Daniel Etiemble

Mathias Gaunard

Amal Laurent

Lenaïc Ian Florence

Khaled, Sylvain, Sarah Antoine Stéphanie

Keywords: Parallel architectures, DSELs, Active Library, Generative Programming, Generic Programming, C++

Pour nir, j'adresse mes plus forts remerciements à mes amis, mes proches ainsi qu'à mes parents et ma famille pour m'avoir soutenu et d'avoir été présents quelles que soient les circonstances.

Since the rst electronic programmable computer architecture was launched in 1943 (Colossus), computing power has been the main driving force in computer science as expressed by Moore's law. After decades of architectural improvements like superscalar architectures, caches, out of order execution and more, the manufacturers were facing the limits connected with power dissipation. It became a major issue and high frequencies were no longer a solution to the race for computational power. The alternative to higher frequency appeared at the start of the 21 st century with the rst multi-core processors. These new architectural designs allowed to safely increase the computational power of a chip. Multi-core processors are now the standard architecture. Parallel computing is not a new topic from the 21 st century as parallel computers exist since the early 60's. However the birth of multi-core architectures has changed the programming issues. After the change to multi-core based solutions, every machine can now be considered as a parallel architecture with dierent level of parallelism available through cores and Single Instruction Multiple Data (SIMD) units.

Why high performance computing matters?

The race for computing power is a response to the need of new high-performance applications. As an example, sensors can generate a large amount of data with a constant increase in precision and quality over the past decade. Image processing, photography, video and audio are good examples of such an increase. The size of data sets involved in these applications is now substantial. As a consequence, softwares need to deal with high numbers of memory allocations. As an other example, scientic problems often perform an important amount of computations due to the complexity of algorithms. Furthermore, some of these applications are real 2 Chapter 1. Introduction time based and must ensure the supply data at a x rate. The temporal constraint is therefore very important for the developer and every architectural features must be taken into consideration. Scientic simulations are also good "consumers" of computational power with complex algorithms and big data sets. The main goal here is to analyze a phenomenon with the outputs of the simulation. The simulation is mostly used on dierent data sets with variable parameters for the algorithm embedded in the simulation application. In this context, simulations can reach several hours of execution.

For scientists, the time constraint is a limitation to their analysis of a problem. Scientic researchers then become dependent on the execution time of the simulation.

Developing a fast and reactive application in a reasonable amount of time now requires expertise in various elds of computer science. The scientic community has a huge range of specialized domains and presents an even wider range of dedicated scientic applications to solve new challenges.

The common point in the previous examples is the constant need for speedup in applications. To satisfy this requirement, some solutions are available. First, working on the algorithm to limit the number of operations is a start but this approach is not always relevant as some accuracy or strength problems can occur.

An old solution was to wait for the next generation of processor but the correlation in the Moore's law between the number of transistors on a chip and the computing power has changed. The transistor density is still increasing due to the rise of new parallel architectures. Applications can now take advantage of new architectural features and improvements. Using a parallel architecture at the best of its computing capabilities requires parallel programming.

Fast programming of fast applications?

Developing large applications in a simple, fast and ecient way has always been an issue for software developers. This limitation comes from severals factors. First, the diversity of architectures slows down the optimization process of an application. Mickael J. Flynn introduced a synthetic classication [START_REF] Flynn | Some computer organizations and their eectiveness. Computers[END_REF] reecting the dierent types of architecture. Figure 1.1 illustrates this classication. Multiple Instruction Single Data architectures are rare and exist only for very specic tasks. From Single Instruction Single Data machine to Multiple Instruction Multiple Data machines, this taxonomy is not reecting completely the wide landscape of parallel architecture. Eric E. Johnson completed the Flynn's taxonomy [START_REF]Completing an mimd multiprocessor taxonomy[END_REF] by classifying MIMD architectures according to their memory and communication mechanisms.

Regarding these two taxonomies, developing an optimized and portable application is a tenacious and time consuming task. In addition, each computing system is not always available for the software development due to the cost of such a test farm.

Another factor is the increasing number of parallel programming tools available. From pure system oriented libraries like thread managers to domain oriented libraries or low level intrinsics calls, developers are confronted to a very dicult The previous factors impact the source code of a application by increasing the verbosity of the programming style. Algorithms are then buried in several implementation details and the readability of the source code is decreased. To face the limitations of low level programming, domain oriented languages oer a high level interface tie to the corresponding domain. They are known as Domain Specic Languages (DSLs) and their high expressiveness allows scientists to focus on their application challenges.

Computer science is a specic domain sitting near mathematic, physics, biology and countless others. The diversity of the scientic community comes with a lot of dierent programmer backgrounds. Some of them are programming experts while others have face the challenges of writing their own programs. Most of these programs are often suitable candidates for parallel speedups on modern computer architectures. Parallel programming requires a good knowledge of the dierent programming models and their dedicated frameworks. On top of that, architecture specic optimizations can be added which is a non trivial task for non expert programmers.

In this context, scientists are not on par with computer experts to write high performance applications. Therefore writing a fully parallel version of an application should not be part of their work. Their main focus should be designing new mathematical models or algorithms.

Objectives

Parallel architectures can provide computing power for scientic applications but the use of such architectures is a dicult task due to several aspects. The diversity of the hardware and the multiplicity of software solutions does not facilitate the development of applications. It is in this context that we present our work. It focuses on a new software design methodology for developing architecture aware tools that are able to provide expressiveness and performance.

Architecture aware software designing

Designing parallel software requires the use of multiple architectural features. The accessibility of such features is tied to dierent programming techniques. When using these techniques, it then becomes dicult to design portable softwares that will be able to select architecture specic implementations. This multi-architectural approach also requires an extensible design of the software that will ease its maintenance. The design of such software requires a new methodology and developers need to have programming facilities to integrate this new type of approach.

High level tools for Scientic Computing

In addition to this new design methodology, scientic computing tools built on top of it must provide expressiveness to their users. This expressiveness can separate architectural implementation details from the original algorithm to give a high level programming style. This type of model is required to alleviate the user from non trivial architecture oriented programming. Thus, the performance of such tools must stay comparable to an original optimized version of the software. The code of such applications should be written once and just recompiled on dierent architecture.

Our contribution

We propose a methodology for designing software with multi-architectural support without loss of performance and expressiveness. In this thesis, we present this new approach and three programming tools that implement this new methodology. The typescript is organized as follow:

• Chapter 2, From Architectures to Applications. In this chapter, we present a quick overview of today's architectures with their multiple levels of parallelism. Then, we introduce the programming tools available for these architectures. From there, we detail domain specic libraries and Domain Specic Languages (DSL). For each of them, the state of the art focuses on their parallel features and expressiveness. We show that dierent approaches have been chosen to solve the performance/expressiveness issue. But a remaining challenge is to combine both of them inside a programming tool. At the end of this chapter, we conclude on the software design directions taken for the development of a multi-architecture parallel programming tool and we propose to focus our work on designing DSELs in C++ .

• Chapter 3, A Generic and Generative Programming Approach for DSL. We rst show the state of the art of the current practices for designing a DSEL in C++ , focusing especially on generic and generative programming techniques and the expression template technique. We then discuss the challenges behind the design of a Domain Specic Embedded Language in C++ and the DEMRAL methodology. For this purpose we introduce the need for genericity in such a context. We nally present our approach : the Architecture Aware DEMRAL methodology (AA-DEMRAL) which aims at making the design of DSELs aware of architectural information.

• Chapter 4, The Boost.Dispatch Library. In this chapter, we present a library that helps the development of software based on the AA-DEMRAL methodology: the Boost.Dispatch library. Function dispatch is a C++ technique that aims at selecting the best implementation of a function according to its argument types. In the context of parallel programming, specic architecture details need to be injected during the selection process of a function implementation. The Boost.Dispatch library is presented in this chapter as an architecture aware function dispatching library like the introduced concept in chapter 3. First, we present the challenges behind such a library. Then, go through an example to illustrate a typical use case of Boost.Dispatch.

• Chapter 5, The Boost.SIMD Library. This chapter presents the usefulness of the AA-DEMRAL methodology and Boost.Dispatch is used in this context to build a high level programming tool. We present Boost.SIMD, a C++ template library that aims at simplifying the programming of SIMD extensions. After describing the hardware context in which this library takes place, we discuss the challenges of such a tool. The API of the library is detailed and the library is illustrated with a case analysis. Then, implementation details are presented . We nally assess its performances.

• Chapter 6, NT2: an Architecture Aware DSEL Framework. After presenting Boost.SIMD, we introduce NT 2 , a C++ template library with a Matlab like syntax. On top of various parallel programming idioms, NT 2 is built as a DSEL for high performance numerical computing on modern architectures. NT 2 adds a level of abstraction on top of Boost.SIMD and is able to handle multiple levels of parallelism. In this chapter, we present the challenges to design such a high level library and then we detail its API. We then discuss implementation details of the library and show how the core of NT 2 behave. Finally, we present benchmarks to validate the eectiveness of the library.

• Conclusion and perspectives. In this nal chapter, we summarize all the results obtained in this typescript. To conclude, we discuss new directions for further research work. Architecture manufacturers have always pushed the design of machines whenever the hardware technology permitted it. With an ever growing architecture landscape, High Performance Computing (HPC) keeps taking advantage of these new designs.

Software developers now need to stay up to date with the hardware when it comes to developing fast and reactive applications. Realizing such a task requires a rigorous methodology that combines hardware and software features. This chapter gives an overview of the various hardwares and softwares. We rst present the contemporary hardware context of parallel programming with a description of the most relevant architectures. We then detail the software environment related to the introduced architectures.

The Wide Architecture Landscape

This section describes the various hardwares available in todays computing systems that range from SIMD extensions to distributed memory systems. The purpose of this section is not to fully detail every architecture but to give an outline that Chapter 2. From Architectures to Applications illustrates what kind of architectures a modern scientic computing system can integrate.

SIMD extensions

Since the late 90's, processor manufacturers have been providing specialized processing units called multimedia extensions or Single Instruction Multiple Data (SIMD) extensions. The introduction of this feature has allowed processors to exploit the latent data parallelism available in applications by executing a given instruction simultaneously on multiple data stored in a single special register. With a constantly increasing need for performance in applications, today's processor architectures oer rich SIMD instruction sets working with increasingly larger SIMD registers. In the mid 90's, processor manufacturers focused their interests on developing parallel computing units that would permit to alleviate the CPU workload by computing a large amount of data at the same time. Indeed, business growth in multimedia applications brought out needs in terms of computing power. The preliminary tests of HP and Sun MicroSystem [START_REF] Slingerland | Performance analysis of instruction set architecture extensions for multimedia[END_REF] permitted to x the basics of SIMD extensions and opened the eld for Intel and Motorola.

Intel enhanced the x86 instruction set with the SSE family. The MMX [START_REF] Peleg | Mmx technology extension to the intel architecture[END_REF] instruction set is historically the rst x86 SIMD instruction set introduced by Intel in 1997 with their P5-based Pentium series but it re-used oating point registers from the CPU, disabling scalar and SIMD computation at the same time. It also only works on integers types. The SSE family started ocially in 1999 with the Pentium III for Intel and later with the AthlonXP for AMD.

In 1996, Motorola worked with Apple to design the new PowerPC G4 architecture. Motorola beneted from the experiences of its concurrents and decided to start from scratch a new extension. Finally, in 1999, the Apple PowerPC G4 went out with an Altivec unit from Motorola [START_REF] Diefendor | Altivec extension to powerpc accelerates media processing[END_REF].

2.1. The Wide Architecture Landscape 9 Since these early designs, SIMD extensions manufacturers have continued to increase the size of their dedicated registers and kept adding specic instructions.

As an example, the forthcoming extension from Intel is AVX-512. It complements the SSE family and will be introduced in the next generation of the Xeon Phi series, Knights Landing coming in 2014. SIMD extensions introduced a method to handle data parallelism in mono-threaded applications.

2.1.2 From single core to multi-core

Processor manufacturers managed to optimize their CPU core by increasing the frequency and working on architectural optimizations like caches, instruction sets, pipelines, and superscalar architectures. The manufacturers then faced a technology limitation while increasing the frequency of their CPUs: the CPU power dissipation is directly related with the frequency. The dynamic power consumption of logic-gate activities in a CPU is approximated by the following formula: P = CV 2 f where C is the capacitance, f the frequency and V the voltage. As a consequence, the power dissipation became a problem that is correlated with the decrease of the size of transistors. Since 2004, the processor frequency tends to stagnate. To alleviate this problem, manufacturers started to look for alternatives. Parallel computing was favored by the industry as a solution.

A lot of dierent congurations exists. Here, we show the main trend of manufacturers that is to constantly increase the core parallelism level in their new designs.

In Since then, multi-core designs has been the solution for manufacturers. Desktop and server processors are now proposing increasingly more cores. As an example the last series of Intel desktop processors proposes a Core i7-4770K running at 3.9 GHz with four physical cores (see gure 2.2). This processor embed the Hyper-Threated (HT) technology that was rst released in the Pentium 4 Northwood (2000). It consists in sharing resources from a superscalar architecture by seeing two logical core inside a single physical core. In the case of the Core i7-4770K, the Operating System will see 8 logical cores and will be able to schedule 8 processes on these logical cores.

Server based solution increase signicantly their number of cores. AMD Opteron solutions can go up to 16 cores and Intel Xeon solutions are up to 12 physical cores (24 logical cores with HT). Other manufacturers, like ARM, follows this approach and provides multi-core based architectures.

Accelerators

Multi-core architectures now propose a level of parallelism but it may not be sucient with heavy computational applications. Accelerator based solutions appeared as a response to this demand. Accelerators are able to ooad the CPU workload. In this section we present the main accelerators of our contemporary era.

• General Purpose Graphic Processing Unit

A Graphic Processing Unit or GPU is a dedicated integrated circuit designed to manipulate and accelerate the creation of images intended for output to a display system. These designs are a large consumer product thanks to the popularity of video games. They are designed as massively parallel to perform complex image calculation and their cost is reduced due to their availability in desktop computers.

As parallel architectures for heavy computation are expensive and can not be acquired easily, GPUs are now a relevant solution for parallel computing [START_REF] Luebke | Gpgpu: Bibliography 163 general-purpose computation on graphics hardware[END_REF].

• Intel Xeon Phi

The Xeon Phi is a Many Integrated Core Architecture, as stated by its earlier name: the Intel MIC. This architecture include early research interests from the Chapter 2. From Architectures to Applications competes with NVIDIA on the co-processor HPC market.

Distributed memory systems

A distributed memory system is a parallel machine with multiple computer architectures called nodes working together. Each node has its own memory and is connected with all the other nodes within a network topology creating a cluster. As each node has its own memory, these architectures requires a distributed computing approach. A node can present dierent congurations. It can hold several multi-core processors and a multi-GPU system or a Xeon Phi for example.

A distributed system like Titan is composed of 299,008 AMD Opteron cores and 18,688 GPUs grouped in 18,688 nodes. Each node has 38 GB of memory. Titan is ranked at the second place of the top 500 super-computer list. Figure 2.5 shows the scale of a system like Titan. These type of clusters are designed for intensive applications with a heavy workload and large data sets to manipulate.

Conclusion

We saw in this section the diversity of architectures that developers encounters.

Giving an exhaustive overview of such a large eld is a hard task due to each manufacturer having dierent hardware architectures. Current trends are:

• Small-scale systems: cores coupled with SIMD units

• Big-scale systems : distributed memory systems + accelerators A scientic computing system can be seen as a hierarchical system with dierent levels of parallelism. It can also present heterogeneous architectures. Architectures improvements are happening quickly and developers need to handle this race when it comes to programing parallel applications in a portable way.

Programming the Landscape

In this section, we present the tools available to develop on parallel architectures introduced in section 2.1. We present each tool by focusing on their expressiveness and their target support.

Low Level Parallel Tools

SIMD tools

We introduced SIMD extensions in section 2.1.1 as a specic hardware computation unit for data parallelism. The specic instruction set of an SIMD extension can be used in dierent ways.

• The most common way to take advantage of a SIMD extension is to write calls to intrinsics. These low level C functions represent each SIMD instruction supported by the hardware, and while being similar to programming with assembly language it is denitely more accessible and optimization-friendly. With a lot of variants to handle all SIMD register types, the set of intrinsics usually only covers functionality for which there is a dedicated instruction, often lacking orthogonality or missing more complex operations like trigonometric or exponential functions. Due to its C interface, using intrinsics forces the programmer to deal with a verbose style of programming. Furthermore, from one extension to another, the Application Programming Interface (API) diers and the code needs to be written again due to hardware specic functionalities and optimizations. For example, some instruction sets provide fused operations that are optimized. Listings 2.1 presents a multiply and add operation implemented with SSE4.2.

Listing 2.1: SSE4 multiply and add implementation __m128i a , b , c , result ; result = _mm_mullo_epi32 (a , _mm_add_epi32 (b , c)) ;

On Altivec, the same multiply and add operation can be performed by a fused operation called FMA (Fused Multiply Add). Listing 2.2 shows the call to the intrinsic vemdd that does the fused operation. Chapter 2. From Architectures to Applications

• Compilers are now able to generate SIMD code through their autovectorizers.

This allows the programmer to keep a standard code that will be analyzed and transformed into a vectorized code during the code generation process. Autovectorizers have the ability to detect code fragments that can be vectorized. For example, GCC autovectorizer [START_REF] Nuzman | Multi-platform auto-vectorization[END_REF] is currently available in GCC releases. This automatic process nds its limits when the user code is not presenting a clear vectorizable pattern (i.e. complex data dependencies, non-contiguous memory accesses, aliasing or control ows). The main approach is to transform the innermost loop-nest to enable its computation with SIMD extensions. The SIMD code generation stays fragile and the resulting instruction ow may be suboptimal compared to an explicit vectorization. Still on the compiler side, code directives can be used to enforce loop vectorisation (5prgm simd for ICC and GCC) but the code quality relies on the compiler and this feature is not available in every one of them. Dedicated compilers like ISPC [START_REF] Pharr | ispc: A spmd compiler for high-performance cpu programming[END_REF], Sierra [START_REF] Leiÿa | Sierra: A simd extension for c+[END_REF] or Cilk [START_REF] Arch D Robison | Composable parallel patterns with intel cilk plus[END_REF] choose to add a set of keywords to the language to explicitly mark the code fragments that are candidates to the automatic vectorization process. VaporSIMD [START_REF] Nuzman | Vapor simd: Auto-vectorize once, run everywhere[END_REF] proposes another approach which consists in autovectorizing the C based code to get the intermediate representation of the compiler and then use a Just In Time based framework to generate portable SIMD code. With most of these approaches, the user code becomes non-standard and/or strongly dependent on specic compiler techniques. These techniques also rely on generating SIMD code from scalar code, disregarding the specicities of each of these computing units, including shue operations and intra-registers operations.

• Libraries like Intel MKL [START_REF]Intel. Math kernel library. httpXGGdeveloperFintelFomGsoftwreG produtsGmklG[END_REF] or its AMD equivalent (ACML) [START_REF] Gorlatch | Amd core math library. httpXGGdeveloperFmdFomGlirriesG mlGpgesGdefultFspx[END_REF]. Those libraries oer a set of domain-specic routines (usually linear algebra and/or signal processing) that are optimized for a given architecture. This solution suers from a lack of exibility as the proposed routines are optimized for specic use-cases that may not match arbitrary code constraints.

In opposition to this "black-box" approach, ne grain libraries like Vc [START_REF] Kretz | Vc: A c++ library for explicit vectorization[END_REF] and macstl [START_REF] Ustl | [END_REF] propose to apply low level transformations to a specic vector type. For macstl, its support stops at SSE3 and its interface is limited to a few STL-compliant functions and iterators. Vc has a C++ class based approach with support for x86 processors only (SSE to AVX) and provide a list of SIMD enabled mathematical functions.

Multi-core tools

Modern architectures are composed of multiple cores per chip and sometimes of multiple multi-cores like stated in section 2.1.2. Several tasks can be executed in parallel on these cores to speed up the computation. Multithreading allows to work with execution threads that are carried out on several computing units or cores.

The main tools for such a programming model are pThreads, OpenMP and the Intel Thread Building Blocks Framework (TBB).

• pThread

The pThread library is an implementation of the POSIX 1003.1c Standard. The library provides a set of low level functions for creating, joining, synchronizing and destructing threads. These functions let the developer decides the life cycle of a thread. Listing 2.3 presents a simple sum of two arrays using pThread. for (int i =0; i <4; i ++) pthread_join (t [i], NULL); }

In this example, we instantiate four phred structures to create four threads with the pthredrete function. The thread is created when this function terminates. We nally join and synchronize the threads with the pthredjoin function.

pThread does not constraint the developer with a programming model. With this approach, the amount of applications that can take advantage of multithreading is more important. Task parallelism and data parallelism can be achieved with this library. However, pThread provides a really low level API resulting in a verbose programming style. Boost.Thread is an object oriented implementation of this Standard. Its interface is more high level and a set of classes permits to avoid the classical errors of concurrent programming.

Chapter 2. From Architectures to Applications

• OpenMP

OpenMP is a Standard that specify directives and functions for using multithreaded programming through a high level interface [START_REF] Dagum | Openmp: an industry standard api for shared-memory programming[END_REF]. These directives and functions are inserted in the source code and they enable to share the computation between cores. The directives tell to the compiler how to parallelize the corresponding code section. Listing 2.4 presents the same task achieved in listing 2.3 but written with OpenMP.

for (i =0; i < 1000; i ++) r[i] = b [i]+ a[i]; } }
In this example, we rst open a parallel section by using the omp prllel directive.

In this section we dene the scope of the variables.

The arrays , and are then shared between the cores via the shred directive. The i variable stays locals to each processors. The next section performs the eective parallelization with the omp for directive. It ags the following loop as a candidate for parallelization. The shedule@dynmiA option species how the loop will be distributed on each core. Here, each thread will get an iteration to perform and if a thread nishes its iterations it returns to get another one.

In opposition to pThread, OpenMP presents a simple model for programming Symmetric MultiProcessing machines. The data distribution and their decomposition is automated by the compiler directives. On the other hand, the portability of such a model relies on the support of the Standard inside compilers. The OpenMP 3.0 [START_REF]Openmp 3.0 specications. httpXGG wwwFopenmpForgGmpEdoumentsGypenwRFHFHFpdf[END_REF] Standard added the concept of tasks to the unied C/C++/Fortran specication of OpenMP 2.5. The new 4.0 version [START_REF]Openmp 4.0 specications. httpXGG wwwFopenmpForgGmpEdoumentsGspeQHFpdf[END_REF] released in July 2013 adds new features like : support for accelerators, SIMD, atomics, user dened reduction etc.

• Intel TBB

Intel TBB is a C++ template library that abstract multithreaded programming through high level primitives [START_REF] Reinders | Intel threading building blocks -outtting C++ for multi-core processor parallelism[END_REF]. The library mostly provides parallel implementations of algorithm like prllelfor, prllelredue or containers like vectors and queues. These implementation presents a Standard Template Library style. Listing 2.5 presents a simple average lter written with TBB. We then write a high level function which calls the prllelfor primitive.

This primitive is close to OpenMP in terms of behavior.

prllelfor@rngeDodyDprtitionerA provides a high level abstraction for parallel iterations. It represents parallel execution of ody (sum in our example) over each value in rnge (a lokedrnge`b in our example). The optional prtitioner species a partitioning strategy to distribute the iterations over the threads. Here, no partitioner appears in the call, TBB will use the default partitioner utoprtitioner which automatically split the range.

TBB takes advantage of C++ template programming to provide high level primitives. In addition, templates also add genericity when the code needs to work with dierent types.

• Further works on parallelizing loops has been done at the compiler level. By extending the polyhedral model to multi-core systems, new control structures provides a way to parallelize and nest parallelize loops. The multifor control structure introduced in [START_REF] Fassi | Multifor for multicore[END_REF] is an example of such an approach.

Chapter 2. From Architectures to Applications

Distributed memory system tools

• MPI

The main tools for such systems are implementations of the Message Passing

Interface Standard [START_REF] Jack J Dongarra | An introduction to the mpi standard[END_REF]. Well known implementation are OpenMPI [START_REF] Gabriel | Open mpi: Goals, concept, and design of a next generation mpi implementation[END_REF] and MPICH-2 [START_REF] Nicholas T Karonis | Mpich-g2: A grid-enabled implementation of the message passing interface[END_REF]. This Standard presents functionalities for programming distributed memory systems:

• management of point to point and global communications;

• support for multiple languages (C, C++, Fortran, Java);

• possibility of developing high level libraries;

• heterogeneous support;

• support for multiple process topologies.

