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Résumé

Le principal objectif de la these était d’établir un cadre d’étude des commu-
nications efficace énergétiquement en définissant et en justifiant de nouvelles
mesures d’efficacité énergétique pour divers systémes sans fils. En général,
le rendement énergétique est défini comme le rapport entre le débit total
et la puissance totale consommée par I’émetteur. Cette définition implique
que, lorsqu’une re-transmission est autorisée (dans le cas d’une erreur sur
les paquets), la maximisation de l'efficacité énergétique peut conduire direc-
tement a minimiser I’énergie dépensée lors de la transmission d’une unité
d’information.

La technique d’utilisation de plusieurs antennes a la fois sur I’émetteur
et le récepteur (MIMO ) , est maintenant bien établie dans le domaine de
la communication sans fil et de la théorie de I'information. Dans ce travail,
Pefficacité énergétique d’un systeme MIMO point-a-point est étudiée a la
fois dans le cas d’information imparfaite sur I’état du canal (CSI) est dis-
ponible uniquement a I’émetteur et dans le cas d’information imparfaite sur
Iétat du canal (CSI) est disponible uniquement au niveau du récepteur. Les
résultats de ’analyse indiquent que, dans les deux cas, il existe une unique
puissance d’émission optimale et que celle-ci permettra de maximiser 1’effi-
cacité énergétique.

D’autres résultats montrent également que, lorsque l'information sur
I’état du canal est imparfaite, et ’estimation de canal est nécessaire, utiliser
toutes les antennes d’émission disponibles n’est pas optimal pour la com-
munication a faible consommation d’énergie lorsque le temps de cohérence
du canal est fini. L’efficacité énergétique d’un réseau de petites cellules cen-
tralisé utilisant un MIMO virtuel pour une meilleure efficacité spectrale a
également été analysée dans ce travail. , Il a ainsi été montré que le parametre
ayant l’effet maximal sur D'efficacité énergétique est le schéma du mode de
sommeil des petites cellules. Dans la plupart des systémes en pratique, les
émetteurs (dans la couche physique) ont un tampon de mémoire dans lequel
des paquets de données arrivent a partir des couches supérieures selon un
processus stochastique. L’efficacité énergétique inter-couche de I’émetteur,
en tenant compte de la nature sporadique de ces arrivées de paquets a été
étudiée dans la section suivante de la theése. Une nouvelle métrique d’effica-
cité énergétique a été congue pour un tel systeme et il a été montré que cette
nouvelle métrique est quasi- concave par rapport a la puissance d’émission
sous certaines hypotheses sur le taux d’arrivée des paquets. Une formulation
de ce probleme par la théorie des jeux, ou chaque émetteur agit en tant que
décideur, a également été proposée dans un réseau d’interférence et il a été
montré que le jeu de commande de puissance résultant avait un équilibre de
Nash unique. En outre, un algorithme de meilleure réponse qui permettrait



aux décideurs indépendants d’atteindre cet équilibre de maniere distribuée
a également été proposé.

En conclusion, ce travail développe un cadre pour l'efficacité énergétique
pour les cas généraux de controle de puissance dans la couche physique
avec MIMO et inter-couche avec une arrivée de paquets sporadique. Des
algorithmes centralisés et décentralisés pour atteindre un point de fonction-
nement économe en énergie pour les systemes a 1’étude ont été proposés. Les
résultats mettent en évidence le compromis entre la consommation d’énergie
et les taux de date en ce qui concerne 'efficacité énergétique des réseaux
sans fil.Le principal objectif de la these était d’établir un cadre d’étude des
communications efficaceénergétiquement en définissant et en justifiant de
nouvelles mesures d’efficacité énergétique pour divers systemes sans fils.



Abstract

The main objective of the thesis was to establish a framework for energy-
efficient communication by defining and justifying novel energy-efficiency
metrics for various wireless systems and settings. In general, the energy-
efficiency is defined as the ratio of the total data rate to the total power con-
sumed at the transmitter. This definition implies that, when re-transmission
is allowed (in the case of outage), maximizing energy-efficiency can directly
lead to minimizing the energy spent in transmitting a unit of information.

The technique of using multiple antennas both at the transmitter and
receiver (MIMO), is well established in the field of wireless communication
and information theory. In this work, the energy-efficiency of a MIMO point-
to-point link is studied both when imperfect channel state information (CSI)
is available at the transmitter and when imperfect CSI is available only at the
receiver. The analytical results indicate that in both cases, a unique optimal
transmit power exists which will maximize the energy-efficiency. Additional
results also show that when the CSI is imperfect, and channel estimation is
required, using all the available transmit antennas is not optimal for energy-
efficient communication when the coherence time of the channel is finite. The
energy-efficiency of a centralized small cell network using virtual MIMO for
a higher spectrum efficiency was also analyzed in this work. In this, the
parameter of interest with the maximum impact on the energy efficiency
was found to be the sleep mode scheme of the small cells.

In most practical systems, the transmitters (in the physical layer) have a
memory buffer into which data packets arrive from the upper layers through
a stochastic process. The cross-layer energy efficiency of the transmitter,
taking into account the sporadic nature of these packet arrivals was stud-
ied in the next section of the thesis. A novel energy-efficiency metric was
designed for such a system and it was shown that this new metric is quasi-
concave with respect to the transmit power under certain assumptions on
the packet arrival rate. A game theoretical formulation of this problem,
with each transmitter acting as a decision maker, was also studied in an in-
terference network and it was shown that the resulting power control game
had a unique Nash equilibrium. Furthermore, a best response algorithm
that would allow independent decision makers to reach this equilibrium in
a distributed manner was also found.

In conclusion, this work develops a framework for energy-efficiency for
the general cases of power control in the physical layer with MIMO and
cross-layer with a sporadic packet arrival. Both centralized and decentral-
ized algorithms for achieving an energy-efficient working point for the sys-
tems under consideration were proposed. The results highlight the trade-off



between power consumption and date rates in energy efficient wireless net-
works.



Chapter 1

Introduction

This manuscript is focused on the study and design of energy-efficient
wireless systems. The ideas discussed can be applied for both large scale
energy management while operating radio towers and base stations, as well
as micro-management of mobile terminals.

1.1 Background and motivation

Over the past two decades, designing energy-efficient communication ter-
minals has become an important issue. This is not surprising for terminals
which have to be autonomous as far as energy is concerned, such as cellular
phones, unplugged laptops, wireless sensors, and mobile robots. More sur-
prisingly, energy consumption has also become a critical issue for the fixed
infrastructure of wireless networks. For instance, Vodafone’s global energy
consumption for 2007-2008 was about 3000 GWh [1], which corresponds to
emitting 1.45 million tons of CO2 and represents a monetary cost of a few
hundred million Euros. The Information and Communication Technology
industry currently accounts for 2% of worldwide carbon emissions. With
exponential increases in information and communication traffic, the global
carbon footprint is expected to double over the next 10 years. While incre-
mental approaches to reducing energy consumption are critical, ultimately
they will fail to keep pace, thus requiring significant advancements in the
energy-efficiency of the communication sector. This context explains, in
part, why concepts like “green communications” have emerged as seen from
[2, 3] and [4]. Using large multiple antennas, white spaces, virtual multiple
input multiple output (MIMO) systems, and small cells with sleep mode are
envisioned to be some of the ways of reducing energy consumption drasti-
cally.

Designing green wireless networks [5, 2, 6] has become increasingly im-
portant for modern wireless networks, in particular, to manage operating
costs. A challenge for modern (beyond 4G and 5G) cellular networks is not



only to respond to the explosion of data rates, but also to manage network
energy consumption. The concept of small cell networks appears as a good
candidate solution to raise such a challenge (see e.g., [7]). As small cell
networks will be distributed to large extent and subject to high inter-cell
interference, designing distributed energy-efficient interference management
schemes appears as a natural need. For being able to design green networks,
find a suitable energy-efficiency metric is crucial. In [8], the EE of a com-
munication between a transmitter and a receiver is defined as the ratio of
the net data rate to the radiated power; the corresponding quantity is a
measure of the average number of bits successfully received per joule con-
sumed at the transmitter. Quite recently, there has been a resurgence of
interest in this performance metric. There are several reasons for this and
only a few are provided. First, the EE as defined in [8], mathematically
translates in a simple manner the trade-off between the benefit of increasing
the transmit power in terms of data rate, and the induced cost in terms of
consumed energy or amount of interference generated. Second, as motivated
in [9], there are applications in which the allowable delay is not tightly con-
strained. Therefore, the data rate is a less relevant measure than the energy
needed to transmit the information and EE naturally appears as a metric
to be optimized.

On [11] the authors bridge the gap between the pioneering work by Verdud
on the capacity per unit cost for static channels [12] and the more prag-
matic definition of energy-efficiency proposed by [8] for quasi-static single
input single output (SISO) channels. Indeed, in [11], energy-efficiency is
defined as the ratio of the probability that the channel mutual information
is greater than a given threshold to the used transmit power. Assuming
perfect channel state information at the receiver (CSIR) and the knowledge
of the channel distribution at the transmitter, the pre-coding matrix is then
optimized for several special cases. While [11] provides interesting insights
into how to allocate and control power at the transmitter, a critical issue
is left unanswered; to what extent do the conclusions of [11] hold in more
practical scenarios such as those involving imperfect CSI? Answering this
question was one of the motivations for the work summarized in Chapter 2.

As most practical communication systems work with some sort of spo-
radic arrival for data packets behind the physical layer, the energy efficiency
of the system would not be the same if packets arrived constantly. In most
of the literature on energy-efficiency, this is not considered and Chapter
3 explores this issue. A distributed algorithm that maximizes individual
energy-efficiency of a transmitter is also proposed. The case where there is
a non-static number of users connected to a network is studied in Chapter 4.
Finally, a technique of exchanging CSI information between interfering and
distributed transmitter-receiver pairs through power level coding is shown
in Chapter 4.



1.2 Basic definition of the energy efficiency metric

In the proposed approach, the goal pursued is to maximize the number of
information bits transmitted successfully per Joule consumed at the trans-
mitter. This is different from the most conventional approach which consists
in minimizing the transmit power under a transmission rate constraint: [13]
perfectly represents this body of literature. In the latter and related works,
efficiency is not the main motivation. [14] provides a good motivation as
to how energy-efficiency can be more relevant than minimizing power under
a rate constraint. Indeed, in a communication system without delay con-
straints, rate constraints are generally irrelevant whereas the way energy is
used to transmit the (sporadic) packets is of prime interest. Rather, the
approach discussed in this manuscript follows the original works on energy-
efficiency which includes [15, 8, 16, 17, 18]. The current state of the art
indicates that, since [11], there have been no works where the MIMO case is
treated by exploiting the cumulative distribution of the channel mutual in-
formation (i.e., the outage probability) at the numerator of the performance
metric. As explained below, the analysis goes much further than [11] by
considering effects such as channel estimation error effects. Several works
address the issue of power allocation for outage probability minimization
[19, 20, 21] under imperfect channel state information.

In [8], EE is defined as the ratio between the average net data trans-
mission rate and the power consumed for sending a given packet. When
the radiated power is considered as the transmission cost, this ratio merely
equals m where the quantity R is the constant gross data rate (deter-
mined by the coding and modulation schemes) on the radio interface, p is the
vector of power levels and +; the SINR of user i. Each packet transmitted on
the channel is received without any errors with a probability which depends
on the quality of the communication link, the interference, and transmit
power levels. The corresponding block or packet success rate (also called
efficiency function) is precisely the function f(+;(p)) above. The function
f:]0,+00) — [0,1] is a sigmoidal ! or S-shaped function verifying f(0) =0
and xl;ngo f(z) =1 (see [37] for more details). Common examples for f are

f(z) = (1—e ™M f(z) = e~z [11], where M > 1 is the packet length
and ¢ > 0 is some constant related to spectral efficiency. Energy-efficiency
is particularly relevant when packet re-transmission is allowed. When there
is no re-transmission, the energy ? consumed to send V bits while transmit-
ting at the power level p; is pi%. Minimizing energy amounts to minimizing
p; in the absence of re-transmissions. However, when re-transmission is al-

1. A sigmoidal function is a function which is initially convex for v € [0,v4] and
eventually concave for v € [y4,0).

2. Here, the energy under consideration is the energy associated with the radiated
signal.



lowed (typically by using an automatic repeat request -ARQ- protocol, that
is used at the physical layer independently of the architecture at the upper

layer), the average duration to send a packet equals m and the energy

consumed becomes pim. Clearly, minimizing energy amounts to max-
imizing EE. This means that, at least in presence of re-transmissions, the
classical approach which involves minimizing p; (subject to some quality of
service constraints) induces a loss in terms of minimizing the energy con-
sumption. To be precise, minimizing the power subject to a QoS constraint
does not minimize the energy consumed by the system when the system has
a certain amount of data to be transferred. This will be illustrated through
some numerical results in this manuscript.

Of course, when the system under consideration has just a single trans-
mitter, the energy efficiency can be easily defined to be the ratio of it’s
average data rate to power consumption. However, in a multi-agent system,
there are several ways of defining the energy-efficiency and the best choice
is not so straight-forward or clear. For example, in a small cell cluster with
two base stations serving two users, the energy efficiency can be defined in
two ways. As either the sum of the individual energy efficiencies of each
base station or as the sum of the total rate in the network divided by the
total power. The second choice will certainly lead to a minimization of the
total energy spent by the system but may result in an optimal strategy that
is partial to one agent. In the small cell example, the optimal solution might
be to never serve the user further away from the base stations. In distributed
systems, each agent either optimizes their individual energy efficiencies or
if possible, the sum. When mobile users optimize their energy efficiency by
tuning the uplink transmit power, the most natural assumption is that they
maximize their individual energy efficiency as discussed in [8]. When the
base station optimizes it’s energy efficiency, the second choice is opted as
discussed in some sections of Chapter 2 and 4.

1.3 Structure of the manuscript and publications

In comparison to existing literature, the main contributions of the manuscript

can be summarized as follows:

— One of the scenarios under investigation concerns the case of single-
user MIMO energy-efficiency both with and without imperfect CSI
available at the transmitter.

— Energy efficiency of a virtual MIMO system formed in a cluster of
small cells and some users.

— The energy efficiency of a cross-layer system, i.e taking into account
the sporadic nature of data packet arrival: defining the appropriate
metric and it’s properties.

— Both centralized and de-centralized solutions for many of the above



scenarios.

— The expected energy-efficiency definition and optimization considering
the dynamic nature of users connected to a network.

— A method of exchanging CSI through power level coding.

— In all the above cases, instead of considering the radiated power only
for the cost of transmitting, the total power consumed by the trans-
mitter is accounted for.

The manuscript is therefore structured as follows. Chapter. II is a study
of energy efficiency of MIMO systems. This chapter is based around three
publications (publications are indexed by J. for journal publications, C. for
conference proceedings, B. for book chapters and P. for patents) that are
provided in the appendix, namely:

C.1 V.S Varma, S. Lasaulce, M. Debbah and S.E. Elayoubi, ”"Impact of
Mobility on Wireless Green Networks”, European Signal Processing Confer-
ence (EUSIPCO) 2011.

J.1 V.S Varma, S. Lasaulce, M. Debbah and S.E. Elayoubi, ”An En-
ergy Efficient Framework for the Analysis of MIMO Slow Fading Channels”,
IEEE Trans. Signal Proc., Vol 61, 10, pp: 2647-2659.

C.2 V.S Varma, S.E. Elayoubi, M. Debbah and S. Lasaulce, ”On the
Energy Efficiency of Virtual MIMO Systems”, IEEE Int. Symposium on
personal, indoor and mobile communications (PIMRC 2013).

The work on this chapter has also led to some interesting patents that
have been submitted for approval:

P.1 V.S. Varma, S.E. Elayoubi, M. Debbah and S. Lasaulce, ” Virtual
MIMO optimal antenna selection and sleep mode implementation”, No:
200113-FR (filed).

P.2 V.S. Varma, S.E. Elayoubi and M. Debbah, ” An efficient scheme for
beam-forming in home base stations”, No: 200313-FR (filed).

Chapter 3 deals with the impact of the often ignored queuing process of
packets, that are present before the physical layer in typical communication
systems, on energy efficiency. This chapter is based around the following
publications:

C.3 V.S Varma, S. Lasaulce, Y. Hayel, S. Eddine Elayoubi and Mer-
ouane Debbah, ”Cross-Layer Design for Green Power Control” IEEE Int.
Conference on Communications (ICC 2012).

J.2 Vineeth S Varma, Samson Lasaulce, Yezekael Hayel, Salah Eddine
Elayoubi and Merouane Debbah, ”A Cross-Layer Approach for Energy-
Efficient Distributed Power Control”, IEEE Trans. on Vehicular Tech. (re-
vised)

Chapter 4 is a summary of techniques and methods that can improve the
energy-efficiency of both centralized and decentralized systems. It is partly
composed of original ideas that are yet to be published, and partly based



on the following publications:

C.4 V.S Varma, S.E. Elayoubi, S. Lasaulce and M. Debbah, ”A Flow
Level Perspective on Base Station Power Allocation in Green Networks”,
ACM International Conference on Performance Evaluation Methodologies
and Tools (VALUETOOLS 2012, Best student paper award).

C.5 M. Mhiri, V.S Varma, M.L. Truest, S. Lasaulce and A. Samet, ”On
the benefits of repeated game models for green cross-layer power control in
small cell”, BlackSeaComm 2013

The work associated with this chapter has also inspired the following
patents:

P.3 S. Lasaulce, V.S. Varma and R. Visoz, ” Coding information through
power levels”, Ref No: 200288FR01-PJ. (filed)

P.4 V.S. Varma, S. Lasaulce and S.E. Elayoubi, ”Sleep mode for net-
work resources assisted by information from transportation system traffic
detectors”, 200047FRO-DM. (filed)

Other contributions which will not be discussed in this manuscript have
been obtained and/or published in one book chapter, three conference papers
and one other patent:

B.1 V.S. Varma, E.V. Belmega, S. Lasaulce and M. Debbah,” Energy
Efficient Communications in MIMO Wireless Channels: Information Theo-
retical Limits”, CRC Press book on green communications, 2012.

C.6 F. Meriaux, V.S Varma, S. Lasaulce, "Mean Field Energy Games
in Wireless Networks”, IEEE Asilomar 2012. (invited paper)

C.7 V.S Varma, S. Lasaulce, M. Debbah and S.E. Elayoubi, ”Green
Power Control for large MIMO systems”, Colloque Gretsi 2013.

C.8 B. Perabathini, M. Debbah, M. Kountouris and A. Conte, ”Physi-
cal Limits of point-to-point communication systems”, IEEE WiOpt 2014 -
PhysCommNet Workshop. (invited paper)

P.5 ”Scheme for broadcasting and receiving accompanying data for TV
or radio services”, V.S. Varma and S.E. Elayoubi. Ref No: 1H518040/655.SF .
(filed)



Chapter 2

Energy efficiency analysis of
MIMO systems

The focus of this chapter is on the energy-efficiency of MIMO systems.
Two important cases of interest are studied here; the case of single user or
point-to-point MIMO and that of multi-user virtual MIMO. These cases are
arguably two of most practical applications of MIMO technology. In the
first case, the MIMO system is formed between several antennas localized
at one point (transmitter) and several antennas localized at another point
(receiver). Even if many users are connected to the same base station in
a network, but are served on multiple channels, the results from the first
case apply as all the MIMO channels are in parallel. However, if all the
users are connected through the same spectral band at the same time, the
situation belongs to the second case of virtual MIMO. This chapter discusses
and studies the energy efficiency of both these cases in detail. Note that in
this chapter and other chapters in which the transmit power is controlled
by a single entity, the power will be represented by P whereas in distributed
power control like in Chapter 3 (and the introduction), p; will be used for
individual powers and p for the vector of individual powers. This choice was
made for improved unaerstanding while reading and to avoid confusion.

2.1 Single user or point-to-point MIMO systems

2.1.1 System model

A point-to-point multiple input and multiple output communication unit
is studied in this section. The dimensionality of the input and output is given
by the numbers of antennas but the analysis holds for other scenarios such
as virtual MIMO systems [26]. If the total transmit power is given as P, the
average SNR is given by :

Y= 52 (2.1)



where o2 is the reception noise variance.The signal at the receiver is modeled

by:
y—wliHS‘i‘Z (22)
M

where H is the N x M channel transfer matrix and M (resp. N) the number
of transmit (resp. receive) antennas. The entries of H are ii.d. zero-
mean unit-variance complex Gaussian random variables. The vector s is
the M-dimensional column vector of transmitted symbols follows a complex
normal distribution, and z is an IN-dimensional complex white Gaussian
noise distributed as A'(0,I). Denoting by Q = E[ss”] the input covariance
matrix (called the pre-coding matrix), which satisfies

1
MTr(Q) =1 (2.3)
where Tr stands for the trace operator. The power constraint is expressed
as :

P < Ppax (2.4)

where Ppax is the maximum available power at the transmitter.

The channel matrix H is assumed to evolve in a quasi-static manner :
the channel is constant for some time interval, after which it changes to an
independent value that it holds for the next interval [22]. This model is
appropriate for the slow-fading case where the time with which H changes
is much larger than the symbol duration.

When the same (imperfect) CSI is available at the transmitter and re-
ceiver, by estimating the channel for ¢ time, and sending the information to
the transmitter within ¢y time, the energy-efficiency nr is defined as:

R ( _ %) Fr, [IICSITR(Pv Q H) - R%}
aP+b

nr(P,Q,H) = (2.5)

where R is the transmission rate in bit/s, T is the block duration in s, Ry
is a parameter which has unit Hz (e.g., the system bandwidth), and a > 0,
b > 0 are parameters to relate the transmitter radiated power to its total
consumed power ;define £ = R% as the spectral efficiency. Iicsitr(P, Q, fl)
denotes the mutual information with imperfect CSITR (the receiver also has
the exact same CSI as the transmitter). This form of the energy-efficiency
is inspired from early definitions provided in works like [8], and studies the
gain in data rate with respect to the cost which is the power consumed. The
numerator represents the benefit associated with transmitting namely, the
net transmission rate (called the goodput in [27]) of the communication and
is measured in bit/s. The goodput comprises a term 1— # which represents
the loss in terms of information rate due to the presence of a training and

feedback mechanism (for duration ¢ seconds and ¢; seconds resp. in a T's



long block) !. The denominator of (2.5) represents the cost of transmission in
terms of power. The proposed form for the denominator of (2.5) is inspired
from [25] where the authors propose to relate the average power consumption
of a transmitter (base stations in their case),to the average radiated or radio-
frequency power by an affine model.

The term Fp(.) represents the transmission success probability. The
details on this function are given inA.2. The bounds on F7, can be expressed
as Fr(Licsirr(0,0,H) — &) = 0 (no reliable communication when transmit
power is zero) and as F;, — 1 when P — oo. Therefore, in the presence of
CSI at the transmitter, outage occurs even when the mutual information is
more than the targeted rate due to the noise and finite code-lengths. In this
scenario, the energy-efficiency is maximized when the parameters Q and P
are optimized.

In the absence of CSI at the transmitter, the earlier definition of energy
efficiency is not suitable since H is random, nr is also a random quantity.
Additionally, in this case, it is impossible to know if the data transmission
rate is lower than the instantaneous channel capacity as the channel varies
from block to block. Therefore, in this case, the source of outage is primarily
the variation of the channel [32], and using (2.5) directly is not suitable. As
the channel information is unavailable at the transmitter, define Q = IWM,
meaning that the transmit power is allocated uniformly over the transmit
antennas. Under this assumption, the average energy-efficiency can be cal-
culated as the expectation of the instantaneous energy-efficiency over all
possible channel realizations. For large L, it has been shown in [32] (and
later used in other works like [11]) that the expression can be rewritten and
approximated to :

R(1-7)Pry [IICSIR(P,t, H) > g]
aP+b

nr(Pt) = (2.6)
where Pry represents the probability evaluated over the realizations of the
random variable H. Here, I;cg7r represents the mutual information of the
channel with imperfect CSI at the receiver. Let us comment on this defini-
tion of energy efficiency. This definition is similar to the earlier definition in
all most ways. Here the parameter t, represents the length of the training
sequence used to learn the channel at the receiver2. The major difference
here is that the expression for the success rate is the probability that the
associated mutual information is above a certain threshold. This definition

1. In this case, its assumed that the feedback mechanism is sufficient to result in perfect
knowledge of H at the transmitter. This is done because, assuming a different imperfect
CSI at the transmitter from the receiver creates too much complexity and this problem is
beyond the scope of this manuscript.

2. In this case, the optimization is done over P and t assuming imperfect CSI at the
receiver. A parameter here not explicitly stated, but indicated nevertheless, is M due to
the number of transmit antennas affecting the effectiveness of training



of the outage is shown to be appropriate and compatible with the earlier
definition when only statistical knowledge of the channel is available [32].
Each transmitted block of data is assumed to comprise a training se-
quence in order for the receiver to be able to estimate the channel; the
training sequence length in symbols is denoted by ¢ and the block length in
symbols by Ts. Continuous counterparts of the latter quantities are defined
by t = tsSq and T = T,S,, where Sy is the symbol duration in seconds.
In the training phase, all M transmitting antennas broadcast orthogonal
sequences of known pilot/training symbols of equal power on all antennas.
The receiver estimates the channel, based on the observation of the training
sequence, as H and the error in estimation is given as AH=H — H. Con-
cerning the number of observations needed to estimate the channel, note that
typical channel estimators generally require at least as many measurements
as unknowns [23], that is to say t; > M. The channel estimate normalized
to unit variance is denoted by H. From [23] its known that the mutual
information is the lowest when the estimation noise is Gaussian. Taking the
worst case noise, it has been shown in [22] that the following observation
equation
Yett (V5 1) o
M
perfectly translates the loss in terms of mutual information® due to channel
estimation provided that the effective SNR 7o (7,t) and equivalent obser-
vation noise z are defined properly namely,

Y= T Hs + 2 (2.7)

z = /FAHs+z
o . (2.8)

Yeft (75 1) [Em———

As the worst case scenario for the estimation noise is assumed, all formulas
derived in the following sections give lower bounds on the mutual informa-
tion and success rates. Note that the lower bound is tight (in fact, the lower
bound is equal to the actual mutual information) when the estimation noise
is Gaussian which is true in practical cases of channel estimation.

Now that the energy efficiency metric has been defined for the single user
MIMO case both with and without CSI at the transmitter, the next step
forward is to study the properties of this metric in order to easily optimize
it.

2.1.2 TImperfect CSITR available

When perfect CSITR or CSIR is available, the mutual information of a
MIMO system, with a pre-coding scheme Q and channel matrix H can be

3. It is implicitly assumed that the mutual information is taken between the system in-
put and output; this quantity is known to be very relevant to characterize the transmission
quality of a communication system (see e.g. [34] for a definition).
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expressed as:

P HQH' (2.9)

I P,Q H)=log|lI
csitr (P, Q, H) = log Iy + 77—

The notation |A| denotes the determinant of the (square) matrix A. With
imperfect CSIT, which is exactly the same as the CSIR (i.e., both the trans-
mitter and the receiver have the same channel estimate fl), a lower bound
on the mutual information can be found from several works like [19, 21] etc.
This lower bound for Ijcsrrr is used, which is expressed as:

Licsitr(P, Q, H) = log |1y + H

T H
| e

where H is the estimated channel and 1 — O‘% is the variance of H. Consid-
ering the block fading channel model, from [19] and [23], its concluded that

U% =3 _é Simplifying :

-
M
hesirr (P, Q. H) = log [Ly + TTHQH". (2.11)

Having defined the mutual information to be used for (2.5), the optimization
of pr is pursued.

Studying (2.5) and (2.11), its seen that varying the power allocation (or
the corresponding pre-coding matrix) Q, affects only the success rate Fp (.)
and the total power P is the only term that is present outside Fp(.). As
Fr(.) is known to be an increasing function, if the total power is a constant,
optimizing the energy efficiency 17 amounts to simply maximizing the mu-
tual information Ircsirr (P, Q, ﬂ) This is a well documented problem and
it gives a “water-filling” type of solution [36]. Rewriting (2.9) as

hesirr(P, Q. H) = log Ly + 24 DSD” (2.12)

where the optimal covariance matrix Q = VSV# is achieved through the
singular value decomposition of the channel matrix H = UDV*# and an op-
timal diagonal covariance matrix S = diag[s1, .. ., Smin(ar,n)5 0, - - -, 0]. The
water-filling algorithm can be performed by solving:

1 +
si:(u—2> , fori =1,2,--- min(M,N) (2.13)
VlIdill
where d; are the diagonal elements of D and p is selected such that E?;irll(M’N)si =

M. Here (z)* = max(0, z), this implies that s; can never be negative. The
actual number of non-vanishing entries in S depends on the values of d; as
well vy (and thus P). Examining (2.13), its seen that when v — 0, the water-
filling algorithm will lead to choosing s; = M and s; = 0 for all ¢ # j, where

11



Jj is chosen such that d; = max(d;) (beamforming). Similarly for v — oo,
5; = % (uniform power allocation).

From (2.5), its seen that the parameters that can be optimized in order
to maximize the energy efficiency are Q and P. Note that for every dif-
ferent P, the optimal power allocation Q changes according to (2.13) as v
is directly proportional to P. Therefore optimizing this parameter is not
a trivial exercise. Practically, P represents the total radio power, that is,
the total power transmitted by the antennas. This power determines the
total consumed power b + aP, of base stations or mobile terminals and so,
optimizing this power is of great importance.

In this section, a theorem on the properties of 77 (P, Qw r(p), ﬁ) is pro-
vided, where Qu p(p) is the power allocation obtained by using the water-
filling algorithm and iteratively solving (2.13) with power P. This proce-
dure is said to be “iterative” because, after solving equation 2.13, if any
sj < 0, then set s; = 0 and the equation is resolved until the all solutions
are positive. For optimization, desirable properties on nr(P, Qwr( P),ﬁ)
are differentiability, quasi-concavity and the existence of a maximum. The
following theorem states that these properties are in fact satisfied by np.

Theorem 2.1.1 The energy-efficiency function nr (P, Qw r(p), ﬁ) S quasi-

concave with respect to P and has a unique mazimum nr(P*, Qw pp+), H),
where P* satisfies the following equation :

OFL[I (P*.Q o, =€) /o
. [licstTR o WF(P*) (P + 3) (2.14)
—Frlhesitr(P*, Qwppsy, H) =€) =0

where 8% is the partial derivative.

The proof of this theorem can be found in Appendix A.2. Thus, the
optimal transmit power for imperfect CSITR depends on several factors like

— the channel estimate ﬁ,

— the target spectral efficiency &,

— the ratio of the constant power consumption to the radio-frequency

(RF) power efficiency g,

— the channel training time ¢ and

— the noise level o2.
Note that in this model, its assumed that the CSI at the transmitter is ex-
actly identical to CSI at the receiver. Because of this, consider the feedback
mechanism to be perfect and take a constant time ¢y. Although in practice,
ty plays a role in determining the efficiency and the optimal power, in the
model Z; is a constant and does not appear in the equation for P*.
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2.1.3 Imperfect CSIR and no CSIT

As discussed in the introduction, when re-transmission is possible, max-
imizing the energy efficiency is preferred over power minimization. For the
case without re-transmission, power minimization with a quality of service
constraint can be chosen as shown in A.1. This can lead to some interest-
ing results on the choice of number of transmit antennas in a MIMO system
when under imperfect CSIR. The problem with re-transmissions, has already
been well analyzed in [11] when perfect CSI is available at the receiver and
b = 0. So, in this section consider the case when imperfect CSI is available
and is obtained through channel training. For I;csrr(P,t, H), use a lower
bound on the mutual information obtained from the equivalent observation
equation (2.7), derived in [23]:

- 1 LP N
Ircsir(P,t,H) = log ‘IM + M’}/eﬁ? <U2,t> HHH‘ (2.15)

Note that here, Q = IVM is used and has been shown to be optimal in [11]. In
this section the focus is to generalize [11] to a more realistic scenario where
the total power consumed by the transmitter (instead of the radiated power
only) and imperfect channel knowledge are accounted for.

By inspecting (2.6) and (2.15) its seen that using all the available trans-
mit power can be suboptimal. For instance, if the available power is large
and all of it is used, then ngr(P,t) tends to zero. Since ngr(P,t) also tends
to zero when P goes to zero (see [11]), there must be at least one maximum
at which energy-efficiency is maximized, showing the importance of using
the optimal fraction of the available power in certain regimes. The objec-
tive of this section is to study those aspects namely, to show that nr has a
unique maximum for a fixed training time length and provide the equation
determining the optimum value of the transmit power.

From [37] its known that a sufficient condition for the function @ to
have a unique maximum is that the function f(z) be sigmoidal. To apply
this result in the context, one can define the function f by

f(’Yeff) =Pr |:10g

1
Ty + MveﬂHHH‘ > 5} . (2.16)

For the SISO case, for a channel with A following a complex normal distri-

bution, it can be derived that f(y) = exp <—2§7—_1) which is sigmoidal. It

turns out that proving that f is sigmoidal in the general case of MIMO is a
non-trivial problem, as advocated by the current state of relevant literature
[11, 38, 39]. In [11], nr(P) under perfect CSIR, was conjectured to be quasi-
concave for general MIMO, and proven to be quasi-concave for the follwing
special cases:

(a) M>1, N =1,
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(b) M — 400, N < +o0, limp/_ % =0;
(c) M < +o0, N — +00, limy_,e0 % =0;

M
(d) M — 400, N — 400, lim — = { < +o0;
M —~4o00,N—+00 N
(e) o2 = 0;
(f) 0% = +o0;

In the following proposition, a sufficient condition to ensure that ng(P,t) is
quasi-concave w.r.t P is given.

Proposition 2.1.2 (Optimization of nr(P,t) w.r.t P) Ifng(P) with per-
fect CSIR is quasi-concave w.r.t P, then nr(P,t) is a quasi-concave function
with respect to P, and has a unique mazximum.

This proposition is proved in Appendix A.2.

Quasi-concavity is an attractive property for the energy-efficiency as
quasi-concave functions can be easily optimized numerically. Additionally,
this property can also be used in multi-user scenarios for optimization and
for proving the existence of a Nash Equilibrium in energy-efficient power
control games [8, 40, 41].

The expression of nr(P,t) shows that only the numerator depends on
the fraction of training time. Choosing ¢ = 0 maximizes 1 — % but the block
success rate vanishes. Choosing t = T" maximizes the latter but makes the
former term go to zero. Again, there is an optimal trade-off to be found.
Interestingly, it is possible to show that the function ngr(P*,t) is strictly
concave w.r.t. ¢t for any MIMO channels in terms of (M, N), where P* is
a maximum of ng w.r.t P. This property can be useful when performing a
joint optimization of ng with respect to both P and ¢ simultaneously. This
is what the following proposition states.

Proposition 2.1.3 (Maximization of n(P*(t),t) w.r.t t) The energy-efficiency
function nr(P*(t),t) is a strictly concave function with respect to t for any

P*(t) satisfying ?—ﬁ(P*,t) =0 and 8;;37? (P*,t) <0, i.e, at the mazimum of

nr w.r.t. P.

The proof of this proposition is provided in Appendix A.2. The pa-
rameter space of ng is two dimensional and continuous as both P and t are
continuous and thus the set n(P*(t),t) is also continuous and the proposition
is mathematically sound. The proposition assures that the energy-efficiency
can been maximized w.r.t. the transmit power and the training time jointly,
provided ng(P,t) is quasi-concave w.r.t P for all ¢.

Note that the energy-efficiency function is shown to be concave only
when it has already been optimized w.r.t P. The optimization problem
studied here is basically, a joint-optimization problem, and its shown that
once n(P,t) is maximized w.r.t P for all ¢, then, n(P*(t),t) is concave w.r.t
t.
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2.1.4 Numerical results and interpretations

Several simulations that support the proposed conjectures as well as
expand on the analytical results are presented here. All simulations are
performed using Monte-Carlo simulations as there is no expression available
for the outage of a general MIMO system.

The FJ, used here is based on the results in [28], F, = qunc(E_IICSITR(P’QWF’H) ),

2y
Ve
L being the code-length. This is the Gaussian approximation that is very

accurate for L large enough and from simulations observe that for L > 10
the approximation is quite valid.

First of all, numerical results are presented that support and present
the analytical results through figures. The first two figures shown assume
imperfect CSITR obtained through training and use a 2 x 2 MIMO system.
The quasi-concavity of the the energy-efficiency function w.r.t the transmit
power is shown in Figure 2.1 for £ = 1 and £ = 4, and t;, = 2 and t; = 10.
This figure shows that for a higher target rate, a longer training time yields
a better energy-efficiency.
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Energy efficiency : vT(P,QW

Figure 2.1: CSIT: Energy efficiency (n7) in bits/J v.s transmit power (P) in
dBm for a MIMO system with imperfect CSITR, M = N = 2, Ry = 1bps,
Ts = 100, 5 — 10 mW for certain values of £ and t,.
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Figure 2.2: CSIT: Optimal energy-efficiency (nr(P*, Qwr)) in bits/J v.s
spectral efficiency () for a MIMO system with imperfect CSITR, M =
N =2, Ry = 1bps, Ty = 100, L = 100 and 2 =1 mW.

It can be observed that the plots are quasi-concave and so there is an
optimal target rate to use for each channel condition and code-length. In
Figure 2.2, nr is always optimized over P and Q. Observe that n;(§) is
also quasi-concave and has a unique maximum for each value of d; and
(representing the channel Eigen-values as from equations (2.12), (2.13) and
training time lengths). d; is ordered in an ascending order, i.e. in this case,
with d% < d%. The parameters used are: M = N = 2, Ry = 1bps, Ts; = 100,
L =100 and 2 = 1 mW with ¢, = 2,10 and 20 for d? = 1, d3 = 3, and
ts = 2 for d2 = d3 = 1.This figure also implies that the training time and
target rate can be optimized to yield the maximum energy-efficiency for a
given coherence-time and channel fading.
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Figure 2.3: Optimal energy-efficiency (nr(P*)) in bits/J v.s available trans-
mit power (sup(P)) for a MIMO system with imperfect CSITR, M = N = 2,
Ry = 1bps, R = 1bps and g =1mW.

In Figure 2.3, the energy efficiency function that uses optimized power
allocation is compared to uniform power allocation. In both cases, the train-
ing time and the transmit power is optimized and plot the optimized energy
efficiency v.s Ppax. Note that the optimized PA always yields a better
performance when compared to UPA and at low power, UPA has almost
zero efficiency while the optimal PA yields a finite efficiency. The gain ob-
served can be considered as the major justification in using non-uniform
power allocation and sending the channel state information to the transmit-
ter. However, when the block length is small, imperfect CSIT results in a
smaller gain as seen from the relatively larger gap between Ty = 100 and
Ts = 10000 when compared to the size of the gap in UPA.
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Figure 2.4: No CSIT: Energy efficiency (ng) v.s transmit power (P) with
ts =M = N = 4,R = 1600bps, { = £=16 and T, = 55 symbols.

