1.1 pour la définition des actions Gaussiennes.

Conjecturalement, les résultats de Popa et Ioana [Po06a, Po06b, Io11] se généralisent au cadre
des groupes non-moyennables généraux.

Conjecture I.3.1. Le facteur associé à l’action de Bernoulli de tout groupe non-moyennable a
une unique sous-algèbre de Cartan, à conjugaison près.

1Un analogue de la propriété (T) pour les groupes.
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Précisons que la conjecture n’est même pas connue pour les groupes avec la propriété (T),
contrairement à ce que pourrait laisser penser le résultat de Ioana [Io11] mentionné ci-dessus.

Voici une autre conjecture en lien étroit avec le problème I.2.3. Cette conjecture laisse entrevoir
la possibilité de définir une cohomologie intéressante pour les facteurs II1.

Conjecture I.3.2. Le premier nombre de Betti `2 d’un groupe Γ est un invariant d’isomor-
phisme de tout facteur L∞(X,µ)o Γ associé à une action pmp Γ y (X,µ).

On sait que ce nombre de Betti β
(2)
1 (Γ) ≥ 0 est un invariant de la relation d’équivalence orbitale

RΓ associée à toute action de Γ ([Ga02]). Donc pour résoudre la conjecture, il suffit de montrer
que pour tout groupe Γ avec un nombre de Betti non-nul et toute action pmp de Γ, le facteur
associé a une unique sous-algèbre de Cartan.

Dans le cadre des groupes libres, le premier résultat est dû à Ozawa et Popa [OP10a]. Ils
montrent que toute action profinie de Fn produit un facteur II1 qui a une unique sous-algèbre
de Cartan, à conjugaison unitaire près. De nombreuses généralisations de ce résultat ont alors
suivi [OP10b, CS13, CSU13, PV(12), PV(13), Io(12)a, CIK(13)]. Notamment Popa et Vaes ont
montré que pour toute action pmp Γ y (X,µ) d’un groupe hyperbolique, le produit croisé
L∞(X,µ)o Γ a une unique sous-algèbre de Cartan à conjugaison unitaire près.

Ils répondent en particulier à la question I.2.3. Cependant la conjecture I.3.2 n’est pas encore
totalement résolue.

Cette méthode d’unicité des sous-algèbres de Cartan n’a pas d’analogue dans le cas des algèbres
de groupes LΓ, et les problèmes I.1.5 et I.1.6 demeurent entièrement ouverts. Cependant on
sait aujourd’hui [IPV13, BV(13)] qu’il existe des groupes W∗-superrigides (i.e. tels que Γ est un
invariant d’isomorphisme de LΓ).

I.3.2 Propriétés structurelles des facteurs II1

Outre les résultats de rigidité mentionnés ci-dessus, la déformation/rigidité a permis de nom-
breuses avancées dans la compréhension des facteurs II1. Notamment on a observé de grands
progrès sur le calculs d’invariants tels que le groupe fondamental ou le groupe d’automorphismes
extérieurs, [Po06c, Po06a, IPP08, Ho09, PV10b, De10].

D’autre part, la théorie de déformation/rigidité a révélé de nombreuses propriétés structurelles
de certains facteurs II1. Voici une liste non exhaustive de telles propriétés structurelles.

• Absence ou unicité des sous-algèbres de Cartan. Nous avons déjà discuté ce point.

• Primalité. Un facteur II1 M est premier si on ne peut pas l’écrire comme produit tensoriel
de deux facteurs II1.

• Solidité ([Oz04]). M est solide si pour toute algèbre diffuse2 Q ⊂M le commutant relatif
Q′ ∩M est moyennable.

• Solidité forte ([OP10a]). M est fortement solide si pour toute sous-algèbre diffuse moyen-
nable Q ⊂ M , le normalisateur NM (Q) := {u ∈ U(M) |uQu∗ = Q} engendre une algèbre
de von Neumann moyennable.

2Une algèbre de von Neumann Q est dite diffuse lorsqu’elle n’a pas de projection p minimale, i.e. telle que
pQp = Cp.
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Noter que si M n’est pas moyennable on a des implications

M fortement solide ⇒ M solide ⇒ M premier,
M fortement solide ⇒ M n’a pas de sous-algèbre de Cartan.

Les premiers facteurs étudiés dans le cadre de ces propriétés sont les facteurs des groupes libres
LFn. Comme nous l’avons dit plus haut, Voiculescu [Vo96] a montré avec des techniques de
probabilités libres que ces facteurs n’avaient pas de sous-algèbre de Cartan. Par des techniques
nouvelles, issues des C∗-algèbres, Ozawa [Oz04] a prouvé qu’ils étaient solides. Ce sont Ozawa et
Popa [OP10a] qui ont démontré qu’ils étaient en fait fortement solides. Ensuite de nombreuses
généralisations ont suivi pour différentes classes de facteurs [Ho10, HS11, CS13, CSU13, Io(12)a,
Ho(12)b, Va(13)].

Mentionnons que ces propriétés ont des analogues pour des facteurs de type III, et la plupart des
résultats précédents admettent des généralisations [CH10, HR11, Is(12), BHR14]. Notamment,
Houdayer et Vaes [HV13] ont démontré des résultats d’unicité de sous-algèbres de Cartan dans
les facteurs associés à certaines actions non-singulières des groupes libres (et plus généralement
des groupes hyperboliques). Vaes [Va(13)] a exhibé le premier exemple d’action non-singulière
(de type III1) qui soit W∗-superrigide.

I.4 Principaux résultats, contenu des chapitres

Dans cette thèse je m’intéresse à divers aspects de rigidité des algèbres de von Neumann dans
trois contextes différents :

• les algèbres associées à des actions Gaussiennes ;

• les produits libres amalgamés d’algèbres de von Neumann ;

• les algèbres de groupes.

Chacun de ces trois cas correspond à un chapitre de ma thèse.

I.4.1 Chapitre II : Crossed-product von Neumann algebras associated with
Gaussian actions

Ce chapitre est la fusion de deux articles [Bo12, Bo13]. J’y étudie les propriétés des actions
Gaussiennes et des algèbres de von Neumann correspondantes.

Les actions Gaussiennes sont des actions pmp fonctoriellement associées à des représentations de
groupes et généralisent la notion d’action de Bernoulli (voir la Section II.1.1 pour une définition
plus précise).

Le but est de généraliser les principaux résultats sur les actions de Bernoulli obtenus grâce à la
déformation rigidité [Po06a, Po06b, Po08, Io11, IPV13] : résultats de W∗-superrigidité, calculs
d’invariants, propriétés structurelles des produits croisés associés à ces actions. La principale
difficulté dans ce travail tient au fait que les actions Bernoulli ont une structure algébrique riche
et de très fortes propriétés de mélange, ce qui n’est pas le cas des actions Gaussiennes générales.
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Par rapport aux articles [Bo12, Bo13], certains résultats ont été améliorés et de nouvelles ob-
servations viennent compléter le sujet. La présentation est aussi rendue plus accessible, en ne
montrant les résultats que dans des cas simples (et en me référant aux articles pour les cas plus
généraux).

Voici deux théorèmes qui synthétisent les résultats que je démontre dans le Chapitre II.

Théorème I.4.1 (Voir Theorem II.2.20). Soit Γ y (X,µ) l’action Gaussienne associée à une
représentation mélangeante faiblement contenue dans la régulière. Notons M = L∞(X,µ)o Γ.

Pour toute sous-algèbre Q ⊂ M contenant L∞(X,µ), il existe des projections (pn)n∈N dans le
centre de Q telles que p0Q est hyperfinie, et pour tout n ≥ 1, pnQ est un facteur premier sans
suite centrale non-triviale.

En particulier la relation d’équivalence orbitale RΓ associée à une action Gaussienne Γ y (X,µ)
comme dans le théorème est solidement ergodique : toute sous-relation d’équivalence R ⊂ RΓ se
décompose en une partie hyperfinie et un nombre dénombrable de sous-ensembles invariants sur
lesquels R est fortement ergodique.

Le théorème I.4.1 donne donc des informations sur les relations d’équivalence à partir de leurs
algèbres de von Neumann. Ce résultat avait été démontré pour les actions de Bernoulli par
Chifan et Ioana [CI10].

Dans la direction de la rigidité des groupes avec la propriété (T) (Question I.2.4), je montre le
résultat suivant, généralisant [Io11].

Théorème I.4.2 (Voir Theorem II.4.5 et II.4.6). Soient Γ un groupe ICC avec la propriété (T)
et π une représentation mélangeante de Γ. Notons σπ : Γ y (X,µ) l’action Gaussienne associée
à π. Les propriétés suivantes sont satisfaites.

1. L’action σπ est W∗-superrigide.

2. L’algèbre M := L∞(X,µ)o Γ a un groupe fondamental trivial : la seule projection p telle
que l’algèbre réduite pMp soit isomorphe à M est la projection identité p = 1.

3. Si π n’est pas faiblement contenue dans la régulière, aucune amplification p(M ⊗Mn(C))p
n’est isomorphe à une algèbre de groupe LΛ.

I.4.2 Chapitre III : Amalgamated free product type III factors with at most
one Cartan subalgebra

Ce chapitre est le fruit d’une collaboration avec Cyril Houdayer et Sven Raum, et a été publié
dans Compositio Mathematica. Nous étudions les sous-algèbres de Cartan dans des produits
libres amalgamés d’algèbres de von Neumann générales.

Ioana [Io(12)a] a étudié cette question dans le cas des algèbres de von Neumann traciales. Il a
ainsi montré que le produit libre tracial non-moyennable de deux algèbres de von Neumann ne
contient jamais de sous-algèbre de Cartan. Il obtient aussi des résultats dans le cas amalgamé.
Par exemple, si Γ = Γ1 ∗Γ2 avec |Γ1| ≥ 2 et |Γ2| ≥ 3, alors le facteur associé à toute action libre
ergodique, pmp Γ y (X,µ) admet une unique sous-algèbre de Cartan, à conjugaison unitaire
près.

Nous étendons ces résultats aux algèbres de von Neumann quelconques en utilisant les travaux
de Connes et Takesaki [Co73, CT77, Ta03]. Dans le cas où l’amalgame est trivial, nous obtenons
le résultat optimal suivant.
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Théorème I.4.3 (Voir Theorem III.A). Si (M1, ϕ1) et (M2, ϕ2) sont des algèbres de von Neu-
mann (agissant sur des espaces de Hilbert séparables) telles que dim(M1) ≥ 2 and dim(M2) ≥ 3
alors le produit libre (M1, ϕ1) ∗ (M2, ϕ2) n’a pas de sous-algèbre de Cartan.

Ce théorème signifie que les produits libres ne sont jamais associés à des relations d’équivalence
[FM77]. Dans le cas des produits libres amalgamés au dessus de sous-algèbres moyennables, nous
obtenons également des résultats structurels dont nous déduisons le résultat suivant.

Théorème I.4.4 (Voir Theorem III.C). Soit R une relation d’équivalence ergodique non-singulière
sur un espace de probabilité standard (X,µ). Supposons que R se décompose comme un produit
libre R = R1 ∗ R2 de deux relations d’équivalence récurrentes.

Alors l’algèbre de von Neumann associée LR ([FM77]) admet L∞(X,µ) comme unique sous-
algèbre de Cartan, à conjugaison unitaire près.

La définition de décomposition en produit libre d’une relation d’équivalence est rappelée au
Chapitre III. Une relation R est dite récurrente si elle satisfait la conclusion du théorème de
récurrence de Poincaré : pour tout ensemble U ⊂ X de mesure positive, pour presque tout x ∈ U ,
la R-classe d’équivalence de x contient une infinité de points dans U .

Pour illustrer ce théorème, prenons un groupe Γ = Γ1 ∗ Γ2, et une action libre ergodique non-
singulière Γ y (X,µ) telles que pour i = 1, 2, la relation RΓi est récurrente. Alors le produit
croisé L∞(X,µ)oΓ a une unique sous-algèbre de Cartan. Nous traitons aussi le cas où Γ est un
produit libre amalgamé, avec un amalgame fini (Voir Theorem III.D).

Par rapport au cas où l’action préserve la mesure, nous ajoutons l’hypothèse de récurrence de
chacun des facteurs libres. Nous montrons que cette hypothèse est nécessaire en construisant
un exemple où elle n’est pas satisfaite et où le facteur a une infinité de sous-algèbres de Cartan
deux à deux non conjuguées.

I.4.3 Chapitre IV : Maximal amenable subalgebras of von Neumann algebras
associated with hyperbolic groups

Contrairement aux deux autres chapitres, les travaux présentés dans ce chapitre, effectués en
collaboration avec Alessandro Carderi, ne reposent pas sur la théorie de déformation/rigidité.
Notre approche consiste à utiliser la géométrie des groupes hyperboliques pour récupérer des
informations sur les algèbres de von Neumann qui leur sont associées.

Notre objectif est d’étudier les sous-algèbres maximales moyennables dans les facteurs de groupes
hyperboliques. La motivation première de ce travail (et des travaux analogues [Po83, CFRW10,
Ho(12)a]) est une question de Kadison, posée dans les années 1960. Murray et von Neumann
avaient remarqué que tout facteur II1 contenait le facteur hyperfini. Kadison s’interrogea sur la
fréquence de ce phénomène : y a t’il beaucoup de sous-facteurs hyperfinis dans les facteurs II1 ?
Plus formellement voici la question posée.

Question I.4.5 (Kadison). Dans un facteur II1, est-ce que tout élément est contenu dans un
facteur hyperfini ?

Popa [Po83] a répondu à cette question par la négative : il a montré que la sous-algèbre de
LF2 engendrée par l’un des générateurs a et b de F2 est maximale moyennable. Donc aucun
générateur n’est contenu dans un facteur hyperfini. Plus récemment, les auteurs de [CFRW10]
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ont montré que a sous-algèbre radiale (engendrée par a + a−1 + b + b−1) est aussi maximale
moyennable.

Nous donnons beaucoup plus d’exemples de ce phénomène.

Théorème I.4.6 (Voir Theorem IV.A). Si Γ est un groupe hyperbolique et Λ < Γ un sous-groupe
qui est maximal moyennable alors LΛ ⊂ LΓ est maximale moyennable.

Comme dans un groupe libre Fn tout élément qui n’est pas une puissance engendre un sous
groupe maximal moyennable, l’élément correspondant dans LFn n’est pas contenu dans un
facteur hyperfini. En fait nos techniques montrent que si Γ est un groupe hyperbolique, aucun
élément d’ordre infini de Γ n’est contenu dans un facteur hyperfini.

Nous généralisons ce résultat dans plusieurs directions. Par exemple, nous traitons aussi le cas
des groupes relativement hyperboliques, des produits de tels groupes, et également des produits
croisés associés à des actions sur des algèbres moyennables.

Ainsi nous montrons que pour toute action libre pmp Γ y (X,µ) d’un groupe hyperbolique,
et pour tout sous groupe Λ < Γ maximal moyennable, la relation d’équivalence RΛ ⊂ RΓ est
maximale hyperfinie.

I.4.4 Appendice : Mixing bimodules over finite von Neumann algebras

Dans cet appendice, je présente de manière unifiée plusieurs aspects de mélange des algèbres
de von Neumann. Je développe la notion de bimodule mélangeant, introduite par Peterson. Un
bimodule est l’analogue en algèbres de von Neumann de la notion de représentation de groupes.

Cette notion permet notamment d’apporter un nouvel éclairage sur le fameux théorème d’en-
trelacement de Popa, grâce à l’observation suivante.

Pour deux sous-algèbres A,B ⊂ M d’un facteur II1, A se plonge dans B au sens de Popa si
et seulement si le bimodule AL

2(M)B n’est pas faiblement mélangeant. Le théorème de Popa
découle alors de la multiplicité des caractérisations de la notion de mélange faible d’un bimodule.



Notations

General notations

On B(H), we will denote the operator norm by ‖ · ‖ or ‖ · ‖∞, depending on the context.

If M ⊂ B(H) is a von Neumann algebra and Q is a subalgebra, we use the following notations.

• (M)1 is the unit ball of M for the norm ‖ · ‖;

• U(M) = {u ∈M |uu∗ = u∗u = 1} is the unitary group of M ;

• NM (Q) = {u ∈ U(M) |uQu∗ = Q} is the normalizer of Q inside M ;

• QNM (Q) is the quasi-normalizer of Q. It is the set of elements x ∈ M for which there
exist finitely many y1, · · · , yk ∈M such that

xQ ⊂
k∑
i=1

Qyi and Qx ⊂
k∑
i=1

yiQ.

When we consider a finite von Neumann algebra M , we always denote by τ a faithful normal
trace on M . If M arises from a specific construction (e.g. M comes from a group, or an
equivalence relation) then we choose τ to be the canonical trace coming from this construction.

For p = 1, 2, we will denote by ‖ · ‖p the p-norm on M associated with τ : ‖x‖p = τ(|x|p)1/p, for
all x ∈M . L2(M) will be the GNS construction with respect to τ .

Whenever Q ⊂M is a subalgebra, EQ : M → Q denotes the unique trace preserving conditional
expectation onto Q.

If ω is a free ultrafilter on N, we denote by Mω the corresponding ultraproduct von Neumann
algebra. It is the set of ‖ · ‖-bounded sequence, up to the following identification:

(xn) ∼ (yn) if and only if lim
n→ω
‖xn − yn‖2 = 0.

It is itself a von Neumann algebra.

The symbol A ≺M B means that a corner of A embeds into B inside M in the sense of Popa.
See Section A.3 for the definition (and Section III.2.1 in the case where M is not finite).

For any t > 0, we denote by M t the t-amplification of M defined (up to isomorphism) by
choosing an integer n ≥ t and a projection p ∈ M ⊗ Mn(C) with trace t, and by setting
M t = p(M ⊗Mn(C))p. The fundamental group of M is given by

F(M) = {t ∈ R∗+ |M 'M t}.

Finally, we will adopt the following convention. Except for ultraproduct algebras, all von Neu-
mann algebras that we consider will be assumed to have separable predual.
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Chapter II

Crossed-product von Neumann
algebras associated with Gaussian
actions

In this chapter we study Gaussian actions at the level of ergodic theory and von Neumann
algebras. We thus investigate properties such as strong ergodicity, solid ergodicity ([Ga10,
Definition 5.4]) at the ergodic theoretic level, while we study W∗-rigidity phenomena at the von
Neumann algebraic level.
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In the context of von Neumann algebras, Gaussian actions first appeared in [Po06a, Fu07, Po08]
as examples of malleable actions, for which orbit equivalence superrigidity results have been
proven. Also they have been used by Peterson and Sinclair [PS12] for their nice behaviour with
respect to group cohomology. This idea in [PS12] that the Gaussian construction allows to
construct a deformation of LΓ out of a 1-cocycle of Γ, was further developed in [Si11], [Va13],
and [CS13] allowing to prove very general strong solidity results, and uniqueness of Cartan
subalgebras results.

II.1 Gaussian actions

Gaussian actions are measure-preserving actions which are constructed from group representa-
tions. Historically they first appeared in probability theory [Ne71, CFS82], and they were called
random Gaussian processes. However they are closely related to Gaussian Hilbert spaces and
Wiener Chaos decomposition, going back to the work of Segal [Se56], and mathematical physics.
We refer to [Ja97] for more on this.

II.1.1 Several descriptions of Gaussian actions.

From the multiple constructions of Gaussian Hilbert spaces, one can deduce several ways of
defining Gaussian actions. In order to give a complete picture of Gaussian actions we will
explain the main historical constructions.

Classically [CFS82, Ja97, Gl03] Gaussian actions are constructed by the means of a covariance
matrix (as in Section II.1.1.3). A construction with creation operators on a symmetric Fock
space is also given in [PS12], which will be explained in Section II.1.1.2. Another definition is
given in [BHV08], but we will not present it.

The link between these descriptions is the so-called Wiener chaos decomposition (see [Ja97]).
However, Vaes [Va13] found an easier way to check that these definitions coincide; he gave an
abstract characterization of Gaussian actions. This characterization will be our main definition.

In the three paragraphs below, the initial data is an orthogonal representation π : Γ → O(H)
on a real Hilbert space and the aim is to construct a measure-preserving action σπ of Γ on a
standard probability space (Xπ, µ). Equivalently, we want to construct a trace preserving action
σπ of Γ on an abelian tracial von Neumann algebra (Aπ, τ).

II.1.1.1 Finite dimensional approach and universal description

In the case where the representation π : Γ→ O(H) is finite dimensional, the construction of σπ
is extremely simple:

• Pick an orthonormal basis (ei)i=1,··· ,n of H, so that H ' Rn. Now endow H ' Rn with
the product measure µ = ν⊗n of the standard Gaussian measure ν ∈ Prob(R).

• The measure µ does not depend on the choice of the orthonormal basis (ei)i and (equiva-
lently) it is invariant under the action of O(H).
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• So π induces a measure preserving action σπ on the canonical probability space (Xπ, µ) :=
(H,µ). This is the Gaussian action associated to π.

In our applications we will be mostly interested in infinite dimensional representations. Naively,
one might want to proceed as before. The main problem is that if we identify H with `2(N) by
fixing an orthonormal basis, the subset H ⊂ (RN, ν⊗N) has measure 0.

So let us first analyse the finite dimensional case in more details. The first question to ask: how
can one compare the initial representation π to the resulting Gaussian action σπ?

Consider the Koopman representation, again denoted by σπ : Γ → O(L2
R(Xπ, µ)). Then π

appears as a subrepresentation of σπ. Indeed, any vector ξ ∈ H, gives rise to a function
fξ : η 7→ 〈η, ξ〉 on Xπ(= H) in such a way that σπ,g(fξ) = fπ(g)ξ for all g ∈ Γ. The functions fξ
are centered Gaussian random variables.

Now one can check that the algebra generated by the functions fξ, ξ ∈ H remains inside
L2
R(Xπ, µ) and forms a dense subspace. Hence we see that the Gaussian action is completely

determined by the restriction of its Koopman representation to some generating Gaussian Hilbert
space.

Definition II.1.1. A Gaussian Hilbert space K is a closed subspace of L2
R(X,B, µ) for some

standard probability space (X,B, µ), such that every element of K is a centered Gaussian random
variable.

K is said to be generating if the σ-subalgebra of B generated by all the random variables X ∈ K
is B itself.

Let us use these Gaussian Hilbert spaces to define Gaussian actions associated with infinite
dimensional representations.

Proposition II.1.2. Any real Hilbert space H is isomorphic to a generating Gaussian Hilbert
space K ⊂ L2

R(X,B, µ)

Proof. Take an orthonormal basis (ei)i∈I of H and identify H ' `2(I). Consider the probability
space (RI , ν⊗I), where ν is the standard Gaussian measure. For any i ∈ I, the projection
Pi : (xj) ∈ RI 7→ xi defines a standard Gaussian random variable. Then K := span{Pi , i ∈ I}
is a Gaussian Hilbert space ([Ja97, Theorem 1.3]), which is clearly generating and the map
ei 7→ Pi gives rise to an isomorphism from H onto K.

Proposition II.1.3. If K ⊂ L2
R(X,B, µ) is a generating Gaussian Hilbert space then the uni-

taries w(ξ) := exp(i
√

2ξ) ∈ L∞(X,µ), ξ ∈ K satisfy the following properties, where τ denotes
the state on L∞(X,µ) corresponding to the measure µ.

(i) w(0) = 1, w(ξ + η) = w(ξ)w(η) for all ξ, η ∈ K;

(ii) τ(w(ξ)) = exp(−‖ξ‖2) for all ξ ∈ K.

(iii) The linear span of {w(ξ), ξ ∈ K} is a weakly dense subalgebra of the von Neumann algebra
L∞(X,µ) ⊂ B(L2(X,µ)).
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Proof. (i) is trivial and (ii) follows from the calculation of the Fourier transform of a Gaussian
random variable:

τ(w(ξ)) =
1√

2π‖ξ‖

∫
R
eixe−x

2/(2‖ξ‖2)dx = exp(−‖ξ‖2).

To check property (iii), first note that since K is generating, the σ-subalgebra of B generated by
the functions w(ξ), ξ ∈ K is B itself. This precisely means that the w(ξ)’s generate L∞(X,B, µ)
as a von Neumann algebra.

Proposition II.1.4. Assume that K is a real Hilbert space and that (A, τ) is a tracial von Neu-
mann algebra generated by unitary elements (w(ξ))ξ∈K which satisfy (i)− (iii) from Proposition
II.1.3.

Then the vectors (w(ξ))ξ∈K are linearly independent (over C). Therefore, for any orthogonal
operator T ∈ O(K), the equation σT (w(ξ)) := w(Tξ), for all ξ ∈ K uniquely defines an auto-
morphism of (A, τ).

Proof. Assume that λ1, · · · , λn ∈ C and ξn, · · · , ξn ∈ K are such that

n∑
i=1

λiw(ξi) = 0.

Then for any ξ ∈ K, multiplying this equality by w(ξ) and taking the trace gives

0 =
n∑
i=1

λi exp(−‖ξi + ξ‖2) = exp(−‖ξ‖2)
n∑
i=1

λ′i exp(−2〈ξ, ξi〉), (II.1)

with λ′i = λi exp(−‖ξi‖2). Take a vector η ∈ K such that 〈η, ξi〉 6= 〈η, ξj〉 for all i 6= j. Then
the functions (fi)

n
i=1 given by fi : t ∈ R 7→ exp(−2t〈η, ξi〉) are linearly independant. Using

equation (II.1) for vectors ξ of the form ξ = tη, t ∈ R, we see that λ′i = 0 (hence λi = 0) for all
i ∈ {1, · · · , n}.

Combining the above propositions, we can identify H to a generating Gaussian Hilbert space in
some L2

R(Xπ, µ) so that the representation π induces a trace preserving action Γ y L∞(Xπ, µ).
This is the Gaussian action σπ, characterized by the following abstract description.

Definition II.1.5 (Universal description, [Va13]). Consider an orthogonal representation π :
Γ → HR. The Gaussian action σπ associated with π is the unique action (up to conjugacy)
Γ y (Aπ, τ) such that

(i) (Aπ, τ) is a tracial von Neumann algebra generated by unitaries w(ξ)ξ∈H satisfying w(0) =
1, w(ξ + η) = w(ξ)w(η) and τ(w(ξ)) = exp(−‖ξ‖2) for all ξ, η ∈ H.

(ii) For all g ∈ Γ and all ξ ∈ H, one has σπ(g)(w(ξ)) = w(π(g)ξ).

The uniqueness above is due to Proposition II.1.4, which implies as well that π 7→ σπ is a
functor from the category of orthogonal representations to the category of pmp actions. Note
that this uniqueness implies that the Gaussian action does not depend on the embedding of H
as a generating Gaussian Hilbert space.
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Example II.1.6. • If π is finite dimensional, the Gaussian action σπ is as described at the
beginning of this section.

• If π : Γ → O(`2(I)) is the quasi-regular representation associated with an action Γ y I,
then one easily checks that σπ is the Bernoulli action Γ y (RI , µ) given by g · (xi)i =
(xg−1·i)i. This observation will be further developed in Section II.1.11.

For later use, let us end this paragraph with a well known property of Gaussian Hilbert spaces.

Proposition II.1.7. If K ⊂ L2
R(X,µ) is a Gaussian Hilbert space, then any orthonormal family

(fi)i∈I in K forms a family of independent standard Gaussian random variables.

Proof. Since the square of the norm ‖ · ‖2 of a random variable is equal to its variance, the fi’s
are standard Gaussian random variables. We need to show that they are independent. Without
loss of generality, we can assume that I is finite, say I = {1, · · · , n}.
It is enough to check that the characteristic function φX of the random variable X = (f1, · · · , fn)
is the product of the characteristic functions φi of the fi’s:

φX(x1, · · · , xn) = φ1(x1) · · ·φn(xn), ∀(x1, · · ·xn) ∈ Rn.

But we have

φX(x1, · · · , xn) =

∫
X
ei

∑n
k=1 xkfkdµ = exp(−1

2
‖

n∑
k=1

xkfk‖22), ∀(x1, · · · , xn) ∈ Rn,

because
∑n

k=1 xkfk belongs to K and hence is a centered Gaussian variable on (X,µ). So the
result is clear since the family (fi)i∈I is orthonormal.

II.1.1.2 Operator algebraic description

Denote by HC = H ⊗ C the complexified Hilbert space of H, and by H�nC the n’th symmetric
tensor power. It is the closed subset of H⊗nC spanned elements of the form

ξ1 � · · · � ξn :=
1

n!

∑
σ∈Sn

ξσ(1) ⊗ · · · ⊗ ξσ(n), ξ1, · · · ξn ∈ HC.

We normalize inner product on H�nC in such a way that ‖ξ‖2
H�nC

= n!‖ξ‖2
H⊗nC

, for all ξ ∈ H�nC .

Consider the symmetric Fock space associated with HC

S(HC) := CΩ⊕
⊕
n≥1

H�nC

The vector Ω is called the vacuum vector (or vacuum state).

Now, any vector ξ ∈ H gives rise to an unbounded operator xξ ∈ B(S(HC)), called a (symmetric)
creation operator, defined on S(HC) by the formulae

xξ(Ω) = ξ, and xξ(η1 � · · · � ηn) = ξ � η1 � · · · � ηn.

Taking real part (times 2), we get an unbounded, self-adjoint operator

s(ξ) = xξ + x∗ξ .
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One checks that since H is a real Hilbert space, the operators s(ξ)ξ∈H commute to each other.
Also, for ξ ⊥ η and n,m ∈ Z, we see that 〈s(ξ)ns(η)mΩ,Ω〉 = 〈s(ξ)nΩ,Ω〉〈s(η)mΩ,Ω〉. For
these reasons, s(ξ) and s(η) may be regarded as independant random variables. In [PS12], it
is moreover shown that the distribution of s(ξ) with respect to the vacuum state is a Gaussian
distribution N (0, ‖ξ‖2).

Consider the von Neumann subalgebra A of B(S(HC)) generated by operators of the form
u(ξ1, · · · , ξk) = exp(iπs(ξ1) · · · s(ξk)), for ξ1, · · · , ξk ∈ H. Denote by τ the vector state on A
associated with Ω. Then Peterson and Sinclair show the following.

Theorem II.1.8 ([PS12]). The representation of A on S(HC) is isomorphic to the GNS repre-
sentation associated with τ . Moreover A is maximal abelian inside B(S(HC)).

Now note that any orthogonal operator T ∈ O(H) can be viewed as a unitary operator on HC,
and thus gives rise to a unitary operator T̃ ∈ U(S(HC)) such that

T̃ (Ω) = Ω and T̃ (ξ1 � · · · � ξk) = (Tξ1)� · · · � (Tξk).

Then T̃ u(ξ1, · · · , ξk)T̃ ∗ = u(Tξ1, · · · , T ξk), hence T̃ normalizes A. Since T̃ (Ω) = Ω, Ad(T̃ ) is a
trace preserving automorphism of A.

Proposition II.1.9. With the above notations, the Gaussian action σπ associated with the

representation π is conjugate with the action Γ yσ (A, τ) defined by σg = Ad(π̃(g)) for all
g ∈ Γ.

Proof. This is obvious, because A is generated by the unitary elements w(ξ) := u(ξ), ξ ∈ H,
which satisfy the (i) of Definition II.1.5 and the action is such that σg(w(ξ)) = w(π(g)ξ) for all
ξ ∈ H.

With this description of Gaussian actions, Theorem II.1.8 implies the following useful corollary.

Corollary II.1.10. The Koopman representation of Γ on L2(Aπ, τ) is isomorphic to the rep-

resentation π̃ on S(H) given by π̃(g) = π̃(g):

L2(Aπ, τ) ' S(HC) as Γ-representations.

II.1.1.3 Gaussian actions as twisted Bernoulli actions

This point of view allows to see directly that generalized Bernoulli shifts (with diffuse basis)
are examples of Gaussian actions. The construction is a priori not very canonical, though: the
correct initial data is rather an action of Γ on a countable set I, together with a Γ-invariant
positive definite function on I (called the covariance matrix).

Consider a countable set I, and ϕ a positive definite function on I, that is, a symmetric map
ϕ : I × I → R such that

∑
i,j∈F xixjϕ(i, j) ≥ 0, for any finite subset F ⊂ I and real numbers

xi, i ∈ F .

Then for any finite set F ⊂ I, the map ϕ|F×F can be viewed as a positive matrix of size |F |.
Hence, one can consider the centered Gaussian measure µF on RF with covariance matrix given
by ϕ|F×F .
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Using Kolmogorov Consistency Theorem, there exists a measure µϕ on RI such that for any
finite set F ⊂ I, the canoninal projection πF : RI → RF satisfies (πF )∗µϕ = µF .

Now any action Γ y I such that ϕ(g · i, g · j) = ϕ(i, j), for all i, j ∈ I gives rise to an action on
RI obtained by shifting coordinates. By definition of µϕ, this action is measure-preserving.

Starting with our representation π on the real Hilbert space H, consider a Γ-invariant countable
subset I ⊂ H such that span(I) is dense in H. Now define a positive definite function ϕ on I
by the formula ϕ(i, j) := 〈i, j〉, i, j ∈ I. Since π is an orthogonal representation, we indeed have
ϕ(π(g) · i, π(g) · j) = ϕ(i, j), for all i, j ∈ I. We denote by σI the corresponding shift action
Γ y (RI , µϕ).

Proposition II.1.11. The action σI described above is conjugate with the Gaussian action σπ.
In particular it does not depend, up to conjugacy, on the choice of an invariant set I ⊂ H.

Proof. By definition of ϕ, the map

Ψ : H → L2(RI , µϕ)∑
j∈F

λjj 7→ ((xi)i∈I 7→
∑
j∈F

λjxj),

(with F ⊂ I finite) is a well defined isometric embedding of H as a generating Gaussian Hilbert
space. Hence the vectors w(ξ) = exp(i

√
2Ψ(ξ)) satisfy condition (i) of Definition II.1.5 and the

shift action σI clearly satisfies (σI)g(w(ξ)) = w(π(g)ξ) for all ξ ∈ H.

With this point of view, the following becomes obvious.

Example II.1.12. If π is of the form Γ→ O(`2(I)) for some action on a countable set Γ y I,
the Gaussian action σπ is the Bernoulli action Γ y (RI , µ).

In contrast with the above example, let us mention that this description can be rather vague
when the measure is µϕ is degenerated. For instance, it is not so easy to compute the Gaussian
action associated with an irrational rotation of R2.

II.1.2 First properties

We show here how properties of a Gaussian action σπ are related to properties of the initial
representation π.

Lemma II.1.13. Let π be a representation of Γ. Then Aπ⊕π ' Aπ⊗Aπ and under this identi-
fication, σπ⊕π = σπ ⊗ σπ.

Proof. Note that Aπ ⊗Aπ is generated by the unitary elements w(ξ)⊗w(η), for ξ, η ∈ H, which
satisfy the same relations as the w(ξ⊕η)’s. Therefore the map w(ξ⊕η) 7→ w(ξ)⊗w(η), ξ, η ∈ H
extends to a ∗-isomorphism from Aπ⊕π onto Aπ ⊗Aπ, which intertwines the actions σπ⊕π and
σπ ⊗ σπ.

Note that the above lemma is clear for finite dimensional representations with the description
given at the beginning of Section II.1.1.1.
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Proposition II.1.14. The Gaussian action σπ associated with a representation π is essentially
free if and only if π is faithful.

Proof. If π(g) = id for some g ∈ Γ, then σg acts trivially on {w(ξ), ξ ∈ H}, hence on Aπ.
Conversely, assume that σg acts trivially on pAπ for some nonzero projection p ∈ Aπ. Then for
all ξ ∈ H, we have pw(π(g)ξ) = pw(ξ), or equivalently pw(π(g)ξ − ξ) = p.

If π(g)ξ 6= ξ for some ξ ∈ H then the sequence w(k(π(g)ξ− ξ)), k ≥ 0 converges weakly to zero.
This contradicts the equality pw(π(g)ξ − ξ) = p. So π(g) has to be the identity operator.

Since we only work with free actions, we will only consider faithful representations.

In the following result, σ0
π denotes the unitary representation of Γ on L2(Aπ, τ)	C induced by

σπ. The proof follows from Corollary II.1.10.

Proposition II.1.15 ([PS12], Proposition 1.7). Let π a representation of Γ. Let P be any
property in the following list:

• being mixing;

• being weakly contained in the left regular representation;

• having a tensor power which is weakly contained in the left regular representation.

Then π has property P if and only if σ0
π does.

Since having no invariant vectors is not stable under tensor product, we need to replace this
notion by its stable version in order to have a criterion of ergodicity.

Proposition II.1.16 ([PS12], Theorem 1.8). The Gaussian action σπ is ergodic if and only if
π is weakly mixing (meaning that π ⊗ π has no invariant vectors).

This proposition admits an “approximate” version, regarding strong ergodicity. This is the
purpose of the next section.

Using Proposition II.1.15, we see that many Gaussian actions are not conjugate to Bernoulli
shift actions.

Corollary II.1.17. If π is a mixing representation which is not weakly contained in the regular
representation, the associated Gaussian action is not conjugate to a generalized Bernoulli action.

Proof. If π is mixing and not weakly contained in the regular representation, then this is also
the case of σ0

π, by Proposition II.1.15. But a generalized Bernoulli action σ : Γ y XI is mixing
if and only if the stabilizers of the action Γ y I are finite. The latter implies that its koopman
Representation σ0 is weakly contained in the regular representation. Hence σπ and σ are not
conjugate.

In order to have results on the von Neumann algebra associated with a Gaussian action, we will
need however to make spectral hypothesis on the initial representation π. For instance we will
assume that some tensor power of π is weakly contained in the regular representation. Strongly
`p, p > 2 representations satisfy this hypothesis, and they are moreover mixing.
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Definition II.1.18. Let p ≥ 2. A representation π : Γ → O(H) is said to be strongly `p if for
any ε > 0, there exists a dense subspace H0 ⊂ H such that for all ξ, η ∈ H0, the coefficient
function (〈π(g)ξ, η〉)g is in `p+ε(Γ).