Listing 2.6 shows a "ping-pong" between two MPI processes that simply exchange their numerical identier (rank). The wssnit, wsgommrnk and wspinlize functions starts the MPI environment and we use wsend and wsev to communicate the rank. MPI can also interact with debuggers and performance analysis tools.

However, its API stays at a low level of abstraction. This lack of expressiveness makes it dicult to translate a sequential code to its parallel version. In addition, MPI has a verbose style of programming that impacts code readability and maintenance.

• HPX HPX [START_REF]Hpx. httpXGGstellrFtFlsuFeduGprojetsGhpxG[END_REF] for High Performance ParalleX is a Listing 2.7 presents the Fibonacci sequence written with HPX. This example nicely illustrates the principles of Future on which the library is based. Futures are part of the C++11 Standard and HPX extends this feature to build an ecient runtime system. A HPX Future object encapsulates a delayed computation that can be performed on a locality. This object behaves like a proxy for a result that is not computed yet. It synchronizes the access of its result by suspending the thread requesting the value until the value is available. At line 16 and 17, we spawn HPX Futures to compute the N -1 and N -2 elements of the Fibonacci sequence. This is performed by asynchronously synchronizing the HPX fionition 20 Chapter 2. From Architectures to Applications recursively. Then, each elements of the sequence is computed asynchronously in a Future object spawns on the current machine (see the locality at line 13 that is set to findhere@A). Futures will then returns their results as soon as they are available.

Such an approach enables HPX to get rid of global barriers for synchronizing threads of execution, then making the library able to improve the scalability of programs.

• Stapl STAPL [START_REF] An | Stapl: An adaptive, generic parallel c++ library[END_REF] (Standard Template Adaptive Parallel Library) is based on ISO Standard C++ components similar to the "sequential" ISO C++ Standard library. The library works with parallel equivalents of C++ containers (pContainers) and algorithms (pAlgorithms) that interacts through ranges (pRange). It provides support for shared and distributed memory and includes a complete runtime system, rules to easily extend the library and optimization tools.

Conclusion

Programming modern parallel architectures requires a non negligible level of expertise due to the dierent abstraction levels introduced by the tools. From SIMD extensions to distributed memory systems, programming models diers and each application needs to be rethought in parallel. The source code also needs to be rewritten according to the chosen tools. Furthermore, the developer may want to combine dierent programming models and for example, take advantage of multicores and SIMD extensions within the same code. This task can be error prone and takes a signicant amount of time. This limitation becomes particularly important when non parallel programming experts need to face this challenge.

Domain Specic Libraries for Scientic Computing

In this section, we present the most popular domain specic libraries related to scientic computing. These libraries provides "ready to use" sets of functions for a specic domain. We mainly focus on dense linear algebra, image and signal processing libraries to illustrates the solution proposed by domain specic libraries for Scientic Computing.

Linear algebra libraries

The linear algebra domain uses intensively common operations like copying, vector scaling, vector dot products, linear combinations, and matrix multiplication.

The Basic Linear Algebra Subprograms (BLAS) provides a set of low-level kernels that gathers these common operations. The rst version was written in Fortran [START_REF] Chuck L Lawson | Basic linear algebra subprograms for fortran usage[END_REF]. The BLAS API became a standard and several implementations have been realized. The standard implementation coming from Netlib is not optimized for parallel architectures. The Intel MKL library [START_REF]Intel. Math kernel library. httpXGGdeveloperFintelFomGsoftwreG produtsGmklG[END_REF] and its concurrent, the AMD Core Math Library [START_REF] Gorlatch | Amd core math library. httpXGGdeveloperFmdFomGlirriesG mlGpgesGdefultFspx[END_REF] (ACML), provides highly optimized BLAS routines for x86 processors with support for SIMD extensions and multithreading. GotoBLAS [START_REF] Goto | Texas Advanced Computing Center[END_REF],

OpenBLAS [START_REF] Xianyi | Openblas, version 0.2. 8[END_REF] and ATLAS [START_REF] Whaley | Automated empirical optimizations of software and the atlas project[END_REF] (Automatically Tuned Linear Algebra Software) are open source implementations of the BLAS and provide dierent levels of architecture optimizations. A GPGPU version of the BLAS is also available called cuBLAS [START_REF][END_REF] from NVIDIA and uses CUDA to accelerate the BLAS operations.

The Accelerate framework [START_REF] Apple | Accelerate framework reference. httpsXGGdeveloperFppleFomG lirryGmGdoumenttionGeelerteGefereneGeelertepefG indexFhtml[END_REF] from Apple also provides an implementation of the BLAS.

The intent of BLAS subroutines is to be reused in linear algebra libraries and routines. The LAPACK [START_REF] Anderson | LAPACK Users' guide[END_REF] and LINPACK [START_REF] Jack J Dongarra | LINPACK users' guide[END_REF] libraries from Netlib [START_REF] Browne | The netlib mathematical software repository[END_REF] are making intensive use of the BLAS subroutines to build solver routines (simultaneous linear equations, least-squares solutions of linear systems of equations, eigenvalue problems, etc) or matrix factorization routines (LU, Cholesky, QR, etc). The performance of LAPACK is then dependent on the BLAS performance. The LAPACK API has also several optimized implementation. PLASMA [START_REF] Agullo | Numerical linear algebra on emerging architectures: The plasma and magma projects[END_REF] is a multithreaded implementation of LAPACK and can be linked with a SIMD optimized BLAS. MAGMA [START_REF] Agullo | Numerical linear algebra on emerging architectures: The plasma and magma projects[END_REF] proposes a hybrid support by taking advantage of GPUs and multi-core CPUs. ScaLAPACK [START_REF] Choi | Scalapack: A scalable linear algebra library for distributed memory concurrent computers[END_REF] is optimized for distributed memory systems and can be linked with an optimized BLAS. The Intel MKL library proposes highly optimized implementations of LAPACK and ScaLAPACK.

The BLAS and LAPACK related libraries suers from the lack of abstraction

Image and signal processing

The domains of image and signal processing are often constrained by an output rate that needs to be xed. This temporal constraint is now increasingly more important as the sizes and the numbers of inputs increases. This increase is related to technological improvements of sensors for example. This section presents the main solutions of these domains.

• Intel Integrated Performance Primitives [START_REF] Taylor | Optimizing Applications for Multi-Core Processors, Using the Intel Integrated Performance Primitives[END_REF] (Intel IPP) is a C/C++ multithreaded and SIMD optimized library for multimedia and data processing software. Intel provides support for MMX, SSE to SSE4, AES-NI and multi-core processors. The library provides functions for image and signal processing.

• OpenCV [START_REF] Bradski | Learning OpenCV: Computer vision with the OpenCV library[END_REF]

Conclusion

The domain specic library approach introduces a level of abstraction with its function based programming style. Architectural optimizations are available and buried inside the library. Function semantic allow the developer to focus on domain specic calls but such an approach is still limited in terms of expressiveness. For example, memory allocations and specic library initialization techniques decrease the readability of the source code. The next level of abstraction can be reached when using a language designed with a semantic tied to a specic domain: a Domain Specic language or DSL.

Domain Specic Languages

A Domain Specic Language (DSL) is a programming language designed for a specic application domain. Its entire specications are dedicated to the corresponding domain. It is then in opposition with classical programming languages that are designed for a general purpose. Martin Fowler proposes a denition of this approach in [START_REF] Fowler | Domain-specic languages[END_REF]. These languages improve the productivity of developers by alleviating the complexity of classic code and proposing a domain oriented abstraction for the language. Working with such languages also improves the interaction between domain experts and developers. A DSL provides a common syntax that has the advantage of being used by domain expert to express their ideas. Then, the DSL description of an algorithm is also an executable software. As DSLs allow solutions to be expressed in the idiom and at the level of abstraction of the problem domain, the maintainability and quality of code is increased. In critical cases, like for example in languages like Erlang/OTP [START_REF] Derrick | Property-based testing -the protest project[END_REF], domain specic validations or testing are made easier, since statements written with a given DSLs can be considered safe by design.

Several DSLs are available and their application domains can be very large.

As a rst example, L A T E X is a DSL for editing and preparing documents. L A T E X targets the communication and publication of scientic documents. The philosophy of L A T E X is that authors should focus on the content of the document instead of the visual presentation of the document. Authors then specify the logical structure of the document by using a set of tags. Another example is the Structured Query Language (SQL) that provides a normalized language for exploiting databases. A annotated bibliography of DSLs is available in [START_REF] Van Deursen | Domain-specic languages: An annotated bibliography[END_REF]. Another notable initiative is the R language [START_REF] Core | R: A language and environment for statistical computing[END_REF]. R proposes a complete environment for statistical computing and is widely used by data miners and statisticians. It is mostly used to design data analysis and statistical software.

In Scientic Computing, the related domains like mathematics or physics are targeted by the Matlab language [START_REF]The matlab language. httpXGGwwwFmthworksFfrGprodutsG mtlG[END_REF]. The Matlab language is a DSL that comes with numerical computing environment. DSELs are languages implemented inside another, usually general-purpose, host language [START_REF] Czarnecki | Dsl implementation in metaocaml, template haskell, and c++[END_REF]. They share the advantages of DSLs as they provide an API based on domain specic entities and relations. However, DSELs usually do not require a dedicated compiler or interpreter to be used as they exist inside another general purpose language. They are usually implemented as a library-like component often called Active Libraries [START_REF] Czarnecki | Generative programming and active libraries[END_REF][START_REF] Veldhuizen | Active libraries: Rethinking the roles of compilers and libraries[END_REF] in languages providing some level of introspection or providing constructs to manipulate statements from within the language. If such features are common in functional languages (like OCaml or Haskell) or scripting languages (like Ruby), they are less so in imperative languages. C++ is providing a set of similar features thanks to template based meta-programming [START_REF] Abrahams | C++ Template Metaprogramming: Concepts, Tools, and Techniques from Boost and Beyond (C++ in Depth Series)[END_REF].

• Blitz++ [START_REF] Todd | Blitz++: The library that thinks it is a compiler[END_REF] is a C++ template library for high performance mathematics.

The library relies on advanced C++ techniques to provide optimized mathematical operations. Historically, Blitz++ is the rst library to use C++ template meta-programming (see chapter 3) and has been recognized as a pioneer in this area.

• Armadillo [START_REF] Sanderson | Armadillo: An open source c++ linear algebra library for fast prototyping and computationally intensive experiments[END_REF] • MTL 1 [START_REF] Gottschling | Representationtransparent matrix algorithms with scalable performance[END_REF] is a generic library developed by Peter Gottschling and Andrew

Lumsdaine for linear algebra operations on matrices and vectors. It supports BLAS-like operations with an intuitive interface but its main focus is on sparse matrices and vector arithmetic for simulation software. The library use Expression

Templates at a lower scale than most tools, as it is restricted to handle combination of kernels. In addition to the performance demands, MTL4 hides all this code complexity from the user who writes applications in natural mathematical notation.

Conclusion

We saw in this section the diversity of available solutions for scientic computing.

Low level libraries/tools permit ne-grained programming for parallel architectures but end up hiding domain specic informations therefore preventing the user from focusing on the domain related algorithm. Domain specic libraries are able to embed this low level approach inside functions. They provide functions with semantic information of the domain but are still dependent on languages like C or Fortran and the user needs to be familiar with them. DSLs alleviate these limitations by their high expressiveness tie to a specic domain but lack in performance due to their implementations prevents a DSL like Matlab to be used in the context of Scientic Computing that is performance driven. The DSEL approach proposes an implementation design that enables the use of powerful features from the host language. In the case of C++ , DSELs can reach architecture optimizations through its common support for C based libraries.

Proposed Approach

Our approach aims at developing high level tools for scientic computing. We want to take advantage of expressiveness for designing a simple and intuitive API for the user. As stated earlier in this section, DSLs are the most abstract languages with a domain oriented semantic but their performances are not relevant for scientic computing. DSELs are then good candidates. Embedded in a host language, they allow to use the language features and then take advantage of the reachable performance of the language.

1 Matrix Template Library Chapter 2. From Architectures to Applications C++ through its template mechanism can be used for such an approach and several tools illustrate it. We therefore chose the approach of a C++ DSEL based solution for its expressiveness. Working with C++ also allows us to reach architecture level optimizations through its native aspect. On the architectural side, the diversity of available systems is signicant. We then choose to target small-scale systems (multi-cores with SIMD extensions). The interest for such systems is rising due to their massive availability nowadays. To develop such a solution, we introduce two paradigms that will ease the development of a DSEL : Generic and Generative Programming. In the previous chapter, we presented the approach chosen for our research works.

DSELs has been preferred for their ability to be embedded in a host language without losing their expressiveness aspect. We also introduced the need for software design to be tied to the parallel architecture features. In this chapter, we present the DSEL approach and its related techniques. We rst detail the software context of such languages. Then, we introduce the existing design methods. We nally present a new methodology for designing Architecture Aware DSELs (AA-DSELs).

Software context

In our case, the design of DSELs takes place in the context of scientic computing.

As stated in chapter 2, developing complex and fast scientic applications is not a trivial task. This diculty is the result of a large conguration space composed of algorithmic and architectural requirements.

28 Chapter 3. A Generic and Generative Programming Approach for DSL

The conguration space approach

The conguration space approach gathers dierent optimization techniques. These techniques rely on a common optimization process which purpose is to explore a space of possible congurations.

The optimization process then combines algorithmic and architectural factors for a specic system. This process leads to the selection of a factor combination. The resulted combination then ensures an optimal performance of the software. We can nd such an approach in dierent software solutions.

Iterative compilation [START_REF] Triantafyllis | Compiler optimization-space exploration[END_REF][START_REF] Pouchet | Combined iterative and model-driven optimization in an automatic parallelization framework[END_REF] is part of the conguration space techniques.

Classic compile-time optimization techniques relies on multiple code transformations that are applied through predictive heuristics. These heuristics become more and more inecient when the underlying architecture is complex. Moreover these transformations can degrade the performance in certain cases. Iterative compilation alleviates these limitations by exploring an optimization space and then choosing the best one. This selection process is also used at the library level.

Library based solutions can take advantage of such an approach by using pre-built optimized binaries. ATLAS [START_REF] Whaley | Automated empirical optimizations of software and the atlas project[END_REF] is one of them. It relies on the Iterative compilation technique that is used during the installation of the library. The binaries are accelerated by a hierarchical tuning system that takes care of low level functions. This system applies a large selection process for these functions and then ensures an optimal performance. Optimized binaries are then generated and BLAS 3 operations can exploit these versions.

In the previous solutions, the conguration space exploration takes place at compile-time.

Another method consists in exploring this space at runtime.

StarPU [START_REF] Augonnet | Starpu: a unied platform for task scheduling on heterogeneous Bibliography multicore architectures[END_REF] is a task programming library that uses a special runtime system.

This runtime can monitor in real-time the performance of each function on a given hardware conguration. It then allows the runtime of StarPU to select the most optimized version of a function. This monitoring method is able to tune the underlying algorithm of a function by changing its parameters (tiling size, number of iterations, etc) or the targeted architecture (CPU, GPU, hybrid version). Such a method allows a ne tuning of the application. The task scheduling strategy is chosen after a runtime exploration that permits to reduce load balancing and data locality issues.

The compile-time approach depends on the compiler implementation and limits the portability of an application. The runtime approach can have some overhead while scheduling tasks in the case of StarPU. These methods are still valid approaches and gives good results. To alleviate these factors, we aim at providing a library level system for such exploration that will complement the compiler work.

In the next section we detail techniques that provides a way to perform such an approach.

3.1. Software context 29 3.1.2 Library level exploration

Current approach

Design techniques for library level software in C++ relies for the most part on the object-oriented approach. Design patterns [START_REF] Gamma | Design patterns: elements of reusable object-oriented software[END_REF] are a relevant work based on this approach and provides a set of standard reusable designs for software development.

Introduced almost 20 years ago, this approach relies on recurrent patterns found in software development that can be generalized and reused in other contexts. This method has some limitations when it comes to dealing with many software components and especially with a large conguration space. In addition, the generalization of design patterns builds a semantic gap between domain abstractions on which rely expressiveness and programming language features on which rely performance. Then, performance penalties can then occur. To overcome these limitations, Czarnecki introduced Generative Programming [START_REF] Czarnecki | Components and generative programming[END_REF][START_REF] Czarnecki | Generative programming[END_REF] as a new paradigm for software development.

Generative programming

Generative Programming has been dened by Czarnecki in [START_REF] Czarnecki | Generative programming: Principles and techniques of software engineering based on automated conguration and fragment-based component models[END_REF] as "a comprehensive software development paradigm to achieving high intentionality, re-usability, and adaptability without the need to compromise the runtime performance and computing resources of the produced software". This approach consists in dening a model to implement several components of a system. Current practices assemble manually these components. For example, the Standard Template Library provides components that the user needs to aggregate according to his conguration knowledge. Generative Programming pushes further this approach by bringing automation in such practices. The model that the developer uses to assemble components is moved to a generative domain model. This results in a generator embedding a conguration knowledge that takes care of combining the components. This process then relies on the three following steps as stated in [START_REF] Czarnecki | Generative programming[END_REF]:

• design the implementation components to t a common product-line architecture;

• model the conguration knowledge stating how to translate abstract requirements into specic constellations of components;

• implement the conguration knowledge using generators.

Respecting these design considerations will ensure the transition from a conguration space with domain-specic components and features to a solution space that encapsulates expertise at the source-code level. This method can be embedded within a library. These specic libraries are called active libraries.

Active libraries

In opposition to classic libraries, Active libraries [START_REF] Veldhuizen | Active libraries: Rethinking the roles of compilers and libraries[END_REF] takes an active role during the compilation phase to generate code. They aim at solving the abstraction/eciency trade-o problem we introduced in chapter 2. They base their approach on dening a set of generative programming methods. These libraries provide domain-specic abstractions through generic components and also dene the domain-driven generator to control how these components are optimized. By carrying domain-specic semantic at a high level, this technique enables a semantic analysis of the code before any real code generation process kicks in. Such informations and transformations are then carried on by a meta-language that allows the developer to embed metainformations. Once the generator nds a solution space in the conguration space, the code generation phase starts resulting on an optimized version of the code. The main approach to design such libraries is to implement them as Domain Specic Embedded Languages (DSELs). As stated in section 2.2.4, DSELs are easier to design as they reuse general purpose language features and existing compilers. They also rely on a domain dependent analysis to generate ecient code.

Programming techniques

The implementation of active libraries is possible through a technique called Template Meta-programming.

Template Meta-Programming

Template meta-programming is a technique used to design active libraries. Templates provides a generative programming technique in which they are used by a compiler to generate temporary source code. The code generation process is done by meta-programs that are executed by the compiler itself. The resulting temporary source code is then merged with the rest of the source code. The compiler can then nally nish the compilation process. Through this technique, compile-time constants, data structures and complete function can be manipulated. The execution of meta-programs by the compiler enables the library to implement domain-specic optimizations that lead to a complete domain oriented code generation. Such a technique can be hosted by several languages like C++ [START_REF] Abrahams | C++ Template Metaprogramming: Concepts, Tools, and Techniques from Boost and Beyond (C++ in Depth Series)[END_REF], D [START_REF] Bright | Templates revisited. httpXGGdlngForgG templtesErevisitedFhtml[END_REF], Haskell [START_REF] Sheard | Template meta-programming for haskell[END_REF] and OCaml [START_REF] Serot | Functional meta-programming for parallel skeletons[END_REF]. Template meta-programming is then pushed further to design DSELs . This technique is called Expression Template.

Expression Templates

Expression Templates [START_REF] Todd | Expression templates[END_REF][START_REF] Vandevoorde | C++ Templates[END_REF] is a technique implementing a form of textbfdelayed evaluation in C++ [START_REF] Spinellis | Notable design patterns for domain-specic languages[END_REF]. Delayed evaluation in C++ is the entry point of the Expression Template technique. The delayed evaluation technique is also called lazy evaluation. C++ does not support delayed evaluation of expression natively.

Expression Templates are built around the recursive type composition idiom [START_REF] Jarvi | Compile time recursive objects in c++[END_REF] that allows the construction, at compile-time, of a type representing the abstract syntax tree of an arbitrary statement. This is done by overloading functions and operators on those types so they return a lightweight object which type represents the current operation in the Abstract Syntax Tree (AST) being built instead of performing any kind of computation. Once reconstructed, functions can be used to transform this AST into arbitrary code fragments using Template meta-programming on the AST type (see gure 3.1). The Portable Expression Template Engine or PETE [START_REF] Haney | Pete: The portable expression template engine[END_REF] extends the expression template technique and provides an engine to handle user dened types in expression statements. It is used in the POOMA framework [START_REF] John Vw Reynders | Pooma: A framework for scientic simulations on parallel architectures[END_REF] that provides a set of C++ classes for writing parallel PDE solvers. With PETE, the user can use the engine and apply transformations at the AST level. PETE presents some limitations and its engine does not allow the user to perform common transformations on the AST as it only evaluates expressions with a bottom-up approach. This engine also lacks of domain specic consideration while manipulating expressions.

Besides C++ based programming techniques, Scala [START_REF] Scala | Scala documentation. httpXGGdosFslElngForgGoverviewsG refletionGsymolsEtreesEtypesFhtml[END_REF] provides a native support for AST constructions and transformations.

32 Chapter 3. A Generic and Generative Programming Approach for DSL

The Boost.Proto library

To alleviate these shortcomings, Niebler has proposed a C++ compiler construction toolkit for embedded languages called Boost.Proto [START_REF] Niebler | Proto : A compiler construction toolkit for DSELs[END_REF]. It allows developers to specify grammars and semantic actions for DSELs and provides a semi-automatic generation of all the template structures needed to perform the AST capture.

Compared to hand-written Expressions Templates-based DSELs , designing a new embedded language with Boost.Proto is done at a higher level of abstraction by designing and applying Transforms that are functions operating via pattern matching on DSEL statements. In a way, Proto supersedes the normal compiler workow so that domain-specic code transformations can take place as soon as possible.

The main idea behind Boost.Proto is the construction of an AST structure through the use of terminals. A Boost.Proto terminl represents a leaf of an AST. The use of a terminl in a expression "infects" the expression and builds a larger Boost.Proto expression. These expressions are tied to specic domains as Boost.Proto aims at dening DSELs . To illustrate the possibilities of the library, we present a simple analytical function DSEL written with Boost.Proto . This DSEL will allow us to evaluate analytical expressions of the following form: @xBS C PFHBx E SA We will specify the value of x by using the parenthesis operator and it will also triggered the evaluation of the expression like in the following example: @xBS C PFHBx E SA@QFHA Boost.Proto can be seen as a compiler in the sense that it provides a similar way to specify your own language. In comparison to classic compilers, the rst entry point of the library is the specication of grmmr rules. Boost.Proto automatically overloads all the operators for the user but some of them may not be relevant for a DSL. This means that it may be possible to create invalid domain expressions. Boost.Proto can detect invalid expressions through the use of a Boost.Proto grmmr. A grmmr is dened as a series of valid grammar elements. In our example, we want to allow the use of:

• classical arithmetic operators;

• analytical variables;

• numeric literals.

We then dene a grmmr that matches these requirements: it is presented in listing 3.1. At line 7 of listing 3.1, we allow all terminals that hold a vriletg. This type enables the discrimination between analytical variables and other terminals.

At line 9, we allow numeric literals in our expressions.

For this specic case, Boost.Proto wraps the literals in terminals. We nally allow the arithmetic operators.

Boost.Proto can now construct valid ASTs. These expression trees does not encapsulate any domain semantic for now. The AST type is a raw tree as if it was extracted from the work-ow of a compiler. The library allow us to add domain semantic to an AST through the declaration of a user-dened domain and a user-dened expression class. This process allow the user to merge the domain-semantic information with the raw structure of an expression.

The next step consists in specifying the domain for our analytical DSL. This is done by inheriting from protoXXdomin and linking this domain to an expression generator of a user dened expression type. Listing 3. nlytilexpression class. We add a specic interface to this class as we want to be able to call the opertor@A on an expression to evaluate it with a given set of variables. It does not provide the denition of the opertor@A, we will see how we evaluate our expression later. At this point, we do not provide any particular behavior to this operator. We will see later how we evaluate an expression. Listing 3.3 presents the nlytilexpression class that inherits from protoXXextends. protoXXextends is an expression wrapper that imbues an expression with analytical domain properties. Now, we need to implement opertor@A so that Boost.Proto can evaluate the value of our analytical expressions. Boost.Proto handles that by providing Transforms which species rules that need to be performed when the AST is evaluated. A Transform is a Callable Object [START_REF]The callable concept. httpXGGenFpprefereneFomGwGppG oneptGgllle[END_REF] dened in the same way that a Proto grammar. Transform rules can be extended with a semantic action that will describe what happens when a given rule is matched. The library provides a lot of default transforms that we will use in our example. Our transform that evaluates our expression needs to behave dierently while walking the AST and encountering its nodes:

• If it is a terminal, we want to extract the corresponding value;

• If it's an operator, we want it to do what the C++ operators does.