In the following plots, the case where no CSIT is available is analyzed.
%2 = 1mW and so the power P can be expressed in dBm easily. Also note
that 2 has the unit of power and is expressed in Watts (W). Sy = 15 ps from
LTE standards [42]. Figure 2.4 studies the energy efficiency as a function
of the transmit power (P) for different values of g and illustrates the quasi-

concavity of the energy efficiency function w.r.t P. The parameters used are
R=1600,¢&= 4 =16, T, =55and M =N =t =4.

0

2.2 Multi-user MIMO energy-efficiency

When many users collectively use MIMO, it can either be done through
combining point-to-point MIMO with OFDM or through virtual MIMO. As
the first case is simply a trivial extension of the previous section; the goal of
this section is to provide insights on how to design green radio access net-
works, especially in the framework of virtual MIMO systems. Indeed, clas-
sical network architectures are focused on integrated, macro base stations,
where each cell covers a pre-determined area, and inter-cell interference is
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reduced by the means of fixed frequency reuse patterns [46]. Heterogeneous
Networks (HetNets) introduced a new notion of small cells where pico or
femto base stations are deployed within the coverage area of the macro base
stations [47]. Virtual MIMO is a step forward in this context that allows
distributed systems of base stations/antennas that cover a common area
and cooperate in order to increase the overall spectral efficiency [48]. This
section focuses on these latter solutions and aims at addressing the problem
from an energy efficiency point of view.

While using many non-localized antennas, a major issue considering the
energy efficiency is the added energy cost of deploying several antenna. Sleep
mode mechanisms have thus been regarded as a solution for this issue; they
consist in deactivating network resources that have low traffic load, elimi-
nating thus both the variable and constant parts of the energy consumption
[45]. This mechanism has been applied to macro networks [45], as well as
to heterogeneous networks with macro and small cells [47]. This section
aims to extend this concept to virtual MIMO networks, where an antenna
that is not significantly contributing to the network capacity (for a given
configuration of user positions and radio channels) is put into sleep mode.

2.2.1 System model

The wireless system under consideration is the downlink in a virtual
MIMO system within a small cell cluster. To be precise, each of the small
cell base stations are connected to a central processor and so they act as
antennas for the virtual MIMO as shown in Fig 2.5.

LEGEND
—————— Central
1 Processor
gll/ \glz \ T
m

BS antenna m

@
@

—£

@)

k

User k

Figure 2.5: An example illustration of a 2 x 2 virtual MIMO with g; ; rep-
resenting the channel between BS antenna ¢ and user j.

Refer to the set of these base stations as the ”cluster”. Each user is
equipped with a single receive antenna. In order to eliminate interference
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zero-forcing is implemented. Consider a block-fading channel model where
the channel fading stays is assumed to stay constant for the duration of
the block and changes from block to block. The base stations require the
channel state information available at the user end in order to implement
the zero-forcing technique. Therefore, in each block channel a training and
feedback mechanism happens, after which data is transmitted. Also assume
that every base station is capable of entering into a ”sleep-mode”. In this
mode, the base station does not send any pilot signals and therefore does
not perform the training or feedback actions consuming a lesser quantity of
power compared to the active base stations. Let there be M base stations in
the cluster and K users. Define K = {1,2,..., K} and M = {1,2,..., M}
the sets of users and base station antennas.

As the transmit antennas are not co-located, each of them have an indi-
vidual power budget. When a base station is active, it consumes a constant
power of b due to the power amplifier design and training or feedback costs.
Additionally, it consumes a power Py,||z,,||?> proportional to the radiated
power, where P, < Ppax and ||z, || < 1 is the signal transmitted and Ppyax
is the power constraint [45][49]. When it is placed on sleep mode, it is as-
sumed that it only consumes power ¢ where ¢ < b. Denote by s the sleep
mode state vector of the cluster with elements s, € {0,1}. The base station
m is in sleep mode when s, = 1 and active when s,,, = 0. Thus the power
consumption of the m-th base station is ¢s; + (1 — 8;)(b + P l|zm|?). The
total power consumption of the cluster is given by:

M
Pt = Y csm+ (1= 50) (b + Poullwnl|) (2.17)

m=1

For any given state of the cluster, define w(s) as the total number of base
stations that are active. This value can be calculated as w(s) = M =" sp,.
If M < K, zero-forcing can not be used. However, if M > K, and w(s) > K,
then the zero-forcing technique can be implemented by choosing K base
stations to transmit the data signals after all w(s) active base stations train
and obtain feedback on their channels. The communication between the
active base stations and the users is done using zero-forcing pre-coding and
the details on this method are given in A.3.

2.2.2 Energy efficiency optimization

This work aims at minimizing the energy consumption by base stations.
If each user in the network is connected to download some data, then the to-
tal energy consumed by the network is the total power consumed multiplied
by the total duration for which the user stays connected. Energy efficiency
(EE) is a metric that is often used to measure this, and maximizing the
energy efficiency leads to minimizing the total energy consumed.

20



Before defining the EE, first calculate the total power consumption of
the network. From (2.17) and the work detailed in A.3, the total power
consumed is given by:

Ptot PO7HB chm I_Sm)

- 2
H(H, .
% [b+ Py (H™(H, 5)u)s-1m) (2.18)
o(H, B)
Here define:
i if j € Nexistss.tB(j) =
VYm € M;B_l(m) A exists 5.t () .m (2.19)
0 otherwise.

and (); is the j — th element if j # 0 and is 0 if j = 0. In this scenario,
define the instantaneous energy efficiency as:

where f() gives the effective throughput as a function of the SINR. f(vx) =
log(1 + ~y) for example. However the base station energy efficiency for a
longer duration is studied, the effects of fast fading in H gets averaged and
in this case a more reasonable definition for the EE is:

Eql>y f(k(Po, H(G, H), B))] (2.21)
Eg[Prot(Po, H(G )75)]

Some properties of the energy efficiency metric w.r.t Py are discussed
below. If the goal of a system is to be energy efficient using power control,
then one important question arises: Is there a unique power for which the
energy efficiency is maximized ? The answer to this question lies in the

n(FPo, G, B) =

following proposition:

Proposition 2.2.1 Given a certain path loss matrix G and a selection of
transmitting base stations 3 in the virtual MIMO system, the average EE
(P, G, ) is mazimized for a unique Py and is quasi-concave in Py.

The proof and further discussion can be found from A.3.

Given a certain sleep mode state s, there are w(s) base stations active
that train and obtain feedback. From this set (, K base stations have to be
picked for zero-forcing. This choice is mathematically expressed by 5. The
8 that optimizes the energy efficiency depends on the channel state H. The
following proposition details the method of choosing the 5 that optimizes
EE.
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Proposition 2.2.2 When % — 0, the B* that mazimizes 7(Po, G, ) is
obtained by: 3
f* = argmin[a(H, 8); 8 € {N — K}] (2.22)

The proof and further discussion can be found from A.3.

2.2.3 Numerical results

In this section, simulations and numerical calculations are used to study
the effectiveness of the proposal as well as the advantages offered. The
common parameters are:

1. c:l—bOW
2. Prax =2 W

3. f(v) = Blog(1+7)
4. 02 =1mW

Where B = 10° hz is the bandwidth.

The fast fading co-efficient consider is h; j = o(7, £)Q+0.1€. Where £ €
CN(0,1), a is the direct line of sight factor which plays a dominant role in
most small cell networks, oy, , € 0,1 is the shadow factor and o(pimi) =1
with probability 7, ;. Here 7, is the probability that the receiver k has
line of sight with the BS antenna m. Take 7, ;, = 0.5V(k, m).

The presented results study the case of two users K = 2 served by a
small cell cluster of three base stations, i.e M = 3. In addition to zero-
forcing, when there are two users a single base station could also alternately
use Orthogonal Frequency-Division Multiple Access (OFDMA) to serve the
two users and keep the other two BS in sleep mode. Two main regimes of
interest are plotted:

1. b = 1W : This regime represents the futuristic case where power am-
plifier efficiencies are quite high and the constant power consumed is
lower than the maximum RF output power.

2. b = 10W : This regime represents the more current state of the art
w.r.t power amplifier efficiency where in small cell antennas, a large
portion of the power is lost as a fixed cost.

Two possible values of €2, the line of sight factor, are considered. The case
) = 10 is representative of pico-cells that are deployed externally, whereas
the case 2 = 0 represents femto-cells deployed internally and no line of sight
communication is possible.

The deployment of antennas and the user locations are shown in Fig 2.6.
In this setting take g11 = g21 =4, 931 = g1,2 = g2,.2 = 0.1 and g3 = 10.
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Figure 2.7: Setting B: EE v.s Py forb=1W

In Fig 2.7, similarly to what was done in the previous setting, study the
EE of a VMIMO system with a very efficient power amplifier. In this figure,
for both 2 = 0 and 2 = 1 its seen that having to use 2 BS antennas and put
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one on sleep mode is the most efficient. In this setting, the configuration of
BS and users are asymmetric and the BS to be put in sleep mode has to be
chosen carefully. BS 1 and 2 are symmetric and are close to user 1, but 3
is closer to user 2. In this case choosing s; = 1 or so = 1 is efficient, but
s3 = 1 is highly inefficient.
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Figure 2.8: Setting B: EE v.s Py for b=10 W

In this setting, its seen from Fig 2.8 that using OFDMA to divide re-
sources between the two users is not as efficient as ZF due to the higher
SNR when served by nearby BS antennas. Like in Fig 2.7, choosing s; =1
or so = 1 and zero-forcing is always the most efficient solution.

Additional numerical results where OFDM with sleep mode can be more
efficient over ZF, can be found from A.3.
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Chapter 3

A cross-layer approach to
energy efficiency

In this chapter, as described in the introduction, the practical case of
random packet arrivals onto the packet layer queue are accounted for while
formulating the energy efficiency metric. This leads to a very interesting
set of problems and questions about the properties of this "new” metric.
One of the main questions answered is, ”Does the work in [8] hold true even
with this more practical metric under consideration?”. If so, what sort of
algorithm or process can be used for decentralized power control?

3.1 System model

The purpose of this section is to describe the communication model
considered for cross-layer energy-efficient power control, which consists in
expressing the SINR and packet arrival rate for a given user. A general in-
terference network is considered with N transmitter-receiver pairs, in which
each transmitter communicates with its respective receiver, while under in-
terference from the other transmitters [50]. Let N' = {1,2,..., N} be the set
of transmitters. Transmitter ¢ € N transmits with power level p; € [0, Ppax],
where Pp.x > 0 is the maximum possible transmit power, which is identical
for all transmitters (the analysis does not lose its generality with this as-
sumption). The vector p = (p1,p2,...,pn) will be referred to as the power
or action profile on the current data block or packet. Denote by P the

(N — 1) dimensional vector obtained by removing the i*" component from
p. For notational simplicity, sometimes p is represented as (p,-,g_i), when

the dependence of certain functions on p; has to be shown explicitly. By
transmitting at p;, each user ¢ has a resulting SINR ~; at his receiver of
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interest which is a function of p, and is assumed to be given by:
Pigii

N
o7 + Z Pjgji
j=Li#i

%i(p) = (3.1)

where gj; represents the quasi-static or block fading channel gain of the link
between transmitter j and receiver ¢ on a given band, 01-2 = ¢? is the vari-
ance of the Gaussian noise at receiver i (these variances can be assumed
to be equal without any loss of mathematical generality). In wireless sys-
tems such as those being implemented in recent cellular system standards,
packets arrive from an upper layer (e.g. IP layer) following an arrival rate
that is related to the SINR. In this chapter, assume that the packet ar-
rival process follows a Bernoulli process with probability g¢x(7v:(p)) where
X € {CAR,AAR}, CAR corresponding to constant arrival rate and AAR
corresponding to adaptive arrival rate; this corresponds to the classical
ON/OFF sources [51]. In the case of CAR, it trivially expresses as:

Vi e N, qcar(vi(p)) =« (3.2)

with ¢ € [0,1]. This is best used for real-time applications where delay is
not tolerable, however, in some applications this packet arrival model is not
suitable. For instance, this is the case for applications such as file transfer
or browsing. In such a situation, there is no constant stream of data and so
the arrival rate can be optimized for best performance in terms of data rate
and QoS. This is one of the reasons why the case of AAR is investigated for
which the arrival rate is given by:

Vie N, gaar(7i(p)) = 9(®aar(vi(p))) (3.3)

where ®aaR is the packet loss function and g is a function which is assumed
to be continuous, invertible, and has an inverse function g~ which is twice
differentiable, decreasing, and convex. To provide a specific example, the
widely used and very useful approximation of the arrival rate process for the
Transmission Control Protocol (TCP), which is due to [52], verifies these
conditions. Therein, g is merely given by g(®) = %, where £ € [0,1] is
a parameter which depends on the system design and the round trip time.
The resulting rate can be interpreted as the average value for the rate.

3.2 A new energy-efficiency performance metric

3.2.1 Construction

If &x, X € {CAR,AAR}, represents the packet loss due to both bad
channel conditions and packet buffer finiteness (more details about this is
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provided a little further), a packet is re-transmitted ! w times
on average, the average power consumption is b + piM. Since

the net data rate or goodput is given by Rgx(7:)[1 — ®x(7:)], now define the
EE metric 7;x(p) as the ratio between the average net data transmission
rate and the average power consumption, which gives:

o ax(vi(p)) [1—®x(i(p))]

i _R ) 3.4
7i.x(p) bt “ax (i (p)[1=®x (3 (p))] B4
Di F(vi)

This definition shows that the cross-layer design approach of power control
is fully relevant in terms of EE when the transmitter has a cost, which is
independent of the radiated power; otherwise, when b = 0 the EE function
falls into the original framework of [8].

By considering the stationary regime of the queue and assuming the
protocol X, the fraction of lost packets ®x can be expressed as follows:

Ox(vi(p) = [1 = f(vi(p) Mx (vi(p)) (3.5)

where IIx(v;) is the stationary probability that the packet buffer is full.
Indeed, as already mentioned, each transmitter is assumed to be equipped
with a device that allows the packets to be stored in a memory buffer (of
size K > 1) before transmission. Packets arrive into the buffer and get
transmitted through a queuing process at the buffer. Denote by @;; the
size of the queue for transmitter 7 at time slot ¢. The size of the queue Q;;
is a Markov process on the state space Q; = {0,1,..., K'}. It is known (see
[57] for example) that in the stationary regime of the stochastic process Q; ¢
the probability that the size of the queue equals K is given by:

w¥ (vi(p))

x(ri(p) = { +wx(Vi(p) + ... + Wk ((p))

(3.6)

with
_ax(vilp) [1 = fF(v(p))]

x0i®) = 5 G T i) 3.7

where X € {CAR,AAR}.

In the case of X = AAR, the packet arrival rate gaar is a function
of the packet loss and the packet loss, a function of gaar. The following
proposition ensures that the AAR process achieves an average packet arrival
rate according to the following proposition.

Proposition 3.2.1 The packet arrival rate gaar 1S obtained as the unique
fized point of these equations:

Paar(vi(p)) = (1 = f(vi(p)))Haar (vi(p)) (3.8)

1. For the sake of clarity, here and in other places in this chapter, p is omitted from
the notations.
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where TIAAR(7Vi(p)) has qaar as a parameter as seen from (3.7) and (3.6),
and:

qAAR(PAAR) = g(PaAR). (3.9)

When the packet arrival is constant (i.e., X = CAR), the dependency
of IIx regarding the SINR follows a simple relation. However, when the
AAR protocol is assumed, the relationship is less trivial. Indeed, the packet
loss ®x depends on wx through (3.5) and (3.6). The quantity wx depends
on the arrival rate gx. But, in the AAR case, ¢x also depends on the
packet loss. This is the reason why under the AAR protocol assumption, its
assumed that each transmitter operates at the fixed point associated with
the aforementioned dependency chain. Therefore, this amounts to fixing
the packet loss function to have a certain form. AAR can thus be seen as
an indirect way of imposing a certain QoS on the transmission. A detailed
discussion on this subject is provided in B.2.

3.2.2 Properties

The EE function 7; x possesses a very attractive property regarding its
dependency toward p;. This is what the next proposition states.

Proposition 3.2.2 For all i € N, the EE function 1, car(p) is quasi-
concave w.r.t. p; and has a unique mazximum point denoted by ];;“ (}272.).

The proof relies, in particular, on the sigmoidness assumption for f and
can be found in App. B.2. This result is very useful for the NE analysis
which is conducted in Sec. IV. Remarkably, the quasi-concavity property is
not only available in the case of CAR but also in the case of AAR, which is
not obvious a priori.

3.2.3 QoS constraint

As already mentioned in Sec. I, one of the recurrent problems with most
works using the performance metric introduced in [8] is that EE can be
maximized at a power level which does not guarantee a minimum QoS. This
is why, in the case of CAR, also consider a constraint when maximizing
(3.4): the packet loss rate IIcar[l — f(7:)] has to be less than an upper
bound e. For example, in cellular systems, typical values for € are 0.1 or
0.01, based on the system requirements. Adding this constraint restricts the
range of power usable by the transmitter by adding a lower bound on the
power. This lower bound depends on the entry probability ¢ and on the size
of the queue K.
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3.3 Equilibrium analysis and distributed power con-
trol algorithm

Since it is assumed that transmitter 7, « € N, can only control the
variable p; of the N—variable function ﬁi,X(Zj) and is assumed to consider
the energy-efficiency of his own communication, the power control problem
is naturally distributed in terms of the decision. The ultimate goal of this
section is to propose a power control algorithm which is distributed both
in terms of the decision and information (only individual SINR feedback is
required to adapt the power level). While the algorithm itself is directly
inspired from existing works, its convergence analysis does not follow from
a direct adaptation of existing results.

3.3.1 Equilibrium analysis of the associated games

A non-cooperative game under strategic form is merely given by an or-
dered triplet (see e.g., [40]). With the notations of this chapter it writes
as

Gx = (N AP }icn» {wixtien) (3.10)
where the set of decision-makers (DMs) or players is therefore the set of
transmitters, the action space for DM i is P; = [0, Pyax), and u; x is the

payoff function of DM ¢ when the arrival rate model is X. As explained in
Sec. II, when CAR is assumed, a QoS constraint is imposed on the packet
loss. Under this assumption, the payoff function is chosen to be:

1i,CAR(P) if ®car(vi(p)) <e
i = 1-9 i ) 3.11
u;,cAR(D) R4 [ : car(vi(p))] otherwise (3.11)
+ Pmax

This payoff definition means that as long as the QoS constraint can be met,
energy-efficiency maximization is pursued. However, if the constraint cannot
be met, goodput maximization or packet loss minimization is sought. Note
that, for any constraint €, the action space of any DM ¢ is still the interval
[0, Pmax|.- The constraint is instead merged into the payoff function in such
a manner that as long as the constraint is not satisfied, it is always optimal
to increase power. For the AAR case, the payoff function is simply defined
by

ui, AAR(P) = 7i,AAR(P)- (3.12)

A fundamental solution concept for a non-cooperative game is the Nash
equilibrium. The purpose of the following propositions is to show that the
two games discussed in this section possess a unique Nash equilibrium, which
will further lead to the development of a simple algorithm that is guaran-
teed to converge to the aforementioned equilibrium. First, of all, the Nash
equilibrium is formally defined in this context as:

29



Definition 3.3.1 The vector of transmit power levels Q)IEE is a pure Nash
equilibrium of the game Gx if:

Vi€ N, Vp; € Py uix () = wix (pi PNy ) (3.13)
Proposition 3.3.2 For X € {CAR,AAR}, the game Gx admits at least
one pure Nash equilibrium.

In the current state of the art, all related works on energy-efficient power
control use utilities which are continuous with the power profile p. Interest-
ingly, a relevant power control game in which continuity is not available can
be exhibited for the case of X = CAR.

Proposition 3.3.3 For X € {CAR,AAR}, the game Gx admits a unique
pure Nash equilibrium, for which the equilibrium power policy will be denoted

by QQE.

3.3.2 The proposed distributed interference management al-
gorithm

The property of the previous proposition is also sufficient to guarantee
convergence of some important distributed optimization algorithms. Note
that the argmax set mentioned in the proof is a singleton (a scalar value),
which can be checked from App. B.2. While this property is available for
the scenario studied in [8] and many related works, it is seen here that,
although the proposed QoS oriented cross-layer approach leads us to more
complex and more general utilities, this property is still valid.

This means that for these algorithms, not only is convergence ensured,
but the convergence point is also unique. This is very useful to characterize
the performance of an implemented distributed power control algorithm, the
best-response dynamics algorithm. This algorithm is well known in game
theory [60] and draws its roots from the chapter by Cournot [61]. It has
been used in [8] and is often used because convergence to the NE can be
guaranteed. Let pNE be the unique NE of Gx. For the algorithm, define p(t)
as the power control policy in the previous time slot, and p(¢ + 1) as the
power control policy for the current time slot. Algorithm 1 implements the
sequential best-response dynamics for Gx:

Several comments are in order.

1. Its assumed that DM 1 updates first, who is followed by DM 2, etc.
In fact, this order can be arbitrary provided it is fixed.

2. To update the power levels m times, a duration corresponding to mN
time-slots is required.

3. The quantity § > 0 corresponds to the accuracy level wanted for the
stopping criteria in terms of convergence to the NE.
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Algorithm 1 Sequential best-response dynamics

A < 26 > Initialize the observed difference in power levels over time, ¢ is
the tolerance.

P° < (Pmaxs Pmax, - - - » Pmax) > The starting power is uniform power with
Prax.
t< 0 > The starting time is 0.
while A > 6 do > The outer loop that iterates till the power policies
converge.
fori=1— i\f do © The inner loop iterating over the DM indices.
I = ngj) > Using the SINR feedback from its receiver, DM i

i
calculates the interference term I'; for the previous time slot.

Rax (pl';)(1 — Ox(pI'y))
f(;)ri)QX(pFi)(l — dx(ply))
the optimal power that maximizes the EE.
if X=CAR then
p+ + min(p; Pcar(pli) > €) > Calculate the minimum power
to satisfy the QoS constraint.
pﬁ“ + min(max(p*, p+), Pmax) > Choose the optimal power
for CAR if less than P« and more than p. .
else
pf“ < min(p*, Pnax) > Choose the optimal power for AAR if
less than P ax.

> Calculate

p* 4= arg max,
b+

end if
end for
A max(|pt ! — pl])
t+—t+1
end while
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4. The algorithm 1 is completely distributed in the sense that to update
his power, a DM only needs to know the SINR corresponding to his
chosen power level, i.e., BRi,X(iji) can be calculated by knowing ~;
for some p;. This is typically achieved using a feedback mechanism
and does not require a central entity that provides knowledge of the
channel conditions or power levels chosen by the other DMs.

3.4 Numerical results

3.4.1 General setup

Unless explicitly stated otherwise, the following choices and parameters

are assumed for all the simulations provided here:

— The number of users or transmitters is set to two (N = 2). This sce-
nario was chosen because the behavior of various metrics like the price
of anarchy (PoA) can be easily analyzed in this situation. The case
of “high interference”, as defined below, is also studied to compensate
for this choice. In addition, some specific figures also study the case
with more interferers.

R
— The block success rate function is chosen as in [11]: f(;) = exp [— (21??)]

where Ry = 1 MHz is the bandwidth used and the gross data rate is
R =1 bit/s.

— When the adaptive arrival rate scenario is considered, it it is assumed
that g(¢) = %.

— Define the low (resp. high) interference scenario as: E(g;;) = 2.5 and
E(gij) = 0.5 for j # i (resp. E(gs) = 2.5 and E(g;;) = 2 for j # 7). For
some simulations, the channel gains will be assumed to be fixed while
for the others it will follow classical block Rayleigh fading. The values
indicated will be the instantaneous channel fading when the scenario
considered is static and otherwise will indicate the variance.

— The noise level is set to 02 = 1 mW; the maximum power Pyay = 1000
mW; buffer size of K = 10; e = 1 (packet loss constraint) and the fixed
power consumption b = 1000 mW.

— To measure the global efficiency of the interference network with re-
spect to the centralized solution, the price of anarchy is used. [62]
gave a definition of PoA where the optimal situation correpsponds to
a POA equal to 1, while other situations correspond to a PoA> 1:

mgx Z u; x(p)

VX € {CAR,AAR}, PoAx = —° .
Zui,X(BNE)

(3.14)
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3.4.2 About the considered EE performance metric

Assume a single-user scenario i.e., N = 1, a fixed channel gain (namely
g11 = 2.5), and the arrival rate to be fixed (CAR scenario). Fig. 3.1 depicts
the EE (3.4) as a function of the chosen radiated power for different values
of the fixed consumption cost b and packet arrival rate ¢. First, the figure
illustrates what has already been proved through Prop. 3.2 namely, EE is
quasi-concave w.r.t. the radiated power. Second, fix ¢ to one and assess
the influence of b. As b increases, the curve becomes less peaky. In fact,
if b becomes very high, EE tends to merely becomes a packet success rate
function. This means that power control becomes irrelevant since it merely
boils down to transmitting at maximum power whatever the channel con-
ditions. Now fix b to 1000 mW. By moving from the arrival rate of ¢ = 1
(framework of [53]) to ¢ = 0.6 (with a buffer size of K = 10), it is seen that
the EE curve is quite significantly changed and the optimal radiated power
changes from 460 mW to 320 mW. In the next section, the gain in terms of
radiated power brought by the cross-layer approach is quantified in a more
general scenario.
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Figure 3.1: CAR: EE against pq, i.e., the energy efficiency as a function of
the transmit power for various values of the constant power (b) and packet
arrival rate (gcar).

3.4.3 Influence of the packet arrival rate in the CAR scenario

The low interference scenario; For K = 10, Fig. 3.2 represents the gains
in dB in terms of radiated power which is brought by the proposed cross-layer
approach (after convergence of the proposed distributed power control algo-
rithm) w.r.t. the conventional approach in which it is (implicitly) assumed

plg — 1]>

il )
for a given i € {1,2,3}, say ¢ = 1 (the gain is the same for the different
transmitters since the average channel gains are identical). The gain is rep-
resented as a function of the packet arrival rate. It is seen that, for different
numbers of transmitter-receiver pairs (N = 2 or N = 3) and a raw packet
error rate of € = 0.1 (by raw it is meant before re-transmission), the gain
is significant if the arrival rate is typically less than 0.5. Gains as high as
10 dB (with N — 1 = 2 interfering users on the same band) or 30 dB (with
N — 1 =1 interfering user on the same band). If the raw QoS constraint is
relaxed (e = 1), quite similar observations can be made. These gains are not

that ¢ — 1 [53]. The gain is therefore defined by 10log; (
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in terms of energy consumed by the whole transmit device but they mean
that transmitters use much less radiated power and therefore create much
less interference, while reaching the same QoS.
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Figure 3.2: CAR: 10log;, ( ) against ¢, i.e., the ratio of equi-

NE
librium power levels in the crogsl—la[g]er case to the case where the buffer is
ignored and arrival rate is one. Interestingly, this cross-layer approach does
not only allow the EE to be maximized but also allows significant gains in
terms of radiated power. The transmit power for the cross-layer approach is
always lower than for the purely physical layer approach, and this difference

is more prominent when a packet loss constraint is imposed.

3.4.4 Gains in terms of energy brought by the cross-layer
approach w.r.t. the state-of-the art

As explained in the introduction, maximizing energy efficiency and min-
imizing energy are in fact equivalent in communications systems where re-
transmissions are allowed. Exploiting this interpretation here to go further
than just assessing the gains in terms of EE as done classically. Indeed,
the gain in terms of energy or average total power brought by the proposed
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cross-layer approach over the closest state-of-the art solution which is given
in [53] is assessed (the latter is obtained by assuming ¢ — 1 whatever the
actual value of ¢). For ¢ = 0.5 and ¢ = 0.3, Fig. 3.3 shows that it is possible
to have improvements in terms of energy consumed by the device and not
just EE. This (relative) gain can be as high as 28% for ¢ = 0.5 and 42% for
q = 0.3 in the setting under consideration. Interestingly, this gain can be
obtained under the same information assumption as [53] namely, only indi-
vidual SINR feedback is needed to implement the power control algorithm
which provides the NE performance (after convergence). Note that in this
case, ¢ = 1 offers no gain as the situation is identical to that treated in [53]
while ¢ — 0 would offer maximum gain.
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Figure 3.3: CAR: Plotting the energy consumed against b with ¢ = 0.6 and
g = 0.3. Compare the performance of the proposed algorithm against using
the best-response dynamics algorithm from [53] where the presence of the
queue is ignored.

36



100 \ \ \
-A-Packet arrival rate (q) = 0.9
g0~ |"©-Packetarrival rate () = 0.5 ’
S
E 60, |
c
T
o)
3
5 40~ 1
c
m
X 0 0 o0 ——b
\ \ \ \ \ \

O20 25 30 35 40 45 50 55 60 65
Constant Power (b) in dBm

Figure 3.4: CAR: Plotting the energy consumed against b with ¢ = 0.5 and
g = 0.9. Compare the performance of the proposed algorithm against a
scheme that just minimizes the transmit power such that the SINR > 25
dB.

As a second comparison in terms of energy, the energy consumed by a
transmitter when optimizing (3.4) is compared with what would obtained
by just minimizing the radiated power under an SINR constraint, which is
a classical approach. Fig. 3.4 corresponds to the relative gain in terms of
saved energy as a function of the fixed consumption cost b, for ¢ = 0.5 and
g = 0.9, R = 8 Mbps and an SINR target of 25 dB for both approaches in the
single user case (interference can make achieving such a target impossible).
It is seen that an energy gain of up to 80% can be achieved for sufficiently
high values of b, which is a quite significant gain and can be easily attained
in practice (e.g., maximum radiated power for femto base stations is of the
order of one watt while the fixed consumption cost is typically of about a
few watts). Note that the gain observed here is maximum when ¢ = 1 as
the highest transmit power is used in this case.
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3.4.5 Influence of the packet buffer size in the AAR scenario

So far, CAR scenario has been treated. In particular, this has allowed
the study of the influence of the parameter ¢q. But, for AAR ¢ is not fixed
and varies with the SINR. Fig. 3.5 represents, for different numbers of trans-
mitters (N € {2,3,8}), the network sum-payoff versus the buffer size for a
static channel. The influence of interference (e.g., inter-cell interference) on
global energy-efficiency clearly appears. As an important comment, as this
simulation shows and many other simulations confirmed this observation
(including all simulations assuming CAR instead of AAR), when the buffer
size is greater than 10 typically, the asymptotic regime in terms of buffer size
can be assumed to be approximately reached. In practice, this means that,
when K is large enough, power control policies might be approximated by
implementing the power control policies obtained by assuming K — +oo,
which corresponds to switching between Cases 1 and 2 (in Sec. 3.2.2), de-
pending on the current SINR.

10
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Figure 3.5: AAR: Observe that the AAR sum-payoff at the NE is sensitive
to the interference level, as seen from the large difference between the two
user low and high interference case. With a low interference level, N = 8
has a higher sum-payoff than for N = 2 with a high interference level.
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Figure 3.6: AAR: Plot of percentage gain in EE v.s g¢;;,7 # j (keeping
gi,i = 1), where the gain is calculated by comparing the EE achieved using
the proposed AAR algorithm to the EE at the NE achieved by using the
algorithm ignoring the packet level. Observe that in the very low interference
regime, the proposed scheme outperforms the other algorithm. However in
the low-medium interference region, the NE is inefficient with a high PoA
and this results in poor performance.

Fig. 3.6 studies the average gain in EE (averaged over the channel fading)
when compared to that of a power control algorithm ignoring the packet level
versus the interference. Here see that when the interference is very low, the
NE of the proposed scheme performs better than an algorithm that ignores
the packet level. However, when under interference, the strategy under
the AAR scheme would be to use a very high power as EE is individually
optimized when the AAR achieves a higher packet rate. This results in a
sub-optimal NE as seen in the figure when the interference is in the [—25, 0]
dB range. This effects indicates that the cross-layer approach might induce
some performance loss w.r.t. the classical approach. This negative but
quite surprising result indicates that in distributed networks, refining the
modeling aspect can sometimes induce a performance loss; similar to other
known paradoxes in distributed networks such as the Braess paradox [63].
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Chapter 4

Other techniques to improve
the energy-efficiency

In this chapter, techniques that improve the energy efficiency of both
centralized and decentralized communication systems are discussed. Specif-
ically, for the case of centralized systems, the energy efficiency metric is
redefined by considering the dynamic nature of users that arrive and leave
the network based on individual data needs. Clearly, this approach can not
be carried over to a de-centralized problem (uplink for example) as a single
user does not have information on the other users in a completely distributed
system. Therefore, in the case of decentralized systems, a technique of ex-
changing CSI information through power level coding is proposed that can
significantly improve system efficiency.

4.1 Centralized systems

The contributions of this section are summarized as follows:

1. Consider a new energy efficiency metric that accounts for the overall
power consumption of the base station, including common channel and
fixed consumption parts.

2. Derive an optimal power allocation scheme that maximizes the energy
efficiency, while preserving Quality of Service (QoS).

3. Show that the power allocation that considers the dynamic behavior
of users is significantly different from the scheme optimized locally for
each state of the network. In addition to that, the former performs
better than the latter.
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4.1.1 System model
System description

Consider a transmitting base station with buffers of infinite (or very
large) size. The base station sends packets into a queue for each user which
is stored in these buffers. The packets arrive at each time slot Tp (expressed
in seconds), each packet being of size S, (expressed in bits). The data rate
R, is equal to %‘Z. The throughput when using all the available bandwidth
is denoted by R(p) (expressed in bits per second), when the receiver has
an average signal to interference plus noise ratio (SINR) of p. This SINR
depends directly on the transmit power P (expressed in Watts) as p = J—PQ.
Here o2 represents the average noise for a given radio condition (expressed in
Watts) and it depends on the distance of the receiver from the base station.

All packets of a user are assumed of the same size and the average
throughput on the radio interface, when the queue for the corresponding
user is active, is denoted by R,(p) (expressed in bits per second) which de-
pends on the bandwidth available. When all the packets in the queue are
transmitted the queue becomes empty and inactive. Each packet stored in
the buffer is a collection of frames that are transmitted over the symbol time
T, (expressed in seconds). Each frame is transmitted or retransmitted till it
goes through and an acknowledgment is received.

Sp
1= R (1)
If this duration exceeds T'p, the time by which the next packet arrives, the
queue size becomes infinite and the transmitter is always on. Otherwise, the
probability of the transmitter to be active (®(p)) is given by the ratio of Ty
to Tp. Thus:

®(p) = max <Rf(f’p) : 1> (4.2)

The values taken for R(p) from [64], are in fact, averaged over the fast
fading and are thus suitable for this model. When there are several users
in the network, the available bandwidth is divided among the active users.
Assume the bandwidth allocation to be equal among all users and this im-
plies that if N users are all active and experience the same radio conditions,
the throughput is reduced to %.

Proposed performance metric

In the broadcast channel there are multiple users that have to be served.
In practice, users arrive randomly, and depart once they finish downloading
their requested data. New arrivals are blocked when the total number of
users crosses a certain limit defined by the base station. Fach user may
experience a different radio condition from its peers.
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For convenience, the area covered by the base station is divided into
“zones”. Every user in the same zone, experiences the same radio conditions.
This implies that if the base station transmits at a certain power, then all
the users in the same zone experience the same SINR. The radio conditions
are determined by the average distance of the zone to the base station. If
there are M zones in total, define {0%,03,-- ,0%,} as the channel conditions
for each zone. Define the “state” of the system s = {IN}, No,--- , Njs}. The
state s represents the number of users in each zone. For example if there are
two zones, and there are no users the state is {0,0}. When a user arrives to
zone one, the state becomes {1,0}.

For a state s = {Ni, Na,---, Ny}, the power allocation scheme de-
fined as P = {P, Pa,---, Py} results in an SINR distribution of p =

{p1,p2,--- pm} among the zones 1 to M, where p; = %.
j

First, define the notion of energy-efficiency for a given state or the “local”
energy-efficiency. This is useful as in practice, the base station can easily
measure this quantity only for a given state as it is unable to predict when
a new user will arrive. The “global” energy-efficiency defined as the average
of the energy-efficiency in each state weighted by their probabilities.

If there is always one and only one user, the energy-efficiency can be
defined based on [8] and other works as

R(p)®(p)

" b+ P(p) (43)

nsu
where b is the constant power consumed by the base station while serving at
least one user '. The proposed form is easy to interpret as R(p) represents
the average throughput when the transmitter is active and P is the cost

when the transmitter is active.
When the system is state s, the energy-efficiency is defined as:

(4.4)

where Ry and P, represent the total throughput and power consumed re-
spectively in state s.
When the number of users is random, then the global energy-efficiency

function is defined as: ( )R
R (s
s S

Where 7(s) is the probability of finding the base station at state s of user
distribution. The global energy-efficiency could alternately be defined as

1. This cost can have several origins like energy spent on the power amplifier, com-
putation, cooling mechanisms etc. Details of the power consumption model are given in
[45].
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ratio of the total throughput over all states to the total power over all
states. However, in practice, calculating the energy-efficiency for each state
and taking the average, is easier and more reasonable. The goal of this
work is to improve the above defined energy-efficiency of a transmitting
base station.

This metric can be physically interpreted as the average number of bits
that can be transmitted by spending one Joule of energy. Alternately, the
average power cost of the base station can be written an Traffic  Hence,
optimizing the global energy-efficiency amounts to minimizing the average
power consumption of the base station.

4.1.2 Optimal power allocation for a fixed number of users

In this section, consider the case where the number of users is fixed.
Refer to the optimization of the metric defined in this section as “local”
optimization as it deals with the optimization of a single state of the wireless
network. When the state of the network is given, the number of users in each
zone is known and can thus be used to calculate the relevant information
required to obtain and optimize the energy-efficiency. Assume a knowledge

of the average noise levels for each zone, i.e {0?,03, -+ ,0%,} are known.

Homogeneous radio conditions

First, consider the problem where all users experience the same average
SINR, as the model is easier to be understood; the case of heterogeneous
SINRs will be exposed next. Let the total number of users in the cell be N.
As all the users experience the same radio conditions, s = {N}. Define the
average throughput experienced by any queue as R,, to derive:

N—-1
rip =3 (V] )ewra-ee B )

= ) 141

where ®(p) denotes the probability that any of the N users are actively
being served and is given as in equation 4.2. The summation is upto N — 1
as R, is the throughput experienced by an active user, and so consider
the remaining N — 1 users. The R, for every user is identical as all users
experience the same SINR for the same transmit power. This symmetry can
be exploited to conclude that the transmit power for each user will be equal
when optimized. Note that R,(p) depends on ®(p) and ®(p) depends on
R, (p) leading to a fixed point equation.

