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Abstract

The constant increasing need for computing power has pushed the development
of parallel architectures. Scienti�c computing relies on the performance of such
architectures to produce scienti�c results. Programming e�cient applications that
takes advantage of these computing systems remains a non trivial task.

In this thesis, we present a new methodology to design architecture aware
software: the AA-DEMRAL methodology. This methodology aims at simplifying
the development of parallel programming tools with multi-architectural support
through a generic and generative approach.

We then present three high level programming tools that rely on this ap-
proach. First, we introduce the Boost.Dispatch library that provides a way to
develop software based on the AA-DEMRAL methodology. The Boost.Dispatch
library is a C++ generic framework for architecture aware function dispatching.
Then, we present two C++ template libraries implemented as Architecture
Aware DSELs which assess the AA-DEMRAL methodology through the use of
Boost.Dispatch: Boost.SIMD, that provides a high level API for SIMD
extensions and NT2 , which propose a Matlab like interface with support for
multi-core and SIMD based systems. We assess the performance of these libraries
and the validity of our new methodology through benchmarks.

Keywords: Parallel architectures, DSELs , Active Library, Generative Pro-
gramming, Generic Programming, C++ .
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Chapter 1

Introduction

Contents

1.1 Why high performance computing matters? . . . . . . . . . 1

1.2 Fast programming of fast applications? . . . . . . . . . . . . 2

1.3 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3.1 Architecture aware software designing . . . . . . . . . . . . . 3

1.3.2 High level tools for Scienti�c Computing . . . . . . . . . . . . 4

1.3.3 Our contribution . . . . . . . . . . . . . . . . . . . . . . . . . 4

Since the �rst electronic programmable computer architecture was launched in
1943 (Colossus), computing power has been the main driving force in computer sci-
ence as expressed by Moore's law. After decades of architectural improvements like
superscalar architectures, caches, out of order execution and more, the manufac-
turers were facing the limits connected with power dissipation. It became a major
issue and high frequencies were no longer a solution to the race for computational
power. The alternative to higher frequency appeared at the start of the 21st cen-
tury with the �rst multi-core processors. These new architectural designs allowed to
safely increase the computational power of a chip. Multi-core processors are now the
standard architecture. Parallel computing is not a new topic from the 21st century
as parallel computers exist since the early 60's. However the birth of multi- core
architectures has changed the programming issues. After the change to multi-core
based solutions, every machine can now be considered as a parallel architecture with
di�erent level of parallelism available through cores and Single Instruction Multiple

Data (SIMD) units.

1.1 Why high performance computing matters?

The race for computing power is a response to the need of new high-performance
applications. As an example, sensors can generate a large amount of data with a
constant increase in precision and quality over the past decade. Image processing,
photography, video and audio are good examples of such an increase. The size
of data sets involved in these applications is now substantial. As a consequence,
softwares need to deal with high numbers of memory allocations. As an other
example, scienti�c problems often perform an important amount of computations
due to the complexity of algorithms. Furthermore, some of these applications are real
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time based and must ensure the supply data at a �x rate. The temporal constraint
is therefore very important for the developer and every architectural features must
be taken into consideration.

Scienti�c simulations are also good "consumers" of computational power with
complex algorithms and big data sets. The main goal here is to analyze a phe-
nomenon with the outputs of the simulation. The simulation is mostly used on
di�erent data sets with variable parameters for the algorithm embedded in the sim-
ulation application. In this context, simulations can reach several hours of execution.
For scientists, the time constraint is a limitation to their analysis of a problem. Sci-
enti�c researchers then become dependent on the execution time of the simulation.

Developing a fast and reactive application in a reasonable amount of time now
requires expertise in various �elds of computer science. The scienti�c community has
a huge range of specialized domains and presents an even wider range of dedicated
scienti�c applications to solve new challenges.

The common point in the previous examples is the constant need for speedup
in applications. To satisfy this requirement, some solutions are available. First,
working on the algorithm to limit the number of operations is a start but this
approach is not always relevant as some accuracy or strength problems can occur.
An old solution was to wait for the next generation of processor but the correlation
in the Moore's law between the number of transistors on a chip and the computing
power has changed. The transistor density is still increasing due to the rise of new
parallel architectures. Applications can now take advantage of new architectural
features and improvements. Using a parallel architecture at the best of its computing
capabilities requires parallel programming.

1.2 Fast programming of fast applications?

Developing large applications in a simple, fast and e�cient way has always been an
issue for software developers. This limitation comes from severals factors. First,
the diversity of architectures slows down the optimization process of an application.
Mickael J. Flynn introduced a synthetic classi�cation [47] re�ecting the di�erent
types of architecture. Figure 1.1 illustrates this classi�cation. Multiple Instruc-

tion Single Data architectures are rare and exist only for very speci�c tasks. From
Single Instruction Single Data machine to Multiple Instruction Multiple Data ma-
chines, this taxonomy is not re�ecting completely the wide landscape of parallel
architecture. Eric E. Johnson completed the Flynn's taxonomy [63] by classifying
MIMD architectures according to their memory and communication mechanisms.
Regarding these two taxonomies, developing an optimized and portable application
is a tenacious and time consuming task. In addition, each computing system is not
always available for the software development due to the cost of such a test farm.

Another factor is the increasing number of parallel programming tools avail-
able. From pure system oriented libraries like thread managers to domain oriented
libraries or low level intrinsics calls, developers are confronted to a very di�cult
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Figure 1.1: Flynn's taxonomy

choice when it comes to selecting the proper tools for their application.
The previous factors impact the source code of a application by increasing the

verbosity of the programming style. Algorithms are then buried in several imple-
mentation details and the readability of the source code is decreased. To face the
limitations of low level programming, domain oriented languages o�er a high level
interface tie to the corresponding domain. They are known as Domain Speci�c
Languages (DSLs ) and their high expressiveness allows scientists to focus on their
application challenges.

Computer science is a speci�c domain sitting near mathematic, physics, biology
and countless others. The diversity of the scienti�c community comes with a lot
of di�erent programmer backgrounds. Some of them are programming experts
while others have face the challenges of writing their own programs. Most of these
programs are often suitable candidates for parallel speedups on modern computer
architectures. Parallel programming requires a good knowledge of the di�erent
programming models and their dedicated frameworks. On top of that, architecture
speci�c optimizations can be added which is a non trivial task for non expert
programmers.

In this context, scientists are not on par with computer experts to write high
performance applications. Therefore writing a fully parallel version of an applica-
tion should not be part of their work. Their main focus should be designing new
mathematical models or algorithms.

1.3 Objectives

Parallel architectures can provide computing power for scienti�c applications but
the use of such architectures is a di�cult task due to several aspects. The diversity
of the hardware and the multiplicity of software solutions does not facilitate the
development of applications. It is in this context that we present our work. It
focuses on a new software design methodology for developing architecture aware
tools that are able to provide expressiveness and performance.

1.3.1 Architecture aware software designing

Designing parallel software requires the use of multiple architectural features. The
accessibility of such features is tied to di�erent programming techniques. When



4 Chapter 1. Introduction

using these techniques, it then becomes di�cult to design portable softwares that
will be able to select architecture speci�c implementations. This multi-architectural
approach also requires an extensible design of the software that will ease its main-
tenance. The design of such software requires a new methodology and developers
need to have programming facilities to integrate this new type of approach.

1.3.2 High level tools for Scienti�c Computing

In addition to this new design methodology, scienti�c computing tools built on top
of it must provide expressiveness to their users. This expressiveness can separate
architectural implementation details from the original algorithm to give a high level
programming style. This type of model is required to alleviate the user from non
trivial architecture oriented programming. Thus, the performance of such tools must
stay comparable to an original optimized version of the software. The code of such
applications should be written once and just recompiled on di�erent architecture.

1.3.3 Our contribution

We propose a methodology for designing software with multi-architectural support
without loss of performance and expressiveness. In this thesis, we present this new
approach and three programming tools that implement this new methodology. The
typescript is organized as follow:

• Chapter 2, From Architectures to Applications. In this chapter, we
present a quick overview of today's architectures with their multiple levels
of parallelism. Then, we introduce the programming tools available for these
architectures. From there, we detail domain speci�c libraries and Domain Spe-
ci�c Languages (DSL). For each of them, the state of the art focuses on their
parallel features and expressiveness. We show that di�erent approaches have
been chosen to solve the performance/expressiveness issue. But a remaining
challenge is to combine both of them inside a programming tool. At the end
of this chapter, we conclude on the software design directions taken for the
development of a multi-architecture parallel programming tool and we propose
to focus our work on designing DSELs in C++ .

• Chapter 3, A Generic and Generative Programming Approach for

DSL. We �rst show the state of the art of the current practices for designing
a DSEL in C++ , focusing especially on generic and generative program-
ming techniques and the expression template technique. We then discuss the
challenges behind the design of a Domain Speci�c Embedded Language in
C++ and the DEMRAL methodology. For this purpose we introduce the
need for genericity in such a context. We �nally present our approach : the
Architecture Aware DEMRAL methodology (AA-DEMRAL ) which aims at
making the design of DSELs aware of architectural information.
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• Chapter 4, The Boost.Dispatch Library. In this chapter, we
present a library that helps the development of software based on the AA-

DEMRAL methodology: the Boost.Dispatch library. Function dispatch is
a C++ technique that aims at selecting the best implementation of a func-
tion according to its argument types. In the context of parallel programming,
speci�c architecture details need to be injected during the selection process
of a function implementation. The Boost.Dispatch library is presented in
this chapter as an architecture aware function dispatching library like the in-
troduced concept in chapter 3. First, we present the challenges behind such
a library. Then, go through an example to illustrate a typical use case of
Boost.Dispatch.

• Chapter 5, The Boost.SIMD Library. This chapter presents the useful-
ness of the AA-DEMRAL methodology and Boost.Dispatch is used in this
context to build a high level programming tool. We present Boost.SIMD,
a C++ template library that aims at simplifying the programming of SIMD
extensions. After describing the hardware context in which this library takes
place, we discuss the challenges of such a tool. The API of the library is de-
tailed and the library is illustrated with a case analysis. Then, implementation
details are presented . We �nally assess its performances.

• Chapter 6, NT2: an Architecture Aware DSEL Framework. After
presenting Boost.SIMD, we introduce NT2 , a C++ template library with a
Matlab like syntax. On top of various parallel programming idioms, NT2 is
built as a DSEL for high performance numerical computing on modern ar-
chitectures. NT2 adds a level of abstraction on top of Boost.SIMD and is
able to handle multiple levels of parallelism. In this chapter, we present the
challenges to design such a high level library and then we detail its API. We
then discuss implementation details of the library and show how the core of
NT2 behave. Finally, we present benchmarks to validate the e�ectiveness of
the library.

• Conclusion and perspectives. In this �nal chapter, we summarize all the
results obtained in this typescript. To conclude, we discuss new directions for
further research work.
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Architecture manufacturers have always pushed the design of machines whenever
the hardware technology permitted it. With an ever growing architecture landscape,
High Performance Computing (HPC) keeps taking advantage of these new designs.
Software developers now need to stay up to date with the hardware when it comes to
developing fast and reactive applications. Realizing such a task requires a rigorous
methodology that combines hardware and software features. This chapter gives an
overview of the various hardwares and softwares. We �rst present the contemporary
hardware context of parallel programming with a description of the most relevant
architectures. We then detail the software environment related to the introduced
architectures.

2.1 The Wide Architecture Landscape

This section describes the various hardwares available in todays computing systems
that range from SIMD extensions to distributed memory systems. The purpose
of this section is not to fully detail every architecture but to give an outline that
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illustrates what kind of architectures a modern scienti�c computing system can
integrate.

2.1.1 SIMD extensions

Since the late 90's, processor manufacturers have been providing specialized
processing units called multimedia extensions or Single Instruction Multiple Data
(SIMD) extensions. The introduction of this feature has allowed processors to
exploit the latent data parallelism available in applications by executing a given
instruction simultaneously on multiple data stored in a single special register.
Figure 2.1 illustrates the principle of an SIMD extension. With a constantly
increasing need for performance in applications, today's processor architectures
o�er rich SIMD instruction sets working with increasingly larger SIMD registers.

Figure 2.1: Principle of a SIMD computation unit

In the mid 90's, processor manufacturers focused their interests on develop-
ing parallel computing units that would permit to alleviate the CPU workload by
computing a large amount of data at the same time. Indeed, business growth in
multimedia applications brought out needs in terms of computing power. The pre-
liminary tests of HP and Sun MicroSystem [91] permitted to �x the basics of SIMD
extensions and opened the �eld for Intel and Motorola.

Intel enhanced the x86 instruction set with the SSE family. The MMX [80]
instruction set is historically the �rst x86 SIMD instruction set introduced by Intel
in 1997 with their P5-based Pentium series but it re-used �oating point registers
from the CPU, disabling scalar and SIMD computation at the same time. It also
only works on integers types. The SSE family started o�cially in 1999 with the
Pentium III for Intel and later with the AthlonXP for AMD.

In 1996, Motorola worked with Apple to design the new PowerPC G4 architec-
ture. Motorola bene�ted from the experiences of its concurrents and decided to
start from scratch a new extension. Finally, in 1999, the Apple PowerPC G4 went
out with an Altivec unit from Motorola [35].
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Since these early designs, SIMD extensions manufacturers have continued to
increase the size of their dedicated registers and kept adding speci�c instructions.
As an example, the forthcoming extension from Intel is AVX-512. It complements
the SSE family and will be introduced in the next generation of the Xeon Phi series,
Knights Landing coming in 2014. SIMD extensions introduced a method to handle
data parallelism in mono-threaded applications.

2.1.2 From single core to multi-core

Processor manufacturers managed to optimize their CPU core by increasing the
frequency and working on architectural optimizations like caches, instruction sets,
pipelines, and superscalar architectures. The manufacturers then faced a technology
limitation while increasing the frequency of their CPUs: the CPU power dissipation
is directly related with the frequency. The dynamic power consumption of logic-gate
activities in a CPU is approximated by the following formula: P = CV 2f where
C is the capacitance, f the frequency and V the voltage. As a consequence, the
power dissipation became a problem that is correlated with the decrease of the size
of transistors. Since 2004, the processor frequency tends to stagnate. To alleviate
this problem, manufacturers started to look for alternatives. Parallel computing
was favored by the industry as a solution.

A lot of di�erent con�gurations exists. Here, we show the main trend of manu-
facturers that is to constantly increase the core parallelism level in their new designs.

In 2001, IBM released the �rst multi-core based processor: the POWER4. It
consists in two PowerPC AS with a uni�ed L2 cache and works at 1 GHz. It was
followed by Sun with the UltraSPARC IV composed of two UltraSPARC III cores
(up tp 480 MHz). Intel and AMD launched their �rst multi-core in 2006. AMD
released the Opteron server series (up to 2.6 GHz) and Intel, the Core Duo (up to
2.33 GHz), both with two cores.

Figure 2.2: Picture of a quad-core die
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Since then, multi-core designs has been the solution for manufacturers. Desktop
and server processors are now proposing increasingly more cores. As an example the
last series of Intel desktop processors proposes a Core i7-4770K running at 3.9 GHz
with four physical cores (see �gure 2.2). This processor embed the Hyper-Threated
(HT) technology that was �rst released in the Pentium 4 Northwood (2000). It
consists in sharing resources from a superscalar architecture by seeing two logical
core inside a single physical core. In the case of the Core i7-4770K, the Operating
System will see 8 logical cores and will be able to schedule 8 processes on these
logical cores.

Server based solution increase signi�cantly their number of cores. AMD Opteron
solutions can go up to 16 cores and Intel Xeon solutions are up to 12 physical cores
(24 logical cores with HT). Other manufacturers, like ARM, follows this approach
and provides multi-core based architectures.

2.1.3 Accelerators

Multi-core architectures now propose a level of parallelism but it may not be
su�cient with heavy computational applications. Accelerator based solutions
appeared as a response to this demand. Accelerators are able to o�oad the CPU
workload. In this section we present the main accelerators of our contemporary era.

• General Purpose Graphic Processing Unit

A Graphic Processing Unit or GPU is a dedicated integrated circuit designed to
manipulate and accelerate the creation of images intended for output to a display
system. These designs are a large consumer product thanks to the popularity of
video games. They are designed as massively parallel to perform complex image
calculation and their cost is reduced due to their availability in desktop computers.
As parallel architectures for heavy computation are expensive and can not be
acquired easily, GPUs are now a relevant solution for parallel computing [73].
At the end of 2006, NVIDIA released its �rst series of General Purpose GPU
(GPGPU): the GeForce 8 series with 112 processing cores. It provides a theoretical
peak single precision performance of 518 GFlops. This technology of GPGPU is
called CUDA (Compute Uni�ed Device Architecture). Figure 2.3 illustrates the
principle of this technology.

Other manufacturers like AMD proposed a similar technology called ATI Stream
but NVIDIA is still the leader in GPGPU. In addition of classic GPU enabled as
CUDA devices, NVIDIA has a dedicated product line for CUDA based card. The
NVIDIA Tesla K40 provides 2880 CUDA cores with a peak single precision �oating
point performance of 4.29 T�ops.

• Intel Xeon Phi

The Xeon Phi is a Many Integrated Core Architecture, as stated by its earlier
name: the Intel MIC. This architecture include early research interests from the
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Figure 2.3: CUDA principle

Larrabee many core architecture, a research project called the Tera�ops Research
Chip and the Intel Single-chip Cloud Computer. Intel announced the launch of
the Intel Xeon Phi family at the International Supercomputing Conference in 2012.
Figure 2.4 shows the PCI card of the Xeon Phi. Two main architectures have
been launched by Intel, the Knights Corner with more than 50 cores per chip (�rst
trimester of 2013) and the Knights Landing with 72 Atom based cores with 4 threads
per core (launch in 2014).

Figure 2.4: A Xeon Phi PCI card

The Xeon Phi proposes a x86 compatible multiprocessor architecture with the
x86 ISA, 512 bits SIMD units, a 512 KB coherent cache per core and a wide ring
bus connecting processors and memory. This solution proposed by Intel directly
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competes with NVIDIA on the co-processor HPC market.

2.1.4 Distributed memory systems

A distributed memory system is a parallel machine with multiple computer
architectures called nodes working together. Each node has its own memory and is
connected with all the other nodes within a network topology creating a cluster.

Figure 2.5: A picture of Titan

As each node has its own memory, these architectures requires a distributed
computing approach. A node can present di�erent con�gurations. It can hold
several multi-core processors and a multi-GPU system or a Xeon Phi for example.
A distributed system like Titan is composed of 299,008 AMD Opteron cores and
18,688 GPUs grouped in 18,688 nodes. Each node has 38 GB of memory. Titan
is ranked at the second place of the top 500 super-computer list. Figure 2.5 shows
the scale of a system like Titan. These type of clusters are designed for intensive
applications with a heavy workload and large data sets to manipulate.

2.1.5 Conclusion

We saw in this section the diversity of architectures that developers encounters.
Giving an exhaustive overview of such a large �eld is a hard task due to each
manufacturer having di�erent hardware architectures. Current trends are:

• Small-scale systems: cores coupled with SIMD units

• Big-scale systems : distributed memory systems + accelerators

A scienti�c computing system can be seen as a hierarchical system with di�erent
levels of parallelism. It can also present heterogeneous architectures. Architectures
improvements are happening quickly and developers need to handle this race when
it comes to programing parallel applications in a portable way.
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2.2 Programming the Landscape

In this section, we present the tools available to develop on parallel architectures
introduced in section 2.1. We present each tool by focusing on their expressiveness
and their target support.

2.2.1 Low Level Parallel Tools

2.2.1.1 SIMD tools

We introduced SIMD extensions in section 2.1.1 as a speci�c hardware computation
unit for data parallelism. The speci�c instruction set of an SIMD extension can be
used in di�erent ways.

• The most common way to take advantage of a SIMD extension is to write calls to
intrinsics. These low level C functions represent each SIMD instruction supported
by the hardware, and while being similar to programming with assembly language
it is de�nitely more accessible and optimization-friendly. With a lot of variants to
handle all SIMD register types, the set of intrinsics usually only covers functionality
for which there is a dedicated instruction, often lacking orthogonality or missing
more complex operations like trigonometric or exponential functions. Due to its
C interface, using intrinsics forces the programmer to deal with a verbose style of
programming. Furthermore, from one extension to another, the Application Pro-
gramming Interface (API) di�ers and the code needs to be written again due to
hardware speci�c functionalities and optimizations. For example, some instruction
sets provide fused operations that are optimized. Listings 2.1 presents a multiply
and add operation implemented with SSE4.2.

Listing 2.1: SSE4 multiply and add implementation
1 __m128i a, b, c, result;

2 result = _mm_mullo_epi32(a, _mm_add_epi32(b, c));

On Altivec, the same multiply and add operation can be performed by a fused
operation called FMA (Fused Multiply Add). Listing 2.2 shows the call to the
intrinsic vec_madd that does the fused operation.

Listing 2.2: AltiVec FMA implementation
1 __vector int a, b, c, result;

2 result = vec_cts(vec_madd( vec_ctf(a,0)

3 , vec_ctf(b,0)

4 , vec_ctf(c,0)

5 )

6 ,0);

These two intrinsics examples demonstrate the complexity involved by the
current programming model and its limitations to write portable applications.
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• Compilers are now able to generate SIMD code through their autovectorizers.
This allows the programmer to keep a standard code that will be analyzed and
transformed into a vectorized code during the code generation process. Autovector-
izers have the ability to detect code fragments that can be vectorized. For example,
GCC autovectorizer [78] is currently available in GCC releases. This automatic
process �nds its limits when the user code is not presenting a clear vectorizable
pattern (i.e. complex data dependencies, non-contiguous memory accesses, aliasing
or control �ows). The main approach is to transform the innermost loop-nest to
enable its computation with SIMD extensions. The SIMD code generation stays
fragile and the resulting instruction �ow may be suboptimal compared to an explicit
vectorization. Still on the compiler side, code directives can be used to enforce
loop vectorisation (#pragma simd for ICC and GCC) but the code quality relies
on the compiler and this feature is not available in every one of them. Dedicated
compilers like ISPC [81], Sierra [72] or Cilk [85] choose to add a set of keywords
to the language to explicitly mark the code fragments that are candidates to the
automatic vectorization process. VaporSIMD [77] proposes another approach which
consists in autovectorizing the C based code to get the intermediate representation
of the compiler and then use a Just In Time based framework to generate portable
SIMD code. With most of these approaches, the user code becomes non-standard
and/or strongly dependent on speci�c compiler techniques. These techniques also
rely on generating SIMD code from scalar code, disregarding the speci�cities of each
of these computing units, including shu�e operations and intra- registers operations.

• Libraries like Intel MKL [60] or its AMD equivalent (ACML) [7]. Those libraries
o�er a set of domain-speci�c routines (usually linear algebra and/or signal process-
ing) that are optimized for a given architecture. This solution su�ers from a lack
of �exibility as the proposed routines are optimized for speci�c use-cases that may
not match arbitrary code constraints.

In opposition to this "black-box" approach, �ne grain libraries like Vc [67] and
macstl [2] propose to apply low level transformations to a speci�c vector type. For
macstl, its support stops at SSE3 and its interface is limited to a few STL-compliant
functions and iterators. Vc has a C++ class based approach with support for x86
processors only (SSE to AVX) and provide a list of SIMD enabled mathematical
functions.

2.2.1.2 Multi-core tools

Modern architectures are composed of multiple cores per chip and sometimes of
multiple multi-cores like stated in section 2.1.2. Several tasks can be executed in
parallel on these cores to speed up the computation. Multithreading allows to work
with execution threads that are carried out on several computing units or cores.
The main tools for such a programming model are pThreads, OpenMP and the
Intel Thread Building Blocks Framework (TBB).
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• pThread

The pThread library is an implementation of the POSIX 1003.1c Standard. The
library provides a set of low level functions for creating, joining, synchronizing and
destructing threads. These functions let the developer decides the life cycle of a
thread. Listing 2.3 presents a simple sum of two arrays using pThread.

Listing 2.3: A pThread example - Sum of arrays
1 #include < pthread.h >

2

3 struct arg { float *a ,*b ,* r; };

4

5 void* func(void* in)

6 {

7 arg * p = (arg*)(in);

8 for(int i=0;i<250; i++)

9 p->r[i] = p->a[i]+p->b[i];

10 return NULL ;

11 }

12

13 int main ()

14 {

15 float a[1000] , b[1000] , r[1000];

16 pthread_t t[4];

17 th_arg arg [4];

18

19 for(int i =0;i <4; i ++)

20 {

21 arg [i ]. pa = &a[i *250];

22 arg [i ]. pb = &b[i *250];

23 arg [i ]. pr = &r[i *250];

24 }

25

26 for(int i=0;i <4; i++)

27 pthread_create (&t[i], NULL , func , &arg[i]);

28

29 for(int i=0;i<4;i++)

30 pthread_join(t[i],NULL);

31 }

In this example, we instantiate four pThread structures to create four threads
with the pthread_create function. The thread is created when this function
terminates. We �nally join and synchronize the threads with the pthread_join

function.

pThread does not constraint the developer with a programming model. With
this approach, the amount of applications that can take advantage of multithreading
is more important. Task parallelism and data parallelism can be achieved with this
library. However, pThread provides a really low level API resulting in a verbose
programming style. Boost.Thread is an object oriented implementation of this
Standard. Its interface is more high level and a set of classes permits to avoid the
classical errors of concurrent programming.
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• OpenMP

OpenMP is a Standard that specify directives and functions for using multi-
threaded programming through a high level interface [30]. These directives and
functions are inserted in the source code and they enable to share the computation
between cores. The directives tell to the compiler how to parallelize the correspond-
ing code section. Listing 2.4 presents the same task achieved in listing 2.3 but
written with OpenMP.

Listing 2.4: OpenMP directive example - Sum of arrays
1 #include <omp.h >

2

3 int main ()

4 {

5 int i;

6 float a [1000] , b [1000] , r [1000];

7

8 # pragma omp parallel shared (a ,b ,r) private(i)

9 {

10 # pragma omp for schedule ( dynamic )

11 for (i =0; i < 1000; i ++) r[i] = b[i ]+ a[i ];

12 }

13 }

In this example, we �rst open a parallel section by using the omp parallel

directive. In this section we de�ne the scope of the variables. The arrays a,
b and c are then shared between the cores via the shared directive. The i

variable stays locals to each processors. The next section performs the e�ective
parallelization with the omp for directive. It �ags the following loop as a candidate
for parallelization. The schedule(dynamic) option speci�es how the loop will be
distributed on each core. Here, each thread will get an iteration to perform and if
a thread �nishes its iterations it returns to get another one.

In opposition to pThread, OpenMP presents a simple model for programming
Symmetric MultiProcessing machines. The data distribution and their decomposi-
tion is automated by the compiler directives. On the other hand, the portability of
such a model relies on the support of the Standard inside compilers. The OpenMP
3.0 [14] Standard added the concept of tasks to the uni�ed C/C++/Fortran
speci�cation of OpenMP 2.5. The new 4.0 version [15] released in July 2013 adds
new features like : support for accelerators, SIMD, atomics, user de�ned reduction
etc.

• Intel TBB

Intel TBB is a C++ template library that abstract multithreaded programming
through high level primitives [83]. The library mostly provides parallel implemen-
tations of algorithm like parallel_for, parallel_reduce or containers like vectors
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and queues. These implementation presents a Standard Template Library style.
Listing 2.5 presents a simple average �lter written with TBB.

Listing 2.5: TBB directive example - Sum of arrays
1 #include "tbb/parallel_for.h"

2 #include "tbb/blocked_range.h"

3

4 using namespace tbb;

5

6 struct sum

7 {

8 const float* input1;

9 const float* input2;

10 float* output;

11 void operator ()( const blocked_range <int >& range ) const

12 {

13 for( int i=range.begin (); i!= range.end(); ++i )

14 output[i] = input1[i]+ input2[i];

15 }

16 };

17

18 void parallelsum( float* output , const float* input

19 , const float* input , size_t n )

20 {

21 sum sum_;

22 sum_.input1 = input1;

23 sum_.input2 = input2;

24 sum_.output = output;

25 parallel_for( blocked_range <int >( 1, n ), sum_ );

26 }

In this example, we �rst declare a C++ function object that will take a
blocked_range<T> as argument. TBB uses the range Concept to handle it-
erations. We then write a high level function which calls the parallel_for

primitive. This primitive is close to OpenMP in terms of behavior.
parallel_for(range,body,partitioner) provides a high level abstraction
for parallel iterations. It represents parallel execution of body (sum in our example)
over each value in range (a blocked_range<T> in our example). The optional
partitioner speci�es a partitioning strategy to distribute the iterations over
the threads. Here, no partitioner appears in the call, TBB will use the default
partitioner auto_partitioner which automatically split the range.

TBB takes advantage of C++ template programming to provide high level
primitives. In addition, templates also add genericity when the code needs to work
with di�erent types.

• Further works on parallelizing loops has been done at the compiler level. By
extending the polyhedral model to multi- core systems, new control structures pro-
vides a way to parallelize and nest parallelize loops. The multifor control structure
introduced in [46] is an example of such an approach.
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2.2.1.3 Distributed memory system tools

• MPI

The main tools for such systems are implementations of the Message Passing
Interface Standard [37]. Well known implementation are OpenMPI [51] and MPICH-
2 [65]. This Standard presents functionalities for programming distributed memory
systems:

• management of point to point and global communications;

• support for multiple languages (C, C++, Fortran, Java);

• possibility of developing high level libraries;

• heterogeneous support;

• support for multiple process topologies.

Listing 2.6 shows a "ping-pong" between two MPI processes that simply
exchange their numerical identi�er (rank). The MPI_Init, MPI_Comm_rank and
MPI_Finalize functions starts the MPI environment and we use MPI_Send and
MPI_Recv to communicate the rank.

Listing 2.6: A MPI example
1 int main ( int argc , char * argv [] )

2 {

3 int rank , size;

4 MPI_Status st;

5 MPI_Init (&argc , &argv);

6 MPI_Comm_rank(MPI_COMM_WORLD , &rank);

7 if(rank == 0)

8 {

9 MPI_Send (&rank , 1, MPI_INT , 1, 0, MPI_COMM_WORLD);

10 MPI_Recv (&rank , 1, MPI_INT , 1, 1, MPI_COMM_WORLD , &st);

11 }

12 else if(rank == 1)

13 {

14 MPI_Recv (&rank , 1, MPI_INT ,0, 0, MPI_COMM_WORLD , &st);

15 MPI_Send (&rank , 1, MPI_INT ,0, 1, MPI_COMM_WORLD);

16 }

17 MPI_Finalize ();

18 return 0;

19 }

MPI is a portable tool and can be used in the context of domain speci�c library
design. MPI can also interact with debuggers and performance analysis tools.
However, its API stays at a low level of abstraction. This lack of expressiveness
makes it di�cult to translate a sequential code to its parallel version. In addition,
MPI has a verbose style of programming that impacts code readability and
maintenance.
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• HPX

HPX [56] for High Performance ParalleX is a C++ runtime system. It focuses on
a uni�ed programming model that is able to transparently use the available resources
with a maximum of scalability. It relies on the C++11 Standard and provides a
high level API. To maximize scalability, HPX combines di�erent approaches: latency
hiding, �ne-grained parallelism and constraint based synchronizations are the main
ones.

Listing 2.7: A HPX example - Fibonacci sequence
1 // Forward declaration of the Fibonacci function

2 boost:: uint64_t fibonacci(boost:: uint64_t n);

3

4 // Register the HPX Fibonacci action

5 HPX_PLAIN_ACTION(fibonacci , fibonacci_action);

6

7 boost:: uint64_t fibonacci(boost:: uint64_t n)

8 {

9 if (n < 2)

10 return n;

11

12 // We restrict ourselves to execute the Fibonacci function locally.

13 hpx:: naming :: id_type const locality_id = hpx:: find_here ();

14

15 fibonacci_action fib;

16 hpx::future <boost::uint64_t > n1 = hpx:: async(fib , locality_id , n - 1);

17 hpx::future <boost::uint64_t > n2 = hpx:: async(fib , locality_id , n - 2);

18

19 // Wait for the Futures to return their values

20 return n1.get() + n2.get();

21 }

22

23 int hpx_main(boost :: program_options :: variables_map& vm)

24 {

25 // extract command line argument , i.e. fib(N)

26 boost:: uint64_t n = vm["n-value"].as <boost::uint64_t >();

27

28 {

29 // Wait for fib() to return the value

30 fibonacci_action fib;

31 boost:: uint64_t r = fib(hpx:: find_here (), n);

32 }

33

34 return hpx:: finalize (); // Handles HPX shutdown

35 }

Listing 2.7 presents the Fibonacci sequence written with HPX. This example
nicely illustrates the principles of Future on which the library is based. Futures are
part of the C++11 Standard and HPX extends this feature to build an e�cient
runtime system. A HPX Future object encapsulates a delayed computation that
can be performed on a locality. This object behaves like a proxy for a result that is
not computed yet. It synchronizes the access of its result by suspending the thread
requesting the value until the value is available. At line 16 and 17, we spawn HPX
Futures to compute the N − 1 and N − 2 elements of the Fibonacci sequence.
This is performed by asynchronously synchronizing the HPX fibonacci_action
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recursively. Then, each elements of the sequence is computed asynchronously in a
Future object spawns on the current machine (see the locality at line 13 that is set
to find_here()). Futures will then returns their results as soon as they are available.