To achieve this, we write the evlute transform that relies on the use of default transforms. protoXXwhen is used here to associate a rule to a specic action. The evlute transform is presented in listing 3.4 If we want to evaluate an expression like @xCPFHBxA@QFHA, we need to evaluate each node and accumulate the result while we walk the AST. Transforms related to accumulation are common when processing ASTs. Boost.Proto provides a clear way to achieve these transforms: the stte of an AST. In our case, the stte is used at line 6 to pass the value of the analytical variable through each node and ask each node to evaluate themselves with it (see listing 3.5). Listing 3.5: opertor@A implementation using evlute result_type operator () (double v0) const { evaluate_ callee ; return callee (* this , v0); }

The evaluation of the analytical expression is performed in the following way: @x C PFHBxA@QFHA First, the '+' node: @ x@QFHA C @PFHBxA@QFHA A@A Then, the '*' node: @ x@QFHA C @PFHBx@QFHAA A@A And nally, the terminals evaluation: QFH C @PFHBQFHA a WFH We notice the use of protoXX (line 9) that permits to match any other terminals that are not analytical variables. In this particular case, we directly extract the value of the terminal. Literals will match such a case. At line 12, we simply tell the library to use the default behavior of operators.

Chapter 3. A Generic and Generative Programming Approach for DSL

At the end, we can write analytical expressions that match the correct grammar and evaluate it. This is done by dening terminals and building an expression using them. Listing 3.6 shows how our small analytical DSL in action.

Listing 3.6: Analytical expression in action // Last step , we have to redefine _x to be an analytical_expression . analytical_expression < boost :: proto :: terminal < variable_tag >:: type > const _x ;

int main () { std :: cout << (_x *3 + 9.0* _x) (2) << "\n" ; // Output : 24 } This small example showcases the Boost.Proto library. This library has a lot of powerful features that we can not present in a simple and concise way. The Boost.Proto library is one of the most complete solution for designing DSELs in C++ . Boost.Proto can be seen as a DSEL to design DSELs .

Conclusion

In this section, we presented the techniques related to active library design. From these techniques we can dene the conguration knowledge (i.e. the generator) that will deduce from the conguration space a solution space. The maintenance of active libraries that embed such techniques is hard to achieve. Boost.Proto automates this approach and gives a powerful way to manipulate AST structures and apply domain-oriented transformations on them. The high interoperability between ASTs and transformations in Boost.Proto provides a clear approach for specifying DSELs .

Meta-programming techniques then allow us to hide from the end-user the code generation process and also abstract the user interface with strong domain semantic but these approaches lack of methodology to specify a complete DSEL . Czarnecki has been studied a methodology to design new DSELs : the DEMRAL methodology.

The DEMRAL Methodology

DSELs design considerations

Czarnecki explored how Generative Programming would help the design of active libraries. Complex software systems can be broken down to:

• a list of interchangeable components which tasks are clearly identied;

• a series of generators that combines components by following rules dened by an a priori domain specic analysis.

In [START_REF] Czarnecki | Generative programmingmethods, tools and applications[END_REF], Czarnecki proposed a methodology called Domain Engineering Method for Reusable Algorithmic Libraries (DEMRAL) showing a possi-ble formalization of Generative Programming techniques. It relies upon the fact that algorithmic libraries are based on a set of well dened concepts:

• Algorithms, that are tied to a mathematical or physical theory;

• Domain entities and concepts, which can be represented as Abstract Data Types with container-like properties;

• Specialized functions encapsulating algorithm variants depending on Abstract Data Types properties.

Domain Specific Application Description

Generative Component Concrete Application

Translator Parametric Sub-components As an example, a library providing N algorithms operating on P dierent related data-structures may need the design and implementation of N * P functions. Using DEMRAL , only N generic algorithms and P data structure descriptions are needed as the code generator will specialize the algorithm with respect to the data structure specicities. This approach allows high re-usability of generic components while their behaviors can be customized.

Taking into consideration the DEMRAL methodology helps designing DSELs as this formalization relies on the software aspect of generic components. As we stated in chapter 2, in the context of scientic computing we need to inject architecture specic implementations in todays software. We then present the Architecture Aware DEMRAL methodology as the extension of the DEMRAL methodology.

From DSELs to Architecture Aware DSEL

The common factor of all existing DSELs for scientic computing is that the architecture level is mostly seen as a problem that requires specic solutions to be dealt with. The complexity of hand-maintained Expression Templates engines is the library. In addition, the genericity of the components at both levels (hardware and software) allows the generative components to explore a complete conguration space with a sub-part corresponding to specic architectural optimizations thus making the code generation process strongly aware of architectural aspects. The best solution space can then be selected by the generative components.

Conclusion

Our contribution pushes further the DEMRAL methodology and provides a new way for designing architecture aware DSELs . With such an approach, active libraries can take in consideration hardware capabilities and then increase the quality of their code generation process. DSELs keeps their expressiveness and, at the same time, are able to improve their evaluation strategy. This new methodology now requires to be easily implemented in the context of active libraries.

The challenges behind such an implementation are:

• Abstract architectural components to specify a hardware conguration space;

• Build a generative component that can embed knowledge to choose between hardware components;

• Build a generative component that can embed knowledge to aggregate software and hardware components.

Our work will focus on providing architectural components for SIMD and multicore based systems (i.e. small-scale systems) like said at the end of chapter 2. We then propose a library that embed an architecture aware function dispatching system: the Boost.Dispatch library. In chapter 3, we introduced the notion of Architecture Aware DSEL (AAD-SEL) as an entry point for designing new parallel software tools. This approach allows the tool designer to inject architecture details inside the evaluation process of the DSEL . With an overgrowing architecture landscape and the necessity to fully exploit their potential, library designers are confronted to new software designs.

In this chapter we present Boost.Dispatch, a C++ template library for writing functions and functors dispatching using a generic Tag Dispatching system to simplify the application of the AA-DEMRAL methodology to software design.

Challenges

As introduced in chapter 3, Generic Programming is a powerful approach to design reusable software components. From the tool developer perspective, these programming techniques can improve the internal design of a library. From the user perspective, providing a generic interface (either for tool designers or application developers) impacts directly their code by giving an access to easily reusable software components in dierent contexts. C++ introduces a ecient way to write Chapter 4. The Boost Dispatch Library and use Generic Programming through its template system. Generic Programming in C++ relies on several techniques that we introduced in chapter 3. One of them is the ability of C++ to provide dierent approaches to dispatch a function over an arbitrary list of types. and the compiler must distinguish between the candidates. The types of the call arguments are used here to perform the selection. In the example, the compiler will dispatch the call to the flot version of the function. The process that models this decision is the overload resolution process. The complete processing of a function call is complex and the overload resolution is just a part of it. Here we just present the basic set of rules concerning the overload resolution process.

• The rst step consists in looking up the function name and building the overload set. The template variants of the function are added after the template deduction occurred.

• In the overload set, any candidate that doesn't match the call is then eliminated (wrong number of arguments, implicit conversion mismatch, default argument mismatch). The resulting candidates are a set of viable function candidates.

• Then, the overload resolution is performed to select the best candidate. If the process fails, the call is ambiguous.

• The last step check the selected candidate. If it is a member function, it checks its accessibility. If it is an inaccessible private member, an error is issued.

According to this set of rules, function overloading provides a way to distinguish function variants. However, this approach is limited by its selection process that only relies on the types of the call arguments. A more ne-grained approach can not be achieved as the properties of the types and even further information can not be injected inside the overload resolution process. For example, if we want a denition of the function f that works for every oating types, the regular overload approach forces us to duplicate the function denition for the flot and doule types. The SFINAE approach presents some limitations. First, when the function requires a non trivial set of overloads, the programming process doesn't scale. All overloads must be mutually exclusive. The programmer needs to ensure that every metaprogram leads to a correct instantiation of the function according to the type list. This is an error prone task to perform. In addition, the compilation time of a SFINAE-based overload resolution is linear. The compilation time will not be reasonable for a signicant number of functions using this technique over a large list of types.

The Tag Dispatching technique

Another solution heralded by the Standard Template Library is to use a technique known as Tag Dispatching. This approach relies on a concept-based overloading that will select the most specic function from a set of specializations of a given function. This technique is often used hand-in-hand with traits classes able to associate information with a compile-time entity (a type, integral constant, or address). Here, a Tag is a class describing properties that are the expression of a concept. The dispatch decision process will take into account those properties to select the best overload. Inheritance of tags is used to encode the renement hierarchy of concepts. The overloading mechanism will then pick the most specic overload based on the tag hierarchy. Listing { return 2; } By using a hierarchy of tags bound by inheritance, it's possible to make use of the best-match feature of C++ overloading to introduce specializations without requiring them to be mutually exclusive.

The itertortegory system of standard iterators is a good example of that. But, doing this in a clean, concise, reusable and idiomatic manner presents some diculties.

Concept based overloading

As specied in [START_REF] Gregor | Concepts: linguistic support for generic programming in c++[END_REF][START_REF] Sutton | Design of concept libraries for c++[END_REF] and introduced in chapter 3, Concepts come as a completely new approach for designing software in C++ . The approach consists in specifying and checking constraints on template arguments within the compiler. These constraints are checked at their point of use. It means that templates errors are caught early in the compilation process. This extension of the C++ language allows the user to specify formal properties on templates that enable a clear and reliable way for expressing function dispatching. We can notice that C++ can be easily extended with this language extension but the C++11 committee decided to remove Concepts from the draft standard in July 2009. No ocial decisions has yet been made for the future of Concepts inside the Standard.

Conclusion

The previous methodologies give a way to statically select the best implementation of a function within a set of constraints. But in certain cases this approach is not sucient or available in the C++ Standard. A precise selection of a function call Chapter 4. The Boost Dispatch Library relies on more than the information of the types. The properties of the function may impact the selection process and need to be injected during the dispatch phase. In chapter 2 and 3, we also saw the importance of architecture specications while evaluating a function or a statement in a DSEL . Therefore, dispatching a function call requires to take into consideration these factors in order to use the best-match feature of C++ in a generic and powerful way. In section 4.2, we introduce Boost.Dispatch, a C++ template library for function dispatching with a generic tag dispatching system that proposes a solution to the previous limitations.

The Boost.Dispatch Library

In this section, we present a general overview of the abilities of Boost.Dispatch by introducing the main features of the library and showing the most relevant details of its implementation.

4.2.1

The AA-DEMRAL methodology in Boost.Dispatch

Boost.Dispatch provides a way to implement the AA-DEMRAL approach. The main contribution of the library is that function dispatching is aware of an architecture description. Boost.Dispatch achieves that by providing an extended and generic manner of dispatching functions in template contexts through an extensible hierarchy system. This component articulates the library through three specialized hierarchies:

• a hierarchy for types that expresses the properties of the argument types;

• a hierarchy for functions that expresses the properties of the functions;

• a hierarchy for architectures that adds architectural information for the dispatch process.

The architecture aware dispatch of a function occurs with the use of an architecture hierarchy. This hierarchy then encodes the architectural information that we want to inject in the dispatch system of the library. With this methodology, Boost.Dispatch is able to aggregate generic components according to type semantic, function semantic and architecture information.

The Hierarchy Concept

The Concept of rierrhy is the key of the dispatching system. It provides an idiomatic way to dene inheriting category tags.

These tags will then embed arbitrary levels of intentionality for the dispatch mechanism. A model r of rierrhy is nothing more than an empty type used to identify a category of types. It must inherit from another model of rierrhy . Multiple inheritances are discouraged as it easily leads to ambiguities while computing the hierarchy of the type being hierarchized. It must also provide a prent typedef in order to allow composite hierarchies to be built around it. All hierarchies must inherit directly or indirectly from oostXXdispthXXmetXXunspeified`b, with a concrete type (preferably the one being hierarchized).

For its built-in hierarchies, Boost.Dispatch chooses to make them templates (see listing 4.6), with the actual type being hierarchized as the template parameter. This allows to select the parent hierarchy according to the type, removing some of the limitations of single inheritance. Embedding the type inside the hierarchy also enables to use it directly for declaring template overloads in place of the real arguments.

> const &) { return 0; } template < class T > int f(T , scalar_ < integer_ <T > > const &) { return 1; } template < class T > int f(T , scalar_ < unsigned_ <T > > const &) { return 2; }
The metafunction hierrhyof at line 5 will compute the hierarchy of the type in the built-in hierarchy of Boost.Dispatch. It will permit the selection of one of the three specializations in the example. The rst one at line 7 will be selected when is a single or double precision oating point number. The second specialization at line 10 applies to any integral type, including unsigned ones.

However, since there is also a specialization for unsigned types at line 13, the latter gets preferred, since unsigned is a renement of integer in the built-in hierarchy.

We saw that hierarchies are built through the use of inheritance. This allows to build a partially ordered lattice. This lattice expresses the category of a given type into all its potential enclosing type sets. To be able to nd the root of a hierarchy in the lattice, we need to pass the parent type to the next node of the lattice. This is done by making the hierarchies template as presented in listing 4.6. }; } Listing 4.8 shows the implementation of the hierrhyof metafunction. The specialization corresponds to the built-in hierarchy of types. This specialization is used when the type to compute is a fundamental type, which corresponds to every C++ standard based type. The metafunction will then return the slr hierarchy with the corresponding property of the type. For example, hierrhyof`flotbXXtype will return slr`single`intb b.

Built-in Hierarchies

In this section we present the built-in hierarchies available in Boost.Dispatch. To fully illustrate the capabilities of the library, we will focus on constructing the call of a function performing the sum of its arguments in a generic context. This function is simply calculating the addition of two arguments and is named plus. Listing 4.9 shows the top-level plus function that performs a hierarchized call through the use of the hierrhyof metafunction.

Hierarchy for scalar types

The library gives a built-in hierarchy for dispatching on scalar types. According to the types passed as arguments to the function, Boost.Dispatch will compute the hierarchy of these types through the metafunction hierrhyof and select the best call available. The hierarchy of a built-in fundamental type T is the composite slr`typenme propertyof`bXXtype b. propertyof computes the property of the type being hierarchized. Built-in properties in Boost.Dispatch are tied to the intrinsic semantic of C++ fundamental types (i.e. int, flot, doule, ool, etc). Properties are decoupled from slr so that it is easy to create new hierarchies such as foo`integer`b b etc. By default, the library gives two architecture aware evaluation contexts. The rst one is the forml site that denes the most abstracted evaluation context. This context is used in the case of high-level code transformation functions. Inheriting from the forml site, the pu site denes the CPU based evaluation context for functions. This context is used when no specic architecture informations are available or required by a function. Function specializations under the pu context are usually used as common architecture independent implementation.

Boost.Dispatch has the ability to automatically compute the site for a function tag. If dierent implementations are available, the library will compute the best site for the evaluation context. This is done by using the defultsite metafunction that takes as parameter the tag of a function.

Boost.Dispatch is able to aggregate information about the underlying architecture. The library gathers information from compiler macros that are activated by compile ags or from user dened macros. The library then organizes hierarchically these informations and provides an automated way of computing the default evaluation context of a function. The defultsite metafunction performs such a computation.

If we go back to our plus example, the scalar version of the plus functor is dispatched through the pu site like presented in listing 4.12. To push further the architecture aware ability of Boost.Dispatch, we will add an implementation of our plus function for a specic SIMD extension. SIMD extensions as introduced in chapter 2 work with wide registers able to store multiple data and their computation unit has the ability of applying the same operation on the data stored in these registers. For example, SSE can perform an addition on four single precision oating point numbers at the same time. Our plus function could take advantage of such an extension when it is available. To achieve this, we rst need to provide a new hierarchy for SIMD types. After adding this new entry in the type hierarchy, we need to register a new site for the SSE SIMD extension in the architecture hierarchy. First, we add an entry for a simd site. This can be done by inheriting from the pu site tag. After this step we can ramify the new simd site to handle multiple SIMD extensions. For the SSE family, a sse tag that inherits from the simd tag will be the entry point of the SSE extension family. Then, we would be able to continue the inheritance scheme with a sseP hierarchy tag. Listing 4.15 summarizes the hierarchy tree of the new sites. Another feature of the library is that the type hierarchy enables to factorize the code of dispatched functions. For example, if a multiplies function is implemented like our plus function, we may want to reuse all the specic SIMD and scalar implementations of multiplies to implement a squre function. squre just needs to reuse multiplies in its implementation and multiplies will then be dispatched to the best implementation available according to the Boost.Dispatch hierarchies. This can be achieved by using the generi entry in the type hierarchy of Boost.Dispatch. }; } Listing 4.17 presents the simd hierarchy that now inherits from the generi entry point. In the case of a Boost.Dispatch squre function, only the implementation presented in listing 4.18 is required. The Boost.Dispatch multiplies function will then perform its own dispatch through the library. Here, the eH type models an rithmeti that will be passed to multiplies. If eH is a SIMD type, the SIMD implementation available will be called. The node hierarchy represents a tagged Boost.Protoexpression node. Each Boost.Proto node encodes its tag and arity. A node tag type in Boost.Proto describes the operation that created the node in the AST and the arity corresponds to the number of children of the node. Boost.Dispatch provides entries so that the dispatch system can be aware of these informations.

Conclusion

Tag dispatching is a powerful technique used in the C++ standard library. Boost.Dispatch pushes further this technique by adding two entries besides the classical approach: tag dispatching on function properties and tag dispatching on architecture specications. The library gathers these three entries through a generic tag dispatching system that allows the user to have a ne grain for selecting function overloads. Boost.Dispatch main feature is the integration of an architecture aware dispatching mechanism that is the rst step to an AA-DEMRAL approach.

Boost.Dispatch can be used in the context of tools development and provides a solution for injecting architectural specication inside an evaluation process. Now, we will see how Boost.Dispatch helps the development of architecture aware tools by presenting two parallel programming tools:

• Boost.SIMD for programming SIMD extensions;

• NT 2 for programming small-scale systems (multicores coupled with SIMD extensions).

Chapter 5

The Boost SIMD Library In chapter 4 we introduced Boost.Dispatch, a function dispatching library with architecture aware dispatching capabilities. We want to demonstrate the ability of this library to be used in the development of a high level programming tool for ne grain parallelism. SIMD programming relies on special SIMD instruction sets that are working with wide data registers. In this context, Boost.Dispatch needs to provide a very low overhead to guarantee the performance of an instruction level programming model like SIMD. This chapter 1 presents the development of a high level programming tool for SIMD extensions: The Boost.SIMD Library [START_REF] Estérie | Boost. simd: generic programming for portable simdization[END_REF][START_REF] Esterie | Exploiting multimedia extensions in c++: A portable approach[END_REF].

In this chapter, we introduce the challenges of such a library followed by its API. Afterwards we present the concepts on which such a library relies and its implementation. Then, we detail the technical choices we made for the development of Boost.SIMD by describing the full SIMD code generation process. Finally, we conclude this chapter with a discussion on the performance of the library.

Hardware context and software challenges

We introduced in section 2.1.1 the principle of SIMD extensions. We saw that these extensions allow to accelerate applications with a data parallelism scheme. Table 5.1 gives a full overview of these hardware extensions with the size of their dedicated SIMD registers.

For example, the AVX extension introduced in 2011 enhances the x86 instruction set for the Intel Sandy Bridge and AMD Bulldozer micro-architectures by providing a distinct set of 16 256-bit registers. Similarly, the Intel MIC [START_REF] Duran | The intel R many integrated core architecture[END_REF] (Many Integrated

Core, now known as Xeon Phi) architecture embeds 512-bit SIMD registers. Intel improved AVX with some new instructions and launched AVX 2.0 late 2013. The forthcoming extension from Intel is AVX-512 that will be introduced in the next generation of Xeon Phi, Knights Landing coming in 2014. Using SIMD processing units can also be mandatory for performance on such systems as demonstrated by the NEON and NEON2 ARM extensions [START_REF] Jang | The performance analysis of arm neon technology for mobile platforms[END_REF] or the CELL-BE processor by IBM [START_REF] Kurzak | Optimizing matrix multiplication for a short-vector simd architecture : Cell processor[END_REF] which SPUs were designed as a SIMD-only system. IBM also introduced in 2012 the QPX [START_REF] Fox | Qpx architecture: Quad processing extension to the power isa. Software: Practice and Experience[END_REF] extension available on the third supercomputer design of the Blue Gene series. QPX works with 32 256-bit registers.

However, programming applications that take advantage of available SIMD extension on a given hardware remains a complex task. In addition, working with multimedia extensions implies a signicant amount of code writing to handle most of the increasingly number of SIMD extensions available today. We previously detailed in chapter 2 section 2.2.1 the existing solutions for programming these extensions.

Programmers that use low-level intrinsics have to deal with a verbose programming style due to the fact that SIMD instructions sets cover a few common functionali- 1 This chapter is extended from the work published in [START_REF] Estérie | Boost. simd: generic programming for portable simdization[END_REF][START_REF] Esterie | Exploiting multimedia extensions in c++: A portable approach[END_REF]. ties, requiring to bury the initial algorithms in architecture specic implementation details. Furthermore, these eorts have to be repeated for every dierent extension that one may want to support, making design and maintenance of such applications very time consuming. These restrictions account for the small amount of solutions facing this challenge.

Due to the factors previously mentioned, providing high level tools able to mix a sucient abstraction with performance is a nontrivial task that needs to solve important challenges. Developing a library like Boost.SIMD implies several goals to face properly the design of a high level programming tool for SIMD extensions.

• A generic user interface

The rst limitation faced by application developers is the multiplicity of SIMD register types. Table 5.2 shows a glimpse of the amount of data types available.

Furthermore, all the intrinsics are qualied by each data type due to the low level C programming model of such extensions. This restriction forces the programmer to write dierent versions of the algorithm according to the targets he wants to support.

Thus, the algorithm is duplicated for each data type with the correct intrinsic calls. We can see the limitation of this approach in terms of development time and maintenance of an application. By contrast, a generic approach expresses the algorithms and the data structures as abstract entities. The rst challenge of such an approach is to design a high level user interface to 64 Chapter 5. The Boost SIMD Library

• C++ standard integration

A lot of existing code relies on the C++ Standard Template Library (STL).

Most of them should be able to take advantage of the speedup provided by SIMD extensions. The STL is constructed as a generic library over the following trio of Concepts : Algorithms -Container -Iterators. Switching from a STL code to a fully vectorized version of it must stay straightforward for the user. To accomplish this integration properly, STL Concepts needs to be rened to satisfy SIMD based axioms. On top of that, Boost.SIMD needs to propose a standard like interface with wrappers able to adapt standard components and also a nice Boost integration for the use of Fusion [START_REF] De Guzman | Boost.fusion library. httpXGGwwwFoostForgGdoGlisGreleseGlisGfusionGdoGhtml[END_REF] and MPL libraries.

• Eective code generation

The architectural improvements provided by SIMD extensions leads to a signicant speedup that we want to reach with Boost.SIMD. Despite the introduction of a generic interface, Boost.SIMD needs to keep the performance of the generated code close to the performance of a "hand written" code. The impact of the generic interface and the code generation engine must be low for the reliability of the library.

• SIMD idioms

From the beginning, multimedia extensions were designed to accelerate massively data parallel problems like image processing or vector based code but, working with wide data registers does not solve everything. Storing data in SIMD registers can impact the algorithm in a way that predicates handling 5.2. The Boost.SIMD Library 65 or iteration patterns need to be rethought in a vectorized way. For example, some algorithms are not accessing contiguous memory blocks and this leads to a non trivial access pattern when working in SIMD. Moreover, when working with SIMD registers the user may want to rearrange the data in the register. These SIMD idioms require to be expressed, apart from standard based components.

• Extensibility and maintainability Developing a library remains a complex task in terms of easy extensibility and maintainability. Boost.SIMD is a tool giving access to multi-architectural support over SIMD extensions. The Boost.SIMD framework must be designed in a proper way to handle a straightforward addition of a new SIMD extension, a new data type or a new algorithm.

The Boost.SIMD Library

Boost.SIMD aims at bridging the lack of proper abstractions over the usage of SIMD registers. This abstraction should not only provide a portable way to use hardware-specic registers but also enable the use of common programming idioms when designing SIMD-aware algorithms. To achieve this, Boost.SIMD implements an abstraction of SIMD registers that allow the design of portable algorithms.

In addition, a large set of functions are covering the classical set of mathematical functions and utility functions. This section details the components of the library and shows step by step the interface of these components along with their behavior.