Clearly if N is large enough, then the demand in data rate will exceed the
maximum available throughput and ®(p) becomes 1. On the other hand, if
N is small enough, the users may transmit their data faster than the packet
arrival speed causing the queue to empty occasionally. In this period, other
users can take advantage of the excess bandwidth.
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From ®(p), the total power consumed can be calculated as
Po=b+ P(1— (1-(p)") (4.7)

Here (1 — ®(p))" is the probability of all queues being empty. If any queue
is active the power consumed is P. The total throughput is Rs = N®(p)R,
leading to an energy-efficiency of

_ N®(p)Ra(p)
BT P (p)N

(4.8)

Heterogeneous radio conditions

Consider a more realistic setting where users experience different radio
conditions in each zone. Denoting the average throughput experienced by
zone j as R,.j, compute

N1 N2 N;—1 Ny

Raj(p)=Rip) D > ) D (71)

11=012=0 ij=0 ip =0

x (ZZ) o <Njij— 1) ‘o x (ZJ;I) « (@1(p))"
X (P2(p))2 x - x (Par(p))'™ x (1 — Py(p))N 7

X (1 - (I)Q(p))NQ*iQ X e X (1 _ (I)j(p))Njfij—l
1

X X (11— Ny =i 4.9
(1= ®ulp) i +igt i+ 1 (4.9)
where
®(p); = ma (Rp 1) (4.10)
;= X , .
! Ra:j(P)

Leading to a set of fixed point equations that can be solved to calculate
all R,.j(p) for a given P. Equation (4.9) is similar to (4.6), but considers
the presence of users in other zones as well. The average power can be
calculated as

Ny Ny
PaP)=0b+> - > (1=6(ir+-+ium))

i1=0  ip=0
; ; Pyiy + -+ Pyiy
x (@ Tx o x (P M

(®1(p)) (®a(p)) x AL

X (1= ®1(p))N17 - x (1= By (p)) Vi (4.11)

Where the § function is used to exclude the state where all zones are empty
(6(x) = 0 for all real = but 0, and §(0) = 1). The energy-efficiency in this
state can be calculated with Rs(p) = Zf\il N;®(p)iR,.; and total power
from equation (4.11).
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4.1.3 Optimal power allocation considering the dynamic be-
havior of users

In the previous section, the energy-efficiency for fixed numbers of users
was optimized. To analyze the impact of power allocation on the network
performance and account for the users arrivals and departures, a flow-level
capacity analysis is required. The arrival rate can be modeled through a
Poisson process (of intensity A; in zone i) and users leave when they finish
streaming a file of average size F'. When the total number of users exceed a
given threshold N;,.., new user arrivals are blocked.

Processor sharing analysis

When users with a finite workload are considered, the number of users
is not constant but varies dynamically during time. The distribution of the
number of users is determined by the traffic intensity within the cell. Indeed,
if the traffic intensity is large, more users connect to the system per unit
time and the average number of active users increases.

The heterogeneity in radio conditions translates into a larger service time
for cell edge users. When the system is in state s = {Ny1, Na,- -+, Nas}, the
total number of users in the cell is N(s) = Ni+---+ Njs. Based on [65], this
can be modeled as a Generalized Processor Sharing queue, whose evolution
is just described by the overall number of users in a cell. The solution of
the Markov process has the simple form

M
1 N(s)! QNe
m(s) = M(S) I c (4.12)
Hz’:l Ni! c=1 Hj:l ](bc;s(Nc=j)Ra:c;s(Nc:j)

where Q. = SA. and T' is a normalizing constant. The notation s(N. = j)
is used to take the ® and R, for the state s with j users in zone c.

In this model, the user blocking rate can be calculated as oo = Y, A > (),
x such that the system is full (N(z) = Nyae). Quality of service (QoS) is
measured through the user blocking rate. The QoS constraint is thus o < e,
where € is the maximum tolerable blocking rate.

Optimal power allocation

The steady-state probabilities defined in the previous section are calcu-
lated knowing the throughputs for each state of the network. This through-
put will of course depend on the power allocation as explained in Sections II
and III. The power allocation has thus to be optimized taking into account
the dynamics of users. A power allocation policy P is defined as a set of
actions for each of the possible states:

p=|JpP, (4.13)
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The global energy efficiency; knowing the policy f’, is given by:

AP) = w (4.14)

The optimization problem can be defined as
P* = arg max|[f)(P)] (4.15)

And the maximum global energy-efficiency possible is 7(P*).

The idea behind this global optimization is that the power allocation
does not depend uniquely on the actual state of the network, but takes also
into account the future evolutions of the network. For instance, a power
allocation decision that is taken at one moment may have an influence on
the evolution of the state of the network by favoring a subset of users by a
better throughput. In the next section, the difference between this global
policy maximization and a local one, as defined in section III are studied.

4.1.4 Numerical results

In this section, simulations and numerical calculations are used to study
the properties of the energy-efficiency function and obtain the power allo-
cation that maximizes it. Consider the receiver and the transmitter to have
two antennas each forming a 2 x 2 MIMO system. The data rates for this
configuration which are LTE compliant are taken from [64] and are given as
a function of the SINR. For the single zone case, take 02 = 1 mW while for
the two zone case, take {0},03} = {1, 1} mW.

Numerical results for the local optimization

In figure 4.1, the energy-efficiency as a function of the transmit power is
shown. Here, due to symmetry, all the users use the same power. The results
show that the energy efficiency begins by increasing with the transmit power
increases, as users are able to reach higher throughputs. However, starting
from one point, users reach the maximal throughput they are able to reach
as, in LTE, modulation schemes are limited; the energy efficiency begins
thus decreasing as throughputs remain constant while power consumption
increases.
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Figure 4.1: n vs P with U% = 100 (20dB). Note that the energy-efficiency is
peaked at higher powers with additional users.

Numerical results for the global optimization

In this setting, the power allocation is not determined for a fixed number
of users, but for a given traffic intensity. the number of users is thus a
random variable whose distribution depends on the traffic intensity. The
optimal power allocation is the one that maximizes the energy efficiency
while maintaining a constraint on the QoS. Note that this optimal power
allocation is a matrix that gives, for each state of the network composed of
the number of users in the cell, the power allocation for each of the users.

Initially consider the cell with homogeneous radio conditions, i.e. sup-
pose that all the users experience the same SINR on average. In this setting,
if Nppaz is the maximum number of users allowed, optimization is performed
over Np,q. variables, i.e. the power used in each state. For the single zone
case take 02 = 1 mW. The optimal power allocation is shown in figure 4.2.
Note that, in this case, the power allocation is a vector and not a matrix, as
all users experience the same radio conditions and have, by symmetry, the
same allocated power.
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Figure 4.2: The power allocation scheme (Pp,---, P;) plotted against the
traffic 2 when 7 is optimized. Also note that the QoS constraint of main-
taining the blocking rate below 0.01 is satisfied.
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Figure 4.3: 1 plotted against the traffic {2 when 7 is optimized and when 7
is optimized for each state separately.

Figure 4.3 compares the energy-efficiency obtained for the local and
the global optimizations. As seen from the simulations (Figure 4.3), us-
ing a global optimization does not seem to yield much gains in the energy-
efficiency for the single zone case. This is because the throughput, and thus
service times, are the same for all users. Next, moving on to the two-zone
case (cell center and cell edge): Here, consider a cell divided into two con-
centric rings, and define the outer zone as the region when the SINR is 4.8
dB (3 times) lower than the SINR for the inner zone, when the transmit
power is unchanged. The outer zone also has 3 times the area of the inner
zone causing Ao = 3A;. With these parameters calculate the optimal global
energy-efficiency and corresponding power allocation for given values of A;.
{03,035} = {1,2} mW. Figure 4.4 shows the energy efficiencies correspond-
ing to local and global optimizations. It is obvious that global optimization
yields much higher efficiency when users have heterogeneous radio condi-
tions. This is because, in the local optimization setting, the notion of call
duration cannot be taken into account as users are considered as always ac-
tive. The optimal power allocation will then tend to favor cell center users
in order to maximize throughput. However, when the dynamic behavior of
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users is taken into consideration, it is sometimes better to use more power
on cell edge users in order to let them finish their service quickly and quit
the system. Applying the policy obtained from the local optimization will
lead to users accumulating at the cell edge as they are not able to finish
their transfers.

15 . :
: : : : ‘ —Global Optimization
“““““ Local Optimization

Global efficiency (n?) (bpJ)

<
(=)

Blocking rate
crosses 0.01

. i — i i
0'81 2 3 4 5 6 7 8 9
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Figure 4.4: 7 plotted against the traffic 11 = A1.S when 4 is optimized
and when 7 is optimized for each state separately. Also note that the QoS
constraint of maintaining the blocking rate below 0.01 is satisfied at all
points shown.

4.2 De-centralized systems

Interference networks have been a primary focus of interest to researchers
since the conception of wireless networks. Typically, in an interference net-
work, when there is no direct line of communication between the transmit-
ters; the transmitters use a distributed or selfish strategy and work at a
sub-optimal level of performance. For example, in the case of a distributed
interference network with multiple-carriers, the iterative water-filling algo-
rithm is considered to be the state of the art technique [66]. In [67] the
authors introduce the idea of coded power control where one decision maker

50



that has knowledge of the future and global CSI (channel state information)
provides information of the optimal action to the second decision maker
through it’s actions. This work focuses on a more practical situation where
only imperfect local CSI is available at both the transmitters.

4.2.1 Motivation

Clearly, in a non-coperative setting (wi-fi for example), there seems to
be no motivation for the individual decision makers in a wireless network to
cooperate. This leads to an inefficient Nash equilibrium as seen in Chapter
3. However, this is mainly because the game considered in Chapter 3 was
the single shot power control game. In most practical cases, the game is
not a single shot game as the devices keep transmitting for a long time.
From the results shown in C.2, it can be seen that using the repeated game
framework, a Nash equilibrium of the repeated game can be found which
pareto-dominates the Nash of a single shot game.

In repeated games (RG), as the name suggests, the same game is played
several times. The long-term interactions between the players in such a
situation is studied under the RG framework. The players react to past
experience by taking into account what happened in all previous stages and
make decisions about their future choices. The resulting utility of each
player is an average of the utility of each stage. A game stage t corre-
sponds to the instant in which all players choose their actions simultane-
ously and independently and thus a profile of actions can be defined by
p(t) = (p1(t),p2(t),...,pn(t)). When assuming full monitoring, this profile
choice is observed by all the players and the game proceeds to the next stage.
In a repeated game with complete information and full monitoring, the Folk
theorem characterizes the set of possible equilibrium utilities. It states that
the set of Nash equilibrium in a RG is precisely the set of feasible and in-
dividually rational outcomes of the one-shot game (non-cooperative game).
Thus, it can be justified that playing any strategy that pareto-dominates
the Nash, is an equilibrium of the repeated game and hence feasible.

Of course, the next step would be in developing a method of achieving
such a point. From C.2, it is clear that in an interference network, achieving
such a point is not so straight-forward. The main goal of this section is to
enable distributed systems to communicate implicitly through their transmit
power levels and achieve an efficient equilibrium.

Contributions: The novel contributions of this section are two-fold. First,
a technique through which all the channel fading coefficients (g; ;) can be
calculated by exploiting just the SINR feedback is proposed. Second, a
method to exchange the calculated channel information through power level
modulation is explained. This efficiency of the proposed scheme is analyzed
quite extensively through several numerical simulations.
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4.2.2 System Model and technique overview

The system under consideration is that of K pairs of interfering trans-
mitters and receivers. Let the transmit power of user ¢ be given by P; and
the channel between transmitter j and receiver 7 be g;;. In a many user
interference channel, the SINR at receiver ¢, ; is given by:

9ii s

L+ 9P
j#i

- (4.16)

where the noise level is normalized to 1. Receiver ¢ estimates this SINR at
each time slot and sends to transmitter 7 via a feedback channel 7; = v; + A,
the channel estimate. The error A; could be due to imperfect estimation,
quantization of the SINR and through error in the feedback channel. The
K dimensional vector formed by these transmit power levels is given by P.
The transmit power levels are assumed to be discrete and are either 0 (no
transmission), or belong to the finite set P, where ||P|| = M is the number
of available non-zero power levels. All the channel fading coefficients g; ;
are positive real numbers and can be expressed as elements of the K x K
matrix G. The utility of the system is given by W (P, G), and the power
levels chosen at the globally efficient point are:

P = arg max W(P,G) (4.17)

This work provides a procedure by which the transmitters can estimate
partial information on G and exchange this information to obtain the com-
plete G. Once G is obtained P* can be found and the system can operate
at the globally efficient point given by (4.17). Naturally, this point can be
perfectly achieved when A; = 0 and with a non-zero noise in the SINR
estimate, a scheme of achieving an approximately globally efficient point is
provided. The process of achieving the power control scheme as described by
(4.17) is divided into three phases. The first phase is involved in estimating
all the channel coefficients that are perceived by each receiver. Receiver 1
for example would estimate g1,1, g2,1, ..., gk,1- The second phase involves en-
coding this information into their transmit power levels as well as decoding
the information received by observing the power levels of the other trans-
mitters. The final phase would involve using all the collected information
available to all the transmitters and setting the power control scheme to the
one described by (4.17).

4.2.3 Phase 1: Channel estimation

The process of channel estimation is done by exploiting equation (4.16).
The first phase lasts for a duration of T frames. In each frame, each of
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the transmitters transmit at a power level given by P;(t),t € {1,2,...,T1}.
This power control scheme for phase one is denoted by the matrix P! and is
given by (P(1)T, P(2)T,...P(T1)T)T. In order to estimate g;; based on the
P! choose, the sequence of SINRs v = (y(1),7(2),..7(T1))T is exploited.
Define the matrix S;(v,P!) as B

—v()Pr(1)  —v()P(1) .. P(1) .. —y(1)Pr(1)
—Vi(Q?Pl(Q) —71(2?P2(2) Pz"(2) _%(2)‘PK(2) (4.18)
—%'(le)Pl(T1) —%(T1:)P2(T1) Pi(:Tl) _’Yi(Tl):PK(Tl)

This allows the channel coefficients to be rewritten using the Moore-Penrose

pseudo-inverse as:

g1i
g =1  |=(Si(,PHS;(r,PY)
9K

S, PH  xy (4.19)

However, as only 7 is available to the transmitter and not the actual
SINR v, the channel vector can be estimated as:

-1

g, = (i3, PH"s:(7,P) + A1) 8,7, P17 x5 (4.20)

using the regularized inverse, where A is the regularization factor. Of course,
the expected estimation error variance E[l|lg, — g, g-|/?] is minimized by the es-
timator (4.20) only when S is mdependent of the feedback noise, and the
channel statistics and the SINR, feedback error have a specific distribution
(i.i.d and Gaussian). Generally in practice, the channel statistics is exponen-
tial and the structure of the feedback noise is unknown. and so the optimal
estimator for a general noise is unknown. For the purpose of simulations and
a meaningful analysis, the estimator given by (4.20) is used in this section.
At the end of Phase 1, each transmitter i estimates the channel vector g, as

~

9
4.2.4 Phase 2: Coding and decoding the CSI to/from the
power levels

In the second phase, each transmitter encodes the information g, g, onto
their power levels P;(t) and decode the power levels used by the other trans-
mitters. This phase lasts for a duration of T frames. As there are M
power levels available and T5 frames, the total amount of information that
can be transferred in this phase by any transmitter is equal to logy(M72) =
T logy (M) bits. The overall processing of the channel information estimated
and sent by transmitter ¢ is given by:

Phasel o Quantizer . Codey Pi(t) Jth Decoder jz (4.21)

X <4 ) )
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where < g. > is the quantized channel vector and % g, is the channel vector
decoded by transmitter j.

Quantization: Thus, the first step in the second phase is for each of
the transmitters to quantize the real K dimensional vector QAz into M2
symbols. Then, each of these symbols are associated to a power level vector
of size Ty with M possible power levels at each time. For this purpose, the
classical iterative ”Lloyd” algorithm could be used in order to minimize the
distortion of the coded channel. However this algorithm assumes that there
is no error on the information transferred but due to quantization, whereas
in this scheme, the estimate gAl has an error before quantization as well as an
error in decoding the power level (after quantization due to symbol detection
erTors).

In the presence of an error just before the quantizer, [68] proposed an
alternative algorithm. In this work however, there could be an error both
before and after the quantization. The results in [69] exploit the statistics of
the error after quantization in order to minimize the distortion. Let the the
PDF of the noise due to channel estimation 9, — QAZ be given by ¢() and the
probabilty of detecting the symbol [ as symbol n (where n,1 € {1,2,.., M2}
be given by m; ;. First select randomly N = M2 sites s;,1 € {1,2,..N} from
a K-dimensional space. Then, the following steps are performed iteratively
until the N sites converge:

1. Calculate the Vornoi diagram of each of these IV sites s;. For each site
the corresponding Vornoi region w;,l € {1,2,..N} is defined by the
set of all points closer to that site than to any other, i.e., u; = {z :
[z = sil| < |l — sil[VE # 1}

2. Calculate the weighted centroids v;,l € {1,2,..N} as follows [69]:
ful 9,1(g Z 1Tt Jy, ®(y — g,)dydg,
ful f ﬂ-nl Un ¢(y o gl)dydgl

where f(g,) is the PDF of the variable to quantize g..

3. Set the N sites to be the N weighted centroids v; as calculated from
Step 2; s; = .

(4.22)

Power modulation and demodulation: This power control scheme for
phase two is denoted by the matrix P? given by (P(Ty+1)T, P(Ty+2)7,...P(T1+
T1)T)T. Once the quantized channel is coded onto the power levels, the next
step is to identify the power levels used by the other transmitters. In this
step each transmitter 7 broadcasts the quantized channel < g. > to every
other receiver. At the transmitter j at time ¢, the total interference that is
observed is estimated as

> Pugrj =22 (;’)f ~1 (4.23)
ki 7
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As g jVk are known at j and P, € P, a maximum likelihood estimator
(MLE) can be used to get all Px(t). Once all the Pg(t) are found for all ¢ in
the second phase. The power levels and the quantization codebook can be
used to retrieve the channel 9y Vk and thus obtain G. However as the MLE
could have a different estimate at each receiver j and so at each transmitter
j, a global channel estimate 7 G is obtained.

4.2.5 Phase 3: Working at the globally efficient system point

By the end of phase two, the transmitter k& possesses the distorted quan-
tized channel information {¥G;}. Therefore, at this point transmitter k
uses the power control policy given as P,f S (power control of user k in the
proposed scheme), found as the k — th element of * P*, such that:

kp* = arg max W(PEG) (4.24)

Clearly, in this situation, each transmitter k assumes that the other trans-
mitters also work at the same perceived power control solution *P*. How-
ever, as kgji is not equal for all k, this results in a power control policy that
is a distortion of the solution in (4.17). The policy given by (4.24) becomes
exactly (4.17) when the SINR estimate at the transmitter is always perfect.
To analyze the efficiency of the working point P,f S making use of extensive
monte-carlo simulations that are described in the following section.

4.2.6 Numerical Analysis

For the numerical analysis, a specific choice of the utility W is fixed, i.e.,

W(P,G) = 2ilog(1+ ) (4.25)

Z k b + P
The choice of the utility is chosen to be the average energy efficiency for this
part with b; being the constant power consumed. Typical values for by in a
small cell network are chosen and by, = 0.9W is fixed with max(Py) = 0.1W.
The proposed scheme is also compared to the ”Nash equilibrium” point of
such a system where each transmitter blindly tries to optimize it’s own rate
resulting in PVF = max(P). A distributed system that does not implement
the proposed scheme would naturally operate at this point.
Some other choices that are made for the purpose of simulations:

1. E[gi;i] = 1 when averaged over the fast fading.

2. The error in the SINR estimate is only due to quantization of the
feedback. The SINR estimate available at the transmitter is given by
v = Q(v, ) where § is the number of quantization levels available.
For example, in an eight bit feedback channel, 8 = 28.

3. T =T =K.
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In Figure 4.5, the utility from using the proposed scheme over the NE
100 (II//VV—JI;Z — 1) is plotted against the ratio of the direct channel to the
cross channel. The figure shows that even when the feedback is only 4-bits,
the proposed scheme performs upto 200% better than the NE in the high
interference regime (E[g;;/gi;] < 2Vi # j. On the other hand, when the
interference level is low (E[g; i/gi ;] > 6), it is seen that the NE outperforms
the proposed scheme due to the noisy feedback. Of course, when a 8 or 12
bit feedback is used, the proposed scheme starts to beat the NE. Therefore,
the conclusion that the proposed scheme should be used only in the case of
strongly interfering devices, is drawn.
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Figure 4.5: 100 (% - 1) v.s Elgii/gij]Vi # j. The gain in utility while
using the proposed scheme in phase 3 over the distributed choice at the NE
is plotted in percentage.

In Figure 4.6, the utility W (the sum rate in this case), is plotted against

the number of power levels used in phase 2. This figure shows that in most
cases using just two power levels in the best strategy.
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Chapter 5

Conclusions and future
research

5.1 Concluding remarks

Chapter 2 proposes a framework for studying the problem of energy-
efficient pre-coding (which includes the problem of power allocation and
control) over MIMO channels under imperfect channel state information
and the regime of finite block length. As in [8], energy-efficiency is defined
as the ratio of the block success rate to the transmit power. But, in contrast
with [8] and the vast majority of works originating from it, an empirical
choice for the success rate is not assumed, such as taking f(z) = (1 —e™®)%,
where L is the block length. Instead, the numerator of the proposed per-
formance metric is built from the notion of information, and more precisely
from the average information (resp. mutual information) in the case where
CSIT is available (resp. not available). This choice, in addition to giving
a more fundamental interpretation to the metric introduced in [8], allows
one to take into account in a relatively simple manner effects of practi-
cal interest such as channel estimation error and block length finiteness.
Both in the case where (imperfect) CSIT is available and not available, it
is shown that using all the available transmit power is not optimal. When
CSIT is available, whereas determining the optimal power allocation scheme
is a well known result (water-filling), finding the optimal total amount of
power to be effectively used is non-trivial. Interestingly, the corresponding
optimization problem can be shown to be quasi-convex and have a unique
solution, the latter being characterized by an equation which is easy to solve
numerically. Numerical results are provided to sustain the proposed ana-
lytical framework, from which interesting observations can be made which
include : block length finiteness gives birth to the existence of a non-trivial
trade-off between spectral efficiency and energy efficiency ; using optimal
power allocation brings a large gain in terms of energy-efficiency only when
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the channel has a large enough coherence time,demonstrating the value of
CSIT and channel training. The proposed framework is useful for engineers
since it provides considerable insights into designing the physical layer of
MIMO systems under several assumptions on CSI. The next part of this
chapter studied the performance of virtual MIMO systems from an energy
efficiency perspective. It defines an energy efficiency metric that takes into
account the capacity as well as the energy consumption. The power alloca-
tions of the different antennas is optimized and its shown that sleep mode
can bring a significant energy efficiency gain. This involves deactivating an-
tennas that do not have a significant contribution to the system capacity,
for a given number of users and radio channel conditions.

Compared to the closest related works, the work reported in Chapter
3 possesses three salient features: The (possible) existence of packet buffer
with finite size is taken into account; The total power consumed by the
transmitter is considered; The proposed formulation considers the QoS. Re-
markably, even though the derived energy-efficiency performance metric is
seemingly more complex, it possesses all the main properties necessary for
designing efficient distributed algorithms. Quite surprisingly, this is not
only true when the packet arrival rate is constant (CAR protocol) but also
when it is assumed to be adapted as a function of the SINR and the sub-
sequent packet loss through the AAR protocol. One of the consequences
of these properties is that the proposed iterative distributed power control
algorithm converges towards a unique Nash equilibrium of the power con-
trol game associated with both transport protocols. While the cross-layer
generalization of energy-efficient power control is supported by several key
analytical results, numerical results strongly support the proposed approach
as well. One of the key observations made from simulations is that a dis-
tributed power control scheme can perform as well as a centralized solution
in some situations; realistic settings under which the PoA is close to one are
clearly identified. Also, it is clearly explained why maximizing EE amounts
to minimizing energy in communication systems with re-transmission pro-
tocols and this key interpretation is exploited to assess the gain in terms of
saved energy brought by the proposed approach.

In Chapter 4, for the centralized system, it is seen that taking into ac-
count the dynamic nature of user traffic can significantly impact the average
energy efficiency of a network. The notion of a “global” energy-efficiency is
introduced, which is defined as the average of the energy-efficiencies of each
state the cell can be in. These states represent the traffic configurations, i.e.
the numbers and positions of users in the cell. Through extensive simula-
tions its seen that optimizing the global efficiency yields a different power
allocation from optimizing the efficiency of each individual state. Although
this difference can be neglected when considering a cell in which all users
experience the same average SINR, when considering a more realistic set-
ting where users are subject to heterogeneous radio conditions, the global
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optimization yields a considerable gain. This is because, when users are
considered as static, it may be optimal to give more power to cell center
in order to increase throughputs. However, when the dynamic behavior of
users is taken into account, giving more power to users with bad radio con-
ditions will allow them leaving the system faster and thus alleviating load
in the future. In a decentralized system, the repeated game approach can
be used to justify why even non-cooperative decision makers would prefer to
communicate and achieve a more efficient solution as a Nash equilibrium of
the repeated game. From the analysis conducted in the previous section, it
is seen that using power modulation to implicitly communicate with other
transmitters could potentially improve the performance of the system. The
performance gain when compared to a purely distributed solution is studied
numerically for a specific utility and the results are seen to be promising.
Note that the algorithm proposed here is quite general and can be applied
for any utility, not just the energy efficiency.

5.2 Open problems and possibilities for future re-
search

The proposed framework in Chapter 2 opens some interesting research
problems related to MIMO transmission, which include finding the optimal
pre-coding matrix for the general case of i.i.d. channel matrices under no
CSIT. This problem has not been solved even for the case of large MIMO
systems. Extending the proposed approach to the case of Rician channels
with spatial correlations,tackling the important case of multiuser MIMO
channels and considering the problem of distributed energy-efficient pre-
coding are left as open problems. The work on multi-user MIMO described
in Chapter 2 is applicable only for the specific case of a small cell cluster
with a centralized network and CSIT. Thus, many extensions of the work
described are possible. The most relevant extension is to apply the proposed
framework taking into account user traffic and a random number of users.
Another natural extension of the proposed framework is of course, to study
the effect of different classes of mobility on the virtual MIMO scheme and
to study a distributed network.

Some of the problems left open from the work described in Chapter 3
include the cross layer energy efficiency analysis in the multi-carrier case
and also the case of frequency selective channels, these extensions being po-
tentially related. When relevant, receivers might be assumed to implement
successive interference cancellation. In order to obtain more efficient equilib-
rium points (e.g., in the sense of the sum-payoff or a given fairness criterion),
it would be of high interest to exploit a more advanced game model such
as a stochastic game; this extension is especially relevant if the queue state
information has to be exploited. To go further in the direction of having a
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very realistic wireless network model, a less trivial, but very relevant exten-
sion would be to analyze the case of a time-varying number of users. This
is definitely both of practical and theoretical interest. Finally, the case of
CAR and AAR transmitters simultaneously active in the network has not
been studied yet.

The results in Chapter 4 on the centralized solution are in many ways
incomplete as only numerical results have been described. In addition, due to
high computational complexity of the problem, even the numerical solutions
can be found only for special cases. Thus, any sort of analytic results or
algorithmic improvement in finding an energy efficient solution would be a
significant step forward. In the distributed case, a theoretical analysis on
the efficiency of phases 1 and 2 is left as an open problem and for future
research. Additionally, note that the proposed method can also be easily
extended to a multi-carrier system with Phase 1 and 2 remaining as it is,
but with the information on each carrier channel fading matrix learned and
broadcasted in parallel on each carrier.
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Papers on MIMO

A.1 EUSIPCO-2011

e V.S Varma, S. Lasaulce, M. Debbah and S.E. Elayoubi, ”Impact of Mo-
bility on Wireless Green Networks”, European Signal Processing Conference
(EUSIPCO) 2011.
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ABSTRACT

This paper studies the impact of mobility on the power
consumption of wireless networks. With increasing mobil-
ity, we show that the network should dedicate a non negligi-
ble fraction of the useful rate to estimate the different degrees
of freedom. In order to keep the rate constant, we quantify
the increase of power required for several cases of interest.
In the case of a point to point MIMO link, we calculate the
minimum transmit power required for a target rate and out-
age probability as a function of the coherence time and the
number of antennas. Interestingly, the results show that there
is an optimal number of antennas to be used for a given co-
herence time and power consumption. This provides a lower
bound limit on the minimum power required for maintaining
a green network.

1. INTRODUCTION

The rapidly increasing demand for higher data rates has to
be met by network providers. Arbitrarily increasing the sig-
nal to noise ratio (SNR) is not possible due to mainly two
reasons. First, the transmit power of the Base Stations (BS)
has to be constrained for energy efficiency considerations.
Secondly, the transmit power has to be regulated due to elec-
tromagnetic restriction issues like in [10]. As a consequence,
it is of great importance to determine the minimum power a
transmitter requires to provide a certain target rate in wireless
communication.

A multiple input multiple output (MIMO) channel is a
well known and promising technique to increase the perfor-
mance of a point to point link. In essence, MIMO system
consists of multiple transmitting antennas and receiving an-
tennas. If we have perfect channel state information (CSI),
then increasing the number of antennas would always in-
crease the rate. However, if the channel has to be estimated
through training, time has to be spent for training each de-
gree of freedom. We consider the impact of mobility in a
MIMO system. In its full generality, this problem should be
treated as a non coherent MIMO channel for which the ca-
pacity is hard to determine (open problem). Therefore, we
restrict ourselves to a training mechanism which is subopti-
mal but provides tractable expressions. It was shown in [2]
that in the context of point to point MIMO, there is a tradeoff
between the channel estimate and the training time. A train-
ing time that maximizes the achievable rate was found in [2].
In this work we study how mobility affects the outage rates
in MIMO systems.

Our objective is to study the transmit power for a target
data rate, outage probability and coherence time. With an in-
finite coherence time, it is known that increasing the number

Email: Vineeth. VARMA,
salaheddine.elayoubi @orange-ftgroup.com Samson.LASAULCE@]Iss.supelec.fr

Email: merouane.debbah @supelec.fr

of antennas would cause the power consumption to decrease.
However, if the coherence time is small, a fraction of the time
has to be used for channel training which results in a higher
power consumption to transmit at the same rate. In this pa-
per, we tackle the problem of finding the optimum number
of antennas and training time for single input single output
(SISO), single input multiple output (SIMO), multiple input
single output (MISO) and MIMO systems.

The system model is described in Section 2. The perfor-
mance metric, schemes under which we calculate the trans-
mit power and the objectives of this paper are detailed in Sec-
tion 3. The power consumed in MISO, SIMO and MIMO
systems are calculated analytically and numerically in Sec-
tions 4 and 5. The power thus calculated is studied as a
function of the coherence time and the number of antennas.
Finally, we draw conclusions on the effect of mobility on
MIMO systems.

2. SYSTEM MODEL

Let us consider the input-output relationship of a MIMO sys-

tem given by:
y = M%Hsﬂ )

where y € CV is the received signal, the dimension N rep-
resenting the number of receive antennas. The transmit-
ted signal is s € CM, where M is the number of transmit
antennas.H € CY*V represents the channel connecting the
M transmit to the N receive antennas, and z € CV represents
the additive noise. The matrix H, and the vectors s and z all
comprise of i.i.d complex Gaussian entries with mean zero
and variance unity, that is #;j,s;,z; ~ C.4(0,1). The total
transmit power is proportional to p which is the average SNR
at each receive antenna.

We assume that the channel obeys the simple discrete-
time block-fading law, where the channel is constant for
some discrete time interval, after which it changes to an in-
dependent value that it holds for the next interval [1]. The
coherence time is essentially determined by the mobility of
the user and so if we calculate the dependency of the transmit
power with respect to the coherence time, we will establish
a relation between the mobility of a user and the correspond-
ing transmit power. We further assume that channel estima-
tion (via training) and data transmission is to be done within
this coherence time, after which a new training sequence is
done. The time for training in symbols will be given by ¢ and
the coherence time in symbols by 7. The inverse of the frac-
tion of time that is used for data transfer will be denoted by



¢ = (logy(e)(1— %))~". (The log,(e) is for the conversion
of natural logarithms to base two). We also denote ; by 7.

In the training phase, all M transmitting antennas broad-
cast orthogonal sequences of known pilot symbols of equal
power p on all antennas. The orthogonality condition im-
poses T > 1. The receiver estimates the channel H, based
on the observation of the pilot sequence, as H and the error
in estimation is given as H = H — HL. The channel estimate
normalized to variance one is given by H. From [2] we know
that the rate is lowest (worst case) when H is Gaussian and
then, the channel model can be rewritten as

y= p;uiﬂsﬂ 2)

where p,rr is given by % and 1 equal to pI:Is + z nor-
malized to unit variance. (2) leads to a lower bound on the
mutual information and the achievable rate. Thus, all formu-
las derived in the following sections give lower bounds on the
achievable rate and upper bounds on the outage and transmit
power. This was verified to be an effective model in other
works as well (See [6]). The value of p can be calculated
from p, s by inverting the equation as

(I4+7)2+ 2%

Mpeff(l +7+ Peoff )

2t

p:

3. METRICS

The performance metric that we consider in this paper is the
outage probability for a target rate. We evaluate the transmit
power as a function of the number of antennas for a given
coherence time with the outage P,,, constrained for a target
rate R. We also find the least power that can achieve the target
rate and outage by optimizing over the number of antennas.

We have found in (2) an effective SNR under the as-
sumption of worst case noise. We only deal with the model
where power allocation is uniform among all the antennas
and so the rate we calculate is not the channel capacity but
the achievable rate. With this model we find a lower bound
7 on the achievable rate, in bits per second per channel use,
from [2] as

HHY
M

v = ¢ logdet(I+ posr ) @)

If the target data rate is represented by R, the outage prob-
ability P, is defined as the probability that the rate in a chan-
nel realization (mutual information), ¥ is lower than R the

target rate.

Pour :P(Y<R) )

If 7 is the threshold outage probability required to main-
tain the quality of service (QoS), the performance metric has
to satisfy the constraint P,,; < 2. The transmission power is
evaluated under two schemes, the fixed power scheme where
transmission is always done at a constant power and the adap-
tive power scheme where transmission is done at the optimal
power to achieve the target outage rate. Now, we discuss
these two schemes in detail:

3.1 Fixed power scheme

The first scheme is applicable when transmission is al-
ways done with a constant power of pg and we shall re-
fer to this as fixed power scheme. We calculate the py as
min(p, such as P, (R,p) < &) which is the lowest SNR
that can achieve the given outage probability for a target rate
in a MIMO system. Analyzing the behavior of py with re-
spect to changes in coherence time and the configuration of
the MIMO system will be useful to determine how mobility
affects the transmission power.

3.2 Adaptive power scheme

The second scheme assumes that power control is imple-
mented. In this model, the estimated channel state informa-
tion (CSI) is sent back to the transmitting antennas through
a feedback mechanism, which we assume to be instanta-
neous for simplicity. This assumption a a gross simplifica-
tion in reality and especially when considering small coher-
ence times, however as the qualitative results obtained will
not very much different, we ignore the feedback load. The
feedback in downlink MIMO is studied and optimized in [8]
and other related works and can be used to extend this pa-
per to include its effects. Based on the feedback, the optimal
power to achieve the target rate is used for transmission. If
the power required is more than py (The constant power de-
fined in the previous sub-section), transmission is halted!.
As the power in this scheme is a function of the channel,
for tractable measurements, the power calculated p,,;;, in this
case is the average power over all possible channel realiza-
tions, and we refer to this model as adaptive power scheme.
This model might be harder to implement due to the feed-
back mechanism required and larger Peak to average power
ratio (PAPR).

Pmin = IEH (pa(H)) (6)
where
_J pH) ifp(H)<p
pa(H) = { 0 otherwise ’

4. THEORETICAL ANALYSIS

In this section we find expressions relating the outage rate
Py and, the transmit power pg in the fixed power scheme
and p,i, in the adaptive power scheme.

4.1 MISO

For the MISO system the optimal power allocation for the
best outage probability has been conjectured in [5] and later
on proved in [4]. Here we look at a MISO system with uni-
form power allocation. In this case, HHY reduces to a real

number and det(/ + peffHTHH) becomes just 1+ Y7, hijhy;.

IThis corresponds to a system where real time data processing is required
like in voice or video calls where the rate is fixed and the packets are dropped
if the power is insufficient as the transfer rate is fixed. For elastic services it
is possible to lower the rate and continue communication with the maximum
available power.



Thus we can rewrite (4) and (5) as

M(exp(RC)_—_l)
Z?il 27:1 h,-.,'h;f/»
_ M(exp(RD) 1) -

2

Pefr

where Y7, hijhj; is denoted as @*. The distribution of @?
is the Chi square distribution with 2M degrees of freedom,
®> ~ x*(2M) [9]. If the maximum power p is po, corre-
sponding to a p,¢r of p.ryo then, the outage is just the proba-

bility that perro < % Defining Qz %,
the outage can be calculated as
P — OQO -1 exp(—93)dw
2MT (M)
_ M%) ©
(M)

where I is the Gamma function and ¥ is the lower incomplete
Gamma function. The minimum average effective SNR, with
which this outage is achieved, can be calculated from (6), (7)
and (8) as

Mexp(RC —1 o0 -~ 0]
Pmin-eff = QAB(F(]%). o, @ exp(—7)do
_ Mexp(RG —1)I'(M, ) )
B (M)

where [ is the upper incomplete Gamma function. The ac-
tual average power in the adaptive power scheme can be ob-
tained as Pmin = P (Pmin-eff) using (3).

An interesting observation can be made while compar-
ing a single input single output (SISO) system and a MISO
system with M > 1. If we assume that the peak power
can be arbitrarily large to obtain an arbitrarily small out-
age, then the SISO system in the adaptive power scheme
will also consume an arbitrarily large power given by pj,i, o<
(limpy e Ei( 750 L) — o), where Ei is the exponential integral
that approaches infinity in this limit. However the MISO sys-
tem, with M = 2 for instance, will only consume a finite av-
erage POWer Pyin < (limpoﬁm exp( rhoo) = 1). Outage in both

eXP (00 Ly=0

cases is limp, ;0 1 —

4.2 SIMO

Let us now look at a SIMO system with uniform power allo-
cation. In this case, HHY is a matrix of rank one, so it has
only one non-zero eigen value. This non-zero eigen value is
also the trace and is given as ):] 1 h,Jh det(I + p. s HHY)

becomes just 1+ Y =1 h; ]hl*J as all the other eigen values are
zero. Thus we can rewrite (4) and (5) as

(exp(RE) — 1)

o (10)

Peff

where ):. L hi jh is denoted as 2. The distribution of @? is

also the Ch1 square distribution with 2N degrees of freedom, ,
2 2 . . .

@7 ~ x*(2N). If the maximum power p is pg, corresponding

to a p.rr of perro then, the outage is just the probability that
(exp(RE)—1)

Pefro < Trace(HTH) " Defining Q3, = %%*1)’ the outage
can be calculated as
Q
YN, =3
Pout 1_‘(1\];) (] 1 )

where I is the Gamma function and ¥ is the lower incomplete
Gamma function. The minimum average effective SNR with
which this outage can be achieved can be calculated from (6),
(10) and (11) as

exp(RG — 1) I'(N, %)
T(N)

where I is the upper incomplete Gamma function. The ac-
tual average power in the adaptive power scheme can be ob-

tained as Prmin = P (Pmin-eff) using (3).