Such an approach enables HPX to get rid of global barriers for synchronizing
threads of execution, then making the library able to improve the scalability of
programs.

• Stapl

STAPL [8] (Standard Template Adaptive Parallel Library) is based on ISO Stan-
dard C++ components similar to the "sequential" ISO C++ Standard library. The
library works with parallel equivalents of C++ containers (pContainers) and algo-
rithms (pAlgorithms) that interacts through ranges (pRange). It provides support
for shared and distributed memory and includes a complete runtime system, rules
to easily extend the library and optimization tools.

Listing 2.8: A Stapl example - Parallel Sort
1 // Parallel container

2 stapl::pVector <int > pV(i,j);

3 // Call to parallel sort on a Stapl range

4 stapl::pSort(pV.get_pRange ());

Listing 2.8 shows the use of Stapl parallel components.

2.2.1.4 Conclusion

Programming modern parallel architectures requires a non negligible level of exper-
tise due to the di�erent abstraction levels introduced by the tools. From SIMD
extensions to distributed memory systems, programming models di�ers and each
application needs to be rethought in parallel. The source code also needs to be
rewritten according to the chosen tools. Furthermore, the developer may want to
combine di�erent programming models and for example, take advantage of multi-
cores and SIMD extensions within the same code. This task can be error prone and
takes a signi�cant amount of time. This limitation becomes particularly important
when non parallel programming experts need to face this challenge.

2.2.2 Domain Speci�c Libraries for Scienti�c Computing

In this section, we present the most popular domain speci�c libraries related to
scienti�c computing. These libraries provides "ready to use" sets of functions for
a speci�c domain. We mainly focus on dense linear algebra, image and signal
processing libraries to illustrates the solution proposed by domain speci�c libraries
for Scienti�c Computing.
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2.2.2.1 Linear algebra libraries

The linear algebra domain uses intensively common operations like copying, vec-
tor scaling, vector dot products, linear combinations, and matrix multiplication.
The Basic Linear Algebra Subprograms (BLAS) provides a set of low-level kernels
that gathers these common operations. The �rst version was written in Fortran
[71]. The BLAS API became a standard and several implementations have been
realized. The standard implementation coming from Netlib is not optimized for
parallel architectures. The Intel MKL library [60] and its concurrent, the AMD
Core Math Library [7] (ACML), provides highly optimized BLAS routines for x86
processors with support for SIMD extensions and multithreading. GotoBLAS [53],
OpenBLAS [108] and ATLAS [21] (Automatically Tuned Linear Algebra Software)
are open source implementations of the BLAS and provide di�erent levels of ar-
chitecture optimizations. A GPGPU version of the BLAS is also available called
cuBLAS [79] from NVIDIA and uses CUDA to accelerate the BLAS operations.
The Accelerate framework [10] from Apple also provides an implementation of the
BLAS.

The intent of BLAS subroutines is to be reused in linear algebra libraries and
routines. The LAPACK [9] and LINPACK [36] libraries from Netlib [18] are making
intensive use of the BLAS subroutines to build solver routines (simultaneous
linear equations, least-squares solutions of linear systems of equations, eigenvalue
problems, etc) or matrix factorization routines (LU, Cholesky, QR, etc). The
performance of LAPACK is then dependent on the BLAS performance. The
LAPACK API has also several optimized implementation. PLASMA [4] is a mul-
tithreaded implementation of LAPACK and can be linked with a SIMD optimized
BLAS. MAGMA [4] proposes a hybrid support by taking advantage of GPUs and
multi-core CPUs. ScaLAPACK [19] is optimized for distributed memory systems
and can be linked with an optimized BLAS. The Intel MKL library proposes highly
optimized implementations of LAPACK and ScaLAPACK.

The BLAS and LAPACK related libraries su�ers from the lack of abstraction
of their APIs. Mostly available in Fortran and C, their low level programming style
hide the linear algebra domain speci�c informations. Even if the function semantic
helps the developer, he still needs to handle memory allocation and not so easy
function calls. A interesting project written in C proposes a new solution : the
FLAME project [97].

The FLAME project proposes a new methodology for the development of dense
linear algebra libraries. The project focuses on giving a full software suite that
rethink the design of dense linear algebra algorithms. BLIS [103] is an optimized
BLAS library written in C taking advantages of several SIMD extensions. The
upper level tool, libFLAME [102], is a complete framework like LAPACK but its
design is radically di�erent. The internal design of libFLAME provides modern
software engineering principles such as object abstraction and high level API
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without sacri�cing performances. The library handles abstractions that facilitates
programming without array or loop indices, which allows the user to avoid painful
index-related programming errors altogether.

2.2.2.2 Image and signal processing

The domains of image and signal processing are often constrained by an output
rate that needs to be �xed. This temporal constraint is now increasingly more
important as the sizes and the numbers of inputs increases. This increase is related
to technological improvements of sensors for example. This section presents the
main solutions of these domains.

• Intel Integrated Performance Primitives [96] (Intel IPP) is a C/C++
multithreaded and SIMD optimized library for multimedia and data processing
software. Intel provides support for MMX, SSE to SSE4, AES-NI and multi-core
processors. The library provides functions for image and signal processing.

• OpenCV [16] (Open Source Computer Vision) is a real-time computer vision
library originally developed by Intel and now supported by Willow Garage enter-
prise since 2008. Written in C++, the library proposes a large set of functions able
to process raw images and video streams. From basic �ltering to facial recognition,
OpenCV covers a wide range of functionalities. The library is optimized with SSE2
and Intel TBB. It can also take advantage of Intel IPP if it is available.

• FFTW [50] (Fastest Fourier Transform in the West) is a computing library for
discrete Fourier tranforms developed by Matteo Frigo and Steven G. Johnson at
the Massachusetts Institute of Technology. The library provides support for SSE,
SSE2, AVX, Altivec and ARM Neon SIMD extensions. Multithreaded support is
also available. FFTW is a free software and its transforms are known as the fastest
free implementations.

2.2.2.3 Conclusion

The domain speci�c library approach introduces a level of abstraction with its func-
tion based programming style. Architectural optimizations are available and buried
inside the library. Function semantic allow the developer to focus on domain speci�c
calls but such an approach is still limited in terms of expressiveness. For example,
memory allocations and speci�c library initialization techniques decrease the read-
ability of the source code. The next level of abstraction can be reached when using
a language designed with a semantic tied to a speci�c domain: a Domain Speci�c
language or DSL.
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2.2.3 Domain Speci�c Languages

A Domain Speci�c Language (DSL) is a programming language designed for a spe-
ci�c application domain. Its entire speci�cations are dedicated to the corresponding
domain. It is then in opposition with classical programming languages that are de-
signed for a general purpose. Martin Fowler proposes a de�nition of this approach
in [48]. These languages improve the productivity of developers by alleviating the
complexity of classic code and proposing a domain oriented abstraction for the lan-
guage. Working with such languages also improves the interaction between domain
experts and developers. A DSL provides a common syntax that has the advantage
of being used by domain expert to express their ideas. Then, the DSL description
of an algorithm is also an executable software. As DSLs allow solutions to be ex-
pressed in the idiom and at the level of abstraction of the problem domain, the
maintainability and quality of code is increased. In critical cases, like for example
in languages like Erlang/OTP [33], domain speci�c validations or testing are made
easier, since statements written with a given DSLs can be considered safe by design.

Several DSLs are available and their application domains can be very large.
As a �rst example, LATEX is a DSL for editing and preparing documents. LATEX
targets the communication and publication of scienti�c documents. The philosophy
of LATEX is that authors should focus on the content of the document instead of
the visual presentation of the document. Authors then specify the logical structure
of the document by using a set of tags. Another example is the Structured Query
Language (SQL) that provides a normalized language for exploiting databases. A
annotated bibliography of DSLs is available in [101]. Another notable initiative is
the R language [98]. R proposes a complete environment for statistical computing
and is widely used by data miners and statisticians. It is mostly used to design data
analysis and statistical software.

In Scienti�c Computing, the related domains like mathematics or physics are
targeted by the Matlab language [74]. The Matlab language is a DSL that
comes with numerical computing environment. Matlab was initially designed by
Cleve Moler from the University of New Mexico. His purpose was to give his stu-
dents access to LINPACK without learning Fortran. Matlab then spread out to
other universities and the applied mathematics community found a strong interest
in this tool. Matlab was originally written in C and in 2000, it was rewritten to
use LAPACK. It is developed by MathWorks and its main feature is its ability to
manipulate matrices. It also provides implementation of algorithms, plotting facili-
ties and interfaces with other language like C/C++ or Java. Additional toolboxes
are available and they cover various domains. In 2004, Matlab community was
estimated around one million users across industry and academia. Matlab 's' user
base pro�les range from science engineering to economics.

The DSL approach is tie to a computing environment. For a Scienti�c Com-
puting DSL like Matlab , its e�ciency relies on the performance of its computing
environment. The Matlab language can be written directly in the Matlab com-
mand prompt or by using Matlab scripts. It is dynamically compiled which
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introduced a signi�cant overhead for the calculation time. Several DSLs are dy-
namically compiled or relie on interpreters or virtual machines to be executed. This
implementation characteristic of DSLs impacts directly the performance of such
languages. The Domain Speci�c Embedded Language (DSEL) approach tries to
alleviate this limitation.

2.2.4 Domain Speci�c Embedded Language approach

A sub-class of DSLs actually provides a better way to mitigate the abstraction vs ef-
�ciency trade-o�: Domain Speci�c Embedded Languages (or DSELs ) [99, 59].
DSELs are languages implemented inside another, usually general-purpose, host
language [29]. They share the advantages of DSLs as they provide an API based
on domain speci�c entities and relations. However, DSELs usually do not require
a dedicated compiler or interpreter to be used as they exist inside another general
purpose language. They are usually implemented as a library-like component
� often called Active Libraries [28, 107] � in languages providing some level
of introspection or providing constructs to manipulate statements from within
the language. If such features are common in functional languages (like OCaml
or Haskell) or scripting languages (like Ruby), they are less so in imperative
languages. C++ is providing a set of similar features thanks to template based
meta-programming [3].

• Blitz++ [106] is a C++ template library for high performance mathematics.
The library relies on advanced C++ techniques to provide optimized mathemat-
ical operations. Historically, Blitz++ is the �rst library to use C++ template
meta-programming (see chapter 3) and has been recognized as a pioneer in this area.

• Armadillo [87] is a C++ open source library for scienti�c computing developed
at NICTA in Brisbane. The API of Armadillo is similar to Matlab (see section
2.2.3). It provides a various set of linear algebra and matrix based functions,
trigonometric and statistics functions. Its implementation relies on lazy evaluation.
This technique (see chapter 3 for details) permits to combine operations and reduce
temporaries at compile time. Optimization for elementary expressions is done using
SSEx and AVX instructions sets. Armadillo uses BLAS for matrix multiplication,
meaning the speed is dependent on the implementation of BLAS which is possibly
multi-threaded.

• Blaze [13] is a C++ template library for high-performance dense and sparse
arithmetic. Blaze implementation is based on the Expression Templates technique
(see chapter 3 for details). It allows to manipulate and optimize an expression
evaluation at compile-time. The performance of the libraries relies on BLAS
implementations.
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• Eigen [57] is a header-only C++ library developed by Guennebaud et al.
Started as a sub-project to KDE, Eigen3, the current major version, provides classes
for many forms of matrices, vectors, arrays and decompositions. It integrates SIMD
vectorization while exploiting knowledge about �xed-size matrices. It implements
standard unrolling and blocking techniques for better cache and register reuse in
Linear Algebra kernels.

• MTL1 [54] is a generic library developed by Peter Gottschling and Andrew
Lumsdaine for linear algebra operations on matrices and vectors. It supports
BLAS-like operations with an intuitive interface but its main focus is on sparse
matrices and vector arithmetic for simulation software. The library use Expression
Templates at a lower scale than most tools, as it is restricted to handle combination
of kernels. In addition to the performance demands, MTL4 hides all this code
complexity from the user who writes applications in natural mathematical notation.

2.2.5 Conclusion

We saw in this section the diversity of available solutions for scienti�c computing.
Low level libraries/tools permit �ne-grained programming for parallel architectures
but end up hiding domain speci�c informations therefore preventing the user from
focusing on the domain related algorithm. Domain speci�c libraries are able to em-
bed this low level approach inside functions. They provide functions with semantic
information of the domain but are still dependent on languages like C or Fortran
and the user needs to be familiar with them. DSLs alleviate these limitations by
their high expressiveness tie to a speci�c domain but lack in performance due to
their implementations prevents a DSL like Matlab to be used in the context of
Scienti�c Computing that is performance driven. The DSEL approach proposes an
implementation design that enables the use of powerful features from the host lan-
guage. In the case of C++ , DSELs can reach architecture optimizations through
its common support for C based libraries.

2.3 Proposed Approach

Our approach aims at developing high level tools for scienti�c computing. We want
to take advantage of expressiveness for designing a simple and intuitive API for the
user. As stated earlier in this section, DSLs are the most abstract languages with a
domain oriented semantic but their performances are not relevant for scienti�c com-
puting. DSELs are then good candidates. Embedded in a host language, they allow
to use the language features and then take advantage of the reachable performance
of the language.

1Matrix Template Library
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C++ through its template mechanism can be used for such an approach and
several tools illustrate it. We therefore chose the approach of a C++ DSEL based
solution for its expressiveness. Working with C++ also allows us to reach archi-
tecture level optimizations through its native aspect. On the architectural side, the
diversity of available systems is signi�cant. We then choose to target small-scale
systems (multi-cores with SIMD extensions). The interest for such systems is rising
due to their massive availability nowadays. To develop such a solution, we introduce
two paradigms that will ease the development of a DSEL : Generic and Generative
Programming.
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In the previous chapter, we presented the approach chosen for our research works.
DSELs has been preferred for their ability to be embedded in a host language without
losing their expressiveness aspect. We also introduced the need for software design
to be tied to the parallel architecture features. In this chapter, we present the
DSEL approach and its related techniques. We �rst detail the software context of
such languages. Then, we introduce the existing design methods. We �nally present
a new methodology for designing Architecture Aware DSELs (AA-DSELs).

3.1 Software context

In our case, the design of DSELs takes place in the context of scienti�c computing.
As stated in chapter 2, developing complex and fast scienti�c applications is not a
trivial task. This di�culty is the result of a large con�guration space composed
of algorithmic and architectural requirements.
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3.1.1 The con�guration space approach

The con�guration space approach gathers di�erent optimization techniques. These
techniques rely on a common optimization process which purpose is to explore
a space of possible con�gurations. The optimization process then combines
algorithmic and architectural factors for a speci�c system. This process leads to
the selection of a factor combination. The resulted combination then ensures an
optimal performance of the software. We can �nd such an approach in di�erent
software solutions.

Iterative compilation [100, 82] is part of the con�guration space techniques.
Classic compile-time optimization techniques relies on multiple code transforma-
tions that are applied through predictive heuristics. These heuristics become more
and more ine�cient when the underlying architecture is complex. Moreover these
transformations can degrade the performance in certain cases. Iterative compilation
alleviates these limitations by exploring an optimization space and then choosing
the best one. This selection process is also used at the library level.

Library based solutions can take advantage of such an approach by using
pre-built optimized binaries. ATLAS [21] is one of them. It relies on the Iterative
compilation technique that is used during the installation of the library. The
binaries are accelerated by a hierarchical tuning system that takes care of low level
functions. This system applies a large selection process for these functions and
then ensures an optimal performance. Optimized binaries are then generated and
BLAS 3 operations can exploit these versions.

In the previous solutions, the con�guration space exploration takes place
at compile-time. Another method consists in exploring this space at runtime.
StarPU [11] is a task programming library that uses a special runtime system.
This runtime can monitor in real-time the performance of each function on a given
hardware con�guration. It then allows the runtime of StarPU to select the most
optimized version of a function. This monitoring method is able to tune the un-
derlying algorithm of a function by changing its parameters (tiling size, number
of iterations, etc) or the targeted architecture (CPU, GPU, hybrid version). Such
a method allows a �ne tuning of the application. The task scheduling strategy is
chosen after a runtime exploration that permits to reduce load balancing and data
locality issues.

The compile-time approach depends on the compiler implementation and limits
the portability of an application. The runtime approach can have some overhead
while scheduling tasks in the case of StarPU. These methods are still valid ap-
proaches and gives good results. To alleviate these factors, we aim at providing a
library level system for such exploration that will complement the compiler work.
In the next section we detail techniques that provides a way to perform such an
approach.
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3.1.2 Library level exploration

3.1.2.1 Current approach

Design techniques for library level software in C++ relies for the most part on the
object-oriented approach. Design patterns [52] are a relevant work based on this
approach and provides a set of standard reusable designs for software development.
Introduced almost 20 years ago, this approach relies on recurrent patterns found in
software development that can be generalized and reused in other contexts. This
method has some limitations when it comes to dealing with many software com-
ponents and especially with a large con�guration space. In addition, the general-
ization of design patterns builds a semantic gap between domain abstractions on
which rely expressiveness and programming language features on which rely perfor-
mance. Then, performance penalties can then occur. To overcome these limitations,
Czarnecki introduced Generative Programming [25, 26] as a new paradigm for
software development.

3.1.2.2 Generative programming

Generative Programming has been de�ned by Czarnecki in [24] as "a compre-

hensive software development paradigm to achieving high intentionality, re-usability,

and adaptability without the need to compromise the runtime performance and com-

puting resources of the produced software". This approach consists in de�ning a
model to implement several components of a system. Current practices assemble
manually these components. For example, the Standard Template Library provides
components that the user needs to aggregate according to his con�guration knowl-

edge. Generative Programming pushes further this approach by bringing automa-
tion in such practices. The model that the developer uses to assemble components
is moved to a generative domain model. This results in a generator embedding a
con�guration knowledge that takes care of combining the components. This process
then relies on the three following steps as stated in [26]:

• design the implementation components to �t a common product-line architec-
ture;

• model the con�guration knowledge stating how to translate abstract require-
ments into speci�c constellations of components;

• implement the con�guration knowledge using generators.

Respecting these design considerations will ensure the transition from a con-

�guration space with domain-speci�c components and features to a solution space
that encapsulates expertise at the source-code level. This method can be embedded
within a library. These speci�c libraries are called active libraries.
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3.1.2.3 Active libraries

In opposition to classic libraries, Active libraries [107] takes an active role during the
compilation phase to generate code. They aim at solving the abstraction/e�ciency
trade-o� problem we introduced in chapter 2. They base their approach on de�ning
a set of generative programming methods. These libraries provide domain-speci�c
abstractions through generic components and also de�ne the domain-driven gener-
ator to control how these components are optimized. By carrying domain-speci�c
semantic at a high level, this technique enables a semantic analysis of the code before
any real code generation process kicks in. Such informations and transformations
are then carried on by a meta-language that allows the developer to embed meta-
informations. Once the generator �nds a solution space in the con�guration space,
the code generation phase starts resulting on an optimized version of the code. The
main approach to design such libraries is to implement them as Domain Speci�c
Embedded Languages (DSELs ). As stated in section 2.2.4, DSELs are easier to de-
sign as they reuse general purpose language features and existing compilers. They
also rely on a domain dependent analysis to generate e�cient code.

3.2 Programming techniques

The implementation of active libraries is possible through a technique called Tem-

plate Meta-programming.

3.2.1 Template Meta-Programming

Template meta-programming is a technique used to design active libraries. Tem-
plates provides a generative programming technique in which they are used by a
compiler to generate temporary source code. The code generation process is done
by meta-programs that are executed by the compiler itself. The resulting temporary
source code is then merged with the rest of the source code. The compiler can then
�nally �nish the compilation process. Through this technique, compile-time con-
stants, data structures and complete function can be manipulated. The execution
of meta-programs by the compiler enables the library to implement domain-speci�c
optimizations that lead to a complete domain oriented code generation. Such a
technique can be hosted by several languages like C++ [3], D [17], Haskell [90] and
OCaml [89]. Template meta-programming is then pushed further to design DSELs .
This technique is called Expression Template.

3.2.2 Expression Templates

Expression Templates [105, 104] is a technique implementing a form of textbfde-
layed evaluation in C++ [92]. Delayed evaluation in C++ is the entry point of
the Expression Template technique. The delayed evaluation technique is also called
lazy evaluation. C++ does not support delayed evaluation of expression natively.
Expression Templates are built around the recursive type composition idiom [62] that
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allows the construction, at compile-time, of a type representing the abstract syntax
tree of an arbitrary statement. This is done by overloading functions and operators
on those types so they return a lightweight object which type represents the current
operation in the Abstract Syntax Tree (AST) being built instead of performing any
kind of computation. Once reconstructed, functions can be used to transform this
AST into arbitrary code fragments using Template meta-programming on the AST
type (see �gure 3.1).

Figure 3.1: General principles of Expression Templates

matrix x(h,w),a(h,w),b(h,w);

x = cos(a) + (b*a);
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#pragma omp parallel for
for(int j=0;j<h;++j)
{
  for(int i=0;i<w;++i)
  {
    x(j,i) = cos(a(j,i)) 
           + (  b(j,i) 
              * a(j,i)
           );
  }
}

Arbitrary Transforms applied
on the meta-AST

While Expression Templates should not be limited to the sole purpose of remov-
ing temporaries and memory allocations from C++ code, few projects actually go
further. The complexity of the boilerplate code is usually as big as the actual library
code, making such tools hard to maintain and extend. To avoid such a scenario,
tools encapsulate the Expression Template technique as reusable frameworks with
extended features.

The Portable Expression Template Engine or PETE [58] extends the expression
template technique and provides an engine to handle user de�ned types in expression
statements. It is used in the POOMA framework [84] that provides a set of C++
classes for writing parallel PDE solvers. With PETE, the user can use the engine
and apply transformations at the AST level. PETE presents some limitations and
its engine does not allow the user to perform common transformations on the AST
as it only evaluates expressions with a bottom-up approach. This engine also lacks
of domain speci�c consideration while manipulating expressions.

Besides C++ based programming techniques, Scala [88] provides a native sup-
port for AST constructions and transformations.
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3.2.3 The Boost.Proto library

To alleviate these shortcomings, Niebler has proposed a C++ compiler construction
toolkit for embedded languages called Boost.Proto [76]. It allows developers to
specify grammars and semantic actions for DSELs and provides a semi-automatic
generation of all the template structures needed to perform the AST capture.
Compared to hand-written Expressions Templates-based DSELs , designing a new
embedded language with Boost.Proto is done at a higher level of abstraction
by designing and applying Transforms that are functions operating via pattern
matching on DSEL statements. In a way, Proto supersedes the normal compiler
work�ow so that domain-speci�c code transformations can take place as soon as
possible.

The main idea behind Boost.Proto is the construction of an AST structure
through the use of terminals. A Boost.Proto terminal represents a leaf of an
AST. The use of a terminal in a expression "infects" the expression and builds a
larger Boost.Proto expression. These expressions are tied to speci�c domains
as Boost.Proto aims at de�ning DSELs . To illustrate the possibilities of the
library, we present a simple analytical function DSEL written with Boost.Proto .
This DSEL will allow us to evaluate analytical expressions of the following form:

(x*5 + 2.0*x - 5)

We will specify the value of x by using the parenthesis operator and it will also
triggered the evaluation of the expression like in the following example:

(x*5 + 2.0*x - 5)(3.0)

Boost.Proto can be seen as a compiler in the sense that it provides a simi-
lar way to specify your own language. In comparison to classic compilers, the �rst
entry point of the library is the speci�cation of grammar rules. Boost.Proto au-
tomatically overloads all the operators for the user but some of them may not be
relevant for a DSL. This means that it may be possible to create invalid domain
expressions. Boost.Proto can detect invalid expressions through the use of a
Boost.Proto grammar. A grammar is de�ned as a series of valid grammar ele-
ments. In our example, we want to allow the use of:

• classical arithmetic operators;

• analytical variables;

• numeric literals.

We then de�ne a grammar that matches these requirements: it is presented in
listing 3.1.
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Listing 3.1: Analytical grammar with Boost.Proto
1 // Terminal type discriminator

2 struct variable_tag {};

3

4 struct analytical_function

5 : boost::proto::or_

6 <

7 boost::proto ::terminal < variable_tag >

8

9 , boost::proto ::or_

10 < boost::proto ::terminal < int >

11 , boost::proto ::terminal < float >

12 , boost::proto ::terminal < double >

13 >

14

15 , boost::proto ::plus <analytical_function ,analytical_function >

16 // both unary and binary negate

17 , boost::proto ::negate <analytical_function >

18 , boost::proto ::minus <analytical_function ,analytical_function >

19 , boost::proto :: multiplies <analytical_function ,analytical_function >

20 , boost::proto ::divides <analytical_function ,analytical_function >

21 >

22 {};

At line 7 of listing 3.1, we allow all terminals that hold a variable_tag. This
type enables the discrimination between analytical variables and other terminals.
At line 9, we allow numeric literals in our expressions. For this speci�c case,
Boost.Proto wraps the literals in terminals. We �nally allow the arithmetic
operators.

Boost.Proto can now construct valid ASTs. These expression trees does
not encapsulate any domain semantic for now. The AST type is a raw tree as if
it was extracted from the work-�ow of a compiler. The library allow us to add
domain semantic to an AST through the declaration of a user-de�ned domain
and a user-de�ned expression class. This process allow the user to merge the
domain-semantic information with the raw structure of an expression.

The next step consists in specifying the domain for our analytical DSL. This
is done by inheriting from proto::domain and linking this domain to an expres-
sion generator of a user de�ned expression type. Listing 3.2 shows the domain
declaration.

Listing 3.2: Domain de�nition with Boost.Proto
1 // The user defined expression type.

2 template <typename AST >

3 struct analytical_expression;

4

5 // The analytical_domain inherits from proto:: domain.

6 struct analytical_domain

7 : boost::proto::domain < boost::proto ::generator <analytical_expression >

8 , analytical_function

9 >

10 {};
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Once the domain declaration is done, we can now build our
analytical_expression class. We add a speci�c interface to this class as
we want to be able to call the operator() on an expression to evaluate it with a
given set of variables. It does not provide the de�nition of the operator(), we
will see how we evaluate our expression later. At this point, we do not provide
any particular behavior to this operator. We will see later how we evaluate an
expression. Listing 3.3 presents the analytical_expression class that inherits
from proto::extends. proto::extends is an expression wrapper that imbues an
expression with analytical domain properties.

Listing 3.3: User-de�ned expression type with Boost.Proto
1 template <typename AST >

2 struct analytical_expression

3 : boost::proto::extends < AST

4 , analytical_expression <AST >

5 , analytical_domain

6 >

7 {

8 typedef boost:: proto ::

9 extends < AST

10 , analytical_expression <AST >

11 , analytical_domain

12 > extendee;

13

14 // Expression must be constructible from an AST

15 analytical_expression(AST const& ast = AST()) : extendee(ast) {}

16

17 BOOST_PROTO_EXTENDS_USING_ASSIGN(analytical_expression)

18

19 // Provides the operator () overloads and makes it a Callable Object.

20

21 typedef double result_type;

22

23 result_type operator ()(double v0) const;

24 };

Now, we need to implement operator() so that Boost.Proto can evaluate
the value of our analytical expressions. Boost.Proto handles that by providing
Transforms which speci�es rules that need to be performed when the AST is
evaluated. A Transform is a Callable Object [93] de�ned in the same way that a
Proto grammar. Transform rules can be extended with a semantic action that will
describe what happens when a given rule is matched. The library provides a lot of
default transforms that we will use in our example. Our transform that evaluates
our expression needs to behave di�erently while walking the AST and encountering
its nodes:

• If it is a terminal, we want to extract the corresponding value;

• If it's an operator, we want it to do what the C++ operators does.

To achieve this, we write the evaluate_ transform that relies on the use of default
transforms. proto::when is used here to associate a rule to a speci�c action. The
evaluate_ transform is presented in listing 3.4
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Listing 3.4: The evaluate_ transform
1 struct evaluate_

2 : boost::proto::or_

3 <

4 boost::proto::when

5 < boost::proto ::terminal < variable_tag >

6 , boost::proto :: _state

7 >

8 , boost:: proto ::when

9 < boost::proto ::terminal < boost::proto::_ >

10 , boost::proto :: _value

11 >

12 , boost:: proto ::otherwise < boost::proto ::_default <evaluate_ > >

13 >

14 {};

If we want to evaluate an expression like (x+2.0*x)(3.0), we need to evaluate
each node and accumulate the result while we walk the AST. Transforms related to
accumulation are common when processing ASTs. Boost.Proto provides a clear
way to achieve these transforms: the _state of an AST. In our case, the _state is
used at line 6 to pass the value of the analytical variable through each node and
ask each node to evaluate themselves with it (see listing 3.5).

Listing 3.5: operator() implementation using evaluate_

1 result_type operator ()(double v0) const

2 {

3 evaluate_ callee;

4 return callee (*this ,v0);

5 }

The evaluation of the analytical expression is performed in the following way:

(x + 2.0*x)(3.0)

First, the '+' node:

( x(3.0) + (2.0*x)(3.0) )()

Then, the '*' node:

( x(3.0) + (2.0*x(3.0)) )()

And �nally, the terminals evaluation:

3.0 + (2.0*3.0) = 9.0

We notice the use of proto::_ (line 9) that permits to match any other terminals
that are not analytical variables. In this particular case, we directly extract the value
of the terminal. Literals will match such a case. At line 12, we simply tell the library
to use the default behavior of operators.
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At the end, we can write analytical expressions that match the correct grammar
and evaluate it. This is done by de�ning terminals and building an expression using
them. Listing 3.6 shows how our small analytical DSL in action.

Listing 3.6: Analytical expression in action
1 // Last step , we have to redefine _x to be an analytical_expression.

2 analytical_expression < boost::proto::terminal < variable_tag >::type > const

_x;

3

4 int main()

5 {

6 std::cout << (_x*3 + 9.0*_x)(2) << "\n"; // Output : 24

7 }

This small example showcases the Boost.Proto library. This library has a
lot of powerful features that we can not present in a simple and concise way. The
Boost.Proto library is one of the most complete solution for designing DSELs in
C++ . Boost.Proto can be seen as a DSEL to design DSELs .

3.2.4 Conclusion

In this section, we presented the techniques related to active library design. From
these techniques we can de�ne the con�guration knowledge (i.e. the generator)
that will deduce from the con�guration space a solution space. The maintenance of
active libraries that embed such techniques is hard to achieve. Boost.Proto au-
tomates this approach and gives a powerful way to manipulate AST structures and
apply domain-oriented transformations on them. The high interoperability between
ASTs and transformations in Boost.Proto provides a clear approach for specifying
DSELs .

Meta-programming techniques then allow us to hide from the end-user the code
generation process and also abstract the user interface with strong domain semantic
but these approaches lack of methodology to specify a complete DSEL . Czarnecki
has been studied a methodology to design new DSELs : the DEMRAL methodology.

3.3 The DEMRAL Methodology

3.3.1 DSELs design considerations

Czarnecki explored how Generative Programming would help the design of active
libraries. Complex software systems can be broken down to:

• a list of interchangeable components which tasks are clearly identi�ed;

• a series of generators that combines components by following rules de�ned by
an a priori domain speci�c analysis.

In [27], Czarnecki proposed a methodology called Domain Engineering

Method for Reusable Algorithmic Libraries (DEMRAL ) showing a possi-
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ble formalization of Generative Programming techniques. It relies upon the fact
that algorithmic libraries are based on a set of well de�ned concepts:

• Algorithms, that are tied to a mathematical or physical theory;

• Domain entities and concepts, which can be represented as Abstract Data
Types with container-like properties;

• Specialized functions encapsulating algorithm variants depending on Ab-
stract Data Types properties.

Domain Specific
Application Description

Generative Component Concrete Application

Translator

Parametric 
Sub-components

Figure 3.2: The DEMRAL methodology

Figure 3.2 illustrates the DEMRAL methodology. DEMRAL reduces the
e�ort needed to develop software libraries by limiting the amount of code to write.
As an example, a library providing N algorithms operating on P di�erent related
data-structures may need the design and implementation of N ∗ P functions.
Using DEMRAL , only N generic algorithms and P data structure descriptions are
needed as the code generator will specialize the algorithm with respect to the data
structure speci�cities. This approach allows high re-usability of generic components
while their behaviors can be customized.