SIMD register abstraction

The rst level of abstraction introduced by Boost.SIMD is the pk class. For a given type and a given static integral value x (x being a power of 2), a pk encapsulates the best type available to store a sequence of x elements of type . For arbitrary and x, this type is simply stdXXrry`Dxb but when and x matches the type and width of a SIMD register, the architecture-specic type used to represent this register is used instead. This semantic provides a way to use arbitrarily large SIMD registers on any system and let the library selects the best vectorizable type to handle them. By default, if x is not provided, pk will automatically select a value that will trigger the selection of the native SIMD register type. Moreover, by carrying informations about its underlying scalar type, pk enables proper instruction selection even when used on extensions (like SSE2 and above) that map all integral type to a single SIMD type (mIPVi for SSE2).

pk handles these low-level SIMD register types as regular objects with value semantics, which includes the ability to be constructed or copied from a single scalar value, list of scalar values, iterator or range. In each case, the proper register loading strategy (splat, set, load or gather) will be issued. A typedef statement is used before the declaration of the packs for brevity. These declarations include a so-called splatting constructor that takes one scalar value and replicates it in all elements of the pack. p_t u (10) ; This is equivalent to the constructor on the following line: p_t r = boost :: simd :: splat < p_t >(11) ;

The user can also initializes every element of the pk itself by enumerating them. pack < float > r (11 ,11 ,11 ,11) ; This constructor makes the strong assumption that the size of the pk is correct. Unless required, it is always better to try not to depend on a xed size for pk.

Once initialized, operations on pk instances are similar to operations on scalar as all operators and standard library math functions are provided. A simple pattern make those functions and operators available: if function foo is used, you need to include oostGsimdGinludeGfuntionsGfooFhpp. Here, we include plusFhpp and multipliesFhpp to be able to use opertorC and opertorB. res = (u + r) * 2. f;

The Boost.SIMD Library 67

Note that type checking is stricter than one may expect when scalar and SIMD values are mixed. Boost.SIMD only allows mixing types of the same scalar kind, i.e reals with reals or integers with integers. Here, we have to multiply by PFf and not simply P. We need to keep in mind that fused operations are available for SIMD extensions and in the case of such a statement, we have to generate a call to a fused multiply and add instruction if the targeted extension supports it.

Finally, we display the pk content by using opertor provided by the oostGsimdGsdkGsimdGioFhpp header le. We can see that Boost.SIMD generates again the proper AVX code with the call to AVX instructions with ymm registers. In the case of Altivec, we want to generate a call to a fused multiply and add operation as it provides such an instruction. The generated assembly code is the following: vspltw v12,v12,0 vspltw v13,v13,0 vspltw v0,v1,0 vmaddfp v1,v12,v13,v0 stvx v1,r10,r9

We can see that we correctly splat the data into SIMD registers and then call the FMA (Fused Multiply Add) instruction: vmddfp. 5.2. The Boost.SIMD Library 69

Predicates abstraction

Comparisons between SIMD vectors yield a vector of boolean results. While most SIMD extensions store a 0\∼0 bitmask in the same register type as the one used in the comparison, some like Intel Phi or QPX have a special register bank for those types. The Intel MIC has a dedicated 16-bit register to handle the result of the comparison. QPX comparisons put -1.lf or +1.lf inside a QPX register. To handle architecture-specic predicates, an abstraction over boolean values and a set of associated operations must be given to the user. The logil class encapsulates the notion of a boolean value and can be combined with pk. Thus, for any type , an instance of pk`logil`b b encapsulates the proper SIMD register type able to store boolean values resulting from the application of a SIMD predicate over a pk`b. Thus, the comparison operators will return a pk`logil`b b. The branching is performed by a dedicated function ifelse that is able to vectorize the branching process according to the target architecture.

Unlike scalar branching, SIMD branching does not perform branching prediction.

All branches of an algorithm are evaluated before the result is selected. Listing 5.7

shows a simple example of branching condition with pk.

Listing 5.7: Branching example pack < int > a (3) , b (1) , r; pack < int > inc (0 ,1 ,2 ,3) , dec (3 ,2 ,1 ,0) ; r = if_else (inc > dec , a , b); // r = [1 ,1 ,3 ,3] In addition to the classic ifelse structure, Boost.SIMD provides specic predicate functions that can be optimized. These functions are optimized depending on the types they work with. For example, the selde and selin functions respectively decrement or increment a pk according to the result of a comparison and their implementations for integer types rely on a masking technique.

Range and Tuple interface

By providing STL-compliant egin and end member functions, pk can be iterated at runtime as a simple container of x elements. In addition, the square brackets operator is available on pk as pk respects the Random Access Container Concept. Similarly, since the size of pk is known at compile-time for any given type and architecture, pk can also be seen as a tuple and used as a compile-time sequence. Thus, pk is fully compatible with Boost.Fusion [START_REF] De Guzman | Boost.fusion library. httpXGGwwwFoostForgGdoGlisGreleseGlisGfusionGdoGhtml[END_REF] and respects the Fusion Random Access Sequence Concept. Listing 5.8 presents the range and Fusion like interface.

Listing 5.8: pk range interface typedef typename pack < float ,8 > p_t ; float t [] = {0.0 ,1.1 ,2.2 ,3.3 ,4.4 ,5.5 ,6.6 ,7.7}; p_t data (& t [0]) ; // data = [0.0 ,1.1 ,2.2 ,3.3 ,4.4 ,5.5 ,6.6 ,7.7] // Random Access Sequence for (std :: size_t i = 0; i < p_t :: static_size ; i ++) data [i] += i; // Boost Fusion Random Access Sequence typename boost :: fusion :: result_of :: value_at_c < p_t ,0 >:: type sum ; sum = fusion :: accumulate (data , 0.f , add ()); // sum = 58.8

Another ability of pk is to act as an Array of Structures/Structure of Arrays adaptor. For any given type adapted as a compile-time sequence, accessing the i th element of a pk will give access to a complete instance of T (acting as an Array of Structures) while iterating over the pk content as a compile-time sequence will yield a tuple of pk thus making pk acts as a Structure of Arrays. Listing 5.9: pk SOA to AOS using boost :: fusion :: vector ; using boost :: simd :: load ; using boost :: simd :: pack ; using boost :: simd :: uint8_t ; typedef vector < uint8_t , uint8_t , uint8_t > pixel ; typedef vector < pack < float >, pack < float > , pack < float > > simd_pixel_SOA ; typedef pack < vector < float , float , float > > simd_pixel_AOS ; • C++ operators: including support for fused operations whenever possible,

• Constant generators: dealing with ecient constant SIMD value generation,

• Arithmetic functions: including s, sqrt, verge and various others,

• IEEE 754 functions: enabling bit-level manipulation of oating point values, including exponent and mantissa extraction,

• Reduction functions: for intra-register operations like sum or product of a register elements.

Shuing operations

A typical SIMD use case is when the user wants to rearrange the data stored in pk. This operation is called shuing the register. According to the cardinal of a pk, several permutations can be achieved between the data. To handle this, we introduce the shuffle function. This function accepts a metafunction class that will take as a parameter the destination index in the result register and return the correct index corresponding to the value from the source register. Listing 5.12 shows such a call. Such units can perform every permutation. SSSE3 has a special permute unit that permits to arbitrarily permute the values of a register. When SSSE3 is available on the architecture, this unit is used by shuffle for performing non optimized permutations through the mmshuffleepiV intrinsic. ARM and Altivec also present such permute units.

The shuffle function uses its generic matcher to detect which call is the best. When the matcher fails to select a specic implementation of shuffle, a common version will be called and the permutation will be emulated.

A good example of shuing operations is the transpose of a 4 × 4 matrix stored in 4 SIMD registers. pack < float ,4 > __r0 = row0 , __r1 = row1 , __r2 = row2 , __r3 = row3 ; pack < float ,4 > __t0 = shuffle <0 ,0 ,1 ,1 >(__r0 , __r1); pack < float ,4 > __t1 = shuffle <0 ,0 ,1 ,1 >(__r2 , __r3); pack < float ,4 > __t2 = shuffle <0 ,0 ,1 ,1 >(__r0 , __r1); pack < float ,4 > __t3 = shuffle <0 ,0 ,1 ,1 >(__r2 , __r3); row0 = shuffle <0 ,1 ,0 ,1 >(__t0 , __t1); row1 = shuffle <2 ,3 ,2 ,3 >(__t1 , __t0); row2 = shuffle <0 ,1 ,0 ,1 >(__t2 , __t3); row3 = shuffle <2 ,3 ,2 ,3 >(__t3 , __t2);

In addition, this version is fully portable and works on every SIMD extensions.

Chapter 5. The Boost SIMD Library

C++ Standard integration

Writing small functions acting over a few pks has been covered in the previous section and we saw how the API of Boost.SIMD makes such functions easy to write by abstracting away the architecture-specic code fragments. Realistic applications usually require such functions to be applied over a large set of data.

To support such a use case in a simple way, Boost.SIMD provides a set of classes to integrate SIMD computation inside C++ relying on the Standard Template Library (STL) components, thus totally reusing its generic aspect.

Based on Generic Programming as dened by [START_REF] Stepanov | The standard template library[END_REF], the STL is based on the separation between data, stored in various gontiners, and the way one can iterate these data sets with stertors and algorithms. Instead of providing SIMD aware containers, Boost.SIMD reuses existing STL Concepts to adapt STL-based code to SIMD computations. The goal of this integration is to nd standard ways to express classical SIMD programming idioms, thus raising expressiveness and still beneting from the expertise put into these idioms. More specically, Boost.SIMD provides SIMD-aware allocators, iterators for regular SIMD computations including interleaved data or sliding window iterators and hardware-optimized algorithms.

Aligned allocator

The hardware implementation of SIMD processing units introduces constraints related to memory handling.

Performance is guaranteed by accessing to the memory through dedicated lignedlod and lignedstore intrinsics that perform register-length aligned memory accesses. This constraint requires a special memory allocation strategy via OS and compiler-specic function calls.

Boost.SIMD provides two STL compliant allocators dealing with this kind of alignment. The rst one called simdXXllotor wraps these OS and compiler functions in a simple STL-compliant allocator. When an existing allocator denes a specic memory allocation strategy, the user can adapt it to handle alignment by wrapping it in simdXXllotordptor. , simd :: end (v. end ())

, simd :: begin (r. begin ())

, [](pack < int >& p){ return -p; });

If the memory of the container is not well prepared (i.e. aligned memory), the regular iterators are shifted to a correct aligned address. Some data are then omitted and need to be computed before and after the SIMD range of aligned iterators. The ecient techniques for vectorizing such operations consists on performing shifted loads i.e. loads from unaligned memory addresses, so that each neighbor can be available in a SIMD vector. To limit the number of such loads, a technique called register rotation technique [START_REF] Saidani | Parallelization schemes for memory optimization on the cell processor: a case study on the harris corner detector[END_REF] is often used. This technique allows lter-like algorithms to perform only one load per iteration, swapping neighbor values as the algorithm goes forward. This idiomatic way of implementing such algorithms usually increases performance by a signicant factor and is a good candidate for encapsulation.

In Boost.SIMD, shifteditertor is an iterator adaptor encapsulating such an abstraction. This iterator is constructed from an iterator and a compile-time width x. When dereferenced, it returns a static array of x pks containing the initial data and its shifted neighbors (Fig. 5.6). When incremented, the tuple value are internally swapped and the new vector of value is loaded, thus implementing register rotation. With such an iterator, one can simply write an average lter using stdXXtrnsform.

Listing 5.17

Case Analysis: Generic SIMD code generation

In this section we detail how to write a generic SIMD code with Boost.SIMD. The objective is to move from a simple scalar version of the dot function to a full generic version of it. Thus, we will take a look at the generated assembly code. The computation code looks a lot like the scalar version. We simply jump over data using the pk size.

Scalar version of the dot function

Preparing the data

Now that our SIMD dot product function is ready, we can apply it on some data.

As currently written, one can simply call dot on any piece of memory of the proper size. This rst hand-written version of dot still has some shortcomings as it requires the size of the data to be a multiple of the pk cardinal. It also does not perform loop unrolling but this can be handle with ease. 5.4.6 Choosing SIMD extensions at runtime Using Boost.SIMD requires compiling for a particular target machine which has particular SIMD instructions available. For many architectures (x86 in particular), SIMD instructions may be conditionally supported depending on the exact hardware being used, with more recent hardware typically supporting more SIMD instructions than older ones.

We will demonstrate how to switch between SSE and AVX for the same code depending on the capabilities of the x86 hardware that the program is running on.

Choosing between what is supported by the hardware can be done using the oostXXsimdXXissupported function.

The Boost.SIMD model, Translation Units and Shared Objects Boost.SIMD assumes that you are building for a specic architecture for the whole duration of a translation unit (the compilation of a single Fpp le). It is not possible to switch between targeting an architecture with AVX and without AVX in the same translation unit. The only option supported is to recompile with dierent compilation ags. This model is the safest one and allows to make the best of all compilers. It also implies to work with non template functions.

Linking objects compiled with dierent settings can also lead to subtle issues, such as breaking the One Denition Rule when collapsing inline functions. For this reason it is recommended to isolate the translation units in DLLs or shared object with hidden visibility.

The code

Here, we keep the code of the dot function presented in listing 5.31. We ensure that the code is extension-agnostic so that we can compile the same code for dierent targets and we move it to a simple dotFpp le. l Gyxt Girs Gwh Ghxhifq GhsxQP Ghsxhy GfpXpreise Gvh GrhXiP Gs6fyyyy dotFpp GpemydotssePFdll l Gyxt Girs Gwh Ghxhifq GhsxQP Ghsxhy GfpXpreise Gvh GrhXe Gs6fyyyy dotFpp GpemydotvxFdll 5.5 Implementation Boost.SIMD's implementation relies on two elements: the use of Boost.Proto [START_REF] Niebler | Proto : A compiler construction toolkit for DSELs[END_REF] to capture and transform expressions at compile time and Boost.Dispatch (see chapter 4) that allows for ne to coarse grain function specialization handling both types and architectures.

Function Dispatching

To be able to extend Boost.SIMD we need a way to add an arbitrary function overload on any function depending on the argument types, the related SIMD extension and the properties of the function itself. Boost.Dispatch is used here to build a hierarchy of tags which is computed as follow:

• For each SIMD family, a hierarchy of classes is dened to represent the relationship between each extension variant. For example a SSE3 tag inherits from the SSE2 tag as SSE3 is more rened than SSE2. Listing 5.33 shows the corresponding hierarchy for the x86 family. • For each argument type, a Boost.Dispatch hierarchy is automatically computed. This hierarchy contains information about: the type of register used to store the value (SIMD or scalar), the intrinsic properties of the type (oating point, integer, size in bytes) and the actual type itself. These hierarchies are also ordered from the most ne grained description (for example, slr`intV`hrb b) to the largest one (for example, slr rithmeti`hrb b).

Each function overload is then discriminated by the type list built from the hierarchy of the current architecture and the hierarchies of every argument of the function. This unique set of hierarchies is then used to select a function object to perform the function call. A specic intrinsic call then occurs when the hierarchies select an architecture specic function implementation.

We introduced such a mechanism in section 4.2.4 of chapter 4.

In section 4.2.4.3 of chapter 4 we also introduced the generi hierarchy entry that enables architecture independent code reuse. Boost.SIMD uses the Boost.Dispatch generi hierarchy to implement functions that do not rely on a specic architecture implementation. Boost.SIMD functions are then reused inside the library to build higher order functions. The generic version of a function then relies on the architecture aware dispatch of the used functions.

AST Manipulation with Boost.Proto

A fundamental aspect of SIMD programming relies on the eective use of fused operations like multiply-add on VMX extensions or sum of absolute dierences on SSE extensions. Unlike simple wrappers around SIMD operations [START_REF] Kretz | Vc: A c++ library for explicit vectorization[END_REF], pk relies on Expression Templates [START_REF] Czarnecki | Generative programming and active libraries[END_REF] to capture the Abstract Syntax Tree (AST) of large pk-based expressions and performs compile-time optimizations on this AST. These optimizations include the detection of fused operation and replacement or reordering of reductions versus elementwise operations. This compile-time optimization pass ensures that every architecture-specic optimization opportunity is captured and replaced by the superior version of the code. Moreover, the AST-based evaluation process is able to merge multiple function calls into a single inlined one, contrary to solutions like MKL where each function can only be applied on the whole data range at a time. This increases data locality and ensure high performance for any combination of functions.

As stated earlier, SIMD instruction sets usually provide DSP-like fused operations that are able to implement complex computation in a single cycle. Operations like fused multiply-add and sum of absolute dierences are available on an increasing sub-range of SIMD extensions sets. The main issue is that writing portable and ecient code that will use these fused operations whenever available is dicult. It implies handling a large number of variation points in the code and people unaware of their existence will obtain poor performance. To limit the amount of per-architecture expertise required by the developer of SIMD applications, Boost.SIMD is designed as an Embedded Domain Specic Language [START_REF] Spinellis | Notable design patterns for domain-specic languages[END_REF]. Expressions Templates [START_REF] Czarnecki | Generative programming and active libraries[END_REF] have been a tool of choice for such designs but writing complex EDSLs by hand leads to a hard to maintain code base. As introduced in chapter 3, thanks to Boost.Proto , and contrary to other EDSL-based solutions [START_REF] Guennebaud | [END_REF], Boost.SIMD does not directly evaluate its compile-time AST after its capture. Instead, it relies on a multi-pass system: a rst one optimizes the AST and a second one takes care of the proper code generation. Boost.Dispatch has the ability to statically dispatch inline function calls according to a hierarchy of types (see chapter 4). The library can also dispatch functions that manipulates Boost.Proto ASTs as introduced in section 4.2.4.4.

Boost.SIMD takes advantage of this by detecting an expression matching a candidate for optimization and then dispatching the evaluation of its expression to the right function calls.

We take the following pk expression as an example:

pk`b d a C BY This expression can be optimized by a Fused Multiply and Add (FMA) operation when it is available on the targeted SIMD extension. We describes how Boost.SIMD handles such optimizations. First, Boost.Proto builds an AST for this expression as pk is a Boost.Proto terminal. The use of pk in this statement results in a contaminated construction of a Boost.Proto based expression. In listing 5.34 we see that all of these optimizations are performed at the toplevel of the architecture hierarchy through the tag forml. The AST optimization is then independent of the architecture at this point. The rst argument of plus matches the unspeified hierarchy which means that every sub-AST or node can be passed to the function. The returned fm function is still taking AST nodes as arguments and returns an FMA node with an arity of 3. The optimization scheme is propagated until the end of the AST as we still work at the AST level. Here, we introduced an example relying on pk operators. The same optimization scheme is performed with function calls.

The library has now the ability to know what will come in the remaining part of an AST. while dispatching function calls through the AST hierarchy, we can inject optimizations by providing function overloads for specic expression patterns on specic architectures. While we walk down the AST, we are able to match and select such optimizations. The look-ahead optimization of Boost.SIMD allows to directly optimized the AST during its construction. Another approach could have been to construct the AST and then optimize it. This requires to modify the AST after its construction which introduces a signicant overhead.

AST Evaluation

Now that the AST is constructed, we need to evaluate it. operator is now a fully constructed and optimized AST and the LHS is a terminal.

At this point, we reconstruct the entire AST with the '=' node by calling the ssign function with the LHS and the RHS as arguments (see gure 5.9). We can then pass the complete AST to the evlute function.

evaluate(assign(expr_< simd_<T,X>, tag::terminal_, 0 > , node_< simd_<T,X>, tag::fma_ , 3 >))

The only purpose of the evlute function here is to call the run function on the entire AST. run walks down the AST and replaces all the top-level function calls with their Boost.SIMD architecture aware versions. The code generation occurs at this point. The call to Boost.SIMDfunctions then results to the specic intrinsic calls on the specic register held by each terminal of the AST. This results in the generation of a full SIMD version of the expression.

We demonstrated how Boost.SIMD is able to detect optimization patterns at the expression level and generate the corresponding SIMD code. The eciency of such an implementation relies on some issues that we address in the next section.

Implementation Discussion

In this section we discuss implementation issues that impacts the development of Boost.SIMD and its eciency.

Function inlining and ABI issue

The main issue when implementing this library eciently is tied to how the compiler will handle the pk type. In particular how the Application Binary Interface (ABI) denes that objects of these types are passed to functions. Indeed, since pk is dened as a strut, many ABIs (with the notable exception of Intel x86-64 on Linux) will be unable to pass that structure directly in registers. Certain ABIs will also reject passing these types by value due to the alignment requirement being often higher than that of the stack.

As a result stack dance the unnecessary writing and reading of SIMD register contents to stack memory might occur whenever a non-inlined function is called.

A possible way to solve this problem is to force a wrapper function to be inlined and make its call use the native type of the platform to be more friendly with the ABI. Boost.SIMD forces every functions to be inlined for the previous reasons.

Unrolling

When working at the instruction level, specic low level optimizations tied to the hardware are relevant. Loop unrolling is a technique that allows to overcome limitations related to the execution of an instruction. These shortcomings are : instruction latencies (memory operations), branching penalties or pipeline eects.

A signicant gain can be obtain with such a technique but this implies to manually unroll the loop by replicating the statements of the loop-nest. This is done at the expense of the binary size. In addition, this optimization is empirical due to its correlation with the algorithm and a given architecture. In consequence, we decided to not include an abstract and automatic mechanism for loop unrolling inside Boost.SIMD. One solution could have been to write a metaunroller able to unroll a function (unary or binary) via a Du 's devices optimization. This approach is presented in appendix D. Appendix B summarizes the frequencies and extensions of the processors used for the following benchmarks. In appendix A are also described all the algorithms presented in the benchmarks. The benchmarks results are reported in GFlop/s and cycles per element (cpe) or cycles per point (cpp) depending on the algorithm.

Basic Kernels The AXPY Kernel

The AXPY kernel is one the most basic and used BLAS routine. We want to assess two things. First, how does Boost.SIMD implementation performs against a naive hand written AXPY SIMD version. And nally, how Boost.SIMD performs against autovectorizers. Listing 5.35 shows the Boost.SIMD implementation of the AXPY kernel. Boost.SIMD is better than the GCC version while performing worse than MKL on larger sizes. This is because of the lack of unrolling and ne low-level code tuning, necessary to reach the peak performance of the target. The MKL library goes up to 12 GFlop/s in single precision (7.9 in double precision) and outperforms the previous results. The AXPY kernel of MKL is provided as a user function with high architecture optimizations for the Intel processors and introduces an architecture dependency in user code.

Loop optimizations and ne load/store scheduling strategies can be added on top of Boost.SIMD to increase performance. The previous results show that Boost.SIMD provides a portable way to access the latent speed-up of the architectures. However, it is not a special-purpose library like MKL, its performance on this very demanding test is satisfactory yet still far from the peak performance.

Other optimizations like loop unrolling and jamming are necessary to compete with the library solutions. , a0 * simd :: normcdf (d1)) ; } Figure 5.10 shows the results of this implementation on Excalibur. We can see that SSE2 performs better than the expected ×4 speedup. This is due to the SIMD implementations of log and exp that are optimized. These implementation perform better than the scalar implementation of the Standard library which leads to higher speedups. The small dierence between AVX and AVX 2.0 is due to the use of integers in the implementation of log and exp while working with IEEE representation. The speedups obtained are then better than the theoretical expected ones. The code of this application keeps its genericity and the speedups remain stable while increasing the size of the data set. return if_zero_else_one (diff_img < var); } Table 5.6 details how Boost.SIMD performs against scalar versions of the algorithm. The benchmarks use greyscale images. To handle this format, the type unsigned hr is used and each vector of the SSE4.2, Altivec or AVX extensions can carry 16 elements. On the AVX side, the instruction set is not providing a support for this type so Boost.SIMD emulates such a vector but AVX 2.0 supports integer types and can hold 32 elements.

}; }

We can now apply this step to our complex plane. First, the step is applied from the rst aligned address and then performs aligned memory accesses. We nally nish the processing with a scalar computation. The code of the step can be used either for SIMD or scalar computations as Boost.SIMD enables such a genericity. This makes the algorithm independent of any architecture details. Listing 5.39 presents the call to the juli step. Figure 5.12 presents the results obtain on Excalibur. The Julia Mandelbrot algorithm does not present any particular shortcomings for SIMD computations so we expect that the speedups will be close to the theoretical ones. SSE2 reaches 75% of the theoretical speedup. AVX and AVX 2.0 are able to store twice more elements and they double the SSE2 speedup as expected.

Conclusion

Building a library for SIMD extensions with a high level API without loss of performances is not a simple task.

