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Abstract, Résumé, Abstract

An algebraic p-adic L-function for ordinary families

Abstract. In this thesis, we construct algebraic p-adic L-functions for families of Galois
representations attached to p-adic analytic families of automorphic representations using the
formalism of Selmer complexes. This is achieved mainly through making a modification of
the Selmer complex to ensure that we deal with perfect complexes and proving a control
theorem for the local Euler factors at places not lying above p. The control theorem for local
Euler factors is obtained by studying the variation of monodromy under pure specializations
of p-adic families of Galois representations restricted to decomposition groups at places of
residue characteristic different from p. This allows us to prove a control theorem for the
algebraic p-adic L-functions that we construct for Hida families of ordinary cusp forms and
ordinary automorphic representations for definite unitary groups. For the Hida family of
ordinary cusp forms, we construct a two-variable algebraic p-adic L-function and formulate
a conjecture relating it with the analytic p-adic L-function constructed by Emerton, Pollack
and Weston. Using results due to Kato, Skinner and Urban, we prove this conjecture in
some special cases.

Keywords. p-adic L-functions, Selmer complexes, families of Galois representations,
purity, weight-monodromy conjecture.

Une fonction L p-adique algébrique pour les familles ordinaires

Résumé. Dans cette thése, nous construisons des fonctions L p-adique algébriques pour
les familles de représentations galoisiennes attachées aux familles p-adique analytiques de
représentations automorphes en utilisant le formalisme des complexes de Selmer. Ce résultat
est obtenu principalement en effectuant une modification des complexes de Selmer pour
sassurer que nous traitons avec des complexes parfaits et démontrer un théoreme de controle
pour les facteurs d’Euler locaux aux places en dehors de p. Le théoréme de controle pour
les facteurs d’Euler locaux est obtenu par létude de la variation de la monodromie sous
spécialisations purs des familles p-adiques de représentations galoisiennes restreintes aux
groupes de décomposition en dehors de p. Cela nous permet de démontrer un théoreme de
controle pour les fonctions algébriques padique que nous construisons pour les familles de
Hida de formes paraboliques ordinaires et les représentations automorphes ordinaires pour les
groupes unitaires définies. Pour les familles de Hida de formes paraboliques ordinaires, nous
construisons un fonction L p-adique algébrique de deux variables et formulons une conjecture
la reliant a la fonction L p-adique analytique construite par Emerton, Pollack et Weston.
En utilisant des résultats de Kato, Skinner et Urban, nous montrons cette conjecture dans
certains cas particuliers.
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Mots-clefs. Fonctions L p-adique, complexes de Selmer, familles des représentations
galoisienne, pureté, conjecture de monodromie-poids.

Un funzione L p-adiche algebriche per le famiglie ordinario

Abstract. In questa tesi, costruiamo funzioni L p-adiche algebriche per le famiglie di
rappresentazioni di Galois associate a famiglie p-adiche analitiche di rappresentazioni au-
tomorfe, utilizzando il formalismo dei complessi di Selmer. Questo risultato ¢ ottenuto
principalmente attraverso una modifica del complesso di Selmer, attuata in modo tale da
garantire che i complessi studiati siano perfetti e attraverso un teorema di controllo per i
fattori di Eulero locali nei primi diversi da p. Il teorema di controllo per fattori di Eulero
locali si ottiene studiando la monodromia al variare delle specializzazioni pure di famiglie
p-adiche di rappresentazioni di Galois ristrette a gruppi di decomposizione a primi di fuori p.
Questo ci permette di dimostrare un teorema di controllo per funzioni L p-adiche algebriche,
costruite per famiglie di Hida di forme cuspidali ordinarie e rappresentazioni automorfe or-
dinarie per i gruppi unitari definiti. Per la famiglia di Hida di forme cuspidali ordinarie,
costruiamo una funzione L p-adica algebrica di due variabili e formuliamo una congettura
che stabilisca il legame con la funzione L p-adica analitica costruita da Emerton, Pollack e
Weston. Utilizzando i risultati di Kato, Skinner e Urban, dimostriamo questa congettura in
alcuni casi particolari.

Parole chiave. Funzioni L p-adiche, complessi di Selmer, famiglie di rappresentazioni
di Galois, purezza, congettura di peso-monodromia.
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Introduction (en francais)

Motivation

Soit K /K une Z,-extension d'un corps des nombres K et soit K C K, C K la
sous-extension de degré n. K. Iwasawa a montré dans [Iwa59| que la puissance exacte de p
divisant I'ordre du groupe de classes X,, de K,, est donnée pour n assez grand par la formule

(0.0.1) An + pp™ +v

ou A >0, p > 0 et vsont entiers. Peu apres, J.-P. Serre a remarqué dans [Ser95] que
ce résultat découle de deux principes généraux: en premier lieu, la limite inverse X
du X, par rapport a l'application de norme est un module de torsion de type fini sur
A = Z,[[Gal(K/K)]] (un anneau régulier de dimension 2); en second lieu, il existe un
élément spécifique w, tel que X, soit égal & X, /w,. Comme l'ordre du groupe de classes est
lié par la formule de nombre de classes de Dirichlet pour les valeurs spéciales de la fonction
zeta, ces résultats suggerent que la variation du groupes de classes en Z,-extension pourrait
étre liée a une fonction L p-adique et, de fait, le fonction zeta de Kubota-Leopoldt a recu
une nouvelle construction en termes de Z,-extensions cyclotomique dans [Iwa69]. Dans
[Maz72], B. Mazur a montré que la formule (0.0.1) admet une extension a la croissance
du groupe de Tate-Shafarevich des variétés abéliennes en Z,-extensions et il a proposé une
généralisation audacieuse de ces faits a la cohomologie galoisienne de la cohomologie étale des
variétés sur Q. Toutefois, dans le contexte déja de variétés abéliennes, un fait remarquable
est que le théoreme de controle qui relie le groupe de Selmer sur A au groupe de Selmer
sur Z[Gal(K,,/K)] n’est vrai qu’a un terme d’erreur d’origine locale pres, les termes d’erreur
dans les places sur p étant parfois sans limite avec n. L’analogie mentionnée ci-dessus avec
I'interpolation p-adique des valeurs spéciales des fonctions L peut peut-étre expliquer le com-
portement étrange en p, tout comme il ne faut pas s’attendre a étre en mesure d’interpoler
les valeurs spéciales des fonctions L sans enlever d’abord un facteur d’Euler en p, il ne faut
probablement pas s’attendre a interpoler p-adiquement des modules de cohomologie galoisi-
enne, sans modification en p. La pertinence (le cas échéant) des termes d’erreur en d’autres
places, d’autre part, reste élusive.

Dans les années 80 et au début des années 90, plusieurs améliorations théoriques ont
completement changé notre approche de ces questions classiques. Tout d’abord, R. Green-
berg a proposé dans [Gre89, |Gre91|] que le cadre approprié pour I’étude de la variation
p-adique des valeurs spéciales des fonctions L et des modules de Selmer est la déformation
universelle d’une représentation galoisienne d’origine géométrique. Deuxiemement, les con-
jectures formulées par Bloch et Kato dans [BK90, [Kat93] ont considérablement approfondi
notre compréhension du comportement des valeurs spéciales des fonctions L. En particulier,
elles ont clairement indiqué que les valeurs spéciales des fonctions L devraient étre liées a une
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base entiere dans le déterminant du complexe de cohomologie galoisienne des motifs a coeffi-
cients. Vu de ce double point de vue, la bonne extension du théoreme classique d’Iwasawa et
de controle de Mazur devrait étre que la spécialisation d'une base entiere de la cohomologie
galoisienne d’'un motif a coefficients dans une anneau de déformation universelle en un point
arithmétique x doit étre égale a la base entiere du déterminant de la cohomologie galoisienne
du motif sur Q correspondant a x provenant des conjectures sur les valeurs spéciales des
fonctions L. Comme dans [Kat04], on peut vérifier, par exemple, que cette formulation ap-
pliquée sur le motif Q(1) redonne exactement le théoreme de controle d'Iwasawa et qu’aucun
nombre premier ¢ # p ne peut faire une contribution au terme d’erreur dans le cas des Z,-
extensions. Toutefois, méme dans le plus simple exemple de familles p-adique universelles
des motifs de rang 2, celui des familles p-adique de formes propres ordinaires paramétrées par
I’algebre de Hida-Hecke, méme un formulation précise de la forme conjecturale du théoreme
de controle a été fait défont jusqu’ici .

Les raisons pour cela sont doubles. Pour commencer, les anneaux de déformation uni-
verselles ne sont généralement pas connus pour étre des anneaux réguliers, donc les com-
plexes de cohomologie galoisienne de familles p-adique avec des coefficients dans les anneaux
de déformation universelles ne sont généralement pas connus pour étre des complexes par-
faits, ce qui exclut la possibilité de prendre sans condition leurs déterminants. Méme dans la
formulation plus classique de Greenberg (|Gre91]), il faut considérer 'idéal caractéristique
de certains modules et cela nécessite au moins l’anneau d’étre normal. Cet exemple est prob-
ablement la raison pour laquelle [EPWO06] (par Emerton, Pollack et Weston) ne contient
pas de définition d’une contrepartie algébrique a la fonction L p-adique analytique pour les
familles de Hida. En outre, méme lorsque les complexes sont connus pour étre parfaits, le
terme d’erreur omniprésent dans les théoremes de controle depuis [Maz72] peut étre tres
difficile & controler de maniere explicite dans la déformation universelle. C’est ce qui se
passe par exemple dans [Och06l, FO12] (par Fouquet et Ochiai) et est liée a la variation
des invariants sous l'inertie en familles.

Dans ce manuscrit, nous prouvons un théoreme de controle parfait aux points arithmétiques
sur un branche d’une famille de Hida pour GLy(Q) et pour les groupes unitaires définis avec
aucune hypothese sur la nature de ’anneau universelle de déformation, et ainsi construisons
inconditionnellement une fonction L p-adique algébrique pour les représentations galoisiennes
attachées a ces familles de Hida. L’outil fondamental permettant ce progres est la reconnais-
sance du role crucial joué par la conjecture de monodromie-poids dans la variation des valeurs
spéciales des fonctions L (une idée que nous avons apprise de Nekovar [Nek06] et Ochiai
[Och06]). La philosophie derriere la conjectures de Bloch, Kato, Fontaine, Perrin-Riou
([BK90, [FPR94]) est que les valeurs spéciales des fonctions L doivent encoder les exten-
sions des motifs qui ne sont pas trop ramifiées. Cela implique que les conditions locales en
¢ # p qui I'on pense devoir apparaitre dans la définition des fonctions L p-adiques algébriques
doivent impliquer la ramification. La conjecture de monodromie-poids permet de relier les in-
variants sous l'inertie de modules purs avec les valeurs propres du Frobenius et ceci permet a
la fois de définir inconditionnellement une fonction L p-adique algébrique ainsi que de preuver
qu’elle satisfait un théoreme de controle aux points arithmétiques. Nous remarquons que la
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conjecture de monodromie-poids est connue dans de nombreux cas par de travaux de Bla-
sius, Caraiani, Carayol, Clozel, Harris, Scholze, Shin, Taylor, Yoshida et. al. (voir [Car86/,
Théoreme A], [Bla06, Theorem 2|, [HTO01, [TY07, [Shilll, [Car12), [Sch12, [Clo13] par
exemple).

Enoncé des résultats

Dans cette section, nous résumons les résultats obtenus dans les chapitres [T}, 3]

Pureté pour le représentation galoisienne a coefficients dans un anneau de
grande dimension. E] Soit p un nombre premier et K une extension finie de Q, pour ¢ # p.
Soit R un anneau integre de charactéristique zero contenant Z, comme une sous-algebre.
Notons le corps des fractions de R par K et nous fixons une cloture algébrique K de K.

Notons la cloture intégrale de R dans K par Ox. On remarque que tout homomor-
phisme d’anneaux 1 de R dans un corps () algébriquement clos de caractéristique zero
s’étend & Og[1/p] qui sera notée 1) par abus de notation. Remarquons que Q est contenue
dans Og[1/p]. Supposons que Gx = Gal(K /K) agit sur un R-module libre 7 de rang fini de
sorte que son action est monodromique (i.e., un sous-groupe de indice fini de I agit a travers
ses Z,-quotient par ’exponentielle d'une matrice nilpotente, voir Définition . Soit, M,
la filtration sur 7 associée & son monodromie. Notons la Gg-représentation 7 @z K par
V. La paramétrisation de Weil-Deligne de une G g-représentation V' est notée par WD(V').
Pour une représentation de Weil-Deligne V', son Frobenius-semisimplification est notée V55,

Théoréme A (Pureté pour le représentation galoisienne a coefficients dans un anneau de
grande dimension). Supposons que A : R — @p est un morphisme de Z,-algebres tel que la
G -représentation

WWi=T @rxQ,

est pur de poids w (voir §1.0.1) ou définition . Soit py le noyau de . Soit My, la

filtration sut V) associée a son monodromie. Alors, les énoncés suivants s’avérent.

(1) Apres les avoir localisé a py, les termes et gradués de Mo deviennent libres sur Ry,
et pour tout © € 7, application X induit les isomorphismes

M; @rx Q, ~ My,
GriM, @r) Q, >~ Gr;M, .,
de Wi -modules.

(2) Il existent
(a) un entier J > 1,
(b) des entiers 0 <ty < --- <1y,
(c) un entier I > 1,
(d) (i) des caractéres non ramifiées

X12WK—>O§,"',X]ZWK—>O%

L«pyurity for big Galois representations” en anglais.
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(ii) des représentations Frobenius-semisimples irréductibles

Pl WK — GLd1(Q)7 e L, Pr WK — GLdl(Q)
avec limage finie et
(e) des entiers n;; > 0 pour 1 <i <1, 1<j<.J
de sorte que les propriétés suivantes sont satisfaites.
o [ existent des isomorphismes de représentations de Weil-Deligne

I J
WD) =~ D EP Sp, (xi @ pi)

i=1 j=1
1 J

WD(V3)™™ =~ D €D Spy, (Ao (xi @ )3 .
i=1 j=1

e Limage de la représentation

Ao (xi ® p;) s W — GLyg, (@p)

est contenue dans GLg, (Q) pour chaque 1 <i < I.
De plus, les entiers I, J,t;,n;; et les représentations x;, p; dépendent de V, mais pas
de \.

(3) La A-spécialisation des sommandes centrales irréductibles de WD(V)5 (considérées
sur Ox[1/p]) sont strictement pur de poids w.

4) Le polynéme Eul(V)~! a des coefficients dans Ox N'R,,, son \-spécialisation est
Px
Eul(V)\)_l, i.e.,
AMEul(V)™! = Eul(Vy) L
(5) Les R, -modules ’7?;(, 7;A/’7;£K sont libres et lapplication X induit un isomorphisme
TIK ®R’>‘ @p = 7;€\K ®RP>\7>‘ @p = V)\IK
Par conséquent, le complex [T'x 7L TIK) concentré en degré 0, 1 descend par-
q p g ) p

‘ -1 , , .
faitement au compleze [V/\IK LN VfK] concentré en degreé 0, 1, i.e.,

_ L — _
[TIK f_; TIK]®R,>\Qp ~ [V/\IK f_1_> V)\IK]‘

Pour une version plus générale, nous faisons appel au théoreme qui est le résultat

principal du chapitre[I] La caractéristique principale de pureté pour le représentation galoisi-
enne a coefficients dans un anneau de grande dimension est que 'utilisation de celui-ci peut
montrer des théoréemes de controle a spécialisations pur pour les (facteurs locaux en dehors de
p des) fonctions L p-adiques algébriques que nous construisons dans le chapitre . En util-
isant le méme outil et [Ber13l Lemma 5.5], nous espérons également construire un fonction
L p-adique algébrique au long des composantes irréductibles de variétés de Hecke. En fait,
nous espérons que 'utilisation de la pureté pour le représentation galoisienne a coefficients
dans un anneau de grande dimension, un fonction L p-adique algébrique peut étre construit
pour toute la famille de représentations galoisiennes et les pseudo-représentations qui inter-
poler représentations galoisiennes sur @p, dont la restriction a des groupes de décomposition
aux places en dehors de p sont purs. Nous nous référons a l'introduction du chapitre

xviii



pour une discussion détaillée sur un contexte approprié de la pureté pour le représentation
galoisienne a coefficients dans un anneau de grande dimension, une esquisse de la preuve, les
conséquences et I'explication de I'inévitabilité de la hypothese que R est un anneau integre.

Théoreme [A] ci-dessus est obtenu & partir des deux théorémes suivants.

Théoreme B. Supposons que X : R — @p est un morphisme de Z,-algebres tel que la
Gk -représentation

Vi =T Qr @p

est pur de poids w. Soit py le noyau de X\. Soit My, la filtration sut V) associée a son
monodromie. Alors, les énoncés suivants s’averent.

(1) Apreés les avoir localisé a py, les termes et gradués de M, deviennent libres sur Ry, .
(2) Pour tout i € Z, Uapplication X induit les isomorphismes

M; Qg Q, ~ My,
GriM, @r) Q, 2 Gr;M, .,

de Wi -modules.

Théoreme C. Supposons que \ : R — @p est un morphisme de Z,-algébres. Posons

Vii=T @rxQ,.
Soit py le noyau de X\. Soit My o la filtration sut V associée a son monodromie. Supposons
que

(I) apreés les avoir localisé a py, les termes et gradués de M, deviennent libres sur R, et
pour tout i € Z, Uapplication A\ induit les isomorphismes
11 tout i € Z, Uapplication \ induit les i hi

M; @rx Q, =~ My,
GriM, @z .\ Q, ~ Gr; M),
de W -modules.

Alors, les énoncés suivants s’averent.

(1) Il existent
(a) un entier J > 1,
(b) des entiers 0 <ty < --- <1y,
(c) un entier I > 1,
(d) (i) des caractéres non ramifiées

X12WK—>O%,"',X]IWK—>O%

(ii) des représentations Frobenius-semisimples irréductibles

p1: Wk — GLg, (Q), -+, pr : Wk — GL4, (Q)

avec l'tmage finie et
(e) des entiers nj; > 0 pour 1 <i<I,1<j<.J
de sorte que les propriétés suivantes sont satisfaites.
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o [ existent des isomorphismes de représentations de Weil-Deligne

I J
WD) =~ DD Spy, (v @ )2

i=1 j=1
I

WD(VA)™ ~ B EP Sp,, (Ao (x: @ Pz‘));%p-
i=1 j=1

e L image de la représentation

Ao (xi @ pi) 1 Wi — GLq,(Q,)

est contenue dans GLg, (Q) pour chaque 1 <i < I.
De plus, les entiers I, J,t;,n;; et les représentations x;, p; dépendent de V', mais pas
de \.

2) Le polynome Eul(V)™! a des coefficients dans Ox N Ry, , son \-spécialisation est
( Y P
Eul(Vy)™, de.,
MEul(V)™! = Eul(Vy) ™t

(3) Les R, -modules TpiK, Tos/ pIAK sont libres et application X induit un isomorphisme

I = 1 = I
T Qra Qp = TK @r,, 2 Q, = VIE.

Par conséquent, le complex [T'x LN Tx] concentré en degré 0, 1 descend par-

. -1 , , .
faitement au compleze [V/\IK LN VAIK] concentré en degreé 0, 1, i.e.,

1 L — -1
[T 2 T )0, = [ = Vi)
Nous montrons également la proposition suivante.

Proposition A. Supposons que A : R — @p est un morphisme de Z,-algebres. Posons

Vii=T @rx Q,.
Alors, les énoncés suivants s’averent.
(1) Le polynome Eul(V)™! a des coefficients dans Ox.
(2)

. T . I
dlmfv K S dlm@p V)\K.

Fonctions L p-adiques algébriques pour la famille de Hida pour GL,(Q). Les
résultats obtenus dans le chapitre 3| sont résumés ici.

Nous construisons fonctions L p-adiques algébriques LZ%r<_)’ LZ}?GT(—), L;fiato(—). En
utilisant de théoreme et la pureté des représentations galoisiennes modulaires, nous
montrons qu’elles satisfont des théoremes de controle a spécialisations arithmétiques (sous
certaines hypotheses). Nous relions aussi notre construction avec groupe de Selmer stricte

de Greenberg (en utilisant [Kat04, Theorem 17.4], [Nek06) Theorem 7.8.6]). Maintenant,
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nous enoncgons ces résultats se référant au chapitre |4 pour plus de détails.

Soit
hiet = lgllh;’rd(Np“; Z,) ~ gllhird(Np”; Z,)
I’algebre de Hida-Hecke et a un idéal premier minimal de h%¢. Posons
R(a) = h%/a.
Supposons que la composition d’applications
hod — R(a) — Frac(R(a))

est minimal dans le sens de [Hid88al p. 317]. Notons 7 (a) la représentation galoisienne de
Hida de G g sur R(a), o S désigne un ensemble fini de places de Q contenant p et la place
a l'infini. Supposons que la représentation résiduelle p associé a la G s-représentation 7 (a)
est absolument irréductible (ce qui dit 'hypothese [3.2.4).

Pour une spécialisation arithmétique A de R(a), posons
O A= ImA
et notons Ty la Gg g-représentation 7 (a) @p(a)x Ox.

On désigne
T () = T(a)®Zpr[[Gal(QW/@)]]7
Thiw = T\ ®z, Z,[[Gal(Qu /Q)]]

la déformation cyclotomique de T (a) et T respectivement, ot Q désigne les Z,-extension
cyclotomiques de Q.

Posons
Ao, = Ox @z, Z,[|Gal(Qs/Q)]];
R(a)i = R(a)®z,Z,[[Gal(Qu/ Q).
Dans la définition [3.3.4] nous définissons Li%r(T(a)Iw), L;}%GT(T(a)IW), L8 (T (a)1),

p,Kato
L;}%}r (T/\,IW) ) L;},gGr (T/\JW) ) LZ}%{ato
R(a).

(Th1w), o A désigne une spécialisation arithmétique de

Théoréme D. Soit A une spécialisation arithmétique de R(a). Ensuite, les isomorphismes
dans les propositions|2.1.2, 12.2.1], |12.2. 5 induisent un isomorphisme

L% (T(a)1w) ® (o), r Aoy = L2% (Th 1)
lorsque p est p-distingué. Ils induisent également les isomorphismes
LZ}%Gr(T(a)IW) QR(@)1w, A AO}\ = L;},gGr(T/\JW%
al ~ 7al
Lp,%(ato(T(a)IW) ®R(Q)IW7)\ AO}\ = Lp,%{at()(T)\,IW)‘
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Théoréeme E. Soit A une spécialisation arithmétique de R(a) telle que Oy est un anneau de
valuation discréte. Le compleve de Selmer RI' ¢(T1y) défini par rapport a la condition locale
de Greenberg (voir définition[2.2.9) est un complexe parfait de Ao, -modules et lapplication
ino, (==, —) (comme dans l'équation (2.1.4)) induil un isomorphisme

-1
L%, (Tygw) = (detag, RTH(Thw))
Pour tout entier v <1 et i > 2,
Hy(Th1w) = 0.
Supposons que p ne divise pas le niveau de la forme ordinaire associé a \. Alors
f[?(TA,IW) ®ho, Frac (Ao,) =0
et

H}(T\1) = 0.
L’application surjective

ﬁ} (A)\,IW) — SGIStr

A Tw
comme dans le lemma[3.4.4) induite une application injective
(0.0.2) Dp (Selit, ) = H3(Tysw)

avec conoyau fini. Par conséquent, nous obtenons un isomorphisme canonique

LZ}%r(T)\,Iw> = (charp, Dp(Sel™ ),0)

A)\,Iw

en utilisant les equations (2.1.3), (2.1.5)) et (3.4.2).

Les deux théoremes ci-dessus correspondent aux théoreme m (resp. théoreme [3.4.5).
Les ingrédients essentiels de la preuve sont théoreme et la pureté des représentations
galoisiennes modulaires (resp. [Kat04, Theorem 17.4], [Nek06l, Theorem 7.8.6]).

Dans §3.5 nous montrons que tous les modules de cohomologie du complexe C&, (T (a)1w)
sont nuls, sauf peut-étre le deuxiéme, qui est de torsion sur R(a), (proposition [3.5.6)).
Ce résultat permet de construire des fonctions L p-adiques algébriques de deux variables
Z8(a) € Frac(R(a)ny) dont 'image par réduction mod p engendrent I'idéal caractéristique

de la duale de Pontrjagin du groupe Selmer strict Seliﬁp ., bour p parcourant un sous-

ensemble dense de Spec™™(R(a)) (ici ), désigne une spécialisation arithmétique de R(a)
dont le noyau est p). D’une part, ces idéal caractéristiques sont engendrent par les fonctions
L pl—adlques anfllythues [, (calculés par rapport. a un période canomque?, qui sont mt.er—
polées par un élément L3*(a) de R(a)n, (construit dans [EPWO6]). Ceci suggere un lien
entre .Z%(a) et L2"(a), ce qui conduit & la conjecture ci-dessus.

Conjecture A. L’élément £%(a) de Frac(R(a)w,) appartient d R(a)fy et
.;Zflg(a)R(a)int o LG(a)R(a)int

Iw — Iw*
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Dans ce qui précede, R(a)™ désigne la cloture intégrale de R(a) dans son corps de
fractions et

R(a)iy = R(a)™®z,Z,[[Gal(Qu /Q)]]-
En supposant que la conjecture de Greenberg sur la disparition des p-invariants de formes

modulaires (avec représentation résiduelle absolument irréductible et p-distinguée), nous
montrons cette conjecture dans théoreme [3.5.22]

Fonctions L p-adiques algébriques pour la famille de Hida pour groupes uni-
taires définis. Les résultats obtenus dans le chapitre [4] sont résumés ici.

Dans ce chapitre, nous construisons des fonctions L p-adiques algébriques La, (), Lzliato( ).
En utilisant de théoreme [1.2.4] et la pureté de représentations ga10181ennes associées aux
représentations automorphes (qui sont de poids dominant et stable) pour les groupes uni-
taires définies, nous montrons qu’elles satisfont des théoremes de controle a spécialisations
arithmétique de poids dominant régulier, dont les représentations galoisiennes associées sont
cristallines a chaque place au-dessus de p et représentations automorphes associées sont sta-
bles. Maintenant, nous enongons ce résultats se référant au chapitre [ pour plus de détails.

Soit R(a) une normalisation partielle (comme défini dans §4.3) du quotient de 1'algebre
de Hida-Hecke

Iy iy (U(™), Ok) = <1_h?§;i< (p), O)

par un idéal premier minimal a (ici K des1gne une extension finite de Q,). Notons T (a)
la représentation galoisienne de Hida de Grg sur R(a) ou S désigne un ensemble fini des
places d'un corp F' avec CM contenant les places au-dessus de p et les places a l'infini.
Supposons que la représentation résiduelle p associé a la G g-représentation 7 (a) est ab-
solument irréductible ('hypothese [£.3.1)). Pour une spécialisation arithmétique ¢ de R(a),
posons
OC = ImC

et notons T¢ la G g-représentation 7 (a) ®@p(),c Oc. Notons la représentation automorphe
associée a ¢ par 7.

Soit
T (@) = T(a) ®z, Zy[[Gal(Fo/ F)]],
Terw = T¢ @z, Ly|[Gal(Foo / F)]]

la déformation cyclotomique de 7T (a) et T, respectivement, ou F,, désignent le Z,-extension
cyclotomique de F'. Notons

AOC = OC ®Zp Zp[[Gal(FOO/F)]]
Dans la définition [4.3.3] nous définissons L;}%Gr('r( )iw)s L;liato(’r(a)lw), L;},gGr(Tg,Iw),

;}%{ato(T ¢.Iw), ou ¢ désigne une spécialisation arithmétique de R(a) de poid dominant régulier

tel que V¢|q, est cristalline pour tous les places w de I au-dessus de p. D’apres le lemme
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4.3.5] les noyaux de ces spécialisations forment un sous-ensemble dense de Spec(R(a)).

Théoreme F. Soit ( une spécialisation arithmétique de R(a) de poid dominante réguliére
tel que ¢ est stable et Ve|q, —est crystalline pour tous les place w de F' au-dessus de p. En-
suite, les isomorphismes dans les propositions|2.1.2,(2.2.1),|2.2.5 induisent les isomorphismes
sutvants

al ~ ral
Lp’,gGr(T(a)IW) ®R(Q)IW7C AO( = Lp’,gGr<TC7IW)7
al ~ Tal
Lp,%(ato(T(a)IW) ®R(G)IW7C AO( = Lp,%(ato(TC,IW)‘

Le théoreme ci-dessus correspondent au théoreme [.3.6] L’ingrédient essentiel de sa
preuve est le théoreme|1.2.4]et la pureté des représentations galoisiennes associées aux formes
automorphes (qui sont de poids dominant et stable) pour les groupes unitaires définis. Bien
que ces représentations galoisiennes ne sont pas connus pour étre motiviques, dans [Pin92),
Conjecture 5.4.1], ils sont conjecturés satisfaire des propriétés similaires & des représentations
motiviques. Par exemple, la conjecture de monodromie-poids, qui est connue par [Carl2]
dans ce cas.

Organisation

Cette these est disposé en quatre chapitres.

Le premier chapitre est le coeur technique de ce manuscrit. Ici, nous développons un outil
(le théoreme ) pour comprendre la variation des invariants sous linertie (en tant que
module de Frobenius) dans une famille, que nous appelonsﬂ

pureté pour le représentation galoisienne a coefficients dans un anneau de grande dimension.

Il décrit la paramétrisation de Weil-Deligne d’une spécialisation pur d’un représentation
galoisienne a coefficients dans un anneau de grande dimension en termes de la paramétrisation
de Weil-Deligne de la représentation galoisienne a coefficients dans un anneau de grande
dimension et donc décrit la variation de invariants d’inertie de spécialisations purs. Cela
permet de montrer des théoremes de controle pour (les facteurs locaux en dehors de p de la)
fonctions L p-adiques algébriques que nous construisons dans les chapitre [3] [

Le deuxieme chapitre rappelle la notion de complexes de Selmer et la notion de foncteurs
déterminants comme introduits dans [Nek06l, KMT76| respectivement.

Dans le troisieme chapitre, nous construisons des fonctions L p-adiques algébriques au
long de composantes irréductibles de la famille de Hida des formes paraboliques ordinaires
et montrons qu’ils satisfont de théoremes de controle parfait a spécialisations arithmétiques.
Nous relions aussi notre construction avec le groupe de Selmer stricte de Greenberg. Dans la
derniere section, nous conjectorons un lien entre notre construction et la fonction L p-adique
analytique construite dans [EPWO06].

Dans le quatrieme chapitre, nous construisons fonctions L p-adiques algébriques au long
de composantes irréductibles de la famille de Hida pour les groupes unitaires définis et
montrons qu’ils satisfont théoremes de controle parfait a spécialisations arithmétiques qui

2«Purity for big Galois representations” en anglais.
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sont de poids dominant régulier et dont représentations galoisiennes associés sont cristallines
a tous les places au-dessus de p.

Notations

Pour chaque corps E de caractéristique zero, nous fixons une cloture algébrique E et
le groupe de Galois absolu Gal(E/E) par Gg. Nous fixons également des plongements

ioo ~ iP ~
C+~Q—=Q,.
Soit F' un corps de nombres et v un place finie de F'. Ensuite, le groupe de décomposition
et le groupe d’inertie de F' en v seront désignés par Gp,, I, respectivement. Lorsque is

ne se pose pas de confusion, ils seront désignés par G,, I, respectivement. Le Frobenius
géométrique dans G, /I, est notée par Fr,,.

Tout au long de ce manuscrit, 'isomorphisme de réciprocité de la théorie du corps de
classes locale est normalisé en laissant uniformisateurs correspondre a des éléments de Frobe-
nius géométriques.
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Introduction (in English)

Let Ko/K be a Zjy-extension of a number field K and let K C K,, C K denote the
sub-extension of degree n. Then K.Iwasawa showed in [Iwa59] that the exact power of p
dividing the order of the class group X,, of K, is given for n large enough by the formula

(0.0.3) An + pp" + v

where A > 0, p > 0 and v are integers. Immediately thereafter, J.-P. Serre noticed in [Ser95]
that this result followed from two general principles: first, the inverse limit X, of the X,
with respect to the norm map is a finite type torsion module over A = Z,[[Gal(K ./ K)]] (a
regular ring of dimension 2); second, there exists a specific element w,, such that X, is equal
to Xoo/wy. As the order of the class group is linked via the Dirichlet class number formula
to special values of the zeta function, these results suggest that the variation of class groups
in Z,-extensions could be linked with p-adic L-functions and indeed, the Kubota-Leopoldt
zeta function was given a new construction in terms of cyclotomic Z,-extensions in [Iwa69].
In [Maz72], B. Mazur proved that the formula admitted an extension to the growth
of the Tate-Shafarevich group of abelian varieties in Z,-extensions and he proposed a bold
generalization of these facts to the Galois cohomology of the étale cohomology of varieties
over Q. However, already in the context of abelian varieties, a remarkable fact is that the
control theorem relating the Selmer group over A to the Selmer group over Z[Gal(K,,/K)] is
true only up to error terms of local origins, the error terms at places above p being sometimes
unbounded with n. The analogy mentioned above with p-adic interpolation of special values
of L-functions can perhaps account for the strange behavior at p: just as one should not
expect to be able to interpolate special values of L-functions without first removing an Euler
factor at p, one should presumably not expect p-adic interpolation of Galois cohomology
modules to proceed smoothly without modifying the condition at p. The relevance (if any)
of error terms at other places, on the other hand, remained mysterious.

In the late 80s and early 90s, several theoretical improvements completely changed our
approach to these classical questions. First, R. Greenberg proposed in [Gre89), [Gre91] that
the appropriate context for the study of p-adic variation of special values of L-functions and
Selmer modules was the universal deformation of a Galois representation of geometric origin.
Second, the conjectures formulated by Bloch, Kato in [BK90, [Kat93] considerably deep-
ened our understanding of the behavior of special values of L-functions. In particular, they
made clear that special values of L-functions should be linked to some integral basis in the
determinant of the Galois cohomology complex of motives with coefficients. Seen from this
dual perspective, the proper extension of Iwasawa’s and Mazur’s classical control theorem
should be that specialization of some integral basis in the determinant of the Galois coho-
mology complex of motives with coefficients in universal deformation rings at an arithmetic
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point z should be equal to the integral basis of the determinant of the Galois cohomology
of the motive over Q corresponding to x coming from the conjectures on special values of
L-function. As in [Kat04], one can check for instance that this formulation applied to the
motive Q(1) recovers exactly Iwasawa’s control theorem and that no prime ¢ # p can make
a contribution to the error term in the setting of Z,-extensions. However, in the simplest
example of p-adic universal families of rank 2 motives, that is p-adic families of ordinary
eigenforms parametrized by the Hida-Hecke algebra, even a precise formulation of the con-
jectural form of the control theorem has been heretofore lacking.

The reasons for this are twofold. To start with, universal deformation rings are typi-
cally not known to be regular rings, so complexes of Galois cohomology of p-adic families
with coefficients in universal deformation rings are usually not known to be perfect com-
plexes, precluding the possibility of taking unconditionally their determinants. Even in the
more classical formulation of Greenberg ([Gre91]), one needs to consider the characteristic
ideal of some modules and this requires at least the ring to be normal. This for instance is
presumably why there is no definition of an algebraic counterpart to the analytic p-adic L-
function for Hida families in [EPWO06] by Emerton, Pollack, Weston. Moreover, even when
the complexes are known to be perfect, the error terms ubiquitous in control theorems since
[Maz72] can be very hard to explicitly control in the universal deformation. This happens
for instance in works by Fouquet, Ochiai ([Och06, FO12]) and is related to the variation
of the inertia invariants in families.

In this manuscript, we prove a perfect control theorem at arithmetic points on a branch
of the Hida family for GLy(Q) and definite unitary groups with no assumption on the nature
of the universal deformation ring, and thus construct unconditionally an algebraic p-adic L-
function for the Galois representations attached to these Hida families. The fundamental tool
allowing this progress is the recognition of the crucial role played by the weight-monodromy
conjecture in the variation of special values of L-function (an idea which we learned from
Nekovéar [Nek06] and Ochiai [Och06]). The philosophy behind the conjectures of Bloch,
Kato, Fontaine and Perrin-Riou ([BK90, FPR94]) is that special values of L-function
should encode extension of motives which are not too much ramified. This implies that
the local conditions at ¢ # p conjectured to appear in the definition of algebraic p-adic
L-functions will involve ramification. The weight-monodromy conjecture allows to relate
inertia invariants of pure modules with eigenvalues of the Frobenius morphisms and this
allows at the same time to define unconditionally an algebraic p-adic L-function as well
as proving it satisfies a control theorem at arithmetic points. We remark that the weight-
monodromy conjecture is known in many cases due to works of Blasius, Caraiani, Carayol,
Clozel, Harris, Scholze, Shin, Taylor, Yoshida et. al. (see [Car86, Théoreme A], [Bla06,
Theorem 2], [HTO01, TYO07, [Shilll, [Car12, [Sch12, [Clo13] for instance).