Pmin-eff (12)

4.3 MIMO

Calculating the outage probability in a general MIMO system
is a tedious process and also it does not give an interpretable
closed-form expression like in MISO or SIMO. Therefore,
here we use results from the field of large random matrices
to solve this problem and and show that the approximation
holds even for a finite number of antennas.

Lemma 1 Given H € CN*M such that h; j ~ C.A4(0,1). As

M ,N — oo such that limy p—.e % =c

logdet(I + %(HHH))—Mu =y° (13)

Where 1 = [clog(1 + pesf — Pesret) + log(1l + cpesr —
Pefrat) — o
and o= Y[1+c+p.l— \/(1 +etp )2 4]
Then, y° LN W (converges in distribution) where Yy ~
A(0,0) with o = —log(1 — —2) The proof'is in [3].
Lemma 1 gives us a simple and tractable expression to
obtain a relation between the transmit power and the achiev-
able rate. Additionally, we know how the rate converges in
distribution allowing us to calculate the outage by transform-
ing the complexity of working with 2MN random variables
H to a single random variable y. Now let us consider a
MIMO system. From Lemma 1 we know that if the trans-

mit power is pp, the effective SNR can be found as p.fro. If
we define 6y = R§ —M(pefso), we have outage as

P(y <RE—Mpy)
REMH exp( 35 )y

V2no?
Muo RE

P()llt ~

= 1-0

where the Q function is the tail probability of the standard
normal distribution. This approximation and resulting cal-
culations are verified by simulations in the next section.
Consecutively, the minimum average SNR can be calculated
from (6), (13) and (14) as

) (14)

 Jiwa-re PPers(W) exp(35 )y
V2no?

s)

P min —



4.4 The inverse calculation

In the previous sections we have detailed equations that ex-
press the outage probability as a function of py. However,
our objective is to find py for a given threshold outage prob-
ability. This is achieved following these series of steps.

e Given an Outage probability threshold Py. Since the
Q-function is well known and invertable, we use the inverse

Q-function to find X = M”"T_RC.
e Now we use a linear search with p, M and ¢ as the pa-
rameters to calculate M“‘)Tﬂ and match it with the X such

that po = min(p; M“"T_RC > X). Where ly and o are evalu-
ated as functions of p.ss(p).

e Now using 15 we evaluate ppp.

The results of these calculations are illustrated in the fol-
lowing section with our numerical results.

5. NUMERICAL RESULTS

All theoretical results obtained in the Section 4 are
verified using Monte-Carlo simulations. The the-
oretical results are compared to the results from
simulation by a linear search over p that yields
the desired P,,. Finally, we find {po,M,N,1},
such that pp = min(po(M,N,7),suchas M,N €
N,z > 1) and {pmin,M*,N*,7*}, such that py, =
min(pyi (M*,N*,7*), such as M*,N* € N, 7" > 1).

5.1 MISO
18 T T
—Minimum fixed power (Simulation)
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Figure 1: MISO system with R = 1.44 bps per hz, & = 5% and
T = 25 symbols.

The SNR, py in the fixed power scheme and p,,;, in the
adaptive power scheme for a MISO system, with a target rate
of 1.44 bps, outage rate of 5% and coherence time of 25 sym-
bols, are plotted against M = 1,..16 in Figure 1. It is clear
from Figure 1 that there is an optimal number of antennas
for which the transmit power is minimized given a coher-
ence time. As the number of antennas increases the gain
from the additional degrees of freedom is lost due to the ad-
ditional training time required. Another noteworthy fact is
that the optimal number of antennas depends on the scheme
of power transmission. The explanation for this is that the
average SNR in the adaptive power scheme (p,,;,) increases
as M grows larger due to the channel hardening effect, while
Po is still decreasing due to the gain from higher degrees of

freedom. While pg takes its lowest value at M = 6, P, is
minimized at M = 2.

5.2 SIMO
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Figure 2: SIMO system with R = 1.44 bps per hz, & = 5% and
T = 25 symbols.

We also consider a SIMO system with the same param-
eters as the MISO system. The SNR, py in the fixed power
scheme and p,,;, in the adaptive power scheme are plotted
against the number of antennas in Figure 2. Here we can
see that the SNR is a monotonically decreasing function of
the number of antennas. However, here we ignore the com-
putational power required and there is no additional training
required for the receiving antennas, so this result is expected.
Thus, increasing the number of receive antennas always im-
proves the achievable rate thus decreasing po and pyip.

5.3 MIMO
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Figure 3: MIMO system with & =5.76 bps per hz, 2 =5%, m =~ and
7 =25 symbols.

The transmit power pg in fixed power scheme and p,;,;,, in
adaptive power scheme for a MIMO system with a target rate
of 5.76 bps and outage probability of 5% is plotted against
the number of antennas (N = M) with T = 25 in Figure 3. We
see that as the number of antennas increases the gain from the
additional degrees of freedom and increased capacity is lost
due to the additional training time required. The power in
this case is minimized when M = N = 13.
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Figure 4: MIMO system with R =5.76 bps per hz, & = 5%, M =8
and N =4.

Figure 4 plots the transmit power as a function of the
coherence time for a MIMO system with M =8 and N =4
(target rate of 5.75 bps and outage of less than 5%). We
see that as the coherence time increases the transmit power
decreases as expected. The slope of the curve also decreases
as T increases.

5.4 Application

Let us consider a MIMO system operating between a single
BS and a user with a mobile terminal of four receiving an-
tennas. The long term evolution (LTE) standards specify the
symbol duration to be 66.7us [7]. Let us consider a carrier
frequency of 3 Ghz. If we consider a highly mobile user with
a speed of 100kmph, the coherence time in symbols is about
55. Using equation (14), we find the optimal number of trans-
mit antennas and the training time for a data rate of 16bps per
hertz (LTE spectral efficiency can be up to 15 bps per hertz)
and outage probability of less than 1%. Using a linear search
on M and ¢, we get the optimal number of antennas to be
8 and the training time to be 8 symbols corresponding to a
minimum required SNR of 20 dB, while using 4 or 16 anten-
nas would cost over 22 dB. If we consider a user with low
mobility with a speed of about 10kmph, the coherence time
is 550. The optimal number of antennas in this case would
be 17 and the training time is 42 symbols. This corresponds
to a minimum required SNR of about 16 dB while using just
4 antennas would cost over 20 dB.

6. CONCLUSION

In this paper, we have studied the impact of mobility on
MISO, SIMO and MIMO systems. In order to have a
tractable expression of the outage for a MIMO system we
used recent results from the field of large random matrices.
Simulations show these results to be tight even for two trans-
mit and receive antennas. The quality of service is measured
through the outage probability for a target rate in all cases
and equations relating the outage probability to the transmit
power were found. As a result, we see that given a coherence
time, there is an optimal number of antennas for which the
power required to transmit at a certain rate with a target out-
age probability is minimal. Studying a typical LTE system,
we find that optimizing the number of antennas and training
time can reduce power consumption up to 60% and that us-

ing adaptive power control can further reduce the power by
60%. Possible extensions of this work include the case of
multi-user networks.
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An Energy-Efficient Framework for the Analysis of
MIMO Slow Fading Channels

Vineeth S. Varma, Samson Lasaulce, Merouane Debbah, and Salah Eddine Elayoubi,

Abstract—In this work, a new energy-efficiency performance
metric is proposed for MIMO (multiple input multiple output)
point-to-point systems. In contrast with related works on energy-
efficiency, this metric translates the effects of using finite blocks
for transmitting, using channel estimates at the transmitter
and receiver, and considering the total power consumed by
the transmitter instead of the radiated power only. The main
objective pursued is to choose the best pre-coding matrix used
at the transmitter in the following two scenarios : 1) the one
where imperfect channel state information (CSI) is available at
the transmitter and receiver ; 2) the one where no CSI is available
at the transmitter. In both scenarios, the problem of optimally
tuning the total used power is shown to be non-trivial. In scenario
2), the optimal fraction of training time can be characterized
by a simple equation. These results and others provided in the
paper, along with the provided numerical analysis, show that
the present work can therefore be used as a good basis for
studying power control and resource allocation in energy-efficient
multiuser networks.

Index Terms—Channel training, energy efficiency, finite block
length, green communication, imperfect channel state informa-
tion, MIMO.

I. INTRODUCTION

Over the past two decades, designing energy-efficient com-
munication terminals has become an important issue. This is
not surprising for terminals which have to be autonomous
as far as energy is concerned, such as cellular phones, un-
plugged laptops, wireless sensors, and mobile robots. More
surprisingly, energy consumption has also become a critical
issue for the fixed infrastructure of wireless networks. For
instance, Vodafone’s global energy consumption for 2007-
2008 was about 3000 GWh [1], which corresponds to emitting
1.45 million tons of CO2 and represents a monetary cost of
a few hundred million Euros. This context explains, in part,
why concepts like “green communications” have emerged as
seen from [2], [3] and [4]. Using large multiple antennas,
virtual multiple input multiple output (MIMO) systems, and
small cells is envisioned to be one way of contributing to
reducing energy consumption drastically. The work reported
in this paper concerns point-to-point MIMO systems in which
communication links evolve in a quasi-static manner, these
channels are referred to as MIMO slow fading channels.
The performance metric considered for measuring energy-
efficiency of a MIMO communication corresponds to a trade-

V. S. Varma and S. E. Elayoubi are with the Orange Labs, 92130
Issy Les Moulineaux, France (e-mail: vineethsvarma@gmail.com; salahed-
dine.elayoubi@orange.com).

S. Lasaulce and M. Debbah are with SUPELEC, 91192 Gif-
sur-Yvette, France (e-mail: Samson.LASAULCE@Iss.supelec.fr;
merouane.debbah @supelec.fr).

off between the net transmission rate (transmission benefit)
and the consumed power (transmission cost).

The ultimate goal pursued in this paper is a relatively
important problem in signal processing for communications.
It consists of tuning the covariance matrix of the transmit-
ted signal (called the pre-coding matrix) optimally. But, in
contrast with the vast literature initiated by [5] in which
the transmission rate is of prime interest, the present paper
aims at optimizing the pre-coding matrix in the sense of
energy-efficiency as stated in [6]. Interestingly, in [6] the
authors bridge a gap between the pioneering work by Verdi
on the capacity per unit cost for static channels [7] and the
more pragmatic definition of energy-efficiency proposed by
[8] for quasi-static single input single output (SISO) channels.
Indeed, in [6], energy-efficiency is defined as the ratio of
the probability that the channel mutual information is greater
than a given threshold to the used transmit power. Assuming
perfect channel state information at the receiver (CSIR) and
the knowledge of the channel distribution at the transmitter, the
pre-coding matrix is then optimized for several special cases.
While [6] provides interesting insights into how to allocate
and control power at the transmitter, a critical issue is left
unanswered; to what extent do the conclusions of [6] hold
in more practical scenarios such as those involving imperfect
CSI? Answering this question was one of the motivations for
the work reported here. Below, the main differences between
the approach used in this work and several existing relevant
works are reviewed.

In the proposed approach, the goal pursued is to maximize
the number of information bits transmitted successfully per
Joule consumed at the transmitter. This is different from the
most conventional approach which consists in minimizing
the transmit power under a transmission rate constraint: [9]
perfectly represents this body of literature. In the latter and
related works, efficiency is not the main motivation. [10]
provides a good motivation as to how energy-efficiency can be
more relevant than minimizing power under a rate constraint.
Indeed, in a communication system without delay constraints,
rate constraints are generally irrelevant whereas the way en-
ergy is used to transmit the (sporadic) packets is of prime
interest. Rather, our approach follows the original works on
energy-efficiency which includes [11], [8], [12], [13], [14]. The
current state of the art indicates that, since [6], there have been
no works where the MIMO case is treated by exploiting the
cumulative distribution of the channel mutual information (i.e.,
the outage probability) at the numerator of the performance
metric. As explained below, our analysis goes much further
than [6] by considering effects such as channel estimation error



effects. In the latter respect, several works address the issue
of power allocation for outage probability minimization [15],
[16], [17] under imperfect channel state information. The latter
will serve as a basis for the analysis conducted in the present
paper. At this point, it is possible to state the contributions of
the present work.

In comparison to [6], which is the closest related work, the
main contributions of the paper can be summarized as follows:

« one of the scenarios under investigation concerns he case
where CSI is also available at the transmitter (only the
case with CSIR and CSI distribution at the transmitter is
studied in [6]).

e The assumption of perfect CSI is relaxed. In Sec. III,
it is assumed that only imperfect CSIT and imperfect
CSIR is available. Sec. IV considers the case with no
CSIT and imperfect CSIR. In particular, this leads us
to the problem of tuning the fraction of training time
optimally. Exploiting existing works for the transmission
rate analysis [18] and [19], it is shown that this problem
can also be treated for energy-efficiency.

o The realistic assumption of finite block length is made.
This is particularly relevant, since block finiteness is
also a source of outage and therefore impacts energy-
efficiency. Note that recent works on transmission under
the finite length regime such as [20] provide a powerful
theoretical background for possible extensions of this
paper.

o Instead of considering the radiated power only for the
cost of transmitting, the total power consumed by the
transmitter is accounted for. Based on works such as [21],
an affine relation between the two is assumed. Although
more advanced models can be assumed, this change is
sufficient to show that the behavior of energy-efficiency
is also modified.

The paper is therefore structured as follows. Sec. II de-
scribes the proposed framework to tackle the aforementioned
issues. Sec. III and IV treat the case with and without CSIT
respectively. They are followed by a section dedicated to
numerical results (Sec. V) whereas Sec. VI concludes the
paper with the main messages of this paper and some relevant
extensions.

II. SYSTEM MODEL

A point-to-point multiple input and multiple output com-
munication unit is studied in this work. In this paper, the
dimensionality of the input and output is given by the numbers
of antennas but the analysis holds for other scenarios such as
virtual MIMO systems [22]. If the total transmit power is given
as P, the average SNR is given by :

P
P==3 (1

where o? is the reception noise variance.The signal at the

receiver is modeled by :

— . |P
Y= MH§+§ (2)
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where H is the N x M channel transfer matrix and M (resp.
N) the number of transmit (resp. receive) antennas. The entries
of H are i.i.d. zero-mean unit-variance complex Gaussian
random variables. The vector s is the M -dimensional column
vector of transmitted symbols follows a complex normal dis-
tribution, and z is an N-dimensional complex white Gaussian
noise distributed as A(0,I). Denoting by Q = E[ss'] the
input covariance matrix (called the pre-coding matrix), which

satisfies
1

Q=1 3)

where Tr stands for the trace operator. The power constraint
is expressed as :
P < Prax “)

where P, is the maximum available power at the transmitter.

The channel matrix H is assumed to evolve in a quasi-static
manner : the channel is constant for some time interval, after
which it changes to an independent value that it holds for
the next interval [18]. This model is appropriate for the slow-
fading case where the time with which H changes is much
larger than the symbol duration.

A. Defining the energy efficiency metric

In this section, we introduce and justify the proposed
definition of energy-efficiency of a communication system
with multiple input and output antennas, and experiences slow
fading.

In [8], the authors study multiple access channels with SISO
links and use the properties of the energy efficiency function
defined as @ to establish a relation between the channel
state (channel complex gain) (h) and the optimal power (P*).
This can be written as:

SNR*¢?
pr="t
|h[?

where SNR™ is the optimal SNR for any channel state and
(when f is a sigmoidal/S-shaped function, i.e, it is initially
convex and after some point becomes concave) is the unique
strictly positive solution of

xf'(x) — f(x) =0 (6)

where 1 — f(.) is the outage probability. Formulating this
problem in the case of MIMO channels is non-trivial as there
is a problem of choosing the total transmit power as well as
the power allocation.

When the same (imperfect) CSI is available at the transmit-
ter and receiver, by estimating the channel for ¢ time, and
sending the information to the transmitter for ¢; time, the
energy-efficiency vr is defined as:

_ %) Fp, [IICSITR(P7 Q.H) - P%}
aP+b

&)

R

vr (P ) Q: H) =
(N
where R is the transmission rate in bit/s, 7' is the block
duration in s, Ry is a parameter which has unit Hz (e.g., the
system bandwidth), and a > 0, b > 0 are parameters to relate
the transmitter radiated power to its total consumed power ;
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we define £ = R% as the spectral efficiency. ItcsiTr (P, Q, ﬂ)
denotes the mutual information with imperfect CSITR (the
receiver also has the exact same CSI as the transmitter). This
form of the energy-efficiency is inspired from early definitions
provided in works like [8], and studies the gain in data rate
with respect to the cost which is the power consumed. The
numerator represents the benefit associated with transmitting
namely, the net transmission rate (called the goodput in [23])
of the communication and is measured in bit/s. The goodput
comprises a term 1— % which represents the loss in terms of
information rate due to the presence of a training and feedback
mechanism (for duration ¢ seconds and t; seconds resp. in
a Ts long block) '. The denominator of (7) represents the
cost of transmission in terms of power. The proposed form
for the denominator of (7) is inspired from [21] where the
authors propose to relate the average power consumption of a
transmitter (base stations in their case),to the average radiated
or radio-frequency power by an affine model.

The term F'(.) represents the transmission success proba-
bility. The quantity F7(.) gives the probability that the “in-
formation” denoted by I as defined in [24]) is greater than or
equal to the coding rate (), i.e., it is the complementary cumu-
lative distribution function of the information 1, Prob(f >§).
Formally, I is defined as [ = log%{%, where
PDFx y and PDFx represents the joint and marginal proba-
bility distribution functions, x and y are samples of the process
X and Y, which in this case represent the transmitted and
received signals. The average mutual information I = E(I)
is used to calculate this probability and Fp(.) depends on
the difference between I and £. F1(.) can be verified to be
sigmoidal (this is the cumulative probability distribution func-
tion of a variable with a single peaked probability distribution
function) and Fr,(0) = 0.5 (If £ = I, F,(.) is the probability
that a random variable is equal to or larger than its mean).
When CSIT is available, it is possible to ensure that the data
transmission rate is just below the channel capacity. If this is
done, then there is no possibility of outage when the block
length is infinite [25]. However, in most practical cases, the
block length is finite and this creates an outage effect which
depends on the block length L [24].

The bounds on F; can be expressed as
Fr(Iicstr(0,0,H) — ¢) = 0 (no reliable communication
when transmit power is zero) and as F;, — 1 when
P — oo. This proposed form for this function,
Fr(Licsitr (P, Q,ﬂ) — &), is supported by works
like [24] and [26]. An approximation for this function
based on the automatic repeat request protocol [27] is
Fr(z) = Qfunc(—Tx), where Qfunc is the tail probability
of the standard normal distribution.

Therefore, in the presence of CSI at the transmitter, outage
occurs even when the mutual information is more than the
targeted rate due to the noise and finite code-lengths. In
this scenario, the energy-efficiency is maximized when the
parameters Q and P are optimized.

'In this case, we assume that the feedback mechanism is sufficient to result
in perfect knowledge of H at the transmitter. This is done because, assuming
a different imperfect CSI at the transmitter from the receiver creates too much
complexity and this problem is beyond the scope of a single paper.

In the absence of CSI at the transmitter, the earlier definition
of energy efficiency is not suitable since H is random, v
is also a random quantity. Additionally, in this case, it is
impossible to know if the data transmission rate is lower
than the instantaneous channel capacity as the channel varies
from block to block. Therefore, in this case, the source of
outage is primarily the variation of the channel [28], and
using (7) directly is not suitable. As the channel information
is unavailable at the transmitter, define Q = Iﬁ meaning that
the transmit power is allocated uniformly over the transmit
antennas; in Sec. IV-C, we will comment more on this assump-
tion. Under this assumption, the average energy-efficiency can
be calculated as the expectation of the instantaneous energy-
efficiency over all possible channel realizations. This can be
rewritten as:

R(1—-%)En (FL {IICSIR(Pa Q.H) - R%D

vr(P,1) = aP+0b

(3)
For large L, it has been shown in [28] (and later used in
other works like [6]) that the above equation can be well
approximated to :

R(1-7)Pry {IICSIR(P,t,I:I) >¢
aP+b

where Pry represents the probability evaluated over the real-
izations of the random variable H. Here, I;csrr represents
the mutual information of the channel with imperfect CSI
at the receiver. Let us comment on this definition of energy
efficiency. This definition is similar to the earlier definition in
all most ways. Here the parameter ¢, represents the length of
the training sequence used to learn the channel at the receiver?.
The major difference here is that the expression for the success
rate is the probability that the associated mutual information
is above a certain threshold. This definition of the outage
is shown to be appropriate and compatible with the earlier
definition when only statistical knowledge of the channel is
available [28].

Although very simple, these models allow one, in particular,
to study two regimes of interest.

vr(Pt) = &)

o The regime where g is small allows one to study not
only communication systems where the power consumed
by the transmitter is determined by the radiated power but
also those which have to been green in terms of electro-
magnetic pollution or due to wireless signal restrictions
(see e.g., [29]).

o The regime where g is large allows one to study not
only communication systems where the consumed power
is almost independent of the radiated power but also those
where the performance criterion is the goodput.

Note that when b = 0, t — +o0, T — +o0, and ~ — 0
equation (9) boils down to the performance metric investigated
in [6].

2In this case, the optimization is done over P and ¢ assuming imperfect
CSI at the receiver. A parameter here not explicitly stated, but indicated
nevertheless, is M due to the number of transmit antennas affecting the
effectiveness of training



B. Modeling channel estimation noise

Each transmitted block of data is assumed to comprise
a training sequence in order for the receiver to be able to
estimate the channel; the training sequence length in symbols
is denoted by t; and the block length in symbols by 7.
Continuous counterparts of the latter quantities are defined
by t =t,54 and T = TSy, where Sy is the symbol duration
in seconds. In the training phase, all M transmitting antennas
broadcast orthogonal sequences of known pilot/training sym-
bols of equal power on all antennas. The receiver estimates
the channel, based on the observation of the training sequence,
as H and the error in estimation is given as AH = H — H.
Concerning the number of observations needed to estimate the
channel, note that typical channel estimators generally require
at least as many measurements as unknowns [19], that is to
say Nts > NM or more simply

ts > M. (10)

The channel estimate normalized to unit variance is denoted
by H. From [19] we know that the mutual information is
the lowest when the estimation noise is Gaussian. Taking the
worst case noise, it has been shown in [18] that the following
observation equation

~ eff (0, 1) = ~

(11)
perfectly translates the loss in terms of mutual information?
due to channel estimation provided that the effective SNR
pett(p,t) and equivalent observation noise Z are defined prop-
erly namely,

z = VHAHs+z
(p,t) = sy P’ . (12)
Peff\ P, 1+p+pﬁsd

As the worst case scenario for the estimation noise is assumed,
all formulas derived in the following sections give lower
bounds on the mutual information and success rates. Note that
the lower bound is tight (in fact, the lower bound is equal to
the actual mutual information) when the estimation noise is
Gaussian which is true in practical cases of channel estimation.
The effectiveness of this model will not be discussed here but
has been confirmed in many other works of practical interest
(see e.g., [31]). Note that the above equation can be utilized
for the cases of imperfect CSITR and CSIR as well as the
case of imperfect CSIR with no CSITR. This is because in
both cases, the outage is determined by calculating the mutual
information Itcgirr or [icsir respectively.

ITI. OPTIMIZING ENERGY-EFFICIENCY WITH IMPERFECT
CSITR AVAILABLE

When perfect CSITR or CSIR is available, the mutual
information of a MIMO system, with a pre-coding scheme

31t is implicitly assumed that the mutual information is taken between
the system input and output; this quantity is known to be very relevant to
characterize the transmission quality of a communication system (see e.g.
[30] for a definition).
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Q and channel matrix H can be expressed as:

P
Icsitr (P, Q, H) = log |1 + WHQHH

(13)
The notation |A| denotes the determinant of the (square)
matrix A. With imperfect CSIT, which is exactly the same
as the CSIR (i.e., both the transmitter and the receiver have
the same channel estimate ﬂ), a lower bound on the mutual
information can be found from several works like [15], [17]
etc. This lower bound for I1csrrr is used, which is expressed
as:

Iicsirr (P, Q, H) = log [Ty, + H

QPIH‘

X (14)
where H is the estimated channel and 1 — o2 is the variance
of H. Considering the block fading channel model, from [15]

and [19] we conclude that 0% = I +;L. Simplifying :
M

Mo?(1+ po?,)

Icsirr(P, Q. H) = log [Ty + %ﬁQﬁH : (15)
Having defined the mutual information to be used for (7), we
proceed with optimizing vr.

A. Optimizing the pre-coding matrix Q

Studying (7) and (15), we see that varying the power
allocation (or the corresponding pre-coding matrix) Q, affects
only the success rate F7(.) and the total power P is the only
term that is present outside F(.). As Fr(.) is known to be an
increasing function, if the total power is a constant, optimizing
the energy efficiency v amounts to simply maximizing the
mutual information IICSITR(P,Q,ﬂ). This is a well docu-
mented problem and it gives a “water-filling” type of solution
[32]. Rewriting (13) as

~ i
Lesitr(P, Q, H) = log |Ins + %DSDH

(16)
where the optimal covariance matrix Q = VSV¥ is achieved
through the singular value decomposition of the channel
matrix H = UDV¥ and an optimal diagonal covariance ma-
trix S = diag[s1,. .., Smin(m,N): 0, ..., 0]. The water-filling
algorithm can be performed by solving:

1 +
si=(p———=] ,fori=1,2,--- min(M,N) (17)
< Plldi||2>

where d; are the diagonal elements of D and p is selected
such that E;“:T(M’N)si = M. Here (2)* = max(0,z), this
implies that s; can never be negative. The actual number of
non-vanishing entries in S depends on the values of d; as
well p (and thus P). Examining (17), we can see that when
p — 0, the water-filling algorithm will lead to choosing s; =
M and s; = 0 for all i # j, where j is chosen such that
d; = max(d;) (beamforming). Similarly for p — oo, s; =

% (uniform power allocation).
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B. Determining the optimal total power

Q has been optimized in the previous section. From (7),
we see that the parameters that can be optimized in order to
maximize the energy efficiency are Q and P. Therefore, in
this section, we try to optimize P, the total power. Note that
for every different P, the optimal power allocation Q changes
according to (17) as p is directly proportional to P. Therefore
optimizing this parameter is not a trivial exercise. Practically,
P represents the total radio power, that is, the total power
transmitted by the antennas. This power determines the total
consumed power b+ a P, of base stations or mobile terminals
and so, optimizing this power is of great importance.

In this section, a theorem on the properties of
vr (P, Qwr(py, H) is provided, where Qupp) is the
power allocation obtained by using the water-filling algorithm
and iteratively solving (17) with power P. This procedure is
said to be “iterative” because, after solving equation 17, if
any s; < 0, then we set s; = 0 and the equation is resolved
until the all solutions are positive. For optimization, desirable
properties on vr (P, Qwr(p), H) are differentiability, quasi-
concavity and the existence of a maximum. The following
theorem states that these properties are in fact satisfied by
vr.

Theorem 3.1: The energy-efficiency function
vr (P, Qwr(p), H) is quasi-concave with respect  to P
and has a unique maximum vr(P*, Quw p(p+), H), where P*
satisfies the following equation :

AFL[I (P*,Q =€ e | b
L [{ICSITR ap WF(P*) (P + E)

—Fr[Licstr(P¥, QWF(P*)aﬁ) —¢]

where B—P is the partial derivative.

The proof of this theorem can be found in Appendix A.
From the above theorem and equation, we can conclude that
the optimal transmit power for imperfect CSITR depends on

several factors like

(18)
=0

o the channel estimate ﬁ,

« the target spectral efficiency &,

« the ratio of the constant power consumption to the radio-
frequency (RF) power efficiency g

« the channel training time ¢ and

« the noise level o2.

Note that in this model, we always assume the CSI at the
transmitter to be exactly identical to CSI at the receiver.
Because of this, we take the feedback mechanism to be perfect
and take a constant time ¢;. Although in practice, ¢y plays a
role in determining the efficiency and the optimal power, in
our model ¢ is a constant and does not appear in the equation
for P*. In our numerical results we focus on the impact of
H 13 and 2 on P* and v*. The impact of ¢ is not considered
for this case but is instead studied where we have no CSITR
and imperfect CSIR, this choice helps in making the results
presented easier to interpret and understand.

: SISO channels

A study on energy-efficiency in SISO systems have been
studied in many works like [8] and [7]. However, the approach

C. An illustrative special case :

used in this paper is quite novel even for the SISO case and
presents some interesting insights that have not been presented
before. For the case of SISO, the pre-coding matrix is a scalar
and Q = 1. The optimal power can be determined by solving
(18). For a SISO system with perfect CSITR and CSIR, Ff,
can be expressed as

FL[IICSITR(P* QWF(P*)7I/_\I) — ] —
lo h
qunction ( (1 + HhHZp)%‘t”Hp))

from [24]. Using this expression, we can find P* maximizing

19)

vr.
In the case of high SNR (and high &), a solution to this
problem can be found as

Jim F(P,1,h) = Qgune (L€ = log(1 + [Al0])) .~ (20)
Solving (18)
el exp (— 12 € — log(1 + 11]207)]%) (5" + 222)

From the above equation it can be deduced that if b =
0, for large &, log(l + p*) =~ ¢ While for low SNR,

limy—yo F1(P,1,h) = Q func (LM) and so, if

A2
b=0,
1 |:L+L£ |hH 14 :|eX {Lg ||hH P } (22)
f “TalEee | XP Thl2 5"
=0

_ ElnlPp”
qunc (L ThlZp* )

Substitute x = L% and we have

As seen from the above equation, the value of = depends
only on L the block length. For example if L = 10, we get
x ~ —1.3. So, p* = 1. 14|th2 Whereas if L = 100 we get

pr = 1.02#. Note that these calculations are true only for
& — 0 so that p — 0 is satisfied.

The above equations signify that for finite block lengths, the
energy efficiency at £ — 0 is lower than the value calculated
in [7] (of course, a direct comparison does not make sense as
in [7], infinite block lengths are assumed). This suggests that
a non-zero value of £ might optimize the energy efficiency.
This value is evaluated in our numerical section and we find
that the energy efficiency is optimized at a non-zero power.

D. Special Case: Infinite code-length and perfect CSITR

When a very large block is used then the achiev-
able rate approaches the mutual information [25], i.e
limy, o0 rogrr—e—0+ Fr(Icsttr — &) = 1. Therefore in this
limit, we can now simplify (7) to:

)ICSITR(P Q. H)
aP+b

This is done because we replace & with IcgrTr to maximize
efficiency as Fr is 0 when Icsirr < &, and choosing

. Ry
vr(P,Q,H) = ( (24)

ey



¢ — Icsrrr maximizes efficiency. Water-filling optimizes
the efficiency in this situation as well, and so we use Q =
Qwr(p). It can be easily verified that for b — 0: vr is
maximized for P — 0. And in this case, water-filling also
implies that only the antenna with the best channel is used
to transmit. Interestingly, when in the domain of finite code-
lengths, our simulations indicate that there is a non-zero rate
and power that optimizes the energy-efficiency function.
For general b, v is optimized for P* satisfying:

Olcsitr(P, Qwr(p)s H)

b (aP +) — Icsirn(P. Q. H) = 0.

(25)

The above equation admits a unique maximum because

IcsiTr(P, Qwr(p), H) is a concave function of P (can be

seen from Appendix A) and is mathematically appealing. For

limp_,o P* = 0 and as % increases, P* also increases. A

special case of this, with b = 0, and perfect CSITR, for a
SISO channel has been studied in [7].

IV. OPTIMIZING ENERGY-EFFICIENCY WITH NO CSIT AND
IMPERFECT CSIR

This problem has already been well analyzed in [6] when
perfect CSI is available at the receiver and b = 0. So, in this
paper we focus on the case when imperfect CSI is available
and is obtained through channel training. For I;csrr(P, t, H),
we use a lower bound on the mutual information obtained from
the equivalent observation equation (11), derived in [19]:

Iicsir(Pt,H) = log

Iy + %peﬂ <€71;,t> HHH‘ (26)
Note that here, () = IWM is used and has been shown to be
optimal in [6]. In this section our focus is to generalize [6]
to a more realistic scenario where the total power consumed
by the transmitter (instead of the radiated power only) and
imperfect channel knowledge are accounted for.

A. Optimal transmit power

By inspecting (9) and (26) we see that using all the available
transmit power can be suboptimal. For instance, if the available
power is large and all of it is used, then vg(P,t) tends to zero.
Since vr(P,t) also tends to zero when P goes to zero (see
[6]), there must be at least one maximum at which energy-
efficiency is maximized, showing the importance of using the
optimal fraction of the available power in certain regimes.
The objective of this section is to study those aspects namely,
to show that v has a unique maximum for a fixed training
time length and provide the equation determining the optimum
value of the transmit power.

From [33] we know that a sufficient condition for the
function @ to have a unique maximum is that the function
f(z) be sigmoidal. To apply this result in our context, one can
define the function f by

Fpu) = Pr [log @7)

1
1 — pogHHY| > €] .
M+M,0ff ‘f}

For the SISO case, for a channel with A following a com-
plex normal distribution, it can be derived that f(p) =
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28—1
exp | —=—
p (-2

) which is sigmoidal. It turns out that proving
that f is sigmoidal in the general case of MIMO is a non-
trivial problem, as advocated by the current state of relevant
literature [6], [34], [35]. In [6], vgr(P) under perfect CSIR,
was conjectured to be quasi-concave for general MIMO, and

proven to be quasi-concave for the follwing special cases:
(a) M>1, N=1;

(b) M — 400, N < 400, im0 ﬂﬂf’ =0;
(c) M < +o00, N = 400, imy_soo ~ =05
M

lim =/ <

(d) M — +oco, N — +o0,
M —+oco,N—+oc0 N

+00;

() o02—0;

6 o= +oc;

In the following proposition, we give a sufficient condition to
ensure that vr (P, t) is quasi-concave w.r.t P.

Proposition 4.1 (Optimization of vg(P,t) w.rt P): If
vr(P) with perfect CSIR is quasi-concave w.r.t P, then
vr(P,t) is a quasi-concave function with respect to P, and
has a unique maximum.

This proposition is proved in Appendix B. The above propo-
sition makes characterizing the unique solution of %”—15 (P,t) =
0 relevant. This solution can be obtained through the root p%g
(which is unique because of [33]) of:

L <P+b> mol(r+1)p+2]

o2 a) [(r+1)2+ 1]2 f'(per) — f(pest) =0 (28)

with 7 = %=, Note that P is related to p through P = o?p
and p is related to peg through (12) and can be expressed as

1 2 47
p=gopery[(L+7)"+ o
Therefore (28) can be expressed as a function of peg and
solved numerically; once p}; has been determined, p* follows
by (29), and eventually P* follows by (1). As a special case
we have the scenario where b = 0 and 7 — +o00; this case
is solved by finding the unique root of p* f'(p*) — f(p*) =0
which corresponds to the optimal operating SNR in terms of
energy-efficiency of a channel with perfect CSI (as training
time is infinite). Note that this equation is identical to that in
[8] and in this work, we provide additional insights into the
form of the function f(.).

Quasi-concavity is an attractive property for the energy-
efficiency as quasi-concave functions can be easily optimized
numerically. Additionally, this property can also be used in
multi-user scenarios for optimization and for proving the
existence of a Nash Equilibrium in energy-efficient power
control games [8], [36], [37].

(29)

B. Optimal fraction of training time

The expression of vg(P,t) shows that only the numerator
depends on the fraction of training time. Choosing ¢ = 0
maximizes 1— % but the block success rate vanishes. Choosing
t = T maximizes the latter but makes the former term go
to zero. Again, there is an optimal trade-off to be found.
Interestingly, it is possible to show that the function v (P*,t)
is strictly concave w.r.t. ¢ for any MIMO channels in terms of
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(M, N), where P* is a maximum of vg w.r.t P. This property
can be useful when performing a joint optimization of vp
with respect to both P and ¢ simultaneously. This is what the
following proposition states.

Proposition 4.2 (Maximization of v(P*(t),t) w.rt t):

The energy-efficiency function vg(P*(¢),t) is a strictly
concave function with respect to ¢ for any P*(t) satisfying
%%(P*, t) =0 and 8;;5 (P*,t) <0, i.e, at the maximum of
VR W.rt. P.

The proof of this proposition is provided in Appendix C.
The parameter space of v is two dimensional and continuous
as both P and ¢ are continuous and thus the set v(P*(t),t) is
also continuous and the proposition is mathematically sound.
The proposition assures that the energy-efficiency can been
maximized w.r.t. the transmit power and the training time
jointly, provided vr(P,t) is quasi-concave w.r.t P for all .
Based on this, the optimal fraction of training time is obtained

by setting aaif(P, t) to zero which can be written as:
T, Plo+l)
v f (peﬁ') - f(pef‘f) =0 (30)
<M ) [rp+p+1)°

again with 7 = tﬁ In this case, following the same reasoning
as for optimizing the vp wurt. P, it is possible to solve
numerically the equation w.r.t. p.g and find the optimal g,
which is denoted by t.

Note that the energy-efficiency function is shown to be
concave only when it has already been optimized w.r.t P.
The optimization problem studied here is basically, a joint-
optimization problem, and we show that once v(P,t) is
maximized w.r.t P for all ¢, then, v(P*(t),t) is concave w.r.t t.
A solution to (30) exists only if v has been optimized w.r.t
P. However, in many practical situations, this optimization
problem might not be readily solved as the optimization w.r.t
P for all ¢ has to be implemented first.

The following proposition describes how the optimal train-
ing time behaves as the transmit power is very large:

Proposition 4.3 (Optimal t in the high SNR regime): We
have that: lim ¢} = M for all MIMO systems.

P—+o0
The proof for this can be found in Appendix D.

C. Optimal number of antennas

So far we have always been assuming that the pre-coding
matrix was chosen to be the identity matrix i.e., Q = I,,.
Clearly, if nothing is known about the channel, the choice
Q = I, is relevant (and may be shown to be optimal by
formulating the problem as an inference problem). On the
other hand, if some information about the channel is available
(the channel statistics as far as this paper is concerned), it
is possible to find a better pre-coding matrix. As conjectured
in [5] and proved in some special cases (see e.g., [34]), the
outage probability is minimized by choosing a diagonal pre-
coding matrix and a certain number of 1’s on the diagonal.
The position of the 1’s on the diagonal does not matter since
channel matrices with i.i.d. entries are assumed. However, the
optimal number of 1’s depends on the operating SNR. The
knowledge of the channel statistics can be used to compare the
operating SNR with some thresholds and lead to this optimal

number. Although we consider (9) as a performance metric
instead of the outage probability, we are in a similar situation
to [6], meaning that the optimal pre-coding matrix in terms
of energy-efficiency is conjectured to have the same form and
that the number of used antennas have to be optimized. In the
setting of this paper, as the channel is estimated, an additional
constraint has to be taken into account that is, the number
of transmit antennas used, M, cannot exceed the number of
training symbols ¢,. This leads us to the following conjecture.