Especially when the library needs to be designed in an extensible way for further architecture support. The conception of multi-architectural tools faces the challenge of the integration of architecture specic optimizations within a generic approach. Such a library design is limited by the possibilities oered by the host language.

With C++ and its generic capabilities, this approach can be explored and Boost.SIMD is an example of it.

Boost.SIMD relies on template metaprogramming techniques and more generally on Boost.Dispatch. The library provides a new abstraction for SIMD based code, its main contributions are the following:

• The SIMD register abstraction combined with high level functions makes SIMD computation easy to write and portable over architectures. Its API ts the Standard requirements and is fully compatible with C++ Standard based code. So already existing code can take advantages of SIMD speedups without a lot of eort.

• Boost.SIMD is designed for an easy architecture support. With a generic framework for adding new extensions and injecting architecture specic optimizations in the evaluation process, the library provides extensibility and maintainability.

• The benchmarks show a ecient implementation with similar performances compared to handwritten SIMD code.

Boost.SIMD demonstrates that genericity and performance can be reach for SIMD code generation without sacricing a standard integration. First, we will introduce the challenges of such a library and present its programming interface. Then, the core of the library will be detailed and a case analysis will be shown to illustrate the implementation of NT 2 . Finally, benchmarks will assess the performances of the library.

As discuss in chapter 2, architecture aware programming requires expertise.

From the diversity of parallel programming tools to low level architecture oriented optimizations, non expert programmers face a lack of expressiveness in most of today's solutions. In chapter 3, we introduced the Domain Specic Language approach and decided to design a DSEL for High Performance Computing (HPC).

• High expressiveness

The rst challenge for such an approach is to provide a high level of expressiveness that provides an easy programming process for the user. It will also keep the expressiveness of the algorithm as the DSEL needs to be designed for the said domain. With expressiveness comes the challenge of designing an intuitive interface. This API must express the domain in the best way. The semantic of the DSEL is the key to well designed DSEL .

• Performances

After expressiveness comes the performance of the tool. Performances need to be on par with an optimized code on a specic architecture. The DSEL should not introduce an overhead and if it does, this overhead should stay reasonable.

An automatic code generation process can introduce some loss of performance but this quantity should stay as low as possible to reduce the development time. To keep the performance close to an optimized code, the best evaluation strategy needs to be selected by the code generation system. Such an ability requires the knowledge of the targeted architecture during the evaluation process of the DSEL .

The NT2 Programming Interface

NT 2 has been designed to be as close as possible to the Matlab language. Ideally, a Matlab to NT 2 conversion process should be limited to copying the original Matlab code into a C++ le and performing minor cosmetic changes (dening variables, calling functions in place of certain operators). NT 2 also takes great care to provide numerical precision as close to Matlab as possible, ensuring that results between versions are sensibly equal. This section will go through the main elements of the NT 2 API and how they interact with the set of supported architectures. tie@DDA a qr@eDvetorAY which can be compared to the equivalent Matlab code:

DD a qr@eD9vetor9AY

The tie function is optimized to take care of maximizing the memory reuse of output parameters so the minimal amount of copies and allocations are performed.

table settings

tle can be parametrized by special settings. It allows the user to specify statically some properties of the tle class. As these settings are statically known, NT 2 can select the right evaluation strategy according to the settings.

tle comes with the following list of settings:

• Allocators: myllotor`flotb. • Shape: retngulrD digonl, etc. If the tle has a particular shape like the diagonal one, it can be specied (see listing 6.7) and the memory allocation will be optimized for this shape.

Listing 6.7: NT • Fixed-point transformations like trns@trns@xAA or other functions combinations that can be precomputed as being equivalent to a simpler function;

• Fusion of operations like mtimes@D trns@AA which can directly notify the GEMM BLAS primitive that is tranposed;

• Architecture-driven optimizations like transforming BC into fm@DDA.

• Sub-matrix access like @DiA into an optimized representation enabling vectorization. • a strategy to select the proper implementation of a given function according to a given architecture and the function properties, a compile-time description of function properties, an architecture description DSEL describing architectures and their relationship. All of this is based on Boost.Dispatch;

Parallelism Handling

• a compile-time process for rescheduling NT 2 statements in a way that optimal loop nests can be generated;

• a parallel code generator using parallel skeletons that takes care of dierent types and levels of parallelism. As an example, listing 6.10 presents the descriptors for various functions. plus is registered as a classical elementwise operation. sum is a reduction and its descriptor denes it as a reduction based on plus and zero. Then, the matrix-matrix product function is registered as an external kernel.

Compile-time architecture description

Once a proper function implementation has been selected for either a concrete function tag or for a more general function family, we need to select the best implementation for the current architecture. NT For every supported architecture, a descriptor is dened using inheritance to organize related architecture components. In addition to this inheritance scheme, architectures descriptors can be nested (such as openmp). This nesting is computed at compile-time by exploiting information given by the compiler or by user-dened preprocessor symbols. This nesting is used to automatically generate nested code at dierent architecture levels. For example, the default architecture computed for a code compiled using AVX and OpenMP is openmp`vx b . This nesting will then be exploited when parallel loop nests will be generated through combination of the OpenMP and AVX backends (section 6.2.2.1). This compile-time architecture description extends the SIMD architecture hierarchy available in Boost.SIMD.

Parallel code generation

The code generation presented here works in a similar way that the one introduced in Boost.SIMD (see chapter 5). The look-ahead optimization scheme introduced by Boost.SIMD is also reused in NT 2 leading to the detection of expression patterns that are candidates for an architecture specic optimization.

The functions and architecture descriptors introduced in section 6.2.1 schedule the evaluation of each type of nodes (i.e. functions) involved in a single statement.

The NT 2 code generator will generate successions of loop nests based on the top level AST node descriptor. The NT 2 expression evaluation is based on the possibility to compute the size and value type. This size is used to construct a loop, which can be parallelized using arbitrary techniques, which then evaluates the operation for any position p, either in scalar or in SIMD mode. The main entry point of this system is the run function that is dened for every function or family of function. run takes care of selecting the best way to evaluate a given function in the context of its local AST and the current output element position to compute. At this point, NT 2 exploits the information about the function properties and dispatch to a specic loop nest generator for each family of functions (elementwise, reduction, etc).

To take the architectural information into account at this point, NT 2 relies on Parallel Skeletons [START_REF] Cole | Bringing skeletons out of the closet: a pragmatic manifesto for skeletal parallel programming[END_REF]. Parallel skeletons are recurrent parallel patterns designed as higher-order functions that describe an ecient solution to a specic problem.

Cole details in [START_REF] Murray | Algorithmic skeletons: structured management of parallel computation[END_REF] the need for specic skeletons providing enough abstraction to be used in the context of parallel frameworks. This abstraction can introduce semantic information that will help the composition of a skeleton abstraction with an ecient implementation of the corresponding skeletons. Aldinucci addresses these approach with an expandable skeleton environment called Muskel [5]. The abstraction/eciency trade-o of skeleton based programming has been explored by Kuchen in [START_REF] Kuchen | A skeleton library[END_REF] and it shows that such an approach can lead to ecient library based implementations without losing levels of abstraction.

Skeletons usually behave as higher order functions, i.e. functions parametrized by other functions, including other skeletons. This composability reduces the diculty of designing complex parallel programs as any combination of skeletons is viable by design. The other main advantage of skeletons is the fact that the actual synchronization and scheduling of a skeleton's parallel task is encapsulated within the skeleton. Once a skeleton semantic is dened, programmers do not have to specify how synchronizations and scheduling happen. This has two implications:

rst, skeletons can be specied in an abstract manner and encapsulate architecture specic implementation; second, the communications/computations patterns are known in advance and can be optimized [START_REF] Aldinucci | Optimization techniques for implementing parallel skeletons in grid environments[END_REF][START_REF] Emoto | Domain-specic optimization strategy for skeleton programs[END_REF].

Even if a large number of skeletons have been proposed in the litterature [START_REF] Kuchen | A skeleton library[END_REF][START_REF] Ciechanowicz | Enhancing muesli's data parallel skeletons for multi-core computer architectures[END_REF],

NT 2 focuses on three data-oriented skeletons:

• transform that applies an arbitrary operation to each (or certain) element(s) of an input tle and stores the result in an output tle.

• fold that applies a partial reduction of the elements of an input tle to a given table dimension and stores the result in an output tle.

• scan that applies a prex scan of the elements of an input tle to a given table dimension and stores the result in an output tle.

Those skeletons are tied to families of loop-nest that can or can not be nested.

Those families are :

• elementwise loop nests that represent loop nests implementable via a call to transform and which can only be nested with other elementwise operations.

• reduction loop nests that represent loop nests implementable via a call to fold. Successive reductions are not generally nestable as they can operate on dierent dimensions but can contain a nested elementwise loop nest.

• prex loop nests that represent loop nests implementable via a call to scan. pointing to the future result of the node evaluation. The actual sub-tree is then scheduled to be evaluated in advance, providing data to ll up the proxy reference in the original tree. As an example, gure 6.3 shows how the expression e a f G sum@gChA is built and split into sub-ASTs handled by a single type of skeleton.

; ; The life-cycle management of this temporary is handled by a C++ shared pointer and ensures that the data computed when crossing AST barrier lives long enough.

Notice that, as the gCh AST is an elementwise operation, it stays nested inside the sum node. NT 2 then uses the nestability of parallel skeletons to call the SIMD and/or scalar version of each skeleton involved in a serie of statements to recursively and hierarchically exploit the target hardware. At the end of the compilation, each NT 2 expression has been turned into the proper series of nested loop nests using combinations of OpenMP, SIMD and scalar code. Each of these skeleton is a NT 2 function object. They are handled by Boost.Dispatch and thus can be specialized on a per-architecture basis.

In this section we introduced the core of NT 2 , its expression framework. By providing a multi-pass evaluation process, NT 2 is able to transform and evaluate dierent scenarios with the proper parallel strategy for the code generation. Now, we will take a closer look to this evaluation by describing step by step the evaluation of a NT 2 expression. Note the capture of the a node which allow NT 2 to optimize sub-matrix indexing using the general code generation process. As every node in this expression are elementwise operations, run will select trnsform as the skeleton to use. The current architecture descriptor being openmp`vxb, run forward to the OpenMP version of trnsform as shown in listing 6.12. As the OpenMP architecture is parametrized by the architecture descriptor of its inner core, the OpenMP trnsform only deals with laying out the needed OpenMP structure around a call to its inner architecture trnsform version. This recursive denition limits the amount of code to write to handle architecture combinations as each skeleton implementation is only responsible to generate current architecture code. In this case, the OpenMP layer will take care of computing the optimal block size for current architecture, perform a parallel loop nest over the nested transform call and handle the left-over data.

In a similar way, the AVX version of trnsform is in fact the common SIMD trnsform version, as Boost.SIMD allow us to use a single API for all our SIMD related code (see gure 6.13).

a HFIfBe C HFPfBf C HFQfBg Results, in cycles per computed element, are given in table The main challenge for NT 2 is also to preserve performance despite a multi- statement implementation that, when compiled for OpenMP, leads to spurious barriers. On the other hand, NT

The Julia Mandelbrot Computation

The Julia Mandelbrot computation is a well known algorithm featuring load balancing issues: each iteration has a constant duration, but the number of iteration varies for each point. Like Black and Scholes, Mandelbrot is computation bound, but diers on two items:

• It uses complex arithmetic, but to ensure performance the code should avoid temporary results for complex multiplication and division;

• It is composed of low-latency instructions (at most 5 cycles for multiplications)

while Black and Scholes is dominated by longer latency instructions like square root, log and exponential.

To ensure proper parallelization, the actual NT 2 code relies on its implementation of the Matlab function sxfun that applies a given elementwise function object to every elements of a set of input tables. Contrary to other libraries, NT 2 version of sxfun relies on the fact that NT 2 can vectorize the code of any polymorphic callable object, i.e. a function object with a template function call operator. The NT 2 implementation is given as: res = bsxfun(julia(), linspace(-1.,1,100), trans(linspace(-1.,1,100))); Figures 6.9 and 6.10 illustrates how the NT 2 single precision implementation of Julia Mandelbrot computation performs on both test machines. The speedups obtained on Mini-Titan are very close to the theoretical ones and the eciency is greater than 80%. For Sandy, the eciency decreases due to generation of the Julia Space. In fact, this generation relies on SIMD integer support which is not available on AVX. If we remove this phase from the benchmark, the speedups are raising to the expected ones. The integer support for AVX will be addressed in the future to avoid this loss of performance. • Generative Programming helps implementing more exible scientic computing software with a very high level of abstractions and high eciency.

• Generic programming inside NT 2 permit an easy multi-architectural support for today's architectures.

• The benchmarks show a ecient code generation system. Designed as an active library, NT 2 proposes a solution for the design of high level programming tool with multi-architectural support. In this thesis we have presented two active libraries that aims at simplifying the development of high performance applications. The main objectives that were considered for the design of these two tools are:

• A high level abstraction coupled with a high expressiveness for designing applications that take advantage of parallel architectures;

• An ecient code generation process leading to performance close to a hand written parallel code;

• An easy extensibility of the libraries via a generic approach for their design.

Our contribution is based on several approaches. First, we have looked at the solutions available in our era of interests and we have studied their advantages and drawbacks. Then, we have proposed a new methodology with its implementation.

Finally, we have validated the eciency of our contributions by measuring the execution time of well known applications in various domains. This nal chapter summarizes synthetically our contributions and gives some perspectives for future research work.

Developing parallel applications that take advantages of architectural features is not a trivial task.

Many solutions exist with dierent approaches to face this problem. The existing tools propose a balance between expressiveness and performance that leads to prevail one of the two. To alleviate this compromise, we studied new techniques that permit an easy design for an architecture aware tool with high expressiveness and performance.

Chapter 7. Conclusions and Perspectives

The rst step of our contribution is the new methodology called AA-DEMRAL . We inject the architecture specications inside the evaluation process of a DSEL .

To implement this new methodology, we use C++ as a host language for our DSEL because it presents techniques that combine expressiveness with performance.

Generic and generative programming are emerging techniques that allow to couple a high level of abstraction with a driven code generation process within the compiler. Such techniques are possible through the template mechanism of C++ . Thus we use Boost.Dispatch, Boost.SIMD [START_REF] Esterie | Exploiting multimedia extensions in c++: A portable approach[END_REF][START_REF] Estérie | Boost. simd: generic programming for portable simdization[END_REF] and NT 2 [42]. Boost.Dispatch is a function dispatching library with a generic tag dispatching technique that has the ability to dispatch a function call according to its arguments, its properties as a function and an architecture specic information. Boost.SIMDis a high level programming tool for SIMD extensions and its implementation uses Boost.Dispatch.

NT 2 is a C++ library providing a DSEL which aims at simplifying the development of high performance numerical computing applications with a multi-architectural support. NT 2 's implementation relies on Boost.Dispatchand Boost.SIMD. Boost.SIMD and NT 2 are two high level tools that provide a high abstraction for the development of high performance applications. Boost.Dispatch has proved its ability to simplify the multi-architectural support for parallel programming tools by being successfully used inside Boost.SIMD and NT 2 . Boost.SIMD demonstrates its capability for an easy instruction level parallelism code writing.

NT 2 shows that expressiveness allows to tie domain specic informations with optimization strategies. These three libraries illustrates the power of generic programming for building abstractions that simplify architecture aware programming.

On the eectiveness side, Boost.SIMD and NT 2 show the performance of their code generation systems with a relevant number of tests. From basic kernels to real applications coming from dierent domains, the benchmarks demonstrate the capabilities of our three libraries to combine expressiveness and performance. The results obtained are comparable to hand written and optimized code from the state of the art. Both tools have proved the eectiveness of the code generation process introduced by our new methodology. Boost.SIMD has also been successfully used inside industrial code. The eciency of our approach is validate by our implementations and the experiments illustrate a relevant tool designing approach.

Perspectives

From these results, several perspectives and research interests are possible for the future.

Boost.SIMD currently include support for x86 processors and Altivec based architectures. The ARM version is currently under development. Targeting other architectures like the Xeon Phi or DSP based architecture is the next step. Another 7.2. Perspectives 121 feature we want to add is the ability of pk to work with SIMD registers when the user asks for a pk with a wide cardinal. For example, a pk with 8 elements should trigger the use of two SSE2 registers if this extension is available. Another step in the AST exploration system is to estimate the proper unrolling and blocking factor for any given expression. This requires a really ne architecture specication to be able to correlate in a ecient way the functions properties with a certain level of unrolling.

For NT 2 , the architecture support can be extended. A generalized support for distributed and shared memory system will allow NT 2 to target a wider range of applications. This can be done by using dierent backends. MPI may be a rst step but some implementation considerations are not tting properly with NT 2 like global barriers and the MPI environment handling. Using an asynchronous runtime back-end like Charm++ [START_REF] Laxmikant | CHARM++: a portable concurrent object oriented system based on C++[END_REF] or HPX [START_REF] Dekate | Improving the scalability of parallel n-body applications with an event-driven constraint-based execution model[END_REF] would allow NT 2 to take advantage of non blocking runtimes. With an asynchronous approach, the limitation of barriers while evaluating multiple statements can be solved. Asynchronous evaluation is a good candidate in this aspect. With OpenMP, this limitation still exists as we evaluate multiple statements in dierent loop-nests. We consider the introduction of a syntax for explicit loop fusion in order to avoid multiple barriers and maximize locality in multi-statements code. Still on the loop-nest limitation we are thinking of exploring the benets of embedding a meta-programmed subset of the polyhedral model [START_REF] Bastoul | Adjusting a program transformation for legality[END_REF][START_REF] Fassi | Multifor for multicore[END_REF] inside the NT 2 skeleton system to rene the combination of loop nests that can be generated. NT 2 relies on the availability of a native C++ compiler for the targeted architecture. Support for multi-stage programming [START_REF] Eckhardt | Implicitly heterogeneous multi-stage programming[END_REF] GPGPU are also good candidates for the architectural support of NT 2 but their integration to our framework need a non trivial lifting phase. Such an addition to the framework is taken into consideration. Working with dierent backends like Cuda or OpenCl implies the use of dierent programming techniques and models. We need to synthesize how accelerators can be added to the framework in a generic manner and multi-stage programming can be a rst step to achieve this.

The results presented in this typescript proved the eciency of our libraries.

Parallel programming is a fast growing world and tools need to be adaptable. The main perspectives presented in this last section have one common point which is: the simplicity and the genericity of our tools must keep expressiveness and performances close.

1. 3 . Objectives 3 Figure 1 . 1 :

 3311 Figure 1.1: Flynn's taxonomy

Figure 2 .

 2 Figure 2.1 illustrates the principle of an SIMD extension.With a constantly

Figure 2 . 1 :

 21 Figure 2.1: Principle of a SIMD computation unit

 2001, IBM released the rst multi-core based processor: the POWER4. It consists in two PowerPC AS with a unied L2 cache and works at 1 GHz. It was followed by Sun with the UltraSPARC IV composed of two UltraSPARC III cores (up tp 480 MHz). Intel and AMD launched their rst multi-core in 2006. AMD released the Opteron server series (up to 2.6 GHz) and Intel, the Core Duo (up to 2.33 GHz), both with two cores.

Figure 2 . 2 :

 22 Figure 2.2: Picture of a quad-core die

Figure 2 . 3 :

 23 Figure 2.3: CUDA principle

Figure 2 .

 2 Figure 2.4 shows the PCI card of the Xeon Phi. Two main architectures have been launched by Intel, the Knights Corner with more than 50 cores per chip (rst trimester of 2013) and the Knights Landing with 72 Atom based cores with 4 threads per core (launch in 2014).

Figure 2 . 4 :

 24 Figure 2.4: A Xeon Phi PCI card

Figure 2 . 5 :

 25 Figure 2.5: A picture of Titan

Listing 2 . 2 :

 22 AltiVec FMA implementation __vector int a , b , c , result ; result = vec_cts (vec_madd (vec_ctf (a examples demonstrate the complexity involved by the current programming model and its limitations to write portable applications.

Listing 2 . 3 :

 23 A pThread example -Sum of arrays # include < pthread .h > struct arg { float *a ,*b ,* r; }; void * func (void * in) { arg * p = (arg *) (in); for (int i =0; i <250; i ++) p ->r[i] = p ->a [i]+ p ->b[i]; return NULL ; } int main () { float a [1000] , b [1000] , r [1000]; pthread_t t [4]; th_arg arg [4]; for (int i =0; i <4; i ++) { arg [i]. pa = &a[i *250]; arg [i]. pb = &b[i *250]; arg [i]. pr = &r[i *250]; } for (int i =0; i <4; i ++) pthread_create (& t[i], NULL , func , & arg [i]) ;

Listing 2 . 4 :

 24 OpenMP directive example -Sum of arrays # include < omp .h > int main () { int i; float a [1000] , b [1000] , r [1000]; # pragma omp parallel shared (a ,b ,r) private (i) { # pragma omp for schedule (dynamic)

Listing 2 . 5 :

 25 TBB directive example -Sum of arrays # include " tbb / parallel_for .h" # include " tbb / blocked_range .h " using namespace tbb ; struct sum { const float * input1 ; const float * input2 ; float * output ; void operator () (const blocked_range < int >& range) const { for (int i = range . begin () ; i != range . end () ; ++ i) output [i] = input1 [i]+ input2 [i]; } }; void parallelsum (float * output , const float * input , const float * input , size_t n) { sum sum_ ; sum_ . input1 = input1 ; sum_ . input2 = input2 ; sum_ . output = output ; parallel_for (blocked_range < int >(1, n) , sum_); } In this example, we rst declare a C++ function object that will take a lokedrnge`b as argument. TBB uses the range Concept to handle iterations.

Listing 2 . 6 :

 26 A MPI example int main (int argc , char * argv []) { int rank , size ; MPI_Status st ; MPI_Init (& argc , & argv); MPI_Comm_rank (MPI_COMM_WORLD , & rank); if (rank == 0) { MPI_Send (& rank , 1, MPI_INT , 1, 0, MPI_COMM_WORLD); MPI_Recv (& rank , 1, MPI_INT , 1, 1, MPI_COMM_WORLD , & st) ; portable tool and can be used in the context of domain specic library design.

 C++ runtime system. It focuses on a unied programming model that is able to transparently use the available resources with a maximum of scalability. It relies on the C++11 Standard and provides a high level API. To maximize scalability, HPX combines dierent approaches: latency hiding, ne-grained parallelism and constraint based synchronizations are the main ones. Listing 2.7: A HPX example -Fibonacci sequence // Forward declaration of the Fibonacci function boost :: uint64_t fibonacci (boost :: uint64_t n); // Register the HPX Fibonacci action HPX_PLAIN_ACTION (fibonacci , fibonacci_action) ; boost :: uint64_t fibonacci (boost :: uint64_t n) { if (n < 2) return n ; // We restrict ourselves to execute the Fibonacci function locally . hpx :: naming :: id_type const locality_id = hpx :: find_here () ; fibonacci_action fib ; hpx :: future < boost :: uint64_t > n1 = hpx :: async (fib , locality_id , n -1) ; hpx :: future < boost :: uint64_t > n2 = hpx :: async (fib , locality_id , n -2) ; // Wait for the Futures to return their values return n1 . get () + n2 . get () ; } int hpx_main (boost :: program_options :: variables_map & vm) { // extract command line argument , i .e. fib (N) boost :: uint64_t n = vm ["n -value "]. as < boost :: uint64_t >() ; { // Wait for fib () to return the value fibonacci_action fib ; boost :: uint64_t r = fib (hpx :: find_here () , n); } return hpx :: finalize () ; // Handles HPX shutdown }

Listing 2 . 8 :

 28 A Stapl example -Parallel Sort // Parallel container stapl :: pVector < int > pV (i ,j) ; // Call to parallel sort on a Stapl range stapl :: pSort (pV . get_pRange ()); Listing 2.8 shows the use of Stapl parallel components.