Taking into consideration the DEMRAL methodology helps designing DSELs as
this formalization relies on the software aspect of generic components. As we stated
in chapter 2, in the context of scienti�c computing we need to inject architec-
ture speci�c implementations in todays software. We then present the Architecture
Aware DEMRAL methodology as the extension of the DEMRAL methodology.

3.3.2 From DSELs to Architecture Aware DSEL

The common factor of all existing DSELs for scienti�c computing is that the
architecture level is mostly seen as a problem that requires speci�c solutions to be
dealt with. The complexity of hand-maintained Expression Templates engines is
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the main reason why few abstractions are usually added at this level. We propose
to integrate the architectural support as another generative component. To do
so, we introduce a new methodology which is an hardware-aware extension of the
DEMRAL methodology.

In this Architecture Aware DEMRAL (AA-DEMRAL ) methodology, the imple-
mentation components are themselves generated from a generative component which
translates an abstract architecture description into a set of concrete implementation
components to be used by the software generator. In the same way that DEM-

RAL initially removed the complexity of handling a large amount of variations of a
given set of algorithms, the Architecture-Aware approach that we propose leverages
the work needed for supporting di�erent architectures. By designing a small-scale
DSEL for describing architectures, the software components used by the top-level
code generator are themselves the product of a generative component able to analyze
an abstract architecture description to specify the structure of these components.
Figure 3.3 illustrates the new AA-DEMRAL methodology.

Figure 3.3: The AA-DEMRAL methodology

By analogy with the DEMRAL methodology, a library providing N algorithms
operating on P di�erent related data structures while supporting Q architectures
will only need the design and development ofN+P+Q software components and the
two di�erent generative components (the hardware one and the software one). The
library is still designed with high re-usability and its development and maintenance
are simpli�ed. Such an approach keeps the advantage of the DEMRAL methodology
and permits to keep focusing on domain related optimizations while developing
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the library. In addition, the genericity of the components at both levels (hard-
ware and software) allows the generative components to explore a complete
con�guration space with a sub-part corresponding to speci�c architectural opti-
mizations thus making the code generation process strongly aware of architectural
aspects. The best solution space can then be selected by the generative components.

3.4 Conclusion

Our contribution pushes further the DEMRAL methodology and provides a
new way for designing architecture aware DSELs . With such an approach,
active libraries can take in consideration hardware capabilities and then increase
the quality of their code generation process. DSELs keeps their expressiveness
and, at the same time, are able to improve their evaluation strategy. This new
methodology now requires to be easily implemented in the context of active libraries.

The challenges behind such an implementation are:

• Abstract architectural components to specify a hardware con�guration space;

• Build a generative component that can embed knowledge to choose between
hardware components;

• Build a generative component that can embed knowledge to aggregate software
and hardware components.

Our work will focus on providing architectural components for SIMD and multi-
core based systems (i.e. small-scale systems) like said at the end of chapter 2. We
then propose a library that embed an architecture aware function dispatching sys-
tem: the Boost.Dispatch library.
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In chapter 3, we introduced the notion of Architecture Aware DSEL (AAD-
SEL) as an entry point for designing new parallel software tools. This approach
allows the tool designer to inject architecture details inside the evaluation process
of the DSEL . With an overgrowing architecture landscape and the necessity to
fully exploit their potential, library designers are confronted to new software designs.

In this chapter we present Boost.Dispatch, a C++ template library for
writing functions and functors dispatching using a generic Tag Dispatching system
to simplify the application of the AA-DEMRAL methodology to software design.

4.1 Challenges

As introduced in chapter 3, Generic Programming is a powerful approach to
design reusable software components. From the tool developer perspective, these
programming techniques can improve the internal design of a library. From the user
perspective, providing a generic interface (either for tool designers or application
developers) impacts directly their code by giving an access to easily reusable
software components in di�erent contexts. C++ introduces a e�cient way to write
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and use Generic Programming through its template system. Generic Programming
in C++ relies on several techniques that we introduced in chapter 3. One of them
is the ability of C++ to provide di�erent approaches to dispatch a function over an
arbitrary list of types.

4.1.1 Regular C++ function overloading

Function overloading is a C++ feature that permits to have di�erent function
de�nitions with the same function name. When this function is called, the
C++ compiler must choose which function de�nition to call. The decision between
the di�erent candidates is made by respecting a set of rules.

Listing 4.1: Regular overloading in C++
1 float f(float)

2 { return 0; }

3

4 int f(int)

5 { return 1; }

6

7 unsigned int f(unsigned int)

8 { return 2; }

9

10 int main()

11 {

12 cout << f(2.0) << endl;

13 }

We consider the example in listing 4.1. The overloaded function f is called
and the compiler must distinguish between the candidates. The types of the call
arguments are used here to perform the selection. In the example, the compiler will
dispatch the call to the float version of the function. The process that models
this decision is the overload resolution process. The complete processing of a
function call is complex and the overload resolution is just a part of it. Here we just
present the basic set of rules concerning the overload resolution process.

• The �rst step consists in looking up the function name and building the over-
load set. The template variants of the function are added after the template
deduction occurred.

• In the overload set, any candidate that doesn't match the call is then elim-
inated (wrong number of arguments, implicit conversion mismatch, default
argument mismatch). The resulting candidates are a set of viable function

candidates.

• Then, the overload resolution is performed to select the best candidate. If the
process fails, the call is ambiguous.
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• The last step check the selected candidate. If it is a member function, it checks
its accessibility. If it is an inaccessible private member, an error is issued.

According to this set of rules, function overloading provides a way to distinguish
function variants. However, this approach is limited by its selection process that
only relies on the types of the call arguments. A more �ne-grained approach can not
be achieved as the properties of the types and even further information can not be
injected inside the overload resolution process. For example, if we want a de�nition
of the function f that works for every �oating types, the regular overload approach
forces us to duplicate the function de�nition for the float and double types.

4.1.2 Free function dispatching using SFINAE

During the construction of the overload set, some overload candidates come
from template parameter substitutions. If the template substitution fails, the
corresponding candidate is then evicted from the overload set and the compiler
does not issue an error. This process is called Substitution Failure Is Not An Error

(SFINAE). SFINAE takes place during the template deduction phase and consists
in dispatching a function by using an arbitrary overloading technique. In this
case, SFINAE is used to dispatch a function call through through an arbitrary
compile-time condition.

For example, we want to de�ne a unary function f for all built-in arithmetic
types that implement di�erent algorithms depending on the actual type of the
argument. For example, consider that f returns 0 if its argument is a �oating point
value, returns 1 if it is a signed integer or return 2 otherwise. You could do this
using SFINAE and std::enable_if. Listing 4.2 illustrates this technique.

Listing 4.2: Free function dispatching using SFINAE
1 #include <type_traits >

2

3 template <class T>

4 typename std::enable_if <is_floating_point <T>::value ,int >:: type

5 f(T)

6 { return 0; }

7

8 template <class T>

9 typename std::enable_if < is_signed <T>:: value && is_integral <T>:: value

10 , int >::type

11 f(T)

12 { return 1; }

13

14 template <class T>

15 typename std::enable_if < !is_signed <T>:: value && is_integral <T>:: value >

16 , int >::type

17 f(T)

18 { return 2; }
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The SFINAE approach presents some limitations. First, when the function
requires a non trivial set of overloads, the programming process doesn't scale. All
overloads must be mutually exclusive. The programmer needs to ensure that every
metaprogram leads to a correct instantiation of the function according to the type
list. This is an error prone task to perform. In addition, the compilation time of
a SFINAE-based overload resolution is linear. The compilation time will not be
reasonable for a signi�cant number of functions using this technique over a large
list of types.

4.1.3 The Tag Dispatching technique

Another solution heralded by the Standard Template Library is to use a technique
known as Tag Dispatching. This approach relies on a concept-based overloading
that will select the most speci�c function from a set of specializations of a given
function. This technique is often used hand- in-hand with traits classes able to
associate information with a compile-time entity (a type, integral constant, or
address). Here, a Tag is a class describing properties that are the expression of
a concept. The dispatch decision process will take into account those properties
to select the best overload. Inheritance of tags is used to encode the re�nement
hierarchy of concepts. The overloading mechanism will then pick the most speci�c
overload based on the tag hierarchy.Listing 4.3 shows the previous example
implemented with the Tag Dispatching approach.

Listing 4.3: Free function dispatching using Tag Dispatching
1 struct unknown_tag {};

2 struct fundamental_tag {};

3 struct floating_point_tag : fundamental_tag {};

4 struct integral_tag : fundamental_tag {};

5 struct signed_integral_tag : integral_tag {};

6 struct unsigned_integral_tag : integral_tag {};

7

8 template <class T> struct category_of{ typedef unknown_tag type; };

9 template <> struct category_of <float >{ typedef floating_point_tag type; };

10 template <> struct category_of <double >{ typedef floating_point_tag type; };

11 template <> struct category_of <int > { typedef signed_integral_tag type; };

12 template <> struct category_of <unsigned int >

13 { typedef unsigned_integral_tag type; };

14

15 template <class T> int f(T t)

16 { return f(t, typename category_of <T>:: type() ); }

17

18 template <class T> int f(T, floating_point_tag const&)

19 { return 0; }

20

21 template <class T> int f(T, integral_tag const&)

22 { return 1; }

23

24 template <class T> int f(T, unsigned_integral_tag const &)

25 { return 2; }
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By using a hierarchy of tags bound by inheritance, it's possible to make use
of the best-match feature of C++ overloading to introduce specializations without
requiring them to be mutually exclusive. The iterator_category system of
standard iterators is a good example of that. But, doing this in a clean, concise,
reusable and idiomatic manner presents some di�culties.

4.1.4 Concept based overloading

As speci�ed in [55, 95] and introduced in chapter 3, Concepts come as a completely
new approach for designing software in C++ . The approach consists in specifying
and checking constraints on template arguments within the compiler. These con-
straints are checked at their point of use. It means that templates errors are caught
early in the compilation process. This extension of the C++ language allows the
user to specify formal properties on templates that enable a clear and reliable way
for expressing function dispatching.

Listing 4.4: Concept overloading
1 template < typename T >

2 requires std:: is_floating_point <T>

3 T f(T t)

4 { return 0; }

5

6 template < typename T >

7 requires std:: is_integral <T>

8 T f(T t)

9 { return 1; }

10

11 template < typename T >

12 requires std:: is_integral <T> && std::is_signed <T>

13 T f(T t)

14 { return 2; }

Listing 4.4 illustrates a Concept based overload of our example. The requires

clause here permits to specify a constraint on the template parameter thus resulting
to the best selection of the function de�nition. The && operator is able to introduce
a relation between constraints (|| is also available). In our example, the overload
resolution can distinguish that std::is_integral<T> && std::is_signed<T> is
more specialized than std::is_integral<T> resulting to the best overload selection.
We can notice that C++ can be easily extended with this language extension but
the C++11 committee decided to remove Concepts from the draft standard in July
2009. No o�cial decisions has yet been made for the future of Concepts inside the
Standard.

4.1.5 Conclusion

The previous methodologies give a way to statically select the best implementation
of a function within a set of constraints. But in certain cases this approach is not
su�cient or available in the C++ Standard. A precise selection of a function call
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relies on more than the information of the types. The properties of the function
may impact the selection process and need to be injected during the dispatch
phase. In chapter 2 and 3, we also saw the importance of architecture speci�cations
while evaluating a function or a statement in a DSEL . Therefore, dispatching a
function call requires to take into consideration these factors in order to use the
best-match feature of C++ in a generic and powerful way. In section 4.2, we
introduce Boost.Dispatch, a C++ template library for function dispatching with
a generic tag dispatching system that proposes a solution to the previous limitations.

4.2 The Boost.Dispatch Library

In this section, we present a general overview of the abilities of Boost.Dispatch
by introducing the main features of the library and showing the most relevant
details of its implementation.

4.2.1 The AA-DEMRAL methodology in Boost.Dispatch

Boost.Dispatch provides a way to implement the AA-DEMRAL approach. The
main contribution of the library is that function dispatching is aware of an archi-
tecture description. Boost.Dispatch achieves that by providing an extended and
generic manner of dispatching functions in template contexts through an exten-

sible hierarchy system. This component articulates the library through three
specialized hierarchies:

• a hierarchy for types that expresses the properties of the argument types;

• a hierarchy for functions that expresses the properties of the functions;

• a hierarchy for architectures that adds architectural information for the
dispatch process.

The architecture aware dispatch of a function occurs with the use of an archi-
tecture hierarchy. This hierarchy then encodes the architectural information that
we want to inject in the dispatch system of the library. With this methodology,
Boost.Dispatch is able to aggregate generic components according to type se-
mantic, function semantic and architecture information. Figure 4.1 illustrates the
injection of an architecture information inside the AA-DEMRAL approach.
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Figure 4.1: Architecture information for dispatch of generic components

The type hierarchy and the function hierarchy provide an entry to add semantic
information during the dispatch process. The architecture hierarchy is able to
inject an architecture description inside the dispatch process. The design of the
library is then semantic and architectural aware. The Hierarchy Concept is the
main component that articulates the library and it will be detailed in the next
section.

4.2.2 The Hierarchy Concept

The Concept of Hierarchy is the key of the dispatching system. It provides an
idiomatic way to de�ne inheriting category tags. These tags will then embed
arbitrary levels of intentionality for the dispatch mechanism.

Listing 4.5 presents the de�nition of the Hierarchy Concept.

Listing 4.5: The Hierarchy Concept
1 struct H : P

2 {

3 typedef P parent;

4 };

A model H of Hierarchy is nothing more than an empty type used to identify
a category of types. It must inherit from another model of Hierarchy P. Multiple
inheritances are discouraged as it easily leads to ambiguities while computing the
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hierarchy of the type being hierarchized. It must also provide a parent typedef
in order to allow composite hierarchies to be built around it. All hierarchies must
inherit directly or indirectly from boost::dispatch::meta::unspecified_<T>,
with T a concrete type (preferably the one being hierarchized).

For its built-in hierarchies, Boost.Dispatch chooses to make them templates
(see listing 4.6), with the actual type being hierarchized as the template parameter.
This allows to select the parent hierarchy according to the type, removing some
of the limitations of single inheritance. Embedding the type inside the hierarchy
also enables to use it directly for declaring template overloads in place of the real
arguments.

Listing 4.6: The Hierarchy Concept for template types
1 template <typename T>

2 struct H<T> : P<T>

3 {

4 typedef P<T> parent;

5 };

4.2.3 Compile Time Hierarchy Deduction

This hierarchy system contains ready to use hierarchies that can be extended by
the user. Listing 4.7 shows the free function dispatching example from section 4.1
rewritten with Boost.Dispatch.

Listing 4.7: Boost.Dispatch in action
1 #include <boost/dispatch/meta/hierarchy_of.hpp >

2 using namespace boost:: dispatch;

3

4 template <class T> int f(T t)

5 { return f(t, typename meta:: hierarchy_of <T>:: type() ); }

6

7 template <class T> int f(T, scalar_ < floating_ <T> > const&)

8 { return 0; }

9

10 template <class T> int f(T, scalar_ < integer_ <T> > const&)

11 { return 1; }

12

13 template <class T> int f(T, scalar_ < unsigned_ <T> > const&)

14 { return 2; }

The metafunction hierarchy_of at line 5 will compute the hierarchy of the
type T in the built-in hierarchy of Boost.Dispatch. It will permit the selection
of one of the three specializations in the example. The �rst one at line 7 will be
selected when T is a single or double precision �oating point number. The second
specialization at line 10 applies to any integral type, including unsigned ones.
However, since there is also a specialization for unsigned types at line 13, the latter
gets preferred, since unsigned_ is a re�nement of integer_ in the built-in hierarchy.
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We saw that hierarchies are built through the use of inheritance. This allows to
build a partially ordered lattice. This lattice expresses the category of a given type
into all its potential enclosing type sets. To be able to �nd the root of a hierarchy
in the lattice, we need to pass the parent type to the next node of the lattice. This
is done by making the hierarchies template as presented in listing 4.6.

Listing 4.8: hierarchy_of implementation
1 template <class T, class Origin = T>

2 struct hierarchy_of

3 : details :: hierarchy_of < T

4 , typename remove_reference <Origin >:: type

5 >

6 {};

7

8 // =====================================

9 // specialization for fundamental types

10 // =====================================

11 namspace details{

12 template <class T,class Origin >

13 struct hierarchy_of < T

14 , Origin

15 , typename boost::

16 enable_if < boost:: is_fundamental <T> >::type

17 >

18 {

19 typedef typename remove_const <Origin >:: type stripped;

20

21 typedef typename mpl::if_ < is_same < T, stripped >

22 , stripped

23 , Origin >:: type origin_;

24

25 typedef scalar_ <typename property_of <T, origin_ >::type > type;

26 };

27 }

Listing 4.8 shows the implementation of the hierarchy_of metafunction. The
specialization corresponds to the built-in hierarchy of types. This specialization
is used when the type to compute is a fundamental type, which corresponds
to every C++ standard based type. The metafunction will then return the
scalar_ hierarchy with the corresponding property of the type. For example,
hierarchy_of<float>::type will return scalar_< single_<int> >.

4.2.4 Built-in Hierarchies

In this section we present the built-in hierarchies available in Boost.Dispatch. To
fully illustrate the capabilities of the library, we will focus on constructing the call of
a function performing the sum of its arguments in a generic context. This function
is simply calculating the addition of two arguments and is named plus. Listing 4.9
shows the top-level plus function that performs a hierarchized call through the use
of the hierarchy_of metafunction.
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Listing 4.9: A hierarchized call of plus
1 template <class A0>

2 A0 plus(A0 const& a0 , A0 const& a1)

3 {

4 return impl::plus(a0, a1, typename meta:: hierarchy_of <A0 >:: type() );

5 }

4.2.4.1 Hierarchy for functions

With Boost.Dispatch the �rst step consists in declaring a generic tag for the
function itself. This tag identi�es the function in generic contexts and it needs to
model the Hierarchy Concept. The function tag is tied to the function properties.
The plus function is an elementwise function so we can introduce a speci�c
elementwise evaluation context in the function hierarchy.

Listing 4.10: The plus function identi�er
1 // elementwise_ hierarchy

2 template <class T>

3 struct elementwise_ : unspecified_ <T>

4 {

5 typedef unspecified_ <T> parent;

6 };

7

8 // plus_ models :

9 namespace tag

10 {

11 struct plus_ : elementwise_ < plus_ >

12 {

13 typedef elementwise_ < plus_ > parent;

14 };

15 }

Listing 4.10 shows how to introduce a new elementwise hierarchy and how to
express a function tag modeling this hierarchy. Further function properties can
then be added through this hierarchy like reduction operations for example.

4.2.4.2 Hierarchy for scalar types

The library gives a built-in hierarchy for dispatching on scalar types. According
to the types passed as arguments to the function, Boost.Dispatch will compute
the hierarchy of these types through the metafunction hierarchy_of and select the
best call available. The hierarchy of a built-in fundamental type T is the composite
scalar_< typename property_of<T>::type >. property_of computes the prop-
erty of the type being hierarchized. Built-in properties in Boost.Dispatch are
tied to the intrinsic semantic of C++ fundamental types (i.e. int, float, double,
bool, etc). Properties are decoupled from scalar_ so that it is easy to create new
hierarchies such as foo_< integer_<T> > etc.
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A list of all properties available and how they relate to each other is listed in
�gure 4.2.
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Figure 4.2: The properties of the built-in scalar hierarchy

Our plus function doesn't require any particular behavior as the '+' operator
in C++ can handle every arithmetic scalar types. So we can write a function that
takes care of every possible call of the plus function with scalar types by specifying
the following composite: scalar_< arithmetic_<T> >. Listing 4.11 presents the
resulting function.

Listing 4.11: Dispatching plus for scalar types
1 namespace impl

2 {

3 template <class A0>

4 A0 plus(A0 const& a0, A0 const& a1 , scalar_ < arithmetic_ <A0> > const&)

5 {

6 return a0+a1;

7 };

8 }

With all the type properties available in Boost.Dispatch, we can easily
imagine more complex functions requiring a very �ne dispatch strategy depending
on their arguments properties.
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4.2.4.3 Hierarchy for architectures

Another ability of the library is to be able to select a function call with a speci�c
architecture information. In section 3.3.2 we discussed the necessity of injecting
architectural speci�cation during the evaluation of a DSEL . Boost.Dispatch
proposes to specify a Site information. Boost.Dispatch Sites are computed
as hierarchies and provide a way to explicitly declare function overloading for
dedicated architecture contexts.

By default, the library gives two architecture aware evaluation contexts. The
�rst one is the formal_ site that de�nes the most abstracted evaluation context.
This context is used in the case of high-level code transformation functions. In-
heriting from the formal_ site, the cpu_ site de�nes the CPU based evaluation
context for functions. This context is used when no speci�c architecture infor-
mations are available or required by a function. Function specializations under the
cpu_ context are usually used as common architecture independent implementation.
Boost.Dispatch has the ability to automatically compute the site for a function
tag. If di�erent implementations are available, the library will compute the best site
for the evaluation context. This is done by using the default_site metafunction
that takes as parameter the tag of a function.

Boost.Dispatch is able to aggregate information about the underlying archi-
tecture. The library gathers information from compiler macros that are activated
by compile �ags or from user de�ned macros. The library then organizes hierarchi-
cally these informations and provides an automated way of computing the default
evaluation context of a function. The default_site metafunction performs such a
computation.

If we go back to our plus example, the scalar version of the plus functor is
dispatched through the cpu_ site like presented in listing 4.12.

Listing 4.12: Dispatching plus on default cpu_ site
1 template <class A0> A0 plus( A0 const& a0, A0 const& a1)

2 {

3 typedef default_site <tag::plus_ >:: type site;

4 return impl::plus( a0, a1

5 , typename meta:: hierarchy_of <A0 >:: type()

6 , typename meta:: hierarchy_of <site >:: type()

7 );

8 }

9

10 namespace impl

11 {

12 template <class A0>

13 A0 plus( A0 const& a0, A0 const& a1

14 , scalar_ < arithmetic_ <A0> > const&, cpu_ const&

15 )

16 {

17 return a0+a1;

18 };

19 }
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To push further the architecture aware ability of Boost.Dispatch, we will
add an implementation of our plus function for a speci�c SIMD extension. SIMD
extensions as introduced in chapter 2 work with wide registers able to store multiple
data and their computation unit has the ability of applying the same operation on
the data stored in these registers. For example, SSE can perform an addition on
four single precision �oating point numbers at the same time. Our plus function
could take advantage of such an extension when it is available. To achieve this,
we �rst need to provide a new hierarchy for SIMD types. Listing 4.13 shows
the inheritance from the unspecified_ tag to add an simd_ hierarchy tag in the
Boost.Dispatch tag dispatching mechanism.

Listing 4.13: SIMD type hierarchy
1 namespace tag{

2 template <class T, class X>

3 struct simd_ : simd_ < typename T::parent , X >

4 {

5 typedef simd_ < typename T::parent , X > parent;

6 };

7

8 template <class T, class X>

9 struct simd_ <T, X>

10 : unspecified_ < typename property_of <T>::type , X >

11 {

12 typedef unspecified_ < typename property_of <T>::type , X > parent;

13 };

14 }

A speci�c type needs to be used when working with SIMD registers. The SSE
extension requires the use of the __m128 type to store four float values in a SIMD
register. We need to make Boost.Dispatch aware of the hierarchy of this type
to activate the dispatch on SIMD �oating point registers. Listing 4.14 shows the
specialization of the hierarchy_of metafunction to register the __m128 type in the
type hierarchy.

Listing 4.14: Making hierarchy_of aware of SIMD register
1 template <class T, class Origin >

2 struct hierarchy_of < __m128 , Origin >

3 {

4 typedef simd_ < single_ <Origin >, sse_ > type;

5 };

After adding this new entry in the type hierarchy, we need to register a new site
for the SSE SIMD extension in the architecture hierarchy. First, we add an entry
for a simd_ site. This can be done by inheriting from the cpu_ site tag. After this
step we can ramify the new simd_ site to handle multiple SIMD extensions. For
the SSE family, a sse_ tag that inherits from the simd_ tag will be the entry point
of the SSE extension family. Then, we would be able to continue the inheritance
scheme with a sse2_ hierarchy tag. Listing 4.15 summarizes the hierarchy tree of
the new sites.
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Listing 4.15: Hierarchy class for SSE
1 namespace tag{

2 struct simd_ : cpu_ { typedef cpu_ parent; };

3 struct sse_ : simd_ { typedef simd_ parent; };

4 }

Now, we can add a new version of our plus function for the sse_ site. This
version adds the sse_ tag to our implementation. The '+' operation is then
performed by the _mm_add_ps intrinsic. Listing 4.16 presents this version.

Listing 4.16: Dispatching plus for SSE
1 namespace impl

2 {

3 template <class A0>

4 A0 plus( A0 a0

5 , A0 a1

6 , simd_ < single_ <A0> > const&

7 , tag::sse_ const&

8 )

9 {

10 return _mm_add_ps( a0 , a1 ) ;

11 }

12 };

Another feature of the library is that the type hierarchy enables to factorize
the code of dispatched functions. For example, if a multiplies function is imple-
mented like our plus function, we may want to reuse all the speci�c SIMD and
scalar implementations of multiplies to implement a square function. square

just needs to reuse multiplies in its implementation and multiplies will then be
dispatched to the best implementation available according to the Boost.Dispatch
hierarchies. This can be achieved by using the generic_ entry in the type hierarchy
of Boost.Dispatch.

Listing 4.17: generic_ hierarchy for code reuse
1 namespace tag{

2 template <class T,class X>

3 struct simd_ < T, X >

4 : generic_ < typename property_of <T>:: type >

5 {

6 typedef generic_ < typename property_of <T>:: type > parent;

7 };

8 }

Listing 4.17 presents the simd_ hierarchy that now inherits from the generic_
entry point. In the case of a Boost.Dispatch square function, only the imple-
mentation presented in listing 4.18 is required. The Boost.Dispatch multiplies

function will then perform its own dispatch through the library. Here, the A0 type
models an arithmetic_ that will be passed to multiplies. If A0 is a SIMD type,
the SIMD implementation available will be called.
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Listing 4.18: A generic_ function call example
1 namespace impl

2 {

3 template <class A0>

4 A0 square( A0 const& a0

5 , generic_ < arithmetic_ <A0> > const&

6 , cpu_ const&

7 )

8 {

9 return multiplies(a0,a0);

10 };

11 }

4.2.4.4 Hierarchy for Boost.Proto ASTs

The library can also dispatch functions that manipulates Boost.Proto ASTs. The
top-level of the Boost.Proto expression hierarchy is the ast_ hierarchy tag (see
listing 4.19). It directly inherits from the unspecified_ tag which means that
all the Boost.Proto expressions passed as arguments match this hierarchy. A
Boost.Proto domain can still be used by the dispatch system. The ast_ hierarchy
is then re�ned by the node_ hierarchy.

Listing 4.19: The ast_ hierarchy
1 // T is the AST being hierarchized

2 // D is the AST domain

3 template <class T, class D>

4 struct ast_ : unspecified_ <T>

5 {

6 typedef unspecified_ <T> parent;

7 };

The node_ hierarchy represents a tagged Boost.Protoexpression node.
Each Boost.Proto node encodes its tag and arity. A node tag type in
Boost.Proto describes the operation that created the node in the AST and
the arity corresponds to the number of children of the node. Boost.Dispatch

provides entries so that the dispatch system can be aware of these informations.
Thus, the node_ hierarchy takes into consideration the Boost.Proto arity, a
Boost.Proto tag hierarchy and an expression semantic hierarchy. The expres-
sion semantic hierarchy encodes the information of the concrete type held by the
Boost.Proto expression which means the actual hierarchy of this concrete type.
node_ is presented in listing 4.20.

Listing 4.20: The node_ hierarchy
1 // T is the expression semantic hierarchy

2 // Tag is the expression node tag hierarchy

3 // N is the expression arity

4 // D is the expression domain hierarchy

5 template <class T, class Tag , class N, class D>

6 struct node_ : node_ <T, typename Tag::parent , N, D>

7 {

8 typedef node_ <T, typename Tag::parent , N, D> parent;

9 };
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The parent hierarchy of node_ is then computed according to the semantic hi-
erarchy of the Boost.Proto tag. Figure 4.3 illustrates the parent hierarchy com-
putation of '+' Boost.Proto node. Once the unspecified_ hierarchy is reached,
the parent hierarchy of node_ is computed as a ast_ hierarchy.

node_< A0, tag::plus_, 2>

a b

+

node_< A0, elementwise_<tag::plus_> , 2>

Parent Hierarchy

Figure 4.3: plus_ node example

The last level of re�nement in the AST hierarchy is the expr_ hierarchy. This
hierarchy represents a tagged Boost.Proto expression with a speci�c arity and
a expression semantic hierarchy. Listing 4.21 presents this hierarchy. The parent
hierarchies of expr_ are computed by walking the parent hierarchy of the expres-
sion semantic hierarchy. Once hitting the unspecified_ hierarchy, expr_ parent is
computed as a node_ hierarchy.

Listing 4.21: The expr_ hierarchy
1 // T is the expression semantic hierarchy

2 // Tag is the expression node tag hierarchy

3 // N is the expression arity

4 template <class T, class Tag , class N>

5 struct expr_ : expr_ <typename T::parent , Tag , N>

6 {

7 typedef expr_ <typename T::parent , Tag , N> parent;

8 };

4.2.5 Common API

When working with more than one function, this technique introduces verbosity in
the code. Boost.Dispatch is able to automate this hierarchical approach by pro-
viding a common API. It is composed of macros that simplify the implementation
of dispatched functions.

The �rst helper macro is BOOST_DISPATCH_HIERARCHY_CLASS. This macro facil-
itates the registration of Boost.Dispatch hierarchy classes. Listing 4.22 shows
the registration of our previous SIMD sites.
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Listing 4.22: Hierarchy class macro
1 namespace tag{

2 BOOST_DISPATCH_HIERARCHY_CLASS(simd_ , boost:: dispatch ::tag::cpu_);

3 BOOST_DISPATCH_HIERARCHY_CLASS(sse_ , simd_);

4 }

The next macro is BOOST_DISPATCH_FUNCTION_IMPLEMENTATION. It generates a
dispatch-based function implementation. Listing 4.23 details this macro.

Listing 4.23: Implementation Macros of Boost.Dispatch
1 // Tag is the function tag

2 // Name is the name of the function

3 // N is the number of arguments for the function.

4 BOOST_DISPATCH_FUNCTION_IMPLEMENTATION(Tag , Name , N)

Our function example of plus can now be written as in listing 4.24

Listing 4.24: plus registration
1 template <class T>

2 namespace tag

3 {

4 struct plus_ : elementwise_ < plus_ > {};

5 }

6

7 BOOST_DISPATCH_FUNCTION_IMPLEMENTATION(tag::plus_ , plus , 2)

The BOOST_DISPATCH_IMPLEMENT macro (see listing 4.25) takes care of generat-
ing the Boost.Dispatch functor that handles the tag dispatching mechanism. It
is also called an implement in the context of the library. The user can easily specify
a special namespace where the function will be declared. Then the function tag
and the site tag are passed to the macro. The user can �nally name the template
arguments of the function and specify in a preprocessor sequence the hierarchy tags
associated with these arguments.

Listing 4.25: Extension Macros of Boost.Dispatch
1 // NS is the namespce for the implement.

2 // Tag is the function tag

3 // Site is the site tag

4 // Types are the template parameters for the arguments

5 // Seq is waiting for a sequence of types hierarchy tags

6 // Cond is a static condition that can include or not an implement

7

8 BOOST_DISPATCH_IMPLEMENT(NS, Tag , Site , Types , Seq)

Now, we can update our plus example and specify two Boost.Dispatch

implementations. Listings 4.26 and 4.27 present these implementations.
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Listing 4.26: Scalar overload with macros
1 BOOST_DISPATCH_IMPLEMENT( my_plus_namespace

2 , tag::plus_

3 , tag::cpu_

4 , (A0)

5 , (scalar_ < arithmetic_ <A0> >)

6 (scalar_ < arithmetic_ <A0 > >)

7 )

8 {

9 typedef A0 result_type;

10

11 A0 operator(A0 const& a0, A0 const& a1) const

12 { return a0 + a1; }

13 };

Listing 4.27: SIMD overload with macros
1 BOOST_DISPATCH_IMPLEMENT( my_plus_namespace

2 , tag::plus_

3 , tag::sse_

4 , (A0)

5 , ((simd_ <single_ <A0>,tag::sse_ >))

6 ((simd_ <single_ <A0 >,tag::sse_ >))

7 )

8 {

9 typedef A0 result_type;

10

11 A0 operator(A0 a0 , A0 a1) const

12 { return _mm_add_ps(a0,a1); }

13 };

We can �nally call our plus function like in listing 4.28. In the next section,
we will present implementation details of the library to clarify the behavior of
Boost.Dispatch.