Statement of results

In this section, we summarize the results obtained in chapter [1 [3]

Purity for big Galois representations. Let p be a rational prime and K denote a
finite extension of QQ, with ¢ # p. Let R be a characteristic zero domain containing 7, as a
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subring. Denote the fraction field of R by K and fix an algebraic closure K of . Denote
the integral closure of R in K by Og. Note that any ring homomorphism 1 from R to an
algebraically closed field € of characteristic zero extends to Og[1/p], we fix such an extension
and denote it by 1) by abuse of notation. Observe that Q is contained inside Ox[1/p]. Suppose
that G = Gal(K/K) acts on a free R-module 7 such that its action is monodromic (i.e.,
a finite index subgroup of I acts through its Z,-quotient via the exponential of a nilpotent
matrix, see Definition . Let M, denote the associated monodromy filtration on 7.
Denote the G g-representation 7 ®@x K by V. For a Z,-algebra homomorphism A : R — @p,
the G g-representation 7 ®x, ,\@p is denoted by V). Let M), o denote the monodromy filtration
on V) associated to its monodromy. The Weil-Deligne parametrization of V (resp. V)) is
denoted by WD(V) (resp. WD(V})). For a Weil-Deligne representation V', its Frobenius
semisimplification is denoted by Vs,

Theorem A (Purity for big Galois representations). Suppose that A\ : R — @p 15 a Lip-
algebra homomorphism such that the Gk -representation Vy is pure of weight w (see §1.0.1
or definition . Let py denote the kernel of X. Then the following hold.

(1) The terms and gradings of M become free over R, after localizing them at py and
for any i € Z, the map X\ induces isomorphisms

M; @r A Q, = My;, GriM,®z,Q, ~ Gr;M,,
of Wi -modules.

(2) There exist
(a) an integer J > 1,
(b) integers 0 <t; < --- <ty,
(c) an integer I > 1,
(d) (i) unramified characters x1,--- ,x1: Wk — O%,
(i) irreducible Frobenius-semisimple representations

p1: Wk — GLdl(@)? e pr s Wi — GLd;(Q)

with finite image and
(e) integers n;; > 0 for 1 <i < 1,1 <j <.J such that the following hold.

o There are isomorphisms of Weil-Deligne representations

I J
WD) =~ B EP Sy, (xi © o),

i=1 j=1
I J

WD) ~ DS, (o (v @ 2015
i=1 j=1

e The representation Ao (x; @ p;) : Wi — GL4(Q,) has image contained in
GLdi(@) foralll1 <i<I.
Furthermore, the integers I, J,t;,n;; and the representations x;, p; depend on'V, but

not on \.
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(3) The \-specialization of the central irreducible summands of WD(V)¥™s5 (considered
over Og|1/p]) are strictly pure of weight w.

(4) The polynomial Eul(V)~! has coefficients in OxNRy, , its A-specialization is Eul(Vy) ™.

(5) The R,,-modules ’7,';1’(, ’7;A/7;IAK are free and the map X\ induces an isomorphism
T @ Q, ~ T @r, 2 Q, = V.

Consequently, the complex [T'x ol Tx] concentrated in degree 0, 1 descends

perfectly to the complex [V/\IK LN V)\IK] concentrated in degree 0, 1, i.e.,

_ L — _
[TIK u) TIK]®R,)\Qp ~ [V/\IK E) V)\IK]'

For a more general version, we refer to theorem which is the main result of chapter
[l The main upshot of purity for big Galois representations is that using this one can prove
control theorems at pure specializations for (the local factors outside p of) the algebraic p-
adic L-functions that we construct in chapter , . Using the same tool and [Ber13, Lemma
5.5], we also hope to construct an algebraic p-adic L-function along irreducible components of
eigenvarieties. In fact we expect that using purity of big Galois representations, an algebraic
p-adic L-function can be constructed for any family of Galois representations and pseudo-
representations interpolating Galois representations over @p whose restriction to local Galois
groups at places not dividing p are pure. We refer to the introduction of chapter [1| for a
detailed discussion about an appropriate context of purity for big Galois representations, a
sketch of its proof, consequences and explanation of the inevitability of the hypothesis that
R is a domain.

Algebraic p-adic L-functions for the Hida family for GLy(Q). The results obtained
in chapter [3| are summarized here. In this chapter, we construct algebraic p-adic L-functions
L;}%}r<_>> LS (=), L;}iam(—). Using|1.2.4] and purity of modular Galois representations, we
show that they satisfy control theorems at arithmetic specializations (under some hypothe-
sis). We also relate our construction with Greenberg’s strict Selmer group (using [Kat04],
Theorem 17.4], [Nek06l, Theorem 7.8.6]). Now we state these results referring to chapter

for details.

Let R(a) denote the quotient of the Hida-Hecke algebra h%d by a minimal prime ideal a.
Suppose that the composite map

hod — R(a) < Frac(R(a))

is minimal in the sense of [Hid88al, p. 317]. Let 7 (a) denote Hida’s big Galois representation
of Gg,¢ over R(a) where S denotes a finite set of places of Q containing p and the place at
infinity. Assume that the residual representation p associated with the Gg s-representation
T (a) is absolutely irreducible (this is assumption . For an arithmetic specialization A
of R(a), put

O A = ImA

and let T denote the Gg s-representation 7 (a) @g(a)x Ox.
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Let
T (@) = T(0)®2,Z,[[Gal(Qx /Q)]],
TA,Iw - TA ®Zp Zp[[Gal(@oo/Q)]]

denote the cyclotomic deformation of 7 (a) and T) respectively where Q., denotes the cy-
clotomic Z,-extension of Q. Put

Aoy = Ox @z, Z,[|Gal(Qu/Q)]];
R(a)rw = R(a)&z,Zy[[Gal(Quc/Q)]].
In definition [3.3.4, we define L2% (T (0)1w), L% (T(a)1w): L% (T (0)1w), Lo% (Th1w),

p,Kato

LZ}%Gr(T,\,IW), L;}%{ato(T/\Jw) where A denotes an arithmetic specialization of R(a).

Theorem B. Let A\ be an arithmetic specialization of R(a). Then the isomorphisms in
propositions |2.1.2, (2.2.1], 12.2.5 induce an isomorphism

al ~ 71al
Ly & (T(0)1w) @R(ayer Aoy = L & (Thw)
when p s p-distinguished. They also induce isomorphisms
al ~ 7al
Lp’,gGr<T(a)IW) ®R(Q)IW7)\ AO)\ = Lp/%;Gr(TA:IW)7
Ly Feato T (0)1) @@y r Aoy = Ly fo(Taiw)-

Theorem C. Let A be an arithmetic specialization of R(a) such that Oy is a DVR. The
Selmer complex RI (T 1v) defined with respect to Greenberg’s local condition (see definition

is a perfect complex of Ao, -modules and the map i, (—,—,—) (as in equation (2.1.4]))
-1

induces an isomorphism between LZ}gGr(T)\,IW> and (detAoA RI‘f(T,\JW)> . For any integer

1<1andi> 2,

ﬁ}(T)\JW) - O
Suppose that p does not divide the level of the ordinary form associated with A\. Then
HJ%(T,\JW) is a torsion Ao, -module and H} (Ta1w) is zero. The surjective map

H}(Apgy) — Selif!

A 1w
as in Lemma[3.4.4) induces an injective map
(0.0.4) Dp (Selit, ) = H3(Thw)
with finite cokernel. Consequently we get a canonical isomorphism

L%, (Thaw) = (chars, Dp(Sel’ | ),0)
using equations (2.1.3), (2.1.5) and (3.4.2).

The above two theorems correspond to theorem m (resp. 13.4.5). The crucial ingre-
dients of the proof are theorem and purity of modular Galois representations (resp.
[Kat04, Theorem 17.4], [Nek06l, Theorem 7.8.6]).
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In we show that all the cohomologies of the complex C& (7 (a)y) are zero, except
possibly the second cohomology, which is torsion over R(a),, (proposition . This result
allows to construct a two-variable algebraic p-adic L-function £"(a) € Frac(R(a)n,) whose
image under mod p reduction generates the characteristic ideal of the Pontrjagin dual of the
strict Selmer group Self}ipvlw for p varying in a dense subset of Spec™™(R(a)) (A, denotes an
arithmetic specialization of R(a) whose kernel is p). On the other hand, these characteristic
ideals are generated by the analytic p-adic L-functions of fy, (computed with respect to a
canonical period), which are interpolated by an element L3"(a) of R(a), (as constructed in
[EPWO06]). This suggests a link between .Z#(a) and L2"(a), which leads to the conjecture

below.
Conjecture 1. The element £'%(a) of Frac(R(a)wy) is an element of R(a)fs and
D%alg(coR(a)int . L;n(a)R(a)mt

Iw — Iw*

In the above R(a)™ denotes the integral closure of R(a) in its fraction field and R(a)in?
denotes the completed tensor product R(a)™&y Z,[[Gal(Qs/Q)]]. Assuming Greenberg’s
conjecture on vanishing of p-invariants of modular forms (with absolutely irreducible and

p-distinguished residual Galois representation), we prove this conjecture in theorem [3.5.22]

Algebraic p-adic L-functions for the Hida family for definite unitary groups.
The results obtained in chapter [4] are summarized here. In this chapter, we construct alge-
braic p-adic L-functions LZ},gGr(—), LZ{%MO(—). Using [1.2.4] and purity of Galois representa-
tions associated with automorphic representations (which are of dominant weight and stable)
for definite unitary groups, we show that they satisfy control theorems at arithmetic special-
izations of regular dominant weight whose associated Galois representations are crystalline
at each place lying above p and associated automorphic representations are stable. Now we

state this result referring to chapter [4] for details.

Let R(a) denote a partial normalization (as defined in of the quotient of the Hida-
Hecke algebra hi’(jr}d(U (p™), O) by a minimal prime ideal a (here K denotes a finite exten-
sion of Q,). Let 7T (a) denote Hida’s big Galois representation of Grg over R(a) where S
denotes a finite set of places of a CM field F' containing the places above p and the places at
infinity. Assume that the residual representation p associated with the G g g-representation
T (a) is absolutely irreducible (this is assumption . For an arithmetic specialization ¢
of R(a), put

O< = ImC
and let T, denote the G g-representation 7 (a) ®p(),c O¢. Denote the automorphic repre-
sentation attached to ¢ by 7.
Let

T (1w = T(a) @z, Zy[[Gal(F/F)]],
Teaw =1t ®z, Z[[Gal(F / F)]]

denote the cyclotomic deformation of 7 (a) and T¢ respectively where F, denote the cyclo-
tomic Z,-extension of F'. Put

AOC = OC ®Zp Zp[[Gal(Foo/F)]]
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In definition4.3.3| we define LZ}’gGr(T(a)IW), LZ}iato(T(a)lw), LZ},gGr(TCJW)’ L;{%(ato (T¢ 1w) where
¢ denotes an arithmetic specialization of R(a) of regular dominant weight such that V¢|q,.
is crystalline for any place w of F' lying above p. By lemma [£.3.5] the kernels of such spe-

cializations form a dense subset of Spec(R(a)).

Theorem D. Let ( be an arithmetic specialization of R(a) of reqular dominant weight such
that m¢ is stable and V¢|q, s crystalline for any place w of F lying above p. Then the
1somorphisms in propositions|2.1.4, 12.2.1], 12.2.5 induce isomorphisms

L (T(@)1w) @Ry, ¢ Nop = Ly (Tew),

Lzzia‘co(lr(a)lw) QR(a)1w, ¢ Aoc = LZ{%(ato (TC,IW)-

The above theorem corresponds to theorem [4.3.6l The crucial ingredient of its proof is
theorem and purity of Galois representations associated with the automorphic forms
(which are of dominant weight and stable) for definite unitary groups. Note that though
such Galois representations are not known to be motivic, in [Pin92, Conjecture 5.4.1], they
are conjectured to satisfy properties similar to motivic representations, for example the
weight-monodromy conjecture, which is known by [Car12].

Organization

This thesis is arranged in four chapters.

The first chapter is the technical heart of this manuscript. Here we develop a tool
(theorem to understand the variation of the inertia invariants (as a Frobenius module)
in a family, which we call purity for big Galois representations. This describes the Weil-
Deligne parametrization of a pure specialization of a big Galois representation in terms
of the Weil-Deligne parametrization of the big Galois representation and thus describes
the variation of the inertia invariants at pure specializations. This allows to prove control
theorems for (the local factors outside p of the) the algebraic p-adic L-function that we
construct in chapter [3| [

The second chapter recalls the notion of Selmer complexes and the notion of determinant
functors as introduced in [Nek06, KMT6]| respectively.

In the third chapter, we construct algebraic p-adic L-functions along irreducible compo-
nents of the Hida family of ordinary cusp forms and prove that they satisfy perfect control
theorems at arithmetic specializations. We also relate our construction with Greenberg’s
strict Selmer group. In the final section, we conjecture a link between our construction and
the analytic p-adic L-function as constructed in [EPWO06].

In the fourth chapter, we construct algebraic p-adic L-functions along irreducible com-
ponents of the Hida family for definite unitary groups and prove that they satisfy perfect
control theorem at arithmetic specializations which are of regular dominant weight and whose
associated Galois representations are crystalline at all the places above p.
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Notations

For each field F of characteristic zero, we fix an algebraic closure E once and for all and

denote the absolute Galois group Gal(E/E) by Gi. We also fix embeddings C ﬁv@f_ﬂ@p
once and for all.

Let F' be a number field and v denote a finite place of F'. Then the decomposition group
and inertia group of F' at v will be denoted by Gp,, I, respectively. When no confusion
arise, they will be denoted by G,, I, respectively. The geometric Frobenius element of G, /I,
is denoted by Fr,.

Throughout this manuscript, the reciprocity isomorphism of local class field theory is
normalized by letting uniformizers correspond to geometric Frobenius elements.
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CHAPTER 1

Purity for big Galois representations

1.0. Introduction

1.0.1. Weight-Monodromy Conjecture. Let p be a rational prime, K be a finite
extension of Q; with ¢ # p. Denote the residue field of the ring of integers of K by k. Let
¢ denote a lift of the geometric Frobenius to Gx. Suppose that V' is a finite dimensional
continuous representation of G over @p. Then the Grothendieck monodromy theorem
(Theorem gives a nilpotent endomorphism N of V, called the monodromy of V,
attached to which there is an increasing filtration M, on V' which is stable under the action
of Gk and is called the monodromy filtration. The G'k-representation V is said to be pure of
weight w € Z (pure for short) if the characteristic roots of ¢ on Gr; M, are #k-Weil numbers
of weight w+1i. The Weight-Monodromy Conjecture (henceforth WMC) states the following.

Conjecture 1.0.1 ([I1194]). Let X be a projective smooth variety over K. Then for any
integer 1, the G -representation Hgt(X@Z, Q,) is pure of weight i.

The Galois representations associated with automorphic representations are expected
to come from geometry and hence believed to be pure. The WMC is known for many
automorphic Galois representations, see [Car86l, Théoreme A], [Bla06, Theorem 2|, [HTO01,
TYO07, [Shilll, [Car12, [Sch12, [Clo13] for example.

1.0.2. Local Euler factors. For a Weil-Deligne representation V' = (r, N) of Wy over
an algebraically closed field €2 of characteristic zero, its local Euler factor is defined as

Eul((r, N), X) = det(1 — X¢|,rcn=0)"" € Q(X)
where VI1%:N=0 denotes the subspace of V on which I acts trivially and N is zero (cf. [Tay04,
p. 85]).

For a Galois representation p : Gal(E/E) — GL(V) of the absolute Galois group of a
number field E on a finite dimensional vector space V' over an algebraically closed field €2 of
characteristic zero, its local Euler factor at a finite place v of F not dividing p is defined by

Eul,(p, X) = Eul(WD(V|g, ), X) € Q(X).

1.0.3. Families. Following works of Bellaiche, Chenevier, Coleman, Hida, Mazur et. al.,
it is believed that automorphic Galois representations live in families. In precise terms, we
expect to have a tuple

Fp={IL, E,p, R, Spc™™™(R), T’}
which we call a family, where

(1) II is a set of automorphic representations of G(Ar) (where G denotes a reductive
group and A denotes the ring of adeles of some number field F') and to each 7 € II,
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there is a p-adic Galois representation p,, : Gy — GL,(Q,) associated with it (the
integer n > 1 does not depend on 7),

(2) E is a number field, p is a rational prime,

(3) R is a characteristic zero domain containing Z, as a subalgebra, usually of large
Krull dimension,

(4) Spcl™*(R) is a non-empty subset of Homgz, (R, Q,) and there is a map

Spcl™™(R) = II, A+ my,

(5) T is a free R-module equipped with an action of the absolute Galois group Gg =
Gal(E/E) of E and for any A € Spcl*™*(R), the Gp-representations 7 ®% » Q, and
Pry.,p are isomorphic,

(6) for any finite place v of E not dividing p, the representation 7T |g, is monodromic

(see definition |1.1.1).

Let K denote the fraction field of R. We fix an algebraic closure K of K. The integral
closure of R in K (resp. K) will be denoted by Ok (resp.Og). By V, we will denote the
G g-representation 7 ®z K. For an element A of Homgz, _.,(R, @p), we set

Vii=T Qra Q.

In the following v will always denote a finite place of E. For such a place not dividing p,
we put
Spell™*(R) := {\ € Homg, iz(R., Q,) | Vale, is pure}.

We say the WMC holds for F, at a finite place v of E not dividing p if for any m € II, the
G-representation p, ,|q, is pure. We say the WMC' holds for F, if the WMC holds for F,
at all finite places of E not dividing p. Note that if the WMC holds for F,, then

Spcl™™(R) C SpclP™(R)
for all v not dividing p.

Hida families of ordinary automorphic representations for various reductive groups pro-
vide ample examples of families. In chapter [3]and [} we will consider the Hida families for
GL2(Q) and definite unitary groups.

For notations used in the example below, we refer to chapter [3]

Example 1.0.2. Hida theory of ordinary forms for G = GLy(Q) shows that
Fo = {11, Q,p, R, Spcl*™(R), T}

is a family where R = R(a) = h%d/a, Spcl™™(R) denotes the set of arithmetic special-
izations of R(a), IT denotes the set of ordinary automorphic representations of GLy(Q)
corresponding to the ordinary eigen cusp forms lying on the component Spec(h%d/a) of
Spec(h2d), T denotes T(a). The set Spcl™™(R) of arithmetic specializations is dense in
HomZp_alg(R,@p). Moreover the WMC is known for this family (see Prop |3.1.1]).

We refer to chapter {4 for the notations and terminologies used in the example below.
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Example 1.0.3. Let F' be a CM field and F'" be its maximal totally real subfield. Let G
be the definite unitary group defined over F* (as in §4.1.1). Let p be a prime, R = R(a),
Spcl™™(R) denote the set of arithmetic specializations of R(a), IT denote the set of ordinary
automorphic representations of G(A g+ ) of dominant weights corresponding to the arithmetic
specializations of R(a), T denote 7 (a) as in chapter [l Then

F, = {1, F,p,R, Spcl™™(R), T}

is a family. The set Spcl®™"(R) of arithmetic specializations is dense in Homy, (R, Q,).
By [Car12l Theorem 1.2], WMC is known for the arithmetic specializations of 7" which are
of dominant weight and whose associated automorphic representation is stable.

1.0.4. Local Euler factors in families. Given a family F,, we may wonder if the
local Euler factors of its specializations are interpolated by the local Euler factors of V, i.e.,
we may ask if

Eul,(V, X)) € O¢[X], A(Eul,(V, X)) = Eul,(Vy, X)

holds for all v { p and A € Homgz, ag(R,Q,). First of all, this need not hold. For example, if
G, acts unipotently on 7, then its rank of I,-invariants, i.e., the degree of Eul,(V, X)™!, is
equal to the dimension of null space of the monodromy of T|q,, which might increase under
a specialization A of R, making the degree of Eul, (Vy, X)~! larger than that of Eul,(V, X)~!.

However the arithmetic specializations of R are of our interest and we may ask if the
local Euler factors of the arithmetic specializations of F, are interpolated by the local Euler
factors of V, i.e., if

(Eul-Interp) Eul,(V, X)™' € Oc[X], A(Eul,(V, X)) = Eul,(V), X)

holds for all v { p and A € Spcl®™™(R). By the theorem below, this is true when the WMC
holds for F,.

1.0.5. Main result. Let R be a characteristic zero domain containing 7Z, as a subal-
gebra. Denote the fraction field of R by K and fix an algebraic closure IC of . Denote
the integral closure of R in K by Og. Note that any ring homomorphism 1 from R to an
algebraically closed field Q of characteristic zero extends to Og[l/p], we fix such an exten-
sion and denote it by 1) by abuse of notation. Observe that Q is contained inside Oxl[1/p].
Suppose that G acts on a free R-module T such that its action is monodromic (i.e., a finite
index subgroup of Ix acts through its Z,-quotient via the exponential of a nilpotent matrix,
see Definition . Let M, denote the associated monodromy filtration on 7. Denote
the Gy-representation T ®% K by V. For a Z,-algebra homomorphism A : R — @p, put
Vi =T @rx @p. Since 7T is monodromic, V) is also monodromic. Denote the associated
monodromy filtration on V) by M) ,.

Theorem 1.0.4 (Purity for big Galois representations). Suppose that A : R — @p is a
Zy-algebra homomorphism such that the G -representation Vy is pure of weight w. Let py
denote the kernel of . Then the following hold.

(1) The terms and gradings of Me become free over R, after localizing them at py and
for any i € Z, the map X induces isomorphisms

M; @r ) Q, = My,;, GriM,®@r,Q, ~ Gr;M,,
3



of Wi -modules.

(2) There exist
(a) an integer J > 1,
(b) integers 0 <ty < --- <ty,
(c) an integer I > 1,
(d) (i) unramified characters xi,--- ,x1: Wk — O,
(i) irreducible Frobenius-semisimple representations

p1: Wi — GLg, (Q), -+, pr : Wk — GL4,(Q)
with finite image and
(e) integers n;; >0 for 1 <i<I,1<j<.J
such that the following hold.
(I) There are isomorphisms of Weil-Deligne representations

I J
WD) =~ B EP Sy, (xi @ pi) .

i=1 j=1
I J

WD) = DD, (o (v @ 205
i=1 j=1

(II) The representation Ao (x; ® p;) : W — GLq,(Q,) has image contained in

GL4,(Q) forall1 <i <.
Furthermore, the integers I, J,t;,n;; and the representations x;, p; depend on 'V, but
not on .

(8) The \-specialization of the central irreducible summands (see definition |1.1.24)) of
WD(V)¥ss (considered over Og[1/p]) are strictly pure of weight w.

(4) The polynomial Eul(V)™! has coefficients in OxNR,, , its \-specialization is Eul(Vy) ™.

(5) The R,,-modules 7;§K, To/ pIAK are free and the map X\ induces an isomorphism

Tk 0O ~ TIk 0O ~ Vik
T @OrAQy =T DRy x Qp = VY

Consequently, the complex [T'x LAl T'x] concentrated in degree 0, 1 descends
perfectly to the complex [V)\IK LN V)\IK] concentrated in degree 0, 1, i.e.,

_ L . _
[TIK u) TIK]®R,)\Qp ~ [V/\IK E} V)\IK].

For a more general version, we refer to theorem [1.2.4] which is the main result of this

chapter. Its proof is obtained by using theorem [1.2.1] [1.2.2] [1.2.3] (see equation for
the logical order of these results). We establish these four theorems from a sequence of ten
main propositions (proposition (1.3.1} [1.3.4] |1.3.5} [1.4.2} [1.4.3} |1.4.5} |1.4.6} [L.5.1} |1.5.3] |1.6.8))
among which proposition is the crux of the proof, which we call purity for big Galois
representations. Since the full strength of proposition is realized in theorem [1.2.4] we
will also refer to theorem by purity for big Galois representations. The (philosophical)
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reason behind such a terminology is explained below.

By theorem the shapes of the indecomposable summands of the Frobenius semisim-
plification of the Weil-Deligne parametrization of a pure specialization V) of the big Galois
representation 7 determines the shape of the indecomposable summands of WD(V)¥r-ss,
Conversely, the shape of the indecomposable summands of WD (V)¥5* determines the shape
of WD(V;)¥s for any pure specialization £. Moreover for such £, the central irreducible
summands (see definition of WD(V;)™ are interpolated by the central irreducible
summands of WD(V)¥5 by the same theorem. On the other hand, the purity of a Weil-
Deligne representation over @p is solely determined by its central irreducible summands.

So by theorem [1.2.4] the central irreducible summands of WD(V)'™ interpolates the
central irreducible summands of WD(V;)F, i.e., the purity determining data of WD(V )
for any pure specialization ¢ of R. For this reason, we call this theorem purity for big Galois
representations.

1.0.6. Consequences. We explain some consequences of theorem [1.0.4]

1.0.6.1. Algebraic p-adic L-functions. Theorem [1.2.4] is the technical tool that we de-
veloped and successfully use in chapter [3, [] to construct an algebraic p-adic L-function
along irreducible components of Hida families of ordinary forms for GL(Q), definite unitary
groups. Using similar techniques and [Ber13l Lemma 5.5], we also hope to construct an
algebraic p-adic L-function along irreducible components of eigenvarieties. In fact we expect
that using purity of big Galois representations, an algebraic p-adic L-function can be con-
structed for any family of Galois representations and pseudo-representations interpolating
Galois representations over @p whose restriction to local Galois groups at places not dividing
p are pure.

1.0.6.2. Rationality in automorphic families. Given a family F,, satisfying the WMC, the-
orem MQ)(I) shows that the indecomposable summands of {WD(V3)"™}, (g joritn ) are
interpolated by Weil-Deligne representations defined over Ox[1/p] and by theorem|1.0.4)(2)(1I),
the specialization of any of these representations under any A has image contained in GL4(Q)
for some integer d (depending on the representation). In particular, the structure of the
Frobenius semisimplification of the Weil-Deligne parametrizations of arithmetic specializa-

tions are rigid in a family satisfying the WMC.
1.0.6.3. Euler factors. Given any family F, satisfying the WMC, we have
Eul,(V, X)™' € Oc[X], A(Eul,(V, X)) = Eul,(V), X)

for all v { p and A € Spcl™™(R) by theorem [1.0.4(4), i.e., (Eul-Interp]) holds.
Remark 1.0.5. For the Hida family as in example [1.0.2] (Eul-Interp)) is proved in [Nek06].

Remark 1.0.6. Our proof of this theorem does not assume

Spcl’™(R) := {\ € Homy, 1g(R. Q,) | V|, is pure}
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to be dense in Homg, s(R,Q,). Note that given a family F,, for which Spcl®*"(R) is dense

in Homy, uz(R,Q,), using Hilbert’s nullstellensatz, (Eul-Interp) can be proved for X in a
dense subset of Spcl™™(R).

1.0.7. Sketch of the proof. The main idea of the proof of purity for big Galois rep-
resentations (theorem lies in the proof of proposition m For simplicity, assume
that Iy acts unipotently on 7. Then this proposition says that the central elements of
WD(V3)F5 are the A-specialization of the central elements of WD(V)™ when V), is pure.
Its proof is outlined in §1.3.2.1 We explain how this proposition implies theorem [1.0.4|(2).

By the conjugation relation of the Frobenius in the tamely ramified Galois group of K,
factors of powers of #k appear in the elements of the multiset CR of the characteristic
roots of ¢ on )V according to the sizes of the Jordan blocks of the monodromy. Under a
@p—specialization A, the monodromy might degenerate and possibly go to zero making the
Jordan blocks of A(N) of size 1 x 1. However, these factors of powers of #k present in the
elements of the multiset CR remain intact under such a specialization and the specialization
of this multiset gives the multiset C'R) of the characteristic roots of ¢ on V. When V) is
pure, its monodromy can be read off from the amount of factors of powers of #k in the
elements of the multiset C'R) compared to its central elements.

ments of WD (V)5 (by proposition [1.3.4)), the indecomposable summands of WD(V} )
are forced to be interpolated by the indecomposable summands of WD (V)5 (by lemma

1.1.45).
This gives theorem [1.0.42). The proof of proposition is outlined in §1.3.2.1

Since the central elements of WD(V,)¥™ are the A-specialization of the central ele-
“

1.0.8. Inevitability of the hypothesis that R is a domain. In the proof of theorem
, we crucially use (through proposition the hypothesis that the ring R is a domain.
We cannot expect to prove theorem when the ring R is replaced by a more general
ring, an example being a ring with finitely many minimal primes.

In fact a crucial step in our proof of theorem is to pin down the factors of powers #k
in the characteristic roots of ¢ on the semistable part of ¥V and the amount of these factors
in them is governed by the size of the Jordan blocks of the monodromy of the semistable
part of V. When the coefficient ring R of 7 is not a domain, then the shapes of the Jordan
blocks of the images of its monodromy in the stalks of Spec(R) at the generic points need
not be independent of the generic points. Thereby making it impossible to pin down the
factors of powers of #£k in the characteristic roots of ¢ on the semistable part of V in a
reasonable manner. In fact one can provide a counterexample even in the very simple case

where R = Q,[[X]] x Q,[[X]] x Q,[[X]] by taking
(0,0,0) (X,0,0) (0,0,0)
N =11(0,0,0) (0,0,0) (0,X —1,0) |,
(0,0,0) (0,0,0) (0,0,0)



letting Ic act unipotently on 7 = R3 (consequently V is its own semistable part) and ¢ act
on 7 via a matrix

(Oél, 61, "}/1) (0, O, 0) (O, O, 0)
(0,0,0)  (as,B2,72)  (0,0,0) | € GLs(R).

(0,0,0)  (0,0,0) (a3, f3,73)
By the Iwasawa relation (as in equation (L.1.1))), we are forced to have
ar =g, Pa=Psq
Let
ap = {0} x Q[[X]] x Qp[[XT],

ay = Q[[X]] x {0} x Q,[[X]],
az = Qp[[X]] x Qp[[X]] x {0}

denote the minimal primes of R. Note that the Jordan decomposition of the image of N in
Frac(R/ay), Frac(R/ay), Frac(R/a3) is

0 X|0 0[0 0 0/0]0
0 0olo]|,{0f0 x=1]|,[0[0]0
0 00 0lo o 0100

respectively. Thus the behaviour of the monodromy N is not uniform along the irreducible
components of Spec(R) and this prohibits us from pinning down the factors of powers of ¢
in the roots of

(T - (041, 51771))(T - (042, 52,72))(T - (043, 53773))

in a uniform manner, i.e., from obtaining an integer e;; for ¢ # j such that
(aia ﬁia 72) = qeij (aja 5]7 7])

Thus we cannot hope to track the ‘right’ factors of powers of #k in the characteristic
roots of ¢ on the semistable part of V unless R is domain. Thus it seems hard to have a
reasonable formulation of the statement of proposition m (together with a proof) that
could lead to a proof of theorem for more general rings R. So we are compelled to
assume that R is a domain.

1.0.9. Organization. In the proof, one needs the notion of Weil-Deligne representa-
tions, Weil-Deligne parametrization of Galois representations etc. with coefficients in a do-
main. This has been given in the first section in a way analogous to [Del73bl 8.4-8.6],
[Tay04, p. 77-78|.

The organization of this chapter is as follows. First we recall the structure of the absolute
Galois group of f-adic fields. Second, we describe the notion of Weil-Deligne representations,
Grothendieck monodromy theorem, Weil-Deligne parametrization, pure modules. In section

1.2], we state the main results of this chapter, which are theorem [1.2.1], [1.2.2] [1.2.3] [T.2.4] In
the subsequent sections, we present the proof of these theorems.

7



1.1. Local Galois representations at v { p

1.1.1. Structure of Gk. Let ¢ be a rational prime. Only for this chapter, let KE]
denote a finite extension of @, and Ok denote its ring of integers and k£ its residue field.
Denote the cardinality of k by ¢. Let w denote a uniformizer of Ok and valg : K* — Z
be the w-adic valuation. Let | - |g:= (#k)™x() be the corresponding norm. The action
of Gx on K preserves valg (by [Neu99, Theorem 4.8, Chapter II] for instance) and hence
induces an action of G on k, so that we have a homomorphism Gg — Gy. The inertia
group I is defined as the kernel of this map and is equipped with the subspace topology
induced from Gg. Note that we have a short exact sequence

0= Ix — G — G — 0.

Let Frp € G be the geometric Frobenius element. Then the Weil group W is defined as
the subgroup of G consisting of elements which map to an integral power of Fry in Gj. Its
topology is determined by decreeing that Iy is open, and has its usual topology.

The Artin map
Artg : KX 5 WP
is normalized so that the uniformizing parameters go to geometric Frobenius elements. Let
Py = Gal(K /K'™™)
denote the wild inertia subgroup where
J(tame _ UKur<w1/n)’ KW — FIK
tn

(see [Neu99, Proposition 7.7, Chapter II] for example). Then given a compatible system
¢ = (Cn)em of primitive roots of unity, we have an isomorphism

tc . IK/PK :> HZP
p#L

where
O’(wl/n) _ (t¢ (o) mod n)
wl/n n ’
Any other compatible system of roots of unity is of the form (* for some u € Hp 202, , and
we have

tew = u M
By [INSWO08|, Theorem 7.5.2], for all 0 € W, and 7 € I, we have
(1.1.1) te(oro™!) = (o)t (1)
where
€ ::H€p Gy —>HZ;
p#L p#L

1The same notation is introduced in i to denote an extension of Q,.
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is the product of the cyclotomic characters. For a prime p # ¢, let ¢, denote the composite
map

(1.1.2) tep I = I/ P 5 [ 2, — Z,
p#AL

where the first map is the quotient map and the third map is the projection map. Finally
define vg : Wi — Z by
O_‘Kur - FI‘ZK (U)
for all o € Wk.
We end this section with the following definition.

Definition 1.1.1. Let A be a commutative Z,-algebra of characteristic zero. Suppose that
M is a free A-module with an A-linear G g -action

p: G — Auty(M)
on it. We say M is monodromic with monodromy N over K’ if there exists a finite extension
K'/K and a nilpotent element N € Endap p) (M ®4 A[1/p]) such that for all T € I

p(7) = exp(icp(T)N)
in Endap /(M ®4 A[1/p]).

Remark 1.1.2. Note that N is unique when it exists since A is of characteristic zero

(cf. Theorem [1.1.25)).

1.1.2. Weil-Deligne representations.

Definition 1.1.3 ([Del73b. 8.4.1], [Tay04, p. 77-78]). Let A be a commutative domain of
characteristic zero.

(1) A representation of Wy over A is a representation of Wi on a free A-module of
finite rank which is continuous if the module is endowed with the discrete topology
(i.e., a representation with open kernel).

(2) A Weil-Deligne representation of Wy on a free A-module M of finite rank is a triple
(r, M, N) consisting of a representation r : Wi — Auta(M) and an endomorphism
N € Enda(M) such that for all o € W,

H(0)Nr(0)™" = (#k) <N
m EndA[l/g](M XA A[l/f])
Note that a Weil representation can be considered as a Weil-Deligne representation with
zero N and these two representations will often be identified.

Definition 1.1.4. Let A be a domain of characteristic zero.

(1) A representation of I on a free A-module of finite rank n is said to semistable the
characteristic polynomial of T is (X — 1) for any T € Ik.

(2) A representation of I on a free A-module of finite rank is said to totally non-
semistable if there exists an element T € I such that the characteristic polynomial
of T does not vanish at 1.



(8) A representation of Wy or a Weil-Deligne representation of Wy is said to be
semistable (resp. totally non-semistable ) if its restriction to I is semistable (resp. totally
non-semistable).

Remark 1.1.5.

(1) Since Ik is compact and open in W, if r is a representation of Wy then r(Ix) is
finite.
(2) For a Weil-Deligne representation (r, N) of Wk, N is necessarily nilpotent.

Lemma 1.1.6. Let R be a ring and r : W — GL,(R) be a group homomorphism under
which Ik has finite image. Then r is trivial on some open subgroup of Wy and hence has
open kernel.

Proof. It suffices to show that ker r contains an open subgroup H of Wy because then ker r
would be the union of all the translates of H of the form gH with g in kerr. Now H can
be taken to be kerr|;,, which being of finite index in Ik is open in Ix and hence open in
Wi O

Definition 1.1.7. Given two Weil-Deligne representations (r1, My, N1) and (rq, Ma, N3) of
Wiy over a domain A, their sum and tensor product is defined by
(11, My, N1) @ (12, My, Na) = (11 @ 7o, My © My, N1 @ Ny),
(7’1, Ml, Nl) & (Tz, MQ, Ng) = (Tl X T2, M1 X MQ, 1(1]\41 X N2 + N1 X ldMQ)

Note that the sum and tensor product of Weil-Deligne representations defined over a
domain A are Weil-Deligne representations over A (cf. [Del73al 3.1.2]).