Conjecture 4.4 (Optimal number of antennas): For a given
coherence time T, vr is maximized for M* = 1 in the limit of
P — 0. As P increases, M * also increases monotonically until
some P, after which, M* and t} decreases. Asymptotically,
as P — o0, M* =t} =1.

This conjecture can be understood intuitively by noting that
the only influence of M on vg is through the success rate.
Therefore, optimizing M for any given P and ¢ amounts to
minimizing outage. In [5], it is conjectured that the covariance
matrices minimizing the outage probability for MIMO chan-
nels with Gaussian fading are diagonal with either zeros or
constant values on the diagonal. This has been proven for the
special case of MISO in [34], we can conclude that the optimal
number of antennas is one in the very low SNR regime and
that it increments as the SNR increases. However, the effective
SNR decreases by increasing M (seen from expression of peg
and 7) , this will result in the optimal M for each P with
training time lower than or equal to the optimal M obtained
with perfect CSI. Concerning special cases, it can be easily
verified that the optimal number of antennas is 1 at very low
and high SNR.

At last, we would like to mention a possible refinement
of the definition in (9) regarding M. Indeed, by creating a
dependency of the parameter b towards M one can better
model the energy consumption of a wireless device. For
instance, if the transmitter architecture is such that one radio-
frequency transmitter is used per antenna, then, each antenna
will contribute to a separate fixed cost. In such a situation the
total power can written as aP + Mby where by is the fixed
energy consumption per antenna. It can be trivially seen that
this does not affect the goodput in any manner and only brings
in a constant change to the total power as long as M is kept
a constant. Therefore, the optimization w.r.t P and ¢t will not
change but it will cause a significant impact on the optimal
number of antennas to use.

V. NUMERICAL RESULTS AND INTERPRETATIONS

We present several simulations that support our conjectures
as well as expand on our analytical results. All simulations
are performed using Monte-Carlo simulations as there is no
expression available for the outage of a general MIMO system.

A. With imperfect CSITR available

The F, we use here is based on the results in [24], F;, =
Q pune(ShesnlPQwr )y 7 being the code-length. This is
T+pL

the Gaussian approximation that is very accurate for L large
enough and from simulations we observe that for L > 10 the

approximation is quite valid.




First of all, numerical results are presented that support
and present our analytical results through figures. The first
two figures shown assume imperfect CSITR obtained through
training and use a 2 x 2 MIMO system. The quasi-concavity
of the the energy-efficiency function w.r.t the transmit power
is shown in Figure 1 for £ = 1 and ¢ = 4, and ¢t = 2 and
ts = 10. This figure shows that for a higher target rate, a
longer training time yields a better energy-efficiency. We also
observe that using a higher £ can results in a better energy-
efficiency as in this figure. This motivates us to numerically
investigate if there is also an optimal spectral efficiency to
use, given a certain 7, g and L. Figures 3 and 2 present the
results of this study.

Surprisingly, we observe that our plots are quasi-concave
and so there is an optimal target rate to use for each channel
condition and code-length. In Figure 2, v is always optimized
over P and Q. Observe that v}.(§) is also quasi-concave
and has a unique maximum for each value of d; and ¢,
(representing the channel Eigen-values as from equations (16),
(17) and training time lengths). d; is ordered in an ascending
order, i.e. in this case, with d?> < d3. The parameters used
are: M = N = 2, Ry = 1bps, Ts = 100, L = 100 and
5 = 1 mW with ¢, = 2,10 and 20 for d? = 1, d3 = 3,
and t, = 2 for d? = d3 = 1.This figure also implies that
the training time and target rate can be optimized to yield the
maximum energy-efficiency for a given coherence-time and
channel fading. For infinite code-length the plot is maximized
at the solution of (25). While for Figure 3, perfect CSIT is
assumed with b = 0, at infinite block length, the optimal
transmit rate/power is zero as expected (also seen from (25)).
However, remarkably, for finite code-lengths there is a non-
zero optimal rate and corresponding optimal power as seen
from the figure.

Finally in Figure 4, we compare our energy efficiency func-
tion that uses optimized power allocation to uniform power
allocation, and present the gain from having CSIT. In both
cases, the training time and the transmit power is optimized
and we plot the optimized energy efficiency v.s Ppax. Note
that the optimized PA always yields a better performance when
compared to UPA and at low power, UPA has almost zero
efficiency while the optimal PA yields a finite efficiency. The
gain observed can be considered as the major justification in
using non-uniform power allocation and sending the channel
state information to the transmitter. However, when the block
length is small, imperfect CSIT results in a smaller gain as
seen from the relatively larger gap between 7, = 100 and
Ts = 10000 when compared to the size of the gap in UPA.

B. With no CSIT

We start off by confirming our conjecture that for a general
MIMO system, vg(P,t) has a unique maximum w.rt P.
We also confirm that optimal values of training lengths
and transmit antennas represented by t: and M* are as
conjectured.

Once the analytical results have been established, we ex-
plore further and find out the optimal number of antennas
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Fig. 2.  Optimal energy-efficiency (v7(P*, Qw r)) in bits/J v.s spectral
efficiency (§) for a MIMO system with imperfect CSITR, M = N = 2,
Ry = 1bps, Ts = 100, L = 100 and g =1 mW.

and training time when vy has been optimized w.r.t P.
For this we use the optimized energy efficiency defined as
v*(P,t) = max{vg(p,t)|lp € [0,P]}. As we know vg to
be quasi-concave w.r.t P and having a unique maximum,
this newly defined v* will indicate what is the best energy
efficiency achievable given a certain amount of transmit power
P. Hence, plotting v* against P for various values of M or
ts can be useful to determine the optimal number of antennas
and training time while using the og)tirnal power.

In the following plots we take %~ = 1mW so that P can
be expressed in dBm easily. Also note that g has the unit of
power and is expressed in Watts (W). We also use Sy = 15
ps from LTE standards [38].

Figure 5 studies the energy efficiency as a function of the
transmit power (P) for different values of g and illustrates the
quasi-concavity of the energy efficiency function w.r.t P. The
parameters used are R = 1600, £ = % =16, T, = 55 and
M=N=t=4.

Figure 6 studies the optimized energy efficiency v* as a
function of the transmit power with various values of .
The figure illustrates that beyond a certain threshold on the
available transmit power, there is an optimal training sequence
length that has to be used to maximize the efficiency, when
the optimization w.r.t P has been done, which has been
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proven analytically in proposition 4.2. The parameters are
R = 1Mbps, £ =16, 2 =0, M = N =4, 2 =0 and
Ts = 55.

Figure 7 studies the optimal training sequence length ¢, as
a function of the transmit power P. Note that in this case,
we are not optimizing the efficiency with respect to P and
so this figure illustrates proposition 4.3. With P large enough
ts = M becomes the optimal training time and for P small
enough t, = T5, — 1 as seen from the figure. The parameters
are R = 1600, 2 = 0 W, £ = 16 and T, = 10. (We use
Ts = 10, as if the coherence time is too large, the outage
probabilities for low powers that maximize the training time,
such that ¢ = Ty — 1, become too small for any realistic
computation.)

Figure 8 studies the optimal number of antennas M™ as
a function of the transmit power P with the training time
optimized jointly with M. With P large enough M =t; =1
becomes the optimal number of antennas and for P small
enough M =1 as seen from the figure. This figure illustrates
conjecture 4.4. The parameters are Ry = 1Mbps, 3 =10 mW
and T, = 100.

From all of our theoretical and numerical results so far,
we can conclude that given a target spectral efficiency &, a
coherence block length 7T and number of receive antennas,

there is an optimal transmit power P*, transmit antennas M *
and training time ¢t} to use that optimizes the energy efficiency.
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Fig. 5. Energy efficiency (vg) v.s transmit power (P) with ts = M = N =
4,R = 1600bps, & = 1%:16 and Ts = 55 symbols.
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Fig. 7. Optimal training sequence length (¢s) vs. Transmit Power (P) MIMO
system with & = R% = 16,R = 1Mbps, N = 4, Ts = 10 symbols. The
discontinuity is due to the discreteness of ¢s.

VI. CONCLUSION

This paper proposes a framework for studying the problem
of energy-efficient pre-coding (which includes the problem
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Fig. 8. Optimal number of antennas (M *) vs. Transmit Power (P) in dBm
for a MIMO system with Rp = 1Mbps, Ts = 100, for certain values of
& and N, and ts optimized jointly with M. The discontinuity is due to the
discreteness of M.

of power allocation and control) over MIMO channels under
imperfect channel state information and the regime of finite
block length. As in [8], energy-efficiency is defined as the ratio
of the block success rate to the transmit power. But, in contrast
with [8] and the vast majority of works originating from it, we
do not assume an empirical choice for the success rate such as
taking f(r) = (1 —e~*)E, L is the block length. Instead, the
numerator of the proposed performance metric is built from
the notion of information, and more precisely from the average
information (resp. mutual information) in the case where CSIT
is available (resp. not available). This choice, in addition
to giving a more fundamental interpretation to the metric
introduced in [8], allows one to take into account in a relatively
simple manner effects of practical interest such as channel
estimation error and block length finiteness. Both in the case
where (imperfect) CSIT is available and not available, it is
shown that using all the available transmit power is not opti-
mal. When CSIT is available, whereas determining the optimal
power allocation scheme is a well known result (water-filling),
finding the optimal total amount of power to be effectively
used is a non-trivial choice. Interestingly, the corresponding
optimization problem can be shown to be quasi-convex and
have a unique solution, the latter being characterized by an
equation which is easy to solved numerically. When CSIT is
not available, solving the pre-coding problem in the general
case amounts to solving the Telatar’s conjecture. Therefore, a
new conjecture is proposed and shown to become a theorem
in several special cases. Interestingly, in this scenario, it is
possible to provide a simple equation characterizing the opti-
mal fraction of training time. Numerical results are provided
to sustain the proposed analytical framework, from which
interesting observations can be made which includes : block
length finiteness gives birth to the existence of a non-trivial
trade-off between spectral efficiency and energy efficiency ;
using optimal power allocation brings a large gain in terms of
energy-efficiency only when the channel has a large enough
coherence time,demonstrating the value of CSIT and channel
training.

The proposed framework is useful for engineers since it
provides considerable insights into designing the physical layer
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of MIMO systems under several assumptions on CSI. The
proposed framework also opens some interesting research
problems related to MIMO transmission, which includes :
finding the optimal pre-coding matrix for the general case of
i.i.d. channel matrices under no CSIT. Even in the case of large
MIMO systems, this problem is not solved ; extending the
proposed approach to the case of Rician channels with spatial
correlations ; tackling the important case of multiuser MIMO
channels ; considering the problem of distributed energy-
efficient pre-coding.

APPENDIX A
PROOF OF THEOREM 3.1

In order to prove that vp(P, Qwppy,H) is quasi-
concave with respect to P and has a unique maximum
vr(P*, Qwrp-), H), we exploit the result in [33] which
states that if f(z) is an “S”-shaped or sigmoidal function, then
@ is a quasi-concave function with a unique maximum. An
“S”-shaped or sigmoidal function has been defined in [33] in
the following manner. A function f is “S” shaped, if it satisfies

the following properties:

1) Its domain is the interval [0, co).

2) Its range is the interval [0,1).

3) It is increasing.

4) (“Initial convexity”) It is strictly convex over the interval
[0,x¢], with z; a positive number.

5) (“Eventual concavity”) It is strictly concave over any
interval of the form [z, L], where z; < L.

6) It has a continuous derivative.

Considering the non-constant terms in v, we see that what
we have to show is that Fr (Iicsitr(P, Qwrpy, H) — &) is
“S”-shaped w.r.t P. We already have that Fy,(z) is sigmoidal,
therefore all we have to show is that F(g(P)) is also sig-
moidal where g(P) = Icsitr(P, Qw p(py, H) — €. Trivially,
when P = O, FL(IICSITR(P)) =0 and llmp_>oo FL = 1. The
rest can be proved using the following arguments:

o g(P) is continuous: As P varies, Qy p(p) also is modi-
fied according to the iterative water-filling algorithm. This
results in using one antenna for low p to all antennas for
high values of p.

There exists certain “threshold” points of the total power,
Pth i = {1,...,M}, at which the number of anten-
nas used changes. The convention being, for P}El <
P < Pfh, i number of antennas are used (s for the
rest are set to zero). P = 0 and P} = oo . If
Icsitr (P, QWF(p),H) is continuous at these points,
then g(P) is continuous. It can also be observed that in all
other points, IcsiTr (P, Qw r(p), H) can be expressed as
27 log(1 + a; + B;si),J < min(M, N). (o and 3 is
obtained from solving (17).) A “threshold” point occurs
when P = P™ s5; = 0 is obtained by solving (17).
The left hand limit is that j — 1 antennas are used and
so, Iesitr(P, Qwrpy, H) = 2171 log (1 + a; + Bisy).
The right hand limit will be obtained by solving (17),
with s; — 0 (assuming without loss of generality that
d? is the smallest). This will yield a solution which can
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be easily seen to be the same as the left hand limit as
P1— 0.

o We have shown g(P) to be a finite sum of logarithms of a
monomial expansion of P in certain intervals (marked by
P! . For each interval it is trivial to see that Fr(g(P))
is also “S”-shaped. As g(P) is continuous, F(g(P)) is
“S”-shaped for all P.

e From Lemma B proved in Appendix B we can show
that %ﬁ)) is also “S”-shaped by a simple change of
variable 2 = aP + b. Thus, we have v7(P, Qw p(p), H)
as a quasi-concave function with a unique maximum.

o With imperfect CSI, the only change is in
Lcesitr (P, Qwppr), H) now given from
(15). The water-filling algorithm now replaces
H with H and so on. This maintains the
continuity of g¢(P). However we now have
IICSITR(RQWF(P),H) = ¥/ log (1+ Oifﬁ,lsl)-

From [19] we have as a concave function and

1+ T+poZ
so even in this case, we have > Fr.(g(P)) as a sigmoidal
function and v7 (P, Qw r(p), H) as quasi-concave with a
unique maximum. As it is continuous and differentiable,

the maximum can be found as the unique solution to the

equation:
OFy [Tic pP*, wy, H)— X
L [IicsiTr ( 81(3WF(P ), H)—=£] (P +§) (31)
—Fp[hcsitr (P, Qwrp-), H) —=§] =0
where 8% is the partial derivative.
QED
APPENDIX B

PROOF OF PROPOSITION 4.1

An “S”-shaped function has been defined in [33] in the
following manner. A function f is “S” shaped, if it satisfies
the properties as mentioned in Appendix A.

Lemma 1: If f is a “S” shaped function, the composite
function fog(x) is also “S” shaped if g satisfies the following
properties:

1) g also satisfies conditions 1, 3, 4 and 6 but with ¢(0) =

b,b > 0.
2) lim f'(x)g'(z) = 0.
T—r00
3) ¢”(z) is a decreasing function such that xILH;O g’ (z) =0.

The proof for the above Lemma is at the end of this section.

In [6], the authors prove that the energy efficiency function
with perfect CSI defined as the goodput ration to transmitted
RF signal power is a quasi concave function by showing that
the success rate function, f(p) is “S” shaped for the following
cases:

@ M>1,N=1,

(b) M — 400, N < +00;

(¢) M <400, N = +o0;

(d) M — 400, N — +o0, u

+o0;
(e) 0% —0;
) 0% — +oo;
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So, if we can show that the success rate function in our
situation is also “S” shaped, our proof is complete for all the
cases mentioned above. From (11) we know that the worst
case mutual information in the case of imperfect CSI with
training is mathematically equivalent to that of perfect CSI but
with p replaced by peg. Thus it is possible to replace f(p), in
the case of perfect CSI, by f(pest), when we study the case
of imperfect CSI, and so we can study the energy efficiency
function given by:

f(pesi(p()))

x
where z is a new variable that represents the total consumed
power and p(z) = % p'(z) > 0 and p”(z) = 0 and

pLa(p) > 0 and lim pg(p) = 0. Thus peg and p satisfy the
p—00

vr(P,t) RC (32)

conditions on g detailed in Lemma B. Hence we have proven
that the numerator is “S” shaped with respect to x and then
it immediately follows from the results in [33] that vi has
a unique maximum and is quasi-concave for all the specified
cases.

Proof of Lemma

Here we show that f o g also satisfies all the properties of

the “S” function as described in [33].

1) Its domain is the domain of g which is clearly the non-
negative part of the real line; that is, the interval [0, co).

2) TIts range is the range of f, the interval [0, 1).

3) It is increasing as both f and g are increasing.

4) (“Initial convexity”). Note that f(g(x))” =
f"W)g' (@) + ¢"(@)f'(y), with y = g(x). As all
terms in this expansion are positive in the interval
[0,zf], f o g is also convex in this interval. Also
note that as ¢’ and f’ are strictly positive and g” is
decreasing, thus for y > ¢ once f(g(x))” < 0 it stays
negative till infinity. This implies that if there is an
inflexion point, it is unique.

5) (“Eventual concavity”) Consider h(z) = f(g(x)) =
/'(y)¢'(x), due to the initial convexity and increasing
nature of h, h(zy) = k,k > 0. xllnolof(g(xf))' = 0.
As h is continuous the mean value theorem imposes
R/ (z) < 0 at some point. This implies that there exists
some point x4 > 0 such that f o g is concave in the
interval [z4, 00] and convex before it.

6) It has a continuous derivative. (all the functions used
here are continuous)

Hence, f o g is “S” shaped.

QED

APPENDIX C
PROOF OF PROPOSITION 4.2

Let us consider the second partial derivative of vp with
respect to £. (Note that this is possible as ¢ is a real number
with the unit of time while ¢, is a natural number) From (32),

vr(Pt) = K11 = %) f(pesr), with K~1 = £ a constant if
P is held a constant.

K82V t 1" / 2

e (1—=5)f (peff)pcff(t) +(1

— 7)f' (pett) Pl (t)
"(Pett) g (t) (33)



In the above sum, it can be easily verified that the terms
I/ (petr) plg(t) and f'(pesr) are positive and that p(¢) < 0.
Thus if we have f”(pesr) < 0, then vg(t) is strictly concave.

The only way vr depends on P is through ’; (Iﬁ‘fb) and R(C
stays a constant if only P changes. So if we use the fact that

we are working at a maximum of v with respect to p, i.e

‘g—::()and gipg’<0,wehave %Z as:
0 = f'(pest) peir(p)p~" = flpest)p™> (34)
And, substituting (34) in 2% < 0, that is:
F"(per) (Plge)* 0" = 2" (pett) pogep™ > + 2f (pest)p™> < 0
2
f" (pest) (Poge) 0" + ;(0) <0
I (pesr) <0 (35)

Thus, using (35) in (33), we have the result that vr(P*,t)
is strictly concave w.r.t t.
QED

APPENDIX D
PROOF OF PROPOSITION 4.3

The equation that describes the optimal training time ¢} can
be written as:

(T =) ' (pest) Pogy (t)t=540: — fpest) =0

Now, let us study the optimal training time ¢7 in the very
high SNR regime, ie. when p — oo. (Note that P — oo is
equivalent to p — 00).

High SNR regime: Applying the limit of p — oo in (36),
we get that

(36)

fltp(L+6)71)

T, —tF = lim ——————2—— 37
I G7
We know from various works including [6] that
lim f(tp(1+1t)~') = 1. Now let us consider f'(i%;p).
p—>00
For a MISO system we know from [39] that:
-1
’Y(M7 2= )
Farrso(per) — R (38)

I'(M)

where I' is the Gamma function and - is the lower incomplete
Gamma function. Now we can use the special property of the

M
% — 1/M detailed in
[40] to determine lim pf(pesr)’ o pe_HM/
p—00

(37) we have:

incomplete gamma function, lin%]
r—r

2, Plugging this into

1+t pmy2

lim T, — ¢ = et

p—00

(39)

Thus vg is optimized when t; — —oo, butas M <t, < Tk,
we have lim ¢; = M for all MISO systems.

p—r00
Now for any MIMO system in general, using the eigen

value decomposition of HH? we have the eigenvalue de-
composition log, [l + LHH| = log, (I, (1 + X)),
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where L = min(M, N) and ); are the eigenvalues of HH .
Applying the limit on p and ignoring lower order terms we
have

2§
. _ L ]
lim f(perr) = Pr {Hi_m > = } . (40)

Pefr
We can observe that the above expression is a cumulative dis-
tribution function of ITZ_, \; and so it’s derivative is simply the
PDF of ITX_ | \;. For p — oo we have f/(peg) = Pr[IIl \; =
025 | As we know that the in general, if the number of transmit
eff
antennas are the same, Pr[A\yrrs0 > 2] < Pr[lIE, \; > z] for

any x > 0 [35]. Thus f};r570(Pet) < firrso(pert), implying
that for all MIMO systems lim ¢% = M from (37) and (39).
p—r00
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Abstract—The major motivation behind this work is to op-
timize the sleep mode and transmit power level strategies in
a small cell cluster in order to maximize the proposed energy
efficiency metric. We study the virtual multiple input multiple
output (MIMO) established with each base station in the cluster
equipped with one transmit antenna and every user equipped
with one receive antennas each. The downlink energy efficiency
is analyzed taking into account the transmit power level as well
as the implementation of sleep mode schemes. In our extensive
simulations, we analyze and evaluate the performance of the
virtual MIMO through zero-forcing schemes and the benefits
of sleep mode schemes in small cell clusters. Our results show
that for certain configurations of the system, implementing a
virtual MIMO with several transmit antennas can be less energy
efficient than a system with sleep mode using OFDMA with a
single transmitting antenna for serving multiple users.

I. INTRODUCTION

The energy consumed by the radio access network infras-
tructure is becoming a central issue for operators [1]. The goal
of this work is to provide insights on how to design green radio
access networks, especially in the framework of virtual MIMO
systems. Indeed, classical network architectures are focused on
integrated, macro base stations, where each cell covers a pre-
determined area, and inter-cell interference is reduced by the
means of fixed frequency reuse patterns [2]. Heterogeneous
Networks (HetNets) introduced a new notion of small cells
where pico or femto base stations are deployed within the
coverage area of the macro base stations [3]. Virtual MIMO is
a step forward in this context that allows distributed systems of
base stations/antennas that cover a common area and cooperate
in order to increase the overall spectral efficiency [4]. This
paper focuses on these latter solutions and aims at addressing
the problem from an energy efficiency point of view.

For classical macro networks, early works focused on
designing energy-efficient power control mechanisms [5].
Therein, the authors define the energy-efficiency of a com-
munication as the ratio of the net data rate (called goodput) to
the radiated power; the corresponding quantity is a measure
of the average number of bits successfully received per joule
consumed at the transmitter. This metric has been used in
many works. Although fully relevant, the performance metric
introduced in [5] ignored the fact that transmitters consume a
constant energy regardless of their output power level [6]. The
impact of this constant energy has been studied for single user
point-to-point MIMO systems in [7]. Sleep mode mechanisms
have thus been regarded as a solution for this issue; they
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consist in deactivating network resources that have low traffic
load, eliminating thus both the variable and constant parts of
the energy consumption [1]. This mechanism has been applied
to macro networks [1], as well as to heterogeneous networks
with macro and small cells [3]. Our aim in this paper is
to extend this concept to virtual MIMO networks, where an
antenna that is not significantly contributing to the network
capacity (for a given configuration of user positions and radio
channels) is put into sleep mode.

The remainder of this paper is organized as follows. In
section II, we present the system model and the resource
allocation scheme. Section III presents our energy efficiency
metric and optimizes it for a given system and channel con-
figuration, using sleep mode mechanisms. Section IV presents
some numerical examples and section V eventually concludes
the paper.

II. SYSTEM MODEL

The wireless system under consideration is the downlink
in a virtual MIMO system within a small cell cluster. To be
precise, each of the small cell base stations are connected to
a central processor and so they act as antennas for the virtual
MIMO as shown in Fig 1. We refer to the set of these base
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Fig. 1. Anexample illustration of a 2x 2 virtual MIMO with g; ; representing
the channel between BS antenna ¢ and user j.

stations as the “cluster”. Each user is equipped with a single
receive antenna. In order to eliminate interference zero-forcing
is implemented. We consider a block-fading channel model
where the channel fading stays is assumed to stay constant for
the duration of the block and changes from block to block. The
base stations require the channel state information available at



the user end in order to implement the zero-forcing technique.
Therefore, in each block channel a training and feedback
mechanism happens, after which data is transmitted. We also
assume that every base station is capable of entering into a
”sleep-mode”. In this mode, the base station does not send
any pilot signals and therefore does not perform the training
or feedback actions consuming a lesser quantity of power
compared to the active base stations. Let there be M base
stations in the cluster and K users. Define £ = {1,2,..., K}
and M = {1,2,..., M} the sets of users and base station
antennas.

A. Power consumption model

As the transmit antennas are not co-located, each of them
have an individual power budget. When a base station is
active, it consumes a constant power of b due to the power
amplifier design and training or feedback costs. Additionally,
it consumes a power P,,||z,,||? proportional to the radiated
power, where P, < Ppax and ||z,,|| < 1 is the signal
transmitted and P,,.x is the power constraint [1][6]. When it
is placed on sleep mode, it is assumed that it only consumes
power ¢ where ¢ < b. Denote by s the sleep mode state
vector of the cluster with elements s,, € {0,1}. The base
station m is in sleep mode when s,, = 1 and active when
Sm = 0. Thus the power consumption of the m-th base station
is es; + (1 —8;)(b+ Pp||zm||?). The total power consumption
of the cluster is given by:

M
Ptot = Z Csm+(1_3m)(b+Pm”xm”2) (1)
m=1

For any given state of the cluster, we define w(s) as the total
number of base stations that are active. This value can be
calculated as w(s) = M — 3" s,,. If M < K, zero-forcing
can not be used. However, if M > K, and w(s) > K, then
the zero-forcing technique can be implemented by choosing K
base stations to transmit the data signals after all w(s) active
base stations train and obtain feedback on their channels.

B. The zero-forcing scheme

As there are K users connected to the w(s) active base
stations, there are a total of w(s) x K number of channels.
Let ¢ ={1,2,...,w(s)} be the set of active base stations. We
denote by G with elements g; , € R the path fading between
base station [ € ¢ and user k € /K, while H with elements
hy1 € C denotes the fast fading component, resulting in a
signal at k given by:

& gkl -
=D\ T b + 2 )
=1

where x is the signal transmitted with z; as its elements; z
is the normalized noise and o2 the noise strength. Note that
g1, can be determined based on the user location while Bl,k
are i.i.d. zero-mean unit-variance complex Gaussian random
variables. We define H(G, H) as the combined channel matrix
with elements h; , = \/{]ka_ll,k.

In our work, as we focus on the small-cell scenario where
the antennas are distributed over the cell in a dense manner,
we assume that every user can have a similar level of signal
strength. Define AV = {1,2,..., N} as the set of transmitting
antennas that perform zero forcing beam-forming. We define
B € N — ( as the function that describes which base stations
in ¢ will be picked to transmit the data signals. Given BS
j € N, the corresponding label for the BS in ( is given by
B(7). Given w(s) active base stations that perform training and
receive feedback on fI, we define the effective channel matrix
as H(H, 3), where its elements hjr = Eg(j),k. For zero-
forcing, we require that the number of transmitting antennas
is equal to the number of receiving antennas or K = N. With
this constraint, if H is an invertible matrix, we define:

%= (H(H,5)) 'u A3)

where u is a vector of length K, where u;, which is the signal
received by the k-th user. In this work, we take ||uz||> =1 so
that each user obtains identical signal strengths. This constraint
has several benefits:

1) This results in a very “fair” beam forming scheme as all
users experience equal signal strength and thus similar
data rates.

2) As the base station antennas are spread over the cell,
there is no user on the “cell edge” or “cell center”. In
this situation, equal SINRs for all users can result in
less congestion when user traffic patterns are taken into
account

3) Finally, the resulting system is far less complex and
easier to analyze than one with arbitary values for ||uy||%.

With these definitions, we can now precode the transmitted
signal as: B

X=— )

a(H, )

where a(H, 8) = max(Z,,). This pre-coding works only if
all the P; are equal, and so we chose P; = F. From this
point onwards, Py represents the transmit power level of the
system with this pre-coding. The signal received by each of
the K users is given by:

_ P w
PN o) ©

Thus the SINR at each user is now given by

— PO
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III. ENERGY EFFICIENCY OPTIMIZATION

Vi (6)

This work aims at minimizing the energy consumption by
base stations. If each user in the network is connected to
download some data, then the total energy consumed by the
network is the total power consumed multiplied by the total
duration for which the user stays connected. Energy efficiency
(EE) is a metric that is often used to measure this, and
maximizing the energy efficiency leads to minimizing the total
energy consumed.



A. Defining the EE metric

Before defining the EE, we first calculate the total power
consumption of the network. From (1) and (4), the total power
consumed is given by:

M
Ptot(P07I:LB) = Z CSm + (1 - Sm)
m=1
_ ~ 2
(b4 |E (L AW om)
a(H, B)

7
Here we define

j ifj € Nexistss.t 8(j) =m
0 otherwise.
®)
and (); is the j—th element if j # 0 and is 0 if j = 0. In this
scenario, we define the instantaneous energy efficiency as:
Y fw(Po, HLB))

Py, H,B) = 2 9
Fo, ) Piot(Po, H, ) ®

Vm € M;B71(m) = {

where f() gives the effective throughput as a function of the
SINR. f(vx) = log(1 + %) for example. However when we
study the base station energy efficiency for a longer duration,
the effects of fast fading in H gets averaged and in this case
a more reasonable definition for the EE is:

Ea[>, f(w(Po, H(G, H), 8))]

Aot (10)
EI:I[Ptot(PmH(GaH)aﬁ)]

ﬁ(P(%Gaﬂ) =

B. Optimization w.r.t the transmit power

In this section, we show some properties of our energy
efficiency metric w.r.t Py. If the goal of a system is to
be energy efficient using power control, then one important
question arises: Is there a unique power for which the energy
efficiency is maximized ? We answer this question with the
following proposition:

Proposition 1: Given a certain path loss matrix G and a
selection of transmitting base stations S in the virtual MIMO
system, the average EE 7j( Py, G, 8) is maximized for a unique
P and is quasi-concave in Fj.

Proof: Consider the SINR for each user ;. It can be
observed that %P’OH’B)) is a constant. So if f() is concave
in 7y, it is also concave in Fy. Now consider the numerator of
(10), Eg[>,, f((Po, H(G, H), 8))]. This is a weighted sum
of several concave functions and is hence also concave itself.
Similarly, %}%,H@ can also be verified to be a constant.

Hence, 8W is a constant. Thus 77( Py, G, 3) is the
ratio of a concave function of Py to a linear function of Fj.
This is known to be quasi-concave and has a unique maximum
Fj satisfying:

on(Fg, G, B)

=0
ob,

(1n

This proposition guarantees that given a certain choice
of transmit antennas and a path fading matrix, the energy
efficiency can always be optimized w.r.t the transmit power
level P,.

C. Optimizing the selection of transmitting base stations

Given a certain sleep mode state s, there are w(s) base
stations active that train and obtain feedback. From this set
¢, K base stations have to be picked for zero-forcing. This
choice is mathematically expressed by /3. The [ that optimizes
the energy efficiency depends on the channel state H. The
following proposition details the method of choosing the (£
that optimizes EE.

Proposition 2: When %
7(Po, G, 3) is obtained by:

B* = argmin[a(ﬁ,ﬁ); B e{N = K}]

Proof: By observing (6) it can be seen that 'yk(lfo,l:l,ﬁ)
is maximized by picking 5*. And so >, f(vk(Po,H, B)) is
maximized when 8 = 3*. When £¢ — 0, for 8* and any 3;

b
we have:

lim ﬁ(POaG75*)_ﬁ(P07G751) =
%*)0

— 0, the /* that maximizes

12)

(13)
a3, £ (Po, H, ) = 30 Fon(Po HL D))
St €S+ (1= sm)b -
(14)

|

This implies that we pick /3 such that «(H, () is minimized
for optimizing EE when b >> P,. From a practical point of
view, the above result is useful as it proposes an algorithm to
pick the right base stations based on the CSI obtained from
all the base stations that are active. The condition b >> Py is
most applicable when the users are close to the base stations
resulting in a low P being used for maximizing EE.

IV. NUMERICAL RESULTS

In this section we use simulations and numerical calcula-
tions to study the effectiveness of our proposal as well as the
advantages offered. For the purpose of a thorough numerical
study, we will analyze two kinds of system settings A and B.
For both the configurations the common parameters are:

e=2W

2) Ppax =2 W

3) f(v) = Blog(1+7)

4) ¢2=1mW
Where B = 10° hz is the bandwidth.

The fast fading co-efficient we consider is h;; =
0(Tm )2 + 0.16. Where £ € CN(0,1), a is the direct line
of sight factor which plays a dominant role in most small cell
networks, o, € 0,1 is the shadow factor and o(piy, i) = 1
with probability 7, . Here 7, 1 is the probability that the
receiver k has line of sight with the BS antenna m. We take
T,k = 0.5V(k, m) for our simulations.



The presented results study the case of two users K = 2
served by a small cell cluster of three base stations, i.e M = 3.
In addition to zero-forcing, when there are two users a single
base station could also alternately use Orthogonal Frequency-
Division Multiple Access (OFDMA) to serve the two users
and keep the other two BS in sleep mode (i.e . Our numerical
simulations study all these possible scenarios and compare
their respective EE performances.

In both of the settings presented below, we study two main
regimes of interest:

1) b = 1W : This regime represents the futuristic case
where power amplifier efficiencies are quite high and the
constant power consumed is lower than the maximum
RF output power.

2) b= 10W : This regime represents the more current state
of the art w.r.t power amplifier efficiency where in small
cell antennas, a large portion of the power is lost as a
fixed cost.

We also consider two possible values of €2, the line of sight
factor. The case €2 = 10 is representative of pico-cells that are
deployed externally, whereas the case €2 = 0 represents femto-
cells deployed internally and no line of sight communication
is possible.

A. Setting A

The deployment of antennas and the user locations are
shown in Fig 2. In this setting we take g, , = 1Vm, k.

1
/gl

e

LEGEND

I

BS antenna m

N

g31

\22 o

g21
g32 k
User k
3 2
Fig. 2. Setting A schematic

In Fig 3 we study the EE of a VMIMO system with a very
efficient power amplifier. In this figure, we notice that using
all available base station antennas is more efficient when line
of sight communications are possible. In this case, no BS is in
sleep mode and all the antennas train and obtain feedback on
their channels. The choice of 3 is very much relevant in this
scenario. However in the regime where there is no direct line
of sight (users are inside buildings), it becomes more efficient
to just use 2 BS antennas and put one on sleep mode. As the
configuration is symmetric, the choice of the base station in
sleep mode is not relevant.

In Fig 4 we study the EE of a VMIMO system with an
inefficient power amplifier. In this figure, we notice that using
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all available base station antennas is not efficient even when
line of sight communications are possible. In this case, having
one BS in sleep mode and obtaining a 2 x 2 virtual MIMO with
the other remaining antennas is the most efficient. Suprisingly,
in the case of no line of sight, i.e {2 = 0, we observe that using
OFDMA with one BS active is the most efficient solution.
This is explained by the relative inefficiency of zero-forcing
in the low SNR regime, causing less energy to be spent by
having two BS antennas in sleep mode and just one antenna
transmitting for the two users in orthogonal frequencies.

B. Setting B

The deployement of antennas and the user locations are
shown in Fig 5. In this setting we take g11 = g2,1 = 4,
931 =912 = g22 = 0.1 and g3 o = 10.

In Fig 6, similarly to what was done in the previous setting,
we study the EE of a VMIMO system with a very efficient
power amplifier. In this figure, for both 2 =0 and Q@ =1 we
see that having to use 2 BS antennas and put one on sleep
mode is the most efficient. In this setting, the configuration of
BS and users are asymmetric and the BS to be put in sleep
mode has to be chosen carefully. BS 1 and 2 are symmetric
and are close to user 1, but 3 is closer to user 2. In this case
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choosing s; = 1 or sp = 1 is efficient, but s3 = 1 is highly
inefficient.

In this setting, we see from Fig 7 that unlike in Setting A,
using OFDMA to divide resources between the two users is
not as efficient as ZF due to the higher SNR when served by
nearby BS antennas. Like in Fig 6, choosing s; = 1 or so =1
and zero-forcing is always the most efficient solution.

V. CONCLUSION

This paper studies the performance of virtual MIMO sys-
tems from an energy efficiency perspective. It defines an
energy efficiency metric that takes into account the capacity as
well as the energy consumption, and considers both fixed and
variable parts of this latter. We optimize the power allocations
of the different antennas and show that sleep mode can bring
a significant energy efficiency gain. This involves deactivating
antennas that do not have a significant contribution to the
system capacity, for a given number of users and radio channel
conditions.

This work is applicable only for the specific case of a
small cell cluster with a centralized network and CSIT. Thus,
many extensions of the proposed work are possible. The
most relevant extension is to apply the proposed framework
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taking into account user traffic and a random number of users.
Another natural extension of the proposed framework is of
course, to study the effect of different classes of mobility on
the virtual MIMO scheme and to study a distributed network.
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Abstract—In this work, we propose a new energy efficiency
metric which allows one to optimize the performance of a
wireless system through a novel power control mechanism.
The proposed metric possesses two important features. First,
it considers the whole power of the terminal and not just the
radiated power. Second, it can account for the limited buffer
memory of transmitters which store arriving packets as a queue
and transmit them with a success rate that is determined by the
transmit power and channel conditions. Remarkably, this metric
is shown to have attractive properties such as quasi-concavity
with respect to the transmit power and a unique maximum,
allowing to derive an optimal power control scheme. Based on
analytical and numerical results, the influence of the packet
arrival rate, the size of the queue, and the constraints in terms of
quality of service are studied. Simulations show that the proposed
cross-layer approach of power control may lead to significant
gains in terms of transmit power compared to a physical layer
approach of green communications.

I. INTRODUCTION

For a long time, the problem of energy mainly concerned
autonomous, embarked, or mobile communication terminals.
Nowadays, with the existence of large networks involving both
fixed and nomadic terminals, the energy consumed by the fixed
infrastructure has also become a central issue for communica-
tions engineers [1]. The present work precisely falls into this
framework. More specifically, our goal is to provide insights
to researchers and engineers on how to devise power control
schemes in green wireless networks. Among pioneering works
on energy-efficient power control we find the paper by Good-
man et al [4]. Therein, the authors define the energy-efficiency
of a communication as the ratio of the net data rate (called
goodput) to the radiated power; the corresponding quantity is
a measure of the average number of bits successfully received
per joule consumed at the transmitter. This metric has been
used in many works. For example, in [16] it is applied to
the problem of distributed power allocation in multi-carrier
CDMA (code division multiple access systems) systems, in
[3] it is used to model the users delay requirements in energy-
efficient systems. In [5] it is re-interpreted as a capacity per
unit cost measure in MIMO (multiple input multiple output)
systems and in [6], it is used for subcarrier assignment in
distributed OFDMA (orthogonal frequency division multiple
access) multicellular networks. Although fully relevant, the
performance metric introduced in [4] has left several issues
unexplored which has motivated the work reported here.