Listing 4.28: SIMD overload with macros
1 int main()

2 {

3 float a = 3.0 , float b = 5.0;

4 float c = plus(a,b); // The scalar version is called here.

5

6 __m128 vec0 = {1.0 , 2.0, 3.0, 4.0};

7 __m128 vec1 = {11.0 ,12.0 ,13.0 ,14.0};

8 __m128 r = plus(vec0 , vec1); // The SSE version is called here.

9

10 return 0;

11 }



4.3. Conclusion 59

4.3 Conclusion

Tag dispatching is a powerful technique used in the C++ standard library.
Boost.Dispatch pushes further this technique by adding two entries besides the
classical approach: tag dispatching on function properties and tag dispatching on
architecture speci�cations. The library gathers these three entries through a generic
tag dispatching system that allows the user to have a �ne grain for selecting func-
tion overloads. Boost.Dispatch main feature is the integration of an architecture
aware dispatching mechanism that is the �rst step to an AA-DEMRAL approach.
Boost.Dispatch can be used in the context of tools development and provides a
solution for injecting architectural speci�cation inside an evaluation process.

Now, we will see how Boost.Dispatch helps the development of architecture
aware tools by presenting two parallel programming tools:

• Boost.SIMD for programming SIMD extensions;

• NT2 for programming small-scale systems (multicores coupled with SIMD ex-
tensions).
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In chapter 4 we introduced Boost.Dispatch, a function dispatching library
with architecture aware dispatching capabilities. We want to demonstrate the abil-
ity of this library to be used in the development of a high level programming tool for
�ne grain parallelism. SIMD programming relies on special SIMD instruction sets
that are working with wide data registers. In this context, Boost.Dispatch needs
to provide a very low overhead to guarantee the performance of an instruction level
programming model like SIMD. This chapter1 presents the development of a high
level programming tool for SIMD extensions: The Boost.SIMD Library [45, 44].

In this chapter, we introduce the challenges of such a library followed by its
API. Afterwards we present the concepts on which such a library relies and its
implementation. Then, we detail the technical choices we made for the development
of Boost.SIMD by describing the full SIMD code generation process. Finally, we
conclude this chapter with a discussion on the performance of the library.

5.1 Hardware context and software challenges

We introduced in section 2.1.1 the principle of SIMD extensions. We saw that these
extensions allow to accelerate applications with a data parallelism scheme. Table
5.1 gives a full overview of these hardware extensions with the size of their dedicated
SIMD registers.

For example, the AVX extension introduced in 2011 enhances the x86 instruction
set for the Intel Sandy Bridge and AMD Bulldozer micro-architectures by providing
a distinct set of 16 256-bit registers. Similarly, the Intel MIC [39] (Many Integrated
Core, now known as Xeon Phi) architecture embeds 512-bit SIMD registers. Intel
improved AVX with some new instructions and launched AVX 2.0 late 2013. The
forthcoming extension from Intel is AVX-512 that will be introduced in the next
generation of Xeon Phi, Knights Landing coming in 2014. Using SIMD processing
units can also be mandatory for performance on such systems as demonstrated by
the NEON and NEON2 ARM extensions [61] or the CELL-BE processor by IBM [69]
which SPUs were designed as a SIMD-only system. IBM also introduced in 2012 the
QPX [49] extension available on the third supercomputer design of the Blue Gene
series. QPX works with 32 256-bit registers.

However, programming applications that take advantage of available SIMD ex-
tension on a given hardware remains a complex task. In addition, working with
multimedia extensions implies a signi�cant amount of code writing to handle most of
the increasingly number of SIMD extensions available today. We previously detailed
in chapter 2 section 2.2.1 the existing solutions for programming these extensions.
Programmers that use low-level intrinsics have to deal with a verbose programming
style due to the fact that SIMD instructions sets cover a few common functionali-

1This chapter is extended from the work published in [45, 44].
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Table 5.1: SIMD extensions in modern processors

Manufacturer Extension
Registers

size & number
Instructions

Intel

SSE 128 bits - 8 70

SSE2 128 bits - 8/16 214

SSE3 128 bits - 8/16 227

SSSE3 128 bits - 8/16 227

SSE4.1 128 bits - 8/16 274

SSE4.2 128 bits - 8/16 281

AVX 256 bits (�oat only)- 8/16 292

AVX2 + FMA3 256 bits - 8/16 297

AMD
SSE4a 128 bits - 8/16 231

XOP 128 bits - 8/16 289

IBM

Motorola

VMX 128 - 32 114

VMX128 128 bits - 128

VSX 128 bits - 64

QPX 256 bits - 32

SPU 128 bits - 128

ARM NEON 128 bits - 16 100+

ARM NEON2

ties, requiring to bury the initial algorithms in architecture speci�c implementation
details. Furthermore, these e�orts have to be repeated for every di�erent extension
that one may want to support, making design and maintenance of such applications
very time consuming. These restrictions account for the small amount of solutions
facing this challenge.

Due to the factors previously mentioned, providing high level tools able to mix
a su�cient abstraction with performance is a nontrivial task that needs to solve
important challenges. Developing a library like Boost.SIMD implies several goals
to face properly the design of a high level programming tool for SIMD extensions.

• A generic user interface

The �rst limitation faced by application developers is the multiplicity of SIMD
register types. Table 5.2 shows a glimpse of the amount of data types available.
Furthermore, all the intrinsics are quali�ed by each data type due to the
low level C programming model of such extensions. This restriction forces
the programmer to write di�erent versions of the algorithm according to the
targets he wants to support.

Thus, the algorithm is duplicated for each data type with the correct intrinsic
calls. We can see the limitation of this approach in terms of development
time and maintenance of an application. By contrast, a generic approach
expresses the algorithms and the data structures as abstract entities. The
�rst challenge of such an approach is to design a high level user interface to
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Table 5.2: SIMD types available

Manufacturer Extension Floating registers Integer registers

Intel/AMD

SSE __m64, __m128 Not Supported

SSE2,3,4x __m64, __m128, __m128d __m128i

AVX __m256, __m256d Not Supported

AVX2 + FMA3 __m256, __m256d __m256i

IBM/Mot. AltiVec �avored __vector �oat __vector int, __vector char, etc

ARM NEON �oat32x4_t, �oat32x2_t int32x4_t, int32x2_t, etc

keep a strong readability of the code and bury the verbosity of the classic
SIMD programming style. By design, a generic library in C++ o�ers a high
level of expressiveness and relies on Concepts that help the library in its code
generation phase. For Boost.SIMD, we need to extract axioms [38] from the
current SIMD programming model to correctly express and de�ne a set of C++
Concepts. Afterward we will be able to use those Concepts to provide correct
data structure and algorithm abstractions that �t with the expressibility of a
�ne grain data parallel problem.

• C++ standard integration

A lot of existing code relies on the C++ Standard Template Library (STL).
Most of them should be able to take advantage of the speedup provided by
SIMD extensions. The STL is constructed as a generic library over the fol-
lowing trio of Concepts : Algorithms - Container - Iterators. Switching from
a STL code to a fully vectorized version of it must stay straightforward for
the user. To accomplish this integration properly, STL Concepts needs to be
re�ned to satisfy SIMD based axioms. On top of that, Boost.SIMD needs
to propose a standard like interface with wrappers able to adapt standard
components and also a nice Boost integration for the use of Fusion [31] and
MPL libraries.

• E�ective code generation
The architectural improvements provided by SIMD extensions leads to a sig-
ni�cant speedup that we want to reach with Boost.SIMD. Despite the intro-
duction of a generic interface, Boost.SIMD needs to keep the performance
of the generated code close to the performance of a "hand written" code. The
impact of the generic interface and the code generation engine must be low
for the reliability of the library.

• SIMD idioms

From the beginning, multimedia extensions were designed to accelerate mas-
sively data parallel problems like image processing or vector based code but,
working with wide data registers does not solve everything. Storing data in
SIMD registers can impact the algorithm in a way that predicates handling
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or iteration patterns need to be rethought in a vectorized way. For example,
some algorithms are not accessing contiguous memory blocks and this leads to
a non trivial access pattern when working in SIMD. Moreover, when working
with SIMD registers the user may want to rearrange the data in the regis-
ter. These SIMD idioms require to be expressed, apart from standard based
components.

• Extensibility and maintainability

Developing a library remains a complex task in terms of easy extensibility and
maintainability. Boost.SIMD is a tool giving access to multi-architectural
support over SIMD extensions. The Boost.SIMD framework must be de-
signed in a proper way to handle a straightforward addition of a new SIMD
extension, a new data type or a new algorithm.

5.2 The Boost.SIMD Library

Boost.SIMD aims at bridging the lack of proper abstractions over the usage of
SIMD registers. This abstraction should not only provide a portable way to use
hardware-speci�c registers but also enable the use of common programming idioms
when designing SIMD-aware algorithms. To achieve this, Boost.SIMD implements
an abstraction of SIMD registers that allow the design of portable algorithms.
In addition, a large set of functions are covering the classical set of mathematical
functions and utility functions. This section details the components of the library
and shows step by step the interface of these components along with their behavior.

5.2.1 SIMD register abstraction

The �rst level of abstraction introduced by Boost.SIMD is the pack class. For
a given type T and a given static integral value N (N being a power of 2), a pack

encapsulates the best type available to store a sequence of N elements of type
T. For arbitrary T and N, this type is simply std::array<T,N> but when T and
N matches the type and width of a SIMD register, the architecture-speci�c type
used to represent this register is used instead. This semantic provides a way to
use arbitrarily large SIMD registers on any system and let the library selects the
best vectorizable type to handle them. By default, if N is not provided, pack will
automatically select a value that will trigger the selection of the native SIMD
register type. Moreover, by carrying informations about its underlying scalar type,
pack enables proper instruction selection even when used on extensions (like SSE2
and above) that map all integral type to a single SIMD type (__m128i for SSE2).

pack handles these low-level SIMD register types as regular objects with value
semantics, which includes the ability to be constructed or copied from a single scalar
value, list of scalar values, iterator or range. In each case, the proper register loading
strategy (splat, set, load or gather) will be issued.
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Listing 5.6 illustrates how the pack register abstraction works.

Listing 5.1: Working with pack, computing a SIMD register full of 42
1 #include <iostream >

2 #include <boost/simd/sdk/simd/io.hpp >

3 #include <boost/simd/sdk/simd/pack.hpp >

4 #include <boost/simd/include/functions/splat.hpp >

5 #include <boost/simd/include/functions/plus.hpp >

6 #include <boost/simd/include/functions/multiplies.hpp >

7

8 int main(int argc , const char *argv [])

9 {

10 typedef pack <float > p_t;

11

12 p_t res;

13 p_t u(10);

14 p_t r = boost::simd::splat <p_t >(11);

15

16 res = (u + r) * 2.f;

17

18 std::cout << res << std::endl;

19

20 return 0;

21 }

pack supports multiple constructors. It is copy and default constructible and
also supports di�erent methods to initialize a pack's content (loading strategies).

A typedef statement is used before the declaration of the packs for brevity. These
declarations include a so-called splatting constructor that takes one scalar value and
replicates it in all elements of the pack.

13 p_t u(10);

This is equivalent to the constructor on the following line:

14 p_t r = boost::simd::splat <p_t >(11);

The user can also initializes every element of the pack itself by enumerating them.

pack <float > r(11 ,11 ,11 ,11);

This constructor makes the strong assumption that the size of the pack is correct.
Unless required, it is always better to try not to depend on a �xed size for pack.

Once initialized, operations on pack instances are similar to operations on scalar
as all operators and standard library math functions are provided. A simple pattern
make those functions and operators available: if function foo is used, you need to
include boost/simd/include/functions/foo.hpp. Here, we include plus.hpp and
multiplies.hpp to be able to use operator+ and operator*.

16 res = (u + r) * 2.f;
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Note that type checking is stricter than one may expect when scalar and SIMD
values are mixed. Boost.SIMD only allows mixing types of the same scalar kind,
i.e reals with reals or integers with integers. Here, we have to multiply by 2.f

and not simply 2. We need to keep in mind that fused operations are available for
SIMD extensions and in the case of such a statement, we have to generate a call to
a fused multiply and add instruction if the targeted extension supports it.

Finally, we display the pack content by using operator� provided by the
boost/simd/sdk/simd/io.hpp header �le.

18 std::cout << res << std::endl;

• Compiling the code
The compilation of the code is rather straightforward: just pass the path to
Boost.SIMD and use your compiler options to activate the desired SIMD
extension support.

For example, on gcc:

g++ my_code.cpp -O3 -o my_code -I/path/to/boost/ -msse2

g++ my_code.cpp -O3 -o my_code -I/path/to/boost/ -mavx

g++ my_code.cpp -O3 -o my_code -I/path/to/boost/ -maltivec

Some compilers, like Microsoft Visual Studio, don't propagate the fact that a
given architecture speci�c option is triggered. In this case, you need to also
de�nes an architecture speci�c preprocessor symbol, for example:

cl /Oxt /DNDEBUG /arch:SSE2 /I$BOOST_ROOT my_code.cpp

cl /Oxt /DNDEBUG /DBOOST_SIMD_HAS_SSE4_2_SUPPORT

/I$BOOST_ROOT my_code.cpp
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• The result
We can then have a look at the program's output that should look like:

{42,42,42,42}

Now, let's have a look at the generated assembly code for SSE2:

movaps 0x300(%rip),%xmm0
addps 0x2e6(%rip),%xmm0
mulps 0x2�(%rip),%xmm0
movaps %xmm0,(%rsp)

We correctly emitted *ps instructions. Note that the abstraction introduced
by pack does not incur any penalty. Now we can look at the AVX generated
assembly:

vmovaps 0x407(%rip),%ymm0
vaddps 0x3dc(%rip),%ymm0,%ymm0
vmulps 0x414(%rip),%ymm0,%ymm0
vmovaps %ymm0,(%rsp)

We can see that Boost.SIMD generates again the proper AVX code with the
call to AVX instructions with ymm registers. In the case of Altivec, we want to
generate a call to a fused multiply and add operation as it provides such an
instruction. The generated assembly code is the following:

vspltw v12,v12,0
vspltw v13,v13,0
vspltw v0,v1,0
vmaddfp v1,v12,v13,v0
stvx v1,r10,r9

We can see that we correctly splat the data into SIMD registers and then call
the FMA (Fused Multiply Add) instruction: vmaddfp.
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5.2.2 Predicates abstraction

Comparisons between SIMD vectors yield a vector of boolean results. While most
SIMD extensions store a 0\∼0 bitmask in the same register type as the one used
in the comparison, some like Intel Phi or QPX have a special register bank for
those types. The Intel MIC has a dedicated 16-bit register to handle the result of
the comparison. QPX comparisons put −1.lf or +1.lf inside a QPX register. To
handle architecture-speci�c predicates, an abstraction over boolean values and a set
of associated operations must be given to the user. The logical class encapsulates
the notion of a boolean value and can be combined with pack. Thus, for any type
T, an instance of pack< logical<T> > encapsulates the proper SIMD register type
able to store boolean values resulting from the application of a SIMD predicate over
a pack<T>. Thus, the comparison operators will return a pack<logical<T> >. The
branching is performed by a dedicated function if_else that is able to vectorize
the branching process according to the target architecture.

Unlike scalar branching, SIMD branching does not perform branching prediction.
All branches of an algorithm are evaluated before the result is selected. Listing 5.7
shows a simple example of branching condition with pack.

Listing 5.7: Branching example
1 pack <int > a(3), b(1), r;

2 pack <int > inc(0,1,2,3), dec(3,2,1,0);

3 r = if_else(inc > dec , a, b); // r = [1,1,3,3]

In addition to the classic if_else structure, Boost.SIMD provides speci�c
predicate functions that can be optimized. These functions are optimized depend-
ing on the types they work with. For example, the seldec and selinc functions
respectively decrement or increment a pack according to the result of a comparison
and their implementations for integer types rely on a masking technique.

5.2.3 Range and Tuple interface

By providing STL-compliant begin and end member functions, pack can be iterated
at runtime as a simple container of N elements. In addition, the square brackets op-
erator is available on pack as pack respects the Random Access Container Concept.
Similarly, since the size of pack is known at compile-time for any given type and
architecture, pack can also be seen as a tuple and used as a compile-time sequence.
Thus, pack is fully compatible with Boost.Fusion [31] and respects the Fusion
Random Access Sequence Concept. Listing 5.8 presents the range and Fusion like
interface.
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Listing 5.8: pack range interface
1 typedef typename pack <float ,8> p_t;

2 float t[] = {0.0 ,1.1 ,2.2 ,3.3 ,4.4 ,5.5 ,6.6 ,7.7};

3 p_t data(&t[0]); // data = [0.0 ,1.1 ,2.2 ,3.3 ,4.4 ,5.5 ,6.6 ,7.7]

4 // Random Access Sequence

5 for(std:: size_t i = 0; i<p_t:: static_size; i++) data[i] += i;

6 // Boost Fusion Random Access Sequence

7 typename boost:: fusion :: result_of :: value_at_c <p_t ,0>:: type sum;

8 sum = fusion :: accumulate(data , 0.f, add()); // sum = 58.8

Another ability of pack is to act as an Array of Structures/Structure of Arrays
adaptor. For any given type T adapted as a compile-time sequence, accessing the ith

element of a pack will give access to a complete instance of T (acting as an Array
of Structures) while iterating over the pack content as a compile-time sequence will
yield a tuple of pack thus making pack acts as a Structure of Arrays.

Listing 5.9: pack SOA to AOS
1 using boost:: fusion :: vector;

2 using boost::simd::load;

3 using boost::simd::pack;

4 using boost::simd:: uint8_t;

5

6 typedef vector <uint8_t , uint8_t , uint8_t > pixel;

7 typedef vector <pack <float >, pack <float >, pack <float > > simd_pixel_SOA;

8 typedef pack < vector <float ,float ,float > > simd_pixel_AOS;

9

10 pixel data[simd_pixel_AOS :: static_size ]; // [...]

11

12 simd_pixel_SOA soa = load <simd_pixel_SOA >(& data [0]);

13 simd_pixel_AOS aos = load <simd_pixel_AOS >(& data [0]);

Line 12, soa is loaded as a Structure Of Array. Each pack of the vector contains
a unique color of pixel as illustrated in �gure 5.1.

data

soa

at<0>(soa) at<1>(soa) at<2>(soa)

Figure 5.1: Load strategy for SOA

Line 13, aos is loaded with as a Array Of Structure. Each vector of the pack

contains a pixel. While accessing aos as a compile-time sequence, the ith element
of the sequence will yield a pack containing a unique color of pixel. Figure 5.2
illustrates this example.
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data

aos

at<0>(aos) at<1>(aos) at<2>(aos)

Figure 5.2: Load strategy for AOS

5.2.4 Supported functions

Listing 5.10 shows calls of SIMD functions on pack and a full list of available func-
tions is reported in appendix C.2.4.4. The pack class is completed by a hundred
high-level functions :

• C++ operators: including support for fused operations whenever possible,

• Constant generators: dealing with e�cient constant SIMD value genera-
tion,

• Arithmetic functions: including abs, sqrt, average and various others,

• IEEE 754 functions: enabling bit-level manipulation of �oating point values,
including exponent and mantissa extraction,

• Reduction functions: for intra-register operations like sum or product of a
register elements.

Listing 5.10: Function calls on pack

1 typedef typename pack <float ,4> p_t;

2 float t[] = {0.0 ,1.1 ,2.2 ,3.3};

3 p_t data0(&t[0]); // data = [0.0 ,1.1 ,2.2 ,3.3]

4 p_t data1 (-0.3,-0.2,-0.1,-0.0);

5

6 p_t r = simd::min(simd::abs(data1), data0);

7

8 std::cout << "r = " << r << std::endl;

9 // Output: r = [0.0 ,0.2 ,0.1 ,0.0]

5.2.5 Shu�ing operations

A typical SIMD use case is when the user wants to rearrange the data stored in
pack. This operation is called shu�ing the register. According to the cardinal of a
pack, several permutations can be achieved between the data. To handle this, we
introduce the shuffle function. This function accepts a metafunction class that
will take as a parameter the destination index in the result register and return the
correct index corresponding to the value from the source register. Listing 5.12 shows
such a call.
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Listing 5.11: shuffle example
1 // A metafunction that reverses the register

2 struct reverse_

3 {

4 template <class Index , class Cardinal >

5 struct apply

6 : std:: integral_constant <int , Cardinal ::value - Index::value - 1> {};

7 };

8 [...]

9 pack <int ,4> r{11,22 ,3,4};

10 r1 = boost::simd::shuffle <reverse_ >(r); // r1 = {4,3,22,24}

A second version of the function is also available and allows the user to directly
specify the indexes as template parameters. It is presented bellow:

10 r2 = boost::simd::shuffle <3,2,1,0>(r); // r2 = {4,3,22,24}

When called with a metafunction, shuffle has the ability of selecting the best
permutation strategy available on the target. shuffle is implemented to recognize
speci�c patterns that can be mapped to speci�c intrinsic calls. A generic matcher is
able to match a speci�c permutation that leads to an optimized version of shu�ing
operation. For example, the permutation illustrates in �gure 5.3 can be performed by
the dedicated intrinsic _mm_movehl_ps. The compile-time generic matcher detects
such a permutation pattern and shuffle dispatches automatically the call to this
speci�c intrinsic.

a0 a1 a2 a3 b0 b1 b2 b3

a2 a3b2 b3

Figure 5.3: Permutation example

If no speci�c intrinsics can be called on the targeted architecture, the next
choice is to use a general SIMD permutation unit. Such units can perform
every permutation. SSSE3 has a special permute unit that permits to arbitrarily
permute the values of a register. When SSSE3 is available on the architecture,
this unit is used by shuffle for performing non optimized permutations through
the _mm_shuffle_epi8 intrinsic. ARM and Altivec also present such permute units.

The shuffle function uses its generic matcher to detect which call is the best.
When the matcher fails to select a speci�c implementation of shuffle, a common
version will be called and the permutation will be emulated.

A good example of shu�ing operations is the transpose of a 4× 4 matrix stored
in 4 SIMD registers. Figure 5.4 illustrates the use of SIMD register to perform such
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a transpose. The optimal sequence of intrinsic calls for performing the transpose is
shown in listing 5.13.

Listing 5.13: Optimal transpose with SSE
1 __m128 row0 = {10,11,12,13}, row1 = {20,21,22,23},

2 row2 = {30,31,32,33}, row3 = {40 ,41 ,42 ,43};

3 __m128 __r0 = row0 , __r1 = row1 , __r2 = row2 , __r3 = row3;

4 __m128 __t0 = _mm_unpacklo_ps (__r0 , __r1);

5 __m128 __t1 = _mm_unpacklo_ps (__r2 , __r3);

6 __m128 __t2 = _mm_unpacklo_ps (__r0 , __r1);

7 __m128 __t3 = _mm_unpacklo_ps (__r2 , __r3);

8 row0 = _mm_movelh_ps (__t0 , __t1);

9 row1 = _mm_movehl_ps (__t1 , __t0);

10 row2 = _mm_movelh_ps (__t2 , __t3);

11 row3 = _mm_movehl_ps (__t3 , __t2);

Figure 5.4: 4× 4 matrix transpose in SIMD

The Boost.SIMD version in listing 5.14 is the equivalent of the intrinsic version
shown in listing 5.13. The ability of shuffle to match the best intrinsic call through
its generic matcher is used here and the exact same intrinsics calls are generated.

Listing 5.14: Boost.SIMD transpose with shuffle

1 pack <float ,4> row0 = {10,11,12,13}, row1 = {20,21,22,23},

2 row2 = {30,31,32,33}, row3 = {40 ,41 ,42 ,43};

3 pack <float ,4> __r0 = row0 , __r1 = row1 , __r2 = row2 , __r3 = row3;

4 pack <float ,4> __t0 = shuffle <0,0,1,1>(__r0 , __r1);

5 pack <float ,4> __t1 = shuffle <0,0,1,1>(__r2 , __r3);

6 pack <float ,4> __t2 = shuffle <0,0,1,1>(__r0 , __r1);

7 pack <float ,4> __t3 = shuffle <0,0,1,1>(__r2 , __r3);

8 row0 = shuffle <0,1,0,1>(__t0 , __t1);

9 row1 = shuffle <2,3,2,3>(__t1 , __t0);

10 row2 = shuffle <0,1,0,1>(__t2 , __t3);

11 row3 = shuffle <2,3,2,3>(__t3 , __t2);

In addition, this version is fully portable and works on every SIMD extensions.
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5.3 C++ Standard integration

Writing small functions acting over a few packs has been covered in the previous
section and we saw how the API of Boost.SIMD makes such functions easy
to write by abstracting away the architecture-speci�c code fragments. Realistic
applications usually require such functions to be applied over a large set of data.
To support such a use case in a simple way, Boost.SIMD provides a set of classes
to integrate SIMD computation inside C++ relying on the Standard Template
Library (STL) components, thus totally reusing its generic aspect.

Based on Generic Programming as de�ned by [94], the STL is based on the sep-
aration between data, stored in various Containers, and the way one can iterate
these data sets with Iterators and algorithms. Instead of providing SIMD aware
containers, Boost.SIMD reuses existing STL Concepts to adapt STL-based code to
SIMD computations. The goal of this integration is to �nd standard ways to express
classical SIMD programming idioms, thus raising expressiveness and still bene�ting
from the expertise put into these idioms. More speci�cally, Boost.SIMD provides
SIMD-aware allocators, iterators for regular SIMD computations � including inter-
leaved data or sliding window iterators � and hardware-optimized algorithms.

5.3.1 Aligned allocator

The hardware implementation of SIMD processing units introduces constraints
related to memory handling. Performance is guaranteed by accessing to the
memory through dedicated aligned_load and aligned_store intrinsics that
perform register-length aligned memory accesses. This constraint requires a special
memory allocation strategy via OS and compiler-speci�c function calls.

Boost.SIMD provides two STL compliant allocators dealing with this kind of
alignment. The �rst one called simd::allocator wraps these OS and compiler
functions in a simple STL-compliant allocator. When an existing allocator de�nes
a speci�c memory allocation strategy, the user can adapt it to handle alignment by
wrapping it in simd::allocator_adaptor.

Listing 5.15: Aligned allocator
1 //Align the memory of a vector

2 std::vector <T, boost::simd::allocator <T> > p(5);

3

4 //Adapt an allocator

5 typedef std::allocator <float > base;

6 typedef boost::simd:: allocator_adaptor <base > alloc;

7 std::vector <T, alloc > p(5);
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5.3.2 SIMD Iterator

Modern C++ programming styles based on Generic Programming usually lead to
an intensive use of various STL components like Iterators. Boost.SIMD provides
iterator adaptors that turn regular random access iterators into iterators suitable for
SIMD processing. It means that SIMD iterators must work on aligned memory to be
e�cient. These adapters act as free functions taking regular iterators as parameters
and return iterators that output pack whenever dereferenced. These iterators are
then usable directly in usual STL algorithms such as transform or fold (Listing
5.16).

Listing 5.16: SIMD Iterator with STL algorithm
1 vector <int ,simd::allocator <int > > v(128), r(128);

2

3 transform ( simd:: begin(v.begin())

4 , simd::end(v.end())

5 , simd::begin(r.begin())

6 , [](pack <int >& p){ return -p; }

7 );

If the memory of the container is not well prepared (i.e. aligned memory), the
regular iterators are shifted to a correct aligned address. Some data are then omitted
and need to be computed before and after the SIMD range of aligned iterators.
Figure 5.5 illustrates such a scenario.

0D 0E 0F 10 11 12 13 14 15 16 17 18 19 1A 1B 1C

v.begin() v.end()

simd::begin(v.begin()) simd::end(v.end())

Figure 5.5: Address alignment for SIMD iterators

Some application domains like image or signal processing require speci�c
memory access patterns in which the neighborhood of a given value is used in the
computation. Digital �ltering and convolutions are examples of such algorithms.
The e�cient techniques for vectorizing such operations consists on performing
shifted loads i.e. loads from unaligned memory addresses, so that each neighbor
can be available in a SIMD vector. To limit the number of such loads, a technique
called register rotation technique [86] is often used. This technique allows �lter-like
algorithms to perform only one load per iteration, swapping neighbor values as
the algorithm goes forward. This idiomatic way of implementing such algorithms
usually increases performance by a signi�cant factor and is a good candidate for
encapsulation.
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In Boost.SIMD, shifted_iterator is an iterator adaptor encapsulating such
an abstraction. This iterator is constructed from an iterator and a compile-time
width N. When dereferenced, it returns a static array of N packs containing the
initial data and its shifted neighbors (Fig. 5.6). When incremented, the tuple value
are internally swapped and the new vector of value is loaded, thus implementing
register rotation. With such an iterator, one can simply write an average �lter
using std::transform.

Listing 5.17: Average �ltering
1 struct average

2 {

3 template <class T> typename T:: value_type

4 operator ()(T const& t) const

5 {

6 typename T:: value_type d(1./3);

7 return (t[0]+t[1]+t[2])*d;

8 }

9 };

10

11 vector <float > in , out;

12

13 transform( shifted_iterator <3>(in.begin ())

14 , shifted_iterator <3>(in.end())

15 , begin(out.begin())

16 , average ()

17 );

151413121110 16

Data in main memory

13121110

Shifted Iterator output for N=3

14131211

15141312

Figure 5.6: Shifted iterator

Code written this way keeps a conventional structure and facilitate the usage of
template functors for both scalar and SIMD while also helps maximizing code reuse.

Listing 5.18: pack range interface
1 std::vector <int > data(pack <int >:: static_size *3);

2 std::vector < pack <int > > dest (3);

3 [...]

4 std::cout << std:: distance ( boost::begin(simd:: input_range(data))

5 , boost::end(simd:: input_range(data))

6 ) << std:endl;

7 // Output is 3 here.

8

9 boost::copy(simd:: input_range(data), dest.begin()); // Copy data into dest

10 [...]

11 boost::fill(simd:: output_range(data), simd::Zero <int >()); // Fill data with

Zeros
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5.3.3 SIMD Algorithms

Previous examples of integration within standard algorithms are still limited. Ap-
plying transform or accumulate algorithms on SIMD aware data requires the size
of the data to be an exact multiple of the SIMD register width. Also, in the case
of fold, it can potentially require to perform additional operations at the end of its
call. To alleviate this limitation, Boost.SIMD provides its own overload for both
transform and fold that takes care of potential trailing data and performs proper
completion of fold. Listing 5.19 illustrate a call to the Boost.SIMD's version of
transform.

Listing 5.19: SIMD transform algorithm
1 struct plus

2 {

3 template <class T>

4 T operator ()(T const& t0, T const& t1) const

5 {

6 return t0 + t1;

7 }

8 };

9

10 std::vector <float > data_in1 (113);

11 std::vector <float > data_in2 (113);

12 [...]

13 boost::simd::

14 transform( data_in1.begin(), data_in1.end()

15 , data_in2.begin()

16 , data_out1.begin()

17 , [](pack <float > t0, pack <float > t1)->pack <float >{ return t0+t1; }

18 );

5.4 Case Analysis: Generic SIMD code generation

In this section we detail how to write a generic SIMD code with Boost.SIMD. The
objective is to move from a simple scalar version of the dot function to a full generic
version of it. Thus, we will take a look at the generated assembly code.

5.4.1 Scalar version of the dot function

A generic scalar version of the dot function can be simply de�ned as shown in Listing
5.20

Listing 5.20: Scalar dot function
1 template <typename Value >

2 Value dot(Value* first1 , Value* last1 , Value* first2)

3 {

4 Value v(0);

5

6 while(first1 != last1) v += *first1 ++ * *first2 ++;

7

8 return v;

9 }
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This template function iterates over data pointed by first1 and first2, com-
putes the product of said data and sums them.

5.4.2 Transition from scalar to SIMD code

If the algorithm is clearly vectorizable, it has to be modi�ed in such a way that its
SIMD nature becomes apparent.

First, we arbitrarily unroll the code by an arbitrary factor to make data paral-
lelism obvious in Listing 5.21

Listing 5.21: Unrolling by 2 the dot function
1 template <typename Value >

2 Value dot(Value* first1 , Value* last1 , Value* first2)

3 {

4 Value v,v1(0),v2(0);

5

6 // Let's consider that (last1 -first1) is divisible by 2

7 while(first1 != last1)

8 {

9 v1 += *first1 * *first2;

10 first1 ++;

11 first2 ++;

12

13 v2 += *first1 * *first2;

14 first1 ++;

15 first2 ++;

16 }

17

18 v = v1 + v2;

19

20 return v;

21 }

The algorithm is split in two parts:

• We �rst run over every elements inside both datasets and multiply them.