Definition 1.1.8. For a finite extension K'/K, the restriction of a Weil-Deligne represen-
tation (r, M, N) of Wi to Wk is defined by

(r, MyN)|WK/ = (T|WK,,M,N).

Notice that the above restriction is a Weil-Deligne representation over Wi:.

1.1.2.1. Inertia invariants as Wx-summand. Let V = (r, N) be a Weil-Deligne represen-
tation of Wy with coefficient in a field (necessarily of characteristic zero by the definition of
Weil-Deligne representation given above) and 6 € GL(V') denote the element

1
b=————— 3 gebad(V).
#Im(r () o)

Lemma 1.1.9. The element 0 is an idempotent and thus V decomposes into a direct sum
of subspaces
(1.1.3) V=0Ve(l-0)V
with
oV = Vs,
The above decomposition is a direct sum into Wy -stable subspaces and these subspaces are

stable under N. Moreover (r|yix, N|yix ), (r|yix.e, N|yix.c) are Weil-Deligne representations
and

(r,N) = (r[y1x, Nlyix) © (rlyigce, Nlyix.e)
10



as Weil-Deligne representations where V¢ denotes (1 — )V

In VIx:¢ the letter c stands for complement. We call V%€ the complement of the inertia
imwvariant of V.

Proof. Since for any 7 € I,

r(r)0 =40,
r(r)(1—=60)=r(r)—r(r)0
=r(t)—10
=r(r)—0r(r)

= (1 =0)r(r),

the spaces VIx = 0V and VIx:¢ = (1 — 0)V are stable under the action of If.

Since I is a normal subgroup of Wx, V¥ is stable under Wx. To prove that Vs«
is stable under Wy, it suffices to show that it is stable under the action of ¢. Let s =
#Im(r(Ig)) and {7, -+, 7} be a set of lifts of r(I) in Ix. Then

Or(o)(1 —0) = 0(r(¢) —r(¢)0)
=0(1—1(0)0r(¢)"")r(9)

D"

= (6 - ézerwwl)) r(¢)

1 S
=|0—- 0 i I i ] i
( . ; ) (o) (since If is normal in W)

= (60— 0)r(¢)
= 0.
1—

So 6 annihilates r(¢)(1 — )V and hence r(¢)(1 — )V is contained in (1 — 0)V.

Since 7 is a Weil-Deligne representation, § commutes with N and hence V/% and VZx-<
are stable under the action of N. Thus the decomposition in equation (|1.1.3) is a direct sum
of Wi-stable subspaces and these subspaces are stable under .

As a consequence of the above, we have
rlyix (@) Nyicr|yi (‘7)_1 = (#k)_vK(J)N|VIK7
rlyice(O)Nlyicer|yie (o)™ = (#k)ivK(U)N‘VIK’C
for all 0 € Wg. Since kerr is open in Wy, the kernels
ker(r|yix) = U gkerr, ker(r| i) = U gkerr
geker(r| ;) geker(r| 1y o)
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are open subgroups of Wx. So the restriction of (r, N) to VIx and V%< are Weil-Deligne
representations and (r, N) is equal to the direct sum of these restrictions as Weil-Deligne
representations. O

1.1.2.2. Frobenius semisimplification. Let ¢ denote a lift of Fry in Wyx. Suppose that
(r,N) = (r,V,N) is a Weil-Deligne representation with coefficients in a field L of character-
istic zero which contains all the characteristic roots of all the elements of r(Wp). Let

r(¢) = r(9)”u = ur(¢)>

be the Jordan decomposition of 7(¢) as the product of a diagonalizable matrix 7(¢)*® and a
unipotent matrix u. Following [Del73b, 8.5, [Tay04, p. 78|, define

7(o) = r(a)u‘”K(”)
for all 0 € Wg.
Lemma 1.1.10 (cf.[Del73bl, 8.5]). (7, V, N) is a Weil-Deligne representation.

Proof. First we show that u and N commute to deduce the appropriate conjugation action
of 7 on N. Let GL(V) act on Endz (V) by conjugation and denote this representation by

p: GL(V) — GL(End(V)).
From now on the representation p will be considered as an L-algebra homomorphism
p: LIGL(V)] — End(End.(V)).

The relation

r(@)Nr(¢)™! = (#k)'N

shows that

(1.1.4) p(r(6)) - N = (#£) LN,

i.e., N € Endp(V) is an eigenvector for r(¢) under the representation p. Note that
(1.1.5) p(r(9)) = p(r(9)”u) = p(ur(9)™) = p(u)p(r(9)™)

where p(r(¢)**) is semisimple. Since p is a ring homomorphism and (u — 1)3™Y = 0, the
operator p(u) is unipotent.

Since N is an eigenvector for p(r(¢)), it is also an eigenvector for p(r(¢)**) with the same

eigenvalue (#k)~1. So equation and ((1.1.5)) give
p(u)- N = N.
In other words u commutes with N. So for all 0 € Wx we have
Fo)N7(o) ™" = (#k) <IN,

Since I is normal in Wy, r(Ix) is normal in (W) and hence r(¢) acts on r(Ix) by
conjugation. As r([g) is a finite group, its automorphism group is finite and hence r(¢)?
commutes with r(I) for some d > 1. So r(¢)¢ commutes with r(Wy). By the same reason-
ing as above it follows that u? commutes with r(Wj).

12



Recall that p(u) is a unipotent operator on End, (V). Note that from the Jordan de-
composition of a unipotent matrix M, it follows that M fixes a vector v if and only if each
positive power of M fixes v. So

ker(p(u)? — 1) = ker(p(u) — 1)
and hence u commutes with r(Wy). This shows that for any oy, 09 € W,

F(o10y) = r(oy09)u UK (7102)

= 1(0)r(og)uvK @)y K (02)
= (o) u K (gy )y K (02)
= 7(o1)7(02).
So 7 is group homomorphism. To establish the lemma it remains to show that ker 7 is open

which follows from lemma [1.1.6] O

We continue to follow the notations as above and the assumption that L is a field of
characteristic zero containing all the characteristic roots of all elements of r(Wy).
Definition 1.1.11 (cf. [Del73bl 8.6]).

(1) The Weil-Deligne representation (7, V, N) is called the Frobenius semisimplification
of (r,V,N) and will be denoted by V¥,
(2) (r, N) is said to be Frobenius-semisimple if 7 = 7.

1.1.2.3. Structure of Frobenius-semisimple Weil-Deligne representations. Let €1 denote
an algebraically closed field of characteristic zero.
Definition 1.1.12.

(1) A Weil-Deligne representation over € is said to be indecomposable if it is not iso-
morphic to a direct sum of two nonzero Weil-Deligne representations over Q.

(2) A representation M of Wk over a commutative domain A of characteristic zero
is said to be irreducible (resp. Frobenius-semisimple) if the action of Wy (resp. the
action of ¢) on M ® 4 Frac(A) is irreducible (resp. semisimple).

Lemma 1.1.13. Let p : G — GL, () be a representation of a finite group G. Then there

exists a representation p' : G — GL,(Q) such that p is a conjugate of the composite map
p G — GL,(Q) — GL,(Q).
Proof. It follows from [Tay91, Theorem 1]. O

Proposition 1.1.14. Giwen an irreducible Frobenius-semisimple representation v : W —
GL,(2) of Wk over QQ, there ezists an unramified character

X : Wi — Q%
such that the representation x @1 : Wx — GL,(Q) has finite image. Moreover, there exists

an irreducible Frobenius-semisimple representation p : W — GL,(Q) with finite image such
that

X P/
where pq denotes the map p followed by the map GL,(Q) — GL,(Q) induced by an embed-
ding of Q in Q.
13



Proof. The first part follows from the proof of [BHO6 28.6 Proposition]. The rest follows
from lemma [L1.13l O

Definition 1.1.15. For an integer t > 0, a characteristic zero commutative domain A with
¢ e A*, a representation (r, M) of Wg over A and a choice of a square root of q in A, let
Sp,(r) 4 denote the Weil-Deligne representation with underlying module M on which Wy
acts via

r|Art | 2 @ r|Ar R D2 g g r|Arty \Kt+2 @ r|Art | & 2
and the monodromy N induces an isomorphism from r|ArtK 2 4 TlAI‘t_ 1er1=t/2 for all

0<i<t—1 and is zero on r|Arty|} 2,

When A is an algebraically closed field and the Wi -representation r is irreducible, the
representation v is called the central irreducible summand of Sp,(7) 4.

When A is understood from the context, we will write Sp,(r) to denote Sp,(r) /4

Remark 1.1.16. Note that the above definition is independent of the choice of a square
root of ¢ when t is even.

Remark 1.1.17. Let r be a Frobenius-semisimple representation of Wy over ). Then
Sp,(7) /q is indecomposable if and only if r is irreducible.

Definition 1.1.18. Suppose that an indecomposable Weil-Deligne representation V' over €}
is isomorphic to Sp,(r)o. Then r is called the central irreducible summand of V.

When r is one dimensional, the element r(¢) is called the central element of V.

Remark 1.1.19. In the above, we should have defined the central irreducible summand of
V' as the Wg-isomorphism class of r. However we will usually fix an isomorphism between
V and Sp,(r) o for some r. So calling this r the central irreducible summand of V' will not
cause much confusion.

Remark 1.1.20. The above definition of Sp,(r) q differs from the definition of Sp,(r) given
in [TYO07, p.471]. In fact we have

Sy (r|Art ! [?) jo = Spyy ().
The reason behind introducing this “twisted” definition is to make the expression of the

characteristic roots of ¢ look symmetric.

Theorem 1.1.21. Any Frobenius-semisimple Weil-Deligne representation over ) is isomor-

phic to

@ Spti (73) /0

iel
for some irreducible Frobenius-semisimple representations r; : Wi — GL,,(Q2) and this
decomposition is unique up to reordering and replacing factors by isomorphic factors. In this
decomposition, the r; are unramified characters if the original representation is unramified.

Proof. This follows from the proof of [Del73al, Proposition 3.1.3 (i)] and remark |1.1.20]

Remark 1.1.22. We will often drop the subscript /2 whenever (2 is understood from the
context.
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In the above we would like to call the Sp, (r;) indecomposable summands of V. However
they depend on the isomorphism class of r;, so we make the following definition.

Definition 1.1.23. An indecomposable summand of a Frobenius-semisimple Weil-Deligne
representation V over € is a Weil-Deligne subrepresentation of V' isomorphic to a summand
Spy, (i) /o via the isomorphism
V ~ @ Spy, (73) /0
iel
as in theorem [1.1.21.

Notice that V has #1 indecomposable summands.

Definition 1.1.24. Given a Frobenius-semisimple Weil-Deligne representation V of Wi
over ), the central irreducible summands of its indecomposable summands are called the
central irreducible summands of V.

Given a semistable Frobenius-semisimple Weil-Deligne representation V' of Wiy over €,
the central elements of its indecomposable summands are called the central elements of V.

1.1.3. Grothendieck monodromy theorem. The following theorem is well-known
(see [ST68 p.515] for instance).

Fix ¢ € Gk a lift of Frj, and a compatible system ((,)g, of primitive roots of unity. Let
tep : Ik — Z, denote the map (as in equation ([1.1.2))) associated to this compatible system.

Theorem 1.1.25 (Grothendieck monodromy theorem). Let R be a commutative Z,-algebra.
Suppose that R is a local domain with mazimal ideal m and finite residue field of characteristic
p. Assume that p # 0 in R and R is complete with respect to the m-adic topology. Let
p: Gxg — GL,(R) be a continuous representation and i : GL,(R) — GL,(R[1/p]) denote
the inclusion map. Then there is a finite extension K'/K and a unique nilpotent matrix
N € GL,(R[1/p]) such that for all T € Ik, we have

i(p(1)) = exp(tcp(T)N)
in GL,(R[1/p]). For all 0 € W, we have
(1.1.6) p(O)Np(o) ™ = () KON
in My (R[1/p]).
Before going through the proof, we recall that for any nilpotent matrix in M, (R), its
matrix exponential is an element of M,,(R[1/p]). Also for a unipotent matrix in M, (R[1/p])
(i.e., an element of M,,(R[1/p]) which differs from the identity matrix by a nilpotent matrix),

its logarithm is an element of M, (R[1/p]). Moreover the composite maps exp olog and
log o exp are identity maps on the respective domains.

Proof. First we prove the uniqueness of N. Suppose that there is a nilpotent matrix N’
and a finite extension K" of K such that for all 7 € Ixn

i(p(1)) = exp(te,p(T)N')
in GL,,(R[1/p]). Then for all 7 € Ik, we have

exp(tep(T)N) = eXp(th(T)N/)-
15



Since K'K" is a finite extension of K, ¢ ,(7) is nonzero for some 7 € I x». Hence by taking
logarithm, it follows that
N =N
Now we show the existence of N. Let Gk, denote the kernel of the composite map

Gk — GL,(R) — GL,(R/m)

where the last map is mod m reduction. Since R/m is a finite field, K/ K is a finite extension.
The image of the subgroup Gk, under p is contained in

1+ mM,(R) = ker(GL,(R) — GL,(R/m))

and hence is a pro-p-group. Note that the kernel of the map t¢,, fits into an exact sequence

0 — Px — kertc, — H Zy, — 0.
m#L,p

So the cardinality of kert., (as a supernatural number) is not divisible by p as Pk is a
pro-f-group. Hence p is trivial on Ix, Nkert.,. Thus p| Ix, factors through

teplig + Ixo = tep(Ir)-

Choose 7 € Ik, such that t;,(7) generates t.,(Ik,). By Iwasawa’s relation (L.1.1]), the
characteristic roots of p(7) are roots of unity. Since p(Ix,) C 1+ mM,(R) and R/m is a
finite field of characteristic p, the characteristic roots of p(7) are p-power roots of unity. So
there exists a finite extension K'/Kj such that all the characteristic roots of the elements of
p(Ig) are 1, i.e., the elements of p(Ix/) are all unipotent.
Let
¢ : th(]K’) — GLn(R)

be the unique continuous group homomorphism such that the diagram

]K/

p|IK/
tep

tep(Ixr) —= GLo(R)

commutes. Take 7y € Ixs such that t.,(7) generates t,(Ix/). Since p(7p) is unipotent,
there exists a nilpotent matrix Ny € M, (R[1/p]) such that

p(10) = ¥(tep(10)) = exp(No)-

Since K'/K is finite, t¢,(7) is nonzero. Recall that it is an element of Z, by definition of
the map ¢, associated with the compatible system (¢, ), of primitive roots of unity. So the

element .
N=——Nye M,(R|1
t(,p(TO) 0 ( [ /p])
is well-defined. Then
p(10) = Y(tep(10)) = exp(te (o) V).

So for any m € Z, we have

Y(micp(10)) = exp(mic (o) V).
16



Hence
Y(2tep(10)) = exp(ztep(10)N)

for all z € Z,, since 9 is continuous.
Note that for any o € I, t¢,(0)/tc (7o) € Z, and hence

p(o) = Y(tep(0))
—v (tC’P<U) 'tg,p(ro))

tQp(TO)

—exp (1271, (mN )

tQp(TO)
= exp(t¢p(o)N).

It remains to show the conjugation action of p(c) on N for ¢ € Wg. Since K'/K is
finite, there exists 7y € Iy such that t¢ ,(m1) # 0. Then for any o € Wy, we have

exp(p(0)tcp(r)Np(a)™h) = p(a) exp(te p(11)N)p(o)
= p(o)p(m)p(o) ™
(0710 H
= p(r"

—vi (o)
)

T since p is trivial on Ik, Nkertc,

k) —vK (o)
p<t<p< FOTETNY

xp((#k) Oty (1) N).
Since t¢,(7) is nonzero, by taking logarithm we obtain the desired result. 0

Remark 1.1.26. The endomorphism N above is called the logarithm of the unipotent part
of the local monodromy (cf. [I1194], p. 13].

1.1.4. Weil-Deligne parametrizations.

1.1.4.1. Weil-Deligne parametrization for T[1/p]. Suppose that R is a commutative Z,-
algebra and is a domain of characteristic zero. Denote its fraction field by . Let T be a
free R-module with an R-linear action of Gi on it via p. We assume that 7" is monodromic
with monodromy N over K’. Notice that for all o € Wi

p(o)Np(o) ™" = (#k) "N
in Endgp /(T @r R[1/p]). Let T[1/p] denote the G'k-representation T'®p R[1/p)].

Definition 1.1.27 ([Del73b, 8.4.2]). The Weil-Deligne parametrization WD(T'[1/p]) of
T[1/p] is a Weil-Deligne representation given by the pair (v, N), wherer : W — Autpgp /) (T[1/p])
1 a group homomorphism defined by

r(o) = p(o) eXp(—tQp(qﬁ’”K(”)o)N)

for all 0 € Wi and N denotes the nilpotent endomorphism in Endgp /(T (1/p]) mentioned
above.

The lemma below shows that WD(T'[1/p]) is well-defined.
17



Lemma 1.1.28. The map r is a group homomorphism and the Weil-Deligne parametrization
WD(T[1/p]) is a Weil-Deligne representation.

Proof. Let 0y = ¢'1,00 = ¢/v be two elements of Wy with i,j € Z and 7,v € Ix. As

equations , give
p(6) exp(—tep (6776 )N)p(¢7w) ™! = exp (pl670) - ey (677 7¢))N - plo) ")

— exp <<t 7)) ( (¢jV)NP(¢j”)1))
= exp (477 ey ) (5 )
(w )

= exp
= exp(t¢p(T
we have
(1.1.7) p(¢’v) exp(—tep (0 T¢)N) = exp(—te, (T)N)p(¢'v).
Then

(@7 &)

Ol

= plo™] - IrgIv) exp(~te, (677 V)N)

= plé' - Fv) exp(—tep (6 T6W)N)
p
(

7“(0'10'2) =T

I
<

6'7) (p(&0) exp(~te (6776 )N) ) exp(—te, (V) N)
6'7)( @xp(~tey (T)N)(&'0)) exp(~te,(v)N)  (by equation (LLT)

p
(p(&'7) exp(—tep(TIN) ) (p(&7¥) exp(~te,(0)N) )
r(o1)r(02).

So r is a group homomorphism. Note that r is trivial on Iy, (with K’ as in Theorem
1.1.25). So Ik has finite image under r and hence r has open kernel by lemma Also

note that » and N satisfy the appropriate conjugation relation by equation (|1.1.6)). Thus
(r, N) is a Weil-Deligne representation. O

Proposition 1.1.29. The element
A ) el
in M, (R([1/p]) is an idempotent and we have
WD(T[1/p])"* = 6WD(T[1/p]).
18



The Weil-Deligne parametrization WD(T'[1/p]) of T[1/p] decomposes into a direct sum of
Wi -stable R[1/p|-submodules as

WD(T'[1/p]) = WD(T[1/p])"* @rprzs) WD(T[1/p])"*
where

WD(T[1/p])"* == (1 — ))WD(T[1/p]).

The above summands are stable under the action of N. When WD(T'[1/p])'s and WD(T[1/p])!x
are free over R[1/p],
(1.1.8) (r, N) = (rlwo ey Nlwon i) © (rlwoer ey Nlwo e
is a decomposition of Weil-Deligne representations. Moreover for any prime ideal p of R[1/p],

the R[1/pl,-modules WD(T[1/p])i¥, WD(T'[1/p])y<*° are free.

Proof. The proof of lemma with V' (resp. Vx| V1<) replaced by WD(T'[1/p]) (resp.
WD(T'[1/p])'x, WD(T[1/p])'%) throughout proves the proposition except the last state-
ment. Since R[1/p], is local, the freeness of WD(T'[1/p])y*, WD(T[1/p])s%* over R[1/p],
follows. U

We have an immediate corollary of the above proposition [1.1.29

Corollary 1.1.30. Let T be as in §1.1.4.1. Then T[1/p] decomposes into a direct sum of
G -stable R[1/p|-submodules

T[l/p] = T[l/p]ss @R[l/p] T[l/p]tnss-

The action of Iy on T[1/plss @r A is semistable and its action on T[1/p|inss @r - is totally
non-semistable. The R[1/p|-submodules T'[1/plss and T[1/pliss of T[1/p] are defined by

T[1/plss = WD(T[1/p])'*,  T[1/plmss = WD(T[L/p])"
and the G -action is defined by

0= r’WD(T[l/p])IK (o) eXp(tCP(¢7vK(U)U>N|WD(T[1/p])IK)7

o r|WD(T[1/p])IKVC(O-) eXp<tC,P<¢_UK(U)J)N|WD(T[1/p})IK’C)
respectively.
Proof. The first part follows from equation ((1.1.8)). It remains to prove the statement about
Ik action on T[1/p|ss and T'[1/p|inss. Since I acts trivially on WD(T'[1/p])’%, its action on
T[1/plss ®r & is semistable. Now suppose that T'[1/p|tnss is nonzero and pick a prime ideal

p of R[1/p]. By the above lemma, WD(T[1/p]);** is free. So for some element 7 € I, the

characteristic polynomial of 7 on WD(T'[1/p])s** is a non-constant polynomial and does not
vanish at 1.
Let

= rlwnap e, N'= N,
Since N’ commutes with 7/(7) by Proposition (1) and N’ can be simultaneously
upper triangularized over some finite extension of the fraction field % of R (by [RR00,
Theorem 1.1.5] for instance). Hence the same holds for »'(7) and exp(t¢,(7)N’). Since N’
is nilpotent, the eigenvalues of exp(t¢,(7)N') are 1. So the characteristic polynomial of
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' (7) exp(te,(T)N') is equal to the characteristic polynomial of 7/(7) which does not vanish
at 1 by the choice of 7 and hence the lemma. 0

1.1.4.2. Weil-Deligne parametrization for V. We first prove a short lemma.
Let A be a ring, n > 1 be an integer and

A"=P&Q

be a decomposition of A" into a direct sum of its A-submodules P and (). For any ring
homomorphism f : A — B, we will identify A" ®4 s B with B™ and will denote by (f(P))
(resp. (f(Q))) the B-submodule of B" generated by the image of P (resp. () in B under f,

i.e., under the composite map P — A" I, pr (resp. @ — A" EAN B").
Lemma 1.1.31. Let f: A — B be a ring homomorphism. Then the map
X @upB— A" @, B=DB"
induces an isomorphism between X @4 ¢ B and its image (f(X)) in B™ for X = P, Q.

Proof. It suffices to prove the lemma for X = P. Since @) is projective, it is flat. Hence the
map
P®A7f B — A" ®A,f B =B"

induces an isomorphism between P ®4 s B and its image in B", which is (f(P)). O

Recall that # denotes the fraction field of R. Let V denote the G g-representation
T ®p # = T[1/p] ppsp # . Define its Weil-Deligne parametrization WD(V) as the pair
consisting of the group homomorphism

Wi = Aute(V), o = i(p(0) exp(—te, (6~ o)N)

and the endomorphism N considered as an element of End 4 (V).

From lemma [1.1.9, we have the decomposition
WD(V) = WD(V)'® @ WD(V) <
of WD(V) into a direct sum of Weil-Deligne subrepresentations.
Lemma 1.1.32. We have
WD(V) = WD(T'[1/p]) @rpp H,
WD(V)" = WD(T[1/p])'* @rp1/p #,
WD(V)'¢ = WD(T[1/p])"** @gp1/p H -
Proof. Follows from lemma [[.1.31] O
We have a corollary in analogy to corollary [I.1.30

Corollary 1.1.33. Let V' be as above. Then V decomposes into a direct sum of H [Gk]-
submodules
V= ‘/ss D ‘/tnss'
The inertia group I acts unipotently on Vs and its action on Vi, is totally non-semistable.
These |G k|-submodules are defined by
V:es = WD(V>IK7 V;nss == WD(V)IK’C
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as K -vector spaces and the Gg-action is defined by

o= 7‘|WD(V)IK (o) eXP(tC,p(¢_UK(U)U)N|WD(V)IK)»

o = lwpye () exp(tc (67 Do) Nlwp i e)
respectively.
1.1.5. Semistable part giving inertia invariant.

Proposition 1.1.34. Let V' be as above. Then

VIK — (‘/SS)IK
and the dimension of VIx over # is equal to the number of indecomposable summands of
(WD(V)'® @ 2 ). Suppose that (WD(V )5 ® , )P is isomorphic to @;erSpy, (1;) as

Weil-Deligne representations where the r; are irreducible Frobenius-semisimple representation
of Wk with coefficients in ¢ . Then the characteristic polynomial of ¢ on V'K is

(1.1.9) [T(x = ri(@)g™/?).

icl
Proof. Let v be an element of (V;,.)"*. So v is also an element of (V;,,s)/x" and hence
<T|WD(V)IK7C(7J> exp(te (¢ )T,)N‘WD(V)IK»C)> V=0

for all 7 € Igs. Since r|;,, is trivial, we get

(expltcp (6" 7 ) Nlwpgyyie) ) v = v
for all 7" € I. Since K'/K is finite, there exists 7y € Ixs such that t. ,(79) # 0. So we have
Nlwpyixcv = 0.
Since v € (Vinss)'X, for all 7 € I, we have
(T|WD(V)1K’C(7—) eXP(tC,p((b_vK(T)T)N|WD(V)’K¢)) v =",
1.€.,

(7"|WD(V)1K,C(T)) v =.

Since v € Vipss = WD(V)IE< we get v = 0. So

VIK = (VSS)IK .
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Recall that the underlying vector spaces of the representations Vs, WD(V)5 and (WD(V)%x )Fr-ss
are the same. Notice that

Vi = (V,,)lx
= {v e V| (r] wp(v)'x (0) exp(tcjp(¢_”K(U)0)N|WD(V)1K)) v=uvVo € Ix}
= {v € Vis| (rlwpyx (0) exp(te p(0)Nwpanyix ) v = v Vo € Ik}
= {v € Vis| (exp( th(U)N‘WD yixc)) 0 = rlwpyi (07 v Vo € Ik}
= {v € Vi (exp(tep(0)Nlwpyix ) v = v Vo € I}
= {v € V4 (N\WD IK)U =0Vo € Ix}
={ve WD(V )IK| (Nlwpvyx ) v =0}
= ker (N|wpuyix : WD(V)' — WD(V)'x) |
1.€.,
(1.1.10) VI = ker (N|wppyx : WD(V)'® — WD(V)') .
The above equation gives
dim V' = dimker (N |ypyc : WD(V)'* — WD(V)'¥)
= dimker (N|wpuyix ®x A : WD(V)'® @ H — WD(V)'* @, H)
= dimker (N|wpyiwe @x A+ (WD(V)'E @ )7 = (WD(V)'® @, ))
Hence the dimension of V& over .# is equal to the number of indecomposable summands
of (WD(V)!x @_y J)F by theorem

Now it remains to find the characteristic polynomial of ¢ on V&  Consider the following
list of polynomials of JZ'[X].

(1) The characteristic polynomial of ¢ on VIx,

(2) the characteristic polynomial of ¢ on ker (N|WD « : WD(V)Ix — WD(V)'x),
(3) the characteristic polynomial of ¢ on

ker (N|wpyix @ H : WD(V)'® @0 A — WD(V)'5 @, ),
(4) the characteristic polynomial of ¢ on
ker (N|wpyix @ H : (WD(V)E @, )" — (WD(V)'K @, H)T).

We claim that any two consecutive items of the above list are equal. The first equality follows
from the fact that the action of ¢ on V,, and on WD(V)’x are the same via the maps p and r
respectively and from the equation (|1.1.10]). The second equality follows from the flatness of

A over ¢ and the last equality follows since the characteristic polynomial of any operator
and its semisimplification are the same. By theorem [1.1.21] the lemma follows. U

From the above proof we have the following corollary.
Corollary 1.1.35. The characteristic polynomial of ¢ on the spaces

V< ker (Nlwpyx @ A : (WD(V)'™® @ )7 — (WD(V)' @ J))
are the same.
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1.1.6. Indecomposable summands from monodromy filtration. In the following,
we recall the definition of monodromy filtration and explain how the structure of a Frobenius-
semisimple Weil-Deligne representation is determined by its monodromy filtration.

1.1.6.1. Generalities on filtrations. Following [SZ85| p.495-496|, we introduce some no-
tions on filtrations.

Definition 1.1.36.
(1) An increasing filtration M, on a module V' is a collection of submodules {M,}icz,
such that
M;—y C M;
for alli € Z.
(2) Anincreasing filtration M, on'V is said to be finite if M; = 0 for i sufficiently small
and M; =V for 1 sufficiently large.

(3) A decreasing filtration M*® on a module V' is a collection of submodules {M;}icz,
such that
M;_1 D M,;
for alli € Z.
A decreasing filtration M*® on V' defines an increasing filtration M, on V given by
Mi - M_i
for all i € Z.

For an increasing filtration M, on V', we put
Gr; My = M;/M;_;.

Definition 1.1.37. Given two increasing filtrations M, and Ny on a module, their convo-
lution product M, x N, is defined by

(Myx N = Y M;nN,.
k=i
1.1.6.2. Monodromy filtration.

Proposition 1.1.38. Let N be a nilpotent endomorphism of a finite dimensional vector
space V. Then there exists a unique finite increasing filtration M, such that NM; C M;_»
for all i and N* induces an isomorphism GryM, = Gr_,M, for all k > 0.

Proof. See [Del80, p. 165]. O

We will call M, the monodromy filtration associated with the nilpotent endomorphism
N of V' (cf. [11194], p. 13]).

Remark 1.1.39. There is an explicit formula for the above filtration M, (cf. [SZ85] p.499]).
Let K, and I*® denote the kernel filtration and the image filtration defined by

K; =ker N""', ' = ImN?, 1 € 7.
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Note that K, is an increasing filtration and I® is a decreasing filtration. Consider the

increasing filtration I, associated with I®. Then M, is equal to the convolution product

Ky x1,, 1.e., for any k € Z,

(L111) M= ) ke NV'ANTV = > N(ker N"'7) = " N'F(ker N*HF),
i+j=k i+j=k i

Remark 1.1.40. More generally, given a nilpotent endomorphism N on a module V', we

will define the associated kernel filtration K,, image filtration I*, monodromy filtration M,
on V by the above formulas, i.e.,

K; =ker N**' ' = ImN?, i €7,
M, = K, * I,
where I, is the increasing filtration associated with I°.

The following example is taken from [Del80, 1.6.7, p. 166].

Example 1.1.41. Let V denote a vector space of dimension d + 1 (d > 0) with a nilpotent
operator N on it which is equal to

010 0 0
0 01 0 0
000 - 0 0
000 -+ 01
000 --- 00
with respect to a basis of V' of the form {e_g4,e_4i19, - ,€4-2,€4}, t.e., Ne_4 = 0 and

Neg_ o = eq_9;_9 for all 0 < i < d— 1. From now on, we set e; to be zero if it is not already
defined. The associated filtrations K, and I, of N are given by

"'CK_1:{0}CK0:<€_d>C"'CKi:<€_d,'”,ed_g(d_i)>C~"CKd:VC"-,
o Cl g1 ={0}Cl g=(eq)C---ClLi=(e_gy-+ ,€q42i) T+ Cly=V C---.
The filtration M, is given by

M; = {ej|j <),
Note that
GI‘Z‘M. = <éz>
Also
(1.1.12) dim NV = max{0,d +1—a} for any integer a > 1,
, , 1+d .
(1.1.13) dlmMi:max{O,mm{{TJ +1,d+ 1}} for any i € Z.

Example 1.1.42. Let ) be a characteristic zero field containing a square root of ¢. Let
t > 0 denote an integer and r : Wx — ) denote a character. Suppose that M(Spt(r)/g).
denote the monodromy filtration on Sp,(r) o associated with its monodromy. Then

rlArt [ ? ifi=tmod2and —t <i<t,

0 otherwise.

Gr; M (Sp,(r) /), ~ {
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Remark 1.1.43. In general, given a nilpotent endomorphism of a vector space V, V is a
direct sum of subspaces stable under N and the restriction of N to these subspaces is (a
conjugate) of the above form. The filtration M, on V given by proposition is the
direct sum of the filtrations on the subspaces.

Remark 1.1.44. Given a Frobenius-semisimple Weil-Deligne representation of Wy over a
field, the terms of the kernel and image filtration on it associated with its monodromy are
stable under Wy (by the conjugation relation between the monodromy and the Wi-action).
So the monodromy filtration is also stable under W.

1.1.6.3. Indecomposable summands from M,.

Lemma 1.1.45. Let V' be a Frobenius-semisimple Weil-Deligne representation of Wy over
an algebraically closed field 2 of characteristic zero. Let M, denote its monodromy filtra-
tion. Let € denote a set of pairwise non-isomorphic irreducible Frobenius-semisimple Wi -
representations such that each element in € is isomorphic to a central irreducible summand
of V and each central irreducible summand of V' is isomorphic to an element of €. Then

Vo~ @ EB Sp, (r)m ATt V2 Gr_ M) —m(r|Art i EFD2 Gy My)
re€ t>0

as Weil-Deligne representations where

m(p1, p2) = dimg Homauimear (01, p2)"
for finite dimensional Wi -representations py, pa over €.

Proof. By theorem [1.1.21] there exist a finite set of non-negative integers I and integers
ny > 0 for r € € t € I such that there is an isomorphism of Weil-Deligne representations

V ~ @ EB Sp,(r)™.

re€ tel

So

M, ~ @ EB M(Spt(r)”’"t>..

re¢ tel
As any two elements of € are pairwise non-isomorphic, for an integer ¢ > 0 and any r € €,
we get

Nyt lftEI,

m(rlArty! %, Gr_eM) — m(r|Art 27, Gr_y o M,) = {() otherwise

Thus

vV~ @ @ Sp (,,,,)m(r\Art;(l Y2 Gr_Ma)—m(r|Art 2" |22 Gr_y o M)
~ . )
ree >0
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1.1.7. Pure modules.

Definition 1.1.46. Let Q be a positive integral power of a rational prime. A QQ-Weil number
of weight w € Z is an algebraic number a € Q such that Q"« is an algebraic integer for
somen € Z and |o(a)| = Q¥/? for all o : Q — C.

We will often call them Weil numbers when @ is clear from the context.

Remark 1.1.47. There are different definitions of Weil numbers available in the literature.
For example, (3 4 4i)/5 is (resp. is not) a 5-Weil number according to [Mil94], Definition
2.5] (resp. [Hid11l p.56]). We follow the definition of [Mil94].

Definition 1.1.48.

(1) (cf.[Schlll p.1014]) A Frobenius-semisimple Weil-Deligne representation V' of Wi
over @p is said to be pure of weight w if the eigenvalues of one (and hence any) lift
of the geometric Frobenius element on Gr;M, are #k-Weil numbers of weight w + i
where M, denotes the monodromy filtration on V.

(2) A p-adic representation of Gy is said to be pure of weight w if the Frobenius
semisimplification of its Weil-Deligne parametrization with respect to one (and hence
any) choice of ¢ and ¢ is pure of weight w.

(3) (cf.[TY07, p.471]) A Weil-Deligne representation V. of Wy over Q, is said to
be strictly pure of weight w if the eigenvalues of one (and hence any) lift of the
geometric Frobenius element on V' are #k-Weil numbers of weight w.

Lemma 1.1.49. An indecomposable Frobenius-semisimple Weil-Deligne representation V' of
Wi over Q, is pure of weight w if and only if for any finite extension K'/K, V|w,, is pure
of weight w.

Proof. See [Bla06l p. 42] for instance. O

Remark 1.1.50. The weight-monodromy conjecture|1.0.1|predicts that any Galois represen-
tation arising from geometry (i.e., from the étale cohomology of projective smooth varieties)
is pure of integral weight.

1.2. (Statements of) Purity for big Galois representations with integral models

In this section, we state a generalization of the result about constancy of dimension of
inertia invariants under arithmetic specializations (more precisely at the specializations sat-
isfying the Weight-Monodromy conjecture) along irreducible components of Hida families of
ordinary cusp forms (as in [Foul3, Lemma 3.9] for example). We also prove that the inde-
composable summands of the Frobenius semisimplification of the Weil-Deligne parametriza-
tion of the pure specializations are of the same shape and interpolated by “big integral
Weil-Deligne representations”. We call this rigidity of Galois types and it is the analogue of
rigidity of automorphic types proved in loc. cit. for example.