Figure 3 . 1 :

 31 Figure 3.1: General principles of Expression Templates

Listing 3 . 1 :

 31 Analytical grmmr with Boost.Proto // Terminal type discriminator struct variable_tag {}; struct analytical_function : boost :: proto :: or_ < boost :: proto :: terminal < variable_tag > , boost :: proto :: or_ < boost :: proto :: terminal < int > , boost :: proto :: terminal < float > , boost :: proto :: terminal < double > > , boost :: proto :: plus < analytical_function , analytical_function > // both unary and binary negate , boost :: proto :: negate < analytical_function > , boost :: proto :: minus < analytical_function , analytical_function > , boost :: proto :: multiplies < analytical_function , analytical_function > , boost :: proto :: divides < analytical_function , analytical_function > > {};

Listing 3 . 3 :

 33 User-dened expression type with Boost.Proto template < typename AST > struct analytical_expression : boost :: proto :: extends < AST , analytical_expression < AST > must be constructible from an AST analytical_expression (AST const & ast = AST ()) : extendee (ast) {} BOOST_PROTO_EXTENDS_USING_ASSIGN (analytical_expression) // Provides the operator () overloads and makes it a Callable Object . typedef double result_type ; result_type operator () (double v0) const ; };

Listing 3 . 4 :

 34 The evlute transform struct evaluate_ : boost :: proto :: or_ < boost :: proto :: when < boost :: proto :: terminal < variable_tag > , boost :: proto :: _state > , boost :: proto :: when < boost :: proto :: terminal < boost :: proto :: _ > , boost :: proto :: _value > , boost :: proto :: otherwise < boost :: proto :: _default < evaluate_ > > > {};

Figure 3 . 2 :

 32 Figure 3.2: The DEMRAL methodology

38

 Chapter 3. A Generic and Generative Programming Approach for DSL the main reason why few abstractions are usually added at this level. We propose to integrate the architectural support as another generative component. To do so, we introduce a new methodology which is an hardware-aware extension of the DEMRAL methodology. In this Architecture Aware DEMRAL (AA-DEMRAL) methodology, the implementation components are themselves generated from a generative component which translates an abstract architecture description into a set of concrete implementation components to be used by the software generator. In the same way that DEM-RAL initially removed the complexity of handling a large amount of variations of a given set of algorithms, the Architecture-Aware approach that we propose leverages the work needed for supporting dierent architectures. By designing a small-scale DSEL for describing architectures, the software components used by the top-level code generator are themselves the product of a generative component able to analyze an abstract architecture description to specify the structure of these components.

Figure 3 .

 3 Figure 3.3 illustrates the new AA-DEMRAL methodology.

Figure 3 . 3 :

 33 Figure 3.3: The AA-DEMRAL methodology

4. 1 . 1

 11 Regular C++ function overloading Function overloading is a C++ feature that permits to have dierent function denitions with the same function name. When this function is called, the C++ compiler must choose which function denition to call. The decision between the dierent candidates is made by respecting a set of rules. Listing 4.1: Regular overloading in C++ float f(float) { return 0; } int f (int) { return 1; } unsigned int f (unsigned int) { return 2; } int main () { cout << f (2.0) << endl ; } We consider the example in listing 4.1. The overloaded function f is called

Listing 4 . 4 :

 44 Concept overloading template < typename T > requires std :: is_floating_point <T > T f(T t) { return 0; } template < typename T > requires std :: is_integral <T > T f(T t) { return 1; } template < typename T > requires std :: is_integral <T > && std :: is_signed <T > T f(T t) { return 2; } Listing 4.4 illustrates a Concept based overload of our example. The requires clause here permits to specify a constraint on the template parameter thus resulting to the best selection of the function denition. The 88 operator is able to introduce a relation between constraints (|| is also available). In our example, the overload resolution can distinguish that stdXXisintegrl`b 88 stdXXissigned`b is more specialized than stdXXisintegrl`b resulting to the best overload selection.

Figure 4 .Figure 4 . 1 :

 441 Figure 4.1: Architecture information for dispatch of generic components

Listing 4 .

 4 5 presents the denition of the Hierarchy Concept.

Listing 4 . 6 :

 46 The Hierarchy Concept for template types template < typename T > struct H <T > : P <T > { typedef P <T > parent ; }; 4.2.3 Compile Time Hierarchy Deduction This hierarchy system contains ready to use hierarchies that can be extended by the user. Listing 4.7 shows the free function dispatching example from section 4.1 rewritten with Boost.Dispatch. Listing 4.7: Boost.Dispatch in action # include < boost / dispatch / meta / hierarchy_of . hpp > using namespace boost :: dispatch ; template < class T > int f(T t) { return f(t , typename meta :: hierarchy_of <T >:: type ()); } template < class T > int f(T , scalar_ < floating_ <T >

Listing 4 .

 4 8: hierrhyof implementation template < class T , class Origin = T > struct hierarchy_of : details :: hierarchy_of < T , typename remove_reference < Origin >:: type > {}; // ===================================== // specialization for fundamental types // ===================================== namspace details { template < class T , class Origin > struct hierarchy_of < T , Origin , typename boost :: enable_if < boost :: is_fundamental <T > >:: type > { typedef typename remove_const < Origin >:: type stripped ; typedef typename mpl :: if_ < is_same < T , stripped > , stripped , Origin >:: type origin_ ; typedef scalar_ < typename property_of <T , origin_ >:: type > type ;

Listing 4 . 9 :

 49 A hierarchized call of plus template < class A0 > A0 plus (A0 const & a0 , A0 const & a1) { return impl :: plus (a0 , a1 , typename meta :: hierarchy_of < A0 >:: type ()); } 4.2.4.1 Hierarchy for functions With Boost.Dispatch the rst step consists in declaring a generic tag for the function itself. This tag identies the function in generic contexts and it needs to model the Hierarchy Concept. The function tag is tied to the function properties. The plus function is an elementwise function so we can introduce a specic elementwise evaluation context in the function hierarchy. Listing 4.10: The plus function identier // elementwise_ hierarchy template < class T > struct elementwise_ : unspecified_ <T > { typedef unspecified_ <T > parent ; 10 shows how to introduce a new elementwise hierarchy and how to express a function tag modeling this hierarchy. Further function properties can then be added through this hierarchy like reduction operations for example.

4. 2 .

 2 The Boost.Dispatch Library51A list of all properties available and how they relate to each other is listed in gure 4.2.

Figure 4 . 2 : 52 Chapter 4 .

 42524 Figure 4.2: The properties of the built-in scalar hierarchy

Listing 4 . 12 :

 412 Dispatching plus on default pu site template < class A0 > A0 plus (A0 const & a0 , A0 const & a1) { typedef default_site < tag :: plus_ >:: type site ; return impl :: plus (a0 , a1 , typename meta :: hierarchy_of <A0 >:: type () , typename meta :: hierarchy_of < site >:: type ()

 Listing 4.13 shows the inheritance from the unspeified tag to add an simd hierarchy tag in the Boost.Dispatch tag dispatching mechanism. Listing 4.13: SIMD type hierarchy namespace tag { template < class T , class X > struct simd_ : simd_ < typename T :: parent , X > { typedef simd_ < typename T :: parent , X > parent ; needs to be used when working with SIMD registers. The SSE extension requires the use of the mIPV type to store four flot values in a SIMD register. We need to make Boost.Dispatch aware of the hierarchy of this type to activate the dispatch on SIMD oating point registers. Listing 4.14 shows the specialization of the hierrhyof metafunction to register the mIPV type in the type hierarchy. Listing 4.14: Making hierrhyof aware of SIMD register template < class T , class Origin > struct hierarchy_of < __m128 , Origin > { typedef simd_ < single_ < Origin >, sse_ > type ; };

54 Chapter 4 .

 544 The Boost Dispatch Library Listing 4.15: Hierarchy class for SSE namespace tag { struct simd_ : cpu_ { typedef cpu_ parent ; }; struct sse_ : simd_ { typedef simd_ parent ; }; } Now, we can add a new version of our plus function for the sse site. This version adds the sse tag to our implementation. The '+' operation is then performed by the mmddps intrinsic. Listing 4.16 presents this version. Listing 4.16: Dispatching plus for SSE namespace impl { template < class A0 > A0 plus (A0 a0 , A0 a1 , simd_ < single_ <A0 > > const & , tag :: sse_ const &

Listing 4 .

 4 17: generi hierarchy for code reuse namespace tag { template < class T , class X > struct simd_ < T , X > : generic_ < typename property_of <T >:: type > { typedef generic_ < typename property_of <T >:: type > parent ;

56 Chapter 4 .Figure 4 . 3 :

 56443 Figure 4.3: plus node example

4. 2 . 57 Listing 4 . 22 :

 257422 The Boost.Dispatch Library Hierarchy class macro namespace tag { BOOST_DISPATCH_HIERARCHY_CLASS (simd_ , boost :: dispatch :: tag :: cpu_); BOOST_DISPATCH_HIERARCHY_CLASS (sse_ , simd_); } The next macro is fyyhsegrpxgsyxswviwixesyx. It generates a dispatch-based function implementation. Listing 4.23 details this macro. Listing 4.23: Implementation Macros of Boost.Dispatch // Tag is the function tag // Name is the name of the function // N is the number of arguments for the function . BOOST_DISPATCH_FUNCTION_IMPLEMENTATION (Tag , Name , N) Our function example of plus can now be written as in listing 4.24 Listing 4.24: plus registration template < class T > namespace tag { struct plus_ : elementwise_ < plus_ > {}; } BOOST_DISPATCH_FUNCTION_IMPLEMENTATION (tag :: plus_ , plus , 2) The fyyhsegrswviwix macro (see listing 4.25) takes care of generating the Boost.Dispatch funtor that handles the tag dispatching mechanism. It is also called an implement in the context of the library. The user can easily specify a special namespace where the function will be declared. Then the function tag and the site tag are passed to the macro. The user can nally name the template arguments of the function and specify in a preprocessor sequence the hierarchy tags associated with these arguments. Listing 4.25: Extension Macros of Boost.Dispatch // NS is the namespce for the implement . // Tag is the function tag // Site is the site tag // Types are the template parameters for the arguments // Seq is waiting for a sequence of types hierarchy tags // Cond is a static condition that can include or not an implement BOOST_DISPATCH_IMPLEMENT (NS , Tag , Site , Types , Seq) Now, we can update our plus example and specify two Boost.Dispatch implementations. Listings 4.26 and 4.27 present these implementations. A0 const & a0 , A0 const & a1) const { return a0 + a1 ; } }; Listing 4.27: SIMD overload with macros BOOST_DISPATCH_IMPLEMENT (my_plus_namespace , tag :: plus_ , tag :: sse_ , (A0) , ((simd_ < single_ <A0 >, tag :: sse_ >)) ((simd_ < single_ <A0 >, tag :: sse_ >))) { typedef A0 result_type ; A0 operator (A0 a0 , A0 a1) const { return _mm_add_ps (a0 , a1); } }; We can nally call our plus function like in listing 4.28. In the next section, we will present implementation details of the library to clarify the behavior of Boost.Dispatch. Listing 4.28: SIMD overload with macros int main () { float a = 3.0 , float b = 5.0; float c = plus (a ,b) ; // The scalar version is called here . __m128 vec0 = {1.0 , 2.0 , 3.0 , 4.0}; __m128 vec1 = {11.0 ,12.0 ,13.0 ,14.0}; __m128 r = plus (vec0 , vec1); // The SSE version is called here .

Contents 5 . 1 65 Chapter 5 .

 51655 Hardware context and software challenges 62 5.2 The Boost.SIMD Library . The Boost SIMD Library

5. 1 .

 1 Hardware context and software challenges 63

68 Chapter 5 .

 685 18 std :: cout << res << std :: endl ;• Compiling the code The compilation of the code is rather straightforward: just pass the path to Boost.SIMD and use your compiler options to activate the desired SIMD extension support.For example, on gcc: gCC myodeFpp EyQ Eo myode EsGpthGtoGoostG EmsseP gCC myodeFpp EyQ Eo myode EsGpthGtoGoostG Emvx gCC myodeFpp EyQ Eo myode EsGpthGtoGoostG Emltive Some compilers, like Microsoft Visual Studio, don't propagate the fact that a given architecture specic option is triggered. In this case, you need to also denes an architecture specic preprocessor symbol, for example: l Gyxt Ghxhifq GrhXiP Gs6fyyyy myodeFpp l Gyxt Ghxhifq GhfyyswhreiRPy Gs6fyyyy myodeFpp The Boost SIMD Library• The resultWe can then have a look at the program's output that should look like: {RPDRPDRPDRP} Now, let's have a look at the generated assembly code for SSE2: movaps 0x300(%rip),%xmm0 addps 0x2e6(%rip),%xmm0 mulps 0x2(%rip),%xmm0 movaps %xmm0,(%rsp)We correctly emitted Bps instructions. Note that the abstraction introduced by pk does not incur any penalty. Now we can look at the AVX generated assembly: vmovaps 0x407(%rip),%ymm0 vaddps 0x3dc(%rip),%ymm0,%ymm0 vmulps 0x414(%rip),%ymm0,%ymm0 vmovaps %ymm0,(%rsp)

Figure 5 . 1 :

 51 Figure 5.1: Load strategy for SOA

Figure 5 Figure 5 . 2 :

 552 Figure 5.2: Load strategy for AOS

Listing 5 . 10 :

 510 Function calls on pk typedef typename pack < float ,4 > p_t ; float t [] = {0.0 ,1.1 ,2.2 ,3.3}; p_t data0 (& t [0]) ; // data = [0.0 ,1.1 ,2.2 ,3.3] p_t data1 (-0.3 , -0.2 , -0.1 , -0.0) ; p_t r = simd :: min (simd :: abs (data1) , data0); std :: cout << "r = " << r << std :: endl ; // Output : r = [0.0 ,0.2 ,0.1 ,0.0]

Listing 5 .Figure 5 . 3 :

 553 Figure 5.3: Permutation example

Figure 5 .

 5 Figure 5.4: 4 × 4 matrix transpose in SIMD The Boost.SIMD version in listing 5.14 is the equivalent of the intrinsic version shown in listing 5.13. The ability of shuffle to match the best intrinsic call through its generic matcher is used here and the exact same intrinsics calls are generated. Listing 5.14: Boost.SIMD transpose with shuffle pack < float ,4 > row0 = {10 ,11 ,12 ,13} , row1 = {20 ,21 ,22 ,23} , row2 = {30 ,31 ,32 ,33} , row3 = {40 ,41 ,42 ,43};pack < float ,4 > __r0 = row0 , __r1 = row1 , __r2 = row2 , __r3 = row3 ; pack < float ,4 > __t0 = shuffle <0 ,0 ,1 ,1 >(__r0 , __r1); pack < float ,4 > __t1 = shuffle <0 ,0 ,1 ,1 >(__r2 , __r3); pack < float ,4 > __t2 = shuffle <0 ,0 ,1 ,1 >(__r0 , __r1); pack < float ,4 > __t3 = shuffle <0 ,0 ,1 ,1 >(__r2 , __r3); row0 = shuffle <0 ,1 ,0 ,1 >(__t0 , __t1); row1 = shuffle <2 ,3 ,2 ,3 >(__t1 , __t0); row2 = shuffle <0 ,1 ,0 ,1 >(__t2 , __t3); row3 = shuffle <2 ,3 ,2 ,3 >(__t3 , __t2);

Figure 5 .Figure 5 . 5 :

 555 Figure 5.5 illustrates such a scenario.

Figure 5 . 6 :

 56 Figure 5.6: Shifted iterator

A 20 Listing 5 . 20 :

 20520 generic scalar version of the dot function can be simply dened as shown in Listing 5.Scalar dot function template < typename Value > Value dot (Value * first1 , Value * last1 , Value * first2) { Value v (0) ; while (first1 != last1) v += * first1 ++ * * first2 ++; return v; } Listing 5.22: SIMDization the dot function # include < boost / simd / sdk / simd / pack . hpp > # include < boost / simd / include / functions / sum . hpp > # include < boost / simd / include / functions / load . hpp > # include < boost / simd / include / functions / plus . hpp > # include < boost / simd / include / functions / multiplies . hpp > template < typename Value > Value dot (Value * first1 , Value * last1 , Value * first2) { using boost :: simd :: sum ; using boost :: simd :: pack ; using boost :: simd :: load ; typedef pack < Value > type ; type tmp =0; while (first1 != last1) { // Load current values from the datasets pack < Value > x1 = load < type >(first1); pack < Value > x2 = load < type >(first2); // Computation tmp = tmp + x1 * x2 ; // Advance to the next SIMD vector first1 += type :: static_size ; first2 += type :: static_size ; } return sum (tmp); }

Listing 5 .

 5 23: Simple min # include < vector > int main () { std :: vector < float > a (1024) , b (1024) ; // ... fill up a and b float r = dot (& a [0] , &a [0]+1024 , & b [0]) ; }Even if this version works, the issue is that we don't use aligned load to ll SIMD register from the memory. On some systems, typically pre-Nehalem for x86 or PowerPC, unaligned loads and stores cost far more than aligned ones. Therefore it is important to use aligned data in memory. To do so, we need to modify the code in two places. • First the dot function should use the lignedlod function that behaves exactly as lod but uses aligned memory accesses as an input. The code then becomes: pack < Value > x1 = aligned \ _load < type >(first1) ; \\ pack < Value > x2 = aligned \ _load < type >(first2) ; } An alternative is to use the constructor from aligned pointer of pk, giving us the following code: pack < Value > x1 (first1) ; \\ pack < Value > x2 (first2) ; } • Then, we need to provide to dot a pointer to aligned memory. This can be done by using the Boost.SIMD llotor class as the stdXXvetor allocator 5.26. Listing 5.26: Aligned memory for data # include < vector > # include < boost / simd / sdk / simd / pack . hpp > # include < boost / simd / include / functions / sum . hpp > # include < boost / simd / include / functions / load . hpp > # include < boost / simd / include / functions / plus . hpp > # include < boost / simd / include / functions / multiplies . hpp > template < typename Value > Value dot (Value * first1 , Value * last1 , Value * first2) { using boost :: simd :: sum ; using boost :: simd :: pack ; using boost :: simd :: load ; typedef pack < Value > type ; type tmp ; // Let 's consider that (last1 -first1) is divisible by the size of the pack . while (first1 != last1) { pack < Value > x1 = aligned_load < type >(first1); pack < Value > x2 = aligned_load < type >(first2); tmp = tmp + x1 * x2 ; first1 += type :: static_size ; first2 += type :: static_size ; } return sum (tmp); } int main () { std :: vector < float , boost :: simd :: allocator < float > > a (1024) , b (1024) ; // ... fill up a and b float r = dot (& a [0] , &a [0]+1024 , & b [0]) ; } 5.4. Case Analysis: Generic SIMD code generation 81 5.4.5 Resulting code generation Listing 5.27 shows the resulting code generation for a SSE2 system. The assembly code is still showing no abstraction penalty. The entire computation is performed in SIMD here, Bps instructions are generated in place of the scalar ones.

Listing

5. 4 .

 4 Case Analysis: Generic SIMD code generation 83 Listing 5.31: dotFpp le # include < vector > # include < boost / simd / sdk / simd / pack . hpp > # include < boost / simd / include / functions / sum . hpp > # include < boost / simd / include / functions / load . hpp > # include < boost / simd / include / functions / plus . hpp > # include < boost / simd / include / functions / multiplies . hpp > # include < boost / config . hpp > BOOST_SYMBOL_EXPORT float dot (float * first1 , float * last1 , float * first2 , BOOST_SIMD_DEFAULT_SITE) { using boost :: simd :: sum ; using boost :: simd :: pack ; using boost :: simd :: load ; typedef pack < float > type ; type tmp ; while (first1 != last1) { pack < float > x1 = aligned_load < type >(first1); pack < float > x2 = aligned_load < type >(first2); tmp = tmp + x1 * x2 ; first1 += type :: static_size ; first2 += type :: static_size ; } return sum (tmp); } We use the preprocessor symbol fyyswhhipevsi, which expands to the current SIMD extension being target, to decorate the symbol. We can now compile dierent variants of dotFpp. With GCC on Linux: gCC EyQ Ehxhifq Eshred Efvisiilityahidden EmsseP Es6fyyyy dotFpp Eo limydotssePFso gCC EyQ Ehxhifq Eshred Efvisiilityahidden Emvx Es6fyyyy dotFpp Eo limydotvxFso With MSVC on Windows:

Listing 5 . 33 :

 533 Hierarchy of classes for x86 SIMD family namespace boost { namespace simd { namespace tag { // Tag hierarchy for SSE extensions BOOST_DISPATCH_HIERARCHY_CLASS (sse_ , simd_);

Figure 5 Figure 5 . 7 :Figure 5 . 8 :

 55758 Figure 5.7: Boost.Proto AST of C B When Boost.Proto builds such an expression, every C++ operators can have meanings and behaviors independent of any context. Thus, we can control the behavior of these operators by overloading them. Boost.SIMD then overloads each Boost.Proto operators to call a Boost.Dispatch based function. This function is hierarchized with the tag corresponding to the operator. The RHS of our expression is the following: plus(pack<T> , multiplies(pack<T>, pack<T>))As pk is a Boost.Proto terminal, the call to the Boost.Dispatch function is also hierarchized according to the AST hierarchy. The concrete arguments of

Figure 5 . 9 :

 59 Figure 5.9: ssign function call on the LHS and RHS

 This section presents the Boost.SIMD performance on several benchmarks. Every benchmark has been tested using the SSE4.2, AVX and Altivec instruction sets to demonstrate the portability of the code. The benchmarks include: an implementation of the e kernel and three image processing algorithms featuring the various types of SIMD iterator abstractions. Unless stated otherwise, the tests have been run using g++ 4.6. The SSE2, AVX and Altivec benchmarks have been executed on the Nehalem, Sandy Bridge and PowerPC G5 microarchitectures respectively.

Listing 5 . 35 : 92 Chapter 5 .

 535925 Boost.SIMD version of the AXPY kernel using boost :: simd :: pack ; using boost :: simd :: aligned_store ; typedef pack <T > type ; std :: size_t step_size_ = boost :: simd :: meta :: cardinal_of < type >:: value ; for (std :: size_t i = 0; i < size_ ; i += step_size_) { type X_pack (& X[i]) ; type Y_pack (& Y[i]) ; aligned_store (alpha * X_pack + Y_pack , &Y[i]); } Tables 5.3 shows how Boost.SIMD performs against handwritten SIMD code without loop unrolling. The results of the generated code are equivalent to the SSE4.2 code and assess that Boost.SIMD delivers the expected speedup. The Boost SIMD Library

5. 7 . 2

 72 Black and Scholes Listing 5.36 shows the Boost.SIMD code for the Black and Scholes algorithm. The code was tested with single precision oating point numbers. Listing 5.36: Boost.SIMD version of Black and Scholes template < class A0 > A0 blackandscholes (A0 const & a0 , A0 const & a1 , A0 const & a2 , A0 const &a3 , A0 const & a4) { A0 da = simd :: sqrt (a2); A0 d1 = simd :: log (a0 / a1) + (simd :: fma (simd :: sqr (a4) , simd :: Half <A0 >() ,a3)* a2) /(a4 * da); A0 d2 = simd :: fnms (a4 ,da , d1); return simd :: fnms (a1 * simd :: exp (-a3 * a2) , simd :: normcdf (d2)

Figure 5 . 10 :

 510 Figure 5.10: Results for Black and Scholes algorithm on Excalibur

5. 7 . Benchmarks 95 5. 7 . 3

 79573 Sigma-Delta Motion DetectionThe Sigma-Delta algorithm[START_REF] Lacassagne | High performance motion detection: some trends toward new embedded architectures for vision systems[END_REF] can be expressed by a series of additions, subtractions and various boolean selections. As pointed by Lacassagne in [70], the Sigma-Delta algorithm is mainly limited by memory bandwidth and no optimizations beside SIMDization is ecient as only point-to-point operations are issued. Listing 5.37 shows the Boost.SIMD implementation of the Sigma-Delta algorithm. Listing 5.37: Boost.SIMD version of Sigma Delta template < class Pixel > Pixel sigmadelta (Pixel & bkg , const Pixel &fr , Pixel & var) { Pixel diff_img , mul_img , zero =0; bkg = selinc (bkg < fr , seldec (bkg > fr , bkg)); diff_img = max (bkg , fr) -min (bkg , fr) ; mul_img = adds (adds (diff_img , diff_img) , diff_img); var = if_else (diff_img != zero , selinc (var < mul_img , seldec (var > mul_img

Figure 5 . 11 :

 511 Figure 5.11: Results for Sigma-Delta algorithm on ExcaliburBoost.SIMD keeps the high level abstraction provided by the use of STL code and is able to reach the performance of the vectorized reference code. In addition, the portability of the Boost.SIMD code gives access to the original speedups without rewriting the code.

98 Chapter 5 .

 985 The Boost SIMD Library Listing 5.39: Call to the Julia Mandelbrot step // [...] mandelbrot :: step julia (256) ; std :: size_t step_size_ = boost :: simd :: meta :: cardinal_of < type >:: value ; std :: size_t aligned_sz = size_ & ~(step_size_ -1) ; std :: size_t it = 0; for (std :: size_t m= aligned_sz ; it != m; it += step_size_) { type A_pack = (& A[it]) ; type B_pack = (& B[it]) ; aligned_store (julia (A_pack , B_pack) , &C[it]) ; } for (std :: size_t m= size_ ; it != m; it ++) C[it]= julia (A[it],B[it]) ;

Figure 6 . 1 :

 61 Figure 6.1: tle with interleved and deinterleved data

Figure 6 . 3 :

 63 Figure 6.3: Parallel Skeletons extraction processNesting of dierent kinds of skeletons into a single statement is automatically unwrapped at compile time as a sequence of single skeleton statements.