• We then sum the intermediate values into the �nal result.

By unrolling this pattern to arbitrary size, we expose the fact that the multipli-
cation between the two dataset is purely "vertical" and so, is vectorizable. The sum
of the partial result itself is a "horizontal" operation, i.e a vectorizable computation
operating across the element of a single vector.

5.4.3 Building a SIMD loop nest

We are now going to use pack to actually vectorize this algorithm. The main idea is
to compute a partial sum inside an instance of pack and perform a �nal summation
at the end. For this purpose, we use the load function to load data from first1

and first2, process those pack instances using the proper operators and advance
the pointers by the size of the pack. Let's consider that (last1-first1) is divisible
by the size of the pack.Listing 5.22 shows the SIMD version of dot.
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Listing 5.22: SIMDization the dot function
1 #include <boost/simd/sdk/simd/pack.hpp >

2 #include <boost/simd/include/functions/sum.hpp >

3 #include <boost/simd/include/functions/load.hpp >

4 #include <boost/simd/include/functions/plus.hpp >

5 #include <boost/simd/include/functions/multiplies.hpp >

6

7 template <typename Value >

8 Value dot(Value* first1 , Value* last1 , Value* first2)

9 {

10 using boost::simd::sum;

11 using boost::simd::pack;

12 using boost::simd::load;

13

14 typedef pack <Value > type;

15 type tmp=0;

16

17 while(first1 != last1)

18 {

19 // Load current values from the datasets

20 pack <Value > x1 = load < type >(first1);

21 pack <Value > x2 = load < type >(first2);

22

23 // Computation

24 tmp = tmp + x1 * x2;

25

26 // Advance to the next SIMD vector

27 first1 += type:: static_size;

28 first2 += type:: static_size;

29 }

30

31 return sum(tmp);

32 }

The computation code looks a lot like the scalar version. We simply jump over
data using the pack size.

5.4.4 Preparing the data

Now that our SIMD dot product function is ready, we can apply it on some data.
As currently written, one can simply call dot on any piece of memory of the proper
size.

Listing 5.23: Simple main
1 #include <vector >

2

3 int main()

4 {

5 std::vector <float > a(1024) , b(1024);

6

7 // ... fill up a and b

8

9 float r = dot(&a[0], &a[0]+1024 , &b[0]);

10 }

Even if this version works, the issue is that we don't use aligned load to �ll
SIMD register from the memory. On some systems, typically pre-Nehalem for x86
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or PowerPC, unaligned loads and stores cost far more than aligned ones. Therefore
it is important to use aligned data in memory. To do so, we need to modify the
code in two places.

• First the dot function should use the aligned_load function that behaves
exactly as load but uses aligned memory accesses as an input. The code then
becomes:

pack <Value > x1 = aligned\_load < type >(first1); \\

pack <Value > x2 = aligned\_load < type >(first2); }

An alternative is to use the constructor from aligned pointer of pack, giving
us the following code:

pack <Value > x1(first1); \\

pack <Value > x2(first2); }

• Then, we need to provide to dot a pointer to aligned memory. This can be
done by using theBoost.SIMD allocator class as the std::vector allocator
5.26.

Listing 5.26: Aligned memory for data
1 #include <vector >

2 #include <boost/simd/sdk/simd/pack.hpp >

3 #include <boost/simd/include/functions/sum.hpp >

4 #include <boost/simd/include/functions/load.hpp >

5 #include <boost/simd/include/functions/plus.hpp >

6 #include <boost/simd/include/functions/multiplies.hpp >

7

8 template <typename Value >

9 Value dot(Value* first1 , Value* last1 , Value* first2) {

10 using boost::simd::sum;

11 using boost::simd::pack;

12 using boost::simd::load;

13 typedef pack <Value > type;

14 type tmp;

15

16 // Let's consider that (last1 -first1) is divisible by the size of the pack.

17 while(first1 != last1) {

18 pack <Value > x1 = aligned_load < type >(first1);

19 pack <Value > x2 = aligned_load < type >(first2);

20 tmp = tmp + x1 * x2;

21 first1 += type:: static_size;

22 first2 += type:: static_size;

23 }

24 return sum(tmp);

25 }

26

27 int main()

28 {

29 std::vector <float , boost ::simd::allocator <float > > a(1024) , b(1024);

30 // ... fill up a and b

31 float r = dot(&a[0], &a[0]+1024 , &b[0]);

32 }
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5.4.5 Resulting code generation

Listing 5.27 shows the resulting code generation for a SSE2 system. The assembly
code is still showing no abstraction penalty. The entire computation is performed
in SIMD here, *ps instructions are generated in place of the scalar ones.

Listing 5.27: Assembly code generated with Boost.SIMD on SSE2
1 cmp %rdi ,%rsi

2 xorps %xmm1 ,%xmm1

3 je end

4 begin: movaps (%rdi),%xmm0

5 add $0x10 ,%rdi

6 mulps (%rdx),%xmm0

7 add $0x10 ,%rdx

8 cmp %rdi ,%rsi

9 addps %xmm0 ,%xmm1

10 jne begin

11 end: movaps %xmm1 ,%xmm2

12 shufps $0x4e ,%xmm1 ,%xmm2

13 addps %xmm1 ,%xmm2

14 movaps %xmm2 ,%xmm0

15 shufps $0x91 ,%xmm2 ,%xmm0

16 addps %xmm2 ,%xmm0

17 retq

Now if we look to the AVX version in listing 5.28, the assembly code is correctly
generated and presents calls to *pd instruction as this version was compiled for
double precision �oating point values. The genericity of this code makes this change
really simple and the generated code stay correct.

Listing 5.28: Assembly code generated with Boost.SIMD on AVX
1 vxorpd %xmm0 ,%xmm0 ,%xmm0

2 nopw 0x0(%rax ,%rax ,1)

3 begin: vmovapd (%rdi ,%rax ,8) ,%ymm1

4 vmulpd (%rsi ,%rax ,8) ,%ymm1 ,%ymm1

5 add $0x4 ,%rax

6 cmp %rcx ,%rax

7 vaddpd %ymm0 ,%ymm1 ,%ymm0

8 jb begin

9 vhaddpd %ymm0 ,%ymm0 ,%ymm0

10 vextractf128 $0x1 ,%ymm0 ,%xmm1

11 vaddpd %xmm1 ,%xmm0 ,%xmm0

The Altivec assembly in listing 5.30 also con�rm that Boost.SIMD generates
the correct code. The FMA instruction is successfully generated.

Listing 5.29: Assembly code generated with Boost.SIMD on Altivec
1 begin: rlwinm r10 ,r9 ,2,0,29

2 addi r9 ,r9 ,4

3 lvx v13 ,r6,r10

4 lvx v1,r7 ,r10

5 cmplw cr7 ,r9 ,r8

6 vmaddfp v0,v13 ,v1,v0

7 blt begin

8 lvx v13 ,0,r19

9 lvx v1 ,0,r20
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10 addi r9 ,r1 ,1088

11 vperm v13 ,v0 ,v0,v13

12 vaddfp v0,v0 ,v13

13 vperm v1,v0,v0,v1

14 vaddfp v0,v1 ,v0

15 stvx v0 ,r9,r18

This �rst hand-written version of dot still has some shortcomings as it requires
the size of the data to be a multiple of the pack cardinal. It also does not perform
loop unrolling but this can be handle with ease.

5.4.6 Choosing SIMD extensions at runtime

Using Boost.SIMD requires compiling for a particular target machine which has
particular SIMD instructions available. For many architectures (x86 in particular),
SIMD instructions may be conditionally supported depending on the exact hardware
being used, with more recent hardware typically supporting more SIMD instructions
than older ones.

We will demonstrate how to switch between SSE and AVX for the same code
depending on the capabilities of the x86 hardware that the program is running on.

Choosing between what is supported by the hardware can be done using the
boost::simd::is_supported function.

The Boost.SIMD model, Translation Units and Shared Objects

Boost.SIMD assumes that you are building for a speci�c architecture for the
whole duration of a translation unit (the compilation of a single .cpp �le). It is not
possible to switch between targeting an architecture with AVX and without AVX in
the same translation unit. The only option supported is to recompile with di�erent
compilation �ags. This model is the safest one and allows to make the best of all
compilers. It also implies to work with non template functions.

Linking objects compiled with di�erent settings can also lead to subtle issues,
such as breaking the One De�nition Rule when collapsing inline functions. For this
reason it is recommended to isolate the translation units in DLLs or shared object
with hidden visibility.

The code

Here, we keep the code of the dot function presented in listing 5.31. We ensure
that the code is extension-agnostic so that we can compile the same code for di�erent
targets and we move it to a simple dot.cpp �le.
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Listing 5.31: dot.cpp �le
1 #include <vector >

2 #include <boost/simd/sdk/simd/pack.hpp >

3 #include <boost/simd/include/functions/sum.hpp >

4 #include <boost/simd/include/functions/load.hpp >

5 #include <boost/simd/include/functions/plus.hpp >

6 #include <boost/simd/include/functions/multiplies.hpp >

7 #include <boost/config.hpp >

8

9 BOOST_SYMBOL_EXPORT

10 float dot(float* first1 , float* last1 , float* first2 , BOOST_SIMD_DEFAULT_SITE

)

11 {

12 using boost::simd::sum;

13 using boost::simd::pack;

14 using boost::simd::load;

15

16 typedef pack <float > type;

17 type tmp;

18

19 while(first1 != last1)

20 {

21 pack <float > x1 = aligned_load < type >(first1);

22 pack <float > x2 = aligned_load < type >(first2);

23

24 tmp = tmp + x1 * x2;

25

26 first1 += type:: static_size;

27 first2 += type:: static_size;

28 }

29 return sum(tmp);

30 }

We use the preprocessor symbol BOOST_SIMD_DEFAULT_SITE, which expands to
the current SIMD extension being target, to decorate the symbol. We can now
compile di�erent variants of dot.cpp.

With GCC on Linux:

g++ -O3 -DNDEBUG -shared -fvisibility=hidden -msse2 -I$BOOST_ROOT

dot.cpp -o libmy_dot_sse2.so

g++ -O3 -DNDEBUG -shared -fvisibility=hidden -mavx -I$BOOST_ROOT

dot.cpp -o libmy_dot_avx.so

With MSVC on Windows:

cl /Oxt /EHsc /MD /DNDEBUG /DWIN32 /D_WINDOWS /fp:precise /LD

/arch:SSE2 /I$BOOST_ROOT dot.cpp /Femy_dot_sse2.dll

cl /Oxt /EHsc /MD /DNDEBUG /DWIN32 /D_WINDOWS /fp:precise /LD

/arch:AVX /I$BOOST_ROOT dot.cpp /Femy_dot_avx.dll
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The Dispatcher

We need now to create a dispatcher that will call the speci�c version of the dot
function according to the SIMD extension detected at runtime. Listing 5.32 shows
the correct way to write this dispatcher.

Listing 5.32: my_dot_dispatcher.cpp �le
1 #include <boost/simd/sdk/simd/extensions/meta/tags.hpp >

2 #include <boost/simd/sdk/config/is_supported.hpp >

3 #include <boost/config.hpp >

4

5 BOOST_SYMBOL_IMPORT

6 float dot(float* first1 , float* last1 , float* first2 , BOOST_SIMD_DEFAULT_SITE

);

7

8 float my_dot(float* first1 , float* last1 , float* first2)

9 {

10 if(boost::simd:: is_supported <boost::simd::tag::avx_ >())

11 return dot(first1 , last1 , first2 , boost ::simd::tag::avx_());

12 else

13 return dot(first1 , last1 , first2 , boost ::simd::tag:: sse2_());

14 }

15

16 int main()

17 {

18 // ...

19 }

We then can compile the entire code to generate a portable binary. With GCC
on Linux:

g++ -O3 -DNDEBUG -I$BOOST_ROOT my_dot_dispatcher.cpp -o my_dot

-lmy_dot_sse2 -lmy_dot_avx

With MSVC on Windows:

cl /Oxt /EHsc /MD /DNDEBUG /DWIN32 /D_WINDOWS /fp:precise

/I$BOOST_ROOT my_dot_dispatcher.cpp /Femy_add /link

my_add_sse2.lib my_add_avx.lib
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5.5 Implementation

Boost.SIMD's implementation relies on two elements: the use of
Boost.Proto [76] to capture and transform expressions at compile time
and Boost.Dispatch (see chapter 4) that allows for �ne to coarse grain function
specialization handling both types and architectures.

5.5.1 Function Dispatching

To be able to extend Boost.SIMD we need a way to add an arbitrary function
overload on any function depending on the argument types, the related SIMD ex-
tension and the properties of the function itself. Boost.Dispatch is used here to
build a hierarchy of tags which is computed as follow:

• For each SIMD family, a hierarchy of classes is de�ned to represent the re-
lationship between each extension variant. For example a SSE3 tag inherits
from the SSE2 tag as SSE3 is more re�ned than SSE2. Listing 5.33 shows
the corresponding hierarchy for the x86 family.

Listing 5.33: Hierarchy of classes for x86 SIMD family
1 namespace boost { namespace simd { namespace tag

2 {

3 // Tag hierarchy for SSE extensions

4 BOOST_DISPATCH_HIERARCHY_CLASS(sse_ , simd_);

5 BOOST_DISPATCH_HIERARCHY_CLASS(sse2_ , sse_);

6 BOOST_DISPATCH_HIERARCHY_CLASS(sse3_ , sse2_);

7 BOOST_DISPATCH_HIERARCHY_CLASS(sse4a_ , sse3_);

8 #ifdef BOOST_SIMD_ARCH_AMD

9 BOOST_DISPATCH_HIERARCHY_CLASS(ssse3_ , sse4a_);

10 #else

11 BOOST_DISPATCH_HIERARCHY_CLASS(ssse3_ , sse3_);

12 #endif

13 BOOST_DISPATCH_HIERARCHY_CLASS(sse4_1_ , ssse3_);

14 BOOST_DISPATCH_HIERARCHY_CLASS(sse4_2_ , sse4_1_);

15 BOOST_DISPATCH_HIERARCHY_CLASS(avx_ , sse4_2_);

16 BOOST_DISPATCH_HIERARCHY_CLASS(fma4_ , avx_);

17 BOOST_DISPATCH_HIERARCHY_CLASS(xop_ , fma4_);

18 #ifdef BOOST_SIMD_ARCH_AMD

19 BOOST_DISPATCH_HIERARCHY_CLASS(fma3_ , xop_);

20 #else

21 BOOST_DISPATCH_HIERARCHY_CLASS(fma3_ , avx_);

22 #endif

23 BOOST_DISPATCH_HIERARCHY_CLASS(avx2_ , fma3_);

24 } } }

• For each argument type, a Boost.Dispatch hierarchy is automatically
computed. This hierarchy contains information about: the type of regis-
ter used to store the value (SIMD or scalar), the intrinsic properties of the
type (�oating point, integer, size in bytes) and the actual type itself. These
hierarchies are also ordered from the most �ne grained description (for ex-
ample, scalar_< int8_<char> >) to the largest one (for example, scalar_<
arithmetic_<char> >).
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Each function overload is then discriminated by the type list built from the
hierarchy of the current architecture and the hierarchies of every argument of the
function. This unique set of hierarchies is then used to select a function object to
perform the function call. A speci�c intrinsic call then occurs when the hierarchies
select an architecture speci�c function implementation. We introduced such a
mechanism in section 4.2.4 of chapter 4.

In section 4.2.4.3 of chapter 4 we also introduced the generic_ hierarchy
entry that enables architecture independent code reuse. Boost.SIMD uses the
Boost.Dispatch generic_ hierarchy to implement functions that do not rely on
a speci�c architecture implementation. Boost.SIMD functions are then reused in-
side the library to build higher order functions. The generic version of a function
then relies on the architecture aware dispatch of the used functions.

5.5.2 AST Manipulation with Boost.Proto

A fundamental aspect of SIMD programming relies on the e�ective use of fused
operations like multiply-add on VMX extensions or sum of absolute di�erences on
SSE extensions. Unlike simple wrappers around SIMD operations [66], pack relies
on Expression Templates [28] to capture the Abstract Syntax Tree (AST) of large
pack-based expressions and performs compile-time optimizations on this AST. These
optimizations include the detection of fused operation and replacement or reordering
of reductions versus elementwise operations. This compile-time optimization pass
ensures that every architecture-speci�c optimization opportunity is captured and
replaced by the superior version of the code. Moreover, the AST-based evaluation
process is able to merge multiple function calls into a single inlined one, contrary
to solutions like MKL where each function can only be applied on the whole data
range at a time. This increases data locality and ensure high performance for any
combination of functions.

As stated earlier, SIMD instruction sets usually provide DSP-like fused opera-
tions that are able to implement complex computation in a single cycle. Operations
like fused multiply- add and sum of absolute di�erences are available on an increas-
ing sub-range of SIMD extensions sets. The main issue is that writing portable and
e�cient code that will use these fused operations whenever available is di�cult. It
implies handling a large number of variation points in the code and people unaware of
their existence will obtain poor performance. To limit the amount of per-architecture
expertise required by the developer of SIMD applications, Boost.SIMD is designed
as an Embedded Domain Speci�c Language [92]. Expressions Templates [28] have
been a tool of choice for such designs but writing complex EDSLs by hand leads to a
hard to maintain code base. As introduced in chapter 3, thanks to Boost.Proto ,
and contrary to other EDSL- based solutions[57], Boost.SIMD does not directly
evaluate its compile-time AST after its capture. Instead, it relies on a multi-pass
system: a �rst one optimizes the AST and a second one takes care of the proper
code generation.
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5.5.2.1 AST building

Boost.Dispatch has the ability to statically dispatch inline function calls
according to a hierarchy of types (see chapter 4). The library can also dispatch
functions that manipulates Boost.Proto ASTs as introduced in section 4.2.4.4.
Boost.SIMD takes advantage of this by detecting an expression matching a
candidate for optimization and then dispatching the evaluation of its expression to
the right function calls.

We take the following pack expression as an example:

pack<T> d = a + b*c;

This expression can be optimized by a Fused Multiply and Add (FMA) op-
eration when it is available on the targeted SIMD extension. We describes how
Boost.SIMD handles such optimizations.

First, Boost.Proto builds an AST for this expression as pack is a
Boost.Proto terminal. The use of pack in this statement results in a contami-
nated construction of a Boost.Proto based expression. Figure 5.7 illustrates the
AST of our example.

a

b c

X

+

Figure 5.7: Boost.Proto AST of a + b*c

When Boost.Proto builds such an expression, every C++ operators can
have meanings and behaviors independent of any context. Thus, we can control
the behavior of these operators by overloading them. Boost.SIMD then overloads
each Boost.Proto operators to call a Boost.Dispatch based function. This
function is hierarchized with the tag corresponding to the operator. The RHS of
our expression is the following:

plus( pack<T> , multiplies(pack<T>, pack<T>) )

As pack is a Boost.Proto terminal, the call to the Boost.Dispatch function
is also hierarchized according to the AST hierarchy. The concrete arguments of
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the plus function are Boost.Proto based expressions. Its �rst argument is a
terminal (i.e. a pack) and the second is the multiplies node of the AST. Such a call
is illustrated in �gure 5.8.

plus( , )a
b c

X

Figure 5.8: plus function with Boost.Proto based arguments

The function call then matches the following Boost.Dispatch AST hierachy:

plus( expr_< simd_<T,X>, tag::terminal_ , 0 >

, node_< simd_<T,X>, tag::multiplies_, 2 >

)

We can see that every argument is tagged with its semantic information then
making the function call aware of the next node properties. Our plus function
is aware of the upcoming node. The only thing we need to do is to provide a
plus implementation matching this speci�c AST hierarchy to dispatch this call to a
FMA function. The corresponding plus function of Boost.SIMD matching such
an expression pattern is presented in listing 5.34.

Listing 5.34: The plus function matching a FMA
1 BOOST_SIMD_FUNCTOR_IMPLEMENTATION( boost::simd::tag::plus_

2 , tag:: formal_

3 , (D)(A0)(A1)

4 , (unspecified_ <A0 >)

5 ((node_ < A1, boost ::simd::tag:: multiplies_

6 , mpl::long_ <2>

7 , D>))

8 )

9 {

10 BOOST_DISPATCH_RETURNS (2, (A0 const& a0, A1 const& a1),

11 simd::fma(boost :: proto::child_c <0>(a1), boost::proto ::child_c <1>(a1), a0)

12 )

13 };

In listing 5.34 we see that all of these optimizations are performed at the top-
level of the architecture hierarchy through the tag formal_. The AST optimization
is then independent of the architecture at this point. The �rst argument of plus
matches the unspecified_ hierarchy which means that every sub-AST or node can
be passed to the function. The returned fma function is still taking AST nodes as
arguments and returns an FMA node with an arity of 3. The optimization scheme
is propagated until the end of the AST as we still work at the AST level. Here, we
introduced an example relying on pack operators. The same optimization scheme
is performed with function calls.
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The library has now the ability to know what will come in the remaining part
of an AST. while dispatching function calls through the AST hierarchy, we can
inject optimizations by providing function overloads for speci�c expression patterns
on speci�c architectures. While we walk down the AST, we are able to match and
select such optimizations. The look-ahead optimization of Boost.SIMD allows to
directly optimized the AST during its construction. Another approach could have
been to construct the AST and then optimize it. This requires to modify the AST
after its construction which introduces a signi�cant overhead.

5.5.2.2 AST Evaluation

Now that the AST is constructed, we need to evaluate it.

assign( ),d
FMA

a b c

Figure 5.9: assign function call on the LHS and RHS

The entry point of the evaluation is the '=' operator of pack. The RHS of the '='
operator is now a fully constructed and optimized AST and the LHS is a terminal.
At this point, we reconstruct the entire AST with the '=' node by calling the assign
function with the LHS and the RHS as arguments (see �gure 5.9). We can then
pass the complete AST to the evaluate function.

evaluate( assign( expr_< simd_<T,X>, tag::terminal_, 0 >

, node_< simd_<T,X>, tag::fma_ , 3 >

)

)

The only purpose of the evaluate function here is to call the run function on
the entire AST. run walks down the AST and replaces all the top-level function calls
with their Boost.SIMD architecture aware versions. The code generation occurs at
this point. The call to Boost.SIMDfunctions then results to the speci�c intrinsic
calls on the speci�c register held by each terminal of the AST. This results in the
generation of a full SIMD version of the expression.

We demonstrated how Boost.SIMD is able to detect optimization patterns at
the expression level and generate the corresponding SIMD code. The e�ciency of
such an implementation relies on some issues that we address in the next section.
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5.6 Implementation Discussion

In this section we discuss implementation issues that impacts the development of
Boost.SIMD and its e�ciency.

5.6.1 Function inlining and ABI issue

The main issue when implementing this library e�ciently is tied to how the
compiler will handle the pack type. In particular how the Application Binary
Interface (ABI) de�nes that objects of these types are passed to functions. Indeed,
since pack is de�ned as a struct, many ABIs (with the notable exception of Intel
x86-64 on Linux) will be unable to pass that structure directly in registers. Certain
ABIs will also reject passing these types by value due to the alignment requirement
being often higher than that of the stack.

As a result �stack dance� � the unnecessary writing and reading of SIMD register
contents to stack memory � might occur whenever a non-inlined function is called.
A possible way to solve this problem is to force a wrapper function to be inlined
and make its call use the native type of the platform to be more friendly with the
ABI. Boost.SIMD forces every functions to be inlined for the previous reasons.

5.6.2 Unrolling

When working at the instruction level, speci�c low level optimizations tied to
the hardware are relevant. Loop unrolling is a technique that allows to overcome
limitations related to the execution of an instruction. These shortcomings are :
instruction latencies (memory operations), branching penalties or pipeline e�ects.
A signi�cant gain can be obtain with such a technique but this implies to manually
unroll the loop by replicating the statements of the loop-nest.

This is done at the expense of the binary size. In addition, this optimization
is empirical due to its correlation with the algorithm and a given architecture. In
consequence, we decided to not include an abstract and automatic mechanism for
loop unrolling inside Boost.SIMD. One solution could have been to write a meta-
unroller able to unroll a function (unary or binary) via a Du�'s devices optimization.
This approach is presented in appendix D.
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5.7 Benchmarks

This section presents the Boost.SIMD performance on several benchmarks. Every
benchmark has been tested using the SSE4.2, AVX and Altivec instruction sets to
demonstrate the portability of the code. The benchmarks include: an implementa-
tion of the AXPY kernel and three image processing algorithms featuring the various
types of SIMD iterator abstractions. Unless stated otherwise, the tests have been
run using g++ 4.6. The SSE2, AVX and Altivec benchmarks have been executed
on the Nehalem, Sandy Bridge and PowerPC G5 microarchitectures respectively.
Appendix B summarizes the frequencies and extensions of the processors used for
the following benchmarks. In appendix A are also described all the algorithms pre-
sented in the benchmarks. The benchmarks results are reported in GFlop/s and
cycles per element (cpe) or cycles per point (cpp) depending on the algorithm.

5.7.1 Basic Kernels

The AXPY Kernel

The AXPY kernel is one the most basic and used BLAS routine. We want to
assess two things. First, how does Boost.SIMD implementation performs against a
naive hand written AXPY SIMD version. And �nally, how Boost.SIMD performs
against autovectorizers. Listing 5.35 shows the Boost.SIMD implementation of
the AXPY kernel.

Listing 5.35: Boost.SIMD version of the AXPY kernel
1 using boost ::simd::pack;

2 using boost ::simd:: aligned_store;

3

4 typedef pack <T> type;

5 std:: size_t step_size_ = boost::simd::meta:: cardinal_of <type >:: value;

6 for (std:: size_t i = 0; i<size_; i+= step_size_)

7 {

8 type X_pack (&X[i]);

9 type Y_pack (&Y[i]);

10 aligned_store( alpha * X_pack + Y_pack , &Y[i] );

11 }

Tables 5.3 shows how Boost.SIMD performs against handwritten SIMD code
without loop unrolling. The results of the generated code are equivalent to the
SSE4.2 code and assess that Boost.SIMD delivers the expected speedup.
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Table 5.3: Boost.SIMD vs handwritten SIMD code for the AXPY kernel in GFlop/s

Type Size Version SSE4.2

�oat 29
Ref. SIMD 4.03

Boost.SIMD 4.70

214
Ref. SIMD 3.40

Boost.SIMD 3.49

219
Ref. SIMD 3.41

Boost.SIMD 3.98

The MKL Library proposes an optimized routine of this algorithm for the x86
processor family. Autovectorizers in compilers are also able to capture this type of
kernel and generate optimized code for the targeted architecture. Tables 5.4 and
5.5 shows how Boost.SIMD performs against the two of them.

Table 5.4: Boost.SIMD vs Autovectorizers for the DAXPY kernel in GFlop/s

Type Size Version SSE2 AVX

double

16

gcc 1.10 1.10

mkl 0.76 0.76

B.SIMD 1.28 4.00

64

gcc 0.55 0.55

mkl 2.61 0.76

B.SIMD 2.17 4.00

256

gcc 1.49 1.49

mkl 5.82 0.76

B.SIMD 1.71 2.93

1024

gcc 1.35 1.35

mkl 7.91 0.76

B.SIMD 2.00 3.03

4096

gcc 1.17 1.17

mkl 4.91 0.76

B.SIMD 1.91 2.76

The sizes of the used vectors are chosen according to the cache sizes of their
respective targets so that they all �t in the L2 cache. The gcc version shows the
autovectorizer work on the AXPY kernel written in C++ code. The mkl version
shows the performance of the Intel MKL AXPY BLAS function.

First, the GNU compiler is unable to vectorize and unroll the loop properly due
to its inability to go through the various layer of the C++ code. The MKL version
featuring both SIMD and loop optimizations is clearly superior to all the other
versions except for very small sizes. Measurements show that the performance of



5.7. Benchmarks 93

Table 5.5: Boost.SIMD vs Autovectorizers for the SAXPY kernel in GFlop/s

Type Size Version SSE2 AVX

�oat

16

gcc 1.16 1.16

mkl 1.07 1.07

B.SIMD 3.20 4.00

64

gcc 1.31 1.31

mkl 3.66 3.66

B.SIMD 3.77 7.55

256

gcc 1.52 1.52

mkl 7.65 7.65

B.SIMD 4.36 9.67

1024

gcc 1.42 1.42

mkl 11.96 11.96

B.SIMD 3.96 5.65

4096

gcc 1.23 1.23

mkl 12.35 12.35

B.SIMD 3.99 5.48

Boost.SIMD is better than the GCC version while performing worse than MKL
on larger sizes. This is because of the lack of unrolling and �ne low-level code
tuning, necessary to reach the peak performance of the target. The MKL library
goes up to 12 GFlop/s in single precision (7.9 in double precision) and outperforms
the previous results. The AXPY kernel of MKL is provided as a user function
with high architecture optimizations for the Intel processors and introduces an
architecture dependency in user code.

Loop optimizations and �ne load/store scheduling strategies can be added on
top of Boost.SIMD to increase performance. The previous results show that
Boost.SIMD provides a portable way to access the latent speed-up of the ar-
chitectures. However, it is not a special-purpose library like MKL, its performance
on this very demanding test is satisfactory yet still far from the peak performance.
Other optimizations like loop unrolling and jamming are necessary to compete with
the library solutions.
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5.7.2 Black and Scholes

Listing 5.36 shows the Boost.SIMD code for the Black and Scholes algorithm. The
code was tested with single precision �oating point numbers.

Listing 5.36: Boost.SIMD version of Black and Scholes
1 template <class A0>

2 A0 blackandscholes( A0 const &a0, A0 const &a1, A0 const &a2

3 , A0 const &a3, A0 const &a4)

4 {

5 A0 da = simd::sqrt(a2);

6 A0 d1 = simd::log(a0/a1)

7 + (simd::fma(simd::sqr(a4),simd::Half <A0 >(),a3)*a2)/(a4*da);

8 A0 d2 = simd::fnms(a4 ,da,d1);

9 return simd::fnms( a1*simd::exp(-a3*a2)

10 , simd:: normcdf(d2)

11 , a0*simd:: normcdf(d1));

12 }

Figure 5.10 shows the results of this implementation on Excalibur. We can
see that SSE2 performs better than the expected ×4 speedup. This is due to the
SIMD implementations of log and exp that are optimized. These implementation
perform better than the scalar implementation of the Standard library which leads
to higher speedups. The small di�erence between AVX and AVX 2.0 is due to
the use of integers in the implementation of log and exp while working with IEEE
representation. The speedups obtained are then better than the theoretical expected
ones.
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Figure 5.10: Results for Black and Scholes algorithm on Excalibur

The code of this application keeps its genericity and the speedups remain stable
while increasing the size of the data set.
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5.7.3 Sigma-Delta Motion Detection

The Sigma-Delta algorithm [70] can be expressed by a series of additions, subtrac-
tions and various boolean selections. As pointed by Lacassagne in [70], the Sigma-
Delta algorithm is mainly limited by memory bandwidth and no optimizations beside
SIMDization is e�cient as only point-to-point operations are issued. Listing 5.37
shows the Boost.SIMD implementation of the Sigma-Delta algorithm.

Listing 5.37: Boost.SIMD version of Sigma Delta
1 template <class Pixel >

2 Pixel sigmadelta(Pixel &bkg , const Pixel &fr , Pixel &var)

3 {

4 Pixel diff_img , mul_img , zero =0;

5 bkg = selinc( bkg < fr, seldec( bkg > fr, bkg ) );

6 diff_img = max(bkg , fr) - min(bkg , fr);

7

8 mul_img = adds(adds(diff_img ,diff_img),diff_img);

9

10 var = if_else( diff_img != zero , selinc( var < mul_img

11 , seldec( var > mul_img

12 , var

13 )

14 )

15 , var

16 );

17 return if_zero_else_one( diff_img < var );

18 }

Table 5.6 details how Boost.SIMD performs against scalar versions of the al-
gorithm. The benchmarks use greyscale images. To handle this format, the type
unsigned char is used and each vector of the SSE4.2, Altivec or AVX extensions
can carry 16 elements. On the AVX side, the instruction set is not providing a sup-
port for this type so Boost.SIMD emulates such a vector but AVX 2.0 supports
integer types and can hold 32 elements.