1.2.1. Notations. Let R # 0 be a commutative Z,-algebra. Suppose that R is a do-
main of characteristic zero. Denote the fraction field of R by K and fix an algebraic closure
K of K. The integral closure of R in K will be denoted by Ox. The algebraic closure of
Q, in K is denoted by @p and the integral closure of Z, in @p is denoted by Zp. Note that
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Zp C Og. The algebraic closure of Q inside @p will be denoted by Q. Notice that Q is
contained inside Og[1/p]. Recall that K denotes a finite extension of Q, with ¢ # p and ¢
denotes the cardinality of the residue field of Ok. By ¢'/?, we will denote a square root of ¢ in
Q and for any n € Z, ¢"/? will denote (¢'/?)". This determines a choice of a square root of ¢
in K which is required to express WD(V)F as a direct sum of Weil-Deligne representations
of the form Spy(r) & when it has a nonzero indecomposable summand of even dimension.

Observe that ¢'/? is an element of OX as £ # p.

For a vector space U with an action of ¢ (which denotes the lift of the geometric Frobenius
to Gk as chosen in §1.0.1)), the multiset of characteristic roots of ¢ on it is denoted by CR(U).
The multisets C R(WD(V)™), CR(WD(V,)F*) are denoted by CR, C'R,.

1.2.2. Statement of theorems. Let A : R — @p be a Z,-algebra homomorphism.
Then A extends to a Z,-algebra homomorphism from Og[1/p] to Q,. We fix one such
extension and denote it by A again. We will use the image of ¢'/2
root of ¢ in @p. Denote by O, the image of the map A\ : R — @p.

in Q, under A as square

Let p, denote the kernel of A : R — @p. Note that A extends to a Z,-algebra ho-
momorphism R[1/p],, — @p. By abuse of notation, this map will also be denoted by .

Let i : R — K denote the inclusion map. Then by abuse of language, the maps M, (i) :
M,(R) — M,(K), GL,(i) : GL,(R) — GL,(K) will also be denoted by ¢. Similarly the
maps M, (), GL, () will also be denoted by A.

Let n > 1 be an integer and p : Gx — GL,,(R) be a representation which is monodromic
with monodromy N over K’. By definition [I.1.1], N is an element of R[1/p]. Define T = R"™
and let G act on it via p. Denote by T[1/p] the G-representation T ®x R[1/p]. Let T)

denote the G'k-representation 7 ®x » Oy and V) denote the representation T) ®o, Q,. Define
the Gg-representation V to be T &% K.

The kernel filtration, the image filtration and the monodromy filtration on 7 (resp. V))
obtained from the nilpotent operator N on T (resp. )\(]\éﬁ on Vy) will be denoted by Ko, Z°*, M,

(resp. Ky, I3, M) o) respectively (cf. Remark [1.1.40)).

In the following we say that the powers of the monodromy N do not degenerate under \
if the inequality [J

rtkN® > rkA(N?)
is an equality for all integer a > 1, i.e., if we have

(mono-non-deg) dimg N*V = dimg, ANYVy Ya € Z>.

2Recall that we have used the notations K and K to denote a finite extension of Q; and the fraction
field of R respectively and they do not carry any bullets.

3If r, denotes the rank of N @, then all the minors of N of size r, + 1 have determinant zero. So all the
minors of A(N®) of size r, + 1 have determinant zero, i.e., tTkA(N®) < rq.
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If we have

(mono-non-deg-1) dimg NV = dimg_ ANy,

then we say that the monodromy N does not degenerate under A. When
(mono-fil-dim) dimg M; @z K= dim@p My, VieZ,

we say that the dimensions of the monodromy filtrations M, M)y . match termuwise.

Theorem 1.2.1 (Non-degeneracy of monodromy). Suppose that V) is pure. Then the condi-
tions (mono-non-deg)), (mono-fil-diml|) hold, i.e., the powers of the monodromy N do not de-
generate under \ and the dimensions of the monodromy filtrations Ma, My o match termuwise.

Theorem 1.2.2 (Compatibility and freeness of filtrations). If the condition (mono-non-deg))
holds, then

(1) the terms of the filtrations ICo, Z* on T become free over R, after localizing them
at py and under the map X, they specialize perfectly to the respective terms of the
corresponding filtrations Ky ., I on Vy, i.e., for any i € Z, we have isomorphisms

Ki @ra Q, ~ Ky;, IT'@rxQ, ~ I}

of Wi -modules.

(2) the gradings of Ke,Z® become free over R,, after localizing them at p and under the
map A, they specialize perfectly to the corresponding gradings of Ky ., I3 respectively,
i.e., for any v € Z, we have isomorphisms

GriKe @r .2 @p ~ GriKye, GrZ®®ga @p ~ Gr;l3
of Wi -modules.
If both the conditions (mono-non-deg), (mono-fil-dim|) hold, then

(3) the terms and gradings of M, become free over R,, after localizing them at py.

Moreover for any i € 7Z, the map A induces isomorphisms
M; @rp Q, ~ My,  GriM, @r\Q, ~ Gr;M,,
of W -modules.

Theorem 1.2.3 (Rationality and interpolation of summands). Suppose that both the con-
ditions (mono-non-deg)), (mono-fil-dim|) hold. Then there are isomorphisms of Weil-Deligne
representations

I J
WD) =~ D P Sy, (xi ® pi)
i=1 j=1
I J
WD(V3)™™ ~ (D €D Sp, (Ao (xi @ p2)) 5.

i=1 j=1
for

(1) an integer J > 1,

(2) integers 0 < t; < --- <ty,

(3) an integer I > 1,

(4) pairwise non-isomorphic Wi -representations x1 ® p1, -+, X1 ® p; where
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® X1, , X1 : Wk — (’)% are unramified characters,

p1: Wi = GL4, (Q), -+, pr : Wi — GLg, (Q)
are irreducible Frobenius-semisimple representations with finite image

and
(5) integers n;; >0 for 1 <i <1, 1<j5<J.
Consequently, the representation X o (x; ® p;) : Wk — GLg, (@p) has image contained in

GL4, (Q) for all 1 < i < I. Moreover, the integers I,J,t;,n;; and the representations X, p;
depend on V, but not on \.

Theorem 1.2.4 (Purity for big Galois representations). Suppose that V) is pure of weight
w. Then the following hold.

(1) The conditions (mono-non-deg)), (mono-fil-diml) are satisfied.

2) The terms and gradings of M, become free over R,, after localizing them at p) and
g g P g p
for any i € Z, the map X\ induces isomorphisms

M; @r @p ~ My, GriMeQpra @p ~ Gr;M) .

of W -modules.

(8) There exist isomorphisms of Weil-Deligne representations

I J
WD) =~ D EP S, (xi © pi) .

i=1 j=1
I J

W)™ ~ DD, (o (10
i=1 j=1

for

(a) an integer J > 1,

(b) integers 0 <ty < --- < ty,
(c) an integer I > 1,

(d) pairwise non-isomorphic Wi -representations x1 ® p1, -+, X1 ® p; where
® X1, -, X1 Wk — (’)% are unramified characters,
[ ]

P1 - WK — GLdl(Q)7 L PI WK — GLd}(Q)
are irreducible Frobenius-semisimple representations with finite image

and
(e) integers n;; >0 for 1 <i<I,1<j<.J.
Consequently, the representation Ao (x; ® p;) : Wik — GLyg, (@p) has 1mage con-
tained in GLg4,(Q) for all 1 < i < I. Moreover, the integers I, J,t;,n;; and the
representations x;, p; depend on V, but not on .

(4) The X-specialization of the central irreducible summands of WD(V)¥s5 (considered
over Ox[1/p]) are strictly pure of weight w.
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(5) The R,,-modules 7;1;(, TpA/7;IAK are free and the map X\ induces isomorphisms
T @rp Q, = Ty @, 2 Q, ~ V¥

Consequently, the complex [TIK LN T'x] concentrated in degree 0, 1 descends
perfectly to the complex [VIK — V K] concentrated in degree 0, 1, i.e.,

_ L — _
[TIK u Tix ]@R,A@p ~ [V/\[K £> V/\IK ].

(6) The polynomial Eul(V)™! has coefficients in Ox N'R,, and its A-specialization is
Eul(V)\)_l

Proposition 1.2.5. The polynomial Eul(V)™! has coefficients in Ox and we have the in-
equality
dimg V¥ < dlme VK.
The proof of the above theorems rely on few propositions spread over the next sections.

In §1.m, we prove theorem 1.2.(m — 2) for m = 3,4,5,6. Their logical dependence is given
below.

(1.2.1) Theorem [[.2.1] Theorem [[.2.2]
Theorem [[.2.3]
Theorem [[.2.4]

The above proposition is proved in §1.6.3, This proposition is also proved in [BCQ9, §7.8.1].
Before we go through the proofs, some remarks are in order.

Remark 1.2.6. In theorem [1.2.4] we do not claim that the direct sum

I J
E—'?G? 0 ® 6

is isomorphic to (WD(T1/p])™* @g1/, Oxl1/p][} In fact this is not true, otherwise it would
imply that monodromy never degenerates under @p—specializations of R which is false, for
example when N is nonzero and goes to zero under a @p—specialization of R.

Remark 1.2.7. The proof below does not require R to be noetherian.

Remark 1.2.8. In the following, we do not require V), to be pure unless explicitly mentioned.

Mt we have not defined (WD(71/p])F-ss.
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1.3. Non-degeneracy of monodromy at pure specializations

1.3.1. Integrality over Ox[l/p] and ¢-power factors in ¢-characteristic roots.
Let (r, N) denote the Weil-Deligne parametrization of 7T [1/p].

Proposition 1.3.1 (Rationality over Og[1/p]). Suppose that V is semistable. Then there
exist
(i) an integer m > 1,
(1) integers 0 < t; < -+ < tp,,
(111) an integer M > 1,
(iv) M distinct unramified characters r1,--- vy of Wi with p; :=ri(¢) € OF and
(v) integers n;j; > 0 for 1 <i < M,1 <j <m (with Zi‘il ni; > 1 for each j)
such that

m M
(1.3.1) WD(V)Frs ~ @ @ Spy, (7"1)7%
j=1 i=1

as Weil-Deligne representations. The map \ gives an equality
AMCR) = CR,
of multisets.

Proof. The Weil-Deligne parametrization WD(V) of V is a Weil-Deligne representation by
lemma [1.1.28] By lemma [1.1.10, WD(V)* is a Weil-Deligne representation. Hence by
theorem [1.1.21] there are

(1) integers m > 1, 0 <ty <ty < -+ < by,

(2) one-dimensional unramified distinct Weil representations ry, - - ,ry of Wy over K

for some integer M > 1,
(3) integers n;; > 0for 1 <i< M, 1<j<m

such that we have an isomorphism

m

M
WD) = D EP Sy, (i),

j=1 i=1
of Weil-Deligne representations. It remains to show that the r;(¢) are elements of OZ.

The characteristic roots of ¢ on WD(V) are elements of (9% since the characteristic

polynomial of ¢ on WD(V)¥s5 and WD(V) are the same and WD(V) is defined over R. So
the characteristic roots of ¢ on the Sptj (r; /& are elements of (9%.

If 7; comes from an indecomposable summand of odd dimension (i.e., there exists 1 <
J <m with t; + 1 odd and n;; # 0), then r;(¢) € OZ. On the other hand, if it comes from

an indecomposable summand of even size, then r;(¢)q'/? € (’)%. Since ¢*/? is a unit in O,

we get ri(¢) € OF. O
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1.3.2. Determining weights of some Weil numbers. The goal of this subsection is
to state and prove proposition In this subsection, we will assume that V is semistable
and use the notations of proposition [1.3.1}

Denote the number of indecomposable summands of WD (V)™ of dimension ¢; + 1 by
¢j. By proposition [1.3.1]

M
¢ =) n
=1

for all 1 < j < m. Denote the indecomposable summands of WD(V)¥ of dimension ¢; + 1
by le, T ;Vjcj-

Definition 1.3.2. When V is semistable, let CE (resp. CE)) denote the multiset formed by
the central elements (as in definition|1.1.24]) of the indecomposable summands of WD(V)-s
(resp. WD(Vy)Fr=ss ).

In the following, the weight of a #k-Weil number « will be called the weight of a and
will be denoted by wt(a).

Lemma 1.3.3. Suppose that V is semistable and V) is pure of weight w. Let 1 < J < m
be an integer such that the A-specializations of the central elements of the indecomposable
summands of WD(V)5 of dimension at least t; + 1 are Weil numbers of weight w. Then
for J < j<m,1 <k <cj, there are distinct indecomposable summands Vi, of V\/D(V,\)Fr'SS
such that

(132) dim@p V}k > tj + 1, /\(CR(ij)) C CR(V}k)
forall J <j<m,1<k<g.

Proof. Since I acts trivially on WD(V})¥5%| each indecomposable summand of WD (V)
is a twist of Sp,(1) (t = t1,--- ,t,) by an unramified character (here 1 denotes the trivial
character of Wx). So for any indecomposable summand U of WD(V,)™ " the elements
of CR(U) are Weil numbers of distinct weights. Thus given any number of elements of
the multiset C'R) of the same weight, these elements come from the same number of in-
decomposable summands of WD(V3)¥5 4.e., each of them is a characteristic root of ¢ on
an indecomposable summand of WD(V})¥5 and these summands are distinct. The lemma
follows. O

Proposition 1.3.4 (Purity for big Galois representation). Suppose that V is semistable and
Vi is pure of weight w. Then the images of the p; under X are #k-Weil numbers of weight
w. Consequently the map A gives an equality of multisets

ACE) = CEh.

Before proving this proposition, we first give a sketch of its proof.
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1.3.2.1. Qutline of the proof. The first part of proposition is proved using induction
and then the last part is proved in the last paragraph of the proof. The induction goes in
three steps. In step 1, we prove that the A-specializations of the central elements of the inde-
composable summands of WD (V)55 of largest dimension are Weil numbers of weight w. In
step 2, we formulate the induction hypothesis, which says that for an integer 2 < J < m, the
A-specialization of the central elements of the indecomposable summands of WD (V)55 of
dimension > t; 4+ 1 are Weil numbers of weight w. In step 3, using the induction hypothesis,
we prove that the \-specializations of the central elements of the indecomposable summands
of WD(V)¥™ss of dimension ¢;_; + 1 are Weil numbers of weight w. These three steps prove
the first part of the above proposition.

We give the outline of the proof of step 1 and 3. Step 1 is proved using only the three
facts below.
(1) WD(Vy)¥ss is pure of weight w,
(2) MCR) = CR) as multisets,
(3) WD(V4)¥™ is annihilated by the D-th power of its monodromy where D denotes
the dimension of an indecomposable summand of WD(V)*™ of largest dimension.
Thereafter using the induction hypothesis, we prove that there exists a summand W
(resp. W) of WD(W)Frss (vesp. WD(V)%) such that
(1) W is pure of weight w,
(2) M(CR(W)) = CR(W) as multisets,
(3) W is annihilated by the D-th power of its monodromy where D denotes the dimen-
sion of an indecomposable summand of W of largest dimension.

So by the proof of step 1, it follows that the A-specializations of the central elements of
the indecomposable summands of W of largest dimension are Weil numbers of weight w. By
the construction of W, its indecomposable summands of largest dimension are precisely the
indecomposable summands of WD(V)¥ of dimension ¢;_; + 1. This proves step 3. The
summand W of WD(V3)F with the above-mentioned properties is obtained by applying
the above lemma.

Proof. Since B
V)\ =T ®’R,)\ @pu

we have

For any integer s > 0, all minors of N} of size dimg N*(WD(V)¥5) + 1 has zero deter-
minant (since the same holds for N*). Hence

(1.3.3) dimg N (WD(V)™*) > dimg_ Ny (WD(Vy) )
for1 <j<m.
We first show that the A-specializations of the p; coming from the indecomposable sum-

mands of WD (V)™ of largest dimension (i.e., of dimension ¢, + 1) are of weight w. Notice
that
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(1) WD(V,)'™s is pure of weight w,
(2) A(CR) = CR, as multisets,
(3) WD(V,)¥™ is annihilated by the ¢,, + 1-th power of its monodromy, i.e.,

dimg Ny (WD(V3)") = 0
(by equation (L.3.1) and (1.3.3)).

Since V), is pure of weight w, the indecomposable summands of WD(V})*™ are of di-
mension at most t,, + 1. These summands are of weight w. So the difference of the weights
of a highest weight and a lowest weight element of the multiset C'R) is at most 2t,,.

Let p;, pt; denote the central elements of two indecomposable summands of WD())-ss
of dimension t,, + 1. Then A(;¢"/?) and A(;q'™/?) are elements of C'Ry (by theorem [1.3.1)
and hence

wt(Mpig™ ")) — wt(Apiq %)) < 2t

which gives

WHAsg /) = Wb\ u5q™2)) = 2 + wt\1e)) — 0t (1y))
So A(p;) and A(p;) are Weil numbers of same weights.

By the same reasoning, A(u;)A(g'/2)' (resp. A(11;)A(¢*/?)~*") is a highest (resp.lowest)
weight element of C'Ry. Since V) is pure of weight w, the Weil-Deligne representation
WD(V,) is also pure of weight w and hence its weight w is equal to the average of
the weights of a highest weight and a lowest weight element of C'R). Notice that this
average weight is the weight of A(y;). So the A-specialization of the central element of any
indecomposable summand of WD(V)5 of dimension ¢, + 1 is a Weil number of weight w.

Note that if m = 1, then the first part of the above proposition follows. So assume that
m > 2. We will use induction to prove the first part of the proposition.

Let 2 < J < m be an integer such that the \-specializations of the central elements of
the indecomposable summands of WD(V)¥5 of dimension at least ¢; + 1 are Weil numbers
of weight w. To establish the first part of the proposition, it suffices to show that the A-
specializations of the central elements of the indecomposable summands of WD (V)% of
dimension t;_; 4+ 1 are also Weil numbers of weight w.

For J <j <m,1 <k <gj, let Vj; be as prescribed by lemma So we have
(134) dim@p V]k > tj +1>t;1+1

forall J <j<m,1<k<cj. Let

WD) =wWe P @ Vie, WD) =W o @ Vik

j=J k=1 j=J k=1

be the decomposition of WD(V)¥s5 and WD(V, )™ into Weil-Deligne subrepresentations
where W (resp. W) is the direct sum of the indecomposable summands of WD(V) (resp.
WD(V,)F55) apart from the Vi (resp. Vig).
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Then equation (|1.3.1)) gives

dimg NV (WD(V)™) =3 " ej(t; — t-1)
j=J

Using equation (|1.3.3)), we get
(1.3.5) D eilty —tyo) > dimg NI (WD (1)),
j=J
This decomposition gives
(1.3.6)

dlm(@ NtJ 1+1(WD(V )Fr—ss) > dlmQ NtJ 1+1W+Z c] t —tJ 1 —f—Z (dlmQ (tj + 1)>
J=J J=J k=1

where
m Cj

Z (dlmQ —(t; + 1)> >0

7j=J k=1

by equation ([1.3.4) and also
dimg N7 > 0.

Hence
(137) dim@p ‘/]k = tj + 1
forall J<j<m,1<k<c;and
(1.3.8) Ny =o.

Since A(CR(Vi)) is a subset of CR(Vj;) for all J < j < m, 1 < k < ¢;, by equation

[[37) we get

as multisets. So we have

A(CR(W)) = CR(W)

(1) W is pure of weight w,

(2) A(CR(W)) = CR(W) as multisets,

(3) W is annihilated by the D-th power of its monodromy where D denotes the dimen-
sion of an indecomposable summand of W of largest dimension.

So the A-specializations of the central elements of indecomposable summands of W of
largest dimension (i.e., of dimension ¢;_; + 1) are Weil numbers of weight w by an argument
similar to the proof of the fact that the A-specializations of the central elements of the in-
decomposable summands of WD(V) of largest dimension (i.e., of dimension t,, + 1) are
Weil numbers of weight w.

Now it remains to show that A(CE) = CE,. Let CE, (resp.CE.) denote the multi-
set formed by the central elements of the indecomposable summands of WD (V)5 of odd
(resp. even) dimension. Note that the multisets C&,, ¢'/2CE, are disjoint sub-multisets of
CR (one of them might be empty but not both). So A(C&,) and A(¢'/?>)A(CE.) are disjoint
sub-multisets of A(CR) = C'Ry. Moreover the equality A\(CR) = C'R), also shows that A\(CE,)
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(resp. A(¢*/?)A(CE.)) is the submultiset of C'Ry of Weil numbers of weight w (resp.w + 1) by
the first part of proposition [1.3.4L Since WD(V}, ) is pure of weight w, we get

CEy = MCE,) U (A(qlﬂ)—l - (MgY2)A(CE. )))
This gives the desired equality
O

1.3.3. Decomposition of WD(V, )55, The proposition below is a consequence of the
above lemma. This lemma allows to determine the gradings of the monodromy filtration of
WD(V3)Fs from the set C' Ry using purity of V. Then we get the structure of WD(V} )
from lemma [L.T.45

Proposition 1.3.5. Suppose that V is semistable and V) is pure. Then

(1.3.9) WD (V) ~ @@Spt )\07“Z

=1 =1

as Weil-Deligne representations.

Proof. Since V and WD(V,)™* have same underlying vector spaces and have same mon-
odromy, the monodromy filtration on WD(V})¥™5 is equal to My,.

Since I acts trivially on WD(V3)¥5, its action is also trivial on the terms of M) ,. So
Gr M) is a Frobenius-semisimple unramified representation of Wy for any k € Z.

By proposition [1.3.4] the characteristic polynomial of ¢ on Gry M, . is

H I (X = AGua)g™?)ms.
=1 1<j<m
t;=k mod 2
—t; Skgtj
For o € @: , let Yy Wr — @; denote the unramified character which sends ¢ to . Since
Gr M) e is a Frobenius-semisimple unramified representation of Wiy, we get

M
GrkMM:EB @ (¢A(ui>qk/2)®nij~

=1 1<j<m
t;=k mod 2
—t; Sk‘gtj

By lemma [1.1.45] the proposition follows. U
1.3.4. Proof of theorem [1.2.1l

Proof of theorem [1.2.1] Since 7 is monodromic over K” (as assumed in §1.2.2), the Wi~
representation V]WK/ is semistable. Since the Wi -representation V and Wi -representation
V|w,., have same underlying vector space and have the same monodromy, their monodromy
filtrations are equal. Thus it suffices to prove theorem [1.2.1] when V is semistable. So
assume that the Wi-representation V is semistable. By equations (|1.1.12)), (1.1.13)) and the
equations , above (the last two equations apply as V is semistable and V) is
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pure), the powers of the monodromy N do not degenerate under A and the dimensions of
the monodromy filtrations M,, M) , match termwise. O

1.4. Compatibility of filtrations

In this subsection, we prove theorem [1.2.2] in the following way. Its part (1) and (2)
follow from proposition [1.4.2} [1.4.3} [1.4.5l From proposition below, its part (3) also
follows.

1.4.1. Image filtrations.

Lemma 1.4.1. Suppose that the condition (mono-non-deg)) holds. Then for any integer
a >0, the Ry, -module T, /(N®T )y, is free.

Proof. Consider the exact sequence
(141) 0— (NGT)PA — 7'P>\ - ,TPA/(NULT)PA —0

of R,,-modules where the second map is the inclusion map and the third map is the projec-
tion map. This gives

(1.4.2) kg, Tp,/(NT)p, = dimg V — dimg N*V.

Applying — ®g,, Ly to the short exact sequence in equation (1.4.1) yields the exact
sequence of Ly-vector spaces below.

(N“T oy ®ry, La = VX = (Toy/(N*T)y,) @, La — 0

Considering the image of the first term of the exact sequence in its second term, we get
the short exact sequence

0 — NyVy = VX = (T /(N“T)p,) ®@r,, Lx — 0.

So

dimg ((7‘,” [(N“T)y,) @r,, LA> ®1, @, = dimg V3 — dimg N{Vj.
Thus
(143) dimL/\ (ﬁk/(NaT)pA) ®Rp>\ L,\ = dim@p V)\ - dim@p N;\LV)\.

Since the condition (mono-non-deg)) holds, the equations (|1.4.2), (1.4.3) show that the
rank and the residue dimension of the R,,-module 7,, /(N®T),, are the same. So the result
follows from Nakayama’s lemma. U

Proposition 1.4.2 (Image filtration). Suppose that the condition (mono-non-deg)) holds.
Then for any integer a € Z, (N*T),, is free over Ry, and the map X induces an isomorphism

(144) (NaT)p)\ ®RPA’)‘ L)\ ~ N/QV/\'

Proof. If a < 0, then N® = id and hence the lemma follows. So assume a > 0. Then from
the exact sequence in equation ([1.4.1)), it follows that (N*T),, is free over R,, by applying
lemma and Nakayama’s lemma. By lemma above, applying — ®g,, x Ly to the
exact sequence in equation ((1.4.1)) yields the short exact sequence below.

(145) 0— (NGT)M ®Rp>\,)\ L)\ — V): — V)i/N)C\LV): —0
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This proves
(N“T )ps @Ry, a L == ker (VY — Vi/NIVY),
showing
(NT)py @Ry x Ln =2 NYVY

Now using proposition [1.4.2] we generalize lemma [1.4.1

Proposition 1.4.3 (Gradings of image filtration). Suppose that the condition (mono-non-deg))
holds. Then for any a,b € Z with b > a, the Ry, -module

(NaT)Px/(NbT)PA
18 free and the map \ induces an isomorphism
(NT)py/(N*T)p,) @ry 2 Q, = NYVA/NJVS.

Proof. Note that if » < 0 is an integer, then N” =id. So if a < 0 and b > 0, then lemma
1.4.1| gives the result. If a < 0 and b < 0, then the result follows as N® = id. So from now
on, we assume a > 0.

Consider the exact sequence
(1.4.6) 0= (N°T)p, = (N*T)py — (N*T )y /(N°T )y, — 0

of R,,-modules where the second map is the inclusion map and the third map is the projec-
tion map. This gives

(1.4.7) rkg, (N“T)p,/(N°T)p, = dimg NV — dimg NV,

Applying — ®g, Lx to the short exact sequence in equation (1.4.6) gives the exact
sequence of Ly-vector spaces

(NbT)P/\ ®Rp,\ Ly— N;V): - ((NGT)PA/(NI)T)PA) ®RP>\ Lx—0
by proposition |1.4.2]

Considering the image of the first term of the exact sequence in its second term, we get
the short exact sequence

(1.4.8) 0 — N3Vy = NYVY — ((N°T)p, /(N"T )y, ) ®m,, La — 0.
So

dimg, ( (NT)p,/(N*T )y, ) ®ry, LA) ®r, Q, = dimg, N{Vi — dimg NV
Thus

(1.4.9) dimg, (N“T)p/(N°T)py) ®r,, Ly = dimg NgvA - dim@p NLVA.
Since the condition (mono-non-deg)) holds, the equatlons (1.4.9) show that the
rank and the residue dimension of the Ry, - module (NT )py/(N°T),, are the same. So it is

free by Nakayama’s lemma. Then equation gives
(NT)py /(N*T)p,) @ry, @p ~ N{Vy /NYVy.
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1.4.2. Kernel filtrations. For i, j € Z, put

S}y = ker (v; 4, v;) N Im (v; 5, v;) ,

N{ N
S)\jij = ker VA — V)\ N Im V,\ — V)\ .
Note that
Si; = ker(N'T X5 N#IT),

. NY .
Shij = ker(NiVy = N7V,

) NI L
Syij = ker(NiVA — Ny 7V)).
Lemma 1.4.4. Suppose that the condition (mono-non-deg) holds. Then for any i,j € 7Z,
(Sij)py 1 free over R,, and the map X induces an isomorphism

(1.4.10) (Sii)ps ®Ry, 8 La 2 S) 45

Proof. Note that when j < 0, then N/ = id and so this lemma follows from proposition
1.4.2, When i <0, then S;; = {0}, S} ;; = {0}, so there is nothing to prove. So from now
on, we will assume ¢z > 0,7 > 0. Then localizing the exact sequence

0—8ij = NT—NHT =0
at p, gives the short exact sequence
(1.4.11) 0= (Sij)py = (N?T)p, = (NT),, — 0.

The last three terms of this sequence are free over R, by proposition So it follows
that (S;j),, is free over R,, by Nakayama’s lemma.

A

By proposition |1.4.2, applying — ®%, x Ly to the exact sequence in equation ([1.4.11)
yields the short exact sequence below.
(1.4.12) 0 = (Sij)py ®ry, o Ln = NIV — N{PV = 0
This proves ' o
(Sij)px ®RFA’)‘ L/\ ~ ker (Ng\V; — N;\‘HV)() = S;\,ij'
O

Proposition 1.4.5 (Kernel filtration and gradings). Suppose that the condition (mono-non-deg])
holds. Then for any a € Z, the R,, -module ker (N* : T — T)m is free and the map X\ induces
an isomorphism

ker(N®: T = T)py @ry, a Q, > ker(Ny : Vi — Vi).

Moreover for a,b € Z with a > b, the Ry, -module ker(N® : T — T)p, /ker(N° : T — T)y,
1s free and the map \ induces an isomorphism

<ker(N“ :T = T o,/ ker(N°: T — T)pA>®Rp/\’/\@p ~ ker(N¢ : Vi — V3\)/ker(N? : Vi — V3.
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Proof. Note that there is nothing to prove if a < 0. So we assume that a > 1. Consider the
short exact sequence

0= ker(N*: T = T)p, = Tpy M, (N*T)p, =0
of Ry,-modules. From proposition the first part of the lemma follows.

Note that if b < 0, then the second part follows from the first part. So we assume b > 1.
Applying snake’s lemma on the commutative diagram

0—ket(T X5 7) T Y NT 0
NS

0—ker(T 25 7) —= T 25 N*T —0

with exact rows, we get an isomorphism
coker (ker(T LN T) < ker(T T)) ~ ker (N*™": N*T — N°T)
of R-modules. So we have an exact sequence of R-modules
0 ker (T 25 7) = ker (T 25 T) = Sy = 0.

By lemma [1.4.4] we are done. U

1.4.3. Monodromy filtrations. Note that by equation (1.1.11])
(1413) Mk - Z SiJrL,j, M)\7k = Z S)\,z#l,fj

it+j=k i+j=k
for all k € Z.

Proposition 1.4.6 (Monodromy filtration and gradings). Suppose that the conditions (mono-non-deg)),
(mono-fil-dim|) hold. Then for any k € Z, (My),, is free over Ry, and the map X induces

an 1somorphism

(Mi)py @r,px Qp > My

Moreover for any i € Z, the R,,-module (Gr;M,),, 1is free and the map A induces an
1somorphism

(GriM.)p)\ ®Rp/\7)\ @p >~ GriM)\7o~
Proof. The exact sequence
(1.4.14) 0— (Mp)p, = Ty = (T /M)y, — 0

of Ry,-modules show

1"]&7zpA (T/Mk)p)\ - dlmEV - dimf Mk

Moreover applying — ORpy A @p to this exact sequence gives the exact sequence

(Mk>P)\ ®RP)\7)‘ @p — V>\ — (T/Mk)p)\ ®Rp)\,)\ @p — O
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of @p—vector spaces. Note that lemma and equation (|1.4.13]) show that the image of
the first term of the above exact sequence in the second term is M) ;. So we have an exact
sequence

0= My — Va— (T/Mp)p, ©r, 2 Q, =0
and thus B
dim@p (T/Mk)m ®73p)\7)\ Qp = dim@p Vi — dim@p M>\7k,
1.e.,

dimp, (T/Mg)p, ®r,, x Ly = dimg, Vi — dimp, My.
Since the condition holds, we get
kg, (T/My)p, = dimp, (T/Mg)p, ®r,, x L
So by Nakayama’s lemma, (7 /My)y, is free over R,, and hence (My),, is free over R,,.
Thus applying — ®g, A @p to the exact sequence in equation yields
(Mi)py @ry, A Qp = T (M), ®r, A Q, = VA).
Then lemma and equation show that
(Mi)py ®r,, 2 Q, ~ M.

Now let ¢ be an integer. Then using the above isomorphism for & = ¢ and repeating the
proof of freeness of (T /M)y, over Ry, with T, My, Vy, M, j, replaced by M;, M;_1, M ;, M ;4
respectively, we get (Gr;M,)p, = (M;/M;_1)y, is free over R,,.

Finally the exact sequence
0— ./\/lz;l — MZ — Gri/\/l. — 0
combined with the above equation gives

(GriMa)p, ®r,, A @p ~ Myi/My,i—1 = Gr;M) ..

1.5. Rationality and interpolation of summands

In this section, we prove theorem [1.2.3] It follows from proposition [1.5.1} [1.5.3]

1.5.1. Rationality. Let (r, N) denote the Weil-Deligne parametrization of 7[1/p]. By
proposition [1.1.29] the representation WD(7[1/p]) decomposes into a direct sum of R[1/p]-
submodules as

WD(T[1/p]) = WD(T[1/p])" @ WD(T[1/p])"*<,
both of which are stable under Wy and N.

Proposition 1.5.1 (Rationality over Og[1/p]). There exist
(i) an integer m > 1,
(i1) integers 0 <t < -+ < tp,
(i1i) an integer M > 1,
(iv) M distinct unramified characters ry,--- ,rar of Wi with p; :== r;(¢) € O% and
(v) integers nj; > 0 for 1 <i < M,1 <j<m (with Zf‘il ni; > 1 for each j)
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such that

(1:5.1) (WD)")™ = P EP Sp, (ro)j

j=1 i=1
as Weil-Deligne representations. There also exist
(i) an integer m' > 1,
(ii') integers 0 < t) <th <--- <t .,
(11i’) an integer M’ > 1,

(w") e unramified characters X', -+, Xy : Wik — OZ,
e irreducible Frobenius-semisimple representations
pll : Wk — GLdl (@)’ T p/]\/[’ Wk — GLdM/ (@)

with finite image and
(v') integers ni; >0 for 1 <i < M', 1 <j<m

such that
m' M
(15.2) (WD(V)!5) ~ @ D) Spys (v © 1)
j=1 i=1
as Weil-Deligne representations. So
m M m' M /
(1.5.3) WD) =~ D EP Sp,, (1) & D EP Spu (i ® o))
j=1 i=1 j=1 i=1

and the indecomposable summands of WD(V)¥* are defined over Ox[1/p]. The character-
istic polynomial of » on WD(V)K is

m M i

H H H(X _ Miq(—tj+2k)/2>nij'

j=1i=1 k=0
For any prime ideal p of R[1/p|, this polynomial is also the characteristic polynomial of ¢
on the free R[1/pl,-module WD(T[1/p])i¥ and hence it is an element of R[1/p][X]NOx[X].

Remark 1.5.2. Henceforth we will consider the indecomposable summands of WD(V)¥-ss
as defined over Ox|[1/p).

Proof. The Weil-Deligne parametrization WD(V) of V is a Weil-Deligne representation by
lemma [1.1.28] Its inertia invariants WD(V)!% and its complement WD(V)/%¢ are also Weil-
Deligne representations by lemmal[l.1.9] By lemma[l.1.10, (WD(V)%)Fr-ss (WD(V)xe)Fr-ss
are Weil-Deligne representations. Hence by theorem [1.1.21] there are

(1) integers m > 1, 0 <t; <ty < -+ < by, N

(2) one-dimensional unramified distinct Weil representations rq,- - , 7y of Wy over K

for some integer M > 1,

(3) integers n;; > 0for 1 <i< M, 1<j<m
and
(') integers m’ > 1,0 <t) <th <--- <t ,,
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(2) irreducible Frobenius-semisimple representations 7/, --- 74, of W over K for some
integer M’ > 1,
(3') integers nj; > 0 for 1 <i < M',1 < j<m/

such that we have isomorphisms

m M m/ M/
(WD) )" = @B P Sp,, ()12, (WD(V)'*)™ =~ B D) Spy, (r]) 2
j=1 i=1 g=1 =l

of Weil-Deligne representations. By proposition [1.1.14] for each 1 < ¢ < M’, there exists an
unramified character x} : Wx — K~ and an irreducible Frobenius-semisimple representation

pi s Wi — GLg,(Q) with finite image such that
X ® P
as Wi-representations over K. So to establish equations (I.5.1]), (1.5.2), it remains to show

that the r; and x} have image in (’)%. Since the r; and x/ are unramified, it suffices to show
that the 7;(¢) and x;(¢) are elements of OZ.

The characteristic roots of ¢ on WD(V)'™* are elements of (’)% since the characteristic

polynomial of ¢ on WD (V)5 and WD(V) are the same and WD(V) is defined over R. So
the characteristic roots of ¢ on the Sp, (r;) & and Spy () 5 are elements of OF.