As the following result shows, the class of Gaussian actions associated with strongly `p repre-
sentations is larger than the class of generalized Bernoulli actions, for many interesting groups.
We are gratefull to B. Bekka for pointing this out to us.

Proposition II.1.19 (Bekka). Every lattice Γ in a non-compact, simple Lie group G with finite
center admits a unitary representation which is strongly `p for some p > 2, but not weakly
contained in the regular representation.

Proof. It is a known fact that G admits an irreducible representation π with no invariant vectors
which is not strongly `q, for some q > 2. By [CHH88], π is not weakly contained in the regular
representation of G. But by [Cow79, Théorème 2.4.2, Théorème 2.5.2], there exist a p > 2 such
that π is strongly `p.
We check that π|Γ satisfies the proposition. It is easy to check that being strongly `p is stable
by restriction to a lattice, so we are left to prove that π|Γ is not weakly contained in the left
regular representation λΓ of Γ. Denote by λG the left regular representation of G.
Assume by contradiction that π|Γ is weakly contained in λΓ. Then by stability of weak contain-

ment under induction, we get that IndGΓ (π|Γ) is weakly contained in λG = IndGΓ (λΓ). However,

IndGΓ (π|Γ) = π ⊗ IndGΓ (1Γ), and since Γ has finite co-volume in G, the trivial G-representation

is contained in IndGΓ (1Γ) = λG/Γ. Altogether, we get that π is weakly contained in λG, which is
absurd.

II.1.3 Strong ergodicity for Gaussian actions

Definition II.1.20. A measure-preserving action Γ y (X,µ) on a probability space is said to
be strongly ergodic if every sequence of almost invariant subsets (An)n∈N of X is trivial:(

lim
n
µ((g ·An)∆An) = 0 for all g ∈ Γ

)
⇒ lim

n
µ(An)(1− µ(An)) = 0.

Here is a very standard characterization of strong ergodicity.

Proposition II.1.21. A pmp action Γ y (X,µ) is strongly ergodic if and only if every asymp-
totically invariant bounded sequence (xn)n ⊂ L∞(X) ( i.e. limω ‖σg(xn)−xn‖2 = 0 for all g ∈ Γ)
is trivial: limn ‖xn − τ(xn)‖2 = 0, where τ is the trace on L∞(X) corresponding to µ.

Proof. Fix a free ultrafilter ω on N. Put M := L∞(X,µ) o Γ. By definition, Γ y (X,µ) is
strongly ergodic if and only if M ′ ∩ L∞(X,µ)ω admits no non-trivial projection. This is of
course equivalent to saying that this von Neumann algebra is trivial, which exactly means that
asymptotically invariant bounded sequences in L∞(X,µ) are trivial.

The following criterion for strong ergodicity of Gaussian actions generalizes the main result of
[KT08]. It shows that for Gaussian actions, the so-called spectral gap property (property (ii)
below) is equivalent to strong ergodicity. The proof is essentially the same as the one of [PS12,
Theorem 1.8], combined with a standard Powers-Størmer argument, and some calculations about
Gaussian random variables.

Note that the equivalence between (i) and (ii) was already pointed out in [Po08].
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Theorem II.1.22. Let π : Γ → O(H) be an orthogonal representation, and denote by σπ the
associated Gaussian action and by σ0

π the Koopman representation on L2(Xπ) 	 C1. Then the
following are equivalent.

(i) π is not amenable, in the sense that π⊗π does not admit almost invariant vectors ([Be90]);

(ii) σ0
π does not admit almost invariant vectors;

(iii) σπ is strongly ergodic.

We start with three lemmas.

Lemma II.1.23. Assume that H is a real Hilbert space and that s : H → L2
R(X,µ) is an

embedding as a Gaussian Hilbert space. Consider the real Hilbert space H�H with renormalized
inner product such that ‖ξ‖2H�H = 2‖ξ‖2H⊗H , for all ξ ∈ H �H. Then the map

s(2) : H �alg H → L2
R(X,µ)

ξ � η 7→ s(ξ)s(η)− 〈ξ, η〉1

extends to an isometry s(2) : H �H → L2
R(X,µ).

Proof. The map is clearly well defined on H �alg H = span{ξ � η , ξ, η ∈ H}. We need to show
that it intertwines inner products. Fix (δi)i∈I an orthonormal basis of H. It is sufficient to check
that for all i, j, i′, j′ ∈ I,

〈s(δi)s(δj)− 〈δi, δj〉1, s(δi′)s(δj′)− 〈δi′ , δj′〉1〉L2(X) = 〈δi � δj , δi′ � δj′〉.

But the right term above is equal to 2 if i = j = i′ = j′, to 1 if {i, j} = {i′, j′} and i 6= j and
it is equal to 0 otherwise. The left hand side is easily seen to take the same values because the
s(δi)’s are independent standard Gaussian random variables, by Proposition II.1.7 (recall that∫
R t

2dν(t) = 1 and
∫
R t

4dν(t) = 3, where ν is the standard Gaussian measure on R).

Lemma II.1.24. Let (X,µ) be a standard probability space, and let f, g ∈ L2
R(X,µ) be real

valued functions. Then we have ‖eif − eig‖2 ≤ ‖f − g‖2.

Proof. From the fact that 2− 2 cos(u) ≤ u2 for all u ∈ R, we see that

‖eif − eig‖22 = 2− 2<(

∫
X
ei(f−g)dµ) =

∫
X

(2− 2 cos(f − g))dµ ≤ ‖f − g‖22.

The following lemma provides a control of the norm ‖ · ‖4 on a specific subspace of L2
R(Xπ) in

terms of the norm ‖ · ‖2. This Lemma was proved in [Ja97] (Lemma 3.44 therein) using the
so-called Wick products. For completeness, we will provide an elementary proof after the proof
of Theorem II.1.22.

Lemma II.1.25. Assume that HR is a real Hilbert space and that s : H → L2
R(X,µ) is an

embedding as a Gaussian Hilbert space. With the notations of Lemma II.1.23, put K(2) =
s(2)(H �H).

There exists a constant C > 0 such that ‖h‖4 ≤ C‖h‖2, for all h ∈ K(2).
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Proof of Theorem II.1.22. (i)⇒ (ii). As Γ-representations, we have by Corollary II.1.10 that

σ0
π '

⊕
n≥1

π�nC ⊂
⊕
n≥1

π⊗nC ,

where πC denotes the complexificaction of π. But
⊕

n≥1 π
⊗n
C is of the form πC ⊗ ρ, for some

representation ρ. Hence if σ0
π has almost invariant vectors, this is also the case of π⊗ π (see for

instance [Po08, Lemma 3.2]).

(ii)⇒ (iii) is trivial, and true for any pmp action.

(iii) ⇒ (i). Assume that π ⊗ π has almost invariant vectors, i.e. unit vectors (ξn)n ∈ H ⊗H
such that limn ‖(π(g)⊗ π(g))ξn − ξn‖ = 0 for all g ∈ Γ. View the vectors ξn as Hilbert Schmidt
operators on H, and for all n ∈ N put ηn = (ξ∗nξn)1/2. As pointed out in the proof of [PS12,
Theorem 1.8], these vectors belong to H �H. They are still unit vectors.

Furthermore, the (real) space of Hilbert-Schmidt operators HS(H) embeds isometrically in
HS(HC). Hence, using the Powers-Størmer inequality inside HS(HC), we see that for any g ∈ Γ
and n ∈ N,

‖(π(g)⊗ π(g))ηn − ηn‖2HS ≤ 2‖(π(g)⊗ π(g))ξn − ξn‖HS.

So the ηn’s are almost invariant, unit vectors in H �H.

Now with the notations of Lemma II.1.23, define a sequence of unitaries un ∈ L∞(Xπ, µ) by
un = exp(is(2)(αηn)) for all n, where α > 0 will be chosen later independently of n. Let us check
that (un)n is a non-trivial, asymptotically invariant sequence in L∞(Xπ).

By Lemma II.1.24, the sequence (un)n is asymptoticaly Γ-invariant because the vectors ηn are
almost invariant.

Now fix η ∈ H �H such that ‖η‖ ≤ 1. Note that for all u ∈ R, we have 1 − u2/2 ≤ cos(u) ≤
1− u2/2 + u4/24. Hence

1− 1

2

∫
Xπ

s(2)(η)2dµ ≤ <(τ(exp(is(2)(η))) ≤ 1− 1

2

∫
Xπ

s(2)(η)2dµ+
1

24

∫
Xπ

s(2)(η)4dµ.

Together with Lemmas II.1.23 and II.1.25, this implies

1− 1

2
‖η‖2 ≤ <(τ(exp(is(2)(η))) ≤ 1− 1

2
‖η‖2 +

C4

24
‖η‖4.

So we obtain

|<(τ(exp(is(2)(η)))| ≤ 1− 1

2
‖η‖2 +

C4

24
‖η‖4. (II.2)

Similarly we can bound the imaginary part by using the fact that u− u3/6 ≤ sin(u) ≤ u for all
u ∈ R. Since the variables in s(2)(H �H) are centered variables, we get

−1

6

∫
Xπ

s(2)(η)3dµ ≤ =(τ(exp(is(2)(η))) ≤ 0.

Using Cauchy-Schwarz inequality and Lemma II.1.25, this gives the bound

|=(τ(exp(is(2)(η)))| ≤ 1

6

∫
Xπ

|s(2)(η)3|dµ ≤ 1

6
‖s(2)(η)‖2‖s(2)(η)‖24 ≤

C2

6
‖η‖3. (II.3)
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Now we apply II.2 and II.3 to the vectors αηn. We get for all n

|τ(exp(is(2)(αηn))|2 = |<(τ(exp(is(2)(η)))|2 + |=(τ(exp(is(2)(η)))|2

≤ (1− 1

2
α2 +

C4

24
α4)2 +

C4

36
α6.

So if we choose α small enough, the constant c = (1− 1
2α

2 + C4

24 α
4)2 + C4

36 α
6 is less than one. In

that case, we get

‖un − τ(un)‖22 = 1− |τ(exp(is(2)(αηn))|2 ≥ 1− c > 0.

This shows that the sequence (un) is non-trivial and the action is not strongly ergodic by
Proposition II.1.21.

It remains to prove Lemma II.1.25.

Proof of Lemma II.1.25. From the definition of s(2), we see K(2) is the closed linear span of the
set {fg −

∫
X fgdµ , f, g ∈ K}, where K = s(H).

Take an orthonormal basis (fi)i∈N of K: the fi’s are independent standard Gaussian random
variables, by Proposition II.1.7. Decompose K(2) as an orthogonal direct sum K(2) = K1 ⊕K2,
with

• K1 = span{f2
i − 1 , i ∈ N},

• K2 = span{fifj , i, j ∈ N, i 6= j}.

Step 1. There exists a constant C1 > 0 such that ‖h‖4 ≤ C1‖h‖2 for all h ∈ K1.

Take h ∈ K1 and write h =
∑

i∈F λi(f
2
i − 1), with F ⊂ N finite and λi ∈ R. Note that

‖h‖22 =
∑
i∈F

λ2
i

∫
X

(f2
i − 1)2dµ.

On the other hand∫
X
h4dµ =

∑
i,j,k,l∈F

λiλjλkλl

∫
X

(f2
i − 1)(f2

j − 1)(f2
k − 1)(f2

l − 1)dµ.

But such an integral
∫
X(f2

i − 1)(f2
j − 1)(f2

k − 1)(f2
l − 1)dµ is equal to 0 whenever one of the

indices i, j, k, l is different from the others. So the only nonzero terms in the above sum are the
ones for which either i = j and k = l, or i = k and j = l, or i = l and j = k. Hence we get:

‖h‖44 ≤
∑

i=j,k=l∈F
λ2
iλ

2
k

∫
X

(f2
i − 1)2(f2

k − 1)2dµ+
∑

i=k,j=l∈F
λ2
iλ

2
j

∫
X

(f2
i − 1)2(f2

j − 1)2dµ

+
∑

i=l,j=k∈F
λ2
iλ

2
j

∫
X

(f2
i − 1)2(f2

j − 1)2dµ

≤ 3M
∑
i,j∈F

λ2
iλ

2
j

∫
X

(f2
i − 1)2dµ

∫
X

(f2
j − 1)2dµ = 3M‖h‖42,
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where M = max(1,
∫
X(f2i −1)4dµ

(
∫
X(f2i −1)2dµ)2

) is independent of i because the (fi)’s are identically dis-

tributed.

So we can put C1 = (3M)1/4, which does not depend on h ∈ K1.

Step 2. There exists a constant C2 > 0 such that ‖h‖4 ≤ C2‖h‖2 for all h ∈ K2.

Consider h ∈ K2, h =
∑

i,j∈F,i<j λi,jfifj , with F ⊂ N finite, and λi,j ∈ R for all i < j. For
convenience, define also λi,j := 0 for i > j. On the one hand, we have

‖h‖22 =

∫
X
h2dµ =

∑
i 6=j

λ2
i,j .

On the other hand we have∫
X
h4dµ =

∑
i1 6=j1,i2 6=j2
i3 6=j3,i4 6=j4

4∏
s=1

λis,js

∫
X

4∏
s=1

fisfjsdµ.

But if for some k ∈ F , there is an odd number of coordinates of ī := (i1, j1, i2, j2, i3, j3, i4, j4)
which are equal to k, then the integral

∫
X

∏4
s=1 fisfjsdµ is equal to zero, because the odd

moments of fk are equal to zero. So if
∫
X

∏4
s=1 fisfjsdµ is non-zero then the coordinates of ī

can be grouped by pairs.

This simple observation first allows to say that
∫
X

∏4
s=1 fisfjsdµ takes values in the set

{
∫
R
t8dν(t), (

∫
R
t4dν(t))2, (

∫
R
t2dν(t))4, (

∫
R
t2dν(t))2

∫
R
t4dν(t), 0} = {105, 9, 1, 3, 0}

(ν is the standard Gaussian measure on R). So
∫
X

∏4
s=1 fisfjsdµ is at most equal to 105.

It also allows to describe the 8-uplets ī for which the integral
∫
X

∏4
s=1 fisfjsdµ is non-zero. It is

easily checked that up to permutation of the four pairs (is, js) and up to permutation of is with
js for some s’s, the integral is zero unless ī belongs to one of the sets

• I1 = {(a, b, a, b, c, d, c, d), a, b, c, d ∈ F, a 6= b, c 6= d}

• I2 = {(a, b, b, c, c, d, d, a), a, b, c, d ∈ F, a 6= b, b 6= c, c 6= d, d 6= a}.

Denote by S ⊂ S8 the subgroup of permutations of {1, · · · , 8} which is generated by the trans-
position (1, 2) and by the permutations of the four pairs {1, 2}, {3, 4}, {5, 6} and {7, 8}. For
any σ ∈ S, denote by σ(I1) = {σ(i) , i ∈ I1}, and define similarly σ(I2).

Altogether, we get ∫
X
h4 ≤ 105

∑
σ∈S

 ∑
ī∈σ(I1)

4∏
s=1

|λis,js |+
∑

ī∈σ(I2)

4∏
s=1

|λis,js |

 . (II.4)

Using the Cauchy-Schwarz inequality, we have∑
ī∈I2

|λi1,j1λi2,j2λi3,j3λi4,j4 | =
∑

a,b,c,d∈F
|λa,bλb,cλc,dλd,a|

≤ (
∑
a,b,c,d

λ2
a,bλ

2
c,d)

1/2(
∑
a,b,c,d

λ2
b,cλ

2
d,a)

1/2 = ‖h‖42.
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And actually, exactly the same calculation shows that for any σ ∈ S,

∑
ī∈σ(I2)

4∏
s=1

|λis,js | ≤ ‖h‖42.

Similarly, for any σ ∈ S, the sum
∑

ī∈σ(I1)

∏4
s=1 |λis,js | is equal to the product of two sums of

the form
∑

a6=b λ
2
a,b or

∑
a6=b |λa,bλb,a| ≤

∑
a6=b λ

2
a,b. So we see that

∑
ī∈σ(I1)

4∏
s=1

|λis,js | ≤ ‖h‖42.

Thus, Equation (II.4) implies that ‖h‖44 ≤ 105|S|‖h‖42 ≤ 105(8!)‖h‖42. This proves Step 2.

By density, we see that for i = 1, 2 and h ∈ Ki, we have ‖h‖4 ≤ Ci‖h‖2.

Step 3. Conclusion.

Since in R2 all norms are equivalent, there exists a constant C > 0 such that

C1|a|+ C2|b| ≤ C(a2 + b2)1/2, for all a, b ∈ R.

Assume that h = h1 + h2, with h1 ∈ K1 and h2 ∈ K2. Then we have

‖h‖4 ≤ ‖h1‖4 + ‖h2‖4
≤ C1‖h1‖2 + C2‖h2‖2
≤ C(‖h1‖22 + ‖h2‖22)1/2 = C‖h‖2.

Remark II.1.26. It is much easier to show that the action is not strongly ergodic whenever π
itself admits almost invariant unit vectors (ξn). Indeed, in that case set un = exp(i

√
2s(ξn)) for

all n. Then the trace of these unitaries is equal to exp(−‖ξn‖2) = e−1, so the sequence is clearly
non-trivial and asymptotically invariant.

Note also that for a quasi-regular representation π, being amenable and admitting almost-
invariant unit vectors is equivalent. So our result is consistent with [KT08, Theorem 1.2].

II.2 Deformation/rigidity results

In this section we prove results regarding the position of “rigid” subalgebras of the crossed-
product von Neumann algebra M = Ao Γ associated with a Gaussian action σ : Γ y A. This
is performed by applying Popa’s deformation/rigidity theory, as follows.

1. In a first step we explain, following [PS12], how to construct an interesting one-parameter
group (αt)t of automorphisms of a von Neumann algebra which contains M .

2. Then we give sufficient conditions for a subalgebra Q ⊂ M to be (αt)-rigid, in the sense
that limt→0 ‖αt(x)− x‖2 = 0, uniformly in x ∈ U(Q).

3. Finally we will use techniques due to Popa ([Po06a, Po06b, Po06c]) to describe the posi-
tion of rigid subalgebras of M . Their position will be compared to the crossed product
decomposition M = Ao Γ.
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II.2.1 Deformation of Gaussian actions

We are interested in malleability properties of Gaussian actions, in the following sense.

Definition II.2.1 ([Po08]). A measure preserving action Γ y (X,µ) is said to be s-malleable
if there exists a one-parameter group (αt)t∈R of automorphisms of L∞(X ×X,µ ⊗ µ), and an
automorphism β ∈ Aut(L∞(X ×X,µ⊗ µ)) such that:

• the map t 7→ αt(x) is strongly continuous for any x ∈ L∞(X ×X);

• the automorphisms αt, t ∈ R and β commute with the double action of Γ on X ×X;

• α1(L∞(X)⊗ 1) = 1⊗ L∞(X), where we identify L∞(X ×X) ' L∞(X)⊗L∞(X);

• for any t ∈ R, one has αt ◦ β = β ◦ α−t;

• β acts trivially on L∞(X)⊗ 1 and β2 = id.

Such a pair ((αt)t, β) is called an s-malleable deformation of the action.

As explained in [Fu07] or [PS12], Gausssian actions are s-malleable. The construction of a
malleable deformation can be performed as follows.

Let π : Γ → O(H) be an orthogonal representation of a group Γ on a real Hilbert space H.
Denote by σ : Γ y A the associated Gaussian action. By Lemma II.1.13, σ ⊗ σ is the Gaussian
action associated with π ⊕ π.
Define on H ⊕H the block operators

ρ =

(
1 0
0 −1

)
and θt =

(
cos(πt/2) − sin(πt/2)
sin(πt/2) cos(πt/2)

)
, t ∈ R.

Here are some trivial facts about these operators:

• ∀t ∈ R, ρ ◦ θt = θ−t ◦ ρ ;

• θt and ρ commute with (π ⊕ π)(g) for all g ∈ Γ, t ∈ R ;

• ∀s, t ∈ R, θs ◦ θt = θt+s.

By Proposition II.1.4, ρ and (θt) induce respectively an automorphism β and a one-parameter
group (αt) of automorphisms of A⊗A which are easily seen to be an s-malleable deformation
of σ.

Now consider the crossed-product von Neumann algebras M = AoΓ and M̃ = (A⊗A)oσ⊗σ Γ.
View M as a subalgebra of M̃ using the identification M ' (A⊗ 1) o Γ. The automorphisms
defined above then extend to automorphisms of M̃ still denoted (αt) and β, in such a way that
αt(ug) = β(ug) = ug, for all g ∈ Γ.

Now that we have introduced a deformation of M , we can define the concept of rigid subalgebra
(relatively to this deformation).

Definition II.2.2. For any projection p ∈ M , we will say that a von Neumann subalgebra
Q ⊂ pMp is (αt)-rigid if the deformation (αt)t converges to the identity uniformly on the unit
ball (Q)1 of Q:

lim
t→0

sup
x∈(Q)1

‖αt(x)− x‖2 = 0.
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The following lemma will be useful to check that some subalgebras are (αt)-rigid. It is the
so-called transversality Lemma.

Lemma II.2.3 ([Po08], Lemma 2.1). For any x ∈M and t ∈ R one has

‖x− α2t(x)‖2 ≤ 2‖αt(x)− EM ◦ αt(x)‖2.

Proof. Take x ∈M and t ∈ R. Recall that β ◦ α−t = αt ◦ β and that β|M = id. We have

‖x− α2t(x)‖2 = ‖α−t(x)− αt(x)‖2
≤ ‖α−t(x)− EM ◦ αt(x)‖2 + ‖EM ◦ αt(x)− αt(x)‖2
= ‖β ◦ α−t(x)− β ◦ EM ◦ αt(x)‖2 + ‖EM ◦ αt(x)− αt(x)‖2
= 2‖αt(x)− EM ◦ αt(x)‖2.

II.2.2 Examples of (αt)-rigid subalgebras

General rigidity condition: property (T)

We consider a Gaussian action σ and we use the notations and definitions of Section II.2.1.

A sufficient condition for a subalgebra Q ∈ M to be (αt)-rigid is to have property (T), in the
sense of [CJ85]. More generally, Q ⊂M is (αt)-rigid if it satisfies a relative version of property
(T), which can be formulated as follows in the setting of tracial von Neumann algebras.

Definition II.2.4 ([Po06c], Definition 4.2.1). Let (N, τ) be a tracial von Neumann algebra, and
B be a von Neumann subalgebra of N . The inclusion B ⊂ N has relative property (T), or is
rigid if for any ε > 0, there exists δ > 0 and x1, · · · , xn ∈ N with the following property.

Any normal, completely positive map φ : N → N for which φ(1) ≤ 1, τ ◦ φ ≤ τ and ‖φ(xi) −
xi‖2 ≤ δ, i = 1, · · · , n automatically satisfies ‖φ(x)− x‖2 ≤ ε, for all x ∈ (B)1.

Generalizing [CJ85, Theorem 2], Popa showed in [Po06c] that this notion coincides with the
notion of relative property (T) for groups: for any countable groups Λ < Γ, the inclusion
LΛ ⊂ LΓ as property (T) if and only if the pair (Γ,Λ) has relative property (T).

With Definition II.2.4, we see easily that rigid inclusions Q ⊂M are (αt)-rigid. Let us now give
another condition, more specific to M̃ and (αt), which ensures (αt)-rigidity. It is the so-called
spectral gap rigidity, discovered by Popa in [Po08].

Spectral gap rigidity

The following criterion is the main result of this section. It was proved by Popa [Po08] for
Bernoulli actions. The idea to require that some tensor power of π is weakly contained in the
regular representation and not necessarily π itself is due to Sinclair [Si11]. It allows to cover
strongly `p-representations, as discussed at the end of Section II.1.2.

Proposition II.2.5 (Spectral gap rigidity). Assume that π : Γ → O(HR) is an orthogonal
representation such that π⊗k is weakly contained in the regular representation for some k ≥ 1.
Denote by σπ : Γ y (A, τ) the associated Gaussian action and put M = A o Γ. Define M̃ and
(αt)t ∈ Aut(M̃) as in Section II.2.1.

If Q ⊂ M is a von Neumann subalgebra with no amenable direct summand, then Q′ ∩M is
(αt)-rigid.
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In fact we will rather use the follwing “corner version” of Proposition II.2.5.

Corollary II.2.6. With the same hypotheses and notations as in Proposition II.2.5, if p ∈M is
a projection and if Q ⊂ pMp is a von Neumann subalgebra with no amenable direct summand,
then Q′ ∩ pMp is (αt)-rigid.

Proof. Since Q is non-amenable, then M is non amenable. So Γ is non-amenable, and M has
no amenable direct summand. Thus the algebra Q1 := Q ⊕ (1 − p)M(1 − p) has no amenable
direct summand and we can apply Proposition II.2.5 to Q1. The corollary follows because
Q′ ∩ pMp = p(Q′1 ∩M)p.

Proposition II.2.5 will be deduced from the following two lemmas.

Lemma II.2.7. If π⊗k is weakly contained in the regular representation for some k ≥ 1, then
the M -M -bimodule H = L2(M̃)	L2(M) is such that the Connes’ fusion tensor power of MHM ,
H⊗M k := H⊗M · · · ⊗M H is weakly contained in the coarse bimodule L2(M)⊗ L2(M).

Proof. As in the proof of [Va13, Lemma 3.5], for any representation η : Γ → U(K), define an
M -M bimodule structure Hη on the Hilbert space K ⊗ L2(M) by

(aug) · (ξ ⊗ x) · (buh) = ηg(ξ)⊗ augxbuh, for all a, b ∈ A, g, h ∈ Γ, x ∈M, ξ ∈ K.

We can make three observations regarding this definition.

• Weak containment for two representations η1, η2 of Γ implies the weak containment of the
correpsonding bimodules Hη1 , Hη2 ;

• If η is the regular representation then Hη is weakly contained in L2(M)⊗L2(M), because
the A-A bimodule L2(A) is weakly contained in L2(A)⊗ L2(A) (A is amenable);

• For two representation η1, η2, Hη1 ⊗M Hη2 = Hη1⊗η2 .

Now remark that the M -M bimodule L2(M̃)	L2(M) is isomorphic to Hσ0
π . Moreover, Proposi-

tion II.1.15 implies that (σ0
π)⊗k is weakly contained in the regular representation. So the lemma

follows from the above observations.

Lemma II.2.8. Let ω be a free ultrafilter on N. If π⊗k is weakly contained in the regular repre-
sentation for some k ≥ 1 then for every subalgebra Q ⊂ M with no amenable direct summand,
one has

Q′ ∩ M̃ω ⊂Mω.

Proof. By Lemma II.2.7, we know that H⊗Mk is weakly contained in the coarse M -M bimodule,
were H = L2(M̃) 	 L2(M). Now note that if H⊗MK is weakly contained in the coarse M -M
bimodule, then this is also the case of H⊗MK+1. Hence one can assume that k is of the form
k = 2p, which will be used later.

Fix Q ⊂M such that Q′ ∩ M̃ω *Mω. We will show that Q has an amenable direct summand.

Since Q′ ∩ M̃ω *Mω, there exist a sequence xn ∈ (M̃)1 such that:

• xn ∈ L2(M̃)	 L2(M), for all n ∈ N;
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• There exists ε > 0 such that ‖xn‖2 ≥ ε for all n ∈ N;

• limn ‖[u, xn]‖2 = 0 for all u ∈ U(Q).

• xn = x∗n.

Since xn ∈ (M̃)1 for all n ∈ N, the vectors xn ∈ H are left and right uniformly bounded, and
one can consider the sequence ξn = xn⊗M · · ·⊗M xn ∈ H⊗Mk. One checks that these are almost
Q-central vectors, because the xn’s are. Let’s show that up to some slight modifications they
are Qq-tracial as well, for some q ∈ Z(Q).

For all n, define by induction elements y
(n)
i ∈M, i = 0, · · · , k by y

(n)
0 = 1, y

(n)
i+1 = EM (xny

(n)
i xn).

Then an easy computation gives, for all n ∈ N and a ∈M ,

〈aξn, ξn〉 = 〈axny(n)
k−1, xn〉 = τ(ay

(n)
k ).

Moreover, for all n ∈ N, ‖xn‖ ≤ 1 implies ‖y(n)
k ‖ ≤ 1. So taking a subsequence if necessary, one

can assume that (y
(n)
k ) converges weakly to some b ∈ Q′ ∩M+.

Claim. τ(b) ≥ ε2k, so that b ∈M is a nonzero element.

To prove this claim, first observe that for any 0 ≤ i, j ≤ k − 1, one has:

τ(y
(n)
i y

(n)
j+1) = τ(y

(n)
i EM (xny

(n)
j xn)) = τ(y

(n)
i xny

(n)
j xn)

= τ(EM (xny
(n)
i xn)y

(n)
j ) = τ(y

(n)
i+1y

(n)
j ).

Remembering that k = 2p, the relation above and Cauchy-Schwarz inequality give:

τ(y
(n)
k ) = τ(y

(n)
2p ) = τ(y

(n)
2p−1y

(n)
2p−1)

≥ τ(y
(n)
2p−1)2 ≥ · · · ≥ τ(y

(n)
1 )2(p−1)

= τ(x2
n)k/2 ≥ εk.

This proves the claim. Therefore there exists δ > 0 such that q = χ[δ,∞[(EQ(b)) 6= 0. Note that
q ∈ Z(Q) and take c ∈ Z(Q)+ such that q = cEQ(b).
Finally, we get that the sequence ηn = c1/2 · ξn ∈ H⊗MK satisfies:

• (ηn) is almost Qq-tracial: ∀a ∈ Qq, limn〈aηn, ηn〉 = τ(c1/2ac1/2b) = τ(aq).

• (ηn) is almost Q-central.

Therefore as Qq-Qq bimodules, we have:

L2(Qq) ⊂w H⊗MK ⊂w L2(M)⊗ L2(M) ⊂w L2(Qq)⊗ L2(Qq),

so that Qq is amenable.

Proof of Proposition II.2.5. Assume that π⊗k is weakly contained in the regular representation
for some k ≥ 1, and consider a von Neumann subalgebra Q ⊂ M with no amenable direct
summand.
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Fix ε > 0. We want to find a t > 0 such that for all s ∈ [0, t],‖x − αs(x)‖2 ≤ ε for all x in
(Q′ ∩M)1.

By Lemma II.2.8, we have Q′ ∩ M̃ω ⊂Mω for any free ultrafilter ω on N. It implies that there
exists a finite set x1, · · · , xn ∈ Q and a δ > 0 such that for any y ∈ M̃ such that ‖yxi−xiy‖2 ≤ δ
for all i = 1, · · · , n we have

‖y − EM (y)‖2 ≤ ε/2.

Now let t > 0 be such that for any s ∈ [0, t], and any i = 1, · · · , n, ‖αs(xi)− xi‖2 ≤ δ/2. Take
s ∈ [0, t] and x ∈ (Q′ ∩M)1.

We have for all i = 1, · · · , n

‖αs(x)xi − xiαs(x)‖2 = ‖xα−s(xi)− α−s(xi)x‖2
≤ 2‖x‖‖α−s(xi)− xi‖2 + ‖xxi − xix‖2
≤ 2‖xi − αs(xi)‖2
≤ δ.

By definition of δ, we get
‖αs(x)− EM (αs(x))‖2 ≤ ε/2.

By Lemma II.2.3 we conclude that ‖α2s(x)− x‖2 ≤ ε, as desired.

II.2.3 Position of rigid subalgebras of M

Under the assumption that the action is mixing, the following result shows that diffuse, rigid
subalgebras of M either lie in the group algebra LΓ or their normalizers lie in the Cartan
subalgebra A.

Theorem II.2.9. Assume that Γ y A is the Gaussian action associated with a mixing repre-
sentation of the group Γ. Put M = A o Γ, M̃ = (A⊗A) o Γ and define (αt) ∈ Aut(M̃) as
in section II.2.1. Let p ∈ M be a projection, and Q ⊂ pMp be an (αt)-rigid subalgebra, in the
sense of Definition II.2.2. Denote by P = QN pMp(Q)′′.

Then either P ≺M A, or Q ≺M LΓ.

To prove such a rigidity result, we follow a very standard strategy, initiated in [Po06a, Theorem
4.1] and applied to several contexts [Po06d, IPP08, HR11, PS12]. Our proof is a direct adaptation
of the proof of [IPV13, Theorem 4.2].

Proof. Assume that no corner of P := QN pMp(Q)′′ embeds into A inside M . We will proceed
in three steps to show that Q ≺ LΓ.

For subalgebras Q1, Q2 ⊂ M̃ , an element x ∈ M̃ is said to be Q1-Q2-finite if there exist
x1, · · · , xn ∈ M̃ such that

Q1x ⊂
n∑
i=1

xiQ2 and xQ2 ⊂
n∑
i=1

Q1xi.

Note that QN M̃ (Q1) is exactly the set of Q1-Q1 finite elements.

Step 1. For all t small enough, there exists a non-zero Q-αt(Q)-finite element at in pM̃αt(p).
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By assumption, for all t small enough and all u ∈ U(Q) we have ‖u − αt(u)‖22 ≤ 1/2. This
implies that

τ(uαt(u
∗)) ≥ 3/4 > 0 for all u ∈ U(Q). (II.5)

Denote by C ⊂ pM̃αt(p) the strong closure of C0 := conv({uαt(u∗) , u ∈ U(Q)}). Since C0 is in
the unit ball of M̃ , C is closed in the norm ‖ · ‖2.

Consider the unique element at of C which minimizes the norm ‖ · ‖2. By uniqueness of at, and
since C is invariant under the maps x 7→ vxαt(v

∗) for all v ∈ U(Q), we get that at = vatαt(v
∗)

for all v ∈ U(Q), and at is indeed Q-αt(Q)-finite.

Moreover, by (II.5) we get that τ(vt) ≥ 3/4 and so at 6= 0.

Step 2. There exists a non-zero element a1 ∈ pM̃α1(p) which is Q-α1(Q)-finite. In particular
α1(Q) ≺M̃ M .

Take at as in Step 1, with t of the form t = 1/2k, k ≥ 1. We will show that there exists d ∈ P
such that a2t := αt(β(a∗t )dat) is non-zero. This element a2t ∈ pM̃α2t(p) is easily seen to be
Q-α2t(Q) finite, so a2t satisfies Step 1 with 2t instead of t. Going on inductively this is enough
to prove the existence of a1.

Assume by contradiction that β(a∗t )dat = 0 for all d ∈ P . Denote by q ∈ pM̃p the projection
onto the closed linear span of {range(dat) , d ∈ P}. We see that β(q)q = 0 and Q ∈ P ′ ∩ pM̃p.

But if π is mixing and P ⊀M A, Lemma A.4.5 implies that P ′ ∩ pM̃p ⊂ pMp. So we have
0 = β(q)q = q which contradicts the fact that q majorizes the left support of pat = at 6= 0.

Step 3. Conclusion: Q ≺M LΓ.

Denote by ug, g ∈ Γ the canonical unitaries which implement the action of Γ.

Assume by contradiction that Q ⊀M LΓ: there exists a sequence (wn) ⊂ U(Q) such that
limn ‖ELΓ(xwny)‖2 = 0 for all x, y ∈M
We claim that limn ‖EM (xα1(wn)y)‖2 = 0 for all x, y ∈ M̃ . By a linearity/density argument, it
suffices to prove this equality for x = (a⊗ b)us ∈ M̃ and y = (c⊗ d)ut ∈ M̃ , with a, b, c, d ∈ A,
s, t ∈ Γ. Now writing wn =

∑
k∈Γ xg,nug, an easy calculation gives

‖EM (xα1(wn)y)‖22 =

∥∥∥∥∥EM
(
x
∑
g

(1⊗ xg,n)ugy

)∥∥∥∥∥
2

2

=

∥∥∥∥∥EM
(∑

g

(aσsg(c)⊗ bσs(xg,n)σsg(d))usgt

)∥∥∥∥∥
2

2

=
∑
g

‖aσsg(c)‖22 |τ(bσs(xg,n)σsg(d))|2

≤
∑
g

‖a‖2∞‖c‖22 |τ(bσs(xg,n)σsg(d))|2

= ‖a‖2∞‖c‖22‖ELΓ ((bus)wnd) ‖22,

which tends to 0 when n goes to infinity. This contradicts α1(Q) ≺M̃ M .

Remark II.2.10. From this proof, we see that the assumption that Q is (αt)-rigid can be
replaced by the following weaker assumption: for t small enough, there exist z ∈ M̃ and c > 0
such that

|τ(αt(u
∗)zu)| ≥ c, for all u ∈ U(Q). (II.6)
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Assuming that Γ is ICC and using again the mixing property, one can deduce a more accurate
result.

Corollary II.2.11. Consider a mixing Gaussian action Γ y A of an ICC group Γ. Define
M = Ao Γ and (αt) ∈ Aut(M̃) as in section II.2.1. Let p ∈ M be a projection, and Q ⊂ pMp
be an (αt)-rigid subalgebra, in the sense of Definition II.2.2. Denote by P = QN pMp(Q)′′.

Then at least one of the following assertions occurs.

1. Q ≺M 1;

2. P ≺M A;

3. There exists a unitary v ∈M such that v∗Pv ⊂ LΓ.

Proof. Note that for all r ∈ Q′ ∩ pMp, the subalgebra rQ ⊂ rMr is (αt)-rigid. So if P ⊀ A,
Theorem II.2.9 applied to all such rQ’s implies that for all r ∈ Q′ ∩ pMp, rQ ≺ LΓ. Now one
can apply Proposition A.4.6.3 because the inclusion LΓ ⊂ M is mixing (relative to C). This
implies that either 1 or 3 (or both) holds true.

We now provide a new variant of Theorem II.2.9, which relies on spectral hypotheses on π
instead of mixing hypotheses. Note however that if Γ is non-amenable, the assumption that π⊗k

is weakly contained in the regular representation implies that π is weakly mixing.