Table 5.6: Results for Sigma-Delta algorithm in cpp

Extension SSE4.2 Altivec

Size 2562 5122 2562 5122

Scalar C++(1) 9.237 9.296 14.312 27.074

Scalar C icc 2.619 2.842 - -

Scalar C gcc 8.073 7.966 - -

Ref. SIMD(2) JRTIP[70] 1.394 1.281 1.380 4.141

Boost.SIMD(3) 1.106 1.125 1.511 5.488

Speedup(1/3) 8.363 8.263 9.469 4.933

Overhead(2/3) -26% -13.9% 8.7% 24.5%

The execution time overhead introduced by the use of Boost.SIMD stays
below 8.7%. On SSE4.2, it performs better than the SSE4.2 handwritten version
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while on Altivec, a slow-down appears with images of 512 × 512 elements. Such
a scenario can be explained by the number of images used by the algorithm and
their sizes. Three vectors of type unsigned char need to be accessed during the
computation which is the critical section of the Sigma-Delta algorithm. The 512
KBytes L2 cache of the PowerPC 970FX can not contain the three images in
cache. Cache misses becomes preponderant and the Load/Store unit of the Altivec
extension keeps waiting for data from the main memory. The L3 cache level of
the Nehalem microarchitecture overcomes this problem. The icc autovectorizer
generates SSE4.2 code with the C version of Sigma-Delta while gcc fails. The C++
version keeps its fully scalar properties even with the autovectorizers enabled due
to the lack of static information introduced by the Generic Programming Style of
the C++ language.

Figure 5.11 shows the frames per second that Boost.SIMD can obtain against
the scalar version of the code on Excalibur. We can see that SSE2 provides an
average speedup of ×4 and AVX emulation mode performs signi�cantly better. On
the other hand, AVX 2.0 provides good speedups that outperforms other extensions
due to its wide registers supporting for 8-bit integers. We can easily see the cache
memory e�ects that impacts the speedups for all extensions while increasing the size
of images.
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Figure 5.11: Results for Sigma-Delta algorithm on Excalibur

Boost.SIMD keeps the high level abstraction provided by the use of STL code
and is able to reach the performance of the vectorized reference code. In addition, the
portability of the Boost.SIMD code gives access to the original speedups without
rewriting the code.
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5.7.4 The Julia Mandelbrot Computation

Listing 5.38 and 5.38 show the Boost.SIMD implementation of the Julia Man-
delbrot algorithm. In this algorithm we apply the same transformation on points
coming from the complex plane. We then de�ne a step that will perform this
transformation for each of them. It is presented in listing 5.38.

Listing 5.38: Boost.SIMD version of Julia Mandelbrot
1 namespace mandelbrot

2 {

3 struct step

4 {

5 template <class Sig > struct result;

6 template <class This , class A0, class A1>

7 struct result <This(A0,A1)>

8 { [...] };

9

10 step(std:: size_t const& n) : max_iter_(n) {}

11

12 template <class T>

13 typename result <step(T,T) >::type operator ()(T const& a, T const& b) const

14 {

15 typedef typename result <step(T const&, T const&) >::type iter_type;

16 typedef typename boost::simd::meta::scalar_of <T>:: type s_type;

17 iter_type iter = boost ::simd::Zero <iter_type >();

18 iter_type const o = boost ::simd::One <iter_type >();

19 T x = boost::simd::Zero <T>();

20 T y = boost::simd::Zero <T>();

21 T x2, y2 , xy , m2;

22 typename boost::simd::meta::as_logical <T>:: type mask;

23 std:: size_t i = 0;

24 do

25 {

26 x2 = x * x;

27 y2 = y * y;

28 xy = s_type (2) * x * y;

29 x = x2 - y2 + a;

30 y = xy + b;

31 m2 = x2 + y2;

32 mask = m2 < s_type (4);

33 iter = boost::simd:: seladd(mask , iter , o);

34

35 i++;

36 }

37 while(boost::simd::any(mask) && i < 256);

38 return iter;

39 }

40 std:: size_t max_iter_;

41 };

42 }

We can now apply this step to our complex plane. First, the step is applied
from the �rst aligned address and then performs aligned memory accesses. We �nally
�nish the processing with a scalar computation. The code of the step can be used
either for SIMD or scalar computations as Boost.SIMD enables such a genericity.
This makes the algorithm independent of any architecture details. Listing 5.39
presents the call to the julia step.
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Listing 5.39: Call to the Julia Mandelbrot step
1 // [...]

2 mandelbrot ::step julia (256);

3 std:: size_t step_size_ = boost::simd::meta:: cardinal_of <type >:: value;

4 std:: size_t aligned_sz = size_ & ~(step_size_ -1);

5 std:: size_t it = 0;

6

7 for(std:: size_t m=aligned_sz; it != m; it+= step_size_)

8 {

9 type A_pack = (&A[it]);

10 type B_pack = (&B[it]);

11 aligned_store(julia(A_pack , B_pack), &C[it]);

12 }

13

14 for(std:: size_t m=size_; it != m; it++)

15 C[it]=julia(A[it],B[it]);

Figure 5.12 presents the results obtain on Excalibur. The Julia Mandelbrot
algorithm does not present any particular shortcomings for SIMD computations so
we expect that the speedups will be close to the theoretical ones. SSE2 reaches 75%
of the theoretical speedup. AVX and AVX 2.0 are able to store twice more elements
and they double the SSE2 speedup as expected.
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5.8 Conclusion

Building a library for SIMD extensions with a high level API without loss of
performances is not a simple task. Especially when the library needs to be
designed in an extensible way for further architecture support. The conception
of multi-architectural tools faces the challenge of the integration of architecture
speci�c optimizations within a generic approach. Such a library design is limited
by the possibilities o�ered by the host language. With C++ and its generic
capabilities, this approach can be explored and Boost.SIMD is an example of it.

Boost.SIMD relies on template metaprogramming techniques and more gener-
ally on Boost.Dispatch. The library provides a new abstraction for SIMD based
code, its main contributions are the following:

• The SIMD register abstraction combined with high level functions makes
SIMD computation easy to write and portable over architectures. Its API
�ts the Standard requirements and is fully compatible with C++ Standard
based code. So already existing code can take advantages of SIMD speedups
without a lot of e�ort.

• Boost.SIMD is designed for an easy architecture support. With a generic
framework for adding new extensions and injecting architecture speci�c op-
timizations in the evaluation process, the library provides extensibility and
maintainability.

• The benchmarks show a e�cient implementation with similar performances
compared to handwritten SIMD code.

Boost.SIMD demonstrates that genericity and performance can be reach for
SIMD code generation without sacri�cing a standard integration.
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In chapter 5 we presented Boost.SIMD, a library that aims at facilitating
access to SIMD extensions with a simple interface without losing the bene�ts of
such a powerful hardware feature. On top of SIMD computation, other types of
parallelism are available and need to be exploited. Modern architectures present
multi-cores and accelerator based systems. Embedded systems also start to use
more powerful parallel components. These levels of parallelism nowadays can't be
ignored in the development of applications.

Regarding this context, this chapter1 will present the Numerical Template
Toolbox (NT2 ), a C++ library which aims at simplifying the development of high

1This chapter is extended from the upcoming work accepted for publication in the Journal of

Parallel and Distributed Computing.
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performance numerical computing applications with a multi- architectural support.
First, we will introduce the challenges of such a library and present its programming
interface. Then, the core of the library will be detailed and a case analysis will be
shown to illustrate the implementation of NT2 . Finally, benchmarks will assess the
performances of the library.

As discuss in chapter 2, architecture aware programming requires expertise.
From the diversity of parallel programming tools to low level architecture oriented
optimizations, non expert programmers face a lack of expressiveness in most of to-
day's solutions. In chapter 3, we introduced the Domain Speci�c Language approach
and decided to design a DSEL for High Performance Computing (HPC).

• High expressiveness

The �rst challenge for such an approach is to provide a high level of expres-
siveness that provides an easy programming process for the user. It will also
keep the expressiveness of the algorithm as the DSEL needs to be designed
for the said domain. With expressiveness comes the challenge of designing an
intuitive interface. This API must express the domain in the best way. The
semantic of the DSEL is the key to well designed DSEL .

• Performances

After expressiveness comes the performance of the tool. Performances need to
be on par with an optimized code on a speci�c architecture. The DSEL should
not introduce an overhead and if it does, this overhead should stay reasonable.
An automatic code generation process can introduce some loss of performance
but this quantity should stay as low as possible to reduce the development
time. To keep the performance close to an optimized code, the best evalu-
ation strategy needs to be selected by the code generation system. Such an
ability requires the knowledge of the targeted architecture during the evalua-
tion process of the DSEL .

6.1 The NT2 Programming Interface

NT2 has been designed to be as close as possible to the Matlab language. Ideally,
a Matlab to NT2 conversion process should be limited to copying the original
Matlab code into a C++ �le and performing minor cosmetic changes (de�ning
variables, calling functions in place of certain operators). NT2 also takes great care
to provide numerical precision as close toMatlab as possible, ensuring that results
between versions are sensibly equal. This section will go through the main elements
of the NT2API and how they interact with the set of supported architectures.
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6.1.1 Basic API

The main element of NT2 is the table class. table is a template class that can
be parametrized by its element type and an optional list of settings. A instance of
table behaves like a Matlab multi-dimensional array � including 1-based index-
ing and column major storage order � and supports the same set of operators and
functions. Those operators and functions are, unless speci�ed otherwise, applied to
every element of the table, following the standard Matlab semantic. NT2 covers a
very large subset of Matlab functions ranging from standard arithmetic, exponen-
tial, hyperbolic and trigonometric functions, bitwise and boolean operations, IEEE
related functions, various pattern generators and some statistic and polynomial func-
tions. All those functions support vectorization thanks to Boost.SIMD[44, 45] (see
chapter 5). Moreover, and contrary to most similar library, NT2 provides support
for all real and integral types, both real or complex. Combined with the large set
of functions available, this allows NT2 to be used in a wider variety of domains.

Listing 6.1: Sample NT2 code
1 table <double > A1 = _(1.0 ,1000.0);

2 A2 = A1 + randn(size(A1));

3 double rms = sqrt( sum(sqr(A1(_) - A2(_))) / numel(A1) );

Listing 6.1 shows some NT2 basic features including the mapping of the colon
function (:) to the _ object, various functions, a random number generator and
some utility functions like numel or size. Listing 6.2 shows the corresponding
Matlab code.

Listing 6.2: Corresponding Matlab code
1 A1 = (1.0:1000.0);

2 A2 = A1 + randn(size(A1));

3 rms = sqrt( sum(sqr(A1(:) - A2(:))) / numel(A1) );

6.1.2 Indexing and data reshaping

Indexing and reshaping of data is one of the main assets of theMatlab language as
it maximizes the expressiveness of array-based expressions. In NT2 , accessing parts
of a table is done with operator() which handles various indexing values: integer
and table of integers, range created by the colon function (_ for short) or contextual
keywords like begin_ and end_. Arbitrary extraction, dimension reinterpretation,
shifting, and stencil computations can be expressed with that syntax. Listing 6.3
shows how a Jacobi update step can be written using such indexing.

Listing 6.3: Cross stencil for the update step of the Jacobi method with NT2

1 new_(_(begin_+1, end_ -1), _(begin_+1, end_ -1))

2 = ( old_(_(begin_ , end_ -2), _(begin_+1, end_ -1))

3 + old_(_(begin_+2, end_) , _(begin_+1, end_ -1))

4 + old_(_(begin_+1, end_ -1), _(begin_ , end_ -2))

5 + old_(_(begin_+1, end_ -1), _(begin_+2, end_ ))

6 )/4.f;
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6.1.3 Linear Algebra support

NT2 supports the most common matrix decompositions, system solvers and related
linear algebra operations via a transparent binding to BLAS and LAPACK. Mat-

lab syntax is preserved for most of these functions, including the multi-return for
decompositions and solvers or the various options for customizing algorithms. The
QR decomposition of a given matrix A while retrieving the decomposition permuta-
tion vector is done this way:

tie(Q,R,P) = qr(A,vector_);

which can be compared to the equivalent Matlab code:

[Q,R,P] = qr(A,'vector');

The tie function is optimized to take care of maximizing the memory reuse of
output parameters so the minimal amount of copies and allocations are performed.

6.1.4 table settings

table can be parametrized by special settings. It allows the user to specify statically
some properties of the table class. As these settings are statically known, NT2 can
select the right evaluation strategy according to the settings.

table comes with the following list of settings:

• Allocators: my_allocator<float>. The user can provide a speci�c standard
based allocator like shown in listing 6.4.

Listing 6.4: NT2 allocator setting example
1 table < float , my_allocator <float > > t(104);

• Static size: of_size<...> allows a table to have a static size known at
compile-time. Listing 6.5 illustrates this setting.

Listing 6.5: NT2 of_size<...> setting example
1 table < float , of_size <4,4> > t;

• Indexing: C_index_, matlab_index_. The indexing policy of table can be
changed to a C like policy. matlab_index_ is the default one. Listing 6.6
shows how to declare a table with a C like index.

Listing 6.6: NT2 C_index_ setting example
1 table <float , C_index_ > t(104);

2 [...] // Fill the table

3 for(int i = 0; i < 104; ++i) // C indexing

4 { cout << t(i) << endl; }
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• Interleaved data: interleaved_, deinterleaved_. If the table contains
interleaved data, it can be statically speci�ed like in listing 6.1 and the correct
SOA or AOS loading strategy will be performed.

table< std::complex<T>, interleaved_ > table< std::complex<T>, interleaved_ >

r i r i r i
r i r i r i
r i r i r i
...

i i i i i i
i i i i i i

i
...

r r r r r r
r r r r r r
r r r r r r
...

Figure 6.1: table with interleaved_ and deinterleaved_ data

• Shape: rectangular_, diagonal_, etc. If the table has a particular shape
like the diagonal one, it can be speci�ed (see listing 6.7) and the memory
allocation will be optimized for this shape.

Listing 6.7: NT2 diagonal_ setting example
1 table < float , diagonal_ > t(4,4);

• Sharing memory: shared_, owned_. A table can own its memory but it
can also share memory with an external component like in listing 6.8.

Listing 6.8: NT2 shared_ setting example
1 float data[] = { 1,2,3,4,5,6 };

2 table <float , settings(shared_)> x(of_size (3,2), share(data));

• Setting composition: NT2 has the ability of composing several settings.
Listing 6.9 shows the instantiation of a diagonal and C index based table.

Listing 6.9: NT2 setting composition example
1 table <float , settings(diagonal_ , C_index_)> x(of_size (3,3));

6.1.5 Compile-time Expression Optimization

Whenever a NT2 statement is constructed, potential automatic rewriting may occur
at compile-time on expressions for which a high-level algorithmic or an architecture-
driven optimization is possible. This compile-time expression optimization is similar
to the one introduced in Boost.SIMD. Considered optimizations include:
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• Fixed-point transformations like trans(trans(x)) or other functions combi-
nations that can be precomputed as being equivalent to a simpler function;

• Fusion of operations like mtimes(a, trans(b)) which can directly notify the
GEMM BLAS primitive that b is tranposed;

• Architecture-driven optimizations like transforming a*b+c into fma(a,b,c).

• Sub-matrix access like a(_,i) into an optimized representation enabling vec-
torization.

6.1.6 Parallelism Handling

Table 6.2 sums up the di�erence and similarities between NT2 and the libraries
introduced in 2.2.4. For the shared memory parallelism, NT2 supports two back-
ends: OpenMP and Intel Threading Building Blocks.

Feature Armadillo Blaze Eigen MTL uBlas NT2

Matlab API conformance X − − − − X
AST optimization X X − − − X
SSEx support X X X − − X
AVX support X X − − − X
Altivec support − − X − − X
Shared memory parallelism − − − − − X
BLAS/LAPACK binding X X X X X X

Figure 6.2: Feature set comparison between NT2 and similar libraries

6.2 Implementation

NT2 is a Expression Template based DSEL that uses Boost.Proto (see sec-
tion 3.2.3), Boost.Dispatch (see chapter 4) and Boost.SIMD (see chapter 5).
Boost.Proto is used as its expression template engine and replaces the classical
direct walk-through of the compile- time AST done in most C++ DSELs by the
execution of a mixed compile- time/runtime algorithm over a Boost.Proto stan-
dardized AST structure. The expression evaluation strategy of NT2 is driven by the
a AA-DEMRAL methodology introduced in chapter 3). It is based on:

• a strategy to select the proper implementation of a given function according to
a given architecture and the function properties, a compile-time description of
function properties, an architecture description DSEL describing architectures
and their relationship. All of this is based on Boost.Dispatch;

• a compile-time process for rescheduling NT2 statements in a way that optimal
loop nests can be generated;

• a parallel code generator using parallel skeletons that takes care of di�erent
types and levels of parallelism.
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6.2.1 Function compile-time descriptors

NT2 uses Boost.Dispatch to handle every function call. Each function call is
resolved by Boost.Dispatch as a call to a function object handling the tags com-
putation and dispatching, leaving the user API clear of any implementation leaks.
The �rst level of gathered information is function properties. Each NT2 function
(as a symbol) is tied to a Boost.Dispatch tag. Whenever a function foo is called,
NT2 tries to �nd a valid implementation of foo by calling a Boost.Dispatch func-
tion overloaded for a descriptor class foo_. Those tags include:

• elementwise functions that operate on their arguments at a certain position,
without dependencies between operations on di�erent positions. They are the
core of NT2 expressions, and combining them results into a single kernel or
loop nest. They include: regular function like plus or sin, data generators
like colon or zeros, functions modifying a table logical size like reshape or
diag;

• non-elementwise functions, which output can not be combined with an ele-
mentwise function but which input is still combinable. Their properties and
parallel potential depends on the considered functions. They include reduc-
tion and partial reduction functions, scan functions like cumsum and external
kernels.

Listing 6.10: Function descriptors for some NT2 functions
1 struct plus_ : elementwise_ <plus_ > {};

2 struct sum_ : reduction_ <sum_ ,plus_ ,zero_ > {};

3 struct mtimes_ : unspecified_ <mtimes_ > {};

As an example, listing 6.10 presents the descriptors for various functions. plus is
registered as a classical elementwise operation. sum is a reduction and its descriptor
de�nes it as a reduction based on plus and zero. Then, the matrix-matrix product
function is registered as an external kernel.

6.2.2 Compile-time architecture description

Once a proper function implementation has been selected for either a concrete func-
tion tag or for a more general function family, we need to select the best implemen-
tation for the current architecture. NT2uses Boost.Dispatchability to describe an
architecture as a compile-time tag, similar to the function descriptors (�gure 6.11).

Listing 6.11: Some NT2 architecture descriptors
1 struct cpu_ : unspecified_ <cpu_ > {}; // cpu_: no special info

2 struct simd_ : cpu_ {}; // simd_: any SIMD architecture

3

4 // shared memory architecture using OpenMP as runtime

5 template <typename Core > struct openmp_ : Core {};
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For every supported architecture, a descriptor is de�ned using inheritance to
organize related architecture components. In addition to this inheritance scheme,
architectures descriptors can be nested (such as openmp_ ). This nesting is computed
at compile-time by exploiting information given by the compiler or by user-de�ned
preprocessor symbols. This nesting is used to automatically generate nested code
at di�erent architecture levels. For example, the default architecture computed for
a code compiled using AVX and OpenMP is openmp_< avx_ > . This nesting will
then be exploited when parallel loop nests will be generated through combination of
the OpenMP and AVX backends (section 6.2.2.1). This compile-time architecture
description extends the SIMD architecture hierarchy available in Boost.SIMD.

6.2.2.1 Parallel code generation

The code generation presented here works in a similar way that the one introduced
in Boost.SIMD (see chapter 5). The look- ahead optimization scheme intro-
duced by Boost.SIMD is also reused in NT2 leading to the detection of expression
patterns that are candidates for an architecture speci�c optimization.

The functions and architecture descriptors introduced in section 6.2.1 schedule
the evaluation of each type of nodes (i.e. functions) involved in a single statement.
The NT2 code generator will generate successions of loop nests based on the top level
AST node descriptor. The NT2 expression evaluation is based on the possibility to
compute the size and value type. This size is used to construct a loop, which can
be parallelized using arbitrary techniques, which then evaluates the operation for
any position p, either in scalar or in SIMD mode. The main entry point of this
system is the run function that is de�ned for every function or family of function.
run takes care of selecting the best way to evaluate a given function in the context
of its local AST and the current output element position to compute. At this
point, NT2 exploits the information about the function properties and dispatch to a
speci�c loop nest generator for each family of functions (elementwise, reduction, etc).

To take the architectural information into account at this point, NT2 relies on
Parallel Skeletons [22]. Parallel skeletons are recurrent parallel patterns designed
as higher-order functions that describe an e�cient solution to a speci�c problem.
Cole details in [23] the need for speci�c skeletons providing enough abstraction
to be used in the context of parallel frameworks. This abstraction can introduce
semantic information that will help the composition of a skeleton abstraction with
an e�cient implementation of the corresponding skeletons. Aldinucci addresses
these approach with an expandable skeleton environment called Muskel [5]. The
abstraction/e�ciency trade-o� of skeleton based programming has been explored
by Kuchen in [68] and it shows that such an approach can lead to e�cient library
based implementations without losing levels of abstraction.
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Skeletons usually behave as higher order functions, i.e. functions parametrized
by other functions, including other skeletons. This composability reduces the
di�culty of designing complex parallel programs as any combination of skeletons is
viable by design. The other main advantage of skeletons is the fact that the actual
synchronization and scheduling of a skeleton's parallel task is encapsulated within
the skeleton. Once a skeleton semantic is de�ned, programmers do not have to
specify how synchronizations and scheduling happen. This has two implications:
�rst, skeletons can be speci�ed in an abstract manner and encapsulate architecture
speci�c implementation; second, the communications/computations patterns are
known in advance and can be optimized [6, 41].

Even if a large number of skeletons have been proposed in the litterature [68, 20],
NT2 focuses on three data-oriented skeletons:

• transform that applies an arbitrary operation to each (or certain) element(s)
of an input table and stores the result in an output table.

• fold that applies a partial reduction of the elements of an input table to a
given table dimension and stores the result in an output table.

• scan that applies a pre�x scan of the elements of an input table to a given
table dimension and stores the result in an output table.

Those skeletons are tied to families of loop-nest that can or can not be nested.
Those families are :

• elementwise loop nests that represent loop nests implementable via a call to
transform and which can only be nested with other elementwise operations.

• reduction loop nests that represent loop nests implementable via a call to
fold. Successive reductions are not generally nestable as they can operate on
di�erent dimensions but can contain a nested elementwise loop nest.

• pre�x loop nests that represent loop nests implementable via a call to scan.
Successive pre�x scans, like reductions, are not nestable but can contain nested
elementwise loop nests.

Those families of loop nests are used to tag functions provided by NT2 so that
the type of the operation itself can be introspected to determine its loop nest family.
As the AST of an arbitrary expression containing at least one NT2 custom terminal
(mainly table or _) is being built at compile-time, the AST construction function
has to take care of separating expressions requiring non-nestable loop nests by fetch-
ing the loop nest family associated with the current top-most AST node. This is
done during the template AST construction by splitting the AST into smaller ASTs
of nodes with a compatible descriptor. Two nodes have compatible descriptors if
their code can be generated in a single, properly sized loop nest. If two nodes are
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incompatible, the most complex one is replaced by a temporary terminal reference
pointing to the future result of the node evaluation. The actual sub-tree is then
scheduled to be evaluated in advance, providing data to �ll up the proxy reference
in the original tree. As an example, �gure 6.3 shows how the expression A = B /

sum(C+D) is built and split into sub-ASTs handled by a single type of skeleton.

; ;

=

A /

B sum

+

C D

fold
transform

=

tmp sum

+

C D

fold

⇒
=

A /

B tmp

transform

Figure 6.3: Parallel Skeletons extraction process
Nesting of di�erent kinds of skeletons into a single statement is automatically un-

wrapped at compile time as a sequence of single skeleton statements.

The split ASTs are logically chained by the extra temporary variable inserted
in the right-hand side of the �rst AST and as the left-hand size of the second.
The life-cycle management of this temporary is handled by a C++ shared pointer
and ensures that the data computed when crossing AST barrier lives long enough.
Notice that, as the C+D AST is an elementwise operation, it stays nested inside
the sum node. NT2 then uses the nestability of parallel skeletons to call the SIMD
and/or scalar version of each skeleton involved in a serie of statements to recursively
and hierarchically exploit the target hardware. At the end of the compilation,
each NT2 expression has been turned into the proper series of nested loop nests
using combinations of OpenMP, SIMD and scalar code. Each of these skeleton is
a NT2 function object. They are handled by Boost.Dispatch and thus can be
specialized on a per-architecture basis.

In this section we introduced the core of NT2 , its expression framework. By
providing a multi-pass evaluation process, NT2 is able to transform and evaluate
di�erent scenarios with the proper parallel strategy for the code generation. Now,
we will take a closer look to this evaluation by describing step by step the evaluation
of a NT2 expression.
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6.3 Expression Evaluation with NT2

In this section we detail the exact scenario for the evaluation of a NT2 DSL ex-
pression. As an example, consider the code generation of the a = b+c expression
on an OpenMP+AVX system. a = b+c is �rst evaluated as a compile-time AST
structured as:

expr< assign_, args< expr<terminal_, args<table<T,S> > >

, expr<plus_, args< expr<terminal_, args<table<T,S> >

, expr<terminal_, args<table<T,S> >

> > > >

Note the capture of the = node which allow NT2 to optimize sub-matrix indexing
using the general code generation process. As every node in this expression are
elementwise operations, run will select transform as the skeleton to use. The current
architecture descriptor being openmp_<avx_>, run forward to the OpenMP version
of transform as shown in listing 6.12.

Listing 6.12: OpenMP transform

1 template <class LHS , class RHS , class Core >

2 void transform(LHS& a0 , RHS& a1 , int p, int s, openmp_ <Core > const &){

3 int bs = block_size ();

4 #pragma omp parallel firstprivate(bs)

5 {

6 ntd::functor <tag::transform_ ,Core > f;

7

8 #pragma omp for schedule(dynamic) nowait

9 for(int n=0;n<(s/bs);++n) f(a0,a1,p+n*bs,bs);

10

11 #pragma omp single nowait

12 if(s%bs) f(a0,a1,p+(s/bs)*bs ,s%bs);

13 }

14 }

As the OpenMP architecture is parametrized by the architecture descriptor of its
inner core, the OpenMP transform only deals with laying out the needed OpenMP
structure around a call to its inner architecture transform version. This recursive
de�nition limits the amount of code to write to handle architecture combinations
as each skeleton implementation is only responsible to generate current architecture
code. In this case, the OpenMP layer will take care of computing the optimal block
size for current architecture, perform a parallel loop nest over the nested transform
call and handle the left-over data.

In a similar way, the AVX version of transform is in fact the common SIMD
transform version, as Boost.SIMD allow us to use a single API for all our SIMD
related code (see �gure 6.13).
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Listing 6.13: SIMD transform

1 template <class LHS , class RHS , class Core >

2 void transform(LHS& a0 , RHS& a1 , int p, int s, simd_ const&)

3 {

4 typedef boost::simd::native <typename LHS:: value_type > vector_type;

5 int aligned_sz = s & ~( vector_type :: static_size -1);

6

7 for(int it=p;it<p+aligned_sz; it+=N)

8 run( a0, it, run(a1, it, as_ <target_type >()) );

9

10 functor <transform_ ,cpu_ > f;

11 f(a0 ,a1,p+aligned_sz ,sz-aligned_sz);

12 }

This version computes the slice of data which can be actually vectorized and call
the scalar version on the left-over data by using the scalar version of transform.
Once done, the code generated will automatically perform the required parallel
operations. The �nal call of run over either scalar or SIMD values is then deferred
to Boost.SIMD for proper vectorization. The compile-time aspect of this descent
guarantee that the abstraction cost of the system is negligible.

6.4 Benchmarks

This section presents the execution time of various benchmarks to give an idea of
the performance attainable with NT2with di�erent scenarios. The �rst benchmark,
inspired from Armadillo benchmarks suite, assess the e�ciency of the basic compo-
nents of the library: the expression template engine using Boost.Proto and the
e�ciency of the BLAS and LAPACK bindings. Then, three more complex applica-
tion kernels evaluate NT2 performance under realistic conditions, their descriptions
are detailed in appendix A. All benchmarks were run over thousands of executions
from which the median execution time has been kept as the end result. When possi-
ble, results are compared with an equivalent kernel implemented using a selection of
similar library or with the direct calls to the underlying runtime when other libraries
where unable to provide the required support (special mathematical functions, han-
dling of small integers, or advanced control structures). Two di�erent machines have
been used for those performance benchmarks. Their descriptions can be found in
appendix B.

6.4.1 Basic Kernels

Basic kernel benchmarks aim at validating that NT2basic features perform correctly
against state of the art libraries.

6.4.1.1 Basic Elementwise operations

This benchmark evaluates the quality of code generation of NT2Expression Template
engine by computing a series of elementwise operations on a container of n × n

elements:
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R = 0.1f*A + 0.2f*B + 0.3f*C

Results, in cycles per computed element, are given in table 6.4. We see that
NT2 performance are comparable to those of SIMD enabled library like Armadillo,
Blaze and Eigen.

Size Armadillo Blaze Eigen MTL uBlas NT2

502 5.2 3.1 2.1 25.2 14.4 1.5

10002 4.9 3.4 2.7 21.9 12.9 3.3

Figure 6.4: Elementwise benchmark using SSE 4.2 on Mini-Titan

6.4.1.2 BLAS operations

This benchmark evaluates the e�ciency of the BLAS binding of NT2 by performing
a chain of three matrix-matrix product of decreasing size:

Q = mtimes( mtimes(A,B), mtimes(C,D) );

Results, in cycles per computed element, are given in table 6.5. We see that
NT2 performance are comparable to the performance of other libraries. Armadillo
exhibits the best performance due to its matrix-matrix product reordering phase.

Scale Armadillo Blaze Eigen MTL uBlas NT2

100× 20 59.0 154.2 88.40 126.7 77.82 79.11

2000× 400 91.9 204.1 216.6 211.2 172.8 177.4

Figure 6.5: GEMM kernel benchmarks using MKL on Mini-Titan

6.4.1.3 LAPACK operations

This benchmark assesses the quality of the LAPACK binding by benchmarking a call
to a linear system solver based on the GESV kernel and bound to the Matlab like
function linsolve. The code executed is:

X = linsolve(A,B);

Scale C LAPACK NT2 LAPACK

1024× 1024 75 75

2048× 2048 149 148

Figure 6.6: GESV kernel benchmarks on Mini-Titan

Table 6.6 show the GFLOPS rate attained by using either direct C++ calls
to LAPACK and to the corresponding NT2 code. Results shows that the overhead
against the direct call to the LAPACK version of the kernel is negligible.
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6.4.2 Black and Scholes

The code of the Black and Scholes algorithm is de�ned in �gure 6.14. The Black &
Scholes algorithm involves multiples high latency and high register count operations.
The SIMD version of log, exp and normcdf use polynoms and precision re�nement
step that consume a large amount of registers.

Listing 6.14: Black & Scholes NT2 implementation
1 table <float > blackscholes ( table <float > const& S,table <float > const& X

2 , table <float > const& T,table <float > const& r

3 , table <float > const& v

4 )

5 {

6 table <float > d = sqrt(T);

7 table <float > d1 = log(S/X)+(fma(sqr(v) ,0.5f,r)*T)/(v*d);

8 table <float > d2 = fma(-v,d,d1));

9

10 return S*normcdf(d1)-X*exp(-r*T)*normcdf(d2);

11 }

The Black & Scholes algorithm involves multiples high latency and high register
count operations. The SIMD version of log, exp and normcdf use polynoms and
precision re�nement step that consume a large amount of registers. Results shown on
�gure 6.7 demonstrates that our SIMD implementation hits roughly 65% of the peak
speed- up in SIMD due to the important number of spilled variables. The speed-ups
of the multi-threaded versions go up to 90% of the peak speed-ups. When combining
SIMD and OpenMP, the gain raises but the workload of the SIMD computation units
is still to heavy.
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6.4.3 Sigma Delta Motion Detection

This algorithm is composed of point-wise operations with two double if-then-else
patterns. Its SIMD implementation is not straightforward, as the multiplication
and the absolute di�erence require to promote 8-bit data to temporary 16-bit data
or use saturated arithmetic. Its low arithmetic intensity always leads to Memory
Bound implementations.

Listing 6.15: Sigma-Delta NT2 implementation
1 background = selinc( background < frame

2 , seldec( background > frame , background )

3 );

4

5 diff = max(background , frame) - min(background , frame);

6 sigma3 = muls(diff ,uint8_t (3));

7

8 variance = if_else( diff != uint8_t (0)

9 , selinc( variance < sigma3

10 , seldec(variance > sigma3 , variance)

11 )

12 , variance

13 );

14

15 detected = if_zero_else_one( diff < variance );

The main challenge for NT2 is also to preserve performance despite a multi-
statement implementation that, when compiled for OpenMP, leads to spurious bar-
riers. On the other hand, NT2 provides support for integer types that is not a
common feature available in other libraries. The NT2 implementation of Sigma
Delta in 8-bit unsigned integers using saturated arithmetic is given in �gure C.2.1.

0

2

4

6

8

10

12

14

16

18

512x512 1024x1024

cy
cl

es
/e

le
m

en
t

Image Size (N x N)

x6
.8

x1
4.