If r; comes from an indecomposable summand of odd dimension (i.e., there exists 1 <
j < m with t; + 1 odd and n;; # 0), then r;(¢) € OF. On the other hand, if it comes from
a block of even size, then 7;(¢)q"/? € OZ. Since q*/? is a unit in Og, we get 7;(¢) € Oz

Similarly if the x/ comes from an indecomposable summand of odd dimension (i.e., there
exists 1 < j < m' with #; + 1 odd and nj; # 0), then x;(¢) times a root of unity belongs to
OZ, which shows x;(¢) € OF. On the other hand if it comes from a block of even size, then

1/2 ;

Xi(¢)q"/? times a root of unity belongs to OF, which shows Xi(0)q? € OX. Since ¢'/? is a

unit in O, we get x;(¢) € OF. So the equations (L1.5.1), (1.5.2) follow.
Recall that there is a decomposition
WD(V) = WD(V)™ & WD(V)"*
as a direct sum of Weil-Deligne subrepresentations by lemma [1.1.9] This shows
WD(V)Fr-ss — (WD(V)IK)Fr-ss D (WD(V)IK,C)FT-SS'

So equation (1.5.3) holds. Since the p} are defined over Q and Q has an embedding into
Oxl[1/p], the X} ® p; can be considered as a representation from Wi to GLg, (Ox[1/p]). Thus
the indecomposable summands of WD(V)™ are defined over Ox[1/p].

By equation ([1.5.1)), the characteristic polynomial of ¢ on (WD(V)!x)Fr-ss jg

m M i

[ s

j=11i=1 k=0
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Since the multiset of characteristic roots of ¢ on WD(V)'% and on (WD(V)&)F5 are the
same, the above polynomial is the characteristic polynomial of ¢ on WD (V)&

Recall that for any prime ideal p of R[1/p], WD(T[1/p]);¥ is free over R[1/p], by propo-
sition [I.1.29] So any two consecutive entries of the list
(1) the characteristic polynomial of ¢ on WD(T[1/p])s*
(2) the characteristic polynomial of ¢ on WD(T[1/p])s¥ ®r1/p), Frac(R[1/pl,),
(3) the characteristic polynomial of ¢ on WD(T ®% K)'x,
(4) the characteristic polynomial of ¢ on WD(T ®@z K)ix = WD(V)x

are equal where the equality of the last two entries follows from [Fon04, proof of Proposition
0.0]. So the characteristic polynomial of ¢ on WD(T[1/p])y¥ is

m M i

TTTTTICX = g 2972y € R[1/ply[X].

j=1i=1 k=0

The last assertion follows since R[1/p] is equal to the intersection of its localizations at
prime ideals (taken inside KC). O

1.5.2. Interpolating summands of WD(V} )",

Proposition 1.5.3. Suppose that the conditions (mono-fil-diml), (mono-non-deg)) hold. Then

= B Do, 0oy, © DDsoy o 0k

Jj=1 =1 7=1 i=1

as Weil-Deligne representations.
Proof. Let q denote a prime of Og[1/p] lying above the prime p of R. Denote a lift of
A+ Ogl1/p] = @, to Og[1/p]q by A.

Since the conditions (mono-non-deg)), (mono-fil-dim|) hold, by theorem the R,,-
module (GrgMa,)y, is free and the map A induces isomorphism of Wx-representations

(GrpMa)p, Ry A @p ~ Gr My,

for all k € Z.

So the Wi-module GryM, ®r Og[l/plq is free over Og[l/p]; and hence it is a Wg-
representation. By proposition [1.5.1] the trace of this Wik-representation is same as the
trace of the Wi-representation

M M’
—k/2 Tij 11—k/2
@ @ 7| Art ! ) @ @ @ ( ;@ ;)| Arty >
( | K] jognym O @ polArtyc i JORI1/plq

i=1  1<j<m i=1  1<j<m’
t;=k mod 2 t;;k mod 2
_tjgk:ftj —t}gkft;
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So the trace of the Wi-representation GrypM) , is same as the trace of the Wi-representation

L. !
Tij i

M M
D D A ) e | D B (e man )Y

i=1 1<j<m =1 1<j<m’
t;=k mod 2 t;Ek mod 2
—t;<k<t; 7t;§kSt;

Since GryM, . is a semisimple representation of Wy, it is isomorphic to the above repre-
sentation (by [Ser98, Chapter 1, §2] for instance). The proposition follows from lemma
O

1.6. (Proof of) Purity for big Galois representations
Before proving theorem [1.2.4] we discuss some properties of T/,

1.6.1. Compatibility. Recall that p, denotes the kernel of A\ : R — @p. Denote the
image of this map by L, and note that it is a subfield of @p as it is isomorphic to Ry, /PRy, -

Denote the Gk-representation 7 @ Ly = T\ ®o, Ly by Vy. Let (ry, Ny) denote the
Weil-Deligne parametrization of V. Denote by (ry,, N, ) the localization WD(T[1/p]),, of
the Weil-Deligne parametrization WD(T[1/p]) = (r, N) at p,. Denote the image of

1
0= (1) gd%wg
in M,(R[1/pls,) by by,, which is an idempotent as 6 is so. Since
Vi = TIL/ploy @R /plpy A Lo
we have
(1.6.1) ry=Aor,, and Ny = A(N,,).
Define the element

€ M,(L)).

1
GA:#Im((Aor)(IK)) > 9

geIm((ror)(Ix))

Then by lemma 0, is an idempotent and WD(VY) decomposes into a direct sum of
Weil-Deligne subrepresentations as

(1.6.2) WD(V}) = WD(V})™® @ WD(Vy)'x<.
Proposition 1.6.1 (Compatibility). We have

(ra, Nx) lwpvyyie = A <(7”m> NPA”WD(T[l/p}).ff)

(3 Na) lwpgyiee = A <(7“m> NPA>|WD(T[1/p})’K’C>

PX

as Weil-Deligne representations.
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Proof. Recall that by proposition |1.1.29] WD(7[1/p]),, decomposes into a direct sum of
Weil-Deligne representations as

(1.6.3) WD(T[1/p])p, = WD(T[1/p))ys & WD(T[1/p])s°
with

WD(TTL/p)ps = O WD(T1/p])p,  WD(TI1/p])ys" = (1 = 0, )WD(T[1/p])p
By equation (1.6.1)), we have

A(B,,) = 0.
Since 0y, , 1 — 0,, are idempotents, it follows that
Oy - A(6p,) = 6,
(1—-65)-A1—-6,,)=0
(1=6x)-6(6,,) =0

(1—-65)-A1—-6,,)=1—-06,.
So
(1.6.4) WD(V3)"* = MWD(T[1/p]);%),  WD(V3)"™¢ = \(WD(T [1/p]);).
Now the first part of the proposition follows from equation (|1.6.1)). U

Corollary 1.6.2. We have
dimg V'* < dimg V{*.

Proof. Put
Then proposition [1.6.1] gives
Ny = A(Vy).
By proposition|1.1.34|and [Fon04, proof of Proposition 0.0], we obtain the desired inequality.

O

Remark 1.6.3. When V is semistable, this corollary can be deduced from equation ({1.3.3))
using proposition [I.1.34]
Remark 1.6.4. This corollary is also obtained in [BC09) §7.8.1].

1.6.2. Generating inertia invariants. Recall that we have decompositions

WD(V}) = WD(Vy)'* & WD(Vy)" <,
WD(T[l/p])m = WD(T [1/p])IK o WD( [1/p])pc.

as in equation (|1 and ((1.6.3)). From equation (/1 , we have
(1.6.6) WD<VA)IK = MWD(T[1/p]);%), WD(V)\>IK’C = M(WD(T[1/p])).

By definition of semistable and totally non-semistable parts (as given in corollary

and [1.1.33)), we get
ATI/Plss)or) = Vs, AT/ Plinss)on) = (Vi)inss
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From equation ((1.6.5)), we have
M= Nlanermpes - M= Nl
So this can be rewritten as
N1t = N|(701/plasy Va1 = Naloy..

and we have

Ny = A(Ny)
by proposition |1.6.1. Now put
No = N[ /plimso)y s Na2 = Nal(v)imss
and note that proposition [1.6.1] gives
Ny = A(Ny).

Notice that
N =N;® Ny, Ny= Ny @& Nyo.

In the following we will also use the notation Nj (resp. N2) to denote the restriction of
N to T[1/plss (resp. T[1/plinss)-

Recall from corollary that we have a decomposition
T{1/p] = T11/plss ® T1/Plinss-
We will denote the projection maps
TI/p] = T/plss,  TI1/P) = TI1/Plinss
by 7 and 7y, respectively. Similarly the projection maps
Vi = (Va)sss Va = (V) tnss
are denoted by 7y g5, Tx tnss respectively. From lemma and proposition , we have

isomorphisms
T[l/p]ss ®7€[1/p],)\ @p = (T[l/p]ss)p,\ ®R[1/p]p)\,)\ @p =~ (V)\)ss7

T[]-/p]tnss ®T\’,[1/p],)\ @p = (T[l/p]tnss)p,\ ®R[1/p]p>\ A @p = (V)\)tnss
induced by the map A and consequently

(167) Tss QR[1/p]A @p = Txssy  Ttnss OR[1/p]\ @p = T\ tnss-
Lemma 1.6.5. We have
(1.6.8) T/p)'s =ker (Ny : T[1/plss — T1/plss)

and consequently
0— TI/p)™ = T(1/plss = NyT(1/plss — 0

is exact. Moreover when the condition (mono-non-deg-1)) holds, the localizations of all the
terms of this exact sequence at py are free over R[1/ply, .
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Proof. A little modification of the proof of proposition [1.1.34] gives the proof of equation
(11.6.8).

First note that equation gives
(T11/p] @rp1yp K)' = ker (N1 - WD(T[1/p] @rpijp) )% = WD(T[1/p] @rpyp K)'5) -
Since
WD(T[1/p] @y K)'* = WD(T[1/p)'™ @rpjpm K
by lemma [1.1.32| and
T{1/plss = WD(T1/p))x
by definition (as given in corollary , we get
(T1L/p) @rp1jp K)'* = ker (Ny 2 TIL/plss @rpijp) K = TIL/Dlss @rpyjp) K) -
Note that T[1/p] can be considered inside (i.e., can be thought of as an R[1/p|-submodule
of) T[1/p] ®rpp K as it is torsion free (being free over a domain). So
TI/p)"™ = T/} N (T(L/p] @rppp K)'*
= (T11/plss @ T{L1/Plinss) Nker (N1 = T[1/plss @rpym K = T(1/Plss @rpym K)
= T[1/plss Nker (Nl cTL/plss Qr/p K — T11/p]ss QOR[1/p] /C)
= ker(Ny : T[1/plss = T[1/pss)-

This proves equation ([1.6.8)) which in turn shows that the sequence stated in the lemma is
exact.

Now it remains to prove the last part of the lemma. Note that by proposition [1.1.29]
(T11/plss)p, is free over R[1/pl,,. So by Nakayama’s lemma, it suffices to prove that
(N1T[1/plss)p, is free over R[1/pl,,. Again by Nakayama’s lemma and the exact sequence

0 = (MTL/Plss)py = (T11/Plss)or = (T/Plss/NT[1/Plss)py = 0,

it is enough to prove that (7[1/plss/N1T[1/plss)p, is free over R[1/p],,. This would follow
from Nakayama’s lemma, once we prove that

1rk’R[l/p];oA (TTL/Plss/N1T[1/plss)p, = dimg Vs — dimg N1 Vs,
is same as
dimp, (TT1/plss/NiTT1/Plss)ps @R /ply, » L = dimp, (VY)ss — dimp, Nyi(Vy)ss-
This follows as
N =N; & Ny, Ny= Ny @ Ny,
Ny=A(N), Ny =A(Ny), Ny =AN2)
and the condition (mono-non-deg-1|) holds. O

We record an immediate corollary of the above proof.

Corollary 1.6.6. Suppose that the condition (mono-non-deg-1)) holds. Then the map A
mduces an isomorphism

NlT[l/p]ss ®R[1/p},)\ @p = N)\I(V)\)ss-

48



Proof. In the above proof we have seen that (7[1/plss/N1T[1/p]ss)p
So the exact sequence

0= (NiT{1/plss)or = (TI1/Plss)ps = (T1/plss/NiTL/Plss)pr — 0

is free over R[1/plp, .

A

gives

(N T(L/P)ss)or @R 11 /)y, 2 Qp = Im((NlT[l/p]SS)P)\@R[l/P]pA7>\@p — (T[l/p]ss)m®R[1/p]m,x@p)~

Since B
(T[l/p]SS)p)\ ®R[1/p}p)\,)\ ) =~ (V)\)ss
from lemma [1.1.31] and proposition [1.6.1] we get the corollary. 0

Lemma 1.6.7. We have an exact sequence

0 — TI1/p)' — TT1/p] LT N 11 /plos @ TTL Plinss — 0

of representations of Wy over R[1/p]. Moreover when the condition (mono-non-deg-1|) holds,
the localizations of all the terms of this sequence at py are free over R[1/ply, .

Proof. Exactness of the above sequence follows since

T{1/pl = TI1/plss ® T1/plinss
and
0= T11/pl™ = T(1/plas = M T(1/ples = 0
is exact by the above lemma.

By proposition |1.1.29| the localization of T[1/p]mss at py is free over R[1/p],,. So we are
done by the above lemma. O

Proposition 1.6.8. The R, -modules TpIAK, TpA/TpIAK are free and the map A\ induces an
1somorphism B
7;1;" Qry, A Qp = VK.

Proof. From lemma|(1.6.7] it follows that

(T[l/p]IK)PM T[l/p]PA/(T[l/p]IK)PA

are free over R[1/pl,,. Note that p ¢ py as py = ker(A : R = Q,). So R[1/p],, = R,, and
the modules

Tl = (TP s Ton/ Tl =TI/ lon/ (TP

are free over R,,.

Now it remains to prove o
T @ra Q, = V¥,
Note that applying — @z /p,\ @p to the exact sequence in lemma yields the short exact
sequence

0 — T[1/p)"™™ @rpsmar Qy = Va = NiT[1/plss ®rpimn Qp @ T11/Plinss @rpi/mar Q, = 0

where the third arrow is -
((Nl o 7Tss) SP thss) ®’R[1/p],/\ Qp'
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In other words
0— T @r . @p — Vi ( > Na1 (V) ss @(V)\)tnss — 0
is exact by corollary , lemma , proposition and equation . So
T @m0 Qp ~ ker(Nag t (Va)ss =25 (VA)ss)
— ker(Ny; : WD(Va)'® 225 WD(V3)x).

N>\1 Oﬂ')\)@ﬂ—)\,tnss

By equation ((1.1.10)), we get
,Tp]K ®Rp)\,)\ @p ~ V)\IK'

A

O

1.6.3. Proof of theorem and proposition [1.2.5

Proof of theorem [1.2.4l Suppose that V) is pure of weight w. Part (1), (2), (3) of this
theorem follow from theorem [1.2.1] [1.2.2] [1.2.3| respectively.

Since V) is pure, part (4) of theorem holds.

The first part of theorem [1.2.4)5) follows from proposition [L.6.8] The rest follows from
[Stald, Tag 064K], [Stal4, Tag 06Y6].

Note that Eul(V)™! has coefficients in R,, by part (5). Since V is defined over R,
the polynomial Eul(V)™! has coefficients in Ox N'R,,. Its A-specialization is Eul(Vy)~! by

proposition [I.1.34] and theorem [1.2.4)3). So we have part (6) of theorem [1.2.4] O

Proof of proposition Since V is defined over R, the polynomial Eul(V)~! has co-
efficients in Ox. The inequality of this proposition is from corollary U
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CHAPTER 2

Determinants and Selmer complexes

In this chapter we recall the notion of determinant functor and Selmer complexes referring
to [KIMT76, Nek06] for further details. These are used in the next two chapters to construct
algebraic p-adic L-functions for Hida families.

2.1. Determinants

2.1.1. Triangulated categories. In this subsection, we review the notion of derived
category from [Stald]. Notice that the sign convention of [Stald] agrees with the sign
convention of [BBMS82| §0.3.1, p.2] (by [Staldl Tag 014L]), which is followed by [Nek06),
§1.1.3]. So the following is consistent with [Nek06].

2.1.1.1. Cochain complexes. We first recall some notions and describe some of their prop-
erties. Fix an abelian category A and denote the category of cochain complexes in A by
C(A). There are shift functors [n] on C'(A) defined as follows:

(1) for a cochain complex X,

X T Xn-i—i
Xln] = z[n] nomti
dX[n] = (=1)"d¥
(2) for a morphism of cochain complexes f: X — Y,
The cone of a morphism f : X — Y of cochain complexes in A is the object of C'(A)
defined by

Y & X[1]
C _ A d i+1 A } , ,
one(f) dzc 0 _ Y f S Y D X[l]z - Yz-i—l fan X[l]l-i-l.
one 0 de[l]

The cone fits into an exact sequence of complexes
(2.1.1) 0—Y L Cone(f) & X[1] — 0,

where j and p are the canonical inclusion and projection respectively. The corresponding
boundary map

0: H(X[1]) = H(X[1]) — HY(Y)
is induced by f"*!. Note that the above exact sequence gives the triangle (X, Y, Cone(f), f, j,p)
in C(A) (cf.[Staldl Tag 014E]).
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2.1.1.2. Homotopy category. The homotopy category K (A) of the abelian category A
has the same objects as C'(.A) and its morphisms are homotopy classes of maps of complexes
(cf.[Stal4, Tag 013H]). Note that the shift functors [n] on the category of cochain complexes
give rise to functors [n] : K(A) — K(A) such that [n] o [m] = [n+ m] and [0] = id (equality
as functors). The category K (A) is a triangulated category with these translation functors
and distinguished triangles as the triangles in it isomorphic to the image of the triangle

X v 2 Cone(f) 5 X[1],  f € Homequ(X,Y)
in C(A) under the functor C'(A) — K(A) (c¢f.[Staldl Tag 014S, Tag 0141, Tag 014L]).

2.1.1.3. Derived category. Recall that A denotes an abelian category. The derived cat-
egory D(A) of A is the triangulated category defined as the quotient of the triangulated
category K (A) by its full triangulated subcategory of acyclic complexes, which is the lo-
calization of K(A) at the quasi-isomorphisms (cf.[Stal4, Tag 05RU, Tag 05RI, Tag 05R6),
Tag 05R6]). The additive functors {[n]},ecz on D(A) are induced by those of K(A) and
the distinguished triangles of D(A) are the triangles in D(A) whice are isomorphic to the
image of a distinguished triangle under the localization map (cf.[Stal4l proof of Tag 05R6]).

2.1.1.4. Complexes of modules. For aring R, let pMod denote the category of R-modules,
which is an abelian category. Its derived category D(grMod) is a triangulated category. Its
full subcategory of cohomologically bounded complexes is denoted by D?(zMod) and the full
subcategory of D°(gkMod) of complexes having cohomology of finite type over R is denoted
by D},(rkMod). Notice that D’(zMod), D% (rMod)) are preserved under the translations
[1],[-1] and any arrow f : X — Y in D’(gMod) (resp. D%,(rkMod)) can be completed to
a distinguished triangle (XY, Z, f, g, h) in D(xMod) with Z in the objects of D’(zkMod)
(resp. D% (rkMod)). So they are triangulated subcategories of D(zMod) with the restrictions
of {[n|}nez as the translations and distinguished triangles as the triangles in it which are
distinguished triangles in D(grMod) (cf.[Staldl Tag 05QX, footnote in Tag 05QM]).

2.1.1.5. Ezact sequences. Recall that A denotes an abelian category. The functor C(.A)
to D(.A) becomes a d-functor with the following rule (cf.[Staldl Tag 0152]). For every exact
sequence of complexes

0-XLy%Lz0
in C(A), define the arrow
0 =0xoyoz: Z — X[1]
in D(A) by
7 <& Cone(f) =% XT1]
where ¢ : Cone(f) — Z denotes the arrow in C(.A) which is zero on X|[1] and g on Y.

Remark 2.1.1. Note that the map ¢§ associated with the exact sequence of equation ([2.1.1))
satisfies

5Yi>00ne(f)i>X[1] = fl1]  in Hompee(Z, X[1])

(cf.[Staldl Tag 014I)).
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2.1.2. Perfect complexes. A complex M*® of R-modules is said to be perfect if a
bounded complex P*® of projective R-modules of finite type is quasi-isomorphic to it (see
[SGATI] p.42-]) or equivalently if M* is isomorphic to a bounded complex P*® of projective
R-modules of finite type in the derived category (see [KS94, Exercise 1.30]). The equiva-
lence of these two definitions follows as a morphism in the derived category comes from a
morphism in the homotopy category if the source of the map is a bounded above complex of
projective objects (by [Stal4l Tag 064B]| for instance). In particular, the results of [Stal4]
on perfect complexes can be used.

An R-module M is said to be perfect if it becomes perfect when considered as complex
concentrated in degree zero. The derived tensor product of a perfect complex over R with
an R-algebra R’ is perfect over R’ (by [Stal4, Tag 066W] for example).

Denote by Parfg the full subcategory of the derived category of R-modules D(gzMod)
consisting of perfect complexes. The category Parfp is equivalent to the category Parfgyec(r)
(as in [KMT6, p. 39] for example) by [KMT76l Proposition 4].

Note that Parfg is preserved under the translations [1],[—1], it is a full subcategory of
the triangulated category D(grMod) and any arrow f : X — Y in Parfg can be completed to
a distinguished triangle (XY, Z, f, g, h) in D(gMod) with Z an object of Parfy (cf.[Stal4l,
Tag 066R]). So it is a triangulated subcategory of D(grMod) with the restrictions of {[n]}nez
as the translations and its set of distinguished triangles consists of the distinguished trian-
gles in D(grMod) which are also a triangle in Parfg (cf.[Staldl Tag 05QX, footnote in Tag
05QM]; or alternatively [Stald, Tag 09QH, Tag 07LT]). Similarly, it is also a full triangu-
lated subcategory of the triangulated category D°(zrMod).

A theorem of Auslander-Buchsbaum and Serre (see [BH93, Theorem 2.2.7] or [Stald4l,
Tag 066Z]) says that when R is a regular noetherian ring, Parfp, is equal to D%, (zMod).

Denote by Parf-isg the subcategory of Parfr consisting of all its objects and morphisms
as isomorphisms. Evidently, the set of morphisms between two objects in this category is
empty if they are not isomorphic in Parfg.

2.1.3. Graded invertible modules. We recall the notion of graded invertible modules
from [KMT76].

The category of graded invertible R-modules is denoted by Pg. Its objects are pairs
(L, ) where L is an invertible R-module and « is a continuous function

a : Spec(R) — Z,

and a morphism h : (L, ) — (M, [3) is a homomorphism of R-modules h : L — M such that
for each p € Spec(R) we have

a(p) # B(p) = hy = 0.

The composition of two morphisms is obtained by taking the composition of the maps
between the invertible modules. Note that the composition law indeed gives a map in Pg.
Thus a morphism h : (L, «) — (M, ) of graded invertible modules is an isomorphism if and
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only if h: L — M is an isomorphism and a = f3.

The subcategory of Pr whose morphisms are isomorphisms is denoted by Pisg. The
tensor product of two objects in Py is given by

(L,a) @ (M, ) := (L& M,a+ ).

For each pair of objects (L, «), (M, 3) in Pr we have an isomorphism

UiLayonp) ¢ (Lya) @ (M, 8) = (M, 8) @ (L, a)
defined by
Y(le@m) = (-1)*P@Dm el forle L,me M,

The object (R,0) of Pr will be denoted by 1. A right inverse of an object (L, «) in Pg will
be an object (L', ') together with an isomorphism

§:(L,a)® (L,a) = 1.
A right inverse will be considered as a left inverse via

w ’al @
SEDEN (L) @ (L, o) 5 1.

~ ~

(2.1.2) (L', o) ® (L, @)

2.1.4. Determinant functor.
2.1.4.1. On Cisg. For a commutative ring R, let Cr denote the category of projective
R-modules of finite type. Its full subcategory whose maps are isomorphisms will be denoted
by CiSR.
For a projective R-module M of finite type, we put
det* (M) = (A" M, rkF)

where
(A™AL), = ATKM; M,
for any prime ideal p of R. This defines a functor
det” : Cisp — Pispg.
Moreover for every short exact sequence
0-RSFL R0
in Cg, we have an isomorphism
i*(a, B) : det* Fy ® det* Fy = det™F
such that locally
o, B) (et Ao Ae) @ (Bfi A+ ANBfs)) =aer Ao Naeg A fi Ao+ A fs

for e; (resp. f;) in the localization of F’ (resp. F') at a multiplicative subset of R.
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2.1.4.2. OnC®is. For a commutative ring R, let C, denote the category of bounded com-
plexes of objects in Cg, morphisms being all maps of complexes. The full subcategory of Cj,
whose maps are quasi-isomorphisms will be denoted by C*®isg.

A determinant functor from C*is to Pis, denoted (f,7), is a collection of data as defined
in [KMT76, Definition 1]. We describe some of its properties.

For each commutative ring R, this data provides a functor fz from C®isp to Pisg. For
each short exact sequence

VY N LN N
in Cy,, this data provides an isomorphism
ir(e, B) : f(FY) @ f(F3) = f(F*).

When Cisg is considered as a full subcategory of C*isg by viewing its objects of Cisi as
complexes concentrated in degree zero, we have

f(F)=det"F
for any object F in Cisg and

ir(a, f) = i*(a, B)

for any short exact sequence
053 FLS RS0
in Cisg.
By [KMT76, Theorem 1], a determinant functor (as in [KMT76l Definition 1]) exists and
is unique up to canonical isomorphism. We will denote it by (det, 7).

2.1.4.3. On Parf-is. The extended determinant functor is a collection of data as defined
in [KMT76|, Definition 4] and by [KIMT6, Theorem 2] it exists and is unique up to canonical
isomorphism. We describe some of its properties. We have

detR(O) =1.

For each commutative ring R, this data gives a functor detg from Parf-isg to the category
Pisg. When an object M*® of Parf-isy is represented by a bounded complex P*® of projective
R-modules of finite type, i.e., P* is quasi-isomorphic to M*®, we have a canonical isomorphism

detpr(M*®) = ®,cz(detr(P")) D"

(IKMT76l, Rem a), p.43]). When the cohomology modules H™(M?*) are perfect (considered
as a complex concentrated in degree zero), there is a canonical isomorphism

(2.1.3) detp(M®) = @pez(detg(H™(M®)))D"
([KMT6, Rem b), p.43]). If the ring R is reduced, then for a distinguished triangle
My % My % My = M1
in Parfr, we have an isomorphism
(2.1.4) ip(u,v,w) : detg M ® detg My = detr My
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which is functorial with respect to isomorphism of such triangles ([KMT76l, Proposition 7]).
On bounded complexes of projective R-modules of finite type, the extended determinant
functor coincides with the determinant functor given in §2.1.4.2] Moreover the extended
determinant functor satisfies the following base change property.

Proposition 2.1.2. Let ¢ : R — R’ be a ring homomorphism. Then for an object M*® €
Parf-isg, we have a canonical isomorphism

L
(detRM') ®R,¢ R, = detR/(M’®R,¢R/).
Proof. See [KM76| Definition 4 II) iii), p. 42]. O

2.1.4.4. Choosing an inverse. Suppose that R is reduced. For an object X of Parfg, we
choose detg(X[1]) as a right inverse of detg(X) via the map

iR(O, O, —ldx[l]) . detRX (059 detRX[l] :> detRO = (R, 0)
obtained by applying [KIMT6, Proposition 7] on the exact triangle

—idx [1]
—

x50 x| X[1] in Parfp.

This makes detg(X[1]) into a left inverse of detr(X) via the map in equation (2.1.2). From
now on, we will consider detr(X[1]) as both a right and a left inverse of detgr X and we will
denote it by (detr X)~'.

2.1.4.5. Determinants of perfect complezxes of torsion modules. Let R be a domain and
M be a torsion R-module. Suppose that M is perfect over R. Then

(detgM) ®p Frac(R) = detprac(r) (M @p Frac(R)) (by proposition
= detprac(r) (0)
= (Frac(R),0).
Considering the image of detgr M inside Frac(R) under the composite map
detpM C (detgM) ®@p Frac(R) ~ (Frac(R),0)

and forgetting the second factor of the determinant functor, we obtain an R-submodule of
Frac(R), denoted [detgM < Frac(R)]. Suppose that R is a regular ring. Then

[detr M — Frac(R)] = (charpM)~*,

where

ChaI'RM _ H plengtthMp

ht p=1

This gives an isomorphism

detg M = ((chargM)~*,0).
Since (charM, 0) is an inverse of ((charM)~!,0), the above isomorphism induces an isomor-
phism
(2.1.5) (detg M)~ =2 (chargM,0).
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2.2. Selmer complexes

2.2.1. Complex of continuous cochains. Throughout this section, T" denotes a finitely
generated module over a complete local noetherian ring R with residue field £ and G denotes
a profinite group acting continuously on 7'. Let C? (G, —) denote the functor of continuous
cochain complex from the category of R|G]-modules to the category of bounded below com-
plexes of R-modules. It preserves homotopy, exact sequences and quasi-isomorphisms (see
for instance [Nek06, Corollary 3.5.6]), and thus defines an exact functor Rl cont (G, —) from
the derived category of R|[G]|-modules to the derived category of bounded below complexes

of R-modules.

Proposition 2.2.1. Assume that char(k) = p > 0. Then the functor Rl .on(G, —) takes
perfect complexes to perfect complexes. Let T be an R[G]-module which is free as an R-
module and ¢ : R — R’ be a ring homomorphism where R’ is a complete local noetherian
ring and both the rings R and R’ have finite residue fields. Then we have an isomorphism
between the objects in the derived category of complexes of R'-modules:

~

L
RU ot (G, T) @ o R = RUeons (G, T ®@pg ).

Proof. See for instance [Nek06l proof of proposition 4.2.9] or [Kat93l, Theorem 3.1.3] for
the perfectness of the derived functor RI'.on (G, —) and for its base change property we refer
to [SGAT2, Exposé XVII Théoreme 4.3.1]. d

2.2.2. Local conditions. Fix a rational prime p > 3 (in chapter (3| (resp. , we have

p > 3 by §3.2.2| (resp. §4.1.1} §4.1.2))). Let F' be a number field and S denote a finite set of its

places containing the places above poo. Denote by Sy the set of non-archimedean primes in
S. Fix an algebraic closure F of F. Let Fg be the maximal subextension of F'/F unramified
outside S; denote Gpg := Gal(Fs/F). Let X denote an admissible (as in [Nek06, Definition
3.2.1)) R[GFs]-module (we will consider free R-modules with a continuous action of Gpg,
which are always admissible). Now for each prime v € S fix an algebraic closure F, of F,
and an embedding F < F, extending the embedding F < F,. This defines a continuous
homomorphism

Pou : Gy = Gal(FU/Fv) a—v> GF = Gal(F/F) 1) GF,S7
which gives a ‘restriction” map

res, : Co (Gy, X).

For future use, we recall that cd,Grs = 2 (as p # 2), ¢d,G, = 2, ¢d,G, /I, = 1 for all
finite place v of F' where cd,G denotes the cohomological p-dimension of a topological group
G (see for instance [Ser02, Corollary to proposition 12, §4.3], [NSWO08|, Theorem 7.1.8,
proposition 8.3.18]).

(GF75,X) —C*

cont

Local conditions for X are given by a collection A(X) = (A,(X))ves,, where each A, (X)
is a local condition at v € Sy, consisting of a morphism of complexes of R-modules

it (X):US(X) = C2 L (Gy, X).

cont

The Selmer complex associated with the local conditions A(X) is denoted by ]/%va(GF,S, X;A(X))
(abbreviated as RI';(X)) and defined to be the object in the derived category of R-modules

57



corresponding to the complex

resg
C;(X) := Cone Ccont(GF5'7 ) D @ U:( f @ cont GU? X [_1]’
UESf UESJL
where resg, = (resy)ves;, i§(X) = (i (X))ves,- By equation (2.1.1)), we have an exact

sequence of complexes

0— @ cont GIHX Cf<X)[1] £> Ccont(GFSJ )EB @ UJ<X) [1] —0

vESf UGSf

where j and p are the canonical inclusion and projection. The i-th cohomology group of
RT';(X) is denoted by H}(X). When X, U (X) are perfect complexes of R-modules for all
v € Sy, then by §2.1.1.5, [Nek06| Proposition 4.2.9] and [Stal4l Tag 066R], RI'((X) is also
perfect.

We will also consider the complexes of R-modules

resg
Oc. cont( ) Cone CVcont(CYYF S’ f @ cont GU? X [_ 1]7

UESf

resg zv ))ves wlp
cont GFS’ @ @ U+ - - @ cont GU? X [_1]

’UESf UESf
vlp

Ce,(X) = Cone | C?

The objects in the derived category of R-modules corresponding to them are denoted by
Rl cont(Grs, X), Rl (Gpgs, X) (or R, Cont(X ), RUq (X)), for short) respectively. Their
i-th cohomology groups are denoted by H! . (X), H: (X) respectively.

c,cont

We are interested in the following local condition as defined in [Nek06, §7.1].

Definition 2.2.2 (Greenberg’s local condition). Let X be as above. Then for v € Sy, the
Greenberg’s local condition for X is given by

cont(G /IU7XIU) vafp
br%)= {6“ @ X5 ifvlp

cont

with

(X = {U*( ) 5 €8 (Gn X)) ifutp
U (X) = Cone(Go, X)) if v | p,

where X.I' denotes a choice of a G,-stable R-submodule of X for v | p.

Proposition 2.2.3. Let X be as above. Then for a finite place v of F not dividing p, the

Fr,—1

complex US(X) is quasi-isomorphic to [XT* —— XI] where Fr, denotes the geometric

Frobenius element at v.

Proof. See [Nek06 §7.2.2]. O
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CHAPTER 3

Algebraic p-adic L-functions for the Hida family for GLy(Q)

In this chapter, we construct algebraic p-adic L-functions L;}im(—), Lzér(—), LZ}%Gr(—)
along branches of the Hida family for GLy(Q) and prove that they satisfy a perfect control
theorem at arithmetic specializations (theorem . The crucial step of their proof is
the recognition of the role of purity in understanding the variation of inertia invariants in
families. Since the modular Galois representations are known to be pure, this variation is
well-understood by theorem [1.2.4, In this chapter, from §3.3] we assume throughout that

the condition [3.2.4] holds.

The local conditions used in LZ%r(—), LZ}%Gr(—) at places ¢ # p is a modification Uj(—)
of the unramified condition U, (=) of Greenberg (as defined in [Nek06] §0.8.1] following
|[Gre89, [Gre91]). We use the local condition Uj(—) in stead of U, (—) as it is pointed out
in [FO12, Remark 2.17] that the inertia invariants of a big Galois representation p may not
specialize perfectly to the inertia invariants of a specialization of p. The local condition at
p used in LZ}%r(—) is the Greenberg’s local condition U, (—) and the control theorem for

L;}%r(—) is obtained under the p-distinguishedness assumption [3.3.1} This assumption is

relaxed while proving the control theorem for LZ}gGr(—), whose construction uses a modifica-

tion U} (—) of the condition U, (—) as its local condition at p. The construction of inaw(—)
uses no condition at p and uses the condition Uj(—) at places ¢ # p.

For any arithmetic specialization A of R(a) whose image is a DVR and associated ordi-
nary form is of good ordinary reduction, we show in theorem that there is a canonical

isomorphism (depending only on the isomorphism in equation (3.4.3))) between L;%r(TA,IW)
str

and the characteristic ideal of the Pontrjagin dual of the Greenberg’s Selmer group Sely’ |

(together with a grade). This theorem is a consequence of [Kat04), Theorem 17.4].

Using theorem [3.4.5 we prove in proposition[3.5.6|that all the cohomologies of RT' ¢ (T (@) 1)
are zero except possibly the second cohomology, which is torsion over R(a)y,. This yields a
purely algebraic construction of an element fpalg(a), called the two-variable algebraic p-adic
L-function, using the “factors” of L;{ér(T(u)Iw) coming from RI'G, (7 (a)n,) and the local
Euler factors. As a consequence of proposition [3.5.6] we prove in theorem that the
mod p reduction of .,iﬂpalg(a) generates the characteristic ideal of HJ%(TAPJW) for p varying in
a dense subset of Spec™™™(R(a)). In conjecture [3.5.16, we predict that £%(a) is an inte-
gral element and is an associate of the analytic p-adic L-function constructed in [EPWO06].
When Greenberg’s conjecture on vanishing of p-invariants of modular forms (with absolutely
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irreducible and p-distinguished residual Galois representation) holds, we prove this conjec-
ture in theorem [3.5.22

The organization of this chapter is as follows. In the first section, we review cusp forms
and associated Galois representations. The second section is about Hida family of ordinary
cusp forms. In the third section, we construct algebraic p-adic L-functions and show that they
satisfy perfect control theorems. In the fourth section, we relate our construction with the
Greenberg’s Selmer group. In the final section, we formulate a conjecture relating the two-
variable algebraic p-adic L-function D%alg(a) with the analytic p-adic L-function constructed
in [EPWO06]. Under Greenberg’s conjecture and assumption [3.5.15, we prove it in theorem
[3.5.221

3.1. Cusp forms and associated representations

In this section, we briefly recall how from a cusp form f, defined as a complex valued
function on the upper half plane, one obtains an automorphic representation 7 (f) of GLg of
the adeles and we describe how the restriction of the Deligne’s representation py to decom-
position groups at finite places ¢ # p can be understood from the local factors of 7(f). In
the end, we describe the action of the Frobenius elements (away from p) under py.