6. 3 . 6 . 3

 363 Expression Evaluation with NT2 111 Expression Evaluation with NT2 In this section we detail the exact scenario for the evaluation of a NT 2 DSL ex- pression. As an example, consider the code generation of the a C expression on an OpenMP+AVX system. a C is rst evaluated as a compile-time AST structured as: expr`ssignD rgs`expr`terminlD rgs`tle`Db b b D expr`plusD rgs`expr`terminlD rgs`tle`Db b D expr`terminlD rgs`tle`Db b b b b b

Listing 6 .

 6 12: OpenMP trnsform template < class LHS , class RHS , class Core > void transform (LHS & a0 , RHS & a1 , int p , int s , openmp_ < Core > const &) { int bs = block_size () ; # pragma omp parallel firstprivate (bs) { ntd :: functor < tag :: transform_ , Core > f; # pragma omp for schedule (dynamic) nowait for (int n =0; n <(s / bs) ;++ n) f(a0 ,a1 ,p+n *bs , bs); # pragma omp single nowait if (s% bs) f(a0 ,a1 , p +(s/ bs)*bs ,s% bs); } }

Figure 6 . 5 :Figure 6 . 6 :

 6566 Figure 6.5: GEMM kernel benchmarks using MKL on Mini-Titan

 return S* normcdf (d1) -X* exp (-r *T)* normcdf (d2); }The Black & Scholes algorithm involves multiples high latency and high register count operations. The SIMD version of log, exp and normdf use polynoms and precision renement step that consume a large amount of registers. Results shown on gure 6.7 demonstrates that our SIMD implementation hits roughly 65% of the peak speed-up in SIMD due to the important number of spilled variables. The speed-ups of the multi-threaded versions go up to 90% of the peak speed-ups. When combining SIMD and OpenMP, the gain raises but the workload of the SIMD computation units is still to heavy.

 th/Sandy: 4 th MiniTitan: 12 th/Sandy: 8 th SIMD (MiniTitan: 6 th/Sandy: 4 th)+SIMD (MiniTitan: 12 th/Sandy: 8 th)+SIMD

Figure 6 . 7 :

 67 Figure 6.7: Black&Scholes Results in single precision

Figure 6 . 8 :

 68 Figure 6.8: Sigma Delta Results

Figure 6 . 10 :

 610 Figure 6.10: Mandelbrot Results in single precision on Sandy

 . 119 7.2 Perspectives . 120 7.1 Conclusions

 will allow NT 2 to target system like DSPs on which no C++ compiler is natively available. Porting NT 2 to new architecture like the Xeon Phi and OpenCL based Altera recongurable systems is interesting to us as multiple accelerator based architecture are rising nowadays.

 The Wide Architecture Landscape 7 2.1.1 SIMD extensions . 8 2.1.2 From single core to multi-core 9 2.1.3 Accelerators . 10 2.1.4 Distributed memory systems 12 2.1.5 Conclusion . 12 2.2 Programming the Landscape 13 2.2.1 Low Level Parallel Tools . 13 2.2.2 Domain Specic Libraries for Scientic Computing 20 2.2.3 Domain Specic Languages 23 2.2.4 Domain Specic Embedded Language approach 24 2.2.5 Conclusion . 25 2.3 Proposed Approach . 25

	Chapter 2 From Architectures to Applications
	Contents 2.1

 Software context . 27 3.1.1 The conguration space approach 28 3.1.2 Library level exploration . 29 3.2 Programming techniques . 30 3.2.1 Template Meta-Programming 30 3.2.2 Expression Templates . 30 3.2.3 The Boost.Proto library 32 3.2.4 Conclusion . 36

	Chapter 3 A Generic and Generative Programming Approach for DSL
	Contents 3.1 3.3 The DEMRAL Methodology 36
	3.3.1 DSELs design considerations 36
	3.3.2 From DSELs to Architecture Aware DSEL 37
	3.4 Conclusion . 39

 Challenges . 41 4.1.1 Regular C++ function overloading 42 4.1.2 Free function dispatching using SFINAE 43 4.1.3 The Tag Dispatching technique 44 4.1.4 Concept based overloading 45 4.1.5 Conclusion . 45 4.2 The Boost.Dispatch Library 46 4.2.1 The AA-DEMRAL methodology in Boost.Dispatch 46 4.2.2 The Hierarchy Concept . 47 4.2.3 Compile Time Hierarchy Deduction 48 4.2.4 Built-in Hierarchies . 49 4.2.5 Common API . 56 4.3 Conclusion . 59

	Chapter 4 The Boost Dispatch Library
	Contents 4.1

 [START_REF] Agullo | Numerical linear algebra on emerging architectures: The plasma and magma projects[END_REF].3 shows the previous example implemented with the Tag Dispatching approach.

	Listing 4.3: Free function dispatching using Tag Dispatching
	struct unknown_tag		{};
	struct fundamental_tag		{};
	struct floating_point_tag	: fundamental_tag {};
	struct integral_tag	: fundamental_tag {};
	struct signed_integral_tag	: integral_tag	{};
	struct unsigned_integral_tag : integral_tag	{};
	template < class T > struct category_of { typedef unknown_tag type ; };
	template <> struct category_of < float >{ typedef floating_point_tag type ; };
	template <> struct category_of < double >{ typedef floating_point_tag type ; };
	template <> struct category_of < int > { typedef signed_integral_tag type ; };
	template <> struct category_of < unsigned int >	
	{ typedef unsigned_integral_tag type ; };	
	template < class T > int f(T t)		
	{ return f(t , typename category_of <T >:: type ()) ; }
	template < class T > int f(T , floating_point_tag const &)
	{ return 0; }		
	template < class T > int f(T , integral_tag const &)	
	{ return 1; }		

template < class T > int f(T , unsigned_integral_tag const &)

 Hierarchy for Boost.Proto ASTsThe library can also dispatch functions that manipulates Boost.Proto ASTs. The top-level of the Boost.Proto expression hierarchy is the st hierarchy tag (see listing4.19). It directly inherits from the unspeified tag which means that all the Boost.Proto expressions passed as arguments match this hierarchy. A Boost.Proto domain can still be used by the dispatch system. The st hierarchy is then rened by the node hierarchy.

	4.2. The Boost.Dispatch Library	55
	Listing 4.18: A generi function call example	
	namespace impl	
	{	
	template < class A0 >	
	A0 square (A0 const & a0	
	, generic_ < arithmetic_ <A0 > > const &	
	, cpu_ const &	
)	
	{	
	return multiplies (a0 , a0) ;	
	};	
	}	
	4.2.4.4 Listing 4.19: The st hierarchy	
	// T is the AST being hierarchized	
	// D is the AST domain	
	template < class T , class D >	
	struct ast_ : unspecified_ <T >	
	{	
	typedef unspecified_ <T > parent ;	
	};	

Table 5 .

 5 1: SIMD extensions in modern processors

	Manufacturer	Extension	Registers size & number	Instructions
		SSE	128 bits -8	70
		SSE2	128 bits -8/16	214
		SSE3	128 bits -8/16	227
	Intel	SSSE3 SSE4.1	128 bits -8/16 128 bits -8/16	227 274
		SSE4.2	128 bits -8/16	281
		AVX	256 bits (oat only)-8/16	292
		AVX2 + FMA3	256 bits -8/16	297
	AMD	SSE4a XOP	128 bits -8/16 128 bits -8/16	231 289
		VMX	128 -32	114
	IBM	VMX128	128 bits -128	
	Motorola	VSX	128 bits -64	
		QPX	256 bits -32	
		SPU	128 bits -128	
	ARM	NEON	128 bits -16	100+
	ARM	NEON2		

Table 5 .

 5

			2: SIMD types available	
	Manufacturer	Extension	Floating registers	Integer registers
		SSE	__m64, __m128	Not Supported
	Intel/AMD	SSE2,3,4x AVX	__m64, __m128, __m128d __m256, __m256d	__m128i Not Supported
		AVX2 + FMA3	__m256, __m256d	__m256i
	IBM/Mot.	AltiVec avored	__vector oat	__vector int, __vector char, etc
	ARM	NEON	oat32x4_t, oat32x2_t	int32x4_t, int32x2_t, etc
	keep a strong readability of the code and bury the verbosity of the classic
	SIMD programming style. By design, a generic library in C++ oers a high

level of expressiveness and relies on Concepts that help the library in its code generation phase. For Boost.SIMD, we need to extract axioms

[START_REF] Gabriel Dos Reis | Axioms: Semantics aspects of c++ concepts[END_REF]

from the current SIMD programming model to correctly express and dene a set of C++ Concepts. Afterward we will be able to use those Concepts to provide correct data structure and algorithm abstractions that t with the expressibility of a ne grain data parallel problem.

 5.27: Assembly code generated with Boost.SIMD on SSE2 Now if we look to the AVX version in listing 5.28, the assembly code is correctly generated and presents calls to Bpd instruction as this version was compiled for double precision oating point values. The genericity of this code makes this change really simple and the generated code stay correct.

	82		Chapter 5. The Boost SIMD Library
		addi	r9 ,r1 ,1088
		vperm	v13 ,v0 ,v0 , v13
		vaddfp v0 ,v0 , v13
		vperm	v1 ,v0 , v0 , v1
		vaddfp v0 ,v1 , v0
		stvx	v0 ,r9 , r18
		cmp	% rdi ,% rsi
		xorps % xmm1 ,% xmm1
		je	end
	begin : movaps (% rdi) ,% xmm0
		add	$0x10 ,% rdi
		mulps (% rdx) ,% xmm0
		add	$0x10 ,% rdx
		cmp	% rdi ,% rsi
		addps % xmm0 ,% xmm1
		jne	begin
	end :	movaps % xmm1 ,% xmm2
		shufps $0x4e ,% xmm1 ,% xmm2
		addps % xmm1 ,% xmm2
		movaps % xmm2 ,% xmm0
		shufps $0x91 ,% xmm2 ,% xmm0
		addps % xmm2 ,% xmm0
		retq
	Listing 5.28: Assembly code generated with Boost.SIMD on AVX
		vxorpd	% xmm0 ,% xmm0 ,% xmm0
		nopw	0 x0 (% rax ,% rax ,1)
	begin : vmovapd	(% rdi ,% rax ,8) ,% ymm1
		vmulpd	(% rsi ,% rax ,8) ,% ymm1 ,% ymm1
		add	$0x4 ,% rax
		cmp	% rcx ,% rax
		vaddpd	% ymm0 ,% ymm1 ,% ymm0
		jb	begin
		vhaddpd	% ymm0 ,% ymm0 ,% ymm0
		vextractf128 $0x1 ,% ymm0 ,% xmm1
		vaddpd	% xmm1 ,% xmm0 ,% xmm0
	The Altivec assembly in listing 5.30 also conrm that Boost.SIMD generates
	the correct code. The FMA instruction is successfully generated.
	Listing 5.29: Assembly code generated with Boost.SIMD on Altivec
	begin : rlwinm r10 ,r9 ,2 ,0 ,29
		addi	r9 ,r9 ,4
		lvx	v13 ,r6 , r10
		lvx	v1 ,r7 , r10
		cmplw	cr7 ,r9 , r8
		vmaddfp v0 , v13 ,v1 , v0
		blt	begin
		lvx	v13 ,0 , r19
		lvx	v1 ,0 , r20

Table 5 .

 5 3: Boost.SIMD vs handwritten SIMD code for the AXPY kernel in GFlop/s Autovectorizers in compilers are also able to capture this type of kernel and generate optimized code for the targeted architecture. Tables 5.4 and 5.5 shows how Boost.SIMD performs against the two of them.

	Type Size	Version	SSE4.2
			Ref. SIMD	4.03
	oat	2 9	Boost.SIMD	4.70
			Ref. SIMD	3.40
		2 14	Boost.SIMD	3.49
			Ref. SIMD	3.41
		2 19	Boost.SIMD	3.98
	The MKL Library proposes an optimized routine of this algorithm for the x86
	processor family.			

Table 5 .

 5 4: Boost.SIMD vs Autovectorizers for the DAXPY kernel in GFlop/s

	Type	Size Version SSE2 AVX
			gcc	1.10	1.10
		16	mkl	0.76	0.76
	double		B.SIMD 1.28	4.00
			gcc	0.55	0.55
		64	mkl	2.61	0.76
			B.SIMD 2.17	4.00
			gcc	1.49	1.49
		256	mkl	5.82	0.76
			B.SIMD 1.71	2.93
			gcc	1.35	1.35
		1024	mkl	7.91	0.76
			B.SIMD 2.00	3.03
			gcc	1.17	1.17
		4096	mkl	4.91	0.76
			B.SIMD 1.91	2.76
	The sizes of the used vectors are chosen according to the cache sizes of their
	respective targets so that they all t in the L2 cache. The g version shows the
	autovectorizer work on the AXPY kernel written in C++ code. The mkl version
	shows the performance of the Intel MKL AXPY BLAS function.
	First, the GNU compiler is unable to vectorize and unroll the loop properly due
	to its inability to go through the various layer of the C++ code. The MKL version
	featuring both SIMD and loop optimizations is clearly superior to all the other
	versions except for very small sizes. Measurements show that the performance of

Table 5 .

 5 5: Boost.SIMD vs Autovectorizers for the SAXPY kernel in GFlop/s

	Type Size Version SSE2 AVX
		gcc	1.16	1.16
	16	mkl	1.07	1.07
	oat	B.SIMD 3.20	4.00
		gcc	1.31	1.31
	64	mkl	3.66	3.66
		B.SIMD 3.77	7.55
		gcc	1.52	1.52
	256	mkl	7.65	7.65
		B.SIMD 4.36	9.67
		gcc	1.42	1.42
	1024	mkl	11.96 11.96
		B.SIMD 3.96	5.65
		gcc	1.23	1.23
	4096	mkl	12.35 12.35
		B.SIMD 3.99	5.48

Table 5 . 6 :

 56 Results for Sigma-Delta algorithm in cpp on Altivec, a slow-down appears with images of 512 × 512 elements. Such a scenario can be explained by the number of images used by the algorithm and their sizes. Three vectors of type unsigned hr need to be accessed during the computation which is the critical section of the Sigma-Delta algorithm. The 512 KBytes L2 cache of the PowerPC 970FX can not contain the three images in cache. Cache misses becomes preponderant and the Load/Store unit of the Altivec extension keeps waiting for data from the main memory. The L3 cache level of the Nehalem microarchitecture overcomes this problem. The i autovectorizer generates SSE4.2 code with the C version of Sigma-Delta while g fails. The C++ version keeps its fully scalar properties even with the autovectorizers enabled due to the lack of static information introduced by the Generic Programming Style of the C++ language.Figure 5.11 shows the frames per second that Boost.SIMD can obtain againstthe scalar version of the code on Excalibur. We can see that SSE2 provides an average speedup of ×4 and AVX emulation mode performs signicantly better. On the other hand, AVX 2.0 provides good speedups that outperforms other extensions due to its wide registers supporting for 8-bit integers. We can easily see the cache memory eects that impacts the speedups for all extensions while increasing the size of images.

	Extension	SSE4.2	Altivec
	Size	256 2	512 2	256 2	512 2
	Scalar C++(1)	9.237 9.296	14.312 27.074
	Scalar C icc	2.619 2.842	-	-
	Scalar C gcc	8.073 7.966	-	-
	Ref. SIMD(2) JRTIP[70] 1.394 1.281	1.380	4.141
	Boost.SIMD(3)	1.106 1.125	1.511	5.488
	Speedup(1/3)	8.363 8.263	9.469	4.933
	Overhead(2/3)	-26% -13.9%	8.7% 24.5%
	The execution time overhead introduced by the use of Boost.SIMD stays
	below 8.7%. On SSE4.2, it performs better than the SSE4.2 handwritten version

while

 The NT2 Programming Interface 102 6.1.1 Basic API . 103 6.1.2 Indexing and data reshaping 103 6.1.3 Linear Algebra support . 104 6.1.4 table settings . 104 6.1.5 Compile-time Expression Optimization 105 6.1.6 Parallelism Handling . 106 6.2 Implementation . 106 6.2.1 Function compile-time descriptors 107 6.2.2 Compile-time architecture description 1076.3 Expression Evaluation with NT2 111 6.4 Benchmarks . 112 6.4.1 Basic Kernels . 112 6.4.2 Black and Scholes . 114 6.4.3 Sigma Delta Motion Detection 115 6.4.4 The Julia Mandelbrot Computation 116 6.5 Conclusion . 118

	102	Chapter 6. NT2: an Architecture Aware DSEL Framework
	Chapter 6 DSEL Framework NT2: an Architecture Aware performance numerical computing applications with a multi-architectural support.
	Contents 6.1 In chapter 5 we presented Boost.SIMD, a library that aims at facilitating
	access to SIMD extensions with a simple interface without losing the benets of
	such a powerful hardware feature. On top of SIMD computation, other types of
	parallelism are available and need to be exploited. Modern architectures present
	multi-cores and accelerator based systems. Embedded systems also start to use
	more powerful parallel components. These levels of parallelism nowadays can't be
	ignored in the development of applications.
		Regarding this context, this chapter 1 will present the Numerical Template
	Toolbox (NT 2), a C++ library which aims at simplifying the development of high

 main element of NT 2 is the tle class. tle is a template class that can be parametrized by its element type and an optional list of settings. A instance of tle behaves like a Matlab multi-dimensional array including 1-based indexing and column major storage order and supports the same set of operators and functions. Those operators and functions are, unless specied otherwise, applied to every element of the table, following the standard Matlab semantic. NT 2 covers a very large subset of Matlab functions ranging from standard arithmetic, exponential, hyperbolic and trigonometric functions, bitwise and boolean operations, IEEE related functions, various pattern generators and some statistic and polynomial functions. All those functions support vectorization thanks to Boost.SIMD[START_REF] Esterie | Exploiting multimedia extensions in c++: A portable approach[END_REF][START_REF] Estérie | Boost. simd: generic programming for portable simdization[END_REF] (see chapter 5). Moreover, and contrary to most similar library, NT Indexing and reshaping of data is one of the main assets of the Matlab language as it maximizes the expressiveness of array-based expressions. In NT 2 , accessing parts of a table is done with opertor@A which handles various indexing values: integer and table of integers, range created by the olon function (for short) or contextual keywords like egin and end. Arbitrary extraction, dimension reinterpretation, shifting, and stencil computations can be expressed with that syntax. Listing 6.3 shows how a Jacobi update step can be written using such indexing.

	6.1. The NT2 Programming Interface 104 Chapter 6. NT2: an Architecture Aware DSEL Framework 103
	6.1.1 Basic API 6.1.3 Linear Algebra support
	NT 2 supports the most common matrix decompositions, system solvers and related linear algebra operations via a transparent binding to BLAS and LAPACK. Mat-lab syntax is preserved for most of these functions, including the multi-return for
	decompositions and solvers or the various options for customizing algorithms. The
	QR decomposition of a given matrix e while retrieving the decomposition permuta-
	tion vector is done this way:
		2 provides support
	for all real and integral types, both real or complex. Combined with the large set
	of functions available, this allows NT 2 to be used in a wider variety of domains.
	Listing 6.1: Sample NT 2 code
	table < double > A1 = _ (1.0 ,1000.0) ;
	A2 = A1 + randn (size (A1)) ;
	double rms = sqrt (sum (sqr (A1 (_) -A2 (_))) / numel (A1));
	Matlab code.
	Listing 6.2: Corresponding Matlab code
	A1 = (1.0:1000.0) ;
	A2 = A1 + randn (size (A1)) ;
	rms = sqrt (sum (sqr (A1 (:) -A2 (:))) / numel (A1));
	6.1.2 Indexing and data reshaping
	Listing 6.3: Cross stencil for the update step of the Jacobi method with NT 2
	new_ (_(begin_ +1 , end_ -1) , _(begin_ +1 , end_ -1))
	= (old_ (_(begin_ , end_ -2) , _(begin_ +1 , end_ -1))
		+ old_ (_ (begin_ +2 , end_) , _(begin_ +1 , end_ -1))
		+ old_ (_ (begin_ +1 , end_ -1) , _(begin_ , end_ -2))
		+ old_ (_ (begin_ +1 , end_ -1) , _(begin_ +2 , end_))
) /4. f;

The Listing 6.1 shows some NT 2 basic features including the mapping of the colon function (X) to the object, various functions, a random number generator and some utility functions like numel or size. Listing 6.2 shows the corresponding

•

 Interleaved data: interlevedD deinterleved. If the tle contains interleaved data, it can be statically specied like in listing 6.1 and the correct SOA or AOS loading strategy will be performed.

	6.1. The NT2 Programming Interface	105
	The user can provide a specic standard
	based allocator like shown in listing 6.4.	
	Listing 6.4: NT 2 llotor setting example	
	table < float , my_allocator < float > > t (104) ;	
	• Static size: ofsize`FFFb allows a tle to have a static size known at compile-time. Listing 6.5 illustrates this setting.
	Listing 6.5: NT 2 ofsize`FFFb setting example	
	table < float , of_size <4 ,4 > > t;	
	• Indexing: gindexD mtlindex. The indexing policy of tle can be changed to a C like policy. mtlindex is the default one. Listing 6.6
	shows how to declare a tle with a C like index.	
	Listing 6.6: NT 2 gindex setting example	
	table < float , C_index_ > t (104) ;	
	[...] // Fill the table	
	for (int i = 0; i < 104; ++ i) // C indexing	
	{ cout << t(i) << endl ; }	

table< std::complex<T>, interleaved_ > table< std::complex<T>, interleaved_ >

	r	i	r	i	r	i	i	i	i	i	i	i
	r	i	r	i	r	i	i	i	i	i	i	i
	r	i ...	r	i	r	i		...				i

Table 6 .

 6 2 sums up the dierence and similarities between NT 2 and the libraries introduced in 2.2.4. For the shared memory parallelism, NT Expression Template based DSEL that uses Boost.Proto (see section 3.2.3), Boost.Dispatch (see chapter 4) and Boost.SIMD (see chapter 5). Boost.Proto is used as its expression template engine and replaces the classical direct walk-through of the compile-time AST done in most C++ DSELs by the execution of a mixed compile-time/runtime algorithm over a Boost.Proto standardized AST structure. The expression evaluation strategy of NT 2 is driven by the a AA-DEMRAL methodology introduced in chapter 3). It is based on:

	2 supports two back-

 6.2.1 Function compile-time descriptorsNT 2 uses Boost.Dispatch to handle every function call. Each function call is resolved by Boost.Dispatch as a call to a function object handling the tags computation and dispatching, leaving the user API clear of any implementation leaks. Boost.Dispatch tag. Whenever a function foo is called, NT 2 tries to nd a valid implementation of foo by calling a Boost.Dispatch function overloaded for a descriptor class foo. Those tags include:• elementwise functions that operate on their arguments at a certain position, without dependencies between operations on dierent positions. They are the core of NT 2 expressions, and combining them results into a single kernel or loop nest. They include: regular function like plus or sin, data generators like olon or zeros, functions modifying a table logical size like reshpe or dig;

	The rst level of gathered information is function properties. Each NT 2 function
	(as a symbol) is tied to a Listing 6.10: Function descriptors for some NT 2 functions
	struct plus_ : elementwise_ < plus_ > {};
	struct sum_ : reduction_ < sum_ , plus_ , zero_ > {};
	struct mtimes_ : unspecified_ < mtimes_ > {};

• non-elementwise functions, which output can not be combined with an elementwise function but which input is still combinable. Their properties and parallel potential depends on the considered functions. They include reduction and partial reduction functions, scan functions like umsum and external kernels.

 Those families of loop nests are used to tag functions provided by NT 2 so that the type of the operation itself can be introspected to determine its loop nest family.

	110	Chapter 6. NT2: an Architecture Aware DSEL Framework
	incompatible, the most complex one is replaced by a temporary terminal reference
		Successive prex scans, like reductions, are not nestable but can contain nested
		elementwise loop nests.
	As the AST of an arbitrary expression containing at least one NT 2 custom terminal
	(mainly tle or) is being built at compile-time, the AST construction function
	has to take care of separating expressions requiring non-nestable loop nests by fetch-
	ing the loop nest family associated with the current top-most AST node. This is
	done during the template AST construction by splitting the AST into smaller ASTs
	of nodes with a compatible descriptor. Two nodes have compatible descriptors if
	their code can be generated in a single, properly sized loop nest. If two nodes are

 6.4. We see that NT 2 performance are comparable to those of SIMD enabled library like Armadillo, Blaze and Eigen. Figure 6.4: Elementwise benchmark using SSE 4.2 on Mini-Titan 6.4.1.2 BLAS operationsThis benchmark evaluates the eciency of the BLAS binding of NT 2 by performing a chain of three matrix-matrix product of decreasing size: a mtimes@ mtimes@eDfAD mtimes@gDhA AY Results, in cycles per computed element, are given in table 6.5. We see that NT 2 performance are comparable to the performance of other libraries. Armadillo exhibits the best performance due to its matrix-matrix product reordering phase.