8
x1

6.
5

x2
.1

x3
.6

x6
.7

x1
5.

3
x1

8

x2
.3

x3
.9

9

x1
0.

8

x1
0.

8

SCALAR
MiniTitan: 6 th/Sandy: 4 th

MiniTitan: 12 th/Sandy: 8 th
SIMD

JRTIP2008
(MiniTitan: 6 th/Sandy: 4 th)

+ SIMD 
(MiniTitan: 12 th/Sandy: 8 th)

+ SIMD

Figure 6.8: Sigma Delta Results



116 Chapter 6. NT2: an Architecture Aware DSEL Framework

As the algorithm is designed to work with unsigned 8-bit integers, the code
cannot take advantage of AVX and thus has only been tested on Mini- Titan

(see �gure 6.8). With many load and store operations, the strong scalability of
the algorithm can not be preserved. When SSE is enabled, both versions (single-
threaded-and multi-threaded) of the code increase their e�ciency until hitting the
maximum of the memory bandwidth. The SIMD only version is one cycle slower
than the handwritten optimized one. This loss comes from very �ne grain optimiza-
tions introduced in the code. Typically, the di�erence image does not need to be
stored when working with an outer loop on the current frame being processed (C
version). The Sigma-Delta implementation shows that the code generation engine
of NT2 leads to a proper optimized version of the application.

6.4.4 The Julia Mandelbrot Computation

The Julia Mandelbrot computation is a well known algorithm featuring load bal-
ancing issues: each iteration has a constant duration, but the number of iteration
varies for each point. Like Black and Scholes, Mandelbrot is computation bound,
but di�ers on two items:

• It uses complex arithmetic, but to ensure performance the code should avoid
temporary results for complex multiplication and division;

• It is composed of low-latency instructions (at most 5 cycles for multiplications)
while Black and Scholes is dominated by longer latency instructions like square
root, log and exponential.

To ensure proper parallelization, the actual NT2code relies on its implementation
of the Matlab function bsxfun that applies a given elementwise function object
to every elements of a set of input tables. Contrary to other libraries, NT2 version
of bsxfun relies on the fact that NT2 can vectorize the code of any polymorphic
callable object, i.e. a function object with a template function call operator. The
NT2 implementation is given as:

res = bsxfun( julia(), linspace(-1.,1,100), trans(linspace(-1.,1,100)) );

Figures 6.9 and 6.10 illustrates how the NT2 single precision implementation
of Julia Mandelbrot computation performs on both test machines. The speedups
obtained on Mini-Titan are very close to the theoretical ones and the e�ciency
is greater than 80%. For Sandy, the e�ciency decreases due to generation of the
Julia Space. In fact, this generation relies on SIMD integer support which is not
available on AVX. If we remove this phase from the benchmark, the speedups are
raising to the expected ones. The integer support for AVX will be addressed in the
future to avoid this loss of performance.
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Figure 6.9: Mandelbrot Results in single precision on Mini-Titan
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6.5 Conclusion

Designing a high level programming tool for High Performance Computing is not
an easy challenge. We show that NT2 has a nice and simple API that guarantee a
high level of abstraction. While keeping expressiveness at its maximum, NT2 takes
advantage of the architecture informations to deliver a high level of performance.
It allows portability over various architectures and provides a systematic way of
implementing new architectural supports. Its generic internal framework permits
an easy extensibility of the DSEL . Our benchmarks that show both on simple and
complex task that NT2 is able to deliver performance within the range of state of
the art implementation.

NT2 uses expression template techniques and generative programming. It also
relies on Boost.Dispatch and Boost.SIMD. Its main contributions are the fol-
lowing:

• Generative Programming helps implementing more �exible scienti�c comput-
ing software with a very high level of abstractions and high e�ciency.

• Generic programming inside NT2 permit an easy multi-architectural support
for today's architectures.

• The benchmarks show a e�cient code generation system.

Designed as an active library, NT2proposes a solution for the design of high level
programming tool with multi-architectural support.
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7.1 Conclusions

In this thesis we have presented two active libraries that aims at simplifying the
development of high performance applications. The main objectives that were con-
sidered for the design of these two tools are:

• A high level abstraction coupled with a high expressiveness for designing ap-
plications that take advantage of parallel architectures;

• An e�cient code generation process leading to performance close to a hand
written parallel code;

• An easy extensibility of the libraries via a generic approach for their design.

Our contribution is based on several approaches. First, we have looked at the
solutions available in our era of interests and we have studied their advantages and
drawbacks. Then, we have proposed a new methodology with its implementation.
Finally, we have validated the e�ciency of our contributions by measuring the
execution time of well known applications in various domains. This �nal chapter
summarizes synthetically our contributions and gives some perspectives for future
research work.

Developing parallel applications that take advantages of architectural features
is not a trivial task. Many solutions exist with di�erent approaches to face
this problem. The existing tools propose a balance between expressiveness and
performance that leads to prevail one of the two. To alleviate this compromise, we
studied new techniques that permit an easy design for an architecture aware tool
with high expressiveness and performance.
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The �rst step of our contribution is the new methodology called AA-DEMRAL .
We inject the architecture speci�cations inside the evaluation process of a DSEL .
To implement this new methodology, we use C++ as a host language for our
DSEL because it presents techniques that combine expressiveness with performance.
Generic and generative programming are emerging techniques that allow to couple a
high level of abstraction with a driven code generation process within the compiler.
Such techniques are possible through the template mechanism of C++ . Thus we
use Boost.Dispatch, Boost.SIMD[44, 45] and NT2 [42]. Boost.Dispatch is a
function dispatching library with a generic tag dispatching technique that has the
ability to dispatch a function call according to its arguments, its properties as a
function and an architecture speci�c information. Boost.SIMDis a high level pro-
gramming tool for SIMD extensions and its implementation uses Boost.Dispatch.
NT2 is a C++ library providing a DSEL which aims at simplifying the development
of high performance numerical computing applications with a multi- architectural
support. NT2 's implementation relies on Boost.Dispatchand Boost.SIMD.

Boost.SIMD and NT2 are two high level tools that provide a high abstraction
for the development of high performance applications. Boost.Dispatch has proved
its ability to simplify the multi-architectural support for parallel programming
tools by being successfully used inside Boost.SIMD and NT2 . Boost.SIMD

demonstrates its capability for an easy instruction level parallelism code writing.
NT2 shows that expressiveness allows to tie domain speci�c informations with
optimization strategies. These three libraries illustrates the power of generic pro-
gramming for building abstractions that simplify architecture aware programming.

On the e�ectiveness side, Boost.SIMD and NT2 show the performance of their
code generation systems with a relevant number of tests. From basic kernels to
real applications coming from di�erent domains, the benchmarks demonstrate the
capabilities of our three libraries to combine expressiveness and performance. The
results obtained are comparable to hand written and optimized code from the state
of the art. Both tools have proved the e�ectiveness of the code generation process
introduced by our new methodology. Boost.SIMD has also been successfully used
inside industrial code. The e�ciency of our approach is validate by our implemen-
tations and the experiments illustrate a relevant tool designing approach.

7.2 Perspectives

From these results, several perspectives and research interests are possible for the
future.

Boost.SIMD currently include support for x86 processors and Altivec based
architectures. The ARM version is currently under development. Targeting other
architectures like the Xeon Phi or DSP based architecture is the next step. Another
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feature we want to add is the ability of pack to work with SIMD registers when
the user asks for a pack with a wide cardinal. For example, a pack with 8 elements
should trigger the use of two SSE2 registers if this extension is available. Another
step in the AST exploration system is to estimate the proper unrolling and blocking
factor for any given expression. This requires a really �ne architecture speci�cation
to be able to correlate in a e�cient way the functions properties with a certain
level of unrolling.

For NT2 , the architecture support can be extended. A generalized support for
distributed and shared memory system will allow NT2 to target a wider range of
applications. This can be done by using di�erent backends. MPI may be a �rst
step but some implementation considerations are not �tting properly with NT2 like
global barriers and the MPI environment handling. Using an asynchronous runtime
back-end like Charm++ [64] or HPX [32] would allow NT2 to take advantage of
non blocking runtimes. With an asynchronous approach, the limitation of barriers
while evaluating multiple statements can be solved. Asynchronous evaluation is
a good candidate in this aspect. With OpenMP, this limitation still exists as we
evaluate multiple statements in di�erent loop-nests. We consider the introduction
of a syntax for explicit loop fusion in order to avoid multiple barriers and maximize
locality in multi-statements code. Still on the loop- nest limitation we are thinking
of exploring the bene�ts of embedding a meta- programmed subset of the polyhedral
model [12, 46] inside the NT2 skeleton system to re�ne the combination of loop
nests that can be generated.

NT2 relies on the availability of a native C++ compiler for the targeted
architecture. Support for multi-stage programming [40] will allow NT2 to target
system like DSPs on which no C++ compiler is natively available. Porting NT2 to
new architecture like the Xeon Phi and OpenCL based Altera recon�gurable
systems is interesting to us as multiple accelerator based architecture are rising
nowadays. GPGPU are also good candidates for the architectural support of
NT2 but their integration to our framework need a non trivial lifting phase. Such
an addition to the framework is taken into consideration. Working with di�erent
backends like Cuda or OpenCl implies the use of di�erent programming techniques
and models. We need to synthesize how accelerators can be added to the framework
in a generic manner and multi-stage programming can be a �rst step to achieve this.

The results presented in this typescript proved the e�ciency of our libraries.
Parallel programming is a fast growing world and tools need to be adaptable. The
main perspectives presented in this last section have one common point which is: the
simplicity and the genericity of our tools must keep expressiveness and performances
close.
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Algorithms Description

A.1 AXPY Kernel

It is a basic linear algebra subprogram. The AXPY kernel computes a vector- scalar
product and adds the result to another vector. The algorithm is the following :

Y ← αX + Y .

This algorithm is part of the BLAS libraries and is really often used in linear algebra
algorithms.

A.2 Black and Scholes

The Black and Scholes algorithm [75] represents a mathematical model able to give
a theoretical estimate of the price of European- style options. In this mathematical
model, the price of the option is a stochastic process in real time. The full algorithm
is describe in algorithm 1.

Input: S, Spot price

Input: X, Strike (exercise) price

Input: r, Interest rate

Input: σ, Standard deviation of the underlying asset, eg stock

Input: time, Current date

time_sqrt←
√
time

d1← log S
X

+r×time
0.5×σ×time_sqrt

d2← d1− (σ × time_sqrt)
c← S ×Normal_distribution (d1)−X × e−r×time ×Normal_distribution (d2)

Algorithm 1: Black and Scholes algorithm

A.3 Sigma-Delta Motion Detection

The Sigma-Delta algorithm [70] is a motion detection algorithm used in image pro-
cessing to discriminate moving objects from the background. Contrary to simple
thresholded background subtraction algorithms, Sigma-Delta uses a per-pixel vari-
ance estimation to �lter out outliers due to lighting conditions or contrast variation
inside the image. The full algorithm is describe in 2. Figure A.1 shows images
taken from a sequence. Pictures in row (1) present the original sequence. Row (2)
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illustrates the output of the Sigma-Delta algorithm. We can see on row (2) that the
algorithm outputs noise which can be disrupting when tracking objects for example.
The typical approach consists in adding a morphological post processing which is
illustrated in row (3).

Input: It current image, Mt previous background

Result: Mt the current background, Et motion mask

foreach pixel x do [step #1: Mt estimation]

if Mt−1(x) < It(x) then Mt(x)←Mt−1(x) + 1

if Mt−1(x) > It(x) then Mt(x)←Mt−1(x)− 1

otherwise Mt(x)←Mt−1(x)

foreach pixel x do [step #2: Ot computation]

Ot(x) = |Mt(x)− It(x)|

foreach pixel x do [step #3: Vt update]

if Vt−1(x) < N ×Ot(x) then Vt(x)← Vt−1(x) + 1

if Vt−1(x) > N ×Ot(x) then Vt(x)← Vt−1(x)− 1

otherwise Vt(x)← Vt−1(x)

Vt(x)← max(min(Vt(x), Vmax), Vmin)

foreach pixel x do [step #4: Êt estimation]

if Ot(x) < Vt(x) then Êt(x)← 0

else Êt(x)← 1

Algorithm 2: algorithme Σ∆ initial

Figure A.1: Motion detection with Sigma Delta
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A.4 The Julia Mandelbrot Computation

The Mandelbrot set [34] de�nes a mathematical set of points that is very closed to
the Julia sets. Its boundary results in a two-dimensional fractal shape. The fractal
is obtained by sampling complex numbers and determining for each of them if the
iterative application of a mathematical operation tends towards in�nity.

Figure A.2: De�nition of the Julia-Mandelbrot set

Figure A.3: Illustration of the Julia-Mandelbrot set





Appendix B

Architectures Description

B.1 Boost.SIMD Benchmark Architectures

Table B.1: Processor details

Architecture Nehalem Sandy Bridge PowerPC G5 Haswell

Max. Frequency 3.6 GHz 3.8 GHz 1.6 GHz 3.4 GHz

SIMD Extension SSE4.2 AVX Altivec SSEX to AVX 2.0

B.2 NT2 Benchmark Architectures

• Sandy, a Intel Core SandyBridge processor with 4 hyper-threaded cores, 8GB
of RAM and a 8MB L3 cache. Code is compiled using g++-4.7 using AVX
and/or OpenMP version 3.1;

• Mini-Titan composed of 2 sockets of Intel Core Westmere processors with
6 cores coupled with a NVIDIA Tesla C2075, 2x24GB of RAM and a 12MB
L3 Cache. Code is compiled using g++-4.7 using SSE4.2 and/or OpenMP
version 3.1.





Appendix C

ISO C++ Standard Proposal

This appendix shows the retained speci�cation for SIMD support in the C++ Stan-
dard. The full proposal N3571 is available in [43]

C.0.1 Our proposal

For maximum accessibility, programmers should be able to vectorize their code with-
out needing a high level of expertise for every single SIMD extension. This proposal
introduces a high-level abstraction to the user that gives access to SIMD computa-
tion in an instinctive way. It comes as a C++ template library, headers only that
relies on a possibly full library implementation. With a high level template type
for abstracting a SIMD register, the user can easily introduce SIMD in his applica-
tion by instantiating this type and applying high level functions on it. Working at
the register level rather than the loop nest or big array level keeps the abstraction
thin, e�cient and �exible. By keeping the control of the vectorization process, the
programmer is explicitly expressing the SIMD version of his algorithm, not only
guaranteeing that vectorization does indeed take place, but also empowering the
user to de�ne his algorithm in a way that is vectorizable. A single generic code
can be written for both the scalar and SIMD types or di�erent code paths may be
selected. The library is also modular and easily extensible by the user.

In addition to types and functions operating on them, higher-order functions
to manipulate and transform data with respect to every hardware constraints are
provided.

Furthermore, processing multiple data in SIMD registers breaks typical scalar
data�ows when dealing with branching conditions or when shifting or shu�ing val-
ues. As a result, special functions to deal with SIMD-speci�c idioms are also intro-
duced.

The idea of this proposal is inspired from the Boost.SIMD open-source library
(not part of the Boost C++ libraries as of this writing) developed by the authors
of this paper. This library has been deployed in several academic and industrial
projects where it has shown signi�cant advantages over other approaches to optimize
code for SIMD-enabled processors. Boost.SIMD is available as part of the NT 2

software project hosted on GitHub [1]. Publications with experimental results are
available in [45] and [44].
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C.1 Impact On the Standard

This proposal comes as a library extension that does not impact existing standard
classes, functions or headers. This addition is non-intrusive; its implementation is
fully standards-based and does not require any changes to the core language.

C.1.1 Standard Components

C.1.1.1 SIMD Allocator

1 namespace std { namespace simd

2 {

3 template <class T>

4 struct allocator

5 {

6 typedef T value_type;

7 typedef T* pointer;

8 typedef T const* const_pointer;

9 typedef T& reference;

10 typedef T const& const_reference;

11 typedef size_t size_type;

12 typedef ptrdiff_t difference_type;

13

14 template <class U>

15 struct rebind

16 {

17 typedef allocator <U> other;

18 };

19

20 allocator ();

21

22 template <class U>

23 allocator(allocator <U> const &);

24

25 pointer address(reference r);

26 const_pointer address(const_reference r);

27

28 size_type max_size () const;

29

30 void construct(pointer p, const T& t);

31 void destroy(pointer p);

32

33 pointer allocate( size_type c, const void* = 0 );

34 void deallocate (pointer p, size_type s);

35 };

36

37 template <class T>

38 bool operator ==( allocator <T> const&, allocator <T> const &);

39

40 template <class T>

41 bool operator !=( allocator <T> const&, allocator <T> const &);

42

43 template <class Allocator >

44 struct allocator_adaptor

45 {

46 typedef Allocator base_type;

47

48 typedef typename base_type :: value_type value_type;

49 typedef typename base_type :: pointer pointer;
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50 typedef typename base_type :: const_pointer const_pointer;

51 typedef typename base_type :: reference reference;

52 typedef typename base_type :: const_reference const_reference;

53 typedef typename base_type :: size_type size_type;

54 typedef typename base_type :: difference_type difference_type;

55

56 template <class U>

57 struct rebind

58 {

59 typedef allocator_adaptor <typename Allocator ::rebind <U>::other > other;

60 };

61

62 allocator_adaptor ();

63 allocator_adaptor(Allocator const& alloc);

64 ~allocator_adaptor ();

65

66 template <class U>

67 allocator_adaptor(allocator_adaptor <U> const& src);

68

69 base_type& base();

70 base_type const& base() const;

71

72 pointer allocate( size_type c, const void* = 0 );

73 void deallocate (pointer p, size_type s);

74 };

75

76 template <class T>

77 bool operator ==( allocator_adaptor <T> const& a, allocator_adaptor <T> const&

b);

78

79 template <class T>

80 bool operator !=( allocator_adaptor <T> const& a, allocator_adaptor <T> const&

b);

81 } }

C.1.1.2 SIMD Algorithms

1 namespace std { namespace simd

2 {

3 template <class T, class U, class UnOp >

4 U* transform(T const* begin , T const* end , U* out , UnOp f);

5

6 template <class T1, class T2 , class U, class BinOp >

7 U* transform(T1 const* begin1 , T1 const* end , T2 const* begin2 , U* out ,

BinOp f);

8

9 template <class T, class U, class F>

10 U accumulate(T const* begin , T const* end , U init , F f);

11 } }

1 template <class T, class U, class UnOp >

2 U* transform(T const* begin , T const* end , U* out , UnOp f);

Requires: UnOp is Callable<U(T)> and Callable<pack<U>(pack<T>)>

E�ects: Writes to out the result of the application of f for each element in the range
[begin, end[, by either loading scalar or SIMD values from the range if su�cient
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aligned data is available.

Returns: The iterator past the last written-to position

1 template <class T1, class T2 , class U, class BinOp >

2 U* transform(T1 const* begin1 , T1 const* end , T2 const* begin2 , U* out , BinOp

f);

Requires: BinOp is Callable<U(T1, T2)> and
Callable<pack<U>(pack<T1>, pack<T2>)>

E�ects: Writes to out the result of the application of f for each pair of elements
in the ranges [begin1, end[ and [begin2, begin2+(end-begin1)[, by either loading
scalar or SIMD values from the ranges if su�cient aligned data is available.

Returns: The iterator past the last written-to position

1 template <class T, class U, class F>

2 U accumulate(T const* begin , T const* end , U init , F f);

Requires: F is Callable<U(U, T)> and Callable<pack<U>(pack<U>, pack<T>)>

E�ects: Accumulate the result of the application of f with the accumulation state
and each element of the range [begin, end[, potentially scalar by scalar of SIMD
vector by vector if su�cient aligned data is available.

Returns: The �nal accumulation state

Non-normative Note: possible implementation of binary transform

1 template <class T1, class T2 , class U, class BinOp >

2 U* transform(T1 const* begin1 , T1 const* end , T2 const* begin2 , U* out , BinOp

f)

3 {

4 // vectorization step based on ideal for output type

5 typedef pack <U> vU;

6 static const size_t N = vU:: static_size;

7

8 typedef pack <T1, N> vT1;

9 typedef pack <T2, N> vT2;

10

11 std:: size_t align = N*sizeof(U);

12 std:: size_t shift = reinterpret_cast <U*>(( reinterpret_cast <uinptr_t >(out)+

align -1) & ~(align -1)) - out;

13 T1 const* end2 = begin1 + shift;

14 T1 const* end3 = end2 + (end - end2)/N*N;

15

16 // prologue until 'out' aligned

17 for(; begin1 !=end2; ++begin1 , ++begin2 , ++out)

18 *out = f(*begin1 , *begin2);

19

20 // vectorized body while more than N elements

21 for(; begin1 !=end3; begin1 += N, begin2 += N, out += N)

22 simd:: store(f(simd:: unaligned_load <vT1 >( begin1), simd:: unaligned_load <vT2

>( begin2)), out);
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23

24 // epilogue for remaining elements

25 for(; begin1 !=end; ++begin1 , ++begin2 , ++out)

26 *out = f(*begin1 , *begin2);

27

28 return out;

29 }

C.2 Technical Speci�cations

Here, we present the public interface required for the proposal.

C.2.1 pack<T,N> class

1 namespace std { namespace simd

2 {

3 template <class T, std:: size_t N = $\textit{unspecified}$ >

4 struct alignas(sizeof(T)*N) pack

5 {

6 typedef T value_type;

7 typedef value_type& reference;

8 typedef value_type const& const_reference;

9 typedef T* iterator;

10 typedef T const* const_iterator;

11

12 static const size_t static_size = N;

13

14 // does not initialize values of pack

15 pack();

16

17 // copy constructor

18 pack(pack const& p);

19

20 // splat t N times into pack

21 pack(T t);

22

23 // fill pack with values from init

24 template <class T>

25 pack(initializer_list <T> init);

26

27 reference operator []( std:: size_t i);

28 const_reference operator []( std:: size_t i) const;

29 iterator begin();

30 const_iterator begin() const;

31 iterator end();

32 const_iterator end() const;

33 std:: size_t size() const;

34 bool empty() const;

35 };

36 } }
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C.2.2 logical<T> class

Listing C.1: The logical structure
1 template <typename T>

2 struct logical;

logical is a marker for packs of boolean results and cannot be used in scalar
mode.
C.2.3 Operators overload for pack<T,N>

C.2.3.1 Unary Operators

1 namespace std { namespace simd

2 {

3 template <class T, std:: size_t N>

4 pack <T,N> operator +(pack <T,N> p);

5

6 template <class T, std:: size_t N>

7 pack <T,N> operator -(pack <T,N> p);

8

9 template <class T, std:: size_t N>

10 typename as\_logical < pack <T,N> >::type operator !(pack <T,N> p);

11

12 template <class T, std:: size_t N>

13 pack <T,N> operator ~(pack <T,N> p);

14 } }

template<class T, std::size_t N>

pack<T,N> operator+(pack<T,N> p);

Requires: T is not a logical type.

E�ects: Apply unary operator+ on every element of p

Returns: A pack<T,N> value r so that ∀i ∈ [0, N [, r[i] = + p[i]

template<class T, std::size_t N>

pack<T,N> operator-(pack<T,N> p);

Requires: T is not a logical type.

E�ects: Apply unary operator- on every element of p

Returns: A pack<T,N> value r so that ∀i ∈ [0, N [, r[i] = - p[i]

template<class T, std::size_t N>

typename as_logical< pack<T,N> >::type operator!(pack<T,N> p);

E�ects: Apply unary operator! on every element of p

Returns: A as_logical< pack<T,N> >::type value r so that ∀i ∈ [0, N [, r[i] =

! p[i]
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1 template <class T, std:: size_t N>

2 pack <T,N> operator ~(pack <T,N> p);

E�ects: Apply unary operator� to every element of p

Returns: A pack<T,N> value r so that :

• If T is an integral type: ∀i ∈ [0, N [, r[i] = � p[i];

• If T is a �oating point type, the operation is performed on r[i] bit pattern;

• If T is a logical type: ∀i ∈ [0, N [, r[i] = !p[i].

C.2.3.2 Binary Operators

1 namespace std { namespace simd

2 {

3 template <class T, std:: size_t N>

4 pack <T,N> operator +(pack <T,N> p,pack <T,N> q);

5 template <class T, class U, std:: size_t N>

6 pack <T,N> operator +(pack <T,N> p, U q);

7 template <class T, class U, std:: size_t N>

8 pack <T,N> operator +(U p, pack <T,N> q);

9

10 template <class T, std:: size_t N>

11 pack <T,N> operator -(pack <T,N> p,pack <T,N> q);

12 template <class T, class U, std:: size_t N>

13 pack <T,N> operator -(pack <T,N> p, U q);

14 template <class T, class U, std:: size_t N>

15 pack <T,N> operator -(U p, pack <T,N> q);

16

17 template <class T, std:: size_t N>

18 pack <T,N> operator *(pack <T,N> p,pack <T,N> q);

19 template <class T, class U, std:: size_t N>

20 pack <T,N> operator *(pack <T,N> p, U q);

21 template <class T, class U, std:: size_t N>

22 pack <T,N> operator *(U p, pack <T,N> q);

23

24 template <class T, std:: size_t N>

25 pack <T,N> operator /(pack <T,N> p,pack <T,N> q);

26 template <class T, class U, std:: size_t N>

27 pack <T,N> operator /(pack <T,N> p, U q);

28 template <class T, class U, std:: size_t N>

29 pack <T,N> operator /(U p, pack <T,N> q);

30

31 template <class T, std:: size_t N>

32 pack <T,N> operator %(pack <T,N> p,pack <T,N> q);

33 template <class T, class U, std:: size_t N>

34 pack <T,N> operator %(pack <T,N> p, U q);

35 template <class T, class U, std:: size_t N>

36 pack <T,N> operator %(U p, pack <T,N> q);

37

38

39 template <class T, std:: size_t N>

40 pack <T,N> operator &(pack <T,N> p,pack <T,N> q);

41 template <class T, class U, std:: size_t N>

42 pack <T,N> operator &(pack <T,N> p, U q);

43 template <class T, class U, std:: size_t N>
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44 pack <T,N> operator &(U p, pack <T,N> q);

45

46 template <class T, std:: size_t N>

47 pack <T,N> operator |(pack <T,N> p,pack <T,N> q);

48 template <class T, class U, std:: size_t N>

49 pack <T,N> operator |(pack <T,N> p, U q);

50 template <class T, class U, std:: size_t N>

51 pack <T,N> operator |(U p, pack <T,N> q);

52

53 template <class T, std:: size_t N>

54 pack <T,N> operator ^(pack <T,N> p,pack <T,N> q);

55 template <class T, class U, std:: size_t N>

56 pack <T,N> operator ^(pack <T,N> p, U q);

57 template <class T, class U, std:: size_t N>

58 pack <T,N> operator ^(U p, pack <T,N> q);

59 } }

template<class T, std::size_t N>

pack<T,N> operator+(pack<T,N> p, pack<T,N> q);

Requires: T is not a logical type.

E�ects: Apply binary operator+ between every element of p and q

Returns: A pack<T,N> value r so that ∀i ∈ [0, N [, r[i] = p[i] + q[i]

template<class T, class U, std::size_t N>

pack<T,N> operator+(pack<T,N> p, U q);

Requires: T is not a logical type.

E�ects: Apply binary operator+ between every element of p and q

Returns: A pack<T,N> value r so that ∀i ∈ [0, N [, r[i] = p[i] +

static_cast<T>(q)

template<class T, class U, std::size_t N>

pack<T,N> operator+(U p, pack<T,N> q);

Requires: T is not a logical type.

E�ects: Apply binary operator+ between p and every element of q

Returns: A pack<T,N> value r so that ∀i ∈ [0, N [, r[i] = static_cast<T>(p) +

q[i]

template<class T, std::size_t N>

pack<T,N> operator-(pack<T,N> p, pack<T,N> q);

Requires: T is not a logical type.

E�ects: Apply binary operator- between every element of p and q

Returns: A pack<T,N> value r so that ∀i ∈ [0, N [, r[i] = p[i] - q[i]

template<class T, class U, std::size_t N>
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pack<T,N> operator-(pack<T,N> p, U q);

Requires: T is not a logical type.

E�ects: Apply binary operator- between every element of p and q

Returns: A pack<T,N> value r so that ∀i ∈ [0, N [, r[i] = p[i] -

static_cast<T>(q)

template<class T, class U, std::size_t N>

pack<T,N> operator-(U p, pack<T,N> q);

Requires: T is not a logical type.

E�ects: Apply binary operator- between p and every element of q

Returns: A pack<T,N> value r so that ∀i ∈ [0, N [, r[i] = static_cast<T>(p) -

q[i]

template<class T, std::size_t N>

pack<T,N> operator*(pack<T,N> p, pack<T,N> q);

Requires: T is not a logical type.

E�ects: Apply binary operator* between every element of p and q

Returns: A pack<T,N> value r so that ∀i ∈ [0, N [, r[i] = p[i] * q[i]

template<class T, class U, std::size_t N>

pack<T,N> operator*(pack<T,N> p, U q);

Requires: T is not a logical type.

E�ects: Apply binary operator* between every element of p and q

Returns: A pack<T,N> value r so that ∀i ∈ [0, N [, r[i] = p[i] *

static_cast<T>(q)

template<class T, class U, std::size_t N>

pack<T,N> operator*(U p, pack<T,N> q);

Requires: T is not a logical type.

E�ects: Apply binary operator* between p and every element of q

Returns: A pack<T,N> value r so that ∀i ∈ [0, N [, r[i] = static_cast<T>(p) *

q[i]

template<class T, std::size_t N>

pack<T,N> operator/(pack<T,N> p, pack<T,N> q);

Requires: T is not a logical type.
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E�ects: Apply binary operator/ between every element of p and q

Returns: A pack<T,N> value r so that ∀i ∈ [0, N [, r[i] = p[i] / q[i]

template<class T, class U, std::size_t N>

pack<T,N> operator/(pack<T,N> p, U q);

Requires: T is not a logical type.

E�ects: Apply binary operator/ between every element of p and q

Returns: A pack<T,N> value r so that ∀i ∈ [0, N [, r[i] = p[i] /

static_cast<T>(q)

template<class T, class U, std::size_t N>

pack<T,N> operator/(U p, pack<T,N> q);

Requires: T is not a logical type.

E�ects: Apply binary operator/ between p and every element of q

Returns: A pack<T,N> value r so that ∀i ∈ [0, N [, r[i] = static_cast<T>(p) /

q[i]

template<class T, std::size_t N>

pack<T,N> operator%(pack<T,N> p, pack<T,N> q);

Requires: T is not a logical type.

E�ects: Apply binary operator% between every element of p and q

Returns: A pack<T,N> value r so that ∀i ∈ [0, N [, r[i] = p[i] % q[i]

template<class T, class U, std::size_t N>

pack<T,N> operator%(pack<T,N> p, U q);

Requires: T is not a logical type.

E�ects: Apply binary operator% between every element of p and q

Returns: A pack<T,N> value r so that ∀i ∈ [0, N [, r[i] = p[i] %

static_cast<T>(q)

template<class T, class U, std::size_t N>

pack<T,N> operator%(U p, pack<T,N> q);

Requires: T is not a logical type.

E�ects: Apply binary operator% between p and every element of q

Returns: A pack<T,N> value r so that ∀i ∈ [0, N [, r[i] = static_cast<T>(p) %

q[i]

template<class T, std::size_t N>
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pack<T,N> operator&(pack<T,N> p, pack<T,N> q);

Requires: T is not a logical type.

E�ects: Apply binary operator& between every element of p and q

Returns: A pack<T,N> value r so that ∀i ∈ [0, N [, r[i] = p[i] & q[i]

template<class T, class U, std::size_t N>

pack<T,N> operator&(pack<T,N> p, U q);

Requires: T is not a logical type.

E�ects: Apply binary operator& between every element of p and q

Returns: A pack<T,N> value r so that ∀i ∈ [0, N [, r[i] = p[i] &

static_cast<T>(q)

template<class T, class U, std::size_t N>

pack<T,N> operator&(U p, pack<T,N> q);

Requires: T is not a logical type.

E�ects: Apply binary operator& between p and every element of q

Returns: A pack<T,N> value r so that ∀i ∈ [0, N [, r[i] = static_cast<T>(p) &

q[i]

template<class T, std::size_t N>

pack<T,N> operator|(pack<T,N> p, pack<T,N> q);

Requires: T is not a logical type.

E�ects: Apply binary operator| between every element of p and q

Returns: A pack<T,N> value r so that ∀i ∈ [0, N [, r[i] = p[i] | q[i]

template<class T, class U, std::size_t N>

pack<T,N> operator|(pack<T,N> p, U q);

Requires: T is not a logical type.