Theorem II.2.12. Assume that Γ y A is the Gaussian action associated with a representation
π such that π⊗k is weakly contained in the regular representation for some k ≥ 1. Put M = AoΓ,
M̃ = (A⊗A) o Γ and define (αt) ∈ Aut(M̃) as in section II.2.1. Let p ∈ M be a projection,
and Q ⊂ pMp be an (αt)-rigid subalgebra. Denote by P = QN pMp(Q)′′.

Then either P has an amenable direct summand or Q ≺M LΓ.

Proof. Assume that Q ⊂ pMp is an (αt)-rigid subalgebra and that P := QN pMp(Q)′′ has no
amenable direct summand.

Denote by P0 = P ⊕ (1−p)M(1−p). Then P0 has no amenable direct summand. Using Lemma
II.2.8 we have that P ′0 ∩ M̃ ⊂M . In particular P ′ ∩ pM̃p ⊂ pMp.

Now we can repeat Steps 1-3 of the proof of Theorem II.2.9 word by word to get Q ≺M LΓ.

From Theorem II.2.12 we can deduce the following relative solidity result. The first result
of this type is due to Ozawa [BO08, Theorem 15.3.10] (inspired from [Oz04]) and deals with
(some) plain Bernoulli shifts1. Then Chifan and Ioana [CI10] managed to weaken the mixing
assumption, and proved the result for generalized Bernoulli shifts associated with actions with
amenable stabilizers. The result that we give here is an improved version of [Bo12, Proposition
4.1].

Corollary II.2.13. Assume that Γ y A is the Gaussian action associated with a representation
π such that π⊗k is weakly contained in the regular representation for some k ≥ 1. Put M = AoΓ
and take a projection p ∈M .

For any Q ⊂ pMp such that Q ⊀M LΓ, we have that Q′ ∩ pMp is amenable.

1Ozawa’s approach is totally different from what is presented here.
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Proof. Assume by contradiction that Q ⊀M LΓ and that P := Q′∩ pMp is not amenable. Then
we can find a central projection z ∈ Z(P ) such that Pz has no amenable direct summand. By
Corollary II.2.6, we get that (Pz)′ ∩ zMz is (αt)-rigid. But since Qz ⊂ (Pz)′ ∩ zMz, we deduce
that Qz is (αt)-rigid.

Since Q ⊀M LΓ, we also have that Qz ⊀M LΓ. Applying Theorem II.2.12 to Qz, we get
that the quasi-normalizer of Qz inside zMz has an amenable direct summand. But this quasi-
normalizer contains (unitaly) Pz, which has no amenable direct summand by definition of z.
This is impossible.

This corollary is interesting on its own, but it also has an application regarding solid ergodicity
of Gaussian actions.

II.2.4 Application: Gaussian actions and solid ergodicity

Definition II.2.14. A measure preserving equivalence relation R on a probability space (X,µ)
is called solidly ergodic if for any subrelation S ofR, there exists a countable measurable partition
(Xn)n≥0 of X into measurable S-invariant subsets with:

• S|X0
hyperfinite ;

• S|Xn is strongly ergodic for all n ≥ 1.”

Solid ergodicity is a very strong property because it gives valuable information on the ergodic
decomposition of any sub-equivalence relation.

The name solid ergodicity was introduced by Gaboriau [Ga10, definition 5.4] and is due to the
following characterisation found by Chifan and Ioana [CI10].

Proposition II.2.15 ([CI10], Proposition 6). A measure preserving equivalence relation R on
a standard probability space (X,µ) is solidly ergodic if and only if for any diffuse von Neumann
subalgebra Q of L∞(X,µ), the relative commutant Q′ ∩ LR is amenable.

Chifan and Ioana applied this criterion to provide the first example of solidly ergodic action: if
Γ y I is an action of a group on a countable set I, with amenable stabilizers then the orbit
equivalence relation of the associated Bernoulli action is solidly ergodic.

Together with Ozawa’s work [Oz09], Proposition II.2.15 also implies that the orbit equivalence
relation induced by SL2(Z) y T2 is solidly ergodic.

Combining Proposition II.2.15 with Proposition II.2.13, we obtain solid ergodicity results for a
large class of Gaussian actions.

Corollary II.2.16. Assume that π : Γ→ O(HR) is an orthogonal representation such that π⊗k

is weakly contained in the regular representation for some k ≥ 1.

Then the orbit equivalence relation associated with the Gaussian action σπ is solidly ergodic.

Although this result might sound slightly more general than [Bo12, Theorem A], we were not
able to provide new examples of solidly ergodic Gaussian actions. Moreover note that for quasi-
regular representations, this theorem is equivalent to [Bo12, Theorem A].
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II.2.5 Deformation/rigidity in the ultraproduct algebra

In this section we apply deformation/rigidity techniques in the ultraproduct algebra. This idea
was first used in [Pe09]. Our main result is Theorem II.2.19, which will play a crucial role in
Section II.3.

Let σπ : Γ y A be the Gaussian action associated with an orthogonal representation π. As in
Section II.2.1, denote by M = A o Γ, M̃ = (A⊗A) o Γ and by ((αt)t, β) the corresponding
s-malleable deformation of M .

Let ω be a free ultrafilter on N. The malleable deformation (αt)t of M induces a one parameter
group of automorphisms, also denoted by (αt)t, of the ultraproduct algebra (M̃)ω by the formula

αt(x) := (αt(xn))n, for all x = (xn) ∈ (M̃)ω, t ∈ R.

Definition II.2.17. For a given x = (xn) ∈ (M̃)ω, the map t 7→ αt(x) may not be continuous
for the norm ‖ · ‖2. Whenever it is continuous, we will say that x is (αt)-rigid.

A sufficient condition for an element x = (xn) to be (αt)-rigid is that the deformation converges
uniformly to the identity on the set {xn , n ∈ N}. Since the deformation is trivial on LΓ, any
element of (LΓ)ω is (αt)-rigid.

The spectral gap argument also yields rigidity in Mω.

Lemma II.2.18. Let p ∈ M be a projection. If Q ⊂ pMp has no amenable direct summand,
then the deformation converges pointwise (even uniformly) to the identity in the norm ‖ · ‖2 on
the unit ball (Q′ ∩Mω)1.

Proof. The proof is exactly the same as the one of Proposition II.2.5.

The following result shows that for if π is mixing one can transfer the rigidity of an element
x ∈Mω to its relative commutant in M .

Theorem II.2.19. Let Γ y A be a mixing Gaussian action. Put M = A o Γ. Assume that
x = (xn) ∈ Mω is an (αt)-rigid element and consider a subalgebra Q ⊂ M of elements of M
that commute (inside Mω) with x. Put P = QNM (Q)′′.

If x /∈ Aω o Γ, then P ≺M A or Q ≺ LΓ.

Proof. Assume that x /∈ (AωoΓ). If we could show that Q is (αt)-rigid then we would conclude
with Theorem II.2.9. We will rather show that Q satisfies condition II.6 and apply Remark
II.2.10.

Define y = x − EAωoΓ(x) 6= 0 and write y = (yn). Dividing y if necessary by ‖y‖2, one can
assume that ‖y‖2 ≤ 1. For all n write yn =

∑
g yn,gug, where ug, g ∈ Γ denote the unitaries of

M implementing the action of Γ. One checks that:

• y is (αt)-rigid, since αt commutes with EÃωoΓ for all t;

• yd = dy, for any d ∈ Q;

• For all g, y is orthogonal to (yn,gug)n ∈ Aω o Γ, so that limn→ω ‖yn,g‖2 = 0.
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Using Lemma A.1.4, this last condition implies that

lim
n→ω
〈ynξy∗n, η〉 = 0, ∀ξ, η ∈ L2(M̃)	 L2(M). (II.7)

Fix ε > 0. Then there exists t0 > 0 such that for all t ∈ [0, t0] we have ‖αt(y)− y‖2 < ε.

Let t ∈ [0, t0] and u ∈ U(Q). For a ∈ M define δt(a) = αt(a) − EM ◦ αt(a) ∈ L2(M̃) 	 L2(M).
We have

lim
n→ω
‖δt(u)yn − δt(uyn)‖2 = lim

n→ω
‖(1− EM )(αt(u)yn − αt(uyn))‖2

≤ lim
n→ω
‖αt(u)yn − αt(u)αt(yn)‖2

= ‖y − αt(y)‖2 ≤ ε.

Similarly limn→ω ‖ynδt(u)− δt(ynu)‖2 < ε. Hence we get

lim
n→ω
‖δt(u)yn‖22 ≤ lim

n→ω
〈δt(uyn), δt(u)yn〉+ ε

= lim
n→ω
〈δt(ynu), δt(u)yn〉+ ε

≤ lim
n→ω
〈ynδt(u)y∗n, δt(u)〉+ 2ε.

With (II.7), we obtain
‖δt(u)y‖22 ≤ 2ε. (II.8)

But exactly as in the proof of Popa’s transversality lemma (Lemma II.2.3), we show that

‖α2t(u)y − uy‖2 ≤ ‖αt(u)y − α−t(u)y‖2 + 2‖y − αt(y)‖2
≤ 2‖δt(u)y‖2 + 2ε

With (II.8) we thus obtain

‖α2t(u)y − uy‖2 < 2
√

2ε+ 2ε ≤ 6
√
ε,

if we assume that ε < 1. Put z = EM (yy∗) 6= 0 (conditionnal expectation inside Mω, onto M).
We have

‖α2t(u)y − uy‖22 = 2‖y‖22 − 2<(τ(α2t(u
∗)zu)) < 36ε.

If ε was chosen to be smaller than ‖y‖22/18, then c := ‖y‖22 − 18ε is positive and satisfies

|τ(α2t(u
∗)zu)| ≥ c.

This inequality is true for all t ∈ [0, t0] and all u ∈ U(Q), so we can apply Remark II.2.10 to get
the result.

II.2.6 Application: structural properties of M

From Sections II.2.3 and II.2.5, we can deduce the following result about primeness and property
Gamma.

Theorem II.2.20. Assume that Γ y A is the Gaussian action associated with a mixing repre-
sentation π such that π⊗k is weakly contained in the regular representation for some k ≥ 1. Put
M = Ao Γ.

Let Q ⊂M be a von Neumann subalgebra such that Q ⊀ LΓ. Then there exists countably many
projections (pn)n≥0 in Z(Q) such that

∑
n≥0 pn = 1 and
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• p0Q is amenable;

• For all n ≥ 1, pnQ is prime and does not have property Gamma.

Proof. We proceed in two steps.

Step 1. Construction of the projections pn.

Naturally, take for p0 the maximal projection in Z(Q) such that p0Q is amenable. Let us show
that (1− p0)Z(Q) is discrete.

Otherwise one can find a projection p ∈ Z(Q) with p ≤ 1− p0 such that pZ(Q) is diffuse. Since
the action is mixing and pQ ⊀ LΓ, Proposition A.4.6.1 implies that pZ(Q) ⊀ LΓ. Therefore
Corollary II.2.13 implies that pQ is amenable, which contradicts the fact that p ≤ 1− p0.

Thus we obtain (at most) countably many projections (pn)n≥0 such that p0Q is hyperfinite, and
pnQ is a non-hyperfinite factor for all n ≥ 1.

Step 2. For any n ≥ 1, pnQ does not have property Gamma and is prime.

We have to show that for every projection p ∈M , any non-hyperfinite subfactor N ⊂ pMp such
that N ⊀M LΓ is non-Gamma and prime.

Primeness. If N = N1⊗N2, then N1 and N2 are factors, and one of them, say N1, is non-
amenable. Hence Corollary II.2.13 implies that N2 ≺M LΓ. By Proposition A.4.6.1, either N2

is discrete or N ≺M LΓ. The only possible case is that N2 is discrete. So N is prime.

Non Property Gamma. Fix a free ultrafilter ω on N. Put B = N ′ ∩Nω.

Since N ⊂ pMp has no amenable direct summand, Lemma II.2.18 and Theorem II.2.19 imply
that either N ′ ∩ (pMp)ω ⊂ Aω o Γ, or N ≺M A or N ≺M LΓ. But the last two possibilities are
clearly excluded. We deduce that B ⊂ Aω o Γ.

Assume by contradiction that the II1-factor N has property Gamma, i.e. that B is diffuse. The
proof of [Oz04, Proposition 7], shows that there exists a sequence of τ -independent commuting
projections pn ∈ N of trace 1/2, such that (pn) ∈ N ′ ∩ Nω, and if C = {pn |n ∈ N}′′, then
C ′ ∩N is not amenable.

By Corollary II.2.13, we get that C ≺M LΓ.

At this point, remark that the sequence of unitaries wn = 2pn − 1 ∈ U(C) converges weakly to
0, and that (wn) ∈ N ′ ∩Nω ⊂ Aω o Γ. The following claim leads to a contradiction.

Claim. For all x, y ∈M, limn ‖ELΓ(xwny)‖2 = 0.

Denote by ug ∈M , g ∈ Γ the unitaries implementing the action of Γ. By linearity and density, it
suffices to prove the claim for x = auh, y = buk, for a, b ∈ A, h, k ∈ Γ. Write wn =

∑
g∈Γ an,gug

and let ε > 0. Since (wn) ∈ Aω o Γ, there exists F ∈ Γ finite such that

‖PF (wn)− wn‖2 <
ε

2‖a‖‖b‖
, ∀n ∈ N.

Now we have:

‖ELΓ(xPF (wn)y)‖22 =
∑
g∈F
|τ(aσh(an,g)σhg(b))|2

=
∑
g∈F
|τ(σh−1(a)wnu

∗
gσg(b))|2.

This quantity can be made smaller than ε2/4 for n large enough, and we get that ‖ELΓ(xwny)‖2 <
ε for n large enough. That proves the claim and gives the desired contradiction.
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Remark II.2.21. Theorem II.2.20 is a von Neumann algebraic analogue of Theorem II.2.16.
However we added a mixing assumption in order to prove it. This mixing assumption can be
weakened to a relative mixing assumption though, see [Bo12, Theorem B].

II.3 Position of well-normalized subalgebras

We continue our analysis of remarkable von Neumann subalgebras of the crossed product von
Neumann algebra by a mixing Gaussian action. The whole section will be devoted to proving
Theorem II.3.1 which generalizes [Po06b, Theorem 4.2].

II.3.1 Statement of the main result

Theorem II.3.1. Consider a mixing Gaussian action Γ y (X,µ) of a discrete countable group
Γ. Put A = L∞(X,µ), and M = Ao Γ. Assume that B ⊂M is an abelian subalgebra which is
normalized by a sequence of unitaries vn ∈ U(LΓ) such that vn → 0 weakly.

Then B′ ∩M ≺M A or B ≺M LΓ.

For later use, let us mention a tensor product version of this result which we proved in [Bo13].
We also allow amplifications. The proof does not change much compared to that of Theorem
II.3.1. It is a generalization of [Io11, Theorem 6.1] and [IPV13, Theorem 5.1], in the mixing
case.

Theorem II.3.2. For i = 1, 2, consider mixing Gaussian actions Γi y Ai of discrete countable
groups Γi, and put Mi = Ai o Γi, A = A1⊗A2, Γ = Γ1 × Γ2 and

M = M1⊗M2 = Ao Γ.

Let t > 0. Realize (LΓ)t ⊂ M t by fixing an integer n ≥ t and a projection p ∈ LΓ ⊗Mn(C)
with trace t/n. Let D ⊂ M t be an abelian von Neumann subalgebra, and denote by Λ′′ the
von Neumann algebra generated by the group of unitaries Λ = NMt(D) ∩ U((LΓ)t). Make the
following assumptions:

(i) Λ′′ ⊀M LΓ1 ⊗ 1 and Λ′′ ⊀M 1⊗ LΓ2;

(ii) D ⊀ LΓ1 ⊗M2 and D ⊀M M1 ⊗ LΓ2.

Denote by C = D′ ∩M t. Then for all projections q ∈ Z(C), Cq ≺M A.

Bernoulli actions Γ y A = A⊗Γ
0 have a strong algebraic structure, given by the cylinders A⊗F0 ,

F ⊂ Γ finite. This structure was used via the so-called clustering property (see [Po06b, Section
1,2,3]), one of the main ingredients to prove the Bernoulli analogue of Theorem II.3.1, namely
[Po06b, Theorem 4.2].

General mixing Gaussian actions do not have such an algebraic structure, but they are 2-mixing.
This 2-mixing property will allow to replace cylinders by general finite dimensional subspaces
of A.
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II.3.2 2-mixing property

Definition II.3.3. A trace-preserving action Γ yσ A of a countable group on an abelian von
Neumann algebra is said to be 2-mixing if for any a, b, c ∈ A, the quantity τ(aσg(b)σh(c)) tends
to τ(a)τ(b)τ(c) as g, h, g−1h tend to infinity.

Proposition II.3.4. An action Γ yσ A is 2-mixing if and only if for all a, b, c ∈ A, one has

|τ(aσg(b)σh(c))− τ(a)τ(σg(b)σh(c))| → 0,

when g →∞, h→∞.

Proof. The if part is straightforward. For the converse, assume that σ is 2-mixing. It is sufficient
to show that if a, b, c ∈ A, with τ(a) = 0, then τ(aσg(b)σh(c))→ 0, as g, h→∞.

Assume by contradiction that there exist sequences gn, hn ∈ Γ going to infinity, and δ > 0 such
that |τ(aσgn(b)σhn(c))| ≥ δ, for all n. Then two cases are possible:

Case 1. The sequence g−1
n hn is contained in a finite set. Then taking a subsequence if necessary,

one can assume that g−1
n hn = k is constant. Then for all n, we get

τ(aσgn(b)σhn(c)) = τ(aσgn(bσk(c)).

But since σ is mixing this quantity tends to 0 as n tends to infinity.

Case 2. The sequence g−1
n hn is not contained in a finite set. Then taking a subsequence if

necessary, one can assume that g−1
n hn → ∞ when n → ∞. Then the 2-mixing implies that

τ(aσgn(b)σhn(c))→ 0.

In both cases, we get a contradiction.

Of course any 2-mixing action is mixing. The converse holds for Gaussian actions.

Proposition II.3.5. If Γ yσ A is the Gaussian action associated with a mixing representation
π on H, then σ is 2-mixing.

Proof. By a linearity/density argument, it is enough to prove that for all ξ, η, δ ∈ H, and all
sequences gn, hn ∈ Γ tending to infinity, one has

lim
n

[τ(w(ξ)σgn(w(η))σhn(w(δ)))− τ(w(ξ))τ(σgn(w(η))σhn(w(δ)))] = 0,

where we used the notations of Definition II.1.5 for w(ξ), w(η) and w(δ). But we see that:

• τ(ω(ξ)σgn(ω(η))σhn(ω(δ))) = exp(−‖ξ + π(gn)η + π(hn)δ‖2);

• τ(ω(ξ))τ(σgn(ω(η))σhn(ω(δ))) = exp(−‖ξ‖2 − ‖π(gn)η + π(hn)δ‖2).

The difference is easily seen to tend to 0.
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II.3.3 Proof of Theorem II.3.1

Let B ⊂ M be an abelian von Neumann subalgebra which is normalized by unitaries vn ∈ LΓ
such that the sequence (vn) converges weakly to 0. Assume that B ⊀M LΓ and that C :=
B′ ∩M ⊀M A.

We will proceed in two steps to get a contradiction. First we will collect properties regarding
the sequence (vn) or sequences of the form (vnav

∗
n), a ∈ B. Then we will derive a contradiction.

Before moving on to these two steps, we introduce some notations:

• We denote by ug, g ∈ Γ the canonical unitaries in M implementing the action of Γ;

• For any element x ∈ M , we denote by x =
∑

g∈Γ xgug (xg ∈ A for all g ∈ Γ) its Fourier
decomposition.

• If S ⊂ Γ is any subset, denote by PS : L2(M) → L2(M) the projection onto the closed
linear span of the vectors aug, a ∈ A, g ∈ S.

• If K ⊂ A is a closed subspace, we denote by QK : L2(M) → L2(M) the projection onto
the closed linear span of the vectors aug, a ∈ K, g ∈ Γ.

Step 1: Properties of the sequences (vnav
∗
n), a ∈ D

Lemma II.3.6. For any free ultrafilter ω on N, and any a ∈ B, the element (vnav
∗
n)n ∈ Mω

belongs to Aω o Γ.

Proof. Let a ∈ B. Since vn ∈ LΓ, the sequence (vnav
∗
n)n is (αt)-rigid in the sense of Definition

II.2.17 (we use the notations of Section II.2.1). Assume that this sequence does not belong to
Aω o Γ. Since B ⊂ M commutes with the sequence (vnav

∗
n)n, Theorem II.2.19 implies that

either B ≺M LΓ or QNM (B)′′ ≺M A. But C ⊂ QNM (B)′′, so both possibilities are excluded.
Hence (vnav

∗
n)n ∈ Aω o Γ.

For an element x ∈ M = LΓ, denote by h(x) the height of x: h(x) = supg∈Γ |xg|, where
x =

∑
xgug is the Fourier decomposition of x.

Lemma II.3.7. There exists δ > 0 such that lim infn h(vn) > δ.

Proof. Assume that the result is false. Taking a subsequence if necessary, we get that h(vn)→ 0.
Then we claim that for all finite subset S ⊂ Γ, for all a ∈M 	 LΓ,

‖PS(vnav
∗
n)‖2 → 0.

To prove this claim, it is sufficient to show that for any sequence of unitaries wn ∈ U(LΓ), and
all a ∈ A	 C1,

‖EA(vnawn)‖2 → 0.

Thus write vn =
∑

g∈Γ vn,gug and wn =
∑

h∈Γwn,huh. We get

EA(vnawn) =
∑
g

vn,gσg(a)wn,g−1 .
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Fix ε > 0, and take F ⊂ Γ finite such that |τ(σg(a)σh(a∗))| < ε, as soon as g−1h /∈ F . A
computation gives :

‖EA(vnawn)‖22 =
∑
g,h∈Γ

vn,gwn,g−1 v̄n,hw̄n,h−1τ(σg(a)σh(a∗))

≤
∑
g∈Γ

∑
h∈gF

vn,gwn,g−1 v̄n,hw̄n,h−1τ(σg(a)σh(a∗)) + ε(
∑
|vn,gwn,g−1 |)2

≤
∑
g∈Γ

|vn,gwn,g−1 |
∑
h∈gF

h(vn)‖a‖22 + ε

≤ |F |h(vn)‖a‖22 + ε.

Which is smaller than 2ε, for n large enough. That proves the claim.
Now since B ⊀ LΓ, there exists a ∈ U(B) with ‖ELΓ(a)‖2 ≤ 1/3. For any S ⊂ Γ finite, we get :

‖PS(vnav
∗
n)‖2 ≤ ‖PS(vn(a− ELΓ(a))v∗n)‖2 + 1/3 ≤ 2/3,

for n large enough, by the claim. This contradicts the fact that (vnav
∗
n) ∈ Aω o Γ.

We end this paragraph by a lemma that localizes the Fourier coefficients of elements vnav
∗
n inside

A, for a particular (fixed) a ∈ D. In fact, this lemma will be the starting point of our reasoning
by contradiction in Step 2 below, being the initialization of an induction process.

Lemma II.3.8. There exists an a ∈ U(B), a δ0 > 0, a finite dimensional subspace K ⊂ A	C1
and a sequence gn ∈ Γ which converges to infinity, such that :

lim inf
n
‖vnav∗n −Qσgn (K)(vnav

∗
n)‖2 <

√
1− δ2

0 .

Proof. Put δ1 = lim inf h(vn) > 0, and consider for all n, gn ∈ Γ such that |vn,gn | = h(vn). Since
(vn) converges weakly to 0, the sequence (gn) goes to infinity with n. Moreover, one checks that

lim sup
n
‖vn − vn,gnugn‖2 =

√
1− δ2

1 .

Take ε > 0 small enough so that
√

1− δ2
1 +ε < 1, and consider a ∈ U(B) such that ‖ELΓ(a)‖2 <

ε.
Then one can find a finite dimensional space K ⊂ A	C1, such that ‖a−QK(a)‖2 < ε. Finally,
we get that vnav

∗
n is at distance at most

√
1− δ2

1 + ε of vn,gnugnQK(a)v∗n, which belongs to
the image of the projection Qσgn (K). Then we get the result with δ0 > 0 defined by 1 − δ2

0 =

(
√

1− δ2
1 + ε)2.

Step 2 : Derive a contradiction

Notation. For a finite subset F ⊂ Γ, finite dimensional subspaces K1,K2 ⊂ A and λ > 0,
define

[K1 × σF (K2)]λ = conv{λaσg(b) | a ∈ K1, b ∈ K2, g ∈ F, ‖a‖2 ≤ 1, ‖b‖2 ≤ 1}.
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We have that [K1×σF (K2)]λ is a closed convex subset C of A (being the convex hull of a compact
subset in a finite dimensional vector space). Then the set C̃ consisting of vectors ξ ∈ L2(M)
whose Fourier coefficients ξg = 〈ξ, ug〉 (g ∈ Γ) belong to C is a closed convex subset of L2(M).
Hence one can define the orthogonal projection onto this set QC : L2(M) → L2(M) as follows.
For x ∈ L2(M), QC(x) is the unique point of C̃ such that

‖x−QC(x)‖ = inf
y∈C̃
‖x− y‖.

Note that the restriction of QC to L2(A) is equal to the orthogonal projection onto C, and that
QC(

∑
g∈Γ xgug) =

∑
g∈ΓQC(xg)ug.

Remark II.3.9. This notation is consistent with the previous notation QK : If K ⊂ A is a finite
dimensional subspace, then QK(a) = QC(a), where C = [C1× σ{e}(K)]λ as soon as λ ≥ ‖a‖2.

Before getting into the heart of the proof, we check some easy properties of these convex sets.

Lemma II.3.10. Fix λ > 0 and finite dimensional subspaces K1,K2 ⊂ A. Then there exists a
constant κ > 0 such that for all finite F ⊂ Γ, and all x ∈ [K1 × σF (K2)]λ,

‖x‖∞ ≤ κ.

Proof. Since K1 and K2 are finite dimensional, there exists a constant c > 0 such that ‖a‖∞ ≤
c‖a‖2 for all a ∈ K1 or a ∈ K2. One sees that κ = λc2 satisfies the conclusion of the lemma.

Lemma II.3.11. For finite subsets F, F ′ ⊂ Γ, and finite dimensional subspaces K1,K2,K
′
1,K

′
2 ⊂

A and λ, λ′ > 0, we have

[K1 × σF (K2)]λ + [K ′1 × σF ′(K ′2)]λ
′ ⊂ [(K1 +K ′1)× σF∪F ′(K2 +K ′2)]λ+λ′ .

Proof. This is straightforward.

The following lemma is the key of the proof, and yields the contradiction we are after. Indeed,
using Lemma II.3.8, and iterating Lemma II.3.12 enough times, we get the absurd statement that
there exist unitaries an = vnav

∗
n and elements bn of the form QCn(an) such that lim supn ‖an −

bn‖22 is negative.

Lemma II.3.12. Fix a ∈ U(B) and put an = vnav
∗
n for all n. Assume that there exists a

sequence of finite subsets Fn ⊂ Γ, finite dimensional subspaces K1 ⊂ A, K2 ⊂ A 	 C1, λ > 0
and δ > 0 such that:

• supn |Fn| <∞ and Fn →∞ (meaning that for all g ∈ Γ1, g /∈ Fn for n large enough);

• lim supn ‖an −QCn(an)‖22 < ‖p‖22 − δ2, where Cn = [K1 × σFn(K2)]λ.

Then there exists a sequence of finite subsets F ′n ⊂ Γ, finite dimensional subspaces K ′1 ⊂ A,
K ′2 ⊂ A	 C1, and λ′ > 0 such that:

• supn |F ′n| <∞ and F ′n →∞;

• lim supn ‖an −QC′n(an)‖22 < ‖p‖22 − 3δ2/2, where C′n = [K ′1 × σF ′n(K ′2)]λ
′
.
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Proof. Let a, an, Fn, K1, K2, λ, δ and Cn be as in the lemma. Fix ε > 0, with ε � δ. By
Lemma II.3.6 one can find S ⊂ Γ finite such that ‖an − PS(an)‖2 ≤ ε, for all n. Hence we get
that lim supn ‖an − PS ◦QCn(an)‖2 <

√
‖p‖22 − δ2 + ε.

Now following Ioana’s idea (see the proof of [Io11, Theorem 5.2] and also the end of the proof of
[Va11, Theorem 14.1] for a more clear exposition of this idea), we will consider an element d ∈
U(C) with sufficiently spread out Fourier coefficients so that for n large enough, d(PS◦QCn(an))d∗

is almost orthogonal to PS ◦ QCn(an), while it is still close to an = dand
∗. Then the sum

d(PS ◦QCn(an))d∗ + PS ◦QCn(an) should be even closer to an.

Let α > 0 be a (finite) constant such that ‖x‖∞ ≤ α‖x‖2, for all x ∈ K1. Since K2 ⊂ A	C1 is
finite dimensional, the set

L = {g ∈ Γ | ∃a, b ∈ K2, ‖a‖2 ≤ 1, ‖b‖2 ≤ 1 : |〈σg(a), b〉| ≥ ε/|S|2λ2α2}

is finite. Hence for all n, Ln = ∪g,h∈FngLh−1 is finite, with cardinality smaller or equal to
|Fn|2|L|, which is itself majorized by some N , not depending on n.

Since C ⊀ A, Ioana’s intertwining criterion (Lemma A.3.6) implies that there exists d ∈ U(C)
such that ‖PF (d)‖2 ≤ ε/κ|S|, whenever |F | ≤ N , where κ is given by Lemma II.3.10 applied to
K1, K2 and λ.

By Kaplansky’s density theorem, one can find d0, d1 ∈M , and T ⊂ Γ finite such that:

• di = PT (di), i = 1, 2;

• ‖d0 − d‖2 ≤ min(ε, ε/κ|S|), ‖d1 − d∗‖2 ≤ ε;

• ‖di‖∞ ≤ 1, i = 1, 2.

Since an ∈ B for all n and d ∈ C = B′∩M , we have dand
∗ = an. Thus for all n, ‖an−d0and1‖2 ≤

2ε, and so

lim sup
n
‖an − d0(PS ◦QCn(an))d1‖2 ≤

√
‖p‖22 − δ2 + 3ε. (II.9)

Now, for all n, put Tn = T \ Ln. By definition of d and d0, we have

‖d0 − PTn(d0)‖2 ≤ ‖PLn(d0)‖2 ≤ ‖PLn(d)‖2 + ε/κ|S| ≤ 2ε/κ|S| (II.10)

Notice that ‖PS ◦QCn(an)‖∞ ≤ κ|S|. Together with (II.9) and (II.10), this implies that

lim sup
n
‖an − PTn(d0)PS ◦QCn(an)d1‖2 ≤

√
‖p‖22 − δ2 + 5ε.

Denote by xn = PS ◦QCn(an) and yn = PTn(d0)PS ◦QCn(an)d1.

We want to show that lim supn |〈xn, yn〉| is small.

Write d0 =
∑

g∈T d0,gug, an =
∑

h an,huh, and d1 =
∑

k∈T d1,kuk. We get

〈yn, xn〉 =
∑

g∈Tn,h∈S,k∈T
ghk∈S

τ(d0,gσg(QCn(an,h))σgh(d1,k)QCn(an,ghk)
∗)

=
∑

g∈T,h∈S,k∈T
ghk∈S

1{g∈Tn}τ(d0,gσgh(d1,k)σg(QCn(an,h))QCn(an,ghk)
∗).
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Claim. For all fixed x, y ∈ A, and g ∈ T , there exists n0 such that for all n ≥ n0, and all
a, b ∈ Cn,

|1{g∈Tn}τ(xyσg(a)b∗)〉| ≤ 2ε‖x‖2‖y‖2/|S|2.

To prove this claim, first recall that for all n, Cn = [K1 × σFn(K2)]λ. Denote by

K̃1 = span{xyσg(a)b∗, a, b ∈ K1}.

Since K̃1 and K2 have finite dimension and since Fn →∞, Proposition II.3.4 implies that there
exists n0 such that for n ≥ n0, and for all s, t ∈ Fn one has

sup
a∈K̃1,‖a‖2≤1

b,c∈K2,‖b‖2≤1,‖c‖2≤1

|τ(aσgs(b)σt(c
∗))− τ(a)τ(σgs(b)σt(c

∗))| ≤ ε‖x‖2‖y‖2/|S|2λ2. (II.11)

Thus take n ≥ n0. By definition of Cn, it is sufficient to prove that for all a, b ∈ K1, c, d ∈ K2,
with ‖a‖2, ‖b‖2, ‖c‖2, ‖d‖2 ≤ 1, and all s, t ∈ Fn,

|1{g∈Tn}τ(xyσg(λaσs(c))λb
∗σt(d

∗))| ≤ 2ε‖x‖2‖y‖2/|S|2.

We can assume that g ∈ Tn. An easy calculation gives

|τ(xyσg(λaσs(c))λb
∗σt(d

∗))| ≤ ε‖x‖2‖y‖2/|S|2 + λ2|τ(xyσg(a)b∗)τ(σgs(c)σt(d
∗))|

≤ ε‖x‖2‖y‖2/|S|2 + λ2‖x‖2‖y‖2‖a‖∞‖b‖∞ε/|S|2λ2α2

≤ 2ε‖x‖2‖y‖2/|S|2,

where the first inequality is deduced from II.11, while the second is because g /∈ Ln. So the
claim is proved.

Now we can estimate |〈xn, yn〉|, for n large enough.

|〈xn, yn〉| ≤
∑

g∈T,h∈S,k′∈S
|1{g∈Tn}τ(d0,gσgh(d1,h−1g−1k′)σg(QCn(an,h))QCn(an,k′)

∗)|

≤
∑

g∈T,h∈S,k′∈S
2ε‖d0,g‖2‖d1,h−1g−1k′‖2/|S|2

≤ 2ε‖d0‖2‖d1‖2 ≤ 2ε.

Therefore, we obtain:

• lim supn ‖an − xn‖2 <
√
‖p‖22 − δ2 + ε;

• lim supn ‖an − yn‖2 <
√
‖p‖22 − δ2 + 5ε;

• lim supn |〈xn, yn〉| ≤ 2ε.

Thus using the formula

‖x− (y + z)‖22 = ‖x− y‖22 + ‖x− z‖22 − ‖x‖22 + 2<〈y, z〉,

one checks that lim supn ‖an − (xn + yn)‖22 ≤ ‖p‖22 − 3δ2/2, if ε is small enough. Let us show
that xn + yn belongs to some C′n as in the conclusion of lemma.
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Observe that
yn =

∑
g∈Tn,h∈S,k∈T

d0,gσgh(d1,k)σg(QCn(an,h))ughk.

So let us check that yn has its Fourier coefficients in the convex set [K0×σTFn(K2)]λ|S||T |, where
K0 = span{d0,gσgh(d1,k)σg(c), c ∈ K1, g, k ∈ T, h ∈ S} has finite dimension.

Fix n ∈ N, and s ∈ Γ. Denote by yn,s = EA(ynu
∗
s). We have

yn,s =
∑

g∈Tn,h∈S,k∈T
ghk=s

d0,gσgh(d1,k)σg(QCn(an,h)).

Thus it is a convex combination of terms of the form

T =
∑

g∈T,h∈S,k∈T
ghk=s

d0,gσgh(d1,k)σg(λahσth(bh))

=
1

|S||T |
∑

g∈T,h∈S,k∈T
ghk=s

|S||T |d0,gσgh(d1,k)σg(λahσth(bh)),

for elements ah ∈ K1, bh ∈ K2, with ‖ah‖2, ‖bh‖2 ≤ 1 and th ∈ Fn, for all h ∈ S. But
such terms T are themselves convex combinations of elements of the form λ|S||T |xσgt(y), with
x ∈ K0, y ∈ K2, ‖x‖2, ‖y‖2 ≤ 1 and gt ∈ TFn.

Therefore, as pointed out in Lemma II.3.11, xn + yn has Fourier coefficients in C′n = [K ′1 ×
σF ′n(K ′2)]λ

′
, with K ′1 = K1 +K0, K ′2 = K2, λ′ = λ+ λ|S||T |, and F ′n = Fn ∪ TFn.

We conclude that:
‖an −QC′n(an)‖22 ≤ ‖p‖22 − 3δ2/2,

which proves the lemma.

The proof of Theorem II.3.1 is complete.

The following question on a possible generalization of Theorem II.3.1 seems to be interesting.

Question II.3.13. Consider a mixing Gaussian action Γ y (X,µ) of a discrete countable group
Γ. Put A = L∞(X,µ), and M = Ao Γ. Assume that B ⊂M is an abelian subalgebra which is
normalized by a sequence of unitaries vn ∈ U(M) such that:

• the deformation (αt)t converges uniformly on the set {vn , n ∈ N}.

• (vn) goes weakly to 0 relative to A: ‖EA(xvny)‖2 → 0 for all x, y ∈M .

Is it true that either B′ ∩M ≺M A or B ≺M LΓ?

II.4 W∗-rigidity

In this section we are interested in W∗-rigidity results for Gaussian actions.

As explained in the introduction (Section I.2), W∗-rigidity results are obtained by combining OE-
rigidity results, and structural results for Cartan subalgebras in the associated crossed product.
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II.4.1 Popa’s OE-superrigidity results

Using the malleability property of Gaussian actions described above, Popa managed to prove
the following striking OE-superrigidity theorems.

Theorem II.4.1 ([Po07a], Theorem 0.3). Assume that Γ is an ICC group which admits an
infinite normal subgroup with the relative property (T).

Then any mixing Gaussian action of Γ is OE-superrigid.

Theorem II.4.2 ([Po08], Corollary 1.3). Assume that Γ = Γ1 × Γ2 is an ICC group, with
Γ1 non-amenable and Γ2 infinite. Consider a mixing representation π such that π⊗k is weakly
contained in the regular representation for some k ≥ 1.

Then the Gaussian action of Γ associated with π is OE-superrigid.

II.4.2 First W∗-rigidity results

With the work of Section II.3 we are able to generalize many W∗-rigidity results about Bernoulli
actions to general mixing Gaussian actions.