	Size	Armadillo	Blaze	Eigen	MTL	uBlas	NT 2
	50 2	5.2	3.1	2.1	25.2	14.4	1.5
	1000 2	4.9	3.4	2.7	21.9	12.9	3.3
	Scale	Armadillo	Blaze	Eigen	MTL	uBlas	NT 2
	100 × 20	59.0	154.2	88.40	126.7	77.82	79.11
	2000 × 400	91.9	204.1	216.6	211.2	172.8	177.4

Table 6 .

 6 [START_REF] Aldinucci | Optimization techniques for implementing parallel skeletons in grid environments[END_REF] show the GFLOPS rate attained by using either direct C++ calls to LAPACK and to the corresponding NT 2 code. Results shows that the overhead against the direct call to the LAPACK version of the kernel is negligible.6.4.2 Black and ScholesThe code of the Black and Scholes algorithm is dened in gure 6.14. The Black & Scholes algorithm involves multiples high latency and high register count operations.The SIMD version of log, exp and normdf use polynoms and precision renement step that consume a large amount of registers. Listing 6.14:Black & Scholes NT 2 implementation table < float > blackscholes (table < float > const & S , table < float > const & X , table < float > const & T , table < float > const & r , table < float > const & v) { table < float > d = sqrt (T) ;table < float > d1 = log (S/X) +(fma (sqr (v) ,0.5f ,r)*T) /(v* d); table < float > d2 = fma (-v ,d , d1));

 2 provides support for integer types that is not a common feature available in other libraries. The NT 2 implementation of Sigma Delta in 8-bit unsigned integers using saturated arithmetic is given in gure C.2.1.

		16 18 14				SCALAR MiniTitan: 6 th/Sandy: 4 th MiniTitan: 12 th/Sandy: 8 th SIMD JRTIP2008 (MiniTitan: 6 th/Sandy: 4 th)
	cycles/element	8 10 12	x2.1			+ SIMD (MiniTitan: 12 th/Sandy: 8 th) x2.3 + SIMD
		2 6 4	x3.6	x6.8 x10.8	x14.8	x16.5	x3.99	x6.7	x10.8	x15.3	x18
		0								
			512x512			1024x1024	
					Image Size (N x N)				

 Figure 6.9: Mandelbrot Results in single precision on Mini-Titan

				SCALAR
				6 Threads
				12 Threads
				SIMD
				SIMD + 6 Threads
				SIMD + 12 Threads
	cycles/element			
	x3.9 x20.1 x39.9 x10.8 x5.5	x4.1 x19.4 x37.4 x9.9 x5.2	x4.1 x25.7 x50.5 x12.2 x6.2	x4.3 x24.6 x47.9 x11.2 x5.9
	512 WITH GEN	1024 WITH GEN	512 WITHOUT GEN 1024 WITHOUT GEN
		Image Size (N x N)	
				SCALAR
				4 Threads
				8 Threads
				SIMD SIMD + 4 Threads
				SIMD + 8 Threads
	cycles/element			
	x5.0 x18.8 x27.20 x5.4 x3.9	x5.1 x19.2 x27.9 x5.4 x3.6	x6.6 x24.0 x36.2 x5.4 x3.7	x24.4 x37.1 x6.6 x5.5 x3.7
	512 WITH GEN	1024 WITH GEN	512 WITHOUT GEN 1024 WITHOUT GEN
		Image Size (N x N)	

This chapter is extended from the upcoming work accepted for publication in the Journal of Parallel and Distributed Computing.

Acknowledgments

Chapter 5. The Boost SIMD Library

This template function iterates over data pointed by firstI and firstP, computes the product of said data and sums them.

Transition from scalar to SIMD code

If the algorithm is clearly vectorizable, it has to be modied in such a way that its SIMD nature becomes apparent. • We rst run over every elements inside both datasets and multiply them.

• We then sum the intermediate values into the nal result.

By unrolling this pattern to arbitrary size, we expose the fact that the multiplication between the two dataset is purely "vertical" and so, is vectorizable. The sum of the partial result itself is a "horizontal" operation, i.e a vectorizable computation operating across the element of a single vector.

Building a SIMD loop nest

We are now going to use pk to actually vectorize this algorithm. The main idea is to compute a partial sum inside an instance of pk and perform a nal summation at the end. For this purpose, we use the lod function to load data from firstI and firstP, process those pk instances using the proper operators and advance the pointers by the size of the pk. Let's consider that @lstIEfirstIA is divisible by the size of the pack. Listing 5.22 shows the SIMD version of dot.

Chapter 5. The Boost SIMD Library

The Dispatcher

We need now to create a dispatcher that will call the specic version of the dot function according to the SIMD extension detected at runtime. Listing 5.32 shows the correct way to write this dispatcher. for (int it = p;it <p + aligned_sz ; it += N) run (a0 , it , run (a1 , it , as_ < target_type >())); functor < transform_ , cpu_ > f; f(a0 ,a1 ,p + aligned_sz ,sz -aligned_sz); } This version computes the slice of data which can be actually vectorized and call the scalar version on the left-over data by using the scalar version of trnsform.

Once done, the code generated will automatically perform the required parallel operations. The nal call of run over either scalar or SIMD values is then deferred to Boost.SIMD for proper vectorization. The compile-time aspect of this descent guarantee that the abstraction cost of the system is negligible.

Benchmarks

This section presents the execution time of various benchmarks to give an idea of the performance attainable with NT 2 with dierent scenarios. The rst benchmark, inspired from Armadillo benchmarks suite, assess the eciency of the basic components of the library: the expression template engine using Boost.Proto and the eciency of the BLAS and LAPACK bindings. Then, three more complex application kernels evaluate NT 2 performance under realistic conditions, their descriptions are detailed in appendix A. All benchmarks were run over thousands of executions from which the median execution time has been kept as the end result. When possible, results are compared with an equivalent kernel implemented using a selection of similar library or with the direct calls to the underlying runtime when other libraries where unable to provide the required support (special mathematical functions, handling of small integers, or advanced control structures). Two dierent machines have been used for those performance benchmarks. Their descriptions can be found in appendix B.

Basic Kernels

Basic kernel benchmarks aim at validating that NT 2 basic features perform correctly against state of the art libraries.

Basic Elementwise operations

This benchmark evaluates the quality of code generation of NT 2 Expression Template engine by computing a series of elementwise operations on a container of n × n elements:

Algorithms Description

A.1 AXPY Kernel

It is a basic linear algebra subprogram. The AXPY kernel computes a vector-scalar product and adds the result to another vector. The algorithm is the following :

This algorithm is part of the BLAS libraries and is really often used in linear algebra algorithms.

A.2 Black and Scholes

The Black and Scholes algorithm [START_REF] Robert C Merton | Option pricing when underlying stock returns are discontinuous[END_REF] represents a mathematical model able to give a theoretical estimate of the price of European-style options. In this mathematical model, the price of the option is a stochastic process in real time. The full algorithm is describe in algorithm 1.

Input: S, Spot price Input: X, Strike (exercise) price Input: r, Interest rate Input: σ, Standard deviation of the underlying asset, eg stock Input: time, Current date Appendix A. Algorithms Description illustrates the output of the Sigma-Delta algorithm. We can see on row (2) that the algorithm outputs noise which can be disrupting when tracking objects for example.

The typical approach consists in adding a morphological post processing which is illustrated in row [START_REF] Abrahams | C++ Template Metaprogramming: Concepts, Tools, and Techniques from Boost and Beyond (C++ in Depth Series)[END_REF].

Input: It current image, Mt previous background Result: Mt the current background, Et motion mask The Mandelbrot set [START_REF] Robert | A rst course in chaotic dynamical systems[END_REF] denes a mathematical set of points that is very closed to the Julia sets. Its boundary results in a two-dimensional fractal shape. The fractal is obtained by sampling complex numbers and determining for each of them if the iterative application of a mathematical operation tends towards innity. guaranteeing that vectorization does indeed take place, but also empowering the user to dene his algorithm in a way that is vectorizable. A single generic code can be written for both the scalar and SIMD types or dierent code paths may be selected. The library is also modular and easily extensible by the user.

In addition to types and functions operating on them, higher-order functions to manipulate and transform data with respect to every hardware constraints are provided.

Furthermore, processing multiple data in SIMD registers breaks typical scalar dataows when dealing with branching conditions or when shifting or shuing values. As a result, special functions to deal with SIMD-specic idioms are also introduced.

The idea of this proposal is inspired from the Boost.SIMD open-source library (not part of the Boost C++ libraries as of this writing) developed by the authors of this paper. This library has been deployed in several academic and industrial projects where it has shown signicant advantages over other approaches to optimize code for SIMD-enabled processors. Boost.SIMD is available as part of the N T 2 software project hosted on GitHub [START_REF]The numerical template toolbox[END_REF]. Publications with experimental results are available in [START_REF] Estérie | Boost. simd: generic programming for portable simdization[END_REF] and [START_REF] Esterie | Exploiting multimedia extensions in c++: A portable approach[END_REF].

C.1 Impact On the Standard

This proposal comes as a library extension that does not impact existing standard classes, functions or headers. This addition is non-intrusive; its implementation is fully standards-based and does not require any changes to the core language.

C. Eects: Apply binary opertorC between every element of p and q Returns: A pk`Dxb value r so that ∀i ∈ [0, N [, ri a pi C qi templte`lss D lss D stdXXsizet xb pk`Dxb opertorC@pk`Dxb pD qAY Requires: is not a logil type.

Eects: Apply binary opertorC between every element of p and q

Returns:

A pk`Dxb value r so that ∀i ∈ [0, N [, ri a pi C sttist`b@qA templte`lss D lss D stdXXsizet xb pk`Dxb opertorC@ pD pk`Dxb qAY Requires: is not a logil type.

Eects: Apply binary opertorC between p and every element of q Returns: A pk`Dxb value r so that ∀i ∈ [0, N [, ri a sttist`b@pA C qi templte`lss D stdXXsizet xb pk`Dxb opertorE@pk`Dxb pD pk`Dxb qAY Requires: is not a logil type.

Eects: Apply binary opertorE between every element of p and q

Returns: A pk`Dxb value r so that ∀i ∈ [0, N [, ri a pi E qi templte`lss D lss D stdXXsizet xb Eects: Apply binary opertorG between every element of p and q Returns: A pk`Dxb value r so that ∀i ∈ [0, N [, ri a pi G qi templte`lss D lss D stdXXsizet xb pk`Dxb opertorG@pk`Dxb pD qAY Requires: is not a logil type.

Eects: Apply binary opertorG between every element of p and q

Returns:

A pk`Dxb value r so that ∀i ∈ [0, N [, ri a pi G sttist`b@qA templte`lss D lss D stdXXsizet xb pk`Dxb opertorG@ pD pk`Dxb qAY Requires: is not a logil type.

Eects: Apply binary opertorG between p and every element of q Returns: A pk`Dxb value r so that ∀i ∈ [0, N [, ri a sttist`b@pA G qi templte`lss D stdXXsizet xb pk`Dxb opertor7@pk`Dxb pD pk`Dxb qAY Requires: is not a logil type.

Eects: Apply binary opertor7 between every element of p and q Returns: A pk`Dxb value r so that ∀i ∈ [0, N [, ri a pi 7 qi templte`lss D lss D stdXXsizet xb pk`Dxb opertor7@pk`Dxb pD qAY Requires: is not a logil type.

Eects: Apply binary opertor7 between every element of p and q

Returns:

A pk`Dxb value r so that ∀i ∈ [0, N [, ri a pi 7 sttist`b@qA templte`lss D lss D stdXXsizet xb pk`Dxb opertor7@ pD pk`Dxb qAY Requires: is not a logil type.

Eects: Apply binary opertor7 between p and every element of q Returns: A pk`Dxb value r so that ∀i ∈ [0, N [, ri a sttist`b@pA 7 qi templte`lss D stdXXsizet xb C.2. Technical Specications 139 pk`Dxb opertor8@pk`Dxb pD pk`Dxb qAY Requires: is not a logil type.

Eects: Apply binary opertor8 between every element of p and q Returns: A pk`Dxb value r so that ∀i ∈ [0, N [, ri a pi 8 qi templte`lss D lss D stdXXsizet xb pk`Dxb opertor8@pk`Dxb pD qAY Requires: is not a logil type.

Eects: Apply binary opertor8 between every element of p and q

Returns:

A pk`Dxb value r so that ∀i ∈ [0, N [, ri a pi 8 sttist`b@qA templte`lss D lss D stdXXsizet xb pk`Dxb opertor8@ pD pk`Dxb qAY Requires: is not a logil type.

Eects: Apply binary opertor8 between p and every element of q Returns: A pk`Dxb value r so that ∀i ∈ [0, N [, ri a sttist`b@pA 8 qi templte`lss D stdXXsizet xb pk`Dxb opertor|@pk`Dxb pD pk`Dxb qAY Requires: is not a logil type.

Eects: Apply binary opertor| between every element of p and q Returns: A pk`Dxb value r so that ∀i ∈ [0, N [, ri a pi | qi templte`lss D lss D stdXXsizet xb pk`Dxb opertor|@pk`Dxb pD qAY Requires: is not a logil type.

Eects: Apply binary opertor| between every element of p and q

Returns:

A pk`Dxb value r so that ∀i ∈ [0, N [, ri a pi | sttist`b@qA templte`lss D lss D stdXXsizet xb pk`Dxb opertor|@ pD pk`Dxb qAY Requires: is not a logil type.

Eects: Apply binary opertor| between p and every element of q Returns: A pk`Dxb value r so that ∀i ∈ [0, N [, ri a sttist`b@pA | qi templte`lss D stdXXsizet xb pk`Dxb opertor¢@pk`Dxb pD pk`Dxb qAY Requires: is not a logil type.

Eects: Apply binary opertor¢ between every element of p and q Returns: A pk`Dxb value r so that ∀i ∈ [0, N [, ri a pi ¢ qi templte`lss D lss D stdXXsizet xb pk`Dxb opertor¢@pk`Dxb pD qAY Requires: is not a logil type.

Eects: Apply binary opertor¢ between every element of p and q

Returns:

A pk`Dxb value r so that ∀i ∈ [0, N [, ri a pi ¢ sttist`b@qA templte`lss D lss D stdXXsizet xb pk`Dxb opertor¢@ pD pk`Dxb qAY Requires: is not a logil type.

Eects: Apply binary opertor¢ between p and every element of q Returns: A pk`Dxb value r so that ∀i ∈ [0, N [, ri a sttist`b@pA ¢ qi C.2. Eects: Apply binary opertor`between every element of p and q Returns: A logical value r so that ∀i ∈ [0, N [, ri a pi `qi templte`lss D lss D stdXXsizet xb slogil`pk`Dx opertor`@pk`Dxb pD qAY Eects: Apply binary opertor`between every element of p and q Returns: A logical value r so that ∀i ∈ [0, N [, ri a pi `sttist`b@qA templte`lss D lss D stdXXsizet xb slogil`pk`Dx opertor`@ pD pk`Dxb qAY Eects: Apply binary opertor`between p and every element of q Returns: A logical value r so that ∀i ∈ [0, N [, ri a sttist`b@pA `qi templte`lss D stdXXsizet xb slogil`pk`Dx opertorb@pk`Dxb pD pk`Dxb qAY Eects: Apply binary opertorb between every element of p and q Returns: A logical value r so that ∀i ∈ [0, N [, ri a pi b qi templte`lss D lss D stdXXsizet xb slogil`pk`Dx opertorb@pk`Dxb pD qAY Eects: Apply binary opertorb between every element of p and q Returns: A logical value r so that ∀i ∈ [0, N [, ri a pi b sttist`b@qA templte`lss D lss D stdXXsizet xb slogil`pk`Dx opertorb@ pD pk`Dxb qAY Eects: Apply binary opertorb between p and every element of q Returns: A logical value r so that ∀i ∈ [0, N [, ri a sttist`b@pA b qi templte`lss D stdXXsizet xb slogil`pk`Dx opertor`a@pk`Dxb pD pk`Dxb qAY Eects: Apply binary opertor`a between every element of p and q Returns: A logical value r so that ∀i ∈ [0, N [, ri a pi `a qi templte`lss D lss D stdXXsizet xb slogil`pk`Dx opertor`a@pk`Dxb pD qAY Eects: Apply binary opertor`a between every element of p and q Returns: A logical value r so that ∀i ∈ [0, N [, ri a pi `a sttist`b@qA templte`lss D lss D stdXXsizet xb slogil`pk`Dx opertor`a@ pD pk`Dxb qAY Eects: Apply binary opertor`a between p and every element of q Returns: A logical value r so that ∀i ∈ [0, N [, ri a sttist`b@pA `a qi templte`lss D stdXXsizet xb slogil`pk`Dx opertorba@pk`Dxb pD pk`Dxb qAY Eects: Apply binary opertorba between every element of p and q Eects: Apply binary opertor3a between every element of p and q Returns: A logical value r so that ∀i ∈ [0, N [, ri a pi 3a sttist`b@qA templte`lss D lss D stdXXsizet xb slogil`pk`Dx opertor3a@ pD pk`Dxb qAY Eects: Apply binary opertor3a between p and every element of q Returns: A logical value r so that ∀i ∈ [0, N [, ri a sttist`b@pA 3a qi templte`lss D stdXXsizet xb slogil`pk`Dx opertor88@pk`Dxb pD pk`Dxb qAY Eects: Apply binary opertor88 between every element of p and q Returns: A logical value r so that ∀i ∈ [0, N [, ri a pi 88 qi templte`lss D lss D stdXXsizet xb slogil`pk`Dx opertor88@pk`Dxb pD qAY Eects: Apply binary opertor88 between every element of p and q Returns: A logical value r so that ∀i ∈ [0, N [, ri a pi 88 sttist`b@qA templte`lss D lss D stdXXsizet xb slogil`pk`Dx opertor88@ pD pk`Dxb qAY Eects: Apply binary opertor88 between p and every element of q Returns: A logical value r so that ∀i ∈ [0, N [, ri a sttist`b@pA 88 qi templte`lss D stdXXsizet xb slogil`pk`Dx opertor||@pk`Dxb pD pk`Dxb qAY Eects: Apply binary opertor|| between every element of p and q Returns: A logical value r so that ∀i ∈ Returns: If is pk`PDxb, return a value r so that ∀i ∈ [0, N [, ri a sttist`Pb@vA. else r a sttist`b@vA.

template < class T , class U , std :: size_t N > T splat (pack <U , N > v); Requires: is pk`PDxb.

Eects: Convert each element of v from to P.

Returns: Return a value r so that ∀i ∈ [0, N [, ri a sttist`Pb@viA.

Note: While the cardinal of the two packs is the same, the size of the element and therefore the register type being used may change arbitrarily between the input and output of this function.

template < class T , class U > T load (U * p) ;

Requires: is not a pack type, p is aligned on a boundary suitable for loading objects of type .

Eects: Load an object of type from aligned memory, possibly after doing a type conversion.

Returns: If is pk`PDxb, return a value r so that ∀i ∈ [0, N [, ri a sttist`Pb@piA. else r a sttist`b@BpA. Requires: is not a pack type, pCo is aligned on a boundary suitable for loading objects of type .

Eects: Load an object of type from aligned memory, possibly after doing a type conversion.

Returns: If is pk`PDxb, return a value r so that ∀i ∈ [0, N [, ri a sttist`Pb@poCiA. else r a sttist`b@poA.

template < class T , class U , class V , std :: size_t N > T load (U * p , pack <V , N > o) ; Requires: is not a pack type, is pk`PDxb and all of of pCoi are aligned on a boundary suitable for loading objects of type .

Eects: Load an object of type from aligned indexed memory, possibly after doing a type conversion.

Returns: Return a value r so that ∀i ∈ [0, N [, ri a sttist`Pb@poiA.

Note: This is usually known as a gather operation.

template < class T , std :: ptrdiff_t A , class U > T load (U * p) ; Requires: is not a pack type, pEe is aligned on a boundary suitable for loading objects of type .

Eects: Load an object of type from memory whose misalignment is A, possibly after doing a type conversion.

Returns: If is pk`PDxb, return a value r so that ∀i ∈ [0, N [, ri a sttist`Pb@piA. else r a sttist`b@BpA. Requires: is not a pack type, pCoEe is aligned on a boundary suitable for loading objects of type .

C.2. Technical Specications 149

Eects: Load an object of type from memory whose misalignment is A, possibly after doing a type conversion.

Returns: If is pk`PDxb, return a value r so that ∀i ∈ [0, N [, ri a sttist`Pb@poCiA. else r a sttist`b@poA.

template < class T , std :: ptrdiff_t A , class U , class V , std :: size_t N > T load (U * p , pack <V , N > o) ; Requires: is not a pack type, is pk`PDxb and all of of pCoiEe are aligned on a boundary suitable for loading objects of type .

Eects: Load an object of type from indexed memory whose misalignment is A, possibly after doing a type conversion.

Returns: Return a value r so that ∀i ∈ [0, N [, ri a sttist`Pb@poiA.

Note: This is usually known as a gather operation.

template < class T , class U > T unaligned_load (U* p);

Requires: is not a pack type.

Eects: Load an object of type from memory, possibly after doing a type conversion.

Returns: If is pk`PDxb, return a value r so that ∀i ∈ [0, N [, ri a sttist`Pb@piA. else r a sttist`b@BpA.

template < class T , class U > T unaligned_load (U* p , std :: ptrdiff_t o); Requires: is not a pack type.

Eects: Load an object of type from memory, possibly after doing a type conversion.

Returns: If is pk`PDxb, return a value r so that ∀i ∈ [0, N [, ri a sttist`Pb@poCiA. else r a sttist`b@poA.

template < class T , class U , class V , std :: size_t N > T unaligned_load (U* p , pack <V , N > o); Requires: is not a pack type, is pk`PDxb.

Eects: Load an object of type from indexed memory, possibly after doing a type conversion.

Returns: Return a value r so that ∀i ∈ [0, N [, ri a sttist`Pb@poiA.

Note: This is usually known as a gather operation.

template < class T , class U > void store (T v , U* p); Requires: is not a pack type, p is aligned on a boundary suitable for storing objects of type .

Eects: Store the object v to memory to aligned memory, possibly after doing a type conversion.

If is pk`PDxb, ∀i ∈ [0, N [, pi a sttist`Pb@viA. else Bp a sttist`b@vA. Eects: Store the object v to memory, possibly after doing a type conversion.

If is pk`PDxb, ∀i ∈ [0, N [, pi a sttist`Pb@viA. else Bp a sttist`b@vA. Requires: is not a pack type. Eects: Store the object v to memory, possibly after doing a type conversion.

If is pk`PDxb, ∀i ∈ [0, N [, poCi a sttist`Pb@viA. else po a sttist`b@vA. Returns: If is a cv or reference qualied pk`PD xb type with P a non-logical type, return pk`logil`PbD xb with the same cv and reference qualiers. Else if is a cv or reference qualied non-logical type P, return logil`Pb with the same cv and reference qualiers. Otherwise return . Multi-Architectural Support: A Generic and Generative Approach Abstract: The constant increasing need for computing power has pushed the development of parallel architectures. Scientic computing relies on the performance of such architectures to produce scientic results. Programming ecient applications that takes advantage of these computing systems remains a non trivial task.

Meta-Unroller

In this thesis, we present a new methodology to design architecture aware software: the AA-DEMRAL methodology. This methodology aims at simplifying the development of parallel programming tools with multi-architectural support through a generic and generative approach.

We then present three high level programming tools that rely on this approach. First, we introduce the Boost.Dispatch library that provides a way to develop software based on the AA-DEMRAL methodology. The Boost.Dispatch library is a C++ generic framework for architecture aware function dispatching. Then, we present two C++ template libraries implemented as Architecture Aware DSELs which assess the AA-DEMRAL methodology through the use of Boost.Dispatch: Boost.SIMD, that provides a high level API for SIMD extensions and NT 2 , which propose a Matlab like interface with support for multi-core and SIMD based systems. We assess the performance of these libraries and the validity of our new methodology through benchmarks. Keywords: Parallel architectures, DSELs , Active Library, Generative Programming, Generic Programming, C++ .