3.1.1. Automorphic representation attached to a cusp form. Let f be a non-
zero cusp form of level N and weight £ > 1 with nebentype character ¢. Suppose that it
is an eigenform for every 7}, with primes p { N. Let x, denote the grossencharacter defined
on Q*\Ag by restricting v to the appropriate factors of the decomposition Ag = Q* -
R* - T[,co0 Zy. Using the analogous decomposition GLy(Ag) = GL2(Q) GLa(R) [, K,
define the complex valued function ¢y on GLy(Ag) by

21(9) = F(950(1) 7 (go0r 1) " xup (ko)
for g = Ygooko With 7 € GL2(Q), g € GLa(R), ko € [] K,

p<oo

p<o0

where K = {(2}) € GLy(Z,) : ¢=0(mod N)}, xy on [[ . K is defined by (24) —

Xo(a) and j(goo, 2) = (cz + d)(det goo) ™2 if goo = (24). This function ¢, is well-defined and
belongs to the space of functions LZ(GLy(Q)\ GL2(Ag), ) ([GelT5] §3.A]). Its translates
under the right regular action of GLy(Ag) generates an irreducible unitary representation
7(f) = Qpeoum(f)e of GLa(Ag) (|[Gel75, Theorem 5.19]). For each prime number ¢, the local
representation m, = 7(f), of GLy(Qy) is one of the following types ([Gel75, Remark 5.8,
Theorem 4.21]) :

(1) Principal series. 1t is the irreducible representation m, = m(u, ¢'), in which GLo(Qy)
acts by right translation on the space B(u,p') of locally constant functions f :
GL2(Q) — C satisfying

(5 2)a) = stawa@orats1a),
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where p, ' : QF — C* denote characters satisfying p/p’ # | - [F' and | - | =
| < |¢: QF — RX is the normalized valuation (i.e., ||, = ¢~ for any uniformizer

wwy € ZLy).
(2) Twisted Steinberg representation (= special representation).
St(p) =St @ p C Blu| - |2, p| - [7?)
where ;1 : Q — C* is a character.

(3) Supercuspidal representation.
We call them the automorphic type of 7.

3.1.2. Galois representation attached to a cusp form. Let f be as above with
weight k > 2 and Ky denote a finite extension of QQ, containing the Fourier coefficients a, of f
for primes ¢ { N (via io and i,). Then by [Eic54, [Shi58] (for £ = 2), [Del69, [Car86], Ohta
et. al. (for k > 2), there exists a continuous two-dimensional p-adic Galois representation
(with respect to i, and i,) V(f) = V,(f) of Gg = Gal(Q/Q) over K; which is unramified
outside Np and satisfies

(3.1.1) det(1 — FroX|V(f) =1 — a,(f)X + ()1 X2

for each prime ¢ f Np. Moreover, this representation is absolutely irreducible, by [Rib77,
Theorem 2.3].

Proposition 3.1.1. Let f be a cusp form as above. For a rational prime { # p, the re-
striction V(f)e of V(f) to the decomposition group G, can be described in terms of the local
factor m; of w(f) using the local Langlands correspondence as follows.
(1) If mp = w(p, '), then I, acts on V(f), through a finite quotient and the semi-
simplification V (f), is isomorphic to

~

Ve S Kpou - |YPPe Ko P2
thus Iy acts on V/(f)e by plgx © |z
(2) If mp = St(u), then the representation V (), is reducible and I, acts on V' (f), through
an infinite quotient. There is an exact sequence of K¢[Gy|-modules
0= Kropu - "™ V(= K;ou - | —o0.

In particular, if p is unramified, then I, acts on V(f), through its tame quotient
I} = 1,/1I}’, and any topological generator of I} acts on V(f)e by an endomorphism
A satisfying (A—1)2=0# A—1.]
(3) If 7y is supercuspidal, then Gy acts on V(f), irreducibly and I, acts through a finite
quotient.
In addition, the eigenvalues of any lift g € Gy of the Frobenius Fry € Gy/I, acting of V(f)
are Weil numbers of weights

k-2 k if 7(f)e = St().
In (1) and (2) above, K is assumed to contain the values of p,p’. If this is not the case, then the

coefficient ring of V(f) can be extended to contain these values and then the above description of V(f),
holds.
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Proof. For the proof see [Car86]. O

3.2. Hida Theory

In the late 1980’s, Hida ([Hid86a, Hid86b]) introduced the notion of universal ordinary
Hecke algebra to study ordinary cusp forms and their associated Galois representations in
p-adic families. In this section we review the necessary results of Hida theory following the
presentation of [Hid87] and [Nek06, §12.7].

3.2.1. Ordinary Hecke algebras. Let p be a rational prime and O be a discrete val-
uation ring finite and flat over Z,. In other words, O is the p-adic integer ring of a finite
extension K of Q, in @p.

For positive integers N and k, let Sg(I'1(/V)) denote the space of cusp forms of weight k
and level N. An element f € S,(I'1(N)) has the following type of Fourier expansion:

F=Y af)g" (g=e"",7€9)
which allows to embed Sk(Fl(N)) into the power series ring Cl[[g]]. Define Sx(I'y(N);Z) as
the intersection of Sy (I'; (IV)) with Z[[¢]] inside C[[g]]. For each integer d prime to N, we can
let d act on Si(I'1(N)) by

[y

(3.2.1) (d)f =d"2f|[a]x for any o = (CCL g) € I'o(N) with § = d( mod N).

The Hecke operators T, for n > 1 are endomorphisms of S(I'1(/V)) and their effect on the
Fourier coefficients can be expressed as

(3.2.2) = ) dapne(d)f).

d|(mn
(d,N)=

The Hecke algebra hy(I'y(N);Z) is the subalgebra of Endc(Sk(I'1(IV))) generated over Z by
T, for all n. Define a pairing

()t hi(T(N); Z) x Sp (T (N); Z) — Z by (h, f) = ai(f[h)
The following facts are known (eg. Section 1, [Hid86al)

(1) Sk(I'1(N);Z) is stable under the action of hy(I'1(NV); Z),

) hi(T'1(N);Z) is a commutative algebra and T7 gives the identity,
) the diamond operator (n) belongs to hy(T'1(N);Z),

) the pairing (, ) is perfect over Z,
)

Sk(I'1(N);Z) @7 C = S(I'1(N)) naturally.

We put 7y (T1(N); O) = hy(T1(N); Z) @7, O. By ({)), () above, the algebra hy(T'1(N); O)
is free of finite rank over O and its rank is equal to the dimension of Si(I'y(V)). Since
hi.(T1(N); O) is of finite rank over O, it is a product of finitely many complete local rings R
(for instance from [Eis95 Corollary 7.6, p.188]) in a unique way. For such a local ring R,

(2

(3
(4
(5
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let 1 denote the idempotent of R and define an idempotent ex € hy(I'1(IV); O) by the sum
of 1 over the local rings R on which the image of T}, is invertible. Then
W (P1(N); O) = enhy(T1(N); O)

is the product of all the local rings of hy(I';(V); O) on which the image of 7}, is a unit. Thus
hg4(Ty(N); O) is the maximal algebra direct summand of kg (I'y(N); O) on which the image
of T}, is a unit.

Now the pairing (, ) induces bijections :

(3.2.3) Homo g (hi(T1(N); 0),Q,) <+ {normalized eigenforms in S;(I'1(N))},

(3.2.4)

Home g (k" (T'1(N); 0),Q,) + {normalized eigenforms in Sx(I'1(N)) with 4,(is (a,)) € Z:}.
3.2.1.1. Ordinary forms. From now on we call a normalized eigenform f = 2@1 anq"

in S;(I'1(N), ) to be p-ordinary (depending on iy, and i,) if its p-th Fourier coefficient a,

is a p-adic unit (i.e., i,(i-}(a,)) € Z;). According to [Wil88|, Theorem 2.2.2, p.562|, for an

ordinary form f with & > 2, there is an exact sequence of K;[G,]-modules

0=V(HT=V(f)= V() =0

where dimg, V(f)* =1, V(f)" is unramified and Fr, acts on it via the unique p-adic unit
root of X? — a,X + ¢ (p)p*~!, which is a, if p | N.

We remark that the notion of ordinariness depends on the embeddings i and ¢,. For
example, consider the newform
f=a+ag—ag®+(a® = 2)¢" + (o’ +1)¢" — a®¢° + - --

in S5(T(389)) where a is a root of X® —4X — 2 (see [RS11], §26.1.1]). The coefficient of ¢°,
(—a? + 1) satisfies y> + 5y? + 3y — 5. By Hensel’s lemma, we see that it has a non-unit root
in Zs and two conjugate roots in a quadratic extension K of Q5 which are units in O.

Note that the notion of ordinariness for a form in S,(I'y(Np”)) with r > 1 is independent
of r by the commutative diagram (3.2.5)) below.

3.2.2. The universal ordinary Hecke algebra. From now on we suppose that p {
N,p # 2 and Np > 4. For integers r > s > 1, we have the following commutative diagram

for all n > 1 (by (3.2.2)):
(3.2.5) Si(T1(Np®); O) — Si(T'1(Np"); O)
Se(T'1(Np*); O) —= S (I (Np"); O)

where the horizontal arrows are the natural inclusion and the left (resp., right) vertical arrow
is the Hecke operator T, of level Np® (resp., Np”"). Then the restriction of each operator in
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he(T'1(Np"); O) to the subspace Si(I'1(Np®); O) is again contained in hg(I'y (Np®); O); thus,
we have a surjective O-algebra homomorphism:
(3.2.6) hi(T1(Np"); O) = hi(T'1(Np®); O)  for each pair r > s > 1.
Since T}, goes to T}, under the above map, the image of ey, under this map coincides with
enps, and thus the above map induces a map
(T (ND'); O) — b (D1 (Np*); O).
Taking projective limits we obtain the universal p-ordinary Hecke algebra of tame level N,
R (Np™; O) = lim h™(Ty (Np"); O).

Now the diamond operators are O-algebra homomorphisms
{ Yer : Ol(Z/NP"Z)*] = hy(T1(Np"); O) — b (T (Np"); O)  for r > 1,
which upon taking limit gives the O-algebra homomorphism
( )i : Ol[Zn]] = B (Np™; 0)
where Zy = Um(Z/Np"Z)* = (14 pZy) x (Z/NpZ)* and O[[Zy]] = lim O[(Z/Np"Z)*].

Put I', = 1+p"Z, for r > 1, I' =Ty and define A = Ap = O[[T']] = I'&HTO[I’/FT]. Let
xr : I' = A* denote the canonical inclusion. The above implies that A" (Np>; Q) has a
canonical A-algebra structure.

Fix a topological generator « of I'. For an integer &’ > 2 and a finite order charac-
ter &/ : ' — @; with values in the ring of integers (O’ of a finite extension K’ of K, put
Py o = xr(7) —'(7)7" 2 € N := O'[[T']]. Note that P A’ is a prime ideal of A’ and thus
induces a prime ideal Py A’ N A of A.

An arithmetic prime of a finite A-algebra A is a prime p € Spec(A) whose contraction
to A is of the form Py A’ N A and an arithmetic specialization of A is an O-algebra homo-
morphism A — @p whose kernel is an arithmetic prime. The set of arithmetic primes of A
is denoted by Spec™™(A).

Let R be a quotient of h™(Np>; O) by a minimal prime ideal. Then Specarith(R) is an
infinite set since R is of finite type over A. Moreover, any infinite subset of Spec™™(R) is
dense in Spec(R) since each fibre of Spec(R) — Spec(A) is finite due to the integrality of R
over A.

Theorem 3.2.1.

(1) (JHid86a, Theorem 1.1, p.551]) For each k > 2, we have canonical O[[Zy]]-algebra
1somorphism
hi (Np>; 0) = hg™(Np™; 0),
which takes T,, of weight k to T,, of weight 2 for all m. We use the above isomor-
phisms to identify all h{™(Np>=; O) (k > 2) with h%d := hSY(Np>; O).
(2) ([Hid86Db, Theorem 3.1]) h&™? is free of finite rank over A.
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(3) (JHid86a, Theorem 1.2]) For each k > 2 and r > 1, the surjective A-algebra ho-
momorphisms hod <— h&d(Np>; O) — 4T (Np"); O) induce A-algebra isomor-
phisms

r—1

hd (xr ()P — P D) = R (T (NpT); O)
which sends T,, to T, for all m.

We have the following corollary of the above theorem.

Corollary 3.2.2 ([Hid88a, Corollary 3.5]). Through equation (3.2.4) and theorem [3.2.1]
(3), the arithmetic primes of h%d of weight k > 2 are in one-to-one correspondence with
the G -conjugacy classes of p-ordinary forms (defined over @p) in Sp(Cy(Np")) for weight
k> 2 andr > 1 and the arithmetic specializations of h%% of weight k > 2 are in one-to-one
correspondence with the p-ordinary forms in S(I'y(Np")) for weight k > 2 and r > 1.

For such an eigenform f, we denote the corresponding arithmetic specialization by s
and for such a specialization A we denote the corresponding ordinary form by f.

3.2.3. Galois representations. Let f € Sp(Np", x) be an ordinary normalized Hecke
eigenform of weight & > 2 such that K = Frac(Q) contains all Hecke eigenvalues of f and
all values of y. Assume, in addition, that f is a p-stabilized newform in the sense of [Wil88|,
p.538]. This means that » > 1 and that the (necessarily ordinary) normalized newform f
associated with f has level divisible by N. Let o denote the arithmetic prime associated with
the G g-conjugacy class of f (which is the set {f}). Then g strictly contains a prime ideal a
of h%d, necessarily minimal. Put R(a) = h%4/a. Then R(a) is a domain and finite over A.

oo )

Note that R(a) is local and denote its maximal ideal by m. Let ¢ denote the composite map
Ao = b /a = R(a) — K, K := Frac(R(a))

which is minimal in the sense of [Hid88al p.317], since f = f, is a p-stabilized new-
form. This implies, by [Hid88al, Corollary 3.5, theorem 3.6] that the form associated
with an arithmetic specialization A whose kernel contains Py . is a p-stabilized newform
for € S(Np”, e"how=*=2)) where 7 denotes the smallest positive integer for which &’ fac-
tors through I' /T, w denotes the Teichmuller character Z) — (Z) )iors — Q and )y denotes
the restriction of ¢ to (Z/NpZ)*.

Let Sp denote the set of all prime of Q dividing Npoo. Then according to [Wil88|
Theorem 2.2.1], there is a unique (up to equivalence) continuous Galois representation
J GQ,SO — GLQ(/C)
satisfying
det(1 — p(Fro)X) =1 — (Ty) X +((0)(X?

for all prime ¢t Np where (¢) denotes the image of ¢ under the composite map

Z = Ol[Zx]] 2 W (Np™; 0) = h!

(more precisely, p is the dual of the representation constructed in [Wil88], as we use the
geometric Frobenius instead of the arithmetic Frobenius). This representation is continuous
in the sense that its representation space V(¢) is an admissible R(a)[Ggs,]-module (as in
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[Nek06, Definition 3.2.1]). According to [Wil88] Theorem 2.2.2|, there is an exact sequence
of K[G,]-modules
0= V() = V(©) = V(5)” 0,

such that each V(1)* is one dimensional over K, I, acts trivially on V(¢))* and Fr, acts on
V()" by ¢(T}).

For an arithmetic specialization A of R(a), the A-specialization of the representation p
exists and is equivalent to the Deligne’s representation attached to the ordinary form f,
corresponding to A (see for instance [Hid87, p. 440]).

Proposition 3.2.3. There is a semi-simple representation p : Gg — GLo(R(a)/m), uniquely
determined by the properties:
(1) p is unramified away from Np.
(2) If ¢ is a prime not dividing Np then
det(1 — p(Fre)X) =1 — ¢(T)) X + ¢({€))¢X? mod m € (R(a)/m)[X].

Proof. To construct the representation p, we choose an integral model for p over the normal-

ization of R(a), then reduce modulo its maximal ideal m of m, take semi-simplification and
descend (if necessary) from R(a) to R(a). It has the required properties since it is obtained
from p. 0

Henceforth we make the following assumption on the above residual representation.
Assumption 3.2.4. The residual representation p is absolutely irreducible.

Then by [Nys96], we obtain a uniquely determined representation (denoted by the same
symbol p)

(327) p GQ,SO — GLQ(R(G))

characterized by the following property: if ¢ is a prime not dividing Np, then p(Fr,) has
trace equal to T, € R(a).

3.3. Algebraic p-adic L-function along branches

In this section, we construct algebraic p-adic L-functions LZ}%N L;}%Gr, L;}%(ato along ir-
reducible components of the Hida family and show that it satisfies a control theorem at

arithmetic primes.

Recall that under the assumption|3.2.4} we obtained a uniquely determined representation
p: Gg,s, = GLa(R(a)) in equation ([3.2.7). From theorem [3.2.1] it follows that R(a) is a
complete local domain and a finite type A-module (using [Eis95, Corollary 7.6, p. 188] for
instance). Let m denote its maximal ideal and k denote the residue field. Now we define
T(a) := R(a)* with a Gg g,-action on it via p. Let (V,py) = T(a) Qg K denote the
associated G g,-representation over the fraction field IC of R(a). Henceforth we make the
following assumption on p.

Assumption 3.3.1 (p-distinguished). The representation p is p-distinguished, i.e., the resid-
ual representation of pla, is non-scalar.
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For a ring homomorphism ¢ : R(a) — R/, the ¢-specialization of T (a) is denoted by T,
and is defined to be the Ggg,-representation 7 (a) ®g(),e R with coefficients in R'. From
now on we denote the image of an arithmetic specialization A : R(a) — @p by O, and
consider such maps as ring homomorphisms onto their images, i.e., as A : R(a) — O,. Thus
for an arithmetic specialization A of R(a), the A-specialization T\ of T (a) will denote the
Go,s,-representation 7 (a) ®p(),x Ox. For such a specialization, we denote by V) (resp. VY)
the G s,-representation T ®p, @p (resp. Ty ®o, Frac(O,)).

3.3.1. Comparing the inertia invariants.

Proposition 3.3.2. Let { # p be a rational prime. For any arithmetic specialization X\ of
R(a), we have

rkR(u)T(a)I" = l"kOAT){Z.
Suppose that the rank of the R(a)-module T (a)! is one. Then for any two arithmetic spe-
cializations \, N of R(a), the representations w(\)e, m(N)e are both either singly ramified
principal series or unramified Steinberg. Moreover, the ring R(a) contains the eigenvalue o
of Fry acting on VI and Fr, acts on T/{é by the scalar A(«) for any arithmetic specialization

A of R(a).

Proof. The restriction of the Gg g,-representation 7 (a) to the decomposition group Gy is
continuous and its coefficient ring R(a) has finite residue field of characteristic p # ¢. So
by theorem [1.1.25] the G-representation 7 (a) is monodromic. So theorem applies to
T (a). By part (5) of this theorem, we have

rkR(a)T(a)I‘ = rko, T;"

for any arithmetic specialization A\ of R(a).

Now suppose that kg7 (a)’ = 1. So
(3.3.1) ko, Ty =1

for any arithmetic specialization A of R(a). Since V/\I ¢ is stable under G, the Gy-representation
V), is reducible. So (), is not supercuspidal by proposition [3.1.1] (3). If the monodromy of
the Gy-representation T is zero, then the G,-representation 7Ty has no monodromy and hence
m(\)¢ is principal series. By equation and proposition [3.1.1(1), it is singly ramified
principal series. Similarly, 7()\'), is also singly ramified principal series. On the other hand,
if the monodromy of the G,-representation 7 is nonzero, then the G,-representation T has
nonzero monodromy by theorem [1.2.4(1) and hence m()), is Steinberg. By equation ([3.3.1)
and proposition [3.1.1)(2), it is unramified Steinberg. Similarly, 7(\'), is also unramified Stein-
berg.

Note that o € K is integral over R(a). Let R(a)[a] denote the subring of IC generated
by o over R(a). We extend each arithmetic specialization A : R(a) — Q, to R(a)[a] which
we denote by A by abuse of language. Notice that Fr, acts on VAI‘Z by A(a) by theorem
1.2.4[(6). First suppose that 7(f\) is Steinberg for any arithmetic specialization A of R(a).
By proposition this eigenvalue is i (¢)¢*/>~1, and since fy is new at £ (see , this
is equal to as(fy) by [Nek06, 12.3.7, 12.3.8.2]. Since as(fr) = A(17), we get A(«) = A(1}) for
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any arithmetic specialization A of R(a). So o = T} in R(a)[a], i.e., & € R(a). Now suppose
that m(\), is principal series for any arithmetic specialization A of R(a). Then by a similar
argument as above it follows that o € R(a). O

3.3.2. Control theorems. Let S denote a finite set of rational primes including the
primes dividing Np and the archimedean prime of (Q and Sy denote its subset of finite places.

Recall that V is reducible as a G-representation. Define 7 (a)* to be the largest R(a)-
submodule of 7 (a) on which G, acts via the unramified character ¢ which takes Fr, to T,
and put 7(a)” := T (a)/T(a)". For an arithmetic specialization A of R(a) we define T} to
be the largest Oy-submodule of T\ on which G,, acts via the unramified character taking Fr,
to a,(fx)-

Let Qo denote the cyclotomic Z,-extension of Q which can be regarded as a union of
sequence of fields

Q=QcQ® Cc-CQx=U,Q, with T, :=Gal(Q,/Q)~Z/p"Z.

We denote the Galois group Gal(Q.,/Q) by I' and let 79 denote a topological generator
of I'. Denote the Iwasawa algebra O[[I']] by Ar,, which is a Gg,gp-module via the map
Gopy — I’ = A[,, since Q is unramified at primes ¢ # p. For any finite type O-subalgebra
A of Z,, we will write A4 to denote A ®p A, = A[[I']]. We will consider Ay as a Gg,qp}-
module via the map Gg g,y = I' < A’}. The image of an element g € Gg g} under this map
will be denoted by [g]. The completed tensor product R(a)®oAr, will be denoted by R(a)1y.

Define the cyclotomic deformation T (a)r, of T(a) as the G s-representation 7 (a)®@e Ay
over R(a)y, obtained by tensoring the Gg g-representations 7 (a) and Ap,. Define the G-
representation

T (), = T(a) " ®o AL,

For an arithmetic specialization A of R(a), define the cyclotomic deformation T) 1y, of Ty

as the Gg s-representation T\ ®p Ary, over Oy ®o Ay = Ap,. Define the G-representation

Ty =TV ®0 A

Notice that each arithmetic specialization A : R(a) — O, of R(a) extends to a Ap,-
algebra homomorphism /\@QoidAIW : R(a)1w — O\ ®0 Ay = Ap,, which will be denoted by A
by abuse of language.

Definition 3.3.3. For a complete local noetherian domain R of residue characteristic p > 0,
let Go.s act continuously on T = R? via a representation Ggs — GLa(R). Suppose that
Gy/1; acts on T @pg Frac(R) by an R-valued character x, whenever tkgT™ = 1 for some
0 # p. For any prime { # p, let U)(T) denote the object in the derived category of R-modules
corresponding to

Cc.ont(Gf/]b TIZ) Zf I‘kRTIZ 7é 1,
(R Tl R] concentrated in degree 0,1  if tkgT™ =1

where Fry acts on R via the character x,.
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Definition 3.3.4. Let A denote an arithmetic specialization of R(a). Put
U;<T<a)1w> = chont<Gp7 R(a)lw)
UI/;<T)\,IW> - chont<Gp7 AO)\)

where G, acts on R(a)1y (resp. Mo, ) by the character through which it acts on T (a)f, (resp.
Ty1)- For T = T (&)1, Tatw, define the algebraic p-adic L-functions L8 (1), L;},gGr(T),

p,Kato
L;%r(T) as the object of Parf-isg (R = R(a)1y, Ao, Tespectively) given by

Lykato(T) = detr(RLc.con(Gas, T)[1]) @ detr | @ UAT] |
fGSf
t#p

L2%.,(T) := detp(RTcom(Go.s, T)[1]) @ detr | @ UNT)[1] | ,
fESf

L%, (T) := det(RTc:(Go,s, T)[1]) ® detr | @5 U/(T)|[1]
eGSf
L#p

respectively. In the definition of L;%r(T), we assume that R con(Gp, TT) is a perfect com-
plex.

Before showing that the above objects are well-defined, we prove the lemma below.

Lemma 3.3.5. For an arithmetic specialization A of R(a), the inclusion T (a)™ — T (a)
mduces an isomorphism between

(T(a)")x == T(a)" ®o Ox
and Ty under the assumption |3.3.1|
Proof. Note that G, acts on T(a)™ by € and on T(a)~ by (xr © K)YoXeyae - Since p
is p-distinguished, we have dimy 7 (a)”/m = 1. Also dimg 7 (a)” ®g K = 1. Hence by
Nakayama’s lemma, 7 (a)~ is free of rank 1, which implies 7 (a)" is also free of rank 1.
Similarly it follows that T} is free of rank 1. Now consider the commutative diagram below

with exact rows (the exactness of the first row follows from the freeness of 7 (a)~ and the
existence of the first vertical arrow follows since a,(fy) is equal to the image of T}, under the

composite map h2d — R(a) 2 Q,).

0—=(T(a)" ) —=T(a)y —=(T(a) )a—=0

A

0 T Ty Ty 0

Since the last vertical arrow is a surjection (by snake lemma) between free modules of rank
1 over the domain Oy, it is an isomorphism. So (7 (a)*)y = Ty. O
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Lemma 3.3.6. Let \ denote an arithmetic specialization of R(a). Then for T = T (a)1w, Ta 1w,

the modules L;}%Gr(T) and Lzliato(T) are well-defined. Moreover, when p satisfies assumption

3.3.1 L;}%r(T) is well-defined for T = T (@) 1w, T 1w -

Proof. Note that the rings R(a) and O, are complete local rings (by [Eis95, Corollary 7.6,
p. 188] for instance). So R( Jiw and Ap, are complete local rings. By proposition [3.3.2] the
group Gy/I; acts on T (a)it (resp.T ){flw) by an R(a)n,-valued (resp. Ap,-valued) character

Iw

if Tk (a)' = 1kT (a)f, = 1 (vesp.tkTy* = tkT)4 = 1). So Uy(T) is well-defined and by
proposition [2.2.3] it is a perfect complex for ¢ = r,£ # p. Then by proposition [2.2.]
L, kato(T) is well-defined.

The action of G, on T(a)* and 7, are unramified and Fr, acts on them by 7, € R(a)
and a,(fr) = A1) € O, respectlvely So the group G, acts on T (a)f, (resp. T/\Jflw) by an
R(a)p,-valued (resp. Ap,-valued) character. So U)(T) is well-defined and hence LZ}’gGr(T) is
well-defined.

Under assumption [3.3.1] Rl cont (G, TF) is perfect by proposition as T is free (by
lemma [3.3.5)). So L;}%Y(T) is well-defined under this assumption. O

Now we prove that Lz}ér(T(a)Iw), L;}%Gr(T( Viw), L%

p,Kato
theorems at arithmetic specializations.

(T (a)1y) satisfy perfect control

Theorem 3.3.7. Let A\ be an arithmetic specialization of R(a). Then the isomorphisms in
propositions |2.1.2, (2.2.1], 12.2.5 induce an isomorphism

(3.3.2) Lo (T(@)1) ©na, Moy = Ly (Thw)
under the assumptions|3.2.4| and|3.3.1. They also induce isomorphisms
(3.3.3) Ly (T (@) ®riap,.x Aoy = Ly (Tuw),
(3'3-4) LZI%{ato(T<a)IW) QR(a) 1w, A AO}\ = Lgliato(TA,IW>

under the assumption |3.2.4].

Proof. By proposition and proposition [2.2.1] it remains to prove the control theorem
for the factors coming from “local conditions”. Notice that lemma [3.3.5] gives the control of
U;(T(a)lw) and U;,(T(Cl)lw)

So it remains to prove the control theorem at ¢ # p, i.e., the A-specialization of det U)(T (a)5y)
is det Uj(Th1w)- By proposition [2.1.2] it suffices to prove the control theorem for Uy (T(a)l ).
We need to do so only when rkR(a)IWT(a)U = 1kp 7T (a)’* = 1 by proposition |2 and

Iw

proposition assume that 7 (a)% is of rank one and let Fr, act on it by a € R(a)
3-3.2).

(by prop081t10n Since Uj)(T (a)r) is K-flat by [Stald, Tag 064K], its derived tensor
product over R(a )Iw with AoA (through A) is equal to the tensor product by [Stald, Tag

06Y6), i.e., [AoA 2)8olFrel- A@A] and this is U)(T\ 1w) by proposition [3.3.2| O

Remark 3.3.8. In the first part of theorem [3.3.7 the assumption [3.3.1] is used only to
deduce that 7 (a)" is free which is not true in general by [Kil02]. When 7 (a)* is not free,
the algebraic p-adic L-function L;}%Gr defined using the local condition U, at p satisfies a
control theorem as proved in theorem |3.3.7]
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3.4. Relation with Greenberg’s Selmer group

Let A be an arithmetic specialization of R(a) such that O, is a DVR. Denote its associated
ordinary form by f.

Lemma 3.4.1. The inclusion map T < Ty tensored with idy,, over O induces an isomor-
phism

T\ @0 At = T),-
Thus T/\I‘IW is free over Ao, and RFcont(Gg/]g,Tfﬁw) is a perfect complex over Ap,. The

module T;LIW is also free over Ao, and RT o (G, T;“IW) is a perfect complex over Ao, .

Proof. Since O, is a DVR, T\ has a free set of generators over O, and for any such set
{e1, 2} of free generators, {e; ® 15, , €2 @ 15, } is a free set of generators for T} 1y, over Apy,.
Since Ap, is unramified at ¢ # p, the matrices of the I, action on 7T\ and on T) 1, are the
same. Thus the first isomorphism follows. So T /\IfIW is free over Ap, and R coni(Go/ 1y, T/\Iflw)

is a perfect complex by proposition [2.2.3]

Since O, isa DVR, T} is a free O-module and hence T;f Iw 1S free over Ar,. The perfectness
of RL cont(Gp, T;f 1,) follows by proposition m O

Let I denote an injective hull of the residue field F of Ap, and D), denote the Matlis
duality functor Dy(—) = Homy, (—, ). Since F is finite, by [Nek06, §2.9] we have the
lemma below.

Lemma 3.4.2. The Pontrjagin duality functor Dp(—) = Homeon(—, Q,/Z,) and the Matlis
duality functor Dy coincide on the category of Ao, -modules.

We put
Axiw = Du(Taw) (1), Aln, = Du(Thy,) (1), Ayy, = Aare/Al gy

Greenberg [Gre89), [Gre91] defined the strict Selmer group Sel®)" by the exact sequence

A)\,Iw

O - Selji,lw — Hclont(Gst7 A)\JW) — Hclont(GI” A;,IW) EB @ Hclont<I£7 A)\JW)
LeSy t#p

By [Nek06 8.9.6.1], we have the lemma below.
Lemma 3.4.3. Matlis duality induces an isomorphism of complexes
RT (T 1w) = D (REp(Axiw))[=3];

which induces isomorphisms in cohomology

(3.4.1) Hi(Ty1) = D (H;—i(AMW)) .
The next lemma follows from [Nek06), Lemma 9.6.3].
Lemma 3.4.4. The following sequence is exact.

0= HY(Ayrw) = How(Gas, Aniw) = Hooo (G Axyy) = Hp(Ayr) = Selii™  — 0

cont A Tw
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Note that lemma combined with proposition and the fact that Ty is free

of rank one over Ap, shows that the algebraic p-adic L-function L;}%r(T \w) for the Gg s-

representation T} 1, is well-defined. The following theorem describes the determinant of the

Selmer complex of T} 1, and its relation with the algebraic p-adic L-function LZ}%r(T,\,IW).

Theorem 3.4.5. The Selmer complex RI'f(Tx1y) defined with respect to Greenberg’s lo-

cal condit is a perfect complex of Ao, -modules and the map iAoA(_> —,—) (as in
5]

equation induces an isomorphism

-1
L3, (Tow) 2 (detag, RT;(Tr))

Suppose that the assumption|3.2.4| holds. Then I:T}(T,\,IW) s a free Ao, -module and

HiTypw) =0
for any integer i < 1 and i > 2. Suppose that p does not divide the level of f. Then ]:l]%(TMW)

is a torsion Ao, -module and ﬁ} (T\1w) 1s zero. The surjective map

ﬁ} (A)\,IW) — SGIStr

AN Iw

as in Lemma[3.4.4) induces an injective map

(3.4.2) Dp (Selir, ) = H3(Tyx)

with finite cokernel. Consequently we get a canonical isomorphism
L% (Tarw) = (chary,, Dp(Sel}; ), 0)

using equations (2.1.3), (2.1.5) and (3.4.2).
Proof. By lemma m, proposition and [Stal4] Tag 066R], it follows that RI'¢(T) 1)

is a perfect complex of Ap,-modules.
Since Ap, is reduced, by equation ([2.1.4]) we have an isomorphism

-1
ino, U, s (ress,—iF (o)) [1]) Lok, (Tasw) = detag, (RT;(T)[1]) = (detag, RT;(Taiw))
(this isomorphism depends on the choice of an isomorphism

(3.4.3) T\ = Ao,

if tkag, T;flw =1 for some ¢ # p).
As assumption holds, by [FO12, Proposition 2.25],

(3.4.4) HiTygw) =0

for i < 0 and 7 > 2.
Let = denote the element 75 —1 € Ap, and y denote an uniformizer of O,. We now prove

that H }(TMW) is free by first showing that it does not have any z-torsion and then showing
that ﬁ} (T\1w)/x does not have any y-torsion.
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Since T/\I‘,T;r are free over O,, they are flat over O. So by [Nek06, Proposition 3.4.2],
[Wei94, Ex 1.2.4], we have an exact sequence

(3.4.5) 0= C3(Tatw) = C3(Thr) = C3(Th) — 0

obtained from the exact sequence 0 — Ap, — Ay — O — 0. Hence f[?(T )) surjects to
H}(Tx1w)[z]. On the other hand, since T} is irreducible as a G s-representation, we find
HY(T\) = 0. So H}(T1w) does not have any z-torsion.

Now we will show that H } (T) does not have any y-torsion where y denotes an uniformizer
of O,. By [Nek06| 6.1.3.2], we obtain an exact sequence of Oy-modules

O - HO (GP7 T)T) — ﬁ}(TA) — Hclont(GQ»g’T)\)?

cont

which gives the exact sequence
O — Hgont(Gpﬂ T)T) [y] — j:[} (TA)[y] — Hclont(G@,SJ TA)[y]
As H?

cont

(Gp, Ty )|y| is zero, the map

ATl = o (Gos. T

is injective. Since the assumption holds, we have H. (Ggs,Ty/y) = {0}. Then the

long exact sequence of cohomologies associated to the exact sequence
0T\ 5Ty —=Th/y—0
gives
Heoni(Ga,s, Th)[y] = {0}
So H}(Th)[y] = {0}
From the exact sequence |3.4.5[ above, we find that f[}(T \w)/® injects into ﬁ} (Ty). So

f[} (T 1w)/x is y-torsion free. We have also seen f[} (T 1w) does not have any x-torsion. Thus

x,y is a regular sequence for the Ap,-module f[}(T,\,IW). So depthAOA I:T}(T,\,IW) = 2. Thus
pdae, ﬁ} (Ta1w) = 0 (by [Mat89, Theorem 19.1] and hence f]}(TA,IW) is projective. So it is
free over Ap, (by [Mat80, Proposition 3.G]).

Since Dy(—) is an exact functor (by [Nek06l §2.3.1]), lemma [3.4.4) gives the exact
sequence of Ap,-modules below.