First, in the definition of energy-efficiency given in works
like [11],[4] or [5], the transmission cost corresponds to

4Alcatel Lucent Chair

3University of Avignon, SUPELEC

84911 Avignon 91192 Gif sur Yvette

France ) France
yezekael.hayel @univ-avignon.fr pr. o obbah@ supelec.fr

the radiated power that is, the power of the radio-frequency
signals; this is very useful in situations where electromagnetic
pollution has to be cut down. However, more generally, the
consumption of the whole device matters (e.g., because of the
power amplifier consumption). Second, in [4], the packets are
lost due to bad channel conditions while, here, we propose to
take into account the losses induced by the finite size of the
queue at the transmitter (which can model limited memory or
a certain delay constraint). Third, in [4] and related references,
energy-efficiency can be maximized while having a bad quality
of service (QoS) e.g., in terms of packet loss or equivalently in
terms of goodput. In this paper, we show that these three issues
can be, in fact, dealt with quite easily. The analysis is, however,
more complicated than some analysis like the one conducted
in [3] where the delay constraint is translated into a constraint
on the minimum signal-to-noise ratio (SNR). This is due to
a double effect, resulting from integrating a queueing model
(justifying the term “cross-layer design”) and considering the
whole terminal power (instead of the radiated power). The
queuing model is used in the spirit of [18] where a queuing
model is used to reach a certain QoS in CDMA systems with
multiple classes of traffic, but without energy considerations.
Another cross-layer queuing model has been proposed in [19]
but considering Shannon capacity under power constraints and
not energy-efficiency.

At this point, it is important to note that this work focuses
on point-to-point communications, which may be surprising
since power control is the problem of interest. There are at
least two strong reasons for this choice. First, the single-user
case captures the main effects we want to emphasize and
allows us to describe the proposed approach in a clear manner.
Second, as advocated by the existing works on power control
(see e.g., [4] and related works), once the single-user case is
fixed, the multiuser case is tractable provided some conditions
are met. One of these conditions is that the performance metric
has to possess some desirable properties (quasi-concavity, that
is shown to be verified for the proposed metric, is one of
them) and reasonably complex multiuser channel models are
considered (the multiple access channel is one of them).

This paper is structured in the following format. In Section
II, we present the system model and define the proposed
performance metric. In Section III, we conduct an analytical
study of the performance metric while Section IV provides
many numerical results to sustain the proposed approach.
Finally, we conclude the paper and some possible extensions



to this work are provided.

II. SYSTEM MODEL

We consider a buffer of size K at the transmitter. The
packets arrival follows a Bernoulli process with probability g,
i.e., at each time slot ¢ (time is slotted) a new packet arrives
in the queue with probability ¢ (this corresponds to classical
ON/OFF sources). All packets are assumed to be of the same
size S. The throughput on the radio interface equals to R
(bit/s) and depends on several parameters such as the mod-
ulation and coding scheme. We consider that the transmitter
is always active, meaning that it always transmits its packet
while the buffer is not empty. Each packet transmitted on the
channel is received without any errors with a probability which
depends on the quality of the channel and transmission power.
We denote the transmission power by p and we have f(p) as
the success probability of transmission of the packet on the
channel. f(p) is just assumed to be a sigmoidal function in our
derivations, in practice, good appr}gximatigns for the success
rate function are f(p) = exp(—(2%0 —1)2-), for an unknown

channel, and f(p) = Q(KR% — K log[1+ hg;p}), with @ being
the “Q” function and K a constant, for a known channel. The
channel fading due to path loss is not treated separately but is
integrated into the average power of noise . The success
probability depends in fact on the SNR = Z%;. However,
based on the block fading channel assumption, we make a
slight abuse of notations by using the notation f(p) instead
of f(SNR). In some places in this paper, we even remove the
variable p for the sake of clarity and use the notation f. We
denote by @ the size of the queue at the transmitter at time
slot t. The size of the queue @); is a Markov process on the
state space Q@ = {0, ..., K}. We have the following transition
probabilities Vi,j € Q, P;; = P(Q(t+ 1) = i|Q(t) = j)
given by:

o Pho=1-q+qf,

e Prx=01-q)(1-f)+aq

o for any state 4 € {0,..., K — 1}, P, ;41 = q(1 — f),

o forany state i € {1,..., K}, P,,_1 = (1 —¢)f,

o foranystatei € {1,...,. K —1}, P, =(1—q)(1—f)+

fq.

A new packet is lost if the queue is full when it comes
in and the transmission of the packet currently on the radio
interface failed on the same time slot. Indeed, we consider that
a packet is in service (occupying the radio interface) until it is
transmitted successfully. Thus, a packet in service blocks the
queue during += time slots on the average. We assume that
an arrival of a packet in the queue and a departure (successful
transmission) at the same time slot can occur.

Given the transition probabilities above, the stationary prob-
ability of each state is given by (see e.g., [13]):

p
1+p+...+pK’

Vse S, II, = (D
with
_q(1-f)

har *

When a packet arrives and finds the buffer full (meaning that
the packet currently on the radio interface is not transmitted
successfully), it is blocked and this event is considered as a
packet loss. The queue is full in the stationary regime with
probability Tlx :

_ p™ _ -1 3)
1+p+...+pK  pEH1 1"~

A. Proposed performance metric

115%

In order to evaluate the performance of this system, we
first determine the expression for the packet loss probability.
A packet is lost (blocked) only if a new packet arrives when
the queue is full and, on the same time slot, transmission of
the packet on the radio interface failed. Note that these two
events are independent because the event of “transmit or not”
for the current packet on the radio interface, does not impact
the current size of the queue, but only the one for the next
time slot. This amounts to considering that a packet coming at
time slot ¢, is rejected at the end of time slot ¢, the packet of
the radio interface having not been successfully transmitted.
We consider the stationary regime of the queue and then, the
fraction of lost packets, ®, can be expressed as follows:

(p) = [1 — f(p)[Tk(p). “)

Thus the average data transmission rate is ¢[1 — ®(p)]R.
Now, let us consider the cost of transmitting. For each packet
successfully transmitted, there have been -+ attempts on
an average [4]. For each time slot, irrespective of whether
transmissions occur, we assume that the transmitter consumes
energy. A simple model which allows one to relate the radiated
power to the total device consumed power is provided in
[14] is given by Pievice = ap + b, where a > 0,0 > 0
are some parameters; b precisely represents the consumed
power when the transmit power is zero. The average power
consumption is in our case b + w;{)) (we assume without
loss of generality that a = 1). We are now able to define the
energy-efficiency metric 7(p) as the ratio between the average
net data transmission rate and the average power consumption,

which gives:
_ il -%pIR

= = (5)
pg[1—2(p)]
e )

n(p)

The above expression shows that the cross-layer design ap-
proach of power control is fully relevant when the transmitter
has a cost which is independent of the radiated power; other-
wise (when b = 0), one falls into the original framework of

[4].
B. Constraints on QoS and maximum power

As already mentioned in Section I, of the recurrent problems
with most works using the performance metric introduced in
[4] is that energy-efficiency can be maximized at a power level
which does not guarantee a minimum QoS. This is why we
also consider a constraint when maximizing (5): we assume
Ik [1— f(p)] has to be less than € where € is the upper bound
on the packet loss. For example, in cellular systems, typical



values for € are 0.1 or 0.01, based on the system requirements.
Adding this constraint restricts the range of power usable by
the transmitter by adding a lower bound on the power. This
lower bound depends on the entry probability ¢ and on the
size of the queue K. An upper bound on the usable transmit
power P.x can also be added to model realistic situations
when there is a limitation on the maximum power that can be
utilized.

III. ANALYTICAL RESULTS

Having defined the energy efficiency function, we will now
examine its properties.

A. The impact of the packet entry probability

First let us study the special case when ¢ = 1: Here
we have, lim, 1[I = 1, then & = 1 — f(p) and we
have a simplified expression of the energy efficiency function
n= RS (;’ ). This energy efficiency is a more general form of
the metrlc introduced in [4]. This particular case is in fact
identical to the situation when the system is modeled with a
purely physical layer approach. As the queue is always full,
transmission always takes place and so the energy efficiency of
the entire system is just the energy efficiency of transmission.

The next part of this section examines 1 as g decreases.
Logically, as ¢ decreases, the average duration when the
buffer is empty increases causing a wasted consumption of
the fixed power during which no data is transmitted. Here, we
have a proposition that formulates and proves this reasoning
mathematically.

Proposition 1: The energy efficiency function is an increas-

. . . d
ing function of ¢, ie., ! > 0. o
Proof : n= —— 1 —— If 42 « 1=% then dL=209 >
K et e dq a et da
and from this, it follows that > 0.
: dp _ 1=f(p)
To prove this, we first calcu};ate i = o) (= q)2 Now
let us consider % = —@2% The term &' =1 + ; +

1 do—t _ 1-f(p) -1
-+ 5r and so we have < — = ( +..+ K+1) 7o) (1 EE
Simplifying and using inequalitles we have ‘jf; < == q
o

B. The limiting case of infinite queue size

Consider the extreme case of an infinite queue, i.e., K —
Q.

e Case 1: < gq; ie., p > 1. We have that

f(p)
limg oo g = 2= and a simplification yields ® =
%(p). Thus the energy efficiency becomes 1 = %(Z’;).
These expressions make sense as in the steady state, due
to a higher probability of entrance than exit, the queue
size blows up and there are always packets to transmit.
o Case2: f(p) > qiie, p<1If f(p) = ¢, then I = &+
and limg_, IIx = 0. For f(p) > ¢, we have also that
limg o0 IlIx = 0 and then simplification yields & = 0.
Thus the energy efficiency becomes n = —"5—. These

. X q " f(p)
expressions also make sense as in the steady state due to

a higher probability of exit, the buffer is never full and
there is no packet loss.

C. Optimizing the energy efficiency

In this paragraph, we prove that there exists a unique power
where the energy efficiency function is maximized when the
transmission rate is a sigmoidal or ”S”-shaped function of p.

n [11], it was shown that having a sigmoidal success rate f(p)
1mplles quasi-concavity and a unique maximum for ! g)p ). This
assumption was shown to be highly relevant from a practical
viewpoint in [4] as well as from an information theoretical
viewpoint in [5].

Theorem 1: The energy efficiency function 7 is quasi-
concave with respective to p and has a unique maximum de-
noted by n(p*) if the efficiency function f(p) has a sigmoidal
shape.

Proof : Consider the asymptotic cases when p — 0 and
p — oo, we have the limiting cases as lim,_,o f(p) = 0 and
limy,_, f(p) = 1 respectively.

e When p — 0: We have lim, ,0® = 1 trivially and
limp_m n = 0.

e When p — oo: limp_,oc ® = 0 and lim, . = 0.

Thus from the extension of the mean value theorem proposed
in [17], we have d” =0 for at least one p.

Consider the functlon ~ = A(p) + B(p), where A(p) =
ﬁ and B(p) = m From the earlier work in [11],
we have that A(p) is convex and that ﬁ is quasi-convex

and has a unique maximum at pg. %;") > 0 for all p. We

also know that for p > p§, and dZ’; () <.
Now let us study the derivatives of the function B(p).

dB(p) b do

dp Rq(1-®)?dp

(6)

and we have

) b (&2 (e 2 )
dp?2  Rq(1— ®)2" dp? dp’ 1-®)°
If B(p) is a monotonically decreasing function and is

convex for p > pj, then we have m to be quasi-
concave [15]. So in the followmg section of this proof we

will show that dB(”’ <0and & B(p) > 0.

dB(p)
dp
< 0 is sufficient as the other terms are always positive.
d*B(p)
d “dp2
2 > 0 is sufficient as the other terms are also

For <0, by examining equatlon 6, we see that showing

S1m11arly, for > 0, by examining equation 7, we see

that showmg
always pos1t1ve

4o dIlx df(p)

W = (1 f(p)) G kg, ®)
e Pl dllg df(p) d*f(p)
- (1-f(®) ap? -2 dp dp —lk dp? ©®

For ‘i—‘i’ < 0, by examining equation 8, we see that showing
dg—pf( < 0 is sufficient.



dp _ __—q___df(p)
dp = (1-¢)f(p)*> dp
1 +. i Differentiating with

We have p = which is
negative. Express e =1+
respect to p, we have

dHK - H2 dp K

rr de(p +"pK+l)' (10)

Similarly, for ‘fpf

> 0, by examining equation 9, we see
4 f(p)
dp?

. 2 . .
that showing d dSZK > 0 is sufficient as < 0 for p > pj

and d(rll—; < 0. And from equation 10 we observe that as p
increases dg—;‘ increases. Thus following the argument from
the start, we have n(p) to be quasi-concave.
Since there exists some power p for which 7(p) is maximized,
we have proved that there exists a unique p* for which the
energy efficiency is optimized. o
We are then able to determine the optimal power p* which
maximize the energy efficiency function, by solving the fol-
lowing equation:

—dd
dp

7(1))}_,_(1_(1)) d® p

pq(1

d(p/f(p))
f(p) -

0= Wi

{b+ }.

(1D

D. Behavior of p* with respect to q

When g — 0, the optimization problem is reduced to finding
p that maximizes ;" ). This can be obtained by calculating the
derivative of p* from equatlon ll and applying the limit on q.
Indeed we have that hmqﬂo G, = 0 and then equation (11)

is reducing to d(P/f(p)) =0.

When ¢ — 1, the ogtlmlzatlon problem is reduced to finding
p that maximizes +=-. This can be obtained by simply using
same ideas as prev10usly

E. Power Control with the QoS and maximum power con-
straint

The QoS constraint requires that & < e and then we have
to find the new properties of the energy efficiency function
satisfying this constraint. We define pg := min(p|®(p) < ¢).

Proposition 2: For all p > pg, the constraint is satisfied,
ie., ®(p > po) <e.

Proof : This is quite easy to see because from our earlier
proof we have that % < 0 and so ®(p) < P(pg) < € for all
D > Ppo. ©

Additionally we also have another proposition which gives
the properties of py when the arrival probability, ¢, changes:

Proposition 3: If g > q1, then py(g2) > po(q1)-

Proof : This result can also be easily proved. From our earlier
proof we have ¢ d > 0 and so with the power po(g2), we have

B(q1) < B(g2) < €. Thus po(a1) < polgz). o

With these results, we show in the following proposition that
the energy efficiency function with the constraint, denoted by
7, can still be optimized and has a unique maximum.

Proposition 4: Given 1(p) with a unique p* and a constraint
on ® as & < ¢, satisfied by p > po; the modified energy
efficiency 7, has a unique p = min[max(po, p*), Pmax)-

Proof : To proceed with our proof we solve the problem using
the KKT conditions (see e.g., [15]). The Lagrangian is defined
by:

['(p7 )\17 )\27 )\3) = 777(p) + /\I(CI) - L) + )\2(]9* Pmax) - )\SP'
12)
The KKT conditions applied to the above quasi-convex opti-
mization problem yield

dL

dp

d—L
p— Pmax
—-p
M(®—1L)
)\2 (P - Pmax)
A3(—p)

A1

A2

A3

1IN IAIA
coocoo o

13)
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IV. NUMERICAL RESULTS

In this section we use simulations and numerical calcula-
tions to study the effectiveness of our proposal as well as the
advantages offered.

A. Convergence to steady state

So far in our model, we assume the system to be in the
steady state. However, in reality, it takes some time for the
system to reach the steady state. In order to study the rela-
tionship between the observed values for packet loss, and the
theoretical values, we devise the following simulation: Using
random number generators and a virtual queue we study the
fraction of packets lost for a fixed packet count (representing
time) to see how fast the simulated queue converges to the
steady state. For each total packet count, the simulation is
iterated 10° times for a queue size of K = 10. We observe
that with a packet count of about one thousand, the simulated
values of ® are on an average the theoretically predicted value

(+4%).

B. Energy efficiency and power control

In this section we present some numerical results that bring
to focus the advantage of this cross layer approach over a
purely physical layer approach.

In the following section we consider the transmitter-receiver
pair to be a single input ijngle ogtput link with the success
function f(p) = exp(—(2%0 —1)2-). We also always consider
a queue of maximum size K = 10, P4, = 35dBm,P,,;,, =
10dB, R = 4000bps and Ry = 1000. Note that as we
have ¢ = 1 case being identical in theory to the case where
we just model the energy efficiency with a purely physical
layer approach as in [4] (after accounting for the fixed power
consumption of the transmitter b); if we optimize the energy
efficiency it will be optimal to use the power p*(¢ = 1).
However if we consider the cross layer model the energy
efficiency is optimized at a different p* based on the transition



probability ¢. As p* < p*(q 1), using the cross layer
optimization we have a gain which can be expressed as
1010g10(”*(5—*:1)) in dB.

In Figure 1 we study the energy efficiency of a system with
—= = 100. Here we see that as ¢ decreases p* decreases. Also
seen from the same figure is the quasi-concavity of the energy
efficiency function and the asymptotic behavior.

b

)

o

©

Energy efficiency (bpJ)

0 L L L

Optimal Power Gain (dB)

——No contraint on packet loss
—L=01
——L=0.01

L L L L L L L L L
1000 2000 3000 4000 5000 6000 7000 8000 9000
b
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Fig. 3: The gain in the optimal power while using a cross layer
model as opposed to a purely physical layer model i.e %
plotted against ;bg'.

25
Transmit Power (dBm)

Fig. 1: n vs p of a system with ;bg' = 100 (20dB). Observe that the
function is quasi-concave for all ¢ and that p* decreases as
q decreases.

In Figure 2 we study the energy efficiency of a system with
0—2’2 = 100 (20dB) and with a packet loss constraint of L =
0.01, i.e., ® < 0.01. Here we see that as ¢ decreases the
minimum power required to satisfy the constraint. The quasi-
concavity of the energy efficiency function is clearly preserved
after the constraint and it has a unique maximum.

14

Energy efiiciency (bpJ)

In Figure 4 we study the gain in power with U—bz = 100
plotted against ¢q. For low values of ¢ we clearly see that
the gain in using the cross layer approach is the highest and
decreases with q.

20

J
10000

(no packetloss constraint) ‘

L=1
L=0.1
1=0.01 ‘

Optimal Power Gain (dB)

W
\

0.1 02 03

Fig. 4: The gain in the optimal power while using a cross layer
model as opposed to a purely physical layer model i.e %
plotted against q.

C. Application of the results on some useful cases

.
20
Transmit power (dBm)

Fig. 2: EE of system with ;b;- = 100 (20dB) and L = 0.01. Note
that in this plot, the quasi-concavity is retained and that po
increases with ¢

In Figure 3 we study the gain in power with ¢ = 0.5 plotted
against % For low values of % we see that the gain for
€ = 0.1 is due to the constraint causing it to decrease with
U%, however beyond a certain value of %, even the efficiency
function for ¢ = 0 is optimized at p* (the constraint is met
for p < p*), the gain is due to the difference in p* which
increases with % just like for the e = 1 case.

35

In a realistic situation, when there is no packet to transmit,
a base station consumes about 50% of the power it consumes
at full load [1]. On the other hand, the entry probability ¢ can
change based on the service, protocol, traffic, etc:

e For ¢ = 0.5, R = 256Kbps and Ry 64Kbps, our
numerical calculations show that, for an SNR of 30 dB,
using p* = 3% of the transmit power is optimal. While
if the user was at a distance where the received SNR
is 20dB, using p* = 13% of the power is optimal. The
relationship between the optimal powers is clearly not
linear with the SNR.

Consider now a system with ¢ % like in some
streaming systems that have data sent in one out of 25




frames. In this case, for the user with a SNR of 30dB,
p* = 1.5% and for 20dB, p* = 15%. The explanation for
this can be seen from the theoretical section, as ¢ — 0,
optimizing 7 is the same as optimizing % which has a
solution that is linear with the SNR.

V. CONCLUSION

We have examined the energy efficiency function consider-
ing the packet level dynamics of a system and incorporated
the effect of the finite buffer size. We find that modeling the
system in this form changes the shape of the energy efficiency
function. However the energy efficiency function retains its
property of quasi-concavity and has a unique maximum. In
this work, we also observe that if the packet entry probability
is small, the energy efficiency is deformed to a higher extent
causing the optimal power to be smaller than in a model
ignoring the packet level dynamics. This deformation is due
to the constant power consumption of the transmitter even
when it does not transmit. The effect of the constant power
consumption decreases as the path loss or noise increases and
in fact, it is the ratio between the constant power consumption
and the noise (with path loss) that determines the deformation.
If we impose a constraint on the packet loss, clearly the
buffer helps in decreasing this loss which causes a further
deformation in the shape of the energy efficiency function.

Many extensions of the proposed work are possible. The
most relevant extension is to apply the proposed framework
to the case of distributed power control over multiple access
channels; we already know that the existence of a pure Nash
equilibrium is guaranteed due to quasi-concavity of the energy-
efficiency [20]. Another natural extension of the proposed
framework is of course, the problem of resource allocation,
which is known to be non-trivial, the problem of power
allocation is indeed important in multi-carrier and MIMO
systems. It would also be fully relevant to study distributed
dynamics of the queues and power control policies leading
to steady states of the system. Another interesting aspect
concerns the case of variable transmission rate as a fixed
transmission rate is indeed not the best scheme to minimize
energy consumption.
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A Cross-Layer Approach for
Energy-Efficient Distributed Interference

Management

Vineeth S. Varma'?, Samson Lasaulce!, Yezekael Hayel®, and Salah Eddine Elayoubi®

Abstract

The purpose of this paper is to design distributed energy-efficient power control policies
for interference wireless networks. The problem is tackled from a cross-layer perspective. In
addition to the physical layer and medium access control protocols, the presence of a finite
packet buffer at the transmitter side and the impact of transport protocols are considered. This
approach is relevant when the transmission cost is considered to be the total power consumed
by the transmitter instead of just the radiated power as assumed usually. A generalized energy-
efficiency performance metric integrating these features is constructed under two different
scenarios in terms of transport layer protocols characterized by a constant or an adaptive packet
arrival rate. The derived performance metric is shown to have several attractive properties,
which ensures convergence of the used distributed power control algorithm to a unique point;
this point is the equilibrium of a game for which the equilibrium analysis is conducted. A
thorough numerical analysis is provided to illustrate the effects of the proposed approach, and

provides several valuable insights in terms of designing interference management policies.
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Cross-layer, distributed optimization, distributed power control, energy-efficiency, game

theory, Nash equilibrium, non-cooperative game.
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I. INTRODUCTION

Designing green wireless networks [1], [2], [3] has become increasingly important for modern
wireless networks, in particular, to manage operating costs. A challenge for modern (beyond
4G and 5G) cellular networks is not only to respond to the explosion of data rates, but also
to manage network energy consumption. The concept of small cell networks appears as a
good candidate solution to raise such a challenge (see e.g., [4]). As small cell networks will
be distributed to large extent and subject to high inter-cell interference, designing distributed
energy-efficient interference management schemes appear as a natural need.

For being able to design green networks, an energy-efficiency (EE) metric is needed. In [5],
the EE of a communication between a transmitter and a receiver is defined as the ratio of the
net data rate to the radiated power; the corresponding quantity is a measure of the average
number of bits successfully received per joule consumed at the transmitter. Quite recently, there
has been a resurgence of interest in this performance metric. There are several reasons for
this and we will only provide a few of them. First, the EE as defined in [5], mathematically
translates in a simple manner the trade-off between the benefit of increasing the transmit power
in terms of data rate, and the induced cost in terms of consumed energy or amount of created
interference. Second, as motivated in [6], there are applications in which the allowable delay
is not tightly constrained. Therefore, the data rate is a less relevant measure than the energy
needed to transmit the information and EE naturally appears as a metric to be optimized. We
furthermore explain in this paper (Sec. III-A) why maximizing EE amounts to minimizing the
total energy consumed by the transmitter when packet retransmission is considered.

Remarkably, the energy-efficiency metric proposed in [5] possesses a good mathematical
structure for optimization, especially for the distributed case, which partly explains why it
has been applied in a large variety of scenarios of practical interest. Some examples are as
follows. In [7], it is applied to design a power allocation scheme in distributed multi-carrier
CDMA (code division multiple access systems) systems by using a static non-cooperative game
model (just as [5]). In [8], it is used to account for the users delay requirements in energy-efficient
wireless systems. In [9] and [10], also based on a static game model, the authors used the metric
under consideration for sub-carrier assignment in distributed OFDMA (orthogonal frequency
division multiple access) multicellular networks. In [11], the authors study the problem of

energy-efficient contention-based synchronization in OFDMA systems. In [12], [13], the authors



IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY 3

study the problem of pre-coding in MIMO (multiple input multiple output) point-to-point
communication systems. In [14], the EE metric is exploited to study the impact of sensing
in terms of EE in cognitive radio networks.

Although fully relevant, the performance metric introduced in [5] and used in the related
works (this, in particular, includes those cited above) has left several issues unexplored, which
has motivated the work reported here. In [5], and all related references known to the authors, the
numerator of EE is (up to a constant) a packet success rate which only accounts for packet losses
due to bad channel conditions. In the present work, we propose a significant generalization of
the metric used in the aforementioned works to the case where packets are buffered in a finite
size queue. Therefore, the packet loss due to overflows is also taken into account. On the other
hand, we will show in Sec. IlI that accounting for this effect is relevant in terms of EE, only
when the transmitter has a cost in terms of consumed power independent of the radiated
power; this means that the transmitter consumes power even while waiting for new packets to
arrive. It turns out that this is precisely what happens for most wireless transmitters. Indeed,
the transmitter energy consumption is not only induced by the radiated power but also results
from other causes such as the transmitter supply consumption [16]. Note that the authors of [17]
were the first to consider a transmission cost of the type “radiated power + constant” to design
distributed power control strategies for multiple access channels; in their model, the constant
represents the computation power at the receiver. Our approach is markedly different from [17],
not only because the problem is tackled from a cross-layer perspective, but we also consider the
more general case of distributed interference networks with a quality of service (QoS) constraint.
For this purpose, two different models for the packet arrival rate are considered: 1) The quite
simple model where the arrival rate is a constant (which is referred to as CAR for constant arrival
rate). This case is useful e.g., for real-time traffic like video or streaming; 2) The more interesting
model in which the arrival rate is related to the SINR (signal-to-noise plus interference ratio)
through a quite generic relationship, is more suited to delay tolerant traffic like file transfer and
adaptive rate services like WebRTC [18]; this case is referred to as AAR for adaptive arrival
rate.

The main contributions of this paper can be summarized as follows!:

1) To the best of the author’s knowledge, this is the first time that the EE performance metric

!Note that preliminary results were presented in paper [19].
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originally introduced in [5] is generalized to a cross-layer approach, taking into account,

the effects of the presence of a queue with finite size at the transmitter;

Apart from a few exceptions (which includes [17], [19], [20]), all related works using EE in
the sense of [5] only consider the radiated power while, here, the total power consumed
by the transmitter is accounted for. Since an affine relation between the radiated power
and the total power is assumed [16], this might seem as an incremental change but the
presence of this fixed cost is the key ingredient which makes the cross-layer analysis fully

relevant;

The derived performance metric is shown to possess attractive mathematical properties.
Quite surprisingly, both in the case of CAR and AAR, it can be shown to be quasi-concave

with respect to the radiated power;

The above property is directly exploited to prove existence of a Nash equilibrium (NE) in
the two static power control games under investigation namely: The game based on CAR
with a constraint on the packet loss; The game based on a AAR protocol that automatically
controls the packet rates by observing the packet loss. To the best of our knowledge, the
former game is the first instance of an energy-efficient power control game to be identified
as being semi-continuous, which allows us to prove the existence of an equilibrium by

exploiting a fixed point theorem from [21];

Generalizing [5] and related references, the games under investigation are shown to be
standard [22], [23], which guarantees both NE uniqueness and the convergence of relevant
distributed optimization algorithms to this equilibrium such as those based on the iterative

water-filling idea [24], [25];

A thorough numerical analysis is provided to assess the benefits from taking the presence
of a queue with finite size into account and to give new insights into designing energy-

efficient communications systems.

This paper is structured as follows. In Sec. II, we present the general system model. In Sec.
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III, we construct the proposed performance metric highlighting contributions 1) and 2). In Sec.
IV, we define the two power control games of interest and conduct the equilibrium analysis,
which is essential to characterize the convergence of the used distributed algorithm (existence
and uniqueness of the convergence points), highlighting contributions 3), 4), and 5). Sec. V
highlights interesting numerical results that support the proposed approach, i.e, 6). Finally, we

conclude the paper and several extensions of this work are provided.

II. SysTEM MODEL

The purpose of this section is to describe the communication model considered for cross-layer
energy-efficient power control, which consists in expressing the SINR and packet arrival rate
for a given user. A general interference network is considered with N transmitter-receiver pairs,
in which each transmitter communicates with its respective receiver, while under interference
from the other transmitters [26]. Let N = {1, 2, ..., N} be the set of transmitters. Transmitter i € N/
transmits with power level p; € [0, Pmax], where Ppa > 0 is the maximum possible transmit
power, which is identical for all transmitters (the analysis does not lose its generality with this
assumption). The vector p = (p1,p2, ..., pn) Will be referred to as the power or action profile on
the current data block or packet. We also denote by P, the (N —1) dimensional vector obtained
by removing the i" component from p. For notational simplicity, we also sometimes represent
p as (pi’E_i)’ when the dependence of certain functions on p; has to be shown explicitly. By
transmitting at p;, each user i has a resulting SINR y; at his receiver of interest which is a

function of p, and is assumed to be given by:

vilp) = # 1)

i o7 + Z Pi&ji

j=1,j#i
where g;; represents the quasi-static or block fading channel gain of the link between transmitter
j and receiver i on a given band, 07 = 02 is the variance of the Gaussian noise at receiver i (these
variances can be assumed to be equal without any loss of mathematical generality). In wireless
systems such as those being implemented in recent cellular system standards, packets arrive
from an upper layer (e.g. IP layer) following an arrival rate that is related to the SINR. In this
paper, we assume that the packet arrival process follows a Bernoulli process with probability

gx(yi(p)) where X € {CAR, AAR}; this corresponds to the classical ON/OFF sources [27]. In the
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case of CAR, it trivially expresses as:

Vie N, qear(yi(p) = q )

with g € [0, 1]. This is best used for real-time applications where delay is not tolerable, however,
in some applications this packet arrival model is not suitable. For instance, this is the case for
applications such as file transfer or browsing. In such a situation, there is no constant stream
of data and so the arrival rate can be optimized for best performance in terms of data rate and
QoS. This is one of the reasons why we also investigate the case of AAR for which we assume

that the arrival rate is given by:

Vie N, gaar(yi(p)) = 8(Paar(yi(p))) 3)

where @p4r is the packet loss function and g is a function which is assumed to be continuous,
invertible, and has an inverse function g‘l which is twice differentiable, decreasing, and convex.
To provide a specific example, the widely used and very useful approximation of the arrival
rate process for the Transmission Control Protocol (TCP), which is due to [28], verifies these
conditions. Therein, ¢ is merely given by ¢g(®) = %, where « € [0,1] is a parameter which
depends on the system design and the round trip time. The resulting rate can be interpreted as
the average value for the rate.

Remark 1. The CAR protocol can also be seen as a constant piecewise approximation of
any adaptive arrival rate protocol in which arrival rate variations are much more slower than
channel variations. On the other hand, the AAR case aims at better understanding more complex
scenarios where both arrival rate and channel variations have quite similar time-scales. This is
close to WebRTC congestion control protocols, like the one proposed by Google [18], where the
sending rate is adapted based on the observed packet loss [29].

Remark 2. It would be possible to study a more general communication scenario by considering
multi-band communications, MIMO communications, or a more advanced reception scheme
(e.g., interference cancellation as in [30]). There are several reasons why we do not treat these
scenarios here. First, we want to emphasize in a manner as clear as possible the real contributions
of this paper namely, the introduction of a queue for the problem of energy-efficient power
control. Second, studying the power control problem is the main step towards these extensions.
For instance, in [7] in which the authors address EE over multi-carrier multiple access channels,

it is proved that the best selfish/equilibrium policy for a transmitter is to select its best carrier
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(in terms of SINR) and apply the single-carrier policy to tune the power level over this carrier.
Therefore, the assumed model can be understood as a single-band model (e.g., several base
stations which try to mitigate inter-cell interference on a given band) or a multi-band model for
which interference is managed for the selected channel or interference management is performed

independently from band to band.

III. A NEW ENERGY-EFFICIENCY PERFORMANCE METRIC
A. Construction

In [5], EE is defined as the ratio between the average net data transmission rate and the

power consumed for sending a given packet. When the radiated power is considered as the
RF(i(p)

pi
radio interface and is a constant w.r.t. the power levels. It depends on several parameters such as

transmission cost, this ratio merely equals The quantity R is the gross data rate on the
the modulation and coding scheme [5], [8]. Each packet transmitted on the channel is received
without any errors with a probability which depends on the quality of the communication link,
the interference, and transmit power levels. The corresponding block or packet success rate (also
called efficiency function) is precisely the function f()/,-(;z)) above. The function f : [0, +o0) —
[0,1] is a sigmoidal® or S-shaped function verifying f(0) = 0 and }Lrg f(x) =1 (see [41] for more
details). Common examples for f are f(x) = (1-e )M [8], f(x) = e~% [12], [13], where M > 1 is the
packet length and c > 0 is some constant related to spectral efficiency (this relation is specified in
Sec. V). Energy-efficiency is particularly relevant when packet retransmission is allowed. When
there is no retransmission, the energy® consumed to send V bits while transmitting at the power
level p; is p,-%. Minimizing energy amounts to minimizing p;. However, when retransmission
is allowed (typically by using an automatic repeat request -ARQ- protocol, that is used at the
physical layer independently of the architecture at the upper layer), the average duration to send
a packet equals W and the energy consumed becomes pim. Clearly, minimizing energy
amounts to maximizing EE. This means that, at least in presence of re-transmissions, the classical
approach which consists in minimizing p; (subject to some QoS constraints) induces a loss in

terms of minimizing the energy consumption; this will be illustrated in Sec. V. In the scenario

investigated in this paper, the fact that both the total power consumed by the transmitter and

2A sigmoidal function is a function which is initially convex for y € [0,7.] and eventually concave for y € [y., ).

*Here, the energy under consideration is the energy associated with the radiated signal.
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the presence of a packet buffer with finite size are considered makes the construction of energy-
efficiency more involving than the aforementioned derivation.

A simple model which allows one to relate the radiated power to the total consumed power
is provided in [16]; it is given by Piotal; = ap;+b, where a > 0,b > 0 are some parameters. We will
assume without loss of generality that a = 1. The quantity b precisely represents the consumed
power when the radiated power is zero®. If @y, X € {CAR, AAR]}, represents the packet loss due

to both bad channel conditions and packet buffer finiteness (more details about this is provided

a little further), a packet is re-transmitted® W times on average, the average power
consumption is in our case b + piW' Since the net data rate or goodput is given by

Rax(y)[1 — @x(yi)], we are now able to define the EE metric 1;x(p) as the ratio between the
average net data transmission rate and the average power consumption, which gives:

ax (i) [1 - ox(i(p))]

axip)[1-exi)]|
b+ pi Qi

This definition shows that the cross-layer design approach of power control is fully relevant

nix(p) = R 4)

in terms of EE when the transmitter has a cost, which is independent of the radiated power;
otherwise, when b = 0, one falls into the original framework of [5]. On the other hand, when b
is large, the EE function behaves like a packet success rate function.

Although the efficiency function f (which is assumed to be sigmoidal) can be easily related to
the SINR through simple functions such as those mentioned previously, expressing the packet
loss function is more involving. Relating ®x to the SINR is the purpose of what follows. A
packet is declared to be lost (blocked) only if a new packet arrives when the packet buffer is
full and, on the same time-slot, transmission of the packet on the radio interface failed. Note
that these two events are independent because the event of “transmit or not” for the current
packet on the radio interface, does not impact the current size of the queue, but only the one for
the next time slot. This amounts to considering that a packet coming at time slot t, is rejected at
the end of time slot ¢, the packet of the radio interface having not been successfully transmitted.

By considering the stationary regime of the queue and assuming the protocol X, the fraction of

“This power consumption occurs even when data is not transmitted due to various causes such as pilot signaling,
power amplifier consumption, cooling costs, etc.

SFor the sake of clarity, here and in other places in the paper, p is omitted from the notations.
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lost packets ®x can be expressed as follows:

Ox(yi(p)) = [1 = f(yi(pNIx(yi(p) (5)

where Ilx(y;) is the stationary probability that the packet buffer is full. Indeed, as already
mentioned, each transmitter is assumed to be equipped with a device that allows the packets
to be stored in a memory buffer (of size K > 1) before transmission. Packets arrive into the
buffer and get transmitted through a queuing process at the buffer. Denote by Q;; the size of
the queue for transmitter i at time slot ¢. The size of the queue Q;; is a Markov process on the
state space Q; = {0,1,...,K}. It is known (see [31] for example) that in the stationary regime of
the stochastic process Q;; the probability that the size of the queue equals K is given by:
OKi(p))
L+ wx(ri(p) + ... + K(i(p))

Ix(yilp)) = (6)

with
ax (i) [1- fip))]

wx(yi(p)) = )
o [1 - QX(Vi(E))] fi(p)

where X € {CAR, AAR}.

In the case of X = AAR, the packet arrival rate gaar is a function of the packet loss and
the packet loss, a function of gaar. The following proposition ensures that the AAR process
achieves an average packet arrival rate according to the following proposition. For the purpose
of making the inter-dependency of the two following equations clear, we express explicitly in
these equations, some of the parameters used implicitly in the rest of the paper.

Proposition 3.1: The packet arrival rate gaar is obtained as the unique fixed point of these

equations:

Paar(yi(p)) = (1 = f(ri(p))Haar(yi(p)) (8)

where TTaar(yi(p)) has gaar as a parameter as seen from (7) and (6), and:

gaAR(DPaarR) = §(PaAR)- )

Proof: It can be verified that the two equations are continuous and differentiable. The packet
arrival rate gaar(y;) ranges from 0 < g(0) <1 to 0 < g(1) < g(0) and Paar(y;) ranges from 0 to
1. Based on the properties of Paar given in App. A, @aar ranges from 0 to 1 as g goes from
0 to 1. Now study F(gaar) £ Paar(Vi, qaar) — & 1(9aar)- The function F(gaar) is a continuous

and differentiable function in the interval of g € [0, 1]. A point such that F(gaar) = 0 is a fixed
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point for this set of equations. Based on the mean value theorem [32], and from the limits
lim, 0 F(gaar) < 0 and lim,,; F(gaar) = 0, we have F(gaar) = 0 for some g € [0,1]. Also note
that F(g) is strictly increasing and so the point where F(gaar) = 0 is unique.
The fixed point equation can be solved as:
wiyip)*
Y @i(yi(p))

and has a unique solution. [ |

8 (qanr(i(p) = [1 = f(i(p)] (10)

Remark 3. For b > 0, it can be seen that for any X € {CAR,AAR}, gx = 1 = wx — +00 =
[Ix - 1 = ®x — 1 - f, which means that one falls into the framework of [17].