The first W∗-rigidity result was [Po06b, Theorem 0.1]. We generalize this result as follows.

Theorem II.4.3. Let Γ and Λ be two ICC countable discrete groups, and let π : Γ→ O(H) be
a mixing orthogonal representation of Γ. Make one of the following two assumptions:

(i) either Λ admits an infinite normal subgroup Λ0 such that the pair (Λ,Λ0) has the relative
property (T);

(ii) or Λ = Λ1 × Λ2, with Λ1 non-amenable and Λ2 infinite, and some tensor power of π is
weakly contained in the regular representation.

Denote by Γ y (X,µ) the Gaussian action associated with π and consider a measure preserving
action Λ y (Y, ν).

If there exists a ∗-isomorphism L∞(Y, ν)oΛ ' (L∞(X,µ)o Γ)t for some 0 < t ≤ 1, then t = 1
and the actions are conjugate.

Proof. Put A = L∞(X,µ), B = L∞(Y, ν), M = AoΓ and N = BoΛ. By assumption, we have
an identification N = pMp, with p ∈ M a projection with trace t. We can assume that p ∈ A.
We use the deformation (αt) of M from Section II.2.1.

Step 1. There exists a unitary u ∈M such that uLΛu∗ ⊂ LΓ.

In case (i), we see that LΛ0 is (αt)-rigid inside pMp. In case (ii), spectral gap rigidity implies
that LΛ2 is (αt)-rigid inside pMp.

In both cases, since Λ is non amenable, Corollary II.2.11 implies that there exists a unitary
u ∈M such that uLΛu∗ ⊂ LΓ.

Step 2. The Cartan subalgebras B and pA in N = pMp are unitarily conjugate.

Put q = upu∗. Note that uBu∗ is normalized by the unitary elements uvgu
∗ ∈ N , g ∈ Λ. Since

uLΛu∗ ⊂ LΓ, a corner version of Theorem II.3.1 implies that either (uBu∗)′ ∩ qMq ≺ A or
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uBu∗ ≺ LΓ. The latter case is impossible because Proposition A.4.6.1 would further imply that
pMp = N ≺ LΓ, which is clearly not true.

Therefore, we get uBu∗ = (uBu∗)′ ∩ qMq ≺ A and then B ≺pMp pA, which implies that these
two Cartan subalgebras of pMp are conjugate by Theorem A.3.5.

Step 3. Conclusion.

One concludes with Popa’s conjugacy criterion [Po06b, Theorem 5.2].

Remark II.4.4. In fact, the conclusion of our proof relies on Popa’s conjugacy criterion which
implies a more accurate result: any isomorphism φ : L∞(X,µ)o Γ→ L∞(Y, ν)oΛ comes from
a conjugacy of the action in the sense that φ = Ad(u) ◦ φγ ◦ φδ,∆, where u ∈ U(M) and:

• γ : Γ→ C is a character and φγ(aug) = γ(g)aug for all a ∈ L∞(X,µ), g ∈ Γ;

• δ : Γ → Λ is a group isomorphism and ∆ : (X,µ) → (Y, ν) is a measure-preserving,
bi-measurable isomorphism such that ∆(gx) = δ(g)∆(x) for a.e. x ∈ X and all g ∈ Γ.
Finally, φδ,∆(aug) = (a ◦∆−1)vδ(g) for a ∈ L∞(X,µ), g ∈ Γ.

Theorem II.4.3 gives in particular a classification of all II1-factors arising from mixing Gaussian
actions of property (T) groups. It clearly implies that the fundamental group of such factors is
trivial.

Being more accurate in the proof (see Remark II.4.4), we could also describe all ∗-endomorphisms
of Ao Γ for Gaussian actions Γ y A such that

• the initial representation is mixing and has some tensor power which is weakly contained
in the regular representation;

• Γ = Γ1 × Γ2, with Γ1 non-amenable, Γ2 is infinite, and Γ is ICC and has CMAP (or is
weakly amenable).

The precise statement and its proof are similar to [Io11, Theorem 10.5], with the update [Oz12]
allowing to replace the CMAP assumption by weak amenability.

II.4.3 W∗-superrrigidity for mixing Gaussian actions

Instead of classifying crossed product II1-factors inside a specific class, a natural (but much
harder) question is the W∗-superrigidity question: is there an explicit class of crossed-product
II1-factors M such that an ∗-isomorphism of M with any other crossed-product von Neumann
algebra implies conjugacy of the actions?

In other words, can one put all the assumptions “on the same side”?

The following theorem is our most general W∗-rigidity result. It generalizes similar results for
Bernoulli actions [Io11, Theorem A] and [IPV13, Theorem 10.1].

Theorem II.4.5. Let Γ be an ICC countable discrete group, and let π : Γ→ O(HR) be a mixing
orthogonal representation of Γ. Make one of the following two assumptions:

(i) Γ admits an infinite normal subgroup Γ0 such that the pair (Γ,Γ0) has the relative property
(T);
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(ii) Γ is a non-amenable product of two infinite groups and π admits a tensor power which is
weakly contained in the regular representation.

Let Γ y A be the Gaussian action associated with π and put M = AoΓ. Let Λ y B be another
free ergodic pmp action on an abelian von Neumann algebra, and put N = B o Λ.

If for some t ≥ 1, M ' N t, then t = 1, Γ ' Λ and the actions Γ y A and Λ y B are conjugate.

In particular, Γ y A is W∗-superrigid.

Note that this implies that t-amplifications of M as in the theorem, t > 1, are never isomorphic
to crossed-product von Neumann algebras. This feature was already observed by Ioana ([Io11])
in the case of Bernoulli actions. In the same vein, he proved that if Γ is as in case (i) and
is torsion free, then no non-trivial amplification of A o Γ (for the Bernoulli action Γ y A) is
isomorphic to a (twisted) group von Neumann algebra. In the next section, we investigate the
Gaussian case and we show that even M itself cannot be isomorphic to a group von Neumann
algebra, for some Gaussian actions Γ y A.

With Theorem II.3.2 in hand, the proof of Theorem II.4.5 is very similar to what was done in
the Bernoulli case, [IPV13, Theorem 10.1]. Since it is very technical, we only roughly explain
the main steps of it; we refer to [Bo13, Section 4] and to the proof of [IPV13, Theorem 10.1] for
technical details.

Steps of the proof of Theorem II.4.5. Let Γ y X be a Gaussian action as Theorem II.4.5. As-
sume that Λ y (Y, ν) is another pmp, free ergodic action such that

L∞(X)o Γ ' L∞(Y )o Λ2.

Put A = L∞(X), B = L∞(Y ) and M = Ao Γ.

Thanks to Popa’s orbit equivalence superrigidity theorems (Theorem II.4.1 and Theorem II.4.2),
we only need to show that the two actions are orbit equivalent. More concretely, with the results
of Feldman and Moore [FM77] it is enough to prove that B is unitarily conjugate to A inside
M .

The main idea of the proof, due to Ioana, is to exploit the information given by the isomorphism
M ' B o Λ via the dual co-action3

∆ : M → M ⊗M
bvs 7→ bvs ⊗ vs,

b ∈ B, s ∈ Λ (vs, s ∈ Λ, denote the canonical unitaries corresponding to the action of Λ). This
morphism ∆ allows us to play against each other two data of the single action Γ y X: the
rigidity of ∆(LΓ), and the malleability of the algebra M ⊗M = (A⊗A)o (Γ× Γ).

Assume that B is not unitarily conjugate to A, or equivalently that B ⊀M A by Theorem A.3.5.
The following four steps lead to a contradiction, compare with the proof of Theorem II.4.3.

Step 1. There exists a unitary u ∈M ⊗M such that

u∆(LΓ)u∗ ⊂ LΓ⊗LΓ.

2We assume for simplicity that we are in the case t = 1.
3This morphism were also introduced by Popa and Vaes in [PV10a, Lemma 3.2].
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This can be deduced from a tensor product version of Corollary II.2.11 exactly as in the proof
of Step 1 of II.4.3.

Step 2. The algebra C := ∆(A)′ ∩ (M ⊗M) satisfies

C ≺M ⊗M A⊗A.

Indeed, the algebra u∆(A)u∗ is normalized by the unitaries u∆(ug)u
∗ ⊂ LΓ⊗LΓ, g ∈ Γ.

Applying Theorem II.3.2, it is not too hard to prove Step 2.

Step 3. The previous steps, and an enhanced version of Popa’s conjugacy criterion [Po06b,
Theorem 5.2] (namely [IPV13, Theorem 6.1, Corollary 6.2]) roughly imply that there exists a
unitary v ∈ M ⊗M , a group homomorphism δ : Γ → Γ × Γ, and a character ω : Γ → C such
that

vCv∗ = A⊗A and v∆(ug)v
∗ = ω(g)uδ(g), ∀g ∈ Γ.

Step 4. Conclusion.

Using Step (3), one can now show that if a sequence (xn) in M has Fourier coefficients (with
respect to the decomposition M = AoΓ) which tend to zero pointwise in norm ‖·‖2, then this is
also the case of the sequence ∆(xn), with respect to the decomposition M ⊗M = (M ⊗A)o Γ.
This easily contradicts the fact that B ⊀M A.

II.4.4 An application to group von Neumann algebras

We construct here a large class of II1 factors which are not stably isomorphic to group von
Neumann algebras.

Our examples are crossed-product von Neumann algebras of Gaussian actions associated with
representations π as in Theorem II.4.5, with the extra-assumption that π is not weakly contained
in the regular representation.

Whenever π is the regular representation, then the corresponding factor is of course a group
factor, but Ioana, Popa and Vaes showed that all other amplifications are not isomorphic to
group factors [IPV13, Theorem 8.2] (see also [Io11, Corollary 10.1]). Thanks to Theorem II.3.2,
their result is also true for the representations π that we consider. So we only have to show that
the factor itself is not a group factor.

Theorem II.4.6. Let Γ and π : Γ → O(H) be as in Theorem II.4.5. Assume moreover that π
itself is not contained in a direct sum λ⊕∞ of copies of the left-regular representation.

Let Γ yσ A be the Gaussian action associated with π and put M = AoΓ. Then M is not stably
isomorphic to a group von Neumann algebra.

Proof. Assume by contradiction that M ' LΛt for some t > 0. Then adapting the proof of
[IPV13, Theorem 8.2], we get that t = 1, and Λ ' Σo Γ, for some infinite abelian group Σ and
some action Γ y Σ by automorphisms. Moreover, the initial Gaussian action σ is conjugate to
the action of Γ on LΣ.

Now, since σ is mixing, the action Γ y Σ\{e} has finite stabilizers. But then the representation
Γ y `2(Σ \ {e}) is a direct sum of quasi-regular representations of the form Γ y `2(Γ/Γ0),
where Γ0 is a finite subgroup of Γ. But such quasi-regular representations are all contained in
the regular representation.
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So we conclude that that the Koopman representation Γ y L2(A)	C1 is contained in a direct
sum of copies of the regular representation. Thus this is also the case of the sub-representation
π, which is excluded by assumption.

By Proposition II.1.19, we know that for each n ≥ 3, SL(n,Z) admits a representation as in
Theorem C. Thus we obtain the existence of a II1 factor Mn, which is not stably isomorphic to
a group von Neumann algebra. But using Theorem II.4.3, we get that the Mn’s are pairwise
non-stably isomorphic : Mn � (Mm)t, ∀t > 0, ∀n 6= m.



Chapter III

Amalgamated free product type III
factors with at most one Cartan
subalgebra

This Chapter is based on a joint work with Cyril Houdayer and Sven Raum [BHR14]. We
investigate Cartan subalgebras in nontracial amalgamated free product von Neumann algebras
M1 ∗B M2 over an amenable von Neumann subalgebra B. First, we settle the problem of the
absence of Cartan subalgebra in arbitrary free product von Neumann algebras. Namely, we
show that any nonamenable free product von Neumann algebra (M1, ϕ1)∗ (M2, ϕ2) with respect
to faithful normal states has no Cartan subalgebra. This generalizes the tracial case that was
established in [Io(12)a]. Next, we prove that any countable nonsingular ergodic equivalence
relation R defined on a standard measure space and which splits as the free product R = R1∗R2

of recurrent subequivalence relations gives rise to a nonamenable factor L(R) with a unique
Cartan subalgebra, up to unitary conjugacy. Finally, we prove unique Cartan decomposition for
a class of group measure space factors L∞(X)o Γ arising from nonsingular free ergodic actions
Γ y (X,µ) on standard measure spaces of amalgamated groups Γ = Γ1 ∗Σ Γ2 over a finite
subgroup Σ.
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III.1 Introduction and main results

A Cartan subalgebra A in a von Neumann algebra M is a unital maximal abelian ∗-subalgebra
A ⊂ M such that there exists a faithful normal conditional expectation EA : M → A and such
that the group of normalizing unitaries of A inside M defined by NM (A) = {u ∈ U(M) : uAu∗ =
A} generates M .

By a classical result of Feldman and Moore [FM77], any Cartan subalgebra A in a von Neumann
algebra M with separable predual arises from a countable nonsingular equivalence relation R on
a standard measure space (X,µ) and a 2-cocycle υ ∈ H2(R,T). Namely, we have the following
isomorphism of inclusions

(A ⊂M) ∼= (L∞(X) ⊂ L(R, υ)).

In particular, for any nonsingular free action Γ y (X,µ) of a countable discrete group Γ on a
standard measure space (X,µ), L∞(X) is a Cartan subalgebra in the group measure space von
Neumann algebra L∞(X)o Γ.

The presence of a Cartan subalgebra A in a von Neumann algebra M with separable predual
is therefore an important feature which allows to divide the classification problem for M up to
∗-isomorphism into two different questions: uniqueness of the Cartan subalgebra A inside M up
to conjugacy and classification of the underlying countable nonsingular equivalence relation R
up to orbit equivalence.

In [CFW81], Connes, Feldman and Weiss showed that any amenable countable nonsingular
ergodic equivalence relation is hyperfinite and thus implemented by an ergodic Z-action. This
implies, together with [Kr76], that any two Cartan subalgebras inside an amenable factor are
always conjugate by an automorphism.

The uniqueness of Cartan subalgebras up to conjugacy is no longer true in general for nona-
menable factors. In [CJ82], Connes and Jones discovered the first examples of II1 factors with
at least two Cartan subalgebras which are not conjugate by an automorphism. More concrete
examples were later found by Popa and Ozawa in [OP10b]. We also refer to the recent work of
Speelman and Vaes [SV12] on II1 factors with uncountably many non (stably) conjugate Cartan
subalgebras.

In the last decade, Popa’s deformation/rigidity theory [Po06a, Po06b, Po06c] has led to a lot
of progress in the classification of II1 factors arising from probability measure preserving (pmp)
actions of countable discrete groups on standard probability spaces and from countable pmp
equivalence relations. We refer to the recent surveys [Po07b, Va10a, Io(12)b] for an overview of
this topic.

We highlight below three breakthrough results regarding uniqueness of Cartan subalgebras in
nonamenable II1 factors. In his pioneering article [Po06c], Popa showed that any rigid Cartan
subalgebra inside group measure space II1 factors L∞(X) o Fn arising from rigid pmp free
ergodic actions Fn y (X,µ) of the free group Fn (n ≥ 2) is necessarily unitarily conjugate to
L∞(X). In [OP10a], Ozawa and Popa proved that any compact pmp free ergodic action of the
free group Fn (n ≥ 2) gives rise to a II1 factor L∞(X)oFn with unique Cartan decomposition,
up to unitary conjugacy. This was the first result in the literature proving the uniqueness of
Cartan subalgebras in nonamenable II1 factors. Recently, Popa and Vaes [PV(12)] proved that
any pmp free ergodic action of the free group Fn (n ≥ 2) gives rise to a II1 factor L∞(X)o Fn
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with unique Cartan decomposition, up to unitary conjugacy. We refer to [OP10b, Ho10, CS13,
CSU13, PV(13), HV13, Io(12)a] for further results in this direction.

Very recently, using [PV(12)], Ioana [Io(12)a] obtained new results regarding the Cartan decom-
position of tracial amalgamated free product von Neumann algebras M1 ∗BM2. Let us highlight
below two of Ioana’s results [Io(12)a]: any nonamenable tracial free product M1∗M2 has no Car-
tan subalgebra and any pmp free ergodic action Γ y (X,µ) of a free product group Γ = Γ1 ∗Γ2

with |Γ1| ≥ 2 and |Γ2| ≥ 3 gives rise to a II1 factor with unique Cartan decomposition, up to
unitary conjugacy.

In the present paper, we use Popa’s deformation/rigidity theory to investigate Cartan subalge-
bras in nontracial amalgamated free product (AFP) von Neumann algebras M1 ∗B M2 over an
amenable von Neumann subalgebra B. We generalize some of Ioana’s recent results [Io(12)a]
to this setting. The methods of proofs rely on a combination of results and techniques from
[PV(12), HV13, Io(12)a].

Statement of the main results

Using his free probability theory, Voiculescu [Vo96] proved that the free group factors L(Fn)
(n ≥ 2) have no Cartan subalgebra. This exhibited the first examples of II1 factors with no
Cartan decomposition. This result was generalized later in [Ju07] to free product II1 factors
M1 ∗ M2 of diffuse subalgebras which are embeddable into Rω. Finally, the general case of
arbitrary tracial free product von Neumann algebras was recently obtained in [Io(12)a] using
Popa’s deformation/rigidity theory.

The first examples of type III factors with no Cartan subalgebra were obtained in [Shl00] as a
consequence of [Vo96]. Namely, it was shown that the unique free Araki-Woods factor of type
IIIλ (0 < λ < 1) has no Cartan subalgebra. This result was vastly generalized later in [HR11]
where it was proven that in fact any free Araki-Woods factor has no Cartan subalgebra.

Our first result settles the question of the absence of Cartan subalgebra in arbitrary free product
von Neumann algebras.

Theorem III.A. Let (M1, ϕ1) and (M2, ϕ2) be any von Neumann algebras with separable pre-
dual endowed with faithful normal states such that dimM1 ≥ 2 and dimM2 ≥ 3. Then the free
product von Neumann algebra (M,ϕ) = (M1, ϕ1) ∗ (M2, ϕ2) has no Cartan subalgebra.

Observe that when dimM1 = dimM2 = 2, the free product M = M1 ∗M2 is hyperfinite by
[Dyk93, Theorem 1.1] and so has a Cartan subalgebra. Note that the questions of factoriality,
type classification and fullness for arbitrary free product von Neumann algebras were recently
settled in [Ue11]. These results are used in the proof of Theorem III.A.

We next investigate more generally Cartan subalgebras in nontracial AFP von Neumann algebras
M = M1 ∗B M2 over an amenable von Neumann subalgebra B. Even though we do not get a
complete solution in that setting, our second result shows that, under fairly general assumptions,
any Cartan subalgebra A ⊂ M can be embedded into B inside M , in the sense of Popa’s
intertwining techniques. We refer to Section III.2 for more information on these intertwining
techniques and the notation A �M B. Recall from [HV13, Definition 5.1] that an inclusion of
von Neumann algebras P ⊂ M has no trivial corner if for all nonzero projections p ∈ P ′ ∩M ,
we have Pp 6= pMp.
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Theorem III.B. For i ∈ {1, 2}, let B ⊂ Mi be any inclusion of von Neumann algebras with
separable predual and with faithful normal conditional expectation Ei : Mi → B. Let (M,E) =
(M1, E1) ∗B (M2, E2) be the corresponding amalgamated free product von Neumann algebra.
Assume that B is a finite amenable von Neumann algebra.

Assume moreover that:

• Either both M1 and M2 have no amenable direct summand.

• Or B is of finite type I, M1 has no amenable direct summand and the inclusion B ⊂ M2

has no trivial corner.

If A ⊂M is a Cartan subalgebra, then A �M B.

A similar result was obtained for tracial AFP von Neumann algebras in [Io(12)a, Theorem 1.3].

The first examples of type III factors with unique Cartan decomposition were recently obtained in
[HV13]. Namely, it was shown that any nonamenable nonsingular free ergodic action Γ y (X,µ)
of a Gromov hyperbolic group on a standard measure space gives rise to a factor L∞(X) o Γ
with unique Cartan decomposition, up to unitary conjugacy. This generalized the probability
measure preserving case that was established in [PV(13)].

In order to state our next results, we need to introduce some terminology. Let R be a countable
nonsingular equivalence relation on a standard measure space (X,µ) and denote by L(R) the
von Neumann algebra of the equivalence relation R ([FM77]). Following [Ad94, Definition 2.1],
we say that R is recurrent if for all measurable subsets U ⊂ X such that µ(U) > 0, the set
[x]R ∩ U is infinite for almost every x ∈ U . This is equivalent to saying that L(R) has no type
I direct summand. We then say that a nonsingular action Γ y (X,µ) of a countable discrete
group on a standard measure space is recurrent if the corresponding orbit equivalence relation
R(Γ y X) is recurrent.

Our next result provides a new class of type III factors with unique Cartan decomposition, up to
unitary conjugacy. These factors arise from countable nonsingular ergodic equivalence relations
R which split as a free product R = R1 ∗R2 of arbitrary recurrent subequivalence relations. We
refer to [Ga00, Definition IV.6] for the notion of free product of countable nonsingular equivalence
relations.

Theorem III.C. Let R be any countable nonsingular ergodic equivalence relation on a standard
measure space (X,µ) which splits as a free product R = R1 ∗ R2 such that the subequivalence
relation Ri is recurrent for all i ∈ {1, 2}.
Then the nonamenable factor L(R) has L∞(X) as its unique Cartan subalgebra, up to unitary
conjugacy. In particular, for any nonsingular ergodic equivalence relation S on a standard
measure space (Y, η) such that L(R) ∼= L(S), we have R ∼= S.

Observe that Theorem III.C generalizes [Io(12)a, Corollary 1.4] where the same result was
obtained for countable pmp equivalence relations under additional assumptions. Note that in
the case when R1 is nowhere amenable, that is, L(R1) has no amenable direct summand and
R2 is recurrent, Theorem III.C is a consequence of Theorem III.B and [HV13, Theorem 2.5].
However, Theorem III.B does not cover the case when both R1 and R2 are amenable. So, in
the setting of von Neumann algebras arising from countable nonsingular equivalence relations,
Theorem III.C is a generalization of Theorem III.B in the sense that we are able to remove the
nonamenability assumption on M1 = L(R1).
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Finally, when dealing with certain nonsingular free ergodic actions Γ y (X,µ) of amalgamated
groups Γ1 ∗Σ Γ2, we obtain new examples of group measure space type III factors with unique
Cartan decomposition, up to unitary conjugacy.

Theorem III.D. Let Γ = Γ1∗Σ Γ2 be any amalgamated free product of countable discrete groups
such that Σ is finite and Γi is infinite for all i ∈ {1, 2}. Let Γ y (X,µ) be any nonsingular
free ergodic action on a standard measure space such that for all i ∈ {1, 2}, the restricted action
Γi y (X,µ) is recurrent.

Then the group measure space factor L∞(X) o Γ has L∞(X) as its unique Cartan subalgebra,
up to unitary conjugacy.

Observe that Theorem III.D generalizes the probability measure preserving case that was estab-
lished in [Io(12)a, Theorem 1.1].

In the spirit of [HV13, Corollary B], we obtain the following interesting consequence. Let
Γ = Γ1 ∗ Γ2 be an arbitrary free product group such that Γ1 is amenable and infinite and
|Γ2| ≥ 2. Then we get group measure space factors of the form L∞(X)o Γ with unique Cartan
decomposition, having any possible type and with any possible flow of weights in the type III0

case.

We finally mention that, unlike the probability measure preserving case [Io(12)a, Theorem 1.1],
the assumption of recurrence of the action Γi y (X,µ) for all i ∈ {1, 2} is necessary. Indeed,
using [SV12], we exhibit in Section III.8 a class of nonamenable infinite measure preserving free
ergodic actions Γ y (X,µ) of free product groups Γ = Γ1 ∗ Γ2 such that the corresponding
type II∞ group measure space factor L∞(X)o Γ has uncountably many non conjugate Cartan
subalgebras.

Comments on the proofs

As we already mentioned above, the proofs of our main results rely heavily on results and
techniques from [PV(12), HV13, Io(12)a]. Let us describe below the main three ingredients
which are needed. We will mainly focus on the proof of Theorem III.A.

Denote by (M,ϕ) = (M1, ϕ1) ∗ (M2, ϕ2) an arbitrary free product of von Neumann algebras as
in Theorem III.A. For simplicity, we may assume that M is a factor. In the case when both M1

and M2 are amenable, M is already known to have no Cartan subalgebra by [HR11, Theorem
5.5]. So we may assume that M1 is not amenable. Using [Dyk93, Ue11], we may further assume
that M1 has no amenable direct summand and M2 6= C. By contradiction, assume that A ⊂M
is a Cartan subalgebra.

We first use Connes-Takesaki’s noncommutative flow of weights [Co73, CT77, Ta03] in order
to work inside the semifinite von Neumann algebra c(M) which is the continuous core of M .
We obtain a canonical decomposition of c(M) as the semifinite amalgamated free product von
Neumann algebra c(M) = c(M1) ∗L(R) c(M2). Moreover c(A) ⊂ c(M) is a Cartan subalgebra.

Next, we use Popa’s intertwining techniques in the setting of nontracial von Neumann algebras
that were developed in [HV13, Section 2]. Since A is diffuse, we show that necessarily c(A) �c(M)

L(R) (see Proposition III.2.10).

Finally, we extend Ioana’s techniques from [Io(12)a, Sections 3,4] to semifinite AFP von Neu-
mann algebras (see Theorems III.3.4 and III.4.1). The major difference though between our
approach and Ioana’s approach is that we cannot use the spectral gap techniques from [Io(12)a,
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Section 5]. The main reason why Ioana’s approach cannot work here is that c(M) is not full
in general even though M is a full factor. Instead, we strengthen [Io(12)a, Theorem 4.1] in the
following way. We show that the presence of the Cartan subalgebra c(A) ⊂ c(M) which satisfies
c(A) �c(M) L(R) forces both c(M1) and c(M2) to have an amenable direct summand. Therefore,
both M1 and M2 have an amenable direct summand as well. Since we assumed that M1 had no
amenable direct summand, this is a contradiction.

III.2 Preliminaries

Since we want the paper to be as self contained as possible, we recall in this section all the
necessary background that will be needed for the proofs of the main results.

III.2.1 Intertwining techniques

All the von Neumann algebras that we consider in this paper are always assumed to be σ-finite.
Let M be a von Neumann algebra. We say that a von Neumann subalgebra P ⊂ 1PM1P is
with expectation if there exists a faithful normal conditional expectation EP : 1PM1P → P .
Whenever V ⊂ M is a linear subspace, we denote by Ball(V) the unit ball of V with respect to
the uniform norm ‖ · ‖∞. We will sometimes say that a von Neumann algebra (M, τ) is tracial
if M is endowed with a faithful normal tracial state τ .

In [Po06a, Po06b, Po06c], Popa discovered the following powerful method to unitarily conjugate
subalgebras of a finite von Neumann algebra. Let M be a finite von Neumann algebra and
A ⊂ 1AM1A, B ⊂ 1BM1B von Neumann subalgebras. By [Po06a, Corollary 2.3] and [Po06c,
Theorem A.1], the following statements are equivalent:

• There exist projections p ∈ A and q ∈ B, a nonzero partial isometry v ∈ pMq and a unital
normal ∗-homomorphism ϕ : pAp→ qBq such that av = vϕ(a) for all a ∈ A.

• There exist n ≥ 1, a possibly nonunital normal ∗-homomorphism π : A → Mn(B) and a
nonzero partial isometry v ∈M1,n(1AM1B) such that av = vπ(a) for all a ∈ A.

• There is no net of unitaries (wk) in U(A) such that EB(x∗wky) → 0 ∗-strongly for all
x, y ∈ 1AM1B.

If one of the previous equivalent conditions is satisfied, we say that A embeds into B inside M
and write A �M B.

We will need the following generalization of Popa’s Intertwining Theorem which was proven in
[HV13, Theorems 2.3, 2.5]. A further generalization can also be found in [Ue(12), Proposition
3.1].

Theorem III.2.1. Let M be any von Neumann algebra. Let A ⊂ 1AM1A and B ⊂ 1BM1B be
von Neumann subalgebras such that B is finite and with expectation EB : 1BM1B → B. The
following are equivalent.

1. There exist n ≥ 1, a possibly nonunital normal ∗-homomorphism π : A → Mn(B) and a
nonzero partial isometry v ∈M1,n(1AM1B) such that av = vπ(a) for all a ∈ A.
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2. There is no net of unitaries (wk) in U(A) such that EB(x∗wky) → 0 ∗-strongly for all
x, y ∈ 1AM1B.

Moreover, when M is a factor and A,B ⊂M are both Cartan subalgebras, the previous conditions
are equivalent with the following:

(3) There exists a unitary u ∈ U(A) such that uAu∗ = B.

Definition III.2.2. Let M be any von Neumann algebra. Let A ⊂ 1AM1A and B ⊂ 1BM1B
be von Neumann subalgebras such that B is finite and with expectation. We say that A embeds
into B inside M and denote A �M B if one of the equivalent conditions of Theorem III.2.1 is
satisfied.

Observe that when 1A and 1B are finite projections in M then 1A ∨ 1B is finite, and A �M B in
the sense of Definition III.2.2 if and only if A �(1A∨1B)M(1A∨1B) B holds in the usual sense for
finite von Neumann algebras.

In case of semifinite von Neumann algebras, we recall the following useful intertwining result
(see [HR11, Lemma 2.2]). When (B,Tr) is a semifinite von Neumann algebra endowed with a
semifinite faithful normal trace, we will denote by Projf(B) the set of all nonzero finite trace
projections of B. We will denote by ‖ · ‖2,Tr the L2-norm associated with the trace Tr.

Lemma III.2.3. Let (M,Tr) be a semifinite von Neumann algebra endowed with a semifinite
faithful normal trace. Let B ⊂ M be a von Neumann subalgebra such that Tr |B is semifinite.
Denote by EB :M→ B the unique trace-preserving faithful normal conditional expectation.

Let p ∈ Projf(M) and A ⊂ pMp any von Neumann subalgebra. The following conditions are
equivalent:

1. For every q ∈ Projf(B), we have A �M qBq.

2. There exists an increasing sequence of projections qn ∈ Projf(B) such that qn → 1 strongly
and A �M qnBqn for all n ∈ N.

3. There exists a net of unitaries wk ∈ U(A) such that limk ‖EB(x∗wky)‖2,Tr = 0 for all
x, y ∈ pM.

Proof. (1)⇒ (2) is obvious.

(2) ⇒ (3) Let F ⊂ Ball(pM) be a finite subset and ε > 0. We need to show that there exists
w ∈ U(A) such that ‖EB(x∗wy)‖2,Tr < ε for all x, y ∈ F . Since the projection p has finite trace,
there exists n ∈ N large enough such that

‖qnx∗p− x∗p‖2,Tr + ‖pyqn − py‖2,Tr <
ε

2
, ∀x, y ∈ F .

Put q = qn. Since A �M qBq, there exists a net wk ∈ U(A) such that limk ‖EqBq(a∗wkb)‖2,Tr = 0
for all a, b ∈ pMq. Appying this to a = pxq and b = pyq, if we take w = wk for k large enough,
we get ‖EB(qx∗pw pyq)‖2,Tr = ‖EqBq(qx∗pw pyq)‖2,Tr <

ε
2 . Therefore, ‖EB(x∗wy)‖2,Tr < ε.

(3) ⇒ (1) Let q ∈ Projf(B) and put e = p ∨ q. Let λ = Tr(e) < ∞ and denote by ‖ · ‖2 the
L2-norm with respect to the normalized trace on eMe. For all x, y ∈ pMq, we have

lim
k
‖EqBq(x∗wky)‖2 = λ−1/2 lim

k
‖EqBq(x∗wky)‖2,Tr = 0.

This means exactly that A �eMe qBq in the usual sense for tracial von Neumann algebras and
so A �M qBq.



68 CHAPTER III. AFP WITH AT MOST ONE CARTAN SUBALGEBRA

Let Γ be any countable discrete group and S any nonempty collection of subgroups of Γ. Fol-
lowing [BO08, Definition 15.1.1], we say that a subset F ⊂ Γ is small relative to S if there exist
n ≥ 1, Σ1, . . . ,Σn ∈ S and g1, h1, . . . , gn, hn ∈ Γ such that F ⊂

⋃n
i=1 giΣihi.

We will need the following generalization of [Va13, Proposition 2.6] and [HV13, Lemma 2.7].

Proposition III.2.4. Let (B,Tr) be a semifinite von Neumann algebra endowed with a semifinite
faithful normal trace. Let Γ y (B,Tr) be a trace preserving action of a countable discrete group Γ
on (B,Tr) and denote by M = BoΓ the corresponding semifinite crossed product von Neumann
algebra. Let p ∈ Projf(M) and A ⊂ pMp any von Neumann subalgebra. Denote P = NpMp(A)′′.

For every subset F ⊂ Γ which is small relative to S, denote by PF the orhogonal projection from
L2(M,Tr) onto the closed linear span of {xug : x ∈ B ∩ L2(B,Tr), g ∈ F}.

1. The set J = {e ∈ A′ ∩ pMp : Ae �M q(B o Σ)q,∀Σ ∈ S, ∀q ∈ Projf(B)} is directed and
attains its maximum in a projection z which belongs to Z(P).

2. There exists a net (wk) in U(Az) such that limk ‖PF (wk)‖2,Tr = 0 for every subset F ⊂ Γ
which is small relative to S.

3. For every ε > 0, there exists a subset F ⊂ Γ which is small relative to S such that
‖a− PF (a)‖2,Tr < ε for all a ∈ A(p− z).

Proof. (1) In order to show that the set J is directed and attains its maximum, it suffices to
prove that whenever (ei)i∈I is a family of projections in A′ ∩ pMp and e =

∨
i∈I ei, if e /∈ J ,

then there exists i ∈ I such that ei /∈ J . If e /∈ J , there exist Σ ∈ S and q ∈ Projf(B) such that
Ae �M q(B o Σ)q. Let n ≥ 1, a nonzero partial isometry v ∈ M1,n(C) ⊗ eMq and a normal
∗-homomorphism ϕ : Ae→Mn(q(B o Σ)q) such that av = vϕ(a) for all a ∈ Ae. By definition
we have ev = v. Choose i ∈ I such that eiv 6= 0 and denote by w ∈M1,n(C)⊗ eiMq the polar
part of eiv. Since aw = wϕ(a) for all a ∈ Ae, it follows that Aei �M q(BoΣ)q. Hence, ei /∈ J .

Denote by z the maximum of the set J . It is easy to see that uzu∗ ∈ J whenever u ∈ NpMp(A),
hence uzu∗ = z. Therefore z ∈ Z(P).

(2) We have that Az �M q(B o Σ)q for all Σ ∈ S and all q ∈ Projf(B). Let ε > 0 and
F ⊂ Γ a subset which is small relative to S. We show that we can find w ∈ U(Az) such that
‖PF (w)‖2,Tr < ε.

Let F ⊂
⋃n
i=1 giΣihi with Σ1, . . . ,Σn ∈ S and g1, h1, . . . , gn, hn ∈ Γ. Consider the semifinite von

Neumann algebra Mn(M) together with the diagonal subalgebraQ =
⊕n

i=1 BoΣi. Observe that
the canonical trace on Mn(M) is still semifinite on Q. Consider moreover the trace preserving
∗-embedding ρ :M→Mn(M) : x 7→ x⊕ · · · ⊕ x.

Since Az �M q(B o Σi)q for all i ∈ {1, . . . , n} and all q ∈ Projf(B), we get that ρ(Az) �Mn(M)

ρ(q)Qρ(q) for all q ∈ Projf(B) by the first criterion in Lemma III.2.3. Then by the second
criterion in Lemma III.2.3, there exists a net wk ∈ U(Az) such that

lim
k
‖EBoΣi(xwky)‖2,Tr = 0,∀x, y ∈M,∀i ∈ {1, . . . , n}.

Recall that PgΣh(x) = ugEBoΣ(u∗gxu
∗
h)uh for all x ∈ M ∩ L2(M,Tr). Applying what we have

just proved to x = u∗gi and y = u∗hi , we get that limk ‖PgiΣihi(wk)‖2,Tr = 0 for all i ∈ {1, . . . , n}.
Therefore limk ‖PF (wk)‖2,Tr = 0.
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(3) By construction, for any projection e ≤ p− z, there exist Σ ∈ S and q ∈ Projf(B) such that
Ae �M q(B o Σ)q. Let ε > 0. Choose ` ≥ 1 and e1, . . . , e` ∈ A′ ∩ pMp pairwise orthogonal
projections such that:

• For every i ∈ {1, . . . , `}, ei ≤ p− z and e = e1 + · · ·+ e` satisfies ‖(p− z)− e‖2,Tr ≤ ε/3.

• For every i ∈ {1, . . . , `}, there exist ni ≥ 1, Σi ∈ S, a projection qi ∈ Projf(B), a
nonzero partial isometry vi ∈ M1,ni(C) ⊗ eiMqi and a normal ∗-homomorphism ϕi :
A →Mni(qi(B o Σi)qi) such that viv

∗
i = ei and avi = viϕi(a) for all a ∈ A.

Put n = n1 + · · ·+n`, q =
∨`
i=1 qi and define ϕ : A →

⊕`
i=1 qi(BoΣi)qi ⊂Mn(qMq) by putting

together the ϕi diagonally. Similarly, define the partial isometry v ∈M1,n(C)⊗ eMq such that
vv∗ = e and av = vϕ(a) for all a ∈ A.

Using Kaplansky density theorem, choose v0 ∈M1,n(C)⊗ q(Boalg Γ)q such that ‖v0‖∞ ≤ 1 and
‖v − v0‖2,Tr < ε/3. Define G ⊂ Γ the finite subset such that v0 belongs to the linear span of

{e1i ⊗ exugq : x ∈ B, g ∈ G, 1 ≤ i ≤ `}. Put F =
⋃`
i=1

⋃
g,h∈G gΣih

−1.