0 — Dar(Sels™ ) = Dyr(H}(Anry)) — Dyt (Heoni (Gpy A1)

AxTw

Using lemma and [3.4.3], we obtain the exact sequence
0— DP(Selstr ) - ﬁ)%(T)\,IW) - DP(Hgont(Gpv A;,IW))

A 1w

of Ap,-modules. Now since f is p-ordinary, a,(f) is a p-adic unit. Also the level of f
is not divisible by p. So f is of good ordinary reduction. Hence by [Kat04, Theorem
17.4], the Pontrjagin dual of Sel} is a torsion Ap,-module. Since p does not divide the
level of f, m(f), is principal series by [Nek06, Lemma 12.5.4]. So the Pontrjagin dual of
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HY (G, Ayy,) is finite. Thus by the above exact sequence, ﬁ?(T,\,IW) is a torsion Ag,-
module and the injective map

Dp(Sel" ) < H}(T\1w)

A)\,Iw

has finite cokernel.
Since H7(Th 1) is a torsion Ap,-module, by [Nek06, Theorem 7.8.6, §4.6.5.6], the Ao, -

module f[}(T \w) has rank zero and hence zero (as it is free). So we have

LZ%r(T/\,Iw) = (detAOA RFf(TA,IW))’l (using theorem
= (X)nez(detAoA (ﬁ?(TA,Iw)))(fl)n_l (by equation ([2.1.3))
= (detpg, (ﬁ? (Th1w))) ™ (using theorem
= (chary, ﬁ[}%(T,\JW), 0) (from equation (2.1.5)))
= (charp,, Dp(Self};IW), 0) (using equation (3.4.2))).

In the above, the last equality follows as the map in equation (3.4.2) has finite cokernel
and

length(AoA)pMp =0
for any height one prime p of Ap, and a Ap,-module M of finite cardinality. The first

isomorphism above depends only on the choice of the isomorphisms in equation (3.4.3)), the
rest of the above isomorphisms are canonical. O

3.5. Cohomologies of RT¢.(—), RI'y(—) and Z%(a)

In this section we assume throughout that the assumptions hold. For a
domain R, its integral closure in its fraction field is denoted by R™. Until the end of this
chapter, the symbol A (resp. 1) will be used to denote arithmetic specializations (resp. Z,-
specializations, i.e., O-algebra maps from R(a) to Z,) of R(a). We define O,, T}, in the same
way O,, T\ was defined. Put

T =T(a)" ® Oy, T, :=T(a)” @0 Oy,
cf. lemma |3.3.5). We define T}, 1, 7.7 in the same way T 1w, 15 ;.. was defined. Put
7, n,Iw ) A Iw

Tnint — T77 ®O,’] Oi]nt7
Tt =TF ®(f),7 Oi]nt,

77int n
Tnint’lw = Tnint KoMy,
+ _7t 3
T?’]int,IW - Tnint ®OAIW

Note that 1 extends to an O-algebra homomorphism R(a)™ — Z,, which we denote
by 1 again by abuse of notation. Denote a uniformizer of (927‘lt by wins and let k,, denote the
residue field O} /e,
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3.5.1. Some preliminary results. We begin with a general fact about group repre-
sentations.

Proposition 3.5.1. Let A be a ring, m be a mazimal ideal of A, G be a group and M be an
A[G]-module such that M /mM is a semi-simple A[G]-module. Then M€ # 0 only if M is
contained in m™ M for all n > 0 or the trivial representation is a sub-object of M/mM.

Proof. Denote by k the residue field A/m. If M€ is contained in m™M for all n > 0, then
there is nothing to prove. Suppose that this not true. So there is an element xz € M¢
and an integer n > 0 such that z belongs to m"M, but not to m"*'M. The k-vector
space m®/m**t @4 M is, as k[G]-module, a direct sum of copies of the k[G]-module M/m
and thus semi-simple. Hence, m*M/m**1M is the quotient of a semi-simple k[G]-module
and so semisimple as well. Let T be the (nonzero) image of x in m*M/m** M. The k[G]-
module m*M/m*™' M admits the nonzero submodule k - T as a sub-k[G]-module and so
admits the trivial representation as a submodule. The trivial module occurs in a quotient
of a semi-simple k[G]-module N only if it occurs in N. So the trivial k[G]-module occurs in
m*/m**t ®4 M and thus in M/m. O

Lemma 3.5.2. Let { # p be a rational prime. Then for almost all 1,
rkT (a)" = rkT}".

Suppose that tkT (a)l is one. Then Fr, acts on T(a)l¢ by an element oy of R(a). If the
above equality holds for an n, then Fry, acts on T,YIZ by n(ay).

Proof. By proposition [1.2.5] for any 7,
rkT (a)" < 1k

By theorem [1.2.3] this is an equality for almost all . Now suppose that tk7 (a)’ is one.
Then «ay is an element of R(a) by proposition [3.3.2] The rest follows from theorem[1.2.3, O

For each arithmetic prime p of R(a), we fix an arithmetic specialization A\, of R(a) with
p as its kernel.

Lemma 3.5.3. Replacing K (as in the beginning of §3.2.1) by a finite extension (if neces-
sary), we may assume that the set of arithmetic primes p of R(a) satisfying the conditions
below is dense in Spec(R(a)).

(1) the ordinary form associated with A, has level not divisible by p,
(2) Oy, is a DVR.

Proof. Let Speci™™(R(a)) denote the set of arithmetic primes of R(a) which contain (y —
(1 + p)¥) for some & > 3 and k = 2modp — 1. Note that Speci™(R(a)) is dense in

Spec(R(a)) and the ordinary forms associated with the elements of Speci™™(R(a)) are of

level N by §3.2.3,

Recall that O denotes the ring of integers of K. Then extending K if necessary, it follows

that the elements of Speci™™(R(a)) that are kernels of O-valued arithmetic specializations

of R(a) form a dense subset
D = {kergN R(a) | g € Home_ae(R(a)™, O)} N Speci™™(R(a))
of Spec(R(a)) (the proof is same as the proof of [Hid88bl (3.1b) p. 26]). O
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Henceforth we assume that K is so chosen that the arithmetic primes p of R(a) satisfying
the conditions of the above lemma form a dense subset of Spec(R(a)).

Let O denote a finite type Z,-subalgebra of Zp. Let T be a free O’-module of rank two
with a continuous action of Gg . Put

TIW - T®0AIW'

Let T be an O’-submodule of T of rank one which is a direct summand of 7" and is stable
under the action of GG, and this action is unramified.

Lemma 3.5.4. Suppose that O' is a DVR and the residual representation attached to the
Go,s-representation T is irreducible. Then H}(Txy) is a free Aor-module.

Proof. Since T is residually irreducible, 7925 is zero by proposition So the proof of
the freeness of H} (T 1w) over Ap, (as in theorem [3.4.5) with Oy, Th 1y replaced by O', Ty,
respectively proves this lemma.

U
Lemma 3.5.5. Suppose that O’ is a DVR and fl}(le) is zero. Then TC! is zero for any
¢ #p and
chary, H2,(Thy) = ( [ Det ((Frg —id)] ) )Chaer, H(Tiy)
¢Sy t+p,
rkTle>1

where Det(—) denotes the determinant of a linear operator on a free module.

Proof. Since for any £ # p, the image of £ in 1+ pZ, under the projection map Z; — 1+pZ,
is non-trivial, the group Tgf vanishes for any ¢ # p. The exact sequence

0= C&(Tw) = CHTiw) = P U/ (Tiw) = 0
LSy t#p
of complexes of Ap-modules gives the short exact sequence

— Iy —1 — w) — H w) —
0 P T/ (Fr —id) = HE(Ti) = F3(Ti) = 0

(€S, t£p, TKT L >1

(by proposition [2.2.3). So the sequence

0— & T ) (Fre — id) — HE,(Tiw) — H3(Thy) — 0

LeSy, t#p, tkTTe>1

is exact. Since Tgf = 0 for ¢ # p, the second term in the above sequence is torsion. Since
H}(Tyy) is zero, by [Nek06, Theorem 7.8.6, §4.6.5.6], H7(T1y) is torsion. So HE,(Tiy) is
torsion. Hence the lemma follows. U
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3.5.2. RIG:(T(a)w) and £%(a). For each arithmetic specialization X of R(a), its
kernel will be denoted by py. Pick z), € R(a) such that it generates the maximal ideal of
R(a)p,. The kernel of the map A = )\@@id,\lw : R(a)1w — Ap, will be denoted by q,. We put

V)( = T)\ ®(9>\ Frac((’))\),
(V;)-i_ = T;_ ®@)\ FI‘&C(O)\).
Proposition 3.5.6. The R(a)y,-modules ﬁ[}(T(a)Iw), ﬁ?(T(a)IW), HE (T (a)1y) are torsion,
ﬁ[}(T(a)Iw) =0
for any integer i < 1 and v > 2 and
Hér<T(a>IW) = O
for any integer i # 2.
Proof. By [FO12| Proposition 2.25],
Hi(T(a)1) =0

for any integer + < 1 and 7 > 2.
Let A be such that the conditions of lemma are satisfied. By theorem [1.2.4(5)

0— T(a) 2 T(a)le % (V) =0
is an exact sequence. The sequence
0— T(a);& 25 T(a)

is also exact by lemma [3.3.5]
Since

A
S (V)T =0

° z @)1 ° A °
0= CH(T(M)1w)gy) = CH(T (@)1w)gy) = CH(Vi)1w) — 0
is an exact sequence of complexes, we get an injection
HH(T(@)1)q)/ax&1 = Hi(V)w)-
So by theorem [3.4.5
H (T (@)1w)q, /22&1 = 0.

By Nakayama’s lemma,

H} (T(a)IW)CIA =0
and hence f[}(T(a)IW) is a torsion R(a)r,-module. By [Nek06, Theorem 7.8.6, §4.6.5.6],

f[?(’T(a)IW) is also a torsion R(a)r,-module. This completes the proof of the statements
about the cohomology of RI'f(7 (a)1y).
We have an exact sequence of complexes of R(a),-modules

0= Co(T (@) = CHT (@) = B UH(T(a)) =0
CES) t#p
(with maps induced by inclusion and projection). This shows
He, (T (a)1) = 0
"



for any integer ¢ < 0 and ¢ > 3. Also there is an injection
HE (T (@) = Hi(T (@)

and hence H, (T (a)1,) is a torsion R(a)r,-module. By [Nek06, Theorem 7.8.6, §4.6.5.6],
HZ (T (a)1y) is also a torsion R(a)p,-module. Now it remains to show that H (7 (a)ry) is
torsion free. Let x be an element of R(a)r,. Define

(T(@)rw/2)" =T (@), /.
We have an exact sequence of complexes

O — Cér(T<a)IW> g Cér(T(a)IW) — O(.}r(T(a)IW/x) - 07

which gives a surjective map

He (T () /) = He, (T (@)1 [2].

Since
0 = HE (T (0)re/w) = Hepni(Gas, T(0)1/2) @ Hy (G, (T(0)rw/2) ") = @D H(Ge, T(@)1/7)
=T
is an exact sequence and
He,i(Gays, T(a)1/2) = 0
(by proposition , we get
HY (T (a),/x) = 0.
So HL (T (a)1y) is torsion free. O
Proposition 3.5.7. There exist non-negative integers Ny, 41, N1, Mo and matrices d'
in My, sn;_,(R(a)rw), t =m,m+1,---,0,1 such that there is an isomorphism

RTG(T (@) = [R(@)pr L Ry L5 o S Rt S R(a)2]

nj

in the category Parfr,, (the term R(a)y
HZ (T (a)1y) is perfect.

Let n be arbitrary. The isomorphism in proposition [2.2.1] together with the above isomor-
phism induces an isomorphism

is concentrated in degree j). The R(a)n,-module

m+1 0
RFGT( TIIW) [A”m —)> Anm+1 n(dm ) e () Anl n(d Anz]

in the category Parf Aoy, (the term Aojn is concentrated in degree j). The composite map

HE(T(@)1w) @r(am Ao, = (R(a)g/Im(d")) @ra)m Ao, = A, /Tm(n(d")) < HE (T 1)
is an isomorphism. Moreover the inclusion map O, — Oi]nt induces an tsomorphism
HE, (T 1) @no, Ao = HE, (T 1)

Proof. Since T(a){ is a free R(a),-module, the complex R con(G,, T (a)i,) is perfect by
proposition [2.2.1] So R (T (a)1y) is a perfect complex of R(a)p,-modules by [Staldl Tag
066R]. Hence it has perfect amplitude contained in an interval [m,m’], i.e., it is isomorphic
to a bounded complex P* of projective R(a)r,-modules of finite type (hence free of finite
rank by [Mat80, Proposition 3.G] as R(a)1, is local) with P = 0 for every i < m and
i >m'. If m" <2, then automatically RI'¢,(7 (a)1y) has perfect amplitude contained in
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[m,2]. When m' > 2, by [NekO06, §4.2.8], RI'c,(7 (a)1y) has perfect amplitude contained in
[m, 2] as

HE, (T (1) =0
for all ¢ > 3. So the first isomorphism follows. Then proposition gives

L
RT o (Ty1w) = R (T (0)1w) ® R(a)e o, -
So

1
Nm41 dmt
Iw

m 0 1 L
RUGe(Ty1) = [R(a)i 5 R(a) DR S R(0)12)® Ry o, -

As the complex [R(a)pm AN R(a)fmt LN R(a)ps LN R(a)12] is K-flat (by [Staldl,

Iw

Tag 064K]), its derived tensor product with Ap, is equal to the tensor product by [Stal4)
Tag 06Y6]. Thus we get the second isomorphism. The third isomorphism follows from the
first two. Since

L .
RFGr(Tni"t,Iw) ~ RFGr(Tn,Iw)(X)On O%nt
(by proposition [2.2.1]), the second isomorphism gives the final isomorphism. O

Remark 3.5.8. From the above proposition, it is not clear if H} (Th 1) is zero (at least for
some \) because taking cohomology does not commute with taking derived (or usual) tensor

product in general. For example, the complex
-pX —p?
X? pX )
> Zy[[X]]

p
-X
is exact at the middle term (cf.[FO12, Remark 2.17]). But for each integer k > 2,

C* = L[| X]] —— L,[[X]]*

C.ézp[[X}]ZpHX]]/(X +1—(1+p)*) =C* Rz, 1x) Zp[[X]]/(X + 1= (L +p)")

is not exact at the middle term. However applying the Euler-Poincare characteristic formula
(INek06, Theorem 7.8.6, §4.6.5.6]) twice and using the above proposition, we deduce in
is zero for almost all . Under Greenberg’s conjecture (which

theorem [3.5.10{ that H, (T}, 1)
is equivalent to conjecture |3.5.21| by [EPWO06|, Theorem 1]), HE, (T, 1w) is zero for any n (by
lemma [3.5.14] and theorem |3.5.22))

By proposition [3.5.6) and [3.5.7, HZ,.(T (a)y) is torsion and perfect over R(a)n,. So

detp(ay,, HE (T (a)1w) is well-defined. Its image in Frac(R(a)n,) (considered without the
grade) under the composite map

det r(a),, He (T (@)1w) = (detrga), He(T(0)1w)) @riay, Frac(R(a)w)
=~ detrrac(R(a)) (Her (T (0)1w) ®R(a), Frac(R(a)ny)) (by proposition

= detFrac(R(a)Iw)<0)
= (Frac(R(a)1y),0)

is an invertible ideal of Frac(R(a)ny). Since R(a)yy, is local, this image is free (by [Mat80),
Proposition 3.G]) and hence equal to (3/a)R(a)n, for some nonzero elements «, 3 in R(a)p,.
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Note that a/B € R(a)* = (R(a)1,)™ (this equality holds as R(a)™ is finitely generated as
an R(a)-module by [Ser00, Proposition 11, Chapter III]). Put

Bu= [ Det ((Fl"g - id)|T(a)11§V®Ffac(R(a)Iw)) € R(a)w \ {0}

EESf,Z#p,
k7 (a)fe>1

where Det(—) denotes the determinant of a linear operator on a free module.

Definition 3.5.9. The two-variable algebraic p-adic L-function of T (a)yy, is defined to be

L (a) = 55 — € Frac(R(a)1y).
3.5.3. RT{(Ty1w), R cu(T)y 1)
Theorem 3.5.10. For any n,
T, =0
for any € # p,
(3.5.1) rkH}(Ty 1) = tkH}(Ty 1) = thHE, (T 1) = thHE (T 1)

Jor any integer i <1 andi > 2. The Ao, -module HE (T 1w) is torsion free, the Aoinm-module
H (T 1) is torsion free and
(3.5.2)  H}(Tyw) = 0= Hy(Ty1w) = 0 = HE(Tynigy) = 0 <= H}(Tyjmi 1) = 0.

If the group H (Tyw) is zero, then HE.(T,1w) is perfect. For almost all n, the group
HE (T w) is zero.

Proof. The first equality follows from lemma [3.5.5, Note that
(3.5.3) 0= C&(Tyw) = C3(Tyrw) = D US(Thaw) = 0

€eSy t#p
is an exact sequence of complexes of Ap, -modules. By [FO12| Proposition 2.25],
H} (Tn,lw) - O

for any integer i < 1and i > 2. So for any such integer ¢, H{, (T, 1w) is also zero. Then
equation (|3 gives the exact sequence of Ap, -modules below

(3.5.4)
0— HGr(TnIW> - Hf an EB cont Frfv nIW) - HGr(TnIW) - Hf(Tn IW) — 0
EESf
l#p

Using [Nek06, Theorem 7.8.6, §4.6.5.6], we obtain equation (3.5.1)).
Now we prove that H, (T}, 1y) is torsion free. Let 2 be an element of A, . Define
(Tn,IW/x) - TJIW/‘/L.‘
We have an exact sequence of complexes
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which gives a surjective map
He, Ty /@) = Hey(Tyw )]
Since

0 — H(%r(Tﬁ»IW/x> — Hgont(Gst7 TW»IW/:C) EB Hgont<Gp7 (T%IW/‘%)Jr) - @ H((:]ont(Gf7 TH,IW/‘T>
fESf

is an exact sequence and

Hgont<GQ,S7 Tn,lw/x> =0

(by proposition [3.5.1]), we get

H%r(Tn,Iw/x) = 0.
This proves

He,(Tyw)[2] = 0.

A similar argument also shows that the Apm-module H{, (T 1) 1s torsion free.

Equation above gives the first implication of equation (3.5.2)). The second impli-
cation follows from the final isomorphism of proposition [3.5.7 and [Nek06, Theorem 7.8.6,
§4.6.5.6]. Then lemma and equation give the final implication of equation
(35.2).

If HL (T, 1) is zero, then HZ (T, 1) is perfect by proposition . For almost all 7,
HE (T, 1w) is torsion by this proposition. So by [Nek06| Theorem 7.8.6, §4.6.5.6], H, (T}, 1w)
is also torsion. Thus for almost all n, H} (T, 1) is zero being torsion free. O

Theorem 3.5.11. Let n be such that the following conditions hold.

(1) n(a/B) # 0,
(2) HL. (T, 1w) is zero,
(3) for all £ € Sy, L # p,

rkT (a)’ = rkT¢.

Then

(3.5.5) chaerinnt HE (Tymt 1) = n(ee/B) Ao

and

(3.5.6) HH(Tyui 1) =0,  H} (T gy) @ Aoge Frac(Aope) = 0.
Consequently

(3.5.7) chaurAO%nt ﬁ]%(Tni“t,Iw> — n(o%alg(u»/\o%m

and (2% (a)) belongs to Aowe. For almost all ), the first three conditions hold.
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Proof. By theorem (3.5.10, deta,, HZ (T, 1) is well-defined. Its image in Frac(Ap,) (con-
sidered without the grade) under the composite map

detro, HE,(Tyr) = (detag, H3,(Ty1w) ) @no, Frac(Ao,)

= detFraC(Aon) (Hér(Tan) Rho, Frac(Aon)) (by proposition
= detrac(ro,) (0)
= (Frac(Ap, ), 0)
is equal to 1(8/a)Ae, (by proposition . Then by proposition ,
n(a/B)Aoy = chara . (HE(Tyi) ©ao, Aoy )
Using proposition again, we get equation (3.5.5)).

By theorem (3.5.10, H& (T} 1w) is torsion. So by proposition m, HZ, (T, 1) s torsion
and hence by [Nek06 Theorem 7.8.6, §4.6.5.6], H, (T, 1,,) is also torsion. Since it is tor-

sion free (by theorem [3.5.10)), it is zero. Then theorem [3.5.10|shows ﬁ}(TnintJW) is zero. Then
by [Nek06l, Theorem 7.8.6, §4.6.5.6], ]TI?(T it Iw) 1S torsion over Apime. This proves equation
(3.5.6). Equation (3.5.7)) follows from equation (3.5.5)), lemma and lemma [3.5.5]

The first condition of the above theorem is immediate for almost all 7. The second and
the third condition hold for almost all by theorem [3.5.10| and lemma [3.5.2 respectively. [

3.5.4. RT'G:(pp,). Let Sy denote the set of places of Q containing p, 0o and the places
of ramification of p. Put

pt= T(a)+ @R(a) k.
Let py,, denote the Gg g,-representation defined by

Pre = P @y k[[Gal(Qeo/Q)]]-
Define

P = 0" @ k[[Gal(Qu/Q)]]-
Remark 3.5.12. Let S’ denote a finite set of places of Q containing Sp. The i-th cohomology
of Rl'¢,(Go.s7, Pryy) 1s denoted by H¢, (S, pr). When we are interested in the rank or the

triviality of HA, (S, pry), we denote it by Hl,(pr,). By lemma [3.5.13] this does not cause
any confusion.

Lemma 3.5.13. Let S’ denote a finite set of places of Q containing Sy. Then HL (S, Pry)
is free over k[[T]| and there exists an exact sequence of complexes

(358) 0= CaGas ) = CaulGosrPr) = B CuulGepry,) = 0.
€8\ Sy
Consequently
vl H, (S, Pr) = thigr) Hee (Sos Pra)-
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Proof. The first exact sequence follows from [Nek06l Proposition 7.8.8]. Since no power of
Fry is one in Ay, equation (3.5.8) gives the exact sequence

0— Hér(‘S/?plw) — H(lir(s()vplw) — ﬁ{sv/(Fl"g - ]‘)
whose last term is torsion over k[[T]]. This proves the lemma. O
Lemma 3.5.14. For any n,
rkk[[T}]H(l;r(,BIW) = I'kkn[[THH(l;r(Tnint’IW)/wn + rkkn[[T”Hér(Tﬁi“t,IW)[wﬂ]‘
Proof. This follows from the exact sequence
0— C(.}r(Tnim,Iw) — Cér(Tnint’IW) — C(.}r(ﬁlw ®k[[T]] kn[[TH) — 0.
O

3.5.5. A main conjecture. By theorem 3.5.11] for almost all p € D (D as in the proof
of lemma [3.5.3)), we get

ChaerAp f]/%(T,\p,IW) = /\P(gpalg(ﬂ))AoAp-

On the other hand, by [EPWO06], there exists an element L3"(a) in R(a)r, which interpolates
the analytic p-adic L-function of fy, (computed with respect to certain period) for p €
Spec™™(R(a)). Suppose that the conditions below hold.

Assumption 3.5.15.

(1) The assumptions|3.2.4) and|3.5.1) hold.

(2) The character vy (as in §3.2.3) is trivial.

(8) There exists a prime q||N such that p (as in proposition is ramified at q.
(4) The image of p contains SLo(R(a)/m).

Then this analytic p-adic L-function generates chary, Dp(Selyy' ) (by [SU14, Theo-
p

A)\p,lw

rem 1]), which is equal to chary,, HJ%(TAp,IW) if p € D (by theorem [3.4.5). This shows that
P

the mod p reduction of Z*2(a) and L2"(a) are associates for almost all p € D.

Conjecture 3.5.16. The two-variable algebraic p-adic L-function Diﬂpalg(a) 1s an element of
R(a)™ gnd

Iw

LB (@) R(a)ly = Ly (a) R(a)ry

Iw -

Remark 3.5.17. This conjecture does not seem to follow from a straightforward argument
using density of arithmetic points because there are non-associates in Z,[[X]] which become
associates modulo every arithmetic prime. As an example, we may consider the elements
p+ X? and p + pX + X2. If we have one-side divisibility, then the above conjecture follows
since an element of R(a)™ (~ R(a)™[[T]]) can become a unit modulo an arithmetic prime
only if its constant term is a unit in R(a)™. Showing one-side divisibility is not immediate
either, as there are elements f, g in Z,[[X]] (for instance f =p+ X? and g = p+ pX + X?)
such that f 4 ¢ and f mod P | g mod P for each arithmetic prime P.

83



Definition 3.5.18. Let R be a ring. If f(T') € R[[T]] is a power series, then its content is
denoted by I(f(T)) and is defined as the ideal of R generated by the coefficients of f(T).

If R is a local ring and f(T) € R[[T]] has unit content, then the M-invariant A(f(T)) of
f(T) is defined to be the smallest degree in which f(T') has a unit coefficient.

By choosing a topological generator v of I' = Gal(Qu/Q), we identify R®oAr, with
R[[T]] for R = R(a)™,O}*. Recall from that O[[T]] denotes the Z,-subalgebra of
Z,[[T)] spanned by the subsets OL[[T]] where L ranges over all finite extensions of Q,.

Definition 3.5.19. If £*2(a) is an element of R(a)jw = R(a)™[[T]], then p*#(a) is defined
by

pE(a) = I (Z"%(a)) .
If p8(a) = R(a)™, then the algebraic M-invariant \“&(a) is defined to be X (Z2(a)).

Remark 3.5.20. It would be clear from the context whether A denotes the A-invariant or
an arithmetic specialization.

By [EPWO06|, Theorem 1], the p-invariant of (the characteristic ideal of the dual of the
Selmer group of) T, vanishes for one arithmetic specialization 7y of R(a) if and only if
the p-invariant of (the characteristic ideal of the dual of the Selmer group of) T, vanishes
for any arithmetic specialization n of R(a). If this is the case, following loc. cit., we write
p®8(p) = 0. By loc. cit., Greenberg’s conjecture on vanishing of p-invariants of modular forms
(with absolutely irreducible and p-distinguished residual Galois representation) is equivalent
to the conjecture below.

Conjecture 3.5.21. If p satisfies assumption|3.2.4 and|3.3.1), then

() = 0.
Theorem 3.5.22. The two-variable algebraic p-adic L-function cfpalg(a) 1s an element of
R(a). Under assumptions(3.2.4 and|3.3.1}, the following conditions are equivalent.

(1) p#(p) =0,
(2) p*#(a) = R(a)™,
(3) Héy(Pro) = 0,
(4) for alln,

H}(Tyui 1) = 0
and the p-invariant of the Ao%m—module charAQi7nt H?(Tnint’1w> 18 zero,
(5) for somen,
H}(Tyuizy) =0
and the p-invariant of the Aom-module chary H3 (T yme 1) s zero0.
Suppose that the assumption[3.5.15 holds. Then the abgve five conditions are equivalent to
(@) = R(a)™
Assume further that p*8(p) = 0. Then
NIE(a) = A (a),
D%alg<a>R(a)int _ LG(a)R<a>int.

Iw — Iw
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Proof. By theorem [3.5.11
NZ5(0)) € Aoy € O[T

for almost all 7 € Homo,, .e(R(a),Z,). So by proposition BBrwm divides o in R(a)nt.

Iw

Let D, denote the subset of D such that for any p in Dy, A, satisfies the first three

conditions of theorem [3.5.11| (with 7 replaced by A,). By theorem [3.5.11] the complement of
Dy in D is finite. Since D is dense in Spec(R(a)), Dy is also dense in it.

Now suppose that the assumptions [3.2.4] and |3.3.1| hold. Then for all p € Dy,
chaerAp ]TIJ%(T,\%IW) = /\,g(,}%p&mlg(a))/\oAp
charyg, HA(Ty, 1) = chary,, Dp(Seli; )

by theorem (3.5.11] and theorem respectively. Since Dy is nonempty, by [EPWO06,
Theorem 1], the first two conditions above are equivalent. Fix an element q in Dy. By

lemma (3.5.14] HY,(py,) is zero if and only if HE, (T, 1w)[w@] is zero, which holds if and only if

the p-invariant of a generator of chary,, HJ%(TACIJW) is zero (by lemma [3.5.5/ and [EPWO06,
q o~
Lemma 3.7.4]). Since A\;(Z2"2(a)) generates chara, H3 (T 1w), we get
q

He, (Pry) = 0 <= p#(a) = R(a)™.

So the first three conditions above are equivalent. By lemma [3.5.14] (3) implies (4) and (5)
implies (3). So conditions (3), (4), (5) are equivalent.
First note that for all p € Dy,

ChaerAp Dp(Seli{ip’Iw) = /\p(ll;“n(a))/\oAp
by [SU14l, Theorem 1] and hence
X (Z% () Aoy, = Np(Ly" () Ao, -
So the first five conditions are equivalent to
§%(a) = R(a)f
Suppose that 1%(p) = 0. Then by [Och05] Lemma 3.7],
L) =u(T" + ap T+ -+ ag), L3(a) =v(T® + by T + -+ + by)
with ag, -+ ,a,_1,b0,+ - ,bs_1 € R(a)™ and u,v € (R(a))*. Since for all p € Dy,

Tw

Ap(Z28(a)) and A, (L2™(a)) are associates in Ao,,, the elements A, (1" +a, 1T+ +ag),
Ao (1% + bs 1 T*7 1 + -+ 4 by) are also associates in A@Ap. Hence

M(T" + ap T+ ag) = N (T + b T 4 4 by)
for all p € Dy. Since Dy is dense in Spec(R(a)), we get
T 4 ar T o dag =T + b T 4 - + by
This proves the result. [l
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CHAPTER 4

Algebraic p-adic L-functions for the Hida family for definite
unitary groups

In this chapter, we construct algebraic p-adic L-functions L;}iato(—),[/;%r(—) along
branches of the Hida family for definite unitary groups and prove that they satisfy a perfect
control theorem at arithmetic specializations of regular dominant weight whose associated
automorphic representations are stable and associated Galois representations are crystalline
at each place above p (theorem [4.3.6). The crucial step of their proof is the recognition of
the role of purity in understanding the variation of inertia invariants in families. Though
such Galois representations are not known to be motivic, in [Pin92, Conjecture 5.4.1], they
are conjectured to satisfy properties similar to motivic representations, for example purity.
By [Carl2|, the Galois representations associated with the automorphic forms (which are
of dominant weight and stable) for definite unitary groups are pure. So this variation is
well-understood by theorem [1.2.4 In this chapter, from §4.3) we assume throughout that
the condition 4.3.1] holds.

The local conditions used in LZ}%Gr(—) at places w { p is a modification U], (—) of
the unramified condition U (—) of Greenberg (as defined in [Nek06, §0.8.1] following
[Gre89, [Gre91]). We use the local condition U/ (—) in stead of U] (—) as it is pointed
out in [FO12, Remark 2.17] that the inertia invariants of a big Galois representation p may
not specialize perfectly to the inertia invariants of a specialization of p. The construction of

;%%(ato(—) uses no condition at p and uses the condition U] (—) at places w # p.

The organization of this chapter is as follows. In the first section, we review the notion of
automorphic representations of a definite unitary group and its associated Galois represen-
tation. In the second section, we discuss the set up of Hida theory for unitary groups. For
these two sections, we follow [GG12, p. 264-268]. However [oc. cit. often refers to [Ger10]
for a more detailed exposition and proofs. So we will refer to appropriate results in [Ger10]
(which uses [Hid88al, [Hid89), Hid95, Hid98, Mau04, TU99| among others). In the
third section, we construct algebraic p-adic L-functions L% (=), LZ}%Gr(—) along branches

p,Kato
of this Hida family and prove that they satisfy perfect control theorems.

4.1. Automorphic representations and (Galois representations

4.1.1. Definite Unitary Groups. Let F be a CM field, F'* be its maximal totally real
subfield. Denote the non-trivial element of Gal(F/F*) by c¢. Let n > 2 be an integer and
assume that if n is even, then n[F'* : Q] is divisible by 4. Then by the argument of [HTO01),
Lemma 1.7.1], there exists an involution t of second kind on B = M,,(F') whose associated
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reductive algebraic group G over F'* defined by
G(R)={g9e B®p+ R|g'g=1} for any F*-algebra R

has the following properties:

(a) G is an outer form of GL,/p+ with G,p ~ GL,/p,
(b) for every infinite place v of F'*, G(F,") ~ U,(R),
(c) for every finite place v of F*, G is quasi-split at v.

By [CHTOS8, §3.3], we can choose an order Op in B such that O, = Op and Op,y is
a maximal order in B,, for all places w of F' which are split over F'*. This choice gives a
model of G over Op+, which we fix from now on.

For every finite place v of F'" which splits as ww® in F there is a natural isomorphism
L : G(E) = GL,(F,)

which restricts to an isomorphism between G(Op+) and GL,(Op,).

For each embedding ¢ : F'" < R and ¢ : F — C an extension of o, choose an isomor-
phism

Lg - B ®F+,U R 1) B ®F75 C= Mn(Fg)

so that 15(z") = !(15(2)¢). Then & o ¢ identifies G(F;") with U, (R).

4.1.2. Algebraic representations. Let p > n be a rational prime and assume (as in
[HTO1) 1.7]) that every prime of F * lying above p splits in F. Let K be a finite extension
of Q, inside QQ, which contains the image of every embedding F' < Q, and a primitive p-th

root of unity (as in [GG12, p.266]). Let w denote a uniformizer of the ring of integers Ok
of K and F denote the residue field.

Let ¥, denote the set of places of F't above p, and I, the set of embeddings of F'* — K.
For each place v € ¥, choose once and for all a place v of F' lying above v. Let ip denote
the set of these places v for v € X,,. Let fp be the set of embeddings F' — K which give rise
to an element of ip. From now on we will identify 7, and fp. Let p denote the product of
all places in »,. We write

Op+p = Op+ ®z Zy, Fp+ =Ft ®q Qp.

Let T,, C B, C GL, denote the diagonal torus, the Borel subgroup of upper triangular
matrices in GL,, regarded as algebraic groups over Z. We identify the character group

X*(T,) = 7"
via the map which sends the character

diag(ty, - ,tn) — 3 - t)n

n

to the tuple (A1, -+, \,). Note that any character of T;, can also be regarded as a character
of B,, via the natural homomorphism B,, — T},. Let ¢; denote the character

diag(tla U 7tn) = ;.
88



The set of characters

b ={e —¢;|i#j}
consists of the roots of GL,, with respect to T,,. Our fixed choice of the Borel subgroup B,
gives us a system @ of positive roots, viz., the roots €; — ¢; for j > i. The simple roots for

this positive system are the roots ¢; — ;.1 for ¢ = 1,--- ,n — 1. There is a partial order on
X*(T,) defined by

AZ;L(:))\—MGZN(&—&H).

The Weyl group Wr,, := Ngr, (T,,)/T, acts on T, by
w(t) = wtw™?
and on X*(7},) via the rule
(wA)(t) = Mw™Htw).
We identify it with S,, via the rule
w<t17 T >tn)w_l = (tw—l(l)a T atw—l(n))'

Let wy denote the longest element of the Weyl group. It sends the character (Ay, -, \,) to
the character (\,, -, A1).

For a character X\ of T}, and a ring R, define the induced representation
Ind5" (wo)/r := {f € RIGL4] | f(bg) = (woA)(0)f(9), VR = A, g € GLy(A),b € B,(A)}
on which GL, acts by right translation. This is a representation of the algebraic group
GL,/r. Since K is flat over Ok, we have
Indg:" (woA) /i = (Indgf:” (wo) j0, o, K

(see [Jan03|, Fact 3, §1.3.5]). When R = Ok, K or F, by the proposition in [Jan03] §II.2.6],
the induced module Indgi"(ng\)/pb is nonzero if and only if the character A = (A1,--- , \,)
satisfies

AL > >\
Such a character A is called a dominant character for GL,,.

Definition 4.1.1. For a dominant character \ for GL,, we define the representation
&\ = Ind§ (wod) joy. -

We let My denote a finite free Ox-module, carrying an action of GL,(Of), obtained by
evaluating & on Ok. We let Wy = M) ®o,. K. This space carries an action of GL,,(K).

We remark that the module M, is finite and free over Ok as it is torsion free by definition
and finitely generated by |[Jan03l Proposition 1.5.12(c)].

If W is an algebraic representation of GL,, z and u € X*(T},), we denote by W, the sub-
space of W on which T,, acts via 1. The weights of W are those characters p for which W), # 0.

Put
ZZ_:{(AD 7)\n) GZTL|A1 Z Z)\n}
and let GG denote the unitary group as in §4.1.1}
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Definition 4.1.2.
(a) A dominant weight for G is a tuple A = (\;), € (Z”) If X is a dominant weight for
G, define
M)\—®T€I M., WA:®TGI},W/\T:M)\®OK K.
Then define representations
& G(Op+p) = GL(My) by g @, &\ (T(tan9),
E:G(ES) = GLW,) by g+ @1 6 (T(tan9))

where ¥(7) is the place in ¥, induced by .
(b) If \ = (\.), € (Z™)», then we associate to it the character
A To(EF) = [] Tu(Fs) — K~
vel,
defined by

(c) If \= (\): € (Z")r and w € Wi, , we let wA = (w, ), € (Z")".
(d) A dominant weight X for G is regular if for each v € ¥, and each j =1,--- ,n—1, there
exists T € I, giving rise to U with Ar; > A\;jy1.