E�ects: Apply binary operator| between every element of p and q

Returns: A pack<T,N> value r so that ∀i ∈ [0, N [, r[i] = p[i] |

static_cast<T>(q)

template<class T, class U, std::size_t N>

pack<T,N> operator|(U p, pack<T,N> q);

Requires: T is not a logical type.

E�ects: Apply binary operator| between p and every element of q
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Returns: A pack<T,N> value r so that ∀i ∈ [0, N [, r[i] = static_cast<T>(p) |

q[i]

template<class T, std::size_t N>

pack<T,N> operator�(pack<T,N> p, pack<T,N> q);

Requires: T is not a logical type.

E�ects: Apply binary operator� between every element of p and q

Returns: A pack<T,N> value r so that ∀i ∈ [0, N [, r[i] = p[i] � q[i]

template<class T, class U, std::size_t N>

pack<T,N> operator�(pack<T,N> p, U q);

Requires: T is not a logical type.

E�ects: Apply binary operator� between every element of p and q

Returns: A pack<T,N> value r so that ∀i ∈ [0, N [, r[i] = p[i] �

static_cast<T>(q)

template<class T, class U, std::size_t N>

pack<T,N> operator�(U p, pack<T,N> q);

Requires: T is not a logical type.

E�ects: Apply binary operator� between p and every element of q

Returns: A pack<T,N> value r so that ∀i ∈ [0, N [, r[i] = static_cast<T>(p) �

q[i]

C.2.3.3 Logical Operators

1 namespace std { namespace simd

2 {

3 template <class T, std:: size_t N>

4 pack <T,N> operator <(pack <T,N> p,pack <T,N> q);

5 template <class T, class U, std:: size_t N>

6 pack <T,N> operator <(pack <T,N> p, U q);

7 template <class T, class U, std:: size_t N>

8 pack <T,N> operator <(U p, pack <T,N> q);

9

10 template <class T, std:: size_t N>

11 pack <T,N> operator >(pack <T,N> p,pack <T,N> q);

12 template <class T, class U, std:: size_t N>

13 pack <T,N> operator >(pack <T,N> p, U q);

14 template <class T, class U, std:: size_t N>

15 pack <T,N> operator >(U p, pack <T,N> q);

16

17 template <class T, std:: size_t N>

18 pack <T,N> operator <=(pack <T,N> p,pack <T,N> q);

19 template <class T, class U, std:: size_t N>

20 pack <T,N> operator <=(pack <T,N> p, U q);
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21 template <class T, class U, std:: size_t N>

22 pack <T,N> operator <=(U p, pack <T,N> q);

23

24 template <class T, std:: size_t N>

25 pack <T,N> operator >=(pack <T,N> p,pack <T,N> q);

26 template <class T, class U, std:: size_t N>

27 pack <T,N> operator >=(pack <T,N> p, U q);

28 template <class T, class U, std:: size_t N>

29 pack <T,N> operator >=(U p, pack <T,N> q);

30

31 template <class T, std:: size_t N>

32 pack <T,N> operator ==(pack <T,N> p,pack <T,N> q);

33 template <class T, class U, std:: size_t N>

34 pack <T,N> operator ==(pack <T,N> p, U q);

35 template <class T, class U, std:: size_t N>

36 pack <T,N> operator ==(U p, pack <T,N> q);

37

38 template <class T, std:: size_t N>

39 pack <T,N> operator !=(pack <T,N> p,pack <T,N> q);

40 template <class T, class U, std:: size_t N>

41 pack <T,N> operator !=(pack <T,N> p, U q);

42 template <class T, class U, std:: size_t N>

43 pack <T,N> operator !=(U p, pack <T,N> q);

44

45 template <class T, std:: size_t N>

46 pack <T,N> operator &&(pack <T,N> p,pack <T,N> q);

47 template <class T, class U, std:: size_t N>

48 pack <T,N> operator &&(pack <T,N> p, U q);

49 template <class T, class U, std:: size_t N>

50 pack <T,N> operator &&(U p, pack <T,N> q);

51

52 template <class T, std:: size_t N>

53 pack <T,N> operator ||(pack <T,N> p,pack <T,N> q);

54 template <class T, class U, std:: size_t N>

55 pack <T,N> operator ||(pack <T,N> p, U q);

56 template <class T, class U, std:: size_t N>

57 pack <T,N> operator ||(U p, pack <T,N> q);

58

59

60 } }

template<class T, std::size_t N>

as_logical<pack<T,N� operator<(pack<T,N> p, pack<T,N> q);

E�ects: Apply binary operator< between every element of p and q

Returns: A logical value r so that ∀i ∈ [0, N [, r[i] = p[i] < q[i]

template<class T, class U, std::size_t N>

as_logical<pack<T,N� operator<(pack<T,N> p, U q);

E�ects: Apply binary operator< between every element of p and q

Returns: A logical value r so that ∀i ∈ [0, N [, r[i] = p[i] < static_cast<T>(q)

template<class T, class U, std::size_t N>

as_logical<pack<T,N� operator<(U p, pack<T,N> q);
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E�ects: Apply binary operator< between p and every element of q

Returns: A logical value r so that ∀i ∈ [0, N [, r[i] = static_cast<T>(p) < q[i]

template<class T, std::size_t N>

as_logical<pack<T,N� operator>(pack<T,N> p, pack<T,N> q);

E�ects: Apply binary operator> between every element of p and q

Returns: A logical value r so that ∀i ∈ [0, N [, r[i] = p[i] > q[i]

template<class T, class U, std::size_t N>

as_logical<pack<T,N� operator>(pack<T,N> p, U q);

E�ects: Apply binary operator> between every element of p and q

Returns: A logical value r so that ∀i ∈ [0, N [, r[i] = p[i] > static_cast<T>(q)

template<class T, class U, std::size_t N>

as_logical<pack<T,N� operator>(U p, pack<T,N> q);

E�ects: Apply binary operator> between p and every element of q

Returns: A logical value r so that ∀i ∈ [0, N [, r[i] = static_cast<T>(p) > q[i]

template<class T, std::size_t N>

as_logical<pack<T,N� operator<=(pack<T,N> p, pack<T,N> q);

E�ects: Apply binary operator<= between every element of p and q

Returns: A logical value r so that ∀i ∈ [0, N [, r[i] = p[i] <= q[i]

template<class T, class U, std::size_t N>

as_logical<pack<T,N� operator<=(pack<T,N> p, U q);

E�ects: Apply binary operator<= between every element of p and q

Returns: A logical value r so that ∀i ∈ [0, N [, r[i] = p[i] <= static_cast<T>(q)

template<class T, class U, std::size_t N>

as_logical<pack<T,N� operator<=(U p, pack<T,N> q);

E�ects: Apply binary operator<= between p and every element of q

Returns: A logical value r so that ∀i ∈ [0, N [, r[i] = static_cast<T>(p) <=

q[i]

template<class T, std::size_t N>

as_logical<pack<T,N� operator>=(pack<T,N> p, pack<T,N> q);

E�ects: Apply binary operator>= between every element of p and q
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Returns: A logical value r so that ∀i ∈ [0, N [, r[i] = p[i] >= q[i]

template<class T, class U, std::size_t N>

as_logical<pack<T,N� operator>=(pack<T,N> p, U q);

E�ects: Apply binary operator>= between every element of p and q

Returns: A logical value r so that ∀i ∈ [0, N [, r[i] = p[i] >= static_cast<T>(q)

template<class T, class U, std::size_t N>

as_logical<pack<T,N� operator>=(U p, pack<T,N> q);

E�ects: Apply binary operator>= between p and every element of q

Returns: A logical value r so that ∀i ∈ [0, N [, r[i] = static_cast<T>(p) >=

q[i]

template<class T, std::size_t N>

as_logical<pack<T,N� operator==(pack<T,N> p, pack<T,N> q);

E�ects: Apply binary operator== between every element of p and q

Returns: A logical value r so that ∀i ∈ [0, N [, r[i] = p[i] == q[i]

template<class T, class U, std::size_t N>

as_logical<pack<T,N� operator==(pack<T,N> p, U q);

E�ects: Apply binary operator== between every element of p and q

Returns: A logical value r so that ∀i ∈ [0, N [, r[i] = p[i] == static_cast<T>(q)

template<class T, class U, std::size_t N>

as_logical<pack<T,N� operator==(U p, pack<T,N> q);

E�ects: Apply binary operator== between p and every element of q

Returns: A logical value r so that ∀i ∈ [0, N [, r[i] = static_cast<T>(p) ==

q[i]

template<class T, std::size_t N>

as_logical<pack<T,N� operator!=(pack<T,N> p, pack<T,N> q);

E�ects: Apply binary operator!= between every element of p and q

Returns: A logical value r so that ∀i ∈ [0, N [, r[i] = p[i] != q[i]

template<class T, class U, std::size_t N>

as_logical<pack<T,N� operator!=(pack<T,N> p, U q);
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E�ects: Apply binary operator!= between every element of p and q

Returns: A logical value r so that ∀i ∈ [0, N [, r[i] = p[i] != static_cast<T>(q)

template<class T, class U, std::size_t N>

as_logical<pack<T,N� operator!=(U p, pack<T,N> q);

E�ects: Apply binary operator!= between p and every element of q

Returns: A logical value r so that ∀i ∈ [0, N [, r[i] = static_cast<T>(p) !=

q[i]

template<class T, std::size_t N>

as_logical<pack<T,N� operator&&(pack<T,N> p, pack<T,N> q);

E�ects: Apply binary operator&& between every element of p and q

Returns: A logical value r so that ∀i ∈ [0, N [, r[i] = p[i] && q[i]

template<class T, class U, std::size_t N>

as_logical<pack<T,N� operator&&(pack<T,N> p, U q);

E�ects: Apply binary operator&& between every element of p and q

Returns: A logical value r so that ∀i ∈ [0, N [, r[i] = p[i] && static_cast<T>(q)

template<class T, class U, std::size_t N>

as_logical<pack<T,N� operator&&(U p, pack<T,N> q);

E�ects: Apply binary operator&& between p and every element of q

Returns: A logical value r so that ∀i ∈ [0, N [, r[i] = static_cast<T>(p) &&

q[i]

template<class T, std::size_t N>

as_logical<pack<T,N� operator||(pack<T,N> p, pack<T,N> q);

E�ects: Apply binary operator|| between every element of p and q

Returns: A logical value r so that ∀i ∈ [0, N [, r[i] = p[i] || q[i]

template<class T, class U, std::size_t N>

as_logical<pack<T,N� operator||(pack<T,N> p, U q);

E�ects: Apply binary operator|| between every element of p and q

Returns: A logical value r so that ∀i ∈ [0, N [, r[i] = p[i] || static_cast<T>(q)

template<class T, class U, std::size_t N>

as_logical<pack<T,N� operator||(U p, pack<T,N> q);
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E�ects: Apply binary operator|| between p and every element of q

Returns: A logical value r so that ∀i ∈ [0, N [, r[i] = static_cast<T>(p) || q[i]

C.2.3.4 Ternary Operators

1 namespace std { namespace simd

2 {

3 template <class T, class U, std:: size_t N>

4 pack <T,N> if_else(pack <U,N> c,pack <T,N> t,pack <T,N> f);

5

6 template <class T, class U, std:: size_t N>

7 pack <T,N> if_else(U c,pack <T,N> t,pack <T,N> f);

8

9 template <class T, class U, std:: size_t N>

10 pack <T,N> if_else(pack <U,N> c, T t,pack <T,N> f);

11

12 template <class T, class U, std:: size_t N>

13 pack <T,N> if_else(pack <U,N> c, pack <T,N> t,T f);

14 } }

1 template <class T, class U, std:: size_t N>

2 pack <T,N> if_else(pack <U,N> c,pack <T,N> t,pack <T,N> f);

E�ects: Apply ternary operator?: between every element of c, t and f

Returns: A pack<T,N> value r so that ∀i ∈ [0, N [, r[i] = c[i] ? t[i] : f[i]

1 template <class T, class U, std:: size_t N>

2 pack <T,N> if_else(U c,pack <T,N> t,pack <T,N> f);

E�ects: Apply ternary operator?: between c and every element of t and f

Returns: A pack<T,N> value r so that ∀i ∈ [0, N [, r[i] = c ? t[i] : f[i]

1 template <class T, class U, std:: size_t N>

2 pack <T,N> if_else(pack <U,N> c,T t,pack <T,N> f);

E�ects: Apply ternary operator?: between t and every element of c and f

Returns: A pack<T,N> value r so that ∀i ∈ [0, N [, r[i] = c[i] ? t : f[i]

1 template <class T, class U, std:: size_t N>

2 pack <T,N> if_else(pack <U,N> c,pack <T,N> t,T f);

E�ects: Apply ternary operator?: between f and every element of c and t

Returns: A pack<T,N> value r so that ∀i ∈ [0, N [, r[i] = c[i] ? t[i] : f
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Non-Normative Note If c is a logical type or a pack of logical type, imple-
mentation of if_else can be optimized by not requiring the conversion of c to an
actual SIMD bitmask.

C.2.4 Functions

C.2.4.1 Memory related Functions

1 namespace std { namespace simd

2 {

3 // replicate a scalar value in a pack

4 template <class T, class U>

5 T splat(U v);

6

7 // convert a pack

8 template <class T, std:: size_t N, class U>

9 T splat(pack <U, N> v);

10

11 // aligned load

12 template <class T, class U>

13 T load(U* p);

14

15 template <class T, class U>

16 T load(U* p, std:: ptrdiff_t o);

17

18 // aligned gather

19 template <class T, class U, class V, std:: size_t N>

20 T load(U* p, pack <V, N> o);

21

22 // load with static misalignment

23 template <class T, std:: ptrdiff_t A, class U>

24 T load(U* p);

25

26 template <class T, std:: ptrdiff_t A, class U>

27 T load(U* p, std:: ptrdiff_t o);

28

29 // gather with static misalignment

30 template <class T, std:: ptrdiff_t A, class U, class V, std:: size_t N>

31 T load(U* p, pack <V, N> o);

32

33 // unaligned load

34 template <class T, class U>

35 T unaligned_load(U* p);

36

37 template <class T, class U>

38 T unaligned_load(U* p, std:: ptrdiff_t o);

39

40 // gather

41 template <class T, class U, class V, std:: size_t N>

42 T unaligned_load(U* p, pack <V, N> o);

43

44 // aligned store

45 template <class T, class U>

46 void store(T v, U* p);

47

48 template <class T, class U>

49 void store(T v, U* p, std:: ptrdiff_t o);

50

51 // aligned scatter

52 template <class T, class U, class V, std:: size_t N>
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53 void store(pack <T, N> v, U* p, pack <V, N> o);

54

55 // unaligned store

56 template <class T, class U>

57 void unaligned_store(T v, U* p);

58

59 template <class T, class U>

60 void unaligned_store(T v, U* p, std:: ptrdiff_t o);

61

62 // scatter

63 template <class T, class U, class V, std:: size_t N>

64 void unaligned_store(pack <T, N> v, U* p, pack <V, N> o);

65 } }

1 template <class T, class U>

2 T splat(U v);

E�ects: Convert the value v to the type T, replicate the value if T is a pack.

Returns: If T is pack<T2,N>, return a value r so that ∀i ∈ [0, N [, r[i] =

static_cast<T2>(v).
else r = static_cast<T>(v).

1 template <class T, class U, std:: size_t N>

2 T splat(pack <U, N> v);

Requires: T is pack<T2,N>.

E�ects: Convert each element of v from U to T2.

Returns: Return a value r so that ∀i ∈ [0, N [, r[i] = static_cast<T2>(v[i]).

Note: While the cardinal of the two packs is the same, the size of the element and
therefore the register type being used may change arbitrarily between the input
and output of this function.

1 template <class T, class U>

2 T load(U* p);

Requires: U is not a pack type, p is aligned on a boundary suitable for loading
objects of type T.

E�ects: Load an object of type T from aligned memory, possibly after doing a type
conversion.

Returns: If T is pack<T2,N>, return a value r so that ∀i ∈ [0, N [, r[i] =

static_cast<T2>(p[i]).
else r = static_cast<T>(*p).
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1 template <class T, class U>

2 T load(U* p, std:: ptrdiff_t o);

Requires: U is not a pack type, p+o is aligned on a boundary suitable for loading
objects of type T.

E�ects: Load an object of type T from aligned memory, possibly after doing a type
conversion.

Returns: If T is pack<T2,N>, return a value r so that ∀i ∈ [0, N [, r[i] =

static_cast<T2>(p[o+i]).
else r = static_cast<T>(p[o]).

1 template <class T, class U, class V, std:: size_t N>

2 T load(U* p, pack <V, N> o);

Requires: U is not a pack type, T is pack<T2,N> and all of of p+o[i] are aligned on
a boundary suitable for loading objects of type T.

E�ects: Load an object of type T from aligned indexed memory, possibly after
doing a type conversion.

Returns: Return a value r so that ∀i ∈ [0, N [, r[i] = static_cast<T2>(p[o[i]]).

Note: This is usually known as a gather operation.

1 template <class T, std:: ptrdiff_t A, class U>

2 T load(U* p);

Requires: U is not a pack type, p-A is aligned on a boundary suitable for loading
objects of type T.

E�ects: Load an object of type T from memory whose misalignment is A, possibly
after doing a type conversion.

Returns: If T is pack<T2,N>, return a value r so that ∀i ∈ [0, N [, r[i] =

static_cast<T2>(p[i]).
else r = static_cast<T>(*p).

1 template <class T, std:: ptrdiff_t A, class U>

2 T load(U* p, std:: ptrdiff_t o);

Requires: U is not a pack type, p+o-A is aligned on a boundary suitable for loading
objects of type T.
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E�ects: Load an object of type T from memory whose misalignment is A, possibly
after doing a type conversion.

Returns: If T is pack<T2,N>, return a value r so that ∀i ∈ [0, N [, r[i] =

static_cast<T2>(p[o+i]).
else r = static_cast<T>(p[o]).

1 template <class T, std:: ptrdiff_t A, class U, class V, std:: size_t N>

2 T load(U* p, pack <V, N> o);

Requires: U is not a pack type, T is pack<T2,N> and all of of p+o[i]-A are aligned
on a boundary suitable for loading objects of type T.

E�ects: Load an object of type T from indexed memory whose misalignment is A,
possibly after doing a type conversion.

Returns: Return a value r so that ∀i ∈ [0, N [, r[i] = static_cast<T2>(p[o[i]]).

Note: This is usually known as a gather operation.

1 template <class T, class U>

2 T unaligned_load(U* p);

Requires: U is not a pack type.

E�ects: Load an object of type T from memory, possibly after doing a type
conversion.

Returns: If T is pack<T2,N>, return a value r so that ∀i ∈ [0, N [, r[i] =

static_cast<T2>(p[i]).
else r = static_cast<T>(*p).

1 template <class T, class U>

2 T unaligned_load(U* p, std:: ptrdiff_t o);

Requires: U is not a pack type.

E�ects: Load an object of type T from memory, possibly after doing a type
conversion.

Returns: If T is pack<T2,N>, return a value r so that ∀i ∈ [0, N [, r[i] =

static_cast<T2>(p[o+i]).
else r = static_cast<T>(p[o]).

1 template <class T, class U, class V, std:: size_t N>

2 T unaligned_load(U* p, pack <V, N> o);
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Requires: U is not a pack type, T is pack<T2,N>.

E�ects: Load an object of type T from indexed memory, possibly after doing a type
conversion.

Returns: Return a value r so that ∀i ∈ [0, N [, r[i] = static_cast<T2>(p[o[i]]).

Note: This is usually known as a gather operation.

1 template <class T, class U>

2 void store(T v, U* p);

Requires: U is not a pack type, p is aligned on a boundary suitable for storing
objects of type T.

E�ects: Store the object v to memory to aligned memory, possibly after doing a
type conversion.
If T is pack<T2,N>, ∀i ∈ [0, N [, p[i] = static_cast<T2>(v[i]).
else *p = static_cast<T>(v).

1 template <class T, class U>

2 void store(T v, U* p, std:: ptrdiff_t o);

Requires: U is not a pack type, p+o is aligned on a boundary suitable for storing
objects of type T.

E�ects: Store the object v to memory to aligned memory, possibly after doing a
type conversion.
If T is pack<T2,N>, ∀i ∈ [0, N [, p[o+i] = static_cast<T2>(v[i]).
else p[o] = static_cast<T>(v).

1 template <class T, class U, class V, std:: size_t N>

2 void store(pack <T, N> v, U* p, pack <V, N> o);

Requires: U is not a pack type and all of p+o[i] are aligned on a boundary suitable
for storing objects of type T.

E�ects: Store the object v to aligned indexed memory, possibly after doing a type
conversion.
Return a value r so that ∀i ∈ [0, N [, p[o[i]] = static_cast<T2>(v[i]).

Note: This is usually known as a scatter operation.

1 template <class T, class U>

2 void unaligned_store(T v, U* p);
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Requires: U is not a pack type.

E�ects: Store the object v to memory, possibly after doing a type conversion.
If T is pack<T2,N>, ∀i ∈ [0, N [, p[i] = static_cast<T2>(v[i]).
else *p = static_cast<T>(v).

1 template <class T, class U>

2 void unaligned_store(T v, U* p, std:: ptrdiff_t o);

Requires: U is not a pack type.
E�ects: Store the object v to memory, possibly after doing a type conversion.
If T is pack<T2,N>, ∀i ∈ [0, N [, p[o+i] = static_cast<T2>(v[i]).
else p[o] = static_cast<T>(v).

1 template <class T, class U, class V, std:: size_t N>

2 void unaligned_store(pack <T, N> v, U* p, pack <V, N> o);

Requires: U is not a pack type and all of p+o[i] are aligned on a boundary suitable
for storing objects of type T.

E�ects: Store the object v to indexed memory, possibly after doing a type
conversion.
Return a value r so that ∀i ∈ [0, N [, p[o[i]] = static_cast<T2>(v[i]).

Note: This is usually known as a scatter operation.

C.2.4.2 Shu�ing Functions

1 namespace std { namespace simd

2 {

3 template <class F, class T, std:: size_t N>

4 pack <T,N> shuffle(pack <T,N> p);

5 } }

Requires: F is a metafunction class.

E�ects: �lls the elements of the destination pack<T,N> r with the elements of p
respecting the following expression : r[i] = p[F::template apply<i,N>::value]

∀i ∈ [0, N [.

Returns: The resulting pack<T,N>.

1 namespace std { namespace simd

2 {

3 template <std:: ptrdiff_t ... I, class T, std:: size_t N>

4 pack <T,N> shuffle(pack <T,N> p);

5 } }
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Requires: sizeof...(I) is equal to N and I belongs to [0, N [.

E�ects: �lls the elements of the destination pack<T,N> r with the elements of p
respecting the following expression : r[i] = p[F::template apply<i,N>::value]

∀i ∈ [0, N [.

Returns: The resulting pack<T,N>.

1 namespace std { namespace simd

2 {

3 template <class F, class T, std:: size_t N>

4 pack <T,N> shuffle(pack <T,N> p1, pack <T,N> p2);

5 } }

Requires: F is a metafunction class.

E�ects: �lls the elements of the destination pack<T,N> r with the elements of p re-
specting the following expression : r[i] = (F::template apply<i,N>::value<N)

? p[F::template apply<i,N>::value] : p[F::template apply<i,N>::value

- N] ∀i ∈ [0, N [.

Returns: The resulting pack<T,N>.

1 namespace std { namespace simd

2 {

3 template <std:: ptrdiff_t ... I, class T, std:: size_t N>

4 pack <T,N> shuffle(pack <T,N> p1, pack <T,N> p2);

5 } }

Requires: sizeof...(I) is equal to N and I belongs to [0, N [.

E�ects: �lls the elements of the destination pack<T,N> r with the el-
ements of p respecting the following expression : r[i]=(F::template

apply<i,N>::value<N)?p[F::template apply<i,N>::value]:p[F::template

apply<i,N>::value-N] ∀i ∈ [0, N [.

Returns: The resulting pack<T,N>.

C.2.4.3 Reduction Functions

1 namespace std { namespace simd

2 {

3 template <class T > T sum(T p);

4 template <class T, std:: size_t N> T sum(pack <T,N> p);

5 template <class T > T prod(T p);

6 template <class T, std:: size_t N> T prod(pack <T,N> p);

7 template <class T > T min(T p);

8 template <class T, std:: size_t N> T min(pack <T,N> p);

9 template <class T > T max(T p);

10 template <class T, std:: size_t N> T max(pack <T,N> p);

11
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12 template <class T > bool all(T p);

13 template <class T, std:: size_t N> bool all(pack <T,N> p);

14 template <class T > bool any(T p);

15 template <class T, std:: size_t N> bool any(pack <T,N> p);

16 template <class T > bool none(T p);

17 template <class T, std:: size_t N> bool none(pack <T,N> p);

18 } }

C.2.4.4 cmath Functions

The function supported includes all of the mathematical functions available in the
cmath header C.1.

Table C.1: Functions on pack

Generic Name Description

abs computes the absolute value

div the quotient and remainder of integer division

fmod remainder of the �oating point division operation

remainder signed remainder of the division operation

fma fused multiply-add operation

max larger of two values

min smaller of two values

dim positive di�erence of two �oating point values

nan not-a-number

exp returns e raised to the given power

exp2 returns 2 raised to the given power

expm1 returns e raised to the given power, minus one

log computes natural (base e) logarithm (to base e)

log10 computes common (base 10) logarithm

log1p natural logarithm (to base e) of 1 plus the given number

log2p base 2 logarithm of the given number

sqrt computes square root

cbrt computes cubic root

hypot computes square root of the sum of the squares of two given numbers

pow raises a number to the given power

sin and variants computes sine (arc sine, hyperbolic sine)

cos and variants computes cosine (arc cosine, hyperbolic cosine)

tan and variants computes tangent (arc tangent, hyperbolic tangent)

erf error function

erfc complementary error function

lgamma natural logarithm of the gamma function

tgamma gamma function

ceil nearest integer not less than the given value

�oor nearest integer not greater than the given value

trunc nearest integer not greater in magnitude than the given value

round nearest integer, rounding away from zero in halfway cases

nearbyint nearest integer using current rounding mode

rint nearest integer using current rounding mode with exception if the result di�ers

frexp decomposes a number into signi�cand and a power of 2

ldexp multiplies a number by 2 raised to a power

modf decomposes a number into integer and fractional parts

logb extracts exponent of the number

nextafter/nexttoward next representable �oating point value towards the given value
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Table C.1: Functions on pack

Generic Name Description

copysign copies the sign of a value

is�nite checks if the given number has �nite value

isinf checks if the given number is in�nite

isnan checks if the given number is NaN

isnormal checks if the given number is normal

signbit checks if the given number is negative

isgreater checks if the �rst �oating-point argument is greater than the second

isgreaterequal checks if the �rst �oating-point argument is greater or equal than the second

isless checks if the �rst �oating-point argument is less than the second

islessequal checks if the �rst �oating-point argument is less or equal than the second

islessgreater checks if the �rst �oating-point argument is less or greater than the second

isunordered checks if two �oating-point values are unordered

C.2.5 Traits and metafunctions

1 namespace std { namespace simd

2 {

3 template <class T> struct scalar_of;

4

5 template <class T> struct cardinal_of;

6

7 template <class T> struct as_logical;

8 } }

1 template <class T> struct scalar_of;

Returns: If T is a cv or reference quali�ed pack<T2, N> type, return T2 with the
same cv and reference quali�ers. Otherwise return T.

1 template <class T> struct cardinal_of;

Returns: If T is a cv or reference quali�ed pack<T2, N> type, return
integral_constant<size_t, N>. Otherwise return integral_constant<size_t,

1>.

1 template <class T> struct as_logical;

Returns: If T is a cv or reference quali�ed pack<T2, N> type with T2 a non-logical
type, return pack<logical<T2>, N> with the same cv and reference quali�ers.
Else if T is a cv or reference quali�ed non-logical type T2, return logical<T2> with
the same cv and reference quali�ers. Otherwise return T.
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Meta-Unroller

Listing D.1 presents an implementation of a meta-unroller based on a Du�'s devices
optimization.

Listing D.1: A Meta-Unroller based on a Du�'s devices optimization
1 template <int N>

2 struct unroll

3 {};

4

5 template <>

6 struct unroll <0>

7 {

8 template <class SimdInputIterator , class SimdOutputIterator , class UnOp >

9 inline static void

10 apply( SimdInputIterator& in, SimdInputIterator const& end

11 , SimdOutputIterator& out , UnOp f)

12 {

13 while(in != end)

14 *out++ = f(*in++);

15 }

16

17 template <class SimdInputIterator , class SimdOutputIterator , class BinOp >

18 inline static void

19 apply( SimdInputIterator& in1 , SimdInputIterator& in2

20 , SimdInputIterator const& end , SimdOutputIterator& out , BinOp f)

21 {

22 while(in1 != end)

23 *out++ = f(*in1++,*in2++);

24 }

25

26 };

27

28 template <>

29 struct unroll <2>

30 {

31 template <class SimdInputIterator , class SimdOutputIterator , class UnOp >

32 inline static void

33 apply( SimdInputIterator& in, SimdInputIterator const& end

34 , SimdOutputIterator& out , UnOp f)

35 {

36 typename SimdInputIterator :: difference_type distance = end - in;

37 typename SimdInputIterator :: difference_type n = (distance + 1) / 2;

38

39 switch(distance % 2)

40 {

41 case 0 : do{

42 *out++ = f(*in++);

43 case 1 : *out++ = f(*in++);

44 } while(--n > 0);

45 }

46 }
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47

48 template <class SimdInputIterator , class SimdOutputIterator , class BinOp >

49 inline static void

50 apply( SimdInputIterator& in1 , SimdInputIterator& in2

51 , SimdInputIterator const& end , SimdOutputIterator& out , BinOp f)

52 {

53 typename SimdInputIterator :: difference_type distance = end - in1;

54 typename SimdInputIterator :: difference_type n = (distance + 1) / 2;

55

56 switch(distance % 2)

57 {

58 case 0 : do{

59 *out++ = f(*in1++,*in2++);

60 case 1 : *out++ = f(*in1++,*in2++);

61 } while(--n > 0);

62 }

63 }

64 };

65

66 template <>

67 struct unroll <4>

68 {

69 template <class SimdInputIterator , class SimdOutputIterator , class UnOp >

70 inline static void

71 apply( SimdInputIterator& in, SimdInputIterator const& end

72 , SimdOutputIterator& out , UnOp f)

73 {

74 typename SimdInputIterator :: difference_type distance = end - in;

75 typename SimdInputIterator :: difference_type n = (distance + 3) / 4;

76

77 switch(distance % 4)

78 {

79 case 0 : do{

80 *out++ = f(*in++);

81 case 3 : *out++ = f(*in++);

82 case 2 : *out++ = f(*in++);

83 case 1 : *out++ = f(*in++);

84 } while(--n > 0);

85 }

86 }

87

88 template <class SimdInputIterator , class SimdOutputIterator , class BinOp >

89 inline static void

90 apply( SimdInputIterator& in1 , SimdInputIterator& in2

91 , SimdInputIterator const& end , SimdOutputIterator& out , BinOp f)

92 {

93 typename SimdInputIterator :: difference_type distance = end - in1;

94 typename SimdInputIterator :: difference_type n = (distance + 3) / 4;

95

96 switch(distance % 4)

97 {

98 case 0 : do{

99 *out++ = f(*in1++,*in2++);

100 case 3 : *out++ = f(*in1++,*in2++);

101 case 2 : *out++ = f(*in1++,*in2++);

102 case 1 : *out++ = f(*in1++,*in2++);

103 } while(--n > 0);

104 }

105 }

106

107 };
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Multi-Architectural Support: A Generic and Generative Approach

Abstract: The constant increasing need for computing power has pushed

the development of parallel architectures. Scienti�c computing relies on the

performance of such architectures to produce scienti�c results. Programming

e�cient applications that takes advantage of these computing systems

remains a non trivial task.

In this thesis, we present a new methodology to design architecture aware

software: the AA-DEMRAL methodology. This methodology aims at simpli-

fying the development of parallel programming tools with multi-architectural

support through a generic and generative approach.

We then present three high level programming tools that rely on

this approach. First, we introduce the Boost.Dispatch library that

provides a way to develop software based on the AA-DEMRAL method-

ology. The Boost.Dispatch library is a C++ generic framework for

architecture aware function dispatching. Then, we present two C++ tem-

plate libraries implemented as Architecture Aware DSELs which assess

the AA-DEMRAL methodology through the use of Boost.Dispatch:

Boost.SIMD, that provides a high level API for SIMD extensions and NT2 ,

which propose a Matlab like interface with support for multi-core and

SIMD based systems. We assess the performance of these libraries and the

validity of our new methodology through benchmarks.

Keywords: Parallel architectures, DSELs , Active Library, Generative

Programming, Generic Programming, C++ .
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