Let a ∈ Ball(A(p − z)) and write a = a(p − z − e) + ae. Observe that ‖a(p − z − e)‖2,Tr ≤
‖a‖∞‖p − z − e‖2,Tr < ε/3. Since ae = vϕ(a)v∗, it follows that ae lies at a distance less than
2ε/3 from v0ϕ(a)v∗0. Observe that by construction PF (v0ϕ(a)v∗0) = v0ϕ(a)v∗0. Therefore, a lies
at a distance less than ε from the range of PF .

III.2.2 Amalgamated free product von Neumann algebras

For i ∈ {1, 2}, let B ⊂ Mi be an inclusion of von Neumann algebras with expectation Ei :
Mi → B. Recall that the amalgamated free product (M,E) = (M1, E1) ∗B (M2, E2) is the von
Neumann algebra M generated by M1 and M2 where the faithful normal conditional expectation
E : M → B satisfies the freeness condition:

E(x1 · · ·xn) = 0 whenever xj ∈Mij 	B and ij 6= ij+1 .

Here and in what follows, we denote by Mi 	 B the kernel of the conditional expectation Ei :
Mi → B. We refer to [Vo85, Vo92, Ue99] for more details on the construction of amalgamated
free products in the framework of von Neumann algebras.

Assume that Tr is a semifinite faithful normal trace on B such that for all i ∈ {1, 2}, the weight
Tr ◦Ei is a trace on Mi. Then the weight Tr ◦E is a trace on M by [Ue99, Theorem 2.6].
In that case, we will say that the amalgamated free product (M,E) = (M1, E1) ∗B (M2, E2) is
semifinite. Whenever we consider a semifinite faithful normal trace on a semifinite amalgamated
free product (M,E) = (M1, E1) ∗B (M2, E2), we will always assume that Tr ◦E = Tr and Tr |B
is semifinite.

The following proposition is a semifinite analogue of [IPP08, Theorem 1.1]. The proof of Theorem
III.2.5 is essentially contained in [CH10, Theorem 2.4].

Theorem III.2.5. Let (M, E) = (M1, E1)∗B(M2, E2) be a semifinite amalgamated free product
von Neumann algebra with semifinite faithful normal trace Tr. Let p ∈ Projf(M1) and Q ⊂
pM1p any von Neumann subalgebra. Assume that there exists a net of unitaries wk ∈ U(Q)
such that limk ‖EB(x∗wky)‖2,Tr = 0 for all x, y ∈ pM1.

Then any Q-pM1p-subbimodule H of L2(pMp) which has finite dimension as a right pM1p-
bimodule must be contained in L2(pM1p). In particular, NpMp(Q)′′ ⊂ pM1p.
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Proof. Using [Ta02, Proposition V.2.36], we denote by EM1 : M → M1 the unique trace
preserving faithful normal conditional expectation which satisfies

EM1(x1 · · ·x2m+1) = 0

whenever m ≥ 1, x1, x2m+1 ∈ M1, x2j ∈ M2 	 B and x2j+1 ∈ M1 	 B for all 1 ≤ j ≤ m − 1.
Observe that we moreover have Tr ◦EM1 = Tr. We denote by M 	M1 the kernel of the
conditional expectation EM1 :M→M1.

Claim. We have that limk ‖EM1(x∗wky)‖2,Tr = 0 for all x, y ∈ p(M	M1).

Proof of the Claim. Observe that using Kaplansky’s density theorem, it suffices to prove the
Claim for x = px1 · · ·x2m+1 and y = py1 · · · y2n+1 with m,n ≥ 1, x1, x2m+1, y1, y2n+1 ∈ M1,
x2`+1, y2`′+1 ∈ M1 	 B and x2`, y2`′ ∈ M2 	 B for all 1 ≤ ` ≤ m − 1 and all 1 ≤ `′ ≤ n − 1.
Then, we have

EM1(x∗wky) = EM1(x∗2m+1 · · ·x∗2EB(x∗1wky1) y2 · · · y2n+1).

Hence, limk ‖EM1(x∗wky)‖2,Tr = 0.

In particular, we get limk ‖EpM1p(x
∗wky)‖2,Tr = 0 for all x, y ∈ pMp	pM1p. Finally, applying

[Va07, Lemma D.3], we are done.

We will moreover need the following technical results.

Proposition III.2.6. Let (M, E) = (M1, E1) ∗B (M2, E2) be a semifinite amalgamated free
product von Neumann algebra with semifinite faithful normal trace Tr. Assume the following:

• For all i ∈ {1, 2} and all nonzero projections z ∈ Z(B), Bz 6= zMiz.

• For all p ∈ Projf(M) and all q ∈ Projf(B), we have pMp �M qBq.

Then for all i ∈ {1, 2}, all e ∈ Projf(M) and all f ∈ Projf(Mi), we have eMe �M fMif .

Proof. By contradiction, assume that there exist i ∈ {1, 2}, e ∈ Projf(M) and f ∈ Projf(Mi),
a nonzero partial isometry v ∈ eMf and a unital normal ∗-homomorphism ϕ : eMe → fMif
such that xv = vϕ(x) for all x ∈ eMe. We may assume without loss of generality that i = 1.
Moreover, as in [Va08, Remark 3.8], we may assume that the support projection of EM1(v∗v)
in M1 equals f .

Let q ∈ Projf(B) be arbitrary. By assumption, we have eMe �M qBq. Next, we claim that
ϕ(eMe) �M1 qBq. Indeed, otherwise there would exist n ≥ 1, a nonzero partial isometry
w ∈ M1,n(C) ⊗ fM1q and a normal ∗-homomorphism ψ : ϕ(eMe) → Mn(qBq) such that
ϕ(x)w = wψ(ϕ(x)) for all x ∈ eMe. Hence, we get xvw = vw(ψ ◦ ϕ)(x) for all x ∈ eMe. We
have EMn(M1)(w

∗v∗vw) = w∗EM1(v∗v)w 6= 0 since the support projection of EM1(v∗v) is f and
fw = w. By taking the polar part of vw, this would imply that eMe �M qBq, a contradiction.

By Lemma III.2.3 and Theorem III.2.5, we get ϕ(eMe)′ ∩ fMf ⊂ fM1f , hence v∗v ∈ fM1f .
Thus, we may assume that v∗v = f . We get fMf = v∗Mv ⊂ fM1f ⊂ fMf , so fM1f = fMf .
The proof of [HV13, Theorem 5.7] shows that there exists a nonzero projection z ∈ Z(B) such
that zM2z = Bz, contradicting the assumptions.
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Proposition III.2.7. Let (M, E) = (M1, E1) ∗B (M2, E2) be a semifinite amalgamated free
product von Neumann algebra with semifinite faithful normal trace Tr. Let p ∈ Projf(M) and
A ⊂ pMp any von Neumann subalgebra. Assume there exist i ∈ {1, 2} and pi ∈ Projf(Mi) such
that A �M piMipi.

Then either there exists q ∈ Projf(B) such that A �M qBq or NpMp(A)′′ �M piMipi.

Proof. We assume that for all q ∈ Projf(B), we have A �M qBq and show that necessarily
NpMp(A)′′ �M piMipi.

Since A �M piMipi, there exist n ≥ 1, a nonzero partial isometry v ∈M1,n(C)⊗ pMpi and a
possibly nonunital normal ∗-homomorphism ϕ : A →Mn(piMipi) such that av = vϕ(a) for all
a ∈ A. Since we also have A �M qBq for all q ∈ Projf(B), a reasoning entirely analogous to the
one of the proof of Proposition III.2.6 allows us to further assume that ϕ(A) �Mn(Mi) Mn(qBq)
for all q ∈ Projf(B).

Let u ∈ NpMp(A). Then for all a ∈ A, we have

v∗uvϕ(a) = vuav = v∗(uau∗)uv = ϕ(uau∗)v∗uv.

By Theorem III.2.5 and Lemma III.2.3, we get v∗uv ∈Mn(piMipi) for all u ∈ NpMp(A), hence
v∗NpMp(A)′′v ⊂ piMipi. Therefore, we have NpMp(A)′′ �M piMipi.

III.2.3 Hilbert bimodules

Let M and N be any von Neumann algebras. Recall that an M -N -bimodule H is a Hilbert space
endowed with two commuting normal ∗-representations π : M → B(H) and ρ : Nop → B(H).
We then define πH : M ⊗alg N

op → B(H) by πH(x ⊗ yop) = π(x)ρ(yop) for all x ∈ M and all
y ∈ N . We will simply write xξy = πH(x⊗ yop)ξ for all x ∈M , all y ∈ N and all ξ ∈ H.

Let H and K be M -N -bimodules. Following [Co94, Appendix V.B], we say that K is weakly
contained in H and write K ⊂weak H if ‖πK(T )‖∞ ≤ ‖πH(T )‖∞ for all T ∈ M ⊗alg N

op.
We simply denote by (N,L2(N), J,P) the standard form of N (see e.g. [Ta03, Chapter IX.1]).
Then the N -N -bimodule L2(N) with left and right action given by xξy = xJy∗Jξ is the trivial
N -N -bimodule while the N -N -bimodule L2(N) ⊗ L2(N) with left and right action given by
x(ξ ⊗ η)y = xξ ⊗ Jy∗Jη is the coarse N -N -bimodule.

Recall that a von Neumann algebra N is amenable if as N -N -bimodules, we have L2(N) ⊂weak

L2(N)⊗ L2(N). Equivalently, there exists a norm one projection Φ : B(L2(N))→ N .

For any von Neumann algebras B,M,N , any M -B-bimodule H and any B-N -bimodule K, there
is a well defined M -N -bimodule H⊗B K called the Connes’s fusion tensor product of H and K
over B. We refer to [Co94, Appendix V.B] and [AD95, Section 1] for more details regarding this
construction.

We will be using the following well known fact (see [AD95, Lemma 1.7]). For any von Neumann
algebras B,M,N such that B is amenable, any M -B-bimodule H and any B-N -bimodule K,
we have, as M -N -bimodules,

H⊗B K ⊂weak H⊗K.
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III.2.4 Relative amenability

Let M be any von Neumann algebra. Denote by (M,L2(M), J,P) the standard form of M . Let
P ⊂ 1PM1P (resp. Q ⊂M) be a von Neumann subalgebra with expectation EP : 1PM1P → P
(resp. EQ : M → Q). The basic construction 〈M,Q〉 is the von Neumann algebra (JQJ)′∩B(H).
Following [OP10a, Section 2.1], we say that P is amenable relative to Q inside M if there exists
a norm one projection Φ : 1P 〈M,Q〉1P → P such that Φ|1PM1P = EP .

In the case when (M, τ) is a tracial von Neumann algebra and the conditional expectation
EP : M → P (resp. EQ : M → Q) is τ -preserving, the basic construction that we denote by
〈M, eQ〉 coincides with the von Neumann algebra generated by M and the orthogonal projection
eQ : L2(M, τ) → L2(Q, τ |Q). Observe that 〈M, eQ〉 comes with a semifinite faithful normal
trace given by Tr(xeQy) = τ(xy) for all x, y ∈M . Then [OP10a, Theorem 2.1] shows that P is
amenable relative to Q inside M if and only if there exists a net of vectors ξn ∈ L2(〈M, eQ〉,Tr)
such that limn〈xξn, ξn〉Tr = τ(x) for all x ∈ 1PM1P and limn ‖yξn − ξny‖2,Tr = 0 for all y ∈ P .

III.2.5 Noncommutative flow of weights

Let (M,ϕ) be a von Neumann algebra together with a faithful normal state. Denote by Mϕ the
centralizer of ϕ and by M oϕ R the continuous core of M , that is, the crossed product of M
with the modular automorphism group (σϕt )t∈R associated with the faithful normal state ϕ. We
have a canonical ∗-embedding πϕ : M →M oϕ R and a canonical group of unitaries (λϕ(s))s∈R
in M oϕ R such that

πϕ(σϕs (x)) = λϕ(s)πϕ(x)λϕ(s)∗ for all x ∈M, s ∈ R.

The unitaries (λϕ(s))s∈R generate a copy of L(R) inside M oϕ R.

We denote by ϕ̂ the dual weight on M oϕR (see [Ta03, Definition X.1.16]), which is a semifinite

faithful normal weight on M oϕ R whose modular automorphism group (σϕ̂t )t∈R satisfies

σϕ̂t (πϕ(x)) = πϕ(σϕt (x)) for all x ∈M and σϕ̂t (λϕ(s)) = λϕ(s) for all s ∈ R.

We denote by (θϕt )t∈R the dual action on M oϕ R, given by

θϕt (πϕ(x)) = πϕ(x) for all x ∈M and θϕt (λϕ(s)) = exp(its)λϕ(s) for all s ∈ R.

Denote by hϕ the unique nonsingular positive selfadjoint operator affiliated with L(R) ⊂MoϕR
such that his

ϕ = λϕ(s) for all s ∈ R. Then Trϕ = ϕ̂(h−1
ϕ ·) is a semifinite faithful normal trace on

M oϕ R and the dual action θϕ scales the trace Trϕ:

Trϕ ◦θϕt = exp(t) Trϕ,∀t ∈ R.

Note that Trϕ is semifinite on L(R) ⊂M oϕ R. Moreover, the canonical faithful normal condi-
tional expectation EL(R) : M oϕ R→ L(R) defined by EL(R)(xλϕ(s)) = ϕ(x)λϕ(s) preserves the
trace Trϕ, that is,

Trϕ ◦EL(R) = Trϕ .

Because of Connes’s Radon-Nikodym cocycle theorem (see [Ta03, Theorem VIII.3.3]), the semifi-
nite von Neumann algebra MoϕR, together with its trace Trϕ and trace-scaling action θϕ, “does
not depend” on the choice of ϕ in the following precise sense. If ψ is another faithful normal
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state on M , there is a canonical surjective ∗-isomorphism Πψ,ϕ : M oϕ R→M oψ R such that
Πψ,ϕ ◦ πϕ = πψ, Trψ ◦Πψ,ϕ = Trϕ and Πψ,ϕ ◦ θϕ = θψ ◦ Πψ,ϕ. Note however that Πψ,ϕ does not
map the subalgebra L(R) ⊂M oϕ R onto the subalgebra L(R) ⊂M oψ R.

Altogether we can abstractly consider the continuous core (c(M), θ,Tr), where c(M) is a von
Neumann algebra with a faithful normal semifinite trace Tr, θ is a trace-scaling action of R on
(c(M),Tr) and c(M) contains a copy of M . Whenever ϕ is a faithful normal state on M , we
get a canonical surjective ∗-isomorphism Πϕ : M oϕ R→ c(M) such that

Πϕ ◦ θϕ = θ ◦Πϕ, Trϕ = Tr ◦Πϕ, Πϕ(πϕ(x)) = x ∀x ∈M.

A more functorial construction of the continuous core, known as the noncommutative flow of
weights can be given, see [Co73, CT77, FT01].

By Takesaki’s duality theorem [Ta03, Theorem X.2.3], we have that c(M)oθR ∼= M⊗B(L2(R)).
In particular, by [AD95, Proposition 3.4], M is amenable if and only if c(M) is amenable.

If P ⊂ 1PM1P is a von Neumann subalgebra with expectation, we have a canonical trace
preserving inclusion c(P ) ⊂ 1P c(M)1P .

We will also frequently use the following well-known fact: if A ⊂M is a Cartan subalgebra then
c(A) ⊂ c(M) is still a Cartan subalgebra. For a proof of this fact, see e.g. [HR11, Proposition
2.6].

Proposition III.2.8. Let M be any von Neumann algebra with no amenable direct summand.
Then the continuous core c(M) has no amenable direct summand either.

Proof. Assume that c(M) has an amenable direct summand. Let z ∈ Z(c(M)) be a nonzero
projection such that c(M)z is amenable. Denote by θ : R y c(M) the dual action which scales
the trace Tr. Put e =

∨
t∈R θt(z). Observe that e ∈ Z(c(M)) and θt(e) = e for all t ∈ R. By

[Ta03, Theorem XII.6.10], we have e ∈ M ∩ Z(c(M)), hence e ∈ Z(M). We canonically have
c(M)e = c(Me).

Since amenability is stable under direct limits, we have that c(M)e is amenable, hence c(Me) is
amenable. Applying again [Ta03, Theorem XII.6.10], we have c(Me)oθ R ∼= (Me)⊗B(L2(R)).
We get that c(Me) oθ R is amenable and so is Me. Therefore, M has an amenable direct
summand.

We will frequently use the following:

Notation III.2.9. Let A ⊂M (resp. B ⊂M) be a von Neumann subalgebra with expectation
EA : M → A (resp. EB : M → B) of a given von Neumann algebra M . Assume moreover that
A and B are both tracial. Let τA be a faithful normal trace on A (resp. τB on B) and write
ϕA = τA ◦ EA (resp. ϕB = τB ◦ EB). Write πϕA : M → M oϕA R (resp. πϕB : M → M oϕB R)
for the canonical ∗-representation of M into its continuous core associated with ϕA (resp. ϕB).

By Connes’s Radon-Nikodym cocycle theorem, there is a surjective ∗-isomorphism

ΠϕB ,ϕA : M oϕA R→M oϕB R

which intertwines the dual actions, that is, θϕB ◦ ΠϕB ,ϕA = ΠϕB ,ϕA ◦ θϕA , and preserves
the faithful normal semifinite traces, that is, TrϕB ◦ΠϕB ,ϕA = TrϕA . In particular, we have
ΠϕB ,ϕA(πϕA(x)) = πϕB (x) for all x ∈M .
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Put c(M) = M oϕB R, c(B) = B oϕB R and c(A) = ΠϕB ,ϕA(A oϕA R). We simply denote
by Tr = TrϕB the canonical semifinite faithful normal trace on c(M). Observe that Tr is still
semifinite on Z(c(A)) and Z(c(B)).

Proposition III.2.10. Assume that we are in the setup of Notation III.2.9. If A �M B, then
for all p ∈ Projf(Z(c(A))) and all q ∈ Projf(Z(c(B))), we have c(A)p �c(M) c(B)q.

Proof. Let vk ∈ U(A) be a net such that EB(x∗vky)→ 0 ∗-strongly for all x, y ∈M . Recall that
c(M) = M oϕB R, c(B) = B oϕB R and c(A) = ΠϕB ,ϕA(AoϕA R). Let p ∈ Projf(Z(c(A))) and
q ∈ Projf(Z(c(B))). Observe that since p commutes with every element in c(A), p commutes with
every element in ΠϕB ,ϕA(πϕA(A)) = πϕB (A) ⊂ c(A). Then wk = ΠϕB ,ϕA(πϕA(vk))p = πϕB (vk)p
is a net of unitaries in U(c(A)p).

Write c(M)alg = M oalg
ϕB R for the algebraic crossed product, that is, the linear span of

{πϕB (x)λϕB (t) : x ∈ M, t ∈ R}. Observe that c(M)alg is a dense unital ∗-subalgebra of c(M).
We have Ec(B)(x

∗πϕB (vk)y) → 0 ∗-strongly for all x, y ∈ c(M)alg. Since q ∈ Projf(c(B)), we
have

‖Ec(B)q(q x
∗πϕB (vk)y q)‖2,Tr = ‖qEc(B)(x

∗πϕB (vk)y)q‖2,Tr → 0, ∀x, y ∈ c(M)alg.

Fix now x, y ∈ Ball(c(M)). By Kaplansky density theorem, choose a net (xi)i∈I (resp. (yj)j∈J)
in Ball(c(M)alg) such that xi → px (resp. yj → py) ∗-strongly. Let ε > 0. Since q ∈ Projf(c(B)),
we can choose (i, j) ∈ I × J such that

‖(py − yj)q‖2,Tr + ‖q(x∗p− xj)‖2,Tr < ε.

Therefore, by triangle inequality, we obtain

lim sup
k
‖Ec(B)q(q x

∗ pπϕB (vk)p y q)‖2,Tr ≤ lim sup
k
‖Ec(B)q(q x

∗
iπϕB (vk)yj q)‖2,Tr + ε ≤ ε.

Since ε > 0 is arbitrary, we get limk ‖Ec(B)q(qx
∗pwk pyq)‖2,Tr = 0. This finally proves that

c(A)p �c(M) c(B)q.

Example III.2.11. We emphasize two well-known examples that will be extensively used in
this paper.

1. Let Γ y (X,µ) be any nonsingular action on a standard measure space. Define the
Maharam extension (see [Ma64]) Γ y (X × R,m) by

g · (x, t) =

(
gx, t+ log

(
d(µ ◦ g−1)

dµ
(x)

))
,

where dm = dµ × exp(t)dt. It is easy to see that the action Γ y X × R preserves the
infinite measure m and we moreover have that

c(L∞(X)o Γ) = L∞(X × R)o Γ.

2. Let (M,E) = (M1, E1) ∗B (M2, E2) be any amalgamated free product von Neumann alge-
bra. Fix a faithful normal state ϕ on B. We still denote by ϕ the faithful normal state
ϕ ◦ E on M . We realize the continuous core of M as c(M) = M oϕ R. Likewise, if we
denote by ϕi = ϕ ◦Ei the corresponding state on Mi, we realize the continuous core of Mi
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as c(Mi) = Mi oϕi R. We denote by c(E) : c(M) → c(B) (resp. c(Ei) : c(Mi) → c(B))
the canonical trace preserving faithful normal conditional expectation. Recall from [Ue99,
Section 2] that σϕt (Mi) = Mi for all t ∈ R and all i ∈ {1, 2}, hence

(c(M), c(E)) = (c(M1), c(E1)) ∗c(B) (c(M2), c(E2)).

Moreover, c(M) is a semifinite amalgamated free product von Neumann algebra.

III.3 Intertwining subalgebras inside semifinite AFP von Neu-
mann algebras

III.3.1 Malleable deformation on semifinite AFP von Neumann algebras

First, we recall the construction of the malleable deformation on amalgamated free product von
Neumann algebras discovered in [IPP08, Section 2].

Let (M, E) = (M1, E1) ∗B (M2, E2) be any semifinite amalgamated free product von Neumann
algebra with semifinite faithful normal trace Tr. We will simply write M = M1 ∗BM2 when
no confusion is possible. Put M̃ = M∗B (B ⊗ L(F2)) and observe that M̃ is still a semifinite
amalgamated free product von Neumann algebra. We still denote by Tr the semifinite faithful
normal trace on M̃. Let u1, u2 ∈ U(L(F2)) be the canonical Haar unitaries generating L(F2).

Observe that we can decompose M̃ = M̃1 ∗B M̃2 with M̃i =Mi ∗B (B ⊗ L(Z)).

Consider the unique Borel function f : T→ (−π, π] such that f(exp(it)) = t for all t ∈ (−π, π].
Define the selfadjoint operators h1 = f(u1) and h2 = f(u2) so that exp(iu1) = h1 and exp(iu2) =
h2. For every t ∈ R, put ut1 = exp(ith1) and ut2 = exp(ith2). We have

τ(ut1) = τ(ut2) =
sin(πt)

πt
, ∀t ∈ R.

Define the one-parameter group of trace preserving ∗-automorphisms αt ∈ Aut(M̃) by

αt = Ad(ut1) ∗B Ad(ut2),∀t ∈ R.

Define moreover the trace preserving ∗-automorphism β ∈ Aut(M̃) by

β = idM ∗B(idB⊗β0)

with β0(u1) = u∗1 and β0(u2) = u∗2. We have αtβ = βα−t for all t ∈ R. Thus, (αt, β) is a
malleable deformation in the sense of Popa [Po07b].

We will be using the following notation throughout this section.

Notation III.3.1. Put H0 = L2(B,Tr) and K0 = L2(B ⊗ L(F2),Tr). For n ≥ 1, define Sn =
{(i1, . . . , in) : i1 6= · · · 6= in} to be the set of the two alternating sequences of length n made of
1’s and 2’s. For I = (i1, . . . , in) ∈ Sn, denote by

• HI the closed linear span in L2(M,Tr) of elements x1 · · ·xn, with xj ∈Mij 	B such that
Tr(x∗jxj) <∞ for all j ∈ {1, . . . , n}.

• KI the closed linear span in L2(M̃,Tr) of elements uh1x1 · · ·uhnxnuhn+1 , with hj ∈ F2 for
all j ∈ {1, . . . , n+ 1} and xj ∈Mij 	 B such that Tr(x∗jxj) <∞ for all j ∈ {1, . . . , n}.
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We denote by EM : M̃ →M the unique trace preserving faithful normal conditional expectation
as well as the orthogonal projection L2(M̃,Tr) → L2(M,Tr). We still denote by α : R →
U(L2(M̃,Tr)) the Koopman representation associated with the trace preserving action α : R→
Aut(M̃).

Lemma III.3.2. Let m,n ≥ 1, I = (i1, . . . , im) ∈ Sm and J = (j1, . . . , jn) ∈ Sn. Let x1 ∈
Mi1 	 B, . . . , xm ∈ Mim 	 B and y1 ∈ Mj1 	 B, . . . , yn ∈ Mjn 	 B with Tr(a∗a) < ∞ for
a = x1, . . . , xm, y1, . . . , yn. Let g1, . . . , gm+1, h1, . . . , hn+1 ∈ F2. Then

〈ug1x1 · · ·ugmxmugm+1 , uh1y1 · · ·uhnynuhn+1〉L2(M̃,Tr)
={

〈x1 · · ·xm, y1 · · · yn〉L2(M,Tr) if m = n, I = J and gk = hk, ∀k ∈ {1, . . . ,m+ 1};
0 otherwise.

Proof. The proof is the same as the proof of [Io(12)a, Lemma 3.1]. We leave it to the reader.

Lemma III.3.2 allows us, in particular, to put Hn =
⊕
I∈Sn HI and Kn =

⊕
I∈Sn KI since the

KI ’s are pairwise orthogonal. We then have

L2(M,Tr) =
⊕
n∈N
Hn and L2(M̃,Tr) =

⊕
n∈N
Kn.

For all ξ ∈ L2(M,Tr), write ξ =
∑

n∈N ξn with ξn ∈ Hn for all n ∈ N. A simple calculation
shows that for all t ∈ R,

Tr(αt(ξ)ξ
∗) = Tr(EM(αt(ξ))ξ

∗) =
∑
n∈N

(
sin(πt)

πt

)2n

‖ξn‖22,Tr.

Observe that t 7→ Tr(αt(ξ)ξ
∗) is decreasing on [0, 1] for all ξ ∈ L2(M,Tr).

III.3.2 A semifinite analogue of Ioana-Peterson-Popa’s intertwining theorem
[IPP08]

The first result of this section is an analogue of the main technical result of [IPP08] (see [IPP08,
Theorem 4.3]) for semifinite amalgamated free product von Neumann algebras. A similar result
also appeared in [CH10, Theorem 4.2]. For the sake of completeness, we will give the proof.

Theorem III.3.3. LetM =M1∗BM2 be a semifinite amalgamated free product von Neumann
algebra with semifinite faithful normal trace Tr. Let p ∈ Projf(M) and A ⊂ pMp any von
Neumann subalgebra. Assume that there exist c > 0 and t ∈ (0, 1) such that Tr(αt(w)w∗) ≥ c
for all w ∈ U(A).

Then there exists q ∈ Projf(B) such that A �M qBq or there exists i ∈ {1, 2} and qi ∈ Projf(Mi)
such that NpMp(A)′′ �M qiMiqi.

Proof. By assumption, there exist c > 0 and t ∈ (0, 1) such that Tr(αt(w)w∗) ≥ c for all
w ∈ U(A). Choose r ∈ N large enough such that 2−r ≤ t. Then Tr(α2−r(w)w∗) ≥ c for all
w ∈ U(A). So, we may assume that t = 2−r. A standard functional analysis trick yields a
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nonzero partial isometry v ∈ αt(p)M̃p such that vx = αt(x)v for all x ∈ A. Observe that

v∗v ∈ A′ ∩ pM̃p and vv∗ ∈ αt(A′ ∩ pM̃p).

We prove the result by contradiction. Using Proposition III.2.7 and as in the proof of Proposition
III.2.4, we may choose a net of unitaries wk ∈ U(A) such that limk ‖EMi(x

∗wky)‖2,Tr = 0 for all
i ∈ {1, 2} and all x, y ∈ pM. In particular, we get limk ‖EB(x∗wky)‖2,Tr = 0 for all x, y ∈ pM.

Regarding M̃ =M∗B(B⊗L(F2)), we get v∗v ∈ A′∩pMp by Theorem III.2.5. We use now Popa’s

malleability trick [Po06a] and put w = αt(vβ(v∗)) ∈ α2t(p)M̃p. Since ww∗ = αt(vv
∗) 6= 0, we

get w 6= 0 and wx = α2t(x)w for all x ∈ A. Iterating this construction, we find a nonzero partial

isometry v ∈ α1(p)M̃p such that

vx = α1(x)v, ∀x ∈ A. (III.1)

Moreover, using again Proposition III.2.5, we get v∗v ∈ A′ ∩ pMp and vv∗ ∈ α1(A′ ∩ pMp).

Next, exactly as in the proof of [CH10, Claim 4.3], we obtain the following.

Claim. We have limk ‖Eα1(M)(x
∗wky)‖2,Tr = 0 for all x, y ∈ pM̃.

Proof of the Claim. Regard M̃ =M∗B (B ⊗ L(F2)). By Kaplansky density theorem, it suffices

to prove the Claim for x = pa and y = pb with a, b in B or reduced words in M̃ with letters
alternating from M	B and B ⊗ L(F2)	 B ⊗ C1. Write a = ca′ with c = a if a ∈ B; c = 1 if a
begins with a letter from B ⊗ L(F2)	 B ⊗ C1; c equals the first letter of a otherwise. Likewise,
write b = db′. Then we have x∗wky = a∗wkb = a′∗ c∗wkd b

′ and note that c∗wkd ∈ M. Observe
that a′ (resp. b′) equals 1 or is a reduced word beginning with a letter from B⊗L(F2)	B⊗C1.

Denote by P the orthogonal projection from L2(M,Tr) onto H0 ⊕ H1. Observe that since
c∗wkd ∈M∩ L2(M,Tr), we have

P (c∗wkd) = EM1(c∗wkd) + EM2(c∗wkd)− EB(c∗wkd).

Hence, limk ‖P (c∗wkd)‖2,Tr = 0. Moreover, a simple calculation shows that

Eα1(M)(x
∗wky) = Eα1(M)(a

′∗P (c∗wkd)b′).

Therefore, limk ‖Eα1(M)(x
∗wky)‖2,Tr = 0. This finishes the proof of the Claim.

Finally, combining Equation (III.1) together with the Claim, we get

‖vv∗‖2,Tr = ‖α1(wk)vv
∗‖2,Tr = ‖Eα1(M)(α1(wk)vv

∗)‖2,Tr = ‖Eα1(M)(vwkv
∗)‖2,Tr → 0.

This contradicts the fact that v 6= 0 and finishes the proof of Theorem III.3.3.

III.3.3 A semifinite analogue of Ioana’s intertwining theorem [Io(12)a]

Let M = M1 ∗B M2 be a semifinite amalgamated free product von Neumann algebra with
semifinite faithful normal trace Tr. Put M̃ = M∗B (B ⊗ L(F2)) and observe that M̃ is still a
semifinite amalgamated free product von Neumann algebra. We still denote by Tr the semifinite
faithful normal trace on M̃. Let N =

∨
{ugMu∗g : g ∈ F2} ⊂ M̃. Observe that N can

be identified with an infinite amalgamated free product von Neumann algebra, that Tr |N is
semifinite and that, under this identification, the action F2 y N is given by the free Bernoulli
shift which preserves the canonical trace Tr. We moreover have M̃ = N o F2.
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We will denote by EN : M̃ → N the unique trace preserving faithful normal conditional
expectation as well as the orthogonal projection EN : L2(M̃,Tr)→ L2(N ,Tr).

We prove next the analogue of [Io(12)a, Theorem 3.2] for semifinite amalgamated free product
von Neumann algebras.

Theorem III.3.4. LetM =M1∗BM2 be a semifinite amalgamated free product von Neumann
algebra with semifinite faithful normal trace Tr. Let p ∈ Projf(B), A ⊂ pMp any von Neumann
subalgebra and t ∈ (0, 1). Assume that there is no net of unitaries wk ∈ U(A) such that

lim
k
‖EN (x∗αt(wk)y)‖2,Tr = 0, ∀x, y ∈ pM̃.

Then there exists q ∈ Projf(B) such that A �M qBq or there exists i ∈ {1, 2} and qi ∈ Projf(Mi)
such that NpMp(A)′′ �M qiMiqi.

The main technical lemma that will be used to prove Theorem III.3.4 is a straightforward
generalization of [Io(12)a, Lemma 3.4]. We include a proof for the sake of completeness.

Lemma III.3.5. Let t ∈ (0, 1) and g, h ∈ F2. For all n ≥ 0, define

cn = sup
x∈Hn, ‖x‖2,Tr≤1

‖EN (ugαt(x)uh)‖2,Tr.

Then limn cn = 0.

Proof. First, observe that for all g1 . . . , gn+1 ∈ F2 and all x1, . . . , xn ∈M, we have

EN (ug1x1 · · ·ugnxnugn+1) =

{
ug1x1 · · ·ugnxnugn+1 if g1 · · · gn+1 = 1;

0 otherwise.
(III.2)

Thus for all I ∈ Sn, we have EN (KI) ⊂ KI and since αt(HI) ⊂ KI , we get that EN (ugαt(x)uh) ∈
KI for all x ∈ HI . So defining

cI = sup
x∈HI , ‖x‖2,Tr≤1

‖EN (ugαt(x)uh)‖2,Tr,

we see that cn = maxI∈Sn cI since the subspaces KI ’s are pairwise orthogonal.

Let us fix I = (i1, . . . , in) ∈ Sn and calculate cI . Denote by a and b the canonical generators of
F2 so that u1 = ua, u2 = ub and put G1 = 〈a〉 and G2 = 〈b〉. For g1, h1 ∈ Gi1 , . . . , gn, hn ∈ Gin ,
define a map

Vg1,h1,...,gn,hn(x1 · · ·xn) = ug1x1u
∗
h1 · · ·ugnxnu

∗
hn

for all xj ∈Mij	B such that Tr(x∗jxj) <∞ for all j ∈ {1, . . . , n}. By Lemma III.3.2, these maps
Vg1,h1,...,gn,hn extend to isometries Vg1,h1,...,gn,hn : HI → KI with pairwise orthogonal ranges when
(g1, h1, . . . , gn, hn) are pairwise distinct. Indeed, we have Vg1,h1,...,gn,hn(HI) ⊥ Vg′1,h′1,...,g′n,h′n(HI)
unless g1 = g′1, h

−1
1 g2 = h′−1

1 g′2, . . . , h
−1
n−1gn = h′−1

n−1g
′
n, h
−1
n = h′−1

n . Since moreoverG1∩G2 = {e},
this further implies that gj = g′j and hj = h′j for all j ∈ {1, . . . , n}.
Denote the Fourier coefficients of ut1 and ut2 respectively by β1(g1) = τ(ut1u

∗
g1) for g1 ∈ G1 and

β2(g2) = τ(ut2u
∗
g2) for g2 ∈ G2. We have an explicit formula for these coefficients given by

βi(u
n
i ) = τ(utiu

−n
i ) = τ(ut−ni ) =

sin(π(t− n))

π(t− n)
.
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It follows in particular that βi(gi) ∈ R for all i ∈ {1, 2} and all gi ∈ Gi. Since ut1 and ut2 are
unitaries, we moreover have ∑

g1∈G1

β1(g1)2 =
∑
g2∈G2

β2(g2)2 = 1.

If x = x1 · · ·xn with xj ∈Mij 	 B satisfying Tr(x∗jxj) <∞, we have

ugαt(x)uh = ug u
t
i1x1u

t∗
i1 · · ·u

t
inxnu

t∗
in uh

=
∑

g1,h1∈Gi1 ,...,gn,hn∈Gin

βi1(g1)βi1(h1) · · ·βin(gn)βin(hn) ug ug1x1u
∗
h1 · · ·ugnxnu

∗
hn uh

=
∑

g1,h1∈Gi1 ,...,gn,hn∈Gin

βi1(g1)βi1(h1) · · ·βin(gn)βin(hn) ugVg1,h1,...,gn,hn(x)uh,

where the sum converges in ‖ · ‖2,Tr. Thus, for all x ∈ HI , we get

ugαt(x)uh =
∑

g1,h1∈Gi1 ,...,gn,hn∈Gin

βi1(g1)βi1(h1) · · ·βin(gn)βin(hn) ugVg1,h1,...,gn,hn(x)uh.

Now, using the calculation (III.2), and the fact that the isometries Vg1,h1,...,gn,hn have mutually
orthogonal ranges, we get that for all x ∈ HI ,

‖EN (ugαt(x)uh)‖22,Tr = ‖x‖22,Tr

∑
g1,h1∈Gi1 ,...,gn,hn∈Gin
gg1h

−1
1 ···gnh

−1
n h=1

βi1(g1)2βi1(h1)2 · · ·βin(gn)2βin(hn)2.

Thus we get an explicit formula for cI given by

cI =
∑

g1,h1∈Gi1 ,...,gn,hn∈Gin
gg1h1···gnhnh=1

βi1(g1)2βi1(h−1
1 )2 . . . βin(gn)2βin(h−1

n )2. (III.3)

For i ∈ {1, 2}, define µi ∈ Prob(F2) by µi(g) = βi(g)2 if g ∈ Gi and µi(g) = 0 otherwise.
Likewise, define µ̌i ∈ Prob(F2) by µ̌i(g) = µi(g

−1) for all g ∈ F2. Put νi = µi ∗ µ̌i. Then we have

cI = (νi1 ∗ · · · ∗ νin)(g−1h−1).