Remark 4. When the packet arrival is constant (i.e., X = CAR), the dependency of Ilx regarding
the SINR follows a simple relation. However, when the AAR protocol is assumed, the relation-
ship is less trivial. Indeed, the packet loss ®x depends on wx through (5) and (6). The quantity
wx depends on the arrival rate gx. But, in the AAR case, gx also depends on the packet loss.
This is the reason why we assume that, under the AAR protocol assumption, each transmitter
operates at the fixed point associated with the aforementioned dependency chain. Therefore,
this amounts to fixing the packet loss function to have a certain form. AAR can thus be seen
as an indirect way of imposing a certain QoS on the transmission. To be more specific, if one
assumes an arrival rate process which can be approximated as in [28] (namely, g(®) = %) and

the regime of large buffer size K — oo, the operating packet arrival rate function can be shown

1+ 4/1 +4(f<_%)2

2

to be :

I}l_r){}o gaar(yi) = f(yi) (11)

Remark 5. In the above equations, we have implicitly made a symmetry assumption: the
efficiency and arrival rate functions are assumed to be identical for all users. This choice allows
one to gain in terms of clarity while the extension to the non-symmetric case is ready. For the
same reason, the gross data rates at which the users transmit R;,i € N, have been assumed to
be equal (to R bit/s).

Remark 6. As the form of the performance metric under consideration implicitly indicates
(see (4)), the choice made in this paper is not to account for possible memory effects which
would be due e.g., to correlated channel realizations from block to block or the state of the
queue. This choice is coherent with the related literature on EE which originates from [5] and

the merit of it is that the corresponding power control policies remain distributed in the sense
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of the required knowledge to implement it. As seen in Sec. IV, a transmitter only needs to
know its instantaneous SINR to tune its power level on the current block and therefore manage
EE and created interference. Exploiting stochastic models can be seen as a relevant extension
of the present paper which would lead to a better performance (provided all the additional
parameters required are well estimated) but at the expense of obtaining power control policies
which are (possibly much) more demanding computationally and requiring (possibly much)
more information (see e.g., [33][34]). Summarizing, the proposed approach can be seen as a

reasonable tradeoff between performance gain in terms of EE and ease of implementation.

B. Properties

The EE function 7;x possesses a very attractive property regarding its dependency toward p;.
This is what the next proposition states.

Proposition 3.2: For all i € N, the EE function Ui,CAR(E) is quasi-concave w.rt. p; and has a
unique maximum point denoted by p;f(E_i).

The proof relies, in particular, on the sigmoidness assumption for f and can be found in App.
A for the CAR case and in App. A-B for the AAR case. This result is very useful for the NE
analysis which is conducted in Sec. IV. Remarkably, the quasi-concavity property is not only
available in the case of CAR but also in the case of AAR, which is not obvious a priori.

In order to obtain more insights about the impact of having a buffer on energy-efficiency, we
now briefly analyze the case of CAR. The following result holds.

Proposition 3.3: Let X = CAR. For all i € N, the EE function ), x is a strictly increasing function
of the parameter 4.

Proof: Let p be fixed and remove the dependency toward p and y; from the notations. The EE
function can b_e rewritten as 1;car = +p, Clearly, if the_sufﬁcient condition

T®capi T f
holds, then 3%(1 — ®car)g > 0. From this, it follows that 8”;% > 0. Let us prove the sufficient

aq’aCAR < 1=%car
q q

-1
condition. The derivative aq;CAR can also be written as ‘M;% = —CD%: ARa@a—CqAR) with (DE}%R =1+
1 1 .
o Fet o Using
8wCAR _ 1- f 1 (12)
dg — f (1-gq7?
implies that
N 1 K 1 1
e +ot+— = >1‘I T (13)
q WCAR wf g )91 —14) carg(1—¢q)
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The sufficient condition follows by using m >0 and thus ‘9%% <0< 1_@%. |
This proposition mathematically translates the following intuition. If the packet arrival rate
q decreases, the average duration during which the buffer is empty increases. Since there is a
fixed transmission cost b, this induces a waste of energy.
To conclude this section, let us analyze the limit of large buffer size. Two sub-cases can be
distinguished.

o Case 1: gx > f(yi(p)), i.e., wx > 1. We have that the steady-state probability of having a full

wx —1 foip)

buffer limIIx = and a simplification yields ®x = 1 - —=. Thus the EE becomes

o Rf (Vi(ai%

1}1_r>n nix(p) = Tp_ This means that a higher probability of entrance than exit causes
0 - i

the queue size to blow up, and there are always packets to be transmitted, which explains

why one falls into the framework of [17] in Case 1.

o Case 2: gx < f(yi(p)), ie, wx < 1. If f(yi(p)) = gx, then Ilx = % and limIIx = 0. For

— K>

f(yi(p)) > gx, we have also that I}im ITx = 0 and then simplification yields ®x — 0. Thus

the EE becomes I}im nix(p) = ; T This means that, even with the fixed consumption
A P (7

cost b, the EE performance metric to be optimized become

S J‘(Lfﬁ)) (i.e., the same metric as
[5]). This is also quite intuitive, as in the steady state, due to a higher probability of exit,
the buffer is never full and there is no packet loss due to buffer overflow.

Remark 7. The above special case analysis suggests that, in the regime of large buffer size, the
power control policies may be obtained from an approximated payoff function which is simpler

than the exact expression (4). It is seen that, depending on the current value of the SINR and

arrival rate, the approximated payoff function coincides either with that of [5] or [17].

C. QoS constraint

To conclude this part, we will mention how the QoS constraint is treated in our analysis.
As already mentioned in Sec. I, one of the recurrent problems with most works using the
performance metric introduced in [5] is that EE can be maximized at a power level which does
not guarantee a minimum QoS. This is why, in the case of CAR, we also consider a constraint
when maximizing (4): the packet loss rate Ilcar[1 — f(y;)] has to be less than an upper bound
€. For example, in cellular systems, typical values for € are 0.1 or 0.01, based on the system

requirements. Adding this constraint restricts the range of power usable by the transmitter by
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adding a lower bound on the power. This lower bound depends on the entry probability g and
on the size of the queue K. At last, our choice is not to impose this constraint for the AAR
protocol since, by construction, this protocol aims at automatically adapting the packet arrival

rate to congestion.

V. EQUILIBRIUM ANALYSIS AND DISTRIBUTED POWER CONTROL ALGORITHM

Since it is assumed that transmitter i, i € N, can only control the variable p; of the N—variable
function 1; x(p) and is assumed to consider the energy-efficiency of his own communication, the
power control problem is naturally distributed in terms of the decision. The ultimate goal of
this section is to propose a power control algorithm which is distributed both in terms of the
decision and information (only individual SINR feedback is required to adapt the power level).
While the algorithm itself is directly inspired from existing works, its convergence analysis does
not follow from a direct adaptation of existing results. We first begin by an equilibrium analysis
of two non-cooperative games associated with the two considered power control scenarios (CAR

and AAR), before proposing the algorithm and proving its convergence.

A. Equilibrium analysis of the associated games

A non-cooperative game under strategic form is merely given by an ordered triplet (see e.g.,

[23]). With the notations of this paper it writes as

Gx = (N, {Pilien {Mi,x}ie/v) (14)

where the set of decision-makers (DMs) or players is therefore the set of transmitters, the action
space for DM i is P; = [0, Pmax], and u;x is the payoff function of DM i when the arrival rate
model is X. As explained in Sec. II, when CAR is assumed, a QoS constraint is imposed on the

packet loss. Under this assumption, the payoff function is chosen to be:

Nicar(p) if Ocar(yilp)) <€
uicar(P) =| g [1 - ‘I’CAR(Vi(E))] - : (15)
b " Pmax otherwise

This payoff definition means that as long as the QoS constraint can be met, energy-efficiency
maximization is pursued. However, if the constraint cannot be met, goodput maximization or
packet loss minimization is sought. Note that, for any constraint €, the action space of any DM

i is still the interval [0, Pmax]. The constraint is instead merged into the payoff function in such
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a manner that as long as the constraint is not satisfied, it is always optimal to increase power.

For the AAR case, the payoff function is simply defined by

ui,AAR(P) = 10, AAR(P)- (16)

A fundamental solution concept for a non-cooperative game is the Nash equilibrium. There
are at least two important reasons for this. When operating at an NE, a network possesses a form
of strategic stability: a transmitter which changes his power control policy while the others keep
on using the equilibrium policies, will see this payoff decreased or maintained in the best case.
The second reason is that, under some conditions, important iterative distributed optimization
algorithms such as the sequential best-response dynamics (called sequential iterative water-
filling in the literature of distributed power allocation whose objective is to maximize the
transmission rate) converge to an NE. It turns out that the two games under study verify a
simple sufficient condition which allows the second feature to be exploited. All of this gives
us a strong reason for conducting the equilibrium analysis for the two defined games in order
to show that the two games above possess an equilibrium, to prove that it is unique and to
provide a simple distributed optimization algorithm which converges to it. This is the purpose
of the following propositions which follow the definition of a Nash equilibrium in our context.

Definition 4.1: The vector of transmit power levels E?E is a pure Nash equilibrium of the game
Gy if:

Vie N, Vp; e P, Mi,x(ENE) > uix(pi, Elfx)- (17)

Proposition 4.2: For X € {CAR, AAR}, the game Gx admits at least one pure Nash equilibrium.
Proof: The proof is based on a fixed point theorem proved in [21]. The called theorem states
that if the action spaces are compact convex sets, every payoff function of the game is upper
semi-continuous w.r.t. the action profile (p in our context), and for any DM i the payoff function
is quasi-concave w.r.t. to the individual action (p; in our context), then the game possesses a
pure Nash equilibrium. For X € {CAR, AAR}, the action space is [0, Pmax] which is a compact
convex space. When X = CAR, u;x is upper semi-continuous w.r.t p; whereas it is continuous
when X = AAR. From Prop. 3.2, we know that for any X, individual quasi-concavity is available.
This concludes the proof. [ |
To our knowledge, all related works on energy-efficient power control use utilities which
are continuous with the power profile p. Interestingly, a relevant power control game in which

continuity is not available can be exhibited for the case of X = CAR.
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Proposition 4.3: For X € {CAR, AAR}, the game Gx admits a unique pure Nash equilibrium,
for which the equilibrium power policy will be denoted by EEE
Proof: The proof of this result mainly relies on one important property of the studied games,
namely both games are standard in the sense of [22]. In App. C we prove that the DMs’ best-
responses are always standard functions; by definition, the best-response of a DM i to the
(reduced) action profile P, is the set-valued function defined by BRi’X(E_i) = arg rr}g?xu,-(]z). If the

best-responses of all the DM’s are standard, then the game is also standard, which completes

our proof. n

B. The proposed distributed interference management algorithm

The property of the previous proposition is also sufficient to guarantee convergence of some
important distributed optimization algorithms. Note that the argmax set mentioned in the proof
is a singleton (a scalar value), which can be checked from App. B for CAR and App. A-B for
AAR. While this property is available for the scenario studied in [5] and many related works,
it is seen here that, although the proposed QoS oriented cross-layer approach leads us to more
complex and more general utilities, this property is still valid.

This means that for these algorithms, not only is convergence ensured, but the convergence
point is also unique. This is very useful to characterize the performance of an implemented
distributed power control algorithm. Here, we only mention one of such algorithms: the asyn-
chronous or sequential best-response dynamics. This algorithm is well known in game theory
[35] and draws its roots from the paper by Cournot [36]. It has been used in [5] and is often
used because convergence to the NE can be guaranteed. Let EEE be the unique NE of Gx. For
the algorithm, we define p(t) as the power control policy in the previous time slot, and p(t + 1)
as the power control poli_cy for the current time slot. Algorithm 1 implements the seq;ential
best-response dynamics for Gx:

Several comments are in order.

1) We have assumed that DM 1 updates first, who is followed by DM 2, etc. In fact, this

order can be arbitrary provided it is fixed (see e.g., [37]).
2) To update the power levels m times, a duration corresponding to mN time-slots is required.
3) The quantity 6 > 0 corresponds to the accuracy level wanted for the stopping criteria in

terms of convergence to the NE.
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Algorithm 1 Sequential best-response dynamics

A« 26 > Initialize the observed difference in power levels over time, 6 is the tolerance.

EO — (Pmax, Pmax, - + - » Pmax) > The starting power is uniform power with Pp,y.

t—0 > The starting time is 0.

while A > 6 do > The outer loop that iterates till the power policies converge.

fori=1 —(> Zt\)l do > The inner loop iterating over the DM indices.
Vilp

i=—F > Using the SINR feedback from its receiver, DM i calculates the

i
interference term I'; for the previous time slot.
Rax(pI'i)(1 — Ox(pI))

f(lfr‘)qx@ri)(l — oy (pT)

p* < argmax, > Calculate the optimal power that

b+

maximizes the EE.
if X=CAR then
p+ < min(p; Dcar(pli) > €) > Calculate the minimum power to satisfy the QoS

constraint.

t+1

Pi

Pmax and more than p,.

«— min(max(p*, p+), Pmax) > Choose the optimal power for CAR if less than

else

t+1

P;
end if

— min(p*, Pmax) > Choose the optimal power for AAR if less than Ppay.

end for
A — max;(Jp'*! - pt))
t—t+1

end while

4) The algorithm 1 is completely distributed in the sense that to update his power, a DM
only needs to know the SINR corresponding to his chosen power level, i.e., BRi'X(E_i)
can be calculated by knowing y; for some p;. This is typically achieved using a feedback
mechanism and does not require a central entity that provides knowledge of the channel

conditions or power levels chosen by the other DMs.
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V. NUMERICAL RESULTS

A. General setup

Unless explicitly stated otherwise, the following choices and parameters are assumed for all

the simulations provided here:

The number of users or transmitters is set to two (N = 2). This scenario was chosen because
the behavior of various metrics like the price of anarchy (PoA) can be easily analyzed in this
situation. The case of “high interference”, as defined below, is also studied to compensate
for this choice. In addition, some specific figures also study the case with more interferers.
The block success rate function is chosen as in [13]: f(y;) = exp [— 215;—‘1)] where Ry = 1

MHz is the bandwidth used and the gross data rate is R =1 bit/s.
01

Vo
We define the low (resp. high) interference scenario as: E(g;;) = 2.5 and [E(g;;) = 0.5 for j # i

When the adaptive arrival rate scenario is considered, it it is assumed that g(¢) =

(resp. [E(g;;) = 2.5 and E(g;;) = 2 for j # 7). For some simulations, the channel gains will be
assumed to be fixed while for the others it will follow classical block Rayleigh fading. The
values indicated will be the instantaneous channel fading when the scenario considered is
static and otherwise will indicate the variance.

The noise level is set to 62 = 1 mW, the maximum power P, = 1000 mW; buffer size of
K =10; € =1 (packet loss constraint) and the fixed power consumption b = 1000 mW.

To measure the global efficiency of the interference network with respect to the centralized
solution, we use the price of anarchy. [38] gave a definition of PoOA where the optimal

situation correpsponds to a POA equal to 1, while other situations correspond to a PoA> 1:

max Z uix(p)

i

Zui,x (ENE) ‘

1

VX € {CAR, AAR}, PoAy = (18)

B. About the considered EE performance metric

Here we assume a single-user scenario i.e., N = 1, a fixed channel gain (namely g11 = 2.5),

and the arrival rate to be fixed (CAR scenario). Fig. 1 depicts the EE (4) as a function of the

chosen radiated power for different values of the fixed consumption cost b and packet arrival

rate q. First, the figure illustrates what has already been proved through Prop. 3.2 namely, EE

is quasi-concave w.r.t. the radiated power. Second, we fix g to one and assess the influence of b.

As b increases, the curve becomes less peaky. In fact, if b becomes very high, EE tends to merely



IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY 18

becomes a packet success rate function. This means that power control becomes irrelevant since
it merely boils down to transmitting at maximum power whatever the channel conditions. Now
we fix b to 1000 mW. By moving from the arrival rate of 4 = 1 (framework of [17]) to g = 0.6
(with a buffer size of K = 10), it is seen that the EE curve is quite significantly changed and
the optimal radiated power changes from 460 mW to 320 mW. In the next section, the gain in

terms of radiated power brought by the cross-layer approach is quantified in a more general

scenario.
45001~
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Fig. 1. CAR: EE against p, i.e., the energy efficiency as a function of the transmit power for various values of the

constant power (b) and packet arrival rate (gcar).

C. Influence of the packet arrival rate in the CAR scenario

Here we assume the low interference scenario. For K = 10, Fig. 2 represents the gains
in dB in terms of radiated power which is brought by the proposed cross-layer approach
(after convergence of the proposed distributed power control algorithm) w.r.t. the conventional

approach in which it is (implicitly) assumed that g — 1 [17]. The gain is therefore defined by
NE

pilg 1]

10logyy | —g——

transmitters since the average channel gains are identical). The gain is represented as a function

], for a given i € {1,2,3}, say i = 1 (the gain is the same for the different

|
1000
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of the packet arrival rate. It is seen that, for different numbers of transmitter-receiver pairs (N = 2
or N = 3) and a raw packet error rate of € = 0.1 (by raw it is meant before re-transmission),
the gain is significant if the arrival rate is typically less than 0.5. Gains as high as 10 dB (with
N —1 = 2 interfering users on the same band) or 30 dB (with N — 1 =1 interfering user on the
same band). If the raw QoS constraint is relaxed (e = 1), quite similar observations can be made.
These gains are not in terms of energy consumed by the whole transmit device but they mean
that transmitters use much less radiated power and therefore create much less interference,

while reaching the same QoS.

35

30

o5 —N=2, e=0.1
---N=3, ¢=0.1
20 -+-N=3, e=1

--N=2, e=1

10log 10(|O'\'E[q~~1]/ PN

15
1075 oo s

gl

% 01 02 03 04 05 06 07 08 cc08°0e®

PElg — 1]

NE
Py 4]
the case where the buffer is ignored and arrival rate is one. Interestingly, our cross-layer approach does not only

Fig. 2. CAR: lOloglo( ) against g, i.e., the ratio of equilibrium power levels in the cross-layer case to

allow the EE to be maximized but also allows significant gains in terms of radiated power. The transmit power for
the cross-layer approach is always lower than for the purely physical layer approach, and this difference is more

prominent when a packet loss constraint is imposed.

In the low interference static channel scenario, Fig. 3 depicts the PoA or price of having a
distributed network versus the packet arrival rate for different buffer sizes (K = 1 and K = 10)

and a raw packet error rate of € = 0.02. In contrast with existing works on EE, the PoA can be
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Fig. 3. CAR: Here, a given realization is assumed for the channel. In contrast with existing works on energy-efficient
power control which assume g — 1 and therefore always obtain a high value for the PoA, it is seen here that low
values are actually reachable when the packet rate is sufficiently small. With a large enough buffer size (K), even for

€ =0.02, the NE is close to centralized solution if the right g is used.

small in energy-efficient interference networks. This occurs when the arrival rate is typically less
than 0.4 and for a reasonably large buffer size; K = 10 is in fact quite small while K = 1 is the
minimum buffer size possible and corresponds a very extreme case. The jump observed in the
figure around q = 0.4 at low interference and ¢ = 0.5 at high interference. This occurs when g >
F(NE). This jump in the PoA occurs when the value of g crosses this threshold, as the equilibrium
power control policy before the jump corresponds to a power control policy closer to the one
seen in [5], while after the jump, the equilibrium is closer to the one in [17]. It is therefore worth

noting that, under some realistic conditions, a distributed interference management policies can
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Fig. 4. Contrarily to Fig. 3 which assumes a given channel realization, this figure is obtained by averaging over
channel realizations. The CDF of the PoA provides information about how often the price of having a distributed
system is low or high. In this figure as well, we see that even in the high interference regime, a small arrival rate

can lead to an efficient equilibrium more often.

perform as well as a centralized one. To our knowledge, this observation has not been made
before in the literature originating from [5] because all the corresponding works assume that
the transmitter has always packets to send while this is not the case in many real scenarios
(download speeds are often limited by server speeds).

Since our observations regarding the PoA might be thought to be related to the specific realiza-
tion of the channel, we now provide numerical results which have been obtained by averaging
over channel realizations. Fig. 4 shows the cumulative distribution function (CDF) of the PoA
for four parameter settings: Low interference scenario and gcar = 0.2; Low interference scenario
and gcar = 0.8; High interference scenario and gcar = 0.2; and finally, high interference scenario
and gcar = 0.8. This figure confirms that the loss on optimality induced by decentralization is
rather small if transmissions are sporadic and interference is not severe.

Now, Fig. 5 represents the network sum-payoff, which is an absolute performance measure.

In the high interference scenario, for K = 10, a raw QoS of € = 0.02, the figure depicts the sum-

10
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Fig. 5. CAR: Remarkably, this figure shows that a communication system can be optimized in terms of used traffic
or service. Indeed, there exists an optimal packet rate at which the network EE is maximized. As the number of
users increases, the g that corresponds to the best equilibrium, in terms of sum-payoff, decreases. Note that this plot

is for the high interference case with € = 0.02 resulting in a low equilibrium payoff for N = 8.

payoff versus g for different numbers of transmitter-receiver pairs (N € {2,3,4, 6}). This figure
illustrates that the sum-payoff at the NE is maximized at a particular g4 which is seen to decrease
with the number of transmitters. This can be intuitively understood, as if the packet arrival rate
is reduced, it is possible for more transmitters to experience the same QoS and transmit at a
lower power. On the other hand, a very small g implies that the network resources are not

being sufficiently exploited, resulting in low efficiency.

D. Gains in terms of energy brought by the cross-layer approach w.r.t. the state-of-the art

To our knowledge, existing works in the literature originating from [5] do not interpret EE
maximization as energy minimization. As explained in the paper, both problems are in fact
equivalent in communications systems where re-transmissions are allowed. We exploit this
interpretation here to go further than just assessing the gains in terms of EE as done classically.
Indeed, we assess the gain in terms of energy or average total power brought by the proposed
cross-layer approach over the closest state-of-the art solution which is given in [17] (the latter

is obtained by assuming g — 1 whatever the actual value of q). For 4 = 0.5 and g = 0.3, Fig.
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6 shows that it is possible to have improvements in terms of energy consumed by the device
and not just EE. This (relative) gain can be as high as 28% for g = 0.5 and 42% for g = 0.3 in the
setting under consideration. Interestingly, this gain can be obtained under the same information
assumption as [17] namely, only individual SINR feedback is needed to implement the power
control algorithm which provides the NE performance (after convergence). Note that in this
case, q = 1 offers no gain as the situation is identical to that treated in [17] while g — 0 would

offer maximum gain.
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Fig. 6. CAR: Plotting the energy consumed against b with 4 = 0.6 and g = 0.3. We compare the performance of our
proposed algorithm against using the best-response dynamics algorithm from [17] where the presence of the queue

is ignored.

As a second comparison in terms of energy, we compared the energy consumed by a trans-
mitter when optimizing (4) with what would obtained by just minimizing the radiated power
under an SINR constraint, which is a classical approach. Fig. 7 corresponds to the relative gain
in terms of saved energy as a function of the fixed consumption cost b, for g = 0.5 and 4 = 0.9,
R =8 Mbps and an SINR target of 25 dB for both approaches in the single user case (interference
can make achieving such a target impossible). It is seen that an energy gain of up to 80% can
be achieved for sufficiently high values of b, which is a quite significant gain and can be easily

attained in practice (e.g., maximum radiated power for femto base stations is of the order of

60
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Fig. 7. CAR: Plotting the energy consumed against b with g = 0.5 and g = 0.9. We compare the performance of our
proposed algorithm against a scheme that just minimizes the transmit power such that the SINR > 25 dB. We show

that our proposed algorithm satisfies this constraint and still consumes less energy.

one watt while the fixed consumption cost is typically of about a few watts). Note that the gain

observed here is maximum when g =1 as the highest transmit power is used in this case.

E. Influence of the packet buffer size in the AAR scenario

So far, we have been assuming the CAR scenario. In particular, this has allowed us to study in
detail the influence of the parameter q. But, for AAR g is not fixed and varies with the SINR. Fig.
8 represents, for different numbers of transmitters (N € {2, 3, 8}), the network sum-payoff versus
the buffer size for a static channel. The influence of interference (e.g., inter-cell interference) on
global energy-efficiency clearly appears. As an important comment, as this simulation shows
and many other simulations confirmed this observation (including all simulations assuming
CAR instead of AAR), when the buffer size is greater than 10 typically, the asymptotic regime
in terms of buffer size can be assumed to be approximately reached. In practice, this means
that, when K is large enough, power control policies might be approximated by implementing
the power control policies obtained by assuming K — +oco, which corresponds to switching

between Cases 1 and 2 (in Sec. III-B), depending on the current SINR.
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Fig. 8. AAR: We observe that the AAR sum-payoff at the NE is sensitive to the interference level, as seen from
the large difference between the two user low and high interference case. With a low interference level, N = 8 has a

higher sum-payoff than for N = 2 with a high interference level.

Fig. 9 studies the average gain in EE (averaged over the channel fading) when compared
to that of a power control algorithm ignoring the packet level versus the interference. Here
we see that when the interference is very low, the NE of the proposed scheme performs better
than an algorithm that ignores the packet level. However, when under interference, the strategy
under the AAR scheme would be to use a very high power as EE is individually optimized
when the AAR achieves a higher packet rate. This results in a sub-optimal NE as seen in the
figure when the interference is in the [-25,0] dB range. This effects indicates that the cross-
layer approach might induce some performance loss w.r.t. the classical approach. The authors
wanted to emphasize this negative but quite surprising result since it indicates that in distributed
networks, refining the modeling aspect can sometimes induce a performance loss; this result
can be related to other known paradoxes in distributed networks such as the Braess paradox

[39].
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Fig. 9. AAR: Here, we plot the percentage gain in EE v.s g;;,i # j (keeping g;; = 1), where the gain is calculated by
comparing the EE achieved using the proposed AAR algorithm to the EE at the NE achieved by using the algorithm
ignoring the packet level. We observe that in the very low interference regime, the proposed scheme outperforms
the other algorithm. However in the low-medium interference region, the NE is inefficient with a high PoA and this

results in poor performance.

VI. CoNCLUSION

Compared to the closest related works, the work reported in this paper possesses three salient
features: The (possible) existence of packet buffer with finite size is taken into account; The total
power consumed by the transmitter is considered; The proposed formulation considers the
QoS. Remarkably, even though the derived energy-efficiency performance metric is seemingly
more complex, it possesses all the main properties necessary for designing efficient distributed
algorithms. Quite surprisingly, this is not only true when the packet arrival rate is constant
(CAR protocol) but also when it is assumed to be adapted as a function of the SINR and the
subsequent packet loss through the AAR protocol. One of the consequences of these properties
is that the proposed iterative distributed power control algorithm converges towards a unique
Nash equilibrium of the power control game associated with both transport protocols.

While the cross-layer generalization of energy-efficient power control is supported by several

key analytical results, numerical results strongly support our approach as well. One of the key
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observations made from simulations is that a distributed power control scheme can perform as
well as a centralized solution in some situations; realistic settings under which the PoA is one
are clearly identified. Also, it is clearly explained why maximizing EE amounts to minimizing
energy in communication systems with re-transmission protocols and this key interpretation is
exploited to assess the gain in terms of saved energy brought by the proposed approach.

The proposed approach might be extended in many relevant ways. To address more general
wireless scenarios, the most simple extension would be to address the multi-carrier case and
also the case of frequency selective channels, these extensions being potentially related. When
relevant, receivers might be assumed to implement successive interference cancellation. In order
to obtain more efficient equilibrium points (e.g., in the sense of the sum-payoff or a given
fairness criterion), it would be of high interest to exploit a more advanced game model such
as a stochastic game; this extension is especially relevant if the queue state information has to
be exploited. To go further in the direction of having a very realistic wireless network model, a
less trivial, but very relevant extension would be to analyze the case of a time-varying number
of users. This is definitely both of practical and theoretical interest. Finally, the case of CAR
and AAR transmitters simultaneously active in the network has not been studied in this paper.
However, our results for quasi-concavity are independent of the protocol used by the other DMs

and so the existence of the NE is guaranteed, while uniqueness is left for future extensions.
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APPENDIX A

Proor or QUASI-CONCAVITY

Proof: To prove that 1;x(p ) is quasi-concave w.r.t p;, we consider its reciprocal
1 —i
—— = Ai(p) + Bx(yi(p)), where;

T]i,X(Ei)
Ailp) = m, the physical layer factor which depends on the transmit power and the SINR.
Bx(yi(p)) = b , the cross-layer factor which depends on the protocol X and

~ Rax(i(p)IT - @x(ilp))]
the SINR.
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Recall that f(y) is increasing and initially convex for y € [0,y.] and eventually concave for
Y € [y+,). So, we have that A;(p) is decreasing in the interval y;(p) € [0, ] and convex w.r.t p;
for yi(p) € [y+, o). If a function is continous and differenciable, then it is sufficient to show that
it is convex at all local minima/maxima for quasi-convexity. The inverse function we consider
is strictly decreasing in the interval [0,y.] and thus, can not have a maxima/minima in this
interval. Hence, once we prove that it is convex in the other interval, we prove quasi-concavity
of the original function.

If Bx(yi(p)) is a monotonically decreasing function and is convex for y; > y,, then we have

1
uasi-concave w.r.t p; [40], [41].
Aip) + Bx(ip)) 1 a
Iip) . . . dBx
From (1), 8]9-_ is a constant and in the following sections, to prove that s < 0 and
"Bx > 0, we just prove that:
2
8& <0, and aﬁ > 0.
i 7

A. The case of CAR

In this sub-section we prove that the required conditions for quasi-concavity are satisifed
under a CAR scheme. For CAR, qcar(yi(p)) = g is a constant. Now let us study the derivatives

of the function Bcar(yi) w.r.t yi;

IBcar(Yi) _ b IDPcar(yi) (19)

i Rq(1 = ®car(yn)?  dyi
and
*Bcar(yi) _ b
ay? Rq(1 — Dcar(yi))?

PD ; )\
car(Yi) N (3®CAR(V )) 2 . 20)
dy? Ipi 1 — Dcar(yi)

From (19), we see that showing afg;,‘m < 0 is sufficient for proving that aBCaA—;(y’) < 0 as the other

terms are always positive.
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Similarly, z (DCAR > 0 is sufficient for proving that —8285;;(’7 ) 5 0.
&CD an If(yi)
o CDCAR ( —f( )(9 HCAR
al_[CAR f (i) *f(vi)
CAR™ 75— (22)
(97/1 87/1 8)/1

For 22car

5y <0, by examining (21), we see that showing ag;fR

We have wcar = 1q 7 f{y(v)’ and so:

< 0 is sufficient.

d - If(yi
WCAR _ q _ f(ri) <0 (23)
dyi  (A=9f() 9y
It can be easily verified that z “’CAR > 0 for y; > y*. Express H = 1+wCAR ot i . Differentiating
with respect to y;, we have
&I;IC"*R = HéARacgcéR ( 21 Fot II<<+1 ) <0. (24)
Vi Vi \@Wear WCAR
Again, it can be verified that z HCAR > 0. Thus, we have:
D
IPear _ (25)
8yi
and
9*®car
>0 26
5 (26)

Now, following the argument from the start, we have ncar(p;,p ) to be quasi-concave

Since there exists some power p; for which 7;car(pi) is maximized, we have proved that there
exists a unique p; for which the EE is optimized.
| |

We are able to determine the optimal power p? which maximize the EE function, by solving
the following equation:

pi o)
» Ipil f(yi(p))
(1 — Dcar) (aq)CAR pi pil F(ilp )

0 = —2%car (b 4 b4 q(1— q’CAR))+

I FOip) i (27)
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B. The case of AAR

In this sub-section we prove that the required conditions for quasi-concavity are satisifed
under an AAR scheme. For AAR, gaar(yi(p)) is determined by the (10). In AAR, from (3), we
know g = ¢(¢) and so @ = g7(g) where g‘l_is the function inverse of g(.) which is assumed to
exist, be double differentiable, strictly decreasing and convex.

And so we have the following equation for Baar(y;):

b
R(qaar(l = 871 (qanr(i(p))

Baar(yi(p)) = (28)

Now let us study the derivatives of the function Baar w.r.t y; as %’f > 0 and is a constant. So

the sign of these derivatives do not change even when differentiated w.r.t p;.
—b dBaar(yi)
R dyi
T ar (V)1 = 871GaaR)) = GAAR(VDTA A (V)81 (GaAR)
[7aar(y)(d = 87 (qanr(y))P

= (29)

and
R PBaar(i) _
b 8)/12 B
[P ar (7D = 871 (GaAR)) — GaarR(V)TAAr (VD&Y (Ganr)]?
[gaar(yi)(1 = g7 (qaar(y))P
[Faar (0 - 87 (4anR)) = 20 \g (7)*(871) (Gaar)]
[9aar(y)(1 = g7 (qaar(y))]?
AR g VD&Y (Ganr) + T g V(€7D (Ganr)]
[9aar(y)(1 = g7 (qaar(y))]?

From the above expressions, we deduce that the requirements for Baar to be decreasing and

(30)

convex, knowing (¢71)(gaar) < 0 and (¢71)’(gaar) > 0 is that

d i

—q‘?;(y )50, (31)

2 ,-

—qAAIE(y) <0. (32)
dy:

Now, we exploit the AAR based fixed point equation:

1= f(yi)

- 1+ a)AAR(Vi)_l + CUAAR(%‘)_2 +-F C‘)AAR(%‘)_K‘

§ ' (qaar(Y) (33)
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d i
Differentiating (33) w.r.t y; once, we get that %%(7) > 0 and differentiating twice, we get
i
that the inequality (32) is satisfied for y; > y..
Thus we have shown that 1; aar is quasi-concave w.r.t p; for the AAR case.

ArPENDIX B

Proor or ExisTENCE OF A PURE NE IN Gcar

Proof: Here we use the result in [21] (Corollary of Theorem 2 in [21]) which states that:

Theorem 1: Yi, A; ¢ RN be non-empty, convex and compact, and let U; : A; — R be quasi-
concave in #; and upper semi-continuous. Define Vi(a_;) = max[U;(a;,a_;)]. If V; is lower semi-
continuous in a_; then, the game (N, A, U) has a pure NE.

In this section, we prove that u;car is upper semi-continuous and that the newly defined
function Vi(E_i) = max[u;car(pi, E—i)] is lower semi-continuous. Here, we identify V; as the payoff
of the best-response, i.e., Vi(E_-) = ui'CAR(BRi'CAR(E_i)’E_i)' Studying the specific cases of Gcar:

g[1 — Dcar(yi)IR

Note that o p < Tli,CAR(E)} V(pi < Pmax). Define p;r(E_i) : CI)CAR(yi(plf(E_i), E—i)) =€ and
Incar(pi(p_)p )
Pip_): 8p_' ——— = 0. There are several cases possible:

1) p;“(E_i) > Pmax: Here, ui,CAR(E) is a strictly increasing function and maximizes at Ppay.

2) p:(g_i) < p;’(;_a_i) < Pmax: Here ”i,CAR(E) is a strictly increasing function in the interval
pi = [0, pf(E_i)) and after a point of discontinuity at p;r(E_,')’ is strictly decreasing in the
interval [pf(;z_i), Prax]- S0 1 car maximizes at pf(r_)_i).

3) pf(g_i) < plf(E_i): ui,CAR(B) is strictly increasing in the interval [O,pf(E_i)) and after a point
of discontinuity at u, is quasi-concave in the interval [p;"(;z_i), Prax]- S0 U caAr maximizes
at pi(p_)-

In all three cases, u;car(p) is upper semi-continuous and quasi-concave (See Appendix A for
properties of 1;car). Also, ui(p;(E_i), E—i) is a continuous function in P and for small P
BRic AR(E_,') = p; . After the point where p;f(E_i) = p;r(E_i), asp increases further, BRi'CAR(E_i) =p!
which is also continuous. And so BRi,CAR(l_’_i) is in fact continuous and increasing in E_i.

Vi is continuous in the interval P, < E: : pj(ii) = Pmax and is given by n;car. For P, > Eii’
Vi jumps down according to the definition in (15) and is thus, lower semi-continuous. Using
Theorem 1, we have the result that the Game admits a pure NE.



IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY 32

ArPeENDIX C

BEST-RESPONSES FOR gx ARE STANDARD

This proof holds for both cases of CAR and AAR. Here, we prove that the best-responses are
monotonic and scalable (standard) if n; x(p) is quasi-concave w.r.t p;. A function F(x) is standard,
if it satisfies the following properties: )

1) F(x1) > F(xp), if x1 > x»: Monotonic

2) F(Ax) < AF(x), if A > 1: Scalable

Consider P_ ;= AE_]-’ where A > 1.

BRf'X(E_/) can be calculated by solving for y;in

IA(p,pj)  IB(y?)
0= +

Ipj Ip; Y
which can be simplified to
0=407) +Cp )B0) (35)
where A()/*.) = f(y])_—f:(y])y], p )= # and B(y*.) = 33(7/]‘-). As A is convex and
/ 2% —i" 0%+ Ligjhipi / y;

B negative, (proved in App. A), we can conclude that 7/;(2_ )< )/;(p ). Thus, BRjx(P_;) <
—]
ABR];X(p_j) asp; = )/]'(02 + Z#J- 8iipi)- Therefore the best-responses for the game are scalable.
Now consider P_; > )\E_j such that (0% + ¥;; 8ijPi) = A(0® + Ly gijpi) , where A > 1. Let vy
(where BRx(p" ) = y;*(oz + Lizj hiP;) is the best-response) satisfy
-]

)
0=A07) +——B07) (36)
Now replace 143 by 77’ and we have
AiA ) + =LA < 37
(A + —-BjAT) < (37)
A‘H@Of)+(xﬂ)3(*)< (38)
PPl
AQ)+Cp B0
———1—<0. (39)

The above inequalities are a result of the properties of A and B given in App. A.

Which shows that 7/] > % and thus, BR;x(P_ i) > BR]?X(E_]-) and hence the best-responses are
monotonic.

As all the powers played are positive, the best-response functions satisfy the two requirements

and so are standard functions. m
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Abstract—In this work, we propose a novel power allocation
mechanism which allows one to optimize the energy-efficiency of
base stations operating in the downlink. The energy-efficiency
refers to the amount of bits that can be transmitted by the
base station per unit of energy consumed. This work studies
the impact of flow-level dynamics on the energy efficiency
of base stations, by considering user arrivals and departures.
Our proposed power allocation scheme optimizes the energy-
efficiency, accounting for the dynamic nature of users (referred
to as the global energy-efficiency). We emphasize our numerical
results that study the influence of the radio conditions, transmit
power and the user traffic on the energy-efficiency in an LTE
compliant framework. Finally, we show that the power allocation
scheme that considers traffic dynamics, is significantly different
from the power allocation scheme when the number of users is
considered as constant, and that it has a better performance.