4.1.3. Automorphic forms on G. Let ¥’ denote a finite set of finite places of F*
disjoint from X, and consisting of places which split in F'. Choose once and for all a place
0 of F over each place v € ¥/, For each v e ¥ UX,, we will identify the groups G(F,") and
GL,(F}) via ¢ (as defined in . If v is a place of F'" split over F' and 0 is a place of F
dividing v, then we let

(a) Iw(?) denote the subgroup of GL,,(OF,) consisting of matrices which reduce to an upper
triangular matrix modulo v,

(b) Tw(2"¢), for 0 < b < ¢, denote the subgroup of GL,(OF,) consisting of matrices which
reduce to an upper triangular matrix modulo #¢ and to a unipotent matrix modulo .

Note that if k£(0) denotes the residue field of ¥, then we have a natural isomorphism

w(0)/Tw (") =~ (k(2)*)"
given by g = (gi;) — (11, - » Gnn) Where the bars denote mod o reduction. For each v € 3,
we have a character

Xo = Xod X o+ X Xon : Iw(0)/Iw(05) — OF.
Define
M,y = Ruvexr Ok (Xo)-
It has an action of [], .y, Iw(0). If X is a dominant weight for G, define
M oy = My @0y My,
This also carries an action of G(Op+ ).
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Definition 4.1.3. For an Ok -module A and a dominant weight X for G, we define S {y,}(A)
to be the space of functions f : G(FP)\G(AR,) = My} ®o, A such that there exists a
compact open subgroup

U C GAYNT) x G(Op+,) x [] Iw(®)

with
(usrus, ) f(gu) = f(g)
for allu € U, g € G(AY.) where usysy is the projection of u to Huez’uzp G(F;"). The group
G(A;OE/UE’”) X G(Op+p) X [[pesy Iw(0) acts on Sy gy} (A) via
(g f)(h) = (gsrus,)f(hg).

If A is a K-module, then the group G(A%OJ;E/) X [[,esy Iw(0) acts on Sy (y,}(A) via the same
formula.

If U is a subgroup of G(A;O;E/UE") X G(Op+p) X [Lesy IW(0), or if U is a subgroup of
G(A;O;E,) X [ esy Iw(?) and A is a K-module, then we define S ¢y, (U, A) by

SAv{Xﬂ}(U’ A) = S)M{Xv}(A)U

Now we recall the relation between these spaces and the space of automorphic forms on
G as defined for example in [BJT9]. Let ¢ : @p = C be a field isomorphism. Via this
isomorphism, C becomes a K-algebra. For each embedding ¢ : F* < R, there is a unique
embedding ¢ : F — C extending o such that :~!6 € l:p. There is an induced action of
G(FL) on Wy ®k, C via
g+ @56 1 (0(es(9)))-
Denote this representation by &) ,.

Proposition 4.1.4. There is an isomorphism of G(A?J;E/) X [ esy Iw(0)-modules

SA,{Xu}(@p) = HomG(Fot)(((@veE/(c(LX;l)) ® SAV,“ A)
where A denotes the space of automorphic forms on G(FT)\G(Ap+).
Proof. Follows from the proof of [CHTO8, Proposition 3.3.2]. O

4.1.4. Galois representations. We normalize the local Langlands correspondence as
in [CHTO08| §3.1]. If w is a finite place of F and 7 is an irreducible, admissible, representation
of GL,,(F,,) defined over @p, we let r,(7) denote the p-adic representation of G, associated
(as in [Tat79]) with the Weil-Deligne representation rec, (7" ® | |(1=/2) when it exists (i.e.,
when the eigenvalues of rec,(7V @ | |1=/2)(¢,,) are p-adic units for some lift ¢,, of Fr,).
Here rec, is as in [HTO01]. We will denote the p-adic cyclotomic character by e.

Proposition 4.1.5. Let A\ be a dominant weight for G and 7 be an irreducible constituent

of the G(A?;E/) X [1,esy Iw(®)-representation Sy (y,1(Q,). Then there exists a continuous
semi-simple representation

Pr - CTYF — GLn(Qp)>

which 1s uniquely determined by the following two properties.
(1) py > pye' ™,
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(2) if v ¢ XU, is a finite place of F which splits as ww® in F, then

prlSe, = (rp(my 0 5,1)Y (1 —n))™.
If the weak base change of m to GL,(Af) is cuspidal, then for any finite place w of F not

dividing p, the restriction of pr to G, is pure.

Proof. From [Lab11l Corollaire 5.3], we get a weak base change WBC() of 7 to GL,,(Ap).
Then |[CH| Theorem 3.2.5] associates a Galois representation p to WBC(w). We define p,
to be p, which satisfies the stated properties by loc. cit. The last part follows from [Carl2],
Theorem 1.1, 1.2] and proofs of theorem 5.8 and corollary 5.9 of loc. cit. O

Definition 4.1.6. Let m be as in the statement of the above proposition. It is said to be
stable if its weak base change WBC(w) to GL,(Af) is cuspidal.

In the main theorem of this chapter (theorem [4.3.6)), we will consider stable automorphic
representations.

4.2. Hida Theory

4.2.1. Hecke algebras. Let ¥ denote a finite set of finite places of F'* containing >'UY,,
and such that every place in 3 splits in F'. Recall that for every v € ¥’ U X, we have fixed
a place 0 of F lying above v. Now for every place v € ¥\ (X' UX,), fix a place ¢ of F' above
v. For v € ¥, we will henceforth identify G(F.,") with GL, (F};) via ¢;.

Let U = [], U, be a compact open subgroup of G(A%,) where U, C G(F)") for each
finite place v of F'™ and

(a) if v ¢ ¥ splits in F, then U, = G(Op+),
(b) if v € 3, then U, = Iw(0),
(c) if v € ¥, then U, = G(Op+).

We do not specify U, for v € ¥\ (£’ UX,) or for v ¢ ¥ not split in F. For 0 < b < ¢,
define

Uph) =U? x ] tw(@).

vEDp

4.2.1.1. Hecke operators. Let V,V' C G(A?fl) X [, esy Iw(?) be compact open sub-
groups of G(A%,). Let X be a dominant weight for G.

Let A be a K-module. Then for every g € G(A%O;E/) X [[,esy Iw(?) there is an operator
[V'gV]: Sty (Vi A) = Sy (V7 A)
defined by
VigVIf =Dz f. f€Spa(V.A)

using a decomposition V'gV = [, z;V. This definition is independent of the choice of z;.
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If Ais an Og-module, but not a K-module, then assume that v,, v, € G(Op+ ) for all

v e Vo' € V', In this case, for every g € G(AOFO;E/UE”) X G(Op+p) X [[,esy Iw(0), there is
an operator

[V’gV] : S)H{XU}(V, A) — S)\’{XU}(V/,A)
defined as above.

Hecke operators at unramified places. Let w be a place of F, split over over F'* and
lying over a place of F'* outside ¥. Let A be a dominant weight for G and A be an Ok-
module. Let w,, be a uniformizer in Op,. For each j = 1,--- n, we let T denote the
endomorphism
|f1711 (GLn(OFw) (w81J 1 0 ) GLn<OFw)) X U(pb,c)v:|
n—j

of Sy o1 (U(p™€), A)). Tt is independent of the choice of the uniformizer. The operators T,
for varying w and 7, all commute with each other. Also note that

T = (1) A7)

Hecke operators at places dividing p. For each 0 < b < ¢ with ¢ > 1, and each v € ¥,
the algebra

O [Iw()\ GLa (Fy) /1w(5)
is non-commutative and acts on Sy 1,1 (U(p"“), A) only when A is a K-module. Following
Hida, we consider a commutative subalgebra of this algebra and modify the usual action of
the Hecke operators to define an action of this commutative subalgebra on Sy f,,3(U(p"€), A)
for any Og-module A. This modified action depends on the weight A.

Let A be an Og-module and A be a dominant weight for G. Suppose that 0 < b < ¢

with ¢ > 1. For each v € ¥, and j = 1,--- ,n, put
o) = (Fhi 0 car (.
w5 0 1n,j

We will also regard oY) as an element of G (F,f) and G(A%,) via vz. If v € ¥, then we let
U/@zv be the operator which acts on Sy g,,3(U(p™¢), A) via

(woA) (@)U (p") D) U (pP)].

Wo

Explicitly, if we write U(pb’c)ag)U(pb’C) as a disjoint union [, xiozg)U(pb’C), then for any

D 0]

[ € Sx 1 ({U(p), A) we define
UYL f = (wod)(@8) Y (:02) - f

where wo) is considered as a character T,,(F,)) — K™ as in Definition [4.1.2] This is an
element of Sy (,,1(U(p>¢), A) and is independent of the choice of ;.

Now for v € ¥, and u € T,,(Op, ), let (u) denote the operator

[U(p")ul ("))
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acting on Sy 1,1 (U(p"¢), A). For

u€ T(Ops+yp) = [] Tu(Ops) = [] Tn(O

vEdp vEYp

(w = T ).

vEY)

we define

4.2.1.2. Unitary Group Hecke algebras.

Lemma 4.2.1. For 0 < b < ¢ with ¢ > 1, a dominant weight X\ for G and an Og-module
A, the operators T, U(j) _and (u) on Sy g,y (U(p*°), A) defined above commute with each

,w

other. Moreover, if b < b and ¢ < , then the inclusion
St (U R), A) = Sx 3 (URT), A)
is equivariant for all of the operators Tif,j), U)(\JBUU and (u).
Proof. Follows from the proof of [Hid95, Proposition 2.2] (cf. [Gerl0, Lemma 2.3.3]). O

Definition 4.2.2. For 0 < b < c with ¢ > 1, a dominant weight A for G and an Ok-algebra
A, let

I ey (U(B™), A) C 13 1y (U(B™), A) C End(Sy 1,3 (U (p"), A))
be the A-subalgebras generated by the operators Téf), (qu]n))_1 and (u) in the first case and
the operators TS, (T{)~, Ug;ﬁ and (u) in the second case.

Note that the map w +— (u) defines a homomorphism
(4.2.1) To(Op+ p/9") = iy (1 (U (p7€), A)%.

4.2.2. Ordinary Hecke algebras. Let A be an Og-algebra of finite type. Since
h oy [U(p7), A) is a finite type Og-algebra, it decomposes as a direct product

'
hx ey (U H R ey (U(B™), A)m

where m runs over the set of maximal ideals of h/\V{XU}(U(pb’C), A) (by [Eis95], Corollary 7.6,
p. 188] for instance).

Definition 4.2.3. A mazimal ideal m of h/\ e }(U(pb’c),A) is called ordinary if for each
v € X, and for each j =1,--- ,n, the image of U/\’wﬁ is nonzero in fli{XU}(U(pb’c), A)/m.

We define the ordinary Hecke algebm
7.2,ord
It (U H P U ("), A

where m runs over the ordinary maximal ideals. We let hf frd}(U (p>€), A) denote the im-

age of hy e }(U(pbc),A) in hff{);d}(U(pb ), A). Since hf?;d}(U(pb ), A) is a direct factor of

h§ e }(U(pb ), A), it corresponds to an idempotent e € h)\ e }(U(pb’c), A) with the property
that
Iy oy (U(79), A) = eh3 (U ("), A).

A {xv
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If we let U(p) denote the product

Up) == [T TULL, € 13 ) (U (0), A),

veEY, j=1
then one can check that

e = lim U(p)" € 134, (U(p"), A).

T—00

Now define the ordinary parts of Sy 1, (U(p*c), A) by

S (U ("), A) = €Sy (11 (U ("), A) = €D Sx 0} (U ("), A,

mord

where m runs over the ordinary maximal ideals of fz? (U (p>€), A). The algebras hi’gﬁ}(U (pbe), A)

and ﬁff;i}(U (p*¢), A) act faithfully on Sﬁf?XU}(U (p>€), A). The lemma below guarantees that

ordinary forms exist.

Recall that an open compact subgroup of G(A%¥,) is said to be sufficiently small if for
some place v of F'*, its projection to G(F,") contains no element of finite order other than
the identity.

Lemma 4.2.4. Suppose that U is sufficiently small and ¢ > n—1. Then Sﬁf?xv}(U(pb’C), Ok) #
0.

Proof. This lemma can be deduced from [Hid95l Proposition 2.2] (see [Gerl0, Lemma
2.4.3] for details). O
Remark 4.2.5. Each Og-algebra homomorphism from hi{xu}(U(pb’c),(’)K) to Q, deter-

mines an irreducible constituent 7 of the G (A;O;E/) x 1
such that

vesy Iw(0)-representation S r,1(Q,)

70" NS, L (U (), Q,) # 0.

Such representations 7 are called ordinary automorphic representations (of weight \).

4.2.3. Universal ordinary Hecke algebras.
4.2.3.1. Vertical control theorem.

Lemma 4.2.6. For 1 < b < ¢, the natural inclusion
SE‘)T?XU}(U(pb’b% OK) — SQT?XU}(UQJI)’C)’ OK)
18 an isomorphism.

Proof. This follows from |[Ger10, Lemma 2.5.2]. O

For each b > 1, we let T,,(p®) denote the subgroup of 7,,(Op+,) defined by the exact
sequence

0= T.(p") = Tn(Op+ ) — T(Op+/p®) — 0.
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We let T,,(p) = T,(p') and we define the completed group algebras

Ay = Ok ([Ta(p"))] = lim Ok [T (p") /T (p")] - forb>1, A=A,

b'>b

AT = Ok[[Ta(Op+ )] = 1im Ok[T,(Op+ ) [ To(p")] = A[T(Op+ /p))-

b>1

Note that AT is automatically a A, algebra for b > 1. Let

B (U (p™), O ) 1= i B2 (U (p°), O

and note that it naturally has a AT-algebra structure by equation (4.2.1)).

Lemma 4.2.7. The Hecke algebra hf’f;i}(U(poo), Ok) is a finite faithful Ay, -algebra where

bo > 1 is large enough so that U(p**) is sufficiently small.
Proof. It follows from |[Ger10, Corollary 2.5.4]. O
4.2.3.2. Weight independence.
Theorem 4.2.8. There is an Ok-algebra isomorphism
ox b el (U(p™), Ok) = B3 (U(p™), Ok)
which satisfies

(0) oA(T) = T and pA(UL,) = UY)

Ay
(b) ox((u) = (woA) (w1 {u) for all u € T,,(Op+,).
Proof. Follows from [Gerl0l Proposition 2.6.1, Corollary 2.5.4]. O

Now we renormalize the A-algebra structure on hozf;(j}(U (p>), Ok).

Definition 4.2.9. Let v = (v;), € (Z’}r)fp be the element with v, = (n—1,n—2,---,0) for
all 7. Define a homomorphism

Ta(p) = ho ey (U(p™), O)*

by
u > (wor) () {u).
This gives rise to an Ok-algebra homomorphism A — h)™ (U(p*>),0k). We define the

0,{xv}
universal ordinary Hecke algebra h{z)’cir}d(U (p™), Ok) to be h> (U(p™), Ox) equipped with

. Oﬂ{X'U}
this new A-algebra structure.

We give it the structure of a AT = A®p, O [Tn(Op+ /p)]-algebra using the new A-algebra
structure and the original Ok |T,,(Op+ /p)]-structure.
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4.2.3.3. Control theorem. Let A be a finite type Og-subalgebra of Zp,
a:T,(p) — A"
be a finite order character. Suppose that r > 1 is large enough so that
T,(p") C ker(a).
Denote by S¢d . (U(p™"), o, A) the maximal subspace of S . (U(p™"), A) on which (u) =

A{xv} A{xw}

a(u) for all u € T,(p). Let hiﬂi}(U(p”),a,A) denote the quotient of hif;(j}(U(p“),A)

obtained by restricting operators to Sif?xi’}(U (p™"),a, A). These algebras are independent
of the choice of 7.

For a finite order character o : T,,(p) — @: and a dominant weight A for GG, define g, ,
to be the kernel of the Ok-algebra homomorphism A — @p induced by the character

a(wor) " (woA) ™t To(p) = Q-

Theorem 4.2.10. Let A be a dominant weight for G and « : T,,(p) — @; be a finite order
character with T,,(p") C ker(a) for some integer r > 1. Let K' denote the fraction field of
A/pxra- Then the map oy induces surjection of finite K'-algebras

h{E;r}d(Umoo)’ Ok) @ Mg, o /Pra = hi’f;i}(U(p“’), a, K')
whose kernel is nilpotent.

4.2.3.4. Arithmetic primes. An arithmetic prime of a finite A-algebra R is a prime p €
Spec(R) whose contraction to A is of the form g, ,. In this case, A is said to be the weight of
©. An arithmetic specialization of R is an Og-algebra homomorphism R — @p whose kernel
is an arithmetic prime. The weight of an arithmetic specialization is the weight of its kernel.
The set of arithmetic primes of R is denoted by Spec™™(R).

Since hi’(zr}d(U (p>=), Ok) is a finite type A-algebra and Spec®™(A) is dense in Spec(A)
by [Hid88al Lemma 10.2, p.371], it follows that Specarith(h{z;:r}d(U(poo),(’)K)) is dense in
Spec(hp 2 (U (p™), Ok)).

By the above theorem and remark [4.2.5| an arithmetic specialization of h{z)’(jgd(U (p>), Ok)

of weight A determines an ordinary automorphic representation 7, of weight \.

4.2.4. Galois representations.

Proposition 4.2.11. Let m be a maximal ideal of h?}’(jr}d(U(poo), Ok). Then there is a unique
semistmple representation

T : G = GL (W2 (U(p™), Ok) /m)

characterized by the following properties:
(a) if v & 3 is a finite place of F which splits as ww® in F, then p is unramified at w and
we,
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(b) if v & ¥ is a place of F* which splits as ww® in F and Fr,, is the geometric Frobenius
element of G, /Ir,, then ro(Fr,) has characteristic polynomial

X" TOX 44 (<1 (Nw) U DTG X 4y (—1) (Nuw)" D270

Proof. Follows from |Ger10, Proposition 2.7.3]. O

A maximal ideal m of h{z;cjr}d(U (p>), Ok) is said to be non-FEisenstein if Ty, is absolutely

irreducible.

Proposition 4.2.12. Let m be a non-FEisenstein mazimal ideal of h{z;zr}d(U(p"o), Ok). Then
there is a continuous lifting

rm: Gp = GLy (BN (U (p%), Ok )m)

of Tw satisfying the following properties. The first two properties determine the lifting

uniquely up to conjugation by elements of GLn(h{E)’(jgd(U(poo), Ok )m) which are trivial modulo

m.

(a) If v & X is a finite place of F* which splits as ww® in F, then p is unramified at w and
we.

(b) If v ¢ ¥ is a place of F* which splits as ww® in F and Fr,, is the geometric Frobenius
element of G, /IF,, then ro(Fry,) has characteristic polynomial

X" Tlgl)X"_l et (_1)j (Nw)j(j_l)ﬂTg)X”_j N (—1)”(Nw)”(”_1)/2T,LE)”).

(c¢) For each place w of F lying above p, there exists an n-tuple of characters (Xuwi, "+ » Xwn)
such that ro|q,, is conjugate to an upper triangular representation with the ordered tuple
(Xwl, " ", Xwn) along the diagonal. In particular, for any Ok-algebra homomorphism
¢: hi’((ﬁd(U(poo), Okx)m — Z,, the representation ({ o Tw)|Gr, @5 conjugate to an upper
triangular representation with the ordered tuple (o Xuwi, -+ , (0 Xwn) along the diagonal.

Proof. It follows from |[GG12| p.267-268] (which relies on [Ger10l, Proposition 2.7.4] for
part (a), (b), and on [Ger10), Corollary 3.1.4, Prop 2.7.2(2)] for part (c)). O

If m is a non-Eisenstein ideal of h{z)’(zr}d(U (p™°), Ok), then the representation ry inter-

polates the Galois representations attached to the ordinary automorphic representations
corresponding to the arithmetic primes of hi’(‘f}d(U (1), Ok )m-

4.3. Algebraic p-adic L-function along branches

In this section, we construct algebraic p-adic L-functions L;}gGr, L;liato along irreducible
components of the Hida family and show that it satisfies a control theorem at arithmetic
primes.

Let m be a maximal ideal of hi’(jr}d(U(poo), Ok) satisfying the following.
Assumption 4.3.1. The maximal ideal m s non-Eisenstein.

Suppose that a is a minimal prime of hi’(‘ﬁd(U (p™), Ok) contained in m. Then from
§4.2.4] we obtain a uniquely determined representation p : Gp — GL,(R(a)’) where R(a) =
he "N U (p), Ok )m/a. Let R(a) denote the subalgebra of K := Frac(R(a)) obtained by ad-

{xo}
joining to R(a)’ the coefficients of the characteristic polynomial of Fr,, on the I -invariants
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of p for the places w of F' at which p is ramified and has nonzero I -invariants. The ring
R(a) is a complete local domain and a finite type A-module ([Eis95|, Corollary 7.6, p. 188]).
Now define 7 (a) := R(a)" with a Gp-action on it via p.

Let S denote a finite set of places of F' containing the places of ramification of 7 (a), the
archimedean places of F' and the places of F' above p. Denote by Sy the set of finite places
in S. We will consider 7 (a) as a representation of G .

For a ring homomorphism ¢ : R(a) — R', the ¢-specialization of T (a) is denoted by T,
and is defined to be the G s-representation 7 (a) ®p)e K with coefficients in R'. From
now on we denote the image of an arithmetic specialization ¢ : R(a) — @p by O, and con-
sider such maps as ring homomorphisms onto their images, i.e., as ( : R(a) - O¢. Thus
for an arithmetic specialization ¢ of R(a), the (-specialization T, of T (a) will denote the
Gr,s-representation 7T (a) ®p)c Oc. For such a specialization, we denote by V; the Gpg-

representation Ty ®o, Q,,.
In the following, w will denote a finite place of F'.

For w | p, let T(a)™ (resp. T¢") denote the largest R-submodule of 7 (a) (resp. T¢ where
¢ denotes an arithmetic specialization of R(a) of regular dominant weight such that V¢|q,.
is crystalline) on which G, -acts by the character x,1 (resp. ¢ 0 Xuw1)-

Let F, denote the cyclotomic Z,-extension of F'. We denote the Galois group Gal(F./F)
by I'. Denote the Iwasawa algebra Og|[[I']] by Ay, which is a G fpj-module via the map
Griuwpy = I' = A{, since F is unramified at places w { p. For any finite type Ok-
subalgebra A of Z,, we will write A4 to denote A ®¢,. A, = A[[[']]. We will consider A4 as
a Gpfuwpy-module via the map Gpupy - I' = Aj. The image of an element g € G (w|p)

under this map will be denoted by [g]. The completed tensor product R(a)®e, A, will be
denoted by R(a)ry.

Define the cyclotomic deformation T (a)1y, of T (a) as the G g g-representation 7 (a)® o, Ary
over R(a)y, obtained by tensoring the G g-representations 7 (a) and Ay,. Define the G-
representation

T(a)f, = T(a) @0, Amy-

For an arithmetic specialization ¢ of R(a), define the cyclotomic deformation T; 1y, of T¢
as the G g-representation Ty ®p, Ary over O¢ ®o, Ay = A@C. Define the G-representation

nglw = Tg R0y Alw-

Note that each arithmetic specialization ¢ : R(a) — O, of R(a) extends to a Ap,-algebra
homomorphism C@)OKidAIW t R(a)iw = O @0y Aty = Ao, which will be denoted by ¢ by
abuse of language.
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Definition 4.3.2. Let T' be a free module of rank n € Z>, over a complete local noetherian
domain R. Let Gpg act continuously on T wvia a representation Gpgs — Autgr(T). Sup-
pose that the characteristic polynomial of Fr,, on T'Fe ®@p Frac(R), denoted CP,(X,T), has
coefficients in R whenever 0 < tkpT e < n for w{p.

For any w not dividing p, let U, (T') denote the object in the derived category of R-modules
corresponding to

(R CPw—(l’T)> R] concentrated in degree 0,1 if 0 < tkpT'Feo < n,
Cei(Gr, /Ip,, T otherwise.

cont

Definition 4.3.3. Let ( denote an arithmetic specialization of R(a) such that V¢|q,, is
crystalline for any w | p. For w | p, put

Uq,U(T(a)Iw) = chont(Gqu R(a)lw)
U{u(TC,IW) = chont(GFwa AOC)
where G, acts on R(a)w, (resp. Mo, ) by the character through which it acts on T (a)f, (resp.

Tity)- For T = T(a), Te 1w, define the algebraic p-adic L-functions LZ}%MO(T), L;}%GY(T)
as the objects of Parf-isg (R = R(a)n, Ao, respectively) given by

(43.1) L2 (T) := detp(RTecon(Grs, T)[1]) @ detr | €5 UL(T[] | .
wESy
wip

(4.32) L3 (T) := detp(RTccont (Grs. T)[1]) @ detr | D UL(T)[1] & @ U,(T)[1]
lp

wESf
wip
respectively.
Lemma 4.3.4. The above objects LZ}iato(T) and LZ}%Gr(T) are well-defined for T = T (@)1, Tt 1w,

where ¢ s as in the above definition.

Proof. The rings R(a) and O, are complete local rings (by [Eis95|, Corollary 7.6, p. 188] for
instance). So R(a)r, and Ap, are complete local rings.

By definition of R(a) and O, the polynomials C'P, (X, T (a)i) and CP, (X, T¢ 1) have
coefficients in R(a)r, and Ao, respectively for any w { p (by theorem m(6) and proposition
[M.1.5). So U,(T) is well-defined and by proposition [2.2.1] it is a perfect complex for w €
Sy, w1 p. So LZ}%@:Q(T ) is well-defined (using the same proposition again).

By proposition , for w | p, the group G, acts on T (a)y, (resp. T¢y,) by an R(a)m,-
valued (resp. Ap -valued) character. So U, (T) is well-defined for w | p and they are perfect

complexes by proposition [2.2.1l Using this proposition again, it follows that L;}%Gr(T) is
well-defined. O

Lemma 4.3.5. The arithmetic primes of R(a) which are kernels of the arithmetic special-
izations ¢ : R(a) — Z, satisfying
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(1) € is of reqular dominant weight,
(2) Velay, is crystalline for any place w of F' lying above p,

form a dense subset of Spec(R(a)).
Proof. By the comment after the proof of [Ger10, Lemma 2.6.4], [Ger10, Lemma 2.7.5(2),

Proposition 2.7.2(2), (4)] and the last paragraph of the proof of [Ger10Q, Corollary 3.1.4],
the lemma follows. O

Theorem 4.3.6. Let ( be an arithmetic specialization of R(a) of regular dominant weight
such that m is stable and V¢|g,, s crystalline for all w | p. Then the isomorphisms in
propositions|2.1.2, 2.2. 1}, 12.2. 5 induce 1somorphisms

(4.3.3) Lo (T () 1) @ k(e Mo, = Loy (Teaw),

al ~ r1al
(434) Lp %(ato(T( u)IW)®R(a)Iw:CAOC Lp %(ato (TCJW)
under the assumption |4.5. 1)

Proof. By proposition and proposition [2.2.1] it remains to prove the control theorem
for the factors coming from “local conditions”. For w | p, the complex U, (T (a)1y,) is K-
flat by [Staldl Tag 064K] and hence the control of U/ (7 (a)1) follows from [Stal4, Tag
06Y6]. So it remains to prove the control theorem at w 1 p, i.e., the (-specialization of
det UJ,(T (a)1y) is det U},(T¢ 1w). Let w { p denote a finite place of F. By proposition [2.1.2]
it suffices to prove the control theorem for U. (7 (a)1y).

The restriction of the Gy g-representation 7 (a) to the decomposition group G, is con-
tinuous and its coefficient ring R(a) has finite residue field of characteristic p # ¢. So by
theorem the G'r,-representation 7 (a) is monodromic. Moreover V¢|q,, is pure for any
arithmetic specialization ¢ of R(a) and w { p by proposition [4.1.5)). So theorem [1.2.4] applies
to T (a) and its arithmetic specializations. By theorem fand proposmm we
need to prove the control theorem for U{U(T(a)lw) only when 0 < rkp(p)7 (a)/» < n. Assume
that this inequality holds. Then U, (T (a)1,) is K-flat by [Stal4. Tag 064K]. So its derived
tensor product over R(a), with A@C (through () is equal to the tensor product by [Stal4)

Tag 06Y6], i.c., [Ao, (P LT (@) Ao,] and this is U,,(T¢ 1) by theorem |1.2.4(6). O
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APPENDIX A
Divisibility

A.1. Valuations
Let
UP : @p — Q U {OO}

denote the valuation normalized so that v,(p) = 1. If (,» denotes a primitive p"-th root of
unity in Q, (r > 1), then

1 1
(A.1.1) vp(Gr — 1) = A - P (p—1)

by [Neu99, Proposition 7.13, Chapter II]. For any integer k > 2,

(A.1.2) v(1+p)f—1) > 1.

For any integer k > 2 and 1 # C € - (Z,),
C1+p)f=1= (- +p)") +(1+p)*~1)
gives
(A.1.3) w1 +p)F =1) =v,(¢ - 1)
by equations (A1), (A12).

Let K/Q, denote a finite extension contained inside @p. Let w denote a uniformizer of

Ok.

Lemma A.1.1. Let f(X) € Ok[X] be a distinguished polynomial of degree d > 1. Let k > 2
denote an integer and Cyr denote a primitive p”-th root of unity. Then

v, (F(Gr(1+p)F —1)) = m
forr > 0.
Proof. Write
f(X)=co+ea X+ +eg 1 X4 X4

with cg, - ,cq_1 € wOg. Let t denote the least nonnegative integer such that ¢; # 0. Put
Cq = 1. So
fX) =X 4+ cg X
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If t = m, then
0pf (G (14 p)* = 1)) = v (calGr(1+ p)* = 1)7)
= dv,((pr (1 +p)k —1)

= dvy((r — 1) (by equation (A.1.3))
d
= by equation (A.1.1)).
Now let ¢t < d. Note that
t d
Uy (e (Gr (L4 p)F = 1)) = v, () + o p(ca(Gr (14 p)F — 1)) = wy(cq) + .
p(Ct(Gr (14 p)" — 1)) = vy(cr) ) p(Ca(Gr(14p)" —1)%) = vp(ca) 20
So for any t < s < d,
Up(cs(CpT(l +p)k - 1)8) > 2];D(Cd(gp’“(l +p)k - 1)d)
as r > 0. Hence the lemma. O

A.2. Divisibility in O[[X]]
Let mz  denote the maximal ideal of Z,. The symbol n will be used to denote elements
of mz . For n € mz and any finite extension L /Q,, the map
OLlX)| = Zy, X
is denoted by 7 by abuse of notation.

Lemma A.2.1. Let a, 8 be two elements of Ok[[X]] with § # 0. Suppose that n(5) divides
n(a) for almost all n € mz . Then B divides o in Og[[X]].

Proof. Suppose that « is zero. By Weierstrass preparation theorem,
a(X) =@ P(X)U(X), B(X)=a"QX)V(X)

where a,b are nonnegative integers, U(X), V(X) are units in Og[[X]] and P(X),Q(X) €
Ok[X] are distinguished polynomials. Without loss of generality, we assume that U(X), V(X)
are equal to 1. Put

PX)=ay+a X+ -+ ap X"+ X™,
QX)=byg+ b X + -+ +b, | X" 1+ X"
with a;,b; € WOk, m,n € Z>o. When m,n are zero, we interpret P(X), Q(X) as 1.

We have
vp(a(Gr (14 )" = 1)) Z 0,(B(Gr (1 +p)* — 1))
whenever k£ > 0,7 > 0. Note that lemma remains valid even when d = 0. So lemma
gives

L A [ R L —
ptp—-1) = °F prtp—1)

for r > 0. Thus a > b. So we may assume that a > 0,b = 0.
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Write

1

BX)=Q(X)=[](X —ay)™

i=1
with «; € Zp. Note that a € my . Let L/K denote a finite extension containing oy, - - , aj.
So it suffices to prove that if 7(X — «) divides (@ P(X)) in Z, for almost all € mz (with
a € mz MNOp), then X — o divides wP(X) in Or[X], which is immediate. O

A.3. Divisibility in R

Let K denote the fraction field of Ok[[X]]. For an extension £/K contained in K, the
integral closure of Ok[[X]] in £ is denoted by O,. Let R denote a finite type Ok[[X]]-
subalgebra of Og. Its integral closure in its fraction field is denoted by R™.

Lemma A.3.1. Let a, 3 be two elements of R with 8 # 0. Suppose that for almost all
¢ € Homoy aig(R, Zy), £(B) divides &(a) in Z,. Then 8 divides o in R™.
Proof. Let £/K denote a finite Galois extension containing «, §. Since O, is a finite type
R-algebra, £(f) divides £(a) in Z, for almost all & € Home,_ag (O, Zy).

For each ¢ € Homo,...is(Ox[[X]],Z,), we fix a lift £ e Home,-a1g(Or, Z,). Note that
for any o € Gal(£/K), £ o o is also an element of Homp, g (O, Z,). For almost all ¢ €

Homo a1 (Ok[[X]], Zy), the images of the coefficients of

PY)= ] (¥ -oala/p)
oeGal(L/K)
under ¢ are elements of Z,. Since P(Y) has coefficients in K ((X)), the images of its coeffi-
cients under £ are elements of Z, for almost all £ € Homo,. a1 (Ok|[[X]], Z,). In particular,

the images of the coefficients of P(Y) under 5 are elements of Z, for almost all € mz . By

lemma [A.2.1) P(Y) has coeflicients in Ok[[X]]. So the element o/ of Frac(R) is integral
over Ok[[X]] and hence is an element of R™.
U

A.4. Divisibility in R[[T]]

Let O[[T]] denote the Z,-subalgebra of Z,[[T]] spanned by the subsets Op[[T]] where L
ranges over all finite extensions of QQ,. Note that &[[T]] is smaller than Z,[[T]] and each
element of &[[T]] lie in OL[[T]] for some finite extension L/Q, (depending on the element).

Proposition A.4.1. Let f(T'), g(T) be two elements of R[[T]] where g(T') # 0. Suppose that
§(9(T)) divides §(f(T)) in O[[T1] for almost all § in Home,, a1g(R,Z,). Then g(T) divides
f(T) in R™[T]].
Proof. Write
fT)=a+aT+--, gT)=bo+bT+---.
Note that for an integer » > 1, if 7" divides ¢(7"), then it also divides f(T"). So without loss
of generality, we may assume that by # 0. Let
h(T)=co+ T+ --- € Frac(R)[[T]]
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be such that
f(T) = n(T)g(T),
i.e., co, 1, -+ € Frac(R) are defined by

Z Cibj = Qp.

i+j=n
Since £(cg) is an element of Z, for almost all ¢ € Homo,._aig(R, Z,), by lemma [A.3.1} ¢
belongs to R™. Suppose that cq, - - , ¢, are elements of R™. Then the image of
_ Qny1 — Z:'L:o Cibpy1
Cn+1 =
bo

under ¢ is an element of Z, for almost all ¢ € Homp,_a14(R, Z,). By lemma Cnp1 € R™.
By induction, ¢; € R™ for all i € Zs,.
U

A.5. Integrality of determinants

Let O be a finite type Og-subalgebra of Zp. Let O™ denote the integral closure of O in
its fraction field and M denote a finitely generated torsion O[[T']]-module. Suppose that M
is a perfect O[[T]]-module. The image of detoyrM in Frac(O[[T]]) (considered without the
grade) under the composite map

detogryM — (detogr M) oy Frac(O[[T]])

= detivaco(r)) (M ®oyry) Frac(O[[TT))) (by proposition [2.1.2)
= detprac(ofr)) (0)
= (Frac(O[[T7)), 0)
is free and hence equal to (8/a)O][T]] for some nonzero elements «, 8 of O[[T]].

Proposition A.5.1. We have

(A5.1) char o 77y (M @ory O™([T]]) = ZO™([T7]).

g
Consequently, the element 3 divides o in O™[[T]].

Proof. The image of detoyrM in Frac(O[[T]]) (considered without the grade) under the
composite map

detom gy (M @ogry O™[[T]) < (detomry(M Qoyry O™([T1])) @omy Frac(O[[T]))
= detprac(ofr)) (M ®opry O™([T1]) @omry Frac(O[[T])))

= detrac(oyrr)) (0)

]

= (Frac(O[[T1)), 0)
: ; -1 : - :
is (charume iy (M ®oyry O™[[T]])) . So equation (A.5.1)) holds and hence 3 divides o in
O™t [[T7]]. O
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