So if we put µ = ν1 ∗ ν2, we have that

cI ∈
{
µ∗[

n
2

](g−1h−1), µ∗[
n
2

] ∗ ν1(g−1h−1), ν2 ∗ µ∗[
n
2

](g−1h−1), ν2 ∗ µ∗[
n−1
2

] ∗ ν1(g−1h−1)
}
.

Then [Io(12)a, Lemma 2.13] implies that limk µ
∗k(s) = 0 for all s ∈ F2 and so limn cn = 0.

Proof of Theorem III.3.4. Assume by contradiction that the conclusion of the theorem does not
hold. Then Theorem III.3.3 implies that for t ∈ (0, 1) there exists a net wk ∈ U(A) such that

lim
k

Tr(αt(wk)w
∗
k) = 0.
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We will show that for all x, y ∈ pM̃, we have limk ‖EN (x∗αt(wk)y)‖2,Tr = 0, which will contra-
dict the assumption of Theorem III.3.4. By a linearity/density argument, it is sufficient to show
that for all g, h ∈ F2,

lim
k
‖EN (ugαt(wk)uh)‖2,Tr = 0. (III.4)

For all k, we have wk ∈ A ⊂ L2(M,Tr) =
⊕

n∈NHn so that we can write wk =
∑

n∈Nwk,n,

with wk,n ∈ Hn. Recall that Tr(αt(wk)w
∗
k) =

∑
n∈N

(
sin(πt)
πt

)2n
‖wk,n‖22,Tr. Thus the fact that

limk Tr(αt(wk)w
∗
k) = 0 implies that for all n ≥ 0, limk ‖wk,n‖2,Tr = 0.

Fix g, h ∈ F2 and ε > 0. Note that for n ≥ 1, EN (ugαt(wk,n)uh) ∈ Kn, so that all these terms
are pairwise orthogonal. They are also all orthogonal to EN (ugαt(wk,0)uh), which belongs to
K0. Thus

‖EN (ugαt(wk)uh)‖22,Tr =
∑
n≥0

‖EN (ugαt(wk,n)uh)‖22,Tr

≤
∑
n≥0

c2
n‖wk,n‖22,Tr

where cn is defined in Lemma III.3.5. Observe that cn ≤ 1 for all n ∈ N.

Lemma III.3.5 implies that there exists n0 ≥ 0 such that for all n > n0, c2
n < ε/2. Then we can

find k0 such that for all k ≥ k0, and all n ≤ n0, ‖wk,n‖22,Tr < ε/2(n0 + 1). So we get that for all
k ≥ k0,

‖EN (ugαt(wk)uh)‖22,Tr ≤
n0∑
n=0

‖wk,n‖22,Tr +
ε

2

∑
n≥n0

‖wk,n‖22,Tr ≤
n0∑
n=0

‖wk,n‖22,Tr +
ε

2
‖wk‖22,Tr ≤ ε.

This shows (III.4) and finishes the proof of Theorem III.3.4.

III.4 Relative amenability inside semifinite AFP von Neumann
algebras

Let M = M1 ∗B M2 be a semifinite amalgamated free product von Neumann algebra with
semifinite faithful normal trace Tr. Recall that M̃ = M ∗B (B ⊗ L(F2)), N =

∨
{ugMu∗g :

g ∈ F2} ⊂ M̃ and observe that M̃ = N o F2. We denote by α : R → Aut(M̃) the malleable
deformation from Section III.3.1.

The main result of this section is the following strengthening of Ioana’s result [Io(12)a, Theorem
4.1] in the framework of semifinite amalgamated free product von Neumann algebras over an
amenable subalgebra.

Theorem III.4.1. LetM =M1∗BM2 be a semifinite amalgamated free product von Neumann
algebra with semifinite faithful normal trace TrM. Assume that B is amenable. Let q ∈ Projf(B)
such that qM1q 6= qBq 6= qM2q and t ∈ (0, 1) such that αt(qMq) is amenable relative to qN q
inside qM̃q.

Then for all i ∈ {1, 2}, there exists a nonzero projection zi ∈ Z(Mi) such thatMizi is amenable.
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Let TrM̃ be the semifinite faithful normal trace on M̃ = M ∗B (B ⊗ L(F2)). Consider the

basic construction 〈qM̃q, eqN q〉 associated with the inclusion of tracial von Neumann algebras

qN q ⊂ qM̃q.

We denote by τ = 1
TrM̃(q) TrM̃(q · q) the faithful normal tracial state on qM̃q and by ‖ · ‖2

the L2-norm on qM̃q associated with τ . We then simply denote by Tr the canonical semifinite
faithful normal trace on 〈qM̃q, eqN q〉 given by Tr(aeqN qb) = τ(ab) for all a, b ∈ qM̃q. Observe

that qM̃q = qN q o F2. Following [Io(12)a, Section 4], we define the qM1q-qM1q-bimodule

H1 =
⊕
g∈F2

L2(qM1q)ugeqN qu
∗
g ⊂ L2(〈qM̃q, eqN q〉).

Denote by H = L2(〈qM̃q, eqN q〉,Tr)	H1.

Lemma III.4.2. As qM1q-qM1q-bimodules, we have that H ⊂weak L2(qM1q)⊗ L2(qM1q).

Proof. The proof goes along the same lines as [Io(12)a, Lemma 4.2]. First observe that since

qM̃q = qN q o F2, we have

L2(〈qMq, eqN q〉) ∼=
⊕
g,h∈F2

L2(qN q)ugeqN quh.

So it suffices to prove that for all g, h ∈ F2 such that h 6= g−1, as qM1q-qM1q-bimodules, we
have (

L2(qN q)	 L2(qM1q)
)
ugeqN qu

∗
g ⊂weak L2(qM1q)⊗ L2(qM1q)

L2(qN q)ugeqN quh ⊂weak L2(qM1q)⊗ L2(qM1q).

Denote by L2(qN q)g the qM1q-qM1q-bimodule L2(qN q) with left and right action given by
x · ξ · y = xξugyu

∗
g for all x, y ∈ qM1q and all ξ ∈ L2(qN q). Likewise, define the M1-M1-

bimodule L2(N )g. As qM1q-qM1q-bimodules, we have

⊕
g∈F2

(
L2(qN q)	 L2(qM1q)

)
ugeqN qu

∗
g
∼=
∞⊕
i=1

(
L2(qN q)	 L2(qM1q)

)
⊕

g,h∈F2,h6=g−1

L2(qN q)ugeqN quh ∼=
∞⊕
i=1

⊕
g∈F2\{e}

L2(qN q)g.

Put P =
(⋃

h∈F2\{e} uhMu∗h ∪M2

)′′
and Pg =

(⋃
h∈F2\{e,g} uhMu∗h ∪M2 ∪ ugM2u

∗
g

)′′
for all

g ∈ F2. Then we have

N ∼=M1 ∗B P ∼=M1 ∗B ugM1u
∗
g ∗B Pg, ∀g ∈ F2 \ {e}.

Using [Ue99, Section 2], there are B-B-bimodules L and Lg for g ∈ F2 \ {e}, such that as
M1-M1-bimodules, we have

L2(N )	 L(M1) ∼= L2(M1)⊗B L ⊗B L2(M1)

L2(N )g ∼= L2(M1)⊗B Lg ⊗B L2(M1).
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Since B is amenable, we have that L2(B) ⊂weak L2(B)⊗ L2(B) as B-B-bimodules. Using [AD95,
Lemma 1.7], we obtain that, as qM1q-qM1q-bimodules,

L2(qN q)	 L2(qM1q) ∼= q
(
L2(M1)⊗B L ⊗B L2(M1)

)
q

⊂weak q
(
L2(M1)⊗ L⊗ L2(M1)

)
q

⊂weak q
(
L2(M1)⊗ L2(M1)

)
q.

Since q
(
L2(M1)⊗ L2(M1)

)
q is isomorphic to a qM1q-qM1q-subbimodule of

⊕∞
i=1 L2(qM1q)⊗

L2(qM1q), we infer that, as qM1q-qM1q-bimodules,

L2(qN q)	 L2(qM1q) ⊂weak L2(qM1q)⊗ L2(qM1q).

Similarly, for all g ∈ F2 \ {e} we get that, as qM1q-qM1q-bimodules,

L2(qN q)g ⊂weak L2(qM1q)⊗ L2(qM1q).

Proof of Theorem III.4.1. Since αt(qMq) is amenable relative to qN q inside qM̃q, we find a net

of vectors ξn ∈ L2(〈qM̃q, eqN q〉,Tr) for n ∈ I, such that

• 〈xξn | ξn〉Tr → τ(x) for all x ∈ qM̃q, and

• ‖xξn − ξnx‖2,Tr → 0 for all x ∈ αt(qMq).

Observe that using the proof of [OP10a, Theorem 2.1] we may assume that ξn ≥ 0 so that

〈xξn | ξn〉Tr = Tr(xξ2
n) = 〈ξnx | ξn〉Tr for all x ∈ qM̃q and all n ∈ I. Since ‖ξn‖2,Tr → 1, we may

further assume that ‖ξn‖2,Tr = 1 for all n ∈ I.

By contradiction, assume that for some i ∈ {1, 2}, qMiq has no amenable direct summand.

Without loss of generality, we may assume that i = 1. Denote by PH1 : L2(〈qM̃q, eqN q〉) →
H1 the orthogonal projection. Observe that PH1 is the orthogonal projection corresponding

to the unique trace preserving faithful normal conditional expectation EQ : qM̃q → Q onto
the von Neumann subalgebra Q =

∨
{qM1q, ugeqN qu

∗
g : g ∈ F2} ⊂ qM̃q. We claim that

limn ‖ut∗1 ξnut1 − PH1(ut∗1 ξnu
t
1)‖2,Tr = 0. If this is not the case, let ζn = (1− PH1)(ut∗1 ξnu

t
1) ∈ H

and observe that lim supn ‖ζn‖2,Tr > 0. Arguing as in the proof of [Io(12)a, Lemma 2.3], we may
further assume that lim infn ‖ζn‖2,Tr > 0.

Then ζn ∈ H is a net of vectors which satisfies the following conditions:

• lim infn ‖ζn‖2,Tr > 0;

• lim supn ‖xζn‖2,Tr ≤ ‖x‖2 for all x ∈ qM1q;

• limn ‖yζn − ζny‖2,Tr = 0 for all y ∈ qM1q.

Since as qM1q-qM1q-bimodules, we have that H ⊂weak L2(qM1q) ⊗ L2(qM1q) by Lemma
III.4.2, it follows that qM1q has an amenable direct summand by Connes’s result [Co76].
This contradicts our assumption and we have shown that limn ‖ξn − ut1PH1(ut∗1 ξnu

t
1)ut∗1 ‖2,Tr =

limn ‖ut∗1 ξnut1 − PH1(ut∗1 ξnu
t
1)‖2,Tr = 0.

Put L1 = ut1H1u
t∗
1 and denote by PL1 : L2(〈qM̃q, eqN q〉) → L1 the orthogonal projection. Put

ηn = PL1(ξn) and observe that ηn ∈ L1 and ηn ≥ 0. We moreover have limn ‖ξn − ηn‖2,Tr = 0.
So ηn ∈ L1 is a net of vectors which satisfy
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(∗) 〈xηn | ηn〉Tr = 〈ηnx | ηn〉Tr → τ(x) for all x ∈ qM̃q, and

(∗∗) ‖xηn − ηnx‖2,Tr → 0 for all x ∈ αt(qMq).

We have ηn =
∑

g∈F2 u
t
1xn,gugeqN qu

∗
gu
t∗
1 with xn,g ∈ L2(qM1q). Since ηn = η∗n for all n ∈ I, we

may assume that xn,g = x∗n,g for all n ∈ I and all g ∈ F2. Next, we claim that we may further
assume that xn,g ∈ qM1q with xn,g = x∗n,g for all n ∈ I and all g ∈ F2.

To do so, define the set J of triples j = (X,Y, ε) where X ⊂ Ball(qM̃q), Y ⊂ Ball(αt(qMq))
are finite subsets and ε > 0. We make J a directed set by putting (X,Y, ε) ≤ (X ′, Y ′, ε′) if
and only if X ⊂ X ′, Y ⊂ Y ′ and ε′ ≤ ε. Let j = (X,Y, ε) ∈ J . There exists n ∈ I such
that |〈xηn | ηn〉Tr − τ(x)| ≤ ε/2 and ‖yηn − ηny‖2,Tr ≤ ε/2 for all x ∈ X and all y ∈ Y . Let
υ ∈ `2(F2)+ such that ‖υ‖`2(F2) = 1. For each g ∈ F2, choose yj,g ∈ qM1q such that yj,g = y∗j,g
and ‖xn,g−yj,g‖2 ≤ υ(g) ε/4. Put η′j =

∑
g∈F2 u

t
1yj,gugeqN qu

∗
gu
t∗
1 ∈ L1 and observe that η′j = η′∗j

and ‖ηn − η′j‖2,Tr ≤ ε/4. We get |〈xη′j | η′j〉Tr − τ(x)| ≤ ε+ ε2/16 and ‖yη′j − η′jy‖2,Tr ≤ ε for all
x ∈ X and all y ∈ Y . Then the net (η′j)j∈J clearly satisfies Conditions (∗) and (∗∗) above. This
finishes the proof of the claim.

Fix any y ∈ qM2q 	 qBq satisfying ‖y‖2 = 1. Then we have

〈αt(y)ηn | ηnαt(y)〉Tr → 1.

Expanding αt(y) and ηn, we obtain

〈αt(y)ηn | ηnαt(y)〉Tr =
∑
g,h∈F2

〈
ut2yu

t∗
2 ut1xn,gugeqN qu

∗
gu
t∗
1 |ut1xn,huheqN qu∗hut∗1 ut2yu

t∗
2

〉
Tr

=
∑
g,h∈F2

〈
u∗hx

∗
n,hu

t∗
1 u

t
2yu

t∗
2 u

t
1xn,gug eqN q | eqN q u∗hut∗1 ut2yut∗2 ut1ug

〉
Tr

=
∑
g,h∈F2

τ
(
EqN q(u

∗
gu
t∗
1 u

t
2y
∗ut∗2 u

t
1uh)EqN q(u

∗
hx
∗
n,hu

t∗
1 u

t
2yu

t∗
2 u

t
1xn,gug)

)
.

Recall from Section III.3.1 the definition of the Hilbert spaces Kk for k ∈ N and denote by
bn,g = EqBq(xn,g). Since we have

EqN q
(
u∗gu

t∗
1 u

t
2y
∗ut∗2 u

t
1uh
)
∈ K1,

EqN q
(
u∗h(xn,h − bn,g)∗ut∗1 ut2yut∗2 ut1bn,gug

)
and EqN q

(
u∗hb
∗
n,gu

t∗
1 u

t
2yu

t∗
2 u

t
1(xn,g − bn,g)ug

)
∈ K2,

EqN q
(
u∗h(xn,h − bn,g)∗ut∗1 ut2yut∗2 ut1(xn,g − bn,g)ug

)
∈ K3,

we get

〈αt(y)ηn | ηnαt(y)〉Tr =
∑
g,h∈F2

τ
(
EqN q(u

∗
gu
t∗
1 u

t
2y
∗ut∗2 u

t
1uh)EqN q(u

∗
hb
∗
n,hu

t∗
1 u

t
2yu

t∗
2 u

t
1bn,gug)

)
=
∑
g,h∈F2

τ
(
EqN q(u

∗
gu
t∗
1 u

t
2y
∗ut∗2 u

t
1uh)EqN q(u

∗
hu

t∗
1 u

t
2(b∗n,hybn,g)u

t∗
2 u

t
1ug)

)
.

As in the proof of Theorem III.3.4, for i ∈ {1, 2}, put G1 = 〈a〉 and G2 = 〈b〉 so that u1 = ua
and u2 = ub. Denote by (βi(g))g∈Gi the Fourier coefficients of uti. For g, h ∈ F2, define the

isometry Wg,h : L2(M2) 	 L2(B) → L2(M̃) by Wg,h(x) = ugxu
∗
h for x ∈ M2 	 B such that

TrM(x∗x) <∞. Thanks to Lemma III.3.2, the isometries Wg,h have pairwise orthogonal ranges
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when (g, h) are pairwise distinct. For all z ∈ qM2q 	 qBq and all g, h ∈ F2, using calculation
(III.2), we obtain

EqN q(u
∗
hu

t∗
1 u

t
2zu

t∗
2 u

t
1ug) =

∑
r,r′∈G1,s,s′∈G2

β1(r)β2(s)β2(s′)β1(r′)EqN q(Wh−1r−1s,g−1r′−1s′(z))

=
∑

r,r′∈G1,s,s′∈G2

h−1r−1ss′−1r′g=1

β1(r)β2(s)β2(s′)β1(r′)Wh−1r−1s,g−1r′−1s′(z).

Using the facts that G1 ∩ G2 = {e} and that the isometries Wg′,h′ have pairwise orthogonal
ranges when (g′, h′) are pairwise distinct, we get

τ
(
EqN q(u

∗
gu
t∗
1 u

t
2y
∗ut∗2 u

t
1uh)EqN q(u

∗
hu

t∗
1 u

t
2(b∗n,hybn,g)u

t∗
2 u

t
1ug)

)
=

∑
r,r′∈G,s,s′∈G2

rss′r′=hg−1

β1(r−1)2β2(s)2β2(s′−1)2β1(r′)2 τ(y∗b∗n,hybn,g).

For i ∈ {1, 2}, define µi ∈ Prob(F2) by µi(g) = βi(g)2 if g ∈ Gi and µi(g) = 0 otherwise.
Likewise, define µ̌i ∈ Prob(F2) by µ̌i(g) = µi(g

−1) for all g ∈ F2. Put µ = µ̌1 ∗µ2 ∗ µ̌2 ∗µ1. Since
y ∈ qM2q 	 qBq and xn,g ∈ qM1q, we obtain that

τ
(
EqN q(u

∗
gu
t∗
1 u

t
2y
∗ut∗2 u

t
1uh)EqN q(u

∗
hu

t∗
1 u

t
2(b∗n,hybn,g)u

t∗
2 u

t
1ug)

)
= µ(hg−1) τ(y∗b∗n,hybn,g)

= µ(hg−1) τ(y∗x∗n,hyxn,g).

Summing over all g, h ∈ F2 and using Cauchy-Schwarz inequality, we get

|〈αt(y)ηn | ηnαt(y)〉Tr| =

∣∣∣∣∣∣
∑
g,h∈F2

µ(hg−1)τ(y∗x∗n,hyxn,g)

∣∣∣∣∣∣
=

∣∣∣∣∣∣
∑
g,h∈F2

µ(g)τ(y∗x∗n,hyxn,g−1h)

∣∣∣∣∣∣
≤
∑
g,h∈F2

µ(g)‖xn,hy‖2 ‖yxn,g−1h‖2

≤
∑
g∈F2

µ(g)〈ζn |λg(ζ ′n)〉`2(F2),

where ζn =
∑

h∈F2 ‖xn,hy‖2 δh and ζ ′n =
∑

h∈F2 ‖yxn,h‖2 δh. Since we moreover have ut∗1 ηnu
t
1 =∑

g∈F2 ugeqN qu
∗
g xn,g, we get

‖ut∗1 ηnut1y‖22,Tr =
∑
g∈F2

‖ugeqN qu∗g xn,gy‖22,Tr =
∑
g∈F2

‖xn,gy‖22 = ‖ζn‖2`2(F2).

Likewise we have ‖ζ ′n‖`2(F2) = ‖yut∗1 ηnut1‖2,Tr.

Denote by T : `2(F2) → `2(F2) the Markov operator defined by T =
∑

g∈F2 µ(g)λg. Since the
support of µ generates F2 and µ(e) > 0 (see the proof of [Io(12)a, Lemma 3.4, Claim]), Kesten’s
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criterion for amenability [Ke59] yields ‖T‖∞ < 1. This gives

|〈αt(y)ηn | ηnαt(y)〉Tr| ≤ 〈ζn |Tζ ′n〉`2(F2)

≤ ‖T‖∞ ‖ζn‖`2(F2) ‖ζ ′n‖`2(F2)

= ‖T‖∞ ‖ut∗1 ηnut1y‖2,Tr ‖yut∗1 ηnut1‖2,Tr

= ‖T‖∞ ‖ηnut1y‖2,Tr ‖yut∗1 ηn‖2,Tr.

Since ηn = η∗n, we obtain

‖ηnut1y‖2,Tr ‖yut∗1 ηn‖2,Tr → ‖ut1y‖2 ‖yut∗1 ‖2 = ‖y‖22 = 1,

hence lim supn |〈αt(y)ηn | ηnαt(y)〉Tr| ≤ ‖T‖∞ < 1. This however contradicts the fact that

|〈αt(y)ηn | ηnαt(y)〉Tr| → 1

and hence our assumption that qM1q had no amenable direct summand. Thus for all i ∈
{1, 2}, qMiq has an amenable direct summand and so does Mi. This finishes the proof of
Theorem III.4.1.

A combination of the proof of the above Theorem III.4.1 and the one of [Io(12)a, Theorem 4.1]
shows that “or” can be replaced with “and” in Ioana’s result [Io(12)a, Theorem 4.1].

Theorem III.4.3. Let M = M1 ∗B M2 be a tracial amalgamated free product von Neumann
algebra. Assume that M1 6= B 6= M2. Put M̃ = M ∗B (B ⊗ L(F2)) = N o F2 where N =∨
{ugMu∗g : g ∈ L(F2)}. Let t ∈ (0, 1) such that αt(M) is amenable relative to N .

Then for all i ∈ {1, 2}, there exists a nonzero projection zi ∈ Z(Mi) such that Mizi is amenable
relative to B inside M .

III.5 Proofs of Theorems III.A and III.B

III.5.1 A general intermediate result

Theorems III.A and III.B will be derived from the following very general result regarding Cartan
subalgebras inside semifinite amalgamated free product von Neumann algebras.

Theorem III.5.1. Let M = M1 ∗BM2 be a semifinite amalgamated free product von Neu-
mann algebra with semifinite faithful normal trace Tr. Assume that B is amenable, M1 has no
amenable direct summand and for all nonzero projections e ∈ B, we have eBe 6= eM2e.

Let p ∈ Projf(B) and A ⊂ pMp any regular amenable von Neumann subalgebra. Then there
exists q ∈ Projf(B) such that A �M qBq.

Proof. Put M̃ =M∗B (B⊗L(F2)) and regard pM̃p as the tracial crossed product von Neumann

algebra pM̃p = pNp o F2 with N =
∨
{ugMug : g ∈ F2}. We denote by (αt) the malleable

deformation from Section III.3.1. Applying Popa-Vaes’s dichotomy result [PV(12), Theorem

1.6] to the inclusion αt(A) ⊂ pM̃p for t ∈ (0, 1), we get that at least one of the following holds
true:

1. Either αt(A) �
pM̃p

pNp.
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2. Or αt(pMp) is amenable relative to pNp inside pM̃p.

SinceM1 has no amenable direct summand, case (2) cannot hold by Theorem III.4.1. It remains
to show that case (1) leads to the conclusion of the theorem.

In case (1), using Lemma III.2.3 and Theorem III.3.4, we get that either there exists q ∈ Projf(B)
such that A �M qBq or there exist i ∈ {1, 2} and qi ∈ Projf(Mi) such that pMp �M qiMiqi.
Since the latter case is impossible by Proposition III.2.6, we get A �M qBq for some q ∈
Projf(B).

III.5.2 Proof of Theorem III.A

We first need to prove the following well-known result.

Lemma III.5.2. Let M be any von Neumann algebra such that M 6= C and ϕ any faithful
normal state on M . Realize the continuous core c(M) = M oϕ R. Then for every nonzero
projection p ∈ L(R), we have L(R)p 6= pc(M)p.

Proof. There are two cases to consider.

Case (1): assume that Mϕ 6= C. Choose r ∈Mϕ a projection such that r 6= 0, 1. Observe that
x = ϕ(1−r) r−ϕ(r) (1−r) ∈Mϕ is invertible and ϕ(x) = 0. Then for every nonzero projection
p ∈ L(R), we have xp 6= 0 and EL(R)p(xp) = ϕ(x)p = 0. This proves that L(R)p 6= pMp.

Case (2): assume that Mϕ = C. Since Z(M) ⊂ Z(Mϕ), it follows that M is a factor. If M is
of type III, it follows from Connes’s classification of type III factors [Co73] that M is necessarily
of type III1. In that case, c(M) is a type II∞ factor and thus L(R)p 6= pc(M)p for every nonzero
projection p ∈ L(R). If M is a semifinite factor with semifinite faithful normal trace Tr, there
exists b ∈ L1(M,Tr)+ such that ϕ = Tr(b ·) and ‖b‖1,Tr = 1. Let q ∈ M be a nonzero spectral
projection of b. Since

ϕ(qx) = Tr(bqx) = Tr(qbx) = Tr(bxq) = ϕ(xq)

for all x ∈ M , we get q ∈ Mϕ and so q = 1. This shows that b = 1 and Tr = ϕ is a finite trace
on M . Hence M = Mϕ = C, which is a contradiction.

Proof of Theorem III.A. By [Ue11, Theorem 4.1], we know that there exists a nonzero projection
z ∈ Z(M) such that Mz is a full factor and M(1− z) is a purely atomic von Neumann algebra.
In particular, M is not amenable.

In the case when both M1 and M2 are amenable, [HR11, Theorem 5.5] implies that M has no
Cartan subalgebra. It remains to consider the case when M1 or M2 is not amenable. Without
loss of generality, we may assume that M1 is not amenable.

By contradiction, assume that M has a Cartan subalgebra. Hence, Mz also has a Cartan
subalgebra. Let p ∈ Z(M1) be the largest nonzero projection such that M1p has no amenable
direct summand. Since M(1− z) is purely atomic, we necessarily have p ≤ z.

By [Ue11, Lemma 2.2], we have

(pMp,
1

ϕ(p)
ϕ(p · p)) = (M1p,

1

ϕ1(p)
ϕ1(·p)) ∗ (pNp,

1

ϕ(p)
ϕ(p · p))
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with N = (Cp⊕M1(1− p)) ∨M2. Observe that pNp 6= Cp. Indeed let q ∈ M2 be a projection
such that q 6= 0, 1. Then pqp = ϕ2(q)p + p(q − ϕ2(q))p ∈ pNp \ Cp. Since Mz is a factor and
p ≤ z, it follows that pMp has a Cartan subalgebra by [Po06a, Lemma 3.5].

From the previous discussion, it follows that we may assume that M1 has no amenable direct
summand, M2 6= C and M has a Cartan subalgebra A ⊂ M . Using Notation III.2.9, denote
by c(A) ⊂ c(M) the Cartan subalgebra in the continuous core c(M) = c(M1) ∗L(R) c(M2). Let
q ∈ Projf(L(R)). Since c(A) ⊂ c(M) is maximal abelian and Tr |c(A) is semifinite, [HV13,
Lemma 2.1] shows that there exists a nonzero finite trace projection p ∈ c(A) and a partial
isometry v ∈ c(M) such that p = v∗v and q = vv∗. Observe that vc(A)v∗ ⊂ qc(M)q is still a
Cartan subalgebra by [Po06a, Lemma 3.5].

By Lemma III.2.3, Proposition III.2.8, Theorem III.5.1 and Lemma III.5.2, there exists q′ ∈
Projf(L(R)) such that vc(A)v∗ �c(M) L(R)q′. Then Proposition III.2.10 implies that A �M C.
This contradicts the fact that A is diffuse and finishes the proof of Theorem III.A.

III.5.3 Proof of Theorem III.B

Proof of Theorem III.B. Let A ⊂ M be a Cartan subalgebra. Since A,B ⊂ M are both
tracial von Neumann subalgebras of M with expectation, we use Notation III.2.9. Let q ∈
Projf(Z(c(B))). By [HV13, Lemma 2.1], there exists p ∈ Projf(c(A)) and a partial isometry
v ∈ c(M) such that p = v∗v and q = vv∗. Observe that vc(A)v∗ ⊂ qc(M)q is still a Cartan
subalgebra by [Po06a, Lemma 3.5].

Using the assumptions, by Lemma III.2.3, Proposition III.2.8, [HV13, Proposition 5.5] and The-
orem III.5.1, there exists q′ ∈ Projf(Z(c(B))) such that vc(A)v∗ �c(M) c(B)q′. Then Proposition
III.2.10 implies that A �M B.

III.6 Proof of Theorem III.C

Let R be any countable nonsingular equivalence relation on a standard measure space (X,µ).
Following [FM77], denote by m the measure on R given by

m(W) =

∫
X
|{y ∈ X : (x, y) ∈ W}| dµ(x)

for all measurable subsets W ⊂ R. We denote by [R] the full group of R, M = L(R) the von
Neumann algebra of R and identify L2(M) = L2(R,m). For all ψ ∈ [R], define u(ψ) ∈ U(M)
whose action on L2(R,m) is given by

(u(ψ)ξ)(x, y) =

(
d(µ ◦ ψ−1)

dµ
(x)

)1/2

ξ(ψ−1(x), y).

We view L∞(R) as acting on L2(R,m) by multiplication operators. Note that the unitaries
u(ψ) ∈ U(M) for ψ ∈ [R] normalize L∞(R) and that L∞(X) ⊂ L∞(R), by identifying a
function F ∈ L∞(X) with the function on R given by (x, y) 7→ F (x).

Recall from [CFW81, Definition 5] that R is amenable if there exists a norm one projection
Φ : L∞(R)→ L∞(X) satisfying

Φ(u(ψ)Fu(ψ)∗) = u(ψ)Φ(F )u(ψ)∗, ∀ψ ∈ [R].
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By [CFW81, Theorem 10], a countable nonsingular equivalence relation R is amenable if and
only if it is hyperfinite. We will say that a countable nonsingular equivalence relation R is
nowhere amenable if for every measurable subset U ⊂ X such that µ(U) > 0, the equivalence
relation R|U = R∩ (U × U) is nonamenable.

Recall the following definition due to Gaboriau [Ga00, Definition IV.6].

Definition III.6.1. Let R be a countable nonsingular equivalence relation on a standard mea-
sure space (X,µ) and R1,R2 ⊂ R subequivalence relations. We say that R splits as the free
product R = R1 ∗ R2 if

• R is generated by R1 and R2;

• For every p ∈ N>0 and almost every 2p-tuple (xj)j∈Z/2pZ in X such that (x2i−1, x2i) ∈ R1

and (x2i, x2i+1) ∈ R2 for all i ∈ Z/pZ, there exists j ∈ Z/2pZ such that xj = xj+1.

We have the following well-known fact:

Proposition III.6.2. Let R be a countable nonsingular equivalence relation on a standard
measure space (X,µ) and R1,R2 ⊂ R subequivalence relations. Let B = L∞(X), M1 = L(R1),
M2 = L(R2), M = L(R) and denote by E1 : M1 → B, E2 : M2 → B, E : M → B the canonical
faithful normal conditional expectations. The following conditions are equivalent:

1. R splits as the free product R = R1 ∗ R2.

2. (M,E) = (M1, E1) ∗B (M2, E2)

We start by proving the following intermediate result in the framework of type II1 equivalence
relations.

Theorem III.6.3. Let R be a countable (not necessarily ergodic) probability measure preserving
equivalence relation on a standard probability space (X,µ) which splits as a free product R =
R1 ∗ R2 where Ri is a countable type II1 subequivalence relation for all i ∈ {1, 2}.

Let A ⊂ L(R) be a Cartan subalgebra. Then A �L(R) L∞(X).

Proof. Let B = L∞(X), M1 = L(R1), M2 = L(R2) and M = L(R) so that M = M1 ∗BM2. Let
A ⊂M be a Cartan subalgebra.

Assume first that both R1 and R2 are amenable and thus hyperfinite by [CFW81]. Since both
R1 and R2 are moreover of type II1, they are necessarily generated by a free pmp action of Z.
Hence R = R1 ∗R2 is generated by a free pmp action of F2 and so M ∼= BoF2. Then [PV(12),
Theorem 1.6] shows that A �M B.

Next assume that R1 or R2 is nonamenable. Without loss of generality, we may assume that
R1 is nonamenable. Choose a measurable subset U ⊂ X such that µ(U) > 0 and R1|U is
nowhere amenable. Denote by V ⊂ X the R-saturated measurable subset of U in X. Since
R|V = (R1|V) ∗ (R2|V), we may assume that µ(V) = 1.

Since U is a complete section for R, it follows from [Al10, Théorème 44] that we can write
R|U = S1 ∗ S2 where S1 = R1|U and S2 is a type II1 subequivalence relation of R|U which
contains R2|U .
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Write q = 1U ∈ B. By [BO08, Corollary F.8], choose a projection p ∈ A and a partial isometry
v ∈ M such that v∗v = p and vv∗ = q. Then vAv∗ ⊂ qMq is a Cartan subalgebra by [Po06a,
Lemma 3.5]. We can thus apply Theorem III.5.1 to M = L(S1) ∗L∞(U) L(S2), A = vAv∗ and
p = 1. Then we obtain that vAv∗ �qMq Bq, hence A �M B.

Proof of Theorem III.C. Write B = L∞(X), M1 = L(R1), M2 = L(R2) and M = L(R) so
that M = M1 ∗B M2. Define on the standard infinite measure space (X × R,m) the countable
infinite measure preserving equivalence relations c(R1), c(R2) and c(R) which are the Maharam
extensions [Ma64] of the countable nonsingular equivalence relations R1, R2 and R respectively.
Observe that both c(R1) and c(R2) are of type II and c(R) = c(R1) ∗ c(R2).

If we moreover write c(B) = L∞(X × R), we canonically have

c(M1) = L(c(R1)), c(M2) = L(c(R2)), c(M) = L(c(R)) and c(M) = c(M1) ∗c(B) c(M2).

Let A ⊂ M be a Cartan subalgebra. Using Notation III.2.9, we obtain that c(A) ⊂ c(M) is a
Cartan subalgebra. Let q ∈ Projf(c(B)) such that Tr(q) = 1. Up to cutting down by the central
support of q in c(M), we may assume that q has central support equal to 1 in c(M). By [HV13,
Lemma 2.1], there exists p ∈ Projf(c(A)) and a partial isometry v ∈ c(M) such that p = v∗v
and q = vv∗. Observe that vc(A)v∗ ⊂ qc(M)q is still a Cartan subalgebra by [Po06a, Lemma
3.5]. In order to show that A and B are unitarily conjugate inside M , using Theorem III.2.1
and Proposition III.2.10, it suffices to show that vc(A)v∗ �c(M) c(B)q.

Let U ⊂ X×R be a measurable subset such that 1U = q. Since 1U has central support equal to 1
in c(M), U is a complete section for c(R). By [Al10, Théorème 44], we can write c(R)|U = S1∗S2

where S1 = c(R1)|U and S2 is a subequivalence relation of c(R)|U which contains c(R2)|U . In
particular, both S1 and S2 are type II1 equivalence relations on the standard probability space
(U ,m|U).

Let A = vc(A)v∗ and B = L∞(U). Observe that qc(M)q = L(c(R)|U) = L(S1 ∗ S2) and A is a
Cartan subalgebra in L(S1 ∗ S2). Then Theorem III.6.3 implies that A �L(S1∗S2) L∞(U), that
is, vc(A)v∗ �c(M) c(B)q. This finishes the proof of Theorem III.C.

III.7 Proof of Theorem III.D

We start by proving Theorem III.D in the infinite measure preserving case. More precisely, we
deduce the following result from its finite measure preserving counterpart proven in [Io(12)a,
Theorem 1.1].

Theorem III.7.1. Let Γ = Γ1 ∗Σ Γ2 be an amalgamated product group such that Σ is finite and
for all i ∈ {1, 2}, Γi is infinite. Let (B,Tr) be a type I von Neumann algebra endowed with a
semifinite faithful normal trace. Let Γ y (B,Tr) be a trace preserving action such that for all
i ∈ {1, 2}, the crossed product von Neumann algebra B o Γi is of type II. Put M = B o Γ. Let
p ∈ Projf(B) and A ⊂ pMp any regular amenable von Neumann subalgebra.

Then for every nonzero projection e ∈ A′ ∩ pMp, we have Ae �pMp pBp.

Proof. For every subset F ⊂ Γ, denote by PF the orthogonal projection from L2(M,Tr) onto
the closed linear span of {xug : x ∈ B∩L2(B,Tr), g ∈ F}. Since NpMp(A)′′ = pMp, Proposition
III.2.4 (see also [HV13, Lemma 2.7]) provides a central projection z ∈ Z(pMp) and a net of
unitaries wk ∈ U(Az) such that:
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• limk ‖PF (wk)‖2,Tr = 0 for all finite subset F ⊂ Γ.

• For every ε > 0, there exists a finite subset F ⊂ Γ such that ‖a − PF (a)‖2,Tr ≤ ε for all
a ∈ Ball(A(p− z)).

We prove by contradiction that z = 0. So, assume that z 6= 0. Recall that Γ = Γ1 ∗Σ Γ2.
Hence the subgroup Σ0 =

⋂
g∈Γ gΣg−1 < Σ is finite and normal in Γ. Define the quotient

homomorphism ρ : Γ→ Γ/Σ0 and put Λ = Γ/Σ0, Λi = Γi/Σ0 for i ∈ {1, 2}, Υ = Σ/Σ0 so that
Λ = Λ1 ∗Υ Λ2. We get that

⋂
s∈Λ sΥs

−1 = {e}, hence L(Λ) is a II1 factor which does not have
property Gamma by [Io(12)a, Corollary 6.2].

Define the unitary W ∈ U(L2(B,Tr)⊗ `2(Γ)⊗ `2(Λ)) by

W (ξ ⊗ δg ⊗ δs) = ξ ⊗ δg ⊗ δρ(g−1)s,∀ξ ∈ L2(B,Tr),∀g ∈ Γ,∀s ∈ Λ.

Next, define the dual coaction ∆ρ : M →M⊗ L(Λ) by ∆ρ(x) = W ∗(x ⊗ 1)W for all x ∈ M.
Observe that ∆ρ is a trace preserving ∗-embedding which satisfies ∆ρ(bug) = bug ⊗ vρ(g) for all
b ∈ B and all g ∈ Γ.