I. INTRODUCTION

For a long time, the problem of energy in the field of
communications revolved around autonomous, embarked, or
mobile terminals. Nowadays, with the existence of large
networks involving both fixed and nomadic terminals and
the larger data rates supported, the energy consumed by
the fixed infrastructure has also become a central issue for
communications engineers [1]. As stated by the project Green-
Touch, the telecommunications industry currently account for
2% of the global carbon footprint, of which the major portion
comes through the energy consumed at base stations [2]. This
has led to the growing awareness for the need to reduce energy
consumption as well as to optimize the use of energy in order
to gain maximum benefit out of every unit of energy spent. The
present work falls into this framework, more specifically, our
goal is to devise the power allocation schemes for base stations
in green wireless networks with the focus on downlink. The
novelty of this work is in treating the problem of energy-
efficiency and power allocation for dynamic users, i.e for users
who, like in most practical cases, arrive randomly with a finite
workload and depart after finishing it.

Among the pioneering works on energy-efficient power
control is the work by Goodman et al [5] in which the authors
define the energy-efficiency of a communication as the ratio
of the net data rate to the radiated power; the corresponding
quantity is a measure of the average number of bits suc-
cessfully received per joule consumed at the transmitter. This
metric has motivated many works. A survey on works that

Samson.lasaulce @lss.supelec.fr

France
Merouane.debbah @supelec.fr

deal with this metric can be found in [6]. Other works like
[8] deal with the energy-efficiency metric, and it is applied
to the problem of distributed power allocation in multi-carrier
CDMA (code division multiple access systems) systems, in
[4] it is used to model the users delay requirements in energy-
efficient systems.

Summarizing the literature overview for energy-efficiency
optimization, we conclude that although several works con-
sider deal with this problem, they do not take into account
several key-aspects of the network. First, in the definition of
energy-efficiency, the number of users in the system is fixed,
corresponding to a full buffer traffic model. In a real system,
users arrive and depart and the number of users in the system
is a dynamic quantity. Secondly, the transmission cost usually
corresponds to the radiated power that is, the power of the
radio-frequency signals. In this paper, we propose a power al-
location scheme that responds to these two needs: considering
the dynamic behaviour of users and taking into account the
whole power consumption and not only the radiated power.
This work uses a cross-layer approach, which deals with both
the Media Access Control (MAC) layer, as well as the flow
level (user arrivals and departures) in Orthogonal Frequency-
Division Multiple Access (OFDMA) systems that are LTE
compliant. Similar cross-layer approaches have been used in
works like [9] and [7], but the metric used is often the capacity
or data rates maximized under power constraints, while in this
work we deal here with energy-efficiency optimization.

The original contributions of this paper are summarized as
follows:

1) We consider a new energy efficiency metric that ac-
counts for the overall power consumption of the base
station, including common channel and fixed consump-
tion parts.

We derive an optimal power allocation scheme that max-
imizes the energy efficiency, while preserving Quality of
Service (QoS).

We show that the power allocation that considers the
dynamic behavior of users is significantly different from
the scheme optimized locally for each state of the
network. In addition to that, the former performs better
than the latter. To the best of our knowledge, this is
the first time where such a flow level power allocation
scheme is derived.

2)

3)



This paper is structured as follows. In Section II, we present
the system model and define the proposed performance metric.
In Section III, we derive the optimal power allocation scheme
when supposing that the number of users is fixed. Section IV
shows how to deal with the dynamic behavior of users. Sec-
tion V provides numerical results comparing both approaches
(local vs. global optimization). Finally, we conclude the paper
and suggest some possible extensions to this work.

II. SYSTEM MODEL
A. System description

We consider a transmitting base station with buffers of
infinite (or very large) size. The base station sends packets
into a queue for each user which is stored in these buffers.
The packets arrive at each time slot 7’» (expressed in seconds),
each packet being of size .S}, (expressed in bits). The data rate
R, is equal to %‘; The throughput when using all the available
bandwidth is denoted by R(p) (expressed in bits per second),
when the receiver has an average signal to interference plus
noise ratio (SINR) of p. This SINR depends directly on the
transmit power P (expressed in Watts) as p = U—Pz. Here
o? represents the average noise for a given radio condition
(expressed in Watts) and it depends on the distance of the
receiver from the base station. Note that in this work, the
effects of fast fading are not studied and we just consider the
average SINR.

All packets of a user are assumed of the same size and the
average throughput on the radio interface, when the queue
for the corresponding user is active, is denoted by R, (p)
(expressed in bits per second) which depends on the bandwidth
available. When all the packets in the queue are transmitted
the queue becomes empty and inactive. We assume that the
transmitter always transmits packets while the queue is not
empty. Each packet stored in the buffer is a collection of
frames that are transmitted over the symbol time 7 (expressed
in seconds). Each frame is transmitted or retransmitted till
it goes through and an acknowledgment is received. With
these assumptions we proceed to calculate the average packet
duration 7y in the buffer.

&)

If this duration exceeds 7p, the time by which the next packet
arrives, the queue size becomes infinite and the transmitter is
always on. Otherwise, the probability of the transmitter to be
active (®(p)) is given by the ratio of T to Tp. Thus we have:

Ry
®(p) = max <Ru(p) , 1) ()

In this work, we focus on an OFDMA system that suits
LTE standards, and obtain the throughput R(p) by link level
simulations as described in [3]. The values taken for R(p)
from [3], are in fact, averaged over the fast fading and are
thus suitable for our model. When there are several users in
the network, the available bandwidth is divided among the
active users. We assume the bandwidth allocation to be equal

among all users and this implies that if NV users are all active
and experience the same radio conditions, the throughput is
reduced to %.

B. Proposed performance metric

In the broadcast channel there are multiple users that have to
be served. In practice, users arrive randomly, and depart once
they finish downloading their requested data. New arrivals
are blocked when the total number of users crosses a certain
limit defined by the base station. Each user may experience a
different radio condition from its peers.

For convenience, we divide the area covered by the base
station into “zones”. Every user in the same zone, experiences
the same radio conditions. This implies that if the base
station transmits at a certain power, then all the users in the
same zone experience the same SINR. The radio conditions
are determined by the average distance of the zone to the
base station. If we have M zones in total, we can define
{03,003, ,0%,} as the channel conditions for each zone. We
then define the “state” of the system § = { Ny, Na, -+, Nas}.
The state S represents the number of users in each zone. For
example if there are two zones, and there are no users the state
is {0,0}. When a user arrives to zone one, the state becomes
{1,0}.

For a state S = {N7, Na,---, N}, the power allocation
scheme defined as P = {Py, Py, - , Pps} results in an SINR
distribution of p = {p1, p2,- - - pasr} among the zones 1 to M,
where p; = U—J;

First, we define the notion of energy-efficiency for a given
state or the “local” energy-efficiency. This is useful as in
practice, the base station can easily measure this quantity
only for a given state as it is unable to predict when a new
user will arrive. The “global” energy-efficiency defined as the
average of the energy-efficiency in each state weighted by their
probabilities.

If there is always one and only one user, the energy-
efficiency can be defined based on [S5] and other works as

_ R(p)2(p)
1SV 5 Pa(p)

where b is the constant power consumed by the base station
while serving at least one user!. The proposed form is easy to
interpret as R(p) represents the average throughput when the
transmitter is active and P is the cost when the transmitter is
active.

When the system is state S, the energy-efficiency is defined

as: ?g(ﬁ)
s(P)

where Rs and Pjs represent the total throughput and power
consumed respectively in state S.

3

ns(P) = €]

I'This cost can have several origins like energy spent on the power amplifier,
computation, cooling mechanisms etc. Details of the power consumption
model are given in [1].



When the number of users is random, then the global
energy-efficiency function is defined as:

_Rg
ﬁ:Z:ﬂ%;— (5)

Where 7(S) is the probability of finding the base station at
state S of user distribution. The global energy-efficiency could
alternately be defined as ratio of the total throughput over all
states to the total power over all states. However, in practice,
calculating the energy-efficiency for each state and taking
the average, is easier and more reasonable. The goal of this
work is to improve the above defined energy-efficiency of a
transmitting base station.

This metric can be physically interpreted as the average
number of bits that can be transmitted by spending one Joule
of energy. Alternately, the average power cost of the base
station can be written an T”‘Tfﬁc. Hence, optimizing the global
energy-efficiency amounts to minimizing the average power
consumption of the base station.

III. OPTIMAL POWER ALLOCATION FOR A FIXED NUMBER
OF USERS

In this section we consider the case where the number
of users is fixed. We will refer to the optimization of the
metric defined in this section as “local” optimization as it
deals with the optimization of a single state of the wireless
network. When the state of the network is given, we know
the number of users in each zone and can thus calculate
the relevant information required to obtain and optimize the
energy-efficiency. For our calculations we assume a knowledge
of the average noise levels for each zone, i.e {0%,03, - ,0%,}
are known.

A. Homogeneous radio conditions

First, we consider the problem where all users experience
the same average SINR, as the model is easier to be under-
stood; the case of heterogeneous SINRs will be exposed next.
Let the total number of users in the cell be N. As all the users
experience the same radio conditions, 8 = {N}. In this case
if we define the average throughput experienced by any queue
as R,, we can derive:

N—-1

rip)= Y (V7 ewra - e o

= 1 i+1

where ®(p) denotes the probability that any of the N users
are actively being served and is given as in equation 2. The
summation is upto N — 1 as R, is the throughput experienced
by an active user, and so we consider the remaining N — 1
users. The R, for every user is identical as all users experience
the same SINR for the same transmit power. This symmetry
can be exploited to conclude that the transmit power for each
user will be equal when optimized. Note that R, (p) depends
on ®(p) and ®(p) depends on R, (p) leading to a fixed point
equation.

Clearly if NV is large enough, then the demand in data
rate will exceed the maximum available throughput and ®(p)

becomes 1. On the other hand, if IV is small enough, the users
may transmit their data faster than the packet arrival speed
causing the queue to empty occasionally. In this period, other
users can take advantage of the excess bandwidth.

From ®(p), the total power consumed can be calculated as

Ps=b+P(1—(1-2(p)") ©)

Here (1—®(p))Y is the probability of all queues being empty.
If any queue is active the power consumed is P. The total
throughput is Rs = N®(p) R, leading to an energy-efficiency

o _ N®(p)Ra(p)
BTy P —®(p)¥

B. Heterogeneous radio conditions

®)

Consider a more realistic setting where users experience
different radio conditions in each zone. Denoting the average

throughput experienced by zone j as R,.;, we can compute
. Ny
R =) 353 3 3 (3
i1=01i2=0 i;=0 i =0 v
(2)
X . cee X
2

(7 ) () < o

X (@2(5))" x - x (Bar()™ x (1 2(p) ™"
X (1= ®o(p)) V22 5 -+ x (1 — (I)j(ﬁ))Nﬁijq
1

X e (1= @ar(p)) VM x it timtl O

N1 Na N;—1 Nm

where

A Rp
w00 = (75

Leading to a set of fixed point equations that can be solved
to calculate all R,.;(p) for a given P. Equation (9) is similar
to (6), but considers the presence of users in other zones as
well. The average power can be calculated as

(10)

N1 Nm
Ps(P)=b+ Y -+ Y (1=0(ir+---+in))
11=0 1p=0

i A Priy + -+ Pyiyg
x (P e x (O M
(@1(6) (ar(p)) x DL

X (1= ®1(p))N171 x oo x (1= ®py(p)) VMM

an

Where the ¢ function is used to exclude the state where all
zones are empty (0(x) = 0 for all real z but 0, and 6(0) =
1). The ener%}/-efﬁciency in this state can be calculated with
Rs(p) = > ;= Ni®(p)iRq:; and total power from equation
(11).

IV. OPTIMAL POWER ALLOCATION CONSIDERING THE
DYNAMIC BEHAVIOR OF USERS

In the previous section, we optimized the energy-efficiency
for fixed numbers of users. To analyze the impact of power
allocation on the network performance and account for the
users arrivals and departures, a flow-level capacity analysis is
required. The arrival rate can be modeled through a Poisson
process (of intensity A; in zone 7) and users leave when they



finish streaming a file of average size F' (we assume that F' is
the same for all users). When the total number of users exceed
a given threshold N,,.., new user arrivals are blocked.

A. Processor sharing analysis

When users with a finite workload are considered, the
number of users is not constant but varies dynamically during
time. The distribution of the number of users is determined
by the traffic intensity within the cell. Indeed, if the traffic
intensity is large, more users connect to the system per unit
time and the average number of active users increases. In
this section, we show how to compute the distribution of the
number of users knowing the traffic intensity.

The heterogeneity in radio conditions translates into a larger
service time for cell edge users. When the system is in state
§ ={N1,No, -+, Nps}, the total number of users in the cell
is N(§) = Ny + -+ 4+ Ny;. Based on [7], we can model
the system as a Generalized Processor Sharing queue, whose
evolution is just described by the overall number of users in a
cell. The solution of the Markov process has the simple form

1 NOE! &

QONe
m(s) = T M | H N. . <
[[iz Nit 25 Hj:l I®es(N.=j) Razes(N.=j)

(12)

where ). = S\, and I is a normalizing constant. The notation
S(N, = j) is used to take the & and R, for the state § with
7 users in zone c.

In this model, the user blocking rate can be calculated as
a =3 ,\>  m(z), z such that the system is full (N(x) =
Niaz)- Quality of service (QoS) is measured through the user
blocking rate. The QoS constraint is thus a < €, where € is
the maximum tolerable blocking rate.

B. Optimal power allocation

The steady-state probabilities defined in the previous section
are calculated knowing the throughputs for each state of the
network. This throughput will of course depend on the power
allocation as explained in Sections II and III. The power
allocation has thus to be optimized taking into account the
dynamics of users. A power allocation policy P is defined as
a set of actions for each of the possible states:

P=|JPs
E

The global energy efficiency; knowing the policy P, is given
by:

(13)

= 14

) (14)
The optimization problem can be defined as

P* = arg max[ij(P)) (15)

And the maximum global energy-efficiency possible is 7(P*).

The idea behind this global optimization is that the power
allocation does not depend uniquely on the actual state of the
network, but takes also into account the future evolutions of the
network. For instance, a power allocation decision that is taken

at one moment may have an influence on the evolution of the
state of the network by favoring a subset of users by a better
throughput. We will study in the next section the difference
between this global policy maximization and a local one, as
defined in section III.

V. NUMERICAL RESULTS

In this section, we use simulations and numerical calcula-
tions to study the properties of the energy-efficiency function
and obtain the power allocation that maximizes it. We consider
the receiver and the transmitter to have two antennas each
forming a 2 x 2 MIMO system. The data rates for this
configuration which are LTE compliant are taken from [3] and
are given as a function of the SINR. For the single zone case
we take 02 = 1 mW while for the two zone case we have
{01,035} = {1, 3} mW. We begin by illustrating the results
when the network is optimized supposing that the number of
users is fixed. The dynamic behavior of users is taken into
account afterwards and the performance of the network is
compared for both schemes.

A. Numerical results for the local optimization

We begin by illustrating the power allocation scheme when
the dynamic behavior of users is not taken into account, and
when all users are subject to the same radio conditions. In
figure 1, we show the energy-efficiency as a function of the
transmit power. Here, due to symmetry, all the users use
the same power. The results show that the energy efficiency
begins by increasing with the transmit power increases, as
users are able to reach higher throughputs. However, starting
from one point, users reach the maximal throughput they are
able to reach as, in LTE, modulation schemes are limited; the
energy efficiency begins thus decreasing as throughputs remain
constant while power consumption increases.
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Fig. . n vs P with J% = 100 (20dB). Note that the energy-efficiency is
peaked at higher powers with additional users.

In figure 2, we consider the case of two users: one in the
“inner” zone (near base station) and the other in the “outer”
zone (at cell edge). In this case, the system has a sufficient
capacity to support both users and the energy efficiency is
optimized when more power is used on the outer zone which



compensates for its lower SINR. Here the total throughput can
thus be increased by using more power on the outer zone user.
However in figure 3, we have three users in both the inner and
outer zones. Here the throughput of the wireless network is
not sufficient for all the users and so the energy-efficiency is
optimized by simply putting more power in the inner zone
with the higher SINR as the total throughput is not improved
by putting more power into the outer zone.

Efficiency (dBm)
T T

Peaked at P1 =2dBm, P2=5dBm
N, =1,N,y=1

P, (dBm)

Fig. 2. 7 over combinations of P; and P> with G—bz = 100 (20dB), N1 =

N2 = 1. Zone 2 corresponds to a lower SINR and in this case the efficiency
is optimized by using more power on the zone 2 user.

Efficiency (bpJ)
T T

PeakedatP, =7,P,=5
N, =3,N,=3

P, (dBm)

b =100 (20dB), N;
N2 = 3. As before, zone 2 corresponds to a lower SINR and interestingly, in
this case, the efficiency is optimized by using more power along the zone 1
user. This is because with 3 users in each zone, the demanded rate exceeds the
maximum available throughput and so, optimization is done by using power
on users with a better SINR.

Fig. 3. 7 over combinations of P; and P> with

B. Numerical results for the global optimization

We have illustrated, till now, the performance of the system
when the number of users is fixed. In this section, we consider
the dynamic behavior of users. In this setting, the power
allocation is not determined for a fixed number of users, but for
a given traffic intensity. the number of users is thus a random
variable whose distribution depends on the traffic intensity.
The optimal power allocation is the one that maximizes the
energy efficiency while maintaining a constraint on the QoS.
Note that this optimal power allocation is a matrix that gives,
for each state of the network composed of the number of users
in the cell, the power allocation for each of the users.

Initially we consider the cell with homogeneous radio con-
ditions, i.e. we suppose that all the users experience the same
SINR on average. In this setting, if N, is the maximum
number of users allowed, optimization is performed over
Nynaq variables, i.e. the power used in each state. For the
single zone case we take 02 = 1 mW. The optimal power
allocation is shown in figure 4. Note that, in this case, the
power allocation is a vector and not a matrix, as all users
experience the same radio conditions and have, by symmetry,
the same allocated power.

— State with N =1
—---State withN =2

—c—State with N = 3
—+— State with N = 4

0 I L L

20 25 30
@ (Mbps)

Fig. 4. The power allocation scheme (P4, - - - , Py) plotted against the traffic
€ when 7 is optimized. Also note that the QoS constraint of maintaining the
blocking rate below 0.01 is satisfied.

Figure 5 compares the energy-efficiency obtained for the
local and the global optimizations. Recall that, by local, we
mean that the optimization is done for each state independently
from the others, taking into account only the observed number
of users and not the future evolutions of the system. As seen
from the simulations (Figure 5), using a global optimization
does not seem to yield much gains in the energy-efficiency
for the single zone case. This is because the throughput, and
thus service times, are the same for all users. We next move
on to the two-zone case (cell center and cell edge). Here we
consider a cell divided into two concentric rings, and define the
outer zone as the region when the SINR is 4.8 dB (3 times)
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Fig. 5. 7 plotted against the traffic {2 when 7 is optimized and when 7 is

optimized for each state separately.

lower than the SINR for the inner zone, when the transmit
power is unchanged. The outer zone also has 3 times the area
of the inner zone causing Ay = 3X;. With these parameters
we attempt to calculate the optimal global energy-efficiency
and corresponding power allocation for given values of A;.
We have {07,03} = {1, 3} mW. Figure 6 shows the energy
efficiencies corresponding to local and global optimizations.
It is obvious that global optimization yields much higher
efficiency when users have heterogeneous radio conditions.
This is because, in the local optimization setting, the notion
of call duration cannot be taken into account as users are
considered as always active. The optimal power allocation
will then tend to favor cell center users in order to maximize
throughput. However, when the dynamic behavior of users is
taken into consideration, it is sometimes better to use more
power on cell edge users in order to let them finish their service
quickly and quit the system. Applying the policy obtained from
the local optimization will lead to users accumulating at the
cell edge as they are not able to finish their transfers.

——Global Optimization
| ocal Optimization

Global efficiency (n*) (bpJ)

f 1o
Blocking rate
crosses 0.01

6

5
Q, (Mbps)

Fig. 6. 7 plotted against the traffic 2; = A1.S when 7 is optimized and when
7 is optimized for each state separately. Also note that the QoS constraint of
maintaining the blocking rate below 0.01 is satisfied at all points shown.

VI. CONCLUSION

In this work we study and optimize the flow level energy
efficiency of base stations in LTE. We introduce the notion
of a “global” energy-efficiency which is defined as the aver-
age of the energy-efficiencies of each state the cell can be
in. These states represent the traffic configurations, i.e. the
numbers and positions of users in the cell. Through extensive
simulations we see that optimizing the global efficiency yields
a different power allocation from optimizing the efficiency of
each individual state. Although this difference can be neglected
when considering a cell in which all users experience the same
average SINR, when considering a more realistic setting where
users are subject to heterogeneous radio conditions, the global
optimization yields a considerable gain. This is because, when
users are considered as static, it may be optimal to give more
power to cell center in order to increase throughputs. However,
when the dynamic behavior of users is taken into account,
giving more power to users with bad radio conditions will
allow them leaving the system faster and thus alleviating load
in the future. When compared to the local optimization, it is
observed that the global optimization improves the energy-
efficiency up to a factor of 50%.
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Abstract—In this paper, we consider the problem of distributed
power control for multiple access channels when energy-efficiency
has to be optimized. In contrast with related works, the presence
of a queue at each transmitter is accounted for and globally
efficient solutions are sought. To this end, a repeated game model
is exploited and shown to lead to solutions which are distributed
in the sense of the decision, perform well globally, and may rely
on limited channel state information at the transmitter.

Index Terms—distributed power control, energy efficiency,
repeated game, channel state information.

I. INTRODUCTION

Designing energy-efficient communication systems has be-
come a critical issue in modern day wireless networks. The
problem treated in this work deals with power control when
energy efficiency (EE) has to be optimized. This metric (EE)
has been defined in [1] as a ratio of the net data rate (goodput)
to the transmit power level. The problem was formulated as a
non-cooperative game where each transmitter aims at selfishly
maximizing its individual energy-efficiency. The considered
solution is the Nash equilibrium (NE) which is shown to be
unique but generally Pareto inefficient. To deal with this inef-
ficiency, an operating point (OP) was proposed in [2] where
repeated game was exploited. Authors in [2] showed that when
playing with the developed OP according to a cooperation
plan, only channel state information (CSI) is needed and
transmitters can improve the social welfare (sum of utilities).
Recently, a generalized EE metric has been proposed in [3] for
two important transport layer protocols (Transmission Control
Protocol (TCP) and User Datagram Protocol (UDP)). The new
EE metric is based on a cross-layer approach and takes into
account the effects of the presence of a queue with a finite
size at the transmitter. An interference channel system was
studied and it was shown that a unique NE exists for a non-
cooperative game. In this paper, we consider the problem of
distributed power control with the new EE metric according
to UDP protocol developed in [3] and for multiple access
channels (MAC) system. Our goal is to find another unique
solution concept which is efficient and may rely on limited CSI
at the transmitter. We refer to a repeated game model (RG)

developed in [2] and try to apply the results on the cross-
layer power control game. One of the major mathematical
distinction between the two metrics used is the presence of
a constant power term in the denominator of the EE metric.
Although it appears to be a small change, the structure of
the equilibrium solution is quite different. The optimal SINR
when using the [1] metric is independent of the channel state.
This property is lost when accounting for the constant power
consumption, and motivates us to propose a new OP for the
cross-layer metric. The main contributions of this work are:

1) Study the RG when using the cross layer EE as the
utility of the game;

2) Establish the threshold on the game length beyond which
the equilibrium policy can be pareto-optimal;

3) Propose a new OP that is efficient and can be reached
in a distributed manner.

This paper is structured as follows. In section II-A, we
introduce the system model under study. Then, we define (in
section II-B) the static power control game. This is followed
(section II-C) by a review of the non-cooperative one-shot
game. In section III, we give the formulation of the RG model.
In section IV, we introduce the new OP and an equilibrium
for the finite RG is proposed. Numerical results are presented
and discussed in section V. Finally, concluding remarks are
proposed in section VI.

II. PROBLEM STATEMENT

A. System model

The communication network under study is that of a MAC
system, where N small transmitters are communicating with
a receiver and are operating in the same frequency band.
Transmitter 4 € {1,..., N} sends a signal /p;z; with power
p; € [0, P™®] where P™** > (0 is the maximum transmit
power. The channel gain of the link between transmitter ¢ and

the destination is denoted as g;. Thus, the baseband signal



received is written:

N
Vi = 9iV/Piti + Y 95/ + i, 6]

j=1
J#
with n; is additive white Gaussian noise (AWGN) with mean
0 and variance o2. We assume that o2 is identical for all the
transmitters such that: 0? = o2, Therefore, the resulting SINR
v, at the receiver is given by:
2
pilgil

N )
1
o’ + Zij\ng
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where p = (p1,p2,...,pn) is the power vector which will
describe later the power actions of the N transmitters and L
refers to the spreading factor [3].

We assume that the described system is based on the IP
(Internet Protocol) stack where packets arrive from an upper
layer into a finite memory buffer of size K (in packets). Here,
the considered protocol is UDP for which the packet arrival
process follows a Bernoulli process with a constant probability
q, independent from the SINR. This results in an effective

packet loss denoted by ®(;) and an energy efficiency 7; given
by:

i(p) = 2

Rq(1 — @(vi(p)))
qpi(1 = ®(vi(p)))’
f(vi(p))

where p_; = (p1, .., Pi—1, Pi+1, --» DN )> R is the used through-
put (in bit/s) and b represents the fixed consumed power when
the radiated power is zero [3].

ni(pi, P—i) = 3)

b+

B. Static power control game

The major motivation behind this work is in order to
establish an efficient equilibrium point to which a completely
distributed system can converge to. A non-cooperative game
has been introduced in [3] where the existence of a unique
Nash equilibrium was proved. Here, we are looking for
more efficient solutions which are distributed in the sense of
the decision making, but may rely on limited channel state
information at the transmitter. As motivated in [3], the power
control can be modeled by a strategic form game (see e.g.,
[4D.

Definition 2.1: The game is defined by the ordered triplet
G = (N, (Ad)iens (us)ien) where

o N is the set of players. Here, the players of the game are

the sources/transmitters, N ={1,...,N};

o A, is the set of actions. Here, the action of

source/transmitter i consists in choosing p; in its action
set A; = [0, P/,

o u; is the utility function of each user according to UDP

given by:

ui(ps, P—i) = 0i(Pi» P—s) “4)

The function f : [0, +00) — [0, 1] is a sigmoidal efficiency
function which corresponds to the packet success rate verifying
f(0) = 0 and lir}rl f(xz) = 1. The function ® identifies

T—r+00

the packet loss due to both bad channel conditions and the
finiteness of the packet buffer. This can be calculated as:

O(vi) = (1 — f(vi) k() (5)

where Tk (7;) is the stationary probability that the buffer is
full and is given by:

_ wK(’Yi)
e = G+ o ) ©
with: o) — q(1 = f(n) @)
Y (=) f(m)

In [3], the authors prove that the non-cooperative game with
rational players, G, allows for a unique pure Nash equilibrium
(NE). This NE is the set of powers from which no player
has anything to gain by changing only his own strategy
unilaterally. This is explained in the following section.

C. Review of the non-cooperative game

The non-cooperative power control game has been investi-
gated in [3] where the quasi-concavity of the utility function
given in (4) was proved. Accordingly, as the NE represents the
fundamental solution for a non-cooperative game, existence
and uniqueness of such a solution have been studied and
demonstrated as well. Thus, the optimal power denoted as p;
is obtained by setting du;/dp; to zero, which leads to solve
the following equation:

1- (%)’
bvéfb/(%)Jrq( fw)l ) [f(vi) = pivif' (i)l = 0, (®)
dvi v df do
where v/ = ==, fl= and ¢’ = .
T dp;  pi ! ds dv;

However, the NE solution is not always Pareto efficient for
many scenarios. An example is presented in Fig. 1 where we
stress that the NE is far from the Pareto frontier. Motivated by
the need to design an efficient solution relying on limited CSI
at the transmitter, we move to the repeated game framework.

Achievable region
@ Nash Equilibrium

Utility of user 2

2 25
Utility of user 1

Fig. 1. Pareto inefficiency of the NE.



III. REPEATED POWER CONTROL GAME

In repeated games (RG), as the name suggests, the same
game is played several times. The long-term interactions
between the players in such a situation is studied under
the RG framework. The players react to past experience by
taking into account what happened in all previous stages
and make decisions about their future choices [5], [6]. The
resulting utility of each player is an average of the utility
of each stage. A game stage t corresponds to the instant
in which all players choose their actions simultaneously and
independently and thus a profile of actions can be defined
by p(t) = (p1(t),p2(t),...,pn(t)). When assuming full
monitoring, this profile choice is observed by all the players
and the game proceeds to the next stage [6]. The sequence of
actions p;(t) of a transmitter 7 at time ¢ defines his history
denoted as h(t) = p;(t) = (ps(1),pi(2),...,pi(t — 1)) and
which lies in the set H; = Pf_l. Before playing stage t, all
histories are known by all the players [2]. According to the
above descriptions, a pure strategy d; ¢ of player i € AN is a
mapping from H, to the action set A; = [0, P"**] specifying
the action to choose after each history [2], [6]:

A
“n) o wl)

We define the joint strategy & = (91, 02, . .
of all the players strategies.

In this paper, we are interested in the finite repeated game,
i.e the game is played for a finite number of steps (1' steps).
The utility function of each player results from averaging over
the instantaneous utilities over all the game stages. At each
stage t, the instantaneous utility of player ¢ is a function of
the profile of actions of all the players p(¢).

Definition 3.1: The utility function of the i*" player for the
finite RG is the arithmetic average of the sum of the utilities
for the initial 7" first stages [6], [7]. We have [2]:

)

.,0n ) as the vector

T
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T _ L 4 .
v; (8) =7 ;:1 u; (p(t)) for the finite RG  (10)

where T > 1 defines the number of game stages in the finite
RG.

An equilibrium solution of the RG is defined in the following
manner:

Definition 3.2: A joint strategy ¢ satisfies the equilibrium
condition for the finite repeated game if for all players ¢ € N,
for all other strategies &/, we have vl (§) > vI'(8l,0_;). It
means that no deviating strategy 0. can increase the utility
v¢(d!,8_;) of any one player.

This equilibrium solution is exactly what we are interested
in, as a strategy 0 satisfying the above condition would be
precisely what rational players in a RG would play. In an
RG with complete information and full monitoring, the Folk
theorem characterizes the set of possible equilibrium utilities
[2], [6]. It states that the set of Nash equilibrium in a RG is
precisely the set of feasible and individually rational outcomes
of the one-shot game (non-cooperative game) [5], [6]. In an

RG, interesting patterns of behavior between players can be
seen and studied. This includes: rewarding and punishing, co-
operation and threats, transmitting information and concealing

[5].

IV. AN OPERATING POINT AND REPEATED GAME
CHARACTERIZATION

A. New OP for the game G

Consider the operating point (OP) described in [2]. It is
identified by a subset of points of the achievable utility region
such that p;|g;|> = pjlg;|* for all (i,5) € N. The optimal
subset of powers consists of the solutions of the following
system of equations:

W) N G =pilgP (D
with w; is the utility function defined in (4).

Due to the presence of the parameter b which we consider
different from 0O, it can be observed that there will be IV
different solutions corresponding to equation (11) in terms of
p; and thus the operating point from [2] is not well defined
when using the utility defined in [3]. To deal with this problem,
a new OP is proposed. The new OP consists in setting p;|g;|?
to a constant denoted as « that can be optimized. We propose
to determine a unique optimal o by maximizing the expected
sum utility over all the channel states as follows:

Zui(a, g)]

=1

(p) = 0 with p;|g;|*

(12)

a = argmax F,

When playing at the OP, the power played by the i*" player,
denoted as p;, is given by:

_ !

Pi= 103 (13)
lg:[?

In the following section, we focus on the characterization

of the finite RG.

B. Repeated power control game characterization

As a first step, we determine the minimum number of stages
(Tinin) corresponding to the finite RG. When the number of
stages in the game is less than T},i,, the equilibrium of the
RG is to simply play at the NE. However, if T' > T, a
more efficient equilibrium point can be reached. Assuming
that channel gains |g;|? lie in a compact set [p™i", n™ax] [2],
we have the following proposition:

Proposition 4.1 (Equilibrium solution for the finite RG.):
For a finite RG, if 7' > Ty, then the corresponding
equilibrium solution is given by [2]:

Pi fort € {1,2,...,T — Thnin}

din: | P} fort € {T — Twyin +1,...,T} (14)
Prax for any deviation detection
where Thin 1S:
Agmax Gmax
b 45,028 by paH

I'min= - -
min
En".n‘“ Cymin
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The proof for this proposition is given in Appendix A, as
well as the quantities A, B, C, D, E, F, G and H. v} is the
SINR at the NE while 7; and 4; are the SINRs related to the
utility max and the utility minmax respectively (see Appendix
A).

V. NUMERICAL RESULTS

We consider a scenario with a MAC where N transmitters
are communicating with their corresponding receiver (e.g. base
station). The efficiency function is assumed to be f(z) =
¢=¢/* where ¢ = 275 — 1 with R and Ry are the throughput
and the used bandwidth and supposed to be 1 Mbps and 1
MHz respectively. The other parameters are set as follows:

e 02=10"°W

e h=10"2W
e K =10
e ¢=0.5

° Rmax — pmax _ 1071 W
The channel gains are assumed to be |g;|> = 1 and |g;]? = 0.5.
Our simulations consist in showing firstly the advantage of the
OP regarding the NE of the one shot game. Thus, we plot the
achievable utility region, the NE and the proposed OP when
considering a system of two transmitters and a spreading factor
L = 2. In Fig. 2, the region delimited by the Pareto frontier
and the minmax level defines, according to the Folk theorem,
the possible set of equilibrium utilities of the RG. In addition,
we highlight that the new OP dominates in terms of Pareto
the NE and it is Pareto efficient.

Fig. 3 represents the ratio “EES for the finite RG as a
function of the number of stages. We have:

D3

WFRG

t=1

o (p(t)) + ZtT:T—TmmH ui (p(t))

wNE S T ui (p(1)
(16)
We consider a system with 25 transmitters and a spreading
factor L = 100. We proceed to an averaging over channel
gains lying in a compact set such that 10log;, ’Z]ﬂ = 20.
According to equation (15), the minimum number of stages
Thin 1s equal to 1200. According to this figure, we deduce

that the social welfare can be improved when playing an RG.

Achievable region
@ Nash Equilibrium
+ NewOP
—— Minmax level

Utility of user 2

Utility of user 1 X 104

Fig. 2. Pareto dominance and Pareto efficiency of the proposed OP regarding
the NE.
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Fig. 3. Improvement of the social welfare in finite repeated game vs the
Nash equilibrium. While the efficiency of the RG while using the traditional
metric defined in [1] seems to be higher, it requires a longer game than in
the cross layer model.

Figure 3 plots the improvement of the social welfare as
defined in 16. This improvement obtained is compared for case
when using the metric defined in [1] to the cross-layer metric
used. The required time for profiting from the RG scenario
is much lower in the cross-layer case, but the improvement
seems to be relatively smaller. However, note that the NE in
the cross-layer game itself is more efficient than the NE in
[1] and so in absolute terms, the proposed OP is still quite
efficient and can be utilized for shorter games. This validates
our approach and shows that the RG formulation is a useful
technique for efficient distributed power control.

VI. CONCLUSION

In this paper, we study an efficient solution for a relevant
game with a new EE metric considering a cross-layer approach
and taking into account the effects of the presence of a queue
with a finite size at the transmitter. As the NE is generally
inefficient in terms of Pareto, we design a new OP and exploit
a repeated game model to improve the performance of a MAC
system. We contribute to express the analytic form for the
minimum number of stages in a finite RG. Moreover, our
approach provides an efficient solution relying on limited CSI
at the transmitter when comparing to the NE and contributes
to considerable gains in terms of social welfare for the finite
RG.

APPENDIX A
PROPOSITION 4.1

The utilities max and minmax are expressed respectively as
follows:

U; = maXp_, maxp, u; (pi,P—i)

w; = minp_, maxy,, u;(pi,P—i)

As a first step, we determine the power p; maximising u;

and which we denote as p;. This amounts to reduce du;/Ip;

to 0. We recall that we consider the following notations: v} =
dvi _ v opr _ df /_ d®
dp; — pi° f T dv an.d (I) d; .

The power p; maximising u; is then the solution of the

following equation:

)
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Therefore, the expression of the maximum utility function
writes as:

Rq(1—-¢(%4))
4+ Pia(0=0 (%))’
Yi

ﬂi(ﬁz,P—i)—

with:
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In a second step, we are interested in studying the behavior
of 4;(p;, p—i) as a function of p; for j # ¢; which amounts
to calculating the sign of % which is shown to be
negative in [3]. Therefore %};P’") < 0. As u; is a

. . . I, .

decreasing function of p;, it reaches its maximum when p; = 0
and it is minimum when p; = p*** (for all j # 9).

A. Expression of u;

The utility 7; reaches its maximum when p; = 0. When
substituting p; = 0 in the SINR expression *;, this allows the
determination of the optimal power p;:

b‘%lz‘l"(%)-kq(%)z[f(w(pi))—"fif’(%(pi))]=0 (18)

As the latter equation is a function of the SINR, the solution
will be in terms of SINR and will be denoted as 7;. The
corresponding optimal power is p; = rg B . Then, we have:

Rq(l $(34))

b 202 20=5(31))
|q1\2 TG

U;=

B. Expression of u;

We proceed as described previously and determine the
optimal SINR denoted as 74; which is the solution of the
following equation:

— (. 2 ’
%i’ o+a(35E52) [Fo—vis (w)]=0 (19)

Then, we have:

Rq(1-¢(5,))

U= =
T (P E S 1)

a(1—9¢(3;))
F(7:)

C. Existence proof of 7; and ¥;

Both equations (18) and (19) are resulting from the same
equation (17) for two different forms of the SINR (5; for
p; = 0 and 7; for p; = p;»na"). Showing the existence of these
two solutions amounts to prove the existence of the solution of
equation (17). However, according to the study established in
[3], it was proved that w; is quasi-concave in (p;, p—;) and then
it exists v such that the first derivative of u; regarding to p;
is strictly positive on [0, y"] and strictly negative on [y, 4+o00]
for all p; € [0,p}**] : the first derivative is continous and is
equal to zero in v+. According to the utility which we are
studying (max or minmax), v is either 7; (eq. (18)) or J;
(eq. (19)).

D.

Proof

From [2], we have:

wp®)+ > E{ui(p(s))}
$=T—Tmin+1

(M) + Y. El{ui(p(s)} (20)

s=T—Thin+1

The SINR #; refers to the SINR when playing the new

IN

OP. In order to simplify expressions, we use the following
notations:

[1]
[2]

[3]

[4

(6]

(7]

Rq(1 —o(%:))
a(1=9(%i))
F)
Rq(1—¢(7:))
q(1— ¢(%))
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) LS
=175

| |
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The inequality (20) becomes:

Alg; |2 Clg;|?
g E, i
blg;|2+5,02B Z* T=Tpin+1 b\ail2+‘r1(02+% St p;naxmj‘z)D

Glg;|? Blg,l
<og—+ 3T Eg
blgil=+aH s=T=Tmin 1 blyi|2+~r;‘(o2+% T P;‘ij)F

and simplifying:

A”Enax Gn;nax

bnitiny5,028  bpityaH

Tmin=
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