For every subset F ⊂ Γ, denote by Qρ(F) the orthogonal projection from L2(L(Λ)) onto the
closed linear span of {vρ(g) : g ∈ F}. Observe that (1 ⊗ Qρ(F))(∆ρ(x)) = ∆ρ(PΣ0F (x)) for all
x ∈ M. Since ∆ρ is ‖ · ‖2,Tr-preserving and since Σ0 is finite, for any finite subset F ⊂ Γ, we
have

lim
k
‖(1⊗Qρ(F))(∆ρ(wk))‖2 = lim

k
‖∆ρ(PΣ0F (wk))‖2 = 0.

Since Υ < Λ is a finite subgroup, this implies that ∆ρ(Az) �M⊗L(Λ) qMq ⊗ L(Υ) for all
q ∈ Projf(B).

Put Λ̃ = Λ ∗Υ (Υ× F2) = Λ1 ∗Υ Λ2 ∗Υ (Υ× F2) and consider the malleable deformation (αt) on
L(Λ̃) from Section III.3.1. Define N < Λ the normal subgroup generated by {tΛt−1 : t ∈ F2} so
that L(Λ̃) = N oF2 with N = L(N). Applying Popa-Vaes’s dichotomy result [PV(12), Theorem
1.6] to each of the inclusions

(id⊗αt)(∆ρ(Az)) ⊂ pMp⊗ L(Λ̃) = (pMp⊗N )o F2 with t ∈ (0, 1),

we obtain that at least one of the following holds true:

1. Either there exists t ∈ (0, 1) such that (id⊗αt)(∆ρ(Az)) �pMp⊗L(Λ̃)
pMp⊗N .

2. Or for all t ∈ (0, 1), (id⊗αt)(∆ρ(pMp)) is amenable relative to pMp ⊗N inside pMp ⊗
L(Λ̃).

We will prove below that each case leads to a contradiction.

In case (1), by [Io(12)a, Theorem 3.2] and since ∆ρ(Az) �pMp⊗L(Λ) pMp⊗L(Υ) andNpMpz(Az)′′ =
pMpz, there exists i ∈ {1, 2} such that ∆ρ(pMpz) �pMp⊗L(Λ) pMp⊗ L(Λi). In order to get a
contradiction, we will need the following.

Claim. Let e ∈ Projf(M), Q ⊂ eMe any von Neumann subalgebra and S any nonempty
collection of subgroups of Γ. If Q �M q(B o H)q for all H ∈ S and all q ∈ Projf(B), then
∆ρ(Q) �M⊗L(Λ) qMq ⊗ L(ρ(H)) for all H ∈ S and all q ∈ Projf(B).
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Proof of the Claim. Since Q �M q(B o H)q for all H ∈ S and all q ∈ Projf(B), Proposition
III.2.4 implies that there exists a net vk ∈ U(Q) such that limk ‖PF (vk)‖2,Tr = 0 for all subsets
F ⊂ Γ which are small relative to S. Observe that since Σ0 is finite, Σ0F is small relative to S for
all subsets F ⊂ Γ which are small relative to S. Moreover, (1⊗Qρ(F))(∆ρ(x)) = ∆ρ(PΣ0F (x))
for all x ∈ Q and all subsets F ⊂ Γ which are small relative to S. Since ∆ρ is ‖ ·‖2,Tr-preserving,
for all subsets F ⊂ Γ which are small relative to S, we have

lim
k
‖(1⊗Qρ(F))(∆ρ(vk))‖2,Tr = lim

k
‖∆ρ(PΣ0F (vk))‖2,Tr = 0. (III.5)

Denote by ρ(S) the nonempty collection of subgroups ρ(H) ⊂ Λ with H ∈ S. Let G ⊂ Λ
be any subset which is small relative to ρ(S). Then there exist n ≥ 1, H1, . . . ,Hn ∈ S and
s1, t1, . . . , sn, tn ∈ Λ such that G ⊂

⋃n
i=1 siρ(Hi)ti. Choose gi, hi ∈ Γ such that ρ(gi) = si

and ρ(hi) = ti and denote F =
⋃n
i=1 giHihi. Then G ⊂ ρ(F). Therefore, (III.5) implies

that limk ‖(1 ⊗ QG)(∆ρ(vk))‖2,Tr = 0 for all subsets G ⊂ Λ which are small relative to ρ(S).
Thus, Proposition III.2.4 implies that ∆ρ(Q) �M⊗L(Λ) qMq ⊗ L(ρ(H)) for all H ∈ S and all
q ∈ Projf(B).

We apply the Claim to Q = pMpz and S = {Γ1,Γ2}. In order to do that, we need to check
that pMpz �qMq q(B o Γi)q for all i ∈ {1, 2} and all q ∈ Projf(B). Since B o Σ is a type I
von Neumann algebra and B o Γi is a type II von Neumann algebra, Proposition III.2.6 yields
the result. Therefore, by the Claim, we get that ∆ρ(pMpz) �pMp⊗L(Λ) pMp ⊗ L(Λi) for all
i ∈ {1, 2}. This is a contradiction.

In case (2), since L(Λ) does not have property Gamma, [Io(12)a, Theorem 5.2] shows that either
there exists i ∈ {1, 2} such that L(Λ) �L(Λ) L(Λi) or L(Λ) is amenable. Both of these cases are
easily seen to lead to a contradiction. This finishes the proof of Theorem III.7.1.

Proof of Theorem III.D. Let now Γ y (X,µ) be any nonsingular free ergodic action on a stan-
dard measure space such that for all i ∈ {1, 2}, the restricted action Γi y (X,µ) is recurrent.
Let B = L∞(X) and put M = B o Γ. Assume that A ⊂M is another Cartan subalgebra.

Since A,B ⊂ M are both tracial von Neumann subalgebras of M with expectation, we use
Notation III.2.9. Define c(B) = L∞(X × R) and consider the Maharam extension Γ y c(B) of
the action Γ y B so that we canonically have c(M) = c(B)o Γ. Observe that for all i ∈ {1, 2},
the action Γi y c(B) is still recurrent so that c(B)o Γi is a type II von Neumann algebra.

Let p ∈ Projf(c(A)). By [HV13, Lemma 2.1], there exist q ∈ Projf(c(B)) and a partial isometry
v ∈ c(M) such that p = v∗v and q = vv∗. Observe that vc(A)v∗ ⊂ qc(M)q is still a Cartan
subalgebra by [Po06a, Lemma 3.5].

By Theorem III.7.1, we get vc(A)v∗ �qc(M)q c(B)q. By Proposition III.2.10, this implies that
A �M B. Since M is a factor, by [HV13, Theorem 2.5], we get that there exists a unitary
u ∈ U(M) such that uAu∗ = B. This finishes the proof of Theorem III.D.

III.8 AFP von Neumann algebras with many Cartan subalge-
bras

Connes and Jones exhibited in [CJ82] the first examples of II1 factors M with at least two Cartan
subalgebras which are not conjugate by an automorphism of M . More concrete examples were
found by Ozawa and Popa in [OP10b].
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Recently, Speelman and Vaes exhibited in [SV12] the first examples of group measure space
II1 factors M = L∞(Y )o Λ with uncountably many non stably conjugate Cartan subalgebras.
Recall from [SV12] that two Cartan subalgebras A and B of a II1 factor N are stably conjugate if
there exists nonzero projections p ∈ A and q ∈ B and a surjective ∗-isomorphism α : pNp→ qNq
such that α(Ap) = Bq. Put N = N ⊗ B(`2), A = A ⊗ `∞ and B = B ⊗ `∞. Observe that A
and B are Cartan subalgebras in the type II∞ factor N . Moreover, we have that A and B are
stably conjugate in N if and only if A and B are conjugate in N .

Let Λ y (Y, ν) be a probability measure preserving free ergodic action as in the statement of
[SV12, Theorem 2] so that the corresponding group measure space II1 factor N = L∞(Y ) o Λ
has uncountably many non stably conjugate Cartan subalgebras.

Put Γ = Λ ∗ Z and consider the induced action Γ y (X,µ) with X = IndΓ
Λ Y . Observe that

Γ y (X,µ) is an infinite measure preserving free ergodic action. Write M = L∞(X) o Γ for
the corresponding group measure space type II∞ factor. Since Γ = Λ ∗ Z, we canonically have
M =M1 ∗BM2 with B = L∞(X), M1 = B oΛ and M2 = B oZ. On the other hand, we also
have

M = (L∞(Y )o Λ)⊗B(`2(Γ/Λ)) = N ⊗B(`2(Γ/Λ)).

Therefore we obtain the following result.

Theorem III.8.1. The amalgamated free product type II∞ factor M = M1 ∗BM2 has un-
countably many nonconjugate Cartan subalgebras.

This result shows that the condition in Theorem III.D imposing recurrence of the action Γi y
(X,µ) for all i ∈ {1, 2}, is indeed necessary.



Chapter IV

Maximal amenable subalgebras of
von Neumann algebras associated
with hyperbolic groups

This chapter is based on a joint work with Alessandro Carderi [BC(13)]. We prove that for any
infinite, maximal amenable subgroup H in a hyperbolic group G, the von Neumann subalgebra
LH is maximal amenable inside LG. It provides many new, explicit examples of maximal
amenable subalgebras in II1 factors. We also prove similar maximal amenability results for direct
products of relatively hyperbolic groups and orbit equivalence relations arising from measure-
preserving actions of such groups.
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IV.1 Introduction

Hyperfinite von Neumann algebras form the simplest and most fundamental class of von Neu-
mann algebras. This class is very well understood: Murray and von Neumann proved that there
is a unique hyperfinite II1 factor and Connes celebrated result [Co76] states that hyperfinite von
Neumann algebras are exactly the amenable ones. This characterization implies in particular
that all von Neumann subalgebras of a hyperfinite tracial von Neumann algebra are completely
described: they are hyperfinite. Up to now, such an understanding of subalgebras is out of reach
for a non-hyperfinite von Neumann algebra.

Thus given a II1 factor, it is natural to study the structure of its hyperfinite subalgebras. In
the sixties, Kadison adressed a general question: is any self-adjoint element in a II1 factor M
contained in a hyperfinite subfactor of M? A first answer to this question was provided by Popa,

93
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who showed [Po83] that the von Neumann subalgebra of LFn (n ≥ 2) generated by one of the
generators of Fn is maximal amenable, and yet it is abelian.

Recently there has been some further work in this direction. In 2006, Shen [Sh06] extended the
work of Popa to (countable) direct products of free group factors, providing the first example
of an abelian maximal amenable subalgebra in McDuff factor. Subsequently, the authors in
[CFRW10] investigated the radial subalgebra of LFn and they managed to prove that it is
also maximal amenable. Then Jolissaint [Jo(10)] extended Popa’s result, providing examples of
maximal amenable subalgebras in factors associated to amalgamated free-product groups, over
finite subgroups. Infinitely many explicit examples of maximal amenable subalgebras were also
discovered by Houdayer [Ho(12)a]. He showed that the measure class on T2 associated to a
maximal amenable, abelian subalgebra in a II1 factor reaches a wide range. An example from
subfactor theory was also provided in [Br(12)].

In this article, we intend to provide examples of maximal amenable subalgebras of factors as-
sociated with hyperbolic groups. At the group level, amenable subgroups of hyperbolic groups
are completely understood: they are virtually cyclic, and they act in a nice way on the Gromov
boundary of the group. At the level of von Neumann algebras, we can show the following,
generalizing the main result of [Po83].

Theorem IV.A. Consider a hyperbolic group G and an infinite, maximal amenable subgroup
H < G. Then the group von Neumann algebra LH is maximal amenable inside LG.

This answers a question of Cyril Houdayer [Ho13, Problème 3.13].

Since any maximal amenable subgroup H of a hyperbolic group is virtually cyclic, the associated
von Neumann algebra LH is far from being a factor. By Remark IV.3.5, we obtain many counter-
examples to Kadison’s question, even in property (T) factors. For instance factors of the form
LΓ, with Γ a cocompact lattice in Sp(n, 1), are counter examples with property (T).

Using similar techniques, we can prove the following result for relatively hyperbolic groups.

Theorem IV.B. Let G be a group which is hyperbolic relative to a family G of subgroups of G
and consider an infinite amenable subgroup H ∈ G. Then the group von Neumann algebra LH
is maximal amenable inside LG.

In particular, a subgroup H ∈ G of G as in Theorem IV.B is itself maximal amenable inside G (of
course there are more elementary ways to see this fact). Using results of Osin [Os06a, Os06b], we
obtain the following corollary, which generalizes Theorem IV.A and the main result of [Jo(10)].

Corollary IV.C. Let G be a group which is hyperbolic relative to a family G of amenable
subgroups and H be an infinite maximal amenable subgroup of G. Then the group von Neumann
algebra LH is maximal amenable inside LG.

Limit groups are examples of groups G covered by this corollary.

It is also possible to prove similar results in the context of hyperbolically embedded subgroups,
in the sense of [DGO(11)]: generalizing our techniques one can show that if H < G is an infinite
amenable subgroup which is hyperbolically embedded then LH is maximal amenable inside LG.

Finally, we extend our results to products of groups as above. We also allow the groups to act on
an amenable von Neumann algebra, and we get a similar result about the crossed product von
Neumann algebra. Such a product situation were already investigated in [Sh06] and [CFRW10].
We thank Stuart White for suggesting us to study this case.
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Theorem IV.D. Let n ≥ 1, and consider for all i = 1, . . . , n an inclusion of groups Hi < Gi
as in Theorem IV.B. Put G := G1 × · · · ×Gn and H := H1 × · · · ×Hn.

Then for any trace-preserving action of G on a finite amenable von Neumann algebra (Q, τ),
the crossed-product QoH is maximal amenable inside QoG.

In particular, when G and H are as above, for any free measure preserving action on a probability
spaceGy (X,µ), the equivalence relation on (X,µ) given by theH-orbits is maximal hyperfinite
inside the equivalence relation given by the G-orbits.

Strategy of proof

Given an inclusion H < G as in Theorem IV.A or IV.B, we will analyse LH-central sequences
to deduce that LH is maximal Gamma inside LG. This approach is in the spirit of Popa’s
asymptotic orthogonality property [Po83].

To that aim, we need to understand the conjugacy action of H on G. Once this is achieved, one
can easily conclude as explained in Section IV.2.1.

In Theorem IV.D, note that Q o H ⊂ Q o G is not maximal Gamma in general. We will
in fact use Houdayer’s relative version of the asymptotic orthogonality property to conclude
([Ho(12)b]). The argument relies on the same analysis of LH-central sequences.

IV.2 Preliminaries

IV.2.1 Central sequences and group von Neumann algebras

In this section, we consider an inclusion of two countable discrete groups H < G. We denote by
LH ⊂ LG the associated von Neumann algebras and by ug the canonical unitaries in LG that
correspond to elements g ∈ G.

For a set F ⊂ G, we will by denote PF : `2(G)→ `2(F ) the orthogonal projection onto `2(F ).

As explained in the introduction, the proofs of our main results rely on an analysis of LH-
central sequences. We describe here how the H-conjugacy action on G allows localizing the
Fourier coefficients of LH-central sequences in terms of projections PF , F ⊂ G.

Definition IV.2.1. Let H < G be an inclusion of two countable groups. A set F ⊂ G \H is
said to be H-roaming if there exists an infinite sequence (hk)k≥0 of elements in H such that

hkFh
−1
k ∩ hk′Fh

−1
k′ = ∅ for all k 6= k′.

Such a sequence (hk)k is called a disjoining sequence.

The following standard lemma is the key of our proofs.

Lemma IV.2.2. Let H < G be an inclusion of two countable groups and denote by LH ⊂ LG
the associated von Neumann algebras. Assume that (xn)n is a bounded LH-central sequence in
LG.

Then for any H-roaming set F we have that limn ‖PF (xn)‖2 = 0.
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Proof. Assume that F is an H-roaming set and consider a disjoining sequence (hk)k ⊂ H for F .
Since (xn)n is LH-central, we have for all k

lim sup
n
‖PF (xn)‖2 = lim sup

n
‖PF (uhkxnu

∗
hk

)‖2 = lim sup
n
‖Ph−1

k Fhk
(xn)‖2. (IV.1)

But Ph−1
k Fhk

(xn) ⊥ Ph−1
k′ Fhk′

(xn) for all k 6= k′ and all n. Thus we get that for any N ≥ 0 and

n ≥ 0,

‖xn‖2∞ ≥ ‖xn‖22 ≥
∑
k≤N
‖Ph−1

k Fhk
(xn)‖22.

Applying IV.1, we deduce that supn ‖xn‖2∞ ≥ N lim supn ‖PF (xn)‖22. Since N can be arbitrarily
large, we get the result.

Proposition IV.2.3. Let H < G be an inclusion of two infinite countable groups. Assume that
for any s, t ∈ G \H, there exists an H-roaming set F ⊂ G \H such that sF ct ∩ F c is finite.

If LH has property Gamma, then it is maximal Gamma inside LG.

Proof. Assume that there exists an intermediate von Neumann algebra P with property Gamma:
LH ⊂ P ⊂ LG. Since H is infinite, P is diffuse and so it admits a central sequence (vn)n of
unitary elements which tends weakly to 0.

Claim. For every a ∈ LG	 LH, we have limn〈avna∗, vn〉 = 0.

By a standard linearity/density argument, to prove this claim it is sufficient to check that for
all s, t /∈ H, we have limn〈usvnut, vn〉 = 0.

So fix s, t ∈ G \H. By assumption there exists an H-roaming set F such that K := sF ct∩F c is
finite. Since (vn)n is LH-central and bounded, Lemma IV.2.2 implies that limn ‖PF (vn)‖2 = 0.
Noting that usPF c(vn)ut is in the range of PsF ct for all n, we obtain

lim sup
n
|〈usvnut, vn〉| = lim sup

n
|〈usPF c(vn)ut, PF c(vn)〉|

= lim sup
n
|〈usPF c(vn)ut, PsF ct ◦ PF c(vn)〉|

≤ lim sup
n
‖PK(vn)‖2.

This last term is equal to 0 because (vn)n tends weakly to 0 and K is finite, which proves the
claim.

The claim implies that P = LH. Indeed, if a ∈ P 	LH, then on the one hand limn〈avna∗, vn〉 =
‖a‖22 because the unitaries vn asymptotically commute with a. On the other hand, this limit is
equal to 0 by the claim. So a = 0 and we are done.

Remark IV.2.4. By [Co76], diffuse amenable von Neumann algebras have property Gamma.
Hence an amenable maximal Gamma subalgebra of a finite von Neumann algebra M is maximal
amenable. In the case where M = LG for some hyperbolic group G then the two notions are
equivalent, because M is solid ([Oz04]).

If H < G is an inclusion satisfying the assumption of Proposition IV.2.3, then H is almost
malnormal in G in the sense that sHs−1 ∩H is finite for all s /∈ H. As pointed out in Example
A.1.5, this is equivalent to saying that the inclusion LH ⊂ LG is mixing (Definition A.1.2).
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IV.2.2 Relatively hyperbolic groups and their boundary

The contents of this section is taken from Bowditch [Bow12]. Let us fix first some terminology
and notations about graphs.

Let K be a connected graph. Its vertex set and edge set are denoted by V (K) and E(K)
respectively. A path of length n between two vertices x and y is a sequence (x0, x1, . . . , xn) of
vertices such that x0 = x and xn = y, and (xi, xi+1) ∈ E(K) for all i = 0, . . . , n − 1. The
path (x0, . . . , xn) is a circuit if x0 = xn and if x0, x1, . . . , xn−1 are pairwise distinct1. For a path
α = (x0, x1, . . . , xn), we put α(k) = xk, k = 0, . . . , n.

We endow K with the distance d given by the length of a shortest path between two points.
A path α between two vertices x and y is a geodesic if its length equals d(x, y). We denote by
F(x, y) the set of all geodesics between x and y.

More generally, for r ≥ 0, a path α is an r-quasi-geodesic if all its vertices are distincts2, and if
for any finite subpath β = (x0, . . . , xn) of α, the length of β is smaller than d(x0, xn) + r. Note
that the geodesics are exactly the 0-quasi-geodesics. For x, y ∈ V (K), denote by Fr(x, y) the
set of r-quasi-geodesics between x and y.

We will also consider infinite paths (x0, x1, . . . ) or bi-infinite paths (. . . , x−1, x0, x1, . . . ). For
r ≥ 0, such an infinite or bi-infinite path will be called r-quasi-geodesic if all its finite subpaths
are r-quasi-geodesics.

Definition IV.2.5. In a graph K, a geodesic triangle is a set of three vertices x, y, z ∈ V (K),
together with geodesic paths [x, y] ∈ F(x, y), [y, z] ∈ F(y, z) and [z, x] ∈ F(z, x) connecting
them. These paths are called the sides of the triangle.

Definition IV.2.6 (Gromov [Gr87]). A connected graph K is called hyperbolic if there exists
a constant δ > 0 such that every geodesic triangle in K is δ-thin: each side of the triangle is
contained in the δ-neighbourhood of the union of the other two, namely [x, y] ⊂ B([y, z]∪[z, x], δ),
and similarly for the other two sides.

Two infinite quasi-geodesics in a hyperbolic graph K are equivalent if their Hausdorff distance is
finite. The Gromov boundary ∂K of K is the set of equivalence classes of infinite quasi-geodesics.
The endpoints of a path α = (x0, x1, . . . ) in a class x of ∂K are defined to be x0 and x. Similarly,
a bi-infinite path α := (. . . , x−1, x0, x1, . . . ) has endpoints α− := [(x0, x−1, . . . )] ∈ ∂K and
α+ = [(x0, x1, . . . )] ∈ ∂K. It turns out that for any two points x, y ∈ K ∪ ∂K, for any r ≥ 0,
the set Fr(x, y) of r-quasi-geodesics connecting them is non-empty.

Recall that a hyperbolic group is a finitely generated group which admits a hyperbolic Cayley
graph (this implies that all its Cayley graphs are hyperbolic). We will define similarly relatively
hyperbolic groups, but we have to replace the Cayley graph by a graph in which some subgroups
are “collapsed” to points.

Definition IV.2.7 ([Far98]). Consider a group G, with finite generating set S and denote by
Γ := Cay(G,S) the associated Cayley graph. Let G be a collection of subgroups of G. The
coned-off graph of Γ with respect to G is the graph Γ̂ with:

• vertex set V (Γ̂) := V (Γ) t
⊔
H∈G G/H;

1This last condition will be crucial in Definition IV.2.8.
2This condition is necessary for Lemma IV.2.12(1) to be true.
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• edge set E(Γ̂) := E(Γ) t {(gh, [gH]) |H ∈ G, [gH] ∈ G/H, h ∈ H}.

In the sequel, we will identify V (Γ) with G. The action of G on itself by left multiplication
extends to an isometric action on Γ̂. The stabilizer of the vertex [gH] is equal to gHg−1.

Note that in the coned-off graph Γ̂, the distance between two elements g and gh is at most 2
whenever h ∈ H for some H ∈ G. Note also that this coned-off graph will not be locally finite
in general. But it will sometimes satisfy the following fineness condition.

Definition IV.2.8 ([Bow12]). A graph Γ is called fine if each edge of Γ is contained in only
finitely many loops of length n, for any given integer n.

Definition IV.2.9 ([Bow12]). A group G is said to be hyperbolic relative to the family G if there
exists a finite generating set S of G such that the coned-off graph Γ̂ is fine and δ-hyperbolic (for
some δ ≥ 0).

From this definition, usual hyperbolic groups appear as hyperbolic relative to the empty family.
For any relatively hyperbolic group G with Cayley graph Γ, let us define a topology on ∆Γ :=
Γ̂ ∪ ∂Γ̂.

Definition IV.2.10. Given x ∈ ∆Γ and a finite set A ⊂ V (Γ̂) such that x /∈ A, we define

M(x,A) := {y ∈ ∆Γ : A ∩ α = ∅, ∀α ∈ F(x, y)} .

Theorem IV.2.11 ([Bow12], section 8). The family {M(x,A)}x,A is a basis for a Hausdorff
compact topology on ∆Γ such that G ⊂ ∆Γ is a dense subset, and every graph automorphism of
Γ̂ extends to a homeomorphism of ∆Γ.

Actually, we will not use the fact that ∆Γ is compact. The proof of Theorem IV.2.11 relies on
the following lemma, which will be our main tool in order to manipulate neighbourhoods in ∆Γ.

Lemma IV.2.12 ([Bow12], Section 8). Let r ≥ 0. The following facts are true.

1. For every x, y ∈ ∆Γ, the graph
⋃
α∈Fr(x,y) α is locally finite.

2. For every edge e ∈ E(Γ̂), there exists a finite set Er(e) ⊂ E(Γ̂) such that for all x, y ∈ ∆Γ,
and all α, β ∈ Fr(x, y) with e ∈ α, we have that Er(e) ∩ β contains at least one edge.

3. For every a ∈ V (Γ̂), x ∈ ∆Γ, with x 6= a, there exists a finite set Vr,x(a) ⊂ V (Γ̂)\{x} such
that for all y ∈ ∆Γ, and all α, β ∈ Fr(x, y) with a ∈ α, we have that β ∩ Vr,x(a) 6= ∅.

More generally, given a subset A ⊂ V (Γ̂), we will put Vr,x(A) :=
⋃
a∈A Vr,x(a). We will also

assume that A ⊂ Vr,x(A).

Proof. The first two facts are 8.2 and 8.3 in [Bow12]. To derive the third fact from the others,
fix a ∈ V (Γ̂) and x ∈ ∆Γ. Denote by E0 the set of edges e in the graph

⋃
α∈Fr(a,x) α such that

a is an endpoint of e. By (1), the set E0 is finite. Now put E :=
⋃
e∈E0

Er(e), and define Vr,x(a)
to be the set of endpoints of E, in which we remove x if necessary. This is a finite set.

Now if α ∈ Fr(x, y) goes through a, then it will contain an edge in E0. Thus any β ∈ Fr(x, y)
contains an edge in E, and we are done by the definition of Vr,x(a).
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Lemma IV.2.12 will always be used via the following easy lemma.

Lemma IV.2.13. Let r > 0, x ∈ ∆Γ and A ⊂ V (Γ̂) \ {x} finite. The following are true.

1. If y /∈M(x,A), then any r-quasi-geodesic α ∈ Fr(x, y) intersects Vr,x(A).

2. If y ∈M(x, Vr,x(A)), then no r-quasi-geodesic from y to x intersect A.

Now we describe a way of constructing quasi-geodesic paths. The following lemma is well known.

Lemma IV.2.14. There exist a constant r0 ≥ 0, only depending on the hyperbolicity constant of
the graph Γ̂, with the following property: for any geodesic paths α, β sharing exactly one endpoint
a, if a is the closest point of α to each point of β, then α ∪ β is an r0-quasi-geodesic.

Definition IV.2.15. Consider x, y, z ∈ ∆Γ and let α ∈ F(x, y) be a geodesic. A point z0 ∈ α
which minimizes the distance from z to α, is called a projection of z on α. Such a z0 splits
the path α into two geodesic paths αx ∈ F(x, z0) and αy ∈ F(z0, y). Given any geodesic
β ∈ F(z, z0), we can join β and αx or αy to get two paths that are r0-quasi geodesic by Lemma
IV.2.14.

We end this section with a lemma that we will need later. Its proof illustrates well how to use
the tools defined above.

Lemma IV.2.16 ([Bow12]). For every x ∈ ∆Γ and for every finite subset A ⊂ V (Γ̂) \ {x},
there exists a finite subset C ⊂ V (Γ̂) \ {x} such that for every y ∈M(x,C),

M(y, C) ⊂M(x,A).

Proof. Let r0 ≥ 0 be given by Lemma IV.2.14, and set C := Vr0,x(Vr0,x(A)) (see Lemma
IV.2.12(3)). We will show that the conclusion of the lemma holds for this C.

If y = x, we see that M(x,C) ⊂ M(x,A) because A ⊂ Vr0,x(A) ⊂ C. Now let y ∈ M(x,C),
with y 6= x, and take z /∈M(x,A). We will show that z /∈M(y, C).

Let α be a geodesic between y and z. Consider a projection x0 of x on α as in Definition IV.2.15
and let β ∈ F(x, x0). We denote with αy (resp. αz) the subgeodesic of α between x0 and y
(resp. x0 and z). Then, by Lemma IV.2.14 the paths β ∪ αy ∈ Fr0(x, y) and β ∪ αz ∈ Fr0(x, z)
are r0-quasi-geodesics.

Since z /∈M(x,A), Lemma IV.2.13(1) implies that β ∪αz intersects Vr0,x(A). If the intersection
point lied on β∪αy, then Lemma IV.2.13(2) would contradict our assumption that y ∈M(x,C).
Hence the intersection point lies on αz ⊂ α. We have found a geodesic between z and y which
intersects a point of Vr0,x(A) ⊂ C, which means precisely that z /∈M(y, C).

IV.3 Hyperbolic case: proof of Theorem IV.A

Suppose that G is a hyperbolic group and that H is an infinite maximal amenable subgroup of
G. We want to apply Proposition IV.2.3 in order to prove Theorem IV.A.

As mentioned in Section IV.2.2, G is hyperbolic relative to the empty family and Γ̂ = Γ, for
any Cayley graph Γ of G. Thus ∆Γ := Γ ∪ ∂Γ is the usual Gromov compactification of Γ, with
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boundary ∂Γ, endowed with the topology given by the sets {M(x,A)}x,A. As before, we identify
G with V (Γ).

Recall that the action of G by left multiplication on itself extends to a continuous action on ∆Γ.
This action is amenable.

The amenable subgroup H has a particular form by [GdH90, Théorème 8.29, Théorème 8.37].
First, H admits an element a ∈ H which generates a finite index subgroup of H. Second, the
element a acts on ∆Γ with exactly two fixed points a± ∈ ∂Γ, and H ⊂ StabG({a−, a+}). Since
the left action of G on ∆Γ is amenable, the group StabG({a−, a+}) is amenable. By maximal
amenability of H this yields the equality H = StabG({a−, a+}). Also, Stab(a−) and Stab(a+)
are contained in H.

Moreover, the fixed points a± of a are such that limn→+∞ a
nx = a+ and limn→−∞ a

nx = a−,
for any x ∈ ∆Γ (so in particular a+ is the unique cluster point of the sequence {an}n≥0).

The action of G on itself by right multiplication also extends to a continuous action on ∆Γ, in
such a way that any element g ∈ G acts trivially on ∂Γ (see for instance [BO08, Proposition
5.3.18]).

In order to find an H-roaming set as in Proposition IV.2.3, we need to understand geometrically
the conjugacy action of H on G. We start by collecting properties of left and right actions of
H on ∆Γ separately, in the following two lemmas. Combining these lemmas, we will see that
the conjugacy action of H has a uniform “north-south dynamics” out of H, as shown in Figure
IV.1a.

a+ a−
HH

FV V

hFh−1

h · h−1

h · h−1

(a) Conjugacy action of H on G.

a+ a−
idH

s·

s
sH

sa−sa+

sV t sV t

VV

(b) The subsets V and sV t are disjoint.

Figure IV.1: The action of G and a good neighborhood V of {a+, a−}.

The following fact is certainly known, but we include a proof for the sake of completeness.

Lemma IV.3.1. For any finite sets A,B ⊂ V (Γ), there exists n ∈ Z such that

G ∩ (an ·M(a−, B)c) ⊂M(a+, A).

Proof. First note that we can (and we will) assume that a− /∈ M(a+, A). By Lemma IV.2.16
there exists a finite set C ⊂ V (Γ) such that for all y ∈M(a+, C) we have M(y, C) ⊂M(a+, A).
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In particular, for all y ∈ M(a+, C) and z /∈ M(a+, A) there exists a geodesic between y and z
which intersects C.

Choose n ∈ Z such that anB ⊂ M(a+, C) and such that the distance between points of C and
anB is larger than the diameter D of V0,a−(C). We claim that this n satisfies the conclusion of
the lemma.

Assume by contradiction that there exists z ∈ G = V (Γ) such that z /∈ anM(a−, B) and
z /∈ M(a+, A). Since z /∈ anM(a−, B) = M(a−, a

nB), there exists a geodesic α ∈ F(a−, z)
which contains a point y ∈ anB ⊂M(a+, C). Let us denote αa− the sub-geodesic of α between
a− and y and with αz the sub-geodesic between y and z.

Since a− /∈M(a+, A), there exists a geodesic between a− and y which intersects C. By Lemma
IV.2.12, the geodesic αa− meets V0,a−(C) at a vertex x1. Moreover z /∈ M(a+, A), so replacing
αz by another geodesic between y and z if necessary, we can assume that αz meets C ⊂ V0,a−

at a vertex x2 (while α = αa− ∪ αz is still a geodesic). But then

d(x1, x2) ≤ diam(V0,a−(C)) = D.

On the other hand, the length of α between these two points is equal to d(x1, y)+d(y, x2), while
d(x1, y) > D because x1 ∈ C and y ∈ anB. This is absurd.

Lemma IV.3.2. For any A ⊂ V (Γ) finite, there exists a finite B ⊂ V (Γ) such that for any
k ∈ Z,

(M(a+, B) ∩ (G \H))ak ⊂M(a+, A).

Proof. We start with a claim.

Claim. There exists a finite set B′ ⊂ V (Γ) such that if y ∈ M(a+, B
′) ∩ G is such that

yak /∈M(a+, A) for some k ∈ Z, then there exists m ∈ Z such that yam ∈ B′.

Proof of the Claim. By [GdH90, Proposition 8.21], there exists a finite constant r > 0 such
that for any p ∈ Z, all geodesics between the neutral element e and ap are contained in the
r-neighbourhood of the sequence {ak, k ∈ Z}.
By Lemma IV.2.16 there exists a finite set C ⊂ V (Γ) such that for all y ∈ M(a+, C) we have
M(y, C) ⊂M(a+, A). We show the claim for B′ := B(C, r), the r-neighbourhood of C.

Take y ∈ M(a+, B
′) ∩ G ⊂ M(a+, C) such that yak /∈ M(a+, A) for some k ∈ Z. Then

yak /∈ M(y, C), so there exists a geodesic α between y and yak which meets C at a point c.
Then y−1c belongs to a geodesic between e and ak, so it is at distance less than r to some am.
In other words, yam ∈ B(C, r) = B′, which proves the claim.

Observe that the set of cluster points of the sequences (yak)k, with y ∈ B′ \ H is finite and
contained in ∂Γ \ {a+, a−}. So there exists B such that

M(a+, B) ⊂M(a+, B
′) and M(a+, B) ∩ {bak | b ∈ B′ \H, k ∈ Z} = ∅.

The subset B satisfies the conclusion of the lemma. Indeed, if y ∈ M(a+, B) ∩ (G \H) is such
that yak /∈M(a+, A) for some k ∈ Z, then by the claim there exists h such that y ∈ B′a−h. But
in this case we would have y ∈ M(a+, B) ∩ {bap | b ∈ B′ \H, p ∈ Z}, which was assumed to be
empty. Therefore yak ∈M(a+, A) for any k.

Now we can deduce a relevant property of the conjugacy action of H, as shown in Figure IV.1a.
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Proposition IV.3.3. For any neighbourhood V of {a−, a+} inside ∆Γ, the set F := V c∩(G\H)
is H-roaming.

Proof. Let V and F be as in the proposition. We will construct a disjoining sequence (hk)k
inductively. First put h0 := e.

Now assume that h0, . . . , hn−1 have been constructed, for some n ≥ 1. We will construct hn.
Denote by Vn :=

⋂n
i=0 hiV h

−1
i . It is a neighbourhood of {a−, a+}, by continuity of left and right

actions of H. Now put Fn := V c
n ∩ (G \H).

By Lemma IV.3.2, there exists a neighbourhood V ′ of a+ such that (V ′ ∩ (G \H))ak ⊂ Vn for
all k ∈ Z. By Lemma IV.3.1, there exists kn ∈ Z such that G ∩ aknV c ⊂ V ′ and in particular
aknF ⊂ V ′. Note also that (aknF ) ∩H = ∅.
Altogether, we get that aknFa−kn ⊂ Vn is disjoint from Fn. But Fn contains all the hiFh

−1
i ,

i ≤ n− 1. So we can define hn = akn .

Corollary IV.3.4. For every s, t ∈ G \H, there exists an H-roaming set F ⊂ G \H such that
sF ct ∩ F c is finite.

Proof. Choose a neighbourhood V0 of {a+, a−} such that V0 is disjoint from sV0. Since the right
action of t on ∆Γ is continuous, we can find a V ⊂ V0 such that V and sV t are disjoint (see
Figure IV.1b). We observe that sV t ∩ H, sHt ∩ V and sHt ∩ H are finite because the only
cluster points of H are in V and the only cluster points of sHt are in sV t.

Therefore, setting F := V c ∩ (G \ H), we get an H-roaming set (by Proposition IV.3.3) such
that sF ct ∩ F c is finite.

Now Theorem IV.A follows from Proposition IV.2.3.

Remark IV.3.5. Note that in the proof of Proposition IV.3.3 the disjoining sequence that we
construct is contained in the subgroup H0 := 〈a〉 ⊂ H. Then the proof of Theorem IV.A actually
shows that if P ⊂ LG is an algebra with property Gamma such that LH0 ⊂ P , then P ⊂ LH.
Hence ua is contained in a unique maximal amenable von Neumann subalgebra of M .

IV.4 Relatively hyperbolic case

IV.4.1 Proof of Theorem IV.B

Let G be a hyperbolic group relative to a family G of subgroups of G, and let H ∈ G be an
infinite amenable subgroup.

Consider a Cayley graph Γ of G such that the coned-off graph Γ̂ of Γ with respect to G is fine and
hyperbolic. Denote by ∆Γ its Gromov compactification, endowed with the topology generated
by the sets {M(x,A)}x,A. We still identify G with the subset V (Γ) ⊂ V (Γ̂).

Now denote by c = [H] ∈ V (Γ̂) the vertex associated with [H] ∈ G/H. This point is not in the
boundary ∂Γ, but it is represented out of Γ, as in Figure IV.1.

We will show that for any neighbourhood V of c, the set F := V c ∩ (G \ H) (Figure IV.2a)
is H-roaming in the sense of Definition IV.2.1. Then we will show that if V is small enough
(Figure IV.2b), F satisfies the condition of Proposition IV.2.3, hence proving Theorem IV.B.
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c = [H]

H

F

hFh−1

h · h−1

V V

(a) Conjugacy action of H on G.

VV

sV tsV t

c = [H]

H

sH

sc = s[H]

(b) The subsets V and sV t are disjoint.

Figure IV.2: The action of G and a good neighborhood V of c = [H].

In this section, we will write Vr instead of Vr,c, r ≥ 0 (see Lemma IV.2.12).

Remark that since c shares an edge with all the points in H (and only with them), any geodesic
between c and a point x ∈ ∆Γ contains exactly one element in H. In particular one has the
following simple lemma.

Lemma IV.4.1. The family {M(c, A)}A⊂H is a basis of neighbourhoods of c.

Proof. Let B ⊂ V (Γ̂) be a finite subset, for every b ∈ B choose a geodesic αb from c to b. Set
A := {αb(1)}b∈B and observe that M(c, A) ⊂M(c,B).

Remark IV.4.2. In the same way, if A ⊂ H is finite and r ≥ 0, the set Vr(A) from Lemma
IV.2.12 can be assumed to be contained in H. Indeed one can replace Vr(A) by the finite set of
points in H which lie on an r quasi-geodesic from Vr(A) to c.

To give a hint about the topology near the point c, let us mention that any sequence (hn)n in
H which goes to infinity converges to c.

As in the hyperbolic case, we will study geometrically the conjugacy action of H on G. We will
treat left and right actions separately. First, the left multiplication of G on itself extends to an
isometric action on Γ̂, and hence extends to a continuous action on ∆Γ. Let us extend also the
right action.

Definition IV.4.3. The right action of G on ∆Γ is the action whose restriction to G is equal
to the right multiplication by G on itself, and which is trivial on ∆Γ \G. This action is a priori
not continuous, and it clearly commutes with the left action.

The following lemma is due to Ozawa, who shows actually that the right action on ∆Γ is
continuous. But we will only use continuity at c.

Lemma IV.4.4 ([Oz06]). The right action of G on ∆Γ is continuous at c.
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Proof. Let g ∈ G, and let (xn) be a sequence converging to c. We want to prove that (xng)
converges to c. Since the right action is trivial on ∆Γ \G, we can assume that xn ∈ G for all n.
Fix a finite set A ⊂ H. We will show that xng ∈M(c, A) for n large enough.

By Lemma IV.2.16, there exists a finite set C ⊂ V (Γ̂)\{c} such that for all y ∈M(c, C) we have
M(y, C) ⊂M(c, A). So if y ∈M(c, C) and z /∈M(c, A), then there exists a geodesic between y
and z which intersects C.

Assume by contradiction that there exist infinitely many indices n for which xng /∈ M(c, A).
By assumption xn ∈ M(c, C) for n large enough, which implies that there exists a geodesic
αn ∈ F(xn, xng) which intersects C for infinitely many n’s. Then x−1

n αn belongs to F(e, g) and
the set X :=

⋃
α∈F(e,g) V (α) is finite by Lemma IV.2.12(1). Altogether we get that x−1

n C∩X 6= ∅
for infinitely many n’s. Taking a subsequence if necessary, we find an element c′ ∈ C and x ∈ X
such that x−1

n c′ = x for all n.

But then for all p, n ∈ N, we see that x−1
p xn ∈ StabG(x). Since there are infinitely many distinct

elements xn, we get that x has to be a conic point, and for all fixed p, the sequence (x−1
p xn)n

converges to x. But by continuity of the left action, the sequence also converges to x−1
p c.

Therefore c = xpx = c′. This contradicts our assumption that c /∈ C.

We now collect properties of left and right actions of H on ∆Γ. Note that the left action of H
stabilizes c (and H = Stab(c)).

Lemma IV.4.5. For any finite subsets A,B ⊂ H, there exists h ∈ H such that

hM(c, A)c ⊂M(c,B).

Proof. By Remark IV.4.2, we may assume that V0(A) ⊂ H. Let h ∈ H be such that hV0(A)∩B =
∅. Let x ∈ M(c, A)c and let α be any geodesic between c and hx, α ∈ F(c, hx) . By Lemma
IV.2.13(1), h−1α ∈ F(c, x) contains a point a ∈ V0(A). Thus ha is the unique point of H which
is on α. In particular α contains no point of B.

Lemma IV.4.6. For any A ⊂ V (Γ̂) finite, there exists a finite B ⊂ V (Γ̂) such that for any
h ∈ H,

(M(c,B) ∩ (G \H))h ⊂M(c, A).

Proof. By Lemma IV.4.1, we can assume that A ⊂ H. Consider an element x ∈ G \ H such
that x /∈M(c, A) and take h ∈ H. We will show that xh /∈M(c, V2(A)).

Let α be a geodesic from c to x that meets A and put a := α(1) ∈ α ∩ A. Note that since
xh /∈ H, we have d(xh, c) ≥ 2, and at the same time d(xh, x) ≤ 2, because xh and x lie in the
same coset xH. Hence one can choose a projection z0 of xh on α to be different from c. Thus
the path from xh to c through z0 constructed as in Definition IV.2.15 is a 2-quasi-geodesic and
it contains a = α(1) ∈ A. By Remark IV.2.13(2), this implies that xh /∈ M(c, V2(A)). Thus
B := V2(A) satisfies the conclusion of the lemma.

As in the hyperbolic case, we deduce the following property of the conjugacy action of H on G,
see Figure IV.2a.

Proposition IV.4.7. For any neighbourhood V of c inside ∆Γ, the set F := V c ∩ (G \H) is
H-roaming.
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Proof. We will construct a disjoining sequence (hk)k ⊂ H inductively. First put h0 := e. Now
assume that h0, . . . , hn−1 have been constructed, for some n ≥ 1. We will construct hn.

Denote by Vn :=
⋂n
i=0 hiV h

−1
i . It is a neighbourhood of {c}, by continuity at c of left and

right actions of H. Hence there exists A ⊂ H finite such that M(c, A) ⊂ Vn. Now put Fn :=
M(c, A)c ∩ (G \H).

By Lemma IV.4.6, there exists B ⊂ H finite such that (M(c,B) ∩ (G \ H))H ⊂ M(c, A).
Then Lemma IV.4.5 provides an h ∈ H such that hFn ⊂ M(c,B). Altogether, we get that
hFnh

−1 ⊂M(c, A), which is disjoint from Fn.

Note that for all i = 0, . . . , n−1, we have hiFh
−1
i ⊂ V c

n ∩ (G\H) ⊂ Fn. Therefore we can define
hn to be equal to h.

Corollary IV.4.8. For every s, t ∈ G \H, there exists an H-roaming set F ⊂ G \H such that
sF ct ∩ F c is finite.

Proof. We proceed as in Corollary IV.3.4. By continuity of left and right action at c, there exists
a neighbourhood V of c such that V and sV t are disjoint (see Figure IV.2b). We observe that
sV t∩H, sHt∩V and sHt∩H are finite because the cluster point of H lies in V and the cluster
point of sHt lies in sV t.

Therefore, setting F := V c ∩ (G \ H), we get an H-roaming set (by Proposition IV.4.7) such
that sF ct ∩ F c is finite.

Now Theorem IV.B follows from Proposition IV.2.3.

Surprisingly, we did not use the fact that H is amenable until the end of the proof. In fact our
proof shows that if G is hyperbolic relative to a family G of subgroup and if H ∈ G is infinite
and such that LH has property Gamma then LH is maximal Gamma inside LG.

Remark IV.4.9. For later use, note that the set F in Corollary IV.4.8 is such that sF ct∩F c ⊂ H
and hence s(F ∪H)ct ⊂ F ∪H.

IV.4.2 Proof of Corollary IV.C

Assume that G is hyperbolic relative to a family G of amenable subgroups, and consider an
infinite maximal amenable subgroup H < G. We will show that G is hyperbolic relative to
G ∪ {H}. Then Theorem IV.B will directly allow to conclude that LH is maximal amenable
inside LG.

The argument relies on Osin’s work [Os06a, Os06b].

Definition IV.4.10. An element g ∈ G is said to be hyperbolic if it has infinite order and is
not contained in a conjugate of a group in G.

Definition IV.4.11. A subgroup K of G is said to be elementary if it is either finite, or
contained in a conjugate of a group in G, or if it contains a finite index cyclic subgroup 〈g〉, for
some hyperbolic element g.

(Gromov-)Tukia’s strong Tits alternative (see [Tu94, Theorem 2T, Theorem 3A] using [Bow12,
Definition 1]) states that a non-elementary subgroup K of G contains a copy of the free group
on two generators.
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In particular, our amenable subgroup H is elementary. If it is contained in a conjugate aHia
−1 of

a group in G, then it is equal to aHia
−1 by maximal amenability, and Theorem IV.B concludes.

Now assume that H contains a finite index cyclic subgroup 〈g〉, for some hyperbolic element g.
Osin showed in [Os06b, Section 3] that such a hyperbolic element g is contained in a unique
maximal elementary subgroup E(g) (thus H = E(g), by maximal amenability). Moreover he
showed [Os06b, Corollary 1.7] that G is hyperbolic relative to G ∪ {E(g)}. This is what we
wanted to show.

IV.5 Product case: proof of Theorem IV.D

Observe that if Hi < Gi, for i = 1, 2, are infinite maximal amenable subgroups, then the von
Neumann subalgebra L(H1×H2) ⊂ L(G1×G2) is neither maximal Gamma nor mixing as soon
as H1 6= G1.

Therefore to treat the product case, we will have to deal with relative notions. We could
consider a relative notion of property Gamma and proceed as in Section IV.2.1. We choose
instead to apply directly the work of C. Houdayer and the relative asymptotic orthogonality
property, [Ho(12)b]. Note that in the case of virtually abelian subgroups H1, H2 we could also
use [CFRW10, Theorem 2.8].

Definition IV.5.1. Let A ⊂ N ⊂ (M, τ) be finite von Neumann algebras. The inclusion
N ⊂M is said to be weakly mixing through A if the bimodule AL

2(M)	L2(N)N is (left) weakly
mixing, in the sense of Definition A.2.1.

In the spirit of Example A.1.5, one can check the following.

Example IV.5.2. If H < G is an inclusion of groups satisfying the assumption of Proposition
IV.2.3 (e.g. if H and G are as in Theorem IV.B), then for any trace-preserving action Gy (Q, τ)
on a finite von Neumann algebra, the inclusion QoH ⊂ QoG is weakly mixing through LH.

Definition IV.5.3 ([Ho(12)b], Definition 5.1). Let A ⊂ N ⊂ (M, τ) be an inclusion of finite
von Neumann algebras. We say that N ⊂M has the asymptotic orthogonality property relative
to A if for every ‖ · ‖∞-bounded sequences (xn)n and (yn)n in M 	 N which asymptotically
commute with A, we have that

lim
n
〈axnb, yn〉 = 0, for all a, b ∈M 	N.

Theorem IV.5.4 ([Ho(12)b], Theorem 8.1). Let A ⊂ N ⊂ (M, τ) be an inclusion of finite von
Neumann algebras. Assume the following:

1. A is amenable.

2. The inclusion N ⊂M is weakly mixing through A.

3. The inclusion N ⊂M has the relative asymptotic orthogonality property relative to A.

Then any amenable von Neumann subalgebra of M containing A is automatically contained in
N .
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From now on, we consider the crossed-product von Neumann algebras Q o G associated to
a trace-preserving actions G y (Q, τ). As for group von Neumann algebras, denote by ug
the unitaries of Q o G corresponding to elements g ∈ G and for any set F ⊂ G denote by
PF : L2(Q, τ)⊗ `2(G)→ L2(Q, τ)⊗ `2(F ) the orthogonal projection.

Proposition IV.5.5. Let H < G be an inclusion of two infinite groups, with H amenable.
Consider an action G y (Q, τ) of G on a tracial von Neumann algebra, and assume that for
any s, t ∈ G \H, there exists an H-roaming set F ⊂ G \H such that s(F ∪H)ct ⊂ F ∪H.

Then the inclusion QoH ⊂ QoG has the asymptotic orthogonality property relative to LH.

Proof. Consider two ‖ · ‖∞-bounded sequences (xn)n and (yn)n in (Q o G) 	 (Q o H) which
asymptotically commute with LH. By linearity and density it is sufficient to check that for any
s, t /∈ H,

lim
n
〈usxnut, yn〉 = 0.

Fix s, t ∈ G \H. There exists an H-roaming set F such that s(F ∪H)ct ⊂ F ∪H. Proceeding
as in the proof of Lemma IV.2.2, it is easy to show that limn ‖PF (xn)‖2 = limn ‖PF (yn)‖2 = 0.
Note also that for all n, we have xn = PHc(xn) and yn = PHc(yn). Therefore

lim
n
〈usxnut, yn〉 = lim

n
〈usPF c(xn)ut, PF c(yn)〉

= lim
n
〈usP(F∪H)c(xn)ut, P(F∪H)c(yn)〉 = 0,

because s(F ∪H)ct ⊂ F ∪H. This ends the proof of the proposition.

Proof of Theorem IV.D. For i = 1, . . . , n, let Gi be a hyperbolic group relative to a family Gi of
subgroups and let Hi ∈ Gi be an infinite amenable group. Consider the inclusion

H := H1 × · · · ×Hn < G := G1 × · · · ×Gn.

Let (Q, τ) be a finite amenable von Neumann algebra and consider a trace-preserving action
Gy (Q, τ) of G. Put N := QoH and M := QoG.

Assume that P is an intermediate amenable von Neumann subalgebra: N ⊂ P ⊂ M . We have
to show that P = N . In order to do so, we will show that for all i = 1, . . . , n, we have

P ⊂ Ni := Qo (G1 × · · · ×Gi−1 ×Hi ×Gi+1 × · · · ×Gn).

This is enough to conclude, because N = ∩ni=1Ni.

For i ∈ {1, . . . , n}, we set Ai := LHi and Qi := Qo Ĝi, where Ĝi is the direct product of all Gj ,
j 6= i. Then we have Ni ' Qi oHi and M ' Qi oGi.
By Corollary IV.4.8 (and Remark IV.4.9), we see that Hi ⊂ Gi satisfies the assumptions of
Proposition IV.5.5 so that Ni ⊂ M has the asymptotic orthogonality property relative to Ai.
Moreover the Example IV.5.2 tells us that Ni ⊂M is (weakly) mixing through Ai.

By Theorem IV.5.4, one concludes that the amenable algebra P , which contains Ai, is contained
in Ni. This ends the proof of Theorem IV.D.
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Chapter V

Questions and perspectives

V.1 Von Neumann algebras associated with Gaussian actions

The main question that attracted my attention during these three years is the following well
known conjecture.

Conjecture V.1.1. For any non-amenable group Γ, the II1 factor associated with the Bernoulli
action Γ y ([0, 1], λ)Γ has a unique Cartan subalgebra, up to unitary conjugacy.

Following [PV(12)], we say that an action of a group Γ is C-rigid if the associated von Neumann
algebra has a unique Cartan subalgebra, up to unitary conjugacy. One can wonder if any non-
amenable group has a C-rigid pmp action. Several facts [Po06a, Po06b, AW13] seem to indicate
that for a given group, the best candidate for a C-rigid action is the Bernoulli action.

Conjecture V.1.1 is very hard to answer in full generality. I mention here several possible
approaches to solve weaker forms of the conjecture and related questions.

First note that Ioana’s result [Io11] shows uniqueness of group-measure space Cartan subalgebras
whenever Γ has property (T). Would it be possible to find a simpler proof of this result, not
relying on the co-product map (see the proof of Theorem II.4.5)?

In view of Popa and Vaes uniqueness of Cartan papers [PV(12), PV(13)], would it be possible
to solve Conjecture V.1.1 for non-amenable, weakly amenable groups? More precisely, would
it be possible to combine (a variant of) [PV(12), Theorem 5.1] and the Bernoulli deformation
to prove uniqueness of Cartan subalgebras in crossed-product factors associated with Bernoulli
actions of weakly amenable groups?

Alternatively one could try to use the relative bi-exactness result for Bernoulli actions [BO08,
Proposition 15.3.6] instead of the Bernoulli malleable deformation. In the same vein, one can
ask the following question.

Question V.1.2. Consider a non-amenable group Γ and denote by M the crossed-product II1

factor associated with the Bernoulli action Γ y ([0, 1], λ)Γ. Assume that M ' L∞(Y, ν)oΛ for
a free ergodic pmp action Λ y (Y, ν) of a weakly amenable group Λ.

Are the Cartan subalgebras L∞([0, 1]Γ) and L∞(Y ) necessarily unitarily conjugate?

Furthermore, together with [Pe(09), Lemma 2.6] a positive answer to Question II.3.13 could
help to answer the following almost complementary question.
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Question V.1.3. Consider a non-amenable group Γ and denote by M the crossed-product II1

factor associated with the Bernoulli action Γ y ([0, 1], λ)Γ. Assume that M ' L∞(Y, ν)oΛ for
a free ergodic pmp action Λ y (Y, ν) of a group Λ which does not have the Haagerup property.

Are the Cartan subalgebras L∞([0, 1]Γ) and L∞(Y ) necessarily unitarily conjugate?

Finally, if the two questions above have positive answers can one fill the gap to prove unique-
ness of group measure space Cartan subalgebras in crossed products associated with Bernoulli
actions?

V.2 Problems on maximal amenable subalgebras in free group
factors

The work presented in Chapter IV makes use of the Gromov boundary of hyperbolic groups.
This boundary is also used in Ozawa’s work on solidity and bi-exactness [Oz04, BO08]. It would
be interesting to elucidate the link between the two approaches. For instance could we reprove
Theorem IV.A using bi-exactness, or property AO of Akemann and Ostrand?

Next, it would be worth further investigating the position of hyperfinite subfactors in free group
factors. Theorem IV.A shows that for n ≥ 2 no element x ∈ Fn ⊂ LFn is contained in a
hyperfinite subfactor of LFn. As was asked by Jean Renault, what about an element x ∈ CFn ⊂
LFn or an element x ∈ C∗r (Fn) ⊂ LFn?

Finally, can one produce an explicit example of a hyperfinite subfactor R ⊂ LFn such that
R ∩ C∗r (Fn) = C1?



Appendix A

(Weakly) Mixing bimodules over
finite von Neumann algebras

One of the main concepts in the theory of group representations (and group actions) is the
notion of a mixing representation.

In the context of finite von Neumann algebras one can observe various mixing phenomena. In
this chapter, we intend to provide a unified approach to the notion of mixing for von Neumann
algebras. Then we shall present applications of this notion which are intensively used in Chapters
II, III and IV.

A.1 Definitions and examples

Inspired by the notion of mixing representation of a group, Peterson and Sinclair [PS12] intro-
duced the notion of mixing bimodule1.

Definition A.1.1. Let M and N be von Neumann algebras. An M -N bimodule MHN is (left)
mixing if for any bounded sequence of unitaries (un) ⊂ U(M) which tends weakly to 0, one has

lim
n

sup
y∈(N)1

|〈unξy, η〉| = 0, ∀ξ, η ∈ H.

A more classical definition, though, is the notion of a mixing inclusion of finite von Neumann
algebras.

Definition A.1.2. An inclusion of finite von Neumann algebras N ⊂ (M, τ) is mixing if any
sequence (un) ⊂ U(N) which tends weakly to 0 satisfies

lim
n
‖EN (aunb)‖2 = 0, ∀a, b ∈M 	N.

It turns out that mixing inclusions are just a particular case of mixing bimodules.

Proposition A.1.3. An inclusion N ⊂ (M, τ) is mixing if and only if N (L2(M)	 L2(N))N is
mixing.

1The mixing property of the coarse bimodule was already explicitly used in [Pe09].
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Proof. Assume that N ⊂ M is mixing. Consider a sequence (un) ⊂ U(N) which tends weakly
to 0. By density it is clearly sufficient to check that for all a, b ∈M 	N we have

lim
n

sup
y∈(N)1

|〈unay, b〉| = 0.

But for every n we see that

sup
y∈(N)1

|〈unay, b〉| = sup
y∈(N)1

|〈b∗una, y∗〉| ≤ ‖EN (b∗xna)‖→2 0.

Conversely assume that the bimodule is left mixing and take a bounded sequence (un) ⊂ N
which tends weakly to 0. Take also a, b ∈M 	N . For all n we have

‖EN (aunb)‖22 = 〈aunb, EN (aunb)〉,

which tends to 0 because the sequence EN (aunb) is bounded for the operator norm.

Proposition A.1.4. A measure preserving action Γ y (X,µ) is mixing if and only if the
inclusion LΓ ⊂ L∞(X)o Γ is mixing.

Proof. Denote by ug, g ∈ Γ the canonical unitaries in M implementing the action of Γ.

First assume that the inclusion is mixing. Then for any sequence (gn) ⊂ Γ going to infinity and
a, b ∈ L∞(X,µ)	 C, we have

lim
n
|τ(aσgn(b))| = lim

n
‖ELΓ(augnb)‖2 = 0.

Conversely, assume that the action is mixing and take a sequence (un) ⊂ U(LΓ) which tends
weakly to 0. By linearity and density, it is sufficient to check that for all a, b ∈ L∞(X,µ)	C we
have limn ‖ELΓ(aunb)‖2 = 0. Fix a, b ∈ L∞(X,µ) 	 C and ε > 0. Writing un =

∑
g∈Γ λn,gug,

we get

‖ELΓ(aunb)‖22 =
∑
g∈Γ

|λn,gτ(aσg(b))|2, for all n.

Since the action is mixing there exists a finite set F ⊂ Γ such that |τ(aσg(b))| ≤ ε for all g /∈ F .

Hence for all n, we have

‖ELΓ(aunb)‖22 ≤
∑
g∈F
|λn,gτ(aσg(b))|2 + ε2

∑
g/∈F

|λn,g|2

≤
∑
g∈F
|λn,gτ(aσg(b))|2 + ε2.

But since the (un) converges weakly to 0, we have that limn
∑

g∈F |λn,gτ(aσg(b))|2 = 0. This
concludes the proof.

With the same kind of proof, we also get the following examples.

Example A.1.5. Given groups Γ0 < Γ, the inclusion LΓ0 ⊂ LΓ is mixing if and only if Γ0 is
almost malnormal inside Γ2.

Example A.1.6. If M = M1 ∗ M2 is a free product of finite von Neumann algebras, then
M1 ⊂M is mixing.

2This means that sΓ0s
−1 ∩ Γ is finite for all s ∈ Γ \ Γ0.
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A.2 Weakly mixing bimodules

Definition A.2.1. A bimodule MHN is (left) weakly mixing if there exists a sequence of uni-
taries (un) ⊂ U(M) such that

lim
n

sup
y∈(N)1

|〈unξy, η〉| = 0, ∀ξ, η ∈ H.

From this definition, one deduces corresponding notions of weakly mixing inclusions of finite
von Neumann algebras, and provide examples similar to what we did for mixing bimodules.

In the context of group representations, recall that we have an equivalence between the three
statements:

• a representation π is weakly mixing;

• π has no (non-zero) finite dimensional sub-representation;

• π ⊗ π has no (non-zero) invariant vectors.

The following theorem is the von Neumann algebraic analogue of this statement. The proof is
similar to the proof of Popa’s intertwining lemma [Po06a, Po06d]. This is not a coincidence, as
we will see in the next section. Here NHM denotes the contragredient bimodule of the bimodule

MHN , and H ⊗N H is their fusion product in the sense of Connes. For more on this, see
[Co94, Fa09].

Theorem A.2.2. Assume that MHN is a bimodule over finite von Neumann algebras M and
N . The following are equivalent:

(i) MHN is weakly mixing;

(ii) {0} is the only M -N subbimodule of MHN which has finite N -dimension;

(iii) M (H ⊗N H)M has no non-zero central vector.

Proof. (i) ⇒ (iii). Assume that MHN is weakly mixing. Then this is also the case of the
bimodule M (H ⊗N H)M , which can not contain a central vector.

(iii)⇒ (ii). Assume that M (H ⊗N H)M has no central vector.

Claim. {0} is the only subbimodule of MHN which is finitely generated as an N -module.

By contradiction, consider a non-zero subbimodule MKN ⊂ MHN which is finitely N -generated:
there exists an onto isomorphism of right modules u : KN → (pL2(N)⊕n)N for some n ≥ 1 and
some projection p ∈Mn(C)⊗N , p 6= 0.

Then the left M -action on K induces a ∗-homomorphism ϕ : M → p(Mn(C) ⊗ N)p such that
u(xξ) = ϕ(x)u(ξ) for all x ∈M , ξ ∈ K.

For all j = 1, · · · , n, denote by ξj = u−1(pej), where ej ∈ L2(N)⊕n is the jth coordinate vector
ej = (0, · · · , 0, 1, 0, · · · , 0). One checks that the vectors ξi are right N -bounded and satisfy the
relations

xξi =

n∑
j=1

ξj · (ϕ(x))j,i, for all x ∈M, i = 1, · · · , n.
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Then the vector ξ :=
∑n

k=1 ξk ⊗ ξk is an M -central vector in K ⊗N K ⊂ H ⊗N N . Indeed, for
all x ∈M we have

x · ξ =
n∑
i=1

(x · ξi)⊗ ξi =
n∑

i,j=1

(ξj · (ϕ(x))j,i)⊗ ξi

=
n∑

i,j=1

ξj ⊗ ξi · (ϕ(x))j,i)∗

=

n∑
i,j=1

ξj ⊗ ξi · (ϕ(x∗))i,j) =
n∑
j=1

ξj ⊗ x∗ · ξj = ξ · x.

But since the vectors ξi, i = 1, · · · , n are pairwise orthogonal, the vector ξ is non-zero. This
contradicts our assumption (iii).

Now that the claim is proved, assume that K is a non-zero subbimodule of MHN with finite
N -dimension. Denote by 1 − p ∈ Z(N) the maximal projection in Z(N) such that Kp = {0}.
By assumption, 1 − p 6= 1 and so p 6= 0. Now consider the bimodule M (Kp)pN . It has finite
right dimension, and so there exists a non-zero projection q ∈ Z(pN) such that (Hq)qN is
finitely generated (see [Va07, Lemma A.1]). Therefore M (Kq)qN is a non-zero subbimodule of
the weakly mixing bimodule M (Hq)qN which is finitely N -generated. This contradicts the claim.

(ii) ⇒ (i). Assume that MHN is not weakly mixing. Denote by H0 ⊂ H the (dense) subspace
of right bounded vectors, and for ξ ∈ H0 denote by Lξ : L2(M) → K the operator defined by
Lξx = ξx for all x ∈ N . Recall that for all ξ, η ∈ H0, and any x ∈ M we have L∗ξxLη ∈ N ⊂
B(L2(N)).

Since MHN is not weakly mixing there exists ε > 0 and a finite set F ⊂ H0 such that for all
x ∈M we have ∑

ξ,η∈F
| sup
y∈(N)1

〈xξy, η〉|2 ≥ ε.

Equivalently, for all x ∈M we have ∑
ξ,η∈F

‖L∗ξxLη‖21 ≥ ε.

Now define an element c ∈ B(H) ∩ (Nop)′ by the formula c =
∑

ξ∈F LξL
∗
ξ .

Denote by Tr the canonical semi-finite faithful normal trace on B(H) ∩ (Nop)′ which satisfies
Tr(LξL

∗
η) := τ(L∗ηLξ) for all ξ, η ∈ H0. We see that Tr(c) is finite.

Consider the ultraweakly closed convex hull C of the set {ucu∗ |u ∈ U(M)}. Then C is a closed
convex set in the Hilbert space L2(B(H) ∩ (Nop)′,Tr). So it admits a unique element d ∈ C of
minimal ‖ · ‖2,Tr-norm. By uniqueness, and since C is invariant under conjugacy by U(M) we
get that d ∈M ′ ∩ (Nop)′. Let us show that d 6= 0. For all u ∈ U(M) we have∑

η∈F
τ(L∗ηucu

∗Lη) =
∑
ξ,η∈F

τ(L∗ηuLξL
∗
ξu
∗Lη)

=
∑
ξ,η∈F

‖L∗ξu∗Lη‖22

≥
∑
ξ,η∈F

‖L∗ξu∗Lη‖21 ≥ ε.
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By continuity, we get that
∑

η∈F τ(L∗ηdLη) ≥ ε, so that d 6= 0.

Take a non-zero spectral projection p ∈M ′∩ (Nop)′ of d∗d. We have Tr(p) ≤ ‖d‖22,Tr <∞. This
precisely means that pH is a subbimodule of MHN with finite right N -dimension.

Corollary A.2.3. Assume that N ⊂ (M, τ) is a mixing inclusion of finite von Neumann alge-
bras. Then for any diffuse subalgebra Q ⊂ N , we have QNM (Q) ⊂ N .

Proof. By assumption, we know that N (L2(M) 	 L2(N))N is mixing. Since Q ⊂ N is diffuse,
the bimodule Q(L2(M)	L2(N))Q is weakly mixing. Assuming that v ∈ QNM (Q), we get that
x := v −EN (v) ∈ QNM (Q) as well. Therefore span(QxQ) ⊂ L2(M)	 L2(N) is a subbimodule
with finite right B-dimension so it has to be {0} by Theorem A.2.2. Hence v = EN (v).

A.3 Popa’s intertwining-by-bimodules lemma

Since its first developments in the early 2000’s, Popa’s deformation/rigidity theory has lead to
numerous breakthroughs. Together with the concepts of deformation and rigidity came a very
powerful technical tool: the so-called “intertwining-by-bimodules lemma” discovered by Popa
[Po06a]. This lemma is certainly the key to the success of Deformation/rigidity theory.

Definition A.3.1. Let A,B ⊂ (M, τ) be finite von Neumann algebras (with possibly non-unital
inclusions). We say that A embeds into B inside M (and we write A ≺M B) if the bimodule

A(1AL
2(M)1B)B is not weakly mixing.

Remark A.3.2. Proceeding as in the proof of Proposition A.1.3, one can check that A ≺M B
if and only if there is no sequence of unitaries (un) ⊂ U(A) such that

lim
n
‖EB(1Bxuny1B)‖2 = 0, ∀x, y ∈M.

The terminology is justified by the following theorem. The equivalence between (i) and (ii)
below is due to Theorem A.2.2. We also provided the material to prove the equivalence with
(iii) in the proof of Theorem A.2.2. We refer to the original articles [Po06a, Po06d], or to [BO08,
Appendix F] for more details.

Theorem A.3.3 (Intertwining-by-bimodules, [Po06a, Po06d]). Let A,B ⊂ (M, τ) be finite von
Neumann algebras (with possibly non-unital inclusions). Then the following are equivalent.

(i) A ≺M B;

(ii) There exists a subbimodule of AL
2(M)B with finite right B-dimension;

(iii) There exist projections p ∈ A, q ∈ B, a normal ∗-homomorphism ψ : pAp → qBq, and a
non-zero partial isometry v ∈ pMq such that xv = vψ(x), for all x ∈ pAp;

Example A.3.4. Assume that M is of the form M = B o Γ for some trace preserving action
of Γ on a finite von Neumann algebra and B. Denote by ug, g ∈ Γ the canonical unitaries in M
implementing the action of Γ.

A subalgebra A ⊂M satisfies A ⊀ B if and only if there exists a sequence of unitaries vn ∈ U(A)
such that

‖EB(vnu
∗
g)‖2 → 0, ∀g ∈ Γ.
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If B is abelian in the above example and if the action is free and ergodic, then B is a Cartan
subalgebra of the factor M . The following result states that for Cartan subalgebras intertwining-
by-bimodules amounts to unitary conjugacy.

Theorem A.3.5 ([Po06c], Theorem A.1). Assume that A and B are Cartan subalgebras in a
II1-factor M . Then A embeds into B inside M if and only if there exits u ∈ U(M) such that
uAu∗ = B.

Proposition A.3.5 is a real motivation to further study properties of the relation ≺M . We
refer to [Va08, Section 3] for elementary stability properties (relative commutant, amplifica-
tion/reduction...) and for a discussion on the transitivity of this relation.

The following criterion, due to Ioana, is an improvement of the characterization given in Example
A.3.4. It will play a crucial role in the proof of Theorem II.3.1.

Proposition A.3.6 ([Io11], Theorem 1.3.2). Let Γ y B be a trace preserving action on a finite
von Neumann algebra (B, τ). Put M = B o Γ, and let P ⊂ M be a von Neumann subalgebra.
Then P ⊀ B if and only if there exists a sequence of unitaries vn ∈ U(P ) such that

lim
n

(
sup
g∈Γ
‖EB(vnu

∗
g)‖2

)
= 0.

A.4 Relatively mixing bimodules

We define a relative version of mixing bimodules, more adapted to our purposes. Let us start
with a convenient definition.

Definition A.4.1. Consider finite von Neumann algebras A ⊂ (M, τ). We say that a bounded
sequence (xn) ⊂M (weakly) tends to 0 relative to A if limn ‖EA(axnb)‖2 = 0 for all a, b ∈M .

If A = C, this amounts to saying that (xn) tends weakly to 0.

Definition A.4.2. Let A ⊂ (M, τ) and N be finite von Neumann algebras. A bimodule MHN

is mixing relative to A if for any sequence of unitaries (un) ⊂ U(M) which tends to 0 relative to
A, one has

lim
n

sup
y∈(N)1

|〈unξy, η〉| = 0, ∀ξ, η ∈ H.

Definition A.4.3. An inclusion N ⊂ (M, τ) is mixing relative to a subalgebra A of N if the
bimodule N (L2(M)	 L2(N))N is mixing relative to A.

Example A.4.4. As in Section A.1 we get very concrete examples.

1. Consider a measure preserving action Γ yσ (X,µ) and any trace preserving action Γ y
(A, τ). Then (1⊗ A)o Γ ⊂ (L∞(X,µ)⊗A)o Γ is mixing relative to 1⊗ A if and only if
σ is mixing.

2. Consider a trace-preserving action Γ y (A, τ) and take a subgroup Γ0 < Γ. The inclusion
Ao Γ0 ⊂ Ao Γ is mixing relative to A if and only if Γ0 is almost malnormal inside Γ.

3. If M = M1 ∗AM2 is an amalgamated free product of finite von Neumann algebras, then
M1 ⊂M is mixing relative to A.
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Proposition A.4.5. Consider finite von Neumann algebras A ⊂ N ⊂ (M, τ). Assume that N ⊂
M is mixing relative to A. Then for any Q ⊂ N such that Q ⊀ A, we have that QNM (Q) ⊂ N .

Proof. Since Q ⊀M A, we get that Q(L2(M)	 L2(N))Q is weakly mixing. So the conclusion is
a consequence of Theorem A.2.2.

Proposition A.4.6. Assume that A ⊂ N ⊂ M are finite von Neumann algebras such that
N ⊂M is mixing relative to A. Take a projection p ∈M and a subalgebra Q ⊂ pMp such that
Q ⊀M A. Put P = QN pMp(Q)′′.

1. If Q ≺M N then there exists a non-zero partial isometry v ∈ pM such that vv∗ ∈ P and
v∗Pv ⊂ N .

2. If moreover N is a factor then one can find such a v with vv∗ ∈ Z(P ).

3. If N is a factor and if rQ ≺M N for all r ∈ Q′∩pMp then there exists a unitary u ∈ U(M)
such that uPu∗ ⊂ N .

Proof. (1) By assumption, there exist projections p0 ∈ Q, q ∈ N , a non-zero partial isometry
v ∈ p0Mq and a *-homomorphism ϕ : p0Qp0 → qNq such that for all x ∈ p0Qp0, one has
xv = vϕ(x).

By [Va08, Remark 3.8], one can assume that ϕ(p0Qp0) ⊀M A. Hence Proposition A.4.5 implies
that QN qMq(ϕ(p0Qp0))′′ ⊂ N . But we see that v∗Pv ⊂ QN qMq(ϕ(p0Qp0))′′. Moreover vv∗ ∈
p0(Q′ ∩M) ⊂ P .

(2) Let us modify v obtained above in such a way that vv∗ ∈ Z(P ).

Take partial isometries v1, · · · , vk ∈ P such that v∗i vi ≤ vv∗, i = 1, · · · , k and
∑k

i=1 viv
∗
i is a

central projection in P . Since N is a factor, there exist partial isometries w1, · · · , wk ∈ N such
that wiw

∗
i = v∗v∗i viv and wiw

∗
j = 0, for all 1 ≤ i 6= j ≤ k. Define a non-zero partial isometry by

w =
∑

i vivwi ∈ pM . We get

• ww∗ =
∑

i vivwiw
∗
i v
∗v∗i =

∑
i viv

∗
i ∈ Z(P );

• w∗Pw ⊂
∑

iw
∗
i v
∗Pvwi ⊂ N .

(3) Consider a maximal projection r0 ∈ Z(P ) for which there exists a unitary u ∈ U(M) such
that u(r0P )u∗ ⊂ N . One has to show that r0 = p. Otherwise we can cut by r = p − r0,
and we obtain an algebra rQ ⊂ rMr such that rQ ≺M N and rQ ⊀M A. Remark that
rP ⊂ QN rMr(rQ)′′. Applying (2), we get that there exists a non-zero partial isometry v ∈ rM ,
such that vv∗ ∈ Z(rP ) and v∗(rP )v ⊂ N .

Since N is a factor, modifying v if necessary, one can assume that v∗v ⊥ ur0u
∗. Now the

following “cutting and pasting” argument contradicts the maximality of r0. The partial isometry
w0 = ur0 + v∗ satisfies w∗0w0 = r0 + vv∗ ∈ Z(P ) and w0(r0 + vv∗)Pw∗0 ⊂ N . Extending w0 into
a unitary, we obtain a w ∈ U(M) satisfying w(r0 + vv∗)Pw∗ ⊂ N .
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